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CHAPTER 1 
INTRODUCTION TO THE i960™ CA MICROPROCESSOR 

Intel's i960 CA microprocessor, a member of the i960 family of 32-bit embedded processors, 
is the first commercially available superscalar processor. Superscalar technology enables this 
processor to execute up to three instructions in a single clock cycle. It is an ideal 
communications controller; as such, it is the natural choice to use as a connection processor in 
the emerging field of Computer Supported Collaboration (CSCJ, where high speed networks 
are used to link multimedia PCs. 

The i960 CA product represents Intel's commitment to provide a spectrum of reliable, cost­
effective, high-performance processors to satisfy the requirements of today's innovative 
products. It is designed for applications which require greater performance on a single chip 
than is usually found in an entire embedded system. The sheer speed of the i960 CA processor 
enriches traditional embedded applications and makes many new functions possible at a 
reduced cost. This embedded processor is versatile; it is found in diverse product lines such as 
laser printers, X-terminals, bridges, routers and PC add-in cards. 

As shown in Figure 1.1, the i960 CA component integrates many features onto a single 
CHMOS device, including the multiple-instruction per clock C-series core, a I Kbyte two-way 
set associative instruction cache, a programmable register cache, a I Kbyte on-chip data RAM, 
a multi-mode programmable bus controller for its demultiplexed bus, a four-channel 59 Mbyte 
per second DMA controller and a high-speed interrupt controller. 

270710-002-01 

Figure 1.1. The Single-Chip i960™ CA Superscalar Processor 

1-1 

• 



INTRODUCTION TO THE i960™ CA MICROPROCESSOR 

THE 1960™ CA MICROPROCESSOR ARCHITECTURE 

The i960 architecture provides a high-performance computing model. The architecture profits 
from reduced instruction set computer (RISC) concepts and includes refinements for execution 
of more than one instruction per clock through superscalar implementations. Furthermore, the 
architecture provides a high-speed procedure call/return model, a powerful instruction set 
suited to parallelism and integrated interrupt- and fault-handling models appropriate in a 
parallel execution environment. 

Parallel Instruction Execution 

To sustain execution of multiple instructions in each clock cycle, a processor must decode 
multiple instructions in parallel and simultaneously issue these instructions to parallel 
processing units. The various processing units must then be able to independently access 
instruction operands in parallel from a common register set. 

On-chip instruction cache enables parallel decode by constantly providing the next four 
unexecuted instructions to the processor's instruction scheduler. In a single clock cycle, the 
scheduler inspects all four instructions and issues one, two or three of these instructions in the 
same clock cycle. 

Parallel decode also speeds conditional operations such as branches. These instructions are 
decoded and executed ahead of the current instruction pointer while maintaining the logical 
control flow of the sequential program. 

Once the scheduler issues an instruction or group of instructions, one of six parallel processing 
units begins to execute each instruction. Each parallel unit handles a different subset of the 
instruction set, enabling multiple instructions to be issued and executed every clock cycle. 
Each unit executes its instructions in parallel with other processor operations. 

The i960 CA processor's 32 general purpose 32-bit registers are each six-ported to allow 
unimpeded parallel access to independent processing units. To maintain the logical integrity of 
sequential instructions which are being executed in parallel, the processor implements register 
scoreboarding and resource scoreboarding interlocks. 

The 960 CA processor's superscalar can decode multiple instructions at once and issue them to 
independent processing units where they are executed in parallel. As a result, the processor 
delivers sustained execution of multiple instructions per clock from a sequential instruction 
stream. 

Full Procedure Call Model 

This processor supports two types of procedure calls: an integrated call-and-return mechanism 
and a RISC-style branch-and-link instruction. The integrated call-and-return mechanism 
automatically saves local registers when a call instruction is executed and restores them when a 
return is executed. The RISC-style branch-and-link is a fast call that does not save any of the 
registers. These mechanisms result in high performance and reduced code size, while 
maintaining assembly-level compatibility. 
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To attain the highest performance for procedure calls and returns, the i960 CA microprocessor 
integrates a programmable depth register cache. The register cache internally saves the local 
registers for procedure calls, rather than actually writing the data to the external procedure 
stack. This caching greatly reduces the external bus traffic associated with procedure context 
saving and restoring. 

Versatile Instruction Set and Addressing 

The i960 CA microprocessor offers a full set of load, store, move, arithmetic, shift, comparison 
and branch instructions and supports operations on both integer and ordinal data types. It also 
provides a complete set of Boolean and bit-field instructions to simplify manipulation of bits 
and bit strings. 

Most of the processor's instructions are typical RISC operations. However, several commonly 
used complex instructions are also part of the instruction set. Performance is optimized by 
implementing these commonly used functions with parallel hardware. For instance, the 32x32 
multiply operation - a single instruction - takes less than five clocks to execute: 150 ns or 
less at 33 MHz. Furthermore, the multiplier is a parallel unit; this allows instructions that 
follow a multiply to execute before the multiplication is complete. In fact, if several unrelated 
instructions follow a multiply, the multiplication consumes only one clock of execution. 

Integrated Priority Interrupt Model 

The i960 CA microprocessor provides a priority-based mechanism for servicing interrupts. The 
mechanism transparently manages up to 248 distinct sources with 31 levels of priority. 
Interrupt requests may be generated from external hardware, internal hardware or software. 

The interrupt mechanism is managed by hardware which operates in parallel with a program's 
execution. This reduces interrupt latency and overhead and provides flexible interrupt handling 
control. 

Complete Fault Handling and Debug Capabilities 

To aid in program development, the i960 CA microprocessor detects faults (exceptions). When 
a fault is detected, the processor makes an implicit call to a fault handling routine. Information 
collected for each fault allows program developers to quickly correct faulting code. It also 
allows automatic recovery from most faults. 

To support system debugging, the i960 architecture provides a mechanism for monitoring 
processor activities through a software tracing facility. The i960 CA device can be configured 
to detect as many as seven different trace events, including breakpoints, branches, calls, 
supervisor calls, returns, prereturns and the execution of each instruction (for single-stepping 
through a program). The i960 CA component also provides four breakpoint registers that allow 
break decisions to be made based upon instruction or data addresses. 
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SYSTEM INTEGRATION 

The i960 CA microprocessor is based on the C-series core, which is object code compatible 
with the 32-bit i960 core architecture. Additionally, the i960 CA device integrates three data 
control peripherals around the core: bus control unit, DMA controller and interrupt controller. 

Pipelined Burst Bus Control Unit 

The i960 CA microprocessor integrates a 32-bit high-performance bus controller to interface to 
external memory and peripherals. The bus control unit incorporates full wait state logic and bus 
width control to provide high system performance with minimal system design complexity. 
The bus control unit features a maximum transfer rate of 132 Mbytes per second (at 33 MHz). 
Internally programmable wait states and 16 separately configurable memory regions allow the 
processor to interface with a variety of memory subsystems with minimum complexity and 
maximum performance. 

Flexible OMA Controller 

A four-channel DMA controller provides high-speed DMA data transfers. Source and 
destination can be any combination of internal RAM, external memory or peripherals. DMA 
channels perform single-cycle or multi-cycle transfers and can perform data packing and 
unpacking between peripherals and memory with varying bus widths. Also provided are block 
transfers, in addition to source- or destination-synchronized transfers. 

The DMA supports various transfer types such as high speed fly-by, quad-word transfers and 
data chaining with the use of linked descriptor lists. The high performance fly-by mode is 
capable of transfer speeds of up to 59 Mbytes per second at 33MHz. 

Priority Interrupt Controller 

The interrupt controller provides full programmability of 248 interrupt sources into 31 priority 
levels. The interrupt controller handles prioritization of software interrupts, hardware interrupts 
and process priority. In addition, it also manages four internal sources from the DMA 
controller and a single non-maskable interrupt input. 

i960™ MICROPROCESSOR FAMILY 

A standard core architecture allows software designers to develop building block software, 
such as real-time kernels or libraries of functions optimized for the i960 core architecture. 
These building blocks are portable to any implementation of the i960 architecture. 

As indicated in Figure 1.2, all i960 family products are compatible. Each is a specialized 
applications device, consisting of a core architecture implementation plus a set of specific 
building blocks or peripherals. The architecture is expandable to include different peripherals 
on a processor to meet the needs of specific processing and control applications. Future 
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versions of the i960 microprocessor will feature different attributes to meet the price 
performance demands of all forms of embedded processor applications. 

80960CA 

270710-001 ·02 

Figure 1.2. i960™ Microprocessor Family 

ABOUT THIS MANUAL 

This i960 CA Microprocessor Reference Manual provides detailed programming and hardware 
design information for the i960 CA microprocessor. It is written for programmers and 
hardware designers who understand the basic operating principles of microprocessors and their 
systems. 
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This manual does not provide electrical specifications such as DC and AC parametrics, 
operating conditions and packaging specifications. Such information is found in the i960 CA 
Microprocessor Data Sheet. 

For information on other i960 family products or the architecture in general, refer to Intel's 
Solutions960 catalog. It lists all current i960 microprocessor family-related documents, support 
components, boards, software development tools, debug tools and more. 

This manual is organized in three parts; each part comprises multiple chapters and/or 
appendices. The following briefly describes each part: 

• Part I-Programming the i960 CA Microprocessor details the programming environment 
for the i960 CA component. Described here are the processor's registers, instruction set, 
data types, addressing modes, interrupt mechanism, external interrupt interface and fault 
mechanism. 

• Part II-System Implementation identifies requirements for designing a system around the 
i960 CA component, such as external bus interface, interrupt controller and integrated 
DMA controller. Also described are programming requirements for the DMA controller, 
bus controller and processor initialization. 

• Part III-Appendices include quick references for hardware design and programming. 
Appendices are also provided which describe the internal architecture, how to write 
assembly-level code to exploit the parallelism of the processor and considerations for 
writing software which is portable between all members of the i960 family. 

NOTATION AND TERMINOLOGY 

The following paragraphs describe notation and terminology used in this manual that have 
special meaning. 

Reserved and Preserved 

Certain fields in the registers and data structures are described as being either reserved or 
preserved: 

• A reserved field is one that may be used by other implementations of the i960 architecture. 
Correct treatment of reserved fields ensures software compatibility with other i960 
products. The processor uses these fields for temporary storage; as a result, the fields 
sometimes contain unusual values. 

• A preserved field is one that the processor does not use. Software may use preserved fields 
for any function. 

Reserved fields in certain data structures should be set to 0 when the data structure is created. 
Set reserved fields to 0 when creating the Control Table, Interrupt Table, Fault Table, System 
Procedure Table, Initialization Boot Record and Processor Control Block. Software should not 
modify or rely on these reserved field values after a data structure is created. When the 
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processor creates the Interrupt or Fault Record data structure on the stack, software should not 
depend on the value of the reserved fields within these data structures. 

Some bits or fields in data structures are shown as requiring specific encoding. These fields 
should be treated as if they were reserved fields. They should be set to the specified value 
when the data structure is created and software should not modify or rely on the value in the 
field after that. 

Reserved bits in the Special Function Registers must be set to 0 after initialization to ensure 
compatibility with future implementations. Reserved bits in the Process Controls (PC) register 
and Trace Controls (TC) register should not be initialized. 

When the Arithmetic Controls (AC). PC and TC registers arc modified using modac, modpc 
or modtc instructions, the reserved locations in these registers must be masked. 

Ce11ain areas of memory may be referred to as reserved memory in this reference manual. 
Reserved - when referring to memory locations - implies that an implementation of the i960 
architecture may use this memory for some special purpose. For example. memory mapped 
peripherals would likely be located in a reserved memory area on future implementations. 
Programs may use reserved memory just like any other memory unless it is specifically 
documented otherwise. 

Specifying Bit and Signal Values 

The terms set and clear in this manual refer to bit values in register and data structures. If a bit 
is set, its value is I: if the bit is clear. its value is 0. Likewise, setting a bit means giving it a 
value of 1 and clearing a bit means giving it a value of 0. 

The terms assert and deassert refer to the logically active or inactive value of a signal or bit, 
respectively. A signal is specified as an active 0 signal by an overbar. For example, the 
BTERM input is active low and is asserted by driving the signal to a logic 0 value. 

Representing Numbers 

All numbers in this manual can be assumed to be base 10 unless designated otherwise. In text, 
binary numbers arc designated with a subscript 2 (for example, 001 2). If it is obvious from the 
context that a number is a binary number. the "2" subscript is sometimes omitted. Hexadecimal 
numbers are designated in text with the suffix H (for example, FFFF FF5AH). 

In pseudo-code action statements in the instruction reference section, hexadecimal numbers are 
represented by adding the C-language convention "Ox" as a prefix. For example "FF7 AH" 
appears as "OxFF7 A" in the pseudo-code. 

Register Names 

The i960 CA processor's special function registers and several of the global and local registers 
are referred to by their generic register names, as well as descriptive names which describe 
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their function. The global register numbers are gO through g15; local register numbers are rO 
through r15; special function registers are sfO, sfl and sf2. However, when programming the 
registers in user-generated code, make sure the instruction operand is used. The i960 compilers 
recognize only the instruction operands listed in the following table. Throughout this manual, 
the register's descriptive names, numbers, operands and acronyms are used interchangeably, as 
dictated by context. 

Register Descriptive Register Instruction Acronym 
Name Number Operand 

Global Registers gO - g15 gO - g14 

Frame Pointer gl5 fp FP 

Local Registers rO - r15 r3 - r15 

Previous Frame Pointer rO pfp PFP 

Stack Pointer rl sp SP 

Return Instruction Pointer r2 rip RIP 

Interrupt Pending Register sfO sfO IPND 

Interrupt Mask Register sfl sfl IMSK 

DMA Command Register sf2 sf2 DMAC 

Groups of bits and single bits in registers and control words are called either bits, flags or 
fields. These terms have a distinct meaning in this manual: 

bit controls a processor function; programmed by the user. 

flag indicates status. Generally set by the processor; however, the user may also 
program certain flags. 

field a grouping of bits (bit field) or flags (flag field). 

Specific bits, flags and fields in registers and control words are usually referred to by a register 
abbreviation (in upper case) followed by a bit, flag or field name (in lower case). These items 
are separated with a period. A position number designates individual bits in a field. For 
example, the return type (rt) field in the previous frame pointer (PFP) register is designated as 
"PFP.rt". The least significant bit of the return type field is then designated as "PFP.rtO". 
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CHAPTER 2 
PROGRAMMING ENVIRONMENT 

This chapter describes the i960 CA microprocessor's programming environment which 
includes global and local registers, special function registers, control registers, literals, 
processor-state registers and address space. 

PROGRAMMING ENVIRONMENT OVERVIEW 

The i960 architecture defines a programming environment in which programs are executed and 
data is stored and manipulated. Figure 2.1 shows the programming environment elements 
which include a 4 Gbyte (232 byte) flat address space, a l Kbyte instruction cache, 16 global 
and 16 local general purpose registers, a set of literals, special function registers, control 
registers and a set of processor state registers. A register cache, also shown in Figure 2.1, saves 
the 16 procedure-specific local registers. 

The processor defines several data structures located in memory as part of the programming 
environment. These data structures handle procedure calls, interrupts, faults and provide 
configuration information at initialization. These data structures are: 

• interrupt stack • control table • system procedure table 

• local stack • fault table • process control block 

• supervisor stack • interrupt table • initialization boot record 

REGISTERS AND LITERALS AS INSTRUCTION OPERANDS 

The i960 CA processor uses only simple load and store instructions to access memory. 
Therefore, operations take place at the register level. It uses 16 global, 16 local and three 
special functions registers as instruction operands, as well as 32 literals (constants 0-31 ). 

The global register numbers are gO through gl5; local register numbers are rO through rl5; 
special function registers are sfO, sf! and sf2. However, when programming the registers in 
user-generated code, make sure the instruction operand is used. The i960 compilers recognize 
only the instruction operands listed in Table 2.1. Throughout this manual, the register's 
descriptive names, numbers, operands and acronyms are used interchangeably, as dictated by 
context. 

Global Registers 

Global registers are general purpose 32-bit data registers which provide temporary storage for a 
program's computational operands. Global registers retain their contents across procedure 
boundaries. Because of this, they provide a fast and efficient means of passing parameters 
between procedures. 
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The i960 architecture supplies 16 global registers, designated gO through gl5. Register gl5 is 
reserved for the current Frame Pointer (FP) which contains the address of the first byte in the 
current (topmost) stack frame. The FP and procedure stack are described in Chapter 5, 
Procedure Calls. 

After the processor is reset, register gO contains die stepping information. Software must read 
the value of gO before any action is taken to modify this register. The i960 CA Microprocessor 
Data Sheet Stepping Register Information section describes die stepping information contained 
in register gO. 

Local Registers 

Local registers (rO through r15) provide a separate set of 32-bit data registers - in addition to 
the global registers - for each active procedure. They provide storage for variables that are 
local to a procedure. Each time a procedure is called, the processor allocates a new set of local 
registers for that procedure and saves the calling procedure's local registers. The processor 
performs local register management; a program need not explicitly save and restore these 
registers. 

Local registers r3 through rl5 are general purpose registers; rO through r2 are reserved for 
special functions: rO contains the Previous Frame Pointer (PFP); rl contains the Stack Pointer 
(SP); r2 contains the Return Instruction Pointer (RIP). PFP, SP and RIP are discussed in 
Chapter 5, Procedure Calls. 

NOTE 

The processor does not always clear or initialize a set of local registers assigned to a new 
procedure. Therefore, initial register contents are unpredictable. Also, the processor does not 
initialize the local register save area in the newly created stack frame for the procedure; its 
contents are equally unpredictable. 

Table 2.1. Registers and Literals Used as Instruction Operands 

Instruction Register Name 
Operand (number) Function Acronym 

gO - gl4 global (gO-g 14) general purpose 

fp global (gl5) frame pointer FP 

pfp local (rO) previous frame pointer PFP 

sp local (rl) stack pointer SP 

rip local (r2) return instruction pointer RIP 

r3 - rl5 local (r3-r15) general purpose 

sfO special function 0 interrupt pending IPND 

sfl special function 1 interrupt mask IMSK 

sf2 special function 2 DMAcommand DMAC 

0-31 literals 
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Figure 2.1. i960™ Microprocessor Programming Environment 

Special Function Registers (SFRs) 

The i960 architecture provides a mechanism to expand its architecture-defined register set with 
up to 32 additional 32-bit registers. On the i960 CA microprocessor, three special function 
registers (SFRs) are provided as an extension to the architectural register model. These 
registers are designated sfO, sf!, sf2 (see Table 2.1 ). Registers sf3 - sf31 are not implemented 
on the i960 CA component. Reading or modifying unimplemented registers causes the 
operation-invalid-opcode fault to occur. 
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SFRs provide a means to configure and monitor interrupt controller and DMA controller status. 
SFR function in the i960 CA device is described in Chapter 12, Interrupt Controller and 
Chapter 13, DMA Controller. 

The processor provides a mechanism which allows only privileged access to SFRs. These 
registers can only be accessed while the processor is in supervisor execution mode (see User­
Supervisor Protection Model later in this chapter). A type-mismatch fault occurs if an 
instruction with a SFR operand is executed in user mode. 

SFRs are not used as operands for instructions whose machine-level instruction format is of 
type MEM or CTRL. Instructions with these formats include loads, stores and instructions 
which cause program redirection (call, return and branches; see Appendix D, Instruction Set 
Reference for a description of the machine-level encoding for operands). Table 2.2 summarizes 
the use of SFRs as instruction operands. 

Register Scoreboarding 

Register scoreboarding allows concurrent execution of sequential instructions. When an 
instruction executes, the processor sets a register-scoreboard bit to indicate that a particular 
register or group of registers is being used in an operation. If the instructions that follow do not 
use registers in that group, the processor can execute those instructions before the prior 
instruction execution completes. 

A common application of this feature is to execute one or more single-cycle instructions 
concurrently with a multi-cycle instruction (e.g., multiply or divide). The following example 
shows a case where register scoreboarding prevents a subsequent instruction from executing. It 
also illustrates overlapping instructions which do not have register dependencies. 

Register scoreboarding is implemented for global and local registers but not for SFRs. When a 
SFR is the destination of a multi-cycle instruction, the programmer must prevent access to the 
SFR until the multi-clock instruction returns a result to the SFR. 

muli r4,r5,r6 
addi r6,r7,r8 

Example 2.1. Register Scoreboarding 

# r6 is scoreboarded 
# add must wait for the previous multiply 
# to complete 

muli 
and 

r4,r5,r10 # rlO is scoreboarded and instruction 
r6,r7,r8 # is executed concurrentLx_ with multiply 
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Literals 

The architecture defines a set of 32 literals which can be used as operands in many instructions. 
These literals arc ordinal (unsigned) values that range from 0 to 3 l (5 bits). When a literal is 
used as an operand, the processor expands it to 32 bits by adding leading zeros. If the 
instruction requires an operand larger than 32 bits, the processor zero extends the value to the 
operand size. Ir a literal is used in an instruction that requires integer operands, the processor 
treats the literal as a positive integer value. 

Register and Literal Addressing and Alignment 

Several instructions operate on multiple word operands. For example, the load long instruction 
(Id!) loads two words from memory into two consecutive registers. The register for the less­
significant word is specified in the instruction; the more-significant word is automatically 
loaded into the next higher-numbered register. 

In cases where an instruction specifies a register number and multiple, consecutive registers are 
implied, the register number must be even if two registers are accessed (e.g., gO, g2) and an 
integral multiple of 4 if three or four registers are accessed (e.g., gO, g4). If a register reference 
for a source value is not properly aligned, the source value is undefined and an operation­
invalid-operand fault is generated. If a register reference for a destination value is not properly 
aligned, the registers to which the processor writes and the values written are undefined. The 
processor then generates an operation-invalid-operand fault. The following assembly language 
code shows an example of correct and incorrect register alignment. 

movl g3,g8 

g~,g8 

Example 2.2. Register Alignment 

# INCORRECT' 2\LIGNMENT - resulting value 
# 

# 

sters g8 and g9 is 
ctable (non-aligned source) 

# CORRSCT ALIGNMENT 

Global registers, local registers, special function registers and literals are used directly as 
instruction operands. Table 2.2 lists instruction operands for each machine level instruction 
format and positions which can be filled by each register or literal. 
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Table 2.2. Allowable Register Operands 

Operand (1) 

Instruction Local Global Extended 
Encoding Operand Field Register Register Register (SFR) Literal 

REG srcl x x x x 
src2 x x x x 
src/DST (as src) x x x 
src/DST (as DST) x x x 
src!DST (as both) x x (2) 

MEM src!DST x x 
abase x x 
index x x 

COBR srcl x x x 
src2 x x x 
DST x (3) X(3) X(3) 

NOTES: 

I. X denotes register can be used as an operand in a particular instruction field. 

2. Extended registers cannot be addressed in the src!DST field of REG format instructions in 
which this field is used as both source and destination (e.g., extract and modify). 

3. The COBR destination operands apply only to TEST instructions. 

CONTROL REGISTERS 

Control registers are internal registers which are used to configure the on-chip peripherals: 
DMA controller, interrupt controller and bus controller. A program cannot access control 
registers directly as instruction operands; instead, control registers are loaded from a data 
structure called the control table (see Figure 2.2). 

The system control (sysctl) instruction is used to move control table values to on-chip control 
registers. The control table is divided into seven quad-word groups; each group is assigned a 
group number from zero to six. When sysctl executes, the load control register message type 
and the group number is specified. sysctl moves the quad-word group of register values from 
the control table in memory and writes the values in the on-chip registers. (See System Control 
Functions later in this chapter.) 

At initialization, the control table is automatically loaded into the on-chip control registers. 
This action simplifies the user's startup code by providing a transparent setup of the i960 CA 
device's peripherals at initialization. (See Chapter 14, Initialization and System Requirements.) 
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31 0 

IP BREAKPOINT 0 (IPBO) OH 

IP BREAKPOINT 1 (IPB1) 4H 

DATA ADDRESS BREAKPOINT 0 (DABO) 8H 

DATA ADDRESS BREAKPOINT 1 (DAB1) CH 

INTERRUPT MAP 0 (IMAPO) 10H 

INTERRUPT MAP 1 (IMAP1) 14H 

INTERRUPT MAP 2 (IMAP2) 18H 

INTERRUPT CONTROL (ICON) 1CH 

MEMORY REGION O CONFIGURATION (MCONO) 20H 

MEMORY REGION 1 CONFIGURATION (MCON1) 24H 

MEMORY REGION 2 CONFIGURATION (MCON2) 28H 

MEMORY REGION 3 CONFIGURATION (MCON3) 2CH 

MEMORY REGION 4 CONFIGURATION (MCON4) 30H 

MEMORY REGION 5 CONFIGURATION (MCONS) 34H 

MEMORY REGION 6 CONFIGURATION (MCON6) 38H 

MEMORY REGION 7 CONFIGURATION (MCON?) 3CH 

MEMORY REGION 8 CONFIGURATION (MCON8) 40H 

MEMORY REGION 9 CONFIGURATION (MCON9) 44H 

MEMORY REGION 10 CONFIGURATION (MCON10) 48H 

MEMORY REGION 11 CONFIGURATION (MCON11) 4CH 

MEMORY REGION 12 CONFIGURATION (MCON12) SOH 

MEMORY REGION 13 CONFIGURATION (MCON13) 54H 

MEMORY REGION 14 CONFIGURATION (MCON14) 58H 

MEMORY REGION 15 CONFIGURATION (MCON15) SCH 

RESERVED (INITIALIZE TO 0) 60H 

BREAKPOINT CONTROL (BPCON) 64H 

TRACE CONTROLS (TC) 68H 

BUS CONFIGURATION CONTROL (BCON) 6CH 

270710-002-02 

Figure 2.2. Control Table 

ARCHITECTURE-DEFINED DATA STRUCTURES 

The architecture defines a set of data structures which includes stacks, interfaces to system 
procedures, interrupt handling procedures and fault handling procedures. Data structure 
function is described in the following paragraphs. 

user stack Stack the processor uses when executing applications code. This 
stack is described in Chapter 5, Procedure Calls. 
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system procedure table Contains pointers to system procedures. Application code uses the 
system call instruction (calls) to access system procedures through 
this table. A specific type of system call, known as a system 
supervisor call, causes a switch in execution mode from user mode 
to supervisor mode. When the processor switches to supervisor 
mode, it also switches to a new stack: the supervisor stack. System 
procedure table structure and system call mechanism are described 
in Chapter 5, Procedure . Calls. The user-supervisor protection 
model is described in the section User-Supervisor Model in this 
chapter. 

interrupt table Contains vectors (pointers) to interrupt handling procedures. When 
an interrupt is serviced, a particular interrupt table entry is specified. 
A separate interrupt stack is provided to ensure that interrupt 
handling does not interfere with application programs. The interrupt 
handling mechanism is described in Chapter 6, Interrupts. 

fault table Contains pointers to fault handling procedures. When the processor 
detects a fault, the processor selects a particular entry in the fault 
table. The architecture does not require a separate fault handling 
stack. Instead, a fault handling procedure uses the supervisor stack, 
user stack or interrupt stack, depending on processor execution 
mode when the fault occurred and type of call made to the fault 
handling procedure. Fault handling is described in Chapter 7, 
Faults. 

control table Contains on-chip control register values. Control table values are 
moved to on-chip registers at initialization or with sysctl. 

The i960 CA microprocessor defines two initialization data structures: initialization boot 
record (/BR) and processor control block (PRCB). These structures provide initialization data 
and pointers to other data structures in memory. When the processor is initialized, these 
pointers are read from the initialization data structures and cached for internal use. 

Pointers to the system procedure table, interrupt table, interrupt stack, fault table and control 
table are specified in the processor control block. Supervisor stack location is specified in the 
system procedure table. User stack location is specified in the user's startup code. 

Of these data structures, the system procedure table, fault table, control table and initialization 
data structures may be in ROM; the interrupt table and stacks must be in RAM. The interrupt 
table must be in RAM because the processor sometimes writes to it. 
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MEMORY ADDRESS SPACE 

The i960 microprocessor's address space is byte-addressable with addresses running 
contiguously from 0 to 2.:i2 - 1. Some of this address space is reserved or is assigned special 
functions as shown in Figure 2.3. 

ADDRESS 

0000 OOOOH 

0000 0004H 

0000 003FH 
0000 0040H 

0000 OOBFH 
0000 OOCOH 

0000 OOFFH 
0000 0100H 

0000 03FFH 
0000 0400H 

FEFF FFFFH 
FFOO OOOOH 

FFFF FEFFH 
FFFF FFOOH 

FFFF FF2CH 
FFFF FF2DH 

FFFF FFFFH 

NMI VECTOR 

INTERNAL DATA RAM (OPTIONAL INTERRUPT VECTORS) 

INTERNAL DATA RAM (OPTIONAL OMA REGISTERS) 

INTERNAL DATA RAM (USER MODE WRITE PROTECTED) 

INTERNAL DATA RAM (OPTIONAL USER MODE WRITE PROTECTION) 

CODE/DATA 
ARCHITECTURALLY DEFINED DATA STRUCTURES 

(EXTERNAL MEMORY) 

RESERVED MEMORY 

INITIALIZATION BOOT RECORD 

RESERVED MEMORY 

Figure 2.3. Address Space 

1024 

232_1 
(4 GBYTES) 

270710-001-04 

Address space can be mapped to read-write memory, read-only memory and memory-mapped 
1/0. The architecture does not define a dedicated, addressable 1/0 space. There are no 
subdivisions of the address space such as segments. For the purpose of memory management. 
an external memory management unit (MMU) may subdivide memory into pages or restrict 
access to certain areas of memory to protect a kernel's code, data and stack. However, the 
processor views this address space as linear. 

An address in memory is a 32-bit value in the range OH to FFFFFFFFH. Depending on the 
instruction, it can be used to reference in memory a single byte, half-word (2 bytes), word 
(4 bytes), double-word (8 bytes), triple-word (12 bytes) or quad-word (16 bytes). Refer to load 
and store instruction descriptions in Chapter 9, Instruction Set Reference for multiple-byte 
addressing information. 
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Memory Requirements 

The architecture requires that external memory have the following properties: 

• Memory must be byte-addressable. 

• No memory is mapped at reserved addresses which are specifically used by an 
implementation. 

• Memory must guarantee indivisible access (read or write) for addresses that fall within 16 
byte boundaries. 

• Memory must guarantee atomic access for addresses that fall within 16 byte boundaries. 

The latter two capabilities - indivisible and atomic access - are required only when multiple 
processors or other external agents, such as DMA or graphics controllers, share a common 
memory. Definitions follow: 

indivisible access 

atomic access 

Guarantees that a processor, reading or wntmg a set of memory 
locations, completes the operation before another processor or 
external agent can read or write the same location. The processor 
requires indivisible access within an aligned 16 byte block of 
memory. 

A read-modify-write operation. Here the external memory system 
must guarantee that - once a processor begins a read-modify-write 
operation on an aligned, 16 byte block of memory - it is allowed to 
complete the operation before another processor or external agent is 
allowed access to the same location. An atomic memory system can 
be implemented by using the LOCK signal to qualify hold requests 
from external bus agents. The LOCK signal is asserted for the 
duration of an atomic memory operation. (See Chapter 10, The Bus 
Controller.) 

The address space upper 16 Mbytes - addresses FFOOOOOOH through FFFFFFFFH - are 
reserved for implementation-specific functions. In general, programs can access this address 
space section unless an implementation specifically uses the memory or forbids access. 

This address range is termed "reserved" so future i960 architecture implementations may use 
these addresses for special functions such as mapped registers or data structures. Therefore, to 
ensure complete object level compatibility, portable code must not access or depend on values 
in this region. The initialization boot record is located in reserved memory of the i960 CA 
microprocessor. (See Figure 2.3.) 

The i960 CA component requires some special consideration when using the lower 1 Kbyte of 
address space (addresses OOOOH-03FFH). Loads and stores directed to these addresses access 
internal memory; instruction fetches from these addresses are not allowed for the i960 CA 
microprocessor. (See Internal Data RAM in this chapter.) 
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Data and Instruction Alignment in the Address Space 

Instructions, program data and architecturally defined data structures can be placed anywhere 
in non-reserved address space while adhering to these alignment requirements: 

• Align instructions on word boundaries. 

• Align all architecture defined data structures on the boundaries specified in Table 2.3. 

• Align instruction operands for the atomic instructions (atadd, atmod) to word boundaries 
in memory. 

The i960 CA microprocessor does not require that load and store data be aligned in memory. It 
can handle a non-aligned load or store request by either of two methods: 

• It can automatically service a non-aligned memory access with microcode assistance (see 
Chapter 10, Bus Controller). 

• It can generate an operation unaligned fault when a non-aligned access is detected. 

The method for handling non-aligned accesses is selected at initialization based on the value of 
Fault Configuration Word in the Process Control Block (see Chapter 14, Initialization and 
System Requirements). 

Table 2.3. Alignment of Data Structures in the Address Space 

Data Structure Alignment 

System Procedure Table 4 byte 

Interrupt Table 4 byte 

Fault Table 4 byte 

Control Table 16 byte 

User Stack 16 byte 

Supervisor Stack 16 byte 

Interrupt Stack 16 byte 

Process Control Block 16 byte 

Initialization Boot Record Fixed at FFFF FFOOH 

Byte, Word and Bit Addressing 

The processor provides instructions for moving data blocks of various lengths from memory to 
registers (load) and from registers to memory (store). Allowable sizes for blocks are bytes, 
half-words (2 bytes), words (4 bytes), double words, triple words and quad words. For 
example, stl (store long) stores an 8 byte (double word) data block in memory. 

The most efficient way to move data blocks longer than l 6 bytes is to move them in quad-word 
increments, using quad-word instructions ldq and stq. 
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When a data block is stored in memory, normally the block's least significant byte is stored at 
a base memory address and the more significant bytes are stored at successively higher byte 
addresses. This method of ordering bytes in memory is referred to as "little endian" ordering. 

The i960 CA microprocessor also provides the option for ordering bytes in an opposite manner 
in memory. The block's most significant byte is stored at the base address and the less 
significant bytes are stored at successively higher addresses. This byte ordering scheme, 
referred to as "big endian," applies to data blocks which are short words or words. For more 
about byte ordering, see Chapter 10, Bus Controller. 

When loading a byte, half word or word from memory to a register, the block's least 
significant bit is always loaded in register bit 0. When loading double words, triple words and 
quad words, the least significant word is stored in the base register. The more significant words 
are then stored at successively higher numbered registers. Bits can only be addressed in data 
that resides in a register; bit 0 in a register is the least significant bit, bit 31 is the most 
significant bit. 

Internal Data RAM 

Internal data RAM is mapped to the address space lower 1 Kbyte (OOOOH to 03FFH). Loads 
and stores, with target addresses in internal data RAM, operate directly on the internal data 
RAM; no external bus activity is generated. Data RAM allows time critical data storage and 
retrieval without dependence on external bus performance. The lower 1 Kbyte of memory is 
data memory only. Instructions cannot be fetched from the internal data RAM. Instruction 
fetches directed to the data RAM cause a type mismatch fault to occur. 

Some internal data RAM locations are reserved for alternate functions other than general data 
storage (Figure 2.3). When the DMA controller is active, 32 bytes of data RAM are reserved 
for each channel in use. Additionally, 64 bytes of data RAM may be used to cache specific 
interrupt vectors. The word at location OOOOH is always reserved for the cached NMI vector. 
With the exception of the cached NMI vector, other reserved portions of the data RAM can be 
used for data storage when the alternate function is not used. 

Local register cache size is specified by the value of the Register Cache Configuration Word in 
the Process Control Block (PRCB; see Chapter 14, Initialization and System Requirements for 
PRCB description.) The first five local register sets are cached internally; if more than five sets 
are to be cached, then the local register cache can be extended into the internal data RAM. Up 
to ten more sets, occupying up to 640 bytes of data RAM, can be used. When extended, each 
new register set consumes 16 words of internal data RAM beginning at the highest data RAM 
address. The user program is responsible for preventing any corruption to the areas of internal 
RAM set aside for the register cache. (See Chapter 5, Procedure Calls.) 

Internal RAM' s first 256 bytes (OOOOH to OOFFH) are user mode write protected. This data 
RAM can be read while executing in user or supervisor mode; however, RAM can only be 
modified in supervisor mode. Writes to these locations while in user mode cause a type 
mismatch fault to be generated. This feature provides supervisor protection for DMA and 
Interrupt functions which use internal RAM (see User-Supervisor Protection Model in this 
chapter). User mode write protection is optionally selected for the rest of the data RAM 
(OlOOH to 03FFH) by setting the Bus Configuration Register (BCON) RAM protection bit. 
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Instruction Cache 

The i960 CA component's instruction cache enhances performance by reducing the number of 
instruction fetches from external memory. The cache provides fast execution of cached code 
and loops of code in the cache and also provides more bus bandwidth for data operations in 
external memory. 

The instruction cache is a I Kbyte. two-way set associative cache, organized in lines of eight 
32 bit words. To optimize cache updates when branches or inte!Tupts are executed. each word 
in the line has a separate valid bit. Cache misses cause the processor to issue either double- or 
quad-word fetches to update the cache. Refer to Appendix A, Optimizing Code for the i960 CA 
Microprocessor for a thorough discussion of the instruction cache operation. 

Bus snooping is not implemented with the i960 CA cache. The cache does not detect 
modification to program memory by loads. stores or actions of other bus masters. Several 
situations may require program memory modification. such as uploading code at initialization 
or uploading code from a backplane bus or a disk. 

To achieve cache coherence, instruction cache contents can be invalidated after code 
modification is complete. The sysctl instruction is used to invalidate the instruction cache for 
the i960 CA component. sysctl is issued with an invalidate-instruction-cache message type. 
(See System Control Functions later in this chapter.) 

The user program is responsible for synchronizing a program with the code modification and 
cache invalidation. In general, a program must ensure that modified code space is not accessed 
until modification and cache-invalidate is completed. 

Instruction cache can be turned off, causing all instruction fetches to be directed to external 
memory. Disabling the instruction cache is useful for debugging or monitoring a system at the 
instruction prefetch level. To disable the instruction cache, sysctl is executed with the 
configure-instruction-cache message (see System Control Functions later in this chapter.) 

When the cache is disabled, the processor depends on a 16 word instruction buffer to provide 
decoding instructions. The instruction buffer is organized as two sets of two way set 
associative cache, with a four word line size. When the main cache is disabled, small loops of 
code may still execute entirely within the instruction buffer. 

The processor can be directed to load a block of instructions into the cache and then disable all 
normal updates to this load cache portion. This cache load-and-lock mechanism is provided to 
optimize interrupt latency and throughput. The first instructions of time-critical interrupt 
routines are loaded into the locked cache. The interrupt, when serviced, is directed to the 
locked cache portion. No external accesses are required for these instructions when the 
interrupt is serviced. 

Only interrupts can be directed to fetch instructions from the instruction cache's locked 
portion. Other causes of program redirection always fetch from the normal memory hierarchy, 
even if the target address of the redirection is represented in the locked cache. When bit l of an 
interrupt vector is set to 1, the interrupt is fetched from the instruction cache's locked portion. 
Execution continues from the locked cache until a miss occurs, such as a branch, call or return 
to code outside of the locked space. If an interrupt directed to the locked cache results in a 
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miss, the targeted instruction is fetched from the normal memory hierarchy. See Chapter 6, 
Interrupts for more details on the cache load-and-lock feature. 

The full l Kbyte cache or 512 bytes of the cache can be configured to load and lock. When 
only one half of the cache is loaded and locked, the other half acts as a normal two way set 
associative cache. Normally, an application locks only 512 bytes. Locking the full 1 Kbyte 
cache means that all instruction fetches come from external memory except for interrupts 
directed to the locked cache. 

sysctl is issued with a configure-instruction-cache message type to select the load and lock 
mechanism. When the lock option is selected, an address is specified which points to a memory 
block which is loaded into the locked cache. See System Control Function later in this chapter. 

PROCESSOR-STATE REGISTERS 

The architecture defines four 32 bit registers that contain status and control information. These 
registers, defined in this section, are: 

• Instruction Pointer (IP) register • Arithmetic Controls (AC) register 

• Process Controls (PC) register • Trace Controls (TC) register 

Instruction Pointer (IP) Register 

The IP register contains the address of the instruction currently being executed. This address is 
32 bits long; however, since instructions are required to be aligned on word boundaries in 
memory, the IP's two least-significant bits are always 0 (zero). 

All i960 instructions are either one or two words long. The IP gives the address of the lowest­
order byte of the first word of the instruction. 

The IP register cannot be read directly. However, the IP-with-displacement addressing mode 
allows the IP to be used as an offset into the address space. This addressing mode can also be 
used with the Ida (load address) instruction to read the current IP value. 

When a break occurs in the instruction stream - due to an interrupt, procedure call or fault -
the IP of the next instruction to be executed is stored in local register r2 which is usually 
referred to as the return IP or RIP register. Refer to Chapter 5, Procedure Calls for further 
discussion of this operation. 

Arithmetic Controls (AC) Register 

The AC register (Figure 2.4) contains condition code flags, integer overflow flag, mask bit and 
a bit that controls faulting on imprecise faults. Unused AC register bits are reserved. 
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CONDITION CODE BITS-AC.cc -----------------------., 
(SEE TABLES 2-4, 2-5. AND 2-6) 

INTEGER-OVERFLOW FLAG -AC.of ----------------. 
(0) NO OVERFLOW 

(1) OVERFLOW 

INTEGER OVERFLOW MASK BIT - AC.om ---------. 

(0) NO MASK 

(1) MASK 

NO--IMPRECISE-FAULTS BIT - A.C.nif --------. 
(0) SOME FAULTS ARE IMPRECISE 

(1) ALL FAULTS ARE PRECISE 

28 24 20 

ARITHMETIC CONTROLS REGISTER (AC) 

K8] RESERVED 
~ (INITIALIZE TO 0) 

16 12 

Figure 2.4. Arithmetic Controls (AC) Register 

Initializing and Modifying the AC Register 

4 

c c c 
c c 

2 1 0 

270710-001-05 

At initialization, the AC register is loaded from the Initial AC image field in the Process 
Control Block (see Chapter 14, initialization and System Requirements). Reserved bits are set 
to 0 in the AC Register Initial Image. After initialization, software must not modify or depend 
on the AC register's reserved location. After initialization, the modify arithmetic controls 
(modac) instruction allows any of the register bits to be examined and modified. This 
instruction provides a mask operand that can be used to limit access to the register's specific 
bits or groups of bits, such as the reserved bits. 

The processor automatically saves and restores the AC register when it services an interrupt or 
handles a fault. The processor saves the current AC register state in an interrupt record or fault 
record then restores the register upon returning from the interrupt or fault handler. 

Condition Code 

The processor sets the AC register's condition code flags (bits 0-2) to indicate the results of 
certain instructions - usually compare instructions. Other instructions, such as conditional 
branch instructions, examine these flags and perform functions according to the state of the 
condition code. Once the processor sets the condition code flags, the flags remain unchanged 
until another instruction executes that modifies the field. 

Condition code flags show true or false conditions, inequalities (greater than, equal or less than 
conditions) or carry and overflow conditions for the extended arithmetic instructions. To show 
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true or false conditions, the processor sets the flags as shown in Table 2.4. To show equality 
and inequalities, the processor sets the condition code flags as shown in Table 2.5. 

Table 2.4. Condition Codes for True or False Conditions 

Condition Code Condition 

0102 true 

0002 false 

Table 2.5. Condition Codes for Equality and Inequality Conditions 

Condition Code Condition 

0002 unordered (false) 

0012 greater than (true) 

0102 equal 

1002 less than 

NOTE 

Some implementations of the i960 architecture provide integrated floating point processing. The 
terms ordered and unordered are used when comparing floating point numbers. If, when 
comparing two floating point values, one of the values is a NaN (not a number), the relationship 
is said to be "unordered." The i960 CA microprocessor does not implement the floating point 
processor on-chip. 

To show carry out and overflow, the processor sets the condition code flags as shown in 
Table 2.6. 

Table 2.6. Condition Codes for Carry Out and Overflow 

Condition Code Condition 

OlX2 carry out 

OXl2 overflow 

Certain instructions (such as the branch if instructions) use a 3 bit mask to evaluate the 
condition code flags. For example, the branch-if-greater-or-equal instruction (bge) uses a mask 
of 0112 to determine if the condition code is set to either greater than or equal. These masks 
cover the additional conditions of greater-or-equal (0112), less-or-equal (1102) and not-equal 
(101 2). The mask is part of the instruction opcode and the instruction performs a bitwise AND 
of the mask and condition code. 
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Integer Overflow 

The AC register integer oveiflow flag (bit 8) and integer oveiflow mask bit (bit 12) are used in 
conjunction with the arithmetic-integer-overflow fault. The mask bit disables fault generation . 
When the fault is masked, the processor - instead of generating a fault - sets the integer 
overflow flag when integer overflow is encountered. If the fault is not masked, the fault is 
allowed to occur and the flag is not set. 

Once the processor sets this flag, it never implicitly clears it; the flag remains set until the 
program clears it. Refer to the discussion of the arithmetic-integer-overflow fault in Chapter 7, 
Faults for more information about the integer overflow mask bit and flag. 

No Imprecise Faults 

The no imprecise faults bit (bit 15) determines whether or not faults are allowed to be 
imprecise. If set, all faults are required to be precise; if clear, certain faults can be imprecise. 
(See Chapter 7, Faults for more information about precise and imprecise faults.) 

Process Controls (PC) Register 

The process controls (PC) register (Figure 2.5) contains information to control processor 
activity and show the processor's current state. This register's various functions are described 
in this section. 

Initializing and Modifying the PC Register 

Any of the following three methods can be used to change bits in the PC register: 

• Modify process controls instruction (modpc) 

• Alter the saved process controls prior to a return from an interrupt handler 

• Alter the saved process controls prior to a return from a fault handler. 

modpc directly reads and modifies the PC register. The processor must be in supervisor mode 
to execute this instruction; a type-mismatch fault is generated if modpc is executed in user 
mode. As with modac, modpc provides a mask operand that can be used to limit access to 
specific bits or groups of bits in the register. 

In the latter two methods, the interrupt or fault handler changes process controls in the interrupt 
or fault record that is saved on the stack. Upon return from the interrupt or fault handler, the 
modified process controls are copied into the PC register. The processor must be in supervisor 
mode prior to return for modified process controls to be copied into the PC register. 
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TRACE-ENABLE BIT-PC.te -------------------------. 
(0) NO TRACE FAULTS 

(1) GENERATE TRACE FAUL TS 

EXECUTION-MODE FLAG- PC.em ----------------------. 
(0) USER MODE 

(1) SUPERVISOR MODE 

TRACE-FAULT-PENDING FLAG - PC.tip -------------. 
(0) NO FAULT PENDING 

(1) FAULT PENDING 

STATE FLAG- PC.s --------------. 
(0) EXECUTING 

(1) INTERRUPTED 

PRIORITY FIELD - PC.p -------... 

(0-31) PROCESS PRIORITY 

28 24 20 

PROCESS CONTROLS REGISTER (PC) 

(DO NOT MODIFY) 

p 
0 

16 12 8 4 0 

I RESERVED 

270710-002-03 

Figure 2.5. Process Controls (PC) Register 

NOTE 
When process controls are changed as described above, the processor recognizes the changes 
immediately except for one situation: if modpc is used to change the trace enable bit, the 
processor may not recognize the change before the next four instructions are executed. 

After initialization (hardware reset), the process controls reflect the following conditions: 
priority= 31, execution mode= supervisor, trace enable= off, state= interrupted. When the 
processor is reinitialized via the system control instruction and reinitialize message, the PC 
register reflects the same conditions, except that the processor retains the same priority as 
before reinitialization. 

Bits 2-7, 9-12, 14, 15 and 21-31 are reserved. These bits should never be set to zero and user 
software should not depend on the value of the reserved bits. Do not use modpc to directly 
modify execution mode, trace fault pending and state flags. 

Execution Mode 

PC register execution mode flag (bit 1) indicates that the processor is operating in either user 
mode (0) or supervisor mode (1). The processor automatically sets this flag on a system call 
when a switch from user mode to supervisor mode occurs and it clears the flag on a return from 
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supervisor mode. (User and supervisor modes are described in User and Supervisor Protection 
Model.) 

Program State 

PC register state ffog (bit 13) indicates processor state: executing (0) or interrupted (1 ). If the 
processor is servicing an interrupt, its state is interrupted. Otherwise, the processor's state is 
executing. 

While in the interrupted state, the processor can receive and handle additional interrupts. When 
nested interrupts occur, the processor remains in the interrupted state until all interrupts are 
handled and then switches back to executing state on the return from the initial interrupt 
procedure. 

Priority 

PC register priority field (bits 16 through 20) indicates the processor's current executing or 
interrupted priority. The architecture defines a mechanism for prioritizing execution of code, 
servicing interrupts and servicing other implementation-dependent tasks or events. This 
mechanism defines 32 priority levels, ranging from 0 (the lowest priority level) to 31 (the 
highest). The priority field always reflects the current priority of the processor. Software can 
change this priority using the modpc instruction. 

The processor uses the priority field to determine whether to service an interrupt immediately 
or to post the interrupt. The processor compares the priority of a requested interrupt with the 
current process priority. When the interrupt priority is greater than the current process priority 
or equal to 31, the interrupt is serviced; otherwise it is posted. When an interrupt is serviced, 
the process priority field is automatically changed to reflect the priority of the interrupt. (See 
Chapter 6, Interrupts) 

Trace Status and Control 

PC register trace enable bit (bit 0) and trace fault pending flag (bit 10) control the tracing 
function. The trace enable bit determines whether trace faults are to be generated ( 1) or not 
generated (0). The trace fault pending flag indicates that a trace event has been detected (I) or 
not detected (0). The trace controls are discussed in Chapter 8, Tracing and Debugging. 

Trace Controls (TC) Register 

The TC register, in conjunction with the PC register, controls processor tracing facilities. It 
contains trace mode enable bits and trace event flags which are used to enable specific tracing 
modes and record trace events, respectively. Trace controls are described in Chapter 8, Tracing 
and Debugging. 
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USER SUPERVISOR MODEL 

The capability of a separate user and supervisor execution mode creates a code and data 
protection mechanism referred to as the user supervisor protection model. This mechanism 
allows code, data and stack for a kernel (or system executive) to reside in the same address 
space as code, data and stack for the application. The mechanism restricts access to all or parts 
of the kernel by the application code. This protection mechanism prevents application software 
from inadvertently altering the kernel. 

Supervisor Mode Resources 

The processor can be in either of two execution modes: user or supervisor. Supervisor mode is 
a privileged mode which provides several additional capabilities over user mode. 

• When the processor switches to supervisor mode, it also switches to the supervisor stack. 
Switching to the supervisor stack helps maintain a kernel's integrity. For example, it allows 
system debugging software or a system monitor to be accessed, even if an applications 
program destroys its own stack. 

• When an instruction executed in supervisor mode causes a bus access to occur, an external 
supervisor pin SUP is asserted for loads, stores and instruction fetches. Hardware 
protection of system code or data can be implemented by using the supervisor pin to 
qualify write accesses to the protected memory (see Chapter 10, Bus Controller). 

• In supervisor mode, the processor is allowed access to a set of supervisor-only functions 
and instructions. For example, the processor uses supervisor mode to handle interrupts and 
trace faults. Operations which can modify DMA or interrupt controller behavior or 
reconfigure bus controller characteristics can only be performed in supervisor mode. These 
functions include modification of SFRs, control registers or internal data RAM which is 
dedicated to the DMA and interrupt controllers. A fault is generated if supervisor-only 
operations are attempted while the processor is in user mode (see Chapter 7, Faults). 
Table 2.7 lists supervisor-only operations and the fault which is generated if the operation 
is attempted in user mode. 

The PC register execution mode flag specifies processor execution mode. The processor 
automatically sets and clears this flag when it switches between the two execution modes. 

Table 2.7. Supervisor-Only Operations and Faults Generated in User Mode 

Supervisor-Only Operation User-Mode Fault 

modpc (modify process controls) type-mismatch 

sysctl (system control) constraint-privileged 

sdma (setup DMA) constraint-privileged 

SFR as instruction operand type-mismatch 

Protected internal data RAM write type-mismatch 
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Using the User-Supervisor Protection Model 

A program switches between user mode and supervisor mode by making a system-supervisor 
call (also referred to as a supervisor call). A system-supervisor call is a call executed with the 
call-system instruction (calls). With the calls instruction, the IP for the called procedure comes 
from the system procedure table. An entry in the system procedure table can specify an 
execution mode switch to supervisor mode when the called procedure is executed. The calls 
instruction and the system procedure table thus provide a tightly controlled interface to 
procedures which can execute in supervisor mode. Once the processor switches to supervisor 
mode, it remains in that mode until a return is performed to the procedure that caused the 
original mode switch. 

Interrupts and some faults also cause the processor to switch from user to supervisor mode. 
When the processor handles an interrupt, it automatically switches to supervisor mode. 
However, it docs not switch to the supervisor stack. Instead, it switches to the interrupt stack. 

Figure 2.6 shows a system which implements the user-supervisor protection model to protect 
kernel code and data. The code and data structures in the shaded areas can only be accessed in 
supervisor mode. 

In this example, kernel procedures are accessed through the system procedure table with 
system-supervisor calls. These procedures execute in supervisor mode. Some application 
procedures are also called through the system procedure table using a system-local call. Fault 
procedures arc executed in supervisor mode by directing the faults through the system 
procedure table. Interrupt procedures, which are likely to modify SFRs, process controls or use 
other supervisor operations, are executed in supervisor mode. The interrupt stack and 
supervisor stack are insulated from the user stack in this system. 

If an application does not require user-supervisor protection mechanism, the processor can 
always execute in supervisor mode. At initialization, the processor is placed in supervisor 
mode prior to executing the first instruction of the application code. The processor then 
remains in supervisor mode indefinitely, as Jong as no action is taken to change execution 
mode to user mode. The processor does not need a user stack in this case. 

SYSTEM CONTROL FUNCTIONS 

System control functions are a group of operations specific to the i960 CA component. All of 
these operations are performed by issuing the system control (sysctl) instruction. The sysctl 
instruction is a general purpose instruction and performs a variety of functions. A message type 
field is an operand of the instruction that determines which function is performed. The system 
control functions include posting interrupts, configuring the instruction cache, invalidating the 
instruction cache, software reinitialization and loading control registers. 
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Figure 2.6. Example Application of the User-Supervisor Protection Model 

sysctl Instruction Syntax 

sysctl instruction syntax is generalized because the function of the operands differ, depending 
on message type selection. The instruction takes three source operands (Figure 2.7). The 
message type field is always the second byte of the source 1 operand. The instruction's 
generalized operand fields, designated as fields 1-4, are interpreted differently or may not be 
used depending on the function selected in the message type field (Table 2.8). 
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sysctl is a supervisor only instruction. Executing this instruction while in user mode generates 
the type-mismatch fault. 

Table 2.8. System Control Message Types and Operand Fields 

Source 1 Source 2 Source 3 

Message Type Field 1 Field 2 Field 3 Field 4 

Request Interrupt OOH Vector No. unused unused unused 

Invalidate Cache OlH unused unused unused unused 

Configure Cache 02H Mode unused Cache load unused 
(Table 2.9) address 

Reinitialize 03H unused unused 1st Inst. PRCB 
address address 

Load Control 04H Register unused unused unused 
Register Group No. 

NOTE 

The processor ignores unused sources and fields. 

System Control Messages 

Five system control messages are defined in the sections that follow. The request interrupt 
message causes an interrupt to be serviced or posted. The configure cache message disables or 
locks instructions in a portion of the instruction cache. The invalidate cache message causes the 
contents of the instruction to be purged. The reinitialize message restarts the processor. The 
load control register message loads the on-chip control registers. 
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Request Interrupt 

Executing sysctl with a message type of OOH causes an interrupt to be requested. Field 1 of the 
instruction specifies the vector number of the interrupt requested. The remaining fields are not 
defined. Requesting an interrupt with sysctl causes the following actions to occur: 

• The core performs an atomic write to the interrupt table and sets the bits in the pending 
interrupts and pending priorities fields that correspond to the requested interrupt. This 
action posts the software requested interrupt. 

• The core updates the software priority register with the value of the highest pending 
priority from the interrupt table. This may be the priority of the interrupt which was just 
posted. This action causes the interrupt to be serviced if its priority is greater than the 
current process priority or equal to 31. 

Requesting an interrupt with a priority equal to 0 causes a check for posted interrupts in the 
interrupt table. See Chapter 6, Interrupts for more information concerning interrupts requested 
by software. 

Invalidate Cache 

Executing sysctl with a message type of OlH invalidates all cache entries. This mode clears all 
valid cache bits. After the operation, the cache is updated normally as misses occur. The mode 
is provided to allow a program to load or modify program space; it ensures that instructions are 
fetched from the modified space and not the cache. 

Configure Instruction Cache 

Executing sysctl with a message type of 02H selects cache mode. One of four cache modes are 
selected with the configure instruction cache message: 

1. 1 Kbyte normal cache 

2. cache disabled 

3. load and lock 1 Kbyte of the cache 

4. load and lock 512 bytes of the cache and 512 bytes of normal cache 

The particular configure cache operation performed is determined by sysctl field 1 value 
(Table 2.9). Field 3 is a word-aligned 32-bit address when a load and lock mode is selected; 
otherwise, this field is ignored. Text following the table further defines the modes. 
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Table 2.9. Cache Configuration Modes 

Mode Field Mode Description 

0002 I Kbyte normal cache enabled 

XXl2 I Kbyte cache disabled (execute off-chip) 

1002 Load and lock I Kbyte cache (execute off-chip) 

1102 Load and lock 512 bytes, 512 bytes normal cache enabled 

0102 Reserved 

Mode 0002 configures the cache as a I Kbyte two way set associative cache. Mode XXl 2 
completely disables the cache. Either of these cache configurations can be specified when the 
processor initializes by programming the Cache Configuration Word in the PRCB (see Chapter 
14, lnitializ.ation and System Requirements). The modes allow the cache to be turned off 
temporarily to aid in debugging. 

When the cache is disabled, the processor depends on a 16 word instruction buffer to provide 
decoding instructions. The instruction buffer operates as a small cache, organized as two sets 
of two way set associative cache, with a four word line size. When the main cache is disabled, 
small code loops may still execute entirely within the instruction buffer. 

Modes 1002 and 1102 select cache load-and-lock options. When one of these modes is selected, 
either 512 bytes or the full I Kbyte cache is loaded with instructions and locked against further 
updates. Field 3 of the sysctl instruction must contain an address of a quad-word aligned block 
of memory, in the external address space, which is represented in the cache. The instructions 
loaded into the cache can only be accessed by selected interrupts which vector to the addresses 
of these instructions. The load-and-lock mechanism selectively optimizes latency and 
throughput for interrupts. (See Chapter 6. Interrupts.) 

Reinitialize Processor 

Executing sysctl with message type 03H reinitializes the processor. sysctl fields 3 and 4 must 
contain, respectively, the First Instruction Pointer and the PRCB Pointer. Reinitialization 
bypasses the i960 CA processor's built-in self-test. The PRCB is processed and the processor 
branches to the first instruction (see Chapter 14, Initialization and System Requirements for a 
complete description of the processor reinitialization steps). 

The reinitialize message is useful for changing the Initial Memory Image. For example, at 
initialization, the interrupt table is moved to RAM so the interrupts may be posted in the table's 
pending interrupts and priorities fields. In this case, the reinitialize message specifies a new 
PRCB which contains a pointer to the new interrupt table in RAM (see Chapter 14, 
Initialization and System Requirements for a description of reinitialization and relocating data 
structures). 
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Load Control Registers 

Executing sysctl with message type 04H causes the on-chip control registers to be loaded with 
data from external memory. Each sysctl invocation causes four words from the Control 
Register Table in external memory to be read and then placed in their respective internal 
control registers. Field 1 must contain the number of the register group to be loaded. 
Table 2.10 shows register group number and the registers represented in the Control Register 
Table. 

At initialization, or when the processor is reinitialized, all groups in the control table are 
automatically loaded into the on-chip control registers. 
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Table 2.10. Control Register Table and Register Group Numbers 

Byte Offset 
Group in Table Control Register Loaded 

OOH OOH IP Breakpoint Register 0 (IPBO) • 04H IP Breakpoint Register 1 (IPB 1) 
08H Data Address Breakpoint 0 (DABO) 
OCH Data Address Breakpoint 1 (DAB 1) 

OlH JOH Interrupt Map Register 0 (IMAPO) 
14H Interrupt Map Register I (IMAPl) 
18H Interrupt Map Register 2 (IMAP2) 
JCH Interrupt Control Register (ICON) 

02H 20H Memory Region 0 Configuration (MCONO) 
24H Memory Region 1 Configuration (MCONI) 

28H Memory Region 2 Configuration (MCON2) 
2CH Memory Region 3 Configuration (MCON3) 

03H 30H Memory Region 4 Configuration (MCON4) 
34H Memory Region 5 Configuration (MCON5) 
38H Memory Region 6 Configuration (MCON6) 
3CH Memory Region 7 Configuration (MCON7) 

04H 40H Memory Region 8 Configuration (MCON8) 
44H Memory Region 9 Configuration (MCON9) 
48H Memory Region JO Configuration (MCONlO) 
4CH Memory Region 11 Configuration (MCONll) 

05H 50H Memory Region 12 Configuration (MCON12) 
54H Memory Region 13 Configuration (MCON13) 

58H Memory Region 14 Configuration (MCON14) 
SCH Memory Region 15 Configuration (MCON15) 

06H 60H Reserved 
64H Breakpoint Control Register (BPCON) 
68H Trace Controls Register (TC) 
6CH Bus Configuration Control (BCON) 
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CHAPTER 3 
DATA TYPES AND MEMORY ADDRESSING MODES 

DATA TYPES 

The instruction set references or produces several data lengths and formats. The i960 
architecture defines the following data types: 

• Integer (8, 16, 32 and 64 bits) • Ordinal (unsigned integer 8, 16, 32 and 64 bits) 

• Triple Word (96 bits) • Quad Word (128 bits) 

• Bit • Bit Field 

Figure 3. l shows i960 architecture data types and the length and numeric range of each. 

31 
LLENGTH_J 

LSBOF j 
BIT FIELD 

0 
Bl~SI BYTE I 

7 0 

SHORT I 
0 

B~is ._I _______ w_o_RD...,.I 

31 0 

64 
BITS°"'63,..----------------L_O_NG~O 

~;sl....._ ________ ~-------~-----T-R_IP_LE_w_o_R~D' 

~1~~._l _______ _,_ _______ _._ _______ _,_ ______ o_u_A_D_w_o_RD_.I 

CLASS DATA TYPE LENGTH RANGE 

BYTE INTEGER 8 BITS ·2 7 TO 2 7 ·1 
NUMERIC SHORT INTEGER 16 BITS ·215 TO 215.1 
(INTEGER) INTEGER 32 BITS .231 TO 2 31 -1 

LONG INTEGER 64 BITS .263To263.1 

BIT ORDINAL 8 BITS 0 TO 28 -1 
NUMERIC SHORT ORDINAL 16 BITS OTO 216.1 
(ORDINAL) ORDINAL 32 BITS OTO 232.1 

LONG ORDINAL 64 BITS 0 TO 264 .1 

BIT 1 BIT 

NON-NUMERIC BIT FIELD 1-32 BITS NIA 
TRIPLE WORD 96 BITS 
QUADWORD 128 BITS 

270710-001-08 

Figure 3.1. Data Types and Ranges 
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Integers 

Integers are signed whole numbers which are stored and operated on in two's complement 
format by the integer instructions. Most integer instructions operate on 32-bit integers. Byte 
and short integers are only referenced by the byte and short classes of the load ancf store 
instructions. None of the i960 CA' s instructions reference or produce the long-integer data 
type. The architecture defines four integer sizes: 

Integer size 
8 bit 
16 bit 
32 bit 
64 bit 

Descriptive name 
byte integers 
short integer 
integers 
long integers 

NOTE 

HLL compilers may define long integer types differently than defined by the i960 architecture. 

Integer load or store size (byte, short or word) determines how sign extension or data 
truncation is performed when data is moved between registers and memory. 

For instructions ldib (load integer byte) and ldis (load integer short), a byte or short word in 
memory is considered a two's complement value. The value is sign extended and placed in the 
32-bit register which is the destination for the load. 

For instructions stib (store integer byte) and stis (store integer short), a 32-bit two's 
complement number in a register is stored to memory as a byte or short-word. If register data is 
too large to be stored as a byte or short-word, the value is truncated and the integer overflow 
condition is signalled. When an overflow occurs, an AC register flag is set or the integer 
overflow fault is generated. Chapter 7, Faults, describes the integer overflow fault. 

For instructions Id (load word) and st (store word), data is moved directly between memory 
and a register with no sign extension or data truncation. 

Ordinals 

Ordinals, an unsigned integer data type, are stored and operated on as positive binary values. 
The processor recognizes four ordinal sizes: 

Ordinal size 
8 bit 
16 bit 
32 bit 
64 bit 

Descriptive name 
byte ordinals 
short ordinals 
ordinals 
long ordinals 

The large number of instructions which perform logical, bit manipulation and unsigned 
arithmetic operations reference 32-bit ordinal operands. When ordinals are used to represent 
Boolean values, a 12 represents a TRUE and a 02 represents a FALSE. Several extended 
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arithmetic instructions reference the Jong ordinal data type. Only load and store instructions 
reference the byte and short ordinal data types. 

Sign and sign extension is not a consideration when ordinal loads and stores are performed; the 
values may, however, be zero extended or truncated. A short or byte load to a register causes 
the value loaded to be zero extended to 32 bits. A short or byte store to memory may cause an 
ordinal value in a register to be truncated to fit its destination in memory. No overflow 
condition is signalled in this case. 

Bits and Bit Fields 

The processor provides several instructions that perform operations on individual bits or bit 
fields within register operands. An individual bit is specified for a bit operation by giving its bit 
number and register. The least significant bit of a 32-bit register is bit 0; the most significant bit 
is bit 31. 

A bit field is a contiguous sequence of bits within a register operand. Bit fields do not span 
register boundaries. A bit field is defined by giving its length in bits (0-31) and the bit number 
of its lowest numbered bit (0-31 ). In other words, the bit field is any contiguous group of bits, 
up to 31 bits long, in a 32-bit register. 

NOTE 

Loads and stores on bit and bit field data are normally performed with the ordinal load and store 
instructions. The integer load and store instructions operate on two's complement numbers. 
Depending on the value, a byte or short integer load can result in sign extension of data in a 
register; a byte or short store can s.ignal an integer overflow condition. 

Triple and Quad Words 

Triple and quad words refer to consecutive words in memory or in registers. Triple- and quad­
word loads, stores and move instructions use this data type. These instructions facilitate data 
block movement. No data manipulation (sign extension, zero extension or truncation) is 
performed in these instructions. 

Triple- and quad-word data types can be considered a superset of - or as encompassing - the 
other data types described. The data in each word subset of a quad-word is likely the operand 
or result of an ordinal, integer, bit or bit field instruction. 

Data Alignment 

Data in registers and memory must adhere to specific alignment requirements: 

• Align long-word operands in registers to double-register boundaries. 

• Align triple- and quad-word operands in registers to quad-register boundaries. 

For the i960 CA component, data alignment in memory is not required. Unaligned memory 
accesses, by programmable option, can cause a fault or be handled automatically. Refer to 
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Chapter 2, Programming Environment for a complete description of alignment requirements 
for data and instructions. 

MEMORY ADDRESSING MODES 

The processor provides nine modes for addressing operands in memory. Each addressing mode 
is used to reference a byte in the processor's address space. Table 3.1 shows the memory 
addressing modes, a brief description of the elements of the address in each mode and the 
assembly code syntax for each mode. These modes are grouped as follows: 

• Absolute • Register Indirect 

• Index with Displacement • IP with Displacement 

Table 3.1. Memory Addressing Modes 

Mode Description Assembler Syntax 

Absolute offset offset exp 

Absolute displacement displacement exp 

Register Indirect abase (reg) 

Register Indirect with abase + offset exp (reg) 
offset 
Register Indirect with abase + displacement exp (reg) 
displacement 

Register Indirect with abase+ (index*scale) (reg) [reg*scale] 
index 

Register Indirect with abase+ (index*scale) +displacement exp (reg) [reg*scale] 
index and displacement 

Index with displacement (index* scale) + displacement exp [reg*scale] 

IP with displacement IP + displacement + 8 exp (IP) 

NOTE 

reg is register and exp is an expression or symbolic label. 

Absolute 

Absolute addressing modes allow a memory location to be referenced directly as an offset from 
address OH. At the instruction encoding level, two absolute addressing modes are provided: 
absolute offset and absolute displacement, depending on offset size: 

• For the absolute offset addressing mode the offset is an ordinal number ranging from 0 to 
4095. The absolute offset addressing mode is encoded in the MEMA machine instruction 
format. 

• For the absolute displacement addressing mode the offset is an integer, called a 
displacement, ranging from -231 to 23LI. The absolute displacement addressing mode is 
encoded in the MEMB format. 
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Encoding level addressing modes and instruction formats are described in Appendix D, 
Instruction Set Reference. 

At the assembly language level the two absolute addressing modes are combined into one; both 
addressing modes use the same syntax. Typically, development tools allow absolute addresses 
to be specified through arithmetic expressions (e.g., x + 44) or symbolic labels. After 
evaluating an address specified with the absolute addressing mode, the assembler converts the 
address into an offset or a displacement and selects the appropriate instruction encoding format 
and addressing mode. 

Register Indirect 

Register indirect addressing modes use a 32-bit value in a register as a base for the address 
calculation. The register value is referred to as the address base (designated abase in Table 
3.1). Depending on the addressing mode, an optional scaled-index and offset can be added to 
this address base. 

Register indirect addressing modes are useful for addressing elements of an array or record 
structure. When addressing array elements, the abase value gives the first array element 
address; an offset (or displacement) selects a particular array element. 

In register-indirect-with-index addressing mode, the index is specified by means of a value 
placed in a register. This index value is then multiplied by a scale factor. Allowable scale 
factors are 1, 2, 4, 8 and 16. 

There are two versions of register-indirect-with-offset addressing mode at the instruction 
encoding level: register-indirect-with-offset and register-indirect-with-displacement. As with 
absolute addressing modes, the addressing mode selected depends on the size of offset from 
base address. 

At the assembly language level, the assembler allows offset to be specified with an expression 
or symbolic label, then evaluates the address to determine whether to use register-indirect­
with-offset (MEMA format) or register-indirect-with-displacement (MEMB format) addressing 
mode. 

Register-indirect-with-index-and-displacement addressing mode adds both a scaled index and a 
displacement to the address base. There is only one version of this addressing mode at the 
instruction encoding level; it is encoded in the MEMB instruction format. 

Index with Displacement 

A scaled index can also be used with a displacement alone. Again, the index is contained in a 
register and multiplied by a scaling constant before displacement is added. 
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IP with Displacement 

This addressing mode is used with load and store instructions to make them IP relative. IP­
with-displacement addressing mode references the next instruction's address plus the 
displacement plus a constant of 8. The constant is added because - in a typical processor 
implementation - the address has incremented beyond the next instruction address at the time 
of address calculation. The constant simplifies IP-with-displacement addressing mode 
implementation. 

Addressing Mode Examples 

The following example~ show how i960 addressing modes are encoded in assembly language. 
Example 3.1 shows addressing mode mnemonics; Example 3.2 illustrates the usefulness of 
scaled index and scaled index plus displacement addressing modes. In this example, a 
procedure named array _op uses these addressing modes to fill two contiguous memory blocks 
separated by a constant offset. A pointer to the top of block is passed to the procedure in gO, 
the block size in gl and the fill data in g2. 

st 

ldob 

stl 

ldq 

st 

ldis 

st 

Example 3.1. Addressing Mode Mnemonics 

g4,xyz 

(r3), r4 

g6, xyz (g5) 

(r8) [r9*4] ,r4 

g3,xyz(g4) [g5*2] 

xyz[r12*1] ,rl3 

r4,xyz(IP) 

# absolute; word from g4 stored at memory 
# location designated with label xyz. 
# register indirect; ordinal byte from 
# memory location given in r3 loaded 
# into register r4 and zero extended. 
# register indirect with displacement; 
# double word from g6,g7 stored at memory 
# location xyz + g5. 
# register indirect with index; quad-word 
# beginning at memory location r8 + (r9 
#scaled by 4) loaded into r4 through r7. 
# register indirect with index and 
# displacement; word in g3 loaded to mem 
# location g4 + xyz + (g5 scaled by 2). 
# index with displacement; load short 
# integer at memory location xyz + r12 
# into r13 and sign extended. 
# IP with displacement; store word in r4 
# at memory location IP + xyz + 8. 

3-6 



DATA TYPES AND MEMORY ADDRESSING MODES 

Example 3.2. Use of Index Plus Scaled Index Mode 

array_op: 

mov g0,r4 # pointer to array is moved to r4 

subi l,gl,r3 # calculate index for the last array 

b . I33 # element to be filled. 

. I34: • st g2, (r4) [r3*4] # fill array at index 

st g2,0x30(r4) [r3*4] # fill array at index + constant offset 

subi l,r3,r3 # decrement index 

. I33: 

cmpible 0,r3,.I34 # store next array elements if 

ret # index is not 0 
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CHAPTER 4 
INSTRUCTION SET SUMMARY 

This chapter overviews the i960 family's instruction set and i960 CA processor-specific 
instruction set extensions. This chapter describes assembly-language and instruction-encoding 
formats, overviews various instruction groups and each group's instructions. 

Refer to Chapter 9, Instruction Set Reference for descriptions of each instruction, including 
assembly language syntax, the action taken when the instruction is executed and examples of 
how the instruction might be used. Instructions in Chapter 9 are listed in alphabetic order. 

INSTRUCTION FORMATS 

Instructions described in this reference manual are in two formats: assembly language and 
instruction encoding. The following sections provide brief descriptions of these formats. 

Assembly Language Format 

Throughout this manual, instructions are referred to by their assembly language mnemonics. 
For example, the add ordinal instruction is referred to as addo. Examples use Intel 80960 
assembler assembly language syntax, consisting of the instruction mnemonic followed by zero 
to three operands, separated by commas. Following is an assembly language statement 
example for addo. In this example, ordinal operands in global registers gS and g9 are added 
together; the result is stored in g7: 

addo gS, g9, g7 # g7 ~ g9 + gS 

In the assembly languages listing in this chapter, registers are denoted as: 

g global register r local register 

sf special function register # pound sign precedes a comment 

All numbers used as literals or in address expressions are assumed to be decimal. Hexadecimal 
numbers are denoted with a Ox prefix (e.g., Oxffff0012). Several assembly language instruction 
statement examples follow. Additional assembly language examples are given in Chapter 3, 
Data Types and Addressing Modes. Further information about assembly language syntax can 
be found in the Intel 80960 Assembler Manual. 

subi 3' r5, r6 # r6 ~ rS - 3 
setbit 13, g4, gS # ~ g4 with bit 13 set 
lda Oxfab3, r12 # r12 ~ Oxf ab3 
ld (r4), g3 # g3 ~ memory location 

# to by r4 
st glO, (r6) [r7*2] # 0 ~ mercory location 

# pointed to by r6 + 2*r7 
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Branch Prediction 

NOTE 

Branch prediction is an implementation-specific feature of the i960 CA component. Not every 
implementation of the i960 architecture uses the branch prediction bit. 

Since branch instruction actions depend on the result of a previous comparison, the architecture 
allows a programmer to predict the likely result of the branch operation for increased 
performance. The programmer's prediction is encoded in one bit of the machine language 
instruction. 80960 assemblers encode the prediction with a mnemonic suffix: .t = true, .f = 
false. Use the .t suffix to speed up execution when an instruction usually takes a branch; use 
the .f suffix when an instruction usually does not take a branch. 

Because test and conditional-fault instructions also use condition codes, prediction suffixes are 
also implemented on these instructions. See Appendix A, Optimizing Code for the i960 CA 
Microprocessor for a complete discussion of prediction. 

Instruction Encoding Formats 

All instructions are encoded in one 32-bit machine language instruction - also known as an 
opword - which must be word aligned in memory. An opword's most significant eight bits 
contain the opcode field. The opcode field determines the instruction to be performed and how 
the remainder of the machine language instruction is interpreted. Instructions are encoded in 
opwords in one of four formats (see Figure 4.1): 

register REG 

compare and COBR 
branch 

control CTRL 

memory MEM 

Most instructions are encoded in this format. Used primarily for 
instructions which perform register-to-register operations. 

An encoding optimization which combines comparison and 
branch operations into one opword. Separate comparison and 
branch operations are also provided as REG and CTRL format 
instructions. 

Used for branches and calls that do not depend on registers for 
address calculation. 

Used for referencing an operand which is a memory address. 
Load and store instructions - and some branch and call 
instructions - use this format. MEM format has two encodings: 
MEMA or MEMB. Usage depends upon the addressing mode 
selected. MEMB-formatted addressing modes use the word in 
memory immediately following the instruction opword as a 32-
bit constant. Instruction encoding formats are described in 
Appendix D, Instruction Set Reference. 
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OPCODE 
SAC/ DEST SOURCE2 

OPCODE 
SOURCE1 

REG ADDRESS ADDRESS ADDRESS 

31 0 

OPCODE 
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DISPLACEMENT COBR ADDRESS ADDRESS 

31 0 

OPCODE DISPLACEMENT I CTRL 

31 0 
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31 0 

OPCODE 
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32-BIT DISPLACEMENT 

L-------------------------------~ 270710-001-09 

Figure 4.1. Machine-Level Instruction Formats 

Instruction Operands 

This section identifies and describes operands that can be used with the instruction formats. 

Format Operand(s) 

REG srcl, src2, src/dst 

CTRL displacement 

COBR srcl, src2, displacement 

MEM src/dst, efa 

Description 

srcl and src2 can be global registers, local registers, 
special function registers or literals. src!dst is either a 
global, local or special function register. 

CTRL format is used for branch and call 
instructions. displacement value indicates the target 
instruction of the branch or call. 

src I, src2 indicate values to be compared; 
displacement indicates branch target. src 1 can 
specify a global register, local register or a literal. 
src2 can specify a global, local or special function 
register. See Chapter 2, Programming Environment 
for discussion of special function registers. 

Specifies source or destination register and an 
effective address (efa) formed by using the 
processor's addressing modes described in Chapter 
3, Data Types and Memory Addressing Modes. 
Registers specified in a MEM format instruction 
must be either a global or local register. 
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INSTRUCTION GROUPS 

The i960 instruction set can be arranged into the following functional groups: 

• Data Movement • Arithmetic (Ordinal and Integer) • Logical 

• Bit, Bit Field and Byte • Comparison • Branch 

• Call/Return • Fault • Debug 

• Atomic • Processor Management 

Table 4.1 shows the instructions in these groups. The actual number of instructions is greater 
than those shown in this list because - for some operations - several unique instructions are 
provided to handle various operand sizes, data types or branch conditions. The following 
sections briefly overview each group's instructions. 

DATA MOVEMENT 

Data movement instructions are used to move data from memory to global and local registers; 
from global and local registers to memory; and data among local, global and special function 
registers. 

NOTE 

Rules for register alignment must be followed when using load, store and move instructions that 
move 8, 12 or 16 bytes at a time. Refer to the section Memory Address Space in Chapter 2, 
Programming Environment for alignment requirements for code portability across 
implementations. 
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Table 4.1. i960™ CA Microprocessor Instruction Set Summary 

Bit, Bit Field, 
Data Movement Arithmetic Logical and Byte 

Load Add AND Set Bit 
Store Subtract NOT AND Clear Bit 
Move Multiply AND NOT Not Bit 
Load Address Divide OR Alter Bit 

Add with carry Exclusive OR Scan For Bit 

Subtract with carry 
NOT OR Span Over Bit 
OR NOT Extract 

Extended Multiply 
NOT Modify 

Extended Divide Exclusive NOR Scan Byte For Equal 
Remainder NOT 
Modulo NAND 
Shift 

*Extended Shift 

Rotate 

Comparison Branch Call/Return Fault 

Compare Unconditional Branch Call Conditional Fault 

Conditional Compare Conditional Branch Call Extended Synchronize Faults 

Check Bit Compare and Branch Call System 

Compare and Increment Return 

Compare and Branch and Link 
Decrement 

Test Condition Code 

Debug Atomic Processor 

Modify Trace Controls Atomic Add Flush Local Registers 

Mark Atomic Modify Modify Arithmetic 

Force Mark Controls 

Modify Process 
Controls 

*System Control 

*DMA Control 

NOTE 

Asterisk (*) denotes instructions that are i960 CA component-specific extensions to the i960 
family's instruction set. 
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Load and Store ln$tructions 

Load instructions listed below copy bytes or words from memory to local or global registers or 
to a group of registers. Each load instruction requires a corresponding store instruction to copy 
to memory bytes or words from a selected local or global register or group of registers. All 
load and store instructions use the MEM format. 

Id load word st store word 
l<lob load ordinal byte st ob store ordinal byte 
ldos load ordinal short stos store ordinal short 
ldib load integer byte stib store integer byte 
I dis load integer short stis store integer short 
ldl load long stl store long 
Idt load triple stt store triple 
ldq load quad stq store quad 

Id copies 4 bytes from memory into successive registers; ldl copies 8 bytes; ldt copies 12 
bytes; ldq copies 16 bytes. 

st copies 4 bytes from successive registers into memory; stl copies 8 bytes; stt copies 12 bytes; 
stq copies 16 bytes. 

For Id, ldob, ldos, ldib and ldis, the instruction specifies a memory address and register and 
the memory address value is copied into the register. The processor automatically extends byte 
and short (half-word) operands to 32 bits according to data type. Ordinals are zero-extended; 
integers are sign-extended. 

For st, stob, stos, stib and stis, the instruction specifies a memory address and register; the 
register value is copied into memory. For byte and short instructions, the processor 
automatically reformats the source register's 32-bit value for the shorter memory location. 

For stib and stis, this reformatting can cause integer overflow if the register value is too large 
for the shorter memory location. When integer overflow occurs, either an integer-overflow 
fault is generated or the integer-overflow flag in the AC register is set, depending on the 
integer-overflow mask bit setting in the AC register. 

For stob and stos, the processor truncates the operand and does not create a fault if truncation 
resulted in the loss of significant bits. 

Move 

Move instructions copy data from a local, global, special function register or group of registers 
to another register or group of registers. These instructions use the REG format. 

mov 
movl 
movt 
movq 

move word 
move long word 
move triple word 
move quad word 
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Load Address 

The Load Address instruction (Ida) computes an effective address in the address space from an 
operand presented in one of the addressing modes. A common use of this instruction is to load 
a constant into a register. This instruction uses the MEM format and can operate upon local or 
global registers. 

On the i960 CA processor, Ida is useful for performing simple arithmetic operations. The 
microprocessor's parallelism allows Ida to execute in the same clock as another arithmetic or 
logical operation. 

ARITHMETIC 

Table 4.2 lists arithmetic operations and data types for which the i960 CA processor provides 
instructions. "X" in this table indicates that the microprocessor provides an instruction for the 
specified operation and data type. Extended shift right operation is an i960 CA component­
specific extension to the i960 family's instruction set. All arithmetic operations are carried out 
on operands in registers. Refer to the section titled Atomic Instructions later in this chapter for 
instructions which handle specific requirements for in-place memory operations. 

All arithmetic instructions use the REG format and can operate on local, global or special 
function registers. The following sections describe arithmetic instructions for ordinal and 
integer data types. 

Table 4.2. Arithmetic Operations 

Data Types 

Arithmetic 0_£.erations Inte_g_er Ordinal 

Add x x 
Add with Carry x x 
Subtract x x 
Subtract with Carry x x 
Multiply x x 
Extended Multiply x 
Divide x x 
Extended Divide x 
Remainder x x 
Modulo x 
Shift Left x x 
Shift Right x x 
*Extended Shift Right x 
Shift Right Dividing Integer x 
*i960 CA component-specific extension to the 80960 instruction 
set. 
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Add, Subtract, Multiply and Divide 

The following instructions perform add, subtract, multiply or divide operations on integers and 
ordinals: 

ad di 
ad do 
subi 
subo 
muli 
mulo 
di vi 
divo 

add integer 
add ordinal 
subtract integer 
subtract ordinal 
multiply integer 
multiply ordinal 
divide integer 
divide ordinal 

addi, subi, muli and divi generate an integer-overflow fault if the result is too large to fit in the 
32-bit destination. divi and divo generate a zero-divide fault if the divisor is zero. 

Extended Arithmetic 

The following four instructions support extended-precision arithmetic (i.e., arithmetic 
operations on operands greater than one word in length): 

addc add ordinal with carry 
subc subtract ordinal with carry 
emul extended multiply 
ediv extended divide 

addc adds two word operands (literals or contained in registers) plus condition code bit 1 (used 
here as a carry bit) in the AC Register. If the result has a carry, bit 1 of the condition code is 
set; otherwise, it is cleared. This instruction's description in Chapter 9 gives an example of 
how this instruction can be used to add two long-word (64-bit) operands together. 

subc is similar to addc, except it is used to subtract extended-precision values. Although addc 
and subc treat their operands as ordinals, the instructions also set bit 0 of the condition codes if 
the operation would have resulted in an integer overflow condition. This facilitates a software 
implementation of extended integer arithmetic. 

emul multiplies two ordinals (each contained in a register), producing a long ordinal result 
(stored in two registers). ediv divides a long ordinal by an ordinal, producing an ordinal 
quotient and an ordinal remainder (stored in two adjacent registers). 

Remainder and Modulo 

The following instructions divide one operand by another and retain the remainder of the 
operation: 
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remainder integer 
remainder ordinal 
modulo integer 

The difference between the remainder and modulo instructions lies in the sign of the result. For 
remi and remo, the result has the same sign as the dividend; for modi, the result has the same 
sign as the divisor. 

Shift and Rotate 

The processor provides the following shift instructions, which shift an operand a specified 
number of bits left or right: 

shlo 
shro 
shli 
shri 
shrdi 
rotate 
eshro 

shift left ordinal 
shift right ordinal 
shift left integer 
shift right integer 
shift right dividing integer 
rotate left 
extended shift right ordinal 

Except for rotate, these instructions discard bits shifted beyond the register boundary. 

shlo shifts zeros in from the least significant bit; shro shifts zeros in from the most significant 
bit. These instructions are equivalent to mulo and divo by the power of 2, respectively. 

shli shifts zeros in from the least significant bit. If a shift of the specified places would result in 
an overflow, an integer-overflow fault is generated if enabled. The destination register is 
written with the source shifted as much as possible without overflowing, and an integer­
overflow fault is signaled. 

shri performs a conventional arithmetic shift right operation by shifting the sign bit in from the 
most significant bit. However, when this instruction is used to divide a negative integer 
operand by the power of 2, it may produce an incorrect quotient. (Discarding the bits shifted 
out has the effect of rounding the result toward negative.) 

shrdi is provided for dividing integers by the power of 2. With this instruction, 1 is added to 
the result if the bits shifted out are non-zero and the operand is negative, which produces the 
correct result for negative operands. shli and shrdi are equivalent to muli and divi by the 
power of 2, respectively. 

rotate rotates operand bits to the left (toward higher significance) by a specified number of 
bits. Bits shifted beyond register's left boundary (bit 31) appear at the right boundary (bit 0). 

eshro is an i960 CA component-specific extension to the i960 family's instruction set. This 
instruction performs an ordinal right shift of a source register pair (64 bits) by as much as 32 
bits and stores the result in a single (32-bit) register. This instruction is equivalent to an 
extended divide by a power of 2, which produces no remainder. The instruction is also the 
equivalent of a 64-bit extract of 32 bits. 
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LOGICAL 

The following instructions perform bitwise Boolean operations on the specified operands: 

and src2 AND srcl 
notand (NOT src2) AND srcl 
andnot src2 AND (NOT srcl) 
xor src2 XOR srcl 
or src2 OR srcl 
nor NOT (src2 OR srcl) 
xnor src2 XNOR src l 
not NOT srcl 
notor (NOT src2) or srcl 
ornot src2 or (NOT srcl) 
nand NOT (src2 AND srcl) 

These instructions all use the REG format and can specify literals or local, global or special 
function registers. 

The processor provides logical operations in addition to and, or and xor as a performance 
optimization. This optimization reduces the number of instructions required to perform a 
logical operation and reduces the number of registers and instructions associated with bitwise 
mask storage and creation. 

BIT AND BIT FIELD 

These instructions perform operations on a specified bit or bit field in an ordinal operand. All 
use the REG format and can specify literals or local, global or special function registers. 

Bit Operations 

The following instructions operate on a specified bit: 

setbit 
clrbit 
notbit 
alterbit 
scanbit 
span bit 

set bit 
clear bit 
not bit 
alter bit 
scan for bit 
span over bit 

setbit, clrbit and notbit set, clear or complement (toggle) a specified bit in an ordinal. 

alterbit alters the state of a specified bit in an ordinal according to the condition code. If the 
condition code is 0102, the bit is set; if the condition code is 0002, the bit is cleared. 

chkbit (described later in this chapter in the section titled Comparison) can be used to check 
the value of an individual bit in an ordinal. 

scanbit and spanbit find the most significant set bit or clear bit, respectively, in an ordinal. 
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Bit Field Operations 

The two bit field instructions are extract and modify: 

extract converts a specified bit field, taken from an ordinal value, into an ordinal value. In 
essence, this instruction shifts right a bit field in a register and fills in the bits to the left of the 
bit field with zeros. (eshro also provides the equivalent of a 64-bit extract of 32 bits). 

modify copies bits from one register, under control of a mask, into another register. Only 
unmasked bits in the destination register arc modified. modify is equivalent to a bit field move. 

BYTE OPERATIONS 

scanbyte performs a byte-by-byte comparison of two ordinals to determine if any two 
corresponding bytes are equal. The condition code is set according to the results of the 
comparison. This instruction uses the REG format and can specify literals or local, global or 
special function registers. 

COMPARISON 

The processor provides several types of instructions that are used to compare two operands, as 
described in the following sections. 

Compare and Conditional Compare 

The instructions listed below compare two operands then set the condition code bits in the AC 
register according to the results of the comparison. 

cm pi 
cm po 
concmpi 
concmpo 

compare integer 
compare ordinal 
conditional compare integer 
conditional compare ordinal 

These instructions all use the REG format and can specify literals or local, global or special 
function registers. The condition code bits are set to indicate whether one operand is less than, 
equal to or greater than the other operand. See Chapter 2, Programming Environment for a 
discussion of meanings of the condition code for conditional operations. 

cmpi and cmpo simply compare the two operands and set the condition code bits accordingly. 
concmpi and concmpo first check the status of bit 2 of the condition code. If it is not set, the 
operands are compared as with cmpi and cmpo. If bit 2 is set, no comparison is performed and 
the condition code flags are not changed. 

The conditional-compare instructions are provided specifically to optimize two-sided range 
comparisons to check if A is between B and C (i.e., B :::; A ::::: C). Here, a compare instruction 
(cmpi or cmpo) checks one side of the range (e.g., A ;::: B) and a conditional compare 
instruction (concmpi or concmpo) checks the other side (e.g., A:::; C) according to the result of 
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the first comparison. The condition codes following the conditional comparison directly reflect 
the results of both comparison operations. Therefore, only one conditional branch instruction is 
required to act upon the range check; otherwise, two branches would be needed. 

chkbit checks a specified bit in a register and sets the condition code flags according to the bit 
state. The condition code is set to 0102 if the bit is set and 0002 otherwise. 

Compare and Increment or Decrement 

The following instructions compare two operands, set the condition code bits according to the 
results, then increment or decrement one of the operands: 

cmpinci 
cm pin co 
cmpdeci 
cmpdeco 

compare and increment integer 
compare and increment ordinal 
compare and decrement integer 
compare and decrement ordinal 

These instructions use the REG format and can specify literals or local, global or special 
function registers. They are an architectural performance optimization which allows two 
register operations (e.g., comparison and addition) to be executed in a single cycle. These 
instructions are intended for use at the end of iterative loops. 

Test Condition Codes 

The following test instructions allow the state of the condition code flags to be tested: 

teste 
testne 
testl 
testle 
testg 
testge 
testo 
testno 

test for equal 
test for not equal 
test for less 
test for less or equal 
test for greater 
test for greater or equal 
test for ordered 
test for unordered 

These cause a TRUE (OlH) to be stored in a destination register if the condition code matches 
the instruction-specified condition. Otherwise, a FALSE (OOH) is stored in the register. All use 
the COBR format and can operate on local, global and special function registers. 

Since test instruction actions depend on a comparison, the architecture allows a programmer to 
predict the likely result of the operation for higher performance. The programmer's prediction 
is encoded in one bit of the opword. Intel 80960 assemblers encode the prediction with a 
mnemonic suffix of .t for true and .f for false. See Appendix A, Optimizing Code for the i960 
CA Microprocessor for a complete discussion of branch prediction. 
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BRANCH 

Branch instructions allow program flow direction to be changed by explicitly modifying the IP. 
The processor provides three branch instruction types: 

• unconditional branch 

• conditional branch 

• compare and branch 

Most branch instructions specify the target IP by specifying a signed displacement to be added 
to the current IP. Other branch instructions specify the target IP' s memory address, using one 
of the processor's addressing modes. This latter group of instructions is called extended 
addressing instructions (e.g., branch extended, branch and link extended). 

Since branch instruction actions depend the result of a previous comparison, the architecture 
allows a programmer to predict the likely result of the branch operation for higher 
performance. The programmer's prediction is encoded in one bit of the opword. The Intel 
80960 Assembler encodes the prediction with a mnemonic suffix of ".t" for true and ".f' for 
false. See the section of Appendix A, Optimizing Code for the i960 CA Microprocessor for a 
complete discussion of prediction. 

Unconditional Branch 

The following four instructions are used for unconditional branching: 

b Branch 
bx Branch Extended 
bal Branch and Link 
baix Branch and Link Extended 

b and baI use the CTRL format. bx and balx use the MEM format and can specify local or 
global registers as operands. b and bx cause program execution to jump to the specified target 
IP. These two instructions perform the same function; however, their determination of the 
target IP differs. The target IP of a b instruction is specified at link time as a relative 
displacement from the current IP. The target IP of the bx instruction is the absolute address 
resulting from the instruction's use of a memory addressing mode during execution. 

bal and baix store the next instruction's address in a specified register. then jump to the 
specified target IP. (For bal, the RIP is automatically stored in register gl4; for balx, the RIP 
location is specified with an instruction operand.) As described in Chapter 5, Procedure Calls 
the branch and link instructions provide a method of performing procedure calls that do not use 
the processor's integrated call/return mechanism. Here, the saved instruction address is used as 
a return IP. Branch and link is generally used to call leaf procedures (that is, procedures that do 
not call other procedures). 

The bx and balx instructions can make use of any memory addressing mode. 
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Conditional Branch 

With the conditional branch (branch if) instructions, the processor checks the AC register 
condition code flags. If these flags match the value specified with the instruction, the processor 
jumps to the target IP. These instructions use the displacement-plus-IP method of specifying 
the target IP: 

be branch if equal/true 
hoe branch if not equal 
bl branch if less 
hie branch if less or equal 
bg branch if greater 
bge branch if greater or equal 
ho branch if ordered 
boo branch if unordered/false 

All use the CTRL format. bo and boo are used with real numbers. Refer to Chapter 2, 
Programming Environment for a discussion of the condition code for conditional operations. 

Compare and Branch 

These instructions compare two operands then branch according to the comparison result. 
Three instruction subtypes are compare integer, compare ordinal and branch on bit: 

cm pi be 
cmpiboe 
cm pi bl 
cmpible 
cmpibg 
cmpibge 
cmpibo 
cmpiboo 
cm po be 
cmpoboe 
cmpobl 
cmpoble 
cmpobg 
cmpobge 
bbs 
bbc 

compare integer and branch if equal 
compare integer and branch if not equal 
compare integer and branch if less 
compare integer and branch if less or equal 
compare integer and branch if greater 
compare integer and branch if greater or equal 
compare integer and branch if ordered 
compare integer and branch if unordered 
compare ordinal and branch if equal 
compare ordinal and branch if not equal 
compare ordinal and branch if less 
compare ordinal and branch if less or equal 
compare ordinal and branch if greater 
compare ordinal and branch if greater or equal 
check bit and branch if set 
check bit and branch if clear 

All use the COBR machine instruction format and can specify literals, local, global and special 
function registers as operands. With compare ordinal and branch and compare integer and 
branch instructions, two operands are compared and the condition code bits are set as described 
for compare instructions earlier in this chapter. A conditional branch is then executed as with 
the conditional branch (branch if) instructions. 

With check bit and branch instructions, one operand specifies a bit to be checked in the other 
operand. The condition code flags are set according to the state of the specified bit: 0102 (true) 

4-14 



INSTRUCTION SET SUMMARY 

if the bit is set and 0002 (false) if the bit is clear. A conditional branch is then executed 
according to condition code bit settings. 

These instructions optimize execution performance time. When it is not possible to separate 
adjacent compare and branch instructions with other unrelated instructions, replacing two 
instructions with a single compare and branch instruction increases performance. 

CALL AND RETURN 

The processor offers an on-chip call/return mechanism for making procedure calls. This 
integrated call/return mechanism is described in Chapter 2. Programming Environment. The 
following four instructions are provided to support this mechanism. 

call call 
callx call extended 
calls call system 
ret return 

call and ret use the CTRL machine-instruction format. callx uses the MEM format and can 
specify local or global registers. calls uses the REG format and can specify local, global or 
special function registers. 

call and callx make local calls to procedures. A local call is a call that does not require a switch 
to another stack. call and callx differ only in the method of specifying the target procedure's 
address. The target procedure of a call is determined at link time and is encoded in the opword 
as a signed displacement relative to the call IP. callx specifies the target procedure as an 
absolute 32-bit address calculated at run time using any one of the addressing modes. For both 
instructions, a new set of local registers and a new stack frame are allocated for the called 
procedure. 

calls is used to make calls to system procedures - procedures that provide a kernel or system­
executive services. This instruction operates similarly to call and callx, except that it gets its 
target-procedure address from the system procedure table. An index number included as an 
operand in the instruction provides an entry point into the procedure table. 

Depending on the type of entry being pointed to in the system procedure table, calls can cause 
either a system-supervisor call or a system-local call to be executed. A system-supervisor call 
is a call to a system procedure that also switches the processor to supervisor mode and the 
supervisor stack. A system-local call is a call to a system procedure that does not cause an 
execution mode or stack change. Supervisor mode is described in Chapter 5. Procedure Calls. 

ret performs a return from a called procedure to the calling procedure (the procedure that made 
the call). ret obtains its target IP (return IP) from linkage information that was saved for the 
calling procedure. ret is used to return from all calls, including local and supervisor calls, and 
from implicit calls to interrupt and fault handlers. 
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CONDITIONAL FAULTS 

Generally, the processor generates faults automatically as the result of certain operations. Fault 
handling procedures are then invoked to handle various fault types without explicit 
intervention by the currently running program. Faults are discussed in Chapter 7, Faults. The 
following conditional fault instructions permit a program to explicitly generate a fault 
according to the state of the condition code flags. 

faulte 
faultne 
faultl 
faultle 
faultg 
faultge 
faulto 
faultno 

fault if equal 
fault if not equal 
fault if less 
fault if less or equal 
fault if greater 
fault if greater or equal 
fault if ordered 
fault if unordered 

All use the CTRL format. Since the actions of these instructions are dependent upon the result 
of a previous comparison, the architecture allows a programmer to predict the likely result of 
the conditional fault instructions for higher performance. The programmer's prediction is 
encoded in one bit of the opword. The Intel 80960 Assembler encodes the prediction with a 
mnemonic suffix of ".t" for true and ".f' for false. See Appendix A, Optimizing Code for the 
i960 CA Microprocessor for a complete discussion of prediction. 

