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CHAPTER 1
INTRODUCTION TO THE i960™ CA MICROPROCESSOR

Intel’s 19960 CA microprocessor, a member of the 1960 family of 32-bit embedded processors,
is the first commercially available superscalar processor. Superscalar technology enables this
processor to execute up to three instructions in a single clock cycle. It is an ideal
communications controller; as such, it is the natural choice to use as a connection processor in
the emerging field of Computer Supported Collaboration (CSC), where high speed networks
are used to link multimedia PCs.

The 1960 CA product represents Intel’s commitment to provide a spectrum of reliable, cost-
effective, high-performance processors to satisfy the requirements of today’s innovative
products. It is designed for applications which require greater performance on a single chip
than is usually found in an entire embedded system. The sheer speed of the 1960 CA processor
enriches traditional embedded applications and makes many new functions possible at a
reduced cost. This embedded processor is versatile; it is found in diverse product lines such as
laser printers, X-terminals, bridges, routers and PC add-in cards.

As shown in Figure 1.1, the 19960 CA component integrates many features onto a single
CHMOS device, including the multiple-instruction per clock C-series core, a 1 Kbyte two-way
set associative instruction cache, a programmable register cache, a 1 Kbyte on-chip data RAM,
a multi-mode programmable bus controller for its demultiplexed bus, a four-channel 59 Mbyte
per second DMA controller and a high-speed interrupt controller.

HIGH SPEED
INTERRUPT
UNIT

FOUR CHANNEL
DMA CONTROLLER

SUPERSCALAR
C-SERIES
CORE

PROGRAMMABLE
REGISTER
CACHE

HIGH SPEED
DATA RAM

TWO-WAY
SET ASSOCIATIVE
INSTRUCTION
CACHE

DEMULTIPLEXED
BUS CONTROL
UNIT

270710-002-01

Figure 1.1. The Single-Chip i960™ CA Superscalar Processor
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THE 1960™ CA MICROPROCESSOR ARCHITECTURE

The 1960 architecture provides a high-performance computing model. The architecture profits
from reduced instruction set computer (RISC) concepts and includes refinements for execution
of more than one instruction per clock through superscalar implementations. Furthermore, the
architecture provides a high-speed procedure call/return model, a powerful instruction set
suited to parallelism and integrated interrupt- and fault-handling models appropriate in a
parallel execution environment.

Parallel Instruction Execution

To sustain execution of multiple instructions in each clock cycle, a processor must decode
multiple instructions in parallel and simultaneously issue these instructions to parallel
processing units. The various processing units must then be able to independently access
instruction operands in parallel from a common register set.

On-chip instruction cache enables parallel decode by constantly providing the next four
unexecuted instructions to the processor’s instruction scheduler. In a single clock cycle, the
scheduler inspects all four instructions and issues one, two or three of these instructions in the
same clock cycle.

Parallel decode also speeds conditional operations such as branches. These instructions are
decoded and executed ahead of the current instruction pointer while maintaining the logical
control flow of the sequential program.

Once the scheduler issues an instruction or group of instructions, one of six parallel processing
units begins to execute each instruction. Each parallel unit handles a different subset of the
instruction set, enabling multiple instructions to be issued and executed every clock cycle.
Each unit executes its instructions in parallel with other processor operations.

The 1960 CA processor’s 32 general purpose 32-bit registers are each six-ported to allow
unimpeded parallel access to independent processing units. To maintain the logical integrity of
sequential instructions which are being executed in parallel, the processor implements register
scoreboarding and resource scoreboarding interlocks.

The 960 CA processor’s superscalar can decode multiple instructions at once and issue them to
independent processing units where they are executed in parallel. As a result, the processor
delivers sustained execution of multiple instructions per clock from a sequential instruction
stream.

Full Procedure Call Model

This processor supports two types of procedure calls: an integrated call-and-return mechanism
and a RISC-style branch-and-link instruction. The integrated call-and-return mechanism
automatically saves local registers when a call instruction is executed and restores them when a
return is executed. The RISC-style branch-and-link is a fast call that does not save any of the
registers. These mechanisms result in high performance and reduced code size, while
maintaining assembly-level compatibility.
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To attain the highest performance for procedure calls and returns, the 1960 CA microprocessor
integrates a programmable depth register cache. The register cache internally saves the local
registers for procedure calls, rather than actually writing the data to the external procedure
stack. This caching greatly reduces the external bus traffic associated with procedure context
saving and restoring.

Versatile Instruction Set and Addressing

The 1960 CA microprocessor offers a full set of load, store, move, arithmetic, shift, comparison
and branch instructions and supports operations on both integer and ordinal data types. It also
provides a complete set of Boolean and bit-field instructions to simplify manipulation of bits
and bit strings.

Most of the processor’s instructions are typical RISC operations. However, several commonly
used complex instructions are also part of the instruction set. Performance is optimized by
implementing these commonly used functions with parallel hardware. For instance, the 32x32
multiply operation — a single instruction — takes less than five clocks to execute: 150 ns or
less at 33 MHz. Furthermore, the multiplier is a parallel unit; this allows instructions that
follow a multiply to execute before the multiplication is complete. In fact, if several unrelated
instructions follow a multiply, the multiplication consumes only one clock of execution.

Integrated Priority Interrupt Model

The 1960 CA microprocessor provides a priority-based mechanism for servicing interrupts. The
mechanism transparently manages up to 248 distinct sources with 31 levels of priority.
Interrupt requests may be generated from external hardware, internal hardware or software.

The interrupt mechanism is managed by hardware which operates in parallel with a program’s
execution. This reduces interrupt latency and overhead and provides flexible interrupt handling
control.

Complete Fault Handling and Debug Capabilities

To aid in program development, the 19960 CA microprocessor detects faults (exceptions). When
a fault is detected, the processor makes an implicit call to a fault handling routine. Information
collected for each fault allows program developers to quickly correct faulting code. It also
allows automatic recovery from most faults.

To support system debugging, the 1960 architecture provides a mechanism for monitoring
processor activities through a software tracing facility. The 19960 CA device can be configured
to detect as many as seven different trace events, including breakpoints, branches, calls,
supervisor calls, returns, prereturns and the execution of each instruction (for single-stepping
through a program). The 1960 CA component also provides four breakpoint registers that allow
break decisions to be made based upon instruction or data addresses.

1-3
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SYSTEM INTEGRATION

The 1960 CA microprocessor is based on the C-series core, which is object code compatible
with the 32-bit 1960 core architecture. Additionally, the 1960 CA device integrates three data
control peripherals around the core: bus control unit, DMA controller and interrupt controller.

Pipelined Burst Bus Control Unit

The 1960 CA microprocessor integrates a 32-bit high-performance bus controller to interface to
external memory and peripherals. The bus control unit incorporates full wait state logic and bus
width control to provide high system performance with minimal system design complexity.
The bus control unit features a maximum transfer rate of 132 Mbytes per second (at 33 MHz).
Internally programmable wait states and 16 separately configurable memory regions allow the
processor to interface with a variety of memory subsystems with minimum complexity and
maximum performance.

Flexible DMA Controller

A four-channel DMA controller provides high-speed DMA data transfers. Source and
destination can be any combination of internal RAM, external memory or peripherals. DMA
channels perform single-cycle or multi-cycle transfers and can perform data packing and
unpacking between peripherals and memory with varying bus widths. Also provided are block
transfers, in addition to source- or destination-synchronized transfers.

The DMA supports various transfer types such as high speed fly-by, quad-word transfers and
data chaining with the use of linked descriptor lists. The high performance fly-by mode is
capable of transfer speeds of up to 59 Mbytes per second at 33MHz.

Priority Interrupt Controller

The interrupt controller provides full programmability of 248 interrupt sources into 31 priority
levels. The interrupt controller handles prioritization of software interrupts, hardware interrupts
and process priority. In addition, it also manages four internal sources from the DMA
controller and a single non-maskable interrupt input.

i960™ MICROPROCESSOR FAMILY

A standard core architecture allows software designers to develop building block software,
such as real-time kernels or libraries of functions optimized for the 1960 core architecture.
These building blocks are portable to any implementation of the 1960 architecture.

As indicated in Figure 1.2, all 1960 family products are compatible. Each is a specialized
applications device, consisting of a core architecture implementation plus a set of specific
building blocks or peripherals. The architecture is expandable to include different peripherals
on a processor to meet the needs of specific processing and control applications. Future

1-4
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versions of the 1960 microprocessor will feature different attributes to meet the price
performance demands of all forms of embedded processor applications.
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Figure 1.2. i960™ Microprocessor Family

ABOUT THIS MANUAL

This i960 CA Microprocessor Reference Manual provides detailed programming and hardware
design information for the i960 CA microprocessor. It is written for programmers and
hardware designers who understand the basic operating principles of microprocessors and their
systems.
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This manual does not provide electrical specifications such as DC and AC parametrics,
operating conditions and packaging specifications. Such information is found in the {960 CA
Microprocessor Data Sheet.

For information on other 1960 family products or the architecture in general, refer to Intel's
Solutions960 catalog. It lists all current 19960 microprocessor family-related documents, support
components, boards, software development tools, debug tools and more.

This manual is organized in three parts; each part comprises multiple chapters and/or

appendices. The following briefly describes each part:

e Part I-Programming the i960 CA Microprocessor details the programming environment
for the 1960 CA component. Described here are the processor's registers, instruction set,
data types, addressing modes, interrupt mechanism, external interrupt interface and fault
mechanism.

e Part II-System Implementation identifies requirements for designing a system around the
1960 CA component, such as external bus interface, interrupt controller and integrated
DMA controller. Also described are programming requirements for the DMA controller,
bus controller and processor initialization.

e Part Ill-Appendices include quick references for hardware design and programming.
Appendices are also provided which describe the internal architecture, how to write
assembly-level code to exploit the parallelism of the processor and considerations for
writing software which is portable between all members of the 1960 family.

NOTATION AND TERMINOLOGY

The following paragraphs describe notation and terminology used in this manual that have
special meaning.

Reserved and Preserved

Certain fields in the registers and data structures are described as being either reserved or
preserved:

e A reserved field is one that may be used by other implementations of the 1960 architecture.
Correct treatment of reserved fields ensures software compatibility with other 1960

products. The processor uses these fields for temporary storage; as a result, the fields
sometimes contain unusual values.

e A preserved field is one that the processor does not use. Software may use preserved fields
for any function.

Reserved fields in certain data structures should be set to O when the data structure is created.
Set reserved fields to 0 when creating the Control Table, Interrupt Table, Fault Table, System
Procedure Table, Initialization Boot Record and Processor Control Block. Software should not
modify or rely on these reserved field values after a data structure is created. When the
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processor creates the Interrupt or Fault Record data structure on the stack, software should not
depend on the value of the reserved fields within these data structures.

Some bits or fields in data structures are shown as requiring specific encoding. These fields
should be treated as if they were reserved fields. They should be set to the specified value
when the data structure is created and software should not modify or rely on the value in the
field after that.

Reserved bits in the Special Function Registers must be set to 0 after initialization to ensure
compatibility with future implementations. Reserved bits in the Process Controls (PC) register
and Trace Controls (TC) register should not be initialized.

When the Arithmetic Controls (AC), PC and TC registers are modified using modac, modpc
or modtc instructions, the reserved locations in these registers must be masked.

Certain areas of memory may be referred to as reserved memory in this reference manual.
Reserved — when referring to memory locations — implies that an implementation of the 1960
architecture may use this memory for some special purpose. For example, memory mapped
peripherals would likely be located in a reserved memory area on future implementations.
Programs may use reserved memory just like any other memory unless it is specifically
documented otherwise.

Specifying Bit and Signal Values

The terms ser and clear in this manual refer to bit values in register and data structures. If a bit
is set, its value is 1; if the bit is clear, its value is 0. Likewise, setting a bit means giving it a
value of | and clearing a bit means giving it a value of 0.

The terms assert and deassert refer to the logically active or inactive value of a signal or bit,
respectively. A signal is specified as an active 0 signal by an overbar. For example, the
BTERM input is active low and is asserted by driving the signal to a logic 0 value.

Representing Numbers

All numbers in this manual can be assumed to be base 10 unless designated otherwise. In text,
binary numbers are designated with a subscript 2 (for example, 001,). If it is obvious from the
context that a number is a binary number, the "2" subscript is sometimes omitted. Hexadecimal
numbers are designated in text with the suffix H (for example, FFFF FF5AH).

In pseudo-code action statements in the instruction reference section, hexadecimal numbers are
represented by adding the C-language convention "0x" as a prefix. For example "FF7AH"
appears as "OxFF7A" in the pseudo-code.

Register Names

The 1960 CA processor's special function registers and several of the global and local registers
are referred to by their generic register names, as well as descriptive names which describe
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their function. The global register numbers are g0 through gl15; local register numbers are r0
through r15; special function registers are sf0, sfl and sf2. However, when programming the
registers in user-generated code, make sure the instruction operand is used. The 1960 compilers
recognize only the instruction operands listed in the following table. Throughout this manual,
the register's descriptive names, numbers, operands and acronyms are used interchangeably, as
dictated by context.

Register Descriptive Register Instruction Acronym
Name Number Operand
Global Registers 20 -gl5 g0 -gl4
Frame Pointer gl5 fp FP
Local Registers 10 -r15 r3-rls
Previous Frame Pointer 0 pfp PFP
Stack Pointer rl sp SP
Return Instruction Pointer 2 rip RIP
Interrupt Pending Register sf0 sf0 IPND
Interrupt Mask Register sfl sfl IMSK
DMA Command Register sf2 sf2 DMAC

Groups of bits and single bits in registers and control words are called either bits, flags or
fields. These terms have a distinct meaning in this manual:

bit controls a processor function; programmed by the user.

flag indicates status. Generally set by the processor; however, the user may also
program certain flags.

field a grouping of bits (bit field) or flags (flag field).

Specific bits, flags and fields in registers and control words are usually referred to by a register
abbreviation (in upper case) followed by a bit, flag or field name (in lower case). These items
are separated with a period. A position number designates individual bits in a field. For
example, the return type (rt) field in the previous frame pointer (PFP) register is designated as
“PFP.rt”. The least significant bit of the return type field is then designated as “PFP.rt0”.
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CHAPTER 2
PROGRAMMING ENVIRONMENT

This chapter describes the 1960 CA microprocessor’s programming environment which
includes global and local registers, special function registers, control registers, literals,
processor-state registers and address space.

PROGRAMMING ENVIRONMENT OVERVIEW

The 1960 architecture defines a programming environment in which programs are executed and
data is stored and manipulated. Figure 2.1 shows the programming environment elements
which include a 4 Gbyte (232 byte) flat address space, a 1 Kbyte instruction cache, 16 global
and 16 local general purpose registers, a set of literals, special function registers, control
registers and a set of processor state registers. A register cache, also shown in Figure 2.1, saves
the 16 procedure-specific local registers.

The processor defines several data structures located in memory as part of the programming
environment. These data structures handle procedure calls, interrupts, faults and provide
configuration information at initialization. These data structures are:

e interrupt stack e control table e system procedure table
e Jocal stack e fault table e process control block
e supervisor stack e interrupt table e initialization boot record

REGISTERS AND LITERALS AS INSTRUCTION OPERANDS

The 1960 CA processor uses only simple load and store instructions to access memory.
Therefore, operations take place at the register level. It uses 16 global, 16 local and three
special functions registers as instruction operands, as well as 32 literals (constants 0-31).

The global register numbers are g0 through gl5; local register numbers are rO through rl5;
special function registers are sf0, sfl and sf2. However, when programming the registers in
user-generated code, make sure the instruction operand is used. The 1960 compilers recognize
only the instruction operands listed in Table 2.1. Throughout this manual, the register's
descriptive names, numbers, operands and acronyms are used interchangeably, as dictated by
context.

Global Registers

Global registers are general purpose 32-bit data registers which provide temporary storage for a
program’s computational operands. Global registers retain their contents across procedure
boundaries. Because of this, they provide a fast and efficient means of passing parameters
between procedures.
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The 1960 architecture supplies 16 global registers, designated g0 through gl15. Register gl5 is
reserved for the current Frame Pointer (FP) which contains the address of the first byte in the
current (topmost) stack frame. The FP and procedure stack are described in Chapter 5,
Procedure Calls.

After the processor is reset, register g0 contains die stepping information. Software must read
the value of g0 before any action is taken to modify this register. The i960 CA Microprocessor
Data Sheet Stepping Register Information section describes die stepping information contained
in register g0.

Local Registers

Local registers (rO through r15) provide a separate set of 32-bit data registers — in addition to
the global registers — for each active procedure. They provide storage for variables that are
local to a procedure. Each time a procedure is called, the processor allocates a new set of local
registers for that procedure and saves the calling procedure’s local registers. The processor
performs local register management; a program need not explicitly save and restore these
registers.

Local registers r3 through r15 are general purpose registers; r0 through r2 are reserved for
special functions: r0 contains the Previous Frame Pointer (PFP); r1 contains the Stack Pointer
(SP); r2 contains the Return Instruction Pointer (RIP). PFP, SP and RIP are discussed in
Chapter 5, Procedure Calls.

NOTE

The processor does not always clear or initialize a set of local registers assigned to a new
procedure. Therefore, initial register contents are unpredictable. Also, the processor does not
initialize the local register save area in the newly created stack frame for the procedure; its
contents are equally unpredictable.

Table 2.1. Registers and Literals Used as Instruction Operands

Instruction Register Name

Operand (number) Function Acronym
g0-gl4 global (g0-g14) general purpose
fp global (gl5) frame pointer FP
pfp local (r0) previous frame pointer PFP
sp local (r1) stack pointer SP
rip local (12) return instruction pointer RIP
r3-rl5 local (r3-r15) general purpose
sf0 special function 0 interrupt pending IPND
sfl special function 1 interrupt mask IMSK
sf2 special function 2 DMA command DMAC
0-31 literals
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0000 0000H FFFF FFFFH
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Figure 2.1. i960™ Microprocessor Programming Environment

Special Function Registers (SFRs)

The 1960 architecture provides a mechanism to expand its architecture-defined register set with
up to 32 additional 32-bit registers. On the 19960 CA microprocessor, three special function
registers (SFRs) are provided as an extension to the architectural register model. These
registers are designated sf0, sf1, sf2 (see Table 2.1). Registers sf3 - sf31 are not implemented
on the 1960 CA component. Reading or modifying unimplemented registers causes the
operation-invalid-opcode fault to occur.
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SFRs provide a means to configure and monitor interrupt controller and DMA controller status.
SFR function in the 1960 CA device is described in Chapter 12, Interrupt Controller and
Chapter 13, DMA Controller.

The processor provides a mechanism which allows only privileged access to SFRs. These
registers can only be accessed while the processor is in supervisor execution mode (see User-
Supervisor Protection Model later in this chapter). A type-mismatch fault occurs if an
instruction with a SFR operand is executed in user mode.

SFRs are not used as operands for instructions whose machine-level instruction format is of
type MEM or CTRL. Instructions with these formats include loads, stores and instructions
which cause program redirection (call, return and branches; see Appendix D, Instruction Set
Reference for a description of the machine-level encoding for operands). Table 2.2 summarizes
the use of SFRs as instruction operands.

Register Scoreboarding

Register scoreboarding allows concurrent execution of sequential instructions. When an
instruction executes, the processor sets a register-scoreboard bit to indicate that a particular
register or group of registers is being used in an operation. If the instructions that follow do not
use registers in that group, the processor can execute those instructions before the prior
instruction execution completes.

A common application of this feature is to execute one or more single-cycle instructions
concurrently with a multi-cycle instruction (e.g., multiply or divide). The following example
shows a case where register scoreboarding prevents a subsequent instruction from executing. It
also illustrates overlapping instructions which do not have register dependencies.

Register scoreboarding is implemented for global and local registers but not for SFRs. When a

SFR is the destination of a multi-cycle instruction, the programmer must prevent access to the
SFR until the multi-clock instruction returns a result to the SFR.

Example 2.1. Register Scoreboarding

3

r6 is scoreboarded
add must wait for the previous multiply
# to complete

muli r4,r5,r6
addi 1r6,r7,r8

TS

H=

rl0 is scoreboarded and instruction
is executed concurrently with multiply

muli r4,r5,rl0
and r6,r7,r8

BT
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Literals

The architecture defines a set of 32 literals which can be used as operands in many instructions.
These literals are ordinal (unsigned) values that range from 0 to 31 (5 bits). When a literal is
used as an operand, the processor expands it to 32 bits by adding leading zeros. If the
instruction requires an operand larger than 32 bits, the processor zero extends the value to the
operand size. If a literal is used in an instruction that requires integer operands, the processor
treats the literal as a positive integer value.

Register and Literal Addressing and Alignment

Several instructions operate on multiple word operands. For example, the load long instruction
(1dl) loads two words from memory into two consecutive registers. The register for the less-
significant word is specified in the instruction; the more-significant word is automatically
loaded into the next higher-numbered register.

In cases where an instruction specifies a register number and multiple, consecutive registers are
implied, the register number must be even if two registers are accessed (e.g., g0, g2) and an
integral multiple of 4 if three or four registers are accessed (e.g., g0, g4). If a register reference
for a source value is not properly aligned, the source value is undefined and an operation-
invalid-operand fault is generated. If a register reference for a destination value is not properly
aligned, the registers to which the processor writes and the values written are undefined. The
processor then generates an operation-invalid-operand fault. The following assembly language
code shows an example of correct and incorrect register alignment.

Example 2.2. Register Alignment

mov 1l g3,g98 # INCORRECT ALIGNMENT - resulting value
# in registers g8 and g9 is
# unpredictable (non-aligned source)

movl ag4d,qg8 # CORRECT ALIGNMENT

Global registers, local registers, special function registers and literals are used directly as
instruction operands. Table 2.2 lists instruction operands for each machine level instruction
format and positions which can be filled by each register or literal.
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Table 2.2. Allowable Register Operands

Operand (1)
Instruction Local Global Extended
Encoding Operand Field | Register | Register | Register (SFR) | Literal
REG srcl X X X X
src2 X X X X
sre/DST (as src) X X X
src/DST (as DST) X X X
sr¢/DST (as both) X X 2)
MEM sre/DST X X
abase X X
index X X
COBR srcl X X X
src2 X X X
DST X (3) X(3) X(3)
NOTES:

1. X denotes register can be used as an operand in a particular instruction field.

2. Extended registers cannot be addressed in the sr¢/DST field of REG format instructions in
which this field is used as both source and destination (e.g., extract and modify).

3. The COBR destination operands apply only to TEST instructions.

CONTROL REGISTERS

Control registers are internal registers which are used to configure the on-chip peripherals:
DMA controller, interrupt controller and bus controller. A program cannot access control
registers directly as instruction operands; instead, control registers are loaded from a data
structure called the control table (see Figure 2.2).

The system control (sysctl) instruction is used to move control table values to on-chip control
registers. The control table is divided into seven quad-word groups; each group is assigned a
group number from zero to six. When sysctl executes, the load control register message type
and the group number is specified. sysctl moves the quad-word group of register values from
the control table in memory and writes the values in the on-chip registers. (See System Control
Functions later in this chapter.)

At initialization, the control table is automatically loaded into the on-chip control registers.

This action simplifies the user’s startup code by providing a transparent setup of the 1960 CA
device’s peripherals at initialization. (See Chapter 14, Initialization and System Requirements.)
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31 0

IP BREAKPOINT 0 (IPBO) OH

IP BREAKPOINT 1 (IPB1) 4H

DATA ADDRESS BREAKPOINT 0 (DABO) 8H
DATA ADDRESS BREAKPOINT 1 (DAB1) CH
INTERRUPT MAP 0 (IMAP(E 10H
INTERRUPT MAP 1 (IMAP1) 14H
INTERRUPT MAP 2 (IMAP2) 18H
INTERRUPT CONTROL (ICON) 1CH

MEMORY REGION 0 CONFIGURATION (MCONO) 20H
MEMORY REGION 1 CONFIGURATION (MCON1) 24H
MEMORY REGION 2 CONFIGURATION (MCON2) 28H
MEMORY REGION 3 CONFIGURATION (MCON3) 2CH
MEMORY REGION 4 CONFIGURATION (MCON4) 30H
MEMORY REGION 5 CONFIGURATION (MCONS5) 34H
MEMORY REGION 6 CONFIGURATION (MCONS6) 38H
MEMORY REGION 7 CONFIGURATION (MCON?7) 3CH
MEMORY REGION 8 CONFIGURATION (MCONS8) 40H
MEMORY REGION 9 CONFIGURATION (MCON9) 44H
MEMORY REGION 10 CONFIGURATION (MCON10) 48H
MEMORY REGION 11 CONFIGURATION (MCON11) 4CH
MEMORY REGION 12 CONFIGURATION (MCON12) 50H
MEMORY REGION 13 CONFIGURATION (MCON13) 54H
MEMORY REGION 14 CONFIGURATION (MCON14) 58H
MEMORY REGION 15 CONFIGURATION (MCON15) 5CH
RESERVED (INITIALIZE TO 0) 60H
BREAKPOINT CONTROL (BPCON) 64H

TRACE CONTROLS (TC) 68H

BUS CONFIGURATION CONTROL (BCON) 6CH

270710-002-02

Figure 2.2. Control Table

ARCHITECTURE-DEFINED DATA STRUCTURES

The architecture defines a set of data structures which includes stacks, interfaces to system
procedures, interrupt handling procedures and fault handling procedures. Data structure
function is described in the following paragraphs.

user stack Stack the processor uses when executing applications code. This
stack is described in Chapter 5, Procedure Calls.
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system procedure table ~ Contains pointers to system procedures. Application code uses the
system call instruction (calls) to access system procedures through
this table. A specific type of system call, known as a system
supervisor call, causes a switch in execution mode from user mode
to supervisor mode. When the processor switches to supervisor
mode, it also switches to a new stack: the supervisor stack. System
procedure table structure and system call mechanism are described
in Chapter 5, Procedure Calls. The user-supervisor protection
model is described in the section User-Supervisor Model in this
chapter.

interrupt table Contains vectors (pointers) to interrupt handling procedures. When
an interrupt is serviced, a particular interrupt table entry is specified.
A separate interrupt stack is provided to ensure that interrupt
handling does not interfere with application programs. The interrupt
handling mechanism is described in Chapter 6, Interrupts.

Sfault table Contains pointers to fault handling procedures. When the processor
detects a fault, the processor selects a particular entry in the fault
table. The architecture does not require a separate fault handling
stack. Instead, a fault handling procedure uses the supervisor stack,
user stack or interrupt stack, depending on processor execution
mode when the fault occurred and type of call made to the fault
handling procedure. Fault handling is described in Chapter 7,
Faults.

control table Contains on-chip control register values. Control table values are
moved to on-chip registers at initialization or with sysctl.

The 1960 CA microprocessor defines two initialization data structures: initialization boot
record (IBR) and processor control block (PRCB). These structures provide initialization data
and pointers to other data structures in memory. When the processor is initialized, these
pointers are read from the initialization data structures and cached for internal use.

Pointers to the system procedure table, interrupt table, interrupt stack, fault table and control
table are specified in the processor control block. Supervisor stack location is specified in the
system procedure table. User stack location is specified in the user’s startup code.

Of these data structures, the system procedure table, fault table, control table and initialization

data structures may be in ROM; the interrupt table and stacks must be in RAM. The interrupt
table must be in RAM because the processor sometimes writes to it.
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MEMORY ADDRESS SPACE

The 1960 microprocessor’s address space is byte-addressable with addresses running
contiguously from 0 to 232 - 1. Some of this address space is reserved or is assigned special
functions as shown in Figure 2.3.

ADDRESS
0000 0000H

0000 0004H

NMIVECTOR

o

INTERNAL DATA RAM (OPTIONAL INTERRUPT VECTORS)

4

INTERNAL DATA RAM (USER MODE WRITE PROTECTED)

INTERNAL DATA RAM (OPTIONAL USER MODE WRITE PROTECTION)

0000 0040H
INTERNAL DATA RAM (OPTIONAL DMA REGISTERS)

A

1024

CODE/DATA
N ARCHITECTURALLY DEFINED DATA STRUCTURES \
(EXTERNAL MEMORY)
FEFF FFFFH
FFO0 0000H
RESERVED MEMORY X
FFEF FEFFH
FFFF FFOOH
INITIALIZATION BOOT RECORD
FFFF FF2CH
FFFF FF2DH
\[ RESERVED MEMORY \[
FFFF FFFFH 232 -1

(4 GBYTES)
270710-001-04

Figure 2.3. Address Space

Address space can be mapped to read-write memory, read-only memory and memory-mapped
I/O. The architecture does not define a dedicated, addressable 1/0 space. There are no
subdivisions of the address space such as segments. For the purpose of memory management,
an external memory management unit (MMU) may subdivide memory into pages or restrict
access to certain areas of memory to protect a kernel’s code, data and stack. However, the
processor views this address space as linear.

An address in memory is a 32-bit value in the range OH to FFFFFFFFH. Depending on the
instruction, it can be used to reference in memory a single byte, half-word (2 bytes), word
(4 bytes), double-word (8 bytes), triple-word (12 bytes) or quad-word (16 bytes). Refer to load
and store instruction descriptions in Chapter 9, Instruction Set Reference for multiple-byte
addressing information.
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Memory Requirements

The architecture requires that external memory have the following properties:
e Memory must be byte-addressable.

e No memory is mapped at reserved addresses which are specifically used by an
implementation.

e Memory must guarantee indivisible access (read or write) for addresses that fall within 16
byte boundaries.

e Memory must guarantee atomic access for addresses that fall within 16 byte boundaries.

The latter two capabilities — indivisible and atomic access — are required only when multiple
processors or other external agents, such as DMA or graphics controllers, share a common
memory. Definitions follow:

indivisible access Guarantees that a processor, reading or writing a set of memory
locations, completes the operation before another processor or
external agent can read or write the same location. The processor
requires indivisible access within an aligned 16 byte block of
memory.

atomic access A read-modify-write operation. Here the external memory system
must guarantee that — once a processor begins a read-modify-write
operation on an aligned, 16 byte block of memory — it is allowed to
complete the operation before another processor or external agent is
allowed access to the same location. An atomic memory system can
be implemented by using the LOCK signal to qualify hold requests
from external bus agents. The LOCK signal is asserted for the
duration of an atomic memory operation. (See Chapter 10, The Bus
Controller.)

The address space upper 16 Mbytes — addresses FFO00000H through FFFFFFFFH — are
reserved for implementation-specific functions. In general, programs can access this address
space section unless an implementation specifically uses the memory or forbids access.

This address range is termed “reserved” so future 1960 architecture implementations may use
these addresses for special functions such as mapped registers or data structures. Therefore, to
ensure complete object level compatibility, portable code must not access or depend on values
in this region. The initialization boot record is located in reserved memory of the 19960 CA
microprocessor. (See Figure 2.3.)

The 1960 CA component requires some special consideration when using the lower 1 Kbyte of
address space (addresses 0000H-03FFH). Loads and stores directed to these addresses access
internal memory; instruction fetches from these addresses are not allowed for the 19960 CA
microprocessor. (See Internal Data RAM in this chapter.)
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Data and Instruction Alignment in the Address Space

Instructions, program data and architecturally defined data structures can be placed anywhere
in non-reserved address space while adhering to these alignment requirements:

¢ Align instructions on word boundaries.

e Align all architecture defined data structures on the boundaries specified in Table 2.3.

e Align instruction operands for the atomic instructions (atadd, atmod) to word boundaries
in memory.

The 1960 CA microprocessor does not require that load and store data be aligned in memory. It

can handle a non-aligned load or store request by either of two methods:

e It can automatically service a non-aligned memory access with microcode assistance (see
Chapter 10, Bus Controller).

e It can generate an operation unaligned fault when a non-aligned access is detected.

The method for handling non-aligned accesses is selected at initialization based on the value of
Fault Configuration Word in the Process Control Block (see Chapter 14, Initialization and
System Requirements).

Table 2.3. Alignment of Data Structures in the Address Space

Data Structure Alignment

System Procedure Table 4 byte

Interrupt Table 4 byte

Fault Table 4 byte

Control Table 16 byte

User Stack 16 byte

Supervisor Stack 16 byte

Interrupt Stack 16 byte

Process Control Block 16 byte

Initialization Boot Record Fixed at FFFF FFOOH

Byte, Word and Bit Addressing

The processor provides instructions for moving data blocks of various lengths from memory to
registers (load) and from registers to memory (store). Allowable sizes for blocks are bytes,
half-words (2 bytes), words (4 bytes), double words, triple words and quad words. For
example, stl (store long) stores an 8 byte (double word) data block in memory.

The most efficient way to move data blocks longer than 16 bytes is to move them in quad-word
increments, using quad-word instructions ldq and stq.
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When a data block is stored in memory, normally the block’s least significant byte is stored at
a base memory address and the more significant bytes are stored at successively higher byte
addresses. This method of ordering bytes in memory is referred to as “little endian” ordering.

The 1960 CA microprocessor also provides the option for ordering bytes in an opposite manner
in memory. The block’s most significant byte is stored at the base address and the less
significant bytes are stored at successively higher addresses. This byte ordering scheme,
referred to as “big endian,” applies to data blocks which are short words or words. For more
about byte ordering, see Chapter 10, Bus Controller.

When loading a byte, half word or word from memory to a register, the block’s least
significant bit is always loaded in register bit 0. When loading double words, triple words and
quad words, the least significant word is stored in the base register. The more significant words
are then stored at successively higher numbered registers. Bits can only be addressed in data
that resides in a register; bit 0 in a register is the least significant bit, bit 31 is the most
significant bit.

Internal Data RAM

Internal data RAM is mapped to the address space lower 1 Kbyte (0000H to O3FFH). Loads
and stores, with target addresses in internal data RAM, operate directly on the internal data
RAM; no external bus activity is generated. Data RAM allows time critical data storage and
retrieval without dependence on external bus performance. The lower 1 Kbyte of memory is
data memory only. Instructions cannot be fetched from the internal data RAM. Instruction
fetches directed to the data RAM cause a type mismatch fault to occur.

Some internal data RAM locations are reserved for alternate functions other than general data
storage (Figure 2.3). When the DMA controller is active, 32 bytes of data RAM are reserved
for each channel in use. Additionally, 64 bytes of data RAM may be used to cache specific
interrupt vectors. The word at location 0000H is always reserved for the cached NMI vector.
With the exception of the cached NMI vector, other reserved portions of the data RAM can be
used for data storage when the alternate function is not used.

Local register cache size is specified by the value of the Register Cache Configuration Word in
the Process Control Block (PRCB; see Chapter 14, Initialization and System Requirements for
PRCB description.) The first five local register sets are cached internally; if more than five sets
are to be cached, then the local register cache can be extended into the internal data RAM. Up
to ten more sets, occupying up to 640 bytes of data RAM, can be used. When extended, each
new register set consumes 16 words of internal data RAM beginning at the highest data RAM
address. The user program is responsible for preventing any corruption to the areas of internal
RAM set aside for the register cache. (See Chapter 5, Procedure Calls.)

Internal RAM’s first 256 bytes (0000H to OOFFH) are user mode write protected. This data
RAM can be read while executing in user or supervisor mode; however, RAM can only be
modified in supervisor mode. Writes to these locations while in user mode cause a type
mismatch fault to be generated. This feature provides supervisor protection for DMA and
Interrupt functions which use internal RAM (see User-Supervisor Protection Model in this
chapter). User mode write protection is optionally selected for the rest of the data RAM
(0100H to 03FFH) by setting the Bus Configuration Register (BCON) RAM protection bit.
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Instruction Cache

The 1960 CA component’s instruction cache enhances performance by reducing the number of
instruction fetches from external memory. The cache provides fast execution of cached code
and loops of code in the cache and also provides more bus bandwidth for data operations in
external memory.

The instruction cache is a | Kbyte, two-way set associative cache, organized in lines of eight
32 bit words. To optimize cache updates when branches or interrupts are executed, each word
in the line has a separate valid bit. Cache misses cause the processor to issue either double- or
quad-word fetches to update the cache. Refer to Appendix A, Optimizing Code for the i960 CA
Microprocessor for a thorough discussion of the instruction cache operation.

