
29K Family
1990 Data Book

Advanced
Micro

Devices

29K Family
Data Book

© 1989 Advanced Micro Devices

Advanced

Micro

Devices

Advanced Micro Devices reserves the right to make changes in its products without notice in
order to improve design or performance characteristics. The performance characteristics

listed in this document are guaranteed by specific tests, correlated testing, guard banding,
design and other practices common to the industry.

For specific testing details, contact your local AMD sales representative.
The company assumes no responsibility for the use of any circuits described herein.

901 Thompson Place, P.O. Box 3453, Sunnyvale, California 94088-3000
(408)732-2400 TWX: 910-339-9280 TELEX: 34-6306

Am29000, Am29027, Am29041, 29K, ADAPT29K, ASM29K, BTC, Branch Target Cache, Fusion29K, HighC29K,
MON29K, PCEB29K, and XRAY29K are trademarks of Advanced Micro Devices, Inc.

CROSSTALK is a registered trademark of Digital Communications Associates, Inc.

DEC is a registered trademark of Digital Equipment Corporation.

Hewlett-Packard is a registered trademark of Hewlett-Packard, Inc.

IBM and PC-AT are registered trademarks of International Business Machines Corporation.

MetaWare is a trademark of MetaWare, Inc.

Motorola and MC68000 are registered trademarks of Motorola, Inc.

PAL is a registered trademark of Advanced Micro Devices, Inc.

Sun Workstation is a registered trademark of Sun Microsystems, Inc.

Sun and Sun-3 are trademarks of Sun Microsystems, Inc.

Tektronix is a registered trademark of Tektronix, Inc.

UniSite is a trademark of Data I/O Corporation.

UNIX is a registered trademark of American Telephone and Telegraph Company.

VAX is a registered trademark of Digital Equipment Corporation.

Introduction

INTRODUCTION

The RISC-based Am29000 Streamlined Instruction Processor from Advanced Micro Devices is the high­
performance solution for your general-purpose embedded systems needs. As the heart of the 29K Family, this 32-
bit CMOS microprocessor delivers outstanding performance, yet offers flexible cost-effective solutions that can
quickly move your product to market.

This data book is your comprehensive guide to AMD's 29K Family of microprocessors and development tools.
These products have helped current developers create applications that fully exploit the power of the Am29000
microprocessor: laser printers of all types, real-time graphics systems, networks and bridges, and a host of other
peripheral and communication devices.

To provide a total system solution for you, AMD has taken the 29K Family's advantages of 17-MIPS performance,
flexible memory-configuration requirements, and outstanding development tools and coupled them with our
Fusion29KTM program. This program provides you with AMD and industry-standard third-party solutions, including
the application-specific solutions you need for successful system integration that can substantially shorten the
time-to-market factor of your design.

AMD is committed to the 29K Family, and will continue to apply substantial resources to ensure that the present
levels of high performance, cost and design flexibility, and rapid design cycles are maintained and further
enhanced. Qualified support is readily available for our customers-our highly trained field applications engineers
are backed by experts in the factory. For further details on how the 29K Family can be the solution to your deSign
needs, call your local AMD sales office or the authorized representative listed in the back of this publication.

/d(li-
Geoff Tate
Senior Vice President
Microprocessors & Peripherals Group

iii

29K Family Data Book

PREFACE

Advanced Micro Devices' 29J<TM Family is a new generation of high-performance CMOS microprocessor compo­
nents and associated software tools. The heart of the 29K Family is the RISC-based Am29000™ microprocessor.
The Am29000 Streamlined Instruction Processor is a high-performance, general-purpose, 32-bit microprocessor
that supports a variety of applications, by virtue of a flexible architecture and rapid execution of simple instruc­
tions which are common to a wide range of tasks. The 29K Family's microprocessors are fully described in
Chapter 1.

The Am29000 Streamlined Instruction Processor effiCiently performs operations common to all systems, while
deferring most decisions on system policies to the system architect. It is well suited for applications in high­
performance workstations, general-purpose super minicomputers, high-performance real-time controllers, laser
printer controllers, network protocol converters, and many other applications where high performance, flexibility,
and the ability to program using standard software tools is important.

The Am29000 microprocessor has been enhanced to support byte and half-word loads and stores. This feature is
provided as an option, requiring that an external device or memory be able to write individual bytes and/or half­
words of a word. The Am29000 microprocessor can perform all necessary padding, sign extension, and alignment
within the word. Furthermore, this feature is defined to be compatible with existing 29K Family software.

The Am29027TM Arithmetic Accelerator is a high-computational unit intended for use with the Am29000 Stream­
lined Instruction Processor. It connects directly to the Am29000 microprocessor's system buses, and requires no
additional interface circuitry. When added to an Am29000 microprocessor-based system, the Am29027 co­
processor can improve floating-point performance by an order of magnitude or more. The Am29027 co-processor
implements an extensive floating-point and integer instruction set, and can perform operations on single-, double-,
or mixed-precision operands.

But the superior performance of the 29K Family of microprocessors is only part of the story: AMD also provides a
comprehensive set of software and hardware development tools, as shown in Chapter 2. These tools, coupled
with the growing number of development products from established third-party vendors, can drastically reduce the
time-to-market factor of designs.

For software development, AMD offers the globally optimizing HighC29KTM Cross-Development Toolkit, complete
with high-performance math libraries. The HighC29K compiler is packaged with the ASM29KTM Cross-Develop­
ment Toolkit, which includes a relocatable macro assembler, linker/loader, librarian, and a full architectural
simulator of the Am29000 microprocessor.

Several debugging tools are available, including the XRAY29KTM, a source-level debugger for high-level and as­
sembly-level debugging and the software-based MON29J<TM target-resident debugger/monitor. All tools work at
the Am29000 processor's clock rate to allow debugging while operating at full microprocessor speed.

The application notes in Chapter 3 make development with the 29K Family of silicon and tools a simpler task.
Within these documents, AMD engineers explore solutions of common problems that stand as roadblocks in your
development path. So whether you need general information on programming standalone Am29000 microproces­
sor-based systems or detailed specifics on how to make your product HIF compatible, these application notes can
provide the answers. And with new notes constantly being written and released, this wealth of knowledge will
continue to be integral to your development process.

iv

29K FAMILY DATA BOOK
TABLE OF CONTENTS

Chapter 1 29K Family CMOS Devices

Table of Contents

29000 Data Sheet .. 1 -3
29027 Data Sheet .. 1-111

Chapter 2 29K Family Support Tools
ASM29K Data Sheet .. 2-3
HighC29K Data Sheet .. 2-10
MON29K Data Sheet ... 2-17
XRAY29K Data Sheet .. 2-24

Chapter 3 29K Family Application Notes
Am29000 SYSCLK Driving .. 3-3
Connected Am29000 Instruction/Data Buses .. 3-5
Byte-Writable Memories for the Am29000 ... 3-8
Am29027 Hardware Interface .. 3-10
When is Interleaved Memory with the Am29000 Unnecessary? ... 3-14
Implementation of an Am29000 Stack Cache .. 3-20
Introduction to the Am29000 Development Tools .. 3-42
Preparing PROMs Using the Am29000 Development Tools ... 3-81
Programming Standalone Am29000 Systems .. '" 3-107
Host Interface (HIF) v1.0 Specification .. 3-163

Chapter 4 General Information
Related Literature .. 4-3
Package Outlines ... 4-4

v

Table of Contents

CHAPTER 1
29K Family CMOS Devices

Am29000 Data Sheet ... 1-3
Am29027 Data Sheet ... 1-111

Am29000
Streamlined Instruction Processor

DISTINCTIVE CHARACTERISTICS
• Full 32-blt, three-bus architecture

• 23 million Instructions per second (MIPS)
sustained at 33 MHz

• 33-,25-,20-, and 16-MHz operating frequency

• Efficient execution of high-level language
programs

• CMOS technology

• 4-glgabyte virtual address space with demand
paging

• Concurrent Instruction and data accesses

SIMPLIFIED BLOCK DIAGRAM

Am29027

Arithmetic
Accelerator

Am29000

Am29000

Advanced
Micro

Devices

• Burst-mode access support

• 192 general-purpose registers

• 512-byte Branch Target Cache™

• 64-entry Memory-Management Unit

• Demultiplexed, plpellned address, Instruction,
and data buses

• Three-address Instruction architecture

• On-chip byte-alignment support allows
optional byte/half-word accesses

Data

0907S9-{)03A

80011370

32

Publication' 09075 Rev. C Amendment 0

Issue Date: Noverroer 1989

1-3

29K Family CMOS Devices

TABLE OF CONTENTS

DISTINCTIVE CHARACTERISTICS •• 1-3

SIMPLIFIED BLOCK DIAGRAM •••••••••.••••••••••••••••••••••••••.••••• 1-3

GENERAL DESCRIPTION •••.•••.. 1-7

RELATED AMD PRODUCTS ••..• 1-7

CONNECTION DIAGRAM ••• 1-8

PIN DESIGNATION ••• 1-10

LOGIC SYMBOL ••.•.•••• 1-14

ORDERING INFORMATION •••••••••••••••••••••••••••••••••••••••.•••• 1-15

PIN DESCRIPTION ••••••••••••••••••••••••.•.••••••••••••••••••••••••• 1-17

FUNCTIONAL DESCRIPTION •••••.••••••••••.•••••.••••••.••••••••••••• 1-21
Product Overview .. 1-21

Cycle Time .. 1-21
Four-Stage Pipeline 1-21
System Interface ... 1-21
Register File. .. 1-21
Instruction Execution .. 1-22
Branch Target Cache .. 1-22
Branching 1-22
Loads and Stores 1-22
Memory Management ... 1-23
Interrupts and Traps .. 1-23
Floating-Point Arithmetic Unit. .. 1-23

ARCHITECTURE HIGHLIGHTS ••••••••••••••••••••••.••••••••••••••••••• 1-24
Architecture Overview ... 1-24
Program Modes .. ~ 1-24
Visible Registers ... 1-24
Instruction Set Overview ... 1-26
Data Formats and Handling ... ~ 1-29
Interrupts and Traps ... 1-30
Memory Management ... 1-31
Coprocessor Programming ..•.. 1-31
Timer Facility .. 1-31
Trace Facility .. 1-31

FUNCTIONAL OPERATION ••••••••••••••••••••••••••••••••.•••••••••.• 1-32
Four-Stage Pipeline ~ .. " 1-32
Function Organization 1-32
Instruction Fetch Unit .. 1-32
Execution Unit 1-32
Memory Management Unit .. ;... 1-33
Processor Modes ... 1-34
System Interface .. 1-34

1·4

TABLE OF CONTENTS (continued)
Channel .. 1-34
Test/Development Interface ... 1-35
Clocks ... 1-35
Master/Slave Operation ,. .. 1-35
Coprocessor Attachment ... 1-35

Program Modes .. " 1-36
Supervisor Mode ... 1-36
User Mode .. 1-36

REGISTER DESCRIPTION •••••••••••••••.••..•.••••••.•••••.•••••••... 1-37
General-Purpose Registers ... 1-37
TLB Registers ... 1-54

INSTRUCTION SET ••..••••.•...•••••••..••..••.•.•••.•.••••••.•••... 1-57
Integer Arithmetic. .. 1-57
Compare ... 1-57
Logical 1-57
Shift ... 1-57
Data Movement 1-57
Constant. .. 1-57
Floating-POint .. 1-57
Branch 1-57
Miscellaneous ... 1-57
Reserved Instructions ... 1-60

DATA FORMATS AND HANDLING .•••..•••••••.•.•.••.•••••.••..•.••••.. 1-64
Integer Data Types ... 1-64
Floating-POint Data Types 1-65
Special Floating-Point Values ... 1-66
External Data Accesses ... , 1-66
Addressing and Alignment .. 1-70
Byte and Half-Word Accesses .. 1-72

INTERRUPTS AND TRAPS ••..•••.•••..••.•••..••• " .•••.•••.•...•••••. 1·75
Interrupts ... 1-75
Traps .. 1-75
Wait Mode .. 1-75
Vector Area ... 1-75
Interrupt and Trap Handling .. 1-76
WARN Trap ... 1-79

Sequencing of Inte(rupts and Traps .. 1-80
Exception Reporting and Restarting .. 1-80
Arithmetic Exceptions ... 1-82
Exceptions During Interrupt and Trap Handling. 1-83

MEMORY MANAGEMENT .•.•••••••••••••.•••.•••.....•••...•••••..... 1-84
Translation Look-Aside Buffer '" .. 1-84
Address Translation ... 1-85
Reload 1-87
Entry Invalidation ... " 1-88
Protection .. 1-88

Am29000

1-5

29K Family CMOS Devices

TABLE OF CONTENTS (continued)

CHANNEL DESCRIPTION •• 1-89
User-Defined Signals • • • • .. 1-89
Instruction Accesses .. 1-89
Data Accesses • . • 1-89
Reporting Errors. .. 1-90
Access Protocols • 1-90
Simple Accesses•..•................. 1-90
Pipelined Accesses•...................................... 1-90
Burst-Mode Accesses ... 1-92
Arbitration. • • • . • 1-97
Use of BINV to Cancel an Access .. 1-98
Bus Sharing-Electrical Considerations 1-98
Channel Behavior for Interrupts and Traps 1-99
Effect of the LOCK Output • . . • • • 1-99
Initialization and Reset . • 1-99

ABSOLUTE MAXIMUM RATINGS ••••••••••••••••••••••••••••••••••••••• 1-101

OPERATING RANGES ••• 1-101

DC CHARACTERISTICS •• 1-101

CAPACITANCE •••••••••• ' •• 1-101

SWITCHING CHARACTERISTICS ••••••••.•••••••••••••••••••••••••••••• 1-102

SWITCHING WAVEFORMS •••••••.••••••••••••••••••••••••••••••••.••• 1-106

SWITCHING TEST CIRCUIT •••••.••••••••••••••••••••••••••••••••••••• 1-109

1-6

GENERAL DESCRIPTION
The Am29000™ Streamlined Instruction Processor is a
high-performance, general-purpose, 32-bit micropro­
cessor implemented in CMOS technology. It supports a
variety of applications by virtue of a flexible architecture
and rapid execution of simple instructions that are com­
mon to a wide range of tasks.

The Am29000 efficiently performs operations common
to all systems, while deferring most decisions on system
policies to the system architect. It is well-suited for ap­
plication in high-performance workstations, general­
purpose super-minicomputers, high-performance real­
time controllers, laser printer controllers, network
protocol converters, and many other applications where
high performance, flexibility, and the ability to program
using standard software tools is important.

29KTM Family Development Support Products
Contact your local AMD representative for information
on the complete set of development support tools.

Software development products on several hosts:

• Optimizing compilers for common high-level
languages

•. Assembler and utility packages

• Source- and assembly-level software
debuggers

• Target-resident development monitors

• Simulators

Hardware Development:

• ADAPT29I(TM Advanced Development and
Prototyping Tool

RELATED AMD PRODUCTS

Am29000 Peripheral Devices

Part No. Description

Am29027TM Arithmetic Accelerator

Am29000

The Am29000 instruction set has been influenced by the
results of high-level language, optimizing compiler re­
search. It is appropriate for a variety of languages
because it efficiently executes operations that are com­
mon to all languages. Consequently, the Am29000 is an
ideal target for high-level languages such as C, FOR­
TRAN, Pascal, Ada, and COBOL.

The processor is available in two packaging options: a
169-lead pin-grid-array (PGA) package, and a 164-lead
Ceramic Quad Flat Pack (CQFP) package for the mili­
tary. The PGA has 141 signal pins, 27 power and ground
pins, and 1 alignment pin. The CQFP has 141 signal
pins and 23 power and ground pins. A representative
system diagram is shown on page 1.

1-7

29K Family CMOS Devices

CONNECTION DIAGRAM
169-Lead PGA·

1-8

Bottom View

ABC 0 E F G H J K L M N P R T U

1 (!]@@@@@@@@@(:!)(!)@@@@@
2 @@@@@@@@@@@@@@@@@
3 @@@@@@@@@@@@@@@@@
4 @@@@ @@@
5 @@@ @@@
6 @@@ @@@
7 @@@ @@@
8 @@@ @@@
9 @@@ @@@

10 @@@ @@@
11 @@@ @@@
12 @@@ @@@
13 @@@ @@@
14 @@@ @@@
15 @@@@@@@@@@@@@@@@@
16 @@@@@@@000000@0@0
17 @@@0000000000@00@

• Pinout observed from pin side of package.

CONNECTION DIAGRAM
Am29000

164-Lead CQFP

Top View

(Lid Facing Viewer)

164 124

1 ~ J 123
;;;;0

;;;;0

41
83 - a...-..;

42 82

1·9

29K Family CMOS Devices

PGA PIN DESIGNATION
(Sorted by Pin No.)

Pin No. Pin Name Pin No.

A-1 GNO C-10
A-2 11 C-11
A-3 10 C-12
A-4 02 C-13
A-5 04 C-14
A-6 Os C-15
A-7 09 C-16
A-a 011 C-17

A-9 0,2 0-1

A-10 0,4 0-2

A-11 0,6 . 0-3

A-12 0,8 0-4

A-13 020 0-15

A-14 021 0-16

A-15 02S 0-17
A-16 027 E-1

A-17 GNO E-2

8-1 16 E-3
8-2 15 E-15
8-3 b E-16

8-4 00 E-17
8-5 0, F-1

8-6 Os F-2
8-7 08 F-3
8-8 0,0 F-15

8-9 0,3 F-16

8-10 O,S F-17

8-11 0,7 G-1

8-12 0,9 G-2

8-13 023 G-3

8-14 024 G-15

8-15 028 G-16

8-16 029 G-17

8-17 A30 H-1

C-1 19 H-2

C-2 18 H-3

C-3 14 H-15
C-4 12 H-16
C-5 GNO H-17

C-6 03 J-1
C-7 07 J-2

c-a Vee J-3
C-g Vee J-15

Pin Name Pin No. Pin Name

GNO J-16 A,S

GNO J-17 A14
022 K-1 126
026 K-2 125
Vee K-3 GNO
030 K-15 Vee
031 K-16 A12
A29 K-17 A'3
111 L-1 . 127

110 L-2 128

17 L-3 Vee

PIN169 L-15 Vee

A31 L-16 A'0
fu8 L-17 All

A26 M-1 129

113 M-2 I~

112 M-3 GNO

Vee M-15 GNO
GNO M-16 Ao
A27 M-17 Al

A23 N-1 13,
1,6 N-2 TEST

I1s N-3 SYSCLK
114 N-15 GNO
A25 N-16 MPGM,

A24 N-17 MPGMo

A21 P-1 CNTL,
1,9 P-2 CNTLo

118 P-3 PWRCLK

117 P-15 As

A22 P-16 A8

A20 P-17 A9

A'9 R-1 RESET

120 R-2 COA

122 R-3 DROY

121 R-4 OBACK

GNO R-5 GNO

A'8 R-6 Vee
An R-7 TRAP,

123 R-a GNO
124 R-9 OBREO

GNO R-10 POA

A,S R-11 Vee
Note: Pin Number 0-4 is the alignment pin and is electrically connected to the package lid.

1-10

Pin No. Pin Name

R-12 STAT2
R-13 GNO
R-14 OPTo
R-15 A2
R-16 As
R-17 A7
T-1 INCLK
T-2 BREO

T-3 OERR

T-4 IROY

T-5 WARN

T-6 INTA2

T-7 INTRo

T-8 BINV

T-9 BGRT

T-10 DREO

T-11 LOCK

T-12 MSERR
T-13 STATo
T-14 SUP/US

T-15 OPT,
T-16 A3

T-17 A4
U-1 GNO
U-2 PEN

U-3 IERR

U-4 IBACK

U-5 INTR3

U-6 INTRI

U-7 TRAPo

u-a IBREO
U-g IREO

U-10 PIA

U-11 R/W

U-12 OREOT,

U-13 OREOTo

U-14 STAT,

U-15 IREOT
U-16 OPT2

U-17 GNO

PGA PIN DESIGNATIONS
(Sorted by Pin Name)

Pin Na. Pin Name PinNa.

M-16 Ao B-6

M-17 Al A-6

R-15 A2 C-7

T-16 A3 B-7

T-17 A4 A-7

P-15 As B-8

R-16 A6 A-8

R-17 A7 A-9

P-16 As B-9

P-17 As A-10

L-16 A'0 B-10

L-17 An A-11

K-16 A'2 B-11

K-17 A13 A-12

J-17 A14 B-12

J-15 A,S A-13

J-16 A'6 A-14

H-17 A17 C-12

H-16 A'8 B-13

G-17 A'9 B-14

G-16 A20 A-15

F-17 A21 C-13

G-15 A22 A-16

E-17 A23 B-15

F-16 A24 B-16

F-15 A2S C-15

0-17 A26 C-16

E-16 A27 R-4

0-16 A28 R-9

C-17 A29 T-3

B-17 A30 R-3

0-15 A31 T-10

T-9 BGRT U-13

T-8 BINV U-12

T-2 BREa E-15

R-2 COA H-15

P-2 CNTLo M-15

P-1 CNTL, C-10

B-4 Do A-1

B-5 0, A-17

A-4 02 C-5

C-6 03 C-11

A-5 04 J-3

Pin Name PinNa. Pin Name

05 K-3 GNO

06 N-15 GNO

07 R-5 GNO

08 U-1 GNO

09 R-13 GNO

0,0 R-8 GNO

011 M-3 GNO

0,2 U-17 GNO

0,3 A-3 10

0,4 A-2 11

0,5 C-4 12
0,6 B-3 b

017 C-3 14

0'8 B-2 15

0,9 B-1 16

020 0-3 b

021 C-2 18

022 C-1 19

023 0-2 Ito
024 0-1 111
025 E-2 112

026 E-1 113

027 F-3 1,4

028 F-2 Its
029 F-1 1,6

030 G-3 117

031 G-2 1t8

OBACK G-1 1t9

OBREa H-1 120

DERR H-3 121

ORDY H-2 122

OREQ J~1 123

DREaTo J-2 124

OREaT, K-2 125

GNO K-1 126

GND L-1 127

GNO L-2 128

GNO M-1 129

GND M-2 130

GND N-1 bl

GND U-4 IBACK

GND U-8 IBREa

GND U-3 IERR
Note: Pm Number 0-4 IS the alignment pin and IS electrically connected to the package lid.

Am29000

PinNa. Pin Name

T-1 INCLK

T-7 INTRo

U-6 INTRI

T-6 INTR2

U-5 INTR3

T-4 IROY

U-9 IREa

U-15 IREaT

T-11 LOCK

N-17 MPGMo

N-16 MPGM,

T-12 MSERR

R-14 OPTo

T-15 OPT,

U-16 OPT2

R-10 POA

U-2 PEN

U-10 PIA

0-4 PIN169

P-3 PWRCLK

U-11 R/W

R-1 RESET

T-13 STATo

U-14 STAT,

R-12 STAT2

T-14 SUP/US

N-3 SYSCLK

N-2 TEST

U-7 TRAPo

R-7 TRAP,

C-14 Vee

L-15 Vee

C-8 Vee

C-9 Vee

E-3 Vee

K-15 Vee

L-3 Vee

R-6 Vee

R-11 Vee

T-5 WARN

1-11

29K Family CMOS Devices

CQFP PIN DESIGNATION
(Sorted by Pin No.)

Pin No. Pin Name Pin No.

1 COA 42
2 INCLK 43
3 PWRCLK 44
4 SYSCLK 45
5 GNO 46
6 Vee 47
7 GNO 48
8 RESET 49
9 CNTLo 50
10 CNTLI 51
11 TEST 52
12 131 53
13 I~ 54

14 129 55
15 128 56
16 127 57
17 126 58
18 125 59
19 124 60
20 GNO 61
21 Vee 62
22 123 63
23 122 64
24 121 65
25 120 66
26 119 67
27 lis 68
28 117 69
29 Its 70
30 115 71
31 114 72
32 1t3 73
33 112 74
34 III 75
35 110 76
36 19 n
37 Is 78
38 h 79
39 16 80
40 Is 81
41 14 82

1-12

Pin Name

Vee

13
12
11
GNO
10
Do
01

02
03
04

05

06

07

Os
09

010

011

012

013

014

Vee

GNO
015
DIS
017
01S

019

020
021

022

023

024

025

026

027

02S

029

030

031

GNO

Pin No. Pin Name Pin No. Pin Name

83 Vee 124 GNO

84 GNO 125 OPTo
85 A31 126 OPTI
86 A30 127 OPT2
87 A29 128 SUP/US

88 A2s 129 IREOT
89 A27 130 STATo
90 A2s 131 STATI

91 A2s 132 STAT2
92 A24 133 MSERR
93 A23 134 OREOTo

94 A22 135 OREOTI

95 A21 136 LOCK

96 A20 137 R/W

97 A19 138 DREO

98 AIS 139 POA

99 A17 140 PIA

100 A16 141 I REO

101 AIS 142 BGRT

102 GNO 143 OBREO

103 Vee 144 IBREO

104 A14 145 BINV

105 A13 146 Vee
106 A12 147 GNO
107 All 148 Vee
108 Al0 149 GNO
109 Al 150 TRAPo

110 Ao 151 TRAPI

111 MPGMo 152 INTRo

112 MPGMI 153 INTRI

113 Vee 154 INTR2

114 A9 : 155 INTA3

115 As 156 WARN

116 A7 157 IBACK

117 As 158 IROY

118 As 159 IERR

119 A4 160 OERR

120 A3 161 OBACK

121 A2 162 PEN

122 GNO 163 BREa

123 GNO 164 DROY

CQFP PIN DESIGNATIONS
(Sorted by Pin Name)

PinNa. Pin Name PinNa.

110 Ao 51
109 A1 52
121 A2 53
120 A3 54
119 A4 55
118 As 56
117 As 57
116 A7 58
115 As 59
114 A9 60
108 A,o 61
107 A11 62
106 A12 65
105 A'3 66
104 A14 67 .
101 A,s 68

100 A'6 69
99 A17 70
98 A'8 71
97 A,II 72
96 A20 73
95 A21 74
94 An 75
93 A23 76
92 A24 77
91 A2s 78
90 A28 79
89 A27 80
88 A2a 81
87 A211 161
86 A30 143
85 A31 160
142 BGRT 164
145 BINV 138
163 BREa 134
1 COA 135
9' CNTLo 5
10 CNTL, 7
48 Do 20
49 0, 46
50 02 64

Pin Name

03
04
05
Os
07
08
Oa
0,0
011
012
0,3
0,4
0,5
0,6
017
O'B
0,9
020
021
On
023
024
025
026
027
028
029
030
031
OBACK
OBREa
OERR
DRDY
OREa
OREaTo
OREaT,
GNO
GND
GNO
GNO
GNO

Am29000

PinNa. Pin Name PinNa. Pin Name

82 GNO 144 IBREa
84 GNO 159 IERR
102 GNO 2 INCLK
122 GNO 152 INTRo
123 GNO 153 INTR1
124 GNO 154 INTR2
147 GNO 155 INTR3
149 GNO 158 IROY
47 10 141 IREa
45 11 129 IREaT
44 12 136 LOCK
43 h 111 MPGMo
41 14 112 MPGM,
40 15 133 MSERR
39 16 125 OPTo
38 b 126 OPT,
37 18 127 OPT2
36 III 139 POA
35 1,0 162 PEN
34 111 140 PIA
33 1,2 3 PWRCLK
32 1,3 137 Rm
31 114 8 RESET
30 1,5 130 STATo
29 116 131 STAT,
28 117 132 STAT2
27 1,8 128 SUP/US
26 119 4 SYSCLK
25 120 11 TEST
24 121 150 TRAPo
23 122 151 TRAP,
22 123 6 Vee
19 124 21 Vee
18 125 42 Vee
17 126 63 Vee
16 127 83 Vee
15 128 103 Vee
14 1211 113 Vee
13 130 146 Vee
12 13, 148 Vee
157 IBACK 156 WARN

1-13

29K Family CMOS Devices

LOGIC SYMBOL

----l~tI~

----l·tI 15m

----l·tI JRIJ7

----l~tI rrnR

----l;.tI mAe'R

----l~tI rnwv
----l~tlmm

----l .. tI~

----l:tI Cl5A

-----i~tI WA'm
....

I ... CNTLI-CNTLo

----~~~
-----i:tI TEST

----i~~ INCLK

2, • ~I-TRAPo
'~

__ 3_2--,V 131-10

----tI PWRCLK
SYSCLK

mmT 1------..

mNV I__---a.

· r

P'

RlWI-----·

suP/US 1------..

rom< I__---a.

..
P'

· r

· P'

MPGMI-MPGMo t---/--.

~I------"
l5ID\ 1--__ --..

2, ..
I r

· r

..
r

~I__--_a. · r

2, ..
I

· r

..
_Joo,.P'

DREOTI-DREOTo t---f---'''

MSERR t-------..
rmro 1--__ _.

;j

:::
3

..-

r

.. ..-

STAT :z-ST ATo ...-_-'---,""",

IREOTI-----·

fiiA"1__--_a.

nmro 1--__ _.

32)
V

IB

1-14

Am29000

ORDERING INFORMATION
Standard Products

AMO standard products are available in several packages and operating ranges. The ordering number
(Valid Combination) is formed by a combination of: a. Device Number

b. Speed Option (If applicable)
c. Package Type
d. Temperature Range
e. Optional Processing

AM29000 -25 G c

L= e. OPTIONAL PROCESSING

.
.

.

.

Blank = Standard Processing
B = Burn-in

d. TEMPERATURE RANGE
C = Commercial (Tc= 0 to +85°C)

'------------ c. PACKAGE TYPE
G = 169-Lead Pin Grid Array without

Heat Sink (CGX169)

'--------------- b. SPEED OPTION
-33= 33 MHz

'---- a. DEVICE NUMBER/DESCRIPTION
Am29000
Streamlined Instruction Processor

Valid Combinations

AM29000-33
AM29000-2S GC,GCB
AM29000-20
AM29000-16

-25= 25 MHz
-20 = 20 MHz
-16= 16MHz

Valid Combinations
Valid Combinations list configurations planned to
be supported in volume for this device. Consult
the local AMO sales office to confirm availability of
specific valid combinations, to check on newly
released combinations, and to obtain additional
data on AMO's standard military grade products.

1·15

29K Family CMOS Devices

ORDERING INFORMATION
APL Products

1·16

AMO products for Aerospace and Oefense applications are available in several packages and operating
ranges. APL (Approved Products List) products are fully compliant with MIL-STO-883C requirements. The
ordering number (Valid Combination) is formed by a combination of: a. Device Number

b. Speed Option (If applicable)
c. Device Class
d. Package Type
e. Lead Finish

AM29000 -20 IB

T
Z T'-____ e. LEAD FINISH

C = Gold

1......-______ d. PACKAGE TYPE

Z = 169-Lead Pin Grid Array without Heatsink
(CGX169)

Y = 164-Lead Ceramic Quad Flat Pack without
Heatsink

1..-__________ c. DEVICE CLASS

IB = Class B

1..--------------b.SPEEDOPTION
-20= 20 MHz

'--- a. DEVICE NUMBER/DESCRIPTION
Am29000
Streamlined Instruction Processor

Valid Combinations

AM29000-20

AM29000-16
/BZC

AM29000-20
/BYC

AM29000-16

-16= 16MHz

Valid Combinations

Valid Combinations list configurations planned to
be supported in volume for this device. Consult
the local AMO sales office to confirm availability of
specific valid combinations, to check on newly
released combinations, and to obtain additional
data on AMO's standard military grade products.

Group A Tests
Group A tests consist of Subgroups

1,2,3,7,8,9,10,11.

PIN DESCRIPTION
Although certain outputs are described as being three­
state or bidirectional outputs, all outputs (except
MSERR) may be placed in a high-impedance state by
the Test mode. The three-state and bidirectional termi­
nology in this section is for those outputs (except
SY8CLK) that are disabled when the processor grants
the channel to another master.

A31-Ao
Address Bus (three-state output, synchronous)

The Address Bus transfers the byte address for all ac­
cesses except burst-mode accesses. For burst-mode
accesses, it transfers the address for the first access in
the sequence.

BGRT
Bus Grant (output, synchronous)

This output signals to an external master that the
processor is relinquishing control of the channel in
response to BREO.

BINV
Bus Invalid (output, synchronous)

This output indicates that the address bus and related
controls are invalid. It defines an· idle· cycle for the
channel.

BREQ
Bus Request (input, synchronous)

This input allows other masters to arbitrate for control of
the processor channel.

CDA
Coprocessor Data Accept (Input, synchronous)

This signal allows the coprocessor to indicate the ac­
ceptance of operands or operation codes. For transfers
to the coprocessor, the processor does not expect a
OROY response; an active level on COA performs the
function normally performed byOROY. COA may be
active whenever the coprocessor is able to accept
transfers.

CNTL1-CNTLo
CPU Control (Input, asynchronous)

These inputs control the processor mode:

CNTL1 CNTLo Mode

0 0 Load Test
Instruction

0 1 Step
1 0 Halt
1 1 Normal

0 31-00

Data Bus (bidirectional, synchronous)

The Data Bus transfers data to and from the processor
for load and store operations.

Am29000

DBACK
Data Burst Acknowledge (Input, synchronous)

This input is activewhenever a burst-mode data access
has been established. It may be active even though no
data are currently being accessed.

DBREQ
Data Burst Request (three-state output,
synchronous)

This signal is used to establish a burst-mode data ac­
cess and to reguest data transfers during a burst-mode

. data access. OBREO may be active even though the ad­
dress bus is being used for an instruction access. This
Signal becomes valid late in the cycle, with respect to
OREO.

DERR
Data Error (Input, synchronous)

This input indicates that an error occurred during the
current data access. For a load, the processor ignores
the content of the data bus. For a store, the access is ter­
minated. In either case, a Data Access Exception trap
occurs. The processor ignores this Signal if there is no
pending data access.

DRDY
Data Ready (Input, synchronous)

For loads, this input indicates that valid data is on the
data bus. For stores, it indicates that the access is com­
plete, and that data need no longer be driven on the data
bus. The processor ignores this signal if there is no
pending data access.

DREQ
Data Request (three-state output, synchronous)

This Signal requests a data access. When it is active, the
address for the access appears on the address bus.

DREQT1-DREQTo
Data Request Type
(three-state output, synchronous)

These signals specify the address space of a data ac­
cess, as follows (the value "x" is a "don't care"):

OREQT1 OREQTo Meaning

0 0 Instruction/data
memory access

0 Input/output
access

x Coprocessor
transfer

An interruptltrap vector request is indicated as a data­
memory read. If required, the system can identify
the vector fetch by the 8T AT 2-8T ATa outputs.
DREOT,-DREOTa are valid only when DREO is active.

1-17

29K Family CMOS Devices

b1-lo
Instruction Bus (Input, synchronous)

The Instruction Bus transfers instructions to the
processor.

IBACK
Instruction Burst Acknowledge
(Input, synchronous)

This input is active whenever a burst-mode instruction
access has been established. It may be active even
though no instructions are currently being accessed.

IBREQ
Instruction Burst Request (three-state
output, synchronous)

This Signal is used to establish a burst-mode instruction
access and to request instruction transfers during a
burst-mode instruction access. IBREQ may be active
even though the address bus is being used for a data ac­
cess. This signal becomes valid late in the cycle with re­
spect to IREO.

IERR
Instruction Error (Input, synchronous)

This input indicates that an error occurred during the
current instruction access. The processor ignores the
content of the instruction bus, and an Instruction Access
Exception trap occurs if the processor attempts to exe­
cute the invalid instruction. The processor ignores this
signal if there is no pending instruction access.

INCLK
Input Clock (Input)

When the processor generates the clock forthe system,
this is an oscillator input to the processor at twice the
processor's operating frequency. In systems where the
clock is not generated by the processor, this signal must
be tied High or Low, except in certain master/slave con­
figurations.

INTRr-INTRo
Interrupt Request (Input, asynchronous)

These inputs generate prioritized interrupt requests.
The interrupt caused by INTRa has the highest priority,
and the interrupt caused by INTIb has the lowest prior­
ity. The interrupt requests are masked in prioritized ore,
der by the Interrupt Mask field in the Current Processor
Status Register.

1-18

IRDY
Instruction Ready (Input, synchronous)

This input indicates that a valid instruction is on the in­
struction bus. The processor ignores this signal if there
is no pending instruction access.

IREQ
Instruction Request
(three-state output, synchronous)

This Signal requests an instruction access. When it is
active, the address for the access appears on the ad­
dress bus.

IREQT
Instruction Request Type
(three-state output, synchronous)

This signal specifies the address space of an instruction
request when IREO is active:

,IREQT

o
1

LOCK

Meaning

Instruction/data memory access
Instruction read-only memory
access

Lock (three-state output, synchronous)

This output allows the' implementation of various chan­
nel and device interlocks. It may be active only for the
duration of an access, or active for an extended period
of time under control of the Lock bit in the Current
Processor Status.

MPGM1-MPGMo
MMU Programmable
(three-state output, synchronous)

These outputs reflect the value of two PGM bits in the
Translation Look-Aside Buffer entry associated with the
access. If no address translation is performed, these
signals are both Low.

MSERR
Master/Slave Error (output, synchronous)

This output shows the result of the comparison of
processor outputs with the signals provided internally to
the off-chip drivers. If there is a difference for any en­
abled driver, this line is asserted.

o PTz-OPTo
Option Control
(three-state output, synchronous)
These outputs reflect the value of bits 18-16 of the load
or store instruction that begins an access. Bit 18 of the
instruction is reflected on OPT2, bit 17 on OPT1, and bit
16 on OPTo.

The standard definitions of these signals (based on
DREOT) are as follows (the value "x" is a "don't care"):

DREQT1 DREQTo OPT2 OPT1 OPTo Meaning

0 x 0 0 0 Word-
length
access

0 x 0 0 Byte
access

0 x 0 0 Half-word
access

0 0 0 0 Instruction
ROM
access
(as data)

0 0 0 Cache
control

0 0 0 ADAPT29K
accesses

-all others- Reserved

During an interrupt/trap vector fetch, the OPT2-0PTo
signals indicate a word-length access (000). Also, the
system should return an entire aligned word for a read,
regardless of the indicated data length.

The Am29000 does not explicitly prevent a store to the
instruction ROM. OPT:rOPTo are valid only when
DREO is active.

PDA
Plpellned Data Access
(three-state output, synchronous)
If DREO is not active, this output indicates that a data ac­
cess is pipelined with another in-progress data access.
The indicated access cannot be completed until the first
access is complete. The completion of the first access is
signaled by the assertion of DREO.

PEN
Pipeline Enable (Input, synchronous)
This signal allows devices that can support pipelined ac­
cesses (i.e., that have input latches for the address and
required controls) to signal that a second access may
begin while the first is being completed.

PIA
Pipe lined Instruction Access
(three-state output, synchronous)
If IREO is not active, this output indicates that an instruc­
tion access is pipelined with another in-progress instruc­
tion access. The indicated access cannot be completed

Am29000
until the first access is complete. The comJ)letion of the
first access is signaled by the assertion of IREO.

RIW
Read/Wrlte (three-state output, synchronous)
This signal indicates whether data is being transferred
from the processor to the system, or from the system to
the processor. RiWis valid only when the address bus is
valid. R!Wwill be High when IREO is active.

RESET
Reset (Input, asynchronous)
This input places the processor in the Reset mode.

STATz-STATo
CPU Status (output, synchronous)
These outputs indicate the state of the processor's exe­
cution stage on the previous cycle. They are encoded
as follows:

STAT2 STAT1 STATo Condition

0 0 0 Halt or Step Modes
0 0 1 Pipeline Hold Mode
0 1 0 Load Test Instruc-

tion Mode,
Halt/Freeze

0 1 1 Wait Mode
1 0 0 Interrupt Return
1 0 1 Taking Interrupt or

Trap
0 Non-sequential

Instruction Fetch
Executing Mode

SUP/US
Supervisor/User Mode
(three-state output, synchronous)
This output indicates the program mode for an access.

The processor does not relinquish the channel (in re­
sponse to BREO) when LOCK is active.

SYSCLK
System Clock (bidirectional)
This is either a clock output with a frequency that is half
that of INCLK, or an input from an external clock genera­
tor at the processor's operating frequency.

TEST
Test Mode (Input, asynchronous)

When this input is active, the processor is in Test mode.
All outputs and bidirectional lines, except MSERR, are
forced to the state.

TRAP1- TRAPo
Trap Request (input, asynchronous)
These inputs generate prioritized trap requests. The
trap caused by TRAPo has the highest priority. These

1-19

29K Family CMOS Devices

trap requests are disabled by the DA bit of the Current
Processor Status Register.

WARN
Warn (Input, asynchronous, edge-sensitive)
A high-to-Iow transition on this input causes a non­
maskable WARN trap to occur. This trap bypasses the
normal trap vector fetch sequence, and is useful in situ­
ations where the vector fetch may not work (e.g., when
data memory is faulty).

The following pins are not signal pins, but are named in
Am29000 documentation because of their special role
in the processor and system.

PWRCLK
Power Supply for SYSCLK Driver
This pin is a power supply for the SYSCLK output driver.
It isolates the SYSCLK driver, and is used to determine

1-20

whether or not the Am29000 generates the clock for the
system. If power (+5 volts) is applied to this pin, the
Am29000 generates a clock on the SYSCLK output. If
this pin is grounded, the Am29000 accepts a clock gen­
erated by the systemon the SYSCLK input.

PIN169
Alignment pin

In the PGA package, this pin is used to indicate proper
pin-alignment of the Am29000 and is used by the
ADAPT29K to communicate its presence to the system.
This pin does not exist on the Am29000 in CQFP
package.

FUNCTIONAL DESCRIPTION
Product Overview
The Am29000 contains a high-function execution unit, a
large register file (192 locations), a Branch Target
Cache (32 4-bit instruction branch targets), a memory
management unit (64 entries), and a high-bandwidth,
pipe lined external channel with separate instruction and
data buses. The flexible register file may be used as a
cache for run-time variables during program execution,
or as a collection of register banks allocated to separate
tasks in multitasking applications.

The Am29000 provides a significant margin of per­
formance over other processors in its class, since the
majority of processor features were defined with the
maximum achievable performance in mind. This section
describes the features of the Am29000 from the point of
view of system performance.

Cycle Time
The processor operates at a frequency of 33 MHz. The
processor cycle time is a single, 30-ns clock period. The
processor interface drivers can drive 80-pF loads at this
frequency (for greater loads see Capacitive Output
Delay table).

The Am29000 architecture and system interfaces are
designed so that the processor cycle time can decrease
with technology improvements.

Four-Stage Pipeline
The Am29000 utilizes a four-stage pipeline, allowing it
to execute one instruction every clock cycle. The pro­
cessor can complete an instruction on every cycle, even
though four cycles are required from the beginning of an
instruction to its completion.

At a 33-MHz operating frequency, the maximum instruc­
tion execution rate is 33 million instructions per second
(MIPS). The Am29000 pipeline is designed so that the
Am29000 can operate at the maximum instruction
execution rate a significant portion of the time.

Pipeline interlocks are implemented by processor hard­
ware. Except fora few special cases, it is not necessary
to rearrange programs to avoid pipeline dependencies.

System Interface
The Am29000 accesses external instructions and data
using three non-multiplexed buses. These buses are re­
ferred to collectively as the channel. The channel proto­
col minimizes the logic chains involved in a transfer, and
provides a maximum transfer rate of 264 Mb/s.

Separate Address, Instruction, and Data Buses
The Am29000 incorporates two 32-bit buses for instruc­
tion and data transfers, and a third address bus that is
shared between instruction and data accesses. This
bus structure allows simultaneous instruction and data
transfers, even though the address bus is shared. The

Am29000

channel achieves the performance of four separate
32-bit buses at a much-reduced pin count.

Plpellned Addresses
The Am29000 address bus is pipe lined so that it can be
released before an instruction or data transfer is com­
pleted. This allows a subsequent access to begin before
the first has been completed, and allows the processor
to have two accesses in progress simultaneously.

Support of Burst Devices and Memories
Burst-mode accesses provide high transfer rates for
instructions and data at sequential addresses. For such
accesses, the address of the first instruction or datum
is sent, and subsequent requests for instructions or data
at sequential addresses do not require additional
address transfers. These instructions or data are trans­
ferred until either party involved in the transfer termi­
nates the access.

Burst-mode accesses can occur at the rate of one ac­
cess per cycle after the first address has been pro­
cessed. At 33 MHz, the maximum achievable transfer
bandwidth for either instructions or data is 132 Mb/s.

Burst-mode accesses may occur to inpuVoutput de­
vices if the system design permits.

Interface to Fast Devices and Memories
The processor can be interfaced to devices and memo­
ries that complete accesses within one cycle. The chan­
nel protocol takes maximum advantage of such devices
and memories by allowing data to be returned to the
processor during the cycle in which the address is trans­
mitted. This allows a full range of memory-speed trade­
ofts to be made within a particular system.

Register File
An on-Chip Register File containing 192 general­
purpose registers allows most instruction operands to
be fetched without the delay of an external access. The
Register File incorporates several features that aid the
retention of data required by an executing program.
Because of the number of general-purpose registers,
the frequency of external references for the Am29000 is
significantly lower than the frequency of references in
processors having only 16 or 32 registers.

Triple-port access to the Register File allows two source
operands to be fetched in one cycle while a previously
computed result is written. Three 32-bit internal buses
prevent contention in the routing of operands. All oper­
and fetches and result write-backs for instruction execu­
tion can be performed in a single cycle.

The registers allow efficient procedure linkage by cach­
ing a portion of a compiler's run-time stack. On the aver­
age, procedure calls and returns can be executed 5 to
10 times faster (on a cycle-by-cycle basis) than in pro­
cessors that require the implementation of a run-time

1·21

29K Family CMOS Devices

stack in external memory (with the attendant loading
and storing of registers on procedure call and return).

The registers can contain variables, constants, ad­
dresses, and operating-system values. In multitasking
applications, they can be used to hold the processor
status and variables for as many as eight differenttasks.
A register-banking option allows the Register File to be
divided into segments, which can be individually pro­
tected. In this configuration, a task switch can occur in
as few as 17 cycles.

Instruction Execution
The Am29000 uses an Arithmetic/Logic Unit, a Field
Shift Unit, and a Prioritizer to execute most instructions.
Each of these is organized to operate on 32-bit oper­
ands and provide a 32-bit result. All operations are per­
formed in a single cycle.

Instruction operations are overlapped with operand
fetch and result write-back to the Register File. Pipeline
forwarding logic detects pipeline dependencies and
routes data as required, avoiding delays that might arise
from these dependenCies.

Branch Target Cache

In general, the Am29000 meets its instruction
bandwidth requirements via instruction prefetching.
However, instruction prefetching is ineffective when a
branch occurs. The Am29000 therefore incorporates an
on-Chip Branch Target Cache to supply instructions for a
branch-if this branch has been taken previously­
while a new prefetch stream is established.

If branch-target instructions are in the Branch Target
Cache, branches execute in a Single cycle. The Branch
Target Cache in the Am29000 has an average hit rate of
60%. In other words, it eliminates the branch latency for
60% of all successful branches on the average.

Branching
Branch conditions in the Am29000 are based on
Boolean data contained in general-purpose registers
rather than on arithmetic condition codes. Using a con­
dition-code register for the purpose of branching­
which is common in other processors-inhibits certain
compiler optimizations because the condition-code reg­
ister is modified by many different instructions. It is diffi­
cult for an optimizing compiler to schedule this shared
use. By treating branch conditions as any other instruc­
tion operand, the Am29000 avoids this problem.

The Am29000 executes branches in a single cycle for
those cases where the target of the branch is in the
Branch Target Cache. The single-cycle branch is un­
usual for a pipelined processor, and is due to processor
hardware that allows much of the branch instruction op­
eration to be performed early in the execution of the
branch. Single-cycle branching has a dramatic effect on
performance, since successful branches typically repre­
sent 15% to 25% of a processor's instruction mix.

1-22

The techniques used to achieve single-cycle branching
also minimize the execution time of branches in those
cases where the target is not in the Branch Target
Cache. To keep the pipeline operating at the maximum
rate, the instruction following the branch, referred to as
the delay instruction, is executed regardless of the out­
come of the branch. An optimizing compiler can define a
useful instruction for the delay instruction in approxi­
mately 90% of branch instructions, thereby increasing
the performance of branches.

Loads and Stores
The performance degradation of load and store opera­
tions is minimized in the Am29000 by overlapping them
with instruction execution, by taking advantage of
pipelining, and by organizing the flow of external data
onto the processor so that the impact of external ac­
cesses is minimized.

Overlapped Loads a~d Stores
In the Am29000, a load or store is performed concur­
rently with execution of instructions that do not have de­
pendencies on the load or store operation. An optimiz­
ing compiler can schedule loads and stores in the in­
struction sequence so that, in most cases, data ac­
cesses are overlapped with instruction execution.

Overlapped load and store operations can achieve up to
a 30% improvement in performance when data memory
has a two-cycle access time. Processor hardware de­
tects dependencies while overlapped loads and stores
are being performed, so dependencies have no soft­
ware implications;

The Am29000 exception restart mechanism automati­
cally saves information required to· restart any load
or store until the operation is successfully completed.
Thus, it allows the overlapped execution of loads and
stores while properly handling address-translation
exceptions.

The Am29000 data-floW organization avoids the one­
cycle penalty that would result from the contention be­
tween load data and the results of overlapped instruc­
tion execution. Load data is buffered in a latch while
awaiting an opportunity to be written into the registerfile.
This opportunity is guaranteed to arise before the next
load is executed. While the data is buffered in this latch,
it may be used as an instruction operand in place of the
destination register for the load.

Load Multiple and Store Multiple
Load Multiple and Store Multiple instructions allow the
transfer of the contents of multiple registers to or from
external memories or devices. This transfer can occur at
a rate of one register content per cycle.

The advantage of load Multiple and Store Multiple is
best seen in task switching, register-file saving and
restoring, and in block data moves. In many systems,

such operations require a significant percentage of
execution time.

The Load Multiple and Store Multiple sequences are in­
terruptible so that they do not affect interrupt latency.

Forwarding of Load Data
Data that are sent to the processor at the completion of a
load are forwarded directly to the appropriate execution
unit if the data are required immediately by an instruc­
tion. This avoids the common one-cycle delay from bus
transfer to use of data, and reduces the access latency
of external data by one cycle.

Memory Management

A 64-entry Translation Look-Aside Buffer (TLB) on the
Am29000 performs virtual-to-physical address trans­
lation, avoiding the cycle that would be required to trans­
fer the virtual address to an external TLB. A number of
enhancements improve the performance of address
translation:

1. Pipe lining-The operation of the TLB is pipe­
lined with other processor operations.

2. Early Address Translation-Address transla­
tions for load, store, and branch instructions oc­
cur during the cycle in which these instructions
are executed. This allows the physical address
to be transferred externally in the next cycle.

3. Task Identifiers-Task Identifiers allow TLB en­
tries to be matched to different processes so that
TLB invalidation is not required during task
switches.

4. Least-Recently Used Hardware-This hard­
ware allows immediate selection of a TLB set to
be replaced.

5. Software Reload-Software reload allows the
operating system to use a page-mapping
scheme that is best matched to its environment.
Paged-segmented, one-level page mapping,
two-level page mapping, or any other user-de­
fined page-mapping scheme can be supported.
Because Am29000 instructions execute at an
average rate of nearly one instruction per cycle,
software reload has a performance approaching
that of hardware TLB reload.

Interrupts and Traps

When the Am29000 takes an interrupt ortrap, it does not
automatically save its current state information. This
greatly improves the performance of temporary inter­
ruptions such as TLB reload, floating-point emulation, or
other simple operating-system calls that require no sav­
ing of state information.

Am29000

In cases where the processor state must be saved, the
saving and restoring of state information is under the
control of software. The methods and data structures
used to handle interrupts-and the amount of state
saved-may be tailored to the needs of a particular
system.

Interrupts and traps are dispatched through a 256-entry
Vector Area, which directs the processor to a routine to
handle a given interrupt or trap. The Vector Area may be
relocated in memory by the modification of a processor
register. There may be multiple Vector Areas in the sys­
tem, though only one is active at any given time.

The Vector Area is either a table of pointers to the inter­
rupt and trap handlers, or a segment of instruction mem­
ory (poSSibly read-only memory) containing the han­
dlers themselves. The choice between the two possible
Vector Area definitions is determined by the cosUper­
formance trade-offs made for a particular system.

If the Vector Area is a table of vectors in data memory, it
requires only 1 kb of memory. However, this structure
requires that the processor perform a vector fetch every
time an interrupt or trap is taken. The vector fetch re­
quires at least three cycles in addition to the number of
cycles required for the basic memory access.

If the Vector Area is a segment of instruction memory, it
requires a maximum of 64 kb of memory. The advan­
tage of this structure is that the processor begins the
execution of the interrupt or trap handler in the minimum
amount of time.

Floating-Point Arithmetic Unit

The Am29027 is a double-preCiSion, floating-point arith­
metic unit for the Am29000. It can provide an order-of­
magnitude performance increase over floating-point op­
erations performed in software. It performs both single­
precision and double-precision operations using IEEE
and other floating-point formats. The Am29027 also
supports 32- and 64-bit integer functions.

The Am29027 performs floating-point operations using
combinatorial-rather than sequential-logic; there­
fore, operations with the Am29027 require only five
Am29000 cycles. Floating-pOint operations may be
overlapped with other processor operations. Further­
more, the Am29027 incorporates pipeline registers
and eight operand registers. permitting very high
throughput for certain types of operations (such as array
computations).

The Am29027 attaches directly to the Am29000 using
the coprocessor interface. The Am29000 can transfer
two 32-bit quantities to the Am29027 in one cycle.

The Am29027 is described in detail in the Am29027
Arithmetic Accelerator Data Sheet (order# 09114) and
the Am29027 Handbook (order# 11852).

1-23

29K Family CMOS Devices

ARCHITECTURE HIGHLIGHTS
This section introduces the principle architectural ele­
ments, hardware features, and system interfaces of the
Am29000.

Architecture Overview
This section gives a brief description of the Am29000
from a programmer's point of view. It introduces the
processor's program modes, registers, and instructions.
An overview of the processor's data formats and han­
dling is given. This section also briefly describes inter­
rupts and traps, memory management, and the
coprocessor interface. Fina"y, the Timer Facility and
Trace Facility are introduced.

Program Modes
There are. two mutually exclusive modes of program
execution: the Supervisor mode and the User mode. In
the Supervisor mode, executing programs have access
to all processor resources. In the User mode, certain
processor resources may not be accessed; any at­
tempted access causes a trap.

Visible Registers
The Am29000 incorporates three classes of registers
that are accessed and manipulated by instructions:
general-purpose registers, special-purpose registers,
and Translation look-Aside Buffer (TlB) registers. (Re­
fer to the Register Description section for greater detail
of the register categories.)

General-Purpose Registers
The Am29000 has 192 general-purpose registers. With
a few exceptions, general-purpose registers are not
dedicated to any special use and are available for any
appropriate program use.

Most processor instructions are three-address instruc­
tions. An instruction specifies any three of the 192 regis­
ters for use in instruction execution. Normally, two of
these registers contain source operands for the instruc­
tion, and a third stores the result of the instruction.

The 192 registers are divided into 64 global and 128 lo­
cal registers. Global registers are addressed with abso­
lute register numbers, while local registers are ad­
dressed relative to an internal Stack Pointer.

For fast procedure calling, a portion of a compiler's run­
time stack can be mapped into the local registers. Stati­
cally allocated variables, temporary values, and operat­
ing-system parameters are kept in the global registers.

The Stack Pointerfor local registers is mapped to Global
Register 1. The Stack Pointer is a full 32-bit virtual ad­
dress for the top of the run-time stack.

The general-purpose registers may be accessed in­
directly, with the register number specified by the con­
tent of a special-purpose register (see below) rather
than by an instruction field. Three independent indirect

1-24

register numbers are contained in three separate spe­
cial-purpose registers. Indirect addressing is accom­
plished by specifying Global Register 0 as an instruction
operand or result register. An instruction can specify an
indirect register access for any or all of the source oper­
ands or result.

General-purpose registers may be partitioned into seg­
ments of 16 registers for the purpose of access protec­
tion. A register in a protected segment may be accessed
only by a program executing in the Supervisor mode. An
attempted access (either read or write) by a User-mode
program causes a trap to occur.

Special-Purpose Registers
The Am29000 contains 27 special-purpose registers.
These registers provide controls and data for certain
processor functions.

Special-purpose registers are accessed by data move­
ment only. Any special-purpose register can be written
with the contents of any general-purpose register, and
any general-purpose register can be written with the
contents of any special-purpose register. Operations
cannot be performed directly on the contents of special­
purpose registers.

Some special-purpose registers are protected, and can
be accessed only in the Supervisor mode. This restric­
tion applies to both read and write accesses. An attempt
by a User-mode program to access a protected register
causes a trap to occur.

The protected special-purpose registers are defined as
follows:

1. Vector Area Base Address-Defines the begin­
ning of the interrupVtrap Vector Area.

2. Old Processor Status-Receives a copy of the
Current Processor Status (see below) when an
interrupt ortrap is taken; It is later used to restore
the Current Processor Status on an interrupt
return.

3. Current Processor Status-Contains control in­
formation associated with the currently execut­
ing process, such as interrupt disables and the
Supervisor Mode bit.

4. Configuration-Contains control informa-
tion that normally varies only from system to
system, and usually is set only during system
initialization.

5. Channel Address-Contains the address asso­
ciated with an external access, and retains the
address if the access is not completed success­
fully. The Channel Address Register, in con­
junction with the Channel Data and Channel
Control registers described below, allows the re­
starting of unsuccessful external accesses. This

might be necessary for an access encountering
a page fault in a demand-paged environment,
for example.

6. Channel Data-Contains data associated with a
store operation, and retains the data if the opera­
tion is not completed successfully.

7. Channel Control-Contains control information
associated with a channel operation, and retains
this information if the operation is not completed
successfully.

8. Register Bank Protect-Restricts access of
user-mode programs to specified groups of 16
registers. This facilitates register banking for
multitasking applications, and protects operat­
ing system parameters kept in the global regis­
ters from corruption by user-mode programs.

9. Timer Counter-Supports real-time control and
other timing-related functions.

10. Timer Reload-Maintains synchronization of
the Timer Counter. It includes control bits forthe
Timer Facility.

11. Program Counter o-Contains the address of
the instruction being decoded when an interrupt
or trap is taken. The processor restarts this in­
struction upon interrupt return.

12. Program Counter 1-Contains the address of
the instruction being executed when an interrupt
or trap is taken. The processor restarts this in­
struction upon interrupt return.

13. Program Counter 2-Contains the address of
the instruction just completed when an interrupt
or trap is taken. This address is provided for in­
formation only, and does not participate in an in­
terrupt return.

14. MMU Configuration-Allows selection of vari­
ous memory-management options, such as
page size.

15. LRU Recommendation-Simplifiesthe reload of
entries in the Translation Look-Aside Buffer
(TLB) by providing information on the least
recently used entry of the TLB when a TLB miss
occurs.

The unprotected special-purpose registers are defined
as follows:

1. Indirect Pointer C-Allows the indirect access of
a general-purpose register.

2. Indirect Pointer A-Allows the indirect access of
a general-purpose register.

3. Indirect Pointer B-Allows the indirect access of
a general-purpose register.

Am29000

4. O-Provides additional operand bits for multiply
step, divide step, and divide operations.

5. ALU Status-Contains information about the
outcome of integer arithmetic and logical opera­
tions, and holds residual control for certain in­
struction operations.

6. Byte Pointer-Contains an index of a byte or
half-word within a word. This register is also ac­
cessible via the ALU Status Register.

7. Funnel Shift Count-Provides a bit offset for the
extraction of word-length fields from double­
word operands. This register is also accessible
via the ALU Status Register.

8. Load/Store Count Remaining-Maintains a
count of the number of loads and stores remain­
ing for Load Multiple and Store Multiple opera­
tions. The count is initialized to the total number
of loads or stores to be performed before the op­
eration is initiated. This register is also accessi­
ble via the Channel Control Register.

9. Floating-Point Environment-Controls the op­
eration of floating-point arithmetic, such as
rounding modes and exception reporting.

10. Integer Environment-Enables and disables tho
reporting of exceptions that occur during integer
multiply and divide operations.

11. Floating-Point Status-Contains information
about the outcome of floating-point operations.

12. Exception Opcode-Reports the operation code
of an instruction causing a trap. This register is
provided primarily for recovery from floating­
point exceptions, but is also set for other instruc­
tions that cause traps.

TLB RegIsters

Translation Look-Aside Buffer (TLB) entries in the
Am29000 Memory Management Unit are accessed via
128 TLB registers. A single TLB entry appears as two
TLB registers; TLB registers are thus paired according
to the corresponding TLB entry.

TLB registers are accessed by data movement only.
Any TLB register can be written with the contents of any
general-purpose register, and any general-purpose reg­
istercan be written with the contents of anyTLB register.
Operations cannot be performed directly on the
contents of TLB registers.

TLB registers can be accessed only in the Supervisor
mode. This restriction applies to both read and write ac­
cesses. An attempt by a User-mode program to access
a TLB register causes a trap to occur.

1-25

29K Family CMOS Devices

Instruction Set Overview
The three-address architecture of the Am29000 instruc­
tion set allows a compiler or assembly-language pro­
grammer to prevent the destruction of operands, and
aids register allocation and operand reuse. Instruction
operands may be contained in any 2 of the 192 general­
purpose registers, and instruction results may be stored
in any of the 192 general-purpose registers.

The compiler or assembly-language programmer has
complete freedom to allocate register usage. There is
no dedication of a particular register or register group to
a particular class of operations. The instruction set is de­
signed to minimize the number of side effects and
implicit operations of instructions.

Most Am29000 instructions can specify an 8-bit con­
stant as one of the source operands. Larger constants
are constructed using oneortwo additional instructions
and a general-purpose register. Relative branch instruc­
tions specify a 16-bit, signed, word offset. Absolute
branches specify a 16-bit word address.

The Am29000 instruction set contains 117 instructions.
These instructions are divided into nine classes:

1·26

1. Integer Arithmetic-Perform integer add, sub­
tract, multiply, and divide operations.

2. Compare-Perform arithmetic and logical com­
parisons. Some instructions in this class allow
the generation of a trap if the comparison condi­
tion is not met.

3. Logical-Perform a set of bit-wise Boolean op­
erations.

4. Shift-Perform arithmetic and logical shifts, and
allow the extraction of 32-bit words from 64-bit
double words.

5. Data Movement-Perform movement of data
fields between registers, and the movement
of data to and from external devices and
memories.

6. Constant-Allow the generation of large con­
stant values in registers.

7. Floating-Point-Included for floating-point arith­
metic, comparisons, and format conversions.
These instructions are not currently imple­
mented directly in processor hardware.

8. Branch-Perform program jumps and subrou­
tine calls.

9. Miscellaneous-Perform miscellaneous control
functions and operations not provided by other
classes.

The Am29000 executes all instructions in a single cycle,
except for interrupt returns, Load Multiple, and Store
Multiple.

Figure 1 shows a complete list of Am29000 instructions,
listed alphabetically by instruction mnemonic (refer to
the Instruction Set section for more details).

Am29000

Mnemonic Instruction Name

ADD Add
ADDC Add with Carry
ADDCS Add with Carry, Signed
ADDCU Add with Carry, Unsigned
ADDS Add, Signed
ADDU Add, Unsigned
AND AND Logical
ANDN AND-NOT Logical
ASEQ Assert Equal To
ASGE Assert Greater Than or Equal To
ASGEU Assert Greater Than or Equal To, Unsigned
ASGT Assert Greater Than
ASGTU Assert Greater Than, Unsigned
ASLE Assert Less Than or Equal To
ASLEU Assert Less Than or Equal To, Unsigned
ASLT Assert Less Than
ASLTU Assert Less Than, Unsigned
ASNEQ Assert Not Equal To
CALL Call Subroutine
CALLI Call Subroutine, Indirect
CLASS Classify Floating-Point Operand
CLZ Count Leading Zeros
CONST Constant
CONSTH Constant, High
CONSTN Constant, Negative
CONVERT Convert Data Format
CPBYTE Compare Bytes
CPEQ Compare Equal To
CPGE Compare Greater Than or Equal To
CPGEU Compare Greater Than or Equal To, Unsigned
CPGT Compare Greater Than
CPGTU Compare Greater Than, Unsigned
CPLE Compare Less Than or Equal To
CPLEU Compare Less Than or Equal To, Unsigned
CPLT Compare Less Than
CPLTU Compare Less Than, Unsigned
CPNEQ Compare Not Equal To
DADD Floating-Point Add, Double-Precision
DDIV Floating-Point Divide, Double-Precision
DEQ Floating-Point Equal To, Double-Precision
DGE Floating-Point Greater Than or Equal To, Double-Precision
DGT Floating-Point Greater Than, Double-Precision
DIV Divide Step
DIVO Divide Initialize
DIVIDE Integer Divide, Signed
DIVIDU Integer Divide, Unsigned
DIVL Divide Last Step
DIVREM Divide Remainder
DMUL Floating-Point Multiply, Double-Precision
DSUB Floating-Point Subtract, Double-Precision
EMULATE Trap to Software Emulation Routine
EX BYTE Extract Byte
EXHW Extract Half-Word
EXHWS Extract Half-Word, Sign-Extended
EXTRACT Extract Word, Bit-Aligned
FADD Floating-Point Add, Single-Precision
FDIV Floating-Point Divide, Single-Precision
FDMUL Floating-Point Multiply, Single-to-Double Precision
FEQ Floating-Point Equal To, Single-Precision
FGE Floating-Point Greater Than or Equal To, Single-Precision

Figure 1. Am29000 Instruction Set

1-27

29K Family CMOS Devices

Mnemonic Instruction Name

FGT Floating-Point Greater Than, Single-Precision
FMUL Floating-Point Multiply, Single-Precision
FSUB Floating-Point Subtract, Single-Precision
HALT Enter Halt Mode
IN BYTE Insert Byte
INHW Insert Half-Word
INV Invalidate
IRET Interrupt Return
IRETINV Interrupt Return and Invalidate
JMP Jump
JMPF Jump False
JMPFDEC Jump False and Decrement
JMPFI Jump False Indirect
JMPI Jump Indirect
JMPT Jump True
JMPTI Jump True Indirect
LOAD Load
LOADL Load and Lock
LOADM Load Multiple
LOADSET Load and Set
MFSR Move from Special Register
MFTLB Move from Translation Look-Aside Buffer Register
MTSR Move to Special Register
MTSRIM Move to Special Register Immediate
MTTLB Move to Translation Look-Aside Buffer Register
MUL Multiply Step
MULL Mu~iply Last Step
MULTIPLU Integer Multiply, Unsigned
MULTIPLY Integer Multiply, Signed
MULTM Integer Multiply Most-Significant Bits, Signed
MULTMU Integer Multiply Most-Significant Bits. Unsigned
MULU Multiply Step. Unsigned
NAND NAND Logical
NOR NOR Logical
OR OR Logical
SETIP Set Indirect Pointers
SLL Shift Left Logical
SORT Square Root
SRA Shift Right Arithmetic
SRL Shift Right Logical
STORE Store
STOREL Store and Lock
STOREM Store Multiple
SUB Subtract
SUBC Subtract with Carry
SUBCS Subtract with Carry. Signed
SUBCU Subtract with Carry. Unsigned
SUBR Subtract Reverse
SUBRC Subtract Reverse with Carry
SUBRCS Subtract Reverse with Carry. Signed
SUBRCU Subtract Reverse with Carry, Unsigned
SUBRS Subtract Reverse. Signed
SUBRU Subtract Reverse, Unsigned
SUBS Subtract Signed
SUBU Subtract Unsigned
XNOR Exclusive-NOR Logical
XOR Exclusive-OR Logical

Figure 1. Am29000 Instruction Set (continued)

1-28

Data Formats and Handling
This section introduces the data formats and data­
manipulation mechanisms that are supported by the
Am29000.

Data Types

A word is defined as 32 bits of data. A half-word consists
of 16 bits, and a double word consists of 64 bits. Bytes
are 8 bits in length. The Am29000 has direct support
for word-integer (signed and unsigned), word-logical,
word-Boolean, half-word integer (signed and unsigned),
and character (signed and unsigned) data.

Other data types, such as character strings, are sup­
ported with sequences of basic instructions and/or ex­
ternal hardware. Single- and double-precision floating­
point types are defined for the Am29000, but are not
supported directly by hardware.

The format for Boolean data used by the processor is
such that the Boolean values TRUE and FALSE are rep­
resented by 1 and 0, respectively, in the most-significant
bit of a word.

Figure 2 illustrates the numbering conventions for data
units contained in a word. Within a word, bits are num­
bered in increasing order from right to left, starting with
the number 0 forthe least-significant bit. Bytes and half­
words within a word are numbered in increasing order,
starting with the number O. However, bytes and half-

Am29000

words may be numbered right-to-Ieft or left-to-right, as
controlled by the Configuration Register.

Note that the numbering of bits within words is strictly for
notational convenience. In contrast, the numbering con­
ventions for bytes and half-words within words affect
processor operations.

External Data Accesses
External accesses move data between the processor
and external devices and memories. These accesses
occur only as a result of load and store instructions.

Load and store instructions move words of data to and
from general-purpose registers. Each load and store in­
struction moves a single word. There are load and store
instructions that support interlocking operations neces­
sary for multiprocessor exclUSion, synchronization, and
communication.

For the movement of multiple words, Load Multiple and
Store Multiple instructions move the contents of se­
quentia"y addressed external locations to or from se­
quentia"y numbered general-purpose registers. The
Load Multiple and Store Multiple allow the movement of
up to 192 words at a maximum rate of one word per
processor cycle. The multiple load and store sequences
may be interrupted, and restarted at the point of
interruption.

Bytes Within Words BO bit - 0

31 23 15 7 0

I
I I I I I I I II I I I I I I II I I I I I I II I I I I I I I

. Byte 0 . Byte 1 . Byte 2 . Byte 3 .

OR BObit-1

31 23 15 7 0

II I I I I I I II I I I I I I II I I I I I I II I I I I I I I
Byte 3 Byte 2 Byte 1 Byte 0

Half-Words Within Words BO bit - 0

31 23 15 7 0

II I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I
Half-Word 0 . Half-Word 1

QB BO bit -1

31 23 15 7 0

II I I I I I I I I I I I I I I II I I I I I I II I I I I I I I
Half-Word 1 Half-Word 0

Figure 2. Data-Unit Numbering Conventions

1-29

29K Family CMOS Devices

Load and store instructions provide no mechanism for
computing the address associated with the external
data access. All addresses are contained in a general­
purpose register at the beginning of the access, or are
given by an 8~bit instruction constant. Any address com­
putation must be performed explicitly before the load or
store instruction is executed. Since address computa­
tions are expressed directly, they are exposed for
compiler optimizations as any other computations are.

External data accesses are overlapped with instruction
execution. Processor performance is improved if in­
structions that follow loads do not immediately use ex­
ternally referenced data. In this manner, the time re­
quired to perform the external access is overlapped with
subsequent instruction execution. Because of hardware
interlocks, this concurrency has no effect on the logical
behavior of an executing program.

Addressing and Alignment
External instructions and data are contained in one of
four 32-bit address spaces:

1. Instruction/Data Memory
2. InpuVOutput
3. Coprocessor
4. Instruction Read-Only Memory (Instruction

ROM)

An address in the instruction/data memory address
space may be treated as virtual or physical, as deter­
mined by the Current Processor Status Register. Ad­
dress translation for data accesses is enabled sepa­
rately from address translation for instruction accesses.
A program in the Supervisor mode may temporarily dis­
able address translation for individual loads and stores;
this permits load-real and store-real operations.

Bits contained within load and store instructions distin­
guish between the instruction/data memory, input/out­
put, and coprocessor address spaces. Address transla­
tion also may determine whether an access is per­
formed in the instruction/data memory or the input/out­
put address space. The Current Processor Status regis­
ter determines whether instruction accesses are di­
rected to the instructiOn/data memory address space or
to the instruction ROM address space.

The Am29000 does not support data accesses directly
to the instruction ROM address space. However, this
capability is possible as a system option.

All addresses are interpreted as byte addresses, al­
though accesses are word-oriented. The number of a
byte within a word is given by the two least-significant
address bits. The number of a half-word within a word is
given by the next-to-Ieast-significant address bit.

Since only byte addressing is supported, it is possible
that an address for the access of a word or half-word is
not aligned to the desired word or half-word. For a word
access, an unaligned address has a 1 in either or both of
the two least-significant address bits. For a half-word
access, an unaligned address has a 1 in the least-sig­
nificant address bit. In many systems, address align-

1-30

ment can be ignored, with addresses truncated to ac­
cess the word or half-word of interest. However, as a
user option, the Am29000 creates a trap when a non­
aligned access is attempted. The trap allows software
emulation of nonaligned accesses.

Inthe Am29000, all instructions are 32 bits in length, and
are aligned on word-address boundaries.

Byte and Half-Word Accesses
The Am29000 supports the direct external access of
bytes and half-words as an option. If this option is en­
abled, the Am29000 selects a byte or half-word within a
word on a load, and aligns itto the low-order byte or half­
word of a register. On a store, the low-order byte or half­
word of a register is replicated in all byte or half-word po­
sitions, so that the external memory can easily write the
required byte or half-word in memory. This option re­
quires that the external memory system be able to write
individual bytes and half-words within words.

To avoid the memory-system complexity caused by
writing individual bytes and half-words, the Am29000
can perform byte and half-word accesses using soft­
ware alone. The Am29000 can set a byte-position
indicator in the ALU Status Register as an option for load
instructions, with the two least-Significant bits of the
address for the load. To load a byte or half-word, a word
load is first performed. This load sets the byte-position
indicator, and a subsequent instruction extracts the byte
or half-word of interest from the accessed word. To store
a byte or half-word, a load is also first performed; the
byte or half-word of interest is inserted into the accessed
word, and the resulting word then is stored. Even if
the Am29000 is configured to perform byte and
half-word accesses in hardware, this software-only
technique operates correctly; this allows software to be
upwardly compatible from simpler systems to more
complex systems.

Interrupts and Traps
Normal program flow may be preempted by an interrupt
or trap for which the processor is enabled. The effect on
the processor is identical for interrupts and traps; the
distinction is in the different mechanisms by which inter­
rupts and traps are enabled. It is intended that interrupts
be used for suspending current program execution and
causing another program to execute, while traps are
used to report errors and exceptional conditions.

The interrupt and trap mechanism supports high-speed,
temporary context switching and user-defined interrupt­
processing mechanisms.

Temporary Context Switching
The basic interruptltrap mechanism of the Am29000
supports temporary context switching. During the tem­
porary context switch, the interrupted context is held in
processor registers. The interrupt ortrap handler can re­
turn immediately to this context.

Temporary context switching is useful for instruction
emulation, floating-point operations, TLB reload rou-

tines, and so forth. Many of its features are similar to
microprogram execution; processor context does not
have to be saved, interrupts are disabled forthe duration
of the program, and all processor resources are acces­
sible, even if the context that was interrupted is in the
User mode. The associated routine may execute from
instruction/data memory or instruction ROM.

User-Defined Interrupt Processing

Since the basic interruptltrap mechanism for the
Am29000 keeps the interrupted context in the pro­
cessor, dynamically nested interrupts are not supported
directly. The context in the processor must be saved
before another interrupt or trap can be taken.

The interrupt or trap handler executing during a tempo­
rary context switch is not required to return to the in­
terrupted context. This routine optionally may save the
interrupted context, load a new one, and return to the
new context.

The implementation of the saving and restoring of con­
texts is completely user-defined. Thus, the context
save/restore mechanism used (e.g., interrupt stack,
program status word area, etc.) and the amount of con­
text saved may be tailored to the needs of the system.

Vector Area

Interrupt and trap dispatching occur through a
relocatable Vector Area, which accommodates as many
as 256 interrupt and trap handling routines. Entries into
the Vector Area are associated with various sources of
interrupts and traps; some are predefined while others
are user-defined.

The Vector Area is either a table of vectors in data mem­
ory where each vector points to the beginning of an in­
terrupt or trap handler, or it is a segment of instruction/
data memory (or instruction ROM) containing the actual
routines. The latter configuration for the Vector Area
yields better interrupt performance with the cost of addi­
tional memory.

Memory Management
The Am29000 incorporates a Memory Management
Unit (MMU) that accepts a 32-bit virtual byte address
and translates it to a 32-bit physical byte address in a
single cycle. The MMU, is not dedicated to any particular
address-translation architecture.

Address translation in the MMU is performed by a
64-entry Translation Look-Aside Buffer (TLB), an asso­
ciative table containing the most recently used address
translations for the processor. If the translation for a
given address cannot be performed by the TLB, a TLB
miss occurs and causes a trap that allows the required
translation to be placed into the TLB.

Processor hardware maintains information for each
TLB line indicating which entry was least recently used;
when a TLB miss occurs, this information is used to

Am29000
indicate the TLB entry to be replaced. Software is
responsible for searching system page tables and modi­
fying the indicated TLB entry as appropriate. This allows
the page tables to be defined according to the system
environment.

TLB entries are modified directly by processor instruc­
tions. A TLB entry consists of 64 bits and appears as two
word-length TLB registers, which may be inspected and
modified by instructions.

TLB entries are tagged with a Task Identifier field, which
allows the operating system to create a unique 32-bit vir­
tual address space for each of 256 processes. In addi­
tion, TLB entries provide support for memory protection
and user-defined control information.

Coprocessor Programming
The coprocessor interface for the Am29000 allows a
program to communicate with an off-chip coprocessor
for performing operations not supported by processor
hardware directly.

The coprocessor interface allows the program to trans­
fer operands and operation codes to the coprocessor,
and then perform other operations while the coproces­
sor operation is in progress. The results of the operation
are read from the coprocessor by a separate transfer.
The processor may transfer multiple operands to tho
coprocessor without retransferring operation codes or
reading intermediate results. As many as 64 bits of in­
formation can be transferred to the coprocessor in a
single cycle.

The Am29000 includes features that support the defini­
tion of the coprocessor as a system option. In this case,
coprocessor operations are emulated by software when
the coprocessor is not present in a system.

Timer Facility
The Timer Facility provides a counterfor implementing a
real-time clock or other software timing functions. This
facility comprises two special-purpose registers: the
Timer Counter Register, which decrements at a rate
equal to the processor operating frequency, and the
Timer Reload Register, which reinitializes the Timer
Counter Register when it decrements to O. The Timer
Facility optionally may create an interrupt when the
Timer Counter decrements to O.

Trace Facility
The Trace Facility allows a debug program to emulate
single-instruction stepping in a program under test. This
facility allows a trap to be generated after the execution
of any instruction in the program being tested.

Using the Trace Facility, the debug program can inspect
and modify the state of the program at every instruction
boundary. The Trace Facility is deSigned to work
properly in the presence of normal system interrupts
and traps.

1-31

29K Family CMOS Devices

FUNCTIONAL OPERATION
This section briefly describes the operation of Am29000
hardware. It introduces the processor pipeline and the
three major internal functional units: the Instruction
Fetch Unit, the Execution Unit, and the Memory Man­
agement Unit. Finally, the processor's operational
modes are described.

Four-Stage Pipeline
The Am29000 implements a four-stage pipeline for in­
struction execution. The four stages are: fetch, decode,
execute, and write-back. The pipeline is organized so
that the effective instruction execution rate is as high as
one instruction per cycle. Data forwarding and pipeline
interlocks are handled by processor hardware.

Fetch Stage

During the fetch stage, the Instruction Fetch Unit
determines the location of the next processor instruction
and issues the instruction to the decode stage. The in­
struction is fetched either from the Instruction Prefetch
Buffer, the Branch Target Cache, or an external
instruction memory.

Decode Stage

During the decode stage, the Execution Unit decodes
the instruction selected during the fetch stage and
fetches and!or assembles the required operands. It also
evaluates addresses for branches, loads, and stores.

Execute Stage

During the execute stage, the Execution Unit performs
the operation specified by the instruction. In the case of
branches, loads, and stores, the Memory Management
Unit performs address translation if required.

Write-Back Stage

During the write-back stage, the results of the operation
performed during the execute stage are stored. In the
case of branches, loads, and stores, the physical ad­
dress resulting from translation during the execute
stage is transmitted to an external device or memory.

Function Organization
Figure 3 shows the Am29000 internal data-flow organi­
zation. The following sections refer to the various com­
ponents on this data-flow diagram.

Instruction Fetch Unit

The Instruction Fetch Unit fetches instructions and sup­
plies instructions to other functional units. It incorpo­
rates the Instruction Prefetch Buffer, the Branch Target
Cache, and the Program Counter Unit. All components
of the Instruction Fetch Unit operate during the fetch
stage of the processor pipeline.

Instruction Pre fetch Buffer
Most instructions executed by the Am29000 are fetched
from external instruction/data memory. The processor

1·32

prefetches instructions so that they are requested at
least four cycles before they are required for execution.

Prefetched instructions are stored in a four-word In­
struction Prefetch Buffer while awaiting execution. An
instruction prefetch request occurs whenever there is a
free location in this buffer (if the processor is otherwise
enabled to fetch instructions). When a nonsequential in­
struction fetch occurs, prefetching is terminated, and
then restarted for the new instruction stream.

Instruction prefetching uncouples the instruction fetch
rate from the instruction access latency. For example,
an instruction may be transferred to the processor two
cycles after it is requested. However, as long as instruc­
tions are supplied to the processor at an average rate of
one instruction per cycle, this latency has no effect on
the instruction execution rate.

Branch Target Cache
The Am29000 incorporates a Branch Target Cache that
contains as many as 128 instructions. The Branch Tar­
get Cache is a two-way, set-associative cache contain­
ing the first four target instructions of a number of re­
cently taken branches. Each of the two sets in the
Branch Target Cache contains 64 instructions, and the
64 instructions are further divided into 16 blocks of 4 in­
structions each.

The purpose of the Branch Target Cache is to provide
instructions for the beginning of a· nonsequential in­
struction-fetch sequence. This keeps the instruction
pipeline full until the processor can establish a new in­
struction prefetch stream from the external instruction!
data memory.

The processor is organized so that branch instructions
can execute in a single cycle if the target instruction se­
quence is present in the Branch Target Cache.

Program Counter Unit
The Program Counter Unit creates and sequences
addresses of instructions as they are executed by the
processor.

Execution Unit

The Execution Unit executes instructions. It incorpo­
rates the Register File, the Address Unit, the Arithmetic!
Logic Unit, the Field Shift Unit, and the Prioritizer. The
Register File and Address Unit operate during the de­
code stage of the pipeline. The Arithmetic!Logic Unit,
Field Shift Unit, and Prioritizer operate during the exe:
cute stage of the pipeline. The Register File operates
during the write-back stage.

Register File
The general-purpose registers are implemented by a
192-location Register File. The Register File can per­
form two read accesses and one write access in a single
cycle. Normally, two read accesses are performed dur­
ing the decode-pipeline stage to fetch operands re-

Am29000

r--,
INSTRUCTION FETCH UNIT

I EXECUTION UNIT

Branch Targel
Cache

2x64x32

Instruction
Bus

TLBREGI

Translation Look·Aside
Buffer
and

Protection Logic
2x32x64

PHYSAD

Address
Bus

Dala
Bus

A

Register
File

192 x 32

B

Figure 3. Am29000 Data Flow

quired by the instruction being decoded. The write ac­
cess during the same cycle completes the write-back
stage of a previously executed instruction.

Addressing logic associated with the Register File dis­
tinguishes between the global and local general­
purpose registers, and it performs the Stack-Pointer ad­
dressing forthe local registers. Register File addressing
functions are performed during the decode stage.

Address Unit
The Address Unit evaluates addresses for branches,
loads, and stores. It also assembles instruction-immedi­
ate data and computes addresses for Load Multiple and
Store Multiple sequences.

Arithmetic/Logic Unit
The ALU performs all logical, compare, and arithmetic
operations(including multiply step and divide step).

Field Shift Unit
The Field Shift Unit performs N-bit shifts. The Field Shift
Unit also performs byte and half-word extract and insert
operations, and it extracts words from double words.

Prlorltlzer
The Prioritizer provides a count of the number of leading
o bits in a 32-bit word; this is useful for performing float­
ing-point normalization, for example. It can also
be used to implement prioritization in a multilevel
interrupt handler.

Memory Management Unit
The Memory Management Un~ (MMU) performs ad­
dress translation and memory-protection functions for
all branches, loads, and stores. The MMU operates dur-­
ing the execute stage of the pipeline, so the physical ad­
dress that it generates is available at the beginning of
the write-back stage.

All addresses for external accesses are physical ad­
dresses. MMU operation is pipelined with external ac­
cesses, so that an address translation can occur while a
previous access is being completed.

Address translation is not performed for the addresses
associated with instruction prefetching. Instead, these
addresses are generated by an instruction prefetch
pointer that is incremented by the processor. Address

1·33

29K Family CMOS Devices

translation is performed only at the beginning of the
prefetch sequence (as the result of a branch instruc­
tion), and when the prefetch pointer crosses a potential
virtual-page boundary.

Processor Modes
The Am29000 operates in several different modes to
accomplish various processor and system functions. All
modes except for Pipeline Hold (see below) are under
direct control of instructions and/or processor control
inputs. The Pipeline Hold mode normally is determined
by the relative timing between the processor and its
external system for certain types of operations. The
processor provides an external indication of its
operational mode.

Executing
When the processor is in the Executing mode, it fetches
and executes instructions as described in this manual.
External accesses occur as required.

Walt
When the processor is in the Wait mode, it does not exe­
cute instructions and it performs no external accesses.
The Wait mode is controlled by the Current Processor
Status Register. The processor leaves this mode when
an interrupt or trap for which it is enabled occurs, or
when a reset occurs.

Pipeline Hold
Under certain conditions, processor pipe lining might
cause nonsequential instruction execution ortiming-de­
pendent results of execution. For example, the proces­
sor might attempt to execute an instruction that has not
been fetched from instruction/data memory.

For such cases, pipeline-interlock hardware detects the
anomalous condition and suspends processor execu­
tion until execution can proceed properly. While execu­
tion is suspended by the interlock hardware, the proces­
sor is in the Pipeline Hold mode. The processor re­
sumes execution when the pipeline-interlock hardware
determines that it is correct to do so.

Halt
The Halt mode is provided so that the processor may be
placed under the control of the ADAPT29K or other
hardware-development system for the purposes of
hardware and software debugging. The processor en­
ters the Halt mode as the result of instruction execution,
or as the result of external controls. In the Halt mode, the
processor neither fetches nor executes instructions.

Step
The Step mode allows the ADAPT29K or other hard­
ware-development system to step through processor
pipeline operation on a stage-by-stage basis. The Step
mode is nearly identical to the Halt mode, except that it
enables the processor to enter the Executing mode
while the pipeline advances by one stage.

1-34

Load Test Instruction
The Load Test Instruction mode permits the ADAPT29K
or other hardware-development system to access data
contained in the processor or system. This is accom­
plished by allowing the ADAPT29K to supply the pro­
cessorwith instructions, instead of having the processor
fetch instructions from instruction/data memory. The
Load Test Instruction mode is defined so that, once the
processor has completed the execution of instructions
provided by the ADAPT29K, it may resume the execu­
tion of its normal instruction sequence.

Test
The Test mode facilitates testing of hardware associ­
ated with the processor by disabling processor outputs
so that they may be driven directly by test hardware. The
Test mode also allows the addition of a second proces­
sor to a system to monitor the outputs of the first and to
signal detected errors.

Reset
The Reset mode provides initialization of certain pro­
cessor registers and control state. This is used for
power-on reset, for eliminating unrecoverable error con­
ditions, and for supporting certain hardware debugging
functions.

System Interface
This section briefly describes the features of the
Am29000 that allow it to be connected to other system
components.

The two major interfaces of the Am29000, introduced in
this section, are the channel and the Test/Development
interfaces. The other topics briefly described here are
clock generation, master/slave checking, and coproces­
sor attachment.

Channel
The Am29000 channel consists of the following 32-bit
buses and related controls:

1. An Instruction Bus, which transfers instructions
into the processor

2. A Data Bus, which transfers data to and from the
processor

3. An Address Bus, which provides addresses for
both instruction and data accesses. The ad­
dress bus also is used to transfer data to a
coprocessor.

The channel performs accesses and data transfers to all
external devices and memories, including instruction/
data memories, instruction caches, instruction read­
only memories, data caches, input/output devices, bus
converters, and coprocessors.

The channel defines three· different access protocols:
simple, pipelined, and burst-mode. For simple
accesses, the Am29000 holds the address valid
throughout the entire access. This is appropriate for
high-speed devices that can complete an access in one
cycle, and for low-cost devices that are accessed in­
frequently (such as read-only memories containing
initialization routines). Pipelined and burst-mode
accesses provide high performance with other types of
devices and memories.

For pipelined accesses, the address transfer is uncou­
pled from the corresponding data or instruction transfer.
After transmitting an address for a request, the proces­
sor may transmit one more address before receiving the
reply to the first request. This allows address transfer
and decoding to be overlapped with another access.

On the other hand, burst-mode accesses eliminate the
address-transfer cycle completely. Burst-mode ac­
cesses are defined so that once an address is trans­
ferred for a given access, subsequent accesses to se­
quentially increasing addresses may occur without re­
transfer of the address. The burst may be terminated at
any time by either the processor or responding device.

The Am29000 determines whether an access is simple,
pipelined, or burst-mode on a transfer-by-transfer (Le.,
generally device-by-device) basis. However, an access
that begins as a simple access may be converted to a
pipe lined or burst-mode access at any time during the
transfer. This relaxes the timing constraints on the chan­
nel-protocol implementation, since addressed devices
do not have to respond immediately to a pipe lined or
burst-mode request.

Except for the shared address bus, the channel main­
tains a strict division between instruction and data
accesses. In the most common situation, the system
supplies the processor with instructions using burst­
mode accesses, with instruction addresses transmitted
to the system only when a branch occurs. Data ac­
cesses can occur simultaneously without interfering
with instruction transfer.

The Am29000 contains arbitration logic to support other
masters on the channel. A single external master can ar­
bitrate directly for the channel, while multiple masters
may arbitrate using a daisy chain or other method that
requires no additional arbitration logic. However, to in­
crease arbitration performance in a multiple-master
configuration, an external channel arbiter should be
used. This arbiter works in conjunction with the proces­
sor's arbitration logic.

Test/Development Interface

The Am29000 supports the attachment of the
ADAPT29K or other hardware-development system.
This attachment is made directly to the processor in the
system under development, without the removal of the
processor from the system. The Test/Development In­
terface makes it possible forthe hardware-development
system to gain control over the Am29000, and inspect

Am29000

and modify its internal state (e.g., general-purpose reg­
ister contents, TLB entries, etc.). In addition, the
Am29000 may be used to access other system devices
and memories on behalf of the hardware-development

. system.

The Test/Development Interface is made up of controls
and status signals provided on the Am29000, as well as
the instruction and data buses. The Halt, Step, Reset,
and Load Test Instruction modes allow the hardware­
development system to control the operation of the
Am29000. The hardware-development system may
supply the processor with instructions on the instruction
bus using the load test instruction mode. The internal
processor state can be inspected and modified via the
data bus.

Clocks

The Am29000 generates and distributes a system clock
at its operating frequency. This clock is specially de­
signed to reduce skews between the system clock and
the processor's internal clocks. The internal clock-gen­
eration circuitry requires a single-phase oscillator signal
at twice the processor operating frequency.

For systems in which processor-generated clocks are
not appropriate, the Am29000 also can accept a clock
from an external clock generator.

The processor decides between these two clocking
arrangements based on whether the power supply to
the clock-output driver (PWRCLK) is tied to +5 volts or to
Ground.

Master/Slave Operation

Each Am29000 output has associated logic that com­
pares the signal on the output with the signal that the
processor is providing internally to the output driver. The
processor signals situations where the output of any en­
abled driver does not agree with its input.

For a single processor, the output comparison detects
short circuits in output signals, but does not detect open
circuits. It is possible to connect a second processor in
parallel with the first, where the second processor has
its outputs disabled due to the Test mode. The second
processor detects open-circuit signals, as well as pro­
vides a check of the outputs of the first processor.

Coprocessor Attachment

A coprocessor for the Am29000 attaches directly to the
processor channel. However, this attachment has fea­
tures that are different from those of other channel de­
vices. The coprocessor interface is designed to support
a high operand transfer rate and to support the overlap
of coprocessor operations with other processor opera­
tions, including other external accesses.

The coprocessor is assigned a special address space
on the channel. This permits the transfer of operands
and other information on the address bus without inter­
fering with normal addressing functions. Since both the

1-35

29K Family CMOS Devices

address bus and data bus are used for data transfer, the
Am29000 can transfer 64 bits of information to the
coprocessor in one cycle.

Program Modes
All system-protection features of the Am29000 are
based on two mutually exclusive program modes: the
Supervisor mode and the User mode. Memory pro­
tection in the Memory Management Unit is also based
on the Supervisor and User modes (see Memory
Management section).

Supervisor Mode
The processor is in the Supervisor mode whenever the
Supervisor Mode (SM) bit of the Current Processor
Status Register (see Register Description section) is 1.
In this mode, executing programs have access to all
processor resources.

During the address cycle of a channel~quest, the
Supervisor mode is indicated by the SUP/US output be­
ing High.

User Mode
The processor is in the User mode whenever the SM bit
in the Current Processor Status Register is O. In this
mode, any of the following actions by an executing pro­
gram causes a Protection Violation trap to occur:

1-36

1. An attempted access of any TLB entry.

2. An attempted access of any general-purpose
register for which a bit in the Register Bank Pro­
tect Register is 1.

3. An attempted execution of a load or store in­
struction for which the PA bit is 1, or for which the
UA bit is 1. (The attempted execution of a trans­
lated load or store for which the AS bit is 1 also
causes a Protection Violation trap. However,
this trap occurs regardless of whether or not the
processor is in the User mode.)

4. An attempted execution of one of the following
instructions: Interrupt Return, Interrupt Return
and Invalidate, Invalidate, or Halt. However, a
hardware-development system such as the
ADAPT29K can disable protection checking for
the Halt instruction, so this instruction may be
used to implement instruction brea.kpoints in
User-mode programs.

5. An attempted access of one of the following reg­
isters: Vector Area Base Address, Old Proces­
sor Status, Current Processor Status, Configu­
ration, Channel Address, Channel Data, Chan­
nel Control, Register Bank Protect, Timer
Counter, Timer Reload, Program Counter 0,
Program Counter 1, Program Counter 2, MMU
Configuration, or LRU Recommendation.

6 .. An attempted execution of an assert or Emulate
instruction that specifies a vector number be­
tween 0 and 63, inclusive.

Devices and memories on the channel also can imple­
ment protection and generate traps based on the value
of the SM bit. During the address cycle of a channel re­
quest, the User mode is indicated by the SUP/US output
being Low.

REGISTER DESCRIPTION
The Am29000 has three classes of registers that are
accessible by instructions. These are general-purpose
registers, special-purpose registers, and Translation
Look-Aside Buffer (TLB) registers. Any operation avail­
able in the Am29000 can be performed on the general­
purpose registers, while special-purpose registers and
TLB registers are accessed only by explicit data move­
ment to or from general-purpose registers. Various pro­
tection mechanisms prevent the access of some of
these registers by User-mode programs.

General-Purpose Registers
The Am29000 incorporates 192 general-purpose regis­
ters. The organization of the general-purpose registers
is diagrammed in Figure 4.

General-purpose registers hold the following types of
operands for program use:

1. 32-bit data addresses
2. 32-bit signed or unsigned integers
3. 32-bit branch-target addresses
4. 32-bit logical bit strings
5. 8-bit signed or unsigned characters
6. 16-bit signed or unsigned integers
7. word-length Booleans
8. single-precision floating-point numbers
9. double-precision floating-point numbers (in two

register locations)

Because a large number of general-purpose registers
are provided, a large amount of frequently used data
can be kept on-chip, where access time is fastest.

Am29000 instructions can specify two general-purpose
registers for source operands, and one general-purpose
register for storing the instruction result. These registers
are specified by three 8-bit instruction fields containing
register numbers. A register may be specified directly by
the instruction, or indirectly by one of three special-pur­
pose registers.

Register Addressing

The general-purpose registers are partitioned into 64
global registers and 128 local registers, differentiated by
the most-significant bit of the register number. The dis­
tinction between global and local registers is the result of
register-addressing considerations.

The following terminology is used to describe the ad­
dressing of general-purpose registers:

1. Register number-this is a software-level num­
berfor a general-purpose register. For example,
this is the number contained in an instruction
field. Register numbers range from 0 to 255.

2. Global register number-this is a software-level
number for a global register. Global register
numbers range from 0 to 127.

Am29000

3. Local register number-this is a software-level
number for a local register. Local register num­
bers range from 0 to 127.

4. Absolute register number-this is a hardware­
level number used to select a general-purpose
register in the Register File. Absolute register
numbers range from 0 to 255.

Global Registers

When the most-significant bit of a register number is 0, a
global register is selected. The seven least-significant
bits of the register number give the global register num­
ber. For global registers, the absolute register number is
equivalent to the register number.

Global Registers 2 through 63 are unimplemented. An
attempt to access these registers yields unpredictable
results; however, they may be protected from User­
mode access by the Register Bank Protect Register.

The register numbers associated with Global Registers
o and 1 have special meaning. The number for Global
Register 0 specifies that an indirect pointer is to be used
as the source of the register number; there is an indirect
pointer for each of the instruction operand/result
registers. Global Register 1 contains the Stack Pointer,
which is used in the addressing of local registers as
explained below.

Local Register Stack Pointer

The Stack Pointer is a 32-bit register that may be an op­
erand of an instruction as any other general-purpose
register. However, a shadow copy of Global Register 1
is maintained by processor hardware to be used in local
register addressing. This shadow copy is set only with
the results of Arithmetic and Logical instructions. If the
Stack Pointer is set with the result of any other instruc­
tion class, local registers cannot be accessed predict­
ably until the Stack Pointer is set once again with an
Arithmetic or Logical instruction.

Local Registers

When the most-significant bit of a register number is 1, a
local register is selected. The seven least-significant
bits of the register number give the local-register num­
ber. For local registers, the absolute register number is
obtained by adding the local register number to bits 8-2
of the Stack Pointer and truncating the result to seven
bits; the most-significant bit of the original register num­
ber is unchanged (Le., it remains a 1).

The Stack Pointer addition applied to local register num­
bers provides a limited form of base-plus-offset ad­
dressing within the local registers. The Stack Pointer
contains the 32-bit base address. This assists run-time
storage management of variables for dynamically
nested procedures.

1·37

29K Family CMOS Devices

Absolute REG#

Global

Registers

Local

Registers

0

1

2 through 63

64

65

. 66

· · ·
126

127

128

129

130

131

132

· ·
·

254

255

General-Purpose Register

Indirect Pointer Access

Stack Pointer

not implemented

Global Register 64

Global Register 65

Global Register 66

· · ·
Global Register 126

Global Register 127

Local Register 125

Local Register 126

Local Register 127

Local Register 0

Local Register 1

· · ·
Local Register 123

Local Register 124

Figure 4. General-Purpose Register Organization

n
St ack

Poi nter

=1 31
ample) (ex

Register Banking

For the purpose of access restriction,. the general­
purpose registers are divided into register banks. Regis­
ter banks consist of 16 registers (except for Bank 0,
which contains Unimplemented Registers 2 through 15)

and are partitioned according to absolute register num­
bers, as shown in Figure 5.

1-38

The Register Bank Protect Register contains 16 protec­
tion bits, where each bit controls User-mode accesses

Am29000

Register Absolute- General-Purpose
Bank Protect
Register Bit

Register Numbers Registers

0 2 through 15 Bank 0
(unimplemented)

1 16 through 31 Bank 1
(unimplemented)

2 32 through 47 Bank 2
(unimplemented)

3 48 through 63 Bank 3
(unimplemented)

4 64 through 79 Bank 4

5 80 through 95 Bank 5

6 96 through 111 Bank 6

7 112 through 127 Bank 7

8 128 through 143 Bank 8

9 144 through 159 Bank 9

10 160 through 175 Bank 10

11 ·176 through 191 Bank 11

12 192 through 207 Bank 12

13 208 through 223 Bank 13

14 224 through 239 Bank 14

15 240 through 255 Bank 15

Figure 5. Register Bank Organization

(read or write) to a bank of registers. Bits 0-15 of the
Register Bank Protect Register protect Register Banks
o through 15, respectively.

When the processor is in Supervisor mode, the Register
Bank Protect Register has no effect on general-purpose
register accesses.

When a bit in the Register Bank Protect Register is 1 and
a register in the corresponding bank is specified as an
operand register or result register by a User-mode in­
struction, a Protection Violation trap occurs. Note that
protection is based on absolute register numbers; in the
case of local registers, Stack-Pointer addition is per­
formed before protection checking.

Indirect Accesses
Specification of Global Register 0 as an instruction-op­
erand register or result register causes an indirect ac­
cess to the general-purpose registers. In this case, the
absolute register number is provided by an indirect
pointer contained in a special-purpose register.

1-39

29K Family CMOS DevIces

Each of the three possible registers for instruction exe­
cution has an associated 8-bit indirect pointer. Indirect
register numbers can be selected independently for
each of the three operands. Since the indirect pointers
contain absolute register numbers, the number in an
indirect pointer is not added to the Stack Pointer when
local registers are selected.

The indirect pointers are set by the Move To Special
Register, Floating-Point, MULTIPLY, MUL TM, MUL TI­
PLU, MUL TMU, DIVIDE, DIVIDU, SETIP, and EMU­
LATE instructions.

For a Move To Special Register instruction, an indirect
pointer is set with bits 9-2 of the 32-bit source operand.
This provides consistency between the addressing of
words in general-purpose registers and the addressing
of words in external devices or memories. A modifica­
tion of an indirect pointer using a Move To Special Reg­
ister has a delayed effect on the addressing of general­
purpose registers.

Forthe remaining instructions, all three indirect pointers
are set, simultaneously, with the absolute register num­
bers derived from the register numbers specified by the
instruction. For any local registers selected by the in­
struction, the Stack-Pointer addition is applied to the
register numbers before the indirect pointers are set.

Register numbers stored into the indirect pointers are
checked for bank-protection violations-except when
an indirect pointer is set by a Move-To-Special-Register
instruction-at the time that the indirect pointers are set.

Special-Purpose Registers
The Am29000 contains 27 special-purpose registers.
The organization of the special-purpose registers is
shown in Figure 6.

Special-purpose registers provide controls and data for
certain processor operations. Some special-purpose
registers are updated dynamically by the processor, in­
dependent of software controls. Because of this, a read
of a special-purpose register following a write does not
necessarily get the data that was written.

Some special-purpose registers have fields that are re­
served for future processor implementations. When a
special-purpose register is read, a bit in a reserved field
is read as a O. An attempt to write a reserved bit with a 1
has no effect; however, this should be avoided because
of upward-compatibility considerations.

The special-purpose registers are accessed by explicit
data movement only. Instructions that move data to or
from a special-purpose register specify the special­
purpose register by an 8-bit field containing a special­
purpose register number. Register numbers are speci­
fied directly by instructions.

An attempted read of an unimplemented special-pur­
pose register yields an unpredictable value. An at­
tempted write of an unimplemented special-purpose

1-40

register has no effect; however, this should be avoided,
because of upward-compatibility considerations.

The special-purpose registers are partitioned into pro­
tected and unprotected registers. Special-purpose reg­
isters numbered 0-127 and 160-255 are protected
(note that not all of these are implemented). Special­
purpose registers numbered 128-159 are unprotected
(again, not all are implemented).

Protected special-purpose registers numbered 0-127
are accessible only by programs executing in the Super­
visor mode. An attempted read or write of a protected
special-purpose register by a User-mode program
causes a Protection Violation trap to occur. Protected
special-purpose registers numbered 160-255 are not
accessible by programs in either the User mode or the
Supervisor mode. These register numbers identify vir­
tual registers in the floating-point architecture.

The Floating-Point Environment Register, Integer Envi­
ronment Register, Floating-Point Status Register, and
Exception Opcode Register are not implemented in
processor hardware. These registers are implemented
via a virtual floating-point interface provided on the
Am29000.

Unprotected special-purpose registers are accessible
by programs executing in both the User and Supervisor
modes.

Vector Area Base Address (RegIster 0)

This protected special-purpose register (see Figure 7)
specifies the beginning address of the interruptltrap
Vector Area. The Vector Area is either a table of 256
vectors that points to interrupt and trap handling
routines, or a segment of 256 64-instruction blocks that
directly contains the interrupt and trap handling
routines.

The organization of the Vector Area is determined by the
Vector Fetch (VF) bit of the Configuration Register. If the
VF bit is 1 when an interrupt or trap is taken, the vector
number for the interrupt or trap (see Interrupts and
Traps section) replaces bits 9-2 of the value in the
Vector Area Base Address Register to generate the
physical address for a vector contained in instruction/
data memory.

If the VF bit is 0, the vector number replaces bits 15-8 of
the value in the Vector Area Base Address Register to
generate the physical address of the first instruction of
the interrupt ortrap handler. The instruction fetch forthis
instruction is directed either to instruction memory or in­
struction read-only memory, as determined by the ROM
Vector Area (RV) bit of the Configuration Register.

BIts 31-16: Vector Area Base (VAB)-The VAB field
gives the beginning address of the Vector Area. This ad­
dress is constrained to begin on a 64-kb address­
boundary in instruction data memory or instruction read­
only memory.

Register Number

o

2

3

4

5

6

7

8

9

10

11

12

13

14

128

129

130

131

132

133

134

135

160

161

162

164

Protected Registers

Vector Area Base Address

Old Processor Status

Current Processor Status

Configuration

Channel Address

Channel Data

Channel Control

Register Bank Protect

Timer Counter

Timer Reload

Program Counter 0

Program Counter 1

Program Counter 2

MMU Configuration

LRU Recommendation

Unprotected Registers

Indirect Pointer C

Indirect Pointer A

Indirect Pointer B

a
ALU Status

Byte Pointer

Funnel Shift Count

Load/Store Count Remaining

Floating-Point Environment

Integer Environment

Floating-Point Status

Exception Opcode

Figure 6. Special-Purpose Registers

Mnemonic

VTB

OPS

CPS

CFG

CHA

CHD

CHC

RBP

TMC

TMR

PCO

PCl

PC2

MMUC

LRU

IPC

IPA

IPB

a
SR

BPR

FCR

MC

FPE

INTE

FPS

EXOP

Am29000

1-41

29K Family CMOS Devices

Figure 7. Vector Area Base Address Register

Bits 15-0: Zeros-These bits force the alignment of the
Vector Area.

Old Processor Status (Register 1)

This protected special-purpose register has the same
format as the Current Processor Status described be­
low. The Old Processor Status stores a copy of the Cur­
rent Processor Status when an interrupt or trap is taken.
This is required since the Current Processor Status will
be modified to reflect the status of the interruptltrap
handler.

During an interrupt return, the Old Processor Status is
copied into the Current Processor Status. This allows
the Current Processor Status to be set as required for
the routine that is the target of the interrupt return.

Current Processor Status (Register 2)
This protected special-purpose register (see Figure 8)
controls the behavior of the processor and its ability to
recognize exceptional events.

Bits 31-16: reserved.

Bit 15: Coprocessor Active (CA)-The CA bit is set
and reset underthe control of load and store instructions
that transfer information to and from a coprocessor. This
bit indicates that the coprocessor is performing an op­
eration at the time that an interrupt or trap is taken. This
no@es the interrupt ortrap handler that the coprocessor
contains state information to be preserved. Note that
this notification occurs because the CA bit of the Old
Processor Status is 1 in this case, not because of the
value of the CA bit of the Current Processor Status.

Bit 14: Interrupt Pending (IP)-This bit allows soft­
ware to detect the presence of external interrupts while
they are disabled. The IP bit is set if one or more of the
external signals INTRl-INTRo is active, but the proces~
sor is disabled from takirig the resulting interrupt due to

31 23

I I I I I I I I I I I I I I I
Reserved

the value of the DA, 01, or 1M bits. If all external interrupt
signals subsequently are deasserted while still dis­
abled, the IP bit is reset.

Bits 13-12: Trace Enable, Trace Pending (TE, TP)­
The TE and TP bits implement a software-controlled, in­
struction single-step facility. Single stepping is not im­
plemented directly, but rather emulated by trap se­
quences controlled by these bits. The value of the TE bit
is copied to the TP bit whenever an instruction execution
is completed. When the TP bit is 1, a Trace trap occurs.

Bit 11: Trap Unaligned Access (TU)-The TU bit en­
ables checking of address alignment for external data­
memory accesses. When this bit is 1, an Unaligned Ac­
cess trap occurs if the processor either generates an ad­
dress for an external word that is not aligned on a word
address boundary (Le., either of the least-significant two
bits is 1), or generates an address for an external half­
word that is not aligned on a half-word address bound­
ary (I.e., the least-significant address bit is 1). When the
TU bit is 0, data-memory address alignment is ignored.

Alignment is ignored for inpuVoutput' accesses and
coprocessor transfers. The alignment of instruction ad­
dresses is also ignored (unaligned instruction ad­
dresses can be generated only by indirect jumps). Inter­
ruptltrap vector addresses always are aligned properly.

Bit 10: Freeze (FZ)-The FZ bit prevents certain regis­
ters from being updated during interrupt and trap pro­
cessing, except by explicit data movement. The affected
registers are: Channel Address, Channel Data, Channel
Control, Program Counter 0, Program Counter 1, Pro­
gram Counter 2, and the ALU Status Register.

When the FZ bit is 1, these registers hold their values.
An affected register can be changed only by a Move To
Special Register instruction. When the FZ bit is 0, there
is no effect on these registers, and they are updated by

15 7 0

11111 11111 II IlL III
, " I , I i , i 'i "
: : : : . : : : : : :: ::

CA. TE. Tu j LK. WM. PI. DI •
IP TP FZ RE PO SM OA

Figure 8. Current Processor Status Register

1-42

processor instruction execution as described in this
manual.

The FZ bit is set whenever an interrupt or trap is taken,
holding critical state in the processor so that it is not
modified unintentionally by the interrupt or trap handler.

Bit 9: Lock (LK)-The LK bit controls the value of the
LOCK external signal. If the LK bit is 1, the LOCK signal
is active. If the LK bit is 0, the LOCK signal is controlled
by the execution of the instructions Load and Set, Load
and Lock, and Store and Lock. This bit is provided for
the implementation of multiprocessor synchronization
protocols.

Bit 8: ROM Enable (RE)-The RE bit enables instruc­
tion fetching from external instruction read-only memory
(ROM). When this bit is 1, the IREQT signal directs all
instruction requests to ROM. Instructions that are
fetched from ROM are subject to capture and reuse by
the Branch Target Cache when it is enabled; the Branch
Target Cache distinguishes between instructions from
ROM and those from non-ROM storage. When this bit
is 0, off-chip requests for instructions are directed to
instruction/data memory.

Bit 7: WAIT Mode (WM)-The WM bit places the pro­
cessor in the Wait mode. When this bit is 1, the proces­
sor performs no operations. The Wait mode is reset by
an interrupt ortrap for which the processor is enabled, or
by the Reset mode. .

Bit 6: Physical Addressing/Data (PD)-The PD bit
determines whether address translation is performed
for load or store operations. Address translation is per­
formed for an access only when this bit is 0, and the
Physical' Address (PA) bit in the load or store instruction
causing the access is also O.

Bit 5: Physical Addressingllnstructlons (PI)-The PI
bit determines whether address translation is performed
for external instruction accesses. Address translation is
performed only when this bit is O.

81t4: Supervisor Mode (SM)-The SM bit protects
certain processor context, such as protected special­
purpose registers. When this bit is 1, the processor is in
the Supervisor mode, and access to all processor con­
text is allowed. When this bit is 0, the processor is in the
User mode, and access to protected processor context
is not allowed; an attempt to access (either read orwrite)
protected processor context causes a Protection Viola­
tion trap.

Am29000

For an external access, the User Access (UA) bit in the
load or store instruction also controls access to pro­
tected processor context. When the UA bit is 1, the
Memory Management Unit and channel perform the ac­
cess as though the program causing the access was in
User mode.

Bits 3-2: Interrupt Mask (IM)-The 1M field is an en­
coding of the processor priority with respect to external
interrupts. The interpretation of the interrupt mask is
specified by the following table:

1M Value

o 0
o 1
1 0
1 1

Result

Bit 1 : Disable Interrupts (01)-The DI bit prevents the
processor from being interrupted by external interrupt
requests INTFb-INTRo. When this bit is 1, the processor
ignores all external interrupts. However, note that traps
(both internal and external), Timer interrupts, and Trace
traps will be taken. When this bit is 0, the processor will
take any interrupt enabled by the 1M field, unless the DA
bit is 1.

Bit 0: Disable all Interrupts and Traps (DA)-The DA
bit prevents the processor from taking any interrupts
and most traps. When this bit is 1, the processor ignores
interrupts and traps, except for the WARN, Instruction
Access Exception, Data Access Exception, and Co­
processor Exception traps. When this bit is 0, all traps
will be taken, and interrupts will be taken if otherwise
enabled.

Configuration (Register 3)

This protected special-purpose register (see Figure 9)
controls certain processor and system options. Most
fields normally are modified only during system initial­
ization. The Configuration Register definition follows.

Bits 31-24: Processor Release Level (PRL)-The
PRL field is an 8-bit, read-only identification number that
specifies the processor version.

Bits 23-6: reserved.

Bit 5: Data Width Enable (DW)-The DW bit enables
and disables byte and half-word external accesses. If
the DW bit is 0, byte and half-word accesses are not per-

31 23 . 15 7 o

I
I I I I I I I

. PRL

I I I I I I I I I I I I I I I I I
Reserved

Figure 9. Configuration Register

1111111
I I I I , i
I • I , I I

I I I ' I •

DW: RV : CP :

VF BO CD

1-43

29K Family CMOS Devices

formed in hardware, and these accesses must be emu­
lated by software. If the OW bit is 1, byte and half-word
accesses are performed by hardware: this requires that
external devices and memories be able to write individ­
ual bytes and half-words within a word.·

Bit 4: Vector Fetch (VF)-The VF bit determines the
structure of the interrupVtrap Vector Area. If this bit is 1,
the Vector Area is defined as a block of 256 vectors that
specify the beginning addresses of the interrupt and trap
handling routines. If the VF bit is 0, the Vector Area is a
segment of 256 64-instruction blocks that contain the
actual routines.

Bit 3: ROM Vector Area (RV)-If the VF bit is 0, the RV
bit specifies whether the Vector Area is contained in
instruction memory (RV = 0) or instruction read-only
memory (RV = 1). The value of the RV bit is irrelevant if
the VF bit is 1.

Bit 2: Byte Order (BO)-The BO bit determines the or­
dering of bytes and half-words within words. If the BO bit
is 0, bytes and half-words are numbered left-to-right
within a word. If the BO bit is 1, bytes and half-words are
numbered right-to-Ieft.

Bit 1: Coprocessor Present (CP)-The CP bit indi­
cates the presence of a coprocessor that may be used
by the processor. If this bit is 1, it enables the execution
of load and store instructions that have a Coprocessor
Enable (CE) _bit of 1. If the CP bit is 0 and the processor
attempts to execute a load or store instruction with aCE
bit of 1, a Coprocessor Not Present trap occurs. This
feature may be used to emulate coprocessor operations
as well as to protect the state of a coprocessor shared
between multiple processes.

Bit 0: Branch Target Cache Disable (CD)-The CD bit
determines whether or not the Branch Target Cache is
used for nonsequential instruction references. When
this bit is 1, all instruction references are directed to ex­
ternal instruction memory or instruction ROM, and the
Branch Target Cache is not used. When this bit is 0, the
targets of nonsequential instruction fetches are stored in
the Branch Target Cache and reused. The value of the

CD bit does not take effect until the execution of the next
branch instruction.

Channel Address (Register 4)
This protected special-purpose register (Figure 10) is
used to report exceptions during external accesses or
coprocessor transfers. It also is used to restart inter­
rupted Load Multiple and Store Multiple operations, and
to restart other external accesses when possible (e.g.,
after TLB misses are serviced).

The Channel Address Register is updated on the execu­
tion of every load or store instruction, and on every load
or store in a Load Multiple or Store Multiple sequence,
except when the Freeze (FZ) bit in the Current Proces­
sor Status Register is 1.

