

LITERATURE
To order Intel literature or obtain literature pricing information in the U.S. and Canada call or write Intel
Literature Sales. In Europe and other international locations, please contact your local sales office or
distributor.

INTEL LITERATURE SALES
P.O. Box 7641
Mt. Prospect, IL 60056-7641

CURRENT HANDBOOKS

In the U.S. and Canada
call toll free
(800) 548-4725
This 800 number is for external customers only.

Product line handbooks contain data sheets, application notes, article reprints and other design
information. All handbooks can be ordered individually, and most are available in a pre-packaged set in the
U.S. and Canada.

TITLE

SET OF TEN HANDBOOKS
(Available in U.S. and Canada)

INTEL
ORDER NUMBER

231003

CONTENTS LISTED BELOW FOR INDIVIDUAL ORDERING:

EMBEDDED CONTROLLERS & PROCESSORS 270645
(2 volume set)

MEMORY PRODUCTS 210830

MICROCOMMUNICATIONS 231658

MICROCOMPUTER PRODUCTS 280407

MICROPROCESSORS 230843

MULTIMEDIA & SUPERCOMPUTING PROCESSORS 272084

PACKAGING 240800

PERIPHERAL COMPONENTS 296467

PRODUCT OVERVIEW 210846
(A guide to Intel Architectures and Applications)

PROGRAMMABLE LOGIC 296083

ADDITIONAL LITERATURE:
(Not included in handbook set)

AUTOMOTIVE HANDBOOK 231792

COMPONENTS QUALITY /RELIABILITY 210997

CUSTOMER LITERATURE GUIDE 210620

EMBEDDED APPLICATIONS 270648

INTERNATIONAL LITERATURE GUIDE E00029
(Available in Europe only)

MILITARY HANDBOOK 210461
(2 volume set)

SYSTEMS QUALITY /RELIABILITY 231762

HANDBOOK DIRECTORY 241197
(Index of all data sheets contained in the handbooks)

ISBN

N/A

1-55512-140-3

1-55512-144-6

1-55512-148-9

1-55512-143-8

1-55512-150-0

1-55512-149-7

1-55512-145-4

1-55512-146-2

1-55512-142-x

1-55512-147-0

1-55512-125-x

1-55512-132-2

N/A

1-55512-123-3

N/A

1-55512-126-8

1-55512-046-6

N/A

LITINCOV/091091

U.S. and CANADA LITERATURE ORDER FORM

NAME:

COMPANY: ----------------------~
ADDRESS: ----------------------~
CITY: -------------- STATE: ___ ZIP:

COUNTRY:

PHONE NO.:

ORDER NO.

Include postage:
Must add 15% of Subtotal to cover U.S.
and Canada postage. (20% all other.)

TITLE QTY. PRICE TOTAL

x =

x =

x =

x =

x =

x =

x =

x =

x =

x =

Subtotal

Must Add Your
Local Sales Tax

Postage

Total
Pay by check, money order, or include company purchase order with this form ($200 minimum). We also
accept VISA, MasterCard or American Express. Make payment to Intel Literature Sales. Allow 2-4 weeks for
delivery.

D VISA D MasterCard D American Express Expiration Date -------------

Account No.-----------------------------­

Signature-------------------------------

Mail To: Intel Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

International Customers outside the U.S. and Canada
should use the International order form on the next page or
contact their local Sales Office or Distributor.

For phone orders in the U.S. and Canada
Call Toll Free: (800) 548-4725
Prices good until 12/31 /92.
Source HB

CG/LOF1/091091

INTERNATIONAL LITERATURE ORDER FORM

NAME: --------------------------
COMPANY: ---­
ADDRESS: --
CITY: ---------------STATE: ___ ZIP: ---

COUNTRY: -------------------------~
PHONE NO.:-'----'--------------------------------------

ORDER NO TITLE QTY. PRICE TOTAL

x =
x =

I I x =
1 1 x =

x =
x =
x =
x =
x =
x =

Subtotal

Must Add Your
Local Sales Tax

Total

PAYMENT

Cheques should be made payable to your local Intel Sales Office (see inside back cover).

Other forms of payment may be available in your country. Please contact the Literature Coordinator at your
local Intel Sales Office for details.

The completed form should be marked to the attention of the LITERATURE COORDINATOR and returned to
your local Intel Sales Office.

CG/091091

i960™ CA
MICROPROCESSOR

USER'S MANUAL

1992

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

376, Above, ActionMedia, BITBUS, Code Builder, DeskWare, Digital Studio, DVI,
EtherExpress, ETOX, ExCA, FaxBACK, Grand Challenge, i, i287, i386, i387, i486,
i487, i750, i860, i960, ICE, iLBX, Inboard, Intel, lntel287, lntel386, lntel387,
lntel486, lntel487, intel inside., lntellec, iPSC, iRMX, iSBC, iSBX, iWarp, LANDesk,
LANPrint, LANProtect, LANSelect, LANShell, LANSight, LANSpace, LANSpool,
MAPNET, Matched, MCS, Media Mail, NetPort, NetSentry, OpenNET, OverDrive,
Paragon, PR0750, ProSolver, RapidCAD, READY-LAN, Reference Point, RMX/80,
SatisFAXtion, Snapln 386, Storage Broker, SugarCube, The Computer Inside.,
TokenExpress. Visual Edge, and WYPIWYF

MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of Mohawk
Data Sciences Corporation.

CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trade­
mark or products.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

©INTEL CORPORATION 1992 CG-031292

CONTENTS

CHAPTER 1
INTRODUCTION TO THE i960™ CA MICROPROCESSOR

THE i960™ CA MICROPROCESSOR ARCHITECTURE 1-2
Parallel Instruction Execution .. 1-2
Full Procedure Call Model ... 1-2
Versatile Instruction Set and Addressing .. 1-3
Integrated Priority Interrupt Model. .. 1-3
Complete Fault Handling and Debug Capabilities .. 1-3

SYSTEM INTEGRATION ... 1-4
Pipelined Burst Bus Control Unit ... 1-4
Flexible DMA Controller .. 1-4
Priority Interrupt Controller .. 1-4

i960™ MICROPROCESSOR FAMILY ... 1-4
ABOUT THIS MANUAL ... 1-5
NOTATION AND TERMINOLOGY .. 1-6

Reserved and Preserved .. 1-6
Specifying Bit and Signal Values .. 1-7
Representing Numbers ... 1-7
Register Names ... 1-7

CHAPTER 2
PROGRAMMING ENVIRONMENT

PROGRAMMING ENVIRONMENT OVERVIEW ... 2-1
REGISTERS AND LITERALS AS INSTRUCTION OPERANDS 2-1

Global Registers .. 2-1
Local Registers .. 2-2
Special Function Registers (SFRs) ... 2-3
Register Scoreboarding .. 2-4
Literals ... 2-5
Register and Literal Addressing and Alignment .. 2-5

CONTROL REGISTERS ... 2-6
ARCHITECTURE-DEFINED DATA STRUCTURES ... 2-7
MEMORY ADDRESS SPACE ... 2-9

Memory Requirements .. 2-1 O
Data and Instruction Alignment in the Address Space 2-11
Byte, Word and Bit Addressing ... 2-11
Internal Data RAM ... 2-12
Instruction Cache .. 2-13

PROCESSOR-STATE REGISTERS ... 2-14
Instruction Pointer (IP) Register .. 2-14
Arithmetic Controls (AC) Register ... 2-14

Initializing and Modifying the AC Register .. 2-15
Condition Code ... 2-15
Integer Overflow .. 2-17
No Imprecise Faults .. 2-17

Process Controls (PC) Register .. 2-17
Initializing and Modifying the PC Register .. 2-17

iii

CONTENTS

Execution Mode .. 2-18
Program State ... 2-19
Priority ... 2-19
Trace Status and Control. ... 2-19

Trace Controls (TC) Register .. 2-19
USER SUPERVISOR MODEL .. 2-20

Supervisor Mode Resources ... 2-20
Using the User-Supervisor Protection Model .. 2-21

SYSTEM CONTROL FUNCTIONS ... 2-21
sysctl Instruction Syntax ... 2-22
System Control Messages .. 2-23

Request Interrupt .. 2-24
Invalidate Cache ... 2-24
Configure Instruction Cache ... 2-24
Reinitialize Processor ... 2-25
Load Control Registers ... 2-26

CHAPTER 3
DATA TYPES AND MEMORY ADDRESSING MODES

DATA TYPES ... 3-1
Integers .. 3-2
Ordinals ... 3-2
Bits and Bit Fields .. 3-3
Triple and Quad Words ... 3-3
Data Alignment .. 3-3

MEMORY ADDRESSING MODES .. 3-4
Absolute ... 3-4
Register Indirect .. 3-5
Index with Displacement ... 3-5
IP with Displacement ... 3-6
Addressing Mode Examples ... 3-6

CHAPTER 4
INSTRUCTION SET SUMMARY

INSTRUCTION FORMATS .. 4-1
Assembly Language Format ... 4-1
Branch Prediction .. 4~2
Instruction Encoding Formats ... 4-2
Instruction Operands ... 4-3

INSTRUCTION GROUPS .. 4-4
DATA MOVEMENT .. 4-4

Load and Store Instructions .. 4-6
Move .. 4-6
Load Address .. 4-7

ARITHMETIC ... 4-7
Add, Subtract, Multiply and Divide .. 4-8
Extended Arithmetic .. 4-8
Remainder and Modulo ... 4-8
Shift and Rotate ... 4-9

LOGICAL ... 4-10

iv

CONTENTS

BIT AND BIT FIELD ... 4-10
Bit Operations .. 4-10
Bit Field Operations ... 4-11

BYTE OPERATIONS ... 4-11
COMPARISON .. 4-11

Compare and Conditional Compare .. 4-11
Compare and Increment or Decrement .. 4-12
Test Condition Codes .. 4-12

BRANCH .. 4-13
Unconditional Branch .. 4-13
Conditional Branch .. 4-14
Compare and Branch .. 4-14

CALL AND RETURN ... 4-15
CONDITIONAL FAULTS ... 4-16
DEBUG4-16
ATOMIC INSTRUCTIONS ... 4-17
PROCESSOR MANAGEMENT ... 4-17

CHAPTER 5
PROCEDURE CALLS

OVERVIEW .. 5-1
CALL AND RETURN MECHANISM .. 5-2

Local Registers and the Procedure Stack ... 5-2
Local Register and Stack Management .. 5-3

Frame Pointer ... 5-3
Stack Pointer. .. 5-4
Previous Frame Pointer .. 5-4
Return Type Field ... 5-4
Return Instruction Pointer ... 5-4

Call and Return Action .. 5-5
Call Operation ... 5-5
Return Operation .. 5-5

Caching of Local Register Sets ... 5-6
Mapping Local Registers to the Procedure Stack ... 5-9

PARAMETER PASSING .. 5-10
LOCAL CALLS ... 5-12
SYSTEM CALLS .. 5-12

System Procedure Table ... 5-13
Procedure Entries ... 5-13
Supervisor Stack Pointer .. 5-14
Trace Control Bit ... 5-15

System-Local Call ... 5-15
System-Supervisor Call ... 5-15

USER AND SUPERVISOR STACKS .. 5-15
INTERRUPT AND FAULT CALLS ... 5-16
RETURNS .. 5-16
BRANCH-AND-LINK .. 5-18

v

CONTENTS

CHAPTER 6
INTERRUPTS

OVERVIEW .. 6-1
INTERRUPT PRIORITY .. 6-2
INTERRUPT TABLE .. 6-3

Vector Entries .. 6-3
Pending Interrupts ... 6-4
Posting Interrupts .. 6-4
Posting Interrupts Directly to the Interrupt Table .. 6-5
Caching Portions of the Interrupt Table .. 6-6

INTERRUPT STACK AND INTERRUPT RECORD .. 6-7
INTERRUPT HANDLER PROCEDURES ... 6-8
INTERRUPT CONTEXT SWITCH ... 6-8

Executing-State Interrupt. .. 6-9
Interrupted-State Interrupt ... 6-1 O

REQUESTING INTERRUPTS ... 6-10
SYSTEM CONTROL 11\JSTRUCT!ON (sysctl) .. 6-10

CHAPTER 7
FAULTS

FAULT HANDLING FACILITIES OVERVIEW ... 7-1
FAULT TYPES ... 7-2
FAULT TABLE ... 7-4
STACK USED IN FAULT HANDLING ... 7-5
FAULT RECORD ... 7-6

Fault Record Data ... 7-6
Return Instruction Pointer .. 7-7
Fault Record Location ... 7-7

MULTIPLE AND PARALLEL FAULTS ... 7-8
Multiple Faults ... 7-8
Multiple Trace Fault Conditions Only .. 7-9
Multiple Trace Fault Conditions with Other Fault Conditions 7-9
Parallel Faults .. 7-9
Faults in One Parallel Instruction .. 7-9
Faults in Multiple Parallel Instructions ... 7-10
Fault Record for Parallel Faults ... 7-10

FAULT HANDLING PROCEDURES ... 7-12
Possible Fault Handling Procedure Actions .. 7-12
Program Resumption Following a Fault .. 7-12
Returning to the Point in the Program Where the Fault Occurred 7-13
Returning to a Point in the Program Other Than Where the Fault Occurred 7-13

FAULT CONDITIONS AND FAULT CONTROL .. 7-14
Implicit Fault Generation ... 7-14
Explicit Fault Generation ... 7-15
Fault Controls .. 7-16

FAULT HANDLING ACTION ... 7-17
Local Fault Call .. 7-17
System-Local Fault Call .. 7-17
System-Supervisor Fault Call .. 7-18
Faults and Interrupts ... 7-19

vi

CONTENTS

PRECISE AND IMPRECISE FAULTS ... 7-19
Controlling Fault Precision .. 7-20

FAULT REFERENCE .. 7-21
Arithmetic Faults .. 7-22
Constraint Faults ... 7-23
Operation Faults .. 7-24
Parallel Faults .. 7-26
Protection Faults ... 7-27
Trace Faults .. 7-28
Type Faults .. 7-30

CHAPTER 8
TRACING AND DEBUGGING

TRACE CONTROLS .. 8-1
Trace Controls (TC) Register .. 8-1
Trace Enable Bit and Trace-Fault-Pending Flag ... 8-3
Trace Control on Supervisor Calls .. 8-3

TRACE MODES ... 8-3
Instruction Trace .. 8-4
Branch Trace ... 8-4
Call Trace .. 8-4
Return Trace ... 8-4
Pre return Trace ... 8-4
Supervisor Trace ... 8-5
Breakpoint Trace ... 8-5
Software Breakpoints .. 8-5
Hardware Breakpoints ... 8-5

SIGNALING A TRACE EVENT .. 8-7
HANDLING MULTIPLE TRACE EVENTS ... 8-8
TRACE FAULT HANDLING PROCEDURE .. 8-8
TRACE HANDLING ACTION .. 8-8

Normal Handling of Trace Events ... 8-9
Pre return Trace Handling .. 8-9
Tracing and Interrupt Procedures ... 8-9

CHAPTER 9
INSTRUCTION SET REFERENCE

INTRODUCTION ... 9-1
NOTATION .. 9-1

Alphabetic Reference .. 9-1
Mnemonic .. 9-2
Format ... 9-2
Description .. 9-3
Action ... 9-3
Faults ... 9-6
Example ... 9-7
Opcode and Instruction Format... .. 9-7
See Also .. 9-7

vii

CONTENTS

INSTRUCTIONS .. 9-7
addc .. 9-8
addi, addo ... 9-9
alterbit. .. 9-1 O
and, andnot .. 9-11
atadd ... 9-12
atmod .. 9-13
b, bx .. 9-14
bal, balx .. 9-16
bbc, bbs .. 9-18
BRANCH IF ... 9-20
call ... 9-22
calls ... 9-23
callx ... 9-25
chkbit .. 9-27
clrbit .. 9-28
cmpdeci, cmpdeco .. 9-29
cmpi, cmpo ... 9-30
cmpinci, cmpinco .. 9-31
COMPARE AND BRANCH .. 9-32
concmpi, concmpo .. 9-35
divi, divo ... 9-36
ediv ... 9-37
emul .. 9-38
eshro ... 9-39
extract ... 9-40
FAULT IF ... 9-41
flushreg .. 9-43
fmark ... 9-44
LOAD .. 9-45
Ida ... 9-47
mark .. 9-48
modac ... 9-49
modi .. 9-50
modify ... 9-51
modpc ... 9-52
modtc .. 9-53
MOVE .. 9-54
muli, mulo ... 9-55
nand .. 9-56
nor ... 9-57
not, notand ... 9-58
notbit. .. 9-59
notor ... 9-60
or, ornot .. 9-61
remi, remo .. 9-62
ret .. 9-63
rotate ... 9-65
scan bit .. 9-66
scan byte ... 9-67

viii

CONTENTS

sdma ... 9-68
setbit ... 9-69
SHIFT .. 9-70
spanbit .. 9-73
STORE .. 9-74
subc .. 9-76
subi, subo ... 9-77
syncf ... 9-78
sysctl .. 9-79
TEST ... 9-82
udma ... 9-84
xnor, xor ... 9-85

CHAPTER 10
THE BUS CONTROLLER

OVERVIEW .. 10-1
MEMORY REGION CONFIGURATION .. 10-2

Data Bus Width ... 10-2
Burst and Pipelined Read Accesses ... 10-3
Wait States .. 1 0-3
Byte Ordering .. 10-4

PROGRAMMING THE BUS CONTROLLER .. 10-5
Region Table (MCONO-MCON15) .. 10-5
Bus Configuration Register (BCON) ... 10-6
Configuring the Bus Controller .. 10-8

DATA ALIGNMENT ... 10-8
INTERNAL DATA RAM .. 10-10
BUS CONTROLLER IMPLEMENTATION ... 10-11

Bus Queue ... 10-12
Data Packing Unit .. 10-12
Bus Translation Unit and Sequencer .. 10-12

CHAPTER 11
EXTERNAL BUS DESCRIPTION

OVERVIEW .. 11-1
Terminology: Requests and Accesses .. 11-1

Request ... 11-1
Access .. 11-2

BUS OPERATION ... 11-2
Wait States .. 11-4
Bus Width .. 11-9
Non-Burst Requests .. 11-10
Burst Accesses .. 11-12
Pipelined Read Accesses ... 11-17

LITTLE OR BIG ENDIAN MEMORY CONFIGURATION .. 11-23
ATOMIC MEMORY OPERATIONS (The LOCK Signal) ... 11-25
EXTERNAL BUS ARBITRATION .. 11-26

Bus Backoff Function (BOFF pin) ... 11-28
PIN AND BUS STATE DESCRIPTION .. 11-31

Bus Control Signals ... 11-33

ix

CONTENTS

Bus Status Signals .. 11-36
Bus Arbitration Signals .. 11-37
Processor Control Signals ... 11-38

CHAPTER 12
INTERRUPT CONTROLLER

OVERVIEW .. 12-1
MANAGING INTERRUPT REQUESTS ... 12-1

Interrupt Controller Modes .. 12-2
Dedicated Mode .. 12-2
Expanded Mode .. 12-4
Mixed Mode .. 12-5

Non-Maskable Interrupt. .. 12-6
Saving the Interrupt Mask ... 12-7
External Interface Description ... 12-8

Pin Descriptions .. 12-8
Interrupt Detection Options ... 12-8

Programmer's Interface ... 12-1 O
Interrupt Control Register (ICON) ... 12-10
Interrupt Mapping Registers (IMAPO-IMAP2) ... 12-12
Interrupt Mask and Pending Registers (IMSK, IPND) 12-14
Default and Reset Register Values .. 12-15

Setting Up the Interrupt Controller .. 12-15
Implementation .. 12-16
Interrupt Service Latency .. 12-17
Optimizing Interrupt Performance ... 12-19

Vector Caching Option .. 12-19
OMA Suspension on Interrupts ... 12-20
Caching of Interrupt-Handling Procedures ... 12-20

CHAPTER 13
OMA CONTROLLER

OVERVIEW .. 13-1
DEMAND AND BLOCK MODE OMA ... ; 13-2
SOURCE AND DESTINATION ADDRESSING ... 13-2
OMA TRANSFERS .. 13-3

Multi-Cycle Transfers .. 13-3
Fly-By Single-Cycle Transfers ... 13-4
Source/Destination Request Length ... 13-6
Assembly and Disassembly .. 13-8
Data Alignment .. 13-9

DATA CHAINING ... 13-11
OMA-SOURCED INTERRUPTS .. 13-13
SYNCHRONIZING A PROGRAM TO CHAINED BUFFER TRANSFERS 13-14
TERMINATING OR SUSPENDING A OMA .. 13-14
CHANNEL PRIORITY .. 13-16
CHANNEL SETUP, STATUS AND CONTROL .. 13-17

OMA Command Register (DMAC) .. 13-18
Set Up OMA Instruction (sdma) ... ; 13-20
OMA Control Word .. 13-21

x

CONTENTS

OMA Data RAM ... 13-23
Channel Setup Examples .. 13-24

OMA EXTERNAL INTERFACE ... 13-25
Pin Description ... , .. 13-25
Demand Mode Request/ Acknowledge Timing .. 13-25
End Of Process/Terminal Count Timing .. 13-27
Block Mode Transfers ... 13-28
OMA Bus Request Pin ... 13-28
OMA Controller Implementation .. 13-28

OMA and User Program Processes ... 13-29
Bus Controller ... 13-29
OMA Controller Logic .. 13-30

OMA Performance ... 13-30
OMA Throughput. .. 13-31
OMA Latency .. 13-33

CHAPTER14
INITIALIZATION AND SYSTEM REQUIREMENTS

OVERVIEW .. 14-1
INITIALIZATION ... 14-2

Reset Operation (RESET) ... = .. 14-2
Self Test Function (STEST, FAIL) .. 14-2
On-Circuit Emulation ... 14-5
Initial Memory Image (IMI) ... 14-5

Initialization Boot Record (IBR) ... 14-5
Process Control Block (PRCB) ... 14-7

REQUIRED DATA STRUCTURES .. 14-9
Reinitialization and Relocating Data Structures .. 14-11
Initialization Flow ... 14-11

Startup Code Example .. 14-11
SYSTEM REQUIREMENTS .. 14-20

Input Clock (CLKIN) .. 14-20
Power and Ground Requirements (VCC, VSS) .. 14-21

Power and Ground Planes .. 14-21
Decoupling Capacitors .. 14-22

1/0 Pin Characteristics ... 14-22
Output Pins ... 14-22
Input Pins .. 14-23

High Frequency Design Considerations ... 14-23
Line Termination ... 14-24
Latch up ... 14-25
Interference ... 14-25

APPENDIX A
OPTIMIZING CODE FOR THE i960™ CA MICROPROCESSOR

BASIC CORE STRUCTURE ... A-1
Instruction Scheduler (IS) .. A-2
Instruction Flow ... A-4
Register File (RF) .. A-5
Execution Unit (EU) ... A-6

xi

CONTENTS

Multiply/Divide Unit (MDU) .. A-6
Address Generation Unit (AGU) .. A-6
Data RAM and Local Register Cache ... A-7

MICROARCHITECTURE REVIEW ... A-7
Parallel Issue ... A-7
Parallel Execution .. A-7
Optimizations ... A-8
Parallel Instruction Issue ... A-8
Machine Type Parallelism ... A-9
Instruction Independence .. A-9
When Instructions are Delayed ... A-11

Scoreboarded Register ... A-11
Scoreboarded Resource ... A-11
Register Scoreboarding and Bypassing ... A-11

Parallel Execution .. A-12
Execution Unit (EU) .. A-12
Multiply/Divide Unit (MDU) .. A-14
Data RAM (DR) ... A-16
Address Generation Unit (AGU) ... A-17
The Ida Instruction Pipeline .. A-17
Effective Address (eta) Calculations for Other Operations A-18
Bus Control Unit (BCU) ... A-18
BCU Pipeline ... A-18
BCU Queues ... A-20
Control Pipeline ... A-21
Unconditional Branches .. A-21
Conditional Branches .. A-25

Instruction Cache and Fetch Effects ... A-25
Cache Organization .. A-25
Fetch Strategy ... A-26
Fetch Latency ... A-26
Cache Replacement ... A-27

Micro-flows .. A-28
Detection ... A-28
Invocation .. A-28
Execution .. A-29
Data Movement. .. A-29
Arithmetic .. A-30
Logical ... A-30
Bit and Bit Field ... A-30
Byte Operations .. A-31
Comparison ... A-31
Branch ... A-32
c·all and Return ... A-32
Conditional Faults ... A-33
Debug ... A-33
Atomic ... A-33
Processor Management. ... A-34

xii

CONTENTS

Instruction-Stream Optimizations .. A-34
Advancing "Long" Operations ... A-35
Loads and Stores .. A-35
Multiplies and Divides ... A-35
Advancing Comparisons ... A-36
Unroll Loops to Use All Registers ... A-36
Enabling Constant Parallel Issue .. A-37
Migrating from Side to Side .. A-38
Branching Optimizations ... A-42
Correct Branch Prediction ... A-42
Branch Target Alignment .. A-42
Compress Code with Branches and bal.. A-43
Caching ... A-43
Utilizing the Instruction Cache .. A-44
Utilizing On-Chip Register Cache ... A-44
Utilizing On-Chip Data RAM ... A-45

Summary ... A-45

APPENDIX B
BUS INTERFACE EXAMPLES

NON-PIPELINED BURST SRAM INTERFACE ... B-1
Background ... B-1
Implementation .. B-1
Block Diagram ... B-2

Chip Select Logic .. B-2
State Machine PLO ... B-3
Write Enable Generation Logic ... B-3
Chip Select Generation ... B-3

Waveforms .. B-4
Wait State Selection .. B-5
Output Enable and Write Enable Logic .. B-6
State Machine Descriptions .. B-6

Tradeoffs and Alternatives .. B-9
PIPELINED READ SRAM INTERFACE .. B-10

Block Diagram ... B-10
Address Latch ... B-11
State Machine PLO ... B-11
Write Enable Logic .. B-12

Waveforms .. B-12
State Machines ... B-13

Tradeoffs and Alternatives .. B-16
INTERFACING DYNAMIC RAM WITH THE i960™ CA PROCESSOR B-16
DRAM OVERVIEW .. B-16

DRAM Access Modes ... B-17
DRAM Refresh Modes .. B-19
Address Multiplexer Input Connections .. B-20
Series Damping Resistors ... B-20
System Loading ... B-20
Design Example: Burst DRAM with Distributed
RAS-Only Refresh Using OMA ... B-21

xiii

CONTENTS

DRAM Address Generation .. B-22
DRAM Controller State Machine ... B-24
DRAM Refresh Request and Timer Logic .. B-27
DMA Programming for Refresh .. B-28
Memory Ready .. B-28
Region Table Programming .. B-29
Design Example: Burst DRAM with
Distributed CAS-Before- RAS Refresh using READY Control B-30
DRAM Controller State Machine ... B-31

INTERLEAVED MEMORY SYSTEMS .. B-35
INTERFACING TO SLOW PERIPHERALS USING THE

INTERNAL WAIT STATE GENERATOR ... B-37
Implementation .. B-38
Schematic .. B-38
Waveforms .. B-39

INTERFACING TO THE 27960CA BURST EPROM ... B-44
Overview of the 27960CA Burst EPROM .. B-44
Interfacing to the i960™ CA Microprocessor ... B-46
Booting from the 27960CA Burst EPROM .. B-47

INTERFACING TO THE 82596CA LOCAL AREA NETWORK COPROCESSOR. B-48
82596CA LAN Coprocessor Overview .. B-48
Applications ... B-50
Processor and Coprocessor Interaction .. B-50
Bus Interface Signals .. B-51
Arbitration .. B-53
Interface Logic Requirements ... B-53
82596CA Coprocessor and i960™ CA Processor Interface Considerations B-54

APPENDIXC
CONSIDERATIONS FOR WRITING PORTABLE CODE

i960™ CORE ARCHITECTURE ... C-1
ADDRESS SPACE RESTRICTIONS .. C-1

Structures in Reserved Memory .. C-2
Internal Data RAM ... C-2
Instruction Cache .. C-2
Data and Data Structure Alignment .. C-2

EXTENDED REGISTER SET, C-3
RESERVED LOCATIONS IN REGISTERS AND DATA STRUCTURES C-3
INSTRUCTION SET .. C-3

Instruction Timing .. C-3
Implementation-Specific Instructions .. C-3

INTERRUPT REQUESTS AND POSTING ... C-4
INITIALIZATION ... C-4
OTHER i960™ CA PROCESSOR IMPLEMENTATION-SPECIFIC FEATURES C-5

Data Control Peripherals ... C-5
Implementation-Specific Faults ... C-5
External System Requirements ... C-5

xiv

CONTENTS

APPENDIX D
INSTRUCTION SET REFERENCE

GENERAL INSTRUCTION FORMAT .. D-1
REG FORMAT ... D-1
COBR FORMAT .. D-3
CTRL FORMAT ... D-4
MEM FORMAT .. D-4

MEMA Format Addressing .. D-5
MEMS Format Addressing .. D-5

INSTRUCTION REFERENCE BY OPCODE .. D-7

APPENDIX E
REGISTER AND DATA STRUCTURE REFERENCE

OVERVIEW .. E-1
Arithmetic Controls Register (AC) ... E-2
Breakpoint Control Register (BPCON) .. E-3
Bus Configuration Register (BCON) ... E-3
Control Table ... E-4
Data Address Breakpoint Registers (DABO-DAB1) .. E-5
DMA Command Register (DMAC) (sf2) .. E-5
DMA Control Word .. E-6
Fault Record .. E-7
Fault Table ... E-8
Global and Local Registers ... E-9
Initialization Boot Record (IBR) and Process Control Block (PRCB) E-10
Instruction Address Breakpoint Registers (IPBO-IPB1) E-11
Interrupt Control Register (ICON) ... E-12
Interrupt Pending (IPND) (sfO) and Interrupt Mask Registers (IMSK) (sf1) E-13
Interrupt Map Registers (IMAPO-IMAP2) .. E-14
Interrupt Record .. E-15
Interrupt Table ... E-16
Memory Region Configuration Registers (MCONO-MCON 15) E-17
Previous Frame Pointer (PFP) (rO) ... E-18
Process Control Block Configuration Words (PRCB) E-19
Process Controls Register (PC) .. E-20
System Procedure Table ... E-21
Trace Controls Register (TC) .. E-22

GLOSSARY

INDEX

xv

Figure 1.1
Figure 1.2
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 3.1
Figure 4.1
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 6.1
Figure 6.2
Figure 6.3
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4

Figure 10.5
Figure 11.1
Figure 11.2
Figure 11.3
Figure 11.4
Figure 11.5
Figure 11.6

Figure 11.7
Figure 11.8
Figure 11.9
Figure 11.10
Figure 11.11
Figure 11.12

CONTENTS

FIGURES

The Single-Chip i960™ CA Superscalar Processor 1-1
i960™ Microprocessor Family ... 1-5
i960™ Microprocessor Programming Environment.. 2-3
Control Table ... 2-7
Address Space .. 2-9
Arithmetic Controls (AC) Register ... 2-15
Process Controls (PC) Register .. 2-18
Example Application of the User-Supervisor Protection Model 2-22
Source Operands for sysctl ... 2-23
Data Types and Ranges ... 3-1
Machine-Level Instruction Formats ... 4-3
Procedure Stack Structure and Local Registers 5-3
Frame Spill .. 5-7
Frame Fill .. 5-8
System Procedure Table .. 5-14
Previous Frame Pointer Register (PFP) (rO) 5-17
Interrupt Handling Data Structures ... 6-2
Interrupt Table ... 6-5
Storage of an Interrupt Record on the Interrupt Stack 6-7
Fault-Handling Data Structures ... 7-1
Fault Table and Fault Table Entries .. 7-5
Fault Record .. 7-6
Storage of the Fault Record on the Stack ... 7-8
Fault Record for Parallel Faults .. 7-11
Trace Controls (TC) Register .. 8-2
Instruction Address Breakpoint Registers (IPBO - IPB1) 8-6
Data Address Breakpoint Registers (DABO - DAB1) 8-6
Hardware Breakpoint Control Register (BPCON) 8-7
Region Table Configures External Memory 10-5
Memory Region Configuration Register (MCONO-MCON 15) 10-6
Bus Configuration Register (BCON) ... 10-7
Summary of Aligned and Unaligned Transfers for
Little Endian Regions .. 10-9
Bus Controller Block Diagram ... 10-11
Internal Programmable Wait States .. 11-5
Quad-word Read from 32-bit Non-burst Memory 11-7
Bus Request with READY and BTERM Control 11-8
Data Width and Byte Enable Encodings ... 11-9
Basic Read Request, Non-Pipelined, Non-Burst, Wait-States 11-11
Basic Read and Write Requests, Non-Pipelined, Non-Burst,
No Wait States .. 11-13
32-Bit-Wide Data Bus Bursts .. 11-15
16-Bit Wide Data Bus Bursts .. 11-16
8-Bit Wide Data Bus Bursts .. 11-16
32-Bit Bus, Burst, Non-Pipelined, Read Request with Wait States .. 11-18
32-Bit Bus, Burst, Non-Pipelined, Write Request with Wait States .. 11-19
Pipelined Read Memory System ... 11-20

xvi

Figure 11.13
Figure 11.14
Figure 11.15
Figure 11 .16
Figure 11 .17
Figure 11.18
Figure 11.19
Figure 12.1
Figure 12.2
Figure 12.3
Figure 12.4
Figure 12.5
Figure 12.6
Figure 12.7
Figure 12.8
Figure 12.9
Figure 12.10
Figure 13.1
Figure 13.2
Figure 13.3

Figure 13.4
Figure 13.5
Figure 13.6
Figure 13.7
Figure 13.8
Figure 13.9
Figure 13. 10
Figure 13.11
Figure 13.12
Figure 13.13
Figure 13.14
Figure 13. 15
Figure 13.16
Figure 13.17
Figure 14.1
Figure 14.2
Figure 14.3
Figure 14.4
Figure 14.5
Figure 14.6
Figure 14.7
Figure 14.8
Figure 14.9
Figure A.1
Figure A.2
Figure A.3
Figure A.4
Figure A.5
Figure A.6

CONTENTS

Non-Burst Pipelined Read Waveform ... 11-21
Burst Pipelined Read Waveform ... 11-22
Pipelined to Non-Pipelined Transitions ... 11-23
The LOCK Signal .. 11-26
HOLD/HOLDA Bus Arbitration .. 11-28
Operation of the Bus Back off Function ... 11-30
Example Application of the Bus Backoff Function 11-31
i960™ CA Processor's Interrupt Controller 12-3
Dedicated Mode .. 12-4
Expanded Mode .. 12-5
Implementation of Expanded Mode Sources 12-6
Interrupt Sampling ... 12-10
Interrupt Control (ICON) Register ... 12-12
Interrupt Mapping (IMAP2-IMAPO) Registers 12-13
Interrupt Mask (IMSK) and Interrupt Pending (IPND) Registers 12-15
Calculation of worst case interrupt latency - NL int 12-18
Caching Interrupt-Handling Code :-: 12-22
Source Data Buffering for Destination Synchronized DMAs 13-4
Example of Source Synchronized Fly-by DMA 13-5
Source Synchronized OMA Loads from an 8-bit, Non-burst,
Non-pipelined Memory Region ... 13-7
Byte to Word Assembly ... 13-9
Optimization of an Unaligned OMA ... 13-11
DMA Chaining Operation .. 13-12
Source Chaining .. 13-13
Synchronizing to Chained Buffer Transfers 13-15
OMA Command Register (DMAC) .. 13-19
Setup OMA (sdma) instruction Operands .. 13-20
OMA Control Word .. 13-22
OMA Data RAM ... 13-23
OMA External Interface ... 13-26
OMA Request and Acknowledge Timing .. 13-27
EOP3:0 Timing .. 13-28
DMA and User Requests in the Bus Queue 13-31
DMA Throughput and Latency .. 13-32
FAIL Timing .. 14-4
Initial Memory Image (IMI) .. 14-7
Configuration Words in the PRCB .. 14-10
Processor Initialization Flow ... 14-12
VCCPLL Lowpass Filter .. 14-21
Reducing Characteristic Impedance ... 14-22
Series Termination .. 14-24
AC Termination ... 14-25
Avoid Closed-Loop Signal Paths .. 14-26
i960™ CA Processor Core and Peripherals A-2
i960™ CA Microprocessor Block Diagram .. A~3
Instruction Pipeline .. A-4
Six-port Register File .. A-5
Issue Paths ... A-9
EU Execution Pipeline .. A-13

xvii

Figure A.7
Figure A.8
Figure A.9
Figure A.10
Figure A.11
Figure A.12
Figure A.13
Figure A.14
Figure A.15
Figure A.16
Figure A.17
Figure A.18
Figure A.19
Figure B.1
Figure B.2
Figure B.3
Figure B.5
Figure B.4
Figure B.6
Figure B.7
Figure B.8
Figure B.9
Figure B.10
Figure B.11
Figure B.12
Figure B.13
Figure B.14
Figure B.15
Figure B.16
Figure B.17
Figure B.18
Figure B.19
Figure B.20
Figure B.21
Figure B.22
Figure B.23
Figure B.24
Figure B.25
Figure B.26
Figure B.27
Figure B.28
Figure B.29
Figure B.30
Figure B.31
Figure B.32
Figure B.33
Figure B.34
Figure B.35
Figure B.36
Figure B.37

CONTENTS

MDU Execution Pipeline ... A-14
MDU Pipelined Back-To-Back Operations .. A-15
Data RAM Execution Pipeline ... A-16
The Ida Pipeline .. A-17
BCU Pipeline for Loads ... A-19
Back-to-Back BCU Accesses ... A-21
CTRL Pipeline for Branches to Branches ... A-22
Branch in First Executable Group ... A-23
Branch in Second Executable Group .. A-24
Branch in Third Executable Group .. A-24
Fetch Execution .. A-27
Micro-flow Invocation .. A-29
Execution Pipeline Template .. A-47
Non-Pipelined Burst SAAM Interface ... B-2
Non-Pipelined SAAM Read Waveform ... B-4
Non-Pipelined SAAM Write Waveform ... B-5
A32 Address Generation State Machine .. B-7
Chip Enable State Machine .. B-8
Pipelined Read Address and Data .. B-10
Pipelined SAAM Interface Block Diagram .. B-11
Pipelined Read Waveform .. B-12
Pipelined Read Chip Enable State Machine B-13
Pipelined Read PA32 State Machine Diagram B-14
Nibble Mode Read .. B-17
Fast Page Mode DRAM Read .. B-18
Static Column Mode DRAM Read .. B-18
RAS-only DRAM Refresh ... B-19
GAS-before-RAS DRAM Refresh .. B-19
Address Multiplexer Inputs .. B-20
DRAM System with OMA Refresh .. B-21
DRAM Address Generation State Machine B-23
DRAM Controller State Machine ... B-25
OMA Request and Acknowledge Signals ... B-28
DMA Chaining Description .. B-28
DRAM System Read Waveform ... B-29
DRAM System Write Waveform .. B-30
Block Diagram ... B-31
DRAM State Machine ... B-32
Two-Way Interleaved Read Access Overlap B-35
Two-Way Interleaved Memory System ... B-36
Two-Way Interleaved Read Waveforms ... B-37
8-bit Interface Schematic .. B-39
Read Waveforms .. B-40
Write Waveforms ... B-41
State Machine Diagram .. B-42
Performance of Burst EPROM Pipelined Read B-44
The 27960CA Burst EPROM .. B-45
128K X 32 Burst EPROM System ... B-46
Burst Pipelined EPROM Read .. B-47
Booting from the 27960CA Burst EPROM .. B-48

xviii

Figure B.38
Figure B.39
Figure D.1
Figure E.1
Figure E.2
Figure E.3
Figure E.4
Figure E.5
Figure E.6
Figure E.7
Figure E.8
Figure E.9
Figure E.10
Figure E.11
Figure E.12
Figure E.13
Figure E.14
Figure E.15
Figure E.16
Figure E.17
Figure E.18
Figure E.19
Figure E.20
Figure E.21
Figure E.22
Figure E.23

Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 2.6
Table 2.7
Table 2.8
Table 2.9
Table 2.10
Table 3.1
Table 4.1
Table 4.2
Table 5.1
Table 5.2
Table 5.3
Table 7.1
Table 7.2
Table 9.1
Table 9.2

CONTENTS

82596CA LAN Coprocessor Block Diagram B-49
i960™ CA Processor/82596CA Coprocessor Interlace B-52
Instruction Formats ... D-2
Arithmetic Controls (AC) Register ... E-2
Hardware Breakpoint Control Register (BPCON) E-3
BCON Register ... E-3
Control Table ... E-4
Data Address Breakpoint Registers (DABO - DAB 1) E-5
DMA Command Register (DMAC) .. E-5
DMA Control Word .. E-6
Fault Record .. E-7
Fault Table and Fault Table Entries .. E-8
Procedure Stack Structure and Local Registers E-9
Initial Memory Image (IMI) .. E-10
Instruction Address Breakpoint Registers (I PBO - I PB 1) E-11
Interrupt Control (ICON) Register ... E-12
Interrupt Mask (IMSK) and Interrupt Pending (IPND) Registers E-13
Interrupt Mapping (IMAP2-IMAPO) Registers E-14
Storage of an Interrupt Record on the Interrupt Stack E-15
Interrupt Table ... E-16
Memory Region Configuration Register (MCONO-MCON15) E-17
Previous Frame Pointer Register (PFP) (rO) E-18
Configuration Words in the PRCB .. E-20
Process Controls (PC) Register .. E-20
System Procedure Table .. E-21
Trace Controls (TC) Register .. E-22

TABLES

Registers and Literals Used as Instruction Operands 2-2
Allowable Register Operands ... 2-6
Alignment of Data Structures in the Address Space 2-11
Condition Codes for True or False Conditions 2-16
Condition Codes for Equality and Inequality Conditions 2-16
Condition Codes for Carry Out and Overflow 2-16
Supervisor-Only Operations and Faults Generated in User Mode ... 2-20
System Control Message Types and Operand Fields 2-23
Cache Configuration Modes ... 2-25
Control Register Table and Register Group Numbers 2-27
Memory Addressing Modes .. 3-4
i960™ CA Microprocessor Instruction Set Summary 4-5
Arithmetic Operations ... 4-7
Global Register Function with i960 Compilers 5-11
Encodings of Entry Type Field in System Procedure Table 5-13
Encoding of Return Status Field ... 5-17
i960™ CA Processor Fault Types and Subtypes 7-3
Fault Flags or Masks ... 7-16
Abbreviations in Pseudo-code .. 9-5
Pseudo-code Symbol Definitions .. 9-6

xix

Table 10.1
Table 10.2
Table 11.1
Table 11.2
Table 11.3
Table 11.4
Table 12.1
Table 13.1
Table 13.2
Table 13.3
Table 13.4
Table 13.5

Table 13.6
Table 14.1
Table 14.2
Table 14.3
Table A.1
Table A.2
Table A.3
Table A.4
Table A.5
Table A.6
Table A.7
Table A.8
Table A.9
Table A.10
Table A.11
Table A.12
Table A.13
Table A.14
Table A.15
Table A.16
Table A.17
Table A.18
Table B.1

Table B.2
Table B.3
Table D.1
Table D.2
Table D.3
Table D.4
Table D.5
Table D.6
Table D.7
Table D.8
Table D.9

CONTENTS

Region Table Bit Definitions .. 10-7
BCON Register Bit Definitions .. 10-8
Bus Controller Pins ... 11-3
Byte Enable Encoding ... 11-10
Burst Transfers and Bus Widths ... 11-14
Byte Ordering on Bus Transfers ... 11-25
Location of Cached Vectors in Internal RAM 12-20
Transfer Type Options .. 13-3
OMA Transfer Alignment Requirements ... 13-10
Rotating Channel Priority .. 13-17
OMA Transfer Clocks - NoMA··· 13-33
Base Values of Worst-case OMA Throughput used for
OMA Latency Calculation .. 13-35
Values of OMA Latency Components ... 13-36
Pin Reset State ... 14-3
Register Values after Reset.. .. 14-4
i960™ CA Processor Input Pins .. 14-23
Machine Type Sequences Which Can Be Issued in Parallel A-10
Scoreboarded Register Conditions ... A-11
Scoreboarded Resource Conditions ... A-12
EU Instructions .. A-13
MDU Instructions ... A-15
Data RAM Instructions .. A-16
AGU Instructions ... A-18
BCU Instructions ... A-20
CTRL Instructions ... A-22
Fetch Strategy ... A-26
Load Micro-flow Instruction Issue Clocks ... A-30
Store Micro-flow Instruction Issue Clocks ... A-31
Bit and Bit Field Micro-flow Instructions .. A-31
bx and balx Performance ... A-32
callx Performance ... A-33
sysctl Performance .. A-34
Creative Uses for the Ida Instruction .. A-39
Code Optimization Summary .. A-46
Shared i960™ CA Processor and 82596CA Bus Output
and 1/0 Signals .. B-51
Shared i960™ CA Processor and 82596CA Bus Input Signals B-52
Arbitration Signals for i960™ CA Processor/82596CA Interface B-53
Encoding of src1 and src2 Fields in REG Format D-2
Encoding of src/dst Field in REG Format ... D-3
Addressing Modes for MEM Format Instructions D-5
Encoding of Scale Field .. D-6
Miscellaneous Instruction Encoding Bits .. D-7
REG Format Instruction Encodings .. D-8
COBR Format Instruction Encodings .. D-10
CTRL Format Instruction Encodings ... D-11
MEM Format Instruction Encodings .. D-12

xx

Example 2.1
Example 2.2
Example 3.1
Example 3.2
Example 5.1
Example 6.1
Example 12.1
Example 12.2
Example 13.1
Example 13.2
Example 14.1
Example 14.2
Example 14.3
Example 14.4
Example 14.5
Example A.1
Example A.2
Example A.3
Example A.4
Example A.5
Example A.6

CONTENTS

EXAMPLES

Register Scoreboarding ... 2-4
Register Alignment .. 2-5
Addressing Mode Mnemonics ... 3-6
Use of Index Plus Scaled Index Mode ... 3-7
Using Global Register for Parameter Passing 5-12
Requesting an Interrupt with the sysctl Instruction 6-11
Return from a Level-detect Interrupt... ... 12-9
Programming the Interrupt Controller for Expanded Mode 12-16
Simple Block Mode Setup .. 13-24
Chaining Mode Setup .. 13-24
Startup Routine .. 14-13
Linker Directives File ... 14-14
Boot-up Data Declarations ... 14-15
Bus Controller Header File .. 14-18
Interrupt Controller Header File ... 14-19
Overlap Loads (Checksum) ... A-35
Overlap MDU Operations (Multiply-Accumulate) A-36
Unroll Loops (Checksum) .. A-37
Order for Parallelism (Checksum) ... A-38
Change the Type of Instruction Used (3x3 Lowpass Mask) A-39
Align Branch Targets ... A-43

xxi

Introduction to the 1
i960™ CA Microprocessor

CHAPTER 1
INTRODUCTION TO THE i960™ CA MICROPROCESSOR

Intel's i960 CA microprocessor, a member of the i960 family of 32-bit embedded processors,
is the first commercially available superscalar processor. Superscalar technology enables this
processor to execute up to three instructions in a single clock cycle. It is an ideal
communications controller; as such, it is the natural choice to use as a connection processor in
the emerging field of Computer Supported Collaboration (CSCJ, where high speed networks
are used to link multimedia PCs.

The i960 CA product represents Intel's commitment to provide a spectrum of reliable, cost­
effective, high-performance processors to satisfy the requirements of today's innovative
products. It is designed for applications which require greater performance on a single chip
than is usually found in an entire embedded system. The sheer speed of the i960 CA processor
enriches traditional embedded applications and makes many new functions possible at a
reduced cost. This embedded processor is versatile; it is found in diverse product lines such as
laser printers, X-terminals, bridges, routers and PC add-in cards.

As shown in Figure 1.1, the i960 CA component integrates many features onto a single
CHMOS device, including the multiple-instruction per clock C-series core, a I Kbyte two-way
set associative instruction cache, a programmable register cache, a I Kbyte on-chip data RAM,
a multi-mode programmable bus controller for its demultiplexed bus, a four-channel 59 Mbyte
per second DMA controller and a high-speed interrupt controller.

270710-002-01

Figure 1.1. The Single-Chip i960™ CA Superscalar Processor

1-1

•

INTRODUCTION TO THE i960™ CA MICROPROCESSOR

THE 1960™ CA MICROPROCESSOR ARCHITECTURE

The i960 architecture provides a high-performance computing model. The architecture profits
from reduced instruction set computer (RISC) concepts and includes refinements for execution
of more than one instruction per clock through superscalar implementations. Furthermore, the
architecture provides a high-speed procedure call/return model, a powerful instruction set
suited to parallelism and integrated interrupt- and fault-handling models appropriate in a
parallel execution environment.

Parallel Instruction Execution

To sustain execution of multiple instructions in each clock cycle, a processor must decode
multiple instructions in parallel and simultaneously issue these instructions to parallel
processing units. The various processing units must then be able to independently access
instruction operands in parallel from a common register set.

On-chip instruction cache enables parallel decode by constantly providing the next four
unexecuted instructions to the processor's instruction scheduler. In a single clock cycle, the
scheduler inspects all four instructions and issues one, two or three of these instructions in the
same clock cycle.

Parallel decode also speeds conditional operations such as branches. These instructions are
decoded and executed ahead of the current instruction pointer while maintaining the logical
control flow of the sequential program.

Once the scheduler issues an instruction or group of instructions, one of six parallel processing
units begins to execute each instruction. Each parallel unit handles a different subset of the
instruction set, enabling multiple instructions to be issued and executed every clock cycle.
Each unit executes its instructions in parallel with other processor operations.

The i960 CA processor's 32 general purpose 32-bit registers are each six-ported to allow
unimpeded parallel access to independent processing units. To maintain the logical integrity of
sequential instructions which are being executed in parallel, the processor implements register
scoreboarding and resource scoreboarding interlocks.

The 960 CA processor's superscalar can decode multiple instructions at once and issue them to
independent processing units where they are executed in parallel. As a result, the processor
delivers sustained execution of multiple instructions per clock from a sequential instruction
stream.

Full Procedure Call Model

This processor supports two types of procedure calls: an integrated call-and-return mechanism
and a RISC-style branch-and-link instruction. The integrated call-and-return mechanism
automatically saves local registers when a call instruction is executed and restores them when a
return is executed. The RISC-style branch-and-link is a fast call that does not save any of the
registers. These mechanisms result in high performance and reduced code size, while
maintaining assembly-level compatibility.

1-2

INTRODUCTION TO THE i960™ CA MICROPROCESSOR

To attain the highest performance for procedure calls and returns, the i960 CA microprocessor
integrates a programmable depth register cache. The register cache internally saves the local
registers for procedure calls, rather than actually writing the data to the external procedure
stack. This caching greatly reduces the external bus traffic associated with procedure context
saving and restoring.

Versatile Instruction Set and Addressing

The i960 CA microprocessor offers a full set of load, store, move, arithmetic, shift, comparison
and branch instructions and supports operations on both integer and ordinal data types. It also
provides a complete set of Boolean and bit-field instructions to simplify manipulation of bits
and bit strings.

Most of the processor's instructions are typical RISC operations. However, several commonly
used complex instructions are also part of the instruction set. Performance is optimized by
implementing these commonly used functions with parallel hardware. For instance, the 32x32
multiply operation - a single instruction - takes less than five clocks to execute: 150 ns or
less at 33 MHz. Furthermore, the multiplier is a parallel unit; this allows instructions that
follow a multiply to execute before the multiplication is complete. In fact, if several unrelated
instructions follow a multiply, the multiplication consumes only one clock of execution.

Integrated Priority Interrupt Model

The i960 CA microprocessor provides a priority-based mechanism for servicing interrupts. The
mechanism transparently manages up to 248 distinct sources with 31 levels of priority.
Interrupt requests may be generated from external hardware, internal hardware or software.

The interrupt mechanism is managed by hardware which operates in parallel with a program's
execution. This reduces interrupt latency and overhead and provides flexible interrupt handling
control.

Complete Fault Handling and Debug Capabilities

To aid in program development, the i960 CA microprocessor detects faults (exceptions). When
a fault is detected, the processor makes an implicit call to a fault handling routine. Information
collected for each fault allows program developers to quickly correct faulting code. It also
allows automatic recovery from most faults.

To support system debugging, the i960 architecture provides a mechanism for monitoring
processor activities through a software tracing facility. The i960 CA device can be configured
to detect as many as seven different trace events, including breakpoints, branches, calls,
supervisor calls, returns, prereturns and the execution of each instruction (for single-stepping
through a program). The i960 CA component also provides four breakpoint registers that allow
break decisions to be made based upon instruction or data addresses.

1-3

•

INTRODUCTION TO THE i960™ CA MICROPROCESSOR

SYSTEM INTEGRATION

The i960 CA microprocessor is based on the C-series core, which is object code compatible
with the 32-bit i960 core architecture. Additionally, the i960 CA device integrates three data
control peripherals around the core: bus control unit, DMA controller and interrupt controller.

Pipelined Burst Bus Control Unit

The i960 CA microprocessor integrates a 32-bit high-performance bus controller to interface to
external memory and peripherals. The bus control unit incorporates full wait state logic and bus
width control to provide high system performance with minimal system design complexity.
The bus control unit features a maximum transfer rate of 132 Mbytes per second (at 33 MHz).
Internally programmable wait states and 16 separately configurable memory regions allow the
processor to interface with a variety of memory subsystems with minimum complexity and
maximum performance.

Flexible OMA Controller

A four-channel DMA controller provides high-speed DMA data transfers. Source and
destination can be any combination of internal RAM, external memory or peripherals. DMA
channels perform single-cycle or multi-cycle transfers and can perform data packing and
unpacking between peripherals and memory with varying bus widths. Also provided are block
transfers, in addition to source- or destination-synchronized transfers.

The DMA supports various transfer types such as high speed fly-by, quad-word transfers and
data chaining with the use of linked descriptor lists. The high performance fly-by mode is
capable of transfer speeds of up to 59 Mbytes per second at 33MHz.

Priority Interrupt Controller

The interrupt controller provides full programmability of 248 interrupt sources into 31 priority
levels. The interrupt controller handles prioritization of software interrupts, hardware interrupts
and process priority. In addition, it also manages four internal sources from the DMA
controller and a single non-maskable interrupt input.

i960™ MICROPROCESSOR FAMILY

A standard core architecture allows software designers to develop building block software,
such as real-time kernels or libraries of functions optimized for the i960 core architecture.
These building blocks are portable to any implementation of the i960 architecture.

As indicated in Figure 1.2, all i960 family products are compatible. Each is a specialized
applications device, consisting of a core architecture implementation plus a set of specific
building blocks or peripherals. The architecture is expandable to include different peripherals
on a processor to meet the needs of specific processing and control applications. Future

1·4

INTRODUCTION TO THE i960™ CA MICROPROCESSOR

versions of the i960 microprocessor will feature different attributes to meet the price
performance demands of all forms of embedded processor applications.

80960CA

270710-001 ·02

Figure 1.2. i960™ Microprocessor Family

ABOUT THIS MANUAL

This i960 CA Microprocessor Reference Manual provides detailed programming and hardware
design information for the i960 CA microprocessor. It is written for programmers and
hardware designers who understand the basic operating principles of microprocessors and their
systems.

1-5

•

INTRODUCTION TO THE i96QTM CA MICROPROCESSOR

This manual does not provide electrical specifications such as DC and AC parametrics,
operating conditions and packaging specifications. Such information is found in the i960 CA
Microprocessor Data Sheet.

For information on other i960 family products or the architecture in general, refer to Intel's
Solutions960 catalog. It lists all current i960 microprocessor family-related documents, support
components, boards, software development tools, debug tools and more.

This manual is organized in three parts; each part comprises multiple chapters and/or
appendices. The following briefly describes each part:

• Part I-Programming the i960 CA Microprocessor details the programming environment
for the i960 CA component. Described here are the processor's registers, instruction set,
data types, addressing modes, interrupt mechanism, external interrupt interface and fault
mechanism.

• Part II-System Implementation identifies requirements for designing a system around the
i960 CA component, such as external bus interface, interrupt controller and integrated
DMA controller. Also described are programming requirements for the DMA controller,
bus controller and processor initialization.

• Part III-Appendices include quick references for hardware design and programming.
Appendices are also provided which describe the internal architecture, how to write
assembly-level code to exploit the parallelism of the processor and considerations for
writing software which is portable between all members of the i960 family.

NOTATION AND TERMINOLOGY

The following paragraphs describe notation and terminology used in this manual that have
special meaning.

Reserved and Preserved

Certain fields in the registers and data structures are described as being either reserved or
preserved:

• A reserved field is one that may be used by other implementations of the i960 architecture.
Correct treatment of reserved fields ensures software compatibility with other i960
products. The processor uses these fields for temporary storage; as a result, the fields
sometimes contain unusual values.

• A preserved field is one that the processor does not use. Software may use preserved fields
for any function.

Reserved fields in certain data structures should be set to 0 when the data structure is created.
Set reserved fields to 0 when creating the Control Table, Interrupt Table, Fault Table, System
Procedure Table, Initialization Boot Record and Processor Control Block. Software should not
modify or rely on these reserved field values after a data structure is created. When the

1-6

intel® INTRODUCTION TO THE i960™ CA MICROPROCESSOR

processor creates the Interrupt or Fault Record data structure on the stack, software should not
depend on the value of the reserved fields within these data structures.

Some bits or fields in data structures are shown as requiring specific encoding. These fields
should be treated as if they were reserved fields. They should be set to the specified value
when the data structure is created and software should not modify or rely on the value in the
field after that.

Reserved bits in the Special Function Registers must be set to 0 after initialization to ensure
compatibility with future implementations. Reserved bits in the Process Controls (PC) register
and Trace Controls (TC) register should not be initialized.

When the Arithmetic Controls (AC). PC and TC registers arc modified using modac, modpc
or modtc instructions, the reserved locations in these registers must be masked.

Ce11ain areas of memory may be referred to as reserved memory in this reference manual.
Reserved - when referring to memory locations - implies that an implementation of the i960
architecture may use this memory for some special purpose. For example. memory mapped
peripherals would likely be located in a reserved memory area on future implementations.
Programs may use reserved memory just like any other memory unless it is specifically
documented otherwise.

Specifying Bit and Signal Values

The terms set and clear in this manual refer to bit values in register and data structures. If a bit
is set, its value is I: if the bit is clear. its value is 0. Likewise, setting a bit means giving it a
value of 1 and clearing a bit means giving it a value of 0.

The terms assert and deassert refer to the logically active or inactive value of a signal or bit,
respectively. A signal is specified as an active 0 signal by an overbar. For example, the
BTERM input is active low and is asserted by driving the signal to a logic 0 value.

Representing Numbers

All numbers in this manual can be assumed to be base 10 unless designated otherwise. In text,
binary numbers arc designated with a subscript 2 (for example, 001 2). If it is obvious from the
context that a number is a binary number. the "2" subscript is sometimes omitted. Hexadecimal
numbers are designated in text with the suffix H (for example, FFFF FF5AH).

In pseudo-code action statements in the instruction reference section, hexadecimal numbers are
represented by adding the C-language convention "Ox" as a prefix. For example "FF7 AH"
appears as "OxFF7 A" in the pseudo-code.

Register Names

The i960 CA processor's special function registers and several of the global and local registers
are referred to by their generic register names, as well as descriptive names which describe

1-7

•

INTRODUCTION TO THE i960™ CA MICROPROCESSOR

their function. The global register numbers are gO through g15; local register numbers are rO
through r15; special function registers are sfO, sfl and sf2. However, when programming the
registers in user-generated code, make sure the instruction operand is used. The i960 compilers
recognize only the instruction operands listed in the following table. Throughout this manual,
the register's descriptive names, numbers, operands and acronyms are used interchangeably, as
dictated by context.

Register Descriptive Register Instruction Acronym
Name Number Operand

Global Registers gO - g15 gO - g14

Frame Pointer gl5 fp FP

Local Registers rO - r15 r3 - r15

Previous Frame Pointer rO pfp PFP

Stack Pointer rl sp SP

Return Instruction Pointer r2 rip RIP

Interrupt Pending Register sfO sfO IPND

Interrupt Mask Register sfl sfl IMSK

DMA Command Register sf2 sf2 DMAC

Groups of bits and single bits in registers and control words are called either bits, flags or
fields. These terms have a distinct meaning in this manual:

bit controls a processor function; programmed by the user.

flag indicates status. Generally set by the processor; however, the user may also
program certain flags.

field a grouping of bits (bit field) or flags (flag field).

Specific bits, flags and fields in registers and control words are usually referred to by a register
abbreviation (in upper case) followed by a bit, flag or field name (in lower case). These items
are separated with a period. A position number designates individual bits in a field. For
example, the return type (rt) field in the previous frame pointer (PFP) register is designated as
"PFP.rt". The least significant bit of the return type field is then designated as "PFP.rtO".

1-8

Programming Environment 2

CHAPTER 2
PROGRAMMING ENVIRONMENT

This chapter describes the i960 CA microprocessor's programming environment which
includes global and local registers, special function registers, control registers, literals,
processor-state registers and address space.

PROGRAMMING ENVIRONMENT OVERVIEW

The i960 architecture defines a programming environment in which programs are executed and
data is stored and manipulated. Figure 2.1 shows the programming environment elements
which include a 4 Gbyte (232 byte) flat address space, a l Kbyte instruction cache, 16 global
and 16 local general purpose registers, a set of literals, special function registers, control
registers and a set of processor state registers. A register cache, also shown in Figure 2.1, saves
the 16 procedure-specific local registers.

The processor defines several data structures located in memory as part of the programming
environment. These data structures handle procedure calls, interrupts, faults and provide
configuration information at initialization. These data structures are:

• interrupt stack • control table • system procedure table

• local stack • fault table • process control block

• supervisor stack • interrupt table • initialization boot record

REGISTERS AND LITERALS AS INSTRUCTION OPERANDS

The i960 CA processor uses only simple load and store instructions to access memory.
Therefore, operations take place at the register level. It uses 16 global, 16 local and three
special functions registers as instruction operands, as well as 32 literals (constants 0-31).

The global register numbers are gO through gl5; local register numbers are rO through rl5;
special function registers are sfO, sf! and sf2. However, when programming the registers in
user-generated code, make sure the instruction operand is used. The i960 compilers recognize
only the instruction operands listed in Table 2.1. Throughout this manual, the register's
descriptive names, numbers, operands and acronyms are used interchangeably, as dictated by
context.

Global Registers

Global registers are general purpose 32-bit data registers which provide temporary storage for a
program's computational operands. Global registers retain their contents across procedure
boundaries. Because of this, they provide a fast and efficient means of passing parameters
between procedures.

2·1

II

PROGRAMMING ENVIRONMENT

The i960 architecture supplies 16 global registers, designated gO through gl5. Register gl5 is
reserved for the current Frame Pointer (FP) which contains the address of the first byte in the
current (topmost) stack frame. The FP and procedure stack are described in Chapter 5,
Procedure Calls.

After the processor is reset, register gO contains die stepping information. Software must read
the value of gO before any action is taken to modify this register. The i960 CA Microprocessor
Data Sheet Stepping Register Information section describes die stepping information contained
in register gO.

Local Registers

Local registers (rO through r15) provide a separate set of 32-bit data registers - in addition to
the global registers - for each active procedure. They provide storage for variables that are
local to a procedure. Each time a procedure is called, the processor allocates a new set of local
registers for that procedure and saves the calling procedure's local registers. The processor
performs local register management; a program need not explicitly save and restore these
registers.

Local registers r3 through rl5 are general purpose registers; rO through r2 are reserved for
special functions: rO contains the Previous Frame Pointer (PFP); rl contains the Stack Pointer
(SP); r2 contains the Return Instruction Pointer (RIP). PFP, SP and RIP are discussed in
Chapter 5, Procedure Calls.

NOTE

The processor does not always clear or initialize a set of local registers assigned to a new
procedure. Therefore, initial register contents are unpredictable. Also, the processor does not
initialize the local register save area in the newly created stack frame for the procedure; its
contents are equally unpredictable.

Table 2.1. Registers and Literals Used as Instruction Operands

Instruction Register Name
Operand (number) Function Acronym

gO - gl4 global (gO-g 14) general purpose

fp global (gl5) frame pointer FP

pfp local (rO) previous frame pointer PFP

sp local (rl) stack pointer SP

rip local (r2) return instruction pointer RIP

r3 - rl5 local (r3-r15) general purpose

sfO special function 0 interrupt pending IPND

sfl special function 1 interrupt mask IMSK

sf2 special function 2 DMAcommand DMAC

0-31 literals

2-2

PROGRAMMING ENVIRONMENT

0000 OOOOH

ADDRESS SPACE

FETCH

t
INSTRUCTION CACHE

INSTRUCTION
STREAM

INSTRUCTION
EXECUTION

PROCESSOR STATE
REGISTERS

INSTRUCTION
POINTER

ARITHMETIC
CONTROLS

PROCESS
CONTROLS

TRACE
CONTROLS

FFFF FFFFH

ARCHITECTURALLY
DEFINED

DATA STRUCTURES

t
LOAD STORE

16 32-BIT GLOBAL REGISTERS

REGISTER CACHE

16 32-BIT LOCAL REGISTERS

3 SPECIAL FUNCTION REGISTERS

CONTROL REGISTERS

rO
r15

sfO
sf2

270710-001-03

Figure 2.1. i960™ Microprocessor Programming Environment

Special Function Registers (SFRs)

The i960 architecture provides a mechanism to expand its architecture-defined register set with
up to 32 additional 32-bit registers. On the i960 CA microprocessor, three special function
registers (SFRs) are provided as an extension to the architectural register model. These
registers are designated sfO, sf!, sf2 (see Table 2.1). Registers sf3 - sf31 are not implemented
on the i960 CA component. Reading or modifying unimplemented registers causes the
operation-invalid-opcode fault to occur.

2-3

•

PROGRAMMING ENVIRONMENT

SFRs provide a means to configure and monitor interrupt controller and DMA controller status.
SFR function in the i960 CA device is described in Chapter 12, Interrupt Controller and
Chapter 13, DMA Controller.

The processor provides a mechanism which allows only privileged access to SFRs. These
registers can only be accessed while the processor is in supervisor execution mode (see User­
Supervisor Protection Model later in this chapter). A type-mismatch fault occurs if an
instruction with a SFR operand is executed in user mode.

SFRs are not used as operands for instructions whose machine-level instruction format is of
type MEM or CTRL. Instructions with these formats include loads, stores and instructions
which cause program redirection (call, return and branches; see Appendix D, Instruction Set
Reference for a description of the machine-level encoding for operands). Table 2.2 summarizes
the use of SFRs as instruction operands.

Register Scoreboarding

Register scoreboarding allows concurrent execution of sequential instructions. When an
instruction executes, the processor sets a register-scoreboard bit to indicate that a particular
register or group of registers is being used in an operation. If the instructions that follow do not
use registers in that group, the processor can execute those instructions before the prior
instruction execution completes.

A common application of this feature is to execute one or more single-cycle instructions
concurrently with a multi-cycle instruction (e.g., multiply or divide). The following example
shows a case where register scoreboarding prevents a subsequent instruction from executing. It
also illustrates overlapping instructions which do not have register dependencies.

Register scoreboarding is implemented for global and local registers but not for SFRs. When a
SFR is the destination of a multi-cycle instruction, the programmer must prevent access to the
SFR until the multi-clock instruction returns a result to the SFR.

muli r4,r5,r6
addi r6,r7,r8

Example 2.1. Register Scoreboarding

r6 is scoreboarded
add must wait for the previous multiply
to complete

muli
and

r4,r5,r10 # rlO is scoreboarded and instruction
r6,r7,r8 # is executed concurrentLx_ with multiply

2-4

PROGRAMMING ENVIRONMENT

Literals

The architecture defines a set of 32 literals which can be used as operands in many instructions.
These literals arc ordinal (unsigned) values that range from 0 to 3 l (5 bits). When a literal is
used as an operand, the processor expands it to 32 bits by adding leading zeros. If the
instruction requires an operand larger than 32 bits, the processor zero extends the value to the
operand size. Ir a literal is used in an instruction that requires integer operands, the processor
treats the literal as a positive integer value.

Register and Literal Addressing and Alignment

Several instructions operate on multiple word operands. For example, the load long instruction
(Id!) loads two words from memory into two consecutive registers. The register for the less­
significant word is specified in the instruction; the more-significant word is automatically
loaded into the next higher-numbered register.

In cases where an instruction specifies a register number and multiple, consecutive registers are
implied, the register number must be even if two registers are accessed (e.g., gO, g2) and an
integral multiple of 4 if three or four registers are accessed (e.g., gO, g4). If a register reference
for a source value is not properly aligned, the source value is undefined and an operation­
invalid-operand fault is generated. If a register reference for a destination value is not properly
aligned, the registers to which the processor writes and the values written are undefined. The
processor then generates an operation-invalid-operand fault. The following assembly language
code shows an example of correct and incorrect register alignment.

movl g3,g8

g~,g8

Example 2.2. Register Alignment

INCORRECT' 2\LIGNMENT - resulting value

sters g8 and g9 is
ctable (non-aligned source)

CORRSCT ALIGNMENT

Global registers, local registers, special function registers and literals are used directly as
instruction operands. Table 2.2 lists instruction operands for each machine level instruction
format and positions which can be filled by each register or literal.

2-5

•

PROGRAMMING ENVIRONMENT

Table 2.2. Allowable Register Operands

Operand (1)

Instruction Local Global Extended
Encoding Operand Field Register Register Register (SFR) Literal

REG srcl x x x x
src2 x x x x
src/DST (as src) x x x
src/DST (as DST) x x x
src!DST (as both) x x (2)

MEM src!DST x x
abase x x
index x x

COBR srcl x x x
src2 x x x
DST x (3) X(3) X(3)

NOTES:

I. X denotes register can be used as an operand in a particular instruction field.

2. Extended registers cannot be addressed in the src!DST field of REG format instructions in
which this field is used as both source and destination (e.g., extract and modify).

3. The COBR destination operands apply only to TEST instructions.

CONTROL REGISTERS

Control registers are internal registers which are used to configure the on-chip peripherals:
DMA controller, interrupt controller and bus controller. A program cannot access control
registers directly as instruction operands; instead, control registers are loaded from a data
structure called the control table (see Figure 2.2).

The system control (sysctl) instruction is used to move control table values to on-chip control
registers. The control table is divided into seven quad-word groups; each group is assigned a
group number from zero to six. When sysctl executes, the load control register message type
and the group number is specified. sysctl moves the quad-word group of register values from
the control table in memory and writes the values in the on-chip registers. (See System Control
Functions later in this chapter.)

At initialization, the control table is automatically loaded into the on-chip control registers.
This action simplifies the user's startup code by providing a transparent setup of the i960 CA
device's peripherals at initialization. (See Chapter 14, Initialization and System Requirements.)

2-6

PROGRAMMING ENVIRONMENT

31 0

IP BREAKPOINT 0 (IPBO) OH

IP BREAKPOINT 1 (IPB1) 4H

DATA ADDRESS BREAKPOINT 0 (DABO) 8H

DATA ADDRESS BREAKPOINT 1 (DAB1) CH

INTERRUPT MAP 0 (IMAPO) 10H

INTERRUPT MAP 1 (IMAP1) 14H

INTERRUPT MAP 2 (IMAP2) 18H

INTERRUPT CONTROL (ICON) 1CH

MEMORY REGION O CONFIGURATION (MCONO) 20H

MEMORY REGION 1 CONFIGURATION (MCON1) 24H

MEMORY REGION 2 CONFIGURATION (MCON2) 28H

MEMORY REGION 3 CONFIGURATION (MCON3) 2CH

MEMORY REGION 4 CONFIGURATION (MCON4) 30H

MEMORY REGION 5 CONFIGURATION (MCONS) 34H

MEMORY REGION 6 CONFIGURATION (MCON6) 38H

MEMORY REGION 7 CONFIGURATION (MCON?) 3CH

MEMORY REGION 8 CONFIGURATION (MCON8) 40H

MEMORY REGION 9 CONFIGURATION (MCON9) 44H

MEMORY REGION 10 CONFIGURATION (MCON10) 48H

MEMORY REGION 11 CONFIGURATION (MCON11) 4CH

MEMORY REGION 12 CONFIGURATION (MCON12) SOH

MEMORY REGION 13 CONFIGURATION (MCON13) 54H

MEMORY REGION 14 CONFIGURATION (MCON14) 58H

MEMORY REGION 15 CONFIGURATION (MCON15) SCH

RESERVED (INITIALIZE TO 0) 60H

BREAKPOINT CONTROL (BPCON) 64H

TRACE CONTROLS (TC) 68H

BUS CONFIGURATION CONTROL (BCON) 6CH

270710-002-02

Figure 2.2. Control Table

ARCHITECTURE-DEFINED DATA STRUCTURES

The architecture defines a set of data structures which includes stacks, interfaces to system
procedures, interrupt handling procedures and fault handling procedures. Data structure
function is described in the following paragraphs.

user stack Stack the processor uses when executing applications code. This
stack is described in Chapter 5, Procedure Calls.

2-7

•

intel® PROGRAMMING.ENVIRONMENT

system procedure table Contains pointers to system procedures. Application code uses the
system call instruction (calls) to access system procedures through
this table. A specific type of system call, known as a system
supervisor call, causes a switch in execution mode from user mode
to supervisor mode. When the processor switches to supervisor
mode, it also switches to a new stack: the supervisor stack. System
procedure table structure and system call mechanism are described
in Chapter 5, Procedure . Calls. The user-supervisor protection
model is described in the section User-Supervisor Model in this
chapter.

interrupt table Contains vectors (pointers) to interrupt handling procedures. When
an interrupt is serviced, a particular interrupt table entry is specified.
A separate interrupt stack is provided to ensure that interrupt
handling does not interfere with application programs. The interrupt
handling mechanism is described in Chapter 6, Interrupts.

fault table Contains pointers to fault handling procedures. When the processor
detects a fault, the processor selects a particular entry in the fault
table. The architecture does not require a separate fault handling
stack. Instead, a fault handling procedure uses the supervisor stack,
user stack or interrupt stack, depending on processor execution
mode when the fault occurred and type of call made to the fault
handling procedure. Fault handling is described in Chapter 7,
Faults.

control table Contains on-chip control register values. Control table values are
moved to on-chip registers at initialization or with sysctl.

The i960 CA microprocessor defines two initialization data structures: initialization boot
record (/BR) and processor control block (PRCB). These structures provide initialization data
and pointers to other data structures in memory. When the processor is initialized, these
pointers are read from the initialization data structures and cached for internal use.

Pointers to the system procedure table, interrupt table, interrupt stack, fault table and control
table are specified in the processor control block. Supervisor stack location is specified in the
system procedure table. User stack location is specified in the user's startup code.

Of these data structures, the system procedure table, fault table, control table and initialization
data structures may be in ROM; the interrupt table and stacks must be in RAM. The interrupt
table must be in RAM because the processor sometimes writes to it.

2-8

PROGRAMMING ENVIRONMENT

MEMORY ADDRESS SPACE

The i960 microprocessor's address space is byte-addressable with addresses running
contiguously from 0 to 2.:i2 - 1. Some of this address space is reserved or is assigned special
functions as shown in Figure 2.3.

ADDRESS

0000 OOOOH

0000 0004H

0000 003FH
0000 0040H

0000 OOBFH
0000 OOCOH

0000 OOFFH
0000 0100H

0000 03FFH
0000 0400H

FEFF FFFFH
FFOO OOOOH

FFFF FEFFH
FFFF FFOOH

FFFF FF2CH
FFFF FF2DH

FFFF FFFFH

NMI VECTOR

INTERNAL DATA RAM (OPTIONAL INTERRUPT VECTORS)

INTERNAL DATA RAM (OPTIONAL OMA REGISTERS)

INTERNAL DATA RAM (USER MODE WRITE PROTECTED)

INTERNAL DATA RAM (OPTIONAL USER MODE WRITE PROTECTION)

CODE/DATA
ARCHITECTURALLY DEFINED DATA STRUCTURES

(EXTERNAL MEMORY)

RESERVED MEMORY

INITIALIZATION BOOT RECORD

RESERVED MEMORY

Figure 2.3. Address Space

1024

232_1
(4 GBYTES)

270710-001-04

Address space can be mapped to read-write memory, read-only memory and memory-mapped
1/0. The architecture does not define a dedicated, addressable 1/0 space. There are no
subdivisions of the address space such as segments. For the purpose of memory management.
an external memory management unit (MMU) may subdivide memory into pages or restrict
access to certain areas of memory to protect a kernel's code, data and stack. However, the
processor views this address space as linear.

An address in memory is a 32-bit value in the range OH to FFFFFFFFH. Depending on the
instruction, it can be used to reference in memory a single byte, half-word (2 bytes), word
(4 bytes), double-word (8 bytes), triple-word (12 bytes) or quad-word (16 bytes). Refer to load
and store instruction descriptions in Chapter 9, Instruction Set Reference for multiple-byte
addressing information.

2-9

•

PROGRAMMING ENVIRONMENT

Memory Requirements

The architecture requires that external memory have the following properties:

• Memory must be byte-addressable.

• No memory is mapped at reserved addresses which are specifically used by an
implementation.

• Memory must guarantee indivisible access (read or write) for addresses that fall within 16
byte boundaries.

• Memory must guarantee atomic access for addresses that fall within 16 byte boundaries.

The latter two capabilities - indivisible and atomic access - are required only when multiple
processors or other external agents, such as DMA or graphics controllers, share a common
memory. Definitions follow:

indivisible access

atomic access

Guarantees that a processor, reading or wntmg a set of memory
locations, completes the operation before another processor or
external agent can read or write the same location. The processor
requires indivisible access within an aligned 16 byte block of
memory.

A read-modify-write operation. Here the external memory system
must guarantee that - once a processor begins a read-modify-write
operation on an aligned, 16 byte block of memory - it is allowed to
complete the operation before another processor or external agent is
allowed access to the same location. An atomic memory system can
be implemented by using the LOCK signal to qualify hold requests
from external bus agents. The LOCK signal is asserted for the
duration of an atomic memory operation. (See Chapter 10, The Bus
Controller.)

The address space upper 16 Mbytes - addresses FFOOOOOOH through FFFFFFFFH - are
reserved for implementation-specific functions. In general, programs can access this address
space section unless an implementation specifically uses the memory or forbids access.

This address range is termed "reserved" so future i960 architecture implementations may use
these addresses for special functions such as mapped registers or data structures. Therefore, to
ensure complete object level compatibility, portable code must not access or depend on values
in this region. The initialization boot record is located in reserved memory of the i960 CA
microprocessor. (See Figure 2.3.)

The i960 CA component requires some special consideration when using the lower 1 Kbyte of
address space (addresses OOOOH-03FFH). Loads and stores directed to these addresses access
internal memory; instruction fetches from these addresses are not allowed for the i960 CA
microprocessor. (See Internal Data RAM in this chapter.)

2·10

PROGRAMMING ENVIRONMENT

Data and Instruction Alignment in the Address Space

Instructions, program data and architecturally defined data structures can be placed anywhere
in non-reserved address space while adhering to these alignment requirements:

• Align instructions on word boundaries.

• Align all architecture defined data structures on the boundaries specified in Table 2.3.

• Align instruction operands for the atomic instructions (atadd, atmod) to word boundaries
in memory.

The i960 CA microprocessor does not require that load and store data be aligned in memory. It
can handle a non-aligned load or store request by either of two methods:

• It can automatically service a non-aligned memory access with microcode assistance (see
Chapter 10, Bus Controller).

• It can generate an operation unaligned fault when a non-aligned access is detected.

The method for handling non-aligned accesses is selected at initialization based on the value of
Fault Configuration Word in the Process Control Block (see Chapter 14, Initialization and
System Requirements).

Table 2.3. Alignment of Data Structures in the Address Space

Data Structure Alignment

System Procedure Table 4 byte

Interrupt Table 4 byte

Fault Table 4 byte

Control Table 16 byte

User Stack 16 byte

Supervisor Stack 16 byte

Interrupt Stack 16 byte

Process Control Block 16 byte

Initialization Boot Record Fixed at FFFF FFOOH

Byte, Word and Bit Addressing

The processor provides instructions for moving data blocks of various lengths from memory to
registers (load) and from registers to memory (store). Allowable sizes for blocks are bytes,
half-words (2 bytes), words (4 bytes), double words, triple words and quad words. For
example, stl (store long) stores an 8 byte (double word) data block in memory.

The most efficient way to move data blocks longer than l 6 bytes is to move them in quad-word
increments, using quad-word instructions ldq and stq.

2-11

II

PROGRAMMING, ENVIRONMENT

When a data block is stored in memory, normally the block's least significant byte is stored at
a base memory address and the more significant bytes are stored at successively higher byte
addresses. This method of ordering bytes in memory is referred to as "little endian" ordering.

The i960 CA microprocessor also provides the option for ordering bytes in an opposite manner
in memory. The block's most significant byte is stored at the base address and the less
significant bytes are stored at successively higher addresses. This byte ordering scheme,
referred to as "big endian," applies to data blocks which are short words or words. For more
about byte ordering, see Chapter 10, Bus Controller.

When loading a byte, half word or word from memory to a register, the block's least
significant bit is always loaded in register bit 0. When loading double words, triple words and
quad words, the least significant word is stored in the base register. The more significant words
are then stored at successively higher numbered registers. Bits can only be addressed in data
that resides in a register; bit 0 in a register is the least significant bit, bit 31 is the most
significant bit.

Internal Data RAM

Internal data RAM is mapped to the address space lower 1 Kbyte (OOOOH to 03FFH). Loads
and stores, with target addresses in internal data RAM, operate directly on the internal data
RAM; no external bus activity is generated. Data RAM allows time critical data storage and
retrieval without dependence on external bus performance. The lower 1 Kbyte of memory is
data memory only. Instructions cannot be fetched from the internal data RAM. Instruction
fetches directed to the data RAM cause a type mismatch fault to occur.

Some internal data RAM locations are reserved for alternate functions other than general data
storage (Figure 2.3). When the DMA controller is active, 32 bytes of data RAM are reserved
for each channel in use. Additionally, 64 bytes of data RAM may be used to cache specific
interrupt vectors. The word at location OOOOH is always reserved for the cached NMI vector.
With the exception of the cached NMI vector, other reserved portions of the data RAM can be
used for data storage when the alternate function is not used.

Local register cache size is specified by the value of the Register Cache Configuration Word in
the Process Control Block (PRCB; see Chapter 14, Initialization and System Requirements for
PRCB description.) The first five local register sets are cached internally; if more than five sets
are to be cached, then the local register cache can be extended into the internal data RAM. Up
to ten more sets, occupying up to 640 bytes of data RAM, can be used. When extended, each
new register set consumes 16 words of internal data RAM beginning at the highest data RAM
address. The user program is responsible for preventing any corruption to the areas of internal
RAM set aside for the register cache. (See Chapter 5, Procedure Calls.)

Internal RAM' s first 256 bytes (OOOOH to OOFFH) are user mode write protected. This data
RAM can be read while executing in user or supervisor mode; however, RAM can only be
modified in supervisor mode. Writes to these locations while in user mode cause a type
mismatch fault to be generated. This feature provides supervisor protection for DMA and
Interrupt functions which use internal RAM (see User-Supervisor Protection Model in this
chapter). User mode write protection is optionally selected for the rest of the data RAM
(OlOOH to 03FFH) by setting the Bus Configuration Register (BCON) RAM protection bit.

2-12

intel,. PROGRAMMING ENVIRONMENT

Instruction Cache

The i960 CA component's instruction cache enhances performance by reducing the number of
instruction fetches from external memory. The cache provides fast execution of cached code
and loops of code in the cache and also provides more bus bandwidth for data operations in
external memory.

The instruction cache is a I Kbyte. two-way set associative cache, organized in lines of eight
32 bit words. To optimize cache updates when branches or inte!Tupts are executed. each word
in the line has a separate valid bit. Cache misses cause the processor to issue either double- or
quad-word fetches to update the cache. Refer to Appendix A, Optimizing Code for the i960 CA
Microprocessor for a thorough discussion of the instruction cache operation.

Bus snooping is not implemented with the i960 CA cache. The cache does not detect
modification to program memory by loads. stores or actions of other bus masters. Several
situations may require program memory modification. such as uploading code at initialization
or uploading code from a backplane bus or a disk.

To achieve cache coherence, instruction cache contents can be invalidated after code
modification is complete. The sysctl instruction is used to invalidate the instruction cache for
the i960 CA component. sysctl is issued with an invalidate-instruction-cache message type.
(See System Control Functions later in this chapter.)

The user program is responsible for synchronizing a program with the code modification and
cache invalidation. In general, a program must ensure that modified code space is not accessed
until modification and cache-invalidate is completed.

Instruction cache can be turned off, causing all instruction fetches to be directed to external
memory. Disabling the instruction cache is useful for debugging or monitoring a system at the
instruction prefetch level. To disable the instruction cache, sysctl is executed with the
configure-instruction-cache message (see System Control Functions later in this chapter.)

When the cache is disabled, the processor depends on a 16 word instruction buffer to provide
decoding instructions. The instruction buffer is organized as two sets of two way set
associative cache, with a four word line size. When the main cache is disabled, small loops of
code may still execute entirely within the instruction buffer.

The processor can be directed to load a block of instructions into the cache and then disable all
normal updates to this load cache portion. This cache load-and-lock mechanism is provided to
optimize interrupt latency and throughput. The first instructions of time-critical interrupt
routines are loaded into the locked cache. The interrupt, when serviced, is directed to the
locked cache portion. No external accesses are required for these instructions when the
interrupt is serviced.

Only interrupts can be directed to fetch instructions from the instruction cache's locked
portion. Other causes of program redirection always fetch from the normal memory hierarchy,
even if the target address of the redirection is represented in the locked cache. When bit l of an
interrupt vector is set to 1, the interrupt is fetched from the instruction cache's locked portion.
Execution continues from the locked cache until a miss occurs, such as a branch, call or return
to code outside of the locked space. If an interrupt directed to the locked cache results in a

2-13

•

PROGRAMMING ENVIRONMENT

miss, the targeted instruction is fetched from the normal memory hierarchy. See Chapter 6,
Interrupts for more details on the cache load-and-lock feature.

The full l Kbyte cache or 512 bytes of the cache can be configured to load and lock. When
only one half of the cache is loaded and locked, the other half acts as a normal two way set
associative cache. Normally, an application locks only 512 bytes. Locking the full 1 Kbyte
cache means that all instruction fetches come from external memory except for interrupts
directed to the locked cache.

sysctl is issued with a configure-instruction-cache message type to select the load and lock
mechanism. When the lock option is selected, an address is specified which points to a memory
block which is loaded into the locked cache. See System Control Function later in this chapter.

PROCESSOR-STATE REGISTERS

The architecture defines four 32 bit registers that contain status and control information. These
registers, defined in this section, are:

• Instruction Pointer (IP) register • Arithmetic Controls (AC) register

• Process Controls (PC) register • Trace Controls (TC) register

Instruction Pointer (IP) Register

The IP register contains the address of the instruction currently being executed. This address is
32 bits long; however, since instructions are required to be aligned on word boundaries in
memory, the IP's two least-significant bits are always 0 (zero).

All i960 instructions are either one or two words long. The IP gives the address of the lowest­
order byte of the first word of the instruction.

The IP register cannot be read directly. However, the IP-with-displacement addressing mode
allows the IP to be used as an offset into the address space. This addressing mode can also be
used with the Ida (load address) instruction to read the current IP value.

When a break occurs in the instruction stream - due to an interrupt, procedure call or fault -
the IP of the next instruction to be executed is stored in local register r2 which is usually
referred to as the return IP or RIP register. Refer to Chapter 5, Procedure Calls for further
discussion of this operation.

Arithmetic Controls (AC) Register

The AC register (Figure 2.4) contains condition code flags, integer overflow flag, mask bit and
a bit that controls faulting on imprecise faults. Unused AC register bits are reserved.

2-14

PROGRAMMING ENVIRONMENT

CONDITION CODE BITS-AC.cc -----------------------.,
(SEE TABLES 2-4, 2-5. AND 2-6)

INTEGER-OVERFLOW FLAG -AC.of ----------------.
(0) NO OVERFLOW

(1) OVERFLOW

INTEGER OVERFLOW MASK BIT - AC.om ---------.

(0) NO MASK

(1) MASK

NO--IMPRECISE-FAULTS BIT - A.C.nif --------.
(0) SOME FAULTS ARE IMPRECISE

(1) ALL FAULTS ARE PRECISE

28 24 20

ARITHMETIC CONTROLS REGISTER (AC)

K8] RESERVED
~ (INITIALIZE TO 0)

16 12

Figure 2.4. Arithmetic Controls (AC) Register

Initializing and Modifying the AC Register

4

c c c
c c

2 1 0

270710-001-05

At initialization, the AC register is loaded from the Initial AC image field in the Process
Control Block (see Chapter 14, initialization and System Requirements). Reserved bits are set
to 0 in the AC Register Initial Image. After initialization, software must not modify or depend
on the AC register's reserved location. After initialization, the modify arithmetic controls
(modac) instruction allows any of the register bits to be examined and modified. This
instruction provides a mask operand that can be used to limit access to the register's specific
bits or groups of bits, such as the reserved bits.

The processor automatically saves and restores the AC register when it services an interrupt or
handles a fault. The processor saves the current AC register state in an interrupt record or fault
record then restores the register upon returning from the interrupt or fault handler.

Condition Code

The processor sets the AC register's condition code flags (bits 0-2) to indicate the results of
certain instructions - usually compare instructions. Other instructions, such as conditional
branch instructions, examine these flags and perform functions according to the state of the
condition code. Once the processor sets the condition code flags, the flags remain unchanged
until another instruction executes that modifies the field.

Condition code flags show true or false conditions, inequalities (greater than, equal or less than
conditions) or carry and overflow conditions for the extended arithmetic instructions. To show

2-15

•

PROGRAMMfNG ENVIRONMENT

true or false conditions, the processor sets the flags as shown in Table 2.4. To show equality
and inequalities, the processor sets the condition code flags as shown in Table 2.5.

Table 2.4. Condition Codes for True or False Conditions

Condition Code Condition

0102 true

0002 false

Table 2.5. Condition Codes for Equality and Inequality Conditions

Condition Code Condition

0002 unordered (false)

0012 greater than (true)

0102 equal

1002 less than

NOTE

Some implementations of the i960 architecture provide integrated floating point processing. The
terms ordered and unordered are used when comparing floating point numbers. If, when
comparing two floating point values, one of the values is a NaN (not a number), the relationship
is said to be "unordered." The i960 CA microprocessor does not implement the floating point
processor on-chip.

To show carry out and overflow, the processor sets the condition code flags as shown in
Table 2.6.

Table 2.6. Condition Codes for Carry Out and Overflow

Condition Code Condition

OlX2 carry out

OXl2 overflow

Certain instructions (such as the branch if instructions) use a 3 bit mask to evaluate the
condition code flags. For example, the branch-if-greater-or-equal instruction (bge) uses a mask
of 0112 to determine if the condition code is set to either greater than or equal. These masks
cover the additional conditions of greater-or-equal (0112), less-or-equal (1102) and not-equal
(101 2). The mask is part of the instruction opcode and the instruction performs a bitwise AND
of the mask and condition code.

2-16

PROGRAMMING ENVIRONMENT

Integer Overflow

The AC register integer oveiflow flag (bit 8) and integer oveiflow mask bit (bit 12) are used in
conjunction with the arithmetic-integer-overflow fault. The mask bit disables fault generation .
When the fault is masked, the processor - instead of generating a fault - sets the integer
overflow flag when integer overflow is encountered. If the fault is not masked, the fault is
allowed to occur and the flag is not set.

Once the processor sets this flag, it never implicitly clears it; the flag remains set until the
program clears it. Refer to the discussion of the arithmetic-integer-overflow fault in Chapter 7,
Faults for more information about the integer overflow mask bit and flag.

No Imprecise Faults

The no imprecise faults bit (bit 15) determines whether or not faults are allowed to be
imprecise. If set, all faults are required to be precise; if clear, certain faults can be imprecise.
(See Chapter 7, Faults for more information about precise and imprecise faults.)

Process Controls (PC) Register

The process controls (PC) register (Figure 2.5) contains information to control processor
activity and show the processor's current state. This register's various functions are described
in this section.

Initializing and Modifying the PC Register

Any of the following three methods can be used to change bits in the PC register:

• Modify process controls instruction (modpc)

• Alter the saved process controls prior to a return from an interrupt handler

• Alter the saved process controls prior to a return from a fault handler.

modpc directly reads and modifies the PC register. The processor must be in supervisor mode
to execute this instruction; a type-mismatch fault is generated if modpc is executed in user
mode. As with modac, modpc provides a mask operand that can be used to limit access to
specific bits or groups of bits in the register.

In the latter two methods, the interrupt or fault handler changes process controls in the interrupt
or fault record that is saved on the stack. Upon return from the interrupt or fault handler, the
modified process controls are copied into the PC register. The processor must be in supervisor
mode prior to return for modified process controls to be copied into the PC register.

•

PROGRAMMING ENVIRONMENT

TRACE-ENABLE BIT-PC.te -------------------------.
(0) NO TRACE FAULTS

(1) GENERATE TRACE FAUL TS

EXECUTION-MODE FLAG- PC.em ----------------------.
(0) USER MODE

(1) SUPERVISOR MODE

TRACE-FAULT-PENDING FLAG - PC.tip -------------.
(0) NO FAULT PENDING

(1) FAULT PENDING

STATE FLAG- PC.s --------------.
(0) EXECUTING

(1) INTERRUPTED

PRIORITY FIELD - PC.p -------...

(0-31) PROCESS PRIORITY

28 24 20

PROCESS CONTROLS REGISTER (PC)

(DO NOT MODIFY)

p
0

16 12 8 4 0

I RESERVED

270710-002-03

Figure 2.5. Process Controls (PC) Register

NOTE
When process controls are changed as described above, the processor recognizes the changes
immediately except for one situation: if modpc is used to change the trace enable bit, the
processor may not recognize the change before the next four instructions are executed.

After initialization (hardware reset), the process controls reflect the following conditions:
priority= 31, execution mode= supervisor, trace enable= off, state= interrupted. When the
processor is reinitialized via the system control instruction and reinitialize message, the PC
register reflects the same conditions, except that the processor retains the same priority as
before reinitialization.

Bits 2-7, 9-12, 14, 15 and 21-31 are reserved. These bits should never be set to zero and user
software should not depend on the value of the reserved bits. Do not use modpc to directly
modify execution mode, trace fault pending and state flags.

Execution Mode

PC register execution mode flag (bit 1) indicates that the processor is operating in either user
mode (0) or supervisor mode (1). The processor automatically sets this flag on a system call
when a switch from user mode to supervisor mode occurs and it clears the flag on a return from

2-18

PROGRAMMING ENVIRONMENT

supervisor mode. (User and supervisor modes are described in User and Supervisor Protection
Model.)

Program State

PC register state ffog (bit 13) indicates processor state: executing (0) or interrupted (1). If the
processor is servicing an interrupt, its state is interrupted. Otherwise, the processor's state is
executing.

While in the interrupted state, the processor can receive and handle additional interrupts. When
nested interrupts occur, the processor remains in the interrupted state until all interrupts are
handled and then switches back to executing state on the return from the initial interrupt
procedure.

Priority

PC register priority field (bits 16 through 20) indicates the processor's current executing or
interrupted priority. The architecture defines a mechanism for prioritizing execution of code,
servicing interrupts and servicing other implementation-dependent tasks or events. This
mechanism defines 32 priority levels, ranging from 0 (the lowest priority level) to 31 (the
highest). The priority field always reflects the current priority of the processor. Software can
change this priority using the modpc instruction.

The processor uses the priority field to determine whether to service an interrupt immediately
or to post the interrupt. The processor compares the priority of a requested interrupt with the
current process priority. When the interrupt priority is greater than the current process priority
or equal to 31, the interrupt is serviced; otherwise it is posted. When an interrupt is serviced,
the process priority field is automatically changed to reflect the priority of the interrupt. (See
Chapter 6, Interrupts)

Trace Status and Control

PC register trace enable bit (bit 0) and trace fault pending flag (bit 10) control the tracing
function. The trace enable bit determines whether trace faults are to be generated (1) or not
generated (0). The trace fault pending flag indicates that a trace event has been detected (I) or
not detected (0). The trace controls are discussed in Chapter 8, Tracing and Debugging.

Trace Controls (TC) Register

The TC register, in conjunction with the PC register, controls processor tracing facilities. It
contains trace mode enable bits and trace event flags which are used to enable specific tracing
modes and record trace events, respectively. Trace controls are described in Chapter 8, Tracing
and Debugging.

2-19

•

PROGRAMMING ENVIRONMENT

USER SUPERVISOR MODEL

The capability of a separate user and supervisor execution mode creates a code and data
protection mechanism referred to as the user supervisor protection model. This mechanism
allows code, data and stack for a kernel (or system executive) to reside in the same address
space as code, data and stack for the application. The mechanism restricts access to all or parts
of the kernel by the application code. This protection mechanism prevents application software
from inadvertently altering the kernel.

Supervisor Mode Resources

The processor can be in either of two execution modes: user or supervisor. Supervisor mode is
a privileged mode which provides several additional capabilities over user mode.

• When the processor switches to supervisor mode, it also switches to the supervisor stack.
Switching to the supervisor stack helps maintain a kernel's integrity. For example, it allows
system debugging software or a system monitor to be accessed, even if an applications
program destroys its own stack.

• When an instruction executed in supervisor mode causes a bus access to occur, an external
supervisor pin SUP is asserted for loads, stores and instruction fetches. Hardware
protection of system code or data can be implemented by using the supervisor pin to
qualify write accesses to the protected memory (see Chapter 10, Bus Controller).

• In supervisor mode, the processor is allowed access to a set of supervisor-only functions
and instructions. For example, the processor uses supervisor mode to handle interrupts and
trace faults. Operations which can modify DMA or interrupt controller behavior or
reconfigure bus controller characteristics can only be performed in supervisor mode. These
functions include modification of SFRs, control registers or internal data RAM which is
dedicated to the DMA and interrupt controllers. A fault is generated if supervisor-only
operations are attempted while the processor is in user mode (see Chapter 7, Faults).
Table 2.7 lists supervisor-only operations and the fault which is generated if the operation
is attempted in user mode.

The PC register execution mode flag specifies processor execution mode. The processor
automatically sets and clears this flag when it switches between the two execution modes.

Table 2.7. Supervisor-Only Operations and Faults Generated in User Mode

Supervisor-Only Operation User-Mode Fault

modpc (modify process controls) type-mismatch

sysctl (system control) constraint-privileged

sdma (setup DMA) constraint-privileged

SFR as instruction operand type-mismatch

Protected internal data RAM write type-mismatch

2-20

PROGRAMMING ENVIRONMENT

Using the User-Supervisor Protection Model

A program switches between user mode and supervisor mode by making a system-supervisor
call (also referred to as a supervisor call). A system-supervisor call is a call executed with the
call-system instruction (calls). With the calls instruction, the IP for the called procedure comes
from the system procedure table. An entry in the system procedure table can specify an
execution mode switch to supervisor mode when the called procedure is executed. The calls
instruction and the system procedure table thus provide a tightly controlled interface to
procedures which can execute in supervisor mode. Once the processor switches to supervisor
mode, it remains in that mode until a return is performed to the procedure that caused the
original mode switch.

Interrupts and some faults also cause the processor to switch from user to supervisor mode.
When the processor handles an interrupt, it automatically switches to supervisor mode.
However, it docs not switch to the supervisor stack. Instead, it switches to the interrupt stack.

Figure 2.6 shows a system which implements the user-supervisor protection model to protect
kernel code and data. The code and data structures in the shaded areas can only be accessed in
supervisor mode.

In this example, kernel procedures are accessed through the system procedure table with
system-supervisor calls. These procedures execute in supervisor mode. Some application
procedures are also called through the system procedure table using a system-local call. Fault
procedures arc executed in supervisor mode by directing the faults through the system
procedure table. Interrupt procedures, which are likely to modify SFRs, process controls or use
other supervisor operations, are executed in supervisor mode. The interrupt stack and
supervisor stack are insulated from the user stack in this system.

If an application does not require user-supervisor protection mechanism, the processor can
always execute in supervisor mode. At initialization, the processor is placed in supervisor
mode prior to executing the first instruction of the application code. The processor then
remains in supervisor mode indefinitely, as Jong as no action is taken to change execution
mode to user mode. The processor does not need a user stack in this case.

SYSTEM CONTROL FUNCTIONS

System control functions are a group of operations specific to the i960 CA component. All of
these operations are performed by issuing the system control (sysctl) instruction. The sysctl
instruction is a general purpose instruction and performs a variety of functions. A message type
field is an operand of the instruction that determines which function is performed. The system
control functions include posting interrupts, configuring the instruction cache, invalidating the
instruction cache, software reinitialization and loading control registers.

2-21

II

CALLS

FAULT

INTERRUPT

PROGRAMMING ENVIRONMENT

SYSTEM
PROCEDURE

TABLE

FAULT
TABLE

INTERRUPT
TABLE

r-------------
1 I
I I
I I
I APPLICATION I

: PROGRAM :
I I
I I ·------------J

fll]I]~ INDICATES DATA STRUCTURE IN PROTECTED MEMORY

r-------------
1 I
I I
I I
I USER I

: STACK :
I I
I I ·------------J

SUPERVISOR
STACK

INTERRUPT
STACK

270710·001-06

Figure 2.6. Example Application of the User-Supervisor Protection Model

sysctl Instruction Syntax

sysctl instruction syntax is generalized because the function of the operands differ, depending
on message type selection. The instruction takes three source operands (Figure 2.7). The
message type field is always the second byte of the source 1 operand. The instruction's
generalized operand fields, designated as fields 1-4, are interpreted differently or may not be
used depending on the function selected in the message type field (Table 2.8).

2-22

31

SRC1 I
31

SRC2

31

SRC/DST
(USED AS SRC}

PROGRAMMING ENVIRONMENT

16 15

FIELD 2

FIELD 3

FIELD 4

MESSAGE
TYPE

8 7

Figure 2.7. Source Operands for sysctl

0

FIELD 1

0

270710-001-07

sysctl is a supervisor only instruction. Executing this instruction while in user mode generates
the type-mismatch fault.

Table 2.8. System Control Message Types and Operand Fields

Source 1 Source 2 Source 3

Message Type Field 1 Field 2 Field 3 Field 4

Request Interrupt OOH Vector No. unused unused unused

Invalidate Cache OlH unused unused unused unused

Configure Cache 02H Mode unused Cache load unused
(Table 2.9) address

Reinitialize 03H unused unused 1st Inst. PRCB
address address

Load Control 04H Register unused unused unused
Register Group No.

NOTE

The processor ignores unused sources and fields.

System Control Messages

Five system control messages are defined in the sections that follow. The request interrupt
message causes an interrupt to be serviced or posted. The configure cache message disables or
locks instructions in a portion of the instruction cache. The invalidate cache message causes the
contents of the instruction to be purged. The reinitialize message restarts the processor. The
load control register message loads the on-chip control registers.

2-23

•

PROGRAMMING ENVIRONMENT

Request Interrupt

Executing sysctl with a message type of OOH causes an interrupt to be requested. Field 1 of the
instruction specifies the vector number of the interrupt requested. The remaining fields are not
defined. Requesting an interrupt with sysctl causes the following actions to occur:

• The core performs an atomic write to the interrupt table and sets the bits in the pending
interrupts and pending priorities fields that correspond to the requested interrupt. This
action posts the software requested interrupt.

• The core updates the software priority register with the value of the highest pending
priority from the interrupt table. This may be the priority of the interrupt which was just
posted. This action causes the interrupt to be serviced if its priority is greater than the
current process priority or equal to 31.

Requesting an interrupt with a priority equal to 0 causes a check for posted interrupts in the
interrupt table. See Chapter 6, Interrupts for more information concerning interrupts requested
by software.

Invalidate Cache

Executing sysctl with a message type of OlH invalidates all cache entries. This mode clears all
valid cache bits. After the operation, the cache is updated normally as misses occur. The mode
is provided to allow a program to load or modify program space; it ensures that instructions are
fetched from the modified space and not the cache.

Configure Instruction Cache

Executing sysctl with a message type of 02H selects cache mode. One of four cache modes are
selected with the configure instruction cache message:

1. 1 Kbyte normal cache

2. cache disabled

3. load and lock 1 Kbyte of the cache

4. load and lock 512 bytes of the cache and 512 bytes of normal cache

The particular configure cache operation performed is determined by sysctl field 1 value
(Table 2.9). Field 3 is a word-aligned 32-bit address when a load and lock mode is selected;
otherwise, this field is ignored. Text following the table further defines the modes.

2-24

PROGRAMMING ENVIRONMENT

Table 2.9. Cache Configuration Modes

Mode Field Mode Description

0002 I Kbyte normal cache enabled

XXl2 I Kbyte cache disabled (execute off-chip)

1002 Load and lock I Kbyte cache (execute off-chip)

1102 Load and lock 512 bytes, 512 bytes normal cache enabled

0102 Reserved

Mode 0002 configures the cache as a I Kbyte two way set associative cache. Mode XXl 2
completely disables the cache. Either of these cache configurations can be specified when the
processor initializes by programming the Cache Configuration Word in the PRCB (see Chapter
14, lnitializ.ation and System Requirements). The modes allow the cache to be turned off
temporarily to aid in debugging.

When the cache is disabled, the processor depends on a 16 word instruction buffer to provide
decoding instructions. The instruction buffer operates as a small cache, organized as two sets
of two way set associative cache, with a four word line size. When the main cache is disabled,
small code loops may still execute entirely within the instruction buffer.

Modes 1002 and 1102 select cache load-and-lock options. When one of these modes is selected,
either 512 bytes or the full I Kbyte cache is loaded with instructions and locked against further
updates. Field 3 of the sysctl instruction must contain an address of a quad-word aligned block
of memory, in the external address space, which is represented in the cache. The instructions
loaded into the cache can only be accessed by selected interrupts which vector to the addresses
of these instructions. The load-and-lock mechanism selectively optimizes latency and
throughput for interrupts. (See Chapter 6. Interrupts.)

Reinitialize Processor

Executing sysctl with message type 03H reinitializes the processor. sysctl fields 3 and 4 must
contain, respectively, the First Instruction Pointer and the PRCB Pointer. Reinitialization
bypasses the i960 CA processor's built-in self-test. The PRCB is processed and the processor
branches to the first instruction (see Chapter 14, Initialization and System Requirements for a
complete description of the processor reinitialization steps).

The reinitialize message is useful for changing the Initial Memory Image. For example, at
initialization, the interrupt table is moved to RAM so the interrupts may be posted in the table's
pending interrupts and priorities fields. In this case, the reinitialize message specifies a new
PRCB which contains a pointer to the new interrupt table in RAM (see Chapter 14,
Initialization and System Requirements for a description of reinitialization and relocating data
structures).

2-25

•

PROGRAMMING ENVIRONMENT

Load Control Registers

Executing sysctl with message type 04H causes the on-chip control registers to be loaded with
data from external memory. Each sysctl invocation causes four words from the Control
Register Table in external memory to be read and then placed in their respective internal
control registers. Field 1 must contain the number of the register group to be loaded.
Table 2.10 shows register group number and the registers represented in the Control Register
Table.

At initialization, or when the processor is reinitialized, all groups in the control table are
automatically loaded into the on-chip control registers.

2-26

PROGRAMMING ENVIRONMENT

Table 2.10. Control Register Table and Register Group Numbers

Byte Offset
Group in Table Control Register Loaded

OOH OOH IP Breakpoint Register 0 (IPBO) • 04H IP Breakpoint Register 1 (IPB 1)
08H Data Address Breakpoint 0 (DABO)
OCH Data Address Breakpoint 1 (DAB 1)

OlH JOH Interrupt Map Register 0 (IMAPO)
14H Interrupt Map Register I (IMAPl)
18H Interrupt Map Register 2 (IMAP2)
JCH Interrupt Control Register (ICON)

02H 20H Memory Region 0 Configuration (MCONO)
24H Memory Region 1 Configuration (MCONI)

28H Memory Region 2 Configuration (MCON2)
2CH Memory Region 3 Configuration (MCON3)

03H 30H Memory Region 4 Configuration (MCON4)
34H Memory Region 5 Configuration (MCON5)
38H Memory Region 6 Configuration (MCON6)
3CH Memory Region 7 Configuration (MCON7)

04H 40H Memory Region 8 Configuration (MCON8)
44H Memory Region 9 Configuration (MCON9)
48H Memory Region JO Configuration (MCONlO)
4CH Memory Region 11 Configuration (MCONll)

05H 50H Memory Region 12 Configuration (MCON12)
54H Memory Region 13 Configuration (MCON13)

58H Memory Region 14 Configuration (MCON14)
SCH Memory Region 15 Configuration (MCON15)

06H 60H Reserved
64H Breakpoint Control Register (BPCON)
68H Trace Controls Register (TC)
6CH Bus Configuration Control (BCON)

2-27

Data Types and 3
Memory Addressing Modes

CHAPTER 3
DATA TYPES AND MEMORY ADDRESSING MODES

DATA TYPES

The instruction set references or produces several data lengths and formats. The i960
architecture defines the following data types:

• Integer (8, 16, 32 and 64 bits) • Ordinal (unsigned integer 8, 16, 32 and 64 bits)

• Triple Word (96 bits) • Quad Word (128 bits)

• Bit • Bit Field

Figure 3. l shows i960 architecture data types and the length and numeric range of each.

31
LLENGTH_J

LSBOF j
BIT FIELD

0
Bl~SI BYTE I

7 0

SHORT I
0

B~is ._I _______ w_o_RD...,.I

31 0

64
BITS°"'63,..----------------L_O_NG~O

~;sl....._ ________ ~-------~-----T-R_IP_LE_w_o_R~D'

~1~~._l _______ _,_ _______ _._ _______ _,_ ______ o_u_A_D_w_o_RD_.I

CLASS DATA TYPE LENGTH RANGE

BYTE INTEGER 8 BITS ·2 7 TO 2 7 ·1
NUMERIC SHORT INTEGER 16 BITS ·215 TO 215.1
(INTEGER) INTEGER 32 BITS .231 TO 2 31 -1

LONG INTEGER 64 BITS .263To263.1

BIT ORDINAL 8 BITS 0 TO 28 -1
NUMERIC SHORT ORDINAL 16 BITS OTO 216.1
(ORDINAL) ORDINAL 32 BITS OTO 232.1

LONG ORDINAL 64 BITS 0 TO 264 .1

BIT 1 BIT

NON-NUMERIC BIT FIELD 1-32 BITS NIA
TRIPLE WORD 96 BITS
QUADWORD 128 BITS

270710-001-08

Figure 3.1. Data Types and Ranges

3-1

•

DATA TYPES AND MEMORY ADDRESSING MODES

Integers

Integers are signed whole numbers which are stored and operated on in two's complement
format by the integer instructions. Most integer instructions operate on 32-bit integers. Byte
and short integers are only referenced by the byte and short classes of the load ancf store
instructions. None of the i960 CA' s instructions reference or produce the long-integer data
type. The architecture defines four integer sizes:

Integer size
8 bit
16 bit
32 bit
64 bit

Descriptive name
byte integers
short integer
integers
long integers

NOTE

HLL compilers may define long integer types differently than defined by the i960 architecture.

Integer load or store size (byte, short or word) determines how sign extension or data
truncation is performed when data is moved between registers and memory.

For instructions ldib (load integer byte) and ldis (load integer short), a byte or short word in
memory is considered a two's complement value. The value is sign extended and placed in the
32-bit register which is the destination for the load.

For instructions stib (store integer byte) and stis (store integer short), a 32-bit two's
complement number in a register is stored to memory as a byte or short-word. If register data is
too large to be stored as a byte or short-word, the value is truncated and the integer overflow
condition is signalled. When an overflow occurs, an AC register flag is set or the integer
overflow fault is generated. Chapter 7, Faults, describes the integer overflow fault.

For instructions Id (load word) and st (store word), data is moved directly between memory
and a register with no sign extension or data truncation.

Ordinals

Ordinals, an unsigned integer data type, are stored and operated on as positive binary values.
The processor recognizes four ordinal sizes:

Ordinal size
8 bit
16 bit
32 bit
64 bit

Descriptive name
byte ordinals
short ordinals
ordinals
long ordinals

The large number of instructions which perform logical, bit manipulation and unsigned
arithmetic operations reference 32-bit ordinal operands. When ordinals are used to represent
Boolean values, a 12 represents a TRUE and a 02 represents a FALSE. Several extended

3-2

DATA TYPES AND MEMORY ADDRESSING MODES

arithmetic instructions reference the Jong ordinal data type. Only load and store instructions
reference the byte and short ordinal data types.

Sign and sign extension is not a consideration when ordinal loads and stores are performed; the
values may, however, be zero extended or truncated. A short or byte load to a register causes
the value loaded to be zero extended to 32 bits. A short or byte store to memory may cause an
ordinal value in a register to be truncated to fit its destination in memory. No overflow
condition is signalled in this case.

Bits and Bit Fields

The processor provides several instructions that perform operations on individual bits or bit
fields within register operands. An individual bit is specified for a bit operation by giving its bit
number and register. The least significant bit of a 32-bit register is bit 0; the most significant bit
is bit 31.

A bit field is a contiguous sequence of bits within a register operand. Bit fields do not span
register boundaries. A bit field is defined by giving its length in bits (0-31) and the bit number
of its lowest numbered bit (0-31). In other words, the bit field is any contiguous group of bits,
up to 31 bits long, in a 32-bit register.

NOTE

Loads and stores on bit and bit field data are normally performed with the ordinal load and store
instructions. The integer load and store instructions operate on two's complement numbers.
Depending on the value, a byte or short integer load can result in sign extension of data in a
register; a byte or short store can s.ignal an integer overflow condition.

Triple and Quad Words

Triple and quad words refer to consecutive words in memory or in registers. Triple- and quad­
word loads, stores and move instructions use this data type. These instructions facilitate data
block movement. No data manipulation (sign extension, zero extension or truncation) is
performed in these instructions.

Triple- and quad-word data types can be considered a superset of - or as encompassing - the
other data types described. The data in each word subset of a quad-word is likely the operand
or result of an ordinal, integer, bit or bit field instruction.