Bus snooping is not implemented with the 1960 CA cache. The cache does not detect
modification to program memory by loads, stores or actions of other bus masters. Several
situations may require program memory modification, such as uploading code at initialization
or uploading code from a backplane bus or a disk.

To achieve cache coherence, instruction cache contents can be invalidated after code
modification is complete. The sysctl instruction is used to invalidate the instruction cache for
the 1960 CA component. sysctl is issued with an invalidate-instruction-cache message type.
(See System Control Functions later in this chapter.)

The user program is responsible for synchronizing a program with the code modification and
cache invalidation. In general, a program must ensure that modified code space is not accessed
until modification and cache-invalidate is completed.

Instruction cache can be turned off, causing all instruction fetches to be directed to external
memory. Disabling the instruction cache is useful for debugging or monitoring a system at the
instruction prefetch level. To disable the instruction cache, sysctl is executed with the
configure-instruction-cache message (see System Control Functions later in this chapter.)

When the cache is disabled, the processor depends on a 16 word instruction buffer to provide
decoding instructions. The instruction buffer is organized as two sets of two way set
associative cache, with a four word line size. When the main cache is disabled, small loops of
code may still execute entirely within the instruction buffer.

The processor can be directed to load a block of instructions into the cache and then disable all
normal updates to this load cache portion. This cache load-and-lock mechanism is provided to
optimize interrupt latency and throughput. The first instructions of time-critical interrupt
routines are loaded into the locked cache. The interrupt, when serviced, is directed to the
locked cache portion. No external accesses are required for these instructions when the
interrupt is serviced.

Only interrupts can be directed to fetch instructions from the instruction cache’s locked
portion. Other causes of program redirection always fetch from the normal memory hierarchy,
even if the target address of the redirection is represented in the locked cache. When bit 1 of an
interrupt vector is set to 1, the interrupt is fetched from the instruction cache’s locked portion.
Execution continues from the locked cache until a miss occurs, such as a branch, call or return
to code outside of the locked space. If an interrupt directed to the locked cache results in a
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miss, the targeted instruction is fetched from the normal memory hierarchy. See Chapter 6,
Interrupts for more details on the cache load-and-lock feature.

The full 1 Kbyte cache or 512 bytes of the cache can be configured to load and lock. When
only one half of the cache is loaded and locked, the other half acts as a normal two way set
associative cache. Normally, an application locks only 512 bytes. Locking the full 1 Kbyte
cache means that all instruction fetches come from external memory except for interrupts
directed to the locked cache.

sysctl is issued with a configure-instruction-cache message type to select the load and lock
mechanism. When the lock option is selected, an address is specified which points to a memory
block which is loaded into the locked cache. See System Control Function later in this chapter.

PROCESSOR-STATE REGISTERS

The architecture defines four 32 bit registers that contain status and control information. These
registers, defined in this section, are:

e Instruction Pointer (IP) register e Arithmetic Controls (AC) register

e Process Controls (PC) register e Trace Controls (TC) register

Instruction Pointer (IP) Register

The IP register contains the address of the instruction currently being executed. This address is
32 bits long; however, since instructions are required to be aligned on word boundaries in
memory, the IP’s two least-significant bits are always O (zero).

All 1960 instructions are either one or two words long. The IP gives the address of the lowest-
order byte of the first word of the instruction.

The IP register cannot be read directly. However, the IP-with-displacement addressing mode
allows the IP to be used as an offset into the address space. This addressing mode can also be
used with the Ida (load address) instruction to read the current IP value.

When a break occurs in the instruction stream — due to an interrupt, procedure call or fault —
the IP of the next instruction to be executed is stored in local register r2 which is usually
referred to as the return IP or RIP register. Refer to Chapter 5, Procedure Calls for further
discussion of this operation.

Arithmetic Controls (AC) Register

The AC register (Figure 2.4) contains condition code flags, integer overflow flag, mask bit and
a bit that controls faulting on imprecise faults. Unused AC register bits are reserved.
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CONDITION CODE BITS - AC.cc
(SEE TABLES 2-4, 2-5, AND 2-6)
INTEGER-OVERFLOW FLAG - AC.of

(0) NO OVERFLOW
(1) OVERFLOW
INTEGER OVERFLOW MASK BIT — AC.om
(0) NO MASK
(1) MASK
NO-IMPRECISE-FAULTS BIT — AC.nif |
(0) SOME FAULTS ARE IMPRECISE
(1) ALL FAULTS ARE PRECISE

n
ojoo o

28 24 20 16 12 8 4
ARITHMETIC CONTROLS REGISTER (AC)

RESERVED
(INITIALIZE TO 0)
270710-001-05

Figure 2.4. Arithmetic Controls (AC) Register

Initializing and Modifying the AC Register

At initialization, the AC register is loaded from the Initial AC image field in the Process
Control Block (see Chapter 14, Initialization and System Requirements). Reserved bits are set
to 0 in the AC Register Initial Image. After initialization, software must not modify or depend
on the AC register’s reserved location. After initialization, the modify arithmetic controls
(modac) instruction allows any of the register bits to be examined and modified. This
instruction provides a mask operand that can be used to limit access to the register’s specific
bits or groups of bits, such as the reserved bits.

The processor automatically saves and restores the AC register when it services an interrupt or
handles a fault. The processor saves the current AC register state in an interrupt record or fault
record then restores the register upon returning from the interrupt or fault handler.

Condition Code

The processor sets the AC register’s condition code flags (bits 0-2) to indicate the results of
certain instructions — usually compare instructions. Other instructions, such as conditional
branch instructions, examine these flags and perform functions according to the state of the
condition code. Once the processor sets the condition code flags, the flags remain unchanged
until another instruction executes that modifies the field.

Condition code flags show true or false conditions, inequalities (greater than, equal or less than
conditions) or carry and overflow conditions for the extended arithmetic instructions. To show
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intal.

true or false conditions, the processor sets the flags as shown in Table 2.4. To show equality
and inequalities, the processor sets the condition code flags as shown in Table 2.5.

Table 2.4. Condition Codes for True or False Conditions

Condition Code Condition
010, true
000, false

Table 2.5. Condition Codes for Equality and Inequality Conditions

Condition Code Condition
000, unordered (false)
001, greater than (true)
010, equal
100, less than

NOTE

Some implementations of the i960 architecture provide integrated floating point processing. The
terms ordered and unordered are used when comparing floating point numbers. If, when
comparing two floating point values, one of the values is a NaN (not a number), the relationship
is said to be “unordered.” The 1960 CA microprocessor does not implement the floating point
processor on-chip.

To show carry out and overflow, the processor sets the condition code flags as shown in
Table 2.6.

Table 2.6. Condition Codes for Carry Out and Overflow

Condition Code Condition
01X, carry out
0X1, overflow

Certain instructions (such as the branch if instructions) use a 3 bit mask to evaluate the
condition code flags. For example, the branch-if-greater-or-equal instruction (bge) uses a mask
of 011, to determine if the condition code is set to either greater than or equal. These masks
cover the additional conditions of greater-or-equal (011;), less-or-equal (110;) and not-equal
(101;). The mask is part of the instruction opcode and the instruction performs a bitwise AND
of the mask and condition code.
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Integer Overflow

The AC register integer overflow flag (bit 8) and integer overflow mask bit (bit 12) are used in
conjunction with the arithmetic-integer-overflow fault. The mask bit disables fault generation.
When the fault is masked, the processor — instead of generating a fault — sets the integer
overflow flag when integer overflow is encountered. If the fault is not masked, the fault is
allowed to occur and the flag is not set.

Once the processor sets this flag, it never implicitly clears it; the flag remains set until the
program clears it. Refer to the discussion of the arithmetic-integer-overflow fault in Chapter 7,
Faults for more information about the integer overflow mask bit and flag.

No Imprecise Faulits

The no imprecise faults bit (bit 15) determines whether or not faults are allowed to be
imprecise. If set, all faults are required to be precise; if clear, certain faults can be imprecise.
(See Chapter 7, Faults for more information about precise and imprecise faults.)

Process Controls (PC) Register

The process controls (PC) register (Figure 2.5) contains information to control processor
activity and show the processor’s current state. This register’s various functions are described
in this section.

Initializing and Modifying the PC Register

Any of the following three methods can be used to change bits in the PC register:
e Modify process controls instruction (modpc)
e Alter the saved process controls prior to a return from an interrupt handler

e Alter the saved process controls prior to a return from a fault handler.

modpc directly reads and modifies the PC register. The processor must be in supervisor mode
to execute this instruction; a type-mismatch fault is generated if modpc is executed in user
mode. As with modac, modpc provides a mask operand that can be used to limit access to
specific bits or groups of bits in the register.

In the latter two methods, the interrupt or fault handler changes process controls in the interrupt
or fault record that is saved on the stack. Upon return from the interrupt or fault handler, the
modified process controls are copied into the PC register. The processor must be in supervisor
mode prior to return for modified process controls to be copied into the PC register.
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TRACE-ENABLE BIT - PC.te
(0) NO TRACE FAULTS
(1) GENERATE TRACE FAULTS

EXECUTION-MODE FLAG - PC.em
(0) USER MODE
(1) SUPERVISOR MODE

TRACE-FAULT-PENDING FLAG - PC.tfp
(0) NO FAULT PENDING
(1) FAULT PENDING

STATE FLAG - PC.s
(0) EXECUTING
(1) INTERRUPTED

PRIORITY FIELD - PC.p

(0-31) PROCESS PRIORITY

28 24 0

PROCESS CONTROLS REGISTER (PC)

RESERVED
(DO NOT MODIFY)

270710-002-03

Figure 2.5. Process Controls (PC) Register

NOTE

When process controls are changed as described above, the processor recognizes the changes
immediately except for one situation: if modpc is used to change the trace enable bit, the
processor may not recognize the change before the next four instructions are executed.

After initialization (hardware reset), the process controls reflect the following conditions:
priority = 31, execution mode = supervisor, trace enable = off, state = interrupted. When the
processor is reinitialized via the system control instruction and reinitialize message, the PC
register reflects the same conditions, except that the processor retains the same priority as
before reinitialization.

Bits 2-7, 9-12, 14, 15 and 21-31 are reserved. These bits should never be set to zero and user
software should not depend on the value of the reserved bits. Do not use modpc to directly
modify execution mode, trace fault pending and state flags.

Execution Mode
PC register execution mode flag (bit 1) indicates that the processor is operating in either user
mode (0) or supervisor mode (1). The processor automatically sets this flag on a system call

when a switch from user mode to supervisor mode occurs and it clears the flag on a return from
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supervisor mode. (User and supervisor modes are described in User and Supervisor Protection
Model.)

Program State

PC register state flag (bit 13) indicates processor state: executing (0) or interrupted (1). If the
processor is servicing an interrupt, its state is interrupted. Otherwise, the processor’s state is
executing.

While in the interrupted state, the processor can receive and handle additional interrupts. When
nested interrupts occur, the processor remains in the interrupted state until all interrupts are
handled and then switches back to executing state on the return from the initial interrupt
procedure.

Priority

PC register priority field (bits 16 through 20) indicates the processor’s current executing or
interrupted priority. The architecture defines a mechanism for prioritizing execution of code,
servicing interrupts and servicing other implementation-dependent tasks or events. This
mechanism defines 32 priority levels, ranging from O (the lowest priority level) to 31 (the
highest). The priority field always reflects the current priority of the processor. Software can
change this priority using the modpec instruction.

The processor uses the priority field to determine whether to service an interrupt immediately
or to post the interrupt. The processor compares the priority of a requested interrupt with the
current process priority. When the interrupt priority is greater than the current process priority
or equal to 31, the interrupt is serviced; otherwise it is posted. When an interrupt is serviced,
the process priority field is automatically changed to reflect the priority of the interrupt. (See
Chapter 6, Interrupts)

Trace Status and Control

PC register trace enable bit (bit 0) and trace fault pending flag (bit 10) control the tracing
function. The trace enable bit determines whether trace faults are to be generated (1) or not
generated (0). The trace fault pending flag indicates that a trace event has been detected (1) or
not detected (0). The trace controls are discussed in Chapter 8, Tracing and Debugging.

Trace Controls (TC) Register

The TC register, in conjunction with the PC register, controls processor tracing facilities. It
contains trace mode enable bits and trace event flags which are used to enable specific tracing
modes and record trace events, respectively. Trace controls are described in Chapter 8, Tracing
and Debugging.
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USER SUPERVISOR MODEL

The capability of a separate user and supervisor execution mode creates a code and data
protection mechanism referred to as the user supervisor protection model. This mechanism
allows code, data and stack for a kernel (or system executive) to reside in the same address
space as code, data and stack for the application. The mechanism restricts access to all or parts
of the kernel by the application code. This protection mechanism prevents application software
from inadvertently altering the kernel.

Supervisor Mode Resources

The processor can be in either of two execution modes: user or supervisor. Supervisor mode is
a privileged mode which provides several additional capabilities over user mode.

When the processor switches to supervisor mode, it also switches to the supervisor stack.
Switching to the supervisor stack helps maintain a kernel’s integrity. For example, it allows
system debugging software or a system monitor to be accessed, even if an applications
program destroys its own stack.

When an instruction executed in supervisor mode causes a bus access to occur, an external
supervisor pin SUP is asserted for loads, stores and instruction fetches. Hardware
protection of system code or data can be implemented by using the supervisor pin to
qualify write accesses to the protected memory (see Chapter 10, Bus Controller).

In supervisor mode, the processor is allowed access to a set of supervisor-only functions
and instructions. For example, the processor uses supervisor mode to handle interrupts and
trace faults. Operations which can modify DMA or interrupt controller behavior or
reconfigure bus controller characteristics can only be performed in supervisor mode. These
functions include modification of SFRs, control registers or internal data RAM which is
dedicated to the DMA and interrupt controllers. A fault is generated if supervisor-only
operations are attempted while the processor is in user mode (see Chapter 7, Faults).
Table 2.7 lists supervisor-only operations and the fault which is generated if the operation
is attempted in user mode.

The PC register execution mode flag specifies processor execution mode. The processor
automatically sets and clears this flag when it switches between the two execution modes.

Table 2.7. Supervisor-Only Operations and Faults Generated in User Mode

Supervisor-Only Operation User-Mode Fault
modpc (modify process controls) type-mismatch
sysctl (system control) constraint-privileged
sdma (setup DMA) constraint-privileged
SFR as instruction operand type-mismatch
Protected internal data RAM write type-mismatch
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Using the User-Supervisor Protection Model

A program switches between user mode and supervisor mode by making a system-supervisor
call (also referred to as a supervisor call). A system-supervisor call is a call executed with the
call-system instruction (calls). With the calls instruction, the IP for the called procedure comes
from the system procedure table. An entry in the system procedure table can specify an
execution mode switch to supervisor mode when the called procedure is executed. The calls
instruction and the system procedure table thus provide a tightly controlled interface to
procedures which can execute in supervisor mode. Once the processor switches to supervisor
mode, it remains in that mode until a return is performed to the procedure that caused the
original mode switch.

Interrupts and some faults also cause the processor to switch from user to supervisor mode.
When the processor handles an interrupt, it automatically switches to supervisor mode.
However, it does not switch to the supervisor stack. Instead, it switches to the interrupt stack.

Figure 2.6 shows a system which implements the user-supervisor protection model to protect
kernel code and data. The code and data structures in the shaded areas can only be accessed in
supervisor mode.

In this example, kernel procedures are accessed through the system procedure table with
system-supervisor calls. These procedures execute in supervisor mode. Some application
procedures are also called through the system procedure table using a system-local call. Fault
procedures are executed in supervisor mode by directing the faults through the system
procedure table. Interrupt procedures, which are likely to modify SFRs, process controls or use
other supervisor operations, are executed in supervisor mode. The interrupt stack and
supervisor stack are insulated from the user stack in this system.

If an application does not require user-supervisor protection mechanism, the processor can
always execute in supervisor mode. At initialization, the processor is placed in supervisor
mode prior to executing the first instruction of the application code. The processor then
remains in supervisor mode indefinitely, as long as no action is taken to change execution
mode to user mode. The processor does not need a user stack in this case.

SYSTEM CONTROL FUNCTIONS

System control functions are a group of operations specific to the i960 CA component. All of
these operations are performed by issuing the system control (sysctl) instruction. The sysctl
instruction is a general purpose instruction and performs a variety of functions. A message type
field 1s an operand of the instruction that determines which function is performed. The system
control functions include posting interrupts, configuring the instruction cache, invalidating the
instruction cache, software reinitialization and loading control registers.
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Figure 2.6. Example Application of the User-Supervisor Protection Model

sysctl Instruction Syntax

sysctl instruction syntax is generalized because the function of the operands differ, depending
on message type selection. The instruction takes three source operands (Figure 2.7). The
message type field is always the second byte of the source 1 operand. The instruction’s
generalized operand fields, designated as fields 1-4, are interpreted differently or may not be

used depending on the function selected in the message type field (Table 2.8).
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31 16 15 8 7 0
SRC1 I FIELD 2 MESSAGE FIELD 1 I
31 0
SRC2 I FIELD 3 I
31 0
SRC/DST [ |
(USED AS SRC) FIELD 4

270710-001-07

Figure 2.7. Source Operands for sysctl

sysctl is a supervisor only instruction. Executing this instruction while in user mode generates
the type-mismatch fault.

Table 2.8. System Control Message Types and Operand Fields

Source 1 Source 2 Source 3
Message Type Field 1 Field 2 Field 3 Field 4
Request Interrupt 00H Vector No. | unused unused unused
Invalidate Cache OlH unused unused unused unused
Configure Cache 02H Mode unused Cache load | unused
(Table 2.9) address

Reinitialize 03H unused unused Ist Inst. PRCB

address address
Load Control 04H Register unused unused unused
Register Group No.

NOTE

The processor ignores unused sources and fields.

System Control Messages

Five system control messages are defined in the sections that follow. The request interrupt
message causes an interrupt to be serviced or posted. The configure cache message disables or
locks instructions in a portion of the instruction cache. The invalidate cache message causes the
contents of the instruction to be purged. The reinitialize message restarts the processor. The

load control register message loads the on-chip control registers.

2-23




II'Itel® PROGRAMMING ENVIRONMENT

Request Interrupt

Executing sysctl with a message type of 00H causes an interrupt to be requested. Field 1 of the
instruction specifies the vector number of the interrupt requested. The remaining fields are not
defined. Requesting an interrupt with sysctl causes the following actions to occur:

e The core performs an atomic write to the interrupt table and sets the bits in the pending
interrupts and pending priorities fields that correspond to the requested interrupt. This
action posts the software requested interrupt.

e The core updates the software priority register with the value of the highest pending
priority from the interrupt table. This may be the priority of the interrupt which was just
posted. This action causes the interrupt to be serviced if its priority is greater than the
current process priority or equal to 31.

Requesting an interrupt with a priority equal to 0 causes a check for posted interrupts in the
interrupt table. See Chapter 6, Interrupts for more information concerning interrupts requested
by software.

Invalidate Cache

Executing sysctl with a message type of O1H invalidates all cache entries. This mode clears all
valid cache bits. After the operation, the cache is updated normally as misses occur. The mode
is provided to allow a program to load or modify program space; it ensures that instructions are
fetched from the modified space and not the cache.

Configure Instruction Cache

Executing sysctl with a message type of 02H selects cache mode. One of four cache modes are
selected with the configure instruction cache message:

1. 1 Kbyte normal cache

2. cache disabled

3. load and lock 1 Kbyte of the cache

4. load and lock 512 bytes of the cache and 512 bytes of normal cache

The particular configure cache operation performed is determined by sysctl field 1 value

(Table 2.9). Field 3 is a word-aligned 32-bit address when a load and lock mode is selected;
otherwise, this field is ignored. Text following the table further defines the modes.
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Table 2.9. Cache Configuration Modes

Mode Field Mode Description

000, 1 Kbyte normal cache enabled

XX1, 1 Kbyte cache disabled (execute off-chip)

100, Load and lock 1 Kbyte cache (execute off-chip)

110, Load and lock 512 bytes, 512 bytes normal cache enabled
010, Reserved

Mode 000, configures the cache as a | Kbyte two way set associative cache. Mode XX1,
completely disables the cache. Either of these cache configurations can be specified when the
processor initializes by programming the Cache Configuration Word in the PRCB (see Chapter
14, Initialization and System Requirements). The modes allow the cache to be turned off
temporarily to aid in debugging.

When the cache is disabled, the processor depends on a 16 word instruction buffer to provide
decoding instructions. The instruction buffer operates as a small cache, organized as two sets
of two way set associative cache, with a four word line size. When the main cache is disabled,
small code loops may still execute entirely within the instruction buffer.

Modes 100, and 110, select cache load-and-lock options. When one of these modes is selected,
either 512 bytes or the full 1 Kbyte cache is loaded with instructions and locked against further
updates. Field 3 of the sysctl instruction must contain an address of a quad-word aligned block
of memory, in the external address space, which is represented in the cache. The instructions
loaded into the cache can only be accessed by selected interrupts which vector to the addresses
of these instructions. The load-and-lock mechanism selectively optimizes latency and
throughput for interrupts. (See Chapter 6, Interrupts.)

Reinitialize Processor

Executing sysctl with message type 03H reinitializes the processor. sysctl ficlds 3 and 4 must
contain, respectively, the First Instruction Pointer and the PRCB Pointer. Reinitialization
bypasses the 1960 CA processor’s built-in self-test. The PRCB is processed and the processor
branches to the first instruction (see Chapter 14, Initialization and System Requirements for a
complete description of the processor reinitialization steps).

The reinitialize message is useful for changing the Initial Memory Image. For example, at
initialization, the interrupt table is moved to RAM so the interrupts may be posted in the table’s
pending interrupts and priorities fields. In this case, the reinitialize message specifies a new
PRCB which contains a pointer to the new interrupt table in RAM (see Chapter 14,
Initialization and System Requirements for a description of reinitialization and relocating data
structures).
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Load Control Registers

Executing sysctl with message type 04H causes the on-chip control registers to be loaded with
data from external memory. Each sysctl invocation causes four words from the Control
Register Table in external memory to be read and then placed in their respective internal
control registers. Field 1 must contain the number of the register group to be loaded.
Table 2.10 shows register group number and the registers represented in the Control Register
Table.

At initialization, or when the processor is reinitialized, all groups in the control table are
automatically loaded into the on-chip control registers.
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Table 2.10. Control Register Table and Register Group Numbers

Byte Offset
Group in Table Control Register Loaded
00H 00H IP Breakpoint Register 0 (IPB0)
04H IP Breakpoint Register 1 (IPB1)
08H Data Address Breakpoint 0 (DABO)
OCH Data Address Breakpoint 1 (DAB1)
01H 10H Interrupt Map Register 0 (IMAPO)
14H Interrupt Map Register 1 (IMAP1)
18H Interrupt Map Register 2 (IMAP2)
ICH Interrupt Control Register (ICON)
02H 20H Memory Region 0 Configuration (MCONO)
24H Memory Region 1 Configuration (MCON1)
28H Memory Region 2 Configuration (MCON?2)
2CH Memory Region 3 Configuration (MCON3)
03H 30H Memory Region 4 Configuration (MCON4)
34H Memory Region 5 Configuration (MCONS)
38H Memory Region 6 Configuration (MCONG6)
3CH Memory Region 7 Configuration (MCON7)
04H 40H Memory Region 8 Configuration (MCONS)
44H Memory Region 9 Configuration (MCONO9)
48H Memory Region 10 Configuration (MCON10)
4CH Memory Region 11 Configuration (MCONI11)
05H 50H Memory Region 12 Configuration (MCON12)
54H Memory Region 13 Configuration (MCONI13)
58H Memory Region 14 Configuration (MCON14)
5CH Memory Region 15 Configuration (MCONI15)
06H 60H Reserved
64H Breakpoint Control Register (BPCON)
68H Trace Controls Register (TC)
6CH Bus Configuration Control (BCON)
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CHAPTER 3

DATA TYPES AND MEMORY ADDRESSING MODES

DATA TYPES

The instruction set references or produces several data lengths and formats. The 1960
architecture defines the following data types:

e Integer (8, 16, 32 and 64 bits)
e Triple Word (96 bits)

e Bit

Ordinal (unsigned integer 8, 16, 32 and 64 bits)
Quad Word (128 bits)
Bit Field

Figure 3.1 shows 1960 architecture data types and the length and numeric range of each.

8
[ | srreo | | BITS
31 0 7 0
L tenarn—] 16
BITS SHORT
LSB OF 15 0
BIT FIELD 32
BITS WOF‘DI
31 0
64
s LONG |
63 0
96
oS | | TRIPLE WORD |
128
BITS | | | QuUAD WORD |
CLASS DATA TYPE LENGTH RANGE
BYTE INTEGER 8 BITS 27 1027 A
NUMERIC SHORT INTEGER 16 BITS 215 70 2151
(INTEGER) INTEGER 32 BITS 231 10 2314
LONG INTEGER 64 BITS 263 10 63 1
BIT ORDINAL 8 BITS 0710 28 4
NUMERIC SHORT ORDINAL 16 BITS 0TO 2164
(ORDINAL) ORDINAL 32 BITS 0 TO 2324
LONG ORDINAL 64 BITS 0 TO 2641
BIT 1BIT
NON-NUMERIC BIT FIELD 1-32 BITS NA
TRIPLE WORD 96 BITS
QUAD WORD 128 BITS
270710-001-08

Figure 3.1. Data Types and Ranges
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Integers

Integers are signed whole numbers which are stored and operated on in two’s complement
format by the integer instructions. Most integer instructions operate on 32-bit integers. Byte
and short integers are only referenced by the byte and short classes of the load and store
instructions. None of the i960 CA’s instructions reference or produce the long-integer data
type. The architecture defines four integer sizes:

Integer size Descriptive name
8 bit byte integers
16 bit short integer
32 bit integers
64 bit long integers

NOTE
HLL compilers may define long integer types differently than defined by the i960 architecture.

Integer load or store size (byte, short or word) determines how sign extension or data
truncation is performed when data is moved between registers and memory.

For instructions ldib (load integer byte) and ldis (load integer short), a byte or short word in
memory is considered a two’s complement value. The value is sign extended and placed in the
32-bit register which is the destination for the load.

For instructions stib (store integer byte) and stis (store integer short), a 32-bit two’s
complement number in a register is stored to memory as a byte or short-word. If register data is
too large to be stored as a byte or short-word, the value is truncated and the integer overflow
condition is signalled. When an overflow occurs, an AC register flag is set or the integer
overflow fault is generated. Chapter 7, Faults, describes the integer overflow fault.

For instructions ld (load word) and st (store word), data is moved directly between memory
and a register with no sign extension or data truncation.

Ordinals

Ordinals, an unsigned integer data type, are stored and operated on as positive binary values.
The processor recognizes four ordinal sizes:

Ordinal size Descriptive name
8 bit byte ordinals
16 bit short ordinals
32 bit ordinals
64 bit long ordinals

The large number of instructions which perform logical, bit manipulation and unsigned
arithmetic operations reference 32-bit ordinal operands. When ordinals are used to represent
Boolean values, a 1, represents a TRUE and a 0, represents a FALSE. Several extended
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arithmetic instructions reference the long ordinal data type. Only load and store instructions
reference the byte and short ordinal data types.

Sign and sign extension is not a consideration when ordinal loads and stores are performed; the
values may, however, be zero extended or truncated. A short or byte load to a register causes
the value loaded to be zero extended to 32 bits. A short or byte store to memory may cause an
ordinal value in a register to be truncated to fit its destination in memory. No overflow
condition is signalled in this case.

Bits and Bit Fields

The processor provides several instructions that perform operations on individual bits or bit
fields within register operands. An individual bit is specified for a bit operation by giving its bit
number and register. The least significant bit of a 32-bit register is bit O; the most significant bit
is bit 31.

A bit field is a contiguous sequence of bits within a register operand. Bit fields do not span
register boundaries. A bit field is defined by giving its length in bits (0-31) and the bit number
of its lowest numbered bit (0-31). In other words, the bit field is any contiguous group of bits,
up to 31 bits long, in a 32-bit register.

NOTE

Loads and stores on bit and bit field data are normally performed with the ordinal load and store
instructions. The integer load and store instructions operate on two’s complement numbers.
Depending on the value, a byte or short integer load can result in sign extension of data in a
register; a byte or short store can signal an integer overflow condition.

Triple and Quad Words

Triple and quad words refer to consecutive words in memory or in registers. Triple- and quad-
word loads, stores and move instructions use this data type. These instructions facilitate data
block movement. No data manipulation (sign extension, zero extension or truncation) is
performed in these instructions.

Triple- and quad-word data types can be considered a superset of — or as encompassing — the
other data types described. The data in each word subset of a quad-word is likely the operand
or result of an ordinal, integer, bit or bit field instruction.

Data Alignment

Data in registers and memory must adhere to specific alignment requirements:
¢ Align long-word operands in registers to double-register boundaries.

e Align triple- and quad-word operands in registers to quad-register boundaries.

For the 1960 CA component, data alignment in memory is not required. Unaligned memory
accesses, by programmable option, can cause a fault or be handled automatically. Refer to
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Chapter 2, Programming Environment for a complete description of alignment requirements
for data and instructions.

MEMORY ADDRESSING MODES

The processor provides nine modes for addressing operands in memory. Each addressing mode
is used to reference a byte in the processor’s address space. Table 3.1 shows the memory
addressing modes, a brief description of the elements of the address in each mode and the
assembly code syntax for each mode. These modes are grouped as follows:

e Absolute e Register Indirect

e Index with Displacement e P with Displacement

Table 3.1. Memory Addressing Modes

Mode Description Assembler Syntax
Absolute offset offset exp
Absolute displacement displacement exp
Register Indirect abase (reg)
Register Indirect with abase + offset exp (reg)
offset
Register Indirect with abase + displacement exp (reg)
displacement
Register Indirect with abase + (index*scale) (reg) [reg*scale]
index
Register Indirect with abase + (index*scale) + displacement | exp (reg) [reg*scale]
index and displacement
Index with displacement | (index*scale) + displacement exp [reg*scale]
IP with displacement IP + displacement + 8 exp (IP)

NOTE

reg is register and exp is an expression or symbolic label.

Absolute

Absolute addressing modes allow a memory location to be referenced directly as an offset from
address OH. At the instruction encoding level, two absolute addressing modes are provided:
absolute offset and absolute displacement, depending on offset size:

o For the absolute offset addressing mode the offset is an ordinal number ranging from O to
4095. The absolute offset addressing mode is encoded in the MEMA machine instruction
format.

e For the absolute displacement addressing mode the offset is an integer, called a
displacement, ranging from -231 to 231-1. The absolute displacement addressing mode is
encoded in the MEMB format.
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Encoding level addressing modes and instruction formats are described in Appendix D,
Instruction Set Reference.

At the assembly language level the two absolute addressing modes are combined into one; both
addressing modes use the same syntax. Typically, development tools allow absolute addresses
to be specified through arithmetic expressions (e.g., x + 44) or symbolic labels. After
evaluating an address specified with the absolute addressing mode, the assembler converts the
address into an offset or a displacement and selects the appropriate instruction encoding format
and addressing mode.

Register Indirect

Register indirect addressing modes use a 32-bit value in a register as a base for the address
calculation. The register value is referred to as the address base (designated abase in Table
3.1). Depending on the addressing mode, an optional scaled-index and offset can be added to
this address base.

Register indirect addressing modes are useful for addressing elements of an array or record
structure. When addressing array elements, the abase value gives the first array element
address; an offset (or displacement) selects a particular array element.

In register-indirect-with-index addressing mode, the index is specified by means of a value
placed in a register. This index value is then multiplied by a scale factor. Allowable scale
factors are 1, 2, 4, 8 and 16.

There are two versions of register-indirect-with-offset addressing mode at the instruction
encoding level: register-indirect-with-offset and register-indirect-with-displacement. As with
absolute addressing modes, the addressing mode selected depends on the size of offset from
base address.

At the assembly language level, the assembler allows offset to be specified with an expression
or symbolic label, then evaluates the address to determine whether to use register-indirect-
with-offset (MEMA format) or register-indirect-with-displacement (MEMB format) addressing
mode.

Register-indirect-with-index-and-displacement addressing mode adds both a scaled index and a
displacement to the address base. There is only one version of this addressing mode at the
instruction encoding level; it is encoded in the MEMB instruction format.

Index with Displacement

A scaled index can also be used with a displacement alone. Again, the index is contained in a
register and multiplied by a scaling constant before displacement is added.
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IP with Displacement

This addressing mode is used with load and store instructions to make them IP relative. IP-
with-displacement addressing mode references the next instruction’s address plus the
displacement plus a constant of 8. The constant is added because — in a typical processor
implementation — the address has incremented beyond the next instruction address at the time
of address calculation. The constant simplifies IP-with-displacement addressing mode
implementation.

Addressing Mode Examples

The following examples show how 1960 addressing modes are encoded in assembly language.
Example 3.1 shows addressing mode mnemonics; Example 3.2 illustrates the usefulness of
scaled index and scaled index plus displacement addressing modes. In this example, a
procedure named array_op uses these addressing modes to fill two contiguous memory blocks
separated by a constant offset. A pointer to the top of block is passed to the procedure in g0,
the block size in g1 and the fill data in g2.

Example 3.1. Addressing Mode Mnemonics

st gd,xyz absolute; word from g4 stored at memory
location designated with label xyz.
register indirect; ordinal byte from
memory location given in r3 loaded

into register r4 and zero extended.
register indirect with displacement;
double word from g6,g7 stored at memory
location xyz + gb.

register indirect with index; gquad-word
beginning at memory location r8 + (r9
scaled by 4) loaded into r4 through r7.
register indirect with index and
displacement; word in g3 loaded to mem
location g4 + xyz + (g5 scaled by 2).
index with displacement; load short
integer at memory location xyz + rl2
into rl13 and sign extended.

IP with displacement; store word in r4
at memory location IP + xXyz + 8.

1ldob (r3),r4

stl g6,xyz(g5)

ldg (r8) [r9*4],r4

st g3,xyz(gd) [g5*2]

ldis xyz[rl2*1],rl3

st rd,xyz(IP)

H o H o H H FH O H HH HE H K H H H

3-6
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Example 3.2. Use of Index Plus Scaled Index Mode

array_op:
mov
subi
b

.I34:

st

subi
LI33:

cmpible

ret

g0, r4
1,g9l,r3
.I33

g2, (r4) [r3*4]
g2,0x30(xrd) [r3*4]

1,r3,r3

0,r3,.1I34

# pointer to array is moved to r4
# calculate index for the last array
# element to be filled.

# fill array at index

fill array at index + constant offset

# decrement index

store next array elements if

index 1s not 0
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CHAPTER 4
INSTRUCTION SET SUMMARY

This chapter overviews the 1960 family’s instruction set and 1960 CA processor-specific
instruction set extensions. This chapter describes assembly-language and instruction-encoding
formats, overviews various instruction groups and each group’s instructions.

Refer to Chapter 9, Instruction Set Reference for descriptions of each instruction, including
assembly language syntax, the action taken when the instruction is executed and examples of
how the instruction might be used. Instructions in Chapter 9 are listed in alphabetic order.

INSTRUCTION FORMATS

Instructions described in this reference manual are in two formats: assembly language and
instruction encoding. The following sections provide brief descriptions of these formats.