Bits 31-{): Channel Address (CHA)-This field con­
tains the address of the current channel transaction (if
the FZ bit of the Current Processor Status Register is 0).
For external data accesses, the address is virtual if ad­
dress translation was enabled for the access, or physi­
cal if translation was disabled. For transfers to the
coprocessor, the CHA field contains data transferred to
the coprocessor.

Channel Data (Register 5)
This protected special-purpose register (Figure 11) is
used to report exceptions during external accesses or
coprocessor transfers. It is also used to restart the first
store of an interrupted Store Multiple operation and to
restart other external accesses when possible (e.g., af­
ter TLB misses are serviced).

The Channel Data Register is updated on the execution
of every load or store instruction, and on. every IQad or
store in a Load Multiple or Store Multiple sequence, ex­
cept when the Freeze (FZ) bit in the Current Processor
Status Register is 1. When the Channel Data Register is
updated for a load operation, the resulting value is un­
predictable.

Bits 31-{): Channel Data (CHD)-This field contains
the data (if any) associated with the current channel

31 23 15 7 0

I
CHA

Figure 10. Channel Address Register

31 23 15 7 0

1111111111111111 Lolllllllll"""J

Figure 11. Channel Data Register

1·44

transaction (if the FZ bit of the Current Processor Status
Register is O). If the current channel transaction is not a
store or a transfer to the coprocessor, the value of this
field is irrelevant.

Channel Control (Register 6)
This protected special-purpose register (Figure 12) is
used to report exceptions during external accesses or
coprocessor transfers. It also is used to restart inter­
rupted Load Multiple and Store Multiple operations, and
to restart other external accesses when possible (e.g.,
after TLB misses are serviced).

The Channel Control Register is updated on the execu­
tion of every load or store instruction, and on every load
or store in a Load Multiple or Store Multiple sequence,
except when the Freeze (FZ) bit in the Current Proces­
sor Status Register is 1.

Bits 31-24-These bits are a direct copy of bits 23-16
from the load or store instruction that started the current
channel transaction.

Bits 23-16: Load/Store Count Remaining (CR)-The
CR field indicates the remaining number of transfers for
a Load Multiple or Store Multiple operation that encoun­
tered an exception or was interrupted before comple­
tion. This number is zero-based; for example, a value of
28 in this field indicates that 29 transfers remain to be
completed. If the fault or interrupt occurs on the last
transaction, the CR field contains a value of 0 and the
ML bit is 1 (see below).

Bit 15: Load/Store (LS)-The LS bit is 0 if the channel
transaction is a store operation, and 1 if it is a load
operation.

Bit 14: Multiple Operation (ML)-The ML bit is 1 if the
current channel transaction is a partially complete Load
Multiple or.Store Multiple operation; otherwise it is O.

Bit 13: Set (ST)-The ST bit is 1 if the current channel
transaction is for a Load and Set instruction; otherwise it
is O.

Bit 12: Lock Active (LA)-The LA bit is 1 if the current
channel transaction is for a Load and Lock or Store and
Lock instruction; otherwise it is O. Note that this bit is not
set as the result of the Lock (LK) bit in the Current Pro­
cessor Status Register.

31 23

II I I I I I I I
CR

I I I I I I
CNTL

CE

15

Am29000
Bit 11: reserved.

Bit 1 0: Transaction Faulted (TF)-The TF bit indicates
that the current channel transaction was not complete
due to some exceptional circumstance. This bit is set
only for exceptions reported via the DERR input, and it
causes a Data Access Exception or Coprocessor Ex­
ception trap to occur (depending on the value of the CE
bit) when it is 1.

The TF bit allows the proper sequencing of externally re­
ported errors that get preempted by higher-priority
traps; it is reset by software that handles the resulting
trap.

Bits 9-2: Target Register (TR)-The TR field indicates
the absolute register number of data operand for the
current transaction (either a load target or store data
source). Since the register number in this field is abso­
lute, it reflects the Stack-Pointer addition when the indi­
cated register is a local register.

Bit 1: Not Needed (NN)-The NN bit indicates that,
even though the Channel Address, Channel Data, and
Channel Control registers containa valid representation
of an uncompleted load operation, the data requested is
not needed. This situation arises when a load instruction
is overlapped with an instruction that writes the load tar­
get register.

Bit 0: Contents Valid (CV)-The CV bit indicates that
the contents of the Channel Address, Channel Data,
and Channel Control registers are valid.

Register Bank Protect (Register 7)

This protected special-purpose register (Figure 13) pro­
tects banks of general-purpose registers from User­
mode program accesses.

The general-purpose registers are partitioned into 16
banks of 16 registers each (except that Bank 0 contains
14 registers). The banks are organized as shown in
Figure 4.

Bits 31-16: reserved.

Bits 15-0: Bank 15 through Bank 0 Protection Bits
(B15-BO)-ln the Register Bank Protect Register, each
bit is associated with a particular bank of registers and
the bit number gives the associated bank number (e.g.,
B 11 determines the protection for Bank 11).

7 0

TR 1111111
I I I I I I I III , , , , . , i i

I I I I I I
I I I I I I

LS 'ST: RS I
I I I

I I I

ML LA TF

I I
I I

NN :
I

cv

Figure 12. Channel Control Register

1·45

29K Family CMOS Devices

Figure 13. Register Bank Protect Register

When a protection bit is 1, the corresponding bank is
protected from access by programs executing in the
User mode. A Protection Violation trap occurs when a
User·mode program attempts to access (either read or
wr~e) a register in a protected bank. When a bit in this
register is 0, the corresponding bank is available to pro­
grams executing in the User mode.

Supervisor-mode programs are not affected by the Reg­
ister Bank Protect Register.

Register protection is based on absolute register num­
bers. For local registers, the protection checking is per­
formed after the Stack-Pointer addition is performed.

Timer Counter (Register 8)

This protected special-purpose register (Figure 14)
contains the counter for the Timer Facility.

Bits 31-24: reserved.

Bits 23-0: Timer Count Value (TCV)-The 24-bit TCV
field decrements by one on each processor clock. When
the TCV field decrements to 0, it is reloaded with the
content of the Timer Reload Value field in the Timer
Reload Register. At this time, the Interrupt bit in the
Timer Reload Register is set.

Timer Reload (Register 9)
This protected special-purpose register (Figure 15)
maintains synchronization of the Timer Counter Reg-

31 23 15

ister, enables Timer interrupts, and maintains Timer
Facility status information.

Bits 31-27: reserved.

Bit 26: Overflow (OV)-The OV bit indicates that a
Timer interrupt occurred before a previous Timer inter­
rupt was serviced. It is set if the Interrupt (IN) bit is 1 (see
below) when the Timer Count Value (TCV) field of the
Timer Counter Register decrements to O. In this case, a
Timer interrupt caused by the IN bit has not been ser­
viced when another interrupt is created.

Bit 25: Interrupt (IN)-The IN bit is set whenever the
TCV field decrements to O. If this bit is 1 and the IE bit is
also 1, a Timer interrupt occurs. Note that the IN bit is set
when the TCV field decrements to 0, regardless of the
value of the IE bit. The IN bit is reset by software that
handles the Timer interrupt.

The TCV field is zero-based with respect to the Timer in­
terrupt interval; for example, a value of 28 in the TCV
field causes the IN bit to be set in the 29th subsequent
processor cycle. The reason for this is that the TCV field
is 0 for a complete cycle before the IN bit is set.

Bit 24: Interrupt Enable (IE)-When the IE bit is 1, the
Timer interrupt is enabled, and the Timer interrupt oc­
curs whenever the IN bit is 1. When this bit is 0, the
Timer interrupt is disabled. Note that Timer interrupts

7 o

I
Reserved TCV

. Figure 14. Timer Counter Register

31 23 15 7 o

I II I
Reserved IIII

I I I 1.1 I I I I I I I II I I I I I I I I I
TRV

: I :
I I I

OV: IE

IN

Figure 15. Timer Reload Register

1·46

may be disabled by the DA bit of the Current Processor
Status Register regardless of the value of the IE bit.

Bits 23-0: Timer Reload Value (TRV)-The value of
this field is written into the Timer Count Value (TCV) field
of the Timer Counter Register when the TCV field decre­
ments to O.

Program Counter 0 (Register 10)

This protected special-purpose register (Figure 16) is
used on an interrupt return to restart the instruction that
was in the decode stage when the original interrupt or
trap was taken.

Bits 31-2: Program Counter 0 (PCO)-This field cap­
tures the word address of an instruction as it enters the
decode stage of the processor pipeline, unless the
Freeze (FZ) bit of the Current Processor Status Register
is 1. If the FZ bit is 1, PCO holds its value.

When an interrupt ortrap is taken, the PCO field contains
the word address of the instruction in the decode stage;
the interrupt or trap has prevented this instruction from
executing. The processor uses the PCO field to restart
this instruction on an interrupt return.

Bits 1-0: Zeros-These bits are a since instruction ad­
dresses are always word-aligned.

Program Counter 1 (Register 11)

This protected special-purpose register (Figure 17) is
used on an interrupt return to restart the instruction that
was in the execute stage when the original interrupt or
trap was taken.

Am29000

Bits 31-2: Program Counter 1 (PC1)-This field cap­
tures the word address of an instruction as it enters the
execute stage of the processor pipeline, unless the
Freeze (FZ) bit of the Current Processor Status Register
is 1. If the FZ bit is 1, PC 1 holds its value.

When an interrupt or trap is taken, the PC 1 field contains
the word address of the instruction in the execute stage;
the interrupt or trap has prevented this instruction from
completing execution. The processor uses the PC 1 field
to restart this instruction on an interrupt return.

Bits 1-0: Zeros-These bits are 0 since instruction ad­
dresses are always word-aligned.

Program Counter 2 (Register 12)

This protected special-purpose register (Figure 18) re­
ports the address of certain instructions causing traps.

Bits 31-2: Program Counter 2 (PC2)-This field cap­
tures the word address of an instruction as it enters the
write-back stage of the processor pipeline, unless the
Freeze (FZ) bit of the Current Processor Status Register
is 1. If the FZ bit is 1, PC2 holds its value.

When an interrupt ortrap is taken, the PC2 field contains
the word address of the instruction in the write-back
stage. In certain cases, PC2 contains the address of the
instruction causing a trap. The PC2 field is used to report
the address of this instruction, and has no other use in
the processor.

31 23 15 7 a
I

pca

Figure 16. Program Counter 0 Register

31 23 15 7 a

1IIIIIIIIIIIIIIIp~lllllllllllllll+1

Figure 17. Program Counter 1 Register

31 23 15 7 o
I

PC2

Figure 18. Program Counter 2 Register

1·47

29K Family CMOS Devices

Bits 1-{): Zeros-These bits are 0 since instruction ad­
dresses are always word-aligned.

MMU Configuration (Register 13)

This protected special-purpose register (Figure 19)
specifies parameters associated with the Memory Man­
agement Unit (MMU).

Bits 31-10: reserved.

Bits 9-8: Page Size (PS)-The PS field specifies the
page size for address translation. The page size affects
translation as discussed in the Memory Management
section. The PS field has a delayed effect on address
translation. At least one cycle of delay must separate an
instruction that sets the PS field and an instruction that
performs address translation. The PS field is encoded
as follows:

PS

o 0
o 1
1 0
1 1

Page Size

1 kb
2 kb
4 kb
8 kb

Bits 7-{): Process Identifier (PID)-For translated
User-mode loads and stores, this 8-bit field is compared
to Task Identifier (TID) fields in Translation Look-Aside
Buffer entries when address translation is performed.
Forthe address translation to be valid, the PID field must
match the TID field in an entry. This allows a separate
32-bit virtual-address space to be allocated to each ac­
tive User-mode process (within the limit of 255 such
processes). Translated Supervisor-mode loads and

stores use a fixed process identifierof 0, and require that
the TID field be 0 for successful translation.

LRU Recommendation (Register 14)

This protected special-purpose register (Figure 20) as­
sists Translation Look-Aside Buffer (TLB) reloading by
indicating the least recently used TLB entry in the re­
quired replacement line.

Bits 31-7: reserved.

Bits 6-1: Least Recently Used Entry (LRU)-The
LRU field is updated whenever a TLB miSS occurs dur­
ing an address translation. It gives the TLB register
number of the TLB entry selected for replacement. The
LRU field also is updated whenever a memory-protec­
tion violation occurs; however, it has no interpretation in
this case.

Bit 0: Zero-The appended 0 serves to identify Word 0
of the TLB entry.

Indirect Pointer C (Register 128)

This unprotected special-purpose register (Figure 21)
provides the RC-operand register number when an in­
struction RC field has the value 0 (I.e., when Global Reg­
ister 0 is specified).

Bits 31-10: reserved.

Bits 9-2: Indirect Pointer C (IPC)-The 8-bit IPC field
contains an absolute register number for a general­
purpose register. This number directly selects a register

31 23 15 7 0

II I I I I II I I I I L~rv~ I I I I I I I I p~ II I I p\/ I I
Figure 19. MMU Configuration Register

31 23 15 7 0

I I I I I I I I I I I I I I I I I II I I I I I II I I I I II
Reserved . LRU 0

Figure 20. LRU Recommendation Register

31 23 15 7 o
I 1.1 I I

Reserved IPC

Figure 21. Indirect Pointer C Register

1-48

(Stack-Pointer addition is not performed in the case of
local registers).

Bits 1-0: Zeros-The IPe field is aligned for compati­
bility with word addresses.

Indirect Pointer A (Register 129)

This unprotected special-purpose register (Figure 22)
provides the RA-operand register number when an in­
struction RA field has the value 0 (i.e., when Global Reg­
ister 0 is specified).

Bits 31-10: reserved.

Bits 9-2: Indirect Pointer A (IPAr-The a-bit IPA field
contains an absolute register number for either a
general-purpose register or a local register. This num­
ber directly selects a register (StaCk-Pointer addition is
not performed in the case of local registers).

Bits 1-0: Zeros-The IPA field is aligned for compati­
bility with word addresses.

Indirect Pointer B (Register 130)

This unprotected special-purpose register (Figure 23)
provides the RS-operand register number when an in­
struction RS field has the value 0 (i.e., when Global Reg­
ister 0 is specified).

Bits 31-10: reserved.

Bits 9-2: Indirect Pointer B (IPBr-The a-bit IPS field
contains an absolute register number for a general­
purpose register. This number directly selects a register
(Stack-Pointer addition is not performed in the case of
local registers).

31 23 15

Am29000

Bits 1-0: Zeros-The IPS field is aligned for compati­
bility with word addresses.

Q (Register 131)

The Q Register is an unprotected special-purpose regis­
ter (Figure 24).

Bits 31-0: Quotient/Multiplier (Q)-During a se­
quence of divide steps, this field holds the low-order bits
of the dividend; it contains the quotient at the end of the
divide. During a sequence of multiply steps, this field
holds the multiplier; it contains the low-order bits of the
result at the end of the multiply.

For an integer divide instruction, the Q field contains the
high-order bits of the dividend at the beginning of the in­
struction, and contains the remainder upon completion
of the instruction.

ALU Status (Register 132)

This unprotected special-purpose register (Figure 25)
holds information about the outcome of Arithmetic/Logic
Unit (ALU) operations as well as control for certain op­
erations performed by the Execution Unit.

Bits 31-12: reserved.

Bit 11: Divide Flag (DF)-The OF bit is used by the in­
structions that implement division. This bit is set at the
end of the division instructions either to 1 or to the com­
plement of the 33rd bit of the ALU. When a Divide Step
instruction is executed, the OF bit then determines
whether an addition or subtraction operation is per­
formed by the ALU.

7 o

I
1+1 Reserved IPA

Figure 22. Indirect Pointer A Register

31 23 15 7 o

I
Reserved IPB

Figure 23. Indirect Pointer B Register

31 23 15 7 0

I I I I I I I I I I I I I I I 101 I I I I I I I I I I I I I I I

Figure 24. Q Register

1-49

29K Family CMOS Devices

31 23 15 7 0

I
' I I II I , I II I I I I I I I I I 111111' I' Fie' , I

. Reserved V N Z e BP .

OF

Figure 25. ALU Status Register

Bit 1 0: Overflow (V)-The V bit indicates that the result
of a signed, twos-complement ALU operation required
more than 32 bits to represent the result correctly. The
value of this bit is determined by exclusive ORing the
ALU carry-out with the carry-in to the most-significant bit
for signed, twos-complement operations. This bit is not
used for any special purpose in the processor, and is
provided for information only.

Bit 9: Negative (N)-The N bit is set with the value of
the most-significant bit of the result of an arithmetic or
logical operation. If twos-complement overflow occurs,
the N bit does not reflect the true sign of the result. This
bit is used in divide operations.

Bit 8: Zero (Z)-The Z bit indicates that the result of an
arithmetic or logical operation is O. This bit is not used for
any special purpose in the processor, and is provided for
information only.

Bit 7: Carry (C)-The C bit stores the carry-out of the
ALU for arithmetic operations. It is used by the add-with­
carry and sUbtract-with-carry instructions to generate
the carry into the Arithmetic/Logic Unit.

Bits 6-5: Byte Pointer (BP)-The BP field holds a 2-bit
pointer to a byte within a word. It is used by Insert Byte
and Extract Byte instructions. The exact mapping of the
pointer value to the byte position depends on the value
of the Byte Order (BO) bit in the Configuration Register.

The most-Significant bit of the BP field is used to deter­
mine the position of a half-word within a word for the In­
sert Half-Word, Extract Half-Word, and Extract Half­
Word, Sign-Extended instructions. The exact mapping
of the most-significant bit to the half-word position de­
pends on the value of the BO bit in the Configuration
Register.

The BP field is set by a Move To Special Register in­
struction with either the ALU Status Register or the Byte
Pointer Register as the destination. It is also set by a

load or store instruction if the Set Byte Pointer (SB) bit in
the instruction is 1. A load or store sets the BP field
either with the two least-significant bits of the address (if
the OW bit of the Configuration Register is 0) or with the
complement of the Byte Order bit of the Configuration
Register (if OW is 1).

Bits 4-0: Funnel Shift Count (FC)-The FC field con­
tains a 5-bit shift count for the Funnel Shifter. The Fun­
nel Shifter concatenates two source operands into a sin­
gle 64-bit operand and extracts a 32-bit result from this
64-bit operand; the Fe field specifies the number of bit
poSitions from the most-significant bit of the 64-bit oper­
and to the most-significant bit of the 32-bit result. The
FC field is used by the Extract instruction.

The FC field is set by a Move To Special Register in­
struction with either the ALU Status Register or the Fun­
nel Shift Count Register as the destination.

Byte Pointer (Register 133)

This unprotected special-purpose register (Figure 26)
provides an alternate access to the BP field in the ALU
Status Register.

Bits 31-2: Zeros.

Bits 1-0: Byte Pointer (BP)-This field allows a pro­
gram to change the BPfieid without affecting other fields
in the ALU Status Register.

Funnel Shift Count (Register 134)

This unprotected special-purpose register (Figure 27)
provides an alternate access to the FC field in the ALU
Status Register.

Bits 31-5: Zeros.

Figure 26. Byte Pointer

1-50

Am29000

Figure 27. Funnel Shift Count

Bits 4-0: Funnel Shift Count (FC)-This field allows a
program to change the FC field without affecting other
fields in the ALU Status Register.

Load/Store Count Remaining (Register 135)

This unprotected special-purpose register (Figure 28)
provides alternate access to the CR field in the Channel
Control Register.

Bits 31-8: Zeros.

Bits 7-0: Load/Store Count Remaining (CR)-This
field allows a program to change the CR field without af­
fecting other fields in the Channel Control Register, and
is used to initialize the value before a Load Multiple or
Store Multiple instruction is executed.

Floating-Point Environment (Register 160)

This unprotected special-purpose register (Figure 29)
contains control bits that affect the execution of floating­
point operations.

Bits 31-9: reserved.

Bit 8: Fast Float Select (FF)-The FF bit being 1 en­
ables fast floating-point operations, in which certain re­
quirements of the IEEE floating-point specification are
not met. This improves the performance of certain
operations by sacrificing conformance to the IEEE
specification.

Bits 7-6: Floating-Point Round Mode (FRM)-This
field specifies the default mode used to round the results
of floating-point operations, as follows:

FRM1-O

00
01
10
1 1

Round Mode

Round to nearest
Round to-oo
Round to +00
Round to zero

Bit 5: Floating-Point Dlvide-By-Zero Mask (DM)-If
the OM bit is 0, a Floating-Point Exception trap occurs
when the divisor of a floating-point division operation is
zero and the dividend is a non-zero, finite number. If the
OM bit is 1, a Floating-Point Exception trap does not oc­
cur for divide-by-zero.

Bit 4: Floating-Point Inexact Result Mask (XM)-If
the XM bit is 0, a Floating-Point Exception trap occurs
when the result of a floating-point operation is not equal
to the infinitely precise result. If the XM bit is 1, a Float­
ing-Point Exception trap does not occur for an inexact
result.

Bit 3: Floating-Point Underflow Mask (UM)-If the
UM bit is 0, a Floating-Point Exception trap occurs when
the result of a floating-point operation is too small to be
expressed in the destination format. If the UM bit is 1, a
Floating-Point Exception trap does not occur for under­
flow.

Bit 2: Floating-Point Overflow Mask (VM)-If the VM
bit is 0, a Floating-Point Exception trap occurs when the
result of a floating-point operation is too large to be ex­
pressed in the destination format. If the VM bit is 1, a

Figure 28. Load/Store Count Remaining

31 23 15

I
Reserved

I I • I , i

I I •• : •
I I I I • I I

FF OM : UM : RM :
I I I

XM VM NM

Figure 29. Floating-Point Environment

1-51

29K Family CMOS Devices

Floating-Point Exception trap does not occur for over­
flow.

Bit 1: Floating-Point Reserved Operand Mask (RM)
-If the RM bit is 0, a Floating-Point Exception trap oc­
curs when one or more input operands to a floating-point
operation is a reserved value, or when the result of a
floating-point operation is a reserved value. If the RM bit
is 1 , a Floating-Point Exception trap does not occur for
reserved operands.

Bit 0: Floating-Point Invalid Operation Mask (NM)­
If the NM bit is 0, a Floating-Point Exception trap occurs
when the input operands to a floating-point operation
produce an indeterminate resuH (e.g., 00 times 0). If the
NM bit is 1, a Floating-Point Exception trap does not oc­
cur for invalid operations.

Integer Environment (Register 161)

This unprotected special-purpose register (Figure 30)
contains control bits that affect the execution of integer
operations.

Bits 31-2: reserved.

Bit 1: Integer Division Overflow Mask (DO)-If the
DO bit is 0, an Out of Range trap occurs when overflow
of a signed or unsigned 32-bit resuH occurs during DI­
VIDE or DIVIDU instructions, respectively. If the DO bit
is 1, an Out of Range trap does not occur for overflow
during integer divide operations.

The DIVIDE and DIVIDU instructions always cause an
Out of Range trap upon division by 0, regardless of the
value of the DO bit.

Bit 0: Integer Multiplication Overflow Exception
Mask (MO)-If the MO bit is 0, an Out of Range trap oc­
curs when overflow of a signed or unsigned 32-bit result

occurs during MULTIPLYorMULTIPLU instructions, re­
spectively.1f the DO bit is 1, an Out of Range trap does
not occurforoverflow during integer multiply operations.

Floating-Point Status (Register 162)

This unprotected special-purpose register (Figure 31)
contains status bits indicating the outcome of floating­
point operations. The bits of the Floating-Point Status
Register are divided into two groups of status bits. The
bits in each group correspond to the causes of Floating­
Point Exception traps that are enabled and disabled by
bits 5-0 of the Floating-Point Environment Register.

The first group of status bits (bits 13-8) are trap status
bits that report the cause of a Floating-Point Exception
trap. The trap status bits are set only when a Floating­
Point Exception trap occurs, and indicate all conditions
that apply to the trapping operation. All other operations
leave ·the status bits unchanged. A trap status bit is
set regardless of the state of the corresponding mask
bit of the Floating-Point Environment Register, except
that at least one of the mask bits must be ° for the trap
to occur. When a Floating-Point Exception trap occurs,
all trap status bits not relevant to the trapping operation
are reset.

The second group of status bits (bits 5-0) are sticky
status bits that, once set, remain set until explicitly
cleared by a Move to Special Register (MTSR) or Move
to SpeCial Register Immediate (MTSRIM) instruction.
A sticky status bit is set only when a floating-point
exception is detected and the corresponding mask bit
of the Floating-Point Environment Register is 1. That is,
the sticky status bit is set only if the corresponding cause
of a Floating-Point Exception trap is disabled. Norma"y,
this means that sticky status bits are not set when a
Floating-Point Exception trap is taken. However, if

31 23 15 7 0 II I I I I I I I I I I I I IR:sL! I I I I I I I I I I I I III
, i

: I
I I

DO I
I

MO

Figure 30. Integer Environment

31 23 15 7 0

I
I I I I I I II I I I I I I I I I

_ Reserved IIIIIII'!'IIIIIII
I t I , " I I • i , ,
, , I I : I 'I I I : '
I I I I I I ,I I I I I

DT : UT : RT : DS : us : RS :

XT VT NT XS VS NS

Figure 31. Floating-Point Status

1-52

multiple exceptions are detected, a sticky status bit
corresponding to a masked exception may still be set if
a Floating-Point Exception trap occurs for an unmasked
exception. .

Bits 31-14: reserved.

Bit 13: Floating-Point Dlvide-By-Zero Trap (DT}­
The DT bit is set when a Floating-Point Exception trap
occurs, and the associated floating-point operation is a
divide with a zero divisor and a non-zero, finite dividend.
Otherwise, this bit is reset when a Floating-Point Excep­
tion trap occurs.

Bit 12: Floating-Point Inexact Result Trap (XT)-The
XT bit is set when a Floating-Point Exception trap oc­
curs, and the result of the associated floating-point op­
eration is not equal to the infinitely precise result. Other­
wise, this bit is reset when a Floating-Point Exception
trap occurs.

Bit 11 : Floating-Point Underflow Trap (UT}-The UT
bit is set when a Floating-Point Exception trap occurs,
and the result of the associated floating-point operation
is too small to be expressed in the destination format.
Otherwise, this bit is reset when a Floating-Point Excep­
tion trap occurs.

Bit 10: Floating-Point Overflow Trap (VT}-The VT
bit is set when a Floating-Point Exception trap occurs,
and the result of the associated floating-point operation
is too large to be expressed in the destination format.
Otherwise, this bit is reset when a Floating-Point Excep­
tion trap occurs.

Bit 9: Floating-Point Reserved Operand Trap (RT}­
The RT bit is set when a Floating-Point Exception trap
occurs, and either one or more input operands to the as­
sociated floating-point operation is a reserved value or
the result of this floating-point operation is a reserved
value. Otherwise, this bit is reset when a Floating-Point
Exception trap occurs.

Bit 8: Floating-Point Invalid Operation Trap (NT}­
The NT bit is set when a Floating-Point Exception trap
occurs, and the input operands to the associated float­
ing-point operation produce an indeterminate result.
Otherwise, this bit is reset when a Floating-Point Excep­
tion trap occurs.

Bits 7-6: reserved.

Bit 5: Floating-Point Dlvide-By-Zero Sticky (DS}­
The DS bit is set when the DM bit of the Floating-Point
Environment Register is 1, the divisor of a floating-point

Am29000

division operation is a 0, and the dividend is a non-zero,
finite number.

Bit 4: Floating-Point Inexact Result Sticky (XS}­
The XS bit is set when the XM bit of the Floating-Point
Environment Register is 1, and the result of a f1oating­
point operation is not equal to the infinitely precise
result.

Bit 3: Floating-Point Underflow Sticky (US}-The US
bit is set when the UM bit of the Floating-Point Environ­
ment Register is 1, and the result of a floating-point op­
eration is too small to be expressed in the destination
format.

Bit 2: Floating-Point Overflow Sticky (VS)-The VS
bit is set when the VM bit of the Floating-Point Environ­
ment Register is 1, and the result of a floating-point op­
eration is too large to be expressed in the destination
format.

Bit 1: Floating-Point Reserved Operand Sticky
(RS)-The RS bit is set when the AM bit of the Floating­
Point Environment Register is 1, and either one or more
input operands to a floating-point operation is a re­
served value or the result of a floating-point operation is
a reserved value.

Bit 0: Floating-Point Invalid Operation Sticky (NS}­
The NS bit is set when the NM bit of the Floating-Point
Environment Register is 1, and the input operands to
a floating-point operation produce an indeterminate
result.

Exception Opcode (Register 164)

This unprotected special-purpose register (Figure 32)
reports the operation code (opcode) of an instruction
causing a trap. It is provided primarily for recovery from
floating-point exceptions, but reports the opcode of any
trapping instruction.

Bits 31-8: reserved.

Bits 7-0: Instruction Opcode (IOP}-This field cap­
tures the opcode of an instruction causing a trap as a re­
sult of instruction execution; the opcode is captured as
the instruction enters the write-back stage of the proces­
sor pipeline. Instructions that do not trap as a conse­
quence of execution do not modify the lOP field.

31 23 15 7 0

I I I I I I I I I I I I I II I I I I I I I I II I I I I I I
Reserved . lOP

Figure 32. Exception Opcode

1-53

29K Family CMOS Devices

TLB Registers
The Am29000 contains 128 Translation Look-Aside
Buffer (TLB) registers. The organization of the TLB reg­
isters is shown in Figure 33.

The TLB registers comprise the TLB entries, and are
provided so that programs may inspect and alter TLB
entries. This allows the loading, invalidation, saving,
and restoring of TLB entries.

TLB registers have fields that are reserved for future
processor implementations. When a TLB register is
read, a bit in a reserved field is read as a O. An attempt to
write a reserved bit with a 1 has no effect; however, this
should be avoided because of upward-compatibility
considerations.

The Translation Look-Aside Buffer (TLB) registers are
accessed only by explicit data movement by Su­
pervisor-mode programs. Instructions that move data to
or from a TLB register specify a general-purpose regis- ,
ter containing a TLB register number. The TLB register
number is given by the contents of bits 6-0 of the '
general-purpose register. TLB register numbers may

only be specified indirectly 'by general-purpose
registers.

" TLB entries 'are accessed as registers numbered
0-127. Since two words are' required to completely
'specify a TLB entry, two registers are required for each
TLB entry. The words corresponding to an entry are
paired as two sequentially numbered registers starting
on an even-numbered register. The word with the even
register number is called Word 0, and the word with the
odd register number is called Word 1. The entries for',
TLB Set 0 are in registers numbered 0-63, and the en­
tries for TLB Set 1 are in registers numbered 64-:127.

TlB Entry Word 0

The TLB Entry Word 0 register is shown in Figure 34.

Bits 31-15: Virtual Tag (VTAG)-When the TLB is
searched for an address translation, the VTAG field of
the TLB entry must match the most Significant 17, 16,
15, or 14 bits of the address being translated-for page
sizes of 1, 2, 4, and 8 kb, respectively-for the search to
be successful.

TLB Reg# TLB Set 0

1-54

o

2

3

62

63

64

65

126

127

TLB Entry Line 0 Word 0

TLB Entry Line 0 Word 1

TLB Entry Line 1 Word 0

TLB Entry Line 1 Word 1

· · ·
TlB Entry Line 31 Word 0

TLB Entry Line 31 Word 1

TLB Set 1

TLB Entry Line 0 Word 0 ,

TLB Entry Line 0 Word 1

· · ·
TLB Entry Line 31 Word 0

TLB Entry Line 31 Word 1

Figure 33. translation Look-Aside Buffer Registers

Am29000

31 23 15 7 a

1 1 1 1 1 1 IJA~ 1 1 1 1 1 1 1 IIIIIIII1 1 1 ~IDI 1 1 I

I I : t I I I
I I I I I I I
I I I I I I I

I SR I SE I UW I
I I I I
I I I

VE SW UR UE

Figure 34. TLB Entry Word 0

When software loads a TLB entry with an address trans­
lation, the most significant 14 bits of the Virtual Tag are
set with the most significant 14 bits of the virtual address
whose translation is being loaded into the TLB. The re­
maining 3 bits of the Virtual Tag must be set eitherto the
corresponding bits of the address orto Os, depending on'
the page size, as follows ("A" refers to corresponding
address bits):

. Page Size

1kb
2kb
4 kb
8 kb

VTAG 2-0 (TLB Word 0 bits 17-15)

AM
MO
AOO
000

Bit 14: Valid Entry (VE}-If this bit is 1, the associated
TLB entry is valid; if it is 0, the entry is invalid.

Bit 13: Supervisor Read (SR)-If the SR bit is 1, Su­
pervisor-mode load operations from the virtual page are
allowed; if it is 0, Supervisor-mode loads are not
allowed.

Bit 12: Supervisor Write (SW}-If the SW bit is 1, Su­
pervisor-mode store operations to the virtual page are
allowed; if it is 0, Supervisor-mode stores are not
allowed.

Bit 11 : Supervisor Execute (SE)-If the SE bit is 1 , Su­
pervisor-mode instruction accesses to the virtual page
are allowed; if it is 0, Supervisor-mode instruction
accesses are not allowed.

Bit 10: User Read (UR}-If the URbit is 1, User-mode
load operations from the virtual page are allowed; if it is
0, User-mode loads are not allowed.

Bit 9: User Write (UW}-If the UW bit is 1, User-mode
store operations to the virtual page are allowed; if it is 0,
User-mode stores are not allowed.

Bit 8: User Execute (UE)-If the UE bit is 1, User-mode
instruction accesses to the virtual page are allowed; if it
is 0, User-mode instruction accesses are not allowed.

Bits 7-0: Task Identifier (TID)-When the TLB is
searched for an address translation, the TI D must match
the Process Identifier (PID) in the MMU Configuration
Registerforthe translation to be successful. This field is
allows the TLB entry to be associated with a particular
process.

TLB Entry Word 1

The TLB Entry Word 1 register is shown in Figure 35.

Blts31-10: Real Page Number(RPN)-The RPN field
gives the most significant 22, 21, 20, or 19 bits of the
phYSical address of the page for page sizes of 1, 2, 4,
and 8 kb, respectively. It is concatenated to bits 9-0,
10-0, 11-0, or 12-0 of the address being translated­
for 1-,2-,4-, and 8-kb page sizes, respectively-to form
the physical address for the access.

When software loads a TLB entry with an address trans­
lation, the most significant 19 bits ofthe Real Page Num­
ber are set with the most significant 19 bits of the physi­
cal address associated with the translation. The remain­
ing 3 bits of the Real Page Number must be set eitherto
the corresponding bits of the physical address, or to Os,
depending on the page size, as follows ("A" refers to cor­
responding address bits):

Page Size

1 kb
2kb
4 kb
8 kb

RPN 2-0 (TLB Word 1 bits 12-10)

AAA
AAO
ADO
000

Bits 7-6: User Programmable (PGM)-These bits are
placed on the MPGM1-MPGMo outputs when the ad-

I

I

Figure 35. TLB Entry Word 1 10

1-55

29K Family CMOS Devices

dress is transmitted for an access. They have no
predefined effect on the access; any effect is defined by
logic external to the processor.

Bit 1: Usage (U)-This bit indicates which entry in a
given TLB line was least recently used to perform an ad­
dress translation. If this bit is a 0, then the entry in Set 0
in the line is least recently used; if it is 1, then the entry in
Set 1 is least recently used. This bit has an equal value
for both entries in a line. Whenever a TLB entry is used

1-56

to translate an address, the Usage bit of both entries in
the line used for translation are set according to the TLB
set containing the translation. This bit is set whenever
the translation is valid, regardless of the outcome of
memory-protection checking.

Bit 0: Input/Output (10)-The 10 bit determines
whether the access is directed to the instruction/data
memory (10 = 0) or the input/output (10 = 1) address
space.

INSTRUCTION SET
The Am29000 implements 117 instructions. All instruc­
tions execute in a single cycle except for IRET,
IRETINV, LOADM, STOREM, and the trapping arithme­
tic instructions such as floating-point instructions.

Most instructions deal with general-purpose registers
for operands and resuhs; however, in most instructions,
an 8-bit constant can be used in place of a register­
based operand. Some instructions deal with special­
purpose registers, TLB registers, external devices and
memories, and coprocessors.

This section describes the nine instruction classes in the
Am29000, and provides a brief summary of instruction
operations.

If the processor attempts to execute an instruction that is
not implemented, an Illegal Opcode trap occurs.

Integer Arithmetic
The Integer Arithmetic instructions perform add, sub­
tract, multiply, and divide operations on word-length in­
tegers. Certain instructions in this class cause traps if
signed or unsigned overflow occurs during the execu­
tion of the instruction. There is support for multi-preci­
sion arithmetic on operands whose lengths are multi­
ples of words. All instructions in this class set the ALU
Status Register. The integer arithmetic instructions are
shown in Figure 36.

The instructions MULTIPLU, MULTMU, MULTIPL V,
MULTM, DIVIDE, and DIVIDU are not implemented di­
rectly by processor hardware, but cause traps to occur
in instruction-emulation routines.

Compare
The Compare instructions test for various relationships
between two values. For all Compare instructions
except the CPBYTE instruction, the comparisons are
performed on word-length signed or unsigned integers.
There are two types of Compare instructions. The first
type places a Boolean value reflecting the outcome of
the compare into a general-purpose register. For the
second type (assert instructions), instruction execution
continues only if the comparison is true; otherwise a
trap occurs. The assert instructions specify a vector for
the trap.

The assert instructions support run-time operand
checking and operating-system calls. If the trap occurs
in the User mode and a trap number between 0 and
63 is specified by the instruction, a Protection Violation
trap occurs. The Compare instructions are shown in
Figure 37.

Logical
The Logical instructions perform a set of bit-by-bit
Boolean functions on word-length bit strings. All instruc­
tions in this class set the ALU Status Register. These in­
structions are shown in Figure 38.

Am29000

Shift
The Shift instructions (Figure 39) perform arithmetic
and logical shifts. All but the Extract instruction operate
on word-length data and produce a word-length result.
The Extract instruction operates on double-word data
and produces a word-length resuh. If both parts of the
double word for the Extract instruction are from the
same source, the Extract operation is equivalent to a ro­
tate operation. For each operation, the shift count is a
5-bit integer, specifying a shift amount in the range of 0
to 31 bits.

Data Movement
The Data Movement instructions (Figure 40) move
bytes, half-words, and words between processor regis­
ters. In addition, they move data between general­
purpose registers and external devices, memories, and
the coprocessor.

Constant
The Constant instructions (Figure 41) provide the ability
to place half-word and word constants into registers.
Most instructions in the instruction set allow an 8-bit con­
stant as an operand. The Constant instructions allow the
construction of larger constants.

Floating-Point
The Floating-Point instructions (Figure 42) provide op­
erations on single-precision (32-bit) or double-precision
(64-bit) floating-point data. In addition, they provide con­
versions between single-precision, double-precision,
and integer number representations. In the current pro­
cessor implementation, these instructions cause traps
to occur in routines that perform the floating-point op­
erations.

Branch
The Branch instructions (Figure 43) control the execu­
tion flow of instructions. Branch target addresses may
be absolute, relative to the Program Counter (with the
offset given by a signed instruction constant), or con­
tained in a general-purpose register. For conditional
jumps, the outcome of the jump is based on a Boolean
value in a general-purpose register. Procedure calls are
unconditional and save the return address in a general­
purpose register. All branches have a delayed effect;
the instruction sequence following the branch is exe­
cuted regardless of the outcome of the branch.

Miscellaneous
The Miscellaneous instructions (Figure 44) perform
various operations that cannot be grouped into other in­
struction classes. In certain cases, these are control
functions available only to Supervisor-mode programs.

1-57

29K Family CMOS Devices

Mnemonic Operation Description

ADD DEST <-SRCA + SRCB

ADDS DEST <-SRCA + SRCB
IF signed overflow THEN Trap (Out Of Range)

ADDU DEST <-SRCA + SRCB
IF unsigned overflow THEN Trap (Out Of Range)

ADDC DEST <-SRCA + SRCB + C

ADDCS DEST <-SRCA + SRCB + C
IF signed overflow THEN Trap (Out Of Range)

ADDCU DEST <-SRCA + SRCB + C
IF unsigned overflow THEN Trap (Out Of Range)

SUB DEST <-SRCA - SRCB

SUBS DEST <-SRCA - SRCB
IF signed overflow THEN Trap (Out Of Range)

SUBU DEST <-SRCA - SRCB
IF unsigned underflow THEN Trap (Out Of Range)

SUBC DEST <-SRCA-SRCB -1 + C

SUBCS DEST <-SRCA - SRCB -1 + C
IF signed overflow THEN Trap (Out Of Range)

SUBCU DEST <-SRCA - SRCB -1 + C
IF unsigned underflow THEN Trap (Out Of Range)

SUBR DEST <-SRCB - SRCA

SUBRS DEST <-SRCB - SRCA
IF signed overflow THEN Trap (Out Of Range)

SUBRU DEST <-SRCB - SRCA
IF unsigned underflow THEN Trap (Out Of Range)

SUBRC DEST <-SRCB :.... SRCA -1 + C

SUBRCS DEST <-SRCB - SRCA -1 + C
IF signed overflow THEN Trap (Out Of Range)

SUBRCU DEST <-SRCB - SRCA -1 + C
IF unsigned underflow THEN Trap (Out Of Range)

MULTIPLU DEST <-SRCA • SRCB (unsigned)

MULTIPLY DEST <-SRCA .. SRCB (signed)

MUL Perform 1-bit step of a multiply operation (signed)

MULL Complete a sequence of multiply steps

MULTM DEST <-SRCA .. SRCB (signed), most-significant bits

MULTMU DEST <-SRCA • SRCB (unsigned), most-significant bits

MULU Perform 1-bit step of a mUltiply operation (unsigned)

DIVIDE DEST <-(OIlSRCA)/SRCB (signed) 0 <-Remainder

DIVIDU DEST <-(OIlSRCA)ISRCB (unsigned) 0 <-Remainder

DiVa Initialize for a sequence of divide steps (unsigned)

DIV Perform 1-bit step of a divide operation (unsigned)

DIVL Complete a sequence of divide steps (unsigned)

DIVREM Generate remainder for divide operation (unsigned)

Figure 36. Integer Arithmetic Instructions

1-58

Am29000

Mnemonic Operation Description

CPEO IF SRCA = SRCB THEN DEST <-TRUE
ELSE DEST <-FALSE

CPNEO IF SRCA <> SRCB THEN DEST <-TRUE
ELSE DEST <-FALSE

CPLT IF SRCA < SRCB THEN DEST <-TRUE
ELSE DEST <-FALSE

CPLTU IF SRCA < SRCB (unsigned) THEN DEST <-TRUE
ELSE DEST <-FALSE

CPLE IF SRCA <= SRCB THEN DEST <-TRUE
ELSE DEST <- FALSE

CPLEU IF SRCA < .. SRCB (unsigned) THEN DEST <-TRUE
ELSE DEST <-FALSE

CPGT IF SRCA > SRCB THEN DEST <-TRUE
ELSE DEST <-FALSE

CPGTU IF SRCA > SRCB (unsigned) THEN DEST <-TRUE
ELSE DEST <-FALSE

CPGE IF SRCA >= SRCB THEN DEST <-TRUE
ELSE DEST <-FALSE

CPGEU IF SRCA >= SRCB (unsigned) THEN DEST <-TRUE
ELSE DEST <-FALSE

CPBYTE IF (SRCA.BYTEO = SRCB.BYTEO) OR
(SRCA.BYTE1 = SRCB.BYTE1) OR
(SRCA.BYTE2 = SRCB.BYTE2) OR
(SRCA.BYTE3 = SRCB.BYTE3)THEN DEST <-TRUE

ELSE DEST <-FALSE

ASEO IF SRCA = SRCB THEN Continue
ELSE Trap (VN)

ASNEO IF SRCA <> SRCB THEN Continue
ELSE Trap (VN)

ASLT IF SRCA < SRCB THEN Continue
ELSE Trap (VN)

ASLTU IF SRCA < SRCB (unsigned) THEN Continue
ELSE Trap (VN)

ASLE IF SRCA <= SRCB THEN Continue
ELSE Trap (VN)

ASLEU IF SRCA <= SRCB (unsigned) THEN Continue
ELSE Trap (VN)

ASGT IF SRCA > SRCB THEN Continue
ELSE Trap (VN)

ASGTU IF SRCA > SRCB (unsigned) THEN Continue
ELSE Trap (VN)

ASGE IF SRCA >= SRCB THEN Continue
ELSE Trap (VN)

ASGEU IF SRCA >= SRCB (unsigned) THEN Continue
ELSE Trap (VN)

Figure 37. Compare Instructions

1·59

29K Family CMOS Devices

Mnemonic Operation Description

AND DEST <-SRCA & SRCS

ANDN DEST <-SRCA & - SRCS

NAND DEST <-- (SRCA & SRCS)

OR DEST <-SRCA I SRCS

NOR DEST <-- (SRCA I SRCS)

XOR DEST <-SRCA ,.. SRCS

XNOR DEST <-- (SRCA ,. SRCS)

Figure 38. Logical Instructions

Mnemonic Operation Description

SLL DEST <-SRCA « SRCS (zero fill)

SRL DEST <-SRCA » SRCS (zero fill)

SRA DEST <-SRCA » SRCS (sign fill)

EXTRACT DEST <-high-order word of (SRCAlISRCS « FC)

Figure 39. Shift Instructions

Reserved Instructions
Sixteen Am29000 operation codes are reserved for
instruction emulation. These instructions cause traps,
much like the floating-point instructions, but currently
have no specified interpretation. The relevant operation
codes and the corresponding trap vectors are:

These instructions are intended for future processor
enhancements, and users desiring compatibility with fu­
ture processor versions should not use them for any
purpose.

1-60

Operation Codes
(hexadecimal)

D8-DD
E7-E9
F8
FA-FF

Trap Vector
Numbers (decimal)

24-29
39-41
56
58-63

Am29000

Mnemonic Operation Description

LOAD DEST <-EXTERNAL WORD [SRCB]

LOADL DEST <-EXTERNAL WORD [SRCB]
assert ·LOCK output during access

LOADSET DEST <-EXTERNAL WORD [SRCB]
EXTERNAL WORD [SRCB] <-h'FFFFFFFF',
assert LOCK output during access

LOADM DEST .. DEST + COUNT <-
EXTERNAL WORD [SRCB] ..
EXTERNAL WORD [SRCB + COUNT • 4]

STORE EXTERNAL WORD [SRCB] <-SRCA

STOREL EXTERNAL WORD [SRCB] <-SRCA
assert LOCK output during access

STOREM EXTERNAL WORD [SRCB] ..
EXTERNAL WORD [SRCB + COUNT • 4] <-
SRCA .. SRCA + COUNT

EX BYTE DEST <-SRCB, with low-order byte replaced
by byte in SRCA selected by BP

EXHW DEST <-SRCB, with low-order half-word replaced
by half-word in SRCA selected by BP

EXHWS DEST <- half-word in SRCA selected by BP,
sign-extended to 32 bits

INBYTE DEST <-SRCA, with byte selected by BP replaced
by low-order byte of SRCB

INHW DEST <-SRCA, with half-word selected by BP replaced
by low-order half-word of SRCB

MFSR DEST <-SPECIAL

MFTLB DEST <-TLB [SRCA]

MTSR SPDEST <-SRCB

MTSRIM SPDEST <- 0116

MTTLB TLB [SRCA] <-SRCB

Figure 40. Data Movement Instructions

Mnemonic Operation Description

CaNST DEST <-0116

CONSTH Replace high-order half-word of SRCA by 116

CONSTN DEST <-1116

Figure 41. Constant Instructions

1-61

29K Family CMOS Devices

Mnemonic Operation Description

FADD DEST (single-precision) <-SRCA (single-precision)
+ SRCB (single-precision)

DADD DEST (double-precision) <-SRCA (double-precision)
+ SRCB (double-precision)

FSUB DEST (single-precision) <-SRCA (single-precision)
-SRCB (single-precision)

DSUB DEST (double-precision) <-SRCA (double-precision)
-SRCB (double-precision)

FMUL DEST (single-precision) <-SRCA (single-precision)
• SRCB (single-precision)

FDMUL DEST (double-precision) <-SRCA (single-precision)
• SRCB (single-precision)

DMUL DEST (double-precision) <-SRCA (double-precision)
* SRCB (double-precision)

FDIV DEST (single-precision) <-SRCA (single-precision)!
SRCB (single-precision)

DDIV DEST (double-precision) <-SRCA (double-precision)!
SRCB (double-precision)

FEO IF SRCA (single-precision) = SRCB (single-precision)
THEN DEST <-TRUE

ELSE DEST <-FALSE

DEO IF SRCA (double-precision) = SRCB (double-precision)
THEN DEST <-TRUE

ELSE DEST <-FALSE

FGE IF SRCA (single-precision) >= SRCB (single-precision)
THEN DEST <-TRUE

ELSE DEST <-FALSE

DGE IF SRCA (double-precision) >= SRCB (double-precision)
THEN DEST <-TRUE

ELSE DEST <-FALSE

FGT IF SRCA (single-precision) > SRCB (single-precision)
THEN DEST <-TRUE

ELSE DEST <-FALSE

DGT IF SRCA (double-precision) > SRCB (double-precision)
THEN DEST <-TRUE

ELSE DEST <-FALSE

SORT DEST (single-precision, double-precision, extended-precision)
<-SORT[SRCA (single-precision, double-precision, extended-precision)]

CONVERT DEST (integer, single-precision, double-precision)
<-SRCA (integer, single-precision, double-precision)

CLASS DEST (single-precision, double-precision, extended-precision)
<-CLASS[SRCA (single-precision, double-precision, extended-precision)]

Figure 42. Floating-Point Instructions

1-62

Am29000

Mnemonic Operation Description

CAll DEST <-PCI/OO + 8
PC <-TARGET
Execute delay instruction

CALLI DEST <-PCI/OO + 8
PC <-SRCB
Execute delay instruction

JMP PC <-TARGET
Execute delay instruction

JMPI PC <-SRCB
Execute delay instruction

JMPT IF SRCA'" TRUE THEN PC <-TARGET
Execute delay instruction

JMPTI IF SRCA = TRUE THEN PC <-SRCB
Execute delay instruction

JMPF IF SRCA = FALSE THEN PC <-TARGET
Execute delay instruction

JMPFI IF SRCA = FALSE THEN PC <-SRCB
Execute delay instruction

JMPFDEC IF SRCA = FALSE THEN
SRCA <-SRCA -1
PC <-TARGET

ELSE
SRCA <-S·RCA -1

Execute delay instruction

Figure 43. Branch Instructions

Mnemonic Operation Description

CLZ Determine number of leading zeros in a word

SETIP Set IPA, IPB, and IPC with operand register numbers

EMULATE Load IPA and IPB with operand register numbers, and Trap (VN)

INV Reset all Valid bits in Branch Target Cache to zeros

IRET Perform an interrupt return sequence

IRETINV Perform an interrupt return sequence, and reset all Valid bits
in Branch Target Cache to zeros

HALT Enter Halt mode on next cycle

Figure 44. Miscellaneous Instructions

1-63

29K Family CMOS Devices

DATA FORMATS AND HANDLING
This section describes the various data types supported
by the Am29000, and the mechanisms for accessing
data in external devices and memories. The Am29000
includes provisions for the external access of bytes,
half-words, unaligned words, and unaligned half-words,
as described in this section.

Integer Data Types
Most Am29000 instructions deal directly with word­
length integer data; integers may be either signed or un­
signed, depending on the instruction. Some instructions
(e.g., AND) treat word-length operands as strings of
bits. In addition, there is support for character, half­
word, and Boolean data types.

Byte Operations
The processor supports character data through load,
store, extraction, and insertion operations on word­
length operands, and by a compare operation on byte­
length fields within words. The format for unsigned and
signed characters is shown in Figure 45; for signed
characters, the sign bit is the most-significant bit of the
character. For sequences of packed characters within
words, bytes are ordered either left-to-right or right-to­
left, depending on the BO bit of the Configuration Regis­
ter (see Special Floating-Point Values section).

If the Data Width Enable (OW) bit of the Configuration
Register is 1, the Am29000 is enabled to load and store
byte data. On a load, an external packed byte is con­
verted to one of the character formats shown in
Figure 45. On a store, the low,-order byte of a word is
packed into every byte of an external word. The External
Data Accesses section describes external byte ac­
cesses in more detail.

The Extract Byte (EXBYTE) instruction replaces the
low-order character of a destination word with an arbi­
trary byte-aligned character from a source word. Forthe
EXBYTE instruction, the destination word can be a zero'
word, which effectively zero-extends the character from
the source operand.

The Insert Byte (INBYTE) instruction replaces an arbi­
trary byte-aligned character in a destination word with

Unsigned:

the low-order character of a source word. For the IN­
BYTE instruction, the source operand can be a charac­
ter constant specified by the instruction.

The Compare Bytes (CPBYTE) instruction compares
two word-length operands and gives a result of True if
any corresponding bytes within the operands have
equivalent values. This allows programs to detect char­
acters within words without first having to extract individ­
ual characters, one at a time, from the word of interest.

Half-Word Operations
The processor supports half-word data through load,
store, insertion, and extraction operations on word­
length operands. The format for unsigned and signed
half-words is shown in Figure 46; for Signed half-words,
the sign bit is the most-significant bit of the half-word.
For sequences of packed half-words within words, half­
words are ordered either left-to-right or right-to-Ieft, de­
pending on the Byte Order (BO) bit of the Configuration
Register (see Addressing and Alignment section).

If the Data Width Enable (OW) bit of the Configuration
Register is 1, the Am29000 is enabled to load and store
half-word data. On a load, an external packed half-word
is converted to one of the formats shown in Figure 46.
On a store, the low-order half-word of a word is packed
into every half-word of an external word.

The Extract Half-Word (EXHW) instruction replaces the
low-order half-word of a destination word with either the
low-order or high-order half-word of a source word. For
the EXHW instruction, the destination word can be a
zero word, which effectively zero-extends the half-word
from the source operand.

The Extract Half-Word, Sign-Extended (EXHWS) in­
struction is similar to the EXHW instruction, except that
it sign-extends the half-word in the destination word
(Le., it replaces the most-significant 16 bits of the desti­
nation word with the most-Significant bit of the source
half-word).

The Insert Half-Word (INHW) instruction replaces either
the low-order or high-order half-word in a destination
word with the low-order half-word of a source word.

31 23 15 7 0

III I I I I I I I I I I I I I I I II I I I I II I I I I I I I
o 0 data

Signed:
31 23 15 7 0

II III I I I I I I
s d~a

Figure 45. Character Format

1-64

Am29000

Unsigned:
31 23 15 7 0

II I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d~a

Signed:
31 23 15 7 0 I" II II I I I I I I I I I III II ". I I II I I I I I I
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 d~a

Figure 46. Half-Word Format

Boolean Data
Some instructions in the Compare class generate word­
length Boolean results. Also, conditional branches are
conditional upon Boolean operands. The Boolean for­
mat used by the processor is such that the Boolean
values True and False are represented by a 1 or 0,
respectively, in the most-significant bit of a word. The
remaining bits are unimportant; for the compare instruc­
tions, they are reset. Note that twos-complement
negative integers are indicated by the Boolean value
True in this encoding scheme.

Floating-Point Data Typ~s
The Am29000 defines single-· and double-precision
floating-point formats that comply with the IEEE Stan­
dard for Binary Floating-Point Arithmetic (ANSI/IEEE
Std. 754-1985). These data types are not supported di­
rectly in processor hardware, but can be implemented
by a virtual floating-point interface provided in the
Am29000.

I n this section, the following nomenclature is used to de­
note fields in a floating-point value:

• s: sign bit

• bexp: biased exponent

• frac: fraction

• sig: significand

Single-Precision Floating-Point
The format for a single-precision floating-point value is
shown in Figure 47.

Typically, the value of a single-precision operand is ex­
pressed by:

(-1)**s * 1.frac * 2**(bexp-127).

The encoding of speCial floating-point values is given in
the Special Floating-Point Values section.

Double-Precision Floating-Point

The format for a double-precision floating-point value is
shown in Figure 48.

Typically, the value of a double-precision operand is ex­
pressed by:

(-1)**s * 1.frac * 2**(bexp-1023).

The encoding of speCial floating-point values is given in
the Special Floating-Point Values section.

In order to be properly referenced by a floating-point
instruction, a double-precision floating-point value must
be double-word aligned. The absolute register number
of the register containing the first word (labeled "0" in
Figure 48) must be even. The absolute register number
of the register containing the second word (labeled "1" in
Figure 48) must be odd. If these conditions are not met,
the results of the instruction are unpredictable. Note that
the appropriate registers for a double-precision value
in the local registers depend on the value of the Stack
Pointer.

Figure 47. Single-Precision Floating-Point Format

1-65

29K Family CMOS Devices

31 23 15 7 a

I s I : : : : H: : : : I : : : ... ~ra~ : : : : ,H··: : : : : : : : I 0

Figure 48. Double-Precision Floating-Point Format

Special Floating-Point Values
The Am29000 defines floating-point values that are en­
coded for special interpretation. The values are de­
scribed in this section.

Not-a-Number

A Not-a-Number (NaN) is a symbolic value used to re­
port certain floating-point exceptions. It also can be
used to implement user-defined extensions to floating­
point operations. A NaN comprises a floating-point num­
ber with maximum biased exponent and non-zero frac­
tion. The sign bit can be either 0 or 1 and has no signifi­
cance. There are two types of NaN: Signaling NaNs and
quiet NaNs. A signaling NaN causes an Invalid Opera­
tion exception if used as an input operand to a floating­
point operation; a quiet NaN does not cause an excep­
tion. The Am29000 distinguishes Signaling and quiet
NaNs by the most-significant bit of the fraction: a 1 indi­
cates a quiet NaN, and a 0 indicates 2 Signaling NaN.

An operation never generates a signaling NaN as a re­
sult. A quiet NaN result can be generated in one of two
ways:

• as the result of an invalid operation that can­
not generate a reasonable result, or

• as the result of an operation for which one or
more input operands are either signaling or
quiet NaNs.

In either case, the Am29000 produces a quiet NaN hav­
ing a fraction of 11000 ... 0; that is, the two most-signifi­
cant bits of the fraction are 11, andthe remaining bits are
O. If desired, the Reserved Operand exception can be
enabled to cause a Floating-Point Exception trap. The
trap handler in this case can implement a scheme
whereby user-defined NaN values appear to pass
through operations as results, providing overall status
for a series of operations.

Infinity

Infinity is an encoded value used to represent a value
that is too large to be represented as a finite number in
a given floating-point format. Infinity comprises a float­
ing-point number with maximum biased exponent and
zero fraction. The sign bit of an infinity distinguishes +00

from -<><>.

1·66

Denormallzed Numbers

The IEEE Standard specifies that, wherever possible, a
result that is too small to be represented as a normalized
number be represented as a denormalized number. A
denormalized number may be used as an input operand
to any operation. For single- and double-precision for­
mats, a denormalized number comprises a floating­
point number with a biased exponent of 0 and a non­
zero fraction field; the sign bit can be either 1 or O. The
value of a denormalized number is expressed by:

(-1)**s· O.frac· 2*"'(-bias+1),

where "bias" is the exponent bias for the format in
question.

Zero
A zero comprises a floating-point number with a biased
exponent of 0 and a zero fraction field. The sign bit of a
zero can be eitherO or 1; however, positive and negative
zero are both exactly zero, and are considered equal by
comparison operations.

External Data Accesses
All processor external accesses occur between
general-purpose registers and external devices and
memories. Accesses occur as the result of the execu­
tion of load and store instructions. The load and store in­
structions specify which general-purpose register re­
ceives the data (for a load) or supplies the data (for a
store). The format of the load and store instructions is
shown in Figure 49.

Addresses for accesses are given either by the content
of a general-purpose register or by a constant value
specified by the load or store instruction. The load and
store instructions do not perform address computation
directly. Any required address computations are per­
formed explicitly by other instructions.

In the load or store instruction, the Coprocessor Enable
(CE) bit (bit 23) determines whether or not the access is
directed to the coprocessor. If the CE bit is 0, the access
is directed to an external device or memory. If the CE bit
is 1, data is transferred to or from the coprocessor. The
CE bit affects the interpretation of the Control (CNTL)
field as well as the channel protocol. This section deals

Am29000

31 23 15 7 0

I
I I I I I I I III I I I I I

x x x x x x X M .. CNTL

I I I I I I I II I I I I I I
RA . RBor I

CE

Figure 49. Load/Store Instruction Format

with all external accesses other than coprocessor
accesses.

The format of the instructions that do not perform
coprocessor data transfers (i.e., in which the CE bit is 0)
is shown in Figure 50.

In load and store instructions, the "RB or I"field specifies
the address for access. The address is either the con­
tent of a general-purpose register, with register number
RB, or a constant with a value I (zero-extended to 32
bits). The M bit determines whether the register or the
constant is used.

The data for the access is written into the general­
purpose register RA for a load, and is supplied by regis­
ter RA for a store.

The definitions for other fields in the load or store in­
struction are given below:

Bit 23: Coprocessor Enable (CE)-The CE bit is 0 for
a non-coprocessor load or store.

Bit 22: Address Space (AS)-If the AS bit is 0 for an
untranslated load or store, the access is directed to in­
struction/data memory. If the AS bit is 1 for an untrans­
lated load or store, the access is directed to inpuVoutput.
The AS bit must be 0 for a translated load or store; if the
AS bit is 1 for a translated load or store, a Protection Vio­
lation trap occurs. The address space for a translated
load or store is determined by the InpuVOutput (IO) bit of
the associated TLB entry. '

Bit 21: Physical Address {PA)-The PA bit may be
used by a Supervisor-mode program to disable address
translation for an access. If the PA bit is 1, then address
translation is not performed for the access, regardless of
the value of the Physical Addressing/Data (PO) bit in the

Current Processor Status Register. If the PA bit is 0, ad­
dress translation depends on the PO bit.

The PA bit may be 1 only for Supervisor-mode instruc­
tions. If it is 1 for a User-mode instruction, a Protection
Violation trap occurs.

Bit 20: Set Byte Pointer/Sign Bit (SB)-If the Data
Width Enable (OW) bit of the Configuration Register is 0
and the SB bit is 1, the Byte Pointer Register is written
with the two least-significant bits of the address for the
access. These address bits can control subsequent
character and half-word operations. If the BP bit is 0, the
Byte Pointer Register is not affected.

If the Data Width Enable (OW) bit of the Configuration
Register is 1 and the SB bit is 1 for a load, the loaded
byte or half-word is sign-extended in the destination reg­
ister; if the SB bit is 0, the byte or half-word is zero-ex­
tended. If the OW bit is 1 and the SB bit is 1 for either a
load or store, then each bit of the Byte Pointer Register
is written with the complement of the Byte Order bit of
the Configuration Register. The Byte Pointer Register is
set in this case to provide software compatibility across
different types of memory systems. If the SB bit is 0, the
Byte Pointer Register is not affected.

Bit 19: User Access (UA)-The UA bit allows pro­
grams executing in the Supervisor mode to emulate
User-mode accesses. This allows checking of the
authorization of an access requested by a User-mode
program. It also causes address translation (if applica­
ble) to be performed using the PID field of the MMU
Configuration Register, rather than the fixed Supervi­
sor-mode process identifier zero.

If the UA bit is 1 for a Supervisor-mode load or store, the
access associated with the instruction is performed in

31 23 15 7 0

II I I I I I I
~X X X X X X M

I : : : I

: • : I :

CE : PA: UA
I
I

AS SB

I
I I I I I I I

. RB or I

Figure SO. Non-Coprocessor Load/Store Format

1-67

29K Family CMOS Devices

the User mode. In this case, the User mode affects only
TLB protection checking, the SUP/US output, and the
use of the PID field in translation; it has no effect on the
registers that can be accessed by the instruction. If the
UA bit is 0, the program mode for the access is con­
trolled by the SM bit.

If the UA bit is 1 for a User-mode load or store, a Protec­
tion Violation trap occurs.

Bits 18-16: Option (OPT}-This field is placed on the
. OPT 2-OPTo outputs during the address cycle of the ac­
cess. There is a one-to-one correspondence between
the OPT field and the OPT2-0PTo outputs; that is, the
most-significant OPT bit is placed on OPT2, and so on.

The OPT field controls system functions as described
below. .,'

Bits 15-8: (RA)-The data for the access is written into
the general-purpose register RA for a load, and is sup­
plied by register RA for a store.

Bits 7-0: (RB or I)-In load and store instructions, the
"RB or I" field specifies the address for the access. The
address is either the content of a general-purpose reg­
ister with register number RB, or a constant value I
(zero-extended to 32 bits). The M bit of the operation
code (bit 24) determines whether the registerorthe con­
stant is used.

Load and store operations are overlapped with the exe­
cution of instructions that follow the load or store instruc­
tion. Only one load or store may be in progress on any
given cycle. If a load or store instruction is encountered
while another load or store operation is in progress, the
processor enters the Pipeline Hold mode until the first
operation is completed. However, the address for the
second operation may appear on the address bus if the
first operation is to a device or memory that supports
pipe lined operations (see Pipelined Accesses section).

Load Operations

The processor provides the following instructions for
performing load operations: Load (LOAD), Load and
Lock (LOADL), Load and Set (LOADSET), and Load
Multiple (LOADM). All of these instructions transfer data
from an external device or memory into one or more
general-purpose registers.

The LOADL instruction supports the implementation of
device and memory interlocks in a multiprocessor con­
figuration. It activates the LOCK output during the ad­
dress cycle of the access.

The lOADSET instruction implements a binary sema­
phore .It loads a general-purpose register and automati­
cally writes the accessed location with a word that has 1
in every bit position (that is, the write is indivisible from
the read). The LOCK output is asserted during both the
read and write accesses. Note that, if address transla­
tion is enabled for the LOADSET instruction, the TLB
memory-protection bits must allow both the read and

1-68

write accesses. If either the read or write access is not
allowed, neither access is performed.

The LOADM loads a specified number of registers from
sequential addresses, as explained below.

Load operations are overlapped with the execution of in­
structions that follow the load instruction. The processor
detects any dependencies on the loaded data that sub­
sequent instructions may have, and, if such a depen­
dency is detected, enters the Pipeline Hold mode until
the data are returned by the external device or memory .
If a register that is the target of an incomplete load is
written with the result of a subsequent instruction, the
processor does not write the returning data into the reg­
ister when the load is completed; the Not Needed (NN)
bit in the Channel Control Register is set in this case.

Store Operations
The processor provides the following instructions for
performing store operations: Store (STORE), Store and
Lock (STOREL), and Store Multiple (STOREM). All of
these instructions transfer data from one or more
,general-purpose registers to an external device or
memory.

The STOREL instruction supports the implementation
of device and memory interlocks in a multiprocessor
configuration. It activates the LOCK output during the
address cycle of the access.

The STOREM instruction stores a specified number of
registers to sequential addresses, as explained below.

Store operations are overlapped with the execution of
instructions that follow the store instruction. However,
no data dependencies can exist since the store prevents
any subsequent accesses until it is completed.

Multiple Accesses

Load Multiple (LOADM) and Store Multiple (STOREM)
instructions move contiguous words of data between
general-purpose registers and external devices and
memories. The numberof transfers is determined by the
Load/Store Count Remaining Register.

The Load/Store Count Remaining (CR) field in the Load/
Store Count Remaining Register specifies the number
of transfers to be performed by the next LOADM or
STOREM executed in the instruction sequence. The CR
field is in the range of 0 to 255 and is zero-based; a count
value of 0 represents one transfer, and a count value of
255 represents 256 transfers. The CR field also appears
in the Channel Control Register.

Before a LOADM or STOREM is executed, the CR field
is set by a Move To Special Register. A LOADM or
STOREM uses the most recently written value of the CR
field. If an attempt is made to alter the CR field and the
Channel Control Register contains information for an
external access that has not yet been completed, the
processor enters the Pipeline Hold mode until the

access is completed. Note that since the CR is set inde­
pendently of the LOADM and STOREM, the CR field
may represent a valid state of an interrupted program
even if the Contents Valid (CV) bit of the Channel
Control Register is O.

Because of the pipelined implementation of LOADM
and STOREM, at least one instruction (e.g., the instruc­
tion that sets the CR field) must separate two succes­
sive LOADM and/or STOREM instructions.

After the CR field is set, the execution of a LOADM or
STOREM begins the data transfer. As with any other
load or store operation, the LOADM or STOREM waits
until any pending load or store operation is complete
before starting. The LOADM instruction specifies
the starting address and starting destination general­
purpose register. The STOREM instruction specifies the
starting address and the starting source general­
purpose register.

During the execution of the LOADM or STOREM
instruction, the processor updates the address and reg­
ister number after every access, incrementing the
address by 4 and the register number by 1. This contin­
ues until either all accesses are completed or an inter­
rupt or trap is taken.

For a Load Multiple or Store Multiple address sequence,
addresses wrap from the largest possible value (hexa­
decimal FFFFFFFC) to the smallest possible value
(hexadecimal 00000000).

The processor increments absolute register numbers
during the Load Multiple or Store Multiple sequence. Ab­
solute register numbers wrap from 127 to 128, and from
255 to 128. Thus, a sequence that begins in the global
registers may make a transition to the local registers, but
a sequence that begins in the local registers remains in
the local registers. Also, note that the local registers are
addressed circularly.

The normal restrictions on register accesses apply for
the Load Multiple and Store Multiple sequences. Forex­
ample, if a protected general-purpose register is en­
countered in the sequence for a User-mode program, a
Protection Violation trap occurs.

Intermediate addresses are stored in the Channel Ad­
dress Register, and register numbers are stored in the
Target Register (TR) field of the Channel Control Regis­
ter. For the STOREM instruction, the data for every
access is stored in the Channel Data Register (this
register also is set during the execution of the LOADM
instruction, but has no interpretation in this case). The
CR field is updated on the completion of every access so
that it indicates the number of accesses remaining in the
sequence.

Load Multiple and Store Multiple operations are indi­
cated by the Multiple Operation (ML) bit in the Channel

Am29000
Control Register. This bit may be 1 even though the CR
field has a value of 0 (indicating that one transfer
remains to be performed). The ML bit is used to restart a
multiple operation on an interrupt return; if it is set
independently by a Move To Special Register before a
load or store instruction is executed, the results are
unpredictable.

While a multiple load orstore is executing, the processor
is in the Pipeline Hold mode, suspending any subse­
quent instruction execution until the multiple access is
completed. If an interrupt or trap is taken, the Channel
Address, Channel Data, and Channel Control registers
contain the state of the multiple access at the point of in­
terruption. The multiple access may be resumed at this
point, at a later time, by an interrupt return.

The processor attempts to complete multiple accesses
using the burst-mode capability of the channel (see
Burst-Mode Accesses section). Forthis reason, multiple
accesses of individual bytes and half-words are not sup­
ported. If the burst-mode access is preempted, the pro­
cessor retransmits the address at the point of preemp­
tion. If the external device or memory cannot support
burst-mode accesses, the processor transmits an ad­
dress for every access. If the address sequence causes
a virtual page-boundary crossing, the processor
preempts the burst-mode access, translates the ad­
dress for the new page, and reestablishes the burst­
mode access using the new physical address.

The last load or store is executed as a simple access.
The processor will preempt burst-mode transfer imme­
diately prior to the last word of the transfer.

Option Bits
The Option field in the load and store instructions sup­
ports system functions, such as byte and half-word ac­
cesses. The definition of this field for a load or store, de­
pending on the AS bit of the instruction, is as follows:

AS OPTz OPT1 OPTo Meaning

x 0 0 0 Word-length access
x 0 0 1 Byte access
x 0 1 0 Half-word access
0 1 0 0 Instruction ROM

access (as data)
0 0 1 Cache control
0 1 0 ADAPT29K accesses

-all others- Reserved

Note that some of these encodings do not affect proces­
sor operation, and could have other interpretations in a
particular system. For example, the OPT values 000,
001, and 010 affect processor operation only if the OW
bit of the Configuration Register is 1. However, non­
standard uses of the OPT field have an implication on
the portability of software between different systems.

1-69

29K Family CMOS Devices

Addressing and Alignment
Address Spaces

External instructions and data are contained in one of
four 32-bit address spaces:

1. Instruction/Data Memory

2. Input/Output

3. Coprocessor

4. Instruction Read-Only Memory (Instruction
ROM).

An address in the instruction/data memory address
space may be treated as virtual or physical, as deter­
mined by the Current Processor Status Register. Ad­
dress translation for data accesses is enabled sepa­
rately from address translation for instruction accesses.
A program in the Supervisor mode may temporarily dis­
able address translation for individual loads and stores;
this permits load-real and store-real operations.

It is possible to partition physical instruction and data ad­
dresses into two separate physical address spaces.
However, virtual instruction and data addresses appear
in the same virtual address space (Le., instruction/data
memory).

The coprocessor address space is not an address
space in the strictest sense. The coprocessor address
space is defined so that transfers of operands and op­
eration codes to the coprocessor do not interfere with
other external devices and memories.

The processor does not directly support the access of
the instruction ROM address space using loads and
stores; this capability is defined as a system option re­
quiring external hardware.

For untranslated data accesses, bits contained in load
and store instructions distinguish between the instruc­
tion/data memory, inpUt/output, and coprocessor ad­
dress spaces. For translated data accesses, the Input/
Output bit of the associated TLB entry distinguishes
between the instruction/data memory and input/output
address spaces.

For instruction fetches, the ROM Enable (RE) bit of the
Current Processor Status Register distinguishes be­
tween the instruction/data and instruction ROM address
spaces.

Byte and Half-Word Addressing

The Am29000 generates word-oriented byte addresses
for accesses to external devices and memorie's. Ad­
dresses are word-oriented because loads, stores, and
instruction fetches access words. However, addresses
are byte addresses because they are sufficient to select
bytes packed within accessed words. For load and store
operations, the processor provides means for using the
least-significant address bits to access bytes and half­
words within external words.

1-70

The selection of a byte within a word is determined by
the two least-significant bits of an address and the Byte
Order (BO) bit of the Configuration Register. The selec­
tion of a half-word within a word is determined by the
next-to-Ieast-significant bit of an address and the BO bit.
Figure 51 illustrates the addressing of bytes and half­
words when the BO bit is 0, and Figure 52 illustrates the
addressing of bytes and half-words when the BO bit is 1.
In Figure 51 and Figure 52, addresses are represented
in hexadecimal notation.

In the processor, the two least-significant bits of an ex­
ternal address can be reflected in the Byte Pointer (BP)
field of the ALU Status Register when the OW bit of the
Configuration Register is O. Alternatively, the two least­
significant bits of the address can be used to control byte
and half-word accesses when the OW bit is 1. The BO bit
affects only the interpretation of the BP field and the two
least-Significant address bits.

If the BO bit is 0, bytes are ordered within words such
that a 00 in the BP field or in the two least-significant ad­
dress bits selects the high-order byte of a word, and a 11
selects the low-order byte. If the BO bit is 1, a 00 in the
BP field or in the two least-significant address bits se­
lects the low-order byte of a word, and a 11 selects the
high-order byte.

If the BO bit is 0, half-words are ordered within words
such that a 0 in the most-significant bit of the BP field or
the next-to-Ieast-significant address bit selects the high­
order half-word, and a 1 selects the low-order half-word.
If the BO bit is 1, a 0 in the most-significant bit of the BP
field or the next-to-Ieast-significant address bit selects
the low-order half-word of a word, and a 1 selects the
high-order half-word. Note that since the least-signifi­
cant bit of the BP field or an address does not participate
in the selection of half-words, the alignment of half­
words is forced to half-word boundaries in this case.

Alignment of Words and Half-Words

Since only byte addressing is supported, it is possible
that an address for the access of a word or half-word is
not aligned to the desired word or half-word. The
Am29000 either ignores or forces alignment in most
cases. However, some systems may require that un­
aligned accesses be supported for compatibility rea­
sons. Because of this, the Am29000 provides an option
that creates a trap when a nonaligned access is at­
tempted. This trap allows software emulation of the non­
aligned accesses in a manner that is appropriate for the
particular system.

The detection of unaligned accesses is activated by a 1
in the Trap Unaligned Access (TU) bit of the Current
Processor Status Register. Unaligned access detection
is based on the data length as indicated by the OPT field
of a load or store instruction, and on the two least-signifi­
cant bits of the specified address. Only addresses for
instruction/data memory accesses are checked; align-

Am29000

31 23 15 7 o

Word 00000000
Half-Word 00000000 Half-Word 00000002

Byte 00000000 Byte 00000001 Byte 00000002 Byte 00000003

Word 00000004
Half-Word 00000004 Half-Word 00000006

Byte 00000004 Byte 00000005 Byte 00000006 Byte 00000007

Word FFFFFFFC
Half-Word FFFFFFFC Half-Word FFFFFFFE

Byte FFFFFFFC Byte FFFFFFFD Byte FFFFFFFE Byte FFFFFFFF

Figure 51. Byte and Half-Word Addressing with BO = 0

31 o

Word 00000000
Half-Word 00000002 Half-Word 00000000

Byte 00000003 Byte 00000002 Byte 00000001 Byte 00000000

Word 00000004
Half-Word 00000006 Half-Word 00000004

Byte 00000007 Byte 00000006 Byte 00000005 Byte 00000004

Word FFFFFFFC
Half-Word FFFFFFFE Half-Word FFFFFFFC

Byte FFFFFFFF Byte FFFFFFFE Byte FFFFFFFD Byte FFFFFFFC

Figure 52. Byte and Half-Word Addressing with BO = 1

1·71

29K Family CMOS Devices

ment is ignored for input/output accesses and copro­
cessor transfers.

An Unaligned Access trap occurs only if the TU bit is 1
and any of the following combinations of OPT field and
address bits is detected for a load or store to instructionl
data memory:

o 0
o 0
o 0

o
o

o
o
o

o
o

1 0
o 1
1 1

o
1

Unaligned
word access'

Unaligned
half-word access

The trap handler for the Unaligned Access trap is
responsible for generating the correct sequence of
aligned accesses and performing any necessary shift­
ing, masking andlor merging. Note that a virtual page­
boundary crossing also may have to be considered.

Alignment of Instructions
Inthe Am29000, all instructions are 32 bits in length, and
are aligned on word-address boundaries. The proces­
sor's Program Counter is 30 bits in length, and the least­
significant 2 bits of pro<:essor-generated instruction ad­
dresses are always 00. An unaligned address can be
generated by indirect jumps and calls. However, align­
ment is ignored by the processor in this case, and it ex­
pects the system to force alignment (Le., by interpreting
the two least-significant address bits as 00, regardless
of their values).

Accessing Instructions as Data
To aid the external access of instructions and data on
separate buses, the processor distinguishes between
instruction and data accesses. However, it does not
support a logical distinction between instruction and
data address spaces (except in the case of instruction
read-only memory). In particular, address translation in
the Memory Management Unit is in no way affected by
this distinction (although memory protection is).

In systems where it is necessary to access instructions
as data, this function should be performed via the
shared address space. The OPT field provides a means
for loads to access instructions in the instruction read­
only memory (ROM) address space. The Am29000
does not take any action to prevent a store to the instruc­
tion ROM address space.

Byte and Half-Word Accesses
The Am29000 can perform byte and half -word accesses
in either software or hardware under control of the Data
Width Enable (OW) bit of the Configuration Register.
Software byte and half-word accesses are selected by a
OW bit of 0, and hardware byte and half-word accesses
are selected by a OW bit of 1. Software byte and half­
word accesses are less efficient than hardware byte and

half-word accesses, but hardware accesses require that
the system be able to selectively write individual byte
and half-word positions within external devices and
memories. The software-only technique is compatible
with systems designed to provide hardware support for
byte and half-word accesses.

This section describes the operation of both software
and hardware byte and half-word accesses. Byte and
half-word accesses operate as described here for mem­
ory and input/output accesses, but not for coprocessor
transfers. Coprocessor transfers are unaffected by the
OW bit.

The OW bit is cleared by a processor reset. It must ex­
plicitly be set to 1 by software before hardware byte and
half-word accesses can be performed.

Software Byte and Half-Word Accesses
If the OW bit is 0, the Am29000 allows the Byte Pointer
Registerto be set with the least-significant bits of an ad-'
dress specified by any load or store instruction, except
those that transfer information to and from the coproces­
sor. Insert and extract instructions can then be used to
access the byte or half-word of interest, after the exter­
nal-word has been accessed. This provides a general-'
purpose mechanism for manipulating external byte and
half-word data, without the need for external hardware
support.

To load a byte or half-word, a word load is first per­
formed. This load sets the BP field with the two least­
significant bits of the address. A subsequent EXBYTE,
EXHW, or EXHWS instruction extracts the byte or half­
word of interest from the accessed word.

To store a byte or half-word, a load is first performed,
setting the BP field with the two least-significant bits of
the address. A subsequent INBYTE or INHWinstruction
inserts the byte or half-word of interest into the accessed
word, and the resulting word is then stored.

Software that relies on loads and stores setting the BP
field cannot operate correctly when the Freeze (FZ) bit
of the Current Processor Status Register is 1 , because
the ALU Status Register is frozen.

Hardware Byte and Half-Word Accesses
If the OW bit is 1 on a load, the Am29000 selects a byte
or half-word from the loaded word depending on the Op­
tion (OPT) bits of the load instruction, the Byte Order
(BO) bit of the Configuration Register, and the two least­
significant bits of the address (for bytes) or the next-to­
least-significant bit of the address (for half-words). The
selected byte or half-word is right-justified within the
destination register. If the SB bit of the load instruction is
0, the remainder of the destination register is zero­
extended. If the SB bit is 1, the remainder of the destina­
tion register is sign-extended with the sign bit of the se­
lected byte or half-word.

If the OW bit is 1 on a store, the Am29000 replicates the
low-order byte or half-word in the source register into

every byte and half-word position of the stored word.
The system is responsible for generating the appropri­
ate byte and/or half-word strobes, based on the OPT 2-

OPT 0 signals and the two least-significant bits of the ad­
dress, to write the appropriate byte or half-word in the
selected device or memory (the system byte order must
also be considered). The SB bit does not affect the op­
eration of a store, except for setting the BP field as de­
scribed below.

If the SB bit is 1 for either a load or store and the OW bit is
also 1, both bits of the BP field are set to the complement
of the BO bit when the load or store is executed. This
does not directly affect the load or store access, but
supports compatibility for software developed for word­
write-only systems. Hardware byte and half-word
accesses-in contrast to software byte and half-word
accesses-<;an be performed when the FZ bit is 1, be­
cause these accesses do not rely on the BP field.

System Alternatives and Compatibility

The two mechanisms for performing byte and half-word
accesses create the possibility of two types of systems.
These are named for convenience:

.. Type 1: simple, word-only accesses in exter­
nal devices and memories; software byte and
half-word accesses.

.. Type 2: byte/half-word strobes in external de­
vices and memories; hardware byte and half­
word accesses by the Am29000.

The provision for hardware byte and half-word accesses
encourages Type 2 systems. Software for Type 1 sys­
tems can execute on Type 2 systems, but the reverse is
not true. Software compatibility is possible primarily be­
cause of the OW bit and because the Am29000 sets the
BP field with an appropriate byte pointer even when it
performs byte and half-word accesses with internal
hardware. Also, the system must return a full word in
either type of system, regardless of the access data­
width. The OW bit must be 0 in Type 1 systems and must
be 1 in Type 2 systems. To illustrate compatibility be­
tween systems, consider the following steps of an un­
signed byte load compiled for a Type 1 system, but exe­
cuting on a Type 2 system:

1. Perform a load with OPT = 001 and SB = 1.

II Type 1 system: The addressed word is ac­
cessed and placed into the destination regis­
ter. The BP field is set with the two least-sig­
nificant bits of the address.

.. Type 2 system: The addressed byte is ac­
cessed, aligned, padded, and placed into the
destination register. The BP field is set to point
to the low-order byte, reflecting the alignment
that has been performed (the pointer depends
on the value of the BO bit).

Am29000

2. Perform a byte extract on the loaded word.

• Type 1 system: The byte selected by the BP
field is aligned to the low-order byte of the des­
tination register and the remainder of the word
is zero-extended. The selected byte may be in
any byte position.

II Type 2 system: The byte selected by the BP
field (set to point to the low-order byte) is
aligned to the low-order byte of the destination
register and the remainder of the word is zero­
extended. (Note that the selected byte was al­
ready in the low-order byte position. This op­
eration does not change the program state
but merely allows software compatibility.)

The recommended instruction sequences for all types of
byte and half-word accesses and for both types of sys­
tems are enumerated below. Compatibility between
these systems follows the above example, but for brev­
ity, compatibility is not described in detail here.

Byte read, unsigned:

Comments

load O,17,temp,addr ; OPT = 001, SB = 1
exbyte temp,temp,O ; get byte

Comments

load O,1,temp,addr ; OPT = 001, SB = 0

Byte read, signed:

Comments

load O,17,temp,addr ; OPT = 001, SB = 1
exbyte temp,temp,O ; get byte
sll temp,temp,24 ; sign extend
sra temp,temp,24

Comments

load O,17,temp,addr ; OPT = 001, SB = 1
(sign extended)

Byte Write:

Comments

load O,17,temp,addr ; OPT = 001, SB = 1
inbyte temp,temp, ; insert byte
data
store O,1,temp,addr ; store

IY.l2tl Comments

store O,1,data,addr ; OPT = 001, S8 = 0

1-73

29K Family CMOS Devices

Half-word read, unsigned:

Comments

load 0,18,temp,addr ; OPT = 010, S8 = 1
exhw temp,temp,O ; get half-word un-

signed

Imtl Comments

load 0,2,temp,addr ; OPT= 010, S8=0

Half-word read, signed:

1-74

Comments

load 0,18,temp,addr ; OPT = 010, S8= 1
exhws temp,temp ; get half-word sign-

extend

Comments

load 0,18,temp,addr ; OPT = 010, S8 = 1,
(sign-extend)

Half-word write:

Comments

load 0,18,temp,addr ; OPT = 010, S8 = 1
inhw temp,temp,data ; insert half-word
store 0,2,temp,addr ; store

Imtl Comments

store 0,2,data,addr ; OPT = 010, S8 = °

INTERRUPTS AND TRAPS
Interrupts and traps cause the Am29000 to suspend the
execution of an instruction sequence and to begin the
execution of a new sequence. The processor mayor
may not later resume the execution of the original in­
struction sequence.

The distinction between interrupts and traps is largely
one of causation and enabling. Interrupts allow external
devices and the Timer Facility to control processor exe­
cution, and are always asynchronous to program execu­
tion. Traps are intended to be used for certain excep­
tional events that occur during instruction execution,
and are generally synchronous to program execution.

Throughout this manual, a distinction is made between
the point at which an interrupt or trap occurs and the
point at which it is taken. An interrupt or trap is said to
occur when all conditions that define the interrupt or trap
are met. However, an interrupt or trap that occurs is not
necessarily recognized by the processor, either be­
cause of various enables or because of the processor's
operational mode (e.g., Halt mode). An interrupt ortrap
is taken when the processor recognizes the interrupt or
trap and alters its behavior accordingly.

Interrupts
Interrupts are caused by signals applied to any of the ex­
ternal inputs INTIb-INTRo, or by the Timer Facility. The
processor may be disabled from taking certain inter­
rupts by the masking capability provided by the Oisable
All Interrupts and Traps (OA) bit, Oisable Interrupts (01)
bit, and Interrupt Mask (1M) field in the Current Proces­
sor Status Register.

The OA bit disables all interrupts and most traps. The 01
bit disables external interrupts without affecting the rec­
ognition of traps and Timer interrupts. The 2-bit 1M field
selectively enables external interrupts as follows:

1M Value

00
01
10
1 1

Result

IN"fRo enabled
IN~-IN"fRo enabled
INTR:z-IN"fRo enabled
IN1B:,-INlRo enabled

Note that the INTRo interrupt cannot be disabled by the
1M field. Also, note that no external interrupt is taken if
either the OA or 01 bit is 1. The Interrupt Pending bit in
the Current Processor Status indicates that one or more
of the signals INTIb-INTRo is active, but that the corre­
sponding interrupt is disabled due to the value of either
OA, 01, or 1M.

Traps
Traps are caused by signals applied to one of the inputs
TRAP1-TRAPo, or by exceptional conditions such as
protection violations. Except for the Instruction Access
Exception, Oata Access Exception, and Coprocessor
Exception traps, traps are disabled by the OA bit in the

Am29000

Current Processor Status; a 1 in the OA bit disables
traps, and a 0 enables traps. It is not possible to selec­
tively disable individual traps.

Wait Mode
A wait-for-interrupt capability is provided by the Wait
mode. The processor is in the Wait mode whenever
the Wait Mode (WM) bit of the Current Processor Status
is 1. While in Wait mode, the processor neither fetches
nor executes· instructions and performs no external
accesses. The Wait mode is exited when an interrupt or
trap is taken.

Note that the processor can take only those interrupts or
traps for which it is enabled, even in the Wait mode. For
example, if the processor is in the Wait mode with a OA
bit of 1, it can leave the Wait mode only via the Reset
mode or a WARN trap.

Vector Area
Interrupt and trap processing rely on the existence of a
user-managed Vector Area in external instruction/data
memory or instruction read-only memory (instruction
ROM). The Vector Area begins at an address specified
by the Vector Area Base Address Register, and pro­
vides for as many as 256 different interrupt and trap han­
dling routines. The processor reserves 24 routines for
system operation and 40 routines for instruction emula­
tion. The number and definition of the remaining 192
possible routines are system-dependent.

The Vector Area has one of two possible structures as
determined by the Vector Fetch (VF) bit in the Configu­
ration Register. The first structure, as described below,
requires less external memory than the second, but
imposes the performance penalty of the vector-table
lookup.

If the VF bit is 1, the structure of the Vector Area is a ta­
ble of vectors in instruction!data memory. The layout of
a single vector is shown in Figure 53. Each vector gives
the beginning word-address of the associated interrupt
or trap handling routine, and specifies, by the R bit,
whether the routine is contained in instruction/data
memory (R = 0) or instruction ROM (R = 1).

If the VF bit is 0, the structure of the Vector Area is a seg­
ment of contiguous blocks of instructions in instruction!
data memory or instruction ROM. The ROM Vector Area
(RV) bit of the Configuration Register determines
whether the Vector Area is in instruction!data memory
(RV = 0) or instruction ROM (RV = 1). A 64-instruction
block contains exactly one interrupt or trap handling rou­
tine, and blocks are aligned on 64-instruction address
boundaries.

Vector Numbers

When an interrupt or trap is taken, the processor deter­
mines an 8-bit vector number associated with the inter­
rupt or trap. The vector number gives either the number

1-75

29K Family CMOS Devices

31 23 15 7 0

II III
Handler Starting Address R 0

Figure 53. Vector Table Entry

of a vector table entry or the number of an instruction
block, depending on the value of the VF bit.

If the VF bit is 1 , the physical address of the vector table
entry is generated by replacing bits 9-2 of the value in
the Vector Area Base Address Register with the vector
number.

If the VF bit is 0, the physical address of the first instruc­
tion of the handling routine is generated by replacing bits
15-8 of the value in the Vector Table Base Address
Register with the vector number.

Vector numbers are either predefined or specified by an
instruction causing the trap. The assignment of vector
numbers is shown in Figure 54 (vector numbers are in
decimal notation). Vector numbers 64 to 255 are for use
by trapping instructions; the definition of the routines as­
sociated with these numbers is system-dependent.

Interrupt and Trap Handling
Interrupt and trap handling consists of two distinct op­
erations: taking the interrupt or trap, and returning from
the interrupt or trap handler. If the interrupt or trap
handler returns directly to the interrupted routine, the
interrupt or trap handler need not save and restore
processor state.

Taking an Interrupt or Trap
The following operations are performed in sequence by
the processor when an interrupt or trap is taken:

1-76

1. Instruction execution is suspended.

2. Instruction fetching is suspended.

3. Any in-progress load or store operation is com­
pleted. Any additional operations are canceled
in the case of Load Multiple and Store Multiple.

4. The contents of the Current Processor Status
Register are copied into the Old Processor
Status Register.

5. The Current Processor Status register is modi­
fied as shown in Figure 55 (the value "u" means
unaffected). Note that setting the Freeze (FZ) bit
freezes the Channel Address, Channel Data,
Channel Control, Program Counter 0, Program
Counter 1, Program Counter 2, and ALU Status
Registers.

6. The address of the first instruction of the inter­
rupt or trap handler is determined. If the VF bit of

the Configuration Register is 1, the address is
obtained by accessing a vector from instruction!
data memory, using the physical address ob­
tained from the Vector Area Base Address Reg­
ister and the vector number. This access ap­
pears on the channel as a data access, and the
OPT2-0PTo signals indicate a word-length ac­
cess. If the VF bit is 0, the instruction address is
given directly by the Vector Area Base Address
Register and the vector number.

7. If the VF bit is 1, the R bit in the vector fetched in
Step 6 is copied into the RE bit of the Current
Processor Status Register. If the VF bit is 0, the
RV bit of the Configuration Register is copied
into the RE bit. This step determines whether or
not the first instruction of the interrupt handler is
in instruction ROM.

8. An instruction fetch is initiated using the instruc­
tion address determined in Step 6. At this point,
normal instruction execution resumes.

Note that the processor does not explicitly save the con­
tents of any registers when an interrupt is taken. If regis­
ter saving is required, it is the responsibility of the inter­
rupt or trap-handling routine. For proper operation, reg­
isters must be saved before any further interrupts or
traps may be taken. The FZ bit must be reset at least two
instructions before interrupts or traps are reenabled to
allow the program state to be reflected properly in pro­
cessor registers if an interrupt or trap is taken.

Returning from an Interrupt or Trap
Two instructions are used to resume the execution of an
interrupted program: Interrupt Return (IRET), and Inter­
rupt Return and Invalidate (IRETINV). These instruc­
tions are identical except in one respect: the IRETINV
instruction resets all Valid bits in the Branch Target
Cache, whereas the IRET instruction does not affect the
Valid bits.

In some situations, the processor state must be set
properly by software before the interrupt return is exe­
cuted. The following is a list of operations normally per­
formed in such cases:

1. The Current Processor Status is configured as
shown in Figure· 55 (the value "x" is a "don't
care"). Note that setting the FZ bit freezes the
registers listed below so that they may be set for
the interrupt return.

Am29000

Number Type of Trap or Interrupt Cause

0 Illegal Opcode executing undefined instruction
1 Unaligned Access access on unnatural boundary, TU = 1
2 Out of Range overflow or underflow
3 Coprocessor Not Present coprocessor access, CP = 0
4 Coprocessor Exception coprocessorDERRresponse
5 Protection Violation invalid User-mode operation
6 Instruction Access Exception IERR response
7 Data Access Exception DERRresponse,notcoprocessor
8 User-Mode Instruction TLB Miss no TLB entry for translation
9 User-Mode Data TLB Miss "

10 Supervisor-Mode Instruction TLB Miss "
11 Supervisor-Mode Data TLB Miss "
12 Instruction TLB Protection Violation TLB UE/SE=O
13 Data TLB Protection Violation TLB URISR = 0, UW/SW = 0 on write
14 Timer Timer Facility
15 Trace Trace Facility
16 INlRo INlRo input
17 INlR, INlR, input
18 INm INminput
19 INm INminput
20 TRAPo TRAPo input
21 TRAP1 TRAP1 input
22 Floating·Point Exception unmasked floating-point exception
23 reserved

24-29 reserved for instruction emulation
(op codes 08-00)

30 MULTM MULTM instruction
31 MULTMU MUL TMU instruction
32 MULTIPLY MUL TIPL Y instruction
33 DIVIDE DIVIDE instruction
34 MULTIPLU MUL TIPLU instruction
35 DIVIDU DIVIDU instruction
36 CONVERT CONVERT instruction
37 SORT SORT instruction
38 CLASS CLASS instruction

39-41 reserved for instruction emulation
(op codes E7-E9)

42 FEO FEO instruction
43 DEO DEO instruction
44 FGT FGT instruction
45 DGT DGT instruction
46 FGE FGE instruction
47 DGE DGE instruction
48 FADD FADD instruction
49 DADO DADO instruction
50 FSUB FSUB instruction
51 DSUB DSUB instruction
52 FMUL FMUL instruction
53 DMUL DMUL instruction
54 FDIV FDIV instruction
55 DDIV DDIV instruction
56 reserved for instruction emulation

(op code F8)
57 FDMUL FDMUL instruction

58-63 reserved for instruction emulation
(op codes FA-FF)

64-255 Assert and EMULATE instruction traps
(vector number specified by instruction)

Figure 54. Vector Number Assignments

1·77

29K Family CMOS Devices

"~-------""'V"----_..J~ I: I I I : : : :- I : :
I I I I I I I I I: I I I

Reserved I I I I I I I I I I I I

IP : TP : FZ: RE PO : SM 1M : OA
I I I

CA TE TU LK WM PI

Figure 55. Current Processor Status after an Interrupt or Trap

2. The Old Processor Status is set to the value of Current Processor Status, for Steps 3 through
the Current Processor Status for the target 10.
routine.

3. If the interrupt return instruction is an IRETINV,
3. The Channel Address, Channel Data, and all Valid bits in the Branch Target Cache are

Channel Control registers are set to restart or re- reset.
sume uncompleted channel operations of the

4. The contents of the Old Processor Status Regis-target routine.
ter are copied into the Current Processor Status

4. The Program Counter 1 and Program Counter 0 Register. This normally resets the FZ bit allow-
registers are set to the addresses of the first and ing the Program Counter 0, 1,2, Channel Ad-
second instructions, respectively, to be exe- dress, Data, Control, and ALU Status registers
cuted in the target routine. to update normally. Since certain bits of the Cur-

S. Other registers are set as required. These may
rent Processor Status Register always are up-
dated by the processor, this copy operation may

include registers such as the ALU Status, 0, and be irrelevant for certain bits (e.g., the Interrupt
so forth, depending on the particular situation. Pending bit).
Some of these registers are unaffected by the
FZ bit, so they must be set in such a manner that 5. If the Contents Valid (CV). bit of the Channel
they are not modified unintentionally before the Control Register is 1, and the Not Needed (NN)
interrupt return. and Multiple Operation (ML) bits are both 0, an

Once the processor registers are configured properly,
external access is started. This operation is
based on the contents of the Channel Address,

as described above, an interrupt return instruction Channel Data, and Channel Control registers. (IRET or IRETINV) performs the remaining steps neces-
The Current Processor Status Register condi-sary to return to the target routine. The following opera-

tions are performed by the interrupt return instruction: tions the access-as is normally the case. Note
that Load Multiple and Store Multiple operations

1. Any in-progress load or store operation is com- are not restarted at this point.
pleted. If a Load Multiple or Store Multiple se-

6. The address in Program Counter 1 is used to quence is in progress, the interrupt return is not
executed until the sequence is completed. fetch an instruction. The Current Processor

Status Register conditions the fetch. This step is
2. Interrupts and traps are disabled, regardless of treated as a branch in the sense that the proces-

the settings of the OA, 01, and 1M fields of the

31 23 15 7 o

CA TE TU LK WM

Figure 56. Current Processor Status Before Interrupt Return

1-78

sor searches the Branch Target Cache for the
target of the fetch.

7. The instruction fetched in Step 6 enters the de­
code stage of the pipeline.

8. The address in Program Counter 0 is used to
fetch an instruction. The Current Processor
Status Register conditions the fetch. This step is
treated as a bra!1ch in. the sense that the proces­
sor searches the Branch Target Cache for the
target of the fetch~

9. The instruction fetched in Step 6 enters the exe­
cute stage of'the pipeline, and the instruction
fetched in Step 8 enters the decode stage.

10. ,If the CV bit in the Channel Control Register is a
1, the NN bit is 0, and the ML bit is 1, a Load Mul­
tiple or Store Multiple sequence is started,
based on the contents of the Channel Address,
Channel Data, and Channel Control registers.

11. Interrupts and traps are enabled per the ap­
propriate bits in the Current Processor Status
Register.

. 12. The processor resumes normal operation.

Fast Interrupt Processing
The registers affected by the FZ bit of the Current Pro­
cessor Status Register are those that are modified by al­
most any usual sequence of instructions. Since the FZ
bit is set by an interrupt or trap, the interrupt or trap han­
dier is able to execute while not disturbing the state of
the interrupted routine, though its execution is some­
what restricted. Thus, it is not necessary in many cases
for the interrupt or trap handler to save the registers that
are affected by the FZ bit.

The processor provides an additional benefit if the Pro­
gram Counter 0 and Program Counter 1 registers are
not modified by the interrupt or trap handler. If Program
Counters 0 and 1 contain the addresses of sequential in­
structions when an interrupt or trap is taken, and if they
are not modified before an interrupt return iS'executed,
Step 8 of the interrupt return sequence above occurs as
a sequential fetch-instead of a branch-for the inter­
rupt return. The performance impact of a sequential
fetch is normally less than that of a nonsequential fetch.

Because the registers affected by the FZ bit are some­
times required for instruction execution, it is not possible
for the interrupt or trap handler to execute all instruc­
tions unless the required registers are first saved else­
where (e.g., in one or more global registers). Most of the
restrictions due to register dependencies are obvious
(e.g., the Byte Pointer for byte extracts), and will not be
discussed here. Other less obvious restrictions are
listed below:

1. Load Multiple and Store Multiple. The Channel
Address. Channel Data. and Channel Control
registers are used to sequence Load Multiple

Am29000

and Store Multiple operations, so these instruc­
tions cannot be executed while the registers are
frozen. However, note that other external
accesses may occur; the Channel Address,
Channel Data, and Channel Control registers
are required only to restart an access after an
exception, and the interrupt ortrap handler is not
expected to encounter any exceptions.

2. Loads and stores that set the Byte Pointer. If the
Set Byte Pointer (SB) of a load or store instruc­
tion is 1 and the FZ bit is also 1 , there is no effect
on the Byte Pointer. Thus, the execution of ex­
ternal byte and half-word accesses using this
mechanism is not possible.

3. Extended arithmetic. The Carry bit of the ALU
Status Register is not updated while the FZ bit
is 1.

4. Divide step instructions. The Divide Flag of the
ALU Status Register is not updated when the FZ
bitis 1.

If the interrupt or trap handler does not save the state of
the interrupted routine, it cannot allow additional inter­
rupts and traps. Also, the operation of the interrupt or
trap handler cannot depend on any trapping instruc­
tions (e.g., Floating;Point instructions, illegal operation
codes, arithmetic overflow, etc.) since these are dis­
abled. There are certain cases, however, where traps
are unavoidable; these are discussed in the Arithmetic
Exceptions section.

WARN Trap

The processor recognizes a special trap, caused by the
activation of the WARN input. that cannot be masked.
The WARN trap is intended to be used for severe sys­
tern-error or deadlock conditions. It allows the processor
to be placed in a known, operable state, while preserv­
ing much of its original state for error reporting and pos­
sible recovery. Therefore. it shares some features in
common with the Reset mode as well as features com­
mon to other traps described in this section.

The major differences between the WARN trap and
other traps are:

1. The processor does not wait for an in-progress
external access to be completed before taking
the trap, since this access might not be com­
pleted. However, the information related to any
outstanding access is retained by the Channel
Address, Channel Data, and Channel Control
registers when the trap is taken.

2. The vector-fetch operation is not performed, re­
gardless of the VF bit of the Configuration Regis­
ter, when the WARN trap is taken. Instead. the
ROM Enable (RE) bit in the Current Processor
Status is set, and instruction fetching begins im­
mediately at Address 16 in the instruction ROM.

1-79

29K Family CMOS Devices

The trap handler executes directly from the in­
struction ROM without the need to access
external (and possibly nonfunctional or invalid)
instruction/data memory.

Note that WARN trap may disrupt the state of the routine
that is executing when it is taken, prohibiting this routine
from being restarted.

Sequencing of Interrupts and Traps
On every cycle, the processor decides eitherto execute
instructions or to take an interrupt or trap. Since there
are multiple sources of interrupts and traps, more than
one interrupt or trap may be pending on a given cycle.

To resolve conflicts, interrupts and traps are taken ac­
cording to the priority shown in Figure 57. In this table,
interrupts and traps are listed in order of decreasing pri­
ority. This section discusses the first three columns of
Figure 57. The last two columns are discussed in the
Exception Reporting and Restarting section.

In Figure 57, interrupts and traps fall into one of two
categories depending on the timing of their occurrence
relative to instruction execution. These categories are
indicated in the third column by the labels "inst" and
"async." These labels have the following meanings: .

1. Inst-Generated by the execution or attempted
execution of an instruction.

2. Async-Generated asynchronous to and inde­
pendent of the instruction being executed, al­
though it may be a result of an instruction exe­
cuted previously.

The principle for interrupt and trap sequencing is that the
highest priority interrupt or trap is taken first. Other
interrupts and traps remain active until they can be
taken, or are regenerated when they can be taken. This
is accomplished, depending on the type of interrupt or
trap, as follows:

1-80

1. All traps in Figure 57 with Priority 13 or 14 are re­
generated by the re-execution of the causing in­
struction.

2. Most of the interrupts and traps of Priorities 4
through 12 must be held by external hardware
until they are taken. The exceptions to this are
listed in (3) below.

3. The exceptions to (2) above are the Data Access
Exception trap, the Coprocessor Exception trap,
the Timer interrupt, and the Trace trap. These
are caused by bits in various registers in the
processor and are held by these registers until
taken or cleared. The relevant bits are: the
Transaction Faulted (TF) bit of the Channel Con­
trol Register for Data Access Exception and
Coprocessor Exception traps, the Interrupt (IN)
bit of the Timer Reload Register for Timer inter-

rupts, and the Trace Pending (TP) bit of the Cur­
rent Processor Status Register for Trace traps.

4. All traps of Priorities 2 and 3 in Figure 57, except
for the Unaligned Access trap, are not regener­
ated. These traps are mutually exclusive and are
given high priority because they cannot be re­
generated; they must be taken if they occur. If
one of these traps occurs at the same time as a
reset or WARN trap, it is not taken, and its occur­
rence is lost.

5. The Unaligned Access trap is regenerated inter­
nally when an extemal access is restarted by the
Channel Address, Channel Data, and Channel
Control registers. Note that this trap is not nec­
essarily exclusive to the traps discussed in (4)
above.

Note that the Channel Address, Channel Data, and
Channel Control registers are set for a WARN trap only if
an external access is in progress when the trap is taken.

Exception Reporting and Restarting
When an instruction encounters an exceptional condi­
tion, the Program Counter 0, Program Counter 1, and
Program Counter 2 registers report the relevant instruc­
tion address(es), and allow the instruction sequence to
be restarted once the exceptional condition has been
remedied (if possible). Similarly, when an external ac­
cess or coprocessor transfer encounters an exceptional
condition, the Channel Address, Channel Data, and
Channel Control registers report information on the ac­
cess or transfer, and allow it to be restarted. This section
describes the interpretation and use of these registers.

The "PC 1" column in Figure 57 describes the value held
in the Program Counter 1 Register (PC 1) when the inter­
rupt ortrap is taken. For traps in the "inst" category, PC1
contains either the address of the instruction causing
the trap, indicated by "curr," or the address of the in­
struction following the instruction causing the trap,indi­
cated by "next."

For interrupts and traps in the "async" category, PC1
contains the address of the first instruction, which was
not executed due to the taking of the interrupt or trap.
This is the next instruction to be executed upon interrupt
return, as indicated by "next" in the PC1 column.

Instruction Exceptions
Fortrapscaused by the execution of an instruction (e.g.,
the Out of Range trap), the Program Counter 2 Register
contains the address of the instruction causing the trap.
In all of these cases, PC1 is in the "next" category. The
Exception Opcode Register contains the operation code
of the instruction causing the trap.

The traps associated with instruction fetches (Le., those
of Priority 13) occur only if the processor attempts the
execution of the associated instruction. An exception

Am29000

Priority Type Of Interrupt Or Trap InstlAsync PC1 Channel Regs

1 WARN async next see Note 1
(highest)

User-Mode Data TLB Miss inst next all
2 Supervisor-Mode Data TLB Miss inst next all

Data TLB Protection Violation inst next all

Unaligned Access inst next all
Coprocessor not Present inst next all
Out of Range inst next N/A
Floating-Point Exceptions inst next N/A
Assert Instructions inst next N/A
Floating-Point Instructions inst next N/A

3 MULTIPLY inst next N/A
MULTM inst next N/A
DIVIDE inst next N/A
MULTIPLU inst next NlA
MULTMU inst next N/A
DIVIDU inst next N/A
EMULATE inst next N/A

Data Access Exception async next all
4 Coprocessor Exception async next all

5 TRAPo async next multiple

6 'fRAP, async next multiple

7 INTR" async next multiple

8 IN~ async next multiple

9 INTR.z async next multiple

10 INTR., async next multiple

11 Timer async next multiple

12 Trace async next multiple

User-Mode Instruction TLB Miss inst curr N/A
13 Supervisor-Mode Instr. TLB Miss inst curr N/A

Instruction TLB Protection Violation inst curr N/A
Instruction Access Violation inst curr N/A

14 Illegal Opcode inst curr N/A
(lowest) Protection Violation inst curr N/A

Note: The Channel Address, Channel Data, and Channel Control registers are set for a WARN trap
only if an external access is in progress when the trap is taken.

Figure 57. Interrupt and Trap PrlorHy Table

may be detected during an instruction prefetch, but the
associated trap does not occur if a nonsequential fetch
occurs before the processor attempts the execution of
the invalid instruction. This prevents the spurious indica­
tion of instruction exceptions.

Data Exceptions

The "Channel Regs" column of Figure 57 indicates the
cases for which the Channel Address, Channel Data,
and Channel Control registers contain information re-

1·81

29K Family CMOS Devices

lated to an external access or coprocessor transfer
(these registers collectively are termed "channel regis­
ters" in the following discussion). For the cases indi­
cated, the access or transfer was not completed be­
cause of some exceptional condition. Note that the
Channel Data Register contains relevant information
only in the case of a store.

Forthe WARN trap, the channel registers are valid only if
a load or store were in progress when the trap was
taken. Recall that the WARN trap does not wait for any
in-progress access to be completed.

For the traps with an "all" in the "Channel Regs" column
of Figure 57, the channel registers contain information
relevant to the trap in all cases. These traps are associ­
ated with exceptional events during external accesses
or coprocessor transfers.

For the traps with a "multiple" in the "Channel Regs" col­
umn, the channel registers might contain information for
restarting an interrupted Load Multiple or Store Multiple
operation. In these cases, the operation did not encoun­
ter an exception, but was simply canceled for latency
considerations.

The information contained in the channel registers al­
lows the processor to restart the related operation dur­
ing an interrupt return sequence, without any special as­
sistance by software. Software must only ensure that
the relevant information is retained in, or restored to, the
channel registers before an interrupt return is executed.

Arithmetic Exceptions
Integer and floating-point instructions can cause Out of
Range or Floating-Point Exception traps, respectively, if
an exception is detected during the arithmetic operation.
This section describes the conditions under which these
traps occur and the additional operations performed be­
yond those described in the Interrupt and Trap Handling
section.

Integer Exceptions

Some integer add and subtract instructions-ADDS,
ADDU, ADDCS, ADDCU, SUBS, SUBU, SUBCS,
SUBCU, SUBRS, SUBRU, SUBRCS, and SUBRCU­
cause an Out of Range trap upon overflow or underflow
of a 32-bit signed or unsigned result, depending on the
instruction.

Two integer multiply instructions-MULTIPLY and
M UL TI PLU-cause an Out of Range trap upon overflow
of a 32-bit signed or unsigned result, respectively, if the
MO bit of the Integer Environment Register isO. If the
MO bit is 1, these multiply instructions cannot cause an
Out of Range trap.

Two integer divide instructions-DIVIDE and DIVIDU­
take the Out of Range trap upon overflow of a 32-bit
Signed or unsigned result, respectively, if the DO bit of
the Integer Environment Register is O. If the DO bit is 1,
the divide instructions cannot cause an Out of Range

1·82

trap unless the divisor is O. If the divisor is 0, an Out of
Range trap always occurs, regardless of the DO bit.

In addition to the operations described in the Interrupt
and Trap Handling section, the following operations are
performed when an Out of Range trap is taken:

1. The operation code of the instruction causing the
exception is placed in the lOP field of the Excep­
tion Opcode Register.

2. For the MULTIPLY, MUL TIPLU, DIVIDE, and
DIVIDU instructions, the absolute register num­
bers of the excepting instruction's source and
destination registers are placed into the Indirect
Pointer A,lndirect PointerB, and Indirect Pointer
C registers.

3. For the MULTIPLY, MULTIPLU, DIVIDE, and
DIVIDU instructions, the destination register or
registers are unchanged.

Floating-Point Exceptions
A Floating-Point Exception trap occurs when an excep­
tion is detected during a floating-point operation, and the
exception is not masked by the corresponding bit of the
Floating-Point Mask Register. In this context, a floating­
point operation is defined as any operation that accepts
a floating-point number as a source operand, that pro­
duces a floating-point result, or both. Thus, for example,
the CONVERT instruction may create an exception
while attempting to convert a floating-point value to an
integer value.

In addition to the operations described in the Interrupt
and Trap Handling section, the following operations are
performed when a Floating-Point Exception trap is
taken:

1. The operation code of the instruction causing the
exception is placed in the lOP field of the Excep­
tion Opcode Register.

2. The status of the trapping operation is written
into the trap status bits of the Floating-Point
Status Register. The status bits that are written
do not depend on the values of the correspond­
ing mask bits in the Floating-Point Environment
Register.

3. The absolute register numbers of the excepting
instruction's source and destination registers
are placed into the Indirect Pointer A, Indirect
Pointer B, and Indirect Pointer C registers. If the
RB or RC fields specify a function code, that
code is transferred to the corresponding indirect
pointer. Note that if the most-significant bit of the
this function code is 1, the value of the Stack

Pointer has been added to the RS field and must
be subtracted to recover the original field.

4. The destination register or registers are left un­
changed.

Exceptions During Interrupt
and Trap Handling
In most cases, interrupt and trap handling routines are
executed with the DA bit in the Current Processor Status
having a value of 1. It is assumed that these routines do
not create many of the exceptions possible in most other
processor routines, so most of these are ignored.

If the assumption of no exceptions is not valid for a par­
ticular interrupt or trap handler, it is important that the
handler save the state of the processor and reset the FZ
bit of the Current Processor Status, 50 that the handler
itself may be restarted properly. This must be accom­
plished before any interrupts or traps can be taken. In
this case, the state (or the state of some other process)
must be restored before an interrupt return is executed.

Am29000

It is possible that errors reported via the IERR and DERR
signals are associated with hardware errors, indepen­
dent of any routine being executed. For this reason, the
Instruction Access Exception, Data Access Exception,
and Coprocessor Exception traps cannot be disabled by
the DA bit, and the processor may take one of these
traps even while handling another interrupt or trap.

If the processor does take an unmaskable trap while
handling another interrupt or trap, and the state of the
interrupt ortrap handler is not reflected in processor reg­
isters, it is not possible to return to the point at which the
unmaskable trap is taken. When the unmaskable trap is
taken, the processor state saved is that state associated
with the original interrupt or trap, not with the unmask­
able trap; however, the Old Processor Status Register is
modified to reflect the Current Processor Status Regis­
ter of the interrupt or trap handler. This situation, indi­
cated by the DA bit being.1 in the Old Processor Status
Register, may not be recoverable.

1·83

29K Family CMOS Devices

MEMORY MANAGEMENT
The Am29000 incorporates a Memory Management
Unit (MMU) for performing virtual-to-physical address
translation and memory access protection. This section
describes the logical operation of the Memory Manage­
ment Unit.

Address translation can be performed only for instruc­
tion/data memory accesses. No address translation is
performed for instruction ROM, input/output, coproces­
sor, or interrupt/trap vector accesses. However, an in­
struction/data memory access can be redirected to in­
put/output by· the address-translation process.

Translation Look-Aside Buffer
The MMU stores the most recently performed address
translations in a special cache, the Translation Look­
Aside Buffer (TLB). All virtual addresses generated by
the processor are translated by the TLB. Given a virtual
address, the TLB determines the corresponding physi­
cal address.

The TLB reflects information in the processor system
page tables, except that it specifies the translation for
many fewer pages; this restriction allows the TLB to be

Line 0 o

Entry

TLB Set 0

incorporated on the processor chip where the per­
formance of address translation is maximized.