DEBUG 

The processor supports debugging and monitoring of program activity through the use of trace 
events. The following instructions support these debugging and monitoring tools: 

mod pc 
modtc 
mark 
fmark 

modify process controls 
modify trace controls 
mark 
force mark 

These instructions use the REG format. Trace functions are controlled with bits in the 
processor's trace control register. These bits allow various types of tracing to be enabled or 
disabled. Other flags in the trace controls register indicate when an enabled trace event has 
been detected. Trace controls are described in Chapter 8, Tracing and Debugging. 

modpc has the ability to enable/disable trace fault generation; modtc permits trace controls to 
be modified. mark causes a breakpoint trace event to be generated if breakpoint trace mode is 
enabled. fmark generates a breakpoint trace independent of the state of the breakpoint trace 
mode bits. 

The i960 CA component-specific sysctl instruction, described in the Chapter 2, Programming 
Environment, also provides control over breakpoint trace event generation. This instruction is 
used, in part, to load and control the i960 CA microprocessor's breakpoint registers. 
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ATOMIC INSTRUCTIONS 

Atomic instructions perform read-modify-write operations on operands in memory. They allow 
a system to ensure that, when an atomic operation is performed on a specified memory 
location, the operation completes before another agent is allowed to perform an operation on 
the same memory. These instructions are required to enable synchronization between interrupt 
handlers and background tasks in any system. They are also particularly useful in systems 
where several agents - processors, coprocessors or external logic - have access to the same 
system memory for communication. 

The atomic instructions are atomic add (atadd) and atomic modify (atmod). atadd causes an 
operand to be added to the value in the specified memory location. atmod causes bits in the 
specified memory location to be modified under control of a mask. Both instructions use the 
REG format and can specify literals or local, global or special function registers. 

PROCESSOR MANAGEMENT 

The following instructions control processor-related functions: 

mod pc 
flushreg 
modac 
sysctl 
sdma 
udma 

modify the process controls register 
flush cached local register sets to memory 
modify the AC register 
perform system control function 
set up a DMA controller channel 
copy current DMA pointers to internal data RAM 

All use the REG format and can specify literals or local, global or special function registers. 

modpc provides a method of reading and modifying PC register contents. Only programs 
operating in supervisor mode may modify the PC register: however. any program may read it. 

The processor provides a flush local registers instruction (tlushreg) to save the contents of the 
cached local registers to the stack. The flush local registers instruction automatically stores the 
contents of all the local register sets - except the current set - in the register save area of 
their associated stack frames. 

The modify arithmetic controls instruction (modac) is provided to allow the AC register to be 
copied to a register and/or modified under the control of a mask. The AC register cannot be 
explicitly addressed with any other instruction: however. it is implicitly accessed by 
instructions that use the condition codes or set the integer overflow flag. 

sysctl is an i960 CA component-specific extension to the i960 family's instruction set which is 
used to configure the on-chip bus controller, interrupt controller, breakpoint registers and 
instruction cache. The instruction also permits software to signal an interrupt or cause a 
processor reset and reinitialization. sysctl may only be executed by programs operating is 
supervisor mode. See Chapter 2, Programming Environment and Chapter 9, Instruction Set 
Reference for a complete description. 
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sdma and udma are i960 CA component-specific extensions to the i960 family's instruction 
set which configure and monitor the on-chip DMA controller. These instructions may only be 
executed by programs operating in supervisor mode. Refer to Chapter 9, Instruction Set 
Reference and Chapter 13, DMA Controller for a description of these instructions. 
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CHAPTER 5 
PROCEDURE CALLS 

This chapter describes mechanisms for making procedure calls, which include branch-and-link 
instructions, built-in call and return mechanism, call instructions (call, callx, calls), return 
instruction (ret) and call actions caused by interrupts and faults. 

OVERVIEW 

The i960 architecture supports two methods for making procedure calls: 

• A RISC-style branch-and-link. This is a fast call best suited for calling procedures that do 
not call other procedures. 

• An integrated call and return mechanism. This is a more versatile method for making 
procedure calls, providing a highly efficient means for managing a large number of 
registers and the program stack. 

On a branch-and-link (bal, balx), the processor branches and saves a return IP in a register. 
The called procedure uses the same set of registers and the same stack as the calling procedure. 
On a call (call, callx, calls) or when an interrupt or fault occurs, the processor also branches to 
a target instruction and saves a return IP. Additionally, the processor saves the local registers 
and allocates a new set of local registers and a new stack for the called procedure. The saved 
context is restored when the return instruction (ret) is executed. 

In many RISC architectures, a branch-and-link instruction is used as the base instruction for 
coding a procedure call. Register and stack management for the call is then handled by the user 
program. Since the i960 architecture provides a fully integrated call and return mechanism, 
coding calls with branch-and-link is not necessary. Additionally, the integrated call is much 
faster than typical RISC-coded calls. 

The branch-and-link instruction in the i960 family, therefore, is used primarily for calling leaf 
procedures. Leaf procedures call no other procedures. They are called "leaf procedures" 
because they reside at the '"leaves" of the call tree. 

The integrated call and return mechanism is used in two ways in the i960 architecture: explicit 
calls to procedures in a user's program and implicit calls to interrupt and fault handlers. The 
remainder of this chapter explains the generalized call mechanism used for explicit and implicit 
calls and call and return instructions. 

The processor performs two call actions: 

local 

supervisor 

When a local call is made, execution mode remains unchanged and 
the stack frame for the called procedure is placed on the local stack. 
The local stack refers to the stack of the calling procedure. 

When a supervisor call is made, execution mode is switched to 
supervisor and the stack frame for the called procedure is placed on 
the supervisor stack. 
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Explicit procedure calls can be made using several instructions. Local call instructions call and 
callx perform a local call action. With call and callx, the called procedure's IP is included as 
an operand in the instruction. 

A system call is made with calls. This instruction is similar to call and callx, except that the 
processor obtains the called procedure's IP from the system procedure table. A system call, 
when executed, is directed to perform either the local or supervisor call action. These calls are 
referred to as system-local and system-supervisor calls, respectively. A system-supervisor call 
is also referred to as a supervisor call. 

CALL AND RETURN MECHANISM 

At any point in a program, the i960 device has access to the global registers, a local register set 
and the procedure stack. A subset of the stack allocated to the procedure is called the stack 
frame. When a call is executed, a new stack frame is allocated for the called procedure. 
Additionally, the processor saves the current local register set, freeing these registers for use by 
the newly called procedure. In this way, every procedure has a unique stack and a unique set of 
local registers. When a return is executed, the current local register set and current stack frame 
are deallocated. The previous local register set and previous stack frame are restored. 

Local Registers and the Procedure Stack 

For each procedure, the processor automatically allocates a set of 16 local registers. Since local 
registers are on-chip, they provide fast access storage for local variables. Of the 16 local 
registers, 13 are available for general use; rO, rl and r2 are reserved for linkage information to 
tie procedures together. 

The procedure stack can be located anywhere in the address space and grows from low 
addresses to high addresses. It consists of contiguous frames, one frame for each active 
procedure. Local registers for a procedure are assigned a save area in each stack frame (Figure 
5.1). The procedure stack, available to the user, begins after this save area. 

To increase procedure call speed, the architecture allows an implementation to cache the saved 
local register sets on-chip. Thus, when a procedure call is made, the contents of the current set 
of local registers often does not have to be written out to the save area in the stack frame in 
memory. Refer to the sections later in this chapter titled Caching of Local Register Sets and 
Mapping the Local Registers to the Procedure Stack for further discussion about local registers 
and procedure stack interrelations. 
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Figure 5.1. Procedure Stack Structure and Local Registers 

Local Register and Stack Management 

Global register gl5 (FP) and local registers rO (PFP), rl (SP) and r2 (RIP) contain information 
to link procedures together and link local registers to the procedure stack (Figure 5.1 ). The 
following paragraphs describe this linkage information. 

Frame Pointer 

The frame pointer is the current stack frame's first byte address. It is stored in global register 
g 15, the frame pointer (FP) register. The FP register is always reserved for the frame pointer; 
do not use gl5 for general storage. In the i960 CA processor, frames are aligned on 16-byte 
boundaries (Figure 5.1). When the processor creates a new frame on a procedure call, it will, if 
necessary, add a padding area to the stack so that the new frame starts on a 16-byte alignment 
boundary. 
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Stack frame alignment is defined for each implementation of the i960 family. This alignment 
boundary is calculated from the relationship SALIGN*16. For example, if SALIGN is set to 4, 
stack frames are aligned on 64-byte boundaries. In the i960 CA microprocessor, SALIGN=l. 

Stack Pointer 

The stack pointer is the byte-aligned address of the stack frame's next unused byte. The stack 
pointer value is stored in local register rl, the stack pointer (SP) register. The procedure stack 
grows upward (i.e., toward higher addresses). When a stack frame is created, the processor 
automatically adds 64 to the frame pointer value and stores the result in the SP register. This 
action creates the register save area in the stack frame for the local registers. 

The user must modify the SP register value when data is stored or removed from the stack. The 
i960 architecture does not provide an explicit push or pop instruction to perform this action. 
This is typically done by adding the size of all pushes to the stack in one operation. 

Previous Frame Pointer 

The previous frame pointer is the previous stack frame's first byte address. This address' upper 
28 bits are stored in local register rO, the previous frame pointer (PFP) register. The four least­
significant bits of the PFP are used to store the return-type field. 

Return Type Field 

PFP register bits 0 through 3 contain return type information for the calling procedure. When a 
procedure call is made - either explicit or implicit - the processor records the call type in the 
return type field. The processor then uses this information to select the proper return 
mechanism when returning to the calling procedure. The use of this information is described 
later in this chapter in the section titled Returns. 

Return Instruction Pointer 

When a call is made, the processor saves the address of the instruction after the call, providing 
a reentry point when the return instruction is executed. This address is automatically stored in 
local register r2 of the calling frame. Register r2 is referred to as the return instruction pointer 
(RIP) register. The RIP register is a special register; do not use r2 to hold operand values. Since 
interrupts and faults trigger an implicit call action, the RIP register may be written at any time 
with the return pointer associated with the interrupt or fault event. 
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Call and Return Action 

To clarify how procedures are linked and how the local register and stack are managed, the 
following sections describe a general call and return operation and the operations performed 
with the FP, SP, PFP and RIP registers described above. 

The events for call and return operations are given in a logical order of operation. The i960 CA 
microprocessor is able to execute independent operations in parallel, therefore, many of these 
events execute simultaneously. For example, to improve performance, the processor often 
begins prefetch of the target instruction for the call or return before the operation is complete. 

Call Operation 

When a call instruction is executed or an implicit call is triggered, the processor performs the 
following operations: 

1. The processor stores the instruction pointer for the instruction following the call in the 
current stack's RIP register (r2). 

2. The frame pointer (gl5) for the calling procedure is stored in the current stack's PFP 
register (rO). The return type field in the PFP register is set according to the call type 
which is performed. (See the section titled Returns later in this chapter.) 

3. The current local registers - including the PFP, SP and RIP registers - are saved, freeing 
these registers for use by the called procedure. Because saved local registers are cached on 
the i960 CA component, the registers are always saved in the on-chip local register cache 
at this time. 

4. A new stack frame is allocated by using the stack pointer value saved in step 3. This value 
is first rounded to the next 16-byte boundary to create a new frame pointer, then stored in 
the FP register. Next, 64 bytes are added to create the new frame's register save area. This 
value is stored in the SP register. 

5. The instruction pointer is loaded with the address of the first instruction in the called 
procedure. The processor gets the new instruction pointer from the call instruction, the 
system procedure table, the interrupt table or the fault table, depending on the type of call 
executed. 

Upon completion of these steps, the processor begins executing the called procedure. 

Return Operation 

A return from any call type - explicit or implicit - is always initiated with a return (ret) 
instruction. On a return, the processor performs these operations: 

1. The current stack frame and local registers are deallocated by loading the FP register with 
the value of the PFP register. 
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2. The local registers for the return target procedure are retrieved. The registers are usually 
read from .the local register cache; however, in some cases, these registers have been 
flushed from register cache to memory and must be read directly from the save area in the 
stack frame. 

3. The processor sets the instruction pointer to the value of the RIP register. 

Upon completion of these steps, the processor executes the procedure to which it returns. 

Caching of Local Register Sets 

The i960 CA component provides a local register cache to improve call and return 
performance. Local registers are typically saved and restored from the local register cache 
when calls and returns are executed. For the i960 CA microprocessor, movement of a local 
register set between local registers and cache takes only four clock cycles. Other overhead 
associated with a call or return is performed in parallel with this data movement. 

When the number of nested procedures exceeds local register cache size, local register sets 
must at times be saved or restored to their associated save areas in the procedure stack. 
Because these operations require access to external memory, this local cache miss impacts call 
and return performance. 

When a call is made and the register cache is full, a register set in the cache must be saved to 
external memory to make room for the current set of local registers in the cache. This action is 
referred to as a frame spill. The oldest set of local registers stored in the cache is spilled to the 
associated local register save area in the procedure stack. Figure 5.2 illustrates a call operation 
with and without a frame spill. 

/Similarly, when a return is made and the local register set for the target procedure is not 
available in the cache, these local registers must be retrieved from the procedure stack in 
memory. This operation is referred to as a frame fill. Figure 5.3 illustrates a return operation 
with and without a frame fill. 

Register cache size is specified at initialization by the register cache configuration word value 
in the PRCB. Register cache size is adjustable to hold from I to 14 sets of local registers. See 
Chapter 14, Initialization and System Requirements for more information about initialization 
and the PRCB. 
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Up to five local register sets are cached by default with no impact to the processor's available 
resources. When the cache is configured for 6 to 14 sets, part of the internal data RAM is used 
to expand the cache. Data RAM usage begins at the highest address of internal RAM (03FFH) 
and grows downward. ' 
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The amount of internal data RAM used (in bytes) is determined by the formula: 

where: 
and: 

n*l6 

CCW =the programmed value of the cache configuration word in the PRCB 
n = 0 for CCW=O Number of cached sets= 1 
n = 0 for I ~ CCW ~ 5 Number of cached sets = CCW 
n = CCW-5 for 6 ~ CCW ~ 15 Number of cached sets= CCW-1 

Register cache cannot be disabled. Register cache size equals 1 when the cache configuration 
word is programmed to a value of 0. Also, a value of 5 or 6 produces the same cache number 
of cache sets; however, when programmed to 6, 16 bytes of internal data RAM is used, when 
programmed to 5, no internal data RAM is used. 

The user program is responsible for preventing any corruption to the areas of internal RAM 
which are used for the register cache. In a typical program, most procedure calls and returns 
cause procedure depth to oscillate a few levels around a median call depth. The cache tends to 
be partially filled at the median call depth. Cache flushes occur when oscillations around the 
median depth are larger than the cache size can accommodate. Configuring local register cache 
to hold five sets of local registers avoids numerous cache fills and spills for most applications 
and does not use any of the data RAM which is available for general data storage. The user 
should configure the cache for a minimum of five register sets. 

Mapping Local Registers to the Procedure Stack 

Each local register set is mapped to a register save area of its respective frame in the procedure 
stack (Figure 5.1 ). Saved local register sets are frequently cached on-chip rather than saved to 
memory. This caching is performed non-transparently. Local register set contents are not saved 
automatically to the save area in memory when the register set is cached. This would cause a 
significant performance loss for call operations. 

Also, no automatic update policy is implemented for register cache. If the register save area in 
memory for a cached register set is modified, there is no guarantee that the modification will be 
reflected when the register set is restored. The set must be written (or flushed) to memory 
because of a frame spill prior to the modification for the modification to be valid. 

flushreg causes the contents of all cached local register sets to be written (flushed) to their 
associated stack frames in memory. The register cache is then invalidated, meaning that all 
flushed register sets are restored from their save areas in memory. The current set of local 
register is not written to memory. flushreg is commonly used in debuggers or fault handlers to 
gain access to all saved local registers. In this way, call history may be traced back through 
nested procedures. flushreg is also used when implementing task switches in multitasking 
kernels. The procedure stack is changed as part of the task switch. To change the procedure 
stack, flushreg is executed to update the current procedure stack and invalidate all entries in 
the local register cache. Next, the procedure stack is changed by directly modifying the FP and 
SP registers and executing a call operations. After flushreg is executed, the procedure stack 
may also be changed by modifying the previous frame in memory and executing a return 
operation. 
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NOTE 
When a set of local registers is assigned to a new procedure, the processor may or may not clear 
or initialize these registers. Therefore, initial register contents are unpredictable. Also, the 
processor does not initialize the local register save area in the newly created stack frame for the 
procedure; its contents are equally unpredictable. 

PARAMETER PASSING 

Parameters are passed between procedures in two ways: 

value 

reference 

Parameters are passed directly to the calling procedure as part of the 
call and return mechanism. This is the fastest method of passing 
parameters. 

Parameters are stored in an argument list in memory and a pointer to 
the argument list is passed in a global register. 

When passing parameters by value, the calling procedure stores the parameters to be passed in 
global registers. Since the calling procedure and the called procedure share the global registers, 
the called procedure has direct access to the parameters after the call. 

When a procedure needs to pass more parameters than will fit in the global registers, they can 
be passed by reference. Here, parameters are placed in an argument list and a pointer to the 
argument list is placed in a global register. 

The argument list can be stored anywhere in memory; however, a convenient place to store an 
argument list is in the stack for a calling procedure. Space for the argument list is created by 
incrementing the SP register value. If the argument list is stored in the current stack, the 
argument list is automatically deallocated when no longer needed. 

A procedure receives parameters from - and returns values to - other calling procedures. To 
do this successfully and consistently, all procedures must agree on the use of the global 
registers. Table 5.1 summarizes the global register model used by the i960 compilers. Refer to 
the iC960 User's Guide for details about the register allocation model. 

This example illustrates a typical implementation of parameter passing between procedures and 
the use of the global and local registers in this scheme. 

Parameter registers pass values into a function. Up to 12 parameters are passed by the value in 
the global registers. If the number of parameters exceeds 12, additional parameters are passed 
on the calling procedure's stack and a pointer to the argument block is passed in a pre­
designated register. Similarly, several registers are set aside for return arguments and a return 
argument block pointer is defined to point to additional parameters. If the number of return 
arguments exceeds the available number of return argument registers, the calling procedure 
passes a pointer to an argument list on its stack where the remaining return values will be 
placed. Example 5.1 illustrates parameter passing by value and reference. 
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Table 5.1. Global Register Function with i960™ Compilers 

Instruction Operand Value on Call Value on Return 

gO Parameter 0 Return Argument 0 
gl Parameter 1 Return Argument 1 

g2 Parameter 2 Return Argument 2 

g3 Parameter 3 Return Argument 3 
g4 Parameter 4 Not defined 
gS Parameter S Not defined 
g6 Parameter 6 Not defined 

g7 Parameter 7 Not defined 
g8 Parameter 8/tcmp 5 Not defined/temp 5 
g9 Parameter 9/temp 4 Not defined/temp 4 

gJO Parameter 1 O/temp 3 Not defined/temp 3 
g1 I Parameter 11/temp 2 Not defined/temp 2 
gl2 temp l temp 1 
gl3 Return argument block pointer Not defined 
gl4 Call parameter block pointer Not defined 
fp Frame pointer (reserved) 

NOTE 

If not used as parameters, g8 - gl 1 must be preserved by the called procedure. gO - gl I may also 
be used for data storage. g14 must be set to 0 when not used as a parameter block pointer. 

Local registers are automatically saved when a call is made. Because of the local register 
cache, they are saved quickly and with no external bus traffic. The efficiency of the local 
register mechanism plays an important role in two cases when calls are made: 

I. When a procedure is called which contains other calls, global parameter registers are 
moved to working local registers at the beginning of the procedure. In this way, parameter 
registers arc freed and nested calls are easily managed. The register move instruction 
necessary to perform this action is very fast; the working parameters, now in local register, 
are saved efficiently when nested calls are made. 

2. When other procedures are nested within an interrupt or fault procedure, the procedure 
must preserve all normally non-preserved parameter registers. This is necessary because 
the interrupt or fault occurs at any point in the user's program and return from interrupt or 
fault must restore the exact processor state. The interrupt or fault procedure can move non­
preserved global registers to local registers before the nested call. 
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Example 5.1. Using Global Register for Parameter Passing 

# Example of parameter passing . . . 
# C-source: int a,b[lOJ; 
# a= procl(a,l, 'x' ,&b[OJ); 
# 

mov 
ldconst 
ldconst 
lda 
call 
mov 

__procl: 
movq 

mov 
ret 

LOCAL CALLS 

assembles to 
r3,g0 
l,gl 
120,g2 
Ox4 0 ( fp) , g3 
__procl 
g0,r3 

g0,r4 

r3,g0 

# value of a 
# value of 1 
# value of 'x' 
# reference to b[lO] 

#save return value in "a" 

# save parameters 

# other instructions in procedure 
# and nested calls 
# load return parameter 

A local call does not cause a stack switch. A local call can be made two ways: 1) with the call 
and callx instructions or 2) with a system-local call (system-local call is described in the 
following section titled System Calls). call specifies the address of the called procedures as the 
IP plus a signed, 24-bit displacement (i.e., -223 to 223 - 4). callx allows any of the addressing 
modes to be used to specify the procedure address. The IP-with-displacement addressing mode 
allows full 32-bit IP-relative addressing. See Chapter 9, Instruction Set Reference for a further 
description of call and callx. 

When a local call is made with a call or callx, the processor performs the same operation as 
described earlier in this chapter in the section titled Call Operation. The target IP for the call is 
derived from the instruction's operands and the new stack frame is allocated on the current 
stack. call and callx algorithms are further described in Chapter 9, Instruction Set Reference. 

SYSTEM CALLS 

A system call is a call made via the system procedure table. It can be used to make a system­
local call - similar to a local call made with call and callx - or a system supervisor call. 

A system call is initiated with calls, which requires a procedure number operand. The 
procedure number provides an index into the system procedure table, where the processor finds 
IPs for specific procedures. See Chapter 9, Instruction Set Reference for a further description 
of calls. 
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Using an i960 language assembler, a system procedure is directly declared using the sysproc 
directive. At link time, the optimized call directive, callj, is replaced with a calls when a system 
procedure target is specified. (Refer to cmTent i960 assembler documents for a description of 
the .sysproc and callj directives.) 

The system call mechanism offers two benefits. First, it supports application software 
portability. System calls are commonly used to call kernel services. By calling these services 
with a procedure number rather than a specific IP, applications software does not need to be 
changed each time the implementation of the kernel services is modified. Only the entries in 
the system procedure table must be changed. 

Second, the ability to switch Lo a different execution mode and stack with a system supervisor 
call allows kernel procedures and data to be insulated from applications code. This benefit is 
further described in Chapter 2, Programming Environment. 

System Procedure Table 

The system procedure table is a data structure for storing IPs to system procedures: these can 
be procedures which software can access through a system call; or fault handling procedures, 
which the processor can access through its fault handling mechanism. Using the system 
procedure table to store IPs for fault handling is described in Chapter 7, Faults. 

System procedure table structure is shown in Figure 5.4. lt is 1088 bytes in length and can have 
up to 260 procedure entries. The processor gets a pointer to the system procedure table at 
initialization. The following sections describe this table's fields. 

Procedure Entries 

A procedure entry in the system procedure table specifies a procedure's location and type. 
Each entry is one word in length and consists of an address (or IP) field and a type field. The 
address field gives the address of the first instruction of the target procedure. Since all 
instructions are word aligned, only the entry's 30 most significant bits are used for the address. 
The entry's two least-significant bits specify entry type. The procedure entry type field 
indicates call type: system-local call or system-supervisor call (Table 5.2). On a system call, 
the processor performs different actions depending on the type of call selected. 

Table 5.2. Encodings of Entry Type Field in System Procedure Table 

Encoding Call Type 

002 System-Local Call 

012 Reserved 

102 System-Supervisor Call 

112 Reserved 
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Figure 5.4. System Procedure Table 

Supervisor Stack Pointer 

When a system-supervisor call is made, the processor switches to a new stack called the 
supervisor stack if not already in supervisor mode. The processor gets a pointer to this stack 
from the supervisor stack pointer field in the system procedure table (Figure 5.4) during the 
reset initialization sequence and caches the pointer internally. Only the 30 most significant bits 
of the supervisor stack pointer are given. The processor aligns this value to the next 16 byte 
boundary to determine the first byte of the new stack frame. 
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Trace Control Bit 

The trace control bit (byte 12, bit 0) specifies the new value of the trace enable bit in the PC 
register (PC.te) when a system-supervisor call causes a switch from user mode to supervisor 
mode. Setting this bit to 1 enables tracing in the supervisor mode; setting it to 0 disables 
tracing. The use of this bit is described in Chapter 8, Tracing and Debugging. 

System-Local Call 

When a calls instruction references an entry in the system procedure table with an entry type of 
00, the processor executes a system-local call to the selected procedure. The action that the 
processor performs is the same as described earlier in this chapter's section titled Call 
Operation. The call's target IP is taken from the system procedure table and the new stack 
frame is allocated on the current stack. The calls algorithm is described in Chapter 9, 
Instruction Set Reference. 

System-Supervisor Call 

When a calls instruction references an entry in the system procedure table with an entry type of 
102' the processor executes a system-supervisor call to the selected procedure. The call's target 
IP is taken from the system procedure table. The processor performs the same action as 
described earlier in this chapter's section titled Call Operation, with the following exceptions: 

• If the processor is in user mode, it switches to supervisor mode. 

• The new frame for the called procedure is placed on the supervisor stack. 

• If a mode switch occurs, the state of the trace enable bit in the PC register is saved in the 
return type field in the PFP register. The trace enable bit is then loaded from the trace 
control bit in the system procedure table. 

When the processor switches to supervisor mode, it remains in that mode and creates new 
frames on the supervisor stack until a return is performed from the procedure that caused the 
original switch to supervisor mode. While in supervisor mode, either the local call instructions 
(call and callx) or calls can be used to call procedures. 

The user-supervisor protection model and its relationship to the supervisor call are described in 
Chapter 2, Programming Environment. 

USER AND SUPERVISOR STACKS 

When using the user-supervisor protection mechanism, the processor maintains separate stacks 
in the address space. One of these stacks - the user stack - is for procedures executed in user 
mode; the other stack - the supervisor stack - is for procedures executed in supervisor mode. 

The user and supervisor stacks are identical in structure (Figure 5.1). The base stack pointer for 
the supervisor stack is automatically read from the system procedure table and cached 
internally at initialization or when the processor is reinitialized with sysctl. Each time a user-to­
supervisor mode switch occurs, the cached supervisor stack pointer base is used for the starting 
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point of the new supervisor stack. The base stack pointer for the user stack is usually created in 
the initialization code (see Chapter I4, Initialization and System Requirements). The base stack 
pointers must be aligned to a 16-byte boundary; otherwise, the first frame pointer in the stack is 
rounded up to the next 16-byte boundary. 

INTERRUPT AND FAULT CALLS 

The architecture defines two types of implicit calls that make use of the call and return 
mechanism: interrupt handling procedure calls and fault handling procedure calls. A call to an 
interrupt procedure is similar to a system-supervisor call. Here, the processor obtains pointers 
to the interrupt procedures through the interrupt table. The processor always switches to 
supervisor mode on an interrupt procedure call. 

A call to a fault procedure is similar to a system call. Fault procedure calls can be local calls or 
supervisor calls. The processor obtains pointers to fault procedures through the fault table and 
(optionally) through the system procedure table. 

When a fault call or interrupt call is made, a fault record or interrupt record is placed in the 
newly generated stack frame for the call. These records hold the machine state and information 
to identify the fault or interrupt. When a return from an interrupt or fault is executed, machine 
state is restored from these records. See Chapter 7, Faults and Chapter 6, Interrupts for more 
information on the structure of the fault and interrupt records. 

RETURNS 

The return (ret) instruction provides a generalized return mechanism that can be used to return 
from any procedure that was entered by call, calls, callx, an interrupt call or a fault call. When 
ret is executed, the processor uses the information from the return-type field in the PFP 
register (Figure 5.5) to determine the type of return action to take. 

return-type field indicates the type of call which was made. Table 5.3 shows the return-type 
field encoding for the various calls: local call, supervisor call, interrupt call and fault call. 

trace-on-return flag (PFP.rtO or bit 0 of the return-type field) stores the trace enable bit value 
when a system-supervisor call is made from user mode. When the call is made, the PC register 
trace enable bit is saved as the trace-on-return flag and then replaced by the trace controls bit in 
the system procedure table. On a return, the trace enable bit's original value is restored. This 
mechanism allows instruction tracing to be turned on or off when a supervisor mode switch 
occurs. See Chapter 8, Tracing and Debugging. 

prereturn-trace flag (PFP.p) is used in conjunction with call-trace and preretum-trace modes. 
If call-trace mode is enabled when a call is made, the processor sets the preretum-trace flag; 
otherwise it clears the flag. Then, if this flag is set and preretum-trace mode is enabled, a 
preretum trace event is generated on a return, before any actions associated with the return 
operation are performed. See Chapter 8, Tracing and Debugging for a discussion of interaction 
between call-trace and prereturn-trace modes with the prereturn-trace flag. 
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Figure 5.5. Previous Frame Pointer Register (PFP) (rO) 

Table 5.3. Encoding of Return Status Field 

Return Status 
Field Call Type Return Action 

pOOO Local call (system-local call Local return (return to local stack; no 
or system-supervisor call mode switch) 
made from supervisor mode) 

pOOl Fault call Fault return (See Chapter 7, Faults) 

pOlt System-supervisor from user Supervisor return (return to user 
mode stack, mode switch to user mode, 

trace enable bit is replaced with the t 
bit stored in the PFP register on the 
call. 

plOO reserved 

plOl reserved 

pl 10 reserved 

pll I Interrupt call Interrupt return (See Chapter 6, 
Interrupts.) 

NOTE: 

"p" is PFP.p (preretum trace flag). ··c denotes the trace-on-return flag. This flag is used only for 
system supervisor calls which cause a user-to-supervisor mode switch. 
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BRANCH-AND-LINK 

A branch-and-link is executed using either the branch-and-link instruction (bal) or branch-and­
link-extended instruction (balx). When either instruction is executed, the processor branches to 
the first instruction of the called procedure (the target instruction), while saving a return IP for 
the calling procedure in a register. The called procedure uses the same set of local registers and 
stack frame as the calling procedure. For bal, the return IP is automatically saved in global 
register g14; for balx, the return IP instruction is saved in a register specified by one of the 
instruction's operands. 

A return from a branch-and-link is generally carried out with a bx (branch extended) 
instruction, where the branch target is the address saved with the branch-and-link instruction. 
The branch-and-link method of making procedure calls is recommended for calls to leaf 
procedures. Leaf procedures typically call no other procedures. Branch-and-link is the fastest 
way to make a call, providing the calling procedure does not require its own registers or stack 
frame. 
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CHAPTER 6 
INTERRUPTS 

This chapter describes how a programmer: 

• uses the processor's interrupt mechanism 

• defines data structures used for interrupt handling 

• describes actions that the processor takes when handling an interrupt 

Chapter 12, Interrupt Controller describes the mechanism for signaling and posting interrupts; 
it is best suited for a system implementor. 

OVERVIEW 

An interrupt is an event that causes a temporary break in program execution so the processor 
can handle another chore. Interrupts commonly request 1/0 services or synchronize the 
processor with some external hardware activity. For interrupt handler portability across 
implementations of the i960 family, the architecture defines a consistent interrupt state and 
interrupt-priority-handling mechanism. To manage and prioritize interrupt requests in parallel 
with processor execution, the i960 CA processor provides an on-chip programmable interrupt 
controller. 

Requests for interrupt service come from many sources. These requests are transparently 
prioritized so that instruction execution is redirected only if an interrupt request is of higher 
priority than that of the executing task. 

When the processor is redirected to service an interrupt, it uses a vector number that 
accompanies the interrupt request to locate the interrupt table - an entry in a data structure. 
From that entry. it gets a vector to the first instruction of the selected interrupt procedure. The 
processor then makes an implicit call to that procedure. 

When the interrupt call is made, the processor uses a dedicated interrupt stack. A new frame is 
created for the interrupt on this stack and a new set of local registers is allocated to the interrupt 
procedure. The interrupted program's current state is also saved. 

Upon return from the interrupt procedure, the processor restores the interrupted program's 
state, switches back to the stack that the processor was using prior to the interrupt and resumes 
program execution. 

Since interrupts are handled based on priority, requested interrupts are often saved for later 
service rather than being handled immediately. The mechanism for saving the interrupt is 
referred to as interrupt posting. The mechanism the i960 CA device uses for posting interrupts 
is described in Chapter 12, Interrupt Controller. 

On the i960 CA processor, interrupt requests may originate from external hardware sources, 
internal DMA sources or from software. External interrupts are detected with the chip's 8-bit 
interrupt port and with a dedicated NMI input. Interrupt requests originate from software by 
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the sysctl instruction which signals interrupts. To manage and prioritize all possible interrupts, 
the microprocessor integrates an on-chip programmable interrupt controller. Integrated 
interrupt controller configuration and operation is described in Chapter 12, Interrupt 
Controller. 

The i960 architecture defines two data structures to support interrupt processing (see 
Figure 6.1): the interrupt table and interrupt stack. The interrupt table contains 248 vectors for 
interrupt handling procedures and an area for posting software requested interrupts. The 
interrupt stack prevents interrupt handling procedures from overwriting the stack in use by the 
application program. It also allows the interrupt stack to be located in a different area of 
memory than the user and supervisor stack (e.g., fast SRAM). 

INTERRUPT 

REQUEST 

i960™ CA 
PROCESSOR 

L---------------~ 

~-------------------------------------· I MEMORY 

INTERRUPT 
TABLE 

INTERRUPT 

f--- HANDLING 
INTERRUPT VECTOR PROCEDURE 

-------------------------------------· 
270710-001-11 

Figure 6.1. Interrupt Handling Data Structures 

INTERRUPT PRIORITY 

To provide transparent prioritization of the 248 possible interrupts, interrupt vectors are 
grouped into 31 distinct levels of priority, with eight vectors per priority. 

Every interrupt request is associated with an interrupt vector in the interrupt table. The table 
contains 248 vectors: from vector number 8, assigned the lowest priority, to vector number 
255, the highest priority. Since there are 31 priority levels, each vector's priority is determined 
by the vector number's upper five bits. Thus, at each priority level, there are eight possible 
vector numbers. When multiple interrupt requests are pending at the same priority level, the 
highest vector number is serviced first. 

The processor compares its current priority with the interrupt request priority to determine 
whether to service the interrupt immediately or to delay service. The interrupt is serviced 
immediately if the interrupt request priority is higher than the processor's current priority (the 
priority of the program or interrupt the processor is executing). If the interrupt priority is less 
than or equal to the processor's current priority, the processor does not service the request. 

Priority-31 interrupts are handled as a special case. Even when the processor is executing at 
priority level 31, a priority-31 interrupt will interrupt the processor. The processor may post 
requests for later servicing. Interrupts waiting to be serviced, called pending interrupts, are 
discussed later in this chapter. 
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NOTE 

On the i960 CA processor implementation, the non-maskable interrupt (NMIJ interrupts priority-
31 execution: no interrupt can interrupt an NMI handler. 

The lowest program priority allowed is 0. If the current program has a 0 priority, a priority-0 
interrupt is never accepted. This is why vectors 0 through 7 cannot be used. In fact, no entries 
are provided for these vectors in the interrupt table. 

INTERRUPT TABLE 

The interrupt table (Figure 6.2), 1028 bytes in length, can be located anywhere in the non­
reserved address space; it must be aligned on a word boundary. The processor reads a pointer 
to interrupt table byte 0 during initialization. The interrupt table must be located in RAM since 
the processor must be able to read and write the table's pending interrupt section. 

The interrupt table is divided into two sections: vector entries and pending interrupts. Each are 
described in the subsections that follow. 

Vector Entries 

A vector entry contains a specific interrupt handler's address. When an interrupt is serviced, 
the processor branches to the address specified by the vector entry. 

Each interrupt is associated with an 8-bit vector number which points to a vector entry in the 
interrupt table. The vector entry section contains 248 one-word entries. Vector numbers 0 
through 7 are not defined and do not have associated entries in the interrupt table. Vector 
numbers 8 through 243 and 252 through 255 and their associated vector entries are used for 
conventional interrupts. Vector number 244 through 247 and 249 through 251 are reserved; do 
not use these. Vector number 248 and its associated vector entry is used for the non-maskable 
interrupt (NM!). 

Vector entry 248 contains the NMI handler address. When the processor is initialized, the NMI 
vector located in the interrupt table is automatically read and stored in location OH of internal 
data RAM. The NMI vector is subsequently fetched from internal data RAM to improve this 
interrupt' s performance. 

Vector entry structure is given at the bottom of Figure 6.2. Each interrupt procedure must 
begin on a word boundary, so the processor assumes that the vector's two least significant bits 
are 0. Bits 0 and 1 of an entry indicate entry type: type 002 indicates that the interrupt 
procedure should be fetched normally; type I 02 indicates that the interrupt procedure should be 
fetched from the locked partition of the instruction cache (see Chapter 12 section titled 
Caching of Interrupt Handling Procedures). The other possible entry types are reserved and 
must not be used. 
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Pending Interrupts 

The pending interrupts section comprises the interrupt table's first 36 bytes, divided into two 
fields: pending priorities (byte offset 0 through 3) and pending interrupts ( 4 through 35). 

Each of the 32 bits in the pending priorities field represents an interrupt priority. When the 
processor posts a pending interrupt in the interrupt table, the bit corresponding to the 
interrupt' s priority is set. For example, if an interrupt with a priority of 10 is posted in the 
interrupt table, bit 10 is set. 

Each of the pending interrupts field's 256 bits represent an interrupt vector. Byte offset 5 is for 
vectors 8 through 15, byte offset 6 is for vectors 16 through 23, and so on. Byte offset 4, the 
first byte of the pending interrupts field, is reserved. When an interrupt is posted, its 
corresponding bit in the pending interrupt field is set. 

This encoding of the pending priority and pending interrupt fields permits the processor to first 
check if there are any pending interrupts with a priority greater than the current program and 
then determine the vector number of the interrupt with the highest priority. 

Posting Interrupts 

For the i960 CA component, only software-requested interrupts are posted in the interrupt 
table; hardware-requested interrupts are posted in the interrupt pending (lPND) register. This 
register and the mechanism for requesting and posting hardware interrupts is described 
Chapter 12, Interrupt Controller. Software posting of interrupts in the interrupt table can assist 
an application in prioritizing processing demands as follows: 

• By posting interrupt requests in the interrupt table, the application can delay the servicing 
of low priority tasks which were signaled by a higher priority interrupt. 

• In systems with more than one processor, both processors can post and service interrupts 
from a shared interrupt table. This interrupt table sharing allows processors to share the 
interrupt handling load or provide a communication mechanism between the processors. 

To post a pending interrupt in the memory-resident interrupt table, the processor performs the 
following atomic read/write operation that locks the interrupt table until the posting operation 
has completed. 

# x and z are temporary registers 
x f-- atomic_read(pending_priorities); # assert LOCK pin 
z f-- read(pending_interrupts(vector_number/8)); 
x(vector_number/8) f-- l; 
z(vector_number mod 8) f-- 1; 
write(pending_interrupts(vector_number/8)) ~ z; 
atomic_write(pending_priorities) f-- x; # deassert LOCKpin 
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The LOCK pin can be used to prevent other agents on the bus from accessing the interrupt 
table during the posting operation. On the i960 CA microprocessor, posting software interrupts 
is performed by sysctl. 

31 8 7 

PENDING PRIORITIES 

PENDING INTERRUPTS 

20H 
,__ __________________________ _ 

ENTRY 8 24H (VECTOR 8) 

1-----------------------------t 
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Figure 6.2. Interrupt Table 

Posting Interrupts Directly to the Interrupt Table 

The i960 CA processor - or external agent that is sharing memory with the microprocessor 
(such as an I/O processor or another i960 CA device) - can post pending interrupts directly in 
the interrupt table by setting the appropriate bits in the pending priorities and pending 
interrupts fields. This action, however, does not ensure that the core will handle the interrupt 
immediately, nor does it cause the core to update the value in the software priority register. To 
do this, the sysctl instruction should be used as described above. 

sysctl can be used at any time to explicitly force the core to check the interrupt table for 
pending interrupts. This is done by specifying a vector number with a priority of zero (that is, 
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vector numbers 0 to 7). For example, when an external agent is posting interrupts to a shared 
interrupt table, sysctl could be executed periodically to guarantee recognition of pending 
interrupts which were posted in the table by the external agent. 

An external I/O agent or a coprocessor posts interrupts to a processor's interrupt table in 
memory in the same manner described above, providing it has the capability to perform atomic 
operations on memory. When interrupts are posted in this manner, pending interrupts and 
pending priorities must be modified in specific order and not allow access by the processor or 
other external agents during the atomic modify operations: 

#set pending interrupt bit 
atomic_modify(pending_interrupts(vector_number/8)); 
#set pending priority bit 
atomic_modify(pending_priorities); 

The processor automatically checks the memory-based interrupt table when the processor posts 
an interrupt using sysctl with a post interrupt message type. 

When the processor finds a pending interrupt, it handles it as if it had just received the 
interrupt. If the processor finds two pending interrupts at the same priority, it services the 
interrupt with the highest vector number first. 

NOTES 

1. When a modify-process-controls (modpc) instruction causes a program's priority to be 
lowered, other i960 family members check for pending interrupts in the memory-based 
interrupt table; the i960 CA device internally stores the priority of the highest pending 
interrupt found in the interrupt table's pending interrupts field. To improve performance, the 
stored priority is checked - rather than the memory-based interrupt table - when modpc 
changes a process priority. The internal priority value is updated each time an interrupt is 
posted using sysctl. 

2. i960 architecture does not define a portable method for posting interrupts. Different 
implementations may implement optimized interrupt posting mechanisms. The i960 CA 
device records pending interrupts differently depending upon interrupt type and interrupt 
controller configuration. See this chapter's sections titled Interrupt Modes and Software 
Generated Interrupts. 

Caching Portions of the Interrupt Table 

The architecture allows all or part of the interrupt table to be cached internally to the processor. 
The purpose of caching these fields is to reduce interrupt latency by allowing the processor 
access to certain interrupt vectors and to the pending interrupt information without having to 
make memory accesses. The microprocessor caches the following: 

• The value of the highest priority posted in the pending priorities field. 

• A predefined subset of interrupt vectors (that is, interrupt vector entries from the interrupt 
table). 
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• Pending interrupts received from external interrupt pins and on-chip DMA controller 
(hardware requested interrupts). 

This caching mechanism is non-transparent; in other words, the processor may modify fields in 
a cached interrupt table without modifying the same fields in the interrupt table itself (non­
transparent caching). Vector caching is described in Chapter 12, Interrupt Controller. 

INTERRUPT STACK AND INTERRUPT RECORD 

The interrupt stack can be located anywhere in the non-reserved address space. The processor 
obtains a pointer to the base of the stack during initialization. 

The interrupt stack has the same structure as the local procedure stack described in Chapter 5. 
Procedure Calls. As with the local stack, the interrupt stack grows from lower addresses to 
higher addresses. 

The processor saves the state of an interrupted program - or an interrupted interrupt 
procedure - in a record on the interrupt stack. Figure 6.3 shows the structure of this interrupt 
record. 

CURRENT STACK 
(LOCAL, SUPERVISOR, OR INTERRUPT STACK) 

CURRENT FRAME 

INTERRUPT STACK 

RESERVED 

0 

r 
INTERRUPT 
RECORD 

270710-002-08 

Figure 6.3. Storage of an Interrupt Record on the Interrupt Stack 
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The interrupt record is always stored on the interrupt stack adjacent to the new frame that is 
created for the interrupt handling procedure. It includes the state of the AC and PC registers at 
the time the interrupt was received and the interrupt vector number used. Referenced to the 
new frame pointer address (designated NFP), the saved AC register is located at address 
NFP-12; the saved PC register is located at address NFP-16. 

The interrupt record may also contain a resumption record which stores the context of 
instructions which began - but not completed - when the interrupt was serviced. Although 
the i960 CA processor never creates a resumption record, portable programs must tolerate 
interrupt stack frames with and without resumption records. 

INTERRUPT HANDLER PROCEDURES 

An interrupt handling procedure performs a specific action that is associated with a particular 
interrupt vector. For example, one interrupt handler task might be to initiate a DMA transfer. 
The interrupt handler procedures can be located anywhere in the non-reserved address space. 
Since instructions in the i960 family architecture must be word aligned, each procedure must 
begin on a word boundary. 

When an interrupt handling procedure is called, the processor allocates a new frame on the 
interrupt stack and a set of local registers for the procedure. If not already in supervisor mode, 
the processor always switches to supervisor mode while an interrupt is being handled. It also 
saves the states of the AC and PC registers for the interrupted program. The interrupt 
procedure shares the remainder of the execution environment resources (namely the global 
registers, special function registers and the address space) with the interrupted program. Thus, 
interrupt procedures must preserve and restore the state of any resources shared with a non­
cooperating program. 

CAUTION! 

Intenupt procedures must preserve and restore the state of any resources shared with a non­
cooperating program. For example, an interrupt procedure which uses a global register which is 
not permanently allocated to it should save the register's contents before it uses the register and 
restore the contents before returning from the interrupt handler. 

To reduce interrupt latency to critical interrupt routines, interrupt handlers may be locked into 
the instruction cache. See Chapter 12 section titled Caching of Interrupt Handling Procedures 
for a complete description. 

INTERRUPT CONTEXT SWITCH 

When the processor services an interrupt, it automatically saves the interrupted program state 
or interrupt procedure and calls the interrupt handling procedure associated with the new 
interrupt request. When the interrupt handler completes, the processor automatically restores 
the interrupted program state. 

The method that the processor uses to service an interrupt depends on the processor state when 
the interrupt is received. If the processor is executing a background task when an interrupt 
request is to be serviced, the interrupt context switch must change stacks to the interrupt stack. 
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This is called an executing-state interrupt. If the processor is already executing an interrupt 
handler, no stack switch is required since the interrupt stack will already be in use. This is 
called an interrupted-state interrupt. 

The following two sections describe interrupt handling actions for executing-state and 
interrupted-state interrupts. In both cases, it is assumed that the interrupt priority is higher than 
that of the processor and thus is serviced immediately when the processor receives it. 

Executing-State Interrupt 

When the processor receives an interrupt while in the executing state (i.e., executing a 
program), it performs the following actions, regardless of whether the processor is in user or 
supervisor mode when the interrupt occurs: 

• The new frame pointer (FP) for the interrupt handler is set to point to the interrupt stack 
and is incremented to create space for an interrupt record (see Figure 6.3). The interrupt 
record is described earlier in this chapter's section titled Interrupt Record. The current state 
of the AC register, PC register and interrupt vector number are saved in the interrupt 
record. 

• The processor stores the interrupt return status (111 2) in the current PFP' s return status 
field then changes the following fields and flags in the PC register: 

Sets state flag (bit 13) to interrupted. 

Sets execution mode flag (bit I) to supervisor; processor switches to supervisor mode. 

Sets priority field (bits 16-20) to the priority of the interrupt. Setting the processor's 
priority to that of the interrupt ensures that lower priority interrupts cannot interrupt 
current interrupt servicing. 

Sets to 0 the trace-fault-pending flag (bit 10) and trace-enable bit (bit 0). Clearing 
these bits allows the interrupt to be handled without trace faults being raised. 

• The processor performs a call operation as described in Chapter 5, Procedure Calls. The 
target IP for the call is the selected entry in the interrupt table. 

When the processor executes a return operation and the return-type field is 1112, it performs 
the following: 

• The interrupt record's arithmetic controls and process controls fields are copied into the AC 
and PC registers, respectively. Restoring the PC register causes the processor's state to be 
returned to executing and its execution mode and priority to be returned to what they were 
prior to the interrupt. It also returns the trace-fault-pending flags and trace-enable bit to 
their value before the interrupt occurred. 

NOTE 
If the interrupt handling procedure sets execution mode to user prior to the return, the PC register 
is not restored upon return. 

• Pending interrupts that need to be handled - such as pending interrupts with higher 
priority than that of the program being returned to - are handled at this time, prior to 
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returning to the previously interrupted program. If the trace-fault-pending flag and trace­
enable bit are set, the trace fault is handled at this time. 

• The processor then performs a return operation as described in Chapter 5, Procedure Calls. 
This causes the processor to switch back to the local stack or supervisor stack; whichever it 
was using when interrupted. 

Assuming that there are no pending interrupts to be serviced or trace faults to be handled, the 
processor resumes work on the interrupted program upon completion of the return operation. 

Interrupted-State Interrupt 

If the processor is servicing an interrupt and receives an interrupt with a higher priority, the 
current interrupt handler routine is interrupted. Here, the processor performs the same action to 
save the interrupted interrupt handler routine's state, as described in the previous section for an 
executing-state interrupt. The interrupt record is saved on the top of the interrupt stack, prior to 
the new frame that is created for servicing the new interrupt. 

On return from the current interrupt handler to the previous interrupt handler, the processor 
deallocates the current stack frame and interrupt record and stays on the interrupt stack. 

REQUESTING INTERRUPTS 

On the i960 CA microprocessor, interrupt requests may originate from external hardware 
sources, internal DMA sources or from software. External interrupts are detected with the 
chip's 8-bit interrupt port and with a dedicated NMI input. Interrupt requests originate from 
software by the sysctl instruction which signals interrupts. To manage and prioritize all 
possible interrupts, the microprocessor integrates an on-chip programmable interrupt 
controller. The configuration and operation of the integrated interrupt controller is described in 
Chapter 12, Interrupt Controller. 

Interrupts may be requested directly by a user's program. This mechanism is often useful for 
requesting and prioritizing low-level tasks in a real time application. 

Software can request interrupts in the following two ways: 

1. With the sysctl instruction. 

2. By the i960 CA microprocessor, or another processor, posting an interrupt in the interrupt 
table's pending-interrupts and pending-priorities fields. 

SYSTEM CONTROL INSTRUCTION (sysctl) 

sysctl is typically used to request an interrupt in a program (Example 6.1). The request 
interrupt message type (OOH) is selected and the interrupt vector number is specified in the 
least significant byte of the instruction operand. (See Chapter 2, ·Programming Environment 
for a complete discussion of sysctl.) 
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Example 6.1. Requesting an Interrupt with the sysctl Instruction 

ldconst Ox53, g5 

sysctl g5, g5, g5 

# Vector number 53H is loaded 
# 
# 
# 
# 

into e 0 of register g5 and 
the value is zero extended into 

e 1 of the register 
Vector number 53H is posted 

A literal can be used to post an interrupt with a vector number from 8 to 31. Here, the required 
value of OOH in the second byte of a register operand is implied. 

The action of the core when it executes the sysctl instruction is as follows: 

1. The core performs an atomic write to the interrupt table and sets bits in the pending­
interrupts and pending-priorities fields that correspond to the requested interrupt. 

2. The core updates the internal software priority register with the value of the highest 
pending priority from the interrupt table. This may be the priority of the interrupt that was 
just posted. 

The interrupt controller continuously compares the following three values: software priority 
register, current process priority, priority of the highest pending hardware-generated interrupt. 
When the software priority register value is the highest of the three, the following actions are 
taken: 

1. The interrupt controller signals the core that a software-generated interrupt is to be 
serviced. 

2. The core checks the interrupt table in memory, determines the vector number of the 
highest priority pending interrupt and clears the pending-interrupts and pending-priorities 
bits in the table that correspond to that interrupt. 

3. The core detects the interrupt with the next highest priority which is posted in the interrupt 
table (if any) and writes that value into the software priority register. 

4. The core services the highest priority interrupt. 

If more than one pending interrupt is posted in the interrupt table at the same interrupt priority, 
the core handles the interrupt with the highest vector number first. 

The software priority register is an internal register and, as such, is not visible to the user. The 
core only updates this register's value when sysctl requests an interrupt and when a software­
generated interrupt is serviced. 
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CHAPTER 7 
FAULTS 

This chapter describes the i960 CA processor's fault handling facilities. Subjects covered 
include the fault handling data structures and fault handling mechanism. A reference section at 
the end of the chapter contains detailed information on each fault type. 

FAULT HANDLING FACILITIES OVERVIEW 

The architecture defines various conditions in code or the processor· s internal state that could 
cause the processor to deliver incorrect or inappropriate results or that could cau'>e it to head 
down an undesirable control path. These are called .Amit conditions. For example. the 
architecture defines faults for divide-by-zero and overflow conditions on integer calculations. 
for inappropriate operand values and for invalid opcodes and addressing modes. 

FAULT 
FAULT 

PROCESSOR FAULT HANDLING 

TABLE 
1-- PROCEDURES 

h 

~I !------' 
SYSTEM 

PROCEDURE 
TABLE SUPERVISOR 

~ STACK 

USER 
STACK 

270710-001-18 

Figure 7.1. Fault-Handling Data Structures 

As shown in Figure 7 .1, the architecture defines a fault table, a system procedure table, a set of 
fault handling procedures and a stack (user stack, supervisor stack or both) to handle 
processor-generated faults. 

The fault table contains pointers to fault handling procedures. The system procedure table is 
optionally used to provide an interface to any fault handling procedures and to allow faults to 
be handled in supervisor mode. Stack frames for fault handling procedures are created on 
either the user or supervisor stack, depending on the mode in which the fault is handled. 
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Once these data structures and the code for the fault procedures are established in memory, the 
processor handles faults automatically and independently from applications software. 

The processor can detect a fault at any time while executing instructions, whether from a 
program, interrupt handling procedure or fault handling procedure. If a fault occurs when 
executing a program, the processor determines the fault type and selects a corresponding fault 
handling procedure from the fault table. It then invokes the fault handling procedure by means 
of an implicit call. As described later in this chapter, the fault handler call can be: 

• a local call (call-extended operation) 

• a system-local call (local call through the system procedure table) 

• a system-supervisor call (also through the system procedure table) 

As part of the implicit call to the fault handling procedure, the processor creates a fault record 
on the stack ~ the stack in use by the fault handling procedure. This record includes 
information on the fault and the processor's state when the fault was generated. 

Following fault record creation, the processor begins executing the selected fault handling 
procedure. If the fault handling procedure recovers from the fault, the processor then restores 
itself to its state prior to the fault and resumes work on the program with no break in program 
control flow. If the fault handling procedure is not able to recover from the fault, the fault 
handler can call a debug monitor or perform an action such as resetting the processor. 

The procedure call mechanism described above is used to handle faults that occur while the 
processor is servicing an interrupt or that occur while the processor is working on another fault 
handling procedure. 

FAULT TYPES 

The i960 architecture defines a basic set of faults which are categorized by type and subtype. 
Each fault has a unique type number and a subtype number. When the processor detects a fault, 
it records the fault type and subtype numbers in a fault record. It then uses the type number to 
select a fault handling procedure. 

The fault handling procedure has the option of using the subtype number to select a specific 
fault handling action. The i960 CA processor recognizes i960 architecture-defined faults and a 
new fault subtype for detecting unaligned memory accesses. Table 7 .1 lists all faults that the 
i960 CA processor detects, arranged by type and subtype. Text that follows the table gives 
column definitions. 
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Table 7.1. i960™ CA Processor Fault Types and Subtypes 

Fault Type Fault Subtype Fault Record 

Number Name Number/Bit Name 
Position 

1H Trace Bit I Instruction Trace XXOI XX02H 
Bit 2 Branch Trace XXOI XX04H 
Bit 3 Call Trace XXOI XX08H 
Bit 4 Return Trace XXOI XXJOH 
Bit 5 Prereturn Trace XXOJ XX20H 
Bit 6 Supervisor Trace XXOl XX40H 
B.it 7 Breakpoint Trace XXOI XX80H 

2H Operation IH Invalid Opcode XX02 XXOIH 

2H Unimplemented XX02XX02H 
3H Unaligned (see note) XX02 XX03H 
4H Invalid Operand XX02 XX04H 

3H Arithmetic 1H Integer Overflow XX03 XXOlH 
2H Arithmetic Zero-Divide XX03 XX02H 

4H Reserved 
(Floating Point) 

SH Constraint IH Constraint Range XXOS XXOIH 
2H Privileged XXOS XX02H 

6H Reserved 

7H Protection 2H Length XX07 XXOlH 

SH -9H Reserved 

AH Type IH Type Mismatch XXOAXXOIH 

BH- FH Reserved 

NOTE 

The operation-unaligned fault is an i960 CA processor-specific extension. 

The first column of Table 7.1 gives fault type numbers in hexadecimal; the second column 
gives the fault type name. 

The third column gives the fault subtype number: as a hexadecimal number or as a bit position 
in the 8-bit fault subtype field in the fault record. The bit position method of indicating a fault 
subtype is used for faults such as trace faults, where it is possible for two or more fault 
subtypes to be generated simultaneously. 

The fourth column gives the fault subtype name. For convenience, individual faults are referred 
to in this manual by their fault-subtype name. Thus an operation-invalid-operand fault is 
referred to as simply an invalid-operand fault or an arithmetic-integer-overflow fault is 
referred to as an integer-overflow fault. 
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The fifth column of Table 7 .1 shows the encoding of the word in the fault record that contains 
the fault type and fault subtype numbers. 

Other i960 family members may provide different extensions that recognize additional fault 
conditions. Fault type and subtype encoding allows any of these additional faults to be included 
in the fault table along with the basic faults. Space in the fault table is reserved in such a way 
that specific implementation-defined faults are encoded the same for each processor that uses 
them. For example, Fault Type 4 is reserved for floating point faults. Any of the i960 family 
processors that provide floating point operations use Entry 4 to store the pointer to the floating 
point fault handling procedure. 

FAULT TABLE 

The fault table (Figure 7 .2) provides the processor with a pathway to fault handling procedures. 
It can be located anywhere in the address space. The processor obtains a pointer to the fault 
table during initialization. 

There is one entry in the fault table for each fault type. When a fault occurs, the processor uses 
the fault type to select an entry in the fault table. From this entry, the processor obtains a 
pointer to the fault handling procedure for the type of fault that occurred. Once a fault handling 
procedure is called, it has the option of reading the fault subtype or subtypes from the fault 
record, to determine the appropriate fault recovery action. 

As shown in Figure 7.2, two fault table entry types are allowed: local-call entry and system-call 
entry. Each entry type is two words long. The entry type field (bits 0 and 1 of the first word of 
the entry) and the value in the second word of the entry determine the entry type. 

A local-call entry (type 00) provides an instruction pointer (address in the address space) for 
the fault handling procedure. Using this entry, the processor invokes the specified procedure by 
means of an implicit local-call operation. The second word of a local procedure entry is 
reserved. It should be set to zero when the fault table is created and not accessed after that. 

A system-call entry provides a procedure number in the system procedure table. This entry 
must have an entry type of 10 and a value in the second word of 0000 027FH. Using this entry, 
the processor invokes the specified fault handling procedure by means of an implicit call­
system operation similar to that performed for the calls instruction. A fault handling procedure 
in the system procedure table can be called with a system-local call or a system-supervisor call, 
depending on the entry type in the system-procedure table. 

To summarize, a fault handling procedure can be invoked through the fault table in any of 
three ways: a local call, a system-local call or a system-supervisor call. 
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31 FAULT TABLE 0 

PARALLEL FAULT ENTRY OH 

TRACE FAULT ENTRY 8H 

OPERATION FAULT ENTRY 10H 

ARITHMETIC FAULT ENTRY 18H 

31 LOCAL-CALL ENTRY 2 , 0 

FAULT-HANDLER PROCEDURE ADDRESS 

31 SYSTEM-CALL ENTRY 2 1 0 

FAULT-HANDLER PROCEDURE NUMBER 

0000 027FH 

RESERVED (INITIALIZE TO 01 
270710-002-12 

Figure 7.2. Fault Table and Fault Table Entries 

STACK USED IN FAULT HANDLING 

The architecture does not define a dedicated fault handling stack. Jnstcad, the processor uses 
the stack that is active when the fault is generated (user stack, interrupt stack or supervisor 
stack) to handle a fault, with one exception: if the user stack is active when a fault is generated 
and the fault handling procedure is called with an implicit supervisor call, the processor 
switches to the supervisor stack to handle the fault. 
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FAULT RECORD 

When a fault occurs, the processor records information about the fault in a fault record in 
memory. The fault handling procedure uses the information in the fault record to correct or 
recover from the fault condition and, if possible, resume program execution. The fault record is 
stored on the stack that the fault handling procedure will use to handle the fault. 

Fault Record Data 

Figure 7.3 shows the structure of the fault record. In this record, the type number of the fault is 
stored in the fault type field and the subtype number (or bit positions for multiple subtypes) of 
the fault subtype is stored in the fault subtype field. The address-of-faulting-instruction field 
contains the IP of the instruction upon which the processor faulted. 

Values in the PC and AC registers when a fault is generated are stored in their respective fault 
record fields. This information is used to resume work on the program after the fault is 
handled. In the case of parallel instruction execution, these fields contain the states of the 
registers when the processor has completed all parallel and out-of-order instruction execution. 

31 0 

PROCESS CONTROLS NFP-16 
!--~~~~~~~~~~~~~~~~~~~~~~~~~~ 

ARITHMETIC CONTROLS NFP-12 

FAULT TYPE FAULT SUB-TYPE NFP-8 

ADDRESS OF FAUL TING INSTRUCTION NFP-4 

RESERVED 
270710-001-19 

Figure 7.3. Fault Record 

Optional data fields are defined for certain faults. These fields contain additional information 
about the faulting conditions, usually to assist resumption. Parallel fault and operation­
unaligned fault types are the only faults in the i960 CA processor that use optional data fields. 
The processor can generate parallel faults when instructions are executed in parallel. Parallel 
faults and the contents of the optional data fields for this fault type are described later in the 
section titled Multiple Fault Conditions. The operation-unaligned fault and its optional data 
field are described later in the section titled Operation Faults. All unused bytes in the fault 
record are reserved. 1 
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Return Instruction Pointer 

When a fault handling procedure is called - as with any call - a return instruction pointer is 
saved in the RIP register (r2). The RIP is intended to point to an instruction where program 
execution can be resumed with no break in the program's control flow. It generally points to 
the faulting instruction or to the next instruction to be executed. In some instances, however, 
the RIP is undefined. The Fault Reference section, later in this chapter, defines the RIP content 
for each fault. 

When the RIP refers to a "next instruction", this does not always mean the instruction directly 
after the faulting instruction. Instead, it is an instruction to which the processor can logically 
return to resume program execution. 

Fault Record Location 

The fault record is stored in the stack that the processor uses to execute the fault handling 
procedure. As shown in Figure 7.4, this stack can be the user stack, supervisor stack or 
interrupt stack. The fault record begins at byte address NFP-1. NFP refers to the new frame 
pointer which is computed by adding the memory size allocated for padding and the fault 
record to the new stack pointer (NSP). 

The processor automatically determines the number of bytes required for the fault record and 
increments the FP by that amount, rounding it off to the next highest 16-byte boundary. Fault 
record size is variable, based on the size of the optional fault-data portion of the fault record. 

Stack frame alignment is defined for each implementation of the i960 architecture. This 
alignment boundary is calculated from the relationship SALIGN*l6. For example, if SALIGN 
is selected to be 4, stack frames are aligned on 64-byte boundaries. In the i960 CA processor, 
SALIGN=l. 

7-7 

• 



FAULTS 

CURRENT STACK 
(USER, SUPERVISOR, OR INTERRUPT STACK) 

CURRENT FRAME r SP 

LOCAL STACK OR SUPERVISOR STACK2 

270710-001-20 

Figure 7.4. Storage of the Fault Record on the Stack 

NOTES 

I. If the call to the fault handler procedure does not require a stack switch, the new stack pointer 
(NSP) is the same as SP. 

2. If the processor is in user mode and the fault handler procedure is called with a system­
supervisor call, the processor switches to the supervisor stack. 

MULTIPLE AND PARALLEL FAUL TS 

Multiple fault conditions can occur in two circumstances: (1) during a single instruction 
execution; (2) during multiple instruction execution when the instructions are executed by 
parallel execution units within the processor. The following sections describe how faults are 
handled under these conditions. 

Multiple Faults 

Multiple fault conditions can occur during a single instruction execution. For example, an 
instruction can have an invalid operand and unaligned address. When this situation occurs, the 
processor is required to recognize and generate at least one of the fault conditions. The 
processor may not detect all fault conditions and may not report all detected faults. 
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ln a multiple fault situation, the reported fault condition is left to the implementation. The 
architecture, however, does define the criteria for determining which fault to report when trace 
fault conditions are one or more of the fault conditions. 

Multiple Trace Fault Conditions Only 

Multiple trace fault conditions that single instruction executions generate arc reported in a 
single trace fault. To support this multiple fault reporting, the trace fault uses bit positions in 
the fault-subtype field to indicate occurrences of multiple faults of the same type (Table 7 .1). 

For example, when instruction tracing is enabled, an instruction trace fault condition is 
detected on each instruction that is executed, along with other trace fault conditions that are 
enabled (e.g., a call trace fault or a branch trace fault. J The processor generates a trace fault 
after each instruction and sets the appropriate bit or bits in the fault-subtype field to indicate the 
instruction trace fault and any other trace fault subtypes that occurred. See Chapter R. Tracing 
and Debugging for a description of the trace fault. 

Multiple Trace Fault Conditions with Other Fault Conditions 

The execution of a single instruction can create one or more trace fault conditions in addition 
to multiple non-trace fault conditions. When this occurs, the processor generates at least two 
faults: a non-trace fault and a trace fault. 

The non-trace fault is handled first and the trace fault is triggered immediately after executing 
the return instruction (ret) at the end of the non-trace fault handler. 

Parallel Faults 

As described in Appendix A, Optimi::ing Code for the i960 CA Microprocessor, the i960 CA 
processor exploits the architecture's tolerance of parallel and out-of-order instruction execution 
by issuing instructions to multiple, independent execution units on the chip. The following 
sections describe how the processor handles faults in this environment. 

Faults in One Parallel Instruction 

When a fault occurs during the execution of a particular instruction, it is not possible to 
suspend other instructions that are already executing in other execution units. To handle the 
fault, the processor continues executing new instructions until each execution unit completes 
execution of its respective instruction and all out-of-order instructions arc executed. For 
example, if an integer overflow occurs during the addition in the following code example, the 
fault is detected before the multiply has completed execution. Before invoking the intcger­
overtlow fault handling procedure, the processor waits for the multiply to complete. 

muli 
addi 

g2, g4, g6; 
g8' g9' glCl; # results in integer overflow 
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Faults in Multiple Parallel Instructions 

When executing instructions in parallel, it is possible for faults to occur in more than one 
currently executing instruction. In the code sequence above, for example, an integer overflow 
fault could occur for both the muli and addi instructions, with the fault from the addi 
instruction being recognized by the processor first. To report multiple parallel faults, the 
architecture provides the parallel fault type. 

In these parallel fault situations, the processor saves the fault type and subtype in the optional 
data field for each fault detected after the first fault. The fault handling procedure for parallel 
faults can then analyze the fault record and handle the faults. The fault record for parallel faults 
is described in the next section. 

The existence of multiple parallel faults is often catastrophic. Multiple parallel faults are 
generated as imprecise faults, which means that recovery from the faults is normally not 
possible. (Imprecise faults are described later in this chapter's section titled Precise and 
Imprecise Faults.) Unless imprecise faults are disallowed, a parallel-fault-handling procedure 
generally does not attempt to recover from the faults, but instead calls a debug monitor to 
analyze the faults. If recovery from every parallel fault is possible, the RIP allows the 
processor to resume executing the program when the fault handling has completed. 

Even though multiple faults can be generated by multiple instructions executing in parallel, 
only one fault is ordinarily generated per instruction, as described in the previous section titled 
Multiple Faults. 

Fault Record for Parallel Faults 

Figure 7 .5 shows the structure of the fault record for parallel faults. 
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31 

FAULT TYPE n FAULT SUBTYPE n NFP-8-((n+1)·32) 

ADDRESS OF FAUL TING INSTRUCTION (n) NFP-4-((n+ 1) •32) 

FAULT TYPE 2 FAULT SUBTYPE 2 NFP-104 

NFP-100 

NFP-16 
i--~~~~~~~~~~~~~~~~~~~~~~~~~~-l 

ARITHMETIC CONTROLS NFP-12 

FAULT TYPE 1 FAULT SUB-TYPE 1 NFP-8 

ADDRESS OF FAULTING INSTRUCTION 1 NFP-4 

RESERVED 270710-001-21 

Figure 7.5. Fault Record for Parallel Faults 

To calculate byte offsets, "n" indicates fault number. Thus, for the second fault recorded (n=2), 
the relationship (NFP-4 -( n+ 1 )'''32) reduces to NFP-100. For the i%0 CA device, number of 
parallel faults allowed is 2 or 3. 

When multiple parallel faults occur, the processor selects one of the faults and records it in the 
first 16 bytes of the fault record as described in the section titled Fault Rl!conl. Information for 
the remaining parallel faults is then written to the fault record's optional data field and the fault 
handling procedure for parallel faults is invoked. 

The first word in the fault record's optional data field (NFP-20) contains information about the 
parallel faults. The byte at offset NFP- I 8 contains OOH (encoding for the parallel fault type); 
the byte at NFP-20 contains the number of parallel faults. The optional data field also contains 
a 32-byte parallel fault record for each additional fault. These parallel fault records are stored 
incrementally in the fault record starting at byte offset NFP-97. The fault record for each 
additional fault contains only the fault type, fault subtype and address-of-faulting instruction 
field. (AC and PC register values are not given for these faults because they are already given 
in the fault record for the first fault.) 
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FAULT HANDLING PROCEDURES 

The fault handling procedures can be located anywhere in the address space. Each procedure 
must begin on a word boundary. 

The processor can execute the procedure in the user mode or the supervisor mode, depending 
on the type of fault table entry. 

To resume work on a program at the point where a fault occurred (following the recovery 
action of the fault handling procedure), the fault handling procedure must be executed in 
supervisor mode. The reason for this requirement is described in a following section titled 
Returning to the Point in the Program Where the Fault Occurred. 

Possible Fault Handling Procedure Actions 

The processor allows easy recovery from many faults that occur. When fault recovery is 
possible, the processor's fault handling mechanism allows the processor to automatically 
resume work on the program or interrupt pending when the fault occurred. Resumption is 
initiated with a ret instruction in the fault handling procedure. 

If recovery from the fault is not possible or not desirable, the fault handling procedure can take 
one of the following actions, depending on the nature and severity of the fault condition (or 
conditions, in the case of multiple faults): 

• Return to a point in the program or 
interrupt code other than the point of 
the fault. 

• Explicitly write the processor state and 
fault record into memory and perform 
processor or system shutdown. 

• Call a debug monitor. 

• Perform processor or system shutdown 
without explicitly saving the processor 
state or fault information. 

When working with the processor at the development level, a common fault handling 
procedure action is to save the fault and processor state information and make a call to a 
debugging device such as a debugging monitor. This device can then be used to analyze the 
fault information. 

Program Resumption Following a Fault 

Because of the i960 CA processor's multi-stage execution pipeline, faults can occur: 

• before execution of the faulting instruction (i.e., the instruction that causes the fault) 

• during instruction execution 

• immediately following execution 

When the fault occurs before the faulting instruction is executed, the faulting instruction may 
be re-executed upon return from the fault handling procedure. 
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When a fault occurs during or after execution of the faulting instruction, the fault may be 
accompanied by a program state change such that program execution cannot be resumed after 
the fault is handled. For example, when an integer overflow fault occurs, the overflow value is 
stored in the destination. If the destination register is the same as one of the source registers, 
the source value is lost, making it impossible to re-execute the faulting instruction. 

In general, resumption of program execution with no changes in the program's control flow is 
possible with the following fault types or subtypes: 

• All Operation Subtypes • Arithmetic Zero Divide 

• All Constraint Subtypes • All Trace Subtypes 

• Length 

Resumption of the program may or may not be possible with the following fault subtype: 

• Integer Ove1tlow 

The effect that specific fault types have on a program is given in the fault reference section at 
the end of this chapter under the heading Program State Changes. 

Returning to the Point in the Program Where the Fault Occurred 

As described above, most faults can be handled such that program control flow is not affected. 
In this case, the processor allows work on a program to be resumed at the point where the fault 
occurred, following a return from a fault handling procedure (initiated with a ret instruction). 
The resumption mechanism used here is similar to that provided for returning from an interrupt 
handler. 

To use this mechanism, the fault handling procedure must be invoked using a supervisor call. 
This method is required because - to resume work on the program at the point where the fault 
occurred - the saved process controls in the fault record must be copied back into the PC 
register upon return from the fault handling procedure. The processor only performs this action 
if the processor is in supervisor mode when the return is executed. 

Returning to a Point in the Program Other Than Where the Fault 
Occurred 

A fault handling procedure can also return to a point in the program other than where the fault 
occurred. To do this, the fault procedure must alter the RIP. 

To predictably perform a return from a fault handling procedure to an alternate point in the 
program, the fault handling procedure should perform the following four steps: 

I. Flush the local register sets to the stack with a flushreg instruction, 

2. Modify the RIP in the previous frame, 

3. Clear the trace-fault-pending flag in the process controls field of the fault record before the 
return, 

4. Execute a return with the ret instruction. 
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This technique should be used carefully and only in situations where the fault handling 
procedure is closely coupled with the application program. Also, a return of this type can only 
be performed if the processor is in supervisor mode prior to the return. 

FAULT CONDITIONS AND FAULT CONTROL 

The processor generates faults implicitly when fault conditions occur and explicitly at the 
request of software. For several fault conditions, the programmer may control whether or not a 
fault is actually signaled when the condition is recognized. The following sections describe 
conditions which cause faults and facilities for controlling faults which are optionally 
generated. 

Implicit Fault Generation 

Most faults are generated implicitly; that is, they occur as a side effect of an instruction 
execution which has encountered difficulty. Following paragraphs summarize conditions 
which cause faults. The Fault Reference section at the end of this chapter provides a detailed 
description of each fault type and subtype. 

Destination Overflow - An integer overflow fault is signaled when the result of an integer 
operation docs not fit in the specified destination. The integer overflow fault handling 
procedure is invoked if the AC register integer overflow mask bit is set to enable these faults. 

addi subi 

stib shli 

muli divi 

Division by Zero - The zero-divide fault is generated when the divisor of an integer or ordinal 
division is zero. 

divo divi 

ediv remo 

re mi 

Supervisor Protection Violations - The constraint-privileged fault is generated if the 
application attempts to execute a supervisor-only instruction while not in supervisor mode. 

sdma sysctl 

The type-mismatch fault is generated if the application attempts to modify a supervisor-only 
resource while not in supervisor mode. On the i960 CA processor, supervisor-only resources 
are the PC register, on-chip data RAM and special function registers. The following actions 
generate a type-mismatch fault if attempted when the processor is not in supervisor mode: 

• Using modpc to modify the PC register. (Using modpc to read the register is allowed in 
non-supervisor mode and does not cause a fault.) 

• Writing to the protected on-chip data RAM. 

• Reading or writing a SFR. 
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Out-of-bounds System-Procedure Call - The protection-length fault is generated if the 
processor attempts to execute a calls with a system procedure number specified which is 
greater than the size of the system procedure table. 

Invalid Instruction Encodings - The operation-invalid-opcode fault is generated if the 
processor encounters an invalid opcode or an invalid encoding of a MEM-format instruction 
addressing mode. 

Unaligned Register Reference - The invalid-operand fault is generated if the processor detects 
any unaligned register reference in any instruction which references long, triple or quad groups 
of registers. 

Unaligned Memory Access - The operation-unaligned fault is signaled if the processor 
attempts to issue a memory request to an unaligned location. The unaligned-fault mask bit 
located in the fault-control word (PRCB) determines whether the fault handling procedure is 
invoked or whether access is handled transparently by the processor, without a fault. The fault­
control word and PRCB are described in Chapter 14. Initialization and System Requirements. 

Referencing a Non-existent SFR - The invalid-operand fault is generated if the processor 
executes an instruction which references a non-existent special function register. On the i960 
CA processor, only sfO, sf! and sf2 are implemented. 

Issuing a Bad System Control Command - The operation-invalid-operand fault is generated if 
the processor executes an instruction which specifies a non-existent sysctl command. 

Execution from Internal Data RAM - The operation-unimplemented fault is generated if an 
attempt is made to execute an instruction fetched from the i960 CA processor's on-chip data 
RAM. 

Instruction Type is being Traced - A trace-fault is generated when the processor executes an 
instruction selected for tracing in the TC register and tracing is enabled by the PC register trace 
enable bit. See Chapter 8. Tracing and Debugging for a complete description. 

Breakpoint Detected - A trace fault is generated when: 

• The processor executes an instruction at an instruction pointer which matches one of the 
programmed instruction-address breakpoints and trace faults are enabled. 

• The processor issues a memory request that matches one of the programmed data-address 
breakpoints and trace faults are enabled. 

See Chapter 8, Tracing and Debugging for a complete discussion of the breakpoint registers. 
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Explicit Fault Generation 

Two sets of instructions allow explicit fault generation anywhere in a program. The fault-if 
instructions (faulte, faultne, fault), faultle, faultg, faultge, faulto, faultno) allow a fault to be 
generated conditionally. When one of these instructions is executed, the processor checks the 
AC register condition code bits then generates a constraint-range fault if the condition specified 
with the instruction is met. 

mark and fmark (force mark) instructions allow a breakpoint-trace fault to be generated 
anywhere in the instruction stream. 

Fault Controls 

Certain fault types and subtypes have mask bits or flags associated with them that determine 
whether or not a fault is generated when a fault condition occurs. Table 7.2 summarizes these 
flags and masks, data structures in which they are located, fault subtypes they affect and where 
more information about them may be found. 

The integer overflow mask bit inhibits an integer overflow faults from being generated. The 
use of this mask is discussed in the Fault Reference section at the end of this chapter. 

The no-imprecise-faults (NIF) bit controls the synchronizing of faults for a category of faults 
called imprecise faults. The function of this bit is described later in this chapter's section titled 
Preci::>e and Imprecise Faults. 

TC register trace mode bits and PC register trace enable bit support trace faults. Trace mode 
bits enable trace modes; trace enable bit enables trace fault generation. The use of these bits is 
described in the Fault Reference section on trace faults at the end of this chapter. Further 
discussion of these flags is provided in Chapter 8, Tracing and Debugging. 
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Table 7.2. Fault Flags or Masks 

Flag or Mask Name Location Faults Affected 

Integer Overflow Mask Bit Arithmetic Controls Integer Overflow 
(AC) Register 

No Imprecise Faults Bit Arithmetic Controls All Imprecise Faults 
(AC) Register 

Trace Enable Bit Process Controls All Trace Faults 
(PC) Register 

Trace Mode Flags Trace Controls All Trace Faults 
(TC) Register 

Unaligned Fault Mask Process Control Block (PRCB) Unaligned fault 

NOTE 
The unaligned fault, unaligned fault mask and the processor control block are i960 CA processor 
extensions to the i960 architecture. 

The unaligned fault mask bit is located in the process control block (PRCB), which is read 
during initialization. It controls whether unaligned memory accesses are handled by the 
processor or generate a fault. (See Chapter 10, The Bus Controller.) 

FAULT HANDLING ACTION 

Once a fault occurs, the processor saves the program state; calls the fault handling procedure; 
and restores the program state (if possible) once the fault recovery action is completed. No 
software other than the fault handling procedures is required to support this activity. 

Three different types of implicit procedure calls can be used to invoke the fault handling 
procedure according to the information in the selected fault table entry: a local call, a system­
local call and a system-supervisor call. 

The following sections describe actions the processor takes while handling faults. It is not 
necessary to read these sections to use the fault handling mechanism or to write a fault 
handling procedure. This discussion is provided for those readers who wish to know the details 
of the fault handling mechanism. 

Local Fault Call 

When the selected fault handler entry in the fault table is an entry type 002 (local procedure), 
the processor performs the same operation as is described in the section of Chapter 5, 
Procedure Calls titled Call Operation, with the following exceptions: 

• A new frame is created on the stack that the processor is currently using. The stack can be 
the user stack, supervisor stack or interrupt stack. 
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• The fault record is copied into the area allocated for it in the stack, beginning at NFP-1. 
(See Figure 7.4.) 

• The processor gets the IP for the first instruction in the called fault handling procedure 
from the fault table. 

• The processor stores the fault return code (001 2) in the PFP return type field. 

If the fault handling procedure is not able to perform a recovery action, it performs one of the 
actions described in the section earlier in this chapter titled Program Resumption Following a 
Fault. 

If the handler action results in recovery from the fault, a ret instruction in the fault handling 
procedure allows processor control to return to the program that was pending when the fault 
occurred. Upon return, the processor performs the action described in the section of Chapter 5, 
Procedure Calls titled Return Operation, except that the arithmetic controls field from the fault 
record is copied into the AC register. Since the call made is local, the process controls field 
from the fault record is not copied back to the PC register. 

System-Local Fault Call 

When the fault handler selects an entry for a local procedure in the system procedure table 
(entry type 102), the processor performs the same action as is described in the previous section 
for a local fault call or return. The only difference is that the processor gets the fault handling 
procedure's address from the system procedure table rather than from the fault table. 

System-Supervisor Fault Call 

When the fault handler selects an entry for a supervisor procedure in the system procedure 
table, the processor performs the same action described in the section of Chapter 5, Procedure 
Calls titled Call Operation, with the following exceptions: 

• If in user mode when the fault occurs: the processor switches to supervisor mode, reads the 
supervisor stack pointer from the system procedure table and switches to the supervisor 
stack. A new frame is then created on the supervisor stack. 

• If in supervisor mode when the fault occurs: the processor creates a new frame on the 
current stack. If the processor is executing a supervisor procedure when the fault occurred, 
the current stack is the supervisor stack; if it is executing an interrupt handler procedure, 
the current stack is the interrupt stack. (The processor switches to supervisor mode when 
handling interrupts.) 

• The fault record is copied into the area allocated for it in the new stack frame, beginning at 
NFP-1. (See Figure 7.4.) 

• The processor gets the IP for the first instruction of the fault handling procedure from the 
system procedure table (using the index provided in the fault table entry). 

• The processor stores the fault return code (001 2) in the PFP register return type field. If the 
fault is not a trace fault, it copies the state of the system procedure table trace control flag 
(byte 12, bit 0) into the PC register trace enable bit. If the fault is a trace fault, the trace 
enable bit is cleared. 
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On a return from the fault handling procedure. the processor performs the action described in 
the section of Chapter 5, Procedure Calls titled Return Operation. with the following 
exceptions: 

• The fault record arithmetic controls field is copied into the AC register. If the processor is 
in supervisor mode p1ior to the return from the fault handling procedure (which it should 
he), the fault record process controls field is copied into the PC register. (Restoring the PC 
register restores the trace-fault-pending flag and trace enable hit values to their pre-fault 
values.) Also. if the processor was in user mode when the fault occurred. the mode is set 
back to user mode; otherwise, the processor remains in supervisor mode. 

• The processor switches back to the stack it was using when the fault occurred. (If the 
processor was in user mode when the fault occurred, this operation causes a switch from 
lhe supervisor slack to the user stack.) 

• If interrupts arc pending that arc higher than the priority of the program being returned to, 
they arc handled as if the interrupt had occurred at this point. If the trace-fault-pending flag 
and trace enable bit arc set, the trace fault is also handled at this time. 

PC register restoration causes any changes to the process controls caused by the fault handling 
procedure to be lost. In particular. if the ret instruction from the fault handling procedure 
caused the PC register trace-fault-pending flag to be set, this setting would be lost upon return . 

Faults and Interrupts 

If an interrupt occurs during l) an instruction that will fault or 2) an instruction that has already 
faulted or 3) during fault handling procedure selection, the processor handles the interrupt in 
the following way: It completes the selection of the fault handling procedure, then services the 
interrupt just prior to executing the first instruction of the fault handling procedure. The fault is 
handled upon return from the interrupt. Handling the interrupt before the fault reduces interrupt 
latency. 

PRECISE AND IMPRECISE FAULTS 

As described earlier in this chapter in the section titled Parallel Faults. the i960 architecture -
to support parallel and out-of-order instruction execution - allows some faults to he generated 
together and not in sequence. When this situation occurs, it may be impossible to recover from 
some faults, because the state of the instructions surrounding the faulting instruction has 
changed or the RIP is unpredictable. 

The processor provides two mechanisms for controlling the circumstances under which faults 
arc generated: the AC regi~tcr no-imprecise-faults bit (NIF bit) and the synchronize-faults 
instruction (sync(). The following paragraphs describe how these mechanisms can be used. 

Faults are grouped into the following categories: precise, imprecise and asynchronous. Precise 
faults are those intended to be software recoverable. For any instruction that can generate a 
precise fault, the processor: 
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1. does not execute the instruction if an unfinished prior instruction will fault and 

2. does not execute subsequent out-of-order instructions that will fault. 

Also, the RIP points to an instruction where the processor can resume program execution 
without breaking program control flow. Two faults are always precise: trace faults and 
protection faults. 

Imprecise faults are those where the architecture does not guarantee that sufficient information 
is saved in the fault record to allow recovery from the fault. For imprecise faults, the faulting 
instruction address is correct, but the state of execution of instructions surrounding the faulting 
instruction may be unpredictable. Also, the architecture allows imprecise faults to be generated 
out of order, which means that the RIP may not be of any value for recovery. Faults that the 
architecture allows to be imprecise include: 

• operation • arithmetic 

• constraint • type 

Refer to the Fault Reference section of this chapter to determine whether specific faults are 
precise. 

Asynchronous faults are those whose occurrence has no direct relationship to the instruction 
pointer. The i960 architecture does not define any faults in this category and the i960 CA 
processor generates no such faults. 

The NIF bit controls imprecise fault generation. When this bit is set, all faults generated are 
precise. This means the following conditions hold true: 

l. All faults are generated in order. 

2. A precise fault record is provided for each fault: the faulting instruction address is correct 
and the RIP provides a valid reentry point into the program. 

When the NIF bit is clear, imprecise faults are allowed to be generated: in parallel, out of order 
and with an imprecise RIP. Here, the following conditions hold true: 

l. When an imprecise fault occurs, the faulting instruction address in the fault record is valid, 
but the saved IP is unpredictable. 

2. If instructions are executed out of order and parallel faults occur, recovery from some 
faults may not be possible because the faulting instruction's source operands may be 
modified when subsequent instructions are executed out of order. 

Controlling Fault Precision 

The syncf instruction forces the processor to complete execution of all instructions that occur 
prior to syncf and to generate all faults before it begins work on instructions that occur after 
syncf. This instruction has two uses: 

1. force faults to be precise when the NIF bit is clear. 

2. ensure that all instructions are complete and all faults are generated in one block of code 
before the execution of another block of code begins. 
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Compiled code should execute with the NIF bit clear, using syncf where necessary to ensure 
that faults occur in order. In this mode, imprecise faults are considered as catastrophic errors 
from which recovery is not needed. 

The NIF bit should be set if recovery from one or more imprecise faults is required. For 
example, the NIF bit should be set if a program needs to handle - and recover from -
unmasked integer-overtlow faults and the fault handling procedure cannot be closely coupled 
with the application to perform imprecise fault recovery. 

FAULT REFERENCE 

This section describes each fault type and subtype and gives detailed information about what is 
stored in the various fields of the fault record. The section is organized alphabetically by fault 
type. The following paragraphs describe the information that is provided for each fault type 
and the notation used. 

Fault Type and Subtype 

Function 

RIP 

Program State Changes 

Gives the number which appears in the fault record fault-type 
field when the fault is generated. The fault-subtype section lists 
fault subtypes and number associated with each fault subtype. 

Describes the purpose of fault type and fault subtype. It also 
describes how the processor handles each fault subtype. 

Describes the value saved in the RIP register of the stack frame 
that the processor was using when the fault occurred. 

Describes fault subtype effects on a program's control flow. 
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Arithmetic Faults 

Fault Type: 

Fault Subtype: 

Function: 

3H 

Number 
OH 
lH 
2H 
3H-FH 

FAULTS 

Name 
Reserved 
Integer Overflow 
Arithmetic Zero Divide 
Reserved 

Indicates problem with operand an arithmetic instruction result. 
Integer overflow fault is generated when a result of integer 
instruction overflows destination and AC register integer overflow 
mask is cleared. Here, the result's n least significant bits are stored 
in the destination, where n is destination size. Instructions that 
generate this fault are: 

addi subi 
stib shli 
muli divi 

Arithmetic zero divide fault is generated when divisor operand of 
ordinal or integer divide instruction is zero. Instructions that 
generate this fault are: 

divo divi 
ediv remi 
re mo 

RIP: IP for next-executed instruction if fault had not occurred. 

Program State Changes: Faults may be imprecise when executing with NIP bit cleared. 
Integer overflow fault may not be recoverable because result is 
stored in destination before fault is generated; e.g., faulting 
instruction cannot be re-executed if destination register was also a 
source register for the instruction. Arithmetic zero divide fault is 
generated before execution of the faulting instruction. 
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Constraint Faults 

Fault Type: 

Fault Subtype: 

Function: 

SH 

Number 
OH 
lH 
2H 
3H-FH 

FAULTS 

Name 
Reserved 
Constraint Range 
Privileged 
Reserved 

Indicates program or procedure violated an architectural 
constraint. 

Constraint-range fault is generated when a fault-if instruction is 
executed and AC register condition code field matches the 
condition required by the instruction. 

Privileged fault is also generated when program or procedure 
attempts to use a privileged (supervisor-mode only) instruction 
while processor is in user mode. Privileged instructions for the 
i960 CA processor are: 

sdma sysctl 

RIP: No defined value. 

Program State Changes: These faults may be imprecise when executing with NIF bit 
cleared. No changes in program's control flow accompany these 
faults. Constraint-range fault is generated after fault-if instruction 
executes; program state is not affected. Privileged fault is 
generated before faulting instruction executes. 
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Operation Faults 

Fault Type: 

Fault Subtype: 

Function: 

RIP: 

2H 

Number 
OH 
lH 
2H 
3H 
4H 
5H-FH 

FAULTS 

Name 
Reserved 
Invalid Opcode 
Unimplemented 
Unaligned 
Invalid Operand 
Reserved 

Indicates processor cannot execute current instruction because of 
invalid instruction syntax or operand semantics. Invalid-opcode 
fault is generated when processor attempts to execute instruction 
containing undefined opcode or addressing mode. 

Unimplemented fault is generated when processor attempts to 
execute an instruction fetched from on-chip data RAM. 

Unaligned fault is generated when the following conditions are 
present: ( 1) processor attempts to access an unaligned word or 
group of words in memory and (2) fault is enabled by the 
unaligned-fault mask bit in the PRCB fault configuration word. 

The i960 CA processor handles unaligned accesses to little endian 
regions of memory in microcode and carries out the access 
regardless of unaligned-fault mask bit setting. Processor does not 
support unaligned accesses to big endian regions; such attempts 
result in incoherent data in memory. Enabling the unaligned fault 
when using big endian byte ordering provides a means of detecting 
unsupported unaligned accesses. 

When an unaligned fault is signaled, the effective address of the 
unaligned access is placed in the fault record optional data section, 
beginning at address NFP-24. This address is useful to debug a 
program that is making unintentional unaligned accesses. 

Invalid-operand fault is generated when processor attempts to 
execute an instruction for which one or more operands have 
special requirements which are not satisfied. Fault is caused by 
specifying non-existent SFR or non-defined sysctl and/or 
references to an unaligned long-, triple- or quad-register group. 

No defined value. 

Program State Changes: Faults may be imprecise when executing with the NIF bit cleared. 
A change in the program's control flow does not accompany 
operation faults; faults occur before instruction execution. 
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Parallel Faults 

Fault Type: 

Fault Subtype: 

Function: 

RIP: 

FAULTS 

See the section titled Parallel Faults in this chapter. 

Indicates that one or more faults occurred when processor was 
executing instructions in parallel by different execution units. This 
fault type can occur only when AC register NlF bit is cleared. 

If parallel faults occur, the Number l1{ parallel faults field in the 
fault record is a non-zero value, indicating the number of parallel 
faults recorded. This field is located in the fault record at location 
NFP-20. 

A fault record is saved for each parallel fault detected. Information 
contained in these records is the same as is described in this 
section for specific fault types. 

IP of instruction that would execute next if faults were not 
generated. 

Program State Changes: Precision of faults recorded in a parallel fault record depends on 
fault types detected. A change in program's control flow may or 
may not accompany parallel faults, depending on fault types 
detected. 
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Protection Faults 

Fault Type: 

Fault Subtype: 

Function: 

RIP: 

7H 

Number 
OH-lH 
2H 
3H-FH 

FAULTS 

Name 
Reserved 
Length 
Reserved 

Indicates program or procedure attempting to perform illegal 
operation that the architecture protects against. 

Length fault is generated when index operand used in a calls 
instruction points to an entry beyond the extent of system 
procedure table. 

Same as the address-of-faulting-instruction field. 

Program State Changes: This fault type is always precise, regardless of NIF bit value. 
Change in program's control flow does not accompany length 
fault; fault is generated before faulting instruction. 
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Fault Type: 

Fault Subtype: 

Function: 

lH 

Number 
Bit 0 
Bit 1 
Bit 2 
Bit 3 
Bit 4 
Bit S 
Bit 6 
Bit 7 

FAULTS 

Name 
Reserved 
Instruction Trace 
Branch Trace 
Call Trace 
Return Trace 
Prereturn Trace 
Supervisor Trace 
Breakpoint Trace 

Indicates processor detected one or more trace events. Event 
tracing mechanism is described in Chapter 8, Tracing and 
Debugging. 

A trace event is the occurrence of a particular instruction or 
instruction type in the instruction stream. Processor recognizes 
seven different trace events: instruction, branch, call, return, 
prereturn, supervisor, breakpoint. It detects these events only if TC 
register mode bit is set for the event. If PC register trace enable bit 
is also set, processor generates a fault when trace event is detected. 

A trace fault is generated following the instruction that causes a 
trace event (or prior to the instruction for the prereturn trace 
event). The following trace modes are available: 

Instruction 

Branch 

Call 

Return 

Prereturn 

Generates trace event following every instruction. 

Generates trace event following any branch 
instruction when branch is taken (branch trace 
event does not occur on branch-and-link or call 
instructions). 

Generates trace event following any call or branch­
and-link instruction or any implicit procedure call 
(i.e., fault- or interrupt-call). 

Generates trace event following any ret 
instruction. 

Generates trace event prior to any ret instruction, 
providing PFP register prereturn trace flag is set 
(processor sets flag automatically when prereturn 
tracing is enabled). 
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Supervisor 

Breakpoint 

FAULTS 

Generates trace event following any calls 
instruction that references a supervisor procedure 
entry in the system procedure table and on a return 
from a supervisor procedure where the return 
status type in the PFP register is 0102 or 0112. 

Generates a trace event following any processor 
action that causes a breakpoint condition (such as a 
mark or fmark instruction or a match of the 
instruction-address breakpoint register or the data­
address breakpoint register). 

Trace fault subtype and fault subtype field bits are associated with 
each mode. Multiple fault subtypes can occur simultaneously; fault 
subtype bit is set for each subtype that occurs. 

When a fault type other than a trace fault is generated during 
execution of an instruction that causes a trace event, non-trace 
fault is handled before trace fault. An exception is prereturn-trace 
fault, which occurs before processor detects a non-trace fault, so it 
is handled first. 

Similarly, if an interrupt occurs during an instruction that causes a 
trace event, interrupt is serviced before trace fault is handled. 
Again, preretum trace fault is an exception. Since it is generated 
before the instruction, it is handled before any interrupt that occurs 
during instruction execution. 

Address of the faulting instruction field in the fault record contains 
the IP for the instruction that causes the trace event, except for the 
prereturn trace fault; this field has no defined value. 

RIP: IP for the instruction that would have been executed next if the 
fault had not occurred. 

Program State Changes: This fault type is always precise, regardless NIF bit value. A 
change in the program's control flow accompanies all trace faults 
(except prereturn trace fault), because events that can cause a trace 
fault occur after the faulting instruction is completed. As a result, 
the faulting instruction cannot be re-executed upon returning from 
the fault handling procedure. 

Since the prereturn trace fault is generated before the ret 
instruction is executed, a change in the program's control flow 
does not accompany this fault and the faulting instruction can be 
executed upon returning from the fault handling procedure. 
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Type Faults 

Fault Type: 

Fault Subtype: 

Function: 

RIP: 

FAULTS 

AH 

Number 
OH 
1H 
2H-FH 

Name 
Reserved 
Type Mismatch 
Reserved 

Indicates a program or procedure attempted to perfom1 an illegal 
operation on an architecture-defined data type or a typed data 
structure. Type-mismatch fault is generated when attempts are 
made to: 

• Modify the PC register with modpc while procc~sor is in user 
mode. 

• Write to on-chip data RAM while processor is in user mode. 

• Access a special function register while processor is in user 
mode. 

No defined value. 

Program State Changes: These faults may be imprecise when executing with the NIF bit 
cleared. A change in program's control flow docs not accompany 
the type-mismatch fault because the fault occurs before execution 
of the faulting instruction. 
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CHAPTER 8 
TRACING AND DEBUGGING 

This chapter describes the i960 CA processor's facilities for runtime activity monitoring. 

The i960 architecture provides facilities for monitoring processor activity through trace event 
generation. A trace event indicates a condition where the processor has just completed 
executing a particular instruction or type of instruction or where the processor is about to 
execute a particular instruction. When the processor detects a trace event, it generates a trace 
fault and makes an implicit call to the fault handling procedure for trace faults. This procedure 
can, in turn, call debugging software to display or analyze the processor state when the trace 
event occurred. This analysis can be used to locate software or hardware bugs or for general 
system monitoring during program development. 

Tracing is enabled by the process controls (PC) register trace enable bit and a set of trace mode 
bits in the trace controls (TC) register. Alternatively. the mark and fmark instructions can be 
used to generate trace events explicitly in the instruction stream. 

The i960 processor also provides four hardware breakpoint registers that generate trace events 
and trace faults. Two registers arc dedicated to trapping on instruction execution addresses, 
while the remaining two registers can trap on the addresses of various types of data accesses. 

TRACE CONTROLS 

To use the architecture's tracing facilities, software must provide trace fault handling 
procedures, perhaps interfaced with a debugging monitor. Software must also manipulate the 
following registers and control bits to enable the various tracing modes and enable or disable 
tracing in general. These controls are described in the following sections. 

• TC register mode bits 

• PC register trace fault pending flag 

• System procedure table supervisor­
stack-pointer field trace control bit 

• IPBO-IPB 1 registers address field (in 
the control table) 

Trace Controls (TC) Register 

• PC register trace enable bit 

• PFP register return status field prereturn 
trace flag (bit 0) 

• BPCON register breakpoint mode bits 
and enable bits (in the control table) 

• DABO-DAB 1 registers address field 
and enable bit (in the control table) 

The TC register (Figure 8.1) allows software to define the conditions under which trace events 
are generated. 
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TRACE-MODE BITS 

INSTRUCTION TRACE MODE -TC.i --'-----------------------. 