Data Alignment

Data in registers and memory must adhere to specific alignment requirements:

• Align long-word operands in registers to double-register boundaries.

• Align triple- and quad-word operands in registers to quad-register boundaries.

For the i960 CA component, data alignment in memory is not required. Unaligned memory
accesses, by programmable option, can cause a fault or be handled automatically. Refer to

3-3

II

DATA TYPES AND MEMORY ADDRESSING MODES

Chapter 2, Programming Environment for a complete description of alignment requirements
for data and instructions.

MEMORY ADDRESSING MODES

The processor provides nine modes for addressing operands in memory. Each addressing mode
is used to reference a byte in the processor's address space. Table 3.1 shows the memory
addressing modes, a brief description of the elements of the address in each mode and the
assembly code syntax for each mode. These modes are grouped as follows:

• Absolute • Register Indirect

• Index with Displacement • IP with Displacement

Table 3.1. Memory Addressing Modes

Mode Description Assembler Syntax

Absolute offset offset exp

Absolute displacement displacement exp

Register Indirect abase (reg)

Register Indirect with abase + offset exp (reg)
offset
Register Indirect with abase + displacement exp (reg)
displacement

Register Indirect with abase+ (index*scale) (reg) [reg*scale]
index

Register Indirect with abase+ (index*scale) +displacement exp (reg) [reg*scale]
index and displacement

Index with displacement (index* scale) + displacement exp [reg*scale]

IP with displacement IP + displacement + 8 exp (IP)

NOTE

reg is register and exp is an expression or symbolic label.

Absolute

Absolute addressing modes allow a memory location to be referenced directly as an offset from
address OH. At the instruction encoding level, two absolute addressing modes are provided:
absolute offset and absolute displacement, depending on offset size:

• For the absolute offset addressing mode the offset is an ordinal number ranging from 0 to
4095. The absolute offset addressing mode is encoded in the MEMA machine instruction
format.

• For the absolute displacement addressing mode the offset is an integer, called a
displacement, ranging from -231 to 23LI. The absolute displacement addressing mode is
encoded in the MEMB format.

3-4

DATA TYPES AND MEMORY ADDRESSING MODES

Encoding level addressing modes and instruction formats are described in Appendix D,
Instruction Set Reference.

At the assembly language level the two absolute addressing modes are combined into one; both
addressing modes use the same syntax. Typically, development tools allow absolute addresses
to be specified through arithmetic expressions (e.g., x + 44) or symbolic labels. After
evaluating an address specified with the absolute addressing mode, the assembler converts the
address into an offset or a displacement and selects the appropriate instruction encoding format
and addressing mode.

Register Indirect

Register indirect addressing modes use a 32-bit value in a register as a base for the address
calculation. The register value is referred to as the address base (designated abase in Table
3.1). Depending on the addressing mode, an optional scaled-index and offset can be added to
this address base.

Register indirect addressing modes are useful for addressing elements of an array or record
structure. When addressing array elements, the abase value gives the first array element
address; an offset (or displacement) selects a particular array element.

In register-indirect-with-index addressing mode, the index is specified by means of a value
placed in a register. This index value is then multiplied by a scale factor. Allowable scale
factors are 1, 2, 4, 8 and 16.

There are two versions of register-indirect-with-offset addressing mode at the instruction
encoding level: register-indirect-with-offset and register-indirect-with-displacement. As with
absolute addressing modes, the addressing mode selected depends on the size of offset from
base address.

At the assembly language level, the assembler allows offset to be specified with an expression
or symbolic label, then evaluates the address to determine whether to use register-indirect­
with-offset (MEMA format) or register-indirect-with-displacement (MEMB format) addressing
mode.

Register-indirect-with-index-and-displacement addressing mode adds both a scaled index and a
displacement to the address base. There is only one version of this addressing mode at the
instruction encoding level; it is encoded in the MEMB instruction format.

Index with Displacement

A scaled index can also be used with a displacement alone. Again, the index is contained in a
register and multiplied by a scaling constant before displacement is added.

3-5

•

DATA TYPES AND MEMORY ADDRESSING MODES

IP with Displacement

This addressing mode is used with load and store instructions to make them IP relative. IP­
with-displacement addressing mode references the next instruction's address plus the
displacement plus a constant of 8. The constant is added because - in a typical processor
implementation - the address has incremented beyond the next instruction address at the time
of address calculation. The constant simplifies IP-with-displacement addressing mode
implementation.

Addressing Mode Examples

The following example~ show how i960 addressing modes are encoded in assembly language.
Example 3.1 shows addressing mode mnemonics; Example 3.2 illustrates the usefulness of
scaled index and scaled index plus displacement addressing modes. In this example, a
procedure named array _op uses these addressing modes to fill two contiguous memory blocks
separated by a constant offset. A pointer to the top of block is passed to the procedure in gO,
the block size in gl and the fill data in g2.

st

ldob

stl

ldq

st

ldis

st

Example 3.1. Addressing Mode Mnemonics

g4,xyz

(r3), r4

g6, xyz (g5)

(r8) [r9*4] ,r4

g3,xyz(g4) [g5*2]

xyz[r12*1] ,rl3

r4,xyz(IP)

absolute; word from g4 stored at memory
location designated with label xyz.
register indirect; ordinal byte from
memory location given in r3 loaded
into register r4 and zero extended.
register indirect with displacement;
double word from g6,g7 stored at memory
location xyz + g5.
register indirect with index; quad-word
beginning at memory location r8 + (r9
#scaled by 4) loaded into r4 through r7.
register indirect with index and
displacement; word in g3 loaded to mem
location g4 + xyz + (g5 scaled by 2).
index with displacement; load short
integer at memory location xyz + r12
into r13 and sign extended.
IP with displacement; store word in r4
at memory location IP + xyz + 8.

3-6

DATA TYPES AND MEMORY ADDRESSING MODES

Example 3.2. Use of Index Plus Scaled Index Mode

array_op:

mov g0,r4 # pointer to array is moved to r4

subi l,gl,r3 # calculate index for the last array

b . I33 # element to be filled.

. I34: • st g2, (r4) [r3*4] # fill array at index

st g2,0x30(r4) [r3*4] # fill array at index + constant offset

subi l,r3,r3 # decrement index

. I33:

cmpible 0,r3,.I34 # store next array elements if

ret # index is not 0

3-7

Instruction Set Summary 4

CHAPTER 4
INSTRUCTION SET SUMMARY

This chapter overviews the i960 family's instruction set and i960 CA processor-specific
instruction set extensions. This chapter describes assembly-language and instruction-encoding
formats, overviews various instruction groups and each group's instructions.

Refer to Chapter 9, Instruction Set Reference for descriptions of each instruction, including
assembly language syntax, the action taken when the instruction is executed and examples of
how the instruction might be used. Instructions in Chapter 9 are listed in alphabetic order.

INSTRUCTION FORMATS

Instructions described in this reference manual are in two formats: assembly language and
instruction encoding. The following sections provide brief descriptions of these formats.

Assembly Language Format

Throughout this manual, instructions are referred to by their assembly language mnemonics.
For example, the add ordinal instruction is referred to as addo. Examples use Intel 80960
assembler assembly language syntax, consisting of the instruction mnemonic followed by zero
to three operands, separated by commas. Following is an assembly language statement
example for addo. In this example, ordinal operands in global registers gS and g9 are added
together; the result is stored in g7:

addo gS, g9, g7 # g7 ~ g9 + gS

In the assembly languages listing in this chapter, registers are denoted as:

g global register r local register

sf special function register # pound sign precedes a comment

All numbers used as literals or in address expressions are assumed to be decimal. Hexadecimal
numbers are denoted with a Ox prefix (e.g., Oxffff0012). Several assembly language instruction
statement examples follow. Additional assembly language examples are given in Chapter 3,
Data Types and Addressing Modes. Further information about assembly language syntax can
be found in the Intel 80960 Assembler Manual.

subi 3' r5, r6 # r6 ~ rS - 3
setbit 13, g4, gS # ~ g4 with bit 13 set
lda Oxfab3, r12 # r12 ~ Oxf ab3
ld (r4), g3 # g3 ~ memory location

to by r4
st glO, (r6) [r7*2] # 0 ~ mercory location

pointed to by r6 + 2*r7

4-1

•

INSTRUCTION SET SUMMARY

Branch Prediction

NOTE

Branch prediction is an implementation-specific feature of the i960 CA component. Not every
implementation of the i960 architecture uses the branch prediction bit.

Since branch instruction actions depend on the result of a previous comparison, the architecture
allows a programmer to predict the likely result of the branch operation for increased
performance. The programmer's prediction is encoded in one bit of the machine language
instruction. 80960 assemblers encode the prediction with a mnemonic suffix: .t = true, .f =
false. Use the .t suffix to speed up execution when an instruction usually takes a branch; use
the .f suffix when an instruction usually does not take a branch.

Because test and conditional-fault instructions also use condition codes, prediction suffixes are
also implemented on these instructions. See Appendix A, Optimizing Code for the i960 CA
Microprocessor for a complete discussion of prediction.

Instruction Encoding Formats

All instructions are encoded in one 32-bit machine language instruction - also known as an
opword - which must be word aligned in memory. An opword's most significant eight bits
contain the opcode field. The opcode field determines the instruction to be performed and how
the remainder of the machine language instruction is interpreted. Instructions are encoded in
opwords in one of four formats (see Figure 4.1):

register REG

compare and COBR
branch

control CTRL

memory MEM

Most instructions are encoded in this format. Used primarily for
instructions which perform register-to-register operations.

An encoding optimization which combines comparison and
branch operations into one opword. Separate comparison and
branch operations are also provided as REG and CTRL format
instructions.

Used for branches and calls that do not depend on registers for
address calculation.

Used for referencing an operand which is a memory address.
Load and store instructions - and some branch and call
instructions - use this format. MEM format has two encodings:
MEMA or MEMB. Usage depends upon the addressing mode
selected. MEMB-formatted addressing modes use the word in
memory immediately following the instruction opword as a 32-
bit constant. Instruction encoding formats are described in
Appendix D, Instruction Set Reference.

4·2

INSTRUCTION SET SUMMARY

31

OPCODE
SAC/ DEST SOURCE2

OPCODE
SOURCE1

REG ADDRESS ADDRESS ADDRESS

31 0

OPCODE
SOURCE1 SOURCE2

DISPLACEMENT COBR ADDRESS ADDRESS

31 0

OPCODE DISPLACEMENT I CTRL

31 0

OPCODE
SAC/ DEST ADDRESS

OFFSET MEMA ADDRESS BASE

31 0

OPCODE
SAC/ DEST ADDRESS

SCALE INDEX MEMS ADDRESS BASE

32-BIT DISPLACEMENT

L-------------------------------~ 270710-001-09

Figure 4.1. Machine-Level Instruction Formats

Instruction Operands

This section identifies and describes operands that can be used with the instruction formats.

Format Operand(s)

REG srcl, src2, src/dst

CTRL displacement

COBR srcl, src2, displacement

MEM src/dst, efa

Description

srcl and src2 can be global registers, local registers,
special function registers or literals. src!dst is either a
global, local or special function register.

CTRL format is used for branch and call
instructions. displacement value indicates the target
instruction of the branch or call.

src I, src2 indicate values to be compared;
displacement indicates branch target. src 1 can
specify a global register, local register or a literal.
src2 can specify a global, local or special function
register. See Chapter 2, Programming Environment
for discussion of special function registers.

Specifies source or destination register and an
effective address (efa) formed by using the
processor's addressing modes described in Chapter
3, Data Types and Memory Addressing Modes.
Registers specified in a MEM format instruction
must be either a global or local register.

II

INSTRUCTION SET SUMMARY

INSTRUCTION GROUPS

The i960 instruction set can be arranged into the following functional groups:

• Data Movement • Arithmetic (Ordinal and Integer) • Logical

• Bit, Bit Field and Byte • Comparison • Branch

• Call/Return • Fault • Debug

• Atomic • Processor Management

Table 4.1 shows the instructions in these groups. The actual number of instructions is greater
than those shown in this list because - for some operations - several unique instructions are
provided to handle various operand sizes, data types or branch conditions. The following
sections briefly overview each group's instructions.

DATA MOVEMENT

Data movement instructions are used to move data from memory to global and local registers;
from global and local registers to memory; and data among local, global and special function
registers.

NOTE

Rules for register alignment must be followed when using load, store and move instructions that
move 8, 12 or 16 bytes at a time. Refer to the section Memory Address Space in Chapter 2,
Programming Environment for alignment requirements for code portability across
implementations.

4.4

INSTRUCTION SET SUMMARY

Table 4.1. i960™ CA Microprocessor Instruction Set Summary

Bit, Bit Field,
Data Movement Arithmetic Logical and Byte

Load Add AND Set Bit
Store Subtract NOT AND Clear Bit
Move Multiply AND NOT Not Bit
Load Address Divide OR Alter Bit

Add with carry Exclusive OR Scan For Bit

Subtract with carry
NOT OR Span Over Bit
OR NOT Extract

Extended Multiply
NOT Modify

Extended Divide Exclusive NOR Scan Byte For Equal
Remainder NOT
Modulo NAND
Shift

*Extended Shift

Rotate

Comparison Branch Call/Return Fault

Compare Unconditional Branch Call Conditional Fault

Conditional Compare Conditional Branch Call Extended Synchronize Faults

Check Bit Compare and Branch Call System

Compare and Increment Return

Compare and Branch and Link
Decrement

Test Condition Code

Debug Atomic Processor

Modify Trace Controls Atomic Add Flush Local Registers

Mark Atomic Modify Modify Arithmetic

Force Mark Controls

Modify Process
Controls

*System Control

*DMA Control

NOTE

Asterisk (*) denotes instructions that are i960 CA component-specific extensions to the i960
family's instruction set.

4-5

•

tNSTRUC1'.10N SET SUMMARY

Load and Store ln$tructions

Load instructions listed below copy bytes or words from memory to local or global registers or
to a group of registers. Each load instruction requires a corresponding store instruction to copy
to memory bytes or words from a selected local or global register or group of registers. All
load and store instructions use the MEM format.

Id load word st store word
l<lob load ordinal byte st ob store ordinal byte
ldos load ordinal short stos store ordinal short
ldib load integer byte stib store integer byte
I dis load integer short stis store integer short
ldl load long stl store long
Idt load triple stt store triple
ldq load quad stq store quad

Id copies 4 bytes from memory into successive registers; ldl copies 8 bytes; ldt copies 12
bytes; ldq copies 16 bytes.

st copies 4 bytes from successive registers into memory; stl copies 8 bytes; stt copies 12 bytes;
stq copies 16 bytes.

For Id, ldob, ldos, ldib and ldis, the instruction specifies a memory address and register and
the memory address value is copied into the register. The processor automatically extends byte
and short (half-word) operands to 32 bits according to data type. Ordinals are zero-extended;
integers are sign-extended.

For st, stob, stos, stib and stis, the instruction specifies a memory address and register; the
register value is copied into memory. For byte and short instructions, the processor
automatically reformats the source register's 32-bit value for the shorter memory location.

For stib and stis, this reformatting can cause integer overflow if the register value is too large
for the shorter memory location. When integer overflow occurs, either an integer-overflow
fault is generated or the integer-overflow flag in the AC register is set, depending on the
integer-overflow mask bit setting in the AC register.

For stob and stos, the processor truncates the operand and does not create a fault if truncation
resulted in the loss of significant bits.

Move

Move instructions copy data from a local, global, special function register or group of registers
to another register or group of registers. These instructions use the REG format.

mov
movl
movt
movq

move word
move long word
move triple word
move quad word

4-6

INSTRUCTION SET SUMMARY

Load Address

The Load Address instruction (Ida) computes an effective address in the address space from an
operand presented in one of the addressing modes. A common use of this instruction is to load
a constant into a register. This instruction uses the MEM format and can operate upon local or
global registers.

On the i960 CA processor, Ida is useful for performing simple arithmetic operations. The
microprocessor's parallelism allows Ida to execute in the same clock as another arithmetic or
logical operation.

ARITHMETIC

Table 4.2 lists arithmetic operations and data types for which the i960 CA processor provides
instructions. "X" in this table indicates that the microprocessor provides an instruction for the
specified operation and data type. Extended shift right operation is an i960 CA component­
specific extension to the i960 family's instruction set. All arithmetic operations are carried out
on operands in registers. Refer to the section titled Atomic Instructions later in this chapter for
instructions which handle specific requirements for in-place memory operations.

All arithmetic instructions use the REG format and can operate on local, global or special
function registers. The following sections describe arithmetic instructions for ordinal and
integer data types.

Table 4.2. Arithmetic Operations

Data Types

Arithmetic 0_£.erations Inte_g_er Ordinal

Add x x
Add with Carry x x
Subtract x x
Subtract with Carry x x
Multiply x x
Extended Multiply x
Divide x x
Extended Divide x
Remainder x x
Modulo x
Shift Left x x
Shift Right x x
*Extended Shift Right x
Shift Right Dividing Integer x
*i960 CA component-specific extension to the 80960 instruction
set.

4-7

•

INSTRUCTION SET SUMMARY

Add, Subtract, Multiply and Divide

The following instructions perform add, subtract, multiply or divide operations on integers and
ordinals:

ad di
ad do
subi
subo
muli
mulo
di vi
divo

add integer
add ordinal
subtract integer
subtract ordinal
multiply integer
multiply ordinal
divide integer
divide ordinal

addi, subi, muli and divi generate an integer-overflow fault if the result is too large to fit in the
32-bit destination. divi and divo generate a zero-divide fault if the divisor is zero.

Extended Arithmetic

The following four instructions support extended-precision arithmetic (i.e., arithmetic
operations on operands greater than one word in length):

addc add ordinal with carry
subc subtract ordinal with carry
emul extended multiply
ediv extended divide

addc adds two word operands (literals or contained in registers) plus condition code bit 1 (used
here as a carry bit) in the AC Register. If the result has a carry, bit 1 of the condition code is
set; otherwise, it is cleared. This instruction's description in Chapter 9 gives an example of
how this instruction can be used to add two long-word (64-bit) operands together.

subc is similar to addc, except it is used to subtract extended-precision values. Although addc
and subc treat their operands as ordinals, the instructions also set bit 0 of the condition codes if
the operation would have resulted in an integer overflow condition. This facilitates a software
implementation of extended integer arithmetic.

emul multiplies two ordinals (each contained in a register), producing a long ordinal result
(stored in two registers). ediv divides a long ordinal by an ordinal, producing an ordinal
quotient and an ordinal remainder (stored in two adjacent registers).

Remainder and Modulo

The following instructions divide one operand by another and retain the remainder of the
operation:

4-8

re mi
remo
modi

INSTRUCTION SET SUMMARY

remainder integer
remainder ordinal
modulo integer

The difference between the remainder and modulo instructions lies in the sign of the result. For
remi and remo, the result has the same sign as the dividend; for modi, the result has the same
sign as the divisor.

Shift and Rotate

The processor provides the following shift instructions, which shift an operand a specified
number of bits left or right:

shlo
shro
shli
shri
shrdi
rotate
eshro

shift left ordinal
shift right ordinal
shift left integer
shift right integer
shift right dividing integer
rotate left
extended shift right ordinal

Except for rotate, these instructions discard bits shifted beyond the register boundary.

shlo shifts zeros in from the least significant bit; shro shifts zeros in from the most significant
bit. These instructions are equivalent to mulo and divo by the power of 2, respectively.

shli shifts zeros in from the least significant bit. If a shift of the specified places would result in
an overflow, an integer-overflow fault is generated if enabled. The destination register is
written with the source shifted as much as possible without overflowing, and an integer­
overflow fault is signaled.

shri performs a conventional arithmetic shift right operation by shifting the sign bit in from the
most significant bit. However, when this instruction is used to divide a negative integer
operand by the power of 2, it may produce an incorrect quotient. (Discarding the bits shifted
out has the effect of rounding the result toward negative.)

shrdi is provided for dividing integers by the power of 2. With this instruction, 1 is added to
the result if the bits shifted out are non-zero and the operand is negative, which produces the
correct result for negative operands. shli and shrdi are equivalent to muli and divi by the
power of 2, respectively.

rotate rotates operand bits to the left (toward higher significance) by a specified number of
bits. Bits shifted beyond register's left boundary (bit 31) appear at the right boundary (bit 0).

eshro is an i960 CA component-specific extension to the i960 family's instruction set. This
instruction performs an ordinal right shift of a source register pair (64 bits) by as much as 32
bits and stores the result in a single (32-bit) register. This instruction is equivalent to an
extended divide by a power of 2, which produces no remainder. The instruction is also the
equivalent of a 64-bit extract of 32 bits.

4-9

•

INSTRUCTION SET SUMMARY

LOGICAL

The following instructions perform bitwise Boolean operations on the specified operands:

and src2 AND srcl
notand (NOT src2) AND srcl
andnot src2 AND (NOT srcl)
xor src2 XOR srcl
or src2 OR srcl
nor NOT (src2 OR srcl)
xnor src2 XNOR src l
not NOT srcl
notor (NOT src2) or srcl
ornot src2 or (NOT srcl)
nand NOT (src2 AND srcl)

These instructions all use the REG format and can specify literals or local, global or special
function registers.

The processor provides logical operations in addition to and, or and xor as a performance
optimization. This optimization reduces the number of instructions required to perform a
logical operation and reduces the number of registers and instructions associated with bitwise
mask storage and creation.

BIT AND BIT FIELD

These instructions perform operations on a specified bit or bit field in an ordinal operand. All
use the REG format and can specify literals or local, global or special function registers.

Bit Operations

The following instructions operate on a specified bit:

setbit
clrbit
notbit
alterbit
scanbit
span bit

set bit
clear bit
not bit
alter bit
scan for bit
span over bit

setbit, clrbit and notbit set, clear or complement (toggle) a specified bit in an ordinal.

alterbit alters the state of a specified bit in an ordinal according to the condition code. If the
condition code is 0102, the bit is set; if the condition code is 0002, the bit is cleared.

chkbit (described later in this chapter in the section titled Comparison) can be used to check
the value of an individual bit in an ordinal.

scanbit and spanbit find the most significant set bit or clear bit, respectively, in an ordinal.

4-10

INSTRUCTION SET SUMMARY

Bit Field Operations

The two bit field instructions are extract and modify:

extract converts a specified bit field, taken from an ordinal value, into an ordinal value. In
essence, this instruction shifts right a bit field in a register and fills in the bits to the left of the
bit field with zeros. (eshro also provides the equivalent of a 64-bit extract of 32 bits).

modify copies bits from one register, under control of a mask, into another register. Only
unmasked bits in the destination register arc modified. modify is equivalent to a bit field move.

BYTE OPERATIONS

scanbyte performs a byte-by-byte comparison of two ordinals to determine if any two
corresponding bytes are equal. The condition code is set according to the results of the
comparison. This instruction uses the REG format and can specify literals or local, global or
special function registers.

COMPARISON

The processor provides several types of instructions that are used to compare two operands, as
described in the following sections.

Compare and Conditional Compare

The instructions listed below compare two operands then set the condition code bits in the AC
register according to the results of the comparison.

cm pi
cm po
concmpi
concmpo

compare integer
compare ordinal
conditional compare integer
conditional compare ordinal

These instructions all use the REG format and can specify literals or local, global or special
function registers. The condition code bits are set to indicate whether one operand is less than,
equal to or greater than the other operand. See Chapter 2, Programming Environment for a
discussion of meanings of the condition code for conditional operations.

cmpi and cmpo simply compare the two operands and set the condition code bits accordingly.
concmpi and concmpo first check the status of bit 2 of the condition code. If it is not set, the
operands are compared as with cmpi and cmpo. If bit 2 is set, no comparison is performed and
the condition code flags are not changed.

The conditional-compare instructions are provided specifically to optimize two-sided range
comparisons to check if A is between B and C (i.e., B :::; A ::::: C). Here, a compare instruction
(cmpi or cmpo) checks one side of the range (e.g., A ;::: B) and a conditional compare
instruction (concmpi or concmpo) checks the other side (e.g., A:::; C) according to the result of

4-11

II

INSTRUCTION SET SUMMARY

the first comparison. The condition codes following the conditional comparison directly reflect
the results of both comparison operations. Therefore, only one conditional branch instruction is
required to act upon the range check; otherwise, two branches would be needed.

chkbit checks a specified bit in a register and sets the condition code flags according to the bit
state. The condition code is set to 0102 if the bit is set and 0002 otherwise.

Compare and Increment or Decrement

The following instructions compare two operands, set the condition code bits according to the
results, then increment or decrement one of the operands:

cmpinci
cm pin co
cmpdeci
cmpdeco

compare and increment integer
compare and increment ordinal
compare and decrement integer
compare and decrement ordinal

These instructions use the REG format and can specify literals or local, global or special
function registers. They are an architectural performance optimization which allows two
register operations (e.g., comparison and addition) to be executed in a single cycle. These
instructions are intended for use at the end of iterative loops.

Test Condition Codes

The following test instructions allow the state of the condition code flags to be tested:

teste
testne
testl
testle
testg
testge
testo
testno

test for equal
test for not equal
test for less
test for less or equal
test for greater
test for greater or equal
test for ordered
test for unordered

These cause a TRUE (OlH) to be stored in a destination register if the condition code matches
the instruction-specified condition. Otherwise, a FALSE (OOH) is stored in the register. All use
the COBR format and can operate on local, global and special function registers.

Since test instruction actions depend on a comparison, the architecture allows a programmer to
predict the likely result of the operation for higher performance. The programmer's prediction
is encoded in one bit of the opword. Intel 80960 assemblers encode the prediction with a
mnemonic suffix of .t for true and .f for false. See Appendix A, Optimizing Code for the i960
CA Microprocessor for a complete discussion of branch prediction.

4-12

INSTRUCTION SET SUMMARY

BRANCH

Branch instructions allow program flow direction to be changed by explicitly modifying the IP.
The processor provides three branch instruction types:

• unconditional branch

• conditional branch

• compare and branch

Most branch instructions specify the target IP by specifying a signed displacement to be added
to the current IP. Other branch instructions specify the target IP' s memory address, using one
of the processor's addressing modes. This latter group of instructions is called extended
addressing instructions (e.g., branch extended, branch and link extended).

Since branch instruction actions depend the result of a previous comparison, the architecture
allows a programmer to predict the likely result of the branch operation for higher
performance. The programmer's prediction is encoded in one bit of the opword. The Intel
80960 Assembler encodes the prediction with a mnemonic suffix of ".t" for true and ".f' for
false. See the section of Appendix A, Optimizing Code for the i960 CA Microprocessor for a
complete discussion of prediction.

Unconditional Branch

The following four instructions are used for unconditional branching:

b Branch
bx Branch Extended
bal Branch and Link
baix Branch and Link Extended

b and baI use the CTRL format. bx and balx use the MEM format and can specify local or
global registers as operands. b and bx cause program execution to jump to the specified target
IP. These two instructions perform the same function; however, their determination of the
target IP differs. The target IP of a b instruction is specified at link time as a relative
displacement from the current IP. The target IP of the bx instruction is the absolute address
resulting from the instruction's use of a memory addressing mode during execution.

bal and baix store the next instruction's address in a specified register. then jump to the
specified target IP. (For bal, the RIP is automatically stored in register gl4; for balx, the RIP
location is specified with an instruction operand.) As described in Chapter 5, Procedure Calls
the branch and link instructions provide a method of performing procedure calls that do not use
the processor's integrated call/return mechanism. Here, the saved instruction address is used as
a return IP. Branch and link is generally used to call leaf procedures (that is, procedures that do
not call other procedures).

The bx and balx instructions can make use of any memory addressing mode.

4-13

•

INSTRUCTION SET SUMMARY

Conditional Branch

With the conditional branch (branch if) instructions, the processor checks the AC register
condition code flags. If these flags match the value specified with the instruction, the processor
jumps to the target IP. These instructions use the displacement-plus-IP method of specifying
the target IP:

be branch if equal/true
hoe branch if not equal
bl branch if less
hie branch if less or equal
bg branch if greater
bge branch if greater or equal
ho branch if ordered
boo branch if unordered/false

All use the CTRL format. bo and boo are used with real numbers. Refer to Chapter 2,
Programming Environment for a discussion of the condition code for conditional operations.

Compare and Branch

These instructions compare two operands then branch according to the comparison result.
Three instruction subtypes are compare integer, compare ordinal and branch on bit:

cm pi be
cmpiboe
cm pi bl
cmpible
cmpibg
cmpibge
cmpibo
cmpiboo
cm po be
cmpoboe
cmpobl
cmpoble
cmpobg
cmpobge
bbs
bbc

compare integer and branch if equal
compare integer and branch if not equal
compare integer and branch if less
compare integer and branch if less or equal
compare integer and branch if greater
compare integer and branch if greater or equal
compare integer and branch if ordered
compare integer and branch if unordered
compare ordinal and branch if equal
compare ordinal and branch if not equal
compare ordinal and branch if less
compare ordinal and branch if less or equal
compare ordinal and branch if greater
compare ordinal and branch if greater or equal
check bit and branch if set
check bit and branch if clear

All use the COBR machine instruction format and can specify literals, local, global and special
function registers as operands. With compare ordinal and branch and compare integer and
branch instructions, two operands are compared and the condition code bits are set as described
for compare instructions earlier in this chapter. A conditional branch is then executed as with
the conditional branch (branch if) instructions.

With check bit and branch instructions, one operand specifies a bit to be checked in the other
operand. The condition code flags are set according to the state of the specified bit: 0102 (true)

4-14

INSTRUCTION SET SUMMARY

if the bit is set and 0002 (false) if the bit is clear. A conditional branch is then executed
according to condition code bit settings.

These instructions optimize execution performance time. When it is not possible to separate
adjacent compare and branch instructions with other unrelated instructions, replacing two
instructions with a single compare and branch instruction increases performance.

CALL AND RETURN

The processor offers an on-chip call/return mechanism for making procedure calls. This
integrated call/return mechanism is described in Chapter 2. Programming Environment. The
following four instructions are provided to support this mechanism.

call call
callx call extended
calls call system
ret return

call and ret use the CTRL machine-instruction format. callx uses the MEM format and can
specify local or global registers. calls uses the REG format and can specify local, global or
special function registers.

call and callx make local calls to procedures. A local call is a call that does not require a switch
to another stack. call and callx differ only in the method of specifying the target procedure's
address. The target procedure of a call is determined at link time and is encoded in the opword
as a signed displacement relative to the call IP. callx specifies the target procedure as an
absolute 32-bit address calculated at run time using any one of the addressing modes. For both
instructions, a new set of local registers and a new stack frame are allocated for the called
procedure.

calls is used to make calls to system procedures - procedures that provide a kernel or system­
executive services. This instruction operates similarly to call and callx, except that it gets its
target-procedure address from the system procedure table. An index number included as an
operand in the instruction provides an entry point into the procedure table.

Depending on the type of entry being pointed to in the system procedure table, calls can cause
either a system-supervisor call or a system-local call to be executed. A system-supervisor call
is a call to a system procedure that also switches the processor to supervisor mode and the
supervisor stack. A system-local call is a call to a system procedure that does not cause an
execution mode or stack change. Supervisor mode is described in Chapter 5. Procedure Calls.

ret performs a return from a called procedure to the calling procedure (the procedure that made
the call). ret obtains its target IP (return IP) from linkage information that was saved for the
calling procedure. ret is used to return from all calls, including local and supervisor calls, and
from implicit calls to interrupt and fault handlers.

4-15

•

INSTRUCTION SET SUMMARY

CONDITIONAL FAULTS

Generally, the processor generates faults automatically as the result of certain operations. Fault
handling procedures are then invoked to handle various fault types without explicit
intervention by the currently running program. Faults are discussed in Chapter 7, Faults. The
following conditional fault instructions permit a program to explicitly generate a fault
according to the state of the condition code flags.

faulte
faultne
faultl
faultle
faultg
faultge
faulto
faultno

fault if equal
fault if not equal
fault if less
fault if less or equal
fault if greater
fault if greater or equal
fault if ordered
fault if unordered

All use the CTRL format. Since the actions of these instructions are dependent upon the result
of a previous comparison, the architecture allows a programmer to predict the likely result of
the conditional fault instructions for higher performance. The programmer's prediction is
encoded in one bit of the opword. The Intel 80960 Assembler encodes the prediction with a
mnemonic suffix of ".t" for true and ".f' for false. See Appendix A, Optimizing Code for the
i960 CA Microprocessor for a complete discussion of prediction.

DEBUG

The processor supports debugging and monitoring of program activity through the use of trace
events. The following instructions support these debugging and monitoring tools:

mod pc
modtc
mark
fmark

modify process controls
modify trace controls
mark
force mark

These instructions use the REG format. Trace functions are controlled with bits in the
processor's trace control register. These bits allow various types of tracing to be enabled or
disabled. Other flags in the trace controls register indicate when an enabled trace event has
been detected. Trace controls are described in Chapter 8, Tracing and Debugging.

modpc has the ability to enable/disable trace fault generation; modtc permits trace controls to
be modified. mark causes a breakpoint trace event to be generated if breakpoint trace mode is
enabled. fmark generates a breakpoint trace independent of the state of the breakpoint trace
mode bits.

The i960 CA component-specific sysctl instruction, described in the Chapter 2, Programming
Environment, also provides control over breakpoint trace event generation. This instruction is
used, in part, to load and control the i960 CA microprocessor's breakpoint registers.

4-16

INSTRUCTION SET SUMMARY

ATOMIC INSTRUCTIONS

Atomic instructions perform read-modify-write operations on operands in memory. They allow
a system to ensure that, when an atomic operation is performed on a specified memory
location, the operation completes before another agent is allowed to perform an operation on
the same memory. These instructions are required to enable synchronization between interrupt
handlers and background tasks in any system. They are also particularly useful in systems
where several agents - processors, coprocessors or external logic - have access to the same
system memory for communication.

The atomic instructions are atomic add (atadd) and atomic modify (atmod). atadd causes an
operand to be added to the value in the specified memory location. atmod causes bits in the
specified memory location to be modified under control of a mask. Both instructions use the
REG format and can specify literals or local, global or special function registers.

PROCESSOR MANAGEMENT

The following instructions control processor-related functions:

mod pc
flushreg
modac
sysctl
sdma
udma

modify the process controls register
flush cached local register sets to memory
modify the AC register
perform system control function
set up a DMA controller channel
copy current DMA pointers to internal data RAM

All use the REG format and can specify literals or local, global or special function registers.

modpc provides a method of reading and modifying PC register contents. Only programs
operating in supervisor mode may modify the PC register: however. any program may read it.

The processor provides a flush local registers instruction (tlushreg) to save the contents of the
cached local registers to the stack. The flush local registers instruction automatically stores the
contents of all the local register sets - except the current set - in the register save area of
their associated stack frames.

The modify arithmetic controls instruction (modac) is provided to allow the AC register to be
copied to a register and/or modified under the control of a mask. The AC register cannot be
explicitly addressed with any other instruction: however. it is implicitly accessed by
instructions that use the condition codes or set the integer overflow flag.

sysctl is an i960 CA component-specific extension to the i960 family's instruction set which is
used to configure the on-chip bus controller, interrupt controller, breakpoint registers and
instruction cache. The instruction also permits software to signal an interrupt or cause a
processor reset and reinitialization. sysctl may only be executed by programs operating is
supervisor mode. See Chapter 2, Programming Environment and Chapter 9, Instruction Set
Reference for a complete description.

4-17

•

INSTRUCTION SET SUMMARY

sdma and udma are i960 CA component-specific extensions to the i960 family's instruction
set which configure and monitor the on-chip DMA controller. These instructions may only be
executed by programs operating in supervisor mode. Refer to Chapter 9, Instruction Set
Reference and Chapter 13, DMA Controller for a description of these instructions.

4-18

Procedure Calls 5

CHAPTER 5
PROCEDURE CALLS

This chapter describes mechanisms for making procedure calls, which include branch-and-link
instructions, built-in call and return mechanism, call instructions (call, callx, calls), return
instruction (ret) and call actions caused by interrupts and faults.

OVERVIEW

The i960 architecture supports two methods for making procedure calls:

• A RISC-style branch-and-link. This is a fast call best suited for calling procedures that do
not call other procedures.

• An integrated call and return mechanism. This is a more versatile method for making
procedure calls, providing a highly efficient means for managing a large number of
registers and the program stack.

On a branch-and-link (bal, balx), the processor branches and saves a return IP in a register.
The called procedure uses the same set of registers and the same stack as the calling procedure.
On a call (call, callx, calls) or when an interrupt or fault occurs, the processor also branches to
a target instruction and saves a return IP. Additionally, the processor saves the local registers
and allocates a new set of local registers and a new stack for the called procedure. The saved
context is restored when the return instruction (ret) is executed.

In many RISC architectures, a branch-and-link instruction is used as the base instruction for
coding a procedure call. Register and stack management for the call is then handled by the user
program. Since the i960 architecture provides a fully integrated call and return mechanism,
coding calls with branch-and-link is not necessary. Additionally, the integrated call is much
faster than typical RISC-coded calls.

The branch-and-link instruction in the i960 family, therefore, is used primarily for calling leaf
procedures. Leaf procedures call no other procedures. They are called "leaf procedures"
because they reside at the '"leaves" of the call tree.

The integrated call and return mechanism is used in two ways in the i960 architecture: explicit
calls to procedures in a user's program and implicit calls to interrupt and fault handlers. The
remainder of this chapter explains the generalized call mechanism used for explicit and implicit
calls and call and return instructions.

The processor performs two call actions:

local

supervisor

When a local call is made, execution mode remains unchanged and
the stack frame for the called procedure is placed on the local stack.
The local stack refers to the stack of the calling procedure.

When a supervisor call is made, execution mode is switched to
supervisor and the stack frame for the called procedure is placed on
the supervisor stack.

5·1

•

PROCEDURE CALLS

Explicit procedure calls can be made using several instructions. Local call instructions call and
callx perform a local call action. With call and callx, the called procedure's IP is included as
an operand in the instruction.

A system call is made with calls. This instruction is similar to call and callx, except that the
processor obtains the called procedure's IP from the system procedure table. A system call,
when executed, is directed to perform either the local or supervisor call action. These calls are
referred to as system-local and system-supervisor calls, respectively. A system-supervisor call
is also referred to as a supervisor call.

CALL AND RETURN MECHANISM

At any point in a program, the i960 device has access to the global registers, a local register set
and the procedure stack. A subset of the stack allocated to the procedure is called the stack
frame. When a call is executed, a new stack frame is allocated for the called procedure.
Additionally, the processor saves the current local register set, freeing these registers for use by
the newly called procedure. In this way, every procedure has a unique stack and a unique set of
local registers. When a return is executed, the current local register set and current stack frame
are deallocated. The previous local register set and previous stack frame are restored.

Local Registers and the Procedure Stack

For each procedure, the processor automatically allocates a set of 16 local registers. Since local
registers are on-chip, they provide fast access storage for local variables. Of the 16 local
registers, 13 are available for general use; rO, rl and r2 are reserved for linkage information to
tie procedures together.

The procedure stack can be located anywhere in the address space and grows from low
addresses to high addresses. It consists of contiguous frames, one frame for each active
procedure. Local registers for a procedure are assigned a save area in each stack frame (Figure
5.1). The procedure stack, available to the user, begins after this save area.

To increase procedure call speed, the architecture allows an implementation to cache the saved
local register sets on-chip. Thus, when a procedure call is made, the contents of the current set
of local registers often does not have to be written out to the save area in the stack frame in
memory. Refer to the sections later in this chapter titled Caching of Local Register Sets and
Mapping the Local Registers to the Procedure Stack for further discussion about local registers
and procedure stack interrelations.

5-2

PROCEDURE CALLS

r--1

CURRENT REGISTER SET

gO

FRAME POINTER (FP) g15

PREVIOUS FRAME POINTER (PFP) rO t-'

STACK POINTER (SP) r1 !--;

RESERVED FOR RIP r2

r15

PROCEDURE STACK

PREVIOUS FRAME POINTER (PFP) rO

STACK POINTER (SP) r1

RETURN INSTRUCTION POINTER
r2 (RIP)

r15

USER ALLOCATED STACK

PADDING AREA

REGISTER ' SAVE
AREA

USER ALLOCATED STACK

UNUSED STACK

STACK GROWTH
(TOWARD HIGHER ADDRESSES)

!

'

\

IJ

l

I...../

PREVIOUS
STACK
FRAME

CURRENT
STACK
FRAME

270710-002-04

Figure 5.1. Procedure Stack Structure and Local Registers

Local Register and Stack Management

Global register gl5 (FP) and local registers rO (PFP), rl (SP) and r2 (RIP) contain information
to link procedures together and link local registers to the procedure stack (Figure 5.1). The
following paragraphs describe this linkage information.

Frame Pointer

The frame pointer is the current stack frame's first byte address. It is stored in global register
g 15, the frame pointer (FP) register. The FP register is always reserved for the frame pointer;
do not use gl5 for general storage. In the i960 CA processor, frames are aligned on 16-byte
boundaries (Figure 5.1). When the processor creates a new frame on a procedure call, it will, if
necessary, add a padding area to the stack so that the new frame starts on a 16-byte alignment
boundary.

5-3

•

PROCEDURE CALLS

Stack frame alignment is defined for each implementation of the i960 family. This alignment
boundary is calculated from the relationship SALIGN*16. For example, if SALIGN is set to 4,
stack frames are aligned on 64-byte boundaries. In the i960 CA microprocessor, SALIGN=l.

Stack Pointer

The stack pointer is the byte-aligned address of the stack frame's next unused byte. The stack
pointer value is stored in local register rl, the stack pointer (SP) register. The procedure stack
grows upward (i.e., toward higher addresses). When a stack frame is created, the processor
automatically adds 64 to the frame pointer value and stores the result in the SP register. This
action creates the register save area in the stack frame for the local registers.

The user must modify the SP register value when data is stored or removed from the stack. The
i960 architecture does not provide an explicit push or pop instruction to perform this action.
This is typically done by adding the size of all pushes to the stack in one operation.

Previous Frame Pointer

The previous frame pointer is the previous stack frame's first byte address. This address' upper
28 bits are stored in local register rO, the previous frame pointer (PFP) register. The four least­
significant bits of the PFP are used to store the return-type field.

Return Type Field

PFP register bits 0 through 3 contain return type information for the calling procedure. When a
procedure call is made - either explicit or implicit - the processor records the call type in the
return type field. The processor then uses this information to select the proper return
mechanism when returning to the calling procedure. The use of this information is described
later in this chapter in the section titled Returns.

Return Instruction Pointer

When a call is made, the processor saves the address of the instruction after the call, providing
a reentry point when the return instruction is executed. This address is automatically stored in
local register r2 of the calling frame. Register r2 is referred to as the return instruction pointer
(RIP) register. The RIP register is a special register; do not use r2 to hold operand values. Since
interrupts and faults trigger an implicit call action, the RIP register may be written at any time
with the return pointer associated with the interrupt or fault event.

5-4

PROCEDURE CALLS

Call and Return Action

To clarify how procedures are linked and how the local register and stack are managed, the
following sections describe a general call and return operation and the operations performed
with the FP, SP, PFP and RIP registers described above.

The events for call and return operations are given in a logical order of operation. The i960 CA
microprocessor is able to execute independent operations in parallel, therefore, many of these
events execute simultaneously. For example, to improve performance, the processor often
begins prefetch of the target instruction for the call or return before the operation is complete.

Call Operation

When a call instruction is executed or an implicit call is triggered, the processor performs the
following operations:

1. The processor stores the instruction pointer for the instruction following the call in the
current stack's RIP register (r2).

2. The frame pointer (gl5) for the calling procedure is stored in the current stack's PFP
register (rO). The return type field in the PFP register is set according to the call type
which is performed. (See the section titled Returns later in this chapter.)

3. The current local registers - including the PFP, SP and RIP registers - are saved, freeing
these registers for use by the called procedure. Because saved local registers are cached on
the i960 CA component, the registers are always saved in the on-chip local register cache
at this time.

4. A new stack frame is allocated by using the stack pointer value saved in step 3. This value
is first rounded to the next 16-byte boundary to create a new frame pointer, then stored in
the FP register. Next, 64 bytes are added to create the new frame's register save area. This
value is stored in the SP register.

5. The instruction pointer is loaded with the address of the first instruction in the called
procedure. The processor gets the new instruction pointer from the call instruction, the
system procedure table, the interrupt table or the fault table, depending on the type of call
executed.

Upon completion of these steps, the processor begins executing the called procedure.

Return Operation

A return from any call type - explicit or implicit - is always initiated with a return (ret)
instruction. On a return, the processor performs these operations:

1. The current stack frame and local registers are deallocated by loading the FP register with
the value of the PFP register.

5-5

II

PROCEDURE CALLS

2. The local registers for the return target procedure are retrieved. The registers are usually
read from .the local register cache; however, in some cases, these registers have been
flushed from register cache to memory and must be read directly from the save area in the
stack frame.

3. The processor sets the instruction pointer to the value of the RIP register.

Upon completion of these steps, the processor executes the procedure to which it returns.

Caching of Local Register Sets

The i960 CA component provides a local register cache to improve call and return
performance. Local registers are typically saved and restored from the local register cache
when calls and returns are executed. For the i960 CA microprocessor, movement of a local
register set between local registers and cache takes only four clock cycles. Other overhead
associated with a call or return is performed in parallel with this data movement.

When the number of nested procedures exceeds local register cache size, local register sets
must at times be saved or restored to their associated save areas in the procedure stack.
Because these operations require access to external memory, this local cache miss impacts call
and return performance.

When a call is made and the register cache is full, a register set in the cache must be saved to
external memory to make room for the current set of local registers in the cache. This action is
referred to as a frame spill. The oldest set of local registers stored in the cache is spilled to the
associated local register save area in the procedure stack. Figure 5.2 illustrates a call operation
with and without a frame spill.

/Similarly, when a return is made and the local register set for the target procedure is not
available in the cache, these local registers must be retrieved from the procedure stack in
memory. This operation is referred to as a frame fill. Figure 5.3 illustrates a return operation
with and without a frame fill.

Register cache size is specified at initialization by the register cache configuration word value
in the PRCB. Register cache size is adjustable to hold from I to 14 sets of local registers. See
Chapter 14, Initialization and System Requirements for more information about initialization
and the PRCB.

5-6

Procedure Stack
(0 = Main, successive

numbers indicate ---+
nested procedure

level

Local Register Cache
(Default depth ---+

= 5 sets)

Current Local ---+
Register Set

PROCEDURE CALLS

Call with no frame spill Call with frame spill --------- --------r--~~--, ~~~~

2

3

4

5

6

2

3

4

5

6

7

Frame
Spill

Figure 5.2. Frame Spill

5-7

3

4

5

6

7

User
•=Stack

Space

Reserved
P.'./l = for Local
~ Register

Setn

r::I Local
L'.:_J = Register

Set n
Stored on
Procedure
Stack

•

PROCEDURE CALLS

Return with no frame fill Return with frame fill

Procedure Stack
(0 = Main, successive

numbers indicate ---+
nested procedure

level

Local Register Cache
(Default depth ---+

= 5 sets)

3

Current Local ___. 1---;-1
Register Set L__J

Fill

3

Figure 5.3. Frame Fill

User
=Stack

Space

Reserved
~=for Local
k::'.'.'..d Register

Setn

1.:1 Local
L'.'..J = Register

Setn
Stored on
Procedure
Stack

Up to five local register sets are cached by default with no impact to the processor's available
resources. When the cache is configured for 6 to 14 sets, part of the internal data RAM is used
to expand the cache. Data RAM usage begins at the highest address of internal RAM (03FFH)
and grows downward. '

5-8

PROCEDURE CALLS

The amount of internal data RAM used (in bytes) is determined by the formula:

where:
and:

n*l6

CCW =the programmed value of the cache configuration word in the PRCB
n = 0 for CCW=O Number of cached sets= 1
n = 0 for I ~ CCW ~ 5 Number of cached sets = CCW
n = CCW-5 for 6 ~ CCW ~ 15 Number of cached sets= CCW-1

Register cache cannot be disabled. Register cache size equals 1 when the cache configuration
word is programmed to a value of 0. Also, a value of 5 or 6 produces the same cache number
of cache sets; however, when programmed to 6, 16 bytes of internal data RAM is used, when
programmed to 5, no internal data RAM is used.

The user program is responsible for preventing any corruption to the areas of internal RAM
which are used for the register cache. In a typical program, most procedure calls and returns
cause procedure depth to oscillate a few levels around a median call depth. The cache tends to
be partially filled at the median call depth. Cache flushes occur when oscillations around the
median depth are larger than the cache size can accommodate. Configuring local register cache
to hold five sets of local registers avoids numerous cache fills and spills for most applications
and does not use any of the data RAM which is available for general data storage. The user
should configure the cache for a minimum of five register sets.

Mapping Local Registers to the Procedure Stack

Each local register set is mapped to a register save area of its respective frame in the procedure
stack (Figure 5.1). Saved local register sets are frequently cached on-chip rather than saved to
memory. This caching is performed non-transparently. Local register set contents are not saved
automatically to the save area in memory when the register set is cached. This would cause a
significant performance loss for call operations.

Also, no automatic update policy is implemented for register cache. If the register save area in
memory for a cached register set is modified, there is no guarantee that the modification will be
reflected when the register set is restored. The set must be written (or flushed) to memory
because of a frame spill prior to the modification for the modification to be valid.

flushreg causes the contents of all cached local register sets to be written (flushed) to their
associated stack frames in memory. The register cache is then invalidated, meaning that all
flushed register sets are restored from their save areas in memory. The current set of local
register is not written to memory. flushreg is commonly used in debuggers or fault handlers to
gain access to all saved local registers. In this way, call history may be traced back through
nested procedures. flushreg is also used when implementing task switches in multitasking
kernels. The procedure stack is changed as part of the task switch. To change the procedure
stack, flushreg is executed to update the current procedure stack and invalidate all entries in
the local register cache. Next, the procedure stack is changed by directly modifying the FP and
SP registers and executing a call operations. After flushreg is executed, the procedure stack
may also be changed by modifying the previous frame in memory and executing a return
operation.

5.9

•

PROCEDURE CALLS

NOTE
When a set of local registers is assigned to a new procedure, the processor may or may not clear
or initialize these registers. Therefore, initial register contents are unpredictable. Also, the
processor does not initialize the local register save area in the newly created stack frame for the
procedure; its contents are equally unpredictable.

PARAMETER PASSING

Parameters are passed between procedures in two ways:

value

reference

Parameters are passed directly to the calling procedure as part of the
call and return mechanism. This is the fastest method of passing
parameters.

Parameters are stored in an argument list in memory and a pointer to
the argument list is passed in a global register.

When passing parameters by value, the calling procedure stores the parameters to be passed in
global registers. Since the calling procedure and the called procedure share the global registers,
the called procedure has direct access to the parameters after the call.

When a procedure needs to pass more parameters than will fit in the global registers, they can
be passed by reference. Here, parameters are placed in an argument list and a pointer to the
argument list is placed in a global register.

The argument list can be stored anywhere in memory; however, a convenient place to store an
argument list is in the stack for a calling procedure. Space for the argument list is created by
incrementing the SP register value. If the argument list is stored in the current stack, the
argument list is automatically deallocated when no longer needed.

A procedure receives parameters from - and returns values to - other calling procedures. To
do this successfully and consistently, all procedures must agree on the use of the global
registers. Table 5.1 summarizes the global register model used by the i960 compilers. Refer to
the iC960 User's Guide for details about the register allocation model.

This example illustrates a typical implementation of parameter passing between procedures and
the use of the global and local registers in this scheme.

Parameter registers pass values into a function. Up to 12 parameters are passed by the value in
the global registers. If the number of parameters exceeds 12, additional parameters are passed
on the calling procedure's stack and a pointer to the argument block is passed in a pre­
designated register. Similarly, several registers are set aside for return arguments and a return
argument block pointer is defined to point to additional parameters. If the number of return
arguments exceeds the available number of return argument registers, the calling procedure
passes a pointer to an argument list on its stack where the remaining return values will be
placed. Example 5.1 illustrates parameter passing by value and reference.

5-10

PROCEDURE CALLS

Table 5.1. Global Register Function with i960™ Compilers

Instruction Operand Value on Call Value on Return

gO Parameter 0 Return Argument 0
gl Parameter 1 Return Argument 1

g2 Parameter 2 Return Argument 2

g3 Parameter 3 Return Argument 3
g4 Parameter 4 Not defined
gS Parameter S Not defined
g6 Parameter 6 Not defined

g7 Parameter 7 Not defined
g8 Parameter 8/tcmp 5 Not defined/temp 5
g9 Parameter 9/temp 4 Not defined/temp 4

gJO Parameter 1 O/temp 3 Not defined/temp 3
g1 I Parameter 11/temp 2 Not defined/temp 2
gl2 temp l temp 1
gl3 Return argument block pointer Not defined
gl4 Call parameter block pointer Not defined
fp Frame pointer (reserved)

NOTE

If not used as parameters, g8 - gl 1 must be preserved by the called procedure. gO - gl I may also
be used for data storage. g14 must be set to 0 when not used as a parameter block pointer.

Local registers are automatically saved when a call is made. Because of the local register
cache, they are saved quickly and with no external bus traffic. The efficiency of the local
register mechanism plays an important role in two cases when calls are made:

I. When a procedure is called which contains other calls, global parameter registers are
moved to working local registers at the beginning of the procedure. In this way, parameter
registers arc freed and nested calls are easily managed. The register move instruction
necessary to perform this action is very fast; the working parameters, now in local register,
are saved efficiently when nested calls are made.

2. When other procedures are nested within an interrupt or fault procedure, the procedure
must preserve all normally non-preserved parameter registers. This is necessary because
the interrupt or fault occurs at any point in the user's program and return from interrupt or
fault must restore the exact processor state. The interrupt or fault procedure can move non­
preserved global registers to local registers before the nested call.

5-11

II

PROCEDURE. CALLS

Example 5.1. Using Global Register for Parameter Passing

Example of parameter passing . . .
C-source: int a,b[lOJ;
a= procl(a,l, 'x' ,&b[OJ);

mov
ldconst
ldconst
lda
call
mov

__procl:
movq

mov
ret

LOCAL CALLS

assembles to
r3,g0
l,gl
120,g2
Ox4 0 (fp) , g3
__procl
g0,r3

g0,r4

r3,g0

value of a
value of 1
value of 'x'
reference to b[lO]

#save return value in "a"

save parameters

other instructions in procedure
and nested calls
load return parameter

A local call does not cause a stack switch. A local call can be made two ways: 1) with the call
and callx instructions or 2) with a system-local call (system-local call is described in the
following section titled System Calls). call specifies the address of the called procedures as the
IP plus a signed, 24-bit displacement (i.e., -223 to 223 - 4). callx allows any of the addressing
modes to be used to specify the procedure address. The IP-with-displacement addressing mode
allows full 32-bit IP-relative addressing. See Chapter 9, Instruction Set Reference for a further
description of call and callx.

When a local call is made with a call or callx, the processor performs the same operation as
described earlier in this chapter in the section titled Call Operation. The target IP for the call is
derived from the instruction's operands and the new stack frame is allocated on the current
stack. call and callx algorithms are further described in Chapter 9, Instruction Set Reference.

SYSTEM CALLS

A system call is a call made via the system procedure table. It can be used to make a system­
local call - similar to a local call made with call and callx - or a system supervisor call.

A system call is initiated with calls, which requires a procedure number operand. The
procedure number provides an index into the system procedure table, where the processor finds
IPs for specific procedures. See Chapter 9, Instruction Set Reference for a further description
of calls.

5·12

PROCEDURE CALLS

Using an i960 language assembler, a system procedure is directly declared using the sysproc
directive. At link time, the optimized call directive, callj, is replaced with a calls when a system
procedure target is specified. (Refer to cmTent i960 assembler documents for a description of
the .sysproc and callj directives.)

The system call mechanism offers two benefits. First, it supports application software
portability. System calls are commonly used to call kernel services. By calling these services
with a procedure number rather than a specific IP, applications software does not need to be
changed each time the implementation of the kernel services is modified. Only the entries in
the system procedure table must be changed.

Second, the ability to switch Lo a different execution mode and stack with a system supervisor
call allows kernel procedures and data to be insulated from applications code. This benefit is
further described in Chapter 2, Programming Environment.

System Procedure Table

The system procedure table is a data structure for storing IPs to system procedures: these can
be procedures which software can access through a system call; or fault handling procedures,
which the processor can access through its fault handling mechanism. Using the system
procedure table to store IPs for fault handling is described in Chapter 7, Faults.

System procedure table structure is shown in Figure 5.4. lt is 1088 bytes in length and can have
up to 260 procedure entries. The processor gets a pointer to the system procedure table at
initialization. The following sections describe this table's fields.

Procedure Entries

A procedure entry in the system procedure table specifies a procedure's location and type.
Each entry is one word in length and consists of an address (or IP) field and a type field. The
address field gives the address of the first instruction of the target procedure. Since all
instructions are word aligned, only the entry's 30 most significant bits are used for the address.
The entry's two least-significant bits specify entry type. The procedure entry type field
indicates call type: system-local call or system-supervisor call (Table 5.2). On a system call,
the processor performs different actions depending on the type of call selected.

Table 5.2. Encodings of Entry Type Field in System Procedure Table

Encoding Call Type

002 System-Local Call

012 Reserved

102 System-Supervisor Call

112 Reserved

5·13

II

PROCEDURE CALLS

TRACE
I /////'//1' //li<+--CONTROL

BIT

PROCEDURE ENTRY 0 i------------------------------t30H
PROCEDURE ENTRY 1 i------------------------------t34H
PROCEDURE ENTRY 2

3CH

1------------------------------1438H
PROCEDURE ENTRY 259 ..._---------------------------'43CH

31 PROCEDURE ENTRY 2 1 0

ADDRESS

l__J

I RESERVED (INITIALIZE TOO)
L ENTRY TYPE:

00-LOCAL
10-SUPERVISOR

12'!/'~;Jl)j PRESERVED
270710-002-05

Figure 5.4. System Procedure Table

Supervisor Stack Pointer

When a system-supervisor call is made, the processor switches to a new stack called the
supervisor stack if not already in supervisor mode. The processor gets a pointer to this stack
from the supervisor stack pointer field in the system procedure table (Figure 5.4) during the
reset initialization sequence and caches the pointer internally. Only the 30 most significant bits
of the supervisor stack pointer are given. The processor aligns this value to the next 16 byte
boundary to determine the first byte of the new stack frame.

5-14

PROCEDURE CALLS

Trace Control Bit

The trace control bit (byte 12, bit 0) specifies the new value of the trace enable bit in the PC
register (PC.te) when a system-supervisor call causes a switch from user mode to supervisor
mode. Setting this bit to 1 enables tracing in the supervisor mode; setting it to 0 disables
tracing. The use of this bit is described in Chapter 8, Tracing and Debugging.

System-Local Call

When a calls instruction references an entry in the system procedure table with an entry type of
00, the processor executes a system-local call to the selected procedure. The action that the
processor performs is the same as described earlier in this chapter's section titled Call
Operation. The call's target IP is taken from the system procedure table and the new stack
frame is allocated on the current stack. The calls algorithm is described in Chapter 9,
Instruction Set Reference.

System-Supervisor Call

When a calls instruction references an entry in the system procedure table with an entry type of
102' the processor executes a system-supervisor call to the selected procedure. The call's target
IP is taken from the system procedure table. The processor performs the same action as
described earlier in this chapter's section titled Call Operation, with the following exceptions:

• If the processor is in user mode, it switches to supervisor mode.

• The new frame for the called procedure is placed on the supervisor stack.

• If a mode switch occurs, the state of the trace enable bit in the PC register is saved in the
return type field in the PFP register. The trace enable bit is then loaded from the trace
control bit in the system procedure table.

When the processor switches to supervisor mode, it remains in that mode and creates new
frames on the supervisor stack until a return is performed from the procedure that caused the
original switch to supervisor mode. While in supervisor mode, either the local call instructions
(call and callx) or calls can be used to call procedures.

The user-supervisor protection model and its relationship to the supervisor call are described in
Chapter 2, Programming Environment.

USER AND SUPERVISOR STACKS

When using the user-supervisor protection mechanism, the processor maintains separate stacks
in the address space. One of these stacks - the user stack - is for procedures executed in user
mode; the other stack - the supervisor stack - is for procedures executed in supervisor mode.

The user and supervisor stacks are identical in structure (Figure 5.1). The base stack pointer for
the supervisor stack is automatically read from the system procedure table and cached
internally at initialization or when the processor is reinitialized with sysctl. Each time a user-to­
supervisor mode switch occurs, the cached supervisor stack pointer base is used for the starting

5-15

•

PROCEDURE CALLS

point of the new supervisor stack. The base stack pointer for the user stack is usually created in
the initialization code (see Chapter I4, Initialization and System Requirements). The base stack
pointers must be aligned to a 16-byte boundary; otherwise, the first frame pointer in the stack is
rounded up to the next 16-byte boundary.

INTERRUPT AND FAULT CALLS

The architecture defines two types of implicit calls that make use of the call and return
mechanism: interrupt handling procedure calls and fault handling procedure calls. A call to an
interrupt procedure is similar to a system-supervisor call. Here, the processor obtains pointers
to the interrupt procedures through the interrupt table. The processor always switches to
supervisor mode on an interrupt procedure call.

A call to a fault procedure is similar to a system call. Fault procedure calls can be local calls or
supervisor calls. The processor obtains pointers to fault procedures through the fault table and
(optionally) through the system procedure table.

When a fault call or interrupt call is made, a fault record or interrupt record is placed in the
newly generated stack frame for the call. These records hold the machine state and information
to identify the fault or interrupt. When a return from an interrupt or fault is executed, machine
state is restored from these records. See Chapter 7, Faults and Chapter 6, Interrupts for more
information on the structure of the fault and interrupt records.

RETURNS

The return (ret) instruction provides a generalized return mechanism that can be used to return
from any procedure that was entered by call, calls, callx, an interrupt call or a fault call. When
ret is executed, the processor uses the information from the return-type field in the PFP
register (Figure 5.5) to determine the type of return action to take.

return-type field indicates the type of call which was made. Table 5.3 shows the return-type
field encoding for the various calls: local call, supervisor call, interrupt call and fault call.

trace-on-return flag (PFP.rtO or bit 0 of the return-type field) stores the trace enable bit value
when a system-supervisor call is made from user mode. When the call is made, the PC register
trace enable bit is saved as the trace-on-return flag and then replaced by the trace controls bit in
the system procedure table. On a return, the trace enable bit's original value is restored. This
mechanism allows instruction tracing to be turned on or off when a supervisor mode switch
occurs. See Chapter 8, Tracing and Debugging.

prereturn-trace flag (PFP.p) is used in conjunction with call-trace and preretum-trace modes.
If call-trace mode is enabled when a call is made, the processor sets the preretum-trace flag;
otherwise it clears the flag. Then, if this flag is set and preretum-trace mode is enabled, a
preretum trace event is generated on a return, before any actions associated with the return
operation are performed. See Chapter 8, Tracing and Debugging for a discussion of interaction
between call-trace and prereturn-trace modes with the prereturn-trace flag.

5-16

PROCEDURE CALLS

RETURN STATUS,

RETURN-TYPE FIELD-PRP,rt ------------------------.!
p;;~;E~~;~~;:::_~_l:T_~_:_,-_P-FP-,p----~l I
1~11111111111111111111111111 l=lplililil

28 24

PREVIOUS FRAME POINTER (PFP)

D RESERVED
(INITIALIZE TO 0)

20 16 12 4 0

270710-002-06

Figure 5.5. Previous Frame Pointer Register (PFP) (rO)

Table 5.3. Encoding of Return Status Field

Return Status
Field Call Type Return Action

pOOO Local call (system-local call Local return (return to local stack; no
or system-supervisor call mode switch)
made from supervisor mode)

pOOl Fault call Fault return (See Chapter 7, Faults)

pOlt System-supervisor from user Supervisor return (return to user
mode stack, mode switch to user mode,

trace enable bit is replaced with the t
bit stored in the PFP register on the
call.

plOO reserved

plOl reserved

pl 10 reserved

pll I Interrupt call Interrupt return (See Chapter 6,
Interrupts.)

NOTE:

"p" is PFP.p (preretum trace flag). ··c denotes the trace-on-return flag. This flag is used only for
system supervisor calls which cause a user-to-supervisor mode switch.

5-17

•

PROCEDURE CALLS

BRANCH-AND-LINK

A branch-and-link is executed using either the branch-and-link instruction (bal) or branch-and­
link-extended instruction (balx). When either instruction is executed, the processor branches to
the first instruction of the called procedure (the target instruction), while saving a return IP for
the calling procedure in a register. The called procedure uses the same set of local registers and
stack frame as the calling procedure. For bal, the return IP is automatically saved in global
register g14; for balx, the return IP instruction is saved in a register specified by one of the
instruction's operands.

A return from a branch-and-link is generally carried out with a bx (branch extended)
instruction, where the branch target is the address saved with the branch-and-link instruction.
The branch-and-link method of making procedure calls is recommended for calls to leaf
procedures. Leaf procedures typically call no other procedures. Branch-and-link is the fastest
way to make a call, providing the calling procedure does not require its own registers or stack
frame.

5-18

Interrupts 6

CHAPTER 6
INTERRUPTS

This chapter describes how a programmer:

• uses the processor's interrupt mechanism

• defines data structures used for interrupt handling

• describes actions that the processor takes when handling an interrupt

Chapter 12, Interrupt Controller describes the mechanism for signaling and posting interrupts;
it is best suited for a system implementor.

OVERVIEW

An interrupt is an event that causes a temporary break in program execution so the processor
can handle another chore. Interrupts commonly request 1/0 services or synchronize the
processor with some external hardware activity. For interrupt handler portability across
implementations of the i960 family, the architecture defines a consistent interrupt state and
interrupt-priority-handling mechanism. To manage and prioritize interrupt requests in parallel
with processor execution, the i960 CA processor provides an on-chip programmable interrupt
controller.

Requests for interrupt service come from many sources. These requests are transparently
prioritized so that instruction execution is redirected only if an interrupt request is of higher
priority than that of the executing task.

When the processor is redirected to service an interrupt, it uses a vector number that
accompanies the interrupt request to locate the interrupt table - an entry in a data structure.
From that entry. it gets a vector to the first instruction of the selected interrupt procedure. The
processor then makes an implicit call to that procedure.

When the interrupt call is made, the processor uses a dedicated interrupt stack. A new frame is
created for the interrupt on this stack and a new set of local registers is allocated to the interrupt
procedure. The interrupted program's current state is also saved.

Upon return from the interrupt procedure, the processor restores the interrupted program's
state, switches back to the stack that the processor was using prior to the interrupt and resumes
program execution.

Since interrupts are handled based on priority, requested interrupts are often saved for later
service rather than being handled immediately. The mechanism for saving the interrupt is
referred to as interrupt posting. The mechanism the i960 CA device uses for posting interrupts
is described in Chapter 12, Interrupt Controller.

On the i960 CA processor, interrupt requests may originate from external hardware sources,
internal DMA sources or from software. External interrupts are detected with the chip's 8-bit
interrupt port and with a dedicated NMI input. Interrupt requests originate from software by

6-1

•

INTERRUPTS

the sysctl instruction which signals interrupts. To manage and prioritize all possible interrupts,
the microprocessor integrates an on-chip programmable interrupt controller. Integrated
interrupt controller configuration and operation is described in Chapter 12, Interrupt
Controller.

The i960 architecture defines two data structures to support interrupt processing (see
Figure 6.1): the interrupt table and interrupt stack. The interrupt table contains 248 vectors for
interrupt handling procedures and an area for posting software requested interrupts. The
interrupt stack prevents interrupt handling procedures from overwriting the stack in use by the
application program. It also allows the interrupt stack to be located in a different area of
memory than the user and supervisor stack (e.g., fast SRAM).

INTERRUPT

REQUEST

i960™ CA
PROCESSOR

L---------------~

~-------------------------------------· I MEMORY

INTERRUPT
TABLE

INTERRUPT

f--- HANDLING
INTERRUPT VECTOR PROCEDURE

-------------------------------------·
270710-001-11

Figure 6.1. Interrupt Handling Data Structures

INTERRUPT PRIORITY

To provide transparent prioritization of the 248 possible interrupts, interrupt vectors are
grouped into 31 distinct levels of priority, with eight vectors per priority.

Every interrupt request is associated with an interrupt vector in the interrupt table. The table
contains 248 vectors: from vector number 8, assigned the lowest priority, to vector number
255, the highest priority. Since there are 31 priority levels, each vector's priority is determined
by the vector number's upper five bits. Thus, at each priority level, there are eight possible
vector numbers. When multiple interrupt requests are pending at the same priority level, the
highest vector number is serviced first.

The processor compares its current priority with the interrupt request priority to determine
whether to service the interrupt immediately or to delay service. The interrupt is serviced
immediately if the interrupt request priority is higher than the processor's current priority (the
priority of the program or interrupt the processor is executing). If the interrupt priority is less
than or equal to the processor's current priority, the processor does not service the request.

Priority-31 interrupts are handled as a special case. Even when the processor is executing at
priority level 31, a priority-31 interrupt will interrupt the processor. The processor may post
requests for later servicing. Interrupts waiting to be serviced, called pending interrupts, are
discussed later in this chapter.

6-2

INTERRUPTS

NOTE

On the i960 CA processor implementation, the non-maskable interrupt (NMIJ interrupts priority-
31 execution: no interrupt can interrupt an NMI handler.

The lowest program priority allowed is 0. If the current program has a 0 priority, a priority-0
interrupt is never accepted. This is why vectors 0 through 7 cannot be used. In fact, no entries
are provided for these vectors in the interrupt table.

INTERRUPT TABLE

The interrupt table (Figure 6.2), 1028 bytes in length, can be located anywhere in the non­
reserved address space; it must be aligned on a word boundary. The processor reads a pointer
to interrupt table byte 0 during initialization. The interrupt table must be located in RAM since
the processor must be able to read and write the table's pending interrupt section.

The interrupt table is divided into two sections: vector entries and pending interrupts. Each are
described in the subsections that follow.

Vector Entries

A vector entry contains a specific interrupt handler's address. When an interrupt is serviced,
the processor branches to the address specified by the vector entry.

Each interrupt is associated with an 8-bit vector number which points to a vector entry in the
interrupt table. The vector entry section contains 248 one-word entries. Vector numbers 0
through 7 are not defined and do not have associated entries in the interrupt table. Vector
numbers 8 through 243 and 252 through 255 and their associated vector entries are used for
conventional interrupts. Vector number 244 through 247 and 249 through 251 are reserved; do
not use these. Vector number 248 and its associated vector entry is used for the non-maskable
interrupt (NM!).

Vector entry 248 contains the NMI handler address. When the processor is initialized, the NMI
vector located in the interrupt table is automatically read and stored in location OH of internal
data RAM. The NMI vector is subsequently fetched from internal data RAM to improve this
interrupt' s performance.

Vector entry structure is given at the bottom of Figure 6.2. Each interrupt procedure must
begin on a word boundary, so the processor assumes that the vector's two least significant bits
are 0. Bits 0 and 1 of an entry indicate entry type: type 002 indicates that the interrupt
procedure should be fetched normally; type I 02 indicates that the interrupt procedure should be
fetched from the locked partition of the instruction cache (see Chapter 12 section titled
Caching of Interrupt Handling Procedures). The other possible entry types are reserved and
must not be used.

6-3

•

INTERRUPTS

Pending Interrupts

The pending interrupts section comprises the interrupt table's first 36 bytes, divided into two
fields: pending priorities (byte offset 0 through 3) and pending interrupts (4 through 35).

Each of the 32 bits in the pending priorities field represents an interrupt priority. When the
processor posts a pending interrupt in the interrupt table, the bit corresponding to the
interrupt' s priority is set. For example, if an interrupt with a priority of 10 is posted in the
interrupt table, bit 10 is set.

Each of the pending interrupts field's 256 bits represent an interrupt vector. Byte offset 5 is for
vectors 8 through 15, byte offset 6 is for vectors 16 through 23, and so on. Byte offset 4, the
first byte of the pending interrupts field, is reserved. When an interrupt is posted, its
corresponding bit in the pending interrupt field is set.

This encoding of the pending priority and pending interrupt fields permits the processor to first
check if there are any pending interrupts with a priority greater than the current program and
then determine the vector number of the interrupt with the highest priority.

Posting Interrupts

For the i960 CA component, only software-requested interrupts are posted in the interrupt
table; hardware-requested interrupts are posted in the interrupt pending (lPND) register. This
register and the mechanism for requesting and posting hardware interrupts is described
Chapter 12, Interrupt Controller. Software posting of interrupts in the interrupt table can assist
an application in prioritizing processing demands as follows:

• By posting interrupt requests in the interrupt table, the application can delay the servicing
of low priority tasks which were signaled by a higher priority interrupt.

• In systems with more than one processor, both processors can post and service interrupts
from a shared interrupt table. This interrupt table sharing allows processors to share the
interrupt handling load or provide a communication mechanism between the processors.

To post a pending interrupt in the memory-resident interrupt table, the processor performs the
following atomic read/write operation that locks the interrupt table until the posting operation
has completed.

x and z are temporary registers
x f-- atomic_read(pending_priorities); # assert LOCK pin
z f-- read(pending_interrupts(vector_number/8));
x(vector_number/8) f-- l;
z(vector_number mod 8) f-- 1;
write(pending_interrupts(vector_number/8)) ~ z;
atomic_write(pending_priorities) f-- x; # deassert LOCKpin

6-4

INTERRUPTS

The LOCK pin can be used to prevent other agents on the bus from accessing the interrupt
table during the posting operation. On the i960 CA microprocessor, posting software interrupts
is performed by sysctl.

31 8 7

PENDING PRIORITIES

PENDING INTERRUPTS

20H
,__ __________________________ _

ENTRY 8 24H (VECTOR 8)

1-----------------------------t
ENTRY 9 28H (VECTOR 9)

ENTRY10 2CH (VECTOR 10)

3DOH (VECTOR 243)
"'""'",..,.,.,,..,.,.,.,....,,..,.,.,..,,....,..,.....,..,.._...,..,.....,..,.....,..,.....,..,.....,..,.....,..,...,.,,.,..,.,.,...,..,..,..,.,.,...,..,...,.,,.,..,.,.,...,..,..,..,,......,..,..,..,,...,..,,...7'1 3D4H (VECTOR 244)

i:;._...,;;.....;.o;;.i,;...i,;...i,;._i,;._i,;.__.;..._.;..._.;...i,;._~~i,;._~i,;.__.;...~i,;._--"'i..:...--"'......:......;......;......;...i 3EOH (VECTOR 247)

3E4H (VECTOR 248)
p.-,..,,......,..,.....,..,.....,..,..,..,.,.,...,..,.....,..,.....,..,.._....,..,.....,..,.....,..,...,....,...,..,.....,..,.....,..,.....,..,.....,..,..,..,,......,..,.....,..,.....,..,.....,..,.....,..,.....,..,.....,..,....., 3E8H (VECTOR 249)

.__ ____________ E_N_T_RY_2_5_s ___________ __. 400H (VECTOR 255)

31 VECTOR ENTRY

I INSTRUCTION POINTER

~ ENTRYTYPE
! I RESERVED (INITIALIZE TO 0)

WI MA PRESERVED

00 -NORMAL
10 -TARGET IN CACHE
01, 11-RESERVED

270710-002-07

Figure 6.2. Interrupt Table

Posting Interrupts Directly to the Interrupt Table

The i960 CA processor - or external agent that is sharing memory with the microprocessor
(such as an I/O processor or another i960 CA device) - can post pending interrupts directly in
the interrupt table by setting the appropriate bits in the pending priorities and pending
interrupts fields. This action, however, does not ensure that the core will handle the interrupt
immediately, nor does it cause the core to update the value in the software priority register. To
do this, the sysctl instruction should be used as described above.

sysctl can be used at any time to explicitly force the core to check the interrupt table for
pending interrupts. This is done by specifying a vector number with a priority of zero (that is,

6-5

•

INTERRUPTS

vector numbers 0 to 7). For example, when an external agent is posting interrupts to a shared
interrupt table, sysctl could be executed periodically to guarantee recognition of pending
interrupts which were posted in the table by the external agent.

An external I/O agent or a coprocessor posts interrupts to a processor's interrupt table in
memory in the same manner described above, providing it has the capability to perform atomic
operations on memory. When interrupts are posted in this manner, pending interrupts and
pending priorities must be modified in specific order and not allow access by the processor or
other external agents during the atomic modify operations:

#set pending interrupt bit
atomic_modify(pending_interrupts(vector_number/8));
#set pending priority bit
atomic_modify(pending_priorities);

The processor automatically checks the memory-based interrupt table when the processor posts
an interrupt using sysctl with a post interrupt message type.

When the processor finds a pending interrupt, it handles it as if it had just received the
interrupt. If the processor finds two pending interrupts at the same priority, it services the
interrupt with the highest vector number first.

NOTES

1. When a modify-process-controls (modpc) instruction causes a program's priority to be
lowered, other i960 family members check for pending interrupts in the memory-based
interrupt table; the i960 CA device internally stores the priority of the highest pending
interrupt found in the interrupt table's pending interrupts field. To improve performance, the
stored priority is checked - rather than the memory-based interrupt table - when modpc
changes a process priority. The internal priority value is updated each time an interrupt is
posted using sysctl.

2. i960 architecture does not define a portable method for posting interrupts. Different
implementations may implement optimized interrupt posting mechanisms. The i960 CA
device records pending interrupts differently depending upon interrupt type and interrupt
controller configuration. See this chapter's sections titled Interrupt Modes and Software
Generated Interrupts.

Caching Portions of the Interrupt Table

The architecture allows all or part of the interrupt table to be cached internally to the processor.
The purpose of caching these fields is to reduce interrupt latency by allowing the processor
access to certain interrupt vectors and to the pending interrupt information without having to
make memory accesses. The microprocessor caches the following:

• The value of the highest priority posted in the pending priorities field.

• A predefined subset of interrupt vectors (that is, interrupt vector entries from the interrupt
table).

6-6

INTERRUPTS

• Pending interrupts received from external interrupt pins and on-chip DMA controller
(hardware requested interrupts).

This caching mechanism is non-transparent; in other words, the processor may modify fields in
a cached interrupt table without modifying the same fields in the interrupt table itself (non­
transparent caching). Vector caching is described in Chapter 12, Interrupt Controller.

INTERRUPT STACK AND INTERRUPT RECORD

The interrupt stack can be located anywhere in the non-reserved address space. The processor
obtains a pointer to the base of the stack during initialization.

The interrupt stack has the same structure as the local procedure stack described in Chapter 5.
Procedure Calls. As with the local stack, the interrupt stack grows from lower addresses to
higher addresses.

The processor saves the state of an interrupted program - or an interrupted interrupt
procedure - in a record on the interrupt stack. Figure 6.3 shows the structure of this interrupt
record.

CURRENT STACK
(LOCAL, SUPERVISOR, OR INTERRUPT STACK)

CURRENT FRAME

INTERRUPT STACK

RESERVED

0

r
INTERRUPT
RECORD

270710-002-08

Figure 6.3. Storage of an Interrupt Record on the Interrupt Stack

6-7

•

INTERRUPTS

The interrupt record is always stored on the interrupt stack adjacent to the new frame that is
created for the interrupt handling procedure. It includes the state of the AC and PC registers at
the time the interrupt was received and the interrupt vector number used. Referenced to the
new frame pointer address (designated NFP), the saved AC register is located at address
NFP-12; the saved PC register is located at address NFP-16.

The interrupt record may also contain a resumption record which stores the context of
instructions which began - but not completed - when the interrupt was serviced. Although
the i960 CA processor never creates a resumption record, portable programs must tolerate
interrupt stack frames with and without resumption records.

INTERRUPT HANDLER PROCEDURES

An interrupt handling procedure performs a specific action that is associated with a particular
interrupt vector. For example, one interrupt handler task might be to initiate a DMA transfer.
The interrupt handler procedures can be located anywhere in the non-reserved address space.
Since instructions in the i960 family architecture must be word aligned, each procedure must
begin on a word boundary.

When an interrupt handling procedure is called, the processor allocates a new frame on the
interrupt stack and a set of local registers for the procedure. If not already in supervisor mode,
the processor always switches to supervisor mode while an interrupt is being handled. It also
saves the states of the AC and PC registers for the interrupted program. The interrupt
procedure shares the remainder of the execution environment resources (namely the global
registers, special function registers and the address space) with the interrupted program. Thus,
interrupt procedures must preserve and restore the state of any resources shared with a non­
cooperating program.

CAUTION!

Intenupt procedures must preserve and restore the state of any resources shared with a non­
cooperating program. For example, an interrupt procedure which uses a global register which is
not permanently allocated to it should save the register's contents before it uses the register and
restore the contents before returning from the interrupt handler.

To reduce interrupt latency to critical interrupt routines, interrupt handlers may be locked into
the instruction cache. See Chapter 12 section titled Caching of Interrupt Handling Procedures
for a complete description.

INTERRUPT CONTEXT SWITCH

When the processor services an interrupt, it automatically saves the interrupted program state
or interrupt procedure and calls the interrupt handling procedure associated with the new
interrupt request. When the interrupt handler completes, the processor automatically restores
the interrupted program state.

The method that the processor uses to service an interrupt depends on the processor state when
the interrupt is received. If the processor is executing a background task when an interrupt
request is to be serviced, the interrupt context switch must change stacks to the interrupt stack.

6-8

INTERRUPTS

This is called an executing-state interrupt. If the processor is already executing an interrupt
handler, no stack switch is required since the interrupt stack will already be in use. This is
called an interrupted-state interrupt.

The following two sections describe interrupt handling actions for executing-state and
interrupted-state interrupts. In both cases, it is assumed that the interrupt priority is higher than
that of the processor and thus is serviced immediately when the processor receives it.

Executing-State Interrupt

When the processor receives an interrupt while in the executing state (i.e., executing a
program), it performs the following actions, regardless of whether the processor is in user or
supervisor mode when the interrupt occurs:

• The new frame pointer (FP) for the interrupt handler is set to point to the interrupt stack
and is incremented to create space for an interrupt record (see Figure 6.3). The interrupt
record is described earlier in this chapter's section titled Interrupt Record. The current state
of the AC register, PC register and interrupt vector number are saved in the interrupt
record.

• The processor stores the interrupt return status (111 2) in the current PFP' s return status
field then changes the following fields and flags in the PC register:

Sets state flag (bit 13) to interrupted.

Sets execution mode flag (bit I) to supervisor; processor switches to supervisor mode.

Sets priority field (bits 16-20) to the priority of the interrupt. Setting the processor's
priority to that of the interrupt ensures that lower priority interrupts cannot interrupt
current interrupt servicing.

Sets to 0 the trace-fault-pending flag (bit 10) and trace-enable bit (bit 0). Clearing
these bits allows the interrupt to be handled without trace faults being raised.

• The processor performs a call operation as described in Chapter 5, Procedure Calls. The
target IP for the call is the selected entry in the interrupt table.

When the processor executes a return operation and the return-type field is 1112, it performs
the following:

• The interrupt record's arithmetic controls and process controls fields are copied into the AC
and PC registers, respectively. Restoring the PC register causes the processor's state to be
returned to executing and its execution mode and priority to be returned to what they were
prior to the interrupt. It also returns the trace-fault-pending flags and trace-enable bit to
their value before the interrupt occurred.

NOTE
If the interrupt handling procedure sets execution mode to user prior to the return, the PC register
is not restored upon return.

• Pending interrupts that need to be handled - such as pending interrupts with higher
priority than that of the program being returned to - are handled at this time, prior to

6-9

II

INTERRUPTS

returning to the previously interrupted program. If the trace-fault-pending flag and trace­
enable bit are set, the trace fault is handled at this time.

• The processor then performs a return operation as described in Chapter 5, Procedure Calls.
This causes the processor to switch back to the local stack or supervisor stack; whichever it
was using when interrupted.

Assuming that there are no pending interrupts to be serviced or trace faults to be handled, the
processor resumes work on the interrupted program upon completion of the return operation.

Interrupted-State Interrupt

If the processor is servicing an interrupt and receives an interrupt with a higher priority, the
current interrupt handler routine is interrupted. Here, the processor performs the same action to
save the interrupted interrupt handler routine's state, as described in the previous section for an
executing-state interrupt. The interrupt record is saved on the top of the interrupt stack, prior to
the new frame that is created for servicing the new interrupt.

On return from the current interrupt handler to the previous interrupt handler, the processor
deallocates the current stack frame and interrupt record and stays on the interrupt stack.

REQUESTING INTERRUPTS

On the i960 CA microprocessor, interrupt requests may originate from external hardware
sources, internal DMA sources or from software. External interrupts are detected with the
chip's 8-bit interrupt port and with a dedicated NMI input. Interrupt requests originate from
software by the sysctl instruction which signals interrupts. To manage and prioritize all
possible interrupts, the microprocessor integrates an on-chip programmable interrupt
controller. The configuration and operation of the integrated interrupt controller is described in
Chapter 12, Interrupt Controller.

Interrupts may be requested directly by a user's program. This mechanism is often useful for
requesting and prioritizing low-level tasks in a real time application.

Software can request interrupts in the following two ways:

1. With the sysctl instruction.

2. By the i960 CA microprocessor, or another processor, posting an interrupt in the interrupt
table's pending-interrupts and pending-priorities fields.

SYSTEM CONTROL INSTRUCTION (sysctl)

sysctl is typically used to request an interrupt in a program (Example 6.1). The request
interrupt message type (OOH) is selected and the interrupt vector number is specified in the
least significant byte of the instruction operand. (See Chapter 2, ·Programming Environment
for a complete discussion of sysctl.)

6-10

INTERRUPTS

Example 6.1. Requesting an Interrupt with the sysctl Instruction

ldconst Ox53, g5

sysctl g5, g5, g5

Vector number 53H is loaded

into e 0 of register g5 and
the value is zero extended into

e 1 of the register
Vector number 53H is posted

A literal can be used to post an interrupt with a vector number from 8 to 31. Here, the required
value of OOH in the second byte of a register operand is implied.

The action of the core when it executes the sysctl instruction is as follows:

1. The core performs an atomic write to the interrupt table and sets bits in the pending­
interrupts and pending-priorities fields that correspond to the requested interrupt.

2. The core updates the internal software priority register with the value of the highest
pending priority from the interrupt table. This may be the priority of the interrupt that was
just posted.

The interrupt controller continuously compares the following three values: software priority
register, current process priority, priority of the highest pending hardware-generated interrupt.
When the software priority register value is the highest of the three, the following actions are
taken:

1. The interrupt controller signals the core that a software-generated interrupt is to be
serviced.

2. The core checks the interrupt table in memory, determines the vector number of the
highest priority pending interrupt and clears the pending-interrupts and pending-priorities
bits in the table that correspond to that interrupt.

3. The core detects the interrupt with the next highest priority which is posted in the interrupt
table (if any) and writes that value into the software priority register.

4. The core services the highest priority interrupt.

If more than one pending interrupt is posted in the interrupt table at the same interrupt priority,
the core handles the interrupt with the highest vector number first.

The software priority register is an internal register and, as such, is not visible to the user. The
core only updates this register's value when sysctl requests an interrupt and when a software­
generated interrupt is serviced.

6-11

II

Faults 7

CHAPTER 7
FAULTS

This chapter describes the i960 CA processor's fault handling facilities. Subjects covered
include the fault handling data structures and fault handling mechanism. A reference section at
the end of the chapter contains detailed information on each fault type.

FAULT HANDLING FACILITIES OVERVIEW

The architecture defines various conditions in code or the processor· s internal state that could
cause the processor to deliver incorrect or inappropriate results or that could cau'>e it to head
down an undesirable control path. These are called .Amit conditions. For example. the
architecture defines faults for divide-by-zero and overflow conditions on integer calculations.
for inappropriate operand values and for invalid opcodes and addressing modes.

FAULT
FAULT

PROCESSOR FAULT HANDLING

TABLE
1-- PROCEDURES

h

~I !------'
SYSTEM

PROCEDURE
TABLE SUPERVISOR

~ STACK

USER
STACK

270710-001-18

Figure 7.1. Fault-Handling Data Structures

As shown in Figure 7 .1, the architecture defines a fault table, a system procedure table, a set of
fault handling procedures and a stack (user stack, supervisor stack or both) to handle
processor-generated faults.

The fault table contains pointers to fault handling procedures. The system procedure table is
optionally used to provide an interface to any fault handling procedures and to allow faults to
be handled in supervisor mode. Stack frames for fault handling procedures are created on
either the user or supervisor stack, depending on the mode in which the fault is handled.

7-1

•

FAULTS

Once these data structures and the code for the fault procedures are established in memory, the
processor handles faults automatically and independently from applications software.

The processor can detect a fault at any time while executing instructions, whether from a
program, interrupt handling procedure or fault handling procedure. If a fault occurs when
executing a program, the processor determines the fault type and selects a corresponding fault
handling procedure from the fault table. It then invokes the fault handling procedure by means
of an implicit call. As described later in this chapter, the fault handler call can be:

• a local call (call-extended operation)

• a system-local call (local call through the system procedure table)

• a system-supervisor call (also through the system procedure table)

As part of the implicit call to the fault handling procedure, the processor creates a fault record
on the stack ~ the stack in use by the fault handling procedure. This record includes
information on the fault and the processor's state when the fault was generated.

Following fault record creation, the processor begins executing the selected fault handling
procedure. If the fault handling procedure recovers from the fault, the processor then restores
itself to its state prior to the fault and resumes work on the program with no break in program
control flow. If the fault handling procedure is not able to recover from the fault, the fault
handler can call a debug monitor or perform an action such as resetting the processor.

The procedure call mechanism described above is used to handle faults that occur while the
processor is servicing an interrupt or that occur while the processor is working on another fault
handling procedure.

FAULT TYPES

The i960 architecture defines a basic set of faults which are categorized by type and subtype.
Each fault has a unique type number and a subtype number. When the processor detects a fault,
it records the fault type and subtype numbers in a fault record. It then uses the type number to
select a fault handling procedure.

The fault handling procedure has the option of using the subtype number to select a specific
fault handling action. The i960 CA processor recognizes i960 architecture-defined faults and a
new fault subtype for detecting unaligned memory accesses. Table 7 .1 lists all faults that the
i960 CA processor detects, arranged by type and subtype. Text that follows the table gives
column definitions.

7·2

FAULTS

Table 7.1. i960™ CA Processor Fault Types and Subtypes

Fault Type Fault Subtype Fault Record

Number Name Number/Bit Name
Position

1H Trace Bit I Instruction Trace XXOI XX02H
Bit 2 Branch Trace XXOI XX04H
Bit 3 Call Trace XXOI XX08H
Bit 4 Return Trace XXOI XXJOH
Bit 5 Prereturn Trace XXOJ XX20H
Bit 6 Supervisor Trace XXOl XX40H
B.it 7 Breakpoint Trace XXOI XX80H

2H Operation IH Invalid Opcode XX02 XXOIH

2H Unimplemented XX02XX02H
3H Unaligned (see note) XX02 XX03H
4H Invalid Operand XX02 XX04H

3H Arithmetic 1H Integer Overflow XX03 XXOlH
2H Arithmetic Zero-Divide XX03 XX02H

4H Reserved
(Floating Point)

SH Constraint IH Constraint Range XXOS XXOIH
2H Privileged XXOS XX02H

6H Reserved

7H Protection 2H Length XX07 XXOlH

SH -9H Reserved

AH Type IH Type Mismatch XXOAXXOIH

BH- FH Reserved

NOTE

The operation-unaligned fault is an i960 CA processor-specific extension.

The first column of Table 7.1 gives fault type numbers in hexadecimal; the second column
gives the fault type name.

The third column gives the fault subtype number: as a hexadecimal number or as a bit position
in the 8-bit fault subtype field in the fault record. The bit position method of indicating a fault
subtype is used for faults such as trace faults, where it is possible for two or more fault
subtypes to be generated simultaneously.

The fourth column gives the fault subtype name. For convenience, individual faults are referred
to in this manual by their fault-subtype name. Thus an operation-invalid-operand fault is
referred to as simply an invalid-operand fault or an arithmetic-integer-overflow fault is
referred to as an integer-overflow fault.

7-3

•

FAULTS

The fifth column of Table 7 .1 shows the encoding of the word in the fault record that contains
the fault type and fault subtype numbers.

Other i960 family members may provide different extensions that recognize additional fault
conditions. Fault type and subtype encoding allows any of these additional faults to be included
in the fault table along with the basic faults. Space in the fault table is reserved in such a way
that specific implementation-defined faults are encoded the same for each processor that uses
them. For example, Fault Type 4 is reserved for floating point faults. Any of the i960 family
processors that provide floating point operations use Entry 4 to store the pointer to the floating
point fault handling procedure.

FAULT TABLE

The fault table (Figure 7 .2) provides the processor with a pathway to fault handling procedures.
It can be located anywhere in the address space. The processor obtains a pointer to the fault
table during initialization.

There is one entry in the fault table for each fault type. When a fault occurs, the processor uses
the fault type to select an entry in the fault table. From this entry, the processor obtains a
pointer to the fault handling procedure for the type of fault that occurred. Once a fault handling
procedure is called, it has the option of reading the fault subtype or subtypes from the fault
record, to determine the appropriate fault recovery action.

As shown in Figure 7.2, two fault table entry types are allowed: local-call entry and system-call
entry. Each entry type is two words long. The entry type field (bits 0 and 1 of the first word of
the entry) and the value in the second word of the entry determine the entry type.

A local-call entry (type 00) provides an instruction pointer (address in the address space) for
the fault handling procedure. Using this entry, the processor invokes the specified procedure by
means of an implicit local-call operation. The second word of a local procedure entry is
reserved. It should be set to zero when the fault table is created and not accessed after that.

A system-call entry provides a procedure number in the system procedure table. This entry
must have an entry type of 10 and a value in the second word of 0000 027FH. Using this entry,
the processor invokes the specified fault handling procedure by means of an implicit call­
system operation similar to that performed for the calls instruction. A fault handling procedure
in the system procedure table can be called with a system-local call or a system-supervisor call,
depending on the entry type in the system-procedure table.

To summarize, a fault handling procedure can be invoked through the fault table in any of
three ways: a local call, a system-local call or a system-supervisor call.

7-4

in1eL FAULTS

31 FAULT TABLE 0

PARALLEL FAULT ENTRY OH

TRACE FAULT ENTRY 8H

OPERATION FAULT ENTRY 10H

ARITHMETIC FAULT ENTRY 18H

31 LOCAL-CALL ENTRY 2 , 0

FAULT-HANDLER PROCEDURE ADDRESS

31 SYSTEM-CALL ENTRY 2 1 0

FAULT-HANDLER PROCEDURE NUMBER

0000 027FH

RESERVED (INITIALIZE TO 01
270710-002-12

Figure 7.2. Fault Table and Fault Table Entries

STACK USED IN FAULT HANDLING

The architecture does not define a dedicated fault handling stack. Jnstcad, the processor uses
the stack that is active when the fault is generated (user stack, interrupt stack or supervisor
stack) to handle a fault, with one exception: if the user stack is active when a fault is generated
and the fault handling procedure is called with an implicit supervisor call, the processor
switches to the supervisor stack to handle the fault.

7-5

•

FAULTS

FAULT RECORD

When a fault occurs, the processor records information about the fault in a fault record in
memory. The fault handling procedure uses the information in the fault record to correct or
recover from the fault condition and, if possible, resume program execution. The fault record is
stored on the stack that the fault handling procedure will use to handle the fault.

Fault Record Data

Figure 7.3 shows the structure of the fault record. In this record, the type number of the fault is
stored in the fault type field and the subtype number (or bit positions for multiple subtypes) of
the fault subtype is stored in the fault subtype field. The address-of-faulting-instruction field
contains the IP of the instruction upon which the processor faulted.

Values in the PC and AC registers when a fault is generated are stored in their respective fault
record fields. This information is used to resume work on the program after the fault is
handled. In the case of parallel instruction execution, these fields contain the states of the
registers when the processor has completed all parallel and out-of-order instruction execution.

31 0

PROCESS CONTROLS NFP-16
!--~~~~~~~~~~~~~~~~~~~~~~~~~~

ARITHMETIC CONTROLS NFP-12

FAULT TYPE FAULT SUB-TYPE NFP-8

ADDRESS OF FAUL TING INSTRUCTION NFP-4

RESERVED
270710-001-19

Figure 7.3. Fault Record

Optional data fields are defined for certain faults. These fields contain additional information
about the faulting conditions, usually to assist resumption. Parallel fault and operation­
unaligned fault types are the only faults in the i960 CA processor that use optional data fields.
The processor can generate parallel faults when instructions are executed in parallel. Parallel
faults and the contents of the optional data fields for this fault type are described later in the
section titled Multiple Fault Conditions. The operation-unaligned fault and its optional data
field are described later in the section titled Operation Faults. All unused bytes in the fault
record are reserved. 1

7-6

FAULTS

Return Instruction Pointer

When a fault handling procedure is called - as with any call - a return instruction pointer is
saved in the RIP register (r2). The RIP is intended to point to an instruction where program
execution can be resumed with no break in the program's control flow. It generally points to
the faulting instruction or to the next instruction to be executed. In some instances, however,
the RIP is undefined. The Fault Reference section, later in this chapter, defines the RIP content
for each fault.

When the RIP refers to a "next instruction", this does not always mean the instruction directly
after the faulting instruction. Instead, it is an instruction to which the processor can logically
return to resume program execution.

Fault Record Location

The fault record is stored in the stack that the processor uses to execute the fault handling
procedure. As shown in Figure 7.4, this stack can be the user stack, supervisor stack or
interrupt stack. The fault record begins at byte address NFP-1. NFP refers to the new frame
pointer which is computed by adding the memory size allocated for padding and the fault
record to the new stack pointer (NSP).

The processor automatically determines the number of bytes required for the fault record and
increments the FP by that amount, rounding it off to the next highest 16-byte boundary. Fault
record size is variable, based on the size of the optional fault-data portion of the fault record.

Stack frame alignment is defined for each implementation of the i960 architecture. This
alignment boundary is calculated from the relationship SALIGN*l6. For example, if SALIGN
is selected to be 4, stack frames are aligned on 64-byte boundaries. In the i960 CA processor,
SALIGN=l.

7-7

•

FAULTS

CURRENT STACK
(USER, SUPERVISOR, OR INTERRUPT STACK)

CURRENT FRAME r SP

LOCAL STACK OR SUPERVISOR STACK2

270710-001-20

Figure 7.4. Storage of the Fault Record on the Stack

NOTES

I. If the call to the fault handler procedure does not require a stack switch, the new stack pointer
(NSP) is the same as SP.

2. If the processor is in user mode and the fault handler procedure is called with a system­
supervisor call, the processor switches to the supervisor stack.

MULTIPLE AND PARALLEL FAUL TS

Multiple fault conditions can occur in two circumstances: (1) during a single instruction
execution; (2) during multiple instruction execution when the instructions are executed by
parallel execution units within the processor. The following sections describe how faults are
handled under these conditions.

Multiple Faults

Multiple fault conditions can occur during a single instruction execution. For example, an
instruction can have an invalid operand and unaligned address. When this situation occurs, the
processor is required to recognize and generate at least one of the fault conditions. The
processor may not detect all fault conditions and may not report all detected faults.

7-8

inteL FAULTS

ln a multiple fault situation, the reported fault condition is left to the implementation. The
architecture, however, does define the criteria for determining which fault to report when trace
fault conditions are one or more of the fault conditions.

Multiple Trace Fault Conditions Only

Multiple trace fault conditions that single instruction executions generate arc reported in a
single trace fault. To support this multiple fault reporting, the trace fault uses bit positions in
the fault-subtype field to indicate occurrences of multiple faults of the same type (Table 7 .1).

For example, when instruction tracing is enabled, an instruction trace fault condition is
detected on each instruction that is executed, along with other trace fault conditions that are
enabled (e.g., a call trace fault or a branch trace fault. J The processor generates a trace fault
after each instruction and sets the appropriate bit or bits in the fault-subtype field to indicate the
instruction trace fault and any other trace fault subtypes that occurred. See Chapter R. Tracing
and Debugging for a description of the trace fault.

Multiple Trace Fault Conditions with Other Fault Conditions

The execution of a single instruction can create one or more trace fault conditions in addition
to multiple non-trace fault conditions. When this occurs, the processor generates at least two
faults: a non-trace fault and a trace fault.

The non-trace fault is handled first and the trace fault is triggered immediately after executing
the return instruction (ret) at the end of the non-trace fault handler.

Parallel Faults

As described in Appendix A, Optimi::ing Code for the i960 CA Microprocessor, the i960 CA
processor exploits the architecture's tolerance of parallel and out-of-order instruction execution
by issuing instructions to multiple, independent execution units on the chip. The following
sections describe how the processor handles faults in this environment.

Faults in One Parallel Instruction

When a fault occurs during the execution of a particular instruction, it is not possible to
suspend other instructions that are already executing in other execution units. To handle the
fault, the processor continues executing new instructions until each execution unit completes
execution of its respective instruction and all out-of-order instructions arc executed. For
example, if an integer overflow occurs during the addition in the following code example, the
fault is detected before the multiply has completed execution. Before invoking the intcger­
overtlow fault handling procedure, the processor waits for the multiply to complete.

muli
addi

g2, g4, g6;
g8' g9' glCl; # results in integer overflow

7-9

II

FAULTS

Faults in Multiple Parallel Instructions

When executing instructions in parallel, it is possible for faults to occur in more than one
currently executing instruction. In the code sequence above, for example, an integer overflow
fault could occur for both the muli and addi instructions, with the fault from the addi
instruction being recognized by the processor first. To report multiple parallel faults, the
architecture provides the parallel fault type.

In these parallel fault situations, the processor saves the fault type and subtype in the optional
data field for each fault detected after the first fault. The fault handling procedure for parallel
faults can then analyze the fault record and handle the faults. The fault record for parallel faults
is described in the next section.

The existence of multiple parallel faults is often catastrophic. Multiple parallel faults are
generated as imprecise faults, which means that recovery from the faults is normally not
possible. (Imprecise faults are described later in this chapter's section titled Precise and
Imprecise Faults.) Unless imprecise faults are disallowed, a parallel-fault-handling procedure
generally does not attempt to recover from the faults, but instead calls a debug monitor to
analyze the faults. If recovery from every parallel fault is possible, the RIP allows the
processor to resume executing the program when the fault handling has completed.

Even though multiple faults can be generated by multiple instructions executing in parallel,
only one fault is ordinarily generated per instruction, as described in the previous section titled
Multiple Faults.

Fault Record for Parallel Faults

Figure 7 .5 shows the structure of the fault record for parallel faults.

7-10

inteL FAULTS

31

FAULT TYPE n FAULT SUBTYPE n NFP-8-((n+1)·32)

ADDRESS OF FAUL TING INSTRUCTION (n) NFP-4-((n+ 1) •32)

FAULT TYPE 2 FAULT SUBTYPE 2 NFP-104

NFP-100

NFP-16
i--~~~~~~~~~~~~~~~~~~~~~~~~~~-l

ARITHMETIC CONTROLS NFP-12

FAULT TYPE 1 FAULT SUB-TYPE 1 NFP-8

ADDRESS OF FAULTING INSTRUCTION 1 NFP-4

RESERVED 270710-001-21

Figure 7.5. Fault Record for Parallel Faults

To calculate byte offsets, "n" indicates fault number. Thus, for the second fault recorded (n=2),
the relationship (NFP-4 -(n+ 1)'''32) reduces to NFP-100. For the i%0 CA device, number of
parallel faults allowed is 2 or 3.

When multiple parallel faults occur, the processor selects one of the faults and records it in the
first 16 bytes of the fault record as described in the section titled Fault Rl!conl. Information for
the remaining parallel faults is then written to the fault record's optional data field and the fault
handling procedure for parallel faults is invoked.

The first word in the fault record's optional data field (NFP-20) contains information about the
parallel faults. The byte at offset NFP- I 8 contains OOH (encoding for the parallel fault type);
the byte at NFP-20 contains the number of parallel faults. The optional data field also contains
a 32-byte parallel fault record for each additional fault. These parallel fault records are stored
incrementally in the fault record starting at byte offset NFP-97. The fault record for each
additional fault contains only the fault type, fault subtype and address-of-faulting instruction
field. (AC and PC register values are not given for these faults because they are already given
in the fault record for the first fault.)

7-11

•

FAULTS

FAULT HANDLING PROCEDURES

The fault handling procedures can be located anywhere in the address space. Each procedure
must begin on a word boundary.

The processor can execute the procedure in the user mode or the supervisor mode, depending
on the type of fault table entry.

To resume work on a program at the point where a fault occurred (following the recovery
action of the fault handling procedure), the fault handling procedure must be executed in
supervisor mode. The reason for this requirement is described in a following section titled
Returning to the Point in the Program Where the Fault Occurred.

Possible Fault Handling Procedure Actions

The processor allows easy recovery from many faults that occur. When fault recovery is
possible, the processor's fault handling mechanism allows the processor to automatically
resume work on the program or interrupt pending when the fault occurred. Resumption is
initiated with a ret instruction in the fault handling procedure.

If recovery from the fault is not possible or not desirable, the fault handling procedure can take
one of the following actions, depending on the nature and severity of the fault condition (or
conditions, in the case of multiple faults):

• Return to a point in the program or
interrupt code other than the point of
the fault.

• Explicitly write the processor state and
fault record into memory and perform
processor or system shutdown.

• Call a debug monitor.

• Perform processor or system shutdown
without explicitly saving the processor
state or fault information.

When working with the processor at the development level, a common fault handling
procedure action is to save the fault and processor state information and make a call to a
debugging device such as a debugging monitor. This device can then be used to analyze the
fault information.

Program Resumption Following a Fault

Because of the i960 CA processor's multi-stage execution pipeline, faults can occur:

• before execution of the faulting instruction (i.e., the instruction that causes the fault)

• during instruction execution

• immediately following execution

When the fault occurs before the faulting instruction is executed, the faulting instruction may
be re-executed upon return from the fault handling procedure.

7-12

FAULTS

When a fault occurs during or after execution of the faulting instruction, the fault may be
accompanied by a program state change such that program execution cannot be resumed after
the fault is handled. For example, when an integer overflow fault occurs, the overflow value is
stored in the destination. If the destination register is the same as one of the source registers,
the source value is lost, making it impossible to re-execute the faulting instruction.

In general, resumption of program execution with no changes in the program's control flow is
possible with the following fault types or subtypes:

• All Operation Subtypes • Arithmetic Zero Divide

• All Constraint Subtypes • All Trace Subtypes

• Length

Resumption of the program may or may not be possible with the following fault subtype:

• Integer Ove1tlow

The effect that specific fault types have on a program is given in the fault reference section at
the end of this chapter under the heading Program State Changes.

Returning to the Point in the Program Where the Fault Occurred

As described above, most faults can be handled such that program control flow is not affected.
In this case, the processor allows work on a program to be resumed at the point where the fault
occurred, following a return from a fault handling procedure (initiated with a ret instruction).
The resumption mechanism used here is similar to that provided for returning from an interrupt
handler.

To use this mechanism, the fault handling procedure must be invoked using a supervisor call.
This method is required because - to resume work on the program at the point where the fault
occurred - the saved process controls in the fault record must be copied back into the PC
register upon return from the fault handling procedure. The processor only performs this action
if the processor is in supervisor mode when the return is executed.

Returning to a Point in the Program Other Than Where the Fault
Occurred

A fault handling procedure can also return to a point in the program other than where the fault
occurred. To do this, the fault procedure must alter the RIP.

To predictably perform a return from a fault handling procedure to an alternate point in the
program, the fault handling procedure should perform the following four steps:

I. Flush the local register sets to the stack with a flushreg instruction,

2. Modify the RIP in the previous frame,

3. Clear the trace-fault-pending flag in the process controls field of the fault record before the
return,

4. Execute a return with the ret instruction.

7-13

•

intel® FAULTS

This technique should be used carefully and only in situations where the fault handling
procedure is closely coupled with the application program. Also, a return of this type can only
be performed if the processor is in supervisor mode prior to the return.

FAULT CONDITIONS AND FAULT CONTROL

The processor generates faults implicitly when fault conditions occur and explicitly at the
request of software. For several fault conditions, the programmer may control whether or not a
fault is actually signaled when the condition is recognized. The following sections describe
conditions which cause faults and facilities for controlling faults which are optionally
generated.

Implicit Fault Generation

Most faults are generated implicitly; that is, they occur as a side effect of an instruction
execution which has encountered difficulty. Following paragraphs summarize conditions
which cause faults. The Fault Reference section at the end of this chapter provides a detailed
description of each fault type and subtype.

Destination Overflow - An integer overflow fault is signaled when the result of an integer
operation docs not fit in the specified destination. The integer overflow fault handling
procedure is invoked if the AC register integer overflow mask bit is set to enable these faults.

addi subi

stib shli

muli divi

Division by Zero - The zero-divide fault is generated when the divisor of an integer or ordinal
division is zero.

divo divi

ediv remo

re mi

Supervisor Protection Violations - The constraint-privileged fault is generated if the
application attempts to execute a supervisor-only instruction while not in supervisor mode.

sdma sysctl

The type-mismatch fault is generated if the application attempts to modify a supervisor-only
resource while not in supervisor mode. On the i960 CA processor, supervisor-only resources
are the PC register, on-chip data RAM and special function registers. The following actions
generate a type-mismatch fault if attempted when the processor is not in supervisor mode:

• Using modpc to modify the PC register. (Using modpc to read the register is allowed in
non-supervisor mode and does not cause a fault.)

• Writing to the protected on-chip data RAM.

• Reading or writing a SFR.

7-14

FAULTS

Out-of-bounds System-Procedure Call - The protection-length fault is generated if the
processor attempts to execute a calls with a system procedure number specified which is
greater than the size of the system procedure table.

Invalid Instruction Encodings - The operation-invalid-opcode fault is generated if the
processor encounters an invalid opcode or an invalid encoding of a MEM-format instruction
addressing mode.

Unaligned Register Reference - The invalid-operand fault is generated if the processor detects
any unaligned register reference in any instruction which references long, triple or quad groups
of registers.

Unaligned Memory Access - The operation-unaligned fault is signaled if the processor
attempts to issue a memory request to an unaligned location. The unaligned-fault mask bit
located in the fault-control word (PRCB) determines whether the fault handling procedure is
invoked or whether access is handled transparently by the processor, without a fault. The fault­
control word and PRCB are described in Chapter 14. Initialization and System Requirements.

Referencing a Non-existent SFR - The invalid-operand fault is generated if the processor
executes an instruction which references a non-existent special function register. On the i960
CA processor, only sfO, sf! and sf2 are implemented.

Issuing a Bad System Control Command - The operation-invalid-operand fault is generated if
the processor executes an instruction which specifies a non-existent sysctl command.

Execution from Internal Data RAM - The operation-unimplemented fault is generated if an
attempt is made to execute an instruction fetched from the i960 CA processor's on-chip data
RAM.

Instruction Type is being Traced - A trace-fault is generated when the processor executes an
instruction selected for tracing in the TC register and tracing is enabled by the PC register trace
enable bit. See Chapter 8. Tracing and Debugging for a complete description.

Breakpoint Detected - A trace fault is generated when:

• The processor executes an instruction at an instruction pointer which matches one of the
programmed instruction-address breakpoints and trace faults are enabled.

• The processor issues a memory request that matches one of the programmed data-address
breakpoints and trace faults are enabled.

See Chapter 8, Tracing and Debugging for a complete discussion of the breakpoint registers.

7-15

•

FAULTS

Explicit Fault Generation

Two sets of instructions allow explicit fault generation anywhere in a program. The fault-if
instructions (faulte, faultne, fault), faultle, faultg, faultge, faulto, faultno) allow a fault to be
generated conditionally. When one of these instructions is executed, the processor checks the
AC register condition code bits then generates a constraint-range fault if the condition specified
with the instruction is met.

mark and fmark (force mark) instructions allow a breakpoint-trace fault to be generated
anywhere in the instruction stream.

Fault Controls

Certain fault types and subtypes have mask bits or flags associated with them that determine
whether or not a fault is generated when a fault condition occurs. Table 7.2 summarizes these
flags and masks, data structures in which they are located, fault subtypes they affect and where
more information about them may be found.

The integer overflow mask bit inhibits an integer overflow faults from being generated. The
use of this mask is discussed in the Fault Reference section at the end of this chapter.

The no-imprecise-faults (NIF) bit controls the synchronizing of faults for a category of faults
called imprecise faults. The function of this bit is described later in this chapter's section titled
Preci::>e and Imprecise Faults.

TC register trace mode bits and PC register trace enable bit support trace faults. Trace mode
bits enable trace modes; trace enable bit enables trace fault generation. The use of these bits is
described in the Fault Reference section on trace faults at the end of this chapter. Further
discussion of these flags is provided in Chapter 8, Tracing and Debugging.

7-16

FAULTS

Table 7.2. Fault Flags or Masks

Flag or Mask Name Location Faults Affected

Integer Overflow Mask Bit Arithmetic Controls Integer Overflow
(AC) Register

No Imprecise Faults Bit Arithmetic Controls All Imprecise Faults
(AC) Register

Trace Enable Bit Process Controls All Trace Faults
(PC) Register

Trace Mode Flags Trace Controls All Trace Faults
(TC) Register

Unaligned Fault Mask Process Control Block (PRCB) Unaligned fault

NOTE
The unaligned fault, unaligned fault mask and the processor control block are i960 CA processor
extensions to the i960 architecture.

The unaligned fault mask bit is located in the process control block (PRCB), which is read
during initialization. It controls whether unaligned memory accesses are handled by the
processor or generate a fault. (See Chapter 10, The Bus Controller.)

FAULT HANDLING ACTION

Once a fault occurs, the processor saves the program state; calls the fault handling procedure;
and restores the program state (if possible) once the fault recovery action is completed. No
software other than the fault handling procedures is required to support this activity.

Three different types of implicit procedure calls can be used to invoke the fault handling
procedure according to the information in the selected fault table entry: a local call, a system­
local call and a system-supervisor call.

The following sections describe actions the processor takes while handling faults. It is not
necessary to read these sections to use the fault handling mechanism or to write a fault
handling procedure. This discussion is provided for those readers who wish to know the details
of the fault handling mechanism.

Local Fault Call

When the selected fault handler entry in the fault table is an entry type 002 (local procedure),
the processor performs the same operation as is described in the section of Chapter 5,
Procedure Calls titled Call Operation, with the following exceptions:

• A new frame is created on the stack that the processor is currently using. The stack can be
the user stack, supervisor stack or interrupt stack.