Assembly Language Format

Throughout this manual, instructions are referred to by their assembly language mnemonics.
For example, the add ordinal instruction is referred to as addo. Examples use Intel 80960
assembler assembly language syntax, consisting of the instruction mnemonic followed by zero
to three operands, separated by commas. Following is an assembly language statement
example for addo. In this example, ordinal operands in global registers g5 and g9 are added
together; the result is stored in g7:

addo g5, g9, g7 # g7 <« g9 + g5

In the assembly languages listing in this chapter, registers are denoted as:
g global register r local register

sf special function register # pound sign precedes a comment

All numbers used as literals or in address expressions are assumed to be decimal. Hexadecimal
numbers are denoted with a Ox prefix (e.g., Oxffff0012). Several assembly language instruction
statement examples follow. Additional assembly language examples are given in Chapter 3,
Data Types and Addressing Modes. Further information about assembly language syntax can
be found in the Intel 80960 Assembler Manual.

subi 3, r5, r6 # r6 <« r5 - 3
setbit 13, g4, gb # g5 < g4 with bit 13 set
lda Oxfab3, rl2 # rl2 « Oxfab3
1d (rd), g3 # g3 ¢« memory location
# pointed to by r4
st gl0, (re)[r7*2] # gl0 ¢« memory location
# pointed to by r6 + 2*r7

4-1




intal. INSTRUCTION SET SUMMARY

Branch Prediction

NOTE

Branch prediction is an implementation-specific feature of the 1960 CA component. Not every
implementation of the 1960 architecture uses the branch prediction bit.

Since branch instruction actions depend on the result of a previous comparison, the architecture
allows a programmer to predict the likely result of the branch operation for increased
performance. The programmer’s prediction is encoded in one bit of the machine language
instruction. 80960 assemblers encode the prediction with a mnemonic suffix: .t = true, .f =
false. Use the .t suffix to speed up execution when an instruction usually takes a branch; use
the .f suffix when an instruction usually does not take a branch.

Because test and conditional-fault instructions also use condition codes, prediction suffixes are
also implemented on these instructions. See Appendix A, Optimizing Code for the i960 CA
Microprocessor for a complete discussion of prediction.

Instruction Encoding Formats

All instructions are encoded in one 32-bit machine language instruction — also known as an
opword — which must be word aligned in memory. An opword’s most significant eight bits
contain the opcode field. The opcode field determines the instruction to be performed and how
the remainder of the machine language instruction is interpreted. Instructions are encoded in
opwords in one of four formats (see Figure 4.1):

register REG Most instructions are encoded in this format. Used primarily for
instructions which perform register-to-register operations.

compare and COBR  An encoding optimization which combines comparison and

branch branch operations into one opword. Separate comparison and
branch operations are also provided as REG and CTRL format
instructions.

control CTRL  Used for branches and calls that do not depend on registers for

address calculation.

memory MEM Used for referencing an operand which is a memory address.

Load and store instructions — and some branch and call
instructions — use this format. MEM format has two encodings:
MEMA or MEMB. Usage depends upon the addressing mode
selected. MEMB-formatted addressing modes use the word in
memory immediately following the instruction opword as a 32-
bit constant. Instruction encoding formats are described in
Appendix D, Instruction Set Reference.

4-2
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31 ) 0
SRC / DEST SOURCE 2 SOURCE 1
l OPCODE [ ADDRESS r ADDRESS I OPCODE ] ADDRESS I REG
31 0
SOURGE 1 SOURGCE 2
I OPCODE [ ADDRESS | S PDRESS I DISPLACEMENT I COBR
31 0
I OPCODE l DISPLACEMENT I CTRL
31 0
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Figure 4.1. Machine-Level Instruction Formats

Instruction Operands
This section identifies and describes operands that can be used with the instruction formats.

Format Operand(s) Description

REG srcl, src2, src/dst srcl and src2 can be global registers, local registers,
special function registers or literals. src/dst is either a
global, local or special function register.

CTRL displacement CTRL format is used for branch and call
instructions. displacement value indicates the target
instruction of the branch or call.

COBR srcl, src2, displacement  srcl, src2 indicate values to be compared;
displacement indicates branch target. srcl can
specify a global register, local register or a literal.
src2 can specify a global, local or special function
register. See Chapter 2, Programming Environment
for discussion of special function registers.

MEM src/dst, efa . o .
f Specifies source or destination register and an

effective address (efa) formed by using the
processor’s addressing modes described in Chapter
3, Data Types and Memory Addressing Modes.
Registers specified in a MEM format instruction
must be either a global or local register.
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INSTRUCTION GROUPS

The 1960 instruction set can be arranged into the following functional groups:

e Data Movement e Arithmetic (Ordinal and Integer) e Logical
e Bit, Bit Field and Byte e Comparison e Branch
e Call/Return e Fault e Debug

e Atomic e Processor Management

Table 4.1 shows the instructions in these groups. The actual number of instructions is greater
than those shown in this list because — for some operations — several unique instructions are
provided to handle various operand sizes, data types or branch conditions. The following
sections briefly overview each group’s instructions.

DATA MOVEMENT

Data movement instructions are used to move data from memory to global and local registers;
from global and local registers to memory; and data among local, global and special function
registers.

NOTE

Rules for register alignment must be followed when using load, store and move instructions that
move 8, 12 or 16 bytes at a time. Refer to the section Memory Address Space in Chapter 2,
Programming Environment for alignment requirements for code portability across
implementations.

4-4
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Table 4.1. i960™ CA Microprocessor Instruction Set Summary

Bit, Bit Field,
Data Movement Arithmetic Logical and Byte
Load Add AND Set Bit
Store Subtract NOT AND Clear Bit
Move Multiply AND NOT Not Bit
Load Address Divide OR Alter Bit
Add with carry Exclusive OR Scan For BitA
Subtract with carry NOT OR Span Over Bit
Extended Multiply | 0T Extract
o NOT Modify
Extended Divide Exclusive NOR Scan Byte For Equal
Remainder NOT
Modulo NAND
Shift
*Extended Shift
Rotate
Comparison Branch Call/Return Fault
Compare Unconditional Branch [Call Conditional Fault
Conditional Compare |Conditional Branch Call Extended Synchronize Faults
Check Bit Compare and Branch |Call System
Compare and Increment Return

Compare and

Branch and Link

Decrement
Test Condition Code
Debug Atomic Processor
Modify Trace Controls | Atomic Add Flush Local Registers

Mark
Force Mark

Atomic Modify

Modify Arithmetic
Controls

Modify Process
Controls

*System Control
*DMA Control

family’s instruction set.

NOTE

Asterisk (*) denotes instructions that are 19960 CA component-specific extensions to the 1960
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Load and Store Instructions

Load instructions listed below copy bytes or words from memory to local or global registers or
to a group of registers. Each load instruction requires a corresponding store instruction to copy
to memory bytes or words from a selected local or global register or group of registers. All
load and store instructions use the MEM format.

Id load word st store word

Idob  load ordinal byte stob store ordinal byte
ldos load ordinal short stos store ordinal short
Idib load integer byte stib store integer byte
ldis load integer short stis store integer short
1dl load long stl store long

1dt load triple stt store triple

ldq load quad stq store quad

Id copies 4 bytes from memory into successive registers; ldl copies 8 bytes; ldt copies 12
bytes; Idq copies 16 bytes.

st copies 4 bytes from successive registers into memory; stl copies 8 bytes; stt copies 12 bytes;
stq copies 16 bytes.

For 1d, 1dob, ldoes, Idib and ldis, the instruction specifies a memory address and register and
the memory address value is copied into the register. The processor automatically extends byte
and short (half-word) operands to 32 bits according to data type. Ordinals are zero-extended;
integers are sign-extended.

For st, stob, stos, stib and stis, the instruction specifies a memory address and register; the
register value is copied into memory. For byte and short instructions, the processor
automatically reformats the source register’s 32-bit value for the shorter memory location.

For stib and stis, this reformatting can cause integer overflow if the register value is too large
for the shorter memory location. When integer overflow occurs, either an integer-overflow
fault is generated or the integer-overflow flag in the AC register is set, depending on the
integer-overflow mask bit setting in the AC register.

For stob and stos, the processor truncates the operand and does not create a fault if truncation
resulted in the loss of significant bits.
Move

Move instructions copy data from a local, global, special function register or group of registers
to another register or group of registers. These instructions use the REG format.

mov move word
movl move long word
movt move triple word
movq move quad word
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Load Address

The Load Address instruction (da) computes an effective address in the address space from an
operand presented in one of the addressing modes. A common use of this instruction is to load
a constant into a register. This instruction uses the MEM format and can operate upon local or
global registers.

On the 1960 CA processor, lda is useful for performing simple arithmetic operations. The
microprocessor’s parallelism allows lda to execute in the same clock as another arithmetic or
logical operation.

ARITHMETIC

Table 4.2 lists arithmetic operations and data types for which the 1960 CA processor provides
instructions. “X” in this table indicates that the microprocessor provides an instruction for the
specified operation and data type. Extended shift right operation is an 19960 CA component-
specific extension to the 1960 family’s instruction set. All arithmetic operations are carried out
on operands in registers. Refer to the section titled Atomic Instructions later in this chapter for
instructions which handle specific requirements for in-place memory operations.

All arithmetic instructions use the REG format and can operate on local, global or special

function registers. The following sections describe arithmetic instructions for ordinal and
integer data types.

Table 4.2. Arithmetic Operations

Data Types
Arithmetic Operations Integer | Ordinal

Add

Add with Carry

Subtract

Subtract with Carry

Multiply

Extended Multiply

Divide

Extended Divide

Remainder

Modulo

Shift Left

Shift Right

*Extended Shift Right

Shift Right Dividing Integer X

*1960 CA component-specific extension to the 80960 instruction
set.

bl bl ke

>

i b B T A el B

PP R <

it ke
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Add, Subtract, Multiply and Divide

The following instructions perform add, subtract, multiply or divide operations on integers and
ordinals:

addi add integer
addo add ordinal
subi subtract integer
subo subtract ordinal
muli multiply integer
mulo multiply ordinal
divi divide integer
divo divide ordinal

addi, subi, muli and divi generate an integer-overflow fault if the result is too large to fit in the
32-bit destination. divi and divo generate a zero-divide fault if the divisor is zero.

Extended Arithmetic

The following four instructions support extended-precision arithmetic (i.e., arithmetic
operations on operands greater than one word in length):

addc add ordinal with carry
subc subtract ordinal with carry
emul extended multiply

ediv extended divide

addc adds two word operands (literals or contained in registers) plus condition code bit 1 (used
here as a carry bit) in the AC Register. If the result has a carry, bit | of the condition code is
set; otherwise, it is cleared. This instruction’s description in Chapter 9 gives an example of
how this instruction can be used to add two long-word (64-bit) operands together.

subc is similar to addc, except it is used to subtract extended-precision values. Although addc
and subc treat their operands as ordinals, the instructions also set bit O of the condition codes if
the operation would have resulted in an integer overflow condition. This facilitates a software
implementation of extended integer arithmetic.

emul multiplies two ordinals (each contained in a register), producing a long ordinal result
(stored in two registers). ediv divides a long ordinal by an ordinal, producing an ordinal
quotient and an ordinal remainder (stored in two adjacent registers).

Remainder and Modulo

The following instructions divide one operand by another and retain the remainder of the
operation:

4-8
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remi remainder integer
remo remainder ordinal
modi modulo integer

The difference between the remainder and modulo instructions lies in the sign of the result. For
remi and remo, the result has the same sign as the dividend; for modi, the result has the same
sign as the divisor.

Shift and Rotate

The processor provides the following shift instructions, which shift an operand a specified n
number of bits left or right:

shlo shift left ordinal

shro shift right ordinal

shli shift left integer

shri shift right integer

shrdi shift right dividing integer
rotate rotate left

eshro extended shift right ordinal

Except for rotate, these instructions discard bits shifted beyond the register boundary.

shlo shifts zeros in from the least significant bit; shro shifts zeros in from the most significant
bit. These instructions are equivalent to mulo and divo by the power of 2, respectively.

shli shifts zeros in from the least significant bit. If a shift of the specified places would result in
an overflow, an integer-overflow fault is generated if enabled. The destination register is
written with the source shifted as much as possible without overflowing, and an integer-
overflow fault is signaled.

shri performs a conventional arithmetic shift right operation by shifting the sign bit in from the
most significant bit. However, when this instruction is used to divide a negative integer
operand by the power of 2, it may produce an incorrect quotient. (Discarding the bits shifted
out has the effect of rounding the result toward negative.)

shrdi is provided for dividing integers by the power of 2. With this instruction, 1 is added to
the result if the bits shifted out are non-zero and the operand is negative, which produces the
correct result for negative operands. shli and shrdi are equivalent to muli and divi by the
power of 2, respectively.

rotate rotates operand bits to the left (toward higher significance) by a specified number of
bits. Bits shifted beyond register’s left boundary (bit 31) appear at the right boundary (bit 0).

eshro is an 1960 CA component-specific extension to the 1960 family’s instruction set. This
instruction performs an ordinal right shift of a source register pair (64 bits) by as much as 32
bits and stores the result in a single (32-bit) register. This instruction is equivalent to an
extended divide by a power of 2, which produces no remainder. The instruction is also the
equivalent of a 64-bit extract of 32 bits.
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LOGICAL

The following instructions perform bitwise Boolean operations on the specified operands:

and src2 AND srcl
notand (NOT src2) AND srcl
andnot src2 AND (NOT srcl)

xor src2 XOR srcl

or src2 OR srcl

nor NOT (src2 OR srcl)
xnor src2 XNOR srcl

not NOT srcl

notor (NOT src2) or srcl
ornot src2 or (NOT srcl)
nand NOT (src2 AND srcl)

These instructions all use the REG format and can specify literals or local, global or special
function registers.

The processor provides logical operations in addition to and, or and xor as a performance
optimization. This optimization reduces the number of instructions required to perform a

logical operation and reduces the number of registers and instructions associated with bitwise
mask storage and creation.

BIT AND BIT FIELD

These instructions perform operations on a specified bit or bit field in an ordinal operand. All
use the REG format and can specify literals or local, global or special function registers.

Bit Operations

The following instructions operate on a specified bit:

setbit set bit

clrbit clear bit
notbit not bit
alterbit alter bit
scanbit scan for bit
spanbit span over bit

setbit, clrbit and notbit set, clear or complement (toggle) a specified bit in an ordinal.

alterbit alters the state of a specified bit in an ordinal according to the condition code. If the
condition code is 0105, the bit is set; if the condition code is 000,, the bit is cleared.

chkbit (described later in this chapter in the section titled Comparison) can be used to check
the value of an individual bit in an ordinal.

scanbit and spanbit find the most significant set bit or clear bit, respectively, in an ordinal.

4-10
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Bit Field Operations

The two bit field instructions are extract and modify:

extract converts a specified bit field, taken from an ordinal value, into an ordinal value. In
essence, this instruction shifts right a bit field in a register and fills in the bits to the left of the

bit field with zeros. (eshro also provides the equivalent of a 64-bit extract of 32 bits).

modify copies bits from one register, under control of a mask, into another register. Only
unmasked bits in the destination register are modified. modify is equivalent to a bit field move.

BYTE OPERATIONS
scanbyte performs a byte-by-byte comparison of two ordinals to determine if any two
corresponding bytes are equal. The condition code is set according to the results of the

comparison. This instruction uses the REG format and can specify literals or local, global or
special function registers.

COMPARISON

The processor provides several types of instructions that are used to compare two operands, as
described in the following sections.

Compare and Conditional Compare

The instructions listed below compare two operands then set the condition code bits in the AC
register according to the results of the comparison.

cmpi compare integer
cmpo compare ordinal
concmpi conditional compare integer

concmpo conditional compare ordinal

These instructions all use the REG format and can specify literals or local, global or special
function registers. The condition code bits are set to indicate whether one operand is less than,
equal to or greater than the other operand. See Chapter 2, Programming Environment for a
discussion of meanings of the condition code for conditional operations.

cmpi and empo simply compare the two operands and set the condition code bits accordingly.
concmpi and concmpo first check the status of bit 2 of the condition code. If it is not set, the
operands are compared as with empi and empo. If bit 2 is set, no comparison is performed and
the condition code flags are not changed.

The conditional-compare instructions are provided specifically to optimize two-sided range
comparisons to check if A is between B and C (i.e., B < A < C). Here, a compare instruction
(cmpi or empo) checks one side of the range (e.g., A = B) and a conditional compare
instruction (concmpi or concmpo) checks the other side (e.g., A < C) according to the result of
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the first comparison. The condition codes following the conditional comparison directly reflect
the results of both comparison operations. Therefore, only one conditional branch instruction is
required to act upon the range check; otherwise, two branches would be needed.

chkbit checks a specified bit in a register and sets the condition code flags according to the bit
state. The condition code is set to 010, if the bit is set and 000, otherwise.
Compare and Increment or Decrement

The following instructions compare two operands, set the condition code bits according to the
results, then increment or decrement one of the operands:

cmpinci compare and increment integer
cmpinco compare and increment ordinal
cmpdeci compare and decrement integer

cmpdeco compare and decrement ordinal
These instructions use the REG format and can specify literals or local, global or special
function registers. They are an architectural performance optimization which allows two
register operations (e.g., comparison and addition) to be executed in a single cycle. These
instructions are intended for use at the end of iterative loops.

Test Condition Codes

The following test instructions allow the state of the condition code flags to be tested:

teste test for equal

testne test for not equal

testl test for less

testle test for less or equal
testg test for greater

testge test for greater or equal
testo test for ordered

testno test for unordered

These cause a TRUE (01H) to be stored in a destination register if the condition code matches
the instruction-specified condition. Otherwise, a FALSE (00H) is stored in the register. All use
the COBR format and can operate on local, global and special function registers.

Since test instruction actions depend on a comparison, the architecture allows a programmer to
predict the likely result of the operation for higher performance. The programmer’s prediction
is encoded in one bit of the opword. Inte]l 80960 assemblers encode the prediction with a
mnemonic suffix of .t for true and .f for false. See Appendix A, Optimizing Code for the i960
CA Microprocessor for a complete discussion of branch prediction.
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BRANCH

Branch instructions allow program flow direction to be changed by explicitly modifying the IP.
The processor provides three branch instruction types:

¢ unconditional branch
e conditional branch

e compare and branch

Most branch instructions specify the target IP by specifying a signed displacement to be added
to the current IP. Other branch instructions specity the target IP’s memory address, using one
of the processor’s addressing modes. This latter group of instructions is called extended
addressing instructions (e.g., branch extended, branch and link extended).

Since branch instruction actions depend the result of a previous comparison, the architecture
allows a programmer to predict the likely result of the branch operation for higher
performance. The programmer’s prediction is encoded in one bit of the opword. The Intel
80960 Assembler encodes the prediction with a mnemonic suffix of “.t” for true and “.f” for
false. See the section of Appendix A, Optimizing Code for the i960 CA Microprocessor for a
complete discussion of prediction.

Unconditional Branch

The following four instructions are used for unconditional branching:

b Branch

bx Branch Extended

bal Branch and Link

balx Branch and Link Extended

b and bal use the CTRL format. bx and balx use the MEM format and can specify local or
global registers as operands. b and bx cause program execution to jump to the specified target
IP. These two instructions perform the same function; however, their determination of the
target IP differs. The target IP of a b instruction is specified at link time as a relative
displacement tfrom the current IP. The target IP of the bx instruction is the absolute address
resulting from the instruction’s use of a memory addressing mode during execution.

bal and balx store the next instruction’s address in a specified register, then jump to the
specified target IP. (For bal, the RIP is automatically stored in register gl14; for balx, the RIP
location is specified with an instruction operand.) As described in Chapter 5, Procedure Calls
the branch and link instructions provide a method of performing procedure calls that do not use
the processor’s integrated call/return mechanism. Here, the saved instruction address is used as
areturn IP. Branch and link is generally used to call leaf procedures (that is, procedures that do
not call other procedures).

The bx and balx instructions can make use of any memory addressing mode.
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Conditional Branch

With the conditional branch (branch if) instructions, the processor checks the AC register
condition code flags. If these flags match the value specified with the instruction, the processor
jumps to the target IP. These instructions use the displacement-plus-IP method of specifying
the target IP:

be branch if equal/true

bne branch if not equal

bl branch if less

ble branch if less or equal
bg branch if greater

bge branch if greater or equal
bo branch if ordered

bno branch if unordered/false

All use the CTRL format. bo and bno are used with real numbers. Refer to Chapter 2,
Programming Environment for a discussion of the condition code for conditional operations.

Compare and Branch

These instructions compare two operands then branch according to the comparison result.
Three instruction subtypes are compare integer, compare ordinal and branch on bit:

cmpibe compare integer and branch if equal

cmpibne compare integer and branch if not equal
cmpibl compare integer and branch if less

cmpible compare integer and branch if less or equal
cmpibg compare integer and branch if greater
cmpibge compare integer and branch if greater or equal
cmpibo compare integer and branch if ordered
cmpibno compare integer and branch if unordered
cmpobe compare ordinal and branch if equal
cmpobne  compare ordinal and branch if not equal
cmpobl compare ordinal and branch if less

cmpoble compare ordinal and branch if less or equal
cmpobg compare ordinal and branch if greater
cmpobge compare ordinal and branch if greater or equal
bbs check bit and branch if set

bbe check bit and branch if clear

All use the COBR machine instruction format and can specify literals, local, global and special
function registers as operands. With compare ordinal and branch and compare integer and
branch instructions, two operands are compared and the condition code bits are set as described
for compare instructions earlier in this chapter. A conditional branch is then executed as with
the conditional branch (branch if) instructions.

With check bit and branch instructions, one operand specifies a bit to be checked in the other
operand. The condition code flags are set according to the state of the specified bit: 010, (true)
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if the bit is set and 000, (false) if the bit is clear. A conditional branch is then executed
according to condition code bit settings.

These instructions optimize execution performance time. When it is not possible to separate
adjacent compare and branch instructions with other unrelated instructions, replacing two
instructions with a single compare and branch instruction increases performance.

CALL AND RETURN

The processor offers an on-chip call/return mechanism for making procedure calls. This
integrated call/return mechanism is described in Chapter 2, Programming Environment. The
following four instructions are provided to support this mechanism.

call call

callx call extended
calls call system
ret return

call and ret use the CTRL machine-instruction format. callx uses the MEM format and can
specify local or global registers. calls uses the REG format and can specify local, global or
special function registers.

call and callx make local calls to procedures. A local call is a call that does not require a switch
to another stack. call and callx differ only in the method of specifying the target procedure’s
address. The target procedure of a call is determined at link time and is encoded in the opword
as a signed displacement relative to the call IP. callx specifies the target procedure as an
absolute 32-bit address calculated at run time using any one of the addressing modes. For both
instructions, a new set of local registers and a new stack frame are allocated for the called
procedure.

calls is used to make calls to system procedures — procedures that provide a kernel or system-
executive services. This instruction operates similarly to call and callx, except that it gets its
target-procedure address from the system procedure table. An index number included as an
operand in the instruction provides an entry point into the procedure table.

Depending on the type of entry being pointed to in the system procedure table, calls can cause
either a system-supervisor call or a system-local call to be executed. A system-supervisor call
is a call to a system procedure that also switches the processor to supervisor mode and the
supervisor stack. A system-local call is a call to a system procedure that does not cause an
execution mode or stack change. Supervisor mode is described in Chapter 5, Procedure Calls.

ret performs a return from a called procedure to the calling procedure (the procedure that made
the call). ret obtains its target IP (return IP) from linkage information that was saved for the
calling procedure. ret is used to return from all calls, including local and supervisor calls, and
from implicit calls to interrupt and fault handlers.
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CONDITIONAL FAULTS

Generally, the processor generates faults automatically as the result of certain operations. Fault
handling procedures are then invoked to handle various fault types without explicit
intervention by the currently running program. Faults are discussed in Chapter 7, Faults. The
following conditional fault instructions permit a program to explicitly generate a fault
according to the state of the condition code flags.

faulte fault if equal

faultne fault if not equal
faultl fault if less

faultle fault if less or equal
faultg fault if greater

faultge fault if greater or equal
faulto fault if ordered
faultno fault if unordered

All use the CTRL format. Since the actions of these instructions are dependent upon the result
of a previous comparison, the architecture allows a programmer to predict the likely result of
the conditional fault instructions for higher performance. The programmer’s prediction is
encoded in one bit of the opword. The Intel 80960 Assembler encodes the prediction with a
mnemonic suffix of “.t” for true and “.f” for false. See Appendix A, Optimizing Code for the
1960 CA Microprocessor for a complete discussion of prediction.

DEBUG

The processor supports debugging and monitoring of program activity through the use of trace
events. The following instructions support these debugging and monitoring tools:

modpc modify process controls
modtc modify trace controls
mark mark

fmark force mark

These instructions use the REG format. Trace functions are controlled with bits in the
processor’s trace control register. These bits allow various types of tracing to be enabled or
disabled. Other flags in the trace controls register indicate when an enabled trace event has
been detected. Trace controls are described in Chapter 8, Tracing and Debugging.

modpc has the ability to enable/disable trace fault generation; modtc permits trace controls to
be modified. mark causes a breakpoint trace event to be generated if breakpoint trace mode is
enabled. fmark generates a breakpoint trace independent of the state of the breakpoint trace
mode bits.

The 1960 CA component-specific sysctl instruction, described in the Chapter 2, Programming

Environment, also provides control over breakpoint trace event generation. This instruction is
used, in part, to load and control the 1960 CA microprocessor’s breakpoint registers.
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ATOMIC INSTRUCTIONS

Atomic instructions perform read-modify-write operations on operands in memory. They allow
a system to ensure that, when an atomic operation is performed on a specified memory
location, the operation completes before another agent is allowed to perform an operation on
the same memory. These instructions are required to enable synchronization between interrupt
handlers and background tasks in any system. They are also particularly useful in systems
where several agents — processors, coprocessors or external logic — have access to the same
system memory for communication.

The atomic instructions are atomic add (atadd) and atomic modity (atmod). atadd causes an
operand to be added to the value in the specified memory location. atmod causes bits in the

specified memory location to be modified under control of a mask. Both instructions use the
REG format and can specity literals or local, global or special function registers.

PROCESSOR MANAGEMENT

The following instructions control processor-related functions:

modpc modify the process controls register

flushreg flush cached local register sets to memory
modac modify the AC register

sysctl perform system control function

sdma set up a DMA controller channel

udma copy current DMA pointers to internal data RAM

All use the REG format and can specify literals or local, global or special function registers.

modpc provides a method of reading and modifying PC register contents. Only programs
operating in supervisor mode may modify the PC register; however, any program may read it.

The processor provides a flush local registers instruction (flushreg) to save the contents of the
cached local registers to the stack. The flush local registers instruction automatically stores the
contents of all the local register sets — except the current set — in the register save area of
their associated stack frames.

The modify arithmetic controls instruction (modac) is provided to allow the AC register to be
copied to a register and/or modified under the control of a mask. The AC register cannot be
explicitly addressed with any other instruction; however, it is implicitly accessed by
instructions that use the condition codes or set the integer overflow flag.

sysctl is an 19960 CA component-specific extension to the 1960 family’s instruction set which is
used to configure the on-chip bus controller, interrupt controller, breakpoint registers and
instruction cache. The instruction also permits software to signal an interrupt or cause a
processor reset and reinitialization. sysctl may only be executed by programs operating is
supervisor mode. See Chapter 2, Programming Environment and Chapter 9, Instruction Set
Reference for a complete description.
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sdma and udma are 19960 CA component-specific extensions to the i960 family’s instruction
set which configure and monitor the on-chip DMA controller. These instructions may only be
executed by programs operating in supervisor mode. Refer to Chapter 9, Instruction Set
Reference and Chapter 13, DMA Controller for a description of these instructions.
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CHAPTER 5
PROCEDURE CALLS

This chapter describes mechanisms for making procedure calls, which include branch-and-link
instructions, built-in call and return mechanism, call instructions (call, callx, calls), return
instruction (ret) and call actions caused by interrupts and faults.

OVERVIEW

The 1960 architecture supports two methods for making procedure calls:

e A RISC-style branch-and-link. This is a fast call best suited for calling procedures that do
not call other procedures.

e An integrated call and return mechanism. This is a more versatile method for making
procedure calls, providing a highly efficient means for managing a large number of
registers and the program stack.

On a branch-and-link (bal, balx), the processor branches and saves a return IP in a register.
The called procedure uses the same set of registers and the same stack as the calling procedure.
On a call (call, callx, calls) or when an interrupt or fault occurs, the processor also branches to
a target instruction and saves a return IP. Additionally, the processor saves the local registers
and allocates a new set of local registers and a new stack for the called procedure. The saved
context is restored when the return instruction (ret) is executed.

In many RISC architectures, a branch-and-link instruction is used as the base instruction for
coding a procedure call. Register and stack management for the call is then handled by the user
program. Since the 1960 architecture provides a fully integrated call and return mechanism,
coding calls with branch-and-link is not necessary. Additionally, the integrated call is much
faster than typical RISC-coded calls.

The branch-and-link instruction in the 1960 family, therefore, is used primarily for calling leaf
procedures. Leaf procedures call no other procedures. They are called “leaf procedures”
because they reside at the “leaves” of the call tree.

The integrated call and return mechanism is used in two ways in the 1960 architecture: explicit
calls to procedures in a user’s program and implicit calls to interrupt and fault handlers. The
remainder of this chapter explains the generalized call mechanism used for explicit and implicit
calls and call and return instructions.

The processor performs two call actions:

local When a local call is made, execution mode remains unchanged and
the stack frame for the called procedure is placed on the local stack.
The local stack refers to the stack of the calling procedure.

supervisor When a supervisor call is made, execution mode is switched to
supervisor and the stack frame for the called procedure is placed on
the supervisor stack.
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Explicit procedure calls can be made using several instructions. Local call instructions call and
callx perform a local call action. With call and callx, the called procedure’s IP is included as
an operand in the instruction.

A system call is made with calls. This instruction is similar to call and callx, except that the
processor obtains the called procedure’s IP from the system procedure table. A system call,
when executed, is directed to perform either the local or supervisor call action. These calls are
referred to as system-local and system-supervisor calls, respectively. A system-supervisor call
is also referred to as a supervisor call.

CALL AND RETURN MECHANISM

At any point in a program, the 1960 device has access to the global registers, a local register set
and the procedure stack. A subset of the stack allocated to the procedure is called the stack
frame. When a call is executed, a new stack frame is allocated for the called procedure.
Additionally, the processor saves the current local register set, freeing these registers for use by
the newly called procedure. In this way, every procedure has a unique stack and a unique set of
local registers. When a return is executed, the current local register set and current stack frame
are deallocated. The previous local register set and previous stack frame are restored.

Local Registers and the Procedure Stack

For each procedure, the processor automatically allocates a set of 16 local registers. Since local
registers are on-chip, they provide fast access storage for local variables. Of the 16 local
registers, 13 are available for general use; 10, r1 and r2 are reserved for linkage information to
tie procedures together.

The procedure stack can be located anywhere in the address space and grows from low
addresses to high addresses. It consists of contiguous frames, one frame for each active
procedure. Local registers for a procedure are assigned a save area in each stack frame (Figure
5.1). The procedure stack, available to the user, begins after this save area.

To increase procedure call speed, the architecture allows an implementation to cache the saved
local register sets on-chip. Thus, when a procedure call is made, the contents of the current set
of local registers often does not have to be written out to the save area in the stack frame in
memory. Refer to the sections later in this chapter titled Caching of Local Register Sets and
Mapping the Local Registers to the Procedure Stack for further discussion about local registers
and procedure stack interrelations.
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Figure 5.1. Procedure Stack Structure and Local Registers

Local Register and Stack Management

Global register g15 (FP) and local registers rO (PFP), r1 (SP) and 12 (RIP) contain information
to link procedures together and link local registers to the procedure stack (Figure 5.1). The
following paragraphs describe this linkage information.

Frame Pointer

The frame pointer is the current stack frame’s first byte address. It is stored in global register
g15, the frame pointer (FP) register. The FP register is always reserved for the frame pointer;
do not use gl5 for general storage. In the 19960 CA processor, frames are aligned on 16-byte
boundaries (Figure 5.1). When the processor creates a new frame on a procedure call, it will, if
necessary, add a padding area to the stack so that the new frame starts on a 16-byte alignment
boundary.
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Stack frame alignment is defined for each implementation of the 1960 family. This alignment
boundary is calculated from the relationship SALIGN*16. For example, if SALIGN is set to 4,
stack frames are aligned on 64-byte boundaries. In the 19960 CA microprocessor, SALIGN=1.

Stack Pointer

The stack pointer is the byte-aligned address of the stack frame’s next unused byte. The stack
pointer value is stored in local register r1, the stack pointer (SP) register. The procedure stack
grows upward (i.e., toward higher addresses). When a stack frame is created, the processor
automatically adds 64 to the frame pointer value and stores the result in the SP register. This
action creates the register save area in the stack frame for the local registers.

The user must modify the SP register value when data is stored or removed from the stack. The
i960 architecture does not provide an explicit push or pop instruction to perform this action.
This is typically done by adding the size of all pushes to the stack in one operation.

Previous Frame Pointer

The previous frame pointer is the previous stack frame’s first byte address. This address’ upper
28 bits are stored in local register r0, the previous frame pointer (PFP) register. The four least-
significant bits of the PFP are used to store the return-type field.

Return Type Field

PFP register bits O through 3 contain return type information for the calling procedure. When a
procedure call is made — either explicit or implicit — the processor records the call type in the
return type field. The processor then uses this information to select the proper return
mechanism when returning to the calling procedure. The use of this information is described
later in this chapter in the section titled Returns.

Return Instruction Pointer

When a call is made, the processor saves the address of the instruction after the call, providing
a reentry point when the return instruction is executed. This address is automatically stored in
local register r2 of the calling frame. Register 12 is referred to as the return instruction pointer
(RIP) register. The RIP register is a special register; do not use r2 to hold operand values. Since
interrupts and faults trigger an implicit call action, the RIP register may be written at any time
with the return pointer associated with the interrupt or fault event.
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Call and Return Action

To clarify how procedures are linked and how the local register and stack are managed, the
following sections describe a general call and return operation and the operations performed
with the FP, SP, PFP and RIP registers described above.

The events for call and return operations are given in a logical order of operation. The 1960 CA
microprocessor is able to execute independent operations in parallel, therefore, many of these
events execute simultaneously. For example, to improve performance, the processor often
begins prefetch of the target instruction for the call or return before the operation is complete.

Call Operation

When a call instruction is executed or an implicit call is triggered, the processor performs the
following operations:

1. The processor stores the instruction pointer for the instruction following the call in the
current stack’s RIP register (12).

2. The frame pointer (g15) for the calling procedure is stored in the current stack’s PFP
register (10). The return type field in the PFP register is set according to the call type
which is performed. (See the section titled Returns later in this chapter.)

3. The current local registers — including the PFP, SP and RIP registers — are saved, freeing
these registers for use by the called procedure. Because saved local registers are cached on
the 1960 CA component, the registers are always saved in the on-chip local register cache
at this time.

4. A new stack frame is allocated by using the stack pointer value saved in step 3. This value
is first rounded to the next 16-byte boundary to create a new frame pointer, then stored in
the FP register. Next, 64 bytes are added to create the new frame’s register save area. This
value is stored in the SP register.

5. The instruction pointer is loaded with the address of the first instruction in the called
procedure. The processor gets the new instruction pointer from the call instruction, the
system procedure table, the interrupt table or the fault table, depending on the type of call
executed.

Upon completion of these steps, the processor begins executing the called procedure.

Return Operation

A return from any call type — explicit or implicit — is always initiated with a return (ret)
instruction. On a return, the processor performs these operations:

1. The current stack frame and local registers are deallocated by loading the FP register with
the value of the PFP register. ’
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2. The local registers for the return target procedure are retrieved. The registers are usually
read from the local register cache; however, in some cases, these registers have been
flushed from register cache to memory and must be read directly from the save area in the
stack frame.

3. The processor sets the instruction pointer to the value of the RIP register.

Upon completion of these steps, the processor executes the procedure to which it returns.

Caching of Local Register Sets

The 1960 CA component provides a local register cache to improve call and return
performance. Local registers are typically saved and restored from the local register cache
when calls and returns are executed. For the 19960 CA microprocessor, movement of a local
register set between local registers and cache takes only four clock cycles. Other overhead
associated with a call or return is performed in parallel with this data movement.

When the number of nested procedures exceeds local register cache size, local register sets
must at times be saved or restored to their associated save areas in the procedure stack.
Because these operations require access to external memory, this local cache miss impacts call
and return performance.