A diagram of the TLB is shown in Figure 58. The TLB is a
table of 64 entries, divided into two equal sets, called Set
o and Set 1. Within each set, entries are numbered 0 to
31. Entries in different sets that have equivalent entry
numbers are grouped into a unit called a line; there are
thus 32 lines in the TLB, numbered 0 to 31.

Each TLB entry is 64 bits long and contains mapping
and protection information for a single virtual page. TLB
entries may be inspected and modified by processor in­
structions executed in the Supervisor mode. The layout
of TLB entries is described in the Register Description
section.

The TLB stores information about the ownerShip of the
TLB entries in an 8-bit Task Identifier (TID) field in each
entry. This makes it possible for the TLB to be shared by
several independent processes without the need for in­
validation of the entire TLB as processes are activated.
It also increases system performance by permitting
processes to warm-start (i.e., to start execution on the

Entry

o

TLB Set 1

-------------- ~-------------------------+----------~------------------------~

Line 1
______________ ~------------------------_+----------i-----------------------------~

Line 2 2 2

-------------- ~-------------------------+----------~-------------------------~

Line 3 3 3

~-------------------------+----------i-----------------~

Line 4 4 4

~-------------------+----------~---------------~

---------------~---------------------+----------~--------------------~

Line 31 31 31

---------------~----------------.----------~------------------~
..-...... 64 bits --. ..-...... 64 bits --.

Figure 58. translation Look-Aside Buffer Organization

1-84

processor with a certain number of TLB entries remain­
ing in the TLB from a previous execution).

Each TLB entry contains a Usage bit to assist manage­
mentof the TLB entries. The Usage bit indicates which
set of the entry within a given line was least recently
used to perform an address translation. Usage bits for
two entries in the same line are equivalent.

The TLB contains other fields, described in the following
sections.

Address Translation
For the purpose of address translation, the virtual
instruction/~ata address space of a process is parti­
tioned into regions of fixed size, called pages. Pages are
mapped by the address-translation process into equiva­
lent-sized regions of physical memory, called page
frames. All accesses to instructions or data contained
within a given page use the same virtual-to-physical
address translation.

Virtual addresses are partitioned into three fields forthe
address-translation process, as shown in Figure 59.
The partitioning of the virtual address is based on the
page size. Page sizes may be of 1, 2, 4, or a kb, as
specified by the MM U Configuration Register. The fields
shown in Figure 59 are described in the following
discussion. '

1-kb Page Size:
31

2-kb Page Size:
31

4-kb Page Size:
31

8-kb Page Size:
31

23

23

23

23

15

15

15

15

Am29000

Address Translation Controls

The processor attempts to perform address translation
for the following external accesses:

1. Instruction accesses, if the Physical Addressing/
Instructions (PI) and ROM Enable (RE) bits of
the Current Processor Status are both O.

2. User-mode accesses to instruction/data mem­
ory if the Physical Addressing/Data (PO) bit of
the Current Processor Status is O.

3. Supervisor-mode accesses to instruction/data
memory if the Physical Address (PA) bit of the
load or store instruction performing the access is
0, and the PO bit of the Current Processor Status
is O.

Address translation also is controlled by the MMU Con­
figuration Register. This register specifies the virtual
page size and contains an a-bit Process Identifier (PID)'
field. The PID field specifies the process number associ­
ated with the currently running program, if this is a User­
mode program. Supervisor-mode programs are as­
signed a fixed process number of o. The process num­
ber is compared with Task Identifier (TID) fields of the
TLB entries during address translation. The TID field of
a TLB entry must match the process number for the
translation to be valid.

7

7

7

Figure 59. Virtual Address for 1-, 2-, 4-, and 8-kb Pages

1-85

29K Family CMOS Devl~es

Address Translation Process

The address-translation process is diagrammed in
Figure 60. Address translation is performed by the fol­
lowing fields in the TLB entry: the Virtual Tag (VTAG),
the Task Identifier (TID), the Valid Entry (VE) bit, the
Real Page Number (RPN) field, and the Input/Output
(10) bit. To perform an address translation, the proces­
sor accesses the TLB line whose number is given by
certain bits in the virtual address. The bits used depend
on the page size as follows:

Page Size

1 kb
2kb
4kb
8kb

Virtual Address Bits
(for Line Access)

14-10
15-11
16-12
17-13

The accessed line contains two TLB entries, which in
turn contain two VT AG fields. The VT AG fields are both
compared to bits in the virtual address. This comparison
depends on the page size as follows (note that VT AG

Virtual Address

bit-numbers are relative to the VTAG field, not the TLB
entry):

Page Size Virtual Address Bits VTAG Bits

1 kb 31-15 16-0
2kb 31-16 16-1
4kb 31-17 16-2
8 kb 31-18 16-3

Certain bits of the VTAG field do not participate in the
comparison for page sizes largerthan 1 kb. These bits of
the VTAG field are required to be O.

For an address translation to be valid, the lollowing con­
ditions must be met:

1. The virtual address bits match corresponding
bits of the VTAG field as specified above.

2. For a User-mode access, the TID field in the TLB
entry matches the PIO field in the MMU Configu-

TLB Set 1

VirtuaW, I Task Real Page I PGM
: Number :U, 10 Tag :PROlID : Number : U, 10

,~--~--~~------~--~

1·86

Physical Address

Protection
Violation

Figure 60. Address Translation Process

MPGMo-1

ration Register. For a Supervisor-mode access,
the TID field is O.

3. The VE bit in the TLB entry is 1.

4. Only one entry in the line meets conditions 1, 2,
and 3 above. If this condition is not met, the re­
sults of the translation may be treated as valid by
the processor, but the results are unpredictable.

If the address' translation is valid fo r one TLB entry in the
selected line, the RPN field in this entry is used to form
the physical address of the access. The RPN field gives
the portion of the physical address that depends on
the translation; the remaining portion of the virtual ad­
dress, called the Page Offset, is invariant with address
translation.

The Page Offset comprises the low-order bits of the vir­
tual address, and gives the location of a byte (because
of byte addressing) within the virtual page. This byte is
located at the same position in the physical page frame,
so the Page Offset also comprises the low-order bits of
the physical address.

The 32-bit physical address is the concatenation of cer­
tain bits of the RPN field and Page Offset, where the bits
from each depend on the page size as follows (note that
RPN bit numbers are relative to the RPN field, not the
TLB entry):

Page Size

1 kb
2kb
4kb
8kb

RPN Bits

21-0
21-1
21-2
21-3

Virtual Address Bits
for Page Offset

9-0
10-0
11-0
12-0

Note that certain bits of the RPN field are not used in
forming the physical address for page sizes greater than
1 kb. These bits of the RPN are required to be O. In addi­
tion, for certain instruction accesses, the Page Offset is
incremented by 16.

The address space of the physical address is deter­
mined by the InpuVOutput (10) bit of the TLB entry. If the
10 bit is 0, the address is in the instruction/data memory
address space. If the 10 bit is 1, the address is in the in­
puVoutput address space.

Successful and Unsuccessful Translations
If an address translation is successful, the TLB entry is
further used to perform protection checking for the ac­
cess. Bits in the TLB make it possible to restrict ac­
cesses-independently for Supervisor-mode and User­
mode accesses-to any combination of load, store, and
instruction accesses, or to no access.

If the address translation is valid and no protection viola­
tion is detected, the physical address from the transla­
tion is placed on the processor's address bus and the
access is initiated. If the translation is not valid or a pro­
tection violation is detected, a trap occurs. Depending

Am29000

on the state of the channel interface, the access reguest
may be placed on the address bus with the signal BINV
asserted, even though the trap occurs.

Also, if the address translation is successful and there is
no protection violation, the PGM bits from the TLB entry
used for translation are placed on the MPGM1-MPGMo
outputs during the address cycle for the access. If ad­
dress translation is not performed, these pins are both
Low for the address cycle.

If the TLB cannot translate an address, a TLB miss oc­
curs. The MMU causes a trap if either a TLB miss oc­
curs, or the translation is successful and a protection
violation is detected. The processor distinguishes be­
tween traps caused by instruction and data accesses,
and between traps caused by User and Supervisor­
mode accesses, as follows:

Trap Vector
Number

8
9

10

11
12

13

Type of Trap

User-Mode Instruction TLB Miss
User-Mode Data TLB Miss
Supervisor-Mode Instruction
TLB Miss
Supervisor-Mode Data TL Miss
Instruction TLB Protection
Violation
Data TLB Protection Violation

The distinction between the above traps is made to
assist trap handling,' particularly the routines that load
TLB entries.

Reload
So that the MMU may support a large variety of memory­
management architectures, it does not directly load TLB
entries that are required for address translation. It sim­
ply causes a TLB miss trap when address translation is
unsuccessful. The trap causes a program-called the
TLB reload routine-to execute. The TLB reload routine
is defined according to the structure and access method
of the page table contained in an external device or
memory.

When a TLB miss trap occurs, the LRU Recommenda­
tion Register is written with the TLB register number for
Word 0 of the TLB entry to be used by the TLB reload
routine. For instruction accesses, the Program Counter
1 Register contains the instruction address that was not
successfully translated. Fordata accesses, the Channel
Address Register contains the data address that was
not successfully translated.

The TLB reload routine determines the translation for
the address given by the Program Counter 1 Register or
Channel Address Register, as. appropriate. The TLB
reload routine uses an external page table to determine
the required translation, and loads the TLB entry indi­
cated by the LRU Recommendation Register so that the
entry may perform this translation. In a demand-paged

1-87

29K Family CMOS Devices

environment, the TLB reload routine may additionally in­
voke a page-fault handler when the translation cannot
be performed.

TLB entries are written by the Move To TLB (MTILB)
instruction, which copies the contents of a general­
purpose register into a TLB register. The TLB register
number is specified by bits 6-0 of a general-purpose
register. TLB entries are read by the Move From
TLB (MFTLB) instruction, which copies the contents of
a TLB register into a general-purpose register. Again,
the TLB register number is specified by a general­
purpose register.

Entry Invalidation
There are two methods for invalidating TLB entries that
are no longer required at a given point in program exe­
cution. The first involves resetting the Valid Entry bit of a
single entry (this is done by a Move To TLB instruction).
The second involves changing the value of the Process
Identifier (PID) field of the MMU Configuration Register;
this invalidates all entries whose Task Identifier (TID)
fields do not match the new value.

If an entry is invalidated by changing the PID field, the
TLB entry still remains valid in some sense. If the PID
field is changed again to match the TID field, the entry
may once again participate in address translation. This
ability can be used to reduce the number of TLB misses

SR SW SE UR UW

x x x 0 0
x x x 0 0
x x x 0 1
x x x 0 1
x x x 1 0
x x x 1 0
x x x 1 1
x x x 1 1
0 0 0 x x
0 0 1 x x
0 1 0 x x
0 1 1 x x
1 0 0 x x
1 0 1 x x
1 1 0 x x
1 1 1 x x

UE

0
1
0
1
0
1
0
1
x
x
x
x
x
x
x
x

in a system during process switching. However, it is im­
portant to manage TLB entries so that an invalid match
cannot occur between the PID field and the TID field of
an old TLB entry.

Protection
If an address translation is performed successfully, the
TLB entry used in address translation is used to perform
protection checking for the access. There are 6 bits in
the TLB entry for this purpose: Supervisor Read (SR),
Supervisor Write (SW), Supervisor Execute (SE), User
Read (UR), User Write (UW), and User Execute (UE).
These bits restrict accesses, depending on the program
mode of the access, as shown in Figure 61 (the value "x"
is a "don't care").

Note that for the Load and Set (LOADSET) instruction,
the protection bits must be set to allow both the load and
store access. If this condition does not hold, neither ac­
cess is performed.

If protection checking indicates that a given access is
not allowed, a Data TLB Protection Violation or Instruc­
tion TLB Protection Violation trap occurs. The cause of
the trap is determined by inspection of the Program
Counter 1 Register for an Instruction TLB Protection
Violation, or by inspection of the contents of the Channel
Address and Channel Control registers for a Data TLB
Protection Violation.

Type of Access Allowed

No user access
User instruction
User store
User store or instruction
User load
User load or instruction
User load or store
Any user access
No supervisor access
Supervisor instruction
Supervisor store

. Supervisor store or instruction
Supervisor load
Supervisor load or instruction
Supervisor load or store
Any supervisor access

Figure 61. TLB Access Protection

1-88

CHANNEL DESCRIPTION
The processor channel provides the bandwidth required
for performance, while permitting the connection of
many different types of devices. This section describes
the channel and methods of connecting devices and
memories to the processor.

The channel consists of three 32-bit synchronous buses
with associated control and status signals: the Address
Bus, Data Bus, and Instruction Bus. The Address Bus
transfers addresses and control information to devices
and memories. The Data Bus transfers data to and from
devices and memories. The Instruction Bus transfers in­
structions to the processor from instruction memories.
In addition, a set of signals allows control of the channel
to be relinquished to an external master.

There are five logical groups of signals performing five
distinct functions, as follows (since some signals per­
form more than one function, a signal may appear in
more than one group):

1. Instruction Address Transfer and Instruction Ac­
cess Requests: A:Jl-Ao, SUP/US, MPGM1-
MPGMo, PEN, IREO, IREOT, PIA, BINV

2. Instruction Transfer: 131-10, IBREO, IRDY, IERR,
IBACK

3. Data Address Transfer and Data Access Re­
quests: A31-AD, R/W, SUP/US, LOCK, MPGMI­
MPGMo, PEN, DREO, DREOT1-DREOTo,
OPT 2-0PTo, PDA, BINV

4. Data Transfer: D31-Do, DB REO, DRDY, DERR,
DBACK, CDA

5. Arbitration: BREO, BGRT, BINV

User-Defined Signals
There are two types of user-defined outputs on the pro­
cessorto control devices and memories directly in a sys­
tem-dependent manner. Each of these outputs is valid
simultaneously with-and for the same duration as­
the address for an access.

The first set of user-defined signals, MPGM1-MPGMo,
is determined by the PGM bits in the Translation Look­
Aside Buffer entry used in address translation. If ad­
dress translation is not performed, these outputs are
both Low.

The second set of signals, OPT 2-OPTo, is determined
by bits 18-16 of the load 0 r store instruction that initiates
an access. These signals are valid only for data ac­
cesses, and have a predefined interpretation for
coprocessor data transfers.

Standard interpretations of OPT 2-OPTo are given in the
Pin Description section. Since the OPT2-0PTo signals
are determined by instructions, they have an impact on
application-software compatibility, and system hard­
ware should use the given definitions of OPT2-0PTo.

Am29000

The OPT 2-OPTo signals are used to encode byte and
half-word accesses. However, for a load, the system
should return an entire aligned word, regardless of the
indicated data width.

Note that the standard interpretations of OPT2-0PTo
apply only to accesses to instruction/data memory and
inpuVoutput. Other interpretations may be used ior
coprocessor transfers.

For interrupt and trap vector fetches, the MPGMI­
MPGMo and OPT2-0PTo outputs are all Low.

Instruction Accesses
Instruction accesses occur to one of two address
spaces: instruction/data memory and instruction read­
only memory (instruction ROM). The distinction be­
tween these address spaces is made by the I REOT sig­
nal, which is in turn derived from the ROM Enable (RE)
bit of the Current Processor Status Register. These are
truly distinct address spaces; each may be populated in­
dependently based on the needs of a particular system.

Instruction/data memory contains both instructions
and data. Although the channel supports separate
instruction and data memories, the Memory Manage­
ment Unit does not. In certain systems, it may be re­
quired to access instructions via loads and stores, eVl3n
though instructions may be contained in physically
separate memories. For example, this requirement
might be imposed because of the need to load instruc­
tions into memory. Note also that the OPT2-0PTo sig­
nals may be used to allow the access of instructions in
instruction ROM, using loads; the Am29000 does not
prevent a store to the instruction ROM, and protection
against stores to the instruction ROM must be provided
externally, if required.

All processor instruction fetches are read accesses, and
the R/W signal is High for all instruction fetches.

Data Accesses
Data accesses occur to one of three address spaces:
instruction/data memory, inpuVoutput (liD), and the
coprocessor. The distinction between these spaces is
made by the DREOT1-DREOTo Signals, which are in
turn determined by the load or store instruction that initi­
ates a data access. Each of these address spaces is dis­
tinct from the others.

The protocol for data transfers to and from the coproces­
sor is slightly different than the protocol for instruction/
data memory and I/O accesses.

Data accesses may occur either from a slave device or
memory to the processor (for a load), or from the pro­
cessor to a slave device or memory (for a store). The di­
rection of transfer is determined by the RiW signal. In
the case of a load, the processor requires that data on
the data bus be held valid only for a short time before the
end of a cycle. In the case of a store, the processor

1-89

29K Family CMOS Devices

drives the data bus as soon as the bus is available and
holds the data valid until the slave device or memory sig­
nals that the access is complete.

Reporting Errors
The successful completion of an instruction access is in­
dicated by an active level on the I RDY input, and the suc­
cessful completion of a data access is indicated by an
active level on the DRDY input. If there are exceptional
conditions for which an instruction or data access can­
not be completed successfully, the unsuccessful com­
pletion is indicated by an active level on the IERR or
DERR input, as appropriate.

If the processor receives an IERR or DERR in response
to an instruction or data access, it ignores the content of
the instruction or data bus and the value of IRDY or
DRDY. An IERR response causes an Instruction Access
Exception trap, unless it is associated with an instruction
that the processor does not ultimately execute (because
of a nonsequential instruction fetCh). A DERR response
always causes either a Data Access Exception trap or a
Co-processor Exception Trap.

The processor supports the restarting of unsuccessful
accesses upon an interrupt return. In the case of an un­
successful instruction access, the restart is performed
by the Program Counter 0 and Program Counter 1 regis­
ters. In the case of an unsuccessful data access, the re­
start is performed by the Channel Address, Channel
Data, and Channel Control registers. In any event, the
control program must determine whether or not an ac­
cess can and/or should be restarted.

The Instruction Access Exception and Data Access Ex­
ception traps cannot be masked. If one of these traps
occurs within an interrupt or trap handler, the processor
state may not be recoverable.

Access Protocols
Figure 62 shows a control flowchart for accesses per­
formed by the Am29000. This control flow applies inde­
pendently to both instruction and data accesses. Since
the processor performs concurrent instruction and data
accesses, these accesses may be at different points in
the control flow at any given point in time.

Note that the items on the flowchart of Figure 62 do not
represent actual states and have no particular relation­
ship to processor cycles. The flowchart provides only a
high-level understanding of the control flow. Also, ex­
ceptions and error conditions are not shown.

The channel supports three protocols for accesses: sim­
ple, pipelined, and burst-mode. These are described in
the following sections. The various protocols are de­
fined to accommodate minimum-latency accesses as
well as maximum-transfer-rate accesses. The protocols
allow an access to complete in a single cycle, although
they support accesses requiring arbitrary numbers of
cycles. Address transfers for accesses may be inde­
pendent of instruction or data transfers.

1-90

Simple Accesses
For a simple access, the processor holds the address
valid throughout the entire access. This protocol is used
for single-cycle accesses, and for accesses to simple
devices and memories.

On any cycle before the completion of the access, a sim­
ple access may be converted to a pipe lined access (by
the assertion of PEN) or to a burst-mode access (by the
assertion of IBACK or DBACK, if the processor is assert­
ing IBREQ or DBREQ). Thus, the protocol for simple ac­
cesses also may be used during the initial cycles of
pipelined and/or burst-mode accesses. This is advanta­
geous, for example, in cases where the slave device or
memory either. requires the address to be held for mUlti­
ple cycles at the beginning of the pipelined or burst­
mode access, or cannot respond to the pipelined or
burst-mode request within one cycle.

Pipelined Accesses
A pipe lined access is one that starts before an earlier in­
progress accesses completed. The in-progress access
is called a primary access and the second access is
called a pipelined access. A pipe lined access is of the
same type as the primary access. For example, an in­
struction access that begins before the completion of a
data access is not'considered to be a pipe lined access,
whereas a second data access is.

The ,Am29000 allows only one pipelined access at any
given time.

Tradeoffs

For accesses that require more than one cycle to com­
plete, pipe lined accesses perform better than simple ac­
cesses because they allow the overlap of portions of two
accesses. In addition, the ability to latch addresses in
support of pipe lined accesses reduces utilization of the
address bus, thereby reducing contention between in­
struction and data accesses. However, devices and
memories that support pipe lined accesses are some­
what more complex than devices and memories that
support only simple accesses.

Support for pipe lined operations is required for both the
primary access and the pipelined access. The slave per­
forming the primary access must contain some means
for storing the address and other information about the
access. The slave performing the pipe lined access must
be able to restrict its use of the instruction bus or data
Bus, and must be prepared to cancel the access (as ex­
plained below).

Plpellned Operation

Pipelined accesses are controlled by the signals PEN,
PIA, and PDA. Because of internal data-floW con­
straints, the Am29000 does not perform a pipelined
store operation while a load is in progress. However, the
protocol does not restrict pipelined operations. Other
channel masters may perform a pipe lined store during
a load.

Am29000

PROCESSOR SLA VE DEVICE ------------------------,--
NO ACCESS

-----------~--

Assert ~. t:rnrn

Assert J5iA. J5[5A

PRIMARY ACCESS

Drive result and
TROY or t5'ImV

Primary
Access

Complete

---.--------~----------------------,

PIPELINED ACCESS

Figure 62. Channel Flowchart

1-91

29K Family CMOS Devices

Except as noted above, the processor attempts to per­
form pipe lining for every access; the input PEN indicates
whether or not pipelining is supported for a given ac­
cess. The PEN input can be driven by individual devices,
or can be tied active or inactive to enable or disable sys­
tem-wide pipelined accesses. The processor ignores
the value of PEN unless it is performing an access.

The processor samples PEN on every cycle during a pri­
mary access. If PEN is active on any cycle, the proces­
sorceases to drive the address and associated controls
forthe primary access inthe next cycle. If the processor
requires another access before the primary access is
completed, it drives the address and controls for the
second access, asserting PIA or PDA to indicate that the
second access is a pipelined access.

The output IREO or DREO, as appropriate, is not as­
serted for a pipe lined access. Devices and memories
that cannot ~port pi~elined accesses should there­
fore ignore PIA and/or PDA, and base their operation
upon IREO and/or DREO.

A device or memory that receives a request for a
pipe lined access may treat it as any other access, with
one exception: the pipelined access cannot use the In­
struction and data buses or the associated controls
(e.g., IRDY or DRDY). In the case of a data read or in­
struction access, the results of the pipe lined access
cannot be driven on the appropriate bus. In the case of a
data write, the data do not appear on the data bus. Any
other operations forthe access, such as address decod­
ing, can occur.

When the primary access is completed (as indicated by
IRDYor DRDy), the pipelined access becomes a pri­
mary access. The processor indicates this by asserting
IREO or DREO, depending on the type of access. The
device or memory performing the pipelined access may
complete the access as soon as IREO or DREO is as­
serted (poSSibly in the same cycle). When the access
becomes a primary access, it controls the channel as
any other primary access. For example, it may deter­
mine whether or not another pipelined access can be
performed.

When the ~Iined access becomes a primary access,
the output PIA or PDA remains asserted for one cycle to
ensure continuity of control within the slave device or
memory. In the cycle after IREO or DREO is asserted,
PIA or PDA is deasserted unless the processor initiates
another pipelined access, in which case PIA or PDA re­
mains asserted for the new access.

Cancellation of Plpellned Accesses
If the processor takes an interrupt or trap before a
pipelined access becomes a primary access, the re­
quest for the pipe lined access is removed from the
channel. This may occur, for example, when IERR or
DERR is signaled for the primary access.

1-92

If the pipe lined access is removed from the channel, the
slave device or memory does not receive an IREO or
DREO forthe pipelined access. Hence, the pipelined ac­
cess does not become a primary access, and cannot be
completed. A pipelined access may be canceled in this
manner at any time before it becomes a primary access.
Because of this, a pipelined access should not change
the state of a slave device or memory until the pipelined
access becomes a primary access.

Burst-Mode Accesses
A burst-mode access allows multiple instructions or
data words at sequential addresses to be accessed with
a single address transfer. The number of accesses per­
formed and the timing of each access within the se­
quence are controlled dynamically by the burst-mode
protocol. Burst-mode accesses take advantage of se­
quential addressing patterns, and provide several bene­
fits over simple and pipelined accesses:

1. Simultaneous instruction and data acc,esses.
Burst-mode accesses reduce the utilization of
the address bus. This is especially important for
instruction accesses, which are normally se­
quential. Burst-mode instruction accesses elimi­
nate most of the address transfers for instruc~
tions, allowing the address bus to be used for si­
multaneous data accesses.

2. Faster access times. By eliminating the ad­
dress-transfer cycle, burst-mode accesses al­
low addresses to be generated in a manner that
improves access times.

3. Faster memory access modes. Many memories
have special high~bandwidth access modes
(e.g., fast page mode DRAM). These modes
generally require a sequential addressing pat­
tern, even though addresses may not be pre­
sented explicitly to the memory for all accesses.
Burst-mode accesses allow the use of these ac­
cess modes without hardware to detect sequen­
tial addressing patterns.

Burst-Mode Overview
The control-flow diagrams in Figure 63 and Figure 64 il­
lustrate the operation of the processor and an instruc­
tion memory during a burst-mode instruction access.
The control-flow diagrams in Figure 65 and Figure 66 il­
lustrate the operation of the processor and a data mem­
ory or device during a burst-mode data access. These
diagrams are for illustration only; nodes on these dia­
grams do not necessarily correspond to processor or
slave states, and transitions on these diagrams do not
necessarily correspond to processor cycles.

IPB(1)
location
available

SUSPENDED

If no exception
retransmit address

(1) IPB = Instruction Prefetch Buffer

TLB miss or
protection violation

Am29000

Figure 63. Processor Burst-Mode Instruction Accesses: Control Flow

A burst-mode access is in one of the following opera­
tional conditions at any given time:

1. Established: The processor and slave device
have successfully initiated the
burst-mode access. A burst­
mode access that has been es­
tablished is either active or sus­
pended. An established burst­
mode access may become
preempted, terminated or can­
celed.

2. Active: Instruction or data accesses and
transfers are being performed
as the result of the burst-mode
access. An active burst-mode
access may become sus­
pended.

3. Suspended: No accesses ortransfers are be­
ing performed as the result of

4. Preempted:

5. Terminated:

6. Canceled:

the burst-mode access, but the
burst-mode access remains es­
tablished. Additional accesses
and transfers may occur at
some later time (Le., the burst­
mode access may become ac­
tive) without the retransmission
of the address for the access.

The burst-mode access can no
longer continue because of
some condition, but the burst­
mode access can be re­
established within a short
amount of time.

All required accesses have
been performed.

The burst-mode access can no
longer continue because of

1-93

29K Family CMOS Devices

ACTIVE

I

~ ~~~P_E!:JQ~~ _

mEa
Active

Terminated,
Preempted, or
Canceled by
Processor

~, mArn<Active

Unsuccessful
Fetch

Preempted Canceled

Note: A similar state transition may be used to support suspended burst-mode data accesses
or a channel master other than the processor.

Figure 64. Slave Burst-Mode Instruction Accesses: Control Flow

some exceptional condition.
The access may be re­
established only after the excep­
tional condition has been cor­
rected, if possible.

Each of the above conditions, except forthe terminated
condition, is under the control of both the processor and
slave device or memory. The terminated condition is
determined by the processor, because only the proces­
sor can determine that all required accesses have been
performed. The following sections discuss each of the
above conditions with respect to the burst-mode
protocol.

Establishing Burst-Mode Accesses

The Am29000 attempts to perform all instruction
prefetches using burst-mode accesses, except for in­
struction fetches at the last word before a 1-kb address
boundary. For data accesses, the processor attempts to
perform Load Multiple and Store Multiple operations us­
ing burst-mode accesses. The processor indicates that
it desires a burst-mode access by asserting IBREa or

1-94

DBREa during the cycle in which the initial address is
placed on the address bus (however, note that these
signals become valid later in the cycle than the ad­
dress).

The inputs IBACK and DBACK indicate that a requested
burst-mode access is supported. The processor ignores
the value of IBACK unless IBREO is asserted, and it ig­
nores the value of DBACK unless DBREO is asserted.

When it desires a burst-mode access, the processor
continues to drive IBREa or DBREO on every cycle for
which the address is valid on the address bus. During
this time, the device or memory involved in the access
may assert IBACK or DBACK to indicate that it can per­
form the burst-mode access. If IBACK or DBACK (as ap­
propriate) is asserted while the initial address appears
on the address bus, the burst-mode access is estab­
lished.ln the following cycle, the processo~ves the
request address and deasserts IREO or DREO. How­
ever, it continues to assertlBREO or DBREO.

If the burst-mode access is not established on the first
access, the processor attempts to establish a burst-

Am29000

~, IrnACR Active

ACTIVE

If no exception
retransmit address

TLBmiss or
protection violation

r>ERR Active,
or interrupVtrap taken

Note: The Am29000 does not suspend burst-mode data accesses.

Figure 65. Processor Burst-Mode Data Accesses: Control Flow

mode access on each subsequent address transfer, as
long as there are more accesses yet to be performed.
During any subsequent access, the addressed device or
memory may establish a burst-mode access by assert­
ing IBACK or DBACK. If the burst-mode access is never
established, the default behavior is to have the proces­
sor transmit an address for every access.

Active and Suspended Burst-Mode Accesses
After the burst-mode access is established, IBREO and
DBREQ are used during subsequent accesses to indi­
cate that the pro~equires at least one more ac­
cess. If IBREQ or DBREQ is active at the end of the cycle
in which an access is successfully completed (Le., when
I ROY or DRDY is active), the processor requires another
access. If the slave device or memory previously has
not preempted the burst-mode acCess, and does not

preempt (by deasserting IBACK or DBACK) or cancel
(by asserting IERR or DERR) the burst-mode access in
the cycle that the access completes, the additional ac­
cess must be performed.

The execution rate of instructions is known only dynami­
cally, so that in certain situations, a burst-mode instruc­
tion access must be suspended. If IBREQ is inactive
during the cycle in which an instruction access is com­
pleted, the burst-mode access is suspended (if it is nei­
ther preempted nor canceled at the same time). The
burst-mode access remains suspended unless the
processor requests a new instruction access (in which
case IREO is asserted). or unless the instruction mem­
ory preempts the burst-mode access.

A suspended burst-mode instruction access becomes
active wheneverthe processor can accept more instruc-

1-95

29K Family CMOS Devices

mmm,~Active

ACTIVE

Cannot continue burst

Inactive

Tenninated,
Preempted, or
Canceled by
Processor

Figure 66. Slave Burst-Mode Data Accesses: Control Flow

tions. The processor activates the burst-mode access
by asserting IBREO. If the instruction memory does not
pree~pt the burst-mode access during this cycle, an in­
struction access must be performed.

When a suspended burst-mode instruction acCess is ac­
tivated, the resulting instruction access is not permitted
to be completed in the cycle in which IBREO is asserted,
but may be completed in the next cycle. The reason for
this restriction is that the burst-mode protocol is defined
such that the combination of an active level on IBREQ
and IRDY causes an instruction access (as previously
discussed).lfthe instruction access is completed imme­
diately in the cycle where a suspended burst-mode ac­
cess is activated, there is an ambiguity in the protocol: it
is possible to interpret a single-cycle assertion of IBREO
as a request for two instructions.

The above ambiguity is resolved by delaying the instruc­
tion access resulting from a reactivated burst-mode ac­
cess for a cycle. Since this restriction applies only when
the Instruction Prefetch Buffer is full and the instruction
memory is capable of a very fast access, the delayed in­
struction response has no performance impact.

The Am29000 does not suspend burst-mode data ac­
cesses because the data transfers occur to and from
general-purpose registers, which are always available.
However,other channel masters may suspend burst­
mode data accesses (during direct memory accesses,

1-96

for example). The principles for suspending burst-mode
accesses are the same as those for instruction ac­
cesses discussed above.

Processor Preemption, Termination,
and cancellation
The processor may preempt, terminate or cancel a
burst-mode access by deasserting IBREO or DBREQ
and asserting IREQ or DREQ at some later point. Nor­
mally, the processor receives one more instruction or
data word after IBREO or DBREQ is de asserted. How"
ever, this access may be completed in the same cycle
that IBREQ or D~REQ is deasserted. During the period
after IBREQ or DBREQ is deasserted and before IREO
or DREO is asserted, the burst-mode access is in a sus­
pended condition.

The slave device or memory cannot distinguish be­
tween preempted, terminated, and canceled burst­
mode accesses, when these are caused b1..!b!J?roces­
sor, until the processor asserts IREO or DREQ. If the
slave continues to assert IBACK or DBACK after IBREQ
or DBREQ is deasserted, the slave should be prepared
to accept any new request during the cycle in which
I REO or DREO is asserted to begin the new access. The
reason for this is that the processor may attempt to es­
tablish a burst-mode access for the new access: if the
slave is asserting IBACK or DBACK because of a previ-

ously preempted, terminated, or canceled burst-mode
access, the processor interprets the active IBACK or
DBACK as establishing the new burst-mode access and
removes the request in the following cycle.

The processor preempts a burst-mode access when an
external channel master arbitrates for the channel, or
when a burst-mode fetch crosses a potential virtual­
page boundary. Since the minimum page size is 1 kb,
burst-mode instruction and data accesses are pre­
empted whenever the address sequence crosses a 1-kb
address boundary. The burst is reestablished as soon
as a new address translation is performed (if required).
A new physical address is transmitted when the burst­
mode access is reestablished.

Note that the preemption resulting from page bound­
aries is advantageous for devices or memories that
require counters to follow the burst-mode address
sequence. Since all burst-mode accesses are word
accesses and the processor retransmits an address at
every 1-kb address boundary, an 8-bit counter in the
slave device or memory is sufficient to follow the burst­
mode. address sequence. Additional address bits are
simply latched.

The processor terminates a burst-mode access when­
ever all required instructions or data have been ac­
cessed. In the case of instruction accesses, the burst­
mode access is terminated when a nonsequential fetch
occurs. In the case of data accesses, the burst-mode
access is terminated when the count indicates a Single
load or store remains. The last load or store is executed
as a simple access:

The processor cancels a burst-mode access when an
interrupt ortrap is taken. Note that a trap may be caused
by the burst-mode access, for example when a Transla­
tion Look-Aside Buffer miss occurs on an address in the
burst-mode sequence. If the processor cancels a burst­
mode access when an access in the sequence remains
to be completed, this access must be completed in spite
of the cancellation.

Canceled burst-mode data accesses may be restarted
at some (possibly much later) point in execution via the
Channel Address, Channel Data, and Channel Control
registers. In this case, the burst-mode access is re­
started at the point at which it was canceled, rather than
at the beginning of the original address sequence.

Slave Preemption and Cancellation
The slave device or memory involved in a burst-mode
access may preempt the access by deasserting IBACK
or DBACK. The processor samples IBACK and DBACK
when IRDY and DRDY are active so that IBACK and
DBACK may be deasserted as the last supported ac­
cess is completed. However, IBACK and DBACK also
may be de asserted in any cycle before the access i~
completed. If IBACK or DBACK is deasserted when the
processor is in a state where it expects an access, the
access must be completed.

Am 29000
In general, the slave device or memory preempts the
burst-mode access whenever it cannot support any fur­
ther accesses in the burst-mode sequence. This nor­
mally occurs whenever an implementation-dependent
address boundary is encountered (e.g., a cache-block
boundary), but may occur for any reason. By preempt­
ing the burst-mode access, the slave receives a new re­
quest with the address of the next instruction or data
word required by the processor.

The slave device or memory may cancel a burst-mode
access by asserting IERR or DERR in response to a re­
quested access. The signals IBACK or DBACK need not
be deasserted at this time, but should be de asserted in
the next cycle.

Note that the IERR and DERR Signals cat,Jse non-mask­
able traps, except in the case where IERR is asserted for
an instruction that the processor does not execute.

Arbitration
External masters can gain access to the address, data,
and instruction buses by asserting the BREQ input. The
processor completes any pending acce~eempts
any burst-mode access, and asserts the BGRT output.
At this time, the processor places all channel outputs as­
sociated with the address, data, and instruction buses in
the high-impedance state.

For the first cycle in which BGRT is asserted, the output
BINV is also asserted. If the external master cannot con­
trol the address bus and associated controls in the cycle
where BGRT is asserted, the active level on BINV may
be used to define an idle cycle forthe channel (Le., any
spurious access requests are ignored). The BINV signal
is asserted only for a single cycle, so the external master
must take control of the channel in the cycle after BGRT
is asserted.

While the BREQ input remains asserted, the processor
continues to assert BGRT. The external master has con­
trol over the channel during this time.

To release the channel to the processor, the external
master deasserts BREQ, but must continue to control
the channel for the first cycle in which BREQ is
deasserted. In the cycle after BREa is deasserted, the
processor asserts BINV and deasserts BGRT;the exter­
nal master should release control of the channel at this
time. On the following cycle, the processor deasserts
BINV and is able to use the channel. The processor
reestablishes any burst-mode access preempted by
arbitration.

The processor does not relinquish the channel when the
LOCK signal is active. This prevents external masters
from interfering with exclusive accesses.

1-97

29K Family CMOS Devices

Use of BINV to Cancel an Access
Besides using the BINV signal to transfer control of the
channel from one masterto another, the Am29000 uses
the BINV signal to cancel accesses after they have been
initiated. To cancel an access, BINVis asserted during a
cycle in which IREO or DREO also is asserted. If an ac­
~is canceled, the~mpanying response (using
I ROY, I ERR, DRDY or DERR) is ignored during the cycle
where BINV is asserted; thereafter, the system should
not respond to the canceled access.

The BINV Signal is used to cancel an instruction access
in the following situations:

• when an interrupt or trap is taken

• when an instruction fetch-ahead is canceled
because a target block is only partially present
in the Branch Target Cache

• when an instruction TLB miss or protection
violation occurs on an instruction access

• when a branch instruction is the delay instruc­
tion of another branch, and the targets of both
branches are in the Branch Target Cache (in
this case, the external fetch for the target of
the first branch is not required)

• when the processor enters the Load Test In­
struction Mode, and there is an active instruc­
tion request on the channel

The BINV Signal is used to cancel a data access in the
following situations:

• when a data TLB miss or protection violation
occurs on the data access

• when an interrupt or trap is taken in the cycle
where a pipelined data access becomes a pri­
mary access

If, for data accesses, address translation is not per­
formed and pipe lined accesses are not implemented,
the BINV signal can be ignored by the system during the
access.

When a LOADSET instruction encounters a protection
violation because store access is not permitted, the
processor cancels the load access with BINV.

Bus Sharing-Electrical Considerations
When buses are shared among multiple masters and
slaves, it is importantto avoid situations where these de­
vices are driving a bus at the same time. This may occur
when more than one master or slave is allowed to drive a
bus in the same cycle if bus arbitration is incompletely or
incorrectly performed. However, it also occurs when a

1-98

master or slave releases a bus in the same cycle that an­
other master or slave gains control, and the first master
or slave is slow in disabling its bus drivers, compared to
the point at which the second master or slave begins to
drive the bus. The latter situation is called a bus COllision
in the following discussion.

In addition to the logical errors that can occur when mul­
tiple devices drive a bus simu Itaneously, such situations
may cause bus drivers to carry large amounts of electri­
cal current. This can have a Significant impact on driver
reliability and power dissipation. Since .bus collisions
usually occurfor a small amount of time, they are of less
concern, but may contribute to high-frequency electro­
magnetic emissions.

The Am29000 channel is defined to prevent all situ­
ations where multiple drivers are driving a bus simulta­
neously. However, bus collisions may be allowed to oc­
cur, depending on the system deSign.

In the case of the Am29000 channel, arbitration for the
channel prevents the processor from driving the ad­
dress and data buses at the same time as another chan­
nel master. If there is more than one external master,
the system design must include some means for ensur­
ing that only one external master gains control of the
channel, and that no external master gains control of the
channel at the same time as the processor.

When the processor relinquishes control of the channel
to an external master, bus collisions may be prevented
by not allowing the external master to drive any bus
while BINVisactive. This ensures that all processor out­
puts are disabled by the time the external master takes
control of the channel. However, there is nothing in the
channel protocol to prevent the external master from
taking control as soon as BGRT is asserted.

Slave devices and memories are prevented from simul­
taneously driving the instruction bus or data bus by
allowing only the device or memory performing a pri­
mary access to drive the appropriate bus. When a
pipe lined access becomes a primary access, it may
drive the instruction or data bus immediately, so there is
a potential bus collision if the pipe lined access is
performed by a slave other than the slave performing
the original primary access. This bus collision may be
prevented by restricting all slaves to driving the instruc­
tion and data buses in the second half-cycle (using
SYSCLK, for example). Since the processor samples
data only at the end of a cycle, this restriction does not
affect perfonnance.

When the processor performs a store immediately fol­
lowing a load, it drives the data bus for the store in the
second cycle following the cycle in which the data forthe
load appears on the data bus. This provides a complete
cycle for the slave involved in the load to disable its data
drivers. The processor continues to drive the data bus
until it receives a DRDY or DERR in response to the
store; it ceases to drives the data bus in the cycle follow­
ing the response.

Channel Behavior for Interrupts
and Traps
If an interrupt ortrap is taken, any burst-mode accesses
are canceled. If a request for a pipe lined access is on the
address bus, this request is removed. Any other ac­
cesses are completed and no new accesses are started,
other than those required for the interrupt or trap. Note
that any accesses that the processor expects to com­
plete must be completed, even though burst-mode and
pipelined accesses are canceled.

When interrupt or trap processing is complete, any can­
celed burst-mode access transactions are reestab­
lished using the address of the access that was to be
performed next when the interrupt or trap was taken.
Uncompleted pipelined accesses are restarted, either
by the interrupt return sequence in the case of an in­
struction access, or by restarting the initiating instruction
in the case of a data access.

Note that the restarting of a pipe lined access is not per­
formed by the Channel Address, Channel Data, and
Channel Control registers, since these registers may be
required to restart the primary access. The instruction
initiating the pipelined access is not allowed to be com­
pleted until the primary access is completed, so that the
Program Counter 1 {PC1} register contains the address
of the initiating instruction when a pipelined access is
canceled. The address in PC1 can restart this instruc­
tion on interrupt return.

Effect of the LOCK Output
The LOCK output provides synchronization and exclu­
sion of accesses in a multiprocessor environment.
LOCK has no predefined effect for a system, other than
the fact that the Am29000 does not grant the channel to
an external master while LOCK is active.

The LOCK output is asserted for the address cycle of the
Load-and-Lock and Store-and-Lock instructions, and is
asserted for both the read and write accesses of a Load
and Set instruction. LOCK may also be active for an ex­
tended period of time under control of the Lock bit in the
Current Processor Status Register {this capability is
available only to Supervisor-mode programs}.

LOCK may be defined to provide any level of resource
locking for a particular system. For example, it may lock

Am29000
the channel, an individual device or memory, or a loca­
tion within a device or memory.

When a resource is locked, it is available for access only
by the processor with the appropriate access privilege.
The mechanisms for restricting accesses and the meth­
ods for reporting attempted violations of the restrictions
are system-dependent.

Initialization and Reset
When power is first applied to the processor, it is in an
unknown state and must be placed in a known state.
Also, under certain circumstances, it may be necessary
to place the processor in a defined state. This is accom­
plished by the Reset mode, which is invoked by activat­
ing the RESET pin for the required duration. The Reset
mode configures the processor state as follows:

1. Instruction execution is suspended.

2. Instruction fetching is suspended.

3. Any interrupt or trap conditions are ignored.

4. The Current Processor Status Register is set as
shown in Figure 67.

5. The Cache Disable bit of the Configuration Reg­
ister is set.

6. The Data Width Enable bit of the Configuration
Register is reset.

7. The Contents Valid bit of the Channel Control
Register is reset.

Except as previously noted, the contents of all general­
purpose registers, special-purpose registers, and TLB
registers are undefined. The contents of the Branch Tar­
get Cache are also undefined.

The Reset mode also configures the processor to initi­
ate an instruction fetch using an address of O. Since the
ROM enable {RE} bit of the Current Processor Status is
1, this fetch is directed to external instruction read-only
memory. This fetch occurs when the Reset mode is
exited {Le., when the RESET input is deasserted}.

The Reset mode is invoked by asserting the RESET in­
put and can be entered only if the SYSCLK pin is operat­
ing normally, whether or not the SYSCLK pin is being

1 :11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 :1 0 1 0 1 0 1 0 1 0 1 0 1 0 1:1 0 1 0 1 0 1 0 11 1 0 11 1 : 11 11 11 1 0 I 0 11 1 ~ 1
, v ~ I •• I I •• I : • : I I i I

I I I I I I I I I I I I I I I

Reserved I I I I I I I I I I I I I I I

: IP: TP: FZ: RE: PO: SM: 01 I

CA TE TU LK WM PI 1M OA

Figure 67. Current Processor Status Register In Reset Mode

1·99

29K Family CMOS Devices
driven by the processor. The Reset mode is entered
within four· processor cycles after RESET is asserted.
The RESET Input must be asserted for at least four pro­
cessor cycles to accomplish a processor reset.

The Reset mode can be entered from any other proces­
sor mode (e.g., the Reset mode can be entered from the
Halt mode). If the RESEf input is asserted at the time
that power is first applied to the processor, the proces­
sor enters the Reset mode only after four cycles have
occurred on the SYSCLK pin.

The Reset mode is exited when the RESET Input is de­
asserted. Either three or four cycles after RESET Is de­
asserted (depending on internal synchronization time),
the processor performs an initial instruction access on
the channel. The initial instruction access is directed to
Address 0 in the instruction read-only memory (instruc­
tion ROM). If instruction ROM is not implemented in a
particular system, another device or memory must re­
spond to this instruction fetch.

If the CNTL1-CNTLo Inputs are 10 or01 when RESET is
deasserted, the processor enters the Halt or Step mode,

1-100

respectively. If the processor enters the Halt mode im­
mediately after reset, the protection checking that nor­
mally applies to the Halt instruction is disabled so that
the Halt instruction can be used as an instruction break­
point in a User-mode program. The Load Test Instruc­
tion mode cannot be directly entered from the Reset
mode. If the CNTL1-CNTLo inputs are 00 immediately
after RESEr Is deasserted, the effect on processor op­
eration is unpredictable. If the CNTL l-CNTLo inputs are
11, the processor enters the Executing mode.

The ~rocessor samples the STATo output internally
when RESET is asserted. A High level on STATo in this
case is used to enable a special test configuration and
causes the processor to be inoperable. When RESET is
asserted, the processor drives STAT 0 Low in order to
disable this test configuration. However, if processor
outputs are disabled by the Test mode, the processor is
not able to drive STATo. Thus, if RESET is asserted
When the processor is in the Test mode, the STATo pin
must be driven Low externally. (In a master/slave con­
figuration, STATo is driven Low by the master processor
when RESET Is asserted.)

ABSOLUTE MAXIMUM RATINGS
Storage Temperature
Voltage on any Pin
with Respect to GND -0.5 to Vee +0.5 V

OPERATING RANGES
Commercial (C) Devices

Case Temperature (T c)
Supply Voltage (Vee)

MIlHary Devices
Case Temperature (Tc)*
Supply Voltage (Vcc)

Am29000

o to +85°C
+4.75 to +5.25 V

-55 to + 125°C
+4.5 to +5.5 V

Stresses above those listed under ABSOL UTE MAXI­
MUM RA TINGS may cause permanent device failure.
Functionality at or above these limits is not implied. Ex­
posure to absolute maximum ratings for extended peri­
ods may affect device reliability. Operating ranges define those limits between which the

functionality of the device is guaranteed.
*measured "instant on"

DC CHARACTERISTICS over COMMERCIAL and MILITARY operating ranges

Parameter Parameter
Symbol Description Test Conditions Min. Max. Unit

VIL -0.5 0.8 V
VIH 2.0 Vee +0.5 V
VILINCLK -0.5 0.8 V
VIHINCLK 2.0 Vee +0.5 V
VILSYSCLK -0.5 0.8 V
VIHSYSCLK Vee-O.8 Vee +0.5 V

Va. Output low Voltage for
All Outputs except SYSClK IOL=3.2 rnA 0.45 V

VOH Output High Voltage for
All Outputs except SYSClK ~.ll\r;h. 2.4 V

lu ±10
!Lo Output leakage Current ±10 ~
Iccop Operating Power-Supply 22 for

Current Commercial mNMHz
25 for

Military

VOLC O.S V
VOHC Vee-O.S V

losGNO
100 rnA

losvcc
Circuit Current 100 rnA

CAPACITANCE

Parameter Parameter
Symbol Description Test Conditions Min. Max. UnH

CIN Input Capacitance 15 pF
CINCLK INClK Input Capacitance 20 pF
CSYSCLK SYSClK Capacitance fC=1 MHz (Note 1) 90 pF
COUT Output Capacitance 20 pF
Coo VO Pin Capacitance 20 pF

Note: 1. Not 100% tested.

1·101

29K Family CMOS Devices

SWITCHING CHARACTERISTICS over COMMERCIAL operating range

Parameter Test 33 MHz 25 MHz
No. Description CondHlons Min. Max. Min. Max. UnH

1 System Clock (SYSCLK)
Period (T) Note 1 40 1000 ns

1A SYSCLK at 1.5V to SYSCD<
at 1.5V when used as an output Note 13 0.5T-1 0.5T +1 ns

2 SYSCLK High Time when used as input Note 13 19 ns
3 SYSCLK Low Time when used as input Note 13 17 ns
4 SYSCLK Rise Time Note 2 5 ns
5 SYSCLK Fall Time Note 2 5 ns
6 Synchonous SYSCLK Output

Valid Delay Notes 3. 12 3 14 ns
6A Synchronous SYSCLK Output

Valid Delay for 031-00 Note 12 4 18 ns
7 Three-State Synchronous SYSCLK Notes 4,

~ Output Invalid Delay 14.15 3 30 ns
8 Synchronous ~

.
Output Valid Delay Notes 5. 1.2. 3 14 ns

SA Three·State SYSCIJ< Notes
"ii-~

Synchronous Output Invalid Delay 1~"
:~ 3 30 ns

9 Synchronous Input Setup Time ~<ijQ"~~~l\' .i\, v 12 ns
9A Synchronous Input Setup Time

for Ds,-Oo' 13,-10 ,6 ns
98 Synchronous Input Setup Time

forlmDY 13 ns
10 Synchronous Input Hold Time ,A~I:;Note 6 2 ns
11 Asynchronous Input Minimum ' .. ~

Pulse Width Note 8 T +10 ns
12 INCLI< Period 20 500 ns

12A INCLI< to SYSCLK Delay ';'~,~ 2 10 ns
12B INCLI< to SYSCO< Delay 2 10 ns
13 INCLI< Low Time 8 ns
14 INCLI< High Time 8 ns
15 INCLK Rise Time 5 ns
16 INCLI< Fall Time 5 ns
17 INCLI< to Deassertion of ~

(for phase synchronization of SYSCLK) Note 9 0 5 ns
18 WARN Asynchronous Deassertion

Hold Minimum Pulse Width Note 10 4T ns
19 BiNV Synchronous Output Valid

Delay from SYSCIJ(Note 12 1 7 ns
20 Three-State synchronous SYSCLK Notes 11,

output invalid delay for 031-00 14.15 3 20 ns

1-102

Am29000

SWITCHING CHARACTERISTICS over COMMERCIAL operating range

Parameter Test 20 MHz 16 MHz

No. Description Conditions Min. Max. Min. Max. Unit

1 System Clock (SYSCLK)
Period (T) Note 1 50 1000 60 1000 ns

1A SYSCLK at 1.5V to SYSC[R
at 1.5V when used as an output Note 13 0.5T-1 0.5T +1 0.5T-2 0.5T +2 ns

2 SYSCLK High Time when used as input Note 13 22 27 ns

3 SYSCLK Low Time when used as input Note 13 19 22 ns

4 SYSCLK Rise Time Note 2 5 5 ns

5 SYSCLK Fall Time Note 2 A, 5 5 ns

6 Synchonous SYSCLK Output
.(, !~\16 Valid Delay Notes 3,12 3 3 16 ns

6A Synchronous SYSCLK Output '\~)-
Valid Delay for 0 31-00 Note 12 '!t),;20 4 20 ns

7 Three-State Synchronous SYSCLK Notes 4, ,
Output Invalid Delay 14,15 30 3 30 ns

8 Synchronous SYSCLK
Output Valid Delay Notes 5, 16 3 16 ns

8A Three-State SYSCLK Not
Synchronous Output Invalid Delay 3 30 3 30 ns

9
Synchronous Input Setup 11me < I "~" > 15 15 ns

9A Synchronous Input Setup Time ""'"
for 031-00, 131-10 8 8 ns

98 Synchronous Input Setup Time .
for DRDY 16 16 ns

10 Synchronous Input Hold ~ Note 6 2 2 ns

11 Asynchronous Input Minimu v

Pulse Width Note 8 T +10 T +10 ns

12 INCLK Period v 25 500 30 500 ns

12A INCLK to SYSCLK Delay ",%li~.,. 2 12 2 15 ns

128 INCLK to SYSCLK Delay 2 12 2 15 ns

13 INCLK Low Time 10 12 ns

14 INCLK High Time 10 12 ns

15 INCLK Rise Time 5 5 ns

16 INCLK Fall Time 5 5 ns

17 INCLK to Deassertion of RESET
(for phase synchronization of SYSCLK) Note 9 0 5 0 5 ns

18 WARN Asynchronous Oeassertion
Hold Minimum Pulse Width Note 10 4T 4T ns

19 BiNV Synchronous Output Valid
Delay from SYSCLK Note 12 1 8 1 9 ns

20 Three-State synchronous SYSCLK Notes 11,
output invalid delay for 0 31-00 14,15 3 25 3 25 ns

1·103

29K Family CMOS Devices

SWITCHING CHARACTERISTICS over MILITARY operating range

Parameter Test 20 MHz 16 MHz

No. Description Conditions Min. Max. Min. Max. Unit

1 System Clock (SYSCLK)
Period (T) Note 1 50 1000 60 1000 ns

1A SYSCLK at 1.5V to SYSCI:R'
at 1.5V when used as an output Note 13 0.5T -1 0.5T +1 0.5T-2 0.5T +2 ns

2 SYSCLK High Time when used as input Note 13 22 27 ns

3 SYSCLK Low Time when used as input Note 13 19 22 ns

4 SYSCLK Rise Time Note 2 5 5 ns

5 SYSCLK Fall Time Note 2 5 5 ns

6 Synchonous SYSCLK Output ~f:~
Valid Delay Notes3,12 3 "'~''''' ~I:\ij 6 3 16 ns

6A Synchronous SYSCLK Output

Jt~!' !:~"~5) Valid Delay for 0 31-00 Note 12 4 20 ns

7 Three·State Synchronous SYSCLK Notes 4, I~:::~t~~ ''\~J'

Output Invalid Delay 14,15 i'>, 30 3 30 ns

8 Synchronous SYSCIJ< '\"<&i'"

Output Valid Delay Notes 5, 12{&f~ 16 3 16 ns

8A Three-State SYSCD< Notes
Synchronous Output Invalid Delay 14, 3 30 3 30 ns

9 Synchronous Input Setup Time Na~7.,~\"\",,> :>I,i,> 15 15 ns

9A Synchronous Input Setup Time
for 031-00, 131-10 8 8' ns

98 Synchronous Input Setup Time ~'i
forl5RDY 16 16 ns

10 2 2 ns

11 Asynchronous Input Minimum 1~~iP'
Pulse Width Note 8 T +10 T +10 ns

12 INCLK Period <it';;:"., 25 500 30 500 ns

12A INCLK to SYSCLK Delay'~'~~,§"",. 12 15 ns

128 INCLK to SYSCD< Delay
","",.

12 15 ns
13 INCLK Low Time 10 12 ns

14 INCLK High Time 10 12 ns

15 INCLK Rise Time 5 5 ns

16 INCLK Fall Time 5 5 ns

17 INCLK to Deassertion of RESET
(for phase synchronization of SYSCLK) Note 9 0 5 0 5 ns

18 WARN Asynchronous Deassertion
Hold Minimum Pulse Width Note 10 4T 4T ns

19 IDNV Synchronous Output Valid
Delay from SYSCD< Note 12 1 8 1 9 ns

20 Three-State synchronous SYSCLK Notes 11,
output invalid delay for 031-00 14,15 4 25 ,4 25 ns

1·104

Notes:
Am29000

1. AC measurements made relative to 1.5 V, except where noted.
2. SYSCLK rise and fall times measured between 0.8 V and (V cc -1.0 V).

3. ~hronous O~uts relative to SYSCLK rising~e include: A3,-Ao. BGRT, RiW. SUPIUS. I:OCK. MPGM,-MPGMo'
• IREOT, PIA, UREQ, DREOT,-DREOTo' PDA, OPTa-OPTo, STATa-5TATo, and MSERR.

4. Three-state Synchronous Outputs relative to SYSCLK risin~ge include: A3,-Ao. ANi, SUP/US. LOCK.
MPGM,-MPGMo• TREa, IREOT, PiA, DREQ, DREOT,-DREOTo• PDA, and OPTa-OPT 0"

5. Synchronous Outputs relative to SYSCLK falling edge (SYSCIJ<): iBREQ, DBREQ.

6. Synchronous Inputs include: IrnEQ', J5eJ, lADY, iERR. TBACi<, DEAR. DBACK. CDA. 13,-10, DADY, and 0 3,-00,

7. Synchronous Inputs include: BREQ. J5eJ. lADY. lEAR, TBACi<. DEAR. DBACK. and COA.
8. Asynchronous Inputs include: WARN, 'iN'fR;,-TN'f'Ro. 'fRAP3-'f"RAPo, and CNTL,-CNTLo.
9. ~ is an asynchronous input on assertion/deassertion. As an option to the user, RESET deassertion can be used to

force the state of the internal divide-by-two flip-flop to synchronize the phase of SYSCLK (if internally generated) rela­
tive to RESETIINCLK.

10. WARN has a minimum pulse width requirement upon deassertion.
11. To guarantee StorelLoad with one-cycle memories. 03,-00 must be asserted relative to SYSCLK falling edge from an

external drive source.
12. Refer to Capacitive Output Delay table when capacitive loads exceed 80 pF.

13. When used as an input, SYSCLK presents a 90-pF max. load to the external driver. When SYSCLK is used as an out­
put, timing is specified with an external load capacitance of s 200 pF.

14. Three-State Output Inactive Test Load. Three-State Synchronous Output Invalid Delay is measured as the time to a
±500 mV change from prior output level.

15. When a three-state output makes a synchronous transition from a valid logic level to a high-impedance state, data is
guaranteed to be held valid for an amount of time equal to the lesser of the minimum Three-State Synchronous Output
Invalid Delay and the minimum Synchronous Output Valid Delay.

Conditions:

a. All inputs/outputs are TTL compatible for V IH' V,L, Vott, and V 04. unless otherwise noted.
b. All output timing specifications are for 80 pF of loading.
c. All setup. hold, and delay times are measured relative to SYSCLK or INCLI< unless otherwise noted.
d. All input Low levels must be driven to 0.45 V and all input High levels must be driven to 2.4 V except SYSCLK.

1·105

29K Family CMOS Devices

SWITCHING WAVEFORMS

SYSCLK
Synchronous
Outputs

SYSCLK
Synchronous

Outputs

1.5 V

Vcc-1.O V
1.5 V

O.8V
1.5V

--+~ .-
\::;Y

Synchronous Inputs
1.5 V

Relative to SYSCLK

1-106

",>

SWITCHING WAVEFORMS

INCLK

Jr---1.5 V -4~81-----~

Asynchronous
Inputs

1~4~----------~~r-----------'~1

1.5 V

INCLK and Asynchronous Inputs

1.5 V

Am29000

1-107

29K FamIlY'CMOS Devices

SWITCHING WAVEFORMS

~----~3r-----~

~------~2r-------~

SYSCLK Definition

1.5 V

SYSCLK

INCLK

1.--------;12r-------~

INCLK to SYSCLK Delay

1·108

Capacitive Output Delays

For loads greater than 80 pF

Am29000

This table describes the additional output delays for capacitive loads greater than 80 pF. Values in the Maximum
Additional Delay column should be added to the value listed in the SWitching Characteristics table. For loads less
than or equal to 80 pF, refer to the delays listed in the SWitching Characteristics table.

No. Parameter Description
6 Synchronous SYSCLK Output Valid Delay

6A Synchronous SYSCLK Output Valid Delay for 031-0

B

19 BINV Synchronou~~utput Valid Delay from SYSCLK

SWITCHING TEST CIRCUIT

10&. = 3.2mA

Total
External

capacitance
100 pF
150 pF
209;,

FJ.
O'fjF

OOpF
250pF
300pF

100pF
150 pF
200pF
250pF
300pF

100 pF
150 pF
200pF
250pF
300 F

Am29000
Pin Under Test

080751HlO1A

I COO 1 030

CL is guaranteed to BO pF. For capacitive loading greater
than BO pF, refer to the Capacitive Output Delay table.

Maximum
Additional

Delay
+1 ns
+2 ns
+4ns
+6 ns
+B ns

+1 ns
+6 ns
+10 ns
+15 ns
+19 ns

+1 ns
+2 ns
+4ns
+6ns
+B ns

+1 ns
+3 ns
+4ns
+6ns
+7ns

1-109

29K Family CMOS Devices

Am29000 Thermal Characteristics

Pln-Grld-Array Package

Thermal Resistance - °ClWatt

Parameter

OJC Junction-to-Case

SCA Case-to-Ambient (no Heat~i,~l~

SCA Case-to-Ambient (w ''0
Heatsink, Thermall'7

OCA Case-to-Ambient (witttLnidiredional Pin Fin
Heatsink, Wakefield 840-20)

Ceramlc-Quad-Flat-Pack Package

,

6

10 6

II· ... r
I

I
I SJC

OCA SJA

Thermal Resistance - °ClWatt

0 150
Parameter (0) (0.76)

Ox Junction-ta-Case

SCA Case-to-Ambient

Note: This is for reference only.

1-110

2

13

3 2

3 2

IC001040

Alrflow-ft./mln. (m/sec)

300 480
(1.53) (2.45)

700
(3.58)

2

11

2

2

700
(3.58)

900
(4.61)

2

10

2

2

900
(4.61)

Am29027
Arithmetic Accelerator

DISTINCTIVE CHARACTERISTICS
• High-speed floating-point accelerator for the

Am29000™ processor

• Comprehensive floating-point and Integer
Instruction sets, Including addition,
subtraction, and multiplication

• Single-, double-, and mixed-precision
operations

• Performs conversions between precisions and
between data formats

• Complies with seven Industry-standard
floating-point formats:
-IEEE Standard for Binary Floating-Point
Arithmetic (ANSI/IEEE std 754-1985), single- and
double-precision

-DECTM F, DEC 0, and DEC G Standards

-IBM~ Systeml370 single- and double-precision

SIMPLIFIED SYSTEM DIAGRAM

Am29027

Advanced
Micro

Devices

• Exact IEEE compliance for denormallzed
numbers with no speed penalty

• Simple Interface requires no glue logic
between Am29000 and Am29027 ™

• Eight-deep register file for Intermediate re­
sults and on-Chip 64-bit data path facilitate
compound operations, for example, Newton­
Raphson division, sum-of-products, and
transcendentals

• Supports plpellned or flow-through operation

• Full complier and assembler support for IEEE
format

• Fabricated with Advanced Micro Devices' 1.2-
micron CMOS process

Data

32

09114-OO1C

Publication' 09114 Rev. C Amendment 10

Issue Date: October 1989

1-111

29K Family CMOS Devices

TABLE OF CONTENTS

DISTINCTIVE CHARACTERISTICS •.•.••••.•.••••..••••••••••.•••••.••••••••••••••..• 1-111

SIMPLIFIED SYSTEM DIAGRAM •••.•••••.••••••••••••.••••.••••••••.••••••.••••••••• 1-111

GENERAL DESCRIPTION •••••••.••••••.•.•••••••.•••••••••.••••••.•••.••••••••.••• 1-114

CONNECTION DIAGRAMS ••••••.••••••••••••.•••.•.•••••••.••••••••••••••••••••••• 1-115

PIN DESIGNATIONS ••••••••.••••••••••••••.•••.•••••••.••••••••••.••••••.••••..•• 1-117

LOGIC SYMBOL ••••••.•••.••.••••.••••••••.•••.••. , •••••••••••••••••••••••••••••• 1-121

ORDERING INFORMATION ••••.••••..••••.•••••.•••••••••.••••.•••••••••••••••••.• 1-122

PIN DESCRIPTION ••••••••••••.•••...•••••••••••..•••••••••••••.•••••.•.••••••••• 1-124

FUNCTIONAL DESCRIPTION •••••••••..•••••••••••••••••.•••••••••••••••••••••.•••• 1-125
Overview •••••••••••••••••••••.••••...••••••••••••••••.•••••.•••••••••..••• 1-125

Architecture ; .. 1-125
Instruction Set ... ; 1-125
Performance .. ,' ; 1-125
Interface ... 1-125
Master/Slave .. 1-126
Support .. " 1-126

Block Diagram Description ••.••••••.•.••••.•••...••••••••.••••..•••••••••••.••• 1-126
Input Registers .. 1-127
Operand Selection Multiplexers. .. 1-127
Instruction Register .. 1-127
ALU .. 1-127
Output Register/Register File ... 1-127
Flag Register ' ... 1-127
Status Register .. 1-127
Output Multiplexer ... 1-127
Mode Register .. ' 1-127
Control Unit .. 1-127

1-112

Master/Slave Comparator ... 1-128
System Interface •••.••...••••.••.•••.•..•••••••••••.•••..••.••.•.•••••• ' •..••• 1-128
Special-Purpose Registers •••••.••••••.•..••••••.•••..•••.••••...••••••••.••••• 1-129

Mode Register .. 1-129
Status Register. .. 1-131
Flag Register ... 1-131
Precision Register ... 1-132
Instruction Register, I-Temp Register .. 1-132

Operand Registers ••••.••.••••.•••.•.•.••••••.••••••••.•••••...••••.•••••..•• 1-132
Accelerator Transaction Requests ..•.•••.••••••..•••••••.••..••..•••••.••• ,. ••..• 1-133

Write Transaction Requests. .. 1-133
Read Transaction Requests .. 1-134
Coprocessor Data Accept ... 1-135
Data Ready .. 1-135
Data Error .. '.' ... '. 1-135

Accelerator Instruction Set .•...••••...••..•..••.••••..•.••.....•.•••..•••.••••• 1-136
Instruction Word ... 1-136
Base Operation Code ... 1-136
Sign-Change Selects 1-136
Operand Precision Selects ... 1-136
Operand Source Selects .. 1-139
Register File Controls. .. 1-139
Accelerator Operations ... 1-139

Am29027

Base Operation Code Description ... 1-143
Primary and Alternate Floating-Point Formats .. 1-145
Operation Precision 1-145
Operation Flags .. 1-145
Updating the Status Register .. 1-148

Operatlon.Sequenclng •••••••••••••••••••••••••••••••••••••••.•••••••••••••••• 1-148
Operation in Flow-Through Mode : 1-148
Operation in Pipeline Mode .. 1-153
Pipeline Advance 1-153
Performing Operations .. 1-153

Master/Slave Operation ••.•••••••••••• 1-158
Initialization and Reset •• 1-158
Applications •••• .' ••.••••••••.••• 1-158

ABSOLUTE MAXIMUM RATINGS ••.•.••••••••• 1-161

OPERATING RANGES •••••••••••••••.••••••••••••••••••••••••••••••.••••••••••••• 1-161

DC CHARACTERISTICS •••.••...•.•.•.••• 1-162

CAPACiTANCE ••••••••••••••••••••••••••••••••.•••••• .' •.••••••••••••••••.•••••• 1-162

SWITCHING CHARACTERISTICS •••••••••••••••••.•• .' ••••••••••••••••••••••.•••...•• 1-163

SWITCHING WAVEFORMS ••• .' •••.••••.••.••. 1-165

SWITCHING TEST CIRCUIT ••••••••••••••••••••••••••••• .' ••.••••••••••••••••••.. '. ~ • 1-169

TEST PHILOSOPHY AND METHODS ••••••••••••••••••••••••••••••••.•• .' •..•••••••••• 1-170

APPENDIX A-DATA FORMATS •••••••••••••••••••••••••••••••••••••• .' .•••••••••••• 1-172

APPENDIX B--ROUNDING MODES ••••••••.• .' ••• .' ••••• .'.'.'.'.' ••••• .' ••••...•.•.••••••• .' 1-177

APPENDIX C-ADDITIONAL OPERATION bETAILS .' • .' • .' • .' • .' •• .' • .' ••.••.•. .'' ••• .' •. 1-180

APPENDIX D-TRANSACTION REQUEST/OPERATION TIMING • .' •••••• .' • .'.' .'.' • .' •.• .' •••.•... .' 1-182

1-113

29K Family CMOS Devices

GENERAL DESCRIPTION
The Am29027 Arithmetic Accelerator is a high­
performance computational unit intended for use with
the Am29000 Streamlined Instruction Processor. When
added to an Am29000-based system, the Am29027
improves floating-point performance by an order of
magnitude or more.

The Am29027 implements an extensive floating-point
and integer instruction set, and can perform operations
on single-, double-, or mixed-precision operands. The
three most widely used floating-point formats-IEEE,
DEC, and IBM-are supported. IEEE operations fully
comply with the IEEE Standard for Binary Floating-Point
Arithmetic (ANSI/IEEE standard 754-1985), with direct
implementation of special features such as gradual un­
derflow and exception handling.

The Am29027 consists of a 64-bit ALU, a 64-bit data
path, and a control unit. The ALU has three data input
ports, and can perform operations requiring one, two, or
three input operands. The data path comprises two
64-bit input operand registers. an 8-by-64-bit register
file for storage of intermediate results, three operand se­
lection multiplexers that provide for orthogonal selection
of input operands, and an output multiplexer that
allows access to Jhe result data, the operation status,
the flags, or the accelerator state. The control unit inter­
prets transaction requests from the Am29000, and
sequences the ALU and data path.

Operations can be performed in either of two modes:
flow-through or pipeline. In flow-through mode, the ALU
is completely combinatorial; this mode is best suited
to scalar operations. Pipeline mode divides the ALU
into twO or three pipe lined stages for use in vector

1·114

operations, such as those found in graphics or signal
processing.

The Am29027 connects directly to Am29000 system
buses and requires no additional interface circuitry.

Fabricated with AMD's 1.2-micron CMOS technology,
the Am29027 is housed in' two packages: a 169-
lead pin-grid-array (PGA) package, and a 164-lead
ceramic-quad-flat-pack (CQFP) package for military
applications.

Related AMD Products

Part No. Description

Am29000 Streamlined Instruction Processor

29KTM Family Development Support Products

Contact your local AMD representative for information
on the complete set of development support tools.

Software development products on several hosts:

• Optimizing compilers for common high-level
languages

• Assembler and utility packages

• Source- and assembly-level software debuggers

• Target-resident development monitors

• Simulators

Hardware Development:

• ADAPT29KTM' Advanced Development and Proto­
typing Tool

CONNECTION DIAGRAMS
169-Lead PGA *
Bottom View

ABC D E F G H J K L M N P R T U

1 @000000000000000®
2 00000000000000000
3 00000000000000000
4 0000·· 000
5 000 000
6 000 000
7 000 000
8 000 000
9 000 000

10 000 000
11 000 000
12 000 000
13 000 000
14 000 000
15 00000000000000000
16 00000000000000000
17 @000000000000000@

• Pinout observed from pin side of package .
•• Alignment pin (not connected internally).

Am29027

CD009761

1-115

29K Family CMOS Devices

CONNECTION DIAGRAMS (continued)
164·Lead CQFp·

Top View

(Lid Facing Viewer)

164

41

L

42

1-116

124

123

83

82

PGA PIN DESIGNATIONS (sorted by Pin No.)

Pin Na. Pin Name PinNa. Pin Name PinNa.

A-1 S31 C-10 F20 J-16
A-"2 F4 C-11 Veeo J-17

A-3 Fs C-12 GNDO K-1

A-4 Fa C-13 F29 K-2

A-5 Flo C-14 GNDO K-3

A-6 F12 C-15 Veco K-15

A-7 F14 C-16 12 K-16

A-8 FIS C-17 Is K-17

A-9 Fla 0-1 S24 L-1

A-10 F21 0-2 S25 L-2

A-11 F22 0-3 S29 L-3

A-12 F24 0-4 (see note) L-15

A-13 F27 0-15 10 L-16

A-14 F2a 0-16 13 L-17

A-15 F31 0-17 18 M-1

A-16 SLAVE E-1 S21 M-2

A-17 It E-2 S23 M-3

B-1 S30 E-3 S2S M-15

B-2 Fl E-15 14 M-16

B-3 F3 E-16 17 M-17

B-4 F5 E-17 19 N-1

B-5 F7 F-1 S18 N-2

B-6 F9 F-2 S20 N-3
B-7 F13 F-3 S22 N-15

B-8 F15 F-15 Vee N-16

B-9 F17 F-16 Ito N-17

B-10 F19 F-17 1t2 P-1

B-11 F23 G-1 SIS P-2

B-12 F25 G-2 S17 P-3

B-13 F26 G-3 S19 P-15
B-14 F30 G-15 GND P-16

B-15 GND G-16 hI P-17

B-16 MSERR G-17 1t4 R-1

B-17 15 H-1 S13 R-2

C-1 S27 H-2 S14 R-3
C-2 S28 H-3 SIS R-4

C-3 Fo H-15 GND R-5

C-4 F2 H-16 1t3 R-6

C-5 Veeo H-17 Its R-7

C-6 GNDO J-1 S11 R-8

C-7 Fl1 J-2 S12 R-9

e-8 GNDO J-3 Vee R-10

e-g Veeo J-15 117 R-11

Note: Pin Number 0-4 = Alignment Pin.
Veeo and GNOO are power and ground pins for the output buffers.
Vee and GNO are power and ground pins for the rest of the logic.

Am29027

Pin Name PinNa. Pin Name

lIS R-12 DREOTo
Ita R-13 RESET
S9 R-14 DREO

SIO R-15 129
GND R-16 127
121 R-17 124
120 T-1 R28
1t9 T-2 R23
S8 T-3 R21
S7 T-4 R18
S6 T-5 R16
GNDO T-6 R13

123 T-7 RIO
122 T-8 R7
S5 T-9 R5
S4 T-10 R3

S2 T-11 Ro
Veeo T-12 OPTI
DRDY T-13 DREOTI

CDA T-14 BINV

S3 T-15 131
SI T-16 128
R30 T-17 125
NC U-1 R25
EXCP U-2 R22

DERR U-3 R19

So U-4 R17
R29 U-5 R15
R26 U-6 R14
126 U-7 Rll
NC U-S R9
NC U-9 Rs
R31 U-10 R4
R27 U-11 R2
R24 U-12 Rl
R20 U-13 OPTo
Vee U-14 OPT2
GND U-15 R/W

R12 U-16 OE

R8 U-17 130
GND
Vee

ClK

1-117

29K Family CMOS Devices

PGA PIN DESIGNATIONS (sorted by Pin Name)

Pin No. Pin Name Pin No. Pin Name Pin No.

T-14 BINV G-15 GND 8-16

M-17 CDA H-15 GND N-15

R-11 CLK K-3 GND P-16
N-17 DERR R-6 GND P-17

M-16 DRDY R-9 GND U-16

R-14 DREQ C-6 GNDO U-13

R-12 DREQTo C-8 GNDO T-12
T-13 DREQTl C-12 GNDO U-14
N-16 EXCP C-14 GNDO T-11

C-3 Fo L-15 GNDO U-12
B-2 Fl 0-15 10 U-11
C-4 F2 A-17 11 T-10
8-3 F3 C-16 b U-10
A-2 F4 0-16 13 T-9
8-4 F5 E-15 14 U-9
A-3 F6 8-17 15 T-8
8-5 F7 C-17 16 R-8
A-4 Fs E-16 17 U-8
8-6 F9 0-17 Is T-7
A-5 Flo E-17 19 U-7
C-7 F11 F-16 110 R-7
A-6 F12 G-16 111 T-6
8-7 F13 F-17 112 U-6
A-7 F14 H-16 113 U-5
8-8 F15 G-17 114 T-5
A-8 F16 H-17 115 U-4
8-9 F17 J-16 116 T-4
A-9 F18 J-15 117 U-3
8-10 F19 J-17 lIs R-4
C-10 F20 K-17 119 T-3
A-10 F21 K-16 120 U-2
A-11 F22 K-15 121 T-2
8-11 F23 L-17 122 R-3

A-12 F24 L-16 123 U-1
8-12 F25 R-17 124 P-3
8-13 F26 T-17 125 R-2
A~13 F27 P-15 126 T-1
A-14 F28 "R-16 127 P-2
C-13 Fn T-16 128 N-3
8-14 F30 R-15 In R-1
A-15 F31 U-17 130 R-13

8-15 GND T-15 131 U-15

Note: Pin Number D-4 = Alignment Pin.
Vcco and GNDO are power and ground pins for the output buffers.
Vee and GND are power and ground pins for the rest of the logic.

'-"8

Pin Name Pin No. Pin Name

MSERR P-1 So

NC N-2 SI

NC M-3 S2
NC N-1 S3

OE M-2 S4

OPTo M-1 S5

OPTI L-3 S6
OPT2 L-2 S7
Ro L-1 Ss

Rl K-1 S9
R2 K-2 S10
R3 J-1 S11
R4 J-2 S12
R5 H-1 S13
R6 H-2 S14
R7 G-1 SIS
Rs H-3 S16
R9 G-2 S17
RIo F-1 SIS
R11 G-3 S19
R12 F-2 S20
R13 E-1 S21
R14 F-3 S22
R15 E-2 S23
RIB 0-1 S24
R17 0-2 S25
RIS E-3 S26
R19 C-1 S27
R20 C-2 S28
R21 0-3 S29
R22 8-1 S30
R23 A-1 S31
R24 A-16 SLAVE

R25 F-15 Vee
R26 J-3 Vee
R27 R-5 Vee
R28 R-10 Vee
Rn C-5 Veeo
R30 C-9 Veeo
R31 C-11 Veeo
RESET C-15 Veeo

R/W M-15 Veeo

Am29027

CQFP PIN DESIGNATIONS (sorted by Pin No.)

Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name

1 Fo 42 Vee 83 129 124 R25

2 FI 43 GND 84 128 125 R26

3 F2 44 10 85 131 126 R27

4 F3 45 11 86 DREQ 127 R2S

5 F4 46 12 87 OE 128 R29

6 Veeo 47 13 88 BINV 129 R30

7 GNDO 48 14 89 RE8ET 130 R31

8 F5 49 15 90 R/W 131 80

9 Fe 50 16 91 DREQTI 132 81

10 F7 51 b 92 DREQTo 133 82
11 Fs 52 Is 93 OPT2 134 83
12 F9 53 19 94 OPTI 135 84

13 Flo 54 110 95 OPTo 136 85

14 FII 55 III 96 ClK 137 86
15 FI2 56 112 97 Ro 138 87

16 FI3 57 113 98 RI 139 8s
17 FI4 58 GND 99 R2 140 89
18 FIs 59 114 100 R3 141 810

19 GNDO 60 115 101 R4 142 811
20 Vcco 61 116 102 Vee 143 GND
21 FIe 62 117 103 GND 144 Vee
22 F17 63 lIs 104 Rs 145 812
23 FIB 64 119 105 R6 146 813
24 FI9 65 120 106 R7 147 814
25 F20 66 121 107 Rs 148 815
26 F21 67 122 108 R9 149 816
27 F22 68 123 109 RIo 150 817

28 F23 69 CDA 110 RII 151 818

29 F24 70 DRDY 111 RI2 152 819

30 F2S 71 DERR 112 RI3 153 820

31 F26 72 GNDO 113 RI4 154 821
32 Vcco 73 Vcco 114 Rls 155 822
33 GNDO 74 EXCP 115 RI6 156 823

34 F27 75 NC 116 RI7 157 824
35 F2S 76 NC 117 RI8 158 825
36 F29 77 NC 118 RI9 159 826

37 F30 78 124 119 R20 160 827

38 F31 79 125 120 R21 161 82S

39 GND 80 126 121 R22 162 829

40 SLAVE 81 127 122 R23 163 830

41 M8ERR 82 I~ 123 R24 164 831

1·119

29K Family CMOS Devices
CQFP PIN DESIGNATIONS (sorted by Pin Name)

Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name

88 BINV 39 GND 41 MSERR 130 R31
69 CDA 43 GND 75 NC 40 SLAVE
96 ClK 58 GND 76 NC 131 So
71 DERR 103 GND 77 NC 132 S1
86 DREQ 143 GND 87 OE 133 82
92 DREQTo 7 GNDO 95 OPTo 134 S3
91 DREQT1 19 GNDO 94 OPT1 135 S4
70 DRDY 33 GNDO 93 OPT2. 136 Ss
74 EXCP 72 GNDO 89 RESET 137 S6
1 Fo 44 10 90 RtW· 138 S7
2 F1 45 11 97 Ro 139 Sa
3 F2 46 12 98 R1 140 S9
4 F3 47 b 99 R2 141 S10
5 F4 48 14 100 R3 142 S11
8 Fs 49 15 101 R4 145 S12
9 F& 50 16 104 Rs 146 . S13

10 F7 51 17 105 R6 147 S14
11 Fa 52 18 106 R7 148 S15
12 F9 53 III 107 Ra 149 S16
13 F10 54 110 108 RII 150 S17
14 Fll 55 In 109 R10 151 S18
15 F12 56 112 110 Rll 152 S19
16 F13 57 113 111 R12 153 S20
17 F14 59 114 112 R13 154 S21
18 F15 60 115 113 R1. 155 822
21 F1& 61 116 114 R15 156 S23
22 F17 62 117 115 R16 157 S24
23 F18 63 11a 116 R17 158 S25
24 F19 64 119 117 R18 159 S26
25 F20 65 120 118 R111 160 S27
26 F21 66 121 119 R20 161 S28
27 F22 67 122 120 R21 162 S29
28 F23 68 123 121 R22 163 S30
29 F24 78 124 122 R23 164 S31
30 F25 79 125 123 R24 42 Vee
31 F26 80 12& 124 R2S 102 Vee
34 F27 81 127 125 R26 144 Vee
35 F28 84 128 126 R27 6 Veeo
36 F29 83 129 127 R28 20 Veeo
37 FlO 82 130 128 R29 32 Veeo
38 F31 85 131 129 R30 73 Veeo

1·120

Am29027

LOGIC SYMBOL

RESET CDA

RIW DRDY). Transact;on

DREO DERR
Status

Transaction 2

Request DREOT,-DREOTo
F31-Fo

OPTrOPTo

BIN V MSERR

R31-Ro

EXCP

831-80

bl-Io

OE

09114B-002C

1-121

29K Family CMOS Devices

ORDERING INFORMATION
Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number
(Valid Combination) is formed by a combination of: a. Device Number

b. Speed Option (if applicable)
c. Package Type
d. Temperature Range
e. Optional Processing

AM29027 -25 G C B

1-122

L=. e. OPTIONAL PROCESSING
.. Blank.. Standard Processing

B - Burn-in

d. TEMPERATURE RANGE
C ... Commercial (0 to +85°C)

~-------------------c.PACKAGETYPE

L-___ a. DEVICE NUMBER/DESCRIPTION
Am29027
Arithmetic Accelerator

Valid Combinations

AM29027-25

AM29027-20 GC,GCB

AM29027-16

G .. 169-Lead Pin Grid Array without Heatsink
(CGX169)

b. SPEED OPTION
-25 =25 MHz
-20 .. 20 MHz
-16 = 16 MHz

Valid Combinations
Valid Combinations list configurations planned to
be supported in volume for this device. Consult
the local AMD sales office to confirm availability of
specific valid combinations, to check on newly
released combinations, and to obtain additional
data on AM D's standard military grade products.

Am29027

MILITARY ORDERING INFORMATION
APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL
(Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combina-
tion) is formed by a combination of 8. Device Number

AM29027 -20 IB

b. Speed Option (if applicable)
c. Device Class
d. Package Type
e. Lead Finish

z C

L==e. LEAD FINISH
C = Gold

d. PACKAGE TYPE
Z = 169-Lead Pin Grid Array without Heatsink

(CGX169)
Y = 164-Lead Ceramic Quad Flat Pack without Heatsink

'------------ c. DEVICE CLASS
IB = Class B

'---- 8. DEVICE NUMBER/DESCRIPTION
Am29027
Arithmetic Accelerator

Valid Combinations

AM29027-20 I
AM29027-16 I ISZC,/BYC

b. SPEED OPTION
-20 = 20 MHz
-16 = 16 MHz

Valid Combinations
Valid Combinations list configurations planned to
be supported in volume for this device. Consult
the local AMD sales office to confirm availability of
specific valid combinations or to check on newly
released valid combinations.

Group A Tests
Group A tests consist of Subgroups

1, 2,3, 7, 8, 9, 10, 11.

1-123

29K Family CMOS Devices

PIN DESCRIPTION
BINV
Bus Invalid (Synchronous Input)
A logic Low indicates that the Am29000 address bus
and related control signals are invalid. The Am29027
will ignore signal DREOTl when BINV is Low.

CDA
Coprocessor Data Accept (Three-State Output)
A logic Low indicates that the Am29027 is ready to ac­
cept data from the Am29000. This signal is normally
driven by the Am29027, and assumes a high-imped­
ance state only if input signal OE is High or input signal
SLAVE is Low.

ClK
Clock (Input)

DERR
Data Error (Three-State Output)
A logic Low indicates that an unmasked exception oc­
curred during or preceding the current transaction re­
quest. This signal is normally driven by the Am29027,
and assumes a high-impedance state only if input signal
OE is High or input signal SLAVE is Low.

DRDY
Data Ready (Three-State Output)
A logic Low indicates that data is available on Port F.
This signal is normally driven by the Am29027, and as­
sumes a high-impedance state only if input signal OE is
High or input signal SLAVE is Low.

DREQ
Data Request (Synchronous Input)
A logic Low indicates that the Am29000 is making a data
access. The Am29027 will ignore signal DREOTl when
DREQ is High.

DREQTo
Start Instruction/Suppress Errors
(Synchronous Input)
This signal, when accompanied by a valid write operand
R, write operand S, write operands R, S, or write instruc­
tion transaction request, commands the Am29027 to
begin a new operation. When accompanying a valid
read result LSBs, read result MSBs, read flags, or read
status transaction request, DREOTo suppresses the re­
porting of operation errors. DREOTo also modifies the
action of the write status transaction request to retime
an operation in flow-through mode, or to invalidate the
ALU pipeline in pipeline mode.

DREQT1
Accelerator Transaction Request
(Synchronous Input)
A logic High indicates that the Am29000 is making an
accelerator transaction request. This signal is consid-

1-124

ered valid only when signal BINV is High and signal
DREO is Low.

EXCP
Exception (Three-State Output)
Indicates that the status register contains one or more
unmasked exception bits. This signal can be used as
an interrupt or trap signal by the Am29000. EXCP is
normally driven by the Am29027, and assumes a high­
impedance state only if input signal OE is High or input
signal SLAVE is Low.

F31-Fo
F Output Bus (Three-State Output)

h1-lo
Instruction Bus (Synchronous Input)
Used to specify the operation to be performed by the
accelerator.

MSERR
Master/Slave Error (Output)
Reports the result of the comparison of processor out­
puts with the signals provided internally to the off-chip
drivers. If there is a difference for any enabled driver,
MSERR assumes the logic High state.

OE
Output Enable (Asynchronous Input)
A logic High forces all accelerator outputs except
MSERR to assume a high-impedance state uncondi­
tionally; master/slave comparison Circuitry is also dis­
abled. This signal is provided for test purposes.

o PTrOPTo
Transaction Type (Synchronous Input)
These signals, in conjunction with RNi, specify the type
of accelerator transaction, if any, currently being re­
quested by the Am29000.

R31-Ro
R Data Bus (Synchronous Input)

RESET
Reset (Asynchronous Input)
Resets the Am29027. When RESET is a logic Low, the
state of internal sequencing circuitry is initialized, and
the status register is cleared. RESET must be connected
to the signal line used to reset the Am29000.

R/W
Read/Wrlte (Synchronous Input)
Determines the direction of a transaction. When R/W is
High, data is transferred from the Am29027 to the
Am29000; when Rm is Low, data is transfe rred from the
Am29000 to the Am29027.

S31-80

S Data Bus (Synchronous Input)

SLAVE
Master/Slave Mode Select
(Synchronous Input)
A logic Low selects Slave mode; in this mode all outputs
except MSERR assume a high-impedance state. A logic
High selects Master mode.

FUNCTIONAL DESCRIPTION

Overview
The Am29027 is a high-performance, single-chip arith­
metic accelerator for the Am29000 Streamlined Instruc­
tion Processor.

Architecture
The Am29027 comprises a high-speed ALU, a 64-bit
data path, and control circuitry.

The core of the Am29027 is a 64-bit floating-point/inte­
ger ALU. The ALU takes operands from three 64-bit
input ports and performs the selected operation, placing
the result on a 54-bit output port. Seven ALU flags report
operation status. The ALU is completely combinatorial
for minimum latency; optional pipelining is available to
boost throughput for vector operations.

The data path consists of two 32-bit input buses, Rand
S; two 64-bit input registers; two 64-bit temporary input
registers; a 64-bit result register; an 8-word-by-64-bit
register file for storage of intermediate results; three op­
erand selection multiplexers that provide for orthogonal
selection of input operands; an output multiplexer that
selects data, operation flags, operation status, or other
accelerator state; and a 32-bit output bus, F.lnput oper­
ands enter the floating-point accelerator through the R
and S buses, and are then demultiplexed and buffered
for subsequent storage in the input registers. The oper­
and selection multiplexers route the operands to the
ALU; operation results and status leave the device on
Output Bus F. Operation results also can be stored in
the register file for use in subsequent operations.

On-board control circuitry sequences the ALU and data
path during operations, and manages the transfer of
data between the accelerator and the Am29000. A
32-bit instruction register and a 32-bit temporary in­
struction register hold the instruction words for current
and pending operations.

Instruction Set
The Am29027 implements 57 arnhmetic and logical in­
structions. Thirty-five instructions operate on floating­
point numbers; these instructions fall into the following
categories:

• additiOn/subtraction

• multiplication

Am29027

• multiplication-accumulation

• comparison
• selecting the maximumor minimum of two numbers

• rounding to integral value

• absolute value, negation, pass

• reciprocal seed generation

• conversion between any of the supported
floating-point formats, including conversions
between precisions

• conversion of a floating-point number to an integer
format, with an optional scale factor

By concatenating these operations, the user can also
perform division, square-root extraction, polynomial
evaluation, and other functions not implemented
directly.

Twenty-two instructions operate on integers, and be­
long to the following general categories;

• additiOn/subtraction

• multiplication

• comparison

• selecting the maximum or minimum of two numbers

• absolute value, negation, pass

• logical operations, e.g., AND, OR, XOR, NOT

• arithmetic, logical, and funnel shifts

• conversion between single- and double-precision
integer formats

• conversion of an integer number to a floating-point
format, with an optional scale factor

• pass operand

One special instruction is provided to move data.

Performance
The Am29027 provides operation speeds several times
greater than conventional floating-point processors
by virtue of its extensive use of combinatorial, rather
than sequential, logic. Most floating-point operations,
whether single, double, or mixed precision, can be
performed in as few as six system clock cycles. Perfor­
mance is further enhanced by the presence of the
on-board register file that can be used to hold intermedi­
ate results, thus reducing the amount of time needed to
transfer operands between the Am29027 and the
Am29000. The input operand registers and the instruc­
tion register are double-buffered, so that a new opera­
tion can be specified while the current operation is being
completed.

Interface
The Am29027 connects directly to the Am29000 system
buses. Am29027 operations are specified by a series of

1·125

29K Family CMOS Devices
operand and instruction transactions issued by the
Am29000. Eight input signals specify the transaction to
be performed; three output signals report transaction
status.

Master/Slave
The Am29027 contains special comparison hardware to
allow the operation of two accelerators in parallel, with
one accelerator (the slave) checking the results pro­
duced by the other (the master). This feature is of
particular importance in the design of high-reliability
systems.

Support
The Am29027 IEEE format is fully supported by those
hardware and software tools available forthe Am29000,
including:

• HighC29K Cross-Development Toolkit

• ASM29K Cross-Development Toolkit

• ADAPT29K, a general-purpose hardware develop­
ment system. The ADAPT29K permits single-step
operation, break-point insertion, and other standard
debugging techniques.

Block Diagram Description
A block diagram of the Am29027 is shown in Figure 1.
The Am29027 comprises the input registers, the oper­
and selection multiplexers, the instruction register, the
ALU, the output register/register file, the flag register,
the status register, the output multiplexer, the mode reg­
ister, the control unit, and the master/slave comparator.

32 32
r-----------+----------~

; - - - - - - - - - - - - - - - - ~ ~ Prec.

R!W
DREQ

DREOT,
DREOTo

OPT2

OPT1 Control
OPTo Unit

BINV

CDA

DRDY

"DEAR

OE ~
RESET 0---.

elK D----+

SLAVE D----+

Figure 1. Am29027 Block Diagram 09114-OO3C

1-126

Input Registers
Operands are loaded into the accelerator via the 32-bit
Rand S buses, and are demultiplexed and buffered for
subsequent storage in 54-bit registers Rand S; input op­
erands may be either single-precision (32-bit) or double­
precision (54-bit). Two single-precision or one double­
precision operand may be written to the input registers
in a single system clock cycle. Accompanying the input
registers are two 54-bit temporary registers, R-Temp
and S-Temp, that permit the overlapping of operand
transfers and ALU operations.

Operand Selection MUltiplexers
The operand selection multiplexers route operands
to the ALU. These multiplexers, as well as selecting
operands from input registers Rand S and register file
locations RF7-RFo, also have access to a set of floating­
point and integer constants. These constants are
double-precision preprogrammed numbers for use in
ALU operations, and are automatically provided in the
appropriate format.

Instruction Register
The instruction register stores a 32-bit word specifying
the current accelerator operation. Included in the in­
struction word are fields that specify the core operation
to be performed by the ALU, operand format (integer or
floating-point), sign-change selects for ALU input and
result operands, operand precisions, operand sources,
and register file controls. The instruction register is
preceded by the 32-bit temporary register,l-Temp, per­
mitting the overlapping of instruction transfers and ALU
operations. Instructions enter the accelerator via 32-bit
Instruction Bus I.

ALU

The ALU is a combinatorial arithmetic/logic unit that
performs a large repertoire of floating-point and integer
operations. The ALU has three operand inputs. Some
operations require a single input operand, for example,
conversion operations. Others, such as addition or mUl­
tiplication, require two input operands. The multiplica­
tion-accumulation and funnel shift operations require
three input operands. Most ALU operations allow the
user to modify operand signs, thus greatly increasing
the numberof arithmetic expressions that can be evalu­
ated in a single ALU pass.

The ALU can be configured in either flow-through mode,
for which the ALU is completely combinatorial, or pipe­
line mode, for which ALU operations are divided into one
or two pipeline stages.

Output Register/Register File

Operation results are stored in 64-bit output register F;
results can also be stored in the 8-by-64-bit register
file for use in subsequent operations. A precision regis­
ter, part of the register file, contains bits indicating the
preciSions of the operands stored in each register file ,
location, thus permitting the ALU to correctly process
these operands in later operations.

Am29027
Flag Register
The 32-bit flag register stores flags pertaining to the
most recently performed operation. The flags indicate
error conditions, such as underflow or overflow, and
also report results for operations that produce result
flags, such as comparisons.

Status Register
The 32-bit status register contains information regard­
ing the status of past, current, and pending operations.

Six exception bits report operation error conditions.
These exception bits are individually latched; once a
given bit is set, it remains set until reset by the Am29000
or by system reset. The exception bits indicate error
conditions of overflow, underflow, zero result, reserved
operand, invalid operation, and inexact result. At the us­
er's option, the presence of an exception can be used to
report a data error to the Am29000, or to halt Am29027
operation; exception bits can be individually enabled or
disabled by programming the corresponding mask bit in
the mode register.

Exception bit activity is summarized by a seventh bit,
Exception Status, which indicates that one or more un­
masked status bits are set. If deSired, the state of this bit
can be placed on signal EXCP, which can be used to in~
terrupt the Am29000.

The status register contains four additional bits­
R-Temp Valid, S-Temp Valid, I-Temp Valid, and Opera­
tion Pending-that pertain to the state of pending oper­
ands and operations.

Output Multiplexer
The output multiplexer routes operation results and ac­
celerator's internal state to the Am29000 through the
32-bit F bus. This multiplexer can select Register F, the
flag register, status register, instruction register, mode
register, or precision register.

Mode Register

The 54-bit mode register contains accelerator control
parameters that change infrequently or not at all, such
as floating-point format, round mode, and operation
timing information. These parameters are initialized by
the Am29000 during system start-up, and are modified
as required during operation.

Control Unit
The control unit manages the transfer of data between
the Am29000 and the Am29027, as well as the timing of
operation execution. The Am29000 oversees operation
of the Am29027 by issuing one of thirteen commands, or
transaction requests, to the control unit via eight signal
lines. Each transaction request specifies an action on
the part of the Am29027, such as writing an operand to
an input register or returning a result to the Am29000.
The control unit interprets the transaction request and
sequences the Am29027 to produce the desired action.
Three transaction status lines are generated by the con-

1-127

29K Family CMOS Devices

tral unit to indicate transaction completion, orto indicate
the existence of an accelerator error condition.

Master/Slave Comparator

Each Am29027 output signal has associated logic that
compares that signal with the signal that the accelerator
provides internally to the output driver; any discrepan­
cies are indicated by assertion of signal MSERR.

For a single accelerator, this output comparison detects
short circuits in output signals or defective output driv­
ers, but does not detect open circuits. It is possible to
connect a second accelerator in parallel with the first,
with the second accelerator's outputs disabled by asser­
tion of signal SLAVE. The second accelerator detects
open-circuit signals, and provides a check of the outputs
of the first accelerator.

System Interface
Am29000/Am29027 signal interconnects are depicted
in Figure 2.

Three Am29027 buses-R31-Ro, 131-10, and F31-Fo-are
connected to Am29000 Oata Bus 031-00; the remaining
Am29027 bus, S31-S0, is connected to Am29000 Ad-

Am29000 RESET

RESET

RfiJ
DREQ

DREQT,

DREQTo

OPT2

OPT,

OPTo

BINV

CDA

DRDY

DERR

dress Bus A31-Ao. Through these connections, the
Am29000 can transfer to the Am29027 a 32-bit instruc­
tion, two 32-bit operands, or a 64-bit operand in a single
cycle, or can receive a 32-bit result from the Am29027 in
a single cycle.

Twelve additional signals govern communication be­
tween the Am29000 and Am29027. Eight Am29000 out­
put signals-Rm, OREa, DREQT1, DREQTo, OPT2-
OPTo, and BINV-are connected to the corresponding
Am29027 signals and are used to issue transaction
requests to the Am29027. Three Am29027 sig­
nals-COA, DRDY, and OERR-report transaction
status. COA is directly connected to the corresponding
input of the Am29000, while ORDY and OERR must be
ORed with like signals from other resources. A fourth
Am29027 signal, EXCP, may be connected to an
Am29000 trap or interrupt input to signal the presence of
Am29027 operation exceptions at the user's option.

The Am29027 takes its clock input from the Am29000
SYSCLK system clock output.

The signal used to reset the Am29000 must also. be
connected to the Am29027 RESET input.

Am29027

RESET

RfiJ
DREQ

DREQT,

DREQTo

OPT2

OPT,

OPTo

BINV

CDA

DRDY

DERR

Interrupt ----------------- EXCP or Trap

1-128

INClK

System
Clock

A3,-Ao
32

D3t-Do

SYSClK

S3''-SO

R3,-RO

b,-Io OE
F3t-Fo

ClK

Figure 2. Am29000/Am29027 Hardware Interface

09114-004C

Special-Purpose Registers
The Am29027 contains six special-purpose registers:
the mode register, status register, flag register, preci­
sion register, instruction register, and I-Temp register.

Mode Register

The 64-bit mode register stores 24 infrequently changed
parameters pertaining to accelerator operation; its for­
mat is shown in Figure 3. The Am29000 modifies the ac­
celerator parameter set by issuing a write mode register
transaction request.

The mode register should be initialized after hardware
reset, and may be written with new parameters when a
new mode of accelerator operation is required; mode
changes take effect immediately. The Am29027 does
not alter the contents of the mode register in the course
of operation.

Bits 63-47-Reserved for future use. This field must
be set to 0 to assure future compatibility.

Bit 46-EXCP Enable (EX): When EX is High, report­
ing of unmasked exceptions via signal EXCP is enabled.
When EX is Low, signal EXCP is forced inactive (logic
High).

Bit 45-Halt On Error Enable (HE): When HE is High,
the Am29027 will halt operation in the presence of an
unmasked exception.

Bit 44-Advance DRDY (AD): When AD is High, signal
DRDYis advanced one cycle in flow-through mode. This
bit has no effect in pipeline mode.

Bits 43-40-Timer Count for the MOVE P Operation
(MVTC): In flow-through mode, MVTC specifies the
number of clock cycles needed for data to traverse the
ALU for base operation code MOVE P; in pipeline mode,
it has no effect. This field can assume values between 3
and 15, inclusive.

Bits 39-36-Timer Count for the Multiply-Accumu­
late Operation (MATC): In flow-through mode,
MATC specifies the number of clock cycles needed for
data to traverse the ALU for base operation code
F' = (P'x 01 + T'; in pipeline mode, it has no effect. This
field can assume values between 3 and 15, inclusive.

Bits 35-32-Plpellne Timer Count (PL TC): In flow­
through mode, PL TC specifies the number of clock cy­
cles needed for data to traverse the ALU for any base
operation code except F' = (P' x 01 + T' or MOVE P; in
pipeline mode, it specifies the number of cycles needed
for data to traverse a single pipeline stage for any base
operation code. This field can assume values between 3
and 15, inclusive, in flow-through mode, and between 2
and 15, inclusive, in pipeline mode.

Bits 31-28-Reserved for future use. This field must
be set to 0 to assure future compatibility.

Bit 27-Zero Result Exception Mask (ZMSK): When
ZMSK is High, the status register zero result exception

Am29027

bit is masked and will not contribute to the detection of
an error condition.

Bit 26-lnexact Result Exception Mask (XMSK):
When XMSK is High, the status register inexact result
exception bit is masked and will not contribute to the de­
tection of an error condition.

Bit 25-Underflow Exception Mask (UMSK): When
UMSK is High, the status register underflow exception
bit is masked and will not contribute to the detection of
an error condition.

Bit 24-0verflow Exception Mask (VMSK): When
VMSK is High, the status register overflow exception bit
is masked and will not contribute to the detection of an
error condition.

Bit 23-Reserved Operand Exception Mask (RMSK):
When RMSK is High, the status register reserved oper­
and exception bit is masked and will not contribute to the
detection of an error condition.

Bit 22-lnvalld Operation Exception Mask (IMSK):
When IMSK is High, the status register invalid operation
exception bit is masked and will not contribute to the
detection of an error condition.

Bit 21-Reserved for future use. This bit must be set
to 0 to assure future compatibility.

Bit 20-Plpellne Mode Select (PL): When PL is High,
pipeline mode is selected; when PL is Low, flow-through
(unpipelined) mode is selected.

Bits 19-17-Reserved for future use. This field must
be set to 0 to assure future compatibility.

Bits 16-14-Round Mode Select (RMS): Selects one
of six rounding modes as follows:

RMS Round Mode

o 0 0 Round to nearest (IEEE)
o 0 1 Round to minus infinity
o 1 0 Round to plus infinity
o 1 1 Round to zero
1 0 0 Round to nearest (DEC)
1 0 1 Round away from zero
1 1 X Illegal value

Additional information on round modes can be found in
Appendix B.

Bits 13-12-lnteger Multiplication Format Adjust
(MF): Selects the output format for integer multiplica-

. tion. The user may select either the MSBs orthe LSBs of
. an integer multiplication result, with optional format
adjust. MF is encoded as follows:

MF

00
01
1 0
1 1

Output Format

LSBs
LSBs. format-adjusted
MSBs
MSBs. format-adjusted

1-129

29K Family CMOS Devices
"Format-adjusted" indicates that the product is shifted
left one place before the MSBs or LSBs are selected.

Bit 11-lnteger Multiplication Signed/Unsigned
Select (MS): If MS is High, input operands for integer
multiplication operations are treated as two's comple­
ment numbers. If MS is Low, the input operands are
treated as unsigned numbers.

Bit 1O-Reserved for future use. This bit must be set
to 0 to assure future compatibility.

Bit 9-IBM Underflow Mask Enable (BU): If BU is
High, certain underflowed IBM operations will produce a
normalized result with a biased exponent increased by
128. If BU is Low, these operations will produce a final
result of true zero. BU affects only those operations that
produce a result in IBM format and that use the following
base operation codes:

F' = P' + T' Convert Tto Alternate F.P. Format
F' = P' x Q' Convert T from Alternate F.P.
Compare P, T Format
F' = (P' x a') + T' Scale Tto Floating-point by a

Bit a-IBM Significance Mask Enable (BS): If BS is
High, certain IBM operations having intermediate re­
sults of 0 will produce a final result of 0 with the
biased exponent unchanged. If BS is Low, these opera­
tions will produce a final result of true zero. BS affects
only those operations that produce a result in IBM
format and that use the F' = P' + a' and COM PAR E P, T
base operation codes.

Bit 7-IEEE Sudden Underflow Enable (SU): If SU is
High, all IEEE denormalized results are replaced by a 0
of the same sign; if SU is Low, the appropriate denor­
malized number will be produced. If IEEE traps are en­
abled (mode register bit TRP High), sudden underflow is
disabled.

Bit 6-1EEE Trap Enable (TRP): If TRP is High, IEEE
trapped operation is enabled; the Saturate Enable
(SAT) and Sudden Underflow (SU) bits are ignored. For
an underflowed result, the biased exponent is increased
by 192 (single precision) or 1536 (double precision),
with the significand unchanged. For an overflowed re­
sult, the biased exponent is decreased by a like amount

63

with the significand unchanged. If TRP is Low, IEEE
trapped operation is disabled. This bit affects only those
operations that produce a result in IEEE floating-point
format.

Bit 5-IEEE Affine/Projective Select (AP): If AP is
High, IEEE addition or subtraction operations having
infinite input operands are performed in affine mode; if
AP is Low, these operations are performed in projective
mode: In affine mode, it is permissible to add infinities of
like sign or subtract infinities of opposite sign, producing
an infinite result with the appropriate sign. In projective
mode these operations will produce an invalid operation
exception. This bit affects only those operations that
produce a result in IEEE floating·point format.

Bit 4-Saturate Enable (SAT): If SAT is High, over­
flowed results are replaced by the largest representable
value in the selected format of the same sign as the
overflowed result; if SAT is Low, the result produced de­
pends on the overflow conventions for the selected
floating-point format. If IEEE traps are enabled (mode
register bit TR High), saturation is disabled for any
operation that produces a result in IEEE floating-point
format.

Bits 1-0 Primary Floating-Point Format (PFF),
Bits 3-2 Alternate Floating-Point Format (AFF): The
primary format is used as the source and destination for­
mat for all floating-point operations except conversions;
and as the'source or destination format for operations
that convert between floating-point and integer formats.
The alternate format is used as a source or destination
format in operations that convert one floating-point
format to another. Both the PFF and AFF fields are en­
coded as follows:

High Low
Bit Bit Format

0 0 IEEE

0 1 DEC F (Single), DEC D (Double)

0 DEC F (Single), DEC? G (Double)

1 IBM

Floating-point formats are discussed in further detail in
AppendixA.

47 46 45 44 43 40 39 36 35 32

31282726252423222120191716 141312111098 7 6543 2 1 o

z X U V R I P R M M B B S T A S A P . M M M M M M • L . M F S . U S U R p A F F
S S S S S S S P T F F
K K K K K K

Figure 3. Mode Register 09114-005C

1-130

Status Register

The status register contains operation exception status,
as well as the status of pending operands and opera­
tions; its format is shown in Figure 4. The Am29000 can
initialize or modify the contents of the status register by
issuing a write status transaction request, and can read
current status register contents by issuing a read status
transaction request or as part of a save state sequence.

All status register bits are initialized to a logic Low after
hardware reset.

,,\ 11 10 9 8 7 6 5 4 3 2 1 0
("

0 I S R E Z X U V R I
ed P V V V S E E E E E E

P A
,,\

A A X X X X X X
("

09114-OO6C

Figure 4. Status Register

Bits 31-11-Reserved for future use. This field must
be set to 0 when written to assure future compatibility.

Bit 10-0peratlon Pending (OPP): A logic High indi­
cates that an operation awaits execution.

Bit 9-1-Temp Valid (IVA): A logic High indicates that
register I-Temp contains an instruction for a pending
operation.

Bit 8-S-Temp Valid (SVA): A logic High indicates that
register S-Temp contains an operand for a pending
operation.

Bit 7--R-Temp Valid (RVA): A logic High indicates that
register R-Temp contains an operand for a pending
operation.

Bit 6-Exceptlon Status (ES): A logic High indicates
that status register bits 0-5 contain an unmasked
exception.

Bit 5-Zero Result Flag (ZEX): A logiC High indicates
that an operation produced a zero result. Latches until
cleared.

Bit 4-lnexact Result Bit (XEX): A logic High indicates
that an operation result had to be rounded to fit the desti­
nation format. Latches until cleared.

Am29027

Bit 3-Underflow Exception Bit (UEX): A logic High
indicates that an operation result has underflowed the
destination format. Latches until cleared.

Bit 2-Overflow Exception Bit (VEX): A logic High in·
dicates that an operation result overflowed the destina­
tion format. Latches until cleared.

Bit 1--Reserved Operand Exception Bit (REX): A
logic High indicates that a reserved operand appeared
as an input operand to an operation orwas generated as
a result. Latches until cleared.

Bit O-Invalld Operation Exception Bit (lEX): A logic
High indicates that input operands are unsuitable forthe
operation performed (e.g., ooxO). Latches until cleared.

Flag Register

The flag register contains 7 flag bits that report excep­
tion or Boolean results for the most recently performed
operation; its format is shown in Figure 5. The remaining
25 register bits are reserved for future use. The
Am29000 can read the current flag register contents by
issuing a read flags transaction request.

Flag· register bits 6-0 correspond to Flag 6-Flag 0
(FLs-FLo).

These flags assume a meaning that is operation-de­
pendent, as discussed in the Operation Flags section.

The flag register is made transparent in flow-through
mode.

,,\ 76543210
..

F F F F F F F
erved L L L L L L L

6 5 4
,'\

3 2 1 0
(

09114-OO7C

Figure 5. Flag Register

1-131

29K Family CMOS Devices

Precision Register

The precision register contains a bits that report the pre­
cision of operands stored in the register file; its format is
shown in Figure 6. Bit 0 (PRo) reports the precision of
register file location 0 (RFo), bit 1 the precision of loca­
tion 1 (RF,), and so on. A logic High indicates a single­
precision value, logic Low a double-precision value.

The precision register also contains the Accelerator Re­
lease Level (ARL), an a-bit, read-only identification
number that specifies the accelerator version. The ARL
field occupies bits 31-24.

The remaining 16 bits of the precision word are reserved
for future use, and must be set to 0 when written to as­
sure future compatibility.

,\

~
~:

876543210

P P P P P P P P
served R R R R R R R R

")
7 6 5 4 3 2 1 0

09114-OO8A

Figure 6. Precision Register

Instruction Register, I-Temp Register

The instruction register contains a 32-bit instruction
word that specifies the ALU operation; its format is
shown in Figure 7.

3130282724232019161514131211109876 540

R R P Q T I R S 5 S 5 I C
F F M M M P P I I I I F 0

S S S S R R P Q T F

09114-009A

Figure 7. Instruction Register

Bit 31-Reglster File Enable (RF): Enables a write to
the register file. When RF is High, the operation result is
written to the register file location specified by RFS and
the resulting precision is written to the corresponding bit
of the precision register. When RF is Low, no write
is performed either to the register file or the precision
register.

Bits 30-28-Reglster file select (RFS): Selects the
register file location (RF7-RFo) to which the operation
result is to be written. If bit RF is Low, the value of RFS is
a "don't care."

Bits 27-24-Select for P Operand Multiplexer
(PMS): Selects the data input for the ALU P port.

Bits 23-20--Select for Q Operand Multiplexer
(QMS): Selects the data input for the ALU a port.

1-132

Bits 19-16-Select for T Operand Multiplexer (TMS):
Selects the data input for the ALU T port.

Bit 15-lnput PreCision (IPR): Precision of the oper­
ands in Registers Rand S; single preCision when High,
double precision when Low.

Bit 14-Result Precision (RPR): Precision of the ALU
output; single precision when High, double precision
when Low.

Bits 13-12-Slgn P (SIP): Sign-change control for the
ALU P input.

Bits 11-10--Slgn Q (SIQ): Sign-change control forthe
ALU a input.

Bits 9-8-Slgn T (SIT): Sign-change control for the
ALU Tinput.

Bits 7-6-Slgn F (SIF): Sign-change control for the
ALU output.

Bit 5-lnteger/Floating-polnt Select (IF): A logic Low
selects a floating-point operation, a logic High an integer
operation.

Bits 4-O-Core Operation (CO): Specifies the core op­
eration to be performed by the ALU.

The function of the instruction word fields is discussed in
further detail in the Accelerator Instruction Set section.

The I-Temp register has a format identical to that of the
instruction register; this register is used to temporarily
buffer instructions for pending operations, thus allowing
the overlap of operation specification and execution.

The Am29000 can write to the instruction and I-Temp
registers by issuing the write instruction transaction
request, and can read the contents of these registers as
part of the save state sequence.

Operand Registers
The Am29027 holds operands in thirteen 64-bit regis­
ters. Four registers-R, S, R-Temp, and S-Temp­
store ALU input operands; a fifth register, F, stores ALU
results. 'Eight remaining registers, RF7-RFo, are ar­
ranged as a file into which operation results can be
written, and from which operands can be taken for use in
subsequent operations.

All operand registers share common data formats; any
register can hold a single- or double-precision floating­
point number, or a single- or double-precision integer.

Floating-point numbers are stored with the sign bit in the
most significant bit (bit 63) of the operand register. For
Single-precision numbers, the 32 LSBs of the register
are unused; the value of these unused bits is a "don't
care."

Integer numbers are stored with the least significant bit
placed in the least significant bit (bit 0) of the operand

register. For single-precision numbers, the 32 MSBs of
the register are unused; the value of these unused bits is
a "don't care." Floating-point and integer formats are de­
scribed in further detail in Appendix A.

Accelerator Transaction Requests
The Am29000 controls the Am29027 with 13 transac­
tion requests. Transaction request type is indicated by
the state of four signals: Rm and OPT 2-OPTo. Table 1
lists the transaction types and corresponding signal
states.

Transaction requests are conditioned by signal
DREOT 1 (which when High indicates an accelerator
transaction) and signals BINV and DREO. The
Am29027 will recognize a transaction request only if
DREOTI and BINV are High and DREQ is Low.

Signal DREOT 0 modifies the execution of most transac­
tion requests. For transaction requests that transfer
operands or instructions to the Am29027, asserting
DREOTo will start the execution of an accelerator
operation. For transaction requests that transfer opera­
tion results, status, or flags to the Am29000, asserting
DREOTo will suppress the reporting of unmasked
exceptions via signal DERR. For the write status trans­
action request, asserting DREOTo either retimes the op­
eration currently described by the instruction register
(flow-through mode) or invalidates the AlU pipeline
(pipeline mode).

Write Transaction Requests
Write transactions transfer data from the Am29000 to
the Am29027, or cause the Am29027 to transfer data
internally. To perform a write request, the Am29000:

• Issues the appropriate transaction request on
Signals OPT2-0PTo, and asserts Signal Rm Low

• Places the data to be transferred, if any, on output
signals 031-00 and A31-Ao

The Am29027 responds to the request by asserting one
(and only one) of two status signals:

• CDA indicates that the Am29027· will take the
specified action and clock in the data accom­
panying the transaction request, if any, on the next
rising edge of clock.

