
ij=~ Network General Corporation

4

SNIFFER NETWORK ANALYZER®

PROTOCOL INTERPRETER DEVELOPMENT KIT

Errata
Sniffer Network Analyzer: Protocol Interpreter Development Kit

October 30, 1992

The tallowing errata apply to the Sniffer Network Analyzer: Protocol Interpreter Development Kit.

1. On page 1-4, under the heading, "Writing a Protocol Interpreter," the manual informs you that you will need to obtain
Version 6.00AX of the Microsoft C compiler. This compiler and the necessary library files are now included as part of
the Protocol Interpreter Development Kit. You no longer need to obtain them separately.

On page 1-6, Figure 1-1 lists the files provided with the Protocol Interpreter Development Kit. In addition to the files
listed, the following files are also provided as part of the Microsoft 6.00AX C Compiler:

Flies Provided With Microsoft 6.00 AX C Complier

CL.EXE CL.MSG ClL.EXE

LLIBCE.LIB Cl.ERR C23.ERR

CL.ERR C2L.EXE C3L.EXE

3. On page 1-7, under the heading, "Installing the Microsoft C Compiler," the document gives instructions for installing
the compiler. The Protocol Interpreter Development Kit now includes all the tools required to write new protocol
iuterpreters and build new Sniffer analyzers, including the compiler and the library. You will not need to install the
Microsoft C Compiler because it is already installed with the Protocol Interpreter Development Kit.

4. On page 1-31, Step 4 of the procedure, "To build a new Sniffer analyzer," lists several changes that should be made to
the BUILDSNF.BAT file. The necessary files for Microsoft C 6.00AX are now distributed with the Protocol Interpreter
Development Kit. If you are using the compiler supplied with your Protocol Interpreter Development Kit, then the
BUILDSNF.BAT file is already set correctly. You will not need to change the BUILDSNF.BAT file unless you are
using a custom development environment. If this is the case, you will need to change the lines in BUILDSNF.BAT that
set the three variables listed in Step 4 on page 1-31.

5. To use the Protocol Interpreter Development Kit, you must add the following line to the CONFIG.SYS file of the
Sniffer NetworkAnalyzer:

DEVICE..-C: \WNIIMEJ1. EXE

Note: If your Sniffer Network Analyzer has less than 32MB of RAM, you must remove the above command line
before starting the Sniffer Network Analyzer.

6. Before using the Microsoft C compiler, type the following command:

SET PA1lt:C:~;C:\TOCLS;C:\TIX1S\C6a0AX

[~~
We simplify network complexity.

TM

Network General Corporation
4200 Bohannon Drive

P/N: 20100-001

Menlo Park. CA 94025
TEI.:(415)688-2700
FAX: (415) 32l-0855

Network General Europe
Belgic:astraat 4

1930 Zaventem. Belgium
TEL: (32·2) 725-6030
FAX: (32-2) 725-6639

Network General Canada, Ltd.
2275 Lalceshore Blvd., West, 5th Floor
Etobicoke, Ontario MSV 3Y3 Canada

TEL: +l (416) 259-5022
FAX: +l (416) 259-3727

~=~ Network General Corporation

SNIFFER NETWORK ANALYZER®

PROTOCOL INTERPRETER DEVELOPMENT KIT

DISCLAIMER OF WARRANTIES

The information in this document has been reviewed and is believed to be reliable; nevertheless, Network General
Corporation makes no warranties, either expressed or implied, with respect to this manual or with respect to the
software and hardware described in this manual, its quality, performance, merchantability, or fitness for any
particular purpose. The entire risk as to its quality and performance is with the buyer. The software herein is
transferred "AS IS. 11

Network General Corporation reserves the right to make changes to any products described herein to improve their
junction or design.

In no event will Network General Corporation be liable for direct, indirect, incidental or consequential damages at
law or in equity resulting from any defect in the software, even if Network General Corporation has been advised
of the possibility of such damages. Some states do not allow the exclusion or limitation of implied warranties or
liability for incidental or consequential damages, so the above limitation or exclusion may not apply to you.

This document is copyrighted and all rights are reserved. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form without prior
consent, in writing, from Network General Corporation.

Sniffer Network Analyzer is a trademark of Network General Corporation.
All other registered and unregistered trademarks in this document are the sole property of their respective
companies.

IC:Copyright 1986 -1992 by Network General Corporation.
All rights reserved. Present copyright law protects not only the actual text, but also the "look and feel 11 of the
product screens, as upheld in the Atari and Broderbund cases.

Document prepared by Jim Mar with contributions from David Trousdale.

April 1992

PIN: PA-7000

Table of Contents
Preface. v

About This Manual . v

Navigational Aids Used in This Manual.............................. v

Manuals for the Sniffer Network Analyzer. v

Conventions Used in This Manual.............. vi
Special Notations , . vi
Terminology . vi

Other Sources of Information........... vi
On-Line Help... vii
Technical Support. vii

Chapter 1. Extending and Customizing Protocol Interpreters.... 1-1
Overview.................................... 1-3

What Does a Protocol Interpreter Do . 1-3

Writing a Protocol Interpreter . 1-4
Porting Current Protocol Interpreters . 1-4
Installing the PI Development Kit . 1-5
Installing the Microsoft C Compiler . 1-7

Coding a Protocol Interpreter . 1-7
Calling Conventions for Protocol Interpreters. 1-7
Protocol Interpreter Data Structure. 1-8
Generating Output from Protocol Interpreters . 1-9
The Protocol Interpreter Formatting Routines. 1-10
Sprint£ Function in the PI Development Kit.... 1-17
Adding Symbolic Names to the Name Table. 1-20
Declaring Embedded Addresses . 1-20
Displaying Symbolic Names.................................... 1-21
Adding Summary Line Flags . 1-21
Using Other Protocol Interpreters . 1-21
Dependencies on Other Frames................................. 1-24

Integrating into Existing Sniffer Analyzer Code...... 1-27
Registering Protocol Interpreters. 1-28
Building a New Sniffer Analyzer.... 1-31

Programming and Debugging Hints . 1-34

Index

Protocol Interpreter-Development Kit

ii

List of Figures
Chapter 1. Extending and Customizing Protocol Interpreters. 1-1

Figure 1-1. PI Development Kit files.................. 1-6

Figure 1-2. Global static variables available to the protocol interpreter. . . . 1-8

Figure 1-3. PIP Routines. 1-12

Figure 1-4. PDK flags.. 1-18

Figure 1-5. Sketch for structure of a new protocol interpreter. 1-23

Figure 1-6. Using the Frame Context.. 1-26

Figure 1-7. Example capture filter code. 1-33

I[~~ iii

Protocol Interpreter Development Kit

iv

SNIFFER NETWORK ANALYZER®

PREFACE

Preface

About This Manual

Welcome to the Protocol Interpreter Development Kit. This manual explains the
rules and conventions for writing programs that extend the Sniffer Network
Analyzer's ability to interpret protocols.

Navigational Aids Used in This Manual

This manual uses icons in the margin to help you locate important information
as explained below:

IMPORTANT INFORMATION. Next to this icon is information that is
especially important; you should be certain to read it carefully before you
proceed.

WARNING. Next to this icon are instructions that you must follow to avoid
possible damage to data files, program files, or hardware devices.

PROCEDURE. Next to this icon is a series of steps for accomplishing a particular
task.

Manuals for the Sniffer Network Analyzer

Two types of manuals accompany the Sniffer Network Analyzer. The primary
manuals, which include this manual, describe the system's normal operations;
the supplementary manuals describe the programs that configure and test the
system's various hardware and software components for troubleshooting. The
actual manuals in your shipment depend on the system configuration.

The following table describes the primary manuals.

For Information On ...

Installing and configuring the Sniffer Network
Analyzer.

Operating the analysis functions on an
Ethernet or Token-Ring network.

Operating the monitor functions on an
Ethernet network.
Using the monitor features effectively to
detect network abnormalities.

Read ...

Sniffer Network Analyzer:
Installation Guide

Expert Sniffer Network Analyzer
Operation

Sniffer Network Analyzer:
Ethernet Monitor Operations.

v

Protocol Interpreter Development Kit

For Information On ...

Operating the monitor functions on a token
ring network.
Using the monitor features effectively to
detect network abnormalities.

Various network and protocol types.

Read ...

Sniffer Network Analyzer:
Token-Ring Monitor Operations

Sniffer Network Analyzer:
Network and Protocol Reference

Conventions Used in This Manual

Special Notations

Terminology

The following describes the conventions used in this manual:

Bold

UPPERCASE

Screen font

Menu options are in bold type. For example:

Move to Display, and press Enter.

Filenames and commands you type at a DOS prompt are
in uppercase. For example:

Modify the AUTOEXEC.BAT file if necessary. To
duplicate the file, use the COPY command.

Screen messages are printed in monospaced font. For
example:

If a monitoring session is in progress, the following
message appears:

You must slop monitoring before you can use this feature.

Hexadecimalnumbers in the manual are followed by" (hex)"; numbers without
any notations are decimal. For example, "The maximum number of stations is
75. The default memory address is D8000 (hex)."

The term "analyzer" refer to the software application that runs on the Sniffer
Network Analyzer.

Other Sources of Information

vi

Network General Corporation (NGC) provides other sources of information
that can help you become familiar with the Sniffer Network Analyzer.

On-Line Help

Technical Support

Other Sources of Information

After highlighting an item in the analyzer menu, you can see a phrase or
sentence in a panel near the bottom of the screen. It explains the meaning of the
highlighted item. To obtain general information about a particular feature of the
Sniffer Network Analyzer, press Fl at any time within the menus of the
analyzer application. A window containing a list of topics opens.