7-17

•

FAULTS

• The fault record is copied into the area allocated for it in the stack, beginning at NFP-1.
(See Figure 7.4.)

• The processor gets the IP for the first instruction in the called fault handling procedure
from the fault table.

• The processor stores the fault return code (001 2) in the PFP return type field.

If the fault handling procedure is not able to perform a recovery action, it performs one of the
actions described in the section earlier in this chapter titled Program Resumption Following a
Fault.

If the handler action results in recovery from the fault, a ret instruction in the fault handling
procedure allows processor control to return to the program that was pending when the fault
occurred. Upon return, the processor performs the action described in the section of Chapter 5,
Procedure Calls titled Return Operation, except that the arithmetic controls field from the fault
record is copied into the AC register. Since the call made is local, the process controls field
from the fault record is not copied back to the PC register.

System-Local Fault Call

When the fault handler selects an entry for a local procedure in the system procedure table
(entry type 102), the processor performs the same action as is described in the previous section
for a local fault call or return. The only difference is that the processor gets the fault handling
procedure's address from the system procedure table rather than from the fault table.

System-Supervisor Fault Call

When the fault handler selects an entry for a supervisor procedure in the system procedure
table, the processor performs the same action described in the section of Chapter 5, Procedure
Calls titled Call Operation, with the following exceptions:

• If in user mode when the fault occurs: the processor switches to supervisor mode, reads the
supervisor stack pointer from the system procedure table and switches to the supervisor
stack. A new frame is then created on the supervisor stack.

• If in supervisor mode when the fault occurs: the processor creates a new frame on the
current stack. If the processor is executing a supervisor procedure when the fault occurred,
the current stack is the supervisor stack; if it is executing an interrupt handler procedure,
the current stack is the interrupt stack. (The processor switches to supervisor mode when
handling interrupts.)

• The fault record is copied into the area allocated for it in the new stack frame, beginning at
NFP-1. (See Figure 7.4.)

• The processor gets the IP for the first instruction of the fault handling procedure from the
system procedure table (using the index provided in the fault table entry).

• The processor stores the fault return code (001 2) in the PFP register return type field. If the
fault is not a trace fault, it copies the state of the system procedure table trace control flag
(byte 12, bit 0) into the PC register trace enable bit. If the fault is a trace fault, the trace
enable bit is cleared.

7-18

FAULTS

On a return from the fault handling procedure. the processor performs the action described in
the section of Chapter 5, Procedure Calls titled Return Operation. with the following
exceptions:

• The fault record arithmetic controls field is copied into the AC register. If the processor is
in supervisor mode p1ior to the return from the fault handling procedure (which it should
he), the fault record process controls field is copied into the PC register. (Restoring the PC
register restores the trace-fault-pending flag and trace enable hit values to their pre-fault
values.) Also. if the processor was in user mode when the fault occurred. the mode is set
back to user mode; otherwise, the processor remains in supervisor mode.

• The processor switches back to the stack it was using when the fault occurred. (If the
processor was in user mode when the fault occurred, this operation causes a switch from
lhe supervisor slack to the user stack.)

• If interrupts arc pending that arc higher than the priority of the program being returned to,
they arc handled as if the interrupt had occurred at this point. If the trace-fault-pending flag
and trace enable bit arc set, the trace fault is also handled at this time.

PC register restoration causes any changes to the process controls caused by the fault handling
procedure to be lost. In particular. if the ret instruction from the fault handling procedure
caused the PC register trace-fault-pending flag to be set, this setting would be lost upon return .

Faults and Interrupts

If an interrupt occurs during l) an instruction that will fault or 2) an instruction that has already
faulted or 3) during fault handling procedure selection, the processor handles the interrupt in
the following way: It completes the selection of the fault handling procedure, then services the
interrupt just prior to executing the first instruction of the fault handling procedure. The fault is
handled upon return from the interrupt. Handling the interrupt before the fault reduces interrupt
latency.

PRECISE AND IMPRECISE FAULTS

As described earlier in this chapter in the section titled Parallel Faults. the i960 architecture -
to support parallel and out-of-order instruction execution - allows some faults to he generated
together and not in sequence. When this situation occurs, it may be impossible to recover from
some faults, because the state of the instructions surrounding the faulting instruction has
changed or the RIP is unpredictable.

The processor provides two mechanisms for controlling the circumstances under which faults
arc generated: the AC regi~tcr no-imprecise-faults bit (NIF bit) and the synchronize-faults
instruction (sync(). The following paragraphs describe how these mechanisms can be used.

Faults are grouped into the following categories: precise, imprecise and asynchronous. Precise
faults are those intended to be software recoverable. For any instruction that can generate a
precise fault, the processor:

7-19

•

FAULTS

1. does not execute the instruction if an unfinished prior instruction will fault and

2. does not execute subsequent out-of-order instructions that will fault.

Also, the RIP points to an instruction where the processor can resume program execution
without breaking program control flow. Two faults are always precise: trace faults and
protection faults.

Imprecise faults are those where the architecture does not guarantee that sufficient information
is saved in the fault record to allow recovery from the fault. For imprecise faults, the faulting
instruction address is correct, but the state of execution of instructions surrounding the faulting
instruction may be unpredictable. Also, the architecture allows imprecise faults to be generated
out of order, which means that the RIP may not be of any value for recovery. Faults that the
architecture allows to be imprecise include:

• operation • arithmetic

• constraint • type

Refer to the Fault Reference section of this chapter to determine whether specific faults are
precise.

Asynchronous faults are those whose occurrence has no direct relationship to the instruction
pointer. The i960 architecture does not define any faults in this category and the i960 CA
processor generates no such faults.

The NIF bit controls imprecise fault generation. When this bit is set, all faults generated are
precise. This means the following conditions hold true:

l. All faults are generated in order.

2. A precise fault record is provided for each fault: the faulting instruction address is correct
and the RIP provides a valid reentry point into the program.

When the NIF bit is clear, imprecise faults are allowed to be generated: in parallel, out of order
and with an imprecise RIP. Here, the following conditions hold true:

l. When an imprecise fault occurs, the faulting instruction address in the fault record is valid,
but the saved IP is unpredictable.

2. If instructions are executed out of order and parallel faults occur, recovery from some
faults may not be possible because the faulting instruction's source operands may be
modified when subsequent instructions are executed out of order.

Controlling Fault Precision

The syncf instruction forces the processor to complete execution of all instructions that occur
prior to syncf and to generate all faults before it begins work on instructions that occur after
syncf. This instruction has two uses:

1. force faults to be precise when the NIF bit is clear.

2. ensure that all instructions are complete and all faults are generated in one block of code
before the execution of another block of code begins.

7-20

FAULTS

Compiled code should execute with the NIF bit clear, using syncf where necessary to ensure
that faults occur in order. In this mode, imprecise faults are considered as catastrophic errors
from which recovery is not needed.

The NIF bit should be set if recovery from one or more imprecise faults is required. For
example, the NIF bit should be set if a program needs to handle - and recover from -
unmasked integer-overtlow faults and the fault handling procedure cannot be closely coupled
with the application to perform imprecise fault recovery.

FAULT REFERENCE

This section describes each fault type and subtype and gives detailed information about what is
stored in the various fields of the fault record. The section is organized alphabetically by fault
type. The following paragraphs describe the information that is provided for each fault type
and the notation used.

Fault Type and Subtype

Function

RIP

Program State Changes

Gives the number which appears in the fault record fault-type
field when the fault is generated. The fault-subtype section lists
fault subtypes and number associated with each fault subtype.

Describes the purpose of fault type and fault subtype. It also
describes how the processor handles each fault subtype.

Describes the value saved in the RIP register of the stack frame
that the processor was using when the fault occurred.

Describes fault subtype effects on a program's control flow.

7-21

II

Arithmetic Faults

Fault Type:

Fault Subtype:

Function:

3H

Number
OH
lH
2H
3H-FH

FAULTS

Name
Reserved
Integer Overflow
Arithmetic Zero Divide
Reserved

Indicates problem with operand an arithmetic instruction result.
Integer overflow fault is generated when a result of integer
instruction overflows destination and AC register integer overflow
mask is cleared. Here, the result's n least significant bits are stored
in the destination, where n is destination size. Instructions that
generate this fault are:

addi subi
stib shli
muli divi

Arithmetic zero divide fault is generated when divisor operand of
ordinal or integer divide instruction is zero. Instructions that
generate this fault are:

divo divi
ediv remi
re mo

RIP: IP for next-executed instruction if fault had not occurred.

Program State Changes: Faults may be imprecise when executing with NIP bit cleared.
Integer overflow fault may not be recoverable because result is
stored in destination before fault is generated; e.g., faulting
instruction cannot be re-executed if destination register was also a
source register for the instruction. Arithmetic zero divide fault is
generated before execution of the faulting instruction.

7-22

intel®

Constraint Faults

Fault Type:

Fault Subtype:

Function:

SH

Number
OH
lH
2H
3H-FH

FAULTS

Name
Reserved
Constraint Range
Privileged
Reserved

Indicates program or procedure violated an architectural
constraint.

Constraint-range fault is generated when a fault-if instruction is
executed and AC register condition code field matches the
condition required by the instruction.

Privileged fault is also generated when program or procedure
attempts to use a privileged (supervisor-mode only) instruction
while processor is in user mode. Privileged instructions for the
i960 CA processor are:

sdma sysctl

RIP: No defined value.

Program State Changes: These faults may be imprecise when executing with NIF bit
cleared. No changes in program's control flow accompany these
faults. Constraint-range fault is generated after fault-if instruction
executes; program state is not affected. Privileged fault is
generated before faulting instruction executes.

7-23

•

Operation Faults

Fault Type:

Fault Subtype:

Function:

RIP:

2H

Number
OH
lH
2H
3H
4H
5H-FH

FAULTS

Name
Reserved
Invalid Opcode
Unimplemented
Unaligned
Invalid Operand
Reserved

Indicates processor cannot execute current instruction because of
invalid instruction syntax or operand semantics. Invalid-opcode
fault is generated when processor attempts to execute instruction
containing undefined opcode or addressing mode.

Unimplemented fault is generated when processor attempts to
execute an instruction fetched from on-chip data RAM.

Unaligned fault is generated when the following conditions are
present: (1) processor attempts to access an unaligned word or
group of words in memory and (2) fault is enabled by the
unaligned-fault mask bit in the PRCB fault configuration word.

The i960 CA processor handles unaligned accesses to little endian
regions of memory in microcode and carries out the access
regardless of unaligned-fault mask bit setting. Processor does not
support unaligned accesses to big endian regions; such attempts
result in incoherent data in memory. Enabling the unaligned fault
when using big endian byte ordering provides a means of detecting
unsupported unaligned accesses.

When an unaligned fault is signaled, the effective address of the
unaligned access is placed in the fault record optional data section,
beginning at address NFP-24. This address is useful to debug a
program that is making unintentional unaligned accesses.

Invalid-operand fault is generated when processor attempts to
execute an instruction for which one or more operands have
special requirements which are not satisfied. Fault is caused by
specifying non-existent SFR or non-defined sysctl and/or
references to an unaligned long-, triple- or quad-register group.

No defined value.

Program State Changes: Faults may be imprecise when executing with the NIF bit cleared.
A change in the program's control flow does not accompany
operation faults; faults occur before instruction execution.

7-24

Parallel Faults

Fault Type:

Fault Subtype:

Function:

RIP:

FAULTS

See the section titled Parallel Faults in this chapter.

Indicates that one or more faults occurred when processor was
executing instructions in parallel by different execution units. This
fault type can occur only when AC register NlF bit is cleared.

If parallel faults occur, the Number l1{ parallel faults field in the
fault record is a non-zero value, indicating the number of parallel
faults recorded. This field is located in the fault record at location
NFP-20.

A fault record is saved for each parallel fault detected. Information
contained in these records is the same as is described in this
section for specific fault types.

IP of instruction that would execute next if faults were not
generated.

Program State Changes: Precision of faults recorded in a parallel fault record depends on
fault types detected. A change in program's control flow may or
may not accompany parallel faults, depending on fault types
detected.

7-25

•

Protection Faults

Fault Type:

Fault Subtype:

Function:

RIP:

7H

Number
OH-lH
2H
3H-FH

FAULTS

Name
Reserved
Length
Reserved

Indicates program or procedure attempting to perform illegal
operation that the architecture protects against.

Length fault is generated when index operand used in a calls
instruction points to an entry beyond the extent of system
procedure table.

Same as the address-of-faulting-instruction field.

Program State Changes: This fault type is always precise, regardless of NIF bit value.
Change in program's control flow does not accompany length
fault; fault is generated before faulting instruction.

7-26

Trace Faults

Fault Type:

Fault Subtype:

Function:

lH

Number
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit S
Bit 6
Bit 7

FAULTS

Name
Reserved
Instruction Trace
Branch Trace
Call Trace
Return Trace
Prereturn Trace
Supervisor Trace
Breakpoint Trace

Indicates processor detected one or more trace events. Event
tracing mechanism is described in Chapter 8, Tracing and
Debugging.

A trace event is the occurrence of a particular instruction or
instruction type in the instruction stream. Processor recognizes
seven different trace events: instruction, branch, call, return,
prereturn, supervisor, breakpoint. It detects these events only if TC
register mode bit is set for the event. If PC register trace enable bit
is also set, processor generates a fault when trace event is detected.

A trace fault is generated following the instruction that causes a
trace event (or prior to the instruction for the prereturn trace
event). The following trace modes are available:

Instruction

Branch

Call

Return

Prereturn

Generates trace event following every instruction.

Generates trace event following any branch
instruction when branch is taken (branch trace
event does not occur on branch-and-link or call
instructions).

Generates trace event following any call or branch­
and-link instruction or any implicit procedure call
(i.e., fault- or interrupt-call).

Generates trace event following any ret
instruction.

Generates trace event prior to any ret instruction,
providing PFP register prereturn trace flag is set
(processor sets flag automatically when prereturn
tracing is enabled).

7-27

•

Supervisor

Breakpoint

FAULTS

Generates trace event following any calls
instruction that references a supervisor procedure
entry in the system procedure table and on a return
from a supervisor procedure where the return
status type in the PFP register is 0102 or 0112.

Generates a trace event following any processor
action that causes a breakpoint condition (such as a
mark or fmark instruction or a match of the
instruction-address breakpoint register or the data­
address breakpoint register).

Trace fault subtype and fault subtype field bits are associated with
each mode. Multiple fault subtypes can occur simultaneously; fault
subtype bit is set for each subtype that occurs.

When a fault type other than a trace fault is generated during
execution of an instruction that causes a trace event, non-trace
fault is handled before trace fault. An exception is prereturn-trace
fault, which occurs before processor detects a non-trace fault, so it
is handled first.

Similarly, if an interrupt occurs during an instruction that causes a
trace event, interrupt is serviced before trace fault is handled.
Again, preretum trace fault is an exception. Since it is generated
before the instruction, it is handled before any interrupt that occurs
during instruction execution.

Address of the faulting instruction field in the fault record contains
the IP for the instruction that causes the trace event, except for the
prereturn trace fault; this field has no defined value.

RIP: IP for the instruction that would have been executed next if the
fault had not occurred.

Program State Changes: This fault type is always precise, regardless NIF bit value. A
change in the program's control flow accompanies all trace faults
(except prereturn trace fault), because events that can cause a trace
fault occur after the faulting instruction is completed. As a result,
the faulting instruction cannot be re-executed upon returning from
the fault handling procedure.

Since the prereturn trace fault is generated before the ret
instruction is executed, a change in the program's control flow
does not accompany this fault and the faulting instruction can be
executed upon returning from the fault handling procedure.

7-28

Type Faults

Fault Type:

Fault Subtype:

Function:

RIP:

FAULTS

AH

Number
OH
1H
2H-FH

Name
Reserved
Type Mismatch
Reserved

Indicates a program or procedure attempted to perfom1 an illegal
operation on an architecture-defined data type or a typed data
structure. Type-mismatch fault is generated when attempts are
made to:

• Modify the PC register with modpc while procc~sor is in user
mode.

• Write to on-chip data RAM while processor is in user mode.

• Access a special function register while processor is in user
mode.

No defined value.

Program State Changes: These faults may be imprecise when executing with the NIF bit
cleared. A change in program's control flow docs not accompany
the type-mismatch fault because the fault occurs before execution
of the faulting instruction.

7-29

•

Tracing and Debugging 8

CHAPTER 8
TRACING AND DEBUGGING

This chapter describes the i960 CA processor's facilities for runtime activity monitoring.

The i960 architecture provides facilities for monitoring processor activity through trace event
generation. A trace event indicates a condition where the processor has just completed
executing a particular instruction or type of instruction or where the processor is about to
execute a particular instruction. When the processor detects a trace event, it generates a trace
fault and makes an implicit call to the fault handling procedure for trace faults. This procedure
can, in turn, call debugging software to display or analyze the processor state when the trace
event occurred. This analysis can be used to locate software or hardware bugs or for general
system monitoring during program development.

Tracing is enabled by the process controls (PC) register trace enable bit and a set of trace mode
bits in the trace controls (TC) register. Alternatively. the mark and fmark instructions can be
used to generate trace events explicitly in the instruction stream.

The i960 processor also provides four hardware breakpoint registers that generate trace events
and trace faults. Two registers arc dedicated to trapping on instruction execution addresses,
while the remaining two registers can trap on the addresses of various types of data accesses.

TRACE CONTROLS

To use the architecture's tracing facilities, software must provide trace fault handling
procedures, perhaps interfaced with a debugging monitor. Software must also manipulate the
following registers and control bits to enable the various tracing modes and enable or disable
tracing in general. These controls are described in the following sections.

• TC register mode bits

• PC register trace fault pending flag

• System procedure table supervisor­
stack-pointer field trace control bit

• IPBO-IPB 1 registers address field (in
the control table)

Trace Controls (TC) Register

• PC register trace enable bit

• PFP register return status field prereturn
trace flag (bit 0)

• BPCON register breakpoint mode bits
and enable bits (in the control table)

• DABO-DAB 1 registers address field
and enable bit (in the control table)

The TC register (Figure 8.1) allows software to define the conditions under which trace events
are generated.

8-1

II

TRACING AND DEBUGGING

TRACE-MODE BITS

INSTRUCTION TRACE MODE -TC.i --'-----------------------.

BRANCH TRACE MODE -TC.b -------------------------,

CALL TRACE MODE -TC.c -------------------------.

:~~~RRENT::~CTER~~~~~~~'- T-C-.p-_-:_---+::::!:::;!--.! j
SUPERVISOR TRACE MODE -TC.s -------------------.­

BREAKPOINT TRACE MODE - TC.br ------------------.

28 24 20 16

TRACE­

CONTROLS

REGISTER (TC)

d
1
f

d d
1 0
f f

i p
f

c b i
f f f

Uk. RACE-~2VENT FLAGS
8

~ INSTRUCTION - TC.if

BRANCH - TC.bf

CALL -TC.cf

RETURN - TC.rt

'--------- PRE-RETURN - TC.pf

'---------- SUPERVISOR - TC.st

'----------- BREAKPOINT -TC.brf

s p r c b i

4

HARDWARE BREAKPOINT-EVENT FLAGS

'------------- INSTRUCTION-BREAKPOINT 0 - TC.iOf

'-------------- INSTRUCTION-ADDRESS BREAKPOINT 1 - TC.i1f

'--------------- DATA-ADDRESS BREAKPOINT 0 -TC.dOI

--------------- DATA-ADDRESS BREAKPOINT 1 - TC.d1f

0

f:8 RESERVED LJ (INITIALIZE TO 0)

270710-002-13

Figure 8.1. Trace Controls (TC) Register

The TC register contains mode bits and event flags. Mode bits define a set of tracing conditions
that the processor can detect. For example, when the call-trace mode bit is set, the processor
generates a trace event whenever a call or branch-and-link operation executes. (Trace modes
are described later in this chapter's section titled Trace Modes.) The processor uses event flags
to keep track of which trace events have been generated.

A special instruction, the modify-trace-controls (modtc) instruction, allows software to modify
the TC register. On initialization, all TC register bits and flags are cleared. modtc can then be
used to set or clear trace mode bits as required. Software can also access event flags using
modtc; however, this is generally not necessary. The processor automatically sets and clears
these flags as part of its trace handling mechanism.

TC register bits 0, 8 through I 6 and 28 through 3 I are reserved. Software must initialize these
bits to zero and not modify them afterwards.

8-2

TRACING AND DEBUGGING

Trace Enable Bit and Trace-Fault-Pending Flag

The PC register trace enable bit and the trace-fault-pending flag control tracing. The trace
enable bit enables the processor's tracing facilities; when set, the processor generates trace
faults on all trace events.

Typically, software selects the trace modes to be used through the TC register. It then sets the
trace enable bit to begin tracing. This bit is also altered as part of some call and return
operations that the processor performs as described in this chapter's section titled Tracing and
Interrupt Procedures.

The trace-fault-pending flag allows the processor to track when a trace event is detected for an
enabled trace condition. The processor uses this flag as follows:

1. When the processor detects a trace event and tracing is enabled, it sets the flag.

2. Before executing an instruction, the processor checks the flag.

3. lfthe flag is set and tracing is enabled, it signals a trace fault.

By providing a means to record trace event occurrences, the trace-fault-pending flag allows the
processor to service an interrupt or handle a fault other than a trace fault before handling the
trace fault. Software should not modify this flag.

Trace Control on Supervisor Calls

The trace control bit allows tracing to be enabled or disabled when a call-system instruction
(calls) executes which results in a switch to supervisor mode. This action occurs independent
of whether or not tracing is enabled prior to the call. A supervisor call is a calls instruction that
references an entry in the system procedure table with an entry type I 02. When a supervisor
call executes, the processor:

1. Saves current PC register trace enable bit status in the PFP register return-type field bit 0.

2. Sets the PC register trace enable bit to the value of the trace control bit. The processor gets
the trace control bit from bit 0 of the supervisor stack pointer, which is cached during the
reset initialization sequence.

When the trace control bit is set, tracing is enabled on supervisor calls; when cleared, tracing is
disabled on supervisor calls. Upon return from the supervisor procedure, the FC register trace
enable bit is restored to the value saved in the PFP register return-type field.

TRACE MODES

This section defines trace modes enabled through the TC register. These modes can be enabled
individually or several modes can be enabled at once. Some modes overlap, such as call-trace
mode and supervisor-trace mode. The section later in this chapter titled Handling Multiple
Trace Events describes processor function when multiple trace events occur.

• Instruction trace • Branch trace • Breakpoint trace • Prereturn trace

• Call trace • Return trace • Supervisor trace

8-3

II

TRACING AND DEBUGGING

Instruction Trace

When the instruction-trace mode is enabled, the processor generates an instruction-trace event
each time an instruction executes. A debugging monitor can use this mode to single-step the
processor.

Branch Trace

When the branch-trace mode is enabled, the processor generates a branch-trace event any time
a branch instruction executes and the branch is taken. A branch-trace event is not generated for
conditional-branch instructions that do not branch or for branch-and-link, call or return
instructions.

Call Trace

When the call-trace mode is enabled, the processor generates a call-trace event any time a call
instruction (call, callx or calls) or a branch-and-link instruction (bal or balx) executes. An
implicit call - such as the action used to invoke a fault handling or an interrupt handling
procedure - also causes a call-trace event to be generated.

When the processor detects a call-trace event, it also sets the prereturn-trace flag (PFP register
bit 3) in the new frame created by the call operation or in the current frame if a branch-and-link
operation was performed. The processor uses this flag to determine when to signal a prereturn­
trace event on a ret instruction.

Return Trace

When the return-trace mode is enabled, the processor generates a return-trace event any time a
ret instruction executes.

Prereturn Trace

The prereturn-trace mode causes the processor to generate a prereturn-trace event prior to ret
execution, providing the PFP register prereturn-trace flag is set. (Prereturn tracing cannot be
used without enabling call tracing.) The processor sets the prereturn-trace flag whenever it
detects a call-trace event as described above for call-trace mode. This flag performs a
prereturn-trace-pending function.

If another trace event occurs at the same time as the prereturn-trace event, the processor
generates a fault on the non-prereturn-trace event first. Then, on a return from that fault
handler, it generates a fault on the prereturn-trace event. The prereturn trace is the only trace
event that can cause two successive trace faults to be generated between instruction boundaries.

8-4

TRACING AND DEBUGGING

Supervisor Trace

When supervisor-trace mode is enabled, the processor generates a supervisor-trace event when:

1. a call-system instruction (calls) executes, where the procedure table entry is for a system­
supervisor call

-or-

2. a ret instruction executes and the return-type field is set to 0 l 02 or 011 2 (i.e., return from
supervisor mode).

When these procedures are called with supervisor calls, this trace mode allows a debugging
program to determine kernel-procedure call boundaries within the instruction stream.

Breakpoint Trace

Breakpoint trace mode allows trace events to be generated at places other than those specified
with the other trace modes. This mode is used in conjunction with mark and fmark.

Software Breakpoints

mark and fmark allow breakpoint trace events to be generated at specific points in the
instruction stream. When breakpoint trace mode is enabled, the processor generates a
breakpoint trace event any time it encounters a mark. fmark causes the processor to generate a
breakpoint trace event regardless of whether or not breakpoint trace mode is enabled.

Hardware Breakpoints

The hardware breakpoint registers are provided to enable generation of trace events and trace
faults on instruction addresses and data access addresses.

Breakpoint trace events can be generated when the processor executes an instruction with an IP
that matches one of the addresses programmed into the two instruction breakpoint registers
(IPBO - IPB l). Each instruction address breakpoint may be enabled or disabled individually by
programming the two least significant bits in IPBO or IPB l. Figure 8.2 describes the instruction
address breakpoint registers.

8-5

II

TRACING AND DEBUGGING

INSTRUCTION-ADDRESS BREAKPOINT ENABLE - IPB.e -----------------.

1 (00) DISABLE
(11) ENABLE

INSTRUCTION ADDRESS ---------.

11111111111111111 11111111111111 ~ I ~I
28 24

INSTRUCTION-ADDRESS BREAKPOINT

REGISTERS (IPBO-IPB1)

20 16 12 4

270710-002-14

Figure 8.2. Instruction Address Breakpoint Registers (IPBO - IPB1)

Breakpoint trace events may also be generated when a memory access is issued which matches
conditions programmed in one of two data address breakpoint registers (DABO - DAB 1,
Figure 8.3). Each breakpoint register is programmed to fault when the address of an access
matches the breakpoint register and the access is one of four types: 1) any store, 2) any load or
store, 3) any data load or store or any instruction fetch or 4) any memory access.

DATA ADDRESS----------~

I 1111111111111111111111111111111
28 24

DATA-ADDRESS BREAKPOINT

REGISTERS (DABO-DAB1)

20 16 12 0

270710-001-22

Figure 8.3. Data Address Breakpoint Registers (DABO - DAB1)

The programmer configures the BPCON register to set the data address breakpoint mode which
corresponds to one of these access types (Figure 8.4). Each data address breakpoint may also
be enabled or disabled individually by programming the BPCON enable bits.

The instruction-address breakpoint, data-address breakpoint and breakpoint control registers
are on-chip control registers. These registers are loaded from the control table in memory at
initialization or may be modified using sysctl. Control registers are described in Chapter 2,
Programming Environment.

A breakpoint trace event is signalled when the processor attempts an access which is set for
detection (instruction or data breakpoint). Breakpoint trace is enabled by setting the appropriate
field in the IPBO, IPB 1 and BPCON registers. If breakpoint trace is enabled, the appropriate

8-6

TRACING AND DEBUGGING

TC register hardware breakpoint trace event flags are set. If tracing is enabled, a trace fault is
generated after the faulting instruction completes execution.

28 24 20 16 12 8 4 0

L--..JL____JL____JL--..J BHEAKPOINT
CONTROL REGISTER
(BPCON) ' 1 t '"'-'""" 0 '""''°'" '"'"'' -"'''""" (00) DISABLE

(11) ENABLE

DABO MODE (SEE TABLE)

'--------DATA-ADDRESS 1 BREAKPOINT ENABLE - BPCON.e1
(00) DISABLE
(11) ENABLE

~-------- DAB1 MODE (SEE TABLE)

D RESERVED
(INITIALIZE TO 0)

DATA-ADDRESS BREAKPOINT MODES

BREAK ON:

00 STORE ONLY
01 DATA ONLY (LOAD OR STORE)
10 DATA OR INSTRUCTION FETCH
11 ANY ACCESS

Figure 8.4. Hardware Breakpoint Control Register (BPCON)

SIGNALING A TRACE EVENT

270710-002-15

To summarize the information presented in the previous sections, the processor signals a trace
event when it detects any of the following conditions:

• An instruction included in a trace mode group executes or is about to execute (in the case
of a prcreturn trace event) and the trace mode for that instruction is enabled.

• An implicit call operation executed and the call-trace mode is enabled.

• A mark instruction executed and the breakpoint-trace mode is enabled.

• A fmark instruction executed.

• The processor is executing an instruction at an IP matching an enabled instruction address
breakpoint register.

• The processor has issued a memory access matching the conditions of an enabled data
address breakpoint register.

When the processor detects a trace event and the PC register trace enable bit is set, the
processor performs the following action:

l. The processor sets the appropriate TC register trace event flag. If a trace event meets the
conditions of more than one of the enabled trace modes, a trace event flag is set for each
trace mode condition that is met.

8-7

•

TRACING AND DEBUGGING

2. The processor sets the PC register trace-fault-pending flag. The processor may set a trace
event flag and trace-fault-pending flag before completing execution of the instruction that
caused the event. However, the processor only handles trace events between instruction
executions.

If - when the processor detects a trace event - the PC register trace enable bit is clear, the
processor sets the appropriate event flags but does not set the PC register trace-fault-pending
flag.

HANDLING MULTIPLE TRACE EVENTS

If the processor detects multiple trace events, it records one or more of them based on the
following precedence, where 1 is the highest precedence:

1. Supervisor-trace event

2. Breakpoint- (from mark or fmark instruction or from a breakpoint register), branch-, call­
or return-trace event

3. Instruction-trace event

When multiple trace events are detected, the processor may not signal each event; however, it
at least signals the one with the highest precedence.

TRACE FAULT HANDLING PROCEDURE

The trace fault handling procedure (which the processor calls when it detects a trace event) is a
type of fault handling procedure. General requirements for fault handling procedures are given
in Chapter 7, Faults.

The trace fault handling procedure is involved in a specific way and is handled slightly
different than other faults. A trace fault handler must be involved with an implicit system­
supervisor call. When the call is made, the PC register trace enable bit in is cleared. This
disables trace faults when the trace fault handler is executing. Recall that, for all other implicit
or explicit system-supervisor calls, the trace enable bit is replaced with the system procedure
table trace control bit. The exceptional handling of trace enable for trace faults ensures that
tracing is turned off when a trace fault handling procedure is being executed. This is necessary
to prevent an endless loop of trace fault handling calls.

TRACE HANDLING ACTION

Once a trace event is signaled, the processor determines how to handle the trace event,
according to the PC register trace enable bit and trace fault pending flag settings and to other
events that might occur simultaneously with the trace event, such as an interrupt or non-trace
fault. Subsections that follow describe how the processor handles trace events for various
situations.

8-8

TRACING AND DEBUGGING

Normal Handling of Trace Events

Prior to executing an instruction, the processor performs the following action regarding trace
events:

1. The processor check~ the state of the trace fault pending flag:

a. If clear, the processor begins execution of the next instruction.

b. If set, the processor performs the following actions.

2. The processor checks the PC register trace enable bit state:

a. If clear, the processor clears any trace event flags that are set prior executing the next
instruction.

b. If set, the processor signals a trace fault and begins fault handling action as described
in Chapter 7, Faults.

Prereturn Trace Handling

The processor handles a prereturn trace event the same as described above except when it
occurs at the same time as a non-trace fault. In this case, the non-trace fault is handled first. On
returning from the fault handler for the non-trace fault, the processor checks the PPP register
prereturn trace flag. If set, the processor generates a prereturn trace event, then handles it as
described above.

Tracing and Interrupt Procedures

When the processor invokes an interrupt handling procedure to service an interrupt, it disables
tracing. It does this by saving the PC register's current state, then clearing the PC register trace
enable bit and trace fault pending flag.

On returning from the interrupt handling procedure, the processor restores the PC register to
the state it was in prior to handling the interrupt, which restores the trace enable bit and trace
fault pending flag states. If these two flags were set prior to calling the interrupt procedure, a
trace fault is signaled on return from the interrupt procedure.

NOTE
On a return from an interrupt handling procedure, the trace fault pending flag is restored. lf this
flag was set as a result of the interrupt procedure's ret instruction (i.e., indicating a return trace
event), the detected trace event is lost. This is also true on a return from a fault handler, when the
fault handler has been called with an implicit supervisor call.

8-9

II

Instruction Set Reference 9

CHAPTER 9
INSTRUCTION SET REFERENCE

This chapter provides detailed information about each instruction the processor uses.
Instructions are listed alphabetically by assembly language mnemonic. Format and notation
used in this chapter are defined in the following section titled Notation.

INTRODUCTION

Information in this chapter is oriented toward programmers who write assembly language code
for the processor. The information provided for each instruction includes the following:

• Alphabetic reference - instructions are • Assembly language mnemonic, name and
listed alphabetically format

• Description of the instruction's operation • Action (or algorithm) and other side
effects of executing an instruction

• Faults that can occur during execution • Assembly language example

• Opcode and instruction encoding format • Related instructions

Additional information about the instruction set can be found in the following chapters and
appendices in this manual:

• Chapter 4, Instruction Set Summary - Summarizes the instruction set by group and
describes the assembly language instruction format.

• Appendix D, Instruction Set Reference - Describes instruction set opword encodings. A
quick-reference listing of instruction encodings is also provided to assist debug with a logic
analyzer.

• Instruction Set Quick Reference - Contains a tabular quick reference of each instruction's
operation and side-effects.

NOTATION

In general, notation in this chapter is consistent with usage throughout the manual; however,
there are a few exceptions. Read the following subsections to understand notations that are
specific to this chapter.

Alphabetic Reference

Instructions are listed alphabetically by assembly language mnemonic. If several instructions
are related and fall together alphabetically, they are described as a group on a single page.

The instruction's assembly language mnemonic is shown in bold at top of page (e.g., subc).
Occasionally, it is not practical to list all mnemonics at the page top. In these cases, the name
of the instruction group is shown in capital letters (e.g., BRANCH or FAULT IF).

9-1

INSTRUCTION SET REFERENCE

The i960 CA component-specific extensions to the i960 microprocessor instruction set are
indicated with a box around the instruction's alphabetic reference. The following i960 CA
device's instructions are such extensions:

eshro sdma

sysctl udma

Instruction set extensions are generally not portable to other i960 family implementations.

Mnemonic

The Mnemonic section gives the mnemonic (in boldface type) and instruction name for each
instruction covered on the page, for example:

subi Subtract Integer

CTRL and COBR format instructions also allow the programmer to specify optional .t or .f
mnemonic suffixes for branch prediction:

• .t indicates to the processor that the condition for which the instruction is testing is likely to
be true.

• .f indicates that the condition is likely to be false.

The processor uses the programmer's prediction to prefetch and decode instructions along the
most likely execution path when the actual path is not yet known. If the prediction was wrong,
all actions along the incorrect path are undone and the correct path is taken. For further
discussion, see Appendix A, Optimizing Code for the i960 CA Microprocessor.

When the programmer provides no suffix with an instruction which supports a suffix, the
assembler makes its own prediction.

When an instruction supports prediction, the mnemonic listing includes the notation { .tl.f} to
indicate the option, for example:

be{ .tl.f} Branch If Equal

Format

The Format section gives the instruction's assembly language format and allowable operand
types. Format is given in two or three lines. The following is a two line format example:

sub* srcl,
reg/lit/sfr

src2,
reg/lit/sfr

dst
reg/sfr

9-2

INSTRUCTION SET REFERENCE

The first line gives the assembly language mnemonic (boldface type) and operands (italics).
When the format is used for two or more instructions, an abbreviated form of the mnemonic is
used. An * (asterisk) in the mnemonic indicates a variable: in the above example, sub* is either
subi or subo.

Operand names are designed to describe operand function (e.g., src, len, mask).

The second line shows allowable entries for each operand. Notation is as follows:

reg Global (gO ... g15) or local (rO ... rl5) register

lit Literal of the range 0 ... 31

sfr Special Function Register (sfO ... sf2)

disp Signed displacement of range -222] ... (2221 - 1)

efa Address defined with the full range of addressing modes

targ A relative offset or displacement to the target of instruction. Usually
specified as a label in assembly code.

NOTE
For future implementations, the i960 architecture will allow up to a total of 32 Special Function
Registers (SFRs). However, sfO, sfl and sf2 are the only SFRs implemented on the i960 CA
processor.

In some cases, a third line is added to show register or memory location contents. For example,
it may be useful to know that a register is to contain an address. The notation used in this line is
as follows:

addr

disp

Description

Address

Displacement

The Description section is a narrative description of the instruction's function and operands. It
also gives programming hints when appropriate.

Action

The Action section gives an algorithm written in a pseudo-code that describes direct effects and
possible side effects of executing an instruction. Algorithms document the instruction's net
effect on the programming environment; they do not necessarily describe how the processor
actually implements the instruction. For example, shli requires seven lines of pseudo-code to
completely describe its function. Although it might appear from the algorithm that the
instruction should take multiple clocks to execute, the i960 CA processor executes the
instruction in a single clock.

9-3

II

INSTRUCTION SET REFERENCE

The following is an example of the action algorithm for the alterbit instruction:

if ((AC.eel = 0) = 0)
dst f- src and not (2A(bitpos mod 32));
else dst f- src or (2A(bitpos mod 32));

In these action statements, the term AC.cc refers to the AC register condition code field;
AC.eel means bit 1 of this field. The symbol "A" indicates an exponent; for example:
2A(bitpos mod 32) is equivalent to 2(bitpos mod 32).

Table 9.1 defines each abbreviation used in the instruction reference pseudo-code. Table 9.2
explains the symbols used in the pseudo-code.

NOTE

Since special function registers (sfr) may change independent of instruction execution, the
following distinctions are important when interpreting the algorithm of any instruction which
references a sfr.

I. When a source operand is a sfr and referenced more than once in an algorithm, the operand's
value at every reference is the same as the first reference. In other words, the instruction
operates as if the sfr was actually read only once, at the beginning of the instruction.

2. When the same sfr is specified as the source for multiple operands of the same instruction, the
instruction operates as if the source sfr was actually read only once, at the beginning of the
instruction. When either source operand appears in the action algorithm, the single operand
value is used.

3. When a sfr is specified as a destination and the algorithm indicates more than one
modification of the destination, the instruction operates as if the sfr were written only once, at
the end of the instruction.

9-4

INSTRUCTION SET REFERENCE

Table 9.1. Abbreviations in Pseudo-code

AC.xxx Arithmetic Controls Register fields

AC.cc Condition Code tlags (AC.cc2:0J

AC.ccO Condition Code Bit 0

AC.eel Condition Code Bit 1

AC.cc2 Condition Code Bit 2

AC.nif No Imprecise Faults flag

AC.of Integer Overf1ow flag

AC.om Integ.er Overflow Mask Bit

PC.xxx Process Controls Register fields

PC.em Execution Mode flag

PC.s State Flag

PC.tfp Trace Fault Pending flag

PC.p Priority Field (PC.p5:0)

PC.te Trace Enable Bit

TC.xxx Trace Controls Register fields

TC.i Instruction Trace Mode Bit

TC.c Call Trace Mode Bit

TC.p Pre-return Trace Mode Bit

TC.hr Breakpoint Trace Mode Bit

TC.b Branch Trace Mode Bit

TC.r Return Trace Mode Bit

TC.s Supervisor Trace Mode Bit

TC.if Instruction Trace Event flag

TC.cf Call Trace Event flag

TC.pf Pre-return Trace Event flag

TC.brf Breakpoint Trace Event flag

TC.bf Branch Trace Event flag

TC.rf Return Trace Event flag

TC.sf Su_2,ervisor Trace Event fla_g_

PFP.xxx Previous Frame Pointer (r0)

PFP.add Address (PFP.add3 l :4)

PFP.rt Return Type Field (PFP.rt2:0)

PFP~ Pre-return Trace fl~

~ Stack Pointer (r l)

fp_ Frame Pointer (g_l 5)

ri.2_ Return Instruction Pointer (r2)

SPT System Procedure Table

SPT.base Supervisor Stack Base Address
SPT(ta!K) Address of SPT EntJ_)'_ tai:g_

9-5

INSTRUCTION SET REFERENCE

Table 9.2. Pseudo-code Symbol Definitions

f-- Assignment

=,# Comparison: equal, not equal

<,> less than, greater than

:<::;, :2'. less than or equal to, greater than or equal to

<<,>> Logical Shift
A Exponentiation

and,or, Bitwise Logical Operations

not, xor

mod Modulo

+, - Addition, Subtraction

* Multiplication (Integer or Ordinal)

I Division (Integer or Ordinal)

.. Comment delimiter

memory() Memory access of specified width
memory_ { bytelshortlwordllongltriplelquad} ()
memory() Width implied by context

Faults

The Faults section lists faults that can be signaled as a direct result of instruction execution.
Two possible faulting conditions are common to the entire instruction set and could directly
result from any instruction. These fault types are abbreviated in the instruction reference.

Fault Type

Trace

Operation

Subtype/Description

Instruction. An Instruction Trace Event is signaled after instruction
completion. A Trace fault is generated if both PC.te and TC.i=l.
Breakpoint. A Breakpoint Trace Event is signaled after completion
of an instruction for which there is a hardware breakpoint condition
match and TC.br is set. A Trace fault is generated if PC.te and
TC.br are both=l.

Unimplemented. An attempt to execute any instruction fetched from
internal data RAM causes an operation unimplemented fault.

9-6

intel INSTRUCTION SET REFERENCE

Three possible faulting conditions are common to large subsets of the instruction set:

Fault Type

Type

Operation

Subtype/Description

Mismatch. Any instruction that references a special function register
while not in supervisor mode causes a type mismatch fault.

Mismatch. Any instruction that attempts to write to internal data
RAM while not in supervisor mode causes a type mismatch fault.

Unimplemented. Any instruction that causes an unaligned memory
access causes an operation unimplemented fault if unaligned faults
arc not masked in the Processor Control Block (PRCB).

Other instructions can generate faults in addition to above faults. If an instruction can generate
a fault. it is noted in the Faults section of the instruction reference.

Example

The Example section gives an assembly language example of an application of the instruction.

Opcode and Instruction Format

The Opcode and Instruction Format section gives the opcode and instruction encoding format
for each instruction. for example:

subi 593H REG

The opcode is given in hexadecimal format. The instruction encoding format is one of four
possible formats: REG. COBR. CTRL and MEM. Refer to Appendix D, Instruction Set
Reference for more information on the formats.

See Also

The See Also section gives the mnemonics of related instructions which are also alphabetically
listed in this chapter.

INSTRUCTIONS

This section contains reference information on the processor's instructions. It is arranged
alphabetically by instruction or instruction group.

9-7

addc
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

addc

addc

Add Ordinal With Carry

srcl,
reg/lit/sfr

src2,
reg/lit/sfr

dst
reg/sfr

Adds src2 and srcl values and condition code bit 1 (used here as a
carry in) and stores the result in dst. If the ordinal addition results in a
carry, condition code bit 1 is set; otherwise, bit 1 is cleared. If integer
addition results in an overflow, condition code bit 0 is set; otherwise,
bit 0 is cleared. Regardless of addition results, condition code bit 2 is
always set to 0.

addc can be used for ordinal or integer arithmetic. addc does not
distinguish between ordinal and integer source operands. Instead, the
processor evaluates the result for both data types and sets condition
code bits 0 and l accordingly.

An integer overflow fault is never signaled with this instruction.

dst ~ src2 + srcl +AC.eel;
AC.ccO ~ OCV2;
V = l if integer addition would have generated an overflow.
V = 0 otherwise

C is carry out of the ordinal addition of src 2 and src 1

Trace

Operation

Type

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

#Example of double-precision arithmetic
#Assume 64-bit source operands
#in gO,gl and g2,g3
cmpo 1, 0 #clears Bit 1 (carry bit) of

#the AC.cc
addc gO, g2, gO #add low-order 32 bits;

gO ~ g2 + gO + Carry Bit
addc gl, g3, gl #add high-order 32 bits;

addc 5BOH

g 1 ~ g3 + g 1 + Carry Bit
64-bit result is in gO, gl

REG

addi, addo, subc, subi, subo

9-8

addi, addo
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

ad di
ad do

Add Integer
Add Ordinal

add* srcl,
reg/I it/sfr

src2,
reg/litlsfr

dst
reg/sfr

Adds src2 and src1 values and stores the result in dst.

dst <:-- src2 + src1;

Trace

Operation

Type

Arithmetic

addi r4, gS, r9

addi 591H
addo 590H

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a :·,Ji".

integer Overflow. Result too large for destination
register (addi only). If overflow occurs and
AC.om =I, fault is suppressed and AC.io is set to
I. Least significant 32-bits of the result are stored
in dst.

r9 <:-- gS + r4

REG
REG

addc, subi, subo, subc

9-9

alterbit
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

alterbit Alter Bit

alterbit bitpos, src,
reg/lit/sfr reg/lit/sfr

dst
reg/sfr

Copies src value to dst with one bit altered. bitpos operand specifies bit
to be changed; condition code determines value to which the bit is set.
If condition code bit 1 = 1, selected bit is set; otherwise, it is cleared.

if (AC.ccl=O) dst f- src and not (2"(bitpos mod 32));
else dst f- src or 2"(bitpos mod 32);

Trace

Operation

Type

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

#assume AC.cc = 0102
alterbit 24, g4, g9 # g9 f- g4, with bit 24 set

alterbit 58FH REG

chkbit, clrbit, notbit, setbit

9-10

intel® INSTRUCTION SET REFERENCE

and, andnot
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

and And
andnot And Not

and srcl, src2. dst
reg/lit/sfr reg/I it/sfr reg/sfr

and not srcl, src2. dst
reg/lit/sfr reg/lit/sfr reg/sfr

Performs a bitwise AND (and instruction) or AND NOT (andnot
instruction) operation on src2 and srcl values and stores result in dst.
Note in the action expressions below, src2 operand comes first, so that
with the andnot instruction the expression is evaluated as:

{src2 andnot (srcl)}
rather than

{src 1 andnot (src2)}.

and: dst f- src2 and srcl;

andnot: dst f- src2 and not (srcl);

Trace

Operation

Type

and Ox 17, g8, g2
andnot r3, rl2, r9

and
andnot

581H
582H

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a ,1:fi·.

g2 f- g8 AND Ox17
r9 f- rl2 AND NOT r3

REG
REG

nand,nor,not,notand,notor,or,ornot,xnor,xor

9-11

II

atadd
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

atadd Atomic Add

atadd dst,
reg/sfr
addr

src,
reg/lit/sfr

src!dst
reg/sfr

Adds src value (full word) to value in the memory location specified
with src!dst operand. Initial value from memory is stored in dst.

Memory read and write are done atomically (i.e., other processors must
be prevented from accessing the quad-word of memory containing the
word specified by src/dst operand until operation completes).

Memory location in src!dst is the word's first byte (LSB) address.
Address is automatically aligned to a word boundary. (Note that src!dst
operand maps to srcl operand of the REG format.)

tempa ~ src!dst and not(Ox3); #force alignment to word boundary

temp~ memory_word (tempa); #LOCK asserted at begin of read

memory_ word (tempa) ~ temp + src; #ordinal addition

dst ~temp;

Trace

Operation

Type

atadd r8, r2, r11

atadd 612H

atmod

LOCK deasserted after
memory write completes

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a ~fr.

And/or non-supervisor attempt to write to internal
data RAM.

r8 ~ r2 +address r8, where r8
specifies the address of a word
#in memory;
r1 l ~ initial value, stored at
address r8 in memory

REG

9-12

at mod
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

atmod

atmod

Atomic Modify

src/dst
reg/sfr
addr

mask,
reg/lit/sfr

src!dst
reg

Moves selected bits of .midst value into memory location specified in
src. Bits set in mask operand select bits to be modified in memory.
Initial value from memory is stored in src/dst.

Memory read and write are done atomically (i.e., other processors must
be prevented from accessing the quad-word of memory containing the
word specified with the src!dst operand until operation completes).

Memory location in src is the modified word's first byte (LSB)
address. Address is automatically aligned to a word boundary.

tempa f- src and not (Ox3); #force alignment to word boundary
temp f- memory_word(tempa); #LOCK asserted at

beginning of memory read
memory_word(tempa) f- (src!dst and mask) or (temp and not(mask));
LOCK deasserted after the memory write completes
src/dst f- temp;

Trace

Operation

Type

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a .~/i·
and/or non-supervisor attempt to write to internal
data RAM.

atmod g5, g7, glO # g5 f- g5 masked by g7, where g5

atmod

atadd

specifies the address of a word in memory;
g 10 f- initial value, stored at
address g5 in memory

610H REG

9-13

•

INSTRUCTION SET REFERENCE

b,bx
Mnemonic: b Branch

bx Branch Extended

Format: b targ
disp

bx efa
addr

efa:

(reg) disp + 8(1P) disp [reg* scale]

offset disp (regl) [reg2 *scale]

offset (reg) disp (reg) disp (reg 1) [reg 2 *scale]

Description:

Action:

Faults:

Branches to the specified target.

With the b instruction, IP specified with targ operand can be no farther
than -223 to (223 - 4) bytes from current IP. When using the Intel i960
family assembler, targ operand must be a label which specifies target
instruction's IP.

bx performs the same operation as b except the target instruction can
be farther than -223 to (223 - 4) bytes from current IP. Here, the target
operand is an effective address, which allows the full range of
addressing modes to be used to specify target instruction's IP. The "IP
+ displacement" addressing mode allows instruction to be IP-relative.
Indirect branching can be performed by placing target address in a
register then using a register-indirect addressing mode.

Refer to Chapter 3, Data Types and Memory Addressing Modes for a
complete discussion of the addressing modes.

b:
bx:

Trace

Operation

IP ~ IP + displacement; # resume execution at new IP
IP ~ efa; #resume execution at new IP

Instruction. Branch. Breakpoint.
Instruction and Branch Trace Events are signaled
after instruction completion. Trace fault is
generated if PC.te=l and TC.i or TC.b=l.

Unimplemented. Execution from on-chip data
RAM.

Operand. Invalid operand value encountered.
(bx only)

9-14

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

b xyz
bx 1330 (ip)

b
bx

08H
84H

Opcode. Invalid operand encoding encountered
(bx only).

#IP f- xyz:
IP f- IP + 8 + L\30:
#this example uses ip-relative addressing

CTRL
MEM

bal, balx, BRANCH IF, COMPARE AND BRANCH, bbc, bbs

9-15

II

bal, balx
Mnemonic:

Format:

efa:

(reg)

offset

bal
balx

bal

balx

INSTRUCTION SET REFERENCE

Branch And Link
Branch And Link Extended

targ
disp

efa,
addr

dst
reg

disp + 8(IP)

disp

disp [reg* scale]

(regl) [reg2 * scale]

offset (reg) disp (reg) disp (reg 1) [reg 2 *scale]

Description:

Action:

Faults:

Stores address of instruction following bal or balx then branches to
specified target.

With bal, address of next instruction is stored in register g14. targ
operand value can be no farther than -223 to (223 - 4) bytes from
current IP. When using the Intel i960 family assembler, targ must be a
label which specifies target instruction's IP.

balx performs same operation as bal except next instruction address is
stored in dst. With balx, target instruction can be farther than -223 to
(223 - 4) bytes from current IP. Here, the target operand is efa, which
allows full range of addressing modes to be used to specify target IP.
"IP + displacement" addressing mode allows instruction to be IP­
relative. Indirect branching can be performed by placing target address
in a register and then using a register-indirect addressing mode.

Refer to Chapter 3, Data Types and Addressing Modes for a complete
discussion of addressing modes.

bal: g14 f-- IP+ 4; #next IP destination is always gl4
IP f-- IP + displacement; # resume execution at new IP

balx: dst f-- IP + inst length;
IP f-- efa;

instruction length is 4 or 8 bytes
resume execution at the new IP

Trace Instruction . Branch. Breakpoint.

9-16

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

Operation

bal xyz

balx (g2), g4

bal
balx

OBH
85H

Instruction and Branch Trace Events are signaled
after instruction completion. Trace fault is
generated if PC.te=l and TC.i or TC.br=l.

Unimplemented. Execution from on-chip data
RAM.

Operand. Invalid operand value encountered.

Opcode. Invalid operand encoding encountered.

#IP~xyz;

#IP~ (g2);
address of return instruction is stored in g4;
example of indirect addressing.

CTRL
MEM

b, bx, BRANCH IF, COMPARE AND BRANCH, bbc, bbs

9-17

•

bbc,bbs
Mnemonic:

Format:

Description:

INSTRUCTION SET REFERENCE

bbc[.tl.fJ
bbs{.tl.fJ

bb*{.tl.f}

Check Bit and Branch If Clear
Check Bit and Branch If Set

bitpos,
reg/lit

src,
reg/sfr

targ
disp

Checks bit in src (designated by bitpos) and sets AC register condition
code according to src value. Processor then pe1forms conditional
branch to instruction specified with targ, based on condition code state.

Optional .tor .f suffix may be appended to mnemonic. Use .t to speed­
up execution when these instructions usually take the branch; use .f to
speed-up execution when these instructions usually do not take the
branch. If suffix is not provided, assembler is free to provide one.

For bbc, if selected bit in src is clear, the processor sets condition code
to 0102 and branches to instruction specified with targ; otherwise, it
sets condition code to 0002 and goes to next instruction.

For bbs, if selected bit is set, the processor sets condition code to 0102
and branches to targ; otherwise, it sets condition code to 0002 and goes
to next instruction.

targ can be no farther than -212 to (212 - 4) bytes from current IP.
When using the Intel i960 family assembler, targ must be a label which
specifies target instruction's IP.

9-18

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

bbc:

bbs:

Trace

Operation

Type

if ((.1rc and 211(bitpos mod 32)) = 0)
{

IP (----IP+ 4 + (&1placcme111 * 4):
#resume execution at new IP

f
else AC.cc (---- 0002:
#resume execution at next IP

if ((.1-rc and 211(hitpos mod 32)) = I)
{
AC.cc (---- 0102:
IP (---- IP+ 4 + (displacement ':' 4);
#resume execution at new IP
)

else AC.cc (---- 0002:
#resume execution at next IP

Instruction. Branch (if taken). Breakpoint.
Instruction and Branch Trace Events arc signaled
after instruction completion. Trace fault ts
generated if PC.te= 1 and TC.i or TC.b=I.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a .1:fi·.

#assume bit 10 of r6 i~ clear
bbc I 0. r6. xyz #bit I 0 of r6 is checked

and found clear:
#AC.cc (---- 010

bbc
bbs

30H
37H

#IP (---- xyz;

COBR
COBR

chkbit, b, bx bal, balx, COMPARE AND BRANCH. bbc, bbs,
BRANCH IF

9-19

•

INSTRUCTION SET REFERENCE

BRANCH IF
Mnemonic:

Format:

Description:

be{ .tl.f}
bne{.tl.f}
bl { .tl.f}
hie{ .tl.f}
bg{.tl.f}
bge{ .tl.f}
ho{ .tl.f}
bno{.tl.f}

b* { .tl.f}

Branch If Equal/True
Branch If Not Equal
Branch If Less
Branch If Less Or Equal
Branch If Greater
Branch If Greater Or Equal
Branch If Ordered
Branch If Unordered/False

targ
<lisp

Branches to instruction specified with targ operand according to AC
register condition code state.

Optional.tor .f suffix may be appended to mnemonic. Use .t to speed­
up execution when these instructions usually take the branch; use .f to
speed-up execution when these instructions usually do not take the
branch. If a suffix is not provided, assembler is free to provide one.

For all branch-if instructions except bno, the processor branches to
instruction specified with targ, if the logical AND of condition code
and mask-part of opcode is not zero. Otherwise, it goes to next
instruction.

For bno, the processor branches to instruction specified with targ if
logical AND of condition code and mask-part of opcode is zero.
Otherwise, it goes to next instruction.

For instance, bno (unordered) can be used as a branch-if false
instruction when coupled with chkbit. For bno, branch is taken if
condition code equals 0002. be can be used as branch-if true
instruction.

NOTE

bo and bno are used by implementations that include floating point
coprocessor for branch operations involving real numbers. bno can be
used as branch-if-false instruction when used after chkbit. be can be
used as branch-if-true instruction when following chkbit.

targ value or absolute addresses can be no farther than -223 to (223 - 4)
bytes from current IP. When using the Intel i960 family assembler, targ
must be a label which specifies target instruction's IP.

The following table shows condition code mask for each instruction.
The mask is in opcode bits 0-2.

9-20

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

Instruction Mask Condition

bno 0002 Unordered

bg 0012 Greater

be 0102 Equal

bge 0112 Greater or equal

bl 1002 Less

bne 1012 Not equal

hie 1102 Less or equal

ho 11 I 2 Ordered

For all instructions except boo:

bno:

Trace

Operation

if ((mask and AC.cc) -t:- 0002) IP~ IP+ displacement;
#resume execution at new IP

else: #resume execution at next IP

if (AC.cc = 0002) IP ~ IP+ displacement;
#resume execution at new IP

else #resume execution at next IP

Instruction. Branch (if taken). Breakpoint.
Instruction and Branch Trace Events are signaled
after instruction completion. Trace fault is
generated if PC.te= l and TC.i or TC.b= I.

Unimplemented. Execution from on-chip data
RAM.

#assume (AC.cc AND l 002J -t:- 0
bl xyz #IP~ xyz:

be 12H CTRL
bne 15H CTRL
bl 14H CTRL
ble 16H CTRL
bg llH CTRL
bge 13H CTRL
ho 17H CTRL
bno lOH CTRL

b, bx, bbc, bbs, COMPARE AND BRANCH, bal, balx, BRANCH IF

9-21

•

call
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

call

call

Call

targ
disp

Calls a new procedure. targ operand specifies the IP of called
procedure's first instruction. When using the Intel i960 family
assembler, targ must be a label. ·

In executing this instruction, the processor performs a local call
operation as described in Local Calls section of Chapter 5, Procedure
Calls. As part of this operation, the processor saves the set of local
registers associated with the calling procedure and allocates a new set
of local registers and a new stack frame for the called procedure.
Processor then goes to the instruction specified with targ and begins
execution.

targ can be no farther than -223 to (223 - 4) bytes from current IP.

wait for any uncompleted instructions to finish;
temp f- (SP+ OxlO) and not (Oxf); #round to next boundary,
memory(FP) f- rO: 15; #these accesses are cached in
RIPf- next IP #local register cache
PFP f- FP;
PFP.rt f- 0002;
FP f- temp;
SP f- temp + 64;
IP f- IP + displacement;

Trace

Operation

call xyz

call 09H

bal, calls, callx

Instruction. Call. Breakpoint.
Instruction and Call Trace Events are signaled
after instruction completion. Trace fault is
generated if PC.te=l and TC.i orTC.c is=l.

Unimplemented. Execution from on-chip data
RAM.

#IP f- xyz

CTRL

9-22

calls
Mnemonic:

Format:

Description:

Action:

calls

calls

INSTRUCTION SET REFERENCE

Call System

src
reg/lit/sfr

Calls a system procedure. targ specifies called procedure· s number.
For calls, the processor performs system call operation described in
System Calls section of Chapter 5, Procedure Calls. targ provides an
index to a system procedure table entry from which the processor gets
the called procedure's IP.

The called procedure can be a local or supervisor procedure, depending
on system procedure table entry type. If it is a supervisor procedure.
the processor switches to supervisor mode (if not already in this mode).

Processor also allocates a new set of local registers and new stack
frame for called procedure. If the processor switches to supervisor
mode, the new stack frame is created on the supervisor stack.

if (src> 259) Protection-length fault;
wait for any uncompleted instructions to finish;
temp_entry ~ memory_word(SPT(src));
SPT(src) is the address of the system procedure table entry targ.
RIP ~ next IP;
if ((temp_entry.type =local) or (PC.em= supervisor))

{ # no stack switch required
#round to next boundary,

temp_FP ~(SP+ OxlO) and not(Oxf);
temp_rt ~ 0002; #return type is local

else
)

stack switch to supervisor stack
#required; read supervisor

temp_FP ~ memory_word(cached(SPT);

stack pointer
set return type to supervisor

if (PC.te = 0) temp_rt ~ 0 I 02;

else temp_rt ~ 0112;

PC.em ~ supervisor;
#Trace enable bit of the supervisor
PC.te ~ temp_FP.T;
#stack pointer is written to PC.te
}

9-23

with trace disabled
#with trace enabled

II

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

These accesses are cached in the local register cache.
memory(FP) f- rO: 15
PFPf-FP;
PFP.ft f- temp_rt;
FP f- temp_FP;
SP f- temp_FP + 64;
IP f- temp_entry and not (Ox3);

Trace

Operation

Type

Protection

calls rl2

calls 660H

bal, call, callx

Instruction. Call. Supervisor. Breakpoint.
Instruction, Call and Supervisor Trace Events are
signaled after instruction completion. Trace fault
is generated if PC.te=l and TC.i, TC.c or TC.s=l.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a ~fr.

Length. Specified a system procedure number
greater than 259.

IP f- value obtained from
procedure table for procedure
#number given in r12

REG

9-24

cal Ix
Mnemonic: callx

Format: callx

efa:

(reg)

offset

INSTRUCTION SET REFERENCE

Call Extended

efa
addr

disp + S(lP)

disp

disp [reg * s<.:ale]

(regl) [reg2 * srnle]

offset (reg) disp (reg) disp (reg l) [reg 2 * scale]

Description:

Action:

Calls new procedure. efa specifies IP of called procedure's first
instruction.

In executing callx, the processor performs a local call as described in
local Calls section of Chapter 5, Procedure Calls. As part of this
operation, the processor allocates a new set of local registers and a new
stack frame for the called procedure. Processor then goes to the
instruction specified with efa and begins execution of new procedure.

callx performs the same operation as call except the target instruction
can be farther than -223 to (223 - 4) bytes from current IP.

efa is an effective address, which allows the full range of addressing
modes to be used to specify target instruction's IP. The "IP +
displacement" addressing mode allows the instruction to be IP-relative.
Indirect calls can be performed by placing the target address in a
register and then using a register-indirect addressing mode.

Refer to Chapter 3, Data Tvpes and Memory Addressing Modes for a
complete discussion of addressing modes.

wait for any uncompleted instru<.:tions to finish;
temp~ (SP+ Ox IO) and not (Oxf); #round to next boundary
RIP ~ next IP;
memory(FP) ~ rO: 15 #these accesses are cached in

local register cache
PFP~FP;

PFP.rt ~ 0002
FP ~temp;
SP ~ temp + 64;
IP~ efa;

9-25

II

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

Trace

Operation

callx (g5)

callx 86H

call, calls, bal

Instruction. Call. Breakpoint.
Instruction and Call Trace Events are signaled
after instruction completion. Trace fault is
generated if PC.te=l and TC.i or TC.c=l.

Unimplemented. Execution from on-chip data
RAM.

Operand. Invalid operand value encountered.

Opcode. Invalid operand encoding encountered.

IP f- (g5), where the address
in g5 is the address of the new procedure

MEM

9-26

ch kb it
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

chkbit

chkbit

Check Bit

hitpos.
reg/lit/sfr

src
reg/lit/sfr

Checks bit in src designated by bitpos and sets condition code
according to value found. If bit is set, condition code is set to 0 I 02; if
bit is clear, condition code is set to 0002.

if ((src and 2"(hitpos mod 32)) = 0) AC.cc~ 0002;
else AC.cc~ 0102:

Trace

Operation

Type

chkbit 13, g8

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a .~fr.

checks bit 13 in g8 and
sets AC.cc according to the result

chkbit 5AEH REG

alterbit, clrbit, notbit, setbit, cmpi, cmpo

9-27

•

clrbit
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

cir bit

clrbit

Clear Bit

bitpos,
reg/lit/sfr

src,
reg/lit/sfr

dst
reg/sfr

Copies src value to dst with one bit cleared. bitpos operand specifies
bit to be cleared.

dst ~ src and not(2"(bitpos mod 32));

Trace

Operation

Type

clrbit 23, g3, g6

clrbit 58CH

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

g6 ~ g3 with bit 23 cleared

REG

alterbit, chkbit, notbit, setbit

9-28

INSTRUCTION SET REFERENCE

cmpdeci, cmpdeco
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

cmpdeci
cmpdeco

Compare and Decrement Integer
Compare and Decrement Ordinal

cmpdec* srcl, src2,
reg/lit/sfr reg/lit/sfr

dst
reg/sfr

Compares src2 and srcl values and sets condition code according to
comparison results. src2 is then decremented by one and result is
stored in dst. The following table shows condition code setting for the
three possible results of the comparison.

Condition Code Comparison

1002 srcl < src2

0102 srcl = src2

0012 srcl > src2

These instructions are intended for use in ending iterative loops. For
cmpdeci, integer overflow is ignored to allow looping down through
the minimum integer values.

if (src 1 < src2) AC.cc f- 1002;
else if (srcl = src2) AC.cc f- 0 I 02;

else AC.cc f- 0012;
dst f- src2 - l; #overflow suppressed for cmpdeci instruction

Trace

Operation

Type

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

cmpdeci 12, g7, gl #compares g7 with 12 and sets
#AC.cc to indicate the result;
gl f- g7 - 1

cmpdeci
cmpdeco

5A7H
5A6H

REG
REG

cmpinco, cmpo, cmpi, cmpinci, COMPARE AND BRANCH

9-29

II

INSTRUCTION SET REFERENCE

cmpi, cmpo
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

cm pi Compare Integer
cm po Compare Ordinal

cmp* srcl, src2
reg/lit/sfr reg/lit/sfr

Compares src2 and srcl values and sets condition code according to
comparison results. The following table shows condition code settings
for the three possible comparison results.

Condition Code Comparison

1002 srcl < src2

0102 srcl = src2

0012 srcl > src2

cmpi followed by a branch-if instruction is equivalent to a compare­
integer-and-branch instruction. The latter method of comparing and
branching produces more compact code; however, the former method
can result in faster running code if used to take advantage of pipelining
in the architecture. Same is true for cmpo and the compare-ordinal­
and-branch instructions.

if (src I < src2) AC.cc (- l 002;
else if (srcl = src2) AC.cc (- 0 I 02;

else AC.cc (- 0012;

Trace

Operation

Type

cmpo r9, OxlO

bg xyz

cm pi
cm po

5AlH
5AOH

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

compares the value in r9 with Ox 10
and sets AC.cc to indicate the result
#branches to xyz if the value of r9
was greater than Ox 10

REG
REG

COMP ARE AND BRANCH, cmpdeci, cmpdeco,cmpinci, cmpinco,
concmpi, concmpo

9-30

INSTRUCTION SET REFERENCE

cmpinci, cmpinco
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

cmpinci
cmpinco

Compare and Increment Integer
Compare and Increment Ordinal

cmpinc* srcl, src2,
rcg/lit/sfr

dst
reg/sfr reg/lit/sfr

Compares src2 and srcl values and sets condition code according to
comparison results. src2 is then incremented by one and result is stored
in dst. The following table shows condition code settings for the three
possible comparison results.

Condition Code Comparison

1002 srcl < src2

0102 srcl = src2

0012 srcl > src2

These instructions are intended for use in ending iterative loops. For
cmpinci, integer overflow is ignored to allow looping up through the
maximum integer values.

if (srcl < src2) AC.cc~ 1002;
else if (srcl = src2) AC.cc~ 0102;

else AC.cc~ 0012;
dst ~ src2 + I; #overflow suppressed for cmpinci instruction

Trace

Operation

Type

Instruction. Breakpoint.

U11imple111c11ted. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of as.fr..

cmpinco r8, g2, g9 #compares the values in g2 and

cmpinci
cmpinco

r8 and sets AC.cc to indicate the result;
g9 ~ g2 + 1

SASH
SA4H

REG
REG

cmpdeco, cmpo, cmpi, cmpdeci, COMPARE AND BRANCH

9-31

•

INSTRUCTION SET REFERENCE

COMPARE AND BRANCH
Mnemonic:

Format:

Description:

cmpibe{ .tl.f}
cmpibne { .tl.f}
cmpibl { .tl.f}
cmpible{ .tl.f}
cmpibg{ .tl.f}
cmpibge{ .tl.f}
cmpibo{ .tl.f}
cmpibno{.tl.f}

cmpobe{ .tl.f}
cmpobne{ .tl.f}
cmpobl { .tl.f}
cmpoble{ .tl.f}
cmpobg{ .tl.f}
cmpobge{ .tl.f}

cmpib* { .tl.f}

cmpob* {.ti.fl

Compare Integer And Branch If Equal
Compare Integer And Branch If Not Equal
Compare Integer And Branch If Less
Compare Integer And Branch If Less Or Equal
Compare Integer And Branch If Greater
Compare Integer And Branch If Greater Or Equal
Compare Integer And Branch If Ordered
Compare Integer And Branch If Not Ordered

Compare Ordinal And Branch If Equal
Compare Ordinal And Branch If Not Equal
Compare Ordinal And Branch If Less
Compare Ordinal And Branch If Less Or Equal
Compare Ordinal And Branch If Greater
Compare Ordinal And Branch If Greater Or
Equal

srcl, src2, targ
reg/lit reg/sfr disp

srcl, src2, targ
reg/lit reg/sfr disp

Compares src2 and srcl values and sets AC register condition code
according to comparison results. If logical AND of condition code and
mask-part of opcode is not zero, the processor branches to instruction
specified with targ; otherwise, the processor goes to next instruction.

Optional.tor .f suffix may be appended to mnemonic. Use .t to speed­
up execution when these instructions usually take the branch. Use .f to
speed-up execution when these instructions usually do not take the
branch. If suffix is not provided, assembler is free to provide one.

targ can be no farther than -212 to (212 - 4) bytes from current IP.
When using the Intel i960 family assembler, targ must be a label which
specifies target instruction's IP.

The following table shows the condition-code mask for each
instruction. The mask is in bits 0-2 of the opcode.

9-32

Action:

Faults:

INSTRUCTION SET REFERENCE

Instruction Mask Branch Condition

cmpibno 0002 No Condition

cmpibg 0012 srcl > src2

cmpibe 0102 srcl = src2

cmpibge 0112 srcl ~ src2

cmpibl 1002 srcl < src2

cmpibne 1012 srcl :/.: src2

cmpible 1102 srcl:::;; src2

cmpibo 1112 Any Condition

cmpobg 0012 srcl > src2

cm po be 0102 srcl = src2

cmpobge 0112 src1 ~ src2

cm po bl 1002 srcl < src2

cmpobne 1012 srcl :/.: src2

cmpoble 1102 src1 ~ src2

NOTE

cmpibo always branches; cmpibno never branches.

Functions that these instructions perform can be duplicated with a cmpi
or cmpo followed by a branch-if instruction, as described in this
chapter for the cmpi and cmpo instructions.

if (src I < src2) AC.cc ~ 1002;
else if (srcl = src2) AC.cc ~ 0102;

else AC.cc~ 0012;
if ((mask and AC.cc) :t 0002) IP~ IP+ 4 +(displacement* 4);

resume execution at the new IP
else IP ~ IP + 4; #resume execution at the next IP

Trace

Operation

Type

Instruction. Branch (if taken). Breakpoint.
Instruction and Branch Trace Events are signaled
after instruction completion. Trace fault is
generated if PC.te=l and TC.i or TC.br=l.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

9-33

•

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

assume g3 < g9
cmpibl g3, g9, xyz # g9 is compared with g3;

#IP~ xyz.
#assume 19 ~ r7
cmpobge 19, r7, xyz # 19 is compared with r7

#IP~ xyz.

cmpibe
cmpibne
cm pi bl
cmpible
cmpibg
cmpibge
cmpibo
cmpibno
cm po be
cmpobne
cmpobl
cmpoble
cmpobg
cmpobge

3AH
3DH
3CH
3EH
39H
3BH
3FH
38H
32H
35H
34H
36H
31H
33H

COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR

BRANCH IF, cmpi, cmpo, bal, balx

9-34

INSTRUCTION SET REFERENCE

concmpi, concmpo
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

concmpi Conditional Compare Integer
concmpo Conditional Compare Ordinal

concmp* srcl,
reg/lit/sfr

src2
reg/lit/sfr

Compares src2 and src 1 values if condition code bit 2 is not set. If
comparison is performed, condition code is set according to
comparison results. Otherwise, condition codes are not altered.

These instructions are provided to facilitate bounds checking by means
of two-sided range comparisons (e.g., is A between B and C?). They
are generally used after a compare instruction to test whether a value is
inclusively between two other values.

The example below illustrates this application by testing whether g3
value is between g5 and g6 values, where g5 is assumed to be less than
g6. First a comparison (cmpo) of g3 and g6 is performed. If g3 is less
than or equal to g6 (i.e., condition code is either 0102 or 0012), a
conditional comparison (concmpo) of g3 and g5 is then performed. If
g3 is greater than or equal to g5 (indicating that g3 is within the bounds
of g5 and g6), condition code is set to 0102; otherwise, it is set to 0012.

if (AC.cc2 = 0)
{
if (srcl ;;::: src2) AC.cc f-- 0102;
else AC.cc f-- 0012;
} ;

Trace

Operation

Type

cmpo g6, g3

concmpo g5, g3

concmpi
con cm po

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

compares g6 and g3 and
#sets AC.cc
#if AC.cc i:- lXX,
g5 is compared with g3

5A3H
5A2H

REG
REG

cmpo, cmpi, cmpdeci, cmpdeco, cmpinci, cmpinco, COMPARE
AND BRANCH

9-35

II

divi, divo
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

di vi
divo

div*

Divide Integer
Divide Ordinal

srcl,
reg/lit/sfr

src2,
reg/lit/sfr

dst
reg/sfr

Divides src2 value by srcl value and stores quotient of the result in dst.
Remainder (if any) is discarded.

For divi, an integer-overflow fault can be signaled.

if (src2 = 0) Arithmetic Zero Divide fault;
dst f-- quotient(src2 I srcl);
src2, srcl and dst are 32-bits

Trace

Operation

Type

Arithmetic

divo r3, r8, rl 3

di vi
divo

74BH
70BH

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

Zero Divide. The srcl operand is 0.
Integer Ovetflow. Result too large for destination
register (divi only). If overflow occurs and
AC.om=l, fault is suppressed and AC.io is set to
l. Result's least significant 32-bits are stored in
dst.

rl 3 f-- r8/r3

REG
REG

ediv, mulo, muli, emul

9-36

ediv
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

ediv

ediv

Extended Divide

src],
reg/lit/sfr

src2,
reg/lit/sfr

dst
reg/sfr

Divides src2 by srcl and stores result in dst. The src2 value is a long
ordinal (64 bits) contained in two adjacent registers. src2 specifies the
lower numbered register which contains operand's least significant
bits. src2 must be an even numbered register (i.e., rO, r2, r4, ... or gO,
g2, ... or sfO, sf2, ...). srcl value is a normal ordinal (i.e., 32 bits).

The result consists of a one-word remainder and a one-word quotient.
Remainder is stored in the register designated by dst; quotient is stored
in the next highest numbered register. dst must be an even numbered
register (i.e., rO, r2, r4, ... or gO, g2, ... or sfO. sf2, ...).

This instruction performs ordinal arithmetic.

If this operation overflows (quotient or remainder do not fit in 32-bits),
no fault is raised and the result is undefined.

if (src2=0) Arithmetic Zero Divide fault;
dst ~ (src2 - (src2 I srcl) * srcl); #remainder
dst + l ~ (src2 I srcl); #quotient
src2 is 64-bits; srcl, dst and dst+ 1 are 32-bits

Trace

Operation

Type

Arithmetic

ediv g3, g4, glO

ediv 671H

emul, divi, divo

instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfi·.

Zero Divide. The srcl operand is 0.

glO ~remainder of g4,g5/g3
gl 1 ~quotient of g4,g5/g3

REG

9-37

II

emu I
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

emul

emul

INSTRUCTION SET REFERENCE

Extended Multiply

srcl,
re g/li tis fr

src2,
reg/lit/sfr

dst
reg/sfr

Multiplies src2 by srcl and stores the result in dst. Result is a long
ordinal (64 bits) stored in two adjacent registers. dst specifies lower
numbered register, which receives the result's least significant bits. dst
must be an even numbered register (i.e., rO, r2, r4, ... or gO, g2, ... or
sfO, sf2, ...).

This instruction performs ordinal arithmetic.

dst ~ src2 * srcl; # srcl and src2 are 32-bits; dst is 64-bits.

Trace Instruction. Breakpoint.

Operation

Type

emul r4, r5, g2

emul 670H

ediv, muli, mulo

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

g2,g3 ~ r4 * r5

REG

9-38

leshro I
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

eshro

eshro

INSTRUCTION SET REFERENCE

Extended Shift Right Ordinal

srcl,
reg/lit/sfr

src2,
reg/lit/sfr

dst
reg/sfr

Shifts src2 right by (src I mod 32) places and stores the result in dst.
Bits shifted beyond the least-significant bit are discarded.

src2 value is a long ordinal (i.e., 64 bits) contained in two adjacent
registers. src2 operand specifies the lower numbered register, which
contains operand's least significant bits. src2 operand must be an even
numbered register (i.e .. rO. r2. r4 or gO, g2, ... or sfO. sf2, ...).

srcl operand is a single 32-bit register where the lower 5-bits specify
the number of places that the src2 operand is to be shifted.

The shift operation result's least significant 32 bits is stored in dst.

dst ~ src2 >> (.1Tcl mod 32);
src2 is 64 bits. srcl and dst are 32 bits

Trace

Operation

Type

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

eshro g3, g4. g 11 # gl I ~ g4.5 shifted right by (g3 MOD 32)

eshro 5D8H REG

SHIFT, extract

9-39

extract
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

extract

extract

Extract

bitpos,
reg/lit/sfr

Zen,
reg/lit/sfr

src/dst
reg

Shifts a specified bit field in src/dst right and zero fills bits to left of
shifted bit field. bitpos value specifies the least significant bit of the bit
field to be shifted; Zen value specifies bit field length.

src!dst ~ (src!dst J2A (bitpos mod 32)) and (2A(fen - 1);

Trace

Operation

Type

extract 5, 12, g4

extract 651H

modify

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

g4 f- g4 with bits 5 through 16 shifted right

REG

9-40

FAULT IF
Mnemonic:

Format:

Description:

Action:

INSTRUCTION SET REFERENCE

faulte{ .tl.f} Fault If Equal
faultne{ .tl.f} Fault If Not Equal
fault) { .tl.f} Fault If Less
faultle{ .tl.f} Fault If Less Or Equal
faultg { . tl.f} Fa ult If Greater
faultge{ .tl.f} Fault If Greater Or Equal
faulto{ .tl.f} Fault If Ordered
faultno{ .ti.fl Fault If Not Ordered

fault* { .tl.f}

Raises a constraint-range fault if the logical AND of the condition code
and opcode's mask-part is not zero. For faultno (unordered), fault is
raised if condition code is equal to 0002.

Optional .t or .f suffix may be appended to the mnemonic. Use .t to
speed-up execution when these instructions usually fault; use .f to
speed-up execution when these instructions usually do not fault. If a
suffix is not provided, the assembler is free to provide one.

faulto and faultno are provided for use by implementations with a
floating point coprocessor. They are used for compare and branch (or
fault) operations involving real numbers.

The following table shows the condition-code mask for each
instruction. The mask is opcode bits 0-2.

Instruction Mask Condition

faultno 0002 Unordered

faultg 0012 Greater

faulte 0102 Equal

faultge 0112 Greater or equal

faultl 1002 Less

faultne 1012 Not equal

faultle 1102 Less or equal

faulto 1112 Ordered

For all instructions except faultno:
if ((mask and AC.cc) =F- 0002) Constraint-range fault;

faultno:
if (AC.cc=0002) Constraint-range fault;

9-41

•

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

Trace

Operation

Constraint

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Range. If condition being tested is true.

#assume (AC.cc AND 1102) - 0002
faultle # Constraint Range Fault is generated

faulte lAH CTRL
faultne IDH CTRL
fault! lCH CTRL
faultle lEH CTRL
faultg 19H CTRL
faultge lBH CTRL
faulto lFH CTRL
faultno 18H CTRL

BRANCH IF, TEST

9-42

flush reg
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

INSTRUCTION SET REFERENCE

flushreg Flush Local Registers

flushreg

Copies the contents of every cached register set. except the current set,
to its associated stack frame in memory. The entire register cache is
then marked as purged (or invalid). On a return to a stack frame for
which the local registers are not cached, the processor reloads the
locals from memory.

flushreg is provided to allow a compiler or applications program to
circumvent the processor's normal call/return mechanism. For
example, a compiler may need to go back several frames in the stack
on the next return, rather than using the normal return mechanism that
returns one frame at a time. Since the local registers of an unknown
number of previous stack frames may be cached, a flushreg must be
executed prior to modifying the PFP to return to a frame other than the
one directly below the current frame.

Write all cached local register sets - except the current set - to
memory; Invalidate the local register cache.

Trace

Operation

Type

flushreg

flushreg 66D

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor attempt to write to
internal data RAM.

REG

9-43

fmark
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SE"E REFERENCE

fmark· Force Mark

fmark

Generates a breakpoint trace event. Causes a breakpoint trace event to
be generated, regardless of breakpoint trace mode flag setting,
providing the PC register trace enable bit (bit 0) is set.

When a breakpoint trace event is detected, the PC register trace-fault­
pending flag (bit 10) and the TC register breakpoint-trace-event flag
(bit 23) are set. Then, a breakpoint-trace fault is generated before the
next instruction executes.

For more information on trace fault generation, refer to Chapter 7,
Faults.

if (PC.te=l)
{
PC.tfp f-- 1;
TC.bte f-- 1;
Trace Breakpoint trace fault
}

Trace

Operation

ld xyz, r4
addi r4, r5, r6
fmark

Instruction. Breakpoint. Instruction and
Breakpoint Trace Events are signaled after
instruction completion. Trace fault is generated if
PC.te=l.

Unimplemented. Execution from on-chip data
RAM.

Breakpoint trace event is generated at
this point in the instruction stream.

fmark 66CH REG

mark

9-44

INSTRUCTION SET REFERENCE

LOAD
Mnemonic: Id Load

ldob Load Ordinal Byte
ldos Load Ordinal Short
ldib Load Integer Byte
I dis Load Integer Short
ldl Load Long
ldt Load Triple
ldq Load Quad

Format: Id* efa, dst
addr reg

efa:

(reg) disp + 8(IP) disp [reg * scale]

offset disp (regl) [reg2 *scale]

offset (reg) disp (reg) disp (reg I) [reg 2 * scale]

Description: Copies byte or byte string from memory into a register or group of
successive registers.

efa specifies the address of first byte to be loaded. The full range of
addressing modes may be used in specifying efa. (Refer to Chapter 3
section titled Addressing Modes for description of addressing modes.)

dst specifies a register or the first (lowest numbered) register of
successive registers.

ldob and ldib load a byte and ldos and ldis load a half word and
convert it to a full 32-bit word. Data being loaded is sign-extended
during integer loads and zero-extended during ordinal loads.

Id, ldl, ldt and ldq instructions copy 4, 8, 12 and 16 bytes, respectively,
from memory into successive registers.

For ldl, dst must specify an even numbered register (e.g., gO, g2, ... or
rO, r2, ...).For ldt and ldq, dst must specify a register number that is a
multiple of four (e.g., gO, g4, g8, ... or rO, r4, r8, ...). Results are
unpredictable if registers are not aligned on the required boundary or if
data extends beyond register gl5 or r15 for ldl, ldt or ldq.

9.45

•

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

Id:
ldob:
ldos:
ldib:
ldis:
ldl:
ldt:
ldq:

Trace

Operation

dst f- memory_word (efa);

dst f- memory_byte (efa) zero-extended to 32 bits;
dst f- memory_short (efa) zero-extended to 32 bits;
dst f- memory_byte (efa) sign-extended to 32 bits;
dst f- memory_short (efa) sign-extended to 32 bits;
dst f- memory_long (efa);

dst f- memory_triple (efa);

dst f- memory_quad (efa);

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Unimplemented. An unaligned efa was referenced;
unaligned support was disabled.

Operand. Invalid operand value encountered.

Opcode. Invalid opcode encoding encountered.

ldl 2450 (r3), rlO # rlO, rl I f- r3 + 2450 in memory

Id 90H MEM
ldob 80H MEM
ldos 88H MEM
ldib COH MEM
I dis C8H MEM
ldl 98H MEM
ldt AOH MEM
ldq BOH MEM

MOVE, STORE

9-46

INSTRUCTION SET REFERENCE

Ida
Mnemonic: Ida Load Address

Format: Ida efa, dst
reg

efa:

(reg) disp + 8(IP) disp [reg * scale I

offset disp (reg I) [reg2 * scale]

offset (reg) disp (reg) disp (reg I) [reg 2 * scale]

Description:

Action:

Faults:

Example:

Opcode: Ida

Computes the effective address (efa) and stores it in dst. Computed
value is not checked for validity. Any addressing mode may be used to
calculate efa.

An important application of this instruction is to load a constant longer
than 5 bits into a register. (To load a register with a constant of 5 bits or
less, mov can be used with a literal as the src operand.)

dst ~ efa;

Trace

Operation

Ida 58 (g9), gl

Ida Ox749, r8

SCH MEM

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Operand. Invalid operand value encountered.

Opcode. Invalid opcode encoding encountered.

g l ~effective address of g9 + 58

r8 ~constant Ox749

9.47

•

mark
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

mark Mark

mark

Generates breakpoint trace event if breakpoint trace mode is enabled.
Breakpoint trace mode is enabled if the PC register trace enable bit (bit
0) and the TC register breakpoint trace mode bit (bit 7) are set.

When a breakpoint trace event is detected, the PC register trace-fault­
pending flag (bit 10) and the TC register breakpoint-trace-event flag
(bit 23) are set. Then, before the next instruction is executed, a
breakpoint trace fault is generated.

If breakpoint trace mode is not enabled, mark behaves like a no-op.

For more information on trace fault generation, refer to Chapter 8,
Tracing and Debugging.

if((PC.te=l) and (TC.br=l))
{

Trace

Operation

PC.tfp ~ 1;
TC.bte ~ l;
Trace Breakpoint trace fault;
}

Instruction. Breakpoint (if enabled).
Instruction and Breakpoint Trace Events are
signaled after instruction completion. Trace fault
is generated if PC.te=l and TC.i or TC.br=l.

Unimplemented. Execution from on-chip data
RAM.

Assume that the breakpoint trace mode is enabled.
ld xyz, r4
addi r4, r5, r6
mark
Breakpoint trace event is generated at this point
in the instruction stream.

mark 66BH REG

fmark, modpc, modtc

9-48

modac
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

modac

modac

Modify AC

1nask,
reg/lit/sfr

src.
reg/lit/sfr

dst
reg/sfr

Reads and modifies the AC register. src contains the value to be placed
in the AC register; mask specifies bits that may be changed. Only bits
set in mask are modified. Once the AC register is changed, its initial
state is copied into dst.

temp~ AC

AC~ (src and mask) or (AC and not (mask));

dst ~temp;

Trace

Operation

Type

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a ~:fr.

modac gl, g9, g12 #AC~ g9, masked by gl

gl2 ~initial value of AC

modac 645H REG

modpc, modtc

9-49

II

modi
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

modi

modi

INSTRUCTION SET REFERENCE

Modulo Integer

srcl,
reg/lit/sfr

src2,
reg/lit/sfr

dst
reg/sfr

Divides src2 by srcl, where both are integers and stores the modulo
remainder of the result in dst. If the result is nonzero, dst has the same
sign as srcl.

if (src I= 0) Arithmetic Zero Divide fault;
dst f- src2 - ((src2/srcl) * srcl);
if ((src2 * srcl < 0) and (dst 7= 0)) dst f- dst + srcl;
srcl, src2 and dst are 32 bits

Trace

Operation

Type

Arithmetic

modi r9, r2, r5

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a ~fr.

Zero Divide. The srcl operand is 0.

r5 f- modulo (r2/r9)

modi 749H REG

divi, divo, remi

9-50

modify
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

modify Modify

modify mask, src, src!dst
reg/lit/sfr rcg/lit/sfr reg

Modifies selected bits in src!dst with bits from src. The mask operand
selects the bits to be modified: only bits set in the mask operand are
modified in .midst.

srcldst f- (src and nwsk) or (srcldst and not (mask));

Trace

Operation

Type

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a ~fr.

modify g8, glO, r4 # r4 f- glO masked by g8

modify 650H REG

alterbit, extract

Q-51

•

mod pc
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION"SET REFERENCE

mod pc

mod pc

Modify Process Controls

src,
reg/lit/sfr

mask,
reg/lit/sfr

src!dst
reg

Reads and modifies the PC register as specified with mask and src!dst.
src/dst operand contains the value to be placed in the PC register; mask
operand specifies bits that may be changed. Only bits set in the mask
are modified. Once the PC register is changed, its initial value is copied
into src/dst. The src operand is a dummy operand that should specify a
literal or the same register as the mask opera~d.

The processor must be in supervisor mode to use this instruction with a
non-zero mask value. If mask=O, this instruction can be used to read the
process controls, without the processor being in supervisor mode.

If the action of this instruction results in processor priority being
lowered, the interrupt table is checked for pending interrupts.

Changing the PC register reserved fields can lead to unpredictable
behavior as described in Chapter 2, Programming Environment.

if ((mask :;t: 0)
{
if (PC.em :;t: supervisor)) Type-mismatch fault;
tempt- PC;
PC t- (mask and src!dst) or (PC and not (mask));

src!dst t- temp;
if (temp.p > PC.p) check_pending_interrupts;
}

else src/dst t- PC;

Trace

Operation

Type

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data RAM.

Mismatch. Non-supervisor reference of a sfr.

Mismatch. Attempted to execute instruction with non­
zero mask value while not in supervisor mode.

modpc g9, g9, g8

mod pc 655H

modac, modtc

process controls t- g8 masked by g9

REG

9-52

modtc
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

modtc

modtc

Modify Trace Controls

mask,
reg/lit/sfr

src,
reg/lit/sfr

dst
reg/sfr

Reads and modifies TC register as specified with mask and src. The src
operand contains the value to be placed in the TC register; mask
operand specifies bits that may be changed. Only bits set in mask are
modified. mask must not enable modification of reserved bits. Once the
TC register is changed, its initial state is copied into dst.

The changed trace controls may take effect immediately or may be
delayed. If delayed, the changed trace controls may not take effect until
after the first non-branching instruction is fetched from memory or
after four non-branching instructions are executed.

For more information on the trace controls, refer to Chapter 7, Faults
and Chapter 8, Tracing and Debugging.

temp ~TC;
TC~ (mask and src) or (temp and not(mask));

dst ~temp;

Trace

Operation

Type

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

modtc gl2, glO, g2 #trace controls~ glO masked by
g 12; previous trace controls stored in g2

modtc 654H REG

modac, modpc

9-53

•

MOVE
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION sei: REFERENCE

mov Move
movl Move Long
movt Move Triple
movq Move Quad

mov* src, dst
reg/lit/sfr reg/sfr

Copies the contents of one or more source registers (specified with src)
to one or more destination registers (specified with dst).

For movl, movt and movq, src and dst specify the first (lowest
numbered) register of several successive registers. src and dst registers
must be even numbered (e.g., gO, g2, ... or rO, r2, ... or sfO, sf2, ...) for
movl and an integral multiple of four (e.g., gO, g4, ... or rO, r4, ... or
sfO, sf4, ...) for movt and movq.

The moved register values are unpredictable when: 1) the src and dst
operands overlap; 2) registers are not properly aligned.

dst (-- src;

Trace

Operation

Type

movt g8, r4

mov
movl
movt
movq

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

r4, r5, r6 (-- g8, g9, glO

5CCH REG
5DCH REG
5ECH REG
5FCH REG

LOAD, STORE, Ida

9-54

muli, mulo
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

muli
mulo

mul*

Multiply Integer
Multiply Ordinal

srcl,

reg/lit/sfr
src2,

reg/lit/sfr
dst

reg/sfr

Multiplies the src2 value by the src 1 value and stores the result in dst.

dst <:--- src2 * srcl;
src I, src2 and dst are 32 bits

Trace

Operation

Type

Arithmetic

muli r3, r4, r9

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

Integer Overflow. Result is too large for
destination register (muli only). If overflow
occurs and AC.om= 1, the fault is suppressed and
AC.io is set to l. Result's least significant 32 bits
are stored in dst.

r9 <:--- r4 TIMES r3

muli 741H REG
mulo 70 lH REG

emul, ediv, divi, divo

9-55

II

nand
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

nand

nand

Nand

srcl,
reg/lit/sfr

src2,
reg/lit/sfr

dst
reg/sfr

Performs a bitwise NAND operation on src2 and srcl values and stores
the result in dst.

dst ~(not (src2)) or (not (srcl));

Trace

Operation

Type

nand g5, r3, r7

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

r7 ~ r3 NAND g5

nand 58EH REG

and, andnot, nor, not, notand, notor, or, ornot, xnor, xor

9-56

nor
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

nor

nor

Nor

srcl,
reg/lit/sfr

src2,
reg/lit/sfr

dst
reg/sfr

Performs a bitwise NOR operation on the src2 and src1 values and
stores the result in dst.

dst f- (not (src2)) and (not (srcl));

Trace

Operation

Type

nor g8, 28, r5

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a .~fr.

r5 f- 28 NOR g8

nor 588H REG

and,andnot,nand,not,notand,notor,or,ornot,xnor,xor

Q.<;;7

•

INSTRUCTION SET REFERENCE

not, notand
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

not Not
notand Not And

not src, dst
reg/lit/sfr reg/sfr

notand srcl, src2, dst
reg/lit/sfr reg/lit/sfr reg/sfr

Performs A bitwise NOT (not instruction) or NOT AND (notand
instruction) operation on the src2 and srcl values and stores the result
in dst.

not:
notand:

Trace

Operation

Type

dst f- not (src);

dst f- (not (src2)) and srcl;

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

notg2,g4
notand r5, r6, r7

g4 f- NOT g2
r7 f- NOT r6 AND r5

not
notand

58AH REG
584H REG

and,andnot,nand,nor,notor,or,ornot,xnor,xor

9-58

notbit
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

notbit

notbit

INSTRUCTION SET REFERENCE

Not Bit

bitpos,
reg/lit/sfr

src,
reg/lit/sfr

dst
reg/sfr

Copies the src value to dst with one bit toggled. The bitpos operand
specifies the bit to be toggled.

dst ~ src xor 2A(bitpos mod 32);

Trace

Operation

Type

notbit r3, rI 2, r7

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

r7 ~ rl2 with the bit
specified in r3 toggled

notbit 580H REG

alterbit, chkbit, drbit, setbit

9-59

•

notor
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

fNSTRUCTION SET RE~ERENCE

notor

notor

Not Or

srcl,
reg/lit/sfr

src2,
reg/lit/sfr

dst
reg/sfr

Performs a bitwise NOT OR operation on src2 and srcl values and
stores result in dst.

dst f- (not (src2)) or srcl;

Trace

Operation

Type

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

notor gl2, g3, g6 # g6 f- NOT g3 OR gl2

notor 58DH REG

and,andnot,nand,nor,not,notand,or,ornot,xnor,xor

9-60

or, ornot
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

or
ornot

or

ornot

INSTRUCTION SET REFERENCE

Or
Or Not

src1,
re g/li ti sfr

srcl,
reg/lit/sfr

src2,
reg/lit/sfr

src2,
reg/lit/sfr

dst
reg/sfr

dst
reg/sfr

Performs a bitwise OR (or instruction) or ORNOT (ornot instruction)
operation on the src2 and srcl values and stores the result in dst.

or: dst f- src2 or src I:

ornot: dst f- src2 or (not (srcl));

Trace

Operation

Type

or 14, g9, g3

ornot r3, r8, rl I

1nstruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

g3 f- g9 OR 14

r 11 f- r8 OR NOT r3

or
ornot

587H REG
58BH REG

and, andnot, nand, nor, not, notand, notor, xnor, xor

9-61

II

remi, remo
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

re mi
re mo

rem*

Remainder Integer
Remainder Ordinal

srcl,
reg/lit/sfr

src2,
reg/lit/sfr

dst
reg/sfr

Divides src2 by srcl and stores the remainder in dst. The sign of the
result (if nonzero) is the same as the sign of src2.

if (src2=0) Arithmetic Zero Divide fault;
dst f- src2 - ((src2 I srcl) * srcl);
srcl, src2 and dst are 32 bits

Trace

Operation

Type

Arithmetic

remo r4, r5, r6

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

Zero Divide. The srcl operand is 0

Integer Oveiflow. Result is too large for
destination register (remi only). If overflow
occurs and AC.om=l, the fault is suppressed and
AC.io is set to 1. The least significant 32 bits of
the result are stored in dst.

r6 f- r5 rem r4

re mi 748H REG
remo 708H REG

modi

9-62

ret
Mnemonic:

Format:

Description:

Action:

INSTRUCTION SET REFERENCE

ret Return

ret

Returns program control to the calling procedure. The current stack
frame (i.e., that of the called procedure) is deallocated and the FP is
changed to point to the calling procedure's stack frame. Instruction
execution is continued at the instruction pointed to by the RIP in the
calling procedure's stack frame, which is the instruction immediately
following the call instruction.

As shown in the action statement below, the return-status field and
preretum-trace flag determine the action that the processor takes on the
return. These fields are contained in bits 0 through 3 of register rO of
the called procedure's local registers.

Refer to Chapter 5, Procedure Calls for further discussion of ret.

wait for any uncompleted instructions to finish;
case retum_type is

if ((PFP.rt=0012) or (PFP.rt=l 11 2))

{ # return from fault or interrupt handler
AC ~ memory(FP - 12);
if (PC.em=supervisor) PC f- memory(FP - 16);
}

else if ((PFP.rt=Ol02) or (PFP.rt=Ol 12))

{ #return to non-supervisor procedure
PC.te ~ PFP.rtO;
PC.em f- user;
}

else if (PFP.rt=0002)
{ # return from local
}

else Operation Unimplemented fault;
FPf-PFP;
these accesses are cached in the local register cache
rO: 15 f- memory(FP);
IP f- RIP;

9.53

•

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

Trace

Operation

ret

Instruction. Return. Pre-Return. Breakpoint.
Instruction, Return and Pre-Return Trace Events
are signaled after instruction completion. Trace
fault is generated if PC.te=l and TC.i or TC.r or
TC.p=l.

Unimplemented. Execution from on-chip data
RAM.

Unimplemented.
encountered.

Reserved return

program control returns to context of
calling procedure

type

ret OAH CTRL

call, calls, callx

9-64

rotate
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

rotate

rotate

INSTRUCTION SET REFERENCE

Rotate

Zen,
reg/lit/sfr

src,
reg/lit/sfr

dst
reg/sfr

Copies src to dst and rotates the bits in the resulting dst operand to the
left (toward higher significance). (Bits shifted off left end of word are
inserted at right end of word.) The Zen operand specifies number of bits
that the dst operand is rotated. Zen can range from 0 to 31.

This instruction can also be used to rotate bits to the right. Here, the
number of bits the word is to be rotated right is subtracted from 32 to
get the len operand.

dst f- src rotate_left (Zen mod 32);

Trace

Operation

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Type Mismatch. Non-supervisor reference of a sfr .

rotate 13, r8, r12 # rl2 f- r8 with bits rotated
13 bits to left

rotate 59DH REG

SHIFf, eshro

9-65

•

scan bit
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

scan bit

scanbit

Scan For Bit

src,
reg/lit/sfr

dst
reg/sfr

Searches src value for most-significant set bit (1 bit). If a most
significant 1 bit is found, its bit number is stored in dst and condition
code is set to 0102. If s re value is zero, all l 's are stored in dst and
condition code is set to 0002.

tempsrc f- src;
if (tempsrc=O)

{
dst f- OxFFFFFFFF;
AC.cc f- 0002;
}

else

if- 31;
while ((tempsrc and 2"i)=0)
{
if- i - l;

dst f- i;

AC.cc f- 0102;
}

Trace

Operation

Type

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

assume g8 is nonzero
scanbit g8, glO # glO f- bit number of most­

significant set bit in g8;
#AC.cc f- 0102

scanbit 641H REG

spanbit, setbit

9-66

scan byte
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

INSTRUCTION SET REFERENCE

scanbyte

scan byte

Scan Byte Equal

src1.
reg/lit/sfr

src2
reg/lit/sfr

Performs byte-by-byte comparison of srcl and src2 and sets condition
code to 0102 if any two corresponding bytes are equal. If no
corresponding bytes are equal, condition code is set to 0002.

tmpsrc 1 ~ src1;

tmpsrc2 ~ src2;
if (((tmpsrcl and OxOOOOOOFF):::: (tmpsrc2 and OxOOOOOOFF))
or

or

or

((tmpsrcl and OxOOOOFFOO) = (tmpsrc2 and OxOOOOFFOO))

((tmpsrcl and OxOOFFOOOO) = (tmpsrc2 and OxOOFFOOOO))

((tmpsrcl and OxFFOOOOOO) = (tmpsrc2 and OxFFOOOOOO)))
AC.cc~ 0102;

else AC.cc ~ 0002;

Trace

Operation

Type

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a .~fi·.

assume r9 = Ox 11AB1100
scanbyte OxOOABOOll, r9 #AC.cc~ 0102

scanbyte 5ACH REG

9-67

•

lsdma
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

sdma

sdma

Setup DMA Channel

srcl,
reg/lit/sfr

src2,
reg/lit/sfr

src3
reg/lit

The DMA channel specified by srcl is set up using the control word in
src2. Dedicated data RAM for the specified DMA channel is written
with src3 value. First two bits of srcl specify channel; src2 specifies
DMA control word as a literal or single 32-bit register; src3 specifies a
single 32-bit register if channel is data-chaining. This register contains
the address of the first chaining descriptor in memory. src3 must
specify a register with a register number divisible by four.

If channel is not data chaining, src3 specifies a triple word contained in
registers src3, src3+1 and src3+2. src3 contains byte count for DMA;
src3+1 contains source address; src3+2 contains destination address.

dma_control_for_channel[srcl mod 4] ~ src2;
if (not chaining mode)

dma_ram[srcl mod 4] ~ src3; #triple-word store
#word store else dma_ram[srcl mod 4] ~ src3;

start_dma_channel[srcl mod 4];

Trace

Operation

Constraint

ldconst 3,r6;

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Privileged. Attempt to execute while not in
supervisor mode.

set channel
ldconst Channe1_3_Modes,r7; # load controls

load pointers ldq Channel_3_transfer, r8;
sdma r6, r7, r8

sdma 630H REG

udma

9-68

and byte count from memory
configure dma channel 3

set bit
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

set bit

set bit

INSTRUCTION SET REFERENCE

Set Bit

hitpos,
reg/lit/sfr

src,
reg/lit/sfr

dst
reg/sfr

Copies src value to dst with one bit set. hilpos specifies bit to be set.

dst f- src or 2A(bitpos mod 32);

Trace

Operation

Type

setbit 15, r9, rl

Instruction. Breakpoint

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

rl f- r9 with bit 15 set

setbit 583H REG

alterbit, chkbit, clrbit, notbit

9-69

II

SHIFT
Mnemonic:

Format:

Description:

shlo
shro
shli
shri
shrdi

INSTRUCTION SET REFERENCE

Shift Left Ordinal
Shift Right Ordinal
Shift Left Integer
Shift Right Integer
Shift Right Dividing Integer

len,
reg/lit/sfr

src,
reg/lit/sfr

dst
reg/sfr

Shifts src left or right by the number of bits indicated with the Zen
operand and stores the result in dst. Bits shifted beyond register
boundary are discarded. For values of len greater than 32, the processor
interprets the value as 32.

shlo shifts zeros in from the least significant bit; shro shifts zeros in
from the most significant bit. These instructions are equivalent to mulo
and divo by the power of 2, respectively.

shli shifts zeros in from the least significant bit. An overflow fault is
generated if the bits shifted out are not the same as the most significant
bit (bit 31). If overflow occurs, dst will equal src shifted left as much
as possible without overflowing.

shri performs a conventional arithmetic shift-right operation by
shifting in the most significant bit (bit 31). When this instruction is
used to divide a negative integer operand by the power of 2, it produces
an incorrect quotient (discarding the bits shifted out has the effect of
rounding the result toward negative).

shrdi is provided for dividing integers by the power of 2. With this
instruction, 1 is added to the result if the bits shifted out are non-zero
and the src operand was negative, which produces the correct result for
negative operands.

shli and shrdi are equivalent to muli and divi by the power of 2.

eshro is provided for extracting a 32-bit value from a long ordinal (i.e.,
64 bits), which is contained in two adjacent registers. Refer to
Instruction Set Reference titled eshro for details.

9-70

Action: shlo:

INSTRUCTION SET REFERENCE

if (/en < 32) dst ~ src <<!en;

else dst ~ O;

shro: if (/en < 32) dst ~ src >>Zen;
else dst ~ 0;

shli: if (/en > 32) i ~ 32;
else i ~Zen;
temp~ src;
while ((temp.31 = temp.30) and (i 1:- 0))

{
temp ~ temp << 1;
i~i-1;

dst ~temp;

shri: if (len >32) i ~ 32;
else i ~ len;
temp~ src;

shrdi:

while (i 1:- 0)

{
temp~ temp>> 1; #shift temp right one bit
temp.bit31 ~ temp.bit30; #extend temp's sign bit
i ~ i - l;

dst ~temp;
i ~!en;
if(i > 32) i ~ 32;

temp~ src;
s_sign ~ temp.bit31
lost_bit ~ O;
while (i 1:- 0)

{
losl_bit ~ lost_bit or temp.bitO;
temp ~ temp >> 1; # shift temp left one bit
temp.bit31 ~ temp.bit30; #extend temp's sign bit
i ~ i -1;

if ((s_sign = 1) and (lost_bit = 1)) temp~ temp+ 1;
dst ~temp;

9-71

•

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

Trace

Operation

Type

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a ~fr.

Arithmetic Integer Overflow. Result is too large for the destination
register (shli only). If overflow occurs and AC.om is a 1, the fault is
suppressed and AC.io is set to a 1. After an overflow, dst will equal src
shifted left as much as possible without overflowing.

shli 13, g4, r6 # g6 f- g4 shifted left 13 bits

shlo 59CH REG
shro 598H REG
shli 59EH REG
shri 59BH REG
shrdi 59AH REG

divi, muli, rotate, eshro

9-72

span bit
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

spanbit Span Over Bit

span bit src,

reg/lit/sfr
dst
reg/sfr

Searches src value for the most significant clear bit (0 bit). If a most
significant 0 bit is found, its bit number is stored in dst and condition
code is set to 0102. If src value is all J's, all l's are stored in dst and
condition code is set to 0002.

if (src = OxFFFFFFFF)
{
dst (:-- OxFFFFFFFF:
AC. cc (:-- 0002;
}

else

i(:--3];

while ((src and 2"i) :F 0)
{
i(:--i-1;

dst (:-- i;
AC.cc (:-- 0102:
}

Trace

Operation

Type

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

assume r2 is not Oxffffffff
spanbit r2, r9 # r9 (:--bit number of most-significant

clear bit in r2; AC.cc (:-- 0102

spanbit 640H REG

scan bit

9-73

II

INSTRUCTION SET REFERENCE

STORE
Mnemonic: st Store

stob Store Ordinal Byte
stos Store Ordinal Short
stib Store Integer Byte
stis Store Integer Short
stl Store Long
stt Store Triple
stq Store Quad

Format: st* src, efa
reg addr

efa:

(reg) disp + S(IP) disp [reg * scale]

offset disp (reg 1) [reg2 * scale]

offset (reg) disp (reg) disp (reg 1) [reg 2 *scale]

Description: Copies a byte or group of bytes from a register or group of registers to
memory. src specifies a register or the first (lowest numbered) register
of successive registers.

efa specifies the address of the memory location where the byte or first
byte or a group of bytes is to be stored. The full range of addressing
modes may be used in specifying efa. (Refer to the section of Chapter
3 titled Addressing Modes for a complete discussion.)

stob and stib store a byte and stos and stis store a half word from the
src register's low order bytes . Data for ordinal stores is truncated to fit
the destination width. If the data for integer stores cannot be
represented correctly in the destination width, an Arithmetic Integer
Overflow fault is signaled.

st, stl, stt and stq copy 4, 8, 12 and 16 bytes, respectively, from
successive registers to memory.

For stl, src must specify an even numbered register (e.g., gO, g2, ... or
rO, r2, ...). For stt and stq, src must specify a register number that is a
multiple of four (e.g., gO, g4, g8, ... or rO, r4, r8, ...).

9-74

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

st: memory_word (efa) ~ src;

stob: memory_byte (efa) ~ src truncated to 8 bits:
stib: memory_byte (ef(1) ~ src truncated to 8 bits:
stos: memory_short (ef(1) ~ src truncated to 16 bits:

stis: memory_short (efa) <:- src truncated to 16 bits:
stl: memory_long (efa) ~ src;

stt: memory_triplc (<'./i1) ~ src:

stq: memory_quad (efa) ~ src;

Trace

Operation

Arithmetic

Type

st g2, 1254 (g6)

st 92H
stob 82H
stos 8AH
stib C2H
stis CAH
stl 9AH
stt A2H
stq B2H

LOAD, MOVE

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Unimplemented. An unaligned ef(1 was referenced
and unaligned support was disabled.

Operand. Invalid operand value encountered.

Opcode.Invalid opcode encoding encountered.

Integer Over.flow. Result is too large for
destination (stib and stis only). If overflow occurs
and AC.om= 1, the fault is suppressed and AC .io is
set to I. After an overflow, destination contains
the least significant n-bits of the store, where n is
the transfer width (8 or 16 bits).

Mismatch. Non-supervisor attempt to write to
internal data RAM.

#word beginning at offset
#1254 + (g6) ~ g2

MEM
MEM
MEM
MEM
MEM
MEM
MEM
MEM

II

subc
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

subc

subc

Subtract Ordinal With Carry

srcl,
reg/lit/sfr

src2,
reg/lit/sfr

dst
reg/sfr

Subtracts srcl from src2, then subtracts not(AC.cc I) and stores the
result in dst. If the ordinal subtraction results in a carry, AC.eel is set
to l, otherwise AC.cc 1 is set to 0.

This instruction can also be used for integer subtraction. Here, if
integer subtraction results in an overflow, condition code bit 0 is set.

subc does not distinguish between ordinals and integers: it sets
condition code bits 0 and 1 regardless of data type.

dst ~ src2 - srcl - not(AC.ccl);

AC.cc ~ OCV 2;
#Vis

C is

Trace

Operation

Type

1 if integer subtraction would have generated an overflow,
0 otherwise
Carry out of the ordinal addition of src2 to not (srcl) and
carry in.

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfr.

subc g5, g6, g7 # g7 ~ g6 - g5 - not(Carry Bit)

subc 5B2H REG

addc, addi, addo, subi, subo

9-76

subi, subo
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

subi
subo

sub*

Subtract Integer
Subtract Ordinal

srcl,
reg/lit/sfr

src2,
re g/li ti sfr

dst
reg/sfr

Subtracts srcl from src2 and stores the result in dst. The binary results
from these two instructions are identical. The only difference is that
subi can signal an integer overflow.

dst f- src2 - srcl;

Trace

Operation

Type

Arithmetic

subig6,g9,gl2

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a ~fr.

integer Overfiow. Result too large for destination
register (subi only). Result's least significant 32
bits are stored in dst. If overflow occurs and
AC.om= l, the fault is suppressed and AC.io is set
to a I. The least significant 32 bits of the result are
stored in dst.

g 12 f- g9 - g6

subi 593H REG
subo 592H REG

addi, addo, subc, addc

9-77

II

syn cf
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

syn cf Synchronize Faults

syn cf

Waits for all faults to be generated that are associated with any prior
uncompleted instructions.

if (AC.nif ::/:. 1)
{
wait until no imprecise faults can occur associated with
instructions which have begun, but are not completed.;
}

Trace

Operation

Id xyz, g6
addi r6, r8, r8
syncf
and g6, OxFFFF, g8

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

the syncf instruction ensures that any faults
that may occur during the execution of the
Id and addi instructions occur before the
and instruction is executed

syn cf 66FH REG

mark, fmark

9-78

jsysctl I
Mnemonic:

Format:

Description:

sysctl

sysctl

INSTRUCTION SET REFERENCE

System Control

srcl.
reg/lit/sfr
me.1·sage. type

src2.
reg/lit/sfr

src3;
reg/lit

Processor control function specified by the message field of srcl is
executed. The type field of src 1 is interpreted depending upon the
command. Remaining srcl bits are reserved. The src2 and src3
operands are also interpreted depending upon the command.
The src 1 operand is interpreted as follows:

31 16 15 8 7 0

srcl
~I ~~~~-FI_E_L_D_2~~~~-.--l~M-F-,S-S_A_G_E_T_Y_P_E__,.l~~-F-IE_L_D~l~--,I

The following table lists i960 CA processor commands.

Message Srcl Src 2 Src3

Type Field I Field Field 3 Field 4
2

Request OOH Vector Number N/U NIU NIU
Interrupt

Invalidate OlH N/U N/U NIU NIU
Cache

Configure 02H Cache Mode Configuration NIU Cache load N/U
Cache (see table) N/U address

Reinitialize 03H NIU N/U I st Inst. PRCB
address address

Load Control 04H Register Group Number N/U NIU NIU
Register

NOTE

Sources and fields which are not used (designated N/U) are ignored.