• DERR indicates that the Am29027 is unable to
accept the data, due to the presence of an
unmasked exception.

Timing for write transactions is illustrated in Appendix D.

Am29027

Table 1. Transaction Requests

RlW OPT2 OPT, OPTD Request Type

0 0 0 0 Write Operand R
0 0 0 1 Write Operand S
0 0 1 0 Write Operands R, S
0 0 1 1 Write Mode
0 1 0 0 Write Status
0 1 0 1 Write RF Precisions
0 1 1 0 Write Instruction
0 1 1 1 Advance Temp Registers

0 0 0 Read Results MSBs
0 0 1 Read Results LSBs
0 1 0 Read Flags
0 1 1 Read Status
1 0 0 Save State

There are eight write transactions:

Write Operand R: An operand is written to Input Regis­
ter Rand/or R-Temp. The most significant half of the
64-bit operand to be written is placed on Input Bus R, the
least significant half on Input Bus S. The action taken
depends on signal DREOTo and on whether an accel­
erator operation will be in progress during the next clock
cycle.

Operation
In progress Data Operation

DREQTD next written R-Temp pending
asserted clock cycle to valid bit bit

No X R-Temp Set Unchanged
Yes No R-Temp, R Reset Reset
Yes Yes R-Temp Set Set

If DREOTo is asserted and no accelerator operation will
be in progress during the next clock cycle, a new opera­
tion will be started on the next rising edge of ClK.

If mode register bit HE (Halt On Error Enable) is High
and an unmasked exception has been detected, the
Am29027 will respond to a write operand R request by
asserting signal DERR; the contents of Registers Rand
R-Temp will not be changed, and the R-Temp Valid and
Operation Pending bits will retain their current values.

Write Operand S: An operand is written to Input Regis­
ter Sand/or S-Temp. The most significant half of the
64-bit operand to be written is placed on Input Bus R,
the least significant half on Input Bus S. The action taken
depends on signal DREOT 0 and on whether an accel­
erator operation will be in progress during the next clock
cycle.

1-133

29K Family CMOS Devices
Operation

In progress Data Operation
DREQTo next written S-Tem~ pending
asserted clock cycle to valid b t bit

No X S-Temp Set Unchanged
Yes No S-Temp, S Reset Reset
Yes Yes S-Temp Set Set

If DREQTo is asserted and no accelerator operation will
be in progress during the next clock cycle, a new opera­
tion will be started on the next rising edge of ClK.

If mode register bit HE (Halt On Error Enable) is High
and an unmasked exception has been detected, the
Am29027 will re~ to a write operand S request by
asserting signal DERR; the contents of Registers Sand
S-Tempwill not be changed, and the S-Temp Valid and
Operation Pending bits will retain their current values.

Write Operands R, S: Two 32-bit operands are written
to Registers Rand S and/or Registers R-Temp and S­
Temp. The 32-bit operand to be written to Registers R or
R-Temp is placed on Input Bus R; the 32-bit operand to
be written to Registers S or S-Temp is placed on Input
Bus S. Each 32-bit word is written to both the upper and
lower halves of the target register. The action taken
depends on Signal DREQTo and on whether an accel­
erator operation will be in progress during the next clock
cycle.

DREQTo
asserted

No

Yes

Yes

Operation
In progress

next
clock cycle

X

No

Yes

Data
written

to

R-Temp
S-Temp
R-Temp
S-Temp

R,S
R-Temp
S-Temp

R-,S­
Temp

valid bits

Set

Reset

Set

Operation
pending

bit

Unchanged

Reset

Set

If DREQTo is asserted and no accelerator operation will
be in progress during the next clock cycle, a new opera­
tion will be started on the next rising edge of ClK.

If mode register bit HE (Halt On Error Enable) is High
and an unmasked exception has been detected, the
Am29027 will respond to a write operands R, S request
by asserting Signal DERR; the contents of Registers R,
R-Temp, S, andS-Tempwill not be changed, and the R­
Temp Valid, S-Temp Valid, and'Operation Pending bits
will retain their current values.

Write Mode: A 64-bit word is written to the mode regis­
ter. The least significant half of the mode word is placed
on Input Bus R, the most significant half on Input Bus S.
The state of signal DREQTo is a "don't care" for this
transaction request.

1-134

Write Status: A 32-bit word is written to the status regis­
ter and the status word to be written is placed on Input
Bus R. Asserting signal DREQTo will produce an addi­
tional action that is mode-dependent. In flow-through
mode, asserting DREQTo will cause the operation cur­
rently specified by the instruction register to be retimed;
operation results will not be written to the status register
orthe register file. In pipeline mode, asserting DREQTo
will invalidate the ALU pipeline.

Write Register File Precisions: A 32-bit word indicat­
ing the precisions of register file locations RF7-RFo is
written to the preciSion register; the preCision word to be
written is placed on Input Bus R. The state of signal
DREQTo is a "don't care" for this transaction request.

Write Instruction: A 32-bit accelerator instruction is
written to the instruction register and/or Register 1-
Temp. The 32-bit instruction is taken from input signals
131-10. The action taken depends on signal DREQTo, and
on whether an accelerator operation will be in progress
during the next clock cycle.

Operation
In progress Data Operation

DREQTo next written I-Temp pending
asserted clock cycle to valid bit bit

No X I-Temp Set Unchanged
Yes No I-Temp Reset Reset

instruction
register

Yes Yes I-Temp Set Set

If DREQTo is asserted and no accelerator operation will
be in progress during the next clock cycle, a new opera­
tion will be started on the next rising edge of elK.

If mode register bit HE (Halt On Error Enable) is High
and an unmasked exception has been detected, the
Am29027 will respond to a write instruction transaction
request by asserting signal DERR; the contents of Reg­
ister I-Temp and the instruction register will not be
changed, and the I-Temp Valid and Operation Pending
bits will retain their current values.

Advance Temp Registers: The contents of the R­
Temp, S-Temp, and I-Temp registers are transferred to
Register R, Register S,and the instruction register, re­
spectively. The state of signal DREQTo is a "don't care"
forthis transaction request. The advance temp registers
transaction request is used during restoration of accel­
erator state.

Read Transaction Requests
Read transactions transfer data from the Am29027 to
the Am29000. When data is to be transferred, the
Am29000:

• Issues the appropriate transaction request on
signals OPT~OPTo, and asserts signal R/W High.

• Places its data bus drivers in a high-impedance
state.

The Am29027 then places the requested data on sig­
nals F31-Fo and issues two status signals:

• DRDY indicates that the data requested is available
on Output Bus F31-Fo.

• DERR indicates that the Am29027 has detected an
unmasked exception; the exception mayor may not
be related to the data requested.

DRDYand DERR may both be active at the same time;
if so, the Am29000 will respond to DERR and ignore
DRDY.

Timing for read transactions is illustrated in Appendix D.

There are five read transactions:

Read Result MSBs: The 32 MSBs of Register Fare
placed on output bus F. Asserting signal DREOTo will
suppress the reporting of unmasked exceptions.

Read Result LSBs: The 32 LSBs and 32 MSBs of
Register F are placed on Output Bus F in consecutive
clock cycles. Asserting signal DREOTo will suppress the
reporting of unmasked exceptions. The read result
LSBs request must always be followed by a read result
MSBs request.

Read Flags: The flag register contents are placed on
Output Bus F; bits F31-F7 will be logic Low. Asserting
signal DR EOTo will suppress the reporting of unmasked
exceptions.

Read Status: The status register contents are placed
on Output Bus F; bits F31-Fll will be logic Low. Asserting
Signal DREOTowill suppress the reporting of unmasked
exceptions.

Save State: The contents of the instruction register,
mode register, status register, register file, precision
register, and Registers R, R-Temp, S, S-Temp, and 1-
Temp are transferred to the Am29000 via Output Bus F.
Exception reporting via Signal DERR is suppressed; the
state of signal DRETOo is a "don't care." Further details
on the use of this request appear in the Saving and Re-

· storing State sections.

Coprocessor Data Accept

The Coprocessor Data Accept (CDA) Signal indicates to
the Am29000 that the Am29027 is able to accept new
operands or instructions. CDA is normally Low (active),
but will go High if:

• the Am29027 has an operation currently in
progress and a completely specified pending
operation waiting in the temporary registers,

or

• The Am29027 has halted in response to an
unmasked exception (Halt On Error mode enabled).

Am29027

If the Am29027 issues any write transaction request and
CDA is active Low, the transaction request will complete
in a single cycle. If CDA is High, response to a write
transaction request depends on request type:

• For the write operand R, write operand S, write
operands R, S, and write instruction transaction
requests, the Am29027 will assert CDA active when
it is able to accept new data. If it is not able to accept
new data indefinitely due to presence of an
unmasked exception (Halt On Error mode enabled),
it will respond to the transaction request by
asserting signal DERR.

.. For the write mode, write status, write register file
preciSions, and advance temp registers trans­
action reguests, the Am29027 will temporarily
assert CDA during the cycle after the request is
issued, regardless of whether an operation is in
progress or an unmasked exception has halted the
accelerator.

CDA pertains only to write transaction requests; for read
transaction requests, the Am29000 ignores the state of
CDA.

Data Ready

The Data Ready (DRDY) signal indicates to tho
Am29000 that the Am29027 is placing data on the F out­
put bus. The Am29027 generates DRDY in response to
the read result MSBs, read result LSBs, read status,
read flags, and save state transaction requests.

For the read result MSBs, read result LSBs, read flags,
and read status transaction requests, there is usually a
minimum of one cycle delay between the time the
request is issued and the time that DRDY is asserted.
The only exception to this rule is when a read result
LSBs request is immediately followed by a read result
MSBs request, in which case the Am29027 responds to
the second request in a single cycle. If the Am29027 is
unable to respond immediately to a read transaction
request, as m~the case when an operation is in
progress, the DRDY signal will be held inactive until
such a time as the requested data can be output. Forthe
save state transaction request, the delay between the
issuance of the transaction request and the DRDY re­
sponse varies according to the specific data requested.

DRDY pertains only to read transaction requests; for
write transaction requests, DRDY remains inactive.

Data Error

The Data Error (DERR) signal indicates to the Am29000
that the Am29027 is unable to respond to a transaction
request normally, due to the presence of an unmasked
exception bit in the status register.

For read transaction requests, read result LSBs, read
result MSBs, read flags, and read status, the Am29027
asserts DERR if the status register contains an un­
masked exception bit. The Am29000 may suppress

1-135

29K Family CMOS Devices

error reporting for these requests by issuing them with
signal DREOT 0 asserted.

For write transaction requests, write operand R, write
operand S, write operands R, S, and write instruction,
DERR is issued in the presence of an unmasked excep­
tion if Halt On Error Mode is enabled in such an event,
the contents of the target registers are left unchanged.

DERR is never issued in response to transaction re­
quests write mode, write status, write register file preci­
sions, advance temp registers, and save state.

Accelerator Instruction Set
The ALU performs 57 arithmetic and logic instructions.
Input operands for these instructions can be taken from
Input Registers Rand S, register file locations RF7-RFo,
and on-board constant stores. At the user's option,
results can be stored in register file locations RF7-RFo.

Instruction Word

The 32-bit instruction word, IN31-INo, specifies the op­
eration to be performed by the ALU. The instruction
word is stored in the instruction register; instruction reg­
isterformat is shown in Figure 7.ln flow-through mode,
the instruction word specifies the operation to be per­
formed by the entire ALU.ln pipeline mode, the instruc­
tion word specifies the operation to be performed by the
first pipeline stage; the remaining pipeline stage or
stages r;lre controlled by their respective pipeline regis­
ters. The instruction word also specifies input operand
sources, result destination, and operand precisions.

An instruction word comprises five sections: base op­
eration code, sign-change selects, operand precision
selects, operand source selects, and register file
controls.

Base Operation Code

The base operation code consists of the core operation
field (CO), which specifies the type of operation to be
performed, and the integerlfloating-point select bit (IF),
which specifies whether the operation is integerorfloat~
ing-point. Available base operation codes and the corre­
sponding values for CO and IF are listed in Table 2. Note
that the value of IF is a "don't care" for base operation
code MOVE P.

Sign-Change Selects

Each ALU input and output port has associated hard­
ware that can be used to modify operand signs (see Fig-

1·136

ure 8). These sign-change blocks, when applied to base
operations, greatly increase the number of available
operations. The base operation code F' = P' + T', for
example, can be used to perform operations such as
P - T, ABS(P) + ABS(T), ABS(P + T), and others, simply
by modifying the signs of the input and output operands.
The SIP, SIO, and SIT instruction word fields control the
sign-change blocks for the P, a, and T input operands,
respectively; the SIO and SIF fields control the sign
change block for output operand F.

Using the sign-change blocks, the sign of an input oper­
and may be left unchanged, inverted, set Low, or set
High; the sign of the output operand may be left un­
changed, inverted, set Low, set High, set to the sign of
the P input operand, or set to the sign of the T input oper­
and. Select codes for the P, a, T, and F sign-Change
blocks are shown in Tables 3,4,5, and 6, respectively.

Operand PreCision Selects

The Am29027 supports mixed-precision operations; it is
possible, for example, to perform an operation having
single-precision inputs and a double-precision output,
or one single- and one double-precision input, or any
other combination.

The precision of the operands in Registers Rand S
is specified by instruction bit IPR, which is logic High for
single-precision operands and logic Low for double-pre­
cision operands. Note that the operands in the Rand S
registers must have the same precision if they are to be
used in the same operation. This restriction does not
preclude performing an operation with mixed-precision
input operands, as there are no restrictions on the preci­
sions of operands stored in the register file. The preci­
sion of each operand stored in the register file is
recorded in the preCision register; this precision infor­
mation is automatically supplied to the ALU when a
register file location is specified as an input operand to
an operation.

The precision of an operation result is specified by in­
struction bit RPR, which is set High for a single-precision
result, and Low for a double-precision result. Should the
instruction word specify that the result is to be written to
the register file (instruction bit RF High), the resulting
precision will be written to the appropriate precision reg­
ister bit when the result is written to the register file.

Am29027

Table 2. Operation Codes

IF CO

INs I~ IN3 INz IN! INo Base Operation Code (Floating-Point)

0 0 0 0 0 0 F .. P
0 0 0 0 0 1 F.P'+T'
0 0 0 0 1 0 F' -p'xa'
0 0 0 0 1 1 Compare P, T
0 0 0 1 0 0 Max, P, T
0 0 0 1 0 1 MinP, T
0 0 0 1 1 0 Convert T to Integer
0 0 0 1 1 1 Scale T to Integer by a
0 0 1 0 0 0 F - (P' x a') + T'
0 0 1 0 0 1 Round T to Integral Value
0 0 1 0 1 0 Reciprocal Seed of P
0 0 1 0 1 1 Convert T to Alternate F. P. Format

0 0 1 1 0 0 Convert T from Alternate F. P. Format

INs I~ IN3 INz IN! INo Base Operation Code (Integer)

1 0 0 0 0 0 F .. P
1 0 0 0 0 1 F .. P+T
1 0 0 0 1 0 f .. Px a
1 0 0 0 1 1 Compare P, T
1 0 0 1 0 0 Max P, T
1 0 0 1 0 1 MinP, T
1 0 0 1 1 0 Convert T to Floating-Point
1 0 0 1 1 1 Scale T to Floating-Point by a
1 1 0 0 0 0 F= PORT
1 1 0 0 0 1 F .. PANDT
1 1 0 0 1 0 F- PXORT
1 1 0 0 1 1 Shift P Logical a Places
1 1 0 1 0 0 Shift P Arithmetic a Places
1 1 0 1 0 1 Funnel Shift PT Logical a Places

INs I~ IN3 INz IN! INo Base Operation Code (Special)

X 1 1 0 0 0 MOVEP

1-137

29K Family CMOS Devices
P Q T

F 09114-010C

Figure 8. ALU Sign-Change Blocks

INn

o
o
1

INn

0

0

1

1-138

Table 3. Select Codes for P Operand
Sign-Change Block

SIP

IN12 SIGN (P')

0 SIGN(P)
SIGN(P)

0 0

1 1

Table 4. Select Codes for Q Operand
Sign-Change Block

SIQ

IN10 SIGN (Q')

0 SIGN(Q)

1 SIGN (0)

0 0

1

Table 5. Select Codes for T Operand
Sign-Change Block

IN.

o
o
1

SIT

INa

o

o

SIGN (T')

SIGN(T)
SIGN ('n

o

Table 6. Select Codes for F Operand
Sign-Change Block

SIQ SIF

Base Operation IN11 IN10 IN7 INs SIGN(F)

F'= P 0 X 0 0 SIGN(F')
(Floating-Point)

F = P (Integer) 0 X 0 1 SIGN(F')

QB 0 X 1 0 0
Maximum P, T 0 X 1 1 1

OR 1 0 X X SIGN(P)
Minimum P, T 1 1 X X SIGN(T)

X X 0 0 SIGN(F')

A!1..Q1llill Base X X 0 1 SIGN(F')

Operations X X 1 0 0

X X 1 1 1

Operand Source Selects

Instruction fields PMS, OMS, and TMS specify the
select codes for the P, 0, and T operand multiplexers,
respectively; these codes are summarized in Table 7.

The P, 0, and T operand multiplexers can indepen­
dently select Register R, Register S, register file loca­
tions RF7-RFo, or one of six predefined constants. For
operations with floating-point inputs, constants 0,0.5, 1,
2, 3, and pi are available; for operations with integer in­
puts, constants 0, -1, 1, 2,3, and _(263

) are available.
These constants are supplied to the ALU as double-pre­
cision numbers, independent of the precisions specified
for other input and result operands. Hexadecimal values
for the constants are listed in Table 8.

Register File Controls

Instruction fields RF and RFS control the storing of op­
eration results in the register file. If registerfile enable bit
RF is High, the result of the operation specified by the
instruction word will be stored in register file location
RFS, where RFS is a number from 7 to 0; the precision
of the result, as specified by the RPR bit, will be written
to the appropriate bit in the precision register. If RF is
Low, the operation result is written to neither the register
file nor the preCision register.

Accelerator Operations

Table 9 illustrates a number of possible ALU instructions
and corresponding values for instruction word fields
SIP, SIO, SIT, SIF, IF, and CO. Note that the remaining
instructionfields-RF, RFS, PMS, OMS, TMS,IPR, and
RPR-can be specified independently.

The user may create additional instructions using
instruction words other than those listed in Table 9. For

Am29027

some base operation codes, sign-change control set­
tings SIP, SIO, SIT, and SIF are completely arbitrary;
for others, only the sign-change field values shown in
Table 9 are valid. Table 10 summarizes permissible
sign-change field values for each base operation code.

PMS
OMS
TMS

Table 7. Select Codes for P, 0, and T
Operand Multiplexers

INv IN26 IN25 IN24 P
IN23 IN22 IN21 IN20 0

IN,B IN,8 IN17 IN,6 T

0 0 0 0 Register R

0 0 0 1 Register S

0 0 1 0 o (Zero)

0 0 1 1 0.5 (F.P.) - 1 (integer)

0 1 0 a 1

0 1 0 1 2

0 1 1 a 3

a 1 1 1 1t (F.P.) - 263(integer)

1 0 0 a RFo

1 0 0 1 RF,

1 0 1 0 RF2

1 a 1 1 RF3

1 1 0 0 RF.

1 1 0 1 RF5

1 1 1 a RF6

1 1 1 1 RF7

1-139

29K Family CMOS Devices

Table 8. Hexadecimal Values for On-Chip Constants

1-140

IEEE Floating-Point Constant

o
0.5

1

2

3

1t

DEC D Floating-Point Constant

o
0.5

1

2

3

1t

DEC G Floating-Point Constant

o
0.5

1

2

3

1t

IBM Floating-Point Constant

o
0.5

1

2

3

1t

Integer Constant

o
-1

1

2

3

-263

Hexadecimal Representation

0000000000000000

3FEOOOOOOOOOOOOO

3FFOOOOOOOOOOOOO

4000000000000000

4008000000000000

400921FB54442D18

Hexadecimal Representation

0000000000000000

4000000000000000

4080000000000000

4100000000000000

4140000000000000

41490FDAA22168C2

Hexadecimal Representation

0000000000000000

4000000000000000

4010000000000000

4020000000000000

4028000000000000

402921FB54442D18

Hexadecimal Representation

0000000000000000

4080000000000000

4110000000000000

4120000000000000

4130000000000000

413243F6A8885A31

Hexadecimal Representation

0000000000000000

FFFFFFFFFFFFFFFF

0000000000000001

0000000000000002

0000000000000003

8000000000000000

Am29027

Table 9. Instruction Words for Typical ALU Operations

Operation SIP SIQ SIT SIF IF CO

FPP 00 00 xx 00 a 00000
FP-P 00 00 XX 01 a 00000
FPABS(P) 00 00 XX 10 a 00000
FP Sign(T) x ABS(P) 00 11 XX XX a 00000

FPP + T 00 XX 00 00 a 00001
FPP-T 00 XX 01 00 a 00001
FPT-P 01 XX 00 00 0 00001
FP-P- T 01 XX 01 00 a 00001
FPABS(P + T) 00 XX 00 10 a 00001
FPABS(P- T) 00 XX 01 10 a 00001
FP ABS(P) + ABS(T) 10 XX 10 00 a 00001
FP ABS(P) - ABS(T) 10 XX 11 00 a 00001
FP ABS[ABS(P) - ABS(T)] 10 XX 11 10 a 00001

FPPxO 00 00 xx 00 a 00010
FP (-P) xO 01 00 XX 00 a 00010
FPABS(PxO) 00 00 XX 10 0 00010

FP Compare P, T 00 XX 01 00 a 00011

FP Max P, T 00 00 01 00 0 00100
FP Max ABS(P), ABS(T) 10 00 11 00 0 00100

FP Min P, T 01, 00 00 00 0 00101
FP Min ABS(P), ABS(T) 11 00 10 00 0 00101
FP Limit P to Magnitude T 11 10 10 XX 0 00101

FP Convert T to Integer XX XX 00 00 0 00110

FP Scale T to Integer by 0 XX 00 00 00 0 00111

FPT + PxO 00 00 00 00 0 01000
FPT-PxO 01 00 00 00 0 01000
FP-T + PxO 00 00 01 00 0 01000
FP-T-PxO 01 00 01 00 a 01000
FP ABS(T) + ABS(P x 0) 10 10 10 00 a 01000
FP ABS(T) - ABS(P x 0) 11 10 10 00 0 01000
FP ABS(P x 0) - ABS(T) 10 10 11 00 0 01000

FP Round T to Integral Value XX XX 00 00 a 01001

FP Reciprocal Seed (P) 00 XX XX 00 0 01010

FP Convert T to Alternate
Floating-Point Format XX XX 00 00 0 01011

FP Convert T from Alternate
Floating-Point Format XX XX 00 00 0 01100

int P 00 00 00 00 1 00000
int-P 00 00 00 01 1 00000
intABS(P) 00 00 00 10 1 00000
int Sign(T) x ABS(P) 00 11 00 XX 00000

int P + T 00 XX 00 00 00001
int P- T 00 XX 01 00 00001
int T - P 01 XX 00 00 00001
int ABS(P + T) 00 XX 00 10 00001
int ABS(P - T) 00 XX 01 10 00001

int P x 0 00 00 XX 00 00010

int Compare P, T 00 XX 01 00 00011

int Max P, T 00 00 01 00 00100

int Min p, T 01 00 00 00 00101

1-141

29K Family CMOS Devices

Table 9. Instruction Words for Typical ALU Operations (continued)

Operation SIP SIQ SIT SIF IF CO

int Convert T to Float XX XX 00 00 00110

int Scale T to Roat by Q XX 00 00 00 00111

int PORT XX XX XX XX 10000

int PAND T XX XX XX XX 10001

intPXORT XX XX XX XX 10010
int NOT T (see Note 1) XX XX XX XX 10010

int Shift P Logical Q Places 00 00 XX 00 10011

int Shift P Arithmetic Q Places 00 00 XX 00 10100

int Funnel Shift PT Q Places 00 00 00 00 1 10101

MOVEP XX XX XX XX X 11000

Note 1. NOT T is performed by XORing T with a word containing all 1 s (integer - 1). When invoking NOT T the user must set
instruction field PMS to 0011 2, thus selecting integer constant -1.

Table 10. Allowable Sign-Change Combinations

IF CO Operation SIP SIQ SIT SIF

0 00000 FP F' .. P F V X V

0 00001 FP F' = P' + T' V X V V

0 00010 FP F'=P'x Q' V V X V
0 00011 FP Compare P, T F X F F
0 00100 FP Max P, T F F F F
0 00101 FP Min P, T F F F F
0 00110 FP Convert T to Integer X X F F
0 00111 FP Scale T to Integer X F F F

0 01000 FP F' = (P' x Q') + T V V V V
0 01001 FP Round T X X F F
0 01010 FP Reciprocal Seed P F X X F
0 01011 FP Convert T to Alt Format X X F F
0 01100 FP Convert T from Aft Format X X F F

00000 int F= P F F F F
00001 int F = P+ T F X F F

00010 int F= PxQ F F X F

00011 int Compare P, T F X F F
00100 int Max P, T F F F F
00101 int Min P, T F F F F

00110 int Convert Tto F.P. X X F F
00111 int Scale T to F.P. X F F F

10000 int F .. PORT X X X X
10001 int F= PANDT X X X X
10010 int F = P XORT X X X X
10011 int Shift P Logical F F X F

10100 int Shift P Arithmetic F F X F

10101 int Funnel Shift PT F F F F

X 11000 MOVEP X X X X

Key: V = Variable; user can specify arbitrary sign change.
F .. Fixed; user is restricted to sign.chan~e combinations shown in Table 9.
X .. Don't care; this field does not affect t e operation or its result.

1-142

Base Operation Code Description

F' = P (Floating-Point): The P-operand is passed
through the ALU unchanged, except for any specified
precision conversions. If the user specifies different in­
put and output precisions, the operation may be used to
perform single-to-double or double-to-single conver­
sions.lnstructions such as negation, absolute value ex­
traction and sign transfer may be executed by setting
the sign-change controls appropriately while executing
this base operation.

F' = P' + T' (Floating-Point): The two operands P' and
T' are added, taking into account any specified precision
conversions. Instructions such as subtraction, sum-of­
absolute-values, difference-of-absolute-values, abso­
lute-value-of-sum, and absolute-value-of-difference
may be executed by setting the sign-change controls
appropriately while executing this base operation.

F' = P' x Q' (Floating-Point): The operands P' and A'
are multiplied, taking into account any specified preci­
sion conversions. Instructions such as negative-product
and absolute-value-of-product may be executed by set­
ting the sign-change controls appropriately while exe­
cuting this base operation.

Compare P, T (Floating-Point): The two operands P
and T are compared, taking into account any specified
precision conversions. The output of the operation is the
result of the subtraction (P - T). The flags are set appro­
priately to indicate the result of the comparison, con­
forming to the relevant parts of the floating-point
standards. For IEEE and DEC operations, one of four
flags (greater than, less than, equal to, or unordered) is
set for any given compare operation. For IBM opera­
tions, the unordered flag does not apply since the format
does not support reserved operands.

Maximum P, T (Floating-Point): The two operands P
and T are compared, taking into account any specified
preCision conversions. The most positive operand is se­
lected as the output. The Winner flag indicates which of
the operands is selected. Additionally, the operation
maximum-of-absolute-value may be performed by set­
ting the appropriate sign-change controls.

Minimum P, T (Floating-Point): The two operands P
and T are compared, taking into account any specified
precision conversions. The most negative operand is
selected as the output. The Winner flag indicates which
of the two operands is selected. Additionally, the opera­
tions minimum-of-absolute-values and limit-P-to-mag­
nitude-T may be performed by setting the appropriate
sign-change controls. The limit-P-to-magnitude-T op­
eration is useful for clipping a sequence of operands to
ensure that their magnitude never exceeds a preset
limit.

Convert T to Integer (Floating-Point): The operand T
is converted from floating-point representation to two's
complement integer representation, taking into account
the specified precision of the floating-point operand. If
the output precision is specified as single, the result is a

Am29027

32-bit integer. If the output precision is specified as dou­
ble, the result is a 64-bit integer.

Scale T to Integer by Q (Floating-Point): The operand
T is converted from floating-point representation to
two's complement integer representation, using the
exponent of the floating-point operand a as a scale
factor and taking into account the specified precision of
the floating-point operands. The unbiased exponent of
the operand a is added to the exponent of the operand
T, permitting IEEE and DEC operands to be multiplied
by any power of 2, and IBM operands by any power
of 16, before the conversion is performed. If the output
precision is specified as single, the result is a 32-bit inte­
ger. If the output precision is specified as double, the
result is a 64-bit integer.

F' = (P'x Q') + T' (Floating-Point): The operands P' and
0' are multiplied, producing a double-precision product.
This product is added to the operand T', taking into ac­
count any specified precision conversions. Instructions
such as P x a - T, T - P X 0, ABS (P x 0) + ABS(T) and
ABS(P x a + T) may be executed by setting the sign­
change controls appropriately while executing this base
operation.

Round T to Integral Value (Floating-Point): The float­
ing-point operand T is rounded to an integer-valued
floating-point operand, using the speCified rounding
mode and taking into account any specified precision
conversions. As an example, the operation converts a
floating-point representation of Pi (3.14159 ...) to a
floating-point representation of 3.0 or 4.0, depending on
the rounding mode selected. The final result of the op­
eration is a floating-point number.

Reciprocal Seed of P (Floating-Point): An approxima­
tion to the reciprocal of the operand P is evaluated,
taking into account any specified precision conversions.
The reciprocal seed comprises an accurate sign, a fully­
accurate exponent and a mantissa that is accurate to
only one place. This operation can be used as the initial
step in performing Newton-Raphson division; option­
ally, an external seed look-up table can be used for
faster convergence.

Convert Tto Alternate Floating-Point Format (Float­
ing-Point): The floating-point operand T, assumed to
be in the primary floating-point format, is converted to a
floating-point operand in the alternate floating-point
format, taking into account any specified precision
conversions.

Convert T from Alternate Floating-Point Format
(Floating-Point): The floating-point operand T, as­
sumed to be in the alternate floating-point format, is
converted to a floating-point operand in the primary
floating-point format, taking into account any specified
precision conversions.

F = P (Integer): The P-operand is passed through the
ALU unchanged except for any specified precision
conversions. If the user specifies different input and out­
put precisions, the operation may be used to perform

1-143

29K Family CMOS Devices
single-to-double or double-to-single conversions. In­
structions such as negation, absolute value extraction,
and sign transfer may be performed by setting the sign­
change control appropriately while executing this base
operation.

F = P + T (Integer): The two operands P and Tare
added, taking into account any specified precision
conversions. Instructions such as subtraction, absolute­
value-of-sum, and absolute-value-of-difference may be
performed by setting the sign-change controls appropri­
ately while executing this base operation.

F = P x Q (Integer): The two operands P and 0 are mul­
tiplied, taking into account any specified precision con­
versions. Either 32-bit multiplication or 64-bit multiplica­
tion may be performed, and the user may select either
the MSBs or the LSBs of the product as the final result.
In addition, format-adjusting may be implemented if
required, and the operands may be considered as
signed (two's complement) or unsigned.

Compare P, T (Integer): The two operands P and Tare
compared, taking into account any specified precision
conversions. The output of the operation is the result of
the subtraction (P-T). The flags are set appropriately to
indicate the result of the comparison, one of three flags
(greater than, less than, or equal to) being set for any
given compare operation.

Maximum P, T (Integer): The two operands· P and
T are compared, taking into account any specified preci­
sion conversions. The most positive operand is selected
as the output. The Winner flag indicates which of the two
operands is selected.

Minimum P,T (Integer): The two operands P and Tare
compared, taking into account any specified precision '
conversions. The most negative operand is selected as
the output. The Winner flag indicates which of the two
operands is selected.

Convert T to Floating-Point (Integer): The operand T
is converted from two's complement integer representa­
tion to floating-point representation, taking into account
the specified precision of the integer operand. If the
output precision is specified as single, the result is a
32-bit floating-point operand. If the output precision is
specified as double, the result is a 64-bit floating-point
operand.

Scale T to Floating-Point by Q (Integer): The operand
T is converted from two's complement integer represen­
tation to floating-point representation, using the expo­
nent of the floating-point operand 0 as a scale factor
and taking into account the specified precision of the in­
teger operand. The unbiased exponent of the operand
Q is added to the exponent of the floating-point result,
permitting IEEE and DEC operands to be multiplied by
any power of 2, and IBM operands by any power of 16
after the conversion is performed. If the output precision
is specified as single, the result is a 32-bit floating-point
operand. If the output precision is specified as double,
the result is a 64-bit floating-point operand.

1-144

F = P OR T (Integer): The operand P is logically ORed
with the operand T. Before the operation is performed,
the inputs, if 32-bit, are sign-extended to 64 bits.

F = P AND T (Integer): The operand P is logically
ANDed with the operand T. Before the operation is per­
formed, the inputs, if 32-bit, are sign-extended to 64 bits.

F = P XOR T (Integer): The operand P is logically exclu­
sive-ORed with the operand T. Before the operation is
performed, the inputs, if 32-bit, are sign-extended to 64
bits. This operation may be used to invert an operand by
selecting the second operand to be the integer constant,
-1, so that all bits of this second operand are 1.
Exclusive-ORing an operand with -1 is equivalent to
inverting each bit in the operand.

Shift P Logical Q Places (Integer): This operation can­
not be performed in mixed-precision mode. The preci­
sion of the result is the same as the precision of the input
operand P. A two's-complement shift length in the range
-64 to +63 (doiJble-precision) or -32 to +31 (single-pre­
cision) is extracted from the LSBs of the operand O. The
operand P is logically right-shifted by the number of
places specified by the shift length. A negative shift
length therefore produces a left-shift. If a right-shift is
performed, Os fill vacated bit positions to the left of the
input operand. If a left-shift is performed. Os fill vacated
bit positions to the right of the input operand.

Shift P Arithmetic Q Places (Integer): This operation
cannot be performed in mixed-precision mode. The pre­
cision of the result is the same as the precision of the in­
put operand P. A two's-complement shift length in the
range -64 to +63 (double-precision) or -32 to +31 (sin­
gle-precision) is extracted from the LSBs of the operand
O. The operand P is arithmetically right-shifted by the
number of places specified by the shift length. A nega­
tive shift length therefore produces a left-shift. If a right­
shift is performed, the MSB (bit 63 or 31) is replicated to
fill vacated bit poSitions to the left of the input operand. If
a left-shift is performed, Os fill vacated bit positions to the
right of the input operand.

Funnel Shift PT Q Places (Integer): This operation
cannot be performed in mixed-precision mode. The op­
erand T is interpreted as having the same precision as
the input operand p. and the precision of the result is
also the same as the preCision of the input operand P. A
two's-complement shift length in the range -64 to +63
(double-precision) or -32 to +31 (Single-precision) is
extracted from the LSBs of the operand O. A triple-width
operand (96-bit or 192-bit) is formed by concatenating
the input operands into the arrangement P-T-P, with the
32-bit or 64-bit result field initially aligned with the T-op­
erand. The triple-width operand is logically right-shifted
by the number of places specified by the shift length. A
negative shift length therefore produces a left-shift.

Move P (Floating-Point· or Integer): The 64-bit
operand P is passed unchanged through the ALU. No
exceptions are detected or signaled.

Primary and Alternate Floating-Point Formats

Two mode register fields. PFF and AFF. specify the pri­
mary and alternate floating-point formats used by the
ALU. All floating-point operations except format conver­
sions are performed in the format specified by PFF. For
format conversion operations. either primary floating­
point format PFF or alternate floating-point format AFF
are used as follows:

• For conversions between floating-point and integer
formats (base operation codes Convert T to integer.
Convert T to floating-point. Scale T to integer by O.
Scale T to floating-point by 0). the floating-point
source or destination format is specified by PFF; for
the scale operations. the format of operand 0 is also
specified by PFF.

• When converting from the primary floating-point
format to the alternate floating-point format (base
operation code Convert Tto alternate F. P. format).
an operand in format PFF is converted to format
AFF.

• When converting from the alternate floating-point
format to the primary floating-point format (base
operation code Convert T to primary F.P. format).
an operand in format AFF is converted to format
PFF.

Operation Precision

The ALU performs all operations in double-precision
format. All Single-precision input operands are con­
verted to double-precision equivalents by the ALU at
the start of an operation. If the operation is to report a
single-precision result. the ALU converts the double­
precision internal result to single-precision at the end of
the operation.

Note that operation flags and exception bits pertain to
the source and destination precisions. If. for example.
an operation produces a single-precision overflowed re­
sult. an overflow is indicated regardless of whether that
result overflows the double-precision internal format.

Operation Flags

For each operation. the ALU produces thirteen flags. Of
these. a maximum of seven are relevant to any given op­
eration. The relevant flags are placed in the flag register

Am29027

in the manner shown in Table 11. All flags are active
High. In flow-through mode the flag register is made
transparent. and the selected flags are presented di­
rectly to the output multiplexer.

The ALU flags are:

C-CARRY: Carry-out bit produced by integer addition.
subtraction. or comparison.

I-iNVALID OPERATION: Indicates that the input
operands are unsuitable for the operation performed
(e.g .• 00 x 0).

R-RESERVED OPERAND: Indicates that the opera­
tion result is a reserved operand. Reserved operands in­
clude signaling or quiet NaNs in IEEE format. and DEC
reserved operands in DEC D or G formats.

S-SIGN: Result sign; Low for a non-negative result.
High for a negative result.

U-UNDERFLOW: Indicates that the operation result
underflowed the destination format.

V-OVERFLOW: Indicates that the operation result
overflowed the destination format.

W-WINNER: Indicates which of two input operands is
reported as the result of the MAX p. T and MIN p. Top­
erations. A logic High indicates that operand T is re­
ported as the result. a logic Low operand P.

X-INEXACT RESULT: Indicates that the operation re­
sult had to be rounded to fit the destination format.

Z-ZERO RESULT: Indicates that the operation pro­
duced a zero result. Note that the result is exactly zero
only if the Z flag is High and the X flag is Low.

>, =, <, #-GREATER THAN, EaUAL TO, LESS
THAN, UNORDERED: Used to report the re~ult of an
operation with the Compare p. T base operation code.
The Greater Than flag indicates that P > T. the Equal To
flag that P = T. and the Less Than flag that P < T. The
Unordered flag indicates that one or both input oper­
ands are reserved operands and cannot be compared.
Note that the Unordered flag cannot arise when compar­
ing IBM floating-point operands or integers. Exactly
one comparison flag will be active per comparison
operation.

1-145

29K Family CMOS Devices

Table 11. Organization of Flags

Flag Register

F F F F F F F
CO L L L L L L L

Format Operation IN.INo 6 5 4 3 2 1 0

IEEE F' = P' 00000 S Z X U V R

IEEE F' = P' + T' 00001 S Z X U V R
IEEE F' = P'xQ' 00010 S Z X U V R
IEEE Compare P, T 00011 S = > < # R
IEEE Maximum P, T 00100 S Z W R
IEEE Minimum P, T 00101 S Z W R
IEEE Convert T to Integer 00110 S Z X V R
IEEE Scale T to Integer 00111 S Z X V R
IEEE F' = (P' x Q') + T' 01000 S Z U V R
IEEE Round T to Integral Value 01001 S Z X V R
IEEE Reciprocal Seed of P 01010 S Z U V R
IEEE Convert Tto Aft F.P. Format 01011 S Z X U V R
IEEE Convert Tfrom Alt F.P. Format 01100 S Z X U V R

DECD F' = P' 00000 S Z X V R
DECD F=P'+T' 00001 S Z X U V R
DECD F'=P'xQ' 00010 S Z X U V R
DECD Compare P, T 00011 S = > < # R
DECD Maximum P, T 00100 S Z W R
DECD Minimum P, T 00101 S Z W R
DECD Convert T to Integer 00110 S Z X V R I
DECD Scale T to Integer 00111 S Z X V R I
DECD F' = (P' x Q') + T' 01000 S Z U V R
DECD Round T to Integral Value 01001 S Z X V R
DECD Reciprocal Seed of P 01010 S Z U V R I
DECD Convert T to Aft F.P. Format 01011 S Z X U V R I
DECD Convert T from Alt F.P. Format 01100 S Z X U V R I

DECG F' = P' 00000 S Z X U V R
DECG F = P' + T' 00001 S Z X U V R
DECG F' = P' x Q' 00010 S Z X U V R
DECG Compare P, T 00011 S = > < # R
DECG Maximum P, T 00100 S Z W R
DECG Minimum P, T 00101 S Z W R
DECG Convert T to Integer 00110 S Z X V R I
DECG· Scale T to Integer 00111 S Z X V R I
DECG F' = (P' x Q') + T' 01000 S Z U V R
DECG Round T to Integral Value 01001 S Z X V R
DECG Reciprocal Seed of P 01010 S Z U V R I
DECG Convert Tto Aft F:P. Format 01011 S Z X U V R I
DECG Convert T from Alt F.P. Format 01100 S Z X U V R I

IBM F'= P' 00000 S Z X V
IBM F=P'+T' 00001 S Z X U V
IBM F' = P'xQ' 00010 S Z X U V
IBM Compare P, T 00011 S = > <
IBM Maximum P, T 00100 S Z W
IBM Minimum P, T 00101 S Z W
IBM Convert T to Integer 00110 S Z X V
IBM Scale T to Integer 00111 S Z X V

IBM F' = (P' x Q') + T' 01000 S Z U V
IBM Round T to Integral Value 01001 S Z X V
IBM Reciprocal Seed of P 01010 S Z V I
IBM Convert T to Alt F.P. Format 01011 S Z X U V R
IBM Convert Tfrom Alt F.P. Format 01100 S Z X U V R I

1-146

Am29027

Table 11. Organization of Flags (continued)

Flag RegIster

F F F F F F F

CO L L L L L L L
Format Operation IN4-1No 6 5 4 3 2 1 0

Integer F .. P 00000 S Z 'V
Integer F=P+T 00001 S Z V C

Integer F=PxQ 00010 S Z V
Integer Compare P, T 00011 S .. > < V C
Integer Maximum P, T 00100 S Z W
Integer Minimum P, T 00101 S Z W
Integer Convert T to Floating-Point 00110 S Z X
Integer Scale T to Floating-Point 00111 S Z X U V R
Integer F = PORT 10000 S Z
Integer F= PANDT 10001 S Z
Integer F= PXORT 10010 S Z
Integer Logical Shift P by Q Places 10011 S Z
Integer Arithmetic Shift P by Q Places 10100 S Z V
Integer Funnel Shift P T by Q Places 10101 S Z

MOVEP 11000 S

Note: Unused flags assume the Low state.

1-147

29K Family CMOS Devices

Updating the Status Register

The status register exception bits are updated at the
conclusion of each operation in flow-through mode, and
at the start of each operation in pipeline mode. An ex­
ception bit is updated only if the operation reports that
exception with a flag. For example, an IEEE floating­
point addition operation produces an overflow flag and
would therefore update the overflow exception bit; an
IEEE floating-point comparison operation, on the other
hand, does not produce an overflow flag and would
therefore leave the overflow exception bit unchanged.

The mode register exception mask bits do not affect the
updating of the status register exception bits-masked
exceptions still appear in the status register. However,
a masked exception will not set the exception status
bit (ES).

Operation Sequencing
The Am29027 can be configured for either pipelined
or flow-through (unpipelined) operation. Flow-through
mode is normally selected for performing scalar opera-

tions; pipeline mode provides high throughput for vector
operations. The manner in which operations are se­
quenced depends on the mode currently invoked.

Operation In Flow-Through Mode
Flow-through mode is invoked by setting mode register
bit PL (Pipeline Mode Select) to logic Low.

Programmer's Model
A programmer's model of the Am29027 in flow-through
mode is shown in Figure 9. Note that Output Register F
and the flag register are made transparent in this mode.

Performing Operations
Flow~through mode operations are performed by:

•

•

Storing instructions and/or operands in the
Am29027 and starting the operation

Loading the result

32
~----------4-------~

1-148

64

p

Mode
Instruction Register Prec.
Register A Register

64 64

Q T

ALU

F

Flags

Figure 15. Programmer's Model for Flow-Through Mode

09114-11C

Storing instructions and operands can be done in any of
three ways:

• Writing the Instruction only. and starting the
operation: This is appropriate when all necessary
operands are already present in the Am29027,
as is sometimes the case when using on-board
constants or the results of previous operations
stored in the register file.

• Writing the operands only. and starting the
operation: This is appropriate when the desired
instruction is already present in the Am29027, as is
the case when performing the second of two
identical operations.

• Writing the Instruction and operands. and
starting the operation: This is appropriate
whenever the next operation requires both a new
instruction and new operands.

Operands and instructions are written using the write
operand R, write operand S, write operands R, S, and
write instruction. transaction requests. Operands and
instructions can be written to the Am29027 in any order,
with the operation start bit (DREOTo High) accompany­
ing the last of the transaction requests.

Loading an operation result is performed using the read
result MSBs, read result LSBs, and read flags trans­
action requests. The specific request used depends on
whether the result of an operation is a flag or flags (as is
the case with comparison operations) or data (as is the
case with most other operations). In cases where the
operation result is stored in the register file, the user
may elect not to read the result but to proceed with the
next operation.

Operation Timing
The Am29027 will usually start a flow-through operation
during the first cycle following the receipt of a write
operand R, write operand S, write operands R, S, or
write instruction transaction request having signal
DREOTo set High.

Operation execution begins with the transfer of the con­
tents of the R-Temp, S-Temp, and I-Temp registers to
Register R, Register S, and the instruction register, re­
spectively; only those temporary registers written to as
part of the operation specification will be transferred.
The operand or instruction accompanying the transac­
tion request that starts the operation (that is, the trans­
action request for which signal DREOTo is High) is writ­
ten directly to the appropriate working register, that is,
Register R, Register S, or the instruction register.

Once started, an operation will proceed for the number
of cycles specified by mode register fields MATC,
MVTC, and PLTC; MATC specifies the numberofcycles
for base operation code (P x 0) + T, MVTC the number
of cycles for base operation code MOVE P, and PLTC
the number of cycles for all other base operation codes.
At the end of the last operation cycle, the status register
exception bits and exception status bit will be updated

Am29027

and, optionally, the operation result will be written to the
register file and precision register.

There are two conditions for which the Am29027 will not
start an operation immediately. The first condition is
when an operation is already in progress. In this case
the new operation is kept pending in the I-Temp,
R-Temp, and S-Temp registers until the current opera­
tion is completed, at which time the new operation be­
gins. The second condition is when a previous operation
creates an unmasked exception in Halt On Error mode
(mode register bit HE High). In this case the new opera­
tion is kept in the I-Temp, R-Temp, and S-Temp regis­
ters until the exception is cleared, at which time the new
operation begins .

Timing for typical accelerator operations in the flow­
through mode is illustrated in Appendix D.

Availability of Operation Results
In order to directly read the result of an operation, the
operation specification should be followed by the appro­
priate read transaction request. Should the Am29000
attempt to read an operation result before the operation
is completed, the Am29027 will withhold acknowledging
the transaction request by holding signals DRDY and
DERR inactive until the operation has been completed.
All read transaction requests, including save state, will
be held off in this manner.

Overlapping Operations
Due to the presence of the R-Temp, S-Temp, and
I-Temp registers, it is possible to partially or completely
specify a new operation while the previously specified
operation is being performed. Execution of the new
operation will begin immediately after the previous op­
eration is completed. Execution begins with the transfer
ofthe contents ofthe R-Temp, S-Temp, and I-Temp reg­
isters to the corresponding working registers; only those
temporary registers that have been written to as part of
the operation specification are transferred.

It is important to note that, once the new operation is
completely specified, any attempt to read a result will be
held off until the new operation is completed. This
means that it is not possible to directly read the result of
an operation if another operation is completely specified
before the results of the first operation are read. If, for
example, specification of operation 2.0 + 3.0 is immedi­
ately followed by specification of operation 4.0 x 5.0,
subsequent read result LSBs and read result MSBs
transaction requests will return value 20.0, the result of
the second operation. Similarly, a read flags transaction
request will return flags for the second operation, and a
read status transaction request will return status reflect­
ing the completion of the second operation. This de­
layed read feature is provided to eliminate ambiguity in
the correspondence between operations and results.

Should two operations be overlapped, and should the
first operation have as its target a register file location,
the second operation can be completely specified be-

1-149

29K Family CMOS Devices

fore the first operation is completed. If the first operation
produces a result that is to be read directly by the
Am29000, the second operation can be partially speci­
fied before the result of the first operation is read. A
partial operation specification is one that includes all but
the last operand or instruction.

Timing for typical overlapped operations in flow-through
mode is illustrated in Appendix D.

Saving and Restoring State
In flow-through mode, the complete state of the
Am29027 can be saved and restored with the save state
transaction request. The first save state transaction
request will return the contents of the instruction regis­
ter; subsequent requests will return the contents of
Registers I-Temp, R, S, R-Temp, S-Temp, the status
register, the precision register, register file locations
RF7-RFo, and the mode register. The user has the op­
tion of saving only part of the state by issuing only the
number of save state transaction requests needed
to save registers of interest. When issuing a series of
save state transaction requests, data is returned in the
following order:

Request Data Returned

1 Instruction
2 I-Temp
3 R LSBs
4 RMSBs
5 S LSBs
6 S MSBs
7 R-Temp LSBs
8 R-TempMSBs
9 S-Temp LSBs

10 S-Temp MSBs
11 Status
12 Precision
13 RFo LSBs
14 RFo MSBs

27 RF7 LSBs
28 RF7 MSBs
29 Mode LSBs
30 Mode MSBs

1-150

Sequencing for the save state transaction request is
reinitialized when the Am29000 issues any transaction
request other than save state. If, for example, the
Am29000 issues a write operand R transaction request
after a series of save state requests, the next save state
request will return the contents of the instruction
register.

It should be noted that the process of saving state alters
the contents of the instruction register and Registers R
andS.

Error reporting via signal DERR is suppressed for the
save state transaction request.

Accelerator state is restored using transaction requests
in concert with the MOVE P base operation code. Before
restoring state, all status register bits should be set to
logic Low using the write status transaction request to
prevent the possibility of an unmasked exception bit
inhibiting the restore sequence. The accelerator oper­
and and instruction registers can then be restored,
followed by restoration of the status register using the
write status transaction request, with Signal DREQToas­
serted to indicate the end of the restore sequence.
When state restoration is complete, the Am29027 will
retime the operation specified by current instruction
register contents.

Accelerator state is restored in the following order:

Register to
be restored

Status

Mode

RFo

Precision

R,S,
Instruction

R-Temp,
S-Temp,
I-Temp

Status

Procedure for restoring

Set all bits in the status register to a logic
low using the write status transaction
request.

Write using write mode transaction
request.

Write "Move R to RFo" instruction using
write instruction transaction request.

Write RFo value to Register R using write
operand R transaction request, start opera­
tion.

Write "Move R to RF7" instruction using
write instruction transaction request.

Write RF7 value to Register R using
write operand R transaction request, start
operation.

Guarantee that "Move R to RF7" operation
has been completed by performing a read
result MSBs transaction request.

Write precisions using write register file
precisions transaction request.

Write R value to Register R-Temp
using the write operand R transaction
request.

Write S value to Register S-Temp using the
write operand S transaction request.

Write instruction value to Register I-Temp
using write instruction transaction request.

Transfer contents of Registers R-Temp, S­
Temp, and I-Temp to Register R, Register
S, and the instruction register, respectively,
using the advance temp registers transac­
tion request.

Write R-Temp value to Register R-Temp
using the write operand R transaction
request.

Write S-Temp value to Register S-Temp
using the write operand S transaction
request.

Write I-Temp value to Register I-Temp us­
ing the write instruction transaction
request.

Write status to status register using the
write status transaction request, with signal
DREQTo asserted to indicate that the re­
store sequence is complete.

The user may elect to restore only those registers rele­
vant to a particular application by omitting parts of the
state restoration sequence. The only mandatory por-

Am29027

tions of state restoration are the initial clearing of the
status register, and restoration of the status register with
signal DREOTo asserted to indicate completion of the
restore sequence.

Error Recovery
Six exception bits-invalid operation, reserved oper­
and, overflow, underflow, inexact result, and zero re­
sult-are maintained in the status register; these bits
are updated upon completion of an operation. Exception
bits can be masked individually by programming the ap­
propriate bits in the mode register; if the corresponding
mask bit is inactive (logic Low), the exception bit is said
to be unmasked and contributes to error reporting. The
Am29027 provides three mechanisms with which un­
masked exceptions can be handled.

Reporting Errors Upon Read
If an unmasked status register exception bit is set, the
Am29027 will signal an error by asserting signal DERR
when the Am29000 performs a read result LSBs, read
result MSBs, read flags, or read status transaction re­
quest. Error reporting can be suppressed by issuing any
of these transaction requests with signal DREOTo
asserted.

Halt On Error Mode
Should the application require, the Am29027 can be
configured to halt operation upon detection of an un­
masked exception; this mode is invoked by setting
mode register bit HE (Halt On Error) High. Once config­
ured this way, the Am29027 will respond to an un­
masked exception as follows:

• Signal CDA will become inactive upon completion
of the operation producing the unmasked
exception.

• Should the operation producing the unmasked
exception specify that the operation result be stored
on-chip, that is, in the register file, the result will not
be written to its destination.

• A pending operation will not be started; the
operands and/or instruction for that operation will
remain in the appropriate temporary registers.

• If the Am29000 attempts to start a new operation
during the last cycle of the operation that produces
the unmasked exception by issuing a write operand
R, write operand S, write operands R, S, or write
instruction transaction request with DREOTo
asserted, and if no other operation is pending, the
operand or instruction will be written to the
appropriate temporary register rather than to the R,
S, or instruction register.

• Once CDA is deasserted, the Am29027will respond
to the write operand R, write operand S, write
operands R, S, and write instruction transaction
requests by asserting signal DERR one cycle after
the request is issued; the contents of the target
register or registers will remain unchanged.

1-151

29K Family CMOS Devices

Through these measures, the Am29027 will retain the
input operands and instructions for the operation caus­
ing the exception. The input operands will be retained in
the R register, S register, or register file locations,
and the instructions will be retained in the instruction
register. Additionally, the R-Temp, S-Temp, and I-Temp
registers may contain the operands and instructions
for a partially or fully specified pending operation. The
Am29000 can recover these operands and instructions
with the save state transaction request; this infor­
mation can then be given to an error-handling routine for
resolution.

The error halt condition is removed by clearing the
status register exception status (ES) bit and the excep­
tion bit or bits responsible for producing the halt.

Reporting Errors via EXCP
Signal EXCPwili go active Low inthe presence of an un­
masked exception. This signal can be connected to an
Am29000 trap or exception input signal, and is enabled
or disabled independent of other exception handling
mechanisms with mode register bit EX.

Writing to the Mode, Status, and
Precision Registers
Unlike the R, S, and instruction registers, the mode,
status, and precision registers are not preceded by tem­
porary registers. Accordingly, writing to these registers
may produce undesirable or unpredictable side effects if
an accelerator 'operation is in progress at the time. To
avoid such side effects, a write to any of these registers
should be preceded by a read transaction request,
which will guarantee that any current or pending accel­
erator operations will have been completed before the
write transaction request is issued.

Writing to the Register File
The numerical result of any operation may be written to
the register file by specifying the desired destination in
instruction field RFS and setting instruction bit RF High.
The result can then be used as an input operand for sub­
sequent operations.

It is permissible for an operation result to be placed in a
register file location that previously contained an input
operand for that operation. In such a case, however, it is
not permissible for the Am29000 to directly read the re­
sult, status, or flags for that operation, as the writing of
the result modifies the operation performed by the ALU.

Determining Timer Counts
To provide optimum accelerator performance over a
range of possible system clock frequencies, the timing
of Am29027 operations is programmable. Three mode
register fields-pipeline timer count (PL TC), timer count
for the Multiply-Accumulate Operation (MATC), and
timer count for the MOVE P Operation (MVTC)-must
be programmed according to system clock frequency
and accelerator speed.

1-152

PLTC
PL TC specifies the number of cycles allotted to opera­
tions other than those using base operation codes
(P x a) + T or MOVE P. This count can assume values
between 3 and 15, inclusive, and must be given a value
that satisfies the relationship:

where
[8]~ PlTC x [1],

[8] = Operation time, flow-through
mode, all other base operation
codes

and [1] = ClK period,

as described in the Switching Characteristics table.

MATC
MATC specifies the number of cycles allotted to opera­
tions that use base operation code F' = (P' X a') + 1'.
This count can assume values between 3 and 15, in­
clusive, and must be given a value that satisfies the
relationship:

where
[6]~MATC x [1],

[6] = Operation time, flow-through
mode, F' = (P' x 0') + T'

and [1] = ClK period,

as described in the Switching Characteristics table.

MVTC
MVTC specifies the number of cycles allotted to opera­
tions that use the MOVE P base operation code. This
count can assume values between 3 and 15, inclusive,
and must be given a value that satisfies the relationship:

[7] ~ MVTC x [1],
where

[7] = Operation time, flow-through
mode, MOVE P

and [1]= CLK period,

as described in the Switching Characteristics table.

ADVANCING DRDY
Normally, an operation result produced by the Am29027
in flow-through mode is read by the Am29000 no sooner
than the clock cycle following operation completion. De­
pending on the system clock frequency used, it may be
advantageous to overlap the reading of the result with
the last cycle of the operation. Consider, for example, a
system with a 45-ns clock cycle and an Am29027 that
performs an operation in 240 ns. The pipeline timer
count PL TC will have to be set to a minimum of 6 for
such a system, and the Am29000 will read a result
no sooner than during the seventh clock cycle after the
start of an operation.

Mode register bit DA, DRDY Advance, can be used to
advance transaction status Signals DRDY and DERR by
a full clock cycle, thus allowing the Am29000 to read
data one clock cycle earlier than would otherwise be

possible. Forthe example given above PL TC remains at
6, but the Am29000 can read data during the sixth clock
cycle after the operation starts rather than the seventh,
thus saving a clock cycle.

In orderto advance DRDY and DERR, the following sys­
tem timing conditions must be met:

[19]S (MATC x [1])-[x9B]-lgate]
[20] s (MVTC x [1]) -{x 9B]- [gate]
[21]S(PLTC x [1])- [x9B]-[gate]

where [19] = Data operation-start-to-output
valid delay, F' = P' x a' + T'

[20] = Data operation-start-to-output
valid delay, MOVE P

[21] = Data operation-start-to-output
valid delay, all other operations

and [1] = ClK period

as described in the Switching Characteristics table
and

[x 9] = Synchronous input setup time

as described in the Switching Characteristics table of
the Am29000 Preliminary Data Sheet (order #09075).

The term [gate] represents the delay of the external
gate through which the DERR signal passes.

Timing for a typical accelerator operation with DRDY
advanced is illustrated in Appendix D.

Operation In Pipeline Mode

Pipeline mode is invoked by setting mode register bit PL
(Pipeline Mode Select) to logic High.

Programmer's Model
A programmer's model of the Am29027 in pipeline
mode is shown in Figure 10. Note that Output Register F
and the flag register are non-transparent in this mode,
thus permitting the overlap of the current operation(s)
with the reading of the result for a previous operation.

Pipeline Delays
When placed in pipeline mode, the ALU is divided into
three pipeline stages for multiply-accumulate opera­
tions, and into two stages for all other operations. The
ALU configuration for pipeline mode is shown in
Figure 11, Note that for multiplication-accumulation op­
erations, multiplicand P and multiplier 0 enter the first·
pipeline stage, while addend T enters the second pipe­
line stage. As a consequence, the source for operands
P and 0 must be specified in the corresponding multiply­
accumulate instruction, while the source for operand T
must be specified in the following instruction.

Pipeline Advance

The ALU pipeline is advanced whenever a new opera­
tion begins. One consequence of this advance criterion
is that data does not fall through the pipe but instead is
"pushed" through. If, for example, an addition is per-

Am29027

formed in pipeline mode, the pipe must be advanced
twice (by starting two operations) before the result of the
addition appears in Register F, the flag register, the
status register, and, optionally, a register file location.

Performing Operations

Pipeline mode operations are performed by:

• Storing· instructions and/or operands in the
Am29027, and starting the operation

• Loading the result of a previous operation

Storing instructions and operands can be done in any of
three ways:

• Writing the Instructions only, and starting the
operation: This is appropriate when all necessary
operands are already present in the Am29027,
as is sometimes the case when using on-board
constants or the results of previous operations
stored in the register file.

• Writing the operands only, and starting the
operation: This is appropriate when the desired
instructions are already present in the Am29027, as
is the case when performing the second of two
identical operations.

• Writing the Instructions and operands, and
starting the operation: This is appropriate
whenever the next operation requires both new
instructions and new operands.

Operands and instructions are written using the write
operand R, write operand S, write operands R, S, and
write instruction transaction requests. Operands and
instructions can be written to the Am29027 in any order,
with the operation start bit (DREOTo High) accompany­
ing the last of the transaction requests.

Loading the result of a previous operation is performed
using the read result MSBs, read result LSBs, and read
flags transaction requests. The specific request used
depends onwhetherthe result is a flag orflags (as isthe
case with comparison operations) or data (as is the case
with most other operations). In cases where the
operation result is stored in the register file, the user
may elect not to read the reSUlt, but to proceed with the
next operation.

Operation Timing
The Am29027 will usually start a pipe lined operation
during the first cycle following the receipt of a write op­
erand R, write operand S, write operands R, S, or write
instruction transaction request having signal DREOTo
set High.

Operation execution begins with the transfer of the con­
tents of the R-Temp, S-Temp, and I-Temp registers to
Register R, Register S, and the instruction register, re­
spectively; data is transferred only from those tem­
porary registers written to as part of the operation speci­
fication. The operand or instruction accompanying the

1·153

29K Family CMOS Devices

32
32 ~----------~------~

64 64 64

p Q T

______ ..All! _____ _

09114·012C

Figure 16. Programmer's Model for Pipeline Mode

transaction request that starts the operation (that is, the
transaction request for which signal DREQTo is High) is
written directly to the appropriate working register, that
is, Register R, Register S, or the instruction register. At
the start of the operation, the output of the last ALU pipe­
line stage is transferred to Register F, the flag register,
and, optionally, to a register file location; the status
register exception status and exception bits are
updated. The outputs of all other ALU pipeline stages
are written to their respective pipeline registers.

Once started, an operation will proceed for the number
of cycles specified by mode register field PL Te, which
denotes the number of cycles needed for data to tra­
verse a single pipeline stage.

1-154

There are two conditions for which the Am29027 will not
start an operation immediately. The first condition is
when an operation has been started recently and has
not yet had time to settle at the output of the first pipeline
stage. In this case the new operation is kept pending in
the I-Temp, R-Temp, and S-Temp registers until the
previous operation completes the first pipeline stage.
The second condition is when a previous operation cre­
ates an unmasked exception in Halt On Error mode
(mode register bit HE High). In this case the new opera­
tion is kept in the I-Temp, R-Temp, and S-Temp regis­
ters until the exception is cleared, at which time the new
operation will begin.

Am29027

P a T Instruction

P a T Instruction

Pipeline Register

F F

a. Multiply-Accumulate b. Other Operations

09114-013C

Figure 17. ALU Configuration for Pipeline Mode

Timing for typical accelerator operations in the pipeline
mode is illustrated in Appendix D.

Availability of Operation Results
Because Register F, the flag register, and the status
register are updated at the beginning of an operation,
these registers can be read at any time after an opera­
tion begins.

Overlapping Operations
Due to the presence of the R-Temp, S-Temp, and I­
Temp registers, it is possible to partially or completely
specify a new operation while the previously specified
operation is propagating through the first ALU pipeline
stage. Execution of the new operation will begin immedi­
ately after the previous operation completes the first
pipeline stage. Execution begins with the transfer of the
contents of the R-Temp, S-Temp, and I-Temp registers
to the corresponding working registers; only those
temporary registers that have been written to as part of
operation specification are transferred.

It is important to note that, once the new operation is
completely specified, any attempt to read a result will be
held off until the new operation begins; this means that it
is not possible to read the result that is placed in the out­
put registers when the first operation begins. If, for
example. result X is placed in Register F when an op-

eration starts and if another operation is completely
specified thereafter, subsequent read result MSBs and
read result LSBs transaction requests will return not X.
but the result placed in the F register when the second
operation begins; the read flags and read status trans­
action requests will behave in like manner. This delayed
read feature is provided to eliminate ambiguity in the
correspondence between operations and results.

Saving and Restoring State
Due to the presence of ALU pipeline registers. it is not
possible to save the complete state of the Am29027 in
pipeline mode. Pipeline operations may therefore be in­
terrupted only under special circumstances, such as:

•

or

•

If the interrupting routine does not use the
floating-point accelerator

If· the current series of pipelined operations has
been completed. and any operands needed for
future operations have already been transferred to
the Am29000

The save state transaction request is disabled in pipe­
line mode. It is permissible to switch to flow-through
mode and use the save state transaction request, but

1-155

29K Family CMOS Devices

doing so does not permit the saving of Register F, the
flag register, or the ALU pipeline registers.

Error Recovery
As for flow-through mode, the Am29027 provides three
mechanisms with which unmasked exceptions can be
handled.

Reporting Errors Upon Read
If an unmasked status register exception bit is set, the
Am29027 will signal an error by asserting signal DERR
when the Am29000 performs a read result LSBs, read
result MSBs, read flags, or read status transaction re­
quest. Error reporting can be suppressed by issuing any
of these transaction requests with signal DREOTo
asserted.

Halt On Error Mode
Should the application require it, the Am29027 can be
configured to halt operation upon detection of an un­
masked exception; this mode is invoked by setting
mode register bit HE (Halt On Error) High. Once config­
ured this way, the Am29027 will respond to an un­
masked exception as follows:

• Signal CDA will become inactive when the results of
the operation producing the unmasked exception
are transferred from the last pipeline stage to
Register F, the flag register, and the status register.

• Once CDA is deasserted, the Am29027will respond
to the write operand R, write operand S, write
operands R, S, and write instruction transaction
requests by asserting signal DERR one cycle after
the request is issued; the contents of the target
register or registers will remain unchanged.

Through these measures, the Am29027 will retain the
input operands and instructions for the most recently
started operation. The input operands for that operation
will be retained in the R register, S register, or register
file locations, and the instructions will be retained in the
instruction register. Additionally, the R-Temp, S-Temp,
and I-Temp registers may contain the operands and in­
structions for a partially or fully specified pending opera­
tion. Note that the input operands and instructions
words for the operation causing the exception, as well
as for operations currently in the ALU pipeline, will not
be available. At the user's option, this information can
be stored in a circular queue in the Am29000 register
file so that full recovery from a pipe lined exception is
possible.

The Am29000 can read the contents of Am29027 oper­
and and instruction registers by invoking flow-through
mode and using the save state transaction request.
Note that the contents of Register F, the flag register,
and the ALU pipeline registers will be lost. This informa­
tion can then be given to an error-handling routine for
resolution.

1-156

The error halt condition is removed by clearing the
status register exception status (ES) bit and the excep­
tion bit or bits responsible for producing the halt.

Reporting Errors via EXCP
Same as for the flow-through mode.

Pipeline Invalidation
There are several situations for which the ALU pipeline
stages may contain invalid data. The Am29027 recog­
nizes these situations and invalidates results automati­
cally; results marked as invalid will not update the
status register, register file locations RF7-RFo, or the
precision register. Results are invalidated forthe follow­
ing conditions:

• The Am29027 is switched from flow-through mode
to pipeline mode. Any data present in the ALU at the
time of the switch is marked as invalid. This
invalidation is illustrated in Figure 12a.

• The Am29027 performs a multiply-accumulate
operation that is preceded by an operation other
than multiply-accumulate. The mUltiply-accumulate
operation result and the result that precedes it will
be separated by a spurious result, due to the
insertion of an additional pipeline stage for the
multiply-accumulate operation. The spurious result
is marked invalid. This invalidation is illustrated in
Figure 12b.

The pipeline may also be invalidated manually by issu­
ing a write status transaction request with signal
DREOTo asserted High; this request invalidates all cur­
rent pipeline contents. Pipeline invalidation does not ap­
ply to operation in flow-through mode.

Writing to the Mode, Status, and PreCision
Registers
Unlike the R, S, and instruction registers, the mode,
status, and precision registers are not preceded by tem­
porary registers. Accordingly, writing to these registers
may produce undesirable or unpredictable side effects if
an accelerator operation is pending at the time. To avoid
such side effects, a write to any of these registers should
be preceded by a read transaction request, which will
guarantee that any pending accelerator operation will
have started before the write transaction request is
issued.

The mode register outputs are not pipelined in the ALU,
that is, all pipeline stages receive mode information
directly from the mode register. Accordingly, writing to
the mode register may produce undesirable or unpre­
dictable side effects for operations currently in the ALU
pipeline. To avoid such side effects, a write to the mode
register should be performed only if the contents of the
ALU pipeline are a "don't care,"that is, only after the last
operation result of interest has been written to Register
F, the flag register, or a registerfile location. If, for exam-

Am29027

Start Operation ~ ~ ~ ~ ~ ~ ~ ~
Operation 2 3 4 5 6 7

Pipeline Stage 1 I 2 3 4 5 6 7

Pipeline Stage 21 2 ? 3 4 5 6

Result 2 ? ? 3 4 5

j4-Pipeline Outpu~
Invalid

i
Switch to

Pipeline Mode

a. Pipeline Invalidation timing for switch from flow-through to pipeline mode. Operations shown Incur
two pipe-line delays In pipeline mode [all base operations except F' = (P' x a') + T].

Start Operation ~

Operation· I ADD11 MPY11 MAC11 MAC2 1 MAC3 1 (DMAC)I ADD2 1 MPY21 ADD3 1 MPY31 ADD41 MPY 41

Pipeline Stage 11 ADD11 MPY11 MAC11 MAC2 1 MAC3 1 (DMAC)I ADD2 1 MPY21 ADD3 1 MPY31 ADD41 MPY 4 1

Pipeline Stage 21 1 ADD11 MPY11 MAC1 1 MAC2 1 MAC3 1 (DMAC)I ADD21 MPY21 ADD31 MPY31 ADD4 I
Pipeline Stage 31 I ? 1 MAC1 1 MAC2 1 MAC3 1

Result 1 ADD11 MPY1 1 ? 1 MAC1 1 MAC2 1 MAC31 ADD2 1 MPY21 ADD31 MPY3 I
Pipeline Output -+1 I+-

Invalid

b. Pipeline Invalidation timing for mUltiply-accumulate operations In pipeline mode.

Notes: ADDx
MPYx
MACx
(DMAC)

addition operation
multiplication operation
multiply-accumulate operation
dummy multiply-accumulate operation 09114-014C

Figure 18. Pipeline Invalidation Timing

pie, the last in a series of addition operations has
just been started, the mode register should not be writ­
ten until the pipeline is advanced twice, placing that
operation's results in the F register, flag register, and,
optionally, a register file location.

Writing to the Register File
The numerical result of any operation may be written to
the register file by specifying the desired destination in

instruction field RFS and setting instruction bit RF High.
The result may then be used as an input operand in sub­
sequent operations. Because all ALU operations incur
one or more pipeline delays, the result of an operation
will not be available for use by the very next operation.

It is permissible for an operation result to be placed in a
register file location that previously contained an input
operand for that operation.

1-157

29K Family CMOS Devices

Multiplication-Accumulation Operations
The pipeline structure of the Am29027 permits the
evaluation of sum-of-products expressions in a canoni­
cally efficient manner by interleaving the evaluation of
two sum-of-product expressions. Operation sequencing
is described in Figure 13.

Determining Timer Counts
As for flow-through mode, the timing of operations in
pipeline mode is programmable to accommodate
variations in system timing. A single mode register
field-pipeline timer count (PL TC}-specifies the timing
of all pipelined operations; fields MATC and MVTC are
not used.

PL TC specifies the number of cycles allotted for data to
traverse a single pipeline stage. This count can assume
values between 2 and 15, inclusive, and must be given a
value that satisfies the relationship:

where
[9]sPlTC X [1],

[9] = Operation time, pipeline
mode, all operations

and [1]= ClK period,

as described in the Switching Characteristics table.

Advancing DRDY
Because the Am29027 F register and flag register are
non-transparent in pipeline mode, it is not possible (nor
advantageous) to advance OROY. Accordingly, mode
register bit M44 has no effect in pipeline mode.

Master/Slave Operation
Two Am29027 accelerators can be tied together in mas­
ter/slave configuration, with the slave checking the re­
sults produced by the master. All input and output sig­
nals of the slave, with the exception of SLAVE and
MSERR, are connected directly to the corresponding
signals of the master. The master is selected by assert­
ing signal SLAVE Low, the slave by asserting signal
SLAVE High.

The slave accelerator, by comparing its outputs to the
outputs of the master accelerator, performs a compre­
hensive check of master accelerator logic. In addition, if
the slave accelerator is connected at the proper position
on the Am29000 buses, it may detect open circuits and
other fau Its in the electrical path between the master ac­
celerator and the Am29000.

Note that the master accelerator also performs a
comparison between its outputs and its own internally
generated results, and is therefore able to detect faults
in its output drivers, which it reports with its MSERR
signal.

Initialization and Reset
The accelerator is in an unknown state when power is
first applied and must be initialized before processing

1-158

can begin. This is accomplished by asserting the RESET
signal, which initializes accelerator state as follows:

• All bits in the status register are cleared

• The accelerator is placed in flow-through mode

• Signal COA is active; signals OROY and OERR are
inactive

• All internal circuitry controlling operation timing is
initialized

The RESET signal does not initialize the operand and in­
struction registers and may corrupt existing register
contents. It is the responsibility of the user to initialize
these registers, if needed.

Applications

Suggestions for Power and Ground
Pin Connections

The Am29027 operates in an environment of fast signal
rise times and substantial switching currents. Therefore,
care must be exercised during circuit board deSign and
layout, as with any high-performance component. The
following is a suggested layout, but since systems vary
widely in electrical configuration, an empirical evalu­
ation of the intended layout is recommended.

The Veeo and GNOO pins carry output driver switching
currents and can be electrically noisy. The Vee and GNO
pins, which supply the logic core of the device, tend to
produce less noise and the circuits they supply may be
adversely affected by noise spikes on the Vee plane. For
this reason, it is best to provide isolation between the
Vee and Veea pins as well as independent decoupling for
each. Isolating the GNO and GNOO pins is not required.

Printed Circuit-Board Layout Suggestions
1. Use of a multilayer PC board with separate power,

ground, and signal planes is highly recommended.

2. All Vee and Veeapinsshould be connected to the Vee
plane. Veea pins should be isolated from Vee pins by
means of an isolation slot which is cut in the Vee
plane (see Figure 14). By physically separating the
Vee and Veea pins, coupled noise will be reduced.

3. All GNO and GNOO pins should be connected
directly to the ground plane.

4. The Veea pins should be decoupled to ground with a
O.1-IlF ceramic capaCitor and a 10-IlF electrolytic
capacitor, placed as closely to the Am29027 as is
practical. Vee pins should be decoupled to ground in
a similar manner.

A suggested layout is shown in Figure 14.

-"
-"
(II
CD

Operation I MAC 1 MAC MAC MAC MAC MAC MAC MAC MAC MAC MAC MAC MAC MAC MAC MAC I MAC·
Register R 1 a11 1 a21 a12 a22 a13 a23 a14 a24 a31 a41 a32 a42 a33 a43 a34 844

Register S I bl I bl b2 b2 b3 b3 b4 b4 bl bl b2 b2 b3 b3 b4 b4

Pipeline Stage 1 lall xblla21xbl 1 a12xb2 1 a22xb21 a13xb31 a23xb3 I a14xb4 a24xb4 1 a31 xbl 1 a41 xbl 1 a32xb2 1 a42xb2 I" a33xb3 I a43xb3 I a34xb4 1 a44xb41

Pipeline Stage 2 1 lal1xbll a21xbl la12xb2+1a22xb2+ la13xb3+ I a23xb3+ 1 a14xb4+ 1 a24xb4+ 1 a31xbl I a41xbl I a32xb2+1 a42xb2+ 1 a33xb3+ la43xb3+ I a34xb4+1 a44Xb4+1

(Cl) (02) (Cl) (02) (el) (02) (03) (e4) (03) (e4) (03) (04)

Pipeline Stage 31 I all xbl I a21xbl I a12xb2+ I a22xb2+ 1 a13 x b3 + 1 a23xb3+ 1 a14xb4+ 1 a24xb4+ I a31 xbl I a41 xbl I a32xb2+ 1 a42xb2+ 1 a33xb3+ I a43xb3+1 a34xb4+ la44xb4 + 1

(Cl)

RF t (el) (02)

RegisterF (el) (02)

Calculate matrix product C - A x S, where:

A _ a21 a22 a23 a24
[

a11 a12 a13 a14J

a31 a32 a33 a34
a41 842 a43 a44 B-[~J c-[~J

(02) (el) (02) (el) (02)

(Cl) (02) (el) (02) el

(el) (02) (el) (02) el

c1 =a11 xb1 +a12xb2+a13xb3+a14 xb4
c2=a21 xb1 +a22xb2+a23xb3+a24xb4
c3=a31 xb1 +832xb2+833xb3+a34xb4
c4 =841 xb1 +842xb2+a43xb3+s44xb4

Notes: 1. Register file location RFo is used as the accumulator.
2. Parentheses are used to indicate partial sums of products.

• Additional MAC operation needed to terminate sequence.

(03)

02 (03) (04)

c2 (03) (e4)

Figure 13. Canonically Efficient Sum-of-Products Evaluation In Pipeline Mode

(04) (03) (e4) (03) (04)

(03) (04) (03) (04) 03 104

(03) (04) (03) (04) 03 1 04

09114'{)15C

>
3
N
CD
o
N

29K Family CMOS Devices

1·160

ABC 0 E F G H J K L M N P R T U
100000000000000000
200000000000000000
300000000@00000000
40 000
50 @ @OO
60 0 OOOA
70 0 OOO~
sO 0 0000 C

7

90 0 OOO~
100 0 OOO@ CS

110 0 000
120 0 000
130 0 000
140 0 000
150 0 0000 O@O 000
160 0 0000 000 000
170 0 0000 000 000

@t f-O O-t ~3@1 ~Of ~~ f-O 01 ~@~
C, C2 Cs Cs C3 C4 "

Vee Isolation Cut

o = Through Hole

o = Vee Plane Connection

C, = C3 = Cs = C7 = 0.1 J.lF (ceramic or monolithic capacitor)

C2 = C. = Cs = Ce = 10 J.lF (electrolytic or tantalum capacitor)

Figure 20. Suggested Printed Circuit· Board Layout
(power and ground connections)

CDOl17ll

ABSOLUTE MAXIMUM RATINGS
Storage Temperature ~ -65 to +150°C
(Ambient) Temperature Under Bias .. -55 to + 125°C
Supply Voltage to

Ground Potential Continuous .. " -0.3 V to +7.0 V
DC Voltage Applied to Outputs for

High Output State -0.3 V to +Vcc +0.3 V
DC Input Voltage -0.3 V to +Vcc +0.3 V
DC Output Current,lnto Low Outputs 30 rnA
DC Input Current -10 rnA to +10 rnA

Stresses above those listed under ABSOLUTE MAXI­
MUM RA T1NGS may cause permanent device failure.
Functionality at or above these limits is not implied. Ex­
posure to absolute maximum ratings for extended peri­
ods may affect device reliability.

OPERATING RANGES
Commercial (C) Devices

Am29027

Case Temperature (Tc) " 0 to +85°C
Supply Voltage (Vee) +4.75 V to +5.25 V

Milltary* (M) Devices
Case Temperature (Te) -55 to +125°C
Supply Voltage (Vee) +4.5 V to +5.5 V

Operating ranges define those limits between which the
functionality of the device is guaranteed.

"Military Product 100% tested at Tc=+25°C, +125°C, and
-55°C.

1-161

29K Family CMOS Devices

DC CHARACTERISTICS over COMMERCIAL operating range unless otherwise specified
(for APL Products, Group A, Subgroups 1, 2, and 3 are tested unless otherwise noted)

Parameter
Symbol

VOH

VOL

VIH

VIL

VIH(F)

VIL(F)

IlL

to

Icc Static

Iccop

Parameter
Description

Output High Voltage

Output Low Vo~age

Guaranteed Input Logical

High Voltage (Note 2)

Guaranteed Input Logical

Low Voltage (Note 2)

Guaranteed Input Logical
High Voltage (Notes 2, 6)

Guaranteed Input Logical
Low Voltage (Notes 2, 6)

Input Leakage Current

Output Leakage Current

Static Power Supply Current

Operating Power Supply

Current

Test Conditions (Note 1) Min. Max. Unit

Vee = Min.

IOH=-4.0 rnA 2.4 V

Vee = Min.
VIN = VIH or VIL 0.45 V

2.0 V

0.8 V

F Bus, Slave Operation Only Vee -0.5 V

F Bus, Slave Operation Only 0.5 V
.r,,""o'\\\i"

Te =-55 to

+125°C

Vee = Max.
Outputs floating

;~::~,;\,;t;~\~)" (Note 3)

Qfy10S VIN = Vee or 240
',>" GND

(Note 3)

TTL VIN = 0.5 V or
2.4 V

(N6te3)

CMOS VIN = Vee or

GND

(Note 3)

TTL VIN = 0.5 V or

2.4 V

275

9.0

rnA

rnA/MHz

Notes: 1. Vee conditions shown as Min. or Max. refer to ±5% Vee (commercial) and ±10% Vee (military).
2. These input levels provide zero noise immunity and should only be statically tested in a noise-free environment

(not functionally tested).
3. Use CMOS lee when the device is driven by CMOS circuits and TTL Icc when the device is driven by TTL circuits.

4. lee (Total) .. lee (Static) + lecop x f, where f is in MHz. This is tested on a sample basis only.
5. Tested on a sample basis only.
6. These levels guaranteed compatible with F bus output levels.

CAPACITANCE

Parameter Parameter
Symbol Description Test Conditions Min. Max. Unit

CIN Input Capacitance 12 pF

COUT Output Capacitance tc = 1 MHz (Note 5) 20 pF

ClIO 1/0 Pin Capacitance 20 pF

1-162

Am29027

SWITCHING CHARACTERISTICS over COMMERCIAL operating range

25 MHz 20 MHz 16 MHz

No. Parameter Description Test Conditions Min. Max. Min. Max. Min. Max. Unit

1 ClK Period (Note 1) 40 DC 50 DC 60 DC ns

2 ClK Low Time 18 20 22 ns

3 ClK High Time 18 20 22 ns

4 ClK Rise Time (Note 2) 5 5 5 ns

5 ClK Fall Time (Note 2) 5
"", 5 5 ns

Operation Time, low-latency
280~~'::: ;~;~ 6 Mode, F' = (P' x a') + T' 300 360 ns

7 MOVEP ,c:t26~;) 150 180 ns
8 (All Other Base Operation Codes) .,., ""290>'; 250 300 ns

Operation Time, Pipeline Mode
.<,:':,:'< l'i~:;~1'5~>:::: 9 All Operations 150 180 ns

10 Transaction Request Setup Time (Note 3) ,; ';;:~:'~120' '<;;.~ 24 26 ns

11 Transaction Request Hold Time (Note 3) i"<,:>\~ ",'(;,:>it!·>' 0 0 ns

12 BIN V Setup Time i(::,>",';,i:'~:"':"i:,: :"<");.1"1 13 15 ns

13 BIN V Hold Time <~,;!,,::,\"~ii:::::'";':::;,:~,
.;,,,.

2 2 2 ns

14 Data Setup Time ~ ~;::"::t:(~ot;~~1'»';f' 18 22 24 ns

15 Data Hold Time .,(;:;,~;,/",. 2 2 2 ns

16 Instruction Setup TIme "d:~~', ';';:':,"';"~:~,i; ,,""
18 22 24 ns

17 Instruction Hold Time "" .. :t'I'""/:~· i:"~~ote 5) 2 2 2 ns

18 CDA ClK-to-Output-V~li~"Q~lay .. ;:: "",' 20 24 26 ns

19 F31-Fo ClK-to-Output-Val14:'qelay 30 35 37 ns

20 F31-Fo Three-State ""1""

ClK-to-Output-lnactive Delay (Note 6) 22 25 27 ns

Data Operation-Start-to-Output-
Valid Delay

21 F'=(p'xa')+ T' 270 285 340 ns
22 MOVEP 110 135 160 ns
23 (All Other Base Operation Codes) 190 235 280 ns

24 DRDY ClK-to-Output-Valid Delay 18 21 23 ns

25 DERR ClK-to-Output-Valid Delay 18 21 23 ns

26 EXCP ClK-to-Output-Valid Delay 18 21 23 ns

27 MSERR ClK-to-Output-Valid 20 25 30 ns
Delay

Notes: 1. ClK switching characteristics are made relative to 1.5 V.

2. ClK rise time/fall time measured between 0.8 V and (Vee -1.0 V). Tested on a sample basis only.

3. Transaction request signals include RiW, o REa, DREaT,-DREaT
"

and OPTrOPTo.

4. Data signals include R31-RO and S31-S0.

5. Instruction signals include b,-Io.

6. Three-State Output Inactive Test load. Three-State ClK-to-Output-lnactive Delay is measured as the time to a
±500 mV change from prior output level.

Conditions: A. All inputs/outputs are TTL-compatible for V1H, V1L, and VOL unless otherwise noted.

B. All outputs are driving 80 pF unless otherwise noted.

C. All setup, hold, and delay times are measured relative to elK at 1.5 V unless otherwise noted.

1·163

29K Family CMOS Devices

SWITCHING CHARACTERISTICS over MILITARY operating range

20 MHz 16 MHz

No. Parameter Description Test Conditions Min. Max. Min. Max. Unit

1 ClK Period (Note 1) 50 DC 60 DC ns

2 ClK low Time 20 22 ns

3 ClK High Time 20 22 ns

4 ClK Rise Time (Note 2) 5 5 ns

5 CLK Fall Time (Note 2) 'i('\ 5 5 ns

Operation Time, low-latency ./ ··'·~:'1 .. :,~:.,\, '.,

6 Mode, F'=(P'xQ')+ T'
i!· •• ··':"':·:,:.

3Q01 360 ns
7 MOVEP "'\.150 180 ns
8 (All Other Base Operation Codes) .. ,.'i,. Ii,::';; " .:250 300 ns

Operation Time, Pipeline Mode 1<> '-',,:,:"'\.,,1.·\
D All Operations " .. '" 150 180 ns

10 Transaction Request Setup Time (Note 3)/",,"\ 1(:.~::'.\24i· 26 ns

11 Transaction Request Hold Time (Note 3)':',"<: I.'·,", 0 0 ns

12 BINV Setup Time /':' ::,\:.: I""')' 14 16 ns

13 BINV Hold Time """'\".'';:, 2 2 ns

14 Data Setup Time '\ ~,. '":':':"
".":,., 22 24 ns

15 Data Hold Time ,< ,':'ii(Note"a) 2 2 ns

16 Instruction Setup Time .. ii'''.··.·.';.. 22 24 ns

17 Instruction Hold Time , .. : I:, .. ··'··· (Note 5) 2 2 ns

18 COA CLK-to-Output-Valid Delay';\, 24 26 ns

19 F31-FO CLK-to-Output-Valid'pelay 35 40 ns

20 F3,-Fo Three-State CLK-to-
Output-Inactive Delay (Note 6) 26 30 ns

Data Operation-Start-to·Output-
Valid Delay

21 F' = (P'xQ/) + T' 285 340 ns
22 MOVEP 135 160 ns
23 (All Other Base Operation Codes) 235 280 ns

24 DRDY ClK-to-Output-Valid Delay 21 23 ns

25 DERR CLK-to-Output-Valid Delay 21 23 ns

26 EXCP ClK-to-Output-Valid Delay 21 23 ns

27 MSERR ClK-to-Output-Valid Delay 25 30 ns

Notes: 1. ClK switching characteristics are made relative to 1.5 V.

2. ClK rise time/fall time measured between 0.8 V and (Vcc -1.0 V). Tested on a sample basis only.

3. Transaction request signals include RlW, DREQ, DREQT,-DREQTo, and OPT rOPTo•

4. Data signals include R3,-Ro and S3'-SO.

5. Instruction signals include b,-Io.

6. Three-State Output Inactive Test load. Three-State ClK-to-Output-lnactive Delay is measured as the time to a
±500 mV change from prior output level.

Conditions: A. All inputs/outputs are TIL-compatible for V1H • V1L• and VOL unless otherwise noted.

B. All outputs are driving 80 pF unless otherwise noted.

C. All setup, hold, and delay times are measured relative to ClK at 1.5 V unless otherwise noted.

1-164

SWITCHING WAVEFORMS

ClK

Transaction
Request

Data,
Instruction

EXCP

Am29027

3 --...... 1---

Input Signal Timing; COA, EXCP Timing

1-165

29K Family CMOS Devices

SWITCHING WAVEFORMS (continued)

Start of
Operation

ClK

Transaction
Request

~I----- 6,7,8-----...

X_.;...;.;No;.;..;te;,..;1_X

Operation Timing for Flow-Through Mode, DRDY, DERR Not Advanced
(Mode Register Bit AD=O)

Notes: 1. Transaction request Write Operand R; Write Operand S; Write Operands R, S; or Write Instruction with Signal
DREQTo asserted.

1-166

2. Transaction Request Read Result MSBs, Read Result lSBs, Read Flags, Read Status, or Save State. If re­
guest Read Result lSBs is issued, the Am29027 produces two data outputs in two consecutive cycles, with
DRDY or DERR active for both cycles.

3. Signal EXCP is asserted in the presence of unmasked exception.

Am29027

SWITCHING WAVEFORMS (continued)

elK

Transaction
Request

Start of Operation

~

26

~v I (I\N'''o'te 3)
1.SV'---=

Operation Timing for Flow-Through Mode, DRDY, DERR Advanced
(Mode Register Bit AD=1)

Notes: 1. Transaction request Write Operand R; Write Operand S; Write Operands R, S; or Write Instruction with Signal
DREQTo asserted.

2. Transaction Request Read Result MSBs, Read Result lSBs, Read Flags, Read Status, or Save State. If re­
quest Read Result lSBs is issued, the Am29027 produces two data outputs in consecutive cycles, with DRDY
or DERR active for both cycles.

3. Signal EXCP is asserted in the presence of an unmasked exception.

1-167

29K Family CMOS Devices

SWITCHING WAVEFORMS (continued)

Transaction X Not. t X
Request

--+ 24, +-
25

-------------------------;:~----------+-~
1.5 V

--+ 24, +-
25

26

4 ~.5V (Not. 3)

Operation Timing for Pipeline Mode

Notes: 1. Transaction request Write Operand R; Write Operand S; Write Operands R, S; or Write Instruction with signal
DREQTo asserted.

ClK

2. Transaction Request Read Result MSBs, Read Result lSBs, Read Flags, Read Status, or Save State. If re­
quest Read Result lSBs is issued, the Am29027 produces two data outputs in consecutive cycles, with DRDY
or DERR for both cycles.

3. Signal EXCP is asserted in the presence of an unmasked exception.

\. ...
Master/Slave Discrepancy

During This Cycle

MSERR _____________________ 2_7--+-J)-1.-5-V----~-27-~
Master/Slave Timing

1-168

SWITCHING TEST CIRCUIT

VOUT

I

CL is guaranteed to 80 pF.

Am29027

Vee

R, = 300 ohms

Three-State Output Inactive Test

IOL = 4.0 mA

IOH = 4.0 mA

Am29027
Pin Under Test

09075B-001A

1-169

29K Family CMOS Devices

TEST PHILOSOPHY AND METHODS
The following nine points describe AMD's philosophy for
high-volume, high-speed automatic testing.

1. Ensure that the part is adequately decoupled at the
test head. Large changes in Vee current as the de­
vice switches may cause erroneous function fail­
ures due to Vee changes.

2. Do not leave inputs floating during any tests, as they
may start to oscillate at high frequency.

3. Do not attempt to perform threshold tests at high
speed. Following an output transition, ground cur­
rent may change by as much as 400 mA in 5-8 ns.
Inductance in the ground cable may allow the
ground pin at the device to rise by hundreds of mil­
livolts momentarily.

4. Use extreme care in defining point input levels for
AC tests. Many inputs may be changed at once, so
there will be significant noise at the device pins and
they may not actually reach VIL or VIH until the noise
has settled. AMD recommends using VIL'5, 0 Vand
VIH ~ 3.0 V for AC tests.

5. To simplify failure analysis, programs should be de­
signed to perform DC, Function, and AC tests as
three distinct groups of tests.

6. Capacitive Loading!or AC Testing.

Automatic testers and their associated hardware
have stray capacitance that varies from one type of
tester to another, but is generally around 50 pF.
This, of course, makes it impossible to make direct
measurements of parameters that call for smaller
capacitive load than the associated stray capaci­
tance. Typical examples of this are the so-called
float delays, which measure the propagation delays
into the high-impedance state and are usually
specified at a load capacitance of 5.0 pF. In these
cases, the test is performed at the higher load ca­
pacitance (typically 50 pF), and engineering corre­
lations based on data taken with a bench setup are
used to predict the result at the lower capacitance.

Similarly, a product may be specified at more than
one capacitive load. Since the typical automatic

1·170

tester is not capable of switching loads in mid-test, it
is impossible to make measurements at both ca­
pacitances even though they may both be greater
than the stray capacitance. In these cases, a mea­
surement is made at one of the two capacitances.
The result at the other capacitance is predicted from
engineering correlations based on data taken with a
bench setup and the knowledge that certain DC
measurements (loH, IOL, for example) have already
been taken and are within spec. In some cases,
special DC tests are performed in order to facilitate
this correlation.

7. Threshold Testing

The noise associated with automatic testing (due to
the long, inductive cables) and the high gain of the
tested device when in the vicinity of the actual de­
vice threshold, frequently give rise to oscillations
when testing high-speed circuits. These oscillations
are not indicative of a reject device, but instead of an
overtaxed test system. To minimize this problem,
thresholds are tested at least once for each input
pin. Thereafter, hard high and low levels are used
for other tests. Generally this means that function
and AC testing are performed at hard input levels
rather than at VIL Max. and VIH Min.

8. AC Testing

Occasionally, parameters are specified that cannot
be measured directly on automatic testers because
of tester limitations. Data input hold times often fall
into this category. In these cases, the parameter
in question is guaranteed by correlating these tests
with other AC tests that have been performed.
These correlations are arrived at by the cognizant
engineer by using precise bench measurements in
conjunction with the knowledge that certain DC
parameters have already been measured and are
within spec.

In some cases, certain AC tests are redundant,
since they can be shown to be predicted by some
other tests that have already been performed. In
these cases, the redundanttests are not performed.

Am29027 Thermal Characteristics

Pin-Grid-Array Package

9JA = 9x + 9CA

Thermal Resistance - °C/WaU

Parameter

ex Junction-to-Case

9CA Case·to-Ambient (no Heat~Jn~}~1,>

9CA Case-to-Ambient (wiflt'oqtp
\:>~ , .. /I-:/f;

Heatsink, ThermalloY,J~4t7 ,

eCA Case-to-Ambient (wit~~~nidir~ctional Pin Fin

Heatsink, Wakefield 840-20

Am29027 Thermal Characteristics

Ceramic Quad-Flat-Pack Package

6

10 6

Alrflow-ft./mln., (fTl/sec)
'<i/"~%.. 7 "of,

3

3

'\<'~SO
(2,;~5)

11

2

2

Thermal Resistance - °C/Watt

Alrflow-ft./mln. (rn/sec)

0 150 300 480
Parameter (0) (0.76) (1.53) (2.45)

ex Junction-to-Case

eCA Case-to-Ambient (no Heatsink)

Note: This is for reference only.

700
(3.58)

4

9

2

2

700
(3.58)

Am29027

900
(4.61)

4

8

2

2

900
(4.61)

1-171

29K Family CMOS Devices

APPENDIX A-DATA FORMATS

The following data formats are supported: 32-bit integer, 64-bit integer, IEEE single-precision, IEEE double-precision,
DEC F, DEC 0, DEC G, IBM single-precision, and IBM double-precision.

The primary and alternate floating-point formats are selected by mode register fields PFF and AFF. The user may
select between floating-point operations and integer operations by means of instruction bit INs.

The nine supported formats are described below:

Integer Formats

32-Bit Integer

The 32-bit integer word is arranged as follows:

Bit 31 30 29 28 27 26 25

31 30 29 28 27 26 25
-2 2 2 2 2 2 2

7 6 5 4 3 2 o

76543210
22222222

TB001030

The 32-bit word is interpreted as a two's-complement integer. For integer multiplications, the user has the option of
interpreting integers as unsigned. An unsigned single-precision integer has a format similar to that of the two's-com­
plement integer, but with an MSB weight of 231.

64-Bit Integer

The 64-bit integer word is arranged as follows:

B~ 63 62 61 60 59 58 57

63 62 61 60 59 58 57
-2 2 2 2 2 2 2

7 6 5 4 3 2 o

76543210
22222222

TB001040

The 64-bit word is interpreted as a two's-complement integer. For integer multiplications, the user has the option of
interpreting integers as unsigned. An unsigned double-precision integer has a format similar to that of the two's-com­
plement integer, but with an MSB weight of 263.

IEEE Formats

IEEE Single Precision

The IEEE single-precision word is 32 bits wide and is arranged in the format shown below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18· . . 3 2 1 0

7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -20 -21 -22 -23
222222222 2222' .. 2222

sign biased exponent (e) fraction (f)
TB001050

The floating-point word is divided into three fields: a single-bit sign, an 8-bit biased exponent, and a 23-bit fraction.

The sign bit is 0 for positive numbers and 1 for negative numbers. 0 may have either sign.

The biased exponent is an 8-bit unsigned integer representing a multiplicative factor of some power of 2. The bias
value is 127. If, for example, the multiplicative value for a floating-point number is to be 2a, the value of the biased
exponent is a + 127, where "a" is the true exponent.

1-172

Am29027

The fraction is a 23-bit unsigned fractional field containing the 23 least significant bits of the floating-point number's
24-bit mantissa. The weight of the fraction's most significant bit is 2-1

• The weight of the least significant bit is 2-23•

An IEEE floating-point number is evaluated or interpreted as follows:

If e=255 and f;tO value=NaN
If e = 255 and f = 0 value = (-1)500

If 0<e<255 value=(-1)52O- 127 (1.f)
If e=O and f;tO value=(-1)52""126 (0.1)
If e=O and f=O value=(-1)50

Not a Number
Infinity
Normalized number
Denormalized number
Zero

Infinity: Infinity can have either a positive or negative sign. The interpretation of infinities is determined by mode
register bit AP.

NaN: A NaN is interpreted as a signal or symbol. NaNs are used to indicate invalid operations and as a means of
passing process status through a series of calculations. They arise in two ways: either generated by the Am29027 to
indicate an invalid operation, or provided by the user as an input. A signaling NaN has the MSB of its fraction set to 0
and at least one of the remaining fraction bits set to 1. A quiet NaN has the MSB of its fraction set to 1.

The IEEE format is fully described in ANSI/IEEE Standard 754-1985.

IEEE Double Precision

The IEEE double-precision word is 64 bits wide and is arranged in the format shown below:

63 62 61 60 54 53 52 51 50 49 48 47 3 2 1 0

10 9 8
2 2 2

2 1 0 -1 -2 -3 -4 -5
22222222

-49 -so -51 -52
2 2 2 2

sign biased exponent (e) fraction (f) T8001060

The floating-point word is divided into three fields: a single-bit sign, an 11-bit biased exponent, and a 52-bit fraction.

The sign bit is 0 for positive numbers and 1 for negative numbers; 0 may have either sign.

The biased exponent is an 11-bit unsigned integer representing a multiplicative factor of some power of 2. The bias
value is 1023. If, for example, the multiplicative value for a floating-point number is to be 2a, the value of the biased
exponent is a + 1023, where "au is the true exponent.

The fraction is a 52-bit unsigned fractional field containing the 52 least significant bits of the floating-point number's
53-bit mantissa. The weight of the fraction's most significant bit is 2-1

. The weight of the least significant bit is 2-52•

An IEEE floating-point number is evaluated or interpreted as follows:

If e = 2047 and f * 0 value = Reserved operand
If e = 2047 and f = 0 value = (-1)500

If 0 <e <2047•... value = (-1)52<>-1023 (1.1)

If e = 0 and f * 0• value = (-1)52""1022 (0.1)
Ife=Oandf=O value=(-1)50

Not a Number
Infinity
Normalized number
Denormalized number
Zero

Infinity: Infinity can have either a positive or negative sign. The interpretation of infinities is determined by mode regis­
ter bit AP.

NaN: A NaN is interpreted as a signal or symbol. NaNs are used to indicate invalid operations and as a means of
passing process status through a series of calculations. They arise in two ways: either generated by the Am29027 to
indicate an invalid operation, or provided by the user as an input. A signaling NaN has the MSB of its fraction set to 0
and at least one of the remaining fraction bits set to 1. A quiet NaN has the MSB of its fraction set to 1.

The IEEE format is fully described in ANSI/IEEE Standard 754-1985.

1·173

29K Family CMOS Devices

DEC Formats

DECF
The DEC F word is 32 bits wide and is arranged in the format shown below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 .

6 5 4 3 2 1 0 -2 -3 -4 -5 -6
222222222222·

3 2 1 0

-21 -22 -23 -24
2 2 2 2

biased exponent (e) fraction (f)
TBO01070

The floating-point word is divided into three fields: a single-bit sign, an 8-bit biased exponent, and a 23-bit fraction.
The sign bit is 0 for positive numbers and 1 for negative numbers; 0 has a positive sign.
The biased exponent is an 8-bit unsigned integer representing a multiplicative factor of some power of 2. The bias
value is 128. If, for example, the multiplicative value for a floating-point number is to be 2", the value of the biased
exponent is a + 128, where "a" is the true exponent.
The fraction is a 23-bit unsigned fractional field containing the 23 least significant bits of the floating-point number's
24-bit mantissa. The weight of the fraction's most significant bit is 2-2

• The weight of the least significant bit is 2-24
•

A DEC F floating-point number is evaluated or interpreted as follows:

If e¢O ..•.•.......... value¢(-1)S2O-128 (0.11)
H s .. 0 and e .. 0 value .. 0
If s .. 1 and e .. 0 ..•.... value = DEC· Reserved Operand

DEC-Reserved Operand: A DEC-Reserved Operand is interpreted as a signal or symbol. DEC-Reserved Operands
are used to indicate invalid operations and operations whose results have overflowed the destination format. They
may also be used to pass symbolic information from one calculation to another.
The DEC formats are fully described in the VAXTM Architecture Manual.

DECO
The DEC D word is 64 bits wide and is arranged in the format shown below:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 . . . 3 2 1 0

6543210 -2-3-4-5-6 -53 -54 -55-56
222222222222 2 2 2 2

biased exponent (e) fraction (f) TBO01080

The floating-point word is divided into three fields: a single-bit sign, an 8-bit biased exponent, and a 55-bit fraction.
The sign bit is 0 for positive numbers and 1 for negative numbers; 0 has a positive sign.

The biased exponent is an 8-bit unsigned integer representing a multiplicative factor of some power of 2. The bias
value is 128. If, for example, the multiplicative value for a floating-point number is to be 2", the value of the biased
exponent is a + 128, where "a" is the true exponent.

The fraction is a 55-bit unsigned fractional field containing the 55 least significant bits of the floating-point number's
56-bit mantissa. The weight of the fraction's most significant bit is 2-2

• The weight of the least significant bit is 2-56•

A DEC D floating-point number is evaluated or interpreted as follows:
If e ¢ 0 •. value = (-1)$20-128 (0.11)
H s = 0 and e = 0 value = 0
If s'"' 1 and e = 0 value = DEC-Reserved Operand

DEC-Reserved Operand: A DEC-Reserved Operand is interpreted as a signal or symbol. DEC-Reserved Operands·
are used to indicate invalid operations and operations whose results have overflowed the destination format. They
may also be used to pass symbolic information from one calculation to another.
The DEC formats are fully described in the VAX Architecture Manual.

1-174

Am29027

DECG
The DEC G word is 64 bits wide and is arranged in the format shown below:

63 62 61 60 54 53 52 51 50 49 48 47 3 2 1 0

sign biased exponent (9) fraction (f) T8001090

The floating-point word is divided into three fields: a single-bit sign, an 11-bit biased exponent, and a 52-bit fraction.
The sign bit is 0 for positive numbers and 1 for negative numbers; 0 has a positive sign.
The biased exponent is an 11-bit unsigned integer representing a multiplicative factor of some power of 2. The bias
value is 1024. If, for example, the multiplicative value for a floating-point number is to be 2&, the value of the biased
exponent is a + 1024, where "a" is the true exponent.

The fraction is a 52-bit unsigned fractional field containing the 52 least significant bits of the floating-point number's
53-bit mantissa. The weight of the fraction's most significant bit is 2-2

• The weight of the least significant bit is 2-53.

A DEC G floating-point number is evaluated or interpreted as follows:

If e'l: 0 • value = (-1)S20-1024 (O.H)
If s=O and 9=0 value=O
If s = 1 and 9 = 0 value = DEC-Reserved Operand

DEC-Reserved Operand: A DEC-Reserved Operand is interpreted as a Signal or symbol. DEC-Reserved Operands
are used to indicate invalid operations and operations whose results have overflowed the destination format. They
may also be used to pass symbolic information from one calculation to another.

The DEC formats are fully described in the VAX Architecture Manual.

IBM Formats

IBM Single Precision
The IBM single-precision word is 32 bits wide and is arranged in the format shown below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 3 2 1 a

sign biased exponent (e) fraction (f) T8001080

The floating-point word is divided into three fields: a single-bit sign, a 7-bit biased exponent, and a 24-bit fraction.

The sign bit is 0 for positive numbers and 1 for negative numbers; a true 0 has a positive sign.

The biased exponent is a 7-bit unsigned integer representing a multiplicative factor of some power of 16. The bias
value is 64. If, for example. the multiplicative value for a floating-point number is to be 16&. the value of the biased
exponent is a + 64. where "a" is the true exponent.
The fraction is a 24-bit unsigned fractional field containing the 24 least significant bits of the floating-point number's
25-bit mantissa. The weight of the fraction's most significant bit is 2-1

• The weight of the least significant bit is 2-24
•

An IBM floating-point number is evaluated or interpreted as follows:

Value = (-1)S 16H;4(0.f)

Zero: There are two classes of zero. If the sign, biased exponent, and fraction are all zero, the operand is known as a
"True Zero." If the fraction is zero, but the sign and biased exponent are not both zero, the operand is known as a
"Floating-point Zero."
The IBM format is fully described in the IBM System/370 PrinCiples of Operation Manual.

1-175

29K Family CMOS Devices

IBM Double Precision

The IBM double-precision word is 64 bits wide and is arranged in the format shown below:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 3 2 1 0

5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -53 -54 -55-56
222222222222 2 2 2 2

sign biased exponent (e) fraction (f) TBOO110

The floating-point word is divided into three fields: a single-bit sign, a 7-bit biased exponent, and a 56-bit fraction.

The sign bit is 0 for positive numbers and 1 for negative numbers; a true 0 has a positive sign.

The biased exponent is a 7-bit unsigned integer representing a multiplicative factor of some power of 16. The bias
value is 64. If, for example, the multiplicative value for a floating-point number is to be 16a, the value of the biased
exponent is a + 64, where "a" is the true exponent.

The fraction is a 56-bit unsigned fractional field containing the 56 least significant bits of the floating-point number's
57-bit mantissa. The weight of the fraction's most significant bit is 2-1

• The weight of the least significant bit is ~56. An
IBM floating-point number is evaluated or interpreted as follows:

Value = (_1)5 16tH;4(0.f)

Zero: There are two classes of zero. If the sign, biased exponent, and fraction are all zero, the operand is known as a
"True Zero." If the fraction is zero, but the sign and biased exponent are not both zero, the operand is known as a
"Floating-point Zero."

The IBM format is fully described in the IBM System/370 PrinCiples of Operation Manual.

1-176

Am29027

APPENDIX B-ROUNDING MODES

The round mode is selected by mode register field RMS as follows:

RMS Round Mode

000 Round to Nearest (IEEE)
001 Round to Minus Infinity (IEEE)
010 Round to Plus Infinity (IEEE)
011 Round to Zero (IEEE)
100 Round to Nearest (DEC)
101 Round Away from Zero
11 X Illegal Value

Round to Nearest (IEEE)
The infinitely precise result of an operation is rounded to the closest representable value in the destination format. If
the infinitely precise result is exactly halfway between two representations, it is rounded to the representation having
a least significant bit of O.

Round to Minus Infinity (IEEE)
The infinitely precise result of an operation is rounded to the closest representable value in the destination format that
is less than or equal to the infinitely precise result.

Round to Plus Infinity (IEEE)
The infinitely precise result of an operation is rounded to the closest representable value in the destination format that
is greater than or equal to the infinitely precise result.

Round to Zero (IEEE)
The infinitely precise result of an operation is rounded to the closest representable value in the destination format
whose magnitude is less than or equal to the infinitely precise result.

Round to Nearest (DEC)
The infinitely preCise result of an operation is rounded to the closest representable value in the destination format. If
the infinitely precise result is exactly halfway between two representations, it is rounded to the representation having
the greater magnitude.

Round Away from Zero
The infinitely preCise result of an operation is rounded to the closest representable value in the destination format
whose magnitude is greater than or equal to the infinitely precise result.

A graphical representation of these round modes is shown in Figures B1 and B2.

The IEEE standard specifies that all four "IEEE" modes be available so that the user may select the mode most
appropriate for the algorithm being executed. The DEC standard specifies that two rounding modes be available­
Round-to-Nearest (DEC) and Round-to-Zero. The IBM standard specifies that all operations be performed using the
Round-to-Zero mode.

It should be noted, however, that the Am29027 permits anyof the supported rounding modes to be selected, regard­
less of the format of the operation. It is permissible to use one of the IEEE rounding modes with an IBM operation, or
DEC rounding with an IEEE operation, or any other possible combination. For those integer operations where round­
ing is performed, any rounding mode may be chosen. This flexibility allows the userto select the mode most appropri­
ate for the arithmetic environment in which the processor is operating.

1-177

~

~ ...,
Q:) -(P+lq) -P -(P-lq) 0 P-lq P P+lq

Infinitely Precise Result

~ III \\111 \\1 ~ 1 ~ III \\lll \\1 ~
Rounded Result J,I It, t,1 It,

-(P+lq) -P -(P-lq) 0 P-lq P P+lq

Round to Nearest (Unbiased)

-(P+lq) -P -(P-lq) 0 P-lq P P+lq

Infinitely Precise Result

~ lOP 1/& 1 ~ 1 ~ 1/& lOP 1 ~
Rounded Result t, I I t, t, I I t,

Infinitely Precise Result

Rounded Result

-(P+lq) -P -(P-lq) 0 P-lq P P+lq

Round to Minus Infinity

-(P+lq) -P -(P-lq) 0 P-lq P P+lq

~1 ~\\1 ~1~ 1 ~1 ~1 ~1 ~
t,1 It, t,1 It,
-(P+lq) -P -(P-lq) 0 P-lq P P+lq

Round to Plus Infinity

Figure 81. Graphical Interpretation of Round-to-Nearest (Unbiased), Round-to-Minus-Inflnity,
and Round-to-Plus-Infinlty Rounding Modes

r-.)
(0

" "T1
Q)

~
-<
o
3: o en
c
(!)

<
0-
(!)
tn

-'
.....
~
co

-(P+1q) -P -(P-1q) 0 P-1q P P+1q

Infinitely Precise Result

~l ~\l ~\\l~ 1 ~llP liP 1 ~
Rounded Result J,I IJ, J,I J,

-(P+1q) -P -(P-1q) 0 P-1q P P+1q

Round to Zero

-(P+1q) . -P . -(P-1q) 0 P-1q P P+1q

Infinitely Precise Result

~ 111 \\111 \\1 ~ 1 ~ III \\111 \\1 ~
Rounded Result J, I I J, J, I I L-,

Infinitely Precise Result

Rounded Result

-(P+1q) -P -(P-1q) 0 P-1q P P+1q

Round to Nearest (DEC)

-(P+1q) -P -(P-1q) 0 P-1q P P+1q

~ liP liP 1 ~ 1 ~ 1 ~\\1 ~\\1 ~
J,I IJ, J,I I L-,

-(P+1q) -P -(P-1q) 0 P-1q P P+1q

Round Away from Zero

Figure B2. Graphical Interpretation of Round-to-Zero, Round-to-Nearest (DEC),
and Round-Away-from-Zero Rounding Modes

l>
3
r-l
I.D
o
r-l
~

29K Family CMOS Devices

APPENDIX C-ADDITIONAL OPERATION DETAILS

There are several cases in which the implementation of the IEEE, DEC, and IBM floating-point standards in the
Am29C327 differs from the formal definitions of those standards. This appendix describes these differences.

Differences Between Floating-Point Arithmetic and Am29027 IEEE Operation
Section 7.3 of the IEEE-754 standard specifies that ''Trapped overflow on conversion from a binary floating-point for­
mat shall deliver to the trap handler a result in that or a wider format, possibly with the exponent bias adjusted, but
rounded to the destination's precision."

According to the IEEE standard, then, if a double-to-single IEEE operation overflows while traps are enabled, the
result is a double-precision operand, rounded to single-precision width (23-bit fraction), together with a correctly ad­
justed (double-precision) exponent and the appropriate flags for a trapped overflow.

In the case of an overflow in any IEEE operation, the Am29027 returns a result in the destination format specified by
the user, rounded to that destination format.

In the case of the double-to-single overflow described above, the result from the Am29027 is a single-precisionoper­
and, together with a correctly adjusted (single-precision) exponent and the appropriate flags for a trapped overflow.

A simple example serves to illustrate the discrepancy by describing the conversion of the double-precision IEEE num­
ber 52B123456789ABCD to single-precision, with traps enabled, and the round-to-nearest rounding mode selected.
This number is too large to be represented in single-precision format.

According to the IEEE standard, the result of this operation is the double-precision number 52B1234560000000, com­
prising the double-precision exponent of the input and a fraction truncated to 23 bits, together with flags V and X.

When the operation is performed in the Am29027, however, using the F' = P' operation with appropriate precision
controls, the result is the single-precision number 75891 A2B, comprising the single-precision (overflowed) exponent
reduced by 192 (decimal) and a single-precision fraction, together with flags V and X.

It should be noted that trapped operation is an optional part of the IEEE standard. Full adherence to the IEEE specifi­
cation of trapped operation is therefore not necessary to ensure compliance with IEEE-754.

Differences Between DEC Floating-Point Arithmetic and Am29027 DEC Operation
The DEC F, DEC D, and DEC G standards, as implemented in the Am29027, differ from the implementations in a VAX
only in the way in which the subfields of the floating-point word are arranged. The differences are listed in Table C1.

Table C1. Differences In Am29027 and DEC Floating-Point Formats

Am29027 Arrangement VAX Arrangement

sign: bit 31 sign: bit 15

OECF exponent: bits 30-23 exponent: bits 14-7

fraction: bits 22-0 fraction: bits 6-0,
bits 31-16

sign: bit 63
sign: bit 15

exponent: bits 14-7
exponent: . bits 62-55 fraction: bits 6-0, DECO

fraction: bits 54-0 bits 31-16,
bits 47-32,
bits 63-48

sign: bit 63
sign: bit 15

exponent: bits 14-4
OECG exponent: bits 62-52 fraction: bits 3-0,

fraction: bits 51-0 bits 31-16,
bits 47-32,
bits 63-48

1-180

Am29027

Differences Between IBM 370 Floating-Point Arithmetic and Am29027 IBM Operation
The Am29027's deviations from the IBM standard may be summarized as follows, assuming that the user has se­
lected the round-to-nearest rounding mode:

1. The Am29027 provides more guard bits in its internal format than specified by the IBM standard. With certain
combinations of input operands, the Am29027 produces more accurate results than a standard IBM processorfor
instructions based on addition operations and comparisons.

2. The discrepancies are much larger for single-precision operations than double-precision operations, because the
difference in the number of guard bits is much greater (33 more for single, one more for double).

3. There is no universal rule for determining whether a given set of input operands will result in a discrepancy. Pro
vided the conditions in (1) above are met, the user must examine each operation on a case-by-case basis, taking
into account the input operands and the internal formats discussed in this section.