A toll-free number is available to obtain technical support for the Sniffer
Network Analyzer.

Phone for Network General's Technical
Support Department:

FAX:

(800) 395-3151

(415) 327-9436

vii

Protocol Interpreter Development Kit

viii

SNIFFER NETWORK ANALYZER®

CHAPTER ONE: EllTEHDING AND CUSTOMIZING PRmCOL INTERPROERS 1

Network
General

Extending and Customizing Protocol
Interpreters

Overview

This chapter describes the rules and conventions for writing programs that
extend the Sniffer analyzer's ability to interpret protocols.

Network General Corporation (NGC) is constantly expanding the list of
available protocol interpreters (Pis). Before writing your own PI, you should
check with NGC to see what is currently available.

To use this chapter, you need to be familiar with:

The general operation of the Sniffer analyzer.

The C programming language and the MS-DOS programming
environment.

The general structure of network frames and the detailed structure of
your protocol.

This chapter is divided into three major sections:

An overview section that discusses what Pis do and how to install the
tools you need to write new Pis.

A section on writing the C code that performs the necessary PI
functions.

A section on integrating the PI that you have written into the existing
Sniffer analyzer code.

You should read this chapter before writing a new Pl.

What Does a Protocol Interpreter Do

A PI is a routine (or set of routines) that, when invoked, receives a pointer to
data somewhere within a frame. The interpreter has four tasks:

Generate one or more short text lines to display in the summary view
for its protocol.

Generate lines for the detail view and highlight the appropriate hex
view characters.

Call the Pis for embedded protocols, if any.

Supply new symbolic names discovered within the protocol's data.

There are two types of Pis: demultiplexed and embedded. A demultiplexed PI
is called directly from the Sniffer analyzer, based on the frame's identifying
code. (Depending on the network, that may be its Ethertype, its ARCNET
system code, its 802.2 LLC DSAP, and so on.)

1-3

Protocol Interpreter Development Kit

An embedded PI is called by another PI to interpret a protocol nested at a higher
level. An embedded PI may be shared. It may be called from several other Pis
and may be used at different protocol levels.

Writing a Protocol Interpreter

In order to write new protocol interpreters, you need:

the PI Development Kit from NGC and installed in your Sniffer or in a
IBM-PC compatible.

• Version 6.00AX of the Microsoft C compiler from Microsoft
Corporation installed with the PI Development Kit.

Porting Current Protocol Interpreters

1-4

If you wrote one or more protocol interpreters for previous versions of the
Sniffer analyzer and want to re-use them in the new version, refer to this section;
otherwise, go to the section "Installing the PI Development Kit" on page 1-5.

To integrate your existing protocol interpreter into the new version of the
Sniffer analyzer:

1. Install the PI Development Kit. See the section "Installing the PI
Development Kit" on page 1-5.

2. Install version 6.00AX of the Microsoft C compiler. See the section
"Installing the Microsoft C Compiler" on page 1-7 for information on
suggested options.

3. Move the source code for your PI to the directory where the PI
Development Kit is installed.

4. Check that your PI is named interp_ <prolocol_name> and that its data
structure is named pi_dala_ <prolocol_name>, where <protocol name> is the
name of the protocol your PI interprets. For more information about this,
refer to the section "Registering Protocol Interpreters" on page 1-28.

5. If your protocol interpreter uses the pi _gel _frame or pi_ invoke _pis
functions, you should be aware that although NGC supports these
functions, NCC-written protocol interpreters no longer use them. Read
the section "Dependencies on Other Frames" on page 1-24 and modify
your protocol interpreter to use the techniques NGC recommends.

6. A sprintf function is delivered with the PI Development Kit. It differs
from the sprintf function in the standard C library in a number of ways
that simplifies writing protocol interpreters and makes them more
robust. NGC recommends that you refer to the section "Sprintf Function
in the PI Development Kit" on page 1-17 and use its features.

7. Read the section "Registering Protocol Interpreters" on page 1-28 and
modify the new INITPI.C to register your protocol interpreter.

8. Follow the directions in the section "Building a New Sniffer Analyzer"
on page 1-31.

Writing a Protocol Interpreter

Installing the Pl Development Kit

You can install the PI Development Kit on your Sniffer analyzer or on a system
capable of running version 6.00AX of the Microsoft C compiler. If you chose to
install the kit on another system, you will need a 386 or faster CPU with at least
1-Mbyte of extended memory. The advantages of running the PI Development
Kit on a system other than your Sniffer analyzer are:

• the compiler and linker may run faster on a different machine.

• the PI Development Kit requires 8 Mb of disk space.

The disadvantage is that you must test your new Sniffer analyzer on the Sniffer
analyzer hardware; therefore, you must have some way of moving the linked
executable from one machine to another.

Note: If you develop your protocol interpreter on another machine, the linked
executable may be larger than a floppy diskette; you may need either a data
compression utility or a communications or network connection to transfer the
executable.

To install the PI Development Kit:

1. Insert Disk 1 into drive A.

2. Type a:install and press Enter.

The installation process begins and installs all the tools, source files,
libraries, and sample files into the \xxSNIFF\NEWPI directory, where
xx is the two-letter network abbreviation.

If you install to a machine other than the Sniffer, the \xxSNIFF\NEWPI
directory is created. You can relocate the files to any other directory you
chose.

3. Follow the instruction prompts to complete the installation process.

Figure 1-1 lists the files in the PI Development Kit sub-directory.

1-5

Protocol Interpreter Development Kit

Flies Description

INITPl1.H
INITPl2.H Files for registering Pis.
INITPl.C

MSG.H
NETWORK.H

Pl.H
General "include" files.

PISWITCH.H
Pl_LOGIC.H
PIFDECL.H

BUILDSNF.BAT
OVLINK.LNK

OVLPIMAP.OBJ
OVLUTIL.LIB

OVPATCH.EXE Tools for building Sniffer analyzer software.
RTLINK.CFG
RTLINK.DAT
RTLINK.EXE

RTLUTILS.LIB

SAMPLE.C Source code of the sample Pl.

SAMPLE.xxC A capture file illustrating the sample Pl.

ATALK.H
Files for embedding a Pl within AppleTalk.

AT_PORTS.C

SMB.H
SMBGLOBE.H Files for embedding a Pl within SMBs.

INTSMBO.C

TCP.H Files for embedding a Pl within IP, TCP, and
TCPPORTS.C UDP.

X25.H
Files for embedding a Pl within X.25 and

X25CALLS.C
USERHDLC.C

HDLC.

XWINEXT.C Files for embedding a Pl within XWindows.

SNMP.H
Files for embedding new objects in SNMP.

NETMGMT.C

xxSNIFFC.LIB
KS.LIB

PICODE.LIB
Libraries for building Sniffer analyzer

PISTRING.LIB
RTPl.LIB

software.

SN_WFC.LIB
XP.LIB

Figure 1-1. PI Development Kit files.

1-6

Coding a Protocol Interpreter

Installing the Microsoft C Compiler

The tools required to write new Pis and build new Sniffer analyzers, except for
the Microsoft C compiler, are included in the PI Development Kit. The PI
Development Kit only works with version 6.00AX of the Microsoft C Compiler.

Follow the installation instructions provided by Microsoft. The Microsoft
installation programs offer a long list of choices to install the compiler. Consider
the following:

Install the DOS or the DOS-and-OS/2 versions (not the Windows
version) of the compiler. This is the default option.

The directory in which you install the "bound executables" must be
added to your DOS path so that the compiler can be found.

• Install the LARGE model of the libraries. The default is to install only
the SMALL model, which you will not need for PI development.

• Assign the default names to the DOS libraries.

• You do not need the programmer's workbench, mouse support, or
on-line documentation.

Coding a Protocol Interpreter

The following sections describe how to write the C code for a protocol
interpreter.

Calling Conventions for Protocol Interpreters

The Sniffer analyzer core code calls Pis using the following calling sequence:

int bytes_interpreted;

char *frame_ptr; /* Pointer to the frame data */
int frame_length; /* The length of the frame data starting at frame_ptr */

bytes_interpreted • interp_protocol (frame_ptr, frame_length);

•

The frame _ptr parameter points to the beginning of the data for the protocol
within the physical frame. It skips previous protocol fields, including source
and destination addresses, type fields, and any previously embedded protocol
data.

The Sniffer analyzer permits the user to request that frames be truncated as it
captures them. It then records no more than a certain number of bytes for each
frame and discards the rest. When the user selects truncation, frame length is the
length of the stored (truncated) data, and the global integer bytes_ not _present
indicates how much additional frame data was received but not recorded .

The following rule applies only to Ethernet, StarLAN, and token ring. For a
demultiplexed PI that is called for a particular LLC DSAP, frame_ptr is the

1-7

Protocol Interpreter Development Kit

•

address of the first byte of the information field. The information field
immediately follows the source and destination SAPs and the control field. The
SAP protocol interpreter is called for any frame with an information field, such
as I, UI, or XID. It is not called for frames that do not contain information, such
as RR or that do not contain higher-level protocol information, such as TEST or
FRMR.

The following rule applies only to Ethernet, StarLAN, and PC Network. For a
demultiplexed PI that is called for a particular Ethertype, frame _ptr is the
address of the first byte of the information field. The information field
immediately follows the 2-byte Ethertype.

The value returned from the PI is the number of bytes of frame data that it
interpreted. The calling interpreter may use the returned value to decide
whether any subsequent interpreters are to be called. If there is no more data left
to interpret, simply return the initial value of frame_ length.