9-79

II

Mode Field(J}_

0002

0012

1002

1102

Action:

INSTRUCTION SET REFERENCE

Cache Mode Configuration Table

Mode Description

l Kbyte normal cache enabled

1 Kbyte cache disabled (execute off-chip)

Load and lock 1 Kbyte cache (execute off-chip)

Load and lock 512 bytes, 512 bytes normal cache enabled

NOTE
I) Modes which are not defined are reserved.

temp~ srcl;

tmpmessage ~(temp and OxfO) >> 8;
switch (tmpmessage)
case 0: # Signal an Interrupt

post_interrupt(temp and Oxf);
break;

case 1: #Invalidate the Instruction Cache
invalidate_instruction_cache;

case 2:

case 3:

break;
#Configure Instruction Cache
tmptype ~ (srcl and Oxff);
if (tmptype.bitO = 1) disable_instruction_cache;
else if (tmptype = OxO) enable_lk_instruction_cache;
else if (tmptype = Ox4)

{ #Load and freeze lk cache
instr_cache ~ memory_lk(src2); #load lk bytes
freeze_lk_instruction_cache;
}

else if (tmptype = 0 x 6)
{ # Load and freeze 512 bytes of cache
instr_cache ~ memory_512(src2) #load 512 bytes
freeze_512_instruction_cache;
}

else Reserved;
break;
Software Reset
temp~ src2;
load PRCB pointed to by src3;
IP~ temp;
break;

9-80

Faults:

Example:

Opcode:

INSTRUCTION SET REFERENCE

case 4:

default:

Trace

Operation

Load One Group of Control Registers
from the Control Table
temp [0-3] ~memory_quad (Control Table Base+ group
offset);
for (i ~O; i23, i ~i+l control_reg[i] ~temp[i];
break
Operation invalid-operand fault;

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Unimplemented. Attempted to execute
unimplemented command.

ldconst Clear_cache, g6
sysctl r6,r7 ,r8

set the clear cache message
execute cache invalidation

be uploaded_code

sysctl 659H REG

9-81

note: r7, r8 are dummies here
#branch to code which was uploaded

II

TEST
Mnemonic:

Format:

Description:

INSTRUCTION SET REFERENCE

Test For Equal
Test For Not Equal
Test For Less
Test For Less Or Equal
Test For Greater

teste {.ti.fl
testne{ .ti.fl
testl {.ti.fl
testle{ .ti.fl
testg(.ti.fl
testge(.tl.f}
testo{ .tl.f}
testno{ .tl.f}

Test For Greater Or Equal
Test For Ordered

test* {.ti.fl

Test For Not Ordered

dst
reg/sfr

Stores a true (01H) in dst if the logical AND of the condition code and
opcode mask-part is not zero. Otherwise, the instruction stores a false
(OOH) in dst. For testno (Unordered), a true is stored if the condition
code is 0002, otherwise a false is stored.

The following table shows the condition-code mask for each
instruction. The mask is in bits 0-2 of the opcode.

Instruction Mask Condition

testno 0002 Unordered

testg 0012 Greater

teste 0102 Equal

testge 0112 Greater or equal

testl 1002 Less

testne 1012 Not equal

testle 1102 Less or equal

testo 1112 Ordered

The optional.tor .f suffix may be appended to the mnemonic. Use .t to
speed-up execution when these instructions usually store a true (1)
condition in dst. Use .f to speed-up execution when these instructions
usually store a false (0) condition in dst. If a suffix is not provided, the
assembler is free to provide one.

9-82

inteL

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

For all instructions except testno:

if ((mask and AC.cc) - 0002) dst f-- Ox!:# dst set for true

else dst +--- OxO: # d.11 set for false

test no:

if (AC.cc= 0002) dst f-- Ox I: #dst ~et for true

else dst f-- OxO: # dst set for false

Trace

Operation
RAM.

Type

Instruction. Brl'akpoint.

U11i111ple111ented. Execution from on-chip data

Mismatch. Non-supervisor reference of a sf/·.

assume AC.cc = 1002

test] g9 # g9 f-- OxOOOOOOOl

teste 22H COBR
testne 25H COBR
testl 24H COBR
testle 26H COBR
testg 21H COBR
testge 23H COBR
testo 27H COBR
testno 20H COBR

cmpi, cmpdeci, cmpinci

9-83

•

ludma I
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION SET REFERENCE

udma Update DMA-Channel RAM

udma

The current status of the DMA channels is written to the dedicated
DMARAM.

for (i = 0 to 3) dma_ram[i) t- dma_status_channel[i];

Trace

Operation

udma

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

ldq Channel_3_ram,r4
update status to dma ram
read current pointers
and byte count for dma channel 3

udma 631H REG

sdma

9-84

xnor, xor
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

xnor
xor

xnor

xor

INSTRUCTION SET REFERENCE

Exclusive Nor
Exclusive Or

srcl,
reg/Ii tis fr

srcl.
reg/lit/sfr

src2.
reg/lit/ sfr

.1Tc2.

reg/lit/sfr

dst

reg/sfr

dst

reg/sfr

Performs a bitwise XNOR (xnor instruction) or XOR (xor instruction)
operation on the src2 and src! values and stores the result in dst.

xnor: dst f- not (src2 or src/) or (src2 and .\Tc]);

xor: dst f- (src2 or src 1) and not (src2 and src I);

Trace

Operation

Type

xnor r3. r9, rl2

xor gl, g7. g4

Instruction. Breakpoint.

Unimplemented. Execution from on-chip data
RAM.

Mismatch. Non-supervisor reference of a sfi·.

rl2 f- r9 XNOR r3

g4 f- g7 XOR g I

xnor
xor

589H REG
586H REG

and, andnot, nand, nor, not, notand. notor, or, ornot

9-85

II

The Bus Controller 10

CHAPTER10
THE BUS CONTROLLER

This chapter serves as a guide for a software developer when configuring the bus controller. It
overviews bus controller capabilities and implementation and describes how to program the
bus controller. System designers should reference Chapter 11, External Bus Description for a
functional description or the bus controller.

OVERVIEW

The bus controller supports a synchronous, 32-bit-wide. demultiplexed external bus which
consists or 30 address lines, four byte enables, 32 data lines, a clock output and control and
status signals. The bus controller manages instruction fetches, data loads/stores and DMA
transfer requests. Bus management is accomplished by queuing bus requests which effectively
decouples instruction execution speed from external memory access time.

Load and store instructions - the program's interface to the bus controller - work on ordinal
(unsigned) or integer (signed) data. A single load or store instruction can move from I to 16
bytes of data. The bus controller also handles instruction fetches, which read either 8 bytes
(two words) or 16 bytes (four words).

The bus controller divides the flat 4 Gbyte memory space into 16 regions; each region has
independent software programmable parameters that define data bus width, ready control,
number of wait states, pipeline read mode, byte ordering and burst mode. These parameters are
stored in the memory region configuration table. Each memory region is 22s bytes
(256 Mbytes).

The purpose of configurable memory regions is to provide system hardware interface support.
Regions are transparent to the software. The address' upper four bits (A3 I :28) indicate which
region is enabled.

A data bus width parameter in the region table configures the external data bus as an 8-, 16- or
32-bit bus for a region. This parameter determines byte enable signal encoding and the physical
location of data on data bus pins.

When a burst bus mode is enabled, a single address cycle can be followed with up to four data
cycles. This mode enables very high speed data bus transfers. When disabled, accesses appear
as one data cycle per address cycle. The burst bus mode can be enabled or disabled on a
region-by-region basis.

A programmable wait state generator inserts a programmed number of wait states into any
memory access. These wait states, independently programmable by region, can be specified
between:

• address and data cycles

• consecutive data cycles of burst accesses

• the last data cycle and the address cycle of the next request

10-1

II

THE BUS CONTROLLER

An external, memory-ready input permits the user's hardware to insert wait states into any
memory cycle. This pin works with the wait state generator and is enabled or disabled on a
region-by-region basis.

Pipelined read mode provides the highest data bandwidth for reads and instruction fetches.
When a region is programmed for pipelined reads, the next read's address cycle overlaps the
current read' s data cycle.

The bus controller supports big endian and little endian byte ordering for memory operations.
Byte ordering determines how data is read from or written to the bus and ultimately how data is
stored in memory.

MEMORY REGION CONFIGURATION

Programmable memory region configurations simplify external memory system designs and
reduce system parts count. Particular bus access characteristics may be programmed. This
programmed bus scheme allows accesses made to different areas (or regions) in memory to
have different characteristics. For example, one area in memory can be configured for slow
8-bit accesses; this is optimal for peripherals. Another area in memory can be configured for
32-bit wide burst accesses; this is optimal for fast DRAM interfaces. Bus function in each
region is determined by the memory region configuration. The following bus characteristics are
selected for each region:

• Selectable 8-, 16- or 32-bit-wide data bus • Programmable high performance burst
access

• Five wait state parameters

• Programmable pipelined reads

• Memory-ready and burst cycle terminate
for dynamic access control

• Big or little endian byte order

These bus characteristic can be programmed independently for accesses made to each of 16
different regions in memory. The value of the memory address upper four bits (A3 l :28)
determine the selected region. Memory region configuration affects all accesses to the
addressed memory region. Loads, stores, DMA transfers and instruction fetches all use the
parameters defined for the region.

Programming region characteristics is accomplished by setting values in the memory region
configuration registers. A separate register allows the user to program the characteristics for
each of the 16 memory regions. Memory region configuration registers are described in this
chapter's section titled Programming the Bus Controller. The following subsections describe
the i960 CA processor's programmable bus characteristics.

Data Bus Width

Each region's data bus width is programmed in the memory region configuration table. The
i960 CA processor allows an 8-, 16- or 32-bit-wide data bus for each region. Byte enable
signals encoded in each region provide the proper address for 8-, 16- or 32-bit memory
systems. The i960 CA processor uses the lower order data lines when reading and writing to 8-
or 16-bit memory.

10-2

THE BUS CONTROLLER

Burst and Pipelined Read Accesses

To improve bus bandwidth, the i960 CA device provides a burst access and pipelined read
access. These burst and pipelining modes are separately enabled or disabled for each memory
region by programming the memory region configuration table.

When burst access is enabled, the bus controller generates an address - the burst address -
followed by one to four data transfers. The lower address bits are incremented for each
consecutive data transfer. Burst accesses facilitate the interface to fast page mode DRAM: wait
states following the address cycle and wait states between data cycles can be controlled
independently. Data cycle time is typically a fraction of address cycle time. This provides an
optimal wait state profile for fast page mode DRAM.

When address pipelining is enabled. the next read address is asserted in the last data cycle of
the current read access. Pipelining makes the address cycle invisible for back-to-back read
accesses.

Wait States

A wait state generator within the bus controller generates wait states for a memory access. For
many memory interfaces, the internal wait state generator eliminates the necessity to externally
generate a memory ready signal to indicate a valid data transfer.

Typically, extra clock cycles - wait states - are associated with each data cycle. Wait states
provide the required access times for external memory or peripherals. Five parameters,
programmed for each region define wait state generator operation. These parameters are:

NwAD

Nwnn

NxnA

Number of wait cycles for Read Address-to-Data. The number of wait states
between address cycle and first read data cycle. Programmable for 0-3 l wait
states.

Number of wait cycles for Read Data-to-Data. The number of wait states
between consecutive data cycles of a burst read. Programmahle for 0-3 wait
states.

Number of wait cycles for Write Address-to-Data. The number of wait states
that data is held after the address cycle and before the first write data cycle.
Programmable for 0-3 l wait states.

Number of wait cycles for Write Data-to-Data. The number of wait states that
data is held between consecutive data cycles of a burst write. Programmable for
0-3 wait states.

Number of wait cycles for X (read or write) Data-to-Address. The minimum
number of wait states between the last data cycle of a bus request to the address
cycle of the next bus request. NxDA applies to read and write requests.
Programmable for 0-3 clocks.

10-3

m

THE BUS CONTROLLER

NRAD and Nw AD describe address-to-data wait states. NRDD and NwDD specify the number of
wait states between consecutive data when burst mode is enabled. NRDD and NwDD are not
used in non-burst memory regions.

NxDA describes the number of wait states between consecutive bus requests. NxDA is the bus
turnaround time. An external device's ability to relinquish the bus on a read access (read
deasserted to data float) determines the number of NxDA cycles.

NOTE

For pipelined read accesses, the bus controller uses a value of 0 for NxDA• regardless of the
parameter's programmed value. A non-zero NxDA value defeats the purpose of pipelining. The
programmed value of NxDA is used for write requests to pipelined memory regions.

The ready (READY) and burst terminate (BTERM) inputs dynamically control bus accesses.
these inputs are enabled or disabled for each memory region. READY extends accesses by
forcing wait states. BTERM allows a burst access to be broken into multiple accesses, with no
lost data. The memory region registers are programmed to enable or disable these inputs for
each region.

READY and BTERM work with the programmed internal wait state counter. If READY and
BTERM are enabled in a region, these pins are sampled only after the programmed number of
wait states expire. If the inputs are disabled in a region, the inputs are ignored and the internal
wait state counter alone determines access wait states. Refer to Chapter 1 J, External Bus
Description for details on the operation of the READY and BTERM inputs.

NOTE

READY and BTERM must be disabled in regions where pipelined reads are enabled.

Byte Ordering

Byte ordering determines how data is read from or written to the bus and ultimately how data is
stored in memory. Byte ordering can be individually selected for each memory region by
setting a bit in the region table entry for the region. The bus controller supports big endian and
little endian byte ordering for memory operations:

little endian ordering

big endian ordering

The controller reads or writes a data word's least-significant byte to
the bus' eight least-significant data lines (DO-D7). Little endian
systems store a word's least-significant byte at the lowest byte
address in memory. For example, if a little endian ordered word is
stored at address 600, the least-significant byte is stored at address
600 and the most-significant byte at address 603.

The controller reads or writes a data word's least-significant byte to
the bus' eight most-significant data lines (D31-D24). Big endian
systems store the least-significant byte at the highest byte address in
memory. So, if a big endian ordered word is stored at address 600,
the least-significant byte is stored at address 603 and the most­
significant byte at address 600.

10-4

THE BUS CONTROLLER

PROGRAMMING THE BUS CONTROLLER

The bus controller is programmed using 17 control registers; 16 of which make up the region
table, the remaining one is the Bus Configuration (BCON) Register. Control registers are
automatically loaded at initialization from the control table in external memory. Control
registers are modified by using the load control registers message of the system control (sysctl)
instruction. See Chapter 2, Programming Environment for control register definition.

Region Table (MCONO-MCON15)

The region table contains J 6 entries. Each entry is stored in a control register and specifies:

• number of wait states • data bus width • byte ordering

• burst mode • pipeline mode • external ready mode for the
region that it controls

An address' four most-significant hits indicate which region is being accessed. A region table
entry is 32 hits wide (see Figures I 0.1 and I 0.2); however, not all hits are currently used. Table
10. l defines the region table's programmable bits.

ADDRESS

FFFF FFFFH

FOOO OOOOH

EOOO OOOOH

DOOO OOOOH

1000 OOOOH

0000 OOOOH

ADDRESS SPACE

REGION 15
(256 MBYTES)

REGION 14
(256 MBYTES)

REGION 13
(256 MBYTES)

• • •

REGIONS 12-1

REGION 0
(256 MBYTES)

MEMORY REGION
CONFIGURATION

TABLE

-~ ENTRY15

' ENTRY14 ,

ENTRY13

•
). •). •

ENTRIES 12-1

; ENTRY 0

31 TABLE ENTRY 0

,, Tl/111 lrlhtcf I M 111111111111111111111

,: -----------* -------------------------

270710-001-26

Figure 10.1. Region Table Configures External Memory

10-5

THE BUS CONTROLLER

BURST ENABLE ~-------------------------------.
(O) DISABLED

(1) ENABLED

READY/BTERM ENABLE

(0) DISABLED

(1) ENABLED

READ PIPELINING ENABLE

(0) DISABLED

(1) ENABLED

NRAD WAIT STATES
0-31 WAIT STATES

NRDD WAIT STATES

0-3 WAIT STATES

NxDA WAIT STATES
0-3 WAIT STATES

NwAD WAIT STATES
0-31 WAIT STATES

N WDD WAIT STATES

0-3 WAIT STATES

28

MEMORY REGION
CONFIGURATION
REGISTERS
(MCON 0 - MCON 15)

~ RESERVED
(INITIALIZE TO 0)

24 '°" • I I
16 12

'----------BUS WIDTH

(00) 8-BIT BUS

(01) 16-BIT BUS

(10) 32-BIT BUS

(11) RESERVED

'-------------BYTE ORDER

(O) LITTLE ENDIAN

(1) BIG ENDIAN

4

270710-002-18

Figure 10.2. Memory Region Configuration Register (MCONO-MCON15)

Bus Configuration Register (BCON)

The Bus Configuration Register (BCON), shown in Figure 10.3, is a 32-bit register that
controls the region configuration table and internal data RAM protection. Table 10.2 defines
the BCON Register's programmable bits.

10-6

Ent~Name

Burst Enable

READY /BTERM
Enable

Read Pipelining
Enable

NRAD wait States

NRDD Wait States

NxoA Wait States

NwAD Wait States

Nwoo Wait States

Bus Width

Byte Ordering

THE BUS CONTROLLER

Table 10.1. Region Table Bit Definitions

Bit#

0

1

2

3-7

8-9

10-11

12-16

17-18

19-20

22

Definition

Enables or disables burst accesses for the region.

Enables or disables region's READY and BTERM inputs.
If disabled, READY and BTERM are ignored.

Enables or disables address pipelining of region's read
accesses. READY and BTERM are ignored during
pipelined reads.

Number of Read Address-to-Data wait states in the region.
(Programmed for 0-31 Wait States)

Number of Read Data-to-Data wait states in the region.
(Programmed for 0-3 Wait States)

Number of X (read or write) Data-to-Address wait states in
the region. (Programmed for 0-3 Wait States). NxoA wait
states are only inserted at the end of a bus request.

Number of Write Address-to-Data wait states in the region.
(Programmed for 0-31 Wait States)

Number of Write Data-to-Data wait states in the region.
(Programmed for 0-3 Wait States)

Determines region's data bus width. Effects encoding of
byte-enable signals (BE3:0)

Selects region's byte ordering: little endian or big endian.

CONFIGURATION TABLE VALID (BCON.ctv) -------------------~

~~~~ I (1) TABLE VALID 

INTERNAL RAM PROTECTION ENABLE (BCON.irp)-----------------.... 

(0) PROTECTION OFF 
(1) PROTECTION ON 

28 

BUS CONFIGURATION 

REGISTER (BCON) 

I RESERVED 
(INITIALIZE TO 0) 

24 20 16 12 

Figure 10.3. Bus Configuration Register (BCON) 

10-7 

4 

270710-002-19 



THE BUS CONTROLLER 

Table 10.2. BCON Register Bit Definitions 

Entry Name Bit# Definition 

Configuration Table Valid 0 When BCON.ctv bit is clear, all memory is accessed 
as defined by Region Table Entry 0. When BCON.ctv 
bit is set, the entire region table is used. 

Internal RAM Protection Enables supervisor write protection for internal data 
RAM at address lOOH to 3FFH. 

Configuring the Bus Controller 

The bus controller is configured automatically when the processor initializes. All region table 
values are loaded from the control table and the BCON.ctv bit is set (table valid) before the 
first instruction of application code executes. The user only has to supply the correct value in 
the control table in external memory. See Chapter 14, Initialization and System Requirements 
for more details on the processor's actions at initialization. 

The region table value may be altered after initialization by use of the sysctl instruction. It is 
important to avoid altering an enabled region table entry while a bus access to that region is in 
progress. It is acceptable, however, to write the same data to an enabled region table entry 
while a bus access to that region is in progress. This consideration is especially important for 
Region Table Entry 0, when it is the master entry (BCON.ctv = 0). 

DATA ALIGNMENT 

Aligned bus requests generate an address that occurs on a data type's natural boundary. Quad 
words and triple words are aligned on 16-byte boundaries; double words on 8-byte boundaries; 
words on 4-byte boundaries; short words (half words) on 2-byte boundaries; bytes on 1-byte 
boundaries. 

Unaligned bus requests do not occur on these natural boundaries. Any unaligned bus request to 
a little endian memory region is executed; however, unaligned requests to big endian regions 
are supported only if software adheres to particular address alignment restric.tions. 

The processor handles all unaligned bus requests to little endian memory regions. The 
processor executes unaligned little endian requests as several aligned requests. This method of 
handling an unaligned bus request results in some performance loss compared to aligned 
requests: microcode uses CPU cycles to generate aligned requests and more bus cycles are 
used to transfer unaligned data. 

The processor may generate an operation-unaligned fault when any unaligned request is 
encountered. This fault can be masked with the PRCB fault configuration word. Refer to 
Chapter 14, Initialization and System Requirements for Fault Configuration Word discussion. 

When the processor encounters an unaligned request, microcode breaks the unaligned request 
into a series of aligned requests. For example, if a read request is issued to read a little endian 
word from address XXXXXXXJH (unaligned), a byte request followed by a short request 

10-8 



THE BUS CONTROLLER 

followed by a byte request is executed. Figure 10.4 shows how aligned and unaligned bus 
transfers are carried out for memory regions that use little endian byte ordering. 

If the unaligned fault is not masked, the bus controller executes the unaligned access - the 
same as it does when the fault is masked - and signals an operation-unaligned fault. The 
unaligned access fault can be used as a debug feature. Removing unaligned memory accesses 
from an application increases performance. 

BYTE OFFSET 0 12 16 20 24 .......... I .....-.--.--.--.---.--.-....-.--.-1~~, -,....-r-r--.--.--.--.. 

WORD OFFSET O 3 4 6 

SHORT-WORD 
LOAD/STORE 

WORD 
LOAD/STORE 

DOUBLE-WORD 
LOAD/STORE 

WORD REQUEST (ALIGNED) 
~~~- I I 

SHORT, BYTE. BYTE REQUESTS
........... ~ I I
~~~~SHORT, SHORT REQUESTS 

I I 
BYTE, SHORT, BYTE REQUESTS 

=+"==I I I 

ONE DOUBLE-WORD REQUEST (ALIGNED) 
~~~~~ I I I 

BYTE, SHORT, WORD, BYTE REQUESTS ~~~.......... I I I
SHORT, WORD, SHORT REQUESTS

~~~~~ I I I 
~mr~~'jrJmF~tm7! BYTE, WORD, SHORT, BYTE REQUESTS 

J..;.J.~~~~~~~ WORD, WOR~ REQUESTS I 
~~~~~~~m ONE DOUBLE-WORD REQUEST (ALIGNED) 

I I 270710-002-20

Figure 10.4. Summary of Aligned and Unaligned Transfers for
Little Endian Regions

10-9

THE BUS CONTROLLER

BYTE OFFSET 0 4 8 12 16 20 24

....-r-1-.--.--.1 ---.--.--...-I -.--.--.---,1........---.--.-.--.1 ---.--.--...--.--.-..--.1
WORD OFFSET 0 1 2 3 4 6

TRIPLE-WORD
LOAD/STORE

QUAD-WORD
LOAD/STORE

ONE THREE-WORD REQUEST (ALIGNED)
!---'----""-.....----""'"-I I I

BYTE, SHORT, WORD, WORD, BYTE REQUESTS
-""'""'""'II---'-""""+-' +--'. I I I

SHORT, WORD, WORD, SHORT REQUESTS
......... ___ I--'""_-+-___. I I I

BYTE, WORD, WORD, SHORT, BYTE REQUESTS

------------'t-~ I I
WORD, WORD, WORD REQUESTS

--~~-t--~~--~~-1 I
WORD, WORD, WORD REQUESTS

----- I

ONE FOUR-WORD REQUEST (ALIGNED) --~-.-------.-----~---...---'-----1 I I
,,,,,,,,,,.,,,,..,...,,~,.,,-,.,,--.,.,~,.,,--_,~..,..,..-_,t'-"1 BYTE, SHORT, WORD, WORD, WORD
...... .___ ____ __ _, ___ ,......BYTE RE~UESTS I

SHORT, WORD, WORD, WORD,
-~1""""---1""""---1""""---1""""--" SHOR; REQUESTS I

DOUBLE-WORD, i-----.-----i--.--....._ _ _.._--1DOUBLE-WORD
REQUESTS

270710-002-21

Figure 10.4. Summary of Aligned and Unaligned Transfers for
Little Endian Regions (continued)

NOTE

When an unsupported unaligned bus request to a big endian region is attempted, the bus
controller handles the transfer exactly the same as it does for little endian regions; that is, it treats
the data as little endian data. Thus, the data is not stored coherently in memory.

INTERNAL DATA RAM

The i960 CA microprocessor contains one Kbyte of user-visible internal data RAM which is
mapped into the first lK of the address space (addresses OOH - 3FFH). Internal data RAM is
accessed only by loads, stores or DMA transfers. Instruction fetches directed to these addresses
cause an operation-unimplemented fault to occur.

10-10

THE BUS CONTROLLER

A portion of this internal data RAM is optionally used to store DMA status. cached interrupt
vectors and, in some applications, cached local registers. The remaining data RAM can be used
by application software. Internal data RAM is described in Chapter 2. Programming
Environment.

Internal data RAM interfaces directly to an internal 128-bit bus. This bus i~ the pathway
between registers and data RAM. Because of the wide internal path. a quad word read or write
is usually performed in a single clock.

BUS CONTROLLER IMPLEMENTATION

The bus controller consists of four units (see Figure I 0.5):

• queue • packing unit

• translation unit • sequencer

The i960 CA processor's instruction fetch unit, execution unit and OMA unit all pass memory
requests to the bus controller unit which arbitrates, queues and executes these requests.

QUEUE UNIT

128
STORE DATA

LOAD DATA

-r-- PACKING 32..L
UNIT 32..L DATA

~
,,.. ~

1 32..L ADDRESS

l

ADDRESS

CONTROL{

~ SEQUENCER il-l TRANSLATION}- UNIT I--
UNIT

-- A31:281'

CONFIGURATION
DATA

f
[

3
J

"\'. _.:s:
~ ;:..

MEMORY REGION
16 ENTRIES CONFIGURATION TABLE

Figure 10.5. Bus Controller Block Diagram

10-11

1 •
PIN

CONTROL I---

I--

I--

2707

ADDRESS
BUS

DATA
BUS

CONTROL

10-001-27

THE BUS CONTROLLER

Bus Queue

The bus controller has a queue which contains entries for up to three bus requests. Each queue
entry consists of a 32-bit address, up to 128-bits of data (four words) and control information.
The bus queue decouples high bandwidth (128-bit-wide data) internal data buses from the
lower bandwidth (32-bit-wide data) external bus.

Two of these queue entries are reserved for bus requests generated from user code. The third
queue entry is used by the DMA controller. If no OMA channels are set up, the third slot is
also used by user code. User requests are serviced in a first-in, first-out (FIFO) manner. The
DMA does not issue back-to-back requests; therefore, the CPU is guaranteed access to the
external bus between DMA accesses, thus allowing the user and DMA processes to execute
concurrently while sharing the external bus.

Queue depth affects bus request and interrupt latency. Queued requests must be serviced before
the pending request can be serviced. If an interrupt occurs when all three bus queue entries are
full, the three outstanding requests must be serviced before the first interrupt instruction may
be fetched from memory.

Data Packing Unit

The data packing unit handles data movement between queues and external bus. It controls
data alignment and data packing:

• Data is unpacked when data store request width exceeds physical bus width

• Data is packed when data load request width exceeds physical bus width

If a word load is issued to an 8-bit bus, the bus controller issues four I-byte reads and the data
packing unit assembles incoming data into a single word. If a quad word-store is issued to an
8-bit bus, the bus controller issues four one-word reads and the data packing unit unpacks the
outgoing data.

Bus Translation Unit and Sequencer

The bus translation unit is responsible for looking up the memory configuration in the region
table. The look-up is based on the bus request's address. The bus request and region table data
are passed to the bus sequencer when the external bus is available. The sequencer then breaks
the request into a set of bus accesses; this generates the signals on the external bus pins.

10-12

External Bus Description 11

CHAPTER 11
EXTERNAL BUS DESCRIPTION

This chapter discusses the hus pins, hus transactions and bus arbitration. It shows waveforms to
illustrate some common bus configurations. This chapter serves as a guide for the hardware
designer when interfacing memory and peripherals to the i960 CA processor. For further
details on external bus operation. refer to Appendix B. Bus lntCJj(zce Ernmples. For information
on bus controller configuration, refer to Chapter JO. Bus Controller.

OVERVIEW

The i960 CA processor's integrated bus controller and external bus provide a flexible, easy-to­
use interface to memory and peripherals. All bus transactions are synchronized with the
processor clock outputs (PCLK2: l); therefore. most memory system control logic can easily be
implemented as state machines. The internal. programmable wait state generator, external
ready control signals, bus arbitration signals, data transceiver control signals and
programmable bus width parameters all combine to reduce system component count and ease
the design task.

Terminology: Requests and Accesses

The terms request and access are used frequently when referring to bus controller operation.
The description of the i960 CA processor's bus modes and burst bus operation is simplified by
defining these terms:

Request

The terms request. fms request or memorr request describe interaction between the core and
bus controller. The bus controller is designed to decouple. as much as possible. bus activity
from instruction execution in the core. When a load or store instruction or instruction prefetch
is issued, the core delivers a bus request to the bus controller unit.

The bus controller unit independently processes the request and retrieves data from memory for
load instructions and instruction prefetches. The bus controller delivers data to memory for
store instructions. The i960 architecture defines byte. short word, word, double word, triple
word and quad word data lengths for load and store instructions.

When a load or store instruction is encountered. the core issues to the bus controller a bus
request of the appropriate data length: for example, ldq requests that four words of data be
retrieved from memory; stob requests that a single byte is delivered to memory. The processor
fetches instructions using double or quad word bus requests. The processor's microcode issues
load and store requests to perform DMA transfers.

11-1

Ill

EXTERNAL BUS DESCRIPTION

Access

The terms access, bus access or memory access describe the mechanism for moving data or
instructions between the bus controller and memory. An access is bounded by the assertion of
ADS (address strobe) and BLAST (burst last) signals, which are outputs from the processor.
ADS indicates that a valid memory address is present and an access has started. BLAST
indicates that the next data which is transferred is the end of access. The bus controller can be
configured to initiate burst, non-burst or pipelined accesses. A burst access begins with ADS
followed by two to four data transfers. The last data transfer is indicated by assertion of
BLAST. Non-burst accesses begin with assertion of ADS followed by a single data transfer.
Pipelined accesses begin on the same clock cycle in which the previous cycle completes. This
is accomplished by asserting ADS and a valid address during the last data transfer of the
previous cycle. Pipelined accesses may also be burst or non-burst.

Load, store and prefetch mechanisms which deliver "bus requests" to the bus controller are
discussed in Chapter 4, Instruction Set Summary and Appendix A, Optimizing Code for the
i960 CA Microprocessor. The bus controller can be configured for various modes to optimize
interfaces to external memory. Access type - burst, non-burst or pipelined - is selected when
the bus controller is configured.

The bus controller can be configured in various ways. Bus width and access type can be set
based on external memory system requirements. For example, peripheral devices commonly
have slow, non-burst, 8-bit buses. The bus controller can be configured to make memory
accesses to these 8-bit non-burst devices. Each memory access to the peripheral begins with
assertion of ADS and a valid address. BLAST is asserted and, after the desired number of wait
states, eight bits of data are transferred.

A peripheral device is accessed as described above regardless of which bus request type is
issued. For example, if a program includes a Id (word load instruction) from the peripheral, the
load is executed as four 8-bit accesses to the peripheral.

BUS OPERATION

The i960 CA processor bus consists of 30 address signals, four byte enables, 32 data lines and
various control and status signals. Some signals are referred to as status signals. A status signal
is valid for the duration of a bus request. Other signals are referred to as control signals.
Control signals are used to define and manage a bus request. This chapter defines the bus pins
and pin function.

11-2

EXTERNAL BUS DESCRIPTION

Table 11.1. Bus Controller Pins

Pin Name Description Input/Output

PCLK2:1 Processor Output Clocks 0
D31:0 Data Bus 1/0
A31:2 Address Bus 0
Control Signals:
BE3:0 Byte Enables 0
ADS Address Strobe 0
WAIT Wait States 0
BLAST Burst Last 0
READY Memory Ready I
BTERM Burst Terminate I

DEN Data Enable 0
Status Signals:
W/R Write/Read 0
DT/R Data Transmit/Receive 0
DIC Data/Code Request 0
DMA DMARequest 0
SUP Supervisor Mode Request 0

Bus Arbitration:
HOLD Hold Request I

HOLDA Hold Acknowledge 0
LOCK Locked Request 0
BREQ Bus Request Pending 0
BOFF Bus Backoff I

A bus access starts with an address cycle; address cycle is defined by the assertion of address
strobe (ADS). Address and byte enables (A31:2 and BE3:0) are also presented in the address
cycle.

After the address cycle, extra clock cycles called wait states may be inserted to accommodate
the access time for external memory or peripherals. For write accesses, the data lines are driven
during wait states. For read accesses, data lines float. Wait states are discussed later in this
chapter in the section titled Wait States.

A data cycle follows wait states. For write accesses, the data cycle is the last clock cycle in
which valid data is driven onto the data bus. For read accesses, external memory must present
valid data on the rising edge of PCLK2: 1 during the data cycle. Setup and hold time for input
data is specified in the i960 CA Microprocessor Data Sheet.

A bus access may be either non-burst or burst. A non-burst access ends after one data cycle to
a single memory location. A burst access involves two to four data cycles to consecutive
memory locations. BLAST - the burst last signal - is asserted to indicate the last data cycle

11-3

Ill

EXTERNAL BUS DESCRIPTION

of an access. Chapter 10, Bus Controller explains how to configure the bus controller for burst
or non-burst accesses.

Read accesses may be pipelined. In a pipelined access, the data cycle and address cycle of two
accesses overlap. This is possible because address and data lines are not multiplexed. A valid
address can be presented on the address bus while a previous access ends with a data transfer
on the data bus. Chapter 10, Bus Controller explains how to configure the bus for pipelined
accesses.

WIR is a status signal which discerns between a write request (store) or a read request (load or
prefetch).

DTIR and DEN pins are used to control data transceivers. Data transceivers may be used in a
system to isolate a memory subsystem or control loading on data lines. DTIR is used to
control transceiver direction; the signal is low for read requests and high for write requests.
DTIR is valid on the falling PCLK2:1 edge during the address cycle. DEN is used to enable
the transceivers; it is asserted on the rising PCLK2:1 edge following the address cycle. DTIR
and DEN timings ensure that DTIR does not change when DEN is asserted.

DIC, DMA and SUP provide information about the source of bus request. DIC indicates that
the current request is data or a code fetch. DMA indicates that the current request is a DMA
access. SUP indicates that the current request was originated by a supervisor mode process.
When used with a logic analyzer, these signals aid in software debugging.

DIC may also be used to implement separate external data and instruction memories. SUP can
be used to protect hardware from accesses while the processor is not in user mode.

The bus is in the idle state between bus requests. Idle bus state begins after NxnA cycles and
ends when ADS is asserted.

The bus controller aligns all bus accesses; non-aligned accesses are translated into a series of
smaller-aligned accesses. Alignment is described in Chapter JO, Bus Controller.

Wait States

In non-burst mode, it is possible to insert wait states between the address and data cycle. In a
burst mode access, it is possible to insert wait states between the address cycle and data cycle
and between subsequent data cycles for a burst access. It is also possible to insert wait states
between bus requests which occur back-to-back.

The i960 CA bus controller provides an internal counter for automatically inserting wait states.
The bus controller provides control of five different wait state parameters. Figure 11.1 and the
following text describe each parameter.

11-4

NwAo

EXTERNAL BUS DESCRIPTION

~1 __ N_R_A_D_=_3 __ ~-~1--N_R_D_D_-_-_2 ___ ... ,1,... ___ N_x_D_A_=_3 ____ ..,..

I I I I I I I I I
I A I 3 I 2 I 1 Doo I 2 I 1 I Do1 3 I 2 I 1 I A

A31:2 [] A32~00 Invalid X,.__. __

031 0 [

ADS [

BLAST [

WAIT [

A31:2 [

D31.0 [

Double-word burst read request

I NwAo = 3 I NwDo = 2 I
t-.•-------~·..i.-.... 1-------1•-- ~----------~
I I I I I I I I I

A I Doo 3 I 2 I 1 I Do1 I 2 I 1 3 I 2 I 1 I A

A3:2=00 A3:2~01 Invalid

VALID (00) VALID (01)
I I I ill I I

I I
I

Lli I Ii
I I I
I I

Double-word burst wnte request

Figure 11.1. Internal Programmable Wait States

Number of wait cycles for Read Address-to-Data. The number of wait state~

between the address cycle and first read data cycle. NRAD can be programmed for
0-31 wait states.

Number of wait cycles for Read Data-to-Data. The number of wait states between
consecutive data cycles of a burst read. NRDD can he programmed for 0-3 wait
states.

Number of wait cycles for Write Address-to-Data. The number of wait states that
data is held after the address cycle and before the first write data cycle. Nw AD can
be programmed for 0-31 wait states.

11-5

m

Nwnn

NxnA

EXTERNAL BUS DESCRIPTION

Number of wait cycles for Write Data-to-Data. The number of wait states that
data is held between consecutive data cycles of a burst write. Nwoo can be
programmed for 0-3 wait states.

Number of wait cycles for X (read or write) Data to Address. The minimum
number of wait states between the last data cycle of a bus request to the address
cycle of the next bus request. NxoA applies to read and write requests. NxoA can
be programmed for 0-3 clocks.

NRAD and NwAo describe address-to-data wait states; NRoD and Nwoo specify the number of
wait states between consecutive data when burst mode is enabled. NRoo and Nwoo are not
used in non-burst memory regions.

NxoA describes the number of wait states between consecutive bus requests. NxoA is the bus
turnaround time. An external device's ability to relinquish the bus on a read request (read
deasserted to data-float) determines the number of NxoA cycles.

NOTE

NxoA states are only inserted after the last data transfer of a bus request. Therefore, for requests
composed of multiple accesses, NxoA states do not appear between each access. For example, on
an 8-bit burst bus, NxoA states are inserted only after the fourth byte of a word request rather
than after every byte. See Figure 11.2.

For pipelined read accesses, the bus controller uses a value of zero for the NxDA parameter,
regardless of the programmed value for the parameter. A non-zero NxoA value defeats the
purpose of pipelining. The programmed value of NxoA is used for write requests to pipelined
memory regions.

The processor asserts the WAIT signal when NRAD· NwAD· NRoo or Nwoo are inserted.
WAIT can be used as a read or write strobe for the external memory system.

Wait states can also be controlled with READY and BTERM. These inputs are enabled or
disabled in a region by programming the memory region configuration table. Refer to Chapter
JO, Bus Controller for details on setting up bus controller for wait states.

When enabled, READY indicates to the processor that read data on the bus is valid or a write
data transfer has completed. The READY pin value is ignored until the NRAD• NRDD· NwAD or
Nwoo wait states expire. At this time, if READY is deasserted (high), wait states continue to
be inserted until READY is asserted (low).

NxoA wait states cannot be extended by READY. The READY input is ignored during the idle
cycles, the address cycle and NxoA cycles. READY is also ignored in memory regions where
pipelining is enabled, regardless of memory region programming.

NOTE

For proper bus operation, the READY/BTERM inputs should be disabled in regions that have
pipelining enabled.

11-6

Reserved
Byte
Order

bits 31-23 bit22

0
0 ... 0

PCLK [

A31 :4, S\,!P, [
DMA D&_
BE3:0. LOCK

BLAST [

DT/R [

DEN [

A3:2 [

D31:0 [

x
x

EXTERNAL BUS DESCRIPTION

Bus Pipe·
External

Reserved Width Nwoo NwAo NxoA NRoo NRAD Lining Ready
Con1rol

bit 21 bits 20·19 bits 18-17 bits 16·12 bits 11-10 bits 9-8 bits 7-3 bit 2 bit 1

0 32-bit x x 1 x 0 Off Disabled
0 10 xx xxxxx 01 01 00010 0 0

Ti D A D I A I D I A I

00 01 10 11

I I 1818181-G - ~ - .J - - ~ INO - ~ IN1 - j... IN2 - J.. IN3 -

I I I I I I

Burst

bit 0

Disabled
0

I
I --1
I

270710-001-34

Figure 11.2. Quad-word Read from 32-bit Non-burst Memory

The burst terminate signal (BTERM) breaks up a burst access. Asserting BTERM (low) for
one clock cycle completes the current data transfer and invokes another address cycle. This
allows a burst access to be dynamically broken into smaller accesses. The resulting accesses
may also be burst accesses. For example, if BTERM is asserted after the first word of a quad
word burst, the bus controller initiates another access by asserting ADS. The accompanying
address is the address of the second word of the burst access (A3:2 = 01 2). The bus controller

11-7

m

EXTERNAL BUS DESCRIPTION

then bursts the remaining three words. The BLAST (burst last) signal indicates the last data
transfer of the access.

Read data is accepted on the clock edge that asserts BTERM; write data is assumed written.
BTERM effectively overrides the memory ready (READY) signal when it is asserted. In this
way, no data is lost when the current access is terminated. When BTERM is asserted, READY
is ignored until after the address cycle which resumes the burst. As with READY, BTERM is
ignored when pipelining is enabled in a region, regardless of how the region is programmed.

Reserved

bits 31-23
0

0 ... 0

Byte Bus Pipe-
External

Reserved Nwoo NwAD NxoA NRDD NRAD Ready
Order Width Lining

Control

bit 22 bit21 bits 20-19 bits 18-17 bits 16-12 bits 11-10 bits 9-8 bits 7-3 bit 2 bit 1
x 0 32-bit x x 1 1 2 OFF 1
x 0 10 xx xxxxx 01 01 00010 0 01

Not Burst

I A I 2 I 1

,r l'"',,:"r" ,,,,,, '~,, T
WID 110TA121110T1;DI

I I I I I I I I I I I I

ADS[:W w
D310 [:..__,.__,X.__ _ ___,X.....______.X.___~X..___

I

WAIT [:

I

I
I

I I I I

Burst

bitO
Enabled

1

__________ : __ :\...._.[r11Jf
I I I I

BTERM [:

~1-------
1

270710-002-17

Figure 11.3. Bus Request with READY and BTERM Control

11-8

EXTERNAL BUS DESCRIPTION

Bus Width

Each region's data bus width is programmed in the memory region configuration table. The
i960 CA device allows an 8-, 16- or 32-bit-wide data bus for each region. The i960 CA
processor places 8- and 16-bit data on low order data pins. This simplifies interface to external
devices. As shown in Figure 11.4, 8-bit data is placed on lines D7 :O; 16-bit data is placed on
lines D 15:0; 32-bit data is placed on lines D31 :0.

031:24 -----------------------

023:16 !-----------------=:
015:8 ---------------

07:0 1-----z----=!i~(iiF---,...-----ti1'.!I--

;eeo'"cA
MICROPROCESSOR

Figure 11.4. Data Width and Byte Enable Encodings

270710-001-25

The four byte enable signals are encoded in each region to generate proper address signals for
8-, 16- or 32-bit memory systems:

• 8-bit region: BEO is address line AO; BEl is address line Al.

• 16-bit region: BEl is address line Al; BE3 is the byte high enable signal (BHE); BEO is
the byte low enable signal (BLE).

• 32-bit region: byte enables are not encoded. Byte enables BE3:0 select byte 3 to byte 0,
respectively. Address lines A31:2 provide the most significant portion of the address. (See
Table 11.2.)

For regions configured for 8- and 16-bit bus widths, data is repeated on the upper data lines for
aligned store operations. When storing a value to an 8-bit bus region, the processor drives the
same byte-wide data onto lines D7:0, D15:8, D23:16 and D31:24 simultaneously. When
storing a value to memory in a 16-bit bus region, the processor drives the same short-word data
onto lines Dl5:0 and D31:16 simultaneously.

11-9

II

EXTERNAL BUS DESCRIPTrON

Table 11.2. Byte Enable Encoding

8-Bit Bus Width:

BE3 BE2 BEl BEO
BYTE

(X) (X) (Al) (AO)

0 x x 0 0

I x x 0 1

2 x x I 0

3 x x 1 1

16-Bit Bus Width:

BE3 BE2 BEl BEO
BYTE

(BHE) (X) (Al) (BLE)

0,1 0 x 0 0

2,3 0 x I 0

0 I x 0 0

1 0 x 0 1

2 1 x 1 0

3 0 x 1 1

32-Bit Bus Width:

BYTE BE3 BE2 BEl BEO

0,1,2,3 0 0 0 0

2,3 0 0 1 1

0,1 1 1 0 0

0 1 1 1 0

1 1 1 0 1

2 1 0 1 1

3 0 1 1 1

Non-Burst Requests

A basic request (non-burst, non-pipelined; see Figure 11.5) is an address cycle followed by a
single data cycle, including any optional wait states associated with the request. Wait states
may be generated internally by the wait state generator or externally using the i960 CA
processor's READY input.

11-10

Byte
Reserved Order

bits 31-23 bit 22

0 x
0.0 x

PCLK [

ADS [

A31 :2, BE3:0 [

BLAST [

DT/R [

DEN [

SU£, OMA, [
DIC, LOCK

WAIT [

031:0 [

Reserved

bit 21

0
0

EXTERNAL BUS DESCRIPTION

Bus
Width Nwoo NwAD NxoA NRDD NRAD

bits 20-19 bits 18-t7 bits 16-12 bits 11-10 bits 9-8 bits 7-3

x x x 1 x 3
xx xx xxxxx 01 xx 00011

A D

VALID

VALID

I
I I I I

- - - I- - - -1- - - -1- - - -I - -
I I I I

Pipe-
Lin mg

bit 2

Off
0

External
Ready
Control

bit 1

Disableo

I

I
I
I

0

Burst

bit 0

Disabled
0

A

---+----
1

270710-001-28

Figure 11.5. Basic Read Request, Non-Pipelined, Non-Burst, Wait-States

Non-burst accesses and non-pipelined reads are the most basic form of memory access. Non­
burst regions may be used to memory map peripherals and memory that cannot support burst
accesses. Ready control may be enabled or disabled for the region.

11-11

a

EXTERNAL BUS DESCRIPTION

NRAD, Nw AD and NxDA wait state fields of a region table entry control basic accesses:

• NRAD specifies the number of wait states between address and data cycles for read
accesses.

• Nw AD specifies the number of wait states between address and data cycle for write
accesses.

• NxDA specifies the number of wait states between data cycle and next address cycle.

Data-to-data wait states (NRDD· NwnD) are not used if burst accesses are not enabled.

A read access begins by asserting the proper address and status signals (ADS, A3 l :2, BEO,
BE3, SUP, DIC, DMA, W/R) on the rising clock edge that begins the address cycle (marked
as "A" on the figures). Assertion of ADS indicates the beginning of an access.

DT/R is driven on the clock's next falling edge. This signal is asserted early to ensure that
DT/R does not change while DEN is asserted. DEN is asserted on the clock's next rising edge
(the rising edge in which ADS is deasserted and the address cycle ends). DEN can be used to
control external data transceivers.

The cycles that follow are NRAD wait states. WAIT is asserted while the internal wait state
generator is counting. If READY/BTERM control is enabled in this region and READY is not
asserted after the wait state generator has finished counting, wait states continue to be inserted
until READY is asserted.

BLAST assertion indicates end of data transfer cycles for this access. DEN is deasserted.
NxDA wait states (turnaround wait states) follow BLAST; a new address cycle may start after
NxDA cycles expire. NxnA states allow time for slow devices to get off the bus. For this
figure, this access is the last access of a bus request because NxDA wait states are inserted and
DEN is deasserted.

Burst Accesses

A burst access is an address cycle followed by two to four data cycles. The two least­
significant address signals automatically increment during a burst access.

Maximum burst size is four data cycles. This maximum is independent of bus width. A byte­
wide bus has a maximum burst size of four bytes; a word-wide bus has a maximum of four
words. If a quad word load request (e.g., ldq) is made to an 8 bit data region, it results in four
4-byte burst accesses. (See Table 11.3.)

11-12

EXTERNAL BUS DESCRIPTION

Byte Bus Pipe· External
Reserved Order Reserved Width NwDD NwAD NxoA NRDD NRAD Lining Ready Burst

Control

bits 31·23 bit22 bit 21 bits 20-19 bits 18-17 bits 16-12 bits 11-10 bits 9-8 bits 7-3 bit2 bit 1 bitO
0 x 0 x x 0 0 x 0 011 Disabled Disabled

0 ... 0 x 0 xx xx 00000 00 xx 00000 0 0 0

A D A D A D

PCLK [

ADS [

A31:4, S\!_P, [
QM&D.&_ VALID VALID VALID
BE3:0. LOCK

W/f!i.[

BLAST [

DT/R[

DEN [

A3:2 [VALID VALID m
WAIT [I I I

I I I
I I I

D31:0 [

I I I
--1-- --1-- ---+--

I I I

Figure 11.6. Basic Read and Write Requests, Non-Pipelined,
Non-Burst, No Wait States

11-13

EXTERNAL BUS DESCRIPTION

Table 11.3. Burst Transfers and Bus Widths

Number of Burst Number of Number of
Request Bus Width Accesses Transfers/Burst Transfers

8 bit 4 4-4-4-4 16
Quad Word 16 bit 2 4-4 8

32 bit 1 4 4

8 bit 3 4-4-4 12
Triple Word 16 bit 2 4-2 6

32 bit 1 3 3

8 bit 2 4 8
Double Word 16 bit I 4 4

32 bit 1 2 2

8 bit I 4 4
Word 16 bit I 2 2

32 bit l 1 1

8 bit l 2 2
Short 16 bit l l 1

32 bit 1 1 I

8 bit 1 l 1
Byte 16 bit l I 1

32 bit I l 1

Burst accesses increase bus bandwidth over non-burst accesses. The i960 CA processor burst
access allows up to four consecutive data cycles to follow a single address cycle. Compared to
non-burst memory systems, burst mode memory systems achieve greater performance out of
slower memory. SRAM, interleaved SRAM, Static Column Mode DRAM and Fast Page Mode
DRAM may be easily designed into burst-mode memory systems.

A burst read or write access consists of: a single address cycle, 0 to 31 address-to-data wait
states (N RAD or N w AD) and one to four data cycles, separated by zero to three data-to-data
wait states (NRDD or NwDo). If READY/BTERM control is enabled in the region, NRAD,
NwAD, NRDD and NwDD wait states may all be extended by not asserting READY. BTERM
may be used to break a burst access into smaller accesses.

The address' two least-significant bits automatically increment after each burst data cycle. This
is true for 8-, 16- and 32-bit-wide data buses. When a memory region is configured for a 32-bit
data bus width, address pins A2 and A3 increment. For a 16-bit memory region, BEl is
encoded as Al and address pins A2 and Al increment. When a memory region is configured
for an 8-bit data bus width, BEO and BEl - acting as the lower two bits of the address -
increment.

Maximum burst size is four data transfers per access. For an 8- or 16-bit bus, this means that
some bus requests may result in multiple burst accesses. For example, a quad-word (16 byte)
request to an 8 bit memory results in four 4-byte burst accesses. Each burst access is limited to
four bytewide data transfers.

11-14

EXTERNAL BUS DESCRIPTION

Burst accesses on a 32-bit bus are always aligned to even-word boundaries. Quad-word and
triple-word accesses always begin on quad-word boundaries (A3:2=00); double-word transfers
always begin on double-word boundaries (A2=0); single-word transfers occur on single word
boundaries. (See Figure 11.7.)

A3:2

32-BIT BURST BUS
QUAD-WORD BURST

TRIPLE-WORD BURST

DOUBLE-WORD BURST

DOUBLE-WORD BURST

32-BIT 270710-001-31

Figure 11.7. 32-Bit-Wide Data Bus Bursts

Burst accesses for a 16-bit bus are always aligned to even short-word boundaries. A four short­
word burst access always begins on a four short-word boundary (A2=0, A I =0). Two short­
word burst accesses always begin on an even short-word boundary (Al=O). Single short-word
transfers occur on single short-word boundaries (see Figure 11.8.) For a 16-bit bus, data is
transferred on data pins D 15:0. Data is also driven on upper data lines D3l:16.

Burst accesses for an 8-bit bus are always aligned to even byte boundaries. Four-byte burst
accesses always begin on a 4-byte boundary (A I =0, AO=O). Two-byte burst accesses always
begin on an even byte boundary (AO=O) (see Figure 11.9). For an 8-bit bus, data is transferred
on data pins D7:0. Data is also driven on the upper bytes of the data bus Dl5:8, D23:16 and
D31:24.

11·15

Ill

EXTERNAL BUS DESCRIPTION

A2:1 = (A2, BE1)

00 01 10 11

16-BIT BURST BUS
4 SHORT-WORD BURST

2 SHORT-WORD BURST

2 SHORT-WORD BURST

270710-001-32

.. _.1
16-BIT :

Figure 11.8. 16-Bit Wide Data Bus Bursts

A 1:0 = (BE1, SEO)

00 01 10 11

8-BIT BURST BUS
4-BYTE BURST

2-BYTE BURST

2-BYTE BURST

I

270710-001-33

.. _.1

8-BIT :

Figure 11.9. 8-Bit Wide Data Bus Bursts

Figure 11.10 shows a quad-word read on a 32-bit bus. Burst access begins by asserting the
proper address and status signals (ADS, A3 l :2, BE3:0, SUP, DIC, DMA, W/R). This is done
on the rising edge that begins the address cycle ("A" on the figures). Word read asserts all byte
enable signals BE3:0. ADS assertion indicates beginning of access.

DT/R is driven on the clock's next falling edge to ensure that DT/R does not change while
DEN is asserted. DEN is asserted on the clock's next rising edge - the rising edge that ends

11-16

EXTERNAL BUS DESCRIPTION

address cycle. ADS is deasserted on this clock edge. DEN is used to control external data
transceivers. DEN and DT/R remain asserted throughout the burst access.

Wait-state cycles that follow are address and NRAD wait states. WAIT is asserted while the
internal wait-state generator is counting. If READY/BTERM control is enabled in this region
and READY and BTERM are not asserted after the wait-state generator has finished counting,
wait states continue to be inserted until READY is asserted. If BTERM is asserted, READY is
ignored. Data is then read and a new address cycle is generated. (See section titled Ready and
Burst Terminate Control later in this chapter.)

The data cycle is followed by NRDD wait states. These wait states separate burst data cycles
and can be used to extend data access time of reads and data setup and hold times for writes.

BLAST assertion indicates the end of data transfer cycles for this access. At this time, DEN is
de asserted.

NXDA wait states (turnaround wait states) are inserted after the last access of a bus request.
NXDA wait states follow BLAST only when BLAST is asserted for the last access of a bus
request. A new address cycle may start after NXDA cycles have expired. NxDA states allow
slow devices to get off the bus.

Pipelined Read Accesses

Pipelined read accesses provide the maximum data bandwidth. For pipelined reads, the next
address is output during the current data cycle. This effectively removes the address cycle from
consecutive pipelined accesses.

A pipelined read memory system is implemented by adding an address latch to the design (see
Figure l l.12). The address latch holds the address for the current read access while the
processor outputs the address for the next access. This allows the next address to be available
during the data cycle of the current access. Overlapping address and data cycles improves data
bandwidth.

Write accesses to a pipelined region act the same as writes to a non-pipelined region. This
means that the address for a write access is not pipelined. Similarly, the address for a read
access following a write is not pipelined.

NOTE
When pipelining is enabled in a region, the READY and BTERM inputs are ignored for read and
write cycles. These inputs must be disabled in regions that have pipelining enabled.

For pipelined read accesses, the bus controller uses a value of zero for the NxoA parameter,
regardless of the programmed value for the parameter. A non-zero NxDA value defeats the
purpose of pipelining. The programmed value of NxoA is used for write accesses to pipelined
memory regions.

11-17

Ill

Reserved
Byte

Order

bits 31-23 bit 22

0
0 ... 0

PCLK [

ADS [

A31:4. S1[P, [
QM&D.LQ._
BE3:0, LOCK

BLAST [

DT/R [

DEN [

A3:2 [

WAIT [

D31:0 [

x
x

EXTERNAL BUS DESCRIPTION

Bus Pipe-
External

Reserved Width Nwoo NwAD NxoA NADD NAAD Lining
Ready
Control

bit21 bits 20-19 bits 18-17 bits 16-12 bits 11-1 O bits 9-8 bits 7-3 bit 2 bit 1

0 32-bit x x 1 1 2 Off Disabled
0 10 xx xxxxx 01 01 00010 0 0

00 01 10 11

I I IGl-81818 - f.- - -+ - - f.- INO - I- IN1 - I- IN2 - I- .IN3 -I I I I I I

Burst

bit 0

Enabled
1

I
I
I
I

--1
I

270710-001-34

Figure 11.1 o. 32-Bit Bus, Burst, Non-Pipelined, Read Request with Wait States

11-18

EXTERNAL BUS DESCRIPTION

Byte Bus Pipe- External
Reserved Order Reserved Width Nwoo NwAo NxoA NRDD NRAD Lining Ready Burst

Control

bits 31-23 bit 22 bit 21 bits 20-19 bits 18-17 bits 16-12 bits 11-1 O bits 9-8 bits 7-3 bit2 bit 1 bit 0

0 x 0 32-bit 1 3 1 x x Off Disabled Enabled
0 ... 0 x 0 10 01 00011 01 xx xxxxx 0 0 1

A I 2 D

PCLK [

ADS [

A314. S1i_P. [
OMA DIC.
BE3:0, LOCK

W/R[

BLAST [

DT!R [

DEN [

A3:2 [00 01 10 11

II
WAIT [I I I

I I I
I I I I I

-~ OUT~ :x ~UT1 :x ~UT2 :x ~UT3)- I
031:0 [--1

I

270710-001-35

Figure 11.11. 32-Bit Bus, Burst, Non-Pipelined, Write Request with Wait States

11-19

EXTERNAL BUS DESCRIPTION

PIPELINE INTERFACE

ADDRESS --------------,1

I
J PCLK---------1 ADDRESS LATCH

MEMORY ARRAY

Figure 11.12. Pipelined Read Memory System

11-20

intel""

Byte
Reserved Order

bits 31-23 bit 22

0 x
0 .. 0 x

PCLK [

ADS [

A31A SUP. [
DMA DIC
LOCK

W/R [

A3:2 [
BE3:0

031:0 [

WAIT [

BLAST [

DT"R [

DEN [

Reserved

bit 21

0
0

EXTERNAL BUS DESCRIPTION

Bus
Width

bits 20-19
32-bit

10

A

Nwoo

bits 18-17

x
xx

A'
D

NwAO

bits 16-12

x
xxxxx

A'
D'

Non-pipelined request concludes.
pipelined reads begin

NxoA

bits 11-10

x
xx

NRoo

bits 9·8
0
00

A'"
D"

NRAD

bits 7-3

0
00000

A""
D'"

Pipe-
L111ing

bit 2
On
1

D""

Pipelined reads conclude,
Non-pipelined request begin

Figure 11.13. Non-Burst Pipelined Read Waveform

11-21

External
Ready Burst
Control

bit 1 bit 0
x Enabled
x 1

m

270710·002·24

Byte
Reserved Order

bits 31-23 bit22
0 x

0 ... 0 x

PCLK [

ADS [

A314, Sl!P. [
DMA, DK.,_
BE3:0, LOCK

W/R[

A3:2 [

D31:0 [

WAIT [

BLAST [

DT/R [

DEN [

EXTERNAL BUS DESCRIPTION

Bus
Reserved Nwoo NwAD Width

bit 21
0
0

bits 20-19 bits 18-17 bits 16-12
32-bit x x

10 xx xxxxx

A D D

Non-pipelined request concludes,
pipelined reads begin

NxoA

bits 11-1 O
x
xx

D

Pipe- External
NRDD NRAD Ready Lining

Control

bits 9-8 bits 7-3 bit 2 bit 1

0
00

0 On
00000 1

A' D' D'
D

Pipelined reads conclude,
Non-pipelined request begin

x
x

Figure 11.14. Burst Pipelined Read Waveform

11-22

Burst

bitO

Enabled
1

EXTERNAL BUS DESCRIPTION

Ao

J NON- J PIPELINED
BURST PIPELINED NON-BURST

I Aso I As1 I As2 I Ass I A34 I Ass I

PIPELINED BURST

Ai I J
Do1 I Clio I Di i I Di2 I Dis I A2o I D20 I I Dso I Ds1 I D32 I Dss I Ds4 I D3s I

I I I I I I I I I I I I I I

[
I ..--+---+-"'"*"-+-""

ADS : I I

I I

W/R [....--.P ________ , __ : I

VALID VALID

I I I I I I I
I I I I I I I

I

\:

I
I
I

0

VALID VALID VALID VALID VALID VALID VALID A314 [:
•1 • ._....,..-~,.._-....,.._...,.. __ J~,.....,..__ _ _,..J'--J'----''""""~"'--'•-J~-•-~

I
I

Figure 11.15. Pipelined to Non-Pipelined Transitions

LITTLE OR BIG ENDIAN MEMORY CONFIGURATION

270710-002-26

The bus controller supports big endian and little endian byte ordering for memory operations.
Byte ordering determines how data is read from or written to the bus and ultimately how data is
stored in memory. Little endian systems store a word's least significant byte at the lowest byte
address in memory. For example, if a little endian ordered word is stored at address 600, the
least significant byte is stored at address 600 and the most significant byte at address 603. Big
endian systems store the least significant byte at the highest byte address in memory. So, if a
big endian ordered word is stored at address 600, the least significant byte is stored at address
603 and the most significant byte at address 600.

The i960 CA processor uses little endian byte ordering internally for data-in registers and data­
in internal data RAM. Data-in memory (except for internal data RAM) can be stored in either
little or big endian order. A bit in the region table entry for a memory region determines the
type of. byte ordering used in that region. Data and instructions can be located in either big or
little endian regions.

Both byte ordering methods are supported for short-word and word data types. Table 11.4
shows how a word, half-word and byte data types are transferred on the bus according to the
type of byte ordering used for the selected memory region and bus width (32, 16 or 8 bits). All
transfers shown in the table are aligned memory accesses.

11-23

II

EXTERNAL BUS DESOR1PTION

For the word data type, assume that a hexadecimal value of aabbccddH is stored in an internal
i960 CA processor register, where aa is the word's most significant byte and dd is the least
significant byte. Table 11.4 then shows how this word is transferred on the bus to either a little
endian or big endian region of memory.

For the half-word data type, assume that a hexadecimal value of ccddH is stored in one of the
i960 CA processor's internal registers. Table 11.4 then shows how this half word is transferred
on the bus to either a little endian or big endian memory region. Note that the half-word goes
out on different data lines on a 32-bit bus depending on whether address line Al is odd or
even.

Table 11.4 also exhibits how the i960 CA processor handles byte data types the same
regardless of byte ordering type.

Multiple word bus requests (bursts) to a big endian region are handled as individual words.
Bytes in each word are stored in big endian order; however, words are stored in little endian
order. Big endian data types that exceed 32 bits are not supported and must be handled by
software.

11-24

EXTERNAL BUS DESCRIPTION

Table 11.4. Byte Ordering on Bus Transfers

Word Data Type Bus Pins (data lines 31:0)

Bus Addr Bits Little Endian Big Endian
Width Al, AO Xfer 31:24 23:16 15:8 7:0 31:24 23:16 15:8 7:0

32 bit 00 1st aa bb cc dd dd cc bb aa

16 bit 00 I st -- cc dd -- -- bb aa

00 2nd -- -- aa bb -· -- dd cc

8 bit 00 1st -- ·- -- dd -- -- -- aa

00 2nd -- -- -- cc -- -- -- bb

00 3rd -- -- -- bb -- -- -- cc

()() 4th -- -- -· aa -- -- -- dd

Half-Word Data Type Bus Pins (data lines 31 :0)

Bus Addr Bits Little Endian Big Endian
Width Al, AO Xfer 31:24 23:16 15:8 7:0 31:24 23:16 l5:8 7:0

32 bit 00 I st -- -- cc dd -- -- dd cc

10 1st cc dd -- -- dd cc -- --
16 bit XO l st -- -- cc dd -- -- dd cc

8 bit XO 1st -- -- -- dd -- -- -- cc

2nd -- -- -- cc ·- -- -- dd

Byte Data Type Bus Pins (data lines 31:0)

Bus Addr Bits Little and Big Endian
Width Al, AO Xfer 31:24 23:16 15:8 7:0

32 bit 00 1st -- -- -- dd

01 1st -- -- dd --
10 I st -- dd -- --
11 1st dd -- -- --

16 bit XO I st -- -- -- dd

Xl 1st -- -- dd --

8 bit xx 1st -- -- -- dd

ATOMIC MEMORY OPERATIONS (THE LOCK SIGNAL)

LOCK output assertion indicates that the processor is executing an atomic read-modify-write
operation. Atomic instructions (atadd, atmod) require indivisible memory access. That is,
another bus agent must not access the target of the atomic instruction between read and write
cycles. LOCK can be used to implement indivisible accesses to memory.

Atomic instructions consist of a load and store request to the same memory location. LOCK is
asserted in the first address cycle of the load request and deasserted in the cycle after the last

11-25

EXTERNAL BUS DESCRIPTION

data transfer of the store request. The LOCK pin is not active during the NxoA states for the
store request.

When implementing a locked memory subsystem, consider the interaction that the following
mechanisms may have on the system. A system must account for these conditions during
locked accesses:

• HOLD requests are acknowledged while LOCK is asserted.

• An atomic load or store may be suspended using the BOFF input.

• A DMA request may occur between the atomic load and store requests.

LOCK indicates that other agents should not write data to any address falling within the quad
word boundary of the address on the bus when LOCK was asserted. LOCK is deasserted after
the write portion of an atomic access. It is the responsibility of external arbitration logic to
monitor the LOCK pin and enforce its meaning for atomic memory operations. (See Figure
11.16.)

READ WRITE

A D A D

PCLK [

I
I 22

Aos[i\ I \ I
I

A314, Si,!P. [~ x (0 VALID VALID OMA, D/C,
BE3:0

I I I
I I I

w1R[-:-J !L (0
I I
I I 22

BLAST [I \ I I \ I
I
I

LOCK[i\
I

,,____ _ ___,/
22

I
270710-002-29

Figure 11.16. The LOCK Signal

EXTERNAL BUS ARBITRATION

The i960 CA processor provides a shared bus protocol to allow another bus master to access
the processor's bus. The processor enters the hold state when an external bus master is granted
bus control. In the hold state, the processor's data, address and control lines are floated (high
Z) to allow the external bus master to control the bus and memory interface.

11-26

EXTERNAL BUS DESCRIPTION

The HOLD input signal is asserted to indicate that another processor or peripheral is attempting
to control the bus. The HOLDA (Hold Acknowledge) output signal acknowledges that the i960
CA processor has relinquished the bus. Bus pins float on the same clock cycle in which the
hold request is granted (HOLDA asserted). When the i960 CA processor needs to access the
bus, it uses the bus request signal (BREQ) to signal the other processor or peripheral.

When the HOLD signal is asserted, the i960 CA processor grants the hold request (asserts
HOLDA) and relinquishes control as follows:

• If the bus is in the idle state. the hold request is granted immediately.

• If a request is in progress, the hold request is granted at the end of the current bus request.

• If the processor is in the backoff state (BOFF pin asserted). the hold request is granted after
BOFF is deasserted and the resumed request has completed.

The hold request may be acknowledged between internal OMA load and store operations and
atomic requests (read-modify-write accesses that assert LOCK).

When the HOLD signal is removed, HOLDA is dcasserted on the following PCLK2: I cycle
and the bus and control signals are driven. The HOLD signal is a synchronous input. Setup and
hold times for this input are given in the i960 CA Microprocessor Data Sheet.

BREQ indicates that the bus controller queue contains one or more pending bus requests. The
bus controller can queue up to three bus requests (refer to Chapter 10, Bus Controller for a
complete description of the bus queue). When the bus queue is empty, the BREQ pin is
deasserted. BREQ determines bus queue state during a hold state or before the hold state is
requested. It may be useful to use BREQ to qualify hold requests and optimize the processor's
use of the bus when shared by external masters. Because the hold request is granted between
bus requests, the bus controller queue may contain one or more entries when the request is
granted. BREQ can be used to delay a hold request until all pending bus requests are complete.
The processor may continue executing from on-chip cache; therefore, it is possible that bus
requests may be posted in the queue after the hold request is granted. In this case. BREQ can
be used to relinquish the hold request when the processor needs the bus.

The HOLD and HOLDA arbitration can also function during the reset state. The bus controller
acknowledges HOLD while RESET is asserted. If RESET is asserted while the processor has
asserted HOLDA (acknowledged the HOLD) the processor remains in the HOLDA state. The
processor does not go into the reset state until HOLD is removed and the processor removes
HOLDA.

11-27

m

EXTERNAL BUS DESCRIPTION

PCLK2:1

ADS

A31:2, S~P.
DMA, D_!L__

Word Read Request
NRAo=1, NxoA=1

VALID BE3:0, WAIT
1
_. _________ _

DEN, DT/R

HOLD

HOLDA

___ 1 ___ _

I
I
I

Word Read
Request

NRAo=O, NxoA=O

--L-----
1

I

I
I I

-i----i
I I
I I

---L----1
I I
I I
I I

--1-----1
I I
I I

Figure 11.17. HOLD/HOLDA Bus Arbitration

Bus Backoff Function (BOFF pin)

The bus backoff input (BOFF) suspends a bus request already in progress and allow another
bus master to temporarily take control of the bus. The BOFF pin causes the current bus request
to be suspended. When BOFF is asserted, the processor's address, data and status pins are
floated on the following clock cycle. At this time, an alternate bus master may take control of
the local system bus. When the alternate bus master has completed its accesses, BOFF is
deasserted and the suspended request is resumed upon assertion of ADS on the following clock
cycle. (Figure 1 l.18).

The backoff function differs from the bus hold mechanism. The backoff function suspends a
bus request which has already started. The request is later resumed when the pin is deasserted.
The bus hold mechanism allows another bus master to control the bus only after all executing
bus requests have completed.

Backoff can only be used for requests to regions which have the READY/BTERM inputs
enabled, with the NRAD' NR00, NwAD and Nwoo parameters programmed to 0.

11-28

EXTERNAL BUS DESCRIPTION

BOFF may only be asserted during a bus access. Recall that a bus access includes and is
bounded by clock cycles in which ADS is valid and the clock cycle in which BLAST is valid
and READY input is asserted. External logic responsible for asserting BOFF must ensure that
the signal is not asserted during idle bus cycles or during bus turnaround (NxDA) cycles.
Unpredictable behavior may occur if BOFF is subsequently deasserted during an idle bus or
turnaround cycle.

It is possible for HOLD and BOFF to be asserted in the same clock cycle. In this case. BOFF
takes precedence. The bus is relinquished to a hold request only after the current request is
complete.

Bus backoff is intended for use with special multiprocessor designs or bus architectures that do
not implement "collision free" bus arbitration schemes (such as VME and MULTIUSERS I). A
collision occurs when multiple processors begin a bus access simultaneously and a con11ict for
control of one of the processor's local memory occurs.

A bus collision is illustrated in the system diagram shown in Figure l l .19. In this system.
several processors share a common bus. Each processor has local memory which is connected
directly to that processor's address, data and control lines. Each processor can access another
processor's local memory over the bus.

Processor A has highest priority and Processor C has lowest pnonty for use of the bus.
Processor A and B simultaneously request an access over the bus. Processor A attempts to
access Processor B's local memory and Processor B attempts to access another memory on the
bus. Use of the bus is granted to Processor A because it is the highest priority. For Processor A
to complete its access, the local bus for Processor B must be relinquished (floated). This is
accomplished by asserting the BOFF pin for Processor B.

When BOFF is asserted, external memory is responsible for gracefully cancelling the current
access. This means that the memory control state machine should cancel write cycles and
return to an idle state after BOFF is asserted. The processor ignores read data after BOFF is
asserted.

11-29

m

EXTERNAL BUS DESCRIPTION

ADS

Regenerate ADS

I I I I I I I I I Yrt I I

2 II I I~
I I _-H2-+----+ I I I I
I I I I I I I I

I I I I I Burst I I I I I Burst I I I I I

I I I lcl::J"'I I I lc"'121 I I
I I I I -L-((l.-J_ _ _I_ c I I fl
1111 Ill ~!

I I I VI I I I j;f" I I I I
I I Non-Burst I I I I Non-Burst I I I I I

_____ _,'/ 2 : ~
I I I I I

: I I lt\l__L ~::I:
I S~spend 1Reques1t~ I I I I I ~esume 1Reque~t I

A31 :2, S~P, :
OMA DLQ._
BE3:0, WAIT
DEN, DT/R : :1 : : :::J--~~~~---:-c::=tt

I I I I I I I I I I I I I I I

031:0
(Writes) ~---:---~--~r-2~.:-?2-~--~-~~-~.
1111~~111~~1
I I I Begin Req~est I I I I I I I E~d Req~est I
I I I I I I I I I I I I I I
I I"' I I BOFF may be asserted to suspend requesq I I I ""

BOFF may not BOFF may not
be asserted be asserted

NOTE: READY/ BTERM must be enabled; NRAD• NRDD· NwAD' Nwoo = 0

Figure 11.18. Operation of the Bus Backoff Function

11-30

EXTERNAL BUS DESCRIPTION

Processor
System A

Processor
System B

Bus Grant Priority

High Low

Slave
Memory

or
Peripheral

Figure 11.19. Example Application of the Bus Backoff Function

PIN AND BUS STATE DESCRIPTION

The following pin descriptions provide an easy reference to determine the state and behavior of
the bus pins.

Pins are designated as an input (I), output (0) or input/output (I/0).

All output pins are synchronous to the PCLK2: I output clock signab. Mt,st oulpuh are
synchronous to the rising edge of PCLK2: I. These outputs are designated with the syrnhol
S(R). Outputs which are synchronous to the falling edge of PCLK2: I arc designated with the
symbol, S(F).

Most input pins are synchronous inputs. A designer must adhere to specified st'lup and hold
times for proper operation of these inputs. Synchronous inputs are designated in the same way
as outputs, S(R) and S(L) depending on the PCLK2: I edge on which the signal is sampled

Some input pins are asynchronous inputs. These pins are designated by the symbols A(L) and
A(E). The A(L) symbol designates that the pin is a level sensitive input: A(E) indicates that the
pin is falling edge latched.

11-31

ID

EXTERNAL BUS DESCRIPTION

The following list summarizes these pin designations:

Symbol

I

0

1/0

S(R)

S(F)

A(L)

A(E)

Description

Input only pin

Output only pin

Input/Output pin

Synchronous input, output or input/output pin referenced to the rising edge of
PCLK2:1

Synchronous input, output or input/output pin referenced to the falling edge
of PCLK2:1

Asynchronous input, level activated

Asynchronous input, falling edge activated

The pin descriptions also provide information concerning the state of the pin during different
processor states. The symbols used to represent each state is given in the following list:

Symbol

R()

I()

T()

H()

B()

0()

Bus State

Reset State (RESET active)

Idle State (No executing bus requests

Turnaround State (NxnA wait states)

Hold State (HOLDA signal is active)

Backoff State (BOFF signal is active)

On Circuit Emulation Mode (ONCE asserted on rising RESET)

Bus state symbol argument specifies the state of output pins or the required value of input pins
during each bus state. State symbol arguments are provided in the following list:

Input state symbol

x
0

I

Q

Output state symbol

z
x
0

Q

Description

Input is a don't care (either high or low) during this state

Input must be driven low (0) during this state

Input must be driven high (1) during this state

Input is recognized as a valid input. Function is given in pin
description

Description

Output floats (high Z) during this state

Output is either high (1) or low (0) during this state

Output is low (0) during this state

Output is high (1) during this state

Valid output during this state. Function is given in pin
description.

11-32

EXTERNAL BUS DESCRIPTION

NOTE

Arguments for 1/0 state symbols consist of in input and output argument separated by a "/"
symbol. The argument designates that the pin is a known input or output in a particular state by
using the .. _ .. symbol on one side of the "/" symhol.

The following example demonstrates the use of these symbols when describing the pins:

D3l:O IJO
S(R)

R(X/Z)
l(X/ZJ
T(X/Z)
H(X/Z)
B(X/Z)
O(X/Z)

32 Bit Data Bus. 32-. 16- and 8-bit values are transmitted
and received on these lines. When a memory region is
configured as an 8 bit bus, data is transferred on D7:0 only.
When a memory region is configured as a 16 bit bus, data
is transferred on D 15:0 only. The data bus drives valid data
for write operation and floats during reads and instruction
fetches.

Data pin designation (D3 l :0) in the first column specifies that the pins are synchronous
input/output pins.

IJO and S(R) in the second column indicate that the pins are referenced to the rising edge of
PCLK2:1.

The bus state symbols in the third column indicate that - in the reset, idle, turnaround, hold,
backoff and ONCE states - pins are floated and values driven on the pins are ignored.

Pin descriptions in this chapter do not discuss pins associated with the interrupt or DMA
controllers. Refer to Chapter 6, Interrupts and Chapter 13, DMA Controller for a description
of these pins. More details on the bus electrical characteristics are given in the i960 CA
Microprocessor Data Sheet.

Bus Control Signals

PCLK2:1

D31:0

0

IJO
S(R)

R(Q)
l(Q)
T(Q)
H(Q)
B(Q)
O(Z)

R(X/Z)
I(X/Z)
T(X/Z)
H(X/Z)
B(X/Z)
O(X/Z)

Processor Output Clocks. PCLK 1 and PCLK2 are identical
clock outputs for the processor's synchronous bus. All
other bus operations are synchronized to these clocks. Two
identical clock output pins are provided for additional drive
capability. When configured for One-X clock mode,
PCLK2: I is synchronous to CLKIN input clock signal.
When configured for Two-X clock mode, PCLK2: I is one
half the frequency of CLKIN. One-X or Two-X clock mode
is selected with the CLKMODE pin.

32 Bit Data Bus. 32-, 16- and 8-bit values are transmitted
and received on these lines. When a memory region is
configured as an 8 bit bus, data is transferred on D7:0 only.
When a memory region is configured as a 16 bit bus, data
is transferred on D15:0 only. The data bus drives valid data
for write operation and floats during reads and instruction
fetches.

11-33

m

A31:2 0
S(R)

0
S(R)

0
S(R)

0
S(R)

0
S(R)

R(Z)
l(X)
T(X)
H(Z)
B(Z)
O(Z)

R(l)
I(X)
T(X)
H(Z)
B(Z)
O(Z)

R(l)
I(1)
T(l)
H(Z)
B(Z)
O(Z)

R(l)
I(1)
T(l)
H(Z)
B(Z)
O(Z)

R(O)
1(1)
T(l)
H(Z)
B(Z)
O(Z)

EXTERNAL BUS DESCRIPTION

30 Bit Address. A31:2 carries physical address upper 30
bits. A31 is most significant address bit; A2 is least
significant. The 30 bit address bus identifies all external
addresses to word (4 Byte) boundaries. Byte enable lines
(BE3:0) indicate selected byte in each word. A3 and A2
increment during 32 bit burst accesses.

Byte Enables. These select which of four addressed bytes
are active in a 32-bit memory access. BEO applies to D7:0;
BEl applies to Dl5:8; BE2 applies to D23:16; BE3
applies to D31 :24. When a memory region is configured for
an 8-bit data bus width, BE 1 and BEO act as the address
lower two bits, Al and AO, respectively. For a 16-bit
memory region, BE3, BEI and BEO are encoded as BHE,
Al and BLE, respectively.

Address Strobe. This control signal indicates valid address
and the start of a new bus access. ADS is asserted for the
first clock of a bus access.

Wait. This signal indicates internal wait state generator
status. WAIT is active when wait states are caused by the
internal wait state generator inserting either NRAD, NRDD,
NwAD or NwDD wait states. WAIT is not asserted during
NxDA cycles or when wait states are caused by READY.
WAIT can be used to derive a write data strobe. WAIT can
also be considered as a memory ready output, which the
processor provides when inserting wait states.

Burst Last. BLAST is a control signal that indicates the end
of a bus access. This signal is asserted in the last data
transfer of every bus access, whether burst, non-burst or
pipelined.

11-34

READY

BTERM

I
S(R)

I
S(R)

0
S(R)

R(X)
l(X)
T(X)
H(X)

B(X)
O(X)

R(X)
l(X)
T(X)
H(X)
B(X)
O(X)

R(l)
1(1)
T(l)
H(Z)
B(Z)

O(Zl

EXTERNAL BUS DESCRIPTION

Memory Ready. READY input signal indicates that read
data on the bus is valid or a write-data transfer has
completed. READY works in conjunction with the
internally programmed wait state generator. If READY and
BTERM arc enabled in a region, READY is sampled after
the programmed number of wait states has expired. If
BTERM is not asserted (high) and READY is deasserted
(high), wait states continue to be inserted until READY is
asserted (}ow). This is trne for NRAD· NRDD· NwAD and
NwoD wait states. NxoA wait states cannot be extended
by READY. To satisfy READY setup and hold times.
READY must be externally synchronized. Setup and hold
specifications are given in the i960 CA Microprocessor
Dali! Sheet.

Burst Terminate. This signal breaks up a burst access and
causes another address cycle to occur. BTERM works in
conjunction with the internally programmed wait state
generator. If READY and BTERM are enabled in a region,
BTERM is sampled after the programmed number of wait
states has expired. When BTERM is deasserted, a new
ADS signal is generated and the access is completed.
READY input is ignored when BTERM is asserted.
BTERM must be externally synchronized to satisfy
BTERM setup and hold times. Setup and hold
specifications are given in the i960 CA Microprocessor
Data Sheet.

Data Enable. DEN is asserted (low) after the first address
eye le of a bus request and is de asserted at the end of the last
data cycle of the request (before the NxoA cycles). DEN is
used to control external data transceivers. DEN remains
asserted for sequential accesses to pipelined regions.

11-35

ID

Bus Status Signals

W/R

DT/R

DIC

0
S(R)

0
S(F)

0
S(R)

0
S(R)

0
S(R)

R(O)
I(X)
T(Q)
H(Z)
B(Z)
O(Z)

R(O)
I(X)
T(Q)
H(Z)
B(Z)
O(Z)

R(Z)
I(X)
T(Q)
H(Z)
B(Z)
O(Z)

R(Z)
I(X)

T(Q)
H(Z)
B(Z)
O(Z)

R(Z)
I(X)
T(Q)
H(Z)
B(Z)
O(Z)

EXTERNAL BUS DESCRIPTION

Write/Read. This request status signal is low for loads and
instruction fetch requests and high for store requests. W/R
changes in the same clock cycle that ADS is asserted and
remains valid for the entire request in a non-pipelined
regions. In pipelined regions, W/R is not valid in the last
data cycle of a read request.

Data Transmit/Receive. Used for direction control for data
transceivers. DT/R is low when the i960 CA processor is
reading data and high when writing data. DT/R does not
change while DEN is asserted. DT/R remains valid for the
entire bus request, including NxoA cycles.

Data/Code. DIC is a request status output that indicates
that the current request is either a data transfer or
instruction fetch.

CPU/OMA. OMA is a request status output that indicates
that a bus request is issued by the OMA controller (low) or
by the user program (high).

User/Supervisor. SUP is a request status output that
indicates that a bus request is issued by the processor from
the supervisor mode.

11-36

Bus Arbitration Signals

HOLD

HOLDA

BREQ

I
S(R)

0
S(R)

0
S(R)

0
S(R)

I
S(R)

R(Ql
l(Q)
T(X)
H(I)
B(X)
O(X)

R(l)
I(l)I

T(Q)"
H(Z)
B(Z)
O(Z)

R(Q)
l(Q)
T(O)
H(I)

8(0)

O(Z)

R(O)
I(O)

T(Q)
H(Q)
B(Q)
O(Z)

R(l)
I(I)
T(I)
H(l)
B(O)
O(X)

EXTERNAL BUS DESCRIPTION

Hold. Used by an external bus master to request bus access.
The processor asserts HOLDA and relinquishes the bus
after the current bus request completes. HOLD may be
generated by external bus arbitration logic that monitors the
HOLDA, BREQ and LOCK signals. It must be externally
synchronized to satisfy the timings found in the i960 CA
Microprocessor Data Shee/.

Lock indicates that an atomic memory operation (atadd,
atmod) is in progress. Atomic memory operations are read­
rnodi fy-write operations. LOCK indicates that other
processors or peripherals should not write data to any
address that falling within the quad word boundary of the
address on the bus when LOCK was asserted. LOCK is
deasserted after the write portion of an atomic access. A
HOLD request is acknowledged by HOLDA during locked
cycles. It is the responsibility of external arbitration logic to
monitor the LOCK pin and enforce its meaning for atomic
memory operations.

1 LOCK is active (low) during IDLE cycles between read
and write requests of a locked access.

2 Valid during turnaround states for first request of atomic
access only.

Hold Acknowledge. HOLDA indicates to a bus requester
that the processor has relinquished bus control. It is
asserted in the same clock that the bus goes into the high
impedance state. HOLDA is put into a high impedance
state during ONCE operation.

Bus Request. While HOLDA is asserted, BREQ indicates
that the i960 CA processor bus controller wishes to perform
an external memory operation. BREQ can be used with
external bus arbitration logic to regain bus control. It is put
into a high impedance state during ONCE operation.

Bus Backoff (input). The backoff pin, when asserted (low),
suspends the current access and causes bus pins to float.
When the pin is deasserted (high), ADS is asserted on the
next clock cycle and the access is resumed.

11-37

m

EXTERNAL BUS DESCRIPTION

Processor Control Signals

ONCE I
A(L)

CLKMODE I
A(L)

STE ST I
A(L)

0
S(R)

R(Q)
I(X)
T(X)
H(X)
B(X)
O(X)

R(Q)
I(Q)
T(Q)
H(Q)
B(Q)
O(X)

R(Q)
l(X)
T(X)
H(X)
B(X)
O(X)

R(O)
l(Q)l
T(l)
H(Z)
B(Z)
O(Z)

On Circuit Emulation (input). This signal is pulled up
internally; the user is advised to leave it unconnected for
normal operation. If ONCE is asserted (low) while RESET
is asserted (low), all output pins float and all internal pull­
ups and pull-downs are turned off. This allows in-circuit
testing by external testers and allows ICE systems to
emulate in-circuit devices.

Clock Mode (input). Clock mode input selects the division
factor applied to external clock input (CLKIN). When
CLKMODE is high, PCLK2: 1 and internal clocks arc the
same frequency as CLKIN. When CLKMODE is low,
CLKIN is divided by two to create PCLK2: I and the
processor's internal clocks. CLKMODE input should be
tied either high or low in a system because pin value is not
latched by the processor.

Self Test Select (input). The self test input causes the
processor's internal self test feature to be enabled or
disabled at initialization. STEST is latched on the rising
edge of RESET. When asserted (high), the processor's
internal self test and bus confidence test run at
initialization. If deasserted (low), only the bus confidence
test runs at initialization; internal self test is bypassed.

Self test Fail. The fail output indicates failure of the
processor's self test at initialization. When RESET is
deasserted and the processor begins initialization, FAIL is
asserted (low). An internal self test is perforn1ed as part of
the initialization process. If this self test passes, FAIL is
deasserted (high), otherwise it remains asserted. FAIL is
reasserted while the processor performs an external bus self
confidence test. If this self test passes, the processor
dcasserts FAIL and branches to the user's initialization
routine; otherwise, FAIL remains asserted. Internal self
test and the use of the FAIL pin can be disabled with the
STEST pin.

1The FAIL pin is only valid after initialization failure.

11-38

Interrupt Controller 12

CHAPTER12
INTERRUPT CONTROLLER

This chapter contains interrupt controller infonnation that is of pa1ticular importance to the
system implementor. The method for handling interrupt requests from user code is described in
Chapter 6, Interrupts. Specifically, this chapter describes the i960 CA microprocessor's
facilities for requesting and posting interrupts, the programmer's interface to the on-chip
interrupt controller, implementation, latency and how to optimize interrupt perfonnance.

OVERVIEW

The interrupt controller's primary functions are to provide a flexible, low-latency means for
requesting and posting interrupts and to minimize the core· s interrupt handling burden. The
interrupt controller handles the posting of interrupts requested by hardware and software
sources. The interrupt controller, acting independently from the core, compares the priorities of
posted interrupts with the current process priority, off-loading this task from the core.

The interrupt controller provides the following features for managing hardware-requested
interrupts:

• Low latency, high throughput handling.

• Support of up to 248 external sources.

• Eight external interrupt pins, one non-maskable interrupt pin, four internal DMA sources
for detection of hardware-requested interrupts.

• Edge or level detection on external interrupt pins.

• Debounce option on external interrupt pins.

The user program interfaces to the interrupt controller with four control registers and two
special function registers. The interrupt control register (ICON) and interrupt map control
registers (IMAPO-IMAP3) provide configuration information. The interrupt pending (IPND)
special function register posts hardware-requested interrupts. The interrupt mask (IMSK)
special function register selectively masks hardware-requested interrupts.

MANAGING INTERRUPT REQUESTS

The i960 family architecture provides a consistent interrupt model, as required for interrupt
handler compatibility between various implementations of the i960 family. The architecture,
however, leaves the interrupt request management strategy to the specific i960 family
implementations. In the i960 CA microprocessor, the programmable on-chip interrupt
controller transparently manages all interrupt requests (Figure 12.1). These requests originate
from:

• 8-bit external interrupt pins (XINT7:0) • four DMA controller channels

• non-maskable interrupt pin (NMI) • sysctl instruction execution

12-1

•

INTERRUPT CONTROLLER

External interrupt pins can be programmed to operate in several modes: the pins may be
individually mapped to interrupt vectors (dedicated mode) or they may be interpreted as a bit
field which can request any of the 248 possible interrupts that the i960 family supports
(expanded mode). Dedicated-mode requests are posted in the Interrupt Pending Register
(IPND). The processor does not post expanded-mode requests.

Interrupt pins may also be configured in a mixed mode which places three pins into dedicated­
mode operation and the remaining five pins in expanded-mode operation.

The NMI pin allows a highest-priority, non-maskable and non-interruptible interrupt to be
requested. NMI is always a dedicated-mode input.

Each of the four DMA channels has an associated interrupt request to allow the application to
synchronize with the DMA operations of each channel. DMA interrupt requests are always
handled as dedicated-mode interrupt requests.

The application program may use the sysctl instruction to request interrupt service. The vector
that sysctl requests is serviced immediately or posted in the interrupt table's pending interrupts
section, depending upon the current processor priority and the request's priority. The interrupt
controller caches the priority of the highest priority interrupt posted in the interrupt table.

The interrupt controller continuously compares the priorities of the highest-posted software
interrupt and the highest-pending hardware interrupt to the processor's priority. The core is
interrupted when a pending interrupt request is higher than the processor priority or a priority-
31. In the event that both hardware- and software-requested interrupts are posted at the same
level, the hardware interrupt is serviced before the software interrupt, when the priority is l to
30. At priority 31, the software interrupt is serviced first.

The following sections describe interrupt controller modes, interrupt request pins and inputs,
user interface to the interrupt controller, the method for posting software-generated interrupt
requests and methods for controlling interrupt latency.

Interrupt Controller Modes

The eight external interrupt pins can be configured for one of three modes: expanded,
dedicated and mixed.

Dedicated Mode

In dedicated mode, each external interrupt pin is assigned a vector number. Vector numbers
that may be assigned to a pin are those with the encoding PPPP 00102 (Figure 12.2), where bits
marked P are programmed with bits in the interrupt map (IMAP) registers. This encoding of
programmable bits and preset bits can designate 15 unique vector numbers, each with a unique,
even-numbered priority. (Vector 0000 00102 is undefined; it has a priority of 0.)

12-2

INTERRUPTS
SERVICE [

CHECKING
PENDING

INTERRUPTS

POST
INTERRUPTS

REQUEST
INTERRUPT

INTERRUPT CONTROLLER

---· I
I
I
I CORE
I I

~---------------------------- -----------------------------·

r------------------------------

I

SOFTWARE-PRIORITY
REGISTER
(INTERNAL)

'---------
.-------

PENDING PRIORITIES
AND

PENDING INTERRUPTS
FIELDS

INTERRUPT TABLE
1 (EXTERNAL MEMORY) t
I I ·------- -------·

SYSTEM CONTROL
INSTRUCTION

COMPARATOR

PRIORITY RESOLVER

INTERRUPT MASK
REGISTER (IMSK)

INTERRUPT PENDING
REGISTER (IPND)

INTERRUPT DETECTION

---------------------' I

I
I

CURRENT
PROCESS
PRIORITY

~ IMPLEMENTED IN
THE INTERRUPT
CONTROLLER

·------ -------~------:
EXTERNAL
SOURCES

DMA
SOURCES

270710-001-12

Figure 12.1. i960™ CA Processor's Interrupt Controller

Dedicated-mode interrupts are posted in the interrupt pending (IPND) register. Single bits in
the IPND register correspond to each of the eight dedicated external interrupt inputs, plus the
four DMA inputs to the interrupt controller. The interrupt mask (IMSK) register selectively
masks each of the dedicated-mode interrupts. The IMSK register can optionally be saved and
cleared when a dedicated interrupt is serviced. This allows other hardware-generated interrupts
to be locked out until the mask is restored. See Programmer's Interface in this chapter for a
further description of the IMSK, IPND and IMAP registers.

12-3

XINTO

XINT1

XINT2

•
•
•

XINT7

DMAO

DMA1

DMA2

DMA3

...
~

INTERRUPT CONTROLLER

IMAP
CONTROL REGISTERS

pp pp

pp pp

pp pp

•
•
•

pp pp

pp pp

pp pp

PPPP

pp pp

t MSB

HARD-WIRED
VECTOR OFFSET

0 0 1 0

0 0 1 0

0 0 1 0

•
•
•

0 0 1 0

0 0 1 0

0 0 1 0

0 0 1 0

0 0 1 0

I4LSB

+

Figure 12.2. Dedicated Mode

HIGHEST SELECTED
VECTOR NUMBER

270710-001-13

Interrupt vectors are assigned to DMA inputs in the same way external pins are assigned
dedicated-mode vectors. The DMA interrupts are always dedicated-mode interrupts.

Expanded Mode

In expanded mode, up to 248 interrupts can be requested from external sources. Multiple
external sources are externally encoded into the 8-bit interrupt vector number. This vector
number is then applied to the external interrupt pins (Figure 12.3), with the XINTO pin
representing the least-significant bit and XINT7 the most significant bit of the number. Note
that external interrupt pins are active low; therefore, the inverse of the vector number is
actually applied to the pins.

In expanded mode, external logic is responsible for posting and prioritizing external sources.
Typically, this scheme is implemented with a simple configuration of external priority
encoders. As shown in Figure 12.4, simple, combinational logic can handle prioritization of the
external sources when more than one expanded interrupt is pending.

NOTE

The interrupt source, as shown in Figure 12.4, must remain asserted until the processor services
the interrupt and explicitly clears the source.

External-interrupt pins in expanded mode are always active low. The' interrupt controller
ignores vector numbers 0 though 7. The output of the external priority encoders in Figure 12.4
can use the 0 vector to indicate that no external interrupts are pending.

IMSK register bit 0 provides a global mask for all expanded interrupts. The remaining bits
(1-7) should be set to 0 in expanded mode. The mask bit can optionally be saved and cleared
when an expanded mode interrupt is serviced. This allows other hardware-requested interrupts

12-4

INTERRUPT CONTROLLER

to be locked out until the mask is restored. (See Mask Options later in this chapter.) IPND
register bits 0-7, in expanded mode, have no function since external logic is responsible for
posting interrupts.

DMAO

DMA1

DMA2

DMA3

XINT7 0

Mixed Mode

~

IMAP
CONTROL REGISTERS

pp pp

PPPP

PPPP
pp pp

}MSB

HARD-WIRED
VECTOR OFFSET

0 0 1 0

0 0 1 0

0 0 1 0

0 0 1 0

ILSB

~ _,,£. ~

Figure 12.3. Expanded Mode

HIGHEST SELECTED
VECTOR NUMBER

270710-00H4

In mixed mode, pins XINTO through XINT4 are configured for expanded mode. These pins
are encoded for the five most-significant bits of an expanded-mode vector number; the three
least-significant bits of the vector number are set internally to be 0 l 02. Pins XINT5 through
XINT7 are configured for dedicated mode.

IMSK register bit 0 is a global mask for the expanded-mode interrupts; bits S through 7 mask
the dedicated interrupts from pins XINTS through XINT7. respectively. IMSK register bits 1-4
must be set to 0 in mixed mode. The IPND register posb intem1ph from the dedicated-mode
pins (XINT5-XINT7). IPND register bits that correspond to expanded-mode inputs are not
used.

CAUTION!

When setting IMSK register bits in mixed mode. make sure IMSK register bits 1-4 are
set to 0.

12-5

II

MSB

INTERRUPT
SOURCES

UPTO
63 LINES

INTERRUPT CONTROLLER

ENABLE INPUT

11 11

7
E1

GS 7
E1

GS

A2 A2

4 PRIORITY 4 PRIORITY
ENCODER ENCODER

3 3

A1 A1

EO AO

l EO AO

E1
GS

A2

PRIORITY
ENCODER

A1

EO
AO

E1
GS

A2

PRIORITY
ENCODER

A1

EO AO

NC

MSB

LSB

TO i96o'"cA
PROCESSOR'S

INT PINS

270710-001-15

Figure 12.4. Implementation of Expanded Mode Sources

Non-Maskable Interrupt

The NMI pin generates an interrupt for implementation of highly-critical interrupt routines.
The NMI provides an interrupt that cannot be masked and that has a higher priority than
priority-31 interrupts and priority-31 process priority. The interrupt vector for the NMI resides

12-6

INTERRUPT CONTROLLER

in the interrupt table as vector number 248. During initialization, the core caches the vector for
the NMI on-chip, to reduce NMI latency. The NMI vector is cached in location OH of internal
data RAM.

When the core receives an NMI request. it is serviced immediately. While servicing an NML
the core does not respond to any other interrupt requests - even another NMI request - until
it returns from the NMI-handling procedure. An interrupt request on the NMI pin is always
falling-edge detected.

Saving the Interrupt Mask

The IMSK register is automatically saved in register r3 when a hardware-requested interrupt is
serviced. After the mask is saved. the IMSK register is optionally cleared. This action allows
all interrupts. except NM!s. to be masked while an interrupt is being serviced. Since the IMSK
register value is saved, the interrupt procedure can restore the value before returning. The
option of clearing the mask is selected by programming the ICON register (described in this
chapter). Several options arc provided for interrupt mask handling:

1. Mask is unchanged.

2. Clear for dedicated-mode sources only.

3. Clear for expanded-mode sources only.

4. Clear for all hardware-requested interrupts (dedicated and expanded mode).

Options 2 and 3 are used in mixed mode, where both dedicated-mode and expanded-mode
inputs are allowed. Recall that DMA interrupts are always dedicated-mode interrupts.

NOTE

If the same interrupt is requested simultaneously by a dedicated- and an expanded-mode source.
the inten-upt is considered an expmzded-mode interrupt and the JMSK register is handled
accordingly.

The IMSK register must be saved and cleared when expanded mode inputs request a priority-
31 interrupt. Priority-31 interrupts are interrupted by other priority-31 interrupts. In expanded
mode, the interrupt pins are level-activated. For level-activated interrupt inputs, instructions
within the interrupt handler are typically responsible for causing the source to deactivate. If
these priority-31 interrupts are not masked, another priority-31 interrupt will be signaled and
serviced before the handler is able to deactivate the source. The first instruction of the interrupt
handling procedure is never reached, unless the option is selected to clear the IMSK register on
entry to the interrupt.

Another use of the mask is to lock out other interrupts when executing time-critical portions of
an interrupt handling procedure. All hardware-generated interrupts are masked until software
explicitly replaces the mask.

1?-7

m

INTERRUPT CONTROLLER

External Interface Description

This section describes the physical characteristics of the interrupt inputs. The i960 CA
microprocessor provides eight external interrupt pins and one non-maskable interrupt pin for
detecting external interrupt requests. The eight external pins can be configured as dedicated
inputs, where each pin is capable of requesting a single interrupt. The external pins can also be
configured in an expanded mode, where the value asserted on the external pins represents an
interrupt vector number. In this mode, up to 248 values can be directly requested with the
interrupt pins. The external interrupt pins can be configured in mixed mode. In this mode,
some pins are dedicated inputs and the remaining pins are used in expanded mode.

Pin Descriptions

The interrupt controller provides nine interrupt pins:

XINT7:0 External Interrupt (Input) - These pins cause interrupts to be requested. Pins are
software configurable for three modes: dedicated, expanded, mixed. Each pin can
be programmed as an edge-detect input or as a level-detect input. Additionally, a
debouncing mode for these pins can be selected under program control.

NMI Non-Maskable Interrupt (Input) Causes a non-maskable interrupt event to occur.
NMI is the highest priority interrupt recognized. The NMI pin is an edge­
activated input. A debouncing mode for NMI can be selected under program
control. These pins are internally synchronized.

External interrupt pin functions XINT7:0 depend on the operation mode (expanded, dedicated
or mixed) and on several other options selected by setting ICON register bits.

Interrupt Detection Options

The XINT7:0 pins can be programmed for level-low or falling-edge detection when used as
dedicated inputs. All dedicated inputs plus the NMI pin are programmed (globally) for fast
sampling or debounce sampling. Expanded-mode inputs are always sampled in debounce
mode. Pin detection and sampling options are selected by programming the ICON register.

When a pin is programmed for falling-edge detection, the corresponding pending bit in the
IPND register is set when a high-to-low transition is detected. The processor clears the IPND
bit on entry into the interrupt handler.

When a pin is programmed for low-level detection, the pin's bit in the IPND register remains
set as long as the pin is asserted (low). The processor attempts to clear the IPND bit on entry
into the interrupt handler; however, if the active level on the pin is not removed at this time, the
bit in the IPND register remains set until the source of the interrupt is deactivated and the
IPND bit is explicitly cleared by software. Software may attempt to clear an interrupt pending
bit before the active level on the corresponding pin is removed. In this case, the active level on
the interrupt pin causes the pending bit to remain asserted.

12-8

INTERRUPT CONTROLLER

Typically, the external source for a level-detect interrupt is deactivated under software control.
After the interrupt signal is deasserted, the handler then clears the interrupt pending bit for that
source before return from handler is executed. If the pending bit is not cleared, the interrupt is
re-entered after the return is executed.

Example 12.l demonstrates how a level detection interrupt is typically handled. The example
assumes that the Id from address "timer_O," deactivates the interrupt input.

Example 12.1. Return from a Level-detect Interrupt

Clear leve:-detect interrupts before return from handler
ld

wait:
clrb'c t
bbs
ret

t ' gO

O,sfO,sfO
O,sfO,wait

Ge:: timer value and clear XINTO

X\t::errpt to clear bit
Retry if no:: clear
Return from handler

The debounce sampling mode requires that a low level is detected for three consecutive
samples before input is detected. For expanded interrupts, all expanded mode pins must be
stable for three consecutive samples before the expanded mode vector is resolved internally.
The debounce sampling mode provides a built-in filter for noisy or slow-falling inputs.

NOTE
Expanded mode interrupts are always sampled using the debounce sampling mode. This mode
provides time for inte1rnpts to trickle through external priority encoders.

Figure 12.5 shows how a signal is sampled in each mode. The debounce-sampling option adds
several clocks to an interrupt' s latency due to the multiple clocks of sampling. Inputs are
sampled internally once every two PCLK cycles.

Interrupt pins are asynchronous inputs. Setup or hold times relative to PCLK2: l are not needed
to ensure proper pin detection. Note in Figure 12.5 that interrupt inputs are sampled once for
every two PCLK2: l cycles. For practical purposes, this means that asynchronous interrupting
devices must generate an interrupt signal which is asserted for at least three PLCK2: l cycles
for the fast sampling mode or five PCLK2: 1 cycles for the debounce sampling mode.

12-9

m

PCLK [

XINT7:0 [
(FAST SAMPLE)

XINT7:0 [
(DEBOUNCE)

* I

INTERRUPT CONTROLLER

* I * I * I

\\\\\~---+: 3CYCLE MIN r----omoozomommo11
I~ I I
I~ I I
I DETECT INTERRUPT I

I I I

\\\\ \\-----.--1 ---.1 7 CYCLE MIN -r-------;-----l!TD

*DENOTES SAMPLING CLOCK EDGE. INTERRUPT PINS ARE SAMPLED
ONE TIME FOR EVERY 2 PCLK CYCLES. 270710-002-09

Figure 12.5. Interrupt Sampling

Programmer's Interface

The programmer's interface to the interrupt controller is through four control registers and two
special function registers (all described in this section): ICON control register, IMAPO-IMAP2
control registers, IMSK special-function register and IPND special function register.

Interrupt Control Register (ICON)

The ICON register (Figure 12.6) is a 32-bit control register that sets up the interrupt controller.
Software can load this register using the sysctl instruction. The ICON register is also
automatically loaded at initialization from the control table in external memory.

The ICON register's interrupt mode field (bits 0 and 1) determine operation mode for the
external interrupt pins (XINTO through XINT7) - dedicated, expanded or mixed.

signal-detection-mode bits (bits 2 through 9) determine whether the signals on the individual
external interrupt pins (XINTO - XINT7) are level-low activated or falling-edge activated.
Expanded-mode inputs are always level-detected and NMI input is always edge-detected -
regardless of this bit's value.

global-interrupts enable bit (bit I 0) globally enables or disables the external interrupt pins and
DMA inputs. It does not affect the NMI pin. This bit performs the same function as clearing
the mask register.

12-10

INTERRUPT CONTROLLER

mask-operation field (bits 11 and 12) determines the operation the core performs on the mask
register when a hardware-generated interrupt is serviced. On an interrupt, the IMSK register is
either unchanged; cleared for dedicated-mode interrupts; cleared for expanded-mode interrupts;
or cleared for both dedicated- and expanded-mode interrupts.

vector cache enable bit (bit 13) determines whether interrupt table vector entries are fetched
from the interrupt table or from internal data RAM. Only vectors with four least-significant bits
equal to 00102 may be cached in internal data RAM.

sampling-mode bit (bit 14) determines whether dedicated inputs and NMI pin are sampled
using debounce sampling or fast sampling. Expanded-mode inputs are always detected using
debounce mode.

DMA-suspension bit (bit 15) determines whether DMA continues running or is suspended
while an interrupt procedure is being called.

Bits 16 through 31 are reserved and must be set to 0 at initialization.

12-11

II

INTERRUPT CONTROLLER

INTERRUPT MODE- ICON.Im ---------------------------.

(00) DEDICATED

(01) EXPANDED

(10) MIXED

(11) RESERVED

SIGNAL DETECTION MODE ICON.sdm -------------------..

(0) LEVEL-LOW ACTIVATED

(1) FALLING-EDGE ACTIVATED

GLOBAL INTERRUPTS ENABLE - ICON.gie -------------.

(0) ENABLED

(1) DISABLED

MASK OPERATION - ICON.mo---------------..

(00) MOVE TO r3, MASK UNCHANGED

(01) MOVE TO r3 AND CLEAR

FOR DEDICATED MODE

INTERRUPTS

(10) MOVE TO r3 AND CLEAR

FOR EXPANDED MODE

INTERRUPTS

(11) MOVE TO r3 AND CLEAR

FOR DEDICATED AND

EXPANDED MODE

INTERRUPTS

VECTOR CACHE ENABLE - ICON.vce ---------­

(0) FETCH FROM EXTERNAL MEMORY

(1) FETCH FROM INTERNAL RAM

SAMPLING MODE - ICON.sm ----------~

(0) DEBOUNCE

(1) FAST

DMA SUSPENSION - ICON.dmas ------------.

(0) RUN ON INTERRUPT

(1) SUSPEND ON INTERRUPT l
m s
a m
s

28 24 20 16

INTERRUPT CONTROL REGISTER (ICON)

Fl RESERVED

12

m m m m
7 6 5 4

8

m m m m m

3 2 1 0 1

4

I
m
0

LJ (INITIALIZE TO 0)
270710-002-10

Figure 12.6. Interrupt Control (ICON) Register

Interrupt Mapping Registers (IMAPO-IMAP2)

The IMAP registers (Figure 12.7) are three 32-bit registers (IMAPO through IMAP2). These
register's bits are used to program the vector number associated with the interrupt source when
the source is connected to a dedicated-mode input. IMAPO and IMAPl contain mapping
information for the external interrupt pins (four bits per pin); IMAP2 contains mapping
information for the DMA-interrupt inputs (four bits per input).

12-12

INTERRUPT CONTROLLER

EXTERNAL INTERRUPT 0 FIELD - IMAPO.xO ----------------------.!
EXTERNAL INTERRUPT 1 FIELD - IMAPO.x1

EXTERNAL INTERRUPT 2 FIELD - IMAPO.x2 j I
EXTERNAL INTERRUPT 3 FIELD - IMAPO.x3 i

28 24

INTERRUPT MAP REGISTER 0 (IMAPO)

20 16

x
3
3

x
3
I

12

x x x
2 1
0 3

4

x
0
3 2

EXTERNAL INTERRUPT 4 FIELD IMAP1 x4 ----------------------.]

EXTERNAL INTERRUPT 5 FIELD - IMAP1 .x5 ------------------.!
EXTERNAL INTERRUPT 6 FIELD - IMAP1 x6 -----------~!
EXTERNAL INTERRUPT 7 FIELD- IMAP1 .x7 ---------.i

28 24

INTERRUPT MAP REGISTER 1 (IMAP1 I

DMA INTERRUPT 0 FIELD - IMAP2 dO

DMA INTERRUPT 1 FIELD - IMAP2.d1

DMA INTERRUPT 2 FIELD - IMAP2.d2

DMA INTERRUPT 3 FIELD - IMAP2 d3

28 24

INTERRUPT MAP REGISTER 2 (IMAP21

D RESERVED
(INITIALIZE TO 0)

20 16

20 16

x x x x x x xx xx xx
554444
547654

7 7
6 5

6 6 6 5
765476

12

dddddd
333322
321032

12

l l l
dddddddd
1 1 1 0

1 0 3 1 0 1

4

270710-002-11

Figure 12.7. Interrupt Mapping (IMAP2-IMAPO) Registers

Each set of four bits contains a vector number's four most-significant bits; the four least­
significant bits are always 00102. Tn other words, each source can be programmed for a vector
number of PPPP 00102, where "P" indicates a programmable bit. For example, IMAPO bits 4
through 7 contain mapping information for the XINT 1 pin. If these bits arc set to 01102, the
pin is mapped to vector number 0110 00102 (or vector number 98).

12-13

m

INTERRUPT CONTROLLER

Software can load the mapping registers using the sysctl instruction. The mapping registers are
also automatically loaded at initialization from the control table in external memory. Note that
bits 16 through 31 of each register are reserved and should be set to 0 at initialization.

Interrupt Mask and Pending Registers (IMSK, IPND)

The IMSK and IPND registers (Figure 12.8) are special-function registers (sfl and sfO,
respectively). Bits 0 through 7 of these registers are associated with the external interrupt pins
(XINTO through XINT7) and bits 8 through 11 are associated with the DMA-interrupt inputs
(DMAO through DMA3). Bits 12 through 31 are reserved and should be set to 0 at
initialization.

The IPND register posts dedicated-mode interrupts ongmating from the eight external
dedicated sources (when configured in dedicated mode) and the four DMA sources. Asserting
one of these inputs causes a 1 to be latched into its associated bit in the IPND register. In
expanded mode, bits 0 through 7 of this register are not used and should not be modified; in
mixed mode, bits 0 through 4 are not used and should not be modified.

The mask register provides a mechanism for masking individual bits in the IPND register. An
interrupt source is disabled if its associated mask bit is set to 0.

Mask register bit 0 has two functions: it masks interrupt pin XINTO in the dedicated mode and
it globally masks all expanded-mode interrupts in the expanded and mixed modes. In expanded
mode, bits 1 through 7 are not used and should only contain zeros; in mixed mode, bits 1
through 4 are not used and should only contain zeros.

Software can read and write the IPND and IMSK registers, using any instruction that can use
special-function registers as operands.

When the core handles a pending interrupt, it attempts to clear the bit that is latched for that
interrupt in the IPND register before it begins servicing the interrupt. If that bit is associated
with an interrupt source that is programmed for level detection and the true level is still
present, the bit remains set. Because of this, the interrupt routine for a level-detected interrupt
should clear the external interrupt source and explicitly clear the IPND bit before return from
handler is executed.

An alternative method of posting interrupts in the IPND register (other than through the
external interrupt pins and DMA-interrupt inputs) is to set bits in the register directly using an
instruction - such as a move instruction. This operation has the same effect as requesting an
interrupt through the external interrupt pins or DMA-interrupt inputs. The bit set in the IPND
register must be associated with an interrupt source that is programmed for dedicated-mode
operation.

12-14

INTERRUPT CONTROLLER

EXTERNAL INTERRUPT PENDING BITS - IPND.x1p ----------------.

1
(0) NO INTERRUPT

(1) PENDING INTERRUPT

DMA INTERRUPT PENDING BITS - IPND.d1p -----------.
(0) NO INTERRUPT

(1) PENDING INTERRUPT

28 24 20

INTERRUPT PENDING REGISTER (IPND) - SFO

16 12

! I I I J

p
2

EXTERNAL INTERRUPT MASK BITS- IMSK.xim ---------------~]
(0) MASKED

(1) NOT MASKED

DMA INTERRUPT MASK BITS - IMSK.dim ----------~

(OJ MASKED

(1) NOT MASKED

28 24 20 16 12

INTERRUPT MASK REGISTER (IMSK) - SF1

n RESERVED L..l (INITIALIZE TO 0)

x x
I I I I

m m m m m
1 0 7 6 5

x x x x x
I I I l i
m m m m m
4 3 2 1 0

270710-001-17

Figure 12.8. Interrupt Mask (IMSK) and Interrupt Pending (IPND) Registers

Default and Reset Register Values

The ICON and IMAP2-0 control registers are loaded from the control table in external memory
when the processor is initialized or reinitialized. (Control table is described in Chapter 2,
Programming Environment.) The IMSK register is set to 0 when the processor is initialized
(RESET is deasserted). IPND register value is undefined after a power-up initialization (cold
reset). The user is responsible for clearing this register before any mask register bits are set;
otherwise, unwanted interrupts may be triggered. For a reset while power is on (warm reset),
the pending register value is retained.

Setting Up the Interrupt Controller

This section provides several examples of setting up the interrupt controller. Recall that the
IMAP and ICON registers are control registers. When the entire control table is automatically
read at initialization, the ICON and IMAP registers are loaded with the values pre-programmed
in the table. In many applications, setting these register values in the initial control table is the
only setup required. The following examples describe how the interrupt controller can be
dynamically configured after initialization.

12-15

II

INTERRUPT CONTROLLER

Example 12.2 sets up the interrupt controller for expanded-mode operation. Here, a value
which selects expanded-mode operation is loaded into the ICON register. The sysctl instruction
is issued with the load-control register message type (03H) and selecting group number OlH
from the control table. Group OlH contains the ICON and IMAP registers. Note that the IMAP
registers, as well as the ICON register, are reloaded with this operation.