When a call is made and the register cache is full, a register set in the cache must be saved to
external memory to make room for the current set of local registers in the cache. This action is
referred to as a frame spill. The oldest set of local registers stored in the cache is spilled to the
associated local register save area in the procedure stack. Figure 5.2 illustrates a call operation
with and without a frame spill.

‘Similarly, when a return is made and the local register set for the target procedure is not
available in the cache, these local registers must be retrieved from the procedure stack in
memory. This operation is referred to as a frame fill. Figure 5.3 illustrates a return operation
with and without a frame fill.

Register cache size is specified at initialization by the register cache configuration word value
in the PRCB. Register cache size is adjustable to hold from 1 to 14 sets of local registers. See
Chapter 14, Initialization and System Requirements for more information about initialization
and the PRCB.
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Up to five local register sets are cached by default with no impact to the processor’s available
resources. When the cache is configured for 6 to 14 sets, part of the internal data RAM is used
to expand the cache. Data RAM usage begins at the highest address of internal RAM (03FFH)
and grows downward. '
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The amount of internal data RAM used (in bytes) is determined by the formula:

n*16
where : CCW = the programmed value of the cache configuration word in the PRCB
and: n=0 for CCW=0 Number of cached sets = 1
n=0 for 1<CCW<S Number of cached sets = CCW
n=CCW-5 for 6<CCWZ<I5 Number of cached sets = CCW-1

Register cache cannot be disabled. Register cache size equals 1 when the cache configuration
word is programmed to a value of 0. Also, a value of 5 or 6 produces the same cache number
of cache sets; however, when programmed to 6, 16 bytes of internal data RAM is used, when
programmed to 5, no internal data RAM is used.

The user program is responsible for preventing any corruption to the areas of internal RAM
which are used for the register cache. In a typical program, most procedure calls and returns
cause procedure depth to oscillate a few levels around a median call depth. The cache tends to
be partially filled at the median call depth. Cache flushes occur when oscillations around the
median depth are larger than the cache size can accommodate. Configuring local register cache
to hold five sets of local registers avoids numerous cache fills and spills for most applications
and does not use any of the data RAM which is available for general data storage. The user
should configure the cache for a minimum of five register sets.

Mapping Local Registers to the Procedure Stack

Each local register set is mapped to a register save area of its respective frame in the procedure
stack (Figure 5.1). Saved local register sets are frequently cached on-chip rather than saved to
memory. This caching is performed non-transparently. Local register set contents are not saved
automatically to the save area in memory when the register set is cached. This would cause a
significant performance loss for call operations.

Also, no automatic update policy is implemented for register cache. If the register save area in
memory for a cached register set is modified, there is no guarantee that the modification will be
reflected when the register set is restored. The set must be written (or flushed) to memory
because of a frame spill prior to the modification for the modification to be valid.

flushreg causes the contents of all cached local register sets to be written (flushed) to their
associated stack frames in memory. The register cache is then invalidated, meaning that all
flushed register sets are restored from their save areas in memory. The current set of local
register is not written to memory. flushreg is commonly used in debuggers or fault handlers to
gain access to all saved local registers. In this way, call history may be traced back through
nested procedures. flushreg is also used when implementing task switches in multitasking
kernels. The procedure stack is changed as part of the task switch. To change the procedure
stack, flushreg is executed to update the current procedure stack and invalidate all entries in
the local register cache. Next, the procedure stack is changed by directly modifying the FP and
SP registers and executing a call operations. After flushreg is executed, the procedure stack
may also be changed by modifying the previous frame in memory and executing a return
operation.
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NOTE

When a set of local registers is assigned to a new procedure, the processor may or may not clear
or initialize these registers. Therefore, initial register contents are unpredictable. Also, the
processor does not initialize the local register save area in the newly created stack frame for the
procedure; its contents are equally unpredictable.

PARAMETER PASSING

Parameters are passed between procedures in two ways:

value Parameters are passed directly to the calling procedure as part of the
call and return mechanism. This is the fastest method of passing
parameters.

reference Parameters are stored in an argument list in memory and a pointer to

the argument list is passed in a global register.

When passing parameters by value, the calling procedure stores the parameters to be passed in
global registers. Since the calling procedure and the called procedure share the global registers,
the called procedure has direct access to the parameters after the call.

When a procedure needs to pass more parameters than will fit in the global registers, they can
be passed by reference. Here, parameters are placed in an argument list and a pointer to the
argument list is placed in a global register.

The argument list can be stored anywhere in memory; however, a convenient place to store an
argument list is in the stack for a calling procedure. Space for the argument list is created by
incrementing the SP register value. If the argument list is stored in the current stack, the
argument list is automatically deallocated when no longer needed.

A procedure receives parameters from — and returns values to — other calling procedures. To
do this successfully and consistently, all procedures must agree on the use of the global
registers. Table 5.1 summarizes the global register model used by the 1960 compilers. Refer to
the iC960 User’s Guide for details about the register allocation model.

This example illustrates a typical implementation of parameter passing between procedures and
the use of the global and local registers in this scheme.

Parameter registers pass values into a function. Up to 12 parameters are passed by the value in
the global registers. If the number of parameters exceeds 12, additional parameters are passed
on the calling procedure’s stack and a pointer to the argument block is passed in a pre-
designated register. Similarly, several registers are set aside for return arguments and a return
argument block pointer is defined to point to additional parameters. If the number of return
arguments exceeds the available number of return argument registers, the calling procedure
passes a pointer to an argument list on its stack where the remaining return values will be
placed. Example 5.1 illustrates parameter passing by value and reference.
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Table 5.1. Global Register Function with i960™ Compilers

Instruction Operand Value on Call Value on Return
g0 Parameter 0 Return Argument 0
gl Parameter | Return Argument |
g2 Parameter 2 Return Argument 2
g3 Parameter 3 Return Argument 3
g4 Parameter 4 Not defined
g5 Parameter 5 Not defined
26 Parameter 6 Not defined
o7 Parameter 7 Not defined
a8 Parameter 8/temp 5 Not defined/temp 5
g9 Parameter 9/temp 4 Not defined/temp 4
210 Parameter 10/temp 3 Not defined/temp 3
gl Parameter 11/temp 2 Not defined/temp 2
gl2 temp 1 temp 1
g13 Return argument block pointer Not defined
gl4 Call parameter block pointer Not defined
fp Frame pointer (reserved)

NOTE

If not used as parameters, g8 - gl 1 must be preserved by the called procedure. g0 - gl1 may also
be used for data storage. g14 must be set to O when not used as a parameter block pointer.

Local registers are automatically saved when a call is made. Because of the local register
cache, they are saved quickly and with no external bus traffic. The efficiency of the local
register mechanism plays an important role in two cases when calls are made:

1. When a procedure is called which contains other calls, global parameter registers are
moved to working local registers at the beginning of the procedure. In this way, parameter
registers are freed and nested calls are easily managed. The register move instruction
necessary to perform this action is very fast; the working parameters, now in local register,
are saved efficiently when nested calls are made.

2. When other procedures are nested within an interrupt or fault procedure, the procedure
must preserve all normally non-preserved parameter registers. This is necessary because
the interrupt or fault occurs at any point in the user’s program and return from interrupt or
fault must restore the exact processor state. The interrupt or fault procedure can move non-
preserved global registers to local registers before the nested call.
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Example 5.1. Using Global Register for Parameter Passing

# Example of parameter passing

# C-source: int a,b([10];
# a = procl(a,l,’'x",&b[0]);
# assembles to
mov r3,g0 # value of a
ldconst 1,9l # value of 1
ldconst 120,92 # value of ’'x'’
lda 0x40 (fp), g3 # reference to b[10]
call _procl
mov g0, r3 #save return value in “a”
_procl:
movg g0, r4 # save parameters
# other instructions in procedure
. # and nested calls
mov r3,g0 # load return parameter
ret
LOCAL CALLS

A local call does not cause a stack switch. A local call can be made two ways: 1) with the call
and callx instructions or 2) with a system-local call (system-local call is described in the
following section titled System Calls). call specifies the address of the called procedures as the
IP plus a signed, 24-bit displacement (i.e., -223 to 223 - 4). callx allows any of the addressing
modes to be used to specify the procedure address. The IP-with-displacement addressing mode
allows full 32-bit IP-relative addressing. See Chapter 9, Instruction Set Reference for a further
description of call and callx.

When a local call is made with a call or callx, the processor performs the same operation as
described earlier in this chapter in the section titled Call Operation. The target IP for the call is
derived from the instruction’s operands and the new stack frame is allocated on the current
stack. call and callx algorithms are further described in Chapter 9, Instruction Set Reference.

SYSTEM CALLS

A system call is a call made via the system procedure table. It can be used to make a system-
local call — similar to a local call made with call and callx — or a system supervisor call.

A system call is initiated with calls, which requires a procedure number operand. The
procedure number provides an index into the system procedure table, where the processor finds
IPs for specific procedures. See Chapter 9, Instruction Set Reference for a further description
of calls.
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Using an 1960 language assembler, a system procedure is directly declared using the sysproc
directive. At link time, the optimized call directive, callj, is replaced with a calls when a system
procedure target is specified. (Refer to current 19960 assembler documents for a description of
the .sysproc and callj directives.)

The system call mechanism offers two benefits. First, it supports application software
portability. System calls are commonly used to call kernel services. By calling these services
with a procedure number rather than a specific IP, applications software does not need to be
changed each time the implementation of the kernel services is modified. Only the entries in
the system procedure table must be changed.

Second, the ability to switch to a different execution mode and stack with a system supervisor
call allows kernel procedures and data to be insulated from applications code. This benefit is
further described in Chapter 2, Programming Environment.

System Procedure Table

The system procedure table is a data structure for storing IPs to system procedures: these can
be procedures which software can access through a system call; or fault handling procedures,
which the processor can access through its fault handling mechanism. Using the system
procedure table to store IPs for fault handling is described in Chapter 7, Faults.

System procedure table structure is shown in Figure 5.4. It is 1088 bytes in length and can have
up to 260 procedure entries. The processor gets a pointer to the system procedure table at
initialization. The following sections describe this table’s fields.

Procedure Entries

A procedure entry in the system procedure table specifies a procedure’s location and type.
Each entry is one word in length and consists of an address (or IP) field and a type field. The
address field gives the address of the first instruction of the target procedure. Since all
instructions are word aligned, only the entry’s 30 most significant bits are used for the address.
The entry’s two least-significant bits specify entry type. The procedure entry type field
indicates call type: system-local call or system-supervisor call (Table 5.2). On a system call,
the processor performs different actions depending on the type of call selected.

Table 5.2. Encodings of Entry Type Field in System Procedure Table

Encoding Call Type
00, System-Local Call
01, Reserved
10, System-Supervisor Call
11, Reserved
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Figure 5.4. System Procedure Table

Supervisor Stack Pointer

When a system-supervisor call is made, the processor switches to a new stack called the
supervisor stack if not already in supervisor mode. The processor gets a pointer to this stack
from the supervisor stack pointer field in the system procedure table (Figure 5.4) during the
reset initialization sequence and caches the pointer internally. Only the 30 most significant bits
of the supervisor stack pointer are given. The processor aligns this value to the next 16 byte
boundary to determine the first byte of the new stack frame.
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Trace Control Bit

The trace control bit (byte 12, bit 0) specifies the new value of the trace enable bit in the PC
register (PC.te) when a system-supervisor call causes a switch from user mode to supervisor
mode. Setting this bit to 1 enables tracing in the supervisor mode; setting it to 0 disables
tracing. The use of this bit is described in Chapter 8, Tracing and Debugging.

System-Local Call

When a calls instruction references an entry in the system procedure table with an entry type of
00, the processor executes a system-local call to the selected procedure. The action that the
processor performs is the same as described earlier in this chapter’s section titled Call
Operation. The call’s target IP is taken from the system procedure table and the new stack
frame is allocated on the current stack. The calls algorithm is described in Chapter 9,
Instruction Set Reference.

System-Supervisor Call

When a calls instruction references an entry in the system procedure table with an entry type of
10,, the processor executes a system-supervisor call to the selected procedure. The call’s target
IP is taken from the system procedure table. The processor performs the same action as
described earlier in this chapter’s section titled Call Operation, with the following exceptions:

e If the processor is in user mode, it switches to supervisor mode.
e The new frame for the called procedure is placed on the supervisor stack.

e If a mode switch occurs, the state of the trace enable bit in the PC register is saved in the
return type field in the PFP register. The trace enable bit is then loaded from the trace
control bit in the system procedure table.

When the processor switches to supervisor mode, it remains in that mode and creates new
frames on the supervisor stack until a return is performed from the procedure that caused the
original switch to supervisor mode. While in supervisor mode, either the local call instructions
(call and callx) or calls can be used to call procedures.

The user-supervisor protection model and its relationship to the supervisor call are described in
Chapter 2, Programming Environment.

USER AND SUPERVISOR STACKS

When using the user-supervisor protection mechanism, the processor maintains separate stacks
in the address space. One of these stacks — the user stack — is for procedures executed in user
mode; the other stack — the supervisor stack — is for procedures executed in supervisor mode.

The user and supervisor stacks are identical in structure (Figure 5.1). The base stack pointer for
the supervisor stack is automatically read from the system procedure table and cached
internally at initialization or when the processor is reinitialized with sysctl. Each time a user-to-
supervisor mode switch occurs, the cached supervisor stack pointer base is used for the starting
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point of the new supervisor stack. The base stack pointer for the user stack is usually created in
the initialization code (see Chapter 14, Initialization and System Requirements). The base stack
pointers must be aligned to a 16-byte boundary; otherwise, the first frame pointer in the stack is
rounded up to the next 16-byte boundary.

INTERRUPT AND FAULT CALLS

The architecture defines two types of implicit calls that make use of the call and return
mechanism: interrupt handling procedure calls and fault handling procedure calls. A call to an
interrupt procedure is similar to a system-supervisor call. Here, the processor obtains pointers
to the interrupt procedures through the interrupt table. The processor always switches to
supervisor mode on an interrupt procedure call.

A call to a fault procedure is similar to a system call. Fault procedure calls can be local calls or
supervisor calls. The processor obtains pointers to fault procedures through the fault table and
(optionally) through the system procedure table.

When a fault call or interrupt call is made, a fault record or interrupt record is placed in the
newly generated stack frame for the call. These records hold the machine state and information
to identify the fault or interrupt. When a return from an interrupt or fault is executed, machine
state is restored from these records. See Chapter 7, Faults and Chapter 6, Interrupts for more
information on the structure of the fault and interrupt records.

RETURNS

The return (ret) instruction provides a generalized return mechanism that can be used to return
from any procedure that was entered by call, calls, callx, an interrupt call or a fault call. When
ret is executed, the processor uses the information from the return-type field in the PFP
register (Figure 5.5) to determine the type of return action to take.

return-type field indicates the type of call which was made. Table 5.3 shows the return-type
field encoding for the various calls: local call, supervisor call, interrupt call and fault call.

trace-on-return flag (PFP.1t0 or bit 0 of the return-type field) stores the trace enable bit value
when a system-supervisor call is made from user mode. When the call is made, the PC register
trace enable bit is saved as the trace-on-return flag and then replaced by the trace controls bit in
the system procedure table. On a return, the trace enable bit's original value is restored. This
mechanism allows instruction tracing to be turned on or off when a supervisor mode switch
occurs. See Chapter 8, Tracing and Debugging.

prereturn-trace flag (PFP.p) is used in conjunction with call-trace and prereturn-trace modes.
If call-trace mode is enabled when a call is made, the processor sets the prereturn-trace flag;
otherwise it clears the flag. Then, if this flag is set and prereturn-trace mode is enabled, a
prereturn trace event is generated on a return, before any actions associated with the return
operation are performed. See Chapter 8, Tracing and Debugging for a discussion of interaction
between call-trace and prereturn-trace modes with the prereturn-trace flag.
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Figure 5.5. Previous Frame Pointer Register (PFP) (r0)

Table 5.3. Encoding of Return Status Field

Return Status
Field Call Type Return Action
p000 Local call (system-local call | Local return (return to local stack; no
or system-supervisor call mode switch)
made from supervisor mode)
p001 Fault call Fault return (See Chapter 7, Faults)
pO1t System-supervisor from user | Supervisor return (return to user
mode stack, mode switch to user mode,
trace enable bit is replaced with the t
bit stored in the PFP register on the
call.
pl00 reserved
pl01 reserved
pl10 reserved
plil Interrupt call Interrupt return (See Chapter 6,
Interrupts.)

[Tt

p

NOTE:

is PFP.p (prereturn trace flag). “t” denotes the trace-on-return flag. This flag is used only for

system supervisor calls which cause a user-to-supervisor mode switch.

5-17




intal. PROCEDURE CALLS

BRANCH-AND-LINK

A branch-and-link is executed using either the branch-and-link instruction (bal) or branch-and-
link-extended instruction (balx). When either instruction is executed, the processor branches to
the first instruction of the called procedure (the target instruction), while saving a return IP for
the calling procedure in a register. The called procedure uses the same set of local registers and
stack frame as the calling procedure. For bal, the return IP is automatically saved in global
register gl4; for balx, the return IP instruction is saved in a register specified by one of the
instruction’s operands.

A return from a branch-and-link is generally carried out with a bx (branch extended)
instruction, where the branch target is the address saved with the branch-and-link instruction.
The branch-and-link method of making procedure calls is recommended for calls to leaf
procedures. Leaf procedures typically call no other procedures. Branch-and-link is the fastest
way to make a call, providing the calling procedure does not require its own registers or stack
frame.
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CHAPTER 6
INTERRUPTS

This chapter describes how a programmer:
e uses the processor’s interrupt mechanism
e defines data structures used for interrupt handling

e describes actions that the processor takes when handling an interrupt

Chapter 12, Interrupt Controller describes the mechanism for signaling and posting interrupts;
it is best suited for a system implementor.

OVERVIEW

An interrupt is an event that causes a temporary break in program execution so the processor
can handle another chore. Interrupts commonly request I/O services or synchronize the
processor with some external hardware activity. For interrupt handler portability across
implementations of the 1960 family, the architecture defines a consistent interrupt state and
interrupt-priority-handling mechanism. To manage and prioritize interrupt requests in parallel
with processor execution, the 1960 CA processor provides an on-chip programmable interrupt
controller.

Requests for interrupt service come from many sources. These requests are transparently
prioritized so that instruction execution is redirected only if an interrupt request is of higher
priority than that of the executing task.

When the processor is redirected to service an interrupt, it uses a vector number that
accompanies the interrupt request to locate the interrupt table — an entry in a data structure.
From that entry, it gets a vector to the first instruction of the selected interrupt procedure. The
processor then makes an implicit call to that procedure.

When the interrupt call is made, the processor uses a dedicated interrupt stack. A new frame is
created for the interrupt on this stack and a new set of local registers is allocated to the interrupt
procedure. The interrupted program’s current state is also saved.

Upon return from the interrupt procedure, the processor restores the interrupted program’s
state, switches back to the stack that the processor was using prior to the interrupt and resumes
program execution.

Since interrupts are handled based on priority, requested interrupts are often saved for later
service rather than being handled immediately. The mechanism for saving the interrupt is
referred to as interrupt posting. The mechanism the 1960 CA device uses for posting interrupts
is described in Chapter 12, Interrupt Controller.

On the 1960 CA processor, interrupt requests may originate from external hardware sources,

internal DMA sources or from software. External interrupts are detected with the chip’s 8-bit
interrupt port and with a dedicated NMI input. Interrupt requests originate from software by
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the sysctl instruction which signals interrupts. To manage and prioritize all possible interrupts,
the microprocessor integrates an on-chip programmable interrupt controller. Integrated
interrupt controller configuration and operation is described in Chapter 12, Interrupt
Controller.

The 1960 architecture defines two data structures to support interrupt processing (see
Figure 6.1): the interrupt table and interrupt stack. The interrupt table contains 248 vectors for
interrupt handling procedures and an area for posting software requested interrupts. The
interrupt stack prevents interrupt handling procedures from overwriting the stack in use by the
application program. It also allows the interrupt stack to be located in a different area of
memory than the user and supervisor stack (e.g., fast SRAM).

oI ! TMEMORY | CTTTTTEmmETTETEETTT i
1 h ! 1
1 H ! 1
1 H : :
, ! I INTERRUPT .
] i960™ CA H ! TABLE ]
INTERRUPT _ | PROCESSOR ! 1 INTERRUPT -
REQUEST i !——E—» INTERRUPT VECTOR N G E
' ' i '
1 ' ! i
i ' i i
L, H s 1
270710-001-11
Figure 6.1. Interrupt Handling Data Structures
INTERRUPT PRIORITY

To provide transparent prioritization of the 248 possible interrupts, interrupt vectors are
grouped into 31 distinct levels of priority, with eight vectors per priority.

Every interrupt request is associated with an interrupt vector in the interrupt table. The table
contains 248 vectors: from vector number 8, assigned the lowest priority, to vector number
255, the highest priority. Since there are 31 priority levels, each vector’s priority is determined
by the vector number’s upper five bits. Thus, at each priority level, there are eight possible
vector numbers. When multiple interrupt requests are pending at the same priority level, the
highest vector number is serviced first.

The processor compares its current priority with the interrupt request priority to determine
whether to service the interrupt immediately or to delay service. The interrupt is serviced
immediately if the interrupt request priority is higher than the processor’s current priority (the
priority of the program or interrupt the processor is executing). If the interrupt priority is less
than or equal to the processor’s current priority, the processor does not service the request.

Priority-31 interrupts are handled as a special case. Even when the processor is executing at
priority level 31, a priority-31 interrupt will interrupt the processor. The processor may post
requests for later servicing. Interrupts waiting to be serviced, called pending interrupts, are
discussed later in this chapter.
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NOTE

On the 1960 CA processor implementation, the non-maskable interrupt (NMI) interrupts priority-
31 execution; no interrupt can interrupt an NMI handler.

The lowest program priority allowed is 0. If the current program has a O priority, a priority-0
interrupt is never accepted. This is why vectors O through 7 cannot be used. In fact, no entries
are provided for these vectors in the interrupt table.

INTERRUPT TABLE

The interrupt table (Figure 6.2), 1028 bytes in length, can be located anywhere in the non-
reserved address space; it must be aligned on a word boundary. The processor reads a pointer
to interrupt table byte 0 during initialization. The interrupt table must be located in RAM since
the processor must be able to read and write the table’s pending interrupt section.

The interrupt table is divided into two sections: vector entries and pending interrupts. Each are
described in the subsections that follow.

Vector Entries

A vector entry contains a specific interrupt handler’s address. When an interrupt is serviced,
the processor branches to the address specified by the vector entry.

Each interrupt is associated with an 8-bit vector number which points to a vector entry in the
interrupt table. The vector entry section contains 248 one-word entries. Vector numbers 0
through 7 are not defined and do not have associated entries in the interrupt table. Vector
numbers 8 through 243 and 252 through 255 and their associated vector entries are used for
conventional interrupts. Vector number 244 through 247 and 249 through 251 are reserved; do
not use these. Vector number 248 and its associated vector entry is used for the non-maskable
interrupt (NMI).

Vector entry 248 contains the NMI handler address. When the processor is initialized, the NMI
vector located in the interrupt table is automatically read and stored in location OH of internal
data RAM. The NMI vector is subsequently fetched from internal data RAM to improve this
interrupt’s performance.

Vector entry structure is given at the bottom of Figure 6.2. Each interrupt procedure must
begin on a word boundary, so the processor assumes that the vector’s two least significant bits
are 0. Bits 0 and 1 of an entry indicate entry type: type 00, indicates that the interrupt
procedure should be fetched normally; type 10, indicates that the interrupt procedure should be
fetched from the locked partition of the instruction cache (see Chapter 12 section titled
Caching of Interrupt Handling Procedures). The other possible entry types are reserved and
must not be used.
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Pending Interrupts

The pending interrupts section comprises the interrupt table’s first 36 bytes, divided into two
fields: pending priorities (byte offset O through 3) and pending interrupts (4 through 35).

Each of the 32 bits in the pending priorities field represents an interrupt priority. When the
processor posts a pending interrupt in the interrupt table, the bit corresponding to the
interrupt’s priority is set. For example, if an interrupt with a priority of 10 is posted in the
interrupt table, bit 10 is set.

Each of the pending interrupts field’s 256 bits represent an interrupt vector. Byte offset 5 is for
vectors 8 through 15, byte offset 6 is for vectors 16 through 23, and so on. Byte offset 4, the
first byte of the pending interrupts field, is reserved. When an interrupt is posted, its
corresponding bit in the pending interrupt field is set.

This encoding of the pending priority and pending interrupt fields permits the processor to first
check if there are any pending interrupts with a priority greater than the current program and
then determine the vector number of the interrupt with the highest priority.

Posting Interrupts

For the 1960 CA component, only software-requested interrupts are posted in the interrupt
table; hardware-requested interrupts are posted in the interrupt pending (IPND) register. This
register and the mechanism for requesting and posting hardware interrupts is described
Chapter 12, Interrupt Controller. Software posting of interrupts in the interrupt table can assist
an application in prioritizing processing demands as follows:

e By posting interrupt requests in the interrupt table, the application can delay the servicing
of low priority tasks which were signaled by a higher priority interrupt.

e In systems with more than one processor, both processors can post and service interrupts
from a shared interrupt table. This interrupt table sharing allows processors to share the
interrupt handling load or provide a communication mechanism between the processors.

To post a pending interrupt in the memory-resident interrupt table, the processor performs the
following atomic read/write operation that locks the interrupt table until the posting operation
has completed.

# x and z are temporary registers

X ¢ atomic_read(pending_priorities); # assert LOCK pin
z ¢« read(pending_interrupts (vector_number/8)) ;

x (vector_number/8) <« 1;

z (vector_number mod 8) « 1;

write(pending_interrupts (vector_number/8)) <« z;
atomic_write(pending_priorities) ¢« x; # deassert LOCK pin
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The LOCK pin can be used to prevent other agents on the bus from accessing the interrupt
table during the posting operation. On the 1960 CA microprocessor, posting software interrupts
is performed by sysctl.

31 8 7 0
PENDING PRIORITIES

0

v
N PENDING INTERRUPTS N

20H
ENTRY 8 24H (VECTOR 8)
ENTRY 9 28H (VECTOR9)
ENTRY 10 2CH (VECTOR 10)
} ENTRY 243 3DOH (VECTOR 243)

3D4H (VECTOR 244)

/1

| 3E0H (VECTOR 247)
RESERVED FOR NMI 3E4H (VECTOR 248)
3E8H (VECTOR 249)

‘ 3FOH (VECTOR 251)
ENTRY 252 3F4H (VECTOR 252)
1 ENTRY 255 400H (VECTOR 255)

31 VECTOR ENTRY

n

< |-
-
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L —/‘—

INSTRUCTION POINTER

ENTRY TYPE

:] RESERVED (INITIALIZE TO 0) 00 -NORMAL

10 -TARGET IN CACHE

[////////)] PRESERVED 01,11-RESERVED

270710-002-07

Figure 6.2. Interrupt Table

Posting Interrupts Directly to the Interrupt Table

The 1960 CA processor — or external agent that is sharing memory with the microprocessor
(such as an I/0O processor or another 1960 CA device) — can post pending interrupts directly in
the interrupt table by setting the appropriate bits in the pending priorities and pending
interrupts fields. This action, however, does not ensure that the core will handle the interrupt
immediately, nor does it cause the core to update the value in the software priority register. To
do this, the sysctl instruction should be used as described above.

sysctl can be used at any time to explicitly force the core to check the interrupt table for
pending interrupts. This is done by specifying a vector number with a priority of zero (that is,
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vector numbers 0 to 7). For example, when an external agent is posting interrupts to a shared
interrupt table, sysctl could be executed periodically to guarantee recognition of pending
interrupts which were posted in the table by the external agent.

An external I/O agent or a coprocessor posts interrupts to a processor’s interrupt table in
memory in the same manner described above, providing it has the capability to perform atomic
operations on memory. When interrupts are posted in this manner, pending interrupts and
pending priorities must be modified in specific order and not allow access by the processor or
other external agents during the atomic modify operations:

#set pending interrupt bit

atomic_modify (pending_interrupts (vector_number/8)) ;
#set pending priority bit

atomic_modify (pending_priorities);

The processor automatically checks the memory-based interrupt table when the processor posts
an interrupt using sysctl with a post interrupt message type.

When the processor finds a pending interrupt, it handles it as if it had just received the
interrupt. If the processor finds two pending interrupts at the same priority, it services the
interrupt with the highest vector number first.

NOTES

1. When a modify-process-controls (modpc) instruction causes a program’s priority to be
lowered, other 1960 family members check for pending interrupts in the memory-based
interrupt table; the 1960 CA device internally stores the priority of the highest pending
interrupt found in the interrupt table’s pending interrupts field. To improve performance, the
stored priority is checked — rather than the memory-based interrupt table — when modpc
changes a process priority. The internal priority value is updated each time an interrupt is
posted using sysctl.

2. 1960 architecture does not define a portable method for posting interrupts. Different
implementations may implement optimized interrupt posting mechanisms. The 1960 CA
device records pending interrupts differently depending upon interrupt type and interrupt
controller configuration. See this chapter’s sections titled Interrupt Modes and Software
Generated Interrupts.

Caching Portions of the Interrupt Table

The architecture allows all or part of the interrupt table to be cached internally to the processor.
The purpose of caching these fields is to reduce interrupt latency by allowing the processor
access to certain interrupt vectors and to the pending interrupt information without having to
make memory accesses. The microprocessor caches the following:

e The value of the highest priority posted in the pending priorities field.

e A predefined subset of interrupt vectors (that is, interrupt vector entries from the interrupt
table).
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e Pending interrupts received from external interrupt pins and on-chip DMA controller
(hardware requested interrupts).

This caching mechanism is non-transparent; in other words, the processor may modify fields in
a cached interrupt table without modifying the same fields in the interrupt table itself (non-
transparent caching). Vector caching is described in Chapter 12, Interrupt Controller.

INTERRUPT STACK AND INTERRUPT RECORD

The interrupt stack can be located anywhere in the non-reserved address space. The processor
obtains a pointer to the base of the stack during initialization.

The interrupt stack has the same structure as the local procedure stack described in Chapter 5,
Procedure Calls. As with the local stack, the interrupt stack grows from lower addresses to
higher addresses.

The processor saves the state of an interrupted program — or an interrupted interrupt
procedure — in a record on the interrupt stack. Figure 6.3 shows the structure of this interrupt
record.

CURRENT STACK
(LOCAL, SUPERVISOR, OR INTERRUPT STACK)

31
FP
CURRENT FRAME
31

INTERRUPT STACK

/T <

PADDING AREA

OPTIONAL DATA (NOT IMPLEMENTED FOR i960™ CA PROCESSOR)
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Figure 6.3. Storage of an Interrupt Record on the Interrupt Stack
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The interrupt record is always stored on the interrupt stack adjacent to the new frame that is
created for the interrupt handling procedure. It includes the state of the AC and PC registers at
the time the interrupt was received and the interrupt vector number used. Referenced to the
new frame pointer address (designated NFP), the saved AC register is located at address
NFP-12; the saved PC register is located at address NFP-16.

The interrupt record may also contain a resumption record which stores the context of
instructions which began — but not completed — when the interrupt was serviced. Although
the 1960 CA processor never creates a resumption record, portable programs must tolerate
interrupt stack frames with and without resumption records.

INTERRUPT HANDLER PROCEDURES

An interrupt handling procedure performs a specific action that is associated with a particular
interrupt vector. For example, one interrupt handler task might be to initiate a DMA transfer.
The interrupt handler procedures can be located anywhere in the non-reserved address space.
Since instructions in the i960 family architecture must be word aligned, each procedure must
begin on a word boundary.

When an interrupt handling procedure is called, the processor allocates a new frame on the
interrupt stack and a set of local registers for the procedure. If not already in supervisor mode,
the processor always switches to supervisor mode while an interrupt is being handled. It also
saves the states of the AC and PC registers for the interrupted program. The interrupt
procedure shares the remainder of the execution environment resources (namely the global
registers, special function registers and the address space) with the interrupted program. Thus,
interrupt procedures must preserve and restore the state of any resources shared with a non-
cooperating program.

CAUTION!

Interrupt procedures must preserve and restore the state of any resources shared with a non-
cooperating program. For example, an interrupt procedure which uses a global register which is
not permanently allocated to it should save the register’s contents before it uses the register and
restore the contents before returning from the interrupt handler.

To reduce interrupt latency to critical interrupt routines, interrupt handlers may be locked into
the instruction cache. See Chapter 12 section titled Caching of Interrupt Handling Procedures
for a complete description.

INTERRUPT CONTEXT SWITCH

When the processor services an interrupt, it automatically saves the interrupted program state
or interrupt procedure and calls the interrupt handling procedure associated with the new
interrupt request. When the interrupt handler completes, the processor automatically restores
the interrupted program state.

The method that the processor uses to service an interrupt depends on the processor state when
the interrupt is received. If the processor is executing a background task when an interrupt
request is to be serviced, the interrupt context switch must change stacks to the interrupt stack.
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This is called an executing-state interrupt. If the processor is already executing an interrupt
handler, no stack switch is required since the interrupt stack will already be in use. This is
called an interrupted-state interrupt.

The following two sections describe interrupt handling actions for executing-state and
interrupted-state interrupts. In both cases, it is assumed that the interrupt priority is higher than
that of the processor and thus is serviced immediately when the processor receives it.

Executing-State Interrupt

When the processor receives an interrupt while in the executing state (i.e., executing a
program), it performs the following actions, regardless of whether the processor is in user or
supervisor mode when the interrupt occurs:

¢ The new frame pointer (FP) for the interrupt handler is set to point to the interrupt stack
and is incremented to create space for an interrupt record (see Figure 6.3). The interrupt
record is described earlier in this chapter’s section titled Interrupt Record. The current state
of the AC register, PC register and interrupt vector number are saved in the interrupt
record.

e The processor stores the interrupt return status (111,) in the current PFP’s return status
field then changes the following fields and flags in the PC register:

—  Sets state flag (bit 13) to interrupted.
—  Sets execution mode flag (bit 1) to supervisor; processor switches to supervisor mode.

—  Sets priority field (bits 16-20) to the priority of the interrupt. Setting the processor’s
priority to that of the interrupt ensures that lower priority interrupts cannot interrupt
current interrupt servicing.

—  Sets to O the trace-fault-pending flag (bit 10) and trace-enable bit (bit 0). Clearing
these bits allows the interrupt to be handled without trace faults being raised.

e The processor performs a call operation as described in Chapter 5, Procedure Calls. The
target IP for the call is the selected entry in the interrupt table.

When the processor executes a return operation and the return-type field is 1115, it performs
the following:

e The interrupt record’s arithmetic controls and process controls fields are copied into the AC
and PC registers, respectively. Restoring the PC register causes the processor’s state to be
returned to executing and its execution mode and priority to be returned to what they were
prior to the interrupt. It also returns the trace-fault-pending flags and trace-enable bit to
their value before the interrupt occurred.

NOTE

If the interrupt handling procedure sets execution mode to user prior to the return, the PC register
is not restored upon return.

e Pending interrupts that need to be handled — such as pending interrupts with higher
priority than that of the program being returned to — are handled at this time, prior to
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returning to the previously interrupted program. If the trace-fault-pending flag and trace-
enable bit are set, the trace fault is handled at this time.

e The processor then performs a return operation as described in Chapter 5, Procedure Calls.
This causes the processor to switch back to the local stack or supervisor stack; whichever it
was using when interrupted.

Assuming that there are no pending interrupts to be serviced or trace faults to be handled, the
processor resumes work on the interrupted program upon completion of the return operation.

Interrupted-State Interrupt

If the processor is servicing an interrupt and receives an interrupt with a higher priority, the
current interrupt handler routine is interrupted. Here, the processor performs the same action to
save the interrupted interrupt handler routine’s state, as described in the previous section for an
executing-state interrupt. The interrupt record is saved on the top of the interrupt stack, prior to
the new frame that is created for servicing the new interrupt.