If the PI needs access to DLC or LLC header fields, or to the frame number, it
may refer to the values of certain global static variables in which these are
recorded. They are listed in Figure 1-2.

long

char

char

int

Global Static Variable

pi_frame;

*dlc_header;

Purpose

The current frame number.

Pointer to DLC header starting with the
first byte of the frame.

For 802.3 networks, Ethernet, StarLAN, and Token ring:

*llc_header;

llc_type;

A pointer to the LLC header of the
frame, starting with the DSAP field.

The type of the LLC frame;
see the llc_xxx macros in pi.h.

Figure 1-2. Global static variables available to the protocol interpreter.

Any PI your PI calls to interpret embedded protocols should be invoked using
the same calling convention.

Protocol Interpreter Data Structure

1-8

This structure is set up during the protocol interpreter registration process
described later in this chapter. You should declare the data structure as an
external in your protocol interpreter:

extern' struct *pi_data pi_data_your_protocol;

The complete definition of this structure is contained in the file Pl.H. The fields
described below are the only ones relevant to your protocol interpreters. Each

struct

int
int

int

int

int

Coding a Protocol Interpreter

field below is a "boolean," in which the value 0 indicates /1 false" and 1 indicates
"true."

pi_ data {

do _sum;

do _int;

do _count;

do _names;

Generate summary lines?
Generate detail interpretation lines?

Generate only count of summary lines?

Add symbolic station names?

recursive; Recursive call to get information for
another frame?

If do_ sum is true, your protocol interpreter must generate a summary line. If
do_counl is also true, then the Sniffer analyzer only needs a count of summary
lines. Your protocol interpreter must allocate a summary line but need not
actually write to it.

If do_inl is true, your protocol interpreter must generate one or more detail
lines. Note that if both summary and detail views are enabled, both do_sum and
do int are true at the same time.

If do_ names is true, the user has selected the Search for names menu option.
Examine the frame data for embedded station names defined by the protocol. If
any are found, call the add_slalion_name function, described in the section
11 Adding Symbolic Names to the Name Table" on page 1-20 to enter the names
into the name table.

The recursive flag is supported only for compatibility with previously written
protocol interpreters. It is still supported, but it should not be used in new
protocol interpreters.

Your PI should call interpreters for any embedded protocols regardless of the
flag settings.

Generating Output from Protocol Interpreters

Protocol interpreters generate output by asking the Sniffer analyzer core code
for a buffer to write a summary or a detail line and then writing a string into that
buffer. The following sections discuss enhancements to the sprintf function that
allow you to generate output and a series of "PIF routines" that do most of the
work.

To generate a line for the summary view from within a Pl, get the address of a
line buffer by calling gel_ sum_ line:

char *get_sum_line (pi_data_your_protocol); Returns a pointer to the line buffer

struct pi_data *pi_data_your_protocol; Your protocol interpreter data structure

Then move a character string (ending with a null) into the buffer provided using
sprintf, strcpy, strcat or any other mechanism available in C. The length of the

1-9

Protocol Interpreter Development Kit

string including the null must not exceed MAX_ SUM_ LINE. For visual consistency of
the displayed output, the summary line should begin with a 3-character
identification of the protocol and a blank.

Generating a line for the detail view is similar. However, the function to get the
address of a line buffer also provides an optional offset and length that show
where in the frame the information was found. This is used to highlight the hex
field when the user selects the corresponding line of the detail view.

char *get_int_line (pi_data_your_protocol, offset, length); /*Returns a pointer to the line*/
/*buffer */

struct pi_data *pi_data_your_protocol; /*Your PI's data structure. */

int offset;

int length;

The offset from the DLC header of the field that generated the
interpretation line. You can calculate this using the global variable
dlc_header that points to the DLC header as shown in Figure 1-2, or you
can use pif _offset, another global variable, discussed in the next section.

The length of the field, or 0 if no highlighting is desired.

The string should be built in the supplied buffer. Its length, including the final
null, must not exceed MAX_INT_LINE.

The version of sprintf included with the PI Development Kit will never write
beyond the end of summary or detail line buffers. If you only use sprintf to write
to these lines, you never need to check the length of your lines.

In general, the Sniffer analyzer automatically scrolls the detail view so that the
top line is the first line for the protocol that the user selected in the summary
view. If you wish some other line of your protocol's detail lines to scroll to the
top, you may specify a negative offset when calling get_int_line.

Your protocol interpreter should generate summary lines only when do_ sum is
set to true in the PI data structure and should generate detail lines only when
do int is set to true. An error occurs if this is not done.

The Protocol Interpreter Formatting Routines

1-10

Pis may be written with no functions used other than those already described
and those available in the standard C library. For fixed-format data, the simplest
approach is often to write structure declarations and simply format summary
and detail lines using the sprintf function in the standard C library.

When data contains many variable-length or optional fields, however, using
C-language structures becomes awkward. To address this problem, NGC
provides a series of stream-oriented formatting utilities:

Protocol interpreter formatting (PIP) routines discussed in this section.

Sprint£ function discussed in the section "Sprintf Function in the PI
Development Kit" on page 1-17.

Coding a Protocol Interpreter

The use of PIF routines and the sprint£ function is optional. You may write
interpreters without them if you choose.

A PI that wants to use the PIF routines or the sprint£ function makes one call to
the initialization function pif _ ini teach time it is called for a new frame. The PIF
routines then maintain an offset from the DLC header, called the PIF offset,
which is used to extract data in various forms. The PIF offset is stored in the
global variable pif_offset. You can use pif_offset as the offset to pass to
get_ int_ line if it is convenient. The offset is declared in the file Pl.H.

There are three general classes of PIF routines:

Routines that return a data item to the caller begin with pif_get_. The
PIF offset is not updated. These routines may be used to extract data for
either the summary line or the detail view.

Routines that display a data item on a line in the detail view begin with
pif _show_. The PIF offset is incremented by the length of the data item
and thus points to the next item.

Other miscellaneous PIF functions.

Figure 1-3 presents a summary of the available PIF routines.

1-11

Protocol Interpreter Development Kit

pif_init
pif_save
pif_restore

pif_get_byte
pif_get_word
pif_get_word_hl
pif _get_long
pif _get_long_hl
pif_get_ascii
pif_get_ebcdic
pif_get_lstring
pif_get_addr

pif_show_byte
pif_show_word
pif_show_word_hl
pif_show_long
pif_show_long_hl
pif_show_2byte
pif_show_4byte
pif_show_6byte
pif_show_nbytes_hex

pif_show_ascii
pif_show_ebcdic
pif_show_lstring

pif_show_flag
pif_show_f lagbit
pif_show_flagmask
pif_show_date

pif_show_space
pif_header
pif_trailer
pif_autoscroll

pif_line

pif_set
pif_skip

Initialize PIF global variables.
Save PIF info before calling an embedded PI.
Restore PIF info after calling an embedded PI.

Get value of a single byte.
Get value of 2-byte word in low-high order.
Get value of 2-byte word in high-low order.
Get value of 4-byte word in low-high order.
Get value of 4-byte word in high-low order.
Get ASCII characters into a C string.
Get EBCDIC characters into a C string.
Get a length/string into a c string.
Get the address of the current field.

Display a single byte.
Display 2-byte word in low-high order.
Display 2-byte word in high-low order.
Display 4-byte word in low-high order.
Display 4-byte word in high-low order.
Display 2 one-byte fields.
Display 4 one-byte fields.
Display 6 one-byte fields.
Display an n-byte field in hexadecimal.

Display a string of ASCII characters.
Display a string of EBCDIC characters.
Display a length/string of ASCII characters.

Initialize to display bits of a flag byte.
Display flag bit values.
Display flag bit value if it matches the mask.
Display a date and a time.

Display a blank line
Display a detail view header message.
Display a detail view trailer message.
Set detail view autoscroll point to be the
next header.
Return a detail view line buffer and advance
the pointer.
Set the PIF offset.
Move the PIF offset backwards or forwards.

Figure 1-3. PIF Routines.

Calllng the PIF Routines

1-12

void
struct
void
int

This section describes the calling sequences of the functions listed in Figure 1-3.

The following initializes the PIF variables. pif_initmustbe called by the PI
before any other pif _ xxx routines or the sprint£ function can be used.

pif_init (pi_data_your_protocol,
pi_data *pi_data_your_protocol1
*Pl
leni

p, len) /* Initialize PIF globals */
I* Protocol interpreter's control block ptr *I
/* Start of frame data to interpret */
/* Length of frame data */

Coding a Protocol Interpreter

The following saves the PIF variables before calling an embedded Pl. The caller
supplies a 11 pif _info11 area (defined in the file Pl.H) into which the current state
information is saved. The pif _reslore routine restores the state information.

void pif_save (&pd) !• save pif variables */
•/ struct pif_info pd; I• Area used to save pif state

The following restores the PIF variables. The caller supplied a 11 pif_info" area
that was previously supplied to pif _save.

void pif_restore (&pd) /* restore pif variables */
•/ struct pif_info pd; /* Area used to restore pif state

It is necessary to use pif_save and pif_reslore only if you are calling embedded
Pls and you wish to generate more detail view lines after the embedded
interpreter has returned.