Modifying the control table implies that the table - or part of the table - must reside in
RAM. If the control registers are modified after initialization, the control register must be
relocated to RAM by reinitializing the processor. (See Chapter 14, Initialization and System
Requirements for a description of relocating data structures after initialization.)

Example 12.2. Programming the Interrupt Controller for Expanded Mode

Example expanded mode setup .
mov O,sfl
ldconst

st

ldconst

sysctl
mov

OxOl, gO

gO,ctrl_table_ICON

Ox401,r4

r4, r4, r4
l,sfl

Implementation

clear IMSK register
(mask all interrupts)
store mode information to
control table
create operand for sysctl,
selects load control
register message type,
selects register group 1
load control register
unmask expanded interrupts

The interrupt controller, microcode and core resources handle all stages of interrupt service.
Interrupt service is handled in the following stages:

Request Interrupt - In the i960 CA processor, the programmable on-chip interrupt
controller transparently manages all interrupt requests. Interrupts are generated by hardware
(external events) or software (the user program). Hardware requests are signaled on the 8-bit
external interrupt port (XINT7:0), the non-maskable interrupt pin (NMI) or the four DMA
controller channels. Software interrupts are signaled with the sysctl instruction with post­
interrupt message type.

Posting Interrupts - When an interrupt is requested, the interrupt is either serviced
immediately or saved for later service, depending on the interrupt's priority. Saving the
interrupt for later service is referred to as posting. An interrupt, once posted, becomes a
pending interrupt. Hardware and software interrupts are posted differently:

• hardware interrupts are posted by setting the interrupt's assigned bit in the interrupt
pending (IPND) special function register

• software interrupts are posted by setting the interrupt' s assigned bit in the interrupt table's
pending priorities and pending interrupts fields

12-16

INTERRUPT CONTROLLER

Check Pending Interrupts - Interrupts posted for later service must be compared to the
current process priority. If process priority changes, posted interrupts of higher priority are
then serviced. Comparing the process priority to posted interrupt priority is handled differently
for hardware and software interrupts. Each hardware interrupt is assigned a specific priority
when the processor is configured. The priority of all posted hardware interrupts is continually
compared to the current process priority. Software interrupts are posted in the interrupt table in
external memory. The highest priority posted in this table is also saved in an on-chip software
priority register; this register is continually compared to the cmrent process priority.

Servicing Interrupts - If the process priority falls below that of any posted interrupt, the
interrupt is serviced. The comparator signals the core to begin a microcode sequence to
perform the interrupt context switch and branch to the first instruction of the interrupt routine.

Figure 12.9 illustrates interrupt controller function. For best performance. the interrupt flow for
hardware interrupt sources is implemented entirely in hardware.

The comparator only signals the core when a posted interrupt is a lower priority than the
process priority. Because the comparator function is implemented in hardware, microcode
cycles are never consumed unless an interrupt is serviced.

Interrupt Service Latency

The time required to perform an interrupt task switch is referred to as interrupt service latency.
Latency is the time measured between activation of an interrupt source and execution of the
first instruction for the accompanying interrupt-handling procedure. In the following
discussion, interrupt service latency is derived in number of PCLK2: 1 cycles. The established
measure of interrupt service latency (in units of seconds) is derived with the following
equation:

. . NL int
Interrupt Service Latency (111 seconds)=(

where: fc = PCLK2: 1 frequency (Hz)

N L_int = number of PCLK2: I cycles

For real-time applications, worst-case interrupt latency must be considered for critical handling
of external events. For example, an interrupt from a FIFO buffer may need service to prevent
the FIFO from overrun.

For many applications, typical interrupt latency must be considered in determining overall
system performance. For example, a timer interrupt may frequently trigger a task switch in a
multi-tasking kernel.

12-17

INTERRUPT CONTROLLER

The flow chart in Figure 12.9 is used to determine worst-case interrupt latency, based on the
specifics of a system. The values from Figure 12.9 are based on the assumption that the
interrupt controller is configured in the following way:

• Hardware interrupt is requested (XINT7:0 pins or NMI)

• Fast sample mode - Fast sample mode is selected (ICON.sm=l)

• Cached interrupt vector - Interrupt vector is fetched from internal data RAM. This is
automatic for the NMI vector or is selected in the ICON register (ICON.vce=l)

• Cached interrupt handler - Cache hit for interrupt call target

• DMA suspended on interrupt - DMA suspend on interrupt is enabled (ICON.dmas= 1)

• Minimum Bus Latency - All memory in the system is configured as zero wait state and
burst access mode

Start here

NL_int = 129 NL_int = 160

NL_int = 111 NL_int = 134

No No

NL_int = 93

Figure 12.9. Calculation of worst case interrupt latency - NL_int

12-18

INTERRUPT CONTROLLER

NOTE

The worst-case interrupt latency value does not account for interaction of faults and interrupts. It
is assumed that faults are not signaled in a stable system.

Because of the processor's instruction mix and the nature of on-chip register cache, typical
interrupt latency is derived assuming that the interrupt occurs under the following constraints,
in addition to those listed above:

• Interrupts a single cycle RISC instruction

• Frame flush does not occur

• Bus queue is empty

The value for typical interrupt latency (N L_int) is: NL_int (typical) = 30PCLK2:1 cycles

Optimizing Interrupt Performance

The i960 CA processor provides several features aimed at reducing the time required to
respond to and service interrupts. The following section describes three methods for reducing
interrupt latency:

• caching interrupt vectors on-chip

• DMA suspension while servicing interrupts

• caching of interrupt handling procedure code

Figure 12.9 shows that controlling the use of long instructions may also be used to optimize
interrupt performance.

Vector Caching Option

To reduce interrupt latency. the i960 CA processor allows some interrupt table vector entries to
be cached in internal data RAM. When the caching option is selected, all interrupts with a
vector number with the four least-significant hits equal to 00 I 02 are cached. When the vector
option is enabled and an interrupt request is received for one of these interrupts, the controller
fetches the associated vector from internal RAM rather than from the interrupt table in
memory. This option is selected when programming the ICON register.

NOTE

To use the caching feature described in this section, software must explicitly store the vector
entries in internal RAM.

Since the internal RAM is mapped directly to the address space, this operation can be
performed using the core's store instructions. Table 12.1 shows the required vector mapping to
specific locations in internal RAM. For example, the vector entry for vector number 18 must be
stored at RAM location 04H, and so on.

12-19

m

INTERRUPT CONTROLLER

The NMI vector is also shown in Table 12.l (reminder: this vector is always cached in internal
data RAM at location OOOOH). The processor automatically loads this location at initialization
with the value of vector number 248 in the interrupt table.

Vectors that can be cached coincide with the vector numbers that can be selected with the
mapping registers and assigned to dedicated-mode inputs.

Table 12.1. Location of Cached Vectors in Internal RAM

Interrupt/NMI Vector Number I Internal RAM Address
NMI (248) OOOOH
0001 00102 (18) 0004H
0010 00102 (34) 0008H
001 l 00102 (50) OOOCH
0100 00102 (66) OOlOH
0101 00102 (82) 0014H
0110 00102 (98) 0018H
0111 00102 (114) OO!CH
1000 00102 (130) 0020H
1001 00102 (146) 0024H
1010 00102 (162) 0028H
IOI I 00102 (178) 002CH
l 100 00102 (194) 0030H
1101 00102 (210) 0034H
1110 00102 (226) 0038H
1111 00 I OJ (242) 003CH

OMA Suspension on Interrupts

Core resources required to execute a DMA operation may affect interrupt latency. A DMA
operation may be temporarily suspended to reduce the effects of the DMA when interrupt­
response time is critical. The DMA suspension option is programmed in the ICON register.
When the option is selected, the core suspends DMA processing while executing a call to an
interrupt-handling procedure for a hardware-requested interrupt. Once the core begins
executing the interrupt procedure, it restores DMA processing.

To improve interrupt throughput, DMA processing can be suspended until the execution of an
interrupt-handling procedure is complete. To accomplish this, the interrupt procedure must
explicitly suspend DMA operation by clearing the DMA command (DMAC) register's channel
enable field. (See Chapter 13, DMA Controller for more information.)

Caching of Interrupt-Handling Procedures

The time required to fetch the first instructions of an interrupt-handling procedure affects
interrupt response time and throughput. The controller allows this fetch time to be reduced by
caching interrupt procedures - or portions of procedures - in the i960 CA processor's
instruction cache. Paragraphs that follow describe this caching of interrupt procedures.

12-20

INTERRUPT CONTROLLER

Instruction cache is divided into two 512-byte halves (Figure 12.10). One or both halves can be
used for storing interrupt-procedure code. Typically, one half is used as normal instruction
cache and the other half for caching interrupt procedures.

The interrupt-handling procedure sections to be cached must be placed in a contiguous memory
block. The last instruction for each procedure in this block must be a return from the interrupt
procedure or a branch to the remainder of the procedure, located in another area of address
space. Maximum block size is 512 or I 024 bytes, depending on how the instruction cache is to
be configured.

The sysctl instruction provides the mechanism for loading and Jocking this block of interrupt
procedures into the instruction cache. sysctl is issued with the configure instruction cache
message type. The address of the block of interrupt procedures in memory is specified as an
operand of the instruction.

The interrupt vector's two least-significant bits must be set to 102 to fetch the interrupt
procedure from locked cache rather than the normal memory hierarchy. The procedure
executed if it is in the cache. If a miss at the locked cache occurs, the interrupt procedure is
executed from the normal memory hierarchy (see Chapter 2, Programming Environment for
sysctl information and how to configure instruction cache load-and-lock features).

12-21

m

DRESS BASE AD
IN ME MORY

(
~

SYSTEM CONTRO
LOADS BL

INSTRUCT!

L INSTRUCTION
OCKINTO
ON CACHE

INTERRUPT CONTROLLER

PROCEDURE 1

b proc_ 1

PROCEDURE2

b proc_2

PROCEDURE 3

b proc_3

512 BYTES

INSTRUCTION CACHE

BLOCK OF INTERRUPT­
HANDLING PROCEDURES

512 BYTES

270710-001-16

Figure 12.10. Caching Interrupt-Handling Code

12-22

OMA Controller 13

CHAPTER13
OMA CONTROLLER

This chapter describes the i960 CA processor's integrated Direct Memory Access (DMA)
Controller, including: operation modes, setup, external interface and DMA controller
implementation.

OVERVIEW

The DMA controller concurrently manages up to four independent DMA channels. Each
channel supports memory-to-memory transfers where the source and destination can be any
combination of internal data RAM or external memory. The DMA mechanism provides two
unique methods for performing DMA transfers:

• Demand-mode transfers (synchronized to external hardware). Typically used for transfers
between an external device and memory. Jn demand mode, external hardware signals for
each channel are provided to synchronize DMA transfers with external requesting devices.

• Block-mode transfers (non-synchronized). Typically used to move blocks of data within
memory.

To perform a DMA operation, the DMA controller uses microcode, the core's multi-process
resources, the bus controller and internal hardware dedicated to the DMA controller. Loads and
stores are executed in DMA microcode to perform each DMA transfer. The bus controller,
directed b.Y DMA microcode, handles data transactions in external memory. DMA controller
hardware synchronizes transfers with external devices or memory, provides the programmers
interface to the DMA controller and manages the priority for servicing the four DMA channels.

The DMA controller uses multi-process resources, designed into the core, to enable DMA
operations to execute in microcode concurrently with the user's program. This sharing of core
resources is accomplished with hardware-implemented processes for each of the four DMA
channels (the DMA processes) and a separate process for the user's program (the user process).
Alternating between DMA processes and the user process enables a user's program and up to
four DMAs (one per channel) to run at the same time.

To execute a DMA operation, a DMA process issues memory load or store requests. The bus
controller executes these memory processes as it would a load, store or prefetch request from
the user process. External bus access is shared equally between the user and DMA process. The
bus controller executes bus requests by each process in alternating fashion.

The DMA controller is configurable to best exploit the core's processing capabilities and
external bus performance. Source and destination request lengths are programmed for each
DMA channel. Based on request length, the DMA controller optimizes transfer performance
between source and destination with different external data bus widths. A DMA can be
programmed for quad-word transfers, taking best advantage of external bus burst capabilities.
The DMA controller can also efficiently execute transfers of unaligned data.

19-1

11

OMA CONTROLLER

A single cycle "fly-by" transfer mode gives the highest performance transfers for a DMA. In
this mode, a single bus request executes a transfer of data from source to destination.

A data-chaining mode simplifies several commonly-performed DMA operations such as scatter
or gather. Data-chained DMAs are configured with a series of descriptors in memory. Each
descriptor describes the transfer of a single buffer or portion of the entire DMA. These
descriptors can be dynamically changed as the chained DMA progresses.

DMA setup and control is simple and efficient. The setup DMA (sdma) instruction sets up a
DMA operation. sdma specifies addressing, transfer type and DMA modes. A special-function
register - the DMA command register (DMAC) - is an interface for commonly-used
command and status functions for each channel.

Flexibility and a high degree of programmability for a DMA operation create a number of
options for balancing DMA and processor performance and DMA latency. This flexibility
enables the programmer to select the best DMA configuration for a particular application.

DEMAND AND BLOCK MODE OMA

A channel can be configured as a demand mode or block mode DMA channel. Demand mode
DMAs move data between memory and an external 1/0 device; block mode DMAs typically
move blocks of data from memory to memory.

When a channel is configured for demand mode, an external device requests a DMA transfer
with a DMA request input (DREQ3:0). The DMA controller acknowledges the requesting
device with a DMA acknowledge signal (DACK3:0). The DACK3:0 signal is asserted during
the bus request which the DMA controller makes to the requesting device. The specific timing
of the DREQ3:0 and DACK3:0 signals is described later in this chapter's section titled DMA
External Interface.

After a DMA channel is configured the channel must be enabled by software through the DMA
control register (DMAC). The DMA operation continues until it is (1) terminated (by an
external source with EOP), (2) suspended (by software), (3) ends because of a zero byte count.
An interrupt may be generated to detect any of these three cases.

SOURCE AND DESTINATION ADDRESSING

When a DMA operation is set up, it is described with a source address, destination address and
byte count. For each channel, an address is either held fixed or incremented after each transfer.
A fixed address is used for addressing external 110 devices; an address which increments is
used for the memory side of a DMA transfer. When a channel is set up, address increment or
hold is selected separately for the source and destination address.

Source and destination address and byte count are 32-bit values. Source and destination are
byte addressable over the entire address space. DMA operation length can be up to 4 Gbytes
(232 Bytes). Source and destination address and byte count are specified when sdma executes.

13-2

OMA CONTROLLER

OMA TRANSFERS

The following sections explain OMA transfer characteristics, especially those transfer
characteristics affected by channel setup. Intelligent selection of transfer characteristics works
to balance DMA performance and functionality with the performance of the user's program.

Source/destination request length selects the bus request types which the OMA microcode
issues when executing a DMA transfer. To perform a transfer, combinations of byte, short­
word, word and quad-word load and store requests are issued. Refer to Chapter 11. External
Bus Description for a detailed description of hus request.

tran.1fer hpe is specified when a channel is set up using sdma. Transfer type specifies
source/destination request length for a DMA operation and whether DMA transfer is
performed as a multiple - cycle transfer or as afly-hy (J bus cycle) trw1-1:fi?r.

Multi-cycle transfer is performed with two or more bus requests; fly-by transfer with a single
bus request. Fly-hy and multi-cycle transfers arc described in the following sections.

Table 13.1. Transfer Type Options

Source Request Length Destination Request Transfer Type
Len_m:h

Byte (8 bits) Byte (8 bits) Multi-Cycle
Byte (8 bits) Byte (8 bits) Fly-by
Byte (8 bits) Short (16 bits) Multi-Cycle
Byte (8 bits) Word (32 bits) Multi-Cycle
Short (l6 bits) Byte (8 bits) Multi-Cycle
Short (16 bits) Short (16 bits) Multi-Cycle
Short (16 bits) Short (16 bits) Fly-by
Short (16 bits) Word (32 bits) Multi-Cycle
Word (32 bits) Byte (8 bits) Multi-Cycle
Word (32 bits) Short (16 bits) Multi-Cycle
Word (32 bits) Word (32 bits) Multi-Cycle
Word (32 bits) Word (32 bits) Fly-by
Quad-Word (128 bits) Quad-Word (128 bits) Multi-Cycle
Quad-Word (128 bits) Quad-Word (128 bits) Fly-by

Multi-Cycle Transfers

Multi-cycle OMA transfer comprises two or more bus requests. For these multi-cycle transfers,
loads from a source address are followed by stores to a destination address. To execute the
transfer, OMA microcode issues the proper combination of bus requests; for example, a typical
multi-cycle OMA transfer could appear as a single byte load request followed by a single byte
store request.

13-3

m

OMA CONTROLLER

For a multi-cycle transfer, source data is first loaded into on-chip DMA registers before it is
stored to the destination. The processor effectively buffers the data for each transfer. When a
DMA transfer is configured for destination synchronization, the DMA controller buffers source
data, waiting for the request (active DREQ3:0 signal) from the destination requestor. This
operation reduces latency. The initial DMA request, however, still requires the source data to
be loaded before the request is acknowledged. Source data buffering is shown in Figure 13.l.
The DMA controller does not perform multi-cycle transfers atomically. A DMA transfer does
not cause the processor's LOCK output to be asserted. A bus hold request may also be
acknowledged between the bus requests which make up a multi-cycle transfer.

--
i960™CA Microprocessor DREQx

-- 32-Bit Device
DACKx

---T- J Destination J

J~ ~2
32-Bit Memory BUFFER

l J
(for Load Data)

Source I Word I

J l
External Bus

Next Load
~ Pref etched & Buffered

'~ External r-
Bus ~

Word Load Word Store Word Load Word Store
I I I

I I I I
I I I I

ii I u I
I I
I I

DRE Ox

First Request

[Y __ ~
I I I I

\ I \ I
I I

[DACKx

Figure 13.1. Source Data Buffering for Destination Synchronized DMAs

Fly-By Single-Cycle Transfers

Fly-by transfers are executed with only a single load or store request. Source data is not
buffered internally; instead, the data passes directly between source and destination via the
external data bus.

Fly-by transfers are commonly used for high-performance peripheral to memory transfers. The
fly-by mechanism is best described by giving an example of a source-synchronized demand
mode DMA (Figure 13.2). In the example, a peripheral at a fixed address is the source of a
DMA and memory is the destination. Each transfer is synchronized with the source.

13-4

OMA CONTROLLER

The source requests a transfer by asserting the request pin (DREQ3:0). When the request is
serviced, a store is issued to the destination memory while the requesting device is selected by
the DMA acknowledge pin (DACK3:0). The source device. when selected, must drive the data
bus for the store instead of the processor. (The processor floats the data bus for a fly-by
transfer.)

-~

DREQx

32-Bit Device -- 32·Bit Memory DACKx i960 ™cA Microprocessor

l } /-- l J Source Destination

32 j/
/

Processor Floats sts During Store
1~2

'-... Source Drives Data l 1 Word Store _J

External Bus

I

~ ~
I

External [

¥ Word Store Word Store ¥ Bus

[\ \! DREQx I I
I I I I

[\ I I I

DACKx \ J
I

Figure 13.2. Example of Source Synchronized Fly-by OMA

Uthe destination of a fly-by is the requestor (destination synchronization), a load is issued to
the source while the destination is selected with the acknowledge pin. The destination, when
selected, reads the load data: the processor ignores the data from the load.

NOTE

Fly-by mode may not access internal data RAM.

A fly-by DMA in block mode is started by software like any block-mode operation. Request
pin~ DREQ3:0 arc ignored in block mode. Fly-by block-mode DMAs can be used to
implement high-performance memory-to-memory transfers where source and destination
addresses are fixed at block boundaries. In this case, the acknowledge pin must be used in
conjunction with external hardware to uniquely address the source and destination for the
transfer.

13-5

II

OMA CONTROLLER

Source/Destination Request Length

Source and destination request length is selected when a DMA channel is configured. Request
length determines bus request types that the DMA microcode issues. Byte, short-word or quad­
word bus requests are issued by the DMA controller microcode.

The request length selected for a DMA operation - byte, short-word, word or quad-word -
should not be confused with external data-bus width or other characteristics programmed in the
memory-region configuration table. Request length dictates the type of bus request issued by
DMA controller microcode, while the region configuration of a DMA's source and destination
memory control how that bus request is executed on the external bus.

As an example, consider a system in which a DMA source memory region is configured for
8-bit, non-burst accesses and a word source request length is selected. OMA microcode issues
word loads (identical to the Id instruction) to DMA addresses in the source region. Since the
source memory region is configured as 8 bits, the bus controller handles the word loads as four
8-bit accesses in that region. To contrast this example, if the DMA is configured for a byte
source request length, OMA microcode issues byte loads (identical to the ldob instruction) to
OMA addresses in the source region. The byte load to this region is executed as a single 8-bit
access. Chapter 11, External Bus Description fully describes bus configuration and how the
bus controller executes bus requests.

In demand mode transfers, DREQ3:0 is asserted to request a DMA transfer. DACK3:0 is
asserted during the bus request issued in response to the DMA request. Continuing the example
started above: if the DMA controller is set up for source synchronized demand mode,
DREQ3:0 causes a word (Id) request to be issued when source request length equals word and
causes a byte (ldob) request to be issued when the source request length equals byte. DACK3:0
is asserted for the duration of the bus request for each case.

13-6

Source

ADS [
D7:0 [

DREQx [\
DACKx [

OMA CONTROLLER

Request Length= Word (8-bits)

\j_J
I
I (Byte)>----

I
\ .___,,._...;.-..ti

Byte
Access

Byte· Long
Request

Source Request Length= Word (32-bits)

ADS [

D7:0 [---.---(Byte O ---(Bytet ---(Byte2

DACKx [

---(Byte 3 }-

Figure 13.3. Source Synchronized OMA Loads from an 8-bit,
Non-burst, Non-pipelined Memory Region

For demand mode transfers. the request length is typically selected to match the external bus
width of the external DMA device. If request length is greater than bus width, the DMA device
must be designed to support multiple data cycles for each DMA transfer requested. This may
be accomplished by using a small FIFO and an external circuit to load and unload the FIFO.
This method reduces bus loading by the DMA process.

For block mode transfers, source and destination request lengths are typically selected to match
external data bus width. This configuration uses the external bus most efficiently and also
reduces latency for bus requests issued by the user process.

In instances where source and destination bus widths are different, DMA performance may be
increased by setting up the DMA with matching source and destination request lengths. This
configuration reduces DMA microcode overhead required to pack or unpack data between
unequal request lengths. Packing/unpacking is handled more efficiently by the bus controller
unit. Matching the request lengths may increase latency for bus requests issued by the user
process.

13-7

m

OMA CONTROLLER

Quad-word source and destination request lengths are used for highest DMA performance.
Quad transfers use the external bus most efficiently when the source or destination memory
regions support burst accesses. Since the request length for quad word transfers is always
greater than the bus width, DMA devices must support multiple data cycles for each requested
DMA transfer. Using quad-word request lengths may increase bus latency for loads, stores and
instruction fetches that the user's program generates.

In cases where source address, destination address or byte count are unaligned, requests shorter
than the selected request length are issued to align the transfers. (Refer to the section in this
chapter titled Data Alignment.)

Assembly and Disassembly

The DMA controller internally assembles or disassembles data between different source and
destination request lengths. Assembly refers to the packing of narrow data into wider data.
Disassembly refers to the unpacking of wide data into narrow data. Assembly and disassembly
is performed automatically when a channel is set up with different source and destination
request lengths. Assembly and disassembly is performed for all aligned transfers configured
with combinations of byte, short-word and word request lengths. Quad-word DMA transfers
require that source and destination request lengths equal quad word; therefore, data assembly
and disassembly is not applicable to this DMA mode.

Figure 13.4 shows a typical demand mode configuration in which an 8-bit device is the source
requestor for a DMA and 32-bit memory is the destination. If byte source and word destination
request length is selected for this DMA, data from four source requests is buffered before load
to the 32-bit memory is executed. This configuration represents an optimal use of bus resources
for a DMA between an 8-bit device and 32-bit memory.

NOTE

Microcode algorithms which perform assembly and disassembly are less efficient than algorithms
which perform transfers between source and destination with equal request lengths. DMA
controller assembly and disassembly is provided for convenience and for most efficient external
bus usage. For example, the system shown in Figure 13.4 functions the same when source and
destination request lengths are both byte-long. In this case, each transfer is performed with a byte
load followed by a byte store. DMA throughput is increased; however, the DMA makes more bus
requests to transfer the same amount of data.

13-8

OMA CONTROLLER

i960rMCA Microprocessor
8~Bit Device ---- BUFFER 32-Bit Memory

l Source
DREOx, DACKx

t Byte O j [J _I Destination
Byte 1

[Byte 2 j ~
L Byte 3

a{
J

v
I 32

"- 4 loads from Source 1 Store to Destination

External Data Bus

External [
Bus

I
I

DRE Ox \ I \ rn I
DACKx

Figure 13.4. Byte to Word Assembly

Data Alignment

The DMA controller is able to transfer data to and from unaligned memory blocks. A DMA
channel's source or destination address may be set up to increment for memory block transfers.
When the address increments, there are no alignment requirements for byte, short or word-long
request lengths. Addresses for quad-word request lengths must always be quad-word aligned.
To interface to external DMA devices, the source or destination address may be set up as fixed.
Fixed addresses must always be aligned to the request-length boundary. Table 13.2
summarizes the alignment requirements for all OMA transfers.

The minimum byte count depends on the configuration of the DMA controller:

Configuration Minimum byte count

Multi-cycle block mode with byte, short-word or word 1
long source or destination request length

Multi-cycle block mode with quad-word request length 16

Multi-cycle source sync. demand mode source request length (bits) I 8

Multi-cycle destination sync. demand mode destination request length (bits) I 8

All fly-by mode transfers request length (bits) I 8

Multi-cycle DMAs to aligned memory blocks perform better than DMAs to unaligned memory
blocks. Additional microcode cycles are required to access the unaligned memory.

13-9

II

OMA CONTROLLER

Most unaligned DMA transfers, however, use the external bus almost as efficiently as aligned
DMAs. Multi-cycle DMA configurations which use the bus efficiently when memory blocks
are unaligned are:

Word-to-Word Byte-to-Short

Byte-to-Word

Word-to-Byte

Short-to-Byte

Table 13.2. OMA Transfer Alignment Requirements

Transfer Types Boundary Alignment Requirements
(Source-to-Destination) Source Address Destination

or Fly-by Address Address
Fixed Iner. Fixed Iner.

Byte-to-Byte (8/8 bit)
Multi-cycle Byte Byte Byte Byte

Fly-by Byte Byte N/A N/A
Byte-to-Short (8/16 bit)

Multi-cycle Byte Byte Short Byte
Byte-to-Word (8/32 bit)

Mu/ti-cycle Byte Byte Word Byte
Short-to-Byte (16/8 bit)

Multi-cycle Short Byte Byte Byte
Short-to-Short (16/16 bit)

Multi-cycle Short Byte Short Byte
Fly-by Short Short N/A N/A

Short-to-Word (16/32 bit)
Mu/ti-cycle Short Byte Word Byte

Word-to-Byte (32/8 bit)
Mu/ti-cycle Word Byte Byte Byte

Word-to-Short (32/16 bit)
Multi-cycle Word Byte Short Byte

Word-to-Word (32/32 bit)
Multi-cycle Word Byte Word Byte

Fly-by Word Word N/A N/A
Quad-to-Quad (128/128 bit)

Multi-cycle Quad Quad Quad Quad
Fly-by Quad Quad N/A N/A

These optimized unaligned transfers are executed by performing byte requests until alignment
is enforced. At this time, aligned source and destination requests are executed. At end of
transfer, the DMA may revert to byte transfers to complete the DMA. This alignment
mechanism is shown in Figure 13.5. Alignment overhead occurs at the beginning and end of
the DMA operation and, depending on DMA byte count, may be negligible. For Short-Short,
Short-to-Word and Word-to-Short multi-cycle transfers, the DMA performs byte request when
a memory block is unaligned.

13-10

OMA CONTROLLER

MEMORY
LSB -!---------.
MSB

,..,._.,...,.,,.._...,,...,SOURCE
.--~-MEMORY

REGION

DESTINATION
MEMORY "°""""""l~.,_;:;+~'""f-o-"'-1
REGION

0000 0200H

0000 0204H

0000 020BH

0000 020CH

0000 0300H

0000 0304H

0000 0308H

0000 030CH

BUS OPEHATION

ldob 201

st ob 303

Id 200

Id 204

st 304

Id 208

st 308

Id 20c

st ob 30c

st ob 30d

stob 30e

F~ '"''""">
270710-001-68

Figure 13.5. Optimization of an Unaligned OMA

DATA CHAINING

Data chaining can generate complex DMAs by linking together multiple transfer operations
and is accomplished by using memory-based chaining descriptors to describe component parts
of a more complex DMA operation.

The component parts of the chained DMA arc referred to as chaining hu.ffers. To describe a
single DMA chaining buffer, a chaining descriptor (Figure 13.6) supplies source address (SA),
destination address (DA) and byte count (BC). Chaining buffers are linked together with the
value of the next pointer (NPTRJ field in the chaining descriptor. NPTR contains the chaining
descriptor address which describes the next part of the chained DMA operation. DMA
operation ends when an NPTR of 0 (null pointer) is encountered.

A chained DMA operation is started by specifying a pointer to the first chaining descriptor
when sdma is used to configure the DMA channel. Initial source address, destination address
and byte count are taken from the first chaining descriptor. Chained DMAs are configured such
that subsequent buffer transfers use either source, destination or both of these addresses to
continue the chained DMA. These modes are referred to as source chaining, destination
chaining or source/destination chaining. For example, if a channel is configured for source
chaining (Figure 13.7), the source address for the DMA operation is updated to the value
specified in each new descriptor. The destination address is continually incremented from the

13-11

OMA CONTROLLER

address specified in the DA field of the first descriptor or is held fixed at that address. (Recall
that addresses may be incremented or held fixed for any DMA operation.)

INTERNAL REGISTER

First Descriptor Pointer

~
~NKED DESCRIPTORS IN MEMORY

Byte Count (BC)

Source Address (SA)

Destination Address (DA)

Next Descriptor Pointer (NPTR)

~~)
BC

SA

DA

NPTR

)
~~)

BC

SA

DA

OH - Null Pointer

BUFFER TRANSFERS

Figure 13.6. OMA Chaining Operation

Each buffer transfer is handled by the DMA controller as if it were a single non-chained DMA.
Data alignment requirements for each buffer are identical to the requirements for any other
DMA. (See Data Alignment in this chapter.) Since each buffer is considered a single DMA,
data is never internally buffered when moving from one buffer to another for unaligned DMAs.

13-12

INTERNAL REGISTER

FIRST DESCRIPTOR POINTER

USER LOADS

LJNOTUSED

BC= BYTE COUNT
SA= SOURCE ADDRESS
DA= DESTINATION ADDRESS
NPTR =NEXT POINTER

BC

+
BC

OMA CONTROLLER

DESCRIPTORS

'~~""""'o'""'""
s~I : I ~ :::::::::::

BC SA

TERMINATE

270710-001-70

Figure 13.7. Source Chaining

Depending on DMA channel configuration and the chaining mode selected, certain fields in the
chaining descriptor are ignored, but must be set to zero for future compatibility:

1. When a channel is source chained, the DA field of the first descriptor specifies the
destination address; the DA field in subsequent descriptors is ignored.

2. When a channel is destination chained. the SA field of the first descriptor specifies the
source address; the SA field in subsequent descriptors is ignored.

3. When a channel is configured for chained fly-by mode, the SA field always contains the
fly-by address; the DA field is ignored.

When descriptors are read from external memory, bus latency and memory speed affect
chaining latency. Chaining latency is defined as the time required for the OMA controller to
access the next descriptor. plus the time required to set up for the next buffer transfer. Chaining
latency is reduced by placing descriptors in internal data RAM or fast memory.

OMA-SOURCED INTERRUPTS

Each DMA channel is the source for one interrupt. When a DMA channel signals an interrupt,
the DMA interrupt-pending bit corresponding to that channel is set in the interrupt-pending
(IPND) register. Each channel's interrupt can be selectively masked in the interrupt mask
(IMSK) register or handled as a dedicated hardware-requested interrupt. (Refer to Chapter 6,
Interrupts for a complete description of hardware-requested interrupts.)

13-13

•

intel® OMA CONTROLLER

The interrupt-pending bit for a DMA channel is set for the following conditions:

1. A non-chained DMA terminates because byte count reaches 0 or a chained DMA
terminates because the null chaining pointer is reached.

2. EOP3:0 pin is programmed as an input and asserted to end a DMA or to terminate a source
and destination-chained buffer transfer.

3. For a chained DMA, the interrupt-on-buffer-complete function is enabled and the end of a
chaining buffer is reached.

SYNCHRONIZING A PROGRAM TO CHAINED BUFFER TRANSFERS

When any of the conditions listed above occur, the current DMA request is completed before
the pending bit in the IPNO register is set.

Two mechanisms, illustrated in Figure 13.8, enable a program to synchronize with a completed
chained buffer transfer. With either mechanism, an interrupt is generated when the chained
buffer is complete. The distinction between the mechanisms arc:

l. DMA operation continues with no delay on the next chaining buffer. The interrupt service
routine may process the data transferred for the completed buffer.

2. OMA waits until the user program processes the first chaining buffer and sets up the next
buffer transfer by modifying the chaining descriptors. DMA continues with the next buffer
transfer when a bit in the OMA control register (DMAC) is cleared.

These options are selected when the OMA channel is set up with the sdma instruction.

TERMINATING OR SUSPENDING A OMA

A DMA operation normally ends when one of the following events is encountered:

• DMA byte count reaches 0 for a non-chained OMA mode.

• EOP3:0 pin programmed as an input becomes active for a channel that is non-chained,
source-only chained or destination-only chained.

• EOP3:0 pin programmed as an input becomes active during the last buffer transfer for a
channel which is source/destination chained.

• The null chaining pointer is encountered in any chaining mode.

The DMA takes the following actions when any one of these events occur:

• DMAC register channel done flag is set.

• DMAC register channel terminal count flag is set, only if the byte count has reached 0
(non-chained) or the null chaining pointer is reached (chaining).

• DMAC register channel active bit is reset after all channel activity has completed.

• IPND register channel interrupt pending bit is set. If the corresponding bit in the IMSK is
cleared, an interrupt is signaled.

13-14

OMA CONTROLLER

Chaining Buffers Chaining Butters

Interrupt Interrupt
BUFFER 1 Procedure BUFFER 1 Procedure

1 1: I - - # - - - - - - - - 1: - - - - - - - - - - - ,. . ' ' . ' . . '

' '
.

B ' '
1 re: _________

1

+
setbit 16, sf2. sf2 '

' .

E
. '

I r:t_ - - -• - - - - - -'

Figure 13.8. Synchronizing to Chained Buffer Transfers

When a chained DMA channel is set up for source/destination chaining, the EOP3:0 inputs are
designed to terminate only the current chaining buffer. The OMA controller continues
normally with the next buffer transfer. The OMA ends as described above if the EOP3:0 pin is
asserted during the last buffer transfer.

When EOP3:0 is asserted, the entire DMA bus request completes before the DMA terminates.
For example, assume the DMA is programmed for quad-word transfers. If EOP3:0 is asserted,
the entire quad-word is transferred before the DMA terminates.

The DMA controller may be configured to generate an interrupt when a DMA terminates. A
program may determine how a DMA has ended by reading the DMAC register channel
terminal count and channel done flag values:

• If a channel's terminal count flag and done flag are set, the DMA has ended due to a byte
count of 0 (non-chaining) or a null chaining pointer reaching 0 (chaining).

• If only the done flag is set for the channel, the DMA has ended because of an active
EOP3:0 input.

For source/destination chained DMAs, an interrupt is generated by asserting EOP3:0 to
terminate the current chaining buffer.

NOTE

For source/destination chained DMAs. an interrupt is generated when EOP3:0 is asserted or when
a buffer transfer is complete and the interrupt-on-buffer complete mode is enabled. There is no
way in software to distinguish between these two interrupt sources. If this distinction is
necessary, the EOP3:0 pin may be connected to a dedicated external interrupt source.

A DMA operation can be suspended at any time by clearing the DMAC register channel­
enable bit. It may be necessary to synchronize software to the completion of a channel's bus

13-15

m

OMA CONTROLLER:

activity after the enable bit is cleared. This is accomplished by polling the DMA channel active
bit as shown in the following assembly code segment.

clrbit
self: bbs

0,sf2,sf2
4, sf2, self

disable channel 0
wait for channel
activity to complete

DMA operation is restarted by setting the channel enable bit. A channel may be suspended to
allow a section of time-critical user code to execute with the maximum core and bus resources
available.

To reduce interrupt latency, all DMAs can be suspended when an interrupt is serviced. This
option is set in the Interrupt Control (ICON) register. When the option is selected, all DMA
operations are suspended during the time that the core processes the interrupt context switch.
DMAs are restarted before the interrupt procedure's first instruction is encountered. This
option reduces interrupt latency by providing full processor resources to the interrupt context
switch.

DMA operations can be suspended by user code in an interrupt procedure to increase
procedure throughput. This is accomplished by clearing the DMAC register channel enable
field. (See DMA Command Register in this chapter.) The interrupt procedure should re-enable
all suspended channels before returning.

Issuing sdma for an active channel causes the current DMA transfer to abort. Current DMA
operation is terminated and the channel is set up with the newly-issued sdma instruction. Do
not terminate a DMA operation with sdma; this instruction causes a "non-graceful"
termination of a DMA transfer. In other words, the transfer may be aborted between a source
and destination access, potentially losing part of the source data. Additionally, status
information for the terminated DMA is lost when the new sdma instruction reconfigures the
channel.The channel done bit is not set when a DMA is terminated with sdma.

CHANNEL PRIORITY

Each DMA channel is assigned a priority. When more than one DMA channel is enabled,
channel priority determines the order in which transfers execute for each channel. Channel
priority can be programmed in one of two modes: fixed priority or rotating priority mode. The
mode is selected with the priority mode bit in DMAC register.

When fixed mode is selected, each channel has a set priority. Channel 0 has the highest
priority, followed by Channel 1, 2 and 3; Channel 3 has the lowest priority. In this mode, low­
priority DMAs assigned to Channels 1-3 can be locked out while a time-critical DMA assigned
to channel 0 receives all of the DMA controller's attention.

When rotating priority is selected, a channel's priority depends on the last channel serviced
(Table 13.3). After a channel is serviced, the priority of.that channel is automatically changed
to the lowest channel priority. The priority of the remaining enabled channels is increased with
a new channel becoming the highest priority. Rotating mode ensures that no single channel is
locked out for an extended period of time.

13-16

OMA CONTROLLER

Table 13.3. Rotating Channel Priority

Last Channel Priority
Serviced Lowest Highest

0 0 3 2 1
I l () 3 2
2 2 1 0 3
3 3 2 1 0

Rotating priority is useful for producing a uniform latency for every DMA channel. When
rotating mode is selected, the maximum latency for a single channel is the total of all latencies
associated with all enahled channels. When fixed mode is enabled. latency for any channel is
dependent on the activity of all channels of higher priority.

CHANNEL SETUP, STATUS AND CONTROL

The DMA controller uses the DMA command register (DMAC) and setup DMA instruction
(sdma) to configure and control the four DMA channels. The update DMA instruction (udma)
monitors the status of an in-progress DMA operation.

The DMAC register is a special function register (sf2). This register enables or disables each
channel and holds frequently-accessed status and control bits for the DMA controller,
including idle or active status and termination status for a channel.

sdma configures each channel. sdma specifies source address, destination address, byte count,
transfer type, chained or non-chained operation.

When a channel is set up using sdma, an eight-word (32-byte) block of internal data RAM is
allocated for the channel. Channel state is stored in this section of data RAM when operation is
preempted by another DMA channel. The user can access the current status for any active or
idle DMA operation by examining data RAM assigned to a channel. This status includes the
current source and destination addresses and the remaining byte count. udma copies the state
of an active DMA channel to internal RAM.

The following action is usually taken to set up and start a DMA operation on the i960 CA
processor:

l. A channel is set up using the sdma instruction.

2. DMAC register is modified to enable the DMA.

3. DMAC register is then read to monitor the activity of the DMA operation.

4. udma can be issued and DMA data RAM examined for the current DMA status.

13-17

OMA CONTROLLER

OMA Command Register (DMAC)

The DMA command register (Figure 13.9) is a 32-bit Special Function Register (SFR)
specified as sf2 in assembly language. Bits 21-0 are used for DMA status and configuration;
the remaining bits (bits 31-22) are reserved. These reserved bits should be programmed to 0 at
initialization and not modified thereafter. These reserved bits are not implemented on the i960
CA processor; clearing these bits at initialization is only required for portability to other i960
family products. DMAC function is described below.

channel enable bits (bits 3-0) enable (l) or suspend (0) a DMA after a channel is set up. Bits 0
through 3 enable or disable channels 0 through 3, respectively. If an enable bit for a channel is
cleared when a channel is active, the DMA is suspended after pending DMA requests for the
channel are completed and all bus activity for the pending request is complete. The channel
active bits indicate the channel is suspended. DMA operation resumes at the point it was
suspended when the channel enable bit is set. To ensure that a DMA channel does not start
immediately after it is set up, the enable bit for the channel must be cleared by software before
sdma is issued. This is necessary because the DMA controller does not explicitly clear the
enable bit after a DMA has completed.

channel terminal count flags (bits 7-4) are set when a DMA has stopped because l) byte count
has reached zero for a non-chained DMA or 2) a null pointer in a chaining descriptor is
encountered in data chaining mode. Flags 4 through 7 indicate terminal count for channels 0,
through 3, respectively. A terminal count flag is set only after the last request for the channel is
serviced and all bus activity for that request is complete. A channel's terminal count flag must
be cleared by software before the DMA channel is enabled. This is necessary because the
DMA controller does not explicitly clear the terminal count flags after a DMA has completed -
this action must be perfonned by software. The terminal count flags indicate status only.
Modifying these bits by software has no effect on a DMA operation.

channel active flags (bits 11-8) indicate that a channel is either idle (0) or active (I). Bits 8
through 11 indicate active channels 0 though 3, respectively. For demand mode, the active bit
is set when the DMA request is recognized by internal hardware and remains set until all bus
activity for that request is complete. In block mode, the channel active bit remains set for the
duration of the block mode DMA. Channel active flags indicate status only. These flags cannot
be modified by software; attempts to modify these bits by software has no effect on a DMA
operation.

channel done flags (bits 15-12) indicate that a channel's DMA has finished. Bits 12 through 15
indicate a completed DMA on channels 0 through 3, respectively. The DMA controller sets a
channel done flag when a DMA operation has finished in one of three ways:

• byte count reached zero in a non-chaining mode

• null pointer reached in a chaining mode

• EOP3:0 signal is asserted which ends the DMA operation

DMA controller channel done flags are not cleared when a channel is set up or enabled. This
action must be performed by software. Channel done flags indicate status only; modifying
these flags does not affect DMA controller operation.

13-18

OMA CONTROLLER

channel wait bits (hits 19-l6) signal that a chaining descriptor was read and, optionally,
enables a read of the next chaining descriptor in memory. Channel wait hits only enable the
descriptor read when the channel is set up with the channel wait function enabled. (See the
section titled Se1 Up DMA /11s1ructio11 in this chapter.) This function provides synchronization
for programs which dynamically change chaining descriptors when a OMA is in progress. The
OMA controller sets a channel wait hit when a chaining descriptor is read from memory. If the
channel wait function is enabled, the OMA controller waits for the channel wait bit to he
cleared hy software before the next descriptor is read. (Sec the section in this chapter titled
Data Chaining.)

priority mode /Ji/ (bit 20) selects fixed (0) or rotating (l) priority mode. The priority mode
determines the order in which DMA channels arc serviced if more than one request is pending.
(See Channel Priority.)

throttle bit (bit 21) select~ the maximum ratio of OMA process time to user process time. lf the
throttle hit is set, the DMA process can take up to one clock for every one clock of the user
process. If the bit is clear. the OMA process can take up to four clocks for every one user
process clock. The effect of the throttle bit on DMA performance is fully described in the
DMA Performance section of this chapter.

CHANNEL ENABLE BITS -DMAC.ce ----------------------~
(0) SUSPEND
(1) ENABLE

CHANNEL TERMINAL COUNT FLAGS - DMAC.ctc ----------------.
(0) NON-ZERO BYTE COUNT
(1) ZERO BYTE COUNT (SOFTWARE MUST RESET)

CHANNEL ACTIVE FLAGS - DMAC.ca --------------.

I
(0) IDLE
(1) ACTIVE

CHANNEL DONE FLAGS - DMAC.cd ---------~

I (0) NOT DONE
(1) DONE (SOFTWARE MUST RESET)

28

DMACOMMAND
REGISTER (DMAC)

D RESERVED
(INITIALIZE TO 0)

24 20

w w
3

c c c c c c
a a a e

0 3 2 0 3

12

t._ _______ CHANNEL WAIT BITS - DMAC.cw

(0) READ NEXT DESCRIPTOR
(1) DESCRIPTOR HAS BEEN READ

'----------- PRIORITY MOD[BIT -- DMAC.pm
(0) FIXED
(1) ROTATING

'------------ THROTILE BIT - DMAC.t
(0) 4 DMA TO 1 USER CLOCK MAX
(1) 1 DMA TO 1 USER CLOCK MAX

c c

0

270710-002·39

Figure 13.9. OMA Command Register (DMAC)

13-19

m

OMA CONTROLLER

Set Up OMA Instruction (sdma)

sdma configures a DMA channel. The sdma instruction has the following format:

sdma op1,
regllitlsfr

op2,
reg/litlsfr

op3
reg

The three operands are described in Figure 13.10 and in the following text:

opl: This operand is the number of the channel (0-3) which is set up with sdma.
Values other than the valid channel numbers are reserved and can cause
unpredictable results if used.

op2: This operand is the DMA control word for the channel. The control word selects
the modes and options for a DMA. (The value of this operand is described in the
next section, DMA Control Word.)

op3: This operand is used differently depending on the DMA configuration:

• Non-chaining multi-cycle DMAs: op3 is the first of three consecutive 32-bit
registers. The first register must be programmed with byte count; the second,
the source address; the third, the destination address.

• Non-chained.fly-by DMAs: op3 is the first of two consecutive 32-bit registers.
The first register must be programmed with byte count; the second, the fly-by
address.

• All chained DMAs: op3 is a single 32-bit register. op3 must be programmed
with a pointer to the first chaining descriptor. See the section in this chapter
titled Data Chaining for more information on chaining descriptors.

NOTE

The op3 operand must be a quad-aligned register (r4. r8, rl 2, gO, g4, g8org12).

INTERNAL REGISTER

Non-Chained Non-Chained Any Chained DMA
Multi-Cycle DMA Fly-by DMA

Channel No. (0-3) I op 1 Channel No. (0-3) I op 1 Channel No. (0-3) I op 1

DMA Control Word I op 2 DMA Control Word I op 2 DMA Control Word I op 2

Byte Count op 3 Byte Count op 3 Pointer to 1st descriptor I op 3

Source Address Fly-by Address

Destination Address

Note: op3 must be a quad-aligned
register (r4, r8, r12, go, g4, g8, or g12)

Figure 13.10. Setup OMA (sdma) Instruction Operands

13-20

OMA CONTROLLER

The channel setup mechanism, started with the sdma instruction, is two-part. sdma is a multi­
cycle instruction. When sdma is issued:

1. the instruction executes - reading the register operands for the DMA operation - then
completes. freeing these registers for use by other instructions.

2. a DMA setup process is triggered to complete the channel setup. The ~etup process runs
concurrently with the execution of the user's program.

After the setup process i~ ~tarted, it is possible to enable a channel through the DMAC register
before the setup completes. In this case. the DMA controller waits for the setup to complete
before the DMA operation begim. The result is the potential for additional latency on the first
DMA request. To decrease this additional latency, issue the sdma instruction well in advance
of enabling the DMA channel.

A second sdma instruction can be issued before a previously-issued DMA setup event
completes. The second sdma must wait for the first event to complete, preventing other
instructions from executing. If the segment of code which issues the sdma instructions is time­
critical, it may be beneficial to overlap other operations - other than sdma - with the setup
event and space the sdma instructions in the code instead of issuing them back-to-back. A
waiting sdma instruction is interruptible: therefore, back-to-back sdma instructions do not
adversely increase interrupt latency.

OMA Control Word

DMA control \\'ord (Figure 13.11) specifics DMA modes and options. The control word is an
operand (op2) of the sdma instruction.

tran,~fcr tvpe field (bits 3-0) specifies the request length of bus requests issued by the DMA
controller and selects between multi-cycle and fly-by transfers.

sourcddestination addressing bits (bits 4 and 5) determine if the source or destination address
for a channel is held fixed (I J or incremented (0) during a DMA. Bit 5 controls the source
address and bit 4 controls the destination address. The source addressing bit (bit 5 J controls
address increment and hold for fly-by transfers.

synchroniz.ation mode bit (bit 6) specifies that a multi-cycle demand mode transfer is
synchronized with the source (0) or the destination (1). In fly-by mode, the bit specifies
whether fly-by stores (0) or fly-by loads (I) are performed. Fly-by stores are source
synchronized: fly-by loads arc destination synchronized. In block mode, this bit is ignored .

snzchroniwtion select bit (bit 7) determines whether a transfer is demand mode (1) or block
mode (OJ.

EOPITC select bit (bit 8) selects EOP/TC3:0 pin function. If bit is set, the pins are configured
as end-of-process inputs (EOP3:0). If the EOP/TC3:0 select bit is cleared, the pin is configured
as a terminal count output (TC3:0).

13-21

•

TRANSFER TYPE FIELD
OOH 8- TO 8-BITS
01 H 8- TO 16-BITS
02H RESERVED
03H 8- TO 32-BITS
04H 16- TO 8-BITS
05H 16- TO 16-BITS
06H RESERVED
07H 16- TO 32-BITS
08H 8-BITS FLY-BY
09H 16-BITS FLY-BY
OAH 128-BITS FLY-BY QUAD
OBH 32-BITS FLY-BY
OCH 32- TO 8-BITS
OOH 32- TO 16-BITS
OEH 128-TO 128-BITS QUAD
OFH 32- TO 32-BITS

OMA CONTROLLER

DESTINATION ADDRESSING------------------------~
(0) INCREMENT
(1) HOLD

SOURCE ADDRESSING ---------------------------.
(0) INCREMENT
(1) HOLD

SYNCHRONIZATION MODE BIT ----------------------.
(0) SOURCE SYNCHRONIZED
(1) DESTINATION SYNCHRONIZED

SYNCHRONIZATION SELECT BIT
(0) BLOCK (NON-SYNCHRONIZED)
(1) DEMAND (SYNCHRONIZE)

EOP/TC SELECT BIT---------------------~
(0) TERMINAL COUNT
(1) END OF PROCESS

DESTINATION CHAINING SELECT BIT----------------.
(0) NO CHAINING
(1) CHAINED DESTINATION

SOURCE CHAINING SELECT BIT ------------------.
(O) NO CHAINING
(1) CHAINED SOURCE

INTERRUPT-ON-CHAINING-BUFFER SELECT BIT---------~
(0) NO INTERRUPT
(1) INTERRUPT

CHAINING WAIT SELECT BIT
(0) WAIT FUNCTION DISABLED ~
(1) WAIT FUNCTION ENABLED

• , _! J

28 24 20

DMA CONTROL WORD
(INSTRUCTION OPERAND FOR SOMA INSTRUCTION)

D RESERVED
(INITIALIZE TO 0)

16 12

Figure 13.11. OMA Control Word

13-22

4 0

270710-002-40

OMA CONTROLLER

The following bits in the DMA control word control data chaining. If chaining mode is not
used, the source/destination chaining select bits (bits 9 and I 0) must be set to 0.

source/destination chaining select hits (bits 9 and 10) are set to enable data chaining mode.
Setting bit 9 enables destination chaining; setting bit I 0 enables source chaining. Setting bits 9
and 10 enables source/destination chaining. Non-chaining mode is selected if both bits are
clear. (See Data Chaining in this chapter.)

interrupt-on-chaining-buffer select hit (bit 11) is set to cause an interrupt to be generated when
byte count for a chained buffer reaches 0. Bit is ignored in a non-chaining mode.

chaining-wait select hit (bit 12) is set to enable the channel-wait function. When the wait
enable function is selected, DMAC register channel-wait bits must be cleared before a chaining
descriptor is read. This channel-wait function, together with the interrupt-on, buffer-complete
function, allows chaining descriptors to be dynamically changed during the course of a chained
DMA operation. This bit is ignored when a non-chaining mode is selected. (See Data Chaining
in this chapter.)

OMA Data RAM

The DMA controller uses up to 32 words of internal data RAM to swap service between active
channels. When a channel is set up, the DMA controller dedicates 8 words of data RAM to that
channel (Figure 13.12). When channel service swaps from one to another, the state of the
active channel is saved in data RAM. The state is retrieved when the channel is again serviced.
DMA data RAM for a channel is only updated when service swaps to another channel or udma
is executed.

NOTE
Channel swapping occurs when channel priority for a pending DMA request is higher than that of
the cuITently active or last-serviced channel. (See Channel Prioritr in this chapter.)

ADDRESS INTERNAL SRAM

0000 OOOOH

OMA WORKING REGISTERS

/ BYTE COUNT 0
0000 0040H /

CHANNEL 0 SETUP / SOURCE ADDRESS 4
(32 BYTES) /

DESTINATION ADDRESS 8
0000 0060H !------------CHANNEL 1 SETUP NEXT POINTER (CHAINING MODE) c

(32 BYTES) RESERVED 10
0000 0080H !------------ I'' CHANNEL 2 SETUP RESERVED 14

(32 BYTES) ' RESERVED 18
0000 OOAOH !------------ ' CHANNEL 3 SETUP ' RESERVED 1C

(32 BYTES)
0000 OOCOH

t 270710-001·71

Figure 13.12. OMA Data RAM

13-23

m

OMA CONTROLLER

udma flushes the state of a currently executing channel to data RAM. Additional DMA
transfers can occur between the time that udma executes and a program reads the locations in
data RAM. The channel may be suspended before udma executes to ensure coherence between
the values read from data RAM and actual DMA progress.

DMA data RAM is 128 bytes of internal RAM located at 0000 0040H to 0000 OOBFH (Figure
13.12). This memory is read/write in supervisor mode and read only in user mode. This
supervisor protection prevents errant modification of the DMA RAM by a program.

DMA data RAM for any channel can be used for general purpose storage when the channel is
not in use. A program, however, must not modify data RAM dedicated for a channel which is
already set up and awaiting activity. In general, any modification of DMA Data RAM for an
active or idle channel may cause unpredictable DMA controller operation. Conversely,
executing sdma may cause previously stored data to be overwritten in the data RAM.

Channel Setup Examples

Example 13.1. Simple Block Mode Setup

Block mode setup . . .
mov Oxc,g4 # Byte count = 12
ldconst cO_src_addr,g5 # Source address for channel 0
ldconst cO_dest_addr,g6 # Destination addr for channel 0

DMA ctl word (32/32 std-source
inc. - dest. inc. - block)

ldconst Oxf,g3

sdma 0,g3,g4 # Setup channel 0

Other instructions (optional)

setbit O,sf2,sf2 # enable channel 0

Example 13.2. Chaining Mode Setup

Chaining mode
ldconst ptrl,g4
ldconst Oxla6f,g3

setup

sdma l,g3,g4

Initial descriptor pointer
DMA ctl word (32/32 std-source)
hold-dest inc. -demand source sync.­
dest. chain,channel wait,interrupt on
buffer complete)
Setup channel 1

Other instructions (optional)

setbit l,sf2,sf2 # enable channel 1
Descriptor list in memory for chaining
ptrl:

.word OxlOO, bO _src_addr, bl - de st _addr, ptr3
ptr2:

.word Ox200, OxO, bO_dest_addr, OxO
ptr3:

.word OxlOO, OxO, b2_dest_addr, ptr2

13-24

OMA CONTROLLER

OMA EXTERNAL INTERFACE

DMA signal characteristics (DACK3:0, DREQ3:0, EOP/TC3:0 and DMA) and DMA transfer
timing requirements are described in the following sections. Refer to the i960 CA
Microprocessor Data Sheet for AC specifications.

Pin Description

DREQ3:0 DMA Request (input) - DMA request pins arc individual. asynchronous channel­
request inputs used by peripheral circuits to obtain DMA service. ln fixed priority
mode, DREQO has the highest priority: DREQ3 has the lowest priority. A request
is generated by asserting the DREQ3:0 pin for a channel.

DACK3:0 DMA Acknowledge (output) - notifies an external OMA device that a transfer is
taking place. The pin is active during the bus request issued to the OMA device.

EOP/TC3:0 End of Process (input EOP3:0) or Terminal Count (output TC3:0) - Configured as
an output the pin is driven active (low) during the last transfer for a DMA and
has the same timing as the DACK3:0 signals. TC3:0 pins arc asserted when byte
count reaches zero for a chained or non-chained OMA. Programmed as an input,
an asynchronous active (low) signal on the pin for a minimum of two clock
cycles causes DMA to terminate as described in the section titled Terminating or
Suspending a DMA.

DMA DMA Bus Request (output) - This pin indicates that a bus request is issued by the
OMA controller. The pin is active during a bus request originating from the DMA
controller and inactive during all other bus requests. OMA pin value is
indeterminate during idle bus cycles. The DMA pin is not active when chaining
descriptors arc loaded from memory.

Demand Mode Request/Acknowledge Timing

Demand-mode transfers require that the OMA request CDREQ3:0) signal is asserted before the
transfer is started. Demand mode transfers should satisfy two requirements:

l. After the transfer is requested, the DMA controller must be fast in responding to the
requesting device. This characteristic is referred to as latency.

2. The requesting device must be given enough time to deasscrt the request signal to prevent
an unwanted OMA transfer.

The timing for demand mode transfers is described in the following sections. Latency
characteristics of a OMA transfer are described in this chapter's DMA Performance section.

An external device initiates a demand mode transfer by asserting (active low) one of the DMA
request pins. The acknowledge pin is driven active by the DMA controller during the bus
request issued to access the OMA requestor. Figure 13.14 shows DACK3:0 output timings.

13-25

i

i960°MCA
Microprocessor

• Dedicated control for each channel
• Data passes over system bus

OMA CONTROLLER

EXTERNAL INTERFACE

System Bus
Address/Data/Control

DREQO
J DACKO

__. J EOPO/TCO -
DRE01 - J DACK1 __. J EOP1/TC1 ...
DREQ2 ~ J
DACK2

EOP2/TC2 ~ J

DRE03 ---] DACK3

EOP3/TC3

l
PER 0 J

I
PER 1 J
PER 2 J-
PER 3 }

Figure 13.13. OMA External Interface

.....

To start a demand mode DMA, DREQ3:0 must be held asserted until the acknowledge bus
request is started. EOP3:0 pins do not require external synchronization; however, to guarantee
detection on a particular PCLK2: I cycle, setup and hold requirements must be satisfied.

At the end of the acknowledge bus request, DREQ3:0 may be held active to initiate further
DMA transfers or DREQ3:0 may be driven inactive to prevent further transfers. Depending on
DMA mode, arbitration for the next DMA transfer begins:

Case I: On the PCLK2: 1 cycle in which DACK3:0 is deasserted - This timing applies to
demand mode fly-by transfers - and multi-cycle packing or unpacking modes -
with adjacent request loads or adjacent request stores.

Case 2: Two PCLK2: l cycles after DACK3:0 is deasserted - This timing applies to
demand mode multi-cycle transfers with alternating request loads and stores.

NOTE

When a DMA operation is destination-synchronized, the next load access is performed even if the
request input is deasserted. This "prefetch" is implemented to increase performance. If the
following DMA cycle is prevented, prefetch data is saved internally and stored when the next
transfer is requested. The entire DMA cycle is not repeated.

13-26

OMA CONTROLLER

End Of Processfferminal Count Timing

EOP/TC3:0 can be programmed as an input (E0P3:0) or output (TC3:0) for each channel.
EOP/TC3:0 pins are configured when a channel is setup using sdma.

TC3:0 is asserted when byte count reaches 0 for a chained or non-chained DMA. A TC3:0 pin
for a channel is driven active during the last acknowledge bus requc,t. TC3:0 pins have the
same timing as DACK3:0.

EOP3:0 pins are asserted to terminate a DMA. EOP3:0 pins arc active-level detected. For
proper internal detection. EOP3:0 pim must be a'serted for a minimum of two and maximum
of 17 PCLK:2: I cycles (Figure 13. J 5). EOP3:0 pins do not require external synchronization;
however, to guarantee detection on a particular PCLK:2: 1 cycle. setup and hold requirements
must be satisfied. Setup and hold times are specified in the i960 CA Microprocessor Data
Sheet. EOP3:0 inputs adhere to the same timing requirements a' DREQ3:0 for arbitration of
the next OMA transfer.

NOTE

The maximum pulse width requirement for the EOP3:0 pin is to prevent more than one buffer
transfer to terminate in the source/destination chaining mode.

I I I I
I I I I I

PCLK2:1 J \ rc---i l }
I I I

-tLJ_rf ADS I I I

I I I
I I
I I I

'(BLAST -+----+----t-.'~2'"---+-----1-.\ I
& READY)

..__.....__,

DACKx h
(All Modes) ; \

I
I

I I (See Note) I I
I 11 22---~.,.-~~~~~.,.._,·
I High to pre~ent
I I next DMA cycle

OREOx I
(Case 1) 1 /$$1$$!$#1)1$1#118 ;

I I
I I

l \

I I I I I I High to prevent

OREQx
(Case 2)

I I I I I I next OMA cycle

$111JJ1111111Y..-.a&
NOTE OACKx is asserted for the duration of a OMA bus request

The request may consist of multiple bus accesses (defined by ADS and BLAST).

Figure 13.14. OMA Request and Acknowledge Timing

13-27

I
I

r

m

OMA CONTROLLER

PCLK

EOP \i I !1$1/$$#---ff--$
I I I I I I I I
1---~1----

1 2 CLK~ MIN ---~----'----'----~--~---

! I 15 CLKS MAX

Figure 13.15. EOP3:0 Timing

Block Mode Transfers

Block mode OMAs require no synchronization with a source or a destination device. OREQ3:0
inputs are ignored during block mode OMAs. The acknowledge signal (OACK3:0) is driven
active when the source is accessed. EOP/TC3:0 pins have the same function as described above
in the section End cJf"Process!Termina/ Count Timing.

OMA Bus Request Pin

The OMA request pin (OMA) indicates that the OMA controller initiated a bus access. The pin
is asserted (low) for any OMA load or store bus request. OMA is deasserted (high) for other
bus requests. The OMA pin has the same timing as the W/R pin. (See Chapter 11, External
Bus Description for a complete timing description of the OMA pin.)

The OMA pin is not active when chaining descriptors are fetched from memory.

OMA Controller Implementation

The i960 CA processor's OMA functions are implemented primarily in microcode. Processor
clock cycles are required to setup and execute a OMA operation. OMA features - including
data chaining, data alignment, byte assembly and disassembly - are implemented in
microcode. OMA hardware arbitrates channel requests, handles the OMA external hardware
interface and interfaces to microcode for most efficient use of the core resources.

When considering whether to use the OMA controller, two questions generally arise:
1. When a OMA transfer is executing, how many internal processor clock cycles does the

OMA operation consume?
2. When a OMA transfer is executing, how much of the total bus bandwidth is consumed by

the OMA bus operations?
These questions are addressed in the following sections.

13·28

DMA CONTROLLER

OMA and User Program Processes

The i960 CA processor allows DMA operations to be executed in microcode while providing
core bandwidth for the user· s program. This sharing of core resources is accomplished by
implementing separate hardware processes for each DMA channel and for the user"s program.
Alternating between the OMA and the user process enables the user code and up to four OMA
processes (one per channel) to run concurrently.

The environments for the OMA and user processes are implemented entirely in internal
hardware, as well as the mechanism for switching between processes. This hardware
implementation enables the i960 CA processor to switch processes on clock boundaries - no
instruction overhead is necessary to switch the process. With this switching mechanism. DMA
microcode and the user program can frequently alternate execution with absolutely no
performance Joss caused by the process switching.

A process switch from user process to OMA process occurs as a result of a DMA event. A
DMA event is signaled when a DMA channel requires service or is in the process of setting up
a channel. Signaling the DMA event is controlled by DMA logic.

After a OMA event is signaled, the OMA process takes a certain number of clock cycles and
then the user process is restored. The maximum ratio of OMA-to-user cycles is 4: I. This means
that, at most. the OMA process takes four clock cycles to every single-user process clock. The
ratio of OMA to user cycles can also be selected as l: I to increase execution speed of the user
process while a DMA is in progress. The user-to-DMA cycle ratio is controlled by the throttle
bit in the OMA command register (OMAC.t).

A OMA rarely uses the maximum available cycles for the DMA process. Actual cycle
allocation between user process and OMA process depends on the type of OMA operation
performed, OMA channel activity and external bus loading and performance. Maximum
allocation of internal processor clocks to DMA processes are specified in DMA Pe1.fcm11a11cc.

Bus Controller Unit

The bus controller unit (BCU) accesses memory and devices which are source and destination
of a transfer. When the OMA process is active, DMA microcode issues load or store requests
to the bus controller to perform DMA data transfers. The OMA and user processes equally
share access to the bus on a request-by-request basis. If both processes attempt to flood the bus
controller with memory requests, the bus is shared equally; this prevents lockout of either
process. If either process does require the bus, the bus controller resource may be used entirely
by either process.

The BCU contains a queue which accepts up to three pending requests for bus transactions
(Figure 13.16). When a DMA channel is set up, the queue is divided such that one slot is
dedicated for DMA process requests and two slots are dedicated for user process requests.
OMA and core entries are arranged in such a way that when both a user and DMA slot arc
filled, bus request servicing alternates between requests issued by the user and OMA processes.

13-29

OMA CONTROL'LER

OMA Controller Logic

DMA controller logic manages the execution of DMA operations independently from the core.
This logic performs the following functions:

• Synchronizes DMA transfers with external request/acknowledge signals.

• Provides the program interface to set up each of the four DMA channels.

• Provides the program interface to monitor the status of the four channels.

• Arbitrates requests between multiple DMA channels by managing channel priority.

• Produces the DMA event which causes DMA microcode to execute.

OMA Performance

DMA performance is characterized by two values: throughput and latency (Figure 13.17).
Throughput measurement is needed as a measure of the DMA transfer bandwidth. Worst-case
latency is required to determine if the DMA is fast enough in responding to transfer requests
from DMA devices.

Throughput describes how fast data is moved by a DMA operation. In this discussion,
throughput is derived as the number of PCLK2: 1 cycles per DMA request. This value is
denoted as NT DMA' The established measure of throughput, in units of bytes/second, is
derived with the following equation:

Throughput (bytes/second)
where:

(nR*fc)

=NT_DMA

NT_DMA =throughput per DMA request (PCLK2: 1 cycles)
= bytes per DMA request
= PCLK2: 1 frequency

Latency is defined as the maximum time delay measured between the assertion of DREQ3:0
and the assertion of the corresponding DACK3:0 pin. This section deals with worst-case
latency. In this section, latency is derived in number of PCLK2:1 cycles. This value is denoted
by the symbol NL DMA' The established measure of DMA latency, in units of seconds, is
derived with the following equation:

DMALatency
where:

NL_DMA
fc

NL_DMA
= fc

= Latency (PCLK2: 1 cycles)
= PCLK2: 1 frequency

13-30

OMA CONTROLLER

l USER]
PROGRAM

l OMA j
---=r-~--'

USER PROGRAM
AND

OMA ISSUE REQUESTS

REQUEST QUEUE

USER PROGRAM REQUESTS
OMA REQUESTS

__________ j __________ ,
l _____ ~'-":r~:". _____ i
i--------- ----------,

'--------~1~---------i
.--------- ----------, , __ ---~,_,~ r~~ ---__ i
,-~------- ----------,
! OMA :

---------------------! • • •

SERVICE
REQUESTS

Figure 13.16. OMA and User Requests in the Bus Queue

OMA Throughput

270710-001-72

DMA throughput (NT_DMA) for a particular system is governed by the following factors:

• DMA transfer type

• memory system configuration

• Bus activity generated by the user process

• DMA throttle bit value

13-31

m

OMA CONTROLLER

I I
I I I I

----.I I 1 ----'\1 I

U=i · r
I e:;:, I '~ I I I ___ _, I I ___ _.

DREQ3:0 [

DACK3:0 [

I I I I
I-NL DMA-1 1--NL DMA-1
I - I I - I

LATENCY = N L_DMA (SEC)
fc

THROUGHPUT= N n Rf C (BYTES/SEC)
T_DMA

I I
I I
I NL~A I
I I

NL_DMA= NUMBER OF LATENCY CLOCKS

NT_DMA= NUMBER OF CLOCKS PER OMA REQUEST

nR =NUMBER OF BYTES PER OMA REQUEST

fc = PCLK2:1 FREQUENCY

Figure 13.17. OMA Throughput and Latency

270710-001-73

NT DMA is derived from the transfer clocks provided in Table 13.4. Values in this table are
- derived assuming:

• No bus activity is generated by the user process.

• DMA transfer source and destination memory are zero wait states or internal data RAM.

Table 13.4 provides the number of PCLK2: 1 cycles required for each unit DMA transfer.
Transfer clock values, denoted by the symbol NDMA' are provided in the two boldface
columns. These columns show transfer clocks for the DMA throttle bit set to 1: 1 and 4: 1
configuration. Transfer clocks are given in pairs separated by a "/": the number on the left is
the value for source synchronized demand mode transfers; the number on the right is the value
for destination synchronized demand mode transfers.

The number of bytes per transfer is provided in Table 13.4. This is the number of bytes which
are transferred in N DMA clock cycles. Bytes per transfer is denoted by the symbol nDMA-

DMA throughput (NT DMA) is calculated using the following equation:
- nR

NT_DMA = NnMA *CnDMA)

where:

NnMA = number of PCLK2: 1 cycles per transfer
= number of bytes transferred per DMA request
= number of bytes per DMA transfer

13·32

DMA CONTROLLER

Table 13.4. OMA Transfer Clocks • NoMA

Transfer Clocks
NoMA in PCLK2:1 cycles

(Source Sync./Destination Sync.)

Transfer Type Bytes per Throttle= 4:1 Throttle= 1:1

(source-to-destination Transfer DMA User NDMA User NDMA
data length) (nDMA) Process Process Process

8-to-8 Multi-Cycle I 4/4 616 10/10 7/7 11/11

8-to-J 6 Multi-Cycle 2 11/11 10/11 21/22 18119 29/30

8-to-32 Multi-Cycle 4 23/25 16115 39/40 30/29 53/54

16-to-8 Multi-Cycle 2 1 Oil() 8/8 18/18 14/13 24/23

16-to-16 Multi-Cycle 2 4/4 616 10/10 717 11/11

16-to-32 Multi-Cycle 4 9/12 11/8 20/20 17/14 26126

32-to-8 Multi-Cycle 4 22/22 13/13 35/35 26/23 48/45

32-to-16 Multi-Cycle 2 10/11 8/8 18/19 14/13 24124

32-to-32 Multi-Cycle 4 4/4 616 10/10 717 11/11
(aligned)

32-to-32 Multi-Cycle 4 616 6/6 12/12 919 15/15
(unaligned)

128-to-l 28 Multi-Cyc:le 16 617 919 15/16 10/10 16/17

8-bit Fly-by I 3/3 3/3 616 4/4 7/7

16-bit Fly-by 2 3/3 3/3 616 4/4 7/7

32-bit Fly-by 4 3/3 3/3 6/6 4/4 7/7

128-bit Fly-hy 16 3/3 6/6 919 616 919

The columns in Table 13.4 labeled DMA Process and User Process show the number of clock
cycles allocated to either these processes during a single DMA transfer. The following formula
provides the minimum fraction of processor bandwidth remaining for the user process during a
DMA transfer:

. . . User Process Clocks
Mm1mum User Process Bandwidth= (N) * 100%

DMA

OMA Latency

DMA latency in a system depends on the following factors:

• DMA Transfer type and subsequently the worst-case throughput value calculated for that
transfer

• Number of channels enabled and the priority of the requesting channel

• Status of the suspend DMA on interrupt bit in the DMA control register (DMA.dmas)

DMA latency is the sum of the worst-case throughput for the channel plus added components
which are dependent on the configuration of the DMA controller. DMA latency is denoted as
NL_DMA in the following discussion and is measured in number of PCLK2: 1 cycles.

OMA CONTROLLER

Values for worst-case throughput are provided in Table 13.5. NT DMA· NT first and NT chain
describe DMA throughput. NT DMA· derived in the previous section, describes the average
DMA throughput, measured for-a transfer which is in progress. NT first and NT chain represent
boundary conditions of throughput for the following conditions: - -

First DMA transfer in non-chained modes - NT first is the throughput of the first transfer of a
non-chained DMA operation. After the setup microcode completes, additional microcode is
required to start the first DMA transfer.

First DMA transfer of a chained DMA buffer - NT chain is the throughput between chained
buffers (chaining mode only). The time required to arbitrate another buffer transfer in chaining
mode, read the next chaining descriptor from memory and acknowledge the first transfer of the
new buffer. Two values are given in Table 13.5 for NT chain to account for differences in
throughput for EOP chaining mode. EOP chaining occurs when the DMA controller is
configured for both source and destination chaining, the EOP/TC3:0 pins are configured as
inputs and EOP3:0 is asserted by the external system to cause chaining to the next buffer
transfer.

NT_first and NT_chain are calculated using the following equation:

NT_first = [Nrn_first + NTO_first *(0.6*throttle)]

NT_chain = [Nrn_chain + Nrn_first *(0.6*throttle)J

where:
throttle = 0 for 4: 1 throttle mode; 1 for 1: l throttle mode

The factor of 0.6 is used to characterize the effect on the worst-case base throughput value of
disabling the throttle mode. For determination of NT OMA· Table 13.4 provides separate
measurements with the throttle bit both enabled and disabled.

Additional components of worst-case DMA latency depend on DMA controller configuration.
These components are described below and their values are given in Table 13.6.

Set up the DMA channel (Nsetup) - Describes the time required for microcode to complete
channel setup after sdma is executed. This latency component may be ignored if the channel is
enabled N setup clock cycles after sdma is executed.

Swap the DMA channel (Nswap) - Time required for a higher priority channel to preempt a
lower priority channel and the time required to copy the associated DMA working registers to
internal data RAM. If only one channel is enabled in a system, then Nswap equals 0.

Lower Priority Channels (Niower) - Latency of lower priority channels which are preempted
when a DMA for the highest priority channel is requested. A transfer on the lower priority
channel must complete before the higher priority channel is serviced.

Interrupt Latency (Nint) - Latency caused by servicing an interrupt with the suspend DMA
mode enabled. Nint is the same as the worst case interrupt latency for the system.

13-34

intel(9 OMA CONTROLLER

Table 13.5. Base Values of Worst-case OMA Throughput
used for OMA Latency Calculation

Base worst-case throughput per request (PCLK2:1 cycles)

(Source SyncJDestination Sync.)

Transfer Type NTO_first NTO_chain NTO_chain
(source-to-dest. data length)

(noEOPJ (with EOP)

8-to-8 Multi-Cycle 15122 61/63 85/84

8-to-16 M11l1i-Cvcle

aligned 17132 63171 95192

unaligned 20/32 62/69 98/92

8-to-32 Mulri-C\cle

aligned 18/53 63/90 96/l 13

unaligned 18/53 60/90 96/113

!6-10-8 Multi-Cvc/e

aligned 20/23 69/62 JOS/81
unaligned 20/23 62/60 108/81

l 6-to-16 Multi-C)'cle

aligned 20/24 90/89 1141112

unaligned 35/50 1121117 129/138

16-10-32 Multi-Crcle

aligned 35/42 104/103 150/127

unaligned 55173 1231136 1701158

32-to-R Multi-Cvcle

aligned 21/25 92/64 87/83

unaligned 21/28 63/65 87/86

32-w-16 M11/ti-Crcle

aligned 20/26 93/89 I J0/110

unaligned 52166 120/!29 142/150

32-to-32 Multi-Crcle

aligned 24/33 92174 94/95

unaligned 30/52 118/93 114/L 14

128-to-12R Multi-Cycle 19/29 63/68 67175

8-bit Fly-by 27/27 59/59 88/80

16-hit Fly-b_v 27/27 59/59 88/80

32-bit Flv-by 27/27 59/59 88/80

128-hit fly-/Jr 27/27 59/59 88/80

13-35

OMA CONTROLLER

Table 13.6. Values of OMA Latency Components

Latency Value
Component Condition (PCLK2: I Cycles) Notes

Nsetup Non-chained DMA modes 36

Chained DMA modes 44

Channel enable delayed from sdma execution by 0
> 36 clock cycles in non-chaining mode or> 44
clock cycles in a chained DMA mode.

Nswap Single DMA channel enabled - No channel 0
preemption

Multiple DMA channels enabled - Preempt 5*(Number of
lower priority channels channels preempted)

N1ower Single DMA channel enabled - No channel 0 (1)
preemption

Multiple DMA channels enabled - Preempt NL
lower priority channel

Nint DMA suspend on interrupt disabled 0 (2)

DMA suspend on interrupt enabled Worst-case Interrupt
Latency

NOTES

1. NL' is the sum of maximum latencies of all channels which may be preempted by the
requesting channel. For example, with four DMA channels enabled and rotating priority
mode, a channel request may be required to preempt three other channels with pending
requests. In this case. the NL' component is the sum of all of these latencies.

2. This value is defined in the preceding section titled DMA Latency.

Worst-case DMA latency is finally calculated as the sum of the individual latency components
plus the worst-case throughput condition:

Non-chaining modes:

NL_DMA (worst case) = max(NT, NT_first) + Nsetup + Nswap + Nlower + Nint

Chaining modes:
NL_DMA (worst case) = Nr_chain + Nsetup + Nswap + Nlower + Nint

13-36

Initialization and
System Requirements

14

CHAPTER14
INITIALIZATION AND SYSTEM REQUIREMENTS

This chapter describes the steps that the i960 CA processor takes during its initialization.
Discussed are the RESET pin, the reset state of the processor, built-in self test (BIST) features
and on-circuit emulation function (ONCE). The chapter also describes the processor's basic
system requirements - including power, ground and clock - and concludes with some general
guidelines for high-speed circuit board design.

OVERVIEW

During the time that the RESET pin is asserted, the i960 CA processor is in a quiescent reset
state. All external pins are inactive and the internal processor state is forced to a known
condition. The processor begins initialization when the RESET pin is deasserted.

When initialization begins, the processor uses an Initial Memory Image (IMI) to establish its
state. The IMI contains:

• Initialization Boot Record (IBR) - contains the addresses of the first instruction of the
user's code and the PRCB.

• Process Control Block (PRCB) - contains pointers to system data structures; also contains
information used to configure the processor at initialization.

• System data structures - several data structure pointers are cached internally at
initialization.

The i960 CA processor may be reinitialized by software. When a reinitialization takes place. a
new PRCB and reinitialization instruction pointer are specified. Reinitialization is useful for
relocating data structures from ROM to RAM after initialization.

The processor supports several facilities to assist in system testing and startup diagnostics. The
ONCE mode electrically removes the i960 CA processor from a system. This feature is useful
for system-level testing where a remote tester exercises the processor system. During
initialization, the processor performs an internal functional self test and external bus self test.
These features are useful for system diagnostics to ensure base functionality of the i960 CA
processor and system bus.

The processor is designed to minimize the requirements of its external system. The processor
requires an input clock (CLKIN) and clean power and ground connections (VSS and VCC).
Since the processor can operate at a high frequency, the external system must be designed with
considerations to reduce induced noise on signals, power and ground.

14-1

m

INITIALIZATION AND SYSTEM REQUIREMENTS

INITIALIZATION

Initialization describes the mechanism that the processor uses to establish its initial state and
begin instruction execution. Initialization begins when RESET is deasserted. At this time, the
processor automatically configures itself with information specified in the IMI and performs its
built-in self test. The processor then branches to the first instruction of user code.

The objective of the initialization sequence is to provide a complete, working initial state when
the first user instruction executes. The user's startup code has only to perform several base
functions to place the processor in a configuration for executing application code.

Reset Operation (RESET)

The RESET pin, when asserted (active low), causes the processor to enter the reset state. All
external signals go to a defined state (Table 14.1); internal logic is initialized; and certain
registers are set to defined values (Table 14.2). When the RESET pin is deasserted, the
processor begins initialization as described later in this chapter. RESET is a level-sensitive,
asynchronous input.

The RESET pin must be asserted when power is applied to the processor. The processor then
stabilizes in the reset state. This power-up reset is referred to as cold reset. To ensure that all
internal logic has stabilized in the reset state, a valid input clock (CLKIN) and VCC must be
present and stable for a specified time before the RESET pin can be deasscrtcd.

The processor may also be cycled through the reset state after execution has started. This is
referred to as warm reset. For a warm reset, the RESET pin must be asserted for a minimum
number of clock cycles. Specifications for a cold and warm reset can be found in the i960 CA
Microprocessor Data Sheet.

The reset state cannot be entered under direct control from a program. No reset instruction - or
other condition which forces a reset - exists on the i960 CA processor. The RESET pin must
be asserted to enter the reset state. The processor does, however, provide a means to reenter the
initialization process. (See Reinitialization and Relocating Data Structures later in this
chapter.)

Self Test Function (STEST, FAIL)

As part of initialization, the i960 CA processor executes a bus confidence self test and,
optionally, an internal self test prograrn. The self test (STEST) pin enables or disables internal
self test. The failure (FAIL) pin indicates that either of the self tests passed or failed.

Internal self test checks basic functionality of internal data paths, registers and memory arrays
on-chip. Internal self test is not intended for a full validation of the processor's functionality.
Internal self test detects catastrophic internal failures and complements a user's system
diagnostics by ensuring a confidence level in the processor before any system diagnostics are
executed.

14-2

INITIALIZATION AND SYSTEM REQUIREMENTS

Internal self test is disabled with the STEST pin. Internal self test can be disabled if the
initialization time needs to be minimized or if diagnostics are simply not necessary. The
STEST pin is sampled on the rising edge of the RESET input. If asserted (high), the processor
executes the internal self test: if deasserted. the processor bypasses internal self test. The
external bus confidence test is always perfonned regardless of STEST pin value.

Table 14.1. Pin Reset State

PinsCll Reset State Pins(!) Reset State

A31:2 Floating DMA Floating

D31:0 Floating SUP Floating

BE3:0 High (inactive) FAIL Low (active)

W/R High (inactive) DACK3 High (inactive)

ADS High (inactive) DACK2 High (inactive)

WAIT High (inactive) DACK! High (inactive)

BLAST High (inactive) DACKO High (inactive)

DT/R High (inactive) EOP/TC3 Floating (input)

DEN High (inactive) EOP/TC2 Floating (input)

LOCK High (inactive) EOP/TCI Floating (input)

BREQ Low (inactive) EOP/TCO Floating (input)

DIC Floating

NOTE

(!)Pin states shown assume HOLD and ONCE pins are not asserted. If HOLD is assetted during
reset, the hold is acknowledged by asserting HOLDA and the processor pins are configured in the
Hold Acknowledge state (See Chapter JO, Bus CO/ztro/ler.) If the ONCE pin is asserted, the
processor pins are all floated.

14-3

•

INITIALIZATION AND SYSTEM REQUlREMENTS

Table 14.2. Register Values after Reset

RegisterCI J Value after cold reset Value after warm reset

AC AC initial image in PRCB AC initial image in PRCB

PC COIF2002H COIF2002H

TC TC initial image in PRCB TC initial image in PRCB

FP (gl5) interrupt stack base interrupt stack base

PFP (rO) undefined value before warm reset

SP (rl) interrupt stack base+64 interrupt stack base+64

RIP (r2) undefined undefined

IPND (sfO) undefined value before warm reset

IMSK (sfl) OOH OOH

DMAC (sf2) OOH OOH

NOTE
(!)All control registers (not listed) are configured with their respective values from the control
table after reset.

External bus confidence self test checks external bus functionality. This test is performed by
reading eight words from the Initialization Boot Record (IBR) and performing a checksum on
the words and the constant FFFF FFFFH. If the processor calculates a sum of 0, the test passes.
The external bus confidence test can detect catastrophic bus failures such as shorted address,
data or control lines in the external system. (See Initial Memory Image.)

The FAIL pin signals errors in either the internal self test or bus confidence self test. FAIL is
asserted (low) for each self test (Figure 14.1). If the test fails, the pin remains asserted and the
processor attempts to stop at the point of failure. If the test passes, FAIL is deasserted. When
the internal self test is disabled (with the STEST pin), FAIL still toggles at the point where the
internal self test would occur even though the internal self test is not executed. FAIL is
deasserted after the bus confidence test passes. In Figure 14.1, all transitions on the FAIL pin
are relative to PCLK2: 1 with output valid equal to tov7/tom as shown in the i960 CA
Microprocessor Data Sheet.

RESET#

FAIL#

(INTERNAL SELF·TEST)
PASS

(BUS TEST)
PASS

-------------........ 1.--------.a-~'·--------~"--------1- - ~I':_ --ll

1..- - 60,000 CYCLES__...1~.......- 102 CYCLES i.. I
5 CYCLES

270710-001-74

Figure 14.1. FAIL Timing

14-4

INITIALIZATION AND SYSTEM REQUIREMENTS

On-Circuit Emulation

On-circuit emulation aids board level testing. This feature allows a mounted i960 CA processor
to electrically remove itself from a circuit board. In ONCE mode, the processor presents a high
impedance on every pin. nearly eliminating the processor's power demands on the circuit
board. Once the processor is electrically removed, a functional tester can take the place of
(emulate) the mounted processor and execute a test of the i960 CA processor system.

The on-circuit emulation mode is entered by asserting (low) the ONCE pin while the i960 CA
processor is in the reset state. ONCE pin value is latched on RESET signal's rising edge. The
ONCE pin should be left unconnected in an i960 CA processor system. The pin is connected to
VCC through an internal pull-up resistor, causing the unconnected pin to remain in the inactive
state. To enter on-circuit emulation mode. an external tester simply drives the ONCE pin low
(overcoming the pull-up resistor) and initiates a reset cycle. To exit on-circuit emulation mode,
the reset cycle must be repeated with the ONCE pin deasserted prior to the rising edge of
RESET. (See the i960 CA Microprocessor Data Sheet for specific timing of the ONCE pin and
the characteristics of the on-circuit emulation mode.)

Initial Memory Image (IMI)

The IMI comprises the minimum set of data structures that the processor needs to initialize its
system. The IMI performs three functions for the processor:

I. it provides initial configuration information for the core and integrated peripherals

2. it provides pointers to the system data structures and the first instruction to be executed
after the processor's initialization

3. it provides checksum words that the processor uses in its self test routine at startup

The IMI is made up of three components: the initialization boot record (!BR), process control
block (PRCB) and system data structures. Figure 14.2 shows the IMI components. The IBR is
fixed in memory: the other components are referenced directly or indirectly by pointers in the
IBR and the PRCB.

Initialization Boot Record (IBR)

The IBR is the primary data structure required to initialize the i960 CA processor. The IBR is a
12-word structure which must be located at address FFFF FFOOH (Figure 14.2). The IBR is
made up of four components: the initial bus configuration data, the first instruction pointer, the
PRCB pointer and the self test checksum data.

When the processor reads the !MI during initialization, it must know the bus characteristics of
external memory where the lMI is located. This bus configuration is read from the IBR' s first
three words. At initialization, the processor performs loads from the lower order byte of the
IBR' s first three words. These three bytes are combined and loaded into the memory region 0
configuration register (MCONO) to program the initial bus characteristics for the system.

The byte in IBR word 0 is loaded into the lowest byte position of the MCONO register; the next
two bytes from word 1 and word 2 are loaded into successively higher byte positions. The byte

14-5

II

INITIAl.:.ll:ATION AND SYSTEM REQUIREMENTS

in IBR word 4 is reserved and must be set to OOH. This byte is not loaded at initialization (See
Chapter 10, Bus Controller for a discussion of memory region configuration.)

When initialization begins, the region configuration table valid bit (BCON.ctv) is cleared. This
means that every bus request issued takes configuration information from the MCONO register,
regardless of the memory region associated with the request. The MCONO register is initially
set by microcode to a value which allows the bus configuration data in the IBR to be loaded
regardless of actual memory configuration. This is done by configuring the external bus with
its most relaxed options:

• Non-burst • NRAD = 31

• Non-pipelined • NRno= 3

• Ready disabled • NwAn=31

• Bus width = 8 bits • Nwnn= 31

• Little endian byte order • NxnA = 3

With this region configuration, the first byte of bus configuration data is loaded from the IBR.
This byte is immediately placed into the lower byte of the MCONO register. This action
provides the user-specified NRAD, pipeline control, ready control and burst control values for
bus configuration. The remaining configuration data bytes are then read with requests which
use the new NRAD value. Once all three bytes are read, MCONO is rewritten and initialization
continues. This reduces the number of clocks required to load the bus configuration data.

The bus configuration data is typically programmed for a system's region 15 bus
characteristics. This is done because the remainder of the IBR and the data structures must be
loaded using the new bus characteristics and the IBR is fixed in region 15.

As part of initialization, the processor loads the remainder of the memory region configuration
table from the external control table. The Bus Configuration (BCON) register is also loaded at
this time. The control table valid (BCON.ctv) bit can be set in the control table to validate the
region table after it is loaded. In this way, the bus controller is completely configured during
initialization. (See Chapter 10, Bus Controller for a complete discussion of memory regions
and configuring the bus controller.)

After the bus configuration data is loaded and the new bus configuration is in place, the
processor loads the remainder of the IBR which consists of the first instruction pointer, the
PRCB pointer and six checksum words. The PRCB pointer and the first instruction pointer are
internally cached. The six checksum words - along with the PRCB pointer and the first
instruction pointer - are used in a checksum calculation which implements a confidence test of
the external bus. The sum of these eight words plus FFFF FFFFH must equal 0.

14-6

INITIALIZATION AND SYSTEM REQUIREMENTS

FIXED DATA STRUCTURES RELOCATABLE DATA STRUCTURES

ADDRESS INITIALIZATION BOOT RECORD
USER CODE

FFFFFFOOH .--{ INITIAL BUS
CONFIGURATION

(LEAST SIGNIFICANT BYTE
OF EACH WORD)

PROCESS CONTROL BLOCK (PRCB)
FFFFFF10H FIRST INSTRUCTION

POINTER I--

FFFFFF14H

FFFFFF18H

FFFFFF2CH

ED

PRCB POINTER

6 CHECK WORDS
(FOR BUS CONFIDENCE

SELF-TEST)

D RESERV
(INITIAL! ZETO 0)

FAULT TABLE BASE ADDRESS

CONTROL TABLE BASE ADDRESS
r--

AC REGISTER INITIAL IMAGE

FAULT CONFIGURATION WORD

INTERRUPT TABLE BASE ADDRESS

SYSTEM PROCEDURE
TABLE BASE ADDRESS

CCRESE;VED;--,-- 7

-"- ~-"-
INTERRUPT STACK

I--- POINTER

INSTRUCTION CACHE
CONFIGURATION WORD

REGISTER CACHE
CONFIGURATION WORD

r--
CONTROL TABLE

~
r---1

INTERRUPT TABLE

,.
r--

SYSTEM PROCEDURE
TABLE

~ - OTHER ARCHITECTURALLY
DEFINED DATA

STRUCTURES (NOT
REQUIRED AS PART OF IMI)

Figure 14.2. Initial Memory Image (IMI)

Process Control Block (PRCB)

f
OH

4H

SH

CH

10H

14H

18H

1CH

20H

24H

,..

,.

}

270710-002-44

The PRCB contains base addresses for system data structures and initial configuration
information for the core and integrated peripherals. The base address pointers are cached in
internal registers at initialization. The base addresses are accessed from these internal registers
until the processor is reset or reinitialized.

14-7

II

INITIALIZATION AND SYSTEM REQUIREMENTS

The initial configuration information is programmed in the arithmetic controls (AC) initial
image, the register cache configuration word, the fault configuration word and the instruction
cache configuration word. These configuration words are shown in Figure 14.3.

The AC initial image is loaded into the on-chip AC register during initialization. The AC initial
image allows the initial value of the overflow mask, no imprecise faults bit and condition code
bits to be selected at initialization.

The AC initial image condition code bits can be used to specify the source of an initialization
or reinitialization when a single instruction entry point to the user startup code is desirable.
This is accomplished by programming the condition code in the AC initial image to a different
value for each different entry point. The user startup code can detect the condition code values
- and thus the source of the reinitialization - by using the compare or compare-and-branch
instructions.

The fault configuration word allows the operation-unaligned fault to be masked when a non­
aligned memory request is issued (See Chapter I 0, Bus Controller for a description of non­
aligned memory requests.) if bit 30 in the fault configuration word is set, a fault is not
generated when a non-aligned bus request is issued. The i960 CA processor, in this case,
automatically performs the required sequence of aligned bus requests. An application may elect
to generate a fault to detect unwanted non-aligned accesses by initializing bit 30 to 0, thus
enabling the fault.

The instruction cache configuration word allows the instruction cache to be enabled or
disabled at initialization. If bit 16 in the instruction cache configuration word is set, the
instruction cache is disabled and all instruction fetches are directed to external memory.
Disabling the instruction cache is useful for tracing execution in a software debug
environment. Instruction cache remains disabled until one of two operations is performed:

1. Processor is reinitialized with a new value in the instruction cache configuration word

2. sysctl is issued with the configure instruction cache message type and a cache
configuration mode other than disable cache.

The register cache configuration word specifies the number of register sets cached on-chip.
The integrated procedure call mechanism saves the local register set when a call is executed.
Local registers are saved to the local register cache. When this cache is full, the oldest set of
local registers is flushed to the stack in external memory.

The register cache configuration word least four bits specify the number of local register sets
internally cached. The number programmed in this word specifies from 0 to 15 register sets.
When more than five register sets are selected, space is taken from internal data RAM for the
register cache. (See Chapter 7, Procedure Calls for a complete description of the register
caching mechanism.)

14-8

INITIALIZATION AND SYSTEM REQUIREMENTS

REQUIRED DATA STRUCTURES

Several data structures are typically included as part of the !Ml because values in these data
structures are accessed by the processor during initialization. These data structures are usually
programmed in the system's boot ROM, located in memory region 15 of the address space.
The required data structures arc:

• PRCB • system procedure table

• !BR • control table

• interrupt table

At initialization, the processor loads the supervisor stack pointer from the system procedure
table and caches the pointer in an internal register. Recall that the supervisor stack pointer is
located in the preamble of the system procedure table at byte offset 12 from the base address.
The system procedure table base address is programmed in the PRCB. (See Chapter 5,
Procedure Calls for a description of the system procedure table.)

The control table is the data structure that contains the on-chip control register values. It is
automatically loaded during initialization and must be completely constructed in the IMI. (See
Chapter 2, Programming Environment for a description of the control table.)

At initialization, the NMI vector is loaded from the interrupt table and saved at location OOOOH
of the internal data RAM. The interrupt table is typically programmed in the boot ROM and
then relocated to RAM by reinitializing the processor. (See Chapter 6, Interrupts for a
description of NMI and the interrupt table.)

The remaining data structures which an application may need are the fault table, user stack,
supervisor stack and interrupt stack. The necessary stacks must be located in a system's RAM.
The fault table is typically located in boot ROM. If it is necessary to locate the fault table in
RAM, the processor must be reinitialized.

14-9

ID

INITIAL1ZATION AND SYSTEM REQUIREMENT&

AC REGISTER INITIAL IMAGE

CONDITION CODE BITS-AC.cc-----------------------.,

INTEGER-OVERFLOW FLAG -AC.of---------------.
(0) NO OVERFLOW

(1) OVERFLOW

INTEGER OVERFLOW MASK BIT - AC.om -----------.
(0) ENABLE OVERFLOW FAUL TS

(1) MASK OVERFLOW FAUL TS

NO-IMPRECISE-FAULTS BIT -AC.nil ------­
(0) ALLOW IMPRECISE FAULT CONDITIONS
(1) PREVENT IMPRECISE FAULT CONDITIONS

FAULT CONFIGURATION WORD

12 8

t 12 8

------------ MASK NON-ALIGNED BUS REQUEST FAULT
(0) ENABLE THE FAULT
(1) MASK THE FAULT

INSTRUCTION CACHE CONFIGURATION WORD

28 24 20 16

4

4

L 12 8 4

DISABLE INSTRUCTION CACHE
(0) ENABLE CACHE
(1) DISABLE CACHE

REGISTER CACHE CONFIGURATION WORD

c c c
c c
2 0

0

0

0

NUMBER OF CACHED REGISTER SETS (0·15) --------------------.

I RESERVED
(INITIALIZE TO 0)

12 8

Figure 14.3. Configuration Words in the PRCB

14-10

4 0

270710·002·45

INITIALIZATION AND SYSTEM REQUIREMENTS

Reinitialization and Relocating Data Structures

Reinitialization can reconfigure the processor and change pointers to data structures. The
processor is reinitialized by issuing the sysctl instruction with the reinitialize processor
message type. (See Chapter 2, Programming Environment for a description of sysctl.) The
reinitialization instruction pointer and a new PRCB pointer are specified as operands to the
sysctl instruction. When the processor is reinitialized, the fields in the newly specified PRCB
are loaded as described earlier in this chapter.

Reinitialization is useful for relocating data structures to RAM after initialization. The interrupt
table must be located in RAM: to post software-generated interrupts, the processor writes to the
pending priorities and pending interrupts fields in this table. It may also be necessary to
relocate the control table to RAM: it must be in RAM if the control register values are to be
changed by the user program. In some systems, it is necessary to relocate other data structures
(fault table and system procedure table) to RAM because of poor load performance from ROM.
However, these data structures are typically located in a high-performance ROM - such as a
burst EPROM - and do not benefit from relocation.

After initialization, the user program is responsible for copying data structures from ROM into
RAM. The processor is then reinitialized with a new PRCB which contains the base addresses
of the new data structures in RAM.

Reinitialization is required to relocate any of several data structures since the processor caches
the pointers to the structures. The processor caches the following pointers during its
initialization:

• Interrupt Table Address • System Procedure Table Address

• Supervisor Stack Pointer • Interrupt Stack Pointer

• Fault Table Address • Control Table Address

• PRCB Address

Initialization Flow

This section summarizes initialization by presenting a flow of the steps that the processor takes
during initialization (Figure 14.4). The entry point for reinitialization is also shown.

Startup Code Example

After initialization is complete, user startup code typically copies initialized data structures
from ROM to RAM, reinitializes the processor, sets up the first stack frame, changes the
execution state to non-interrupted and calls the _main routine. In this section, an example
startup routine and associated declaration files are presented.

14-11

m

intet. INITIALIZATION AND SYSTEM REQUIREMENTS

HARDWARE RESET

YES

NO

PERFORM INTERNAL SELF-TEST

CONFIGURE STATUS
& CONTROL REGISTERS
Ac-a
Pc-a
PC.em - SUPERVISOR
PC.s - INTERRUPTED
PC.p-31

SETUP BUS CONTROLLER
LOAD BYTE AT FFFF FFOOH

INTO BYTE 0 OF MCONO

LOAD BYTES AT FFFF FF04H
FFFF FFOBH INTO BYTE 1 AND

BYTE 2 OF MCONO

ASSERT FAIL PIN

COMPUTE CHECK SUM FOR
BUS CONFIDENCE SELF-TEST

LOAD WORDS FFFF FF1 OH
THROUGH FFFF FF2CH AND

COMPUTE CHECKSUM

NO

STOP

SOFTWARE RESET

NO

GET PRCB POINTER AND START
IP FROM SYSCTL OPERANDS

PROCESS PRCB

CACHE DATA STRUCTURE
POINTERS READ

CONFIGURATION WORDS
AND CONFIGURE PROCESSOR

CACHE NMI VECTOR FROM
VECTOR LOCATION 248 IN

INTERRUPT TABLE

CACHE SUPERVISOR STACK
POINTER FROM OFFSET 12 IN
SYSTEM-PROCEDURE TABLE

FP = INTERRUPT
STACK POINTER

SP=FP+64

LOAD CONTROL REGISTERS
WITH DATA IN THE
CONTROL TABLE

EXECUTE USER CODE
BRANCH TO START-UP

270710-001-75

Figure 14.4. Processor Initialization Flow

14-12

INITIALIZATION AND SYSTEM REQUIREMENTS

The startup. s routine is presented in Example 14.1. Example 14.2 shows the ".ld" file used
to locate the IBR, access the link-time variables needed during initialization and set the
checksum words. Example 14.3 is a typical minimum declaration file of data structures -
including the IBR, PRCB and control table - used in the processor's initialization. Example
14.4 and 14.5 provide useful header files for configuring the bus controller and interrupt
controller, respectively. Files from both Example 14.4 and 14.5 are used in Example 14.3.

Example 14.1. Startup Routine

/***
**

startup.s 80960CA Example initialization

**
***/

.text

.align 2

.globl _start

.globl _exit

_start:
mov 0,g14 /*g14 must be 0 for ic960 C compiler */

!* copy .data from EPROM to RAM */

lda
lda
lda

_ram_data, r4
_edata, r5
_rom_data, r6

_move_data_to ram:

!* start address of data in ram */
/* end address of data in ram */
/* start address of data in EPROM*/

mpibg r4, r5, _move_done
ld (r6), r7 /* load data word from ROM */

increment pointer */ addo r6, 4, r6 /*
st r7, (r4) /* store data to memory */

increment destination */ addo r4, 4, r4 /*
b _move_data to_ram

_move_done:

ldconst Ox300, r4
ldconst _reinit_ip, r5
ldconst _rom__prcb, r6

/*select reinit message type */
/*reinit instruction pointer */
/*select rom prcb again, could specify

sysctl r4, r5,

b exit -

_reinit_ip:

ldconst OxO, r4
ldconst Ox2002,
modpc r4, r5,

r6

r5
r4

a different PRCB with which to
reinitialize if desired */
/*execute reinitialization */

/*select PC.s =executing (not interrupted)*/
/* create mask to change PC.s only */
!* change to non-interrupted state */

ldconst _user_stack, fp /* set first frame to user stack base */
lda Ox40(fp),sp /* initialize sp */

callj _main

_exit:
fmark

b exit

/* call the main routine */

/*if main returns ... */

14-13

II

INITIALIZATION AND SYSTEM REQUIREMENTS

Example 14.2. Linker Directives File

/***
**

ca. ld Example .ld file for an 80960CA system

**
***/

MEMORY
(
sram
dram
eprom
}

SECTIONS

org
org
org

OxBOOOOOOO,
OxEOOOOOOO,
Oxffff8000,

len
len
len

OxlOOOO
OxlOOOOOO
Ox7fff

/* 64K */
/* lM */
/* 32K */

ibr sec OxffffffOO:
(

GROUP:

GROUP:

}

boot ca.o
}

/* locates initial boot record */

.text
(
}

romdata (NOLOAD)

rom_data

>eprom

.data

ram_data

.bss

.+=

/* dummy section to set rom_data
to the end of the .text section */

_etext;

/* start address of the data in ram */

. ;

_supervisor_stack = .;
.+= Ox200;

>srarn

csl -2; /* we know there will be two carry outs when
cs2 - OxO /* _rom_prcb are added with Lhe processor's
cs3 OxO /* since both addresses have most of the
cs4 OxO /* bits set. We put -2 here to reduce
cs5 OxO /*to remove the addition of the two carries.*/
/*the following checksum to go to zero.*/
cs6 = -(rom

14-14

*!

INITIALIZATION AND SYSTEM REQUIREMENTS

Example 14.3. Boot-up Data Declarations

'***
********x***

* * * -K

* '1C * *

and PFC3

***********************x*****************************x****x***
***/

·*~

'*

. g~obl

.g::_oD_:_

.g~obl

.globl

cs4
.glohl c~;S

.glob~ cs6

rom cont.re: t":l}"'

_ron;_pc:.b
on 11ard * •

dS(~li ?1ard

'nk :':ile *

;*----------------------- ---- ---------*/
/* Co~venien~ defln~s to extr~rt bytes */

#define BYTE_O(data) (da• & OxOOCOOOFF)
#defi~e BYTE lid~tal ((data & OxOOOOFFOO) 8)
#defi~e BYTE_21data) ((data & OxOOFFOOOOJ 16)
#define BYT~_3ida~a) ((data & OxFFOOOOOO) 24)
/*---------------- */
/* 3us Region ?abJe definitions for an example hardware en~1ironP.1en:~
/*------------------------------

/ * Stan- lard Byt itiide EPROM * /
#def EP"O!I: (BUS_WI:JnH_8

12

/ * :r

----------*;

I 12) I JrnDD (
(C: !)

l\PDD I 0 I I NXDA I 0 I I Ni;iAD I 1) I NWDD 11 I l

/* Burst Dynamic
#define BDRAE

/ * Misc. SlO'V.7
#define : O

*/
(READY_ENABLE

t JiQ *.!

PTVi_vHDTH_8

!* iSBX Interfac·e *!

~ cltc f : ne SBX 0 BUS_vHDTH 8

BURST_EK'.\BLE BUS WIDTH 32

NRA'J I 12 i

NRAD I 1) I EXDA I 3) I NWAD (15) I

14-15

*/

m

INITIALIZATION AND SYSTEM REQUIREMENTS

Example 14.3. Boot-up Data Declarations (cont.)

/* Place-holder for Empty regions */
#define BUS_CONFIG EPROM

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

REGION_O_CONFIG
REGION_l_CONFIG
REGION_2_CONFIG
REGION_3_CONFIG
REGION_4_CONFIG
REGION_S_CONFIG
REGION_6_CONFIG
REGION_7_CONFIG
REGION_B_CONFIG
REGION_9_CONFIG
REGION_A_CONFIG
REGION_B_CONFIG
REGION_C_CONFIG
REGION_D_CONFIG
REGION_E_CONFIG
REGION_F_CONFIG

EPROM
BUS_CONFIG
BUS_CONFIG
BUS_CONFIG
BUS_CONFIG
BUS_CONFIG
BUS_CONFIG
BUS_CONFIG
BUS_CONFIG
BUS_CONFIG
BUS_CONFIG
PS RAM
SBX_O
I_O
BDRAM
EPROM

/*---*/
/* Interrupt Priority Map for an example hardware environment*/
/*-----------------------··-----------------------------------*/

/* Example Interrupt System Configuration */
#define ICON_CONFIG \

(SUSPEND_DMA I FAST_SAMPLE I VECTOR_CACHE_ENABLE I
MASK_UNCHANGED_ALWAYS I I_DISABLE I \

XINTO_LEVEL I XINTl_LEVEL I XINT2_EDGE I XINT3_EDGE \
XINT4_EDGE I XINTS_EDGE I XINT6_LEVEL I XINT7 LEVEL \
MIXED_MODE)

/* Example Interrupt Priority Settings */
/* (Specify the full 8-bit vector number, where the least significant nibble

must be 2. Such as Ox12, Ox22, Ox32, ... , OxE2 or OxF2) *I
#define IMAPO_CONFIG \

(XINTO_P(0xE2) XINTl_P(OxD2) XINT2_P(0xC2) XINT3_P(Ox22))
#define IMAPl_CONFIG \

(XINT4_P(Ox32) XINT5_P(Ox42) XINT6_P(Ox52) XINT7_P(Ox82))
#define IMAP2_CONFIG \

(DMAO_P(OxF2) DMAl_P(OxA2) DMA2_P(OxB2) I DMA3_P(Ox92))
/*--*/
/* Define the IBR (Initialization Boot Record) */
/*--*/

text
init_boot_record:

.word BYTE_O(EPROM)

.word BYTE_l(EPROM)

.word BYTE_2(EPROM)

.word BYTE_3(EPROM)

.word

.word

.word

.word

.word

.word

.word

.word

start
_rom_prcb
csl
cs2
cs3
cs4
cs5
cs6

/* Strip the bytes for the IBR Bus Config. */

/* set all checksum words in ".ld" file*/

14·16

INITIALIZATION AND SYSTEM REQUIREMENTS

Example 14.3. Boot-up Data Declarations (cont.)

/*-------------- --------- -------- ---
!* Define the Rom-based PRCB for cold scar:s *!
!*--------------- -------- --- ---- ---* ,'

.text.

. a 1i9n 4
_rom_prcb:

; * -

. 'WO·l·d

d

.word

.word

.word

.wore
• \\70ld

interrup~:able
_~)·stem 8~cc_table

0
ack

* ddr of
* ,J.dr of

;' * t

* Flt

fault table (ram) */
control_:able in rom

rr0sk overflow fault •:
igned fault *

* Tntecrupt Table Address */
/* SysteD Procedure Table * 1

/ * Pes e::::-ved * .1

I* Interrupt Stack Pointer */
. * Inst. Cache - enab~e cache *:

* Reg. Cache - S sets cached */

,·* Dcti~e :~e Rorr based Co~trol Table for :ni~ializat~on */
,.-*-- --- -------------·-------- --- ---··*

.text

.ali~sr~ 4
rom_control table:

/ * 0 -- Breakpoint ?eg sters *:
* IPBO IP .word

.word

.word

.word
/* -­
.word
.word
.word
.word
!* -
.word
.word
.word
.word

0 * lPBl IP
0 * DABO
0 * DABl

. \!\/Ord

.1:JOid

Group 1 -- Interrupt Map
IMAPO CONFIG

ICON CONFIG
Group 2-· Bus Configurati

REGION_O_CONFIG
REGION_:_CONFIG
REGION_2_CCJNFIG
REGION_3_CONFIG

Group 3 - - * /
REGION_ 4_CONFIG
REGION_S_CONFIG
REGION_6_CO!:FJG

. woi~ci REGION_ 7 _CON? IC'
1 * Group 4 -- *;

.word REGION_8_CON?IG
"rnGION_9_CO!J?IG

. v.ro:-::-d REGION_A_CONFIG

.word REGION_B_CONFIG
/* -- Group 5 -- */
.word REGION_C_CONFIG
. word REG:OlCD_CONF:G
.word REGION_E_CONFIG
.word REGION F CCJNF:G

egisters */
* IMAP(] Interrupt
* 111.P.?l Interrupt.
* IMAP2 Interrupt
* ICON Interrupt
n Register"; */

* I I

Reg 0 */
Reg 1 */

Map Reg 0 */
Map Reg 1 */
Map Reg 2 */
Controller Modes*/

Group 6 -- Breakpoint, Tr ce and Bus Control Registers */
.word 0 * Reserved, set to 0 */
.word 0 * BPCON Breakpoint control reg */
.word 0 * TC Trace Controls Ini~ial Image */
.word OxOOOOOOOl /* BCON Bus Cont.roller Mode */

/*--*/
I* End boot ca.s */
/*----- ---*/

14-17

a

INITIALIZATION AND SYSTEM REQUIREMENTS

Example 14.4. Bus Controller Header File

/***
**

bus.h header file for 80960CA bus controller

**
***/
/*------------------------------------- --------------------*/
/* Bus Configuration Defines */
/*--*/
#define BURST_ENABLE Oxl
#define BURST_DISABLE OxO

#define READY_ENABLE Ox2
#define READY_DISABLE OxO

#define PIPELINE_ENABLE Ox4
#define PIPELINE_DISABLE OxO

#define BUS_WIDTH_S OxO
#define BUS_WIDTH_16 (Oxl << 191
#define BUS_WIDTH_32 (Ox2 << 191

#define BIG_ENDIAN (Oxl << 221
#define LITTLE ENDIAN OxO

#define NRAD(WSI (WS << 3 I !* ws can be 0-31 */
#define NRDD(WSI (WS << 81 /* WS can be 0-3 */
#define NXDA(WSI (WS << 101 /* ws can be 0-3 */
#define NWAD(WSI (WS << 12) /* ws can be 0-31 */
#define NWDD(WS) (WS << 171 /* ws can be 0-3 */

/*---*/
/* EXAMPLE Region Configuration */
/*--*/
/* Perform a bit-wise OR of the desired parameters to specify a region.

#define BUS_REGION 1 CONFIG \

*/

(BURST_ENABLE BUS_WIDTH_32 I READY_ENABLE I \
LITTLE_ENDIAN PIPELINE_ENABLE I \
NRAD(31 I \
NRDD (1) I \
NXDA (11 I \
NWAD (2) I \
NWDD (2))

/*---*/
/* End bus.h */
!*---*/

14·18

INITIALIZATION AND SYSTEM REQUIREMENTS

Example 14.5. Interrupt Controller Header File

!**

in::c .h header file for 960CA ir1terrupt control~e~

**** ****

***~**~**

*************************************~***~********************,

;*------- -- - ----- ---------------------------------------*.
!* ICON Defines
/*-----------·
#define
#define
#define

#define
#define
!Ide fine
#define
#define
#define
#define
#define
#define
#define
#define
#define
#def:'.ne
#define
#define
#define

#define
#define

#define
#define
#define

#def ~ne
#define

#define
±tdetine

DEDICATED_MODE
EXPANDED_MODE
"1IXED_l-10DE

XIN'.:'l_LEVEL

XINT6 EDGE

I_D:SABLE
I ENABLE

OxO
Oxl
Ox~

Oxl
OxO
Oxl
CxC
Oxl
OxO
Oxl
OxO
Oxl
OxO
Oxl
OxO
Oxl
OxO
Oxl

Oxl
OxO

MASK UNCHANGED_ALWAYS
SAVE_MASK_DEDICATED
SAVE_MASK_EXPANDED

VECTOP_CACHE_EJ\L;BLE
V3Cc::'OR_CACHE_::JISA3LE

FAST_SAMPLE
DEBOm:cE

<

'<

<<

<<

<<

<<

<<

<<

::n

1)

4)

5)

6)

7)

8)

9)

10)

OxO
Gx~ «'. 11 l
Ox2 << 11)

Oxl < < _3)
,~XU

Oxl 14 l
uxu

*'

#define SUSPEND_DMA Oxl :s)
#define NO_DMA_SUSPEND OxO
/*---*/
/* EXAMPLE Mode Configuration */

/*--*!
/*
Perform a bit-wise OP of the desired parameters to specify configuration.