BRANCH TRACE MODE -TC.b -------------------------, 

CALL TRACE MODE -TC.c -------------------------. 

:~~~RRENT::~CTER~~~~~~~'- T-C-.p-_-:_-----------------------------------------------------------------+::::!:::;!--.! j 
SUPERVISOR TRACE MODE -TC.s -------------------.­

BREAKPOINT TRACE MODE - TC.br ------------------. 

28 24 20 16 

TRACE­

CONTROLS 

REGISTER (TC) 

d 
1 
f 

d d 
1 0 
f f 

i p 
f 

c b i 
f f f 

Uk. RACE-~2VENT FLAGS 
8 

~ INSTRUCTION - TC.if 

BRANCH - TC.bf 

CALL -TC.cf 

RETURN - TC.rt 

'--------- PRE-RETURN - TC.pf 

'---------- SUPERVISOR - TC.st 

'----------- BREAKPOINT -TC.brf 

s p r c b i 

4 

HARDWARE BREAKPOINT-EVENT FLAGS 

'------------- INSTRUCTION-BREAKPOINT 0 - TC.iOf 

'-------------- INSTRUCTION-ADDRESS BREAKPOINT 1 - TC.i1f 

'--------------- DATA-ADDRESS BREAKPOINT 0 -TC.dOI 

--------------- DATA-ADDRESS BREAKPOINT 1 - TC.d1f 

0 

f:8 RESERVED LJ (INITIALIZE TO 0) 

270710-002-13 

Figure 8.1. Trace Controls (TC) Register 

The TC register contains mode bits and event flags. Mode bits define a set of tracing conditions 
that the processor can detect. For example, when the call-trace mode bit is set, the processor 
generates a trace event whenever a call or branch-and-link operation executes. (Trace modes 
are described later in this chapter's section titled Trace Modes.) The processor uses event flags 
to keep track of which trace events have been generated. 

A special instruction, the modify-trace-controls (modtc) instruction, allows software to modify 
the TC register. On initialization, all TC register bits and flags are cleared. modtc can then be 
used to set or clear trace mode bits as required. Software can also access event flags using 
modtc; however, this is generally not necessary. The processor automatically sets and clears 
these flags as part of its trace handling mechanism. 

TC register bits 0, 8 through I 6 and 28 through 3 I are reserved. Software must initialize these 
bits to zero and not modify them afterwards. 
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Trace Enable Bit and Trace-Fault-Pending Flag 

The PC register trace enable bit and the trace-fault-pending flag control tracing. The trace 
enable bit enables the processor's tracing facilities; when set, the processor generates trace 
faults on all trace events. 

Typically, software selects the trace modes to be used through the TC register. It then sets the 
trace enable bit to begin tracing. This bit is also altered as part of some call and return 
operations that the processor performs as described in this chapter's section titled Tracing and 
Interrupt Procedures. 

The trace-fault-pending flag allows the processor to track when a trace event is detected for an 
enabled trace condition. The processor uses this flag as follows: 

1. When the processor detects a trace event and tracing is enabled, it sets the flag. 

2. Before executing an instruction, the processor checks the flag. 

3. lfthe flag is set and tracing is enabled, it signals a trace fault. 

By providing a means to record trace event occurrences, the trace-fault-pending flag allows the 
processor to service an interrupt or handle a fault other than a trace fault before handling the 
trace fault. Software should not modify this flag. 

Trace Control on Supervisor Calls 

The trace control bit allows tracing to be enabled or disabled when a call-system instruction 
(calls) executes which results in a switch to supervisor mode. This action occurs independent 
of whether or not tracing is enabled prior to the call. A supervisor call is a calls instruction that 
references an entry in the system procedure table with an entry type I 02. When a supervisor 
call executes, the processor: 

1. Saves current PC register trace enable bit status in the PFP register return-type field bit 0. 

2. Sets the PC register trace enable bit to the value of the trace control bit. The processor gets 
the trace control bit from bit 0 of the supervisor stack pointer, which is cached during the 
reset initialization sequence. 

When the trace control bit is set, tracing is enabled on supervisor calls; when cleared, tracing is 
disabled on supervisor calls. Upon return from the supervisor procedure, the FC register trace 
enable bit is restored to the value saved in the PFP register return-type field. 

TRACE MODES 

This section defines trace modes enabled through the TC register. These modes can be enabled 
individually or several modes can be enabled at once. Some modes overlap, such as call-trace 
mode and supervisor-trace mode. The section later in this chapter titled Handling Multiple 
Trace Events describes processor function when multiple trace events occur. 

• Instruction trace • Branch trace • Breakpoint trace • Prereturn trace 

• Call trace • Return trace • Supervisor trace 
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Instruction Trace 

When the instruction-trace mode is enabled, the processor generates an instruction-trace event 
each time an instruction executes. A debugging monitor can use this mode to single-step the 
processor. 

Branch Trace 

When the branch-trace mode is enabled, the processor generates a branch-trace event any time 
a branch instruction executes and the branch is taken. A branch-trace event is not generated for 
conditional-branch instructions that do not branch or for branch-and-link, call or return 
instructions. 

Call Trace 

When the call-trace mode is enabled, the processor generates a call-trace event any time a call 
instruction (call, callx or calls) or a branch-and-link instruction (bal or balx) executes. An 
implicit call - such as the action used to invoke a fault handling or an interrupt handling 
procedure - also causes a call-trace event to be generated. 

When the processor detects a call-trace event, it also sets the prereturn-trace flag (PFP register 
bit 3) in the new frame created by the call operation or in the current frame if a branch-and-link 
operation was performed. The processor uses this flag to determine when to signal a prereturn­
trace event on a ret instruction. 

Return Trace 

When the return-trace mode is enabled, the processor generates a return-trace event any time a 
ret instruction executes. 

Prereturn Trace 

The prereturn-trace mode causes the processor to generate a prereturn-trace event prior to ret 
execution, providing the PFP register prereturn-trace flag is set. (Prereturn tracing cannot be 
used without enabling call tracing.) The processor sets the prereturn-trace flag whenever it 
detects a call-trace event as described above for call-trace mode. This flag performs a 
prereturn-trace-pending function. 

If another trace event occurs at the same time as the prereturn-trace event, the processor 
generates a fault on the non-prereturn-trace event first. Then, on a return from that fault 
handler, it generates a fault on the prereturn-trace event. The prereturn trace is the only trace 
event that can cause two successive trace faults to be generated between instruction boundaries. 
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Supervisor Trace 

When supervisor-trace mode is enabled, the processor generates a supervisor-trace event when: 

1. a call-system instruction (calls) executes, where the procedure table entry is for a system­
supervisor call 

-or-

2. a ret instruction executes and the return-type field is set to 0 l 02 or 011 2 (i.e., return from 
supervisor mode). 

When these procedures are called with supervisor calls, this trace mode allows a debugging 
program to determine kernel-procedure call boundaries within the instruction stream. 

Breakpoint Trace 

Breakpoint trace mode allows trace events to be generated at places other than those specified 
with the other trace modes. This mode is used in conjunction with mark and fmark. 

Software Breakpoints 

mark and fmark allow breakpoint trace events to be generated at specific points in the 
instruction stream. When breakpoint trace mode is enabled, the processor generates a 
breakpoint trace event any time it encounters a mark. fmark causes the processor to generate a 
breakpoint trace event regardless of whether or not breakpoint trace mode is enabled. 

Hardware Breakpoints 

The hardware breakpoint registers are provided to enable generation of trace events and trace 
faults on instruction addresses and data access addresses. 

Breakpoint trace events can be generated when the processor executes an instruction with an IP 
that matches one of the addresses programmed into the two instruction breakpoint registers 
(IPBO - IPB l). Each instruction address breakpoint may be enabled or disabled individually by 
programming the two least significant bits in IPBO or IPB l. Figure 8.2 describes the instruction 
address breakpoint registers. 
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INSTRUCTION-ADDRESS BREAKPOINT ENABLE - IPB.e -----------------.

1 (00) DISABLE 
(11) ENABLE 

INSTRUCTION ADDRESS ---------. 

11111111111111111 11111111111111 ~ I ~I 
28 24 

INSTRUCTION-ADDRESS BREAKPOINT 

REGISTERS (IPBO-IPB1) 

20 16 12 4 

270710-002-14 

Figure 8.2. Instruction Address Breakpoint Registers (IPBO - IPB1) 

Breakpoint trace events may also be generated when a memory access is issued which matches 
conditions programmed in one of two data address breakpoint registers (DABO - DAB 1, 
Figure 8.3). Each breakpoint register is programmed to fault when the address of an access 
matches the breakpoint register and the access is one of four types: 1) any store, 2) any load or 
store, 3) any data load or store or any instruction fetch or 4) any memory access. 

DATA ADDRESS----------~ 

I 1111111111111111111111111111111 
28 24 

DATA-ADDRESS BREAKPOINT 

REGISTERS (DABO-DAB1) 

20 16 12 0 

270710-001-22 

Figure 8.3. Data Address Breakpoint Registers (DABO - DAB1) 

The programmer configures the BPCON register to set the data address breakpoint mode which 
corresponds to one of these access types (Figure 8.4). Each data address breakpoint may also 
be enabled or disabled individually by programming the BPCON enable bits. 

The instruction-address breakpoint, data-address breakpoint and breakpoint control registers 
are on-chip control registers. These registers are loaded from the control table in memory at 
initialization or may be modified using sysctl. Control registers are described in Chapter 2, 
Programming Environment. 

A breakpoint trace event is signalled when the processor attempts an access which is set for 
detection (instruction or data breakpoint). Breakpoint trace is enabled by setting the appropriate 
field in the IPBO, IPB 1 and BPCON registers. If breakpoint trace is enabled, the appropriate 
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TC register hardware breakpoint trace event flags are set. If tracing is enabled, a trace fault is 
generated after the faulting instruction completes execution. 

28 24 20 16 12 8 4 0 

L--..JL____JL____JL--..J BHEAKPOINT 
CONTROL REGISTER 
(BPCON) ' 1 t '"'-'""" 0 '""''°'" '"'"'' -"'''""" (00) DISABLE 

(11) ENABLE 

DABO MODE (SEE TABLE) 

'--------DATA-ADDRESS 1 BREAKPOINT ENABLE - BPCON.e1 
(00) DISABLE 
(11) ENABLE 

~-------- DAB1 MODE (SEE TABLE) 

D RESERVED 
(INITIALIZE TO 0) 

DATA-ADDRESS BREAKPOINT MODES 

BREAK ON: 

00 STORE ONLY 
01 DATA ONLY (LOAD OR STORE) 
10 DATA OR INSTRUCTION FETCH 
11 ANY ACCESS 

Figure 8.4. Hardware Breakpoint Control Register (BPCON) 

SIGNALING A TRACE EVENT 

270710-002-15 

To summarize the information presented in the previous sections, the processor signals a trace 
event when it detects any of the following conditions: 

• An instruction included in a trace mode group executes or is about to execute (in the case 
of a prcreturn trace event) and the trace mode for that instruction is enabled. 

• An implicit call operation executed and the call-trace mode is enabled. 

• A mark instruction executed and the breakpoint-trace mode is enabled. 

• A fmark instruction executed. 

• The processor is executing an instruction at an IP matching an enabled instruction address 
breakpoint register. 

• The processor has issued a memory access matching the conditions of an enabled data 
address breakpoint register. 

When the processor detects a trace event and the PC register trace enable bit is set, the 
processor performs the following action: 

l. The processor sets the appropriate TC register trace event flag. If a trace event meets the 
conditions of more than one of the enabled trace modes, a trace event flag is set for each 
trace mode condition that is met. 
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2. The processor sets the PC register trace-fault-pending flag. The processor may set a trace 
event flag and trace-fault-pending flag before completing execution of the instruction that 
caused the event. However, the processor only handles trace events between instruction 
executions. 

If - when the processor detects a trace event - the PC register trace enable bit is clear, the 
processor sets the appropriate event flags but does not set the PC register trace-fault-pending 
flag. 

HANDLING MULTIPLE TRACE EVENTS 

If the processor detects multiple trace events, it records one or more of them based on the 
following precedence, where 1 is the highest precedence: 

1. Supervisor-trace event 

2. Breakpoint- (from mark or fmark instruction or from a breakpoint register), branch-, call­
or return-trace event 

3. Instruction-trace event 

When multiple trace events are detected, the processor may not signal each event; however, it 
at least signals the one with the highest precedence. 

TRACE FAULT HANDLING PROCEDURE 

The trace fault handling procedure (which the processor calls when it detects a trace event) is a 
type of fault handling procedure. General requirements for fault handling procedures are given 
in Chapter 7, Faults. 

The trace fault handling procedure is involved in a specific way and is handled slightly 
different than other faults. A trace fault handler must be involved with an implicit system­
supervisor call. When the call is made, the PC register trace enable bit in is cleared. This 
disables trace faults when the trace fault handler is executing. Recall that, for all other implicit 
or explicit system-supervisor calls, the trace enable bit is replaced with the system procedure 
table trace control bit. The exceptional handling of trace enable for trace faults ensures that 
tracing is turned off when a trace fault handling procedure is being executed. This is necessary 
to prevent an endless loop of trace fault handling calls. 

TRACE HANDLING ACTION 

Once a trace event is signaled, the processor determines how to handle the trace event, 
according to the PC register trace enable bit and trace fault pending flag settings and to other 
events that might occur simultaneously with the trace event, such as an interrupt or non-trace 
fault. Subsections that follow describe how the processor handles trace events for various 
situations. 
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Normal Handling of Trace Events 

Prior to executing an instruction, the processor performs the following action regarding trace 
events: 

1. The processor check~ the state of the trace fault pending flag: 

a. If clear, the processor begins execution of the next instruction. 

b. If set, the processor performs the following actions. 

2. The processor checks the PC register trace enable bit state: 

a. If clear, the processor clears any trace event flags that are set prior executing the next 
instruction. 

b. If set, the processor signals a trace fault and begins fault handling action as described 
in Chapter 7, Faults. 

Prereturn Trace Handling 

The processor handles a prereturn trace event the same as described above except when it 
occurs at the same time as a non-trace fault. In this case, the non-trace fault is handled first. On 
returning from the fault handler for the non-trace fault, the processor checks the PPP register 
prereturn trace flag. If set, the processor generates a prereturn trace event, then handles it as 
described above. 

Tracing and Interrupt Procedures 

When the processor invokes an interrupt handling procedure to service an interrupt, it disables 
tracing. It does this by saving the PC register's current state, then clearing the PC register trace 
enable bit and trace fault pending flag. 

On returning from the interrupt handling procedure, the processor restores the PC register to 
the state it was in prior to handling the interrupt, which restores the trace enable bit and trace 
fault pending flag states. If these two flags were set prior to calling the interrupt procedure, a 
trace fault is signaled on return from the interrupt procedure. 

NOTE 
On a return from an interrupt handling procedure, the trace fault pending flag is restored. lf this 
flag was set as a result of the interrupt procedure's ret instruction (i.e., indicating a return trace 
event), the detected trace event is lost. This is also true on a return from a fault handler, when the 
fault handler has been called with an implicit supervisor call. 
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CHAPTER 9 
INSTRUCTION SET REFERENCE 

This chapter provides detailed information about each instruction the processor uses. 
Instructions are listed alphabetically by assembly language mnemonic. Format and notation 
used in this chapter are defined in the following section titled Notation. 

INTRODUCTION 

Information in this chapter is oriented toward programmers who write assembly language code 
for the processor. The information provided for each instruction includes the following: 

• Alphabetic reference - instructions are • Assembly language mnemonic, name and 
listed alphabetically format 

• Description of the instruction's operation • Action (or algorithm) and other side 
effects of executing an instruction 

• Faults that can occur during execution • Assembly language example 

• Opcode and instruction encoding format • Related instructions 

Additional information about the instruction set can be found in the following chapters and 
appendices in this manual: 

• Chapter 4, Instruction Set Summary - Summarizes the instruction set by group and 
describes the assembly language instruction format. 

• Appendix D, Instruction Set Reference - Describes instruction set opword encodings. A 
quick-reference listing of instruction encodings is also provided to assist debug with a logic 
analyzer. 

• Instruction Set Quick Reference - Contains a tabular quick reference of each instruction's 
operation and side-effects. 

NOTATION 

In general, notation in this chapter is consistent with usage throughout the manual; however, 
there are a few exceptions. Read the following subsections to understand notations that are 
specific to this chapter. 

Alphabetic Reference 

Instructions are listed alphabetically by assembly language mnemonic. If several instructions 
are related and fall together alphabetically, they are described as a group on a single page. 

The instruction's assembly language mnemonic is shown in bold at top of page (e.g., subc). 
Occasionally, it is not practical to list all mnemonics at the page top. In these cases, the name 
of the instruction group is shown in capital letters (e.g., BRANCH or FAULT IF). 
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The i960 CA component-specific extensions to the i960 microprocessor instruction set are 
indicated with a box around the instruction's alphabetic reference. The following i960 CA 
device's instructions are such extensions: 

eshro sdma 

sysctl udma 

Instruction set extensions are generally not portable to other i960 family implementations. 

Mnemonic 

The Mnemonic section gives the mnemonic (in boldface type) and instruction name for each 
instruction covered on the page, for example: 

subi Subtract Integer 

CTRL and COBR format instructions also allow the programmer to specify optional .t or .f 
mnemonic suffixes for branch prediction: 

• .t indicates to the processor that the condition for which the instruction is testing is likely to 
be true. 

• .f indicates that the condition is likely to be false. 

The processor uses the programmer's prediction to prefetch and decode instructions along the 
most likely execution path when the actual path is not yet known. If the prediction was wrong, 
all actions along the incorrect path are undone and the correct path is taken. For further 
discussion, see Appendix A, Optimizing Code for the i960 CA Microprocessor. 

When the programmer provides no suffix with an instruction which supports a suffix, the 
assembler makes its own prediction. 

When an instruction supports prediction, the mnemonic listing includes the notation { .tl.f} to 
indicate the option, for example: 

be{ .tl.f} Branch If Equal 

Format 

The Format section gives the instruction's assembly language format and allowable operand 
types. Format is given in two or three lines. The following is a two line format example: 

sub* srcl, 
reg/lit/sfr 

src2, 
reg/lit/sfr 

dst 
reg/sfr 
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The first line gives the assembly language mnemonic (boldface type) and operands (italics). 
When the format is used for two or more instructions, an abbreviated form of the mnemonic is 
used. An * (asterisk) in the mnemonic indicates a variable: in the above example, sub* is either 
subi or subo. 

Operand names are designed to describe operand function (e.g., src, len, mask). 

The second line shows allowable entries for each operand. Notation is as follows: 

reg Global (gO ... g15) or local (rO ... rl5) register 

lit Literal of the range 0 ... 31 

sfr Special Function Register (sfO ... sf2) 

disp Signed displacement of range -222] ... (2221 - 1) 

efa Address defined with the full range of addressing modes 

targ A relative offset or displacement to the target of instruction. Usually 
specified as a label in assembly code. 

NOTE 
For future implementations, the i960 architecture will allow up to a total of 32 Special Function 
Registers (SFRs). However, sfO, sfl and sf2 are the only SFRs implemented on the i960 CA 
processor. 

In some cases, a third line is added to show register or memory location contents. For example, 
it may be useful to know that a register is to contain an address. The notation used in this line is 
as follows: 

addr 

disp 

Description 

Address 

Displacement 

The Description section is a narrative description of the instruction's function and operands. It 
also gives programming hints when appropriate. 

Action 

The Action section gives an algorithm written in a pseudo-code that describes direct effects and 
possible side effects of executing an instruction. Algorithms document the instruction's net 
effect on the programming environment; they do not necessarily describe how the processor 
actually implements the instruction. For example, shli requires seven lines of pseudo-code to 
completely describe its function. Although it might appear from the algorithm that the 
instruction should take multiple clocks to execute, the i960 CA processor executes the 
instruction in a single clock. 
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The following is an example of the action algorithm for the alterbit instruction: 

if ((AC.eel = 0) = 0) 
dst f- src and not (2A(bitpos mod 32)); 
else dst f- src or (2A(bitpos mod 32)); 

In these action statements, the term AC.cc refers to the AC register condition code field; 
AC.eel means bit 1 of this field. The symbol "A" indicates an exponent; for example: 
2A(bitpos mod 32) is equivalent to 2(bitpos mod 32). 

Table 9.1 defines each abbreviation used in the instruction reference pseudo-code. Table 9.2 
explains the symbols used in the pseudo-code. 

NOTE 

Since special function registers (sfr) may change independent of instruction execution, the 
following distinctions are important when interpreting the algorithm of any instruction which 
references a sfr. 

I. When a source operand is a sfr and referenced more than once in an algorithm, the operand's 
value at every reference is the same as the first reference. In other words, the instruction 
operates as if the sfr was actually read only once, at the beginning of the instruction. 

2. When the same sfr is specified as the source for multiple operands of the same instruction, the 
instruction operates as if the source sfr was actually read only once, at the beginning of the 
instruction. When either source operand appears in the action algorithm, the single operand 
value is used. 

3. When a sfr is specified as a destination and the algorithm indicates more than one 
modification of the destination, the instruction operates as if the sfr were written only once, at 
the end of the instruction. 
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Table 9.1. Abbreviations in Pseudo-code 

AC.xxx Arithmetic Controls Register fields 

AC.cc Condition Code tlags (AC.cc2:0J 

AC.ccO Condition Code Bit 0 

AC.eel Condition Code Bit 1 

AC.cc2 Condition Code Bit 2 

AC.nif No Imprecise Faults flag 

AC.of Integer Overf1ow flag 

AC.om Integ.er Overflow Mask Bit 

PC.xxx Process Controls Register fields 

PC.em Execution Mode flag 

PC.s State Flag 

PC.tfp Trace Fault Pending flag 

PC.p Priority Field (PC.p5:0) 

PC.te Trace Enable Bit 

TC.xxx Trace Controls Register fields 

TC.i Instruction Trace Mode Bit 

TC.c Call Trace Mode Bit 

TC.p Pre-return Trace Mode Bit 

TC.hr Breakpoint Trace Mode Bit 

TC.b Branch Trace Mode Bit 

TC.r Return Trace Mode Bit 

TC.s Supervisor Trace Mode Bit 

TC.if Instruction Trace Event flag 

TC.cf Call Trace Event flag 

TC.pf Pre-return Trace Event flag 

TC.brf Breakpoint Trace Event flag 

TC.bf Branch Trace Event flag 

TC.rf Return Trace Event flag 

TC.sf Su_2,ervisor Trace Event fla_g_ 

PFP.xxx Previous Frame Pointer (r0) 

PFP.add Address (PFP.add3 l :4) 

PFP.rt Return Type Field (PFP.rt2:0) 

PFP~ Pre-return Trace fl~ 

~ Stack Pointer (r l) 

fp_ Frame Pointer (g_l 5) 

ri.2_ Return Instruction Pointer (r2) 

SPT System Procedure Table 

SPT.base Supervisor Stack Base Address 
SPT(ta!K) Address of SPT EntJ_)'_ tai:g_ 
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Table 9.2. Pseudo-code Symbol Definitions 

f-- Assignment 

=,# Comparison: equal, not equal 

<,> less than, greater than 

:<::;, :2'. less than or equal to, greater than or equal to 

<<,>> Logical Shift 
A Exponentiation 

and,or, Bitwise Logical Operations 

not, xor 

mod Modulo 

+, - Addition, Subtraction 

* Multiplication (Integer or Ordinal) 

I Division (Integer or Ordinal) 

# .. Comment delimiter 

memory() Memory access of specified width 
memory_ { bytelshortlwordllongltriplelquad} () 
memory() Width implied by context 

Faults 

The Faults section lists faults that can be signaled as a direct result of instruction execution. 
Two possible faulting conditions are common to the entire instruction set and could directly 
result from any instruction. These fault types are abbreviated in the instruction reference. 

Fault Type 

Trace 

Operation 

Subtype/Description 

Instruction. An Instruction Trace Event is signaled after instruction 
completion. A Trace fault is generated if both PC.te and TC.i=l. 
Breakpoint. A Breakpoint Trace Event is signaled after completion 
of an instruction for which there is a hardware breakpoint condition 
match and TC.br is set. A Trace fault is generated if PC.te and 
TC.br are both=l. 

Unimplemented. An attempt to execute any instruction fetched from 
internal data RAM causes an operation unimplemented fault. 
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Three possible faulting conditions are common to large subsets of the instruction set: 

Fault Type 

Type 

Operation 

Subtype/Description 

Mismatch. Any instruction that references a special function register 
while not in supervisor mode causes a type mismatch fault. 

Mismatch. Any instruction that attempts to write to internal data 
RAM while not in supervisor mode causes a type mismatch fault. 

Unimplemented. Any instruction that causes an unaligned memory 
access causes an operation unimplemented fault if unaligned faults 
arc not masked in the Processor Control Block (PRCB). 

Other instructions can generate faults in addition to above faults. If an instruction can generate 
a fault. it is noted in the Faults section of the instruction reference. 

Example 

The Example section gives an assembly language example of an application of the instruction. 

Opcode and Instruction Format 

The Opcode and Instruction Format section gives the opcode and instruction encoding format 
for each instruction. for example: 

subi 593H REG 

The opcode is given in hexadecimal format. The instruction encoding format is one of four 
possible formats: REG. COBR. CTRL and MEM. Refer to Appendix D, Instruction Set 
Reference for more information on the formats. 

See Also 

The See Also section gives the mnemonics of related instructions which are also alphabetically 
listed in this chapter. 

INSTRUCTIONS 

This section contains reference information on the processor's instructions. It is arranged 
alphabetically by instruction or instruction group. 
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addc 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

addc 

addc 

Add Ordinal With Carry 

srcl, 
reg/lit/sfr 

src2, 
reg/lit/sfr 

dst 
reg/sfr 

Adds src2 and srcl values and condition code bit 1 (used here as a 
carry in) and stores the result in dst. If the ordinal addition results in a 
carry, condition code bit 1 is set; otherwise, bit 1 is cleared. If integer 
addition results in an overflow, condition code bit 0 is set; otherwise, 
bit 0 is cleared. Regardless of addition results, condition code bit 2 is 
always set to 0. 

addc can be used for ordinal or integer arithmetic. addc does not 
distinguish between ordinal and integer source operands. Instead, the 
processor evaluates the result for both data types and sets condition 
code bits 0 and l accordingly. 

An integer overflow fault is never signaled with this instruction. 

dst ~ src2 + srcl +AC.eel; 
AC.ccO ~ OCV2; 
# V = l if integer addition would have generated an overflow. 
# V = 0 otherwise 

# C is carry out of the ordinal addition of src 2 and src 1 

Trace 

Operation 

Type 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfr. 

#Example of double-precision arithmetic 
#Assume 64-bit source operands 
#in gO,gl and g2,g3 
cmpo 1, 0 #clears Bit 1 (carry bit) of 

#the AC.cc 
addc gO, g2, gO #add low-order 32 bits; 

# gO ~ g2 + gO + Carry Bit 
addc gl, g3, gl #add high-order 32 bits; 

addc 5BOH 

# g 1 ~ g3 + g 1 + Carry Bit 
# 64-bit result is in gO, gl 

REG 

addi, addo, subc, subi, subo 
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addi, addo 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

ad di 
ad do 

Add Integer 
Add Ordinal 

add* srcl, 
reg/I it/sfr 

src2, 
reg/litlsfr 

dst 
reg/sfr 

Adds src2 and src1 values and stores the result in dst. 

dst <:-- src2 + src1; 

Trace 

Operation 

Type 

Arithmetic 

addi r4, gS, r9 

addi 591H 
addo 590H 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a :·,Ji". 

integer Overflow. Result too large for destination 
register (addi only). If overflow occurs and 
AC.om =I, fault is suppressed and AC.io is set to 
I. Least significant 32-bits of the result are stored 
in dst. 

# r9 <:-- gS + r4 

REG 
REG 

addc, subi, subo, subc 
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Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

alterbit Alter Bit 

alterbit bitpos, src, 
reg/lit/sfr reg/lit/sfr 

dst 
reg/sfr 

Copies src value to dst with one bit altered. bitpos operand specifies bit 
to be changed; condition code determines value to which the bit is set. 
If condition code bit 1 = 1, selected bit is set; otherwise, it is cleared. 

if (AC.ccl=O) dst f- src and not (2"(bitpos mod 32)); 
else dst f- src or 2"(bitpos mod 32); 

Trace 

Operation 

Type 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfr. 

#assume AC.cc = 0102 
alterbit 24, g4, g9 # g9 f- g4, with bit 24 set 

alterbit 58FH REG 

chkbit, clrbit, notbit, setbit 
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and, andnot 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

and And 
andnot And Not 

and srcl, src2. dst 
reg/lit/sfr reg/I it/sfr reg/sfr 

and not srcl, src2. dst 
reg/lit/sfr reg/lit/sfr reg/sfr 

Performs a bitwise AND (and instruction) or AND NOT (andnot 
instruction) operation on src2 and srcl values and stores result in dst. 
Note in the action expressions below, src2 operand comes first, so that 
with the andnot instruction the expression is evaluated as: 

{src2 andnot (srcl)} 
rather than 

{src 1 andnot (src2)}. 

and: dst f- src2 and srcl; 

andnot: dst f- src2 and not (srcl); 

Trace 

Operation 

Type 

and Ox 17, g8, g2 
andnot r3, rl2, r9 

and 
andnot 

581H 
582H 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a ,1:fi·. 

# g2 f- g8 AND Ox17 
# r9 f- rl2 AND NOT r3 

REG 
REG 

nand,nor,not,notand,notor,or,ornot,xnor,xor 
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atadd 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

atadd Atomic Add 

atadd dst, 
reg/sfr 
addr 

src, 
reg/lit/sfr 

src!dst 
reg/sfr 

Adds src value (full word) to value in the memory location specified 
with src!dst operand. Initial value from memory is stored in dst. 

Memory read and write are done atomically (i.e., other processors must 
be prevented from accessing the quad-word of memory containing the 
word specified by src/dst operand until operation completes). 

Memory location in src!dst is the word's first byte (LSB) address. 
Address is automatically aligned to a word boundary. (Note that src!dst 
operand maps to srcl operand of the REG format.) 

tempa ~ src!dst and not(Ox3); #force alignment to word boundary 

temp~ memory_word (tempa); #LOCK asserted at begin of read 

memory_ word (tempa) ~ temp + src; #ordinal addition 

dst ~temp; 

Trace 

Operation 

Type 

atadd r8, r2, r11 

atadd 612H 

atmod 

# LOCK deasserted after 
# memory write completes 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a ~fr. 

And/or non-supervisor attempt to write to internal 
data RAM. 

# r8 ~ r2 +address r8, where r8 
# specifies the address of a word 
#in memory; 
# r1 l ~ initial value, stored at 
# address r8 in memory 

REG 
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at mod 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

atmod 

atmod 

Atomic Modify 

src/dst 
reg/sfr 
addr 

mask, 
reg/lit/sfr 

src!dst 
reg 

Moves selected bits of .midst value into memory location specified in 
src. Bits set in mask operand select bits to be modified in memory. 
Initial value from memory is stored in src/dst. 

Memory read and write are done atomically (i.e., other processors must 
be prevented from accessing the quad-word of memory containing the 
word specified with the src!dst operand until operation completes). 

Memory location in src is the modified word's first byte (LSB) 
address. Address is automatically aligned to a word boundary. 

tempa f- src and not (Ox3); #force alignment to word boundary 
temp f- memory_word(tempa); #LOCK asserted at 

# beginning of memory read 
memory_word(tempa) f- (src!dst and mask) or (temp and not(mask)); 
# LOCK deasserted after the memory write completes 
src/dst f- temp; 

Trace 

Operation 

Type 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a .~/i· 
and/or non-supervisor attempt to write to internal 
data RAM. 

atmod g5, g7, glO # g5 f- g5 masked by g7, where g5 

atmod 

atadd 

# specifies the address of a word in memory; 
# g 10 f- initial value, stored at 
# address g5 in memory 

610H REG 
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b,bx 
Mnemonic: b Branch 

bx Branch Extended 

Format: b targ 
disp 

bx efa 
addr 

efa: 

(reg) disp + 8(1P) disp [reg* scale] 

offset disp (regl) [reg2 *scale] 

offset (reg) disp (reg) disp (reg 1) [reg 2 *scale] 

Description: 

Action: 

Faults: 

Branches to the specified target. 

With the b instruction, IP specified with targ operand can be no farther 
than -223 to (223 - 4) bytes from current IP. When using the Intel i960 
family assembler, targ operand must be a label which specifies target 
instruction's IP. 

bx performs the same operation as b except the target instruction can 
be farther than -223 to (223 - 4) bytes from current IP. Here, the target 
operand is an effective address, which allows the full range of 
addressing modes to be used to specify target instruction's IP. The "IP 
+ displacement" addressing mode allows instruction to be IP-relative. 
Indirect branching can be performed by placing target address in a 
register then using a register-indirect addressing mode. 

Refer to Chapter 3, Data Types and Memory Addressing Modes for a 
complete discussion of the addressing modes. 

b: 
bx: 

Trace 

Operation 

IP ~ IP + displacement; # resume execution at new IP 
IP ~ efa; #resume execution at new IP 

Instruction. Branch. Breakpoint. 
Instruction and Branch Trace Events are signaled 
after instruction completion. Trace fault is 
generated if PC.te=l and TC.i or TC.b=l. 

Unimplemented. Execution from on-chip data 
RAM. 

Operand. Invalid operand value encountered. 
(bx only) 
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Example: 

Opcode: 

See Also: 
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b xyz 
bx 1330 (ip) 

b 
bx 

08H 
84H 

Opcode. Invalid operand encoding encountered 
(bx only). 

#IP f- xyz: 
# IP f- IP + 8 + L\30: 
#this example uses ip-relative addressing 

CTRL 
MEM 

bal, balx, BRANCH IF, COMPARE AND BRANCH, bbc, bbs 
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bal, balx 
Mnemonic: 

Format: 

efa: 

(reg) 

offset 

bal 
balx 

bal 

balx 

INSTRUCTION SET REFERENCE 

Branch And Link 
Branch And Link Extended 

targ 
disp 

efa, 
addr 

dst 
reg 

disp + 8(IP) 

disp 

disp [reg* scale] 

(regl) [reg2 * scale] 

offset (reg) disp (reg) disp (reg 1) [reg 2 *scale] 

Description: 

Action: 

Faults: 

Stores address of instruction following bal or balx then branches to 
specified target. 

With bal, address of next instruction is stored in register g14. targ 
operand value can be no farther than -223 to (223 - 4) bytes from 
current IP. When using the Intel i960 family assembler, targ must be a 
label which specifies target instruction's IP. 

balx performs same operation as bal except next instruction address is 
stored in dst. With balx, target instruction can be farther than -223 to 
(223 - 4) bytes from current IP. Here, the target operand is efa, which 
allows full range of addressing modes to be used to specify target IP. 
"IP + displacement" addressing mode allows instruction to be IP­
relative. Indirect branching can be performed by placing target address 
in a register and then using a register-indirect addressing mode. 

Refer to Chapter 3, Data Types and Addressing Modes for a complete 
discussion of addressing modes. 

bal: g14 f-- IP+ 4; #next IP destination is always gl4 
IP f-- IP + displacement; # resume execution at new IP 

balx: dst f-- IP + inst length; 
IP f-- efa; 

# instruction length is 4 or 8 bytes 
# resume execution at the new IP 

Trace Instruction . Branch. Breakpoint. 
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Opcode: 

See Also: 
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Operation 

bal xyz 

balx (g2), g4 

bal 
balx 

OBH 
85H 

Instruction and Branch Trace Events are signaled 
after instruction completion. Trace fault is 
generated if PC.te=l and TC.i or TC.br=l. 

Unimplemented. Execution from on-chip data 
RAM. 

Operand. Invalid operand value encountered. 

Opcode. Invalid operand encoding encountered. 

#IP~xyz; 

#IP~ (g2); 
# address of return instruction is stored in g4; 
# example of indirect addressing. 

CTRL 
MEM 

b, bx, BRANCH IF, COMPARE AND BRANCH, bbc, bbs 
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bbc,bbs 
Mnemonic: 

Format: 

Description: 

INSTRUCTION SET REFERENCE 

bbc[.tl.fJ 
bbs{.tl.fJ 

bb*{.tl.f} 

Check Bit and Branch If Clear 
Check Bit and Branch If Set 

bitpos, 
reg/lit 

src, 
reg/sfr 

targ 
disp 

Checks bit in src (designated by bitpos) and sets AC register condition 
code according to src value. Processor then pe1forms conditional 
branch to instruction specified with targ, based on condition code state. 

Optional .tor .f suffix may be appended to mnemonic. Use .t to speed­
up execution when these instructions usually take the branch; use .f to 
speed-up execution when these instructions usually do not take the 
branch. If suffix is not provided, assembler is free to provide one. 

For bbc, if selected bit in src is clear, the processor sets condition code 
to 0102 and branches to instruction specified with targ; otherwise, it 
sets condition code to 0002 and goes to next instruction. 

For bbs, if selected bit is set, the processor sets condition code to 0102 
and branches to targ; otherwise, it sets condition code to 0002 and goes 
to next instruction. 

targ can be no farther than -212 to (212 - 4) bytes from current IP. 
When using the Intel i960 family assembler, targ must be a label which 
specifies target instruction's IP. 
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Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

bbc: 

bbs: 

Trace 

Operation 

Type 

if ((.1rc and 211(bitpos mod 32)) = 0) 
{ 

IP (----IP+ 4 + (&1placcme111 * 4): 
#resume execution at new IP 

f 
else AC.cc (---- 0002: 
#resume execution at next IP 

if ((.1-rc and 211(hitpos mod 32)) = I) 
{ 
AC.cc (---- 0102: 
IP (---- IP+ 4 + (displacement ':' 4 ); 
#resume execution at new IP 
) 

else AC.cc (---- 0002: 
#resume execution at next IP 

Instruction. Branch (if taken). Breakpoint. 
Instruction and Branch Trace Events arc signaled 
after instruction completion. Trace fault ts 
generated if PC.te= 1 and TC.i or TC.b=I. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a .1:fi·. 

#assume bit 10 of r6 i~ clear 
bbc I 0. r6. xyz #bit I 0 of r6 is checked 

# and found clear: 
#AC.cc (---- 010 

bbc 
bbs 

30H 
37H 

#IP (---- xyz; 

COBR 
COBR 

chkbit, b, bx bal, balx, COMPARE AND BRANCH. bbc, bbs, 
BRANCH IF 
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INSTRUCTION SET REFERENCE 

BRANCH IF 
Mnemonic: 

Format: 

Description: 

be{ .tl.f} 
bne{.tl.f} 
bl { .tl.f} 
hie{ .tl.f} 
bg{.tl.f} 
bge{ .tl.f} 
ho{ .tl.f} 
bno{.tl.f} 

b* { .tl.f} 

Branch If Equal/True 
Branch If Not Equal 
Branch If Less 
Branch If Less Or Equal 
Branch If Greater 
Branch If Greater Or Equal 
Branch If Ordered 
Branch If Unordered/False 

targ 
<lisp 

Branches to instruction specified with targ operand according to AC 
register condition code state. 

Optional.tor .f suffix may be appended to mnemonic. Use .t to speed­
up execution when these instructions usually take the branch; use .f to 
speed-up execution when these instructions usually do not take the 
branch. If a suffix is not provided, assembler is free to provide one. 

For all branch-if instructions except bno, the processor branches to 
instruction specified with targ, if the logical AND of condition code 
and mask-part of opcode is not zero. Otherwise, it goes to next 
instruction. 

For bno, the processor branches to instruction specified with targ if 
logical AND of condition code and mask-part of opcode is zero. 
Otherwise, it goes to next instruction. 

For instance, bno (unordered) can be used as a branch-if false 
instruction when coupled with chkbit. For bno, branch is taken if 
condition code equals 0002. be can be used as branch-if true 
instruction. 

NOTE 

bo and bno are used by implementations that include floating point 
coprocessor for branch operations involving real numbers. bno can be 
used as branch-if-false instruction when used after chkbit. be can be 
used as branch-if-true instruction when following chkbit. 

targ value or absolute addresses can be no farther than -223 to (223 - 4) 
bytes from current IP. When using the Intel i960 family assembler, targ 
must be a label which specifies target instruction's IP. 

The following table shows condition code mask for each instruction. 
The mask is in opcode bits 0-2. 
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Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

Instruction Mask Condition 

bno 0002 Unordered 

bg 0012 Greater 

be 0102 Equal 

bge 0112 Greater or equal 

bl 1002 Less 

bne 1012 Not equal 

hie 1102 Less or equal 

ho 11 I 2 Ordered 

For all instructions except boo: 

bno: 

Trace 

Operation 

if ((mask and AC.cc) -t:- 0002) IP~ IP+ displacement; 
#resume execution at new IP 

else: #resume execution at next IP 

if (AC.cc = 0002) IP ~ IP+ displacement; 
#resume execution at new IP 

else #resume execution at next IP 

Instruction. Branch (if taken). Breakpoint. 
Instruction and Branch Trace Events are signaled 
after instruction completion. Trace fault is 
generated if PC.te= l and TC.i or TC.b= I. 

Unimplemented. Execution from on-chip data 
RAM. 

#assume (AC.cc AND l 002J -t:- 0 
bl xyz #IP~ xyz: 

be 12H CTRL 
bne 15H CTRL 
bl 14H CTRL 
ble 16H CTRL 
bg llH CTRL 
bge 13H CTRL 
ho 17H CTRL 
bno lOH CTRL 

b, bx, bbc, bbs, COMPARE AND BRANCH, bal, balx, BRANCH IF 
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call 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

call 

call 

Call 

targ 
disp 

Calls a new procedure. targ operand specifies the IP of called 
procedure's first instruction. When using the Intel i960 family 
assembler, targ must be a label. · 

In executing this instruction, the processor performs a local call 
operation as described in Local Calls section of Chapter 5, Procedure 
Calls. As part of this operation, the processor saves the set of local 
registers associated with the calling procedure and allocates a new set 
of local registers and a new stack frame for the called procedure. 
Processor then goes to the instruction specified with targ and begins 
execution. 

targ can be no farther than -223 to (223 - 4) bytes from current IP. 

wait for any uncompleted instructions to finish; 
temp f- (SP+ OxlO) and not (Oxf); #round to next boundary, 
memory(FP) f- rO: 15; #these accesses are cached in 
RIPf- next IP #local register cache 
PFP f- FP; 
PFP.rt f- 0002; 
FP f- temp; 
SP f- temp + 64; 
IP f- IP + displacement; 

Trace 

Operation 

call xyz 

call 09H 

bal, calls, callx 

Instruction. Call. Breakpoint. 
Instruction and Call Trace Events are signaled 
after instruction completion. Trace fault is 
generated if PC.te=l and TC.i orTC.c is=l. 

Unimplemented. Execution from on-chip data 
RAM. 

#IP f- xyz 

CTRL 
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calls 
Mnemonic: 

Format: 

Description: 

Action: 

calls 

calls 

INSTRUCTION SET REFERENCE 

Call System 

src 
reg/lit/sfr 

Calls a system procedure. targ specifies called procedure· s number. 
For calls, the processor performs system call operation described in 
System Calls section of Chapter 5, Procedure Calls. targ provides an 
index to a system procedure table entry from which the processor gets 
the called procedure's IP. 

The called procedure can be a local or supervisor procedure, depending 
on system procedure table entry type. If it is a supervisor procedure. 
the processor switches to supervisor mode (if not already in this mode). 

Processor also allocates a new set of local registers and new stack 
frame for called procedure. If the processor switches to supervisor 
mode, the new stack frame is created on the supervisor stack. 

if (src> 259) Protection-length fault; 
wait for any uncompleted instructions to finish; 
temp_entry ~ memory_word(SPT(src)); 
# SPT(src) is the address of the system procedure table entry targ. 
RIP ~ next IP; 
if ((temp_entry.type =local) or (PC.em= supervisor)) 

{ # no stack switch required 
#round to next boundary, 

temp_FP ~(SP+ OxlO) and not(Oxf); 
temp_rt ~ 0002; #return type is local 

else 
) 

# stack switch to supervisor stack 
#required; read supervisor 

temp_FP ~ memory_word(cached(SPT); 

# stack pointer 
# set return type to supervisor 

if (PC.te = 0) temp_rt ~ 0 I 02; 

else temp_rt ~ 0112; 

PC.em ~ supervisor; 
#Trace enable bit of the supervisor 
PC.te ~ temp_FP.T; 
#stack pointer is written to PC.te 
} 
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Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

# These accesses are cached in the local register cache. 
memory(FP) f- rO: 15 
PFPf-FP; 
PFP.ft f- temp_rt; 
FP f- temp_FP; 
SP f- temp_FP + 64; 
IP f- temp_entry and not (Ox3); 

Trace 

Operation 

Type 

Protection 

calls rl2 

calls 660H 

bal, call, callx 

Instruction. Call. Supervisor. Breakpoint. 
Instruction, Call and Supervisor Trace Events are 
signaled after instruction completion. Trace fault 
is generated if PC.te=l and TC.i, TC.c or TC.s=l. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a ~fr. 

Length. Specified a system procedure number 
greater than 259. 

# IP f- value obtained from 
# procedure table for procedure 
#number given in r12 

REG 

9-24 



cal Ix 
Mnemonic: callx 

Format: callx 

efa: 

(reg) 

offset 

INSTRUCTION SET REFERENCE 

Call Extended 

efa 
addr 

disp + S(lP) 

disp 

disp [reg * s<.:ale] 

(regl) [reg2 * srnle] 

offset (reg) disp (reg) disp (reg l) [reg 2 * scale] 

Description: 

Action: 

Calls new procedure. efa specifies IP of called procedure's first 
instruction. 

In executing callx, the processor performs a local call as described in 
local Calls section of Chapter 5, Procedure Calls. As part of this 
operation, the processor allocates a new set of local registers and a new 
stack frame for the called procedure. Processor then goes to the 
instruction specified with efa and begins execution of new procedure. 

callx performs the same operation as call except the target instruction 
can be farther than -223 to (223 - 4) bytes from current IP. 

efa is an effective address, which allows the full range of addressing 
modes to be used to specify target instruction's IP. The "IP + 
displacement" addressing mode allows the instruction to be IP-relative. 
Indirect calls can be performed by placing the target address in a 
register and then using a register-indirect addressing mode. 

Refer to Chapter 3, Data Tvpes and Memory Addressing Modes for a 
complete discussion of addressing modes. 

wait for any uncompleted instru<.:tions to finish; 
temp~ (SP+ Ox IO) and not (Oxf); #round to next boundary 
RIP ~ next IP; 
memory(FP) ~ rO: 15 #these accesses are cached in 

# local register cache 
PFP~FP; 

PFP.rt ~ 0002 
FP ~temp; 
SP ~ temp + 64; 
IP~ efa; 
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Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

Trace 

Operation 

callx (g5) 

callx 86H 

call, calls, bal 

Instruction. Call. Breakpoint. 
Instruction and Call Trace Events are signaled 
after instruction completion. Trace fault is 
generated if PC.te=l and TC.i or TC.c=l. 

Unimplemented. Execution from on-chip data 
RAM. 

Operand. Invalid operand value encountered. 

Opcode. Invalid operand encoding encountered. 

# IP f- (g5), where the address 
# in g5 is the address of the new procedure 

MEM 
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ch kb it 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

chkbit 

chkbit 

Check Bit 

hitpos. 
reg/lit/sfr 

src 
reg/lit/sfr 

Checks bit in src designated by bitpos and sets condition code 
according to value found. If bit is set, condition code is set to 0 I 02; if 
bit is clear, condition code is set to 0002. 

if ((src and 2"(hitpos mod 32)) = 0) AC.cc~ 0002; 
else AC.cc~ 0102: 

Trace 

Operation 

Type 

chkbit 13, g8 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a .~fr. 

# checks bit 13 in g8 and 
# sets AC.cc according to the result 

chkbit 5AEH REG 

alterbit, clrbit, notbit, setbit, cmpi, cmpo 
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clrbit 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

cir bit 

clrbit 

Clear Bit 

bitpos, 
reg/lit/sfr 

src, 
reg/lit/sfr 

dst 
reg/sfr 

Copies src value to dst with one bit cleared. bitpos operand specifies 
bit to be cleared. 

dst ~ src and not(2"(bitpos mod 32)); 

Trace 

Operation 

Type 

clrbit 23, g3, g6 

clrbit 58CH 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfr. 

# g6 ~ g3 with bit 23 cleared 

REG 

alterbit, chkbit, notbit, setbit 
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INSTRUCTION SET REFERENCE 

cmpdeci, cmpdeco 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

cmpdeci 
cmpdeco 

Compare and Decrement Integer 
Compare and Decrement Ordinal 

cmpdec* srcl, src2, 
reg/lit/sfr reg/lit/sfr 

dst 
reg/sfr 

Compares src2 and srcl values and sets condition code according to 
comparison results. src2 is then decremented by one and result is 
stored in dst. The following table shows condition code setting for the 
three possible results of the comparison. 

Condition Code Comparison 

1002 srcl < src2 

0102 srcl = src2 

0012 srcl > src2 

These instructions are intended for use in ending iterative loops. For 
cmpdeci, integer overflow is ignored to allow looping down through 
the minimum integer values. 

if (src 1 < src2) AC.cc f- 1002; 
else if ( srcl = src2) AC.cc f- 0 I 02; 

else AC.cc f- 0012; 
dst f- src2 - l; #overflow suppressed for cmpdeci instruction 

Trace 

Operation 

Type 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfr. 

cmpdeci 12, g7, gl #compares g7 with 12 and sets 
#AC.cc to indicate the result; 
# gl f- g7 - 1 

cmpdeci 
cmpdeco 

5A7H 
5A6H 

REG 
REG 

cmpinco, cmpo, cmpi, cmpinci, COMPARE AND BRANCH 
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INSTRUCTION SET REFERENCE 

cmpi, cmpo 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

cm pi Compare Integer 
cm po Compare Ordinal 

cmp* srcl, src2 
reg/lit/sfr reg/lit/sfr 

Compares src2 and srcl values and sets condition code according to 
comparison results. The following table shows condition code settings 
for the three possible comparison results. 

Condition Code Comparison 

1002 srcl < src2 

0102 srcl = src2 

0012 srcl > src2 

cmpi followed by a branch-if instruction is equivalent to a compare­
integer-and-branch instruction. The latter method of comparing and 
branching produces more compact code; however, the former method 
can result in faster running code if used to take advantage of pipelining 
in the architecture. Same is true for cmpo and the compare-ordinal­
and-branch instructions. 

if (src I < src2) AC.cc (- l 002; 
else if (srcl = src2) AC.cc (- 0 I 02; 

else AC.cc (- 0012; 

Trace 

Operation 

Type 

cmpo r9, OxlO 

bg xyz 

cm pi 
cm po 

5AlH 
5AOH 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfr. 

# compares the value in r9 with Ox 10 
# and sets AC.cc to indicate the result 
#branches to xyz if the value of r9 
# was greater than Ox 10 

REG 
REG 

COMP ARE AND BRANCH, cmpdeci, cmpdeco,cmpinci, cmpinco, 
concmpi, concmpo 
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INSTRUCTION SET REFERENCE 

cmpinci, cmpinco 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

cmpinci 
cmpinco 

Compare and Increment Integer 
Compare and Increment Ordinal 

cmpinc* srcl, src2, 
rcg/lit/sfr 

dst 
reg/sfr reg/lit/sfr 

Compares src2 and srcl values and sets condition code according to 
comparison results. src2 is then incremented by one and result is stored 
in dst. The following table shows condition code settings for the three 
possible comparison results. 

Condition Code Comparison 

1002 srcl < src2 

0102 srcl = src2 

0012 srcl > src2 

These instructions are intended for use in ending iterative loops. For 
cmpinci, integer overflow is ignored to allow looping up through the 
maximum integer values. 

if (srcl < src2) AC.cc~ 1002; 
else if (srcl = src2) AC.cc~ 0102; 

else AC.cc~ 0012; 
dst ~ src2 + I; #overflow suppressed for cmpinci instruction 

Trace 

Operation 

Type 

Instruction. Breakpoint. 

U11imple111c11ted. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of as.fr.. 

cmpinco r8, g2, g9 #compares the values in g2 and 

cmpinci 
cmpinco 

# r8 and sets AC.cc to indicate the result; 
# g9 ~ g2 + 1 

SASH 
SA4H 

REG 
REG 

cmpdeco, cmpo, cmpi, cmpdeci, COMPARE AND BRANCH 
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INSTRUCTION SET REFERENCE 

COMPARE AND BRANCH 
Mnemonic: 

Format: 

Description: 

cmpibe{ .tl.f} 
cmpibne { .tl.f} 
cmpibl { .tl.f} 
cmpible{ .tl.f} 
cmpibg{ .tl.f} 
cmpibge{ .tl.f} 
cmpibo{ .tl.f} 
cmpibno{.tl.f} 

cmpobe{ .tl.f} 
cmpobne{ .tl.f} 
cmpobl { .tl.f} 
cmpoble{ .tl.f} 
cmpobg{ .tl.f} 
cmpobge{ .tl.f} 

cmpib* { .tl.f} 

cmpob* {.ti.fl 

Compare Integer And Branch If Equal 
Compare Integer And Branch If Not Equal 
Compare Integer And Branch If Less 
Compare Integer And Branch If Less Or Equal 
Compare Integer And Branch If Greater 
Compare Integer And Branch If Greater Or Equal 
Compare Integer And Branch If Ordered 
Compare Integer And Branch If Not Ordered 

Compare Ordinal And Branch If Equal 
Compare Ordinal And Branch If Not Equal 
Compare Ordinal And Branch If Less 
Compare Ordinal And Branch If Less Or Equal 
Compare Ordinal And Branch If Greater 
Compare Ordinal And Branch If Greater Or 
Equal 

srcl, src2, targ 
reg/lit reg/sfr disp 

srcl, src2, targ 
reg/lit reg/sfr disp 

Compares src2 and srcl values and sets AC register condition code 
according to comparison results. If logical AND of condition code and 
mask-part of opcode is not zero, the processor branches to instruction 
specified with targ; otherwise, the processor goes to next instruction. 

Optional.tor .f suffix may be appended to mnemonic. Use .t to speed­
up execution when these instructions usually take the branch. Use .f to 
speed-up execution when these instructions usually do not take the 
branch. If suffix is not provided, assembler is free to provide one. 

targ can be no farther than -212 to (212 - 4) bytes from current IP. 
When using the Intel i960 family assembler, targ must be a label which 
specifies target instruction's IP. 

The following table shows the condition-code mask for each 
instruction. The mask is in bits 0-2 of the opcode. 
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Action: 

Faults: 

INSTRUCTION SET REFERENCE 

Instruction Mask Branch Condition 

cmpibno 0002 No Condition 

cmpibg 0012 srcl > src2 

cmpibe 0102 srcl = src2 

cmpibge 0112 srcl ~ src2 

cmpibl 1002 srcl < src2 

cmpibne 1012 srcl :/.: src2 

cmpible 1102 srcl:::;; src2 

cmpibo 1112 Any Condition 

cmpobg 0012 srcl > src2 

cm po be 0102 srcl = src2 

cmpobge 0112 src1 ~ src2 

cm po bl 1002 srcl < src2 

cmpobne 1012 srcl :/.: src2 

cmpoble 1102 src1 ~ src2 

NOTE 

cmpibo always branches; cmpibno never branches. 

Functions that these instructions perform can be duplicated with a cmpi 
or cmpo followed by a branch-if instruction, as described in this 
chapter for the cmpi and cmpo instructions. 

if (src I < src2) AC.cc ~ 1002; 
else if (srcl = src2) AC.cc ~ 0102; 

else AC.cc~ 0012; 
if ((mask and AC.cc) :t 0002) IP~ IP+ 4 +(displacement* 4); 

# resume execution at the new IP 
else IP ~ IP + 4; #resume execution at the next IP 

Trace 

Operation 

Type 

Instruction. Branch (if taken). Breakpoint. 
Instruction and Branch Trace Events are signaled 
after instruction completion. Trace fault is 
generated if PC.te=l and TC.i or TC.br=l. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfr. 
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Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

# assume g3 < g9 
cmpibl g3, g9, xyz # g9 is compared with g3; 

#IP~ xyz. 
#assume 19 ~ r7 
cmpobge 19, r7, xyz # 19 is compared with r7 

#IP~ xyz. 

cmpibe 
cmpibne 
cm pi bl 
cmpible 
cmpibg 
cmpibge 
cmpibo 
cmpibno 
cm po be 
cmpobne 
cmpobl 
cmpoble 
cmpobg 
cmpobge 

3AH 
3DH 
3CH 
3EH 
39H 
3BH 
3FH 
38H 
32H 
35H 
34H 
36H 
31H 
33H 

COBR 
COBR 
COBR 
COBR 
COBR 
COBR 
COBR 
COBR 
COBR 
COBR 
COBR 
COBR 
COBR 
COBR 

BRANCH IF, cmpi, cmpo, bal, balx 
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INSTRUCTION SET REFERENCE 

concmpi, concmpo 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

concmpi Conditional Compare Integer 
concmpo Conditional Compare Ordinal 

concmp* srcl, 
reg/lit/sfr 

src2 
reg/lit/sfr 

Compares src2 and src 1 values if condition code bit 2 is not set. If 
comparison is performed, condition code is set according to 
comparison results. Otherwise, condition codes are not altered. 

These instructions are provided to facilitate bounds checking by means 
of two-sided range comparisons (e.g., is A between B and C?). They 
are generally used after a compare instruction to test whether a value is 
inclusively between two other values. 

The example below illustrates this application by testing whether g3 
value is between g5 and g6 values, where g5 is assumed to be less than 
g6. First a comparison (cmpo) of g3 and g6 is performed. If g3 is less 
than or equal to g6 (i.e., condition code is either 0102 or 0012), a 
conditional comparison (concmpo) of g3 and g5 is then performed. If 
g3 is greater than or equal to g5 (indicating that g3 is within the bounds 
of g5 and g6), condition code is set to 0102; otherwise, it is set to 0012. 

if (AC.cc2 = 0) 
{ 
if (srcl ;;::: src2) AC.cc f-- 0102; 
else AC.cc f-- 0012; 
} ; 

Trace 

Operation 

Type 

cmpo g6, g3 

concmpo g5, g3 

concmpi 
con cm po 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfr. 

# compares g6 and g3 and 
#sets AC.cc 
#if AC.cc i:- lXX, 
# g5 is compared with g3 

5A3H 
5A2H 

REG 
REG 

cmpo, cmpi, cmpdeci, cmpdeco, cmpinci, cmpinco, COMPARE 
AND BRANCH 
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divi, divo 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

di vi 
divo 

div* 

Divide Integer 
Divide Ordinal 

srcl, 
reg/lit/sfr 

src2, 
reg/lit/sfr 

dst 
reg/sfr 

Divides src2 value by srcl value and stores quotient of the result in dst. 
Remainder (if any) is discarded. 

For divi, an integer-overflow fault can be signaled. 

if (src2 = 0) Arithmetic Zero Divide fault; 
dst f-- quotient(src2 I srcl); 
# src2, srcl and dst are 32-bits 

Trace 

Operation 

Type 

Arithmetic 

divo r3, r8, rl 3 

di vi 
divo 

74BH 
70BH 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfr. 

Zero Divide. The srcl operand is 0. 
Integer Ovetflow. Result too large for destination 
register (divi only). If overflow occurs and 
AC.om=l, fault is suppressed and AC.io is set to 
l. Result's least significant 32-bits are stored in 
dst. 

# rl 3 f-- r8/r3 

REG 
REG 

ediv, mulo, muli, emul 
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ediv 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

ediv 

ediv 

Extended Divide 

src], 
reg/lit/sfr 

src2, 
reg/lit/sfr 

dst 
reg/sfr 

Divides src2 by srcl and stores result in dst. The src2 value is a long 
ordinal (64 bits) contained in two adjacent registers. src2 specifies the 
lower numbered register which contains operand's least significant 
bits. src2 must be an even numbered register (i.e., rO, r2, r4, ... or gO, 
g2, ... or sfO, sf2, ... ). srcl value is a normal ordinal (i.e., 32 bits). 

The result consists of a one-word remainder and a one-word quotient. 
Remainder is stored in the register designated by dst; quotient is stored 
in the next highest numbered register. dst must be an even numbered 
register (i.e., rO, r2, r4, ... or gO, g2, ... or sfO. sf2, ... ). 

This instruction performs ordinal arithmetic. 

If this operation overflows (quotient or remainder do not fit in 32-bits), 
no fault is raised and the result is undefined. 

if (src2=0) Arithmetic Zero Divide fault; 
dst ~ (src2 - (src2 I srcl) * srcl); #remainder 
dst + l ~ (src2 I srcl); #quotient 
# src2 is 64-bits; srcl, dst and dst+ 1 are 32-bits 

Trace 

Operation 

Type 

Arithmetic 

ediv g3, g4, glO 

ediv 671H 

emul, divi, divo 

instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfi·. 

Zero Divide. The srcl operand is 0. 

# glO ~remainder of g4,g5/g3 
# gl 1 ~quotient of g4,g5/g3 

REG 
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emu I 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

emul 

emul 

INSTRUCTION SET REFERENCE 

Extended Multiply 

srcl, 
re g/li tis fr 

src2, 
reg/lit/sfr 

dst 
reg/sfr 

Multiplies src2 by srcl and stores the result in dst. Result is a long 
ordinal (64 bits) stored in two adjacent registers. dst specifies lower 
numbered register, which receives the result's least significant bits. dst 
must be an even numbered register (i.e., rO, r2, r4, ... or gO, g2, ... or 
sfO, sf2, ... ). 

This instruction performs ordinal arithmetic. 

dst ~ src2 * srcl; # srcl and src2 are 32-bits; dst is 64-bits. 

Trace Instruction. Breakpoint. 

Operation 

Type 

emul r4, r5, g2 

emul 670H 

ediv, muli, mulo 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfr. 

# g2,g3 ~ r4 * r5 

REG 
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leshro I 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

eshro 

eshro 

INSTRUCTION SET REFERENCE 

Extended Shift Right Ordinal 

srcl, 
reg/lit/sfr 

src2, 
reg/lit/sfr 

dst 
reg/sfr 

Shifts src2 right by (src I mod 32) places and stores the result in dst. 
Bits shifted beyond the least-significant bit are discarded. 

src2 value is a long ordinal (i.e., 64 bits) contained in two adjacent 
registers. src2 operand specifies the lower numbered register, which 
contains operand's least significant bits. src2 operand must be an even 
numbered register (i.e .. rO. r2. r4 .... or gO, g2, ... or sfO. sf2, ... ). 

srcl operand is a single 32-bit register where the lower 5-bits specify 
the number of places that the src2 operand is to be shifted. 

The shift operation result's least significant 32 bits is stored in dst. 

dst ~ src2 >> (.1Tcl mod 32); 
# src2 is 64 bits. srcl and dst are 32 bits 

Trace 

Operation 

Type 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfr. 

eshro g3, g4. g 11 # gl I ~ g4.5 shifted right by (g3 MOD 32) 

eshro 5D8H REG 

SHIFT, extract 
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extract 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

extract 

extract 

Extract 

bitpos, 
reg/lit/sfr 

Zen, 
reg/lit/sfr 

src/dst 
reg 

Shifts a specified bit field in src/dst right and zero fills bits to left of 
shifted bit field. bitpos value specifies the least significant bit of the bit 
field to be shifted; Zen value specifies bit field length. 

src!dst ~ (src!dst J2A (bitpos mod 32)) and (2A(fen - 1 ); 

Trace 

Operation 

Type 

extract 5, 12, g4 

extract 651H 

modify 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfr. 

# g4 f- g4 with bits 5 through 16 shifted right 

REG 
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FAULT IF 
Mnemonic: 

Format: 

Description: 

Action: 

INSTRUCTION SET REFERENCE 

faulte{ .tl.f} Fault If Equal 
faultne{ .tl.f} Fault If Not Equal 
fault) { .tl.f} Fault If Less 
faultle{ .tl.f} Fault If Less Or Equal 
faultg { . tl.f} Fa ult If Greater 
faultge{ .tl.f} Fault If Greater Or Equal 
faulto{ .tl.f} Fault If Ordered 
faultno{ .ti.fl Fault If Not Ordered 

fault* { .tl.f} 

Raises a constraint-range fault if the logical AND of the condition code 
and opcode's mask-part is not zero. For faultno (unordered), fault is 
raised if condition code is equal to 0002. 

Optional .t or .f suffix may be appended to the mnemonic. Use .t to 
speed-up execution when these instructions usually fault; use .f to 
speed-up execution when these instructions usually do not fault. If a 
suffix is not provided, the assembler is free to provide one. 

faulto and faultno are provided for use by implementations with a 
floating point coprocessor. They are used for compare and branch (or 
fault) operations involving real numbers. 

The following table shows the condition-code mask for each 
instruction. The mask is opcode bits 0-2. 

Instruction Mask Condition 

faultno 0002 Unordered 

faultg 0012 Greater 

faulte 0102 Equal 

faultge 0112 Greater or equal 

faultl 1002 Less 

faultne 1012 Not equal 

faultle 1102 Less or equal 

faulto 1112 Ordered 

For all instructions except faultno: 
if ((mask and AC.cc) =F- 0002) Constraint-range fault; 

faultno: 
if (AC.cc=0002) Constraint-range fault; 
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Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

Trace 

Operation 

Constraint 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Range. If condition being tested is true. 

#assume (AC.cc AND 1102) - 0002 
faultle # Constraint Range Fault is generated 

faulte lAH CTRL 
faultne IDH CTRL 
fault! lCH CTRL 
faultle lEH CTRL 
faultg 19H CTRL 
faultge lBH CTRL 
faulto lFH CTRL 
faultno 18H CTRL 

BRANCH IF, TEST 
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flush reg 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

INSTRUCTION SET REFERENCE 

flushreg Flush Local Registers 

flushreg 

Copies the contents of every cached register set. except the current set, 
to its associated stack frame in memory. The entire register cache is 
then marked as purged (or invalid). On a return to a stack frame for 
which the local registers are not cached, the processor reloads the 
locals from memory. 

flushreg is provided to allow a compiler or applications program to 
circumvent the processor's normal call/return mechanism. For 
example, a compiler may need to go back several frames in the stack 
on the next return, rather than using the normal return mechanism that 
returns one frame at a time. Since the local registers of an unknown 
number of previous stack frames may be cached, a flushreg must be 
executed prior to modifying the PFP to return to a frame other than the 
one directly below the current frame. 

Write all cached local register sets - except the current set - to 
memory; Invalidate the local register cache. 

Trace 

Operation 

Type 

flushreg 

flushreg 66D 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor attempt to write to 
internal data RAM. 

REG 
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fmark 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SE"E REFERENCE 

fmark· Force Mark 

fmark 

Generates a breakpoint trace event. Causes a breakpoint trace event to 
be generated, regardless of breakpoint trace mode flag setting, 
providing the PC register trace enable bit (bit 0) is set. 

When a breakpoint trace event is detected, the PC register trace-fault­
pending flag (bit 10) and the TC register breakpoint-trace-event flag 
(bit 23) are set. Then, a breakpoint-trace fault is generated before the 
next instruction executes. 

For more information on trace fault generation, refer to Chapter 7, 
Faults. 

if (PC.te=l) 
{ 
PC.tfp f-- 1; 
TC.bte f-- 1; 
Trace Breakpoint trace fault 
} 

Trace 

Operation 

ld xyz, r4 
addi r4, r5, r6 
fmark 

Instruction. Breakpoint. Instruction and 
Breakpoint Trace Events are signaled after 
instruction completion. Trace fault is generated if 
PC.te=l. 

Unimplemented. Execution from on-chip data 
RAM. 

# Breakpoint trace event is generated at 
# this point in the instruction stream. 

fmark 66CH REG 

mark 
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INSTRUCTION SET REFERENCE 

LOAD 
Mnemonic: Id Load 

ldob Load Ordinal Byte 
ldos Load Ordinal Short 
ldib Load Integer Byte 
I dis Load Integer Short 
ldl Load Long 
ldt Load Triple 
ldq Load Quad 

Format: Id* efa, dst 
addr reg 

efa: 

(reg) disp + 8(IP) disp [reg * scale] 

offset disp (regl) [reg2 *scale] 

offset (reg) disp (reg) disp (reg I) [reg 2 * scale] 

Description: Copies byte or byte string from memory into a register or group of 
successive registers. 

efa specifies the address of first byte to be loaded. The full range of 
addressing modes may be used in specifying efa. (Refer to Chapter 3 
section titled Addressing Modes for description of addressing modes.) 

dst specifies a register or the first (lowest numbered) register of 
successive registers. 

ldob and ldib load a byte and ldos and ldis load a half word and 
convert it to a full 32-bit word. Data being loaded is sign-extended 
during integer loads and zero-extended during ordinal loads. 

Id, ldl, ldt and ldq instructions copy 4, 8, 12 and 16 bytes, respectively, 
from memory into successive registers. 

For ldl, dst must specify an even numbered register (e.g., gO, g2, ... or 
rO, r2, ... ).For ldt and ldq, dst must specify a register number that is a 
multiple of four (e.g., gO, g4, g8, ... or rO, r4, r8, ... ). Results are 
unpredictable if registers are not aligned on the required boundary or if 
data extends beyond register gl5 or r15 for ldl, ldt or ldq. 
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Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

Id: 
ldob: 
ldos: 
ldib: 
ldis: 
ldl: 
ldt: 
ldq: 

Trace 

Operation 

dst f- memory_word (efa); 

dst f- memory_byte (efa) zero-extended to 32 bits; 
dst f- memory_short (efa) zero-extended to 32 bits; 
dst f- memory_byte (efa) sign-extended to 32 bits; 
dst f- memory_short (efa) sign-extended to 32 bits; 
dst f- memory_long (efa); 

dst f- memory_triple (efa); 

dst f- memory_quad (efa); 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Unimplemented. An unaligned efa was referenced; 
unaligned support was disabled. 

Operand. Invalid operand value encountered. 

Opcode. Invalid opcode encoding encountered. 

ldl 2450 (r3), rlO # rlO, rl I f- r3 + 2450 in memory 

Id 90H MEM 
ldob 80H MEM 
ldos 88H MEM 
ldib COH MEM 
I dis C8H MEM 
ldl 98H MEM 
ldt AOH MEM 
ldq BOH MEM 

MOVE, STORE 
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INSTRUCTION SET REFERENCE 

Ida 
Mnemonic: Ida Load Address 

Format: Ida efa, dst 
reg 

efa: 

(reg) disp + 8(IP) disp [reg * scale I 

offset disp (reg I) [reg2 * scale] 

offset (reg) disp (reg) disp (reg I) [reg 2 * scale] 

Description: 

Action: 

Faults: 

Example: 

Opcode: Ida 

Computes the effective address (efa) and stores it in dst. Computed 
value is not checked for validity. Any addressing mode may be used to 
calculate efa. 

An important application of this instruction is to load a constant longer 
than 5 bits into a register. (To load a register with a constant of 5 bits or 
less, mov can be used with a literal as the src operand.) 

dst ~ efa; 

Trace 

Operation 

Ida 58 (g9), gl 

Ida Ox749, r8 

SCH MEM 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Operand. Invalid operand value encountered. 

Opcode. Invalid opcode encoding encountered. 

# g l ~effective address of g9 + 58 

# r8 ~constant Ox749 
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mark 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

mark Mark 

mark 

Generates breakpoint trace event if breakpoint trace mode is enabled. 
Breakpoint trace mode is enabled if the PC register trace enable bit (bit 
0) and the TC register breakpoint trace mode bit (bit 7) are set. 

When a breakpoint trace event is detected, the PC register trace-fault­
pending flag (bit 10) and the TC register breakpoint-trace-event flag 
(bit 23) are set. Then, before the next instruction is executed, a 
breakpoint trace fault is generated. 

If breakpoint trace mode is not enabled, mark behaves like a no-op. 

For more information on trace fault generation, refer to Chapter 8, 
Tracing and Debugging. 

if((PC.te=l) and (TC.br=l)) 
{ 

Trace 

Operation 

PC.tfp ~ 1; 
TC.bte ~ l; 
Trace Breakpoint trace fault; 
} 

Instruction. Breakpoint (if enabled). 
Instruction and Breakpoint Trace Events are 
signaled after instruction completion. Trace fault 
is generated if PC.te=l and TC.i or TC.br=l. 

Unimplemented. Execution from on-chip data 
RAM. 

# Assume that the breakpoint trace mode is enabled. 
ld xyz, r4 
addi r4, r5, r6 
mark 
# Breakpoint trace event is generated at this point 
# in the instruction stream. 

mark 66BH REG 

fmark, modpc, modtc 
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modac 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

modac 

modac 

Modify AC 

1nask, 
reg/lit/sfr 

src. 
reg/lit/sfr 

dst 
reg/sfr 

Reads and modifies the AC register. src contains the value to be placed 
in the AC register; mask specifies bits that may be changed. Only bits 
set in mask are modified. Once the AC register is changed, its initial 
state is copied into dst. 

temp~ AC 

AC~ (src and mask) or (AC and not (mask)); 

dst ~temp; 

Trace 

Operation 

Type 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a ~:fr. 

modac gl, g9, g12 #AC~ g9, masked by gl 

# gl2 ~initial value of AC 

modac 645H REG 

modpc, modtc 
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modi 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

modi 

modi 

INSTRUCTION SET REFERENCE 

Modulo Integer 

srcl, 
reg/lit/sfr 

src2, 
reg/lit/sfr 

dst 
reg/sfr 

Divides src2 by srcl, where both are integers and stores the modulo 
remainder of the result in dst. If the result is nonzero, dst has the same 
sign as srcl. 

if (src I= 0) Arithmetic Zero Divide fault; 
dst f- src2 - ((src2/srcl) * srcl); 
if ( (src2 * srcl < 0) and (dst 7= 0)) dst f- dst + srcl; 
# srcl, src2 and dst are 32 bits 

Trace 

Operation 

Type 

Arithmetic 

modi r9, r2, r5 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a ~fr. 

Zero Divide. The srcl operand is 0. 

# r5 f- modulo (r2/r9) 

modi 749H REG 

divi, divo, remi 

9-50 



modify 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

modify Modify 

modify mask, src, src!dst 
reg/lit/sfr rcg/lit/sfr reg 

Modifies selected bits in src!dst with bits from src. The mask operand 
selects the bits to be modified: only bits set in the mask operand are 
modified in .midst. 

srcldst f- (src and nwsk) or (srcldst and not (mask)); 

Trace 

Operation 

Type 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a ~fr. 

modify g8, glO, r4 # r4 f- glO masked by g8 

modify 650H REG 

alterbit, extract 
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mod pc 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION"SET REFERENCE 

mod pc 

mod pc 

Modify Process Controls 

src, 
reg/lit/sfr 

mask, 
reg/lit/sfr 

src!dst 
reg 

Reads and modifies the PC register as specified with mask and src!dst. 
src/dst operand contains the value to be placed in the PC register; mask 
operand specifies bits that may be changed. Only bits set in the mask 
are modified. Once the PC register is changed, its initial value is copied 
into src/dst. The src operand is a dummy operand that should specify a 
literal or the same register as the mask opera~d. 

The processor must be in supervisor mode to use this instruction with a 
non-zero mask value. If mask=O, this instruction can be used to read the 
process controls, without the processor being in supervisor mode. 

If the action of this instruction results in processor priority being 
lowered, the interrupt table is checked for pending interrupts. 

Changing the PC register reserved fields can lead to unpredictable 
behavior as described in Chapter 2, Programming Environment. 

if ((mask :;t: 0) 
{ 
if (PC.em :;t: supervisor)) Type-mismatch fault; 
tempt- PC; 
PC t- (mask and src!dst) or (PC and not (mask)); 

src!dst t- temp; 
if (temp.p > PC.p) check_pending_interrupts; 
} 

else src/dst t- PC; 

Trace 

Operation 

Type 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data RAM. 

Mismatch. Non-supervisor reference of a sfr. 

Mismatch. Attempted to execute instruction with non­
zero mask value while not in supervisor mode. 

modpc g9, g9, g8 

mod pc 655H 

modac, modtc 

# process controls t- g8 masked by g9 

REG 
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modtc 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

modtc 

modtc 

Modify Trace Controls 

mask, 
reg/lit/sfr 

src, 
reg/lit/sfr 

dst 
reg/sfr 

Reads and modifies TC register as specified with mask and src. The src 
operand contains the value to be placed in the TC register; mask 
operand specifies bits that may be changed. Only bits set in mask are 
modified. mask must not enable modification of reserved bits. Once the 
TC register is changed, its initial state is copied into dst. 

The changed trace controls may take effect immediately or may be 
delayed. If delayed, the changed trace controls may not take effect until 
after the first non-branching instruction is fetched from memory or 
after four non-branching instructions are executed. 

For more information on the trace controls, refer to Chapter 7, Faults 
and Chapter 8, Tracing and Debugging. 

temp ~TC; 
TC~ (mask and src) or (temp and not(mask)); 

dst ~temp; 

Trace 

Operation 

Type 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfr. 

modtc gl2, glO, g2 #trace controls~ glO masked by 
# g 12; previous trace controls stored in g2 

modtc 654H REG 

modac, modpc 
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MOVE 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION sei: REFERENCE 

mov Move 
movl Move Long 
movt Move Triple 
movq Move Quad 

mov* src, dst 
reg/lit/sfr reg/sfr 

Copies the contents of one or more source registers (specified with src) 
to one or more destination registers (specified with dst). 

For movl, movt and movq, src and dst specify the first (lowest 
numbered) register of several successive registers. src and dst registers 
must be even numbered (e.g., gO, g2, ... or rO, r2, ... or sfO, sf2, ... ) for 
movl and an integral multiple of four (e.g., gO, g4, ... or rO, r4, ... or 
sfO, sf4, ... ) for movt and movq. 

The moved register values are unpredictable when: 1) the src and dst 
operands overlap; 2) registers are not properly aligned. 

dst (-- src; 

Trace 

Operation 

Type 

movt g8, r4 

mov 
movl 
movt 
movq 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfr. 

# r4, r5, r6 (-- g8, g9, glO 

5CCH REG 
5DCH REG 
5ECH REG 
5FCH REG 

LOAD, STORE, Ida 
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muli, mulo 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

muli 
mulo 

mul* 

Multiply Integer 
Multiply Ordinal 

srcl, 

reg/lit/sfr 
src2, 

reg/lit/sfr 
dst 

reg/sfr 

Multiplies the src2 value by the src 1 value and stores the result in dst. 

dst <:--- src2 * srcl; 
# src I, src2 and dst are 32 bits 

Trace 

Operation 

Type 

Arithmetic 

muli r3, r4, r9 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfr. 

Integer Overflow. Result is too large for 
destination register (muli only). If overflow 
occurs and AC.om= 1, the fault is suppressed and 
AC.io is set to l. Result's least significant 32 bits 
are stored in dst. 

# r9 <:--- r4 TIMES r3 

muli 741H REG 
mulo 70 lH REG 

emul, ediv, divi, divo 
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nand 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

nand 

nand 

Nand 

srcl, 
reg/lit/sfr 

src2, 
reg/lit/sfr 

dst 
reg/sfr 

Performs a bitwise NAND operation on src2 and srcl values and stores 
the result in dst. 

dst ~(not (src2)) or (not (srcl)); 

Trace 

Operation 

Type 

nand g5, r3, r7 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfr. 

# r7 ~ r3 NAND g5 

nand 58EH REG 

and, andnot, nor, not, notand, notor, or, ornot, xnor, xor 
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nor 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

nor 

nor 

Nor 

srcl, 
reg/lit/sfr 

src2, 
reg/lit/sfr 

dst 
reg/sfr 

Performs a bitwise NOR operation on the src2 and src1 values and 
stores the result in dst. 

dst f- (not (src2)) and (not (srcl)); 

Trace 

Operation 

Type 

nor g8, 28, r5 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a .~fr. 

# r5 f- 28 NOR g8 

nor 588H REG 

and,andnot,nand,not,notand,notor,or,ornot,xnor,xor 
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INSTRUCTION SET REFERENCE 

not, notand 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

not Not 
notand Not And 

not src, dst 
reg/lit/sfr reg/sfr 

notand srcl, src2, dst 
reg/lit/sfr reg/lit/sfr reg/sfr 

Performs A bitwise NOT (not instruction) or NOT AND (notand 
instruction) operation on the src2 and srcl values and stores the result 
in dst. 

not: 
notand: 

Trace 

Operation 

Type 

dst f- not (src); 

dst f- (not (src2)) and srcl; 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfr. 

notg2,g4 
notand r5, r6, r7 

# g4 f- NOT g2 
# r7 f- NOT r6 AND r5 

not 
notand 

58AH REG 
584H REG 

and,andnot,nand,nor,notor,or,ornot,xnor,xor 
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notbit 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

notbit 

notbit 

INSTRUCTION SET REFERENCE 

Not Bit 

bitpos, 
reg/lit/sfr 

src, 
reg/lit/sfr 

dst 
reg/sfr 

Copies the src value to dst with one bit toggled. The bitpos operand 
specifies the bit to be toggled. 

dst ~ src xor 2A(bitpos mod 32); 

Trace 

Operation 

Type 

notbit r3, rI 2, r7 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfr. 

# r7 ~ rl2 with the bit 
# specified in r3 toggled 

notbit 580H REG 

alterbit, chkbit, drbit, setbit 
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notor 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

fNSTRUCTION SET RE~ERENCE 

notor 

notor 

Not Or 

srcl, 
reg/lit/sfr 

src2, 
reg/lit/sfr 

dst 
reg/sfr 

Performs a bitwise NOT OR operation on src2 and srcl values and 
stores result in dst. 

dst f- (not (src2)) or srcl; 

Trace 

Operation 

Type 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfr. 

notor gl2, g3, g6 # g6 f- NOT g3 OR gl2 

notor 58DH REG 

and,andnot,nand,nor,not,notand,or,ornot,xnor,xor 

9-60 



or, ornot 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

or 
ornot 

or 

ornot 

INSTRUCTION SET REFERENCE 

Or 
Or Not 

src1, 
re g/li ti sfr 

srcl, 
reg/lit/sfr 

src2, 
reg/lit/sfr 

src2, 
reg/lit/sfr 

dst 
reg/sfr 

dst 
reg/sfr 

Performs a bitwise OR (or instruction) or ORNOT (ornot instruction) 
operation on the src2 and srcl values and stores the result in dst. 

or: dst f- src2 or src I: 

ornot: dst f- src2 or (not (srcl)); 

Trace 

Operation 

Type 

or 14, g9, g3 

ornot r3, r8, rl I 

1nstruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfr. 

# g3 f- g9 OR 14 

# r 11 f- r8 OR NOT r3 

or 
ornot 

587H REG 
58BH REG 

and, andnot, nand, nor, not, notand, notor, xnor, xor 
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remi, remo 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

re mi 
re mo 

rem* 

Remainder Integer 
Remainder Ordinal 

srcl, 
reg/lit/sfr 

src2, 
reg/lit/sfr 

dst 
reg/sfr 

Divides src2 by srcl and stores the remainder in dst. The sign of the 
result (if nonzero) is the same as the sign of src2. 

if (src2=0) Arithmetic Zero Divide fault; 
dst f- src2 - ((src2 I srcl) * srcl); 
# srcl, src2 and dst are 32 bits 

Trace 

Operation 

Type 

Arithmetic 

remo r4, r5, r6 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfr. 

Zero Divide. The srcl operand is 0 

Integer Oveiflow. Result is too large for 
destination register (remi only). If overflow 
occurs and AC.om=l, the fault is suppressed and 
AC.io is set to 1. The least significant 32 bits of 
the result are stored in dst. 

# r6 f- r5 rem r4 

re mi 748H REG 
remo 708H REG 

modi 
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ret 
Mnemonic: 

Format: 

Description: 

Action: 

INSTRUCTION SET REFERENCE 

ret Return 

ret 

Returns program control to the calling procedure. The current stack 
frame (i.e., that of the called procedure) is deallocated and the FP is 
changed to point to the calling procedure's stack frame. Instruction 
execution is continued at the instruction pointed to by the RIP in the 
calling procedure's stack frame, which is the instruction immediately 
following the call instruction. 

As shown in the action statement below, the return-status field and 
preretum-trace flag determine the action that the processor takes on the 
return. These fields are contained in bits 0 through 3 of register rO of 
the called procedure's local registers. 

Refer to Chapter 5, Procedure Calls for further discussion of ret. 

wait for any uncompleted instructions to finish; 
case retum_type is 

if ((PFP.rt=0012) or (PFP.rt=l 11 2)) 

{ # return from fault or interrupt handler 
AC ~ memory(FP - 12); 
if (PC.em=supervisor) PC f- memory(FP - 16); 
} 

else if ((PFP.rt=Ol02) or (PFP.rt=Ol 12)) 

{ #return to non-supervisor procedure 
PC.te ~ PFP.rtO; 
PC.em f- user; 
} 

else if (PFP.rt=0002) 
{ # return from local 
} 

else Operation Unimplemented fault; 
FPf-PFP; 
# these accesses are cached in the local register cache 
rO: 15 f- memory(FP); 
IP f- RIP; 
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Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

Trace 

Operation 

ret 

Instruction. Return. Pre-Return. Breakpoint. 
Instruction, Return and Pre-Return Trace Events 
are signaled after instruction completion. Trace 
fault is generated if PC.te=l and TC.i or TC.r or 
TC.p=l. 

Unimplemented. Execution from on-chip data 
RAM. 

Unimplemented. 
encountered. 

Reserved return 

# program control returns to context of 
# calling procedure 

type 

ret OAH CTRL 

call, calls, callx 
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rotate 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

rotate 

rotate 

INSTRUCTION SET REFERENCE 

Rotate 

Zen, 
reg/lit/sfr 

src, 
reg/lit/sfr 

dst 
reg/sfr 

Copies src to dst and rotates the bits in the resulting dst operand to the 
left (toward higher significance). (Bits shifted off left end of word are 
inserted at right end of word.) The Zen operand specifies number of bits 
that the dst operand is rotated. Zen can range from 0 to 31. 

This instruction can also be used to rotate bits to the right. Here, the 
number of bits the word is to be rotated right is subtracted from 32 to 
get the len operand. 

dst f- src rotate_left (Zen mod 32); 

Trace 

Operation 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Type Mismatch. Non-supervisor reference of a sfr . 

rotate 13, r8, r12 # rl2 f- r8 with bits rotated 
# 13 bits to left 

rotate 59DH REG 

SHIFf, eshro 
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scan bit 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

scan bit 

scanbit 

Scan For Bit 

src, 
reg/lit/sfr 

dst 
reg/sfr 

Searches src value for most-significant set bit (1 bit). If a most 
significant 1 bit is found, its bit number is stored in dst and condition 
code is set to 0102. If s re value is zero, all l 's are stored in dst and 
condition code is set to 0002. 

tempsrc f- src; 
if (tempsrc=O) 

{ 
dst f- OxFFFFFFFF; 
AC.cc f- 0002; 
} 

else 

if- 31; 
while ((tempsrc and 2"i)=0) 
{ 
if- i - l; 

dst f- i; 

AC.cc f- 0102; 
} 

Trace 

Operation 

Type 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfr. 

# assume g8 is nonzero 
scanbit g8, glO # glO f- bit number of most­

# significant set bit in g8; 
#AC.cc f- 0102 

scanbit 641H REG 

spanbit, setbit 
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scan byte 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

INSTRUCTION SET REFERENCE 

scanbyte 

scan byte 

Scan Byte Equal 

src1. 
reg/lit/sfr 

src2 
reg/lit/sfr 

Performs byte-by-byte comparison of srcl and src2 and sets condition 
code to 0102 if any two corresponding bytes are equal. If no 
corresponding bytes are equal, condition code is set to 0002. 

tmpsrc 1 ~ src1; 

tmpsrc2 ~ src2; 
if (((tmpsrcl and OxOOOOOOFF):::: (tmpsrc2 and OxOOOOOOFF)) 
or 

or 

or 

((tmpsrcl and OxOOOOFFOO) = (tmpsrc2 and OxOOOOFFOO)) 

((tmpsrcl and OxOOFFOOOO) = (tmpsrc2 and OxOOFFOOOO)) 

((tmpsrcl and OxFFOOOOOO) = (tmpsrc2 and OxFFOOOOOO))) 
AC.cc~ 0102; 

else AC.cc ~ 0002; 

Trace 

Operation 

Type 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a .~fi·. 

# assume r9 = Ox 11AB1100 
scanbyte OxOOABOOll, r9 #AC.cc~ 0102 

scanbyte 5ACH REG 
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lsdma 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

sdma 

sdma 

Setup DMA Channel 

srcl, 
reg/lit/sfr 

src2, 
reg/lit/sfr 

src3 
reg/lit 

The DMA channel specified by srcl is set up using the control word in 
src2. Dedicated data RAM for the specified DMA channel is written 
with src3 value. First two bits of srcl specify channel; src2 specifies 
DMA control word as a literal or single 32-bit register; src3 specifies a 
single 32-bit register if channel is data-chaining. This register contains 
the address of the first chaining descriptor in memory. src3 must 
specify a register with a register number divisible by four. 

If channel is not data chaining, src3 specifies a triple word contained in 
registers src3, src3+1 and src3+2. src3 contains byte count for DMA; 
src3+1 contains source address; src3+2 contains destination address. 

dma_control_for_channel[srcl mod 4] ~ src2; 
if (not chaining mode) 

dma_ram[srcl mod 4] ~ src3; #triple-word store 
#word store else dma_ram[srcl mod 4] ~ src3; 

start_dma_channel[srcl mod 4]; 

Trace 

Operation 

Constraint 

ldconst 3,r6; 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Privileged. Attempt to execute while not in 
supervisor mode. 

# set channel 
ldconst Channe1_3_Modes,r7; # load controls 

# load pointers ldq Channel_3_transfer, r8; 
sdma r6, r7, r8 

sdma 630H REG 

udma 
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set bit 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

set bit 

set bit 

INSTRUCTION SET REFERENCE 

Set Bit 

hitpos, 
reg/lit/sfr 

src, 
reg/lit/sfr 

dst 
reg/sfr 

Copies src value to dst with one bit set. hilpos specifies bit to be set. 

dst f- src or 2A(bitpos mod 32); 

Trace 

Operation 

Type 

setbit 15, r9, rl 

Instruction. Breakpoint 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfr. 

# rl f- r9 with bit 15 set 

setbit 583H REG 

alterbit, chkbit, clrbit, notbit 
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SHIFT 
Mnemonic: 

Format: 

Description: 

shlo 
shro 
shli 
shri 
shrdi 

INSTRUCTION SET REFERENCE 

Shift Left Ordinal 
Shift Right Ordinal 
Shift Left Integer 
Shift Right Integer 
Shift Right Dividing Integer 

len, 
reg/lit/sfr 

src, 
reg/lit/sfr 

dst 
reg/sfr 

Shifts src left or right by the number of bits indicated with the Zen 
operand and stores the result in dst. Bits shifted beyond register 
boundary are discarded. For values of len greater than 32, the processor 
interprets the value as 32. 

shlo shifts zeros in from the least significant bit; shro shifts zeros in 
from the most significant bit. These instructions are equivalent to mulo 
and divo by the power of 2, respectively. 

shli shifts zeros in from the least significant bit. An overflow fault is 
generated if the bits shifted out are not the same as the most significant 
bit (bit 31 ). If overflow occurs, dst will equal src shifted left as much 
as possible without overflowing. 

shri performs a conventional arithmetic shift-right operation by 
shifting in the most significant bit (bit 31 ). When this instruction is 
used to divide a negative integer operand by the power of 2, it produces 
an incorrect quotient (discarding the bits shifted out has the effect of 
rounding the result toward negative). 

shrdi is provided for dividing integers by the power of 2. With this 
instruction, 1 is added to the result if the bits shifted out are non-zero 
and the src operand was negative, which produces the correct result for 
negative operands. 

shli and shrdi are equivalent to muli and divi by the power of 2. 

eshro is provided for extracting a 32-bit value from a long ordinal (i.e., 
64 bits), which is contained in two adjacent registers. Refer to 
Instruction Set Reference titled eshro for details. 
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Action: shlo: 

INSTRUCTION SET REFERENCE 

if (/en < 32) dst ~ src <<!en; 

else dst ~ O; 

shro: if (/en < 32) dst ~ src >>Zen; 
else dst ~ 0; 

shli: if (/en > 32) i ~ 32; 
else i ~Zen; 
temp~ src; 
while ((temp.31 = temp.30) and (i 1:- 0)) 

{ 
temp ~ temp << 1; 
i~i-1; 

dst ~temp; 

shri: if (len >32) i ~ 32; 
else i ~ len; 
temp~ src; 

shrdi: 

while (i 1:- 0) 

{ 
temp~ temp>> 1; #shift temp right one bit 
temp.bit31 ~ temp.bit30; #extend temp's sign bit 
i ~ i - l; 

dst ~temp; 
i ~!en; 
if(i > 32) i ~ 32; 

temp~ src; 
s_sign ~ temp.bit31 
lost_bit ~ O; 
while (i 1:- 0) 

{ 
losl_bit ~ lost_bit or temp.bitO; 
temp ~ temp >> 1; # shift temp left one bit 
temp.bit31 ~ temp.bit30; #extend temp's sign bit 
i ~ i -1; 

if ((s_sign = 1) and (lost_bit = 1)) temp~ temp+ 1; 
dst ~temp; 
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Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

Trace 

Operation 

Type 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a ~fr. 

Arithmetic Integer Overflow. Result is too large for the destination 
register (shli only). If overflow occurs and AC.om is a 1, the fault is 
suppressed and AC.io is set to a 1. After an overflow, dst will equal src 
shifted left as much as possible without overflowing. 

shli 13, g4, r6 # g6 f- g4 shifted left 13 bits 

shlo 59CH REG 
shro 598H REG 
shli 59EH REG 
shri 59BH REG 
shrdi 59AH REG 

divi, muli, rotate, eshro 
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span bit 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

spanbit Span Over Bit 

span bit src, 

reg/lit/sfr 
dst 
reg/sfr 

Searches src value for the most significant clear bit (0 bit). If a most 
significant 0 bit is found, its bit number is stored in dst and condition 
code is set to 0102. If src value is all J's, all l's are stored in dst and 
condition code is set to 0002. 

if ( src = OxFFFFFFFF) 
{ 
dst (:-- OxFFFFFFFF: 
AC. cc (:-- 0002; 
} 

else 

i(:--3]; 

while ((src and 2"i) :F 0) 
{ 
i(:--i-1; 

dst (:-- i; 
AC.cc (:-- 0102: 
} 

Trace 

Operation 

Type 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfr. 

# assume r2 is not Oxffffffff 
spanbit r2, r9 # r9 (:--bit number of most-significant 

# clear bit in r2; AC.cc (:-- 0102 

spanbit 640H REG 

scan bit 
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INSTRUCTION SET REFERENCE 

STORE 
Mnemonic: st Store 

stob Store Ordinal Byte 
stos Store Ordinal Short 
stib Store Integer Byte 
stis Store Integer Short 
stl Store Long 
stt Store Triple 
stq Store Quad 

Format: st* src, efa 
reg addr 

efa: 

(reg) disp + S(IP) disp [reg * scale] 

offset disp (reg 1) [reg2 * scale] 

offset (reg) disp (reg) disp (reg 1) [reg 2 *scale] 

Description: Copies a byte or group of bytes from a register or group of registers to 
memory. src specifies a register or the first (lowest numbered) register 
of successive registers. 

efa specifies the address of the memory location where the byte or first 
byte or a group of bytes is to be stored. The full range of addressing 
modes may be used in specifying efa. (Refer to the section of Chapter 
3 titled Addressing Modes for a complete discussion.) 

stob and stib store a byte and stos and stis store a half word from the 
src register's low order bytes . Data for ordinal stores is truncated to fit 
the destination width. If the data for integer stores cannot be 
represented correctly in the destination width, an Arithmetic Integer 
Overflow fault is signaled. 

st, stl, stt and stq copy 4, 8, 12 and 16 bytes, respectively, from 
successive registers to memory. 

For stl, src must specify an even numbered register (e.g., gO, g2, ... or 
rO, r2, ... ). For stt and stq, src must specify a register number that is a 
multiple of four (e.g., gO, g4, g8, ... or rO, r4, r8, ... ). 
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Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

st: memory_word (efa) ~ src; 

stob: memory_byte (efa) ~ src truncated to 8 bits: 
stib: memory_byte (ef(1) ~ src truncated to 8 bits: 
stos: memory_short (ef(1) ~ src truncated to 16 bits: 

stis: memory_short (efa) <:- src truncated to 16 bits: 
stl: memory_long (efa) ~ src; 

stt: memory_triplc (<'./i1) ~ src: 

stq: memory_quad (efa) ~ src; 

Trace 

Operation 

Arithmetic 

Type 

st g2, 1254 (g6) 

st 92H 
stob 82H 
stos 8AH 
stib C2H 
stis CAH 
stl 9AH 
stt A2H 
stq B2H 

LOAD, MOVE 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Unimplemented. An unaligned ef(1 was referenced 
and unaligned support was disabled. 

Operand. Invalid operand value encountered. 

Opcode.Invalid opcode encoding encountered. 

Integer Over.flow. Result is too large for 
destination (stib and stis only). If overflow occurs 
and AC.om= 1, the fault is suppressed and AC .io is 
set to I. After an overflow, destination contains 
the least significant n-bits of the store, where n is 
the transfer width (8 or 16 bits). 

Mismatch. Non-supervisor attempt to write to 
internal data RAM. 

#word beginning at offset 
#1254 + (g6) ~ g2 

MEM 
MEM 
MEM 
MEM 
MEM 
MEM 
MEM 
MEM 
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subc 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

subc 

subc 

Subtract Ordinal With Carry 

srcl, 
reg/lit/sfr 

src2, 
reg/lit/sfr 

dst 
reg/sfr 

Subtracts srcl from src2, then subtracts not( AC.cc I) and stores the 
result in dst. If the ordinal subtraction results in a carry, AC.eel is set 
to l, otherwise AC.cc 1 is set to 0. 

This instruction can also be used for integer subtraction. Here, if 
integer subtraction results in an overflow, condition code bit 0 is set. 

subc does not distinguish between ordinals and integers: it sets 
condition code bits 0 and 1 regardless of data type. 

dst ~ src2 - srcl - not(AC.ccl); 

AC.cc ~ OCV 2; 
#Vis 
# 
# C is 
# 

Trace 

Operation 

Type 

1 if integer subtraction would have generated an overflow, 
0 otherwise 
Carry out of the ordinal addition of src2 to not (srcl) and 
carry in. 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfr. 

subc g5, g6, g7 # g7 ~ g6 - g5 - not( Carry Bit) 

subc 5B2H REG 

addc, addi, addo, subi, subo 
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subi, subo 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

subi 
subo 

sub* 

Subtract Integer 
Subtract Ordinal 

srcl, 
reg/lit/sfr 

src2, 
re g/li ti sfr 

dst 
reg/sfr 

Subtracts srcl from src2 and stores the result in dst. The binary results 
from these two instructions are identical. The only difference is that 
subi can signal an integer overflow. 

dst f- src2 - srcl; 

Trace 

Operation 

Type 

Arithmetic 

subig6,g9,gl2 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a ~fr. 

integer Overfiow. Result too large for destination 
register (subi only). Result's least significant 32 
bits are stored in dst. If overflow occurs and 
AC.om= l, the fault is suppressed and AC.io is set 
to a I. The least significant 32 bits of the result are 
stored in dst. 