On return from the current interrupt handler to the previous interrupt handler, the processor
deallocates the current stack frame and interrupt record and stays on the interrupt stack.

REQUESTING INTERRUPTS

On the 1960 CA microprocessor, interrupt requests may originate from external hardware
sources, internal DMA sources or from software. External interrupts are detected with the
chip’s 8-bit interrupt port and with a dedicated NMI input. Interrupt requests originate from
software by the sysctl instruction which signals interrupts. To manage and prioritize all
possible interrupts, the microprocessor integrates an on-chip programmable interrupt
controller. The configuration and operation of the integrated interrupt controller is described in
Chapter 12, Interrupt Controller.

Interrupts may be requested directly by a user’s program. This mechanism is often useful for
requesting and prioritizing low-level tasks in a real time application.

Software can request interrupts in the following two ways:
1. With the sysctl instruction.

2. By the 19960 CA microprocessor, or another processor, posting an interrupt in the interrupt
table’s pending-interrupts and pending-priorities fields.

SYSTEM CONTROL INSTRUCTION (syscti)

sysctl is typically used to request an interrupt in a program (Example 6.1). The request
interrupt message type (00H) is selected and the interrupt vector number is specified in the
least significant byte of the instruction operand. (See Chapter 2, Programming Environment
for a complete discussion of sysctl.)
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Example 6.1. Requesting an Interrupt with the sysctl Instruction

ldconst 0x53,g5 # Vector number 53H is loaded

# into byte 0 of register g5 and
# the value is zero extended into
# byte 1 of the register

#

Vector number 53H is posted

sysctl g5, g5, g5

A literal can be used to post an interrupt with a vector number from 8 to 31. Here, the required
value of OOH in the second byte of a register operand is implied.

The action of the core when it executes the sysctl instruction is as follows:

1. The core performs an atomic write to the interrupt table and sets bits in the pending-
interrupts and pending-priorities fields that correspond to the requested interrupt.

2. The core updates the internal software priority register with the value of the highest
pending priority from the interrupt table. This may be the priority of the interrupt that was
just posted.

The interrupt controller continuously compares the following three values: software priority
register, current process priority, priority of the highest pending hardware-generated interrupt.
When the software priority register value is the highest of the three, the following actions are
taken:

1. The interrupt controller signals the core that a software-generated interrupt is to be
serviced.

2. The core checks the interrupt table in memory, determines the vector number of the
highest priority pending interrupt and clears the pending-interrupts and pending-priorities
bits in the table that correspond to that interrupt.

3. The core detects the interrupt with the next highest priority which is posted in the interrupt
table (if any) and writes that value into the software priority register.

4. The core services the highest priority interrupt.

If more than one pending interrupt is posted in the interrupt table at the same interrupt priority,
the core handles the interrupt with the highest vector number first.

The software priority register is an internal register and, as such, is not visible to the user. The

core only updates this register’s value when sysctl requests an interrupt and when a software-
generated interrupt is serviced.
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CHAPTER 7
FAULTS

This chapter describes the 1960 CA processor’s fault handling facilities. Subjects covered
include the fault handling data structures and fault handling mechanism. A reference section at
the end of the chapter contains detailed information on each fault type.

FAULT HANDLING FACILITIES OVERVIEW

The architecture defines various conditions in code or the processor’s internal state that could
cause the processor to deliver incorrect or inappropriate results or that could cause it to head
down an undesirable control path. These are called fault conditions. For example, the
architecture defines faults for divide-by-zero and overflow conditions on integer calculations,
for inappropriate operand values and for invalid opcodes and addressing modes.

FAULT -
> FAULT
PROCESSOR FAULT | HanDLING
TABLE | PROCEDURES
SYSTEM
PROCEDURE
o TABLE .| SUPERVISOR
> o STACK
- USER
STACK
270710-001-18

Figure 7.1. Fault-Handling Data Structures

As shown in Figure 7.1, the architecture defines a fault table, a system procedure table, a set of
fault handling procedures and a stack (user stack, supervisor stack or both) to handle
processor-generated faults.

The fault table contains pointers to fault handling procedures. The system procedure table is
optionally used to provide an interface to any fault handling procedures and to allow faults to
be handled in supervisor mode. Stack frames for fault handling procedures are created on
either the user or supervisor stack, depending on the mode in which the fault is handled.
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Once these data structures and the code for the fault procedures are established in memory, the
processor handles faults automatically and independently from applications software.

The processor can detect a fault at any time while executing instructions, whether from a
program, interrupt handling procedure or fault handling procedure. If a fault occurs when
executing a program, the processor determines the fault type and selects a corresponding fault
handling procedure from the fault table. It then invokes the fault handling procedure by means
of an implicit call. As described later in this chapter, the fault handler call can be:

e alocal call (call-extended operation)
e asystem-local call (local call through the system procedure table)

e asystem-supervisor call (also through the system procedure table)

As part of the implicit call to the fault handling procedure, the processor creates a fault record
on the stack — the stack in use by the fault handling procedure. This record includes
information on the fault and the processor’s state when the fault was generated.

Following fault record creation, the processor begins executing the selected fault handling
procedure. If the fault handling procedure recovers from the fault, the processor then restores
itself to its state prior to the fault and resumes work on the program with no break in program
control flow. If the fault handling procedure is not able to recover from the fault, the fault
handler can call a debug monitor or perform an action such as resetting the processor.

The procedure call mechanism described above is used to handle faults that occur while the
processor is servicing an interrupt or that occur while the processor is working on another fault
handling procedure.

FAULT TYPES

The 1960 architecture defines a basic set of faults which are categorized by type and subtype.
Each fault has a unique type number and a subtype number. When the processor detects a fault,
it records the fault type and subtype numbers in a fault record. It then uses the type number to
select a fault handling procedure.

The fault handling procedure has the option of using the subtype number to select a specific
fault handling action. The 1960 CA processor recognizes 1960 architecture-defined faults and a
new fault subtype for detecting unaligned memory accesses. Table 7.1 lists all faults that the
1960 CA processor detects, arranged by type and subtype. Text that follows the table gives
column definitions.
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Table 7.1. i1960™ CA Processor Fault Types and Subtypes

Fault Type Fault Subtype Fault Record
Number Name Number/Bit Name
Position
1H Trace Bit 1 Instruction Trace XX01 XX02H
Bit 2 Branch Trace XX01 XX04H
Bit 3 Call Trace XX01 XX08H
Bit 4 Return Trace XX01 XX10H
Bit 5 Prereturn Trace XX01 XX20H
Bit 6 Supervisor Trace XX01 XX40H
Bit 7 Breakpoint Trace XX01 XX80H
2H Operation 1H Invalid Opcode XX02 XX01H
2H Unimplemented XX02 XX02H
3H Unaligned (see note) XX02 XX03H
4H Invalid Operand XX02 XX04H
3H Arithmetic 1H Integer Overflow XX03 XX01H
2H Arithmetic Zero-Divide XX03 XX02H
4H Reserved
(Floating Point)
SH Constraint 1H Constraint Range XX05 XX01H
2H Privileged XX05 XX02H
6H Reserved
TH Protection 2H Length XX07 XX01H
8H - 9H Reserved
AH Type IH Type Mismatch XX0A XXO01H
BH-FH | Reserved
NOTE

The operation-unaligned fault is an 1960 CA processor-specific extension.

The first column of Table 7.1 gives fault type numbers in hexadecimal; the second column
gives the fault type name.

The third column gives the fault subtype number: as a hexadecimal number or as a bit position
in the 8-bit fault subtype field in the fault record. The bit position method of indicating a fault
subtype is used for faults such as trace faults, where it is possible for two or more fault
subtypes to be generated simultaneously.

The fourth column gives the fault subtype name. For convenience, individual faults are referred
to in this manual by their fault-subtype name. Thus an operation-invalid-operand fault is
referred to as simply an invalid-operand fault or an arithmetic-integer-overflow fault is
referred to as an integer-overflow fault.
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The fifth column of Table 7.1 shows the encoding of the word in the fault record that contains
the fault type and fault subtype numbers.

Other 1960 family members may provide different extensions that recognize additional fault
conditions. Fault type and subtype encoding allows any of these additional faults to be included
in the fault table along with the basic faults. Space in the fault table is reserved in such a way
that specific implementation-defined faults are encoded the same for each processor that uses
them. For example, Fault Type 4 is reserved for floating point faults. Any of the 1960 family
processors that provide floating point operations use Entry 4 to store the pointer to the floating
point fault handling procedure.

FAULT TABLE

The fault table (Figure 7.2) provides the processor with a pathway to fault handling procedures.
It can be located anywhere in the address space. The processor obtains a pointer to the fault
table during initialization.

There is one entry in the fault table for each fault type. When a fault occurs, the processor uses
the fault type to select an entry in the fault table. From this entry, the processor obtains a
pointer to the fault handling procedure for the type of fault that occurred. Once a fault handling
procedure is called, it has the option of reading the fault subtype or subtypes from the fault
record, to determine the appropriate fault recovery action.

As shown in Figure 7.2, two fault table entry types are allowed: local-call entry and system-call
entry. Each entry type is two words long. The entry type field (bits 0 and 1 of the first word of
the entry) and the value in the second word of the entry determine the entry type.

A local-call entry (type 00) provides an instruction pointer (address in the address space) for
the fault handling procedure. Using this entry, the processor invokes the specified procedure by
means of an implicit local-call operation. The second word of a local procedure entry is
reserved. It should be set to zero when the fault table is created and not accessed after that.

A system-call entry provides a procedure number in the system procedure table. This entry
must have an entry type of 10 and a value in the second word of 0000 027FH. Using this entry,
the processor invokes the specified fault handling procedure by means of an implicit call-
system operation similar to that performed for the calls instruction. A fault handling procedure
in the system procedure table can be called with a system-local call or a system-supervisor call,
depending on the entry type in the system-procedure table.

To summarize, a fault handling procedure can be invoked through the fault table in any of
three ways: a local call, a system-local call or a system-supervisor call.
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31 FAULT TABLE 0
PARALLEL FAULT ENTRY OH
TRACE FAULT ENTRY 8H
OPERATION FAULT ENTRY 10H

ARITHMETIC FAULT ENTRY

CONSTRAINT FAULT ENTRY

-

PROTECTION FAULT ENTRY 38H

TYPE FAULT ENTRY

31 LOCAL-CALL ENTRY 210

>

FAULT-HANDLER PROCEDURE ADDRESS

n+4
31 SYSTEM-CALL ENTRY 210
FAULT-HANDLER PROCEDURE NUMBER 11 [O n
0000 027FH n+4

D RESERVED (INITIALIZE TO 0) 270710-002-12

Figure 7.2. Fault Table and Fault Table Entries

STACK USED IN FAULT HANDLING

The architecture does not define a dedicated fault handling stack. Instead, the processor uses
the stack that is active when the fault is generated (user stack, interrupt stack or supervisor
stack) to handle a fault, with one exception: if the user stack is active when a fault is generated
and the fault handling procedure is called with an implicit supervisor call, the processor
switches to the supervisor stack to handle the fault.
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FAULT RECORD

When a fault occurs, the processor records information about the fault in a fault record in
memory. The fault handling procedure uses the information in the fault record to correct or
recover from the fault condition and, if possible, resume program execution. The fault record is
stored on the stack that the fault handling procedure will use to handle the fault.

Fault Record Data

Figure 7.3 shows the structure of the fault record. In this record, the type number of the fault is
stored in the fault type field and the subtype number (or bit positions for multiple subtypes) of
the fault subtype is stored in the fault subtype field. The address-of-faulting-instruction field
contains the IP of the instruction upon which the processor faulted.

Values in the PC and AC registers when a fault is generated are stored in their respective fault
record fields. This information is used to resume work on the program after the fault is
handled. In the case of parallel instruction execution, these fields contain the states of the
registers when the processor has completed all parallel and out-of-order instruction execution.

31

OPTIONALDATA

NO. PARALLEL FAULTS | NFP-20

. ] I;AHALLELfYPENd. I o

PROCESS CONTROLS NFP-16
ARITHMETIC CONTROLS NFP-12

. I FAULT TYPE [ FAULT SUB-TYPE | NFP-8

ADDRESS OF FAULTING INSTRUCTION NFP-4

D RESERVED
270710-001-19

Figure 7.3. Fault Record

Optional data fields are defined for certain faults. These fields contain additional information
about the faulting conditions, usually to assist resumption. Parallel fault and operation-
unaligned fault types are the only faults in the 1960 CA processor that use optional data fields.
The processor can generate parallel faults when instructions are executed in parallel. Parallel
faults and the contents of the optional data fields for this fault type are described later in the
section titled Multiple Fault Conditions. The operation-unaligned fault and its optional data
field are described later in the section titled Operation Faults. All unused bytes in the fault
record are reserved. '
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Return Instruction Pointer

When a fault handling procedure is called — as with any call — a return instruction pointer is
saved in the RIP register (r2). The RIP is intended to point to an instruction where program
execution can be resumed with no break in the program’s control flow. It generally points to
the faulting instruction or to the next instruction to be executed. In some instances, however,
the RIP is undefined. The Fault Reference section, later in this chapter, defines the RIP content
for each fault.

When the RIP refers to a “next instruction”, this does not always mean the instruction directly
after the faulting instruction. Instead, it is an instruction to which the processor can logically
return to resume program execution.

Fault Record Location

The fault record is stored in the stack that the processor uses to execute the fault handling
procedure. As shown in Figure 7.4, this stack can be the user stack, supervisor stack or
interrupt stack. The fault record begins at byte address NFP-1. NFP refers to the new frame
pointer which is computed by adding the memory size allocated for padding and the fault
record to the new stack pointer (NSP).

The processor automatically determines the number of bytes required for the fault record and
increments the FP by that amount, rounding it off to the next highest 16-byte boundary. Fault
record size is variable, based on the size of the optional fault-data portion of the fault record.

Stack frame alignment is defined for each implementation of the 1960 architecture. This
alignment boundary is calculated from the relationship SALIGN*16. For example, if SALIGN
is selected to be 4, stack frames are aligned on 64-byte boundaries. In the 1960 CA processor,
SALIGN=I.
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CURRENT STACK
(USER, SUPERVISOR, OR INTERRUPT STACK)

CURRENT FRAME

LOCAL STACK OR SUPERVISOR STACK?
31

NspP!
PADDING AREA

o

STACK
GROWTH
FAULT RECORD FAULT
\ N RECORD
NFP—4
\NFP

.F NEW FRAME

270710-001-20

Figure 7.4. Storage of the Fault Record on the Stack

NOTES

1. If the call to the fault handler procedure does not require a stack switch, the new stack pointer
(NSP) is the same as SP.

2. If the processor is in user mode and the fault handler procedure is called with a system-
supervisor call, the processor switches to the supervisor stack.

MULTIPLE AND PARALLEL FAULTS

Multiple fault conditions can occur in two circumstances: (1) during a single instruction
execution; (2) during multiple instruction execution when the instructions are executed by
parallel execution units within the processor. The following sections describe how faults are
handled under these conditions.

Multiple Faulits

Multiple fault conditions can occur during a single instruction execution. For example, an
instruction can have an invalid operand and unaligned address. When this situation occurs, the
processor is required to recognize and generate at least one of the fault conditions. The
processor may not detect all fault conditions and may not report all detected faults.
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In a multiple fault situation, the reported fault condition is left to the implementation. The
architecture, however, does define the criteria for determining which fault to report when trace
fault conditions are one or more of the fault conditions.

Multiple Trace Fault Conditions Only

Multiple trace fault conditions that single instruction executions generate are reported in a
single trace fault. To support this multiple fault reporting, the trace fault uses bit positions in
the fault-subtype field to indicate occurrences of multiple faults of the same type (Table 7.1).

For example, when instruction tracing is enabled, an instruction trace fault condition is
detected on each instruction that is executed, along with other trace fault conditions that are
enabled (e.g., a call trace fault or a branch trace fault.) The processor generates a trace fault
after each instruction and sets the appropriate bit or bits in the fault-subtype field to indicate the
instruction trace fault and any other trace fault subtypes that occurred. See Chapter 8, Tracing
and Debugging for a description of the trace fault.

Multiple Trace Fault Conditions with Other Fault Conditions

The execution of a single instruction can create one or more trace fault conditions in addition
to multiple non-trace fault conditions. When this occurs, the processor generates at least two
faults: a non-trace fault and a trace fault.

The non-trace fault is handled first and the trace fault is triggered immediately after executing
the return instruction (ret) at the end of the non-trace fault handler.

Parallel Faults

As described in Appendix A, Optimizing Code for the i960 CA Microprocessor. the 19960 CA
processor exploits the architecture’s tolerance of parallel and out-of-order instruction exccution
by issuing instructions to multiple, independent execution units on the chip. The following
sections describe how the processor handles faults in this environment.

Faults in One Parallel Instruction

When a fault occurs during the execution of a particular instruction, it is not possible to
suspend other instructions that are already executing in other execution units. To handle the
fault, the processor continues executing new instructions until each execution unit completes
execution of its respective instruction and all out-of-order instructions are executed. For
example, if an integer overflow occurs during the addition in the following code example, the
fault is detected before the multiply has completed execution. Before invoking the integer-
overflow fault handling procedure, the processor waits for the multiply to complete.

muli g2, g4, gb6;
addi g8, g9, gl0; # results in integer overflow
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Faults in Multiple Parallel Instructions

When executing instructions in parallel, it is possible for faults to occur in more than one
currently executing instruction. In the code sequence above, for example, an integer overflow
fault could occur for both the muli and addi instructions, with the fault from the addi
instruction being recognized by the processor first. To report multiple parallel faults, the
architecture provides the parallel fault type.

In these parallel fault situations, the processor saves the fault type and subtype in the optional
data field for each fault detected after the first fault. The fault handling procedure for parallel
faults can then analyze the fault record and handle the faults. The fault record for parallel faults
is described in the next section.

The existence of multiple parallel faults is often catastrophic. Multiple parallel faults are
generated as imprecise faults, which means that recovery from the faults is normally not
possible. (Imprecise faults are described later in this chapter’s section titled Precise and
Imprecise Faults.) Unless imprecise faults are disallowed, a parallel-fault-handling procedure
generally does not attempt to recover from the faults, but instead calls a debug monitor to
analyze the faults. If recovery from every parallel fault is possible, the RIP allows the
processor to resume executing the program when the fault handling has completed.

Even though multiple faults can be generated by multiple instructions executing in parallel,

only one fault is ordinarily generated per instruction, as described in the previous section titled
Multiple Faults.

Fault Record for Parallel Faults

Figure 7.5 shows the structure of the fault record for parallel faults.
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31 0
. ‘ FAULT TYPE n S | FAULTSUBTYPEn | NFP-8—((n+1):32)
ADDRESS OF FAULTING INSTRUCTION (n) NFP—4—((n+1)+32)
FAULT TYPE 2 4 ; ‘I FAULT SUBTYPE 2 NFP-104
ADDRESS OF FAULTING INSTRUCTION 2 NFP-100
<
p
L [ PARALLEL TYPE NO. J o . INO. PARALLEL FAULTS | NFP-20
PROCESS CONTROLS NFP-16
ARITHMETIC CONTROLS NFP-12
' l FAULT TYPE 1 l o i FAULT SUB-TYPE 1 | NFP-8
ADDRESS OF FAULTING INSTRUCTION 1 NFP-4
RESERVED 270710-001-21

Figure 7.5. Fault Record for Parallel Faults

To calculate byte offsets, “n”" indicates fault number. Thus, for the second fault recorded (n=2),
the relationship (NFP-4 -(n+1)*32) reduces to NFP-100. For the i960 CA device, number of
parallel faults allowed is 2 or 3.

When multiple parallel faults occur, the processor selects one of the faults and records it in the
first 16 bytes of the fault record as described in the section titled Fault Record. Information for
the remaining parallel faults is then written to the fault record’s optional data field and the fault
handling procedure for parallel faults is invoked.

The first word in the fault record’s optional data field (NFP-20) contains information about the
parallel faults. The byte at offset NFP-18 contains O0H (encoding for the parallel fault type);
the byte at NFP-20 contains the number of parallel faults. The optional data field also contains
a 32-byte parallel fault record for each additional fault. These parallel fault records are stored
incrementally in the fault record starting at byte offset NFP-97. The fault record for each
additional fault contains only the fault type, fault subtype and address-of-faulting instruction
field. (AC and PC register values are not given for these faults because they are already given
in the fault record for the first fault.)
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FAULT HANDLING PROCEDURES

The fault handling procedures can be located anywhere in the address space. Each procedure
must begin on a word boundary.

The processor can execute the procedure in the user mode or the supervisor mode, depending
on the type of fault table entry.

To resume work on a program at the point where a fault occurred (following the recovery
action of the fault handling procedure), the fault handling procedure must be executed in
supervisor mode. The reason for this requirement is described in a following section titled
Returning to the Point in the Program Where the Fault Occurred.

Possible Fault Handling Procedure Actions

The processor allows easy recovery from many faults that occur. When fault recovery is
possible, the processor’s fault handling mechanism allows the processor to automatically
resume work on the program or interrupt pending when the fault occurred. Resumption is
initiated with a ret instruction in the fault handling procedure.

If recovery from the fault is not possible or not desirable, the fault handling procedure can take
one of the following actions, depending on the nature and severity of the fault condition (or
conditions, in the case of multiple faults):

e Return to a point in the program or ¢ Call a debug monitor.
interrupt code other than the point of
the fault.

¢ Explicitly write the processor state and e Perform processor or system shutdown
fault record into memory and perform without explicitly saving the processor
processor or system shutdown. state or fault information.

When working with the processor at the development level, a common fault handling
procedure action is to save the fault and processor state information and make a call to a
debugging device such as a debugging monitor. This device can then be used to analyze the
fault information.

Program Resumption Following a Fault

Because of the 19960 CA processor’s multi-stage execution pipeline, faults can occur:
e before execution of the faulting instruction (i.e., the instruction that causes the fault)
¢ during instruction execution

¢ immediately following execution

When the fault occurs before the faulting instruction is executed, the faulting instruction may
be re-executed upon return from the fault handling procedure.
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When a fault occurs during or after execution of the faulting instruction, the fault may be
accompanied by a program state change such that program execution cannot be resumed after
the fault is handled. For example, when an integer overflow fault occurs, the overflow value is
stored in the destination. If the destination register is the same as one of the source registers,
the source value is lost, making it impossible to re-execute the faulting instruction.

In general, resumption of program execution with no changes in the program’s control flow is
possible with the following fault types or subtypes:

e All Operation Subtypes e Arithmetic Zero Divide
e All Constraint Subtypes e All Trace Subtypes
e Length

Resumption of the program may or may not be possible with the following fault subtype:
e Integer Overflow

The effect that specific fault types have on a program is given in the fault reference section at
the end of this chapter under the heading Program State Changes.

Returning to the Point in the Program Where the Fault Occurred

As described above, most faults can be handled such that program control flow is not affected.
In this case, the processor allows work on a program to be resumed at the point where the fault
occurred, following a return from a fault handling procedure (initiated with a ret instruction).
The resumption mechanism used here is similar to that provided for returning from an interrupt
handler.

To use this mechanism, the fault handling procedure must be invoked using a supervisor call.
This method is required because — to resume work on the program at the point where the fault
occurred — the saved process controls in the fault record must be copied back into the PC
register upon return from the fault handling procedure. The processor only performs this action
if the processor is in supervisor mode when the return is executed.

Returning to a Point in the Program Other Than Where the Fault
Occurred

A fault handling procedure can also return to a point in the program other than where the fault
occurred. To do this, the fault procedure must alter the RIP.

To predictably perform a return from a fault handling procedure to an alternate point in the
program, the fault handling procedure should perform the following four steps:

1. Flush the local register sets to the stack with a flushreg instruction,
2. Modify the RIP in the previous frame,

3. Clear the trace-fault-pending flag in the process controls field of the fault record before the
return,

4. Execute a return with the ret instruction.
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This technique should be used carefully and only in situations where the fault handling
procedure is closely coupled with the application program. Also, a return of this type can only
be performed if the processor is in supervisor mode prior to the return.

FAULT CONDITIONS AND FAULT CONTROL

The processor generates faults implicitly when fault conditions occur and explicitly at the
request of software. For several fault conditions, the programmer may control whether or not a
fault is actually signaled when the condition is recognized. The following sections describe
conditions which cause faults and facilities for controlling faults which are optionally
generated.

Implicit Fault Generation

Most faults are generated implicitly; that is, they occur as a side etfect of an instruction
execution which has encountered difficulty. Following paragraphs summarize conditions
which cause faults. The Fault Reference section at the end of this chapter provides a detailed
description of each fault type and subtype.

Destination Overflow — An integer overflow fault is signaled when the result of an integer
operation does not fit in the specified destination. The integer overflow fault handling
procedure is invoked if the AC register integer overflow mask bit is set to enable these faults.

addi  subi

stib shli

muli  divi
Division by Zero — The zero-divide fault is generated when the divisor of an integer or ordinal
division is zero.

divo  divi

ediv remo

remi
Supervisor Protection Violations — The constraint-privileged fault is generated if the
application attempts to execute a supervisor-only instruction while not in supervisor mode.

sdma  sysctl
The type-mismatch fault is generated if the application attempts to modify a supervisor-only
resource while not in supervisor mode. On the 1960 CA processor, supervisor-only resources

are the PC register, on-chip data RAM and special function registers. The following actions
generate a type-mismatch fault if attempted when the processor is not in supervisor mode:

e Using modpc to modify the PC register. (Using modpec to read the register is allowed in
non-supervisor mode and does not cause a fault.)

e Writing to the protected on-chip data RAM.
e Reading or writing a SFR.
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Out-of-bounds System-Procedure Call — The protection-length fault is generated if the
processor attempts to execute a calls with a system procedure number specified which is
greater than the size of the system procedure table.

Invalid Instruction Encodings - The operation-invalid-opcode fault is generated if the
processor encounters an invalid opcode or an invalid encoding of a MEM-format instruction
addressing mode.

Unaligned Register Reference — The invalid-operand fault is generated if the processor detects
any unaligned register reference in any instruction which references long, triple or quad groups
of registers.

Unaligned Memory Access — The operation-unaligned fault is signaled if the processor
attempts to issue a memory request to an unaligned location. The unaligned-fault mask bit
located in the fault-control word (PRCB) determines whether the fault handling procedure is
invoked or whether access is handled transparently by the processor, without a fault. The fault-
control word and PRCB are described in Chapter 14, Initialization and Svstem Requirements.

Referencing a Non-existent SFR - The invalid-operand fault is generated if the processor
executes an instruction which references a non-existent special function register. On the 1960
CA processor, only sf0, sf1 and sf2 are implemented.

Issuing a Bad System Control Command - The operation-invalid-operand fault is generated if
the processor executes an instruction which specifies a non-existent sysctl command.

Execution from Internal Data RAM - The operation-unimplemented fault is generated if an
attempt is made to execute an instruction fetched from the 1960 CA processor’s on-chip data
RAM.

Instruction Type is being Traced - A trace-fault is generated when the processor executes an
instruction selected for tracing in the TC register and tracing is enabled by the PC register trace
enable bit. See Chapter 8, Tracing and Debugging for a complete description.

Breakpoint Detected - A trace fault is generated when:

e The processor executes an instruction at an instruction pointer which matches one of the
programmed instruction-address breakpoints and trace taults are enabled.

e The processor issues a memory request that matches one of the programmed data-address
breakpoints and trace faults are enabled.

See Chapter 8, Tracing and Debugging for a complete discussion of the breakpoint registers.
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Explicit Fault Generation

Two sets of instructions allow explicit fault generation anywhere in a program. The fault-if
instructions (faulte, faultne, faultl, faultle, faultg, faultge, faulto, faultno) allow a fault to be
generated conditionally. When one of these instructions is executed, the processor checks the
AC register condition code bits then generates a constraint-range fault if the condition specified
with the instruction is met.

mark and fmark (force mark) instructions allow a breakpoint-trace fault to be generated
anywhere in the instruction stream.

Fault Controls

Certain fault types and subtypes have mask bits or flags associated with them that determine
whether or not a fault is generated when a fault condition occurs. Table 7.2 summarizes these
flags and masks, data structures in which they are located, fault subtypes they affect and where
more information about them may be found.

The integer overflow mask bit inhibits an integer overflow faults from being generated. The
use of this mask is discussed in the Fault Reference section at the end of this chapter.

The no-imprecise-faults (NIF) bit controls the synchronizing of faults for a category of faults
called imprecise faults. The function of this bit is described later in this chapter’s section titled
Precise and Imprecise Faults.

TC register trace mode bits and PC register trace enable bit support trace faults. Trace mode
bits enable trace modes; trace enable bit enables trace fault generation. The use of these bits is
described in the Fault Reference section on trace faults at the end of this chapter. Further
discussion of these flags is provided in Chapter 8, Tracing and Debugging.
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Table 7.2. Fault Flags or Masks

Flag or Mask Name Location Faults Affected

Integer Overflow Mask Bit Arithmetic Controls Integer Overflow
(AC) Register

No Imprecise Faults Bit Arithmetic Controls All Imprecise Faults
(AC) Register

Trace Enable Bit Process Controls All Trace Faults
(PC) Register

Trace Mode Flags Trace Controls All Trace Faults
(TC) Register

Unaligned Fault Mask Process Control Block (PRCB) | Unaligned fault

NOTE

The unaligned fault, unaligned fault mask and the processor control block are 1960 CA processor
extensions to the 1960 architecture.

The unaligned fault mask bit is located in the process control block (PRCB), which is read
during initialization. It controls whether unaligned memory accesses are handled by the
processor or generate a fault. (See Chapter 10, The Bus Controller.)

FAULT HANDLING ACTION

Once a fault occurs, the processor saves the program state; calls the fault handling procedure;
and restores the program state (if possible) once the fault recovery action is completed. No
software other than the fault handling procedures is required to support this activity.

Three different types of implicit procedure calls can be used to invoke the fault handling
procedure according to the information in the selected fault table entry: a local call, a system-
local call and a system-supervisor call.

The following sections describe actions the processor takes while handling faults. It is not
necessary to read these sections to use the fault handling mechanism or to write a fault
handling procedure. This discussion is provided for those readers who wish to know the details
of the fault handling mechanism.

Local Fault Call

When the selected fault handler entry in the fault table is an entry type 00, (local procedure),
the processor performs the same operation as is described in the section of Chapter 5,
Procedure Calls titled Call Operation, with the following exceptions:

¢ A new frame is created on the stack that the processor is currently using. The stack can be
the user stack, supervisor stack or interrupt stack.
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e The fault record is copied into the area allocated for it in the stack, beginning at NFP-1.
(See Figure 7.4.)

e The processor gets the IP for the first instruction in the called fault handling procedure
from the fault table.

o The processor stores the fault return code (001,) in the PFP return type field.

If the fault handling procedure is not able to perform a recovery action, it performs one of the
actions described in the section earlier in this chapter titled Program Resumption Following a
Fault.

If the handler action results in recovery from the fault, a ret instruction in the fault handling
procedure allows processor control to return to the program that was pending when the fault
occurred. Upon return, the processor performs the action described in the section of Chapter 5,
Procedure Calls titled Return Operation, except that the arithmetic controls field from the fault
record is copied into the AC register. Since the call made is local, the process controls field
from the fault record is not copied back to the PC register.

System-Local Fault Call

When the fault handler selects an entry for a local procedure in the system procedure table
(entry type 10;), the processor performs the same action as is described in the previous section
for a local fault call or return. The only difference is that the processor gets the fault handling
procedure's address from the system procedure table rather than from the fault table.

System-Supervisor Fault Call

When the fault handler selects an entry for a supervisor procedure in the system procedure
table, the processor performs the same action described in the section of Chapter 5, Procedure
Calls titled Call Operation, with the following exceptions:

e If in user mode when the fault occurs: the processor switches to supervisor mode, reads the
supervisor stack pointer from the system procedure table and switches to the supervisor
stack. A new frame is then created on the supervisor stack.

e If in supervisor mode when the fault occurs: the processor creates a new frame on the
current stack. If the processor is executing a supervisor procedure when the fault occurred,
the current stack is the supervisor stack; if it is executing an interrupt handler procedure,
the current stack is the interrupt stack. (The processor switches to supervisor mode when
handling interrupts.)

e The fault record is copied into the area allocated for it in the new stack frame, beginning at
NFP-1. (See Figure 7.4.)

e The processor gets the IP for the first instruction of the fault handling procedure from the
system procedure table (using the index provided in the fault table entry).

e The processor stores the fault return code (001;) in the PFP register return type field. If the
fault is not a trace fault, it copies the state of the system procedure table trace control flag
(byte 12, bit 0) into the PC register trace enable bit. If the fault is a trace fault, the trace
enable bit is cleared.
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On a return from the fault handling procedure, the processor performs the action described in
the section of Chapter 5, Procedure Calls titled Return Operation, with the following
exceptions:

e The fault record arithmetic controls field is copied into the AC register. If the processor is
in supervisor mode prior to the return from the fault handling procedure (which it should
be), the fault record process controls field is copied into the PC register. (Restoring the PC
register restores the trace-fault-pending flag and trace enable bit values to their pre-fault
values.) Also, if the processor was in user mode when the fault occurred, the mode is set
back to user mode; otherwise, the processor remains in supervisor mode.

e The processor switches back to the stack it was using when the fault occurred. (If the
processor was in user mode when the fault occurred, this operation causes a switch from
the supervisor stack to the user stack.)

¢ If interrupts are pending that are higher than the priority of the program being returned to,
they are handled as if the interrupt had occurred at this point. If the trace-fault-pending flag
and trace enable bit are set, the trace fault is also handled at this time.

PC register restoration causes any changes to the process controls caused by the fault handling
procedure to be lost. In particular, if the ret instruction from the fault handling procedure
caused the PC register trace-fault-pending flag to be set, this setting would be lost upon return.

Faults and Interrupts

If an interrupt occurs during 1) an instruction that will fault or 2) an instruction that has already
faulted or 3) during fault handling procedure selection, the processor handles the interrupt in
the following way: It completes the selection of the fault handling procedure, then services the
interrupt just prior to executing the first instruction of the fault handling procedure. The fault is
handled upon return from the interrupt. Handling the interrupt before the fault reduces interrupt
latency.

PRECISE AND IMPRECISE FAULTS

As described earlier in this chapter in the section titled Parallel Faults, the 1960 architecture —
to support parallel and out-of-order instruction execution — allows some faults to be generated
together and not in sequence. When this situation occurs, it may be impossible to recover from
some faults, because the state of the instructions surrounding the faulting instruction has
changed or the RIP is unpredictable.

The processor provides two mechanisms for controlling the circumstances under which faults
are generated: the AC register no-imprecise-faults bit (NIF bit) and the synchronize-faults
instruction (syncf). The following paragraphs describe how these mechanisms can be used.

Faults are grouped into the following categories: precise, imprecise and asynchronous. Precise

faults are those intended to be software recoverable. For any instruction that can generate a
precise fault, the processor:
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1. does not execute the instruction if an unfinished prior instruction will fault and

2. does not execute subsequent out-of-order instructions that will fault.

Also, the RIP points to an instruction where the processor can resume program execution
without breaking program control flow. Two faults are always precise: trace faults and
protection faults.

Imprecise faults are those where the architecture does not guarantee that sufficient information
is saved in the fault record to allow recovery from the fault. For imprecise faults, the faulting
instruction address is correct, but the state of execution of instructions surrounding the faulting
instruction may be unpredictable. Also, the architecture allows imprecise faults to be generated
out of order, which means that the RIP may not be of any value for recovery. Faults that the
architecture allows to be imprecise include:

e operation e arithmetic

e constraint ° type

Refer to the Fault Reference section of this chapter to determine whether specific faults are
precise.

Asynchronous faults are those whose occurrence has no direct relationship to the instruction
pointer. The 1960 architecture does not define any faults in this category and the 1960 CA
processor generates no such faults.