#define INT CONFIG \ (SUSPEND_DViA
SAVE_MASK_DEDICATED I

XINTO_LEVEL I XINTl_LEVEL
XINT4_EDGE I XINTS EDGE
MIXED_MODE)

*/

FAST_Sl\MPLE \ VECTOP_CACHE_3NABLE
I 1 I_DI SABLE I

I XINT3 EDGE I \
I XINT7 _LEVEL I

14-19

II

INITIALIZATION AND SYSTEM REQUIREMENTS

Example 14.5. Interrupt Controller Header File (cont.)

/*---*/
/* IMAP Defines */
/*--*/
#define XINTO_P(VNUM) (VNUM >> 4)
#define XINTl_P(VNUM) ((VNUM >> 4) << 4)
#define XINT2_P (VNUM) I (VNUM >> 4) << 8)
#define XINT3_P(VNUM) ((VNUM >> 4) << 12)
#define XINT4_P(VNUM) (VNUM >> 4)
#define XINTS_P (VNUM) ((VNUM >> 4) << 4)
#define XINT6_P (VNUM) ((VNUM >> 4) << 8)
#define XINT7_P(VNUM) ((VNUM >> 4) << 12)

#define
#define
#define
#define

DMAO_P(VNUM)
DMAl_P(VNUM)
DMA2_P(VNUM)
DMA3_P(VNUM)

(VNUM >> 4)
I (VNUM >> 4)
I (VNUM >> 4)
I (VNUM >> 4)

<< 4)
<< 8)
<< 12)

/*---*/
/* EXAMPLE IMAP Configuration *I
/*-------- --*/
/*
Perform a bit-wise OR of the desired parameters to specify configuration.

(Specify the full 8-bit vector number, where the least significant nibble
is 2. Such as Oxl2, Ox22, _ .. , llxK?, OxF2. I *I

#define

*/

IMAPO_CONFIG \
(XINTO_P(OxE2) I XINTl_P(OxD2)

XINT2_P (OxC2) i XINT3_P (Ox22 I I

/*------------------ --*/
/* End int.h
/*---*/

SYSTEM REQUIREMENTS

*/

The following sections discuss generic hardware requirements for a system built around the
i960 CA processor. This section describes electrical characteristics of the i960 CA processor's
interface to the external circuit. The CLKIN, RESET, STEST, FAIL, ONCE, VSS and VCC
pins are described in detail. Specific signal functions for the external bus signals, DMA signals
and interrupt inputs are discussed in their respective sections in this manual.

Input Clock (CLKIN)

The clock input (CLKIN) determines processor execution rate and timing. The clock input is
internally divided by two - or used directly - to produce the external processor clock
outputs, PCLKl and PCLK2. CLKMODE pin state determines whether the input clock is in
two-X or one-X mode. When CLKMODE is tied to ground or left floating, the CLKIN input is
internally divided by two to produce PCLK2:1 (two-X mode). When CLKMODE is pulled to a
logic I (high), the CLKIN input is used to create PCLK2: 1 at the same frequency, using an
internal phase-Jocked loop circuit (one-X mode). Refer to the i960 CA Microprocessor Data
Sheet for CLKIN specifications.

14-20

INITIALIZATION AND SYSTEM REQUIREMENTS

The clock input is designed to be driven by most common TTL crystal clock oscillators. The
clock input must be free of noise and conform with the specifications listed in the data sheet.
CLKIN input capacitance is minimal; for this reason, it may be necessary to terminate the
CLKIN circuit board trace at the processor to prevent overshoot and undershoot. Additionally,
a series-damping resistor may be required to damp ringing on the input.

Power and Ground Requirements (VCC, VSS)

The large number of VSS and VCC pins effectively reduces the impedance of power and
ground connections to the chip and reduces transient noise induced by current surges. The i960
CA processor is implemented in CHMOS IV technology. Unlike NMOS processes, power
dissipation in the CHMOS process is due to capacitive charging and discharging on-chip and in
the processor's output buffers; there is almost no DC component of power. The nature of this
power consumption results in current surges when capacitors charge and discharge. The i960
CA processor employs 24 VCC and 24 VSS pins to ensure clean on-chip power distribution.
The processor's power consumption depends mostly on frequency. It also depends on voltage
and capacitive bus load. (See the i960 CA. Microprocessor Data Sheet).

To reduce clock skew on later versions of the i960 CA processor, the VCC pin for the Phase
Lock Loop (PLL) circuit is isolated on the pinout. The lowpass filter shown below reduces
CLKIN to PCLK2: 1 skew in system designs. This circuit is compatible with those i960 CA
processor versions which do not implement isolated PLL power.

1000

-·----w. ----~-------· VccPLL
Vee 1 (ON i960'" CA DEVICE)

(BOARD PLANE) i 22 µf

Figure 14.5. VCCPLL Lowpass Filter

Power and Ground Planes

Power and ground planes must be used in i960 CA processor systems to minimize noise.
Justification for these power and ground planes is the same as for multiple VSS and VCC pins.
Power and ground lines have inherent inductance and capacitance; therefore, an impedance
Z=(LfC)l/2. Total characteristic impedance for the power supply can be reduced by adding
more lines. This effect is illustrated in Figure 14.6, which shows that two lines in parallel have
half the impedance of one. To reduce impedance even further, add more lines. Ideally, a plane
- an infinite number of parallel lines - results in the lowest impedance. Fabricate ground
planes with a minimum of 2 oz. copper.

All power and ground pins must be connected to a plane. Ideally, the i960 CA processor should
be located at the center of the board to take full advantage of these planes, simplify layout and
reduce noise.

14-21

INITIALIZATION AND SYSTEM REQUIREMENTS

e=h" z'j co

ff z

0

=1/2h" J Co

Figure 14.6. Reducing Characteristic Impedance

Decoupling Capacitors

270710-001-76

Decoupling capacitors placed across the device between VCC and VSS reduce voltage spikes
by supplying the extra current needed during switching. Place these capacitors close to their
devices because connection line inductance negates their effect. Also, for this reason, the
capacitors should be low inductance. Chip capacitors (surface mount) exhibit lower inductance
and require less board space than conventional leaded capacitors.

1/0 Pin Characteristics

The i960 CA processor interfaces to its system through its pins. This section describes the
general characteristics of the input and output pins.

Output Pins

All output pins on the i960 CA processor are three-state outputs. Each output can drive a logic
I (low impedance to VCC); a logic 0 (low impedance to VSS); or float (present a high
impedance to VCC and VSS). Each pin can drive an appreciable external load. The i960 CA
Microprocessor Data Sheet describes each pin's drive capability and provides timing and
derating information to calculate output delays based on pin loading.

Output drivers on the i960 CA processor are specially designed to provide a uniform drive
current over the entire range of operating temperatures and voltages. This feature eliminates
excess noise produced by output drivers under adverse operating conditions.

14-22

INITIALIZATION AND SYSTEM REQUIREMENTS

Input Pins

All i960 CA processor inputs arc designed to detect TTL thresholds, providing compatibility
with the vast amount of available random logic and peripheral devices that use TTL outputs.

Most i960 CA processor inputs arc synchronous inputs (Tahle 14.3). A synchronous input pin
must have a valid level (TTL logic 0 or I) when the value is used by internal logic. If the value
is not valid, it is possible for a bistable condition to be produced internally. The bistable
condition is avoided by qualifying the synchronous inputs with the rising edge of PCLK2: I or
a derivative of PCLK2:1. The i960 CA Micro11rocessor Doto Sheet specifies input valid setup
and hold times relative to PCLK for the synchronized inputs.

Table 14.3. i960™ CA Processor Input Pins

Synchronous Inputs Asynchronous Inputs Asynchronous Inputs
(sampled by PCLK2: J) (sampled hy RESET)

D31:0 RESET STEST

READY XINT7:0 ONCE

BTERM NMI CLKMODE

HOLD DREQ3:0

EOP3:0

i960 CA processor inputs which are considered asynchronous (Table I 4.3) are internally
synchronized to the rising edge of PCLK2: 1. Since they are internally synchronized, the pins
only need to be held long enough for proper internal detection. ln some cases, it is useful to
know if an asynchronous input will be recognized on a particular PCLK2: 1 cycle or held off
until a following cycle. The i960 CA Microprocessor Dato Sheet provides setup and hold
requirements relative to PCLK2: I which ensure recognition of an asynchronous input on a
particular clock. The data sheet also supplies hold times required for detection of asynchronous
inputs.

The ONCE, CLKMODE and STEST inputs are asynchronous inputs (Table 14.3). These
signals are sampled and latched on the rising edge of the RESET input instead of PCLK2: 1.

High Frequency Design Considerations

At high signal frequencies and/or with fast edge rates, the transmission line properties of signal
paths in a circuit must be considered. Reflections, interference and noise become significant in
comparison to the high-frequency signals. These errors can be transient and therefore difficult
to debug. In this section, some high-frequency design issues are discussed; for more
information, consult a reference book on high-frequency design.

14-23

INITIALIZATION AND SYSTEM REQUIREMENTS

Line Termination

Input voltage level violations are usually due to voltage spikes that raise input voltage levels
above the maximum limit (overshoot) and below the minimum limit (undershoot). These
voltage levels can cause excess current on input gates, resulting in permanent damage to the
device. Even if no damage occurs, many devices are not guaranteed to function as specified if
input voltage levels are exceeded.

Signal lines are terminated to mm1m1ze signal reflections and prevent overshoot and
undershoot. Terminate the line if the round-trip signal path delay is greater than signal rise or
fall time. If the line is not terminated, the signal reaches its high or low level before reflections
have time to dissipate and overshoot and undershoot occur.

For the i960 CA processor, two termination methods are attractive: AC and series. An AC
termination damps the signal at the end of the series line; termination compensates for excess
current before the signal travels down the line.

Series termination decreases current flow in the signal path by adding a series resistor as shown
in Figure 14.7. The resistor increases signal rise and fall times so that the change in current
occurs over a longer period of time. Because the amount of voltage overshoot and undershoot
depends on the change in current over time (V = L di/dt), the increased time reduces overshoot
and undershoot. Place the series resistor as close as possible to the signal source. Series
termination, however, reduces signal rise and fall times, so it should not be used when these
times are critical.

AC termination is effective in reducing signal reflection (ringing). This termination is
accomplished by adding an RC combination at the signal's destination (Figure 14.8). While the
termination provides no DC load, the RC combination damps signal transients.

Selection of termination methods and values is dependent upon many variables, such as output
buffer impedance, board trace impedance and length and timings that must be met.

A B c

SOURCE 270710·001-77

Figure 14.7. Series Termination

14-24

INITIALIZATION AND SYSTEM REQUIREMENTS

A B c

270710-001-78

Figure 14.8. AC Termination

latch up

Latchup is a condition in a CMOS circuit in which VCC becomes shorted to VSS. Intel's
CHMOS IV process is immune to latchup under normal operation conditions_ Latchup can be
triggered when the voltage limits on I/O pins are exceeded, causing internal PN junctions to
become forward biased. The following guidelines help prevent latchup:

• Observe the maximum rating for input voltage on I/O pins.

• Never apply power to an i960 CA processor pin or a device connected to an i960 CA
processor pin before applying power to the i960 CA processor itself.

• Prevent overshoot and undershoot on TIO pins by adding line termination and by designing
to reduce noise and reflection on signal lines.

Interference

Interference is the result of electrical activity in one conductor that causes transient voltages to
appear in another conductor. Interference increases with the following factors:

• Frequency-Interference is the result of changing currents and voltages. The more frequent
the changes, the greater the interference.

• Closeness of two conductors - Interference is due to electromagnetic and electrostatic fields
whose effects are weaker further from the source.

Two types of interference must be considered in high frequency circuits: electromagnetic
interference (EMI) and electrostatic interference (ESI).

EMI (also called crosstalk) is caused by the magnetic field that exists around any current
carrying conductor. The magnetic flux from one conductor can induce current in another
conductor, resulting in transient voltage. Several precautions can minimize EMI:

14-25

II

INITIALIZATION AND SYSTEM REQUIREMENTS

• Run ground lines between two adjacent lines wherever they traverse a long section of the
circuit board. The ground line should be grounded at both ends.

• Run ground lines between the lines of an address bus or a data bus if either of the following
conditions exist:

The bus is on an external layer of the board.

The bus is on an internal layer but not sandwiched between power and ground planes
that are at most 10 mils away.

• Avoid closed loops in signal paths (Figure 14.9). Closed loops cause excessive current and
create inductive noise, especially in the circuitry enclosed by a loop.

A

B c

270710·001·79

Figure 14.9. Avoid Closed-Loop Signal Paths

ESI is caused by the capacitive coupling of two adjacent conductors. The conductors act as the
plates of a capacitor; a charge built up on one induces the opposite charge on the other.

The following steps reduce ESI:

• Separate signal lines so that capacitive coupling becomes negligible.

• Run a ground line between two lines to cancel the electrostatic fields.

14-26

Appendix A
Optimizing Code for the
i960™ CA Microprocessor

APPENDIX A
OPTIMIZING CODE FOR

THE i960™ CA MICROPROCESSOR

This appendix describes the i960 CA microprocessor core's internal construction, also referred
to as the core microarchitecture, and core features which enhance this processor's performance
and parallelism. This appendix also describes the processor's parallel instruction execution and
assembly language techniques for achieving the highest instruction-stream performance.

i960 core microarchitecture defines programming environment, basic interrupt mechanism and
fault mechanism for all members of the i960 microprocessor family. The i960 CA processor's
core - the C-series core - is a high-performance, highly parallel implementation of the i960
core architecture. The i960 CA processor integrates a bus controller, DMA controller and
interrupt controller around the core architecture (Figure A. l).

Processors based on the C-series core can operate at a sustained speed of 66 MIPS (33 MHz
clock). State-of-the-art silicon technology and innovative microarchitectural constructs achieve
this performance as follows:

• Advanced silicon technology allows operation with a 33 MHz internal clock.

• Parallel instruction decoding allows sustained, simultaneous execution of two instructions
in every clock cycle.

• Most instructions execute in a single clock cycle.

• Multiple, independent execution units enable multi-clock instructions to execute in parallel.

• Resource and register scoreboarding provide efficient and transparent management for
parallel execution.

• Branch look-ahead and branch prediction features enable branches to execute in parallel
with other instructions.

• A local register cache permits fast calls, returns, interrupts and faults to be implemented.

• l Kbyte of two-way set associative instruction cache is integrated on-chip.

• 1 Kbyte of static data RAM is integrated on-chip.

BASIC CORE STRUCTURE

The i960 CA processor's core contains the following main functional units:

• Instruction Scheduler (IS) • Multiply/Divide Unit (MDU)

• Register File (RF) • Address Generation Unit (AGU)

• Execution Unit (EU) • Data RAM/Local Register Cache

A-1

OPTIMIZING CODE

270710-001-80

Figure A.1. i960™ CA Processor Core and Peripherals

Figure A.2 shows i960 CA processor's block diagram. The heart of the processor is the IS and
RF. Other core functional units, referred to as coprocessors, interface to the IS and RF,
connecting to either the register (REG) side or the memory (MEM) side of the processor.

The IS issues directives, via the REG and MEM interfaces, which target a specific coprocessor.
That coprocessor then executes an express function virtually decoupled from the IS and the
other coprocessors. The REG and MEM data buses transfer data between the common RF and
the coprocessors.

The i960 CA processor is designed for expansibility by allowing application specific
coprocessors to interface to the IS in the same way as the core-defined coprocessors. The
integrated peripherals (bus controller, interrupt controller and DMA controller) interface to the
REG and MEM side of the i960 CA processor.

Instruction Scheduler (IS)

The IS decodes the instruction stream and drives the decoded instructions onto the machine
bus, which is the major control bus. The IS can decode up to three instructions at a time, one
from each of three different classes of instructions: one REG format, one MEM format and one
CTRL format instruction. The IS directly executes the CTRL format instruction (branches).
The IS manages the instruction pipeline and keeps track of which instructions are in the
pipeline so faults can be detected.

The IS is assisted by three associated functional blocks: instruction fetch unit, instruction cache
and microcode ROM.

The instruction fetch unit provides the IS with up to four words of instructions each cycle. It
extracts instructions from the instruction cache, microcode ROM and its instruction fetch
queue for presentation to the scheduler. The instruction fetch unit requests external fetch
operations from the bus controller whenever a cache miss occurs.

A-2

intel OPTIMIZING CODE

INSTRUCTION FETCH UNIT
ADDRESS OUT BUS

INSTRUCTION CACHE

(1K BYTE. TWO-WAY
SET ASSOCIATIVE)

PARALLEL
INSTRUCTION SCHEDULER

REGISTER-SIDE MEMORY-SIDE
MACHINE BUS MACHINE BUS

------1 64-BIT
SRC1BUS

SIX-PORT
REGISTER FILE

BUS CONTROLLER

Figure A.2. i960™ CA Microprocessor Block Diagram

CONTROL

ADDRESS

DATA

270710-001-81

The instruction cache is a 1 Kbyte, two-way set associative non-transparent cache. This cache
delivers up to four instructions per clock to the IS. The cache also allows inner loops of code to
execute with no external instruction fetches; this maximizes the core· s performance.

The i960 CA processor uses a microcode ROM to implement complex instructions and
functions. This includes implicit and explicit calls, returns, DMA assists and initialization
sequences. Microcode provides an inexpensive and simple method for implementing complex
instructions in the processor's RISC environment. Unlike conventional microcode, i960 CA
processor's microcode uses a RISC subset of the instruction set in addition to specific
microinstructions. Microcode, therefore, can be thought of as a RISC program containing
operational routines for complex instructions. When the instruction pointer references a
microcoded instruction, the instruction fetch unit automatically branches to the appropriate
microcode routine. The i960 CA processor performs this microcode branch in 0 clocks.

A-3

II

OPTIMIZING CODE

Instruction Flow

Most instructions flow through a simple three-stage pipeline (Figure A.3). These stages are
referred to as the decode, issue and execute stages:

• Decode stage calculates the next address used to fetch the next instruction from the
instruction cache. Additionally, this stage starts decoding the instruction.

• Issue stage completes instruction decode and sends it to the appropriate execution unit.

• During execute stage, the operation is performed and the result is returned to the RF.

STATE 4

DECODE A B c D

ISSUE xxxxx A B c

EXECUTE xxxxx xxxxx A B

270710·001 ·82

Figure A.3. Instruction Pipeline

In the decode stage, the IS decodes the instruction and calculates the next instruction address.
This could be a macro- or micro-instruction address. It is either the next sequential address or
the target of a branch. For conditional branches, the IS uses condition codes or internal
hardware flags to determine which way to branch. If branch conditions are not valid when the
IS sees a branch, the processor guesses the branch direction, using the branch prediction
specified in the instruction. If the guess was wrong, the IS cancels the instructions on the
wrong path and begins fetching along the correct path.

In the issue stage, instructions are emitted or issued to the rest of the machine via the machine
bus. The machine bus consists of three parts: REG format instruction portion, MEM format
instruction portion and CTRL format portion. Each part of the machine bus goes to the
coprocessor that executes the appropriate instruction. The RF supplies operands and stores
results for REG and MEM format instructions. For this reason, the RF is connected to both the
REG and MEM portion of the machine bus. The CTRL portion stays within the instruction
sequencer since it directly executes the branch operations. Several events occur when an
instruction is issued:

1. The information is driven onto the machine bus.

2. The IS reads the source operands and checks that all resources needed to execute the
instruction are available.

3. The instruction is cancelled if any resource that the instruction requires is busy; the
resource is busy if either reserved by a previous incomplete instruction or already working
on an instruction.

4. The IS then attempts to re-issue the instruction on the next clock; the same sequence of
events is repeated.

A-4

OPTIMIZING CODE

This processor resource management mechanism is called resource scoreboarding. A specific
form of resource scoreboarding is register scoreboarding. When an instruction's computation
stage takes more than one clock, the result registers are scoreboarded. A subsequent operation
needing that particular register is delayed until the multi-clock operation completes.
Instructions which do not use the scoreboarded registers can execute in parallel.

The execute stage executes the instruction. This stage is handled by the coprocessors which
connect to the REG- and MEM-side buses. In this stage, the coprocessor has received operands
from the RF and recognized opcode which tells the coprocessor which instruction to execute.
Execution begins and a result is returned in this stage for single clock instructions.

The execute stage is a single or multi-clock pipeline stage, depending on the operation
performed and the coprocessor targeted. For single-clock coprocessors, such as the integer
execution unit, the result of an operation is always returned immediately. Because of the three­
stage pipeline construction and the register bypassing mechanism, no conflicts between source
access and result return can occur. For multi-clock coprocessors, such as the multiply/divide
unit, the coprocessor must arbitrate access to the return path.

Register File (RF)

The RF contains the 16 local and 16 global registers and has six ports (Figure A.4); this allows
several of the core's coprocessors to access the register set in parallel. This parallel access
results in an ability to execute - per clock - one simple logic or arithmetic instruction, one
memory operation (LOAD/STORE) and one address calculation.

64
SRC1 --+---t

SRC2 ..+-6- 4-r---t

64
DEST---+--~

REG DATA
BUSES

SIX-PORTED REGISTER FILE

16 LOCAL REGISTERS

16 GLOBAL REGISTERS

Figure A.4. Six-port Register File

A-5

128
LOAD

128
STORE

32 ADDRESS
BASE

MEM DATA
BUSES

270710-001-83

•

OPTIMIZING CODE

MEM coprocessors interface to the RF with a 128-bit wide load bus and a 128-bit wide store
bus. An additiOnal 32·bit port allows the Address Generation Unit to simultaneously fetch an
address or address reduction operand. These wide load and store data paths:

• enable, in a single clock, up to four words of source data and four words of destination data
to simultaneously pass between the RF and a MEM coprocessor.

• provide a high-bandwidth path between data RAM and local register cache to implement
high-speed calls, returns and operations in data RAM.

• provide a highly efficient means for moving load, store and fetch data between the bus
controller and the RF.

REG coprocessors interface to the RF with two 64-bit source buses and a single 64-bit
destination bus. The source and result from different REG coprocessors can access the RF
simultaneously using this bus structure. The 64-bit source and destination buses allow the
eshro, mov and movl instructions to execute in a single cycle.

To manage register dependencies during parallel register accesses, register bypassing (result
forwarding) is implemented. The register bypassing mechanism is activated whenever an
instruction's source register is the same as the previous instruction's destination register. The
instruction pipeline allows no time for the contents of a destination register to be written before
it is read again by another instruction. Because of this, the RF forwards the result data from the
return bus directly to the source bus without reading the source register.

Execution Unit (EU)

The EU is the i960 CA processor core's 32-bit arithmetic and logic unit. The EU can be
viewed as a self-contained REG coprocessor with its own instruction set. As such, the EU is
responsible for executing or supporting the execution of all integer and ordinal arithmetic
instructions, logic and shift instructions, move instructions, bit and bit-field instructions and
compare operations. The EU performs any arithmetic or logical instructions in a single clock .

Multiply/Divide Unit (MDU)

The MDU is a REG coprocessor which performs integer and ordinal multiply, divide,
remainder and modulo operations. The MDU detects integer overflow and divide by zero
errors. The MDU is optimized for multiplication, performing extended multiplies (32 by 32) in
four to five clocks. The MDU performs multiplies and divides in parallel with the main
execution unit.

Address Generation Unit (AGU)

The AGU is a MEM coprocessor which computes the effective addresses for memory
operations. It directly executes the load address instruction (Ida) and calculates addresses for
loads and stores based on the addressing mode specified in these instructions. The address
calculations are performed in parallel with the main execution unit (EU).

A-6

OPTIMIZING CODE

Data RAM and Local Register Cache

The Data RAM and Local Register Cache are part of a l .5 Kbyte block of on-chip Static RAM
(SRAM). One Kbyte of this SRAM is mapped into the i960 CA processor's address space from
location OOOOOOOOH to 000003FFH. A portion of the remaining 512 bytes is dedicated to the
local register cache. This part of internal SRAM is not directly visible to the user. Loads and
stores, including quad word accesses, to the internal data RAM are typically performed in only
one clock. The complete local register set. therefore, can be moved to the local register cache
in only four clocks.

MICROARCHITECTURE REVIEW

At the center of the i960 CA processor core (Figure A.2) is a set of parallel processing units
capable of executing multiple single-clock instructions in every clock. To support this rate, the
IS can initiate (i.e., issue) up to three new instructions in every clock. Each processing unit has
access to the multiple ports of the chip's six-ported register file; therefore, each processing unit
can execute instructions independently and in parallel.

Parallel Issue

To keep the processing units busy, the IS investigates a rolling quad-word group of unexecuted
instructions every clock and issues all instructions which can be executed in that clock. The
scheduler can issue up to three instructions every clock to the processing units and sustain an
issue rate of two instructions per clock.

To maximize the IS' s ability to issue instructions in parallel, the instruction cache is organized
such that it can provide three or four instructions per clock to the scheduler. To minimize the
cost of a cache miss, the instruction fetch unit constantly checks whether a cache miss will
occur on the next clock. If a miss is imminent, an instruction fetch is issued.

Parallel Execution

Six parallel processing units are attached to the six-ported register file:

MEM-side: Three units are attached to the machine's Memory-side. MEM-side instructions
are dispatched over the MEM machine-bus:

BCU Bus Control Unit executes memory reads and writes for instructions
which reference an operand in external memory.

DR Data RAM handles memory reads and writes for instructions which
reference on-chip data-RAM.

AGU Address Generation Unit executes the Ida instruction and assists address
calculation for all loads and stores; executes callx, bx and balx.

REG-side: Two units are attached to the Register-side. REG-side instructions are dispatched
over the REG machine bus:

MDU Multiply/Divide Unit executes the multiply, divide, remainder, modulo
and extended multiply and divide instructions.

A-7

•

intel® OPTIMIZING CODE

EU Execution Unit executes all other arithmetic, logical, shift, comparison,
bit, bit field, move instructions and the scanbyte instruction.

CTRL-side: One unit is on the Control-side:

IS Instruction Scheduler directly executes control instructions by modifying
the next instruction pointer given to the instruction cache.

The processor uses on-chip ROM to execute instructions not directly executed by one of the
parallel processing units. This ROM contains a sequence of simple (RISC) instructions for each
complex instruction not directly executable in one of the parallel processing units. When the
scheduler encounters a complex instruction, the appropriate ROMed sequence of RISC
instructions is issued for execution. This sequence of instructions is called a micro-flow (µ);
when taken as a whole, they perform a complex function - i.e., a macro.

Optimizations

In general, the register file, instruction scheduler, cache and fetch unit keep the parallel
processing units busy, given the typical diversity of instructions found in a rolling quad-word
group of instructions. However, achieving absolutely optimized performance for critical code
sequences is made possible by understanding the inner workings of how instructions execute
on the processor.

The following section describes instruction execution on the i960 CA processor with the goal
of instruction stream optimization in mind. The Instruction-Stream Optimizations section
describes specific code optimization techniques applicable to the i960 CA processor.

Parallel Instruction Issue

An instruction is executed after being issued by the instruction scheduler (IS). The IS keeps the
parallel processing units busy by issuing as many new instructions as possible in every clock.
To perform this task, the IS looks at the next three or four unexecuted words of the instruction
stream every clock and determines which instructions it can issue in parallel. To achieve this
parallelism, the IS detects to which machine "side" - REG, MEM or CTRL - each instruction
in the current quad-word group belongs and ensures that there are no register dependencies
between the instructions.

When the IS issues a group of instructions, the appropriate parallel processing units
acknowledge receipt and begin execution. However, register dependencies and resource
dependencies could delay instruction execution. The processor transparently manages these
interactions through register scoreboarding and register bypassing.

The following discussions assume that instructions are always available from the instruction
cache. For a discussion of cache organization and the impact of cache misses, see the section of
this appendix titled Instruction Cache and Fetch Effects.

A-8

OPTIMIZING CODE

Machine Type Parallelism

The IS can issue multiple instructions in every clock when the instructions decoded in that
clock can be executed by different machine sides. For example, an add can begin in the same
clock as a Id since the addition is performed by the EU on the REG-side, while the load is
executed by the BCU on the MEM-side. Furthermore, a branch can be issued in the same clock
as the add and Id since the IS executes it directly (three instructions per clock).

Figure A.5 shows the paths that the IS has available for dispatching each word of the rolling
quad-word to the three machine sides. The IS is not implemented to fully exploit every
possible combination of three instruction types in four consecutive words; this would have
been prohibitive and many of the possible cases are meaningless.

Table A. I summarizes the sequences of instruction machine types that can be issued in parallel.
A group of one or more instructions which can be issued in the same clock is referred to in this
appendix as an executable group of instructions.

ROLLING
QUAD-WORD
INSTRUCTION

INSTRUCTION CACHE
1K-BYTE, 2-WAY SET ASSOCIATIVE

WINDOW t----.,_----.i.---r---'---...,----'----r----l

PARALLEL ISSUE PATHS

REG
PIPELINES

Instruction Independence

MEM
PIPELINES

Figure A.5. Issue Paths

CTRL
PIPELINES

INSTRUCTION
SCHEDULER

EXECUTION
PIPELINES

270710-001-84

The scheduler also checks for register dependencies between instructions before issuing them
in parallel. The scheduler does not issue a group of instructions if:

1. the same register is specified as a destination more than once

2. the same register is specified as a destination in one instruction and a source in a
subsequent instruction

A-9

II

OPTIMIZING CODE

Table A.1. Machine Type Sequences Which Can Be Issued in Parallel

Sequence Description

RM xx REG-side followed immediately by a MEM-side instruction

RMCx REG-side followed immediately by a MEM-side followed immediately by
a CTRL instruction

RMxC REG-side followed immediately by a MEM-side followed by a CTRL
instruction in the same rolling quad-word

RC xx REG-side followed immediately by a CTRL instruction

RxCx REG-side followed by a CTRL instruction in the same rolling quad-word
RxxC

MC xx MEM-side followed immediately by a CTRL instruction

MxCx MEM-side followed by a CTRL instruction in the same rolling quad-word
MxxC

A single register may, however, be specified as a source in multiple instructions or as a source
in one instruction and a destination in a subsequent instruction. The multi-port register set
supports these cases. For example, the following instructions cannot be issued in parallel due to
the register dependencies:

ad do
st

or:

ad do
ld

gO, gl, g2
g2' (g3)

gO, gl, g2
(g3)' g2

g2 is a destination
g2 is a source;
store must wait for addo to complete

g2 is a destination
g2 is also a destination;
load must wait for addo to complete

However, the following instructions can be issued in parallel:

addo
st

or:

addo
ld

gO, gl, g2
gO, (g3)

gO' gl,
(g3)'

gO is a source for both instructions

gO is a source for addo and
a destination for load

In all cases of parallel instruction issue, the IS ensures that the program operates as if the
instructions were actually issued sequentially.

A-10

OPTIMIZING CODE

When Instructions are Delayed

In general, when the scheduler issues a group of instructions, the targeted parallel processing
units immediately acknowledge receipt of instructions and the scheduler begins considering the
next four unexecuted words of the instruction stream. There are, however, two conditions in
which the execution of one or more of the instructions that the scheduler attempted to issue
would be delayed. These conditions are: a scoreboarded register or a scoreboarded resource.

Scoreboarded Register

If a source (or destination) register of an instruction that the scheduler is attempting to issue is
the destination of a prior multi-clock instruction (such as a load) which is not completed, the
instruction is delayed. The scheduler attempts to reissue the instruction every clock until the
scoreboarded register is updated (e.g., by the BCU) and the delayed instruction can be
executed. Table A.2 summarizes conditions which cause a delay due to a scoreboarded
register.

Table A.2. Scoreboarded Register Conditions

Condition Description

src busy One or both of the registers specified as a source for the instruction was
referenced as a destination of a prior instruction which has not completed.

dst busy The destination referenced by the instruction was referenced as a destination
of a prior instruction which has not completed.

cc busy AC register condition codes are not valid. Correct branch prediction eliminates
dead clocks due to condition code dependencies.

Scoreboarded Resource

A scoreboarded resource also thwarts the scheduler's attempt to issue an instruction. A
resource is scoreboarded when it is needed to execute the instruction but is not available. The
parallel processing units are the resources. Table A.3 lists cases which cause an instruction to
be delayed due to a scoreboarded resource. Text that follows the table describes what happens
to an instruction once it is issued to a processing unit.

Register Scoreboarding and Bypassing

To maintain the logical intent of the sequential instruction stream, the i960 CA processor
implements register scoreboarding and register bypassing. Examples of each are demonstrated
in the descriptions and examples in this appendix. These mechanisms eliminate possible
pipeline stalls due to parallel register access dependencies. These mechanisms are described to
provide an understanding of how the processor operates; it is not necessary to perform any
code optimizations to take advantage of this parallel support hardware.

A-11

•

OPTIMIZING CODE

Table A.3. Scoreboarded Resource Conditions

Condition Description

BCU Queue Full Bus Controller queues are full and the scheduler is attempting to issue a
memory request.

MDU Busy Multiply/Divide Unit is busy executing a previously issued instruction
and the scheduler is attempting to issue another instruction for which the
MDU is responsible.

DR Busy On-chip data RAM can support one 128-bit load or store every clock.
However, the data RAM has no queues for storing requests. The unit
stalls execution if a new request is issued to it when it has not been
allowed to return data from a prior instruction.

For example, if DR and BCU attempt to return results over the load bus
in the same clock, BCU wins the arbitration. This delays DR result by
one clock. If, simultaneously, the IS is attempting to issue another
instruction to the data RAM, the DR stalls the processor for one clock.

Register scoreboarding maintains register coherency by preventing parallel execution units
from accessing registers for which there is an outstanding operation. Register scoreboarding
works as follows. When the IS issues an instruction which requires multiple clocks to return a
result, the instruction's destination register is locked to further accesses until it is updated. To
manage this destination register locking, the processor uses a 33rd bit in each register to
indicate whether the register is available or locked. This bit is called the scoreboard bit. There
is a scoreboard bit for each of the 32 registers.

Register bypassing eliminates a pipeline stall that would otherwise occur when one parallel
processing unit is returning a result to a register over one port while, in the same clock, another
unit is assessing the same register over a different port. Register bypassing logic constantly
monitors all register addresses being written and read. If the same register is being read and
written in the same clock, bypass logic - instead of delaying the read - routes incoming data
from the write port directly to the read port.

Parallel Execution

Once the IS issues a group of instructions, the appropriate processing units begin instruction
execution in parallel with all other processor operations. The following sections describe each
unit's pipelines and execution times of the instructions which they process.

Execution Unit (EU)

The EU performs arithmetic, logical, move, comparison, bit and bit-field operations. The EU
receives its instructions over the REG-machine bus and receives source operands over the srcl
and src2 buses and returns its result over the dst bus.

The EU pipeline is shown in Figure A.6. In the clock in which an EU instruction is issued, the
EU latches the source operands and begins performing the operation. In the following clock,

A-12

inteL OPTIMIZING CODE

the instruction completes and the result is written to the destination register. When an
instruction immediately follows an EU operation which references the EU' s destination
register, the new instruction is not issued in the same clock as the EU instruction. As seen in
the figure, the new instruction is issued in the clock following the EU operation.

The EU directly executes the instructions listed in Table A.4. The EU is pipelined such that
back-to-back EU operations execute at a one-clock sustained rate.

ad do gO' gl' g2
sh lo g3, g4' g5

subo g5' g6' g7

shro g8' g9, glO

INSTRUCTION

SCHEDULER Issue ad do shlo subo shro

Read src1, src2 gO. g1 g3, g4 g5, g6 g8. g9

EU Execute and g2 ('- g0+g1 g5 ('- g4 « g3 g7 ('- g6-g9 g10.- g9»g8
PIPELINE

Write dst

Figure A.6. EU Execution Pipeline

Table A.4. EU Instructions

ad do sh lo mov and
ad di shro movl andnot
addc shri cm po notand
subo shli cm pi nand
subi shrdi cmpdeco or
subc eshro cmpdeci nor

ornot
setbit alterbit scan byte no tor
clrbit chkbit xnor
notbit xor

not
rotate

NOTE
For these instructions, the EU returns its result to the destination register in the clock following
the clock in which the instruction was issued. If a fixup is needed during shrdi instruction
execution, the processor executes a four-clock micro flow. See Micro flows in this appendix.

A-13

II

OPTIMIZING CODE

Multiply/Divide Unit (MDU)

The MDU performs multiplication, division, remainder and modulo operations. The MDU
receives its instructions over the REG-machine bus and source operands over the srcl and src2
buses and returns its result over the dst bus. Once the IS issues an MDU instruction, the MDU
performs its operations in parallel with all other execution.

The MDU pipeline for the 32x32 mulo instruction is shown in Figure A.7. In the clock in
which the multiply is issued, the MDU latches the source operands and begins the operation.
The multiply completes and the result is written to the destination register in the fifth clock
following the clock in which the instruction was issued. When an instruction immediately
follows a multiply which references the multiply's destination, the instruction is not issued
until the clock in which the multiply result is returned. For example, an addo which
immediately follows a multiply - and references the destination of the multiply - is delayed
until the fourth clock after the multiply is issued. This five-clock multiply latency is easily
hidden; four to eight instructions could be placed between the multiply and add without
increasing the total number of processor clocks used.

addo gO, g1, g2
mulo g3, g4, g5
addo g5, g6, g7

INSTRUCTION Issue
SCHEDULER

EU Read src1, src2

PIPELINE
Execute and

Writedst

Read src1 , src2

MDU Execute
PIPELINE

Writedst

ad do

gO, g1

mulo -- -- -- -- ad do

g5, g6

g2 <-- gO+g1 g7 <c--g5+g6

g3, g4

1. .l'.l22. ,.~:t uL.· -.!;'II
g5 <--g3•g4

270710·001-86

Figure A.7. MDU Execution Pipeline

The MDU incorporates a one-clock pipeline so that the IS can issue a new MDU instruction
one clock before the previous result is written. For example, back-to-back 32x32 multiply
throughput is four clocks per multiply versus a five clock multiply latency. Figure A.8 shows
the execution pipeline for back-to-back multiplies in which adjacent instructions do not have a
register dependency between them.

NOTE

This one-clock pipelining of MDU operations does not occur if integer overflow faults are
enabled by the integer overflow mask being set to zero.

A-14

addo gO, g1, g2
mulo g2, g3, g4
mulo g5, g6, g?
addo g8, g9, g1 O

INSTRUCTION Issue
SCHEDULER

EU Read src1, src2
PIPELINE

Execute and
Writedst

Read src1. src2

MDU Execute
PIPELINE

Writedst

ad do mulo

go, g1

g2 <-- gO+g1

g2, g3

OPTIMIZING CODE

-- -- -- mulo addo

g8. g9

g10c-g8+g9

g5, g6

I C"{J} 2c:~!'2 2± :b'E;~i:, 2: 3 l(':_i2·.·~·~

g4.--g3•g4

270710-001-87

Figure A.8. MDU Pipelined Back-To-Back Operations

The MDU directly executes instructions listed in Table A.5. The scheduler issues an MDU
instruction in one clock. The table also shows the latency - the length of the execution stage
for each instruction. Subsequent instructions not dependent upon MDU results are issued and
executed in parallel with the MDU. If instructions in the table are issued back-to-back and they
have no register dependency between them, the MDU pipeline improves throughput by one
clock per instruction.

Table A.5. MDU Instructions

Back-to-Back Back-to-Back
Issue Result Throughput Throughput

Mnemonic Clocks Latency (AC.om= I) (AC.om= 0)

muli 32x32 l 5 4 5
16x32 l 3 2 3

mulo 32x32 l 5 4 4
16x32 I 3 2 3

muli 32x32 I 6 5 6
16x32 I 3 2 3

di vi 13 37 36 36

divo 3 36 35 35
ediv 3 36 35 35
remi
re mo
modi

A-15

II

OPTIMIZING CODE

Data RAM {DR)

On-chip data RAM (DR) is described in Chapter 2, Programming Environment. DR is single­
ported and 128-bits wide to support accesses per clock of up to one quad-load or quad-store.

DR receives instructions over the MEM-machine bus; store addresses over the 32-bit Address
Out bus; store data over the 128-bit Store bus. DR returns data over the 128-bit Load bus.

The one-clock DR pipeline for reads is shown in Figure A.9. When the rs issues a load from
the DR, load data is written to the destination register in the following clock.

An instruction which immediately follows a load from the DR and references the load
destination cannot execute in the same clock as the load. As shown in the figure, the instruction
is issued in the clock in which the load data is returning.

Table A.6 lists the instructions executed directly using the DR. As seen in Figure A.9, if these
instructions are issued back-to-back, they execute at a one-clock sustained rate, with or without
register dependencies.

ad do g16, gO, gO

ldq (gO), g4

ad do g4, g5, g6

ldt (g7)' g8

ldq (g8)' gO
,--,

INSTRUCTION ad do

SCHEDULER lssu~ addo ldq ldt ldq

Read src1, src2 16, gO g4, g5

EU Execute and gO<c-g0+16 g6 <- g4+g5

PIPELINE Writedst

Figure A.9. Data RAM Execution Pipeline

Table A.6. Data RAM Instructions

Load Latency = Store Latency =
1 clock 1 clock

Id st
ldob stob
ldib stib
ldos stos
I dis stis
ldl stl
ldt stt
ldq stq

NOTE
This table applies to the offset, displacement and indirect memory addressing modes. For other
addressing modes, see the Micro flows section of this appendix.

A-16

OPTIMIZING CODE

Address Generation Unit (AGU)

The AGU contains a 32-bit parallel shifter-adder to speed memory address calculations. It also
directly executes the Ida instruction. The unit calculates an effective address (efa) which is
either: 1) written to a destination register in the case of an Ida instruction or 2) used as a
memory address in the case of loads, stores, extended branches or extended calls.

The AGU receives instructions over the MEM-machine bus and offset and displacement values
over the Address Out bus from the IS. The AGU reads the global and local registers over the
32-bit Base bus register port and writes the registers over the 128-bit Load bus.

The Ida Instruction Pipeline

For six of the nine i960 CA processor addressing modes, when a Ida instruction is issued, the
AGU returns the efa to the destination register in the following clock. An instruction which
immediately follows the Ida and references the Ida destination is not issued in the same clock
as the Ida; as shown in Figure A. l 0, the instruction is issued in the clock in which Ida is
writing the destination register.

Table A.7 lists the Ida addressing mode combinations that the AGU executes directly. As seen
in the figure, if Ida instructions are issued back-to-back using one of the addressing modes in
the table, the instructions execute at a one-clock sustained rate with or without register
dependencies.

addo 16, gO, gO
Ida 16 (gO), g4
addo g4, g5, g6
Ida 16 [g7•4], g8
Ida 16 (g8), gO

INSTRUCTION Issue
SCHEDULER

Read src1, src2

EU
PIPELINE Execute and

Write dst

Read over Base bus

AGU
PIPELINE Execute and

Write over Ldbus

ad do Ida addo Ida
Ida

16, gO g4, g5

gO c-90+16 g6 c-g4+g5

gO g7 g8

g4 <-- g0+16 g8c-(g7•4)+16 gO <-- g8+16

270710·001-89

Figure A.10. The Ida Pipeline

A-17

•

intel® OPTIMIZING• CODE

Table A.7. AGU Instructions

Mnemonic Issue Addressing Result Latency
Clocks Mode Clocks

Ida I offset I
disp
(reg)
offset(reg)
disp(reg)
disp[reg * scale J

NOTE

For other memory addressing modes. see the Micro flows section of this appendix.

Effective Address (efa) Calculations for Other Operations

When an instruction is issued which requires an effective address (eja) calculation, the AGU
calculates the eja for use by the instruction. When the addressing mode specified by an
instruction is the ojj~·et, disp or (reg) mode, the AGU generates the efa in parallel with the
instruction's issuance. As shown in the previous pipeline figure for the DR (Figure A. 9), load
and store instructions begin immediately for these addressing modes with no delay for address
generation. See the section in this appendix titled Micro flows for a description of how other
addressing modes are handled.

Bus Control Unit (BCU)

The BCU, as described in Chapter JO, The Bus Controller, executes memory requests in two
clocks (zero wait state) and returns a result (for loads) on the third clock. Through address
pipelining in the system and on-chip request queuing, the BCU is capable of accepting a load
or store from the IS every clock and returning load data every clock.

The BCU receives instructions over the MEM-machine bus, store addresses over the 32-bit
Address Out bus and store data over the 128-bit Store bus. The BCU returns data over the 128-
bit Load bus.

BCU Pipeline

The BCU executes memory operations for load and store instructions, instruction fetches,
micro flows and DMA operations; however, its execution pipeline can be easily understood by
looking at simple load and store requests. Figure A.11 shows a load instruction execution
assuming that: 1) no prior requests were stored in the BCU queues and 2) the worst case that
the instruction following the load references the destination of the load.

A-18

OPTIMIZING CODE

CAS [

c
DATA [-----Hl-Z----o(

270710-002-32

Figure A.11. BCU Pipeline for Loads

The BCU receives the load address during the "issue'' clock. The address is placed on the
system bus during the next clock (the first BCU execute stage). The system returns data at the
end of the following clock (the second BCU execute stage). On the next clock the BCU writes
the data to the destination register. This write is bypassed to the REG-side and MEM-side
source buses and the scoreboarded instruction is issued in the same clock.

The zero wait-state load caused a two clock delay in execution of the next instruction because
the load data was referenced immediately after the load was issued. If the memory system had
wait states, the load data delay would have been longer. If the load were advanced in the code
such that it was separated from the instruction which used the data. the load delay could be
completely oYcrlapped with the execution of other instructions. even when the system has wait
states.

Store instruction execution would proceed as did the load. except that there would be no return
clock and no instructions could be stalled due to a scoreboarded register.

Table A.8 lists instructions that the BCU executes directly. For each instruction that requires
multiple reads on the external bus. such as ldq. the BCU buffers the return data until all data is
returned from the external bus. This optimization reduces the internal Load bus overhead to the
minimum. giving more clocks to the processor to access the DR and perform Ida operations
while external loads arc in progress.

If instructions listed in the table were issued back-to-back, with no register dependencies, the
instructions would execute at a rate of one instruction per clock until the BCU queues were
full. Once the queues are full. further back-to-back BCU instructions execute at the bus
bandwidth. Figure A.12 shows back-to-back loads being executed.

ll..1Q

•

OPTIMIZING CODE

Table A.8. BCU Instructions

Result Latency Back-to-Back
Mnemonic Issue Clocks Clocks Throughput

Id 1 3 1
ldob
ldib
ldos
ldis

ldl l 4 2

ldt l 5 3

ldq 1 6 4

st l NIA 2
stob
stib
stos
stis

stl 1 NIA 3

stt l NIA 4

stq 1 NIA 5

NOTE
The table data is valid when the offset, displacement and indirect memory addressing modes over
an external bus with the following characteristics (For other addressing modes, see the Micro
flows section of this appendix):

NxAD = NXDD = NxDA = 0, Burst On, Pipelining On, Ready Disabled

BCU Queues

To allow programs to issue load requests before the data is needed - and thus decouple
memory speeds from instruction execution - the BCU contains three queue entries. Each
entry stores all the information needed for a memory request. For each request:

• For loads, the source address, destination register number and load type are queued.

• For stores, the destination address, store type and the store data are queued.

If a stq is executed, all four registers are written to the BCU queue in one clock. The BCU
performs the actual bus request without taking any further clocks from instruction execution.

BCU queues maintain the memory requests in order. The requests are executed on the bus in
the order that they are issued from the instruction stream.

A-20

OPTIMIZING CODE

Id (gO), g1
Id (g2), g3
Id (g4), g5
addo g1, g6, g7

~;::ii~~~N Issue Id Id Id ad do

AddressOut bus gO g2 g4
St bus

External Address Bus gO g2 g4

External Data Bus (gO) (g2) (g4)
BCU
PIPELINE

LO Bus g1 <-- (gO) g3 ,__ (g2) g5 <-- (g4)

EU Read src1, src2 g1 g6
PIPELINE

Execute and
Write dst g7c--g1+g6

270710-001·91

Figure A.12. Back-to-Back BCU Accesses

When the DMA controller is enabled, one of the three queue entries is dedicated for DMA
operations. This reduces queuing of the instruction stream's loads and stores while improving
DMA performance and latency. (See Chapter 13, DMA Controller)

Control Pipeline

The IS directly executes program flow control instructions. Branches take two clocks to
execute in the CTRL pipeline; however, the IS is able to see branches as many as four
instructions ahead of the current instruction pointer. This allows the scheduler to issue the
branch early and, in most cases, execute the branch without inserting a dead clock in the
issuance of instructions to the REG and MEM-machine buses.

Table A.9 lists the instructions that the IS executes directly, without the aid of micro flows. For
information on other control flow instructions, see Micro flows later in this appendix.

Unconditional Branches

Figure A.13 shows the IS issue stage and the CTRL pipeline for the case where branches
branch to branches, essentially disabling the IS's ability to look ahead. The IS issues the branch
in one clock; the branch is executed in the next clock. The branch target is another branch,
which the scheduler issues immediately. Hence, branch instructions have a two-clock sustained
rate when issued back-to-back.

A-21

Mnemonic

b
be
bne
bl
hie
bg
bge
bo
boo

w: b x

x: b y

y:b z

z: b w

INSTRUCTION I 8 e
SCHEDULER 8 u

CTRL
PIPELINE Execute

OPTIMIZING CODE

Table A.9. CTRL Instructions

Back-to-Back
Issue Clocks Latency Clocks Throughput Clocks

1 2 2

270710-001-92

Figure A.13. CTRL Pipeline for Branches to Branches

Figures A.14, 15 and 16 show the IS issue stage and the CTRL pipeline for each case of
possible IS branch lookahead detection. Assuming that the IS can see four instructions every
clock from the instruction cache, the branch can be in the first, second or third group of
instructions seen.

An executable group of instructions is a group of sequential instructions in the currently visible
quad-word which can be issued in the same clock. See the Parallel Instruction Issue section
earlier in this appendix.

Figure A.14 shows the cases where a branch, when first seen by the IS, is in the first executable
group of instructions. The IS issues the branch immediately, along with the first one (or two)
instruction(s) ahead of it. Since the branch takes two clocks in the CTRL pipeline to execute, a
one-clock break in the IS' s ability to issue instructions occurs. On the next clock, the IS issues
a new group of instructions from the branch target.

In the figure, two other instructions were issued simultaneously with the branch. Hence, the
branch could be said to have taken one clock to execute. When the branch is the first
instruction in the group - i.e., the branch is a branch target - no other instructions are issued
in parallel with the branch and it takes a full two clocks to execute (as seen in Figure A.13.).

A-22

intet.

b x
...

x: addo gO,g1,g2
Ida 2(g3), g4
b y

y: ad do g5,g6,g7
Ida 2(g8), g9

INSTRUCTION Issue
SCHEDULER

CTRL
PIPELINE Execu1e

EU Read src1. src2
PIPELINE

Execute and
Writedst

Read over Base bus
AGU
PIPELINE

Execute and
Write over Ldbus

OPTIMIZING CODE

addo
Ida

90. 91 gs, g6

g2 ...- gO+g1 g7 <- g5+g6

g3 g8

g4 2+g3 g9 g8+2

Figure A.14. Branch in First Executable Group

270710·001·93

Figure A.15 shows the case where a branch, when first seen by the IS, is in the second
executable group (B) of instructions in the rolling quad-word, not the first executable group
(A) which is about to be issued. The IS issues the branch immediately, along with the first
group of instructions ahead of it (A). Since the branch takes two clocks in the CTRL pipeline
to execute, there is no break in the IS' s ability to issue instructions. On the next clock, the IS
issues a new group of instructions from the branch target.

In the figure, two other instructions were issued simultaneously with the branch and one
instruction was issued during the clock in which the branch was executing. Hence, it can be
said that this branch takes zero clocks to execute.

Figure A.16 shows the case where a branch, when first seen by the IS, is in the third executable
group (C) of instructions of the rolling quad-word, not the first executable group (A) which is
about to be issued. The IS issues group A, then issues the branch and group B simultaneously.
Since the branch takes two clocks in the CTRL pipeline to execute, there is no break in the IS's
ability to issue instructions. On the clock following the issuance of group B, the IS issues a
new group of instructions from the branch target.

A·23

II

infel® OPTIMIZING CODE

b x

x: addo
Ida
Ida
b

gO, g1, g2
2(g3), g4
2(g5), g6
y

y: addo g7, g8, g9

} <-A

} <--- B

Ida 2(g10), g11

Group:

INSTRUCTION Issue
SCHEDULER

CTRL
PIPELINE Execute ~!fjl!J~

EU Read src1, src2

PIPELINE
Execute and

Write dst

Read over Base bus
AGU
PIPELINE

Execute and
Write over Ldbus

A B
ad do ad do Ida Ida
...IL Ida

!Wit~ '·!'!,:::'.''"' ID

gO, g1 g7, g8

g2 <-- gO+g1 g9 (- g7+g8

g3 g5 g10

g4 (- g3+2 g6 (- g5+2 g11;-g10+2

Figure A.15. Branch in Second Executable Group

b x

x: Ida 2(g3), g4) <-A
ad do gO, g1, g2) <--- B
addo ~5, g6, g7) <--- c
b

y: ad do g8, g9,g10
Ida 2(g11),g12

Group: A B c
INSTRUCTION lss e Ida ad do ad do ad do
SCHEDULER u b Ida

CTRL '.!i:!!!i: IWlill '·ill. LlD PIPELINE Execute

EU Read src1, src2 gO, g1 g5, g6 g8, g9

PIPELINE
Execute and

g2 <-- gO+g1 g7 (- g5+g6 g10 ;-g8+g9
Writedst

Read over Base bus g3 g11
AGU
PIPELINE

Execute and g4 (- g3+2 g12 ;-g11+2 Write over Ldbus

Figure A.16. Branch in Third Executable Group

A-24

270710-001-94

270710-001-95

OPTIMIZING CODE

Conditional Branches

Conditional branches differ from unconditional branches only because the condition codes are
sometimes not valid as early as the IS sees the branch instruction. For example, a conditional
branch which immediately follows a compare instruction cannot be allowed to complete
execution until the result of the comparison is known. However, the processor begins to
execute the branch based upon the branch prediction bit set by the programmer for that branch.

When one or more executable instruction groups separate the conditional instruction from the
instruction that changed the condition code, the condition code will have already settled in the
pipeline by the time the prefetch mechanism secs the conditional instruction; from this it
determines which direction the branch will go. No "guess" is required. This situation allows
the branch to execute in zero clock cycles, as described in Figure A.16.

If the conditional instruction and the instruction that sets the condition codes are in the same
executable group or in consecutive groups, the condition code is not valid when the IS sees the
branch; a guess is required. If the prediction turns out to be correct, the branch executes in its
normal amount of time, as described in the previous section. If the prediction is wrong, the
pipeline is flushed, any erroneously-started single or multiple-cycle instructions are killed and
the branch executes as if there had been no lookahead or prediction. In other words:

• the branch takes two clocks out of the IS's issue stage if it is in the same executable group
as the instruction which modified the condition codes

-or-

• the branch takes one clock if it is in the executable group adjacent to the group that
modifies the condition codes.

Instruction Cache and Fetch Effects

The non-transparent instruction cache is organized to provide any three or four consecutive
opwords to the IS on every clock. This capability is critical to the ability to dispatch multiple
instructions from the i960 CA processor's sequential instruction stream to multiple
independent parallel processing units. When a cache miss occurs or is about to occur, the
Instruction Fetch Unit issues instruction fetch requests to the BCU.

Cache Organization

The I Kbyte cache is two-way set associative and organized into two sets of I 6 eight-word
lines. Each line is composed of four two-word blocks which can be replaced independently.

On every clock, the cache accesses one or two Jines and multiplexes the correct three or four
words to the IS:

• Three words are valid if the requested address is for an odd word in memory (A2= 1)

• Four words are valid if the requested address is for an even word of memory (A2=0).

A-25

•

OPTIMIZING CODE

Fetch Strategy

When any of the three or four words presented to the scheduler are invalid, a cache miss is
signaled and an instruction fetch is issued. The Instruction Fetch Unit makes the fetch and
prefetch decisions.

Since the cache supports two-word and quad-word replacement within a line, instruction
fetches can be issued in either size. The conditions of the cache miss determine which fetch is
issued. Table A.10 describes the fetch decision.

Table A.1 O. Fetch Strategy

Words Provided
To Scheduler Fetch Initiated

IP IP+4 IP+S IP+l2 A3:2 of Requested IP= OX2 A3:2 of Requested IP= I X2

Hit Hit Hit Hit No Fetch No Fetch

Hit Mis>. Hit Hit Fetch Two Words Fetch Two Words

Miss Hit Hit Hit at IP at IP

Miss Miss Hit Hit

Hit Hit Hit Miss Fetch Two Words Fetch Four Words

Hit Hit Miss Hit at IP+8 at IP +8

Hit Hit Miss Miss

All other cases Fetch Four Words Fetch Two Words at IP

at IP and Four Words at IP+S

Fetch Latency

The Instruction Fetch Unit initiates an instruction fetch by requesting quad-word or long-word
loads from the BCU. These fetches differ from actual instruction stream loads in two ways:
load destination and load data buffering.

First, the load destination of an instruction fetch is the instruction fetch buffer - not the
register file. Since fetch data goes directly from the BCU to the instruction fetch buffer and IS,
the scheduler can issue fetched instructions during the clock after they are read from external
memory.

Second, to reduce fetch latency, BCU buffers fetch data differently than a regular load
instruction. Instead of buffering four words of instructions before sending data to the fetch unit,
the BCU sends each word as it is received over the bus. If the fetches are from 8- or 16-bit
memory, the BCU collects 32-bits before sending the word to each fetch unit.

Figure A.17 shows the execution of a two-word fetch that resulted from a cache miss. At the
end of the clock in which instructions would be issued had there been a hit, the fetch unit
detects the cache miss. The fetch unit issues the instruction fetch in the following dock.

A-26

OPTIMIZING CODE

Assuming that the BCU is not busy with another operation, the request begins on the external
bus in the next clock. The first word of the fetch is returned to the fetch unit in the clock in
which it is received from the memory system; the JS attempts to issue the instruction to an
execution unit in that same clock. The remaining words of a fetch are returned as they are
received from the system (i.e .. one each clock).

If the fetch request is the result of a prcfetch decision. the IS is not stalled unless it needed an
instruction from the prefetch request.

If the processor is executing straight-line code which always misses the cache, the IS is only
able to issue instructions at a one instruction per clock rate. since it is never able to see multiple
instructions in one clock. The bus bandwidth of the memory subsystem containing the code
limits the application· s performance.

b y

y: addo go. g1. g2 <-- Cache Miss
subo g3. g4. g5

INSTRUCTION
SCHEDULER Issue y:- -

CTRL Cache
PIPELINE Execute) Miss

AddressOut bus
St bus

External Address Bus

External Data Bus
BCU
PIPELINE

Ld Bus

EU
Read src1, src2

PIPELINE
Execute and

Write dst

-- -- -- ad do

Fetch
Address

A

D D
ad do subo

D
addo

gO, g1

Figure A.17. Fetch Execution

Cache Replacement

subo

D
subo

g3, g4

g2 ~ gO+g1 g5 ~ g4-g3

270710-001-96

Data fetched as a result of cache miss is written to the cache when and if the fetched data is
requested by the JS. This optimization keeps unexccuted prefetched data from taking up
valuable cache space.

As the fetches come in from lhe BCU, the fetch unit stores incomplete fetch blocks in a queue.
If the IS requests one or more instructions which are in the queue, the fetch unit satisfies the
queue request. If the queue entry that the scheduler requests contains a full group (two words)
of instructions, the valid groups in the queue are also written to the cache in the same clock that
they are given to the scheduler. The least recently used set is updated.

A-27

II

OPTIMIZING CODE

Micro-flows

The i960 CA parallel processing units directly execute about half of the processor's instruction
encodings. The processor services the remaining complex encodings by executing a sequence
of simple instructions from an on-board ROM.

Instruction sequences stored in ROM are written in such a way that enables the parallel
processing units to perform the required function as fast as possible. Micro-flows use
instructions described in prior sections of this appendix - machine types R, M and C - and
some special parallel circuitry to carry out the complex instructions. An instruction which
cannot be directly issued to a parallel processing unit is said to have the machine type µ.

This section describes how the complex encodings are detected and execution times associated
with each instruction.

Detection

To prevent micro-flowed instruction support from impacting the processor's speed or pipeline
depth, complex instructions are detected in the clock in which they are fetched. This
information becomes part of the instruction encoding stored in the Instruction Fetch Unit queue
and/or Instruction Cache.

Invocation

Invocation for a complex instruction's micro-flow can be considered analogous to the
processor's execution of an unconditional branch into the on-chip ROM. However, pre­
decoding and optimized lookahead logic makes the micro-flow invocation more efficient than
a branch instruction.

While the IS is issuing one group of instructions, parallel decode circuitry checks to see if the
next executable instruction is aµ instruction (Figure A.18). If so, the opwords presented to the
IS in the next clock come from the on-chip ROM location that contains the micro-flow for the
detected complex instruction. The IS actually never attempts to issue a complex encoding. The
encodings are detected when the opword is fetched, then trapped-out during the clock in which
they are presented to the IS.

Generally, no clocks are lost when switching to a micro-flow; however, two conditions can
defeat the lookahead logic: branches to REG-, CTRL- or COBR-format instructions which are
implemented as micro-flows (µ) or cache misses from straight-line code execution. Under
these conditions, the switch to on-chip ROM causes a one-clock break in the IS's ability to
issue instructions.

Complex instructions encoded with the MEM-format do not require lookahead detection to
trap to the ROM without overhead. Therefore, MEM-format instructions of machine typeµ do
not see a one-clock performance loss even when lookahead logic is defeated. Furthermore,
micro-flows return to general execution with no overhead; back-to-back micro-flows do not
incur the one-clock defeated lookahead penalty.

A-28

ROLLING
QUAD-WORD
INSTRUCTION

OPTIMIZING CODE

WINDOW _____ _.. _____ _,_ _______ ____ _

Execution

PARALLEL ISSUE PATHS

REG
PIPELINES

MEM
PIPELINES

CTRL
PIPELINES

Figure A.18. Micro-flow Invocation

INSTRUCTION
SCHEDULER

EXECUTION
PIPELINES

270710·002-46

When micro-flows execute, they consume the instruction scheduler's activity. From the first
clock through the last clock of a micro-flow, the IS is typically issuing two instructions per
clock. MEM-side micro-flows such as loads and stores can be issued in parallel with a REG­
side instruction. Performance of micro-flowed instructions is described by the number of
clocks taken to issue instructions. The following sections describe micro-flowed instruction
performance by functional group.

Data Movement

Data movement instructions supported as micro-flows include the triple and quad-word register
move instructions and the Ida, load and store instructions which use complex addressing
modes.

movt and movq each take two clocks to execute.

Ida takes two clocks to execute for the (reg)[reg *scale] and disp(reg)[reg *scale] addressing
modes and can be issued in parallel with an instruction of machine type R. Ida using the
disp(IP) addressing mode takes four clocks to execute and can be issued in parallel with a
machine type R instruction. The AGU executes Ida directly for all other addressing modes.

A·29

OPTIMIZING CODE

Load and store instructions are summarized in A.11 and 12. The number of clocks shown is the
additional number of issue clocks consumed for address calculation prior to the load or store
being issued to the BCU or DR. These instructions can be issued in parallel with a machine
type R instruction. To find the result latency of the BCU or DR, see the appropriate section
earlier in this appendix.

Table A.11. Load Micro-flow Instruction Issue Clocks

The following load instructions consume n additional issue clocks
for address calculation before initiating a load request to the BCU or
DR, where n for each addressing mode is as follows:

disp(reg)

offset(reg) (reg)[reg *scale]

Mnemonic di5p[reg * scale] disp(reg)[reg *scale] disp(/P)

Id 1 2 4
ldob
ldib
I dos
I dis
ldl
ldt
ldq

NOTE

offset, disp and (reg) memory addressing modes incur no address calculation overhead. See the
Bus Controller and Data RAM sections of this appendix.

Arithmetic

Every arithmetic instruction encoding is directly executed by the EU or MDU parallel
processing units.

Logical

Every logical instruction encoding is directly executed by the EU parallel processing unit.

Bit and Bit Field

scanbit, spanbit, extract and modify are executed as micro-flows. Table A.13 lists their
execution times. For these instructions, the IS issues n-clocks of instructions in place of the
single-word i960 CA processor instruction encoding, where n is shown in the table.

A-30

OPTIMIZING CODE

Table A.12. Store Micro-flow Instruction Issue Clocks

The following store instructions consume n additional issue clocks
for address calculation prior to initiating a store request to the BCU
or DR, where n for each addressing mode is as follows:

disp(reg)

ofh'et(reg) (reg)/ reg* scale]

Mnemonic dis pf reg *scale] disp(reg)/ reg *scale/ di.1p(IP)

st l 2 4
stob
stib
stos
stis
stl
stt
stq

NOTE

()fj~·et, disp and (reg) memory addressing modes incur no address calculation overhead. See the
Bus Controller and Data RAM sections of this appendix.

Table A.13. Bit and Bit Field Micro-flow Instructions

Mnemonic Execution Clocks (n)

scan bit l

spanbit 2

extract 4

modify 3

Byte Operations

scanbyte is directly executed by the EU parallel processing unit.

Comparison

test* instructions are implemented with a micro-flow. Execution time depends upon condition
code validity and prediction bit settings. When condition codes are valid or prediction bit is set
correctly, test* instructions take one issue clock if the instruction's correct result is a I and two
issue clocks if the correct result is a 0. Otherwise, the instructions take three issue clocks to
execute.

A-31

II

OPTIMIZING CODE

Branch

compare_and_branch, extended branch, branch_and_link and extended branch and link
instructions are implemented with micro-flows.

cmpib* and cmpob* instructions take one issue clock if the prediction bit is set correctly and
two issue clocks if the prediction was incorrect, assuming a cached branch target.

bal takes two issue clocks to execute, assuming a cache hit.

bx and balx are summarized in Table A.14. The number of clocks shown is the total number of
issue clocks consumed by the instruction prior to the code at the branch target being issued.
These instructions may be issued in parallel with a machine-type R instruction.

Table A.14. bx and balx Performance

The following instructions consume n issue clocks before target
code is issued, where n for each addressing mode is as follows:

disp
offset
(reg)
disp(reg)
offset(reg) (reg)[reg* scale]

Mnemonic disp[reg *scale] disp(reg){ reg * scale] disp(JP)

bx 4 4 6
balx

NOTES

Times shown assume instruction cache hits and a DR-based link target for balx.

Call and Return

Procedure call, return and system procedure call instructions are implemented as micro-flows.

call consumes four issue clocks when the target is cached and a register cache location is
available. When a frame spill is required, an additional 22 issue clocks are consumed in a zero­
wait-state system before the target code begins execution. The worst-case memory activity for
a call with a frame spill and a cache miss is one quad-word instruction fetch followed by four
quad-word stores. Wait states in the instruction fetch directly impact call speed, while wait
states in the frame stores are decoupled from internal execution by the BCU queues.

ret consumes four issue clocks when the target and the previous register set are both cached.
When a frame fill is required, an additional 38 issue clocks are consumed in a zero-wait-state
system before the target code begins execution. The worst-case memory activity for a return

A-32

OPTIMIZING CODE

with a frame fill and a cache miss is four quad-word reads followed by one quad-word fetch.
Wait states in the instruction fetch or the frame fill directly impact return speed.

calls consumes up to 56 issue clocks if the call is to a supervisor procedure. If the call is to a
non-supervisor procedure, calls takes 38 issue clocks. These times assume an available register
cache location and a cached target. During calls execution, a single-word read and a long-word
read access to the system procedure table. The presence of several wait states in these reads
directly affect the instruction's performance. The impact of non-cached target code or a frame
spill on the calls instruction is identical to the impact on the call instruction.

Table A.15. callx Performance

The following instruction consumes n issue clocks before target
code is issued, where n for each addressing mode is as follows:

disp
offset
(reg)
disp(reg)
offset(reg) (reg)[reg* scale]

Mnemonic disp[reg * scale] disp(reg)[reg *scale] disp(IP)

callx 7 9 9

NOTE
Times shown assume instruction cache hits.

Conditional Faults

fault* instructions are implemented with micro-flows and require one issue clock if the
prediction bit is correct and no fault occurred. If the prediction bit is incorrect and no fault
occurs, the instructions require two issue clocks. The time it takes to enter a fault handler varies
greatly depending upon the state of the processor's parallel processing units; however, this
time should be no longer than 60 clocks for most conditions.

Debug

mark and fmark are implemented with micro-flows. mark takes one issue clock if no trace
fault is signaled. If a trace fault is signaled or fmark is executed, the processor switches to the
trace fault handler.

Atomic

Atomic instructions are implemented with micro-flows. atadd takes seven issue clocks and
atmod takes eight to execute with an idle bus in a zero-wait state system. Wait states in the
memory accessed by these instructions directly affects execution speed.

OPTIMIZING CODE

Processor Management

Processor management instructions implemented as micro-flows include: modpc, modtc,
modac, syncf, flushreg, sdma, udma and sysctl.

modpc requires 17 clocks to execute if process priority is changed and 12 clocks if process
priority is not changed. modac requires 9; modtc requires 15.

syncf takes four issue clocks if there are no possible outstanding faults. Otherwise, the
instruction locks the IS until it is certain that no prior instruction that could fault, will fault.

flushreg requires 24 clocks for each frame that is flushed. This translates to 120 cycles to flush
five frames. Wait states in the memory being written affect this instruction's performance.

sdma executes in 22 clocks; udma executes in 4. In the case of back-to-back sdma
instructions, 40 clocks are required.

sysctl timings are listed in Table A.16. The table lists the times assuming a zero wait-state
memory system.

Table A.16. sysctl Performance

Message Message Type Issue Clocks

Request Interrupt OOH 37 +bus wait states
Invalidate Cache OlH 38
Configure Cache 02H 52 with 1 Kbyte cache enabled; 48

with lKbyte cache disabled.
2078 + bus wait states with load

and lock lKbyte;
1103 +bus wait states with load

and lock 5 I 2 bytes.

Reinitialize 03H 243 + bus wait states
Load Control Register Group 04H 42 + bus wait states

Instruction-Stream Optimizations

Embedded applications often benefit from hand-optimized interrupt handlers and critical
primitives. This section reviews coding optimizations which arise due to the microarchitecture
of the i960 CA instruction set processor. Familiarity with the previous sections of this appendix
is assumed and no attempt is made to present techniques which are not specific to the i960 CA
processor.

Note that the examples in this section are constructed to illustrate particular optimization tricks.
In general, every example could be further optimized by applying several techniques instead of
one.

A-34

OPTIMIZING CODE

Advancing "Long" Operations

A few operations take multiple clocks to execute in their respective parallel processing units:
loads and stores through the BCU and multiplies and divides in the MDU. These instructions
consume the least effective execution time (less than one clock) if they are sufficiently
separated from the instructions that use their results.

Loads and Stores

Separate load instructions from instructions that use load data. Remember that store
instructions can also be reordered. Although they return no results to registers, a poorly placed
store in front of a critical load slows down the load. Reorder to issue the load first. Example
A.1 shows a simple change that saved one clock from a five clock loop.

Example A.1. Overlap Loads (Checksum)

:Coop:
ldob
addo
cmpinco
bl. t

Execution:

Clock

1

2

3
4

5
6

(gOJ, gl
gl, g2, g2
gO, g3, gO
loop

REGop ME Mop

ldob

I
I

addo
cmpinco

Id

Multiplies and Divides

CTRLop

bl.t

I

opt_loop:
ldob
cmpinco
addo
bl. t

Execution:

Clock

1

2

3
4

5

REGop

cmpinco

ad do

(gO), gl
gO, g3, gO
gl, g2, g2
opt_loop

MEMop

ldob

I

I

ld

CTRLop

bl.t

I

Begin multiply and divide instructions several cycles before instructions that use their results.
Also remember to use shift instructions to replace multiplication and division by powers of
two. The following example shows overlapping pointer math and a comparison with the 32x32
multiply time in a simple multiply-accumulate loop.

A-35

I

OPTIMIZING CODE

Example A.2. Overlap MDU Operations (Multiply-Accumulate)

loop:
ld
ld
muli
addi
addo
addo
cmpobl.t

(g0)' g2
(gl)' g3
g2, g3, g4
g4, g5, gS
4, gO, gO
4, gl, gl
gO, g6, loop

Execution (from DR):

Clock REGop MEMop

I Id

2 Id

3 muli

4 I
5 I
6 I
7 I
8 addi

9 ad do

10 ad do

µ 11 cm po

12 Id

Advancing Comparisons

CTRLop

bl.t

I

opt_loop:
ld
ld
muli
addo
cmpo
addo
addi
bl. t

(gO), g2
(gl), g3
g2, g3, g4
4, gO, gO
gO, g6
4, gl, gl
g4, g5, gS
opt_loop

Execution (from DR):

Clock REGop MEMop

1 ld

2 Id

3 muli

4 laddo

5 lcmpo

6 laddo

7 I
8 addi

9 ld

CTRLop

bl.t

I

Where possible, instructions which change the condition codes should be separated from
instructions that use the condition codes. Although correct branch prediction gives the same
performance as separating the compare from the branch, prediction is statistical while
separation is deterministic. In the previous example, optimized code advanced the comparison
enough such that branch prediction is not being relied upon to keep the branch-true path
executing at nine clocks. Further, the branch-false path does not take extra clocks since the
condition codes are known when the branch is encountered.

In a situation where the comparison and a branch cannot be separated to achieve a performance
advantage, use the combined compare_and_branch instructions. This is likely to lead to faster
execution since the two instructions are encoded in a single word. Not only does this code
economy provide another location in the cache, but the IS may be able to see the upcoming
branch earlier since it's encoded in the same opword as the comparison.

Unroll Loops to Use All Registers

Expand small loops into larger loops which fill the cache, use more registers and pipeline their
memory operations. The strategy is to begin accessing the memory system immediately when

A·36

OPTIMIZING CODE

the routine is entered and make the best use of the bus. Less bus bandwidth is used for the
same operations if the algorithm is implemented with quad loads and/or stores.

The large register set allows an unrolled loop to have multiple sets of working temporaries for
operations in various stages. For example, the previous checksum example is repeated here.
The loop is unrolled to perform checksums nearly twice as fast as the simple loop.

In general, if the registers are not completely used - or the bus is not saturated with quad
operations - more unrolling can be done.

Example A.3. Unroll Loops (Checksum)

-- initLil.ize ~

loop:
ldob
ad do

ret

Execution:

Clock

1

2

3

4

5

6

REGop

ad do

cmpinco

MEMop CTRLop

ldob

I

I

bl.t

I
ldob

Enabling Constant Parallel Issue

ir:itialize --

bl. t
exit2:

ad do
ret

ex_:_tl:
ad do
ret

Execu::.ion:

Clock

I

2

3

4

5

6

7

g4' g2' g2

gl, g2' g2

REGop MEMop

ldob gl

cmpinco I

addo g4 I
ldob g4

cmpinco I

addo gl I
ldob g 1

CTRLop

bge.f

I

bl.t

I

As described in the Parallel Instruction Issue section of this appendix, certain sequences of
instruction machine-types can be executed in parallel, such as: RM, RMC, MC. For example,
the checksum loop is repeated with another clock eliminated from code reordering for parallel
issue.

A-37

•

OPTIMIZING CODE

Example A.4. Order for Parallelism (Checksum)

initialize --
loop:

ldob
ad do
cmpinco
bl. t
ret

Execution:

Clock REGop

1

2

3
4 addo

5 cmpinco

6

(gO), gl
gl, g2, g2
gO, g3, gO
loop

MEMop

ldob

I

I

ldob

Migrating from Side to Side

CTRLop

bl.t

I

-- initialize -­
opt_loop:

ad do
ldob
cmpinco
bge.f

ldob

cmpinco
addo
bl. t

exit2:
addo
ret

exitl:
addo
ret

Execution:

Clock

1

2

3

4

5

6

REGop

addo g4

cmpinco

cmpinco

addo gl
addo g4

g4, g2, g2
(gO), gl
gO, g3, gO
exitl

(gO), g4

gO, g3, gO
gl, g2, g2
opt_loop

g4, g2, g2

gl,g2,g2

MEMop

ldob gl

I
ldob g4

I
I

ldob gl

CTRLop

bge.f

I

bl.t

I

The i960 CA processor can sustain execution of two instructions per clock; to maximize this
capability, try to start instructions in two of the three pipelines each clock. To increase
parallelism, move an instruction from a unit which has become a critical path to a unit with
available clocks. AGU performs shifts, additions and moves that can replace EU operations.
Literal addressing mode, in combination with EU or AGU operations, provides some freedom
in deciding which side loads constants into registers. Remember to use addressing modes that
the AGU executes directly (machine typeM, notµ).

Table A.17 lists several conversions that can move an instruction to the AGU from either the
EU or MDU. Example A.5 exploits the Ida instruction to increase a 3x3 low-pass filter's
performance of an image by approximately 30 percent.

A·38

OPTIMIZING CODE

Table A.17. Creative Uses for the Ida Instruction

Operation Equivalent Ida instruction

ad do 5, gO, gl # constant addition lda 5 (gO), gl

sh lo 2, gl, g2 # shifts by a constant lda [gl * 4], g2

mov 31, gO # constant load lda 31, gO

sh lo 2, gl, g2 # shift/add combination lda 5 [gl * 4], g2

ad do 5, g2, g2

mov gO, gl # register move lda (gO), gl

Example A.5. Change the Type of Instruction Used (3x3 Lowpass Mask)

Y[] = X[] 0 M[]

1 2 l
16 16 16

2 4 2
M[J 16 16 16

2
16 16 16

A-39

OPTIMIZING CODE

initial values # initial values
gO points to X(0,0) # gO points to X(0,0)
gl points to Y(l,l) # gl points to Y(l,0)
g2 contains imax # g2 contains imax
r4 load temp # r4 load temp
rS accumulator # rS accumulator
r6 imax (i count temp) # r6 imax (i count temp)
r7 jmax (j count temp) # r7 jmax (j count temp)
r8 imax-1 # r8 imax-1

(new mask row offset) # (new mask row offset)
r9 2*imax - 2 # r9 2*imax - 2

(new i offset) # (new i offset)
rlO is 2*imax + 1 # rlO is 2*imax + 1

(new j offset) # (new j offset)
b next _j new_next - l:

next i: new_next _j:
subo r9, gO, gO

next _j: # first mask row
first mask row addo 1, gl, gl

ldob (gO)' rS ldob (gO)' rS
addo 1, gO, gO ad do l, gO, gO

ldob (gO)' r4 ldob (gO)' r4
ad do l, gO, gO addo l, gO, gO
shlo 1, r4, r4 lda [r4 * 2], r4
ad do r4, rs, rS addo r4, rS, rS

ldob (gO)' r4 ldob (gO)' r4
addo r4, rs, rS ad do r4, rS, rS
addo rS, gO' gO addo rs' gO, gO

second mask row # second mask row
ldob (gO)' r4 ldob (gO)' r4
ad do 1, gO' gO addo l, gO, gO
sh lo l, r4, r4 addo r4, rS, rS
ad do r4, rS, rS lda [r4 * 2]' r4

ldob (gO), r4 ldob (gO)' r4
ad do 1, gO, gO addo l, gO, gO
shlo 2, r4, r4 lda [r4 * 4]'
ad do r4, rS, rS addo r4, rS, rS

ldob (gO)' r4 ldob (gO)' r4
sh lo 1, r4, r4 addo rS, gO, gO
addo r4, rS, rS lda [r4 * 2], r4
addo rs, gO, gO addo r4, rS, rS

third mask row # third mask row
ldob (gO)' r4 ldob (gO)' r4
addo 1, gO' gO addo l, gO' gO
addo r4, rS, rS ad do r4, rS, rS

ldob (gO)' r4 ldob (gO)' r4
addo 1, gO' gO addo 1, gO, gO
sh lo l, r4, r4 lda [r4 * 2]' r4
addo r4, rS, rS addo r4, rs, rS

ldob (gO)' r4 ldob (gO)' r4
addo r4, rs' rs addo r4, rS, rS
shro 4, rS, rS shro 4, rS, rS

st ob rS, (gl) cmpdeco 2' r6, r6
ad do 1, gl, gl st ob rs' (gl)

subo r9, gO, gO

A-40

OPTIMIZING CODE

update pointers
cmpdeco
bg
mov
cmpdeco
subo
ad do
bg
ret

2, r6, r6
next_i
g2, r6
2, r7, r7
rlO, gO, gO
2' gl, gl
next_j

Execution from DR (loop):

Clock REG<!!>_ MEMo_p CTRLoQ
l subo
2 ldob
3 ad do
4 ldob
5 ad do
6 sh lo
7 addo
8 ldob
9 ad do
10 addo
11 ldob
12 ad do
13 shlo
14 ad do
15 ldob
16 ad do
17 sh lo
18 ad do
19 ldob
20 shlo
21 ad do
22 ad do
23 ldob
24 addo
25 addo
26 ldob
27 ad do
28 sh lo
29 ad do
30 ldob
31 ad do
32 shro
33 stob
34 ad do b_&:t
35 cm_Qdeco I
36 subo

update pointers
bg.t new_next_i
addo r9, gO, gO
lda (g2), r6
cmpdeco 2, r7, r7
lda 2(gl), gl
subo rlO, gO, gO
bg.t new_next_j

ret
Execution from DR (new loop):

Clock REGol!_ MEM<!!>_ CTRL<!!>_
1 addo ldob
2 ad do
3 ldob
4 ad do Ida
5 ad do ldob
6 ad do
7 ad do ldob
8 ad do Ida
9 ad do ldob
10 ad do Ida
11 ad do ldob
12 ad do Ida
13 ad do ldob
14 ad do
15 ad do ldob
16 ad do lda
17 ad do ldob
18 ad do
19 shro
20 cmJJ_deco stob bg.t
21 subo I
22 addo ldob

A-41

II

OPTIMIZING CODE

Branching Optimizations

Conditional branches execute faster if the actual branch direction is correctly predicted using
the i960 CA processor branch prediction bits on conditional instructions. Conditional and
unconditional branch-target code execute with more parallelism in the first clock if the branch
target is long-word or quad-word aligned. (Quad-word is preferable for prefetch efficiency).
Branches - specifically the Branch-and-Link instruction - can be used in place of procedure
calls to avoid possible frame spills and fills.

Correct Branch Prediction

Setting the prediction bit to indicate the direction that a conditional instruction most often takes
improves throughput, especially when the comparison related to the conditional instruction
cannot be separated from the test. When the prediction is correct, branches generally execute in
parallel with other execution. If prediction is not correct, the worst case branch time for cached
execution is still two clocks.

Although prediction bits are most likely set to gain maximum throughput, different strategies
can be used for setting the prediction bits. For example, a code sequence dominated by a jungle
of comparisons and conditional branches might see large differences between execution time
of the fastest path to slowest path. Prediction bits can be set to provide the best average
throughput to: 1) ensure the fastest worst case execution or 2) minimize deviation between
slowest and fastest times.

Branch Target Alignment

Since the IS sees four words in a clock when the requested IP is long-word aligned and three
words when the requested IP is not on a long-word boundary, aligned branch targets give the
scheduler another word to examine on the first clock following a branch. This optimization is
easy; however, there are only a few cases where the optimization pays off.

The IS takes advantage of seeing four words on the first clock after a branch (instead of three)
when the fourth word is a branch or micro-flow and all three previous opwords are executable
in one clock. Example A.6 shows a three-word executable group (add followed by Ida with
32-bit constant) followed by a micro-flow. The sequence executes one clock faster when the
branch target is long-word aligned. The reason for the extra clock is described in the Micro­
flows section of this appendix. Since optimization can save one clock under such
circumstances, it could be worthwhile in small loops that execute in only a few clocks, but
execute often.

A-42

OPTIMIZING CODE

Example A.6. Align Branch Targets

inii::alize
.a~:gn ?.
~:ov g 1J, gl)
target:

lda
~:;canbi r-
ddGD

Ext_: cu Lion:

Clock REGop

1

2

3 ad do

µ4 scan bit

µ 5 I

6 ad do

7 more

+i=nop

ME Mop

Ida

tfft, c(!

CTRLop

h target

I

Compress Code with Branches and bal

-- initialize
.align 2

t cg et:
adci
l da
'1Canb:t

~xecut _:_on:

Clock REGop

I

2

3 addo

µ4 scan bit

5 ad do

6 more

f'.:ff, g2

MEMop CTRLop

b target

I

Ida

bal takes three or four clocks to execute and does not cause a frame spill to memory. Replacing
calls with branch_and_links is an obvious optimization. However, a not-so-obvious but equally
beneficial optimization is to use branches and bal to reduce a critical procedure's code size.

When porting optimized algorithms originally written on other processor architectures, the
code is often expanded in a straight-line fashion due the branch speed penalties of the original
target and the lack of on-chip caching. On the i960 CA processor, branches are virtually free in
cached programs and cached program execution is dramatically faster than non-cached code.
Therefore, branches and the branch_and_link instruction should be used to compress
algorithms into the cache. For example, the previous low-pass filter routine could be modified
to use coefficients from registers, versus literals. A short code piece could then sequence
different filter coefficients through the registers and branch_and_link to the filter loop. The
entire routine, which would fit in the instruction cache, could perform a chain of linear filters
without a procedure call or cache miss.

Caching

Given the processor's vast ability to consume instructions and execute quad-word memory
operations in parallel with arithmetic operations every clock, the instruction cache, register
cache and on-chip data RAM are valuable resources for sustaining optimized execution .

A-43

•

OPTIMIZING CODE

Utilizing the Instruction Cache

If an algorithm fits in the instruction cache, it generally executes faster than if it did not fit.
This has not always been true with other processors, given the increased number of
comparisons and branches that occur when code is compressed.

If a loop fits in the cache but is not capable of executing two instructions per clock due to
memory or resource dependencies, keep unrolling the loop and pipelining operations until
cache is full. Generally, to increase performance of loops which iterate many times and
perform memory operations, unroll until all registers are used and/or the cache is full.

Finally, as mentioned in the previous section on branches, aligning branch targets can improve
performance. While long-word aligned branch targets improve the scheduler's lookahead
ability in the first clock of the branch, quad-word aligned branch targets reduce the number of
long-word instruction fetches issued. Although the long-word fetch is implemented to reduce
cache miss latency for many cases, the quad-word instruction fetch is most efficient from a
system throughput point of view. See the section of this appendix titled Instruction Cache and
Fetch Effects.

Utilizing On-Chip Register Cache

Register cache can be thought of as a data cache which selectively caches only that data related
to procedure context. The section of Chapter 2, Programming Environment titled Procedure
Call/Return Model describes the i960 CA processor's register cache.

The register cache/data RAM partition is programmable, therefore, the user can determine the
tradeoff between the level of procedural context caching versus static caching of procedure
variables in the on-chip data RAM. Experiments can be run to measure the sensitivity of
system performance to register cache depth of a fixed program. Minimizing register cache
depth maximizes (frees up) the most on-chip data RAM for variable caching.

Some situations exist where flushreg can optimize register cache usage. When an application
crosses that imaginary boundary between non-real-time processing to real-time processing, it
might be desirable to flush the register set so that initial frame spills are out of the way. A
routine which flushes the register cache on entry has the effect of advancing frame spills which
might happen within the routine to the beginning of the routine. This approach simply moves
the time at which frame spills occur - however, this may actually cause a greater total number
of spills to occur than would have otherwise occurred without the premature flush.

flushreg can also control interrupt latency within specific sections of background code. For
example, it may be wise to execute a flush at the beginning of a routine which executes a large
number of loads from very, very slow memory. This reduces interrupt latency within that code
piece since there is no possibility of the interrupt' s frame spill being lodged behind slow
memory operations.

Usage of this premature flush tactic is very application specific; however, it almost always
makes sense to flush the register cache at the beginning of the application's main loop
(i.e., after all initialization).

A-44

OPTIMIZING CODE

Utilizing On-Chip Data RAM

On every clock, 128 bits of data can he loaded from or stored to the DR. This is a 528 Mb/sec.
memory transfer rate (33 MHz clock), which is sustained simultaneously with single-clock
arithmetic operations executing from the independent REG-side register ports.

Allocated correctly, this resource dramatically increases performance of critical application
algorithms. Locations within the DR can be dynamically allocated to leverage scarce DR space
and/or globally allocated to achieve minimum latency to critical variables.

Dynamically allocated variables should be those which are used heavily over short periods of
time or are used heavily by one procedure. Such variables could be DMA descriptors for the
currently active packets or coefficients for filters which process large images on command.
Dynamically allocated DR space would be loaded from main memory at the onset of intense
processing and restored to main memory as the activity subsides.

Global allocation of DR space should be saved for storing variables which are heavily used by
a variety of procedures over a long period of time or for storing variables needed by latency­
critical activities. For example, the programmer may wish to allocate the following in data
RAM: coefficients for a continuously operating filter (e.g., FIR) and/or standard DMA
descriptor templates from which run-time descriptors are built.

Summary

Table A.18 summarizes code opt1m1zation tactics presented in the previous sections.
Figure A.19 is a copy of the execution pipeline template used to create the pipeline examples in
this appendix.

A-45

II

OPTIMIZING CODE

Table A.18. Code Optimization Summary

Tactic Description

Advance "Long" Operations Separate comparisons, loads, stores and MDU operations
from the instructions that use their results.

Unroll Loops Unroll time consuming loops until:
I) processor executes loop with two instructions per clock;
2) bus is saturated with quad operations;
3) no registers are left;
4) loop does not fit in the cache.

Order for Parallelism Alternate REG-side instructions with MEM-side
instructions so they may be issued in parallel.

Migrate the Operation To enable parallelism, move EU and MDU operations to
the AGU or vice versa.

Use Branch Prediction Set prediction bits correctly in conditional instructions.

Align Branch Targets Align branch targets of critical loops on an even-word or
quad-word boundary.

Compress Code to fit If loop does not fit in cache, use branches, branch-and-
links or calls to compress code size so it fits. Use code size
optimization instructions (e.g., cmpobe) where possible.

Use Data RAM Use high-bandwidth data RAM space for performance-
critical and/or latency-critical variables.

A·46

INSTRUCTION Issue
SCHEDULER

CTRL
PIPELINE Execute

Read src1, src2

EU
PIPELINE Execute and

Write dst ,,
ca·
c Read src1 , src2
....
(D

1>
MDU Execute
PIPELINE

~ Write dst
m
><
(D
0 Read over Base bus
c

~ -""' o· AGU
PIPELINE Execute and

" ::J Write over ldbus
'"ti -o· AddressOut bus
~ DR

St bus
::J
(D PIPELINE

Ld bus
-f
(D

3 AddressOut bus
"'C
ii>

St bus -(D
BCU External Address bus

PIPELINE

External Data bus

ldbus

II

270710-001-97

-· c[
"

0
"lJ
-f
~
N z
G>
0
0
0
m

Appendix B
Bus Interface Examples

APPENDIX B
BUS INTERFACE EXAMPLES

This appendix describes how to interface the processor to external memory systems. Also
discussed arc non-pipelined and pipelined burst SRAM, non-pipelined burst DRAM, slow 8-bit
memory systems and high performance pipelined burst EPROM. All examples assume a 33
MHz bus; issues discussed in each example are independent of operating frequency.

Design examples, state machines and pseudo-code are example only: refer to EV80960CA
Microprocessor Evaluation Board User's Manual for actual programmable logic equations.

NON-PIPELINED BURST SRAM INTERFACE

This appendix uses a simple SRAM design to demonstrate how the i960 CA processor bus and
control signals are used. The design also demonstrates the internal wait state generator. The
basic SRAM interface provides the fundamental information needed to design most 1/0 and
memory interfaces. The design supports burst and non-burst bus accesses. The SRAM interface
is important for shared memory systems; variations can be used to communicate with external
memory mapped peripherals.

Background

SRAM devices are available in a wide variety of packages and densities. SRAM address pins
are always dedicated as inputs. Data pins may be dedicated as input or output or one set of data
pins may be used for both data in and data out. Control signals usually found on SRAM
include: Chip Enable (CE), Output Enable (OE) and Write Enable (WE). The following
example deals with a SRAM that has CE, OE and WE control signals, address inputs and
data input/output pins.

The memory is read when CE and OE arc asserted and WE is not asserted. The memory is
written when CE and WE are asserted. The OE input becomes don't care when WE is
asserted. However, it is recommended that OE is not asserted at the beginning or end of a write
cycle; this can lead to bus contention.

Implementation

The following example illustrates a 32-bit burst access SRAM interface. The design may be
simplified if burst access modes are not required; it is easily modified for 8- or 16-bit buses.

WAIT, generated by the internal wait state generator, is used to generate write strobes at the
proper place in the write cycle. WAIT is used in the address generation circuit to generate mid­
burst addresses. External address generation improves performance in burst accesses.

B-1

II

BUS INTERFACE EXAMPLES

Block Diagram

The 32-bit burst SRAM interface consists of chip select logic, a state machine PLD and write
enable logic.

A31:4

CHIP
'-- SELECT t--

LOGIC

G BA3:2

STATE ADA ADA ADA ADA
A3:2 1--- MACHINE

SAAM SAAM SAAM SAAM PAL
ADS 1--- CE

CE H CE I-< CE H CE
BLAST 1--- OE

OE H OE r-<: OE H OE
WAIT I-+- r< WE r<1 WE r< WE r<1 WE

W/R 1-..-1 1--

1-+-1 1--
D7:0 D7:0 D7:0 D7:0

PCLK
~

~E
- DY WEOi

BEO

BE1
DYWE1

BE2
~WE2

___./'"

BE3
~WE3

__r
D7:0 D15:8 D23:16 D31:24

1
D31:0 ...,

270710·001-37

Figure B.1. Non-Pipelined Burst SRAM Interface

Chip Select Logic

Chip select logic is a simple asynchronous data selector; it can be implemented with a
demultiplexer or PLD. Chip select (CS) is based only on the address and is not qualified with
any other signals. The state machine PLD qualifies CS with ADS (see the Waveforms section
for more discussion on chip select generation.)

8-2

BUS INTERFACE EXAMPLES

State Machine PLO

The SRAM state machine PLD generates the CE and OE signals to the SRAM. This PLD also
contains the next-address generation logic; this logic improves burst access performance. The
improvement occurs because the i960 CA processor's worst-case address valid delay is longer
than the PLD's worst-case delay.

Write Enable Generation Logic

The write enable generation logic generates the WE signal to the SRAM. WE signals are
conditioned on the i960 CA processor byte enables (BE3:0), the write/read signal (W/R) and
the wait signal (WAIT).

There is a write enable signal, WE3:0, for each byte position corresponding to the byte enable
signals, BE3:0; this allows byte, short-word and word-wide writes. Read accesses to this
memory system always result in word reads. The i960 CA device, in the case of byte- or short­
word reads, reads the data from the correct place on the data bus.

Chip Select Generation

ADS assertion during the PCLK rising edge indicates the address is valid. Address setup time
to this clock edge is PCLK period (T pp), minus address output delay (T ov). CS signal
generation time CS _gen) must satisfy the input setup time of the State Machine
PLD(T PLD_setup)· Therefore:

CS _gen= Tpp - Tov - TPLD_setup

B-3

II

BUS INTERFACE EXAMPLES

Waveforms

I D
I
I

I NRAD = 0
I I NRDD = o

""""''"'"""+-~-+-~--1~~+-~-t-~-+-~__,.._~-+-~-+-~--l~~+--~~:~~""""'"""il NXDA=O

I J O - WAIT STATE

I
I I

:um

Figure B.2. Non-Pipelined SRAM Read Waveform

8·4

NON-PIPELINED
BURST READ

270710-001-38

BUS INTERFACE EXAMPLES

I A I 1 D I 1 D I 1 D I 1 I D A I 1 I D

I I I I I I I I

ADS [i\.J_/ \J..J I
I

I I I I NWAD= 1

cs[~ :~
NWDD= 1
NXDA = 0

I I 1 WAIT STATE
I I I I I BURST WRITE

> : x; A2-3 [~-: ...---.-- x x x : a; :~
I I I

VALID x A4-31 [~----------------- VALID ~
1 I I

I I I I

DATA [7!1/1!(/IX 0 x x x 3 X7ZZtx X7Z4
I I I I

I :~ I
I I
I I I

BLAST c: \....lJ __Ji
I

270710-001-39

Figure B.3. Non-Pipelined SRAM Write Waveform

Wait State Selection

The i960 CA processor incorporates an internal wait state generator; wait state selection is
dictated by the memory system. The number of NRAD wait states required is a function of
output enable access time, chip enable access time or address access time. NRAD must be
selected so the wait states and data cycle accommodate the longest of these times. It is
important to consider PLD output delay.

The number of NRoo wait states required is a function of address access time. NRDD must be
selected so that the wait states and data cycle accommodate the memory system's address to
data time. If the memory system is using the burst addresses provided by the i960 CA
processor, then it is important to consider address output delay from the i960 CA device. If
external address generation is used, PLD delay is important.

The number of NwAo and Nwoo wait states required is a function of memory write cycle time.
The number of NxoA wait states required is a function of the memory system's output-to-float
time. NxoA determines how soon read data from the memory must be off the data bus before

8-5

BUS1NTERFACEEXAMPLES

any other device asserts data on the data bus. This could be a read from another memory
system or a write from the i960 CA processor.

Output Enable and Write Enable Logic

The output enable signal is simply (see Figure B.l):

OE =WIR

The PLD is used to buffer the W/R signal; this may be necessary to reduce the load on the
W/R signal.

The write enable signals are:

WE= !(WAIT & W/R);
or

WEO = !(WE & BEO);
WEl = !(WE & BEl);
WE2 =!(WE & BE2);
WE3 =!(WE & BE3);

The WAIT signal is used to create the write strobe. When W/R indicates a write and BEx and
WAIT are asserted, the logic asserts WE . The i960 CA Microprocessor Data Sheet guarantees
a relationship from WAIT high to write data invalid.

State Machine Descriptions

The state machine PLD incorporates two state machines: one controls SRAM chip enable
(CE); the other generates the A3:2 address signals for multiple word burst accesses.

The chip enable state machine controls the CE signal. CE is normally not enabled, but when
both ADS and BSRAM_CS are asserted, CE is asserted and remains asserted until BLAST is
asserted. BLAST indicates the access is complete. CE is the output of the state register;
therefore, the CE output delay is the clock-to-output time of the PLD. Minimizing CE delay
provides more memory access time.

The A3:2 address generation state machine generates consecutive addresses for multiple word
burst accesses. The address generation state machine is not necessary if the memory region is
defined in the region configuration table as non-burst.

The burst address outputs {BA3:2) correspond to registers within the PLD. Address generation
time then corresponds to the clock-to-output time of the PLD. The BA3:2 signals are forced to
0 when BLAST is asserted.

The pseudo-code description that follows the figure is provided only to describe the State
machine diagram. It is not intended to be PLD equations. A trailing # indicates a signal is
asserted low.

B·6

BUS INTERFACE EXAMPLES

BLAST

270710-001 ·40

Figure 8.5. A32 Address Generation State Machine

II
B-7

BUS INTERFACE EXAMPLES

0 (ADS & CS & !A3 & A2)1(CE &!WAIT & I BLAST)

® ADS & CS & A3 & 'A2

© ADS & CS & A2 & A3

@BLAST

® CE & IWAIT & !BLAST

0 ACCESS 01 FIRST OR NEXT ACCESS

® ACCESS01

@ACCESS 11

@ ACCESS COMPLETED

® NEXT ACCESS
270710-002-30

Figure B.4. Chip Enable State Machine

Pseudo-code Key

signal is asserted low equality test
logical NOT clocked assignment

&& logical AND value assignment

I I logical OR x Don't Care

STATE_O: /* BA3:2 = 00 */
IF /* access 01 OR NexL access */

(ADS && SRAM_CS && (A3:2 == 01)) 11 (CE & !WAIT & !BLAST);
THEN

next state is STATE_l;
ELSE IF /* access 10 */

ADS && SRAM_CS && (A3:2 10);
THEN

next state is STATE_2;
ELSE IF /* access 11 */

ADS && SRAM_CS && (A3:2 == 11);

B-8

BUS INTERFACE EXAMPLES

THEN
next state i STA'fE_3;

ELSE ;• :dle or access 00 *!
next staLe is STATE_O;

STATE_!:
IF

!PLAST;
THEN

TEEN
next ~::tate 1 s s:·ATE_\J;

ELSE
LAXt

nex~ e .s ~~_];

ELSE ::F
BLAS-:';

THEN
next state is S~ATE_O;

:2::;:;i]l*/

1 * Next access *.·

* .Just

ii) * .
t:cx~

* Done */

ELS~ '* ,=-ust * l

next state is ST~TE_~;
STATE -~:

TF
BLAST;

THEN
r:ex: s:aLe ~s SThTE_O;

ELSE
next state is S'L~TE_-~;

/ '1'; BA~ : 2 - 2- ~- * I
/ * Done * /

In the pseudo-code description, the assertion of ADS and SRAM_CS indicates the beginning
of an access. The state machine jumps to the proper state based on A3:2. The assertion of CE
indicates that an access is underway. The assertion of CE. !WAIT and !BLAST indicates that
the current transfer is complete and it is time to generate the next address. The assertion of
BLAST indicates the access is complete.

Tradeoffs and Alternatives

The SRAM example just described demonstrates a burst SRAM memory interface. If a non­
burst interface is desired, the address generation section of the state machine PLO may be
removed. The design is also easily expanded to accommodate multiple banks of SRAM.

The i960 CA processor integrated bus controller simplifies external memory system design.
The internal wait state generator decouples the memory speed from the memory controller. The
memory control PLD does not use any of the memory access parameters. So, operation of the
memory control PLO is independent of memory access times. Memory access parameters are
entered into the Memory Region Configuration Table via software.

8-9

BUS INTERFACE EXAMPLES

PIPELINED READ SRAM INTERFACE

The following example illustrates the implementation of a pipelined read SRAM system. A
zero wait state pipelined read memory system will have a 20 percent improvement in read data
bandwidth over a non-pipelined memory system using the same memory devices. The
pipelined read memory system is similar in design to the burst memory system; the only major
addition is an address latch.

A pipelined read memory system is the highest performance memory system that can be
interfaced to the i960 CA processor. The address cycle of consecutive accesses is overlapped
with the data cycle of the previous access. This results in the maximum bandwidth utilization
of the bus. (See Figure B.6.)

I I

ADA cD< __ x ___ x ___ x ___ ~
I

I I

MEMORYADR [~~ o x"" __ _,X 2 x 3 >m
I I
I I

DATA[~ x __ x 2 x 3 ~
I I
I I

PCLK [1 I

I
I

Block Diagram

Figure B.6. Pipelined Read Address and Data

270710-001·41

The same SRAM used in a non-pipelined read memory system is used in a pipelined read
memory system. Figure B.7 shows a 32-bit-wide burst read pipelined memory system. Burst
mode is used to speed write accesses.

The design of a pipelined read SRAM interface is very similar to the design of a non-pipelined
SRAM interface. The difference is that an address latch and a W /R latch have been added.

Chip select logic is a simple asynchronous data selector. Chip select (CS) is based only on the
address and is not qualified with any other signals. (See the section in this appendix titled Non
Pipelined 1 -Burst SRAM example for more information on chip select generation.)

8-10

BUS INTERFACE EXAMPLES

r---_.... PA
A31:4

G LATCH

80960CA CHIP
SELECT
LOGIC ,........,

-
W/R ~

PCLK

..._____.
t Cs PA3:2 ,__

STATE ADR ADR ADR ADR

A3:2 MACHINE SRAM SRAM SRAM SRAM
PAL

ADS CE CE H CE I-< CE f-c CE
BLAST +OE tj OE H OE I-< OE f-c OE

WAIT r<j WE ~ WE rC WE re WE

W/A

PCLK
D7:0 D7:0 D7:0 D7:0

lzyE

WE6 ~ BEO ---"

D "'- WE1
BE1J"

r:r) WE2

BE2

WE3
BE3 .r D7:0 015:8 D23:16 031:24

031:0 J
I

270710-001-42

Figure B.7. Pipelined SAAM Interface Block Diagram

Address Latch

During pipelined reads, the i960 CA processor outputs the next address during the last data
cycle of the current access. This requires either an address latch or memory devices that are
designed to work with the pipelined bus.

State Machine PLO

The state machine PLD contains logic to control CE and address signals A3:2. CE is
controlled by a simple state machine; A3:2 automatically increment during burst accesses. The
A3:2 signals are pipelined; they must be latched for read accesses. Write accesses are not

B-11

II

BtlS1N'FERFACEEDMRLES

pipelined; therefore it is necessary for burst writes to latch A3:2 on .reads and pass A3:2
through. The A3:2 generation is implemented as a state machine to achieve minimum address
delay out of the PLD. PA3:2 (pipelined address 3:2) outputs are also the state bit of the PLD.
This ensures that the address delay is only the clock-to-output time for the PLD.

Write Enable Logic

Write enable logic uses the byte enable signals (BE3:0), the WAIT signal and a latched version
of the W/R signal (OE). Therefore:

Waveforms

I Ao I Doo r
I I I

Aos[N-J

I

A2-31 [

Do1 I
I

WE= !(OE & WAIT & BE);
or:

WEO =!OE 11WAIT11 BEO;
WEI = ! OE I I WAIT I I BEl ;
WE2 =!OE 11WAIT11 BE2;
WE3 =!OE 11WAIT11 BE3;

A1 A2

Do2 I Do3 I D10I D11 I D12 I D13 I
I I I I I I
I I I

\
I

'-+-1: I

I I

I
I I I

\ I ~: I
I I I

A3

D20 I
I
I
I

Figure B.8. Pipelined Read Waveform

D30 I D31 I D33 I
I I I

I

I I

/ G-r:
I I

270710-001-43

DEN remains asserted as long as consecutive pipelined read accesses continue. DEN and
DT/R are related to the data, not the address; therefore, DEN and DT/R are not pipelined and
retain the same timing for pipelined and non-pipelined reads.

In the pipelined read mode, a series of non-burst accesses results in ADS remaining asserted
for several clock cycles. Similarly, BLAST remains asserted for several clock cycles.

WIR behaves slightly differently for pipelined reads than for non-pipelined reads. W/R is not
valid for the last cycle of a pipelined read. This requires that W/R be latched for pipelined

B-12

BUS INTERFACE EXAMPLES

reads similar to A31 :2. The following signals are pipelined during pipelined read accesses:
A31:2, BE3:0, SUP, DMA and D/C. All of these pipelined signals are invalid during the last
cycle of a pipelined read.

Address delay time for the pipelined read is a the clock-to-Q time of the address latch (or the
PA3:2 generation PLD). Minimizing address delay maximizes access time.

State Machines

BLAST & ! (ADS & PSRAM_CS)

270710-001-44

Figure B.9. Pipelined Read Chip Enable State Machine

Chip enable (CE) is controlled by a simple state machine. The state machine is normally in the
idle state and CE is not asserted. When ADS and PSRAM_CS are asserted, the CE state
machine goes to the active state. CE remains active until BLAST is asserted.

B-13

II

infel.. BUS INTERFACE EXAMPLES

0 BLAST

@ !WAIT & !BLAST

@ ADS WR CS !A3 !A2

® ADS WR CS !A3 A2

@ ADS WR CS A3 !A2

@ ADS WR CS A3 A2

STATE BITS
xxx

XA3A2

Figure B.10. Pipelined Read PA3:2 State Machine Diagram

270710-002-31

The PA3:2 state machine latches the A3:2 address bits on read and generates the low address
bit for writes. During read, PA3:2 is a latched version of A3:2. If a write access occurs, the
state machine generates the proper PA3:2 addresses.

The pseudo-code description below is provided only to describe the state machine diagram. It
is not intended for use directly as PLD equations.

Pseudo-code Key

signal is asserted low equality test
logical NOT clocked assignment

&& logical AND value assignment

11 logical OR x Don't Care

B-14

BUS INTERFACE EXAMPLES

READ_STATE: !* PA3:2 := A3:2 */
IF

ADS && WR && PSRAM_CS && (A3:2 == 0);
THEN

the next state is WRITE_O;
ELSE IF

ADS && WR && PSRAM_cs && (A3:2 1);
THEN

the next state is WRITE_l;
ELSE IF

ADS && WR && PSRAM_CS && (A3:2 2);
THEN

the next state is WRITE_2;
ELSE IF

ADS && WR && PSRAM_CS && IA3:2 3);

THEN
the next state is WRITE_3;

ELSE
PA3 := A3;
PA2 : = A2;
the next state is the READ_STATE;

WRITE 0; - /* A3:2 =

IF

BLAST;
THEN

the next state is the READ_STATE;
ELSE IF

!WAIT & !BLAST;
THEN

the next state is WRITE_l;
ELSE

the next state is WRITE_O;

WRITE_l: /* A3:2
IF

BLASTi

THEN
the next state is the READ_STATE;

ELSE IF
!WAIT & !BLAST;

THEN
the next state is WRITE_2;

ELSE
the next state is WRITE_l;

0 */

1 */

WRITE_2: !* A3:2 2 */
IF

BLAST;
THEN

the next state is the READ_STATE;
ELSE IF

!WAIT & !BLAST
THEN

B-15

inte'® eus INTERFACE EXAMPLES

the next state is WRITE_3;
ELSE

the next state is WRITE_2;

WRITE - 3: /* A3:2 3 */

IF
BLAST;

THEN
the next state is the READ _STATE;

ELS!:<:
the next state is \'IRITE_3;

In the READ_STATE, the state machine simply latches A3:2 and outputs them as PA3:2. On a
write, the state machine jumps to the appropriate state based on the value of A3:2. When in a
write state, the slate machine will advance to the next write state if WAIT and BLAST are not
asserted. The state machine can advance from any write state to the READ _ST A TE.

Tradeoffs and Alternatives

The example described above demonstrates a burst pipelined read SRAM memory interface.
Burst mode is used to improve write performance. If write performance is not critical (i.e., if
the region is used only for code), the next address generation PLD can be removed. The design
is easily expanded to accommodate multiple SRAM banks.

INTERFACING DYNAMIC RAM WITH THE i960™ CA PROCESSOR

This section provides an overview of DRAM and DRAM access modes and describes an i960
CA processor-specific DRAM interface. Two specific design examples are also included: one
design uses the integrated DMA unit to refresh the DRAM, the other example uses the CAS­
before-RAS method of refresh. Both designs illustrate the advantage of the i960 CA
processor's burst bus and the fast column address access times available on many modern
DRAMs.

The burst bus and memory region configuration tables simplify DRAM interface to the i960
CA processor. DRAM systems can be designed in many ways - there are memory access
options, memory system configuration options and refresh mode options.

DRAM OVERVIEW

DRAMs offer high data density, fast access times and low cost per bit. DRAMs are available in
a wide variety of packages, making it easy to pack a lot of memory into a small space. DRAM
features described here are provided as general information. (See specific data sheets for
detailed information.)

The i960 CA processor's burst mode bus is well suited to the high speed multiple column
access modes found in DRAM. Nibble, fast page and static column modes of DRAM can
easily be exploited to improve i960 CA processor memory system performance.

8-16

BUS INTERFACE EXAMPLES

All DRAMs have a multiplexed address bus, a write enable input (WE) and two address
strobes: row address strobe (RAS) and column address strobe (CAS). Some DRAMs also have
an output enable input (OE). DRAMs are accessed by placing a valid row address on the
address input pins and asserting RAS: then the column address is driven onto the DRAM
address pins and CAS is asserted. Write enable (WE) input on the DRAM determines whether
the access is a read or write. Output enable input (OE). found on some DRAMs, controls the
DRAM output huffers and can he useful for multibanked and interleaved designs.

DRAM Access Modes

Nibble mode DRAM allows up to four consecutive columns within a selected row to be read or
written at a high data rate. A read or write cycle starts by asserting RAS. Strobing CAS
accesses the consecutive column data. Input address is ignored after the first column access.

ADR[________ R_ow ________ __,)(~----C-OL_o ____ _,~

RAS[

GAS [

c
DATA [------Hl·Z-----

270710-002-32

Figure B.11. Nibble Mode Read

Fast page mode DRAM is similar to nibble mode DRAM, except fast page mode allows any
column within a selected row to be read or written at a high data rate. A read or write cycle
starts by asserting RAS. Strobing CAS accesses the selected column data. During reads, the
CAS falling edge latches the address (internal to the DRAM) and enables the output. The
processor· s four word burst bus can easily take advantage of the faster column access times
provided by fast page mode DRAM.

R-17

BUS INTERFACE EXAMPLES

ADR [____ R_o_w _____ x COLO x COL1 x COL2 x COL3 x::=

DATA [----H1-z-----<
270710-002-33

Figure B.12. Fast Page Mode DRAM Read

Static column mode DRAM write accesses are similar to fast page mode writes. Static column
read cycles start by asserting RAS. Accesses to any column within the selected row may be
treated as static RAM, using CAS as an output enable. The fastest DRAM read accesses are
achieved with static column DRAM. The i960 CA processor's four word burst bus can easily
take advantage of the faster column access times provided by nibble mode, fast page mode or
static column mode DRAM.

ADR [x x x x x
RAS [\ I
GAS [

WE [=1 c
DATA [Hl-Z < co x C1 x C2 x C3)

270710-002-34

Figure B.13. Static Column Mode DRAM Read

8·18

BUS INTERFACE EXAMPLES

DRAM Refresh Modes

All DRAMs require periodic refresh to retain data. DRAMs may be refreshed in one of two
ways: RAS-only refresh or CAS-before-RAS refresh. RAS-only refresh is realized by
asserting a row address on the address pins and asserting RAS. CAS is not asserted. A single,
RAS-only refresh cycle refreshes all columns within the selected row. CAS-before-RAS
refreshes do not require an address to be generated: the DRAM generates the row address with
an internal counter.

ADR[~ ROW

CAS [___ __,
270710-001-45

Figure B.14. RAS only DRAM Refresh

ADR [

\ ... ________________ t ... ___ _.I 270710-001-46

Figure B.15. CAS-before-RAS DRAM Refresh

DRAMs may be refreshed in either a distributed or a burst manner. Burst refresh does not refer
to the burst access bus. The term simply means that all memory rows are sequentially accessed
when the refresh interval time expires. Distributed refresh implies that refresh cycles are
distributed within the refresh interval required by the memory.