# g 12 f- g9 - g6 

subi 593H REG 
subo 592H REG 

addi, addo, subc, addc 
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syn cf 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

syn cf Synchronize Faults 

syn cf 

Waits for all faults to be generated that are associated with any prior 
uncompleted instructions. 

if (AC.nif ::/:. 1) 
{ 
wait until no imprecise faults can occur associated with 
instructions which have begun, but are not completed.; 
} 

Trace 

Operation 

Id xyz, g6 
addi r6, r8, r8 
syncf 
and g6, OxFFFF, g8 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

# the syncf instruction ensures that any faults 
# that may occur during the execution of the 
# Id and addi instructions occur before the 
# and instruction is executed 

syn cf 66FH REG 

mark, fmark 
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jsysctl I 
Mnemonic: 

Format: 

Description: 

sysctl 

sysctl 

INSTRUCTION SET REFERENCE 

System Control 

srcl. 
reg/lit/sfr 
me.1·sage. type 

src2. 
reg/lit/sfr 

src3; 
reg/lit 

Processor control function specified by the message field of srcl is 
executed. The type field of src 1 is interpreted depending upon the 
command. Remaining srcl bits are reserved. The src2 and src3 
operands are also interpreted depending upon the command. 
The src 1 operand is interpreted as follows: 

31 16 15 8 7 0 

srcl 
~I ~~~~-FI_E_L_D_2~~~~-.--l~M-F-,S-S_A_G_E_T_Y_P_E__,.l~~-F-IE_L_D~l~--,I 

The following table lists i960 CA processor commands. 

Message Srcl Src 2 Src3 

Type Field I Field Field 3 Field 4 
2 

Request OOH Vector Number N/U NIU NIU 
Interrupt 

Invalidate OlH N/U N/U NIU NIU 
Cache 

Configure 02H Cache Mode Configuration NIU Cache load N/U 
Cache (see table) N/U address 

Reinitialize 03H NIU N/U I st Inst. PRCB 
address address 

Load Control 04H Register Group Number N/U NIU NIU 
Register 

NOTE 

Sources and fields which are not used (designated N/U) are ignored. 
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Mode Field(J}_ 

0002 

0012 

1002 

1102 

Action: 

INSTRUCTION SET REFERENCE 

Cache Mode Configuration Table 

Mode Description 

l Kbyte normal cache enabled 

1 Kbyte cache disabled (execute off-chip) 

Load and lock 1 Kbyte cache (execute off-chip) 

Load and lock 512 bytes, 512 bytes normal cache enabled 

NOTE 
I) Modes which are not defined are reserved. 

temp~ srcl; 

tmpmessage ~(temp and OxfO) >> 8; 
switch (tmpmessage) 
case 0: # Signal an Interrupt 

post_interrupt(temp and Oxf); 
break; 

case 1: #Invalidate the Instruction Cache 
invalidate_instruction_cache; 

case 2: 

case 3: 

break; 
#Configure Instruction Cache 
tmptype ~ (srcl and Oxff); 
if (tmptype.bitO = 1) disable_instruction_cache; 
else if (tmptype = OxO) enable_lk_instruction_cache; 
else if (tmptype = Ox4) 

{ #Load and freeze lk cache 
instr_cache ~ memory_lk(src2); #load lk bytes 
freeze_lk_instruction_cache; 
} 

else if (tmptype = 0 x 6) 
{ # Load and freeze 512 bytes of cache 
instr_cache ~ memory_512(src2) #load 512 bytes 
freeze_512_instruction_cache; 
} 

else Reserved; 
break; 
# Software Reset 
temp~ src2; 
load PRCB pointed to by src3; 
IP~ temp; 
break; 

9-80 



Faults: 

Example: 

Opcode: 

INSTRUCTION SET REFERENCE 

case 4: 

default: 

Trace 

Operation 

# Load One Group of Control Registers 
# from the Control Table 
temp [0-3] ~memory_quad (Control Table Base+ group 
offset); 
for (i ~O; i23, i ~i+l control_reg[i] ~temp[i]; 
break 
Operation invalid-operand fault; 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Unimplemented. Attempted to execute 
unimplemented command. 

ldconst Clear_cache, g6 
sysctl r6,r7 ,r8 

# set the clear cache message 
# execute cache invalidation 

be uploaded_code 

sysctl 659H REG 
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TEST 
Mnemonic: 

Format: 

Description: 

INSTRUCTION SET REFERENCE 

Test For Equal 
Test For Not Equal 
Test For Less 
Test For Less Or Equal 
Test For Greater 

teste {.ti.fl 
testne{ .ti.fl 
testl {.ti.fl 
testle{ .ti.fl 
testg( .ti.fl 
testge( .tl.f} 
testo{ .tl.f} 
testno{ .tl.f} 

Test For Greater Or Equal 
Test For Ordered 

test* {.ti.fl 

Test For Not Ordered 

dst 
reg/sfr 

Stores a true (01H) in dst if the logical AND of the condition code and 
opcode mask-part is not zero. Otherwise, the instruction stores a false 
(OOH) in dst. For testno (Unordered), a true is stored if the condition 
code is 0002, otherwise a false is stored. 

The following table shows the condition-code mask for each 
instruction. The mask is in bits 0-2 of the opcode. 

Instruction Mask Condition 

testno 0002 Unordered 

testg 0012 Greater 

teste 0102 Equal 

testge 0112 Greater or equal 

testl 1002 Less 

testne 1012 Not equal 

testle 1102 Less or equal 

testo 1112 Ordered 

The optional.tor .f suffix may be appended to the mnemonic. Use .t to 
speed-up execution when these instructions usually store a true (1) 
condition in dst. Use .f to speed-up execution when these instructions 
usually store a false (0) condition in dst. If a suffix is not provided, the 
assembler is free to provide one. 
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inteL 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

For all instructions except testno: 

if ((mask and AC.cc) - 0002 ) dst f-- Ox!:# dst set for true 

else dst +--- OxO: # d.11 set for false 

test no: 

if (AC.cc= 0002) dst f-- Ox I: #dst ~et for true 

else dst f-- OxO: # dst set for false 

Trace 

Operation 
RAM. 

Type 

Instruction. Brl'akpoint. 

U11i111ple111ented. Execution from on-chip data 

Mismatch. Non-supervisor reference of a sf/·. 

# assume AC.cc = 1002 

test] g9 # g9 f-- OxOOOOOOOl 

teste 22H COBR 
testne 25H COBR 
testl 24H COBR 
testle 26H COBR 
testg 21H COBR 
testge 23H COBR 
testo 27H COBR 
testno 20H COBR 

cmpi, cmpdeci, cmpinci 

9-83 

• 



ludma I 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION SET REFERENCE 

udma Update DMA-Channel RAM 

udma 

The current status of the DMA channels is written to the dedicated 
DMARAM. 

for (i = 0 to 3) dma_ram[i) t- dma_status_channel[i]; 

Trace 

Operation 

udma 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

ldq Channel_3_ram,r4 
# update status to dma ram 
# read current pointers 
# and byte count for dma channel 3 

udma 631H REG 

sdma 
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xnor, xor 
Mnemonic: 

Format: 

Description: 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

xnor 
xor 

xnor 

xor 

INSTRUCTION SET REFERENCE 

Exclusive Nor 
Exclusive Or 

srcl, 
reg/Ii tis fr 

srcl. 
reg/lit/sfr 

src2. 
reg/lit/ sfr 

.1Tc2. 

reg/lit/sfr 

dst 

reg/sfr 

dst 

reg/sfr 

Performs a bitwise XNOR (xnor instruction) or XOR (xor instruction) 
operation on the src2 and src! values and stores the result in dst. 

xnor: dst f- not (src2 or src/) or (src2 and .\Tc]); 

xor: dst f- (src2 or src 1) and not (src2 and src I); 

Trace 

Operation 

Type 

xnor r3. r9, rl2 

xor gl, g7. g4 

Instruction. Breakpoint. 

Unimplemented. Execution from on-chip data 
RAM. 

Mismatch. Non-supervisor reference of a sfi·. 

# rl2 f- r9 XNOR r3 

# g4 f- g7 XOR g I 

xnor 
xor 

589H REG 
586H REG 

and, andnot, nand, nor, not, notand. notor, or, ornot 
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CHAPTER10 
THE BUS CONTROLLER 

This chapter serves as a guide for a software developer when configuring the bus controller. It 
overviews bus controller capabilities and implementation and describes how to program the 
bus controller. System designers should reference Chapter 11, External Bus Description for a 
functional description or the bus controller. 

OVERVIEW 

The bus controller supports a synchronous, 32-bit-wide. demultiplexed external bus which 
consists or 30 address lines, four byte enables, 32 data lines, a clock output and control and 
status signals. The bus controller manages instruction fetches, data loads/stores and DMA 
transfer requests. Bus management is accomplished by queuing bus requests which effectively 
decouples instruction execution speed from external memory access time. 

Load and store instructions - the program's interface to the bus controller - work on ordinal 
(unsigned) or integer (signed) data. A single load or store instruction can move from I to 16 
bytes of data. The bus controller also handles instruction fetches, which read either 8 bytes 
(two words) or 16 bytes (four words). 

The bus controller divides the flat 4 Gbyte memory space into 16 regions; each region has 
independent software programmable parameters that define data bus width, ready control, 
number of wait states, pipeline read mode, byte ordering and burst mode. These parameters are 
stored in the memory region configuration table. Each memory region is 22s bytes 
(256 Mbytes). 

The purpose of configurable memory regions is to provide system hardware interface support. 
Regions are transparent to the software. The address' upper four bits (A3 I :28) indicate which 
region is enabled. 

A data bus width parameter in the region table configures the external data bus as an 8-, 16- or 
32-bit bus for a region. This parameter determines byte enable signal encoding and the physical 
location of data on data bus pins. 

When a burst bus mode is enabled, a single address cycle can be followed with up to four data 
cycles. This mode enables very high speed data bus transfers. When disabled, accesses appear 
as one data cycle per address cycle. The burst bus mode can be enabled or disabled on a 
region-by-region basis. 

A programmable wait state generator inserts a programmed number of wait states into any 
memory access. These wait states, independently programmable by region, can be specified 
between: 

• address and data cycles 

• consecutive data cycles of burst accesses 

• the last data cycle and the address cycle of the next request 
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An external, memory-ready input permits the user's hardware to insert wait states into any 
memory cycle. This pin works with the wait state generator and is enabled or disabled on a 
region-by-region basis. 

Pipelined read mode provides the highest data bandwidth for reads and instruction fetches. 
When a region is programmed for pipelined reads, the next read's address cycle overlaps the 
current read' s data cycle. 

The bus controller supports big endian and little endian byte ordering for memory operations. 
Byte ordering determines how data is read from or written to the bus and ultimately how data is 
stored in memory. 

MEMORY REGION CONFIGURATION 

Programmable memory region configurations simplify external memory system designs and 
reduce system parts count. Particular bus access characteristics may be programmed. This 
programmed bus scheme allows accesses made to different areas (or regions) in memory to 
have different characteristics. For example, one area in memory can be configured for slow 
8-bit accesses; this is optimal for peripherals. Another area in memory can be configured for 
32-bit wide burst accesses; this is optimal for fast DRAM interfaces. Bus function in each 
region is determined by the memory region configuration. The following bus characteristics are 
selected for each region: 

• Selectable 8-, 16- or 32-bit-wide data bus • Programmable high performance burst 
access 

• Five wait state parameters 

• Programmable pipelined reads 

• Memory-ready and burst cycle terminate 
for dynamic access control 

• Big or little endian byte order 

These bus characteristic can be programmed independently for accesses made to each of 16 
different regions in memory. The value of the memory address upper four bits (A3 l :28) 
determine the selected region. Memory region configuration affects all accesses to the 
addressed memory region. Loads, stores, DMA transfers and instruction fetches all use the 
parameters defined for the region. 

Programming region characteristics is accomplished by setting values in the memory region 
configuration registers. A separate register allows the user to program the characteristics for 
each of the 16 memory regions. Memory region configuration registers are described in this 
chapter's section titled Programming the Bus Controller. The following subsections describe 
the i960 CA processor's programmable bus characteristics. 

Data Bus Width 

Each region's data bus width is programmed in the memory region configuration table. The 
i960 CA processor allows an 8-, 16- or 32-bit-wide data bus for each region. Byte enable 
signals encoded in each region provide the proper address for 8-, 16- or 32-bit memory 
systems. The i960 CA processor uses the lower order data lines when reading and writing to 8-
or 16-bit memory. 
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Burst and Pipelined Read Accesses 

To improve bus bandwidth, the i960 CA device provides a burst access and pipelined read 
access. These burst and pipelining modes are separately enabled or disabled for each memory 
region by programming the memory region configuration table. 

When burst access is enabled, the bus controller generates an address - the burst address -
followed by one to four data transfers. The lower address bits are incremented for each 
consecutive data transfer. Burst accesses facilitate the interface to fast page mode DRAM: wait 
states following the address cycle and wait states between data cycles can be controlled 
independently. Data cycle time is typically a fraction of address cycle time. This provides an 
optimal wait state profile for fast page mode DRAM. 

When address pipelining is enabled. the next read address is asserted in the last data cycle of 
the current read access. Pipelining makes the address cycle invisible for back-to-back read 
accesses. 

Wait States 

A wait state generator within the bus controller generates wait states for a memory access. For 
many memory interfaces, the internal wait state generator eliminates the necessity to externally 
generate a memory ready signal to indicate a valid data transfer. 

Typically, extra clock cycles - wait states - are associated with each data cycle. Wait states 
provide the required access times for external memory or peripherals. Five parameters, 
programmed for each region define wait state generator operation. These parameters are: 

NwAD 

Nwnn 

NxnA 

Number of wait cycles for Read Address-to-Data. The number of wait states 
between address cycle and first read data cycle. Programmable for 0-3 l wait 
states. 

Number of wait cycles for Read Data-to-Data. The number of wait states 
between consecutive data cycles of a burst read. Programmahle for 0-3 wait 
states. 

Number of wait cycles for Write Address-to-Data. The number of wait states 
that data is held after the address cycle and before the first write data cycle. 
Programmable for 0-3 l wait states. 

Number of wait cycles for Write Data-to-Data. The number of wait states that 
data is held between consecutive data cycles of a burst write. Programmable for 
0-3 wait states. 

Number of wait cycles for X (read or write) Data-to-Address. The minimum 
number of wait states between the last data cycle of a bus request to the address 
cycle of the next bus request. NxDA applies to read and write requests. 
Programmable for 0-3 clocks. 
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NRAD and Nw AD describe address-to-data wait states. NRDD and NwDD specify the number of 
wait states between consecutive data when burst mode is enabled. NRDD and NwDD are not 
used in non-burst memory regions. 

NxDA describes the number of wait states between consecutive bus requests. NxDA is the bus 
turnaround time. An external device's ability to relinquish the bus on a read access (read 
deasserted to data float) determines the number of NxDA cycles. 

NOTE 

For pipelined read accesses, the bus controller uses a value of 0 for NxDA• regardless of the 
parameter's programmed value. A non-zero NxDA value defeats the purpose of pipelining. The 
programmed value of NxDA is used for write requests to pipelined memory regions. 

The ready (READY) and burst terminate (BTERM) inputs dynamically control bus accesses. 
these inputs are enabled or disabled for each memory region. READY extends accesses by 
forcing wait states. BTERM allows a burst access to be broken into multiple accesses, with no 
lost data. The memory region registers are programmed to enable or disable these inputs for 
each region. 

READY and BTERM work with the programmed internal wait state counter. If READY and 
BTERM are enabled in a region, these pins are sampled only after the programmed number of 
wait states expire. If the inputs are disabled in a region, the inputs are ignored and the internal 
wait state counter alone determines access wait states. Refer to Chapter 1 J, External Bus 
Description for details on the operation of the READY and BTERM inputs. 

NOTE 

READY and BTERM must be disabled in regions where pipelined reads are enabled. 

Byte Ordering 

Byte ordering determines how data is read from or written to the bus and ultimately how data is 
stored in memory. Byte ordering can be individually selected for each memory region by 
setting a bit in the region table entry for the region. The bus controller supports big endian and 
little endian byte ordering for memory operations: 

little endian ordering 

big endian ordering 

The controller reads or writes a data word's least-significant byte to 
the bus' eight least-significant data lines (DO-D7). Little endian 
systems store a word's least-significant byte at the lowest byte 
address in memory. For example, if a little endian ordered word is 
stored at address 600, the least-significant byte is stored at address 
600 and the most-significant byte at address 603. 

The controller reads or writes a data word's least-significant byte to 
the bus' eight most-significant data lines (D31-D24). Big endian 
systems store the least-significant byte at the highest byte address in 
memory. So, if a big endian ordered word is stored at address 600, 
the least-significant byte is stored at address 603 and the most­
significant byte at address 600. 
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PROGRAMMING THE BUS CONTROLLER 

The bus controller is programmed using 17 control registers; 16 of which make up the region 
table, the remaining one is the Bus Configuration (BCON) Register. Control registers are 
automatically loaded at initialization from the control table in external memory. Control 
registers are modified by using the load control registers message of the system control (sysctl) 
instruction. See Chapter 2, Programming Environment for control register definition. 

Region Table (MCONO-MCON15) 

The region table contains J 6 entries. Each entry is stored in a control register and specifies: 

• number of wait states • data bus width • byte ordering 

• burst mode • pipeline mode • external ready mode for the 
region that it controls 

An address' four most-significant hits indicate which region is being accessed. A region table 
entry is 32 hits wide (see Figures I 0.1 and I 0.2); however, not all hits are currently used. Table 
10. l defines the region table's programmable bits. 

ADDRESS 

FFFF FFFFH 

FOOO OOOOH 

EOOO OOOOH 

DOOO OOOOH 

1000 OOOOH 

0000 OOOOH 

ADDRESS SPACE 

REGION 15 
(256 MBYTES) 

REGION 14 
(256 MBYTES) 

REGION 13 
(256 MBYTES) 

• • • 

REGIONS 12-1 

REGION 0 
(256 MBYTES) 

MEMORY REGION 
CONFIGURATION 

TABLE 

-~ ENTRY15 

' ENTRY14 , 

ENTRY13 

• 
). • ). • 

ENTRIES 12-1 

; ENTRY 0 

31 TABLE ENTRY 0 

,, Tl/111 lrlhtcf I M 111111111111111111111 

,: -----------* -------------------------

270710-001-26 

Figure 10.1. Region Table Configures External Memory 
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BURST ENABLE ~-------------------------------. 
(O) DISABLED 

(1) ENABLED 

READY/BTERM ENABLE 

(0) DISABLED 

(1) ENABLED 

READ PIPELINING ENABLE 

(0) DISABLED 

(1) ENABLED 

NRAD WAIT STATES 
0-31 WAIT STATES 

NRDD WAIT STATES 

0-3 WAIT STATES 

NxDA WAIT STATES 
0-3 WAIT STATES 

NwAD WAIT STATES 
0-31 WAIT STATES 

N WDD WAIT STATES 

0-3 WAIT STATES 

28 

MEMORY REGION 
CONFIGURATION 
REGISTERS 
(MCON 0 - MCON 15) 

~ RESERVED 
(INITIALIZE TO 0) 

24 '°" • I I 
16 12 

'----------BUS WIDTH 

(00) 8-BIT BUS 

(01) 16-BIT BUS 

(10) 32-BIT BUS 

(11) RESERVED 

'-------------BYTE ORDER 

(O) LITTLE ENDIAN 

(1) BIG ENDIAN 

4 

270710-002-18 

Figure 10.2. Memory Region Configuration Register (MCONO-MCON15) 

Bus Configuration Register (BCON) 

The Bus Configuration Register (BCON), shown in Figure 10.3, is a 32-bit register that 
controls the region configuration table and internal data RAM protection. Table 10.2 defines 
the BCON Register's programmable bits. 
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Ent~Name 

Burst Enable 

READY /BTERM 
Enable 

Read Pipelining 
Enable 

NRAD wait States 

NRDD Wait States 

NxoA Wait States 

NwAD Wait States 

Nwoo Wait States 

Bus Width 

Byte Ordering 

THE BUS CONTROLLER 

Table 10.1. Region Table Bit Definitions 

Bit# 

0 

1 

2 

3-7 

8-9 

10-11 

12-16 

17-18 

19-20 

22 

Definition 

Enables or disables burst accesses for the region. 

Enables or disables region's READY and BTERM inputs. 
If disabled, READY and BTERM are ignored. 

Enables or disables address pipelining of region's read 
accesses. READY and BTERM are ignored during 
pipelined reads. 

Number of Read Address-to-Data wait states in the region. 
(Programmed for 0-31 Wait States) 

Number of Read Data-to-Data wait states in the region. 
(Programmed for 0-3 Wait States) 

Number of X (read or write) Data-to-Address wait states in 
the region. (Programmed for 0-3 Wait States). NxoA wait 
states are only inserted at the end of a bus request. 

Number of Write Address-to-Data wait states in the region. 
(Programmed for 0-31 Wait States) 

Number of Write Data-to-Data wait states in the region. 
(Programmed for 0-3 Wait States) 

Determines region's data bus width. Effects encoding of 
byte-enable signals (BE3:0) 

Selects region's byte ordering: little endian or big endian. 

CONFIGURATION TABLE VALID ( BCON.ctv) -------------------~ 

~~~~ I (1) TABLE VALID 

INTERNAL RAM PROTECTION ENABLE (BCON.irp)-----------------.... 

(0) PROTECTION OFF 
(1) PROTECTION ON 

28 

BUS CONFIGURATION 

REGISTER (BCON) 

I RESERVED 
(INITIALIZE TO 0) 

24 20 16 12 

Figure 10.3. Bus Configuration Register (BCON) 
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Table 10.2. BCON Register Bit Definitions 

Entry Name Bit# Definition 

Configuration Table Valid 0 When BCON.ctv bit is clear, all memory is accessed 
as defined by Region Table Entry 0. When BCON.ctv 
bit is set, the entire region table is used. 

Internal RAM Protection Enables supervisor write protection for internal data 
RAM at address lOOH to 3FFH. 

Configuring the Bus Controller 

The bus controller is configured automatically when the processor initializes. All region table 
values are loaded from the control table and the BCON.ctv bit is set (table valid) before the 
first instruction of application code executes. The user only has to supply the correct value in 
the control table in external memory. See Chapter 14, Initialization and System Requirements 
for more details on the processor's actions at initialization. 

The region table value may be altered after initialization by use of the sysctl instruction. It is 
important to avoid altering an enabled region table entry while a bus access to that region is in 
progress. It is acceptable, however, to write the same data to an enabled region table entry 
while a bus access to that region is in progress. This consideration is especially important for 
Region Table Entry 0, when it is the master entry (BCON.ctv = 0). 

DATA ALIGNMENT 

Aligned bus requests generate an address that occurs on a data type's natural boundary. Quad 
words and triple words are aligned on 16-byte boundaries; double words on 8-byte boundaries; 
words on 4-byte boundaries; short words (half words) on 2-byte boundaries; bytes on 1-byte 
boundaries. 

Unaligned bus requests do not occur on these natural boundaries. Any unaligned bus request to 
a little endian memory region is executed; however, unaligned requests to big endian regions 
are supported only if software adheres to particular address alignment restric.tions. 

The processor handles all unaligned bus requests to little endian memory regions. The 
processor executes unaligned little endian requests as several aligned requests. This method of 
handling an unaligned bus request results in some performance loss compared to aligned 
requests: microcode uses CPU cycles to generate aligned requests and more bus cycles are 
used to transfer unaligned data. 

The processor may generate an operation-unaligned fault when any unaligned request is 
encountered. This fault can be masked with the PRCB fault configuration word. Refer to 
Chapter 14, Initialization and System Requirements for Fault Configuration Word discussion. 

When the processor encounters an unaligned request, microcode breaks the unaligned request 
into a series of aligned requests. For example, if a read request is issued to read a little endian 
word from address XXXXXXXJH (unaligned), a byte request followed by a short request 
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followed by a byte request is executed. Figure 10.4 shows how aligned and unaligned bus 
transfers are carried out for memory regions that use little endian byte ordering. 

If the unaligned fault is not masked, the bus controller executes the unaligned access - the 
same as it does when the fault is masked - and signals an operation-unaligned fault. The 
unaligned access fault can be used as a debug feature. Removing unaligned memory accesses 
from an application increases performance. 

BYTE OFFSET 0 12 16 20 24 .......... I .....-.--.--.--.---.--.-....-.--.-1~~, -,....-r-r--.--.--.--.. 

WORD OFFSET O 3 4 6 

SHORT-WORD 
LOAD/STORE 

WORD 
LOAD/STORE 

DOUBLE-WORD 
LOAD/STORE 

WORD REQUEST (ALIGNED) 
~~~- I I 

SHORT, BYTE. BYTE REQUESTS 
........... ~ .... I I 
~~~~SHORT, SHORT REQUESTS 

I I 
BYTE, SHORT, BYTE REQUESTS 

=+"==I I I 

ONE DOUBLE-WORD REQUEST (ALIGNED) 
~~~~~ I I I 

BYTE, SHORT, WORD, BYTE REQUESTS ........... ~~~.......... I I I 
SHORT, WORD, SHORT REQUESTS 

~~~~~ I I I 
~mr~~'jrJmF~tm7! BYTE, WORD, SHORT, BYTE REQUESTS 

J..;.J.~~~~~~~ WORD, WOR~ REQUESTS I 
~~~~~~~m ONE DOUBLE-WORD REQUEST (ALIGNED) 

I I 270710-002-20 

Figure 10.4. Summary of Aligned and Unaligned Transfers for 
Little Endian Regions 
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BYTE OFFSET 0 4 8 12 16 20 24 

....-r-1 ......-.--.--.1 ---.--.--...-I -.--.--.---,1........---.--.-.--.1 ---.--.--...--.--.-..--.1 
WORD OFFSET 0 1 2 3 4 6 

TRIPLE-WORD 
LOAD/STORE 

QUAD-WORD 
LOAD/STORE 

ONE THREE-WORD REQUEST (ALIGNED) 
!---'----""-.....----""'"-I I I 

BYTE, SHORT, WORD, WORD, BYTE REQUESTS 
-""'""'""'II---'-""""+-' ................... +--'. I I I 

SHORT, WORD, WORD, SHORT REQUESTS 
......... ___ I--'""_-+-___. I I I 

BYTE, WORD, WORD, SHORT, BYTE REQUESTS 

------------'t-~ I I 
WORD, WORD, WORD REQUESTS 

--~~-t--~~--~~-1 I 
WORD, WORD, WORD REQUESTS 

----- I 

ONE FOUR-WORD REQUEST (ALIGNED) ..... --~-.-------.-----~---...---'-----1 I I 
,,,,,,,,,,.,,,,..,...,,~,.,,-,.,,--.,.,~,.,,--_,~..,..,..-_,t'-"1 BYTE, SHORT, WORD, WORD, WORD 
...... .___ ..... ____ ..... __ _, ..... ___ ,......BYTE RE~UESTS I 

SHORT, WORD, WORD, WORD, 
-~1""""---1""""---1""""---1""""--" SHOR; REQUESTS I 

DOUBLE-WORD, i-----.-----i--.--....._ _ _.._--1DOUBLE-WORD 
REQUESTS 

270710-002-21 

Figure 10.4. Summary of Aligned and Unaligned Transfers for 
Little Endian Regions (continued) 

NOTE 

When an unsupported unaligned bus request to a big endian region is attempted, the bus 
controller handles the transfer exactly the same as it does for little endian regions; that is, it treats 
the data as little endian data. Thus, the data is not stored coherently in memory. 

INTERNAL DATA RAM 

The i960 CA microprocessor contains one Kbyte of user-visible internal data RAM which is 
mapped into the first lK of the address space (addresses OOH - 3FFH). Internal data RAM is 
accessed only by loads, stores or DMA transfers. Instruction fetches directed to these addresses 
cause an operation-unimplemented fault to occur. 
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A portion of this internal data RAM is optionally used to store DMA status. cached interrupt 
vectors and, in some applications, cached local registers. The remaining data RAM can be used 
by application software. Internal data RAM is described in Chapter 2. Programming 
Environment. 

Internal data RAM interfaces directly to an internal 128-bit bus. This bus i~ the pathway 
between registers and data RAM. Because of the wide internal path. a quad word read or write 
is usually performed in a single clock. 

BUS CONTROLLER IMPLEMENTATION 

The bus controller consists of four units (see Figure I 0.5 ): 

• queue • packing unit 

• translation unit • sequencer 

The i960 CA processor's instruction fetch unit, execution unit and OMA unit all pass memory 
requests to the bus controller unit which arbitrates, queues and executes these requests. 

QUEUE UNIT 

128 
STORE DATA 

LOAD DATA 

-r-- PACKING ..... 32..L 
UNIT ..... 32..L DATA 

~ 
,,.. ~ 

1 32..L ADDRESS 

l 

ADDRESS 

CONTROL{ 

~ SEQUENCER il-l TRANSLATION}- UNIT I--
UNIT 

-- A31:281' 

CONFIGURATION 
DATA 

f 
[ 

3 
J 

"\'. _.:s: 
~ ;:.. 

MEMORY REGION 
16 ENTRIES CONFIGURATION TABLE 

Figure 10.5. Bus Controller Block Diagram 
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Bus Queue 

The bus controller has a queue which contains entries for up to three bus requests. Each queue 
entry consists of a 32-bit address, up to 128-bits of data (four words) and control information. 
The bus queue decouples high bandwidth (128-bit-wide data) internal data buses from the 
lower bandwidth (32-bit-wide data) external bus. 

Two of these queue entries are reserved for bus requests generated from user code. The third 
queue entry is used by the DMA controller. If no OMA channels are set up, the third slot is 
also used by user code. User requests are serviced in a first-in, first-out (FIFO) manner. The 
DMA does not issue back-to-back requests; therefore, the CPU is guaranteed access to the 
external bus between DMA accesses, thus allowing the user and DMA processes to execute 
concurrently while sharing the external bus. 

Queue depth affects bus request and interrupt latency. Queued requests must be serviced before 
the pending request can be serviced. If an interrupt occurs when all three bus queue entries are 
full, the three outstanding requests must be serviced before the first interrupt instruction may 
be fetched from memory. 

Data Packing Unit 

The data packing unit handles data movement between queues and external bus. It controls 
data alignment and data packing: 

• Data is unpacked when data store request width exceeds physical bus width 

• Data is packed when data load request width exceeds physical bus width 

If a word load is issued to an 8-bit bus, the bus controller issues four I-byte reads and the data 
packing unit assembles incoming data into a single word. If a quad word-store is issued to an 
8-bit bus, the bus controller issues four one-word reads and the data packing unit unpacks the 
outgoing data. 

Bus Translation Unit and Sequencer 

The bus translation unit is responsible for looking up the memory configuration in the region 
table. The look-up is based on the bus request's address. The bus request and region table data 
are passed to the bus sequencer when the external bus is available. The sequencer then breaks 
the request into a set of bus accesses; this generates the signals on the external bus pins. 
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CHAPTER 11 
EXTERNAL BUS DESCRIPTION 

This chapter discusses the hus pins, hus transactions and bus arbitration. It shows waveforms to 
illustrate some common bus configurations. This chapter serves as a guide for the hardware 
designer when interfacing memory and peripherals to the i960 CA processor. For further 
details on external bus operation. refer to Appendix B. Bus lntCJj(zce Ernmples. For information 
on bus controller configuration, refer to Chapter JO. Bus Controller. 

OVERVIEW 

The i960 CA processor's integrated bus controller and external bus provide a flexible, easy-to­
use interface to memory and peripherals. All bus transactions are synchronized with the 
processor clock outputs (PCLK2: l ); therefore. most memory system control logic can easily be 
implemented as state machines. The internal. programmable wait state generator, external 
ready control signals, bus arbitration signals, data transceiver control signals and 
programmable bus width parameters all combine to reduce system component count and ease 
the design task. 

Terminology: Requests and Accesses 

The terms request and access are used frequently when referring to bus controller operation. 
The description of the i960 CA processor's bus modes and burst bus operation is simplified by 
defining these terms: 

Request 

The terms request. fms request or memorr request describe interaction between the core and 
bus controller. The bus controller is designed to decouple. as much as possible. bus activity 
from instruction execution in the core. When a load or store instruction or instruction prefetch 
is issued, the core delivers a bus request to the bus controller unit. 

The bus controller unit independently processes the request and retrieves data from memory for 
load instructions and instruction prefetches. The bus controller delivers data to memory for 
store instructions. The i960 architecture defines byte. short word, word, double word, triple 
word and quad word data lengths for load and store instructions. 

When a load or store instruction is encountered. the core issues to the bus controller a bus 
request of the appropriate data length: for example, ldq requests that four words of data be 
retrieved from memory; stob requests that a single byte is delivered to memory. The processor 
fetches instructions using double or quad word bus requests. The processor's microcode issues 
load and store requests to perform DMA transfers. 
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Access 

The terms access, bus access or memory access describe the mechanism for moving data or 
instructions between the bus controller and memory. An access is bounded by the assertion of 
ADS (address strobe) and BLAST (burst last) signals, which are outputs from the processor. 
ADS indicates that a valid memory address is present and an access has started. BLAST 
indicates that the next data which is transferred is the end of access. The bus controller can be 
configured to initiate burst, non-burst or pipelined accesses. A burst access begins with ADS 
followed by two to four data transfers. The last data transfer is indicated by assertion of 
BLAST. Non-burst accesses begin with assertion of ADS followed by a single data transfer. 
Pipelined accesses begin on the same clock cycle in which the previous cycle completes. This 
is accomplished by asserting ADS and a valid address during the last data transfer of the 
previous cycle. Pipelined accesses may also be burst or non-burst. 

Load, store and prefetch mechanisms which deliver "bus requests" to the bus controller are 
discussed in Chapter 4, Instruction Set Summary and Appendix A, Optimizing Code for the 
i960 CA Microprocessor. The bus controller can be configured for various modes to optimize 
interfaces to external memory. Access type - burst, non-burst or pipelined - is selected when 
the bus controller is configured. 

The bus controller can be configured in various ways. Bus width and access type can be set 
based on external memory system requirements. For example, peripheral devices commonly 
have slow, non-burst, 8-bit buses. The bus controller can be configured to make memory 
accesses to these 8-bit non-burst devices. Each memory access to the peripheral begins with 
assertion of ADS and a valid address. BLAST is asserted and, after the desired number of wait 
states, eight bits of data are transferred. 

A peripheral device is accessed as described above regardless of which bus request type is 
issued. For example, if a program includes a Id (word load instruction) from the peripheral, the 
load is executed as four 8-bit accesses to the peripheral. 

BUS OPERATION 

The i960 CA processor bus consists of 30 address signals, four byte enables, 32 data lines and 
various control and status signals. Some signals are referred to as status signals. A status signal 
is valid for the duration of a bus request. Other signals are referred to as control signals. 
Control signals are used to define and manage a bus request. This chapter defines the bus pins 
and pin function. 
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Table 11.1. Bus Controller Pins 

Pin Name Description Input/Output 

PCLK2:1 Processor Output Clocks 0 
D31:0 Data Bus 1/0 
A31:2 Address Bus 0 
Control Signals: 
BE3:0 Byte Enables 0 
ADS Address Strobe 0 
WAIT Wait States 0 
BLAST Burst Last 0 
READY Memory Ready I 
BTERM Burst Terminate I 

DEN Data Enable 0 
Status Signals: 
W/R Write/Read 0 
DT/R Data Transmit/Receive 0 
DIC Data/Code Request 0 
DMA DMARequest 0 
SUP Supervisor Mode Request 0 

Bus Arbitration: 
HOLD Hold Request I 

HOLDA Hold Acknowledge 0 
LOCK Locked Request 0 
BREQ Bus Request Pending 0 
BOFF Bus Backoff I 

A bus access starts with an address cycle; address cycle is defined by the assertion of address 
strobe (ADS). Address and byte enables (A31:2 and BE3:0) are also presented in the address 
cycle. 

After the address cycle, extra clock cycles called wait states may be inserted to accommodate 
the access time for external memory or peripherals. For write accesses, the data lines are driven 
during wait states. For read accesses, data lines float. Wait states are discussed later in this 
chapter in the section titled Wait States. 

A data cycle follows wait states. For write accesses, the data cycle is the last clock cycle in 
which valid data is driven onto the data bus. For read accesses, external memory must present 
valid data on the rising edge of PCLK2: 1 during the data cycle. Setup and hold time for input 
data is specified in the i960 CA Microprocessor Data Sheet. 

A bus access may be either non-burst or burst. A non-burst access ends after one data cycle to 
a single memory location. A burst access involves two to four data cycles to consecutive 
memory locations. BLAST - the burst last signal - is asserted to indicate the last data cycle 
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of an access. Chapter 10, Bus Controller explains how to configure the bus controller for burst 
or non-burst accesses. 

Read accesses may be pipelined. In a pipelined access, the data cycle and address cycle of two 
accesses overlap. This is possible because address and data lines are not multiplexed. A valid 
address can be presented on the address bus while a previous access ends with a data transfer 
on the data bus. Chapter 10, Bus Controller explains how to configure the bus for pipelined 
accesses. 

WIR is a status signal which discerns between a write request (store) or a read request (load or 
prefetch). 

DTIR and DEN pins are used to control data transceivers. Data transceivers may be used in a 
system to isolate a memory subsystem or control loading on data lines. DTIR is used to 
control transceiver direction; the signal is low for read requests and high for write requests. 
DTIR is valid on the falling PCLK2:1 edge during the address cycle. DEN is used to enable 
the transceivers; it is asserted on the rising PCLK2:1 edge following the address cycle. DTIR 
and DEN timings ensure that DTIR does not change when DEN is asserted. 

DIC, DMA and SUP provide information about the source of bus request. DIC indicates that 
the current request is data or a code fetch. DMA indicates that the current request is a DMA 
access. SUP indicates that the current request was originated by a supervisor mode process. 
When used with a logic analyzer, these signals aid in software debugging. 

DIC may also be used to implement separate external data and instruction memories. SUP can 
be used to protect hardware from accesses while the processor is not in user mode. 

The bus is in the idle state between bus requests. Idle bus state begins after NxnA cycles and 
ends when ADS is asserted. 

The bus controller aligns all bus accesses; non-aligned accesses are translated into a series of 
smaller-aligned accesses. Alignment is described in Chapter JO, Bus Controller. 

Wait States 

In non-burst mode, it is possible to insert wait states between the address and data cycle. In a 
burst mode access, it is possible to insert wait states between the address cycle and data cycle 
and between subsequent data cycles for a burst access. It is also possible to insert wait states 
between bus requests which occur back-to-back. 

The i960 CA bus controller provides an internal counter for automatically inserting wait states. 
The bus controller provides control of five different wait state parameters. Figure 11.1 and the 
following text describe each parameter. 
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~1 .... __ N_R_A_D_=_3 __ ~-~1 .... .--N_R_D_D_-_-_2 ___ ... ,1,... ___ N_x_D_A_=_3 ____ ..,.. 

I I I I I I I I I 
I A I 3 I 2 I 1 Doo I 2 I 1 I Do1 3 I 2 I 1 I A 

A31:2 [ ] A32~00 Invalid X,.__. __ 

031 0 [ 

ADS [ 

BLAST [ 

WAIT [ 

A31:2 [ 

D31.0 [ 

Double-word burst read request 

I NwAo = 3 I NwDo = 2 I 
t-.•-------~·..i.-.... 1-------1•-- ~----------~ 
I I I I I I I I I 

A I Doo 3 I 2 I 1 I Do1 I 2 I 1 3 I 2 I 1 I A 

A3:2=00 A3:2~01 Invalid 

VALID (00) VALID (01) 
I I I ill I I 

I I 
I 

Lli I Ii 
I I I 
I I 

Double-word burst wnte request 

Figure 11.1. Internal Programmable Wait States 

Number of wait cycles for Read Address-to-Data. The number of wait state~ 

between the address cycle and first read data cycle. NRAD can be programmed for 
0-31 wait states. 

Number of wait cycles for Read Data-to-Data. The number of wait states between 
consecutive data cycles of a burst read. NRDD can he programmed for 0-3 wait 
states. 

Number of wait cycles for Write Address-to-Data. The number of wait states that 
data is held after the address cycle and before the first write data cycle. Nw AD can 
be programmed for 0-31 wait states. 
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Number of wait cycles for Write Data-to-Data. The number of wait states that 
data is held between consecutive data cycles of a burst write. Nwoo can be 
programmed for 0-3 wait states. 

Number of wait cycles for X (read or write) Data to Address. The minimum 
number of wait states between the last data cycle of a bus request to the address 
cycle of the next bus request. NxoA applies to read and write requests. NxoA can 
be programmed for 0-3 clocks. 

NRAD and NwAo describe address-to-data wait states; NRoD and Nwoo specify the number of 
wait states between consecutive data when burst mode is enabled. NRoo and Nwoo are not 
used in non-burst memory regions. 

NxoA describes the number of wait states between consecutive bus requests. NxoA is the bus 
turnaround time. An external device's ability to relinquish the bus on a read request (read 
deasserted to data-float) determines the number of NxoA cycles. 

NOTE 

NxoA states are only inserted after the last data transfer of a bus request. Therefore, for requests 
composed of multiple accesses, NxoA states do not appear between each access. For example, on 
an 8-bit burst bus, NxoA states are inserted only after the fourth byte of a word request rather 
than after every byte. See Figure 11.2. 

For pipelined read accesses, the bus controller uses a value of zero for the NxDA parameter, 
regardless of the programmed value for the parameter. A non-zero NxoA value defeats the 
purpose of pipelining. The programmed value of NxoA is used for write requests to pipelined 
memory regions. 

The processor asserts the WAIT signal when NRAD· NwAD· NRoo or Nwoo are inserted. 
WAIT can be used as a read or write strobe for the external memory system. 

Wait states can also be controlled with READY and BTERM. These inputs are enabled or 
disabled in a region by programming the memory region configuration table. Refer to Chapter 
JO, Bus Controller for details on setting up bus controller for wait states. 

When enabled, READY indicates to the processor that read data on the bus is valid or a write 
data transfer has completed. The READY pin value is ignored until the NRAD• NRDD· NwAD or 
Nwoo wait states expire. At this time, if READY is deasserted (high), wait states continue to 
be inserted until READY is asserted (low). 

NxoA wait states cannot be extended by READY. The READY input is ignored during the idle 
cycles, the address cycle and NxoA cycles. READY is also ignored in memory regions where 
pipelining is enabled, regardless of memory region programming. 

NOTE 

For proper bus operation, the READY/BTERM inputs should be disabled in regions that have 
pipelining enabled. 
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PCLK [ 

A31 :4, S\,!P, [ 
DMA D&_ 
BE3:0. LOCK 

BLAST [ 

DT/R [ 

DEN [ 

A3:2 [ 

D31:0 [ 

x 
x 

EXTERNAL BUS DESCRIPTION 

Bus Pipe· 
External 

Reserved Width Nwoo NwAo NxoA NRoo NRAD Lining Ready 
Con1rol 

bit 21 bits 20·19 bits 18-17 bits 16·12 bits 11-10 bits 9-8 bits 7-3 bit 2 bit 1 

0 32-bit x x 1 x 0 Off Disabled 
0 10 xx xxxxx 01 01 00010 0 0 

Ti D A D I A I D I A I 

00 01 10 11 

I I 1818181-G - ~ - .J - - ~ INO - ~ IN1 - j... IN2 - J.. IN3 -

I I I I I I 

Burst 

bit 0 

Disabled 
0 

I 
I --1 
I 

270710-001-34 

Figure 11.2. Quad-word Read from 32-bit Non-burst Memory 

The burst terminate signal (BTERM) breaks up a burst access. Asserting BTERM (low) for 
one clock cycle completes the current data transfer and invokes another address cycle. This 
allows a burst access to be dynamically broken into smaller accesses. The resulting accesses 
may also be burst accesses. For example, if BTERM is asserted after the first word of a quad 
word burst, the bus controller initiates another access by asserting ADS. The accompanying 
address is the address of the second word of the burst access (A3:2 = 01 2). The bus controller 
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then bursts the remaining three words. The BLAST (burst last) signal indicates the last data 
transfer of the access. 

Read data is accepted on the clock edge that asserts BTERM; write data is assumed written. 
BTERM effectively overrides the memory ready (READY) signal when it is asserted. In this 
way, no data is lost when the current access is terminated. When BTERM is asserted, READY 
is ignored until after the address cycle which resumes the burst. As with READY, BTERM is 
ignored when pipelining is enabled in a region, regardless of how the region is programmed. 

Reserved 

bits 31-23 
0 

0 ... 0 

Byte Bus Pipe-
External 

Reserved Nwoo NwAD NxoA NRDD NRAD Ready 
Order Width Lining 

Control 

bit 22 bit21 bits 20-19 bits 18-17 bits 16-12 bits 11-10 bits 9-8 bits 7-3 bit 2 bit 1 
x 0 32-bit x x 1 1 2 OFF 1 
x 0 10 xx xxxxx 01 01 00010 0 01 

Not Burst 

I A I 2 I 1 

,r l'"',,:"r" ,,,,,, '~,, T 
WID 110TA121110T1;DI 

I I I I I I I I I I I I 

ADS[:W w 
D310 [ :..__,.__,X.__ _ ___,X.....______.X.___~X..___ 

I 

WAIT [: 

I 

I 
I 

I I I I 

Burst 

bitO 
Enabled 

1 

__________ : __ :\...._.[r11Jf 
I I I I 

BTERM [: 

~1-------
1 

270710-002-17 

Figure 11.3. Bus Request with READY and BTERM Control 
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Bus Width 

Each region's data bus width is programmed in the memory region configuration table. The 
i960 CA device allows an 8-, 16- or 32-bit-wide data bus for each region. The i960 CA 
processor places 8- and 16-bit data on low order data pins. This simplifies interface to external 
devices. As shown in Figure 11.4, 8-bit data is placed on lines D7 :O; 16-bit data is placed on 
lines D 15:0; 32-bit data is placed on lines D31 :0. 

031:24 -----------------------

023:16 !-----------------=: 
015:8 ---------------

07:0 1-----z----=!i~(iiF---,...-----ti1'.!I--

;eeo'"cA 
MICROPROCESSOR 

Figure 11.4. Data Width and Byte Enable Encodings 

270710-001-25 

The four byte enable signals are encoded in each region to generate proper address signals for 
8-, 16- or 32-bit memory systems: 

• 8-bit region: BEO is address line AO; BEl is address line Al. 

• 16-bit region: BEl is address line Al; BE3 is the byte high enable signal (BHE); BEO is 
the byte low enable signal (BLE). 

• 32-bit region: byte enables are not encoded. Byte enables BE3:0 select byte 3 to byte 0, 
respectively. Address lines A31:2 provide the most significant portion of the address. (See 
Table 11.2.) 

For regions configured for 8- and 16-bit bus widths, data is repeated on the upper data lines for 
aligned store operations. When storing a value to an 8-bit bus region, the processor drives the 
same byte-wide data onto lines D7:0, D15:8, D23:16 and D31:24 simultaneously. When 
storing a value to memory in a 16-bit bus region, the processor drives the same short-word data 
onto lines Dl5:0 and D31:16 simultaneously. 
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Table 11.2. Byte Enable Encoding 

8-Bit Bus Width: 

BE3 BE2 BEl BEO 
BYTE 

(X) (X) (Al) (AO) 

0 x x 0 0 

I x x 0 1 

2 x x I 0 

3 x x 1 1 

16-Bit Bus Width: 

BE3 BE2 BEl BEO 
BYTE 

(BHE) (X) (Al) (BLE) 

0,1 0 x 0 0 

2,3 0 x I 0 

0 I x 0 0 

1 0 x 0 1 

2 1 x 1 0 

3 0 x 1 1 

32-Bit Bus Width: 

BYTE BE3 BE2 BEl BEO 

0,1,2,3 0 0 0 0 

2,3 0 0 1 1 

0,1 1 1 0 0 

0 1 1 1 0 

1 1 1 0 1 

2 1 0 1 1 

3 0 1 1 1 

Non-Burst Requests 

A basic request (non-burst, non-pipelined; see Figure 11.5) is an address cycle followed by a 
single data cycle, including any optional wait states associated with the request. Wait states 
may be generated internally by the wait state generator or externally using the i960 CA 
processor's READY input. 
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0 
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Bus 
Width Nwoo NwAD NxoA NRDD NRAD 

bits 20-19 bits 18-t7 bits 16-12 bits 11-10 bits 9-8 bits 7-3 

x x x 1 x 3 
xx xx xxxxx 01 xx 00011 

A D 

VALID 

VALID 

I 
I I I I 

- - - I- - - -1- - - -1- - - -I - -
I I I I 

Pipe-
Lin mg 

bit 2 

Off 
0 

External 
Ready 
Control 

bit 1 

Disableo 

I 

I 
I 
I 

0 

Burst 

bit 0 

Disabled 
0 

A 

---+----
1 

270710-001-28 

Figure 11.5. Basic Read Request, Non-Pipelined, Non-Burst, Wait-States 

Non-burst accesses and non-pipelined reads are the most basic form of memory access. Non­
burst regions may be used to memory map peripherals and memory that cannot support burst 
accesses. Ready control may be enabled or disabled for the region. 
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NRAD, Nw AD and NxDA wait state fields of a region table entry control basic accesses: 

• NRAD specifies the number of wait states between address and data cycles for read 
accesses. 

• Nw AD specifies the number of wait states between address and data cycle for write 
accesses. 

• NxDA specifies the number of wait states between data cycle and next address cycle. 

Data-to-data wait states (NRDD· NwnD) are not used if burst accesses are not enabled. 

A read access begins by asserting the proper address and status signals (ADS, A3 l :2, BEO, 
BE3, SUP, DIC, DMA, W/R) on the rising clock edge that begins the address cycle (marked 
as "A" on the figures). Assertion of ADS indicates the beginning of an access. 

DT/R is driven on the clock's next falling edge. This signal is asserted early to ensure that 
DT/R does not change while DEN is asserted. DEN is asserted on the clock's next rising edge 
(the rising edge in which ADS is deasserted and the address cycle ends). DEN can be used to 
control external data transceivers. 

The cycles that follow are NRAD wait states. WAIT is asserted while the internal wait state 
generator is counting. If READY/BTERM control is enabled in this region and READY is not 
asserted after the wait state generator has finished counting, wait states continue to be inserted 
until READY is asserted. 

BLAST assertion indicates end of data transfer cycles for this access. DEN is deasserted. 
NxDA wait states (turnaround wait states) follow BLAST; a new address cycle may start after 
NxDA cycles expire. NxnA states allow time for slow devices to get off the bus. For this 
figure, this access is the last access of a bus request because NxDA wait states are inserted and 
DEN is deasserted. 

Burst Accesses 

A burst access is an address cycle followed by two to four data cycles. The two least­
significant address signals automatically increment during a burst access. 

Maximum burst size is four data cycles. This maximum is independent of bus width. A byte­
wide bus has a maximum burst size of four bytes; a word-wide bus has a maximum of four 
words. If a quad word load request (e.g., ldq) is made to an 8 bit data region, it results in four 
4-byte burst accesses. (See Table 11.3.) 
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Byte Bus Pipe· External 
Reserved Order Reserved Width NwDD NwAD NxoA NRDD NRAD Lining Ready Burst 

Control 

bits 31·23 bit22 bit 21 bits 20-19 bits 18-17 bits 16-12 bits 11-10 bits 9-8 bits 7-3 bit2 bit 1 bitO 
0 x 0 x x 0 0 x 0 011 Disabled Disabled 

0 ... 0 x 0 xx xx 00000 00 xx 00000 0 0 0 

A D A D A D 

PCLK [ 

ADS [ 

A31:4, S\!_P, [ 
QM&D.&_ VALID VALID VALID 
BE3:0. LOCK 

W/f!i.[ 

BLAST [ 

DT/R[ 

DEN [ 

A3:2 [ VALID VALID m 
WAIT [ I I I 

I I I 
I I I 

D31:0 [ 

I I I 
--1-- --1-- ---+--

I I I 

Figure 11.6. Basic Read and Write Requests, Non-Pipelined, 
Non-Burst, No Wait States 
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Table 11.3. Burst Transfers and Bus Widths 

Number of Burst Number of Number of 
Request Bus Width Accesses Transfers/Burst Transfers 

8 bit 4 4-4-4-4 16 
Quad Word 16 bit 2 4-4 8 

32 bit 1 4 4 

8 bit 3 4-4-4 12 
Triple Word 16 bit 2 4-2 6 

32 bit 1 3 3 

8 bit 2 4 8 
Double Word 16 bit I 4 4 

32 bit 1 2 2 

8 bit I 4 4 
Word 16 bit I 2 2 

32 bit l 1 1 

8 bit l 2 2 
Short 16 bit l l 1 

32 bit 1 1 I 

8 bit 1 l 1 
Byte 16 bit l I 1 

32 bit I l 1 

Burst accesses increase bus bandwidth over non-burst accesses. The i960 CA processor burst 
access allows up to four consecutive data cycles to follow a single address cycle. Compared to 
non-burst memory systems, burst mode memory systems achieve greater performance out of 
slower memory. SRAM, interleaved SRAM, Static Column Mode DRAM and Fast Page Mode 
DRAM may be easily designed into burst-mode memory systems. 

A burst read or write access consists of: a single address cycle, 0 to 31 address-to-data wait 
states (N RAD or N w AD) and one to four data cycles, separated by zero to three data-to-data 
wait states (NRDD or NwDo). If READY/BTERM control is enabled in the region, NRAD, 
NwAD, NRDD and NwDD wait states may all be extended by not asserting READY. BTERM 
may be used to break a burst access into smaller accesses. 

The address' two least-significant bits automatically increment after each burst data cycle. This 
is true for 8-, 16- and 32-bit-wide data buses. When a memory region is configured for a 32-bit 
data bus width, address pins A2 and A3 increment. For a 16-bit memory region, BEl is 
encoded as Al and address pins A2 and Al increment. When a memory region is configured 
for an 8-bit data bus width, BEO and BEl - acting as the lower two bits of the address -
increment. 

Maximum burst size is four data transfers per access. For an 8- or 16-bit bus, this means that 
some bus requests may result in multiple burst accesses. For example, a quad-word (16 byte) 
request to an 8 bit memory results in four 4-byte burst accesses. Each burst access is limited to 
four bytewide data transfers. 
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Burst accesses on a 32-bit bus are always aligned to even-word boundaries. Quad-word and 
triple-word accesses always begin on quad-word boundaries (A3:2=00); double-word transfers 
always begin on double-word boundaries (A2=0); single-word transfers occur on single word 
boundaries. (See Figure 11.7.) 

A3:2 

32-BIT BURST BUS 
QUAD-WORD BURST 

TRIPLE-WORD BURST 

DOUBLE-WORD BURST 

DOUBLE-WORD BURST 

32-BIT 270710-001-31 

Figure 11.7. 32-Bit-Wide Data Bus Bursts 

Burst accesses for a 16-bit bus are always aligned to even short-word boundaries. A four short­
word burst access always begins on a four short-word boundary (A2=0, A I =0). Two short­
word burst accesses always begin on an even short-word boundary (Al=O). Single short-word 
transfers occur on single short-word boundaries (see Figure 11.8.) For a 16-bit bus, data is 
transferred on data pins D 15:0. Data is also driven on upper data lines D3l:16. 

Burst accesses for an 8-bit bus are always aligned to even byte boundaries. Four-byte burst 
accesses always begin on a 4-byte boundary (A I =0, AO=O). Two-byte burst accesses always 
begin on an even byte boundary (AO=O) (see Figure 11.9). For an 8-bit bus, data is transferred 
on data pins D7:0. Data is also driven on the upper bytes of the data bus Dl5:8, D23:16 and 
D31:24. 
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A2:1 = (A2, BE1) 

00 01 10 11 

16-BIT BURST BUS 
4 SHORT-WORD BURST 

2 SHORT-WORD BURST 

2 SHORT-WORD BURST 

270710-001-32 

.. _.1 
16-BIT : 

Figure 11.8. 16-Bit Wide Data Bus Bursts 

A 1:0 = (BE1, SEO) 

00 01 10 11 

8-BIT BURST BUS 
4-BYTE BURST 

2-BYTE BURST 

2-BYTE BURST 

I 

270710-001-33 

.. _.1 

8-BIT : 

Figure 11.9. 8-Bit Wide Data Bus Bursts 

Figure 11.10 shows a quad-word read on a 32-bit bus. Burst access begins by asserting the 
proper address and status signals (ADS, A3 l :2, BE3:0, SUP, DIC, DMA, W/R). This is done 
on the rising edge that begins the address cycle ("A" on the figures). Word read asserts all byte 
enable signals BE3:0. ADS assertion indicates beginning of access. 

DT/R is driven on the clock's next falling edge to ensure that DT/R does not change while 
DEN is asserted. DEN is asserted on the clock's next rising edge - the rising edge that ends 
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address cycle. ADS is deasserted on this clock edge. DEN is used to control external data 
transceivers. DEN and DT/R remain asserted throughout the burst access. 

Wait-state cycles that follow are address and NRAD wait states. WAIT is asserted while the 
internal wait-state generator is counting. If READY/BTERM control is enabled in this region 
and READY and BTERM are not asserted after the wait-state generator has finished counting, 
wait states continue to be inserted until READY is asserted. If BTERM is asserted, READY is 
ignored. Data is then read and a new address cycle is generated. (See section titled Ready and 
Burst Terminate Control later in this chapter.) 

The data cycle is followed by NRDD wait states. These wait states separate burst data cycles 
and can be used to extend data access time of reads and data setup and hold times for writes. 

BLAST assertion indicates the end of data transfer cycles for this access. At this time, DEN is 
de asserted. 

NXDA wait states (turnaround wait states) are inserted after the last access of a bus request. 
NXDA wait states follow BLAST only when BLAST is asserted for the last access of a bus 
request. A new address cycle may start after NXDA cycles have expired. NxDA states allow 
slow devices to get off the bus. 

Pipelined Read Accesses 

Pipelined read accesses provide the maximum data bandwidth. For pipelined reads, the next 
address is output during the current data cycle. This effectively removes the address cycle from 
consecutive pipelined accesses. 

A pipelined read memory system is implemented by adding an address latch to the design (see 
Figure l l.12). The address latch holds the address for the current read access while the 
processor outputs the address for the next access. This allows the next address to be available 
during the data cycle of the current access. Overlapping address and data cycles improves data 
bandwidth. 

Write accesses to a pipelined region act the same as writes to a non-pipelined region. This 
means that the address for a write access is not pipelined. Similarly, the address for a read 
access following a write is not pipelined. 

NOTE 
When pipelining is enabled in a region, the READY and BTERM inputs are ignored for read and 
write cycles. These inputs must be disabled in regions that have pipelining enabled. 

For pipelined read accesses, the bus controller uses a value of zero for the NxoA parameter, 
regardless of the programmed value for the parameter. A non-zero NxDA value defeats the 
purpose of pipelining. The programmed value of NxoA is used for write accesses to pipelined 
memory regions. 
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LITTLE OR BIG ENDIAN MEMORY CONFIGURATION 

270710-002-26 

The bus controller supports big endian and little endian byte ordering for memory operations. 
Byte ordering determines how data is read from or written to the bus and ultimately how data is 
stored in memory. Little endian systems store a word's least significant byte at the lowest byte 
address in memory. For example, if a little endian ordered word is stored at address 600, the 
least significant byte is stored at address 600 and the most significant byte at address 603. Big 
endian systems store the least significant byte at the highest byte address in memory. So, if a 
big endian ordered word is stored at address 600, the least significant byte is stored at address 
603 and the most significant byte at address 600. 

The i960 CA processor uses little endian byte ordering internally for data-in registers and data­
in internal data RAM. Data-in memory (except for internal data RAM) can be stored in either 
little or big endian order. A bit in the region table entry for a memory region determines the 
type of. byte ordering used in that region. Data and instructions can be located in either big or 
little endian regions. 

Both byte ordering methods are supported for short-word and word data types. Table 11.4 
shows how a word, half-word and byte data types are transferred on the bus according to the 
type of byte ordering used for the selected memory region and bus width (32, 16 or 8 bits). All 
transfers shown in the table are aligned memory accesses. 
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For the word data type, assume that a hexadecimal value of aabbccddH is stored in an internal 
i960 CA processor register, where aa is the word's most significant byte and dd is the least 
significant byte. Table 11.4 then shows how this word is transferred on the bus to either a little 
endian or big endian region of memory. 

For the half-word data type, assume that a hexadecimal value of ccddH is stored in one of the 
i960 CA processor's internal registers. Table 11.4 then shows how this half word is transferred 
on the bus to either a little endian or big endian memory region. Note that the half-word goes 
out on different data lines on a 32-bit bus depending on whether address line Al is odd or 
even. 

Table 11.4 also exhibits how the i960 CA processor handles byte data types the same 
regardless of byte ordering type. 

Multiple word bus requests (bursts) to a big endian region are handled as individual words. 
Bytes in each word are stored in big endian order; however, words are stored in little endian 
order. Big endian data types that exceed 32 bits are not supported and must be handled by 
software. 
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Table 11.4. Byte Ordering on Bus Transfers 

Word Data Type Bus Pins (data lines 31:0) 

Bus Addr Bits Little Endian Big Endian 
Width Al, AO Xfer 31:24 23:16 15:8 7:0 31:24 23:16 15:8 7:0 

32 bit 00 1st aa bb cc dd dd cc bb aa 

16 bit 00 I st -- cc dd -- -- bb aa 

00 2nd -- -- aa bb -· -- dd cc 

8 bit 00 1st -- ·- -- dd -- -- -- aa 

00 2nd -- -- -- cc -- -- -- bb 

00 3rd -- -- -- bb -- -- -- cc 

()() 4th -- -- -· aa -- -- -- dd 

Half-Word Data Type Bus Pins (data lines 31 :0) 

Bus Addr Bits Little Endian Big Endian 
Width Al, AO Xfer 31:24 23:16 15:8 7:0 31:24 23:16 l5:8 7:0 

32 bit 00 I st -- -- cc dd -- -- dd cc 

10 1st cc dd -- -- dd cc -- --
16 bit XO l st -- -- cc dd -- -- dd cc 

8 bit XO 1st -- -- -- dd -- -- -- cc 

2nd -- -- -- cc ·- -- -- dd 

Byte Data Type Bus Pins (data lines 31:0) 

Bus Addr Bits Little and Big Endian 
Width Al, AO Xfer 31:24 23:16 15:8 7:0 

32 bit 00 1st -- -- -- dd 

01 1st -- -- dd --
10 I st -- dd -- --
11 1st dd -- -- --

16 bit XO I st -- -- -- dd 

Xl 1st -- -- dd --

8 bit xx 1st -- -- -- dd 

ATOMIC MEMORY OPERATIONS (THE LOCK SIGNAL) 

LOCK output assertion indicates that the processor is executing an atomic read-modify-write 
operation. Atomic instructions (atadd, atmod) require indivisible memory access. That is, 
another bus agent must not access the target of the atomic instruction between read and write 
cycles. LOCK can be used to implement indivisible accesses to memory. 

Atomic instructions consist of a load and store request to the same memory location. LOCK is 
asserted in the first address cycle of the load request and deasserted in the cycle after the last 
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data transfer of the store request. The LOCK pin is not active during the NxoA states for the 
store request. 

When implementing a locked memory subsystem, consider the interaction that the following 
mechanisms may have on the system. A system must account for these conditions during 
locked accesses: 

• HOLD requests are acknowledged while LOCK is asserted. 

• An atomic load or store may be suspended using the BOFF input. 

• A DMA request may occur between the atomic load and store requests. 

LOCK indicates that other agents should not write data to any address falling within the quad 
word boundary of the address on the bus when LOCK was asserted. LOCK is deasserted after 
the write portion of an atomic access. It is the responsibility of external arbitration logic to 
monitor the LOCK pin and enforce its meaning for atomic memory operations. (See Figure 
11.16.) 

READ WRITE 

A D A D 

PCLK [ 

I 
I 22 

Aos[i\ I \ I 
I 

A314, Si,!P. [ ~ x (0 VALID VALID OMA, D/C, 
BE3:0 

I I I 
I I I 

w1R[-:-J !L (0 
I I 
I I 22 

BLAST [ I \ I I \ I 
I 
I 

LOCK[i\ 
I 

,,____ _ ___,/ 
22 

I 
270710-002-29 

Figure 11.16. The LOCK Signal 

EXTERNAL BUS ARBITRATION 

The i960 CA processor provides a shared bus protocol to allow another bus master to access 
the processor's bus. The processor enters the hold state when an external bus master is granted 
bus control. In the hold state, the processor's data, address and control lines are floated (high 
Z) to allow the external bus master to control the bus and memory interface. 
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The HOLD input signal is asserted to indicate that another processor or peripheral is attempting 
to control the bus. The HOLDA (Hold Acknowledge) output signal acknowledges that the i960 
CA processor has relinquished the bus. Bus pins float on the same clock cycle in which the 
hold request is granted (HOLDA asserted). When the i960 CA processor needs to access the 
bus, it uses the bus request signal (BREQ) to signal the other processor or peripheral. 

When the HOLD signal is asserted, the i960 CA processor grants the hold request (asserts 
HOLDA) and relinquishes control as follows: 

• If the bus is in the idle state. the hold request is granted immediately. 

• If a request is in progress, the hold request is granted at the end of the current bus request. 

• If the processor is in the backoff state (BOFF pin asserted). the hold request is granted after 
BOFF is deasserted and the resumed request has completed. 

The hold request may be acknowledged between internal OMA load and store operations and 
atomic requests (read-modify-write accesses that assert LOCK). 

When the HOLD signal is removed, HOLDA is dcasserted on the following PCLK2: I cycle 
and the bus and control signals are driven. The HOLD signal is a synchronous input. Setup and 
hold times for this input are given in the i960 CA Microprocessor Data Sheet. 

BREQ indicates that the bus controller queue contains one or more pending bus requests. The 
bus controller can queue up to three bus requests (refer to Chapter 10, Bus Controller for a 
complete description of the bus queue). When the bus queue is empty, the BREQ pin is 
deasserted. BREQ determines bus queue state during a hold state or before the hold state is 
requested. It may be useful to use BREQ to qualify hold requests and optimize the processor's 
use of the bus when shared by external masters. Because the hold request is granted between 
bus requests, the bus controller queue may contain one or more entries when the request is 
granted. BREQ can be used to delay a hold request until all pending bus requests are complete. 
The processor may continue executing from on-chip cache; therefore, it is possible that bus 
requests may be posted in the queue after the hold request is granted. In this case. BREQ can 
be used to relinquish the hold request when the processor needs the bus. 

The HOLD and HOLDA arbitration can also function during the reset state. The bus controller 
acknowledges HOLD while RESET is asserted. If RESET is asserted while the processor has 
asserted HOLDA (acknowledged the HOLD) the processor remains in the HOLDA state. The 
processor does not go into the reset state until HOLD is removed and the processor removes 
HOLDA. 
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Figure 11.17. HOLD/HOLDA Bus Arbitration 

Bus Backoff Function (BOFF pin) 

The bus backoff input (BOFF) suspends a bus request already in progress and allow another 
bus master to temporarily take control of the bus. The BOFF pin causes the current bus request 
to be suspended. When BOFF is asserted, the processor's address, data and status pins are 
floated on the following clock cycle. At this time, an alternate bus master may take control of 
the local system bus. When the alternate bus master has completed its accesses, BOFF is 
deasserted and the suspended request is resumed upon assertion of ADS on the following clock 
cycle. (Figure 1 l.18). 

The backoff function differs from the bus hold mechanism. The backoff function suspends a 
bus request which has already started. The request is later resumed when the pin is deasserted. 
The bus hold mechanism allows another bus master to control the bus only after all executing 
bus requests have completed. 

Backoff can only be used for requests to regions which have the READY/BTERM inputs 
enabled, with the NRAD' NR00, NwAD and Nwoo parameters programmed to 0. 
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BOFF may only be asserted during a bus access. Recall that a bus access includes and is 
bounded by clock cycles in which ADS is valid and the clock cycle in which BLAST is valid 
and READY input is asserted. External logic responsible for asserting BOFF must ensure that 
the signal is not asserted during idle bus cycles or during bus turnaround (NxDA) cycles. 
Unpredictable behavior may occur if BOFF is subsequently deasserted during an idle bus or 
turnaround cycle. 

It is possible for HOLD and BOFF to be asserted in the same clock cycle. In this case. BOFF 
takes precedence. The bus is relinquished to a hold request only after the current request is 
complete. 

Bus backoff is intended for use with special multiprocessor designs or bus architectures that do 
not implement "collision free" bus arbitration schemes (such as VME and MULTIUSERS I). A 
collision occurs when multiple processors begin a bus access simultaneously and a con11ict for 
control of one of the processor's local memory occurs. 

A bus collision is illustrated in the system diagram shown in Figure l l .19. In this system. 
several processors share a common bus. Each processor has local memory which is connected 
directly to that processor's address, data and control lines. Each processor can access another 
processor's local memory over the bus. 

Processor A has highest priority and Processor C has lowest pnonty for use of the bus. 
Processor A and B simultaneously request an access over the bus. Processor A attempts to 
access Processor B's local memory and Processor B attempts to access another memory on the 
bus. Use of the bus is granted to Processor A because it is the highest priority. For Processor A 
to complete its access, the local bus for Processor B must be relinquished (floated). This is 
accomplished by asserting the BOFF pin for Processor B. 

When BOFF is asserted, external memory is responsible for gracefully cancelling the current 
access. This means that the memory control state machine should cancel write cycles and 
return to an idle state after BOFF is asserted. The processor ignores read data after BOFF is 
asserted. 
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Figure 11.19. Example Application of the Bus Backoff Function 

PIN AND BUS STATE DESCRIPTION 

The following pin descriptions provide an easy reference to determine the state and behavior of 
the bus pins. 

Pins are designated as an input (I), output (0) or input/output (I/0). 

All output pins are synchronous to the PCLK2: I output clock signab. Mt,st oulpuh are 
synchronous to the rising edge of PCLK2: I. These outputs are designated with the syrnhol 
S(R). Outputs which are synchronous to the falling edge of PCLK2: I arc designated with the 
symbol, S(F). 

Most input pins are synchronous inputs. A designer must adhere to specified st'lup and hold 
times for proper operation of these inputs. Synchronous inputs are designated in the same way 
as outputs, S(R) and S(L) depending on the PCLK2: I edge on which the signal is sampled 

Some input pins are asynchronous inputs. These pins are designated by the symbols A(L) and 
A(E). The A(L) symbol designates that the pin is a level sensitive input: A(E) indicates that the 
pin is falling edge latched. 
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The following list summarizes these pin designations: 

Symbol 

I 

0 

1/0 

S(R) 

S(F) 

A(L) 

A(E) 

Description 

Input only pin 

Output only pin 

Input/Output pin 

Synchronous input, output or input/output pin referenced to the rising edge of 
PCLK2:1 

Synchronous input, output or input/output pin referenced to the falling edge 
of PCLK2:1 

Asynchronous input, level activated 

Asynchronous input, falling edge activated 

The pin descriptions also provide information concerning the state of the pin during different 
processor states. The symbols used to represent each state is given in the following list: 

Symbol 

R() 

I() 

T() 

H() 

B() 

0() 

Bus State 

Reset State (RESET active) 

Idle State (No executing bus requests 

Turnaround State (NxnA wait states) 

Hold State (HOLDA signal is active) 

Backoff State (BOFF signal is active) 

On Circuit Emulation Mode (ONCE asserted on rising RESET) 

Bus state symbol argument specifies the state of output pins or the required value of input pins 
during each bus state. State symbol arguments are provided in the following list: 

Input state symbol 

x 
0 

I 

Q 

Output state symbol 

z 
x 
0 

Q 

Description 

Input is a don't care (either high or low) during this state 

Input must be driven low (0) during this state 

Input must be driven high (1) during this state 

Input is recognized as a valid input. Function is given in pin 
description 

Description 

Output floats (high Z) during this state 

Output is either high (1) or low (0) during this state 

Output is low (0) during this state 

Output is high ( 1) during this state 

Valid output during this state. Function is given in pin 
description. 
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NOTE 

Arguments for 1/0 state symbols consist of in input and output argument separated by a "/" 
symbol. The argument designates that the pin is a known input or output in a particular state by 
using the .. _ .. symbol on one side of the "/" symhol. 

The following example demonstrates the use of these symbols when describing the pins: 

D3l:O IJO 
S(R) 

R(X/Z) 
l(X/ZJ 
T(X/Z) 
H(X/Z) 
B(X/Z) 
O(X/Z) 

32 Bit Data Bus. 32-. 16- and 8-bit values are transmitted 
and received on these lines. When a memory region is 
configured as an 8 bit bus, data is transferred on D7:0 only. 
When a memory region is configured as a 16 bit bus, data 
is transferred on D 15:0 only. The data bus drives valid data 
for write operation and floats during reads and instruction 
fetches. 

Data pin designation (D3 l :0) in the first column specifies that the pins are synchronous 
input/output pins. 

IJO and S(R) in the second column indicate that the pins are referenced to the rising edge of 
PCLK2:1. 

The bus state symbols in the third column indicate that - in the reset, idle, turnaround, hold, 
backoff and ONCE states - pins are floated and values driven on the pins are ignored. 

Pin descriptions in this chapter do not discuss pins associated with the interrupt or DMA 
controllers. Refer to Chapter 6, Interrupts and Chapter 13, DMA Controller for a description 
of these pins. More details on the bus electrical characteristics are given in the i960 CA 
Microprocessor Data Sheet. 

Bus Control Signals 

PCLK2:1 

D31:0 

0 

IJO 
S(R) 

R(Q) 
l(Q) 
T(Q) 
H(Q) 
B(Q) 
O(Z) 

R(X/Z) 
I(X/Z) 
T(X/Z) 
H(X/Z) 
B(X/Z) 
O(X/Z) 

Processor Output Clocks. PCLK 1 and PCLK2 are identical 
clock outputs for the processor's synchronous bus. All 
other bus operations are synchronized to these clocks. Two 
identical clock output pins are provided for additional drive 
capability. When configured for One-X clock mode, 
PCLK2: I is synchronous to CLKIN input clock signal. 
When configured for Two-X clock mode, PCLK2: I is one 
half the frequency of CLKIN. One-X or Two-X clock mode 
is selected with the CLKMODE pin. 

32 Bit Data Bus. 32-, 16- and 8-bit values are transmitted 
and received on these lines. When a memory region is 
configured as an 8 bit bus, data is transferred on D7:0 only. 
When a memory region is configured as a 16 bit bus, data 
is transferred on D15:0 only. The data bus drives valid data 
for write operation and floats during reads and instruction 
fetches. 
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EXTERNAL BUS DESCRIPTION 

30 Bit Address. A31:2 carries physical address upper 30 
bits. A31 is most significant address bit; A2 is least 
significant. The 30 bit address bus identifies all external 
addresses to word (4 Byte) boundaries. Byte enable lines 
(BE3:0) indicate selected byte in each word. A3 and A2 
increment during 32 bit burst accesses. 

Byte Enables. These select which of four addressed bytes 
are active in a 32-bit memory access. BEO applies to D7:0; 
BEl applies to Dl5:8; BE2 applies to D23:16; BE3 
applies to D31 :24. When a memory region is configured for 
an 8-bit data bus width, BE 1 and BEO act as the address 
lower two bits, Al and AO, respectively. For a 16-bit 
memory region, BE3, BEI and BEO are encoded as BHE, 
Al and BLE, respectively. 

Address Strobe. This control signal indicates valid address 
and the start of a new bus access. ADS is asserted for the 
first clock of a bus access. 

Wait. This signal indicates internal wait state generator 
status. WAIT is active when wait states are caused by the 
internal wait state generator inserting either NRAD, NRDD, 
NwAD or NwDD wait states. WAIT is not asserted during 
NxDA cycles or when wait states are caused by READY. 
WAIT can be used to derive a write data strobe. WAIT can 
also be considered as a memory ready output, which the 
processor provides when inserting wait states. 

Burst Last. BLAST is a control signal that indicates the end 
of a bus access. This signal is asserted in the last data 
transfer of every bus access, whether burst, non-burst or 
pipelined. 
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EXTERNAL BUS DESCRIPTION 

Memory Ready. READY input signal indicates that read 
data on the bus is valid or a write-data transfer has 
completed. READY works in conjunction with the 
internally programmed wait state generator. If READY and 
BTERM arc enabled in a region, READY is sampled after 
the programmed number of wait states has expired. If 
BTERM is not asserted (high) and READY is deasserted 
(high), wait states continue to be inserted until READY is 
asserted (}ow). This is trne for NRAD· NRDD· NwAD and 
NwoD wait states. NxoA wait states cannot be extended 
by READY. To satisfy READY setup and hold times. 
READY must be externally synchronized. Setup and hold 
specifications are given in the i960 CA Microprocessor 
Dali! Sheet. 

Burst Terminate. This signal breaks up a burst access and 
causes another address cycle to occur. BTERM works in 
conjunction with the internally programmed wait state 
generator. If READY and BTERM are enabled in a region, 
BTERM is sampled after the programmed number of wait 
states has expired. When BTERM is deasserted, a new 
ADS signal is generated and the access is completed. 
READY input is ignored when BTERM is asserted. 
BTERM must be externally synchronized to satisfy 
BTERM setup and hold times. Setup and hold 
specifications are given in the i960 CA Microprocessor 
Data Sheet. 

Data Enable. DEN is asserted (low) after the first address 
eye le of a bus request and is de asserted at the end of the last 
data cycle of the request (before the NxoA cycles). DEN is 
used to control external data transceivers. DEN remains 
asserted for sequential accesses to pipelined regions. 
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Bus Status Signals 
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EXTERNAL BUS DESCRIPTION 

Write/Read. This request status signal is low for loads and 
instruction fetch requests and high for store requests. W/R 
changes in the same clock cycle that ADS is asserted and 
remains valid for the entire request in a non-pipelined 
regions. In pipelined regions, W/R is not valid in the last 
data cycle of a read request. 

Data Transmit/Receive. Used for direction control for data 
transceivers. DT/R is low when the i960 CA processor is 
reading data and high when writing data. DT/R does not 
change while DEN is asserted. DT/R remains valid for the 
entire bus request, including NxoA cycles. 

Data/Code. DIC is a request status output that indicates 
that the current request is either a data transfer or 
instruction fetch. 

CPU/OMA. OMA is a request status output that indicates 
that a bus request is issued by the OMA controller (low) or 
by the user program (high). 

User/Supervisor. SUP is a request status output that 
indicates that a bus request is issued by the processor from 
the supervisor mode. 
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EXTERNAL BUS DESCRIPTION 

Hold. Used by an external bus master to request bus access. 
The processor asserts HOLDA and relinquishes the bus 
after the current bus request completes. HOLD may be 
generated by external bus arbitration logic that monitors the 
HOLDA, BREQ and LOCK signals. It must be externally 
synchronized to satisfy the timings found in the i960 CA 
Microprocessor Data Shee/. 

Lock indicates that an atomic memory operation ( atadd, 
atmod) is in progress. Atomic memory operations are read­
rnodi fy-write operations. LOCK indicates that other 
processors or peripherals should not write data to any 
address that falling within the quad word boundary of the 
address on the bus when LOCK was asserted. LOCK is 
deasserted after the write portion of an atomic access. A 
HOLD request is acknowledged by HOLDA during locked 
cycles. It is the responsibility of external arbitration logic to 
monitor the LOCK pin and enforce its meaning for atomic 
memory operations. 

1 LOCK is active (low) during IDLE cycles between read 
and write requests of a locked access. 

2 Valid during turnaround states for first request of atomic 
access only. 

Hold Acknowledge. HOLDA indicates to a bus requester 
that the processor has relinquished bus control. It is 
asserted in the same clock that the bus goes into the high 
impedance state. HOLDA is put into a high impedance 
state during ONCE operation. 

Bus Request. While HOLDA is asserted, BREQ indicates 
that the i960 CA processor bus controller wishes to perform 
an external memory operation. BREQ can be used with 
external bus arbitration logic to regain bus control. It is put 
into a high impedance state during ONCE operation. 

Bus Backoff (input). The backoff pin, when asserted (low), 
suspends the current access and causes bus pins to float. 
When the pin is deasserted (high), ADS is asserted on the 
next clock cycle and the access is resumed. 
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On Circuit Emulation (input). This signal is pulled up 
internally; the user is advised to leave it unconnected for 
normal operation. If ONCE is asserted (low) while RESET 
is asserted (low), all output pins float and all internal pull­
ups and pull-downs are turned off. This allows in-circuit 
testing by external testers and allows ICE systems to 
emulate in-circuit devices. 

Clock Mode (input). Clock mode input selects the division 
factor applied to external clock input (CLKIN). When 
CLKMODE is high, PCLK2: 1 and internal clocks arc the 
same frequency as CLKIN. When CLKMODE is low, 
CLKIN is divided by two to create PCLK2: I and the 
processor's internal clocks. CLKMODE input should be 
tied either high or low in a system because pin value is not 
latched by the processor. 

Self Test Select (input). The self test input causes the 
processor's internal self test feature to be enabled or 
disabled at initialization. STEST is latched on the rising 
edge of RESET. When asserted (high), the processor's 
internal self test and bus confidence test run at 
initialization. If deasserted (low), only the bus confidence 
test runs at initialization; internal self test is bypassed. 

Self test Fail. The fail output indicates failure of the 
processor's self test at initialization. When RESET is 
deasserted and the processor begins initialization, FAIL is 
asserted (low). An internal self test is perforn1ed as part of 
the initialization process. If this self test passes, FAIL is 
deasserted (high), otherwise it remains asserted. FAIL is 
reasserted while the processor performs an external bus self 
confidence test. If this self test passes, the processor 
dcasserts FAIL and branches to the user's initialization 
routine; otherwise, FAIL remains asserted. Internal self 
test and the use of the FAIL pin can be disabled with the 
STEST pin. 

1The FAIL pin is only valid after initialization failure. 
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CHAPTER12 
INTERRUPT CONTROLLER 

This chapter contains interrupt controller infonnation that is of pa1ticular importance to the 
system implementor. The method for handling interrupt requests from user code is described in 
Chapter 6, Interrupts. Specifically, this chapter describes the i960 CA microprocessor's 
facilities for requesting and posting interrupts, the programmer's interface to the on-chip 
interrupt controller, implementation, latency and how to optimize interrupt perfonnance. 

OVERVIEW 

The interrupt controller's primary functions are to provide a flexible, low-latency means for 
requesting and posting interrupts and to minimize the core· s interrupt handling burden. The 
interrupt controller handles the posting of interrupts requested by hardware and software 
sources. The interrupt controller, acting independently from the core, compares the priorities of 
posted interrupts with the current process priority, off-loading this task from the core. 

The interrupt controller provides the following features for managing hardware-requested 
interrupts: 

• Low latency, high throughput handling. 

• Support of up to 248 external sources. 

• Eight external interrupt pins, one non-maskable interrupt pin, four internal DMA sources 
for detection of hardware-requested interrupts. 

• Edge or level detection on external interrupt pins. 

• Debounce option on external interrupt pins. 

The user program interfaces to the interrupt controller with four control registers and two 
special function registers. The interrupt control register (ICON) and interrupt map control 
registers (IMAPO-IMAP3) provide configuration information. The interrupt pending (IPND) 
special function register posts hardware-requested interrupts. The interrupt mask (IMSK) 
special function register selectively masks hardware-requested interrupts. 

MANAGING INTERRUPT REQUESTS 

The i960 family architecture provides a consistent interrupt model, as required for interrupt 
handler compatibility between various implementations of the i960 family. The architecture, 
however, leaves the interrupt request management strategy to the specific i960 family 
implementations. In the i960 CA microprocessor, the programmable on-chip interrupt 
controller transparently manages all interrupt requests (Figure 12.1 ). These requests originate 
from: 

• 8-bit external interrupt pins (XINT7:0) • four DMA controller channels 

• non-maskable interrupt pin (NMI) • sysctl instruction execution 
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External interrupt pins can be programmed to operate in several modes: the pins may be 
individually mapped to interrupt vectors (dedicated mode) or they may be interpreted as a bit 
field which can request any of the 248 possible interrupts that the i960 family supports 
(expanded mode). Dedicated-mode requests are posted in the Interrupt Pending Register 
(IPND). The processor does not post expanded-mode requests. 

Interrupt pins may also be configured in a mixed mode which places three pins into dedicated­
mode operation and the remaining five pins in expanded-mode operation. 

The NMI pin allows a highest-priority, non-maskable and non-interruptible interrupt to be 
requested. NMI is always a dedicated-mode input. 

Each of the four DMA channels has an associated interrupt request to allow the application to 
synchronize with the DMA operations of each channel. DMA interrupt requests are always 
handled as dedicated-mode interrupt requests. 

The application program may use the sysctl instruction to request interrupt service. The vector 
that sysctl requests is serviced immediately or posted in the interrupt table's pending interrupts 
section, depending upon the current processor priority and the request's priority. The interrupt 
controller caches the priority of the highest priority interrupt posted in the interrupt table. 

The interrupt controller continuously compares the priorities of the highest-posted software 
interrupt and the highest-pending hardware interrupt to the processor's priority. The core is 
interrupted when a pending interrupt request is higher than the processor priority or a priority-
31. In the event that both hardware- and software-requested interrupts are posted at the same 
level, the hardware interrupt is serviced before the software interrupt, when the priority is l to 
30. At priority 31, the software interrupt is serviced first. 

The following sections describe interrupt controller modes, interrupt request pins and inputs, 
user interface to the interrupt controller, the method for posting software-generated interrupt 
requests and methods for controlling interrupt latency. 

Interrupt Controller Modes 

The eight external interrupt pins can be configured for one of three modes: expanded, 
dedicated and mixed. 

Dedicated Mode 

In dedicated mode, each external interrupt pin is assigned a vector number. Vector numbers 
that may be assigned to a pin are those with the encoding PPPP 00102 (Figure 12.2), where bits 
marked P are programmed with bits in the interrupt map (IMAP) registers. This encoding of 
programmable bits and preset bits can designate 15 unique vector numbers, each with a unique, 
even-numbered priority. (Vector 0000 00102 is undefined; it has a priority of 0.) 
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Figure 12.1. i960™ CA Processor's Interrupt Controller 

Dedicated-mode interrupts are posted in the interrupt pending (IPND) register. Single bits in 
the IPND register correspond to each of the eight dedicated external interrupt inputs, plus the 
four DMA inputs to the interrupt controller. The interrupt mask (IMSK) register selectively 
masks each of the dedicated-mode interrupts. The IMSK register can optionally be saved and 
cleared when a dedicated interrupt is serviced. This allows other hardware-generated interrupts 
to be locked out until the mask is restored. See Programmer's Interface in this chapter for a 
further description of the IMSK, IPND and IMAP registers. 
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Interrupt vectors are assigned to DMA inputs in the same way external pins are assigned 
dedicated-mode vectors. The DMA interrupts are always dedicated-mode interrupts. 

Expanded Mode 

In expanded mode, up to 248 interrupts can be requested from external sources. Multiple 
external sources are externally encoded into the 8-bit interrupt vector number. This vector 
number is then applied to the external interrupt pins (Figure 12.3), with the XINTO pin 
representing the least-significant bit and XINT7 the most significant bit of the number. Note 
that external interrupt pins are active low; therefore, the inverse of the vector number is 
actually applied to the pins. 

In expanded mode, external logic is responsible for posting and prioritizing external sources. 
Typically, this scheme is implemented with a simple configuration of external priority 
encoders. As shown in Figure 12.4, simple, combinational logic can handle prioritization of the 
external sources when more than one expanded interrupt is pending. 

NOTE 

The interrupt source, as shown in Figure 12.4, must remain asserted until the processor services 
the interrupt and explicitly clears the source. 

External-interrupt pins in expanded mode are always active low. The' interrupt controller 
ignores vector numbers 0 though 7. The output of the external priority encoders in Figure 12.4 
can use the 0 vector to indicate that no external interrupts are pending. 

IMSK register bit 0 provides a global mask for all expanded interrupts. The remaining bits 
( 1-7) should be set to 0 in expanded mode. The mask bit can optionally be saved and cleared 
when an expanded mode interrupt is serviced. This allows other hardware-requested interrupts 
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to be locked out until the mask is restored. (See Mask Options later in this chapter.) IPND 
register bits 0-7, in expanded mode, have no function since external logic is responsible for 
posting interrupts. 
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Figure 12.3. Expanded Mode 
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In mixed mode, pins XINTO through XINT4 are configured for expanded mode. These pins 
are encoded for the five most-significant bits of an expanded-mode vector number; the three 
least-significant bits of the vector number are set internally to be 0 l 02. Pins XINT5 through 
XINT7 are configured for dedicated mode. 

IMSK register bit 0 is a global mask for the expanded-mode interrupts; bits S through 7 mask 
the dedicated interrupts from pins XINTS through XINT7. respectively. IMSK register bits 1-4 
must be set to 0 in mixed mode. The IPND register posb intem1ph from the dedicated-mode 
pins ( XINT5-XINT7 ). IPND register bits that correspond to expanded-mode inputs are not 
used. 

CAUTION! 

When setting IMSK register bits in mixed mode. make sure IMSK register bits 1-4 are 
set to 0. 
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Figure 12.4. Implementation of Expanded Mode Sources 

Non-Maskable Interrupt 

The NMI pin generates an interrupt for implementation of highly-critical interrupt routines. 
The NMI provides an interrupt that cannot be masked and that has a higher priority than 
priority-31 interrupts and priority-31 process priority. The interrupt vector for the NMI resides 

12-6 



INTERRUPT CONTROLLER 

in the interrupt table as vector number 248. During initialization, the core caches the vector for 
the NMI on-chip, to reduce NMI latency. The NMI vector is cached in location OH of internal 
data RAM. 

When the core receives an NMI request. it is serviced immediately. While servicing an NML 
the core does not respond to any other interrupt requests - even another NMI request - until 
it returns from the NMI-handling procedure. An interrupt request on the NMI pin is always 
falling-edge detected. 

Saving the Interrupt Mask 

The IMSK register is automatically saved in register r3 when a hardware-requested interrupt is 
serviced. After the mask is saved. the IMSK register is optionally cleared. This action allows 
all interrupts. except NM!s. to be masked while an interrupt is being serviced. Since the IMSK 
register value is saved, the interrupt procedure can restore the value before returning. The 
option of clearing the mask is selected by programming the ICON register (described in this 
chapter). Several options arc provided for interrupt mask handling: 

1. Mask is unchanged. 

2. Clear for dedicated-mode sources only. 

3. Clear for expanded-mode sources only. 

4. Clear for all hardware-requested interrupts (dedicated and expanded mode). 

Options 2 and 3 are used in mixed mode, where both dedicated-mode and expanded-mode 
inputs are allowed. Recall that DMA interrupts are always dedicated-mode interrupts. 

NOTE 

If the same interrupt is requested simultaneously by a dedicated- and an expanded-mode source. 
the inten-upt is considered an expmzded-mode interrupt and the JMSK register is handled 
accordingly. 

The IMSK register must be saved and cleared when expanded mode inputs request a priority-
31 interrupt. Priority-31 interrupts are interrupted by other priority-31 interrupts. In expanded 
mode, the interrupt pins are level-activated. For level-activated interrupt inputs, instructions 
within the interrupt handler are typically responsible for causing the source to deactivate. If 
these priority-31 interrupts are not masked, another priority-31 interrupt will be signaled and 
serviced before the handler is able to deactivate the source. The first instruction of the interrupt 
handling procedure is never reached, unless the option is selected to clear the IMSK register on 
entry to the interrupt. 

Another use of the mask is to lock out other interrupts when executing time-critical portions of 
an interrupt handling procedure. All hardware-generated interrupts are masked until software 
explicitly replaces the mask. 
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External Interface Description 

This section describes the physical characteristics of the interrupt inputs. The i960 CA 
microprocessor provides eight external interrupt pins and one non-maskable interrupt pin for 
detecting external interrupt requests. The eight external pins can be configured as dedicated 
inputs, where each pin is capable of requesting a single interrupt. The external pins can also be 
configured in an expanded mode, where the value asserted on the external pins represents an 
interrupt vector number. In this mode, up to 248 values can be directly requested with the 
interrupt pins. The external interrupt pins can be configured in mixed mode. In this mode, 
some pins are dedicated inputs and the remaining pins are used in expanded mode. 

Pin Descriptions 

The interrupt controller provides nine interrupt pins: 

XINT7:0 External Interrupt (Input) - These pins cause interrupts to be requested. Pins are 
software configurable for three modes: dedicated, expanded, mixed. Each pin can 
be programmed as an edge-detect input or as a level-detect input. Additionally, a 
debouncing mode for these pins can be selected under program control. 

NMI Non-Maskable Interrupt (Input) Causes a non-maskable interrupt event to occur. 
NMI is the highest priority interrupt recognized. The NMI pin is an edge­
activated input. A debouncing mode for NMI can be selected under program 
control. These pins are internally synchronized. 

External interrupt pin functions XINT7:0 depend on the operation mode (expanded, dedicated 
or mixed) and on several other options selected by setting ICON register bits. 

Interrupt Detection Options 

The XINT7:0 pins can be programmed for level-low or falling-edge detection when used as 
dedicated inputs. All dedicated inputs plus the NMI pin are programmed (globally) for fast 
sampling or debounce sampling. Expanded-mode inputs are always sampled in debounce 
mode. Pin detection and sampling options are selected by programming the ICON register. 

When a pin is programmed for falling-edge detection, the corresponding pending bit in the 
IPND register is set when a high-to-low transition is detected. The processor clears the IPND 
bit on entry into the interrupt handler. 

When a pin is programmed for low-level detection, the pin's bit in the IPND register remains 
set as long as the pin is asserted (low). The processor attempts to clear the IPND bit on entry 
into the interrupt handler; however, if the active level on the pin is not removed at this time, the 
bit in the IPND register remains set until the source of the interrupt is deactivated and the 
IPND bit is explicitly cleared by software. Software may attempt to clear an interrupt pending 
bit before the active level on the corresponding pin is removed. In this case, the active level on 
the interrupt pin causes the pending bit to remain asserted. 
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Typically, the external source for a level-detect interrupt is deactivated under software control. 
After the interrupt signal is deasserted, the handler then clears the interrupt pending bit for that 
source before return from handler is executed. If the pending bit is not cleared, the interrupt is 
re-entered after the return is executed. 

Example 12.l demonstrates how a level detection interrupt is typically handled. The example 
assumes that the Id from address "timer_O," deactivates the interrupt input. 

Example 12.1. Return from a Level-detect Interrupt 

# Clear leve:-detect interrupts before return from handler 
ld 

wait: 
clrb'c t 
bbs 
ret 

t ' gO 

O,sfO,sfO 
O,sfO,wait 

# Ge:: timer value and clear XINTO 

# X\t::errpt to clear bit 
# Retry if no:: clear 
# Return from handler 

The debounce sampling mode requires that a low level is detected for three consecutive 
samples before input is detected. For expanded interrupts, all expanded mode pins must be 
stable for three consecutive samples before the expanded mode vector is resolved internally. 
The debounce sampling mode provides a built-in filter for noisy or slow-falling inputs. 

NOTE 
Expanded mode interrupts are always sampled using the debounce sampling mode. This mode 
provides time for inte1rnpts to trickle through external priority encoders. 

Figure 12.5 shows how a signal is sampled in each mode. The debounce-sampling option adds 
several clocks to an interrupt' s latency due to the multiple clocks of sampling. Inputs are 
sampled internally once every two PCLK cycles. 

Interrupt pins are asynchronous inputs. Setup or hold times relative to PCLK2: l are not needed 
to ensure proper pin detection. Note in Figure 12.5 that interrupt inputs are sampled once for 
every two PCLK2: l cycles. For practical purposes, this means that asynchronous interrupting 
devices must generate an interrupt signal which is asserted for at least three PLCK2: l cycles 
for the fast sampling mode or five PCLK2: 1 cycles for the debounce sampling mode. 
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Figure 12.5. Interrupt Sampling 

Programmer's Interface 

The programmer's interface to the interrupt controller is through four control registers and two 
special function registers (all described in this section): ICON control register, IMAPO-IMAP2 
control registers, IMSK special-function register and IPND special function register. 

Interrupt Control Register (ICON) 

The ICON register (Figure 12.6) is a 32-bit control register that sets up the interrupt controller. 
Software can load this register using the sysctl instruction. The ICON register is also 
automatically loaded at initialization from the control table in external memory. 

The ICON register's interrupt mode field (bits 0 and 1) determine operation mode for the 
external interrupt pins (XINTO through XINT7) - dedicated, expanded or mixed. 

signal-detection-mode bits (bits 2 through 9) determine whether the signals on the individual 
external interrupt pins (XINTO - XINT7) are level-low activated or falling-edge activated. 
Expanded-mode inputs are always level-detected and NMI input is always edge-detected -
regardless of this bit's value. 

global-interrupts enable bit (bit I 0) globally enables or disables the external interrupt pins and 
DMA inputs. It does not affect the NMI pin. This bit performs the same function as clearing 
the mask register. 
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mask-operation field (bits 11 and 12) determines the operation the core performs on the mask 
register when a hardware-generated interrupt is serviced. On an interrupt, the IMSK register is 
either unchanged; cleared for dedicated-mode interrupts; cleared for expanded-mode interrupts; 
or cleared for both dedicated- and expanded-mode interrupts. 

vector cache enable bit (bit 13) determines whether interrupt table vector entries are fetched 
from the interrupt table or from internal data RAM. Only vectors with four least-significant bits 
equal to 00102 may be cached in internal data RAM. 

sampling-mode bit (bit 14) determines whether dedicated inputs and NMI pin are sampled 
using debounce sampling or fast sampling. Expanded-mode inputs are always detected using 
debounce mode. 

DMA-suspension bit (bit 15) determines whether DMA continues running or is suspended 
while an interrupt procedure is being called. 

Bits 16 through 31 are reserved and must be set to 0 at initialization. 
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Figure 12.6. Interrupt Control (ICON) Register 

Interrupt Mapping Registers (IMAPO-IMAP2) 

The IMAP registers (Figure 12.7) are three 32-bit registers (IMAPO through IMAP2). These 
register's bits are used to program the vector number associated with the interrupt source when 
the source is connected to a dedicated-mode input. IMAPO and IMAPl contain mapping 
information for the external interrupt pins (four bits per pin); IMAP2 contains mapping 
information for the DMA-interrupt inputs (four bits per input). 
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Figure 12.7. Interrupt Mapping (IMAP2-IMAPO) Registers 

Each set of four bits contains a vector number's four most-significant bits; the four least­
significant bits are always 00102. Tn other words, each source can be programmed for a vector 
number of PPPP 00102, where "P" indicates a programmable bit. For example, IMAPO bits 4 
through 7 contain mapping information for the XINT 1 pin. If these bits arc set to 01102, the 
pin is mapped to vector number 0110 00102 (or vector number 98). 
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Software can load the mapping registers using the sysctl instruction. The mapping registers are 
also automatically loaded at initialization from the control table in external memory. Note that 
bits 16 through 31 of each register are reserved and should be set to 0 at initialization. 