The sequence below returns a byte, word (2 bytes), or longword (4 bytes) from
the frame data at the current PIF offset plus the (signed) value of delta. The PIF
offset is not changed. The 11 _hl" versions are for multibyte fields stored with the
most significant byte first. These are macros defined in the file Pl.H.

char pif_get_byte (delta)
int pif_get_word (delta)
int pif_get_word_hl (delta)
long pif_get_long (delta)
long pif_get_long_hl (delta)
int delta;

char
int
int
char

This sequence moves a printable ASCII null-terminated string at the current
offset in the frame to a C string. Unprintable characters are replaced with the
character 11

.". The destination string ends with a 11 null" even when the source
does not. The returned value is a pointer to the end (null) of the destination
string. The PIF offset is not changed.

•pif_get_ascii
offset;
len;
result_str[];

(offset, len, result_str) /* get asc11z string
/* off set to string from current pif offset
/* maximum number of source bytes
/* destination string

•/
*/
*/
•/

The following translates a printable EBCDIC null-terminated string at the
current offset in the packet into ASCII and moves it to a C string. Unprintable
characters are replaced with the character 11

•
11

• The destination string ends with
a "null" even when the source does not. The returned value is a pointer to the
end (null) of the destination string. The PIF offset is not changed. If the user
forces ASCII display, this calls pif_gel_ascii instead.

1-13

Protocol Interpreter Development Kit

1-14

char
int
int
char

char
int
char

char

char
int
int
long
long
void
void
void
void
char
int

*pif_get_ebcdic
offset;

(offset, len, result_str) /* Get ebcdic string */
/* offset to string from current pif offset */

len; /* maximum number of source bytes */
result_str[]; /* destination string */

The sequence below moves an ASCII null-terminated lstring from the current
offset in the packet to a C string. An lstring starts with a length byte followed by
that number of characters. Unprintable characters are replaced with the
character ".". The destination string ends with a "null" even when the source
does not. The returned value is a pointer to the end (null) of the destination
string.

pif_get_lstring (offset, result_str) / Get Lstring */
*/
*I

offset; /* Signed offset from current position
result_str[]; /*Return ASCIIz string here

The following line returns a pointer to the field that is at the current PIF offset.
This is a macro defined in the file PI.H.

pif_get_addr () / return the data address */

The following sequence creates new lines in the detail view with the text given
in prstr and the indicated data from the frame. The text should contain a sprintf
formatting code, such as %d or %x indicating where the value should be
printed.

For the longword displays, the formatting code should be %ld or %1x. For
pif _show_ 2byte, pif _show_ 4byte, and pif _show_ 6byte there should be 2, 4, and 6
formatting codes, respectively. For pif _show_ nbytes _hex, there should be a single
% s formatting code. The value of byte_ count specifies the number of bytes to
display, from 1to99. The PIF offset is updated. The byte, word, and long
routines return the displayed value.

pif_show_byte (prstr)
pif_show_word (prstr)
pif_show_word_hl(prstr)
pif_show_long (prstr)
pif_show_long_hl (prstr)
pif_show_2byte (prstr)
pif_show_4byte (prstr)
pif_show_6byte (prstr)
pif_show_nbytes_hex (prstr, byte_count)
prstr; / A sprint£ control string
n;

*/

The following creates a new detail line from ASCII text starting at the current
offset. The caller provides a sprintf control string whose embedded %sis
replaced with the ASCII string copied from frame data using pif _get_ asci i. The
PIF offset is updated.

void
int
char

void
int
char

void
char

void
char
char

Coding a Protocol Interpreter

pif_show_aacii (len, prstr)
len;

/* Show ASCII text
/* Number of bytes to display

*/
*/
*/ *prstr; /* control string with embedded %s

The following creates a new detail line from EBCDIC text, starting at the current
offset. The caller provides a sprintf control string whose embedded %sis
replaced with the EBCDIC string copied from frame data using pif_get_ebcdic.
(If you force ASCII translation, this calls pif _show_ ascii instead.) The PIF offset
is updated.

pif_show_ebcdic (len, prstr)
len;

/* show ebcdic text
/* number of bytes to display

*/
*/
*/ *prstr; /* control string with embedded %s

The following creates a new detail line from an ASCII lstring, starting at the
current offset. An lstring starts with a length byte followed by that number of
characters. The caller provides a sprintf control string whose embedded %sis
replaced with the string copied from frame data using pif_get_lstring. The PIF
offset is updated.

pif_show_lstring (prstr)
*prstr;

/* show lstring */
/* control string with an embedded %s */

The routine below displays the value of a byte with bit flags and sets up the
correct information for subsequent calls to show_flagbit and show_flagmask. The
PIF offset is incremented by 1.

pif_show_flag (prstr, mask) /* show flag byte
prstr; / title string1 u • %du is automatically added
mask; /* mask value indicating which bits to display

*/
*/
*/

The routine below writes a field in the form" l ... <string>," indented as
appropriate for the previous pif _show _flag call. If the falsestr is NULLP, the
truestr is used for both cases. This returns TRUE if any of the specified bits were
on.

boolean pif_show_flagbit (bit, truestr, falsestr) /* show flag bits */
char bit;
char truestr[];
char falsestr[];

See Also
pif_flag_w (char*, ushort)
pif_flag_w_hl (char*, ushort)

/* Bit mask for 1 or more bits */
/* string to show if any masked bits are on */
/* string to show if all bits are off */

The sequence below writes a detail line for a bit field only if the masked bits are
a specified value. The line is written in the same format as for pif_show_flagbit.
This returns TRUE if the flag bits were the specified value and the line was
written.

1-15

Protocol Interpreter Development Kit

1-16

boolean pif_ahow_flagmask (maskbits, value, prstr) /* conditional show flags
/* Only check these bits

*I
*I
*/
*/

char maskbits1
int value1
char *prstr1
See also
pif_flagbit_w
pif_flagbit_w_hl

/* Check for this value
/* Write this string if matched

The following creates a new detail line from the text given in prstr, with the %s
replaced with a readable date and time such as "13-May-90 11:47:13". The date
and time are taken from a 4-byte integer at the current PIF offset representing
the number of seconds since 1/1/90 at midnight. The integer should be stored
with the most significant byte first for pif_show_date_hl and with the least
significant byte first for pif _show_ date. The PIF offset is incremented by 4.

void pif_ahow_date (prstr)
void pif_show_date_hl (prstr)
char *prstr1

/* show Unlx-style date */
I* show Unix-style date */
I* control string with embedded %s */

void

void
int
char

This call writes a blank line to the detail view.

pif_ahow_apace () /* display a blank line */

The following outputs a header line to the detail view in the format "----­
header_ text -----", followed by a blank line, and highlights data starting at the
current PIF offset for the length specified. This routine does not update the PIF
offset but saves the header string in the global called header _msg so other routines
can use it.

pif_header (len, header_string)
len1

*header_string1

/* Write a header line
I* Length of area to highlight
/* Header string

*/
*I
*/

This call outputs a trailer line to the detail view that reports on how much of the
frame data was used by the interpreter, based on the final position of the PIF
offset. This routine uses the header string saved by pif _header.

void pif_trailer () /* write a trailer line */

The call below makes the next header line written to the detail view with
pif _header be the one that is scrolled to the top of the detail view when the user
highlights the PI' s summary line. This is necessary only if the next header line
is not the first for this PI.

void pif_autoacroll () /* set autoscroll position */

The following calls get_int_line to return a pointer to a detail line area. The
caller passes a length that causes the specified number of bytes (at the current

char
int

void
char

void
int

char

Coding a Protocol Interpreter

PIF offset) to be highlighted in the hex view. The PIF offset is advanced by the
number of bytes specified. Possible side effects may result if you use this as the
first argument to sprint£; no other arguments should depend on the PIF offset.

*pif_line (len)
len;

/* get detail line pointer
I* Number of bytes to highlight and advance

*/
*/

The following sets the PIF offset to point to the specified address. This is a macro
defined in the file Pl.H.

pif_set. (address)
*address;

/* set the PIF offset */

The following adds the signed delta to the current PIF offset. This is a macro
defined in the file Pl.H.

pif_skip (delta)
delta;

/* move the PIF offset */

The call below returns a pointer to the data item at the current PIF offset. This is
a macro defined in the file Pl.H.

pif_get_addr () / return frame data address *I

Sprintf Function in the Pl Development Kit

The sprintf function delivered with the PI Development Kit ("PDK sprintf") has
a number of enhancements. This section assumes that you are familiar with the
standard sprintf routine.

POK sprintf will not write beyond the end of detail and summary lines. If POK
sprintf comes to the end of a summary or detail line and has more to print, it
ends the line with an ellipsis and sets the value of the global variable
sprintf _error to LINE_OVERRUN. (If this has not happened, then the value of
spr intf _error is FALSE.) If you use the POK sprintfroutine to write to summary
and detail lines, you need not concern yourself with overrunning these lines.

POK sprintf understands the following format conversions:

{d}
{b}

{<} {X}
% (-] ({A}] (-] [+] (] [#] [OJ [{n}] [.{n}] [r] [{l}] {c}

{>} {*} {*} {k} {s}
{u}
{o}
{x}

The flags must appear in the order shown above. The flags and format
conversions are listed in Figure 1-4, along with an indication of whether each is

1-17

Protocol Interpreter Development Kit

new with POK sprint£ or whether it is standard. The new POK flags are
discussed in the sections that follow.

- New Do not print the format conversion.

< New Print a value from the frame; move the PIF offset back

/\ New
Print a value from the frame; leave the PIF offset
unchanged

> New Print a value from the frame; advance the PIF offset

- Std Left justify in the print field

+ Std Precede a positive numeric value with a +

<SP> Std Precede a positive numeric value with a space

Std
Precede hexadecimal and octal values with Ox and 0,
respectively

0 Std Fill leading areas with O's rather than spaces

<nO> Std ''Width"

<nO> Std "Precision"

r New The value to print is in high-to-low byte order.