The NIF bit controls imprecise fault generation. When this bit is set, all faults generated are
precise. This means the following conditions hold true:

1. All faults are generated in order.

2. A precise fault record is provided for each fault: the faulting instruction address is correct
and the RIP provides a valid reentry point into the program.

When the NIF bit is clear, imprecise faults are allowed to be generated: in parallel, out of order
and with an imprecise RIP. Here, the following conditions hold true:

1. When an imprecise fault occurs, the faulting instruction address in the fault record is valid,
but the saved IP is unpredictable.

2. [If instructions are executed out of order and parallel faults occur, recovery from some
faults may not be possible because the faulting instruction’s source operands may be
modified when subsequent instructions are executed out of order.

Controlling Fault Precision

The synef instruction forces the processor to complete execution of all instructions that occur
prior to syncf and to generate all faults before it begins work on instructions that occur after
syncf. This instruction has two uses:

1. force faults to be precise when the NIF bit is clear.

2. ensure that all instructions are complete and all faults are generated in one block of code
before the execution of another block of code begins.
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Compiled code should execute with the NIF bit clear, using syncf where necessary to ensure
that faults occur in order. In this mode, imprecise faults are considered as catastrophic errors
from which recovery is not needed.

The NIF bit should be set if recovery from one or more imprecise faults is required. For
example, the NIF bit should be set if a program needs to handle — and recover from —
unmasked integer-overflow faults and the fault handling procedure cannot be closely coupled
with the application to perform imprecise fault recovery.

FAULT REFERENCE

This section describes each fault type and subtype and gives detailed information about what is
stored in the various fields of the fault record. The section is organized alphabetically by fault
type. The following paragraphs describe the information that is provided for each fault type
and the notation used.

Fault Type and Subtype  Gives the number which appears in the fault record fault-type
field when the fault is generated. The fault-subtype section lists

fault subtypes and number associated with each fault subtype.

Function Describes the purpose of fault type and fault subtype. It also
describes how the processor handles each fault subtype.

RIP Describes the value saved in the RIP register of the stack frame
that the processor was using when the fault occurred.

Program State Changes  Describes fault subtype effects on a program’s control flow.

7-21



II‘Itel® FAULTS

Arithmetic Faults

Fault Type: 3H

Fault Subtype: Number Name
OH Reserved
IH Integer Overflow
2H Arithmetic Zero Divide
3H-FH Reserved

Function: Indicates problem with operand an arithmetic instruction result.
Integer overflow fault is generated when a result of integer
instruction overflows destination and AC register integer overflow
mask is cleared. Here, the result’s n least significant bits are stored
in the destination, where n is destination size. Instructions that
generate this fault are:
addi subi
stib  shli
muli  divi
Arithmetic zero divide fault is generated when divisor operand of
ordinal or integer divide instruction is zero. Instructions that
generate this fault are:
divo divi
ediv remi
remo

RIP: IP for next-executed instruction if fault had not occurred.

Program State Changes:

Faults may be imprecise when executing with NIF bit cleared.
Integer overflow fault may not be recoverable because result is
stored in destination before fault is generated; e.g., faulting
instruction cannot be re-executed if destination register was also a
source register for the instruction. Arithmetic zero divide fault is
generated before execution of the faulting instruction.
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Constraint Faults

Fault Type: SH

Fault Subtype: Number Name
OH Reserved
IH Constraint Range
2H Privileged
3H-FH Reserved

Function: Indicates program or procedure violated an architectural
constraint.
Constraint-range fault is generated when a fault-if instruction is
executed and AC register condition code field matches the
condition required by the instruction.
Privileged fault is also generated when program or procedure
attempts to use a privileged (supervisor-mode only) instruction
while processor is in user mode. Privileged instructions for the
1960 CA processor are:
sdma sysctl

RIP: No defined value.

Program State Changes:

These taults may be imprecise when executing with NIF bit
cleared. No changes in program’s control flow accompany these
faults. Constraint-range fault is generated after fault-if instruction
executes; program state is not affected. Privileged fault is
generated before faulting instruction executes.

7-23




intel.

FAULTS

Operation Faults
Fault Type:

Fault Subtype:

Function:

RIP:

Program State Changes:

2H

Number Name

OH Reserved

1H Invalid Opcode
2H Unimplemented
3H Unaligned

4H Invalid Operand
5H - FH Reserved

Indicates processor cannot execute current instruction because of
invalid instruction syntax or operand semantics. Invalid-opcode
fault is generated when processor attempts to execute instruction
containing undefined opcode or addressing mode.

Unimplemented fault is generated when processor attempts to
execute an instruction fetched from on-chip data RAM.

Unaligned fault is generated when the following conditions are
present: (1) processor attempts to access an unaligned word or
group of words in memory and (2) fault is enabled by the
unaligned-fault mask bit in the PRCB fault configuration word.

The 1960 CA processor handles unaligned accesses to little endian
regions of memory in microcode and carries out the access
regardless of unaligned-fault mask bit setting. Processor does not
support unaligned accesses to big endian regions; such attempts
result in incoherent data in memory. Enabling the unaligned fault
when using big endian byte ordering provides a means of detecting
unsupported unaligned accesses.

When an unaligned fault is signaled, the effective address of the
unaligned access is placed in the fault record optional data section,
beginning at address NFP-24. This address is useful to debug a
program that is making unintentional unaligned accesses.

Invalid-operand fault is generated when processor attempts to
execute an instruction for which one or more operands have
special requirements which are not satisfied. Fault is caused by
specifying non-existent SFR or non-defined sysctl and/or
references to an unaligned long-, triple- or quad-register group.

No defined value.
Faults may be imprecise when executing with the NIF bit cleared.

A change in the program’s control flow does not accompany
operation faults; faults occur before instruction execution.
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Parallel Faults
Fault Type:
Fault Subtype:

Function:

RIP:

Program State Changes:

See the section titled Parallel Faults in this chapter.

Indicates that one or more faults occurred when processor was
executing instructions in parallel by different execution units. This
fault type can occur only when AC register NIF bit is cleared.

If parallel faults occur, the Number of parallel faults field in the
fault record is a non-zero value, indicating the number of parallel
faults recorded. This field is located in the fault record at location
NFP-20.

A fault record is saved for each parallel tault detected. Information
contained in these records is the same as is described in this
section for specific fault types.

IP of instruction that would execute next if faults were not
generated.

Precision of faults recorded in a parallel fault record depends on
fault types detected. A change in program’s control flow may or
may not accompany parallel faults, depending on fault types
detected.
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Protection Faults

Fault Type: TH

Fault Subtype: Number Name
OH-1H Reserved
2H Length
3H-FH Reserved

Function: Indicates program or procedure attempting to perform illegal
operation that the architecture protects against.
Length fault is generated when index operand used in a calls
instruction points to an entry beyond the extent of system
procedure table.

RIP: Same as the address-of-faulting-instruction field.

Program State Changes: This fault type is always precise, regardless of NIF bit value.

Change in program’s control flow does not accompany length
fault; fault is generated before faulting instruction.
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Trace Faults
Fault Type: 1H
Fault Subtype: Number Name
Bit 0 Reserved
Bit 1 Instruction Trace
Bit 2 Branch Trace
Bit 3 Call Trace
Bit 4 Return Trace
Bit5 Prereturn Trace
Bit 6 Supervisor Trace
Bit 7 Breakpoint Trace
Function: Indicates processor detected one or more trace events. Event

tracing mechanism is described in Chapter 8, Tracing and
Debugging.

A trace event is the occurrence of a particular instruction or
instruction type in the instruction stream. Processor recognizes
seven different trace events: instruction, branch, call, return,
prereturn, supervisor, breakpoint. It detects these events only if TC
register mode bit is set for the event. If PC register trace enable bit
is also set, processor generates a fault when trace event is detected.

A trace fault is generated following the instruction that causes a
trace event (or prior to the instruction for the prereturn trace
event). The following trace modes are available:

Instruction Generates trace event following every instruction.

Branch Generates trace event following any branch
instruction when branch is taken (branch trace
event does not occur on branch-and-link or call
instructions).

Call Generates trace event following any call or branch-
and-link instruction or any implicit procedure call
(i.e., fault- or interrupt-call).

Return Generates trace event following any ret
instruction.
Prereturn Generates trace event prior to any ret instruction,

providing PFP register prereturn trace flag is set
(processor sets flag automatically when prereturn
tracing is enabled).
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RIP:

Supervisor Generates trace - event following any calls
instruction that references a supervisor procedure
entry in the system procedure table and on a return
from a supervisor procedure where the return
status type in the PFP register is 0102 or 0117.

Breakpoint Generates a trace event following any processor
action that causes a breakpoint condition (such as a
mark or fmark instruction or a match of the
instruction-address breakpoint register or the data-
address breakpoint register).

Trace fault subtype and fault subtype field bits are associated with
each mode. Multiple fault subtypes can occur simultaneously; fault
subtype bit is set for each subtype that occurs.

When a fault type other than a trace fault is generated during
execution of an instruction that causes a trace event, non-trace
fault is handled before trace fault. An exception is prereturn-trace
fault, which occurs before processor detects a non-trace fault, so it
is handled first.

Similarly, if an interrupt occurs during an instruction that causes a
trace event, interrupt is serviced before trace fault is handled.
Again, prereturn trace fault is an exception. Since it is generated
before the instruction, it is handled before any interrupt that occurs
during instruction execution.

Address of the faulting instruction field in the fault record contains
the IP for the instruction that causes the trace event, except for the
prereturn trace fault; this field has no defined value.

IP for the instruction that would have been executed next if the
fault had not occurred.

Program State Changes: This fault type is always precise, regardless NIF bit value. A

change in the program’s control flow accompanies all trace faults
(except prereturn trace fault), because events that can cause a trace
fault occur after the faulting instruction is completed. As a result,
the faulting instruction cannot be re-executed upon returning from
the fault handling procedure.

Since the prereturn trace fault is generated before the ret
instruction is executed, a change in the program’s control flow
does not accompany this fault and the faulting instruction can be
executed upon returning from the fault handling procedure.
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Type Faults
Fault Type: AH
Fault Subtype: Number Name
OH Reserved
IH Type Mismatch
2H-FH Reserved
Function: Indicates a program or procedure attempted to perform an illegal
operation on an architecture-defined data type or a typed data
structure. Type-mismatch fault is generated when attempts are
made to:
e Modify the PC register with modpc while processor is in user
mode.
e  Write to on-chip data RAM while processor is in user mode.
e Access a special function register while processor is in user
mode.
RIP: No defined value.

Program State Changes:

These faults may be imprecise when executing with the NIF bit
cleared. A change in program’s control flow does not accompany
the type-mismatch fault because the fault occurs before execution
of the faulting instruction.
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CHAPTER 8
TRACING AND DEBUGGING

This chapter describes the 19960 CA processor’s facilities for runtime activity monitoring.

The 1960 architecture provides facilities for monitoring processor activity through trace event
generation. A trace event indicates a condition where the processor has just completed
executing a particular instruction or type of instruction or where the processor is about to
execute a particular instruction. When the processor detects a trace event, it generates a trace
fault and makes an implicit call to the fault handling procedure for trace faults. This procedure
can, in turn, call debugging software to display or analyze the processor state when the trace
event occurred. This analysis can be used to locate software or hardware bugs or for general
system monitoring during program development.

Tracing is enabled by the process controls (PC) register trace enable bit and a set of trace mode
bits in the trace controls (TC) register. Alternatively, the mark and fmark instructions can be
used to generate trace events explicitly in the instruction stream.

The 1960 processor also provides four hardware breakpoint registers that generate trace events
and trace faults. Two registers are dedicated to trapping on instruction execution addresses,
while the remaining two registers can trap on the addresses of various types of data accesses.

TRACE CONTROLS

To use the architecture’s tracing facilities, software must provide trace fault handling
procedures, perhaps interfaced with a debugging monitor. Software must also manipulate the
following registers and control bits to enable the various tracing modes and enable or disable
tracing in general. These controls are described in the following sections.

e TC register mode bits e PC register trace enable bit
e PC register trace fault pending flag e PFP register return status field prereturn
trace flag (bit 0)
e System procedure table supervisor- e BPCON register breakpoint mode bits
stack-pointer field trace control bit and enable bits (in the control table)
e [PBO-IPB1 registers address field (in e DABO-DABI registers address field
the control table) and enable bit (in the control table)

Trace Controls (TC) Register

The TC register (Figure 8.1) allows software to define the conditions under which trace events
are generated.
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TRACE-MODE BITS
INSTRUCTION TRACE MODE - TC.i
BRANCH TRACE MODE - TC.b
CALL TRACE MODE - TC.c
RETURN TRACE MODE - TC.r
PRE-RETURN TRACE MODE - TC.p
SUPERVISOR TRACE MODE - TC.s
BREAKPOINT TRACE MODE - TC.br

TRAGE- Abh A 12 8 4
CONTROLS TRACE-EVENT FLAGS
REGISTER (TC) INSTRUCTION - TC.if

BRANCH - TC.bf
CALL - TC.cf
RETURN - TC.rf
PRE-RETURN - TC.pf
SUPERVISOR - TC.st
BREAKPOINT - TC.brf

HARDWARE BREAKPOINT-EVENT FLAGS
INSTRUCTION-BREAKPOINT 0 - TC.iof
INSTRUCTION-ADDRESS BREAKPOINT 1 - TC.itf
DATA-ADDRESS BREAKPOINT 0 - TC.dOf
DATA-ADDRESS BREAKPOINT 1 - TC.d1f

RESERVED
(INITIALIZE TO 0)

270710-002-13

Figure 8.1. Trace Controls (TC) Register

The TC register contains mode bits and event flags. Mode bits define a set of tracing conditions
that the processor can detect. For example, when the call-trace mode bit is set, the processor
generates a trace event whenever a call or branch-and-link operation executes. (Trace modes
are described later in this chapter’s section titled Trace Modes.) The processor uses event flags
to keep track of which trace events have been generated.

A special instruction, the modify-trace-controls (modtc) instruction, allows software to modify
the TC register. On initialization, all TC register bits and flags are cleared. modtc can then be
used to set or clear trace mode bits as required. Software can also access event flags using
modtc; however, this is generally not necessary. The processor automatically sets and clears
these flags as part of its trace handling mechanism.

TC register bits 0, 8 through 16 and 28 through 31 are reserved. Software must initialize these
bits to zero and not modify them afterwards.
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Trace Enable Bit and Trace-Fault-Pending Flag

The PC register trace enable bit and the trace-fault-pending flag control tracing. The trace
enable bit enables the processor’s tracing facilities; when set, the processor generates trace
faults on all trace events.

Typically, software selects the trace modes to be used through the TC register. It then sets the
trace enable bit to begin tracing. This bit is also altered as part of some call and return
operations that the processor performs as described in this chapter’s section titled Tracing and
Interrupt Procedures.

The trace-fault-pending flag allows the processor to track when a trace event is detected for an
enabled trace condition. The processor uses this flag as follows:

1. When the processor detects a trace event and tracing is enabled, it sets the flag.

]

Before executing an instruction, the processor checks the flag.

o8]

If the flag is set and tracing is enabled, it signals a trace fault.

By providing a means to record trace event occurrences, the trace-fault-pending flag allows the
processor to service an interrupt or handle a fault other than a trace fault before handling the
trace fault. Software should not modify this tlag.

Trace Control on Supervisor Calls

The trace control bit allows tracing to be enabled or disabled when a call-system instruction
(calls) executes which results in a switch to supervisor mode. This action occurs independent
of whether or not tracing is enabled prior to the call. A supervisor call is a calls instruction that
references an entry in the system procedure table with an entry type 10,. When a supervisor
call executes, the processor:

1. Saves current PC register trace enable bit status in the PFP register return-type field bit 0.

2. Sets the PC register trace enable bit to the value of the trace control bit. The processor gets
the trace control bit from bit O of the supervisor stack pointer, which is cached during the
reset initialization sequence.

When the trace control bit is set, tracing is enabled on supervisor calls; when cleared, tracing is
disabled on supervisor calls. Upon return from the supervisor procedure, the PC register trace
enable bit is restored to the value saved in the PFP register return-type field.

TRACE MODES

This section defines trace modes enabled through the TC register. These modes can be enabled
individually or several modes can be enabled at once. Some modes overlap, such as call-trace
mode and supervisor-trace mode. The section later in this chapter titled Handling Multiple
Trace Events describes processor function when multiple trace events occur.

¢ Instruction trace e Branch trace e Breakpoint trace e Prereturn trace
e Call trace e Return trace e Supervisor trace
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Instruction Trace

When the instruction-trace mode is enabled, the processor generates an instruction-trace event
each time an instruction executes. A debugging monitor can use this mode to single-step the
processor.

Branch Trace

When the branch-trace mode is enabled, the processor generates a branch-trace event any time
a branch instruction executes and the branch is taken. A branch-trace event is not generated for
conditional-branch instructions that do not branch or for branch-and-link, call or return
instructions.

Call Trace

When the call-trace mode is enabled, the processor generates a call-trace event any time a call
instruction (call, callx or calls) or a branch-and-link instruction (bal or balx) executes. An
implicit call — such as the action used to invoke a fault handling or an interrupt handling
procedure — also causes a call-trace event to be generated.

When the processor detects a call-trace event, it also sets the prereturn-trace flag (PFP register
bit 3) in the new frame created by the call operation or in the current frame if a branch-and-link
operation was performed. The processor uses this flag to determine when to signal a prereturn-
trace event on a ret instruction.

Return Trace

When the return-trace mode is enabled, the processor generates a return-trace event any time a
ret instruction executes.

Prereturn Trace

The prereturn-trace mode causes the processor to generate a prereturn-trace event prior to ret
execution, providing the PFP register prereturn-trace flag is set. (Prereturn tracing cannot be
used without enabling call tracing.) The processor sets the prereturn-trace flag whenever it
detects a call-trace event as described above for call-trace mode. This flag performs a
prereturn-trace-pending function.

If another trace event occurs at the same time as the prereturn-trace event, the processor
generates a fault on the non-prereturn-trace event first. Then, on a return from that fault
handler, it generates a fault on the prereturn-trace event. The prereturn trace is the only trace
event that can cause two successive trace faults to be generated between instruction boundaries.
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Supervisor Trace

When supervisor-trace mode is enabled, the processor generates a supervisor-trace event when:

1. acall-system instruction (calls) executes, where the procedure table entry is for a system-
supervisor call

—or —

2. aret instruction executes and the return-type field is set to 0105 or 011, (i.e., return from
supervisor mode).

When these procedures are called with supervisor calls, this trace mode allows a debugging
program to determine kernel-procedure call boundaries within the instruction stream.

Breakpoint Trace

Breakpoint trace mode allows trace events to be generated at places other than those specified
with the other trace modes. This mode is used in conjunction with mark and fmark.

Software Breakpoints

mark and fmark allow breakpoint trace events to be generated at specific points in the
instruction stream. When breakpoint trace mode is enabled, the processor generates a
breakpoint trace event any time it encounters a mark. fmark causes the processor to generate a
breakpoint trace event regardless of whether or not breakpoint trace mode is enabled.

Hardware Breakpoints

The hardware breakpoint registers are provided to enable generation of trace events and trace
faults on instruction addresses and data access addresses.

Breakpoint trace events can be generated when the processor executes an instruction with an IP
that matches one of the addresses programmed into the two instruction breakpoint registers
(IPBO - IPB1). Each instruction address breakpoint may be enabled or disabled individually by
programming the two least significant bits in IPBO or IPB1. Figure 8.2 describes the instruction
address breakpoint registers.
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INSTRUCTION-ADDRESS BREAKPOINT ENABLE - IPB.e

(00) DISABLE
(11) ENABLE
INSTRUCTION ADDRESS }
T I 1
e e
110
28 24 20 16 12 8 4 0

INSTRUCTION-ADDRESS BREAKPOINT
REGISTERS (IPB0-IPB1)

270710-002-14

Figure 8.2. Instruction Address Breakpoint Registers (IPBO - IPB1)

Breakpoint trace events may also be generated when a memory access is issued which matches
conditions programmed in one of two data address breakpoint registers (DABO - DABI,
Figure 8.3). Each breakpoint register is programmed to fault when the address of an access
matches the breakpoint register and the access is one of four types: 1) any store, 2) any load or
store, 3) any data load or store or any instruction fetch or 4) any memory access.

DATA ADDRESS

28 24 20 16 12 8 4 0

DATA-ADDRESS BREAKPOINT
REGISTERS (DAB0-DAB1)

270710-001-22

Figure 8.3. Data Address Breakpoint Registers (DABO - DAB1)

The programmer configures the BPCON register to set the data address breakpoint mode which
corresponds to one of these access types (Figure 8.4). Each data address breakpoint may also
be enabled or disabled individually by programming the BPCON enable bits.

The instruction-address breakpoint, data-address breakpoint and breakpoint control registers
are on-chip control registers. These registers are loaded from the control table in memory at
initialization or may be modified using sysctl. Control registers are described in Chapter 2,
Programming Environment.

A breakpoint trace event is signalled when the processor attempts an access which is set for
detection (instruction or data breakpoint). Breakpoint trace is enabled by setting the appropriate
field in the IPBO, IPB1 and BPCON registers. If breakpoint trace is enabled, the appropriate
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TC register hardware breakpoint trace event tlags are set. If tracing is enabled, a trace fault is
generated after the faulting instruction completes execution.

28 24 20 16 12 8 4 0
e|e el e
1)1 ofo
110 110
BREAKPOINT L L L L !
CONTROL REGISTER | A A
(BPCON)
DATA-ADDRESS 0 BREAKPOINT ENABLE — BPCON.e0
(00) DISABLE
(11) ENABLE
DABO MODE (SEE TABLE)
DATA-ADDRESS 1 BREAKPOINT ENABLE — BPCON.e1
(00) DISABLE
(11) ENABLE
DAB1 MODE (SEE TABLE)

DATA-ADDRESS BREAKPOINT MODES
BREAK ON:

00 STORE ONLY
01 DATA ONLY (LOAD OR STORE)
RESERVED 10 DATA OR INSTRUCTION FETCH
11 ANY ACCE
(INITIALIZE TO 0) CESS

270710-002-15

Figure 8.4. Hardware Breakpoint Control Register (BPCON)

SIGNALING A TRACE EVENT

To summarize the information presented in the previous sections, the processor signals a trace
event when it detects any of the following conditions:

An instruction included in a trace mode group executes or is about to execute (in the case
of a prereturn trace event) and the trace mode for that instruction is enabled.

An implicit call operation executed and the call-trace mode is enabled.
A marKk instruction executed and the breakpoint-trace mode is enabled.
A fmark instruction executed.

The processor is executing an instruction at an IP matching an enabled instruction address
breakpoint register.

The processor has issued a memory access matching the conditions of an enabled data
address breakpoint register.

When the processor detects a trace event and the PC register trace enable bit is set, the
processor performs the following action:

1.

The processor sets the appropriate TC register trace event flag. If a trace event meets the
conditions of more than one of the enabled trace modes, a trace event flag is set for each
trace mode condition that is met.
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2. The processor sets the PC register trace-fault-pending flag. The processor may set a trace
event flag and trace-fault-pending flag before completing execution of the instruction that
caused the event. However, the processor only handles trace events between instruction
executions.

If — when the processor detects a trace event — the PC register trace enable bit is clear, the
processor sets the appropriate event flags but does not set the PC register trace-fault-pending
flag.

HANDLING MULTIPLE TRACE EVENTS

If the processor detects multiple trace events, it records one or more of them based on the
following precedence, where 1 is the highest precedence:

1. Supervisor-trace event

2. Breakpoint- (from mark or fmark instruction or from a breakpoint register), branch-, call-
or return-trace event

3. Instruction-trace event

When multiple trace events are detected, the processor may not signal each event; however, it
at least signals the one with the highest precedence.

TRACE FAULT HANDLING PROCEDURE

The trace fault handling procedure (which the processor calls when it detects a trace event) is a
type of fault handling procedure. General requirements for fault handling procedures are given
in Chapter 7, Faults.

The trace fault handling procedure is involved in a specific way and is handled slightly
different than other faults. A trace fault handler must be involved with an implicit system-
supervisor call. When the call is made, the PC register trace enable bit in is cleared. This
disables trace faults when the trace fault handler is executing. Recall that, for all other implicit
or explicit system-supervisor calls, the trace enable bit is replaced with the system procedure
table trace control bit. The exceptional handling of trace enable for trace faults ensures that
tracing is turned off when a trace fault handling procedure is being executed. This is necessary
to prevent an endless loop of trace fault handling calls.

TRACE HANDLING ACTION

Once a trace event is signaled, the processor determines how to handle the trace event,
according to the PC register trace enable bit and trace fault pending flag settings and to other
events that might occur simultaneously with the trace event, such as an interrupt or non-trace
fault. Subsections that follow describe how the processor handles trace events for various
situations.
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Normal Handling of Trace Events

Prior to executing an instruction, the processor performs the following action regarding trace
events:

1. The processor checks the state of the trace fault pending flag:
a. If clear, the processor begins execution of the next instruction.
b. If set, the processor performs the following actions.

2. The processor checks the PC register trace enable bit state:

a. If clear, the processor clears any trace event flags that are set prior executing the next
instruction.

b. If set, the processor signals a trace fault and begins fault handling action as described
in Chapter 7, Faults.

Prereturn Trace Handling

The processor handles a prereturn trace event the same as described above except when it
occurs at the same time as a non-trace fault. In this case, the non-trace fault is handled first. On
returning from the fault handler for the non-trace fault, the processor checks the PFP register
prereturn trace flag. If set, the processor generates a prereturn trace event, then handles it as
described above.

Tracing and Interrupt Procedures

When the processor invokes an interrupt handling procedure to service an interrupt, it disables
tracing. It does this by saving the PC register’s current state, then clearing the PC register trace
enable bit and trace fault pending flag.

On returning from the interrupt handling procedure, the processor restores the PC register to
the state it was in prior to handling the interrupt, which restores the trace enable bit and trace
fault pending flag states. If these two flags were set prior to calling the interrupt procedure, a
trace fault is signaled on return from the interrupt procedure.

NOTE

On a return from an interrupt handling procedure, the trace fault pending flag is restored. If this
flag was set as a result of the interrupt procedure’s ret instruction (i.e., indicating a return trace
event), the detected trace event is lost. This is also true on a return from a fault handler, when the
fault handler has been called with an implicit supervisor call.
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CHAPTER 9
INSTRUCTION SET REFERENCE

This chapter provides detailed information about each instruction the processor uses.
Instructions are listed alphabetically by assembly language mnemonic. Format and notation
used in this chapter are defined in the following section titled Notation.

INTRODUCTION

Information in this chapter is oriented toward programmers who write assembly language code
for the processor. The information provided for each instruction includes the following:

e Alphabetic reference - instructions are e Assembly language mnemonic, name and
listed alphabetically format

e Description of the instruction’s operation e Action (or algorithm) and other side
effects of executing an instruction

e Faults that can occur during execution e Assembly language example

e Opcode and instruction encoding format e Related instructions

Additional information about the instruction set can be found in the following chapters and
appendices in this manual:

e Chapter 4, Instruction Set Summary - Summarizes the instruction set by group and
describes the assembly language instruction format.

e Appendix D, Instruction Set Reference - Describes instruction set opword encodings. A
quick-reference listing of instruction encodings is also provided to assist debug with a logic
analyzer.

e [Instruction Set Quick Reference - Contains a tabular quick reference of each instruction’s
operation and side-effects.

NOTATION

In general, notation in this chapter is consistent with usage throughout the manual; however,
there are a few exceptions. Read the following subsections to understand notations that are
specific to this chapter.

Alphabetic Reference

Instructions are listed alphabetically by assembly language mnemonic. If several instructions
are related and fall together alphabetically, they are described as a group on a single page.

The instruction’s assembly language mnemonic is shown in bold at top of page (e.g., subc).

Occasionally, it is not practical to list all mnemonics at the page top. In these cases, the name
of the instruction group is shown in capital letters (e.g., BRANCH or FAULT IF).
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The 1960 CA component-specific extensions to the 1960 microprocessor instruction set are
indicated with a box around the instruction’s alphabetic reference. The following 1960 CA
device’s instructions are such extensions:

eshro sdma

sysctl udma

Instruction set extensions are generally not portable to other 1960 family implementations.

Mnemonic

The Mnemonic section gives the mnemonic (in boldface type) and instruction name for each
instruction covered on the page, for example:

subi Subtract Integer

CTRL and COBR format instructions also allow the programmer to specify optional .t or .f
mnemonic suffixes for branch prediction:

e .tindicates to the processor that the condition for which the instruction is testing is likely to
be true.

e .findicates that the condition is likely to be false.

The processor uses the programmer’s prediction to prefetch and decode instructions along the
most likely execution path when the actual path is not yet known. If the prediction was wrong,
all actions along the incorrect path are undone and the correct path is taken. For further
discussion, see Appendix A, Optimizing Code for the i960 CA Microprocessor.

When the programmer provides no suffix with an instruction which supports a suffix, the
assembler makes its own prediction.

When an instruction supports prediction, the mnemonic listing includes the notation {.tl.f} to
indicate the option, for example:

be{.tl.f} Branch If Equal

Format

The Format section gives the instruction’s assembly language format and allowable operand
types. Format is given in two or three lines. The following is a two line format example:

sub: srel, sre2, dst
reg/lit/sfr  reg/lit/sfr  reg/sfr
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The first line gives the assembly language mnemonic (boldface type) and operands (italics).
When the format is used for two or more instructions, an abbreviated form of the mnemonic is
used. An * (asterisk) in the mnemonic indicates a variable: in the above example, sub* is either
subi or subo.

Operand names are designed to describe operand function (e.g., src, len, mask).

The second line shows allowable entries for each operand. Notation is as follows:

reg Global (g0 ... g15) or local (10 ... r15) register

lit Literal of the range O ... 31

sfr Special Function Register (st0 ... sf2)

disp Signed displacement of range -222] ... (222] - 1)

efa Address defined with the full range of addressing modes

targ A relative offset or displacement to the target of instruction. Usually

specified as a label in assembly code.

NOTE

For future implementations, the 1960 architecture will allow up to a total of 32 Special Function
Registers (SFRs). However, sf0, sfl and sf2 are the only SFRs implemented on the 1960 CA
processor.

In some cases, a third line is added to show register or memory location contents. For example,
it may be useful to know that a register is to contain an address. The notation used in this line is
as follows:

addr Address
disp Displacement
Description

The Description section is a narrative description of the instruction’s function and operands. It
also gives programming hints when appropriate.

Action

The Action section gives an algorithm written in a pseudo-code that describes direct effects and
possible side effects of executing an instruction. Algorithms document the instruction’s net
effect on the programming environment; they do not necessarily describe how the processor
actually implements the instruction. For example, shli requires seven lines of pseudo-code to
completely describe its function. Although it might appear from the algorithm that the
instruction should take multiple clocks to execute, the 1960 CA processor executes the
instruction in a single clock.
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The following is an example of the action algorithm for the alterbit instruction:

if (AC.ccl1 =0)=0)
dst < src and not (2”\(bitpos mod 32));
else dst « src or (2"\(bitpos mod 32));

In these action statements, the term AC.cc refers to the AC register condition code field;
AC.ccl means bit 1 of this field. The symbol “*” indicates an exponent; for example:
2M(bitpos mod 32) is equivalent to 2(bitpos mod 32).

Table 9.1 defines each abbreviation used in the instruction reference pseudo-code. Table 9.2
explains the symbols used in the pseudo-code.

NOTE

Since special function registers (sfr) may change independent of instruction execution, the
following distinctions are important when interpreting the algorithm of any instruction which
references a sfr.

1. When a source operand is a sfr and referenced more than once in an algorithm, the operand’s
value at every reference is the same as the first reference. In other words, the instruction
operates as if the sfr was actually read only once, at the beginning of the instruction.

2. When the same sfr is specified as the source for multiple operands of the same instruction, the
instruction operates as if the source sfr was actually read only once, at the beginning of the
instruction. When either source operand appears in the action algorithm, the single operand
value is used.

3. When a sfr is specified as a destination and the algorithm indicates more than one
modification of the destination, the instruction operates as if the sfr were written only once, at
the end of the instruction.
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Table 9.1. Abbreviations in Pseudo-code

AC.Xxx Arithmetic Controls Register fields
AC.cc Condition Code flags (AC.cc2:0)
AC.ccO Condition Code Bit 0
AC.ccl Condition Code Bit 1.
AC.cc2 Condition Code Bit 2
AC.nif No Imprecise Faults flag
AC.of Integer Overflow flag
AC.om Integer Overflow Mask Bit

PC.xxx Process Controls Register fields
PC.em Execution Mode flag
PC.s State Flag
PC.tfp Trace Fault Pending flag
PC.p Priority Field (PC.p5:0)
PC.te Trace Enable Bit

TC.xxx Trace Controls Register fields
TC.i Instruction Trace Mode Bit
TC.c Call Trace Mode Bit
TC.p Pre-return Trace Mode Bit
TC.br Breakpoint Trace Mode Bit
TC.b Branch Trace Mode Bit
TCr Return Trace Mode Bit
TC.s Supervisor Trace Mode Bit
TC.if Instruction Trace Event flag
TC.cf Call Trace Event flag
TC.pf Pre-return Trace Event flag
TC.brf Breakpoint Trace Event flag
TC.bf Branch Trace Event flag
TCxf Return Trace Event flag
TC.sf Supervisor Trace Event flag

PFP.xxx Previous Frame Pointer (r0)
PFP.add Address (PFP.add31:4)
PFP.rt Return Type Field (PFP.1t2:0)
PFP.p Pre-return Trace flag

sp Stack Pointer (rl)

fp Frame Pointer (g15)

Tip Return Instruction Pointer (r2)

SPT System Procedure Table
SPT.base Supervisor Stack Base Address
SPT(targ) Address of SPT Entry targ
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Table 9.2. Pseudo-code Symbol Definitions

«— Assignment

=# Comparison: equal, not equal

<, > less than, greater than

<2 less than or equal to, greater than or equal to

<<, >> Logical Shift

A Exponentiation

and,or, Bitwise Logical Operations

not, xor

mod Modulo

+, - Addition, Subtraction

* Multiplication (Integer or Ordinal)

/ Division (Integer or Ordinal)

#.. Comment delimiter

memory() Memory access of specified width
memory_{bytelshortiwordllongltriplelquad }()
memory() Width implied by context

Faults

The Faults section lists faults that can be signaled as a direct result of instruction execution.
Two possible faulting conditions are common to the entire instruction set and could directly
result from any instruction. These fault types are abbreviated in the instruction reference.

Fault Type

Trace

Operation

Subtype/Description

Instruction. An Instruction Trace Event is signaled after instruction
completion. A Trace fault is generated if both PC.te and TC.i=1.
Breakpoint. A Breakpoint Trace Event is signaled after completion
of an instruction for which there is a hardware breakpoint condition
match and TC.br is set. A Trace fault is generated if PC.te and
TC.br are both=1.

Unimplemented. An attempt to execute any instruction fetched from
internal data RAM causes an operation unimplemented fault.
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Three possible faulting conditions are common to large subsets of the instruction set:
Fault Type Subtype/Description

Type Mismatch. Any instruction that references a special function register
while not in supervisor mode causes a type mismatch fault.

Mismatch. Any instruction that attempts to write to internal data
RAM while not in supervisor mode causes a type mismatch fault.

Operation Unimplemented. Any instruction that causes an unaligned memory
access causes an operation unimplemented fault if unaligned faults
are not masked in the Processor Control Block (PRCB).

Other instructions can generate taults in addition to above faults. If an instruction can generate

a fault, it is noted in the Faults section of the instruction reference.

Example

The Example section gives an assembly language example of an application of the instruction.

Opcode and Instruction Format

The Opcode and Instruction Format section gives the opcode and instruction encoding format
for each instruction, for example:

subi 593H REG
The opcode is given in hexadecimal format. The instruction encoding format is one of four
possible formats: REG, COBR, CTRL and MEM. Refer to Appendix D, Instruction Set
Reference for more information on the formats.