Interrupt Mask and Pending Registers (IMSK, IPND) 

The IMSK and IPND registers (Figure 12.8) are special-function registers (sfl and sfO, 
respectively). Bits 0 through 7 of these registers are associated with the external interrupt pins 
(XINTO through XINT7) and bits 8 through 11 are associated with the DMA-interrupt inputs 
(DMAO through DMA3). Bits 12 through 31 are reserved and should be set to 0 at 
initialization. 

The IPND register posts dedicated-mode interrupts ongmating from the eight external 
dedicated sources (when configured in dedicated mode) and the four DMA sources. Asserting 
one of these inputs causes a 1 to be latched into its associated bit in the IPND register. In 
expanded mode, bits 0 through 7 of this register are not used and should not be modified; in 
mixed mode, bits 0 through 4 are not used and should not be modified. 

The mask register provides a mechanism for masking individual bits in the IPND register. An 
interrupt source is disabled if its associated mask bit is set to 0. 

Mask register bit 0 has two functions: it masks interrupt pin XINTO in the dedicated mode and 
it globally masks all expanded-mode interrupts in the expanded and mixed modes. In expanded 
mode, bits 1 through 7 are not used and should only contain zeros; in mixed mode, bits 1 
through 4 are not used and should only contain zeros. 

Software can read and write the IPND and IMSK registers, using any instruction that can use 
special-function registers as operands. 

When the core handles a pending interrupt, it attempts to clear the bit that is latched for that 
interrupt in the IPND register before it begins servicing the interrupt. If that bit is associated 
with an interrupt source that is programmed for level detection and the true level is still 
present, the bit remains set. Because of this, the interrupt routine for a level-detected interrupt 
should clear the external interrupt source and explicitly clear the IPND bit before return from 
handler is executed. 

An alternative method of posting interrupts in the IPND register (other than through the 
external interrupt pins and DMA-interrupt inputs) is to set bits in the register directly using an 
instruction - such as a move instruction. This operation has the same effect as requesting an 
interrupt through the external interrupt pins or DMA-interrupt inputs. The bit set in the IPND 
register must be associated with an interrupt source that is programmed for dedicated-mode 
operation. 
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Figure 12.8. Interrupt Mask (IMSK) and Interrupt Pending (IPND) Registers 

Default and Reset Register Values 

The ICON and IMAP2-0 control registers are loaded from the control table in external memory 
when the processor is initialized or reinitialized. (Control table is described in Chapter 2, 
Programming Environment.) The IMSK register is set to 0 when the processor is initialized 
(RESET is deasserted). IPND register value is undefined after a power-up initialization (cold 
reset). The user is responsible for clearing this register before any mask register bits are set; 
otherwise, unwanted interrupts may be triggered. For a reset while power is on (warm reset), 
the pending register value is retained. 

Setting Up the Interrupt Controller 

This section provides several examples of setting up the interrupt controller. Recall that the 
IMAP and ICON registers are control registers. When the entire control table is automatically 
read at initialization, the ICON and IMAP registers are loaded with the values pre-programmed 
in the table. In many applications, setting these register values in the initial control table is the 
only setup required. The following examples describe how the interrupt controller can be 
dynamically configured after initialization. 
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Example 12.2 sets up the interrupt controller for expanded-mode operation. Here, a value 
which selects expanded-mode operation is loaded into the ICON register. The sysctl instruction 
is issued with the load-control register message type (03H) and selecting group number OlH 
from the control table. Group OlH contains the ICON and IMAP registers. Note that the IMAP 
registers, as well as the ICON register, are reloaded with this operation. 

Modifying the control table implies that the table - or part of the table - must reside in 
RAM. If the control registers are modified after initialization, the control register must be 
relocated to RAM by reinitializing the processor. (See Chapter 14, Initialization and System 
Requirements for a description of relocating data structures after initialization.) 

Example 12.2. Programming the Interrupt Controller for Expanded Mode 

# Example expanded mode setup . 
mov O,sfl 
ldconst 

st 

ldconst 

sysctl 
mov 

OxOl, gO 

gO,ctrl_table_ICON 

Ox401,r4 

r4, r4, r4 
l,sfl 

Implementation 

# clear IMSK register 
# (mask all interrupts) 
# store mode information to 
# control table 
# create operand for sysctl, 
# selects load control 
# register message type, 
# selects register group 1 
# load control register 
# unmask expanded interrupts 

The interrupt controller, microcode and core resources handle all stages of interrupt service. 
Interrupt service is handled in the following stages: 

Request Interrupt - In the i960 CA processor, the programmable on-chip interrupt 
controller transparently manages all interrupt requests. Interrupts are generated by hardware 
(external events) or software (the user program). Hardware requests are signaled on the 8-bit 
external interrupt port (XINT7:0), the non-maskable interrupt pin (NMI) or the four DMA 
controller channels. Software interrupts are signaled with the sysctl instruction with post­
interrupt message type. 

Posting Interrupts - When an interrupt is requested, the interrupt is either serviced 
immediately or saved for later service, depending on the interrupt's priority. Saving the 
interrupt for later service is referred to as posting. An interrupt, once posted, becomes a 
pending interrupt. Hardware and software interrupts are posted differently: 

• hardware interrupts are posted by setting the interrupt's assigned bit in the interrupt 
pending (IPND) special function register 

• software interrupts are posted by setting the interrupt' s assigned bit in the interrupt table's 
pending priorities and pending interrupts fields 
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Check Pending Interrupts - Interrupts posted for later service must be compared to the 
current process priority. If process priority changes, posted interrupts of higher priority are 
then serviced. Comparing the process priority to posted interrupt priority is handled differently 
for hardware and software interrupts. Each hardware interrupt is assigned a specific priority 
when the processor is configured. The priority of all posted hardware interrupts is continually 
compared to the current process priority. Software interrupts are posted in the interrupt table in 
external memory. The highest priority posted in this table is also saved in an on-chip software 
priority register; this register is continually compared to the cmrent process priority. 

Servicing Interrupts - If the process priority falls below that of any posted interrupt, the 
interrupt is serviced. The comparator signals the core to begin a microcode sequence to 
perform the interrupt context switch and branch to the first instruction of the interrupt routine. 

Figure 12.9 illustrates interrupt controller function. For best performance. the interrupt flow for 
hardware interrupt sources is implemented entirely in hardware. 

The comparator only signals the core when a posted interrupt is a lower priority than the 
process priority. Because the comparator function is implemented in hardware, microcode 
cycles are never consumed unless an interrupt is serviced. 

Interrupt Service Latency 

The time required to perform an interrupt task switch is referred to as interrupt service latency. 
Latency is the time measured between activation of an interrupt source and execution of the 
first instruction for the accompanying interrupt-handling procedure. In the following 
discussion, interrupt service latency is derived in number of PCLK2: 1 cycles. The established 
measure of interrupt service latency (in units of seconds) is derived with the following 
equation: 

. . NL int 
Interrupt Service Latency (111 seconds)=( 

where: fc = PCLK2: 1 frequency (Hz) 

N L_int = number of PCLK2: I cycles 

For real-time applications, worst-case interrupt latency must be considered for critical handling 
of external events. For example, an interrupt from a FIFO buffer may need service to prevent 
the FIFO from overrun. 

For many applications, typical interrupt latency must be considered in determining overall 
system performance. For example, a timer interrupt may frequently trigger a task switch in a 
multi-tasking kernel. 
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The flow chart in Figure 12.9 is used to determine worst-case interrupt latency, based on the 
specifics of a system. The values from Figure 12.9 are based on the assumption that the 
interrupt controller is configured in the following way: 

• Hardware interrupt is requested (XINT7:0 pins or NMI) 

• Fast sample mode - Fast sample mode is selected (ICON.sm=l) 

• Cached interrupt vector - Interrupt vector is fetched from internal data RAM. This is 
automatic for the NMI vector or is selected in the ICON register (ICON.vce=l) 

• Cached interrupt handler - Cache hit for interrupt call target 

• DMA suspended on interrupt - DMA suspend on interrupt is enabled (ICON.dmas= 1) 

• Minimum Bus Latency - All memory in the system is configured as zero wait state and 
burst access mode 

Start here 

NL_int = 129 NL_int = 160 

NL_int = 111 NL_int = 134 

No No 

NL_int = 93 

Figure 12.9. Calculation of worst case interrupt latency - NL_int 
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NOTE 

The worst-case interrupt latency value does not account for interaction of faults and interrupts. It 
is assumed that faults are not signaled in a stable system. 

Because of the processor's instruction mix and the nature of on-chip register cache, typical 
interrupt latency is derived assuming that the interrupt occurs under the following constraints, 
in addition to those listed above: 

• Interrupts a single cycle RISC instruction 

• Frame flush does not occur 

• Bus queue is empty 

The value for typical interrupt latency (N L_int) is: NL_int (typical) = 30PCLK2:1 cycles 

Optimizing Interrupt Performance 

The i960 CA processor provides several features aimed at reducing the time required to 
respond to and service interrupts. The following section describes three methods for reducing 
interrupt latency: 

• caching interrupt vectors on-chip 

• DMA suspension while servicing interrupts 

• caching of interrupt handling procedure code 

Figure 12.9 shows that controlling the use of long instructions may also be used to optimize 
interrupt performance. 

Vector Caching Option 

To reduce interrupt latency. the i960 CA processor allows some interrupt table vector entries to 
be cached in internal data RAM. When the caching option is selected, all interrupts with a 
vector number with the four least-significant hits equal to 00 I 02 are cached. When the vector 
option is enabled and an interrupt request is received for one of these interrupts, the controller 
fetches the associated vector from internal RAM rather than from the interrupt table in 
memory. This option is selected when programming the ICON register. 

NOTE 

To use the caching feature described in this section, software must explicitly store the vector 
entries in internal RAM. 

Since the internal RAM is mapped directly to the address space, this operation can be 
performed using the core's store instructions. Table 12.1 shows the required vector mapping to 
specific locations in internal RAM. For example, the vector entry for vector number 18 must be 
stored at RAM location 04H, and so on. 
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The NMI vector is also shown in Table 12.l (reminder: this vector is always cached in internal 
data RAM at location OOOOH). The processor automatically loads this location at initialization 
with the value of vector number 248 in the interrupt table. 

Vectors that can be cached coincide with the vector numbers that can be selected with the 
mapping registers and assigned to dedicated-mode inputs. 

Table 12.1. Location of Cached Vectors in Internal RAM 

Interrupt/NMI Vector Number I Internal RAM Address 
NMI (248) OOOOH 
0001 00102 (18) 0004H 
0010 00102 (34) 0008H 
001 l 00102 (50) OOOCH 
0100 00102 (66) OOlOH 
0101 00102 (82) 0014H 
0110 00102 (98) 0018H 
0111 00102 (114) OO!CH 
1000 00102 (130) 0020H 
1001 00102 ( 146) 0024H 
1010 00102 (162) 0028H 
IOI I 00102 ( 178) 002CH 
l 100 00102 (194) 0030H 
1101 00102 (210) 0034H 
1110 00102 (226) 0038H 
1111 00 I OJ (242) 003CH 

OMA Suspension on Interrupts 

Core resources required to execute a DMA operation may affect interrupt latency. A DMA 
operation may be temporarily suspended to reduce the effects of the DMA when interrupt­
response time is critical. The DMA suspension option is programmed in the ICON register. 
When the option is selected, the core suspends DMA processing while executing a call to an 
interrupt-handling procedure for a hardware-requested interrupt. Once the core begins 
executing the interrupt procedure, it restores DMA processing. 

To improve interrupt throughput, DMA processing can be suspended until the execution of an 
interrupt-handling procedure is complete. To accomplish this, the interrupt procedure must 
explicitly suspend DMA operation by clearing the DMA command (DMAC) register's channel 
enable field. (See Chapter 13, DMA Controller for more information.) 

Caching of Interrupt-Handling Procedures 

The time required to fetch the first instructions of an interrupt-handling procedure affects 
interrupt response time and throughput. The controller allows this fetch time to be reduced by 
caching interrupt procedures - or portions of procedures - in the i960 CA processor's 
instruction cache. Paragraphs that follow describe this caching of interrupt procedures. 
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Instruction cache is divided into two 512-byte halves (Figure 12.10). One or both halves can be 
used for storing interrupt-procedure code. Typically, one half is used as normal instruction 
cache and the other half for caching interrupt procedures. 

The interrupt-handling procedure sections to be cached must be placed in a contiguous memory 
block. The last instruction for each procedure in this block must be a return from the interrupt 
procedure or a branch to the remainder of the procedure, located in another area of address 
space. Maximum block size is 512 or I 024 bytes, depending on how the instruction cache is to 
be configured. 

The sysctl instruction provides the mechanism for loading and Jocking this block of interrupt 
procedures into the instruction cache. sysctl is issued with the configure instruction cache 
message type. The address of the block of interrupt procedures in memory is specified as an 
operand of the instruction. 

The interrupt vector's two least-significant bits must be set to 102 to fetch the interrupt 
procedure from locked cache rather than the normal memory hierarchy. The procedure 
executed if it is in the cache. If a miss at the locked cache occurs, the interrupt procedure is 
executed from the normal memory hierarchy (see Chapter 2, Programming Environment for 
sysctl information and how to configure instruction cache load-and-lock features). 
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Figure 12.10. Caching Interrupt-Handling Code 
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CHAPTER13 
OMA CONTROLLER 

This chapter describes the i960 CA processor's integrated Direct Memory Access (DMA) 
Controller, including: operation modes, setup, external interface and DMA controller 
implementation. 

OVERVIEW 

The DMA controller concurrently manages up to four independent DMA channels. Each 
channel supports memory-to-memory transfers where the source and destination can be any 
combination of internal data RAM or external memory. The DMA mechanism provides two 
unique methods for performing DMA transfers: 

• Demand-mode transfers (synchronized to external hardware). Typically used for transfers 
between an external device and memory. Jn demand mode, external hardware signals for 
each channel are provided to synchronize DMA transfers with external requesting devices. 

• Block-mode transfers (non-synchronized). Typically used to move blocks of data within 
memory. 

To perform a DMA operation, the DMA controller uses microcode, the core's multi-process 
resources, the bus controller and internal hardware dedicated to the DMA controller. Loads and 
stores are executed in DMA microcode to perform each DMA transfer. The bus controller, 
directed b.Y DMA microcode, handles data transactions in external memory. DMA controller 
hardware synchronizes transfers with external devices or memory, provides the programmers 
interface to the DMA controller and manages the priority for servicing the four DMA channels. 

The DMA controller uses multi-process resources, designed into the core, to enable DMA 
operations to execute in microcode concurrently with the user's program. This sharing of core 
resources is accomplished with hardware-implemented processes for each of the four DMA 
channels (the DMA processes) and a separate process for the user's program (the user process). 
Alternating between DMA processes and the user process enables a user's program and up to 
four DMAs (one per channel) to run at the same time. 

To execute a DMA operation, a DMA process issues memory load or store requests. The bus 
controller executes these memory processes as it would a load, store or prefetch request from 
the user process. External bus access is shared equally between the user and DMA process. The 
bus controller executes bus requests by each process in alternating fashion. 

The DMA controller is configurable to best exploit the core's processing capabilities and 
external bus performance. Source and destination request lengths are programmed for each 
DMA channel. Based on request length, the DMA controller optimizes transfer performance 
between source and destination with different external data bus widths. A DMA can be 
programmed for quad-word transfers, taking best advantage of external bus burst capabilities. 
The DMA controller can also efficiently execute transfers of unaligned data. 
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A single cycle "fly-by" transfer mode gives the highest performance transfers for a DMA. In 
this mode, a single bus request executes a transfer of data from source to destination. 

A data-chaining mode simplifies several commonly-performed DMA operations such as scatter 
or gather. Data-chained DMAs are configured with a series of descriptors in memory. Each 
descriptor describes the transfer of a single buffer or portion of the entire DMA. These 
descriptors can be dynamically changed as the chained DMA progresses. 

DMA setup and control is simple and efficient. The setup DMA (sdma) instruction sets up a 
DMA operation. sdma specifies addressing, transfer type and DMA modes. A special-function 
register - the DMA command register (DMAC) - is an interface for commonly-used 
command and status functions for each channel. 

Flexibility and a high degree of programmability for a DMA operation create a number of 
options for balancing DMA and processor performance and DMA latency. This flexibility 
enables the programmer to select the best DMA configuration for a particular application. 

DEMAND AND BLOCK MODE OMA 

A channel can be configured as a demand mode or block mode DMA channel. Demand mode 
DMAs move data between memory and an external 1/0 device; block mode DMAs typically 
move blocks of data from memory to memory. 

When a channel is configured for demand mode, an external device requests a DMA transfer 
with a DMA request input (DREQ3:0). The DMA controller acknowledges the requesting 
device with a DMA acknowledge signal (DACK3:0). The DACK3:0 signal is asserted during 
the bus request which the DMA controller makes to the requesting device. The specific timing 
of the DREQ3:0 and DACK3:0 signals is described later in this chapter's section titled DMA 
External Interface. 

After a DMA channel is configured the channel must be enabled by software through the DMA 
control register (DMAC). The DMA operation continues until it is (1) terminated (by an 
external source with EOP), (2) suspended (by software), (3) ends because of a zero byte count. 
An interrupt may be generated to detect any of these three cases. 

SOURCE AND DESTINATION ADDRESSING 

When a DMA operation is set up, it is described with a source address, destination address and 
byte count. For each channel, an address is either held fixed or incremented after each transfer. 
A fixed address is used for addressing external 110 devices; an address which increments is 
used for the memory side of a DMA transfer. When a channel is set up, address increment or 
hold is selected separately for the source and destination address. 

Source and destination address and byte count are 32-bit values. Source and destination are 
byte addressable over the entire address space. DMA operation length can be up to 4 Gbytes 
(232 Bytes). Source and destination address and byte count are specified when sdma executes. 
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OMA TRANSFERS 

The following sections explain OMA transfer characteristics, especially those transfer 
characteristics affected by channel setup. Intelligent selection of transfer characteristics works 
to balance DMA performance and functionality with the performance of the user's program. 

Source/destination request length selects the bus request types which the OMA microcode 
issues when executing a DMA transfer. To perform a transfer, combinations of byte, short­
word, word and quad-word load and store requests are issued. Refer to Chapter 11. External 
Bus Description for a detailed description of hus request. 

tran.1fer hpe is specified when a channel is set up using sdma. Transfer type specifies 
source/destination request length for a DMA operation and whether DMA transfer is 
performed as a multiple - cycle transfer or as afly-hy ( J bus cycle) trw1-1:fi?r. 

Multi-cycle transfer is performed with two or more bus requests; fly-by transfer with a single 
bus request. Fly-hy and multi-cycle transfers arc described in the following sections. 

Table 13.1. Transfer Type Options 

Source Request Length Destination Request Transfer Type 
Len_m:h 

Byte (8 bits) Byte (8 bits) Multi-Cycle 
Byte (8 bits) Byte (8 bits) Fly-by 
Byte (8 bits) Short ( 16 bits) Multi-Cycle 
Byte (8 bits) Word (32 bits) Multi-Cycle 
Short (l6 bits) Byte (8 bits) Multi-Cycle 
Short ( 16 bits) Short ( 16 bits) Multi-Cycle 
Short ( 16 bits) Short ( 16 bits) Fly-by 
Short ( 16 bits) Word (32 bits) Multi-Cycle 
Word (32 bits) Byte (8 bits) Multi-Cycle 
Word (32 bits) Short (16 bits) Multi-Cycle 
Word (32 bits) Word (32 bits) Multi-Cycle 
Word (32 bits) Word (32 bits) Fly-by 
Quad-Word ( 128 bits) Quad-Word (128 bits) Multi-Cycle 
Quad-Word (128 bits) Quad-Word ( 128 bits) Fly-by 

Multi-Cycle Transfers 

Multi-cycle OMA transfer comprises two or more bus requests. For these multi-cycle transfers, 
loads from a source address are followed by stores to a destination address. To execute the 
transfer, OMA microcode issues the proper combination of bus requests; for example, a typical 
multi-cycle OMA transfer could appear as a single byte load request followed by a single byte 
store request. 
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For a multi-cycle transfer, source data is first loaded into on-chip DMA registers before it is 
stored to the destination. The processor effectively buffers the data for each transfer. When a 
DMA transfer is configured for destination synchronization, the DMA controller buffers source 
data, waiting for the request (active DREQ3:0 signal) from the destination requestor. This 
operation reduces latency. The initial DMA request, however, still requires the source data to 
be loaded before the request is acknowledged. Source data buffering is shown in Figure 13.l. 
The DMA controller does not perform multi-cycle transfers atomically. A DMA transfer does 
not cause the processor's LOCK output to be asserted. A bus hold request may also be 
acknowledged between the bus requests which make up a multi-cycle transfer. 

--
i960™CA Microprocessor DREQx 

-- 32-Bit Device 
DACKx 

---T- J Destination J 

J~ ~2 
32-Bit Memory BUFFER 

l J 
(for Load Data) 

Source I Word I 

J l 
External Bus 

Next Load 
~ Pref etched & Buffered 

'~ External r-
Bus ~ 

Word Load Word Store Word Load Word Store 
I I I 

I I I I 
I I I I 

ii I u I 
I I 
I I 

DRE Ox 

First Request 

[Y __ ~ 
I I I I 

\ I \ I 
I I 

[ DACKx 

Figure 13.1. Source Data Buffering for Destination Synchronized DMAs 

Fly-By Single-Cycle Transfers 

Fly-by transfers are executed with only a single load or store request. Source data is not 
buffered internally; instead, the data passes directly between source and destination via the 
external data bus. 

Fly-by transfers are commonly used for high-performance peripheral to memory transfers. The 
fly-by mechanism is best described by giving an example of a source-synchronized demand 
mode DMA (Figure 13.2). In the example, a peripheral at a fixed address is the source of a 
DMA and memory is the destination. Each transfer is synchronized with the source. 
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The source requests a transfer by asserting the request pin (DREQ3:0). When the request is 
serviced, a store is issued to the destination memory while the requesting device is selected by 
the DMA acknowledge pin (DACK3:0). The source device. when selected, must drive the data 
bus for the store instead of the processor. (The processor floats the data bus for a fly-by 
transfer.) 

-~ 

DREQx 

32-Bit Device -- 32·Bit Memory DACKx i960 ™cA Microprocessor 

l } /-- l J Source Destination 

32 j/ 
/ 

Processor Floats sts During Store 
1~2 

'-... Source Drives Data l 1 Word Store _J 

External Bus 

I 

~ ~ 
I 

External [ 

¥ Word Store Word Store ¥ Bus 

[ \ \! DREQx I I 
I I I I 

[ \ I I I 

DACKx \ J 
I 

Figure 13.2. Example of Source Synchronized Fly-by OMA 

Uthe destination of a fly-by is the requestor (destination synchronization), a load is issued to 
the source while the destination is selected with the acknowledge pin. The destination, when 
selected, reads the load data: the processor ignores the data from the load. 

NOTE 

Fly-by mode may not access internal data RAM. 

A fly-by DMA in block mode is started by software like any block-mode operation. Request 
pin~ DREQ3:0 arc ignored in block mode. Fly-by block-mode DMAs can be used to 
implement high-performance memory-to-memory transfers where source and destination 
addresses are fixed at block boundaries. In this case, the acknowledge pin must be used in 
conjunction with external hardware to uniquely address the source and destination for the 
transfer. 
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Source/Destination Request Length 

Source and destination request length is selected when a DMA channel is configured. Request 
length determines bus request types that the DMA microcode issues. Byte, short-word or quad­
word bus requests are issued by the DMA controller microcode. 

The request length selected for a DMA operation - byte, short-word, word or quad-word -
should not be confused with external data-bus width or other characteristics programmed in the 
memory-region configuration table. Request length dictates the type of bus request issued by 
DMA controller microcode, while the region configuration of a DMA's source and destination 
memory control how that bus request is executed on the external bus. 

As an example, consider a system in which a DMA source memory region is configured for 
8-bit, non-burst accesses and a word source request length is selected. OMA microcode issues 
word loads (identical to the Id instruction) to DMA addresses in the source region. Since the 
source memory region is configured as 8 bits, the bus controller handles the word loads as four 
8-bit accesses in that region. To contrast this example, if the DMA is configured for a byte 
source request length, OMA microcode issues byte loads (identical to the ldob instruction) to 
OMA addresses in the source region. The byte load to this region is executed as a single 8-bit 
access. Chapter 11, External Bus Description fully describes bus configuration and how the 
bus controller executes bus requests. 

In demand mode transfers, DREQ3:0 is asserted to request a DMA transfer. DACK3:0 is 
asserted during the bus request issued in response to the DMA request. Continuing the example 
started above: if the DMA controller is set up for source synchronized demand mode, 
DREQ3:0 causes a word (Id) request to be issued when source request length equals word and 
causes a byte (ldob) request to be issued when the source request length equals byte. DACK3:0 
is asserted for the duration of the bus request for each case. 
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Figure 13.3. Source Synchronized OMA Loads from an 8-bit, 
Non-burst, Non-pipelined Memory Region 

For demand mode transfers. the request length is typically selected to match the external bus 
width of the external DMA device. If request length is greater than bus width, the DMA device 
must be designed to support multiple data cycles for each DMA transfer requested. This may 
be accomplished by using a small FIFO and an external circuit to load and unload the FIFO. 
This method reduces bus loading by the DMA process. 

For block mode transfers, source and destination request lengths are typically selected to match 
external data bus width. This configuration uses the external bus most efficiently and also 
reduces latency for bus requests issued by the user process. 

In instances where source and destination bus widths are different, DMA performance may be 
increased by setting up the DMA with matching source and destination request lengths. This 
configuration reduces DMA microcode overhead required to pack or unpack data between 
unequal request lengths. Packing/unpacking is handled more efficiently by the bus controller 
unit. Matching the request lengths may increase latency for bus requests issued by the user 
process. 
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Quad-word source and destination request lengths are used for highest DMA performance. 
Quad transfers use the external bus most efficiently when the source or destination memory 
regions support burst accesses. Since the request length for quad word transfers is always 
greater than the bus width, DMA devices must support multiple data cycles for each requested 
DMA transfer. Using quad-word request lengths may increase bus latency for loads, stores and 
instruction fetches that the user's program generates. 

In cases where source address, destination address or byte count are unaligned, requests shorter 
than the selected request length are issued to align the transfers. (Refer to the section in this 
chapter titled Data Alignment.) 

Assembly and Disassembly 

The DMA controller internally assembles or disassembles data between different source and 
destination request lengths. Assembly refers to the packing of narrow data into wider data. 
Disassembly refers to the unpacking of wide data into narrow data. Assembly and disassembly 
is performed automatically when a channel is set up with different source and destination 
request lengths. Assembly and disassembly is performed for all aligned transfers configured 
with combinations of byte, short-word and word request lengths. Quad-word DMA transfers 
require that source and destination request lengths equal quad word; therefore, data assembly 
and disassembly is not applicable to this DMA mode. 

Figure 13.4 shows a typical demand mode configuration in which an 8-bit device is the source 
requestor for a DMA and 32-bit memory is the destination. If byte source and word destination 
request length is selected for this DMA, data from four source requests is buffered before load 
to the 32-bit memory is executed. This configuration represents an optimal use of bus resources 
for a DMA between an 8-bit device and 32-bit memory. 

NOTE 

Microcode algorithms which perform assembly and disassembly are less efficient than algorithms 
which perform transfers between source and destination with equal request lengths. DMA 
controller assembly and disassembly is provided for convenience and for most efficient external 
bus usage. For example, the system shown in Figure 13.4 functions the same when source and 
destination request lengths are both byte-long. In this case, each transfer is performed with a byte 
load followed by a byte store. DMA throughput is increased; however, the DMA makes more bus 
requests to transfer the same amount of data. 
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Figure 13.4. Byte to Word Assembly 

Data Alignment 

The DMA controller is able to transfer data to and from unaligned memory blocks. A DMA 
channel's source or destination address may be set up to increment for memory block transfers. 
When the address increments, there are no alignment requirements for byte, short or word-long 
request lengths. Addresses for quad-word request lengths must always be quad-word aligned. 
To interface to external DMA devices, the source or destination address may be set up as fixed. 
Fixed addresses must always be aligned to the request-length boundary. Table 13.2 
summarizes the alignment requirements for all OMA transfers. 

The minimum byte count depends on the configuration of the DMA controller: 

Configuration Minimum byte count 

Multi-cycle block mode with byte, short-word or word 1 
long source or destination request length 

Multi-cycle block mode with quad-word request length 16 

Multi-cycle source sync. demand mode source request length (bits) I 8 

Multi-cycle destination sync. demand mode destination request length (bits) I 8 

All fly-by mode transfers request length (bits) I 8 

Multi-cycle DMAs to aligned memory blocks perform better than DMAs to unaligned memory 
blocks. Additional microcode cycles are required to access the unaligned memory. 
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Most unaligned DMA transfers, however, use the external bus almost as efficiently as aligned 
DMAs. Multi-cycle DMA configurations which use the bus efficiently when memory blocks 
are unaligned are: 

Word-to-Word Byte-to-Short 

Byte-to-Word 

Word-to-Byte 

Short-to-Byte 

Table 13.2. OMA Transfer Alignment Requirements 

Transfer Types Boundary Alignment Requirements 
(Source-to-Destination) Source Address Destination 

or Fly-by Address Address 
Fixed Iner. Fixed Iner. 

Byte-to-Byte (8/8 bit) 
Multi-cycle Byte Byte Byte Byte 

Fly-by Byte Byte N/A N/A 
Byte-to-Short (8/16 bit) 

Multi-cycle Byte Byte Short Byte 
Byte-to-Word (8/32 bit) 

Mu/ti-cycle Byte Byte Word Byte 
Short-to-Byte (16/8 bit) 

Multi-cycle Short Byte Byte Byte 
Short-to-Short (16/16 bit) 

Multi-cycle Short Byte Short Byte 
Fly-by Short Short N/A N/A 

Short-to-Word (16/32 bit) 
Mu/ti-cycle Short Byte Word Byte 

Word-to-Byte (32/8 bit) 
Mu/ti-cycle Word Byte Byte Byte 

Word-to-Short (32/16 bit) 
Multi-cycle Word Byte Short Byte 

Word-to-Word (32/32 bit) 
Multi-cycle Word Byte Word Byte 

Fly-by Word Word N/A N/A 
Quad-to-Quad (128/128 bit) 

Multi-cycle Quad Quad Quad Quad 
Fly-by Quad Quad N/A N/A 

These optimized unaligned transfers are executed by performing byte requests until alignment 
is enforced. At this time, aligned source and destination requests are executed. At end of 
transfer, the DMA may revert to byte transfers to complete the DMA. This alignment 
mechanism is shown in Figure 13.5. Alignment overhead occurs at the beginning and end of 
the DMA operation and, depending on DMA byte count, may be negligible. For Short-Short, 
Short-to-Word and Word-to-Short multi-cycle transfers, the DMA performs byte request when 
a memory block is unaligned. 
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Figure 13.5. Optimization of an Unaligned OMA 

DATA CHAINING 

Data chaining can generate complex DMAs by linking together multiple transfer operations 
and is accomplished by using memory-based chaining descriptors to describe component parts 
of a more complex DMA operation. 

The component parts of the chained DMA arc referred to as chaining hu.ffers. To describe a 
single DMA chaining buffer, a chaining descriptor (Figure 13.6) supplies source address (SA), 
destination address (DA) and byte count (BC). Chaining buffers are linked together with the 
value of the next pointer (NPTRJ field in the chaining descriptor. NPTR contains the chaining 
descriptor address which describes the next part of the chained DMA operation. DMA 
operation ends when an NPTR of 0 (null pointer) is encountered. 

A chained DMA operation is started by specifying a pointer to the first chaining descriptor 
when sdma is used to configure the DMA channel. Initial source address, destination address 
and byte count are taken from the first chaining descriptor. Chained DMAs are configured such 
that subsequent buffer transfers use either source, destination or both of these addresses to 
continue the chained DMA. These modes are referred to as source chaining, destination 
chaining or source/destination chaining. For example, if a channel is configured for source 
chaining (Figure 13.7), the source address for the DMA operation is updated to the value 
specified in each new descriptor. The destination address is continually incremented from the 
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address specified in the DA field of the first descriptor or is held fixed at that address. (Recall 
that addresses may be incremented or held fixed for any DMA operation.) 

INTERNAL REGISTER 

First Descriptor Pointer 

~ 
~NKED DESCRIPTORS IN MEMORY 

Byte Count (BC) 

Source Address (SA) 
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Next Descriptor Pointer (NPTR) 

~~) 
BC 
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) 
~~) 

BC 

SA 

DA 

OH - Null Pointer 

BUFFER TRANSFERS 

------

------

------

Figure 13.6. OMA Chaining Operation 

Each buffer transfer is handled by the DMA controller as if it were a single non-chained DMA. 
Data alignment requirements for each buffer are identical to the requirements for any other 
DMA. (See Data Alignment in this chapter.) Since each buffer is considered a single DMA, 
data is never internally buffered when moving from one buffer to another for unaligned DMAs. 
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Figure 13.7. Source Chaining 

Depending on DMA channel configuration and the chaining mode selected, certain fields in the 
chaining descriptor are ignored, but must be set to zero for future compatibility: 

1. When a channel is source chained, the DA field of the first descriptor specifies the 
destination address; the DA field in subsequent descriptors is ignored. 

2. When a channel is destination chained. the SA field of the first descriptor specifies the 
source address; the SA field in subsequent descriptors is ignored. 

3. When a channel is configured for chained fly-by mode, the SA field always contains the 
fly-by address; the DA field is ignored. 

When descriptors are read from external memory, bus latency and memory speed affect 
chaining latency. Chaining latency is defined as the time required for the OMA controller to 
access the next descriptor. plus the time required to set up for the next buffer transfer. Chaining 
latency is reduced by placing descriptors in internal data RAM or fast memory. 

OMA-SOURCED INTERRUPTS 

Each DMA channel is the source for one interrupt. When a DMA channel signals an interrupt, 
the DMA interrupt-pending bit corresponding to that channel is set in the interrupt-pending 
(IPND) register. Each channel's interrupt can be selectively masked in the interrupt mask 
(IMSK) register or handled as a dedicated hardware-requested interrupt. (Refer to Chapter 6, 
Interrupts for a complete description of hardware-requested interrupts.) 
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The interrupt-pending bit for a DMA channel is set for the following conditions: 

1. A non-chained DMA terminates because byte count reaches 0 or a chained DMA 
terminates because the null chaining pointer is reached. 

2. EOP3:0 pin is programmed as an input and asserted to end a DMA or to terminate a source 
and destination-chained buffer transfer. 

3. For a chained DMA, the interrupt-on-buffer-complete function is enabled and the end of a 
chaining buffer is reached. 

SYNCHRONIZING A PROGRAM TO CHAINED BUFFER TRANSFERS 

When any of the conditions listed above occur, the current DMA request is completed before 
the pending bit in the IPNO register is set. 

Two mechanisms, illustrated in Figure 13.8, enable a program to synchronize with a completed 
chained buffer transfer. With either mechanism, an interrupt is generated when the chained 
buffer is complete. The distinction between the mechanisms arc: 

l. DMA operation continues with no delay on the next chaining buffer. The interrupt service 
routine may process the data transferred for the completed buffer. 

2. OMA waits until the user program processes the first chaining buffer and sets up the next 
buffer transfer by modifying the chaining descriptors. DMA continues with the next buffer 
transfer when a bit in the OMA control register (DMAC) is cleared. 

These options are selected when the OMA channel is set up with the sdma instruction. 

TERMINATING OR SUSPENDING A OMA 

A DMA operation normally ends when one of the following events is encountered: 

• DMA byte count reaches 0 for a non-chained OMA mode. 

• EOP3:0 pin programmed as an input becomes active for a channel that is non-chained, 
source-only chained or destination-only chained. 

• EOP3:0 pin programmed as an input becomes active during the last buffer transfer for a 
channel which is source/destination chained. 

• The null chaining pointer is encountered in any chaining mode. 

The DMA takes the following actions when any one of these events occur: 

• DMAC register channel done flag is set. 

• DMAC register channel terminal count flag is set, only if the byte count has reached 0 
(non-chained) or the null chaining pointer is reached (chaining). 

• DMAC register channel active bit is reset after all channel activity has completed. 

• IPND register channel interrupt pending bit is set. If the corresponding bit in the IMSK is 
cleared, an interrupt is signaled. 
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Figure 13.8. Synchronizing to Chained Buffer Transfers 

When a chained DMA channel is set up for source/destination chaining, the EOP3:0 inputs are 
designed to terminate only the current chaining buffer. The OMA controller continues 
normally with the next buffer transfer. The OMA ends as described above if the EOP3:0 pin is 
asserted during the last buffer transfer. 

When EOP3:0 is asserted, the entire DMA bus request completes before the DMA terminates. 
For example, assume the DMA is programmed for quad-word transfers. If EOP3:0 is asserted, 
the entire quad-word is transferred before the DMA terminates. 

The DMA controller may be configured to generate an interrupt when a DMA terminates. A 
program may determine how a DMA has ended by reading the DMAC register channel 
terminal count and channel done flag values: 

• If a channel's terminal count flag and done flag are set, the DMA has ended due to a byte 
count of 0 (non-chaining) or a null chaining pointer reaching 0 (chaining). 

• If only the done flag is set for the channel, the DMA has ended because of an active 
EOP3:0 input. 

For source/destination chained DMAs, an interrupt is generated by asserting EOP3:0 to 
terminate the current chaining buffer. 

NOTE 

For source/destination chained DMAs. an interrupt is generated when EOP3:0 is asserted or when 
a buffer transfer is complete and the interrupt-on-buffer complete mode is enabled. There is no 
way in software to distinguish between these two interrupt sources. If this distinction is 
necessary, the EOP3:0 pin may be connected to a dedicated external interrupt source. 

A DMA operation can be suspended at any time by clearing the DMAC register channel­
enable bit. It may be necessary to synchronize software to the completion of a channel's bus 
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activity after the enable bit is cleared. This is accomplished by polling the DMA channel active 
bit as shown in the following assembly code segment. 

clrbit 
self: bbs 

0,sf2,sf2 
4, sf2, self 

# disable channel 0 
# wait for channel 
# activity to complete 

DMA operation is restarted by setting the channel enable bit. A channel may be suspended to 
allow a section of time-critical user code to execute with the maximum core and bus resources 
available. 

To reduce interrupt latency, all DMAs can be suspended when an interrupt is serviced. This 
option is set in the Interrupt Control (ICON) register. When the option is selected, all DMA 
operations are suspended during the time that the core processes the interrupt context switch. 
DMAs are restarted before the interrupt procedure's first instruction is encountered. This 
option reduces interrupt latency by providing full processor resources to the interrupt context 
switch. 

DMA operations can be suspended by user code in an interrupt procedure to increase 
procedure throughput. This is accomplished by clearing the DMAC register channel enable 
field. (See DMA Command Register in this chapter.) The interrupt procedure should re-enable 
all suspended channels before returning. 

Issuing sdma for an active channel causes the current DMA transfer to abort. Current DMA 
operation is terminated and the channel is set up with the newly-issued sdma instruction. Do 
not terminate a DMA operation with sdma; this instruction causes a "non-graceful" 
termination of a DMA transfer. In other words, the transfer may be aborted between a source 
and destination access, potentially losing part of the source data. Additionally, status 
information for the terminated DMA is lost when the new sdma instruction reconfigures the 
channel.The channel done bit is not set when a DMA is terminated with sdma. 

CHANNEL PRIORITY 

Each DMA channel is assigned a priority. When more than one DMA channel is enabled, 
channel priority determines the order in which transfers execute for each channel. Channel 
priority can be programmed in one of two modes: fixed priority or rotating priority mode. The 
mode is selected with the priority mode bit in DMAC register. 

When fixed mode is selected, each channel has a set priority. Channel 0 has the highest 
priority, followed by Channel 1, 2 and 3; Channel 3 has the lowest priority. In this mode, low­
priority DMAs assigned to Channels 1-3 can be locked out while a time-critical DMA assigned 
to channel 0 receives all of the DMA controller's attention. 

When rotating priority is selected, a channel's priority depends on the last channel serviced 
(Table 13.3). After a channel is serviced, the priority of.that channel is automatically changed 
to the lowest channel priority. The priority of the remaining enabled channels is increased with 
a new channel becoming the highest priority. Rotating mode ensures that no single channel is 
locked out for an extended period of time. 
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Table 13.3. Rotating Channel Priority 

Last Channel Priority 
Serviced Lowest Highest 

0 0 3 2 1 
I l () 3 2 
2 2 1 0 3 
3 3 2 1 0 

Rotating priority is useful for producing a uniform latency for every DMA channel. When 
rotating mode is selected, the maximum latency for a single channel is the total of all latencies 
associated with all enahled channels. When fixed mode is enabled. latency for any channel is 
dependent on the activity of all channels of higher priority. 

CHANNEL SETUP, STATUS AND CONTROL 

The DMA controller uses the DMA command register (DMAC) and setup DMA instruction 
(sdma) to configure and control the four DMA channels. The update DMA instruction (udma) 
monitors the status of an in-progress DMA operation. 

The DMAC register is a special function register (sf2). This register enables or disables each 
channel and holds frequently-accessed status and control bits for the DMA controller, 
including idle or active status and termination status for a channel. 

sdma configures each channel. sdma specifies source address, destination address, byte count, 
transfer type, chained or non-chained operation. 

When a channel is set up using sdma, an eight-word (32-byte) block of internal data RAM is 
allocated for the channel. Channel state is stored in this section of data RAM when operation is 
preempted by another DMA channel. The user can access the current status for any active or 
idle DMA operation by examining data RAM assigned to a channel. This status includes the 
current source and destination addresses and the remaining byte count. udma copies the state 
of an active DMA channel to internal RAM. 

The following action is usually taken to set up and start a DMA operation on the i960 CA 
processor: 

l. A channel is set up using the sdma instruction. 

2. DMAC register is modified to enable the DMA. 

3. DMAC register is then read to monitor the activity of the DMA operation. 

4. udma can be issued and DMA data RAM examined for the current DMA status. 
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OMA Command Register (DMAC) 

The DMA command register (Figure 13.9) is a 32-bit Special Function Register (SFR) 
specified as sf2 in assembly language. Bits 21-0 are used for DMA status and configuration; 
the remaining bits (bits 31-22) are reserved. These reserved bits should be programmed to 0 at 
initialization and not modified thereafter. These reserved bits are not implemented on the i960 
CA processor; clearing these bits at initialization is only required for portability to other i960 
family products. DMAC function is described below. 

channel enable bits (bits 3-0) enable ( l) or suspend (0) a DMA after a channel is set up. Bits 0 
through 3 enable or disable channels 0 through 3, respectively. If an enable bit for a channel is 
cleared when a channel is active, the DMA is suspended after pending DMA requests for the 
channel are completed and all bus activity for the pending request is complete. The channel 
active bits indicate the channel is suspended. DMA operation resumes at the point it was 
suspended when the channel enable bit is set. To ensure that a DMA channel does not start 
immediately after it is set up, the enable bit for the channel must be cleared by software before 
sdma is issued. This is necessary because the DMA controller does not explicitly clear the 
enable bit after a DMA has completed. 

channel terminal count flags (bits 7-4) are set when a DMA has stopped because l) byte count 
has reached zero for a non-chained DMA or 2) a null pointer in a chaining descriptor is 
encountered in data chaining mode. Flags 4 through 7 indicate terminal count for channels 0, 
through 3, respectively. A terminal count flag is set only after the last request for the channel is 
serviced and all bus activity for that request is complete. A channel's terminal count flag must 
be cleared by software before the DMA channel is enabled. This is necessary because the 
DMA controller does not explicitly clear the terminal count flags after a DMA has completed -
this action must be perfonned by software. The terminal count flags indicate status only. 
Modifying these bits by software has no effect on a DMA operation. 

channel active flags (bits 11-8) indicate that a channel is either idle (0) or active (I). Bits 8 
through 11 indicate active channels 0 though 3, respectively. For demand mode, the active bit 
is set when the DMA request is recognized by internal hardware and remains set until all bus 
activity for that request is complete. In block mode, the channel active bit remains set for the 
duration of the block mode DMA. Channel active flags indicate status only. These flags cannot 
be modified by software; attempts to modify these bits by software has no effect on a DMA 
operation. 

channel done flags (bits 15-12) indicate that a channel's DMA has finished. Bits 12 through 15 
indicate a completed DMA on channels 0 through 3, respectively. The DMA controller sets a 
channel done flag when a DMA operation has finished in one of three ways: 

• byte count reached zero in a non-chaining mode 

• null pointer reached in a chaining mode 

• EOP3:0 signal is asserted which ends the DMA operation 

DMA controller channel done flags are not cleared when a channel is set up or enabled. This 
action must be performed by software. Channel done flags indicate status only; modifying 
these flags does not affect DMA controller operation. 
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channel wait bits (hits 19-l6) signal that a chaining descriptor was read and, optionally, 
enables a read of the next chaining descriptor in memory. Channel wait hits only enable the 
descriptor read when the channel is set up with the channel wait function enabled. (See the 
section titled Se1 Up DMA /11s1ructio11 in this chapter.) This function provides synchronization 
for programs which dynamically change chaining descriptors when a OMA is in progress. The 
OMA controller sets a channel wait hit when a chaining descriptor is read from memory. If the 
channel wait function is enabled, the OMA controller waits for the channel wait bit to he 
cleared hy software before the next descriptor is read. (Sec the section in this chapter titled 
Data Chaining.) 

priority mode /Ji/ (bit 20) selects fixed ( 0) or rotating ( l) priority mode. The priority mode 
determines the order in which DMA channels arc serviced if more than one request is pending. 
(See Channel Priority.) 

throttle bit (bit 21) select~ the maximum ratio of OMA process time to user process time. lf the 
throttle hit is set, the DMA process can take up to one clock for every one clock of the user 
process. If the bit is clear. the OMA process can take up to four clocks for every one user 
process clock. The effect of the throttle bit on DMA performance is fully described in the 
DMA Performance section of this chapter. 

CHANNEL ENABLE BITS -DMAC.ce ----------------------~ 
(0) SUSPEND 
(1) ENABLE 

CHANNEL TERMINAL COUNT FLAGS - DMAC.ctc ----------------. 
(0) NON-ZERO BYTE COUNT 
(1) ZERO BYTE COUNT (SOFTWARE MUST RESET) 

CHANNEL ACTIVE FLAGS - DMAC.ca --------------. 

I 
(0) IDLE 
(1) ACTIVE 

CHANNEL DONE FLAGS - DMAC.cd ---------~ 

I (0) NOT DONE 
(1) DONE (SOFTWARE MUST RESET) 

28 

DMACOMMAND 
REGISTER (DMAC) 

D RESERVED 
(INITIALIZE TO 0) 

24 20 

w w 
3 

c c c c c c 
a a a e 

0 3 2 0 3 

12 

t._ _______ CHANNEL WAIT BITS - DMAC.cw 

(0) READ NEXT DESCRIPTOR 
(1) DESCRIPTOR HAS BEEN READ 

'----------- PRIORITY MOD[ BIT -- DMAC.pm 
(0) FIXED 
(1) ROTATING 

'------------ THROTILE BIT - DMAC.t 
(0) 4 DMA TO 1 USER CLOCK MAX 
(1) 1 DMA TO 1 USER CLOCK MAX 

c c 

0 

270710-002·39 

Figure 13.9. OMA Command Register (DMAC) 
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Set Up OMA Instruction (sdma) 

sdma configures a DMA channel. The sdma instruction has the following format: 

sdma op1, 
regllitlsfr 

op2, 
reg/litlsfr 

op3 
reg 

The three operands are described in Figure 13.10 and in the following text: 

opl: This operand is the number of the channel (0-3) which is set up with sdma. 
Values other than the valid channel numbers are reserved and can cause 
unpredictable results if used. 

op2: This operand is the DMA control word for the channel. The control word selects 
the modes and options for a DMA. (The value of this operand is described in the 
next section, DMA Control Word.) 

op3: This operand is used differently depending on the DMA configuration: 

• Non-chaining multi-cycle DMAs: op3 is the first of three consecutive 32-bit 
registers. The first register must be programmed with byte count; the second, 
the source address; the third, the destination address. 

• Non-chained.fly-by DMAs: op3 is the first of two consecutive 32-bit registers. 
The first register must be programmed with byte count; the second, the fly-by 
address. 

• All chained DMAs: op3 is a single 32-bit register. op3 must be programmed 
with a pointer to the first chaining descriptor. See the section in this chapter 
titled Data Chaining for more information on chaining descriptors. 

NOTE 

The op3 operand must be a quad-aligned register (r4. r8, rl 2, gO, g4, g8org12). 

INTERNAL REGISTER 

Non-Chained Non-Chained Any Chained DMA 
Multi-Cycle DMA Fly-by DMA 

Channel No. (0-3) I op 1 Channel No. (0-3) I op 1 Channel No. (0-3) I op 1 

DMA Control Word I op 2 DMA Control Word I op 2 DMA Control Word I op 2 

Byte Count op 3 Byte Count op 3 Pointer to 1st descriptor I op 3 

Source Address Fly-by Address 

Destination Address 

Note: op3 must be a quad-aligned 
register (r4, r8, r12, go, g4, g8, or g12) 

Figure 13.10. Setup OMA (sdma) Instruction Operands 
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The channel setup mechanism, started with the sdma instruction, is two-part. sdma is a multi­
cycle instruction. When sdma is issued: 

1. the instruction executes - reading the register operands for the DMA operation - then 
completes. freeing these registers for use by other instructions. 

2. a DMA setup process is triggered to complete the channel setup. The ~etup process runs 
concurrently with the execution of the user's program. 

After the setup process i~ ~tarted, it is possible to enable a channel through the DMAC register 
before the setup completes. In this case. the DMA controller waits for the setup to complete 
before the DMA operation begim. The result is the potential for additional latency on the first 
DMA request. To decrease this additional latency, issue the sdma instruction well in advance 
of enabling the DMA channel. 

A second sdma instruction can be issued before a previously-issued DMA setup event 
completes. The second sdma must wait for the first event to complete, preventing other 
instructions from executing. If the segment of code which issues the sdma instructions is time­
critical, it may be beneficial to overlap other operations - other than sdma - with the setup 
event and space the sdma instructions in the code instead of issuing them back-to-back. A 
waiting sdma instruction is interruptible: therefore, back-to-back sdma instructions do not 
adversely increase interrupt latency. 

OMA Control Word 

DMA control \\'ord (Figure 13.11) specifics DMA modes and options. The control word is an 
operand ( op2) of the sdma instruction. 

tran,~fcr tvpe field (bits 3-0) specifies the request length of bus requests issued by the DMA 
controller and selects between multi-cycle and fly-by transfers. 

sourcddestination addressing bits (bits 4 and 5) determine if the source or destination address 
for a channel is held fixed (I J or incremented (0) during a DMA. Bit 5 controls the source 
address and bit 4 controls the destination address. The source addressing bit (bit 5 J controls 
address increment and hold for fly-by transfers. 

synchroniz.ation mode bit (bit 6) specifies that a multi-cycle demand mode transfer is 
synchronized with the source (0) or the destination ( 1 ). In fly-by mode, the bit specifies 
whether fly-by stores (0) or fly-by loads (I) are performed. Fly-by stores are source 
synchronized: fly-by loads arc destination synchronized. In block mode, this bit is ignored . 

snzchroniwtion select bit (bit 7) determines whether a transfer is demand mode (1) or block 
mode (OJ. 

EOPITC select bit (bit 8) selects EOP/TC3:0 pin function. If bit is set, the pins are configured 
as end-of-process inputs (EOP3:0). If the EOP/TC3:0 select bit is cleared, the pin is configured 
as a terminal count output (TC3:0). 
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TRANSFER TYPE FIELD 
OOH 8- TO 8-BITS 
01 H 8- TO 16-BITS 
02H RESERVED 
03H 8- TO 32-BITS 
04H 16- TO 8-BITS 
05H 16- TO 16-BITS 
06H RESERVED 
07H 16- TO 32-BITS 
08H 8-BITS FLY-BY 
09H 16-BITS FLY-BY 
OAH 128-BITS FLY-BY QUAD 
OBH 32-BITS FLY-BY 
OCH 32- TO 8-BITS 
OOH 32- TO 16-BITS 
OEH 128-TO 128-BITS QUAD 
OFH 32- TO 32-BITS 

OMA CONTROLLER 

DESTINATION ADDRESSING------------------------~ 
(0) INCREMENT 
(1) HOLD 

SOURCE ADDRESSING ---------------------------. 
(0) INCREMENT 
(1) HOLD 

SYNCHRONIZATION MODE BIT ----------------------. 
(0) SOURCE SYNCHRONIZED 
(1) DESTINATION SYNCHRONIZED 

SYNCHRONIZATION SELECT BIT 
(0) BLOCK (NON-SYNCHRONIZED) 
(1) DEMAND (SYNCHRONIZE) 

EOP/TC SELECT BIT---------------------~ 
(0) TERMINAL COUNT 
(1) END OF PROCESS 

DESTINATION CHAINING SELECT BIT----------------. 
(0) NO CHAINING 
(1) CHAINED DESTINATION 

SOURCE CHAINING SELECT BIT ------------------. 
(O) NO CHAINING 
(1) CHAINED SOURCE 

INTERRUPT-ON-CHAINING-BUFFER SELECT BIT---------~ 
(0) NO INTERRUPT 
(1) INTERRUPT 

CHAINING WAIT SELECT BIT 
(0) WAIT FUNCTION DISABLED ~ 
(1) WAIT FUNCTION ENABLED 

• , _! J 

28 24 20 

DMA CONTROL WORD 
(INSTRUCTION OPERAND FOR SOMA INSTRUCTION) 

D RESERVED 
(INITIALIZE TO 0) 

16 12 

Figure 13.11. OMA Control Word 
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The following bits in the DMA control word control data chaining. If chaining mode is not 
used, the source/destination chaining select bits (bits 9 and I 0) must be set to 0. 

source/destination chaining select hits (bits 9 and 10) are set to enable data chaining mode. 
Setting bit 9 enables destination chaining; setting bit I 0 enables source chaining. Setting bits 9 
and 10 enables source/destination chaining. Non-chaining mode is selected if both bits are 
clear. (See Data Chaining in this chapter.) 

interrupt-on-chaining-buffer select hit (bit 11) is set to cause an interrupt to be generated when 
byte count for a chained buffer reaches 0. Bit is ignored in a non-chaining mode. 

chaining-wait select hit (bit 12) is set to enable the channel-wait function. When the wait 
enable function is selected, DMAC register channel-wait bits must be cleared before a chaining 
descriptor is read. This channel-wait function, together with the interrupt-on, buffer-complete 
function, allows chaining descriptors to be dynamically changed during the course of a chained 
DMA operation. This bit is ignored when a non-chaining mode is selected. (See Data Chaining 
in this chapter.) 

OMA Data RAM 

The DMA controller uses up to 32 words of internal data RAM to swap service between active 
channels. When a channel is set up, the DMA controller dedicates 8 words of data RAM to that 
channel (Figure 13.12). When channel service swaps from one to another, the state of the 
active channel is saved in data RAM. The state is retrieved when the channel is again serviced. 
DMA data RAM for a channel is only updated when service swaps to another channel or udma 
is executed. 

NOTE 
Channel swapping occurs when channel priority for a pending DMA request is higher than that of 
the cuITently active or last-serviced channel. (See Channel Prioritr in this chapter.) 

ADDRESS INTERNAL SRAM 

0000 OOOOH 

OMA WORKING REGISTERS 

/ BYTE COUNT 0 
0000 0040H / 

CHANNEL 0 SETUP / SOURCE ADDRESS 4 
(32 BYTES) / 

DESTINATION ADDRESS 8 
0000 0060H !------------CHANNEL 1 SETUP NEXT POINTER (CHAINING MODE) c 

(32 BYTES) RESERVED 10 
0000 0080H !------------ I'' CHANNEL 2 SETUP RESERVED 14 

(32 BYTES) ' RESERVED 18 
0000 OOAOH !------------ ' CHANNEL 3 SETUP ' RESERVED 1C 

(32 BYTES) 
0000 OOCOH 

t 270710-001·71 

Figure 13.12. OMA Data RAM 
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udma flushes the state of a currently executing channel to data RAM. Additional DMA 
transfers can occur between the time that udma executes and a program reads the locations in 
data RAM. The channel may be suspended before udma executes to ensure coherence between 
the values read from data RAM and actual DMA progress. 

DMA data RAM is 128 bytes of internal RAM located at 0000 0040H to 0000 OOBFH (Figure 
13.12). This memory is read/write in supervisor mode and read only in user mode. This 
supervisor protection prevents errant modification of the DMA RAM by a program. 

DMA data RAM for any channel can be used for general purpose storage when the channel is 
not in use. A program, however, must not modify data RAM dedicated for a channel which is 
already set up and awaiting activity. In general, any modification of DMA Data RAM for an 
active or idle channel may cause unpredictable DMA controller operation. Conversely, 
executing sdma may cause previously stored data to be overwritten in the data RAM. 

Channel Setup Examples 

Example 13.1. Simple Block Mode Setup 

## Block mode setup . . . 
mov Oxc,g4 # Byte count = 12 
ldconst cO_src_addr,g5 # Source address for channel 0 
ldconst cO_dest_addr,g6 # Destination addr for channel 0 

# DMA ctl word (32/32 std-source 
# inc. - dest. inc. - block) 

ldconst Oxf,g3 

sdma 0,g3,g4 # Setup channel 0 

# Other instructions (optional) 

setbit O,sf2,sf2 # enable channel 0 

Example 13.2. Chaining Mode Setup 

## Chaining mode 
ldconst ptrl,g4 
ldconst Oxla6f,g3 

setup 
# 
# 
# 
# 
# 
# sdma l,g3,g4 

Initial descriptor pointer 
DMA ctl word (32/32 std-source) 
hold-dest inc. -demand source sync.­
dest. chain,channel wait,interrupt on 
buffer complete) 
Setup channel 1 

# Other instructions (optional) 

setbit l,sf2,sf2 # enable channel 1 
## Descriptor list in memory for chaining 
ptrl: 

.word OxlOO, bO _src_addr, bl - de st _addr, ptr3 
ptr2: 

.word Ox200, OxO, bO_dest_addr, OxO 
ptr3: 

.word OxlOO, OxO, b2_dest_addr, ptr2 
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OMA EXTERNAL INTERFACE 

DMA signal characteristics (DACK3:0, DREQ3:0, EOP/TC3:0 and DMA) and DMA transfer 
timing requirements are described in the following sections. Refer to the i960 CA 
Microprocessor Data Sheet for AC specifications. 

Pin Description 

DREQ3:0 DMA Request (input) - DMA request pins arc individual. asynchronous channel­
request inputs used by peripheral circuits to obtain DMA service. ln fixed priority 
mode, DREQO has the highest priority: DREQ3 has the lowest priority. A request 
is generated by asserting the DREQ3:0 pin for a channel. 

DACK3:0 DMA Acknowledge (output) - notifies an external OMA device that a transfer is 
taking place. The pin is active during the bus request issued to the OMA device. 

EOP/TC3:0 End of Process (input EOP3:0) or Terminal Count (output TC3:0) - Configured as 
an output the pin is driven active (low) during the last transfer for a DMA and 
has the same timing as the DACK3:0 signals. TC3:0 pins arc asserted when byte 
count reaches zero for a chained or non-chained OMA. Programmed as an input, 
an asynchronous active (low) signal on the pin for a minimum of two clock 
cycles causes DMA to terminate as described in the section titled Terminating or 
Suspending a DMA. 

DMA DMA Bus Request (output) - This pin indicates that a bus request is issued by the 
OMA controller. The pin is active during a bus request originating from the DMA 
controller and inactive during all other bus requests. OMA pin value is 
indeterminate during idle bus cycles. The DMA pin is not active when chaining 
descriptors arc loaded from memory. 

Demand Mode Request/Acknowledge Timing 

Demand-mode transfers require that the OMA request CDREQ3:0) signal is asserted before the 
transfer is started. Demand mode transfers should satisfy two requirements: 

l. After the transfer is requested, the DMA controller must be fast in responding to the 
requesting device. This characteristic is referred to as latency. 

2. The requesting device must be given enough time to deasscrt the request signal to prevent 
an unwanted OMA transfer. 

The timing for demand mode transfers is described in the following sections. Latency 
characteristics of a OMA transfer are described in this chapter's DMA Performance section. 

An external device initiates a demand mode transfer by asserting (active low) one of the DMA 
request pins. The acknowledge pin is driven active by the DMA controller during the bus 
request issued to access the OMA requestor. Figure 13.14 shows DACK3:0 output timings. 
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i960°MCA 
Microprocessor 

• Dedicated control for each channel 
• Data passes over system bus 
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EXTERNAL INTERFACE 

System Bus 
Address/Data/Control 

DREQO 
J DACKO 

__. J EOPO/TCO -
DRE01 - J DACK1 __. J EOP1/TC1 ... 
DREQ2 ~ J 
DACK2 

EOP2/TC2 ~ J 

DRE03 ---] DACK3 

EOP3/TC3 

l 
PER 0 J 

I 
PER 1 J 
PER 2 J-
PER 3 } 

Figure 13.13. OMA External Interface 

..... 

To start a demand mode DMA, DREQ3:0 must be held asserted until the acknowledge bus 
request is started. EOP3:0 pins do not require external synchronization; however, to guarantee 
detection on a particular PCLK2: I cycle, setup and hold requirements must be satisfied. 

At the end of the acknowledge bus request, DREQ3:0 may be held active to initiate further 
DMA transfers or DREQ3:0 may be driven inactive to prevent further transfers. Depending on 
DMA mode, arbitration for the next DMA transfer begins: 

Case I: On the PCLK2: 1 cycle in which DACK3:0 is deasserted - This timing applies to 
demand mode fly-by transfers - and multi-cycle packing or unpacking modes -
with adjacent request loads or adjacent request stores. 

Case 2: Two PCLK2: l cycles after DACK3:0 is deasserted - This timing applies to 
demand mode multi-cycle transfers with alternating request loads and stores. 

NOTE 

When a DMA operation is destination-synchronized, the next load access is performed even if the 
request input is deasserted. This "prefetch" is implemented to increase performance. If the 
following DMA cycle is prevented, prefetch data is saved internally and stored when the next 
transfer is requested. The entire DMA cycle is not repeated. 
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End Of Processfferminal Count Timing 

EOP/TC3:0 can be programmed as an input (E0P3:0) or output (TC3:0) for each channel. 
EOP/TC3:0 pins are configured when a channel is setup using sdma. 

TC3:0 is asserted when byte count reaches 0 for a chained or non-chained DMA. A TC3:0 pin 
for a channel is driven active during the last acknowledge bus requc,t. TC3:0 pins have the 
same timing as DACK3:0. 

EOP3:0 pins are asserted to terminate a DMA. EOP3:0 pins arc active-level detected. For 
proper internal detection. EOP3:0 pim must be a'serted for a minimum of two and maximum 
of 17 PCLK:2: I cycles (Figure 13. J 5). EOP3:0 pins do not require external synchronization; 
however, to guarantee detection on a particular PCLK:2: 1 cycle. setup and hold requirements 
must be satisfied. Setup and hold times are specified in the i960 CA Microprocessor Data 
Sheet. EOP3:0 inputs adhere to the same timing requirements a' DREQ3:0 for arbitration of 
the next OMA transfer. 

NOTE 

The maximum pulse width requirement for the EOP3:0 pin is to prevent more than one buffer 
transfer to terminate in the source/destination chaining mode. 

I I I I 
I I I I I 

PCLK2:1 J \ rc---i l } 
I I I 

-tLJ_rf ADS I I I 

I I I 
I I 
I I I 

'(BLAST -+----+----t-.'~2'"---+-----1-.\ I 
& READY) 

..__.....__, 

DACKx h 
(All Modes) ; \ 

I 
I 

I I (See Note) I I 
I 11 22---~.,.-~~~~~.,.._,· 
I High to pre~ent 
I I next DMA cycle 

OREOx I 
(Case 1) 1 /$$1$$!$#1)1$1#118 ; 

I I 
I I 

l \ 

I I I I I I High to prevent 

OREQx 
(Case 2) 

I I I I I I next OMA cycle 

$111JJ1111111Y..-.a& 
NOTE OACKx is asserted for the duration of a OMA bus request 

The request may consist of multiple bus accesses (defined by ADS and BLAST). 

Figure 13.14. OMA Request and Acknowledge Timing 
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PCLK 

EOP \i I !1$1/$$#---ff--$ 
I I I I I I I I 
1---~1----

1 2 CLK~ MIN ---~----'----'----~--~---

! I 15 CLKS MAX 

Figure 13.15. EOP3:0 Timing 

Block Mode Transfers 

Block mode OMAs require no synchronization with a source or a destination device. OREQ3:0 
inputs are ignored during block mode OMAs. The acknowledge signal (OACK3:0) is driven 
active when the source is accessed. EOP/TC3:0 pins have the same function as described above 
in the section End cJf"Process!Termina/ Count Timing. 

OMA Bus Request Pin 

The OMA request pin (OMA) indicates that the OMA controller initiated a bus access. The pin 
is asserted (low) for any OMA load or store bus request. OMA is deasserted (high) for other 
bus requests. The OMA pin has the same timing as the W/R pin. (See Chapter 11, External 
Bus Description for a complete timing description of the OMA pin.) 

The OMA pin is not active when chaining descriptors are fetched from memory. 

OMA Controller Implementation 

The i960 CA processor's OMA functions are implemented primarily in microcode. Processor 
clock cycles are required to setup and execute a OMA operation. OMA features - including 
data chaining, data alignment, byte assembly and disassembly - are implemented in 
microcode. OMA hardware arbitrates channel requests, handles the OMA external hardware 
interface and interfaces to microcode for most efficient use of the core resources. 

When considering whether to use the OMA controller, two questions generally arise: 
1. When a OMA transfer is executing, how many internal processor clock cycles does the 

OMA operation consume? 
2. When a OMA transfer is executing, how much of the total bus bandwidth is consumed by 

the OMA bus operations? 
These questions are addressed in the following sections. 
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OMA and User Program Processes 

The i960 CA processor allows DMA operations to be executed in microcode while providing 
core bandwidth for the user· s program. This sharing of core resources is accomplished by 
implementing separate hardware processes for each DMA channel and for the user"s program. 
Alternating between the OMA and the user process enables the user code and up to four OMA 
processes (one per channel) to run concurrently. 

The environments for the OMA and user processes are implemented entirely in internal 
hardware, as well as the mechanism for switching between processes. This hardware 
implementation enables the i960 CA processor to switch processes on clock boundaries - no 
instruction overhead is necessary to switch the process. With this switching mechanism. DMA 
microcode and the user program can frequently alternate execution with absolutely no 
performance Joss caused by the process switching. 

A process switch from user process to OMA process occurs as a result of a DMA event. A 
DMA event is signaled when a DMA channel requires service or is in the process of setting up 
a channel. Signaling the DMA event is controlled by DMA logic. 

After a OMA event is signaled, the OMA process takes a certain number of clock cycles and 
then the user process is restored. The maximum ratio of OMA-to-user cycles is 4: I. This means 
that, at most. the OMA process takes four clock cycles to every single-user process clock. The 
ratio of OMA to user cycles can also be selected as l: I to increase execution speed of the user 
process while a DMA is in progress. The user-to-DMA cycle ratio is controlled by the throttle 
bit in the OMA command register (OMAC.t). 

A OMA rarely uses the maximum available cycles for the DMA process. Actual cycle 
allocation between user process and OMA process depends on the type of OMA operation 
performed, OMA channel activity and external bus loading and performance. Maximum 
allocation of internal processor clocks to DMA processes are specified in DMA Pe1.fcm11a11cc. 

Bus Controller Unit 

The bus controller unit (BCU) accesses memory and devices which are source and destination 
of a transfer. When the OMA process is active, DMA microcode issues load or store requests 
to the bus controller to perform DMA data transfers. The OMA and user processes equally 
share access to the bus on a request-by-request basis. If both processes attempt to flood the bus 
controller with memory requests, the bus is shared equally; this prevents lockout of either 
process. If either process does require the bus, the bus controller resource may be used entirely 
by either process. 

The BCU contains a queue which accepts up to three pending requests for bus transactions 
(Figure 13.16). When a DMA channel is set up, the queue is divided such that one slot is 
dedicated for DMA process requests and two slots are dedicated for user process requests. 
OMA and core entries are arranged in such a way that when both a user and DMA slot arc 
filled, bus request servicing alternates between requests issued by the user and OMA processes. 
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OMA Controller Logic 

DMA controller logic manages the execution of DMA operations independently from the core. 
This logic performs the following functions: 

• Synchronizes DMA transfers with external request/acknowledge signals. 

• Provides the program interface to set up each of the four DMA channels. 

• Provides the program interface to monitor the status of the four channels. 

• Arbitrates requests between multiple DMA channels by managing channel priority. 

• Produces the DMA event which causes DMA microcode to execute. 

OMA Performance 

DMA performance is characterized by two values: throughput and latency (Figure 13.17). 
Throughput measurement is needed as a measure of the DMA transfer bandwidth. Worst-case 
latency is required to determine if the DMA is fast enough in responding to transfer requests 
from DMA devices. 

Throughput describes how fast data is moved by a DMA operation. In this discussion, 
throughput is derived as the number of PCLK2: 1 cycles per DMA request. This value is 
denoted as NT DMA' The established measure of throughput, in units of bytes/second, is 
derived with the following equation: 

Throughput (bytes/second) 
where: 

(nR*fc) 

=NT_DMA 

NT_DMA =throughput per DMA request (PCLK2: 1 cycles) 
= bytes per DMA request 
= PCLK2: 1 frequency 

Latency is defined as the maximum time delay measured between the assertion of DREQ3:0 
and the assertion of the corresponding DACK3:0 pin. This section deals with worst-case 
latency. In this section, latency is derived in number of PCLK2:1 cycles. This value is denoted 
by the symbol NL DMA' The established measure of DMA latency, in units of seconds, is 
derived with the following equation: 

DMALatency 
where: 

NL_DMA 
fc 

NL_DMA 
= fc 

= Latency (PCLK2: 1 cycles) 
= PCLK2: 1 frequency 
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l USER ] 
PROGRAM 

l OMA j 
---=r-~--' 

USER PROGRAM 
AND 

OMA ISSUE REQUESTS 

REQUEST QUEUE 

USER PROGRAM REQUESTS 
OMA REQUESTS 

__________ j __________ , 
l _____ ~'-":r~:". _____ i 
i--------- ----------, 

'--------~1~---------i 
.--------- ----------, , __ ---~,_,~ r~~ ---__ i 
,-~------- ----------, 
! OMA : 

---------------------! • • • 

SERVICE 
REQUESTS 

Figure 13.16. OMA and User Requests in the Bus Queue 

OMA Throughput 

270710-001-72 

DMA throughput (NT_DMA) for a particular system is governed by the following factors: 

• DMA transfer type 

• memory system configuration 

• Bus activity generated by the user process 

• DMA throttle bit value 
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I I 
I I I I 

----.I I 1 ----'\1 I 

U=i · r 
I e:;:, I '~ I I I ___ _, I I ___ _. 

DREQ3:0 [ 

DACK3:0 [ 

I I I I 
I-NL DMA-1 1--NL DMA-1 
I - I I - I 

LATENCY = N L_DMA (SEC) 
fc 

THROUGHPUT= N n Rf C (BYTES/SEC) 
T_DMA 

I I 
I I 
I NL~A I 
I I 

NL_DMA= NUMBER OF LATENCY CLOCKS 

NT_DMA= NUMBER OF CLOCKS PER OMA REQUEST 

nR =NUMBER OF BYTES PER OMA REQUEST 

fc = PCLK2:1 FREQUENCY 

Figure 13.17. OMA Throughput and Latency 
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NT DMA is derived from the transfer clocks provided in Table 13.4. Values in this table are 
- derived assuming: 

• No bus activity is generated by the user process. 

• DMA transfer source and destination memory are zero wait states or internal data RAM. 

Table 13.4 provides the number of PCLK2: 1 cycles required for each unit DMA transfer. 
Transfer clock values, denoted by the symbol NDMA' are provided in the two boldface 
columns. These columns show transfer clocks for the DMA throttle bit set to 1: 1 and 4: 1 
configuration. Transfer clocks are given in pairs separated by a "/": the number on the left is 
the value for source synchronized demand mode transfers; the number on the right is the value 
for destination synchronized demand mode transfers. 

The number of bytes per transfer is provided in Table 13.4. This is the number of bytes which 
are transferred in N DMA clock cycles. Bytes per transfer is denoted by the symbol nDMA-

DMA throughput (NT DMA) is calculated using the following equation: 
- nR 

NT_DMA = NnMA *CnDMA) 

where: 

NnMA = number of PCLK2: 1 cycles per transfer 
= number of bytes transferred per DMA request 
= number of bytes per DMA transfer 
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Table 13.4. OMA Transfer Clocks • NoMA 

Transfer Clocks 
NoMA in PCLK2:1 cycles 

(Source Sync./Destination Sync.) 

Transfer Type Bytes per Throttle= 4:1 Throttle= 1:1 

(source-to-destination Transfer DMA User NDMA User NDMA 
data length) (nDMA) Process Process Process 

8-to-8 Multi-Cycle I 4/4 616 10/10 7/7 11/11 

8-to-J 6 Multi-Cycle 2 11/11 10/11 21/22 18119 29/30 

8-to-32 Multi-Cycle 4 23/25 16115 39/40 30/29 53/54 

16-to-8 Multi-Cycle 2 1 Oil() 8/8 18/18 14/13 24/23 

16-to-16 Multi-Cycle 2 4/4 616 10/10 717 11/11 

16-to-32 Multi-Cycle 4 9/12 11/8 20/20 17/14 26126 

32-to-8 Multi-Cycle 4 22/22 13/13 35/35 26/23 48/45 

32-to-16 Multi-Cycle 2 10/11 8/8 18/19 14/13 24124 

32-to-32 Multi-Cycle 4 4/4 616 10/10 717 11/11 
(aligned) 

32-to-32 Multi-Cycle 4 616 6/6 12/12 919 15/15 
(unaligned) 

128-to-l 28 Multi-Cyc:le 16 617 919 15/16 10/10 16/17 

8-bit Fly-by I 3/3 3/3 616 4/4 7/7 

16-bit Fly-by 2 3/3 3/3 616 4/4 7/7 

32-bit Fly-by 4 3/3 3/3 6/6 4/4 7/7 

128-bit Fly-hy 16 3/3 6/6 919 616 919 

The columns in Table 13.4 labeled DMA Process and User Process show the number of clock 
cycles allocated to either these processes during a single DMA transfer. The following formula 
provides the minimum fraction of processor bandwidth remaining for the user process during a 
DMA transfer: 

. . . User Process Clocks 
Mm1mum User Process Bandwidth= ( N ) * 100% 

DMA 

OMA Latency 

DMA latency in a system depends on the following factors: 

• DMA Transfer type and subsequently the worst-case throughput value calculated for that 
transfer 

• Number of channels enabled and the priority of the requesting channel 

• Status of the suspend DMA on interrupt bit in the DMA control register (DMA.dmas) 

DMA latency is the sum of the worst-case throughput for the channel plus added components 
which are dependent on the configuration of the DMA controller. DMA latency is denoted as 
NL_DMA in the following discussion and is measured in number of PCLK2: 1 cycles. 
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Values for worst-case throughput are provided in Table 13.5. NT DMA· NT first and NT chain 
describe DMA throughput. NT DMA· derived in the previous section, describes the average 
DMA throughput, measured for-a transfer which is in progress. NT first and NT chain represent 
boundary conditions of throughput for the following conditions: - -

First DMA transfer in non-chained modes - NT first is the throughput of the first transfer of a 
non-chained DMA operation. After the setup microcode completes, additional microcode is 
required to start the first DMA transfer. 

First DMA transfer of a chained DMA buffer - NT chain is the throughput between chained 
buffers (chaining mode only). The time required to arbitrate another buffer transfer in chaining 
mode, read the next chaining descriptor from memory and acknowledge the first transfer of the 
new buffer. Two values are given in Table 13.5 for NT chain to account for differences in 
throughput for EOP chaining mode. EOP chaining occurs when the DMA controller is 
configured for both source and destination chaining, the EOP/TC3:0 pins are configured as 
inputs and EOP3:0 is asserted by the external system to cause chaining to the next buffer 
transfer. 

NT_first and NT_chain are calculated using the following equation: 

NT_first = [Nrn_first + NTO_first *(0.6*throttle)] 

NT_chain = [Nrn_chain + Nrn_first *(0.6*throttle)J 

where: 
throttle = 0 for 4: 1 throttle mode; 1 for 1: l throttle mode 

The factor of 0.6 is used to characterize the effect on the worst-case base throughput value of 
disabling the throttle mode. For determination of NT OMA· Table 13.4 provides separate 
measurements with the throttle bit both enabled and disabled. 

Additional components of worst-case DMA latency depend on DMA controller configuration. 
These components are described below and their values are given in Table 13.6. 

Set up the DMA channel (Nsetup) - Describes the time required for microcode to complete 
channel setup after sdma is executed. This latency component may be ignored if the channel is 
enabled N setup clock cycles after sdma is executed. 

Swap the DMA channel (Nswap) - Time required for a higher priority channel to preempt a 
lower priority channel and the time required to copy the associated DMA working registers to 
internal data RAM. If only one channel is enabled in a system, then Nswap equals 0. 

Lower Priority Channels (Niower) - Latency of lower priority channels which are preempted 
when a DMA for the highest priority channel is requested. A transfer on the lower priority 
channel must complete before the higher priority channel is serviced. 

Interrupt Latency (Nint) - Latency caused by servicing an interrupt with the suspend DMA 
mode enabled. Nint is the same as the worst case interrupt latency for the system. 
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Table 13.5. Base Values of Worst-case OMA Throughput 
used for OMA Latency Calculation 

Base worst-case throughput per request (PCLK2:1 cycles) 

(Source SyncJDestination Sync.) 

Transfer Type NTO_first NTO_chain NTO_chain 
(source-to-dest. data length) 

(noEOPJ (with EOP) 

8-to-8 Multi-Cycle 15122 61/63 85/84 

8-to-16 M11l1i-Cvcle 

aligned 17132 63171 95192 

unaligned 20/32 62/69 98/92 

8-to-32 Mulri-C\cle 

aligned 18/53 63/90 96/l 13 

unaligned 18/53 60/90 96/113 

!6-10-8 Multi-Cvc/e 

aligned 20/23 69/62 JOS/81 
unaligned 20/23 62/60 108/81 

l 6-to-16 Multi-C)'cle 

aligned 20/24 90/89 1141112 

unaligned 35/50 1121117 129/138 

16-10-32 Multi-Crcle 

aligned 35/42 104/103 150/127 

unaligned 55173 1231136 1701158 

32-to-R Multi-Cvcle 

aligned 21/25 92/64 87/83 

unaligned 21/28 63/65 87/86 

32-w-16 M11/ti-Crcle 

aligned 20/26 93/89 I J0/110 

unaligned 52166 120/!29 142/150 

32-to-32 Multi-Crcle 

aligned 24/33 92174 94/95 

unaligned 30/52 118/93 114/L 14 

128-to-12R Multi-Cycle 19/29 63/68 67175 

8-bit Fly-by 27/27 59/59 88/80 

16-hit Fly-b_v 27/27 59/59 88/80 

32-bit Flv-by 27/27 59/59 88/80 

128-hit fly-/Jr 27/27 59/59 88/80 
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Table 13.6. Values of OMA Latency Components 

Latency Value 
Component Condition (PCLK2: I Cycles) Notes 

Nsetup Non-chained DMA modes 36 

Chained DMA modes 44 

Channel enable delayed from sdma execution by 0 
> 36 clock cycles in non-chaining mode or> 44 
clock cycles in a chained DMA mode. 

Nswap Single DMA channel enabled - No channel 0 
preemption 

Multiple DMA channels enabled - Preempt 5*(Number of 
lower priority channels channels preempted) 

N1ower Single DMA channel enabled - No channel 0 ( 1) 
preemption 

Multiple DMA channels enabled - Preempt NL 
lower priority channel 

Nint DMA suspend on interrupt disabled 0 (2) 

DMA suspend on interrupt enabled Worst-case Interrupt 
Latency 

NOTES 

1. NL' is the sum of maximum latencies of all channels which may be preempted by the 
requesting channel. For example, with four DMA channels enabled and rotating priority 
mode, a channel request may be required to preempt three other channels with pending 
requests. In this case. the NL' component is the sum of all of these latencies. 

2. This value is defined in the preceding section titled DMA Latency. 

Worst-case DMA latency is finally calculated as the sum of the individual latency components 
plus the worst-case throughput condition: 

Non-chaining modes: 

NL_DMA (worst case) = max(NT, NT_first) + Nsetup + Nswap + Nlower + Nint 

Chaining modes: 
NL_DMA (worst case) = Nr_chain + Nsetup + Nswap + Nlower + Nint 
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CHAPTER14 
INITIALIZATION AND SYSTEM REQUIREMENTS 

This chapter describes the steps that the i960 CA processor takes during its initialization. 
Discussed are the RESET pin, the reset state of the processor, built-in self test (BIST) features 
and on-circuit emulation function (ONCE). The chapter also describes the processor's basic 
system requirements - including power, ground and clock - and concludes with some general 
guidelines for high-speed circuit board design. 

OVERVIEW 

During the time that the RESET pin is asserted, the i960 CA processor is in a quiescent reset 
state. All external pins are inactive and the internal processor state is forced to a known 
condition. The processor begins initialization when the RESET pin is deasserted. 

When initialization begins, the processor uses an Initial Memory Image (IMI) to establish its 
state. The IMI contains: 

• Initialization Boot Record (IBR) - contains the addresses of the first instruction of the 
user's code and the PRCB. 

• Process Control Block (PRCB) - contains pointers to system data structures; also contains 
information used to configure the processor at initialization. 

• System data structures - several data structure pointers are cached internally at 
initialization. 

The i960 CA processor may be reinitialized by software. When a reinitialization takes place. a 
new PRCB and reinitialization instruction pointer are specified. Reinitialization is useful for 
relocating data structures from ROM to RAM after initialization. 

The processor supports several facilities to assist in system testing and startup diagnostics. The 
ONCE mode electrically removes the i960 CA processor from a system. This feature is useful 
for system-level testing where a remote tester exercises the processor system. During 
initialization, the processor performs an internal functional self test and external bus self test. 
These features are useful for system diagnostics to ensure base functionality of the i960 CA 
processor and system bus. 

The processor is designed to minimize the requirements of its external system. The processor 
requires an input clock (CLKIN) and clean power and ground connections (VSS and VCC). 
Since the processor can operate at a high frequency, the external system must be designed with 
considerations to reduce induced noise on signals, power and ground. 
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INITIALIZATION 

Initialization describes the mechanism that the processor uses to establish its initial state and 
begin instruction execution. Initialization begins when RESET is deasserted. At this time, the 
processor automatically configures itself with information specified in the IMI and performs its 
built-in self test. The processor then branches to the first instruction of user code. 

The objective of the initialization sequence is to provide a complete, working initial state when 
the first user instruction executes. The user's startup code has only to perform several base 
functions to place the processor in a configuration for executing application code. 

Reset Operation (RESET) 

The RESET pin, when asserted (active low), causes the processor to enter the reset state. All 
external signals go to a defined state (Table 14.1); internal logic is initialized; and certain 
registers are set to defined values (Table 14.2). When the RESET pin is deasserted, the 
processor begins initialization as described later in this chapter. RESET is a level-sensitive, 
asynchronous input. 

The RESET pin must be asserted when power is applied to the processor. The processor then 
stabilizes in the reset state. This power-up reset is referred to as cold reset. To ensure that all 
internal logic has stabilized in the reset state, a valid input clock (CLKIN) and VCC must be 
present and stable for a specified time before the RESET pin can be deasscrtcd. 

The processor may also be cycled through the reset state after execution has started. This is 
referred to as warm reset. For a warm reset, the RESET pin must be asserted for a minimum 
number of clock cycles. Specifications for a cold and warm reset can be found in the i960 CA 
Microprocessor Data Sheet. 

The reset state cannot be entered under direct control from a program. No reset instruction - or 
other condition which forces a reset - exists on the i960 CA processor. The RESET pin must 
be asserted to enter the reset state. The processor does, however, provide a means to reenter the 
initialization process. (See Reinitialization and Relocating Data Structures later in this 
chapter.) 

Self Test Function (STEST, FAIL) 

As part of initialization, the i960 CA processor executes a bus confidence self test and, 
optionally, an internal self test prograrn. The self test (STEST) pin enables or disables internal 
self test. The failure (FAIL) pin indicates that either of the self tests passed or failed. 

Internal self test checks basic functionality of internal data paths, registers and memory arrays 
on-chip. Internal self test is not intended for a full validation of the processor's functionality. 
Internal self test detects catastrophic internal failures and complements a user's system 
diagnostics by ensuring a confidence level in the processor before any system diagnostics are 
executed. 
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Internal self test is disabled with the STEST pin. Internal self test can be disabled if the 
initialization time needs to be minimized or if diagnostics are simply not necessary. The 
STEST pin is sampled on the rising edge of the RESET input. If asserted (high), the processor 
executes the internal self test: if deasserted. the processor bypasses internal self test. The 
external bus confidence test is always perfonned regardless of STEST pin value. 

Table 14.1. Pin Reset State 

PinsCll Reset State Pins(!) Reset State 

A31:2 Floating DMA Floating 

D31:0 Floating SUP Floating 

BE3:0 High (inactive) FAIL Low (active) 

W/R High (inactive) DACK3 High (inactive) 

ADS High (inactive) DACK2 High (inactive) 

WAIT High (inactive) DACK! High (inactive) 

BLAST High (inactive) DACKO High (inactive) 

DT/R High (inactive) EOP/TC3 Floating (input) 

DEN High (inactive) EOP/TC2 Floating (input) 

LOCK High (inactive) EOP/TCI Floating (input) 

BREQ Low (inactive) EOP/TCO Floating (input) 

DIC Floating 

NOTE 

(!)Pin states shown assume HOLD and ONCE pins are not asserted. If HOLD is assetted during 
reset, the hold is acknowledged by asserting HOLDA and the processor pins are configured in the 
Hold Acknowledge state (See Chapter JO, Bus CO/ztro/ler.) If the ONCE pin is asserted, the 
processor pins are all floated. 
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Table 14.2. Register Values after Reset 

RegisterCI J Value after cold reset Value after warm reset 

AC AC initial image in PRCB AC initial image in PRCB 

PC COIF2002H COIF2002H 

TC TC initial image in PRCB TC initial image in PRCB 

FP (gl5) interrupt stack base interrupt stack base 

PFP (rO) undefined value before warm reset 

SP (rl) interrupt stack base+64 interrupt stack base+64 

RIP (r2) undefined undefined 

IPND (sfO) undefined value before warm reset 

IMSK (sfl) OOH OOH 

DMAC (sf2) OOH OOH 

NOTE 
(!)All control registers (not listed) are configured with their respective values from the control 
table after reset. 

External bus confidence self test checks external bus functionality. This test is performed by 
reading eight words from the Initialization Boot Record (IBR) and performing a checksum on 
the words and the constant FFFF FFFFH. If the processor calculates a sum of 0, the test passes. 
The external bus confidence test can detect catastrophic bus failures such as shorted address, 
data or control lines in the external system. (See Initial Memory Image.) 

The FAIL pin signals errors in either the internal self test or bus confidence self test. FAIL is 
asserted (low) for each self test (Figure 14.1). If the test fails, the pin remains asserted and the 
processor attempts to stop at the point of failure. If the test passes, FAIL is deasserted. When 
the internal self test is disabled (with the STEST pin), FAIL still toggles at the point where the 
internal self test would occur even though the internal self test is not executed. FAIL is 
deasserted after the bus confidence test passes. In Figure 14.1, all transitions on the FAIL pin 
are relative to PCLK2: 1 with output valid equal to tov7/tom as shown in the i960 CA 
Microprocessor Data Sheet. 

RESET# 

FAIL# 

(INTERNAL SELF·TEST) 
PASS 

(BUS TEST) 
PASS 

-------------........ 1.--------.a-~'·--------~"--------1- - ~I':_ --ll 

1..- - 60,000 CYCLES__...1~.......- 102 CYCLES i.. I 
5 CYCLES 

270710-001-74 

Figure 14.1. FAIL Timing 
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On-Circuit Emulation 

On-circuit emulation aids board level testing. This feature allows a mounted i960 CA processor 
to electrically remove itself from a circuit board. In ONCE mode, the processor presents a high 
impedance on every pin. nearly eliminating the processor's power demands on the circuit 
board. Once the processor is electrically removed, a functional tester can take the place of 
(emulate) the mounted processor and execute a test of the i960 CA processor system. 

The on-circuit emulation mode is entered by asserting (low) the ONCE pin while the i960 CA 
processor is in the reset state. ONCE pin value is latched on RESET signal's rising edge. The 
ONCE pin should be left unconnected in an i960 CA processor system. The pin is connected to 
VCC through an internal pull-up resistor, causing the unconnected pin to remain in the inactive 
state. To enter on-circuit emulation mode. an external tester simply drives the ONCE pin low 
(overcoming the pull-up resistor) and initiates a reset cycle. To exit on-circuit emulation mode, 
the reset cycle must be repeated with the ONCE pin deasserted prior to the rising edge of 
RESET. (See the i960 CA Microprocessor Data Sheet for specific timing of the ONCE pin and 
the characteristics of the on-circuit emulation mode.) 

Initial Memory Image (IMI) 

The IMI comprises the minimum set of data structures that the processor needs to initialize its 
system. The IMI performs three functions for the processor: 

I. it provides initial configuration information for the core and integrated peripherals 

2. it provides pointers to the system data structures and the first instruction to be executed 
after the processor's initialization 

3. it provides checksum words that the processor uses in its self test routine at startup 

The IMI is made up of three components: the initialization boot record (!BR), process control 
block (PRCB) and system data structures. Figure 14.2 shows the IMI components. The IBR is 
fixed in memory: the other components are referenced directly or indirectly by pointers in the 
IBR and the PRCB. 

Initialization Boot Record (IBR) 

The IBR is the primary data structure required to initialize the i960 CA processor. The IBR is a 
12-word structure which must be located at address FFFF FFOOH (Figure 14.2). The IBR is 
made up of four components: the initial bus configuration data, the first instruction pointer, the 
PRCB pointer and the self test checksum data. 

When the processor reads the !MI during initialization, it must know the bus characteristics of 
external memory where the lMI is located. This bus configuration is read from the IBR' s first 
three words. At initialization, the processor performs loads from the lower order byte of the 
IBR' s first three words. These three bytes are combined and loaded into the memory region 0 
configuration register (MCONO) to program the initial bus characteristics for the system. 

The byte in IBR word 0 is loaded into the lowest byte position of the MCONO register; the next 
two bytes from word 1 and word 2 are loaded into successively higher byte positions. The byte 
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in IBR word 4 is reserved and must be set to OOH. This byte is not loaded at initialization (See 
Chapter 10, Bus Controller for a discussion of memory region configuration.) 

When initialization begins, the region configuration table valid bit (BCON.ctv) is cleared. This 
means that every bus request issued takes configuration information from the MCONO register, 
regardless of the memory region associated with the request. The MCONO register is initially 
set by microcode to a value which allows the bus configuration data in the IBR to be loaded 
regardless of actual memory configuration. This is done by configuring the external bus with 
its most relaxed options: 

• Non-burst • NRAD = 31 

• Non-pipelined • NRno= 3 

• Ready disabled • NwAn=31 

• Bus width = 8 bits • Nwnn= 31 

• Little endian byte order • NxnA = 3 

With this region configuration, the first byte of bus configuration data is loaded from the IBR. 
This byte is immediately placed into the lower byte of the MCONO register. This action 
provides the user-specified NRAD, pipeline control, ready control and burst control values for 
bus configuration. The remaining configuration data bytes are then read with requests which 
use the new NRAD value. Once all three bytes are read, MCONO is rewritten and initialization 
continues. This reduces the number of clocks required to load the bus configuration data. 

The bus configuration data is typically programmed for a system's region 15 bus 
characteristics. This is done because the remainder of the IBR and the data structures must be 
loaded using the new bus characteristics and the IBR is fixed in region 15. 

As part of initialization, the processor loads the remainder of the memory region configuration 
table from the external control table. The Bus Configuration (BCON) register is also loaded at 
this time. The control table valid (BCON.ctv) bit can be set in the control table to validate the 
region table after it is loaded. In this way, the bus controller is completely configured during 
initialization. (See Chapter 10, Bus Controller for a complete discussion of memory regions 
and configuring the bus controller.) 

After the bus configuration data is loaded and the new bus configuration is in place, the 
processor loads the remainder of the IBR which consists of the first instruction pointer, the 
PRCB pointer and six checksum words. The PRCB pointer and the first instruction pointer are 
internally cached. The six checksum words - along with the PRCB pointer and the first 
instruction pointer - are used in a checksum calculation which implements a confidence test of 
the external bus. The sum of these eight words plus FFFF FFFFH must equal 0. 
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FIXED DATA STRUCTURES RELOCATABLE DATA STRUCTURES 

ADDRESS INITIALIZATION BOOT RECORD 
USER CODE 

FFFFFFOOH .--{ INITIAL BUS 
CONFIGURATION 

(LEAST SIGNIFICANT BYTE 
OF EACH WORD) 

PROCESS CONTROL BLOCK (PRCB) 
FFFFFF10H FIRST INSTRUCTION 

POINTER I--

FFFFFF14H 

FFFFFF18H 

FFFFFF2CH 

ED 

PRCB POINTER 

6 CHECK WORDS 
(FOR BUS CONFIDENCE 

SELF-TEST) 

D RESERV 
(INITIAL! ZETO 0) 

FAULT TABLE BASE ADDRESS 

CONTROL TABLE BASE ADDRESS 
r--

AC REGISTER INITIAL IMAGE 

FAULT CONFIGURATION WORD 

INTERRUPT TABLE BASE ADDRESS 

SYSTEM PROCEDURE 
TABLE BASE ADDRESS 

CCRESE;VED;--,-- 7 

-"- ~-"-
INTERRUPT STACK 

I--- POINTER 

INSTRUCTION CACHE 
CONFIGURATION WORD 

REGISTER CACHE 
CONFIGURATION WORD 

r--
CONTROL TABLE 

~ 
r---1 

INTERRUPT TABLE 

,. 
r--

SYSTEM PROCEDURE 
TABLE 

~ - OTHER ARCHITECTURALLY 
DEFINED DATA 

STRUCTURES (NOT 
REQUIRED AS PART OF IMI) 

Figure 14.2. Initial Memory Image (IMI) 

Process Control Block (PRCB) 

f 
OH 

4H 

SH 

CH 

10H 

14H 

18H 

1CH 

20H 

24H 

,.. 

,. 

} 

270710-002-44 

The PRCB contains base addresses for system data structures and initial configuration 
information for the core and integrated peripherals. The base address pointers are cached in 
internal registers at initialization. The base addresses are accessed from these internal registers 
until the processor is reset or reinitialized. 
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The initial configuration information is programmed in the arithmetic controls (AC) initial 
image, the register cache configuration word, the fault configuration word and the instruction 
cache configuration word. These configuration words are shown in Figure 14.3. 

The AC initial image is loaded into the on-chip AC register during initialization. The AC initial 
image allows the initial value of the overflow mask, no imprecise faults bit and condition code 
bits to be selected at initialization. 

The AC initial image condition code bits can be used to specify the source of an initialization 
or reinitialization when a single instruction entry point to the user startup code is desirable. 
This is accomplished by programming the condition code in the AC initial image to a different 
value for each different entry point. The user startup code can detect the condition code values 
- and thus the source of the reinitialization - by using the compare or compare-and-branch 
instructions. 

The fault configuration word allows the operation-unaligned fault to be masked when a non­
aligned memory request is issued (See Chapter I 0, Bus Controller for a description of non­
aligned memory requests.) if bit 30 in the fault configuration word is set, a fault is not 
generated when a non-aligned bus request is issued. The i960 CA processor, in this case, 
automatically performs the required sequence of aligned bus requests. An application may elect 
to generate a fault to detect unwanted non-aligned accesses by initializing bit 30 to 0, thus 
enabling the fault. 

The instruction cache configuration word allows the instruction cache to be enabled or 
disabled at initialization. If bit 16 in the instruction cache configuration word is set, the 
instruction cache is disabled and all instruction fetches are directed to external memory. 
Disabling the instruction cache is useful for tracing execution in a software debug 
environment. Instruction cache remains disabled until one of two operations is performed: 

1. Processor is reinitialized with a new value in the instruction cache configuration word 

2. sysctl is issued with the configure instruction cache message type and a cache 
configuration mode other than disable cache. 

The register cache configuration word specifies the number of register sets cached on-chip. 
The integrated procedure call mechanism saves the local register set when a call is executed. 
Local registers are saved to the local register cache. When this cache is full, the oldest set of 
local registers is flushed to the stack in external memory. 

The register cache configuration word least four bits specify the number of local register sets 
internally cached. The number programmed in this word specifies from 0 to 15 register sets. 
When more than five register sets are selected, space is taken from internal data RAM for the 
register cache. (See Chapter 7, Procedure Calls for a complete description of the register 
caching mechanism.) 
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REQUIRED DATA STRUCTURES 

Several data structures are typically included as part of the !Ml because values in these data 
structures are accessed by the processor during initialization. These data structures are usually 
programmed in the system's boot ROM, located in memory region 15 of the address space. 
The required data structures arc: 

• PRCB • system procedure table 

• !BR • control table 

• interrupt table 

At initialization, the processor loads the supervisor stack pointer from the system procedure 
table and caches the pointer in an internal register. Recall that the supervisor stack pointer is 
located in the preamble of the system procedure table at byte offset 12 from the base address. 
The system procedure table base address is programmed in the PRCB. (See Chapter 5, 
Procedure Calls for a description of the system procedure table.) 

The control table is the data structure that contains the on-chip control register values. It is 
automatically loaded during initialization and must be completely constructed in the IMI. (See 
Chapter 2, Programming Environment for a description of the control table.) 

At initialization, the NMI vector is loaded from the interrupt table and saved at location OOOOH 
of the internal data RAM. The interrupt table is typically programmed in the boot ROM and 
then relocated to RAM by reinitializing the processor. (See Chapter 6, Interrupts for a 
description of NMI and the interrupt table.) 

The remaining data structures which an application may need are the fault table, user stack, 
supervisor stack and interrupt stack. The necessary stacks must be located in a system's RAM. 
The fault table is typically located in boot ROM. If it is necessary to locate the fault table in 
RAM, the processor must be reinitialized. 
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AC REGISTER INITIAL IMAGE 

CONDITION CODE BITS-AC.cc-----------------------., 

INTEGER-OVERFLOW FLAG -AC.of---------------. 
(0) NO OVERFLOW 

(1) OVERFLOW 

INTEGER OVERFLOW MASK BIT - AC.om -----------. 
(0) ENABLE OVERFLOW FAUL TS 

(1) MASK OVERFLOW FAUL TS 

NO-IMPRECISE-FAULTS BIT -AC.nil ------­
(0) ALLOW IMPRECISE FAULT CONDITIONS 
(1) PREVENT IMPRECISE FAULT CONDITIONS 

FAULT CONFIGURATION WORD 

12 8 

t 12 8 

------------ MASK NON-ALIGNED BUS REQUEST FAULT 
(0) ENABLE THE FAULT 
(1) MASK THE FAULT 

INSTRUCTION CACHE CONFIGURATION WORD 

28 24 20 16 

4 

4 

L 12 8 4 

DISABLE INSTRUCTION CACHE 
(0) ENABLE CACHE 
(1) DISABLE CACHE 

REGISTER CACHE CONFIGURATION WORD 

c c c 
c c 
2 0 

0 

0 

0 

NUMBER OF CACHED REGISTER SETS (0·15) --------------------. 