4. The Am29027 does not produce unnormalized results from additions. The results of all addition operations are
renormalized. Am29027 internal formats are compared with IBM internal formats in Figure C1.

Overflow
Bit
I

37 Guard Bits S~CitkY
I A , I

[Y] 1 ____ 2_4_F_r_ac_t_io_n_B_its ___ -.J IGIGIGIGIGIGIGIGIGI---IGIGIGIGIGIGIGIGIGIUil

Overflow
Bit
I

a. Am29027 Internal Format-lBM Single-Precision

~.I ___________________ 5_6_F_ra_ct_io_n_B_it_s ____________________ ~

Overflow
Bit
I

~.I

Overflow
Bit
I

b. Am29027 Internal Format-IBM Double-Precision
4

Guard
Bits

I

24 Fraction Bits I GI GI GI GI

c. IBM Internal Format-Single-Precision

~.I~ _______________________ 5_6_F~ra~ct~io~n~B~it~s ______________________ ~

d. IBM Internal Format-Double-Precision

5
Guard Sticky

Bits Bit
I I

I GI GI GI GI GI[§]

4
Guard

Bits
I

09114-016C

Figure C1. Differences In Internal Mantissa Formats of an IBM CPU and the Am29027

1-181

29K Family CMOS Devices

APPENDIX D-TRANSACTION REQUEST/OPERATION TIMING

ClK

Transaction
Request

ClK

Transaction
Request

----« ~>----
~ ____ ~'~ __________ -J,

~< ~>------
I

------------------4~~c------------~---------------------I
I

1
Data Accepted
on this Edge

a. Normal Operation, Data Accepted

--~<~--~)>-------
-----« »------
-----«)>----

\'--------'/
b. Halt On Error Mode, Unmasked Exception Present

091148-017C

Note: Signals A31-Ao and 0 31-00 are the Am29000 address and data buses, respectively.

1·182

Figure 01. Timing for the Write Operand R, Write Operand 8, Write Operands R,
8, and Write Instruction Transaction Requests

Am29027

ClK

Transaction

< ~ Request
I

A3'-Ao <)
I

03,-00 < ~
COA

OROY

OERR

1
Data Accepted
on this Edge

a.CDA Low

ClK

Transaction <)
Request

I

A3'-Ao < ~
03,-00 < ~

I

COA \ ~
OROY

OERR

t
Data Accepted
on this Edge

b. CDA High Initially

Note: Signals A3'-Ao and 0 3,-00 are the Am29000 address and data buses, respectively.

09114-018C

Figure 02. Timing for the Write Mode, Write Status, and Write Register File Precisions
Transaction Requests

1-183

29K Family CMOS Devices

ClK

Transaction
Request

ClK

Transaction
Request

----~<~--~)~---------------
I

-~(~>------
I

~(p>-------

Registers Advanced
on this Edge

8.CDA Low

-----«)>-----
~--------------------~I

-----« ~>-----
I

-~()>-----
I

\'-----f-~ ~ ~

b. CDA High Initially

t
Registers Advanced

on this Edge

09114-019C

Note: Signals A31-Ao and D31-Do are the Am29000 address and data buses, respectively.

Figure 03. Timing for the Advance Temp. Registers Transaction Request

1·184

ClK

Transaction
Request

ClK

Transaction
Request

Am29027

\:-_____ ~X RD MSBs)>-----------------

------'\'I..~ lSBs X MSBs)>-----------------

''\ /
-----~~~c--

a. Read Result MSBs Request Issued in Cycle after
Read Result LSBs Request

~ ____________ ...J) < Read Result MSBs)>-'-----

--~' .. ~ lSBs X MSBs) < MSBs)>-----

~'\ / \ j'
-----~,~c--

b. Read Result MSBs Request Issued Two or More Cycles after
Read Result LSBs Request

09114-020C

Figure 04. Timing for the Read Result LSBs Transaction Request, No Unmasked Exceptions

1-185

29K Family CMOS Devices

1-186

elK

Transaction
Request ~----~)~-------------------
~~~ X · )>-----

'\ / 
"\ / 

09114-021C 

Figure 05. Timing for Read Result LSBs Transaction Request, 
Unmasked Exception Present 



ClK 

Transaction 
Request 

ClK 

Transaction 
Request 

It- 1 or More -I 
Cycles 

IL 
-C~'c---: ----1)>------

~,~ )~--------­

'\ / 
--------~,~,------------------------------------------------

a. No Unmasked Exceptions Present 

It- 1 or More -I 
Cycles 

IL -c: )>------

~~~ )~---------

'\ /
'\ /

b. Unmasked Exceptions Present

09114-022C

Am29027

Figure 06. Timing for Read Result MSBs~ Read Flags, and Read Status Transaction Requests

1-187

29K Family CMOS Devices

ClK

Transaction
Request

ClK

Transaction
Request

I- 1 or More -I
Cycles

IL
-C~ave State X Save State)>-----------------

----'\' .. ~ lSBs X MSBs)>------------------

~\ /

a. Second Save State Request Issued In Cycle
Following First Request

r--------J) < Save State)>------
---~' .. ~ lSBs X MSBs) < MS8s)>------

~\ / \ /
----~~~(----------------------------------

b. Second Save State Request Issued Two or More Cycles
after First Request

09114-023C

Figure D7. Timing forthe Save State Transaction Request, 64-Bit Resources (Registers R, R-Temp, S,
S-Temp; Register File Locations RF7-RFo: Mode Register)

1-188

• ClK

Transaction
Request

I- 1 or More -I
Cycles

~
-C:~: ----»).------
~,~)~-------­

'\ /

Am29027

09114-024C

Figure 08. Timing for the Save State Transaction Request, 32-8it Resources (Instruction Register,
Register I-Temp, Status Register, Precision Register)

~
Operation in Progress

II 6 Cycles

ClK

Transaction --<3G)----(RM)
Request

A31-Ao/ --GX3 S 0 31-00

OREQTo ~
COA

OROY V
DEAR

Notes: WRS = Write Operands R, S WI = Write Instruction
RM = Read MSBs A. B = Operands A, B
INST = Addition Instruction RES = Result

Signals A31-Ao and 0 31-00 are the Am29000 address and data buses, respectively.

09114-025C

Figure 09. Typical Timing for Single-Precision Operation in Flow-Through Mode-Perform the Operation
A PLUS 8, Readthe Result; Mode Register Field PLTC=6

1-189

29K Family CMOS Devices

ClK

b Operation in Progress J
r ... ---- 6 Cycles ---.....

Transaction
Request

~ ___________ R_l ____________ ~

DREOTo __ ~f\~ ___________________ _

Notes: WR = Write Operand R
WI = Write Instruction
RM "" Read MSBs
B = Operand B
lSB = Result LSBs

WS = Write Operand S
Rl = Read lSBs
A = Operand A
INST = Addition Instruction
MSB = Result MSBs

Signals A31-Ao and 0 31-00 are the Am29000 address and data buses, respectively.

09114-026C

Figure 010. Typical Timing for the Double-Precision Operation In Flow-Through Mode-Perform the
Operation A PLUS B, Read the Result; Mode Register Field PlTC=6

ClK

Transaction -<3G)---(RM)
Request

A31-AoI ~ ~ 0 31-00

OREOTo ~
COA

OROY V
OERR V

Notes: WRS = Write Operands R, S WI = Write Instruction
RM = Read MSBs A, B = Operands A, B 09114-027C

INST = Addition Instruction RES = Result

Signals A31-Ao and 0 31-00 are the Am29000 address and data buses, respectively.

Figure 011. Typical Timing for Single-Precision Operation in Flow-Through Mode, with Unmasked
Exception Present-Perform the Operation A PLUS B, Read the Result; Mode Register Field Pl TC=6

1-190

Am29027

Operation in Progress J

~It----- 6 Cycles ---~,

ClK

Transaction
Request

_________ R_l _______ ·)~------

OREOTo

COA

OROY

__ ~f\~ __________ _

\\-------1/
----------~--~\ /

Notes: WR = Write Operand R
WI = Write Instruction
A = Operand A
INST = Addition Instruction
MSB = Result MSBs

WS = Write Operand S
Rl = Read lSBs
B = Operand B
lSB = Result lSBs

Signals A3'-Ao and 0 3,-00 are the Am29000 address and data buses, respectively.

09114-028C

Figure D12. Typical Timing for Double-Precision Operation in Flow-Through Mode, with Unmasked
Exception Present-Perform the Operation A PLUS B, Read the Result; Mode Register Field PLTC=6

ClK

Transaction
Request
~ ________ R_M ______ ~)~---------

~--------------~~r----------------

OREOTo ~-------------------

v
V

Notes: WRS = Write Operands R, S
RM = Read MSBs

WI = Write Instruction
A. B = Operands A, B
RES = Result

09114-029C

INST = Addition Instruction

Signals A3,-Ao and 03,-00 are the Am29000 address and data buses, respectively.

Figure D13. Typical Timing for Single-Precision Operation in Flow-Through Mode, with DRDY
Advanced-Perform the Operation A PLUS B, Read the Result; Mode Register Field PLTC=6

1-191

29K Family CMOS Devices

... ~ ____ Operation in Progres;:;..s ---tl~
6 Cycles

CLK

Transaction
Request

~ ___________ R_L __________ ~~

OREOTo
______________ -J~~ __ __

Notes: WR = Write Operand R WS = Write Operand S
RL = Read LSBs 09114-030C WI = Write Instruction

RM = Read MSBs
B = Operand B
LSB = Result LSBs

A = Operand A
INST.. Addition Instruction
MSB = Result MSBs

Signals A31-Ao and 0 31-00 are the Am29000 address and data buses, respectively.

Figure 014. Typical Timing for Double-Precision Operation In Flow-Through Mode, with ORO
Advanced-Perform the Operation A PLUS B, Read the Result; Mode Register Field PLTC=6

CLK

Transaction
Request
~~ ______ R_M _______ -J)r-------------

~~--------------~~r----------

OREOTo ~~---------------------------

Notes: WRS = Write Operands R, S
RM = Read MSBs
INST = Addition Instruction

WI = Write Instruction
A, B = Operands A, B
RES = Result

v
V

Signals A31-Ao and 0 31-00 are the Am29000 address and data buses, respectively.

09114-031C

Figure 015. Typical Timing for Single-Precision Operation In Flow-Through Mode, with DROY Advanced
and Unmasked Exception Present-Perform the Operation A PLUS B, Read the Result;

Mode Register Field PL TC = 6

1-192

ClK

Transaction
Request

Am29027
Operation In Progress d

lit-I ---- 6 Cycles ---..... ,

_______ R_l ________ ~)~------

OREOTo

COA

OROY

__ ~f\~ ______________________ _

\'----J/
---------------------~\ /

Notes: WR = Write Operand R
WI = Write Instruction
A = Operand A
INST = Addition Instruction
MSB = Result MSBs

WS = Write Operand S
Rl = Read lSBs
B = Operand B
lSB = Result lSBs

Signals A31-Ao and 0 31-00 are the Am29000 address and data buses, respectively.

09114-037C

Figure D16. Typical Timing for Double-Precision Operation in Flow-Through Mode, with DRDV Advanced
and Unmasked Exception Present-Perform the Operation A PLUS B, Read the Result;

elK

Transaction
Request

OREOTo

OERR

Notes: WRS = Write Operands R. S
WR = Write Operand R
A. B = Operands A, B
C = Operand C
RES = Result

Mode Register Field PL TC = 6

Operation 2
---...... -- 6 Cycles ------;

lJlnIL

WI = Write Instruction
RM = Read MSBs
11 = Addition Instruction
12 = Multiplication Instruction

09114-032C

Signals A31-Ao and 0 31-00 are the Am29000 address and data buses, respectively.

Figure D17. Typical Timing for Overlapped Single-Precision Operations In Flow-Through Mode; Perform
the Compound Operation (A PLUS B) x C by Performing Operations: (1) RFo ~ A PLUS B, (2) RFo x C

Mode Register Field PL TC = 6

1-193

29K Family CMOS Devices

CLK

Operation 2
----...-- 6 Cycles-tj

~
Transaction

Request ~----~~----~~

DREOTo ______ ~r\~~r\~~~~,,~----------
____ -----J/ ~.~, __ _

DRDY

DERR

Notes: WR = Write Operand R
WI = Write Instruction
RM = Read MSBs
B = Operand B
11 = Addition Instruction
LSB = Result LSBs

WS = Write Operand S
RL = Read LSBs
A = Operand A
C = Operand C
12 = Multiplication Instruction
MSB = Result MSBs

Signals A31-Aol and DrDo are the Am29000 address and data buses, respectively.
09114-033C

Figure 018. Typical Timing for Overlapped Double-Precision Operations In Flow-Through Mode;
Perform the Compound Operation (A PLUS B) x C by Performing Operations:

CLK

Transaction
Request

A31-N
D31-Do

DREOTo

CDA

DRDY

DERR

Pl STAGE 1

Pl STAGE 2

Notes: WI
RM

(1) RFo ~ A PLUS B, (2) RFo x C; Mode Register Field PL TC = 6
Mode Register Field PL TC = 6

I'J \
V V V--

A PLUS B C PLUS D E PLUS F G PLUS H I PLUS J
A PLUS B C PLUS D E PLUS F G PLUS H

WRS=· Write Operands R. S
I = Addition Instruction

A. B •... =

Write Instruction
Read MSBs
Operands RES = Result

1-194

Signals A31-Ao and D31-Do are the Am29000 address and data buses. respectively.

Figure 019. Typical Timing for Single-Precision Operations in Pipeline Mode;
Perform a Series of Addition Operations A PLUS B, C PLUS 0,

E PLUS F, ... Mode Register Field PL TC = 3

.....
~

U)
U1

ClK

Transaction
Request

A31-Ad
0 31-00

OREQTo n n n n n'--__ _
COA ---

OROY \ ; ____ U\ I '--
OERR--~---------------

PlSTAGE 1 A PLUSB

Pl STAGE 2

C PLUS D

A PLUS B

E PLUS F

C PLUSD

I G PLUS H

. I E PLUS F

Notes: WI = Write Instruction WR = Write Operand R
Rl = Read lSBs WS = Write Operand S

RM = Read MSBs I = Addition Instruction
A, B, ... = Operands lSB = Result lSBs
MSB = Result MSBs

Signals A31-Ao and 0 31-00 are the Am29000 address and data buses, respectively.

Figure 020. Typical Timing for Double-Precision Operations in Pipeline Mode;
Perform a Series of Addition Operations A PLUS B, C PLUS OJ

E PLUS F, ... Mode Register Field PLTC = 3

I PLUSJ

G PLUS H

09114-035C

»
3
N
<0
o
~

Table of Contents

CHAPTER 2
29K Family Support Tools

ASM29K Data Sheet .. 2-3
HighC29K Data Sheet .. 2-10
MON29K Data Sheet ... 2-17
XRAY29K Data Sheet .. 2-24

ASM29K
Cross-Development Toolkit, Release 2

DISTINCTIVE CHARACTERISTICS
• Relocatable Macro Assembler supports com­

plete Am29000™ microprocessor Instruction
set.

• LInker/Loader combines separately assembled
modules by resolving external references and
by searching libraries.

GENERAL DESCRIPTION
Processor performance depends on the processor's
hardware and software environment. The key to maxi­
mizing performance lies in the realization that the pro­
cessor is part of a system that is a collection of compo­
nents that must be integrated properly. To take
advantage of the advanced RiSe architecture of the
Am29000 microprocessor, equally sophisticated soft­
ware tools must be available.

The ASM29KTM cross-development toolkit offers such
a development environment for creating efficient and
portable Am29000 microprocessor software. The pack­
age consists of the assembler, the linker, the floating­
point emulation routines, and the object module librar­
ian. These tools allow users to deSign more efficient
systems and applications than ever before.

Host Computer

ASM29K

Advanced
Micro

Devices

• LIbrarian provides management facility for or­
ganizing modules Into logical collections of
functions.

• IEEE Software Floating-Point Emulation
routines.

• Available for the PC-ATTM, and Sun-3™ devel­
opment environments.

Cross-development is the design of an application pro­
gram on one computer (the host system) and the execu­
tion of that same application program on a different com­
puter (the target system). The operating system on
the host, such as UNIXTM or DOS, provides the tools
needed to create the application program. These tools
include editors for writing the source code, compilers
and assemblers for translating the modules into exe­
cutable code, and utilities for preparing the application
for execution. The Am29000 microprocessor-based tar­
get computer generally does not provide the tools re­
quired to develop the application program. Figure 1
shows the path that an application follows from develop­
ment on the host system to execution on the target
system.

Via On-Board
Monitor or

ADAPT29K
Debugger

Target Computer

Cj5 nnnn c
=

c::=:J
Am29000

Microprocessor

o 0 0 0

Figure 1. Cross Software Development

publication # ~ ~
10292 B /0

Issue Date: September 1989

2-3

29K Family Support Tools

The ASM29K cross-development toolkit transforms a
PC or Sun-3 workstation host into a powerful software
development environment. ASM29K software assem­
bles user source and produces a relocatable object
module. This module can be combined with other
relocatable object modules (derived from the assembler
or high-level language cross-compilers) using the
ASM29K linker. Library modules prepared by the librar­
ian can be linked in at this point as well. The resulting ab­
solute object module then can be downloaded to a tar­
get system.

AMD has established and published the Am29000
microprocessor Common Object File Format (COFF) to
which all Am29000 development tools conform. The
AMD COFF format extends the already standard AT&T
COFF format to support source-level debugging and
other Am29000 microprocessor-specific features. Simi­
larly, AMD has established a common calling conven-

ORDERING INFORMATION
Licensing
The ASM29K cross-development toolkit is licensed
through AMD's Standard End-User Software License
Agreement (Boxtop). This license does not require a
signature; breaking the seal on the software envelope
indicates acceptance of the license terms. If changes
are required to the license agreement, they can be ar­
ranged through your AMD sales representative. Many
software products require the customer to provide a
CPU ID number when ordering the product. Contact
your sales representative if this information is not avail­
able at the time of purchase. In addition, terms of the
license require the customer to complete a Software
Warranty card with the serial number and site of the host
computer on which the software will reside. This card
must be returned to AMD within 30 days of receipt forthe
warranty to be valid.

2-4

tion that maximizes performance on the Am29000
microprocessor as well as defining another standard
for software vendors. This has led to a variety of compil­
ers, assemblers, debuggers, and associated tools
that may be mixed freely by developers of Am29000
microprocessor software.

The contents of the ASM29K cross-development toolkit
include:

•
•
•
•
•
•

ASM29K macro assembler

ASM29K linker

ASM29K librarian

Hex utilities

IEEE floating-point emulation routines

Documentation

Order Numbers
The ASM29K cross-development toolkit is available for
several different environments. Documentation can be
ordered separately. The order number (valid combina­
tion) is formed as a combination of:

• Product Family

• Product Category

• Product Identifier

• License Type

• Host I OS Type

• Media Type

ORDER INFORMATION (continued)

Valid Combinations

IlJl

I
Media Type

08 = 0.25" Sun cartridge tape, TAR format

14 = 3.5" DSHD floppies
21 = 9-track, 1600 BPI mag tape, TAR format

24 = 5.25" DSHD floppies

Host I 05 Type
07 = Sun-3
10= PC-AT

License Type
B = Boxtop
S = Signed
"-- = Not Applicable

Product Identifier
ASM = ASM29K Cross-Development Toolkit

Product Category
SWI = Software Product
DCI = Documentation Product
MN = Maintenance Agreement

Product Family
Am29000 Microprocessor

ASM29K

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales
office to confirm availability of specific valid combinations and to check on newly released combinations.

Order Number Product Host Media

AM29000SW/ASMB0708 ASM29K Toolkit Sun-3 0.25" cartridge tape, TAR format

AM29000SW/ASMS0708 ASM29K Toolkit Sun-3 0.25" cartridge tape, TAR format

AM29000SW/ASMB0721 ASM29K Toolkit Sun-3 9-track, 1600 BPI tape, TAR format

AM29000SW/ASMS0721 ASM29K Toolkit Sun-3 9-track, 1600 BPI tape, TAR format

AM29000SW/ASMB1014 ASM29K Toolkit PC-AT 3.5" DSHD floppies

AM29000SW/ASMS1014 ASM29K Toolkit PC-AT 3.5" DSHD floppies

AM29000SW/ASMB1024 ASM29K Toolkit PC-AT 5.25" DSHD floppies

AM29000SW/ASMS 1024 ASM29K Toolkit PC-AT 5.25" DSHD floppies

AM29000DCI ASM-99 ASM29K Documentation UNIX Not Media Specific

AM29000MNASM-07 ASM29K Maintenance Sun-3 Not Media Specific

AM29000MNASM-10 ASM29K Maintenance PC-AT Not Media Specific

2·5

29K Family Support Tools

FUNCTIONAL INFORMATION
Assembler
The ASM29K assembler converts user-written
Am29000 assembly code into relocatable object mod­
ules. It produces standard COFF object modules that
can be linked with other assembled or compiled mod­
ules. Its advanced features permit the design of well­
structured modules that are easily maintained.

The assembler processes Am29000 microprocessor
instructions as defined in Chapter 8 of the Am29000
User's Manual. Each instruction mnemonic and register
identifier is recognized in both upper and lower case.
Identifiers (that is. user-named variables) can have up to
63 characters. all of which are significant. Integer. char­
acter. string. and floating-point constants are supported
as well as complex expression analysis.

In addition to the Am29000 microprocessor instructions.
the assembler supports a powerful macro facility. Pro­
grammers can define macros with multiple parameters
and direct macros to be repeated a specified number of
times. Macro code is inserted into the source code at the
position of the macro call. Macros may use local la­
bels-labels that are visible only within the macro it­
self-to label an instruction that can be copied several
times throughout the program. Local labels are distin­
guished from regular labels by using the format "$n."
where n can be from one to six digits.

The assembler also provides a number of directives for
organizing the code into efficient sections or modules.
Use of the include directive merges separate files during
assembly. The section directive assigns areas of code
to named text. data. uninitialized memory. or initialized
memory sections. Conditional assembly is also sup­
ported. This useful feature allows the programmer to as­
semble code conditionally for debugging. The assem­
bler directives are listed in Table 1.

The ASM29K software also produces a cross-reference
table for symbols. Flags allow the programmer to print
listings that contain expanded macros. instructions not
assembled due to conditional statements. and symbol
tables; and to insert user-specified headers into the
listing.

The assembler optionally emits debug information for
use with the XRAY29KTM source-level debugger. This
information allows the programmer to specify the sym­
bolic names of variables and labels during debugging
sessions.

The wide selection of features available in the ASM29K
assembler gives the user the latest tools to produce
well-structured and maintainable code.

2-6

Linker
The ASM29K linker integrates a group of separately
compiled or assembled modules into a composite
module in which all references between modules are
resolved. It processes and produces COFF modules.
including any module produced by a compiler in any
language and any assembler that adheres to the AMD­
defined COFF and calling-convention standards. Incre­
mental linking is supported also. The ASM29K linker
produces an extensive load map with an optional
symbol cross-reference table.

Object module libraries are searched with required
modules automatically included. All code and data sec­
tions are given absolute addresses as specified by the
programmer. The linker provides options that create
ROMabie programs. generate warnings for possible
undefined external references. produce a global cross­
reference. and list defined symbols. Directives to the
linker may be included in a file (batch mode). on the
command line. or in combination. Programmers can use
the ASM29K to:

- Resolve external references between separately
compiled or assembled modules.

- Assign absolute addresses.

- Direct section ordering.

- Perform incremental linking.

- Load only those library modules referenced for effi-
cient code space use.

-Generates optionally ROMabie programs.

Librarian

The ASM29K librarian is a management facility for or­
ganizing independently developed pieces of software
into logical units. It permits the addition. deletion. and re­
placement of object modules in one or more libraries.
The ASM29K librarian:

-Organizes and initializes modules into a library file.

- Lists library contents and information.

- Lists a library directory.

Group

File Processing

Conditional Assembly

Listing Control

Symbol Declaration

Section Declaration

Data Storage Declaration

Repeat Block

Macro Definition

High-Level Language (HLL) Debugging

ASM29K

Table 1. Assembler DIrectives

Directives

.end

.err

.ident

.include

.else

.endif

.if

.ifdef

.ifeqs

.ifnes

.ifnotdef

.eject

.lflags

. list

.nolist

.print

.sbttl

.space

.title

.equ

.extern

.global

.reg

.set

.comm

.data

.dsect

.lcomm

.sect

.text

.use

.align

.ascii

.block

.byte

.double

.extend

.float

.hword

.word

.endr

.irep

.irepc

.rep

.endm

.exitm

.macro

.purgem

.def

.dim

.endef

.file

.line

.In

.scl

.size

.tag

.type

.val

Meaning

End of Assembly
Generate Assembly Error
Specify Module Name
Include Text File
Alternate Condition
End of Conditional Assembly Block
Assemble if Value is Not Zero
Assemble if Identifer is Defined
Assemble if Strings are Equal
Assemble if Strings are Not Equal
Assemble if Identifier is Not Defined
Advance to Top of Page
Set Listing Flags
Enable Listing
Disable Listing
Print to Standard Output
Set the Listing Subtitle
Space N Lines
Set the Listing Title
Equate a Symbol to a Value (Unlimited Scope)
Declare Symbols as External to This Module
Make Symbols Visible to Other Modules
Declare a Symbol as a Synonym for a Register
Set a Symbol to a Value (Limited Scope)
Declare a Common Symbol
Use the .data Section
Declare a Dummy Section
Declare a Local bss Symbol
Declare a New Section
Use the .text Section
Use a Declared Section
Specify Byte Alignment
Store the String
Reserve Bytes
Initialize Bytes
Initialize Double-Precision Values
Initialize Extended-Precision Values
Initialize Single-Precision Values
Initialize Half-Words
Initialize Words
End of Repeat Block
Repeat for Each Item in the List
Repeat for Each Character in the String
Repeat N Times
End Macro Definition
Terminate Macro Expansion
Macro Heading
Purge All Macros Listed
Define Symbol Table Entry Directive
Dimensions of an Array Attribute
End of Symbol Definition Block Directive
Source Filename Directive
Source-File Line-Number Directive
HLL Source-File Line-Number Directive
Storage Class of a Symbol Attribute
Size of a Symbol Attribute
Structure, Union, or Enumeration Identifier Attribute
Basic and Derived Type of a Symbol Attribute
Value of a Symbol Attribute

2·7

29K Family Support Tools

Floating-Point Emulation
The Am29000 microprocessor instruction set includes
floating-point and integer math operations. In the cur­
rent processor implementation, these instructions
cause traps to routines that perform the operations. The
user is provided with source to two complete sets of rou­
tines that emulate IEEE Floating-Point Standard 754 for
each of the instructions listed in Table 2.

math instructions are emulated using the Am29027
co-processor.

The second set of routines implements emulation of the
floating-point operations entirely in software. No special
hardware is required.

Documentation instructs users how to integrate the
The first set of routines is provided for users who package into their target system. Both packages are de-
have integrated an Am29027™ arithmetic accelerator signed to insure upward compatibility with next genera-
into their systems. The Am29000 microprocessor tion processors.

Table 2. Arithmetic Instructions

Type

Integer Arithmetic

Single-Precision Floating-Point Arithmetic

Double-Precision Floating-Point Arithmetic

Floating-Point Compare

Data Format Conversion

Hex Utilities

Mnemonic

MULTIPLY
MULTIPLYU
DIVIDE
DIVIDEU
FADD
FSUB
FMUL
FDIV
DADD
DSUB
DMUL
DDIV
FEQ
DEQ
FGT
DGT
FGE
DGE
CONVERT

Operation

Signed Multiply
Unsigned Multiply
Signed Divide
Unsigned Divide
Single-Precision Add
Single-Precision Subtract
Single-Precision Multiply
Single-Precision Divide
Double-Precision Add
Double-Precision Subtract
Double-Precision Multiply
Double-Precision Divide
Single Compare Equal To
Double Compare Equal To
Single Compare Greater Than
Double Compare Greater Than
Single Compare Greater Than Or Equal To
Double Compare Greater Than Or Equal To
Convert Data Format

A set of hex utilities are provided to create Hex files for
downloading into target systems and for creating ROM
images. These tools convert AMD standard COFF files
into Motorola® S-Record or Tektronix® Extended Hex

• nm29 Prints name list of a COFF file,

• romcoff Generates COFF file for ROM.

• cvcoff Translates Am29000 microprocessor
COFF files between big endianJlittle
end ian hosts.

. files. These hex utilities and a brief description of each
are listed below.

• btoa Converts a binary file into an ASCII file.

• coff2hex Converts a COFF file into a hex file.

• sim29

2-8

ASM29K software architectural
simulator.

• strpcoff Strips symbolic information from a
COFF file.

WARRANTY and SUPPORT
Software Warranty
Software programs licensed by AMD are covered by the
warranty and patent indemnity provisions appearing in
AMD's standard software license forms. AMD makes no
warranty, express, statutory, implied or by description,
regarding the information set forth herein or regarding
the freedom of the described software program from
patent infringement. AMD reserves the right to modify,
change or discontinue the. availability of this software
program at any time and without notice.

Customer Support
Maintenance

All orderable software products include one year of free
Maintenance Support, which starts from the date of
original purchase. Maintenance Support allows custom­
ers to receive technical assistance from highly trained
field and factory personnel, to use a call-in on-line infor~
mation system and to receive product and documenta­
tion updates at no additional charge. Customers may
extend Maintenance Support in one-year increments.
Customers can access support services by calling
the 24-hour, toll-free 29I(TM Family hotline at (800)
2929-AMD (292-9263).

On-Line Call-In Bulletin Board

In addition to the support engineering staff, AMD offers
a 24-hour on-line technical support center. The cus-

ASM29K

tomer can call (800) 2929-AMD at any time to query the
system for the latest information on a particular product:
bug fixes, work-arounds, information on upcoming
releases, etc. Messages may be left for the support
engineering staff during "after hours."

Training Classes

AMD offers training classes for the 29K Family prod­
ucts. These classes focus on 29K Family system design
and implementation using the broad range of AMD soft­
ware development tools. Customers can shorten the de­
velopment process through extensive hands-on training
covering a variety of topics. Contact your local AM 0 field
office for more information on training classes~

Fuslon29K Program

AMD encourages broad-based development and sup­
port for the Am29000 microprocessor with the
Fusion29KTM program, a joint-effort program between
AMD and third-party developers. Published twice a
year, the Fusion29K program catalog reveals the
breadth of development and system solutions for the
29K FamilYi including software generation and debug
tools; hardware development tools; executive, kernel
and multi-user operating systems; board-level products;
silicon products; and more. For a copy of the Fusion29K
program catalog, call your local AM D field sales office or
the literature center at (800) 222-9323.

2-9

29K Family Support Tools

'Mi@i+'i'
HighC29K
Cross-Development Toolkit, Release 2

DISTINCTIVE CHARACTERISTICS

• Efficient, globally optimizing C complier tech­
nology developed by MetaWaren", Inc. ANSI
Standard C support and conformance verifica­
tion (ANSI document X3J11/88-159, December
7,1988 and compile-time error checking.

• Complier supports load scheduling and de­
layed branch optimizations to promote fast
Am29000™ microprocessor code execution.

• Complier supports AMD's Am29027™ Arithme­
tic Accelerator.

• Full ANSI standard run-time library of over 100
functions Include all standard 1/0 routines
(stdlo).

• Available for the PC-ATTM and Sun-3™ develop­
ment environments.

• Special library of high-performance transcen­
dental functions.

GENERAL DESCRIPTION

Processor performance depends on the processor's
hardware and software environment. The key to maxi­
mizing performance lies in the realization that the proc­
essor is part of a system which is a collection of compo­
nents which must be properly integrated. To take ad­
vantage of the advanced RISC architecture of the
Am29000 microprocessor, equally sophisticated soft­
ware tools must be available to achieve this integration.

The HighC29KTM Cross-Development Toolkit offers
such a development environment for creating efficient
and portable software for the 29KTM Family. The pack­
age consists of the full ANSI standard, optimizing C
compiler, run-time libraries, assembler, linking loader,
floating-point emulation, and object module librarian.
These tools allow users to design more efficient sys­
tems and applications.

Cross-development is the design of an application pro­
gram on one computer (the host system) and the execu­
tion of that same application program on a different
computer (the target system). The operating system on
the host, such as UNIX or DOS, provides the tools
needed to create the application program. These tools
include editors for writing the source code, compilers

2-10

Advanced
Micro

Devices

• HlghC29KTM toolkit Includes the entire
ASM29KTM Cross-Development Toolkit. The
ASM29K package contains:

Relocatable macro assembler supports com­
plete Am29000 microprocessor instruction set.

Linker/loader combines separately compiled or
assembled modules by resolving external refer­
ences and by searching libraries. .

Librarian provides management facility for
organizing modules into logical collections of
functions.

Full architectural simulator of the Am29000
microprocessor with user-defined memory
access times. Allows designers to obtain pricel
performance statistics for their particular
Am29000 microprocessor design.

IEEE software floating-point emulation func­
tions accessible from C and assembly lan­
guage modules.

and assemblers for translating the modules into execut­
able code, and utilities for preparing the application for
execution. The Am29000-based target computer gener­
ally does not provide the tools required to develop the
application program. Figure 1 shows the path that an
application follows from development on the host sys­
tem to execution on the target system.

The HighC29K Cross-Development Toolkit transforms
a PC or Sun workstation host into a powerful software
development environment. The HighC29K cross-com­
piler generates 29K Family relocatable object modules
which can be combined with other relocatable object
modules derived from the assembler or HighC29K com­
piler using the 29K Family linker/loader. Library mod­
ules prepared by the librarian can be linked in at this
point as well. The resulting absolute object module can
then be downloaded to a target system.

AMD has established and published the 29K Family
Common Object File Format (COFF) to which all 29K
Family development tools conform. The AMD COFF
format extends the already standard AT&T COFF for­
mat to support source-level debugging and other 29K
Family-specific features. Similarly, AMD has estab-

Publication' 10957 Rev. B Amendment /0

tssue Date: September 19811

HIghC29K

lished a common calling convention that maximizes
performance on the 29K Family of microprocessors as
well as defining standards for software vendors. This
has led to a variety of compilers, assemblers, debug-

gers, and associated tools that may be mixed freely by
developers of 29K Family software.

The contents of the HighC29K Cross-Development
Toolkit include:

HlghC29K:

Optimizing C Compiler

Documentation

Function Libraries

ASM29K (Included In HlghC29K Development Package):

Relocatable Macro Assembler

Documentation

Architectural Simulator

Linker/Loader

Librarian

IEEE Floating Point Emulation Routines

Utilities

Host Computer

Figure 1. Cross Software Development

Target Computer

Via On-Board
Monitor or

ADAPT29K
Debugger

Am29000
Microprocessor

2-11

29K Family Support Tools

ORDERING INFORMATION

LIcensing

The HighC29K Cross-Development Toolkit is licensed
through AMD's Standard End-User Software License
Agreement (Boxtop). This license does not require a
signature; breaking the seal on the software package in­
dicates acceptance of the license terms. If changes are
required to the license agreement, they can be ar­
ranged through your AMD sales representative. Many
software products require the customer to provide a
CPU 10 number when ordering the product. Contact
your sales representative if this information is not avail­
able at time of purchase. In addition, terms of the li­
cense require the customer to complete a Software
Warranty card with the serial number and site of the
host computer on which the development package will
reside. This card must be returned to AMD within 30
days of receipt for the warranty to be valid.

Order Numbers

The HighC29K Cross-Development Toolkit is available
for several different environments. Documentation can
be ordered separately. The order number (Valid Combi­
nation) is formed as a combination of:
• Product Family
• Product Category
• Product Identifier
• License Type
• Host/OS Type
• Media Type

AM29000 SWI HCC B ## ##

2-12

T
Media Type
08 = 0.25" Sun cartridge tape, TAR format
14 = 3.5" DSHD floppies
21 = 9-track, 1600 BPI mag tape, TAR format
24 = 5.25" DSHD floppies

Host/OS Type
07 = Sun-3
10 = PC-AT
99 = Not Host Specific

LIcense Type
B = Boxtop
S = Signed
"_" = Not Applicable

Product Identifier
HCC = HighC29K Cross-Development Toolkit

Product Category
SW/ = Software Product
DCI = Documentation Product
MN = Maintenance Agreement

Product Family
Am29000 Microprocessor

HlghC29K

Valid Combinations
Valid Combinations list configurations planned to be supported in volume forthis device. Consult the local AMD sales
office to confirm availability of specific valid combinations and to check on newly released combinations.

Order Number Product Host

Sun-3
Sun-3
Sun-3
Sun-3
PC-AT
PC-AT
PC-AT
PC-AT

Media

0.25" cartridge tape, TAR format
0.25" cartridge tape, TAR format
9-track, 1600 BPI tape, TAR format
9-track, 1600 BPI tape, TAR format
3.5" DSHD floppies
3.5" DSHD floppies
5.25" DSHD floppies
5.25" DSHD floppies

AM29000SWIHCCB0708
AM29000SWIHCCS0708
AM29000SWIHCCB0721
AM29000SW/HCCS0721
AM29000SWIHCCB1014
AM29000SWIHCCS 1014
AM29000SWIHCCB1024
AM29000SWIHCCS1024
AM29000DCIHCC-99
AM29000MAlHCC-07
AM29000MAlHCC-10

HighC29K Toolkit
HighC29K Toolkit
HighC29K Toolkit
HighC29K Toolkit
HighC29K Toolkit
HighC29K Toolkit
HighC29K Toolkit
HighC29K Toolkit
HighC29K Documentation
HighC29K Maintenance
HighC29K Maintenance

Not Host Specific
Sun-3

Not Media Specific
Not Media Specific

FUNCTIONAL INFORMATION

Compiler

PC-AT

The HighC29K cross-compiler supports an extended
version of the C language designed for professional
programmers. It includes a full ANSI implementation for
portable applications, yet also allows user access to the
best features of other languages such as nested func­
tions from Pascal and named parameter association
from Ada. Extensions to the C language also are sup­
ported, such as range notation in case statements and
enumerated data types. The compiler allows users to
create re-entrant procedures and to generate efficient
code in terms of space and execution speed.

The HighC29K cross-compiler facilitates program de­
velopment for dedicated or stand-alone Am29000 de­
signs. The compiler generates optimized, sharable
code that takes full advantage of the Am29000 instruc­
tion set. The language contains a variety of control
statements, data types, and predeclared procedures
and functions that promote the development of well­
structured programs. For example, the user may specify
the parameter types for external functions so that the
compiler can check that arguments are passed cor­
rectly.

The HighC29K cross-compiler generates 29K Family
object modules directly. The HighC29K compiler option­
ally generates information necessary for symbolic de­
bugging at the C or assembly level with XRAY29KTM,
AMD's source-level debugger for the 29K Family. The
compiler preprocessor allows the user to define macros,
merge files into source and conditionally include or ex­
clude code.

Optimization

As a highly optimizing cross-compiler, HighC29K soft­
ware ensures the generation of fast, compact code by
using advanced optimization techniques including com­
mon subexpression elimination, loop invariant analysis,

Not Media Specific

global register allocation and automatic allocation of
variables to registers. Many of the optimizations are
particularly effective when using the unique features of
the Am29000 microprocessor architecture. For ex­
ample, its large register set means passing parameters
in registers is more effective on the Am29000 micropro­
cessor than on any other microprocesor. Optimizations
specifically developed for the Am29000 RISC micropro­
cessor architecture are also performed such as load
scheduling for maximum instruction throughput. Addi­
tionally, the compiler makes extensive use of Am29000
microprocessor's large register file as a stack cache to
store frequently accessed values. The list of optimiza­
tions performed include:

Common subexpression elimination
Retention/reuse of register contents
Automatic allocation of variables to registers
Dead code elimination and cascaded jumps
Cross jumping (tail merging)
Constant folding
Switch statements optimally encoded using in-line

branch table, binary search or linear search.
Global flow analysis leading to removal of loop

invariant values
Load Scheduling
Delayed Branch

Several of these optimizations are explained below:

Loop Invariant Analysis: Computations made inside
of loops that do not change value in the loop can be
moved outside the loop. The value is stored in a register
for optimum access. Since an application may spend as
much as 90% of its time executing loops, this optimiza­
tion produces a significant gain in performance.

2-13

29K Family Support Tools

Fold Constants: Operands that are constant can often
be folded into a single constant, or into a temporary
value. If constants are defined at compile time, the
compiler can reduce them to a single value.

Load Scheduling: The Am29000 microprocessor sup­
ports overlapped load and store capabilities to decrease
delays incurred while waiting for data. The compiler
recognizes when certain instructions can be advanced
in the pipeline for efficient operation.

Delayed Branch: The Am29000 microprocessor
branch instruction is delayed by one cycle to allow the
processor pipeline to achieve maximum throughput.
The instruction following the branch instruction, called
the delayed instruction is executed whether the branch
is successful or not. In most cases, the compiler can
easily place a useful instruction, i.e. an instruction other
than NO-OP, as the delay instruction by reorganizing
the code.

Data Types

The single addressing mode of the Am29000 micropro­
cessor combines with high-level language implementa­
tions to provide efficient access to all data types.

Data Type

int
long int
pointer
short int
char
float
double
unsigned
unsigned char
unsigned short
enum (default)
enum (option)

Size (Bits)

32
32
32
16
8
32
64
32
8
16
32
8,16,32

Am29027 Arithmetic Accelerator Support

Target systems that include the Am29027 Arithmetic
Accelerator for high-speed computations are directly
supported through the compiler. Users may direct the
compiler to generate in-line code to access the control
and instruction registers of the accelerator. Versions of
the libraries that assume direct use of the Am29027
microprocessor are included.

Alternatively, the user can signal the compiler to gener­
ate Am29000 microprocessor floating-point instructions
that are used in conjunction with the IEEE Floating­
Point Emulation Routines to access the accelerator.

The HighC29K Cross-Development Toolkit includes
AMD's entire ASM29K Cross-Development Toolkit. De­
tails of this package are contained in the ASM29K
Cross-Development Toolkit data sheet (order #10292).

2-14

Function Libraries

The HighC29K toolkit includes three different sets of
function libraries that enhance the functionality of the
compiler. The library sets are comprised of:

the ANSI standard library which provides the full set
of functions specified by the ANSI C language stan­
dard

a library of routines implementing the floating-point
environment functions specified in the IEEE-754
standard

a library of hand-coded transcendental functions
optimized for use with the Am29000/Am29027
microprocessor combination.

Each library set contains several versions of the library
which reflect the different possible target environments.
The compiler driver is able to select the proper version
of the library to use based on the compile-time options
specified.

ANSI Standard Library

This library contains the full functionality specified by
the ANSI standard for the C language (X3J11/88-159,
December, 1988). At the lowest level, the library func­
tions interface with HIF (Host Interface), a small kernel
system defined by AMD. HIF is supported in all AMD
products, and is defined in the HighC29K toolkit manual
for the customer who needs to adapt to a different envi­
ronment.

The functions included in the ANSI Standard Library
are:

Mathematical Routines
abs atan2 exp frexp modf sqrt acos
ceil fabs Idexp pow tan asin cos
floor log sin tanh atan cosh fmod
log10 sinh

Memory Allocation
calloe free malloc realloc

Standard Formated I/O
fprintf printf sprintf vfprintf vsprint fscanf scanf
sscanf vprintf _setmode

Standard File I/O
fclose
fflush

fopen remove setbuf
freopen rename setvbuf

Character Routines
isalnum iscntrl isgraph
isxdigit toupper isalpha
ispunct isupper tolower

Character I/O Routines
fgetc fpute getc
ungetc fgets fputs

isprint
isdigit

gets
getchar

tmpfile
tmpnam

isspace
islower

putchar
putc puts

String Routines
memchr strcat
_strncat memcmp
strxfrm memcpy
_rmemcpy me move
_rstrcpy memset
_strcats

Direct I/O Routines

strcspn
strchr
strcmp
strcoll
strcpy

fgetpos fread fseek
rewind

General Routines
abort atol
strtoul atexit
srand system
exit strtod
mblen qsort

getenv
bsearch
atoi
wctombs
strtol

Date and Time Routines
asctime ctime gmtime
strftime time clock

Miscellaneous Routines

strncpy
strerror
strlen
strncat
strncmp

strtok
strpbrk
strrchr
strspn
strstr

fsetpos ftell fwrite

mbstowcs rand
labs mbtowc
div Idiv on-
atof exit
wctomb

localtime mktime
difftime

assert ferror localeconv perror setjmp
signal va_end clearerr kill longjmp
raise setJocale va_arg va_start feof

Floating-Point Environment Library

The functions included in the Floating-Point Environ­
ment Library are:

. class rclass
rfinite isnan
nextafter rnextafter
rscalb unordered

copysign rcopysign
risnan 10gb
remainder rremainder
runordered

Fast Transcendental Library

finite
rlogb
scalb

This library provides special hand-coded versions of the
standard transcendental functions. These functions are
optimized for performance with the Am29000/Am29027
microprocessor combination.

The functions included are:
atan cos exp log pow
sin sqrt tan

Floating-Point Emulation

The Am29000 microprocessor's instruction set includes
floating-point and integer math operations. In the sim­
plest processor implementation, these instructions
cause traps to routines that perform the operations. The
user is provided with source to two complete sets of
routines that emulate IEEE Floating-Point Standard 754
for each of the instructions listed below.

The first set of trap handlers is provided for users who
have integrated the Am29027 arithmetic accelerator
into their systems. The Am29000 microprocessor math

HlghC29K

instructions are performed using the Am29027 micro­
processor.

The second set of trap handlers implements emulation
of the floating-point operations entirely in software. No
special hardware is required.

Documentation instructs users how to integrate the
package into their target system. Both packages are
designed to insure upward compatibility with future
generation processors. The floating-point routines are
accessible from both the assembler and compiler.

To eliminate the overhead incurred by using the trap
handlers, direct code generation (in-line coding) of
Am29027 microprocessor floating-point operations is
an included option of the HighC29K Cross-Develop­
ment Toolkit.

Am29000 Microprocessor Floating-Point
Instructions

Mnemonic Operation

CONVERT

FEQ
DEQ
FGT
DGT
FGE
DGE
FADD
DADO
FSUB
DSUB
FMUL
DMUL
FDIV
DDIV

Utilities

Convert values between types
Integer, Float, and Double
Compare Floats Equal
Compare Doubles Equal
Compare Floats Greater Than
Compare Double Greater Than
Compare Floats Less Than
Compare Double Less Than
Float Add
Double Add
Float Subtract
Double Subtract
Float Multiply
Double Multiply
Float Divide
Double Divide

A set of utilities is provided to work with the output files
produced by the deve lopment tools. They allow the user
to prepare output files for downloading into target sys­
tems and to create ROM images. The utilities include:
• coff2hex: Converts Am29000 microprocessor COFF

files to Motorola® S-record or Extended Tektronix®
Hex Files.

• romcoff: Allows creation of ROM images. from
Am29000 microprocessor COFF files.

• cvcoff: Translates Am29000 microprocessor COFF
files between big endian/little endian hosts.

• strpcoff: "Strips" symbolic information from an ex­
ecutable COFF file.

2-15

29K Family Support Tools

MAINTENANCE AND SUPPORT

Software Warranty

Software programs licensed by AMO are covered by the
warranty and patent indemnity provisions appearing in
AMO's standard Software License Forms. AMD makes
no warranty, express, statutory, implied or by des~rip­
tion regarding the information set forth herein or regard­
ing the freedom of the described software program from
patent infringement. AMD reserves the right to modify,
change or discontinue the availability of this software
program at any time and without notice.

Support

Customer Support

All orderable software products include one year of free
maintenance support, which starts from the date of
original purchase. Maintenance support allows custom­
ers to receive technical assistance from highly trained
field and factory personnel, to use a call-in on-line
information system and to receive product and docu­
mentation updates at no additional charge. Customers
may extend maintenance support in one-year
increments. Customers can access suppport services
by calling the 24-hour, toll-free 29K Family hotline at
(800) 2929-AMD (292-9263).

On-Line Call-In Bulletin Board

In addition to the support engineering staff, AMD offers
a 24-hour on-line technical support center. The cus­
tomercan call (800) 2929-AMD at anytime to query the

2-16

system for the latest information on a particular product:
bug fixes, work-arounds and information on up-coming
releases. Messages may be left for the support engi­
neering staff during "after hours."

Training Classes

AMD offers training classes for the 29K Family prod­
ucts. These classes focus on 29K Family system design
and implementation using the broad range of AMD
software development tools. Customers can shorten
the development process through extensive hands-on
training covering a variety of topics. Contact your local
AMD field sales office for more information on training
classes.

Fuslon29K Program

AMD encourages broad-based development and sup­
port for the Am29000 with the Fusion29I(TM program, a
joint-effort program between AMD and third-party'
developers. A bi-annual Fusion29K program catalog
reveals the breadth of development and system
solutions for the 29K Family, including software
generation and debug tools; hardware development
tools; executive, kernel and multi-user operating
systems; board-level products; silicon products; and
more. For a copy of the Fusion29K program catalog, call
your local AM 0 field sales office or the literature center
at (800) 222-9323.

MON29K
Target Resident Debug Monitor

DISTINCTIVE CHARACTERISTICS
• Provides local control of an Am29000™ micro­

processor-based system

• Interfaces to the XRAY29KTM Source-Level
Debugger

• Allows modification and display of memory,
registers and 1/0 ports

• Supports modification and display of special­
purpose registers by group

• Allows access to both user- and system-level
code

• Supports the AMD Am29027™ Arithmetic
Accelerator

• Allows modification and display of Am29027
microprocessor registers

GENERAL DESCRIPTION

The Target Resident Debug Monitor (MON29KTM)
resides on Am29000 microprocessor-based hardware.
It provides all the control a designer needs to load,
execute and debug Am29000 microprocessor
programs. MON29K software is provided in source form
so its I/O drivers and service routines can be modified
easily, which allows MON29K software to be
customized for various hardware configurations.

MON29K software provides the ability to set
breakpoints, to set and display memory and registers, to
read and write I/O ports, to trace execution in single or
multiple steps, and to download files from a remote

MON29K

~
Advanced

Micro
Devices

• Provides eight breakpoints plus single­
and multiple-Instruction stepping

• Allows selection of user-defined displays after
each breakpoint or single step

• Provides In-line assembler and disassembler

• Supports downloading of COFF and hex flies
from remote systems

• Provided in source form (C and Am29000
microprocessor assembly) to simplify
Installation of I/O devices

• Offers familiar user interface, similar to DEBUG
on IBM~ PC

host. MON29K software is controlled by either an ASCII
terminal or a host computer connected to a serial port
on the target system.

MON29K software supports high-level language
debugging through XRAY29K, the Am29000
microprocessor source-level debugger. In addition to its
own standard command set, the XRAY29K debugger
supports all the MON29K software commands.

The MON29K product includes:

MON29K source code

Documentation

Publication # Rev. Amendment
~B --'0-
Issue Date: September 1989

2-17

29K Family Support Tools

ORDERING INFORMATION

Licensing
The MON29K Resident Monitor is licensed through
AMD's Standard End-User Software License
Agreement (Boxtop). This license does not require a
signature; breaking the seal on the product package
indicates acceptance of the license terms. If changes
are required to the license agreement, they can be
arranged through your AMD sales representative. Many
software products require the customer to provide a
CPU ID number when ordering the product. Contact
your sales representative if this information is not
available at the time of purchase. In addition, terms of
the license require the customer to complete a Software
Warranty card with the serial number and site of the
host computer on which the resident monitor source will
reside. This card must be returned to AMD within 30
days of receipt fO,r the warranty to be valid.

AM29000 SWI MON B

L...-___ _

"--------

~----------

L...-______________ __

2-18

T

Order Numbers
MON29K software executes on Am29000
microprocessor-based systems but is distributed in
machine readable source form for several hosts. Thus,
media type is the only distinguishing characteristic
when ordering MON29K software. Documentation can
be ordered separately. The order number (Valid
Combination) is formed as a combination of:

• Product Family

• Product Category

• Product Identifier

• License Type

• Host/OS Type

• Media Type

Media Type

08 = 0.25" cartridge tape. TAR format
14 = 3.5" DSHD floppies
21 = 9-track, 1600 BPI mag tape, TAR format
24 = 5.25" DSHD floppies

Host/OS Type
99 = Not Host Specific

LIcense Type
B = Boxtop
S = Signed
"-" = Not Applicable

Product Identifier
MON = MON29K Target Resident Debug Monitor

Product Category
SWI = Software Product
DCI = Documentation Product
MN = Maintenance Agreement

Product Family
Am29000 Microprocessor

MON29K

Valid Combinations
Valid Combinations lists configurations planned to be supported in volume for this device. Consult the local AMD
sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Part Number Product Host Media

AM29000SW/MONB9908
AM29000SW/MONS9908
AM29000SW/MONB9914
AM29000SW/MONS9914
AM29000SW/MONB9921
AM29000SW/MONS9921
AM29000SW/MONB9924
AM29000SW/MONS9924
AM29000DC/MON-99
AM29000MAlMON-99

MON29K Resident Monitor
MON29K Resident Monitor
MON29K Resident Monitor
MON29K Resident Monitor
MON29K Resident Monitor
MON29K Resident Monitor
MON29K Resident Monitor
MON29K Resident Monitor
MON29K Documentation
MON29K Maintenance

Not Host Specific
Not Host Specific
Not Host Specific
Not Host Specific
Not Host Specific
Not Host Specific
Not Host Specific
Not Host Specific
UNIX

0.25" cartridge tape, TAR format
0.25" cartridge tape, TAR format
3.5" DSHD floppies
3.5" DSHD floppies
9-track, 1600 BPI tape, TAR format
9-track, 1600 BPI tape, TAR format
5.25" DSHD floppies
5.25" DSHD floppies
Not Media Specific

Not Host Specific Not Media Specific

FUNCTIONAL DESCRIPTION

MON29K software resides on the target system and
interfaces to the user through an ASCII terminal
connected to a serial port on the target system. All
commands and formatted displays are communicated
through this serial link. MON29K software supports
simple display formats so that compatibility can be
maintained with any CRT.

MON29K software provides program development
support at the assembler source level. High-level
source code development is provided by the XRAY29K
debugger when it is connected to MON29K monitor.
MON29K serves as the target resident monitor that
interrogates memory and registers for the host-resident
source-level debugger.

Memory, Register and 1/0 Addresses
MON29K software supports three address spaces:
register, memory, and 110. Data values are always
represented in hex, as are memory and I/O addresses.
Register addresses are represented by decimal
numbers and grouped as general, local, global, special­
purpose, and TLB. Special-purpose and TLB registers
can be accessed by register number or by their
abbreviated mnemonic. The Special-Purpose Registers
section that follows discusses other commands for
accessing these registers.

Memory and I/O addresses are assumed to be real
because MON29K software has no mechanism for
calculating or interpreting virtual addresses. MON29K
software allows specification of user and supervisor
modes and specification of OPT lines with all memory
and I/O addresses.

Displaying Memory and Registers
The Displaycommand shows data for a specified range
of addresses, beginning at a specified address or from
the currently active address. Each line in the display
contains 16 bytes of data. The 16 bytes are displayed
as either bytes, half-words, words, single-precision, or
double-precision floating points, depending on the
command entered.

Floating-point numbers are displayed in decimal format
if the value can be represented accurately within the
digits available. Otherwise, scientific notation, E format,
is used.

Following the numeric data is a string of ASCII
characters in which each character corresponds to one
byte of data. When no ASCII equivalent exists for the
byte of data, a period is displayed. Figure 1 shows
examples of memory and register displays.

Altering Memory and Registers
Memory and register contents can be set, filled, or
moved. The set command allows the contents of
registers and memory to be examined and optionally
changed. One or more values can be set without
examining the previous contents. The fill command sets
a range of register or memory addresses to a specific
value. The move command copies blocks of data from
one range of addresses to another. Blocks in the
destination address range may overlap blocks in the
source address range.

2-19

29K Family Support Tools

Special-Purpose Registers
The special-purpose register commands provide.
another method for accessing the Am29000
microprocessor special-purpose and TLB registers.
These registers are organized into groups:
Unprotected, Protected, TLB Entries, and Coprocessor.
Specific commands are used for examining the
contents of registers in each. group. Within a group,
each register's contents can be examined or changed
explicitly.

The large number of registers necessitates special
register display screens that clearly present each
group's registers. To enhance display efficiency, the
single command X is available. It displays the registers
most likely to be in use: all the global registers, half the
local registers, and all the unprotected registers.
Figures 2 and 3 show examples of special-purpose
register display screens.

#dw LR4, LRll
LR004 61006200 63006400 65006600 67006800
LR008 69006aOO 6b006cOO 6d006eOO 6f007000

DB 100001, 1001FI

In-Line Assembler/Disassembler
An in-line assembler/disassembler allows the user to
examine and change memory using instruction
mnemonics rather than hex values. This improves
readability and minimizes user efforts while entering
changes to instruction memory. The lexical conventions
and statement syntax used are identical to the standard
AMD assembler, ASM29KTM.

I/O Commands
I/O commands provide simple forms of input and output.
They are intended to allow quick examination and
simple control of devices. These commands read or
write a full word of data to or from a real 110 address.

000100001 61 00 62 00 63 00 64 00 65 00 66 00 67 00 68 00 a.b.c.d.e.f.g.h.
000100101 69 00 6a 00 6b 00 6c 00 6d 00 6e 00 6f 00 70 00 i.j.k.l.m.n.o.p.

Figure 1. Register and Memory Display

#xp
CA IP TE TP TU FZ LK RE WM PD PI SM 1M DI DA

cps: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
OPS: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

VAB CFG: PRL VF RV BO CP CD
0000 01 1 0 0 0 1

CHA CHD CHC: CE CNTL CR LS ML ST LA TF TR NN CV
00000000 00000000 0 00 00 0 0 0 0 0 00 0 0

RBP: BF BE BD BC BB BA B9 B8 B7 B6 B5 B4 B3 B2 B1 BO
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TCV TR: OV IN IE TRV PCO PC1 PC2 MMU: PS PID LRU
000000 1 1 0 000000 00010004 00010000 00000000 0 00 0

Figure 2. Protected Register Group Display

2-20

Downloading
Downloading controls the transmission of data from a
remote system to the local memory on the target
system. MON29K software can read COFF binary,
Motorola S3 hex records, and TEK extended hex files.
Each of these formats contains the address and byte
count in-formation for loading memory, so no other
parameters need to be specified.

An optional downloading parameter, <host command>,
can be specified by the user. The <host command> is a
character string that is uploaded by MON29K to the
remote host system. This command can be used to
initiate the host download procedure remotely from the
MON29K monitor terminal.

Execution Control
Execution control commands allow the user to start
program execution, setup through instruction singly or
in groups, breakpoint execution, and specify monitor
commands to be performed when termination occurs.
Following each break in program execution, the
MON29K monitor displays the address and
disassembled contents of the next executable
instruction. In addition, the user can identify registers
and memory he wishes to view after the termination of
each breakpoint or step command. This reduces the
amount of information displayed to the data that is
pertinent to the current debugging session.

MON29K software provides eight "sticky" and two "non­
sticky" breakpoints. Sticky breakpoints remain set until
expressly removed by the user. These are useful when
debugging code within an instruction loop. Non-sticky
breakpoints occur once and are removed automatically.
Non-sticky breakpoints are optional parameters of the
go command. Users can easily display, set, and reset
breakpoint addresses.

#XT
LINE SET 1ST REG 0: VTAG VE SR sw SE

00 0 TROOO 00000 0 0 0 0
00 1 TR064 00000 0 0 0 0
01 0 TR002 00000 0 0 0 0
01 1 TR066 00000 0 0 0 0
02 0 TR004 00000 0 0 0 0
02 1 TR068 00000 0 0 0 0
03 0 TR006 00000 0 0 0 0
03 1 TR070 00000 0 0 0 0

MON29K

Program execution can be stepped one instruction at a
time or a group of instructions at a time. User-defined
displays and the address and contents of the next
executable instruction are displayed after each
instruction step. When stepping by group, these
displays can be delayed either until after the last
instruction in the group is executed, or until after each
instruction is executed. An option allows only register
data that was changed to be displayed. This
automatically informs the user of register changes, thus
eliminating the need to visually monitor register
contents.

Remote Mode
MON29K software supports two serial ports: one to a
terminal and one to a host computer. In normal mode,
either port can be used for initiating commands or for
downloading programs. In remote mode, the two serial
ports are linked together, allowing the terminal to
communicate directly with the host computer.

Miscellaneous Commands
An on-screen help facility, as seen in Figure 4, lists all
MON29K monitor commands. Information about a
specific command is obtained by specifying the
command name as a parameter to the help command.

Am29027 Arithmetic Accelerator Support
MON29K software is fully integrated with the AMD
Am29027 Arithmetic Accelerator. In the same manner
that the Am29000 microprocessor registers can be
accessed, the Am29027 microprocessor registers can
be both displayed and modified using MON29K
software. An example o(an Am29027 microprocessor
register display is shown in Figure 5.

UR UW UE TID 1 : RPN PGM U F
0 0 0 00 000000 0 0 0
0 0 0 00 000000 0 0 0
0 0 0 00 000000 0 0 0
0 0 0 00 000000 0 0 0
0 0 0 00 000000 0 0 0
0 0 0 00 000000 0 0 0
0 0 0 00 000000 0 0 0
0 0 0 00 000000 0 0 0

Figure 3. TLB Entries Group Display

2-21

29K Family Support Tools

Target System Requirements
The Am29000 microprocessor supports separate code
and data spaces and provides no instructions for
moving information between data and instruction
spaces. Because of this. the target system must
provide a mechanism for writing to code space in order
for MON29K monitor to set breakpoints and load
instruction memory.

MON29K software is designed to support a memory.
mapped Z8530 SCC serial device. However. source
code is provided so the user can change the MON29K
monitor to support other devices on a particular target
system.

4/0 H
Help:
H or? to see this display
H<name> help with a named command
?<name> help with a named command

Target Resource Access:
D - Display registers/memory
S - Set registers/memory
F - Fill registers/memory
M - Move registers/memory
A - Assemble in memory
L - List disassembly from mem
I - Input from port
o - Output to port
XU-Display/set unprotected reg

Other Tools
MON29K is a stand-alone product that does not depend
on other software to function. However. MON29K
software is delivered in source form and will need to
be compiled with the AMD HighC29KTM Cross­
Development Toolkit; modification may be necessary if
compiled with other Am29000 microprocessor C
compilers.

XP-Display/set protected reg
XT- Display/set TLB entries
XC- Display/set Arn29027 reg
X - Display key registers
Y - Load a file to memory
V - Save memory to a file

Execution Control:
E - End execution command list
B - Display/Set/Clear breaks
G - Go (start execution)
T - Trace (single/multiple step)

Miscellaneous:
R - Remote mode (talk to host)
N - Normal (change 'normal' char)
Q - Re-initialize monitor

Figure 4. On-Screen Help Facility

4/0 xc
PR MSW LSW PR MSW LSW

RFO: 0 00000000 00000000 RF1: 0 00000000 00000000
RF2: 0 00000000 00000000 RF3: 0 00000000 00000000
RF4: 0 00000000 00000000 RFS: 0 00000000 00000000
RF6: 0 00000000 00000000 RF7: 0 00000000 00000000

R: 00000000 00000000 S: 00000000 00000000
R TEMP: 00000000 00000000 S TEMP: 00000000 00000000

F: 00000000 00000000

IP RP RF RFS PMS QMS TMS SIP SIQ SIT SIF IF CO
INSTR: 0 0 0 0 0 0 0 0 0 0 0 0 00
I TEMP: 0 0 0 0 0 0 0 0 0 0 0 0 00

STATUS: OP IV SV RV ES ZE XE UE VE RE IE FLAGS:FL6 FLS FL4 FL3 FL2 FLl FLO
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

OP HE AD MVTC MATC PLTC ZM XM UM VM RM 1M PL RMS MF MS BU BS SU TR AP SA AFF PFF
0

Figure 5. Am29027 Register Display

2-22

MAINTENANCE AND SUPPORT

Software Warranty
Software programs licensed by AMD are covered by the
warranty and patent indemnity provisions appearing in
AMD's standard software license forms. AMD makes no
warranty, express, statutory, implied, or by description
regarding, the information set forth herein or regarding
the freedom of the described software program from
patent infringement. AMD reserves the right to modify,
change, or discontinue the availability of this software
program at any time and without notice.

Customer Support
Maintenance
All orderable software products include one year of free
Maintenance Support, which starts from the date of
original purchase. Maintenance Support allows
customers to receive technical assistance from highly
trained field and factory personnel, to use a call-in on­
line information system, and to receive product and
documentation updates at no additional charge.
Customers may extend Maintenance Support in one­
year increments. Customers can access support
services by calling the 24-hour, toll-free 29KTM Family
hotline at (800) 2929-AMD (292-9263).

On-Line Call-In Bulletin Board
In addition to the support engineering staff, AMD offers
a 24-hour on-line technical support center. The
customer can call (800) 2929-AMD at any time to query
the system for the latest information on a particular
product: bug fixes, work-arounds, information on up­
coming releases, etc. Messages may be left for the
support engineering staff during "after hours."

MON29K

Training Classes
AMD offers training classes for the 29K Family
products. These classes focus on 29K Family system
design and implementation using the broad range of
AMD software development tools. Customers can
shorten the development process through extensive
hands-on training covering a variety of topics. Contact
your local AMD field office for more information on
training classes.

Fuslon29K Program
AM D encourages broad-based development and
support for the Am29000 microprocessor with the
Fusion29KTM program, a joint-effort program between
AMD and third-party developers. Published twice a
year, the Fusion29K program catalog reveals the
breadth of development and system solutions for the
29K Family, including software generation and debug
tools; hardware development tools; executive, kernel,
and multi-user operating systems; board-level products;
silicon products; and more. For a copy of the Fusion29K
program catalog, call your local AMD field sales office or
the literature center at (800) 222-9323.

2·23

29K Family Support Tools

~~i~!ij&if~----------------------------~--,

XRAV29K
Source-Level Debugger

DISTINCTIVE CHARACTERISTICS

• Supports symbolic debugging with C ex­
pressions and statements for Am29000'·
microprocessor development environments

• Controls and examines program execution In
high-level and assembly-level modes

• Provides Interface and start-up code for the
Am29000 microprocessor, which allows use of
the MON29K'· Target-Resident Monitor,
ADAPT29K'· Advanced Development and
Protoyplng Tool and PCEB29K'" PC Execution
Board

• Uses window-oriented display to segregate
debug Information In meaningful regions

GENERAL DESCRIPTION

AMD's XRAY29K'· source-level debugger provides
engineers with a multiwindow interactive environment
for debugging high-level and assembly-level software
programs for Am29000"based systems. XRAY29K soft­
ware resides on IBM8 ATs8 and compatibles, and Sun
Workstations8. Program execution is monitored and
controlled in high-level source or assembly language,
from the host system through the PCEB29K execution
board, MON29K monitor or ADAPT29K debugger on
the target system. Control is extensive, including de­
bugger commands for seHing breakpoints, single step­
ping through the program, and examining or altering
register and memory contents.

2·24

Advanced
Micro

Devices

• Allows single-step execution and placement of
simple and complex breakpoints

• Supports custom screens and vlewports, and
one-key command functions

• Provides command, breakpoint, and viewport
macros

• Supports automatic test sequences by proces­
sing command flies and logging output to a
file

• Includes on-line help, comprehensive docu­
mentation, and a sample debug session

XRAY29K software allows examination and modifica­
tion of a variable's contents and computation of high­
level and assembly language expression values. Sym­
bols can be added, displayed, and deleted in the sym­
bol table.

The XRAY29K product includes:

II XRAY29K Software

• Documentation
• Install testing program

• Start-up code for ADAPT29K or targets using
MON29K

Publication # 10626 Rev. C Amendment /0

Issue Date: September 1989

ORDERING INFORMATION

Licensing

The XRAY29K Source-Level Debugger is licensed
through AMD's Standard End-User Software License
Agreement (Boxtop). This license does not require a
signature; breaking the seal on the product package in­
dicates acceptance of the license terms. If changes are
required to the license agreement, they can be ar­
ranged through your AMD sales representative. Many
software products require the customer to provide a
CPU ID number when ordering the product. Contact
your sales representative if this information is not avail­
able at the time of purchase.

XRAY29K

Order Numbers

The XRA Y29K Source-Level Debugger is available for
several different environments. Documentation can be
ordered separately. The order number (Valid Combina­
tion) is formed as a combination of:

• Product Family

• Product Category

• Product Identifier

• License Type

• Host I as Type

• Media Type

AM29000 SWI XRY B ## ##
T
Media Type
08 = 0.25" Sun cartridge tape, TAR format
14 = 3.5" DSHD floppies
21 = 9-track, 1600 BPI mag tape, TAR format
24 = 5.25" DSHD floppies

Host I as Type
07 = Sun-3
10 = PC-AT

B = Boxtop
S = Signed
"-" = Not Applicable

Product Identifier
XRY= XRAY29K Source-Level Debugger

'----------- Product Category
SWI = Software Product
DCI = Documentation Product
MN = Maintenance Agreement

Product Family
Am29000 Microprocessor

2-25

29K Family Support Tools

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD
sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Order Number Product

AM29000SWIXRYB0708 XRAY29K Source-Level Debugger
AM29000SWIXRYS0708 XRAY29K Source-Level Debugger
AM29000SWIXRYB0721 XRAY29K Source-Level Debugger
AM29000SWIXRYS0721 XRAY29K Source-Level Debugger
AM29000SWIXRYB 1014 XRAY29K Source-Level Debugger
AM29000SWIXRYS1014 XRAY29K Source-Level Debugger
AM29000SWIXRYB1024 XRAY29K Source-Level Debugger
AM29000SWIXRYS 1024 XRAY29K Source-Level Debugger
AM29000DCIXRY-99 XRAY29K Documentation
AM29000MAlXRY -07 XRAY29K Maintenance
AM29000MAlXRY -10 XRA Y29K Maintenance

FUNCTIONAL DESCRIPTION

XRAY29K software aids the control and examination of
program execution, and can set and examine memory
and register contents, set and remove breakpoints in
either high-level source or assembly language code,
and display and alter the microprocessor state. In addi­
tion to symbolic debugging, the XRAY29K debugger's
special features include help screens, macro capabili­
ties, command files, conditional commands, and
debugging through ports. For example, in batch mode,
command files can issue directives to XRAY29K soft­
ware to implement automated test sequences.

XRAY29K software functions in either high-level or as­
sembly-level mode. In high-level mode, an application
is debugged using C language source lines to control
and monitor execution. C variables and expressions
replace numeric addresses for memory access. Code
can be viewed by line number or procedure name. In
assembly-level mode, an application is debugged using
assembly language statements. In addition to all the ca­
pabilities available in high-level mode, assembly-level
mode includes machine-level register and status bit ma­
nipulation. For each mode, the monitor's screen is parti­
tioned in areas called viewports, where information is
displayed in meaningful regions and is easy to identify.

2-26

Host Media

Sun-3 0.25" cartridge tape, TAR format
Sun-3 0.25" cartridge tape, TAR format
Sun-3 9-track, 1600 BPI tape,TAR format
Sun-3 9-track, 1600 BPI tape,TAR format
PC-AT 3.5" DSHD floppies
PC-AT 3.5" DSHD floppies
PC-AT 5.25" DSHD floppies
PC-AT 5.25" DSHD floppies
UNIX Not Media Specific
Sun-3 Not Media Specific
PC-AT Not Media Specific

Viewport Commands

When the XRAY29K debugger executes, the screen is
divided in areas called viewports. The number of view­
ports and the information shown in each depends on
whether the object module was written in a high-level
language (high-level mode) or assembly language (as­
sembly-level mode).

The standard screen for high-level mode has four view­
ports: data, trace, code, and command. This screen is
displayed when an object module generated by a high­
level source program is executed. The standard screen
for assembly-level mode has five viewports: data, stack,
disassembled code, Am29000 microprocessor regis­
ters, and command. This screen is displayed when an
object module generated by an assembly language
program is executed. Figures 1 and 2 show examples of
these screens.

Viewport commands control the way information is dis­
played on the screen. Changing a viewport's size, color,
and cursor position as well as adding and deleting a
custom viewport are viewport commands. In addition,
viewports can be cleared of data, and macros can be
associated with them. Frequently used viewport com­
mands are associated with function keys for easy
access.

vactive
vclear
vclose

vmacro
vopen

vscreen
vsetc
zoom

Activate a viewport
Clear data from a viewport
Remove a user-defined viewport or
screen
Attach a macro to a viewport
Create a screen/create or resize a
viewport
Activate a screen
Set a viewport's cursor position

Increase or decrease viewport size

Macro Commands

XRAY29K software supports macros to create and exe­
cute complex command procedures, such as testing
program variables, and to conditionally execute other
sets of commands. Macros can be defined and used
any time during a debugging session and can include
comments to explain its function. The macro definition
may contain parameters that can be changed for each
macro call.

Used as commands or in expressions, macros can be
attached to a breakpoint to create complex breakpoint
condition testing, or to a custom viewport to control data
display. Complex initialization conditions can be repre­
sented as a sequence of macro commands in a com­
mand file. Statements to increment variables, perform
loops and conditions, and control target program flow
can be part of a macro.

XRAY29K software provides a set of macro flow control
statements. These statements are similar to C condi­
tional statements (e.g., IF, ELSE, WHILE, DO, FOR,
RETURN and CONTINUE). To create a macro, the de­
fine command is used. After macro creation, the show
command allows the macro's source to be viewed.

XRAY29K

Commands to attach a macro to a viewport are part of
the viewport command set. Commands that attach a
macro to a breakpoint are part of the execution and
breakpoint command set.

define Create a macro
show Display a macro source

Debugger Commands

Commands, whether in high-level source or assembly
language mode, can be entered interactively from the
keyboard in the command viewport or placed in a com­
mand file and accessed as include or batch files. Some
commands take qualifiers that provide additional infor­
mation on how to execute the command and parame­
ters that describe an object and communicate ad­
dresses or file specifications.

Breakpoints and Execution Commands
A breakpoint causes program execution to halt or
causes the XRAY29K debugger to take some action,
such as incrementing a counter each time the target
program attempts to execute an instruction at a speci­
fied memory location. A macro can be associated with
the breakpoint to control execution. A special break­
point viewport shows breakpoint information during the
debugging session, including the breakpoint identifica­
tion number. Automatically assigned by XRAY29K soft­
ware, the breakpoint number can reference or clear a
breakpoint.

Execution commands start program execution or
re-sume execution after explicit suspension. The pro­
gram can be instructed to continue, single step, or set
temporary instruction breakpOints. Single stepping is
performed by C source line in high-level mode and
microprocessor instruction in assembly-level mode.
In addition, for each step, a macro can be invoked.

-----Data------. Trace­

Routine Traceback
Information

Monitored Data

.----------- Code -----------,

Source Code

--------Status Line -------­

.----------Command ---------,

Debugger Commands

Figure 1. Standard High-Level Screen

2-27

29K Family Support Tools

Data ~Stack-

I I
Monitored Data Stack Contents

Code ,--Registers-

Disassembled Code
Am29000

Microprocessor
Registers

Status Line

Command

Debugger Commands

Figure 2. Standard Assembly-Level Screen

breakinstruction
clear
go

gostep

step

stepover

Set an instruction breakpoint
Clear a breakpoint
Start or continue program
execution
Execute a macro after each
instruction step
Execute a number of instructions
or lines
Single step, but execute through
procedures

Display Commands

Display commands write program information to a view­
port or file about memory, expressions, or procedures.
C source code, for example, can be listed starting at a
particular line number or for a named procedure. Any
active procedure-a procedure on the stack---<:an have
its values displayed.

Memory contents can be dumped in both hexadecimal
and ASCII text format, and, when in assembly-level
mode, memory can be disassembled and displayed in
the code viewport. Variables can be monitored and
examined in the data viewport as the target program
executes. An expression or expression range can be
displayed in the command viewport according to type.

For type conversions, scaling, and output positioning,
display commands can open a file or device and then
write formatted output to it. Several format options are
provided, similar in function to those provided to C in
standard runtime libraries.

disassemble. Display disassembled memory
(assembly mode)

dump Display memory contents

2-28

expand

find
fopen
fprintf

list
monitor
next
nomonitor

printf

printvalue

Display a procedure's local
variables
Search for a string
Open a file or device for writing
Print formatted output to a
viewport
Display C source code
Monitor expressions
Find a string's next occurrence
Discontinue monitoring an
expression

Print formatted output to command
viewport
Print a variable's value

Memory and Register Commands

To help track down problems and test fixes, memory
and registers can be examined and altered. Two blocks
of memory, for example, can be compared for similari­
ties or differences to check for a corrupt RAM image.
Memory and registers can be modified temporarily to
patch programs and continue testing during a debug­
ging session. Expression evaluation is supported dur­
ing searching and modification.

compare Compare two blocks of memory
copy Copy a memory block
fill Fill a memory block with values
nomen Prevent access to a memory location
search Search a memory block for a value

setmem Change a memory address
setreg Change a register's contents
test Examine memory area for invalid values

Symbol Commands
A symbol is a sequence of characters used to represent
arithmetic values, memory addresses, and C variables.
XRAY29K software knows about two types of symbols:
program and debugger. Program symbols are symbolic
data names or program labels that were defined during
the source program's creation. Debugger symbols ma­
nipulate and direct the flow of the debugger and are
specified by the user during a debugging session.

Symbol commands encompass both types of symbols.
Debugger symbols can be added to the debugger sym­
bol table, and then displayed or removed. Information
about program symbols, such as name, data type, stor­
age class, and memory location, can be displayed.

add Create a symbol
context Show the current context

delete Delete a symbol from the symbol table
printsysbols Display symbol information
scope Specify current module and procedure

. scope

Utility Commands
Command files are commonly used to read macro defi­
nitions from a file or to change viewports. After a com­
mand file has been created, it may be included in a
startup file and executed as if entered at the keyboard.
When an include file error is encountered, XRAY29K
software can be directed to quit, abort, or continue. A log
of commands entered at the keyboard can be retained
and then subsequently used as a command file. If
XRA Y29K software display and execution defaults are
changed, they can be saved in a new startup file.
All these operations are accessed through utility
commands.

Other utility commands control the microprocessor's
state. Reset simulates a microprocessor reset. Restart
restores the microprocessor to its initial state without
initializing memory or restarting the program, and it sets
the program counter to the original starting address
from the absolute file but maintains breakpoint declara­
tions. In addition, the user can temporarily change the
default values for debugger startup options, such as
enabling procedure-level tracing in the trace viewport
and intermixing C source code with assembly code in
the code viewport.

XRAY29K software automatically selects the correct de­
bugging mode-based on whether the object module was
created by the high-level compiler or the assembler.
When a program has both kinds of object modules, a
utility command toggles between the two modes.

XRAY29K software includes a search facility that can
find information in a source file and display the value of
an expression in decimal, hexadecimal or ASCII format.

XRAY29K

On-line help is provided for all debugger commands,
command arguments, and function keys, and includes a
selection menu.

alias Replace the name of the command
cexpression Calculate an expression's value
error Set include file error handling
help Display on-line help screen
history Recall a specifc command
include Read in and process a command file
journal Save all viewport commands and data

to a file
log

mode

option
pause
reset
restart
startup

Record debugger commands and
errors in a file
Select debugging mode (high or
assembly)
Set debugger options for this session
Pause simulation
Simulate microprocessor reset
Reset the program starting address
Save the default startup options

Session Control
The debugger session can be ended at any time or can
be paused while the host operating system environment
is used and then entered again. This area also controls
which object modules are loaded for debugging.

host Temporarily enter the host environment

load Load an object module for debugging

quit End a debugging session

System Requirements

The XRAY29K software resides on the host system and
presents the user with a friendly, high-level interface to
the Am29000 microprocessor-based system. The soft­
ware communicates with the host system through a se­
rial interface to the ADAPT29K unit or a target board
running the MON29K target-resident debug monitor, or
a bus interface to the PCEB29K personal computer
execution board. The MON29K software and the
ADAPT29K unit actually perform all the Am29000
microprocessor memory and register reads and writes
requested by the user through XRAY29K debugger
commands.

Before the XRAY29K debugger can be used, an abso­
lute object module must be created and downloaded
into the target system RAM memory. The object module
is created using AM D's HighC29K compiler or ASM29K
assembler. Once generated, the object module is
loaded into target system RAM memory by invoking the
XRAY29K software Load command. Figure 3 illustrates
the AMD development tool chain.

2-29

29K Family Support Tools

Software Warranty
Software programs licensed by AMD are covered by the
warranty and patent indemnity provisions appearing in
AMD's standard software license forms. AMD makes no
warranty, express, statutory, implied, or by description
regarding the information set forth herein or regarding
the freedom of the described software program from
patent infringement. AMD reserves the right to modify,
change or discontinue the availability of this software
program at any time and without notice.

Customer Support
Maintenance
All orderable software products include one year of free
Maintenance Support, which starts from the date of
original purchase. Maintenance Support allows custom­
ers to receive technical assistance from highly trained
field and factory personnel, to use a call-in on-line infor­
mation system and to receive product and documenta­
tion updates at no additional charge. Customers may
extend Maintenance Support in one-year increments.
Customers can access support services by calling the
24-hour, toll-free 29K'· Family hotline at (800) 2929-
AMD (292-9263).

On-Line Call-In Bulletin Board
In addition to the support engineering staff, AMD offers
a 24-hour on-line technical support center. A customer

(so~ce)1 HighC29K

can call (800) 2929-AMD at any time to query the
system for the latest information on a particular product:
bug fixes, work-arounds, information on upcoming re­
leases, etc. Messages may be left for the support engi­
neering staff during "after hours."

Training Classes
AMD offers training classes for the 29K Family prod­
ucts. These classes focus on 29K Family system design
and implementation using the broad range of AMD
software development tools. Customers can shorten
the development process through extensive hands-on
training covering a variety of topics. Contact your local
AMD field sales office for more information on training
classes.

Fuslon29K Program
AMD encourages broad-based development and sup­
port for the Am29000 microprocessor with the
Fusion29K'· program, a joint-effort program between
AMD and third-party developers. Published twice a
year, the Fusion29K program catalog reveals the
breadth of development and system solutions for
the 29K Family, including software generation and
debug tools; hardware development tools; executive,
kernel and multi-user operating systems; board-level
products; silicon products; and more. For a copy of
the Fusion29K program catalog, call your local
AMD field sales office or the AMD literature center at
(800) 222-9323.

or PCEB29K

Figure 3. AMD Development Tool Chain

2-30

Table of Contents

CHAPTER 3
29K Family Application Notes

Am29000 SYSCLK Driving ... 3-3
Connected Am29000 Instruction/Data Buses ... 3-5
Byte-Writable Memories for the Am29000 .. 3-8
Am29027 Hardware Interface ... 3-10
When is Interleaved Memory with the Am29000 Unnecessary? .. 3-14
Implementation of an Am29000 Stack Cache ... : .. 3-20
Introduction to the Am29000 Development Tools ... 3-42
Preparing PROMs Using the Am29000 Development Tools .. 3-81
Programming Standalone Am29000 Systems .. 3-107
Host Interface (HIF) v1.0 Specification ... 3-163

Am29000 SYSCLK Driving
Application Note
by Tom Crawford

INTRODUCTION

The purpose of this note is to describe the options of
connecting the SYSCLK pin in an Am29000™ system.

GENERAL CONSIDERATIONS

SYSCLK in any Am29000 system is going to be a high­
frequency, heavily loaded signal with strict duty factor
requirements. The most important considerations are
DC levels, capacitive loading, rise/fall times, high/low
times, and transmission line effects.

There are basically two options. One may make
SYSCLK a source or one may make SYSCLK a desti­
nation.

SYSCLK AS A SOURCE

The easiest (and the recommended) way to connect the
clocks in the system is to have the Am29000 generate
and drive SYSCLK. Figure 1 shows the connections.

In this configuration, PWRCLK (pin P3) is connected
directly to V cc' This is a power pin; it must not be just
pulled up through a resistor.

Two times the desired operating frequency is injected
into INCLK. This is a TTL signal and the duty factor is
unimportant so long as it meets the minimum High time
and Low time parameters (see the Am29000 data
sheet, order# 09075).

SYSCLK is an output with CMOS levels (it swings from
nearly ground to nearly Vee)' All the SYSCLK relative­
timing parameters are measured with respect to
SYSCLK at 1.5 volts, the normal TTL ''trip point."

Since SYSCLK must have fairly fast rise and fall times
and may be physically long, it may behave as a trans­
mission line (i.e., exhibit reflections). These effects can
be minimized using a few precautions.

If SYSCLK goes to more than one or, at most, two
places on the board, separate traces to each destina­
tion should be used. This minimizes the length of each
line and minimizes the capacitive loading on each line.
Series resistors at the source (at the Am29000) for each
line will reduce the edge rates. Using Schottky or Fast
logic is often preferable to CMOS logic, which lacks
input diodes to ground.

Publication /I Rev. Amendment Issue Date
11024 A 10 11/89

Before resorting to parallel termination, one should con­
sider carefully the effects of relatively high DC loading
on the buffer V OH and VOL'

The prudent engineer will analyze his SYSCLK signal
with SPICE or a similar CAD package. This permits a
prediction of the actual behavior of the circuit, which is
essentially impossible to obtain without modeling.

At this time, there is no guaranteed relationship be­
tween the input on INCLK and the output on SYSCLK.
Information on this relationship will be included in the
Am29000 Data Sheet (order #09075).

SYSCLK AS A DESTINATION

SYSCLK can be driven externally. This is typically done
to provide an external signal with a known phase rela­
tionship to SYSCLK, perhaps at twice the frequency.
Figure 2 shows the connections.

PWRCLK and INCLK must both be connected directly
to ground.

SYSCLK is an input and must be driven with a CMOS­
level clock at the operating frequency. The fact that sig­
nals are generated from both edges of SYSCLK dic­
tates that it be very nearly a perfect square wave (from
1.5 V to 1.5 V). Perhaps the best way to generate such
a signal is to begin with one at 2X frequency and divide
it by two with a flip-flop. The result is buffered with one
or more pieces of a CMOS buffer. A typical clock gen­
erator is shown in Figure 3.

2X Clock

PWRCLK

INCLK

Am29000

SYSCLK .---__ ~
to external
logic

Figure 1. Source

© 1989 Advanced Micro Devices, Inc.

3-3

29K Family Application Notes

GND

CMOS Clock

PWRCLK

INCLK

SYSCLK

Am29000

Figure 2. Destination

The TTL oscillator operates at twice the required
frequency. Since the 74AC74 is edge triggered, it
responds only to the Low-to-High transition of the
oscillator. Its output is nominally a square wave
(nominally because the tPHL may not be the same as
tPLH).

The buffer is more interesting. Clearly, it has to be
CMOS since SYSCLK is a CMOS input. It has to be
characterized to drive substantial capacitance since the
Am29000 has an input capacitance of 90 pF. One can
put multiple elements in parallel as long as they are in
the same package. In addition, one can drive different
portions of the load with different sections of the device.

D Q 1----+-1

74'AC74

OSC Q

As long as they are in the same package and are simi­
larly loaded, they will exhibit similar delays. In some
design groups, putting buffers in parallel is a prohibited
activity, since it is sometimes difficult to determine when
one of the buffers has failed. Local design rules should
always prevail.

Take, for example, the lOT 74FCT240A. With light DC
loading, the output swings within 0.2 V of the power
supply. At 50-pF loading, the propagation delay is
1.5 ns minimum and 4.8 ns maximum. Putting two
elements in parallel will solve the capacitive-loading
situation, if it really needs to be solved. The actual
waveforms should be examined before adding another
buffer. The lOT data book does not distinguish between
tPHL and tPLH. The device should be characterized at
the actual expected loading, temperature, and voltage
ranges to determine the actual switching char­
acteristics.

Take, for a second example, the 74AC04. With light DC
loading, the output swings within 0.1 V of the power
supply. The guaranteed propagation delays for the
74ACOO are 1.0 ns to 7.0 ns; we expect an AC04 to be
the same. In fact, a device actually driving an Am29000
has measured propagation delays of tPLH = 4 and
tPHL = 5. Two elements in parallel appear to provide a
somewhat cleaner waveform.

-...r '. ..~ to Am29000

,,'---- to Am29027™

one half
-...r', .--. of board

other half
.....,.-, -. of board

early SYSCLK

Figure 3. Clock Generator

3-4

Connected Am29000 Instruction/Data Buses
Application Note
by Tom Crawford

The use of the Am29000™ has been proposed in a sys­
tem where the instruction and data buses are con­
nected directly to each other and to a single memory.

Am29000

ADRS Data -
Instruction

t

-- Static RAM ~ -

Figure 1. Block Diagram

If the memory is very fast (single cycle), then pipe lined
or burst accesses never need to take place. Every ac­
cess is a simple one-cycle access. Data writes would

have to be two cycles (because BINV is valid so late).
Presumably this would be either a fairly high-end sys­
tem with lots of very fast memory or a cache system with
a modest amount of SRAM backed up by lots of DRAM.

This depends on the availability of very fast static
RAMs. The equation below shows how to calculate the
required access time of the RAMs.

tMAX = tClK - (para6 + para9A)

For a 25-MHz device running at various clock rates:

FREQ tCLK para6 para9A tMAX

25.00 40 14 6 20
22.22 45 14 6 25
20.00 50 14 6 30
18.18 55 14 6 35

An attempt to actually mechanize a system like this
uncovered a problem. When the Am29000 follows an
instruction read with a data write, there is a guaranteed
"bus crash."

Parameter 10 requires that the data remain on the bus
for 2 ns after the rising edge of SYSClK; in fact, RAM
disable times are typically 15 ns. This means there is no
known method to get the instruction off the instruction
bus until as long as 15 ns after the clock rises. Addition­
ally, in the best possible case, a PAL<!\) delay must be
added to allow for the use of SYSClK to turn off the

tCLK --------------~

para 9A

ADRS ...

tMAX--~

Data

Figure 2. RAM Timing

Publication' Rev. Amendment Issue Date
11637 A 10 11/89 e 1989 Advanced Micro Devices. Inc.

3·5

29K Family Application Notes

tCLK ------~

para 6

ADRS ...

Figure 3. Bus Crash.

buffers. Transceivers have a similar problem and, in Now the block diagram looks like this:
addition, deduct from the allowable access time.

Parameter 6A specifies the maximum delay of SYSCLK
to write data valid. There is no minimum and, in prac­
tice, the buffers come out of Hi-Z with the rising edge of
SYSCLK. Since the instruction bus and data bus are
tied together, there is an unavoidable collision. The
memory continues to drive the common bus after the
Am29000 begins to drive it.

This problem does not occur in the case of data read
followed by a data write. The Am29000 is guaranteed to
insert an unused cycle. This provides adequate time for
the memory to get off the data bus.

A way to prevent this from occurring is to place a set of
transceivers between the data bus and the instruction
bus.

3-6

.

Am29000

ADRS Data -
Instruction

t
Static RAM

Figure 4. Buffers Added

I Buffers I

..

The transceivers between the data bus and the instruc­
tion bus will isolate the Am29000 data drivers from the
RAM drivers long enough to allow the RAM drivers to go
into high impedance. The transceivers are then turned
on, pointed in the correct direction, and the data can be
driven into the array.

The instruction path has no additional delays (other
than the added capacitance of the transceivers). It can
still do single-cycle instruction fetches. The delay im­
posed in the the data path certainly dictates a two-cycle

Connected Am29000 Instruction/Data Buses

load, unless the memory is substantially faster than
would otherwise be necessary for instruction fetches.
Stores are not affected since the BINV comes out too
late to allow single-cycle operations anyway.

The buses may also be required to be connected to­
gether when the memory must be common because of
software requirements. With a slow memory, the access
time added by the insertion of a buffer is a much smaller
percentage of the total access time.

3-7

Byte-Writable Memories For The Am29000
Application Note
by Tom Crawford

OVERVIEW

This document describes how to implement a byte­
write memory design for an Advanced Micro Devices
Am29000™-based system. While this document will
concentrate on the specific case of unsigned bytes, an
analogous case exists with signed bytes and signed
and unsigned halfwords.

There are three important benefits that accrue from in­
corporating a partial write capability.

Assembly code can run faster

The code to perform a byte write currently generated by
the compilers and recommended for assembly-lan­
guage programmers looks like Figure 1.

A substantially faster way to do the same thing (given
that the memory can write single bytes) looks like
Figure 2.

This is faster since the initial LOAD is avoided. In addi­
tion, the compiler is more likely to be able to ''bury'' an
isolated STORE by scheduling than both a LOAD and a
STORE.

Future complier releases will support byte-write
memories

AMD is enhancing our compiler to optionally generate
the byte writable code shown above. To benefit from
these enhancements, an application's memory must be
able to support byte writes.

load O,l7,temp,addr

inbyte temp, temp, data
store O,l7,temp,addr

Future revisions of silicon will support byte writes

Future Am29000 CPU products will be designed to di­
rectly support byte writes. One approach would involve
having the processor replicate the byte in question onto
all byte positions. Analogous logic would have the pro­
cessor pick the correct byte during a LOAD. The system
design would have to be able to execute byte writes to
take advantage of the saved cycle.

The AMD Binary Compatibility Standard (BCS)

AMD's BCS will assume a memory that has byte-write
capability. Therefore, if binary compatibility is important
to your application, your memory will need to support
byte writes.

WHAT MEMORY DESIGNERS MUST DO

The bottom line to support byte-write capability is, "you
have to be able to suppress writes to one or more
bytes." This has two implications. The first is that some
control signal or signals must be generated and distrib­
uted by byte. The second is that you must choose be­
tween suppressing the write by completely suppressing
the memory cycle or by turning it into some kind of cycle
other than a write.

i load full word into register,
iset BP to correct address. Oxll
i in the CNTL field selects SB and
iOPT bits corresponding to byte

i insert byte into proper position
i store full word into memory

; (not byte writable)

Figure 1. Complier-Generated Byte-Write Code

mtsrim bp, addr
inbytetemp,data,data

store 0, l7 , temp, addr

; put address into BP
; insert byte into proper data

;position and low order byte
;write a single byte. The external

;memory looks at OPT, Ax bits

Figure 2. Streamlined Byte-Write Code

Publication /I Rev. Amendment Issue Date
11636 A 10 11/89 © 1989 Advanced Micro Devices, Inc.

3-8

There are four distinguishable memory configurations,
each of which can be treated in its own way. Whether
the devices have an explicit output enable really deter­
mines one's choices in selecting an alternative cycle
type. If there is not explicit output enable and the 1/0
pins are common or tied together, one must not allow a
"complete" read or there will be a bus crash.

Static RAMs with explicit output enables

The lOT 32K by 8 CMOS device is an example of a
static RAM with an explicit output enable. In the case of
these devices one can arrange to suppress either the I
Chip Select (the device will not cycle at all) or the IWrite
Enable and the 10utput Enable (the device will internally
execute a read but will not come out of high-imped­
ance).

Note that one cannot activate both IChip Select and
lOut put Enable to these devices without having them
drive their data pins.

StatiC RAMs without explicit output enables

The Toshiba 5561 64K by 1 CMOS device is an ex­
ample of a static RAM without explicit output enables. If
they get IChip Enable, they will either drive their data­
out pins or execute a write, depending on the state of
Write Enable.

If their data inputs are connected to their data outputs
(typical when connected to a bi-directional bus), IChip
Enable must be suppressed.

Byte-Writable Memories for Am29000

Video DRAMs (VDRAMs) with explicit output
enable

VDRAMs allow more choice than any other technology.
IRAS can be suppressed, preventing the cycle alto­
gether. ICAS can be suppressed, turning the write into a
RAS-only refresh cycle. /WE (and IDT-OE) can be sup­
pressed, turning the cycle into an internal read. Of the
three, I much prefer suppressing ICAS. First, I like the
elegance of generating a RAS-only refresh, and sec­
ond, ICAS is easier to suppress because it is generated
later in the cycle than IRAS or /WE, as shown in the
code below.

The equations in Figure 3 allow for a Byte-Order (littlel
big endian)t input that effectively is XORed with the ad­
dress bits. This signal is not a pin on the Am29000. It is
a bit in the configuration register. If this bit always is
programmed to the same value in a given system, one
implements only the appropriate min-terms. If the signal
is dynamic in a system, a copy must be kept up-to-date
in an external register.

DRAMs without explicit output enable

256K or 1 Meg (by one) DRAMs do not have an explicit
output enable. Rather, if ICAS falls with IRAS low and
IWE high, the device will enable its output buffers. This
means having the option of suppressing the cycle alto­
gether by suppressing IRAS, or turning it into a RAS­
only refresh by suppressing ICAS. 256K or 1 Meg by
four DRAMs have an explicit output enable. This makes
them similar to the VRAM case.

!CS3I = !OPTI & !OPTO & CAS_TIME /*Word*/
t !OPTI & OPTO & !BO & !AI & !AO & CAS TIME
t ! OPTl & OPTO & BO & Al & AD & CAS-TIME
t OPTI & !OPTO & !BO & !AI & !AO & CAS-TIME
t OPTI & ! OPTO & BO & Al & ! AO & CAS-TIME

!CS23 =! OPTI & ! OPTO & CAS-TIME
t !OPTl & OPTO & !BO & !AI & AO & CAS-TIME
t ! OPTI & OPTO & BO & Al & ! AO & CAS-TIME
It OPTl· & ! OPTO & ! BO & ! Al & ! AO & CAS-TIME
It OPTI & ! OPTO & BO & Al & ! AO & CAS-TIME

!CS15 = !OPTI & !OPTO & CAS-TIME
It ! OPTI & OPTO & ! BO & Al & ! AO & CAS-TIME
It !OPTI & OPTO & BO & !AI & AO & CAS-TIME
t OPTI & !OPTO & !BO & Al & !AO & CAS-TIME
t OPTI & !OPTO & BO & !AI & AD & CAS-TIME

!CS07 !OPTI & !OPTO & CAS-TIME
t ! OPTI & OPTO & ! BO & Al & AO & CAS-TIME
t !OPTl & OPTO & BO & !AI & !AO & CAS-TIME
t OPTl & ! OPTO & ! BO & Al & ! AO & CAS-TIME
t OPTI & ! OPTO & BO & ! Al & AO & CAS=TIME

Figure 3. ICAS-Suppresslng Code

/*Byte, Big* /
/*Byte, Little*/
/*HW, Big*/
/*HW, Little* /
/*Word*/
/*Byte, Big* /
/*Byte, Little*/
/*HW, Big*/
/*HW, Little* /
/*Word*/
/*Byte, Big* /
/*Byte, Little* /
/*HW, Big*/
/*HW, Little* /
/*Word*/
/*Byte, Big* /
/*Byte, Little*/
/*HW, Big*/
/*HW, Little* /

t Note that all AMD 29K Family software uses big endian byte ordering only. The little endian min-terms are shown for completeness only. Always

use big endian.

3-9

Am29027 Hardware Interface
Application Note
by Bob Perlman

INTRODUCTION

The Am29027TM arithmetic accelerator interfaces simply
and efficiently to the Am29000™ streamlined instruction
processor. The interface is designed to run at speeds in
excess of 25 MHz; so care must be taken when connect­
ing the two parts on a circuit board.

This application note describes the rules to use (and the
hazards to be aware of) when designing a 29KTM system
containing the Am29027.

PROCESSOR/ACCELERATOR
INTERCONNECT

A diagram of an Am29000/Am29027 interconnect is
shown in Figure 1. The interconnect contains the follow-
ing signals: '

Control slg nals-Eleven signals control the transfer of
data and instructions between the Am29000 and the
Am29027. Eight ofthese signals, Rm, DREO, DREOTo,
DREOT1, OPT2-0PTo, and BINV, are generated by the
Am29000. These specify the accelerator transaction
requested b~ Am29000. The three remaining sig­
nals, CDA, DRDY, and DERR, are generated by the
Am29027. The CDA signal indicates whether the
Am29027 is ready to accept new instructions or oper­
ands. The DRDY and DERR signals indicate that data
requested by the Am29000 is available on the Am29027
output port or that an error has occurred, respectively.

Data signals-The Am29027 Rand S data input ports
(R31-Ro and S31-50), instruction port (131-lo), and data
output port (F31-Fo) are connected to the Am29000
address (Ao-A31) and data (Do-D31) buses. The

Publication. Rev. Amendment Issue Date:
12215 A 10 11/89

3-10

Am29000 uses its address and data buses to transfer
instructions and operands to the Am29027, and uses its
data port to read results from the Am29027.

Clock-The Am29027 ClK input is connected to the
Am29027 SYSClK pin. The SYSClK signal can be
generated in two ways: internal to the Am29000, by
applying a 2X clock signal to the Am29000 INClK input
(as shown in Figure 1); or externally, by applying a clock
signal to the Am29000 SYSClK pin.

System reset-The system reset signal is applied to
the Am29000 and Am29027 RESET inputs.

Most interconnect signals are direct connections. The
only exceptions are signals DRDY and DERR, which
must be passed through negative-logic OR gates (i.e.,
through conventional AND gates). These gates form
the logical OR of the DRDY and DERR signals of all
resources on the Am29000 processor channel. The
33kn resistors shown connected to the CDA, DRDY,
and DERR signals leaving the Am29027 need be pre­
sent only if the system sometimes is operated without
the Am29027.

One interconnection is optional. The Am29027 EXCP
signal, which indicates the presence of an unmasked
arithmetic exception created by an accelerator opera­
tion, can be connected to an Am29000 trap or interrupt
input. This connection is necessary only if the system
designer desires an imprecise processor interrupt in the
presence of an accelerator exception. The Am29027
contains internal mechanisms for recovering from
errors; these mechanisms make the use of EXCP
unnecessary in most systems.

© 1989 Advanced Micro Devices, Inc.

Am29027 Hardware Interface

Am29000
System RESEr

Am29027

RESET ... I ... RESET -
RiW -- RiW ...

DREQ o REO -
OREOT, - OREOT, ...-

OREOTo
.... OREOTo ...

OPT2
... OPT2 ...

OPT, OPT, ...-

OPTo -- OPTo ...
BINV ... BINV ...-

COA - COA
4 33Kn

-
DROY OROY -- 4 33 Kn Vee

OERR DEAR
4 33Kn Vee

Interrupt
~--------------------- EXCP or Trap

A3,-Ao ...
S3'-SO po

0 3,-00
.. ... R3,-Ro OE

~l I - 13,-1 0 SLAVE .. -
F3,-Fo MSERR-

SYSCLK ... CLK

INCLK

i S stem Clock y 12215~1

Figure 1. Am29000/Am29027 Hardware Interconnect

3-11

29K Family Application Notes

AN ALTERNATE INTERCONNECT

In the interconnect shown in Figure 1, three Am29027
ports are connected to the Am29000 data bus: input
data port A, output data port F, and the instruction port.
This places considerable capacitive loading on the
Am29000 data bus: 12 pF each for input data port A and
the instruction port, and 20 pF for output port F, for a
total of 44 pF.

The Am29000 data bus can drive an 80-pF load without
derating. In systems where the 44-pF load presented to
the data bus by an Am29027 is excessive, an alternate
interconnect can be used, as shown in Figure 2. In this
configuration, the Am29027 instruction bus is con­
nected to the Am29000 address bus, rather than to the
data bus. This interconnect more evenly distributes
the Am29027 capacitive load between the Am29000
address and data buses. In this configuration the
address bus has a load of 24 pF, the data bus 32 pF.

Am29000

A3,-Ao

03'-00 --
I

i

The alternate interconnect, shown in Figure 2, is soft­
ware compatible with the interconnect of Figure 1. The
only requirement for this compatibility is that, when
transferring an accelerator instruction from the
Am29000 to the Am29027, the instruction must appear
on both the Am29000 address and data buses. For ex­
ample, an Am29000 co-processor store that transfers
an accelerator instruction from general-purpose register
gr96 to the accelerator instruction register must have
the form:

store 1, CP_WRI TE_INST , gr96, gr96

Note that gr96 is specified for both the AA and AS
instruction fields, thus ensuring that the accelerator
instruction to be transferred is placed on both the
address bus and the data bus. AII29K accelerator code,
including that produced by the 29K compilers, follows
this convention.

Am29027

...
S3'-SO ~

.. 13,-1 0 -
..

R3,-Ro

F3,-Fo

1221~2

Figure 2. Alternate Am29000/Am29027 Bus Connections

3-12

RULES TO FOLLOW

Even though interconnecting the Am29000 and
Am29027 is straightforward, a few precautions must be
taken to ensure correct accelerator operation:

• All signals except DRDY and DERR must be direct
connects; the signals should not pass through other
devices. For example, if the Am29000 address bus is
buffered before being fed to a memory array, the
Am29027 address bus connections must be made on
the processor side of the buffers.

• Signals DRDYand DERR should pass through one
(and only one) fast AND gate. The system designer
should take care to choose high-speed AND gates; a
74AS08, 74AS11, 74AS20, or7.5 ns PALl1t devicewill
suffice at 25 MHz.

• Keep signal interconnects short. Heavily loaded
traces may have propagation speeds on the order of
3-4 nslfoot. All signal traces, and in particular those

Am29027 Hardware Interface

with the heaviest loading, should be kept as short as
possible.

• Minimize loading on the Am29000 data and address
buses. These buses are designed to drive 80-pF loads
without AC timing derating, and higher capacitances
with derating. If Am29000 bus capacitances exceed
80 pF, be sure to derate the AC parameters per the
information provided in the Am29000 Streamlined
Instruction Processor Data Sheet, order #09075.

While the alternate bus connections shown in Figure 2
will lower the capacitive loading presented to the
Am29000 data bus, they do present a greater routing
challenge than the connections of Figure 1.

WARNING: With the alternate connections of Figure 2,
many signal lines must cross one another either under
or near the Am29027. Before using the alternate
connections, be sure to examine layout and routing
requirements.

3-13

When is Interleaved Memory
with the Am29000 Unnecessary?
Application Note

by Tom Crawford

INTRODUCTION

ABSTRACT

This application note presents a graphic method of find­
ing the maximum acceptable access time of an
Am29000™ memory system that avoids the use of an
interleaved memory.

GENERAL

The advantage of an interleaved memory is that slower
and less expensive memory chips can be used. How­
ever, the use of interleaved memory in systems that
need only a limited amount of memory should be
avoided, since interleaving doubles the minimum mem­
ory size. The need to support two memory banks may
waste a substantial amount of memory space and result
in a higher system cost.

Advanced Micro Devices is developing a complete line
of Am29000 simulators, hardware target execution ve­
hicles, and high-level language development tools for
the Am29000 32-bit Streamlined Instruction Processor.
These products are designed to support end-users who
are building embedded system applications based on
the Am29000 processor. For these users, often there is
no existing operating system or kernel fortheir hardware
design.

The design trade-off is component count versus the
required device access speed and density of memory.

SjClK
"V

.. Counter --.,..

MUX

I
..
~

Initial Address

By analyzing the required access speed of memory
devices for both interleaved and non-interleaved mem­
ory, it is possible to determine the relative cost and
performance for each approach. The analysis also iden­
tifies the situations in which the system clock rate
dictates the use of interleaved memory because suffi­
ciently fast memory devices, needed to support a single­
bank architecture, are unavailable.

WHEN IS INTERLEAVING
NECESSARY?

Figure 1 shows a routine method of obtaining data for an
instruction burst-mode access. (The instruction burst­
mode access considerations discussed in this applica­
tion note also apply to the data burst-mode access
considerations.)

A counter is loaded with the beginning address of the
burst, then incremented to fetch successive words. The
output of the counter goes through an address multi­
plexer and then to the address inputs of the memory
chips. The data output pins of the memory chips are
connected directly to the Am29000 bus.

Assuming the counter increments on the positive edge
of SYSCLK, it is possible to calculate available time
before the data must be valid. Figure 2 shows the avail­
able time for a Static Column DRAM (tMAX). Any data
buffers between the memory and the Am29000 would
cause additional delays.

Static .. Column ...
Decode > ..

Instruction Bus DRAMs

11656A-O

Figure 1. Typical Memory

Publication. Rev. Amendment Issue Date:

11656 A /0 11/89 © 1989 Advanced Micro Devices, Inc.

3-14

When Is Interleaved Memory with the Am29000 Unnecessary?

SYSCLK

Counter

Column
Address

~

/'

--.

tClock
Not To Scale

~'t'

~ tPO_Count

)(
-. 14- tPO_MUX

)K:

-. +- tPO_Wire

Address
At DRAM) <

-. ~tSU
4-tMAX---

Data)(
11656A-02

Figure 2. Single-Cycle Burst

In order to guarantee positive margins, the following
inequality must be satisfied:

Equation 1: n· tCLOCK - (tMAX + tPO_COUNT +
tPO_MUX + tSU + tPO_WIRE) > 0

The value n is the number of clock cycles a~ailable for
memory. If there is no interleaving or wait states, n = 1.
For two-way interleaving, n = 2, and so on.

The maximum column address delay (static column
decode DRAM) that can be allowed is tMAX. The clock­
to-output delay of the counter is tPD_COUNT. The
value of tPD_MUX is the input-to-output delay of the
multiplexer. The value of tSU is the setup time for
Am29000 instructions or data.

The value of tPD_WIRE is the propagation delay from
the multiplexer output to the furthest memory chip input.
This is the propagation delay per unit length of wire
times the length of the wire. The propagation delay per
unit length can be estimated from the equation:

tpd' = tpd ---J (1 + (Cd I Co)
(1)

The unloaded propagation delay (tpd) is determined
only by the board material dielectric constant. It is equal
to approximately 1.77 nslft. The trace capacitance (Co)
is a function of the trace impedance and propagation

delay and is usually taken to be approximately 18.5
pFIft. The distributed capacitance (Cd) resulting from
the memory chips is calculated from the per-device in­
put capacitance and the device spacing; assuming 5 pF
per device and two devices per inch gives: 120 pF/ft.

Using these numbers in the above equation yields:

tpd' = 1.77 ---J (1 + (120/18.5) = 4.84 ns/ft

Finally, assuming that 32 devices at 24 devices per foot
equals 1.33 tt j then the value fortPD_WIRE is 6.45 ns.
These numbers are summarized in Table 1.

Table 1. Initial Numbers

Name Value Obtained From

tPO COUNT 6.5 ns PAL16R8-7
tPO-MUX 8.0 ns 74F253 In to Zn
tPO-WIRE 6.5 ns See discussion above
tS 25 MHz 6.0 ns Am29000 25MHz tSU
tSD 20/16 MHz 8.0 ns Am29000 20/16 MHz tSU

Figure 3 shows the results of these values in equation 1.
The x-axis is tCLOCK and the y-axis is the allowable
access time; The solid line shows the allowable access
time for n = 1 (single-cycle operation [no interleaving]).
The dotted line shows the allowable access time for
n=2.

1 See Appendix A of the Am29000 Memory Oesign Handbook (order #10623) for additional information on this equation.

3-15

29K Family Application Notes

The discontinuity in the n = 1 line reflects the difference
in tSU between 25 MHz and 20/16 MHz. The horizontal
lines show the access times for -70, -80, and -100
Toshiba 1 M-by-1 DRAMs. The vertical lines show the
minimum tCLOCK times for 25-, 20-, and 16-MHz
Am29000s. The hatched area indicates where opera­
tion is possible without interleaving.

INITIAL RESULTS

From inspection of Figure 3, it might be concluded that it
is almost possible to build a single-cycle burst memory

for a 16-MHz Am29000 from '1ast" DRAMs with no inter­
leaving. However, one cannot build a single-cycle burst
memory for a 20- or 25-MHz system without interleaving
with any available DRAM.

Finally, using two-way interleaving, it is possible to build
a memory that supports single-cycle bursts at a clock
rate of 25 MHz or below, from memories with a column
address access time of less than 50 ns.

55

n .. 2
(two-way
interleave)

50 -100 RAM
~---+~--------~--------~~----------------

45

40
~---+----------~--------~~-------

Access Time
35 ~----+------~-----4---.,,~

30

25

20

15

35 40 45 50 55 60 65 70

tClock 11656A-03

Figure 3. Initial Results

3-16

When Is Interleaved Memory with the Am29000 Unnecessary?

ARE IMPROVEMENTS POSSIBLE?

Could a system be built with single-cycle bursts without
interleaving to run at 20 MHz? To answer this question
graphically, move the heavy line in Figure 3 upwards
(extending the hatched area to the left). This is done by
reducing or eliminating the numbers, other than tMAX,
in the inequality. These are examined below, one at a
time.

tPD_COUNT

The 6.5 ns value is based on using a -7 PAL~. This is
already faster than any 74F, 74AS, or 74ACT counter
(or flip-flop, for that matter) in any data book this author
has examined.

It is certainly possible to "play games" with the clock
scheme. SYSCLK on the Am29000 could be driven a
little later than the clock to the counter. Data hold time is
unlikely to ever be a problem. But the uncertainties in
propagation delay through a CMOS clock driver are
likely to cancel a lot of what could be gained. Further­
more, delaying the clock to the Am29000 delays the
address on the initial cycle.

tPD_MUX

The 8.0 ns value is based on using a 74F253. A 1/2 ns
reduction could be realized by building a multiplexer
with a 16L8-7 (7.5 ns). A better way is to completely
eliminate the multiplexer delay by building a three-state
bus. Figure 4 shows one way to do this.

The counter is implemented with a 16R8-7 (actuaily,
more than one is probably required). An 8-bit counter is
required and 2 additional bits of address must be main­
tained. Since the clock is not gated, some additional
inputs are required to indicate whether the counter
should load, hold, or count.

I " ./ Buffer
... / ~

...
I) Counter -

.,

...

Just before RAS falls, the three-state buffer is enabled.
When the Column Address is required, the three-state
buffers of the PAL device are enabled and the counter is
driven into the array.

In this configuration, a worst-case design requires that
the extraordinary loading on the PAL device be consid­
ered. The total capacitance connected to the outputs
of the PAL devices is greater than the standard load.
However, the capacitances are distributed rather than
lumped. The driver never sees the entire load, so the
wire delay allowance is sufficient.

tPDWIRE

The wire delay can be reduced only by reducing the
wiring length. Instead of connecting all the memory
chips in serial, the board can be deSigned so that there
are two sets of chips connected in parallel. This halves
the 1.33-foot length previously calculated and reduces
the wire delay to 3.22 ns.

To reduce tSU, a fast Am29000 at a reduced clock rate
can be used. For example, a 30-MHz Am29000 has a
tSU of only 5 ns; this is 3 ns better than a 16-MHz part,
but it is expensive.

Another approach is to insert a pipeline register with a
very low setup time. For example, the data setup time of
a 74F374 is only 2 ns. Of course, including a pipeline
register has adverse consequences. The first access of
a burst-mode access will then be one SYSCLK cycle
longer than would otherwise be required. In addition, the
control logic is made slightly more complicated. A posi­
tive side effect is that three-state buffers are included in
the register packages. Figure 5 shows registers in the
instruction path.

) .,
Array

11656A-04

Figure 4. Multiplexer Avoidance

3-17

29K Family Application Notes

Now, assuming the implementation of all the changes
described above, the fixed numbers become the values
shown in Table 2.

Table 2. The Improved Numbers

Name

tPO COUNT
tPO MUX
tPO WIRE
tSU-

Value

6.5 ns
0.0 ns
3.2 ns
2.0 ns

Obtained From

PAL16R8-7
Three-state multiplexor
Length
74F374 data sheet

SYSCLK

~~

K
\ Counter
I y

If this is plotted as a function of cycle time, the line has
moved up a considerable amount as compared to
Figure 3. This indicates that it is possible to build a
20-MHz system with the fastest available DRAMs. It
also indicates that it is possible to build a 16-MHz
system with 100-ns DRAMs.

Address
Bus

Am29000

Instruction Bus

1\

.... Pipeline Register

/\

~
Instruction
Memory

I
"

11656A-05

Figure 5. Pipeline Access

3-18

When Is Interleaved Memory with the Am29000 Unnecessary?

CONCLUSION

By using the values for proposed memory architectures
into Equation 1, two to four specific values of tMAX can
be determined for appropriate values of tCLOCK. With
this information it is easy to draw graphs like those of
Figures 3 and 6. Such graphs provide a simple display of
the available trade-ofts between system clock rate,
memory architecture, and the memory device access
speed. Multiplying the memory device count for each

55

50

45

40

Access Time
35

30

25

20

15 MHz MHz

35 40 45 50

configuration by the access-speed driven memory
device costs of the configuration yields an approximate
cost for each memory system approach.