See Also

The See Also section gives the mnemonics of related instructions which are also alphabetically
listed in this chapter.

INSTRUCTIONS

This section contains reference information on the processor’s instructions. It is arranged
alphabetically by instruction or instruction group.
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addc

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

addc Add Ordinal With Carry

addc srcl, sre2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Adds src2 and srcl values and condition code bit 1 (used here as a
carry in) and stores the result in dst. If the ordinal addition results in a
carry, condition code bit 1 is set; otherwise, bit 1 is cleared. If integer
addition results in an overflow, condition code bit O is set; otherwise,
bit 0 is cleared. Regardless of addition results, condition code bit 2 is
always set to 0.

addc can be used for ordinal or integer arithmetic. addc does not
distinguish between ordinal and integer source operands. Instead, the
processor evaluates the result for both data types and sets condition
code bits 0 and 1 accordingly.

An integer overflow fault is never signaled with this instruction.
dst < src2 + srcl + AC.ccl;

AC.ccO « 0CV2;

#V = 1 if integer addition would have generated an overflow.

#V = 0 otherwise

# C is carry out of the ordinal addition of src 2 and src 1

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.

# Example of double-precision arithmetic
# Assume 64-bit source operands
#1in g0,g1 and g2,23

cmpo 1,0 # clears Bit 1 (carry bit) of
# the AC.cc

addc g0, g2, g0 # add low-order 32 bits;
# g0 < g2 + g0 + Carry Bit

addc g1, g3, gl # add high-order 32 bits;
#gl « g3 + gl + Carry Bit
# 64-bit result is in g0, gl
addc 5BOH REG

addi, addo, subc, subi, subo
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addi, addo

Mnemonic:
Format:

Description:
Action:

Faults:

Example:

Opcode:

See Also:

addi Add Integer

addo Add Ordinal

add* srel, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Adds src2 and srcl values and stores the result in dst.

dst < src2 + srel;
Trace

Operation

Type

Arithmetic

addi r4, g5, 19

addi 591H
addo 590H

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

Integer Overflow. Result too large for destination
register (addi only). If overflow occurs and
AC.om =1, fault is suppressed and AC.io is set to
1. Least significant 32-bits of the result are stored
in dst.

#r9—g5+r4

REG
REG

addc, subi, subo, subc
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alterbit

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

alterbit Alter Bit

alterbit  bizpos, src, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Copies src value to dst with one bit altered. birpos operand specifies bit
to be changed; condition code determines value to which the bit is set.
If condition code bit 1 = 1, selected bit is set; otherwise, it is cleared.

if (AC.cc1=0) dst « src and not (2"(bitpos mod 32));
else dst < src or 27(bitpos mod 32);

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.

# assume AC.cc =010,
alterbit 24, g4, g9  # g9 « g4, with bit 24 set

alterbit  58FH REG

chkbit, clrbit, notbit, setbit
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and, andnot

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

and And

andnot And Not

and srel, sre2, dst
reg/lit/sfr reg/lit/sfr reg/str

andnot srel, src2, dst
reg/lit/sfr reg/lit/sfr reg/str

Performs a bitwise AND (and instruction) or AND NOT (andnot
instruction) operation on src2 and src¢/ values and stores result in dst.
Note in the action expressions below, src2 operand comes first, so that
with the andneot instruction the expression is evaluated as:

{src2 andnot (srcl)}
rather than
{srcl andnot (src2)}.

and: dst < src2 and srcl;

andnot:  dst < src2 and not (srcl);

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.

and Ox17, g8,g2  #g2 < g8 AND Ox17
andnot 13,112, 19  #19 « r12 AND NOT r3

and 581H REG
andnot 582H REG

nand, nor, not, notand, notor, or, ornot, Xnor, xor
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atadd

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

atadd Atomic Add

atadd dst, sre, src/dst
reg/sfr reg/lit/sfr reg/sfr
addr

Adds src value (full word) to value in the memory location specified
with src/dst operand. Initial value from memory is stored in dst.

Memory read and write are done atomically (i.e., other processors must
be prevented from accessing the quad-word of memory containing the
word specified by src/dst operand until operation completes).

Memory location in src/dst is the word’s first byte (LSB) address.
Address is automatically aligned to a word boundary. (Note that src/dst
operand maps to src/ operand of the REG format.)

tempa <« src/dst and not(0x3);  # force alignment to word boundary
temp < memory_word (tempa); # LOCK asserted at begin of read
memory_word (tempa) < temp + src; # ordinal addition

# LOCK deasserted after
# memory write completes

dst < temp;

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.
And/or non-supervisor attempt to write to internal
data RAM.

atadd r8, 2, r11 # r8 <« 12 + address r8, where r8
# specifies the address of a word
# in memory;
#r11 « initial value, stored at
# address r8 in memory

atadd 612H REG

atmod
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atmod

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

atmod Atomic Modify

atmod srcldst mask, src/dst
reg/sfr reg/lit/sfr reg
addr

Moves selected bits of src/dst value into memory location specified in
src. Bits set in mask operand select bits to be modified in memory.
Initial value from memory is stored in src/dst.

Memory read and write are done atomically (i.e., other processors must
be prevented from accessing the quad-word of memory containing the
word specified with the sr¢/dst operand until operation completes).

Memory location in src¢ is the modified word’s first byte (LSB)
address. Address is automatically aligned to a word boundary.

tempa < src and not (0x3); # force alignment to word boundary
temp < memory_word(tempa); # LOCK asserted at

# beginning of memory read
memory_word(tempa) « (src/dst and mask) or (temp and not(mask));
# LOCK deasserted after the memory write completes
src/dst < temp;

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr
and/or non-supervisor attempt to write to internal
data RAM.

atmod g5, g7, 210 # g5 « g5 masked by g7, where g5
# specifies the address of a word in memory;
# g10 « initial value, stored at
# address g5 in memory

atmod  610H REG

atadd
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b, bx

Mnemonic:

Format:

efa:

b Branch
bx Branch Extended

b targ
disp

bx efa
addr

(reg)

disp + 8(IP) disp [reg * scale]

offset

disp (regl) [reg2 * scale]

offset (reg) disp (reg) disp (reg 1) [reg 2 * scale]

Description:

Action:

Faults:

Branches to the specified target.

With the b instruction, IP specified with farg operand can be no farther
than -223 to (223 - 4) bytes from current IP. When using the Intel 1960
family assembler, targ operand must be a label which specifies target
instruction’s IP.

bx performs the same operation as b except the target instruction can
be farther than -223 to (223 - 4) bytes from current IP. Here, the target
operand is an effective address, which allows the full range of
addressing modes to be used to specify target instruction’s IP. The “IP
+ displacement” addressing mode allows instruction to be IP-relative.
Indirect branching can be performed by placing target address in a
register then using a register-indirect addressing mode.

Refer to Chapter 3, Data Types and Memory Addressing Modes for a
complete discussion of the addressing modes.

b: IP « IP + displacement; # resume execution at new IP
bx: IP « efa; # resume execution at new IP

Trace Instruction. Branch. Breakpoint.
Instruction and Branch Trace Events are signaled
after instruction completion. Trace fault is
generated if PC.te=1 and TC.i or TC.b=1.

Operation Unimplemented. Execution from on-chip data
RAM.

Operand. Invalid operand value encountered.
(bx only)
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Example:.

Opcode:

See Also:

Opcode. Invalid operand encoding encountered

(bx only).
b xyz #1P « xyz:
bx 1330 (ip) #1P « IP + 8 + 1330;
# this example uses ip-relative addressing
b 08H CTRL
bx 84H MEM

bal, balx, BRANCH IF, COMPARE AND BRANCH, bbc, bbs

9-15




intgl.

INSTRUCTION SET REFERENCE

bal, balx

Mnemonic: bal Branch And Link
balx Branch And Link Extended
Format: bal targ
disp
balx efa, dst
addr  reg
efa:
(reg) disp + 8(IP) disp [reg * scale]
offset disp (regl) [reg2 * scale]
offset (reg) disp (reg) disp (reg 1) [reg 2 * scale]

Description:

Action:

Faults:

Stores address of instruction following bal or balx then branches to
specified target.

With bal, address of next instruction is stored in register gl4. targ
operand value can be no farther than -223 to (223 - 4) bytes from
current [P. When using the Intel i960 family assembler, targ must be a
label which specifies target instruction’s IP.

balx performs same operation as bal except next instruction address is
stored in dst. With balx, target instruction can be farther than -223 to
(223 - 4) bytes from current IP. Here, the target operand is efa, which
allows full range of addressing modes to be used to specify target IP.
“IP + displacement” addressing mode allows instruction to be IP-
relative. Indirect branching can be performed by placing target address
in a register and then using a register-indirect addressing mode.

Refer to Chapter 3, Data Types and Addressing Modes for a complete
discussion of addressing modes.

bal: gld « IP + 4; # next IP destination is always g14
IP « IP + displacement; # resume execution at new IP

balx:  dst « IP +inst length;  # instruction length is 4 or 8 bytes
IP « efa; # resume execution at the new IP

Trace Instruction . Branch. Breakpoint.
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Example:

Opcode:

See Also:

Operation

bal xyz

balx (g2), g4

bal OBH
balx 85H

Instruction and Branch Trace Events are signaled
after instruction completion. Trace fault is
generated if PC.te=1 and TC.i or TC.br=1.

Unimplemented. Execution from on-chip data
RAM.

Operand. Invalid operand value encountered.
Opcode. Invalid operand encoding encountered.

#1P « xyz;

#1P « (g2);
# address of return instruction is stored in g4;
# example of indirect addressing.

CTRL
MEM

b, bx, BRANCH IF, COMPARE AND BRANCH, bbe, bbs
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bbc, bbs

Mnemonic:
Format:

Description:

bbe{.t.f}  Check Bit and Branch If Clear
bbs{.t.f}  Check Bit and Branch If Set

bb#{.t.f} bitpos, sre, targ
reg/lit reg/sfr disp

Checks bit in src (designated by bitpos) and sets AC register condition
code according to src value. Processor then performs conditional
branch to instruction specified with targ, based on condition code state.

Optional .t or .f suffix may be appended to mnemonic. Use .t to speed-
up execution when these instructions usually take the branch; use .f to
speed-up execution when these instructions usually do not take the
branch. If suffix is not provided, assembler is free to provide one.

For bbe, if selected bit in src is clear, the processor sets condition code
to 010, and branches to instruction specified with farg; otherwise, it
sets condition code to 000, and goes to next instruction.

For bbs, if selected bit is set, the processor sets condition code to 010,
and branches to targ; otherwise, it sets condition code to 000, and goes
to next instruction.

targ can be no farther than -212 to (212 - 4) bytes from current IP.

When using the Intel 1960 family assembler, targ must be a label which
specifies target instruction’s IP.
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Action: bbc:
if ((src and 27(bitpos mod 32)) = 0)
{
AC.cc « 0107
IP « IP + 4 + (displacement * 4);
# resume execution at new 1P
}
else AC.cc < 000,;
# resume execution at next [P
bbs:
if ((src and 27(bitpos mod 32)) = 1)
{
AC.cc « 0102
IP « 1P + 4 + (displacement * 4);
# resume execution at new 1P
}
else AC.cc « 000,;
# resume execution at next [P
Faults: Trace Instruction. Branch (if taken). Breakpoint.
Instruction and Branch Trace Events are signaled
after instruction completion. Trace fault is
generated if PC.te=1 and TC.i or TC.b=1.
Operation Unimplemented. Execution from on-chip data
RAM' n
Type Mismatch. Non-supervisor reference of a sfr.
Example: # assume bit 10 of 16 is clear

bbc 10, 6. xyz  # bit 10 of 16 is checked
# and found clear;
# AC.cc « 010

#IP « xyz;
Opcode: bbc 30H COBR
bbs 37H COBR
See Also: chkbit, b, bx bal, balx, COMPARE AND BRANCH, bbc, bbs,

BRANCH IF
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BRANCH IF

Mnemonic:

Format:

Description:

be{.tl.f}  Branch If Equal/True
bne{.tl.f} Branch If Not Equal
bl{.tl.f}  Branch If Less

ble{.tl.f} Branch If Less Or Equal
bg{.tl.f}  Branch If Greater
bge{.tl.f} Branch If Greater Or Equal
bo{.tl.f}  Branch If Ordered
bno{.tl.f} Branch If Unordered/False

b*{.tl.f} rtarg
disp

Branches to instruction specified with targ operand according to AC
register condition code state.

Optional .t or .f suffix may be appended to mnemonic. Use .t to speed-
up execution when these instructions usually take the branch; use .f to
speed-up execution when these instructions usually do not take the
branch. If a suffix is not provided, assembler is free to provide one.

For all branch-if instructions except bno, the processor branches to
instruction specified with rarg, if the logical AND of condition code
and mask-part of opcode is not zero. Otherwise, it goes to next
instruction.

For bno, the processor branches to instruction specified with targ if
logical AND of condition code and mask-part of opcode is zero.
Otherwise, it goes to next instruction.

For instance, bno (unordered) can be used as a branch-if false
instruction when coupled with chkbit. For bno, branch is taken if
condition code equals 000,. be can be used as branch-if true
instruction.

NOTE

bo and bno are used by implementations that include floating point
coprocessor for branch operations involving real numbers. bno can be
used as branch-if-false instruction when used after chkbit. be can be
used as branch-if-true instruction when following chkbit.

targ value or absolute addresses can be no farther than -223 to (223 - 4)

bytes from current IP. When using the Intel 1960 family assembler, rarg
must be a label which specifies target instruction’s IP.

The following table shows condition code mask for each instruction.
The mask is in opcode bits 0-2.
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Action:

Faults:

Example:

Opcode:

See Also:

Instruction Mask Condition

bno 000, Unordered

bg 001, Greater

be 010, Equal

bge 011, Greater or equal
bl 100, Less

bne 101, Not equal

ble 110, Less or equal
bo 111, Ordered

For all instructions except bno:

if ((mask and AC.cc) # 000,) IP « IP + displacement;
# resume execution at new IP
else; # resume execution at next IP

bno:

if (AC.cc = 000,) IP « 1P + displacement,
# resume execution at new IP
else # resume execution at next IP

Instruction and Branch Trace Events are signaled
after instruction completion. Trace fault is
generated if PC.te=1 and TC.i or TC.b=1.

Trace Instruction. Branch (if taken). Breakpoint. u

Operation Unimplemented. Execution from on-chip data
RAM.

# assume (AC.cc AND 100,) # 0
bl xyz #IP « xyz;

be 12H CTRL
bne ISH CTRL
bl 14H CTRL
ble 16H CTRL
bg 11H CTRL
bge 13H CTRL
bo 17H CTRL
bno 10H CTRL

b, bx, bbc, bbs, COMPARE AND BRANCH, bal, balx, BRANCH IF
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call

Mnemonic:

Format:

Description:

Action:

Faults:

Example:
Opcode:

See Also:

call Call
call targ
disp

Calls a new procedure. farg operand specifies the IP of called
procedure’s first instruction. When using the Intel i960 family
assembler, targ must be a label.

In executing this instruction, the processor performs a local call
operation as described in Local Calls section of Chapter 5, Procedure
Calls. As part of this operation, the processor saves the set of local
registers associated with the calling procedure and allocates a new set
of local registers and a new stack frame for the called procedure.
Processor then goes to the instruction specified with targ and begins
execution.

targ can be no farther than -223 to (223 - 4) bytes from current IP.

wait for any uncompleted instructions to finish;
temp « (SP + 0x10) and not (0Oxf); # round to next boundary,

memory(FP) « r0:15; # these accesses are cached in
RIP& next IP # local register cache

PFP « FP;

PFP.rt « 000,;

FP « temp;

SP « temp + 64;
IP « IP + displacement;

Trace Instruction. Call. Breakpoint.
Instruction and Call Trace Events are signaled
after instruction completion. Trace fault is
generated if PC.te=1 and TC.i or TC.c is=1.

Operation Unimplemented. Execution from on-chip data
RAM.

call xyz # 1P « xyz

call 09H CTRL

bal, calls, callx
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calls

Mnemonic:

Format:

Description:

Action:

calls Call System

calls src
reg/lit/sfr

Calls a system procedure. targ specifies called procedure’s number.
For calls, the processor performs system call operation described in
Svstem Calls section of Chapter 5. Procedure Calls. targ provides an
index to a system procedure table entry from which the processor gets
the called procedure’s IP.

The called procedure can be a local or supervisor procedure, depending
on system procedure table entry type. If it is a supervisor procedure,
the processor switches to supervisor mode (if not already in this mode).

Processor also allocates a new set of local registers and new stack
frame for called procedure. If the processor switches to supervisor
mode, the new stack frame is created on the supervisor stack.

if (sre> 259) Protection-length fault;
wait for any uncompleted instructions to finish;
temp_entry «<— memory_word(SPT(src));
# SPT(src) is the address of the system procedure table entry targ.
RIP « next IP;
if ((temp_entry.type = local) or (PC.em = supervisor))
# no stack switch required
# round to next boundary,
temp_FP « (SP + 0x10) and not(0xf);
temp_rt <— 000,; # return type is local
)
else
{ # stack switch to supervisor stack
# required; read supervisor
temp_FP ¢« memory_word(cached(SPT);

# stack pointer
# set return type to supervisor

if (PC.te = 0) temp_rt < 010,; # with trace disabled
else temp_rt <— 011,; # with trace enabled
PC.em « supervisor;

# Trace enable bit of the supervisor

PC.te « temp_FP.T;

# stack pointer is written to PC.te

}
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Faults:

Example:

Opcode:

See Also:

# These accesses are cached in the local register cache.
memory(FP) « r0:15

PFP « FP;
PFP.ft « temp_rt;
FP « temp_FP;

SP « temp_FP + 64;
IP « temp_entry and not (0x3);

Trace

Operation

Type

Protection

callsr12

calls 660H

bal, call, callx

Instruction. Call. Supervisor. Breakpoint.
Instruction, Call and Supervisor Trace Events are
signaled after instruction completion. Trace fault
is generated if PC.te=1 and TC.i, TC.c or TC.s=1.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

Length. Specified a system procedure number
greater than 259.

# IP « value obtained from
# procedure table for procedure
# number given in r12

REG
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callx

Mnemonic: callx Call Extended
Format: callx efa
addr
efa:
(reg) disp + 8(IP) disp [reg * scale]
offset disp (regl) [reg2 * scale]
offset (reg) disp (reg) disp (reg 1) [reg 2 * scale]

Description:

Action:

Calls new procedure. efa specifies IP of called procedure’s first
instruction.

In executing callx, the processor performs a local call as described in
Local Calls section of Chapter 5, Procedure Calls. As part of this
operation, the processor allocates a new set of local registers and a new
stack frame for the called procedure. Processor then goes to the
instruction specified with efa and begins execution of new procedure.

callx performs the same operation as call except the target instruction
can be farther than -223 to (223 - 4) bytes from current IP.

efa is an effective address, which allows the full range of addressing
modes to be used to specify target instruction’s IP. The “IP +
displacement” addressing mode allows the instruction to be IP-relative.
Indirect calls can be performed by placing the target address in a
register and then using a register-indirect addressing mode.

Refer to Chapter 3, Data Types and Memory Addressing Modes for a
complete discussion of addressing modes.

wait for any uncompleted instructions to finish;

temp < (SP + 0x10) and not (0xf); # round to next boundary

RIP < next IP;

memory(FP) « 10:15 # these accesses are cached in
# local register cache

PFP « FP;

PFP.rt « 000,

FP « temp;

SP « temp + 64;

IP « efa;
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Faults:

Example:

Opcode:

See Also:

Trace

Operation

callx (g5)

callx 86H

call, calls, bal

Instruction. Call. Breakpoint.

Instruction and Call Trace Events are signaled
after instruction completion. Trace fault is
generated if PC.te=1 and TC.i or TC.c=1.

Unimplemented. Execution from on-chip data
RAM.

Operand. Invalid operand value encountered.

Opcode. Invalid operand encoding encountered.

# IP < (g5), where the address
#1in g5 is the address of the new procedure

MEM
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chkbit

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

chkbit Check Bit

chkbit bitpos, sre
reg/lit/sfr reg/lit/sfr

Checks bit in src designated by bitpos and sets condition code
according to value found. If bit is set, condition code is set to 0105; if
bit is clear, condition code is set to 000,.

if ((src and 2°(bitpos mod 32)) = 0) AC.cc « 000,;
else AC.cc < 0105;

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.

chkbit 13, g8 # checks bit 13 in g8 and

# sets AC.cc according to the result
chkbit SAEH REG

alterbit, clrbit, notbit, setbit, cmpi, cmpo
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cirbit

Mnemonic:

Format:

Description:

Action:

Faults:

Example:
Opcode:

See Also:

clrbit Clear Bit

clrbit bitpos, sre, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Copies src value to dst with one bit cleared. bitpos operand specifies
bit to be cleared.

dst < src and not(2"(bitpos mod 32));

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.

clrbit 23, g3, g6 # g6 < g3 with bit 23 cleared
clrbit 58CH REG

alterbit, chkbit, notbit, setbit
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cmpdeci, cmpdeco

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

cmpdeci Compare and Decrement Integer
cmpdeco Compare and Decrement Ordinal

cmpdec*  srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Compares src2 and srcl values and sets condition code according to
comparison results. src2 is then decremented by one and result is
stored in dst. The following table shows condition code setting for the
three possible results of the comparison.

Condition Code Comparison
100, srcl < sre2
010, srcl = src2
001, srcl > src2

These instructions are intended for use in ending iterative loops. For
cmpdeci, integer overflow is ignored to allow looping down through
the minimum integer values.

if (srcl < src2) AC.cc « 100,;
else if (srcl = src2) AC.cc « 010o;
else AC.cc <~ 001,;

dst «src2 - 1; #overflow suppressed for cmpdeci instruction

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.

cmpdeci 12, g7, gl # compares g7 with 12 and sets
# AC.cc to indicate the result;

#gl—gl-1
cmpdeci S5ATH REG
cmpdeco 5A6H REG

cmpinco, cmpo, cmpi, cmpinci, COMPARE AND BRANCH
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cmpi, cmpo

Mnemonic: cmpi Compare Integer
cmpo Compare Ordinal
Format: cmp* srcl, src2
reg/lit/sfr reg/lit/sfr
Description: Compares src2 and srcl values and sets condition code according to

comparison results. The following table shows condition code settings
for the three possible comparison results.

Condition Code Comparison
100, srel < sre2
010, srcl = src2
001, srcl > src2

cmpi followed by a branch-if instruction is equivalent to a compare-
integer-and-branch instruction. The latter method of comparing and
branching produces more compact code; however, the former method
can result in faster running code if used to take advantage of pipelining
in the architecture. Same is true for cmpo and the compare-ordinal-
and-branch instructions.

Action: if (srcl < src2) AC.cc « 100,;
else if (srcl = src2) AC.cc < 010y;
else AC.cc <~ 0015;
Faults: Trace Instruction. Breakpoint.
Operation Unimplemented. Execution from on-chip data
RAM.
Type Mismatch. Non-supervisor reference of a sfr.
Example: cmpo 19, 0x10 # compares the value in 19 with 0x10
# and sets AC.cc to indicate the result
bg xyz # branches to xyz if the value of 19
# was greater than 0x10
Opcode: cmpi SA1H REG
cmpo SAOH REG
See Also: COMPARE AND BRANCH, ecmpdeci, cmpdeco,cmpinci, cmpinco,

concmpi, concmpo
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cmpinci, cmpinco

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

cmpinci  Compare and Increment Integer
cmpinco  Compare and Increment Ordinal

cmpinc*  srcl, sre2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Compares src2 and srcl values and sets condition code according to
comparison results. src2 is then incremented by one and result is stored
in dst. The following table shows condition code settings for the three
possible comparison results.

Condition Code Comparison
100, srel < sre2
010, srcl = sre2
001, srcl > sre2

These instructions are intended for use in ending iterative loops. For
cmpinci, integer overflow is ignored to allow looping up through the
maximum integer values.

if (srcl < src2) AC.cc « 100,;
else if (srcl = src2) AC.cc « 010o;
else AC.cc « 001»;

dst < src2 + 1; # overflow suppressed for empinci instruction

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.

cmpinco r8, g2, g9 # compares the values in g2 and
# 18 and sets AC.cc to indicate the result;

#2909 ¢ g2+1
cmpinci 5A5H REG
cmpinco S5SA4H REG

cmpdeco, cmpo, cmpi, cmpdeci, COMPARE AND BRANCH
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COMPARE AND BRANCH

Mnemonic:

Format:

Description:

cmpibe({.tl.f} Compare Integer And Branch If Equal
cmpibne{.tl.f} Compare Integer And Branch If Not Equal
cmpibl{.tl.f} Compare Integer And Branch If Less
cmpible(.tl.f} Compare Integer And Branch If Less Or Equal
cmpibg{.tl.f} Compare Integer And Branch If Greater
cmpibge{.tl.f} Compare Integer And Branch If Greater Or Equal
cmpibo{.tl.f} Compare Integer And Branch If Ordered
cmpibno{.t.f} Compare Integer And Branch If Not Ordered
cmpobe({.t.f} Compare Ordinal And Branch If Equal
cmpobne{.tl.f} Compare Ordinal And Branch If Not Equal
cmpobl{.tl.f} Compare Ordinal And Branch If Less
cmpoble{.tl.f} Compare Ordinal And Branch If Less Or Equal
cmpobg{.tl.f} Compare Ordinal And Branch If Greater
cmpobge{.tl.f} Compare Ordinal And Branch If Greater Or

Equal
cmpib{.tl.f} srel, src2, targ

reg/lit reg/sfr disp
cmpobs .tl.f) srcl, src2, targ

reg/lit reg/sfr disp

Compares src2 and srcl values and sets AC register condition code
according to comparison results. If logical AND of condition code and
mask-part of opcode is not zero, the processor branches to instruction
specified with rarg; otherwise, the processor goes to next instruction.

Optional .t or .f suffix may be appended to mnemonic. Use .t to speed-
up execution when these instructions usually take the branch. Use .f to
speed-up execution when these instructions usually do not take the
branch. If suffix is not provided, assembler is free to provide one.

targ can be no farther than -212 to (212 - 4) bytes from current IP.

When using the Intel 1960 family assembler, farg must be a label which
specifies target instruction’s IP.

The following table shows the condition-code mask for each
instruction. The mask is in bits 0-2 of the opcode.
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Instruction Mask Branch Condition
cmpibno 000, No Condition
cmpibg 001, srcl > sre2
cmpibe 010, srcl = src2
cmpibge 011, srcl 2 sre2
cmpibl 100, srel < sre2
cmpibne 101> srel # src2
cmpible 110, srcl < sre2
cmpibo 111, Any Condition
cmpobg 001> srcl > src2
cmpobe 010, srcl = src2
cmpobge 011, srcl 2 sre2
cmpobl 100, srel < sre2
cmpobne 101, srcl # src2
cmpoble 110, srcl < sre2

NOTE

cmpibo always branches; cmpibno never branches.

Functions that these instructions perform can be duplicated with a cmpi
or cmpo followed by a branch-if instruction, as described in this
chapter for the empi and empo instructions.

Action: if (srcl < src2) AC.cc < 100,;
else if (srcl = src2) AC.cc < 010;;
else AC.cc < 0015;
if ((mask and AC.cc) # 000,) IP «— IP + 4 + (displacement * 4);
# resume execution at the new IP
else IP « IP +4;  #resume execution at the next IP

Faults: Trace Instruction. Branch (if taken). Breakpoint.
Instruction and Branch Trace Events are signaled
after instruction completion. Trace fault is
generated if PC.te=1 and TC.i or TC.br=1.

Operation Unimplemented. Execution from on-chip data
RAM.
Type Mismatch. Non-supervisor reference of a sfr.
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Example: # assume g3 < g9
cmpibl g3, g9, xyz # g9 is compared with g3;
#IP « xyz.
# assume 19 217
cmpobge 19, 17, xyz # 19 is compared with 17
#1P « xyz.

Opcode: cmpibe 3AH COBR
cmpibne 3DH  COBR
cmpibl 3CH COBR
cmpible 3EH  COBR
cmpibg  39H COBR
cmpibge 3BH  COBR
cmpibo  3FH COBR
cmpibno 38H COBR
cmpobe  32H COBR
cmpobne 35H COBR
cmpobl  34H COBR
cmpoble 36H COBR
cmpobg 31H COBR
cmpobge 33H COBR

See Also: BRANCH IF, cmpi, cmpo, bal, balx
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concmpi, concmpo

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

concmpi  Conditional Compare Integer
concmpo Conditional Compare Ordinal

concmp*  srcl, sre2
reg/lit/sfr reg/lit/sfr

Compares src2 and srcl values if condition code bit 2 is not set. If
comparison is performed, condition code is set according to
comparison results. Otherwise, condition codes are not altered.

These instructions are provided to facilitate bounds checking by means
of two-sided range comparisons (e.g., is A between B and C?). They
are generally used after a compare instruction to test whether a value is
inclusively between two other values.

The example below illustrates this application by testing whether g3
value is between g5 and g6 values, where g5 is assumed to be less than
g6. First a comparison (cmpo) of g3 and g6 is performed. If g3 is less
than or equal to g6 (i.e., condition code is either 010, or 001,), a
conditional comparison (concmpo) of g3 and g5 is then performed. If
g3 is greater than or equal to g5 (indicating that g3 is within the bounds
of g5 and g6), condition code is set to 010,; otherwise, it is set to 0015.

if (AC.cc2=0)
{
if (srcl > src2) AC.cc < 010,
else AC.cc « 001,;

)3

Trace Instruction. Breakpoint.
Operation Unimplemented. Execution from on-chip data
RAM.
Type Mismatch. Non-supervisor reference of a sfr.
cmpo g6, g3 # compares g6 and g3 and
# sets AC.cc

concmpo g5, g3 #if AC.cc # 1XX,
# g5 is compared with g3

concmpi 5A3H REG
concmpo 5A2H REG

cmpo, cmpi, cmpdeci, cmpdeco, cmpinci, cmpinco, COMPARE
AND BRANCH
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divi, divo

Mnemonic:
Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

divi Divide Integer

divo Divide Ordinal

div* srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Divides src2 value by srcl value and stores quotient of the result in dst.
Remainder (if any) is discarded.

For divi, an integer-overflow fault can be signaled.
if (src2 = 0) Arithmetic Zero Divide fault;

dst < quotient(src2 / srcl);
# src2, srcl and dst are 32-bits

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.

Arithmetic Zero Divide. The srcl operand is 0.

Integer Overflow. Result too large for destination
register (divi only). If overflow -occurs and
AC.om=1, fault is suppressed and AC.io is set to
1. Result’s least significant 32-bits are stored in
dst.

divor3, 18, r13 #7113 < 18/r3

divi 74BH REG
divo 70BH REG

ediv, mulo, muli, emul
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ediv
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

ediv Extended Divide
ediv srel, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Divides src2 by srcl and stores result in dst. The src2 value is a long
ordinal (64 bits) contained in two adjacent registers. src¢2 specifies the
lower numbered register which contains operand’s least significant
bits. src2 must be an even numbered register (i.e., 10, 12, r4, ... or g0,
g2, ... or sf0, sf2, ...). srcl value is a normal ordinal (i.e., 32 bits).

The result consists of a one-word remainder and a one-word quotient.
Remainder is stored in the register designated by dst; quotient is stored
in the next highest numbered register. dst must be an even numbered
register (i.e., 10, 12, 14, ... or g0, g2, ... or sf0, sf2, ...).

This instruction performs ordinal arithmetic.

If this operation overflows (quotient or remainder do not fit in 32-bits),
no fault is raised and the result is undefined.

if (src2=0) Arithmetic Zero Divide fault;

dst < (src2 - (src2 | srcl) * srcl); # remainder
dst + 1 « (src2 / srcl); # quotient
# src2 is 64-bits; srcl, dst and dst+1 are 32-bits

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor referencc of a sfr.

Arithmetic Zero Divide. The srcl operand is 0.

ediv g3, g4, g10 # g10 « remainder of g4,g5/g3
# gl1 < quotient of g4,g5/g3

ediv 671H REG

emul, divi, divo
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emul

Mnemonic:

Format:

Description:

Action:

Faults:

Example:
Opcode:

See Also:

emul Extended Multiply
emul srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Multiplies src2 by srcl and stores the result in dst. Result is a long
ordinal (64 bits) stored in two adjacent registers. dst specifies lower
numbered register, which receives the result’s least significant bits. dst
must be an even numbered register (i.e., 10, 12, r4, ... or g0, g2, ... or

sf0, sf2, ..).

This instruction performs ordinal arithmetic.

dst « src2 * srcl;
Trace

Operation

Type
emul 14, 15, g2
emul 670H

ediv, muli, mulo

# srcl and src2 are 32-bits; dst is 64-bits.
Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.
#g2,83 —rd*15

REG
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eshro

Mnemonic:

Format:

Description:

Action:

Faults:

Example:
Opcode:

See Also:

eshro Extended Shift Right Ordinal

eshro srel, sre2, dst
reg/lit/sfr reg/lit/sfr reg/str

Shifts src2 right by (srel mod 32) places and stores the result in dst.
Bits shifted beyond the least-significant bit are discarded.

src2 value is a long ordinal (i.e., 64 bits) contained in two adjacent
registers. src2 operand specifies the lower numbered register, which
contains operand’s least significant bits. src2 operand must be an even
numbered register (i.e.. r0, 12, r4, ... or g0, g2, ... or sf0, sf2, ...).

srel operand is a single 32-bit register where the lower 5-bits specify
the number of places that the src2 operand is to be shifted.

The shift operation result's least significant 32 bits is stored in dsz.

dst < src2 >> (srcl mod 32);
# src2 is 64 bits, srcl and dst are 32 bits

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.

eshro g3, g4, gl1  # g1l « g4.5 shifted right by (g3 MOD 32)
eshro SD8H REG

SHIFT, extract
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extract

Mnemonic:

Format:

Description:

Action:

Faults:

Example:
Opcode:

See Also:

extract Extract

extract bitpos, len, src/dst
reg/lit/sfr reg/lit/sfr reg

Shifts a specified bit field in src/dst right and zero fills bits to left of
shifted bit field. bitpos value specifies the least significant bit of the bit
field to be shifted; len value specifies bit field length.

src/dst < (src/dst 127 (bitpos mod 32)) and (2”\(len - 1);

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.

extract 5, 12, g4 # g4 < g4 with bits 5 through 16 shifted right
extract 651H REG

modify
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FAULT IF

Mnemonic:

Format:

Description:

Action:

faulte{.tl.f} Fault If Equal

faultne{.tl.f} Fault If Not Equal
faultl{.tl.f} Fault If Less
faultle{.tl.f} Fault If Less Or Equal
faultg{.tl.f} Fault If Greater
faultge{.t.f} Fault It Greater Or Equal
faulto{.tl.f} Fault I Ordered
faultno{.tl.f} Fault If Not Ordered

fault={.tl.f}

Raises a constraint-range fault if the logical AND of the condition code
and opcode’s mask-part is not zero. For faultno (unordered), fault is
raised if condition code is equal to 000,.

Optional .t or .f suffix may be appended to the mnemonic. Use .t to
speed-up execution when these instructions usually fault; use .f to
speed-up execution when these instructions usually do not fault. If a
suffix is not provided, the assembler is free to provide one.

faulto and faultno are provided for use by implementations with a
floating point coprocessor. They are used for compare and branch (or
fault) operations involving real numbers.

The following table shows the condition-code mask for each
instruction. The mask is opcode bits 0-2.

Instruction Mask Condition
faultno 000, Unordered
faultg 001, Greater
faulte 010, Equal
faultge 011, Greater or equal
faultl 100, Less
faultne 101, Not equal
faultle 110, Less or equal
faulto 111, Ordered

For all instructions except faultno:

if ((mask and AC.cc) # 000,) Constraint-range fault;
faultno:

if (AC.cc=000,) Constraint-range fault;
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Faults:

Example:

Opcode:

See Also:

Trace

Operation

Constraint

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Range. If condition being tested is true.