I RESERVED 
(INITIALIZE TO 0) 

12 8 

Figure 14.3. Configuration Words in the PRCB 
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Reinitialization and Relocating Data Structures 

Reinitialization can reconfigure the processor and change pointers to data structures. The 
processor is reinitialized by issuing the sysctl instruction with the reinitialize processor 
message type. (See Chapter 2, Programming Environment for a description of sysctl.) The 
reinitialization instruction pointer and a new PRCB pointer are specified as operands to the 
sysctl instruction. When the processor is reinitialized, the fields in the newly specified PRCB 
are loaded as described earlier in this chapter. 

Reinitialization is useful for relocating data structures to RAM after initialization. The interrupt 
table must be located in RAM: to post software-generated interrupts, the processor writes to the 
pending priorities and pending interrupts fields in this table. It may also be necessary to 
relocate the control table to RAM: it must be in RAM if the control register values are to be 
changed by the user program. In some systems, it is necessary to relocate other data structures 
(fault table and system procedure table) to RAM because of poor load performance from ROM. 
However, these data structures are typically located in a high-performance ROM - such as a 
burst EPROM - and do not benefit from relocation. 

After initialization, the user program is responsible for copying data structures from ROM into 
RAM. The processor is then reinitialized with a new PRCB which contains the base addresses 
of the new data structures in RAM. 

Reinitialization is required to relocate any of several data structures since the processor caches 
the pointers to the structures. The processor caches the following pointers during its 
initialization: 

• Interrupt Table Address • System Procedure Table Address 

• Supervisor Stack Pointer • Interrupt Stack Pointer 

• Fault Table Address • Control Table Address 

• PRCB Address 

Initialization Flow 

This section summarizes initialization by presenting a flow of the steps that the processor takes 
during initialization (Figure 14.4). The entry point for reinitialization is also shown. 

Startup Code Example 

After initialization is complete, user startup code typically copies initialized data structures 
from ROM to RAM, reinitializes the processor, sets up the first stack frame, changes the 
execution state to non-interrupted and calls the _main routine. In this section, an example 
startup routine and associated declaration files are presented. 
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HARDWARE RESET 

YES 

NO 

PERFORM INTERNAL SELF-TEST 

CONFIGURE STATUS 
& CONTROL REGISTERS 
Ac-a 
Pc-a 
PC.em - SUPERVISOR 
PC.s - INTERRUPTED 
PC.p-31 

SETUP BUS CONTROLLER 
LOAD BYTE AT FFFF FFOOH 

INTO BYTE 0 OF MCONO 

LOAD BYTES AT FFFF FF04H 
FFFF FFOBH INTO BYTE 1 AND 

BYTE 2 OF MCONO 

ASSERT FAIL PIN 

COMPUTE CHECK SUM FOR 
BUS CONFIDENCE SELF-TEST 

LOAD WORDS FFFF FF1 OH 
THROUGH FFFF FF2CH AND 

COMPUTE CHECKSUM 

NO 

STOP 

SOFTWARE RESET 

NO 

GET PRCB POINTER AND START 
IP FROM SYSCTL OPERANDS 

PROCESS PRCB 

CACHE DATA STRUCTURE 
POINTERS READ 

CONFIGURATION WORDS 
AND CONFIGURE PROCESSOR 

CACHE NMI VECTOR FROM 
VECTOR LOCATION 248 IN 

INTERRUPT TABLE 

CACHE SUPERVISOR STACK 
POINTER FROM OFFSET 12 IN 
SYSTEM-PROCEDURE TABLE 

FP = INTERRUPT 
STACK POINTER 

SP=FP+64 

LOAD CONTROL REGISTERS 
WITH DATA IN THE 
CONTROL TABLE 

EXECUTE USER CODE 
BRANCH TO START-UP 

270710-001-75 

Figure 14.4. Processor Initialization Flow 
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The startup. s routine is presented in Example 14.1. Example 14.2 shows the ".ld" file used 
to locate the IBR, access the link-time variables needed during initialization and set the 
checksum words. Example 14.3 is a typical minimum declaration file of data structures -
including the IBR, PRCB and control table - used in the processor's initialization. Example 
14.4 and 14.5 provide useful header files for configuring the bus controller and interrupt 
controller, respectively. Files from both Example 14.4 and 14.5 are used in Example 14.3. 

Example 14.1. Startup Routine 

/************************************************************* 
************************************************************** 
**** 
**** 
**** 
**** 

startup.s 80960CA Example initialization 
**** 
**** 
**** 
**** 

************************************************************** 
*************************************************************/ 

.text 

.align 2 

.globl _start 

.globl _exit 

_start: 
mov 0,g14 /*g14 must be 0 for ic960 C compiler */ 

!* copy .data from EPROM to RAM */ 

lda 
lda 
lda 

_ram_data, r4 
_edata, r5 
_rom_data, r6 

_move_data_to ram: 

!* start address of data in ram */ 
/* end address of data in ram */ 
/* start address of data in EPROM*/ 

mpibg r4, r5, _move_done 
ld (r6), r7 /* load data word from ROM */ 

increment pointer */ addo r6, 4, r6 /* 
st r7, (r4) /* store data to memory */ 

increment destination */ addo r4, 4, r4 /* 
b _move_data to_ram 

_move_done: 

ldconst Ox300, r4 
ldconst _reinit_ip, r5 
ldconst _rom__prcb, r6 

/*select reinit message type */ 
/*reinit instruction pointer */ 
/*select rom prcb again, could specify 

sysctl r4, r5, 

b exit -

_reinit_ip: 

ldconst OxO, r4 
ldconst Ox2002, 
modpc r4, r5, 

r6 

r5 
r4 

a different PRCB with which to 
reinitialize if desired */ 
/*execute reinitialization */ 

/*select PC.s =executing (not interrupted)*/ 
/* create mask to change PC.s only */ 
!* change to non-interrupted state */ 

ldconst _user_stack, fp /* set first frame to user stack base */ 
lda Ox40(fp),sp /* initialize sp */ 

callj _main 

_exit: 
fmark 

b exit 

/* call the main routine */ 

/*if main returns ... */ 
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Example 14.2. Linker Directives File 

/************************************************************* 
************************************************************** 
**** 
**** 
**** 

ca. ld Example .ld file for an 80960CA system 
**** 
**** 
**** 

************************************************************** 
*************************************************************/ 

MEMORY 
( 
sram 
dram 
eprom 
} 

SECTIONS 

org 
org 
org 

OxBOOOOOOO, 
OxEOOOOOOO, 
Oxffff8000, 

len 
len 
len 

OxlOOOO 
OxlOOOOOO 
Ox7fff 

/* 64K */ 
/* lM */ 
/* 32K */ 

ibr sec OxffffffOO: 
( 

GROUP: 

GROUP: 

} 

boot ca.o 
} 

/* locates initial boot record */ 

.text 
( 
} 

romdata (NOLOAD) 

rom_data 

>eprom 

.data 

ram_data 

.bss 

.+= 

/* dummy section to set rom_data 
to the end of the .text section */ 

_etext; 

/* start address of the data in ram */ 

. ; 

_supervisor_stack = .; 
.+= Ox200; 

>srarn 

csl -2; /* we know there will be two carry outs when 
cs2 - OxO /* _rom_prcb are added with Lhe processor's 
cs3 OxO /* since both addresses have most of the 
cs4 OxO /* bits set. We put -2 here to reduce 
cs5 OxO /*to remove the addition of the two carries.*/ 
/*the following checksum to go to zero.*/ 
cs6 = -( rom 

14-14 
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Example 14.3. Boot-up Data Declarations 

'************************************************************* 
********x***************************************************** 

**** 
**** 
* * * -K 

**** 
**** 

* '1C * * 
**** 

and PFC3 
**** 

**** 
**** 

**** 
**** 

***********************x*****************************x****x*** 
*************************************************************/ 

·*~ 

'* 

. g~obl 

.g::_oD_:_ 

.g~obl 

.globl 

cs4 
.glohl c~;S 

.glob~ cs6 

rom cont.re: t":l}"' 

_ron;_pc:.b 
on 11ard * • 

dS(~li ?1ard 

'nk :':ile * 

;*----------------------- ---- ---------*/ 
/* Co~venien~ defln~s to extr~rt bytes */ 

#define BYTE_O(data) (da• & OxOOCOOOFF) 
#defi~e BYTE lid~tal ((data & OxOOOOFFOO) 8) 
#defi~e BYTE_21data) ((data & OxOOFFOOOOJ 16) 
#define BYT~_3ida~a) ((data & OxFFOOOOOO) 24) 
/*---------------- */ 
/* 3us Region ?abJe definitions for an example hardware en~1ironP.1en:~ 
/*------------------------------

/ * Stan- lard Byt itiide EPROM * / 
#def EP"O!I: (BUS_WI:JnH_8 

12 

/ * :r 

----------*; 

I 12 ) I JrnDD ( 
(C: ! ) 

l\PDD I 0 I I NXDA I 0 I I Ni;iAD I 1 ) I NWDD 11 I l 

/* Burst Dynamic 
#define BDRAE 

/ * Misc. SlO'V.7 
#define : O 

*/ 
( READY_ENABLE 

t JiQ *.! 

PTVi_vHDTH_8 

!* iSBX Interfac·e *! 

~ cltc f : ne SBX 0 BUS_vHDTH 8 

BURST_EK'.\BLE BUS WIDTH 32 

NRA'J I 12 i 

NRAD I 1 ) I EXDA I 3 ) I NWAD ( 15) I 
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Example 14.3. Boot-up Data Declarations (cont.) 

/* Place-holder for Empty regions */ 
#define BUS_CONFIG EPROM 

#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 

REGION_O_CONFIG 
REGION_l_CONFIG 
REGION_2_CONFIG 
REGION_3_CONFIG 
REGION_4_CONFIG 
REGION_S_CONFIG 
REGION_6_CONFIG 
REGION_7_CONFIG 
REGION_B_CONFIG 
REGION_9_CONFIG 
REGION_A_CONFIG 
REGION_B_CONFIG 
REGION_C_CONFIG 
REGION_D_CONFIG 
REGION_E_CONFIG 
REGION_F_CONFIG 

EPROM 
BUS_CONFIG 
BUS_CONFIG 
BUS_CONFIG 
BUS_CONFIG 
BUS_CONFIG 
BUS_CONFIG 
BUS_CONFIG 
BUS_CONFIG 
BUS_CONFIG 
BUS_CONFIG 
PS RAM 
SBX_O 
I_O 
BDRAM 
EPROM 

/*-----------------------------------------------------------*/ 
/* Interrupt Priority Map for an example hardware environment*/ 
/*-----------------------··-----------------------------------*/ 

/* Example Interrupt System Configuration */ 
#define ICON_CONFIG \ 

(SUSPEND_DMA I FAST_SAMPLE I VECTOR_CACHE_ENABLE I 
MASK_UNCHANGED_ALWAYS I I_DISABLE I \ 

XINTO_LEVEL I XINTl_LEVEL I XINT2_EDGE I XINT3_EDGE \ 
XINT4_EDGE I XINTS_EDGE I XINT6_LEVEL I XINT7 LEVEL \ 
MIXED_MODE) 

/* Example Interrupt Priority Settings */ 
/* (Specify the full 8-bit vector number, where the least significant nibble 

must be 2. Such as Ox12, Ox22, Ox32, ... , OxE2 or OxF2) *I 
#define IMAPO_CONFIG \ 

(XINTO_P(0xE2) XINTl_P(OxD2) XINT2_P(0xC2) XINT3_P(Ox22)) 
#define IMAPl_CONFIG \ 

(XINT4_P(Ox32) XINT5_P(Ox42) XINT6_P(Ox52) XINT7_P(Ox82)) 
#define IMAP2_CONFIG \ 

(DMAO_P(OxF2) DMAl_P(OxA2) DMA2_P(OxB2) I DMA3_P(Ox92)) 
/*----------------------------------------------------------*/ 
/* Define the IBR (Initialization Boot Record) */ 
/*----------------------------------------------------------*/ 

text 
init_boot_record: 

.word BYTE_O(EPROM) 

.word BYTE_l(EPROM) 

.word BYTE_2(EPROM) 

.word BYTE_3(EPROM) 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

start 
_rom_prcb 
csl 
cs2 
cs3 
cs4 
cs5 
cs6 

/* Strip the bytes for the IBR Bus Config. */ 

/* set all checksum words in ".ld" file*/ 
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Example 14.3. Boot-up Data Declarations (cont.) 

/*-------------- --------- -------- ---
!* Define the Rom-based PRCB for cold scar:s *! 
!*--------------- -------- --- ---- ---* ,' 

.text. 

. a 1i9n 4 
_rom_prcb: 

; * -

. 'WO·l·d 

d 

.word 

.word 

.word 

.wore 
• \\70ld 

_interrup~_:able 
_~)·stem 8~cc_table 

0 
ack 

* ddr of 
* ,J.dr of 

;' * t 

* Flt 

fault table (ram) */ 
control_:able in rom 

rr0sk overflow fault •: 
igned fault * 

* Tntecrupt Table Address */ 
/* SysteD Procedure Table * 1 

/ * Pes e::::-ved * .1 

I* Interrupt Stack Pointer */ 
. * Inst. Cache - enab~e cache *: 

* Reg. Cache - S sets cached */ 

,·* Dcti~e :~e Rorr based Co~trol Table for :ni~ializat~on */ 
,.-*-- --- -------------·-------- --- ---··* 

.text 

.ali~sr~ 4 
rom_control table: 

/ * 0 -- Breakpoint ?eg sters *: 
* IPBO IP .word 

.word 

.word 

.word 
/* -­
.word 
.word 
.word 
.word 
!* -
.word 
.word 
.word 
.word 

0 * lPBl IP 
0 * DABO 
0 * DABl 

. \!\/Ord 

.1:JOid 

Group 1 -- Interrupt Map 
IMAPO CONFIG 

ICON CONFIG 
Group 2-· Bus Configurati 

REGION_O_CONFIG 
REGION_:_CONFIG 
REGION_2_CCJNFIG 
REGION_3_CONFIG 

Group 3 - - * / 
REGION_ 4_CONFIG 
REGION_S_CONFIG 
REGION_6_CO!:FJG 

. woi~ci REGION_ 7 _CON? IC' 
1 * Group 4 -- *; 

.word REGION_8_CON?IG 
"rnGION_9_CO!J?IG 

. v.ro:-::-d REGION_A_CONFIG 

.word REGION_B_CONFIG 
/* -- Group 5 -- */ 
.word REGION_C_CONFIG 
. word REG:OlCD_CONF:G 
.word REGION_E_CONFIG 
.word REGION F CCJNF:G 

egisters */ 
* IMAP(] Interrupt 
* 111.P.?l Interrupt. 
* IMAP2 Interrupt 
* ICON Interrupt 
n Register"; */ 

* I I 

Reg 0 */ 
Reg 1 */ 

Map Reg 0 */ 
Map Reg 1 */ 
Map Reg 2 */ 
Controller Modes*/ 

Group 6 -- Breakpoint, Tr ce and Bus Control Registers */ 
.word 0 * Reserved, set to 0 */ 
.word 0 * BPCON Breakpoint control reg */ 
.word 0 * TC Trace Controls Ini~ial Image */ 
.word OxOOOOOOOl /* BCON Bus Cont.roller Mode */ 

/*----------------------------------------------------------*/ 
I* End boot ca.s */ 
/*----- ---------------------------------------------------*/ 
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Example 14.4. Bus Controller Header File 

/************************************************************* 
************************************************************** 
**** 
**** 
**** 
**** 
**** 

bus.h header file for 80960CA bus controller 
**** 
**** 
**** 
**** 
**** 

************************************************************** 
*************************************************************/ 
/*------------------------------------- --------------------*/ 
/* Bus Configuration Defines */ 
/*----------------------------------------------------------*/ 
#define BURST_ENABLE Oxl 
#define BURST_DISABLE OxO 

#define READY_ENABLE Ox2 
#define READY_DISABLE OxO 

#define PIPELINE_ENABLE Ox4 
#define PIPELINE_DISABLE OxO 

#define BUS_WIDTH_S OxO 
#define BUS_WIDTH_16 (Oxl << 191 
#define BUS_WIDTH_32 (Ox2 << 191 

#define BIG_ENDIAN (Oxl << 221 
#define LITTLE ENDIAN OxO 

#define NRAD(WSI (WS << 3 I !* ws can be 0-31 */ 
#define NRDD(WSI (WS << 81 /* WS can be 0-3 */ 
#define NXDA(WSI (WS << 101 /* ws can be 0-3 */ 
#define NWAD(WSI (WS << 12) /* ws can be 0-31 */ 
#define NWDD(WS) (WS << 171 /* ws can be 0-3 */ 

/*-----------------------------------------------------------*/ 
/* EXAMPLE Region Configuration */ 
/*------------------------------------------------------------*/ 
/* Perform a bit-wise OR of the desired parameters to specify a region. 

#define BUS_REGION 1 CONFIG \ 

*/ 

(BURST_ENABLE BUS_WIDTH_32 I READY_ENABLE I \ 
LITTLE_ENDIAN PIPELINE_ENABLE I \ 
NRAD(31 I \ 
NRDD ( 1) I \ 
NXDA ( 11 I \ 
NWAD (2) I \ 
NWDD (2)) 

/*-----------------------------------------------------------*/ 
/* End bus.h */ 
!*-----------------------------------------------------------*/ 
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Example 14.5. Interrupt Controller Header File 

!************************************************************** 
*************************************************************** 
**** 

in::c .h header file for 960CA ir1terrupt control~e~ 

**** 
**** **** 

*********************************************************~**~** 

*************************************~***~********************, 

;*------- -- - ----- ---------------------------------------*. 
!* ICON Defines 
/*-----------· 
#define 
#define 
#define 

#define 
#define 
!Ide fine 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#def:'.ne 
#define 
#define 
#define 

#define 
#define 

#define 
#define 
#define 

#def ~ne 
#define 

#define 
±tdetine 

DEDICATED_MODE 
EXPANDED_MODE 
"1IXED_l-10DE 

XIN'.:'l_LEVEL 

XINT6 EDGE 

I_D:SABLE 
I ENABLE 

OxO 
Oxl 
Ox~ 

Oxl 
OxO 
Oxl 
CxC 
Oxl 
OxO 
Oxl 
OxO 
Oxl 
OxO 
Oxl 
OxO 
Oxl 
OxO 
Oxl 

Oxl 
OxO 

MASK UNCHANGED_ALWAYS 
SAVE_MASK_DEDICATED 
SAVE_MASK_EXPANDED 

VECTOP_CACHE_EJ\L;BLE 
V3Cc::'OR_CACHE_::JISA3LE 

FAST_SAMPLE 
DEBOm:cE 

< 

'< 

<< 

<< 

<< 

<< 

<< 

<< 

::n 

1) 

4) 

5) 

6) 

7) 

8) 

9) 

10) 

OxO 
Gx~ «'. 11 l 
Ox2 << 11) 

Oxl < < _3 ) 
,~XU 

Oxl 14 l 
uxu 

*' 

#define SUSPEND_DMA Oxl :s) 
#define NO_DMA_SUSPEND OxO 
/*-----------------------------------------------------------*/ 
/* EXAMPLE Mode Configuration */ 

/*------------------------------------------------------------*! 
/* 
Perform a bit-wise OP of the desired parameters to specify configuration. 

#define INT CONFIG \ (SUSPEND_DViA 
SAVE_MASK_DEDICATED I 

XINTO_LEVEL I XINTl_LEVEL 
XINT4_EDGE I XINTS EDGE 
MIXED_MODE) 

*/ 

FAST_Sl\MPLE \ VECTOP_CACHE_3NABLE 
I 1 I_DI SABLE I 

I XINT3 EDGE I \ 
I XINT7 _LEVEL I 
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Example 14.5. Interrupt Controller Header File (cont.) 

/*-----------------------------------------------------------*/ 
/* IMAP Defines */ 
/*----------------------------------------------------------*/ 
#define XINTO_P(VNUM) (VNUM >> 4) 
#define XINTl_P(VNUM) ((VNUM >> 4) << 4) 
#define XINT2_P (VNUM) I (VNUM >> 4) << 8) 
#define XINT3_P(VNUM) ((VNUM >> 4) << 12) 
#define XINT4_P(VNUM) (VNUM >> 4) 
#define XINTS_P (VNUM) ( (VNUM >> 4) << 4) 
#define XINT6_P (VNUM) ( (VNUM >> 4) << 8) 
#define XINT7_P(VNUM) ( (VNUM >> 4) << 12) 

#define 
#define 
#define 
#define 

DMAO_P(VNUM) 
DMAl_P(VNUM) 
DMA2_P(VNUM) 
DMA3_P(VNUM) 

(VNUM >> 4) 
I (VNUM >> 4) 
I (VNUM >> 4) 
I (VNUM >> 4) 

<< 4) 
<< 8) 
<< 12) 

/*-----------------------------------------------------------*/ 
/* EXAMPLE IMAP Configuration *I 
/*-------- --------------------------------------------------*/ 
/* 
Perform a bit-wise OR of the desired parameters to specify configuration. 

(Specify the full 8-bit vector number, where the least significant nibble 
is 2. Such as Oxl2, Ox22, _ .. , llxK?, OxF2. I *I 

#define 

*/ 

IMAPO_CONFIG \ 
(XINTO_P(OxE2) I XINTl_P(OxD2) 

XINT2_P ( OxC2) i XINT3_P ( Ox22 I I 

/*------------------ ----------------------------------------*/ 
/* End int.h 
/*-----------------------------------------------------------*/ 

SYSTEM REQUIREMENTS 

*/ 

The following sections discuss generic hardware requirements for a system built around the 
i960 CA processor. This section describes electrical characteristics of the i960 CA processor's 
interface to the external circuit. The CLKIN, RESET, STEST, FAIL, ONCE, VSS and VCC 
pins are described in detail. Specific signal functions for the external bus signals, DMA signals 
and interrupt inputs are discussed in their respective sections in this manual. 

Input Clock (CLKIN) 

The clock input (CLKIN) determines processor execution rate and timing. The clock input is 
internally divided by two - or used directly - to produce the external processor clock 
outputs, PCLKl and PCLK2. CLKMODE pin state determines whether the input clock is in 
two-X or one-X mode. When CLKMODE is tied to ground or left floating, the CLKIN input is 
internally divided by two to produce PCLK2:1 (two-X mode). When CLKMODE is pulled to a 
logic I (high), the CLKIN input is used to create PCLK2: 1 at the same frequency, using an 
internal phase-Jocked loop circuit (one-X mode). Refer to the i960 CA Microprocessor Data 
Sheet for CLKIN specifications. 
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The clock input is designed to be driven by most common TTL crystal clock oscillators. The 
clock input must be free of noise and conform with the specifications listed in the data sheet. 
CLKIN input capacitance is minimal; for this reason, it may be necessary to terminate the 
CLKIN circuit board trace at the processor to prevent overshoot and undershoot. Additionally, 
a series-damping resistor may be required to damp ringing on the input. 

Power and Ground Requirements (VCC, VSS) 

The large number of VSS and VCC pins effectively reduces the impedance of power and 
ground connections to the chip and reduces transient noise induced by current surges. The i960 
CA processor is implemented in CHMOS IV technology. Unlike NMOS processes, power 
dissipation in the CHMOS process is due to capacitive charging and discharging on-chip and in 
the processor's output buffers; there is almost no DC component of power. The nature of this 
power consumption results in current surges when capacitors charge and discharge. The i960 
CA processor employs 24 VCC and 24 VSS pins to ensure clean on-chip power distribution. 
The processor's power consumption depends mostly on frequency. It also depends on voltage 
and capacitive bus load. (See the i960 CA. Microprocessor Data Sheet). 

To reduce clock skew on later versions of the i960 CA processor, the VCC pin for the Phase 
Lock Loop (PLL) circuit is isolated on the pinout. The lowpass filter shown below reduces 
CLKIN to PCLK2: 1 skew in system designs. This circuit is compatible with those i960 CA 
processor versions which do not implement isolated PLL power. 

1000 

-·----w. ....... ----~-------· VccPLL 
Vee 1 (ON i960'" CA DEVICE) 

(BOARD PLANE) i 22 µf 

Figure 14.5. VCCPLL Lowpass Filter 

Power and Ground Planes 

Power and ground planes must be used in i960 CA processor systems to minimize noise. 
Justification for these power and ground planes is the same as for multiple VSS and VCC pins. 
Power and ground lines have inherent inductance and capacitance; therefore, an impedance 
Z=(LfC)l/2. Total characteristic impedance for the power supply can be reduced by adding 
more lines. This effect is illustrated in Figure 14.6, which shows that two lines in parallel have 
half the impedance of one. To reduce impedance even further, add more lines. Ideally, a plane 
- an infinite number of parallel lines - results in the lowest impedance. Fabricate ground 
planes with a minimum of 2 oz. copper. 

All power and ground pins must be connected to a plane. Ideally, the i960 CA processor should 
be located at the center of the board to take full advantage of these planes, simplify layout and 
reduce noise. 
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e=h" z'j co 

ff z 

0 

=1/2h" J Co 

Figure 14.6. Reducing Characteristic Impedance 

Decoupling Capacitors 

270710-001-76 

Decoupling capacitors placed across the device between VCC and VSS reduce voltage spikes 
by supplying the extra current needed during switching. Place these capacitors close to their 
devices because connection line inductance negates their effect. Also, for this reason, the 
capacitors should be low inductance. Chip capacitors (surface mount) exhibit lower inductance 
and require less board space than conventional leaded capacitors. 

1/0 Pin Characteristics 

The i960 CA processor interfaces to its system through its pins. This section describes the 
general characteristics of the input and output pins. 

Output Pins 

All output pins on the i960 CA processor are three-state outputs. Each output can drive a logic 
I (low impedance to VCC); a logic 0 (low impedance to VSS); or float (present a high 
impedance to VCC and VSS). Each pin can drive an appreciable external load. The i960 CA 
Microprocessor Data Sheet describes each pin's drive capability and provides timing and 
derating information to calculate output delays based on pin loading. 

Output drivers on the i960 CA processor are specially designed to provide a uniform drive 
current over the entire range of operating temperatures and voltages. This feature eliminates 
excess noise produced by output drivers under adverse operating conditions. 
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Input Pins 

All i960 CA processor inputs arc designed to detect TTL thresholds, providing compatibility 
with the vast amount of available random logic and peripheral devices that use TTL outputs. 

Most i960 CA processor inputs arc synchronous inputs (Tahle 14.3). A synchronous input pin 
must have a valid level (TTL logic 0 or I) when the value is used by internal logic. If the value 
is not valid, it is possible for a bistable condition to be produced internally. The bistable 
condition is avoided by qualifying the synchronous inputs with the rising edge of PCLK2: I or 
a derivative of PCLK2:1. The i960 CA Micro11rocessor Doto Sheet specifies input valid setup 
and hold times relative to PCLK for the synchronized inputs. 

Table 14.3. i960™ CA Processor Input Pins 

Synchronous Inputs Asynchronous Inputs Asynchronous Inputs 
(sampled by PCLK2: J) (sampled hy RESET) 

D31:0 RESET STEST 

READY XINT7:0 ONCE 

BTERM NMI CLKMODE 

HOLD DREQ3:0 

EOP3:0 

i960 CA processor inputs which are considered asynchronous (Table I 4.3) are internally 
synchronized to the rising edge of PCLK2: 1. Since they are internally synchronized, the pins 
only need to be held long enough for proper internal detection. ln some cases, it is useful to 
know if an asynchronous input will be recognized on a particular PCLK2: 1 cycle or held off 
until a following cycle. The i960 CA Microprocessor Dato Sheet provides setup and hold 
requirements relative to PCLK2: I which ensure recognition of an asynchronous input on a 
particular clock. The data sheet also supplies hold times required for detection of asynchronous 
inputs. 

The ONCE, CLKMODE and STEST inputs are asynchronous inputs (Table 14.3 ). These 
signals are sampled and latched on the rising edge of the RESET input instead of PCLK2: 1. 

High Frequency Design Considerations 

At high signal frequencies and/or with fast edge rates, the transmission line properties of signal 
paths in a circuit must be considered. Reflections, interference and noise become significant in 
comparison to the high-frequency signals. These errors can be transient and therefore difficult 
to debug. In this section, some high-frequency design issues are discussed; for more 
information, consult a reference book on high-frequency design. 
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Line Termination 

Input voltage level violations are usually due to voltage spikes that raise input voltage levels 
above the maximum limit (overshoot) and below the minimum limit (undershoot). These 
voltage levels can cause excess current on input gates, resulting in permanent damage to the 
device. Even if no damage occurs, many devices are not guaranteed to function as specified if 
input voltage levels are exceeded. 

Signal lines are terminated to mm1m1ze signal reflections and prevent overshoot and 
undershoot. Terminate the line if the round-trip signal path delay is greater than signal rise or 
fall time. If the line is not terminated, the signal reaches its high or low level before reflections 
have time to dissipate and overshoot and undershoot occur. 

For the i960 CA processor, two termination methods are attractive: AC and series. An AC 
termination damps the signal at the end of the series line; termination compensates for excess 
current before the signal travels down the line. 

Series termination decreases current flow in the signal path by adding a series resistor as shown 
in Figure 14.7. The resistor increases signal rise and fall times so that the change in current 
occurs over a longer period of time. Because the amount of voltage overshoot and undershoot 
depends on the change in current over time (V = L di/dt), the increased time reduces overshoot 
and undershoot. Place the series resistor as close as possible to the signal source. Series 
termination, however, reduces signal rise and fall times, so it should not be used when these 
times are critical. 

AC termination is effective in reducing signal reflection (ringing). This termination is 
accomplished by adding an RC combination at the signal's destination (Figure 14.8). While the 
termination provides no DC load, the RC combination damps signal transients. 

Selection of termination methods and values is dependent upon many variables, such as output 
buffer impedance, board trace impedance and length and timings that must be met. 

A B c 

SOURCE 270710·001-77 

Figure 14.7. Series Termination 
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A B c 

270710-001-78 

Figure 14.8. AC Termination 

latch up 

Latchup is a condition in a CMOS circuit in which VCC becomes shorted to VSS. Intel's 
CHMOS IV process is immune to latchup under normal operation conditions_ Latchup can be 
triggered when the voltage limits on I/O pins are exceeded, causing internal PN junctions to 
become forward biased. The following guidelines help prevent latchup: 

• Observe the maximum rating for input voltage on I/O pins. 

• Never apply power to an i960 CA processor pin or a device connected to an i960 CA 
processor pin before applying power to the i960 CA processor itself. 

• Prevent overshoot and undershoot on TIO pins by adding line termination and by designing 
to reduce noise and reflection on signal lines. 

Interference 

Interference is the result of electrical activity in one conductor that causes transient voltages to 
appear in another conductor. Interference increases with the following factors: 

• Frequency-Interference is the result of changing currents and voltages. The more frequent 
the changes, the greater the interference. 

• Closeness of two conductors - Interference is due to electromagnetic and electrostatic fields 
whose effects are weaker further from the source. 

Two types of interference must be considered in high frequency circuits: electromagnetic 
interference (EMI) and electrostatic interference (ESI). 

EMI (also called crosstalk) is caused by the magnetic field that exists around any current 
carrying conductor. The magnetic flux from one conductor can induce current in another 
conductor, resulting in transient voltage. Several precautions can minimize EMI: 
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• Run ground lines between two adjacent lines wherever they traverse a long section of the 
circuit board. The ground line should be grounded at both ends. 

• Run ground lines between the lines of an address bus or a data bus if either of the following 
conditions exist: 

The bus is on an external layer of the board. 

The bus is on an internal layer but not sandwiched between power and ground planes 
that are at most 10 mils away. 

• Avoid closed loops in signal paths (Figure 14.9). Closed loops cause excessive current and 
create inductive noise, especially in the circuitry enclosed by a loop. 

A 

B c 

270710·001·79 

Figure 14.9. Avoid Closed-Loop Signal Paths 

ESI is caused by the capacitive coupling of two adjacent conductors. The conductors act as the 
plates of a capacitor; a charge built up on one induces the opposite charge on the other. 

The following steps reduce ESI: 

• Separate signal lines so that capacitive coupling becomes negligible. 

• Run a ground line between two lines to cancel the electrostatic fields. 
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APPENDIX A 
OPTIMIZING CODE FOR 

THE i960™ CA MICROPROCESSOR 

This appendix describes the i960 CA microprocessor core's internal construction, also referred 
to as the core microarchitecture, and core features which enhance this processor's performance 
and parallelism. This appendix also describes the processor's parallel instruction execution and 
assembly language techniques for achieving the highest instruction-stream performance. 

i960 core microarchitecture defines programming environment, basic interrupt mechanism and 
fault mechanism for all members of the i960 microprocessor family. The i960 CA processor's 
core - the C-series core - is a high-performance, highly parallel implementation of the i960 
core architecture. The i960 CA processor integrates a bus controller, DMA controller and 
interrupt controller around the core architecture (Figure A. l ). 

Processors based on the C-series core can operate at a sustained speed of 66 MIPS (33 MHz 
clock). State-of-the-art silicon technology and innovative microarchitectural constructs achieve 
this performance as follows: 

• Advanced silicon technology allows operation with a 33 MHz internal clock. 

• Parallel instruction decoding allows sustained, simultaneous execution of two instructions 
in every clock cycle. 

• Most instructions execute in a single clock cycle. 

• Multiple, independent execution units enable multi-clock instructions to execute in parallel. 

• Resource and register scoreboarding provide efficient and transparent management for 
parallel execution. 

• Branch look-ahead and branch prediction features enable branches to execute in parallel 
with other instructions. 

• A local register cache permits fast calls, returns, interrupts and faults to be implemented. 

• l Kbyte of two-way set associative instruction cache is integrated on-chip. 

• 1 Kbyte of static data RAM is integrated on-chip. 

BASIC CORE STRUCTURE 

The i960 CA processor's core contains the following main functional units: 

• Instruction Scheduler (IS) • Multiply/Divide Unit (MDU) 

• Register File (RF) • Address Generation Unit (AGU) 

• Execution Unit (EU) • Data RAM/Local Register Cache 
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270710-001-80 

Figure A.1. i960™ CA Processor Core and Peripherals 

Figure A.2 shows i960 CA processor's block diagram. The heart of the processor is the IS and 
RF. Other core functional units, referred to as coprocessors, interface to the IS and RF, 
connecting to either the register (REG) side or the memory (MEM) side of the processor. 

The IS issues directives, via the REG and MEM interfaces, which target a specific coprocessor. 
That coprocessor then executes an express function virtually decoupled from the IS and the 
other coprocessors. The REG and MEM data buses transfer data between the common RF and 
the coprocessors. 

The i960 CA processor is designed for expansibility by allowing application specific 
coprocessors to interface to the IS in the same way as the core-defined coprocessors. The 
integrated peripherals (bus controller, interrupt controller and DMA controller) interface to the 
REG and MEM side of the i960 CA processor. 

Instruction Scheduler (IS) 

The IS decodes the instruction stream and drives the decoded instructions onto the machine 
bus, which is the major control bus. The IS can decode up to three instructions at a time, one 
from each of three different classes of instructions: one REG format, one MEM format and one 
CTRL format instruction. The IS directly executes the CTRL format instruction (branches). 
The IS manages the instruction pipeline and keeps track of which instructions are in the 
pipeline so faults can be detected. 

The IS is assisted by three associated functional blocks: instruction fetch unit, instruction cache 
and microcode ROM. 

The instruction fetch unit provides the IS with up to four words of instructions each cycle. It 
extracts instructions from the instruction cache, microcode ROM and its instruction fetch 
queue for presentation to the scheduler. The instruction fetch unit requests external fetch 
operations from the bus controller whenever a cache miss occurs. 
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Figure A.2. i960™ CA Microprocessor Block Diagram 

CONTROL 

ADDRESS 

DATA 

270710-001-81 

The instruction cache is a 1 Kbyte, two-way set associative non-transparent cache. This cache 
delivers up to four instructions per clock to the IS. The cache also allows inner loops of code to 
execute with no external instruction fetches; this maximizes the core· s performance. 

The i960 CA processor uses a microcode ROM to implement complex instructions and 
functions. This includes implicit and explicit calls, returns, DMA assists and initialization 
sequences. Microcode provides an inexpensive and simple method for implementing complex 
instructions in the processor's RISC environment. Unlike conventional microcode, i960 CA 
processor's microcode uses a RISC subset of the instruction set in addition to specific 
microinstructions. Microcode, therefore, can be thought of as a RISC program containing 
operational routines for complex instructions. When the instruction pointer references a 
microcoded instruction, the instruction fetch unit automatically branches to the appropriate 
microcode routine. The i960 CA processor performs this microcode branch in 0 clocks. 
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Instruction Flow 

Most instructions flow through a simple three-stage pipeline (Figure A.3). These stages are 
referred to as the decode, issue and execute stages: 

• Decode stage calculates the next address used to fetch the next instruction from the 
instruction cache. Additionally, this stage starts decoding the instruction. 

• Issue stage completes instruction decode and sends it to the appropriate execution unit. 

• During execute stage, the operation is performed and the result is returned to the RF. 

STATE 4 

DECODE A B c D 

ISSUE xxxxx A B c 

EXECUTE xxxxx xxxxx A B 

270710·001 ·82 

Figure A.3. Instruction Pipeline 

In the decode stage, the IS decodes the instruction and calculates the next instruction address. 
This could be a macro- or micro-instruction address. It is either the next sequential address or 
the target of a branch. For conditional branches, the IS uses condition codes or internal 
hardware flags to determine which way to branch. If branch conditions are not valid when the 
IS sees a branch, the processor guesses the branch direction, using the branch prediction 
specified in the instruction. If the guess was wrong, the IS cancels the instructions on the 
wrong path and begins fetching along the correct path. 

In the issue stage, instructions are emitted or issued to the rest of the machine via the machine 
bus. The machine bus consists of three parts: REG format instruction portion, MEM format 
instruction portion and CTRL format portion. Each part of the machine bus goes to the 
coprocessor that executes the appropriate instruction. The RF supplies operands and stores 
results for REG and MEM format instructions. For this reason, the RF is connected to both the 
REG and MEM portion of the machine bus. The CTRL portion stays within the instruction 
sequencer since it directly executes the branch operations. Several events occur when an 
instruction is issued: 

1. The information is driven onto the machine bus. 

2. The IS reads the source operands and checks that all resources needed to execute the 
instruction are available. 

3. The instruction is cancelled if any resource that the instruction requires is busy; the 
resource is busy if either reserved by a previous incomplete instruction or already working 
on an instruction. 

4. The IS then attempts to re-issue the instruction on the next clock; the same sequence of 
events is repeated. 
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This processor resource management mechanism is called resource scoreboarding. A specific 
form of resource scoreboarding is register scoreboarding. When an instruction's computation 
stage takes more than one clock, the result registers are scoreboarded. A subsequent operation 
needing that particular register is delayed until the multi-clock operation completes. 
Instructions which do not use the scoreboarded registers can execute in parallel. 

The execute stage executes the instruction. This stage is handled by the coprocessors which 
connect to the REG- and MEM-side buses. In this stage, the coprocessor has received operands 
from the RF and recognized opcode which tells the coprocessor which instruction to execute. 
Execution begins and a result is returned in this stage for single clock instructions. 

The execute stage is a single or multi-clock pipeline stage, depending on the operation 
performed and the coprocessor targeted. For single-clock coprocessors, such as the integer 
execution unit, the result of an operation is always returned immediately. Because of the three­
stage pipeline construction and the register bypassing mechanism, no conflicts between source 
access and result return can occur. For multi-clock coprocessors, such as the multiply/divide 
unit, the coprocessor must arbitrate access to the return path. 

Register File (RF) 

The RF contains the 16 local and 16 global registers and has six ports (Figure A.4); this allows 
several of the core's coprocessors to access the register set in parallel. This parallel access 
results in an ability to execute - per clock - one simple logic or arithmetic instruction, one 
memory operation (LOAD/STORE) and one address calculation. 

64 
SRC1 --+---t 

SRC2 ..+-6- 4-r---t 

64 
DEST---+--~ 

REG DATA 
BUSES 

SIX-PORTED REGISTER FILE 

16 LOCAL REGISTERS 

16 GLOBAL REGISTERS 

Figure A.4. Six-port Register File 
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MEM coprocessors interface to the RF with a 128-bit wide load bus and a 128-bit wide store 
bus. An additiOnal 32·bit port allows the Address Generation Unit to simultaneously fetch an 
address or address reduction operand. These wide load and store data paths: 

• enable, in a single clock, up to four words of source data and four words of destination data 
to simultaneously pass between the RF and a MEM coprocessor. 

• provide a high-bandwidth path between data RAM and local register cache to implement 
high-speed calls, returns and operations in data RAM. 

• provide a highly efficient means for moving load, store and fetch data between the bus 
controller and the RF. 

REG coprocessors interface to the RF with two 64-bit source buses and a single 64-bit 
destination bus. The source and result from different REG coprocessors can access the RF 
simultaneously using this bus structure. The 64-bit source and destination buses allow the 
eshro, mov and movl instructions to execute in a single cycle. 

To manage register dependencies during parallel register accesses, register bypassing (result 
forwarding) is implemented. The register bypassing mechanism is activated whenever an 
instruction's source register is the same as the previous instruction's destination register. The 
instruction pipeline allows no time for the contents of a destination register to be written before 
it is read again by another instruction. Because of this, the RF forwards the result data from the 
return bus directly to the source bus without reading the source register. 

Execution Unit (EU) 

The EU is the i960 CA processor core's 32-bit arithmetic and logic unit. The EU can be 
viewed as a self-contained REG coprocessor with its own instruction set. As such, the EU is 
responsible for executing or supporting the execution of all integer and ordinal arithmetic 
instructions, logic and shift instructions, move instructions, bit and bit-field instructions and 
compare operations. The EU performs any arithmetic or logical instructions in a single clock . 

Multiply/Divide Unit (MDU) 

The MDU is a REG coprocessor which performs integer and ordinal multiply, divide, 
remainder and modulo operations. The MDU detects integer overflow and divide by zero 
errors. The MDU is optimized for multiplication, performing extended multiplies (32 by 32) in 
four to five clocks. The MDU performs multiplies and divides in parallel with the main 
execution unit. 

Address Generation Unit (AGU) 

The AGU is a MEM coprocessor which computes the effective addresses for memory 
operations. It directly executes the load address instruction (Ida) and calculates addresses for 
loads and stores based on the addressing mode specified in these instructions. The address 
calculations are performed in parallel with the main execution unit (EU). 
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Data RAM and Local Register Cache 

The Data RAM and Local Register Cache are part of a l .5 Kbyte block of on-chip Static RAM 
(SRAM). One Kbyte of this SRAM is mapped into the i960 CA processor's address space from 
location OOOOOOOOH to 000003FFH. A portion of the remaining 512 bytes is dedicated to the 
local register cache. This part of internal SRAM is not directly visible to the user. Loads and 
stores, including quad word accesses, to the internal data RAM are typically performed in only 
one clock. The complete local register set. therefore, can be moved to the local register cache 
in only four clocks. 

MICROARCHITECTURE REVIEW 

At the center of the i960 CA processor core (Figure A.2) is a set of parallel processing units 
capable of executing multiple single-clock instructions in every clock. To support this rate, the 
IS can initiate (i.e., issue) up to three new instructions in every clock. Each processing unit has 
access to the multiple ports of the chip's six-ported register file; therefore, each processing unit 
can execute instructions independently and in parallel. 

Parallel Issue 

To keep the processing units busy, the IS investigates a rolling quad-word group of unexecuted 
instructions every clock and issues all instructions which can be executed in that clock. The 
scheduler can issue up to three instructions every clock to the processing units and sustain an 
issue rate of two instructions per clock. 

To maximize the IS' s ability to issue instructions in parallel, the instruction cache is organized 
such that it can provide three or four instructions per clock to the scheduler. To minimize the 
cost of a cache miss, the instruction fetch unit constantly checks whether a cache miss will 
occur on the next clock. If a miss is imminent, an instruction fetch is issued. 

Parallel Execution 

Six parallel processing units are attached to the six-ported register file: 

MEM-side: Three units are attached to the machine's Memory-side. MEM-side instructions 
are dispatched over the MEM machine-bus: 

BCU Bus Control Unit executes memory reads and writes for instructions 
which reference an operand in external memory. 

DR Data RAM handles memory reads and writes for instructions which 
reference on-chip data-RAM. 

AGU Address Generation Unit executes the Ida instruction and assists address 
calculation for all loads and stores; executes callx, bx and balx. 

REG-side: Two units are attached to the Register-side. REG-side instructions are dispatched 
over the REG machine bus: 

MDU Multiply/Divide Unit executes the multiply, divide, remainder, modulo 
and extended multiply and divide instructions. 
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EU Execution Unit executes all other arithmetic, logical, shift, comparison, 
bit, bit field, move instructions and the scanbyte instruction. 

CTRL-side: One unit is on the Control-side: 

IS Instruction Scheduler directly executes control instructions by modifying 
the next instruction pointer given to the instruction cache. 

The processor uses on-chip ROM to execute instructions not directly executed by one of the 
parallel processing units. This ROM contains a sequence of simple (RISC) instructions for each 
complex instruction not directly executable in one of the parallel processing units. When the 
scheduler encounters a complex instruction, the appropriate ROMed sequence of RISC 
instructions is issued for execution. This sequence of instructions is called a micro-flow (µ); 
when taken as a whole, they perform a complex function - i.e., a macro. 

Optimizations 

In general, the register file, instruction scheduler, cache and fetch unit keep the parallel 
processing units busy, given the typical diversity of instructions found in a rolling quad-word 
group of instructions. However, achieving absolutely optimized performance for critical code 
sequences is made possible by understanding the inner workings of how instructions execute 
on the processor. 

The following section describes instruction execution on the i960 CA processor with the goal 
of instruction stream optimization in mind. The Instruction-Stream Optimizations section 
describes specific code optimization techniques applicable to the i960 CA processor. 

Parallel Instruction Issue 

An instruction is executed after being issued by the instruction scheduler (IS). The IS keeps the 
parallel processing units busy by issuing as many new instructions as possible in every clock. 
To perform this task, the IS looks at the next three or four unexecuted words of the instruction 
stream every clock and determines which instructions it can issue in parallel. To achieve this 
parallelism, the IS detects to which machine "side" - REG, MEM or CTRL - each instruction 
in the current quad-word group belongs and ensures that there are no register dependencies 
between the instructions. 

When the IS issues a group of instructions, the appropriate parallel processing units 
acknowledge receipt and begin execution. However, register dependencies and resource 
dependencies could delay instruction execution. The processor transparently manages these 
interactions through register scoreboarding and register bypassing. 

The following discussions assume that instructions are always available from the instruction 
cache. For a discussion of cache organization and the impact of cache misses, see the section of 
this appendix titled Instruction Cache and Fetch Effects. 

A-8 



OPTIMIZING CODE 

Machine Type Parallelism 

The IS can issue multiple instructions in every clock when the instructions decoded in that 
clock can be executed by different machine sides. For example, an add can begin in the same 
clock as a Id since the addition is performed by the EU on the REG-side, while the load is 
executed by the BCU on the MEM-side. Furthermore, a branch can be issued in the same clock 
as the add and Id since the IS executes it directly (three instructions per clock). 

Figure A.5 shows the paths that the IS has available for dispatching each word of the rolling 
quad-word to the three machine sides. The IS is not implemented to fully exploit every 
possible combination of three instruction types in four consecutive words; this would have 
been prohibitive and many of the possible cases are meaningless. 

Table A. I summarizes the sequences of instruction machine types that can be issued in parallel. 
A group of one or more instructions which can be issued in the same clock is referred to in this 
appendix as an executable group of instructions. 

ROLLING 
QUAD-WORD 
INSTRUCTION 

INSTRUCTION CACHE 
1K-BYTE, 2-WAY SET ASSOCIATIVE 

WINDOW t----.,_----.i.---r---'---...,----'----r----l 

PARALLEL ISSUE PATHS 

REG 
PIPELINES 

Instruction Independence 

MEM 
PIPELINES 

Figure A.5. Issue Paths 

CTRL 
PIPELINES 

INSTRUCTION 
SCHEDULER 

EXECUTION 
PIPELINES 
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The scheduler also checks for register dependencies between instructions before issuing them 
in parallel. The scheduler does not issue a group of instructions if: 

1. the same register is specified as a destination more than once 

2. the same register is specified as a destination in one instruction and a source in a 
subsequent instruction 
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Table A.1. Machine Type Sequences Which Can Be Issued in Parallel 

Sequence Description 

RM xx REG-side followed immediately by a MEM-side instruction 

RMCx REG-side followed immediately by a MEM-side followed immediately by 
a CTRL instruction 

RMxC REG-side followed immediately by a MEM-side followed by a CTRL 
instruction in the same rolling quad-word 

RC xx REG-side followed immediately by a CTRL instruction 

RxCx REG-side followed by a CTRL instruction in the same rolling quad-word 
RxxC 

MC xx MEM-side followed immediately by a CTRL instruction 

MxCx MEM-side followed by a CTRL instruction in the same rolling quad-word 
MxxC 

A single register may, however, be specified as a source in multiple instructions or as a source 
in one instruction and a destination in a subsequent instruction. The multi-port register set 
supports these cases. For example, the following instructions cannot be issued in parallel due to 
the register dependencies: 

ad do 
st 

or: 

ad do 
ld 

gO, gl, g2 
g2' (g3) 

gO, gl, g2 
(g3)' g2 

# g2 is a destination 
# g2 is a source; 
# store must wait for addo to complete 

# g2 is a destination 
# g2 is also a destination; 
# load must wait for addo to complete 

However, the following instructions can be issued in parallel: 

addo 
st 

or: 

addo 
ld 

gO, gl, g2 
gO, (g3) 

gO' gl, 
(g3)' 

# gO is a source for both instructions 

# gO is a source for addo and 
# a destination for load 

In all cases of parallel instruction issue, the IS ensures that the program operates as if the 
instructions were actually issued sequentially. 
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When Instructions are Delayed 

In general, when the scheduler issues a group of instructions, the targeted parallel processing 
units immediately acknowledge receipt of instructions and the scheduler begins considering the 
next four unexecuted words of the instruction stream. There are, however, two conditions in 
which the execution of one or more of the instructions that the scheduler attempted to issue 
would be delayed. These conditions are: a scoreboarded register or a scoreboarded resource. 

Scoreboarded Register 

If a source (or destination) register of an instruction that the scheduler is attempting to issue is 
the destination of a prior multi-clock instruction (such as a load) which is not completed, the 
instruction is delayed. The scheduler attempts to reissue the instruction every clock until the 
scoreboarded register is updated (e.g., by the BCU) and the delayed instruction can be 
executed. Table A.2 summarizes conditions which cause a delay due to a scoreboarded 
register. 

Table A.2. Scoreboarded Register Conditions 

Condition Description 

src busy One or both of the registers specified as a source for the instruction was 
referenced as a destination of a prior instruction which has not completed. 

dst busy The destination referenced by the instruction was referenced as a destination 
of a prior instruction which has not completed. 

cc busy AC register condition codes are not valid. Correct branch prediction eliminates 
dead clocks due to condition code dependencies. 

Scoreboarded Resource 

A scoreboarded resource also thwarts the scheduler's attempt to issue an instruction. A 
resource is scoreboarded when it is needed to execute the instruction but is not available. The 
parallel processing units are the resources. Table A.3 lists cases which cause an instruction to 
be delayed due to a scoreboarded resource. Text that follows the table describes what happens 
to an instruction once it is issued to a processing unit. 

Register Scoreboarding and Bypassing 

To maintain the logical intent of the sequential instruction stream, the i960 CA processor 
implements register scoreboarding and register bypassing. Examples of each are demonstrated 
in the descriptions and examples in this appendix. These mechanisms eliminate possible 
pipeline stalls due to parallel register access dependencies. These mechanisms are described to 
provide an understanding of how the processor operates; it is not necessary to perform any 
code optimizations to take advantage of this parallel support hardware. 
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Table A.3. Scoreboarded Resource Conditions 

Condition Description 

BCU Queue Full Bus Controller queues are full and the scheduler is attempting to issue a 
memory request. 

MDU Busy Multiply/Divide Unit is busy executing a previously issued instruction 
and the scheduler is attempting to issue another instruction for which the 
MDU is responsible. 

DR Busy On-chip data RAM can support one 128-bit load or store every clock. 
However, the data RAM has no queues for storing requests. The unit 
stalls execution if a new request is issued to it when it has not been 
allowed to return data from a prior instruction. 

For example, if DR and BCU attempt to return results over the load bus 
in the same clock, BCU wins the arbitration. This delays DR result by 
one clock. If, simultaneously, the IS is attempting to issue another 
instruction to the data RAM, the DR stalls the processor for one clock. 

Register scoreboarding maintains register coherency by preventing parallel execution units 
from accessing registers for which there is an outstanding operation. Register scoreboarding 
works as follows. When the IS issues an instruction which requires multiple clocks to return a 
result, the instruction's destination register is locked to further accesses until it is updated. To 
manage this destination register locking, the processor uses a 33rd bit in each register to 
indicate whether the register is available or locked. This bit is called the scoreboard bit. There 
is a scoreboard bit for each of the 32 registers. 

Register bypassing eliminates a pipeline stall that would otherwise occur when one parallel 
processing unit is returning a result to a register over one port while, in the same clock, another 
unit is assessing the same register over a different port. Register bypassing logic constantly 
monitors all register addresses being written and read. If the same register is being read and 
written in the same clock, bypass logic - instead of delaying the read - routes incoming data 
from the write port directly to the read port. 

Parallel Execution 

Once the IS issues a group of instructions, the appropriate processing units begin instruction 
execution in parallel with all other processor operations. The following sections describe each 
unit's pipelines and execution times of the instructions which they process. 

Execution Unit (EU) 

The EU performs arithmetic, logical, move, comparison, bit and bit-field operations. The EU 
receives its instructions over the REG-machine bus and receives source operands over the srcl 
and src2 buses and returns its result over the dst bus. 

The EU pipeline is shown in Figure A.6. In the clock in which an EU instruction is issued, the 
EU latches the source operands and begins performing the operation. In the following clock, 
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the instruction completes and the result is written to the destination register. When an 
instruction immediately follows an EU operation which references the EU' s destination 
register, the new instruction is not issued in the same clock as the EU instruction. As seen in 
the figure, the new instruction is issued in the clock following the EU operation. 

The EU directly executes the instructions listed in Table A.4. The EU is pipelined such that 
back-to-back EU operations execute at a one-clock sustained rate. 

ad do gO' gl' g2 
sh lo g3, g4' g5 

subo g5' g6' g7 

shro g8' g9, glO 

INSTRUCTION 

SCHEDULER Issue ad do shlo subo shro 

Read src1, src2 gO. g1 g3, g4 g5, g6 g8. g9 

EU Execute and g2 ('- g0+g1 g5 ('- g4 « g3 g7 ('- g6-g9 g10.- g9»g8 
PIPELINE 

Write dst 

Figure A.6. EU Execution Pipeline 

Table A.4. EU Instructions 

ad do sh lo mov and 
ad di shro movl andnot 
addc shri cm po notand 
subo shli cm pi nand 
subi shrdi cmpdeco or 
subc eshro cmpdeci nor 

ornot 
setbit alterbit scan byte no tor 
clrbit chkbit xnor 
notbit xor 

not 
rotate 

NOTE 
For these instructions, the EU returns its result to the destination register in the clock following 
the clock in which the instruction was issued. If a fixup is needed during shrdi instruction 
execution, the processor executes a four-clock micro flow. See Micro flows in this appendix. 
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Multiply/Divide Unit (MDU) 

The MDU performs multiplication, division, remainder and modulo operations. The MDU 
receives its instructions over the REG-machine bus and source operands over the srcl and src2 
buses and returns its result over the dst bus. Once the IS issues an MDU instruction, the MDU 
performs its operations in parallel with all other execution. 

The MDU pipeline for the 32x32 mulo instruction is shown in Figure A.7. In the clock in 
which the multiply is issued, the MDU latches the source operands and begins the operation. 
The multiply completes and the result is written to the destination register in the fifth clock 
following the clock in which the instruction was issued. When an instruction immediately 
follows a multiply which references the multiply's destination, the instruction is not issued 
until the clock in which the multiply result is returned. For example, an addo which 
immediately follows a multiply - and references the destination of the multiply - is delayed 
until the fourth clock after the multiply is issued. This five-clock multiply latency is easily 
hidden; four to eight instructions could be placed between the multiply and add without 
increasing the total number of processor clocks used. 

addo gO, g1, g2 
mulo g3, g4, g5 
addo g5, g6, g7 

INSTRUCTION Issue 
SCHEDULER 

EU Read src1, src2 

PIPELINE 
Execute and 

Writedst 

Read src1 , src2 

MDU Execute 
PIPELINE 

Writedst 

ad do 

gO, g1 

mulo -- -- -- -- ad do 

g5, g6 

g2 <-- gO+g1 g7 <c--g5+g6 

g3, g4 

1. .l'.l22. ,.~:t uL.· -.!;'II 
g5 <--g3•g4 

270710·001-86 

Figure A.7. MDU Execution Pipeline 

The MDU incorporates a one-clock pipeline so that the IS can issue a new MDU instruction 
one clock before the previous result is written. For example, back-to-back 32x32 multiply 
throughput is four clocks per multiply versus a five clock multiply latency. Figure A.8 shows 
the execution pipeline for back-to-back multiplies in which adjacent instructions do not have a 
register dependency between them. 

NOTE 

This one-clock pipelining of MDU operations does not occur if integer overflow faults are 
enabled by the integer overflow mask being set to zero. 

A-14 



addo gO, g1, g2 
mulo g2, g3, g4 
mulo g5, g6, g? 
addo g8, g9, g1 O 

INSTRUCTION Issue 
SCHEDULER 

EU Read src1, src2 
PIPELINE 

Execute and 
Writedst 

Read src1. src2 

MDU Execute 
PIPELINE 

Writedst 

ad do mulo 

go, g1 

g2 <-- gO+g1 

g2, g3 

OPTIMIZING CODE 

-- -- -- mulo addo 

g8. g9 

g10c-g8+g9 

g5, g6 

I C"{J} 2c:~!'2 2± :b'E;~i:, 2: 3 l(':_i2·.·~·~ 

g4.--g3•g4 

270710-001-87 

Figure A.8. MDU Pipelined Back-To-Back Operations 

The MDU directly executes instructions listed in Table A.5. The scheduler issues an MDU 
instruction in one clock. The table also shows the latency - the length of the execution stage 
for each instruction. Subsequent instructions not dependent upon MDU results are issued and 
executed in parallel with the MDU. If instructions in the table are issued back-to-back and they 
have no register dependency between them, the MDU pipeline improves throughput by one 
clock per instruction. 

Table A.5. MDU Instructions 

Back-to-Back Back-to-Back 
Issue Result Throughput Throughput 

Mnemonic Clocks Latency (AC.om= I) (AC.om= 0) 

muli 32x32 l 5 4 5 
16x32 l 3 2 3 

mulo 32x32 l 5 4 4 
16x32 I 3 2 3 

muli 32x32 I 6 5 6 
16x32 I 3 2 3 

di vi 13 37 36 36 

divo 3 36 35 35 
ediv 3 36 35 35 
remi 
re mo 
modi 
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Data RAM {DR) 

On-chip data RAM (DR) is described in Chapter 2, Programming Environment. DR is single­
ported and 128-bits wide to support accesses per clock of up to one quad-load or quad-store. 

DR receives instructions over the MEM-machine bus; store addresses over the 32-bit Address 
Out bus; store data over the 128-bit Store bus. DR returns data over the 128-bit Load bus. 

The one-clock DR pipeline for reads is shown in Figure A.9. When the rs issues a load from 
the DR, load data is written to the destination register in the following clock. 

An instruction which immediately follows a load from the DR and references the load 
destination cannot execute in the same clock as the load. As shown in the figure, the instruction 
is issued in the clock in which the load data is returning. 

Table A.6 lists the instructions executed directly using the DR. As seen in Figure A.9, if these 
instructions are issued back-to-back, they execute at a one-clock sustained rate, with or without 
register dependencies. 

ad do g16, gO, gO 

ldq (gO), g4 

ad do g4, g5, g6 

ldt (g7)' g8 

ldq (g8)' gO 
,--, 

INSTRUCTION ad do 

SCHEDULER lssu~ addo ldq ldt ldq 

Read src1, src2 16, gO g4, g5 

EU Execute and gO<c-g0+16 g6 <- g4+g5 

PIPELINE Writedst 

Figure A.9. Data RAM Execution Pipeline 

Table A.6. Data RAM Instructions 

Load Latency = Store Latency = 
1 clock 1 clock 

Id st 
ldob stob 
ldib stib 
ldos stos 
I dis stis 
ldl stl 
ldt stt 
ldq stq 

NOTE 
This table applies to the offset, displacement and indirect memory addressing modes. For other 
addressing modes, see the Micro flows section of this appendix. 
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Address Generation Unit (AGU) 

The AGU contains a 32-bit parallel shifter-adder to speed memory address calculations. It also 
directly executes the Ida instruction. The unit calculates an effective address (efa) which is 
either: 1) written to a destination register in the case of an Ida instruction or 2) used as a 
memory address in the case of loads, stores, extended branches or extended calls. 

The AGU receives instructions over the MEM-machine bus and offset and displacement values 
over the Address Out bus from the IS. The AGU reads the global and local registers over the 
32-bit Base bus register port and writes the registers over the 128-bit Load bus. 

The Ida Instruction Pipeline 

For six of the nine i960 CA processor addressing modes, when a Ida instruction is issued, the 
AGU returns the efa to the destination register in the following clock. An instruction which 
immediately follows the Ida and references the Ida destination is not issued in the same clock 
as the Ida; as shown in Figure A. l 0, the instruction is issued in the clock in which Ida is 
writing the destination register. 

Table A.7 lists the Ida addressing mode combinations that the AGU executes directly. As seen 
in the figure, if Ida instructions are issued back-to-back using one of the addressing modes in 
the table, the instructions execute at a one-clock sustained rate with or without register 
dependencies. 

addo 16, gO, gO 
Ida 16 (gO), g4 
addo g4, g5, g6 
Ida 16 [g7•4], g8 
Ida 16 (g8), gO 

INSTRUCTION Issue 
SCHEDULER 

Read src1, src2 

EU 
PIPELINE Execute and 

Write dst 

Read over Base bus 

AGU 
PIPELINE Execute and 

Write over Ldbus 

ad do Ida addo Ida 
Ida 

16, gO g4, g5 

gO c-90+16 g6 c-g4+g5 

gO g7 g8 

g4 <-- g0+16 g8c-(g7•4)+16 gO <-- g8+16 

270710·001-89 

Figure A.10. The Ida Pipeline 
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Table A.7. AGU Instructions 

Mnemonic Issue Addressing Result Latency 
Clocks Mode Clocks 

Ida I offset I 
disp 
(reg) 
offset( reg) 
disp(reg) 
disp[ reg * scale J 

NOTE 

For other memory addressing modes. see the Micro flows section of this appendix. 

Effective Address (efa) Calculations for Other Operations 

When an instruction is issued which requires an effective address (eja) calculation, the AGU 
calculates the eja for use by the instruction. When the addressing mode specified by an 
instruction is the ojj~·et, disp or (reg) mode, the AGU generates the efa in parallel with the 
instruction's issuance. As shown in the previous pipeline figure for the DR (Figure A. 9), load 
and store instructions begin immediately for these addressing modes with no delay for address 
generation. See the section in this appendix titled Micro flows for a description of how other 
addressing modes are handled. 

Bus Control Unit (BCU) 

The BCU, as described in Chapter JO, The Bus Controller, executes memory requests in two 
clocks (zero wait state) and returns a result (for loads) on the third clock. Through address 
pipelining in the system and on-chip request queuing, the BCU is capable of accepting a load 
or store from the IS every clock and returning load data every clock. 

The BCU receives instructions over the MEM-machine bus, store addresses over the 32-bit 
Address Out bus and store data over the 128-bit Store bus. The BCU returns data over the 128-
bit Load bus. 

BCU Pipeline 

The BCU executes memory operations for load and store instructions, instruction fetches, 
micro flows and DMA operations; however, its execution pipeline can be easily understood by 
looking at simple load and store requests. Figure A.11 shows a load instruction execution 
assuming that: 1) no prior requests were stored in the BCU queues and 2) the worst case that 
the instruction following the load references the destination of the load. 
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CAS [ 

c 
DATA [ -----Hl-Z----o( 

270710-002-32 

Figure A.11. BCU Pipeline for Loads 

The BCU receives the load address during the "issue'' clock. The address is placed on the 
system bus during the next clock (the first BCU execute stage). The system returns data at the 
end of the following clock (the second BCU execute stage). On the next clock the BCU writes 
the data to the destination register. This write is bypassed to the REG-side and MEM-side 
source buses and the scoreboarded instruction is issued in the same clock. 

The zero wait-state load caused a two clock delay in execution of the next instruction because 
the load data was referenced immediately after the load was issued. If the memory system had 
wait states, the load data delay would have been longer. If the load were advanced in the code 
such that it was separated from the instruction which used the data. the load delay could be 
completely oYcrlapped with the execution of other instructions. even when the system has wait 
states. 

Store instruction execution would proceed as did the load. except that there would be no return 
clock and no instructions could be stalled due to a scoreboarded register. 

Table A.8 lists instructions that the BCU executes directly. For each instruction that requires 
multiple reads on the external bus. such as ldq. the BCU buffers the return data until all data is 
returned from the external bus. This optimization reduces the internal Load bus overhead to the 
minimum. giving more clocks to the processor to access the DR and perform Ida operations 
while external loads arc in progress. 

If instructions listed in the table were issued back-to-back, with no register dependencies, the 
instructions would execute at a rate of one instruction per clock until the BCU queues were 
full. Once the queues are full. further back-to-back BCU instructions execute at the bus 
bandwidth. Figure A.12 shows back-to-back loads being executed. 
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Table A.8. BCU Instructions 

Result Latency Back-to-Back 
Mnemonic Issue Clocks Clocks Throughput 

Id 1 3 1 
ldob 
ldib 
ldos 
ldis 

ldl l 4 2 

ldt l 5 3 

ldq 1 6 4 

st l NIA 2 
stob 
stib 
stos 
stis 

stl 1 NIA 3 

stt l NIA 4 

stq 1 NIA 5 

NOTE 
The table data is valid when the offset, displacement and indirect memory addressing modes over 
an external bus with the following characteristics (For other addressing modes, see the Micro 
flows section of this appendix): 

NxAD = NXDD = NxDA = 0, Burst On, Pipelining On, Ready Disabled 

BCU Queues 

To allow programs to issue load requests before the data is needed - and thus decouple 
memory speeds from instruction execution - the BCU contains three queue entries. Each 
entry stores all the information needed for a memory request. For each request: 

• For loads, the source address, destination register number and load type are queued. 

• For stores, the destination address, store type and the store data are queued. 

If a stq is executed, all four registers are written to the BCU queue in one clock. The BCU 
performs the actual bus request without taking any further clocks from instruction execution. 

BCU queues maintain the memory requests in order. The requests are executed on the bus in 
the order that they are issued from the instruction stream. 
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Id (gO), g1 
Id (g2), g3 
Id (g4), g5 
addo g1, g6, g7 

~;::ii~~~N Issue Id Id Id ad do 

AddressOut bus gO g2 g4 
St bus 

External Address Bus gO g2 g4 

External Data Bus (gO) (g2) (g4) 
BCU 
PIPELINE 

LO Bus g1 <-- (gO) g3 ,__ (g2) g5 <-- (g4) 

EU Read src1, src2 g1 g6 
PIPELINE 

Execute and 
Write dst g7c--g1+g6 

270710-001·91 

Figure A.12. Back-to-Back BCU Accesses 

When the DMA controller is enabled, one of the three queue entries is dedicated for DMA 
operations. This reduces queuing of the instruction stream's loads and stores while improving 
DMA performance and latency. (See Chapter 13, DMA Controller) 

Control Pipeline 

The IS directly executes program flow control instructions. Branches take two clocks to 
execute in the CTRL pipeline; however, the IS is able to see branches as many as four 
instructions ahead of the current instruction pointer. This allows the scheduler to issue the 
branch early and, in most cases, execute the branch without inserting a dead clock in the 
issuance of instructions to the REG and MEM-machine buses. 

Table A.9 lists the instructions that the IS executes directly, without the aid of micro flows. For 
information on other control flow instructions, see Micro flows later in this appendix. 

Unconditional Branches 

Figure A.13 shows the IS issue stage and the CTRL pipeline for the case where branches 
branch to branches, essentially disabling the IS's ability to look ahead. The IS issues the branch 
in one clock; the branch is executed in the next clock. The branch target is another branch, 
which the scheduler issues immediately. Hence, branch instructions have a two-clock sustained 
rate when issued back-to-back. 

A-21 



Mnemonic 

b 
be 
bne 
bl 
hie 
bg 
bge 
bo 
boo 

w: b x 

x: b y 

y:b z 

z: b w 

INSTRUCTION I 8 e 
SCHEDULER 8 u 

CTRL 
PIPELINE Execute 
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Table A.9. CTRL Instructions 

Back-to-Back 
Issue Clocks Latency Clocks Throughput Clocks 

1 2 2 

270710-001-92 

Figure A.13. CTRL Pipeline for Branches to Branches 

Figures A.14, 15 and 16 show the IS issue stage and the CTRL pipeline for each case of 
possible IS branch lookahead detection. Assuming that the IS can see four instructions every 
clock from the instruction cache, the branch can be in the first, second or third group of 
instructions seen. 

An executable group of instructions is a group of sequential instructions in the currently visible 
quad-word which can be issued in the same clock. See the Parallel Instruction Issue section 
earlier in this appendix. 

Figure A.14 shows the cases where a branch, when first seen by the IS, is in the first executable 
group of instructions. The IS issues the branch immediately, along with the first one (or two) 
instruction(s) ahead of it. Since the branch takes two clocks in the CTRL pipeline to execute, a 
one-clock break in the IS' s ability to issue instructions occurs. On the next clock, the IS issues 
a new group of instructions from the branch target. 

In the figure, two other instructions were issued simultaneously with the branch. Hence, the 
branch could be said to have taken one clock to execute. When the branch is the first 
instruction in the group - i.e., the branch is a branch target - no other instructions are issued 
in parallel with the branch and it takes a full two clocks to execute (as seen in Figure A.13.). 
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b x 
... 

x: addo gO,g1,g2 
Ida 2(g3), g4 
b y 

y: ad do g5,g6,g7 
Ida 2(g8), g9 

INSTRUCTION Issue 
SCHEDULER 

CTRL 
PIPELINE Execu1e 

EU Read src1. src2 
PIPELINE 

Execute and 
Writedst 

Read over Base bus 
AGU 
PIPELINE 

Execute and 
Write over Ldbus 
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addo 
Ida 

90. 91 gs, g6 

g2 ...- gO+g1 g7 <- g5+g6 

g3 g8 

g4 .... 2+g3 g9 .... g8+2 

Figure A.14. Branch in First Executable Group 

270710·001·93 

Figure A.15 shows the case where a branch, when first seen by the IS, is in the second 
executable group (B) of instructions in the rolling quad-word, not the first executable group 
(A) which is about to be issued. The IS issues the branch immediately, along with the first 
group of instructions ahead of it (A). Since the branch takes two clocks in the CTRL pipeline 
to execute, there is no break in the IS' s ability to issue instructions. On the next clock, the IS 
issues a new group of instructions from the branch target. 

In the figure, two other instructions were issued simultaneously with the branch and one 
instruction was issued during the clock in which the branch was executing. Hence, it can be 
said that this branch takes zero clocks to execute. 

Figure A.16 shows the case where a branch, when first seen by the IS, is in the third executable 
group (C) of instructions of the rolling quad-word, not the first executable group (A) which is 
about to be issued. The IS issues group A, then issues the branch and group B simultaneously. 
Since the branch takes two clocks in the CTRL pipeline to execute, there is no break in the IS's 
ability to issue instructions. On the clock following the issuance of group B, the IS issues a 
new group of instructions from the branch target. 
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b x 

x: addo 
Ida 
Ida 
b 

gO, g1, g2 
2(g3), g4 
2(g5), g6 
y 

y: addo g7, g8, g9 

} <-A 

} <--- B 

Ida 2(g10), g11 

Group: 

INSTRUCTION Issue 
SCHEDULER 

CTRL 
PIPELINE Execute ~!fjl!J~ 

EU Read src1, src2 

PIPELINE 
Execute and 

Write dst 

Read over Base bus 
AGU 
PIPELINE 

Execute and 
Write over Ldbus 

A B 
ad do ad do Ida Ida 
...IL Ida 

!Wit~ '·!'!,:::'.''"' ID 

gO, g1 g7, g8 

g2 <-- gO+g1 g9 (- g7+g8 

g3 g5 g10 

g4 (- g3+2 g6 (- g5+2 g11;-g10+2 

Figure A.15. Branch in Second Executable Group 

b x 

x: Ida 2(g3), g4 ) <-A 
ad do gO, g1, g2 ) <--- B 
addo ~5, g6, g7 ) <--- c 
b 

y: ad do g8, g9,g10 
Ida 2(g11),g12 

Group: A B c 
INSTRUCTION lss e Ida ad do ad do ad do 
SCHEDULER u b Ida 

CTRL '.!i:!!!i: IWlill '·ill. LlD PIPELINE Execute 

EU Read src1, src2 gO, g1 g5, g6 g8, g9 

PIPELINE 
Execute and 

g2 <-- gO+g1 g7 (- g5+g6 g10 ;-g8+g9 
Writedst 

Read over Base bus g3 g11 
AGU 
PIPELINE 

Execute and g4 (- g3+2 g12 ;-g11+2 Write over Ldbus 

Figure A.16. Branch in Third Executable Group 
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Conditional Branches 

Conditional branches differ from unconditional branches only because the condition codes are 
sometimes not valid as early as the IS sees the branch instruction. For example, a conditional 
branch which immediately follows a compare instruction cannot be allowed to complete 
execution until the result of the comparison is known. However, the processor begins to 
execute the branch based upon the branch prediction bit set by the programmer for that branch. 

When one or more executable instruction groups separate the conditional instruction from the 
instruction that changed the condition code, the condition code will have already settled in the 
pipeline by the time the prefetch mechanism secs the conditional instruction; from this it 
determines which direction the branch will go. No "guess" is required. This situation allows 
the branch to execute in zero clock cycles, as described in Figure A.16. 

If the conditional instruction and the instruction that sets the condition codes are in the same 
executable group or in consecutive groups, the condition code is not valid when the IS sees the 
branch; a guess is required. If the prediction turns out to be correct, the branch executes in its 
normal amount of time, as described in the previous section. If the prediction is wrong, the 
pipeline is flushed, any erroneously-started single or multiple-cycle instructions are killed and 
the branch executes as if there had been no lookahead or prediction. In other words: 

• the branch takes two clocks out of the IS's issue stage if it is in the same executable group 
as the instruction which modified the condition codes 

-or-

• the branch takes one clock if it is in the executable group adjacent to the group that 
modifies the condition codes. 

Instruction Cache and Fetch Effects 

The non-transparent instruction cache is organized to provide any three or four consecutive 
opwords to the IS on every clock. This capability is critical to the ability to dispatch multiple 
instructions from the i960 CA processor's sequential instruction stream to multiple 
independent parallel processing units. When a cache miss occurs or is about to occur, the 
Instruction Fetch Unit issues instruction fetch requests to the BCU. 

Cache Organization 

The I Kbyte cache is two-way set associative and organized into two sets of I 6 eight-word 
lines. Each line is composed of four two-word blocks which can be replaced independently. 

On every clock, the cache accesses one or two Jines and multiplexes the correct three or four 
words to the IS: 

• Three words are valid if the requested address is for an odd word in memory (A2= 1) 

• Four words are valid if the requested address is for an even word of memory (A2=0). 
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Fetch Strategy 

When any of the three or four words presented to the scheduler are invalid, a cache miss is 
signaled and an instruction fetch is issued. The Instruction Fetch Unit makes the fetch and 
prefetch decisions. 

Since the cache supports two-word and quad-word replacement within a line, instruction 
fetches can be issued in either size. The conditions of the cache miss determine which fetch is 
issued. Table A.10 describes the fetch decision. 

Table A.1 O. Fetch Strategy 

Words Provided 
To Scheduler Fetch Initiated 

IP IP+4 IP+S IP+l2 A3:2 of Requested IP= OX2 A3:2 of Requested IP= I X2 

Hit Hit Hit Hit No Fetch No Fetch 

Hit Mis>. Hit Hit Fetch Two Words Fetch Two Words 

Miss Hit Hit Hit at IP at IP 

Miss Miss Hit Hit 

Hit Hit Hit Miss Fetch Two Words Fetch Four Words 

Hit Hit Miss Hit at IP+8 at IP +8 

Hit Hit Miss Miss 

All other cases Fetch Four Words Fetch Two Words at IP 

at IP and Four Words at IP+S 

Fetch Latency 

The Instruction Fetch Unit initiates an instruction fetch by requesting quad-word or long-word 
loads from the BCU. These fetches differ from actual instruction stream loads in two ways: 
load destination and load data buffering. 

First, the load destination of an instruction fetch is the instruction fetch buffer - not the 
register file. Since fetch data goes directly from the BCU to the instruction fetch buffer and IS, 
the scheduler can issue fetched instructions during the clock after they are read from external 
memory. 

Second, to reduce fetch latency, BCU buffers fetch data differently than a regular load 
instruction. Instead of buffering four words of instructions before sending data to the fetch unit, 
the BCU sends each word as it is received over the bus. If the fetches are from 8- or 16-bit 
memory, the BCU collects 32-bits before sending the word to each fetch unit. 

Figure A.17 shows the execution of a two-word fetch that resulted from a cache miss. At the 
end of the clock in which instructions would be issued had there been a hit, the fetch unit 
detects the cache miss. The fetch unit issues the instruction fetch in the following dock. 
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Assuming that the BCU is not busy with another operation, the request begins on the external 
bus in the next clock. The first word of the fetch is returned to the fetch unit in the clock in 
which it is received from the memory system; the JS attempts to issue the instruction to an 
execution unit in that same clock. The remaining words of a fetch are returned as they are 
received from the system (i.e .. one each clock). 

If the fetch request is the result of a prcfetch decision. the IS is not stalled unless it needed an 
instruction from the prefetch request. 

If the processor is executing straight-line code which always misses the cache, the IS is only 
able to issue instructions at a one instruction per clock rate. since it is never able to see multiple 
instructions in one clock. The bus bandwidth of the memory subsystem containing the code 
limits the application· s performance. 

b y 

y: addo go. g1. g2 <-- Cache Miss 
subo g3. g4. g5 

INSTRUCTION 
SCHEDULER Issue y:- -

CTRL Cache 
PIPELINE Execute ) Miss 

AddressOut bus 
St bus 

External Address Bus 

External Data Bus 
BCU 
PIPELINE 

Ld Bus 

EU 
Read src1, src2 

PIPELINE 
Execute and 

Write dst 

-- -- -- ad do 

Fetch 
Address 

A 

D D 
ad do subo 

D 
addo 

gO, g1 

Figure A.17. Fetch Execution 

Cache Replacement 

subo 

D 
subo 

g3, g4 

g2 ~ gO+g1 g5 ~ g4-g3 

270710-001-96 

Data fetched as a result of cache miss is written to the cache when and if the fetched data is 
requested by the JS. This optimization keeps unexccuted prefetched data from taking up 
valuable cache space. 

As the fetches come in from lhe BCU, the fetch unit stores incomplete fetch blocks in a queue. 
If the IS requests one or more instructions which are in the queue, the fetch unit satisfies the 
queue request. If the queue entry that the scheduler requests contains a full group (two words) 
of instructions, the valid groups in the queue are also written to the cache in the same clock that 
they are given to the scheduler. The least recently used set is updated. 
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Micro-flows 

The i960 CA parallel processing units directly execute about half of the processor's instruction 
encodings. The processor services the remaining complex encodings by executing a sequence 
of simple instructions from an on-board ROM. 

Instruction sequences stored in ROM are written in such a way that enables the parallel 
processing units to perform the required function as fast as possible. Micro-flows use 
instructions described in prior sections of this appendix - machine types R, M and C - and 
some special parallel circuitry to carry out the complex instructions. An instruction which 
cannot be directly issued to a parallel processing unit is said to have the machine type µ. 

This section describes how the complex encodings are detected and execution times associated 
with each instruction. 

Detection 

To prevent micro-flowed instruction support from impacting the processor's speed or pipeline 
depth, complex instructions are detected in the clock in which they are fetched. This 
information becomes part of the instruction encoding stored in the Instruction Fetch Unit queue 
and/or Instruction Cache. 

Invocation 

Invocation for a complex instruction's micro-flow can be considered analogous to the 
processor's execution of an unconditional branch into the on-chip ROM. However, pre­
decoding and optimized lookahead logic makes the micro-flow invocation more efficient than 
a branch instruction. 

While the IS is issuing one group of instructions, parallel decode circuitry checks to see if the 
next executable instruction is aµ instruction (Figure A.18). If so, the opwords presented to the 
IS in the next clock come from the on-chip ROM location that contains the micro-flow for the 
detected complex instruction. The IS actually never attempts to issue a complex encoding. The 
encodings are detected when the opword is fetched, then trapped-out during the clock in which 
they are presented to the IS. 

Generally, no clocks are lost when switching to a micro-flow; however, two conditions can 
defeat the lookahead logic: branches to REG-, CTRL- or COBR-format instructions which are 
implemented as micro-flows (µ) or cache misses from straight-line code execution. Under 
these conditions, the switch to on-chip ROM causes a one-clock break in the IS's ability to 
issue instructions. 

Complex instructions encoded with the MEM-format do not require lookahead detection to 
trap to the ROM without overhead. Therefore, MEM-format instructions of machine typeµ do 
not see a one-clock performance loss even when lookahead logic is defeated. Furthermore, 
micro-flows return to general execution with no overhead; back-to-back micro-flows do not 
incur the one-clock defeated lookahead penalty. 
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When micro-flows execute, they consume the instruction scheduler's activity. From the first 
clock through the last clock of a micro-flow, the IS is typically issuing two instructions per 
clock. MEM-side micro-flows such as loads and stores can be issued in parallel with a REG­
side instruction. Performance of micro-flowed instructions is described by the number of 
clocks taken to issue instructions. The following sections describe micro-flowed instruction 
performance by functional group. 

Data Movement 

Data movement instructions supported as micro-flows include the triple and quad-word register 
move instructions and the Ida, load and store instructions which use complex addressing 
modes. 

movt and movq each take two clocks to execute. 

Ida takes two clocks to execute for the (reg)[ reg *scale] and disp(reg)[reg *scale] addressing 
modes and can be issued in parallel with an instruction of machine type R. Ida using the 
disp( IP) addressing mode takes four clocks to execute and can be issued in parallel with a 
machine type R instruction. The AGU executes Ida directly for all other addressing modes. 
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Load and store instructions are summarized in A.11 and 12. The number of clocks shown is the 
additional number of issue clocks consumed for address calculation prior to the load or store 
being issued to the BCU or DR. These instructions can be issued in parallel with a machine 
type R instruction. To find the result latency of the BCU or DR, see the appropriate section 
earlier in this appendix. 

Table A.11. Load Micro-flow Instruction Issue Clocks 

The following load instructions consume n additional issue clocks 
for address calculation before initiating a load request to the BCU or 
DR, where n for each addressing mode is as follows: 

disp(reg) 

offset( reg) (reg)[reg *scale] 

Mnemonic di5p[ reg * scale] disp(reg)[reg *scale] disp(/P) 

Id 1 2 4 
ldob 
ldib 
I dos 
I dis 
ldl 
ldt 
ldq 

NOTE 

offset, disp and (reg) memory addressing modes incur no address calculation overhead. See the 
Bus Controller and Data RAM sections of this appendix. 

Arithmetic 

Every arithmetic instruction encoding is directly executed by the EU or MDU parallel 
processing units. 

Logical 

Every logical instruction encoding is directly executed by the EU parallel processing unit. 

Bit and Bit Field 

scanbit, spanbit, extract and modify are executed as micro-flows. Table A.13 lists their 
execution times. For these instructions, the IS issues n-clocks of instructions in place of the 
single-word i960 CA processor instruction encoding, where n is shown in the table. 
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Table A.12. Store Micro-flow Instruction Issue Clocks 

The following store instructions consume n additional issue clocks 
for address calculation prior to initiating a store request to the BCU 
or DR, where n for each addressing mode is as follows: 

disp(reg) 

ofh'et( reg) (reg)/ reg* scale] 

Mnemonic dis pf reg *scale] disp( reg)/ reg *scale/ di.1p(IP) 

st l 2 4 
stob 
stib 
stos 
stis 
stl 
stt 
stq 

NOTE 

()fj~·et, disp and (reg) memory addressing modes incur no address calculation overhead. See the 
Bus Controller and Data RAM sections of this appendix. 

Table A.13. Bit and Bit Field Micro-flow Instructions 

Mnemonic Execution Clocks (n) 

scan bit l 

spanbit 2 

extract 4 

modify 3 

Byte Operations 

scanbyte is directly executed by the EU parallel processing unit. 

Comparison 

test* instructions are implemented with a micro-flow. Execution time depends upon condition 
code validity and prediction bit settings. When condition codes are valid or prediction bit is set 
correctly, test* instructions take one issue clock if the instruction's correct result is a I and two 
issue clocks if the correct result is a 0. Otherwise, the instructions take three issue clocks to 
execute. 
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Branch 

compare_and_branch, extended branch, branch_and_link and extended branch and link 
instructions are implemented with micro-flows. 

cmpib* and cmpob* instructions take one issue clock if the prediction bit is set correctly and 
two issue clocks if the prediction was incorrect, assuming a cached branch target. 

bal takes two issue clocks to execute, assuming a cache hit. 

bx and balx are summarized in Table A.14. The number of clocks shown is the total number of 
issue clocks consumed by the instruction prior to the code at the branch target being issued. 
These instructions may be issued in parallel with a machine-type R instruction. 

Table A.14. bx and balx Performance 

The following instructions consume n issue clocks before target 
code is issued, where n for each addressing mode is as follows: 

disp 
offset 
(reg) 
disp(reg) 
offset( reg) (reg)[ reg* scale] 

Mnemonic disp[ reg *scale] disp( reg){ reg * scale] disp(JP) 

bx 4 4 6 
balx 

NOTES 

Times shown assume instruction cache hits and a DR-based link target for balx. 

Call and Return 

Procedure call, return and system procedure call instructions are implemented as micro-flows. 

call consumes four issue clocks when the target is cached and a register cache location is 
available. When a frame spill is required, an additional 22 issue clocks are consumed in a zero­
wait-state system before the target code begins execution. The worst-case memory activity for 
a call with a frame spill and a cache miss is one quad-word instruction fetch followed by four 
quad-word stores. Wait states in the instruction fetch directly impact call speed, while wait 
states in the frame stores are decoupled from internal execution by the BCU queues. 

ret consumes four issue clocks when the target and the previous register set are both cached. 
When a frame fill is required, an additional 38 issue clocks are consumed in a zero-wait-state 
system before the target code begins execution. The worst-case memory activity for a return 
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with a frame fill and a cache miss is four quad-word reads followed by one quad-word fetch. 
Wait states in the instruction fetch or the frame fill directly impact return speed. 

calls consumes up to 56 issue clocks if the call is to a supervisor procedure. If the call is to a 
non-supervisor procedure, calls takes 38 issue clocks. These times assume an available register 
cache location and a cached target. During calls execution, a single-word read and a long-word 
read access to the system procedure table. The presence of several wait states in these reads 
directly affect the instruction's performance. The impact of non-cached target code or a frame 
spill on the calls instruction is identical to the impact on the call instruction. 

Table A.15. callx Performance 

The following instruction consumes n issue clocks before target 
code is issued, where n for each addressing mode is as follows: 

disp 
offset 
(reg) 
disp(reg) 
offset( reg) (reg)[ reg* scale] 

Mnemonic disp[ reg * scale] disp(reg)[reg *scale] disp(IP) 

callx 7 9 9 

NOTE 
Times shown assume instruction cache hits. 

Conditional Faults 

fault* instructions are implemented with micro-flows and require one issue clock if the 
prediction bit is correct and no fault occurred. If the prediction bit is incorrect and no fault 
occurs, the instructions require two issue clocks. The time it takes to enter a fault handler varies 
greatly depending upon the state of the processor's parallel processing units; however, this 
time should be no longer than 60 clocks for most conditions. 

Debug 

mark and fmark are implemented with micro-flows. mark takes one issue clock if no trace 
fault is signaled. If a trace fault is signaled or fmark is executed, the processor switches to the 
trace fault handler. 

Atomic 

Atomic instructions are implemented with micro-flows. atadd takes seven issue clocks and 
atmod takes eight to execute with an idle bus in a zero-wait state system. Wait states in the 
memory accessed by these instructions directly affects execution speed. 
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Processor Management 

Processor management instructions implemented as micro-flows include: modpc, modtc, 
modac, syncf, flushreg, sdma, udma and sysctl. 

modpc requires 17 clocks to execute if process priority is changed and 12 clocks if process 
priority is not changed. modac requires 9; modtc requires 15. 

syncf takes four issue clocks if there are no possible outstanding faults. Otherwise, the 
instruction locks the IS until it is certain that no prior instruction that could fault, will fault. 

flushreg requires 24 clocks for each frame that is flushed. This translates to 120 cycles to flush 
five frames. Wait states in the memory being written affect this instruction's performance. 

sdma executes in 22 clocks; udma executes in 4. In the case of back-to-back sdma 
instructions, 40 clocks are required. 

sysctl timings are listed in Table A.16. The table lists the times assuming a zero wait-state 
memory system. 

Table A.16. sysctl Performance 

Message Message Type Issue Clocks 

Request Interrupt OOH 37 +bus wait states 
Invalidate Cache OlH 38 
Configure Cache 02H 52 with 1 Kbyte cache enabled; 48 

with lKbyte cache disabled. 
2078 + bus wait states with load 

and lock lKbyte; 
1103 +bus wait states with load 

and lock 5 I 2 bytes. 

Reinitialize 03H 243 + bus wait states 
Load Control Register Group 04H 42 + bus wait states 

Instruction-Stream Optimizations 

Embedded applications often benefit from hand-optimized interrupt handlers and critical 
primitives. This section reviews coding optimizations which arise due to the microarchitecture 
of the i960 CA instruction set processor. Familiarity with the previous sections of this appendix 
is assumed and no attempt is made to present techniques which are not specific to the i960 CA 
processor. 

Note that the examples in this section are constructed to illustrate particular optimization tricks. 
In general, every example could be further optimized by applying several techniques instead of 
one. 
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Advancing "Long" Operations 

A few operations take multiple clocks to execute in their respective parallel processing units: 
loads and stores through the BCU and multiplies and divides in the MDU. These instructions 
consume the least effective execution time (less than one clock) if they are sufficiently 
separated from the instructions that use their results. 

Loads and Stores 

Separate load instructions from instructions that use load data. Remember that store 
instructions can also be reordered. Although they return no results to registers, a poorly placed 
store in front of a critical load slows down the load. Reorder to issue the load first. Example 
A.1 shows a simple change that saved one clock from a five clock loop. 

Example A.1. Overlap Loads (Checksum) 

:Coop: 
ldob 
addo 
cmpinco 
bl. t 

Execution: 

Clock 

1 

2 

3 
4 

5 
6 

(gOJ, gl 
gl, g2, g2 
gO, g3, gO 
loop 

REGop ME Mop 

ldob 

I 
I 

addo 
cmpinco 

Id 

Multiplies and Divides 

CTRLop 

bl.t 

I 

opt_loop: 
ldob 
cmpinco 
addo 
bl. t 

Execution: 

Clock 

1 

2 

3 
4 

5 

REGop 

cmpinco 

ad do 

(gO), gl 
gO, g3, gO 
gl, g2, g2 
opt_loop 

MEMop 

ldob 

I 

I 

ld 

CTRLop 

bl.t 

I 

Begin multiply and divide instructions several cycles before instructions that use their results. 
Also remember to use shift instructions to replace multiplication and division by powers of 
two. The following example shows overlapping pointer math and a comparison with the 32x32 
multiply time in a simple multiply-accumulate loop. 
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Example A.2. Overlap MDU Operations (Multiply-Accumulate) 

loop: 
ld 
ld 
muli 
addi 
addo 
addo 
cmpobl.t 

(g0)' g2 
(gl)' g3 
g2, g3, g4 
g4, g5, gS 
4, gO, gO 
4, gl, gl 
gO, g6, loop 

Execution (from DR): 

Clock REGop MEMop 

I Id 

2 Id 

3 muli 

4 I 
5 I 
6 I 
7 I 
8 addi 

9 ad do 

10 ad do 

µ 11 cm po 

12 Id 

Advancing Comparisons 

CTRLop 

bl.t 

I 

opt_loop: 
ld 
ld 
muli 
addo 
cmpo 
addo 
addi 
bl. t 

(gO), g2 
(gl), g3 
g2, g3, g4 
4, gO, gO 
gO, g6 
4, gl, gl 
g4, g5, gS 
opt_loop 

Execution (from DR): 

Clock REGop MEMop 

1 ld 

2 Id 

3 muli 

4 laddo 

5 lcmpo 

6 laddo 

7 I 
8 addi 

9 ld 

CTRLop 

bl.t 

I 

Where possible, instructions which change the condition codes should be separated from 
instructions that use the condition codes. Although correct branch prediction gives the same 
performance as separating the compare from the branch, prediction is statistical while 
separation is deterministic. In the previous example, optimized code advanced the comparison 
enough such that branch prediction is not being relied upon to keep the branch-true path 
executing at nine clocks. Further, the branch-false path does not take extra clocks since the 
condition codes are known when the branch is encountered. 

In a situation where the comparison and a branch cannot be separated to achieve a performance 
advantage, use the combined compare_and_branch instructions. This is likely to lead to faster 
execution since the two instructions are encoded in a single word. Not only does this code 
economy provide another location in the cache, but the IS may be able to see the upcoming 
branch earlier since it's encoded in the same opword as the comparison. 

Unroll Loops to Use All Registers 

Expand small loops into larger loops which fill the cache, use more registers and pipeline their 
memory operations. The strategy is to begin accessing the memory system immediately when 
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the routine is entered and make the best use of the bus. Less bus bandwidth is used for the 
same operations if the algorithm is implemented with quad loads and/or stores. 

The large register set allows an unrolled loop to have multiple sets of working temporaries for 
operations in various stages. For example, the previous checksum example is repeated here. 
The loop is unrolled to perform checksums nearly twice as fast as the simple loop. 

In general, if the registers are not completely used - or the bus is not saturated with quad 
operations - more unrolling can be done. 

Example A.3. Unroll Loops (Checksum) 

-- initLil.ize ~ 

loop: 
ldob 
ad do 

ret 

Execution: 

Clock 

1 

2 

3 

4 

5 

6 

REGop 

ad do 

cmpinco 

MEMop CTRLop 

ldob 

I 

I 

bl.t 

I 
ldob 

Enabling Constant Parallel Issue 

ir:itialize --

bl. t 
exit2: 

ad do 
ret 

ex_:_tl: 
ad do 
ret 

Execu::.ion: 

Clock 

I 

2 

3 

4 

5 

6 

7 

g4' g2' g2 

gl, g2' g2 

REGop MEMop 

ldob gl 

cmpinco I 

addo g4 I 
ldob g4 

cmpinco I 

addo gl I 
ldob g 1 

CTRLop 

bge.f 

I 

bl.t 

I 

As described in the Parallel Instruction Issue section of this appendix, certain sequences of 
instruction machine-types can be executed in parallel, such as: RM, RMC, MC. For example, 
the checksum loop is repeated with another clock eliminated from code reordering for parallel 
issue. 
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Example A.4. Order for Parallelism (Checksum) 

initialize --
loop: 

ldob 
ad do 
cmpinco 
bl. t 
ret 

Execution: 

Clock REGop 

1 

2 

3 
4 addo 

5 cmpinco 

6 

(gO), gl 
gl, g2, g2 
gO, g3, gO 
loop 

MEMop 

ldob 

I 

I 

ldob 

Migrating from Side to Side 

CTRLop 

bl.t 

I 

-- initialize -­
opt_loop: 

ad do 
ldob 
cmpinco 
bge.f 

ldob 

cmpinco 
addo 
bl. t 

exit2: 
addo 
ret 

exitl: 
addo 
ret 

Execution: 

Clock 

1 

2 

3 

4 

5 

6 

REGop 

addo g4 

cmpinco 

cmpinco 

addo gl 
addo g4 

g4, g2, g2 
(gO), gl 
gO, g3, gO 
exitl 

(gO), g4 

gO, g3, gO 
gl, g2, g2 
opt_loop 

g4, g2, g2 

gl,g2,g2 

MEMop 

ldob gl 

I 
ldob g4 

I 
I 

ldob gl 

CTRLop 

bge.f 

I 

bl.t 

I 

The i960 CA processor can sustain execution of two instructions per clock; to maximize this 
capability, try to start instructions in two of the three pipelines each clock. To increase 
parallelism, move an instruction from a unit which has become a critical path to a unit with 
available clocks. AGU performs shifts, additions and moves that can replace EU operations. 
Literal addressing mode, in combination with EU or AGU operations, provides some freedom 
in deciding which side loads constants into registers. Remember to use addressing modes that 
the AGU executes directly (machine typeM, notµ). 