I Std The value to print is four bytes long.

k New The value to print is one byte long.

u Std Unsigned value

0 Std Octal value

x Std Hexadecimal value (use lower case a ... f)

d Std Decimal value

b Std Binary value

x Std Hexadecimal value (use upper case A ... F)

c Std Character

s Std Null-terminated string

Figure 1-4. PDKflags.

Sprintf: Printing Values From the Frame (<, ", and > Flags}

1-18

The ", >,and< flags tell POK sprint£ to print a value from the location in the
captured frame pointed to by the PIF offset (rather than from its own
parameters). See the section "The Protocol Interpreter Formatting Routines" on
page 1-10 for information about the PIF offset. This saves copying data from the
frame to temporary variables before calling sprint£ or using pointers into the
frame.

Coding a Protocol Interpreter

Sprint£ checks that values fetched from the frame were actually captured. If the
PIF offset points off the end of a captured frame, then PDK sprint£ prints " --­
Frame too short" in place of the formatted value. If this happens, sprint£ returns
to the Sniffer analyzer core code instead of to your Pl. You must call pif _ ini t to
initialize the PIF offset before using these flags.

The > flag reads a value from the frame and advances the PIF offset (similar to
a pif _get_ routine). For example:

summary_line += sprint£ (summary_line, uNR•\>d");

reads two bytes from the frame, prints the integer value represented by the two
bytes, and adds two bytes to the PIF offset. If NR, NS, and Length follow one
another in the frame, then

summary_line +•sprint£ (summary_line, uNR•\>d NS•\>d Len=\>d");

prints each of them. The width and precision specifiers are ignored for the
purposes of advancing the PIF offset.

The " flag prints the value from the location in the frame but does not change
the value of the PIF offset. This is useful for printing a value more than once. For
example:

detail_line +=sprint£ (detail_line, uuser key• \Ad (%>04x)");

prints a line such as

User key = 79 (004£)

Since the% "d format does not advance the PIF offset, the %>04x format prints
the same value in the different format.

The < flag prints the value from the location in the frame and then moves the
PIF offset back through the frame. For example, if NS appears before NR in a
frame, you can position the PIF offset to point at NR and then use this statement:

summary_line +•sprint£ (summary_line, uNR=\<d NS•\Ad");

Sprlntf: Skipping a Value In the Frame (- Flag)

The - flag causes PDK sprint£ not to print the output from the format
specification. This is equivalent to the pif _skip function. For example:

summary_line +•sprint£ (summary_line, uNR=\>d %->d NS•\Ad");

prints the first two-byte integer in the frame, skips the second, and then prints
the third, and

sprint£ (summary_line, H\->s");

skips past the null that terminates a string without printing the string.

1-19

Protocol Interpreter Development Kit

Sprlntf: Controlling Numeric Values (r and k Flags)

The k ("kharacter") flag tells POK sprintf that the next value is only a byte. For
example:

summary_line += sprint£ (summary_line,
uost port•\>02kx Src port• %>02kx")I

prints port numbers from the frame that are only one byte long.

The r ("reverse") flag tells POK sprint£ that the bytes in a two- or four-byte value
are in "reverse" order (high-order byte first, low-order byte last, the reverse of
the normal Intel format):

sprint£ (detail_line, "Network numbers \A08rlx");

prints a network number for which the high byte was transmitted first, and the
low byte was transmitted last.

Adding Symbolic Names to the Name Table

When your PI is called and do _names in the PI data structure is true, you must
examine the frame for an embedded name. If you find one, add it and its
symbolic equivalent to the station name table by calling the function
add_ station_ name, as follows:

add_station_name (flagstype, length, addr, name)

int flagstype;

int length;

char *address;

char *name;

The type of the address plus option flags; see PI.H for definitions.
Example: ADDRTYPE_DLC plus ASN_NOREPL indicates that the address is a
data-link level address and that its symbolic name is not to replace a
symbolic equivalent already assigned to that address in the name table.

The length of the address, from 1 to 16 bytes.

A pointer to the binary station address for this name.

A pointer to the ASCII name to enter in the table; 1 to 31 characters
(including a final null).

Since names discovered in the protocol data may be transitory, you should use
ASN _ NOREPL. In this way, when the names file already supplied a symbolic
equivalent for the address, the name you find does not replace it.

Declaring Embedded Addresses

1-20

Each frame has source and destination OLC-level addresses associated with it
by the Sniffer analyzer. If a PI knows of other addresses associated with this
frame, such as Internet addresses embedded within the frame data, it may
announce those addresses by calling the following routine:

add_frame_addr (flagstype, length, addr)

int flagstype; The type of the address plus AFA)XX option flags; see PI.H for definitions.
Example: ADDRTYPE_IP plus AFA_SRC for a TCP /IP internet source address of
this frame.

int lengthJ

char *addressi

Coding a Protocol Interpreter

The length of the address, from 1 to 16 bytes.
Example: 4 for TCP /IP internet addresses.

A pointer to the binary address.

Displaying Symbolic Names

If you want to include the symbolic name corresponding to an address in the
text of a summary or detail line, you may use the following routine to look up
and format names from the current name table:

char *format_addr (line, length, addr, flagstype)

char *linei

int lengthJ

char *addressi

int flagstypei

The address of a character buffer into which the formatted name is placed.
The function return value is the address of the null at the end of the string.

The length of the address, from 1 to 16 bytes. Example: 6 for DLC-level
addresses.

A pointer to the binary address to be looked up in the name table.

The type of the address plus FMT_XXX option flags; see PI.H for
definitions. Example: ADDRTYPE_DLC plus FMT_BOTH for a DLC address to be
formatted with both the hex value and the symbolic name.

Adding Summary Line Flags

If you want to create special flags and to have the Sniffer analyzer flag frames
and display the flags in the summary view, you can call the following function:

void add_frame_flags(str)

char *stri Characters to add to the flags

At most, six flag characters can be displayed for each frame. (See the section
"About the Flags Display Option," in the Sniffer Network Analyzer Operations
Manual.)

Using Other Protocol Interpreters

In general, any protocol interpreter can call any other by using the calling
sequence described in the section "Calling Conventions for Protocol
Interpreters" on page 1-7. The calling protocol interpreter must supply a
pointer to the beginning of the embedded protocol's data and the number of
bytes remaining in the frame from that point.

In most cases, the Pl that you write will be at the top of the protocol stack, and
the only other protocol interpreters you call will be your own. In this case, you
can use any calling sequence you want.

You also may call an existing NGC-written protocol interpreter if your protocol
interpreter discovers a protocol that it interprets as embedded within your
protocol. To find the list of NGC-written protocol interpreters, you can examine
the REGISTER lines in the file INITPI.C. You can force any protocol interpreter
whose registration includes the flag PITYPE_FORCEE using the pointer to that
function. For example, since the line:

1-21

Protocol Interpreter Development Kit

An Example

1-22

REGISTER (SMB, smb, HSMB", "SMB: ",
PITYPE_EMBEDDED+PITYPE_FORCEE+L7, o, &no_demux)

contains the PI TYPE _FORCEE flag, you can call the smb protocol interpreter as
follows:

if (piptr_smb)
smb_bytes_interpreted • piptr_smb (frame_ptr, frame_length);

else

Testing that piptr _ smb is not NULLP ensures that this protocol interpreter has
really been registered at run time. The name of this pointer is always "piptr _"
followed by the second parameter on the REGISTER line in INITPI.C. What
your protocol interpreter does if the embedded protocol has not been registered
is up to you.

Consider the "sample" protocol that has simple fixed-format data:

[1 byte] Device number

[1 byte] Command type

[2 bytes] Number of segments

[20 bytes] Name of owner (null-terminated ASCII)

In a new module, you would write your PI with a structure similar to Figure
1-5.

Several frames with this sample protocol embedded over SAP Ox91 (or
ARCNET system ID Ox91) are in the capture file SAMPLE.xxC that is delivered
with the PI Development Kit. You can build a Sniffer analyzer that contains the
sample PI and interpret these frames by following the directions in the section
"Building a New Sniffer Analyzer" on page 1-31 to integrate the sample PI over
a SAP or over an ARCNET system ID.

Coding a Protocol Interpreter

#define USE_PIF 1 /* should we use the PIF routines? */

#include "pi.h"

extern struct pi_data *pi_data_sample; /* our PI data */

struct sample_header {
char device;
char command;
int nsegments;
char owner [20];
} ;

/* the format of our frame data */

int interp_sample (header, length) /* our sample interpreter */

struct sample_header *header; /* pointer to our protocol header */
/* length of the remaining data */ int length;

{
if (pi_data_sample->do_sum) { /* summary line wanted? */

sprint£ (
get sum line (pi data sample), /* get a line buffer*/

-"SMP Device ;; %d,-Cmd • %02X",
header->device, header->command);

} /* end of summary line */

if (pi_data_sample->do_int) {

#if USE_PIF

I* detail lines wanted? */

/* show how to use PIF routines */

#else

/* Set up PIF globals */

pif_init (pi_data_sample, header, length);

/* Output the header line and highlight the whole header.
Note that pif_header() does not alter the PIF offset. */

pif_header (sizeof (struct sample_header),
"Sample protocol data area");

/* Display the fields. Each routine advances the buffer pointer
past the data item just displayed. */

pif_show_byte ("Device number• %d");
pif_show_byte ("Command type• %02X");
pif_show_word ("Number of segments• %d");
pif_show_ascii (20, "owner • %s");

/* Write out "End of •• " message & check for excess or missing data */

pif_trailer ();

/* Do detail without PIF routines */

Figure 1-5. Sketch for structure of a new protocol interpreter (continued on next page).