Such an analysis may point out significant cost
reductions by quickly identifying those situations in
which a non-interleaved memory architecture and
reduced clock rate can support the required system
performance.

1 MHz

55 60 65 70

tClock

11656A-06

Figure 6. Final Results

3-19

Implementation of an Am29000 Stack Cache
Application Note

by Phil Bunce and Erin Farquhar

INTRODUCTION

This application note will describe the basic mecha­
nisms of the AM D Am29000's cache of the run-time
stack. The stack cache is an important performance fea­
ture, because it permits a procedure's entire context to
be resident in on-chip registers, thus eliminating, or at
least reducing, the need for memory accesses.

Our discussion is centered around a single example
program, which is shown in its entirety in Appendix B .

. Before discussing this example, we provide a brief over­
view of the basic operation of the stack cache.

OVERVIEW

Procedures executing on the Am29000 make use of a
run-time stack, which consists of consecutive, overlap­
ping structures called activation records. An activation
record contains the dynamically allocated information
specific to a particular activation of a procedure. Each
time a procedure is called, a new activation record is
allocated on the stack; when the procedure has finished
executing, its activation record is deallocated from the
stack.

Compilers and assemblers for the Am29000 use two
run-time stacks for activation records: the register stack
and the memory stack. A procedure's activation record
may be divided between these stacks. Both stacks grow
toward lower addresses in memory, and items on the
stacks are referenced as positive offsets from RSP
(Register Stack Pointer) and MSP (Memory Register
Stack Pointer). Both pointers are realized using internal
Am29000 global registers. The global and local regis­
ters are both subsets of the general-purpose registers.

The register stack contains parameters passed to the
procedure, the local scalar variables used by the proce­
dure, return linkage information, and the arguments that
the procedure will pass to procedures that it in turn calls.

Publication II Rev. Amendment Issue Date:
13053 A 10 11189

3-20

The register stack is cached in the local registers, IrD­
Ir127, as explained below.

The memory stack is used for local structured data, for
example, arrays and records. It also is used for addi­
tional scalar data when needed. When the scalar portion
of the activation record for a particular procedure
requires more than 128 words of local-register storage,
the excess may be kept in the procedure's activation
record in the memory stack.

Both stacks are aligned on a double-word (64-bit)
boundary. Procedures are required to maintain this
alignment by adjusting the size of the register stack
frame allocated at procedure entry to be a multiple of
eight bytes.

STACK CACHE

The 128 local registers are used to cache locations in
the register stack, such that when a procedure is active,
its entire register-stack activation record is mapped to
the local registers.

Each word location in the register stack is mapped to a
Single local register. The registernumbercorresponding
to a location in the register stack is given by bits 8-2 of
the 32-bit memory address of that location in the register
stack. Because there are 128 local registers, quantities
whose addresses differ by 512 (all addresses are byte
addresses) are mapped to the same local register and
cannot be in the cache at the same time.

Figure 1 shows a snapshot of the register stack in mem­
ory after some calls have been made, and the mapping
of the register stack to the local registers. As shown in
the figure, Global Register 1, called the Register Stack
Pointer (RSP), contains the 32-bit virtual address of the
top of the register stack in memory. This virtual address
on the Am29000 is the lowest-addressed valid stack
location in the current activation record.

© 1989 Advanced Micro Devices, Inc.

Absolute
Register
Number

R170 I • • • ~

Registers

LR213

LR2
LR1

Start of
Stack

Implementation of an Am29000 Stack Cache

Register Stack --. 4FFC
Spilled

Activation
Records ---- 4EAB

Used

--+ Locations
40FE

Current
Activation

Record

R215
R214

R213
R212

LRO 4-- GR1 (RSP) -.
4054

512
Bytes

LR127

• • "I. ...

R:71 ll---L-R-2-14-~L _R_A~~
Free

Locations

---- 4CAB

11031A-01

Figure 1. Mapping of Register Stack to Stack Cache

Local registers are addressed as positive word offsets
from RSP, as in Figure 2. Specifically, when a local reg­
ister operand is specified in an instruction (that is, the
most significant bit of the register number is set), the
seven least significant bits are added to bits 8-2 of RSP
and the result is truncated to seven bits. For example, if
RSP has the value 0, as shown in Figure 2, then IrO is
absolute register 128 (the first local register), and Ir1 is
absolute register 129 (the second local register): if RSP
has the value four, then IrO is absolute register 129 and
Ir1 is absolute register 130.

Referring again to Figure 1, the current activation record
is delimited by the Frame Pointer (FP), which by soft-

ware convention uses Local Register 1, and RSP. FP
points to the "top" of the previous activation record, that
is, to the lowest-addressed word location above the cur­
rent activation record. When a procedure is active, this
entire area must be cached in local registers.

The register stack between FP and RFB (Register Free
Bound) contains the saved activation records of previ­
ously called procedures, which are also currently
mapped to the local-register cache. RFB, by convention
Global Register 127, is set to pOint to the lowest­
addressed word in the register stack that is not mapped
to the local registers.

31 15

GAl (ASP) I :~t--_ --------L~...:....-~:::..L....::......!~==:::::_~==T~

lR~ABSREG# T 0,05 = 21'

Ox80
11031A-02

Figure 2. Local Register Addressing

3-21

29K Family Application Notes

The register stack between RSP and RAB (Register
Allocate Bound) represents stack locations (and corre­
sponding local registers) that are currently "unused" and
thus available for allocation when another procedure is
called. RAB (by convention Global Register 126) is set
to point to the lowest-addressed word in the register
stack that is currently mapped to a local register.

When a procedure is called, RSP is decremented by the
number of words required to accommodate the called
procedure's activation record. When RSP is decre­
mented beyond the location pointed to by RAB and thus
beyond the available local registers, more local regis­
ters will be required for the activation record, and some
locations in the stack cache must be written to memory
(or "spilled") before the new activation record is created.
This condition is called overflow. Note that in Figure 1,
locations between RFB and the Start of Stack are saved
activation records that have been previously spilled to
memory.

On return from a procedure, the activation record is
de-allocated by incrementing RSP by the same amount

3-22

it was decremented when the procedure was called. If
the caller's FP (which points to highest location in the
caller's activation record) is greater than RFB (which
points to the first unmapped register stack location
above the activation record), the contents of that portion
of the register stack will have to be loaded into the local
registers to accommodate the caller's activation record.
This condition is called underflow.

Overflow and underflow conditions are detected by
instruction sequences in the prologue and epilogue,
which are the instruction sequences that execute as a
result of a procedure call and procedure return, respec­
tively, and cause a transfer of control to the appropriate
trap handler routine. In the case of an overflow, the trap
handler moves the contents of the required number of
local registers to the register stack in memory and
adjusts the value in RAB and RFB. In the case of an
underflow, the trap handler loads the required numberof
register stack locations into the local registers and
adjusts the value in RAB and RFB.

OVERVIEW OF EXAMPLE PROGRAM

Our example program consists of the four text files listed
below.

regdcl.h: Register name declarations

macros.h: Macro definitions for prologue and epi­
logue

start.s: CPU Initialization
Overflow and Underflow trap handler rou­
tines

example.s: Two procedures main and recurse

Appendix A contains partial listings from the example
program that are described individually in the sub-sec­
tions below.

Appendix B contains the source for the entire example
program which includes all of the above files.

INCLUDE FILES

There are two include files, regdcl.h and macros.h.
Note that regdcl.h must be included before macros.h,
because macros.h uses definitions from regdcl.h.

In regdcl.h (see Appendix A-1, Register Declarations),
we assign the value 80 as the base of registers to be
used as temporaries by system software. Additional
temporaries will be addressed as offsets from it. These
registers will be used for work space in the start code
and the two trap handler routines.

.equ SYS_TMP, 80 isystem temp registers

We also assign symbolic names to global and local reg­
isters, in accordance with the software calling conven­
tions of the Am29000.

.reg rsp,gr1

.reg msp,gr125

.reg rab,gr126

.reg rfb,gr127

.reg fp,lr1

.reg raddr,lrO

ilocal reg stack pointer
imemory stack pointer
iregister allocate bound
iregister free bound
iframe pointer
ireturn address

The overflow and underflow trap vectors, V_SPILL and,
V_FILL, are set to the constant values 64 and 65. These
are the vector numbers for the trap handlers chosen for
this example.

.equ V_SPILL, 64

. equ V_FILL, 65

The second include file in our example program,
macro.h, contains the macro definitions for PRO-

Implem~ntatlon of an Am29000 Stack Cache

LOGUE and EPILOGUE. These macros are discussed
in the Prologue and Epilogue sections.

START CODE

The module start.s contains code that sets up the exe­
cution environment for our example program. The initial
portion of the start code is shown in Appendix A-2, Start
Code. The overflow and underflow trap handlers, also in
start.s, will be discussed later.

We set the beginning of the stack (its highest address in
memory) at Ox5000. The "& -7" in the expression en­
sures that the value is a multiple of eight, with rounding
downward if necessary.

.equ TOP_STK, (Ox5000 & -7) icreate
;double word
; alignment

The two temporary registers, tmp1 and tmp2, are
assigned values that are offsets of SYS_TMP, which
means that tmp1 is Global Register 80, and tmp2 is
Global Register 81.

.reg

.reg
tmp1,
tmp2,

%% (SYS_TMP + 0)
%% (SYS_TMP + 1)

Then we initialize the four pointers that define the stack
environment.

const rsp, (TOP_ STK-8) ;set stack
;pointer

add rsp, rsp, 0 ; update rsp
const rab, (TOP_ STK-512) ;set register

;alloc bound
const fp,TOP_STK ;set frame ptr
const rfb,TOP_STK ;set reg free

ibound

Figure 3 shows the initialized stack. Because there has
been no spilling of local registers to the stack in memory,
RFB points to the top of the stack. RAB is, by definition,
512 bytes less than RFB.ln the initial activation record,
defined by FP and RSP, FP points to the top of the stack
(because there has been no prior context) and RSP is
set to a value eight bytes less than FP to allow for the
current FP and raddr when a new activation record
is created. Note that the setting of RSP must pre­
cede the setting of FP by at least two instructions
because of the delayed effect of modifying RSP, and
that an explicit arithmetic or logical instruction must
be used to update RSP .

The CPS (Current Processor Status Register) is initial­
ized with the value Ox0072. Assuming the prior state of

3-23

29K Family Application Notes

this register was Reset mode (shown in Figure 4), we
have in effect cleared FZ, OA, and RE, and left the other
bits unchanged. The FZ (Freeze) bit is cleared because
the processor is unfrozen for normal operation. (For a
description of the Freeze bit, refer to the section called
"Special-Purpose Registers," in the Am29000 User's
Manual). We clear the OA (Disable All Interrupts and
Traps) bit to enable all traps. The RE (ROM Enable) bit
is cleared because this example assumes we are exe­
cuting from RAM.

mtsrim cps,Ox72 ; PD, PI, SM, DI

PO, PI, SM, and 01 remain set, meaning that address
translation is disabled (PO and PI), supervisor mode is
selected (SM), and external interrupts are disabled
(01). Supervisor mode is selected because some of the
instructions in our example program are privileged.
Address translation is disabled because this example is
designed for systems not using the TLS. External inter­
rupts are disabled because we have no interrupting
devices and want to eliminate any spurious interrupt
requests.

rfb y
fp

fp

We set the Vector Fetch bit in the Configuration Register
to select a vector table configuration for the Vector Area.

mtsrim cfg,OxlO ; VF

The VAS (Vector Area Base Address) register, which
specifies the beginning address of the vector table in
memory, is set to zero.

mtsrim vab,O

Next we initialize the vector table with the address of
the Overflow trap handler routine, called SpiliHandler.
First we load the address of the Spill Handler into a tem­
porary register, using two CONST instructions for the
case when Spill Handler is not in the first 64K-bytes of
memory.

const tmpl,SpillHandler
consth tmpl,SpillHandler

rsp --. raddr

,.
.... "

rab __ ft-----l[

Figure 3. Initialized Stack

512
Bytes

31 15 0

1 0111 0111 01111111 01 0111 d
\ V JI I I I I I T I

Reserved
CA TE

IP TP
TU LK WM

FZ RE PO

PI

SM

Figure 4. Current Processor Status Register in Reset Mode

1M DA
01

11031A-03

11031A-04

Because each entry in the vector table is four bytes, we the vector number V_SPILL (64) by four (a shift left by
compute the address in the vector table by multiplying two).

3-24

const tmp2,V_SPILL
sll tmp2,tmp2,2 ;compute vector

; address

Then we store the address of Spill Handler (in tmp 1) into
the vector table address we just computed.

store O,O,tmp1,tmp2 write spill
vector

Initializing the vector table with the address of the under­
flow trap handler routine (vector number V_FILL) is
done the sam~ way:

const
consth
const
sll

store

tmp1,FillHandler
tmp1,FillHandler
tmp2,V_FILL
tmp2,tmp2,2

O,O,tmp1,tmp2

compute vect
addr
write fill
vector

The procedure start then calls main. passing it the return
address (IrO). A NOP follows the call because the
Am29000 always executes one instruction beyond a call
instruction before the call is taken.

call raddr,main

nop
halt ;halt after successful

; completion

Implementation of an Am29000 Stack Cache

EXAMPLE FUNCTIONS MAINO AND RECURSEO

After the start code has executed. control is passed to
the procedure mainO. The purpose of mainO is to call
the procedure recurseO. providing it with an initial set of
values. RecurseO calls itself a total of 86 times. then
returns to itself 86 times before returning to mainO. An
overflow condition occurs with the 21 st call. and each
subsequent call causes an additional spill of local regis­
ters to memory. When the program returns. the 22nd
return causes an underflow condition. and each subse­
quent return causes an additional fill from memory to the
local registers.

The basic operation of mainO and recurseO is summa­
rized by the following C program:

main ()
{

recurse(1,42);

recurse(n,m)
int n,m;

int i,j;
if (n > 85) return;
i = n + 1;
recurse (i,m) ;

The code for mainO and recurseO is shown in Appendix
A-3 and A-4. Code for MainO and Code for RecurseO.
respectively.

3-25

29K Family Application Notes

PROLOGUE

As with all Am29000 procedures, mainO begins with a
prologue. The macro definition of PROLOGUE and
the expansion of PROLOGUE for mainO are shown in
Appendix A-5 and A-6, Prologue Macro and Prologue
Expansion for MainO, respectively.

The purpose of PROLOGUE is to allocate an activation
record and check for overflow before the body of the pro­
cedure is executed. It is invoked with three parameters:
the number of arguments passed (INCNT), the number
of registers required for the procedure's local variables
(LOCCNT), and the maximum number of arguments
that the procedure may pass to anyone function it in turn
calls (OUTCNT).

. macro PROLOGUE,INCNT,LOCCNT,OUTCNT

The values of ALLOC_CNT and SIZE_CNT are com­
puted from the parameters.

.set ALLOC_CNT, «2+0UTCNT+LOCCNT+l)&-1)

.set SIZE_CNT, (ALLOC_CNT+2+INCNT)

ALLOC_CNT is the amount of space on the stack that
must be newly allocated by the Prologue for the proce­
dure's activation record. SIZE_A is the amount of space
that must be accessible by the procedure, that is, the
size of its activation record.

The expression for ALLOC_CNT does not use INCNT,
because incoming parameters were already allocated
space on the stack as the outgoing parameters (OUT­
CNT) of the calling procedure. "2" is the number of

words needed for the called procedure's FP and return
address when it calls another procedure. ANDing the
expression with the complement of 1 (& -1) maintains
double-word alignment on the stack by setting the least
significant bit to zero. The "+ 1" ensures that the amount
is rounded up, not down.

The expression for SIZE_CNT includes INCNT and two
additional words for Ira (return address) and FP of the
caller.

The three macro variables, IN_PRM, LOC_REG, and
OUT_PRM are used to establish offsets into the stack
for input, local, and output arguments. These macro
variables are set only if the corresponding value of the
parameter is not equal to zero .

· if (INCNT)
.set IN_PRM, (2 + ALLOC_CNT + Ox80)

.endif

· if (LOCCNT)
.set LOC_REG, (2 + OUTCNT + Ox80)

.endif

· if (OUTCNT)
.set OUT_PRM, (2 + Ox80)

.endif

I~ the abo.ve, a macro variable is set equal to an expres­
sion that IS evaluated to a local register number when
the program is assembled. The macro variable can then
be used as the base register for offset addressing of
parameters of that type (as shown in Figure 5). The
"Ox80" provides the 125-word offset required for a local
register access.

1..-
IN_PRM+1

IN_PRM+O

oldfp

old raddr

LOC_REG+1

LOC_REG+O

OUT_PRM+1

OUT_PRM+O

fp - r--

RSP--' raddr

11031A-05

Figure 5. Prologue Parameters

3-26

The body of the PROLOGUE macro has three instruc­
tions:

sub
asgeu
add

rsp, rsp, (ALLOC_CNT« 2)
V_SPILL, rsp, rab
fp, rsp, (SIZE_CNT« 2)

In the above instructions, ALLOC_CNT and SIZE_CNT
are shifted left by two to convert them from word quan­
tities to the required byte quantities (the stack regis­
ters, whose contents will be modified, contain byte
addresses).

The first instruction allocates an activation record by
decrementing RSP by the amount ALLOC_CNT.

The second instruction asserts that RSP of the new acti­
vation record is greater than or equal to RAB. If this is
not the case, (that is, RSP has been decremented
beyond RAB), an overflow trap occurs, and there is a
transfer of control to the trap handler routine,
SpiliHandler, pointed to by the vector V_SPILL. The trap
handler will move (spill) the contents of the required
number of local registers to the register stack in memory
and adjust RFBand RAB, as described in the Overflow
Trap Handler section.

The third instruction sets FP to point to the location just
above the new activation record, so it can be used
for underflow checking in the EPILOGUE macro of a
procedure that is called by this procedure (see Epilogue
section).

After the prologue, mainO calls recurseO. The expan­
sion of PROLOGUE for recurseO is shown in Appendix
A-7, Prologue Expansion for RecurseO.

OVERFLOW TRAP HANDLER

. On the 21st call to itself, recurseO causes an overflow
trap. The code that services this trap is shown in Appen­
dix A-8, Overflow Trap Handler, and is described below.

Implementation of an Am29000 Stack Cache

In the following discussion of SpiliHandler, we assume
the reader is familiar with the processor's response to
traps. If not, referto the section called Interrupt and Trap
Handling in the Am29000 User's Manual.

The first three .reg directives assign symbolic names
to the three temporary system registers used by
SpillHandler.

.reg R_Cnt, %% (SYS_TMP+O) :temp for
: count

.reg R_TmpPCO,%%(SYS_TMP+l);temp for
:PCO

.reg R_TmpPC1,%%(SYS_TMP+2);temp for
;PCl

The old PCs are saved in two of the temporary registers
just declared.

mfsr R_TmpPCO, pcO
mfsr R_TmpPC1, pcl

:save the PCs

The CPS (Current Processor Status Register) is set to
the value Ox73. This clears the FZ (Freeze) bit, which
was set by hardware when the trap was taken (see
Figure 6), so that the trap handler can execute a Store
Multiple instruction. (Note that the PCs must be saved
before the FZ bit is cleared.) The DA (Disable All Inter­
rupts and Traps) bit remains set, which prevents the
processor from taking any traps except the *WARN,
Instruction Access Exception, Data Access Exception,
and Coprocessor Exception traps. PD, PI, SM, and DI
also remain set.

mtsrim cps,Ox73 : PO, PI, SM, DI, DA

Now we can use the Store Multiple instruction to store
the required number of local registers into the register
stack in memory. This instruction requires a source, a
destination, and a count.

31 '5 0

I 0 I 01 0 I 01 0 I 01 0 I 01 0 I 01 0 I 01 0 I 01 0 I 01 0 I 01 0 I 01 01,1 0 I 01 01,1,1,1 0 I 01,1,1

I II I I Iii
CA TE TU LK WM PI 1M OA

IP TP FZ RE PO SM 01

11031A-06

Figure 6. Current Processor Status Register After an Interrupt or Trap

3-27

29K Family Application Notes

As explained earlier (and shown in Figure 1), the area
between RSP and RAB represents the local regis­
ters available for allocation when a procedure is called.
Because there has been an overflow and RSP has been
decremented beyond RAB, we can compute the size of
the required spill (the count for the Store Multiple) by
subtracting RSP from RAB.

sub R_Cnt, rab, rsp ;R_Cnt = number of
. ; bytes to spill

Then we use R_Cnt to adjust RFB, so that it correctly
reflects the area in the register stack that will be mapped
to the local registers.

sub rfb,rfb,R_Cnt ;move down the
;frame bound

Before using the Load Multiple instruction, R_Cnt must
be written as a word amount into the CR field of the
Channel Control register, which is used by the proces­
sor to determine the number of loads to memory. So we
convert R_ent from a byte to a word amount using the
Shift Right Logical instruction.

;R_Cnt = count of
;words to spill

Because the CR field is zero-based, we subtract one
from R_Cnt

sub R_Cnt,R_Cnt, 1 ;correct for storem

and then use the Move to Special Register instruction
to write it to the CR field.

3-28

;set up count for
;storem

The local registers that have to be spilled are those cor­
responding to register-stack locations between RSP
and RAB, because they are the local registers that must
be occupied by the new activation record. So the in­
struction source will be IrO, which corresponds to RSP.
The instruction's destination will be the register-stack
location pointed to by the previously modified RFB, be­
cause that is the register-stack location at the correct
512-byte offset from RSP.

storem 0, 0, IrQ, rfb ;spill from the
;allocated area

Then we set RAB to point to the top of stack, because
that is now the lowest stack address currently cached in
local registers.

add rab, rsp, 0 ;move down the
;allocate bound

We set CPS to the value Ox473. This sets the FZ bit,
which must be set before we restore PCO and PC1. PO,
PI, SM, 01, and OA remain set.

mtsrim cps,Ox473 ;FZ, po, PI, SM,
;DI, DA

Then the two PCs are restored and the IRET (Interrupt
Return) instruction restores the previous contents of
CPS from the Old Processor Status Register, unfreezes
the processor, and begins fetching from PCO and PC1.

mtsr pcQ, ~TmpPCO
mtsr pcl, R_TmpPCl
iret

;restore the PCs

EPILOGUE

When recurse has called itself 86 times, it returns and
executes an Epilogue. The EPILOGUE macro is shown
in Appendix A-9, EPILOGUE Macro.

EPILOGUE's first instruction de-allocates the proce­
dure's activation record by adding ALLOC _CNT to RSP.
This is followed by a NOP, because a change in the
value of RSP must be separated by at least one cycle
from an instruction that references a local register (in
this case, the instruction JMPI, whose operand raddris
frO).

add rsp, rsp, (ALLOC_CNT« 2)
nap
jmpi raddr

Before the Jump Indirect instruction finishes executing,
the next instruction, ASLEU, is executed. This instruc­
tion asserts that the caller's FP, now restored because
the caller's RSP has been restored, is less than or equal
to RFB. If the assertion is false (which means that FP is
pointing to an unmapped, previously spilled register­
stack location), an underflow trap occurs, and control is
transferred to the trap handler routine, FiIIHandler,
pOinted to by the vector V_FILL. The trap handler will
move the contents of locations in the register stack
to the local registers and adjust RAB and RFB, as
described in the Underflow Trap Handler section.

asleu V_FILL, fp, rfb

At the end of the Epilogue, the parameters are set to an
illegal value. This ensures that if they are used again
before they are explicitly set, an assembly-time error will
be reported.

.set IN,,-PRM, (1024) iillegal, to
icause
ierr on ref

.set LOC_REG, (1024) iillegal, to
icause
ierr on ref

.set OUT_PRM, (1024) i illegal, to
icause
ierr on ref

.set ALLOC_CNT, (1024) iillegal, to
icause

ierr on ref

The expansion of EPILOGUE for recurseO is shown in
Appendix A-10, Epilogue Expansion for RecurseO.

Implementation of an Am29000 Stack Cache

UNDERFLOW TRAP HANDLER

On the 22nd return of recurseO to itself, an underflow
trap occurs. The code that services this trap is shown in
Appendix A-11, Underflow Trap Handler, and is dis­
cussed below.

The two old PCs are saved in temporary registers
declared in the SpillHandler routine.

mfsr R_TmpPCO, pcO
mfsr R_TmpPC1, pc1

isave the PCs

The CPS (Current Processor Status Register) is set to
the value Ox73. This clears the FZ bit, so that the trap
handler can execute a Load Multiple instruction. The DA
bit remains set, which prevents the processor from tak­
ing any traps except the ·WARN, Instruction Access
Exception, Data Access Exception, and Coprocessor
Exception traps. PO, PI, SM, and 01 also remain set.

mtsrim cps, Ox73 iPD, PI, SM, DI, DA

We will use the Load Multiple instruction to load loca­
tions in the register stack into the local registers. The
Load Multiple instruction requires a source, a destina­
tion, and a count.

Clearly, the source for the Load Multiple instruction is
the location pointed to by RFB, since RFB points to the
first location in the register stack that was previously
spilled from the local registers.

The destination of the Load Multiple instruction will, of
course, be the local register corresponding to RFB.
Local registers may be specified as instruction oper­
ands in one of two ways: using a local register number
(in the range from 0 to 127), or using the absolute regis­
ter number (in the range 126 to 255) in an Indirect
POinter Register. With the first method, the local register
number is computed as a positive word offset of RSP.
This option is not available to us because the trap han­
dier has no way of knowing the offset from RSP (that is,
the local register number) corresponding to RFB.

So we will convert the address in RFB to an absolute
local register number, put this nu mber in Indirect Pointer
A (because the destination operand uses Indirect
Pointer A), and then specify Global Register 0 (which
indicates an indirect pointer access) as the destination
register in the Load Multiple instruction.

To convert the address in RFB to an absolute local reg­
ister number, we OR it with 512. This sets bit 9, which

3-29

29K Family Application Notes

selects a local registe~; bits 2-8 give the absolute local
register number.

const R_Cnt,Sl2 ;make local reg

or
;ip

R_Cnt,~Cnt,rfb ;from rfb

Then we use the Move To Special Register instruction to
put this value in the Indirect Pointer A Register.

mtsr :set up indirect
;ptr
;for loadm

Recalling that the underflow trap was signaled because
FP is pointing to an unmapped and previously spilled
register stack location at a higher memory address than
RFB, we can compute the numberof local registers to fill
by subtracting RFB from FP.

sub ;R_Cnt = t of
;bytes to fill

We use the just-computed value to adjust RAB, so that
it correctly points to the new lower bound of the regis­
ter stack mapped to local registers. We perform this
operation now because it requires a byte amount, and
R_Cnt will be converted to a word amount in the next
instruction.

add rab, rab, R_Cnt ;move up the
;allocate bound

Before use of the Load Multiple instruction, the count
must be written as a word amount into the CR field
of the Channel Control Register. Hence, we convert
R_Cnt from a byte to a word amount using the Shift
Right instruction.

srI R_Cnt,R_Cnt,2 ;R_Cnt = number of
;words to fill

3-30

Because the CR field is zero-based, we subtract one
from R_Cnt

sub R_Cnt, R_Cnt,l :correct for loadm

and then use the Move to Special Register instruction to
write it to the CR field.

mtsr ;set up count for
;loadm

Now we use the Load Multiple instruction to transfer the
contents of the register stack in memory to the local reg­
isters, specifying RFB as the address in the register
stack from which to load, and grO (Indirect Pointer A) as
the local register number at which to begin the fill.

loadm O,O,grO,rfb ;fill area freed

After the registers have been filled, we update RFB so
that it correctly points to the upper bound of the register
stack that is currently cached.

add rfb,fp,O ;move up frame bound

We set CPS to the value OX473. This sets the FZ bit,
which must be set before we restore PCO and PC1. PO,
PI, SM, 01, and OA remain set.

mtsrim cps,Ox473 ;FZ, po, PI, SM,
:DI, DA

Then the two PCs are restored and the IRET (Interrupt
Return) instruction restores the previous contents of
CPS, unfreezes the processor; and begins fetching from
PCO and PC1.

mtsr pcO,R_TmpPCO
mtsr pcl, R_TmpPCl
iret

;restore the PCs

Implementation of an Am29000 Stack Cache

APPENDIX A:
PARTIAL LISTINGS EXTRACTED FROM EXAMPLE PROGRAM

A-1. REGISTER DECLARATIONS

--,
; Global registers
--,

.equ SYS _TMP, 80 system temp registers

.reg rsp, grl local register stack pointer

.reg msp, gr125 memory stack pointer

.reg rab, gr126 register allocate bound

.reg rfb, gr127 register free bound

--,
; Local compiler registers

(only valid if frame has been established)

.reg

.reg
fp, lrl
raddr, IrO

frame pointer
; return address

i---
; Vectors
--,

.equ V_SPILL, 64

.equ V_FILL, 65

3-31

29K Family Application Notes

A-2. START CODE

. include "regdcl.h"

.equ TOP_STK, (Ox5000

.text .global start

start:
.reg tmp1, %%(SYS_TMP
.reg tmp2, %%(SYS_TMP
const rsp, (TOP STK-8) -
add rsp,rsp,O
const rab, (TOP STK-512) -
const fp,TOP_STK

const rfb,TOP_STK

set correct mode
mtsrim cps, Ox72
mtsrim cfg, Ox10
mtsrim vab,O

connect up spill handler
const tmp1,SpillHandler

consth tmp1,SpillHandler
const tmp2,V_SPILL
sll tmp2,tmp2,2
store 0,0,tmp1,tmp2

connect up fill handler
const tmp1,FillHandler
consth tmp1,FillHandler
const tmp2,V_FILL
sll tmp2,tmp2,2
store 0,0,tmp1,tmp2

call main program
call raddr,main
nop
halt

3-32

& -7)

+ 0)

+ 1)

create double word aligned value

set stack ptr
set shadow rsp
set reg alloc bound
set frame ptr
set reg free bound

PD, PI, SM, DI
VF

compute vect addr
write spill vector

compute vect addr
write fill vector

halt after successful completion

A-3. CODE FOR MAINO

main ()

. include

. include

.global

recurse(1,42);

main:
PROLOGUE

"regdcl.h"
"macros.h"
main

0,0,2

name outgoing args
.reg M_out n, %%(OUT_PRM + 0)
.reg M_out_m, %%(OUT_PRM + 1)

recurse(1,42)
const
call
const

EPILOGUE

M_out_m, 42
raddr,recurse
M_out_n, 1

Implementation of an Am29000 Stack Cache

invoke macro ° ic, ° loc, 2 og

3·33

29K Family Application Notes

A-4. CODE FOR RECURSE(}

.global

recurse (n,m)
{

int i, j;

recurse

if (n > 85) return;
i = n + 1;

recurse(i,m);

recurse:

PROLOGUE 2,2,2

name ic args
.reg R_in_n,
.reg R_in_m,

name locals

%%(IN_PRM
%%(IN_PRM

.reg R_i, %%(LOC_REG +

.reg R_j, %%(LOC_REG +

name outgoing args

+ 0)

+ 1)

0)
1)

.reg R_out n, %%(OUT_PRM +

.reg R_out_m, %%(OUT_PRM +

name temporary register
.reg R_tmp, IrO

if (n > 85)

cpgt
jmpt

return

i = n + 1
add

recurse(i,m)
add
call
add

EPILOGUE

3-34

R_tmp, R_in_n, 85
R_tmp, rec_01

R_out_m, R_in_m, °
raddr, recurse

R_out_n, R_i, °

invoke macro 2 ic, 2 loc, 2 og

0)
1)

Implementation of an Am29000 Stack Cache

A-S. PROLOGUE MACRO

macro PROLOGUE
Parameters: INCNT input parameter count

LOCCNT local register count
OUTCNT output parameter count

.set ALLOC_CNT, «2 + OUTCNT + LOCCNT + 1) & -1)

.set SIZE_CNT, (ALLOC_CNT + 2 + INCNT)

.set IN_PRM, (2 + ALLOC_CNT + Ox80)
.endif

. if (LOCCNT)
.set LOC_REG, (2 + OUTCNT + Dx8D)

.endif

. if (OUTCNT)
.set

.endif

sub
asgeu
add

.endm

OUT_PRM, (2 + Ox8D)

rsp, rsp, (ALLOC_CNT« 2)
V_SPILL, rsp, rab
fp, rsp, (SIZE_CNT« 2)

A-6. PROLOGUE EXPANSION FOR MAINO

main:
PROLOGUE 0,0,2
.set ALLOC_CNT, «2 + 2 + 0 + 1) &

.set SIZE_CNT, (ALLOC_CNT + 2 + 0)

.set OUT_PRM, (2 + Ox80)
sub rsp, rsp, (ALLOC_CNT « 2)

asgeu V_SPILL, rsp, rab

add fp, rsp, (SIZE_CNT « 2)

; invoke
-1)

macro

3-35

29K Family Application Notes

A-7. PROLOGUE EXPANSION FOR RECURSEO

recurse:
PROLOGUE

.set

.set

.set

.set

.set

sub
asgeu
add

2,2,2 ; invoke macro

ALLOC_CNT, «2 + 2 + 2 + 1) & -1)
SIZE_CNT, (ALLOC_CNT + 2 + 2)
IN_PRM, (2 + ALLOC_CNT + Ox80)
LOC_REG, (2 + 2 + Ox80)
OUT_PRM, (2 + Ox80)

rsp, rsp, (ALLOC_CNT« 2)
V_SPILL, rsp, rab
fp, rsp, (SIZE_CNT« 2)

A-8. OVERFLOW TRAP HANDLER

.reg

.reg

.reg

.global

SpillHandler:

R_Cnt, %%(SYS_TMP + 0)
R_TmpPCO,%%(SYS_TMP + 1)
R_TmpPC1,%%(SYS_TMP + 2)

SpillHandler

temp for count (shared)
temp for PCO
temp for PC1

This routine handles a false assertion in the standard prologue.

In: rab > rsp
Ir1 <= rfb
rfb rab

Out: rab == rsp
Ir1 <= rfb
rfb rab

mfsr
mfsr
mtsrim
sub
sub
srI
sub
mtsr
storem
add
mtsrim
mtsr
mtsr
iret

3-36

(requiring an allocation)

+ 512

(just enough allocated)

+ 512

R_TmpPCO, pcO
R_TmpPC1, pc1
cps, Ox73
R_Cnt, rab, rsp
rfb, rfb, R_Cnt
R_Cnt, R_Cnt, 2
R_Cnt, R_Cnt, 1
cr, R_Cnt
0, 0, IrO, rfb
rab, rsp, 0
cps, Ox473
pcO, R_TmpPCO
pc1, R_TmpPC1

save the PCs

PD, PI, SM, DI, DA
R_Cnt = * of bytes to spill
move down the frame bound
R_Cnt = count of words to spill
correct for storem
set up count for storem
spill from the allocated area
move down the allocate bound
FZ, PD, PI, SM, DI, DA
restore the PCs

A-9. EPILOGUE MACRO

; macro EPILOGUE
.macro EPILOGUE

add rsp, rsp, (ALLOC_CNT« 2)
nop
jmpi
asleu

.else
jmpi
nop

.endif

raddr
V_FILL, fp, rfb

raddr

. set IN_PRM, (1024)

.set LOC_REG, (1024)

.set OUT_PRM, (1024)

.set ALLOC_CNT, (1024)
.endm

A-10. EPILOGUE EXPANSION FOR RECURSEO

EPILOGUE
add rsp, rsp, (ALLOC_CNT« 2)
nop
jmpi raddr
asleu V_FILL, fp, rfb

Implementation of an Am29000 Stack Cache

illegal, to cause err on ref
illegal, to cause err on ref
illegal, to cause err on ref
illegal, to cause err on ref

3-37

29K Family Application Notes

A-11. UNDERFLOW TRAP HANDLER

.global FillHandler

FillHandler:

iThis routine handles a false assertion in the standard epilogue.

iIn: lrl > rfb
rsp >= rab
rfb rab

iOut: lrl == rfb
rsp >= rab
rfb rab

mfsr
mfsr
mtsrim
const
or
mtsr

sub
add
srI
sub
mtsr
loadm
add
mtsrim
mtsr
mtsr
iret

3·38

(requiring de-allocation)

+ 512

(just enough freed)

+ 512

R_TmpPCO, pcO
R_TmpPC1, pcl
cps, Ox73
R_Cnt, 512
R_Cnt, R_Cnt, rfb
ipa, R_Cnt
R_Cnt, lrl, rfb
rab, rab, R_Cnt
R_Cnt, R_Cnt, 2

R_Cnt, R_Cnt, 1
cr, R_Cnt
0, 0, grO, rfb

rfb, lrl, 0
cps, Ox473
pcO, R_TmpPCO

pcl, R_TmpPCl

save the, PCs

PO, PI, 8M, DI, DA
make local reg ip

from rfb
set up indirect ptr for loadm
R_Cnt = # of bytes to fill
move up the allocate bound
R_Cnt = number of words to
correct for loadm
set up count for loadm
fill area freed
move up frame bound
FZ, PO, PI, 8M, DI, DA
restore the PCs

Implementation of an Am29000 Stack Cache

APPENDIX B:
COMPLETE LISTING OF EXAMPLE PROGRAM

start:

. include "regdcl.h"

.equ TOP_STK, (Ox5000 & -7)

.text

.global start

.reg

.reg

const
const
const
const

tmp1, (SYS_TMP + 0)
tmp2, (SYS_TMP + 1)

rsp, (TOP_STK-8)
rab, (TOP_STK-512)
fp,TOP_STK
rfb,TOP_STK

;set correct mode
mtsrim cps, Ox72
mtsrim cfg, Ox10
mtsrim vab,O

; connect up spill handler
const tmp1,SpillHandler
consth tmp1,SpillHandler
const tmp2,V_SPILL
sll tmp2,tmp2,2
store 0,0,tmp1,tmp2

;connect up fill handler
const tmp1,FillHandler
consth tmp1,FillHandler
const tmp2,V_FILL
sll tmp2,tmp2,2
store 0,0,tmp1,tmp2

;call main program
call raddr,main
nop

halt

;create double word
;aligned value

;set stack ptr
;set reg alloc bound
;set frame ptr
;set reg free bound

;PD, PI, SM, DI
;VF

;compute vect addr
;write spill vector

;compute vect addr
;write fill vector

;halt after successful completion

;The routines below handle overflow and underflow conditions.
iThe temps which they use are given below.

.reg

.reg

.reg

R_Cnt, (SYS_TMP + 0)
R_TmpPCO, (SYS_TMP + 1)
R_TmpPC1, (SYS_TMP + 2)

;temp for count (shared)
itemp for PCO
itemp for PC1

3·39

29K Family Application Notes

.global 8pillHandler

8pillHandler:
iThis routine handles a failed assertion in the standard prologue

iIn:rab > rsp(requiring an allocation)
ifp <= rfb
irfb == rab + 512

iOut:rab == rsp(just enough allocated)
ifp <= rfb
;rfb == rab + 512

mfsr R_TmpPCO, pcO
mfsr R_TmpPC1, pc1

mtsrim cps, Ox73

sub R_Cnt, rab, rsp
sub rfb, rfb, R_Cnt
srI R_Cnt, R_Cnt, 2
sub R_Cnt, R_Cnt, 1
mtsr cr, R_Cnt
storem 0, 0, IrO, rfb
add rab, rsp, 0

mtsrim cps, Ox473

mtsr pcO, R_TmpPCO

mtsr pc1, R_TmpPC1

iret

.global FillHandler
FillHandler:

isave the PCs

iPD, PI, 8M, DI, DA

iR_Cnt = * of bytes to spill
imove down the frame bound
;R_Cnt = count of words to spill
icorrect for storem
iset up count for storem
ispill from the allocated area
imove down the allocate bound

iFZ, PD, PI, 8M, DI, DA

irestore the PCs

iThis routine handles a failed assertion in the standard epilogue

iIn:fp > rfb(requiring de-allocation)
irsp >= rab
irfb == rab + 512

iOut:fp == rfb(just enough freed)
irsp >= rab
irfb == rab + 512

3·40

mfsr
mfsr

mtsrim

const
or
mtsr

R_TmpPCO, pcO
R_TmpPC1, pc1

cps, Ox73

R_Cnt, 512
R_Cnt, R_Cnt, rfb
ipa, R_Cnt

isave the PCs

iPD, PI, 8M, DI, DA

imake local reg ip
ifrom rfb
iset up indirect ptr for loadm

sub
add
srI
sub
mtsr
load
add

mtsrim

mtsr
mtsr

iret

R_Cnt, fp, rfb

rab, rab, R_Cnt
R_Cnt, R_Cnt, 2

R_Cnt, R_Cnt, 1

cr, R_Cnt
mO, 0, grO, rfb
rfb, fp, °
cps, Ox473

pcO, R_TmpPCO
pcl, R_TmpPCl

Implementation of an Am29000 Stack Cache

iR_Cnt = # of bytes to fill
imove up the allocate bound
iR_Cnt = number of words to fill
icorrect for loadm
iset up count for loadm
ifill area freed
imove up frame bound

iFZ, PO, PI, SM, DI, DA

irestore the PCs

._---,

3-41

Introduction to the Am29000
Development Tools
Application Note
by Doug Kern and Douglas Walton

INTRODUCTION

The development of a microprocessor-based system is
a complicated and detailed undertaking that requires
skilled personnel and efficient test equipment. Because
of the sophistication of modern microprocessing sys­
tems, they usually cannot be flawlessly designed on the
first iteration, and nearly always require extensive
debugging and testing time. Experienced developers
know that few designs function perfectly at power-up.
Faults occur due to erroneous logic, poor assembly, or
defective parts, so some debugging is virtually always
necessary. Therefore, every effort should be made to
plan the debugging and testing process before the first
prototype is built. Without advance planning, the
deSigner may find that the circuit either cannot be suc­
cessfully debugged, or that the necessary debug time is
prohibitive.

Planners should keep in mind that testing and debug­
ging continues throughout the life of the product.
Because different phases in the product life cycle have
different characteristics, the requirements for each must
be considered. The major phases of the product life
cycle are development, production (pilot, limited, and
large-scale), and field service.

Apart from the skill of the personnel, the efficiency of test
equipment is a critical area that affects the testing time
in every phase. Outdated or ineffective equipment will
slow down even the most highly trained personnel. More
importantly, expensive, state-of-the-art test equipment
will be wasted if its use is not preplan ned. Careful con­
sideration must be given to the type of equipment
needed to service the product, as well as its cost and
how it will be disbursed to the field.

AMD offers a comprehensive array of development
tools that allow development teams to effectively test
and debug Am29000™-based systems throughout the
life cycle of the product. This document discusses those
Am29000 development tools, and provides information
for gauging their usefulness in specific applications
with respect to cost, capabilities, and target design
requirements.

Am29000 DEVELOPMENT TOOLS

The Am29000 development tools covered in this docu­
ment are those used for debugging and testing

Plblication' Rev. Amendment Issue Date:
12908 A 10 11/89

3-42

actual system hardware. They normally are used with a
prototype or production system to determine the cause
of failure, and are distinguished from the 29KTM tools
used to prepare programs for execution on a target
system (see the 29K Tool Chain section).

Figure 1 shows the relationship of these development
tools to the application and each other. The components
are described below:

ADAPT29K-Advanced Development and Prototyping
Tool. ADAPT29KTM is a standalone system that inter­
faces to the application like an in-circuit emulator. It pro­
vides a wide range of debugging functions without
intruding on the application's execution.

MON29K-Target Resident Monitor.' MON29KTM is a
monitor program that executes on the target Am29000.
It provides many of the same ~ebugging functions as the
ADAPT29K, even though it is a software product.

XRAY29K-5ource-Level Debugger. XRAY29!<TM is a
source-level debugging program. It supplies an interac­
tive, windowed environment for debugging Am29000
applications using MON29K or ADAPT29K.

Probe Interface. The Hewlett-Packard® probe interface
provides an interface between the Am29000 and an HP
1650 or 16500 logic analyzer. When using a suitable
logic analyzer, the probe interface allows the tracing of
Am29000 signals with a 10-ns sample time and disas­
sembly of Am29000 instructions.

© 1989 Advanced Micro Devices. Inc.

PC Used with
MON29K

Target
System

Introduction to the Am29000 Development Tools

• 11111111111

Host
Computer

System

ADAPT29K

PC Controlling
ADAPT29K

11014A·01

Figure 1. The Am29000 Development Tools

THE 29K TOOL CHAIN

The Am29000 development tools discussed in this
document are a subset of the 29K tool chain, which are
compatible resources provided by AMD for developing
Am29000-based systems. Only the tools used for
debugging are described in this document; other com­
ponents of the 29K tool chain are needed to create the
executable object modules that run on an Am29000-
based system.

An object module can be obtained from the set of
programs shown in Figure 2. Detailed information on
using the tools to create an executable object module is
contained in the following documents:

ASM29K Documentation Set. It provides complete
information on the installation and use of the ASM29I(TM
assembler, linker, and librarian manager. It also
includes documentation on the Am29000 utilities.

HighC29K Documentation Set. It covers how the
HighC29KTM C compiler for the Am29000 is used.

3·43

29K Family Application Notes

3-44

Library
Files
(.LlB)

COFF2HEX

PROM
Programmer

-

...- -
~ -
~ -
~ -

Cor
Assembly

Language
Source File

~ -
.C (C source file)

or
•• S (assembly-language source file)

HighC29K
Compiler

1----------
ASM29K

Assembler

.0 (relocatable object module)

"
ASM29K

Linker

.OUT (absolute object module)

~It

Binary to ASCII
BTOA

.ASC (ASCII object module)

ADAPT29K or
MON29K Target

Figure 2. The 29K Tool Chain

11014A-02

REFERENCE MATERIALS

This document covers only information concerning criti­
cal requirements to consider during development plan­
ning. Detailed usage of each tool is not covered.
Additional information can be found in the following
documents:

ADAPT29K User's Manual. It provides detailed informa­
tion on the ADAPT29K including installation, com­
mands, theory of operation, and target design
requirements.

MON29K Documentation Set. It provides detailed infor­
mation on the MON29K including installation, com­
mands, theory of operation, and target design
requirements.

XRA Y29K Documentation Set. This set of documents
includes an installation guide, user's manual, and refer­
ence guide for XAAY29K, the high-leveVassembly­
language debugger.

Hewlett-Packard Probe Interface Data Sheet. It gives a
description and electrical specifications forthe probe in­
terface.

These materials can be obtained by writing to:

Advanced Micro Devices, Inc.
901 Thompson Place
P.O. Box 3453
Sunnyvale, CA 94088-3453

or by calling 1-800-222-9323.

For questions that cannot be resolved with the current
literature, further technical support can be obtained by
writing or calling:

29K Support Products Engineering
Mail Stop 561
5900 E. Ben White Blvd.
Austin, TX 78741
(800) 2929-AMD (US)
0-800-89-1131 (UK)
0-031-11-1129 (Japan)

HOW TO USE THIS DOCUMENT

This document discusses the Am29000 development
environment. However, different readers have different
requirements and initial levels of knowledge. The layout
of this document should help readers locate the desired
information while avoiding redundant or known material.
In this document, special emphasis is placed on
answering the questions:

1. What is the development tool?

2. Where does it fit in the 29K tool chain?

Introduction to the Am29000 Development Tools

3. What capabilities does the development tool have?

4. What requirements must be met to effectively use
the development tool with the target system?

The "Summary of the Tools" section summarizes the ad­
vantages and disadvantages of each development tool.
Their compatibility requirements also are summarized.

The "Standalone Execution Board" section details the
Standalone Execution Board (STEB) manufactured by
STEP Engineering. The STEB is not actually a develop­
ment tool, but an example of an Am29000 system that is
compatible with all the development tools. The section
highlights important areas of the development environ­
ment, demonstrating how the STEB was designed to
comply with the compatibility requirements of the devel­
opment tools.

Appendix A contains logic diagrams for the Standalone
Execution Board. These should be used in conjunction
with the discussion in the "Standalone Execution Board"
section to show how the STEB was designed to comply
with the compatibility requirements of the development
tools.

ADAPT29K ADVANCED DEVELOPMENT
AND PROTOTYPING TOOL

The ADAPT29K is a standalone unit used for non-intru­
sive supervision and monitoring of the target circuit,
much like an in-circuit emulator. Completely self­
contained, it has its own processor, memory, I/O, and
power supply. It is connected to the target by a cable
inserted between the Am29000 and its socket. When
the target is running, the ADAPT29K monitors bus activ­
ity. When the target is halted, the ADAPT29K can use
the target Am29000 to modify memory, provide proces­
sor status, or perform other debugging functions.
Figure 3 shows the ADAPT29K.

Either an ASCII terminal or a host computer can be used
to control the ADAPT29K. The commands have a
format similar to the DEBUG program on the IBM® PC.
When using an engineering workstation (running a
terminal emulator program), screen logging facilities,
file storage with uploading and downloading, and batch
file support are available. Also, XAAY29K (see the
"XAAY29K Source-Level Debugger" section) can be
run on a mainframe or workstation, providing source­
level debugging support. See Figure 4.

3-45

29K Family Application Notes

Host Computer Port Terminal
Port

OnlOff Switch

3-46

• 11111111111'

Host Computer
System

11111111111111111111°
1111111111111111111

Diagnostic
Indicators Clock

Indicator

::l-oI __ -- Line Drivers

.... --- Interface Connector

Reset

Figure 3. The ADAPT29K

DCE RS232 Port

t----I ADAPT29K

Target

Figure 4. Connections to the ADAPT29K

Loop test socket P/O
diagnostic self-test
feature (located inside
the unit)

11014A-03

PC or Terminal

11014A-04

One major advantage of the ADAPT29K is that, as a
separate unit running on a separate processor from the
target, hardware control signals can be asserted to gain
control over the processor, regardless of the state of
the program executing on the target. This allows the
ADAPT29K to be used for debugging a system that can­
not yet run its program. This type of debugging support
is often useful when testing a prototype for the first time.

FEATURES

The ADAPT29K has powerful debugging capabilities
that are important when bringing up a new design. For
example, it is often necessary to inspect or alter memo ry
contents, force test conditions, and patch in code
sections. By using the ADAPT29K, the developer gains
these capabilities for supervising the processor execu­
tion, thus greatly facilitating the initial debugging and
development of Am29000-based applications.

Display and Modification of Memory

Using the ADAPT29K, all Am29000 memory spaces
can be accessed. This includes instruction ROM,
instruction/data RAM, Am29000 internal registers
(global, local, and special), and coprocessor registers.
Target data can be displayed or modified. The contents
of a register or ranges of memory locations can be
moved or filled; individual bits of special registers may
be set separately. Table 1 shows the ADAPT29K com­
mands available for managing memory.

f DW LR4, LRll

Introduction to the Am29000 Development Tools

Table 1. ADAPT29K Memory Display and
Modification Commands

Command' Description

D Display registers/memory
F Fill registers/memory
I Input from a port
M Move memory
o Output to a port
S Set registers/memory
X Display key registers

XC Display/set coprocessor registers
XP Display/set protected registers
XT Display/set TLB registers
XU Display/set unprotected registers

Memory operations can be performed in byte, half-word,
word, floating-point, or double-precision format. For
example, to display Ir4 through Ir11 as words, enter:

dw LR4,LR11

Or, to display addresses FO to FF in instruction/data
RAM, enter:

db 10000i, 1001fi

Figure 5 shows the results of these operations.

LR004 61006200 63006400 65006600 67006800 a.b.c.d.e.f.g.h.
LR008 69006aOO 6b006cOO 6d006eOO 6f007000 i.j.k.l.m.n.o.p.
f

f DB 10000I,1001FI
00010000I 61 00 62 00 63 00 64 00 65 00 66 00 67 00 68 00
00010010I 69 00 6a 00 6b 00 6c 00 6d 00 6e 00 6f 00 70 00
f

Figure 5. ADAPT29K Memory Displays

a.b.c.d.e.f.g.h.
i. j .k.l.m.n.o.p.

11014A-05

3-47

29K Family Application Notes

Several ADAPT29K commands make displaying of
common memory groups easier. Frequently. when
debugging specific areas of an application. the same
data areas will need to be displayed repeatedly. For
example. when testing a TLB-miss trap handler. it may
be necessary to stop program execution after reloading
the TLB to determine if the proper entry has been
updated. The TLB entries can be displayed easily using
the XT command. as shown in Figure 6.

Likewise. the processor status information contained in
the special protected registers can be displayed using
the XP command. as shown in Figure 7.

:It XT
LINE SET 1ST REG 0: VTAG VE SR

00 0 TROOO 00000 0 0
00 1 TR064 00000 0 0
01 0 TR002 00000 0 0
01 1 TR066 00000 0 0
02 0 TR004 00000 0 0
02 1 TR068 00000 0 0
03 0 TR006 00000 0 0
03 1 TR070 00000 0 0

:It

SW
0
0
0
0
0
0
0
0

Often. the best time to examine memory locations is
immediately after program execution has halted. A
substantial amount of repetitive key entry can be elimi­
nated by using the E command. which defines a
command list that executes whenever the Am29000
halts. For example. to automatically perform the same
operations shown in Figure 5 every time the Am29000
halts. the execution list could be defined as:

E DW LR4,LR11;DB 10000I,1001FI

The next time execution halts. the local registers Ir4
through Ir8 will be displayed. followed by a display of
memory locations OOOOOOFO through OOOOOOFF. just as
it would have occurred if the commands had been
entered individually.

SE UR UW UE TID 1 : RPN PGM U F
0 0 0 0 00 000000 0 0 0
0 0 0 0 00 000000 0 0 0
0 0 0 0 00 000000 0 0 0
0 0 0 0 00 000000 0 0 0
0 0 0 0 00 000000 0 0 0
0 0 0 0 00 000000 0 0 0
0 0 0 0 00 000000 0 0 0
0 0 0 0 00 000000 0 0 0

11014A-06

Figure 6. TLB Entries Display

:It xp
CA IP TE TP TU FZ LK RE WM PD PI SM IM DI DA

cPS: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
OPS: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

VAB CFG: PRL VF RV BO CP CD
0000 00 0 0 0 0 0

CHA CHD CHC: CE CNTL CR LS ML ST LA TF TR NN CV
00000000 00000000 0 00 00 0 0 0 0 0 00 0 0

RBP: BF BE BD BC BB BA B9 B7 B6 B5 B4 B3 B2 B1 BO
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TCV TR: OV IN IE TRV PCO PC1 PC2 MHU: PS PID LRU
000000 0 0 0 000000 00000000 00000000 00000000 0 00 0
:It

11014A-07

Figure 7. Protected Register Display

3-48

Execution Control

The ADAPT29K can completely control target execu­
tion. Processing may be at full speed, or the target may
be single-stepped, or it can be run until a breakpoint is
encountered. Table 2 shows the ADAPT29K com­
mands that control program execution.

Table 2. ADAPT29K Execution Control Commands

Command Description

B Breakpoint display, set, and reset
C Check execution state
E End execution command list
G Go (start program execution)
K Kill program execution
T Trace (single step) instructions

Two types of breakpoints are available: "non-sticky" and
"sticky." Non-sticky breakpoints are temporary break­
points set as optional parameters of the G (Start
Program Execution) command. They are reset when
program execution stops. Fixed, or "sticky," breakpoints
are set by using the B command. They remain in effect
until they are expressly removed.

Debugging Support

Because the ADAPT29K was designed to aid debug­
ging, it has several unique features that aid in testing the
target. The testing aids include running memory
diagnostiCS, assertion of repetitive Signals, pulsing inter­
face lines, and forced execution of Am29000 instruc­
tions. The commands are shown in Table 3.

* z 13
Line Address Data

----------------- --------
13 ROM RD 0OOOgefO (none)
12 ROM RD 0000gef4 (none)
11 ROM RD 0000gef8 (none)
10 ROM RD 0000gefc (none)

9 DATA WR 00103fbc 00000000
8 DATA RD 00104528 0010442c

*

Introduction to the Am29000 Development Tools

Table 3. ADAPT29K Debugging Commands

Command Description

A Assemble in memory
J Jam an instruction
L List memory
P Pulse the reset line
W Run interface diagnostics
Z Display trace buffer

The ADAPT29K's J command forces the processor to
execute a user-specified Am29000 instruction. Issuing
the P command pulses the processor reset line, initiat­
ing a hardware restart. Options of the W command
specify various diagnostics to be executed,'including a
target memory test over a specified range of addresses;
it also can be used to generate repetitive read and write
signals for easy triggering of an oscilloscope.

Bus Tracing

A real-time bus trace facility is supported. Wheneverthe
target Am29000 is executing, the ADAPT29K traces
most CPU pins and stores their states in a 4096 entry
ring buffer. All Am29000 signals are traced, except
INCLK, SYSCLK, CNTLO, CNTL 1, *TEST, and
*RESET.

The state condition of the traced signals at each bus
cycle is numbered sequentially and stored as an entry
in the trace buffer. It may later be displayed to the termi­
nal or host using the Z command shown in Table 3. A
range of entries may be displayed in any of three for­
mats. One (Figure 8) shows the disassembled instruc­
tions. Another (Figure 9) shows the states of the traced
control signals. The remaining display is a combination
of both figures.

Instruction

STORE 0, OxO, GR116, LR6
LOAD 0,OxO,LR2,LR10
ADD LR3, LR11, OxO
CALL LRO, .-OxCEO
(none)
(none)

11014A-08
Figure 8. Bus Trace Display

3-49

29K Family Application Notes

zc 13
* *1 *

* * *1 * 1* I. I * * II* D D * * DI* * *
B B BI L M 1* *II R B * I I BID R B * D D

PRE
D D R
A Y R

111
111
111
111
101
101

BIW I T S
R G II IR S o P OIC PIR E R P R E AIR E R AlA N R T
E R NI 1/ / C G PID EIE Q E I D R CIE Q E CIR T A A

Line Q T VIADDRESS IW U K M TIA NIQ T Q A Y R KIQ T Q KIN R P T
13 1 1 110000gefOl1 1 1 0 011 110 1 0 1 0 1 111 0 1 111 f 3 7

12 1 1 110000gef411 1 1 o 011 110 1 0 1 0 1 111 0 1 111 f 3 7

11 1 1 110000gef811 1 1 o 011 110 1 0 1 0 1 111 0 1 111 f 3 7

10 1 1 110000gefcl1 1 1 o 011 110 1 0 1 0 1 111 0 1 111 f 3 7

9 1 1 1100103fbcl0 1 1 0 011 111 1 1 1 1 1 110 0 1 111 f 3 7

8 1 1 110010452811 1 1 0 011 111 1 1 1 1 1 110 0 1 111 f 3 1

11014A-09
Figure 9. Control Signal Trace Display

Assembly/Disassembly

The ADAPT29K has a built-in, in-line assembler/disas­
sembler that allows instruction memory examination
and alteration using Am29000 mnemonics rather than
hex values. The syntax corresponds to the ASM29K
macro-assembler.

Serial Ports

The ADAPT29K has two serial ports. One is a data com­
munications equipment (DCE) port; the other is a data
terminal equipment port (DTE). Both ports conform to
EIA convention RS232. Generally, a user gives com­
mands to the ADAPT29K from an ASCII terminal or
engineering workstation connected to the DCE port.
(See Table 4 for a list of the commands.) A source-level
debugger, such as XRAY29K (see the "XRAY29K
Source-Level Debugger" section) running on a remote
host, would use the DTE port.

Either port may be used to upload or download pro­
grams to the target. In this way, a user can control the
ADAPT29K from an ASCII terminal while downloading
programs from a remote host connected to the DTE
port. Both Tektronix® Hex and Motorola® S3 formats
are accepted. The ports can be connected together,
enabling the terminal device to communicate with the
remote host.

Table 4. ADAPT29K Serial Port Commands

Command Description

N Change the "normal character"
(used to connect DCE and DTE ports)

R Enter remote mode
V Save memory to a file
Y Load a file to memory

3-50

On-Line Help

On-line help is available for all commands. A command
summary can be obtained by entering:

H <CR>

Specific help on an individual command can be obtained
by entering H followed by the letter of the command. All
command explanations show the complete command
syntax and give a short description of how the command
functions.

HOW THE ADAPT29K WORKS

The ADAPT29K runs on a different processor than the
target. It performs all operations on the target by control­
ling the target Am29000. A buffered cable connects the
ADAPT29K to the target's Am29000 socket. Figure 10
shows the signals carried on the cable. Note that
although the ADAPT29K traces the address bus, it can­
not drive it, and, consequently, cannot provide an over­
lay memory. It uses the target Am29000 to set up all
memory addresses before it can access them.

Execution Control

The execution state of the target Am29000 is controlled
by using the CNTLO and CNTL 1 signals. By asserting
different combinations of the two signals, the Am29000
can be placed in one of four states: RUN, HALT, STEP,
and LOAD TEST INSTRUCTION. How these states
affect the processor is explained in detail in the
Am29000 User's Manual, order #1 0620.

The LOAD TEST INSTRUCTION state should be noted
due to its importance to the ADAPT29K. Because the
LOAD TEST INSTRUCTION state interrupts normal
sequential processing and permits a sequence of
instructions to be loaded into the processor's instruction
stream, the ADAPT29K, using the LOAD TEST
INSTRUCTION STATE, can force the processor to
perform operations on the target.

ADAPT29K

Introduction to the Am29000 Development Tools

Memory Access

Due to the high speed of the Am29000, the ADAPT29K,
unlike some in-circuit emulators, does not provide any
overlay memory. To maintain real access times, the
processor must be kept as physically close to its mem­
ory as possible. There is no time available for the propa­
gation delay that would be experienced in accessing
memory across the interface cable to the ADAPT29K.

Target

~ Data Bus 0-31

~ V
CNTL,-CNT~ ...

y

STAT,-STATft

....
lEST ...
RESET

.. ...
DRDY ~
DERR

--.-... ..
) Instruction Bus 0-31

Vt All Am29000 Signals

(except INCLK, SYSCLK, CNT~,

~
CNTL" TEST, RESEl)

11014A-10

Figure 10. The ADAPT29K·to-Target Interface

3·51

29K Family Application Notes

All target code and data is stored on the target. When
the ADAPT29K is commanded to display a data object,
it places the target Am29000 in the LOAD TEST
INSTRUCTION state. Then a sequence of instructions
is inserted to store the present Am29000 state, set up a
new memory address, load the data into an Am29000
register, store the data to the ADAPT29K, and restore
the Am29000 state.

This method imposes certain requirements. Because
data is transferred between the ADAPT29K and the
target over the data bus, the target memory must be
protected from corruption. To prevent inadvertent
changes to the target memory, it must be disabled from
responding when the ADAPT29K and the target proces­
sor are transferring data. There are two ways of doing
this: (1) the memory can be disabled by a low state on
the PIN169 alignment pin (pin D4), or (2) the target
memory can be disabled when an 06 hex is decoded on
the OPT2-0PTo pins.

When the contents of instruction ROM must be
displayed, the ADAPT29K must instruct the processor
to read instruction ROM as data. Hence, a hardware
path must exist for data stored in the instruction ROM
space (on the instruction bus) to be loaded into an
Am29000 register from the data bus.

Similarly, when the ADAPT29K is used to download a
program, the code will be written word-by-word to the
target Am29000, which then writes the instructions into
proper memory space. Suppose, for example, code is to
be written into the instruction/data RAM. Because the
ADAPT29K has no means for virtual translation of
addresses, it will use Store instructions to write the code
into the absolute address in the instruction/data space.
When the Am29000 goes to execute the code, it will ex­
pect to fetch its instructions over the instruction bus.

This requires that there be a hardware path from the
data bus to the instruction bus and a one-to-one corre­
spondence between addresses on the data bus and the
addresses on the instruction bus. This occurs because
the instruction is stored at an address on the data bus,
but is fetched via the instruction bus. In other words, in­
structions fetched from an address in the instruction
RAM space via the instruction bus must produce the
exact information as would be retrieved from the same
address in the data RAM space via the data bus.

Breakpoints

Because the Am29000 is one of the fastest commercial
processors available, there is no practical way to read
each address on the address bus and compare it
against a breakpoint table to determine if a break should
occur, as is done in an in-circuit emulator. The method
used by the ADAPT29K is to swap a halt instruction into

3-52

memory at the location of the breakpoint. When the
executing processor encounters the breakpoint, it halts.
Then, the ADAPT29K, upon detecting the halt, com­
pares the halt address with the breakpoint table and
determines if there is a match. If there is, it swaps the
original instruction back into memory and informs the
operator that a breakpoint has occurred.

This method of setting breakpoints also contributes to
the requirement for a one-to-one translation of ad­
dresses between the data bus and the instruction bus.
For example, when the ADAPT29K sets a breakpoint in
the instruction ROM space, it does so by using the target
Am29000 to read the original instruction, then writes the
halt into the address location. This is performed as a
data movement operation, using the bi-directional path
to the instruction bus discussed in the Memory Access
section. For the breakpoint to be effective, the executing
program must encounter the breakpoint at the same ad­
dress at which it was stored.

TARGET DESIGN REQUIREMENTS

Throughout the preceding discussion, it should be clear
that the ADAPT29K only interfaces to the target via the
target Am29000, and uses only the target memory for
storage of the application program. This places certain
hardware requirements on the application. These are
listed below. Fora specific example, see the Standalone
Execution Board section.

1. The physical device in the instruction ROM space
must be a RAM device if code is to be downloaded
to the instruction ROM space, or if breakpoints will
be set in the instruction ROM space.

2. A bi-directional path must exist between the instruc­
tion and data buses.

3. There must be a one-to-one translation between
instruction bus addresses and data bus addresses.

4. The ADAPT29K must be able to disable the target
memory using a low signal on the PIN169 alignment
pin (D4), orwhen OPTo-OPT2 are 06 hex.

5. Physical clearance must be provided for the con­
nection of the interface cable at its proper orienta­
tion.

6. Signals driven by the ADAPT29K (see Table 5)
must be open-collector or tri-state.

Table 5. Am29000 Signals Driven by the
ADAPT29K

Pin

Alignment pin
031-00
131-10
OERR
RESET

OROY
STAT1-STATo
TEST

Configuration

(Input with pull-up resistor)I.2
(Tri-state)
(Tri-state)
(Input with pull-up resistor)1
(Open coli. pull-up with 1 K ohm
resistor)

(pull-up resistor) 1

(Input)
(Open collector)3

1. Pull-up resistors should be 330 to 1000 ohms.

2. This is an optional configuration. It is used if memory will be
disabled by the alignment pin (PIN169).

3. Note that mT is active longer than ~. Since all outputs
will be in a high-impedance state, it may be prudent to pull up all
Am29000 outputs to avoid ambiguous inputs (to other devices).

• 11111111111

Introduction to the Am29000 Development Tools

MON29K TARGET RESIDENT
MONITOR

MON29K is a target-resident monitor that has function­
ality similar to the AOAPT29K monitor. MON29K
provides many important debugging capabilities, includ­
ing memory display and alteration, code uploading and
downloading, and assembly and disassembly. How­
ever, unlike the AOAPT29K, MON29K is an entirely soft­
ware product. It resides completely in the target memo ry
and executes on the target Am29000 (see Figure 11).

MON29K has I/O driver routines to handle two serial
ports. Either port can be used to receive commands,
although the hardware must be supplied by the target.
With the proper hardware, MON29K can receive com­
mands from an ASCII terminal or a remote host. It also
can act as the interface between XRAY29K and the
target. MON29K is supplied in C source code form so
the I/O drivers and service routines can be modified to fit
the particular hardware environment.

Since it is entirely software, MON29K can be perma­
nently embedded in the product. It takes only 256K of
address space in instruction ROM; thus, it can remain
with the application and be used to diagnose problems
at all stages of the product life cycle, from development
to field support .

~----------------~ Modem

Host Computer
System

Communications Link

Modem

MON29K
Installed

DIE RS232 Port DCE RS232 Port

Target
System

Figure 11. MON29K System Connections

PC or Terminal

11014A-l1

3-53

29K Family Application Notes

FEATURES

MON29K provides powerful testing capabilities. Many
of MON29K's features are, in fact, the same as the
ADAPT29K. These include:

• Display and alteration of memory, I/O ports, and
registers. Using MON29K, target data can be
displayed, set, or altered. All Am29000 memory
spaces may be accessed, including: Am29000 inter­
nal registers (global, local, and special), coprocessor
registers, instruction/data RAM, or instruction ROM.

• In-line assembly and disassembly. MON29K comes
with a built-in, in-line assembler/disassembler.
Am29000 instruction mnemonics can be converted to
machine codes and stored at a specified location, or
ranges of addresses may be disassembled and
displayed in mnemonic form.

• Uploading and downloading of programs. MON29K
can use two serial ports, assuming they are provided
by the target hardware. One port is a data communi­
cations equipment (DCE) port; the other is a data
terminal equipment port (DTE). Files may be
uploaded or downloaded in Motorola or Tektronix
formats. Also, XRAY29K can communicate with
MON29K through one of the ports.

• Execution Control. MON29K can control target exe­
cution. It can initiate full-speed execution, or single­
step the processor.

• SeVReset Breakpoints. Both permanent and tempo­
rary breakpoints are supported.

• On-line help. On-line help that shows the complete
syntax is available for all commands.

MON29K Commands

Many of the MON29Kcommands (and consequently
the features) are identical to those of the ADAPT29K.
The MON29K commands, all of which are implemented
in ADAPT29K, are listed in Table 6.

3-54

Table 6. MON29K Commands

Command Description

A Assemble in memory
B Breakpoint display, set, and reset
C Check execution state
D Display registers/memory
E End execution command list
F Fill registers/memory
G Go (start program execution)
I Input from a port
L List memory
M Move memory
N Change the "normal character"
o Output to a port
R Enter remote mode
S Set registers/memory
T Trace (single-step) instructions
V Save memory to a file
X Display key registers

XC Display/set co-processor registers
XP Display/set protected registers
Xl Display/set TLB registers
XU Display/set unprotected registers
Y Load a file to memory

Differences Between MON29K and ADAPT29K

Because MON29K runs on the target processor, not as
a separate unit, it has limitations that the ADAPT29K
does not have. In particular, MON29K has no K (Kill), S
(Jam), Z (Trace), or W (interface diagnostics) com­
mands.

MON29K is not able to assert a kill command because
when the application is running, the application controls
the processor. Clearly, when MON29K is not in control
of the processor, it has no means of evaluating serial
input and taking 29K polled the serial 110 device, but
such continuous polling would hinder real-time execu­
tion. Instead, to allow programs to be forcefully termi­
nated, MON29K can be configured to respond to
interrupt-driven serial I/O. When MON29K is initialized
to respond to interrupt-driven serial I/O, it intercepts a
CTRL-C and passes control to a handler that recovers
the processor to MON29K. This technique is effective in
most cases, except if the application program has
reached a HALT instruction. Then, the system must be
reset. Usage of interrupt-driven serial 110 is determined
as an option of the a command (not present on the
ADAPT29K).

TARGET DESIGN REQUIREMENTS

MON29K does place some requirements on the target
design. They are listed below. For a sample implemen­
tation of the compatibility requirements, see the Stand­
alone Execution Board section.

1. The physical part in the instruction ROM space
must be a RAM device if the code will be down­
loaded to the instruction ROM space, or if break­
points will be set in the instruction ROM space.

2. The Am29000 cannot write on the instruction bus,
so a bi-directional path must exist between instruc­
tion and data buses.

3. Instruction bus addresses must produce the same
data as data bus addresses.

4. As a target-resident monitor, MON29K does take up
some of the target memory; thus, sufficient memory
must be provided for MON29K. An application using
MON29K must have 256 Kbytes of memory in the
instruction ROM space for the program, and a 64-
Kbyte workspace in Instruction/data RAM. Both
spaces must begin at address 0 (Or and Od).

5. If program control must be recovered from the appli­
cation before it ends or returns control normally,
accommodations must be made to use interrupt­
driven serial I/O. When interrupt-driven serial I/O is
used, a MON29K interrupt routine will handle a
CTRL-C by terminating the application program and
returning control to MON29K.

6. MON29K expects the serial I/O driver to be an 8530
serial communications controller. Using a different
I/O driver will require modifications to be made to
MON29K.

7. AMD cannot anticipate every possible scenario in
which the Am29000 will be introduced, and it is
possible that MON29K will require some modifica­
tions to the I/O drivers and service routines before it
can run on the target. Although binary code is avail­
able from AMD, MON29K is supplied in source code
form. Of course, any changes will have to be com­
piled using a C compiler that produces object mod­
ules for the Am29000.

XRA Y29K SOURCE-LEVEL
DEBUGGER

XRAY29K, the high-IeveVassembly-ievei debugger, is a
program that provides an interactive, windowed en­
vironment for debugging Am29000-based systems.
Using XRAY29K, program statements may be read in
source language, and data objects may be modified and
changed by referencing symbol names. Thus, target op-

Introduction to the Am29000 Development Tools

erations can be performed using source-level
constructs, rather than machine codes and numeric
addresses. To further clarify the target environment,
XRAY29K's muhi-window interface simultaneously
displays user-selected program information.

Commands are issued to XRAY29K using a compre­
hensive debugger command language. The language
supports a wide range of functions, including setting
breakpoints, single-stepping, and examining or altering
any C- or assembly-language variables. The language
syntax is very similar to C, and also supports debugging
commands, creation of symbols during a debugging
session, and convenient specification of address
ranges.

XRAY29K resides on a host system and communicates
with the target system through either the ADAPT29K or
MON29K. Frequently, the host system is an engineering
workstation attached to the ADAPT29K, as shown in
Figure 12. In that system, XRAY29K provides a comfort­
able user-interface, while operations are asserted on
the target by the ADAPT29K. Alternately, XRAY29K
could reside on a mainframe and communicate with a
target running MON29K. The user interface could then
be done via an ASCII terminal.

FEATURES

XRAY29K supports source-level debugging in either of
two modes: high-level or assembly-level. In high-level
mode, an application can be debugged using C­
language expressions and statements. In this way, C
variables and expressions replace numeric addresses
for memory access, and the code can be viewed by line
number or procedure name.

In assembly-level mode, an application can be
debugged using assembly-language statements. The
assembly-level mode additionally allows machine-level
register and status bit manipulation.

Commands are given to XRAY29K using its powerful
debugger language, thus gaining access to XRAY29K's
full range of debugging services. The services include:

• Setting and examination of memory and register
contents using the declared format and the variable
name .

• Simple and complex breakpoints that can be set and
removed in either C-Ianguage or assembly-language
source code.

• Single-step and full-speed program execution.

• Assembly and disassembly of object code.

• Simulated I/O and interrupts.

• Execution time measurement.

3-55

29K Family Application Notes

DCE RS232 Port

ADAPT29K

Target

PC or Terminal

XRAY29K
~runnlngon

the PC-

11014A-12

Figure 12. XRAY29K System Connections

The commands for manipulating memory and registers
are shown in Table 7.

Command

compare
copy
fill
search
setmem

setreg
test

Table 7. XRAY29K Memory and
Register Commands

Description

Compare two blocks of memory
Copy a memory block
Fill a memory block with values
Search a memory block for a value
Change the values of memory .
locations
Change a register's contents
Examine memory area for invalid
values

Commands for controlling program execution are listed
in Table 8; otherdisplaycommands are listed in Table 9.

Table 8. XRA Y29K Breakpoint and
Execution Commands

Command Description

breakinstruction Set an instruction breakpoint
clear Clear a breakpoint
go Start or continue program execution
gostep Execute macro after each

step

stepnocall

3-56

instruction step
Execute a number of instructions or
lines
Step, but execute through
procedures

Table 9. XRAY29K Display Commands

Command

disassemble
dump
expand

find
fopen
fprintf
list
monitor
next
nomonitor
printf

printvalue

Description

Display disassembled memory
Display memory contents
Display a procedure's local
variables
Search for a string
Open a file or device for writing
Print formatted output to a viewport
Display C source code
Monitor variables
Find string's next occurrence
Discontinue monitoring variables
Print formatted output to command
viewport
Print a variable's value

Windowed Information Display

XRAY29K shows all critical program information at once
in multi-windowed displays. The contents of the run­
time stack, the selected general-purpose registers, the
current source lines being executed, or virtually any
other program information, can be checked at a glance,
without the need to constantly request each piece of
information individually.

Information is grouped into screens, which are com­
posed of one or more windows of specific data called
viewports. There are three predefined screens: high­
level, assembly-level, and standard 110. Distributed
among these screens are the 17 pre-defined viewports
listed in Table 10.

Introduction to the Am29000 Development Tools

Figure 13 shows the high-level mode screen display. It
has four viewports: data, trace, code, and command.
This screen is displayed when an object module gener­
ated by a C source program is executed.

Figure 14 shows the assembly-level mode screen
display. It has five viewports: data, stack, disassembled
code, registers (Am29000), and command. This screen
is displayed when an object module generated by an
assembly-language program is executed.

Viewport

Command(2)

Code(2)
Data(2)
Trace
Stack
Register
Status Line(2)

Standard I/O
Break

Error
Help
Log
Journal

Table 10. XRA Y29K Predefined Vlewports

Description

Debugger commands are submitted to XRAY29K from this viewport. There is a command view­
port for both high-level and assembly-level modes.
Displays source code in high-level mode or disassembled instructions in assembly-level mode.
Displays monitored variable expressions in high-level and assembly-level mode.
Shows the procedure calling chain (high-level mode only).
Shows stack contents beginning from the stack pointer (assembly-level mode only).
Displays current values of Am29000 registers (assembly-level mode only).
Used for debugger command information such as CPU type, current module name, and current
operation. This viewport is present in both high-level and assembly-level modes.
Shows interactive information being received from the std.ln or sent to the std.out.
Shows breakpoint information such as number, address, module name. Temporarily overlays top
of screen when breakpoint is encountered.
Appears when an error occurs to indicate type and source of error.
Shows on-line help information when requested.
Displays logged keystrokes.
Shows all previous comma\1ds and their results.

DATA ======== 3 ::;];'1===== TRACE 4 =
1.000018C4!??????\\<unknown>
0.00010004:CRTO_S\\start

................................ CODE 2
1 1* sievex.c -- scaled down sieve with maxprime_2 instead of 8091 */
2 /* Eratosthenes Sieve prime number calculation *1
3
4 #define maxiter 1
5 #define maxprime_2 9
6
7 extern void printi\(\);
8 extern void prints\(\);
9

10 extern char out ut;

Command HELP=FS V# 1.0 BREAK #: 0 29000 MODULE: CRTO_S

COMMAND====== ll. Note: in startup routine. Press F9 to go to main.
> host
>

11014A-13

Figure 13. The Standard High-Level-Mode Screen

3-57

29K Family Application Notes

I ~
DATA===12]

r:::=== STACK = 14

LR5 =00000000
LR4
LR3
LR2
LR1

126->LRO

=00000000
=00000000
=00018000
=00080000
=000018C4

CODE 11 REGISTERS 13 =-
00010004 25010110 SUB gr1,gr1,Ox10

cha=000019FC vab=OOOO mu =301
00010008 5E40017E ASGEU Ox40,gr1,gr126

chd=OOOOOOOO ops=0060 lru=OO
0001000C 15810118 ADD lr1,gr1,Ox18

chc=00008116 cps=0060 alu=OOO
00010010 0300838C CONST lr3,Ox8c

q =00000000 cfg=Ol-11 bp =00
00010014 02008301 CONSTH lr3,Ox10000

pcO=00010008 rbp=003F fc =00
00010018 03008240 CONST lr2,Ox40

pc1=00010004 tmc=FF62 cr =00
0001001C 03017921 CONST gr121,Ox121

pc2=00010004 tmr=OFFFF62
00010020 72450101 ASNEQ Ox45,gr1,gr1
00010024 030083BO CONST lr3,OxbO

grO =00000000 gr1 =0007FFF8
00010028 02008301 CONSTH lr3,Ox10000

gr64=00000B84 gr96 =00000210
0001002C 03008241 CONST lr2,Ox41

gr65=00000000 gr97 =00000000

Command 29000 MODULE: CRTO_S BREAK #: 0 HELP=F5 V# 1.0

>

COMMAND====== 10 ~
auto halt at address Ox00010004
Note: in startup ro~tine. Press F9 to go to main.'

11014A-14

Figure 14. The Standard Assembly-Level Mode Screen

The standard I/O screen has one regular viewport: the
standard 1/0 viewport, although the breakpoint, error,
and help viewports also will appear. The standard 1/0
screen is used when interactive input is requested from
the standard input device, orwhen output is directed to
the standard output device.

The viewport commands, shown in Table 11, con!rol the
way information is displayed on the screen. By uSing the
viewport commands, a viewport's size, color, and cursor
position can be changed. Viewports can be added or
deleted, and custom screens and viewports can be
defined.

3·58

Table 11. XRAV29K Viewport Commands

Command

vactive
vclear
vclose

vcolor
vmacro
vopen

vsetc
zoom

Description

Activate a viewport
Clear data from a viewport
Remove user-defined viewport or
screen
Select viewport colors
Attach a macro to a viewport
Create a screen or viewport or change
size
Set a viewport's cursor position
Increase or decrease a viewport's size

Utility Functions

In addition to its powerful features for execution control
and display of system information, XRAV29K provides
several utility features. These features ease debugging
by streamlining the routine operations. The services
include command keys, macros, and command files.

Command Keys

The most· frequently used XRA Y29K functions have
been assigned to a key combination referred to as a

"command key." By using command keys, common
debugger commands can be entered with the minimum
number of keystrokes, often only one key or a CTRL-key
combination.

Macros

XRAY29K has a powerful, multifaceted macro facility.
Because a macro may contain complex user command
procedures, which are executed by entering the macro
name on the command line, the facility can be used for
several purposes. Table 12 shows the debugging
language's macro-related commands.

Command

define
show

Table 12. Macro Commands

Description

Create a macro
Display the macro source

Macros can be invoked when a breakpoint is encoun­
tered. Powerful conditional and looping statements in
the command language allow the macro to evaluate
program or register variables, and alter program flow
depending on their condition. Hence, macros can be
used to establish very complex breakpoints that take
specific action, depending on their environment.

Macros also can be attached to user-defined viewports.
When the associated window is opened, the macro will
execute. This type of macro can write specific data into
the window, which is useful for monitoring environ­
mental information.

Command/Batch Flies

XRAY29K can process command files. A command file
contains one or more debugger commands that can be
processed by XRAY29K automatically, without the need
for user interaction. This is also called batch-mode
operation. Command files can be used to recreate a
debugging session, easily implement automated test
procedures, and eliminate reentering of frequently used
command sequences.

Other XRAY29K Utility Functions

XRAY29K possesses several other utility functions.
These include services for manipulating symbols,
evaluating expressions, setting display and recording
modes, and contrOlling the session. Table 13 lists
the symbol commands, Table 14 lists the miscella­
neous utility commands, and Table 15 lists the session
commands.

Introduction to the Am29000 Development Tools

Table 13. Symbol Commands

Command

add
delete

printsymbols
scope

Description

Create a symbol
Delete a symbol from the symbol
table
Display symbol, type, and address
Specify current module and proce­
dure scope

Table 14. Miscellaneous Utility Commands

Command

cexpression
erro
help
include
log

mode

option
pause
reset
restart
startup

Description

Calculate an expression'S value
Set include file error handling
Display on-line help screen
Read in and process a command file
Record debugger commands and
errors in a file
Select debugger mode (high-level or
assembly-level)
Set debugger options for this session
Pause simulation
Simulate processor reset
Reset the program starting address
Save the default start-up options

Table 15. Session Command

Command

host

load
quit

Description

Enter the host operating system envi­
ronment
Load an object module for debugging
End a debugging session

TARGET DESIGN REQUIREMENTS

XRAY29K itself places no restrictions on the target
hardware design. However, being strictly a software
product, XRAY29K needs a hardware connection to
the target. For debugging Am29000-based systems,
XRAY29K must be used in conjunction with either
ADAPT29K or MON29K; the target design require­
ments for those tools apply.

3-59

29K Family Application Notes

XRAY29K requires a host system. Versions of
XRAY29K currently exist for UNIX and DOS environ­
ments.

XRAY29K works only with object files that have been
compiled in such a way that they contain debugger infor­
mation regarding line numbers, etc. Thus, to use
XRAY29K, either the ASM29K macro-assembler or
HighC29K cross-compiler must be used, as well as the
ASM29K linker. These are explained in the "29K Tool
Chain" section.

Am29000 PROBE INTERFACE

The Am29000 probe interface provides a non-intrusive,
low-capacitance connection to an Am29000. Inserted
between the processor and its socket, the probe inter­
face makes the Am29000 pins available for convenient

attachment to a logic analyzer or other test equipment.
Figure 15 shows the probe interface.

The software available with the probe interface supplies
configuration information about the Am29000 pins and
instruction mnemonics to either an HP 1650 or 16500
log ic analyzer for display formatting. Whe n the display is
formatted, the logic analyzer will disassemble instruc­
tions into mnemonics and display processor, bus, and
error status, as well as data bus activity. Figure 16
shows how the probe interface is connected between
the logic analyzer and the target.

Although the probe interface was designed for the HP
1650 or 16500 logic analyzer, any type of test equip­
ment can be attached to it. The following discussion
assumes a connection to an HP 1650 or 16500 logic
analyzer, unless otherwise stated.

11014A-15

Figure 15. The Probe Interface

3-60

I I

Am29000-Based
System

Introduction to the Am29000 Development Tools

Logic Analyzer

11014A-16

Figure 16. Connection of the Probe Interface

FEATURES

The probe interface can add important event-trigger­
ing and high-speed (10 ns) resolution capabilities,
including:

• Convenient connection to the target.

• Low-capacitance probing.

• Completed status information, including identification
of burst, pipeline, and simple accesses.

• Status reporting of bus conditions, such as slave
accesses, wait states, and co-processor transfers.

• User-configurable setup and hold parameters allow
triggering on a specific target condition.

• Monitoring of all Am29000 signals except INCLK.

The probe interface comes with the disassembler,
configuration files, and a user's manual.

DISPLAYS

Figure 17 shows data bus information, as would be
shown on an HP 16500 logic analyzer. Figures 18 and
19 show signal state and timing screens and the disas­
sembly screen for the 16500 analyzer.

TARGET DESIGN REQUIREMENTS

Because the probe interface only monitors Am29000
signals, there are no particular target compatibility
requirements except for sufficient clearance to install
the probe interface. Most applications will not be
affected by low-capacitance, high-impedance connec­
tion; however, see the probe interface data sheet for
electrical and physical specifications.

Apart from supporting the physical size and electrical
specifications of the connection, a logic analyzer is
needed. The logic analyzer should have 80 to 160 state
channels. Some termination adapters also are needed,

. depending on the number of state channels on the logic
analyzer.

3-61

29K Famll~ Aee"catlon Notes

(. Statemming C) (Listing 1) (Cancel)(Group Run)
(Markers) Off

AM29000 Data Bus II STAT II R~W
data access type bus status II Hex II symbol

-5 Ox25788902 simple acc. read C36B RD
-4 data wait c76B

-3 data wait C76B

-2 data wait C76B

-1 data wait C76B
Ox4B79780E simple acc. read C36B RD

data wait C76B
data wait C76B
data wait C76B
data wait C76B

OxACOO7915 simple acc. read C36B RD
data wait C76B
data wait C76B
data wait C76B
data wait C76B

10 OX257D7D24 Simple acc. read C36B RD 11014A-17

Figure 17. HP 16500 Data Bus Information Display

(Statemming 8)(Waveform 1) (Cancel) (Group Run)

("'rum"'a" OH) (At)(IIREO)

88GG 88
IIREO

IIBREO

IMBACK

IRDY

STATO-Q

STAT0-1

STAT0-2

J IBGRT
11014A-18

Figure 18. HP 16500 Signal and Timing Display

3-62

Introduction to the Am29000 Development Tools

29K rNST - State Listing

Markers off

Label AM29000 Disassembly
Base mnemonics

-0247 000018AO CONSTH GR85.0xOOFF *cont. brst E747
-0246 000018AO MTST TMC.GR85 *cont. brst E747
-0245 000018AO CON 5TH GR85.0xOlff *cont. brst E747

-0244 000018AO MTST TMR.GRB5 *cont. brst E747

-0243 000018M CONSTN GRB4,-OxOOOl *cont. brst E747
-0242 0000IBAO IRET *cont. brst E747
-0241 00001BM ASNEQ 6B,SP,SP *cont. brst E747

~ 000018M JMP -OxOOO04+PC *cont. brst E747
-0239 000018AO rBUS = 70400101 *int ret E7SF
-0238 00004000 rBUS = c67AOBOO wait state 64D6
-0237 00004000 rBUS = CEOOOBSO wait state 61D6
-0236 00004000 rBUS = CEOOOB50 wait state 61D6
-0235 00004000 rBUS = CEOOOB50 wait state 61D6
-0234 00004000 SUB SP,SP,Oxl0 brst init 6146
-0233 00004000 ASGEU 64,SP,GRI26 cant. brst 6147 11014A-19

Figure 19. HP 16500 Disassembly listing

SUMMARY OF THE TOOLS
From the sections on ADAPT29K, MON29K, XRAY29K,
and the probe interface, it should be clear that a com­
prehensive range of tools exists for developing
Am29000-based systems. Each of the available tools
has unique characteristics that make it more advanta­
geous in particular situations. Depending on the charac­
teristics of the application, one or all of the tools may be
needed. This section summarizes the information
presented in the previous sections with emphasis on
highlighting what conditions are most appropriate for a
particular tool or tool combination, and what compatibil­
ity requirements are placed on the target as a result of
the tool selection.

SELECTION GUIDE

In the development phase of virtually any Am29000-
based system, either the ADAPT29K or MON29K will be
needed. It is possible to debug a microprocessor system
with only a logic analyzer and a PROM programmer, but
this method is not very practical when compared against
the following ADAPT29K and MON29K features:

• Memory display and modification, including special
registers.

• Uploading and downloading of programs.

• Execution control, including setting breakpoints and
single-stepping.

Apart from the advantages gained from MON29K and
the ADAPT29K, their performance can be augmented in

certain situations if they are combined with XRAY29K
and/or the probe interface with a logic analyzer. The
following questions highlight the critical target charac­
teristics that suggest the optimum tool selection.

How much memory does the target have?

Perhaps the most crucial factor in deciding whether the
ADAPT29K or MON29K is most appropriate depends
on the size of the available target memory. This deter­
mines whether or not MON29K can be used. Because
MON29K is target resident, it is necessary that the
target have at least 256 Kbytes of space in instruction
ROM, and 64 Kbytes of instruction/data RAM for
MON29K's workspace. An application without this
memory space will not be able to use MON29K, and will
have to use the ADAPT29K.

For systems with sufficient memory, MON29K,
ADAPT29K, or both may be used. While both have
excellent debugging features, the ADAPT29K has some
features MON29K does not, including:

• Can halt a failing program

• Provides a bus trace facility

• Can force execution of an Am29000 instruction

• Provides memory diagnostics

• Can be used with a target that cannot run its
program

3-63

29K Family Application Notes

It should be noted that in most cases (see the Differ­
ences Between MON29K and ADAPT29K section),
MON29K can halt a crashed program if an interrupt­
driven serial 110 is provided on the target, and the target
still is responding to interrupts.

How many units will be produced?

The number of units to be produced determines the
volume over which the development and servicing costs
can be defrayed. The ADAPT29K, while more powerful
than MON29K, costs more and will raise the amount
of nonrecurring charges that must be recovered. Of
course, the difference will be insignificant for the advan­
tages gained in large volumes. In fact, it may be advis­
able to use the AOAPT29K when the product is in
development and final test, using MON29K for field
service.

How and where will servicing be performed?

Servicing can be performed on-site or at service cen­
ters. Often this depends on the size, function, and value
of the application system. If the system is moved to a
service center for repair, the AOAPT29K will provide the
most capabilitie~, particularly when coupled with the
probe interface and XRAY29K.

However, the AOAPT29K may be too bulky to perform
maintenance on-site. MON29K can be embedded in the
application and used to diagnose faults via a portable
ASCII terminal or PC (which could run XRAY29K).

How complex is the program?

If the program is complex, XRAY29K should be consid­
ered. Debugging complex programs using hex values
and physical addresses can be very time consuming
and error prone, especially programs containing many
modules. Often, XRAY29K's windowed interface and
source-level debugging language will greatly reduce
time spent tracking down errors encountered in address
calculations, decimal to hex conversions, or just looking
up values in a listing.

SUMMARY OF COMPATIBILITY REQUIREMENTS

Once a combination of tools has been selected, it is
important to ensure that they will be compatible with the
target system. The following lists summarize the com­
patibility requirements for each tool. More detailed
explanations can be found in the specific sections
related to the particular tool.

3-64

ADAPT29K

1. The target must support RAM in instruction ROM.

2. A bi-directional path must exist between the instruc­
tion and data buses.

3. There must be a one-to-one translation of
addresses between buses.

4. Target memory must be disabled either by a low
signal on the alignment pin (04), or when OPT2-
OPT1 are 06 hex.

5. There must be physical clearance for the connec­
tion of the interface cable at the proper orientation.

6. The signals driven by the AOAPT29K must be open­
collector or three-state.

MON29K

1. The target must support RAM in instruction ROM.

2. A bi-directional path must exist between the instruc­
tion and data buses.

3. There must be a one-to-one translation of
addresses between buses.

4. The system memory must include 256 Kbytes in
instruction ROM beginning at Address 0 to store the
MON29K program, and 64 Kbytes of instructionl
data RAM at Address 0 for MON29K's workspace.

5. If program control must be recovered from the
application without it ending or returning control
normally, accommodations must be made to use
interrupt-driven serial 1/0.

6. The 1/0 drivers may have to be modified.

XRAY29K

1. Requires a host system, such as an engineering
workstation.

2. Requires MON29K or AOAPT29K.

Probe Interface

1. Requires a logic analyzer (an HP 1650 or 16500 is
recommended).

2. Requires termination adapters.

3. There must be sufficient phYSical clearance to allow
the probe to be attached to the target.

A COMPATIBILITY EXAMPLE:
STANDALONE EXECUTION BOARD

The Standalone Execution Board (STEB) is an excellent
example of compatibility with all the development tools.
It is a complete Am29000-based system that can run
many types of programs, including the software pack­
ages MON29K and VRTX32129000®.

The STEB can also be used with the ADAPT29K and/or
the HP probe interface. STEB also can be used as an

System
Address

Bus

Buffered
Address

Bus

Introduction to the Am29000 Development Tools

execution vehicle for application software or a compari­
son system for isolating hardware faults.

This section focuses on how the STEB's design
achieves compatibility with the development tools. The
major areas of the STEB are discussed, with emphasis
on how each area contributes to compatibility. See
Figure 20 for a block diagram of the STEB.

Am29000~------------~
Processor 1I'v-----------,/I

Instruction!
Data RAM

Space
Bank #0
Bank #1
Bank #2
Bank #3

Data
Bus

11014A-20

Figure 20. Block Diagram of the STEB

3-65

29K Family Application Notes

FUNCTIONAL DESCRIPTION

Mounted on a single card, the STEB contains an
Am29000 with memory, 110, and system timing
resources. See Appendix A for schematic diagrams,

'Sheets 1 through 12. In addition to the Am29000 (U51
on Sheet 2), the STEB supports the Am29027 arithmetic
accelerator (U1 0 on Sheet 3). The Am29027 is capable
of high-speed, single-precision and double-precision
arithmetic using fixed and floating-point numbers. It can
be operated in pipelined or non-pipe lined (flow-through)
mode, depending on system capability and require­
ments. The pipelined mode maximizes the overall
execution time for scalar operations.

System timing can be provided by one of two methods.
The Am29000 itself can generate the system clock,
which is output on the SYSCLK pin; or Circuitry on the
board (U8, U9 on Sheet 4) can generate an external
clock Signal that can be applied to the SYSCLK pin of the
processor. Clock selection is done by jumpers.

Memory is supported in both the instruction ROM and
instruction/data RAM spaces. By using dip switch (SW3
on Sheet 7), between 0-7 wait states may be selected.
Each space has its own wait-state generator, and may
be configured separately, depending on the access
speed of the installed memory devices.

~ r l~
... Buffers J'-

A 9513A timing controller is installed at U55-58 , and
U64 on Sheet 10. The 9513A supports up to five 16-bit
counters. Address decoding for various timer functions
is provided by a PAL (U56 on Sheet 10). The clock
source can be from the Am29000, a hardware oscillator,
or a crystal oscillator.

Power to the STEB is provided by a series-regulated
power supply that provides a regulated +12 VDC and
+5 VDC to the board. Connectors are furnished for at­
tachment to the type of power supply used with PCs.

CIRCUIT AREAS CONTRIBUTING TO
COMPATIBILITY

In the following section, circuit sections related to
compatibility issues are described. The circuit sections
are referenced by their locations on the STEB, as
indicated in Figure 21.

ADAPT29K and MON29K Compatibility

Because the ADAPT29K and MON29K are very similar
to each other, several STEB design aspects simultane­
ously address their compatibility requirements. These
include the type of memory supported, and the bus
architecture for accessing memory.

Am29000 II.

Processor ~

P'" ~=1
DREOT,-OREOTo=OO
OPT rOPTo= 001
RlW=O

T • ~ Wait State

3-66

Buffered

Address

Bus

...
~

SW3

Instruction
Bus

ROM'
Space

EPROM
~ J I~

or RAM Swap

Bank #0 ... I Buffers I"
Bank #1

Instruction/Data

.. RAM Space ...
Bank #0 ...
Bank #1

...
Bank #2
Bank #3

Figure 21. Data Read from Instruction/Data RAM

"
y

'""-

Data
Bus

11014A-21

Support for RAM Devices in the Instruction ROM
Space

The STEB supports RAM in the instruction ROM (U25,
U32 on Sheet 5) space and the instruction/data RAM
(U33-U43 on Sheets 6 and 7) space. The instruction
ROM space has a maximum capacity of 1024 Kbytes
and uses 27010 EPROMs. The instruction/data RAM
space has a maximum capacity of 512 Kbytes and uses
32-Kbyte x 8 static RAMs.

Instructions may be executed from either space. So that
programs can be downloaded via the AOAPT29K or
MON29K, the instruction ROM area can be constructed
from 32-Kbyte x 8 static RAMs. However, the maximum
memory size using RAM is limited to 256 Kbytes.

Swap Buffer
On the STEB, a swap buffer provides the necessary
bi-directional path between the data bus and the instruc­
tion bus (U11-U14 on Sheet 2). The swap buffer is
created from four 74ALS245 octal bus transceivers.
Transfer direction and timing are controlled by the
transceiver's ENA and A~B inputs. By decoding the
OREOT1-0REOTo, IREOT, o PT2-0PTo, OREO, and
IREO signals (U17, U18, U49 on Sheet 4) and applying

Introduction to the Am29000 Development Tools

the result to the transceiver, the STEB channels data
between the buses at the appropriate time.

The swap buffer is not required in many straightforward
operations . .For example, when assembling/disassem­
bling instructions or reading/writing other data into the
instruction/data RAM space, data is written directly to
the instruction/data RAM space overthe data bus. like­
wise, a standard instruction fetch from the instruction
ROM space does not require the swap buffer, as instruc­
tions may be loaded directly into the processor's instruc­
tion pre-fetch buffer from the instruction bus.

However, when disassembling instructions in the
instruction ROM space, the instructions must be read as
data, which makes the swap buffers necessary. The
configuration of the IREOT bits causes an instruction
to be accessed from the instruction ROM, gated onto
the data bus, and read into the processor. Note the
combination of control signals indicated on the side of
the figure. They are used to select the path for data
movement.

Similarly, when instructions are fetched from the in­
struction/data RAM, they must be transferred to the in­
struction bus from the data bus. The direction of data
movement is shown by the darkened path in Figure 22.

~ DREO= a
~

I ~ Am29000 I.~ •••••• "~ Buffers It.... Processor ,.
L..-__ 1" • ..

I IREOT = 0
OPT2-OPTo = XXX
R!iJ=X

Buffered
Address

Bus

1 Wait State __ ...
SW3

ROM
Space

EPROM
or RAM
Bank #0
Bank #1

Instruction
Bus

A Swap IL.IIIII~ •• " k"':::==::j l Buffers"

..

...

Instruction/Data
RAM Space

Bank #0
Bank #1
Bank #2
Bank #3

..

..

'-4

Figure 22. Instruction Fetch from Instruction/Data RAM

Data
Bus

11014A-22

3-67

29K Family Application Notes

One-To-One Address Translation

Note that addresses in both memory spaces have a
one-to-one translation. This means that when a data ob­
ject is stored at a given address in the instruction/data
RAM space, the exact same data object will be retrieved
when the same address is asserted by an instruction
fetch to the instruction/data RAM space. This is an
important requirement for assuring compatibility with
the ADAPT29K and MON29K because when they are
downloading programs, they store instructions as data
over the data bus. Neither tool has the capability to
translate a virtual address, so when the program is
executed it must find its instructions at their absolute
addresses.

ADAPT29K Compatibility

In addition to the elements discussed in the ADAPT29K
and MON29K Compatibility section, certain considera­
tions were added to the STEB's design strictly for the
ADAPT29K. These include tri-stating the control lines
driven by the ADAPT29K and disabling memory during
data transfers to and from the ADAPT29K.

Trl-Stated Control Lines

The STEB must relinquish some control lines to the
ADAPT29K when it is operating. Therefore, these lines
are tri-stated or open-collector, as was described in
Table 7, thus preventing contention that they may cause
unpredictable results.

When the ADAPT29K is not connected to the target, the
CNTLo and CNTL, lines are pulled high'to ensure that
the processor is in a normal mode of operation. When
the ADAPT29K is connected to the target, it isolates the
CNTL,-CNTLo signals from the board. Any use of those
signals by the application will be inhibited.

Memory Disable

The STEB supports both methods of disabling memory
for ADAPT29K accesses. Via a jumper selection, the
STEB can be configured to either decode an 06 hex on
the OPT bits or disable memory when the alignment pin
is low.

When Jumper JP7 (on Sheet 7) has pins 1 and 2
connected together it causes the SEL_OP signal to PAL
U20 (on Sheet 7) to be high. The ROM/RAM decode
circuit (composed of U15, U20, U21, and U240nSheets
6 and 7) then decodes the OPT~OPTo pins to deter­
mine whether or not memory should be enabled.

Memory is disabled by a low state on the alignment pin
(D4) when jumper JP7 is used to connect pins 2 and 3
together. The low condition is decoded by the ROM/

3-68

RAM decode circuit, which then disables memory.
When the ADAPT29K is not installed, the alignment pin
is pulled high to prevent inadvertent and/or intermittent
memory disables.

MON29K Compatibility

Apart from the requirements mentioned in the
"ADAPT29K and MON29K Compatibility" section,
MON29K needs at least one, and preferably two, serial
port(s) to communicate with the hosVoperator. It also
needs sufficient memory to contain the software.

Serial Ports

The serial ports are provided by the 8530 serial commu­
nications controller (SCC) and support circuits located
at U1, U2, and U5-U7 (on Sheet 8). The SCC is a dual­
channel, multi-protocol data communications peripheral
designed for use with 8-bit and 16-bit microprocessors.
The interrupt request line INT can be wired to provide
a trap or interrupt to the processor for MON29K.
Dip switches on the board are used to select port
characteristics.

Because the 8530 is a dual-port device, it supports both
the DTE and DCE RS232 ports on the STEB. The ports
are standard RS232 ASCII ports. The DCE can be used
to communicate with an ASCII terminal or PC running a
terminal emulator; the DTE port can communicate with a
remote host such as a UNIX machine.

Because the C language does not differentiate between
address spaces, the serial ports must be memory­
mapped into the Am29000 data space. This require­
ment allows C code to be used in place of assembly
language.

SuffiCient Memory Space

Sufficient memory is provided on the STEB for
MON29K. There is also room for additional application
programs in the ROM space. The space normally is con­
figured with MON29K in EPROMs (Bank 0), and RAM in
the remaining banks. MON29K then could be used to
download an application into the RAM in the instruction
ROM space.

MON29K also uses 64 Kbytes of workspace in RAM.
This is provided for, with additional space available for
use by the application program.

Built-In Probe Interface

The STEB includes built-in probe interface connectors.
Thus, test equipment like the HP1650 or 16500 logic
analyzer can be connected directly to the STEB, elimi­
nating the requirement for a separate probe interface.

Appendix A: STEB Schematic Diagrams

+l2V

- v

C7

41UF

Introduction to the Am29000 Development Tools

CII
47UF

R9
2K

PU1

Pll
1
2

~

6,9

3-69

29K Family Application Notes

3-70

~f-
xc.
XQ'

xc.
xc.
xc.
xc.

-o
c·

~~~~~~~~ ~=~:~ ~~ ~~ 
J W0/'VVWvW ( J J J 

~..... ~~~i~~· .~. r . ~ ~ .. < 

! ~ -

I~V • 

I_V' 

r,.wl 
I_V' 

z~v • 
z~v • 

~ 
~ 
~ 

;;::;:-

N"_ 

~L 
;1.....,-~"---+f++ 

-

u (U 

------­.::. 0 .......... ..., N ., 
,. ,. •• ~ •• • en 
__ - In .., ...... ;:) 
_ .. IN ••• ID &II ____ It) I 

::J en _ .. ., • c CD ::. .., ___ en 

i2~;;! 

• ............. ::::':::: '!! '!!::: '!!::::::::::::::: 

xc. 
'9_V 

.. 

0 

~ ~: 
~:: 
~:: 
~;: 
~:: 
~:: 
~" 
S 

v,=:: 
~ 
~: 
~: 
f=;: 
lS: : 

. 
xc. 

'.dV o. 
xc. 

IIdV . 
xc. 

"_V • 

xc. 
II_v' 

xc.. • 
~f- I_V 

~ .. .. 
~ () 

.. 
.:i 

0 

~ 

-
.. N 

: ~ . .. 
.. 0-

( l~ 

~ ~ 

c-1 1' ;; 
.---

.; 



00:..: 
,,-0 

:=0 
C> 
_NG)C\I 

~ I--...::-;;-..:-VV\;L ..... - .. 
> 

r-
N 
0 
(j) 

N 
::E 
« 

Introduction to the Am29000 Development Tools 

0 

:;:) 

II 

t til .. 
Otll n 
8Z11 .. 
8Z11 n 
LZII n 
9Z11 n 

!iZII .. 
U~ 8 

II 
n 

ZZIl .1 

tZII .. 
OZII .. 
Ull I. 

lUll AI 

Hll 
I. 9tll 

!itll 
ttll I. 

~t~ 8 
.. 
II 

ltll I. 

Otll 
811 
811 
LII 
911 
!ill 
til 
til 
ZII 
til 
011 

3-71 



~I I~ 
." 
Q) 

I_WEe 
wrAOO-

~ SA_BUS(I :0) [>S,l 

~ WEAlh S,l 
S,l 

WEA24. 
IILI Rl 

6,1 

Z1 INCLK 0 01 '>R5 ' I 2,12 
lOOk 2 PI a 3 PI , 14 32 

4 PI SIPCLK4 0 5 PI 1,11 
BRESET , PI ::::I 

R' ~I 1 PI Ut , PI 100 C3 . PI • 14Fn Z 
T4.1UF un 11 . SIPCLU 2-1,10 

, SW4 UIOO 
OSC_32.000NHZ 

14HCT2H U. It) 
'~t. en 

H 
SIPCLk2 

OPII 

OPI2 I_Ofe 

R_W I_[H. 
S,S,l 

SIPCLkO 
VCC 2,3,12 

OP 

I II~. ,1!.,. lJ49 CLkOPI 

vce 

SIPCLk2 

r-- RON BANk 0 r-- RON BANk 1 ----

tROY. 

PU2 

P8 

RONIPU 
IRED' 

RON1P27 

RON," 
RONCEI 

RONOPU 
RONCEO 

RONOP27 

RONOPI 

.1,.. I ~OTG~E JP 1 THRU JP6 TO SELECT RAM OR ROM. C. JP8 

BA(15:U} DIRECTION R~~:~?M, L. TU 2 INCLK DIUvtN \' L:. (0 3 SiStLR DRIvEN 

5 TO 3 
, • DEFAULT 

5 TO 4 8K X 8 

B. ON THE SAME BLOCK ALL JUMPERS SHOULD POINT TO THE SAME DIRECTION. 



w 

~ 

* SEE NOTE 2 
.-

* AM27C512 * AM27C512 * AM27C512 

ROMtEO U25 U26 U27 
______ --'L_O~._ 
L...J ROMOP1 

r- ROMOP27 

,..... ROMOP28 
~ 

* AM27C512 

rr.===i3iJ' AU AU 
AU 
Alt 
All 
Al0 
At 
AI 
A7 
A8 
A5 
AI 
AS 
AZ 
AI 
AO 

* * AM27C512 AM27C512 

.- I_8Ui(lI:0) C> 2,12 .-
* AM27C512 

DQOI' . 001 ' 
002 • 
D03 • OQ4 . 
OQl . 
Doe • 
001 ' ROM BANK 0 

U28 

* AM27C512 

OQOI' . OQ1 ' 
DOt • 
003' • 
DQ4' • OQ5 . 
DQI • 
DQ7 ' 

ROM BANK 1 

U29 U30 U31 U32 

NOTES 

I. ADDITIONAL PIN CONNECTIONS fOR 27010 (IUK X B EPROM): 

VCC-r-----, 

BA18 RP3 PIN 10 

2. 
ROMS CAN BE 27010, 21512, 21258 EPROM 

OR 12K X 8 RAM, BK X B RAM 

5' 
a 
c. 
c: 
!l 
5' 
::J 

o 
s-
(I) 

l> 
3 
1'1) 
(0 
o o o 
C 
(I) 

< 
(I) 

5" 

" 3 
(I) 

a 
-t o 
o 
ii) 



29K Family Application Notes 

__ 1 
1 

:J 

~lllllll CCCCl CL-'----- 1llllll111tlF '!-.. '" 
>< :: 
~ 

:; 

I r--::--
~ 

~ ~ 

'" < 
< 

:; =: =£ 

~ 
~ ~ 

x 

- -
~ ~ 

~ .; ..: 
~ 

~ ~ 
<.> 

::: .; 

'" ~ ~ 
z ~~ 

- E(~ 
'----

u 

\llllllCIC XC::: 

-
I 

~lllllllCCCCl CL::::-

-.; .: ~ .: 
i ; ; ; 

J 

.- ........... . ----------

1--:--

-J U 

3-74 



" 2 
2 

"6 

EH_DRDY. 

~" ,fII Lt~:~,;t 
-iUZZ 

, ~w 

U21 

~." . .-' III' D4 

C-..r--..
4 

D-L>4 

~a 
RESET. 2 

OREQT! 

SA_BUS3! 

IREQ. 

IREQT 

O_EN. RAM BANK 
55257P_12 55257P_12 55257P _12 55257P_12 

U43 

I III !I 1,1 III !I I, Ill!1 I, III 'U 

DIPSW8 

SW3 

NOTE. 

ii' 
"~ 

1 

55257P_12 
'-0--

i lOll' 4 102 • 
5 103 , 

, 18: : 
I 106 • 
i 107 • 
10 106 • 
11 
12 

r.n~~t :: " U45 

RAMS CAN BE 32K X a RAM OR 8K X 6 RAM 

55257P_12 55257P_12 55257P_12 

" 0 
! 
2 "'I I 
4 102

' 
It 

5 103
' 

II 
I 104 .. 
1 105 n 
I 108 II , 107 .. 
10 lOS .. 

U48 

,(--- ' 

RAM BANK 3 '---

DI_BUS(31:0) 

~ a 
Co 
c: 
2 o 
::s 
o 
;; 
(I) 

l> 
3 
I\) 
<0 
o o 
o 
C 
(I) 

< 
(I) 

o 
'C 
3 
(I) 

a 
-i o o 
Vi 



29K Family Application Notes 

3 w76 

..J 
« 
z: 
H 
:L 
n::: 
w 
f-

o 
f-

f­
en 
o 
:r: 

o 
f-

::; (9? ,? )? 0 0?9 ?9?9?9?9?~ ~ (9?90 ° 0 0 0 00 00 0;'] 
:I:I~t:I:I:I:I:I-t.;;I-· ~rl.I:" -" :1-: w:'-I I -,:IH ~I- :1" :1- :1- :1-: - ~I-I=I:::I:I:I~I:I:I 

II, 
L--l--l-+-""""'-I,i' ..; 

L--I-

I 
C •• OC ••••••• CU.CIlOIO.CD C'IJ 

o O-cCWClCCCDCmCCDQCDOOCIDar:; ::J 

~ ~~~M=~1l1lEg~=~ii~~6 

< :;~~~~:;:;;~E~i~EE~~~~~ 

}~!~~P rr[4-I-! f+++rtN!----, 
~f-+-W 

I r 

... = .. :;;:;~ 
<.>, --~ -
~I 

0:: 
o.. ... Q.. ... O" ...... L 0", 

~- ~]-

""" . .,..,,..., .. ~ 
Hl'"l"rnr-r-'" 

"l -l 

0 

. ~ . 
(~ ( ( ) 

~~~,~,~3 
0(C (JU (~OuJ
.......... eo') 0:.

Introduction to the Am29000 Development Tools

OREO.

DREOTO

DREOT1

RESET.

DIPSW8 : HALS245A

11 II 01 t 2 1
12 02 2 B2
13 03 3 B3
14 04 4 B4
15 05 5 B5
18 08 8 B8
17 07 7 a: B7
18 08 8 o. B8

SW2 ttl U88

PUI

~~~~~~~~ vee 

.. 
a: 

DIPSW8 HALS245A 

11 II 01 t 
12 02 
13 03 
14 04 
15 05 
18 08 
17 07 
18 08 

SWI 

DLBUS(15:0) 

3-77 



29K Family Application Notes 

i I:N~.n~~~:'o <,!t - - - - - - -
=> 

;;!I fl-~ :::::::::! "" "" '" '" "" "" "" 

r--

-
-

ul -~ 'I .. 
;;!I .. 

-~', 
_ -:~ w 
.. <=> f-

- 0 

~JJ 
z 

-

;:; .. 
.; 

! : 
~ 

~~ i ~ 
~ ... .. 

[) ) ) 

3-78 



Introduction to the Am29000 Development Tools 

II 

;:::=:::::1.:===: 

r-f. ---
~~ 1T 

:1' 

o J I J J J 

ll- l -
1 J ---

;l -i--
+1 

~ ~ 
--t;. 

~ ~ IJ ~ ~ Q 

( ~ /N.. ~ ( 
-----... 

3-79 



29K Family Application Notes 

g:;~.~.~ .I)·~·il· 
~m 
( T 1 r Tl 

..,.r-------------, ""r------------, 
~~~~~~~~~ ~~~~~~~~~ 

C")r-------------,

~':a~~~mm~m~

.. ..
.,

en

'" =>
=>

I a>
I -<

'"

3·80

Preparing PROMs Using the
Am29000 Development Tools
Application Note
by Manoj Desai and Doug Walton

INTRODUCTION

Source code for a given application must be converted
to executable Am29000™ object code and transferred to
the appropriate storage media before it can be executed
in a real system. Usually several utilities are involved;
these include:

• Assemblers

• Compilers

• Linkers

• Format translators (optional, depending on the desti­
nation media)

This application note shows how an example program in
source code form is made into object code and down­
loaded to a target board with the ADAPT29\{TM
Advanced Development and Prototyping Tool, or pro­
grammed into PROMs.

THE 29K TOOL CHAIN

The 29KTM tool chain is used to produce the executable
object module. The tool chain is an integrated set of pro-

Publication II Rev. Amendment Issue Date:
11966 A /0 11/89

grams that includes compilers, assemblers, linkers, and
format translators. These programs perform the opera­
tions necessary to translate the source code into a
machine-readable format. The components of the 29K
tool chain are:

• HighC29KTM Compiler

• ASM29\{TM Assembler

• ASM29K Linker

• COFF2HEX (COFF to hexadecimal translator)

• ROMCOFF

• BTOA (binary to ASCII translator)

Figure 1 shows the relationship of the 29K tool chain
elements to each other. In the following discussion,
familiarity with these tools is assumed. Consult the
appropriate reference manuals for more details.

The 29K tool chain can be run under UNIX®, SunOS®, or
DOS, but it must be installed properly on the host sys­
tem before the following example can be performed.
The host in the following discussion is assumed to be an
IBM@ A~ or compatible.

© 1989 Advanced Micro Devices. Inc.