Table A.17 lists several conversions that can move an instruction to the AGU from either the 
EU or MDU. Example A.5 exploits the Ida instruction to increase a 3x3 low-pass filter's 
performance of an image by approximately 30 percent. 
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Table A.17. Creative Uses for the Ida Instruction 

Operation Equivalent Ida instruction 

ad do 5, gO, gl # constant addition lda 5 (gO), gl 

sh lo 2, gl, g2 # shifts by a constant lda [ gl * 4], g2 

mov 31, gO # constant load lda 31, gO 

sh lo 2, gl, g2 # shift/add combination lda 5 [ gl * 4], g2 

ad do 5, g2, g2 

mov gO, gl # register move lda (gO), gl 

Example A.5. Change the Type of Instruction Used (3x3 Lowpass Mask) 

Y[ ] = X[ ] 0 M[ ] 

1 2 l 
16 16 16 

2 4 2 
M[ J 16 16 16 

2 
16 16 16 
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# initial values # initial values 
# gO points to X(0,0) # gO points to X(0,0) 
# gl points to Y(l,l) # gl points to Y(l,0) 
# g2 contains imax # g2 contains imax 
# r4 load temp # r4 load temp 
# rS accumulator # rS accumulator 
# r6 imax (i count temp) # r6 imax (i count temp) 
# r7 jmax (j count temp) # r7 jmax (j count temp) 
# r8 imax-1 # r8 imax-1 

# (new mask row offset) # (new mask row offset) 
# r9 2*imax - 2 # r9 2*imax - 2 

# (new i offset) # (new i offset) 
# rlO is 2*imax + 1 # rlO is 2*imax + 1 

# (new j offset) # (new j offset) 
b next _j new_next - l: 

next i: new_next _j: 
subo r9, gO, gO 

next _j: # first mask row 
# first mask row addo 1, gl, gl 

ldob (gO)' rS ldob (gO)' rS 
addo 1, gO, gO ad do l, gO, gO 

ldob (gO)' r4 ldob (gO)' r4 
ad do l, gO, gO addo l, gO, gO 
shlo 1, r4, r4 lda [r4 * 2], r4 
ad do r4, rs, rS addo r4, rS, rS 

ldob (gO)' r4 ldob (gO)' r4 
addo r4, rs, rS ad do r4, rS, rS 
addo rS, gO' gO addo rs' gO, gO 

# second mask row # second mask row 
ldob (gO)' r4 ldob (gO)' r4 
ad do 1, gO' gO addo l, gO, gO 
sh lo l, r4, r4 addo r4, rS, rS 
ad do r4, rS, rS lda [r4 * 2]' r4 

ldob (gO), r4 ldob (gO)' r4 
ad do 1, gO, gO addo l, gO, gO 
shlo 2, r4, r4 lda [r4 * 4]' 
ad do r4, rS, rS addo r4, rS, rS 

ldob (gO)' r4 ldob (gO)' r4 
sh lo 1, r4, r4 addo rS, gO, gO 
addo r4, rS, rS lda [r4 * 2], r4 
addo rs, gO, gO addo r4, rS, rS 

# third mask row # third mask row 
ldob (gO)' r4 ldob (gO)' r4 
addo 1, gO' gO addo l, gO' gO 
addo r4, rS, rS ad do r4, rS, rS 

ldob (gO)' r4 ldob (gO)' r4 
addo 1, gO' gO addo 1, gO, gO 
sh lo l, r4, r4 lda [r4 * 2]' r4 
addo r4, rS, rS addo r4, rs, rS 

ldob (gO)' r4 ldob (gO)' r4 
addo r4, rs' rs addo r4, rS, rS 
shro 4, rS, rS shro 4, rS, rS 

st ob rS, (gl) cmpdeco 2' r6, r6 
ad do 1, gl, gl st ob rs' (gl) 

subo r9, gO, gO 
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# update pointers 
cmpdeco 
bg 
mov 
cmpdeco 
subo 
ad do 
bg 
ret 

2, r6, r6 
next_i 
g2, r6 
2, r7, r7 
rlO, gO, gO 
2' gl, gl 
next_j 

Execution from DR (loop): 

Clock REG<!!>_ MEMo_p CTRLoQ 
l subo 
2 ldob 
3 ad do 
4 ldob 
5 ad do 
6 sh lo 
7 addo 
8 ldob 
9 ad do 
10 addo 
11 ldob 
12 ad do 
13 shlo 
14 ad do 
15 ldob 
16 ad do 
17 sh lo 
18 ad do 
19 ldob 
20 shlo 
21 ad do 
22 ad do 
23 ldob 
24 addo 
25 addo 
26 ldob 
27 ad do 
28 sh lo 
29 ad do 
30 ldob 
31 ad do 
32 shro 
33 stob 
34 ad do b_&:t 
35 cm_Qdeco I 
36 subo 

# update pointers 
bg.t new_next_i 
addo r9, gO, gO 
lda (g2), r6 
cmpdeco 2, r7, r7 
lda 2(gl), gl 
subo rlO, gO, gO 
bg.t new_next_j 

ret 
Execution from DR (new loop): 

Clock REGol!_ MEM<!!>_ CTRL<!!>_ 
1 addo ldob 
2 ad do 
3 ldob 
4 ad do Ida 
5 ad do ldob 
6 ad do 
7 ad do ldob 
8 ad do Ida 
9 ad do ldob 
10 ad do Ida 
11 ad do ldob 
12 ad do Ida 
13 ad do ldob 
14 ad do 
15 ad do ldob 
16 ad do lda 
17 ad do ldob 
18 ad do 
19 shro 
20 cmJJ_deco stob bg.t 
21 subo I 
22 addo ldob 
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Branching Optimizations 

Conditional branches execute faster if the actual branch direction is correctly predicted using 
the i960 CA processor branch prediction bits on conditional instructions. Conditional and 
unconditional branch-target code execute with more parallelism in the first clock if the branch 
target is long-word or quad-word aligned. (Quad-word is preferable for prefetch efficiency). 
Branches - specifically the Branch-and-Link instruction - can be used in place of procedure 
calls to avoid possible frame spills and fills. 

Correct Branch Prediction 

Setting the prediction bit to indicate the direction that a conditional instruction most often takes 
improves throughput, especially when the comparison related to the conditional instruction 
cannot be separated from the test. When the prediction is correct, branches generally execute in 
parallel with other execution. If prediction is not correct, the worst case branch time for cached 
execution is still two clocks. 

Although prediction bits are most likely set to gain maximum throughput, different strategies 
can be used for setting the prediction bits. For example, a code sequence dominated by a jungle 
of comparisons and conditional branches might see large differences between execution time 
of the fastest path to slowest path. Prediction bits can be set to provide the best average 
throughput to: 1) ensure the fastest worst case execution or 2) minimize deviation between 
slowest and fastest times. 

Branch Target Alignment 

Since the IS sees four words in a clock when the requested IP is long-word aligned and three 
words when the requested IP is not on a long-word boundary, aligned branch targets give the 
scheduler another word to examine on the first clock following a branch. This optimization is 
easy; however, there are only a few cases where the optimization pays off. 

The IS takes advantage of seeing four words on the first clock after a branch (instead of three) 
when the fourth word is a branch or micro-flow and all three previous opwords are executable 
in one clock. Example A.6 shows a three-word executable group (add followed by Ida with 
32-bit constant) followed by a micro-flow. The sequence executes one clock faster when the 
branch target is long-word aligned. The reason for the extra clock is described in the Micro­
flows section of this appendix. Since optimization can save one clock under such 
circumstances, it could be worthwhile in small loops that execute in only a few clocks, but 
execute often. 
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Example A.6. Align Branch Targets 

inii::alize 
.a~:gn ?. 
~:ov g 1J, gl) 
target: 

lda 
~:;canbi r-
ddGD 

Ext_: cu Lion: 

Clock REGop 

1 

2 

3 ad do 

µ4 scan bit 

µ 5 I 

6 ad do 

7 more 

+i=nop 

ME Mop 

Ida 

tfft, c(! 

CTRLop 

h target 

I 

Compress Code with Branches and bal 

-- initialize 
.align 2 

t cg et: 
adci 
l da 
'1Canb:t 

~xecut _:_on: 

Clock REGop 

I 

2 

3 addo 

µ4 scan bit 

5 ad do 

6 more 

f'.:ff, g2 

MEMop CTRLop 

b target 

I 

Ida 

bal takes three or four clocks to execute and does not cause a frame spill to memory. Replacing 
calls with branch_and_links is an obvious optimization. However, a not-so-obvious but equally 
beneficial optimization is to use branches and bal to reduce a critical procedure's code size. 

When porting optimized algorithms originally written on other processor architectures, the 
code is often expanded in a straight-line fashion due the branch speed penalties of the original 
target and the lack of on-chip caching. On the i960 CA processor, branches are virtually free in 
cached programs and cached program execution is dramatically faster than non-cached code. 
Therefore, branches and the branch_and_link instruction should be used to compress 
algorithms into the cache. For example, the previous low-pass filter routine could be modified 
to use coefficients from registers, versus literals. A short code piece could then sequence 
different filter coefficients through the registers and branch_and_link to the filter loop. The 
entire routine, which would fit in the instruction cache, could perform a chain of linear filters 
without a procedure call or cache miss. 

Caching 

Given the processor's vast ability to consume instructions and execute quad-word memory 
operations in parallel with arithmetic operations every clock, the instruction cache, register 
cache and on-chip data RAM are valuable resources for sustaining optimized execution . 
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Utilizing the Instruction Cache 

If an algorithm fits in the instruction cache, it generally executes faster than if it did not fit. 
This has not always been true with other processors, given the increased number of 
comparisons and branches that occur when code is compressed. 

If a loop fits in the cache but is not capable of executing two instructions per clock due to 
memory or resource dependencies, keep unrolling the loop and pipelining operations until 
cache is full. Generally, to increase performance of loops which iterate many times and 
perform memory operations, unroll until all registers are used and/or the cache is full. 

Finally, as mentioned in the previous section on branches, aligning branch targets can improve 
performance. While long-word aligned branch targets improve the scheduler's lookahead 
ability in the first clock of the branch, quad-word aligned branch targets reduce the number of 
long-word instruction fetches issued. Although the long-word fetch is implemented to reduce 
cache miss latency for many cases, the quad-word instruction fetch is most efficient from a 
system throughput point of view. See the section of this appendix titled Instruction Cache and 
Fetch Effects. 

Utilizing On-Chip Register Cache 

Register cache can be thought of as a data cache which selectively caches only that data related 
to procedure context. The section of Chapter 2, Programming Environment titled Procedure 
Call/Return Model describes the i960 CA processor's register cache. 

The register cache/data RAM partition is programmable, therefore, the user can determine the 
tradeoff between the level of procedural context caching versus static caching of procedure 
variables in the on-chip data RAM. Experiments can be run to measure the sensitivity of 
system performance to register cache depth of a fixed program. Minimizing register cache 
depth maximizes (frees up) the most on-chip data RAM for variable caching. 

Some situations exist where flushreg can optimize register cache usage. When an application 
crosses that imaginary boundary between non-real-time processing to real-time processing, it 
might be desirable to flush the register set so that initial frame spills are out of the way. A 
routine which flushes the register cache on entry has the effect of advancing frame spills which 
might happen within the routine to the beginning of the routine. This approach simply moves 
the time at which frame spills occur - however, this may actually cause a greater total number 
of spills to occur than would have otherwise occurred without the premature flush. 

flushreg can also control interrupt latency within specific sections of background code. For 
example, it may be wise to execute a flush at the beginning of a routine which executes a large 
number of loads from very, very slow memory. This reduces interrupt latency within that code 
piece since there is no possibility of the interrupt' s frame spill being lodged behind slow 
memory operations. 

Usage of this premature flush tactic is very application specific; however, it almost always 
makes sense to flush the register cache at the beginning of the application's main loop 
(i.e., after all initialization). 
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Utilizing On-Chip Data RAM 

On every clock, 128 bits of data can he loaded from or stored to the DR. This is a 528 Mb/sec. 
memory transfer rate (33 MHz clock), which is sustained simultaneously with single-clock 
arithmetic operations executing from the independent REG-side register ports. 

Allocated correctly, this resource dramatically increases performance of critical application 
algorithms. Locations within the DR can be dynamically allocated to leverage scarce DR space 
and/or globally allocated to achieve minimum latency to critical variables. 

Dynamically allocated variables should be those which are used heavily over short periods of 
time or are used heavily by one procedure. Such variables could be DMA descriptors for the 
currently active packets or coefficients for filters which process large images on command. 
Dynamically allocated DR space would be loaded from main memory at the onset of intense 
processing and restored to main memory as the activity subsides. 

Global allocation of DR space should be saved for storing variables which are heavily used by 
a variety of procedures over a long period of time or for storing variables needed by latency­
critical activities. For example, the programmer may wish to allocate the following in data 
RAM: coefficients for a continuously operating filter (e.g., FIR) and/or standard DMA 
descriptor templates from which run-time descriptors are built. 

Summary 

Table A.18 summarizes code opt1m1zation tactics presented in the previous sections. 
Figure A.19 is a copy of the execution pipeline template used to create the pipeline examples in 
this appendix. 
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Table A.18. Code Optimization Summary 

Tactic Description 

Advance "Long" Operations Separate comparisons, loads, stores and MDU operations 
from the instructions that use their results. 

Unroll Loops Unroll time consuming loops until: 
I) processor executes loop with two instructions per clock; 
2) bus is saturated with quad operations; 
3) no registers are left; 
4) loop does not fit in the cache. 

Order for Parallelism Alternate REG-side instructions with MEM-side 
instructions so they may be issued in parallel. 

Migrate the Operation To enable parallelism, move EU and MDU operations to 
the AGU or vice versa. 

Use Branch Prediction Set prediction bits correctly in conditional instructions. 

Align Branch Targets Align branch targets of critical loops on an even-word or 
quad-word boundary. 

Compress Code to fit If loop does not fit in cache, use branches, branch-and-
links or calls to compress code size so it fits. Use code size 
optimization instructions (e.g., cmpobe) where possible. 

Use Data RAM Use high-bandwidth data RAM space for performance-
critical and/or latency-critical variables. 
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APPENDIX B 
BUS INTERFACE EXAMPLES 

This appendix describes how to interface the processor to external memory systems. Also 
discussed arc non-pipelined and pipelined burst SRAM, non-pipelined burst DRAM, slow 8-bit 
memory systems and high performance pipelined burst EPROM. All examples assume a 33 
MHz bus; issues discussed in each example are independent of operating frequency. 

Design examples, state machines and pseudo-code are example only: refer to EV80960CA 
Microprocessor Evaluation Board User's Manual for actual programmable logic equations. 

NON-PIPELINED BURST SRAM INTERFACE 

This appendix uses a simple SRAM design to demonstrate how the i960 CA processor bus and 
control signals are used. The design also demonstrates the internal wait state generator. The 
basic SRAM interface provides the fundamental information needed to design most 1/0 and 
memory interfaces. The design supports burst and non-burst bus accesses. The SRAM interface 
is important for shared memory systems; variations can be used to communicate with external 
memory mapped peripherals. 

Background 

SRAM devices are available in a wide variety of packages and densities. SRAM address pins 
are always dedicated as inputs. Data pins may be dedicated as input or output or one set of data 
pins may be used for both data in and data out. Control signals usually found on SRAM 
include: Chip Enable (CE), Output Enable (OE) and Write Enable (WE). The following 
example deals with a SRAM that has CE, OE and WE control signals, address inputs and 
data input/output pins. 

The memory is read when CE and OE arc asserted and WE is not asserted. The memory is 
written when CE and WE are asserted. The OE input becomes don't care when WE is 
asserted. However, it is recommended that OE is not asserted at the beginning or end of a write 
cycle; this can lead to bus contention. 

Implementation 

The following example illustrates a 32-bit burst access SRAM interface. The design may be 
simplified if burst access modes are not required; it is easily modified for 8- or 16-bit buses. 

WAIT, generated by the internal wait state generator, is used to generate write strobes at the 
proper place in the write cycle. WAIT is used in the address generation circuit to generate mid­
burst addresses. External address generation improves performance in burst accesses. 
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Block Diagram 

The 32-bit burst SRAM interface consists of chip select logic, a state machine PLD and write 
enable logic. 

A31:4 

CHIP 
'-- SELECT t--

LOGIC 

G BA3:2 

STATE ADA ADA ADA ADA 
A3:2 1--- MACHINE 

SAAM SAAM SAAM SAAM PAL 
ADS 1--- CE 

CE H CE I-< CE H CE 
BLAST 1--- OE 

OE H OE r-<: OE H OE 
WAIT I-+- r< WE r<1 WE r< WE r<1 WE 

W/R 1-..-1 1--

1-+-1 1--
D7:0 D7:0 D7:0 D7:0 

PCLK 
~ 

~E 
- DY WEOi 

BEO 

BE1 
DYWE1 

BE2 
~WE2 

___./'" 

BE3 
~WE3 

__r 
D7:0 D15:8 D23:16 D31:24 

1 
D31:0 ..., 

270710·001-37 

Figure B.1. Non-Pipelined Burst SRAM Interface 

Chip Select Logic 

Chip select logic is a simple asynchronous data selector; it can be implemented with a 
demultiplexer or PLD. Chip select (CS) is based only on the address and is not qualified with 
any other signals. The state machine PLD qualifies CS with ADS (see the Waveforms section 
for more discussion on chip select generation.) 
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State Machine PLO 

The SRAM state machine PLD generates the CE and OE signals to the SRAM. This PLD also 
contains the next-address generation logic; this logic improves burst access performance. The 
improvement occurs because the i960 CA processor's worst-case address valid delay is longer 
than the PLD's worst-case delay. 

Write Enable Generation Logic 

The write enable generation logic generates the WE signal to the SRAM. WE signals are 
conditioned on the i960 CA processor byte enables (BE3:0), the write/read signal (W/R) and 
the wait signal (WAIT). 

There is a write enable signal, WE3:0, for each byte position corresponding to the byte enable 
signals, BE3:0; this allows byte, short-word and word-wide writes. Read accesses to this 
memory system always result in word reads. The i960 CA device, in the case of byte- or short­
word reads, reads the data from the correct place on the data bus. 

Chip Select Generation 

ADS assertion during the PCLK rising edge indicates the address is valid. Address setup time 
to this clock edge is PCLK period (T pp), minus address output delay (T ov ). CS signal 
generation time CS _gen) must satisfy the input setup time of the State Machine 
PLD(T PLD_setup)· Therefore: 

CS _gen= Tpp - Tov - TPLD_setup 
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Waveforms 

I D 
I 
I 

I NRAD = 0 
I I NRDD = o 
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I 
I I 

:um 

Figure B.2. Non-Pipelined SRAM Read Waveform 
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I A I 1 D I 1 D I 1 D I 1 I D A I 1 I D 

I I I I I I I I 

ADS [i\.J_/ \J..J I 
I 

I I I I NWAD= 1 

cs[~ :~ 
NWDD= 1 
NXDA = 0 

I I 1 WAIT STATE 
I I I I I BURST WRITE 

> : x; A2-3 [~-: ...---.-- x x x : a; :~ 
I I I 

VALID x A4-31 [~----------------- VALID ~ 
1 I I 

I I I I 

DATA [ 7!1/1!(/IX 0 x x x 3 X7ZZtx X7Z4 
I I I I 
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I 
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Figure B.3. Non-Pipelined SRAM Write Waveform 

Wait State Selection 

The i960 CA processor incorporates an internal wait state generator; wait state selection is 
dictated by the memory system. The number of NRAD wait states required is a function of 
output enable access time, chip enable access time or address access time. NRAD must be 
selected so the wait states and data cycle accommodate the longest of these times. It is 
important to consider PLD output delay. 

The number of NRoo wait states required is a function of address access time. NRDD must be 
selected so that the wait states and data cycle accommodate the memory system's address to 
data time. If the memory system is using the burst addresses provided by the i960 CA 
processor, then it is important to consider address output delay from the i960 CA device. If 
external address generation is used, PLD delay is important. 

The number of NwAo and Nwoo wait states required is a function of memory write cycle time. 
The number of NxoA wait states required is a function of the memory system's output-to-float 
time. NxoA determines how soon read data from the memory must be off the data bus before 
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any other device asserts data on the data bus. This could be a read from another memory 
system or a write from the i960 CA processor. 

Output Enable and Write Enable Logic 

The output enable signal is simply (see Figure B.l): 

OE =WIR 

The PLD is used to buffer the W/R signal; this may be necessary to reduce the load on the 
W/R signal. 

The write enable signals are: 

WE= !(WAIT & W/R); 
or 

WEO = !(WE & BEO ); 
WEl = !(WE & BEl ); 
WE2 =!(WE & BE2); 
WE3 =!(WE & BE3 ); 

The WAIT signal is used to create the write strobe. When W/R indicates a write and BEx and 
WAIT are asserted, the logic asserts WE . The i960 CA Microprocessor Data Sheet guarantees 
a relationship from WAIT high to write data invalid. 

State Machine Descriptions 

The state machine PLD incorporates two state machines: one controls SRAM chip enable 
(CE); the other generates the A3:2 address signals for multiple word burst accesses. 

The chip enable state machine controls the CE signal. CE is normally not enabled, but when 
both ADS and BSRAM_CS are asserted, CE is asserted and remains asserted until BLAST is 
asserted. BLAST indicates the access is complete. CE is the output of the state register; 
therefore, the CE output delay is the clock-to-output time of the PLD. Minimizing CE delay 
provides more memory access time. 

The A3:2 address generation state machine generates consecutive addresses for multiple word 
burst accesses. The address generation state machine is not necessary if the memory region is 
defined in the region configuration table as non-burst. 

The burst address outputs {BA3:2) correspond to registers within the PLD. Address generation 
time then corresponds to the clock-to-output time of the PLD. The BA3:2 signals are forced to 
0 when BLAST is asserted. 

The pseudo-code description that follows the figure is provided only to describe the State 
machine diagram. It is not intended to be PLD equations. A trailing # indicates a signal is 
asserted low. 
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BLAST 
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Figure 8.5. A32 Address Generation State Machine 
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0 (ADS & CS & !A3 & A2)1(CE &!WAIT & I BLAST) 

® ADS & CS & A3 & 'A2 

© ADS & CS & A2 & A3 

@BLAST 

® CE & IWAIT & !BLAST 

0 ACCESS 01 FIRST OR NEXT ACCESS 

® ACCESS01 

@ACCESS 11 

@ ACCESS COMPLETED 

® NEXT ACCESS 
270710-002-30 

Figure B.4. Chip Enable State Machine 

Pseudo-code Key 

# signal is asserted low equality test 
logical NOT clocked assignment 

&& logical AND value assignment 

I I logical OR x Don't Care 

STATE_O: /* BA3:2 = 00 */ 
IF /* access 01 OR NexL access */ 

(ADS && SRAM_CS && (A3:2 == 01)) 11 (CE & !WAIT & !BLAST); 
THEN 

next state is STATE_l; 
ELSE IF /* access 10 */ 

ADS && SRAM_CS && (A3:2 10); 
THEN 

next state is STATE_2; 
ELSE IF /* access 11 */ 

ADS && SRAM_CS && (A3:2 == 11); 
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THEN 
next state i STA'fE_3; 

ELSE ;• :dle or access 00 *! 
next staLe is STATE_O; 

STATE_!: 
IF 

!PLAST; 
THEN 

TEEN 
next ~::tate 1 s s:·ATE_\J; 

ELSE 
LAXt 

nex~ e .s ~~_]; 

ELSE ::F 
BLAS-:'; 

THEN 
next state is S~ATE_O; 

:2::;:;i]l*/ 

1 * Next access *.· 

* .Just 

ii) * . 
t:cx~ 

* Done */ 

ELS~ '* ,=-ust * l 

next state is ST~TE_~; 
STATE -~: 

TF 
BLAST; 

THEN 
r:ex: s:aLe ~s SThTE_O; 

ELSE 
next state is S'L~TE_-~; 

/ '1'; BA~ : 2 - 2- ~- * I 
/ * Done * / 

In the pseudo-code description, the assertion of ADS and SRAM_CS indicates the beginning 
of an access. The state machine jumps to the proper state based on A3:2. The assertion of CE 
indicates that an access is underway. The assertion of CE. !WAIT and !BLAST indicates that 
the current transfer is complete and it is time to generate the next address. The assertion of 
BLAST indicates the access is complete. 

Tradeoffs and Alternatives 

The SRAM example just described demonstrates a burst SRAM memory interface. If a non­
burst interface is desired, the address generation section of the state machine PLO may be 
removed. The design is also easily expanded to accommodate multiple banks of SRAM. 

The i960 CA processor integrated bus controller simplifies external memory system design. 
The internal wait state generator decouples the memory speed from the memory controller. The 
memory control PLD does not use any of the memory access parameters. So, operation of the 
memory control PLO is independent of memory access times. Memory access parameters are 
entered into the Memory Region Configuration Table via software. 
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PIPELINED READ SRAM INTERFACE 

The following example illustrates the implementation of a pipelined read SRAM system. A 
zero wait state pipelined read memory system will have a 20 percent improvement in read data 
bandwidth over a non-pipelined memory system using the same memory devices. The 
pipelined read memory system is similar in design to the burst memory system; the only major 
addition is an address latch. 

A pipelined read memory system is the highest performance memory system that can be 
interfaced to the i960 CA processor. The address cycle of consecutive accesses is overlapped 
with the data cycle of the previous access. This results in the maximum bandwidth utilization 
of the bus. (See Figure B.6.) 

I I 

ADA cD< __ x ___ x ___ x ___ ~ 
I 

I I 

MEMORYADR [~~ o x"" __ _,X 2 x 3 >m 
I I 
I I 

DATA[~ x __ x 2 x 3 ~ 
I I 
I I 

PCLK [ 1 I 

I 
I 

Block Diagram 

Figure B.6. Pipelined Read Address and Data 

270710-001·41 

The same SRAM used in a non-pipelined read memory system is used in a pipelined read 
memory system. Figure B.7 shows a 32-bit-wide burst read pipelined memory system. Burst 
mode is used to speed write accesses. 

The design of a pipelined read SRAM interface is very similar to the design of a non-pipelined 
SRAM interface. The difference is that an address latch and a W /R latch have been added. 

Chip select logic is a simple asynchronous data selector. Chip select (CS ) is based only on the 
address and is not qualified with any other signals. (See the section in this appendix titled Non 
Pipelined 1 -Burst SRAM example for more information on chip select generation.) 
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Figure B.7. Pipelined SAAM Interface Block Diagram 

Address Latch 

During pipelined reads, the i960 CA processor outputs the next address during the last data 
cycle of the current access. This requires either an address latch or memory devices that are 
designed to work with the pipelined bus. 

State Machine PLO 

The state machine PLD contains logic to control CE and address signals A3:2. CE is 
controlled by a simple state machine; A3:2 automatically increment during burst accesses. The 
A3:2 signals are pipelined; they must be latched for read accesses. Write accesses are not 
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pipelined; therefore it is necessary for burst writes to latch A3:2 on .reads and pass A3:2 
through. The A3:2 generation is implemented as a state machine to achieve minimum address 
delay out of the PLD. PA3:2 (pipelined address 3:2) outputs are also the state bit of the PLD. 
This ensures that the address delay is only the clock-to-output time for the PLD. 

Write Enable Logic 

Write enable logic uses the byte enable signals (BE3:0), the WAIT signal and a latched version 
of the W/R signal (OE). Therefore: 

Waveforms 

I Ao I Doo r 
I I I 

Aos[N-J 

I 

A2-31 [ 

Do1 I 
I 

WE= !(OE & WAIT & BE); 
or: 

WEO =!OE 11WAIT11 BEO; 
WEI = ! OE I I WAIT I I BEl ; 
WE2 =!OE 11WAIT11 BE2; 
WE3 =!OE 11WAIT11 BE3; 

A1 A2 

Do2 I Do3 I D10I D11 I D12 I D13 I 
I I I I I I 
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\ 
I 

'-+-1: I 

I I 

I 
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D20 I 
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Figure B.8. Pipelined Read Waveform 
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DEN remains asserted as long as consecutive pipelined read accesses continue. DEN and 
DT/R are related to the data, not the address; therefore, DEN and DT/R are not pipelined and 
retain the same timing for pipelined and non-pipelined reads. 

In the pipelined read mode, a series of non-burst accesses results in ADS remaining asserted 
for several clock cycles. Similarly, BLAST remains asserted for several clock cycles. 

WIR behaves slightly differently for pipelined reads than for non-pipelined reads. W/R is not 
valid for the last cycle of a pipelined read. This requires that W/R be latched for pipelined 
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reads similar to A31 :2. The following signals are pipelined during pipelined read accesses: 
A31:2, BE3:0, SUP, DMA and D/C. All of these pipelined signals are invalid during the last 
cycle of a pipelined read. 

Address delay time for the pipelined read is a the clock-to-Q time of the address latch (or the 
PA3:2 generation PLD). Minimizing address delay maximizes access time. 

State Machines 

BLAST & ! (ADS & PSRAM_CS) 

270710-001-44 

Figure B.9. Pipelined Read Chip Enable State Machine 

Chip enable (CE) is controlled by a simple state machine. The state machine is normally in the 
idle state and CE is not asserted. When ADS and PSRAM_CS are asserted, the CE state 
machine goes to the active state. CE remains active until BLAST is asserted. 
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0 BLAST 

@ !WAIT & !BLAST 

@ ADS WR CS !A3 !A2 

® ADS WR CS !A3 A2 

@ ADS WR CS A3 !A2 

@ ADS WR CS A3 A2 

STATE BITS 
xxx 

XA3A2 

Figure B.10. Pipelined Read PA3:2 State Machine Diagram 

270710-002-31 

The PA3:2 state machine latches the A3:2 address bits on read and generates the low address 
bit for writes. During read, PA3:2 is a latched version of A3:2. If a write access occurs, the 
state machine generates the proper PA3:2 addresses. 

The pseudo-code description below is provided only to describe the state machine diagram. It 
is not intended for use directly as PLD equations. 

Pseudo-code Key 

# signal is asserted low equality test 
logical NOT clocked assignment 

&& logical AND value assignment 

11 logical OR x Don't Care 
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READ_STATE: !* PA3:2 := A3:2 */ 
IF 

ADS && WR && PSRAM_CS && (A3:2 == 0); 
THEN 

the next state is WRITE_O; 
ELSE IF 

ADS && WR && PSRAM_cs && (A3:2 1); 
THEN 

the next state is WRITE_l; 
ELSE IF 

ADS && WR && PSRAM_CS && (A3:2 2); 
THEN 

the next state is WRITE_2; 
ELSE IF 

ADS && WR && PSRAM_CS && IA3:2 3); 

THEN 
the next state is WRITE_3; 

ELSE 
PA3 := A3; 
PA2 : = A2; 
the next state is the READ_STATE; 

WRITE 0; - /* A3:2 = 

IF 

BLAST; 
THEN 

the next state is the READ_STATE; 
ELSE IF 

!WAIT & !BLAST; 
THEN 

the next state is WRITE_l; 
ELSE 

the next state is WRITE_O; 

WRITE_l: /* A3:2 
IF 

BLASTi 

THEN 
the next state is the READ_STATE; 

ELSE IF 
!WAIT & !BLAST; 

THEN 
the next state is WRITE_2; 

ELSE 
the next state is WRITE_l; 

0 */ 

1 */ 

WRITE_2: !* A3:2 2 */ 
IF 

BLAST; 
THEN 

the next state is the READ_STATE; 
ELSE IF 

!WAIT & !BLAST 
THEN 
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the next state is WRITE_3; 
ELSE 

the next state is WRITE_2; 

WRITE - 3: /* A3:2 3 */ 

IF 
BLAST; 

THEN 
the next state is the READ _STATE; 

ELS!:<: 
the next state is \'IRITE_3; 

In the READ_STATE, the state machine simply latches A3:2 and outputs them as PA3:2. On a 
write, the state machine jumps to the appropriate state based on the value of A3:2. When in a 
write state, the slate machine will advance to the next write state if WAIT and BLAST are not 
asserted. The state machine can advance from any write state to the READ _ST A TE. 

Tradeoffs and Alternatives 

The example described above demonstrates a burst pipelined read SRAM memory interface. 
Burst mode is used to improve write performance. If write performance is not critical (i.e., if 
the region is used only for code), the next address generation PLD can be removed. The design 
is easily expanded to accommodate multiple SRAM banks. 

INTERFACING DYNAMIC RAM WITH THE i960™ CA PROCESSOR 

This section provides an overview of DRAM and DRAM access modes and describes an i960 
CA processor-specific DRAM interface. Two specific design examples are also included: one 
design uses the integrated DMA unit to refresh the DRAM, the other example uses the CAS­
before-RAS method of refresh. Both designs illustrate the advantage of the i960 CA 
processor's burst bus and the fast column address access times available on many modern 
DRAMs. 

The burst bus and memory region configuration tables simplify DRAM interface to the i960 
CA processor. DRAM systems can be designed in many ways - there are memory access 
options, memory system configuration options and refresh mode options. 

DRAM OVERVIEW 

DRAMs offer high data density, fast access times and low cost per bit. DRAMs are available in 
a wide variety of packages, making it easy to pack a lot of memory into a small space. DRAM 
features described here are provided as general information. (See specific data sheets for 
detailed information.) 

The i960 CA processor's burst mode bus is well suited to the high speed multiple column 
access modes found in DRAM. Nibble, fast page and static column modes of DRAM can 
easily be exploited to improve i960 CA processor memory system performance. 
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All DRAMs have a multiplexed address bus, a write enable input (WE) and two address 
strobes: row address strobe (RAS) and column address strobe (CAS ). Some DRAMs also have 
an output enable input (OE). DRAMs are accessed by placing a valid row address on the 
address input pins and asserting RAS: then the column address is driven onto the DRAM 
address pins and CAS is asserted. Write enable (WE) input on the DRAM determines whether 
the access is a read or write. Output enable input (OE). found on some DRAMs, controls the 
DRAM output huffers and can he useful for multibanked and interleaved designs. 

DRAM Access Modes 

Nibble mode DRAM allows up to four consecutive columns within a selected row to be read or 
written at a high data rate. A read or write cycle starts by asserting RAS. Strobing CAS 
accesses the consecutive column data. Input address is ignored after the first column access. 

ADR[ ________ R_ow ________ __,)(~----C-OL_o ____ _,~ 

RAS[ 

GAS [ 

c 
DATA [ ------Hl·Z-----

270710-002-32 

Figure B.11. Nibble Mode Read 

Fast page mode DRAM is similar to nibble mode DRAM, except fast page mode allows any 
column within a selected row to be read or written at a high data rate. A read or write cycle 
starts by asserting RAS. Strobing CAS accesses the selected column data. During reads, the 
CAS falling edge latches the address (internal to the DRAM) and enables the output. The 
processor· s four word burst bus can easily take advantage of the faster column access times 
provided by fast page mode DRAM. 
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ADR [ ____ R_o_w _____ x COLO x COL1 x COL2 x COL3 x::= 

DATA [----H1-z-----< 
270710-002-33 

Figure B.12. Fast Page Mode DRAM Read 

Static column mode DRAM write accesses are similar to fast page mode writes. Static column 
read cycles start by asserting RAS. Accesses to any column within the selected row may be 
treated as static RAM, using CAS as an output enable. The fastest DRAM read accesses are 
achieved with static column DRAM. The i960 CA processor's four word burst bus can easily 
take advantage of the faster column access times provided by nibble mode, fast page mode or 
static column mode DRAM. 

ADR [ x x x x x 
RAS [ \ I 
GAS [ 

WE [=1 c 
DATA [ Hl-Z < co x C1 x C2 x C3 ) 

270710-002-34 

Figure B.13. Static Column Mode DRAM Read 
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DRAM Refresh Modes 

All DRAMs require periodic refresh to retain data. DRAMs may be refreshed in one of two 
ways: RAS-only refresh or CAS-before-RAS refresh. RAS-only refresh is realized by 
asserting a row address on the address pins and asserting RAS. CAS is not asserted. A single, 
RAS-only refresh cycle refreshes all columns within the selected row. CAS-before-RAS 
refreshes do not require an address to be generated: the DRAM generates the row address with 
an internal counter. 

ADR[~ ROW 

CAS [ ___ __, 
270710-001-45 

Figure B.14. RAS only DRAM Refresh 

ADR [ 

\ ... ________________ ....... t ... ___ _.I 270710-001-46 

Figure B.15. CAS-before-RAS DRAM Refresh 

DRAMs may be refreshed in either a distributed or a burst manner. Burst refresh does not refer 
to the burst access bus. The term simply means that all memory rows are sequentially accessed 
when the refresh interval time expires. Distributed refresh implies that refresh cycles are 
distributed within the refresh interval required by the memory. 

Distributed refresh cycles are spread out over the refresh interval, reducing the possible access 
latency. Burst refreshing may lock the processor out of the DRAM for a longer period of time; 
it may be inappropriate for some applications. Burst refreshing, however, guarantees that no 
refresh activity occurs between refresh intervals. Some applications may take advantage of this 
to burst refresh the DRAM during a time it will not be accessed, making refresh invisible to the 
application. 
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Address Multiplexer Input Connections 

Address multiplexer inputs can be ordered such that 256 Kbyte through 4 Mbyte DRAM can 
be supported. Interleaving the upper address signals provides compatibility with all these 
memory densities. Figure B.16 illustrates this arrangement. Availability of DRAM modules 
with standard pinouts makes this an attractive way to ensure future memory expansion. 

PROCESSOR ADDRESS 
DRAM ADA COL ROW 

I I I 
A2 A11 

A3 A12 

A4 A13 

AS A14 

256K 1M 4M A6 A15 

1 1 1 
A7 A16 

AS A17 

A9 A18 

A10 A19 

A20 A21 

10 A22 A23 270710-001-47 

Figure B.16. Address Multiplexer Inputs 

Series Damping Resistors 

Series-damping resistors are recommended on all DRAM control and address inputs. Series­
damping resistors prevent overshoot and undershoot on DRAM input lines. Damping is 
required because of the large capacitive load present when many DRAMs are connected 
together, combined with circuit board trace inductance. Damping resistor values are typically 
between 15 and 100 Ohms, depending on the load; the lower the load, the higher the required 
damping resistor value. If the damping resistor value is too high, the signal will be 
overdamped, extending memory cycle time. If the damping resistor value is too low, overshoot 
or undershoot will not be sufficiently damped. 

System Loading 

The i960 CA processor can drive a large capacitive load. However, systems with many DRAM 
banks may require data buffers and, for interleaved designs, multiplexers to isolate the DRAM 
load from the i960 CA processor or other system components with less drive capability (e.g., 
high speed SRAM). 

RAS and CAS inputs to the DRAM should also be designed with consideration for capacitive 
load. When many DRAMs are connected to common RAS and CAS signals, the capacitive 
load can become considerable. 
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Design Example: Burst DRAM with Distributed 
RAS Only Refresh Using OMA 

The goal of this design is to illustrate a DRAM interface controller that provides good memory 
performance while maintaining controller independence with respect to memory speed and 
processor clock frequency. One of the four on-chip integrated DMA channels is used for 
DRAM refresh. The region table. DMA and the i960 CA processor bus signals arc used to 
develop a transparent DRAM controller that docs not require any information about the 
memory subsystem. 

Figure B.17 shows the DRAM system design. The DRAM is configured as a single, byte 
accessible, 32-bit-wide bank. RAS is common to the entire bank; CAS3:0 serve as byte selects 
within the bank. WE is common to all the DRAM. The byte accessible bank can be built from 
four 8-bit-wide DRAM modules; eight 4-bit-wide DRAM modules; eight 4-bit-wide DRAM 
chips: or 32 1-bit-wide DRAM devices. 

ADR 
A10.4, A21.1.3 

21 
COL-ADA MUX l cs LOGIC 

cs A3:2. A12:11 

ADR 
LOGIC 

PCLK 
POLK PCLK 

BLAST 
BLAST BLA5T t-

WAiT WAiT WAIT 

L cm::A5R cm::A5R 
DRAMX8 

DRAM ......._, 
CONTROL ,___, LOGIC d-, L.::£-1 _r:_- -:i ,.c..::L.=.,-, 

A I A I A I A I 
ADs 

RAS 
RAS ~ RAS tt= RAS ttj RAS I 

wrR Wi' WE' \NE WE WE I 
BE3:0 

CAS3·o 
CASO I r-1 CAS1 I r- CA$2 

I ,_..., CAS3 I 
6AcK5 I I I I 

D t- D I- D I-' ~ 
DREQO 0 REF REO 

REFRESH ..._, REQUEST 07:0 r- 015:8 023·16 r- 031 24 
TIMER/ 
LOGIC 

031 0 

270710·002-35 

Figure B.17. DRAM System with OMA Refresh 

Control logic is divided into three logical blocks: DRAM control logic, DRAM address 
generation logic and refresh request timer logic. DRAM control logic is the main controller. It 
controls the address multiplexer and all DRAM control lines during normal and refresh 
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accesses. Address generation logic serves as a multiplexer and an address generator. The 
refresh request timer logic generates the periodic refresh request to the DMA unit. 

DRAM Address Generation 

DRAM address generation logic speeds burst accesses for static column mode and fast page 
mode DRAM. This is accomplished by reducing the time required to present the consecutive 
column addresses during a burst access. If the address generator is not present, the address 
valid delay time consists of the worst-case i960 CA processor address valid delay time (T ov ), 
plus the worst-case propagation delay through the input address multiplexer. 

DRAM address generation logic must control the DRAM address two least significant bits. 
During the initial DRAM access, address generation logic acts like a multiplexer. During 
column accesses within a burst, address generation logic generates consecutive addresses. 
Therefore, DRAM address generation logic is designed to function as a multiplexer and an 
address generator. 

If an address generator is used, address valid delay time is equal to address generation time. 
Address generation delay time consists of the clock-to-feedback and feedback-to-output delays 
for the selected device. 

The following state machine description illustrates the requirements for address generation 
logic. Signals going into the DRAM address generation logic are: ADR2, ADR3, ADR12, 
ADR13, WAIT and BI:AS'f from the i960 CA processor and COL_ADR from the DRAM 
controller logic. COL_ADR indicates if the DRAM controller is requesting the row address 
(COL_ADR not asserted) or column address (COL_ADR asserted). Signals output from 
DRAM address generation logic are the DRAM address two least significant bits, 
DRAM_ADR2:3. 
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STATE: 

0: ADDRESS MULTIPLEXER 

IF(!COL_ADR) 
DRAM_ADR 3:2 = ADR 3:2 

IF(COL_ADR) 
DRAM_ADR 3:2 = ADR 13:12 

1: DRAM_ADR 3:2 = 0:1 
2 DRAM_ADR 3:2 = 1 :0 
3: DRAM_ADR 3:2 = 1 :1 

0 !BLAST & 'WAIT & 1A3 & IA2 

® 'BLAST & !WAIT & A3 & !A2 

@ !BLAST & 'WAIT 

@BLAST 

270710-001-48 

Figure B.18. DRAM Address Generation State Machine 

The pseudo-code description below is provided only to describe the state machine diagram. It 
is not intended for direct use as PLD equations. 

Pseudo-code Key 

# signal is asserted low -- equality test 

! logical NOT . - clocked assignment 

&& logical AND = value assignment 

I I logical OR x Don't Care 

STATE_O: /* Multiplexer Ern~lation */ 

DRAM_ADR2 
DRAM_ADR3 

( ! COL_ADR && A2) I I ( COL___ADR && All) ; 

IF 
( ! COL ADR && A3) I I ( COL_.Z\DR && Al2 I ; 

/* address generation */ 

WAIT && !BLAST && COL_ADR 

&& (ADR3 == 0) && (ADR2 == 0); 
THEN 

next state is STATE_l; 
ELSE IF 

WAIT && BLAST && COL_ADR 
&& (ADR3 == 1) && (ADR2 

THEN 
next state is STATE_3; 

ELSE 
next state is STATE_O; 

0); 
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STAT'E_l: /* Generate address 01 */ 

IF 

DRAM_ADR2 
DRAM_ADR3 

BLAST; 
THEN 

1; 

0; 

next state is STATE_O; 
ELSE IF 

BLAST && WAIT; 
THEN 

next state is STATE_2; 
ELSE 

next state is STATE_l 
STATE_2: /* Generate address 10 */ 

IF 

DRAM_ADR2 
DRAM_ADR3 

BLAST; 
THEN 

0. 

1; 

next state is STATE_O; 
ELSE IF 

BLAST && WAIT; 
THEN 

next state is STATE_3; 
ELSE 

next state ic STATE_2 
STATE_3: /* Generate address 11 */ 

DRAM_ADRO 1; 
DRAM_ADRl 1 ; 

IF 
BLAST; 

THEN 
the next state is STATE_O; 

ELSE 
next state is STATE_3 

DRAM Controller State Machine 

Figure B.19 is a state machine that describes DRAM control logic. The state machine shown, 
or subsets thereof, may be implemented in a large variety of ways depending on the 
applications requfrements. PLD implementations are the easiest and the design may fit into a 
variety of high speed PLDs. 

Signals going into the DRAM control logic are: ADS, PCLK, W/R, BLAST, WAIT, BE3:0 
from the bus controller; DACKO, the DMA acknowledge signal; and DRAM_CS, a system 
generated chip select that indicates a DRAM access. DRAM control logic generates RAS, 
CAS3:0, WE and COL_ADR. Control signal for the address multiplexer is COL_ADR. 

Controller logic relies on the wait state region table and DMA controller. Programming these 
on-chip peripherals is described later. DMA acknowledge, DACKO, indicates a DRAM refresh 
cycle. The DRAM WE signal is generated with combinatorial logic (WE=!(W/R)). 
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@ 

0 ADS & DRAM_ CS & IDACKO 

® IW/R - READ ACCESS 

@) W/R - WRITE ACCESS 

®BLAST 

® ADS & DRAM_CS & DACKO 

© 

@ 

Figure B.19. DRAM Controller State Machine 
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STATE_O: 
RAS 

CAS3:0 
COL_ADR 

/* 
is 
is 
is 

Idle */ 
not asserted; 
not asserted; 
not asserted; 

IF /* memory access */ 
ADS && DRAM_CS 

THEN 
&& !DACKO; 

the next state is STATE_l; 
ELSE IF /* refresh access */ 

ADS && DRAM_CS && DACKO; 
THEN 

the next state is STATE_S; 
ELSE 

the next state is STATE_O; 

STATE_l: /* Assert RAS 

RAS 
CAS3:0 
COL_ADR 
IF 

is asserted; 
is not asserted; 
is not asserted; 

WRITE; 
THEN 

/* write */ 

the next state is STATE_3; 
ELSE /* read */ 

the next state is STATE_2; 

*/ 

STATE_2: 

RAS 
CAS3:0 
COL_ADR 
IF 

/* Static Column Mode Read, Assert CAS */ 

is asserted; 

BLAST; 
THEN 

is asserted; 
is asserted; 

the next state is STATE_O; 
ELSE 

the next state is 
STATE_3: 

RAS 
CAS3:0 
COL_ADR 

STATE_2; 
/* Select Column Address */ 
is asserted; 
is not asserted; 
is asserted; 

the next state is STATE_4; 

STATE __ 4: 

RAS 
COL_ADR 
CASO EEO; 
CASl 
CAS2 
CAS3 
IF 

BEl; 
BE2; 
BE3; 

WAIT && BLAST; 
THEN 

/* Assert CAS */ 

is asserted; 
is asserted; 

the next state is STATE_3; 
ELSE IF 

BLAST 
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THEN 
the next state is STATE_O; 

ELSE 
the next state is S7ATE_4; 

STATE_5: i' REFRESE CYCLE, RAS ONLY H2FRESH * .1 

RAS not asserted; 
CAS3:0 is DO~ dSSe1ted; 
COL_ADf<_ is dsserted; 

the r1~xt stctte is 

STATE_G: 

RAS 
CAS3:0 
COL_ADR 
IF 

BL~Z\ST; 

'CHEN 
the next 

ELSE 
the next 

state 

state 

is 

is 

!* REFRESH CYCLE, 
d:._:.;serL.ed; 

is not asserted; 
is asser-ted; 

STAT:': _U; 

STATE_6; 

DRAM Refresh Request and Timer Logic 

?t\S 

DRAM refresh request and timer logic is responsible for generating DMA requests at an 
appropriate interval and for removing the DMA request after receiving DMA acknowledge. 

Typical DRAMs must be refreshed every 4 ms; refresh cycles must be performed on all 256 
rows during this 4 ms interval. If a distributed refresh method is chosen, then a refresh cycle 
must be performed every 15 µs. The time base can be generated from a counter connected to 
PCLK, a timer counter chip or any other time base. DMA request and acknowledge signals are 
shown in Figure B.20. 
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OMA I I 
I I 

[I \ L 7 I 
OREO I ,, I 

I 
,, 

I 
I I -cl '' \ IT ,, 

DACKO J 

I I 
I I 

ADS c: \_;J I 
I 

I I 
I I 

ADR c: x OMA c:: 
I I 
I I I 

BLAST c: \JJ'i 
I 

270710·001 49 

Figure B.20. OMA Request and Acknowledge Signals 

OMA Programming for Refresh 

DMA should be programmed to perform 32-bit, fly-by, source synchronized demand mode 
transfers with source chaining. The chaining must be set up to perform an infinite loop of 
transfers. When all transfers are complete and all rows are refreshed, the cycle begins again. 
See Figure B.21 for chaining description. 

ADR: 
oxxxxxxxxo 

DRAM_REF _CHAIN 

Memory Ready 

OxC oxa Ox4 

NEXT_PTR DESTINATION ADR SOURCEADR 

& DRAM_REF _CHAIN x DRAMADR 

Figure B.21. OMA Chaining Description 

OxO 

BYTE COUNT 

NUMBER OF ROWS 

270710·001-50 

The memory ready input to the i960 CA processor (READY) indicates the completion of a 
DRAM read or write cycle. READY must be generated by the DRAM controller and must 
satisfy setup and hold times specified in the data sheet. If there multiple memory systems are 
using READY, ready signals from these memory systems must be logically ORed together. 
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Region Table Programming 

Region table programming is critical to DRAM operation. NRAD and NwAD wait states must 
satisfy RAS, CAS and address valid times for the DRAM. NRDD and Nwoo times must satisfy 
the column address to data access times. The NxnA time must satisfy RAS precharge time. 
Figures B.22 and B.23 shows typical system waveforms for this design. Note that RAS is not 
asserted until the end of the address cycle; this delay contributes to RAS precharge time. In 
some DRAM designs, it may be possible to remove RAS before access is complete. This is 
especially true for static column reads and multiple world access. If RAS can be removed early 
in the access, RAS precharge can occur during the access. 

I 
I A 3 D D D D T 

I I 

ADs[~ I 
I 

I I 
I I -cl \ ) I 

RAS I I 
I I I 
I I I 

DRAM[ I 
ADR I ROW ~ COLOO x COL01 x COL 10 x COL 11 >C 

I I I I I I I I I 
I I I I I I I I I c ~ 

I I I I I ri GAS I I I I I I 
I I I I I I 
I I I I I I 

DATA[ 
(CA) 

00 01 10 

I I I 

BLAST [ t I lJT 
I 
I 

WAIT[: 

I 
270710-001-51 

Figure B.22. DRAM System Read Waveform 
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I A I I 2 D D D D T 
I I I 

Aos[ i\ I 1: I I I 
I I I I I 

I I I I I I I 
I I I I I I I 

-c' :, I I I I y RAS I I I I I 
I I I I I I I 
I I I I I I I 

~~~M[ i ~o >< ~ux oo :x >1 :x : 
10 :x >1 :x i 

I I 

CAS [I I I I I I 
I I I I I I 
I I I I I I 

DATA [ l 
(CA} o~ :x : 

01 :x : 10 :x >1 '.'AV)p11m! 
I I I I 
I 

' --WE[ I 
I I 

I I I I 

BLAST [ vmvt(n I I 

:\___;) 
I I 
I 

WAIT[ I I I 
I I 
I I I 

270710-001-52 

Figure B.23. DRAM System Write Waveform 

Design Example: Burst DRAM with Distributed 
CAS-Before-RAS Refresh using READY Control 

This example illustrates a DRAM system design that uses CAS-before-RAS refresh and 
READY control. CAS-before-RAS refresh uses the internal refresh address generation 
capabilities of modern DRAMs. The design does not use a DMA channel for refresh. READY 
must be generated by the DRAM controller to indicate that a data transfer is complete. The 
controller must arbitrate between access requests and refresh requests, control the address 
multiplexer and RAS precharge time. The internal wait state generator is not used. DRAM 
controller must be designed with information about processor and DRAM speed. 
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ADA 
A10:4, A21:13 

~ 
2c1 

COL-ADA MUX 

-cs A3:2, A12:11 

ADA 
LOGIC 

PCLK 
PCLK PCLK 

Bt:AsT BLAsT BLAST !--' 

WAiT WAiT WAiT 

[ Col-ADA cor:A5R 
DRAM XB 

DRAM ..._ 
CONTROL 

LOGIC 

~, ,___ 
_r_± 1 __r:_- -, __c_ - -, ....___£[_ 

A I A I A I A I 
A5S 

RAs 
RAs ~ iiAs b RAS It= RAs I 

W/R 
WE WE WE WE WE I 

BE3'0 
CAS3c0 CASO Ir- CAS1 I ;-i CAS2 Ir- CAS3 I 

_[ ~ 
I I ~ I 
~ D t- D D t-

READY 
L u REF_REO 

REFRESH 
J-D15c8 J-031 24 REQUEST 1 D7c0 D23c16 

TIMER 

031·0 

270710-002-37 

Figure B.24. Block Diagram 

The memory system block diagram (Figure B.24) is similar to the schematic for the previous 
example, except for the absence of the DMA controller connection. The refresh timer indicates 
it is time to refresh the DRAM. 

DRAM Controller State Machine 

The state machine in Figure B.25 is more complicated that the state machine in the previous 
example. This is because the controller works without the help of the internal wait-state 
generator. There are two advantages of this design over the previous example: a DMA channel 
is not used and the refresh cycle does not require the processor bus. Not using a DMA channel 
for DRAM refresh makes the DMA channel available for other applications within the system. 

CAS-before-RAS refresh mode does not require the bus or any processor intervention; 
therefore, DRAM refresh occurs autonomously. The DRAM controller state machine described 
here assumes 80 ns static column mode DRAM with a 33 MHz clock (PCLK). This DRAM 
controller does not require the internal wait state generator; as a result, all wait state parameters 
can be programmed to 0. 
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NOT RAS 
NOT GAS 
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NOT RAS 
NOT GAS 
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ROY & BLAST 
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REF_REQ 

RAS 
NOT GAS 
NOT READY 
NOT GOL_ADR 
WE= WRITE 

RAS 
NOT GAS 
NOT READY 

GOL_ADR 
WE= WRITE 

RAS 
GAS:=BE 
READY=! WRITE 
GOL_ADR 
WE=WRITE 

RAS 
GAS:=BE 
READY 
GOL_ADR 
WE= WRITE 

ADS & CS 

ACC_REO 

Figure B.25. DRAM State Machine 

NOT RAS 
GAS 

NOT ROY 
NOT WE 

RAS 
GAS 

NOT ROY 
NOT WE 

RAS 
GAS 

NOT ROY 

RAS 
GAS 

NOT ROY 

270710-002-38 

The refresh request timer generates the refresh request signal (REF _REQ), indicating that it is 
time to refresh the DRAM. The controller gives preference to refresh requests over access 
requests. This ensures that the entire memory remains refreshed. The access request signal 
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(ACC_REQ) shown on the state diagram is a latched signal. ACC_REQ is asserted when ADS 
and DRAM_CS are both asserted. ACC_REQ is deasserted when BLAST is asserted. It is 
necessary to latch the access request because the controller could be in a refresh or RAS 
precharge state when the processor accesses the DRAM. 

The pseudo-code description bclow is provided only to describe the state machine diagram. It 
is not intended to be used directly as PLD equations. 

COL_)\DP 

READY 

\'JE 

IF 

&& 

I I 

Rlo:t_REO; 
THFN 

Pseudo-code Key 

signal is asserted low 

logical NOT 

logical AND 

logical OR x 

* - e * 
not ac;serteci; 
not asse1rt'9di 

~s not asserted; 
:_s not assertc~d; 

~ \\!/?.; 

equality test 

clocked assignment 

value assignment 

Don't Care 

the next state is STATF_7; 
ELSE IF 

!* Fefresh */ 

(ADS && DFAlc_CS) I I ACC_FEQ; 

THEN 
the next stale is S~~rE l; 

ELSE 

/* Acce::-;s* 

t··ie next staLe 'c- SL;:,IE_O; ;, Idle */ 

SL;:,c.·E l: 

R_C,S 

PE~4DY 

0JE 
the nex~ s=ate is STA~E_2; 

STA.TE 2: 

[J 

COL_A'.)R 

READY 

WE 
the nex~ s~ate is STATE_3; 

STATE_3: 

FAS 
CAS3:0 
co::,_ADR 
FEADY 
WE 
IF 

'* ;~ssor-:=-

i~~ c.sser:::~cl; 

EC't LlSSC:2::-t·~d; 

net 
i~--; IJ.ot ctsserted; 
::;: \r0/E; 

* MUX the address * 
~ s as::_;ertcd; 

is not asserted; 
i~:; asse:;::-ted; 

is not asserted; 
= W/F; 

/* Assert CAS , write is ready, read is not */ 

is asserted; 
= BE3:0; 
is asserted; 
= ! W/F; 

= W/F; 
Ill 



W/R && BLAST; 
THEN 

the next state 

ELSE IF 

W/ R && BLAST; 

THEN 

the next state 

ELSE 

the next state 
STATE 4: -

RAS 
CAS3:0 
COL_ADR 
READY 
WE 
IF 

BLAST 
THEN 

the 
ELSE 

the 

STATE 5: -
RAS 
CAS3:0 
COL_ADR 
READY 
WE 

the 

STATE 6: -
RAS 
CAS3:0 
COL_ADR 
READY 
WE 
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STATE_7: 
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CAS3:0 
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WE 

next state 
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next state 

next state 
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/* Write access not done */ 

STATE_2; /* remove CAS */ 

/* Write Finished*/ 

STATE_5; /* RAS Precharge*/ 

/* !W/ R, Read*/ 

STATE_4; /* Read */ 
/* Read data ready */ 

is asserted; 

= BE3:0; 
is asserted; 
is asserted; 

= W/R; 

/* read not Done */ 

STATE_3; /* Remove READY */ 
/* BLAST, Read Done */ 

STATE_S; /* RAS Precharge*/ 

/* RAS Precharge */ 

is not asserted; 
is not asserted; 

= X· 
is not asserted; 

= X; 
STATE_6; 

/* More RAS Precharge */ 

is not asserted; 
is not asserted; 

= X; 
is not asserted; 

= X; 
STATE_O; /*Return to idle*/ 

/* Refresh, assert CAS */ 

is not asserted; 
is asserted; 
= X; 
is not asserted; 
is not asserted; 

the next state is STATE_S; 

STATE 8: /* Refresh, assert RAS */ 

RAS 
CAS3:0 
COL_ADR 
READY 
WE 

is asserted; 
is asserted; 
= X; 
is not asserted; 
is not asserted; 

the next state is STATE_S; 

STATE_9: 

RAS 
CAS3:0 

is asserted; 
is asserted; 

R.~.d 

/* Refresh Hold RAS */ 
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COL_hDR 
READY 
WE 

= X; 
is not assertedi 

t~~e next state i sr:;;·i':'F._lU; 

ST.2\TE ·• L': 1* Re~resh Eold RAS *' 

:Ci 

CO'., .~.DR 

F'J:::AlJY 

WF 

ctsserted; 

i;~; not ted; 

the next state is S':'ATE_S; 

INTERLEAVED MEMORY SYSTEMS 

* RA.S Precharge* i 

Interleaving memory can provide a significant improvement in memory system performance. 
Interleaved memory systems overlap accesses to consecutive addresses; this results in higher 
performance with slower memory. For example, two-way memory interleaving is 
accomplished by dividing the memory into banks: one bank for even word addresses, one for 
odd word addresses. The least significant address bit (A2) is used to select a bank. The two 
banks are read in parallel and the data is put onto the data bus by a multiplexer. This can allow 
the wait states of the second access to be overlapped with the data transfer of the first access. 
Figure B.26 shows the access overlap for a burst access. 

EVEN BANK 

ODD BANK 

ONE WAIT STATE BURST PIPELINED MEMORY SYSTEM 

SAME MEMORY - INiERLEAVED 

A A 

D D D D 

D D D D 

A D D D D D D D D 

Figure B.26. Two-Way Interleaved Read Access Overlap 

270710·001 ·53 

Figure B.27 is a simple schematic of a two-way, interleaved, pipelined memory system. The 
design is similar to the design of a non-interleaved pipelined memory design with the 
following exceptions: 

• an output data multiplexer is used to prevent data contention 

• the write data buffers isolate the memory data buses for writes 

• the low address bit to the memory devices is A3 
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The A2 address determines which bank (even or odd word) is selected. Figure B.28 shows the 
read waveform. 

The schematic (Figure B.28) illustrates a memory system that interleaves read accesses. Write 
interleaving requires latching the written data and controlling memory access with the READY 
signal. Write interleaving provides less performance improvement than read interleaving. Write 
data must come from the processor; this means a write interleaved system must queue data. 
The i960 CA processor bus controller queues all access; therefore, write interleaving does not 
significantly benefit most applications. 

r--
PAX:4 

A3:31 

L 
A 
T 
c 
H 

PCLK ...___ 

,00,~ l 
......., I • A3:2 1-- A3EV 

ADDRESS ADDRESS 

W/R 1-- CE_OD 1---

ADS 1--
-- CE L-<1 CE ODD CE_EV EVEN 

A2=0 A2=1 
BLAST 1-- CONTROL OE OE OE 

LOGIC --
WAIT 1-- WE WE3:0 WE3:0 

RD_SEL DATA DATA 

WRITE 1-- ~ 

.{32 Y32 

80960CA 

......, s 
2:1 

'----I OE MULTIPLEXER 

LV ~ 6 
1 D31:0 

---
270710-001-54 

Figure B.27. Two-Way Interleaved Memory System 

Memory interleaving can be applied to SRAM, DRAM and even EPROM memory systems. 
Interleaved SRAM and EPROM memory systems overlap access times for consecutive 

B-36 



BUS INTERFACE EXAMPLES 

accesses to improve memory system performance. The i960 CA processor pipelined read mode 
can be used on SRAM and EPROM systems to further increase memory system perlormance. 
However, pipelined read mode is not appropriate for DRAM memory systems that require 
NxoA states or READY control. Interleaved DRAM memory systems can overlap the memory 
access time and RAS precharge time of consecutive accesses. 

Figure B.28. Two-Way Interleaved Read Waveforms 

INTERFACING TO SLOW PERIPHERALS USING THE 
INTERNAL WAIT STATE GENERATOR 

This section illustrates how easy it is to interface slow peripherals to the i960 CA processor. 
This example shows the interface to an Intel 82C54-2 Timer/Counter and an Intel 82510 
UART. The integrated internal wait state generator, programmable data bus width and data 
transceiver control signals simplify the logic required to implement the interface. 
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A system may require several slower-speed peripherals; other peripherals may use the interface 
described here. 

Implementation 

Both the 82C54-2 Timer/Counter and 82510 UART have address, read, write and chip enable 
inputs and an 8-bit bidirectional data bus. The slow peripherals example considers only the 
memory mapped interface to chip control registers. The 82C54-2 and 82510 are memory 
mapped into a memory region programmed for non-burst, non-pipelined reads and an 8-bit 
data bus. 

The RD high to data float time dictates the number of NxoA wait states required. Recovery 
time between reads or writes requires special treatment. The following example assumes a 
33 MHz bus. The issues are the same at other operating frequencies. 

Schematic 

The interface consists of chip select logic, a registered PLD with at least two combinatorial 
outputs and a data transceiver. 

Chip select logic is the same as in previous examples. A simple demultiplexer is based only on 
the address. The PLD that controls access qualifies this signal with the address strobe (ADS). 

The state machine PLD generates chip enable, read and write signals for the UART and 
Timer/Counter. It also generates the data enable control for the data transceiver. A3 address 
signal determines which peripheral is enabled. 

The data transceiver is enabled by the PLD. The transceiver is activated when both the CS and 
DEN signals are asserted. The equation is: 

DATA_8_EN =CS 11 DEN; 

Transceiver direction control is connected directly to the DT/R- signal of the i960 CA device. 
Data transceiver usage is optional; it is used here to reduce capacitive loading on the data bus. 
The i960 CA processor can drive substantial capacitive loads; however, high-speed SRAM 
may have limited drive capabilities. If high-speed SRAM is on the data bus, it may be 
necessary to buffer the slower peripherals. 
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ADR ...... 
l 
cs 

LOGIC 

i960'MCA 

~ 
PROCESSOR 

CE_ UART A2 

CS_ UART cs 
-
~ CE_TC UART t---i CS_Tc 82510 

A3 ~ - -- ADS RD A1:0 
ADS ---- BLAST W/R 

BLAST 
- -·-
WAIT WAIT - - -

~ DEN DEN DATA_S_EN 

W/R -W/R 
~ TIC 

PCLK 82C54-2 r---. 
PCLK -

CS_TC 

A1:0 

BE1:0 

1---1 E'N 
D7:0 <l D7:0 

[> 
DT/R DT/R 

270710-001-56 

Figure B.29. 8-bit Interface Schematic 

Waveforms 

The Timer/Counter and UART have long address setup times to read or write. They also have 
long read and write recovery times. This design uses a PLD to implement a state machine that 
delays the read or write signal. Delaying the read or write signal satisfies command recovery 
times. Using the internal wait state generator to determine the length of the overall read or 
write cycle adds flexibility and simplifies the state machine. 
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I A I 1 I 2 3 4 5 6 7 8 9 10 11 I 12 D 2 A I 
I I I I I 

-c~ I 1-1--...,__....._,__,_.__ __ _,__,__...._\ Ir 
ADS I ~ I \_.J_/ 

I I I 
I I I 

WAIT cm_:-----------------' 
I I I 
I I 

8LAST [: : 
I I I 

DEN[i\ v 
I , ..... .-..... -.-..... -.-..... -.-..... -.-..... -.-...,.__,, 

I I I 

[ r--\ ''I---~ 
Ce I 1\.__"'-_..-"'-_..-"'-_..-"'-_..-"'-_..-"'-_.....-J. 

I I 

Ar>[' 
I 
I 

I 
I 

I I I I I I I I I I I 

DATA Ci : : : : : : : : : : : : ;q:x; : i 
270710-001-57 

Figure B.30. Read Waveforms 

Data lines are not driven during NxoA wait states. This requires gating the W/R signal with the 
WAIT signal, so that W/R goes high while the data is still asserted. There is a relative timing 
for output data hold after WAIT goes high. The data hold requirement of the peripheral and the 
delay time to gate the write signal with WAIT determines if this is an appropriate solution. 

The state machine simply delays the read or write signal so that back-to-back commands to the 
peripheral satisfy the peripheral's command recovery time. When the write state is entered, the 
W/R output of the PLD is a gated version of the WAIT signal. This guarantees that the 
peripheral's write data hold time is satisfied. 
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I A I 1 2[3141516171819 10 11 I D I 1 I 2 I A I 

Aos[:-0 w 
I I 

[ r----1"'"\ I 11 WAIT I I \ . I I '-'~.....;~.....;~....;.~....;.~...;.~...;.~...;.~...;.~...;.~_.._, I 

I I I I 

s~sr[: \JJ: 
I I I 

DEN[~ rt--
I I · I 
I I I 

cs[;i\ I r 
I I I 
I I I 

W/R c: :\.__... _ _..__ ..... _...__...___._...._ _ _._,/ : 
I I I I I 

DATA[t:)...._'. __ : _: __ : _: DA.---.:TAVA~-ID :_:_:_: _x: : 
I I I 
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Figure B.31. Write Waveforms 
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O: IDLE 

1: CE ASSERTED 

2: CE ASSERTED, DELAY CONTROL 

3: CE ASSERTED, DELAY CONTROL 

4: ASSERT READ 

5: ASSERT WAITE 

WA=WAIT 

0 ADS&CS 

@ BLAST 

2707.10-001-59 

Figure B.32. State Machine Diagram 

The pseudo-code description below is provided only to describe the state machine diagram. It 
is not intended for direct use as PLD equations. 

STATE_O: 
CE_ UART 
CE_TC 
RD 
W/R 
IF 

# 

&& 

I I 

ADS & CS; 

Pseudo-code Key 

signal is asserted low 

logical NOT 

logical AND 

logical OR x 

/*idle */ 
is not asserted; 
is not asserted; 
is not asserted; 
is not asserted; 
/* selected */ 
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THEN 
next state is STATE_l; 

ELSE 
next state is STATE_O; 

STATE_l: !* Enable Selected Chip, Hold Off Write or Read *I 
CE_ UART = A3; 
CE_TC = !A3; 
RD is not asserted; 
W/R is not asserted; 
the next state is state_2 

STATE_2: I* Enable Selected Chip, Hold Off Write or Read *I 
CE_ UART = A3; 
CE_TC = !A3; 
RD is not asserted; 
W/R is not asserted; 
the next state is state_3 

STATE_3: !* Enable Selected Chip, Hold Off Write or Read */ 

CE_ UART = A3; 
CE_TC = !A3; 
RD is not asserted; 
W/R is not asserted; 
IF 

!READ I* read *I 
THEN 

next state is STATE_4; 
ELSE !* write *! 

next state is STATE_5; 
STATE_4: !* Read asserted to selected peripheral */ 

CE_ UART = A3; 
CE_TC = !A3; 
RD is asserted; 
W/R is not asserted; 
IF 

BLAST !* Done */ 

THEN 
next state is STATE_O; 

ELSE /* write *! 
next state is STATE_4; 

STATE_5: !* Write asserted to selected peripheral *! 
CE_ UART = A3; 
CE_TC = !A3; 
RD is not asserted; 
W/R WAIT 
IF 

BLAST !* Done *! 
THEN 

next state is STATE_O; 
ELSE /* write *! 

next state is STATE_5; 

II 
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INTERFACING TO THE 27960CA BURST EPROM 

The 21960CA Burst EPROM offers an integrated, high-perfonnance, pipelined burst interface 
to the i960 CA processor. The Burst EPROM provides a synchronous interface to the i960 CA 
processor that requires no external logic. These EPROMs offer higher perfonnance read 
memory systems than high speed DRAMs. 

Overview of the 27960CA Burst EPROM 

The 27960CA Burst EPROM is a 128K x 8, high-perfonnance CMOS EPROM with 
synchronous pipelined burst interface. The 27960CA requires no support circuity and provides 
a synchronous burst interface to the i960 CA processor's bus. The Burst EPROM can operate 
in the processor's pipelined or non-pipelined access modes. The highest performance is 
realized in the pipelined read mode. Internally, the 27960CA Burst EPROM is organized in 
blocks of four bytes which are sequentially accessed. 

A burst access begins by latching the address in the EPROM on the rising edge of PCLK when 
ADS is asserted. After one or two wait states, depending on the version of the 27960CA Burst 
EPROM, the first data byte is output. The next three consecutive data bytes can be output 
without any data-to-data wait states. Burst access is terminated on the rising edge of PCLK 
when BLAST is asserted. Burst EPROM timing is shown in Figure B.33. 

NAAD:2 

ADA A 2 A 2 A 

DATA D D D D D D D D 

NAAD: 1 

ADA A A A 

DATA D D D D D D D D 

270710-001-60 

Figure B.33. Performance of Burst EPROM Pipelined Read 

High performance outputs provide zero wait state, data-to-data burst access. Extra power and 
ground pins dedicated to the output circuity reduce the effect of fast output switching. 

The 27960CA Burst EPROM is a byte-wide device. Systems can be designed with the 
27960CA Burst EPROM in 8-, 16- or 32-bit data widths by connecting them to the proper i960 
CA processor data pins. The signal definitions below provide an operation description of the 
27960CA Burst EPROM. (For programming infonnation, see the 27960CA Burst EPROM 
data sheet.) 27960CA Burst EPROM signal definitions are: 
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A16:0 

D7:0 
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Clock (input). EPROM clock. Address (A 16:0) is latched internally 
on the rising edge of CLK. Data (D7:0) is output with respect to 
CLK. ADS, CS and BLAST are all sampled on the rising edge of 
CLK. This signal may be connected directly to the i960 CA 
processor PCLK signal. 

17-bit address bus (input). During a burst operation, AJ6:2 provides 
the base address pointing to a block of four consecutive bytes. A 1:0 
selects the first byte of the burst access. The 27960CA Burst 
EPROM latches valid addresses in the first clock cycle. An internal 
address generator increments addresses for subsequent burst bytes. 

8-bit data bus (output). Data bus drives are enabled when CS and 
ADS are asserted during the rising edge of CLK. Data bus drivers 
are disabled when BLAST is asserted and ADS is not asserted on 
the rising edge of CLK. 

Address strobe (input). Indicates the start of a new bus access. It is 
asserted (low) in the first clock cycle of a bus access. This signal 
may be connected directly to the i960 CA processor ADS signal. 

Chip select (input). Master device enable. When asserted (low), data 
can be read from the device. CS enables the state machine and 1/0 
circuitry. A memory access begins on the first rising edge of CLK in 
which ADS and CS are asserted. A burst cycle does not terminate if 
CS goes high. 

Burst last (input). Terminates the current burst access. This signal 
may be connected directly to the i960 CA processor BLAST signal. 

Asynchronous reset (input). Resets the EPROM, disables the data 
outputs. Reset will abort an active access. 

Figure B.36 shows the connections to the 27960CA Burst EPROM. 

cs 

ADDRESS 

DATA 

ADS 

BLAST 

RESET 

CLK 

PGM 

'f 

_L 

_I 
7 17 

_L 

_f_ 
's 

-1'..j 
1 

-0 

27960CA 
BURST 
EPROM 

~ 128K X 8 

Figure B.34. The 27960CA Burst EPROM 
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Interfacing to the i960™ CA Microprocessor 

The following example demonstrates a 32-bit-wide burst access EPROM interface to the i960 
CA processor. The 27960CA Burst EPROM operates at one or two NRAD wait states between 
the address and the first byte of the burst (depending on the version of the 27960CA Burst 
EPROM). There are no wait states between sequential data during a burst. Figure B.35 shows a 
non-buffered, 128K x 32 Burst EPROM system. Chip select logic is the only external logic 
required for this interface. 

Higher order address lines are decoded to generate CS . Qualification of CS with other signals 
is done by the 27960CA Burst EPROM. Chip select logic can be implemented with standard 
asynchronous decoders or a PLD. The pipelined read waveform for the Burst EPROM system 
is shown is Figure B.36. 

The wait state configuration must be programmed into the i960 CA processor's Memory 
Region Configuration Table. NRAD wait states must be programmed to one or two, 
corresponding to the version of the 27960CA Burst EPROM. NRDD wait states must be 
programmed to 0. NxoA wait states should be programmed to 0. 

DECODER 

cs 

cs cs cs cs 
27960CA 27960CA 27960CA 27960CA 

A2-A18 128KX8 128KX8 128KX8 128KX8 
ADDRESS 

AO-A16 AO-A16 AO-A16 AO-A16 

ADS 
17 

i960'MCA ADS ADS ADS ADS 

MICRO- PCLK 
PROCESSOR CLK CLK CLK CLK 

BLAST BLAST BLAST BLAST BLAST 

DATA 

32 270710-001-62 

Figure B.35. 128K X 32 Burst EPROM System 
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NRD0-0 
NXDA-0 

l~I cs[1 \1 I I ~I~~~~-!-~-!----;-~_,_-_,. _ _., __ .___..___.._ _ _..._. 
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270710-001-63 

Figure B.36. Burst Pipelined EPROM Read 

Booting from the 27960CA Burst EPROM 

The i960 CA processor reads four bytes from the Initialization Boot Record (IBR) on 
initialization. (See Chapter 14, Initialization and System Requirements.) The processor's initial 
bus configuration is encoded in these four bytes. During initialization, before these bytes are 
read, the memory region configuration table defaults to NRAD = 31 and NxoA = 3. To facilitate 
booting from the Burst EPROM, the 27960CA will access normally and then wrap around to 
the first word (least significant) of the four word burst. This word is held until BLAST is 
asserted (this is illustrated in Figure B.37). In this way, it is possible to store the IBR in the 
Burst EPROM. 
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ADDR [L--{ FFFF FFOO <Ii~ FF04 

I ·1 ;':"·''""''''\ ;>'1~ 
I I I I 

ADS [i\l/ : 1V \J.J 
I I I I 
I I I I 

cs[i\: I I 

I I 
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I 
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Figure B.37. Booting from the 27960CA Burst EPROM 

INTERFACING TO THE 82596CA LOCAL AREA NETWORK 
COPROCESSOR 

The 82596CA LAN coprocessor provides a subset of the i960 CA processor bus interface 
signals, minimizing bus interface logic. It shares most signals directly with the i960 CA 
processor. The 82596CA LAN coprocessor's bus cycles (including burst cycles), bus interface 
timing, bus arbitration method and signal definitions are compatible with the i960 CA 
processor. 

NOTE 

In this section, i960 CA microprocessor is generally referred to as "processor" and 82596CA 
LAN coprocessor is referred to as "coprocessor." 

82596CA LAN Coprocessor Overview 

The 82956CA coprocessor is a 32-bit multitasking LAN coprocessor which implements the 
carrier sense, multiple access and collision detect (CSMA/CD) link access protocol (Figure 
B.38). The coprocessor supports a wide variety of networks. It executes high-level commands 
and performs command chaining and interprocessor communication via memory shared with 
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the i960 CA processor. This relieves the processor of all time-critical, local network control 
functions. 

FIFO SUBSYSTEM 

I I .... -...I. 1 .... I LE/BE PORT 
_L .. 

il L"1 DATA 
I FIFO .. J)x3HI ..... INTERFACE 

I v~ UNIT -. DO-D31 .... 
I 

-. ~ 

- I ______ J I 
TxD.RTS I .... 1 LPBK I 

r---------
I 

I I ~ 

I I ~ I BUS CONTROL 
CS MA/CD I INTERFACE .. .. 

I I 
UNIT 

RxD. RxC 
I I 

TxC. CTS I I MICRO 

CDT. CRS I I I MACHINE .. 
I I I L 

I IT • I I I A2-A31 

I I I --~ ~ T 
DMA 1 BEO·BE3 I I I --~ I I I 

------~L---------------~ 
270710-001-65 

Figure B.38. 82596CA LAN Coprocessor Block Diagram 

Coprocessor features include: 

• Complete CSMA/CD functions 

Complete media access control (MACJ functions 

High level command interface 

Manchester encoding or NRZ encoding and decoding 

IEEE 802.3 or HDLC frame delimiting 

• Industry-standard network support 

IEEE 802.3 (Ethernet, Ethernet Twisted Pair, Cheapernet, StarLAN, etc.) 

IBM PC Network (baseband and broadband) 

Proprietary CSMA/CD networks up to 20 MBits/sec 
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• Compatible i960 CA processor interface 

Optimized bus interface to the i960 CA processor bus 

Shared i960 CA processor bus signals and memory timing 

Support for i960 CA processor byte ordering 

• Architectural features: 

On-chipDMA 

Bus throttle 

128-byte receive FIFO, 64-byte transmit FIFO 

On-chip memory management 

Network management and diagnostics 

82586 software-compatible mode 

• Performance features: 

9.6 microsecond back-to-back frame transmission and reception 

801105.6 Mbytes/second bus transfer rate (burst transfers) at 25/33 MHz 

50/66 Mbyte/second bus transfer rate (non-burst transfers) at 25/33 MHz 

Applications 

This coprocessor is ideal for interconnect, bridges and high performance embedded 
communication applications. Its bus interface provides a compatible interface to the i960 CA 
processor bus, making it very easy to use. Typically, the serial interface is to a physical layer 
device, such as the Intel 82C501AC Ethernet serial interface chip or the 82521 Twisted Pair 
Ethernet Serial Super Component. 

For burst transfers, the coprocessor's bus occupies only three percent of the total processor-bus 
bandwidth, under maximum loading conditions for Ethernet. The large FIFOs tolerate long bus 
latencies - up to 100 µs - which is ideal for systems with multiple bus masters. Programmable 
bus throttle timers regulate coprocessor' s use of the processor bus, allowing the processor bus 
overhead to be optimized for a given worst-case bus latency. The BREQ signal from the 
processor can trigger the coprocessor' s bus throttle timers when needed or the timers can be 
controlled by the coprocessor itself. 

Processor and Coprocessor Interaction 

The coprocessor interacts with the i960 CA processor bus as either a bus master or a slave (port 
access mode). In normal operation, it is a bus master which moves data between system 
memory and the coprocessor' s control registers or internal FIFOs. The coprocessor can use the 
same burst cycles, bus hold and bus lock operations as the i960 CA processor. 

The coprocessor and processor communicate through shared memory, as shown in FigUie 
B.39. The processor and coprocessor normally use the interrupt (INT/INT) and channel 
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attention (CA) signals to initiate communication and use a system control block of memory for 
command and status storage. INT/INT alerts the processor to a change of contents in the 
system control block. By asserting CA, the processor causes the coprocessor to examine the 
system control block contents for the change. 

The coprocessor executes its command list from shared memory and simultaneously receives 
frames from the network and places them in shared memory. The processor manages the 
shared memory, which contains command chains and bidirectional data chains. The 
coprocessor executes the command chains. An on-chip DMA controls four channels which 
allow autonomous transfers of data blocks. Buffers, containing erroneous or collided frames, 
can be automatically recovered without processor intervention. The processor becomes 
involved only after a command sequence has finished executing or after a sequence of frames 
has been received and stored, ready for processing. 

In addition to this normal operating mode, the processor can 1mtiate a port access in the 
coprocessor. This allows the processor to write an alternate system configuration pointer, write 
an alternate dump command and pointer (used for troubleshooting a no-response problem), 
perform a software reset or perform a self test. 

Bus Interface Signals 

The i960 CA processor and 82596CA coprocessor share the bus by floating their respective 
output and 1/0 bus signals when bus ownership is not acquired. The following summarizes the 
input shared bus interface signals between the coprocessor and processor. This interface is also 
shown in Figure B.39. 

Signal 

A31-A2 

BE3:0 

D31-DO 

LOCK 

W/R 

DIC 

Table 8.1. Shared i960™ CA Processor and 
82596CA Bus Output and 1/0 Signals 

Definition Type 

Address 0 

Byte Enables 0 

Data Bus 1/0 

Bus Lock indicator 0 

Write/Read indicator 0 

Data/Control indicator O* 

NOTE 

*The 82596CA does not have the DIC signal. 
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Figure B.39. i960™ CA Processor/82596CA Coprocessor Interface 

Table B.2. Shared i960™ CA Processor and 82596CA Bus Input Signals 

Signal Definition Type 
-cc 

BRDY (82596)/READY(i960 CA processor) Ready I 

RDY (82596)/BTERM(i960 CA processor) Burst terminate I 
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Table B.3. Arbitration Signals for i960™ CA Processor/82596CA Interface 

i960 CA 

Signal Definition Type Processor Comments 
Type 

HOLD Hold request I 0 82596CA coprocessor 
always drives 

HLDA Hold acknowledge 0 I i960 CA processor 
(82596 always drives 
coprocessor) 

HOLDA 
(i960 CA 
processor) 

BREQ Bus Request 0 l i960 CA processor 
always drives 

Arbitration 

Bus arbitration between the i960 CA processor and 82596CA coprocessor is achieved by the 
hold and hold acknowledge handshake. The coprocessor requests the bus by asserting HOLD 
to the processor. The processor responds by asserting HOLDA, thus allowing the coprocessor 
to acquire the bus. The processor's BREQ signal can be used to improve arbitration efficiency. 
BREQ indicates that an internal cycle is pending. This signal can be tied directly to the 
coprocessor' s BREQ input. When BREQ is asserted, it triggers the coprocessor' s bus throttle 
timers. The bus throttle timers cause the coprocessor to relinquish the bus in a programmable 
amount of time. This scheme can help improve arbitration efficiency by reducing hold and hold 
acknowledge handshake delays between the processor and coprocessor. 

Interface Logic Requirements 

Interface logic between the processor and coprocessor performs the foliowing functions: 

• Provides a port that the processor can select, based on an address decode to perform a 
coprocessor channel attention 

• Provides a port that the processor can select, based on an address decoded to perform 
coprocessor CPU PORT access functions. 

• Drives the DIC signals when the coprocessor controls the bus; the coprocessor does not 
have this signal. 
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82596CA Coprocessor and 
i960™ CA Processor Interface Considerations 

Coprocessor/processor interface provides compatible bus signals and bus operation; however, 
there are some differences between the two interfaces that should be considered: 

• The processor supports read pipelining; the coprocessor does not. Processor read pipelining 
is programmed through a region table, allowing pipelining for a certain memory region. 
The processor and coprocessor should share a non-pipelined memory region. 

• The coprocessor supports dynamic bus sizing for 32- and 16-bit buses. The processor does 
not support dynamic bus sizing; it supports bus sizing through a programmable region 
table. Both the coprocessor and processor have a compatible byte enable encoding scheme 
for 32-bit buses and should share a 32-bit memory region. 

• The processor has a wait state generator built in; the coprocessor does not. The ready signal 
needs to be properly returned to the coprocessor. 

• The processor provides the signals DT/R and DEN and the coprocessor does not. If the 
external hardware uses these signals, then these signals need to be generated when the 
coprocessor controls the bus. 
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APPENDIX C 
CONSIDERATIONS FOR WRITING PORTABLE CODE 

This appendix describes the parts of the i960 CA microprocessor which are implementation 
dependent. The following information is intended as a guide for writing application code which 
is directly portable to other implementations of the i960 architecture. 

i960™ CORE ARCHITECTURE 

The i960 CA component is an implementation of the i960 core architecture. All i960 family 
products are based on the core architecture definition. An i960-based product, such as the i960 
CA microprocessor, can be thought of as consisting of two parts: the core architecture 
implementation and implementation-specific features. The core architecture defines the 
following mechanisms and structure: 

• Programming environment: global and local registers, literals, processor state registers, 
data types, memory addressing modes, etc. 

• Implementation-independent instruction set 

• Procedure call mechanism 

• Mechanism for servicing interrupts and the interrupt and process priority structure 

• Mechanism for handling faults and the implementation-independent fault types and 
subtypes 

Implementation-specific features are one or all of: 

• Additions to the instruction set beyond the instructions defined by the core architecture. 

• Extensions to the register set beyond the global, local and processor-state registers which 
are defined by the core architecture. 

• On-chip program or data memory. 

• Integrated peripherals which implement features not defined explicitly by the core 
architecture. 

Code is directly portable (object code compatible) when it does not depend on implementation­
specific instructions, mechanisms or registers. The parts of the i960 CA microprocessor which 
are implementation dependent are described below; those parts not described below are part of 
the core architecture. 

ADDRESS SPACE RESTRICTIONS 

Address space properties that are implementation-specific to the i960 CA processor are 
described in the subsections that follow. 
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Structures in Reserved Memory 

Addresses in the range FFOO OOOOH to FFFF FFFFH are reserved by the i960 architecture. Any 
uses of reserved memory are implementation specific. The i960 CA processor uses a section of 
the reserved address space for the initialization boot record. (See Chapter 14, Initialization and 
System Requirements.) The initialization boot record may not exist or may be structured 
differently for other implementations of the i960 architecture. Code which relies on structures 
in reserved memory is not portable to all i960-based products. 

Internal Data RAM 

Internal data RAM - an i960 CA implementation-specific feature - is mapped to the first 
1 Kbyte of the processor's address space (OOOOH - 03FFH). High performance, supervisor­
protected data space and the locations assigned for DMA and interrupt functions are special 
features which are implemented in internal data RAM. Code which relies on these special 
features is not directly portable to all i960 product implementations. 

Instruction Cache 

The i960 architecture allows instructions to be cached on-chip in a non-transparent fashion. 
This means that cache may not detect modification of the program memory by loads, stores or 
alteration by external agents. (See Chapter 2, Programming Environment.) Each 
implementation of the i960 architecture which uses an integrated instruction cache must 
provide a mechanism to purge the cache or some other method that forces consistency between 
external memory and internal cache. 

This mechanism is implementation-dependent. Application code which supports modification 
of the code space must use this implementation-specific feature and, therefore, is not object 
code portable to all i960 product implementations. 

A 1 Kbyte instruction cache is integrated on the i960 CA processor. Its instruction cache does 
not detect modification of external program memory. This instruction cache is purged using the 
system control (sysctl) instruction, which is specific to the i960 CA processor. 

Data and Data Structure Alignment 

Not all i960 architecture implementations are required to handle loads and stores to non­
aligned addresses. Therefore, code which generates non-aligned addresses is not object-code 
compatible with all i960 product implementations. 

The i960 CA microprocessor, as an implementation-specific feature, automatically handles 
non-aligned load and store requests. (See Chapter 10, The Bus Controller.) 

Alignment of architecturally-defined data structures in memory is implementation-dependent. 
Stack frames are also aligned to implementation-specific boundaries. Data structure alignment 
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is discussed in Chapter 2, Programming Environment. Code which relies on specific alignment 
of data structures in memory is not portable to every implementation of the i960 architecture. 

EXTENDED REGISTER SET 

i960 architecture defines a way to address 32 additional internal registers in addition to the 16 
global and 16 local registers. Register function is implementation-dependent: on the i960 CA 
device, three extended registers are implemented as special-function registers; on other 
implementations, these extended registers can be used for other functions or not implemented 
at all. for example, an implementation can choose to use these registers as general-purpose 
data registers or as floating point registers. Since the use of the extended register set is not 
defined, code which addresses these registers is not functionally compatible with all 
implementations of the i960 architecture. 

RESERVED LOCATIONS IN REGISTERS AND DATA STRUCTURES 

Some register and data structure fields are defined as reserved locations. A reserved field may 
be used by future implementations of the i960 architecture. For portability and compatibility, 
code should initialize reserved locations. When an implementation uses a reserved location, the 
implementation specific feature is activated by a value of 1 in the reserved field. Setting the 
reserved locations to 0 guarantees that the features are disabled. 

INSTRUCTION SET 

The i960 architecture defines a comprehensive instruction set. Code which uses only the 
architecturally-defined instruction set is object-level portable to other implementations of the 
i960 architecture. Some implementations may favor a particular code ordering to optimize 
performance. This special ordering, however, is never required by an implementation. 

The following section$ describe the properties of the an instruction set which are 
implementation dependent. 

Instruction Timing 

An objective of the i960 architecture is to allow microarchitectural advances to translate 
directly into increased performance. The architecture does not restrict parallel or out-of-order 
instruction execution, nor does it define the time required to execute any instruction or 
function. Code which depends on instruction execution times, therefore, is not portable to all 
i960 architecture implementations. 

Implementation-Specific Instructions 

Most of the i960 CA processor's instruction set is defined by the core architecture. Several 
instructions are specific to the i960 CA device. These instructions are either functional 
extensions to the instruction set (e.g., eshro) or instructions which control implementation-
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specific functions (e.g., sdma). A box around the instruction mnemonic in Chapter 9, 
Instruction Set Reference denotes an implementation-specific instruction. These instructions 
are listed below: 

• eshro extended shift right ordinal 

• sdma set up DMA controller 

• udma update DMA data RAM 

• sysctl system control 

Application code using implementation-specific instructions is not directly portable to the 
entire i960 family. 

INTERRUPT REQUESTS AND POSTING 

i960 architecture defines the interrupt servicing mechanism. This includes priority definition, 
interrupt table structure and interrupt context switching which occurs when an interrupt is 
serviced. The core architecture does not define the means for requesting interrupts (external 
pins, software, etc.) or for posting interrupts (i.e., saving pending interrupts). 

The method for requesting interrupts depends on the implementation. The i960 CA processor's 
interrupt controller manages external interrupt pins and internal DMA sources. Specific to the 
i960 CA processor implementation are interrupt controller features, external interrupt pins and 
NMI pins. Code which configures the interrupt controller - or in other ways interacts with 
interrupt requestors - is not directly portable to other i960 implementations. On the i960 CA 
product, interrupts are requested in software with the sysctl instruction. This instruction and the 
software request mechanism are implementation specific. 

Posting interrupts is also implementation specific. A pending priorities and pending interrupts 
field is provided in the interrupt table for interrupt posting. (See Chapter 6, Interrupts) An 
implementation may or may not choose to post all interrupts in the interrupt table in external 
memory. For example, the i960 CA processor - to minimize latency - posts hardware­
requested interrupts internally in the IPND register. 

Application code which expects interrupts to be posted in the interrupt table is not object-code 
portable to all i960-based products. Also, code which requests interrupts by setting bits in the 
pending priorities and pending interrupts field of the interrupt table is not portable. 

INITIALIZATION 

The way that an i960-based product is initialized is implementation dependent. For the i960 
CA device, pointers to data structures, configuration information and a first instruction pointer 
are loaded from external memory at initialization. The i960 CA processor defines the 
initialization boot record, process control block and control table to hold this initial processor 
state. These structures are implementation dependent. Code which accesses locations in these 
data structures is not portable to other i960 processor implementations. 
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OTHER i960™ CA MICROPROCESSOR 
IMPLEMENTATION-SPECIFIC FEATURES 

Subsections that follow describe additional implementation-specific features of the i960 CA 
microprocessor. These features do not relate directly to application code portability. 

Data Control Peripherals 

The DMA controller, bus controller and interrupt controller are implementation-specific 
extensions to the core architecture. Operation, setup and control of these units is not a part of 
the core architecture. Other implementations of the i960 architecture are free to add or subtract 
such system integration features. 

Implementation-Specific Faults 

The architecture defines a subset of fault types and subtypes which apply to all 
implementations of the architecture. Other fault types and subtypes may be defined by 
implementations to detect errant conditions which relate to implementation-specific features. 
F.or example, the i960 CA microprocessor provides an operation-unaligned fault for detecting 
non-aligned memory accesses. Future i960 processor implementations which generate this fault 
will assign the same fault type and subtype number to the fault. 

External System Requirements 

External system requirements for the i960 CA microprocessor are not defined by the 
architecture. The external bus, RESET pin, clock input, power and ground requirements and 
I/O characteristics are all specific to the i960 CA microprocessor implementation. 
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APPENDIX D 
INSTRUCTION SET REFERENCE 

This appendix describes the encoding format for instructions in the i960 CA microprocessor. 
Included is a description of the four instruction formats and how the addressing modes relate to 
these formats. 

GENERAL INSTRUCTION FORMAT 

i960 architecture defines four basic instruction encoding formats, as shown in Figure D. l: 
REG. COBR, CTRL and MEM. Each instruction uses one of these formats, which is defined 
by the instruction· s opcode field. All instructions are one word long and begin on word 
boundaries. MEM format instructions are encoded in one of two sub-formats: MEMA or 
MEMB. MEMB permits an optional second word to hold a displacement value. The following 
sections describe each format's instruction word fields. 

REG FORMAT 

REG format is used for operations performed on data contained in global, local or special 
function registers. Most of the i960 family's instructions use this format. 

REG instructions opcode is 12 bits long (three hexadecimal digits) and is split between bits 7 
through 10 (low opcode) and bits 24 through 31 (high opcode). For example, addi opcode is 
591 H. Here. 59H is contained in bits 24 through 31; lH is contained in bits 7 through 10. 

srcl and src2 fields specify the instruction's source operands. Operands can be global or local 
registers, literals or special-function registers. Mode flags (Ml for srcl and M2 for src2), 
special-purpose flags ( s I for srcl and s2 for src2) and the instruction type determine what an 
operand specifies: 

• If a mode flag and its associated special-purpose flag are set to 0, the respective srcl or 
src2 field specifies a global or local register. 

• If the mode flag is set to I and the special-purpose flag is set to 0, the field specifies a 
literal in the range of 0 to 31. 

• If the mode flag is set to 0 and the special-purpose flag is set to 1, the field specifies a 
special-function register. 
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Figure 0.1. Instruction Formats 

Table D. l shows the relationship between rnode flags, special-purpose flags and srcl and src2 
operands. 

Table 0.1. Encoding of src1 and src2 Fields in REG Format 

srcl or src2 
Ml orM2 Sl or S2 Operand Value Register Number Literal Value 

0 0 OOOOOrOl l l 12 r0-r15 

100002.111112 g0-g15 

1 0 000002.111112 0-31 

0 1 000002.111112 sf0-sf31 

1 1 Reserved 

NOTE 

On the i960 CA processor, the only special function registers implemented are sfO, sfl and sf2_ 
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The src!dst field can specify a source operand, a destination operand or both, depending on the 
instruction. Here again, mode flag M3 determines how this field is used. Table D.2 shows this 
relationship. 

Table 0.2. Encoding of src/dst Field in REG Format 

M3 src/dst src Only dst Only 

0 gO .. gl5 gO .. gl5 g0 .. gl5 
rO .. rl5 rO .. r15 rO .. rl5 

1 Not Allowed Literal sfO .. sf31 

If M3 is clear, the src!dst operand is a global or local register that is encoded as shown in Table 
D.l. If M3 is set, the src/dst operand can be used as a source-only operand that is: 1) a literal or 
2) a destination-only operand that is a special function register. 

COBR FORMAT 

The COBR format is used primarily for compare-and-branch instructions; however, test-if 
instructions also COBR. COBR opcode field is eight bits - two hexadecimal digits. srcl and 
src2 fields specify the instruction's source operands (complete encoding of src I, src2 and dst is 
the same as is shown in Table D.5): 

• srcl can specify a global or local register or a literal as determined by mode flag Ml 

• src2 can specify a global or local register or special function register as determined by 
special-purpose flag S2 

The T flag supports branch prediction for conditional instructions: if Tis set to 0, the condition 
being tested is likely to be true; if set to 1, the condition is likely to be false. An 
implementation may choose to ignore this bit. 

The displacement field contains a signed two's complement number that specifies a word 
displacement. The processor uses this value to compute the address of a target instruction to 
which the processor goes as a result of a comparison. The displacement field can range from -
210 to (210 -1). To determine the target instruction's IP, the processor converts the 
displacement value to a byte displacement (i.e., multiplies the value by 4 ). It then adds the 
resulting byte displacement to the current instruction's IP. 

NOTE 

To allow label usage in the assembly-language version of the COBR format instructions, the i960 
assembler converts a targ (target) operand value in an assembly-language instruction into the 
displacement value required for the COBR format, using the following calculation: 

. (targ - IP) 
displacement = 4 

For the test-if instructions, only the srcl field is used. Here, this field specifies a destination 
global or local register; MI is ignored. 
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CTRL FORMAT 

The CTRL format is used for instructions that branch to a new IP, including the branch, 
branch-if, bal and call instructions; ret also uses this format. CTRL opcode field is eight bits 
- two hexadecimal digits. 

Branch target address is specified with the displacement field in the same manner as COBR 
format instructions. The displacement field specifies a word displacement or a signed, two's 
complement number in the range -221 to 221 -1. The processor ignores the ret instruction's 
displacement field. 

The T flag performs the same prediction function for CTRL instructions as it does for COBR 
instructions. 

MEM FORMAT 

The MEM format is used for instructions that require a memory address to be computed. These 
instructions include the load, store and Ida instructions. Also, the extended versions of the 
branch, branch-and-link and call instructions (bx, balx and callx) use this format. 

The two MEM-format encodings are MEMA and MEMB. MEMB can optionally add a 32-bit 
displacement (contained in a second word) to the instruction. Bit 12 of the instruction's first 
word determines whether MEMA (clear) or MEMB (set) is used. 

The opcode field is eight bits long for either encoding. The src/dst field specifies a global or 
local register. For load instructions, src/dst specifies the destination register for a word loaded 
into the processor from memory or, for operands larger than one word, the first of successive 
destination registers. For store instructions, this field specifies the register or group of registers 
that contain the source operand to be stored in memory. 

The mode field determines the address mode used for the instruction. Table D.3 summarizes 
the addressing modes for the two MEM-format encodings. Fields used in these addressing 
modes are described in the following sections. 
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Table D.3. Addressing Modes for MEM Format Instructions 

Format Bits Mode Address Computation 

MEMA 002 offset 

102 (abase)+ offset 

MEMB 01002 (abase) 

01012 (IP) + displacement + 8 
01102 reserved 

01112 (abase) + (index) * 2scale 

11002 displacement 

11012 (abase)+ displacement 

11102 (index) * 2scale +displacement 

11112 (abase)+ (index)* 2scale +displacement 

NOTE 
In these address computations. a field in parentheses - e.g., (abase) - indicates that the value in 
the specified register is used in the computation. Usage of a reserved encoding causes generation 
of an invalid-opcode fault. 

MEMA Format Addressing 

The MEMA format provides two addressing modes: 

• absolute offset 

• register indirect with offset 

The offset field specifies an unsigned byte offset from 0 to 4096. The abase field specifies a 
global or local register that contains an address in memory. 

For the absolute-offset addressing mode (mode field is set to 002), the processor interprets the 
offset field as an offset from byte 0 of the current process address space; the abase field is 
ignored. Using this addressing mode along with the Ida instruction allows a constant in the 
range 0 to 4096 to be loaded into a register. 

For the register-indirect-with-offset addressing mode (mode field is set to 102), offset field 
value is added to the address in the abase register. Setting the offset value to zero creates a 
register indirect addressing mode; however, this operation can generally be carried out faster 
by using the MEMB version of this addressing mode. 

MEMS Format Addressing 

The MEMB format provides the following seven addressing modes: 

• absolute displacement • register indirect 

• register indirect with displacement • register indirect with index 

• register indirect with index and displacement • index with displacement 

• IP with displacement 
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The abase and index fields specify local or global registers, the contents of which are used in 
address computation. When the index field is used in an addressing mode, the processor 
automatically scales the index register value by the amount specified in the scale field. Table 
D.4 gives the encoding of the scale field. The optional displacement field is contained in the 
word following the instruction word. The displacement is a 32-bit signed two's complement 
value. 

Table D.4. Encoding of Scale Field 

Scale Scale Factor (Multiplier) 

0002 1 

0012 2 

0102 4 

0112 8 

1002 16 

101 2 to 111 2 Reserved 

NOTE 

Usage of a reserved encoding causes generation of an invalid-opcode fault. 

For the IP with displacement mode, the value of the displacement field plus eight is added to 
the address of the current instruction. 
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INSTRUCTION REFERENCE BY OPCODE 

This section lists the instruction encoding for each i960 CA microprocessor instruction. 
Instructions are grouped by instruction format and listed by opcode within each format. Table 
D.5 describes the meaning of each M3, M2, M 1, S2, S 1 and T bit combinations for each 
format. 

Table D.5 Miscellaneous Instruction Encoding Bits 

M3 M2 Ml S2 Sl T Descr!I!_tion 

REG Format 
x x 0 x 0 - srcl is a global or local register 

x x 1 x 0 - src I is a literal 

x x 0 x l - srcl is a special function register 

x x l x I - reserved 

x 0 x 0 x - src2 is a global or local register 

x 1 x 0 x - src2 is a literal 

x 0 x I x - src2 is a special function register 

x 1 x l x - reserved 

0 x x x x - src/dst is a global or local register 

1 x x x x - src/dst is a literal when used as a source or a special 
function register when used as a destination. M3 
may not be 1 when src/dst is used both as a source 
and destination in an instruction 
(atmod, modify, extract, modpc). 
COBRFormat 

- - 0 0 - x src I src2 and dst are global or local registers 

- - 1 0 - x srcl is a literal, src2 and dst are global or local 
registers 

- - 0 1 - x src 1 is a global or local register, src2 and dst are 
special function registers 

- - 1 l - 0 srcl is a literal, src2 and dst are special function 
registers 

COBR Format and CTRL Format 
- - x - x l Outcome of conditional test is predicted to be true. 

- - x - x 0 Outcome of conditional test is predicted to be false. 

D-7 



Opcode 
Mnemonic 

58:0 notbit 
58:1 and 
58:2 andnot 
58:3 set bit 
58:4 notand 
58:6 xor 
58:7 or 
58:8 nor 
58:9 xnor 
58:A not 
58:8 ornot 
58:C clrbit 
58:0 notor 
58:E nand 
58:F alterbit 
59:0 addo 
59:1 addi 
59:2 subo 
59:3 subi 
59:8 shro 
59:A shrdi 
59:8 shri 
59:C shlo 
59:0 rotate 
59:E shli 
5A:O cm po 
5A:1 cm pi 
5A:2 concmpo 
5A:3 concmpi 
5A:4 cmpinco 
5A:5 cmpinci 
5A:6 cmpdeco 
5A:7 cmpdeci 
5A:C scan byte 
5A:E ch kb it 

58:0 addc 

58:2 subc 

5C:C mov 

50:8 eshro 

50:C movl 

5E:C movt 

5F:C movq 
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Table D.6. REG Format Instruction Encodings 

Opcode 
11 - 4 

31 .. .. 24 .... . 

0101 1000 
0101 1000 
0101 1000 
0101 1000 
0101 1000 
0101 1000 
0101 1000 
0101 1000 
0101 1000 
0101 1000 
0101 1000 
0101 1000 
0101 1000 
0101 1000 
0101 1000 
0101 1001 
0101 1001 
0101 1001 
0101 1001 
0101 1001 
0101 1001 
0101 1001 
0101 1001 
0101 1001 
01011001 
0101 1010 
0101 1010 
0101 1010 
01011010 
0101 1010 
01011010 
01011010 
01011010 
01011010 

0101 1010 

01011011 

0101 1011 

0101 1100 

01011101 

0101 1101 

01011110 

0101 1111 

src/dst src2 

23. 19 18 14 ... ... 
dst src 
dst src2 
dst src2 
dst src 
dst src2 
dst src2 
dst src2 
dst src2 
dst src2 
dst 
dst src2 
dst src 
dst src2 
dst src2 
dst src 
dst src2 
dst src2 
dst src2 
dst src2 
dst src 
dst src 
dst src 
dst src 
dst src 
dst src 

src2 
src2 
src2 
src2 

dst src2 
dst src2 
dst src2 
dst src2 

src2 

src 

dst src2 

dst src2 

dst 

dst src2 

dst 

dst 

dst 
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Mode Opcode 
3-0 

13 12 11 10.. 7 . .... 

M3 M2 M1 0000 
M3 M2 M1 0001 
M3 M2 M1 0010 
M3 M2 M1 0011 
M3 M2 M1 0100 
M3 M2 M1 0110 
M3 M2 M1 0111 
M3 M2 M1 1000 
M3 M2 M1 1001 
M3 M2 M1 1010 
M3 M2 M1 1011 
M3 M2 M1 1100 
M3 M2 M1 1101 
M3 M2 M1 1110 
M3 M2 M1 1111 
M3 M2 M1 0000 
M3 M2 M1 0001 
M3 M2 M1 0010 
M3 M2 M1 0011 
M3 M2 M1 1000 
M3 M2 M1 1010 
M3 M2 M1 1011 
M3 M2 M1 1100 
M3 M2 M1 1101 
M3 M2 M1 1110 
M3 M2 M1 0000 
M3 M2 M1 0001 
M3 M2 M1 0010 
M3 M2 M1 0011 
M3 M2 M1 0100 
M3 M2 M1 0101 
M3 M2 M1 0110 
M3 M2 M1 0111 
M3 M2 M1 1100 

M3 M2 M1 1110 

M3 M2 M1 0000 

M3 M2 M1 0010 

M3 M2 M1 1100 

M3 M2 M1 1000 

M3 M2 M1 1100 

M3 M2 M1 1100 

M3 M2 M1 1100 

Special src1 
Fla s 

6 5 4 0 .......... 

82 81 bitj:Jps 
82 81 srct 
82 81 src1 
82 81 bi!flps 
82 81 srct 
82 81 src1 
82 81 src1 
82 81 src1 
82 81 srct 
82 81 src 
82 81 src1 
82 81 bi!flps 
82 81 src1 
82 81 src1 
82 81 bitj:Jps 
82 81 src1 
82 81 srct 
82 81 src1 
82 81 src1 
82 81 fen 

82 81 fen 

82 81 fen 

82 81 fen 

82 81 fen 

82 81 fen 

82 81 src1 
82 81 src1 
82 81 srct 
82 81 srct 
82 81 srct 
82 81 srct 
82 81 srct 
82 81 srct 
82 81 srct 

82 81 bitpos 

82 81 srct 

82 81 srct 

82 81 src 

82 81 src1 

82 81 src 

82 81 src 

82 81 src 



intet. INSTRUCTION SET REFERENCE 

Opcode Opcode src/dst src2 Mode Opcode Special src1 
Mnemonic (11 - 4) (3-0) Fla s 

31 ......... 24 23 .... 19 18 ... 14 13 12 11 10 ....... 7 6 5 4 .......... 0 
63:0 sdma 0110 0011 src3 src2 M3 M2 M1 0000 52 51 src1 

63:1 udma 0110 0011 0001 

64:0 span bit 0110 0100 dst M3 M2 M1 0000 52 $1 src 

64:1 scan bit 01100100 dst M3 M2 M1 0001 $2 $1 src 

64:5 modac 01100100 mask src M3 M2 M1 0101 $2 81 dst 

65:0 modify 0110 0101 srcldst src M3 M2 M1 0000 $2 $1 mask 

65:1 extract 0110 0101 src!dst Jen M3 M2 M1 0001 $2 $1 bi!J!ps 

65:4 modtc 0110 0101 mask src M3 M2 M1 0100 $2 $1 dst 

65:5 mod pc 0110 0101 src/dst mask M3 M2 M1 0101 $2 $1 src 

65:9 sysctl 0110 0101 src3 src2 M3 M2 M1 1001 $2 $1 src1 

66:0 calls 01100110 M3 M2 M1 0000 $2 $1 src 

66:8 mark 0110 0110 M3 M2 M1 1011 $2 S1 

66:C fmark 0110 0110 M3 M2 M1 1100 $2 81 
66:0 flush reg 0110 0110 M3 M2 M1 1101 52 81 
66:F syncf 0110 0110 M3 M2 M1 1111 82 81 
67:0 emul 01100111 dst src2 M3 M2 M1 0000 52 81 src1 

67:1 ediv 01100111 dst src2 M3 M2 M1 0001 82 $1 src1 

70:1 mulo 0111 0000 dst src2 M3 M2 M1 0001 82 51 src1 

70:8 remo 0111 0000 dst src2 M3 M2 M1 1000 52 $1 src1 

70:8 divo 0111 0000 dst src2 M3 M2 M1 1011 82 S1 src1 

74:1 muli 01110100 dst src2 M3 M2 M1 0001 82 81 src1 

74:8 remi 0111 0100 dst src2 M3 M2 M1 1000 82 81 src1 

74:9 modi 0111 0100 dst src2 M3 M2 M1 1001 $2 81 src1 

74:8 dlvi 0111 0100 dst src2 M3 M2 M1 1011 82 $1 src1 

m 
D-9 



INSTRUCTION SET REFERENCE 

Table 0.7. COBR Format Instruction Encodings 

Opcode Opcode 

I 
src1 

I 
src2 

I 
M 

I 
Displacement 

Mnemonic 

31 ......... 24 23 ... 19 18 .... 14 13 12 ....................................... 2 0 
20 testno 0010 0000 dst M1 T 82 

21 testg 0010 0001 dst M1 T 82 

22 teste 00100010 dst M1 T 82 

23 testge 0010 0011 dst M1 T 82 

24 testl 0010 0100 dst M1 T 82 

25 testne 0010 0101 dst M1 T 82 

26 testle 00100110 dst M1 T 82 

27 testo 00100111 dst M1 T 82 

30 bbc 0011 0000 bitpos src M1 targ T 82 

31 cmpobg 0011 0001 src1 src2 M1 targ T 82 

32 cmpobe 0011 0010 src1 src2 M1 targ T 82 

33 cmpobge 0011 0011 src1 src2 M1 targ T 82 

34 cm po bl 0011 0100 src1 src2 M1 targ T 82 

35 cmpobne 0011 0101 src1 src2 M1 targ T 82 

36 cmpoble 0011 0110 src1 src2 M1 targ T 82 

37 bbs 0011 0111 bitpos src M1 targ T 82 

38 cmpibno 0011 1000 src1 src2 M1 targ T 82 

39 cmpibg 00111001 src1 src2 M1 targ T 82 

3A cmpibe 00111010 src1 src2 M1 targ T 82 

38 cmpibge 00111011 src1 src2 M1 targ T 82 

3C cm pi bl 0011 1100 src1 src2 M1 targ T 82 

30 cmpibne 0011 1101 src1 src2 M1 targ T 82 

3E cmpible 00111110 src1 src2 M1 targ T 82 

3F cmpibo 0011 1111 src1 src2 M1 targ T 82 

D-10 



INSTRUCTION SET REFERENCE 

Table 0.8. CTRL Format Instruction Encodings 

Opcode 
Mnemonic 

I Opcode Displacement I T I 0 I 
31 ......... 24 23 ...................................................................... 2 0 

08 b 0000 1000 targ T 0 

09 call 0000 1001 targ T 0 

OA ret 0000 1010 T 0 

OB bal 0000 1011 targ T 0 

10 bno 0001 0000 targ T 0 

11 bg 0001 0001 targ T 0 

12 be 0001 0010 targ T 0 

13 bge 0001 0011 targ T 0 

14 bl 0001 0100 targ T 0 

15 bne 0001 0101 targ T 0 

16 ble 0001 0110 targ T 0 

17 bo 0001 0111 targ T 0 

18 faultno 0001 1000 T 0 

19 faultg 0001 1001 T 0 

1A faulte 00011010 T 0 

1B faultge 00011011 T 0 

1C fault! 0001 1100 T 0 

10 faultne 00011101 T 0 

1E faultle 0001 1110 T 0 

1F faulto 0001 1111 T 0 

II 
0·11 



intef® INS'.T'RUCTION. SETREFERENCE 

Table 0.9. MEM Format Instruction Encodings 

31 .......... 24 23 .... 19 1B ... 14 13 ....... 12 11 ............................................ 0 

I 
Opcode 

I 
src/ I ABASE I Mode 

I 
Offset 

dst 

31 .......... 24 23 .... 19 1B ... 14 13 12 11 10 9 ... 7 65 4 ..... 0 

Opcode src/ ABASE Mode Scale 00 Index 
dst 

Displacement 

Effective Address 

eta= offset Opcode dst 0 0 offset 

offset( reg) Opcode dst reg 0 offset 

(reg) Opcode dst reg 0 0 0 I oo 

disp + B (IP) Opcode dst 0 0 00 

displacement 

(reg1 )[reg2 •scale] I Opcode dst reg1 0 scale I 00 reg2 

disp I Opcode dst I 1 0 0 00 

displacement 

disp(reg) I Opcode dst reg I 1 I 1 I 0 I 00 

displacement 

disp[reg •scale] Opcode dst 0 scale 00 reg 

displacement 

disp(reg1 )[reg2*scale] Opcode dst reg1 scale 00 reg2 

displacement 

Opcode Mnemonic Opcode Mnemonic 

BO ldob 9B ldl 
B2 st ob 9A stl 
B4 bx AO ldt 
B5 balx A2 stt 
B6 callx BO ld_g_ 
BB I dos 82 s!g_ 
BA stos co ldib 
BC Ida C2 stib 
90 Id CB I dis 
92 st CA stis 

0·12 
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APPENDIX E 
REGISTER AND DATA STRUCTURE REFERENCE 

OVERVIEW 

Registers and data structures, listed alphabetically, are: 

Figure # Description Page 
E.1 Arithmetic Controls (AC) Register ..................................................................... E-2 
E.2 Hardware Breakpoint Control Register (BPCON) ............................................. E-3 
E.3 BCON Register ................................................................................................... E-3 
E.4 Control Table ...................................................................................................... E-4 
E.5 Data Address Breakpoint Registers (DABO - DAB 1) ........................................ E-5 
E.6 DMA Command Register (DMAC) ................................................................... E-5 
E.7 DMA Control Word ........................................................................................... E-6 
E.8 Fault Record ....................................................................................................... E-7 
E.9 Fault Table and Fault Table Entries .................................................................... E-8 
E.10 Procedure Stack Structure and Local Registers .................................................. E-9 
E.11 Initial Memory Image (IMI) ............................................................................... E-10 
E.12 Instruction Address Breakpoint Registers (IPBO - IPB 1) ................................... E-11 
E.13 Interrupt Control (ICON) Register ..................................................................... E-12 
E.14 Interrupt Mask (IMSK) and Interrupt Pending (IPND) Registers ...................... E-13 
E.15 Interrupt Mapping (IMAP2-IMAPO) Registers .................................................. E-14 
E.16 Storage of an Interrupt Record on the Interrupt Stack ........................................ E-15 
E.17 Interrupt Table .................................................................................................... E- l 6 
E.18 Memory Region Configuration Register (MCONO-MCON15) ......................... E-17 
E.19 Previous Frame Pointer Register (PFP) (rO) ....................................................... E-18 
E.20 Configuration Words in the PRCB ..................................................................... E-20 
E.21 Process Controls (PC) Register .......................................................................... E-20 
E.22 System Procedure Table ..................................................................................... E-21 
E.23 Trace Controls (TC) Register ............................................................................. E-22 



REGISTER AND DATA STRUCTURE REFERENCE 

Arithmetic Controls Register (AC) 

CONDITION CODE BITS-AC.cc -------------------------, 

(SEE TABLES 2-4, 2-5, AND 2-6) 

INTEGER-OVERFLOW FLAG -AC.of ----------------. 
(0) NO OVERFLOW 

(1) OVERFLOW 

INTEGER OVERFLOW MASK BIT - AC.om ----------. 

(0) NO MASK 

(1) MASK 

NO-IMPRECISE-FAUL TS BIT - AC.nif --------. 

(0) SOME FAUL TS ARE IMPRECISE 

(1) ALL FAULTS ARE PRECISE 

28 24 20 

ARITHMETIC CONTROLS REGISTER (AC) 

m RESERVED 
~ (INITIALIZE TO 0) 

16 12 

Figure E.1. Arithmetic Controls (AC) Register 

E-2 

4 

c c c 
c c c 
2 1 0 

270710-001-05 



REGISTER AND DATA STRUCTURE REFERENCE 

Breakpoint Control Register (BPCON) 

28 24 20 16 12 8 4 0 

BREAKPOINT 
CONTROL REGISTER 
(BPCON) 

D RESERVED 
(INITIALIZE TO 0) 

t___JL___JL___Jt___J 

DATA-ADDRESS 0 BREAKPOINT ENABLE - BPCON.eO 
(00) DISABLE 
(11) ENABLE 

DABO MODE (SEE TABLE) 

-------- DATA-ADDRESS 1 BREAKPOINT ENABLE- BPCON.e1 
(00) DISABLE 
(11) ENABLE 

---------- DAB1 MODE (SEE TABLE) 

DATA-ADDRESS BREAKPOINT MODES 

BREAK ON· 

00 STORE ONLY 
01 DATA ONLY (LOAD OR STORE) 
10 DATA OR INSTRUCTION FETCH 
11 ANY ACCESS 

270710-002-15 

Figure E.2. Hardware Breakpoint Control Register (BPCON) 

Bus Configuration Register (BCON) 

CONFIGURATION TABLE VALID ( BCON.ctv) -----------------------.] 
(0) TABLE NOT VALID 

(1) TABLE VALID 

INTERNAL RAM PROTECTION ENABLE (BCON.irp)--------------------. 

(0) PROTECTION OFF 

(1) PROTECTION ON 

28 

BUS CONFIGURATION 

REGISTER (BCON) 

D RESERVED 
(INITIALIZE TO 0) 

24 20 16 12 

270710-002-19 

Figure E.3. BCON Register 

E-3 



RE;GIS1'.ER ANQ 1DATA.Sl:RWCT~RE ,9EFERENCE 

Control Table 

31 

IP BREAKPOINT 0 (IPSO) 

IP BREAKPOINT 1 (IPB1) 

DATA ADDRESS BREAKPOINT 0 (DASO) 

DATA ADDRESS BREAKPOINT 1 (DAB1) 

INTERRUPT MAP 0 (IMAPO) 

INTERRUPT MAP 1 (IMAP1) 

INTERRUPT MAP 2 (IMAP2) 

INTERRUPT CONTROL (ICON) 

MEMORY REGION 0 CONFIGURATION (MCONO) 

MEMORY REGION 1 CONFIGURATION (MCON1) 

MEMORY REGION 2 CONFIGURATION (MCON2) 

MEMORY REGION 3 CONFIGURATION (MCON3) 

MEMORY REGION 4 CONFIGURATION (MCON4) 

MEMORY REGION 5 CONFIGURATION (MCONS) 

MEMORY REGION 6 CONFIGURATION (MCON6) 

MEMORY REGION 7 CONFIGURATION (MCON7) 

MEMORY REGION 8 CONFIGURATION (MCON8) 

MEMORY REGION 9 CONFIGURATION (MCON9) 

MEMORY REGION 10 CONFIGURATION (MCON10) 

MEMORY REGION 11 CONFIGURATION (MCON11) 

MEMORY REGION 12 CONFIGURATION (MCON12) 

MEMORY REGION 13 CONFIGURATION (MCON13) 

MEMORY REGION 14 CONFIGURATION (MCON14) 

MEMORY REGION 15 CONFIGURATION (MCON15) 

RESERVED (INITIALIZE TO O) 

BREAKPOINT CONTROL (BPCON) 

TRACE CONTROLS (TC) 

BUS CONFIGURATION CONTROL (BCON) 

Figure E.4. Control Table 

E-4 

0 

OH 

4H 

8H 

CH 

10H 

14H 

18H 

1CH 

20H 

24H 

28H 

2CH 

30H 

34H 

38H 

3CH 

40H 

44H 

48H 

4CH 

SOH 

54H 

58H 

SCH 

60H 

64H 

68H 

6CH 

270710-002-02 



REGISTER AND DATA STRUCTURE REFERENCE 

Data Address Breakpoint Registers (DABO-DAB1) 

DATA ADDRESS -----------~i 

111111111 I I I 111 I 11 I 11111111111111 
28 24 20 16 12 8 4 

DATA-ADDRESS BREAKPOINT 

REGISTERS (DABO-DAB1) 
270710-001-22 

Figure E.5. Data Address Breakpoint Registers (DABO - DAB1) 

OMA Command Register (DMAC) (sf2) 

CHANNEL ENABLE BITS - DMAC.ce -----------------------. 
(0) SUSPEND 
(1) ENABLE 

CHANNEL TERMINAL COUNT FLAGS - DMAC.ctc --------------~ 
(0) NON-ZERO BYTE COUNT 
(1) ZERO BYTE COUNT (SOFTWARE MUST RESET) 

CHANNEL ACTIVE FLAGS- DMAC.ca -------------~] (0) IDLE 
(1) ACTIVE 

CHANNEL DONE FLAGS - DMAC.cd ----------.1 (0) NOT DONE 
(1) DONE (SOFTWARE MUST RESET) 

28 24 20 16 

c c c c c c c c c 

m w w w w d d d a a 
3 2 1 0 3 2 1 0 3 2 

12 

c c c I c 
t t 

a 
c I c 

0 2 1 

8 

c 
e 
3 

DMACOMMAND 
REGISTER (DMAC) t~------- CHANNEL WAIT BITS - DMAC.cw 

(0) READ NEXT DESCRIPTOR 

c 
e 
2 

(1) DESCRIPTOR HAS BEEN READ 

'----------- PRIORITY MODE BIT - DMAC.pm 
(0) FIXED 

n RESERVED l...J (INITIALIZE TO 0) 

(1) ROTATING 

'------------ THROTILE BIT- DMAC.t 
(0) 4 DMA TO 1 USER CLOCK MAX 
(1) 1 DMA TO 1 USER CLOCK MAX 

~i ~ 
1 0 

270710-002-39 

Figure E.6. OMA Command Register (DMAC) 

E-5 

II 



Rl;:GISTERANO,DATA STRUCTURE REFERENCE 

OMA Control Word 

TRANSFER TYPE FIELD 
OOH 8- TO 8-BITS 
01 H 8- TO 16-BITS 
02H RESERVED 
03H 8- TO 32-BITS 
04H 16- TO 8-BITS 
05H 16- TO 16-BITS 
06H RESERVED 
07H 16- TO 32-BITS 
08H 8-BITS FLY-BY 
09H 16-BITS FLY-BY 
OAH 128-BITS FLY-BY QUAD 
OBH 32-BITS FL Y·BY 
OCH 32- TO 8-BITS 
OOH 32- TO 16-BITS 
OEH 128-TO 128-BITS QUAD 
OFH 32- TO 32-BITS 

DESTINATION ADDRESSING-------------------------. 
(0) INCREMENT 
(1)HOLD 

SOURCE ADDRESSING------------------------. 
(O) INCREMENT 
(1)HOLD 

SYNCHRONIZATION MODE BIT ---------------------. 
(O) SOURCE SYNCHRONIZED 
(1) DESTINATION SYNCHRONIZED 

SYNCHRONIZATION SELECT BIT 
(0) BLOCK (NON-SYNCHRONIZED) 
(1) DEMAND (SYNCHRONIZE) 

EOP!TC SELECT BIT----------------------. 
(0) TERMINAL COUNT 
(1) END OF PROCESS 

DESTINATION CHAINING SELECT BIT---------------. 
(0) NO CHAINING 
(1) CHAINED DESTINATION 

SOURCE CHAINING SELECT BIT----------------. 
(0) NO CHAINING 
(1) CHAINED SOURCE 

INTERRUPT-ON-CHAINING-BUFFER SELECT BIT---------. 
(0) NO INTERRUPT 
(1) INTERRUPT 

CHAINING WAIT SELECT BIT --------------... 
(0) WAIT FUNCTION DISABLED I 
(1) WAIT FUNCTION ENABLED + 

28 24 20 16 12 

OMA CONTROL WORD 
(INSTRUCTION OPERAND FOR SOMA INSTRUCTION) 

I RESERVED 
(INITIALIZE TO 0) 

Figure E.7. OMA Control Word 

E-6 

8 4 0 

270710-002-40 



REGISTER AND DATA STRUCTURE REFERENCE 

Fault Record 

31 

NFP-20 
~~~...:....:.~ ..... ..1.-~~~~~~-"'~~~~~~ .... ~~~~~~--1 