1-23

Protocol Interpreter Development Kit

#endif

sprint£ (
get_int_line (pi_data_sample,

(char *)&header->device - dlc_header,
2),

uoevice number• %d, command type• %02X",
header->device, header->command)J

sprint£ (
get_int_line (pi_data_sample,

(char *)&header->nsegments - dlc_header,
2),

uNumber of segments• %d 11 ,

header->nsegments)1

sprint£ (
get_int_line (pi_data_sample,

(char *)header->owner - dlc_header,
20),

"OWner • %20s",
header->owner) 1

} /* end of detail lines */

/* get a line buffer */
/* highlight offset */
/* highlight length */

/* get a line buffer */
/* highlight offset */
/* highlight length */

/* get a line buffer */
/* highlight offset */
/* highlight length */

/* If there were any embedded protocol after our header,
we could call the interpreters here. */

return length1
}

/* say that we used up all the data */

/* end of sample.c */

Figure 1-5. Sketch for structure of a new protocol interpreter (continued from previous
page).

Dependencies on Other Frames

•

1-24

Note: Although the pi_get_frame and pi_invoke_pis functions are still available
for compatibility with protocol interpreters written for previous versions of the
Sniffer analyzer, they are no longer documented, as NGC does not encourage
their use. The mechanisms NGC recommends for dealing with dependencies on
other frames are discussed in this section.

In many protocols, the interpretation of a frame depends upon information
found in other frames. Here are two examples:

• When a protocol interpreter sees a frame containing a call to a server,
the details of the call may be required to interpret the subsequent return
frame.

• When a protocol interpreter sees a: client port communicating with a
well-known server port or obtains some other clue about what
protocols are embedded in frames to and from that client port, this
information can help the PI interpret subsequent frames from or to the
client port.

After a new capture, when a new data file is loaded, and when the user chooses
the "Re-interpret" option on the display menu, the Sniffer analyzer performs a
"prescan" during which it interprets all the frames in order. After the prescan,

Coding a Protocol Interpreter

your PI may be called to interpret the frames in an arbitrary order, depending
upon what the user requests to display. The prescan is an opportunity for your
protocol interpreter to save any information it may need to be able to interpret
the frames later out of order.

The global variable do _prescan is TRUE when the frames are being interpreted in
order for the first time and FALSE after this first pass has been completed. When
do_prescan is FALSE, protocol interpreters should rely entirely upon the data in
the frames and whatever data they stored when prescan was TRUE.

The Sniffer analyzer maintains 16 bytes of "context" with each frame, a
permanent data structure attached to the frame. During the prescan, your
protocol interpreter should store enough data in the context that it can interpret
the frame later without reference to other frames. Since the 16 bytes of context
must be shared by all the protocol interpreters working on a frame, you should
store as little data as possible.

The Sniffer analyzer core code contains two library functions, one to add data
to a frame's context and one to retrieve that data:

typedef char * CONTEXT DATA;
CONTEXT_DATA *allocate=context_data (int pi_number, unsigned context_length)
CONTEXT_DATA *fetch_context_data (int pi_number)

The pi_ number parameter for both of these functions is a number to identify your
protocol interpreter. It is a number between 1 and 31, and it must be different
from the numbers used by other protocol interpreters. The file Pl.H contains
definitions of constants named "CTAG_" followed by a protocol name, which are
the pi_ numbers that NGC has used for its protocol interpreters. You may use any
other pi_ numbers for your protocol interpreters.

allocate_context_data returns a pointer to memory allocated for your frame
context for the frame currently being interpreted. The buffer's length will equal
context_ length. If previous context data was stored for this frame with this
pi_ number, it is deleted by this call. If there is not enough space in the context to
satisfy the request, this function returns NULLP. You may write any data you
like into the context memory area.

fetch_context_data returns a pointer to the data previously stored by your
protocol interpreter for the frame currently being interpreted. If no context data
has been stored for the current frame, then this function returns NULLP. It is up
to you to interpret the data in the context.

An example of the structure of a protocol interpreter that depends upon other
frames is shown in Figure 1-6.

1-25

Protocol Interpreter Development Kit

1-26

/* Protocol interpreter that uses the context */
/* This array of structures is used during the prescan to store temporary data */
static struct {

} prescan_data [•••];

/* This variable tells when data should be captured for prescan_data */
extern int do__prescan;

/* This is the PI data structure */
extern struct pi_data* pi_data_user__protocol;

int interp_user__protocol (frame__ptr, frame_length)

char *frame__ptr;
int frame_length;

/* Frame to interpret */
I* Bytes in frame to interpret */

{
CONTEXT_DATA *context;

if (do _pre scan)
{

else

/* This is the chance to save data in the array */
if (<this frame has information we should save>)

{
<Add information to prescan_data>
}

if (<data in the prescan_data array contains information
that will be useful later in interpreting this frame>)
{

}

if (context • allocate context data (CTYPE_USERPI, <length>)
{ - -
/* Got the context buffer */
<Copy data for later use into context>;
}

if (<the data item in the prescan_data array will
no longer be useful>)
<Delete the item in the prescan_data array>;

}

/* The prescan is over. Therefore, the prescan data is */
/* no longer valid; erase it. */
/* <Note that prescan_data has no valid data>; */

if (pi_data_user__protocol->do_sum)
{
context• fetch_context_data (CTYPE_USERPI);
<If context is not NULLP, use the information to help
write out the summary line.>

}

if (pi_data_user__protocol->do_int)
{

}

context• fetch_context_data (CTYPE_USERPI);

<If context is not NULLP, use the information to help
write out the detail lines.>

}

Figure 1-6. Using the Frame Context.

Integrating into Existing Sniffer Analyzer Code

Integrating into Existing Sniffer Analyzer Code

In order for your PI to be of any use, the Sniffer analyzer core code must call
your PI at the appropriate times.

• If you have written a protocol interpreter for a new demultiplexed
protocol (one that is identified by an Ethertype, DSAP or ARCNET
system ID), then registering the protocol as described in the next section
will cause your PI to be called whenever your protocol's Ethertype,
DSAP or ARCNET system ID appears in a frame.

If you want to extend the interpretation of Token Ring N etBIOS frames,
you can insert the code for your protocol interpreter into the module
INTNETBO.C, which is provided in the PI Development Kit. The
routine interp _ netbios _other is called whenever the NetBIOS interpreter
finds a frame that is not an SMB frame.

To extend the Xwindows protocol interpreter, you can add code to the
stub functions in the file XWINEXT.C. These routines are called
whenever the Xwindows protocol interpreter discovers information
that it cannot interpret. Instructions for modifying these routines is
found in the comments in the source code.

• To extend the SMB protocol interpreter, you can write new code into
the stub interpreter contained in the file INTSMBO.C. This PI is called
whenever the standard SMB protocol interpreter discovers information
that it cannot interpret. This module contains a real protocol interpreter,
and you can write code into it just as you might write a new protocol
interpreter. You should also consider registering the smb _other protocol
interpreter in the file INITPI.C.

If you have written a protocol interpreter for a new protocol running
over AppleTalk's DDP, then adding your protocol's DDP type to the
table that the existing DDP protocol interpreter uses will cause your PI
to be called whenever your protocol's DDP type appears in a frame. The
table is contained in the module AT _PORTS.C, which is provided in the
PI Development Kit. Sample additions have been made under the
constant USERPI OVER DDP.

• If you have written a protocol interpreter for a new protocol running
over TCP, IP, or UDP, then adding your protocol's port or number to
the tables that the existing TCP, IP, and UDP protocol interpreters use
will cause your PI to be called appropriately.

The tables are contained in the module TCPPORTS.C, which is
provided in the PI Development Kit. Sample additions have been made
to this file under the constants USERPI OVER IP, USERPI OVER TCP, and
USERPI_OVER_UDP. The first two parameters in the TCP-table are the
minimum and maximum port; for a customer-written PI the last three
parameters should always be" &piptr_none, 0, FALSE."

1-27

Protocol Interpreter Development Kit

• If you have written a protocol interpreter for a new protocol running
over X.25, then adding your protocol to the table in the file
X25CALLS.C will cause your PI to be called whenever your protocol's
identification number appears in a frame. Sample additions have been
made under the constant USERPI _OVER_ X25. The definition of the structure
in X25CALLS.C is in the file X25.H.

• If you have written a protocol interpreter for a new protocol running
over HDLC or HDLC framing, then adding your protocol to the table in
the file USERHDLC.C will cause your PI to be called.

• If you want to replace or partly replace a NGC- written demultiplexed
protocol, you can arrange that the Sniffer analyzer core code calls your
PI instead of NGC's. To do this, find the registration line for NGC's Pl.
See the section, "Registering Protocol Interpreters" on page 1-28.
Change the registration line to register your PI instead.

If you want, your new PI can interpret only certain kinds of frames. You
can re-register NGC' s PI as an embedded protocol and call it in
situations where you want the NGC PI to interpret the frai;ne. You can
also split the work in other ways. For example, your PI can create the
summary line, then set do_sum to FALSE in the NGC Pl's data structure,
and call the NGC PI to produce detail lines and call further embedded
Pis. See the example in the section "Example: Changing the TCP
Summary Line" on page 1-32.

Registering Protocol Interpreters

1-28

Each PI should be registered in the file INITPl.C. Registration serves two
purposes:

• For a demultiplexed PI, registration tells the Sniffer analyzer when it is
appropriate to call that Pl. Registration is required for a demultiplexed
PI; otherwise, the PI is not called.