# assume (AC.cc AND 110;) - 000,

faultle # Constraint Range Fault is generated
faulte 1AH CTRL
faultne IDH CTRL
faultl ICH CTRL
faultle IEH CTRL
faultg 19H CTRL
faultge IBH CTRL
faulto IFH CTRL

faultno 18H

BRANCHIF, TEST

CTRL
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flushreg

Mnemonic:
Format:

Description:

Action:

Faults:

Example:

Opcode:

flushreg  Flush Local Registers
flushreg

Copies the contents of every cached register set, except the current set,
to its associated stack frame in memory. The entire register cache is
then marked as purged (or invalid). On a return to a stack frame for
which the local registers are not cached, the processor reloads the
locals from memory.

flushreg is provided to allow a compiler or applications program to
circumvent the processor’'s normal call/return mechanism. For
example, a compiler may need to go back several frames in the stack
on the next return, rather than using the normal return mechanism that
returns one frame at a time. Since the local registers of an unknown
number of previous stack frames may be cached, a flushreg must be
executed prior to modifying the PFP to return to a frame other than the
one directly below the current frame.

Write all cached local register sets — except the current set — to
memory; Invalidate the local register cache.

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor attempt to write to

internal data RAM.
flushreg

flushreg 66D REG
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fmark

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

fmark Force Mark
fmark

Generates a breakpoint trace event. Causes a breakpoint trace event to
be generated, regardless of breakpoint trace mode flag setting,
providing the PC register trace enable bit (bit 0) is set.

When a breakpoint trace event is detected, the PC register trace-fault-
pending flag (bit 10) and the TC register breakpoint-trace-event flag
(bit 23) are set. Then, a breakpoint-trace fault is generated before the
next instruction executes.

For more information on trace fault generation, refer to Chapter 7,
Faults.

if (PC.te=1)
{
PC.tfp « 1;
TC.bte « 1;
Trace Breakpoint trace fault

}

Trace Instruction. Breakpoint. Instruction and
Breakpoint Trace Events are signaled after
instruction completion. Trace fault is generated if

PC.te=1.

Operation Unimplemented. Execution from on-chip data
RAM.

1d xyz, r4

addi r4, 15, 16

fmark

# Breakpoint trace event is generated at
# this point in the instruction stream.

fmark 66CH REG

mark
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LOAD

Mnemonic: Id Load
ldob Load Ordinal Byte
ldos Load Ordinal Short
1dib Load Integer Byte
Idis Load Integer Short
Idl Load Long
Idt Load Triple
ldq Load Quad
Format: Id= efa, dst
addr reg
efa:
(reg) disp + &(IP) disp [reg * scale]
offset disp (regl) [reg2 * scale]
offset (reg) disp (reg) disp (reg 1) [reg 2 * scale]
Description: Copies byte or byte string from memory into a register or group of

successive registers.

efa specifies the address of first byte to be loaded. The full range of
addressing modes may be used in specifying efa. (Refer to Chapter 3
section titled Addressing Modes for description of addressing modes.)

dst specifies a register or the first (lowest numbered) register of
successive registers.

Idob and ldib load a byte and ldos and ldis load a half word and
convert it to a full 32-bit word. Data being loaded is sign-extended
during integer loads and zero-extended during ordinal loads.

1d, 1dl, 1dt and ldq instructions copy 4, 8, 12 and 16 bytes, respectively,
from memory into successive registers.

For 1dl, dst must specify an even numbered register (e.g., g0, g2, ... or
10, 12, ...). For ldt and ldq, dst must specify a register number that is a
multiple of four (e.g., g0, g4, g8, ... or 10, r4, 18, ...). Results are
unpredictable if registers are not aligned on the required boundary or if
data extends beyond register g15 or r15 for 1dl, 1dt or 1dq.
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Faults:

Example:

Opcode:

See Also:

1d:
1dob:
Idos:
1dib:
Idis:
1dl:
1dt:
ldq:

Trace

Operation

dst « memory_word (efa);

dst <« memory_byte (efa) zero-extended to 32 bits;

dst « memory_short (efa) zero-extended to 32 bits;
dst < memory_byte (efa) sign-extended to 32 bits;

dst < memory_short (efa) sign-extended to 32 bits;
dst < memory_long (efa);

dst < memory_triple (efa);

dst « memory_quad (efa);

1dl 2450 (r3), r10

Id 90H
ldob 8OH
Idos 88H
I1dib COH
Idis C8H
1dl 98H
1dt AOH
ldq BOH
MOVE, STORE

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Unimplemented. An unaligned efa was referenced;
unaligned support was disabled.

Operand. Invalid operand value encountered.
Opcode. Invalid opcode encoding encountered.
#110,r11 « r3 + 2450 in memory

MEM
MEM
MEM
MEM
MEM
MEM
MEM
MEM
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Ida

Mnemonic: lda Load Address
Format: lda efa, dst
reg
efa:

(reg) disp + 8(IP) disp [reg * scale]

offset disp (regl) [reg2 * scale]

offset (reg) disp (reg) disp (reg 1) [reg 2 * scale]
Description: Computes the effective address (efa) and stores it in dst. Computed

value is not checked for validity. Any addressing mode may be used to

calculate efa.

An important application of this instruction is to load a constant longer
than 5 bits into a register. (To load a register with a constant of 5 bits or
less, mov can be used with a literal as the src¢ operand.)

Instruction. Breakpoint.

Operand. Invalid operand value encountered.

Opcode. Invalid opcode encoding encountered.

Action: dst « efa;

Faults: Trace
Operation

Example: 1da 58 (29), gl

lda 0x749, r8

Opcode: lda 8CH MEM
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mark

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

mark Mark
mark

Generates breakpoint trace event if breakpoint trace mode is enabled.
Breakpoint trace mode is enabled if the PC register trace enable bit (bit
0) and the TC register breakpoint trace mode bit (bit 7) are set.

When a breakpoint trace event is detected, the PC register trace-fault-
pending flag (bit 10) and the TC register breakpoint-trace-event flag
(bit 23) are set. Then, before the next instruction is executed, a
breakpoint trace fault is generated.

If breakpoint trace mode is not enabled, mark behaves like a no-op.

For more information on trace fault generation, refer to Chapter 8,
Tracing and Debugging.

if (PC.te=1) and (TC.br=1))
{
PC.tfp « 1;
TC.bte < 1;
Trace Breakpoint trace fault;

}

Trace Instruction. Breakpoint aif enabled).
Instruction and Breakpoint Trace Events are
signaled after instruction completion. Trace fault
is generated if PC.te=1 and TC.i or TC.br=1.

Operation Unimplemented. Execution from on-chip data
RAM.

# Assume that the breakpoint trace mode is enabled.
Id xyz, r4

addi r4, 15, r6

mark

# Breakpoint trace event is generated at this point

# in the instruction stream.

mark 66BH REG

fmark, modpc, modtc
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modac

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

modac Modify AC

modac mask, sre, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Reads and modifies the AC register. src contains the value to be placed
in the AC register; mask specifies bits that may be changed. Only bits
set in mask are modified. Once the AC register is changed, its initial
state is copied into dist.

temp < AC

AC « (src and mask) or (AC and not (mask));

dst « temp;

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.

modac gl, g9, g12 # AC « g9, masked by gl
# g12 « initial value of AC

modac 645H REG

modpc, modtc

9-49



intel.

INSTRUCTION SET REFERENCE

modi

Mnemonic:

Format:

Description:

Action:

Faults:

Example:
Opcode:

See Also:

modi Modulo Integer
modi srcl, sre2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Divides src2 by srcl, where both are integers and stores the modulo
remainder of the result in dsz. If the result is nonzero, dst has the same
sign as srcl.

if (srcl= 0) Arithmetic Zero Divide fault;

dst « src2 - ((src2lsrcl) * srcl);

if ((src2 * srcl < 0) and (dst # 0)) dst < dst + srcl;
# srcl, src2 and dst are 32 bits

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.

Arithmetic Zero Divide. The srcl operand is 0.

modi 19, 12, r5 # r5 < modulo (r2/r9)
modi 749H REG

divi, divo, remi
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modify

Mnemonic:

Format:
Description:

Action:

Faults:

Example:
Opcode:

See Also:

modify Modify

modify mask, sre, src/dst

reg/lit/sfr reg/lit/sfr reg
Modifies selected bits in src¢/dst with bits from src. The mask operand
selects the bits to be modified: only bits set in the mask operand are

modified in sre/dst.

sre/dst «— (srce and mask) or (src/dst and not (mask));

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.

modify g8, g10, 14 # r4 < gl10 masked by g8
modify 650H REG

alterbit, extract
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modpc

Mnemonic:

Format:

Description:

Action:

Faults:

Example:
Opcode:
See Also:

modpc Modify Process Controls

modpc sre, mask, src/dst
reg/lit/sfr reg/lit/sfr reg

Reads and modifies the PC register as specified with mask and src/dst.
src/dst operand contains the value to be placed in the PC register; mask
operand specifies bits that may be changed. Only bits set in the mask
are modified. Once the PC register is changed, its initial value is copied
into src/dst. The src operand is a dummy operand that should specify a
literal or the same register as the mask operand.

The processor must be in supervisor mode to use this instruction with a
non-zero mask value. If mask=0, this instruction can be used to read the
process controls, without the processor being in supervisor mode.

If the action of this instruction results in processor priority being
lowered, the interrupt table is checked for pending interrupts.

Changing the PC register reserved fields can lead to unpredictable
behavior as described in Chapter 2, Programming Environment.

if ((mask # 0)
{

if (PC.em # supervisor)) Type-mismatch fault;
temp « PC;

PC « (mask and src/dst) or (PC and not (mask));
src/dst « temp; _

if (temp.p > PC.p) check_pending_interrupts;

}

else src/dst < PC;

Trace Instruction. Breakpoint.

Operation  Unimplemented. Execution from on-chip data RAM.
Type Mismatch. Non-supervisor reference of a sfr.

Mismatch. Attempted to execute instruction with non-
zero mask value while not in supervisor mode.

modpc g9, g9, g8  # process controls <— g8 masked by g9
modpc 655H REG

modac, modtc

9-52



intgl. INSTRUCTION SET REFERENCE

modtc

Mnemonic: modtc Modify Trace Controls
Format: modtc mask, Sre, dst
reg/lit/sfr reg/lit/sfr reg/sfr
Description: Reads and modities TC register as specified with mask and src. The src¢

operand contains the value to be placed in the TC register; mask
operand specifies bits that may be changed. Only bits set in mask are
modified. mask must not enable modification of reserved bits. Once the
TC register is changed, its initial state is copied into dst.

The changed trace controls may take effect immediately or may be
delayed. If delayed, the changed trace controls may not take effect until
after the first non-branching instruction is fetched from memory or
after four non-branching instructions are executed.

For more information on the trace controls, refer to Chapter 7, Faults
and Chapter 8, Tracing and Debugging.

Action: temp « TC;
TC « (mask and src) or (temp and not(mask));

dst « temp; n

Faults: Trace Instruction. Breakpoint.
| Operation Unimplemented. Execution from on-chip data
RAM.
Type Mismatch. Non-supervisor reference ot a sfr.
Example: modtc gl12, g10, g2 # trace controls <« gl10 masked by

# g12; previous trace controls stored in g2
Opcode: modtc 654H REG

See Also: modac, modpc
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MOVE

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

mov
movl

movt
movq

movs

Move

Move Long
Move Triple
Move Quad

src,

dst

reg/lit/sfr reg/sfr

Copies the contents of one or more source registers (specified with src)
to one or more destination registers (specified with dst).

For movl, movt and movq, src and dst specify the first (lowest
numbered) register of several successive registers. src and dst registers
must be even numbered (e.g., g0, g2, ... or 10, 2, ... or sf0, sf2, ...) for
movl and an integral multiple of four (e.g., g0, g4, ... or 10, 14, ... or
sf0, sf4, ...) for movt and movq.

The moved register values are unpredictable when: 1) the src and dst
operands overlap; 2) registers are not properly aligned.

dst « src;
Trace

Operation

Type
movt g8, r4

mov
movl
movt
movq

LOAD, STORE, lda

5CCH
SDCH
SECH
SFCH

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.
#1415, 16 < g8, 29, gl0

REG

REG

REG
REG
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muli, mulo

Mnemonic:
Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

muli Multiply Integer
mulo Multiply Ordinal

mul* srel, sre2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Multiplies the src2 value by the src/ value and stores the result in dst.

dst « src2 * srcl,
# srcl, src2 and dst are 32 bits

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.

Arithmetic Integer Overflow. Result is too large for

destination register (muli only). If overflow
occurs and AC.om=1, the fault is suppressed and
AC.io is set to 1. Result’s least significant 32 bits
are stored in dst.

muli r3, r4, 19 #19 <« 14 TIMES 13

muli 741H REG
mulo 701H REG

emul, ediv, divi, divo
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nand

Mnemonic:

Format:

Description:

Action:

Faults:

Example:
Opcode:

See Also:

nand Nand
nand srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Performs a bitwise NAND operation on src2 and srcl values and stores
the result in dst.

dst < (not (src2)) or (not (srcl));

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.

nand g5, 13, 17 #17 « 13 NAND g5
nand 58EH REG

and, andnot, nor, not, notand, notor, or, ornot, xnor, xor
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nor

Mnemonic:

Format:

Description:

Action:

Faults:

Example:
Opcode:

See Also:

nor Nor
nor srel, sre2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Performs a bitwise NOR operation on the src2 and srcl values and
stores the result in dsz.

dst < (not (src2)) and (not (srcl));

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.

nor g8, 28, 15 #15 < 28 NOR g8

nor 588H REG

and, andnot, nand, not, notand, notor, or, ornot, xnor, xor
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not, notand

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

not Not
notand Not And

not src, dst
reg/lit/sfr reg/sfr

notand  srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Performs A bitwise NOT (not instruction) or NOT AND (notand
instruction) operation on the src2 and srcl values and stores the result
in dst.

not: dst < not (src);
notand:  dst < (not (src2)) and srcl;

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.

not g2, g4 #g4 < NOT g2

notand 15, 16, r7 #17 < NOT r6 AND r5

not 58AH REG
notand 584H REG

and, andnot, nand, nor, notor, or, ornot, xnor, xor
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notbit

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

notbit Not Bit

notbit bitpos, src, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Copies the src value to dst with one bit toggled. The bitpos operand
specifies the bit to be toggled.

dst < src xor 2\(bitpos mod 32);

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.

notbit r3, r12, r7 #17 « r12 with the bit
# specified in r3 toggled

notbit 580H REG

alterbit, chkbit, clrbit, setbit
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notor

Mnemonic:

Format:

Description:

Action:

Faults:

Example:
Opcode:

See Also:

notor Not Or
notor srel, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Performs a bitwise NOT OR operation on src2 and srcl values and
stores result in dst.

dst < (not (src2)) or srcl;

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.

notor gl2, g3,g6  # g6 < NOT g3 OR gl2
notor 58DH REG

and, andnot, nand, nor, not, notand, or, ornot, xnor, xor
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or, ornot

Mnemonic:

Format:

Description:
Action:

Faults:

Example:
Opcode:

See Also:

or Or

ornot Or Not

or srcl,
reg/lit/sfr

ornot srcl,
reg/lit/sfr

sre2,
reg/lit/sfr

sre2,
reg/lit/sfr

dst
reg/sfr

dst
reg/sfr

Performs a bitwise OR (or instruction) or ORNOT (ornot instruction)
operation on the src¢2 and srcl values and stores the result in dst.

or: dst < src2 or srcl;
ornot: dst < src2 or (not (srcl));

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.

or 14, g9, g3 #g3 < g90R 14

ornot r3, 18, rl1 #rll <« r8 OR NOT r3

or 587TH REG
ornot 58BH REG

and, andnot, nand, nor, not, notand, notor, xnor, xor
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remi, remo

Mnemonic:
Format:
Description:

Action:

Faults:

Example:

Opcode:

See Also:

remi Remainder Integer

remo Remainder Ordinal

rems srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Divides src2 by srcl and stores the remainder in dst. The sign of the
result (if nonzero) is the same as the sign of src2.

if (src2=0) Arithmetic Zero Divide fault;
dst « src2 - ((src2 / srcl) * srcl);
# srcl, src2 and dst are 32 bits

Trace

Operation

Type

Arithmetic

remo r4, r5, r6

remi 748H
remo 708H

modi

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

Zero Divide. The srcl operand is 0

Integer Overflow. Result is too large for
destination register (remi only). If overflow
occurs and AC.om=1, the fault is suppressed and
AC.io is set to 1. The least significant 32 bits of
the result are stored in dst.

#16 < r5Sremr4

REG
REG
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ret

Mnemonic:

Format:

Description:

Action:

ret Return
ret

Returns program control to the calling procedure. The current stack
frame (i.e., that of the called procedure) is deallocated and the FP is
changed to point to the calling procedure’s stack frame. Instruction
execution is continued at the instruction pointed to by the RIP in the
calling procedure’s stack frame, which is the instruction immediately
following the call instruction.

As shown in the action statement below, the return-status field and
prereturn-trace flag determine the action that the processor takes on the
return. These fields are contained in bits O through 3 of register 10 of
the called procedure’s local registers.

Refer to Chapter 5, Procedure Calls for further discussion of ret.

wait for any uncompleted instructions to finish;
case return_type is

if ((PFP.rt=001,) or (PFP.rt=111,))
{ # return from fault or interrupt handler
AC < memory(FP - 12);
if (PC.em=supervisor) PC ¢~ memory(FP - 16);
}
else if (PFP.rt=010,) or (PFP.rt=011,))
{ # return to non-supervisor procedure
PC.te < PFP.1t0;
PC.em « user;
}
else if (PFP.rt=000,)
{ # return from local
}
else Operation Unimplemented fault;
FP < PFP;
# these accesses are cached in the local register cache
10:15 <~ memory(FP);
[P « RIP;
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Faults:

Example:

Opcode:

See Also:

Trace

Operation

ret

ret 0AH

call, calls, callx

Instruction. Return. Pre-Return. Breakpoint.
Instruction, Return and Pre-Return Trace Events
are signaled after instruction completion. Trace
fault is generated if PC.te=1 and TC.i or TC.r or
TC.p=1.

Unimplemented. Execution from on-chip data
RAM.

Unimplemented. Reserved return type
encountered.

# program control returns to context of
# calling procedure

CTRL
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rotate

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

rotate Rotate
rotate len, sre, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Copies src to dst and rotates the bits in the resulting dst operand to the
left (toward higher significance). (Bits shifted off left end of word are
inserted at right end of word.) The len operand specifies number of bits
that the dst operand is rotated. len can range from 0 to 31.

This instruction can also be used to rotate bits to the right. Here, the
number of bits the word is to be rotated right is subtracted from 32 to

get the len operand.

dst < src rotate_left (len mod 32);

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.

rotate 13, 18, r12 # 112 « r8 with bits rotated
# 13 bits to left

rotate S9DH REG

SHIFT, eshro
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scanbit

Mnemonic:
Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

scanbit Scan For Bit

scanbit  src, dst
reg/lit/sfr reg/sfr

Searches src value for most-significant set bit (1 bit). If a most
significant 1 bit is found, its bit number is stored in dst and condition
code is set to 010,. If src value is zero, all 1’s are stored in dst and
condition code is set to 000,.

tempsrc < src;

if (tempsrc=0)
{
dst < OxFFFFFFFF;
AC.cc « 000,;

}

else

{

1< 31;

while ((tempsrc and 2"1)=0)
{

1<1-1;

}

dst < 1;

AC.cc « 010,;

}
Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.
# assume g8 is nonzero
scanbit g8, g10 # g10 « bit number of most-
# significant set bit in g8;
# AC.cc « 010,
scanbit 641H REG

spanbit, setbit
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scanbyte

Mnemonic:

Format:

Description:

Action:

Faulits:

Example:

Opcode:

scanbyte Scan Byte Equal
scanbyte srel, src2
reg/lit/str reg/lit/sfr

Performs byte-by-byte comparison of src/ and src2 and sets condition
code to 010, if any two corresponding bytes are equal. If no
corresponding bytes are equal, condition code is set to 000,.

tmpsrcl « srcl;
tmpsrc2 « sre2;

if (((tmpsrc 1 and 0x000000FF) = (tmpsrc2 and 0x000000FF))
or

((tmpsrc | and 0x0000FF00) = (tmpsrc2 and 0x0000FF00))
or

((tmpsrc1 and 0xO0FF0000) = (tmpsrc2 and 0x00FF0000))
or

((tmpsrc ! and OxFF000000) = (tmpsrc2 and 0xFF000000)))
AC.cc « 010,;
else AC.cc « 000,;

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.

# assume r9 = Ox11AB1100
scanbyte 0OxO0ABOO11,19  # AC.cc « 010,

scanbyte 5ACH REG
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sdma

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

sdma Setup DMA Channel

sdma srel, sre2, src3
reg/lit/sfr reg/lit/sfr reg/lit

The DMA channel specified by src/ is set up using the control word in
src2. Dedicated data RAM for the specified DMA channel is written
with src3 value. First two bits of srcl specify channel; src2 specifies
DMA control word as a literal or single 32-bit register; src3 specifies a
single 32-bit register if channel is data-chaining. This register contains
the address of the first chaining descriptor in memory. src3 must
specify a register with a register number divisible by four.

If channel is not data chaining, src3 specifies a triple word contained in
registers src3, src3+1 and src3+2. src3 contains byte count for DMA;
src3+1 contains source address; src3+2 contains destination address.

dma_control_for_channel[srcl mod 4] « src2;
if (not chaining mode)

dma_ram[srcl mod 4] < src3; # triple-word store
else dma_ram[srcl mod 4] < src3; # word store
start_dma_channel[src/ mod 4];

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Constraint Privileged. Attempt to execute while not in
supervisor mode.

Idconst 3,16; # set channel

Idconst Channel_3_Modes,r7; # load controls

ldq Channel_3_transfer, r8;  # load pointers

sdma r6, 17, r8 # and byte count from memory

# configure dma channel 3
sdma 630H REG

udma

9-68



intgl.

INSTRUCTION SET REFERENCE

setbit

Mnemonic:

Format:

Description:

Action:

Faults:

Example:
Opcode:

See Also:

setbit Set Bit
setbit bitpos, sre, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Copies src value to dst with one bit set. bitpos specifies bit to be set.

dst « src or 2™(bitpos mod 32);

Trace Instruction. Breakpoint

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.

setbit 15, 19, rl #rl < r9 with bit 15 set

setbit 583H REG

alterbit, chkbit, clrbit, notbit
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SHIFT

Mnemonic:

Format:

Description:

shlo Shift Left Ordinal

shro Shift Right Ordinal

shli Shift Left Integer

shri Shift Right Integer

shrdi Shift Right Dividing Integer

sh* len, sre, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Shifts src left or right by the number of bits indicated with the len
operand and stores the result in dst. Bits shifted beyond register
boundary are discarded. For values of len greater than 32, the processor
interprets the value as 32.

shlo shifts zeros in from the least significant bit; shro shifts zeros in
from the most significant bit. These instructions are equivalent to mulo
and divo by the power of 2, respectively.

shli shifts zeros in from the least significant bit. An overflow fault is
generated if the bits shifted out are not the same as the most significant
bit (bit 31). If overflow occurs, dst will equal src shifted left as much
as possible without overflowing.

shri performs a conventional arithmetic shift-right operation by
shifting in the most significant bit (bit 31). When this instruction is
used to divide a negative integer operand by the power of 2, it produces
an incorrect quotient (discarding the bits shifted out has the effect of
rounding the result toward negative).

shrdi is provided for dividing integers by the power of 2. With this
instruction, 1 is added to the result if the bits shifted out are non-zero
and the src operand was negative, which produces the correct result for
negative operands.

shli and shrdi are equivalent to muli and divi by the power of 2.
eshro is provided for extracting a 32-bit value from a long ordinal (i.e.,

64 bits), which is contained in two adjacent registers. Refer to
Instruction Set Reference titled eshro for details.
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shlo:

shro:

shli:

shri:

shrdi:

if (len < 32) dst « src << len;

else dst « 0;

if (len < 32) dst « src >> len;

else dst < 0;

if (len > 32)1 « 32
else i « [en;
temp <« src,

while ((temp.31 = temp.30) and (i # 0))

{

temp «- temp << 1;
ie—i-1:
}

dst « temp;

if (len >32) 1 « 32;
else 1 « len;
temp <« src;
while (i # 0)
{
temp <« temp >> 1;
temp.bit31 « temp.bit30;
ie—i-1;
1
dst « temp;
1< len;
if (1>32)i1« 32,
temp < src;
s_sign « temp.bit31
lost_bit <« 0;
while (i # 0)
{

# shift temp right one bit
# extend temp’s sign bit

lost_bit < lost_bit or temp.bit0;

temp <« temp >> 1;
temp.bit31 « temp.bit30;
ie—i-1;

}

# shift temp left one bit
# extend temp’s sign bit

if ((s_sign = 1) and (lost_bit = 1)) temp « temp + 1;

dst < temp;
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Faults:

Example:

Opcode:

See Also:

Trace

Operation

Type

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

Arithmetic Integer Overflow. Result is too large for the destination
register (shli only). If overflow occurs and AC.om is a 1, the fault is
suppressed and AC.io is set to a 1. After an overflow, dst will equal src
shifted left as much as possible without overflowing.

shli 13, g4, 16

shlo 59CH
shro 598H
shli 59EH
shri 59BH

shrdi 59AH

# g6 « g4 shifted left 13 bits

REG
REG
REG
REG
REG

divi, muli, rotate, eshro
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spanbit

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

spanbit  Span Over Bit

spanbit Sre, dst
reg/lit/sfr reg/sfr

Searches src value for the most significant clear bit (0 bit). If a most
significant O bit is found, its bit number is stored in dst and condition
code is set to 010,. If src value is all 1's, all 1’s are stored in dst and
condition code is set to 000,.

if (src = OxFFFFFFFF)

{
dst < OxFFFFFFFF;

AC.cc « 000,;
}

else

{
1 31;
while ((src and 2M) # 0)
{
ie—i-1;
}
dst < 1;
AC.cc « 010y;

}

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.
# assume 12 is not Oxffffeff
spanbit r2, r9 # 19 < bit number of most-significant
# clear bit in 12; AC.cc « 010,
spanbit 640H REG

scanbit
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STORE

Mnemonic: st Store
stob Store Ordinal Byte
stos Store Ordinal Short
stib Store Integer Byte
stis Store Integer Short
stl Store Long
stt Store Triple
stq Store Quad
Format: st sre, efa
reg addr
efa:
(reg) disp + 8(IP) disp [reg * scale]
offset disp (regl) [reg2 * scale]
offset (reg) disp (reg) disp (reg 1) [reg 2 * scale]

Description:

Copies a byte or group of bytes from a register or group of registers to
memory. src specifies a register or the first (lowest numbered) register
of successive registers.

efa specifies the address of the memory location where the byte or first
byte or a group of bytes is to be stored. The full range of addressing
modes may be used in specifying efa. (Refer to the section of Chapter
3 titled Addressing Modes for a complete discussion.)

stob and stib store a byte and stos and stis store a half word from the
src register’s low order bytes . Data for ordinal stores is truncated to fit
the destination width. If the data for integer stores cannot be
represented correctly in the destination width, an Arithmetic Integer
Overflow fault is signaled.

st, stl, stt and stq copy 4, 8, 12 and 16 bytes, respectively, from
successive registers to memory.

For stl, src must specify an even numbered register (e.g., g0, g2, ... or

10, 2, ...). For stt and stq, src must specify a register number that is a
multiple of four (e.g., g0, g4, g8, ... or 10, 14, 18, ...).
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Action:

Faults:

Example:

Opcode:

See Also:

st: memory_word (efa) « src;

stob: memory_byte (efa) < src truncated to 8 bits;
stib: memory_byte (efa) < src truncated to 8 bits;
stos: memory_short (efa) «— src truncated to 16 bits;
stis: memory_short (efu) < src truncated to 16 bits;
stl:  memory_long (efa) < src;

stt:  memory_triple (efa) < src;

stq: memory_quad (efa) « src;

Trace

Operation

Arithmetic

Type

st g2, 1254 (g6)

st 92H
stob 82H
stos 8AH
stib C2H
stis CAH
stl 9AH
stt A2H
stq B2H
LOAD, MOVE

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Unimplemented. An unaligned efu was referenced
and unaligned support was disabled.

Operand. Invalid operand value encountered.
Opcode.Invalid opcode encoding encountered.

Integer Overflow. Result is too large for
destination (stib and stis only). If overflow occurs
and AC.om=1, the fault is suppressed and AC.io is
set to 1. After an overflow, destination contains
the least significant n-bits of the store, where n is
the transfer width (8 or 16 bits).

Mismatch. Non-supervisor attempt to write to
internal data RAM.

# word beginning at offset
#1254 + (g6) « g2

MEM
MEM
MEM
MEM
MEM
MEM
MEM
MEM
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subc

Mnemonic:

Format:

Description:

Action:

Faults:

Example:
Opcode:

See Also:

subc Subtract Ordinal With Carry
subc srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Subtracts srcl from src2, then subtracts not(AC.ccl) and stores the
result in dst. If the ordinal subtraction results in a carry, AC.ccl is set
to 1, otherwise AC.ccl is set to 0.

This instruction can also be used for integer subtraction. Here, if
integer subtraction results in an overflow, condition code bit O is set.

subc does not distinguish between ordinals and integers: it sets
condition code bits 0 and 1 regardless of data type.

dst < src2 - srcl - not(AC.ccl);
AC.cc « O0CVy;

#Vis 1 if integer subtraction would have generated an overflow,

# 0 otherwise

#Cis Carry out of the ordinal addition of src2 to not (srcl) and

# carry in.

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.

subc g5, g6, g7 # g7 < g6 - g5 - not( Carry Bit)
subc 5B2H REG

addc, addi, addo, subi, subo
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subi, subo

Mnemonic:
Format:
Description:

Action:

Faults:

Example:

Opcode:

See Also:

subi Subtract Integer

subo Subtract Ordinal

sub# srcel, src2, dst
reg/lit/sfr reg/lit/sfr reg/str

Subtracts srcl from src2 and stores the result in dst. The binary results
from these two instructions are identical. The only difference is that
subi can signal an integer overflow.

dst « src2 - srcl;
Trace

Operation

Type

Arithmetic

subi g6, g9, g12

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfi.

Integer Overflow. Result too large for destination
register (subi only). Result’s least significant 32
bits are stored in dst. If overflow occurs and
AC.om=1, the fault is suppressed and AC.io is set
to a 1. The least significant 32 bits of the result are
stored in dst.

#gl2 ¢ g9-g6

subi 593H REG
subo 592H REG
addi, addo, subc, addc
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syncf

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

syncf Synchronize Faults

syncf

Waits for all faults to be generated that are associated with any prior
uncompleted instructions.

if (AC.nif # 1)
{

wait until no imprecise faults can occur associated with
instructions which have begun, but are not completed.;

}

Trace

Operation

1d xyz, g6

addi 6, r8, r8
syncf

and g6, OxFFFF, g8

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

# the syncf instruction ensures that any faults
# that may occur during the execution of the
# 1d and addi instructions occur before the

# and instruction is executed

syncf 66FH

mark, fmark

REG
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sysctl
Mnemonic: sysctl System Control
Format: sysctl srel, sre2, sre3;
reg/lit/sfr reg/lit/sfr reg/lit
message, type
Description: Processor control function specified by the message field of srcl is
executed. The type field of srcl is interpreted depending upon the
command. Remaining srcl bits are reserved. The src¢2 and src3
operands are also interpreted depending upon the command.
The srcl operand is interpreted as follows:
31 16 15 8 7 0
srcl FIELD 2 MESSAGE TYPE FIELD 1
The following table lists 1960 CA processor commands.
Message Srcl Src 2 Sre 3
Type Field 1 Field Field 3 Field 4
2
Request 00OH | Vector Number N/U N/U N/U
Interrupt
Invalidate 01H |N/U N/U N/U N/U
Cache
Configure 02H | Cache Mode Configuration N/U Cache load | N/U
Cache (see table) N/U address
Reinitialize 03H | N/U N/U Ist Inst. PRCB
address address
Load Control | 04H | Register Group Number N/U N/U N/U
Register
NOTE

Sources and fields which are not used (designated N/U) are ignored.
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Cache Mode Configuration Table

Mode Fieldy) Mode Description
000, 1 Kbyte normal cache enabled
001, 1 Kbyte cache disabled (execute off-chip)
100, Load and lock 1 Kbyte cache (execute off-chip)
110, Load and lock 512 bytes, 512 bytes normal cache enabled

NOTE
1) Modes which are not defined are reserved.
Action: temp « srcl;

tmpmessage «— (temp and 0xf0) >> §;
switch (tmpmessage)

case 0:

case 1:

case 2:

case 3:

# Signal an Interrupt
post_interrupt(temp and 0xf);
break;
# Invalidate the Instruction Cache
invalidate_instruction_cache;
break;
# Configure Instruction Cache
tmptype < (srcl and 0xff);
if (tmptype.bitO = 1) disable_instruction_cache;
else if (tmptype = 0x0) enable_1k_instruction_cache;
else if (tmptype = 0x4)
{ # Load and freeze 1k cache
instr_cache < memory_1k(src2); # load 1k bytes
freeze_1Kk_instruction_cache;

}

else if (tmptype = 0 x 6)
{ # Load and freeze 512 bytes of cache
instr_cache «— memory_512(src2) # load 512 bytes
freeze_512_instruction_cache;
}

else Reserved;

break;

# Software Reset

temp «— src2;

load PRCB pointed to by src3;

IP « temp;

break;
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case 4: # Load One Group of Control Registers
# from the Control Table
temp [0-3] «~memory_quad (Control Table Base + group

offset);
for (i «-0; 123, i «i+1 control_reg[i] «-templi];
break
default: Operation invalid-operand fault;
Faults: Trace Instruction. Breakpoint.
Operation Unimplemented. Execution from on-chip data
RAM.

Unimplemented. Attempted to execute
unimplemented command.

Example: Idconst Clear_cache, g6 # set the clear cache message
sysctl r6,r7,r8 # execute cache invalidation
# note: r7, r8 are dummies here
be uploaded_code # branch to code which was uploaded
Opcode: sysctl 659H REG
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TEST

Mnemonic:

Format:

Description:

teste{.tLf} Test For Equal
testne{.tl.f} Test For Not Equal
testl{.tl.f} Test For Less

testle{.tl.f} Test For Less Or Equal
testg{.tl.f} Test For Greater

testge {.tl.f} Test For Greater Or Equal
testo{.tl.f} Test For Ordered
testno{.tl.f} Test For Not Ordered

test {.tl.f) dst
reg/sfr

Stores a true (01H) in dst if the logical AND of the condition code and
opcode mask-part is not zero. Otherwise, the instruction stores a false
(O0H) in dsr. For testno (Unordered), a true is stored if the condition
code is 000,, otherwise a false is stored.

The following table shows the condition-code mask for each
instruction. The mask is in bits 0-2 of the opcode.

Instruction Mask Condition
testno 000, Unordered
testg 001, Greater
teste 010, Equal
testge 011, Greater or equal
testl 100, Less
testne 101, Not equal
testle 110, Less or equal
testo 111, Ordered

The optional .t or .f suffix may be appended to the mnemonic. Use .t to
speed-up execution when these instructions usually store a true (1)
condition in dsz. Use .f to speed-up execution when these instructions
usually store a false (0) condition in dst. If a suffix is not provided, the
assembler is free to provide one.
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Action:

Faults:

Example:

Opcode:

See Also:

For all instructions except testno:

if ((mask and AC.cc) - 000,) dst «— Ox1: # dst set for true
else dst « 0x0: # dst set for false

testno:

if (AC.cc = 000,) dst « Ox1; #dst set for true
else dst « 0x0; # dst set for false

Trace Instruction. Breakpoint.

Operation Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr.

# assume AC.cc = 100,

testl g9 # 29 « 0x00000001
teste 22H COBR
testne<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>