3-81

29K Family Application Notes

3-82

Library
Files

COFF2HEX

PROM
Programmer

.LlB .. -

Cor
Assembly
Language

Source File

""'
. C (C source file)

or
, ;S (assembly-language source file)

HighC29K
Compiler

1----------
ASM29K

Assembler

.0 (relocatable object module)

ASM29K
Linker

~ ,OUT (absolule objecl module)

Binary to ASCII
BTOA

~ ,ASC (ASCII objecl module)

ADAPT29Kor
MON29K Target

11966A-01

Figure 1. The 29K Tool Chain

preparing PROMs Using the Am29000 Development Tools

SUGGESTED REFERENCE MATERIALS

Consult the following reference materials for more infor­
mation on the topics covered in this application note.

• Am29000 Streamlined Instruction Processor User's
Manual, order #10620. It contains details regarding
the instruction set and register organization of the
Am29000.

• Am29000 Streamlined Instruction Processor Data
Sheet, order #09075. It embodies a great deal of
information about the Am29000. including: distinctive
characteristics, general description. simplified system
diagram. connection diagram, pin designations and
descriptions, functional description. absolute maxi­
mum ratings. operational ranges. DC characteristics.
switching characteristics and wave-forms. and physi­
cal dimensions.

• ADAPT29K User's Manual. It provides detailed infor­
mation on the ADAPT29K. including installation.
commands. theory of operation. and target design
requi re me nts.

• ASM29K Documentation Set. It provides complete
information on the installation and use of the ASM29K
assembler. linker, and librarian manager. This
includes information on using the ROMCOFF and
COFF2HEX utilities.

• HighC29K Documentation Set. It covers how the
Am29000 C compiler is used.

These materials can be obtained by writing to:

Advanced Micro Devices, Inc.
901 Thompson Place
P.O. Box 3453
Sunnyvale. CA 94088-3453

or by calling (800) 222-9323.

For questions that cannot be resolved with the current
literature. further technical support can be obtained by
writing or calling:

29K Support Products Engineering
Mail Stop 561
5900 E. Ben White Blvd.
Austin, TX 78741
(800) 2929-AMD (US)
0-800-89-1131 (UK)
0-031-11-1129 (Japan)

THE EXAMPLE SYSTEM

The example system used for illustration in this docu­
ment consists of a generic hardware environment and a
small software program. The only function of this self­
contained standalone system is to test a block of mem­
ory. This section describes how the example system
works.

SOFTWARE

The software is a small program that initializes its oper­
ating environment and then continuously tests memory.
It is comprised of a boot module and a C-Ianguage mod­
ule. A flow chart for the complete application is shown in
Figure 2.

The main portions of the program are contained in two
source files: smplboot.s and cprog.c. The smplboot.s
module is an assembly-language boot program that
receives control on power up. The C-Ianguage program
cprog.c performs the memory test.

The tasks performed by smplboot.s are: (1) estab­
lish the execution environment. (2) set up a block of
initialized data in instruction/data RAM (using a rou­
tine generated by the ROMCOFF utility), (3) call the
main program cprog.c. and (4) evaluate the results of
the memory test. If the test fails, smplboot.s halts the
processor.

The cprog.c program tests a 32K byte block of RAM,
using a simple binary write and read test. Then, cprog.c
checks the validity of the initialized data section in
instruction/data RAM. After each successful comple­
tion, a flag is returned to smplboot.s, which increments
a counter. If a test fails, cprog.c returns the address of
the failing memory location. A memory map of the appli­
cation is shown in Figure 3.

Three additional files (traps.s, r29k.s, and scregs.def)
contain the supporting procedures and declarations. All
of the files in the application are listed in Appendices A
through E. To actually perform the example, the files
must be entered onto the host system.

HARDWARE ENVIRONMENT

The application runs on the Standalone Execution
Board (STEB). manufactured by STEP Engineering.
Figure 4 shows a block diagram of the STEB. which
contains an Am29000, some RAM and ROM, and two
serial ports (provided by an 8530 serial communications
controller).

A few important features of the STEB should be noted.
First. data can be passed between the instruction and
data buses via a bi-directional swap buffer. The swap
buffer permits code to be downloaded into the instruc­
tion RAM area via the ADAPT29K. It also allows data
objects in the instruction ROM space to be read as data.

Second, the instruction ROM space can contain RAM
devices or ROM devices. RAM devices should be
installed when working with the ADAPT29K (see
Appendix F). so that code can be downloaded into the
instruction ROM space.

3-83

29K Family Application Notes

Initialize
Am29000

Transcribe
Initialized Data

Call Mem Test

Write Pattern
and Check

Check Initialized
Data

Figure 2. Flow Chart of the Example Application

3-84

11966A-02

Preparing PROMs Using the Am29000 Development Tools

Instruction ROM

Example
Code

Instruction/Data RAM

Am29000 VAT

Workspace

Initialized Data

Tested Space

32K

Empty

MStack
2K

RStack
2K

Figure 3. Memory Map of the Example Application

OxO

Ox400

ox420

Ox500

Ox8S00

11966A-03

3·85

29K Family Application Notes

System
Address
Bus

Buffered
Address
Bus

Am29000 v'--------"" Processor ~ ______,.I"I

Instruction!
Data RAM

Space
Bank #0
Bank #1
Bank #2
Bank #3

Data
Bus

11014A-04

Figure 4. Block Diagram of the STEB

PREPARING AN EXECUTABLE
OBJECT MODULE

Preparing the executable object module involves sev­
eral steps. Typically, the steps are repeated frequently

3-86

because errors must be corrected and revisions must be
made. The process can be automated by placing the
commands in a DOS batch file. Listing 1 shows the
batch file sc.bat, which is used in the example applica­
tion. Following the listing, each step is explained.

...
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

Preparing PROMs Using the Am29000 Development Tools

Listing 1. The Batch File sC.bat

@echo off
echo ***
echo "Compiling cprog.c and Assembling the .s files"
echo ***
hc29 -c -w cprog.c > cprog.e
hc29 -8 -Hasm cprog.c > cprog.e
as29 -1 > smplboot.lst -0 smplboot.o smplboot.s
as29 -1 > traps.lst -0 traps.o traps.s
as29 -1 > r29K.lst -0 r29k.o r29k.s

echo ***
echo "Linking object files with libraries and generating"
echo "executable object module for ROMCOFF"

echo ***
Id29 -c step1.cmd -0 step1.out -f tx -m > outlink.map

echo ***
echo "Using ROMCOFF"
echo ***
c:\29k\bin\romcoff -tlb step1.out rom.o

echo ***
echo "Linking object files with libraries and generating"
echo "final executable object module"
echo ***
as29 -1 > smplboot.lst -DRAMINIT -0 smplboot.o smplboot.s
ld29 -c step2.cmd -0 step2.out -f tx -m > step2.map

echo ***
echo "Converting executable object code to downloadable format"
echo ***
c:\29k\bin\btoa step2s.out sc.a

echo ***
echo "Converting executable into PROM-programmable format"
echo ***
coff2hex -c t -m -p 27512 step2e.out > step2.e
echo on

-o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

COMPILING CPROG.C AND ASSEMBLING
THE.S FILES

The parameter -w suppresses warning messages,limit·
ing the output to containing only errors; the -c parame­
ter instructs the assembler to produce the object file.
Note that a second compilation is performed with the
-Hasm flag on. This produces an assembly listing (.5
file) only.

The first group of operations in the batch file obtains
relocatable object modules from the source files. The
C-Ianguage source file cprog.c is compiled by invoking
the HighC29K compiler with the command line:

hc29 -c -w cprog.c

HighC29K replaces the symbolic instructions in the
source file with equivalent machine-code routines. Then
a relocatable object file (cprog.o) is produced, as
shown in Figure 5.

Next, the ASM29K assembler is used to assemble the
modules smplboot.s, traps.s, and r29k.s. This in­
volves replacing assembly-language symbolic instruc­
tions in the source file with the corresponding machine
instruction code. To assemble smplboot.s and obtain a

3-87

29K Family Application Notes

relocatable object file, the following command line can
be entered:

as29 -1 > smp1boot.1st -0

smp1boot.o smp1boot.s
} Same line.

A relocatable object file (smplboot.o) and a listing file
(smplboot.lst) are produced from the assembly. All
assembly-time errors are directed to the std.out. The
operation is shown in Figure 6. The same operation is
done on traps.s and r29k.s.

LInking

Once the relocatable object files have been made, they
must be linked (Le., assigned physical addresses). This
is done using the ASM29K linker, which allows one or
more object files from either the assembler or the

compiler to be linked together into a single executable
object file.

The object modules are linked by entering the command
line:

1d29 -c step!. cmd -0 step!. out} S r
-f tx -m > out1ink .map ame me.

Using the command file step1.cmd (see Listing 2), the
files smplboot.o, r29K.o, and traps.o are linked with
cprog.o into a single, non-relocatable object file called
sc.out. A reference to where each module was placed is
put in the map file step1.map. Any error messages are
sent to the std.out. The linking process produces a map
file that lists the local symbol table, external symbols,
and the cross-reference. This type of output is a good
reference to the entire application program.

HighC29K Compiler

11966A-05

Figure 5. Compiling cprog.c

3-88

Preparing PROMs Using the Am29000 Development Tools

ASM29K
Assembler

smplbootlst

11966A-06

Figure 6. Assembling smplboot.s

Listing 2. The Linker Command File step1.cmd

o
o ORDER .text=OxO o
o ORDER .bss=Oxl00400
o
o
o
o
o
o
o
o
~

ORDER .data=Oxl00420
PUBLIC _MSTACK=Oxlf7fc
PUBLIC _RSTACK=Oxlfffc
load smplboot.o,r29k.o,traps.o
load cprog.o
load c:\29k\lib\libmw.lib

TRANSFERRING CODE FROM ROM TO RAM:
ROMCOFF

The smplboot.s file contains a section of initialized data
that must be loaded into instruction/data RAM and
tested by the application program. This could be accom­
plished by writing many lines of const, consth, and
storem instructions into the smplboot.s file. Another
method is to use the ROM GOFF utility.

The ROMGOFF utility transforms user-specified sec­
tions of an Am29000 program into a stream of instruc-

" o
o
o
o
o
o
o
o
o
o
o
o
o

tions that will perform the transcription. From a fully
linked, executable Am29000 program, the ROMGOFF
utility generates a GOFF output file containing in­
itializers that will establish the image of an executable
GOFF input file in instruction/data RAM. The output file
contains one section, RUext, within which is one rou­
tine, RAMlnit. The output file can then be linked with
other relocatable modules that will remain in Instruction
ROM, to produce a single non-relocatable module for
programming PROMs.

3-89

29K Family ApplIcation Notes

ROMCOFF can be used to transcribe entire sections of
code into instruction/data RAM. Then, once the applica­
tion's boot program has finished preparing the environ­
ment, it transfers control to the transcribed program in
instruction/data RAM. This allows the code to be
executed out of high-speed RAM devices, which are
frequently more cost effective than high-speed PROMs.
See Figure 7.

In the example program, only a section of initialized data
in smplboot.s is transferred to RAM. ROMCOFF
creates a relocatable object module that transcribes the
data sections to RAM when the following command line
is entered:

romcoff -t1b stepl.out rom.o

The linked output file step1.out is made into the file
rom.o. Only the data section is output, because of the
ROMCOFF options -Ub, which specify that the text,
literal, and bss sections should be ignored.

The output from ROMCOFF (rom.o) contains only code
to transcribe data sections. It must be re-linked with the

object files to produce a final absolute object module.
First, the code in smplboot.s, which contains a call to
the RUext section, must be assembled to include the
conditional assembly statements.

To assemble smplboot.s so that it will contain the call,
enter:

as29 -1 > smp1boot .1st -DRAMINIT} Same
-0 smp1boot. 0 smp1boot. s line.

The -0 option defines RAMlnit so that conditional as­
sembly statements in the source file will be assembled.
The statements include a definition of RAMlnit, and a
call to it. Then, all of the object modules can be linked
with rom.o as follows:

1d29 -c step2.cmd -0 step2.out } Same
-f tx -m > step2. map line.

A second linker command file is used because rom.o
must identified to the linker (see Listing 3).

Instruction ROM

3-90

Initialize
Environment

Transcribe Code
to RAM

Call Main

Boot

Main

Execute
Application

Or

Figure 7. Using ROMCOFF .

Instruction/Data RAM

Main

11966A-07

Preparing PROMs Using the Am29000 Development Tools

Listing 3. The Linker Command File step2.cmd

"" 0
0 ORDER .text=OxO,RI_text
0
0 ORDER .bss=Ox100400
0 ORDER .data=Ox100420
0 _MSTACK=Ox1f7fc 0 PUBLIC
0 PUBLIC RSTACK=Oxlfffc
0 -
0 load smplboot.o
0 load rom.o
0 load r29k.o,traps.o
0
0 load cprog.o
0 load c:\29k\lib\libmw.lib
0
0
0
0
0
0
0
0 -

DOWNLOADING TO THE ADAPT29K

Once the final executable object module is created, the
example program can be downloaded to the target
system and tested using the ADAPT29K.

USING BTOA

The BTOA utility creates an ASCII COFF output from
the input file. Although the ADAPT29K can handle
Tektronics® or Motorola® hex files, using the BTOA util­
ity to make the ASCII hex file has several advantages.

OOOOOOOOR c6400200

00000004R 03fb4lff

00000008R 90404041

OOOOOOOcR ceOO0240

00000010R 03004000

00000014R ceOOO040

00000018R 0300403f

000000lcR ceOO0740

....
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 -

Most importantly, BTOA encodes the input file into
(7-bit) ASCII using a compact base-5 scheme that limits
file expansion to only 25 percent, as opposed to 150 per­
cent for standard hex formats. Hence, the resulting out­
put file is smaller, and consequently quicker to transfer.
Also, BTOA maintains the ASCII COFF format, rather
than converting it to absolute addresses.

As shown in the sC.bat batch file, BTOA produces the
output file sc.a and is invoked by:

btoa step2s.out sc.a

MFSR GR64,CPS

CONST GR65,OxFBFF

AND GR64, GR64, GR65

MTSR CPS,GR64

CONST GR64,OxO

MTSR VAB,GR64

CONST GR64,Ox3F

MTSR RBP,GR64 11966A-08

Figure 8. List Memory Display

3-91

29K Family Application Notes

Listing 4. Results of "End Execution" Command List ..,
o
g > d 400,420
o 00000400 00000000 00000000 00000000 00000000
g 00000410 00000000 00000000 00000000 00000000
o 00000420 00000000

.. ~

...,
o
o
o
o
o
o
o
~ ,-

TESTING THE EXAMPLE PROGRAM WITH THE
ADAPT29K

the next prompt has appeared, the contents of the
instruction ROM can be verified by entering:

* 1 Or Once the object module has been translated using the
BTOA utility, it can be downloaded to the target using
ADAPT29K. For use with ADAPT29K, the STEB should
be configured as indicated in Appendix F.

To download the file, communication must be estab-.
lished with the ADAPT29K. On a PC, this is done by
invoking the terminal emulator program (for example,
CrossTalkl!!i), establishing communication with the
ADAPT29K, and entering (note that # is the ADAPT29K
monitor prompt):

The ADAPT29K should respond to the L (list memory)
command with the display shown in Figure 8. The loca­
tions starting at Ox400 in instruction/data RAM contain
the status of the test and number of successful loops,
respectively. Which location actually contains which
variable is a decision made by the linker, and must be
determined by inspection.

* ya e,Or

To check these locations automatically when the execu­
tion stops, set up an "end execution" command list by
entering:

The Y (load a file to memory) command prepares the
ADAPT29K to receive an ASCII-encoded file from the
DCE port. Then, the emulator must be instructed to
transmit the file (for example, se sC.a when using
CrossTalk). After the code has been downloaded, and

* e d 400,420;

The list is executed on entry. It should appear as shown
in Listing 4.

GR080 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

GR088 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

GR096 00104a18 00000000 00000000 00000000 00000000 00000000 00000000 00000000

GR104 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

GR112 00000000 00000000 00000000 00000000 80000020 000095d9 00100400 00000095

GR120 ffffffff 80000000 00000000 00000000 00000000 000lf7fe 00000£££ 06050101

LROOO 00000928 OOOlf££e 00100414 00108414 000000£0 OOOlf££e 00000000 00000000

LR008 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

LR016 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

LR024 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

LR032 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

LR040 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

LR048 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

LR056 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

GR001 IPC IPA IPB Q ALU: DF V N Z C BP FC CR

000lf£e4 00 00 00 00000000 0 0 o 0 0 0 00 00

(R249) (GROOO) (GROOO) (GROOO)

Figure 9. Key Registers Display 11966A-09

3-92

Preparing PROMs Using the Am29000 Development Tools

Prior to starting the test, it is a good practice to reset the
system by using the P reset command:

preset

To verify the condition of the system before execution,
the X (Display Key Registers) command is entered as:

x

This will result in a display as shown in Figure 9. The
special-purpose protected registers can be checked
using the XP (display protected registers) command.
The display appears as shown in Figure 10.

To execute the program starting from address 0 in
instruction ROM, the G (go-start execution) command
is used:

g Or

During execution, the status of the program can be
checked by invoking the previously defined "end execu-
tion" command list. .

xp

CA IP TE TP TU FZ LK RE

CPS: 0 0 0 0 0 1 0 1

ops: 0 0 0 0 0 1 0 1

VAB CFG: PRL VF RV BO CP

0000 01 1 0 0 1

WM

0

0

Enter:

e

The display will be similar to that shown in Figure 11.
The precise display in any given situation, particularly
the loop count stored in location 40CD is dependent
on the exact time elapsed between the start execution
and the entry of the E command. At another time, it may
appear as shown in Figure 12.

The state of the processor can be checked using the C
(check execution state command):

c

When the processor is running, ADAPT29K displays:

Am29000 is Running.

PD PI SM IM DI DA

1 1 1 0 1 1

1 1 1 0 1 1

CD

1

CHA CHD CHC: CE CNTL CR LS ML ST LA TF TR NN CV

00104a14 00000000 0 00 00 1 0 0 0 0 79 1 0

RBP: BF BE BD BC BB BA B9 B8 B7 B6 B5 B4 B3 B2 B1 BO

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

TCV TR: OV IN IE TRV PCO PC1 PC2 MMU: PS PID LRU

000000 1 1 0 000000 00000a34 00000a30 00000a2c 0 00 0

11966A-10

Figure 10. Protected Registers Display

3-93

29K Family Application Notes

> d 400,420

00000400

00000410

00000420

009595d9 00000000 00108414 0000002d

00100414 00000000 00000000 00000000

00000000

11966A-11

Figure 11. Check Status Display

> d 400,420
00000400 009595d9 00000000 00108414 000000e1
00000410 00100414 ffffffff ffffffff ffffffff
00000420

ffffffff

11966A-12

Figure 12. Second Check Status Display

PREPARING PROMs

Once the absolute object file has been prepared, it must
be transferred to the media from which the code will be
executed. Often, this medium is a PROM set. Most
PROM programmers require their input to be in an
ASCII hex format, so a translation normally is performed
before sending the program to the PROM programmer.

MAKING HEX FILES: COFF2HEX

The COFF2HEX utility produces a 32-bit ASCII hex file
in either the Motorola S3 or Tektronics Extended format.
Both of these formats are accepted by most PROM
programmers, as well as the ADAPT29K. Note that the
ADAPT29K requires the file to be one module, rather
than being divided into separate modules by part size
(see the options of the COFF2HEX utility).

In sc.bat, COFF2HEX is invoked by entering:

coff2hex -c t -m -p 27512
step2e_out > sccoff.e

} Same line.

This produces 8-bit wide modules that will fit into a
27512 EPROM (-p option). The format is Motorola S3
(-m option), and will include only the text sections (-c t
option).

The resulting file(s) will be named a.aOO, a.a08, a.a16,
and a.a24, indicating which bytes of the word they
represent. If the file is larger than the capacity of the part
size specified, additional sets of four will be generated
with filenames a.bOO, a.b08, a.b16, a.b24, and so on,
with further sets having a corresponding nomellclature.
Once generated, the files can then be transmitted to a
PROM programmer.

3·94

PROGRAMMING THE PROMS

A PROM programmer is used to "burn" the binary object
file into PROM devices. Many types of PROM program­
mers are available. The Data 1/0 Unisite(ll) PROM
programmer is used in the following example.

Assuming an object module had been created as
described in the first part of this document (and a set
of Motorola S3 modules were obtained using
COFF2HEX), the following procedure could be used to
create a PROM set. .

1. Turn on the PROM programmer. Make sure the
algorithm disk is properly inserted in the lower front
slot.

2. Once the power-up sequence and diagnostics have
completed, a screen should appear on the attached
terminal. If there is no terminal, or the screen does.
not appear, refer to the set-up section of the user's
manual for the PROM programmer.

3. Make sure a host system is attached. In this exam­
ple, the use of a PC is assumed. At the PC, set the

. COM1 serial port of the PC to 9600 baud, no parity,
8-bit bytes, and one stop-bit by entering: mode
com1 :96,n,8,1. On the PROM programmer, select
"Configure System," followed by "Edit," and then
"Serial 110." Make sure the remote port parameters
are set properly.

4. The program will be placed in AMD 27512 PROMs.
To inform the PROM programmer, choose "Select
Device," "3" (AMD), and "25" (27512).

Preparing PROMs Using the Am29000 Development Tools

5. It is a good idea to clear the PROM programmer's
memory before downloading data. This ensures
that the PROMs do not become programmed with
leftover data from a previous operation, which may
cause troublesome errors. To clear the memory,
select "Fill Memory." Enter 00 to 7FFFF as the
address range, and FF as the data.

6. The PROM programmer must know the format of
the incoming data. Select "Transfer Data," followed
by "Format Select." Enter "95" for Motorola S3
Record.

7. Select "Load Device" on the programmer. On the
PC, enter:

copy a.aOO coml:

This causes the lowest B bits of the application to be
transmitted to the PROM programmer, which will
load the data into its memory.

B. Properly insert a PROM into the ZIF socket on the
PROM programmer and engage the locking mecha­
nism. Select "Program Device" option on the PROM
programmer.

9. Once the PROM has been burned, remove it and
label it with the program name, range of bits,
verSion, and date. Then, repeat steps 7-9 using the
files a.aOa through a.a24. If a larger program is
used, it may be necessary to repeat steps 7-9 using
modules a.bOO, a.bOB, a.b16, a.b24, and so on.

3-95

29K Family Application Notes

APPENDIX A: smplboot.s

start:

vtd_init:

3-96

.extern

.extern

.extern

.extern

.extern

.equ

.equ

.equ

.include

.data

.word

.comm

.text

.ifdef

.extern

.endif

.global

mfsr
canst
and
mtsr
canst
mtsr
canst

mtsr
canst
canst
consth
sub
srI
sub

store
jmpfdec
add
canst
canst
consth
canst

store
jmpfdec
add
canst
consth
canst
sll
store
canst
consth
canst
sll
store
canst
consth
canst
sub
sub
canst
consth
add
canst
consth
calli
nap
.ifdcf

r29k_init
_main
V_SPILL, V_FILL
spill, fill
_RSTACK,_MSTACK
ROM_TH,Ox2
RSC_SIZE,Ox200
TBM_SIZE,Ox20000
"scregs.def"

(20)170
mtp_count,4

RAMINIT
RAMInit

start

tmpO,CPS
tmpl,OxFBFF
tmpO,tmpO,tmpl
CPS,tmpO
tmpO,O
VAB,tmpO
tmpO,Oxll

CFG,tmpO
tmp2,0
tmpO,O
tmpl,TBM_SIZE
tmpl,tmp1,tmpO
tmpl,tmpl,2
tmpl, tmp1, 2

tmp1,mem_00
tmpO,tmpO,4
tmpO,256-2
tmp1,illtrap+Ox2
tmp1, illtrap
tmp2,0

0,0,tmp1,tmp2
tmpO,vtd_init
tmp2,tmp2,4
tmpO,spilltrap+ROM_TH
tmpO,spilltrap
tmp1,V_SPILL
tmp1,tmp1,2
0,0,tmpO,tmp1
tmpO,filltrap+ROM_TH
tmpO, filltrap
tmp1,V_FILL
tmp1,tmp1,2
0,0,tmpO,tmp1
rfb,_RSTACK
rfb,_RSTACK
tmpO,RSC_SIZE
rab,rfb,tmpO
rsp,rfb,OxB
msp,_MSTACK
msp,_MSTACK
Ir1,rfb,0
tmpO,r29k_init
tmpO,r29k_init
IrO,tmpO

RAMINIT

assembly module
C module
Linker definable V_SPILL and V FILL vector numbers
spill and fill procedure
Link time definable stack pointer assignments
Spill and fill trap interface do truly reside in ROM space
Default reg_stack_cache usage=512
32K*4=12Bkb of Inst/RAM size

if RAMINIT Flag on
make RAMInit available

Read CPS
Clear FZ bit

Update CPS
Set VAB pointing to LOW memory

Set VF=l, i.e., Vector table scheme and CD=l,
i.e., Branch Target Cache is disabled

Write Data pattern = OxOOOOOOOO
Low memory address
High memory address
Get address difference
Get word count from diff value
adjustments for jmpfdec instr
fill TB_memory with all zeros

0,0,tmp2,tmpO

Total of 256 vector table entries
ROM based illegal trap handlers
address, by default

fill vector table with default
trap handlers

get spill trap entry point

get spill trap vector number
generate vect number location
store address of trap handler
get fill trap entry point

get fill trap vector number
generate vect number location

into vector table

store address of trap handler into vector table
Set RFB

Ox200=512 bytes ie 12B*4
Set RAB=RFB-512
Set RSP=RFB-B
Set MSP

Set Ir1 to RFB

call procedure to init 29K registers

if RAMINIT on,

const tmpO,RAMInit
consth tmpO,RAMInit
calli gr96,tmpO
.else
nop
nop
nop
.endif
nop
const tmpO,exec
consth tmpO,exec
mtsrim OPS,Oxl72
mtsrim CPS,Ox573
mtsr PCl,tmpO
add tmpO,tmpO,4
mtsr PCO,tmpO
xor tmpO,tmpO,tmpO
iret

exec:
const lrO, _main
consth lrO,_main
calli lrO,lrO
nop
sll gr97,gr64,O
sll gr98,gr65,O
sll gr99,gr66,O
const gr64,mtp_count
consth gr64,mtp_count
load O,O,gr65,gr64
cpeq gr67,gr96,O
jmpt gr67,again
nop
halt

again:
add gr65,gr65,l
store O,O,gr65,gr64
sll gr64,gr97,O
sll gr65,gr98,O
sll gr66,gr99,O
jmp exec
nop

spilltrap:
mfsr tpc,PCl
const tmpO, spill
consth tmpO, spill
mtsr PCl,tmpO
add tav,tmpO,tmpO+4
mtsr - PCO, tmpO
iret

filltrap:
mfsr tpc,PCl
const tmpO, fill
consth tmpO, fill
mtsr PCl,tmpO
add tav,tmpO,tmpO+4
mtsr PCO,tmpO
iret

illtrap:
halt
.end

Preparing PROMs Using the Am29000 Development Tools

set up RAMInit call

and do the call

make sure code takes same
number of locations
regardless of RAMINIT condition

in case we did calli
get target application task address

RE=l, PI=l, PO=l, SM=l and 01=1
Set Target application Task address

Any additional regs clean up
Give control to application via IRET

get C-callable routine entry point

make the call

Save user global registers gr64
through gr66

get address of memory test pass
count recorder
get current count so far
check for memory test pass?
true then run test again

false halt further memory testing

bump mtp_count by 1
update in memory also
Restore user global registers gr64
through gr66

run the memory test once again

save return address in tpc
get spill procedure entry point

fill Am29000 pipeline target address

fill Am29000 pipeline with target address+4

save return address in tpc
get fill procedure entry point

fill Am29000 pipeline target address

fill Am29000 pipeline with target address+4

3-97

29K Family Application Notes

APPENDIX B: cprog.c
IIdefine MT_PASSED 0
IIdefine SOLID_ONES -1
#define SOLID_ZEROS
IIdefine MT_BLK_SIZE 32768
IIdefine WORD_SIZE 4
#define INIT_DATA 170
#define MEM_BLOCK 1056
#define NIT_DATA_BASE 1280
#define INIT_DATA_SIZE 15

int *mt_sts;
int Im_addr,hm_addr;
int initdata;
int *mem_test();

main ()
(

Im_addr = INIT_DATA_BASE;
hm_addr = INIT_DATA_BASE+MT_BLK_SIZE/WORD_SIZE;
initdata MEM_BLOCK;
mt_sts mem_test(lm_adqr,hm_addr,initdata);

int *mem_test(low,high,initd)
int *low,*high,*initd;

3-98

int *addr;

/* Solid Ones test */
for{addr=low; addr<=high; addr++)

*addr = SOLID_ONES;
for{addr=low; addr<=high; addr++)

if{*addr != SOLID_ONES)
return{addr);

/* Solid Zeros test */
for(addr=low; addr<=high; addr++)

*addr = SOLID_ZEROS;
for(addr=low; addr<~high; addr++)

if(*addr != SOLID_ZEROS)
return(addr);

for (addr=initd;addr<in itd+INIT_DATA_SIZE;addr+)
if{*addr != IN IT_DATA)

return(addr);
return(MT_PASSED);

APPENDIX C: r29k.s
.macro 129kGPR,gpr_nu
xor
.endm
.macro
mtsrim
.endm
.macro
const
mttlh
.endm
.text
.glohal

r29k_init:
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR
129kGPR

129kSPR,spr_nu
spr_nu,O

129kMPR,tlhr_nu
gr65,tlhr_nu
gr65,gr66

gr67
gr68
gr69
gr70
gr71
gr72
gr73
gr74
gr75
gr76
gr77
gr78
gr79
gr80
gr8l
gr82
gr83
gr84
gr85
gr86
gr87
gr88
gr89
gr90
gr9l
gr92
gr93
gr94
gr95
gr96
gr97
gr98
gr99
grlOO
grlOl

, grl02
grl03
grl04
grI05
grl06
grl07
grl08
grl09
grl,lO
gr1ll
gr1l2
gr1l3
gr1l4
gr1l5
gr1l6
gr1l7
gr1l8
gr1l9
grl20
gr121

Preparing PROMs Using the Am29000 Development Tools

Set GR67-GR127 to known state

3-99

29K Family Application Notes

I29kGPR gr122
I29kGPR gr123
I29kGPR gr124
I29kGPR Ir2 Set Ir2-lr127 to known state
I29kGPR Ir3
I29kGPR Ir4
I29kGPR IrS
I29kGPR Ir6
I29kGPR Ir7
I29kGPR IrB
I29kGPR Ir9
I29kGPR IrlO
I29kGPR Irll
I29kGPR 1r12
I29kGPR Ir13
I29kGPR Ir14
I29kGPR IrIS
I29kGPR Ir16
I29kGPR Ir17
I29kGPR IrIB
I29kGPR Ir19
I29kGPR Ir20
I29kGPR Ir2I
I29kGPR Ir22
I29kGPR Ir23
I29kGPR Ir24
I29kGPR Ir25
I29kGPR Ir26
I29kGPR Ir27
I29kGPR Ir2B
I29kGPR Ir29
I29kGPR Ir30
I29kGPR Ir3I
I29kGPR Ir32
I29kGPR Ir33
I29kGPR Ir34
I29kGPR Ir3S
I29kGPR Ir36
I29kGPR Ir37
I29kGPR Ir3B
I29kGPR Ir39
I29kGPR Ir40
I29kGPR Ir41
I29kGPR Ir42
I29kGPR Ir43
I29kGPR Ir44
I29kGPR Ir4S
I29kGPR Ir46
I29kGPR Ir47
I29kGPR Ir4B
I29kGPR Ir49
I29kGPR IrSO
I29kGPR IrSI
I29kGPR IrS2
I29kGPR IrS3
I29kGPR Ir54
I29kGPR IrS5
I29kGPR IrS6
I29kGPR IrS7
I29kGPR Ir5B
I29kGPR IrS9
I29kGPR Ir60
I29kGPR Ir6I
I29kGPR Ir62
I29kGPR Ir63
I29kGPR Ir64
I29kGPR Ir65
I29kGPR Ir66
I29kGPR Ir67
I29kGPR lr6B

3-100

Preparing PROMs Using the Am29000 Development Tools

129kGPR Ir69
129kGPR Ir70
129kGPR Ir71
129kGPR Ir72
129kGPR Ir73
129kGPR Ir74
129kGPR Ir75
129kGPR Ir76
129kGPR Ir77
129kGPR Ir78
129kGPR Ir79
129kGPR Ir80
129kGPR Ir8I
129kGPR Ir82
129kGPR Ir83
129kGPR Ir84
129kGPR Ir85
129kGPR Ir86
129kGPR Ir87
129kGPR Ir88
129kGPR Ir89
129kGPR Ir90
129kGPR Ir91
129kGPR Ir92
129kGPR Ir93
129kGPR Ir94
129kGPR Ir95
129kGPR Ir96
129kGPR Ir97
129kGPR Ir98
129kGPR Ir99
129kGPR IrlOO
129kGPR IrlOI
129kGPR IrlO2
129kGPR IrlO3
129kGPR IrlO4
129kGPR IrlO5
129kGPR IrlO6
129kGPR IrI07
129kGPR IrlO8
129kGPR IrlO9
129kGPR IrllO
129kGPR Irlll
129kGPR Ir1l2
129kGPR Ir1l3
129kGPR Ir1l4
129kGPR Ir1l5
129kGPR Ir1l6
129kGPR Ir1l7
129kGPR Ir1l8
129kGPR Ir1l9
129kGPR Ir120
129kGPR lr121
129kGPR Ir122
129kGPR Ir123
129kGPR lr124
129kGPR Ir125
129kGPR Ir126
129kGPR Ir127

Set spl,sp4-sp9 to known state =
129kSPR OPS Set sp13 and sp14 to known state
129kSPR CHA
129kSPR CHD
129kSPR CHC
129kSPR RBP
129kSPR TMC
129kSPR TMR
129kSPR MMU
129kSPR LRU
129kSPR IPC Set sp128-135 to known state

3-101

29K Family Application Notes

129kSPR IPA
129kSPR IPB
129kSPR Q

129kSPR ALU
129kSPR BP
129kSPR FC
129kSPR CR
const gr66,0
129kMPR 0 Set trO-tr127 to known state
129kMPR 1
129kMPR 2
129kMPR
129kMPR 4
129kMPR 5
129kMPR
129kMPR
129kMPR
129kMPR
129kMPR 10
129kMPR 11
129kMPR 12
129kMPR 13
129kMPR 14
129kMPR 15
129kMPR 16
129kMPR 17
129kMPR 18
129kMPR 19
129kMPR 20
129kMPR 21
129kMPR 22
129kMPR 23
129kMPR 24
129kMPR 25
129kMPR 26
129kMPR 27
129kMPR 28
129kMPR 29
129kMPR 30
129kMPR 31
129kMPR 32
129kMPR 33
129kMPR 34
129kMPR 35
129kMPR 36
129kMPR 37
129kMPR 38
129kMPR 39
129kMPR 40
129kMPR 41
129kMPR 42
129kMPR 43
129kMPR 44
129kMPR 45
129kMPR 46
129kMPR 47
129kMPR 48
129kMPR 49
129kMPR 50
129kMPR 51
129kMPR 52
129kMPR 53
129kMPR 54
129kMPR 55
129kMPR 56
129kMPR 57
129kMPR 58
129kMPR 59
129kMPR 60
129kMPR 61

3-102

Preparing PROMs Using the Am29000 Development Tools

129kMPR 62
129kMPR 63
129kMPR 64
129kMPR 65
129kMPR 66
129kMPR 67
129kMPR 68
129kMPR 69
129kMPR 70
129kMPR 71
129kMPR 72
129kMPR 73
129kMPR 74
129kMPR 75
129kMPR 76
129kMPR 77
129kMPR 78
129kMPR 79
129kMPR 80
129kMPR 81
129kMPR 82
129kMPR 83
129kMPR 84
129kMPR 85
129kMPR 86
129kMPR 87
129kMPR 88
129kMPR 89
129kMPR 90
129kMPR 91
129kMPR 92
129kMPR 93
129kMPR 94
129kMPR 95
129kMPR 96
129kMPR 97
129kMPR 98
129kMPR 99
129kMPR 100
129kMPR 101
129kMPR 102
129kMPR 103
129kMPR 104
129kMPR 105
129kMPR 106
129kMPR 107
129kMPR 108
129kMPR 109
129kMPR 110
129kMPR 111
129kMPR 112
129kMPR 113
129kMPR 114
129kMPR 115
129kMPR 116
129kMPR 117
129kMPR 118
129kMPR 119
129kMPR 120
129kMPR 121
129kMPR 122
129kMPR 123
129kMPR 124
129kMPR 125
129kMPR 126
129kMPR 127
jmpi IrO return to caller
canst gr65,0
.end

3-103

29K Family Application Notes

APPENDIX D: traps.s

TRAPS.S

.text

.global spill, fill Spill and fill process

.include "scregs.def"
spill :

sub tav,rab,rsp compute spill: lower bound - sp
sub rfb,rfb,tav adjust rfb pointer
srI tav,tav,2 shift to get number of words
sub tav,tav,l count is one less
mtsr CR,tav set Count Remaining register
storem O,O,lrO,rfb spill
sll rfb,rab,O adjust rfb pointer
jmpi tpc return to "caller"
sll rab,rsp,O adjust rab

fill:
const tav,Ox80«2 local register bit
or tav,tav,rfb in rfb for IPA
mtsr IPA, tav IPA gets starting register number
sub tav,lrl,rfb compute number of bytes to fill
add rab,rab,tav push up the allocate bound
srI tav,tav,2 change byte count to word count
sub tav,tav,l make count zero-based
mtsr CR,tav set Count Remaining register
sll tav,rfb,O save old rfb
sll rfb,lrl,O push up the free bound
jmpi tpc return to "caller"
loadm O,O,grO,tav fill
.end

3·104

APPENDIX E: scregs.def
.reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg

rsp,grl
msp,gr125
rab,gr126
rfb,gr127
tpc,gr121
tav,gr122
tmpO,gr64
tmpl,gr65
tmp2,gr66

Preparing PROMs Using the Am29000 Development Tools

register stack pointer
memory stack pointer
register allocate bound
register free bound
trap handler argument/temp
trap handler return address/temp
temp registers allocations

3·105

29K Family APplication Notes

APPENDIX F: CONFIGURATION OF THE
STEB

P13 Daughter Board P12 Daughter Board

J1

DCE O
SCC

5 1 ROM Memory Size Jumpers

P2 P3 ~4~ ~ ~ ~ ~ 8530
Clock
123
c::=l

J2 SW1 JP8

DTE 0 ~;;Target Memory Disable
123

" LA '8 J~6 JP5 JP4 JP3 JP2 JP1

B B 8 6 :I.·ROMSPACE

P1
LA

DsD~;;IDI~:~T
Am29000

P11

o
Power

P10

o
Power

Footnotes:

SW3

SW4

B
9513A

20n4

2U1
Interrupts
& Traps

Am29027

U52

1 ROM RAM
U16 10 D Size Size

[i] · ROM Space Bank 0

• • ROM SPACE BANK 1

~ •• RAM Space Bank 0

GSl •• RAM Space Bank 1

Note: The STEB uses PROMs (can be MON29K) in ROM space bank 0; otherwise can
have RAMs in ROM space bank 0 for downloading programs using ADAPT29K.

Figure 13. Configuration of the STEB

3·106

I

E] .. RAM Space Bank #2 rn .. RAM Space Bank #3

11966A·13

Programming Standalone Am29000 Systems
Application Note
by Jim Gibbons and Doug Walton

INTRODUCTION

Advanced Micro Devices is developing a complete line
of Am29000™ simulators, hardware-target execution
vehicles, and high-level language development tools for
the Am29000 32-bit Streamlined Instruction Processor.
These products are designed to support end-users who
are building embedded system applications based on
the Am29000 processor. For these users, often there is
no existing operating system or kernel for their hardware
design.

A standalone program runs independently of an operat­
ing system orother supporting software. As opposed to
a program that runs under an operating system, a stand­
alone program is concerned about the characteristics of
the hardware environment. It controls hardware devices
and must be aware of the system architecture. Conse­
quently, the needed executive functions that would be
performed by an operating system must be designed
into the application program ..

HOW TO USE THIS APPLICATION NOTE

This document covers some important issues in pro­
gramming a standalone Am29000 system. Its purpose
is not to explain every possible implementation of the
Am29000, but to present a basic framework from which
to start development.

Many sample sections of code are shown. Most are
taken from the STARTUP files provided on the
ASM29I(TM software and are listed in the appendices.
These files can be consulted for a complete example of
the boot-up and initialization process. 8e aware that the
range of possible applications in which the Am29000
can be used is extensive, and it would be impossible to
provide code that will work in every situation. The code
samples have been tested in simple, limited applica­
tions, and should be used as a guideline, not as a
finished solution.

The Effects of Memory Organization section discusses
how the memory organization of an Am29000 system
affects the design of a standalone program.
Attention is given to the location from which code is
executed and how it is accessed.

Publication' Rev. Amendment Isaue Date:
11025 A 10 11/89

The Am29000 Calling· Convention section summarizes
the Am29000 run-time model. Writing good Am29000
assembly-language programs requires knowledge of
the run-time model. Code samples used in this applica­
tion note follow the convention established by the run­
time model. Understanding the convention eases
understanding the examples.

The Writing the Start-up Program section explains how
an example startup program works. Each task done in
the process is discussed, from configuring the Am29000
through calling _main.

SUGGESTED REFERENCE MATERIALS

This application note covers fundamental design issues
involved in implementing a standalone Am29000 sys­
tem. However, designing a standalone system is a com­
plex task involving many areas. Knowledge of the
Am29000 is necessary, as well as the subjects covered
in the following reference materials.

Am29000 Streamlined Instruction Processor User's
Manual, order #1 0620. It contains details regarding the
instruction set and register organization of the
Am29000.

Am29000 Streamlined Instruction Processor Data
Sheet, order #09075. It embodies a great deal of infor­
mation about the Am29000, including distinctive char­
acteristics, general description, simplified system
diagram, connection diagram, pin deSignations and
descriptions, functional description, absolute maxi­
mum ratings, operational ranges, DC characteristics,
switching characteristics and waveforms, and physical
dimensions.

Am29000 Memory Design Handbook, order #10623.
It discusses in detail the tradeoffs in designing an
Am29000 memory system. Completely covers four
different approaches to optimizing access speed versus
cost and memory size.

Implementation of an Am29000 Stack Cache Applica­
tion Note. It describes in detail how a stack cache would
be used in a simple application.

@ 1989 Advanced Micro Devices, Inc.

3·107

29K Family Application Notes

These materials can be obtained by writing to:
Advanced Micro Devices, Inc.
901 Thompson Place
P.O. Box 3453
Sunnyvale, CA 94088-3453

or by calling (800) 222-9323.

For questions that cannot be resolved with the current
literature, further technical support can be obtained by
writing or calling:

29K Support Products Engineering
Mail Stop 561
5900 E. Ben White Blvd.
Austin, TX 78741
(800) 2929-AMD (US)
0-800-89-1131 (UK)
0-031-11-1129 (Japan)

THE EFFECTS OF MEMORY
ORGANIZATION

The organization of memory determines some of the
duties that software must perform. The physical charac­
teristics of the memory design have an impact on the
system responsibilities in a standalone environment.
Where the various types of me mory are located and how
they are accessed must be considered.

While many types of memory organization are possible
in an Am29000 system, this discussion covers only a
couple of the more widely known methods. The empha­
sis is not on describing all of the possibilities, but on
showing how the duties of the standalone program
change depending on how the system memory is
arranged. For more information on the advantages and
disadvantages of various Am29000 memory schemes,
see the Am29000 Memory Design Handbook.

MEMORY SPACES

The Am29000 uses a three-bus Harvard architecture,
which allows for many different types of memory organi­
zation. As shown In Figure 1, the Am29000 buses
Include the address bus, the data bus, and the Instruc­
tion bus. All are 32 bits wide, but only the data bus is
bidirectional. The address bus is output-only; the
instruction bus is input-only. Using the buses and some
control signals, the Am29000 supports five separate
memory spaces. The available spaces are register, I/O,
instruction ROM, coprocessor, and instruction/data
RAM.

3·108

In any given system, the application program will reside
and execute in some memory area(s), and will execute
from some area(s). The areas can be the same, but they
also can be different. Sometimes, the application
program will need to be transcribed from one space into
another before execution.

When code is transferred from one memory area to
another, it is usually done so that a higher rate of execu­
tion can be achieved. Because the Am29000 is very
fast, it can be limited by the access time of memory. Yet,
high-speed PROMs are very expensive. Often It is more
cost-effective to transcribe the code from slow PROMs
to high-speed RAMs before execution.

BUS ARCHITECTURE

Bus architecture Influences how data and Instructions
are transferred from one memory space to another. The
Am29000 system in Figure 1 has separate Instruction
ROM and instruction/data RAM areas. Code could be
transcribed into the instruction RAM area from the
instruction ROM using a series of const and consth
instructions, but a problem would be evident: the
Am29000 fetches the instructions from the instruction
bus, regardless of the memory space in which the
instructions reside. With the system in Figure 1, code
transcribed to RAM cannot be executed because there
is no access to the instruction bus.

One method of resolving this problem is to establish a
path between the data bus and the instruction bus. Such
a pat~ can be provided through a swap buffer, as shown
in Figure 2. The swap buffer Is bidirectional, which al­
lows data or instructions on one bus to be moved to the
other.

A different solution is used on AM D's PC Execution
Board (PCEB29I(TM), where fixed storage for data and
programs Is on the host PC. When code is to be run, it is
loaded Into video DRAM (VDRAM) installed In the
instruction/data RAM space. The dual-ported VDRAM
has its shifter output connected to the Am29000 Instruc­
tion bus and Its data bus connected to the Am29000
data bus. In this way, the same physical address space
exists on both buses, and data can be read or written via
either the Instruction bus orthe data bus (see Figure 3).

Programming Standalone Am29000 Systems

b Data Bus f$
h h •• ..
" , f , ,

Instruction " Bus

I I Am29000 - Instruction RAM I/O Controller - ROM

I ~ .. h . ~
• r

~ Address Bus ~

11025A-01

Figure 1. ATypical Am29000 System

b Data Bus ~ .. h

,f

Am29000 - Instruction Bus - - . - .. Swap Buffer - ..

.'
Instruction ROM Instruction/Data

RAM

.~ ,~

, r
~ Address Bus ~

11025A-02

Figure 2. An Am29000 System with Swap Buffers

3·109

29K Family Application Notes

~ Data Bus -! , ~ " . , ,.
-

Instruction Bus - VDRAM
Am29000 - -- Array -- -

• •
Instruction

ROM ' .
~

, ,
~ Address Bus ~

11025A-03
Figure 3. An Am29000 System with VDRAM

Am29000 CALLING CONVENTIONS

To enhance code readability and accuracy, the
Am29000 run-time model convention is used. This con­
vention defines standards for register declarations, pa­
rameters passing, spill and fill routines, and other topics.

There are many good reasons for using the Am29000
run-time model. First, it allows assembly-language
programs to interface with C programs compiled by
the HighC29KTM compiler. Second, it makes programs
easier to understand, particularly for other developers
making modifications or complementary products.
Third, it has been tested thoroughly in many different
environments. Using it from the start will likely save time
later in the development process.

This section is a summary of the Am29000 run-time
model. Because the code samples in the "Writing the

3·110

Start-up Program" section follow the convention estab­
lished by the run-time model, understanding it will make
the code samples clearer. See also the Am29000
Streamlined Instruction Processor User's Manual.

DECLARATIONS

A file containing the declarations outlined in the conven­
tion normally is called into each module that uses the
definitions. A declarations file can be called into an
assembly-language source file by inserting a statement
(usually at or near the top of the file) like:

.include "romdcl.h"

In this example, a declarations file named romdcl.h
would be used with the program. For convenience, the
declarations required to understand the code sections in
this document are summarized in Table 1.

THE Am29000 RUN-TIME STORAGE
ORGANIZATION

In a high-level language that supports nested function
calls (such as C), specific Information related to each
function Invocation often Is stored on a run-time stack.
The Am29000 run-time stack Is actually two stacks. One
is the register stack; the other Is the memory stack.

Both stacks start at an arbitrary high address In memory
and grow downward as function calls nest deeper. The
"bottom" of the stack is the high address where the stack
starts; the '10p" of the stack Is where the last stack Item
was placed, or the address of the lowest valid location.

Table 1. Summary of Am29000 Register Names

Protected Special Purpose Register Names

vab 0 Vector Area Base Address
ops 1 Old Processor Status
cps 2 Current Processor Status
cfg 3 Configuration Register
cha 4 Channel Address
chd 5 Channel Data
chc 6 Channel Control
rbp 7 Register Bank Protect
tmc 8 Timer Counter
tmr 9 Timer Reload
pco 10 Program Counter 0
pc1 11 Program Counter 1
pc2 12 Program Counter 2
mmu 13 MMU Configuration
Iru 14 LRU Recommendation

Unprotected Special Purpose Register Names

ipc 128 Indirect Pointer C
ipa 129 Indirect Pointer A
ipb 130 Indirect Pointer B
q 131 q
alu 132 ALU Status
bp 133 Byte Pointer
fc 134 Funnel Shift Count
cr 135 Load/Store Count Remaining

Programming Standalone Am29000 Systems

The register stack contains dynamically allocated Infor­
mation pertaining to the local state of a given function
call, such as Incoming arguments, local variables, and
outgoing arguments being passed to another function.
These function-specific data are organized Into a series
of overlapping structures called activation records or
stack frames. A function is active when Invoked, and
each active function has an activation record some­
where on the register stack. When a function is entered,
a new activation record, or register stack frame, is
created; when the function is exited, its activation record
is removed. An activation record is shown in Figure 4.

An important characteristic of activation records is that,
because the outgoing arguments of a calling function
("caller") are the incoming arguments of the called func­
tion ("callee"), the callee's stack frame overlaps with the
caller's stack frame. Consequently, except for the first
activation record on the stack, the incoming arguments
of the callee are identical to the outgoing arguments
from the caller for each nested function. Figure 5 shows
how activation records overlap on the register stack.

Because the Am29000 has a large, pointer-addressable
internal local register file, it is possible to cache a portion
of the register stack in local registers (see Figure 6).
Where the next byte is placed is determined by rsp (the
register stack pointer). The global register GR1 is
assigned as the rsp because it can pOint to the current
stack position in external memory, while bits 2-9 identify
the current IrO. Activation records are allocated by
subtracting the size of the frame needed from rsp, thus
allocating a new block of local registers unique to this
function invocation.

3-111

29K Family Application Notes

.. t
Incoming Args

5 ize
Caller's Lr1

Caller's LrO

.. -
Memory Frame Pointer

Locals

RSize
Outgoing Args

Callee's Lr1

Callee's LrO

- t
11025A-04

Figure 4. An Activation Record

Caching the register stack introduces the operations
described below:

Spill. The portion of the register stack cached in local
registers cannot exceed 128; if it does, the oldest argu­
ments are spilled to external memory. A spill occurs
when rsp becomes less than rab (the register allocate
bound).

Prologue. A prologue routine is an assembly-language
macro that, given the number of incoming arguments,

3-112

outgoing arguments, and local arguments, will allocate
a register stack frame for the function.

Epilogue. An epilogue routine is an assembly-language
macro that de allocates the register stack frame and
causes a jump to the return address.

Fill. When control is being returned to calling functions, a
previously spilled activation record may not exist In the
local register file. Then the register file needs to be filled
from the register stack in external memory. A fill occurs
when rsp is higher than rfb (the register free bound).

I
Proce dure A

I

I
Proce dure C

Local Register File

•
•
•

Ir2

Ir1

IrO

Ir27

•
•

.. -

... -

.. -

Programming Standalone Am29000 Systems

+
Incoming Args

Caller's Lr1

Caller's LrO

Memory Frame Pointer Proce dure B

Locals

Outgoing Args

Callee's Lr1

Callee's LrO

-
+ 11025A·05

Figure 5. The Register Stack

'-r-' R I t St k eg s er ae '-oJ

rtb ""

Spilled
Activation
Records

Used
Locations

.. -Ir1 (fp)

Current
Activation
Record

.. -gr1 (rsp)

Unused
Locations

rab"'-.

I"'IJ "''''
11025A·06

Figure 6. The Stack Cube

3·113

29K Family Application Notes

WRITING THE START-UP PROGRAM
System initialization is one of the most critical duties
performed by software in the standalone system.
Devices must be configured, memory set up, and traps
and vectors defined. In short, an execution environment
must be prepared for the application program. If this is
not done properly, the main application program will not
function properly, and could contain difficult-to-find
errors. So careful attention must be given to the routines
that initialize the system.

This section discusses writing an assembly-language
module that will establish the execution environment for
a C application program. To demonstrate this, an exam­
ple program is developed in a step-by-step fashion.

The example application is designed to run on an
Am29000 system similar to the system shown in
Figure 7. The system provides a generic Am29000 envi­
ronment with instruction/data RAM (VDRAM), instruc­
tion ROM, and a dual-port 8530 serial communications
controller (SCC). The dual-port VDRAM allows instruc­
tions to be read from RAM.

The example program consists of three assembly­
language modules and a declarations file. The assem­
bly-language module START.s (listed in Appendix B) is
startup code that establishes the environment for a
C-Ianguage program. The assembiy-Ianguage module
BOOT.S (listed in Appendix A) transfers the START.S
and the C-Ianguage application code to RAM, as shown
by the black arrows in Figure 7. BOOT.S then passes
control to START.S. The final assembly-language pro­
gram is TEST.s (listed in Appendix C). TEST.S simu-

lates a C-Ianguage application and tests whether the
startup has been properly performed. The declarations
file (ROMDCL.H) and the linker command file
(TEST.LD) are listed in Appendices D and E, respec­
tively.

MAKING A BOOT.S MODULE TO
TRANSCRIBE CODE

BOOT.S receives control first. It establishes serial
communications, tests RAM, and transcribes the appli­
cation code Into RAM. The sequence performed by
BOOT.S is:
1. Configure the Am29000.
2. Establish a register stack frame.
3. Initialize serial 110 for error reporting.
4. Test RAM.
5. Set pointers to invalid trap handler.
6. Call RAMinit (made by ROMCOFF) to transcribe

code.
7. Transfer control to START.S.

Step 1-ConfigurIng the Am29000

BOOT.S first configures the Am29000's current proces­
sor status register (cps) to a known state by executing
the instruction:

mtsrim cps,Ox173 ;RE,PD,PI,SM,DI,DA

This instruction enables instruction fetching from ROM
(R E = 1), sets address translation for data and instruc-

I; Data Bus ~
a • '" ~

r-

"""' VDRAM
'\.." Array

.-
Instructi~n Bus

r
8530 see 1 Am29000 - t •

J. ~

Instruction
ROM

"Ii >'
b Address Bus --q

Figure 7. Example Am29000 System 11025A-07

3-114

tions off (PD,PI = 1), turns on supervisor mode (SM = 1),
and disables all interrupts and traps (DI,DA= 1).

Step 2-Establlshlng a Simple Register Stack
Frame

BOOT.S calls several procedures, so it establishes a
Register Stack Frame. However, control will not return
to BOOT.S after calling _main. Therefore, it only needs
to use a limited stack frame. The frame is set up with:

Programming Standalone Am29000 Systems

const rfb, 512 ;set up temp reg
frame
const rab, 0
sub rsp, rfb, 16 ;enough for pO and
pl
add lrl, rfb, 0

Step 3-lnltlallzlng I/O Devices

An I/O device is initialized early, so that it can be used to
transmit error messages. The 8530 serial communica­
tions controller is initialized using the routine shown in
Listing 1.

LIsting 1. Initializing I/O Devices

SerInit:
.reg SI - CtAd, %% (TEMP_REG +
.reg SI_CtVl, %% (TEMP_REG +
const SI CtAd, SCCCntlAd -
consth SI_CtAd, SCCCntlAd
const SI_CtVl, 9
store 0, 0, SI_CtVl, SI - CtAd
const SI_CtVl, OxcO
store 0, 0, SI _CtVl, SI_CtAd
const SI CtVl, 4 -
store 0, 0, SI _CtVl, SI - CtAd
const SI_CtVl, Ox44
store 0, 0, SI_CtVl, SI_CtAd
const SI_CtVl, 3
store 0, 0, SI_CtVl, SI -CtAd
const SI_CtVl, OxcO
store 0, 0, SI_CtVl, SI _CtAd
const SI_CtVl, 5
store 0, 0, SI_CtVl, SI_CtAd
const SI_CtVl, Ox60
store 0, 0, SI_CtVl, SI_CtAd
const SI_CtVl, 9
store 0, 0, SI_CtVl, SI_CtAd
const S1_CtVl, OxO
store 0, 0, S1 CtVl, SI CtAd - -
const SI_CtVl, 10
store 0, 0, SI _CtVl, S1_CtAd
const S1 CtVl, OxO -
store 0, 0, SI _CtVl, S1 - CtAd
const SI CtVl, 11 -
store 0, 0, S1 _CtVl, SI - CtAd
const SI CtVl, Ox56 -
store 0, 0, SI _CtVl, SI_CtAd
const S1 CtVl, 12 -
store 0, 0, S1 _CtVl, S1_CtAd
const SI CtVl, Ox6 -
store 0, 0, SI _CtVl, SI - CtAd

0)
1)

;control port address
;control port value

;reset the port

;x16, 1 stop, no parity

;8 bits receive

;8 bits xmit

;Int. disabled

;NRZ

;Tx & Rx BRG out

;9600 baud

3-115

29K Family Application Notes

Listing 1. Initializing 1/0 Devices (continued)

const SI_CtVl, 13
store 0, 0, SI_CtVl, SI_CtAd
const SI_CtVl, OxO
store 0, 0, SI_CtVl, SI_CtAd
const SI_CtVl, 14
store 0, 0, SI_CtVl, SI_CtAd
const SI_CtVl, OxO
store 0, 0, SI_CtVl, SI_CtAd
const SI_CtVl, 14
store 0, 0, SI_CtVl, SI CtAd -
const SI_CtVl, Ox1
store 0, 0, SI_CtVl, SI_CtAd
const SI_CtVl, 3
store 0, 0, SI_CtVl, SI CtAd -
const SI_CtVl, Oxc1
store 0, 0, SI_CtVl, SI_CtAd
const SI_CtVl, 5
store 0, 0, SI_CtVl, SI_CtAd
const SI_CtVl, Oxea
store 0, 0, SI_CtVl, SI_CtAd
EPILOGUE

Step 4-Testlng RAM

The RAM is tested before code is transferred to it.
BOOT.S calls a single test, an address pattern test.
Other tests are included in the source listing shown in
Appendix A. The test used by BOOT.S is shown in
Listing 2.

;9600 baud

;BRG in RTxC

;BRG on

;Rx enable

;Tx enable

Step S-Settlng the Vector Table Entries to the
Invalid Trap Handler

START.S will set up the vector table, but BOOT.S
guards against abnormal ends by making all of the
vector table entries point to an invalid trap handler in
ROM. This is done with the following routine, which is
called from the main loop, as shown In Listing 3.

Listing 2. Testing RAM

.sbttl
FUNCTION

"RAM Address Pattern Test"
RAMAddr, 2, 0, 3

This routine will run a two-pass test on RAM. It will be controlled by input values
specifying the base address and the count of locations ~o be tested. In the first
pass, the data will be set equal to the address. In the second pass, the data
will be set equal to the complement of the address.

In: (see below)

Out: (see below)

.reg RA_StrtAdd, %% (IN PRM + 0)

.reg RA_WrdCnt, n (IN_PRM + 1)

.reg RA_TmpCnt, %% (TEMP_REG + 0)

.reg RA_StrtPat, %% (TEMP_REG + 1)

.reg RA_PtrnInc, n (TEMP_REG + 2)

.reg RA_NxtAdd, n (OUT_PRM + 0)

.reg RA_WrtPat, %!is (OUT_PRM + 1)

.reg RA_RedPat, %!is (OUT_PRM + 2)

3·116

:starting address
;count of words
:total test word count
;starting pattern
:ptrn increment value
;error address
;pattern written
; pattern read

RA_3:

RA_ERR:

RA_EXIT:

Programming Standalone Am29000 Systems

Listing 2. Testing RAM (continued)
.reg
add
const

RA_Fail, %%(RET_VAL + 0)
RA_StrtPat, RA_StrtAdd, 0
RA_Ptrnlnc, 4

;fill memory with pattern
add RA_NxtAdd, RA_StrtAdd, 0
sub
add

store
add
jmpfdec
add

RA_TmpCnt, RA_WrdCnt, 2
RA_WrtPat, RA_StrtPat, 0

0, 0, RA_WrtPat, RA_NxtAdd
RA WrtPat, RA_WrtPat, RA_Ptrnlnc
RA_TmpCnt, RA_2
RA_NxtAdd, RA_NxtAdd,

;check memory for pattern
add RA_NxtAdd, RA_StrtAdd, 0
sub
add

load
cpneq
jmpt
nop
add
jmpfdec
add
; invert
nor
cpneq
jmpt
subr
jmp
nop

call
nop
const
consth

EPILOGUE

RA_TmpCnt, RA_WrdCnt, 2
RA_WrtPat, RA_StrtPat, 0

CD, DATA_CTL, RA_RedPat, RA_NxtAdd
RA_Fail, RA_RedPat, RA_WrtPat
RA_Fail, RA_ERR

RA_WrtPat, RA_WrtPat, RA_Ptrnlnc
RA_TmpCnt, RA_3
RA_NxtAdd, RA_NxtAdd,

ptrn for next pass
RA_StrtPat, RA_StrtPat, 0
RA_Fail, RA_StrtPat, RA_StrtAdd
RA_Fail, RA_l
RA_Ptrnlnc, RA_Ptrnlnc, 0
RA_EXIT

lrO, RAMErr

RA_Fail, TRUE
RA_Fail, TRUE

;TRUE for fail
;start with address

;get start address
;for jmpfdec
;set the pattern

;next test mem addr

;get start address
;for jmpfdec
;set the pattern

;err if neq

;next test mem address

;invert initial

;negate inc value

;set after call

3·117

29K Family Application Notes

Listing 3. Setting Vector Table Entries

. sbttl
LEAF

"Vector Initialization"
Vectlnit, 0

This routine initializes the vector table and vab. All vectors
are set to point to the invalid trap handler in ROM.

.reg

.reg

.reg
mtsrim
mfsr
const
consth
const

VI_Vect, %% (TEMP_REG + ,0)

VI_VectSt, %%(TEMP_REG + 1)
VI_VectCnt, %%(TEMP_REG + 2)
vab, 0

;vector value
;vector storage address
;vector count register

VI_VectSt, vab
VI_Vect, (InvalidTrapHandler I 2)
VI_Vect, InvalidTrapHandler
VI_VectCnt, (256 - 2) ; for jmpfdec

VI_Loop:
store
jmpfdec
add
EPILOGUE

0, 0, VI_VectSt, VI_Vect
VI_VectCnt, VI_Loop
VI_VectSt, VI_VectSt, 4

Step 6-Transcribing Code to RAM

BOOT.S transcribes START.S and the C-Ianguage
application (Simulated by TEST.S) into instruction/data
RAM by calling RAMlnit.

RAMlnit is a routine that is created by the ROMCOFF
utility. When an executable Am29000 object file is sub­
mitted to ROMCOFF, the utility generates a relocatable
object file of type RLText that (when called) establishes
an image of the executable module in instruction/data
RAM. BOOT.S transfers START.S and the C-Ianguage
application to RAM by calling the RAMlnit routine cre­
ated by ROMCOFF.

RAMlnit is called by:
call RI_Ret,RAMlnit ;initialize RAM

Note that when RAMlnit is called, the return address is
not stored In a local register (such as IrO) , and that
RAMlnit is called just before transferring control to

;store the vector

_main. To transcribe data to RAM, RAMlnit will create a
stream of const and consth instructions that will load up
the local registers starting from IrO. Then it will insert a
store multiple command to transfer the data into mem­
ory. Consequently, any data in local registers will be
overwritten.

Step 7~alllng START.S

As BOOT.S does not intend to have control returned to
it, it calls START.S by Simulating a return from interrupt.
This is accomplished by setting the freeze (FRZ) bit ON
in the old processor status (ops) and current processor
status registers (cps), putting the starting address of
START.S in peo, and performing a return from interrupt
(see Listing 4).

The Main Loop of BOOT,S

When all of the preceding steps are put together, the
main loop appears as shown in Listing 5.

Listing 4. Calling START.S

3·118

mtsrim
mtsrim
const
consth
mtsr
add
mtsr
iretinv

ops,
cps,
lrO,
lrO,
pc1,
lrO,
pcO,

Ox473
Ox473
TextBas
TextBas
lrO
lrO, 4
lrO

;FZ, PO, PI, SM, 01, DA
;FZ, PO, PI, SM, 01, DA
; (using lrO as temp)

;go to inst space, TextBas

Programming Standalone Am29000 Systems

LIsting 5. Main Loop of BOOT.S

Boot:
.reg
mtsrim
const
const
sub
add
call
nop
const
consth
call
const

call
nop
call
mtsrim
mtsrim
const
consth
mtsr
add
mtsr

RI_Ret, %%(TEMP_REG + 0)
cps, Ox173
rfb, 512
rab, 0
rsp, rfb, 16

.lr1, rfb, 0
IrO, Serlnit

p1, (RAM_SIZE» 2)
p1, (RAM_SIZE» 2)
IrQ, RAMAddr
pO, 0

IrO, Vectlnit

RI_Ret, RAMlnit
ops, Ox473
cps, Ox473
IrO, TextBas
IrO, TextBas
pc1, IrO
IrO, IrO, 4
pcQ, IrO

CREATING THE EXECUTION ENVIRONMENT
WITH START.S

The START.S file is used to prepare the execution
environment for the application program (simulated by
TEST.S). Although a given application certainly will
have varied requirements in different hardware environ­
ments, the tasks that will be performed by START.S are
needed to establish virtually any operating environment
on the Am29000. These are:

1. Configure the Am29000.
2. Allocate the register and memory stacks.
3. Initialize vector table and trap handlers.
4. Initialize the TLB by marking all entries invalid.
5. Call "main."

Step 1-Conflgurlng the Am29000

Code similar to that shown below can be used to set the
contents of the cfg so that the vector area is a table of
pOinters (VF = 1) and the Branch Target Cache™ is
disabled (CD = 1). Also, the cps register is set so that
physical addressing is used for both instructions and
data (PO = 1,PI = 1), all interrupts and traps are disabled
(01 = 1), and supervisor mode is ON (SM = 1). The timer
(tmr) is also set to 0 to avoid unwanted timer interrupts:

mtsrim tmr, 0
mtsrim cfg, (VFICD)
mtsrim cps, (PDIPIISMIDI)

:RAMlnit return
:RE, PO, PI, SM, OI, OA
:set up temp reg frame

:enough for pO and p1

:initialize an 8530 to report errors

:test full RAM size

:ca11 a RAM address test
:test from addr 0 (input parm) to RAM test
ito RAM test
:routine to initialize traps to
;invalid trap handler
:initialize RAM -- from ROMCOFF
;FZ, PO, PI, SM, OI, OA
:FZ, PO, PI, SM, OI, OA
: (using IrO as temp)

The setting of the VF bit has determined the structure of
the vector area table. The vector area is a user­
managed table in external instruction/data memory that
starts at the address held in the vector area base (VAS)
register. The vector area can have one of two different
structures, as determined by the VF bit of the configura­
tion register.

If VF = 1, then the vector area is organized as a list of
256 pointers to interrupUtrap handlers. If VF = O,then the
vector area is arranged as 256 64-instruction blocks,
each corresponding to a given call. Each fixed block
then contains the corresponding interrupt or trap
handler. Figure 8 shows the two structures.

When the Am29000 receives an interrupt or trap, the
location of the appropriate handler is determined by the
vector area (VA). Each interrupt and trap has a vector
number between 0 and 255 that corresponds to an entry
in the vector area. Of the vector numbers, 0 to 63 are
reserved for system and floating-point operations. The
assigned vector numbers are given in the Am29000
User's Manual.

If the table is a list of pointers, control will be passed to
the address at VAS + (vector number· 4). Multiplication
by 4 adjusts the vector number to words. If the vector
table is composed of handlers, control will be passed to
a handler starting at VAS + (vector number • 64 • 4),
where the vector number is adjusted to words and multi­
plied by the number of instructions per block (fixed) (see
Table 2). .

3·119

29K Family Application Notes

Table 2. The Location of a Pointer In the VAT

CFG:VF

1
o

ISR Address=

VAB + (vector number· 4)
VAB + (vector number • 256)

Step 2-Allocatlng Register and Memory Stack
Frames

A full register stack frame is established by START.S,
because it will call the application program Lmain).
Further, control could be passed back to the START.S
return address (which then initiates a ''warm start"). This

should be done early in the main loop, as START.S will
call some supporting assembly-language routines. The
register stack frame can be established by the code
shown in Listing 6.

Arguments that overflow the register stack will have to
be placed in the memory stack (see Figure 8). The
current position in the memory stack is pointed to by the
memory stack pointer (msp).

The stack can be established by:
const. InSp, ,MStkTop
consth InSP, MStkTop

LIsting 6. Allocating Register and Memory Stack Frames
const rfb, RStkTop ;RStkTop is set to the
consth rfb, RStkTop ;desired address in the declarations file
const rab, (RStkTop - 512) ;128*4, maximum
consth rab, (RStkTop - 512) ;part that can
add lr1, rfb, 0 ;be cached
sub rsp, rfb, 16 ;adjusts for lrO, lr1, argc, and argv

AB
~

+ Handler
mber· 256)

v
(Vector Nu

VAB ~

I ... Handler - ... J
Handler I -I

• • • • • • VAB
+

(Vector Number • 4)

Handler I -I --
CFG:VF=O CFG:VF=1 11025A·08

Figure 8. The Two Structures of the Vector Area

3-120

Programming Standalone Am29000 Systems

Step 3-lnltlallzlng the Vector Area and Vectors

Although the organization of the vector area is deter­
mined by the configuration register, the table and point­
ers still must be initialized. In the following example, the
vector initialization code is kept compact, while permit­
ting easy expansion of the vector set, by using a table in

the .data section. Each entry in the table has two words.
The first is the vector number; the second is the handler
address (see Listing 7).

When the vector area base (vab) is supplied to the
routine shown in Listing 8, it initializes the handlers.

Listing 7. Initializing the Vector Area and Vectors

.data

VectInitTable:
.word
.word
.word
.word
.word
.word
.word
.word
.word
.equ
.text

V_SupInstTLB, SupInstTLBHandler
V_SupDataTLB, SupDataTLBHandler
V_MULTIPLY, MultiplyHandler
V_DIVIDE, DivideHandler
V_MULTIPLU, MultipluHandler
V_DIVIDU, DividuHandler
V_SPILL, SpillHandler
V_FILL, FillHandler
V_Timer, TimerHandler
VINIT_CNT, «. - VectInitTable) / 8)

;switch to .data for table

;switch back to .text for code

Listing 8. Initializing Vector Handlers
VectInit:

VI_Loop:

.reg VI_Vect,%%(TMP_REG + 0)

.reg VI_St,%%(TMP_REG + 1)

.reg VI_Cnt,%%(TMP_REG + 2)

.reg VI_Base,%%(TMP_REG + 3)

.reg VI_TbPt,%%(TMP_REG + 4)
mfsr
const
const
con 5th

load
add
511
add
load
add
jmpfdec
store
jmp
nop

VI_Base, vab
VI_Cnt, (VINIT_CNT - 2)
VI_TbPt, VectInitTable
VI_TbPt, VectInitTable

0, 0, VI_St, VI_TbPt
VI_TbPt, VI_TbPt, 4
VI_St, VI_St, 2
VI_St, VI_St, VI_Base
0, 0, VI_Vect, VI_TbPt
VI_TbPt, VI_TbPt, 4
VI_Cnt, VI_Loop
0, 0, VI_Vect, VI_St
raddr

;vector value
;vector storage address
;vector count
;vector base
;vector base

;for jmpfdec

;get the vector

;convert to address

;get the handler

3-121

29K Family Application Notes

Step 4-lnltlallzlng the Translation Look·Aslde
Buffer (TLB)

When the Am29000 is first powered-up, the TLB will not
have valid entries. To prevent erroneous TLB misses,
the entries should be marked invalid by the start-up
sequence before control is passed to the application
program. This can be done with an assembly-language
sequence (see Listing 9).

Step 5-Calllng "main"

Once the proper environment has been established for
the application program, the main C program must be
called. This is done by placing the address of the starting
instruction in registers and performing a call. When the
jump is "short," or less than 256 words, a call can be
done directly. However, the jump often,will be farther,
and calli must be used in conjunction with an address
stored in registers, as shown below:

const raddr, _main ;store lower 16 bits
consth raddr, _main ;store upper 16 bits
calli raddr, raddr ;call indirect

Notice that raddr signifies the return address, usually
IrO, by convention. Once the call is made, the return
address of the caller has replaced the target location, in
the event there is a return from _main.

The START.S Main Loop

The complete START.S main loop, as developed in the
previous sections, is shown in Listing 10. The routine
receives control after being transcribed to RAM; once
there, it initializes the vector handlers, clears the BSS
area, initializes the TLBs, and establishes initial stack
pointers and an initial register frame. Lastly, it invokes
_main. Note that, in the event _main returns, a warm
start is performed.

Listing 9. Initializing the TLB

.reg

.reg

.reg
const
const
const

TI_Loop:
rnttlb
jrnpfdec
add

3-122

TI_Reg,%%(TEMP_REG +
TI_Val,%%(TEMP_REG +
TI_Cnt,%%(TEMP_REG +
TI_Reg, 0

TI_Val, 0
TI - Cnt, (TLB_CNT - 2)

TI_Reg, TI_Val
TI -Cnt, TI _Loop
TI_Reg, TI_Reg, 1

0)
1)

2)

;the TLB register number
;the TLB value (0)
;the TLB register count

; for jrnpfdec

Start:
mtsrim cps,
mtsrim mmu,
mtsrim cfg,
const rfb,
consth rfb,
const rab,
consth rab,
add lr1,
sub rsp,

argv
const msp,
consth msp,
call lrO,

vectors
nop
call IrO,
nop
mtsrim cps,
const lr2,
const lr3,
call lrO,
nop
mtsrim cps,
mtsrim ops,
mtsrim cfg,
mtsrim chc,

mtsrim pc1,
mtsrim pcO,
iretinv

Programming Standalone Am29000 Systems

LIsting 10. START.S Main Loop

Ox73
MMU_PS
Ox10
RStkTop
RStkTop
(RStkTop -
(RStkTop -
rfb, 0
rfb, 16

MStkTop
MStkTop
Vectlnit

TLBlnit

Ox10
0
0
_main

Ox473
Ox173
1
0
0
4

512)
512)

;set PO, PI, SM, OI, OA
;PID = 0

;VF
;set up stack pointers

;make room for IrO, Ir1, argc,

;routine to install handled

;routine to mark TLBs invalid

;SM
;argc = 0
;argv 0

;set FZ, PO, PI, SM, OI, OA
;set RE, PO, PI, SM, OI, OA
;cache disabled
;contents invalid
;cold start address

3-123

29K Family Application Notes

APPENDIX A: boot.s
. title "ROM Boot Code"

Copyright 1988, Advanced Micro Devices
Written by Gibbons and Associates, Inc.

This module is intended to receive control at address O. It handles a hardware
reset or a simulation of that event in a "warm start" situation.

Its purpose is to provide sufficient initializations for the operation of a program
in RAM data/instruction space. The initializations must include the transcription
of the program and its initialized data. The code and initialized data are stored
in ROM prior to transcription.

To provide for orderly operation, C linkages are used. It is known that the register
stack will never overflow. When certain calamities occur (e.g., invalid
traps), the registers will be re-initialized to allow the use of subroutines in
this module. There is no intention of ever returning under these circumstances.

Some of the routines in this module have a rather tedious implementation because
they do not assume the validity of RAM or the readability of ROM. This is
considered appropriate since it assures the validity of error handling.

This module provides no global addresses for external use. It is not intended to
be called. It is best thought of as bootstrap code.

Some tests which are not actually used are included here for use in environments
that may allow them.

The external addresses named below are required.

.extern RAMlnit ;romcoff generated

This module needs the addresses for the control and data ports of the SCC. These
are declared below.

.equ

.equ
SCCCntlAd,OxfffffffO
SCCDataAd,Oxfffffff4

;control port address
;data port address

This module assumes that RAM begins at data address 0 and has the size declared
below.

.equ

.include

.eject

.sbttl

RAM_SIZE,Ox40000
"romdcl.h"

"Section Declarations"

;256K bytes

This module has only one section, which is called "rom." It receives control at
reset, i.e., it is an absolute segment based at address 0 (in ROM space).

3-124

.sect

.use
rom, text, absolute 0
rom

Programming Standalone Am29000 Systems

RomBase:
jmp
nop
nop
nop
halt
nop

.eject

.sbttl

LEAF

Boot ;the RESET entry

;the warn entry
;Could be a report routine

"scc Routines"

Serlnit,O

This routine initializes the serial port for non-interrupt driven access at 9600
baud.

In: (nothing)

Out: (nothing)

.reg

.reg
const
consth
const
store
const
store
const
store
const
store
const
store
const
store
const
store
const
store
const
store
const

store
const
store
const
store
const
store
const
store
const
store
const
store
const
store

const
store

SI_CtAd,%%(TEMP_REG
SI _CtVI,%%(TEMP_REG
SI _CtAd,SCCCntIAd
SI _CtAd,SCCCntIAd
SI_CtVI,9
O,O,SI_CtVI,SI - CtAd
SI CtVI,OxcO -
0, 0, SI_CtVI,SI_CtAd
SI CtVI,4 -
O,O,SI -CtVI,SI_CtAd
SI CtVI,Ox44 -
O,O,SI_CtVI,S1_CtAd
S1 CtVI,3 -
O,O,SI -CtVI,S1_CtAd
SI CtVI,OxcO -
O,O,S1_ CtVI,S1 - CtAd
S1 CtVI,5 -
O,O,SI -CtVI,S1_CtAd
SI _CtVI,Ox60
O,O,SI -CtVI,S1_CtAd
S1_CtVI,9
O,O,S1 -CtVI,S1_CtAd
SI _CtVI,OxO
O,O,S1 - CtVI,S1_CtAd
S1 CtVI,10 -
O,O,SI _CtVI,S1_CtAd
SI_CtVI,OxO
O,O,S1 - CtVI,SI_CtAd
S! CtVI,11 -
O,O,S1_CtVI,S1 - CtAd
S1 CtVI,Ox56 -
0, 0, SI_CtVI, S1_CtAd
SI _CtVI,12
O,O,SI -CtVI,SI_CtAd
S1 CtVI,Ox6 -
O,O,SI - CtVI,S1_CtAd
SI_CtVI,13
O,O,S1 - CtVI,SI_CtAd
S1 CtVI,OxO -
O,O,S! CtVI,SI CtAd - -

+ 0)

+ 1)
;control port address
;control port value

;reset the port

;x16,1 stop,no parity

;8 bits receive

;8 bits xmit

;1nt. disabled

;NRZ

;Tx & Rx BRG out

;9600 baud

;9600 baud

3-125

29K Family Application Notes

const SI CtVl,14 ;BRG in RTxC -
store O,O,SI -CtVl,SI -CtAd

const SI CtVl,OxO -
store O,O,SI -CtVl,SI_CtAd
const SI CtVl,14 ;BRG on -
store O,O,SI _CtVl,SI CtAd -
const SI CtVl,Oxl -
store O,O,SI - CtVl,SI _CtAd

const SI CtVl,3 ;Rx enable -
store O,O,SI CtVl,SI CtAd - -
const SI CtVl,Oxcl -
store O,O,SI _CtVl,SI - CtAd
const SI _CtVl,5 ;Tx enable
store O,O,SI CtVl,SI CtAd - -
const SI_CtVl,Oxea
store O,O,SI CtVl,SI CtAd - -
EPILOGUE

LEAF SerXmt,l

This routine transmits a single character via the SCC. It will wait (forever) for
the SCC to become ready.

In: (see below)

Out: (nothing)

.reg

.reg

.reg
const
consth

SX Wait:,
load
and
cpeq
jmpf
nop
const
consth
store
EPILOGUE

LEAF

SX_Char,%%(IN_PRM +
SX_Ad,%%(TEMP_REG +
SX_Vl,%%(TEMP_REG +
SX_Ad,SCCCntlAd
SX_Ad,SCCCntlAd

O,O,SX_Vl,SX_Ad
SX_Vl,SX_Vl,Ox4
SX_Vl,SX_Vl,O
SX_Vl,SX_Wait

SX_Ad,SCCDataAd
SX_Ad,SCCDataAd
O,O,SX_Char,SX_Ad

SerRcv,O

0)

0)

1)

; character
; port address
;port value

; get the status
;check tx buf empty

;send the character

This routine waits for a receive character to become ready, then reads and'returns
that character.

In: (nothing)

Out: (see below)

3-126

.reg

.reg
const
consth

SR_Ad,%%(TEMP_REG + 0)
SR_Char,%%(RET_VAL + 0)
SR_Ad,SCCCntlAd
SR_Ad,SCCCntlAd

; port address
;character (stat tmp)

Programming Standalone Am29000 Systems

SR_Wait:
load
and
cpeq
jmpf
nop
const
consth
load
and
EPILOGUE

LEAF

0, 0, SR_Char,SR_Ad
SR_Char,SR_Char,Ox1
SR_Char,SR_Char,O
SR_Char,SR_Wait

SR_Ad,SCCDataAd
SR_Ad,SCCDataAd
0, 0, SR_Char,SR_Ad
SR_Char,SR_Char,Oxff

SerChk,O

;get the status
;check rcv buf ready

;fetch the character

This routine checks to determine if a receive character is ready at the serial
port. It will return -1 if a character is ready and 0 if it is not.

In: (nothing)

Out: (see below)

.reg

.reg
const
consth
load
and
cpeq
sra
EPILOGUE

.eject

SC_Ad,%%(TEMP_REG + 0)
SC_Rdy,%%(RET_VAL + 0)
SC_Ad,SCCCntlAd
SC_Ad,SCCCntlAd
0, O,SC_Rdy,SC_Ad
SC_Rdy,SC_Rdy,Ox1
SC_Rdy,SC_Rdy,0
SC_Rdy,SC_Rdy,31

.sbttl "Error Message Routines"

FUNCTION SendErr,O,O,l

This routine sends the text "Error

.reg SE_Char,%%(OUT_PRM + 0)
call lrO,SerXmt
const SE_Char,'E'
call lrO,SerXmt
const SE_Char,' r'
call lrO,SerXmt
const SE_Char,' r'
call lrO,SerXmt
const SE_Char,'o'
call lrO,SerXmt
const SE_Char,' r'
call lrO,SerXmt
const SE_Char, , ,
call lrO,SerXmt
const SE_Char,'-'
call lrO,SerXmt
const SE_Char, , ,
EPILOGUE

FUNCTION SendNL,O,O,l

; port address
; character

;get the status
;check rcv buf ready

;convert to 0 or -1

; output character

;send a "E"

;send a "r"

;send a "r"

;send a "0"

;send a "r"

;send a

;send a "_"

; send a

3-127

29K Family Application Notes

This routine sends a CR-LF sequence.

.reg
call
const
call
const
EPILOGUE

FUNCTION

SN_Char,%%(OUT_PRM + 0)
lrO,SerXmt
SE_Char,OxOd
lrO,SerXmt
SE_Char,OxOa

SendWord,1,1,1

This routine sends a 32-bit word in ASCII hex

SW_O:

SW 1:

.reg

.reg

.reg

.reg
const

srI
and
cplt
jmpt
add
add

call
nop
subs
cpge
jmpt
nop
EPILOGUE

SW_Word,%%(IN_PRM + 0)

SW_Shift,%%(LOC_REG + 0)
SW_T_Flag,%%(TEMP_REG +
SW_Char,%%(OUT_PRM + 0)
SW_Shift,28

SW_Char,SW_Word,SW_Shift
SW_Char,SW_Char,Oxf
SW_T_Flag,SW_Char,10
SW_T_Flag,SW_1
SW_Char,SW_Char,Ox30
SW_Char,SW_Char,Ox27

lrO,SerXmt

SW Shift,SW_Shift,4
SW_T_Flag,SW_Shift,O
SW_T_Flag,SW_O

, ' ..

FUNCTION RAMErr,3,0,1'

0)

This routine reports RAM errors with the message,

isend a "CR"

isend a "LF"

ithe word to send
i shift factor

icharacter to send
iright shift factor

iisolate nibble
icheck decimal

iconvert to ASCII digit
iconvert to ASCII letter

isend the character

inext digit shift fact
icheck if done
icontinue if not

"Error - RAM at aaaaaaaa write bbbbbbbb read cccccccc\n"

.reg RE_ErrAdd,%%(IN_PRM + 0)

.reg RE_WrtPat,%%(IN~PRM + 1)

.reg RE_RedPat,%%(IN_PRM + 2)

.reg RE_Char,%%(OUT_PRM + 0)

.reg RE_Word,%%(OUT_PRM + 0)
call lrO,SendErr isend "Error - "
nop
call lrO,SerXmt
const RE_Char,' R' isend a "R"
call lrO,SerXmt
const RE_Char,'A' isend a "A"
call lrO,SerXmt
const RE_Char,'M' isend a "M"
call lrO,SerXmt
const RE_Char, , isend a
call lrO,SerXmt
const RE_Char,'A' isend a "A"

3-128

Programming Standalone Am29000 Systems

call
const

call
const
call
add
call
const
call
const
call
const
call
const
call
const
call
const
call
const

call
add
call
const
call
const
call
const
call
const
call
const

call
const
call
add
call
nop
EPILOGUE

FUNCTION

lrO,SerXmt
RE_Char,'T'
lrO,SerXmt
RE_Char,' ,
lrO,SendWord
RE_Word,RE_ErrAdd,O
lrO,SerXmt
RE_Char,' ,

lrO,SerXmt
RE_Char,' w'
lrO,SerXmt
RE_Char,' r'
lrO,SerXmt
RE_Char,' i'
lrO,SerXmt
RE_Char,'t'
lrO,SerXmt
RE_Char,'e'
lrO,SerXmt
RE_Char, ,

lrO,SendWord
RE_Word,RE_WrtPat,O
lrO,SerXmt
RE_Char, ,
lrO,SerXmt
RE_Char,'R'
lrO,SerXmt
RE_Char, , e'

lrO,SerXmt
RE_Char,'a'
lrO,SerXmt
RE_Char,'d'
lrO,SerXmt
RE_Char,' ,

lrO,SendWord
RE_Word,RE_RedPat,O
lrO,SendNL

ROMErr,l,O,l

This routine reports a ROM sum error with the message,
"Error - ROM sum aaaaaaaa\n"

.reg ROM_Sum,%%(IN_PRM + 0)

.reg ROM_Char, %% (OUT_PRM + 0)

.reg ROM_Word,%%(OUT_PRM + 0)
call lrO,SendErr

nop
call lrO,SerXmt
const ROM_Char, 'R'

call lrO,SerXmt

const ROM_Char,'O'
call lrO,SerXmt

const ROM_Char,'M'

call lrO,SerXmt
const ROM_Char, ,

call lrO,SerXmt
const ROM_Char, , 5'

;send a "T"

;send a
;send error address

;send a

;send a "w"

;send a "r"

;send a "i"

;send a "t"

;send a "e"

;send a
;send good pattern

;send a

;send a "R"

;send a "e"

;send a "a"

;send a "d"

;send a
;send bad pattern

;send a new line

;send "Error - "

;send a "R"

;send a "0"

;send a "M"

;send a

;send a "5"

3-129

29K Family Application Notes

call lrO,SerXmt
const ROM_Char,'u' ;send a "u"

call IrO,SerXmt
const ROM_Char,'m' ;send a "mil

call IrO,SerXmt
const ROM_Char, , ;send a
call IrO,SerXmt
const ROM_Char, '=' ;send a "_,,

call lrO,SerXmt
const ROM_Char, ' ;send a
call IrO,SendWord
add
call

ROM_Word,ROM_Sum,°
IrO,SendNL

;send ROM check sum
;send a new line

nop
EPILOGUE

FUNCTION SizeErr,O,O,l

This routine reports insufficient RAM size with the message
"Error - RAM size\n"

.reg SIZ_Char,%%(OUT_PRM + 0)
call IrO,SendErr ;send
nop
call IrO,SerXmt
const SIZ_Char,'R' ;send
call lrO,SerXmt
const SIZ_Char, 'A' ;send
call IrO,SerXmt
const SIZ_Char,'M' ;send
call lrO,SerXmt
const SIZ_Char, ' , ;send
call lrO,SerXmt
const SIZ_Char,'s' ;send
call lrO,SerXmt
const SIZ_Char,'i' ;send
call lrO,SerXmt
const SIZ_Char, 'z' ;send
call lrO,SerXmt
const SIZ_Char,'e' ;send
call lrO,SendNL ;send
nop
EPILOGUE

FUNCTION TrapErr,O,O,l

This routine reports insufficient RAM size with the message
"Error - Invalid trap\n"

.reg TE_Char,%%(OUT_PRM + 0)

"Error - "

a \\R"

a "A"

a "Mil

a

a "s"

a "i"

a "z"

a "e"

a new line

call lrO,SendErr ;send "Error - "
nop
call lrO,SerXmt
const TE_Char, 'I' ;send a "I"
call lrO,SerXmt
const TE_Char,'n' ;send a "nil
call lrO,SerXmt
const TE_Char, 'v' ;send a "v"
call lrO,SerXmt

3-130

Programming Standalone Am29000 Systems

const
call
const
call
const
call
const
call
const
call
const
call
const
call
const
call
const
call
nop
EPILOGUE

.eject

.sbttl

FUNCTION

TE_Char,'a'
lrO,SerXmt
TE_Char,'l'
lrO,SerXmt
TE_Char,' i'
lrO,SerXmt
TE_Char,'d'
lrO,SerXmt
TE_Char, , ,
lrO,SerXmt
TE_Char,'t'
lrO,SerXmt
TE_Char,' r'
lrO,SerXmt

TE_Char,'a'
lrO,SerXmt
TE_Char,'p'
lrO,SendNL

"ROM Checksum Test"

ROMSum,2,0,1

isend a "a"

isend a "1"

isend a "iN

isend a "d"

isend a

isend a "t"

isend a "r"

isend a \\a"

isend a "p"

; send a new line

This routine is used to ensure that the ROM is "intacted" correctly by using

the checksum checking method.

In:

Out:

(see below)

(see below)

.reg

.reg

.reg

.reg

.reg
xor
sub

load
add
jmpfdec
add

cpneq
jmpf
nop

call

nop
const
consth

RS_StrtAdd,%%(IN_PRM + 0)
RS_WrdCnt,%%(IN_PRM + 1)
RS_SumTmp,%%(TEMP_REG + 0)
RS_ChkSum,%%(OUT_PRM + 0)
RS_Fail,%%(RET_VAL + 0)
RS_ChkSum,RS_ChkSum,RS_ChkSum
RS_WrdCnt,RS_WrdCnt,2

CD, ROM_CTL, RS_SumTmp, RS_StrtAdd
RS_ChkSum,RS_ChkSum,RS_SumTmp
RS_WrdCnt,RS_1
RS_StrtAdd,RS_StrtAdd,4

RS_Fail,RS_ChkSum,O
RS_Fail,RS_EXIT

lrO,ROMErr

iO/P para -- ChkSum
RS_Fail,TRUE
RS_Fail,TRUE

istart address
iword count

;TRUE for fail
iclear ChkSum
ifor jmpfdec

iadd to ChkSum

inext ROM addr
;if ChkSum == 0 then
iRS_PASS else RS_ERR

icall ROMErr routine

iTRUE for test fail

3-131

29K Family Application Notes

RS EXIT:
EPILOGUE

.eject

.sbttl

FUNCTION

This routine tests
for o.

In:

Out:

ROl 0: -

ROl 1 : -

R01 2 : -

ROl ERR: -

3-132

set all RAM

(see below)

(see below)

.reg

.reg

.reg

.reg

.reg

.reg

.reg
xor

add
sub

store
jmpfdec
add

add
sub

load
cpneq
jmpt
nop
jmpfdec
add
cpeq
jmpt
nor
jmp
nop

call
nop
const
consth

EPILOGUE

.eject

.sbttl

"RAM 01 Test"

RAM01,2,0,3

the RAM by the following method set all RAM area to 0 then check
area to 1 then check for 1.

ROl_StrtAdd,%%(IN_PRM + 0)
ROl_WrdCnt,%%(IN_PRM + 1)
ROl_TmpCnt, %% (TEMP_REG + 0)
R01_NxtAdd,%%(OUT_PRM + 0)
ROl_WrtPat,%%(OUT_PRM + 1)
ROl_RedPat,%%(OUT_PRM + 2)
ROl_Fail,%%(RET_VAL + 0)

;starting address
;count of words
; counter
;error addres
;pattern written
;pattern read
;TRUE for fail

ROl~WrtPat,R01_WrtPat,ROl_WrtPat ;0 to start

R01_NxtAdd,R01_StrtAdd,0
ROl_TmpCnt,ROl_WrdCnt,2

CD, DATA_CTL, R01_WrtPat, R01_NxtAdd
ROl_TmpCnt,R01_l
ROl_NxtAdd,R01_NxtAdd,WRD_SIZ

R01_NxtAdd,R01_StrtAdd,0
ROl_TmpCnt,ROl_WrdCnt,2

CD,DATA_CTL,ROl_RedPat,ROl_NxtAdd
ROl_Fail,ROl_RedPat,ROl_WrtPat
ROl_Fail,ROl_ERR

R01_TmpCnt,ROl_2
ROl_NxtAdd,ROl_NxtAdd,WRD_SIZ
ROl_Fail,ROl_WrtPat,O

;set O's or l's

;get strt RAM addr
; for jmpfdec

;check for O's or l's
;get strt RAM addr
; for jmpfdec

;err if neq

;if WrtPat = 0 then
;ROl_O else done

ROl_WrtPat, ROl_WrtPat, ROl_WrtPat ; invert ptrn
ROl_EXIT ;pass 0 and 1 test

lrO,RAMErr

ROl_Fail,TRUE
R01_Fail,TRUE

"RAM Checker Pattern Test"

;O/P Parms -- NxtAdd,WrtPat,RedPat

;TRUE for test fail

Programming Standalone Am29000 Systems

FUNCTION RAMChkr,2,0,3

This routine will run a two-pass checkerboard on RAM. It will be controlled by
input values specifying the base address and the count of locations to be tested.

In: (see below)

Out: (see below)

.reg

.reg

.reg

.reg

.reg

.reg

.reg

.reg
const
consth

RC 1:
add
sub
add

RC 2:
store
R_LEFT
jmpfdec
add

add
sub
add

RC 3:
load
cpneq
jmpt
nop
R_LEFT
jmpfdec
add

nor
jmpt
nop
jmp
nop

RC ERR:
call
nop
const
consth

RC EXIT:
EPILOGUE

RC_StrtAdd,%%(IN_PRM + 0)
RC_WrdCnt,%%(IN_PRM + 1)
RC_TmpCnt,%%(TEMP_REG + 0)
RC_StrtPat,%%(TEMP_REG + 1)
RC_NxtAdd,%%(OUT_PRM + 0)
RC_WrtPat,%%(OUT_PRM + 1)
RC_RedPat,%%(OUT_PRM + 2)
RC_Fail,%%(RET_VAL + 0)
RC_StrtPat,CHKPAT_aS
RC_StrtPat,CHKPAT_aS

RC_NxtAdd,RC_StrtAdd,O
RC_TmpCnt,RC_WrdCnt,2
RC_WrtPat,RC_StrtPat,O

0, 0, RC_WrtPat,RC_NxtAdd
RC WrtPat
RC_TmpCnt,RC_2
RC_NxtAdd,RC_NxtAdd,4

RC_NxtAdd,RC_StrtAdd,O
RC_TmpCnt,RC_WrdCnt,2
RC_WrtPat,RC_StrtPat,O

CD,DATA_CTL,RC_RedPat,RC_NxtAdd
RC_Fail, RC_RedPat, RC_WrtPat
RC_Fail,RC_ERR

RC_WrtPat
RC_TmpCnt,RC_3
RC_NxtAdd,RC_NxtAdd,4

RC_StrtPat,RC_StrtPat,O
RC_StrtPat,RC_EXIT

RC 1

lrO,RAMErr

RC_Fail,TRUE
RC_Fail,TRUE

jstarting address
jcount of words
;total test word count
jstarting pattern
jerror address
jpattern written
jpattern read
;TRUE for fail
;start with as

;fill memory with pattern
;get start address
;for jmpfdec
jset the pattern

;rotate ptrn left

jnext test mem addr
; check memory for pattern
;get start address
; for jmpfdec
;set the pattern

jerr if neq

;rotate ptrn left

;next test mem addr
; invert ptrn for next pass
; invert initial
;done if msb = 1

;try with inverted

;set after call

3-133

29K Family Application Notes

RA

.eject

.sbttl

FUNCTION

"RAM Address Pattern Test"

RAMAddr,2,O,3

This routine will run a two-pass test on RAM. It will be controlled by input values
specifying the base address and the count of locations to be tested. In the first
pass, the data will be set equal to the address. In the second pass, the data will
be set equal to the complement of the address.

In: (see below)

Out: (see below)

.reg

.reg

.reg

.reg

.reg

.reg

.reg

.reg

.reg
add
const

1 :
add
sub
add

RA_StrtAdd,%%(IN_PRM + 0)

RA_WrdCnt,%%(IN_PRM + 1)
RA_TmpCnt,%%(TEMP_REG + 0)

RA_StrtPat,%%(TEMP_REG + 1)
RA_PtrnInc,%%(TEMP_REG + 2)
RA_NxtAdd,%%(OUT_PRM + 0)

RA_WrtPat,%%(OUT_PRM + 1)
RA_RedPat,%%(OUT_PRM + 2)
RA_Fail,%%(RET_VAL + 0)

RA_StrtPat,RA_StrtAdd,O
RA_PtrnInc,4

RA_NxtAdd,RA_StrtAdd,O
RA_TmpCnt,RA_WrdCnt,2
RA_WrtPat,RA_StrtPat,O

;starting address
;count of words
;total test word count
;starting pattern
;ptrn increment value
:error address
:pattern written
: pattern read
:TRUE for fail
;start with address

:fill memory with pattern
:get start address
: for jmpfdec
:set the pattern

RA_2:
store O,O,RA_WrtPat,RA_NxtAdd
add RA_WrtPat,RA_WrtPat,RA_PtrnInc
jmpfdec RA_TmpCnt,RA_2
add RA_NxtAdd,RA_NxtAdd,4

check memory for pattern

3-134

add RA_NxtAdd,RA_StrtAdd,O
sub
add

load
cpneq
jmpt
nop
add
jmpfdec
add

nor
cpneq
jmpt
subr
jmp
nop

RA_TmpCnt,RA_WrdCnt,2
RA_WrtPat,RA_StrtPat,O

CD,DATA_CTL,RA_RedPat,RA_NxtAdd
RA_Fail,RA_RedPat,RA_WrtPat
RA_Fail,RA_ERR

RA_WrtPat,RA_WrtPat,RA_PtrnInc
RA_TmpCnt,RA_3
RA_NxtAdd,RA_NxtAdd,4

RA_StrtPat,RA_StrtPat,O
RA_Fail,RA_StrtPat,RA_StrtAdd
RA_Fail, RA_1
RA_PtrnInc,RA_PtrnInc,O
RA_EXIT

:next test mem addr

:get start address
: for jmpfdec
:set the pattern

:err if neq

:next test mem addr
; invert ptrn for next pass
:invert initial

:negate inc value

Programming Standalone Am29000 Systems

call
nop
const
consth

EPILOGUE

.eject

.sbttl

InvalidTrapHandler:

lrO,RAMErr

RA_Fail,TRUE
RA_Fail, TRUE

~Invalid Trap Handler"

iset after call

This routine receives control when an invalid trap occurs. It will reinitialize
a register frame for use in error reporting. It then reports the fact that an
invalid trap has occurred. Reporting of specific trap numbers could be achieved,
but at considerable cost in size. The use of an instrument such as the ADAPT29KTM
is recommended for invalid trap identification. If that is not practical, this
handler (or some other) could be extended to report numbers. It would require 2K
bytes of additional code (jmp/const for each of 256 vectors).

mtsrim
const
const
sub
call
add
call
nop
halt
nop

.eject

.sbttl

LEAF

cps,Ox173
rfb,5l2
rab,O
rsp,rfb,8
IrO,SerInit
Irl,rfb,O
I rO, T rapErr

~Vector Initialization"

VectInit,O

iRE,PD,PI,SM,DI,DA
iset up temp reg frame

iroom for linkage
iready to report errors
ismall frame required
ishow trap error

This routine initializes the vector table and vab. All vectors
are set to point to the invalid trap handler in ROM.

VI_Loop:

.reg

.reg

.reg
mtsrim
mfsr
const
consth
const

store
jmpfdec
add
EPILOGUE

VI_Vect,%%(TEMP_REG + 0)
VI_VectSt,%%(TEMP_REG + 1)
VI_VectCnt,%%(TEMP_REG + 2)
vab,O

VI_VectSt,vab
VI_Vect, (InvalidTrapHandler I 2)
VI_Vect,InvalidTrapHandler
VI_VectCnt, (256 - 2)

O,O,VI_VectSt,VI_Vect
VI_VectCnt,VI_Loop
VI_VectSt,VI_VectSt,4

ivector value
ivector storage address
ivector count register

ifor jmpfdec

istore the vector

3·135

29K Family Application Notes

Boot:

.eject

.sbttl "Boot"

This routine receives control upon a hardware reset. Its purpose
is to establish the execution environment for the main program. This involves
transcriptions of data and possibly code. The transcriptions may

take the form of executing code since the ROM may not be readable.

.reg
mtsrim
const
const

sub
add
call
nop
const

consth

call
const
call
nop
call
mtsrim
mtsrim
const
consth

mtsr
add
mtsr

iretinv

; end of boot.s

3-136

RI_Ret, %% (TEMP_REG + 0)
cps,Oxl73
rfb,5l2
rab,O

rsp,rfb,l6
lrl,rfb,O
lrO,SerInit

pl, (RAM_SIZE » 2)

pl, (RAM_SIZE » 2)

lrO,RAMAddr
pO,O
lrO,VectInit

RI_Ret,RAMInit
ops,Ox473

cps,Ox473
lrO,TextBas
lrO,TextBas

pcl,lrO
lrO,lrO,4
pcO,lrO

;go to inst space,TextBas

; RAMIni t return
;RE,PD,PI,SM,DI,DA
;set up temp reg frame

;enough for pO and pl

;ready to report errors

;test full RAM size

;just use one test
;test from address zero
;invalid traps

; initialize RAM
;FZ,PD,PI,SM,DI,DA

;FZ,PD,PI,SM,DI,DA
; (using lrO as temp)

Programming Standalone Am29000 Systems

APPENDIX 8: start.s
.title "Start and Other Assembly-language Routines"

Copyright 1988, Advanced Micro Devices,Inc.
Written by Gibbons and Associates, Inc.
HISTORY:
1.3 29 July 88 E M Greenawalt SPR 0001
Fixed shift count on line 1034

This module provides initializations and trap handling for a program written in C
and operating in a stand alone environment. It is designed for compatibility with
the ADAPT29K and various Am29000 monitors.

In this module, the first 16 system registers (gr64-gr79) are available for use as
system statics. They are not used in any of the routines in this file. Their
values are not saved and restored in the C interrupt handler interrupts, so they
are truly static.

The second 16 system registers (gr80,-gr95) are used as temporary registers by trap
handlers, etc., in this module. No such trap handler is itself interruptable. No
presumption is made about the preservation of values in these registers by any
program.

NOTE:

.extern

.global

.global

main
V_SPILL
V FILL

;the C main routine
;the spill/fill vectors

The equates below define the padding in the vector
section (to a full page), and constants related to
the page size. The register and memory stack size
are also declared.

When operating with a monitor, the VECT PAD may need to be increased.

NOTE:

.equ

.equ

.equ

.equ

.equ

.equ

.equ

.equ

. include

PS,3
RPN_SHIFT, (10 + PS)
PAGE_SIZE, (1 « RPN_SHIFT)
MMU_PS, (PS « 8)
RPN_MASK, (- (PAGE_SIZE - 1))
VECT_PAD, (PAGE_SIZE - Ox400)
RSTK_SIZE,PAGE_SIZE
MSTK_SIZE,PAGE_SIZE
"romdcl.h"

;page size designation

The equates below define traps for divide by zero
and divide overflow. They are not standard. They
are not handled here.

.equ

.equ

.eject

.sbttl

V_DIVO,80
V_DIVOV,81

"Section Declarations"

;divide by zero
;divide overflow

3-137

29K Family Application Notes

Sections will be ordered in memory as shown below.

vectors (at 0)
rstack (register stack)
mstack (memory stack)
.data
.bss
.text
endsect (dummy for establishing bounds)

Vectors will be initialized by start-up code with pointers to an invalid trap
handler in ROM. The initialization code will explicitly intercept those vectors
that will be handled.

.sect

.sect

.sect

.sect

vectors,bss
rstack,bss
mstack,bss
endsect,bss

The declarations that follow suggest the order of the segments, provide base
names for each, and allocate sizes for the vectors and stacks.

Jump instructions are also provided at the base of the .text section for ease
in linkage to the Start routine and the special routine which provides for
ADAPT29K initializations.

.use

.block

.block

.use

RStkBase:
.block

RStkTop:
.use

MStkBase:
.block

MStkTop:
.data

DataBase:
.bss

BSSBase:
.text

TextBase:
jmp
nop
jmp
nop
.use

3-138

vectors
(4 * 256)

VECT_PAD
rstack

mstack

;base of init data

;base of .text
Start

Adaptlnit

endsect

;base of BSS data

;allows easy linkage to Stait
;for bootstrap code
;makes Adaptlnit easier to find

Programming Standalone Am29000 Systems

EndBase:
.block

.text

.eject

.sbttl

.global

.global

.global

.global

LEAF

"Timer read/write functions"
_GetTmCnt
_SetTmCnt

GetTmRld
SetTmRld

_GetTmCnt,O

;marks end of .text
;dummy to assure existence

;switch back to text

This routine returns the timer/counter register value. All the fields are returned;

i.e., no mask is applied.

In: (nothing)

Out: (see below)

.reg
mfsr
EPILOGUE

LEAF

GTC_Val,%%(RET_VAL + 0)
GTC_Val,tmc

_SetTmCnt,l

;timer reg value

This routine sets the timer/counter register value. All the fields are set;
i.e., no mask is applied.

In: ·(see below)

Out: (nothing)

.reg

mtsr
EPILOGUE

LEAF

STC_Val,%%(IN_PRM + 0)
tmc,STC_Val

_GetTmRld,O

;timer reg value

This routine gets the current contents of the timer reload register. No masks
are applied.

In: (nothing)

Out: (see below)

.reg

mfsr
EPILOGUE

LEAF

GTR_Val,%%(RET_VAL + 0)
GTR_Val,tmr

_SetTmRld,l

;timer reload value

This routine sets the timer/counter reload value. All the fields are set;
i.e., no mask is applied.

In: (see below)

3-139

29K Family Application Notes

; Out:

mtsr

(nothing)
.reg

EPILOGUE

.eject

.sbttl

STR_Val,%%(IN_PRM + 0)
tmr,STR_Val

"32-bit Time Extensions"

;timer reload value

The routines below extend the timer counter to 32 bits via a trap handler. The
32-bit value may be initialized and read by C-callable routines declared as
globals. The trap handler is also included. Note that the caller of the C routines
must be running in supervisor mode .

. global

.global

.bss
TimeUpper:

.block

.text

LEAF

_ClrTm32
_GetTm32
;switch to declare bss

4

_ClrTm32,0

;reserve a word for extension
;switch back

This routine clears the 32-bit extended counter by setting the tmc, tmr and
software extension value. The timer interrupt is also enabled in tmr.

In: (nothing)

Out:

Temp:

(nothing)

.reg

.reg
const
consth
mtsr
consth
mtsr
const
consth
const
store
EPILOGUE

CTVal,%%(TEMP_REG + 0)
CTUpPt,%%(TEMP_REG + 1)
CTVal,Oxffffff
CTVal,Oxffffff
tmc,CTVal
CTVal,Ox1ffffff
tmr,CTVal
CTUpPt,TimeUpper
CTUpPt,TimeUpper
CTVal,O
O,O,CTVal,CTUpPt

LEAF _GetTm32,O

(timer initialized to zero)

(see below)
;timer reg value
;upper pointer
;for tc and TimeUpper

;should keep it busy
;set ie

;no extension

This routine returns a 32-bit clock counter. The clock counter is implemented
by extending the hardware counter in software and negating the value before it is
returned. The negation causes the returned value to be an up counter of the time
since the counter was last reset. The low-level timer access routines may be used
in initializations to assure a desired starting value.

The software extension to 32 bits introduces a coordination problem in reading
the counter's value. This is resolved by reading the upper 8 bits both before
and after the TC value. If the TC value is greater than 2**23, the second upper
value read is presumed to be correct. Lengthy interruptions of this ,routine
(> 2**21 clocks) could cause errors.

In: (nothing)

3-140

Programming Standalone Am29000 Systems

Out: (see below)

Temp:

.reg

.reg

.reg

.reg

.reg

.reg
const
consth
load
add
mfsr
load
sll
jmpf
or
or

GT Exit:
subr
EPILOGUE

TimerHandler:

TUpPt,%%(TEMP_REG + 0)
TUpr1,%%(TEMP_REG + 1)
TUpr2,%%(TEMP_REG + 2)
TLwr,%%(TEMP_REG + 3)
TChk,%%(TEMP_REG + 4)
T32,%%(RET_VAL + 0)
TUpPt,TimeUpper
TUpPt,TimeUpper
0,0,TUpr1,TUpPt
TUpr1,TUpr1,0
TLwr, tmc
0,0,TUpr2,TUpPt
TChk,TLwr,8
TChk,GT_Exit
T32,TLwr,TUpr1
T32,T32,TUpr2

T32,T32,0

(see below)

;upper time pointer
;upper time bits - 1st read
;upper time bits - 2nd read
;lower time bits - from cntr
;temp to check high bit
;32-bit time value
;get upper 8 bits of timer

;hold till load complete

;get upper 8 bits again
;is upper TC bit set?
;if not, use 1st read
;poss ovfl before 2nd read
;poss ovfl after 1st read

;negate to count up from zero

This routine handles the timer trap. The timer trap will occur at intervals in the
range of a second (depending on the actual clock speed). The extension to 32 bits
makes the timer somewhat more useful for common benchmarks. A different scheme
would be required for longer intervals.

Clntf:

.reg

.reg

.reg
mfsr
sll
srl
mtsr
const
consth
load
srl
sub
sll
store
iret

.eject

.sbttl

.global

THTr,%%(SYS_TEMP + 0)
THUpPt,%%(SYS_TEMP + 0)
THUpVl,%%(SYS_TEMP + 1)
THTr,tmr
THTr,THTr,7
THTr,THTr,7
tmr,THTr
THUpPt,TimeUpper
THUpPt,TimeUpper
0, 0, THUPY1,THUpPt
THUpVl,THUpVl,24
THUpVl,THUpVl,l
THUpVl,THUpVl,24
0, 0, THUpVl,THUpPt
;done

"C Interrupt Handler Interface"
Clntf

;temp for tmr (shared)
;pointer to upper 8 bits
;upper a-bit value

;clear out upper tmr bits
;leaving ie alone

;decrement the upper bits

This routine is used to call a C routine that will handle an interrupt. In order
to accomplish this, the context of the current program must be saved prior to the
call and restored after the call. It is relatively expensive. In many
instances, it may be best to write the interrupt handlers in assembly-language. Note

3-141

29K Family Application Notes

that assembly-language handlers will have the system statics available to retain
state information. Note also that system statics are not saved and restored here.

They are "static."

This routine receives as inputs the address of the C routine and the vector number.
It passes the vector number to the C routine as its only parameter. An initial
stack of 16 registers (including inputs) is provided to the C routine.

In: (SYS_TEMP + 0)
(SYS_TEMP + 1)

Out: (nothing)

Temp:

3-142

(SYS_TEMP 2-13)
(see below)

.reg

.reg

.reg

.reg
mfsr
mfsr
mfsr
mfsr
mfsr
mfsr
mfsr
mfsr
mfsr
mfsr
mfsr
add
mtsrim
sub
const
consth
asge
store
mtsr
storem
add
const
sub
add
sub
mtsr
storem
add
add
calli
mtsrim

mtsrim
sub
mtsrim
loadm
add
mtsrim
loadm
add
mtsr

CI_Rout,%%(SYS_TEMP + 0)
CI_Vect,%%(SYS_TEMP + 1)
CI_Stk,%%(SYS_TEMP + 14)
CI_Frm,%%(SYS_TEMP + 14)
st2,ops
st3,cha
st4,chd
st5,chc
st6,pcO
st7,pc1
'sta, ipc
st9,ipa
st10,ipb
stU, q
st12,alu
st13,rsp,0
cps,Ox73
msp,msp, «64 - 16) * 4)
CI_Stk,MStkBase
CI_Stk,MStkBase
V_DataTLBProt,msp,CI_Stk
O,O,graO,msp
im
O,O,graO,msp
rfb,rsp,O

CI_Frm,512
rab,rfb,CI_Frm
rsp, rab, (13 * 4)
msp,msp, (16 * 4)
im
O,O,rab,msp

lr1,rfb,0
pO,CI_Vect,O
lrO,CI_Rout
cps,Ox13

cps,Ox73

rab, rsp, (13 * 4)
CR, (16 - 1)
O,O,rab,msp

msp,msp, (16 * 4)
CR, «64 - 16) - 1)
0,0,gr64,msp

msp,msp, «64 - 16) * 4)
ops,st2

C routine address
vector number

used to hold specials

ithe C routine
ithe vector
istack check value
iframe size (shared)
isave specials temps

;PD,PI,SM,DI,DA
iallocate space for globals
icheck for overflow

isimulate Prot (no return on fail)
iflush for CPU bug
CR, « 64 - 16) - 1)
isave the globals
imove down the frame
ibeneath rsp

iset rsp in 16 reg frame
isave the frame
CR, (16 - 1)

irequire remaining locals
ivector is output parm 0
;call the handler
iwith prot and no ints (no good
i for more complex TLB schemes)
iready to reload
ireload locals in frame

ireload globals

irestore specials

Programming Standalone Am29000 Systems

mtsr
mtsr
mtsr
mtsr
mtsr
mtsr
mtsr
mtsr
mtsr
mtsr
add
iret

.eject

.sbttl

MultiplyHandler:

cha,st3
chd,st4
chc,st5
pcO,st6
pc1,st7
ipc,stS
ipa,st9
ipb,st10
q,st11
alu,st12
rsp,st13,0
; return from int

"Multiply and Divide Handlers"

This trap handler performs the (signed) operation:
DEST//Q <- SRCA * SRCB.

IPC, IPA, and IPB are set by the MULTIPLY instruction prior to the invocation of
this trap handler.

In:

Out:

Temp:

IPC
IPA
IPB

DEST//Q

(see below)

.reg
mtsr
mfsr
mtsr
mul
mul
mul
mul
mul
mul
mul
mul
mul
mul
mul
mul
mul
mul
mul
mul
mul
mul
mul
mul
mul
mul
mul
mul
mul

DEST
SRCA
SRCB

IPB IPC

MH_ IP,%%(SYS_TEMP
q,grO
MH_IP,ipc
ipb,MH_IP
grO,grO,O
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO

+ 0)

. (unimportant side effect)

; temp for move operation
;SRCB (multiplier) to Q
;use a system temp to set
; ipb = ipc
;step I. (no initial prod)
;step 2.
;step 3.
;step 4.
; step 5.
;step 6.
; step 7.
; step S.
;step 9.
;step 10.
;step 1I.
;step 12.
; step 13.
; step 14.
;step 15.
; step 16.
; step 17.
;step lS.
; step 19.
; step 20.
;step 21-
; step 22.
; step 23.
; step 24.
; step 25.