• For any PI, registration causes the name of the PI to appear on the
display filter menu so that the user can select frames that contain your
protocol. You can choose to have your protocol to appear on the
protocol forcing rules menu if you wish.

All registration occurs in the function INITPl.C, which is called when the Sniffer
analyzer is initialized.

The macro that registers a PI appears as follows:

REGISTER (DEFAULT, prot_name, menu_name, pi_det, pi_type, ntypes, types)

This macro must not end with a semi-colon.

Integrating into Existing Sniffer Analyzer Code

The function that registers a PI has the following calling sequence:

DEFAULT

char *prot_name

char *menu_name

char *pi_det

int pi_type

Network

ARCNET:

Token ring, Ethernet,
StarLAN and PC
Network:

Ethernet, StarLAN or
PC Network:

Any:

A flag to indicate the protocol suite to which this protocol
interpreter belongs. All customer-written Pis should be
registered with this flag set to "DEFAULT". Setting this to
any other value (or changing the values in existing
REGISTER statements) may cause the Sniffer analyzer to
crash.

The name of the protocol that your PI interprets. The
entry point to your PI must be named interp _ <prot _name>;
the protocol interpreter data structure used by your PI
must be named pi_data_ <prot_name>.

A pointer to the string that will appear in Sniffer analyzer
menus to refer to your PI. This string must not exceed 18
characters.

A pointer to the string containing an abbreviation
identifying your PI on lines in the detail window. To
preserve alignment with displays produced by the Sniffer
analyzer's other Pis, the string should be in one of the
forms "xx:", /1 xxx:", or /1 xxxx:", but you may use any
string of up to 5 characters.

The type of Pl; see the PI TYPE_ XXX symbols in PI.H. The
most common instance of pi_ type are:

Pl"JYpe Comment

Indicates that this protocol
PITYPE_ARCID interpreter is system-code-

demultiplexed over Arcnet.

Indicates that this protocol
interpreter is

PITYPE_SAP
SAP-demultiplexed over token
ring, Ethernet, StarLAN, or PC
Network.

Indicates that this protocol
interpreter is Ethertype-

PITYPE_ETYPE demultiplexed over Ethernet,
StarLAN, or PC Network.

Indicates that the protocol

PITYPE_EMBEDDED
interpreted by this Pl is
embedded within other
protocols.

1-29

Protocol Interpreter Development Kit

1-30

Any: PITYPE_FORCEE

Indicates that this Pl should
appear on the menu of
protocols that can be forced.
Note that if you use this
PITYPE, your protocol must
follow the standard calling
sequence described in the
section ·calling Conventions
for Protocol Interpreters."

int ntypes; The number of types that can be processed by this
demultiplexed interpreter. For an embedded protocol,
specify 0. Ntypes depend upon the network:

ARCNET: The number of system codes

Token ring: The number of DSAPs

Ethernet, StarLAN and The number of DSAPs or
PC Network: Ethertypes

int •types; An array of "ntypes" integers representing the various
system codes, DSAPS, or Ethertypes (as appropriate to
the network) that can be processed by this demultiplexed
interpreter.

For an embedded protocol, this parameter is ignored and
should be specified as a null address.

A number of sample registration lines have been inserted into INITPI.C. You
should edit one of them to register your protocol interpreter. For example, if
your PI interprets a demultiplexed protocol with an Ethertype, then the
registration line following the line:

#if USERPI_OVER_ETYPE

should be edited to register your protocol (instead of "sample"). For
demultiplexed protocols, you must also edit (and should rename) the variables
that control the demultiplexing:

sample_sap (currently set to Ox91)

sample_arcid (currently set to Ox91)

sample_etypes (currently set to Ox900 and Ox911)

The REGISTER macro assumes that pi_data_ <prot_name>, interp_ <prot_name>, and
rt_interp_ <prot_name> have been declared. Add these declarations to INITPil.H.
You can add a line in that file that declares pi_data_sample, etc.

The REGISTER macro assumes that piptr _ <prot_name> has been declared. Add
this declaration to INITPI2.H. You can add a line in that file that declares
piptr _sample.

Integrating into Existing Sniffer Analyzer Code

Building a New Sniffer Analyzer

To build a new Sniffer analyzer with your new PI integrated into it, follow this
process:

To build a new Sniffer analyzer:

1. Write the code for your protocol interpreter or modify the existing stub
routines.

2. Make the necessary modifications to INITPl.C, INITPil.H, and
INITPl2.H to register your protocol interpreter.

3. Examine the OVLINK.LNK file and modify it appropriately. Required
modifications are:

a. If you have written a new module, then remove the pound sign
from the line that reads /1 # file sample.obj" and change it to include the
object file the compiler produced from your module instead of
SAMPLE.OBJ. If you have written several new modules, duplicate that
line as required to include them all.

b. If you have extended an existing protocol interpreter by editing one
of the C modules provided in the PI Development Kit, then remove the
pound sign from the line that includes the object file produced from that
module. Also, insert a pound sign at the beginning of the line that reads
module /1 <module_ name>. cmp, <module_ name>. cma."

Warning: The OVLINK.LNK file is the command file for the linker. Do
not change the overlay structure of the Sniffer analyzer code, as this may
cause it not to work. Also, do not make miscellaneous changes to this file
based on RTLINK documentation; the version of RTLINK distributed
with the PI Development Kit is not the commercially available one, and
features may differ.

4. Examine the BUILDSNF.BAT file and change the lines that set the
following three variables:

tmp

lib

include

Must contain a directory on a disk that has at least
2.5 Mb of free space.

Must contain the directory on which version 6.00AX
of the Microsoft libraries resides.

Must contain the directory on which version 6.00AX
of the Microsoft include files resides.

5. Run the buildsnf .bat batch file with the command:

BUILDSNF <pi_integration> [< module >]

The pi_ integration parameter must be in upper case and must be one of
the following:

1-31

Protocol Interpreter Development Kit

ARCID For a demultiplexed Pl for Arcnet.

DDP For an embedded Pl over AppleTalk DDP.

ETYPE For a demultiplexed Pl with an Ethertype.

IP For an embedded Pl running over IP.

NETBIOS For an extension to the NETBIOS Pl.

SAP For an embedded Pl with a SAP.

SMB For an extension to the SMB Pl.

TCP For an embedded Pl running over TCP.

UDP For an embedded Pl running over UDP.

X25 For an extension to X.25.

XWIN For an extension to ><WINDOWS.

The module parameter is the name of a new module that you have
written (without the .c extension). This module will be compiled. If you
have extended existing modules but have not written one of your own,
you may omit this parameter.

6. Move the xxSNIFF.EXE file built by this operation to the xxSNIFF
directory on your Sniffer analyzer (where xx is a two- letter abbreviation
of your network type; EN for ethernet, AR for Arcnet, etc.).

Note: Rename your existing Sniffer analyzer executable first so that you
will still have it if your new one does not work.

Example: Changing the TCP Summary Line

1-32

Figure 1-7 shows how to write a capture filter for the TCP interpreter (part of
the TCP /IP PI) in order to change the formatting of the summary line while
generating the lines for the detail view with the standard interpreter.

Integrating into Existing Sniffer Analyzer Code

/* file: sample2.c */
/***
SAMPLE2.C
This is an example capture filter to the TCP Protocol Interpreter that changes
the format of the summary line from that generated by the standard PI.

>>> This is for Sniffer analyzer version 2.30, where interp_tcp{) is
>>> not called indirectly by interp_ip() using piptr_tcp.
>>> Accordingly, we intercept at the IP level instead of the TCP level;
>>> all occurrences of "interp_ip" are changed to "interp_ip2" in initpi.c.
***/
#include "pi.h"

extern struct pi_data *pi_data_tcp;
extern int interp_ip (void*, int);

I* ptr to PI data for TCP PI */
/* the original IP interpreter */

/*--- Our replacement IP interpreter. It gets control because all occurrences
of "interp_ip" have been replaced by "interp_ip2" in initpi.c---*/

int interp_ip2 (ip_ptr, length) /* OUR REPLACEMENT IP INTERPRETER */
/* pointer to IP header */ char •ip_ptr;

int length; I* length of remaining data */
{
int
char

tcp_sumflag, bytes_used, flags;
*ptr, *tcp_ptr;

tcp_sumflag = pi_data_tcp->do_sum; /* save TCP PI's summary flag */
pi_data_tcp->do_sum • O; /* temporarily turn it off */
bytes_used = interp_ip (ip_ptr, length); /*call IP then perhaps TCP */
pi_data_tcp->do_sum = tcp_sumflag; /* put back TCP's flag */
if (tcp sumflag /* if it was on, */
&& ip_ptr [9] •• 6) { /* and the embedded protocol was TCP, */

ptr = get_sum_line (pi_data_tcp); /* then generate our TCP summary line. */
tcp_ptr • ip_ptr + /* start of TCP header */

((ip_ptr [OJ & Oxf) << 2); /* based on "IHL" IP field*/
ptr = stradd (ptr, "TCP "); /* start with protocol name */

I* Format the summary line here. As an example, we build a line
that contains only the keywords for the TCP flags that are set.
If we were serious, we'd define structures for the headers and
probably format other fields as well. */

flags• tcp_ptr [13]; /*the TCP flags byte. */
if (flags & OxOl)

ptr • stradd (ptr, "FIN ") ;
if (flags & Ox02)

ptr • stradd (ptr, "SYN");
if (flags & Ox04)

ptr • stradd (ptr, "RST ");
if (flags & Ox08)

ptr • stradd (ptr, "PSH ");
if (flags & OxlO)

ptr • stradd (ptr, "ACK");
if (flags & Ox20)

ptr • stradd (ptr, "URG ");
}

return bytes_used;
}

/* end of sample2.c */

/*

/*

/*

/*

I*

/*

Figure 1-7. Example capture filter code.

data finished flag */

synchronize flag */

reset flag */

push flag */

Acknowledge flag */

urgent flag *I

1-33

Protocol Interpreter Development Kit

Programming and Debugging Hints

1-34

The LARGE memory model is used throughout the Sniffer analyzer and must
be used by your Pis. This means that pointers are four bytes and integers are
two bytes so that the symbol NULLP, not zero, should always be used to
represent a null pointer.