Distributed refresh cycles are spread out over the refresh interval, reducing the possible access
latency. Burst refreshing may lock the processor out of the DRAM for a longer period of time;
it may be inappropriate for some applications. Burst refreshing, however, guarantees that no
refresh activity occurs between refresh intervals. Some applications may take advantage of this
to burst refresh the DRAM during a time it will not be accessed, making refresh invisible to the
application.

8·19

II

BUS INTEFJFACE EXAMPLES

Address Multiplexer Input Connections

Address multiplexer inputs can be ordered such that 256 Kbyte through 4 Mbyte DRAM can
be supported. Interleaving the upper address signals provides compatibility with all these
memory densities. Figure B.16 illustrates this arrangement. Availability of DRAM modules
with standard pinouts makes this an attractive way to ensure future memory expansion.

PROCESSOR ADDRESS
DRAM ADA COL ROW

I I I
A2 A11

A3 A12

A4 A13

AS A14

256K 1M 4M A6 A15

1 1 1
A7 A16

AS A17

A9 A18

A10 A19

A20 A21

10 A22 A23 270710-001-47

Figure B.16. Address Multiplexer Inputs

Series Damping Resistors

Series-damping resistors are recommended on all DRAM control and address inputs. Series­
damping resistors prevent overshoot and undershoot on DRAM input lines. Damping is
required because of the large capacitive load present when many DRAMs are connected
together, combined with circuit board trace inductance. Damping resistor values are typically
between 15 and 100 Ohms, depending on the load; the lower the load, the higher the required
damping resistor value. If the damping resistor value is too high, the signal will be
overdamped, extending memory cycle time. If the damping resistor value is too low, overshoot
or undershoot will not be sufficiently damped.

System Loading

The i960 CA processor can drive a large capacitive load. However, systems with many DRAM
banks may require data buffers and, for interleaved designs, multiplexers to isolate the DRAM
load from the i960 CA processor or other system components with less drive capability (e.g.,
high speed SRAM).

RAS and CAS inputs to the DRAM should also be designed with consideration for capacitive
load. When many DRAMs are connected to common RAS and CAS signals, the capacitive
load can become considerable.

8-20

BUS INTERFACE EXAMPLES

Design Example: Burst DRAM with Distributed
RAS Only Refresh Using OMA

The goal of this design is to illustrate a DRAM interface controller that provides good memory
performance while maintaining controller independence with respect to memory speed and
processor clock frequency. One of the four on-chip integrated DMA channels is used for
DRAM refresh. The region table. DMA and the i960 CA processor bus signals arc used to
develop a transparent DRAM controller that docs not require any information about the
memory subsystem.

Figure B.17 shows the DRAM system design. The DRAM is configured as a single, byte
accessible, 32-bit-wide bank. RAS is common to the entire bank; CAS3:0 serve as byte selects
within the bank. WE is common to all the DRAM. The byte accessible bank can be built from
four 8-bit-wide DRAM modules; eight 4-bit-wide DRAM modules; eight 4-bit-wide DRAM
chips: or 32 1-bit-wide DRAM devices.

ADR
A10.4, A21.1.3

21
COL-ADA MUX l cs LOGIC

cs A3:2. A12:11

ADR
LOGIC

PCLK
POLK PCLK

BLAST
BLAST BLA5T t-

WAiT WAiT WAIT

L cm::A5R cm::A5R
DRAMX8

DRAM_,
CONTROL ,___, LOGIC d-, L.::£-1 _r:_- -:i ,.c..::L.=.,-,

A I A I A I A I
ADs

RAS
RAS ~ RAS tt= RAS ttj RAS I

wrR Wi' WE' \NE WE WE I
BE3:0

CAS3·o
CASO I r-1 CAS1 I r- CA$2

I ,_..., CAS3 I
6AcK5 I I I I

D t- D I- D I-' ~
DREQO 0 REF REO

REFRESH ..._, REQUEST 07:0 r- 015:8 023·16 r- 031 24
TIMER/
LOGIC

031 0

270710·002-35

Figure B.17. DRAM System with OMA Refresh

Control logic is divided into three logical blocks: DRAM control logic, DRAM address
generation logic and refresh request timer logic. DRAM control logic is the main controller. It
controls the address multiplexer and all DRAM control lines during normal and refresh

BUS INTERFACE EXAMPLES

accesses. Address generation logic serves as a multiplexer and an address generator. The
refresh request timer logic generates the periodic refresh request to the DMA unit.

DRAM Address Generation

DRAM address generation logic speeds burst accesses for static column mode and fast page
mode DRAM. This is accomplished by reducing the time required to present the consecutive
column addresses during a burst access. If the address generator is not present, the address
valid delay time consists of the worst-case i960 CA processor address valid delay time (T ov),
plus the worst-case propagation delay through the input address multiplexer.

DRAM address generation logic must control the DRAM address two least significant bits.
During the initial DRAM access, address generation logic acts like a multiplexer. During
column accesses within a burst, address generation logic generates consecutive addresses.
Therefore, DRAM address generation logic is designed to function as a multiplexer and an
address generator.

If an address generator is used, address valid delay time is equal to address generation time.
Address generation delay time consists of the clock-to-feedback and feedback-to-output delays
for the selected device.

The following state machine description illustrates the requirements for address generation
logic. Signals going into the DRAM address generation logic are: ADR2, ADR3, ADR12,
ADR13, WAIT and BI:AS'f from the i960 CA processor and COL_ADR from the DRAM
controller logic. COL_ADR indicates if the DRAM controller is requesting the row address
(COL_ADR not asserted) or column address (COL_ADR asserted). Signals output from
DRAM address generation logic are the DRAM address two least significant bits,
DRAM_ADR2:3.

8-22

BUS INTERFACE EXAMPLES

STATE:

0: ADDRESS MULTIPLEXER

IF(!COL_ADR)
DRAM_ADR 3:2 = ADR 3:2

IF(COL_ADR)
DRAM_ADR 3:2 = ADR 13:12

1: DRAM_ADR 3:2 = 0:1
2 DRAM_ADR 3:2 = 1 :0
3: DRAM_ADR 3:2 = 1 :1

0 !BLAST & 'WAIT & 1A3 & IA2

® 'BLAST & !WAIT & A3 & !A2

@ !BLAST & 'WAIT

@BLAST

270710-001-48

Figure B.18. DRAM Address Generation State Machine

The pseudo-code description below is provided only to describe the state machine diagram. It
is not intended for direct use as PLD equations.

Pseudo-code Key

signal is asserted low -- equality test

! logical NOT . - clocked assignment

&& logical AND = value assignment

I I logical OR x Don't Care

STATE_O: /* Multiplexer Ern~lation */

DRAM_ADR2
DRAM_ADR3

(! COL_ADR && A2) I I (COL___ADR && All) ;

IF
(! COL ADR && A3) I I (COL_.Z\DR && Al2 I ;

/* address generation */

WAIT && !BLAST && COL_ADR

&& (ADR3 == 0) && (ADR2 == 0);
THEN

next state is STATE_l;
ELSE IF

WAIT && BLAST && COL_ADR
&& (ADR3 == 1) && (ADR2

THEN
next state is STATE_3;

ELSE
next state is STATE_O;

0);

8-23

II

BUS INTERFACE EXAMPLES

STAT'E_l: /* Generate address 01 */

IF

DRAM_ADR2
DRAM_ADR3

BLAST;
THEN

1;

0;

next state is STATE_O;
ELSE IF

BLAST && WAIT;
THEN

next state is STATE_2;
ELSE

next state is STATE_l
STATE_2: /* Generate address 10 */

IF

DRAM_ADR2
DRAM_ADR3

BLAST;
THEN

0.

1;

next state is STATE_O;
ELSE IF

BLAST && WAIT;
THEN

next state is STATE_3;
ELSE

next state ic STATE_2
STATE_3: /* Generate address 11 */

DRAM_ADRO 1;
DRAM_ADRl 1 ;

IF
BLAST;

THEN
the next state is STATE_O;

ELSE
next state is STATE_3

DRAM Controller State Machine

Figure B.19 is a state machine that describes DRAM control logic. The state machine shown,
or subsets thereof, may be implemented in a large variety of ways depending on the
applications requfrements. PLD implementations are the easiest and the design may fit into a
variety of high speed PLDs.

Signals going into the DRAM control logic are: ADS, PCLK, W/R, BLAST, WAIT, BE3:0
from the bus controller; DACKO, the DMA acknowledge signal; and DRAM_CS, a system
generated chip select that indicates a DRAM access. DRAM control logic generates RAS,
CAS3:0, WE and COL_ADR. Control signal for the address multiplexer is COL_ADR.

Controller logic relies on the wait state region table and DMA controller. Programming these
on-chip peripherals is described later. DMA acknowledge, DACKO, indicates a DRAM refresh
cycle. The DRAM WE signal is generated with combinatorial logic (WE=!(W/R)).

B-24

BUS INTERFACE EXAMPLES

@

0 ADS & DRAM_ CS & IDACKO

® IW/R - READ ACCESS

@) W/R - WRITE ACCESS

®BLAST

® ADS & DRAM_CS & DACKO

©

@

Figure B.19. DRAM Controller State Machine

8·25

@

II

BUS INTERFACE EXAMPLES

STATE_O:
RAS

CAS3:0
COL_ADR

/*
is
is
is

Idle */
not asserted;
not asserted;
not asserted;

IF /* memory access */
ADS && DRAM_CS

THEN
&& !DACKO;

the next state is STATE_l;
ELSE IF /* refresh access */

ADS && DRAM_CS && DACKO;
THEN

the next state is STATE_S;
ELSE

the next state is STATE_O;

STATE_l: /* Assert RAS

RAS
CAS3:0
COL_ADR
IF

is asserted;
is not asserted;
is not asserted;

WRITE;
THEN

/* write */

the next state is STATE_3;
ELSE /* read */

the next state is STATE_2;

*/

STATE_2:

RAS
CAS3:0
COL_ADR
IF

/* Static Column Mode Read, Assert CAS */

is asserted;

BLAST;
THEN

is asserted;
is asserted;

the next state is STATE_O;
ELSE

the next state is
STATE_3:

RAS
CAS3:0
COL_ADR

STATE_2;
/* Select Column Address */
is asserted;
is not asserted;
is asserted;

the next state is STATE_4;

STATE __ 4:

RAS
COL_ADR
CASO EEO;
CASl
CAS2
CAS3
IF

BEl;
BE2;
BE3;

WAIT && BLAST;
THEN

/* Assert CAS */

is asserted;
is asserted;

the next state is STATE_3;
ELSE IF

BLAST

8·26

BUS INTERFACE EXAMPLES

THEN
the next state is STATE_O;

ELSE
the next state is S7ATE_4;

STATE_5: i' REFRESE CYCLE, RAS ONLY H2FRESH * .1

RAS not asserted;
CAS3:0 is DO~ dSSe1ted;
COL_ADf<_ is dsserted;

the r1~xt stctte is

STATE_G:

RAS
CAS3:0
COL_ADR
IF

BL~Z\ST;

'CHEN
the next

ELSE
the next

state

state

is

is

!* REFRESH CYCLE,
d:._:.;serL.ed;

is not asserted;
is asser-ted;

STAT:': _U;

STATE_6;

DRAM Refresh Request and Timer Logic

?t\S

DRAM refresh request and timer logic is responsible for generating DMA requests at an
appropriate interval and for removing the DMA request after receiving DMA acknowledge.

Typical DRAMs must be refreshed every 4 ms; refresh cycles must be performed on all 256
rows during this 4 ms interval. If a distributed refresh method is chosen, then a refresh cycle
must be performed every 15 µs. The time base can be generated from a counter connected to
PCLK, a timer counter chip or any other time base. DMA request and acknowledge signals are
shown in Figure B.20.

B-27

II

BUS INT£AFACE EXAMPLES'

OMA I I
I I

[I \ L 7 I
OREO I ,, I

I
,,

I
I I -cl '' \ IT ,,

DACKO J

I I
I I

ADS c: _;J I
I

I I
I I

ADR c: x OMA c::
I I
I I I

BLAST c: \JJ'i
I

270710·001 49

Figure B.20. OMA Request and Acknowledge Signals

OMA Programming for Refresh

DMA should be programmed to perform 32-bit, fly-by, source synchronized demand mode
transfers with source chaining. The chaining must be set up to perform an infinite loop of
transfers. When all transfers are complete and all rows are refreshed, the cycle begins again.
See Figure B.21 for chaining description.

ADR:
oxxxxxxxxo

DRAM_REF _CHAIN

Memory Ready

OxC oxa Ox4

NEXT_PTR DESTINATION ADR SOURCEADR

& DRAM_REF _CHAIN x DRAMADR

Figure B.21. OMA Chaining Description

OxO

BYTE COUNT

NUMBER OF ROWS

270710·001-50

The memory ready input to the i960 CA processor (READY) indicates the completion of a
DRAM read or write cycle. READY must be generated by the DRAM controller and must
satisfy setup and hold times specified in the data sheet. If there multiple memory systems are
using READY, ready signals from these memory systems must be logically ORed together.

8·28

BUS INTERFACE EXAMPLES

Region Table Programming

Region table programming is critical to DRAM operation. NRAD and NwAD wait states must
satisfy RAS, CAS and address valid times for the DRAM. NRDD and Nwoo times must satisfy
the column address to data access times. The NxnA time must satisfy RAS precharge time.
Figures B.22 and B.23 shows typical system waveforms for this design. Note that RAS is not
asserted until the end of the address cycle; this delay contributes to RAS precharge time. In
some DRAM designs, it may be possible to remove RAS before access is complete. This is
especially true for static column reads and multiple world access. If RAS can be removed early
in the access, RAS precharge can occur during the access.

I
I A 3 D D D D T

I I

ADs[~ I
I

I I
I I -cl \) I

RAS I I
I I I
I I I

DRAM[I
ADR I ROW ~ COLOO x COL01 x COL 10 x COL 11 >C

I I I I I I I I I
I I I I I I I I I c ~

I I I I I ri GAS I I I I I I
I I I I I I
I I I I I I

DATA[
(CA)

00 01 10

I I I

BLAST [t I lJT
I
I

WAIT[:

I
270710-001-51

Figure B.22. DRAM System Read Waveform

B-29

BUS INTERFACE EXAMPLES

I A I I 2 D D D D T
I I I

Aos[i\ I 1: I I I
I I I I I

I I I I I I I
I I I I I I I

-c' :, I I I I y RAS I I I I I
I I I I I I I
I I I I I I I

~~~M[ i ~o >< ~ux oo :x >1 :x : 
10 :x >1 :x i 

I I 

CAS [I I I I I I 
I I I I I I 
I I I I I I 

DATA [ l 
(CA} o~ :x : 

01 :x : 10 :x >1 '.'AV)p11m! 
I I I I 
I 

' --WE[ I 
I I 

I I I I 

BLAST [ vmvt(n I I 

:\___;) 
I I 
I 

WAIT[ I I I 
I I 
I I I 

270710-001-52 

Figure B.23. DRAM System Write Waveform 

Design Example: Burst DRAM with Distributed 
CAS-Before-RAS Refresh using READY Control 

This example illustrates a DRAM system design that uses CAS-before-RAS refresh and 
READY control. CAS-before-RAS refresh uses the internal refresh address generation 
capabilities of modern DRAMs. The design does not use a DMA channel for refresh. READY 
must be generated by the DRAM controller to indicate that a data transfer is complete. The 
controller must arbitrate between access requests and refresh requests, control the address 
multiplexer and RAS precharge time. The internal wait state generator is not used. DRAM 
controller must be designed with information about processor and DRAM speed. 

B-30 



BUS INTERFACE EXAMPLES 

ADA 
A10:4, A21:13 

~ 
2c1 

COL-ADA MUX 

-cs A3:2, A12:11 

ADA 
LOGIC 

PCLK 
PCLK PCLK 

Bt:AsT BLAsT BLAST !--' 

WAiT WAiT WAiT 

[ Col-ADA cor:A5R 
DRAM XB 

DRAM ..._ 
CONTROL 

LOGIC 

~, ,___ 
_r_± 1 __r:_- -, __c_ - -, ....___£[_ 

A I A I A I A I 
A5S 

RAs 
RAs ~ iiAs b RAS It= RAs I 

W/R 
WE WE WE WE WE I 

BE3'0 
CAS3c0 CASO Ir- CAS1 I ;-i CAS2 Ir- CAS3 I 

_[ ~ 
I I ~ I 
~ D t- D D t-

READY 
L u REF_REO 

REFRESH 
J-D15c8 J-031 24 REQUEST 1 D7c0 D23c16 

TIMER 

031·0 

270710-002-37 

Figure B.24. Block Diagram 

The memory system block diagram (Figure B.24) is similar to the schematic for the previous 
example, except for the absence of the DMA controller connection. The refresh timer indicates 
it is time to refresh the DRAM. 

DRAM Controller State Machine 

The state machine in Figure B.25 is more complicated that the state machine in the previous 
example. This is because the controller works without the help of the internal wait-state 
generator. There are two advantages of this design over the previous example: a DMA channel 
is not used and the refresh cycle does not require the processor bus. Not using a DMA channel 
for DRAM refresh makes the DMA channel available for other applications within the system. 

CAS-before-RAS refresh mode does not require the bus or any processor intervention; 
therefore, DRAM refresh occurs autonomously. The DRAM controller state machine described 
here assumes 80 ns static column mode DRAM with a 33 MHz clock (PCLK). This DRAM 
controller does not require the internal wait state generator; as a result, all wait state parameters 
can be programmed to 0. 

B-31 

• 



NOT RAS 
NOT GAS 
NOT ROY 

NOT RAS 
NOT GAS 
NOT ROY 

WRITE & BLAST 

BLAST 

ROY & BLAST 

BUS INTERFACE EXAMPLES 

REF_REQ 

RAS 
NOT GAS 
NOT READY 
NOT GOL_ADR 
WE= WRITE 

RAS 
NOT GAS 
NOT READY 

GOL_ADR 
WE= WRITE 

RAS 
GAS:=BE 
READY=! WRITE 
GOL_ADR 
WE=WRITE 

RAS 
GAS:=BE 
READY 
GOL_ADR 
WE= WRITE 

ADS & CS 

ACC_REO 

Figure B.25. DRAM State Machine 

NOT RAS 
GAS 

NOT ROY 
NOT WE 

RAS 
GAS 

NOT ROY 
NOT WE 

RAS 
GAS 

NOT ROY 

RAS 
GAS 

NOT ROY 

270710-002-38 

The refresh request timer generates the refresh request signal (REF _REQ), indicating that it is 
time to refresh the DRAM. The controller gives preference to refresh requests over access 
requests. This ensures that the entire memory remains refreshed. The access request signal 

B-32 



BUS INTERFACE EXAMPLES 

(ACC_REQ) shown on the state diagram is a latched signal. ACC_REQ is asserted when ADS 
and DRAM_CS are both asserted. ACC_REQ is deasserted when BLAST is asserted. It is 
necessary to latch the access request because the controller could be in a refresh or RAS 
precharge state when the processor accesses the DRAM. 

The pseudo-code description bclow is provided only to describe the state machine diagram. It 
is not intended to be used directly as PLD equations. 

COL_)\DP 

READY 

\'JE 

IF 

&& 

I I 

Rlo:t_REO; 
THFN 

Pseudo-code Key 

signal is asserted low 

logical NOT 

logical AND 

logical OR x 

* - e * 
not ac;serteci; 
not asse1rt'9di 

~s not asserted; 
:_s not assertc~d; 

~ \\!/?.; 

equality test 

clocked assignment 

value assignment 

Don't Care 

the next state is STATF_7; 
ELSE IF 

!* Fefresh */ 

(ADS && DFAlc_CS) I I ACC_FEQ; 

THEN 
the next stale is S~~rE l; 

ELSE 

/* Acce::-;s* 

t··ie next staLe 'c- SL;:,IE_O; ;, Idle */ 

SL;:,c.·E l: 

R_C,S 

PE~4DY 

0JE 
the nex~ s=ate is STA~E_2; 

STA.TE 2: 

[J 

COL_A'.)R 

READY 

WE 
the nex~ s~ate is STATE_3; 

STATE_3: 

FAS 
CAS3:0 
co::,_ADR 
FEADY 
WE 
IF 

'* ;~ssor-:=-

i~~ c.sser:::~cl; 

EC't LlSSC:2::-t·~d; 

net 
i~--; IJ.ot ctsserted; 
::;: \r0/E; 

* MUX the address * 
~ s as::_;ertcd; 

is not asserted; 
i~:; asse:;::-ted; 

is not asserted; 
= W/F; 

/* Assert CAS , write is ready, read is not */ 

is asserted; 
= BE3:0; 
is asserted; 
= ! W/F; 

= W/F; 
Ill 



W/R && BLAST; 
THEN 

the next state 

ELSE IF 

W/ R && BLAST; 

THEN 

the next state 

ELSE 

the next state 
STATE 4: -

RAS 
CAS3:0 
COL_ADR 
READY 
WE 
IF 

BLAST 
THEN 

the 
ELSE 

the 

STATE 5: -
RAS 
CAS3:0 
COL_ADR 
READY 
WE 

the 

STATE 6: -
RAS 
CAS3:0 
COL_ADR 
READY 
WE 

the 

STATE_7: 

RAS 
CAS3:0 
COL_ADR 
READY 
WE 

next state 

next state 

next state 

next state 

is 

is 

is 

is 

is 

is 

is 

BUS INTERFACE EXAMPLES 

/* Write access not done */ 

STATE_2; /* remove CAS */ 

/* Write Finished*/ 

STATE_5; /* RAS Precharge*/ 

/* !W/ R, Read*/ 

STATE_4; /* Read */ 
/* Read data ready */ 

is asserted; 

= BE3:0; 
is asserted; 
is asserted; 

= W/R; 

/* read not Done */ 

STATE_3; /* Remove READY */ 
/* BLAST, Read Done */ 

STATE_S; /* RAS Precharge*/ 

/* RAS Precharge */ 

is not asserted; 
is not asserted; 

= X· 
is not asserted; 

= X; 
STATE_6; 

/* More RAS Precharge */ 

is not asserted; 
is not asserted; 

= X; 
is not asserted; 

= X; 
STATE_O; /*Return to idle*/ 

/* Refresh, assert CAS */ 

is not asserted; 
is asserted; 
= X; 
is not asserted; 
is not asserted; 

the next state is STATE_S; 

STATE 8: /* Refresh, assert RAS */ 

RAS 
CAS3:0 
COL_ADR 
READY 
WE 

is asserted; 
is asserted; 
= X; 
is not asserted; 
is not asserted; 

the next state is STATE_S; 

STATE_9: 

RAS 
CAS3:0 

is asserted; 
is asserted; 

R.~.d 

/* Refresh Hold RAS */ 



infel® BUS INTERFACE EXAMPLES 

COL_hDR 
READY 
WE 

= X; 
is not assertedi 

t~~e next state i sr:;;·i':'F._lU; 

ST.2\TE ·• L': 1* Re~resh Eold RAS *' 

:Ci 

CO'., .~.DR 

F'J:::AlJY 

WF 

ctsserted; 

i;~; not ted; 

the next state is S':'ATE_S; 

INTERLEAVED MEMORY SYSTEMS 

* RA.S Precharge* i 

Interleaving memory can provide a significant improvement in memory system performance. 
Interleaved memory systems overlap accesses to consecutive addresses; this results in higher 
performance with slower memory. For example, two-way memory interleaving is 
accomplished by dividing the memory into banks: one bank for even word addresses, one for 
odd word addresses. The least significant address bit (A2) is used to select a bank. The two 
banks are read in parallel and the data is put onto the data bus by a multiplexer. This can allow 
the wait states of the second access to be overlapped with the data transfer of the first access. 
Figure B.26 shows the access overlap for a burst access. 

EVEN BANK 

ODD BANK 

ONE WAIT STATE BURST PIPELINED MEMORY SYSTEM 

SAME MEMORY - INiERLEAVED 

A A 

D D D D 

D D D D 

A D D D D D D D D 

Figure B.26. Two-Way Interleaved Read Access Overlap 

270710·001 ·53 

Figure B.27 is a simple schematic of a two-way, interleaved, pipelined memory system. The 
design is similar to the design of a non-interleaved pipelined memory design with the 
following exceptions: 

• an output data multiplexer is used to prevent data contention 

• the write data buffers isolate the memory data buses for writes 

• the low address bit to the memory devices is A3 

B-35 



BUS INTERFACE EXAMPLES 

The A2 address determines which bank (even or odd word) is selected. Figure B.28 shows the 
read waveform. 

The schematic (Figure B.28) illustrates a memory system that interleaves read accesses. Write 
interleaving requires latching the written data and controlling memory access with the READY 
signal. Write interleaving provides less performance improvement than read interleaving. Write 
data must come from the processor; this means a write interleaved system must queue data. 
The i960 CA processor bus controller queues all access; therefore, write interleaving does not 
significantly benefit most applications. 

r--
PAX:4 

A3:31 

L 
A 
T 
c 
H 

PCLK ...___ 

,00,~ l 
......., I • A3:2 1-- A3EV 

ADDRESS ADDRESS 

W/R 1-- CE_OD 1---

ADS 1--
-- CE L-<1 CE ODD CE_EV EVEN 

A2=0 A2=1 
BLAST 1-- CONTROL OE OE OE 

LOGIC --
WAIT 1-- WE WE3:0 WE3:0 

RD_SEL DATA DATA 

WRITE 1-- ~ 

.{32 Y32 

80960CA 

......, s 
2:1 

'----I OE MULTIPLEXER 

LV ~ 6 
1 D31:0 

---
270710-001-54 

Figure B.27. Two-Way Interleaved Memory System 

Memory interleaving can be applied to SRAM, DRAM and even EPROM memory systems. 
Interleaved SRAM and EPROM memory systems overlap access times for consecutive 

B-36 



BUS INTERFACE EXAMPLES 

accesses to improve memory system performance. The i960 CA processor pipelined read mode 
can be used on SRAM and EPROM systems to further increase memory system perlormance. 
However, pipelined read mode is not appropriate for DRAM memory systems that require 
NxoA states or READY control. Interleaved DRAM memory systems can overlap the memory 
access time and RAS precharge time of consecutive accesses. 

Figure B.28. Two-Way Interleaved Read Waveforms 

INTERFACING TO SLOW PERIPHERALS USING THE 
INTERNAL WAIT STATE GENERATOR 

This section illustrates how easy it is to interface slow peripherals to the i960 CA processor. 
This example shows the interface to an Intel 82C54-2 Timer/Counter and an Intel 82510 
UART. The integrated internal wait state generator, programmable data bus width and data 
transceiver control signals simplify the logic required to implement the interface. 

B-37 

II 



BUS INTERFACE EXAMPLES 

A system may require several slower-speed peripherals; other peripherals may use the interface 
described here. 

Implementation 

Both the 82C54-2 Timer/Counter and 82510 UART have address, read, write and chip enable 
inputs and an 8-bit bidirectional data bus. The slow peripherals example considers only the 
memory mapped interface to chip control registers. The 82C54-2 and 82510 are memory 
mapped into a memory region programmed for non-burst, non-pipelined reads and an 8-bit 
data bus. 

The RD high to data float time dictates the number of NxoA wait states required. Recovery 
time between reads or writes requires special treatment. The following example assumes a 
33 MHz bus. The issues are the same at other operating frequencies. 

Schematic 

The interface consists of chip select logic, a registered PLD with at least two combinatorial 
outputs and a data transceiver. 

Chip select logic is the same as in previous examples. A simple demultiplexer is based only on 
the address. The PLD that controls access qualifies this signal with the address strobe (ADS). 

The state machine PLD generates chip enable, read and write signals for the UART and 
Timer/Counter. It also generates the data enable control for the data transceiver. A3 address 
signal determines which peripheral is enabled. 

The data transceiver is enabled by the PLD. The transceiver is activated when both the CS and 
DEN signals are asserted. The equation is: 

DATA_8_EN =CS 11 DEN; 

Transceiver direction control is connected directly to the DT/R- signal of the i960 CA device. 
Data transceiver usage is optional; it is used here to reduce capacitive loading on the data bus. 
The i960 CA processor can drive substantial capacitive loads; however, high-speed SRAM 
may have limited drive capabilities. If high-speed SRAM is on the data bus, it may be 
necessary to buffer the slower peripherals. 

8·38 



BUS INTERFACE EXAMPLES 

ADR ...... 
l 
cs 

LOGIC 

i960'MCA 

~ 
PROCESSOR 

CE_ UART A2 

CS_ UART cs 
-
~ CE_TC UART t---i CS_Tc 82510 

A3 ~ - -- ADS RD A1:0 
ADS ---- BLAST W/R 

BLAST 
- -·-
WAIT WAIT - - -

~ DEN DEN DATA_S_EN 

W/R -W/R 
~ TIC 

PCLK 82C54-2 r---. 
PCLK -

CS_TC 

A1:0 

BE1:0 

1---1 E'N 
D7:0 <l D7:0 

[> 
DT/R DT/R 

270710-001-56 

Figure B.29. 8-bit Interface Schematic 

Waveforms 

The Timer/Counter and UART have long address setup times to read or write. They also have 
long read and write recovery times. This design uses a PLD to implement a state machine that 
delays the read or write signal. Delaying the read or write signal satisfies command recovery 
times. Using the internal wait state generator to determine the length of the overall read or 
write cycle adds flexibility and simplifies the state machine. 

S:L'20 



BUS INTERFACE EXAMPLES 

I A I 1 I 2 3 4 5 6 7 8 9 10 11 I 12 D 2 A I 
I I I I I 

-c~ I 1-1--...,__....._,__,_.__ __ _,__,__...._\ Ir 
ADS I ~ I \_.J_/ 

I I I 
I I I 

WAIT cm_:-----------------' 
I I I 
I I 

8LAST [: : 
I I I 

DEN[i\ v 
I , ..... .-..... -.-..... -.-..... -.-..... -.-..... -.-...,.__,, 

I I I 

[ r--\ ''I---~ 
Ce I 1\.__"'-_..-"'-_..-"'-_..-"'-_..-"'-_..-"'-_.....-J. 

I I 

Ar>[' 
I 
I 

I 
I 

I I I I I I I I I I I 

DATA Ci : : : : : : : : : : : : ;q:x; : i 
270710-001-57 

Figure B.30. Read Waveforms 

Data lines are not driven during NxoA wait states. This requires gating the W/R signal with the 
WAIT signal, so that W/R goes high while the data is still asserted. There is a relative timing 
for output data hold after WAIT goes high. The data hold requirement of the peripheral and the 
delay time to gate the write signal with WAIT determines if this is an appropriate solution. 

The state machine simply delays the read or write signal so that back-to-back commands to the 
peripheral satisfy the peripheral's command recovery time. When the write state is entered, the 
W/R output of the PLD is a gated version of the WAIT signal. This guarantees that the 
peripheral's write data hold time is satisfied. 

B-40 



BUS INTERFACE EXAMPLES 

I A I 1 2[3141516171819 10 11 I D I 1 I 2 I A I 

Aos[:-0 w 
I I 

[ r----1"'"\ I 11 WAIT I I \ . I I '-'~.....;~.....;~....;.~....;.~...;.~...;.~...;.~...;.~...;.~_.._, I 

I I I I 

s~sr[: \JJ: 
I I I 

DEN[~ rt--
I I · I 
I I I 

cs[;i\ I r 
I I I 
I I I 

W/R c: :\.__... _ _..__ ..... _...__...___._...._ _ _._,/ : 
I I I I I 

DATA[t:)...._'. __ : _: __ : _: DA.---.:TAVA~-ID :_:_:_: _x: : 
I I I 

270710·001 ·58 

Figure B.31. Write Waveforms 

II 



NRAD =12 

NWAD =11 

NXDA = 2 

BUS INTERFACE EXAMPLES 

O: IDLE 

1: CE ASSERTED 

2: CE ASSERTED, DELAY CONTROL 

3: CE ASSERTED, DELAY CONTROL 

4: ASSERT READ 

5: ASSERT WAITE 

WA=WAIT 

0 ADS&CS 

@ BLAST 

2707.10-001-59 

Figure B.32. State Machine Diagram 

The pseudo-code description below is provided only to describe the state machine diagram. It 
is not intended for direct use as PLD equations. 

STATE_O: 
CE_ UART 
CE_TC 
RD 
W/R 
IF 

# 

&& 

I I 

ADS & CS; 

Pseudo-code Key 

signal is asserted low 

logical NOT 

logical AND 

logical OR x 

/*idle */ 
is not asserted; 
is not asserted; 
is not asserted; 
is not asserted; 
/* selected */ 

B-42 

equality test 

clocked assignment 
value assignment 

Don't Care 



BUS INTERFACE EXAMPLES 

THEN 
next state is STATE_l; 

ELSE 
next state is STATE_O; 

STATE_l: !* Enable Selected Chip, Hold Off Write or Read *I 
CE_ UART = A3; 
CE_TC = !A3; 
RD is not asserted; 
W/R is not asserted; 
the next state is state_2 

STATE_2: I* Enable Selected Chip, Hold Off Write or Read *I 
CE_ UART = A3; 
CE_TC = !A3; 
RD is not asserted; 
W/R is not asserted; 
the next state is state_3 

STATE_3: !* Enable Selected Chip, Hold Off Write or Read */ 

CE_ UART = A3; 
CE_TC = !A3; 
RD is not asserted; 
W/R is not asserted; 
IF 

!READ I* read *I 
THEN 

next state is STATE_4; 
ELSE !* write *! 

next state is STATE_5; 
STATE_4: !* Read asserted to selected peripheral */ 

CE_ UART = A3; 
CE_TC = !A3; 
RD is asserted; 
W/R is not asserted; 
IF 

BLAST !* Done */ 

THEN 
next state is STATE_O; 

ELSE /* write *! 
next state is STATE_4; 

STATE_5: !* Write asserted to selected peripheral *! 
CE_ UART = A3; 
CE_TC = !A3; 
RD is not asserted; 
W/R WAIT 
IF 

BLAST !* Done *! 
THEN 

next state is STATE_O; 
ELSE /* write *! 

next state is STATE_5; 

II 
B-43 



INTERFACING TO THE 27960CA BURST EPROM 

The 21960CA Burst EPROM offers an integrated, high-perfonnance, pipelined burst interface 
to the i960 CA processor. The Burst EPROM provides a synchronous interface to the i960 CA 
processor that requires no external logic. These EPROMs offer higher perfonnance read 
memory systems than high speed DRAMs. 

Overview of the 27960CA Burst EPROM 

The 27960CA Burst EPROM is a 128K x 8, high-perfonnance CMOS EPROM with 
synchronous pipelined burst interface. The 27960CA requires no support circuity and provides 
a synchronous burst interface to the i960 CA processor's bus. The Burst EPROM can operate 
in the processor's pipelined or non-pipelined access modes. The highest performance is 
realized in the pipelined read mode. Internally, the 27960CA Burst EPROM is organized in 
blocks of four bytes which are sequentially accessed. 

A burst access begins by latching the address in the EPROM on the rising edge of PCLK when 
ADS is asserted. After one or two wait states, depending on the version of the 27960CA Burst 
EPROM, the first data byte is output. The next three consecutive data bytes can be output 
without any data-to-data wait states. Burst access is terminated on the rising edge of PCLK 
when BLAST is asserted. Burst EPROM timing is shown in Figure B.33. 

NAAD:2 

ADA A 2 A 2 A 

DATA D D D D D D D D 

NAAD: 1 

ADA A A A 

DATA D D D D D D D D 

270710-001-60 

Figure B.33. Performance of Burst EPROM Pipelined Read 

High performance outputs provide zero wait state, data-to-data burst access. Extra power and 
ground pins dedicated to the output circuity reduce the effect of fast output switching. 

The 27960CA Burst EPROM is a byte-wide device. Systems can be designed with the 
27960CA Burst EPROM in 8-, 16- or 32-bit data widths by connecting them to the proper i960 
CA processor data pins. The signal definitions below provide an operation description of the 
27960CA Burst EPROM. (For programming infonnation, see the 27960CA Burst EPROM 
data sheet.) 27960CA Burst EPROM signal definitions are: 

8·44 



CLK 

A16:0 

D7:0 

BUS INTERFACE EXAMPLES 

Clock (input). EPROM clock. Address (A 16:0) is latched internally 
on the rising edge of CLK. Data (D7:0) is output with respect to 
CLK. ADS, CS and BLAST are all sampled on the rising edge of 
CLK. This signal may be connected directly to the i960 CA 
processor PCLK signal. 

17-bit address bus (input). During a burst operation, AJ6:2 provides 
the base address pointing to a block of four consecutive bytes. A 1:0 
selects the first byte of the burst access. The 27960CA Burst 
EPROM latches valid addresses in the first clock cycle. An internal 
address generator increments addresses for subsequent burst bytes. 

8-bit data bus (output). Data bus drives are enabled when CS and 
ADS are asserted during the rising edge of CLK. Data bus drivers 
are disabled when BLAST is asserted and ADS is not asserted on 
the rising edge of CLK. 

Address strobe (input). Indicates the start of a new bus access. It is 
asserted (low) in the first clock cycle of a bus access. This signal 
may be connected directly to the i960 CA processor ADS signal. 

Chip select (input). Master device enable. When asserted (low), data 
can be read from the device. CS enables the state machine and 1/0 
circuitry. A memory access begins on the first rising edge of CLK in 
which ADS and CS are asserted. A burst cycle does not terminate if 
CS goes high. 

Burst last (input). Terminates the current burst access. This signal 
may be connected directly to the i960 CA processor BLAST signal. 

Asynchronous reset (input). Resets the EPROM, disables the data 
outputs. Reset will abort an active access. 

Figure B.36 shows the connections to the 27960CA Burst EPROM. 

cs 

ADDRESS 

DATA 

ADS 

BLAST 

RESET 

CLK 

PGM 

'f 

_L 

_I 
7 17 

_L 

_f_ 
's 

-1'..j 
1 

-0 

27960CA 
BURST 
EPROM 

~ 128K X 8 

Figure B.34. The 27960CA Burst EPROM 

6·45 

270710-001-61 II 



BUS INTERFACE EXAMPLES 

Interfacing to the i960™ CA Microprocessor 

The following example demonstrates a 32-bit-wide burst access EPROM interface to the i960 
CA processor. The 27960CA Burst EPROM operates at one or two NRAD wait states between 
the address and the first byte of the burst (depending on the version of the 27960CA Burst 
EPROM). There are no wait states between sequential data during a burst. Figure B.35 shows a 
non-buffered, 128K x 32 Burst EPROM system. Chip select logic is the only external logic 
required for this interface. 

Higher order address lines are decoded to generate CS . Qualification of CS with other signals 
is done by the 27960CA Burst EPROM. Chip select logic can be implemented with standard 
asynchronous decoders or a PLD. The pipelined read waveform for the Burst EPROM system 
is shown is Figure B.36. 

The wait state configuration must be programmed into the i960 CA processor's Memory 
Region Configuration Table. NRAD wait states must be programmed to one or two, 
corresponding to the version of the 27960CA Burst EPROM. NRDD wait states must be 
programmed to 0. NxoA wait states should be programmed to 0. 

DECODER 

cs 

cs cs cs cs 
27960CA 27960CA 27960CA 27960CA 

A2-A18 128KX8 128KX8 128KX8 128KX8 
ADDRESS 

AO-A16 AO-A16 AO-A16 AO-A16 

ADS 
17 

i960'MCA ADS ADS ADS ADS 

MICRO- PCLK 
PROCESSOR CLK CLK CLK CLK 

BLAST BLAST BLAST BLAST BLAST 

DATA 

32 270710-001-62 

Figure B.35. 128K X 32 Burst EPROM System 

8-46 



BUS INTERFACE EXAMPLES 

A2-A18c: A2.3z00 10 

I 1 .._..-I 1 I 

I 
I 
I I 27960CA Does not use this information. 

I J f l I 

I I 

ADs[:\f./ I \+1 
I I 

I 
I 

xx 

\JI: ,___._._,/ NRA0-2 
NRD0-0 
NXDA-0 

l~I cs[1 \1 I I ~I~~~~-!-~-!----;-~_,_-_,. _ _., __ .___..___.._ _ _..._. 
l ;' 
I 
I 

I I 

DATA[.-1 _...,.I-.....,.-.....( 

I PIPELINED 
I BURST READ 

I I 
I 

BLAsr[: 

I .....,,___.,..__..,... ____ _,__,, :1 r-r--7 II 
\.l_/ \..J....J I 

I I I 

270710-001-63 

Figure B.36. Burst Pipelined EPROM Read 

Booting from the 27960CA Burst EPROM 

The i960 CA processor reads four bytes from the Initialization Boot Record (IBR) on 
initialization. (See Chapter 14, Initialization and System Requirements.) The processor's initial 
bus configuration is encoded in these four bytes. During initialization, before these bytes are 
read, the memory region configuration table defaults to NRAD = 31 and NxoA = 3. To facilitate 
booting from the Burst EPROM, the 27960CA will access normally and then wrap around to 
the first word (least significant) of the four word burst. This word is held until BLAST is 
asserted (this is illustrated in Figure B.37). In this way, it is possible to store the IBR in the 
Burst EPROM. 

C> A'7 



BUS INTERFACE EXAMPLES 

PCLK [ 1 

I rl.___. _ __._...._ _ _.__...__..__~J'--'---""---:.--.:,. r......,...,.......,.._~I 
ADDR [L--{ FFFF FFOO <Ii~ FF04 

I ·1 ;':"·''""''''\ ;>'1~ 
I I I I 

ADS [i\l/ : 1V \J.J 
I I I I 
I I I I 

cs[i\: I I 

I I 
I I 

DATA[, ___ ..._.....,_._...., 

I 
I 
I 

BLAST [(j)' 
I 

1--1Nws-i 
I I I 

---------NRAD-31-------~ l-NXAD-3-1 

270710-001-64 

Figure B.37. Booting from the 27960CA Burst EPROM 

INTERFACING TO THE 82596CA LOCAL AREA NETWORK 
COPROCESSOR 

The 82596CA LAN coprocessor provides a subset of the i960 CA processor bus interface 
signals, minimizing bus interface logic. It shares most signals directly with the i960 CA 
processor. The 82596CA LAN coprocessor's bus cycles (including burst cycles), bus interface 
timing, bus arbitration method and signal definitions are compatible with the i960 CA 
processor. 

NOTE 

In this section, i960 CA microprocessor is generally referred to as "processor" and 82596CA 
LAN coprocessor is referred to as "coprocessor." 

82596CA LAN Coprocessor Overview 

The 82956CA coprocessor is a 32-bit multitasking LAN coprocessor which implements the 
carrier sense, multiple access and collision detect (CSMA/CD) link access protocol (Figure 
B.38). The coprocessor supports a wide variety of networks. It executes high-level commands 
and performs command chaining and interprocessor communication via memory shared with 

B-48 



BUS INTERFACE EXAMPLES 

the i960 CA processor. This relieves the processor of all time-critical, local network control 
functions. 

FIFO SUBSYSTEM 

I I .... -...I. 1 .... I LE/BE PORT 
_L .. 

il L"1 DATA 
I FIFO .. J)x3HI ..... INTERFACE 

I v~ UNIT -. DO-D31 .... 
I 

-. ~ 

- I ______ J I 
TxD.RTS I .... 1 LPBK I 

r---------
I 

I I ~ 

I I ~ I BUS CONTROL 
CS MA/CD I INTERFACE .. .. 

I I 
UNIT 

RxD. RxC 
I I 

TxC. CTS I I MICRO 

CDT. CRS I I I MACHINE .. 
I I I L 

I IT • I I I A2-A31 

I I I --~ ~ T 
DMA 1 BEO·BE3 I I I --~ I I I 

------~L---------------~ 
270710-001-65 

Figure B.38. 82596CA LAN Coprocessor Block Diagram 

Coprocessor features include: 

• Complete CSMA/CD functions 

Complete media access control (MACJ functions 

High level command interface 

Manchester encoding or NRZ encoding and decoding 

IEEE 802.3 or HDLC frame delimiting 

• Industry-standard network support 

IEEE 802.3 (Ethernet, Ethernet Twisted Pair, Cheapernet, StarLAN, etc.) 

IBM PC Network (baseband and broadband) 

Proprietary CSMA/CD networks up to 20 MBits/sec 

8-49 



BUS INTERFACE EXAMPLES 

• Compatible i960 CA processor interface 

Optimized bus interface to the i960 CA processor bus 

Shared i960 CA processor bus signals and memory timing 

Support for i960 CA processor byte ordering 

• Architectural features: 

On-chipDMA 

Bus throttle 

128-byte receive FIFO, 64-byte transmit FIFO 

On-chip memory management 

Network management and diagnostics 

82586 software-compatible mode 

• Performance features: 

9.6 microsecond back-to-back frame transmission and reception 

801105.6 Mbytes/second bus transfer rate (burst transfers) at 25/33 MHz 

50/66 Mbyte/second bus transfer rate (non-burst transfers) at 25/33 MHz 

Applications 

This coprocessor is ideal for interconnect, bridges and high performance embedded 
communication applications. Its bus interface provides a compatible interface to the i960 CA 
processor bus, making it very easy to use. Typically, the serial interface is to a physical layer 
device, such as the Intel 82C501AC Ethernet serial interface chip or the 82521 Twisted Pair 
Ethernet Serial Super Component. 

For burst transfers, the coprocessor's bus occupies only three percent of the total processor-bus 
bandwidth, under maximum loading conditions for Ethernet. The large FIFOs tolerate long bus 
latencies - up to 100 µs - which is ideal for systems with multiple bus masters. Programmable 
bus throttle timers regulate coprocessor' s use of the processor bus, allowing the processor bus 
overhead to be optimized for a given worst-case bus latency. The BREQ signal from the 
processor can trigger the coprocessor' s bus throttle timers when needed or the timers can be 
controlled by the coprocessor itself. 

Processor and Coprocessor Interaction 

The coprocessor interacts with the i960 CA processor bus as either a bus master or a slave (port 
access mode). In normal operation, it is a bus master which moves data between system 
memory and the coprocessor' s control registers or internal FIFOs. The coprocessor can use the 
same burst cycles, bus hold and bus lock operations as the i960 CA processor. 

The coprocessor and processor communicate through shared memory, as shown in FigUie 
B.39. The processor and coprocessor normally use the interrupt (INT/INT) and channel 

B-50 



BUS INTERFACE EXAMPLES 

attention (CA) signals to initiate communication and use a system control block of memory for 
command and status storage. INT/INT alerts the processor to a change of contents in the 
system control block. By asserting CA, the processor causes the coprocessor to examine the 
system control block contents for the change. 

The coprocessor executes its command list from shared memory and simultaneously receives 
frames from the network and places them in shared memory. The processor manages the 
shared memory, which contains command chains and bidirectional data chains. The 
coprocessor executes the command chains. An on-chip DMA controls four channels which 
allow autonomous transfers of data blocks. Buffers, containing erroneous or collided frames, 
can be automatically recovered without processor intervention. The processor becomes 
involved only after a command sequence has finished executing or after a sequence of frames 
has been received and stored, ready for processing. 

In addition to this normal operating mode, the processor can 1mtiate a port access in the 
coprocessor. This allows the processor to write an alternate system configuration pointer, write 
an alternate dump command and pointer (used for troubleshooting a no-response problem), 
perform a software reset or perform a self test. 

Bus Interface Signals 

The i960 CA processor and 82596CA coprocessor share the bus by floating their respective 
output and 1/0 bus signals when bus ownership is not acquired. The following summarizes the 
input shared bus interface signals between the coprocessor and processor. This interface is also 
shown in Figure B.39. 

Signal 

A31-A2 

BE3:0 

D31-DO 

LOCK 

W/R 

DIC 

Table 8.1. Shared i960™ CA Processor and 
82596CA Bus Output and 1/0 Signals 

Definition Type 

Address 0 

Byte Enables 0 

Data Bus 1/0 

Bus Lock indicator 0 

Write/Read indicator 0 

Data/Control indicator O* 

NOTE 

*The 82596CA does not have the DIC signal. 

B-51 

Signal state when 
not bus owner 

float 

float 

float 

float 

float 

float 

• 



BUS INTERFACE EXAMPLES 

PCLK2·1 

1 A2-A31 1 
DO-D31 
--
BEO-BE3 

-
LOCK 

--
W/R,ADS 

--
BLAST BLAST 

SERIAL -- -
READY BROY 

~NTERFACE i960'"CA 

~ 
PROCESSOR 

82596CA 

HOLDA HLDA 

HOLD 

BREQ 

INT/INT-

- J 1. CA 
DIC INTERFACE [ 1 LOGIC PORT 

T 
PCLK2:1 

T J BS16 

270710-001-66 

Figure B.39. i960™ CA Processor/82596CA Coprocessor Interface 

Table B.2. Shared i960™ CA Processor and 82596CA Bus Input Signals 

Signal Definition Type 
-cc 

BRDY (82596)/READY(i960 CA processor) Ready I 

RDY (82596)/BTERM(i960 CA processor) Burst terminate I 

8-52 



BUS INTERFACE EXAMPLES 

Table B.3. Arbitration Signals for i960™ CA Processor/82596CA Interface 

i960 CA 

Signal Definition Type Processor Comments 
Type 

HOLD Hold request I 0 82596CA coprocessor 
always drives 

HLDA Hold acknowledge 0 I i960 CA processor 
(82596 always drives 
coprocessor) 

HOLDA 
(i960 CA 
processor) 

BREQ Bus Request 0 l i960 CA processor 
always drives 

Arbitration 

Bus arbitration between the i960 CA processor and 82596CA coprocessor is achieved by the 
hold and hold acknowledge handshake. The coprocessor requests the bus by asserting HOLD 
to the processor. The processor responds by asserting HOLDA, thus allowing the coprocessor 
to acquire the bus. The processor's BREQ signal can be used to improve arbitration efficiency. 
BREQ indicates that an internal cycle is pending. This signal can be tied directly to the 
coprocessor' s BREQ input. When BREQ is asserted, it triggers the coprocessor' s bus throttle 
timers. The bus throttle timers cause the coprocessor to relinquish the bus in a programmable 
amount of time. This scheme can help improve arbitration efficiency by reducing hold and hold 
acknowledge handshake delays between the processor and coprocessor. 

Interface Logic Requirements 

Interface logic between the processor and coprocessor performs the foliowing functions: 

• Provides a port that the processor can select, based on an address decode to perform a 
coprocessor channel attention 

• Provides a port that the processor can select, based on an address decoded to perform 
coprocessor CPU PORT access functions. 

• Drives the DIC signals when the coprocessor controls the bus; the coprocessor does not 
have this signal. 

8-53 

II 



BUSINTERFACE EXAMPLES 

82596CA Coprocessor and 
i960™ CA Processor Interface Considerations 

Coprocessor/processor interface provides compatible bus signals and bus operation; however, 
there are some differences between the two interfaces that should be considered: 

• The processor supports read pipelining; the coprocessor does not. Processor read pipelining 
is programmed through a region table, allowing pipelining for a certain memory region. 
The processor and coprocessor should share a non-pipelined memory region. 

• The coprocessor supports dynamic bus sizing for 32- and 16-bit buses. The processor does 
not support dynamic bus sizing; it supports bus sizing through a programmable region 
table. Both the coprocessor and processor have a compatible byte enable encoding scheme 
for 32-bit buses and should share a 32-bit memory region. 

• The processor has a wait state generator built in; the coprocessor does not. The ready signal 
needs to be properly returned to the coprocessor. 

• The processor provides the signals DT/R and DEN and the coprocessor does not. If the 
external hardware uses these signals, then these signals need to be generated when the 
coprocessor controls the bus. 

B·54 



AppendixC 
Considerations for 
Writing Portable Code 



APPENDIX C 
CONSIDERATIONS FOR WRITING PORTABLE CODE 

This appendix describes the parts of the i960 CA microprocessor which are implementation 
dependent. The following information is intended as a guide for writing application code which 
is directly portable to other implementations of the i960 architecture. 

i960™ CORE ARCHITECTURE 

The i960 CA component is an implementation of the i960 core architecture. All i960 family 
products are based on the core architecture definition. An i960-based product, such as the i960 
CA microprocessor, can be thought of as consisting of two parts: the core architecture 
implementation and implementation-specific features. The core architecture defines the 
following mechanisms and structure: 

• Programming environment: global and local registers, literals, processor state registers, 
data types, memory addressing modes, etc. 

• Implementation-independent instruction set 

• Procedure call mechanism 

• Mechanism for servicing interrupts and the interrupt and process priority structure 

• Mechanism for handling faults and the implementation-independent fault types and 
subtypes 

Implementation-specific features are one or all of: 

• Additions to the instruction set beyond the instructions defined by the core architecture. 

• Extensions to the register set beyond the global, local and processor-state registers which 
are defined by the core architecture. 

• On-chip program or data memory. 

• Integrated peripherals which implement features not defined explicitly by the core 
architecture. 

Code is directly portable (object code compatible) when it does not depend on implementation­
specific instructions, mechanisms or registers. The parts of the i960 CA microprocessor which 
are implementation dependent are described below; those parts not described below are part of 
the core architecture. 

ADDRESS SPACE RESTRICTIONS 

Address space properties that are implementation-specific to the i960 CA processor are 
described in the subsections that follow. 

C-1 



CONSIDERATIONS FOR WRITING PORTABLE CODE 

Structures in Reserved Memory 

Addresses in the range FFOO OOOOH to FFFF FFFFH are reserved by the i960 architecture. Any 
uses of reserved memory are implementation specific. The i960 CA processor uses a section of 
the reserved address space for the initialization boot record. (See Chapter 14, Initialization and 
System Requirements.) The initialization boot record may not exist or may be structured 
differently for other implementations of the i960 architecture. Code which relies on structures 
in reserved memory is not portable to all i960-based products. 

Internal Data RAM 

Internal data RAM - an i960 CA implementation-specific feature - is mapped to the first 
1 Kbyte of the processor's address space (OOOOH - 03FFH). High performance, supervisor­
protected data space and the locations assigned for DMA and interrupt functions are special 
features which are implemented in internal data RAM. Code which relies on these special 
features is not directly portable to all i960 product implementations. 

Instruction Cache 

The i960 architecture allows instructions to be cached on-chip in a non-transparent fashion. 
This means that cache may not detect modification of the program memory by loads, stores or 
alteration by external agents. (See Chapter 2, Programming Environment.) Each 
implementation of the i960 architecture which uses an integrated instruction cache must 
provide a mechanism to purge the cache or some other method that forces consistency between 
external memory and internal cache. 

This mechanism is implementation-dependent. Application code which supports modification 
of the code space must use this implementation-specific feature and, therefore, is not object 
code portable to all i960 product implementations. 

A 1 Kbyte instruction cache is integrated on the i960 CA processor. Its instruction cache does 
not detect modification of external program memory. This instruction cache is purged using the 
system control (sysctl) instruction, which is specific to the i960 CA processor. 

Data and Data Structure Alignment 

Not all i960 architecture implementations are required to handle loads and stores to non­
aligned addresses. Therefore, code which generates non-aligned addresses is not object-code 
compatible with all i960 product implementations. 

The i960 CA microprocessor, as an implementation-specific feature, automatically handles 
non-aligned load and store requests. (See Chapter 10, The Bus Controller.) 

Alignment of architecturally-defined data structures in memory is implementation-dependent. 
Stack frames are also aligned to implementation-specific boundaries. Data structure alignment 

C·2 



CONSIDERATIONS FOR WRITING PORTABLE CODE 

is discussed in Chapter 2, Programming Environment. Code which relies on specific alignment 
of data structures in memory is not portable to every implementation of the i960 architecture. 

EXTENDED REGISTER SET 

i960 architecture defines a way to address 32 additional internal registers in addition to the 16 
global and 16 local registers. Register function is implementation-dependent: on the i960 CA 
device, three extended registers are implemented as special-function registers; on other 
implementations, these extended registers can be used for other functions or not implemented 
at all. for example, an implementation can choose to use these registers as general-purpose 
data registers or as floating point registers. Since the use of the extended register set is not 
defined, code which addresses these registers is not functionally compatible with all 
implementations of the i960 architecture. 

RESERVED LOCATIONS IN REGISTERS AND DATA STRUCTURES 

Some register and data structure fields are defined as reserved locations. A reserved field may 
be used by future implementations of the i960 architecture. For portability and compatibility, 
code should initialize reserved locations. When an implementation uses a reserved location, the 
implementation specific feature is activated by a value of 1 in the reserved field. Setting the 
reserved locations to 0 guarantees that the features are disabled. 

INSTRUCTION SET 

The i960 architecture defines a comprehensive instruction set. Code which uses only the 
architecturally-defined instruction set is object-level portable to other implementations of the 
i960 architecture. Some implementations may favor a particular code ordering to optimize 
performance. This special ordering, however, is never required by an implementation. 

The following section$ describe the properties of the an instruction set which are 
implementation dependent. 

Instruction Timing 

An objective of the i960 architecture is to allow microarchitectural advances to translate 
directly into increased performance. The architecture does not restrict parallel or out-of-order 
instruction execution, nor does it define the time required to execute any instruction or 
function. Code which depends on instruction execution times, therefore, is not portable to all 
i960 architecture implementations. 

Implementation-Specific Instructions 

Most of the i960 CA processor's instruction set is defined by the core architecture. Several 
instructions are specific to the i960 CA device. These instructions are either functional 
extensions to the instruction set (e.g., eshro) or instructions which control implementation-

C-3 



CONS1DERATIONS FOR WRITING PORTABLE CODE 

specific functions (e.g., sdma). A box around the instruction mnemonic in Chapter 9, 
Instruction Set Reference denotes an implementation-specific instruction. These instructions 
are listed below: 

• eshro extended shift right ordinal 

• sdma set up DMA controller 

• udma update DMA data RAM 

• sysctl system control 

Application code using implementation-specific instructions is not directly portable to the 
entire i960 family. 

INTERRUPT REQUESTS AND POSTING 

i960 architecture defines the interrupt servicing mechanism. This includes priority definition, 
interrupt table structure and interrupt context switching which occurs when an interrupt is 
serviced. The core architecture does not define the means for requesting interrupts (external 
pins, software, etc.) or for posting interrupts (i.e., saving pending interrupts). 

The method for requesting interrupts depends on the implementation. The i960 CA processor's 
interrupt controller manages external interrupt pins and internal DMA sources. Specific to the 
i960 CA processor implementation are interrupt controller features, external interrupt pins and 
NMI pins. Code which configures the interrupt controller - or in other ways interacts with 
interrupt requestors - is not directly portable to other i960 implementations. On the i960 CA 
product, interrupts are requested in software with the sysctl instruction. This instruction and the 
software request mechanism are implementation specific. 

Posting interrupts is also implementation specific. A pending priorities and pending interrupts 
field is provided in the interrupt table for interrupt posting. (See Chapter 6, Interrupts) An 
implementation may or may not choose to post all interrupts in the interrupt table in external 
memory. For example, the i960 CA processor - to minimize latency - posts hardware­
requested interrupts internally in the IPND register. 

Application code which expects interrupts to be posted in the interrupt table is not object-code 
portable to all i960-based products. Also, code which requests interrupts by setting bits in the 
pending priorities and pending interrupts field of the interrupt table is not portable. 

INITIALIZATION 

The way that an i960-based product is initialized is implementation dependent. For the i960 
CA device, pointers to data structures, configuration information and a first instruction pointer 
are loaded from external memory at initialization. The i960 CA processor defines the 
initialization boot record, process control block and control table to hold this initial processor 
state. These structures are implementation dependent. Code which accesses locations in these 
data structures is not portable to other i960 processor implementations. 

C-4 



CONSIDERATIONS FOR WRITING PORTABLE CODE 

OTHER i960™ CA MICROPROCESSOR 
IMPLEMENTATION-SPECIFIC FEATURES 

Subsections that follow describe additional implementation-specific features of the i960 CA 
microprocessor. These features do not relate directly to application code portability. 

Data Control Peripherals 

The DMA controller, bus controller and interrupt controller are implementation-specific 
extensions to the core architecture. Operation, setup and control of these units is not a part of 
the core architecture. Other implementations of the i960 architecture are free to add or subtract 
such system integration features. 

Implementation-Specific Faults 

The architecture defines a subset of fault types and subtypes which apply to all 
implementations of the architecture. Other fault types and subtypes may be defined by 
implementations to detect errant conditions which relate to implementation-specific features. 
F.or example, the i960 CA microprocessor provides an operation-unaligned fault for detecting 
non-aligned memory accesses. Future i960 processor implementations which generate this fault 
will assign the same fault type and subtype number to the fault. 

External System Requirements 

External system requirements for the i960 CA microprocessor are not defined by the 
architecture. The external bus, RESET pin, clock input, power and ground requirements and 
I/O characteristics are all specific to the i960 CA microprocessor implementation. 

C-5 



Appendix D 
Instruction Set Reference 



APPENDIX D 
INSTRUCTION SET REFERENCE 

This appendix describes the encoding format for instructions in the i960 CA microprocessor. 
Included is a description of the four instruction formats and how the addressing modes relate to 
these formats. 

GENERAL INSTRUCTION FORMAT 

i960 architecture defines four basic instruction encoding formats, as shown in Figure D. l: 
REG. COBR, CTRL and MEM. Each instruction uses one of these formats, which is defined 
by the instruction· s opcode field. All instructions are one word long and begin on word 
boundaries. MEM format instructions are encoded in one of two sub-formats: MEMA or 
MEMB. MEMB permits an optional second word to hold a displacement value. The following 
sections describe each format's instruction word fields. 

REG FORMAT 

REG format is used for operations performed on data contained in global, local or special 
function registers. Most of the i960 family's instructions use this format. 

REG instructions opcode is 12 bits long (three hexadecimal digits) and is split between bits 7 
through 10 (low opcode) and bits 24 through 31 (high opcode). For example, addi opcode is 
591 H. Here. 59H is contained in bits 24 through 31; lH is contained in bits 7 through 10. 

srcl and src2 fields specify the instruction's source operands. Operands can be global or local 
registers, literals or special-function registers. Mode flags (Ml for srcl and M2 for src2), 
special-purpose flags ( s I for srcl and s2 for src2) and the instruction type determine what an 
operand specifies: 

• If a mode flag and its associated special-purpose flag are set to 0, the respective srcl or 
src2 field specifies a global or local register. 

• If the mode flag is set to I and the special-purpose flag is set to 0, the field specifies a 
literal in the range of 0 to 31. 

• If the mode flag is set to 0 and the special-purpose flag is set to 1, the field specifies a 
special-function register. 

D-1 

II 



31 

OPCODE 

INSTRUCTION SET REFERENCE 

24 23 19 18 

SAC/DST SRC2 

14 13 12 11 10 7 6 5 4 0 

SRC1 REG 

.__ ____ S1 

'------s2 ..._ _________ M1 

'----------- M2 

-----------~ M3 

31 24 23 19 18 14 13 12 2 1 0 

31 

31 

OPCODE SRC1 SRC2 DISPLACEMENT COBR 

S2 
T 

.__---------~ M1 

24 23 2 1 0 

OPCODE DISPLACEMENT 

2423 1918 14131211 0 

.__ __ o_P_co_D_E __ .._s_R_c_1_Ds_T__._A_s_A_sE_~l ........ \_o~\ ____ o_F_Fs_E_T ___ __.I MEMA 

·~----------- MODE 

• .---------- MODE 

31 24 23 19 18 I 1 s s 4 

,__ ___ o_Pc_o_DE ___ ~l_s_Rc_1_D_sT ....... l __ AB_A_sE_~l~l_1~'--~'-sc_A_LE~'~o~lo~'~-1N_DE_x~IMEMB 
14 13 12 10 9 1--------------------------------

1 __________ - ~P.2:10~A.: D~i:_LA~E~E~T - - - - - - - - - - - _! 
270710-002-47 

Figure 0.1. Instruction Formats 

Table D. l shows the relationship between rnode flags, special-purpose flags and srcl and src2 
operands. 

Table 0.1. Encoding of src1 and src2 Fields in REG Format 

srcl or src2 
Ml orM2 Sl or S2 Operand Value Register Number Literal Value 

0 0 OOOOOrOl l l 12 r0-r15 

100002.111112 g0-g15 

1 0 000002.111112 0-31 

0 1 000002.111112 sf0-sf31 

1 1 Reserved 

NOTE 

On the i960 CA processor, the only special function registers implemented are sfO, sfl and sf2_ 

D-2 



INSTRUCTION SET REFERENCE 

The src!dst field can specify a source operand, a destination operand or both, depending on the 
instruction. Here again, mode flag M3 determines how this field is used. Table D.2 shows this 
relationship. 

Table 0.2. Encoding of src/dst Field in REG Format 

M3 src/dst src Only dst Only 

0 gO .. gl5 gO .. gl5 g0 .. gl5 
rO .. rl5 rO .. r15 rO .. rl5 

1 Not Allowed Literal sfO .. sf31 

If M3 is clear, the src!dst operand is a global or local register that is encoded as shown in Table 
D.l. If M3 is set, the src/dst operand can be used as a source-only operand that is: 1) a literal or 
2) a destination-only operand that is a special function register. 

COBR FORMAT 

The COBR format is used primarily for compare-and-branch instructions; however, test-if 
instructions also COBR. COBR opcode field is eight bits - two hexadecimal digits. srcl and 
src2 fields specify the instruction's source operands (complete encoding of src I, src2 and dst is 
the same as is shown in Table D.5): 

• srcl can specify a global or local register or a literal as determined by mode flag Ml 

• src2 can specify a global or local register or special function register as determined by 
special-purpose flag S2 

The T flag supports branch prediction for conditional instructions: if Tis set to 0, the condition 
being tested is likely to be true; if set to 1, the condition is likely to be false. An 
implementation may choose to ignore this bit. 

The displacement field contains a signed two's complement number that specifies a word 
displacement. The processor uses this value to compute the address of a target instruction to 
which the processor goes as a result of a comparison. The displacement field can range from -
210 to (210 -1). To determine the target instruction's IP, the processor converts the 
displacement value to a byte displacement (i.e., multiplies the value by 4 ). It then adds the 
resulting byte displacement to the current instruction's IP. 

NOTE 

To allow label usage in the assembly-language version of the COBR format instructions, the i960 
assembler converts a targ (target) operand value in an assembly-language instruction into the 
displacement value required for the COBR format, using the following calculation: 

. (targ - IP) 
displacement = 4 

For the test-if instructions, only the srcl field is used. Here, this field specifies a destination 
global or local register; MI is ignored. 

D-3 

II 



INSTRUCTION SET REFERENCE 

CTRL FORMAT 

The CTRL format is used for instructions that branch to a new IP, including the branch, 
branch-if, bal and call instructions; ret also uses this format. CTRL opcode field is eight bits 
- two hexadecimal digits. 

Branch target address is specified with the displacement field in the same manner as COBR 
format instructions. The displacement field specifies a word displacement or a signed, two's 
complement number in the range -221 to 221 -1. The processor ignores the ret instruction's 
displacement field. 

The T flag performs the same prediction function for CTRL instructions as it does for COBR 
instructions. 

MEM FORMAT 

The MEM format is used for instructions that require a memory address to be computed. These 
instructions include the load, store and Ida instructions. Also, the extended versions of the 
branch, branch-and-link and call instructions (bx, balx and callx) use this format. 

The two MEM-format encodings are MEMA and MEMB. MEMB can optionally add a 32-bit 
displacement (contained in a second word) to the instruction. Bit 12 of the instruction's first 
word determines whether MEMA (clear) or MEMB (set) is used. 

The opcode field is eight bits long for either encoding. The src/dst field specifies a global or 
local register. For load instructions, src/dst specifies the destination register for a word loaded 
into the processor from memory or, for operands larger than one word, the first of successive 
destination registers. For store instructions, this field specifies the register or group of registers 
that contain the source operand to be stored in memory. 

The mode field determines the address mode used for the instruction. Table D.3 summarizes 
the addressing modes for the two MEM-format encodings. Fields used in these addressing 
modes are described in the following sections. 

D-4 



INSTRUCTION SET REFERENCE 

Table D.3. Addressing Modes for MEM Format Instructions 

Format Bits Mode Address Computation 

MEMA 002 offset 

102 (abase)+ offset 

MEMB 01002 (abase) 

01012 (IP) + displacement + 8 
01102 reserved 

01112 (abase) + (index) * 2scale 

11002 displacement 

11012 (abase)+ displacement 

11102 (index) * 2scale +displacement 

11112 (abase)+ (index)* 2scale +displacement 

NOTE 
In these address computations. a field in parentheses - e.g., (abase) - indicates that the value in 
the specified register is used in the computation. Usage of a reserved encoding causes generation 
of an invalid-opcode fault. 

MEMA Format Addressing 

The MEMA format provides two addressing modes: 

• absolute offset 

• register indirect with offset 

The offset field specifies an unsigned byte offset from 0 to 4096. The abase field specifies a 
global or local register that contains an address in memory. 

For the absolute-offset addressing mode (mode field is set to 002), the processor interprets the 
offset field as an offset from byte 0 of the current process address space; the abase field is 
ignored. Using this addressing mode along with the Ida instruction allows a constant in the 
range 0 to 4096 to be loaded into a register. 

For the register-indirect-with-offset addressing mode (mode field is set to 102), offset field 
value is added to the address in the abase register. Setting the offset value to zero creates a 
register indirect addressing mode; however, this operation can generally be carried out faster 
by using the MEMB version of this addressing mode. 

MEMS Format Addressing 

The MEMB format provides the following seven addressing modes: 

• absolute displacement • register indirect 

• register indirect with displacement • register indirect with index 

• register indirect with index and displacement • index with displacement 

• IP with displacement 

0-5 

m 



INSTRUCTION SET REFERENCE 

The abase and index fields specify local or global registers, the contents of which are used in 
address computation. When the index field is used in an addressing mode, the processor 
automatically scales the index register value by the amount specified in the scale field. Table 
D.4 gives the encoding of the scale field. The optional displacement field is contained in the 
word following the instruction word. The displacement is a 32-bit signed two's complement 
value. 

Table D.4. Encoding of Scale Field 

Scale Scale Factor (Multiplier) 

0002 1 

0012 2 

0102 4 

0112 8 

1002 16 

101 2 to 111 2 Reserved 

NOTE 

Usage of a reserved encoding causes generation of an invalid-opcode fault. 

For the IP with displacement mode, the value of the displacement field plus eight is added to 
the address of the current instruction. 

0-6 



INSTRUCTION SET REFERENCE 

INSTRUCTION REFERENCE BY OPCODE 

This section lists the instruction encoding for each i960 CA microprocessor instruction. 
Instructions are grouped by instruction format and listed by opcode within each format. Table 
D.5 describes the meaning of each M3, M2, M 1, S2, S 1 and T bit combinations for each 
format. 

Table D.5 Miscellaneous Instruction Encoding Bits 

M3 M2 Ml S2 Sl T Descr!I!_tion 

REG Format 
x x 0 x 0 - srcl is a global or local register 

x x 1 x 0 - src I is a literal 

x x 0 x l - srcl is a special function register 

x x l x I - reserved 

x 0 x 0 x - src2 is a global or local register 

x 1 x 0 x - src2 is a literal 

x 0 x I x - src2 is a special function register 

x 1 x l x - reserved 

0 x x x x - src/dst is a global or local register 

1 x x x x - src/dst is a literal when used as a source or a special 
function register when used as a destination. M3 
may not be 1 when src/dst is used both as a source 
and destination in an instruction 
(atmod, modify, extract, modpc). 
COBRFormat 

- - 0 0 - x src I src2 and dst are global or local registers 

- - 1 0 - x srcl is a literal, src2 and dst are global or local 
registers 

- - 0 1 - x src 1 is a global or local register, src2 and dst are 
special function registers 

- - 1 l - 0 srcl is a literal, src2 and dst are special function 
registers 

COBR Format and CTRL Format 
- - x - x l Outcome of conditional test is predicted to be true. 

- - x - x 0 Outcome of conditional test is predicted to be false. 

D-7 



Opcode 
Mnemonic 

58:0 notbit 
58:1 and 
58:2 andnot 
58:3 set bit 
58:4 notand 
58:6 xor 
58:7 or 
58:8 nor 
58:9 xnor 
58:A not 
58:8 ornot 
58:C clrbit 
58:0 notor 
58:E nand 
58:F alterbit 
59:0 addo 
59:1 addi 
59:2 subo 
59:3 subi 
59:8 shro 
59:A shrdi 
59:8 shri 
59:C shlo 
59:0 rotate 
59:E shli 
5A:O cm po 
5A:1 cm pi 
5A:2 concmpo 
5A:3 concmpi 
5A:4 cmpinco 
5A:5 cmpinci 
5A:6 cmpdeco 
5A:7 cmpdeci 
5A:C scan byte 
5A:E ch kb it 

58:0 addc 

58:2 subc 

5C:C mov 

50:8 eshro 

50:C movl 

5E:C movt 

5F:C movq 

INSTRUCTION SET REFERENCE 

Table D.6. REG Format Instruction Encodings 

Opcode 
11 - 4 

31 .. .. 24 .... . 

0101 1000 
0101 1000 
0101 1000 
0101 1000 
0101 1000 
0101 1000 
0101 1000 
0101 1000 
0101 1000 
0101 1000 
0101 1000 
0101 1000 
0101 1000 
0101 1000 
0101 1000 
0101 1001 
0101 1001 
0101 1001 
0101 1001 
0101 1001 
0101 1001 
0101 1001 
0101 1001 
0101 1001 
01011001 
0101 1010 
0101 1010 
0101 1010 
01011010 
0101 1010 
01011010 
01011010 
01011010 
01011010 

0101 1010 

01011011 

0101 1011 

0101 1100 

01011101 

0101 1101 

01011110 

0101 1111 

src/dst src2 

23. 19 18 14 ... ... 
dst src 
dst src2 
dst src2 
dst src 
dst src2 
dst src2 
dst src2 
dst src2 
dst src2 
dst 
dst src2 
dst src 
dst src2 
dst src2 
dst src 
dst src2 
dst src2 
dst src2 
dst src2 
dst src 
dst src 
dst src 
dst src 
dst src 
dst src 

src2 
src2 
src2 
src2 

dst src2 
dst src2 
dst src2 
dst src2 

src2 

src 

dst src2 

dst src2 

dst 

dst src2 

dst 

dst 

dst 

D-8 

Mode Opcode 
3-0 

13 12 11 10.. 7 . .... 

M3 M2 M1 0000 
M3 M2 M1 0001 
M3 M2 M1 0010 
M3 M2 M1 0011 
M3 M2 M1 0100 
M3 M2 M1 0110 
M3 M2 M1 0111 
M3 M2 M1 1000 
M3 M2 M1 1001 
M3 M2 M1 1010 
M3 M2 M1 1011 
M3 M2 M1 1100 
M3 M2 M1 1101 
M3 M2 M1 1110 
M3 M2 M1 1111 
M3 M2 M1 0000 
M3 M2 M1 0001 
M3 M2 M1 0010 
M3 M2 M1 0011 
M3 M2 M1 1000 
M3 M2 M1 1010 
M3 M2 M1 1011 
M3 M2 M1 1100 
M3 M2 M1 1101 
M3 M2 M1 1110 
M3 M2 M1 0000 
M3 M2 M1 0001 
M3 M2 M1 0010 
M3 M2 M1 0011 
M3 M2 M1 0100 
M3 M2 M1 0101 
M3 M2 M1 0110 
M3 M2 M1 0111 
M3 M2 M1 1100 

M3 M2 M1 1110 

M3 M2 M1 0000 

M3 M2 M1 0010 

M3 M2 M1 1100 

M3 M2 M1 1000 

M3 M2 M1 1100 

M3 M2 M1 1100 

M3 M2 M1 1100 

Special src1 
Fla s 

6 5 4 0 .......... 

82 81 bitj:Jps 
82 81 srct 
82 81 src1 
82 81 bi!flps 
82 81 srct 
82 81 src1 
82 81 src1 
82 81 src1 
82 81 srct 
82 81 src 
82 81 src1 
82 81 bi!flps 
82 81 src1 
82 81 src1 
82 81 bitj:Jps 
82 81 src1 
82 81 srct 
82 81 src1 
82 81 src1 
82 81 fen 

82 81 fen 

82 81 fen 

82 81 fen 

82 81 fen 

82 81 fen 

82 81 src1 
82 81 src1 
82 81 srct 
82 81 srct 
82 81 srct 
82 81 srct 
82 81 srct 
82 81 srct 
82 81 srct 

82 81 bitpos 

82 81 srct 

82 81 srct 

82 81 src 

82 81 src1 

82 81 src 

82 81 src 

82 81 src 



intet. INSTRUCTION SET REFERENCE 

Opcode Opcode src/dst src2 Mode Opcode Special src1 
Mnemonic (11 - 4) (3-0) Fla s 

31 ......... 24 23 .... 19 18 ... 14 13 12 11 10 ....... 7 6 5 4 .......... 0 
63:0 sdma 0110 0011 src3 src2 M3 M2 M1 0000 52 51 src1 

63:1 udma 0110 0011 0001 

64:0 span bit 0110 0100 dst M3 M2 M1 0000 52 $1 src 

64:1 scan bit 01100100 dst M3 M2 M1 0001 $2 $1 src 

64:5 modac 01100100 mask src M3 M2 M1 0101 $2 81 dst 

65:0 modify 0110 0101 srcldst src M3 M2 M1 0000 $2 $1 mask 

65:1 extract 0110 0101 src!dst Jen M3 M2 M1 0001 $2 $1 bi!J!ps 

65:4 modtc 0110 0101 mask src M3 M2 M1 0100 $2 $1 dst 

65:5 mod pc 0110 0101 src/dst mask M3 M2 M1 0101 $2 $1 src 

65:9 sysctl 0110 0101 src3 src2 M3 M2 M1 1001 $2 $1 src1 

66:0 calls 01100110 M3 M2 M1 0000 $2 $1 src 

66:8 mark 0110 0110 M3 M2 M1 1011 $2 S1 

66:C fmark 0110 0110 M3 M2 M1 1100 $2 81 
66:0 flush reg 0110 0110 M3 M2 M1 1101 52 81 
66:F syncf 0110 0110 M3 M2 M1 1111 82 81 
67:0 emul 01100111 dst src2 M3 M2 M1 0000 52 81 src1 

67:1 ediv 01100111 dst src2 M3 M2 M1 0001 82 $1 src1 

70:1 mulo 0111 0000 dst src2 M3 M2 M1 0001 82 51 src1 

70:8 remo 0111 0000 dst src2 M3 M2 M1 1000 52 $1 src1 

70:8 divo 0111 0000 dst src2 M3 M2 M1 1011 82 S1 src1 

74:1 muli 01110100 dst src2 M3 M2 M1 0001 82 81 src1 

74:8 remi 0111 0100 dst src2 M3 M2 M1 1000 82 81 src1 

74:9 modi 0111 0100 dst src2 M3 M2 M1 1001 $2 81 src1 

74:8 dlvi 0111 0100 dst src2 M3 M2 M1 1011 82 $1 src1 

m 
D-9 



INSTRUCTION SET REFERENCE 

Table 0.7. COBR Format Instruction Encodings 

Opcode Opcode 

I 
src1 

I 
src2 

I 
M 

I 
Displacement 

Mnemonic 

31 ......... 24 23 ... 19 18 .... 14 13 12 ....................................... 2 0 
20 testno 0010 0000 dst M1 T 82 

21 testg 0010 0001 dst M1 T 82 

22 teste 00100010 dst M1 T 82 

23 testge 0010 0011 dst M1 T 82 

24 testl 0010 0100 dst M1 T 82 

25 testne 0010 0101 dst M1 T 82 

26 testle 00100110 dst M1 T 82 

27 testo 00100111 dst M1 T 82 

30 bbc 0011 0000 bitpos src M1 targ T 82 

31 cmpobg 0011 0001 src1 src2 M1 targ T 82 

32 cmpobe 0011 0010 src1 src2 M1 targ T 82 

33 cmpobge 0011 0011 src1 src2 M1 targ T 82 

34 cm po bl 0011 0100 src1 src2 M1 targ T 82 

35 cmpobne 0011 0101 src1 src2 M1 targ T 82 

36 cmpoble 0011 0110 src1 src2 M1 targ T 82 

37 bbs 0011 0111 bitpos src M1 targ T 82 

38 cmpibno 0011 1000 src1 src2 M1 targ T 82 

39 cmpibg 00111001 src1 src2 M1 targ T 82 

3A cmpibe 00111010 src1 src2 M1 targ T 82 

38 cmpibge 00111011 src1 src2 M1 targ T 82 

3C cm pi bl 0011 1100 src1 src2 M1 targ T 82 

30 cmpibne 0011 1101 src1 src2 M1 targ T 82 

3E cmpible 00111110 src1 src2 M1 targ T 82 

3F cmpibo 0011 1111 src1 src2 M1 targ T 82 

D-10 



INSTRUCTION SET REFERENCE 

Table 0.8. CTRL Format Instruction Encodings 

Opcode 
Mnemonic 

I Opcode Displacement I T I 0 I 
31 ......... 24 23 ...................................................................... 2 0 

08 b 0000 1000 targ T 0 

09 call 0000 1001 targ T 0 

OA ret 0000 1010 T 0 

OB bal 0000 1011 targ T 0 

10 bno 0001 0000 targ T 0 

11 bg 0001 0001 targ T 0 

12 be 0001 0010 targ T 0 

13 bge 0001 0011 targ T 0 

14 bl 0001 0100 targ T 0 

15 bne 0001 0101 targ T 0 

16 ble 0001 0110 targ T 0 

17 bo 0001 0111 targ T 0 

18 faultno 0001 1000 T 0 

19 faultg 0001 1001 T 0 

1A faulte 00011010 T 0 

1B faultge 00011011 T 0 

1C fault! 0001 1100 T 0 

10 faultne 00011101 T 0 

1E faultle 0001 1110 T 0 

1F faulto 0001 1111 T 0 

II 
0·11 



intef® INS'.T'RUCTION. SETREFERENCE 

Table 0.9. MEM Format Instruction Encodings 

31 .......... 24 23 .... 19 1B ... 14 13 ....... 12 11 ............................................ 0 

I 
Opcode 

I 
src/ I ABASE I Mode 

I 
Offset 

dst 

31 .......... 24 23 .... 19 1B ... 14 13 12 11 10 9 ... 7 65 4 ..... 0 

Opcode src/ ABASE Mode Scale 00 Index 
dst 

Displacement 

Effective Address 

eta= offset Opcode dst 0 0 offset 

offset( reg) Opcode dst reg 0 offset 

(reg) Opcode dst reg 0 0 0 I oo 

disp + B (IP) Opcode dst 0 0 00 

displacement 

(reg1 )[reg2 •scale] I Opcode dst reg1 0 scale I 00 reg2 

disp I Opcode dst I 1 0 0 00 

displacement 

disp(reg) I Opcode dst reg I 1 I 1 I 0 I 00 

displacement 

disp[reg •scale] Opcode dst 0 scale 00 reg 

displacement 

disp(reg1 )[reg2*scale] Opcode dst reg1 scale 00 reg2 

displacement 

Opcode Mnemonic Opcode Mnemonic 

BO ldob 9B ldl 
B2 st ob 9A stl 
B4 bx AO ldt 
B5 balx A2 stt 
B6 callx BO ld_g_ 
BB I dos 82 s!g_ 
BA stos co ldib 
BC Ida C2 stib 
90 Id CB I dis 
92 st CA stis 

0·12 



Appendix E 
Register and 
Data Structure Reference 



APPENDIX E 
REGISTER AND DATA STRUCTURE REFERENCE 

OVERVIEW 

Registers and data structures, listed alphabetically, are: 

Figure # Description Page 
E.1 Arithmetic Controls (AC) Register ..................................................................... E-2 
E.2 Hardware Breakpoint Control Register (BPCON) ............................................. E-3 
E.3 BCON Register ................................................................................................... E-3 
E.4 Control Table ...................................................................................................... E-4 
E.5 Data Address Breakpoint Registers (DABO - DAB 1) ........................................ E-5 
E.6 DMA Command Register (DMAC) ................................................................... E-5 
E.7 DMA Control Word ........................................................................................... E-6 
E.8 Fault Record ....................................................................................................... E-7 
E.9 Fault Table and Fault Table Entries .................................................................... E-8 
E.10 Procedure Stack Structure and Local Registers .................................................. E-9 
E.11 Initial Memory Image (IMI) ............................................................................... E-10 
E.12 Instruction Address Breakpoint Registers (IPBO - IPB 1) ................................... E-11 
E.13 Interrupt Control (ICON) Register ..................................................................... E-12 
E.14 Interrupt Mask (IMSK) and Interrupt Pending (IPND) Registers ...................... E-13 
E.15 Interrupt Mapping (IMAP2-IMAPO) Registers .................................................. E-14 
E.16 Storage of an Interrupt Record on the Interrupt Stack ........................................ E-15 
E.17 Interrupt Table .................................................................................................... E- l 6 
E.18 Memory Region Configuration Register (MCONO-MCON15) ......................... E-17 
E.19 Previous Frame Pointer Register (PFP) (rO) ....................................................... E-18 
E.20 Configuration Words in the PRCB ..................................................................... E-20 
E.21 Process Controls (PC) Register .......................................................................... E-20 
E.22 System Procedure Table ..................................................................................... E-21 
E.23 Trace Controls (TC) Register ............................................................................. E-22 



REGISTER AND DATA STRUCTURE REFERENCE 

Arithmetic Controls Register (AC) 

CONDITION CODE BITS-AC.cc -------------------------, 

(SEE TABLES 2-4, 2-5, AND 2-6) 

INTEGER-OVERFLOW FLAG -AC.of ----------------. 
(0) NO OVERFLOW 

(1) OVERFLOW 

INTEGER OVERFLOW MASK BIT - AC.om ----------. 

(0) NO MASK 

(1) MASK 

NO-IMPRECISE-FAUL TS BIT - AC.nif --------. 

(0) SOME FAUL TS ARE IMPRECISE 

(1) ALL FAULTS ARE PRECISE 

28 24 20 

ARITHMETIC CONTROLS REGISTER (AC) 

m RESERVED 
~ (INITIALIZE TO 0) 

16 12 

Figure E.1. Arithmetic Controls (AC) Register 

E-2 

4 

c c c 
c c c 
2 1 0 

270710-001-05 



REGISTER AND DATA STRUCTURE REFERENCE 

Breakpoint Control Register (BPCON) 

28 24 20 16 12 8 4 0 

BREAKPOINT 
CONTROL REGISTER 
(BPCON) 

D RESERVED 
(INITIALIZE TO 0) 

t___JL___JL___Jt___J 

DATA-ADDRESS 0 BREAKPOINT ENABLE - BPCON.eO 
(00) DISABLE 
(11) ENABLE 

DABO MODE (SEE TABLE) 

-------- DATA-ADDRESS 1 BREAKPOINT ENABLE- BPCON.e1 
(00) DISABLE 
(11) ENABLE 

---------- DAB1 MODE (SEE TABLE) 

DATA-ADDRESS BREAKPOINT MODES 

BREAK ON· 

00 STORE ONLY 
01 DATA ONLY (LOAD OR STORE) 
10 DATA OR INSTRUCTION FETCH 
11 ANY ACCESS 

270710-002-15 

Figure E.2. Hardware Breakpoint Control Register (BPCON) 

Bus Configuration Register (BCON) 

CONFIGURATION TABLE VALID ( BCON.ctv) -----------------------.] 
(0) TABLE NOT VALID 

(1) TABLE VALID 

INTERNAL RAM PROTECTION ENABLE (BCON.irp)--------------------. 

(0) PROTECTION OFF 

(1) PROTECTION ON 

28 

BUS CONFIGURATION 

REGISTER (BCON) 

D RESERVED 
(INITIALIZE TO 0) 

24 20 16 12 

270710-002-19 

Figure E.3. BCON Register 

E-3 



RE;GIS1'.ER ANQ 1DATA.Sl:RWCT~RE ,9EFERENCE 

Control Table 

31 

IP BREAKPOINT 0 (IPSO) 

IP BREAKPOINT 1 (IPB1) 

DATA ADDRESS BREAKPOINT 0 (DASO) 

DATA ADDRESS BREAKPOINT 1 (DAB1) 

INTERRUPT MAP 0 (IMAPO) 

INTERRUPT MAP 1 (IMAP1) 

INTERRUPT MAP 2 (IMAP2) 

INTERRUPT CONTROL (ICON) 

MEMORY REGION 0 CONFIGURATION (MCONO) 

MEMORY REGION 1 CONFIGURATION (MCON1) 

MEMORY REGION 2 CONFIGURATION (MCON2) 

MEMORY REGION 3 CONFIGURATION (MCON3) 

MEMORY REGION 4 CONFIGURATION (MCON4) 

MEMORY REGION 5 CONFIGURATION (MCONS) 

MEMORY REGION 6 CONFIGURATION (MCON6) 

MEMORY REGION 7 CONFIGURATION (MCON7) 

MEMORY REGION 8 CONFIGURATION (MCON8) 

MEMORY REGION 9 CONFIGURATION (MCON9) 

MEMORY REGION 10 CONFIGURATION (MCON10) 

MEMORY REGION 11 CONFIGURATION (MCON11) 

MEMORY REGION 12 CONFIGURATION (MCON12) 

MEMORY REGION 13 CONFIGURATION (MCON13) 

MEMORY REGION 14 CONFIGURATION (MCON14) 

MEMORY REGION 15 CONFIGURATION (MCON15) 

RESERVED (INITIALIZE TO O) 

BREAKPOINT CONTROL (BPCON) 

TRACE CONTROLS (TC) 

BUS CONFIGURATION CONTROL (BCON) 

Figure E.4. Control Table 

E-4 

0 

OH 

4H 

8H 

CH 

10H 

14H 

18H 

1CH 

20H 

24H 

28H 

2CH 

30H 

34H 

38H 

3CH 

40H 

44H 

48H 

4CH 

SOH 

54H 

58H 

SCH 

60H 

64H 

68H 

6CH 

270710-002-02 



REGISTER AND DATA STRUCTURE REFERENCE 

Data Address Breakpoint Registers (DABO-DAB1) 

DATA ADDRESS -----------~i 

111111111 I I I 111 I 11 I 11111111111111 
28 24 20 16 12 8 4 

DATA-ADDRESS BREAKPOINT 

REGISTERS (DABO-DAB1) 
270710-001-22 

Figure E.5. Data Address Breakpoint Registers (DABO - DAB1) 

OMA Command Register (DMAC) (sf2) 

CHANNEL ENABLE BITS - DMAC.ce -----------------------. 
(0) SUSPEND 
(1) ENABLE 

CHANNEL TERMINAL COUNT FLAGS - DMAC.ctc --------------~ 
(0) NON-ZERO BYTE COUNT 
(1) ZERO BYTE COUNT (SOFTWARE MUST RESET) 

CHANNEL ACTIVE FLAGS- DMAC.ca -------------~] (0) IDLE 
(1) ACTIVE 

CHANNEL DONE FLAGS - DMAC.cd ----------.1 (0) NOT DONE 
(1) DONE (SOFTWARE MUST RESET) 

28 24 20 16 

c c c c c c c c c 

m w w w w d d d a a 
3 2 1 0 3 2 1 0 3 2 

12 

c c c I c 
t t 

a 
c I c 

0 2 1 

8 

c 
e 
3 

DMACOMMAND 
REGISTER (DMAC) t~------- CHANNEL WAIT BITS - DMAC.cw 

(0) READ NEXT DESCRIPTOR 

c 
e 
2 

(1) DESCRIPTOR HAS BEEN READ 

'----------- PRIORITY MODE BIT - DMAC.pm 
(0) FIXED 

n RESERVED l...J (INITIALIZE TO 0) 

(1) ROTATING 

'------------ THROTILE BIT- DMAC.t 
(0) 4 DMA TO 1 USER CLOCK MAX 
(1) 1 DMA TO 1 USER CLOCK MAX 

~i ~ 
1 0 

270710-002-39 

Figure E.6. OMA Command Register (DMAC) 

E-5 

II 



Rl;:GISTERANO,DATA STRUCTURE REFERENCE 

OMA Control Word 

TRANSFER TYPE FIELD 
OOH 8- TO 8-BITS 
01 H 8- TO 16-BITS 
02H RESERVED 
03H 8- TO 32-BITS 
04H 16- TO 8-BITS 
05H 16- TO 16-BITS 
06H RESERVED 
07H 16- TO 32-BITS 
08H 8-BITS FLY-BY 
09H 16-BITS FLY-BY 
OAH 128-BITS FLY-BY QUAD 
OBH 32-BITS FL Y·BY 
OCH 32- TO 8-BITS 
OOH 32- TO 16-BITS 
OEH 128-TO 128-BITS QUAD 
OFH 32- TO 32-BITS 

DESTINATION ADDRESSING-------------------------. 
(0) INCREMENT 
(1)HOLD 

SOURCE ADDRESSING------------------------. 
(O) INCREMENT 
(1)HOLD 

SYNCHRONIZATION MODE BIT ---------------------. 
(O) SOURCE SYNCHRONIZED 
(1) DESTINATION SYNCHRONIZED 

SYNCHRONIZATION SELECT BIT 
(0) BLOCK (NON-SYNCHRONIZED) 
(1) DEMAND (SYNCHRONIZE) 

EOP!TC SELECT BIT----------------------. 
(0) TERMINAL COUNT 
(1) END OF PROCESS 

DESTINATION CHAINING SELECT BIT---------------. 
(0) NO CHAINING 
(1) CHAINED DESTINATION 

SOURCE CHAINING SELECT BIT----------------. 
(0) NO CHAINING 
(1) CHAINED SOURCE 

INTERRUPT-ON-CHAINING-BUFFER SELECT BIT---------. 
(0) NO INTERRUPT 
(1) INTERRUPT 

CHAINING WAIT SELECT BIT --------------... 
(0) WAIT FUNCTION DISABLED I 
(1) WAIT FUNCTION ENABLED + 

28 24 20 16 12 

OMA CONTROL WORD 
(INSTRUCTION OPERAND FOR SOMA INSTRUCTION) 

I RESERVED 
(INITIALIZE TO 0) 

Figure E.7. OMA Control Word 

E-6 

8 4 0 

270710-002-40 



REGISTER AND DATA STRUCTURE REFERENCE 

Fault Record 

31 

NFP-20 
~~~...:....:.~ ..... ..1.-~~~~~~-"'~~~~~~ .... ~~~~~~--1 