3-143

29K Family Application Notes

mul grO,grO,grO
mul grO,grO,grO

mul grO,grO,grO
mul grO,grO,grO
mul grO,grO,grO
mul grO,grO,grO
mull grO,grO,grO
iret ;done

This trap handler performs the (unsigned) operation
DEST//Q <- SRCA * SRCB.

; step 26.
;step 27.
;step 28.
; step 29.
;step 30.
;step 31.
;step 32.

IPC,IPA,and IPB are set by the MULTIPLU instruction prior to
the invocation of this trap handler.

In:

Out:

Temp:

3-144

IPC
IPA
IPB

DEST//Q
IPB = IPC

(see below)

.reg
mtsr
mfsr
mtsr
mulu
mulu
mulu
mulu
mulu
mulu
mulu
mulu
mulu
mulu
mulu
mulu
mulu
mulu
mulu
mulu
mulu
mulu
mulu
mulu
mulu
mu1u
mulu
mulu
mulu
mulu
mulu
mu1u
mulu
mulu
mulu
mulu
iret

DEST
SRCA
SRCB

(unimportant side

MU IP,%%(SYS_TEMP
q,grO
MU_IP,ipc
ipb,MU_IP
grO,grO,O
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
grO,grO,grO
; done

effect)

+ 0) ;temp for move operation
;SRCB (multiplier) to Q
;use a system temp to set
; ipb = ipc
;step I. (no initial prod)
;step 2.
; step 3.
;step 4.
;step 5.
;step 6.
;step 7.
; step 8.
;step 9.
;step 10.
;step II.
; step 12.
; step 13.
;step 14.
;step 15.
; step 16.
;step 17.
;step 18.
;step 19.
;step 20.
;step 2I.
; step 22.
;step 23.
; step 24.
;step 25.
;step 26.
; step 27.
;step 28.
;step 29.
;step 30.
;step 3I.
;step 32.

Programming Standalone Am29000 Systems

DivideHandler:

This trap handler performs the (signed) operation:
DEST <- (SRCA//Q) / SRCB

IPC,IPA,and IPB are set by the DIVIDE instruction prior to
the invocation of this trap handler.

;In: IPC DEST
IPA SRCA
IPB SRCB
Q

Out: DEST

Temp: (see below)

.reg D_Rmdr,%%(SYS _TEMP +

.reg D_Dvsr,%%(SYS _TEMP +

.reg D_Sign,%%(SYS_TEMP +

.reg D _DvdHi,%%(SYS _TEMP

.reg D_DvdLo,%%(SYS_TEMP

.reg D _Quot,%%(SYS TEMP +

.reg D _Ovfl, %% (SYS _TEMP +

.reg D_MnNg,%%(SYS_TEI1P +
add D_DvdHi,grO,O
mfsr D_DvdLo,q
sub D _Dvsr,D_ Dvsr,O
add D_Dvsr,D_Dvsr,grO
asneq V_DIVO,D_ Dvsr,O

DividendCheck:
jmpf D_DvdHi,DivisorCheck
const D_Sign, FALSE
cpeq D_Sign, D_Sign, °
subr D _DvdLo,D_ DvdLo,O
subre D _DvdHi,D _DvdHi, °

DivisorCheck:
jmpf D_Dvsr, DivideOp
nop
cpeq D_Sign,D_Sign, °
subr D _Dvsr,D_ Dvsr,O

DivideOp:
mtsr q,D_DvdLo
divO D _Rmdr, D_ DvdHi
div D _Rmdr,D_Rmdr,D - Dvsr
div D _Rmdr,D_Rmdr,D - Dvsr
div D _Rmdr,D_Rmdr,D - Dvsr
div D_Rmdr,D_Rmdr,D - Dvsr
div D_Rmdr,D_Rmdr,D Dvsr
div D _Rmdr,D_Rmdr,D - Dvsr
div D _Rmdr,D_Rmdr,D - Dvsr
div D _Rmdr,D_Rmdr,D - Dvsr
div D _Rmdr,D_Rmdr,D - Dvsr
div D_Rmdr,D_Rmdr,D _Dvsr
div D_Rmdr,D_ Rmdr,D - Dvsr
div D_Rmdr,D_ Rmdr,D - Dvsr

0)
1)
2)

+ 3)

+ 4)
5)
6)
7)

;shift area and remainder
;divisor
;0 for positive
;dividend high
';dividend low

;most negative integer
;SRCA is dividend high
;Q is dividend low
;divisor is in SRCB
;any easier access?
;check for divisor zero

;toggle flag
;negate dividend

;toggle flag
;negate divisor

;dividend low to q
;D_ Rmdr becomes shift
; step I.
; step 2.
; step 3.
;step 4.
;step 5.
; step 6.
; step 7.
; step 8.
; step 9.

;step 10.
; step II.
; step 12.

high

3·145

29K Family Application Notes

div
div
div
div
div
div
div
div

div
div
div
div
div
div
div
div
div
div
div
divrem
mfsr
cplt
jmpf
cpeq
cpeq
cpneq

DivideCorrect:
jmpf
aseq
subr
subr

DivideExit:
add
iret

DividuHandler:

D Rmdr,D_Rmdr,D_Dvsr
D_Rmdr,D_Rmdr,D_Dvsr
D_Rmdr,D_Rmdr,D_Dvsr
D_Rmdr,D_Rmdr,D_Dvsr
D_Rmdr,D_Rmdr,D_Dvsr
D_Rmdr,D_Rmdr,D_Dvsr
D_Rmdr,D_Rmdr,D_Dvsr
D_Rmdr,D_Rmdr,D_Dvsr
D_Rmdr,D_Rmdr,D_Dvsr
D_Rmdr,D_Rmdr,D_Dvsr
D_Rmdr,D_Rmdr,D_Dvsr
D_Rmdr,D_Rmdr,D_Dvsr
D_Rmdr, D_Rmdr, D_Dvs"r
D_Rmdr,D_Rmdr,D_Dvsr
D_Rmdr,D_Rmdr,D_Dvsr
D_Rmdr,D_Rmdr,D_Dvsr
D_Rmdr,D_Rmdr,D_Dvsr
D_Rmdr,D_Rmdr,D_Dvsr
D_Rmdr,D_Rmdr,D_Dvsr
D_Rmdr,D_Rmdr,D_Dvsr
D_Quot,q
D_Ovfl,D_Quot,O
D_Sign,DivideCorrect
D_MnNg,D_MnNg,D~MnNg
D_Ovfl,D_MnNg,D_Quot
D_Ovfl,D_Ovfl,D_Sign

D_Sign,DivideExit
V_DIVOV,D_Ovfl,O
D_Quot,D_Quot,0
D_Rmdr,D_Rmdr,O

grO,D_Quot,O
;done

This trap handler performs the (unsigned) operation:

DEST <- (SRCA//Q) / SRCB

; step 13.
;step 14.
; step 15.
;step 16.
; step 17.
; step 18.
; step 19.
; step 20.

; step 21-
; step 22.
; step 23.
; step 24.
;step 25.
;step 26.
; step 27.
; step 28.
; step 29.
; step 30.
; step 31-
;don't need remainder
;get quotient out of
; check overflow

;set most neg
;check for most neg
;allow if to be neg

;done if positive
;trap on overflow
; negate quotient
;don't need remainder

;set DEST

q

IPC,IPA,and IPB are set by the DIVIDU instruction prior to
the invocation of this trap handler.

In: IPC
IPA
IPB
Q

Out: DEST

Temp: (see

.reg
add
divO
div
div
div

3-146

DEST

SRCA
SRCB

below)

DU_Rmdr, %% (SYS_TEMP
DU_Rmdr,grO,O
DU_Rmdr,DU_Rmdr
DU_Rmdr, DU_Rmdr, grO
DU_Rmdr, DU_Rmdr, grO
DU_Rmdr, DU_Rmdr, grO

+ 0) ;shift area and remainder
;SRCA to DU_Rmdr
;DU_Rmdr becomes shift high
; step 1-
;step 2.
;step 3.

Programming Standalone Am29000 Systems

div
div
div
div
div
div
div
div
div
div
div
div
div
div
div
div
div
div
div
div
div
div
div
div
div
div
div
div
divrem
mfsr
iret

.eject

.sbttl

DU_Rmdr, DU_Rmdr, grO
DU_Rmdr, DU_Rmdr, grO
DU_Rmdr, DU_Rmdr, grO
DU_Rmdr, DU_Rmdr, grO
DU_Rmdr, DU_Rmdr, grO
DU_Rmdr, DU_Rmdr, grO
DU_Rmdr, DU_Rmdr, grO
DU_Rmdr, DU_Rmdr, grO
DU_Rmdr, DU_Rmdr, grO
DU_Rmdr, DU_Rmdr, grO
DU_Rmdr, DU_Rmdr, grO
DU_Rmdr, DU_Rmdr, grO
DU_Rmdr,DU_Rmdr,grO
DU_Rmdr, DU_Rmdr, grO
DU_Rmdr,DU_Rmdr,grO
DU_Rmdr, DU_Rmdr, grO
DU_Rmdr, DU_Rmdr, grO
DU_Rmdr, DU_Rmdr, grO
DU_Rmdr, DU_Rmdr, grO
DU_Rmdr, DU_Rmdr, grO
DU_Rmdr, DU_Rmdr, grO
DU_Rmdr, DU_Rmdr, grO
DU_Rmdr, DU_Rmdr, grO
DU_Rmdr,DU_Rmdr,grO
DU_Rmdr,DU_Rmdr,grO
DU_Rmdr,DU_Rmdr,grO
DU_Rmdr,DU_Rmdr,grO
DU_Rmdr,DU_Rmdr,grO
DU_Rmdr,DU_Rmdr,grO
grO,q
idone

"Spill and Fill Handlers"

istep 4.
i step 5.
istep 6.
i step 7.
i step B.
i step 9.
i step 10.
istep 1I.
i step 12.
istep 13.
i step 14.
i step 15.
i st.ep 16.
i step 17.
istep lB.
istep 19.
i step 20.
istep 2I.
istep 22.
istep 23.
istep 24.
istep 25.
istep 26.
istep 27.
istep 2B.
istep 29.
i step 30.
i step 3I.
idon't need remainder
iquotient to (ipc)

The routines below handle the allocation and free assertions
in subroutine prologues and epilogues. The temps they use
are given below.

.reg R_Cnt,%%(SYS_TEMP + 0) itemp for count (shared)

. reg R_Bnd, %% (SYS_TEMP + 0) itemp for boundary

.reg R_TmpPCO,%%(SYS_TEMP + 1) itemp for PCO

.reg R_TmpPC1,%%(SYS_TEMP + 2) itemp for PC1

SpillHandler:

This routine handles a false assertion in the standard prologue

In: rab > rsp (requiring an allocation)

Out: rab

mfsr
mfsr
mtsrim
sub
sub

rsp (just enough allocated)

R_TmpPCO,pcO
R_TmpPC1,pc1
cps,Ox73
R_Cnt,rab,rsp
rfb,rfb,R_Cnt

lr1 <= rfb
rfb rab + 512

Ir1 <= rfb
rfb rab + 512

isave the PCs

iPD,PI,SM,DI,DA
iR_Cnt = # of bytes to spill
imove down the frame bound

3-147

29K Family Application Notes

store
srI
sub
mtsr
storem
add
const
consth
asge

mtsrim
mtsr
mtsr
iret

FillHandler:

O,O,lrO,rfb
R_Cnt,R_Cnt,2
R_Cnt,R_Cnt,l
cr,R_Cnt
O,O,lrO,rfb
rab,rsp,O
R_Bnd,RStkBase
R_Bnd,RStkBase
V DataTLBProt,rab,R_Bnd

cps,Ox473
pcO,R_TmpPCO
pc1,R_TmpPC1

iflush for storem bug
iR_Cnt ~ count of words to spill
icorrect for ~torem
iset up count for storem
ispill from the allocated area
imove down the allocate bound
icheck for possible overflow

isimulate TLB prot
iNOTE: no return on fail
iFZ,PD,PI,SM,DI,DA
irestore the PCs

This routine handles a false assertion in the standard epilogue.

In:

Out:

Ir1 > rfb

Ir1

mfsr
mfsr
mtsrim
const
consth
asle

const
or
mtsr
sub
add
srI
sub
mtsr
loadm
add
mtsrim
mtsr
mtsr
iret

.eject

.sbttl

rfb

R_TmpPCO,pcO
R_TmpPC1,pc1
cps,Ox73
R_Bnd,RStkTop
R_Bnd,RStkTop
V DataTLBProt,rfb,R_Bnd

R_Cnt,512
R_Cnt,R_Cnt,rfb
ipa,R_Cnt
R_Cnt,lr1,rfb
rab,rab,R_Cnt
R_Cnt,R_Cnt,2
R_Cnt,R_Cnt,l
cr,R_Cnt
O,O,grO,rfb
rfb,lr1,O
cps,Ox473
pcO,R_TmpPCO
pc1,R_TmpPC1

"TLB Miss Handler"

(requiring deallocation)
rsp >= rab
rfb == rab + 512

(just enough freed)
rsp >= rab
rfb = rab + 512

isave the PCs

iPD,PI,SM,DI,DA
icheck for possible underflow

;simulate TLB prot
iNOTE: no return on fail
imake local reg ip

from rfb
iset up indirect ptr for loadm
;R_Cnt = # of bytes to fill
imove up the allocate bound
iR_Cnt = number of words to fill
icorrect for loadm
iset up count for loadm
ifill area freed
imove up frame bound
iFZ,PD,PI,SM,DI,DA
irestore the PCs

The routines below provide one-for-one TLBs, i.e., the virtual address is set equal
to the physical address. A central routine is used to do the actual TLB update.

Some enhancement would be appropriate to allow I/O access as data,i i.e.,
memory-mapped I/O. Speed improvements could be realized (four instructions) by the
allocation and initialization of system registers for the bounds.

The temp registers used are indicated'below.

3-148

Programming Standalone Am29000 Systems

.reg

.reg

.reg

.reg

.reg

.reg

TH_Ad,%%(SYS_TEMP + 0)
TH_Ac,%%(SYS_TEMP + 1)
TH_Bnd,%%(SYS_TEMP + 2)
TH_Reg,%%(SYS_TEMP + 3)
TH_WdO,%%(SYS_TEMP + 4)
TH_Wd1,%%(SYS_TEMP + 5)

;the miss address
;the required privileges
;access bound
;TLB register number
;TLB word 0 value
;TLB word 1 value

This routine handles supervisor instruction TLB misses.

An attempted access out of range is treated as an instruction
TLB protection violation.

mfsr
const
consth
asge

const
consth
aslt

jmp
const

SupDataTLBHandler:

TH_Ad,pc1
TH_Bnd,TextBase
TH_Bnd,TextBase
V_InstTLBProt,TH_Ad,TH Bnd

TH_Bnd,EndBase
TH_Bnd,EndBase
V_InstTLBProt,TH_Ad,TH Bnd

TLBHandler
TH_Ac,Ox4BOO

;NOTE: no return on fail

;NOTE: no return on fail

;VE,SE

This routine handles the supervisor data TLB misses. It should
be enhanced to allow I/O access as well as data access.

mfsr TH_Ad,cha
const
const
consth
asge

const
consth
aslt

TH_Ac,Ox7000
TH_Bnd,MStkBase
TH_Bnd,MStkBase
V DataTLBProt,TH_Ad,TH_Bnd

TH_Bnd,TextBase
TH_Bnd,TextBase
V_InstTLBProt,TH_Ad,TH Bnd

;VE,SR,SW

iNOTE: no return on fail

;NOTE: no return on fail
(drop through to TLB handler)

TLBHandler:

This routine handles TLB updates once it has been determined
that the update is appropriate.-

NOTE:

In:

Out:

This routine presumes an BK-byte page size.

TH Ad
TH_Ac
lru

(lru)
constn
sl1

and
and
or
mfsr

the address where access is ,required
the access that is required
the recommended TLB for replacement

provides access to TH Ad
TH_ Wd1 , RPN _MASK
TH_WdO,TH_Wd1,5
TH_Wd1,TH_Wd1,TH_Ad
TH_WdO,TH_WdO,TH_Ad
TH_WdO,TH_WdO,TH_Ac
TH_Reg,lru

ishift for vtag
iestablish addr fields

iestablish access
iset the TLB entry

3·149

29K Family Application Notes

LEAF

mttlb
add
mttlb
iret

.eject

.sbttl

TLBInit,O

TH_Reg,TH_WdO
TH_Reg,TH_Reg,l
TH_Reg,TH_Wd1

"TLB Initialization"

This routine is uoed to initialize the TLBs.

It clears all the TLB registers, thus marking all entries invalid.

In: (nothing)

Out: (nothing)

Temps: (see below)

.reg

.reg

.reg
const
const
const

mttlb
jmpfdec
add
EPILOGUE

.eject

.sbttl

TI_Reg,%%(TEMP_REG +
TI_Val,%%(TEMP_REG +
TI_Cnt,%%(TEMP_REG +
TI_Reg,O
TI_Val,O
TI_Cnt, (TLB_CNT

TI_Reg,TI_Val
TI_Cnt,TI_Loop
TI_Reg,TI_Reg,l

- 2)

0)
1)
2)

"Vector Initialization"

;the TLB register number
;the TLB value (0)
;the TLB register count

;for jmpfdec

In order that the vector initialization code might be compact
and that the set of vectors initialized might be easily expanded,
a table in .data is used. Each entry in the table has two words.
The first word is the number of the vector to be initialized. The
second word is the address of the handler.

.data

VectInitTable:

3·150

.word

.word

.word

.word

.word

.word

.word

.word

.word

.equ

.text

;switch to .data for table

V_SupInstTLB,SupInstTLBHandler
V_SupDataTLB,SupDataTLBHandler
V_MULTIPLY, MultiplyHandler
V_DIVIDE, DivideHandler
V_MULTIPLU,MultipluHandler
V_DIVIDU,DividuHandler
V_SPILL,SpillHandler
V_FILL, FillHandler
V_Timer, TimerHandler
VINIT_CNT, ((. - VectInitTable) / 8)

;switch back to .text for code

Programming Standalone Am29000 Systems

VectInit:

This routine initialzes the vectors for which handlers exist.

In: vab

Out: (vectors initialized)

Temp:

.reg VI_Vect,%%(TEMP_REG + 0)

.reg VI_St,%%(TEMP_REG + 1)

.reg VI_Cnt,%%(TEMP_REG + 2)

.reg VI_Base,%%(TEMP_REG + 3)

.reg VI_TbPt,%%(TEMP_REG + 4)
mfsr
const
const
consth

load
add

VI_Base,vab
VI_Cnt, (VINIT_CNT - 2)
VI_TbPt,VectInitTable
VI_TbPt,VectInitTable

vector area base

(see below)

;vector value
;vector storage
;vector count
;vector base
;vector base

;for jmpfdec

;get the vector

address

sll

O,O,VI_St,VI_TbPt
VI_TbPt,VI_TbPt,4
VI_St,VI_St,2
VI_St,VI_St,VI_Base
O,O,VI_Vect,VI_TbPt
VI_TbPt,VI_TbPt,4
VI_Cnt,VI_Loop
O,O,VI_Vect,VI_St
lrO

;convert to address (fixed v1.3)

AdaptInit:

add
load
add
jmpfdec
store
jmpi
nop

.eject

.sbttl

;get the handler

"ADAPT29K Initializations"

This routine is for use in situations where the bootstrap process
has not occurred. Instead, the ADAPT29K has been used to load
the program. Initializations of the vectors, etc., will be
required.

As an aid to fault identification, the vector table is initialized
with pointers to the words immediately following the vectors. These
words are initialized with HALT instructions. When one of these
halts executes, the ADAPT29K will report the event and the address
of the halt. This will allow the invalid trap that has occurred
to be identified.

CAUTION! This requires that the vector pad be at least 1024.

.reg

.reg

.reg

.reg
mtsrim
mtsrim
mfsr
const
const

AI_Vect,%%(TEMP_REG + 0)
AI_St,%%(TEMP_REG + 1)
AI_Cnt,%%(TEMP_REG + 2)
AI_Halt,%%(TEMP_REG + 3)
cps,Ox73
vab,O
AI_St,vab
AI_Vect,1024
AI_Halt,Ox89000000

;vector value
;vector storage address
;vector count register
;halt instruction register
;PD,PI,SM,DI,DA

;just beyond vectors

3-151

29K Family Application Notes

Start:

consth
const

store
add
store
jmpfdec
add
jmp
nop

.eject

.sbttl

AI_Halt,Ox89000000
AI_Cnt, (256 - 2)

O,O,AI_St,AI_Vect
AI_St,AI_St,4
O,O,AI_Vect,AI_Halt
AI_Cnt,AI_Loop
AI_Vect,AI_Vect,4
Start

"Start"

; for jmpfdec

:store the vector

;store the HALT

This routine receives control after any required bootstrap processes. It will
initialize the vectors which are actually handled, clear the BSS area, initialize
the TLBs, and establish initial stack pointers and an initial register frame.
It will then invoke _main.

In the event that _main returns, this routine will perform a warm start.

In: vab

Out: (nothing)
mtsrim
mtsrim
mtsrim
const
consth
const
consth
add
sub
const
consth
call
nop
call
nop
call
nop
mtsrim
const
const
call
nop
mtsrim
mtsrim
mtsrim
mtsrim
mtsrim
mtsrim
iretinv

; end of start.s

3·152

cps,Ox73
mmu,MMU_PS
cfg,Ox10
rfb,RStkTop
rfb,RStkTop
rab, (RStkTop -
rab, (RStkTop -
lr1,rfb,O
rsp,rfb,16
msp,MStkTop
msp,MStkTop
lrO,Vectlnit

lrO,TLBInit

lrO, ClrTm32 -
(leave to

cps,Ox10
lr2,O
lr3,O
lrO, main -
cps,Ox473
ops,Ox173
cfg,l
chc,O
pc1,O
pcO,4

512)
512)

_main ???)

indicates vector area

;PD,PI,SM,DI,DA
;order It ~ 0
;VF
;set up stack pointers

;lrO,lr1,argc,argv

;install handled vectors

;establish TLBs invalid

;clear and enable timer

iSM
;argc = 0
;argv 0

:FZ,PD,PI,SM,DI,DA
;RE,PD,PI,SM,DI,DA
;cache disabled
;contents invalid
;cold start address

Programming Standalone Am29000 Systems

APPENDIX C: test.s
.title "Test of Assembly-language Utilities"

Copyright 1988, Advanced Micro Devices, Inc.
Written by Gibbons and Associates, Inc .

. include

.extern

.data

.word

.bss

.block

.text

.eject

.sbttl

LEAF

"romdcl.h"

_GetTm32

OxDEADBEEF

1024

"Multiply/Divide Test"

_MultDiv,O

;just to test

; verify zeros

This routine gives a test of the multiply and divide trap
handlers by the simple expedient of performing one of each.
Using the debugger, it can be forced to loop, etc.

In: (nothing)

Out: (nothing)

Temp:

.reg

.reg

.reg

.reg

.reg

.reg

.reg

.reg

.reg

.reg
const
const
consth
const
consth

M_Loop:

multiply
mfsr
jmpt
nop
const
const
consth
const
consth
const
consth

D_Loop:
mtsr
divide
jmpt

MD_Mpd,%%(TEMP_REG + 0)
MD_Mpr,%%(TEMP_REG + 1)
MD_PrLo,%%(TEMP_REG + 2)
MD_PrHi,%%(TEMP_REG + 3)
MD_Mlp,%%(TEMP_REG + 4)
MD_DvdHi,%%(TEMP_REG + 0)
MD_DvdLo,%%(TEMP_REG + 1)
MD_Dvsr,%%(TEMP_REG + 2)
MD_Quot,%%(TEMP_REG + 3)
MD_Dlp,%%(TEMP_REG + 4)
MD_Mlp,O
MD_Mpd,3
MD_Mpd,3
MD_Mpr, 5
MD_Mpr,5

MD_PrHi,MD_Mpd,MD_Mpr
MD_PrLo,q
MD_Mlp,M_Loop

MD_Dlp,O
MD_DvdHi,O
MD_DvdHi,O
MD_DvdLo,15
MD_DvdLo,15
MD_Dvsr,3
MD_Dvsr,3

q,MD_DvdLo
MD Quot,MD_DvdHi,MD_Dvsr
MD_Dlp,D_Loop

(see below)

;multiplicand
; multiplier
;product low
;product high
;BOOLEAN for looping
;dividend high
;dividend low
;divisor
; quotient
;BOOLEAN for looping
; FALSE

; (full 32-bit for patching)

iFALSE
i (full setting for patch)

3·153

29K Family Application Notes

nop
EPILOGUE

.eject

.sbttl

FUNCTION

"Spill/Fill Test"

_Recurse,1,29,1

This routine is a simple recursive do-nothing that is used to test
spill/fill.

It accepts a count as its input, decrements that count, and, if the
result is zero or greater, calls itself with the now decremented
count. Each instance of the routine allocates 32 new registers.
Thus the total register requirement is 32 * (InCnt + 1) where InCnt
is the input count.

In:

Out:

Temp:

R Exit:

(see below)

(nothing in final return)

(allocated but not used)

.reg

.reg
sub
jmpt
nop
call
nop

EPILOGUE

.eject

.sbttl

.extern

LEAF

R_InCnt,%%(IN_PRM + 0)
R_OutCnt,%%(OUT_PRM + 0)
R_OutCnt,R_InCnt,l
R_OutCnt,R_Exit

IrO, _Recurse

"C Interrupt Interface Test"
CIntf

_Trap70,1

This "C" routine handles trap 70. It increments the value of a global
system register so that its effect may easily be seen.

In: (see below)

Out:

Trap70:

stO
st1

.reg
add
add
EPILOGUE

incremented
set to input parameter value

T70_V,%%(IN_PRM + 0)
stO,stO,l
st1,T70_V,0

;the vector

; This is the assembly-language routine that should get control on

3·154

Programming Standalone Am29000 Systems

trap 70. It invokes CIntf in such a way as to give control to
_Trap70, the "c" routine above. Note that control never returns
to this routine. CIntf performs the iret.

In: (nothing)

Out: (nothing)

.reg

.reg
const
consth
jmp
const

.eject

.sbttl

.global

FUNCTION

T70_Rout,%%(SYS_TEMP + 0)
T70_Vect,%%(SYS_TEMP + 1)
T70_Rout,_Trap70
T70_Rout,_Trap70
CIntf
T70_Vect,70

_main,2,2,1

This routine plays the role of a C main routine. It
is coded in assembly language to ease testing with
an absolute debugger.

.reg argc, %% (IN_PRM + 0)

.reg argv, %% (IN_PRM + 1)

.reg StTm,%%(LOC_REG + 0)

.reg EndTm,%%(LOC_REG + 1)
call IrO, GetTm32 -
nop
add StTm,vO,O
call IrO, MultDiv -
nop
call IrO, _Recurse

;argc (= 0)
;argv (= NULL)
; start time
;end time
;should return start

;save the result
;test multiply/divide

;test spill/fill

time

const pO,IS ; require 1024 registers
asneq 70,grl,grl ;force trap 70
call IrO, GetTm32 ;should return end time -
nop
add EndTm,vO,O ;save the result
EPILOGUE

; end of test.s

3·155

29K Family Application Notes

APPENDIX D: romdcl.h
.eject
.sbttl "Register, constant, and Macro Declarations"

Copyright 1988, Advanced Micro Devices
Written by Gibbons and Associates, Inc.

; Global registers

.reg rsp,gr1

.equ SYS_TEMP,64

.reg stO,gr64

.reg st1,gr65

.reg st2,gr66

.reg st3,gr67

.reg st4,gr68

.reg st5,gr69

.reg st6,gr70

.reg st7,gr71

.reg st8,gr72

.reg st9,gr73

.reg st10,gr74

.reg stll, gr75

.reg st12,gr76

.reg st13,gr77

.reg st14,gr78

.reg st15,gr79

.equ SYS_STAT,80

.reg ssO,gr80

.reg ss1,gr81

.reg ss2,gr82

.reg ss3,gr83

.reg ss4,gr84

.reg ss5,gr85

.reg ss6,gr86

.reg ss7,gr87

.reg ss8,gr88

.reg ss9,gr89

.reg ss10,gr90

.reg ss11, gr91

.reg ss12,gr92

.reg ss13,gr93

.reg ss14,gr94

.reg ss15,gr95

.equ RET_VAL, 96

.reg vO,gr96

.reg v1,gr97

.reg v2,gr98

.reg v3,gr99

.reg v4,gr100

.reg v5,gr101

.reg v6,gr102

.reg v7,gr103

.reg v8,gr104

.reg v9,gr105

.reg v10,gr106

.reg vll, gr107

.reg v12,gr108

.reg v13,gr109

.reg v14,grllO

3-156

;local reg. var. stack pointer
;system temp registers

;system static registers

;return registers

Programming Standalone Am29000 Systems

.reg vlS,grl11

.equ TEMP_REG, 96 i temp registers

.reg to,gr96

.reg tl,gr97

.reg t2,gr9S

.reg t3,gr99

.reg t4,grlOO

.reg tS,grlOl

.reg t6,grlO2

.reg t7,grlO3

.reg 'tS, grlO4

.reg t9,grlOS

.reg tlO,grlO6

.reg t11, grlO7

.reg t12,grlOS

.reg t13,grlO9

.reg t14, gr110

.reg tlS,grl11

.equ RES_REG, 112 ireserved (for user)

.reg rO, gr112

.reg rl,gr113

.reg r2, gr114

.reg r3, gr11S

.equ TEMP_EXT, 116 itemp extension (and shared)

.req xO,gr116

.reg xl,gr117

.reg x2, gr11S

.reg x3,grl19

.reg x4,gr120

.reg xS,gr121

.reg x6,gr122

.reg x7,gr123

.reg xS,gr124

i Global registers with special calling convention uses

.reg tav,gr121

.reg tpc,gr122

.reg lsrp,gr123

.reg slp,gr124

.reg msp,gr12S

.reg rab,gr126

.reg rfb,gr127

i Local compiler registers - output parameters, etc.
(only valid if frame has been established)

.reg plS,lr17

.reg p14,lr16

.reg p13,lrlS

.reg p12,lr14

.reg p11,lr13

.reg plO,lr12

.reg p9,lr11

.reg pS,lrlO

.reg p7,lr9

.reg p6,lrS

.reg pS,lr7

.reg p4,lr6

.reg p3,lrS

.reg p2,lr4

itrap handler argument (also x6)
itrap handler return (also x7)
ilarge return pointer (also xS)
istatic link pointer (also x9)
imemory stack pointer
iregister alloc bound
;register frame bound

iparameter registers

3·157

29K Family Application Notes

.reg p1,lr3

.reg pO,lr2

; TLB register count

.equ

.eject

; constants for general use

.equ WRD_SIZ,4

.equ TRUE,OxBOOOOOOO

.equ FALSE,OxOOOOOOOO

.equ CHKPAT_a5,Oxa5a5a5a5

; constants for data access control

.equ

.equ

.equ

.equ

.equ

.equ

.equ

.equ

.equ

.equ

.equ

.equ

.equ

.eject

CE,Ob1
CD,ObO
AS,Ob1000000
PA,Ob0100000
SB,Ob0010000
UA,Ob0001000
ROM_OPT,Ob100
DATA_OPT,ObOOO
INST_OPT,ObOOO
ROM_CTL, (PA + ROM_OPT)
DATA_CTL, (PA + DATA_OPT)
INST_CTL, (PA + INST_OPT)
IO~CTL, (AS + PA + DATA_OPT)

;word size
;logical true -- bit
; logical false -- 0
; check pattern

;co-processor enable
;co-processor disable
; set for I/O
;set for physical ad
;set for set BP
;set for user access
;OPT values for acc

;control field

;---
;defined vectors
i---

.equ V_IllegalOp,O

.equ V_Unaligned, 1

.equ V_Out Of Range, 2

.equ V_NoCoProc,3

.equ V_CoProcExcept,4

.equ V_ProtViol,5

.equ V_InstAccExcept,6

.equ V_DataAccExcept,7

.equ V_UserlnstTLB,B

.equ V_UserDataTLB,9

.equ V_SuplnstTLB,lO

.equ V_SupDataTLB,ll

.equ V_InstTLBProt,12

.equ V_DataTLBProt,13

.equ V_Timer, 14

.equ V_Trace, 15

.equ V_INTRO,16

.equ V_INTR1,17

.equ V_INTR2,lB

.equ V_INTR3,19

.equ V_TRAPO,20

.equ V_TRAP1,21
22 - 31 reserved

.equ V_MULTIPLY, 32

3-158

31

Programming Standalone Am29000 Systems

.equ V_DIVIDE, 33

.equ V_MULTIPLU,34

.equ V_DIVIDU,35

.equ V_CONVERT, 36
37 - 41 reserved

.equ V_FEQ,42

.equ V_DEQ,43

.equ V_FGT,44

.equ V_DGT,45

.equ V_FGE,46

.equ V_DGE,47

.equ V_FADD,48

.equ V_DADD,49

.equ V_FSUB,50

.equ V_DSUB,51

.equ V_FMUL,52

.equ V_DMUL,53

.equ V_FDIV,54

.equ V_DDIV,55
56 - 63 reserved

.equ V_SPILL, 64

.equ V_FILL, 65

.equ V_BSDCALL,66

.equ V_SYSVCALL,67

.equ V_BRKPNT,68

.equ V EPI _OS, 69

.eject

.macro R_LEFT,REGVAR

Rotate left

Parameters: REGVAR

add REGVAR,REGVAR,REGVAR
addc REGVAR,REGVAR,O
.endm

.macro FUNCTION,NAME,INCNT,LOCCNT,OUTCNT

Introduces a non-leaf routine.

register to rotate

;shift left by 1 bit,C MSB
;add C to LSB

This macro defines the standard tag word before the function,
then establishes the statement label with the function's name
and finally allocates a register stack frame. It may not be used
if a memory stack frame is required.

Note also that the size of the register stack frame is limited.
Neither this nor the lack of a memory frame is considered to be
a severe restriction in an assembly-language environment. The
assembler will report errors if the requested frame is too large
for this macro.

It may be good practice to allocate an even number of both output
registers and local registers. This will help in maintaining
double word alignment within these groups. The macro will assure
double word alignment of the stack frame as a whole, as required
for correct linkage.

3·159

29K Family Application Notes

Paramters:

.set

.set

.set

.if

.set

.endif

.if

.set

.endif

.if

.set

.endif

.word

NAME:
sub
asgeu
add
.endm

.macro

NAME
INCNT
LOCCNT
OUTCNT

the function name
input parameter count

local register count
output parameter count

ALLOC_CNT, ((2 + OUTCNT + LOCCNT) « 2)
PAD_CNT, (ALLOC_CNT & 4)
ALLOC_CNT, (ALLOC_CNT + PAD_CNT)
(INCNT)
IN_PRM, (4 + OUTCNT + PAD_CNT

(LOCCNT)
LOC_REG, (2 + OUTCNT + PAD_CNT

(OUTCNT)
OUT_PRM, (2 + Ox80)

((2 + OUTCNT + LOCCNT) « 16)

rsp,rsp,ALLOC_CNT
V_SPILL,rsp,rab

+ LOCCNT

+ Ox80)

+ Ox80)

Ir1,rsp, ((4 + OUTCNT + LOCCNT + INCNT) « 2)

LEAF,NAME,INCNT

Introduces a leaf routine

This macro defines the standard tag word before the function,
then establishes the statement label with the function's name.

Paramters:

NAME:

.if

.set

.endif

.set

.word

.endm

.macro

NAME
INCNT

(INCNT)
IN_PRM, (2 + Ox80)

EPILOGUE

the function name
input parameter count

Deallocates register stack frame (only and only if necessary) .

. if
add
nop
jmpi
asleu
.else
jmpi
nop
.endif
.set
.set

3-160

(ALLOC_CNT)
rsp,rsp,ALLOC_CNT

IrO
V_FILL,lr1,rfb

IrO

IN_PRM, (1024)
LOC_REG, (1024)

;illegal,to cause err on ref
;illegal,to cause err on ref

Initial

.set

.set

endm

values
.set
.set
.set
.set

; end of romdcl.h

for

OUT_PRM, (1024)
ALLOC_CNT, (1024)

macro set variables
IN_PRM, (1024)
LOC_REG, (1024)
OUT_PRM, (1024)
ALLOC_CNT, (1024)

to guard

Programming Standalone Am29000 Systems

;i1legal,to cause err on ref
;illegal,to cause err on ref

against misuse
;illegal,t,o
;illegal,to
;illegal,to
;illegal,to

cause err on ref
cause err on ref
cause err on ref
cause err on ref

3·161

29K Family Application Notes

APPENDIX E: testoid

test.ld Linker Directives

see test.s and start.s for descriptions of sections

load test.o,start.o
order vectors=O,rstack,mstack,.bss, .data, .text,endsect

3-162

Host Interface (HIF) v1.0 Specification
Application Note
by E. M. Greenawalt

PREFACE

This document describes HIF (v1.0), the Am29000 Ar­
chitectural Host Interface, and explains how to use it.
HIF is the software standard that defines the interface
between the user's high-level language program and
the Am29000 processor. The document is written for
experienced programmers and assumes a working
knowledge of the Am29000 microprocessor.

INTRODUCTION

Advanced Micro Devices is developing a complete line
of Am29000™ simulators, hardware target execution
vehicles, and high-level language development tools for
the Am29000 32-bit Streamlined Instruction Processor.
These products are designed to support end-users who
are building embedded system applications based on
the Am29000 processor. For these users, often there is
no existing operating system or kernel fortheir hardware
deSign.

Before AMD could create development tools for the
Am29000, a standard set of kernel services had to be
defined that would interface a user-application program,

written in a high-level language, to a host operating sys­
tem or an Am29000 processor.

HIF, the host interface, is the software specification that
defines this standard set of kernel services. Figure
NO TAG shows the level where HIF resides. As implied
by the figure, HIF does not describe any particular im­
plementation; but rather each simulator, hardware vehi­
cle, and high-level language implements HIF in its own
way. The kernel services provide the minimum function­
ality needed to interface high-level language library
functions to the user's operating system code.

Using HIF, program modules written in any of the lan­
guages available for the Am29000 can be combined
and the resulting program can run, without change, o~
any Am29000 simulator or hardware execution vehicle.
Future AMD products will also use HIF, and AMD is
actively encouraging third-party vendor support.

AMD is indebted to Embedded Performance, Incorpo­
rated (EPI), who originally developed the HIF concepts
and then graciously placed them in the public domain.

User's application program

High-level language library

Host interface (HIF)

Operating system kernel

Figure 1. HIF Interface

Publication' Rev. Amendment Issue Date:
11014 A 10 11/89 © 1989 Advanced Micro Devices, Inc.

3-163

29K Family Application Notes

HIF APPLICATIONS

The HIF specification has broad applications; currently it
provides the interface between the user's high-level
language program and the following hardware and
software products:

• Am29000 Architectural Simulator. This software prod­
uct provides the means to simulate the operation of
the Am29000 in a specified system environment. It
provides detailed performance statistics by modeling
the internal architecture of the Am29000, as well as
system memory configurations and timing. The HIF
specification is implemented to provide the interface
between the user's program and the host operating
system.

• PC Execution Board (PCEB29K TM). This hardwarel
software product contains an Am29000 processor
and memory and is an add-in board to IBM®
PC-based systems. Part of the HIF specification is
implemented on the board with another part imple­
mented on the PC, to interface with the DOS operating
system.

• Standalone Execution Board (STEB). This hardware
product from STEP Engineering is intended to be an
evaluation vehicle for the Am29000 and, optionally,
Am29027™ Arithmetic Accelerator devices. The en­
tire HIF specification is implemented on this board,
which contains a resident monitor to implement the
necessary kernel services.

Because HIF is a general-purpose standard, it can be
used to interface any high-level language to the
Am29000. User programs need not be written entirely in
a high-level language; they may incorporate assembly­
language functions when maximized performance is the
primary concern.

HIFUSERS

There are three categories of end-users who need to
know the details of the host interface:

• Those USing AMD-supplied hardware execution vehi­
cles or simulators. This document defines the low­
level mechanisms of HIF. With this information and
the design concepts presented herein, end-users can
extend the HIF environment to meet the needed
degree of software functionality and sophistication.

• Those developing a custom kernel operating system
for an Am29000 design. These users need access to
AMD's high-level and assembly-language develop­
ment tools. This document provides the information
required to build a HIF-conforming kernel that uses
the high-level language development tools directly.
With this information, end-users can extend and

3-164

customize the operating system code without interfer­
ing with the basiC capabilities of the HIF.

• Those who are using the AMD-supplied high-level
language development tools, but who must conform
to another kernel operating system interface. There is
sufficient information in this document to enable users
to modify the development tools to properly interface
with the target kernel's specifications.

HIF CONCEPTS

Programmers developing software in a high-level
language do not work directly with the processor.
Instead, they think in terms of a virtual machine ideally
suited to the computational paradigm of the language.
For instance, the C-Ianguage virtual machine has
operations such as fprlntf() and strcpy(), and the
FORTRAN machine has operations such as alog and
sqrt.

In actual practice, these virtual machines are imple­
mented by libraries of object code that perform
language-specific operations. As long as programmers
use only the functions of the language's implied virtual
machine, the programs will be portable across a broad
range of implementations of the language.

However, computer systems generally provide another
virtual machine to the world: one that is defined by the
operating system software. This virtual machine
requires system calls to perform the services that are
implemented within the operating system code. Typical
services are: process management, file system
management, device management, and memory
management.

The high-level language virtual, machine usually
consists of: (1) functions that can be implemented
entirely within library routines, and (2) functions that
require the services of the operating system. The func­
tions of the first group (usually defined as the standard
library for that language) are independent of the operat­
ing system virtual machine on which they are imple­
mented. The functions of the second group must be
coded in terms of the operating system virtual machine.
In other words, they must make system calls.

It is often useful for end-users to also make system calls,
even though this practice makes their programs less
portable. This requirement can be accommodated by
augmenting the language library with glue routines that
specifically invoke the system calls, while providing the
end user with suitable high-level syntax and semantics.
(For detailed information on the glue routines for the
C compiler, see the HighC29K Reference Manual,
"Appendix A, Host Interface Definition.")

Given the above discussion. the required task is to cre­
ate high-level language development tools that can be
used easily and efficiently on a variety of execution vehi­
cles. This task can be broken down into the following
steps:

• Define an operating system virtual machine that
provides sufficient functionality to support the funda­
mental requirements of each high-level language. but
not so much as to require a massive development
effort to create.

• Add appropriate glue routines to the standard libraries
of the language so that the libraries are defined in
terms of the operating system virtual machine.

• Implement the operating system's virtual machine
services on the various execution vehicles. For
hardware vehicles. the virtual machine is imple­
mented by a kernel, typically contained in a resident
monitor software program. For simulation vehicles.
the virtual machine is implemented by code internal to
the simulator and by code simulated by the simulator.

For the Am29000 hardware and software support prod­
ucts. HIF consists of the following operating system
virtual machine definitions:

• A carefully defined. efficient system call mechanism.
Accessing an HIF kernel service requires a transition
from user mode to supervisor mode on the processor.
This requires a specific mechanism. such as a trap
handler. to be invoked.

• A set of services that support the primitive require­
ments of C. FORTRAN. and Pascal. Most of the
services are defined according to UNIX® operating
system interface specifications.

• A specification of the environment created by the
kernel. This involves the definition of storage alloca­
tion and register initializations implemented by the
kernel.

Host Interface v1.0 Specification

IMPLEMENTATION TYPES

Implementations of the HIF specification take two fun­
damental forms: self-hosted and embedded. Examples
of each of these are provided in the Standalone Execu­
tion Board (STEB) manufactured by STEP Engineering
and AMD's PC Execution Board (PCEB29K).

The STEB is a single-board computer that incorporates
an Am29000 processor. an optional Am29027 arithme­
tic accelerator. program and data memory, serial ports,
and timer-counter resources. The HIF implementation
for this board consists of a resident monitor program that
is downloaded into low-memory locations. and which
implements the kernel services described in the "HIF
Service Routine" section of this document. This is a self­
hosted implementation.

In contrast to the STEB. the PCEB29K is an add-in
board for IBM PC-compatible computers that incorpo­
rates an Am29000 processor. program and data mem­
ory. serial ports. and timer-counter resources. The HIF
implementation forthis board consists of two portions of
code. One performs some of the kernel services on the
board and the other performs some of the kernel serv­
ices through the auspices of the DOS operating system.
In the sense that the HIF is grafted onto the existing host
operating system. it is called an embedded implementa­
tion. The architectural and instruction simulators are
also embedded implementations because they share
the HIF implementation between custom code and
existing host-computer operating-system code.

There is no preference for either type of implementation
as long as the services and features of the H IF specifica­
tion are fully implemented in the target environment.
With the standard interfaces that a HIF implementation
presents, application programs written for one environ­
ment will run equally well in another.

HIF SERVICES PREVIEW

Table 1 lists the services defined by the HIF interface.
Most are similar or identical to equivalent UNIX operat­
ing system calls. The titles given in column one are not
the names that actually exist in a particular library but,
instead. are the generic names of the services. for the
purpose of this overview.

3-165

29K Family Application Notes

Table 1. HIF Services

Name Description Page

clock
close
cycles
exit
getargs
getenv
getpsize
Iseek
open
read
remove
rename
sysalloc
sysfree
setvec
time
tmpname
write

Returns the elapsed processor time, in milliseconds
Closes a file

28
14
29
10
27
23
26
17
11
15
19
20
24
25
30
22
21
16

Returns processor cycle counts
Terminates a program
Returns an argument address
Gets the environment
Returns the memory page size
Sets a file position
Opens a file
Reads a buffer of data from a file
Removes (deletes) a file
Renames a file
Allocates memory space
Frees allocated memory space
Sets user trap addresses
Returns number of seconds since Jan. 1, 1970
Returns a temporary file name
Writes a buffer of data to a file

INTENDED AUDIENCE

This document is intended for systems designers and
programmers who have a working knowledge of the
Am29000 and ~s supporting peripheral hardware. It
does not cover CPU deSign, the Am29000 instruction
set, or any other hardware detail. Those topiCS are
adequately covered in the reference documents listed
below.

ABOUT THIS DOCUMENT

The contents of each section and appendix of this
document are described below:

Section 1:

Section 2:

Section 3:

Section 4:

3-166

Introduction-discusses the important
concepts underlying the host interface
definition and previews the services that
form the basis of the HIF specification.

System Call Mechanism-describes the
mechanism used to make calls on the
HIF services, and includes information
on register usage for passing parame­
ters and receiving results.

Service Routine Descriptions-de­
scribes each of the services defined in
HIF and shows details of the code
sequences, including examples, for in­
voking the services.

Process Environment-describes the
standard memory allocation and register

initializations performed by the HIF­
conforming kernel prior to execution of a
user program.

Appendix A: HIF Quick Reference-lists all of the
services and service parameters used in
this document, in quick reference form.

Appendix B: Error Messages-lists the error codes
that HIF-conforming services may
return.

REFERENCE DOCUMENTS

The user should have access to the following AMD
documents:

• Am29000 Streamlined Instruction Processor Users
Manual, order #10620

• ADAPT29K User's Manual

• MON29K User's Manual

• MON29K Installation and Customization Manual

• Am29000 Execution Board and Monitor User's
Manual

• ASM29K Utilities Manual from the ASM29K docu­
mentation set

• HighC29K Reference Manual from the HighC29K
documentation set

DOCUMENTATION CONVENTIONS

This specification assumes some familiarity with the
UNIX operating system and the C language. In the fol­
lowing sections, the conventions presented in the sub­
sections below are assumed.

Numeric Values

All numeric values are presumed to be expressed in
decimal notation, unless otherwise stated. Hexadecimal
values are prefaced by the characters "Ox." Any value
not prefaced by "Ox" is defined to be a decimal number.
For example:

100092
Ox100092

Decimal number
Hexadecimal number

The first number, above, is a decimal value by impli­
cation, because it has not been prefaced by "Ox." The
second constant includes the explicit "Ox" prefix, desig­
nating it as a hexadecimal value.

Character Strings

In the documentation, frequent mention is made of char­
acter strings that hold file names, path names, and en­
vironment variable names. In all cases, the HIF
Specification requires that strings be constructed as a
sequence of ASCII characters terminated by a NULL
byte (an 8-bit character composed of all zero bits). This
is the form in which strings are represented in the C
language. Thus, the space reserved for a string must be
one byte longer than the length of the string, to accom­
modate the NULL byte.

Languages such as Pascal, which require "counted"
strings (that is, a single 8-bit byte in the first character of
the string that specifies the number of bytes that follow),
are required to convert these to NULL-terminated form
before calling the HIF kernel services. In addition,
languages other than C may need to convert strings
passed back from the HIF kernel services to a com­
patible internal form. All returned strings are in NULL­
terminated form.

SYSTEM CALL MECHANISM

System calls on Am29000-based systems are accom­
plished through invocation of a specific software trap.
The Am29000 traps are roughly equivalent to software
interrupts on other CPUs. System call traps are invoked
through execution of an appropriate assert instruction
whose assertion is FALSE at the time the instruction is
executed.

Execution of an ASEQ, ASGE, ASGEU, ASGT,
ASGTU, ASLE, ASLEU, ASL T, ASL TU, or ASNEQ

Host Interface v1.0 Specification

instruction, where the result of the assertion is FALSE,
will cause the trap specified in the instruction to be
taken.

Once the trap is invoked, the Am29000 accesses a trap
vector containing up to 256 separate trap handler
addresses; or it may directly invoke a trap handler rou­
tine, depending on the implementation of the operating
system trapping mechanism and the state of the Vector
Fetch (VF) bit in the processor's Configuration Register.
In most implementations, a table of vectors is used.
However, the operating system software may imple­
ment direct trap execution for the increased efficiency it
offers even though it requires the reservation of a much
greater amount of system memory, but bypasses the
need for vector table lookup.

When a trap is taken, the normal program execution
sequence is interrupted and the trap handler is invoked.
At this point, the current program's context is contained
in Am29000 CPU registers. No saving or restoring of
registers is performed by the processor when a trap
occurs. HIF services are required to preserve the
following registers and restore their contents before
returning to the application program:

• All local registers

• Global registers gr1, gr112, gr115, and gr125

• Global registers gr126 and gr127should be preserved
according to AMD calling conventions. Their values
may differ upon return from a HIF service, but the span
between their values will remain the same.

The HIF services may modify the contents of certain
registers without first saving their values, namely:
gr121, gr96, and gr97; although, the application pro­
gram should not count on gr96through gr111 to be un­
touched by current and future HIF kernel services.

HIF SERVICE INVOCATION

Before invoking a HIF service, the service number and
any input parameters to be passed must be loaded into
Am29000 general registers. Both local and global regis­
ters are used for various HIF services, as shown in the
HIF Quick Reference table in Appendix A of this docu­
ment. Details for invoking specific services are con­
tained in the Service Routine Descriptions section.

Service Number

Every HIF system service is identified by a unique num­
ber. Service numbers 0-127 and 256-383 are
reserved for use by AMD and should not be used for
user-supplied extensions.

3-167

29K Family Application Notes

canst Ir2,input_ file
consth Ir2,input_ file
canst Ir3,O_RDONLY
canst gr121,17
asneq 69,gr1,gr1
canst Ir2,input_ file
consth Ir2,input_ file
canst Ir3,O_RDONLY
canst gr121,17
asneq .69,gr1,gr1

The service number must be loaded into global register
gr121, the trap-handler argument register. Gr121 is a
temporary register and its value is not preserved over a
system call, nor will its value be preserved over any trap
invoked by the running program.

Input Parameters

Any input parameters to be passed must be placed in
local registers Ir2 through Ir17. Input parameters are
passed to HIF services using the parameter passing
mechanism specified in the Am29000 calling conven­
tions documentation (Am29000 Streamlined Instruction
Processor User's Manual, order #1 0620).

Invoking a HIF Service

The HIF services are accessed by forcing trap 69 to
occur, after the service number and parameters (if any)
are loaded in the designated registers. Trap handler 69
executes the service in supervisor mode.

Returned Values

Most services return values, usually a single integer
value (number of bytes read or written, number of clock
ticks, size of a memory block, etc.), or a pointer (address
of a file descriptor, address of a memory block, etc.).
These values are returned in register gr96, per standard
high-level language calling conventions.

If a service returns multiple values, the additional values
are returned in gr97, gr98, and so forth. If the service
fails to perform the requested task, the values contained
in gr96 and succeeding registers are not guaranteed to
be valid.

See the documentation that accompanies your
language processor for additional details on Am29000
high-level language calling conventions.

Status Reporting

In all cases, upon return from a HIF service, global regis­
ter gr121 contains either a TRUE value (Ox80000000),
or a positive non-zero integer error code indicating the
reason for failure. Pre-defined error codes are listed in

3-168

set input file
pathname address
set open mode
service number = 17 (open)
force trap 69 (system call)
set input file
pathname address
set open mode
service number = 17 (open)
force trap 69 (system call)

Appendix B of this document for existing HIF implemen­
tations.

. HIF does not specify these error codes. They may be
completely defined by an implementation, except for
cases in which there is a corresponding, existing, UNIX
error code. In these cases, the UNIX error code is
expected to be used.

Example Assembly Code

The code fragment above shows how the definitions are
implemented in Am29000 assembly-language to invoke
the open HIF service to open a file:

In this example, local register Ir2 is loaded with the
address of the filename constant; local register Ir3
contains the code: O_RDONL Y, indicating that the file is
to be opened for read-only access. The service number
(17) is loaded into global register gr121 and the service
is executed by asserting that register gr1 is not equal to
itself. Since this is FALSE, the trap is invoked.

USER·MODE TRAPS

When a trap is invoked, the Am29000 switches from
user mode to supervisor mode to execute the trap
handler code. Most traps are properly executed in this
mode, including the kernel services that implement the
HIF specification. However, a few traps, such as the
spilllfill handlers, are intended to execute in user mode.
In these cases, the trap handler code is not part of the
kernel, but is supplied by the particular high-level
language product library and is linked with the user's
application program.

In order to use a consistent trap handling mechanism,
and to support the individual language products' meth­
odologies for user-mode traps, a HIF service called
setvec, is called with the address of the user-mode trap
handler code for each of the traps handled in this way.

Once the user-mode handler addresses have been sup­
plied, and the corresponding trap is invoked, the operat­
ing-system kernel receives control in supervisor mode.
It then reinstates user mode and invokes the appropri­
ate language library trap handler to complete the

Host Interface v1.0 Specification

required operation. This bouncing from user mode to
supervisor mode and back to user mode is referred to as
a "trampoline" effect. When the trap handler's execution
is complete, it returns directly to the user's application
program, rather than back through the kernel.

the fill-trap handler. Since register stack management is
unique for each application environment, individual spilll
fill handlers are provided with each of the high-level
language products.

HIF SERVICE ROUTINES The register stack spilVfill handlers are appropriate
examples of code that is intended to execute in user
mode. When a user's application program calls a func­
tion that requires a large number of local registers to
execute, some currently unused registers may have to
be written to main memory to free enough of the on-chip
registers. In this case, the r~gisters are spilled to mem­
ory via the spill-trap handler. When the function
completes execution and intends to return to its caller,
the spilled registers may have to be restored by calling

The HIF service routine calls currently defined are listed
by decimal service number in Table 2 below and
described in detail in the following pages.

Number Title

exit
17 open
18 close
19 read
20 write
21 Iseek
22 remove
23 rename
33 tmpnam
49 time
65 getenv

257 sysalloc
258 sysfree
259 getpsize
260 getargs
273 clock
274 cycles
289 setvec

Service numbers 0 through 127 and 256 through 383
are reserved by AMD and should not be used for user­
supplied extensions. Table 3 describes the parameter
names used in the service descriptions.

Table 2. HIF Service Calls

Description Page

Terminate a program 10
Open a file 11
Close a file 14
Read a buffer of data from a file 15
Write a buffer of data to a file 16
Seek file byte 17
Remove a file 19
Rename a file 20
Return a temporary name 21
Return seconds 22
Get environment 23
Allocate memory space 24
Free memory space 25
Return memory page size 26
Return base address 27
Return milliseconds 28
Return processor cycles 29
Set user trap address 30

3-169

29K Family Application Notes

Parameter

addrptr

baseaddr
buffptr
count
cycles
errcode

exitcode
filename
fileno

funaddr
mode
msecs
name
nbytes

newfile
offset
oldfile
orig
page size
pathname
pflag
retval
secs
trapno
where

Table 3. Service Call Parameters

Description

A pointer to an allocated memory area, command-line-argument array, pathname buffer, or NULL­
terminated environment variable name string.
The base address of command-line-argument vector.
A pointer to buffer area which data is to be read from orwritten to during the execution of I/O services.
The number of bytes actually read from a file or written to a file.
The number of processor cycles returned.
The error code returned by the service, usually the same as the codes returned in the UNIX variable
ermo. See Appendix B, Table 8, starting at page 35, for a list of HIF error codes.
The exit code of the application program.
A pointer to a NULL-terminated ASCII string containing the directory path of a temporary filename.
The file descriptor, a small integer number. Descriptors 0, 1, and 2 are guaranteed to exist and
correspond to open files on program entry (0 is UNIX equivalent of stdln and is opened for input, 1 is
UNIX stdout and is opened for output, 2 is UNIX stderr and is opened for output). The fileno is
returned when an open call is successful.
A pointer to the address of a service.
A series of option flags whose values represent the operation to be performed.
Milliseconds.
A pOinter to a NULL-terminated ASCII string that contains an environment variable name.
The number of data bytes requested to be read from or written to a file, or numberof bytes to allocate
from the heap. .
A pointer to a NULL-terminated ASCII string that contains the directory path of a new filename.
The number of bytes from a specified position (orig) in a file.
A pointer to NULL-terminated ASCII string that contains the directory path of the old filename.
A value of 0, 1, or 2 that refers to the beginning, current position, or the position of the end of a file.
The memory page size in bytes returned.
A pointer to a NULL-terminated ASCII string that contains the directory path of a filename.
The UNIX file access permission codes.
The return value that indicates success or failure.
The seconds count returned.
The trap number.
The current position in a specified file.

Each service description on the pages that follow
contains a concise explanation of the purpose of the
service, the input and result register contents, and
example assembly-language code to invoke the serv­
ice. In all cases, operating system kernel services that
meet the HIF specifications are invoked by forcing the
software trap 69 to occur. The service number is always
contained in general register gr121 and parameters
are passed, if necessary, in local registers, beginning
with 1(2.

HIF implementations are required to return an error
code when a requested operation is not possible. The
codes from 0 to 255 are reserved for compatibility with
current and future error return standards. The currently
assigned codes and their meanings are listed in Appen­
dix B, Table 8, starting on page 35. If a HIF implementa­
tion returns an error code in the range of 0 to 255, it
must carry the identical meaning to the corresponding
error code in this table. Error code values larger than
255 are available for implementation-specific errors.

When the service returns, general register gr121 is
required to report the success orfailure of the service. If
successful, gr121 is expected to contain a TRUE
boolean value (a 1 bit in the most significant bit position).
If the service is not successful, a positive non-zero error
code is returned in g(121. If the service returns results,
the first result is held in gr96, the second in gr97, and so
forth.

3-170

In the examples, references are made to error handlers
that are not part of the example code. These are
assumed to be contained in the larger part of the user's
code and are not supplied as part of the HIF specifica­
tion. The JMPF instructions have been provided to show
that interface glue routines should incorporate this error
testing philosophy in orderto be robust. In practice, error
handling may be relegated to a single routine, or may be

vested in individual sections of either in-line code, or as
callable services by the glue routines.

Since HIF implementations may exist over a wide spec­
trum of systems, the capabilities of the HIF may vary
from one system to the next. In the simplest case, the
HIF implementation in an embedded Am29000 system,
such as a printer controller, may contain no external file
system. In this event, the inpuVoutput facilities specified
in the kernel service descriptions need not be imple­
mented. In more common cases, where the HIF will ex­
ist on systems that have full operating system
capabilities, such as DOS or UNIX, it is assumed that all

Host Interface v1.0 SpeCification

of the features of the HIFwill be implemented. The serv­
ice descriptions in this document provide a set of stan­
dard interfaces for commonly implemented operating
system interfaces. If individual features are imple­
mented, the interfaces are expected to follow the guide­
lines in this specification.

Descriptions of the individual services follow on the
remaining pages of this section. They are listed in
numeric sequence by service number. Appendix A, HIF
Quick Reference, allows easy location of a service by its
number.

3-171

29K Family Application Notes

Service 1--exit

Description

This service terminates the current program and returns
a value to the system kernel, indicating the reason for
termination. By convention, a zero passed in Ir2
indicates normal termination, while any non-zero value

Register Usage

Terminate a Program

indicates an abnormal termination condition. There are
no returned values in registers gr96 and gr121 since this
service does not return.

Type Regs Contents Description

Calling: gr121

Ir2

1 (Ox1)

exitcode

Service number

User-supplied exit code

Returns: gr96

gr121

undefined

undefined

This service call does not return

This service call does not return

Example Call

const Ir2, 1
const gr121,1
asneq 69,grl,grl

In the above example, the operating system kernel is
being called with service code 1 and an exit code of 1,
which is interpreted according to the specifications of
the individual operating system. The value of the exit
code is not defined as part of the HIF specification.

In general, however, an exit code of zero (0) specifies a
normal program termination condition, while a non-zero

o

3-172

exit code = 1
service = 1
call the operating system

code specifies an abnormal termination resulting from
detection of an error condition within the program.

Programs can terminate normally by falling through the
curly brace at the end of the main function in a
C-Ianguage program. Other languages may require an
explicit call to the kernel's exit service.

Service 17-open

Description

This service opens a named file in a requested mode.
Files must be explicitly opened before any read, write,
close, or other file positioning accesses can be accom­
plished. The open service, if successful, returns an

Register Usage

Host Interface v1.0 Specification

Open a File

integer token that is used to refer to the file in all subse­
quent service requests. In many high-level languages,
the returned token is referred to as a '1i1e descriptor."

Type Regs Contents Description

Calling: gr121 17(Ox11) Service number

1r2 pathname A pointer to a filename

1r3 mode See parameter descriptions below

Ir4 pflag See parameter descriptions below

Returns: gr96 fileno Success: ;;:: (file descriptor)
Failure: < 0

gr121 Ox80000000 Logical TRUE, service successful
errcode Error number, service not successful

(implementation dependent)

Parameter Descriptions

Pathname is a pointer to a zero-terminated string that
contains the full path and name of the file being
opened.* Individual operating systems have different
means to specify this information. With hierarchical file
systems, individual directory levels are separated with
special characters that can not be part of a valid file­
name or directory name. In UNIX-compatible file
systems, directory names are separated by forward
slash characters "/" (e.g., "/usr/jack/files/myfile"); where

"usr," "jack," and '1i1es" are succeedingly lower directory
levels, beginning at the root directory of the file system.
The name "myfile" is the filename to be opened at the
specified level. The individual characteristics of files and
pathnames are determined by the specifications of a
particular operating system implementation.

Name Value

O_RDONLY OxOOOO
O_WRONLY OxOOO1
O_RDWR OxOOO2
O_APPEND OxOOO8
O_NDELAY OxOO10
O_CREAT Ox0200
O_TRUNC Ox0400
O_EXCL Ox0800
O_FORM Ox4000

Mode is composed of a set of flags, whose mnemonics
and associated values are listed in Table 4.

Table 4. Open Service Parameters

Description

Open for read only access
Open for write only access
Open for read and write access
Always append when writing
No delay
Create file if it does not exist
If the file exists, truncate it to zero length
Fail if writing and the file exists
Open in text format

The O_RDONL Y mode provides the means to open a
file and guarantee that subsequent accesses to that file
will be limited to read operations. The operating system
implementation will determine how errors are reported

for unauthorized operations. The file pointer is
poSitioned at the beginning of the file, unless the
O_APPEND mode is also selected.

* The HIF specification intentionally refrains from defining the constituents of a legal path name, or any intrinsic characteristics of the implemented
file system. In this regard, the only requirement of a H1F-conforming kernel is that when the open service is successfully performed, that the
routine returns a small integer value that can be used in subsequent inpuVoutput service calls to refer to the opened file.

3-173

29K Family Application Notes

The O_WRONL Y mode provides the means to open a
file and guarantee that subsequent accesses to that file
will be limited to write operations. The operating system
implementation will determine how errors are reported
for unauthorized operations. The file pointer is
positioned at the beginning of the file, unless the
a_APPEND mode is also selected.

The O_RDWR mode provides the means to open a file
for subsequent read and write accesses. The file
pointer is positioned at the beginning of the file, unless
the a_APPEND mode is also selected.

If a_APPEND mode is selected, the file pointer is
positioned to the end of the file at the conclusion of a
successful open operation, so that data written to the
file is added following the existing file contents.

Ordinarily, a file must already exist in order to be
opened. If the O_CREAT mode is selected, files that do
not currently exist are created; otherwise, the open
function will return an error condition in gr121.

If a file being opened already exists and the 0_ TRUNC
mode is selected, the original contents of the file are dis­
carded and the file pOinter is placed at the beginning of
the (empty) file. If the file does not already exist, the HIF
service routine should return an error value in gr121,
unless O_CREAT mode is also selected.

The O_EXCL mode provides a method for refusing to
open the file if the O_WRONL Y or O_RDWR modes are
selected and the file already exists. In this case, the
kernel service routine should return an error code in
gr121.

a_FORM mode indicates that the file is to be opened as
a text file, ratherthan a binary file. The nominal standard
input, output, and error files (file descriptors 0,1, and 2)
are assumed to be open in text mode priorto commenc­
ing execution of the user's program.

3-174

When opening a FIFO (interprocess communication
file) with O_RDONL Y or O_WRONL Y set, the following
conditions apply:

• If O_NDELAY is set (Le., equal to Ox0010):

- A read-only open will return without delay.

- A write-only open will return an error if no process
currently has the file open for reading.

• If O_NDELAY is clear (Le., equal to OxOOOO):

- A read-only open will block until a process opens a
file .for writing.

- A write-only open will block until a process opens a
file for reading.

When opening a file associated with a communication
line (e.g., a remote modem or terminal connection), the
following conditions apply:

• If O_NDELAY is set, the open will return without
waiting for the carrier detect condition to be TRUE.

• If O_NDELAY is clear, the open will block until the
carrier is found to be present.

The optional pflag parameter specifies the access
permissions associated with a file; it is only required
when O_CREAT is also specified (Le., create a new file
if it does not already exist). If the file already exists, pflag
is ignored. This parameter specifies UNIX-style file
access permission codes (r, W, and xfor read, write, and
execute, respectively) for the file's owner, the work
group, and other users. If the parameter is missing, pflag
will be set to -1 (all accesses allowed). See the UNIX
operating system documentation for additional
information on this topic.

Host Interface v1.0 Specification

Example Call

path: .ascii
.set
.set

" /usr/jack/files/myfile\O"
mode, O_RDWRI O_CREAT 10_FORM
permit,Ox180

fd: .word
const
consth
const
const
const
asneq
jmpf
const
consth
store

o
Ir2,path
Ir2,path
Ir3,mode
Ir4,permit
gr121,17
69,gr1,gr1
gr121,open_err
gr120,fd
gr120,fd
0,0,gr96,gr120

In the above example, the file is being opened in read!
write text mode. The UNIX permissions of the owner are
set to allow reading and writing, but not execution, and
all other permissions are denied. As indicated above in
the parameter descriptions, the file permissions are only
used if the file does not already exist. When the open
service returns, the program jumps to the open_err
error handler if the open was not successful; otherwise,
the file descriptor returned by the service is stored for
future use in read, write, Iseek, remove, rename, or
close service calls.

address of pathname

open mode settings
permissions
service = 17 (open)
perform OS call
jump if error on open
set address of
file descriptor
store file descriptor

As described in the introduction to these services, the
HIF can be implemented to several degrees of elabora­
tion, depending on the underlying system hardware,
and whether the operating system is able to provide the
full set of kernel services. In the least capable instance
(i.e., a standalone board with a serial port), it is likely that
only the O_RDONL Y, O_WRONL Y and O_RDWR
modes will be supported. In more capable systems, the
additional modes should be implemented, if possible.

3-175

29K Family Application Notes

Service 18-close Close a File

Description

This service closes the open file associated with the file
descriptor passed in Ir2. Closing all file's is automatic on
program exit (see exit), but since there is an implemen-

tation-defined limit on the number of open files per pro­
cess, an explicit close service call is necessary for
programs that deal with many files.

Register Usage

Type Regs Contents Description

Calling: gr121 18 (Ox12) Service number

Ir2 fileno File descriptor

Returns: gr96 retval Success: = 0
Failure: < 0

gr121 Ox80000000 Logical TRUE, service successful
errcode Error number, service not successful

(implementation dependent)

Example Call

fd: .word °
const gr96,fd set address of
consth gr96,fd file descriptor
load O,O,lr2,gr96 get file descriptor
const gr121,18 service = 18
asneq 69,gr1,gr1 and call the as
jrnpf gr121,clos_err handle close error
nop

The above example illustrates loading a previously
stored file descriptor (fd, in this case) and calling the
kernel's close service to close the file associated with
that descriptor. If an error occurs when attempting to

close the file, the kernel will return an error code ingr121
(the content of that register will not be TRUE) and the
program will jump to an error handler; otherwise,
program execution will continue.

3-176

Host Interface v1.0 Specification

Service 19-read Read a Buffer of Data from a File

Description

This service reads a number of bytes from a previously
opened file (identified by a small integer file descriptor in
Ir2that was returned by the open service) into memory
starting at the address given by the buffer pointer in Ir3.
Lr4 contains the number of bytes to be read. The num-

ber of bytes actually read is returned in gr96. Zero is
returned in gr96if the file is already positioned at its end­
of-file. If an error is detected, a small positive integer is
returned in gr121, indicating the nature of the error.

Register Usage

Type Regs Contents Description

Calling: gr121 19 (Ox13) Service number

1r2 fileno File descriptor

1r3 buffptr A pointer to buffer area

Ir4 nbytes Number of bytes to be read

Returns: gr96 count Success: > 0 (number of bytes actually read)
EOF: = 0
Failure: < 0

gr121 Ox80000000 Logical TRUE, service successful
errcode Error number, service not successful

(implementation dependent)

Example Call

fd: .word ° .set BUFSIZE,256
buf: .block BUFSIZE
num: .word °

canst gr96,fd set address of
consth gr96,fd file descriptor
load O,O,lr2,gr96 get file descriptor
canst Ir3,buf set buffer address
consth Ir3,buf
canst lr4,BUFSIZE specify buffer size
canst gr121,19 service = 19
asneq 69,gr1,gr1 call the as
jmpf gr121,rd_err handle read errors
canst gr120,num set address of
consth gr120,num 'num' argument
store O,O,gr96,gr120 store bytes read

The above example requests the HIF to return BUFSIZE
bytes from the file descriptor contained in the variable fd.
If the call is successful, gr121 will contain a TRUE value

and gr96will contain the number of bytes actually read.
If the service fails, gr121 will contain the error code.

3-177

29K Family Application Notes

. Service 20-write Write a Buffer of Data to a File

Description

This service writes a number of bytes from memory
(starting at the address given by the pointer in Ir3) into
the file specified by the small positive integer file
descriptor that was returned by the open service when
the file was opened for writing. Lr4 contains the number

of bytes to be written. The number of bytes actually
written is returned in gr96. If an error is detected, gr121
will contain a small positive integer on return from the
service, indicating the nature of the error.

Register Usage

Type Regs Contents Description

Calling: gr121 20 (Ox14) Service number

1r2 fileno File descriptor

1r3 buffptr A pOinter to the buffer area

Ir4 nbytes Number of bytes to be written

Returns: gr96 count Success: = Ir4
Failure: 0$ gr96< Ir4
Extreme: < 0

. gr121 Ox80000000 Logical TRUE, service successful
errcode Error number, service not successful

(implementation dependent)

Example Call

fd: .word ° .set BUFSIZE,256
buf: .block BUFSIZE
num: .word °

canst gr96,fd set address of
consth gr96,fd file descriptor
load 0,0,lr2,gr96 get file descriptor
canst Ir3,buf set buffer address
consth Ir3,buf
canst Ir4,BUFSIZE specify buffer size
canst gr121,20 service = 20
asneq 69,grl,grl call the as
jmpf gr121,wr_err handle write errors
canst gr120,num set address of
consth gr120,num "num" variable
store 0,O,gr96,gr120 store bytes written

The example, above, writes BUFSIZE bytes from the
buffer located at buf to the file associated with the
descriptor stored in fd. If errors are detected during
execution of the service, the value returned in gr121 will

be FALSE. In this case, the wr_err error handler will be
invoked. The number of bytes actually written is stored
in the variable num.

3-178

Host Interface v1.0 Specification

Service 21-lseek Seek a File Byte

Description

This service positions the file associated with the file
descriptor in 1r2, "offsef' number of bytes from the posi­
tion of the file referred to by the o,ig parameter. L,3
contains the number of bytes offset and 1,4 contains the
value for o,ig. The parameter o,ig is defined as:

The Iseek service can be used to reposition the file
pointer anywhere in a file. The offset parameter may
either be positive or negative. However, it is considered
an errorto attempt to seek in front of the beginning of the
file.

o = Beginning of the file
1 = Current position of the file
2 = End of the file

Register Usage

Type Regs

Calling: gr121

1r2
1r3
Ir4

Returns: gr96

gr121

Example Call

fd:
orig:
off:

.word

.word

.word

const
consth
.Load
const
consth
load
const
consth
load
const
asneq
jmpf
nop

Contents

21 (Ox1S)

fileno

offset

orig

where

Ox80000000
errcode

6
a
23

gr96,fd
gr96,fd
O,O,lr2,gr96
gr96,off
gr96,off
O,O,lr3,gr96
gr96,orig
gr96,orig
O,O,lr4,gr96
gr121,21
69, gr1, gr1
gr121,seek_err

Description

Service number

File descriptor

Number of bytes offset from orig

A code number indicating the point within
the file from which the offset is counted

Success: ~ 0 (current position in the file)
Failure: < 0

Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

file descriptor 6
or1g1n start of file
offset = 23 bytes

set address of
file descriptor
get file descriptor
set address of
offset argument
get offset
set address of
origin argument
get origin
service = 21
call the OS
seek error if false

The above example shows how a file can be positioned
to a particular byte address by specifying the o,ig, which
is the starting point from which the file position is
adjusted, and the offset, which is the number of bytes
from the o,ig to move the file pointer. In this case, the

file identified by file descriptor 6 is being repositioned
to byte 23, measured from the beginning of the file
(o,ig = 0).

3-179

29K Family Application Notes

The file descriptor, offset, and orig values are loaded
from preset constants and Iseek is called to perform the
file positioning operation. If an error occurs when
attempting to reposition the file, the value returned in

3·180

gr121 is not TRUE, containing an error code that indi­
cates the reason for the error. Upon return, gr96 also
contains the file poSition measured from the beginning
of the file. In this case, this value is not stored.

Host Interface v1.0 Specification

Service 22-remove Remove a File

Description

This service deletes a file from the file system. Lr2
contains a pointer to the pathname of the file. The path
must point to an existing file, and the referenced file

should not be currently open. The behavior of the
remove service is undefined if the file is open.

Register Usage

Type Regs Contents Description

Calling: gr121 22 (Ox16) Service number

1r2 pathname A pointer to string that contains the

pathname of the file

Returns: gr96 retval Success: = 0
Failure: < 0

gr121 Ox80000000 Logical TRUE, service successful
errcode Error number, service not successful

(implementation dependent)

Example Call

path: .ascii "/usr/jack/files/myfile\O"

const lr2,path set address of file
consth lr2,path pathname.
const gr121,22 service = 22
asneq 69,grl,grl call the OS
jmpf gr121,rem_err jump if error
nop

Inthe above example, a file with a UNIX-style pathname
stored in the string named path is being removed. The
address (pointer) to the string is put into Ir2 and the
kernel service 22 is called to remove the file. If the file

does not exist, or if it has not previously been closed, an
error code will be returned in gr121; otherwise, the value
in gr121 will be TRUE.

3-181

29K Family Application Notes

Service 23-rename Rename a File

Description

This service moves a file to a new location within the file
system. Lr2 contains a pointer to the file's old pathname
and Ir3 contains a pointer to the file's new pathname.
When all components of the old and new pathnames are

the same, except forthe filename, the file is said to have
been renamed. The file identified by the old path name
must already exist, or an error code will be returned and
the rename operation will not be performed.

Register Usage

Type Regs

Calling: gr121

Ir2

1r3

Returns: gr96

gr121

Example Call

old:
new:

.ascii

.ascii

const
consth
const
consth
const
asneq

jmpf
nop

Contents Description

23 (Ox17) Service number

oldfile A pointer to string containing the old pathname of the file

newfile A pointer to string containing the new path name of the file

retval Success: = 0
Failure: < 0

Ox80000000 Logical TRUE, service successful
errcode Error number, service not successful

(implementation dependent)

"/usr/fred/payroll/report\O"
"/usr/fred/history/june89\O"

lr2,old
lr2,old
lr3,new
lr3,new
gr121,23
69, grl, grl

gr121,ren_err

set address of old pathname

set address of new pathname

service = 23 (rename)
call the as

jump if rename error

The above example moves a file from its old path
(renaming it in the process) to its new pathname loca­
tion. The file will no longer be found at the old location.

3-182

Service 33-tmpnam

Description

This service generates a string that can be used as a
temporary file pathname. A different name is generated
each time it is called. Generally. the name is guaranteed
not to duplicate any existing filename. The argument
passed in ,,2 should be a valid pointer to a buffer that is
large enough to contain the constructed file name. HIF
implementations are required to allocate a minimum of
128 bytes for this purpose.

If the argument in ,,2 contains a NULL pointer. the HIF
service routine should treat this as an error condition

Register Usage

Host Interface v1.0 Specification

Return Temporary Name

and return a non-zero error number in global register
g,121.

The HI F specification sets no standards for the format or
content of legal pathnames; these are determined by
individual operating system requirements. However.
each implementation should undertake to construct a
valid filename that is also unique.

Type Regs Contents Description

Calling: gr121 33 (Ox21)

Ir2 addrptr

Returns: gr96 filename

gr121 Ox80000000
errcode

Example Call

fbuf: .block 21

canst lr2,fbuf
consth lr2,fbuf
canst gr121,33
asneq 69,gr1,gr1
jmpf gr121,tmp_err
nap

Service number

A pointer to buffer into which the filename is to be stored

Success: pointer to the temporary filename string. This will be
the same as 1r2 on entry unless an error occurred

Failure: = 0 (NULL pointer)

Logical TRUE. service successful
Error number. service not successful
(implementation dependent)

buffer size = 21 bytes

set buffer pointer

service = 33
call the as
jump if error

In the above example. the tmpnam service is called with
a pointer to tbut. which has been allocated to hold a
name that is up to 21 bytes in length. If the service is able
to construct a valid name. the filename will be stored in

tbutwhen the service returns. If the content of g,121 on
return is not TRUE. the program fragment jumps to
tmp_err to handle the error condition.

3-183

29K Family Application Notes

Service 49-time Return Seconds Since 1970

Description

This service returns, in register gr96, the number of
seconds elapsed since midnight, January 1, 1970, as an
integer 32-bit value. It is assumed that the kernel service

will have access to a counter whose contents can be
preloaded that measures time, with at least a one­
second resolution, for this purpose.

Register Usage

Type Regs Contents

Calling: gr121 49 (Ox31)

Returns: gr96 secs

gr121 Ox80000000
errcode

Example Call

sees: .word 0

canst gr121,49
asneq 69,grl,grl
jmpf gr121,tim_err
canst gr120,secs
consth gr120,secs
store O,O,gr96,gr120

Description

Service number

Success: "# 0 (time in seconds)
Failure: = 0

Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

service = 49
call the as
jump if error
set the address
for storing 'sees'
store the seconds

In the above example, the kernel service time is being
called. If the value returned in g(121 is TRUE, the
number of seconds returned in gr96is stored in the sees

variable; otherwise, the program jumps to tim_err to
determine the cause of the error.

3-184

Service 65-getenv

Description

This service searches the system environment for a
string associated with a specified symbol. Lr2contains a
pointer to the symbol name. If the symbol name is found,
a pointer to the string associated with it is returned in
gr96; otherwise, a NULL pointer is returned.

In UNIX-hosted systems, the setenv command allows
a user to associate a symbol with an arbitrary string. For
example, the command

setenv TERM vt100

defines the string 'yt 100" to be associated with the sym­
bol named TERM. Application programs can use this
association to determine the type of terminal connected

Register Usage

Host Interface v1.0 specification

Get Environment

to the system, and, therefore, use the correct set of
codes when outputting information to the user's screen.
Toaccess the string, getenv should be called with 1r2
pointing to a string containing the TERM symbol name.
The address returned in gr96 will point to the corre­
sponding ''vt100'' string if TERM is found. In UNIX­
hosted systems, entering a different setenv command
lets the user select a different terminal name without
requiring recompilation of the application program.

Operating system implementations that do not include
provisions for environment variables should always
return a NULL value in gr96 when this service is
requested.

Type Regs Contents Description

Calling: gr121

1r2

Returns: gr96

gr121

Example Call

mysym: .ascii
strptr: .word

canst
consth
canst
asneq
jmpf
canst
consth
store

65 (Ox41)

name

addrptr

Ox80000000
errcode

"MYSYMBOL\O"
0

lr2,mysym
lr2,mysym
gr121,65
69,gr1,gr1
gr121,env_err
gr120,strptr
gr120,strptr
O,O,gr96,gr120

Service number

A pointer to the symbol name

Success: pointer to the symbol name string
Failure: = 0 (NULL pointer)

Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

set address of symbol
to be locat~d in environment
service = 65
call the OS
jump if error
set address of
stxing pointer
store string pointe~

The above example program calls the operating system
getenv service to access a string associated with the
environment variable MYSYMBOL. If the symbol is
found, a pointer to the string associated with the symbol

·is returned in gr96. If the call is not successful (Le.,
gr121 holds a FALSE boolean value upon return), the
program jumps to env _err to handle the error condition.

3-185

29K Family Application Notes

Service 257-sysalloc Allocate Memory Space

Description

This service allocates a specified number of contiguous
bytes from the operating-system-maintained heap and
returns a pointer to the base of the allocated block. Lr2
contains the number of bytes requested. If the storage is

successfully allocated, gr96 contains a pointer to the
block; otherwise, gr121 contains an error code indicat­
ing the reason for failure of the call.

Register Usage

Type Regs Contents Description

Calling: gr121 257 (Ox101) Service number
1r2 nbytes Number of bytes requested

Returns: gr96 addrptr Success: pointer to allocated bytes,
Failure: = 0 (NULL pointer)

gr121 Ox80000000 Logical TRUE, service successful
errcode Error number, service not successful

(implementation dependent)

Example Call

blkptr: .word 0

canst lr2, 1200 request 1200 bytes
canst gr121,257 service = 257
asneq 69,gr1,gr1 call the as
jmpf gr121,alloc_err jump if error
canst gr120,blkptr set address to store
consth gr120,blkptr pointer
store 0,0,gr96,gr120 store the pointer

The above example requests a block of 1200 contigu­
ous bytes from the system heap. If the call is successful,
the program stores the pointer returned in gr96 into a

local variable called blkptr. If gr121 contains a boolean
FALSE value when the service returns, the program
jumps to alloc_err to handle the error condition.

3-186

Host Interface v1.0 SpeCification

Service 258-sysfree Free Memory Space

Description

This service returns memory to the system starting at
the address specified in 1'2. L,3 contains the number of
bytes to be released. The pointer passed to the sysfree
service in 1,2 and the byte count passed in 1,3 must
match the address returned by a previous sysalloc
service request for the identical number of bytes. No

dynamic memory allocation structure is implied by this
service. High-level language library functions such as
malloc() and free() for the C language are required to
manage random dynamic memory block allocation and
deallocation, using the sysalloc and sysfree kernel
functions as their basis.

Register Usage

Type Regs

Calling: gr121

1r2

1r3

Returns: gr96

gr121

Example Call

blkptr: .word

canst
consth
load
canst
canst
asneq
jmpf
nap

Contents

258 (Ox102)

addrptr

nbytes

retval

Ox80000000
errcode

0

gr120,blkptr
gr120,blkptr
O,O,lr2,gr120
Ir3,1200
gr121,258
69,grl,grl
gr121,free_err

Description

Service number

Starting address of area returned

Number of bytes to release

Success: = 0
Failure: < 0

Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

set address of previously
block pointer
fetch pointer to block
set number of bytes to release
service = 258
call the OS
jump if error

The above example calls sysfree to deallocate 1200
bytes of contiguous memory, beginning at the address
stored in the blkpt,variable. If the call is successful, the

program continues; otherwise, if the return value in
g,121 is FALSE, the program jumps to free_err to
handle the error condition.

3-187

29K Family Application Notes

Service 259--getpsize Return Memory Page Size

Description

This service returns, in register gr96, the page size, in
bytes, used by the memory system of the HI F implemen­
tation.

Register Usage

Type Regs

Calling: gr121

Returns: gr96

gr121

Example Call

pagsiz: .word

const
asneq
jmpf
const
consth
store

Contents

259 (Ox103)

page size

Ox80000000
errcode

°
gr121,259
69,grl,grl
gr121,pag_err
gr120,pagsiz
gr120,pagsiz
O,O,gr96,gr120

Description

Service number

Success: memory page size, one of the following:
1024,2048,4096, and 8192

Failure: < 0
Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

service = 259
call the as
jump if error
set address to
store the page size
store it!

The above example calls the operating system kernel to
return the page size used by the virtual memory system.
If.the call was successful, gr121 will contain a boolean
TRUE result and the program will store the value in gr96

into the pagsizvariable; otherwise, a boolean FALSE is
returned in gr121. In this case, the program will jump to
pag_err to handle the error condition.

3-188

Service 260-getargs

Description

This service returns the base address of the command­
line-argument vector argv in register gr96, as con­
structed by the operating system kernel when an
application program is invoked.

Arguments are stored by the operating system as a
series of NULL-terminated character strings. A pointer
containing the address of each string is stored in an

Register Usage

Host Interface v1.0 Specification

Return Base Address

array whose base address (referred to as argv) is
returned by the getargs HIF.service. The last entry in
the array contains a NULL pointer (an address consist­
ing of all zero bits). The number of arguments can be
computed by counting the number of pointers in the
array, using the fact that the NULL pointer terminates
the list.

Type Regs Contents Description

Calling: gr121 260 (Ox104) Service number

Returns: gr96 baseaddr Success: base address of argv
Failure: = 0 (NULL pointer)

gr121 Ox80000000 Logical TRUE, service successful
errcode Error number, service not successful

(implementation dependent)

Example Call

argptr: .word 0
const gr121,260 service = 260
asneq 69,grl,grl call the as
jmpf gr121,bas_err jump if error
const gr120,argptr set address where base
consth gr120,argptr pointer is to be stored
store O,0,gr96,gr120 store the pointer

The above example calls operating system service 260
to access the command-line-argument vector address.
If the service executes without error, the program
continues by storing the argument vector address in the

variable basptr. If gr121 contains a boolean FALSE
value upon return, the program jumps to bas_err to
handle the error condition.

3·189

29K Family Application Notes

Service 273--clock Return Time in Milliseconds

Description

This service returns the elapsed processor time in milli­
seconds. Operating system initialization procedures set
this value to zero on startup. Successive calls to this

service return times that can be arithmetically sub­
tracted to accurately measure time intervals.

Register Usage

Type Regs Contents

Calling: gr121 273 (Ox111)

Returns: gr96 msecs

gr121 Ox80000000
errcode

Example Call

time: .word 0

const gr121,273
asneq 69,grl,grl
jmpf gr121,clk_err
const gr120,time
consth gr120,time
store O,O,gr96,gr120

Description

Service number

Success: '# 0 (time in milliseconds)
Failure: = 0
Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

service = 273
call the OS
jump if error
set the address where
time is to be stored
store the time in ms.

The above example calls the operating system kernel to
get the current value of the system clock in milliseconds.
On return, if gr121 contains a boolean FALSE value, the

program jumps to elk_err to handle the error; otherwise,
the time in milliseconds is stored in the variable time.

3-190

Service 274-cycles

Description

This service returns an ascending positive number in
registers gr96 and gr97that is the number of processor
cycles that have elapsed since the last hardware
RESET was applied to the CPU. It provides a mecha­
nism for user programs to access the contents of the
internal Am29000 timer counter register. The cycle

Register Usage

Host Interface v1.0 Specification

Return Processor Cycles

count can be multiplied by the speed of the processor
clock to convert it to a time value. Gr97will contain the
most significant bits of the cycle count, while gr96 will
contain the least significant bits. HIF implementations of
this service are required to provide a cycle count with a
minimum of 56 bits of precision.

Type Regs Contents Description

Calling: gr121

Returns: gr96

gr97

gr121

Example Call

cycles: .word
.word

canst
asneq
jmpf
canst
consth
store
add
store

274 (Ox112)

cycles

cycles

Ox80000000
errcode

° °
gr121,274
69,grl,grl
gr121,cyc_err
gr120,cycles
gr120,cycles
O,O,gr97,gr120
gr120,gr120,4
O,O,gr96,gr120

Service number

Success: Bits 0-31 of processor cycles
Failure: = 0 (in both gr96 and gr97)

Success: Bits 32-55 of processor cycles
Failure: = 0 (in both gr96 and gr97)

Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

MSBs of cycles
LSBs of cycles

service = 274
call the as
jump if error
set the address where the
count is to be stored
store the MSBs,
increment the address,
then store the LSBs of cycles.

The above example program fragment calls the operat­
ing system service 274 to access the number of CPU
cycles that have elapsed since it was powered on. The
cycle count (in gr96 and gr97) is stored in the two words

addressed by the variable cycles if the service call is
successful. If gr121 contains a boolean FALSE value on
exit, the program jumps to cyc_err to handle the error
condition.

3-191

29K Family Application Notes

Service 289-setvec Set User Trap Address

Description

This service sets the address for user-level trap handler
services that implement the local register stack spill and
fill traps. It returns an indication of success or failure in

register gr96. The method used to invoke these traps in
user mode is described on page 6 of this specification, in
the "User-Mode Traps" section.

Register Usage

Type Regs

Calling: gr121
1r2
1r3

Returns: gr96

gr121

Example Call

trpadr: .word
const
const
consth
const
asneq
jmpf
const
consth
store

Contents

289 (Ox121)
trapno
funaddr

retval

Ox80000000
errcode

0
lr2,64
lr3,t64_hnd
lr3,t64_hnd
gr121,289
69,grl,grl
gr121,vec_err
gr120,trpadr
gr120,trpadr
O,O,gr96,gr120

Description

Service number
trap number
address of user trap handler

Success: = 0
Failure: < 0
Logical TRUE, service successful
Error number, service not successful
(implementation dependent)

trap number = 64
set address of
trap-64 handler
service = 289
call the as
jump if error
set address where to
store the trap address
and store it!

The above example calls the setvec service to pass the
address to be used for the trap 64 trap handler routine. If
the service returns with gr121 containing a boolean

TRUE result, the program continues by storing the trap
address returned in gr96; otherwise, the program jumps
to vec_err to handle the error condition.

3-192

PROCESS ENVIRONMENT

There are standard memory and register initializations
that must be performed by a HIF-conforming kernel
before entry to a user program. In C-Ianguage
programs, this is usually performed by the module crtO.
This module receives control when an application
program is invoked, and executes prior to invocation of
the user's main function. Other high-level languages
have similar modules.

STARTUP INITIALIZATION

Initialization procedures must establish appropriate
values for the general registers mentioned below. In
addition, file descriptors for the standard input and out­
put devices must be opened.

Register Stack Pointer (gr1)

The register stack pointer (RSP) register contains the
main memory address in which the local register IrOwill
be saved, and from which it will be restored. The content
of RSPis compared to the content of RABto determine
when it is necessary to spill part of the local register
stack to memory. On startup, the values in RAB, RSP
and RFB should be initialized to prevent a spill trap from
occurring on entry to the crtO code, as shown by the
following relation:

(RAB + 256) RSP RFB

This provides the crtO code with at least 64 registers on
entry, which should be a sufficient number to accom­
plish its purpose.

Memory Stack Pointer (gr125)

The memory stack pOinter (MSP) register points to the
top of the memory stack, or the lowest-addressed entry
on the memory stack. This register must be preserved
(or, more conventionally, restored).

Host Interface v1.0 Specification

Register Allocate Bound (gr126)

The register allocate bound (RAB) register contains the
register stack address of the lowest-addressed word
contained within the register file. RAB is referenced in
the prolog of most user program functions to determine
whether a register spill operation is necessary to accom­
modate the local register requirements of the called
function.

Register Free Bound (gr127)

The register free bound (RFB) register contains the
register stack address of the lowest-addressed word not
contained within the register file (andgreaterthan RAB).
RFB is referenced in the epilog of most user program
functions to determine whether a register fill operation is
necessary to restore previously spilled registers needed
by the function's caller.

Open File Descriptors

File descriptor 0 (corresponding to the standard input
device) must be opened for text mode input. File
descriptors 1 and 2 (corresponding to standard output
and standard error devices) must be opened for text
mode output prior to entry to the user's program.

PROGRAM TERMINATION

The only valid way for an application to terminate execu­
tion is by calling the exit service. Most high-level
languages provide this capability, even if the program­
mer does not explicitly invoke a corresponding library
function.

TRAP HANDLERS

The trap vector entries shown in Table 5 must be
installed, and corresponding handlers must be
provided.

3-193

29K Family Application Notes

Table 5~ Trap Handler Vectors

Trap Description

32 MULTIPLY
33 DIVIDE
34 MULTIPLU
35 DIVIDU
36 CONVERT
42 FEQ
43 DEQ
44 FGT
45 DGT
46 FGE
47 DGE
48 FADD
49 DADO
50 FSUB
51 DSUB
52 FMUL
53 OMUL
54 FOIV
55 001 V
64 Spill (Set up by the user's task through a setvec call)
65 Fill (Set up by the user's task through a setvec call)
69 HIF System Call

Note: The Spill (64) and Fill (65) traps are returned to the user's code to perform the trap handling functions in user
mode,as described in the "User Mode Traps" section.

3·194

Host Interface v1.0 Specification

APPENDIX A: HIF QUICK REFERENCE

Table 6 lists the HIF service calls, calling parameters, means the register is not used or is undefined. Table 7
and the returned values. If a column entry is blank, it describes the parameters given in Table 6.

Table 6. HIF Service Calls

Service Call1na Parameters Returned Values

Title GR121 LR2 LR3 LR4 GR96 GR97 GR121

exit 1 exitcode ,
open 17 pathname mode pflag fileno errcode

close 18 fileno retval errcode

read 19 fileno buffptr nbytes count errcode

write 20 fileno buffptr nbytes count errcode

Iseek 21 file no offset orig where errcode

remove 22 pathname retval errcode

rename 23 oldfile newfile retval errcode

tmpnam 33 addrptr filename errcode

time 49 secs errcode

getenv 65 name addrptr errcode

sysalloc 257 nbytes addrptr errcode

sysfree 258 addrptr nbytes retval errcode

getpsize 259 pagesize errcode

getargs 260 baseaddr errcode

clock 273 msecs errcode

cycles 274 LSBs cycles MSBs cycles errcode

setvec 289 trapno funaddr retval errcode

3-195

29K Family Application Notes

Parameter

addrptr

baseaddr
buffptr

count
cycles
errcode

exitcode
filename
fileno

funaddr
mode
msecs
name
nbytes

newfile
offset
oldfile
orig
pagesize
pathname
pflag
retval

secs
trapno
where

3-196

Table 7. Service Call Parameters

Description

A pointer to an allocated memory area, a command-line-argument array, a pathname buffer, or a
NULL-terminated environment variable name string.
The base address of the command-line-argument vector.

A pointer to the buffer area where data is to be read from or written to during the execution of I/O
services.
The number of bytes actually read from file or written to a file.
The number of processor cycles (returned value).
The error code returned by the service. These are usually the same as the codes returned in the UNIX
ermo variable. See Appendix B, Table 8, for a list of HIF error codes.
The exit code of the application program.
A pointerto a NULL-terminated ASCII string that contains the directory path of a temporary filename.
The file descriptor which is a small integer number. File descriptors 0, 1, and 2 are guaranteed to exist
and correspond to open files on program entry (0 refers to the UNIX equivalent of stdln and is opened
for input; 1 refers to the UNIX stdout, and is opened for output; 2 refers to the UNIX stderr, and is
opened for output).
A pointer to the address of a function.
A series of option flags whose values represent the operation to be performed.
Milliseconds.
A pointer to a NULL-terminated ASCII string that contains an environment variable name.
The number of data bytes requested to be read from or written to a file, or the number of bytes to
allocate from the heap.
A pointer to a NULL-terminated ASCII string that contains the directory path of a new filename.
The number of bytes from a specified pOSition (orig) in a file.

A pointer to NULL-terminated ASCII string that contains the directory path of the old filename.
A value of 0, 1, or 2 that refers to the beginning, the current position, or the position of the end of a file.
The memory page size in bytes (returned val).
A pointer to a NULL-terminated ASCII string that contains the directory path of a filename.
The UNIX file access permission codes.
The return value that indicates success or failure.
The seconds count returned.
The trap number.
The current position in a specified file.

Host Interface vl.0 Specification

APPENDIX 8: ERROR NUMBERS

HIF implementations are required to return error codes
when a requested operation is not possible. The codes
from 0 to 255 are reserved for compatibility with current
and future error return standards. The currently
assigned codes and their meanings are shown in

Table 8.lf a HIF implementation returns an error code in
the range of 0 to 255, it must carry the identical meaning
to the corresponding error code in this table. Error code
values larger than 255 are available for implementation­
specific errors.

Number Error Name

0

EPERM

2 ENOENT

3 ESRCH

4 EINTR

5 EIO

6 ENXIO

7 E2BIG

8 ENOEXEC

9 EBADF

10 ECHILD

11 EAGAIN

12 ENOMEM

Table 8. HIF Error Numbers Assigned

Description

Not used.

Not owner
This error indicates an attempt to modify a file in some way forbidden except to
its owner.

No such file or directory
This error occurs when a file name is specified and the file should exist but
does not, or when one of the directories in a path name does not exist.

No such process
The process or process group whose number was given does not exist, or any
such process is already dead.

Interrupted system call
This error indicates that an asynchronous signal (such as interrupt or quit) that
the user has elected to catch occurred during a system call.

I/O error
Some physical I/O error occurred during a read or write. This error may in
some cases occur on a call following the one to which it actually applies.

No such device or address
I/O on a special file refers to a sub-device that does not exist or is beyond the
limits of the device.

Arg list is too long
An argument list longer th~n 5120 bytes is presented to execve.

Exec format error
A request is made to execute a file that, although it has the appropriate permis­
sions, does not start with a valid magic number.

Bad file number

Eithera file descriptor refers to noopenfile, or a read (write) request is made to
a file that is open only for writing (reading).

No children
Wait and the process has no living or unwaited-for children.

No more processes
In a fork, the system's process table is full, or the user is not allowed to create
any more processes.

Not enough memory

During an execve or break, a program asks for more memory than the system
is able to supply or else a process size limit would be exceeded.

3-197

29K Family Application Notes

Number Error Name

13 EACCESS

14 EFAULT

15 ENOTBLK

16 EBUSY

17 EEXIST

18 EXDEV

19 ENODEV

20 ENOTDIR

21 EISDIR

22 EINVAL

23 ENFILE

24 EMFILE

25 ENOTTY

26 ETXTBSY

27 EFBIG

3-198

Table 8. HIF Error Numbers Asslgne~ (continued)

Description

Permission denied

An attempt was made to access a file in a way forbidden by the protection
system.

Bad address

The system encountered a hardware fault in attempting to access the argu­
ments of a system call.

Block device required

A plain file was mentioned where a block device was required. such as in
mount.

Device busy

An attempt was made to mount a device that was already mounted. or an
attempt was made to dismount a device on which there is an active file (open
file. current directory. mounted-on file. or active text segment).

File exists

An existing file was mentioned in an inappropriate context. e.g .• link.

Cross-device link

A hard link to a file on another device was attempted.

No such device

An attempt was made to apply an inappropriate system call to a device. e.g .• to
read a write-only device. or the device is not configured by the system.

Not a directory

A non-directory was specified where a directory is required. for example. in a
path name or as an argument to chdir.

Is a directory

An attempt to write on a directory.

Invalid argument

This error occurs when some invalid argument for the call is specified. For
example. dismounting a non-mounted device. mentioning an unknown Signal
in signal. or specifying some other argument that is inappropriate for the call.

File table overflow

The system's table of open files is full. and temporarily no more open requests
can be accepted.

Too many open files

The configuration limit on the number of simultaneously open files has been
exceeded.

Not a typewriter

The file mentioned in SUy or gUy is not a terminal orone of the other devices to
which these calls apply.

Text file busy

The referenced text file is busy and the current request can not be honored.

File too large

The size of a file exceeded the maximum limit.

Host Interface v1.0 SpeCification

Table 8. HIF Error Numbers Assigned (continued)

Number Error Name

28 ENOS PC

29 ESPIPE

30 EROFS

31 EMLINK

32 EPIPE

33 EDOM

34 ERANGE

35 EWOULDBLOCK

36 EINPROGRESS

37 EALREADY

38 ENOTSOCK

39 EDESTADDRREQ

40 EMSGSIZE

41 EPROTOTYPE

Description

No space left on device
A write to an ordinary file, the creation of a directory or symbolic link, or the
creation of a directory entry failed because no more disk blocks are available
on the file system.

Illegal seek
A seek was issued to a socket or pipe. This error may also be issued for other
non-seekable devices.

Read-only file system
An attempt to modify a file or directory was made on a device mounted read­
only.

Too many links
An attempt was made to establish a new link to the requested file and the limit
of simultaneous links has been exceeded.

Broken pipe
A write on a pipe or socket was attempted for which there is no process to read
the data. This condition normally generates a signal; the error is returned if the
signal is caught or ignored.

Argument too large
The argument of a function in the math package is out of the domain of the
function.

Result too large
The value of a function in the math package is unrepresentable within machine
precision.

Operatiqn would block
An operation that would cause a process to block was attempted on an object
in non-blocking mode.

Operation now in progress
An operation that takes a long time to complete was attempted on a non-block­
ing object.

Operation already in progress
An operation was attempted on a non-blocking object that already had an
operation in progress.

Socket-operation on non-socket

A socket-oriented operation was attempted on a non-socket device.

Destination address required
A required address was omitted from an operation on a socket.

Message too long
A message sent on a socket was larger than the internal message buffer or
some other network limit.

Protocol wrong type for socket
A protocol was specified that does not support the semantics of the socket type
requested.

3·199

29K Family Application Notes

Table 8. HIF Error Numbers AssIgned (continued)

Number Error Name Description

42 ENOPROTOOPT Option not supported by protocol
A bad option' or level was specified when accessing socket options.

43 EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the system, or no implementation for
it exists.

44 E~OCKTNOSUPPORT Socket type not supported

45 EOPNOTSUPP

46 EPFNOSUPPORT

47 EAFNOSUPPORT

48 EADDRINUSE

49 EADDRNOTAVAIL

50 ENETDOWN

51 ENETUNREACH

52 ENETRESET

53 ECONNABORTED

54 ECONNR~SET

55 ENOBUFS

56 EISCONN

3-200

The support for the socket type has not been configured into the system, or no
implementation for it exists.

Operation not supported on socket
For example, trying to accept a connection on a datagram socket.

Protocol family not supported
The protocol family has not been configured into the system or no implementa­
tion for it exists.

Address family not supported by protocol family
An address was used that is incompatible with the requested protocol.

Address already in use
Only one usage of each address is normally permitted.

Cannot assign requested address
This normally results from an attempt to create a socket with an address not on
this machine.

Network is down
A socket operation encountered a dead network.

Network is unreachable
A socket operation was attempted to an unreachable network.

Network dropped connection on reset
The host yo'u were connected to crashed and rebooted.

Software caused connection abort
A connection abort was caused internal to your host machine ..

Connection reset by peer
A connection was forcibly closed by a peer. This normally results from a loss of
the connection on the remote socket due to a timeout or a reboot.

No buffer space available
An operation on a socket or pipe was not performed because the system
lacked sufficient buffer space or because a queue was full.

Socket is already connected
A connect request was made on an already connected socket; or a sendto or
sendmsg request on a connected socket specified a destination when already
connected.

Host Interface v1.0 Specification

Table 8. HIF Error Numbers Assigned (continued)

Number Error Name

57 ENOTCONN

58

59

60

61

62

63

64

65

66

67

68

69

70

ESHUTDOWN

ETOOMANYREFS

ETIMEDOUT

ECONNREFUSED

ELOOP

ENAMETOOLONG

EHOSTDOWN

EHOSTUNREACH

ENOTEMPTY

EPROCLIM

EUSERS

EDaUOT

EVDBAD

Description

Socket is not connected

A request to send or receive data was disallowed because the socket was not
connected and (when sending on a datagram socket) no address was
supplied.

Cannot send after socket shutdown

A request to send data was disallowed because the socket had already been
shut down with a previous shutdown call.

Too many references; cannot splice.

Connection timed out

A connect or send request failed because the connected party did not properly
respond after a period of time. (The timeout period is dependent on the
communication protocol.)

Connection refused

No connection could be made because the target machine actively refused it.
This usually results from trying to connect to a service that is inactive on the
foreign host.

Too many levels of symbolic links

A pathname lookup involved more than the maximum limit of symbolic links.

File name too long

A component of a pathname exceeded the maximum name length, or an entire
path name exceeded the maximum path length.

Host is down

A socket operation failed because the destination host was down.

Host is unreachable

A socket operation was attempted to an unreachable host.

Directory not empty

A non-empty directory was supplied to a remove directory or rename call.

Too many processes

The limit of the total number of processes has been reached. No new
processes can be created.

Too many users

The limit of the total number of users has been reached. No new users may
access the system.

Disk quota exceeded

A write to an ordinary file, the creation of a directory or symbolic link, or the
creation of a directory entry failed because the user's quota of disk blocks was
exhausted; orthe allocation of an inodefor a newly created file failed because
the user's quota of inodes was exhausted.

RVD related disk error

3-201

CHAPTER 4
General Information

Table of Contents

Related Literature .. 4-3
Package Outlines 4-4

Additional Support Literature

CHAPTER 4
RELATED LITERATURE

Related Literature

The following is a list of AMD 29K Family literature that can be ordered from your local AMD Sales Representative
or the Literature Distribution Center at (800) 222-9323, extension 5000; inside California, call (408) 749-5000.
Technical and marketing information concerning the 29K Family also can be obtained by calling the 29K Hotline at
(800) 2929-AMD.

Order No.

09548
10344
10345
10620
10621
10623
11426
11852

Title

Am29000 Article Reprint Brochure
Am29000 Family Overview Brochure
29K Support Products Brochure'
Am29000 User's Manual
Am29000 Performance Analysis Brochure
Am29000 Memory Design Handbook
Fusion 29K Catalog
Am29027 Handbook

4-3

General Information

1.740
UiO

"For reference only.

PACKAGE OUTLINES*
CGX169

BOnoMV!EW

------1.100 BSC------J

H 1 • L .. N P R T

" .. " ..

----------4~~+_

,100 BSC-I i-

PIO II 07322B

*For reference only. All dimensions are measured in inches. BSC is an ANSI standard for Basic Space Centering.

4·4

..
r-

-.
Ir

~:250-..
MIN

f

I~

1.665 1.140
1-:710 1.165

~

.006.l
-'ii ·01OT -'ii

~

.025 +
MAX t 5

--'

= --'

'1

u u

CQ164

1.665
1-:710
1.140

-1~5

1.000
sse

.500 .. sse
Ilir

uuu uu u

TOP VIEW

..-J

--
--

~

~
~

II:

i:=

!:I::: g

t

~

uu

Package Outlines

..

=

.004 .008

.008 ±.006

.080

.105

+ • t =t~~~lt~==I~ _____________ 4 ____ ~f~t~f

130!l2A

4-5

Notes

/

Notes

Notes

Notes

North American _________ _
ALABAMA .. (205) 882-9122
ARIZONA ... (602) 242-4400
CALIFORNIA,

Culver City .. (213) 645-1524
Newport Beach .. F14l 752-6262
Rosev!"e ... (916) 786-6700

~~~ ~~;~~.:::.:::::::::::::::::::::::::::::::::::::::::::::::::::::: (~6~) ~~g:bg~g 
Woodland Hills ................................................. (818) 992-4155 

CANADA, Ontario, 

~}W~!:d'aie .:::::::::: :::: ::::::::::: ::::::::::::::: :::::::::::::::: !~ ~ ~~ ~~tg~~g 
COLORADO .......................................................... (303) 741-2900 
CONNECTICUT .................................................... (203) 264-7800 
FLORIDA, 

Clearwater ........................................................ (813) 530-9971 
Ft. Lauderdale .................................................. (305) 776-2001 
Orlando (Casselberry) .................................... (407) 830-8100 

GEORGIA .............................................................. (404) 449-7920 
ILLINOIS, 

Chicago (Itasca) .............................................. (312) 773-4422 
Naperville .......................................................... (312) 505-9517 

~1~~t~ N'D'::::::::::::::::::::::::::::::::::::::::::::::::::::.::::::: ~~6 ~l ~~~:~j ~ g 
MASSACHUSETTS .............................................. (617) 273-3970 
MICHIGAN ............................................................. (313) 347-1522 
MINNESOTA ......................................................... (612) 938-0001 
NEW JERSEY, 

~~~;r~p~~~·::::::::::::::::::::::::::::::::::::::::::: :::::::::::: !~gil ~~~:~6gg 
NEW YORK,

~~~~~!~:/~:i:~::::::::::::::::::::::::::::::::::::::::::::::::::: !~~ ~l i~r:~!~g 
NORTH CAROLlNA .............................................. (919) 878-8111 
OHIO, 

Columbus (Westerville) .................................. (614) 891-6455 
Dayton •.............................................................. (513) 439-0470 

OREGON ............................................................... (503) 245-0080 
PENNSyLVANIA ................................................... (215) 398-8006 
SOUTH CAROLINA .............................................. (803) 772-6760 
TEXAS, 

Austin ................................................................ (512) 346-7830 
Dallas ................................................................ (214) 934-9099 
Houston ............................................................. (713) 785-9001 

In terna tional __________ _ 
BELGIUM, Bruxelles ....... TEL ............................. (02) 771-91-42 

FAX ............................. (02) 762-37-12 
TLX ..................................... 846-61028 

FRANCE, Paris ................ TEL ............................ (1) 49-75-10-10 
FAX ............................ (1) 49-75-10-13 
TLX ........................................ 263282F 

WEST GERMANY, 
Hannover area ............ TEL .............................. (0511) 736085 

FAX .............................. (0511) 721254 
TLX ........................................... 922850 

MOnchen ...................... TEL ................................. (089) 4114-0 
FAX ................................ (089) 406490 
TLX ........................................... 523883 

Stuttgart ....................... TEL ........................... (0711) 62 3377 
FAX .............................. (0711) 625187 
TLX ........................................... 721882 

HONG KONG, .................. TEL ............................. 852-5-8654525 
Wanchai FAX ............................. 852-5-8654335 

TLX .......................... 67955AMDAPHX 
ITALY, Milan .................... TEL ................................ (02) 3390541 

................................ (02) 3533241 
FAX ................................ (02) 3498000 
TLX ................................... 843-315286 

JAPAN, 

Kanagawa .................... ~~~ ::::::::::::::::::::::::::::::::: ~~~:~ ~:~n~ 
Tokyo ........................... TEL ............................... (03) 345-8241 

FAX ..................... _ ......... (03) 342-5196 
TLX ........................ J24064AMDTKOJ 

Osaka ........................... TEL ................................. 06-243-3250 
FAX ................................. 06-243-3253 

International (Continued) _______ _ 
KOREA, Seoul ................. TEL ............................... 822-784-0030 

FAX ............................... 822-784-8014 
LATIN AMERICA, 

Ft. Lauderdale ............. TEL ............................. (305) 484-8600 
FAX ............................ (305) 485-9736 
TLX ................. 5109554261 AMDFTL 

NORWAY, Hovik .............. TEL .................................. (03) 010156 
FAX .................................. (02) 591959 
TLX .................................. 19079HBCN 

SINGAPORE .................... TEL ................................... 65-3481188 
FAX .................................. 65-3480161 
TLX .......................... 55650 AMDMMI 

SWEDEN, 
Stockholm .................... TEL .............................. (08) 733 03 50 
(Sundbyberg) FAX .............................. (08) 733 22 85 

TLX ............................................. 11602 
TAIWAN ............................ TEL ............................. 886-2-7213393 

FAX ............................. 886-2-7723422 
TLX ............................. 886-2-7122066 

UNITED KINGDOM, 
Manchester area ......... TEL .............................. (0925) 828008 
(Warrington) FAX .............................. (0925) 827693 

TLX ................................... 851-628524 
London area ................ TEL .............................. (0483) 740440 
(Woking) FAX .............................. (0483) 756196 

TLX ................................... 851-859103 

North American Representatives __ _ 
CANADA 
Burnaby, B.C. 

DAVETEK MARKETING ................................. (604) 430-3680 
Calgary, Alberta 

DAVETEK MARKETING ................................. (403) 291-4984 
Kanata, Ontario 

VITEL ELECTRONICS .................................... (613) 592-0060 
Mississauga, Ontario 

VITEL ELECTRONICS .................•.................. (416) 676-9720 
Lachine, Quebec 

VITEL ELECTRONICS .................................... (514) 636-5951 
IDAHO 

INTERMOUNTAIN TECH MKTG, INC .......... (208) 888-6071 
ILLINOIS 

HEARTLAND TECH MKTG, INC .................. (312) 577-9222 
INDIANA 

Huntington - ELECTRONIC MARKETING 
CONSULTANTS, INC ...................................... (317) 921-3450 
Indianapolis - ELECTRONIC MARKETING 
CONSULTANTS, INC ...................................... (317) 921-3450 

IOWA 
LORENZ SALES .............................................. (319) 377-4666 

KANSAS 
Merriam -LORENZ SALES ............................ (913) 384-6556 
Wichita - LORENZ SALES ............................. (316) 721-0500 

KENTUCKY 
ELECTRONIC MARKETING 
CONSULTANTS, INC ...................................... (317) 921-3452 

MICHIGAN 
Birmingham - MIKE RAICK ASSOCIATES .. (313) 644-5040 
Holland-COM-TEK SALES, INC ................. (616) 399-7273 
Novi -COM-TEK SALES, INC ....................... (313) 344-1409 

MISSOURI 
LORENZ SALES .............................................. (314) 997-4558 

NEBRASKA 
LORENZ SALES .............................................. (402) 475-4660 

NEW MEXICO 
THORSON DESERT STATES ....................... (505) 293-8555 

NEW YORK 
East Syracuse - NYCOM, INC ...................... (315) 437-8343 
Woodbury - COMPONENT 
CONSULTANTS, INC ...................................... (516) 364-8020 

OHIO 
Centerville - DOLFUSS ROOT & CO ........... (513) 433-6776 
Columbus - DOLFUSS ROOT & CO ............ (614) 885-4844 
Strongsville -DOLFUSS ROOT & CO ......... (216) 238-0300 

PENNSYLVANIA 
DOLFUSS ROOT & CO .................................. (412) 221-4420 

PUERTO RICO 
COMP REP ASSOC, INC ............................... (809) 746-6550 

UTAH, R2 MARKETING ....................................... (801) 595-0631 
WASHINGTON 

ELECTRA TECHNICAL SALES ..................... (206) 821-7442 
WISCONSIN 

HEARTLAND TECH MKTG, INC ................... (414) 792-0920 
Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance 
characteristics listed in this document are guaranteed by specific tests, guard banding, design and other practices common to the industry. For specific testing details, 
contact your local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein. 

~ Tel: (408) 732-2400 • TWX: 910-339·9280 • TELEX: 34-6306 • TOLL FREE: (800) 538-8450 ~ 
Advanced Micro Devices, Inc. 901 Thompson Place, P.O. Box 3453, Sunnyvale, CA 94088, USA 

.... APPLICATIONS HOTLINE TOLL FREE: (800) 222·9323 • (408) 749-5703 

© 1989 Advanced Micro Devices, Inc. 
8/9189 

Printed In USA 



-_ .. _--_ .. _----