Extreme care should be taken in writing Pis, especially in the manipulation of
pointers used as targets~ There is no hardware memory protection and with
4-byte pointers, no segment address limitation; every byte in the machine is
vulnerable to a wayward pointer.

Be particularly careful that incorrect or even totally random protocol data will
not cause your interpreter to overflow strings, to access invalid memory areas,
or to loop.

The Microsoft Codeview debugger will not work because of the size of the
Sniffer analyzer executable module, but SYMDEB may work.

A void the use of printf for debugging messages since the cursor is off the screen
most of the time and the messages will not be seen. You can instead insert
messages into the debugging window using the similarly called debug_ msg
function; use Shift-Fl to pop up the debugging window.

You also can insert debugging messages into the detail view by using
get._ int._ line. If you must use printf, specify DEBUG as a command line
parameter when invoking the Sniffer analyzer. The cursor will be left
somewhere on the screen, but your output will destroy the screen formatting.

Be aware of interpreting invalid information beyond the end of the stored data.
If frames were captured in "partial frame" mode, the data present may be less
than the entire frame; the global byt.es _not._ stored indicates how much data is not
present.

The PIF routines and the sprintf function detect when they are about to access
locations beyond the end of the frame data. They print a frame too short
message into the detail view, and it does not return to your PI.

Be careful not to store more than MAX_SUM_LINE characters in a summary line
buffer or more than MAX_INT_LINE characters in a detail line buffer, regardless of
what the frame data might be. The POK sprintf function protects against this
possibility.

The 80386 processor that is used in the Sniffer analyzer stores integers in
low-high format. Depending on your protocol, you may have to reverse
integers for printing or calculation. The PIF routines ending in_ hl are useful in
that case, as is the "r" flag in POK sprint£.

The Microsoft Version 6.00AX compiler supports argument type checking using
ANSI standard function prototyping. The #include files provided with the PI
Development Kit have declarations for all the documented functions, and you
are encouraged to add declarations of your new functions.

Programming and Debugging Hints

The /J flag has been used to compile all modules to make the default for
character variables unsigned.

1-35

Protocol Interpreter Development Kit

1-36

SNIFFER NETWORK ANALYZER®

INDEX

Index

A
address

embedded 1-20

B
build

custom Sniffer PI 1-31

c
calling conventions

PI 1-7

compiler
PI 1-34

D
data structure

PI 1-8

demultiplexed PI 1-3

detail view 1-11, 1-13, 1-32
synchronization with summary view 1-10
use of PI 1-3

DLC
header, pointer 1-8

E
embedded

address 1-20
interpreter 1-3

example
new PI 1-22

F
flags

options 1-18
summary line 1-21

format
PI routines 1-10

PI utilities 1-10

frame
number, pointer 1-8

H
higher-level

protocol 1-3

highlight
hex corresponding to detail interpretation 1-10

installation

L
LLC

M

Microsoft C compiler 1-7
PDK files 1-6
PI Development Kit 1-5

header, pointer 1-8

Microsoft C compiler 1-34
installation 1-7

N
name

symbolic 1-20, 1-21

p
PDKsprintf

PI

controlling values 1-20
functions 1-17
printing values 1-18
skipping values 1-19

adding symbolic names 1-20
build custom Sniffer protocol interpreter 1-31
calling conventions 1-7
compiler 1-34
custom 1-3
data structure 1-8
demultiplexed vs. embedded 1-3

lndex-3

Protocol Interpreter Development Kit

PIF

dependencies on other frames 1-24
example 1-22
formatting 1-10
formatting utilities 1-10, 1-12
integrating into existing code 1-27
memory model 1-34
output 1-9
porting current 1-4
registering 1-28
return value 1-8

offset 1-11
routines 1-10, 1-12

protocol
higher-level 1-3

R
registration

PI 1-28

return value
PI 1-8

s
Sniffer analyzer

build new, with custom PI 1-31

sprint£
controlling values 1-20
functions 1-17
printing values 1-18
skipping values 1-19

summary view 1-9, 1-11, 1-32, 1-34
display flags 1-21
flags 1-21
synchronization with detail view 1-10
use of PI 1-3

symbolic equivalent
display by custom PI 1-21

T
technical support vii

lndex-4

NETWORK GENERAL CORPORATION

Marketing Publications Comment Form

At Network General, we are interested in your suggestions to improve this manual. Please
take a moment to complete the following survey. Your comments are greatly appreciated.

MANUAL TITLE ___________________ _

II How do you use this manual? (check one or more.)

D To get an overview of the product

D To learn a task
D To get out of trouble
D Other

El

II

D To look up a fact

How often do you use this + manual? (check one.)
+product? (check one.)

Evaluate the manual? YES NO

Is information ... +accurate? D D
+ easy to read? D D
+ easy to find? D D

Are examples ... +helpful? D D
+ realistic? D D
+plentiful? D D

Are illustrations ... • helpful? D D
+ realistic? D D
+ plentiful? D D

Is the index ... +complete? D D
+accurate? D D

Did you notice any omissions?

II Do you have any general comments or suggestions?

"lVT l k bl "TM w e so ve networ pro ems.

DAILY WEEKLY

D D
D D

COMMENTS

LESS THAN
MONTHLY MONTHLY

D D
D D

fold here ---

fold here

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 9 MENLO PARK, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Network General Corporation
4200 Bohannon Drive
Menlo Park, CA 94025-9791
ATTN: Technical Publications Department

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

The following information will help us better evaluate your needs.

Position ---------------------
0 e pa rt men t

Optional:
Name ----------------------
Company -------------------~
Address ____________________ _

Phone ---------------------

Errata
Sniffer Network Analyzer: Protocol Interpreter Development Kit

October 30, 1992

Tbe tollowing errata apply to the Sniffer Network Analyzer: Protocol Interpreter Development Kit.

1. On page 1-4, under the heading, "Writing a Protocol Interpreter," the manual informs you that you will need to obtain
Version 6.00AX of the Microsoft C compiler. This compiler and the necessary library files are now included as part of
the Protocol Interpreter Development Kit. You no longer need to obtain them separately.

2. On page 1-6, Figure 1-1 lists the files provided with the Protocol Interpreter Development Kit. In addition to the files
listed, the following files are also provided as part of the Microsoft 6.00AX C Compiler:

Flies Provided With Microsoft 6.00 AX C Compiler

CL.EXE CL.MSG ClL.EXE

LLIBCE.LIB Cl.ERR C23.ERR

CL.ERR C2L.EXE C3L.EXE

3. On page 1-7, under the heading, "Installing the Microsoft C Compiler," the document gives instructions for installing
the compiler. The Protocol Interpreter Development Kit now includes all the tools required to write new protocol
~uterpreters and build new Sniffer analyzers, including the compiler and the library. You will not need to install the
Microsoft C Compiler because it is already installed with the Protocol Interpreter Development Kit.

4. On page 1-31, Step 4 of the procedure, "To build a new Sniffer analyzer," lists several changes that should be made to
the BUILDSNF.BAT file. The necessary files for Microsoft C 6.00AX are now distributed with the Protocol Interpreter
Development Kit. If you are using the compiler supplied with your Protocol Interpreter Development Kit, then the
BUILDSNF.BAT file is already set correctly. You will not need to change the BUILDSNF.BAT file unless you are
using a custom development environment. If this is the case, you will need to change the lines in BUILDSNF.BAT that
set the three variables listed in Step 4 on page 1-31.

5. To use the Protocol Interpreter Development Kit, you must add the following line to the CONFIG.SYS file of the
Sniffer Network Analyzer:

DEVICE--C: \OCS\HIME?'l. EXE

Note: If your Sniffer Network Analyzer has less than 32MB of RAM, you must remove the above command line
before starting the Sniffer Network Analyzer.

6. Before using the Microsoft C compiler, type the following command:

SET PA1ll:C:\OCS;C:\TIXLS:C:\TOJS\C600AX

[=~
We simplify network complexity.

Tll

Network General Corporation
4200 Bohannon Drive
Menlo Park. CA 94025

TEL: (415) 688-2700
FAX: (415) 321-0855

P/N: 20100-001

Network General Europe
Belgicastrut 4

1930 Zaventem. Belgium
TEL: (32.-2) 725-6030
FAX: (32-2) 725-6639

Network General Canada, Ltd.
2275 Lakeshore Blvd., West, 5th Floor
Etobicoke. Ontario M8V 3Y3 Canada

TEL: +l (416) 259-5022
FAX: +1(416)259-3727

[=]
We solve network problems.™

Network General Corporation
4200 Bohannon Drive
Menlo Park, California 94025
(415) 688-2700

Network General Europe
Belgicastraat 4
1930 Zaventem (Brussels), Belgium
32-2-725-6030

P/N:PA-7000

.·.t