NFP-16
~~~~~~~~~~~~~~~~~~~~~~~~~~~~---! 

ARITHMETIC CONTROLS NFP-12 
.,.,,...,.,.,...,,..,......,...,...,...,.,..,.,.,,.-~~~~~~-,,,.,...,,,,..,.,..,.,.........,....,..,,.,.,.,..,,.,.~~~~~~---1 

FAUL T TYPE FAULT SUB--TYPE NFP-8 
'"'"'.-;;...-;;........_ ....... .-;;...-;;....1.-~~~~~~-"'-"'"'.-;;...-;;...-;;...-;;...-;;.."'""1.~~~~~~--1 

ADDRESS OF FAULTING INSTRUCTION NFP-4 

RESERVED 
270710-001-19 

Figure E.8. Fault Record 

E·7 

• 



REGISTER AND DATA STRUCTURE REFERENCE 

Fault Table 

31 FAULT TABLE 0 

PARALLEL FAULT ENTRY OH 
1-~~~~~~~~~~~~~~~~~~~~~~~~~~~--1 

TRACE FAULT ENTRY SH 
!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

OPERATION FAULT ENTRY 10H 

ARITHMETIC FAULT ENTRY 1 BH 

31 LOCAL-CALL ENTRY 2 1 0 

31 SYSTEM-CALL ENTRY 

FAULT-HANDLER PROCEDURE NUMBER 

0000 027FH 

f' ;c::1,1''l RESERVED (INITIALIZE TO 0) 
270710-002-12 

Figure E.9. Fault Table and Fault Table Entries 

E-8 



REGISTER AND DATA STRUCTURE REFERENCE 

Global and Local Registers 

PROCEDURE STACK 

PREVIOUS FRAME POINTER (PFP) rO 

CURRENT REGISTER SET 

go 

FRAME POINTER (FP) g15Ht----1': 

PREVIOUS FRAME POINTER (PFP) rO 

STACK POINTER (SP) r1 

RESERVED FOR RIP r2 

r15 

STACK POINTER (SP) r1 

RETURN INSTRUCTION POINTER ,2 
(RIP) 

r15 

USER ALLOCATED STACK 

PADDING AREA 

USER ALLOCATED STACK 

UNUSED STACK 

STACK GROWTH 
(TOWARD HIGHER ADDRESSES) 

i 

PREVIOUS 
STACK 
FRAME 

CURRENT 
STACK 
FRAME 

270710-002-04 

Figure E.10. Procedure Stack Structure and Local Registers 

E-9 

II 



REGISTER AND DATA STRUCTURE REFERENCE 

Initialization Boot Record (IBR) and Process Control Block (PRCB) 

FIXED DATA STRUCTURES RELOCATABLE DATA STRUCTURES 

ADDRESS INITIALIZATION BOOT RECORD: 
USER CODE· 

FFFFFFOOH 

FFFFFF10H 

FFFFFF14H 

FFFFFF18H 

FFFFFF2CH 

INITIAL BUS 
CONFIGURATION 

(LEAST SIGNIFICANT BYTE 
OF EACH WORD) 

FIRST INSTRUCTION 
POINTER 

PRCB POINTER 

6 CHECK WORDS 
(FOR BUS CONFIDENCE 

SELF-TEST) 

~{ 

PROCESS CONTROL BLOCK (PRCB): .....-
FAULT TABLE BASE ADDRESS 

CONTROL TABLE BASE ADDRESS .------
AC REGISTER INITIAL IMAGE 

FAULT CONFIGURATION WORD 

INTERRUPT TABLE BASE ADDRESS 

SYSTEM PROCEDURE 
TABLE BASE ADDRESS 

f 

RESERVED. ·:T 

ED ~ RESERV 
(INITIAL! ZETOO) . 

INTERRUPT STACK 

I--- POINTER 

INSTRUCTION CACHE 
CONFIGURATION WORD 

REGISTER CACHE 
CONFIGURATION WORD 

r------1 
CONTROL TABLE 

~ ~ 
r------1 

INTERRUPT TABLE 

?- )'-
r----

SYSTEM PROCEDURE 
TABLE 

?-. } .._____. 
OTHER ARCHITECTURALLY 

DEFINED DATA 
STRUCTURES(NOT 

REQUIRED AS PART OF IMI) 

Figure E.11. Initial Memory Image (IMI) 

E-10 

OH 

4H 

SH 

CH 

10H 

14H 

18H 

1CH 

20H 

24H 

270710-002-44 



REGISTER AND DATA STRUCTURE REFERENCE 

Instruction Address Breakpoint Registers (IPBO-IPB1) 

INSTRUCTION-ADDRESS BREAKPOINT ENABLE· IPB.e ----------------! 
(00) DISABLE 
(11) ENABLE 

INSTRUCTION ADDRESS ---------

111111111111111111111111111111 m 
28 24 

INSTRUCTION-ADDRESS BREAKPOINT 

REGISTERS (IPBO-IPB1) 

20 16 12 

270710-002-14 

Figure E.12. Instruction Address Breakpoint Registers (IPBO - IPB1) 

E-11 

II 



REGISTER AND DATA STRUCTURE REFERENCE 

Interrupt Control Register (ICON) 

INTERRUPT MODE- ICON.im ---------------------------...., 
(00) DEDICATED 

(01) EXPANDED 

(10) MIXED 

(11) RESERVED 

SIGNAL DETECTION MODE - ICON.sdm ------------------...., 
(0) LEVEL-LOW ACTIVATED 

(1) FALLING-EDGE ACTIVATED 

GLOBAL INTERRUPTS ENABLE - ICON.gie ------------~ 

(0) ENABLED 

(1) DISABLED 

MASK OPERATION - ICON.mo---------------. 

(00) MOVE TO r3, MASK UNCHANGED 

(01) MOVE TO r3 AND CLEAR 

FOR DEDICATED MODE 

INTERRUPTS 

(10) MOVE TO r3 AND CLEAR 

FOR EXPANDED MODE 

INTERRUPTS 

(11) MOVE TO r3 AND CLEAR 

FOR DEDICATED AND 

EXPANDED MODE 

INTERRUPTS 

VECTOR CACHE ENABLE - ICON.vce -----------. 
(0) FETCH FROM EXTERNAL MEMORY 

(1) FETCH FROM INTERNAL RAM 

SAMPLING MODE - ICON.sm ------------... 
(0) DEBOUNCE 

(1) FAST 

OMA SUSPENSION - ICON.dmas ----------. 

(0) RUN ON INTERRUPT 

(1) SUSPEND ON INTERRUPT I r---1 

28 24 20 

INTERRUPT CONTROL REGISTER (ICON) 

RESERVED 
(INITIALIZE TO 0) 

16 

m 
a 
s 

s v m m 

m c a 
e 1 

12 

s 
d 
m m m m 
7 6 5 4 

8 

s 
d 
m 
3 

Figure E.13. Interrupt Control (ICON) Register 

E-12 

s s s i 
d d d 
m m m m m 

2 1 0 1 0 

0 

270710-002-10 



REGISTER AND DATA STRUCTURE REFERENCE 

Interrupt Pending (IPND) (sfO) and Interrupt Mask Registers (IMSK) (sf1) 

EXTERNAL INTERRUPT PENDING BITS - IPND.xip ----------------,! 
(0) NO INTERRUPT 

(1) PENDING INTERRUPT 

OMA INTERRUPT PENDING BITS - IPND.dip ------------.! 
(0) NO INTERRUPT 

(1) PENDING INTERRUPT 

d d d d x x x x 
i i I I i I 

p p p 
1 0 6 

28 24 20 16 12 

INTERRUPT PENDING REGISTER (IPND) · SFO 

EXTERNAL INTERRUPT MASK BITS - IMSK.x1m 

(0) MASKED 

(1) NOT MASKED 

OMA INTERRUPT MASK BITS - IMSK.dim ------------..., 

(0) MASKED 

(1) NOT MASKED l I 
d d d d x x x x 
i I I i i i i I 

m m m m m m m m 
3 2 1 0 7 6 5 4 

28 24 20 16 12 4 

INTERRUPT MASK REGISTER (IMSK) • SF1 

~ RESERVED 
~ (INITIALIZE TO 0) 

x x x x 
i I I I 

p p 
2 0 

0 

x x x x 
i i i i 

"' m m m 
3 2 1 0 

0 

270710-001-17 

Figure E.14. Interrupt Mask (IMSK) and Interrupt Pending (IPND) Registers 

E-13 

II 



REGISTER AND DATA STRUCTURE REFERENCE 

Interrupt Map Registers (IMAPO-IMAP2) 

EXTERNAL INTERRUPT 0 FIELD - IMAPO.xO 

EXTERNAL INTERRUPT 1 FIELD - IMAPO.x1 

EXTERNAL INTERRUPT 2 FIELD - IMAPO.x2 

EXTERNAL INTERRUPT 3 FIELD - IMAPO.x3 

28 24 

INTERRUPT MAP REGISTER O (IMAPO) 

EXTERNAL INTERRUPT 4 FIELD-IMAP1.x4 

EXTERNAL INTERRUPT 5 FIELD - IMAP1 .x5 

EXTERNAL INTERRUPT 6 FIELD - IMAP1.x6 

EXTERNAL INTERRUPT 7 FIELD - IMAP1 .x7 

28 24 

INTERRUPT MAP REGISTER 1 (IMAP1) 

DMA INTERRUPT 0 FIELD - IMAP2 dO 

DMA INTERRUPT 1 FIELD - IMAP2.d1 

DMA INTERRUPT 2 FIELD - IMAP2.d2 

DMA INTERRUPT 3 FIELD IMAP2.d3 

28 24 

INTERRUPT MAP REGISTER 2 (IMAP2) 

rm RESERVED 
~ (INITIALIZE TOO) 

20 16 

20 16 

20 16 

l 
xx xx xx xx 
33332222 
32103210 

12 8 

l 

x 
1 
2 

x x 
7 7 
7 6 

x x x x 
7 7 6 6 
5 4 7 6 

x x x 

12 

l 

6 5 5 
4 7 6 

dddddddddd 
333322 21 
321032 03 

12 

I I 
x x x x x 
1 0 0 0 0 
0 3 2 1 0 

4 0 

1 I 

I 

xx xx xx 
554444 
547654 

0 

I 
d d d d d 
1 0 0 0 0 
0 3 2 1 0 

4 0 

270710-002-11 

Figure E.15. Interrupt Mapping (IMAP2-IMAPO) Registers 

E-14 



REGISTER AND DATA STRUCTURE REFERENCE 

Interrupt Record 

CURRENT STACK 
(LOCAL, SUPERVISOR, OR INTERRUPT STACK) {.______· ___ t r---- OO>"<ITT~M• i 

STACK 
GROWTH 

I 
RESERVED 

INTERRUPT STACK 

PADDING AREA 

NEW FRAME 

INTERRUPT 
RECORD 

270710·002·08 

Figure E.16. Storage of an Interrupt Record on the Interrupt Stack 

E-15 



REGISTER AND DATA STRUCTURE REFERENCE 

Interrupt Table 

31 8 7 0 

PENDING PRIORITIES 
0 

PENDING INTERRUPTS 

20H 

!-----------~------------------' ENTRY 8 24H (VECTOR 8) 

1------------------------------1 
ENTRY 9 28H (VECTOR 9) !------------------------------' ENTRY10 2CH (VECTOR 10) 

'"""~~~~~l.l;i;; ..... ~l.l;i;;l.l;i;;l.l;i;;l.l;i;;~l.l;i;;~l.l;i;;l.l;l;;l.l;i;;l.l;i;;....,.l.l;l;;l.l;l;;~~l.l;i;;l.l;i;;l.l;i;;~ 3EOH (VECTOR 247) 

3E4H (VECTOR 248) 

3E8H (VECTOR 249) 

3FOH (VECTOR 251) 
3F4H (VECTOR 252) 

_____________ E_N_T_R_Y_2_ss ____________ __. 400H (VECTOR 255) 

31 VECTOR ENTRY 

I INSTRUCTION POINTER 

t?Hi> .. ::· \ I RESERVED (INITIALIZE TO 0) 

WJI 11141 PRESERVED 

Figure E.17. Interrupt Table 

E-16 

2 1 0 

Lt ENTRY TYPE 
00 -NORMAL 
10 -TARGET IN CACHE 
01, 11-RESERVED 

270710-002-07 



REGISTER AND DATA STRUCTURE REFERENCE 

Memory Region Configuration Registers (MCONO-MCON15) 

BURST ENABLE -----------------------------. 
(0) DISABLED 
(1)ENABLED 

READY/BTERM ENABLE 
(0) DISABLED 
(1) ENABLED 

READ PIPELINING ENABLE 
(0) DISABLED 
(1) ENABLED 

NRAD WAIT STATES 
0-31 WAIT STATES 

N ROD WAIT STATES 
0-3 WAIT STATES 

NxoA WAIT STATES 
0-3 WAIT STATES 

NwAD WAIT STATES 
0·31 WAIT STATES 

N WOO WAIT STATES 
0-3 WAIT STATES 

28 

MEMORY REGION 
CONFIGURATION 
REGISTERS 
(MCON 0 - MCON 15) 

I RESERVED 
(INITIALIZE TO 0) 

l 
16 12 

BUS WIDTH 
(00) 8-BIT BUS 
(01) 16-BIT BUS 
(1 O) 32-BIT BUS 
(11) RESERVED 

,__----------BYTE ORDER 
(0) LITTLE ENDIAN 
(1) BIG ENDIAN 

4 

270710-002-18 

Figure E.18. Memory Region Configuration Register (MCONO-MCON15) 

E-17 

II 



REGISTER AND DATA STRUCTURE REFERENCE 

Previous Frame Pointer (PFP) (rO) 

RETURN STATUS: 

RETURN-TYPE FIELD -PAP.rt ------------------------.] 

p;;~~;;~;~~;::;_:1_:_~_:_,-_P-FP-.p------.+ I 
28 24 20 16 12 8 4 0 

PREVIOUS FRAME POINTER (PFP) 

Q RESERVED 
(INITIALIZE TO 0) 

270710-002-06 

Figure E.19. Previous Frame Pointer Register (PFP) (rO) 

E-18 



REGISTER AND DATA STRUCTURE REFERENCE 

Process Control Block Configuration Words (PRCB) 

AC REGISTER INITIAL IMAGE 

CONDITION CODE BITS-AC.cc-------------------~ 

INTEGER-OVERFLOW FLAG -AC.of -----------~ 
(0) NO OVERFLOW 

(1) OVERFLOW 

INTEGER OVERFLOW MASK BIT - AC.om ---------. 

(0) ENABLE OVERFLOW FAUL TS 

(1) MASK OVERFLOW FAULTS 

NO-IMPRECISE-FAULTS BIT - AC.nil -----~ 
(0) ALLOW IMPRECISE FAULT CONDITIONS 

(1) PREVENT IMPRECISE FAULT CONDITIONS 

FAULT CONFIGURATION WORD 

12 

MUST BE SET TO 1 -------------------------. 

28 24 20 16 1 

t 12 

~-------- MASK NON-ALIGNED BUS REQUEST FAULT 
(0) ENABLE THE FAULT 
(1) MASK THE FAULT 

INSTRUCTION CACHE CONFIGURATION WORD 

r\Yfl~l+d r~1J{r····1~1· 'f ••l.•·.1·.·tl••·····1••··· .. 1 r·······1·····•··1······•1•····· r···••t.·.·• ... 1.•····.1.····•/1•· ·1···· •. ·1···.··J· .•... ·r · 1.•·····•.1···· ••.1.····.1 

REGISTER CACHE CONFIGURATION WORD 

L 12 8 4 

DISABLE INSTRUCTION CACHE 
(0) ENABLE CACHE 
11) DISABLE CACHE 

NUMBER OF CACHED REGISTER SETS (0-15) 1 
~ N ~ 16 

12 4 

rJ RESERVED 
~ (INITIALIZE TO 0) 

270710-002-45 

Figure E.20. Configuration Words in the PRCB 

E-19 

II 



REGISTER AND DATA STRUCTURE REFERENCE 

Process Controls Register (PC) 

TRACE-ENABLE BIT-PC.le ---------------------------. 
(0) NO TRACE FAULTS 

(1) GENERATE TRACE FAULTS 

EXECUTION-MODE FLAG- PC.em ------------------------. 
(O) USER MODE 

(1) SUPERVISOR MODE 

TRACE-FAULT-PENDING FLAG - PC.tip --------------. 
(O) NO FAULT PENDING 

(1) FAULT PENDING 

STATE FLAG - PC.s 

(O) EXECUTING 

(1) INTERRUPTED 

PRIORITY FIELD - PC.p -------~ 
(0-31) PROCESS PRIORITY 

28 24 

PROCESS CONTROLS REGISTER (PC) 

~ RESERVED 
(DO NOT MODIFY) 

p p p p p 
4 3 2 1 0 

20 16 12 8 

Figure E.21. Process Controls (PC) Register 

E-20 

4 0 

270710-002-03 



REGISTER AND DATA STRUCTURE REFERENCE 

System Procedure Table 

TRACE 
'I llH-- CONTROL 

BIT 

i--------------------P-R_o_cF_D_u_R_E_EN_T_R_Y_o ____________________ -t30H 

PROCEDURE ENTRY 1 
i-----------------------------------------------------t34H 

PROCEDURE ENTRY 2 
i-------------------------------------------------------i38H 

3CH 

i-------------------------------------------------------t438H 
PROCEDURE ENTRY 259 

'-------------------------------------------------------'43CH 

31 PROCEDURE ENTRY 2 1 0 

I ADDRESS I I 
L.__J 

~j,: : 'I RESERVED (INITIALIZE TO 0) 

vm ff /1 PRESERVED 

L ENTRY TYPE: 
00-LOCAL 
10-SUPERVISOR 

270710-002-05 

Figure E.22. System Procedure Table 

E-21 



REGISTER AND DATA STRUCTURE REFERENCE 

Trace Controls Register (TC) 

TRACE-MODE BITS 

INSTRUCTION TRACE MODE· TC.i --------------------------. 
BRANCHTRACEMODE·TC.b--------------------------. 

CALL TRACE MODE· TC.c ------------------------~ 

:~~~RR:T~:~CTER~~~~~~~r- T-C-.p--- ----------------------------------------------------------------------+::
1
::.j--.j j 

SUPERVISOR TRACE MODE· TC.s -------------------­
BREAKPOINT TRACE MODE· TC.br-------------------. 

~ M ~ 16 

TRACE­

CONTROLS 

REGISTER (TC) 

d d 
1 0 
f f 

d 
0 
f 

i 
0 
f 

c b i 
f f f 

RACE-~VENT FLAGS 
8 

INSTRUCTION ·TC.if 

BRANCH ·TC.bf 

CALL· TC.cf 

RETURN· TC.rt 
.._ ________ PRE-RETURN· TC.pf 

'----------- SUPERVISOR· TC.st 

'------------ BREAKPOINT· TC.brt 

s p 

4 

HARDWARE BREAKPOINT-EVENT FLAGS 
.._ ___________ INSTRUCTION-BREAKPOINT 0 · TC.iOf 

'-------------- INSTRUCTION-ADDRESS BREAKPOINT 1 · TC.i1f 
,__ ______________ DATA-ADDRESS BREAf(POINT 0 · TC.dOf 

---------------- DATA-ADDRESS BREAKPOINT 1 · TC.d1f 

RESERVED 
(INITIALIZE TO 0) 

0 

270710-002· 13 

Figure E.23. Trace Controls (TC) Register 

E-22 



Glossary 



GLOSSARY 

Address Space. An atTay of bytes used to store program code, data, stacks and system data 
structures required to execute a program. Address space is linear - also called flat -
and byte addressable, with addresses running contiguously from 0 to 232 - 1. It can be 
mapped to read-write memory, read-only memory and memory-mapped I/O. i960 
architecture does not define a dedicated, addressable 1/0 space. 

Address. A 32-bit value in the range 0 to FFFF FFFFH used to reference in memory a single 
byte, half-word (2 bytes), word (4 bytes), double-word (8 bytes), triple-word (12 
bytes) or quad-word (I 6 bytes). Choice depends on the instruction used. 

Arithmetic Controls (AC) Register. A 32-bit register that contains flags and masks used in 
controlling the various arithmetic and comparison operations that the processor 
performs. Flags and masks contained in this register include the condition code flags, 
integer-overflow flag and mask bit and the no-imprecise-faults (NIF) bit. All unused 
bits in this register are reserved and must be set to 0. 

Asynchronous Faults. Faults that occur with no direct relationship to a particular instruction 
in the instruction stream. When an asynchronous fault occurs, the address of the 
faulting instruction in the fault record and the saved IP are undefined. i960 core 
architecture does not define any fault types that are asynchronous. 

Condition Code Flags. AC register bits 0, 1 and 2. The condition code flags indicate the 
results of certain instructions - usually compare instructions. Other instructions, such 
as conditional branch instructions, examine these flags and perform functions 
according to their state. Once the processor sets the condition code flags, they remain 
unchanged until the processor executes another instruction that uses these flags to 
store results. 

Execution Mode Flag. PC register bit I. This flag determines whether the processor is 
operating in user mode (0) or supervisor mode (I). 

Fault Call. An implicit call to a fault handling procedure. The processor performs fault calls 
automatically without any intervention from software. It gets pointers to fault 
handling procedures from the fault table. 

Fault Table. An architecture-defined data structure that contains pointers to fault handling 
procedures. Each fault table entry is associated with a particular fault type. When the 
processor generates a fault, it uses the fault table to select the proper fault handling 
procedure for the type of fault condition detected. 

Fault. An event that the processor generates to indicate that, while executing the program, a 
condition arose which could cause the processor to go down a wrong and possibly 
disastrous path. One example of a fault condition is a divisor operand of zero in a 
divide operation; another example is an instruction with an invalid opcode. 

FP. Frame Pointer (see). 

Glossary-1 



GLOSSARY 

Frame Pointer (FP). The address of the first byte in the current (topmost) stack frame of the 
procedure stack. The FP is contained in global register g15. 

Frame. Stack Frame (see). 

Global Registers. A set of 16 general-purpose registers (gO through gl5) whose contents are 
preserved across procedure boundaries. Global registers are used for general storage 
of data and addresses and for passing parameters between procedures. 

IBR. Initialization Boot Record (see). 

IMI. Initial Memory Image (see). 

Imprecise Faults. Faults that arc allowed to be generated out-of-order from where they occur 
in the instruction stream. When an imprecise fault is generated, the processor indicates 
the address of the faulting instruction, but it does not guarantee that software will be 
able to recover from the fault and resume execution of the program with no break in 
the program's control flow. The NIF bit in the arithmetic controls register determines 
whether all faults must be precise (1) or some faults are allowed to be imprecise (0). 

Initialization Boot Record (IBR). One of three IMI components, IBR is the primary data 
structure required to initialize the i960 CA microprocessor. IBR is 12-word structure 
which must be located at address FFFF FFOOH. 

Initial Memory Image (IMI). Comprises the minimum set of data structures the processor 
needs to initialize its system. Performs three functions for the processor: 1) provides 
initial configuration information for the core and integrated peripherals; 2) provides 
pointers to system data structures and the first instruction to be executed after 
processor initialization; 3) provides checksum words that the processor uses in self­
test at startup. See also IBR, PRCB and System Data Structures. 

Instruction Cache. A memory array used for temporary storage of instructions fetched from 
main memory. Its purpose is to streamline instruction execution by reducing the 
number of instruction fetches required to execute a program. 

Instruction Pointer (IP). A 32-bit register that contains the address (in the address space) of 
the instruction currently being executed. Since instructions are required to be aligned 
on word boundaries in memory, the IP's two least-significant bits are always zero. 

Integer Overflow Flag. AC register bit 8. When integer overflow faults are masked, the 
processor sets the integer overflow flag whenever integer overflow occurs to indicate 
that the fault condition has occurred even though the fault has been masked. If the 
fault is not masked, the fault is allowed to occur and the flag is not set. 

Integer Overflow Mask Bit. AC register bit 12. This bit masks the integer overflow fault. 

Interrupt Call. An implicit call to a interrupt handling procedure. The processor performs 
interrupt calls automatically without any intervention from software. It gets vectors 
(pointers) to interrupt handling procedures from the interrupt table. 

Glossary-2 



GLOSSARY 

Interrupt Stack. Stack the processor uses when it executes interrupt handling procedures. 

Interrupt Table. An architecturally-defined data structure that contains vectors to interrupt 
handling procedures and fields for storing pending interrupts. When the processor 
receives an interrupt, it uses the vector number that accompanies the interrupt to 
locate an interrupt vector in the interrupt table. The intyrrupt table's pending interrupt 
fields contain bits that indicate priorities and vector numbers of interrupts waiting to 
be serviced. 

Interrupt Vector. A pointer to an interrupt handling procedure. In the i960 architecture, 
interrupts vectors are stored in the interrupt table. 

Interrupt. An event that causes program execution to be suspended temporarily to allow the 
processor to handle a more urgent chore. 

Literals. A set of 32 ordinal values ranging from 0 to 31 (5 bits) that can be used as operands 
in certain instructions. 

Local Call. A procedure call that does not require a switch in the current execution mode or a 
switch to another stack. Local calls can be made explicitly through the call, callx and 
calls instructions and implicitly through the fault call mechanism. 

Local Registers. A set of 16 general-purpose data registers (rO through rl5) whose contents 
are associated with the procedure currently being executed. Local registers hold the 
local variables for a procedure. Each time a procedure is called, the processor 
automatically allocates a new set of local registers for that procedure and saves the 
local registers for the calling procedure. 

Memory. Array to which address space is mapped. Memory can be read-write, read-only or a 
combination of the two. A memory address is generally synonymous with an address 
in the address space. 

NIF. No Imprecise Faults Bit (see). 

NMI. Non Maskable Interrupt (see). 

No Imprecise Faults (NIF) Bit. AC register bit 15. This flag determines whether or not 
imprecise faults are allowed to occur. If set, all faults are required to be precise; if 
clear, certain faults can be imprecise. 

Non Maskable Interrupt (NMI). Provides an interrupt that cannot be masked and has a 
higher priority than priority-31 interrupts and priority-31 process priority. The core 
services NMI requests immediately. 

Parallel Faults. A condition which occurs when multiple execution units, executing 
instructions in parallel, report multiple faults simultaneously. Setting the NIF bit 
prohibits execution conditions which could cause parallel faults. 



GLOSSARY 

Pending Interrupt. An interrupt that the processor saves to be serviced at a later time. When 
the processor receives an interrupt, it compares the interrupt's priority with the priority 
of the current processing task. If the priority of the interrupt is equal· to or less than 
that of the current task, the processor saves the interrupt's priority and vector number 
in the pending interrupt fields of the interrupt table, then continues work on the 
current processing task. 

PFP. (See Previous Frame Pointer.) 

Pointer. An address in the address space (or memory). The term pointer generally refers to the 
first byte of a procedure or data structure or a specific byte location in a stack. 

PRCB. Process Control Block (see). 

Precise Faults. Faults generated in the order in which they occur in the instruction stream and 
with sufficient fault information to allow software to recover from the faults without 
altering program's control flow. The AC register NIF bit and the syncf instruction 
allow software to force all faults to be precise. 

Previous Frame Pointer (PFP). The address of the previous stack frame's first byte. It is 
contained in bits 4 through 31 of local register rO. 

Priority Field. PC register bits 16 through 20. This field determines processor priority (from 0 
to 31). When the processor is in the executing state, it sets its priority according to this 
value. It also uses this field to determine whether to service an interrupt immediately 
or to save the interrupt for later service. 

Priority. A value from 0 to 31 that indicates the priority of a program or interrupt; highest 
priority is 31. The processor stores the priority of the task (program or interrupt) that 
it is currently working on in the priority field of the PC register. See also NMI. 

Process Control Block (PRCB). One of three (IMI) components, PRCB contains base 
addresses for system data structures and initial configuration information for the core 
and integrated peripherals. 

Process Controls (PC) Register. A 32-bit register that contains miscellaneous pieces of 
information used to control processor activity and show current processor state. Flags 
and fields in this register include the trace enable bit, execution mode flag, trace fault 
pending flag, state flag, priority field and internal state field. All unused bits in this 
register are reserved and must be set to 0. 

Register Scoreboarding. Internal flags that indicate a particular register or group of registers 
is be!ng used in an operation. This feature enables the processor to execute some 
instructions in parallel and out-of-order. When the processor begins executing an 
instruction, it sets the scoreboard flag for the destination register in use by that 
instruction. If the instructions that follow do not use scoreboarded registers, the 
processor is able to execute one or more of those instructions concurrently with the 
first instruction. 

Glossary~4 



GLOSSARY 

Return Instruction Pointer (RIP). The address of the instruction following a call or branch­
and-link instruction that the processor is to execute after returning from the called 
procedure. The RIP is contained in local register r2. When the processor executes a 
procedure call, it sets the RIP to the address of the instruction immediately following 
the procedure call instruction. 

Return Type Field. Bits 0. I and 2 of local register rO. When a procedure call is made using 
the integrated call and return mechanism. this field indicates the call type: local, 
supervisor, interrupt or fault. The processor uses this information to select the proper 
return mechanism when returning from the called procedure. 

RIP. See Return Instruction Pointer. 

SP. See Stack Pointer. 

Special Function Registers (SFRs). A set of implementation-defined registers that represent 
an extension to the basic register set of the i960 architecture. They are intended to 
allow communication between the core processor and specially designed 
coprocessors. When special function registers arc implemented, they can be used as 
operands in any instruction that accepts a global or local register as an operand. 

Stack Frame. A block of bytes on a stack used to store local variables for a speci fie procedure. 
Another term for a stack frame is an activation record. Each procedure that the 
processor calls has its own stack frame associated with it. A stack frame is always 
aligned on a 64-byte boundary. The first 64 bytes in a stack frame are reserved for 
storage of the local registers associated with the procedure. The frame pointer (FP) 
and stack pointer (SP) for a particular frame indicate location and boundaries of a 
stack frame within a stack. 

Stack Pointer (SP). The address of the last byte in the current (topmost) frame of the 
procedure stack. The SP is contained in local register rl. 

Stack. A contiguous array of bytes in the address space that grows from low addresses to high 
addresses. It consists of contiguous frames. one frame for each active procedure. i960 
architecture defines three stacks: local. supervisor and interrupt. 

State Flag. PC register bit 10. This flag indicates to software that the processor is currently 
executing a program (0) or servicing an interrupt (I). 

State. The type of task that the processor is currently working on: a program or an interrupt 
handling procedure. The processor sets the PC register state flag to indicate its current 
state. 

Status and Control Registers. A set of four architecturally-defined registers - each 32-bits in 
length - that contain status and control information used in controlling program flow. 
These registers include the instruction pointer (IP), AC register, PC register and TC 
register. 



GLOSSARY 

Supervisor Call. A system call (made with the calls instruction) where the entry type of the 
called procedure is 102. If the processor is in user mode when a supervisor call is 
made, it switches to the supervisor stack and to supervisor mode. 

Supervisor Mode. One of two execution modes - user and supervisor - that the processor can 
be in. The processor uses the supervisor stack when in supervisor mode. Also, while 
in supervisor mode, software is allowed to execute the modpc instruction and any 
other implementation-defined instructions that are designed to be supervisor mode 
instructions. 

Supervisor Stack Pointer. The address of the first byte of the supervisor stack. The supervisor 
stack pointer is contained in bytes 12 through 15 of the system procedure table and the 
trace table. 

Supervisor Stack. The procedure stack that the processor uses when in supervisor mode. 

System Call. An explicit procedure call made with the calls instruction. The two types of 
system calls are a system-local call and system-supervisor call. On a system call, the 
processor gets a pointer to the system procedure through the system procedure table. 

System Data Structures. One of three lMI components. The following system data structures 
contain values the processor requires for initialization: PRCB, IBR, system procedure 
table, control table, interrupt table. 

System Procedure Table. An architecturally-defined data structure that contains pointers to 
system procedures and (optionally) to fault handling procedures. It also contains the 
supervisor stack pointer and the trace control flag. 

Trace Table. An architecturally-defined data structure that contains pointers to trace-fault­
handling procedures. The trace table has the same structure as the system procedure 
table. 

Trace Control Bit. Bit 0 of byte 12 of the system procedure table. This bit specifies the new 
value of the trace enable bit when a supervisor call causes a switch from user mode to 
supervisor mode. Setting this bit to I enables tracing; setting it to 0 disables tracing. 

Trace Controls (TC) Register. A 32-bit register that controls processor tracing facilities. This 
register contains one event bit and one mode bit for each trace fault subtype (i.e., 
instruction, branch, call, return, prereturn, supervisor and breakpoint). The mode bits 
enable the various tracing modes; the event flags indicate that a particular type of 
trace event has been detected. All the unused bits in this register are reserved and must 
be set to 0. 

Trace Enable Bit. PC register bit 0. This bit determines whether trace faults are to be 
generated (1) or not generated (0). 

Glossary-6 



GLOSSARY 

Trace Fault Pending Flag. PC register bit 10. This flag indicates that a trace event has been 
detected (I) but not yet generated. Whenever the processor detects a trace fault at the 
same time that it detects a non-trace fault, it sets the trace fault pending flag then calls 
the fault handling procedure for the non-trace fault. On return from the fault 
procedure for the non-trace fault, the processor checks the trace fault pending flag. If 
set, it generates the trace fault and handles it. 

Tracing. The ability of the processor to detect execution of certain instruction types, such as 
branch, call and return. When tracing is enabled, the processor generates a fault 
whenever it detects a trace event. A trace fault handler can then be designed to call a 
debug monitor to provide information on the trace event and its location in the 
instruction stream. 

User Mode. One of two execution modes - user and supervisor - that the processor can be in. 
When the processor is in user mode, it uses the local stack and is not allowed to use 
the modpc instruction or any other implementation-defined instruction that is 
designed to be used only in supervisor mode. 

Vector Number. The number of an entry in the interrupt table where an interrupt vector is 
stored. The vector number also indicates the priority of the interrupt. 

Vector. See Interrupt Vector. 

Glossary-7 



Index 



AC termination, 14-24 

A31:2, 11-34 

Abase, 3-5 

absolute addressing modes 
description of, 3-4 

AC initial image, 14-8 

AC register, 2-15 
(See also arithmetic controls register) 
condition code flags, 2-15 
integer overflow flag, 2-17 
no imprecise faults bit, 2-17 

AC.cc, 9-4 

accesses 
bus controller, 11-2 

add instructions, 4-8 

add with carry instruction, 4-8 

addc, 4-8, 9-8 

addi, addo, 4-8, 9-9 

addr, 9-3 

address bus, 11-34 

Address Generation Unit, A-17 

address space, 2-9 
requirements for portable code, C-1 

address strobe, 11-34 

addressing modes, used in instructions 
abase, 3-5 
absolute, 3-4 
description of, 3-4 
examples, 3-6 
index, 3-5 
index with displacement, 3-5 
IP with displacement, 3-6 
register indirect, 3-5 
register indirect with index, 3-5 
scale factor, 3-5 

ADS, 11-34 

INDEX 

arbitration 
bus controller, 11-26 

Arithmetic Controls (AC) register 
(See also AC register), 2-15, E-2 
modify arithmetic controls instruction, 
4-17 
no imprecise faults bit, 7-19 

arithmetic instructions, 4-7 

arithmetic zero-divide fault, 7-3, 9-36, 9-37, 
9-50 

assembly-language syntax, 4-1 

asynchronous faults, 7 -20 

atadd, 4-17, 9-12 

atmod, 4-17, 9-13 

atomic 
access, 2-10 
description of, 2-10 
instructions, 4-17 
operand alignment, 2-11 
operations, 11-25 
posting interrupts, 6-4 

b, 4-13, 9-14 

bal, balx, 4-13, 5-18, 8-4, 9-16 

bbc, bbs, 4-14, 9-18 

BCON Register, 10-6, 10-7, E-3 

BCU, 13-29, A-18 
(See also bus controller unit) 
instructions, A-20 
queues, A-20 

be, bg, bge, 4-14, 9-20 

BE3:0, 11-34 

big endian, 10-2 
byte order, 2-12, l 0-4 
memory configuration, 11-23 

bits and bit fields 
bit field instructions, 4-11 

AGU (See also address generation unit), A-6, 
A-17 

bit operation instructions, 4-10 
description of, 3-3 

Pipeline, A-17 

alignment requirements, 2-11 

alterbit, 4-10, 9-10 

and, andnot, 4-10, 9-11 

bl, ble, bne, 4-14, 9-20 

BLAST signal, 11-34 

lndex-1 



INDEX 

block diagrams 
128x32 burst EPROM system, B-46 
8-bit interface, B-39 
booting from 27960CA burst EPROM, 
B-47 
burst DRAM, B-31 
connections to burst EPROM, B-45 
DRAM system with DMA refresh, B-21 
interface to 82596CA coprocessor, B-52 
LAN coprocessor (82596CA), B-49 
pipelined SRAM interface, B-11 
SRAM interface, B-2 
two-way interleaved memory system, 
B-36 

block mode DMA 
channel, 13-2 
transfers, 13-1 
request length, 13-7 

bno, ho, 4-14, 9-20 
important considerations, 9-20 

BOFF, 11-28, 11-38 

BPCON, 8-5 

branch and link, 4-13, 5-18 

branch 
instructions, 4-13 
pipeline, A-21 
prediction, 4-2, A-42 
trace event flag, 8-2 
trace fault, 7-3 
trace mode, 8-4 
trace mode bit, 8-2 

breakpoint 
fault, 7-3, 9-44, 9-48 
register, 8-1 
trace event flag, 8-2 
trace mode, 8-5 
trace mode bit, 8-2 
description of, 8-7 

BREQ pin, 11-37 

BTERM signal, 11-35 

burst accesses, 11-14, 11-15 

burst bus controller, 10-3, 11-12 

burst EPROM interface example, B-44 

burst transfers 
enabling and disabling, 10-3 

Bus backoff (BOFF), 11-28 

Bus Configuration Register (BCON), 10-6, 
10-7, 14-6 

Bus Controller, 1-4, A-18 
address bus, 11-34 
address strobe, 11-34 
arbitration, 11-26 
BCON register, 10-6 
burst accesses, 11-14 
burst control, 10-3, 11-12 
bus access, 11-2, 11-34 
bus arbitration, 11-37 
bus backoff, 11-38 
bus queue, 10-12 
bus requests, 11-1 
bus width, 10-2 
byte enables, 10-2, 11-34 
byte order, 10-2, 10-4, 11-23 
changing configuration, 10-8 
data bus, 11-33 
data packing unit, 10-12 
examples, B-1 
function overview, 10-1 
HOLDA reset, 11-27 
implementation, 10-11 
initialization, 14-5 
Memory Region Configuration Table, 
14-5 
non-burst requests, 11-10 
operation, 11-2 
pin definitions, 11-2, 11-31 
pipeline, A-18 
pipelined reads, 10-3, 11-17 
programming, 10-5 
pipelined waveforms, 11-17 
Region Configuration Options, 10-2 
region table definition, 10-5 
terminology (request, access), 11-1 
transceiver control, 11-36 
wait states, 10-3, 11-4 
waveforms, 11-15, 11-16 

Bus Controller Unit (BCU), 13-29 

bus interface examples, B-1 

bus queue, 10-12, A-20 

bus requests 
aligned, 10-8 
unaligned, 10-8 

lndex-2 



INDEX 

bus width, 10-2, 11-9 

bx, 4-13, 9-14 

byte enable encodings, 11-9 

byte enables, 1 1-34 

byte operations, 4-11 

byte order, l 0-2, 10-4, 11-23 
alignment, 10-8 
big endian, 2-12 
for bus transfers, 11-25 
little endian, 2-12 

cache, A-43 
organization, A-25 
non-transparent, 6-7 

call, 4-15, 5-12, 8-3, 8-4, 9-22 
instructions, 4-15 
operation, 5-5 

call and return mechanism 
data structures, 2-7 
faults, 7-17 
local register cache, 2-12 
system procedure table, 2-8 

call trace 
event flag, 8-2 
fault, 7-3 
mode, 8-4 
mode bit, 8-2 

calls, 2-21, 4-15, 5-12, 5-15, 7-4, 8-5, 9-23 

caUx, 4-15, 5-12, 7-4, 8-4, 9-25 

chaining buffers, 13-11 

chkbit, 4-10, 9-27 

circuit board design, 14-21, 14-23 

CLKIN, 14-20 

CLKMODE pin, 11-38 

clocks, 11-33, 11-38 

drbit, 4-10, 9-28 

cmpdeci, cmpdeco, 4-12, 9-29 

cmpi, 4-11, 9-0 

cmpibe, cmpibne, cmpibl, cmpible, cmpibg, 
cmpibge, cmpibo, cmpibno, 4-14, 9-32 

cmpinci, cmpinco, 4-12, 9-31 

cmpo, 4-11, 9-30 

cmpobe, cmpobne, cmpobl, cmpoble, 
cmpobg, cmpobge, 4-14, 9-32 

COBR, D-3 
instruction encodings, D-10 

code compression, A-43 

code optimization summary, A-46 

compare and decrement instructions, 4-12 

compare and increment instructions, 4-12 

compare instructions, 4-11 

compilers 
global register functions, 5-1 I 

concmpi, concmpo, 4-11, 9-35 

condition code flags 
modification of, 4-17 

conditional branch, A-25 
instructions, 4-14 

conditional compare instructions, 4-11 

conditional fault instructions, 4-16 

constraint range fault, 9-41 

constraint-range fault, 7-3 

control pipeline, A-21 

control registers, 2-6, 14-9 

control table, 2-6, 14-9, E-4 
hardware breakpoint registers, 8-5 

coprocessor interface example, B-48 

crosstalk, 14-25 

CTRL, D-4 
instruction encodings, D-11 

CTRL-side 
IS, A-8 

DIC pin, 11-36 

031:0, 11-33 

DABO, 8-5 

DABl, 8-5 

DACK3:0, 13-25 

Data Address Breakpoint Registers 
(DABO-DABl), E-5 

data alignment, 10-8 

data bus, 11-33 

data chaining, 13-11 
transfer mode, 13-2 



INDEX 

data packing unit, 10-12 

data RAM, 10-10, A-7 
architectural compatibility, C-2 
byte order, 10-2, 10-4, 11-23 
execution pipeline, A-16 
internal, 2-10, 2-12 
optimizing performance, A-45 
pipeline, A-16 

data structure, 2-7 
alignment, C-2 
alignment in address space, 2-11 
required for initialization, 14-9 

data types 
alignment, 3-3 
bits and bit fields, 3-3 
description of, 3-1 
integers, 3-2 
ordinal, 3-2 
quad word, 3-3 
triple word, 3-3 

debugging 
instructions, 4-16 
overview of, 1-3 

dedicated-mode interrupts, 12-2 
(See also Interrupt Controller) 

delayed instructions, A-11 

demand mode DMA 
channel, 13-2 
transfer request length, 13-1, 13-7 

DEN signal, 11-36 

disable burst transfers, 10-3, 11-12 

divi, divo, 4-8, 9-36 

divide instructions, 4-8 

DMA Command Register (DMAC), E-5 

DMA control word, 13-21, E-6 

DMA controller, 1-4 
addressing, 13-2 
assembly and disassembly, 13-8 
byte count, 13-20 
channel priority, 13-16 
channel swapping, 13-23 
channel wait function, 13-19 
DACK3:0 and block mode timing, 13-28 
data alignment, 13-9, 13-10 
data chaining, 13-11, 13-23 

DMA controller (continued) 
demand mode, 13-25 
destination address, 13-20 
DMA command register (DMAC), 13-18 
DMA data RAM, 13-23 
DMA sourced interrupts, 13-13 
DMA transfers, 13-3 
End of process (EOP3:0) pin, 13-14 
fly-by transfers, 13-4 
latency, 13-33 
logic, 13-30 
microcode, 13-28 
multi-cycle transfer, 13-4 
performance calculations, 13-30 
pin descriptions, 13-25 
process, 13-29 
request and acknowledge timing, 13-25 
setting up, 13-17 
source address, 13-20 
source/destination data length, 13-6 
standard transfer, 13-3 
suspending a DMA, 13-14 
suspending DMA operations on interrupt, 
12-20 
synchronization, 13-25 
terminating a DMA, 13-14, 13-18 
transfer type options, 13-3 
transfer types, 13-1 
use of internal data RAM, 2-12 

DMA transfers 
block and demand modes, 13-2 
fly-by, 13-1 

DMA pin, 11-36, 13-25 

DMAC, 13-18 

DR pipeline, A-16 

DRAM interface example, B-16 

DREQ3:0, 13-25 

DT/R pin, 11-36 

ediv, 4-8, 9-37 

efa (effective address) 
calculations, A-18 
notation, 9-3 

effective address calculations, A-18 

electromagnetic interference (EMI), 14-25 

electrostatic interference (ESI), 14-25 

EMI, 14-25 

lndex-4 



INDEX 

emul, 4-8, 9-38 

enables 
burst transfers, 10-3, 11-I 2 

encoding, 4-2 

EOP/TC3:0, 13-25 

EOP3:0 pin, 13-14 
important consideration, 13-15 

eshro, 4-9, 4-11, 9-39, C-3 

ESI, 14-25 

Ethernet interface example, B-48 

EU (See also execution unit), A-6 
instructions, A-13 
pipeline, A-12, A-13 

executable group, A-9, A-22 

executing-state interrupt, 6-8 

execution times, A-12 

Execution Unit (EU), A-12 

expanded mode interrupts, 12-4 
See also Interrupt controller 

extended arithmetic instructions, 4-8 

extended multiply and divide instructions, 4-8 

extended register set, 2-3 

extended shift instruction, 4-9 

external bus confidence self test, 14-4 

extrac~4-ll, 9-40 

FAIL pin, 11-38, 14-2 
timing, 14-4 

fault conditions, see Faults 

fault handling (See also Faults), 7-2 
control flags and masks, 7-16 
fault handling actions, 7-17 
fault handling method, 7-2 
fault-handling procedure, 7-12 
local calls to fault handling procedures, 
7-4 
no-imprecise-faults bit, 7-19 
overview of fault-handling facilities, 7-1 
possible fault-handler actions, 7-12 
procedure table calls to fault handling 
procedures, 5-13 
program resumption following a fault, 
7-12 

fault handling (continued) 
system-procedure table calls to 
fault-handling procedures, 7-4 

fault record, 7-2, E-7 
description of, 7-6 
location of fault record, 7-7 
return instruction pointer (RIP), 7-7 

fault table, 2-8, 7-2 
description of, 7-4 
fault table entries, 7-4, E-8 
location of in memory, 7 -4 
Fault-if instructions, 7-16 

faulte, 7-17 

faulte, faultne, faultl, faultle, faultg, faultge, 
faulto. faultno, 4-16, 9-41 

faultg, 7-16 

faultge, 7-16 

fault!, 7-16 

faultle, 7 -16 

faultne, 7 -16 

faultno, 7 -16 

faulto, 7-16 

Faults, 1-3, 7-2 
arithmetic, 7-22 
asynchronous, 7-20 
constraint, 7-23 
explicit fault generation, 7-16 
fault handling, 7-4 
fault instructions, 4-16, 7- l 6 
fault record, 7-6 
fault table, 2-8, 7-4 
generating a fault, 7-14 
implicit fault generation, 7-14 
important considerations, 7-8 
imprecise, 2-17, 7-20 
initial configuration, 14-8 
interrupts and faults, 7-19 
location of fault record, 7-7 
multiple fault conditions, 7-8 
operation, 7-24, 9-6, 9-7 
parallel faults, 7-19 
precise and imprecise faults, 7-19 
program resumption following a fault, 
7-12 
protection, 7-26 
reference information on faults, 7-21 

lndex-5 



Faults (continued) 
return instruction pointer (RIP), 7-7 
supervisor mode protection, 2-21 
trace, 7-27, 9-6 
types and subtypes, 7-2, 7-29, 9-7 

fetch 
effects, A-25 
execution, A-27 
latency, A-26 
strategy, A-26 

flush local registers 
instruction, 4-17 

flushreg, 4-17, 5-9, 9-43 

fly-by DMA transfers, 13-4 
important consideration, 13-5 
transfer mode, 13-1 

fmark, 4-16, 7-16, 8-1, 8-5, 9-44 

force mark instruction, 4-16, 7-16 

frame fill, 5-6 

Frame Pointer (FP), 2-1 
description of, 5-3 

frame spill, 5-6 

global registers, 2-1 
compilers, 5-11 
parameter passing example, 5-12 
storing of RIP on a branch-and-link 
instruction, 5-18 

Hardware Breakpoint Control Register 
(BPCON), 8-5, E-3 

hardware breakpoints, 8-5 

HOLD and HOLDA handshaking, 11-27 

HOLD pin, 11-37 

HOLDA pin, 11-37 
reset interaction, 11-27 

1/0 pin characteristics, 14-22 

INDEX 

i960 CA microprocessor, 1-1 
address space, 2-9 
arithmetic controls, 2-15 
block diagram, A-3 
compilers, 5-11 
core and peripherals, A-1 
data structures, 2-7 
DMA controller, C-5 
instruction flow, A-4 
instruction scheduler (IS), A-2 
memory requirements, 2-10, 2-11 
microarchitecture review, A-7 
optimizing code, A-1 
overview of, 1-2, 1-4 
porting optimized algorithms, A-43 
processor-state registers, 2-14 
register file, A-5 
register model, 2-1 
writing portable code, C-1 

IBR, 14-5 

ICON register, 12-10 

IMI, 14-2, 14-5 
system procedure table pointer, 5-13 

implicit call 
interrupt context switch, 6-8 

imprecise faults, 7-20 

IMSK register, 12-5, 12-14 
important consideration, 12-5 

index with displacement addressing mode, 3-5 

indivisible access, 2-10 

Initial Memory Image (IMI), 14-2, 14-5, E-10 

lndex-6 



INDEX 

initialization, 2-25, 14-2 
AC initial image, 14-8 
architectural compatibility, C-4 
bus controller, 14-5 
cold reset (power-up reset), 14-2 
control table base address, 14-9 
fault configuration word, 14-8 
hardware requirements, 14-20 
Initial Memory Image (IMI), 14-5 
Initialization Boot Record (IBR), 2-8, 
14-5 
instruction cache configuration word, 
14-8 
interrupt table base address, J 4-9 
NMI vector, 14-9 
power and ground requirements, 14-21 
Process Control Block (PRCB), 2-8, 14-7 
register cache configuration word, 14-8 
system procedure table base address, 14-9 
user start-up code, 14-11 
warm reset (power-on reset), 14-2 

Initialization Boot Record (IBR), 2-8, 14-5 

Instruction Address Breakpoint Registers 
(IPBO - IPB 1), E-11 

instruction cache, 2-13, 2-25, A-25, A-44 
architectural compatibility, C-2 
cache load and lock mechanism, 12-20 
caching interrupt-handling procedures, 
12-20 
configuration options, 2-24 
disabling the instruction cache, 2-25 
initial configuration, 14-8 
invalidating the instruction cache, 2-13, 
2-24 
locking interrupt procedures in the 

instruction fetch 
cancellation, A-25 
encoding formats, 4-2 
instruction fetch unit, A-25 
latency, A-26 
queues, A-26 
strategy, A-26 

instruction pointer (IP), 2-14 

instruction set, 1-3 
condition codes, 2-15 
instruction operands, 2-1 
i960 CA implementation specific, 9-2 
i960 CA processor extensions, 4-9, 9-39 

Instruction Stream Optimization, A-8, A-34 

instruction trace 
event flag, 8-2 
fault, 7-3 
mode, 8-4 
mode bit, 8-2 

instructions 
add, subtract, divide, multiply, 4-8 
add with carry, 4-8 
addc, 9-8 
addi, addo, 9-9 
alterbit, 9-10 
and, andnot, 9-11 
architectural compatibility, C-3 
arithmetic, 4-7 
assembly-language format, 4-1 
assembly-language syntax, 4-1 
atadd, 9-12, A-33 
atmod, 9-13, A-33 
atomic micro-flow issue clocks, A-33 
b, 9-14 
bal, balx, 9-16, 8-4, A-43 
bbc, bbs, 9-18 
BCU, A-20 
be, bg, bge, 9-20 
bit and bit field, 4-10, 4-1 l 

micro-flow issue clocks, A-31 
bl, hie, bne, 9-20 
bno, bo, 9-20 
branch, 4-13 

micro-flow issue clocks, A-32 
bx, 9-14, A-32 
byte operations, 4-11 
call, callx, ret, 8-4, 9-22, A-32 
call and return, 4- l 5 

micro-flow issue clocks, A-32 
calls, 2-21, 8-3, 9-23 
callx, 9-25 
chkbit, 9-27 
clrbit, 9-28 
cmpdeci, cmpdeco, 9-29 
cmpi, 9-30 
cmpib*, cmpob*, A-32 

lndex-7 



instructions (continued) 
cmpibe cmpibne, cmpibl, cmpible, 
cmpibg, cmpibge, cmpibo, cmpihno, 
9-32 
cmpinci, cmpinco, 9-31 
cmpo, 9-30 
cmpobe cmpohne, cmpohl, cmpohle, 
cmpobg, cmpobge, 9-32 
code optimization, A-9 
compare and increment or decrement, 
4-12 
comparison, 4-11 

micro-flow issue clocks, A-32 
concmpi, concmpo, 9-35 
conditional branch, 4-14 
conditional faults 

micro-flow issue clocks, A-33 
CTRL, A-22 
data movement, 4-4 
debug, 4-16 

micro-flow issue clocks, A-33 
divi, divo, 9-36 
ediv, 9-37 
emul, 9-38 
eshro, 9-39 
extended arithmetic, 4-8 
extended multiply and divide, 4-8 
extract, 9-40 
fault instructions, 4-16, A-33 
faulte, faultne, faultl, faultle, faultg, 
faultge, faulto, faultno, 9-41 
flushreg, 5-9, 9-43, A-44 
fmark, 8-1, 8-5, 9-44, A-33 
format of, 9-2 
groups, 4-4 
i960 CA-specific, C-3 
Id, ldib, ldis, ldl, ldob, ldos, ldq, ldt, 
9-45 
Ida, 2-14, 9-47, A-17 
load, 4-6 
load address, 4-7 
logical, 4-10 
mark, 8-1, 8-5, 9-48, A-33 
MDU, A-15 
micro-flow, A-30 
modac, 2-15, 9-49 
modi, 9-50 
modify, 9-51 

INDEX 

instructions (continued) 
modpc, 2-17, 9-52 

lndex-8 

modpc, modtc, modac, syncf, flushreg, 
sdma, udma, sysctl, A-34 
modtc, 8-2, 9-53 
mov, movl, movq, movt, 9-55, A-29 
move, 4-6 
muli, mulo, 9-55 
nand, 9-56 
nor, 9-57 
not, notand, 9-58 
nothit, 9-59 
notor, 9-60 
opcode 

encoding, D-7 
format, 9-7 

operands, 4-3 
or, ornot, 9-61 
parallel issue, A-10 
processor management, 4- I 7 

micro-flow issue clocks, A-34 
REG, COBR, CTRL, MEM, D-1 
remainder and modulo, 4-9 
remi, remo, 9-62 
ret, 8-4, 8-5, 9-63 
rotate, 9-65 
scanbit, 9-66 
scanbit, spanbit, extract, modify, A-3 I 
scanbyte, 9-67 
sdma, 9-68, 13-2, 13-20 
sdma, udma, 13-17 
setbit, 9-69 
shift and rotate, 4-9 
shli, shlo, shrdi, shri, shro, 9-70 
spanbit, 9-73 
st, stib, stis, stl, stob, stos, stq, stt, 9-74 
st, stob, stib, stos, stis, stl, stt, stq, A-31 
store, 4-6 

micro-flow issue clocks, A-31 
subc, 9-76 
subi, subo, 9-77 
subtract with carry, 4-8 
summary of i960 CA instructions, 4-5 
syncf, 9-78 
sysctl, 2-13, 2-22, 9-79 
system control instruction, 4-18 
test condition codes, 4-12 
teste, testne, testl, testle, testg, testge, 
testo, testno, 9-82, A-32 



INDEX 

instructions (continued) 
timings, C-3 
udma, 9-84 
unconditional branch, 4-13 
xnor, xor, 9-85 

integer overflow, 2-17 
fault, 7-3, 7-13, 9-9, 9-36, 9-55, 9-62, 
9-70, 9-74, 9-77 

integers 
description of, 3-2 

integrated call and return 
overview of, 5-2 

interfacing 
to burst EPROM, B-44 
to DRAM, B-16 
to interleaved memory, B-35 
to LAN coprocessor, B-48 
to pipelined SRAM, B-10 
to slow peripherals, B-37 
to SRAM, B-1 

internal data RAM, 2-12, 10-10 
formula to determine usage, 5-9 

Interrupt Control (ICON) Register, 12-10, 
E-12 
See also Interrupt controller 

interrupt controller, 1-4, 12-15 
cache load and lock, 12-20 
cached interrupt vectors, 2-12 
caching interrupt vectors on-chip, 12-19 
caching interrupt-handling procedures, 
12-20 
calculating interrupt latency, 12-17 
critical region execution, 12-7 
debounce sample mode, 12-8 
dedicated mode interrupt, 12-2, 12-12 
default and reset register values, 12-15 
DMA sourced interrupts, 12-4 
DMA sources, 13-13 
edge detect option, 12-8 
expanded-mode interrupts, 12-4 
fast sample mode, 12-8 
hardware-generated interrupts, 12-1, 12-2 
ICON register, 12-7, 12-10, 12-20 
IMAP2-IMAPO registers, 12-12 
IMSK register, 12-5, 12-7, 12-14 
interrupt detection options, 12-8 

interrupt controller (continued) 
interrupt latency and throughput, 12-19 
interrupt mask operation on interrupt, 
12-7 
interrupt modes, 12-2, 12-12 
IPND register, 12-14 
level detect option, 12-8 
mixed-mode interrupts, 12-5 
NMI pin, 12-6 
Non-Maskable Interrupt (NMI), 2-12, 
12-6 
pin descriptions, 12-8 
priority-31 interrupts, 12-2, 12-7 
Programmer's interface', 12-10 
requesting interrupts, 12-1 
saving and clearing the IMSK register, 
12-7 
setup, 12-15 
software-generated interrupts, 6-10 
suspending DMA operations on interrupt, 
12-20 
use of internal data RAM, 2-12 

interrupt handling 
interrupt handler procedures, 6-8 
interrupt stack, 6-7 
interrupt table, 6-3 
location of interrupt handler procedures, 
6-8 
restrictions on interrupt handler, 6-8 

interrupt latency, 12-19 
See also Interrupt controller 

Interrupt Map (IMAP2-IMAPO) registers, 
12-12, E-14 

Interrupt Mask (IMSK) register, 12-14, E-13 

interrupt modes, 12-2 
See also interrupt controller 

Interrupt Pending (IPND) register, 12-14, 
E-13 

interrupt record 
description of, 6-7 

interrupt service latency, 12-17 

interrupt stack, 2-8 
description of, 6-7 

interrupt table, 2-8, 14-9, E-16 
description of, 6-3 
pending interrupts section, 6-4 



INDEX 

interrupt vectors, 6-2 

interrupted-state interrupt, 6-8 

Interrupts, 1-3 
architectural compatibility, C-4 
executing-state, 6-8, 6-9 
important considerations, 6-6, 6-8, 6-9 
interrupt context switch, 6-8 
interrupt controller overview, 6-2 
interrupt handling actions, 6-8 
interrupt record, 6-7 
interrupt stack, 2-8, 6-7 
interrupt table, 2-8 

caching of, 6-6 
interrupted-state, 6-8 
interrupted-state interrupt, 6-10 
locking interrupt procedures in the 
instruction cache, 2-13 
non-cooperating program procedures, 6-8 
overview of interrupt handling facilities, 
6-1 
pending, 6-2, 6-4 
posting and checking pending interrupts, 
6-4 
posting interrupts in the interrupt table, 
6-5 
preserving and restoring, 6-8 
priorities, 6-2 
Priority-31, 6-2 
requesting interrupts, 12-1 
requesting software interrupts, 2-24 
servicing an interrupt, 6-8 
supervisor mode protection, 2-21 
vector numbers, 6-2, 6-3 
vectors, 6-2, 6-3 

invalid-opcode fault, 7-3 

invalid-operand fault, 7-3 

IP (instruction pointer), 2-14 
procedure table entry, 5-13 

IP with displacement addressing mode, 3-6 

IPBO, 8-5 

IPBl, 8-5 

IPND register, 12-14 

IS, A-2 
see also instruction scheduler 

latchup, 14-25 

latency calculations for DMA controller, 
13-30 

Id, ldib, ldis, ldl, ldob, ldos, ldq, ldt, 9-45 

Ida, 2-14, 4-7, 9-47 

length fault, 7-3 

literals, 2-5 

little endian, 10-2 
byte order, 2-12, 10-4 
memory configuration, 11-23 

load address instruction, 4-7 

load instructions, 4-6 

local call 
call operation, 5-12 
definition of, 5-1 
description of, 5-12 

local registers, 2-2 
caching, 5-2, 5-6, A-7 
call/return mechanism, 5-2 
mapping of local register sets to 
procedure stack, 5-9 
relationship to procedure stack, 5-2 

LOCK pin, 11-26, 11-37 

logical instructions, 4-10 

loops, A-37 

machine-level format, 4-2 

niark,4-16, 7-16, 8-1, 8-5,9-48 

MCONO-MCON15, 10-6 

MDU (See also multiply/divide unit), A-6 
Execution Pipeline, A-14 
Pipeline, A-14 
Pipelined Back-To-Back Operations, 
A-14 

MEM,D-4 
instruction encodings, D-12 

MEM-side 
BCU, DR, AGU, A-7 

MEMA, D-5 

MEMB,D-5 

memory addressing modes, 3-4 

Memory Region Configuration Register 
(MCONO-MCON15), 10-2, 10-6, E-17 

memory requirements, 2-10 

lndAx-10 



Micro-Flows, A-28 
execution, A-29 

mixed mode interrupts, 12-5 
Sec also Interrupt controller 

modac, 2-15, 4-17, 9-49 

modi. 4-9, 9-50 

modify, 4-1 J, 9-51 

modify process controls instruction, 4- J 6. 
4-17 

modify trace controls instruction, 4-16 

modpc. 2-17. 4-16. 4-17, 6-6, 9-52 

modtc, 4-16. 8-2, 9-53 

modulo instructions, 4-9 

mov, movl, movq, movt, 4-6. 9-54 

move instructions, 4-6 

muli, mulo, 4-8, 9-55 

multi-cycle DMA transfer, 13-4 

multiply instructions, 4-8 

Multiply/Divide Unit (MDU), A-14 

naming conventions, 1-6 

nand, 4-10, 9-56 

NoMA, 13-33 

NMI, 12-6, 14-9 
See also Interrupt controller 

No Imprecise Faults (NlF) bit, 7-19 

Non-maskable interrupt (NMI), 12-6 
See also Interrupt Controller 

non-transparent caching, 6-7 

nor. 4-10, 9-57 

not, notand, 4-10, 9-58 

notation, 1-6 

notbit, 4- JO, 9-59 

notor, 4-10, 9-60 

NRAD• 10-3, 11-5 

NRDD· 10-3, 11-5 

NwAD· 10-3, 11-5 

NwDD· 10-3, 11-6 

NxoA. 10-3, 11-6 
important considerations, 10-4, 11-6 

INDEX 

On Circuit Emulation (ONCE), 11-38, 14-5 

ONCE mode, 11-38 

ONCE pin, 11-38 

operands for in~tructions, 4-3 

optimizing code, A-1 

opword, 4-2 

or. ornot, 4-JO, 9-61 

ordinal, description of, 3-2 

parallel execution, A-7, A-12 

parallel faults, 7-9 

parallel instruction execution, A- I, A-10 

parallel issue, A-7 

parallel issue paths, A-9 

parallel processing units, A-7 

parameter passing 
by reference, 5-10 
description of, 5-10 
in an argument list, 5-10 
through the procedure stack, 5-10 

PC register, 2-17 
execution mode flag, 2-19 
priority field, 2-19 
state flag, 2-19 
trace enable bit, 2-19 

PCLK2: I, 11-33 

pending interrupts 
handling of, 6-6 
posting of, 6-4 
servicing of, 6-4 

peripherals interfacing, B-37 

PFP,5-17 
return status field encoding, 5-17 

pin descriptions, 11-3 l 

pin types 
asynchronous, I 4-23 
input, 14-23 
output, 14-22 
synchronous, 14-23 

pipelined reads, 10-3, 11-17 

porting optimized algorithms, A-43 

power and ground planes, 14-21 

lndex-11 



PRCB, 14-7 
configuration words, E-19 

prediction bits, A-42 

prereturn trace 
event flag, 8-2 
fault, 7-3 
mode, 8-4 
mode bit, 8-2 
prereturn trace flag, 5-4, 5-16 

preserved, 1-6 
compare with reserved 

Previous Frame Pointer Register (PFP) (rO), 
2-2, 5-4, 5-17, E-18 

Priority-31 interrupts, 6-2 

procedure calls 
branch-and-link, 5-18 
call/return mechanism, 5-2 
frame pointer, 5-3 
generalized call operation, 5-5 
generalized return operation, 5-5 
introduction to, 5-1 
local calls, 5-12 
local registers, 5-2 
parameter passing, 5-10 
prereturn trace flag, 5-4, 5-16 
previous frame pointer, 5-4 
procedure linking information, 5-3 
procedure stack, 5-2 
return instruction pointer, 5-4 
return status field, 5-4, 5-16 
saving of local registers, 5-2 
stack pointer, 5-4 
supervisor call, 5-15 
supervisor stack, 5-15 
system call, 5-12 
system procedure table, 5-13 

procedure stack (See also call and return 
mechanism), 2-7 
call/return mechanism, 5-2 
description of, 5-2 
mapping of local registers to, 5-9 
register save area, 5-2, 5-9 
stack frames, 5-2 
structure and local registers, E-9 

Process Control Block (PRCB), 2-8, 14-7 
See also Initialization 

INDEX 

Process Controls (PC) Register, 2-17, E-20 
trace enable flag, 8-7 
trace-fault-pending flag, 8-8 
ret, 8-4, 8-5 

processor management 
instructions, 4-17 

programming the bus controller, 10-5 

quad word, 3-3 

queues, A-26 

READY signal, 11-35 

REG, D-1 
instruction encodings, D-7 

REG-side 
MDU,EU,A-7 

region table, 10-5, 10-7 

register bypassing, A-11 

register cache, A-44 
initial configuration, 14-8 

register coherency, A-12 

register dependencies, A-8 

register indirect addressing modes, 3-5 

register save area, 5-2 
See also Procedure stack 

Registers 

lndex-12 

alignment requirements, 2-5 
arithmetic controls (AC) register, 2-15 
as instruction operands, 2-5 
control registers, 2-6, 2-26 
extended register set, 2-3 
flush local registers instruction, 4-17 
Frame Pointer (FP), 2-1 
global registers, 2-1 
instruction operands, 1-8, 2-2 
Instruction Pointer (IP), 2-14 
local registers, 2-2 
naming conventions, 1-8 
Previous Frame Pointer (PFP), 2-2 
Process Controls (PC) register, 2-17 
processor-state registers, 2-14 
reset conditions, 14-4 
Return Instruction Pointer RIP, 2-2, 2-14 
scoreboarding, 2-4 
Special Function Register(SFRs), 2-3 
Stack Pointer (SP), 2-2 
Trace Controls (TC) register, 2-20 



INDEX 

Reinitialization, 2-25 
See also Initialization 

remainder instructions, 4-9 

remi, remo, 4-9, 9-62 

reserved, 1-6 
compare with preserved 

reserved address space, 2-1 0 

reserved register and data structure locations, 
C-3 

reset 
HOLDA interaction, 11-27 

resource dependencies, A-8 

resource scoreboard conditions, A-11 

re~4-15,5-16,7-12,7-18,7-19,9-63 

return 
generalized, 5-5 

return instruction, 4-15 

Return instruction pointer (RIP), 2-2, 2-14 
description of, 5-4 
on a branch-and-link, 5-16 

return operation, 5-5 

return status field 
description of, 5-4, 5-16 
encoding of, 5-17 

return trace 
event flag, 8-2 
fault, 7-3 
mode, 8-4 
mode bit, 8-2 

RF (See also register file), A-5 

RIP (return instruction pointer), 2-14 
for fault calls, 7-7 

rotate, 4-9, 9-65 

rotate instructions, 4-9 

SALIGN, 5-4, 7-7 

Scale factor in addressing, description of, 3-5 

scanbit, 4-10, 9-66 

scanbyte, 4-11, 9-67 

scoreboarding, 2-4, A-11 
scoreboarded register, A-11 
scoreboarded resource, A-11 

sdma, 4-18, 9-68, 13-2, 13-17, 13-20, C-3 
instruction operands, 13-21 

self test, 11-38. 14-2 

setbit, 4-10, 9-69 

sfr, notation, 9-3 
important considerations, 9-4 

shift instructions, 4-9 

shli, shlo, shrdi, shri, shro, 9-70 

six-port register file, A-5 

software breakpoints, 8-5 

software-generated interrupts, 6-10 

spanbit, 4-10, 9-73 

special function register (SFR), 2-3 
architectural compatibility, C-3 

SRAM interface 
example, B-1 
schematic, B-2 

st, stib, stis, stl, stob, stos, stq, stt, 9-7 4 

stack, 2-7, 5-2 
See also procedure stack and call and 
return mechanism 

stack frame, 5-2 
alignment, 7 -7 

stack pointer (SP), 2-2, 5-4 

startup code 
example, 14-13 

state machines 
A32 address generation, B-8 
chip enable, B-8 
DRAM,B-32 
DRAM address generation, B-23 
DRAM controller, B-25 
pipelined read CE, B-13 
pipelined read PA3:2, B-14 
slow peripheral interface, B-42 

STEST pin, 11-38, 14-2 
important considerations, 14-3 
reset state, 14-3 

store instructions, 4-6 

subc, 4-8, 9-76 

subi, subo, 4-8, 9-77 

subtract instructions, 4-8 

subtract with carry instruction, 4-8 

ln~.,.v.1"t 



SUP pin, 2-20, 11-37 

superscalar, 1-2 

supervisor call, 2-21, 5-15 
(See also Call and return mechanism) 
call operation, 5-15 
definition of, 5-1 
system call instruction, 4-15 

supervisor mode, 5-15 
See user-supervisor protection model 

supervisor mode protection 
description of, 2-20 
internal data RAM, 2-12 
special function registers, 2-4 

supervisor stack, 2-7, 2-21, 5-15 
(See also Call and return mechanism) 
supervisor stack pointer, 5-14, 14-9 

supervisor trace 
event flag, 8-2 
fault, 7-3 
mode, 8-5 
mode bit, 8-2 

syncf, 7-19, 7-21, 9-78 

sysctl, 2-8, 2-13, 2-21, 4-18, 6-10, 9-79, 
12-21, 14-11, C-3 
interrupt service request, 12-2 

system call 
definition of, 5-1 
description of, 5-12 
mechanism of, 5-13 

system control (sysctl) instruction, 12-21 
configure instruction cache message, 
12-21 
see also sysctl 

system procedure table, 2-8, 14-9, E-21 
(See also Call and return mechanism) 

procedure entry structure, 5-13 
structure of, 5-13 
supervisor stack pointer entry, 5-14 
system call instruction, 4-15 

system-supervisor call, 5-15 

TC register, 2-20, 8-1 

terminations for signal lines, 14-24 

terminology, 1-6 

test condition code instructions, 4-12 

teste, 4-12 

INDEX 

teste, testne, testl, testle, testg, testge, testo, 
testno, 9-82 

testg, 4-12 

testge, 4-12 

testl, 4-12 

testle, 4-12 

testne, 4-12 

testno, 4-12 

testo, 4-12 

throughput calculations for DMA controller, 
13-30 

trace control bit (in system procedure table), 
8-1, 8-3, 8-8 

trace controls, 8~ 1 

Trace Controls (TC) Register, 2-20, E-22 

trace enable bit, 6-9, 8-1, 8-3, 8-7, 8-8, 8-9 

trace fault pending flag, 6-9, 7-13, 8-1, 8-3, 
8-8, 8-9 

trace flag (in return-status field of rO), 8-1, 8-3 

tracing, 1-3 

lndex-14 

branch trace mode, 8-4 
breakpoint trace mode, 8-5 
call trace mode, 8-4 
handling multiple trace events, 8-8 
hardware breakpoints, 8-5 
instruction trace mode, 8-4 
instructions, 4-16 
interrupt handlers, tracing with, 8-9 
modifying trace controls register, 8-2 
overview of, 8-1 
preretum trace handling, 8-9 
preretum trace mode, 8-4 
return trace mode, 8-4 
signaling a trace event, 8-7 
supervisor trace mode, 8-5 
trace control bit (in system procedure 
table), 8-3 
trace control on supervisor calls, 8-3 
trace controls, 8-1 
Trace Controls (TC) register, 2-20, 8-1, 
8-2 
trace enable bit, 8-3 
trace event flags, 8-2 
trace fault handler, 8-8 



INDEX 

tracing (continued) 
trace fault pending flag, 8-3 
trace faults, 8-1, 8-3, 8-4, 8-8 
trace flag (in return-status field of rO), 8-3 
trace handling action, 8-8 
trace mode bits, 8-2 
trace modes, 8-3 

triple word, description of, 3-3 

type-mismatch fault, 7-3, 9-52 

udma, 9-84, 13-17, 13-24, C-3 

unaligned fault, 7-3 

unconditional branch, 4-13, A-21 

unimplemented fault, 7-3 

unrolling loops, A-37 

user stack, 2-7 
see also call and return mechanism 

user-supervisor protection model 
mode switching, 5-15 
supervisor call, 5-15 
supervisor mode, 5-15 
supervisor procedure, 5-15 
user mode, 5-15 

VSS and VCC, 14-21 

WIR pin, 11-36 

wait states, 10-3, 11-34, 11-35 
bus controller, 11-4 

WAIT signal, 11-34 

waveforms 
burst pipelined EPROM read B-47 
CAS-before-RAS DRAM refresh, B-19 
DMA request and acknowledge signals, 
B-28 
DRAM system read, B-29 
DRAM system write, B-30 
fast page mode DRAM read, B-18 
nibble mode read, B-17 
non-pipelined SRAM read, B-5 
non-pipelined SRAM write, B-5 
pipelined read, B-12 
pipelined read address and data, B-10 
RAS-only DRAM refresh, B-19 
slow peripheral interface read, B-40 
slow peripheral interface write, B-41 
static column mode DRAM read, B-18 
two-way interleaved read, B-37 

xnor,xor,4-10,9-85 

lnd~Y-15 



ALABAMA 

Intel Corp, 
600 Boulevard South 
Suite 104-L 
Huntsville 35802 
Tel (205) 883·3507 
FAX: (205) 883·3511 

ARIZONA 

tlntel Corp 
41 o North 44th Street 
Suite 500 
Phoenix 85008 
Tel: (602) 231-0386 
F.AX: (602) 244-0446 

CALIFORNIA 

tlntel Corp. 
21515 Vanowen Street 
Surte 116 
Canoga Park 91303 
Tel: (818) 704-8500 
FAX: (818) 340·1144 

Intel Corp. 
1 Sierra Gate Plaza 
Suite 280C 
Roseville 95678 
Tel: (916) 782-8086 
FAX: (916) 782-8153 

tlntel Corp 
9665 Chesapeake Or. 
Suite 325 

¥:~ fsif~0 2~~~~5ae 
FAX: (619) 292-0628 

*tlntel Corp. 
400 N. Tustin Avenue 
Suite 450 
Santa Ana 92705 
Tel: (714) 835-9642 
TWX: 910-595-1114 
FAX: (714) 541-9157 

*tlntel Corp. 
San Tomas 4 
2700 San Tomas Expressway 
2nd Floor 
Santa Clara 95051 
Tel: (408) 986·8086 
TWX: 910-338·0255 
FAX: (408) 727-2620 

COLORADO 

*tlntel Corp. 
600 S. Cherry St. 
Suite 700 
Denver 80222 
Tel: (303) 321-8086 
TWX: 910-931-2289 
FAX: (303) 322-8670 

CONNECTICUT 

tlntel Corp 
301 Lee Farm Corporate Park 
83 Wooster Heigh1s Rd. 
Danbury 06810 
Tel: (203) 748-3130 
FAX: (203) 794-0339 

FLORIDA 

tlntel Corp. 
800 Fairway Drive 
Suite 160 
Deerfield Beach 33441 
Tel· (305) 421-0506 
FAX: (305} 421-2444 

tlnte! Corp. 
5650 T.G. Lee Blvd. 
Suite 340 
Orlando 32822 
Tel: (407) 240-8000 
FAX: (407) 240-8097 

tSales and Service Office 
*Field Application Location 

NORTH AMERICAN SALES OFFICES 
GEORGIA tln1el Corp. •t1ntel Corp. 

tlntel Corp. 
300 West.age Business Center 7322 S.W. Freeway 
Suite 230 Surte 1490 

20 Technology Parkway Fishkill 12524 Houston 7707 4 
Suite 150 Tel: (914) 897·3860 Tel: (713) 988·8086 
Norcross 30092 FAX: (914) 897·3125 TWX: 910-881·2490 
Tel: (404) 449-0541 FAX: (713) 988·3660 
FAX: (404) 605-9762 OHIO 

ILl.INOIS "'tlntel Corp. UTAH 

*ttnte! Corp. 
3401 Park Center Onve 
Suite 220 tlntel Corp. Woodfield Corp. Center Ill 

~:ir1(s0, ~:~ri-s3so 428 East 6400 South 
300 N. Martingale Road Suite 104 
Suite 400 TWX: 810-450-2528 Murray 84107 

~~1~(~g1~ue8s~gJ~~ FAX: (513) 890·8658 Tel: (801) 263·8051 

FAX: (708) 706-9762 *tlntel Corp. 
FAX: (801) 268-1457 

25700 Science Park Dr 
INDIANA Suite 100 WASHINGTON 

flnteJ Corp. 
Beachwood 44122 
Tel: (216) 464-2736 tlnte! Corp. 8910 Purdue Road TWX: 810-427-9298 2800 156th Avenue S. E. Suite 350 FAX: (804) 282·0673 Suite 105 Indianapolis 46268 Bellevue 98008 TeL (317) 875-0623 OKLAHOMA Tel: (206} 643·8086 FAX: (317) 875-8938 
Intel Corp. FAX: (206) 7 46·4495 

MARYLAND 6801 N. Broadway 

~ci~t ~J>Uuan Road *tlntel Corp. 
Suite 115 

10010 Junction Dr 
Oklahoma Ci1)' 73162 Suite 105 

Suite 200 
Tel: (405) 846-8086 Spckane 99206 

Annapolis Junction 20701 
FAX: (405) 840·9819 Tel: (509) 928-8086 

Tel: (41 O) 206·2860 OREGON 
FAX: (509) 928·9467 

FAX: (410) 206-3678 

i~J~ C~~ .. Greenbrier Pkwy. MASSACHUSETTS WISCONSIN 

*tlntel Corp. 
Building B Intel Corp. Beaverton 97006 400 N. Executive Dr. Westford Corp. Center Tel: (503) 645-8051 Suite 401 5 Carlisle Road TWX: 910-467 -87 41 Brookfield 53005 2nd Floor FAX: (503) 645-8181 Tel: (414) 789·2733 Westford 01886 

Tel: (508) 692-0960 PENNSYLVANIA FAX: (414) 789-2746 
TWX: 710·343-6333 
FAX: (508) 692·7867 *tlntel Corp. 

925 Harvest Drive CANADA MICHIGAN Suite 200 

tlnte! Corp. 
Blue Bell t 9422 
Tel: (215) 641-1000 

BRITISH COLUMBIA 7071 Orchard Lake Road FAX: (215) 641-0785 
Suite 100 
West Bloomfield 48322 ~~tp~~~rBenter Blvd. 

1ntel Semiconductor of 
Tel: (313) 851-8096 Canada, Ltd. 
FAX: (313) 851-8770 Suite 610 999 Canada Place 

~:i·?tI~r ~i3~~7o Suite 404, #11 
MINNESOTA Vancouver V6C 3E2 

FAX: (412) 829-7578 Tai: (604) 844-2823 
tlntel Corp. FAX: (604) 644·2813 
3500 W. 80lh St. PUERTO RICO 
Suite 360 

ONTARIO ~~~:0~;n211i~s~i~1 tlntel Corp. 
South Industrial Park 

TWX: 910-576-2867 P.O. Box 910 tlntel Sem1conductor of 
FAX: (612) 831-6497 Las Piedras 00671 Canada, Ltd. 

Tai: (809) 733-8616 2650 Queensview Drive 
NEW JERSEY Suite 250 

SOUTH CAROLINA Ottawa K2B 8H6 
*t1ntel Corp. 

lntet Corp. 
Tel: (613) 829-9714 

Lincroft Office Center FAX: (613) 820-5936 
125 Half Mile Road 1 00 Executive Center Drive 
Red Bank 07701 Suite 109, B183 tlntel Semiconductor of 
Tel: (908) 747-2233 Greenville 29615 Canada, Ltd 
FAX· (908) 747-0983 Tel: (803) 297·8086 190 Attwell Drive 

FAX: (803) 297·3401 Suite 500 
NEW YORK Rexdale MSW 6H8 
*Intel Corp. 

TEXAS Tel: (416) 675-2105 
850 Crosskeys Office Park tlntel Corp. FAX: (416) 675-2438 
Fairport 14450 8911 N. Capital of Texas Hwy. 
Tel: (716) 425-2750 Suite 4230 

QUEBEC TWX: 510·253-7391 Austin 78759 
FAX: (716) 223-2561 Tel: (512) 794-8086 

tlntel Semiconductor of 
*tlntel Corp. 

FAX: (512) 338·9335 
Canada, Ltd. 

2950 Express Dr., South *tlntel Corp. 1 Rue Holiday 
Suite 130 12000 Ford Road Suite 115 
Islandia 11722 Suite 400 Tour East 

~~\5J~6-~m~gg Dallas 75234 Pt. Claire H9R 5N3 
Tel: (214) 241-8087 Tel: (514) 694·9130 

FAX: (516) 348-7939 FAX: (214) 484·1180 FAX: 514-694·0064 

CG/SALE/041692 



ALABAMA 

Arrow/Schweber Electronics 
1015 Henderson Road 
Huntsville 35806 
Tel: (205) 837-6955 
FAX: (205) 721-1581 

Hamilton/Avnet 
4960 Corporate Drive, #135 
Huntsville 35805 
Tel: (205) 837-7210 
FAX: (205) 721-0356 

~~osrc:,~~:Sa~. #120 
Huntsville 35805 
Tel: (205) 830-9526 
FAX: (205} 830-9557 

Pioneer Technologies Group 
~~~1~~~~i5square, #5 
Tel: (205) 837-9300
FAX: (205) 837-9358

ARIZONA
Arrow/Schweber Electroriics
2415 W. Erie Drive
Tempe 85282
Tel: (602) 43Hl030
FAX: (602) 252-9109

~n:,~~~~~Y Avenue
Chandler 85226
Tel: (602) 961-8460
FAX: (802) 961-4787

Hamilton/Avnet
30 South Mcl<emy Avenue
Chandler 85228
Tel: (602) 961-6403
FAX: (602) 961-1331

Wyle Laboratories
4141 E. Raymond
Phoenix 85040
Tel: (602) 437-2088
FAX: (602) 437-2124

CALIFORNIA

l\rrow Commercial Systems Group
1502 Crocker Avenue
~ayward 94544
rel: (510) 489-5371
'AX: (510) 489-9393

~rrow Commercial Systems Group
14242 Chambers Road
rustin 92680
rel: (714) 544-0200
'AX: (714) 731-9438

'rrow/Schweber Electronics
\~,%.."':;.AN1os'lJ~ Road
rel: (818) 880-9686
'AX: (818) 772-8930

\rroW/Sohweber Electronics
1511 Rldgehaven Court

~~:'aio~~oo
'AX: (619) 279-8082

U'row/$chweber Electronics

~~J~s':~:rnue
'el: (408) 441-9700
'AX: (408) 453-4810

1rrow/$chweber Electronics
~961 Dow Avenue
'us11n 92680
'el: (714) 838-5422
'AX: (714) 838-4151

1vnet Computer
170 Pullman Street
:0s1a Mesa 92826
'al: (714) 941-4150
'AX: (714) 941-4170

NORTH AMERICAN DISTRIBUTORS
Avnet Computer Hamilton/Avnet GEORGIA
1381B Wee! 190th Street 9605 Maroon Circle, #200
Gardena 90248 Englewood 80112 "1rtNI COmmarclal ~Group
Tel: (800) 426-7999 ~~,<~i~m1 ~~:iocrr ay FAX: (310) 327-5369
Avnet Computer ~0E':'\~=nue

Tel: (404) 623-8825

755 Sunrtse Blvd., #150 FAX: (404) 623-8802

Roseville 95661 ThorntOn 60241 ""'1fl/Schweber Eleclronlcs
Tel: (916) 781-2521 Tel: (3~ 457-9953 ~U:::\1srgreen Pkwy., #E FAX: (916) 781-3819 FAX:) 457-4831
Avnet Computer
1175 Bordeaux Dnve, #A CONNECTICUT

Tel: (404) 497-1300
FAX: (404) 476-1493

Sunnyvale 94089 Arrow/Schweber Electronics Avnet Computer
m:'';Witm:8

12 Beaumont Road
Wa111~06492 3425 Corporate Way, #G

Hamilton/Avnet Tel: (~ 265-7741 Duluth 30138
FAX: () 285-7988 Tel: (404) 623-5452

3170 Pullman Street FAX: (404) 476-0125
C0s1a Mesa 92626 Avnet Computer
Tel: (714) 641-4100 55 F-ral Road, #103 Hamilton/Avnet
FAX: (714) 754-8033 Denbury 06810 ~~ COa8f':'" Way, #G
Hamilton/Avnet m,'~i~l:i 1175 Bordeaux Drive, #A Tel: (404) 446-0611
Sunnyvale 94089 Hamilton/Avnet

FAX: (404) 446-1011
Tai: (408) 743-3300 55 F-ral Road, #103 Pioneer Technologies Group FAX: (408) 745·6879 Danbury 06810 4250 C. Rlvergreen Parkway
Hamilton/Avnet Tel: (203) 743-60n Duluth 30136
4545 Vlewridge Avenue FAX: (203) 791-9050 Tel: (404) 623-1003

~:O fs~05~~~~0 Pion-·Stendard FAX: (404) 623-0685
2 Trap Falls Rd., #101

FAX: (819) 571-8761 Shelton 06494 IWNOIS
Hamilton/Avnet Tel: (203) 929-5600
21150 Califa St. FAX: (203) 836-9901 Arrow/Schweber Eleclronlcs
Woodland Hills 91367

FLORIDA
1140 W. Thorndale Rd.

Tel: (818) 594-0404 lteaca 60143
FAX: (818) 594-8234 Arrow/Schweber Electronics Tel: (708) 2SO-OSOO
Hamilton/Avnet 400 Fairway Drive, #102 Avnet COmputer 755 Sunrise Avenue, #150 Deerfield - 33441
Roseville 95681 Tel: (305) 429-8200 1124 Thorndale Avenue

Beneenvllla 60106 Tel: (916) 925-2216 FAX: (305) 428-3991 Tel: (708) 880-6573 FAX: (918) 925-3478
""'1fl/Schweber Electronics FAX: (708) n3-7976

Pioneer Technologies Group ~~~~';~~#3101 Hamilton/Avnet 1:j4RloRobles
San Jose 95134 Tel: (407h 333·9300 1130 Thorndale Avenue

~~:1C:hi9~~3 FAX: (40 333-9320 Bensanvllle 80106

Avnet Computer ~~:~)~ Wyle Laboratories 3343 w. COmmerclal Blvd.
15380 Barranca Pkwy. ~~dea..Cfaid~I'.:'~ ~;1Jos:."T/!ndale Avenue lrvlns 92713
Tel: (714) 753·9953 Tel: (305) 979-9087 lteaca 80143
Wyle Laboratories FAX: (305) 730-0368

m,17~)~5 2951 Sunrise Blvd., #175 Avnet Computer
Rancho Cordova 95742 3247 Tech Drive North Pioneer-Standard Tel: (916) 838-5262 St. Petersbu~ 33716 2171 Exacutlve Dr., #200 FAX: (916) 638-1491 Tai: (813~ 5 -5524 Addison 80101

~~~:Drive 
FAX: (81 ) 572-4324 Tel: (708) 495-9680 
Hamilton/Avnet FAX: (708) 495-9831 

~I~ (~11'£° ~:71 5371 N.W. 33rd Avenue 
A. Lauderdale 33309 INDIANA FAX: (619) 365-0512 Tel: (305) 494-5018 

~Laboratories FAX: (305) 494-8389 Arrow/Schweber Eleclronlcs Bowers Avenue Hamilton/Avnet T~'J: Lakeview ..Jeaarkway Watl Dr. Santa Clara 95051 3247 Tech Drive North Tel: (408) 727-2500 
f./,=~~8 Tel: ~299-2071 FAX: (408) 727-5896 FAX: (31 299-2379 

r'le~2~!i°::nue FAX: (813) 572-4329 

="li~ifr"W:. Irvine 92714 HamlltonlAvnet 
Tai: (714) 883-9953 ~~e~~:798f"levard carme1 48032 
FAX: (714) 263-0473 Tel: (31rh575-8029 

~~o'-t~~r~. #150 
m,11~7?)~~~8 FAX: (31 1144-4964 

Pioneer Technologles Group Hamilton/Avnet 
Calabasas 91302 485 Gradle Drive 
Tai: (818) 880-9000 337 Northlake Blvd .. #1000 

Carmel 48032 Alta Monte Sprl~ 32701 FAX: (818) 880-5510 
Tel: (407h 834- Tel: (31rh 944-9333 

COLORADO FAX: (40 834-0885 FAX: (31 844-5921 

Arrow/Schwaber Electronics :~~u;~"'f~/es Group 
Plon--Standard 

61 lnvemess Dr. Eas1, #105 =°if ~West Dr. Englewood 80112 DeerlialdBe8ch33442 
Tel: (303) 799-0258 Tel: (305) 426-een Tel: (31 573-0880 
FAX: (303) 373-5760 FAX: (305) 481-2950 FAX: (31 573-0979 

CG/SALE/04111112 



NORTH AMERICAN DISTRIBUTORS (Contd.) 
IOWA 

Hamflton/Avnet 
2335A B1airsferry Rd., N.E 
Cedar Rapids 52402 
Tel: (319) 362-4757 
FAX: (319) 393-7050 

KANSAS 

Arrow/Schweber Electronics 
9801 Legler Road 
Lenexa 66219 
Tel: (913) 541-9542 
FAX: (913) 541-0328 

Avnet Computer 
15313 W. 95th Street 
Lenexa 61219 
Tel: (913) 541-7989 
FAX: (913) 541-7904 

Hamilton/Avnet 
15313 w. 95th 
Overland Park 66215 
Tel: (913) 888-1055 
FAX: (913) 541-7951 

KENTUCKY 

Hamilton/Avnet 
805 A. Newtown Cfrcle 
Lexington 40511 
Tel: (806) 259-1475 
FAX: (606) 252-3238 

MARYLAND 

Arrow/Schweber Electronics 
9800J Patuxent Woods Dr. 
Columbia 21046 
Tel: (301) 596-7800 
FAX: (301) 995-6201 

Avnet Computer 
7172 Columbia Gateway Dr., #G 
Columbia 21045 
Tel: (301) 995-3571 
FAX: (301) 995-3515 

Hamilton/Avnet 
7172 Columbia Gateway Dr., #F 
Columbia 21045 
Tel: (301) 995-3554 
FAX: (301) 995-3515 

*North Atlantic Industries 
Systems Division 
7125 River Wood Dr. 
Columbia 21046 
Tel: (301) 312-5800 
FAX: (301) 290-7951 

Pioneer Technologies Group 
15810 Gaither Road 
Gaithersburg 20877 
Tel: (301) 921-0660 
FAX: (301) 670-6746 

MASSACHUSETTS 

Arrow/Schweber Electronics 
25 Upton Dr. 
Wilmington 01887 
Tei: (508) 658·0900 
FAX: (508) 694-1754 

Avnet Computer 
1 0 D Centennial Drive 
Peabody 01960 
Tel: (508) 532-9886 
FAX: (508) 532-9660 

Hamilton/Avnet 
1 o D Centennial Drive 

~=~~~~) 0~i1~430 
FAX (508) 532-9802 

Pioneer·Standard 
44 Hartwell Avenue 

~:re~~) g~i:9~00 
FAX: (617) 863-1547 

Wyle Laboratories 
15 Third Avenue 
Burlington 01803 
Tel: (617) 272-7300 
FAX: (617) 272-6809 

MICHIGAN 

Arrow/Schweber Electronics 
19880 Haggerty Road 
Livonia 48152 
Tel: (800) 231-7902 
FAX: (313) 462-2686 

~~~t2~~Bt~~e;t, s.w., #5 
Grandville 49418
Tel: (616) 531-9807
FAX: (816) 531-0059

Avnet Computer
41650 Garden Brook Rd. #120
Novi 4&375
Tel: (313) 347-1820
FAX: (313) 347-4067

Hamilton/Avnet
2876 28th Street, S.W,, #5
Grandville 49418
Tel: (616) 243-8805
FAX: (616) 531-0059

Hamilton/Avnet
41 SSD Garden Brook Rd .. # 1 00
Novi 48375
Tel: (313) 347-4270
FAX: (313) 347-4021

Pioneer·Standard
4505 Broad:moor S.E.
Grand Rapids 49512
Tel: (616) 698-1800
FAX: (616) 698-1831

Pioneer-Standard
13485 Stamford
Livonia 48150
Tel: (313) 525-1800
FAX: (313) 427-3720

MINNESOTA

Arrow/Schweber Electronics
10100 Viking Drive, #100
Eden Prairie 55344
Tel: (612) 941-5280
FAX: (612) 942-7803

Avnet Computer
1 0000 West 76th Street
Eden Prairie 55344
Tel: (612) 829-0025
FAX: (612) 944-2781

Hamilton/Avnet
12400 Whitewater Drive
Minnetonka 55343
Tel: (612) 932-0600
FAX: (612) 932-0613

Pioneer-Standard
7625 Golden Triange Dr., #G
Eden Prairie 55344
Tel: (612) 944-3355
FAX: (612) 944-3794

MISSOURI

Arrow/Schweber Electronics
2380 Schuetz Road
St. Louis 63141
Tel: (314) 567-6886
FAX: (314) 567-1164

Avnet Computer
739 Goddard Avenue
Chesterfield 63005
Tel: (314) 537-2725
FAX: (314) 537-4248

Hamilton/Avnet
741 Goddard
Chesterfield 63005
Tel: (314) 537-1600
FAX: (314) 537-4246

NEW HAMPSHIRE

Avnet Computer
2 Executive Park Drive
Bedford 031 02
Tel: (800) 442-8638
FAX: (803) 624-2402

*Self Certified Small trusiness per Federal Acquisition Regulations

NEW JERSEY

Arrow/Schweber_Electronics
4 East Stow Rd., Unit 11
Marlton 08053
Tel: (809) 596-8000
FAX: (609) 596-9632

Arrow/Schweber Electronics
43 Route 46 East
Pine Brook 07058
Te:: (201) 227-7880
FAX: (201) 538-4962

Avnet Computer
1-B Keystone Ave., Bldg. 36
Cherry Hill 08003
Tel: (609) 424-8961
FAX: (609) 751-2502

Hamilton/Avnet
1 Keystone Ave., Bldg. 36
Cherry Hitt 08003
Tel: (809) 424-0110
FAX: (609) 751-2552

Hamilton/Avnet
1 O Industrial
Fairfield 07006
Tel: (201) 575-3390
FAX: (201) 575-5839

MTI Systems Sales
6 Century Drive
Parsippany 07054
Tel: (201) 882-8780
FAX: (201) 539-6430

Pioneer-Standard
14-A Madison Rd.
Fairfield 07006
Tel: (201) 575-3510
FAX: (201) 575-3454

NEW MEXICO

Alliance Electronics, Inc.
1051 o Research Avenue
Albuquerque 87123
Tel: (505) 292-3360
FAX: (505) 275-6392

Avnet Computer
7801 Academy Road
Bldg. 1, Sufte 204
Albuquerque 87109
Tel: (505) 828-9725
FAX: (505) 828-0360

Hamilton/Avnet
7801 Academy Rd. N.E
Bldg. 1, Suite 204
Albuquerque 87108
Tel: (505) 765-1500
FAX: (505) 243-1395

NEW YORK

Arrow/Schweber Electronics
3375 Brighton Henrietta Townline Ad
Rochester 14623
Tel: (716) 427-0300
FAX: (716) 427-0735

Arrow/Schweber Electronics
20 Oser Avenue
Hauppauge 11788
Tel: (516) 231-1000
FAX: (516) 231-1072

Avnet Computer
933 Motor Parkway
Hauppauge 11788
Tel: (516) 434-7443
FAX: (516) 434-7426

Avnet Computer
2060 Townline Ad.
Rochester 14623
Tel: (716) 272-9110
FAX: (716) 272-9685

Hamilton/Avnet
933 Motor Parkway
Hauppauge 11788
Tel: (516) 231-9800
FAX: (516) 434-7426

Hamilton/Avnet
2060 Townline Rd.
Rochester 14623
Tel: (716) 292·0730
FAX: (716) 292·0810

Hamilton/Avnet
103 Twin Oaks Drive
Syracuse 13120
Tel: (315) 437-2641
FAX: (315) 432·074-0

MTI Systems
1 Penn Plaza
250 w_ 34th Street
New York 10119
Tel: (212) 643-1280
FAX: (212) 643-1288

Pioneer-Standard
68 Corporate Drive
Binghamton 13904

~~(~~i'~~29~~~2
Pioneer·Standard
60 Crossway Park West
Woodbury, Long Island 11797
Tel: (518) 921-8700
FAX: (516) 921-2143

Pioneer·Standard
840 Fairport Park
Fairport 14450
Tel: (716) 381-7070
FAX: (716) 381-5955

NORTH CAROLINA

Arrow/Schweber Elecironics
5240 Greensdairy Road

~:1e(i~ 9r~i3132
FAX: (919) 878-9517

Avnet Computer
2725 Millbrook Rd., #123
Raleigh 27604
Tel: (919) 790-1735
FAX: (919) 872-4972

Hamilton/Avnet
5250·77 Center Or. #350
Charlotte 28217
Tel: (704) 527-2485
FAX: (704) 527-8058

Hamilton/Avnet

~~1~g5t~ii~o~orest Drive

Tel: (919) 878-0819

~~~e~~s~e~~~~~o~ii~! ~1~oJp 
Charlotte 28210 
Tel: (704) 527-8188 
FAX: (704) 522-8564 

Pioneer Technologies Group 
2810 Meridian Parkway, #148 
Durham 27713 
Tel: (919) 544-54-00 
FAX: (919) 544-5885 

OHIO 

Arrow Commercial Systems Group 
284 Cramer Creek Court 
Dublin 43017 
Tel: (614) 889·9347 
FAX: (614) 889-9680 

Arrow/Schweber Electronics 
6573 Cochran Road, #E 
Solon 44139 
Tel: (216) 248-3990 
FAX: (216) 248-1106 

Arrow/Schweber Electronics 
8200 Washington Village Dr. 
Centerville 45458 
Tel: (513) 435·5583 
FAX: (513) 435-2049 

CG/SALE/041692 



OHIO (Con1d.) 

Avnet Computer 
~;':$~f°" vina9e or. 
Tef: (513) 43!H!756 
FAX: (513) 439-6719 

Avnet Computer 
30325 Bainbridge Rd., Bldg. A 
Solon 44139 
Tel: (216) 349-2505 
FAX: (216) 349-1894 

Hamilton/Avnet 
7760 Washington Village Dr. 

~r5~~-6733 
FAX: (51~) 439-6711 

Hamilton/Avnet 
30325 Bainbridge 
Solon 44139 
Tel: (216) 349-4910 
FAX: (216) 349-1894 

Hamilton/Avnet 
2600 Corp Exchange Drive, #160 
Columbus 43231 
Tel: (614) 882·7004 
FAX: (614) 882·6650 

MTI Systems Ssles 
23404 Commerce Park Rd. 
Beschwood 44122 
Tel: (216) 464-6688 
FAX: (216) 464-3564 

Pioneer-standard 
4433 lnterpoint Boulevard 
Dayton 45424 
Tel: (513) 236-9900 
FAX: (513) 236-6133 

Pioneer-Standard 
4600 E. 131st Street 
Cleveland 44105 
Tel: (216) 587-3600 
FAX: (216) 663-1004 

OKLAHOMA 

Arrow/Schweber Electronics 
12111East51st Street, #101 
Tulsa 74146 
Tel: (918) 252-7537 
FAX: (918) 254-0917 

Hamilton/Avnet 
12121 E. 51st St., #102A 
Tulsa 74146 
Tel: (918) 252-7297 
FAX: (918) 250-8763 

OREGON 

AJmac/Arrow Electronics 
1885 N.W. 169th Place 
Beaverton 97006 

m,'~~)6~=1 
Avnet Computer 
9409 Southwest Nimbus Ave. 
Beaverton 97005 
Tel: (503) 627·0900 
FAX: (503) 526-6242 

Hamll!On/Avnet 
9750 Southwest Nimbus Ave. 
Beaverton 97005 
Tel: (503) 627-0201 
FAX: (503) 641-4012 

Wyle laboratories 
9640 Sunshine Court 
Bldg. G, Sutte 200 
Beaverton 97005 
Tel: (503) 643·7900 
FAX: (503) 646-5466 

PENNSYLVANIA 

~~~~~~rive, #320 
Mars 16046
Tel: (412) 772-1888
FAX: (412) 772-1890

NORTH AMERICAN DISTRIBUTORS (Contd.)
Hamirton/Avnet
213 Executive, #320
Mars 16045
Tel: (412) 281·4152
FAX: (412) 772-1890

Pioneer-Standard
259 Kappa Drive

~:ittI~f ia5:i~o
FAX: (412) 963-6255

Pioneer Technologies Group
500 Enterprise Road
Keith Valley Business Center
Horsham 19044
Tel: (215) 674-4000
FAX: (215) 674-3107

TEXAS

Arrow/Schweber Electronics
3220 Commander Drive
Carrolhon 75006
Tel: (214) 380-6464
FAX: (214) 248-7208

Avnet Computer
4004 Belttine, Suite 200
Dallas 75244
Tel: (214) 308-8181
FAX: (214) 308-8129

Avnet Computer
1235 North Loop West, #525
Houston 77008
Tel: (713) 867-7500
FAX: (713) 861-6851

Hamilton/Avnet
1826-F Kramer Lane
Austin 78758
Tel: (512) 832-4306
FAX: (512) 832-4315

Hamilton/Avnet
4004 Beltline, Suite 200
Dallas 75244
Tel: (214) 308-8111
FAX: (214) 308-8109

Hamilton/Avnet
1235 North Loop West, #521
Houston 77008
Tel: (713) 240-n33
FAX: (713) 861-6541

Pioneer-Standard
1826·0 Kramer Lane
Austin 78758
Tel: (512) 835-4000
FAX: (512) 635-9829

Pioneer-Standard
13765 Beta Road
Dallas 75244
Tel: (214) 263-3188
FAX: (214) 490-6419

Pioneer-Standard
10530 Reckley Road, #100
Houston no99
Tel: (713) 495-4700
FAX: (713) 495-5642

Wyle Laboratories
1810 Greenville Avenue
Richardson 75081
Tel: (214) 235.9953
FAX: (214) 644-5064

Wyle Laboratories
4030 West Braker Lane, #330
Austin 78758
Tel: (512) 345-6853
FAX: (512) 345-9330

Wyle Laboratories
11001 South Wllcrest, #100
Houston 77099
Tel: (713) 879·9953
FAX: (713) 879-6540

UTAH

Arrow/Schweber Electronics

~~~:~:-:.r1~~ 
Tel: (801) 973-6913 

~rggi Eco:;~~':iuth, #150 
Salt Lake City 84121 
Tel: (801) 266-1115 
FAX: (801) 266-0362 

Hamilton/Avnet 
1100 East 6600 South, #120 
Salt Lake City 84121 
Tel: (801) 972·2800 
FAX: (801) 263·0104 

Wyle Laboratories 
1325 West 2200 South, #E 

f.~:0~~7~~~ 
FAX: (801) 972-2524 

WASHINGTON 

Aimee/Arrow Electronics 
14360 S.E. Eestgete Wey 
Bellevue 98007 
Tel: (206) 643·9992 
FAX: (206) 643-9709 

Hamilton/Avnet 
17761 N.E. 781h Place, #C 
Redmond 98052 
Tel: (206) 241-8555 
FAX: (206) 241-5472 

Avnet Computer 
17761 Northeest 781h Place 
Redmond 98052 
Tel: (206) 867-0160 
FAX: (206) 887·0161 

Wyle Laboratories 
15385 N.E. 90th Street 
Redmond 98052 
Tel: (206) 881-1150 
FAX: (206) 881-1567 

WISCONSIN 

Arrow/Schweber Electronics 
200 N. Patrick Blvd., #100 
Brookfield 53005 
Tel: (414) 792-0150 
FAX: (414) 792-0156 

Avnet Computer 
20875 Crossroads Circle, #400 
Waukesha 53186 
Tel: (414) 784-6205 
FAX: (414) 784-6006 

Hamilton/Avnet 
28875 Crossroads Circle, #400 
Waukesha 53186 
Tel: (414) 784-4510 
FAX: (414) 784-9509 

Pioneer-Standard 
120 Bishops Way #163 
Brookfield 53005 
Tel: (414) 784-3480 

ALASKA 

Avnet Computer 
1400 West Benson Bivd., #400 

~:,~gh~~~~ 
FAX: (907) 277-2639 

CANADA 
ALBERTA 

~~~: 2~~m£= Northeast 

r:!l~f~~84
FAX: (403) 250-1591

Zentronics
6815 8th Street N.E .. #100
Calgary T2E 7H
Tel: (403) 295-6838
FAX: (403) 295-8714

BRITISH COLUMBIA

Almac·Arrow Electronics
8544 Baxter Place
Burnaby VSA 4TB
Tel: (604) 421·2333
FAX: (604) 421 ·5030

Hamilton/Avnet
8610 Commerce Court
Burnaby V5A 4N6
Tel: (604) 42D-4101
FAX: (604) 420-5376

Zantronics

~/c~!~,~oMd., #108
Tel: (604) 273-5575
FAX: (604) 273·2413

ONTARIO

Arrow/Schweber Electronics
36 Antares Or., Unit 100
Nepesn K2E 7W5
Tel: (613) 226-6903
FAX: (613) 723-2018

Arrow/Schweber Electrontcs
1093 Meyerside, Unit 2
Mississauga LST 1M4
Tel: (416) 670-7769
FAX: (416) 67D-n81

Avnet Computer
151 Superior Blvd.
Mlsslssuaga L5T 2L 1
Tel: (416) 795-3835

Avnet Computer
190 Colonade Rood
Nepesn K2E 7J5
Tel: (613) 727-2000
FAX: (613) 226-1184

Hamitton/Avnet
151 Superior Blvd., Uni1s 1-6
Mississauga L5T 2L 1
Tel: (416) 564-6060
FAX: (416) 564·6033

Hamilton/Avnet
190 Colonade Rood
Nepesn K2E 7J5
Tel: (613) 226-1700
FAX: (613) 226-1184

Zantronics
1355 Meyerslde Drive
Mississauga L5T 1 C9
Tel: (416) 564-9600
FAX: (416) 564-3127

Zentronlcs
155 Colonade Rd., South
Unit 17
Nepesn K2E 7K1
Tel: (613) 226-6840
FAX: (613) 226-6352

QUEBEC

Arrow/Schweber Eleclronics

b~~~~:~5 Blvd.
Tel: (514) 421·7411
FAX: (514) 421-7430

Arrow/Schweber Electronics
500 Boul. St-Jean-Baptiste Ave.
Quebec H2E 5R9
Tel: (418) 871-7500
FAX: (418) 871-8816

Avnet Computer

~ra~::."n1H.%'%8
Tel: (514) 335-2483
FAX: (514) 335-2481

Hamilton/Avnet
2795 Halpam
St. Laurent H4S 1 PB
Tel: (514) 335-1000
FAX: (514) 335-2461

Zantronics
520 McCalfrey
St. Laurent H4T 1 N3
Tel: (514) 737-9700
FAX: (514) 737·5212

CG/SALE/041692

FINLAND

Intel Finland OY
Ruoollantle 2
00390 Helslnkf
Tel: (358) 0 544 644
FAX: (358) 0 544 030

FRANCE

\~~,;o=Gi>s~R.L.
78054 St. Quentln·•n·Yvellnoa
Cedex
Tai: (33) (1) 30 57 70 00
FAX: (33) (1) 30 64 80 32

EUROPEAN SALES OFFICES
GERMANY ITALY SPAIN UNITED KINGDOM

Intel GmbH lntal Corporation Italia S.p.A Intel Iberia S.A.
Dornacher Strasse 1 Mllanoflorl Palazzo E Zubaran, 28
8018 Feldklrchen bel Muenchen 20094 Aooago 2801 O Madrid
Tel: (49) 088/90992-0 Miiano Toi: (34) 308 25 52
FAX: (49) 089/9043948 Tel: (39) (02) 89200950 FAX: (34) 410 7570

FAX: (39) (2) 3498464
ISRAEL

SWEDEN
Intel Semloonduelor Ltd. NETHERLANDS

~~~w:ratlon (U.K.) Ltd. 

Swindon, Wiltshire SN3 1 RJ 

~~:l(tl,(~&~): 

Atldlm Industrial Park-Nave Sharet Intel Semlconduelor B.V. Intel SWeden AB. 
P.O. Box 43202 Pootbua 94130 Dalvagen 24 
Toi-Aviv 61430 3009 CC Rotterdam 171 36 Sotna 

~~,<~$~>% 4:s8Wo Tel: (31) 10 407 11 11 
FAX: (31) 10 455 4688 

Tel: 146) a 734 01 oo 
FAX: (46) 8 278085 

EUROPEAN DISTRIBUTORS/REPRESENTATIVES 
AUSTRIA Proeloelron Vertrlebs GmbH Laei Elettronlca S.p.A. ITT Mul!Jkomponen1 AIS By1ech Sys1ems 

Bacher ElettrDnicl GmbH MP·Planck·Strasse 1-3 P.1. 00839000155 Naverland 29 Unlt3 
6072 Dre1eich Viale FuMo Teetl, N.280 01(.2600 Glostrup The Western Centre 

Rotenmuahlgasse 26 Tel: 49 6103 304343 20126 Milano Denmark Westem Road 
A·1120Wien FAX: 49 6103 304425 Tel: 39 2 66101370 Toi: 010 4542 451822 Bracknen Tai: 43 222 81358460 FAX: 39 2 66101385 FAX: 010 45 42 457624 Berks RG12 1 AW 
FAX: 43 222 8341!76 Rein Electronlk GmbH Tel: 0344 55333 

BELGIUM 
Loetscher Wag 66 Telcom s.r.l.'-DMsione MOS Nordisk Elektronik A/S FAX: 0344 667270 
4054 Nettetel 1 Via Trombetta P001boks 122 

lnelco Belgium S.A. Tel: 49 2153 7330 Zona Marconi Smedsvingan 4 ~:~~~~SB ~~·~~:i:::n 94 
FAX: 49 2153 733513 Strada Cessanese N·1364 Hvalstad 

Segrate-Milano ~~2846210 O><lord Road 
Tel: 32 2 244 2811 GREECE 

Tel: 39 2 2138010 High Wycombe 
FAX: 32 2 216 4301 FAX: 39 2 216081 FAX: 47 2 646545 Bucks 

HerteHP112EE 
FRANCE Pouliadie Aosoclates Corp. Nordisk Electronik AB Tel: 0494 474147 

5 Koumbari Street NETHERLANDS S0.38 FAX: 0494 452144 
Almax Koloneki Square Torshamnsgatan 39 
46, Rueda l'Aubeplne 10874 Alhena ~~~~?S:~~rtman B.V. S· 16493 KIS1a Jermyn 
B.P.102 Tel: 30 1 380 3741 Sweden Vestry ES1ate 

ms:s'f"~= FAX: 30 1 380 7501 2627 AP Delft Tel: 46 8 7034630 Otlord Road 
Tel: 31 15 609 908 FAX: 46 8 7039645 Sevenoaks 

FAX: 33 1 4666 8026 
IRELAND 

FAX: 31 15 619194 Kent TN14 5EU 
Lax Electronics Tel: 0732 450144 
SMIC585 Micro Marketing PORl\JGAL 

SWITZERLAND FAX: 0732 451251 
80 Rue des Gemeaux Tany Hall lndustrade A.G. MMD 
~ ~u~~8 ~ecra· Eglinton Terrace ATO Etectronlce LOA Hertlstraase 31 3 Bennet Court Dundrum Rua Dr. Faria de CH-8304 Walllsellen Bennet Road FAX: 33 1 4978 0596 Dublin Vasconcelos, 3a Tel:4118328111 Readin~ 

~~~~ieres 
Tel: 0001 969 400 1900 Lisboa FAX: 41 1 8307550 Berkshire RG2 OQX FAX: 0001 989 8282 Tel: 351 1 6472200 Tel: 0734 313232

4, Avenue Lauren1 Cely FAX: 351 1 6472197 FAX: 0734 313255
92606 Aonleres Cedax ISRAEL

TURKEY
Tel: 33 1 4790 6240 SPAIN EMPA Rapid Silicon
FAX: 33 1 4790 5947 Eastronlcs Ltd: 80050 Sishane

3 Bennet Court
Bennet Road Tei<elec-Alrtronlc Rozanis 11 ATD Eloelronice SA Reftk Saydam Cod No. 89/5 Reading Cite Des Bruyeres P.O.B. 39300 Avda de la lndustria, 32 letsnbul Berks RG2 OQX

Rue Carle Vemet Tel Baruch Nave 17, 28 Tel: 90 1 143 6212 Tel: 0734 752266
BP2 Tel·Aviv 61392 28100 Alcobendas FAX: 90 1 143 6547
92310 Savres Tel: 972 3 475151 Madrid FAX: 0734 312728

Tet: 33 1 4623 2425 FAX: 972 3 475125 Tai: 1 661 65 51 Metro Systems FAX: 33 1 4507 2191 FAX: 1 661 63 00 UNITED KINGDOM

~=rif= GERMANY ITALY Metrologia lberica Access EleCI Comp Ltd.
Avenida de la lndustria NA 32-2o Jubilee House High Wycombe

E2000VertrlelJs.AG Celdie Spa Oflcina 17 Jubilee Road Bucks HP11 2EE
=uberrlng12 Via F.11i Gracchl 36 28100 Alcobendas Letchworth Tel: 0494 474171
8000 uenchen82 20092 Cinisello Balsamo Madrid Hertfordshire FAX: 0494 21860
Tel: 49 89 420010 Milano Tel: (1) 661 11 42 SG61QH
FAX: 49 89 42001209 Tel: 38 2 66012003 FAX: (1) 661 57 55 Tel: 0462 480888 YUGOSLAVIA
JermynGmbH FAX: 39 2 6162433 FAX: 0462 582467
Im Dachea1Ueck 9 lntest Div. Delta Deutsche SCANDINAVIA ~ra·~=ents Ltd

H.R. Microelectronlcs Corp.

f.F ~={°so90 OlvisioneITT 2005 de la Cruz Blvd.
Industries GmbH OY Fintronic AB Chlnehem Business Park Suite 220

FAX: 49 6431 508289 P.I. 06550110156 Heikkilantie 2a Crockford Lane Santa Clara, CA 95050

~m"~~~~~
Mllanoflori Palazzo ES SF-0021 O Helsinki Basingstoke

U.S.A.
20094 Assago (Milano) Tel: 358 0 6926022 Hants RG121RW

Tel: (408) 988-0286

8000 Musnchen 70 Tel: 39 2 624701 FAX: 356 0 5821251 Tel: 0256 707107 FAX: (408) 988·0306

Tel: 49 89 724470 FAX: 39 2 8242631 FAX: 0256 707162
FAX: 49 89 72447111

CG/SALE/041692

AUSTRALIA

Intel Australia Pty. Ltd.
Unit 13
Allambie Grove Business Park
25 Frenchs Forest Road East
Frenchs Forest, NSW, 2086
Sydney
Tel: 61-2-975-3300
FAX: 61-2-975-3375

Intel Australia Pty. Ltd.
711 High Street
1st Floor
East Kw. Vic., 3102
Melbourne
Tel: 61-3-810-2141
FAX: 61-3-819 7200

BRA21L

Intel Sem1conductores do Brazil L TDA
Avenida Paulista, 1159-CJS 404/405
CEP 01311 - Sao Paulo S.P.
Tel: 55-11-287-5899
TU<: 11-37-557-ISOB
FAX: 55-11-287-5119

CHINA/HONG KONG

Intel PAC Corporation
15/F, Office 1, Citic Bldg.
Jian Guo Men Wai Street
Beijing, PRC
Tel: (1) 500-4850
TU<: 22947 INTEL CN
FAX: (1) 500-2953

INTERNATIONAL SALES OFFICES
Intel Semiconductor Ltd.*
10/F East Tower
Bond Center
Oueensway, Central

~~~~~~)~4-4555 
FAX: (852) 868-1989 

INDIA 

Intel Asia Electronics, Inc. 
4/2, Samrah Plaza 
St. Mark's Road 

~!17i~~~ 2~ftg~;3 
TU<: 953-845-2646 INTEL IN 
FAX: 091-812-215067 

JAPAN 

Intel Japan K.K. 
5-6 Tokodai, Tsukuba-shi 
lbaraki, 300-26 
Tel: 0298-47-8511 
FAX: 0298-47-8450 

fntel Japan K.K.* 
Hachioji ON Bldg. 
4-7-14 Myojin-machi 
Hachioji-shi, Tokyo 192 
Tel: 0426-48-8770 
FAX: 0426-48-8775 

Intel Japan K.K. * 
Bldg. Kumagaya 
2-69 Hon.cha 
Kumagaya-shi, Saitama 360 
Tel: 0485-24-6871 
FAX: 0485-24-7518 

Intel Japan K.K.* 
Kawa-asa Bldg. 
2-11-5 Shin-Yokohama 
Kohoku-ku, Yokohama-shi 
Kanagawa, 222 
Tel: 045-474-7660 
FAX: 045-471-4384 

Intel Japan K.K. * 
Ayokuchi-Eki Bldg. 
2-4-1 Terauchi 

i~r:oo"s~:.J-~i~saka 560 

FAX: 06·863-1084 

Intel Japan K.K. 
Shinmaru Bldg. 
1-5-1 Marunouchi 
Chiyoda-ku, Tokyo 100 
T et 03-3201 -3621 
FAX: 03-3201-6650 

Intel Japan K.K. 
Green Bldg. 
1-16-20 Nishiki 
Naka-ku, Nagoya-shi 
Aichi 460 
Tel: 052-204·1261 
FAX: 052-204-1285 

KOREA 

Intel Korea, Ltd. 
16th Floor, Life Bldg. 
61 Yoido-dong, Youngdeungpo-Ku 
Seoul 150-010 
Tel: (2) 784-8186 
FAX: (2) 784-8096 

SINGAPORE 

Intel Singapore Technology, Ltd. 
101 Thomson Road #08-03/06 
United Square 
Singapore 1130 
Tel: (65) 250-7811 
FAX: (65) 250-9256 

TAIWAN 

Intel Technology Far East Ltd. 
Taiwan Branch Office 
8th Floor, No. 205 
Bank Tower Bldg. 
Tung Hua N. Road 
Taipei 
Tel: 886-2-5144202 
FAX'. 886-2-717-2455 

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES 
ARGENTINA 

Dafsys S.R.L. 
Chacabuco, 90-6 Piso 
1069-Buenos Aires 
Tel & FAX: 54.1334.1871 

AUSTRALIA 

Email Electronics 
15-17 Hume Street 
Huntingdale, 3166 
Tel: 011-61-3-544-8244 
TU<: AA 30895 
FAX: 011-61-3-543-8179 

NSD-Australia 
205 Middleborough Rd. 
Box Hill, Victoria 3128 
Tel: 03 8900970 
FAX: 03 8990819 

BRA21L 

Microlinear 
Largo do Arouche, 24 
01219 Sao Paulo, SP 
Tel: 5511-220-2215 
FAX: 5511-220-5750 

CHILE 

Sisteco 
Vecinal 40-Las Condes 
Santiago 
Tel: 562-234-1644 
FAX: 562-233-9895 

CHINA/HONG KONG 

Novel Precision Machinery Co., Ltd. 
Room 728 Trade Square 
681 Cheung Sha Wan Road 
Kowloon, Hong Kong 
Tel: (852) 360-8999 
TWX: 32032 NVTNL HX 
FAX: (852) 725-3695 

GUATEMALA 

Abinitio 
11Calle2-Zona 9 
Guatemala City 
Tel: 5022-32-4104 
FAX: 5022-32-4123 

*Field Application Location 

INDIA 

Micronic Devices 
Arun Complex 
No. 65 D.V.G. Road 
Basavanagudi 
Bangalore 560 004 
Tel: 011-91-812-600-631 

011-91-812-611-365 
TU<: 9538458332 MOBG 

Micronic Devices 
No. 516 5th Floor 
Swastik Chambers 
Sion, Trombay Road 
Chembur 

~~~311\°1~.U7 MDEV 

Micronic Devices
25/8, 1st Floor
Bada Bazaar Marg
Old Rajinder Nagar
New Delhi 11 o 060
Tel: 011-91-11-5723509

011-91-11-589771
TU<: 031-63253 MONO IN

Micronic Devices
6-3-348/12A Dwarakapuri Colony
Hyderabad 500 482
Tel: 011-91-842-226748

S&S Corporation
1587 Kooser Road
San Jose, CA 95118
Tel: (408) 978-6216
TU<: 820281
FAX: (408) 978-8635

JAMAICA

MC Systems
10-12 Grenada Crescent
Kingston 5
Tel: (809) 929-2638

(809) 926-0188
FAX: (809) 926-0104

JAPAN

Asahi Electronics Co. Ltd.
KMM Bldg. 2-14·1 Asano
Kokurakita-ku

~!!rkJ~~~-~~4~~2
FAX: 093-551-7861

CTC Components Systems Co., Ltd.
4-8-1 Dobashi, Mlyamae-ku
Kawasaki-shi, Kanagawa 213
Tel: 044-852-5121
FAX: 044-877-4268

Dia Sernicon Systems, Inc.
Flower Hill Shinmachl Higashi-kan
1-23 Shinmachi, Setagaya-ku
Tokyo 154
Tel: 03-3439-1600
FAX: 03-3439-1601

Okaya Koki
2·4-18 Sakae
Naka-ku, Nagoya-shi 460
Tel: 052-204-8315
FAX: 052-204-8380

Ryoyo Electro Corp.
Konwa Bldg.
1-12-22 Tsukiji
Chuo-ku, Tokyo 104
Tel: 03-3548-5011
FAX: 03-3546-5044

KOREA

J-Tek Corporation
Dong Sung Bldg. 9/F
158-24, Samsung-Dong, Kangnam-Ku
Seoul 135-090
Tel: (822) 557-8039
FAX: (822) 557-8304

Samsung Electronics
Samsung Main Bldff<A
~~Jia1egJ.~~~·Ro-2 , Chung-Ku

C.P.O. Box 8780
Tel: (822) 751-3880
TWX: KORSST K 27970
FAX: (822) 753-9065

MEXICO

PSI S.A. de C. V.

~:·r~!~~:.\fc!~~1~6
Tel: 52-73-13-8412

52-73-17·5340
FAX: 52-73-17-5333

NEW ZEALAND

Email Electronics
36 Olive Road
Penrose, Auckland
Tel: 011-84-9-591-155
FAX: 01 J.64-9-592-681

SAUDI ARABIA

AAE Systems, Inc.
642 N. Pastorla Ave.
Sunnyvale, CA 94086
U.S.A.
Tel: (408) 732-1710
FAX: (408) 732-3095
TLX: 494-3405 AAE SYS

SINGAPORE

Electronic Resources Ple, Ltd.

~~~~~~n~~~~re 1336 
Tel: (65) 283-0888 
TWX: RS 56541 ERS 
FAX: (65) 289-5327 

SOUTH AFRICA 

~~~~;~~~~i~Lnro~1W~~~~eyet St.} 
Meyerspark, Pretoria, 0184
Tel: 011-2712-803-7680
FAX: 011-2712-803-8294

TAIWAN

Micro Electronics Corporation
12th Floor, Section 3

i:~~~~~~.it~ast Road
Tel: (886) 2-7198419
FAX: (886) 2-7197916

Acer Sertek 1nc.
15th Floor, Section 2
Chien Kuo North Ad.
Taipei 18479 R.O.C.
Tel: 868-2-501-0055
TWX: 23756 SERTEK
FAX: (886) 2-5012521

URUGUAY

lnterfase
Zabala 1378
11000 Montevideo
Tel: 5982·96-0490

5982-96-1143
FAX: 5982-96-2965

VENEZUELA

Unixel C.A.
4 Transversal de Monte Cristo
Edf. AXXA, Piso 1, of. 1 &2
Centro Empresarial Boleita
Caracas
Tel: 582-238-6082
FAX: 582-238-1816

CG/SALE/04189;

ALASKA

Intel Corp.
c/o TransAlaska Network
1515 Lore Rd.

~~~~~~85~~0710 
Intel Corp. 
c/o TransAlaska Data Systems 

~20 ~h 0.fv:.~t~~f e 407 
Fairbanks 99701 
Tel: (907) 452-6264 

ARIZONA 

*Intel Corp. 410 North 44th Street 
Suite 500 
Phoenix 85008 
Tel: (602) 231-0386 
FAX: (602) 244-0446 

*Intel Corp. 
500 E. Fry Blvd., Suite M-15 
Sierra Vista 85635 
Tel: (602) 459-5010 

ARKANSAS 

Intel Corp. 
c/o Federal Expr85S 
1500 West Park Drive 
Little Rock 72204 

CALIFORNIA 

•1ntet Corp. 
21515 Vanowen St., Ste. 116 

~!i~(Bf a)~~4~~~gg 
*Intel Corp. 
300 N. Continental Blvd. 
Suite 100 
El Segundo 90245 
Tel: (213) 640-6040 

*Intel Corp. 

~~:,~r;~i~~~5~~-
Tel: (916) 351-6143 

*Intel Corp. 
9665 Chesapeake Dr., Suite 325 
San Diego 92123 
Tel: (619) 292-8086 

**Intel Corp. 
400 N. Tustin Avenue 
Suite 450 
Santa Ana 92705 
Tel: (714) 835-9642 

;;~e~~fOmas Exp., ~st Floor 
Santa Clara 95051 
Toi: (408) 970-1747 

COLORAOO 

"'Intel Corp. 
600 S. Cherry St., Suite 700 
Denver 80222 
Tel: (303) 321-8086 

ARIZONA 

2402 W. Beardsley Road 
Phoenix 85027 
Tel: (602) 869-4288 

1-800-468-3548 

MINNESOTA 

3500 W. 80th Street 
Suite 360 

~~~~mr2~1~3s~~g~ 

*Carry-in locations
"*Garry-in/mail-in locations

NORTH AMERICAN SERVICE OFFICES
CONNECTICUT MARYLAND NEW YORK

;~te~;0~rm Corporate Park
**Intel Corp. *Intel Corp
10010 Junction Dr., Suite 200 2950 Expressway Dr. South

83 Wooster Heights Rd. Annapolls Junction 20701 Suite 130
DanbtJry 06811 Tel: 1301) 206-2860 Islandia 11722
Tel: (203) 748-3130 Tel (516) 231-3300

Fl.ORIOA
MASSACHUSETTS Intel Corp
"*Intel Corp. 300 Wastage Business Center

**Intel Corp. Westford Corp. Center Suite 230
800 Fairway Dr., Suite 160 3 Carlisle Rd., 2nd Floor Fishkill 12524
Deerfield Beach 33441 Tel (914) 897-3860
Tel: 1305) 421-0506

Westford 01886

FAX: (305) 421-2444
Tel (508} 692-0960 Intel Corp.

5858 East Molloy Road
*Intel Corp. MICHIGAN Syracuse 13211
5850 T.G. Lee Blvd., Ste. 340 Tel: (315} 454-0576
Orlando 32822 *Intel Corp
Tel: (407) 240-8000 7071 Orchard Lake Rd., Ste. 100

West Bloom1ield 48322 NORTH CAROLINA

GEORGIA Tel: (313) 851-8905
*Intel Corp,

*Intel Corp. MINNESOTA
5800 Executive Center Drive

~~~:~~~88§lark, Suite 150 Suite 105 
"lntet Corp. Charlotte 28212 

Tel: (404) 449-0541 3500 W. Bath St., Suite 360 Tel: (704) 568-8966 

5523 Theresa Street Bloomington 55431 **Intel Corp 
Columbus 31907 Tel: (612) 835·6722 5540 Centerview Dr., Suite 215 

HAWAII MISSISSIPPI 
Raleigh 27606 
Tel: (919) 851-9537 

**Intel Corp. Intel Corp. 
Honolulu 96820 c/o Compu-Care OHIO 
Tel: (808) 847-6738 2001 Airport Road, Suii:e 205F 

""Intel Corp. Jackson 39208 
ILLINOIS Tel: (601) 932-6275 3401 Park Center Dr., Ste. 220 

Dayton 45414 
**t!ntel Corp. Tel: (513) 890-5350 
Woodfield Corp. Center Ill 

MISSOURI 

300 N. Martingale Rd., Ste. 400 *Intel Corp. *Intel Corp. 
Schaumburg 60173 3300 Rider Trail South 25700 Science Park Dr., Ste. 100 
Tel: (708) 605-8031 Suite 170 Beachwood 44122 

Ef:r~39~ ~~~~90 
Tel: (216) 464-2736 

IN DIANA 

"Intel Corp. Intel Corp. 
OREGON 

8910 Purdue Rd., Ste. 350 Route 2, Box 221 **Intel Corp. 
Indianapolis 46268 Smithville 64089 15254 NW. Greenbrier Pkwy. 
Tel: (317) 875-0623 Tel: (913) 345-2727 Building B 

Beaverton 97006 
KANSAS NEW JERSEY Tel: (503) 645-8051 

*Intel Corp. **Intel Corp. 10985 Cody, Suite 140 PENNSYLVANIA 
Overland Park 6621 O 300 Sylvan Avenue 

Tel: (913) 345-2727 Englewood Cliffs 07632 *tlntel Corp. 
Tel: (201) 567-0821 925 Harvest Drive 

Suite 200 KENTUCKY *Intel Corp. 
Uncroft Office Center Blue Bell 19422 

Intel Corp. 125 Half Mile Road Tel: (215) 641-1000 
133 Walton Ave., Office 1 A Red Bank 07701 1-800-468-3548 
Lexington 40508 Tel: (908) 747-2233 FAX: (215) 641-0785 
Tel: (606) 255-2957 

**tlntel Corp. 
Intel Corp. NEW MEXICO 400 Penn Center Blvd., Ste. 610 
896 Hillcrest Road, Apt. A Pittsburgh 15235 
Radcliff 40160 (Louisville) Intel Corp. Tel: (412) 823-4970 

Rio Rancho 1 
LOUISIANA 4100 Sara Road *Intel Corp. 

Rio Rancho 87124-1025 1513 Cedar Cliff Dr. 
Hammond 70401 (near Albuquerque) Camp Hill 17011 
(serviced from Jackson, MS) Tel: (505) 893-7000 Tel: (717) 761-0860 

CUSTOMER TRAINING CENTERS 

SYSTEMS ENGINEERING OFFICES 
NEW YORK 

2950 Expressway Dr., South 
Islandia 11722 
Tel: (506) 231-3300 

PUERTO RICO 

Intel Corp. 
South Industrial Park 
P.O. Box 910 
Las Piedras 00671 
Tel: (809) 733-8616 

TEXAS 

**lntet Corp. 
Wes1ech 360, Suite 4230 
8911 N. Capitol of Texas Hwy. 
Austin 78752· 1239 
Tel: (512) 794-8086 

**tlntel Corp. 
12000 Ford Rd., Suite 401 
Dallas 75234 
Tel: (214) 241-8087 

;;i~~e~~0fl:Seway, Suite 1490 
Houston 7707 4 
Tel: (713) 988·6086 

UTAH 

Intel Corp. 
428 East 6400 South 
Suite 104 
Murray 84107 
Tel: (801) 263-8051 
FAX: (801) 268-1457 

VIRGINIA 

*Intel Corp. 
9030 Stony Point Pkwy. 
Suite 360 
Richmond 23235 
Tel: (804) 330-9393 

WASHINGTON 

**Intel Corp. 
155 108th Avenue N.E., Ste. 386 
Bellevue 98004 
Tel: (206) 453-8086 

CANADA 
ONTARIO 

**Intel Semiconductor of 
Canada, Ltd. 
2650 Queensview Dr., Ste. 250 
Ottawa K2B 8H6 
Tel: (613) 829·9714 

"*Intel Semiconductor of 
Canada, Ltd. 
190 Attwell Dr., Ste. 102 
Rexdale (Toronto) M9W 6H6 
Tel: (416) 675-2105 

QUEBEC 

**Intel Semiconductor of 
Canada, Ltd 
1 Rue Holiday 
Suite 115 
Tour East 
Pt. Claire H9R 5N3 
Tel: (514) 694-9130 
FAK 514-694-0064 

CG/SALE/041692 




	00000
	00001
	00002
	00003
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-00
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	03-00
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	04-00
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	05-00
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	06-00
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	07-00
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	08-00
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	09-00
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	09-50
	09-51
	09-52
	09-53
	09-54
	09-55
	09-56
	09-57
	09-58
	09-59
	09-60
	09-61
	09-62
	09-63
	09-64
	09-65
	09-66
	09-67
	09-68
	09-69
	09-70
	09-71
	09-72
	09-73
	09-74
	09-75
	09-76
	09-77
	09-78
	09-79
	09-80
	09-81
	09-82
	09-83
	09-84
	09-85
	10-00
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	11-00
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	12-00
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	13-00
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	13-33
	13-34
	13-35
	13-36
	14-00
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	A-43
	A-44
	A-45
	A-46
	A-47
	B-00
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	B-35
	B-36
	B-37
	B-38
	B-39
	B-40
	B-41
	B-42
	B-43
	B-44
	B-45
	B-46
	B-47
	B-48
	B-49
	B-50
	B-51
	B-52
	B-53
	B-54
	C-00
	C-01
	C-02
	C-03
	C-04
	C-05
	D-00
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	E-00
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	E-21
	E-22
	G-00
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	I-00
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	xBack