NFP-16 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~---! 

ARITHMETIC CONTROLS NFP-12 
.,.,,...,.,.,...,,..,......,...,...,...,.,..,.,.,,.-~~~~~~-,,,.,...,,,,..,.,..,.,.........,....,..,,.,.,.,..,,.,.~~~~~~---1 

FAUL T TYPE FAULT SUB--TYPE NFP-8 
'"'"'.-;;...-;;........_ ....... .-;;...-;;....1.-~~~~~~-"'-"'"'.-;;...-;;...-;;...-;;...-;;.."'""1.~~~~~~--1 

ADDRESS OF FAULTING INSTRUCTION NFP-4 

RESERVED 
270710-001-19 

Figure E.8. Fault Record 

E·7 

• 



REGISTER AND DATA STRUCTURE REFERENCE 

Fault Table 

31 FAULT TABLE 0 

PARALLEL FAULT ENTRY OH 
1-~~~~~~~~~~~~~~~~~~~~~~~~~~~--1 

TRACE FAULT ENTRY SH 
!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

OPERATION FAULT ENTRY 10H 

ARITHMETIC FAULT ENTRY 1 BH 

31 LOCAL-CALL ENTRY 2 1 0 

31 SYSTEM-CALL ENTRY 

FAULT-HANDLER PROCEDURE NUMBER 

0000 027FH 

f' ;c::1,1''l RESERVED (INITIALIZE TO 0) 
270710-002-12 

Figure E.9. Fault Table and Fault Table Entries 

E-8 



REGISTER AND DATA STRUCTURE REFERENCE 

Global and Local Registers 

PROCEDURE STACK 

PREVIOUS FRAME POINTER (PFP) rO 

CURRENT REGISTER SET 

go 

FRAME POINTER (FP) g15Ht----1': 

PREVIOUS FRAME POINTER (PFP) rO 

STACK POINTER (SP) r1 

RESERVED FOR RIP r2 

r15 

STACK POINTER (SP) r1 

RETURN INSTRUCTION POINTER ,2 
(RIP) 

r15 

USER ALLOCATED STACK 

PADDING AREA 

USER ALLOCATED STACK 

UNUSED STACK 

STACK GROWTH 
(TOWARD HIGHER ADDRESSES) 

i 

PREVIOUS 
STACK 
FRAME 

CURRENT 
STACK 
FRAME 

270710-002-04 

Figure E.10. Procedure Stack Structure and Local Registers 

E-9 

II 



REGISTER AND DATA STRUCTURE REFERENCE 

Initialization Boot Record (IBR) and Process Control Block (PRCB) 

FIXED DATA STRUCTURES RELOCATABLE DATA STRUCTURES 

ADDRESS INITIALIZATION BOOT RECORD: 
USER CODE· 

FFFFFFOOH 

FFFFFF10H 

FFFFFF14H 

FFFFFF18H 

FFFFFF2CH 

INITIAL BUS 
CONFIGURATION 

(LEAST SIGNIFICANT BYTE 
OF EACH WORD) 

FIRST INSTRUCTION 
POINTER 

PRCB POINTER 

6 CHECK WORDS 
(FOR BUS CONFIDENCE 

SELF-TEST) 

~{ 

PROCESS CONTROL BLOCK (PRCB): .....-
FAULT TABLE BASE ADDRESS 

CONTROL TABLE BASE ADDRESS .------
AC REGISTER INITIAL IMAGE 

FAULT CONFIGURATION WORD 

INTERRUPT TABLE BASE ADDRESS 

SYSTEM PROCEDURE 
TABLE BASE ADDRESS 

f 

RESERVED. ·:T 

ED ~ RESERV 
(INITIAL! ZETOO) . 

INTERRUPT STACK 

I--- POINTER 

INSTRUCTION CACHE 
CONFIGURATION WORD 

REGISTER CACHE 
CONFIGURATION WORD 

r------1 
CONTROL TABLE 

~ ~ 
r------1 

INTERRUPT TABLE 

?- )'-
r----

SYSTEM PROCEDURE 
TABLE 

?-. } .._____. 
OTHER ARCHITECTURALLY 

DEFINED DATA 
STRUCTURES(NOT 

REQUIRED AS PART OF IMI) 

Figure E.11. Initial Memory Image (IMI) 

E-10 

OH 

4H 

SH 

CH 

10H 

14H 

18H 

1CH 

20H 

24H 

270710-002-44 



REGISTER AND DATA STRUCTURE REFERENCE 

Instruction Address Breakpoint Registers (IPBO-IPB1) 

INSTRUCTION-ADDRESS BREAKPOINT ENABLE· IPB.e ----------------! 
(00) DISABLE 
(11) ENABLE 

INSTRUCTION ADDRESS ---------

111111111111111111111111111111 m 
28 24 

INSTRUCTION-ADDRESS BREAKPOINT 

REGISTERS (IPBO-IPB1) 

20 16 12 

270710-002-14 

Figure E.12. Instruction Address Breakpoint Registers (IPBO - IPB1) 

E-11 

II 



REGISTER AND DATA STRUCTURE REFERENCE 

Interrupt Control Register (ICON) 

INTERRUPT MODE- ICON.im ---------------------------...., 
(00) DEDICATED 

(01) EXPANDED 

(10) MIXED 

(11) RESERVED 

SIGNAL DETECTION MODE - ICON.sdm ------------------...., 
(0) LEVEL-LOW ACTIVATED 

(1) FALLING-EDGE ACTIVATED 

GLOBAL INTERRUPTS ENABLE - ICON.gie ------------~ 

(0) ENABLED 

(1) DISABLED 

MASK OPERATION - ICON.mo---------------. 

(00) MOVE TO r3, MASK UNCHANGED 

(01) MOVE TO r3 AND CLEAR 

FOR DEDICATED MODE 

INTERRUPTS 

(10) MOVE TO r3 AND CLEAR 

FOR EXPANDED MODE 

INTERRUPTS 

(11) MOVE TO r3 AND CLEAR 

FOR DEDICATED AND 

EXPANDED MODE 

INTERRUPTS 

VECTOR CACHE ENABLE - ICON.vce -----------. 
(0) FETCH FROM EXTERNAL MEMORY 

(1) FETCH FROM INTERNAL RAM 

SAMPLING MODE - ICON.sm ------------... 
(0) DEBOUNCE 

(1) FAST 

OMA SUSPENSION - ICON.dmas ----------. 

(0) RUN ON INTERRUPT 

(1) SUSPEND ON INTERRUPT I r---1 

28 24 20 

INTERRUPT CONTROL REGISTER (ICON) 

RESERVED 
(INITIALIZE TO 0) 

16 

m 
a 
s 

s v m m 

m c a 
e 1 

12 

s 
d 
m m m m 
7 6 5 4 

8 

s 
d 
m 
3 

Figure E.13. Interrupt Control (ICON) Register 

E-12 

s s s i 
d d d 
m m m m m 

2 1 0 1 0 

0 

270710-002-10 



REGISTER AND DATA STRUCTURE REFERENCE 

Interrupt Pending (IPND) (sfO) and Interrupt Mask Registers (IMSK) (sf1) 

EXTERNAL INTERRUPT PENDING BITS - IPND.xip ----------------,! 
(0) NO INTERRUPT 

(1) PENDING INTERRUPT 

OMA INTERRUPT PENDING BITS - IPND.dip ------------.! 
(0) NO INTERRUPT 

(1) PENDING INTERRUPT 

d d d d x x x x 
i i I I i I 

p p p 
1 0 6 

28 24 20 16 12 

INTERRUPT PENDING REGISTER (IPND) · SFO 

EXTERNAL INTERRUPT MASK BITS - IMSK.x1m 

(0) MASKED 

(1) NOT MASKED 

OMA INTERRUPT MASK BITS - IMSK.dim ------------..., 

(0) MASKED 

(1) NOT MASKED l I 
d d d d x x x x 
i I I i i i i I 

m m m m m m m m 
3 2 1 0 7 6 5 4 

28 24 20 16 12 4 

INTERRUPT MASK REGISTER (IMSK) • SF1 

~ RESERVED 
~ (INITIALIZE TO 0) 

x x x x 
i I I I 

p p 
2 0 

0 

x x x x 
i i i i 

"' m m m 
3 2 1 0 

0 

270710-001-17 

Figure E.14. Interrupt Mask (IMSK) and Interrupt Pending (IPND) Registers 

E-13 

II 



REGISTER AND DATA STRUCTURE REFERENCE 

Interrupt Map Registers (IMAPO-IMAP2) 

EXTERNAL INTERRUPT 0 FIELD - IMAPO.xO 

EXTERNAL INTERRUPT 1 FIELD - IMAPO.x1 

EXTERNAL INTERRUPT 2 FIELD - IMAPO.x2 

EXTERNAL INTERRUPT 3 FIELD - IMAPO.x3 

28 24 

INTERRUPT MAP REGISTER O (IMAPO) 

EXTERNAL INTERRUPT 4 FIELD-IMAP1.x4 

EXTERNAL INTERRUPT 5 FIELD - IMAP1 .x5 

EXTERNAL INTERRUPT 6 FIELD - IMAP1.x6 

EXTERNAL INTERRUPT 7 FIELD - IMAP1 .x7 

28 24 

INTERRUPT MAP REGISTER 1 (IMAP1) 

DMA INTERRUPT 0 FIELD - IMAP2 dO 

DMA INTERRUPT 1 FIELD - IMAP2.d1 

DMA INTERRUPT 2 FIELD - IMAP2.d2 

DMA INTERRUPT 3 FIELD IMAP2.d3 

28 24 

INTERRUPT MAP REGISTER 2 (IMAP2) 

rm RESERVED 
~ (INITIALIZE TOO) 

20 16 

20 16 

20 16 

l 
xx xx xx xx 
33332222 
32103210 

12 8 

l 

x 
1 
2 

x x 
7 7 
7 6 

x x x x 
7 7 6 6 
5 4 7 6 

x x x 

12 

l 

6 5 5 
4 7 6 

dddddddddd 
333322 21 
321032 03 

12 

I I 
x x x x x 
1 0 0 0 0 
0 3 2 1 0 

4 0 

1 I 

I 

xx xx xx 
554444 
547654 

0 

I 
d d d d d 
1 0 0 0 0 
0 3 2 1 0 

4 0 

270710-002-11 

Figure E.15. Interrupt Mapping (IMAP2-IMAPO) Registers 

E-14 
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Interrupt Record 

CURRENT STACK 
(LOCAL, SUPERVISOR, OR INTERRUPT STACK) {.______· ___ t r---- OO>"<ITT~M• i 

STACK 
GROWTH 

I 
RESERVED 

INTERRUPT STACK 

PADDING AREA 

NEW FRAME 

INTERRUPT 
RECORD 

270710·002·08 

Figure E.16. Storage of an Interrupt Record on the Interrupt Stack 

E-15 



REGISTER AND DATA STRUCTURE REFERENCE 

Interrupt Table 

31 8 7 0 

PENDING PRIORITIES 
0 

PENDING INTERRUPTS 

20H 

!-----------~------------------' ENTRY 8 24H (VECTOR 8) 

1------------------------------1 
ENTRY 9 28H (VECTOR 9) !------------------------------' ENTRY10 2CH (VECTOR 10) 

'"""~~~~~l.l;i;; ..... ~l.l;i;;l.l;i;;l.l;i;;l.l;i;;~l.l;i;;~l.l;i;;l.l;l;;l.l;i;;l.l;i;;....,.l.l;l;;l.l;l;;~~l.l;i;;l.l;i;;l.l;i;;~ 3EOH (VECTOR 247) 

3E4H (VECTOR 248) 

3E8H (VECTOR 249) 

3FOH (VECTOR 251) 
3F4H (VECTOR 252) 

_____________ E_N_T_R_Y_2_ss ____________ __. 400H (VECTOR 255) 

31 VECTOR ENTRY 

I INSTRUCTION POINTER 

t?Hi> .. ::· \ I RESERVED (INITIALIZE TO 0) 

WJI 11141 PRESERVED 

Figure E.17. Interrupt Table 
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Lt ENTRY TYPE 
00 -NORMAL 
10 -TARGET IN CACHE 
01, 11-RESERVED 
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Memory Region Configuration Registers (MCONO-MCON15) 

BURST ENABLE -----------------------------. 
(0) DISABLED 
(1)ENABLED 

READY/BTERM ENABLE 
(0) DISABLED 
(1) ENABLED 

READ PIPELINING ENABLE 
(0) DISABLED 
(1) ENABLED 

NRAD WAIT STATES 
0-31 WAIT STATES 

N ROD WAIT STATES 
0-3 WAIT STATES 

NxoA WAIT STATES 
0-3 WAIT STATES 

NwAD WAIT STATES 
0·31 WAIT STATES 

N WOO WAIT STATES 
0-3 WAIT STATES 

28 

MEMORY REGION 
CONFIGURATION 
REGISTERS 
(MCON 0 - MCON 15) 

I RESERVED 
(INITIALIZE TO 0) 

l 
16 12 

BUS WIDTH 
(00) 8-BIT BUS 
(01) 16-BIT BUS 
(1 O) 32-BIT BUS 
(11) RESERVED 

,__----------BYTE ORDER 
(0) LITTLE ENDIAN 
(1) BIG ENDIAN 

4 

270710-002-18 

Figure E.18. Memory Region Configuration Register (MCONO-MCON15) 
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Previous Frame Pointer (PFP) (rO) 

RETURN STATUS: 

RETURN-TYPE FIELD -PAP.rt ------------------------.] 

p;;~~;;~;~~;::;_:1_:_~_:_,-_P-FP-.p------.+ I 
28 24 20 16 12 8 4 0 

PREVIOUS FRAME POINTER (PFP) 

Q RESERVED 
(INITIALIZE TO 0) 

270710-002-06 

Figure E.19. Previous Frame Pointer Register (PFP) (rO) 
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Process Control Block Configuration Words (PRCB) 

AC REGISTER INITIAL IMAGE 

CONDITION CODE BITS-AC.cc-------------------~ 

INTEGER-OVERFLOW FLAG -AC.of -----------~ 
(0) NO OVERFLOW 

(1) OVERFLOW 

INTEGER OVERFLOW MASK BIT - AC.om ---------. 

(0) ENABLE OVERFLOW FAUL TS 

(1) MASK OVERFLOW FAULTS 

NO-IMPRECISE-FAULTS BIT - AC.nil -----~ 
(0) ALLOW IMPRECISE FAULT CONDITIONS 

(1) PREVENT IMPRECISE FAULT CONDITIONS 

FAULT CONFIGURATION WORD 

12 

MUST BE SET TO 1 -------------------------. 

28 24 20 16 1 

t 12 

~-------- MASK NON-ALIGNED BUS REQUEST FAULT 
(0) ENABLE THE FAULT 
(1) MASK THE FAULT 

INSTRUCTION CACHE CONFIGURATION WORD 

r\Yfl~l+d r~1J{r····1~1· 'f ••l.•·.1·.·tl••·····1••··· .. 1 r·······1·····•··1······•1•····· r···••t.·.·• ... 1.•····.1.····•/1•· ·1···· •. ·1···.··J· .•... ·r · 1.•·····•.1···· ••.1.····.1 

REGISTER CACHE CONFIGURATION WORD 

L 12 8 4 

DISABLE INSTRUCTION CACHE 
(0) ENABLE CACHE 
11) DISABLE CACHE 

NUMBER OF CACHED REGISTER SETS (0-15) 1 
~ N ~ 16 

12 4 

rJ RESERVED 
~ (INITIALIZE TO 0) 

270710-002-45 

Figure E.20. Configuration Words in the PRCB 
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Process Controls Register (PC) 

TRACE-ENABLE BIT-PC.le ---------------------------. 
(0) NO TRACE FAULTS 

(1) GENERATE TRACE FAULTS 

EXECUTION-MODE FLAG- PC.em ------------------------. 
(O) USER MODE 

(1) SUPERVISOR MODE 

TRACE-FAULT-PENDING FLAG - PC.tip --------------. 
(O) NO FAULT PENDING 

(1) FAULT PENDING 

STATE FLAG - PC.s 

(O) EXECUTING 

(1) INTERRUPTED 

PRIORITY FIELD - PC.p -------~ 
(0-31) PROCESS PRIORITY 

28 24 

PROCESS CONTROLS REGISTER (PC) 

~ RESERVED 
(DO NOT MODIFY) 

p p p p p 
4 3 2 1 0 

20 16 12 8 

Figure E.21. Process Controls (PC) Register 
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System Procedure Table 

TRACE 
'I llH-- CONTROL 

BIT 

i--------------------P-R_o_cF_D_u_R_E_EN_T_R_Y_o ____________________ -t30H 

PROCEDURE ENTRY 1 
i-----------------------------------------------------t34H 

PROCEDURE ENTRY 2 
i-------------------------------------------------------i38H 

3CH 

i-------------------------------------------------------t438H 
PROCEDURE ENTRY 259 

'-------------------------------------------------------'43CH 

31 PROCEDURE ENTRY 2 1 0 

I ADDRESS I I 
L.__J 

~j,: : 'I RESERVED (INITIALIZE TO 0) 

vm ff /1 PRESERVED 

L ENTRY TYPE: 
00-LOCAL 
10-SUPERVISOR 

270710-002-05 

Figure E.22. System Procedure Table 
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Trace Controls Register (TC) 

TRACE-MODE BITS 

INSTRUCTION TRACE MODE· TC.i --------------------------. 
BRANCHTRACEMODE·TC.b--------------------------. 

CALL TRACE MODE· TC.c ------------------------~ 

:~~~RR:T~:~CTER~~~~~~~r- T-C-.p--- ----------------------------------------------------------------------+::
1
::.j--.j j 

SUPERVISOR TRACE MODE· TC.s -------------------­
BREAKPOINT TRACE MODE· TC.br-------------------. 

~ M ~ 16 

TRACE­

CONTROLS 

REGISTER (TC) 

d d 
1 0 
f f 

d 
0 
f 

i 
0 
f 

c b i 
f f f 

RACE-~VENT FLAGS 
8 

INSTRUCTION ·TC.if 

BRANCH ·TC.bf 

CALL· TC.cf 

RETURN· TC.rt 
.._ ________ PRE-RETURN· TC.pf 

'----------- SUPERVISOR· TC.st 

'------------ BREAKPOINT· TC.brt 

s p 

4 

HARDWARE BREAKPOINT-EVENT FLAGS 
.._ ___________ INSTRUCTION-BREAKPOINT 0 · TC.iOf 

'-------------- INSTRUCTION-ADDRESS BREAKPOINT 1 · TC.i1f 
,__ ______________ DATA-ADDRESS BREAf(POINT 0 · TC.dOf 

---------------- DATA-ADDRESS BREAKPOINT 1 · TC.d1f 

RESERVED 
(INITIALIZE TO 0) 

0 

270710-002· 13 

Figure E.23. Trace Controls (TC) Register 
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Address Space. An atTay of bytes used to store program code, data, stacks and system data 
structures required to execute a program. Address space is linear - also called flat -
and byte addressable, with addresses running contiguously from 0 to 232 - 1. It can be 
mapped to read-write memory, read-only memory and memory-mapped I/O. i960 
architecture does not define a dedicated, addressable 1/0 space. 

Address. A 32-bit value in the range 0 to FFFF FFFFH used to reference in memory a single 
byte, half-word (2 bytes), word (4 bytes), double-word (8 bytes), triple-word (12 
bytes) or quad-word (I 6 bytes). Choice depends on the instruction used. 

Arithmetic Controls (AC) Register. A 32-bit register that contains flags and masks used in 
controlling the various arithmetic and comparison operations that the processor 
performs. Flags and masks contained in this register include the condition code flags, 
integer-overflow flag and mask bit and the no-imprecise-faults (NIF) bit. All unused 
bits in this register are reserved and must be set to 0. 

Asynchronous Faults. Faults that occur with no direct relationship to a particular instruction 
in the instruction stream. When an asynchronous fault occurs, the address of the 
faulting instruction in the fault record and the saved IP are undefined. i960 core 
architecture does not define any fault types that are asynchronous. 

Condition Code Flags. AC register bits 0, 1 and 2. The condition code flags indicate the 
results of certain instructions - usually compare instructions. Other instructions, such 
as conditional branch instructions, examine these flags and perform functions 
according to their state. Once the processor sets the condition code flags, they remain 
unchanged until the processor executes another instruction that uses these flags to 
store results. 

Execution Mode Flag. PC register bit I. This flag determines whether the processor is 
operating in user mode (0) or supervisor mode (I). 

Fault Call. An implicit call to a fault handling procedure. The processor performs fault calls 
automatically without any intervention from software. It gets pointers to fault 
handling procedures from the fault table. 

Fault Table. An architecture-defined data structure that contains pointers to fault handling 
procedures. Each fault table entry is associated with a particular fault type. When the 
processor generates a fault, it uses the fault table to select the proper fault handling 
procedure for the type of fault condition detected. 

Fault. An event that the processor generates to indicate that, while executing the program, a 
condition arose which could cause the processor to go down a wrong and possibly 
disastrous path. One example of a fault condition is a divisor operand of zero in a 
divide operation; another example is an instruction with an invalid opcode. 

FP. Frame Pointer (see). 
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Frame Pointer (FP). The address of the first byte in the current (topmost) stack frame of the 
procedure stack. The FP is contained in global register g15. 

Frame. Stack Frame (see). 

Global Registers. A set of 16 general-purpose registers (gO through gl5) whose contents are 
preserved across procedure boundaries. Global registers are used for general storage 
of data and addresses and for passing parameters between procedures. 

IBR. Initialization Boot Record (see). 

IMI. Initial Memory Image (see). 

Imprecise Faults. Faults that arc allowed to be generated out-of-order from where they occur 
in the instruction stream. When an imprecise fault is generated, the processor indicates 
the address of the faulting instruction, but it does not guarantee that software will be 
able to recover from the fault and resume execution of the program with no break in 
the program's control flow. The NIF bit in the arithmetic controls register determines 
whether all faults must be precise (1) or some faults are allowed to be imprecise (0). 

Initialization Boot Record (IBR). One of three IMI components, IBR is the primary data 
structure required to initialize the i960 CA microprocessor. IBR is 12-word structure 
which must be located at address FFFF FFOOH. 

Initial Memory Image (IMI). Comprises the minimum set of data structures the processor 
needs to initialize its system. Performs three functions for the processor: 1) provides 
initial configuration information for the core and integrated peripherals; 2) provides 
pointers to system data structures and the first instruction to be executed after 
processor initialization; 3) provides checksum words that the processor uses in self­
test at startup. See also IBR, PRCB and System Data Structures. 

Instruction Cache. A memory array used for temporary storage of instructions fetched from 
main memory. Its purpose is to streamline instruction execution by reducing the 
number of instruction fetches required to execute a program. 

Instruction Pointer (IP). A 32-bit register that contains the address (in the address space) of 
the instruction currently being executed. Since instructions are required to be aligned 
on word boundaries in memory, the IP's two least-significant bits are always zero. 

Integer Overflow Flag. AC register bit 8. When integer overflow faults are masked, the 
processor sets the integer overflow flag whenever integer overflow occurs to indicate 
that the fault condition has occurred even though the fault has been masked. If the 
fault is not masked, the fault is allowed to occur and the flag is not set. 

Integer Overflow Mask Bit. AC register bit 12. This bit masks the integer overflow fault. 

Interrupt Call. An implicit call to a interrupt handling procedure. The processor performs 
interrupt calls automatically without any intervention from software. It gets vectors 
(pointers) to interrupt handling procedures from the interrupt table. 
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Interrupt Stack. Stack the processor uses when it executes interrupt handling procedures. 

Interrupt Table. An architecturally-defined data structure that contains vectors to interrupt 
handling procedures and fields for storing pending interrupts. When the processor 
receives an interrupt, it uses the vector number that accompanies the interrupt to 
locate an interrupt vector in the interrupt table. The intyrrupt table's pending interrupt 
fields contain bits that indicate priorities and vector numbers of interrupts waiting to 
be serviced. 

Interrupt Vector. A pointer to an interrupt handling procedure. In the i960 architecture, 
interrupts vectors are stored in the interrupt table. 

Interrupt. An event that causes program execution to be suspended temporarily to allow the 
processor to handle a more urgent chore. 

Literals. A set of 32 ordinal values ranging from 0 to 31 (5 bits) that can be used as operands 
in certain instructions. 

Local Call. A procedure call that does not require a switch in the current execution mode or a 
switch to another stack. Local calls can be made explicitly through the call, callx and 
calls instructions and implicitly through the fault call mechanism. 

Local Registers. A set of 16 general-purpose data registers (rO through rl5) whose contents 
are associated with the procedure currently being executed. Local registers hold the 
local variables for a procedure. Each time a procedure is called, the processor 
automatically allocates a new set of local registers for that procedure and saves the 
local registers for the calling procedure. 

Memory. Array to which address space is mapped. Memory can be read-write, read-only or a 
combination of the two. A memory address is generally synonymous with an address 
in the address space. 

NIF. No Imprecise Faults Bit (see). 

NMI. Non Maskable Interrupt (see). 

No Imprecise Faults (NIF) Bit. AC register bit 15. This flag determines whether or not 
imprecise faults are allowed to occur. If set, all faults are required to be precise; if 
clear, certain faults can be imprecise. 

Non Maskable Interrupt (NMI). Provides an interrupt that cannot be masked and has a 
higher priority than priority-31 interrupts and priority-31 process priority. The core 
services NMI requests immediately. 

Parallel Faults. A condition which occurs when multiple execution units, executing 
instructions in parallel, report multiple faults simultaneously. Setting the NIF bit 
prohibits execution conditions which could cause parallel faults. 
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Pending Interrupt. An interrupt that the processor saves to be serviced at a later time. When 
the processor receives an interrupt, it compares the interrupt's priority with the priority 
of the current processing task. If the priority of the interrupt is equal· to or less than 
that of the current task, the processor saves the interrupt's priority and vector number 
in the pending interrupt fields of the interrupt table, then continues work on the 
current processing task. 

PFP. (See Previous Frame Pointer.) 

Pointer. An address in the address space (or memory). The term pointer generally refers to the 
first byte of a procedure or data structure or a specific byte location in a stack. 

PRCB. Process Control Block (see). 

Precise Faults. Faults generated in the order in which they occur in the instruction stream and 
with sufficient fault information to allow software to recover from the faults without 
altering program's control flow. The AC register NIF bit and the syncf instruction 
allow software to force all faults to be precise. 

Previous Frame Pointer (PFP). The address of the previous stack frame's first byte. It is 
contained in bits 4 through 31 of local register rO. 

Priority Field. PC register bits 16 through 20. This field determines processor priority (from 0 
to 31). When the processor is in the executing state, it sets its priority according to this 
value. It also uses this field to determine whether to service an interrupt immediately 
or to save the interrupt for later service. 

Priority. A value from 0 to 31 that indicates the priority of a program or interrupt; highest 
priority is 31. The processor stores the priority of the task (program or interrupt) that 
it is currently working on in the priority field of the PC register. See also NMI. 

Process Control Block (PRCB). One of three (IMI) components, PRCB contains base 
addresses for system data structures and initial configuration information for the core 
and integrated peripherals. 

Process Controls (PC) Register. A 32-bit register that contains miscellaneous pieces of 
information used to control processor activity and show current processor state. Flags 
and fields in this register include the trace enable bit, execution mode flag, trace fault 
pending flag, state flag, priority field and internal state field. All unused bits in this 
register are reserved and must be set to 0. 

Register Scoreboarding. Internal flags that indicate a particular register or group of registers 
is be!ng used in an operation. This feature enables the processor to execute some 
instructions in parallel and out-of-order. When the processor begins executing an 
instruction, it sets the scoreboard flag for the destination register in use by that 
instruction. If the instructions that follow do not use scoreboarded registers, the 
processor is able to execute one or more of those instructions concurrently with the 
first instruction. 
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Return Instruction Pointer (RIP). The address of the instruction following a call or branch­
and-link instruction that the processor is to execute after returning from the called 
procedure. The RIP is contained in local register r2. When the processor executes a 
procedure call, it sets the RIP to the address of the instruction immediately following 
the procedure call instruction. 

Return Type Field. Bits 0. I and 2 of local register rO. When a procedure call is made using 
the integrated call and return mechanism. this field indicates the call type: local, 
supervisor, interrupt or fault. The processor uses this information to select the proper 
return mechanism when returning from the called procedure. 

RIP. See Return Instruction Pointer. 

SP. See Stack Pointer. 

Special Function Registers (SFRs). A set of implementation-defined registers that represent 
an extension to the basic register set of the i960 architecture. They are intended to 
allow communication between the core processor and specially designed 
coprocessors. When special function registers arc implemented, they can be used as 
operands in any instruction that accepts a global or local register as an operand. 

Stack Frame. A block of bytes on a stack used to store local variables for a speci fie procedure. 
Another term for a stack frame is an activation record. Each procedure that the 
processor calls has its own stack frame associated with it. A stack frame is always 
aligned on a 64-byte boundary. The first 64 bytes in a stack frame are reserved for 
storage of the local registers associated with the procedure. The frame pointer (FP) 
and stack pointer (SP) for a particular frame indicate location and boundaries of a 
stack frame within a stack. 

Stack Pointer (SP). The address of the last byte in the current (topmost) frame of the 
procedure stack. The SP is contained in local register rl. 

Stack. A contiguous array of bytes in the address space that grows from low addresses to high 
addresses. It consists of contiguous frames. one frame for each active procedure. i960 
architecture defines three stacks: local. supervisor and interrupt. 

State Flag. PC register bit 10. This flag indicates to software that the processor is currently 
executing a program (0) or servicing an interrupt (I). 

State. The type of task that the processor is currently working on: a program or an interrupt 
handling procedure. The processor sets the PC register state flag to indicate its current 
state. 

Status and Control Registers. A set of four architecturally-defined registers - each 32-bits in 
length - that contain status and control information used in controlling program flow. 
These registers include the instruction pointer (IP), AC register, PC register and TC 
register. 
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Supervisor Call. A system call (made with the calls instruction) where the entry type of the 
called procedure is 102. If the processor is in user mode when a supervisor call is 
made, it switches to the supervisor stack and to supervisor mode. 

Supervisor Mode. One of two execution modes - user and supervisor - that the processor can 
be in. The processor uses the supervisor stack when in supervisor mode. Also, while 
in supervisor mode, software is allowed to execute the modpc instruction and any 
other implementation-defined instructions that are designed to be supervisor mode 
instructions. 

Supervisor Stack Pointer. The address of the first byte of the supervisor stack. The supervisor 
stack pointer is contained in bytes 12 through 15 of the system procedure table and the 
trace table. 

Supervisor Stack. The procedure stack that the processor uses when in supervisor mode. 

System Call. An explicit procedure call made with the calls instruction. The two types of 
system calls are a system-local call and system-supervisor call. On a system call, the 
processor gets a pointer to the system procedure through the system procedure table. 

System Data Structures. One of three lMI components. The following system data structures 
contain values the processor requires for initialization: PRCB, IBR, system procedure 
table, control table, interrupt table. 

System Procedure Table. An architecturally-defined data structure that contains pointers to 
system procedures and (optionally) to fault handling procedures. It also contains the 
supervisor stack pointer and the trace control flag. 

Trace Table. An architecturally-defined data structure that contains pointers to trace-fault­
handling procedures. The trace table has the same structure as the system procedure 
table. 

Trace Control Bit. Bit 0 of byte 12 of the system procedure table. This bit specifies the new 
value of the trace enable bit when a supervisor call causes a switch from user mode to 
supervisor mode. Setting this bit to I enables tracing; setting it to 0 disables tracing. 

Trace Controls (TC) Register. A 32-bit register that controls processor tracing facilities. This 
register contains one event bit and one mode bit for each trace fault subtype (i.e., 
instruction, branch, call, return, prereturn, supervisor and breakpoint). The mode bits 
enable the various tracing modes; the event flags indicate that a particular type of 
trace event has been detected. All the unused bits in this register are reserved and must 
be set to 0. 

Trace Enable Bit. PC register bit 0. This bit determines whether trace faults are to be 
generated (1) or not generated (0). 
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Trace Fault Pending Flag. PC register bit 10. This flag indicates that a trace event has been 
detected (I) but not yet generated. Whenever the processor detects a trace fault at the 
same time that it detects a non-trace fault, it sets the trace fault pending flag then calls 
the fault handling procedure for the non-trace fault. On return from the fault 
procedure for the non-trace fault, the processor checks the trace fault pending flag. If 
set, it generates the trace fault and handles it. 

Tracing. The ability of the processor to detect execution of certain instruction types, such as 
branch, call and return. When tracing is enabled, the processor generates a fault 
whenever it detects a trace event. A trace fault handler can then be designed to call a 
debug monitor to provide information on the trace event and its location in the 
instruction stream. 

User Mode. One of two execution modes - user and supervisor - that the processor can be in. 
When the processor is in user mode, it uses the local stack and is not allowed to use 
the modpc instruction or any other implementation-defined instruction that is 
designed to be used only in supervisor mode. 

Vector Number. The number of an entry in the interrupt table where an interrupt vector is 
stored. The vector number also indicates the priority of the interrupt. 

Vector. See Interrupt Vector. 
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AC termination, 14-24 

A31:2, 11-34 

Abase, 3-5 

absolute addressing modes 
description of, 3-4 

AC initial image, 14-8 

AC register, 2-15 
(See also arithmetic controls register) 
condition code flags, 2-15 
integer overflow flag, 2-17 
no imprecise faults bit, 2-17 

AC.cc, 9-4 

accesses 
bus controller, 11-2 

add instructions, 4-8 

add with carry instruction, 4-8 

addc, 4-8, 9-8 

addi, addo, 4-8, 9-9 

addr, 9-3 

address bus, 11-34 

Address Generation Unit, A-17 

address space, 2-9 
requirements for portable code, C-1 

address strobe, 11-34 

addressing modes, used in instructions 
abase, 3-5 
absolute, 3-4 
description of, 3-4 
examples, 3-6 
index, 3-5 
index with displacement, 3-5 
IP with displacement, 3-6 
register indirect, 3-5 
register indirect with index, 3-5 
scale factor, 3-5 

ADS, 11-34 

INDEX 

arbitration 
bus controller, 11-26 

Arithmetic Controls (AC) register 
(See also AC register), 2-15, E-2 
modify arithmetic controls instruction, 
4-17 
no imprecise faults bit, 7-19 

arithmetic instructions, 4-7 

arithmetic zero-divide fault, 7-3, 9-36, 9-37, 
9-50 

assembly-language syntax, 4-1 

asynchronous faults, 7 -20 

atadd, 4-17, 9-12 

atmod, 4-17, 9-13 

atomic 
access, 2-10 
description of, 2-10 
instructions, 4-17 
operand alignment, 2-11 
operations, 11-25 
posting interrupts, 6-4 

b, 4-13, 9-14 

bal, balx, 4-13, 5-18, 8-4, 9-16 

bbc, bbs, 4-14, 9-18 

BCON Register, 10-6, 10-7, E-3 

BCU, 13-29, A-18 
(See also bus controller unit) 
instructions, A-20 
queues, A-20 

be, bg, bge, 4-14, 9-20 

BE3:0, 11-34 

big endian, 10-2 
byte order, 2-12, l 0-4 
memory configuration, 11-23 

bits and bit fields 
bit field instructions, 4-11 

AGU (See also address generation unit), A-6, 
A-17 

bit operation instructions, 4-10 
description of, 3-3 

Pipeline, A-17 

alignment requirements, 2-11 

alterbit, 4-10, 9-10 

and, andnot, 4-10, 9-11 

bl, ble, bne, 4-14, 9-20 

BLAST signal, 11-34 
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block diagrams 
128x32 burst EPROM system, B-46 
8-bit interface, B-39 
booting from 27960CA burst EPROM, 
B-47 
burst DRAM, B-31 
connections to burst EPROM, B-45 
DRAM system with DMA refresh, B-21 
interface to 82596CA coprocessor, B-52 
LAN coprocessor (82596CA), B-49 
pipelined SRAM interface, B-11 
SRAM interface, B-2 
two-way interleaved memory system, 
B-36 

block mode DMA 
channel, 13-2 
transfers, 13-1 
request length, 13-7 

bno, ho, 4-14, 9-20 
important considerations, 9-20 

BOFF, 11-28, 11-38 

BPCON, 8-5 

branch and link, 4-13, 5-18 

branch 
instructions, 4-13 
pipeline, A-21 
prediction, 4-2, A-42 
trace event flag, 8-2 
trace fault, 7-3 
trace mode, 8-4 
trace mode bit, 8-2 

breakpoint 
fault, 7-3, 9-44, 9-48 
register, 8-1 
trace event flag, 8-2 
trace mode, 8-5 
trace mode bit, 8-2 
description of, 8-7 

BREQ pin, 11-37 

BTERM signal, 11-35 

burst accesses, 11-14, 11-15 

burst bus controller, 10-3, 11-12 

burst EPROM interface example, B-44 

burst transfers 
enabling and disabling, 10-3 

Bus backoff (BOFF), 11-28 

Bus Configuration Register (BCON), 10-6, 
10-7, 14-6 

Bus Controller, 1-4, A-18 
address bus, 11-34 
address strobe, 11-34 
arbitration, 11-26 
BCON register, 10-6 
burst accesses, 11-14 
burst control, 10-3, 11-12 
bus access, 11-2, 11-34 
bus arbitration, 11-37 
bus backoff, 11-38 
bus queue, 10-12 
bus requests, 11-1 
bus width, 10-2 
byte enables, 10-2, 11-34 
byte order, 10-2, 10-4, 11-23 
changing configuration, 10-8 
data bus, 11-33 
data packing unit, 10-12 
examples, B-1 
function overview, 10-1 
HOLDA reset, 11-27 
implementation, 10-11 
initialization, 14-5 
Memory Region Configuration Table, 
14-5 
non-burst requests, 11-10 
operation, 11-2 
pin definitions, 11-2, 11-31 
pipeline, A-18 
pipelined reads, 10-3, 11-17 
programming, 10-5 
pipelined waveforms, 11-17 
Region Configuration Options, 10-2 
region table definition, 10-5 
terminology (request, access), 11-1 
transceiver control, 11-36 
wait states, 10-3, 11-4 
waveforms, 11-15, 11-16 

Bus Controller Unit (BCU), 13-29 

bus interface examples, B-1 

bus queue, 10-12, A-20 

bus requests 
aligned, 10-8 
unaligned, 10-8 
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bus width, 10-2, 11-9 

bx, 4-13, 9-14 

byte enable encodings, 11-9 

byte enables, 1 1-34 

byte operations, 4-11 

byte order, l 0-2, 10-4, 11-23 
alignment, 10-8 
big endian, 2-12 
for bus transfers, 11-25 
little endian, 2-12 

cache, A-43 
organization, A-25 
non-transparent, 6-7 

call, 4-15, 5-12, 8-3, 8-4, 9-22 
instructions, 4-15 
operation, 5-5 

call and return mechanism 
data structures, 2-7 
faults, 7-17 
local register cache, 2-12 
system procedure table, 2-8 

call trace 
event flag, 8-2 
fault, 7-3 
mode, 8-4 
mode bit, 8-2 

calls, 2-21, 4-15, 5-12, 5-15, 7-4, 8-5, 9-23 

caUx, 4-15, 5-12, 7-4, 8-4, 9-25 

chaining buffers, 13-11 

chkbit, 4-10, 9-27 

circuit board design, 14-21, 14-23 

CLKIN, 14-20 

CLKMODE pin, 11-38 

clocks, 11-33, 11-38 

drbit, 4-10, 9-28 

cmpdeci, cmpdeco, 4-12, 9-29 

cmpi, 4-11, 9-0 

cmpibe, cmpibne, cmpibl, cmpible, cmpibg, 
cmpibge, cmpibo, cmpibno, 4-14, 9-32 

cmpinci, cmpinco, 4-12, 9-31 

cmpo, 4-11, 9-30 

cmpobe, cmpobne, cmpobl, cmpoble, 
cmpobg, cmpobge, 4-14, 9-32 

COBR, D-3 
instruction encodings, D-10 

code compression, A-43 

code optimization summary, A-46 

compare and decrement instructions, 4-12 

compare and increment instructions, 4-12 

compare instructions, 4-11 

compilers 
global register functions, 5-1 I 

concmpi, concmpo, 4-11, 9-35 

condition code flags 
modification of, 4-17 

conditional branch, A-25 
instructions, 4-14 

conditional compare instructions, 4-11 

conditional fault instructions, 4-16 

constraint range fault, 9-41 

constraint-range fault, 7-3 

control pipeline, A-21 

control registers, 2-6, 14-9 

control table, 2-6, 14-9, E-4 
hardware breakpoint registers, 8-5 

coprocessor interface example, B-48 

crosstalk, 14-25 

CTRL, D-4 
instruction encodings, D-11 

CTRL-side 
IS, A-8 

DIC pin, 11-36 

031:0, 11-33 

DABO, 8-5 

DABl, 8-5 

DACK3:0, 13-25 

Data Address Breakpoint Registers 
(DABO-DABl), E-5 

data alignment, 10-8 

data bus, 11-33 

data chaining, 13-11 
transfer mode, 13-2 
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data packing unit, 10-12 

data RAM, 10-10, A-7 
architectural compatibility, C-2 
byte order, 10-2, 10-4, 11-23 
execution pipeline, A-16 
internal, 2-10, 2-12 
optimizing performance, A-45 
pipeline, A-16 

data structure, 2-7 
alignment, C-2 
alignment in address space, 2-11 
required for initialization, 14-9 

data types 
alignment, 3-3 
bits and bit fields, 3-3 
description of, 3-1 
integers, 3-2 
ordinal, 3-2 
quad word, 3-3 
triple word, 3-3 

debugging 
instructions, 4-16 
overview of, 1-3 

dedicated-mode interrupts, 12-2 
(See also Interrupt Controller) 

delayed instructions, A-11 

demand mode DMA 
channel, 13-2 
transfer request length, 13-1, 13-7 

DEN signal, 11-36 

disable burst transfers, 10-3, 11-12 

divi, divo, 4-8, 9-36 

divide instructions, 4-8 

DMA Command Register (DMAC), E-5 

DMA control word, 13-21, E-6 

DMA controller, 1-4 
addressing, 13-2 
assembly and disassembly, 13-8 
byte count, 13-20 
channel priority, 13-16 
channel swapping, 13-23 
channel wait function, 13-19 
DACK3:0 and block mode timing, 13-28 
data alignment, 13-9, 13-10 
data chaining, 13-11, 13-23 

DMA controller (continued) 
demand mode, 13-25 
destination address, 13-20 
DMA command register (DMAC), 13-18 
DMA data RAM, 13-23 
DMA sourced interrupts, 13-13 
DMA transfers, 13-3 
End of process (EOP3:0) pin, 13-14 
fly-by transfers, 13-4 
latency, 13-33 
logic, 13-30 
microcode, 13-28 
multi-cycle transfer, 13-4 
performance calculations, 13-30 
pin descriptions, 13-25 
process, 13-29 
request and acknowledge timing, 13-25 
setting up, 13-17 
source address, 13-20 
source/destination data length, 13-6 
standard transfer, 13-3 
suspending a DMA, 13-14 
suspending DMA operations on interrupt, 
12-20 
synchronization, 13-25 
terminating a DMA, 13-14, 13-18 
transfer type options, 13-3 
transfer types, 13-1 
use of internal data RAM, 2-12 

DMA transfers 
block and demand modes, 13-2 
fly-by, 13-1 

DMA pin, 11-36, 13-25 

DMAC, 13-18 

DR pipeline, A-16 

DRAM interface example, B-16 

DREQ3:0, 13-25 

DT/R pin, 11-36 

ediv, 4-8, 9-37 

efa (effective address) 
calculations, A-18 
notation, 9-3 

effective address calculations, A-18 

electromagnetic interference (EMI), 14-25 

electrostatic interference (ESI), 14-25 

EMI, 14-25 
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emul, 4-8, 9-38 

enables 
burst transfers, 10-3, 11-I 2 

encoding, 4-2 

EOP/TC3:0, 13-25 

EOP3:0 pin, 13-14 
important consideration, 13-15 

eshro, 4-9, 4-11, 9-39, C-3 

ESI, 14-25 

Ethernet interface example, B-48 

EU (See also execution unit), A-6 
instructions, A-13 
pipeline, A-12, A-13 

executable group, A-9, A-22 

executing-state interrupt, 6-8 

execution times, A-12 

Execution Unit (EU), A-12 

expanded mode interrupts, 12-4 
See also Interrupt controller 

extended arithmetic instructions, 4-8 

extended multiply and divide instructions, 4-8 

extended register set, 2-3 

extended shift instruction, 4-9 

external bus confidence self test, 14-4 

extrac~4-ll, 9-40 

FAIL pin, 11-38, 14-2 
timing, 14-4 

fault conditions, see Faults 

fault handling (See also Faults), 7-2 
control flags and masks, 7-16 
fault handling actions, 7-17 
fault handling method, 7-2 
fault-handling procedure, 7-12 
local calls to fault handling procedures, 
7-4 
no-imprecise-faults bit, 7-19 
overview of fault-handling facilities, 7-1 
possible fault-handler actions, 7-12 
procedure table calls to fault handling 
procedures, 5-13 
program resumption following a fault, 
7-12 

fault handling (continued) 
system-procedure table calls to 
fault-handling procedures, 7-4 

fault record, 7-2, E-7 
description of, 7-6 
location of fault record, 7-7 
return instruction pointer (RIP), 7-7 

fault table, 2-8, 7-2 
description of, 7-4 
fault table entries, 7-4, E-8 
location of in memory, 7 -4 
Fault-if instructions, 7-16 

faulte, 7-17 

faulte, faultne, faultl, faultle, faultg, faultge, 
faulto. faultno, 4-16, 9-41 

faultg, 7-16 

faultge, 7-16 

fault!, 7-16 

faultle, 7 -16 

faultne, 7 -16 

faultno, 7 -16 

faulto, 7-16 

Faults, 1-3, 7-2 
arithmetic, 7-22 
asynchronous, 7-20 
constraint, 7-23 
explicit fault generation, 7-16 
fault handling, 7-4 
fault instructions, 4-16, 7- l 6 
fault record, 7-6 
fault table, 2-8, 7-4 
generating a fault, 7-14 
implicit fault generation, 7-14 
important considerations, 7-8 
imprecise, 2-17, 7-20 
initial configuration, 14-8 
interrupts and faults, 7-19 
location of fault record, 7-7 
multiple fault conditions, 7-8 
operation, 7-24, 9-6, 9-7 
parallel faults, 7-19 
precise and imprecise faults, 7-19 
program resumption following a fault, 
7-12 
protection, 7-26 
reference information on faults, 7-21 
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Faults (continued) 
return instruction pointer (RIP), 7-7 
supervisor mode protection, 2-21 
trace, 7-27, 9-6 
types and subtypes, 7-2, 7-29, 9-7 

fetch 
effects, A-25 
execution, A-27 
latency, A-26 
strategy, A-26 

flush local registers 
instruction, 4-17 

flushreg, 4-17, 5-9, 9-43 

fly-by DMA transfers, 13-4 
important consideration, 13-5 
transfer mode, 13-1 

fmark, 4-16, 7-16, 8-1, 8-5, 9-44 

force mark instruction, 4-16, 7-16 

frame fill, 5-6 

Frame Pointer (FP), 2-1 
description of, 5-3 

frame spill, 5-6 

global registers, 2-1 
compilers, 5-11 
parameter passing example, 5-12 
storing of RIP on a branch-and-link 
instruction, 5-18 

Hardware Breakpoint Control Register 
(BPCON), 8-5, E-3 

hardware breakpoints, 8-5 

HOLD and HOLDA handshaking, 11-27 

HOLD pin, 11-37 

HOLDA pin, 11-37 
reset interaction, 11-27 

1/0 pin characteristics, 14-22 

INDEX 

i960 CA microprocessor, 1-1 
address space, 2-9 
arithmetic controls, 2-15 
block diagram, A-3 
compilers, 5-11 
core and peripherals, A-1 
data structures, 2-7 
DMA controller, C-5 
instruction flow, A-4 
instruction scheduler (IS), A-2 
memory requirements, 2-10, 2-11 
microarchitecture review, A-7 
optimizing code, A-1 
overview of, 1-2, 1-4 
porting optimized algorithms, A-43 
processor-state registers, 2-14 
register file, A-5 
register model, 2-1 
writing portable code, C-1 

IBR, 14-5 

ICON register, 12-10 

IMI, 14-2, 14-5 
system procedure table pointer, 5-13 

implicit call 
interrupt context switch, 6-8 

imprecise faults, 7-20 

IMSK register, 12-5, 12-14 
important consideration, 12-5 

index with displacement addressing mode, 3-5 

indivisible access, 2-10 

Initial Memory Image (IMI), 14-2, 14-5, E-10 
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initialization, 2-25, 14-2 
AC initial image, 14-8 
architectural compatibility, C-4 
bus controller, 14-5 
cold reset (power-up reset), 14-2 
control table base address, 14-9 
fault configuration word, 14-8 
hardware requirements, 14-20 
Initial Memory Image (IMI), 14-5 
Initialization Boot Record (IBR), 2-8, 
14-5 
instruction cache configuration word, 
14-8 
interrupt table base address, J 4-9 
NMI vector, 14-9 
power and ground requirements, 14-21 
Process Control Block (PRCB), 2-8, 14-7 
register cache configuration word, 14-8 
system procedure table base address, 14-9 
user start-up code, 14-11 
warm reset (power-on reset), 14-2 

Initialization Boot Record (IBR), 2-8, 14-5 

Instruction Address Breakpoint Registers 
(IPBO - IPB 1), E-11 

instruction cache, 2-13, 2-25, A-25, A-44 
architectural compatibility, C-2 
cache load and lock mechanism, 12-20 
caching interrupt-handling procedures, 
12-20 
configuration options, 2-24 
disabling the instruction cache, 2-25 
initial configuration, 14-8 
invalidating the instruction cache, 2-13, 
2-24 
locking interrupt procedures in the 

instruction fetch 
cancellation, A-25 
encoding formats, 4-2 
instruction fetch unit, A-25 
latency, A-26 
queues, A-26 
strategy, A-26 

instruction pointer (IP), 2-14 

instruction set, 1-3 
condition codes, 2-15 
instruction operands, 2-1 
i960 CA implementation specific, 9-2 
i960 CA processor extensions, 4-9, 9-39 

Instruction Stream Optimization, A-8, A-34 

instruction trace 
event flag, 8-2 
fault, 7-3 
mode, 8-4 
mode bit, 8-2 

instructions 
add, subtract, divide, multiply, 4-8 
add with carry, 4-8 
addc, 9-8 
addi, addo, 9-9 
alterbit, 9-10 
and, andnot, 9-11 
architectural compatibility, C-3 
arithmetic, 4-7 
assembly-language format, 4-1 
assembly-language syntax, 4-1 
atadd, 9-12, A-33 
atmod, 9-13, A-33 
atomic micro-flow issue clocks, A-33 
b, 9-14 
bal, balx, 9-16, 8-4, A-43 
bbc, bbs, 9-18 
BCU, A-20 
be, bg, bge, 9-20 
bit and bit field, 4-10, 4-1 l 

micro-flow issue clocks, A-31 
bl, hie, bne, 9-20 
bno, bo, 9-20 
branch, 4-13 

micro-flow issue clocks, A-32 
bx, 9-14, A-32 
byte operations, 4-11 
call, callx, ret, 8-4, 9-22, A-32 
call and return, 4- l 5 

micro-flow issue clocks, A-32 
calls, 2-21, 8-3, 9-23 
callx, 9-25 
chkbit, 9-27 
clrbit, 9-28 
cmpdeci, cmpdeco, 9-29 
cmpi, 9-30 
cmpib*, cmpob*, A-32 

lndex-7 



instructions (continued) 
cmpibe cmpibne, cmpibl, cmpible, 
cmpibg, cmpibge, cmpibo, cmpihno, 
9-32 
cmpinci, cmpinco, 9-31 
cmpo, 9-30 
cmpobe cmpohne, cmpohl, cmpohle, 
cmpobg, cmpobge, 9-32 
code optimization, A-9 
compare and increment or decrement, 
4-12 
comparison, 4-11 

micro-flow issue clocks, A-32 
concmpi, concmpo, 9-35 
conditional branch, 4-14 
conditional faults 

micro-flow issue clocks, A-33 
CTRL, A-22 
data movement, 4-4 
debug, 4-16 

micro-flow issue clocks, A-33 
divi, divo, 9-36 
ediv, 9-37 
emul, 9-38 
eshro, 9-39 
extended arithmetic, 4-8 
extended multiply and divide, 4-8 
extract, 9-40 
fault instructions, 4-16, A-33 
faulte, faultne, faultl, faultle, faultg, 
faultge, faulto, faultno, 9-41 
flushreg, 5-9, 9-43, A-44 
fmark, 8-1, 8-5, 9-44, A-33 
format of, 9-2 
groups, 4-4 
i960 CA-specific, C-3 
Id, ldib, ldis, ldl, ldob, ldos, ldq, ldt, 
9-45 
Ida, 2-14, 9-47, A-17 
load, 4-6 
load address, 4-7 
logical, 4-10 
mark, 8-1, 8-5, 9-48, A-33 
MDU, A-15 
micro-flow, A-30 
modac, 2-15, 9-49 
modi, 9-50 
modify, 9-51 

INDEX 

instructions (continued) 
modpc, 2-17, 9-52 
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modpc, modtc, modac, syncf, flushreg, 
sdma, udma, sysctl, A-34 
modtc, 8-2, 9-53 
mov, movl, movq, movt, 9-55, A-29 
move, 4-6 
muli, mulo, 9-55 
nand, 9-56 
nor, 9-57 
not, notand, 9-58 
nothit, 9-59 
notor, 9-60 
opcode 

encoding, D-7 
format, 9-7 

operands, 4-3 
or, ornot, 9-61 
parallel issue, A-10 
processor management, 4- I 7 

micro-flow issue clocks, A-34 
REG, COBR, CTRL, MEM, D-1 
remainder and modulo, 4-9 
remi, remo, 9-62 
ret, 8-4, 8-5, 9-63 
rotate, 9-65 
scanbit, 9-66 
scanbit, spanbit, extract, modify, A-3 I 
scanbyte, 9-67 
sdma, 9-68, 13-2, 13-20 
sdma, udma, 13-17 
setbit, 9-69 
shift and rotate, 4-9 
shli, shlo, shrdi, shri, shro, 9-70 
spanbit, 9-73 
st, stib, stis, stl, stob, stos, stq, stt, 9-74 
st, stob, stib, stos, stis, stl, stt, stq, A-31 
store, 4-6 

micro-flow issue clocks, A-31 
subc, 9-76 
subi, subo, 9-77 
subtract with carry, 4-8 
summary of i960 CA instructions, 4-5 
syncf, 9-78 
sysctl, 2-13, 2-22, 9-79 
system control instruction, 4-18 
test condition codes, 4-12 
teste, testne, testl, testle, testg, testge, 
testo, testno, 9-82, A-32 
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instructions (continued) 
timings, C-3 
udma, 9-84 
unconditional branch, 4-13 
xnor, xor, 9-85 

integer overflow, 2-17 
fault, 7-3, 7-13, 9-9, 9-36, 9-55, 9-62, 
9-70, 9-74, 9-77 

integers 
description of, 3-2 

integrated call and return 
overview of, 5-2 

interfacing 
to burst EPROM, B-44 
to DRAM, B-16 
to interleaved memory, B-35 
to LAN coprocessor, B-48 
to pipelined SRAM, B-10 
to slow peripherals, B-37 
to SRAM, B-1 

internal data RAM, 2-12, 10-10 
formula to determine usage, 5-9 

Interrupt Control (ICON) Register, 12-10, 
E-12 
See also Interrupt controller 

interrupt controller, 1-4, 12-15 
cache load and lock, 12-20 
cached interrupt vectors, 2-12 
caching interrupt vectors on-chip, 12-19 
caching interrupt-handling procedures, 
12-20 
calculating interrupt latency, 12-17 
critical region execution, 12-7 
debounce sample mode, 12-8 
dedicated mode interrupt, 12-2, 12-12 
default and reset register values, 12-15 
DMA sourced interrupts, 12-4 
DMA sources, 13-13 
edge detect option, 12-8 
expanded-mode interrupts, 12-4 
fast sample mode, 12-8 
hardware-generated interrupts, 12-1, 12-2 
ICON register, 12-7, 12-10, 12-20 
IMAP2-IMAPO registers, 12-12 
IMSK register, 12-5, 12-7, 12-14 
interrupt detection options, 12-8 

interrupt controller (continued) 
interrupt latency and throughput, 12-19 
interrupt mask operation on interrupt, 
12-7 
interrupt modes, 12-2, 12-12 
IPND register, 12-14 
level detect option, 12-8 
mixed-mode interrupts, 12-5 
NMI pin, 12-6 
Non-Maskable Interrupt (NMI), 2-12, 
12-6 
pin descriptions, 12-8 
priority-31 interrupts, 12-2, 12-7 
Programmer's interface', 12-10 
requesting interrupts, 12-1 
saving and clearing the IMSK register, 
12-7 
setup, 12-15 
software-generated interrupts, 6-10 
suspending DMA operations on interrupt, 
12-20 
use of internal data RAM, 2-12 

interrupt handling 
interrupt handler procedures, 6-8 
interrupt stack, 6-7 
interrupt table, 6-3 
location of interrupt handler procedures, 
6-8 
restrictions on interrupt handler, 6-8 

interrupt latency, 12-19 
See also Interrupt controller 

Interrupt Map (IMAP2-IMAPO) registers, 
12-12, E-14 

Interrupt Mask (IMSK) register, 12-14, E-13 

interrupt modes, 12-2 
See also interrupt controller 

Interrupt Pending (IPND) register, 12-14, 
E-13 

interrupt record 
description of, 6-7 

interrupt service latency, 12-17 

interrupt stack, 2-8 
description of, 6-7 

interrupt table, 2-8, 14-9, E-16 
description of, 6-3 
pending interrupts section, 6-4 
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interrupt vectors, 6-2 

interrupted-state interrupt, 6-8 

Interrupts, 1-3 
architectural compatibility, C-4 
executing-state, 6-8, 6-9 
important considerations, 6-6, 6-8, 6-9 
interrupt context switch, 6-8 
interrupt controller overview, 6-2 
interrupt handling actions, 6-8 
interrupt record, 6-7 
interrupt stack, 2-8, 6-7 
interrupt table, 2-8 

caching of, 6-6 
interrupted-state, 6-8 
interrupted-state interrupt, 6-10 
locking interrupt procedures in the 
instruction cache, 2-13 
non-cooperating program procedures, 6-8 
overview of interrupt handling facilities, 
6-1 
pending, 6-2, 6-4 
posting and checking pending interrupts, 
6-4 
posting interrupts in the interrupt table, 
6-5 
preserving and restoring, 6-8 
priorities, 6-2 
Priority-31, 6-2 
requesting interrupts, 12-1 
requesting software interrupts, 2-24 
servicing an interrupt, 6-8 
supervisor mode protection, 2-21 
vector numbers, 6-2, 6-3 
vectors, 6-2, 6-3 

invalid-opcode fault, 7-3 

invalid-operand fault, 7-3 

IP (instruction pointer), 2-14 
procedure table entry, 5-13 

IP with displacement addressing mode, 3-6 

IPBO, 8-5 

IPBl, 8-5 

IPND register, 12-14 

IS, A-2 
see also instruction scheduler 

latchup, 14-25 

latency calculations for DMA controller, 
13-30 

Id, ldib, ldis, ldl, ldob, ldos, ldq, ldt, 9-45 

Ida, 2-14, 4-7, 9-47 

length fault, 7-3 

literals, 2-5 

little endian, 10-2 
byte order, 2-12, 10-4 
memory configuration, 11-23 

load address instruction, 4-7 

load instructions, 4-6 

local call 
call operation, 5-12 
definition of, 5-1 
description of, 5-12 

local registers, 2-2 
caching, 5-2, 5-6, A-7 
call/return mechanism, 5-2 
mapping of local register sets to 
procedure stack, 5-9 
relationship to procedure stack, 5-2 

LOCK pin, 11-26, 11-37 

logical instructions, 4-10 

loops, A-37 

machine-level format, 4-2 

niark,4-16, 7-16, 8-1, 8-5,9-48 

MCONO-MCON15, 10-6 

MDU (See also multiply/divide unit), A-6 
Execution Pipeline, A-14 
Pipeline, A-14 
Pipelined Back-To-Back Operations, 
A-14 

MEM,D-4 
instruction encodings, D-12 

MEM-side 
BCU, DR, AGU, A-7 

MEMA, D-5 

MEMB,D-5 

memory addressing modes, 3-4 

Memory Region Configuration Register 
(MCONO-MCON15), 10-2, 10-6, E-17 

memory requirements, 2-10 
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Micro-Flows, A-28 
execution, A-29 

mixed mode interrupts, 12-5 
Sec also Interrupt controller 

modac, 2-15, 4-17, 9-49 

modi. 4-9, 9-50 

modify, 4-1 J, 9-51 

modify process controls instruction, 4- J 6. 
4-17 

modify trace controls instruction, 4-16 

modpc. 2-17. 4-16. 4-17, 6-6, 9-52 

modtc, 4-16. 8-2, 9-53 

modulo instructions, 4-9 

mov, movl, movq, movt, 4-6. 9-54 

move instructions, 4-6 

muli, mulo, 4-8, 9-55 

multi-cycle DMA transfer, 13-4 

multiply instructions, 4-8 

Multiply/Divide Unit (MDU), A-14 

naming conventions, 1-6 

nand, 4-10, 9-56 

NoMA, 13-33 

NMI, 12-6, 14-9 
See also Interrupt controller 

No Imprecise Faults (NlF) bit, 7-19 

Non-maskable interrupt (NMI), 12-6 
See also Interrupt Controller 

non-transparent caching, 6-7 

nor. 4-10, 9-57 

not, notand, 4-10, 9-58 

notation, 1-6 

notbit, 4- JO, 9-59 

notor, 4-10, 9-60 

NRAD• 10-3, 11-5 

NRDD· 10-3, 11-5 

NwAD· 10-3, 11-5 

NwDD· 10-3, 11-6 

NxoA. 10-3, 11-6 
important considerations, 10-4, 11-6 

INDEX 

On Circuit Emulation (ONCE), 11-38, 14-5 

ONCE mode, 11-38 

ONCE pin, 11-38 

operands for in~tructions, 4-3 

optimizing code, A-1 

opword, 4-2 

or. ornot, 4-JO, 9-61 

ordinal, description of, 3-2 

parallel execution, A-7, A-12 

parallel faults, 7-9 

parallel instruction execution, A- I, A-10 

parallel issue, A-7 

parallel issue paths, A-9 

parallel processing units, A-7 

parameter passing 
by reference, 5-10 
description of, 5-10 
in an argument list, 5-10 
through the procedure stack, 5-10 

PC register, 2-17 
execution mode flag, 2-19 
priority field, 2-19 
state flag, 2-19 
trace enable bit, 2-19 

PCLK2: I, 11-33 

pending interrupts 
handling of, 6-6 
posting of, 6-4 
servicing of, 6-4 

peripherals interfacing, B-37 

PFP,5-17 
return status field encoding, 5-17 

pin descriptions, 11-3 l 

pin types 
asynchronous, I 4-23 
input, 14-23 
output, 14-22 
synchronous, 14-23 

pipelined reads, 10-3, 11-17 

porting optimized algorithms, A-43 

power and ground planes, 14-21 

lndex-11 



PRCB, 14-7 
configuration words, E-19 

prediction bits, A-42 

prereturn trace 
event flag, 8-2 
fault, 7-3 
mode, 8-4 
mode bit, 8-2 
prereturn trace flag, 5-4, 5-16 

preserved, 1-6 
compare with reserved 

Previous Frame Pointer Register (PFP) (rO), 
2-2, 5-4, 5-17, E-18 

Priority-31 interrupts, 6-2 

procedure calls 
branch-and-link, 5-18 
call/return mechanism, 5-2 
frame pointer, 5-3 
generalized call operation, 5-5 
generalized return operation, 5-5 
introduction to, 5-1 
local calls, 5-12 
local registers, 5-2 
parameter passing, 5-10 
prereturn trace flag, 5-4, 5-16 
previous frame pointer, 5-4 
procedure linking information, 5-3 
procedure stack, 5-2 
return instruction pointer, 5-4 
return status field, 5-4, 5-16 
saving of local registers, 5-2 
stack pointer, 5-4 
supervisor call, 5-15 
supervisor stack, 5-15 
system call, 5-12 
system procedure table, 5-13 

procedure stack (See also call and return 
mechanism), 2-7 
call/return mechanism, 5-2 
description of, 5-2 
mapping of local registers to, 5-9 
register save area, 5-2, 5-9 
stack frames, 5-2 
structure and local registers, E-9 

Process Control Block (PRCB), 2-8, 14-7 
See also Initialization 

INDEX 

Process Controls (PC) Register, 2-17, E-20 
trace enable flag, 8-7 
trace-fault-pending flag, 8-8 
ret, 8-4, 8-5 

processor management 
instructions, 4-17 

programming the bus controller, 10-5 

quad word, 3-3 

queues, A-26 

READY signal, 11-35 

REG, D-1 
instruction encodings, D-7 

REG-side 
MDU,EU,A-7 

region table, 10-5, 10-7 

register bypassing, A-11 

register cache, A-44 
initial configuration, 14-8 

register coherency, A-12 

register dependencies, A-8 

register indirect addressing modes, 3-5 

register save area, 5-2 
See also Procedure stack 

Registers 
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alignment requirements, 2-5 
arithmetic controls (AC) register, 2-15 
as instruction operands, 2-5 
control registers, 2-6, 2-26 
extended register set, 2-3 
flush local registers instruction, 4-17 
Frame Pointer (FP), 2-1 
global registers, 2-1 
instruction operands, 1-8, 2-2 
Instruction Pointer (IP), 2-14 
local registers, 2-2 
naming conventions, 1-8 
Previous Frame Pointer (PFP), 2-2 
Process Controls (PC) register, 2-17 
processor-state registers, 2-14 
reset conditions, 14-4 
Return Instruction Pointer RIP, 2-2, 2-14 
scoreboarding, 2-4 
Special Function Register(SFRs), 2-3 
Stack Pointer (SP), 2-2 
Trace Controls (TC) register, 2-20 



INDEX 

Reinitialization, 2-25 
See also Initialization 

remainder instructions, 4-9 

remi, remo, 4-9, 9-62 

reserved, 1-6 
compare with preserved 

reserved address space, 2-1 0 

reserved register and data structure locations, 
C-3 

reset 
HOLDA interaction, 11-27 

resource dependencies, A-8 

resource scoreboard conditions, A-11 

re~4-15,5-16,7-12,7-18,7-19,9-63 

return 
generalized, 5-5 

return instruction, 4-15 

Return instruction pointer (RIP), 2-2, 2-14 
description of, 5-4 
on a branch-and-link, 5-16 

return operation, 5-5 

return status field 
description of, 5-4, 5-16 
encoding of, 5-17 

return trace 
event flag, 8-2 
fault, 7-3 
mode, 8-4 
mode bit, 8-2 

RF (See also register file), A-5 

RIP (return instruction pointer), 2-14 
for fault calls, 7-7 

rotate, 4-9, 9-65 

rotate instructions, 4-9 

SALIGN, 5-4, 7-7 

Scale factor in addressing, description of, 3-5 

scanbit, 4-10, 9-66 

scanbyte, 4-11, 9-67 

scoreboarding, 2-4, A-11 
scoreboarded register, A-11 
scoreboarded resource, A-11 

sdma, 4-18, 9-68, 13-2, 13-17, 13-20, C-3 
instruction operands, 13-21 

self test, 11-38. 14-2 

setbit, 4-10, 9-69 

sfr, notation, 9-3 
important considerations, 9-4 

shift instructions, 4-9 

shli, shlo, shrdi, shri, shro, 9-70 

six-port register file, A-5 

software breakpoints, 8-5 

software-generated interrupts, 6-10 

spanbit, 4-10, 9-73 

special function register (SFR), 2-3 
architectural compatibility, C-3 

SRAM interface 
example, B-1 
schematic, B-2 

st, stib, stis, stl, stob, stos, stq, stt, 9-7 4 

stack, 2-7, 5-2 
See also procedure stack and call and 
return mechanism 

stack frame, 5-2 
alignment, 7 -7 

stack pointer (SP), 2-2, 5-4 

startup code 
example, 14-13 

state machines 
A32 address generation, B-8 
chip enable, B-8 
DRAM,B-32 
DRAM address generation, B-23 
DRAM controller, B-25 
pipelined read CE, B-13 
pipelined read PA3:2, B-14 
slow peripheral interface, B-42 

STEST pin, 11-38, 14-2 
important considerations, 14-3 
reset state, 14-3 

store instructions, 4-6 

subc, 4-8, 9-76 

subi, subo, 4-8, 9-77 

subtract instructions, 4-8 

subtract with carry instruction, 4-8 
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SUP pin, 2-20, 11-37 

superscalar, 1-2 

supervisor call, 2-21, 5-15 
(See also Call and return mechanism) 
call operation, 5-15 
definition of, 5-1 
system call instruction, 4-15 

supervisor mode, 5-15 
See user-supervisor protection model 

supervisor mode protection 
description of, 2-20 
internal data RAM, 2-12 
special function registers, 2-4 

supervisor stack, 2-7, 2-21, 5-15 
(See also Call and return mechanism) 
supervisor stack pointer, 5-14, 14-9 

supervisor trace 
event flag, 8-2 
fault, 7-3 
mode, 8-5 
mode bit, 8-2 

syncf, 7-19, 7-21, 9-78 

sysctl, 2-8, 2-13, 2-21, 4-18, 6-10, 9-79, 
12-21, 14-11, C-3 
interrupt service request, 12-2 

system call 
definition of, 5-1 
description of, 5-12 
mechanism of, 5-13 

system control (sysctl) instruction, 12-21 
configure instruction cache message, 
12-21 
see also sysctl 

system procedure table, 2-8, 14-9, E-21 
(See also Call and return mechanism) 

procedure entry structure, 5-13 
structure of, 5-13 
supervisor stack pointer entry, 5-14 
system call instruction, 4-15 

system-supervisor call, 5-15 

TC register, 2-20, 8-1 

terminations for signal lines, 14-24 

terminology, 1-6 

test condition code instructions, 4-12 

teste, 4-12 

INDEX 

teste, testne, testl, testle, testg, testge, testo, 
testno, 9-82 

testg, 4-12 

testge, 4-12 

testl, 4-12 

testle, 4-12 

testne, 4-12 

testno, 4-12 

testo, 4-12 

throughput calculations for DMA controller, 
13-30 

trace control bit (in system procedure table), 
8-1, 8-3, 8-8 

trace controls, 8~ 1 

Trace Controls (TC) Register, 2-20, E-22 

trace enable bit, 6-9, 8-1, 8-3, 8-7, 8-8, 8-9 

trace fault pending flag, 6-9, 7-13, 8-1, 8-3, 
8-8, 8-9 

trace flag (in return-status field of rO), 8-1, 8-3 

tracing, 1-3 
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branch trace mode, 8-4 
breakpoint trace mode, 8-5 
call trace mode, 8-4 
handling multiple trace events, 8-8 
hardware breakpoints, 8-5 
instruction trace mode, 8-4 
instructions, 4-16 
interrupt handlers, tracing with, 8-9 
modifying trace controls register, 8-2 
overview of, 8-1 
preretum trace handling, 8-9 
preretum trace mode, 8-4 
return trace mode, 8-4 
signaling a trace event, 8-7 
supervisor trace mode, 8-5 
trace control bit (in system procedure 
table), 8-3 
trace control on supervisor calls, 8-3 
trace controls, 8-1 
Trace Controls (TC) register, 2-20, 8-1, 
8-2 
trace enable bit, 8-3 
trace event flags, 8-2 
trace fault handler, 8-8 
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tracing (continued) 
trace fault pending flag, 8-3 
trace faults, 8-1, 8-3, 8-4, 8-8 
trace flag (in return-status field of rO), 8-3 
trace handling action, 8-8 
trace mode bits, 8-2 
trace modes, 8-3 

triple word, description of, 3-3 

type-mismatch fault, 7-3, 9-52 

udma, 9-84, 13-17, 13-24, C-3 

unaligned fault, 7-3 

unconditional branch, 4-13, A-21 

unimplemented fault, 7-3 

unrolling loops, A-37 

user stack, 2-7 
see also call and return mechanism 

user-supervisor protection model 
mode switching, 5-15 
supervisor call, 5-15 
supervisor mode, 5-15 
supervisor procedure, 5-15 
user mode, 5-15 

VSS and VCC, 14-21 

WIR pin, 11-36 

wait states, 10-3, 11-34, 11-35 
bus controller, 11-4 

WAIT signal, 11-34 

waveforms 
burst pipelined EPROM read B-47 
CAS-before-RAS DRAM refresh, B-19 
DMA request and acknowledge signals, 
B-28 
DRAM system read, B-29 
DRAM system write, B-30 
fast page mode DRAM read, B-18 
nibble mode read, B-17 
non-pipelined SRAM read, B-5 
non-pipelined SRAM write, B-5 
pipelined read, B-12 
pipelined read address and data, B-10 
RAS-only DRAM refresh, B-19 
slow peripheral interface read, B-40 
slow peripheral interface write, B-41 
static column mode DRAM read, B-18 
two-way interleaved read, B-37 

xnor,xor,4-10,9-85 
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NORTH AMERICAN DISTRIBUTORS (Contd.) 
IOWA 

Hamflton/Avnet 
2335A B1airsferry Rd., N.E 
Cedar Rapids 52402 
Tel: (319) 362-4757 
FAX: (319) 393-7050 

KANSAS 

Arrow/Schweber Electronics 
9801 Legler Road 
Lenexa 66219 
Tel: (913) 541-9542 
FAX: (913) 541-0328 

Avnet Computer 
15313 W. 95th Street 
Lenexa 61219 
Tel: (913) 541-7989 
FAX: (913) 541-7904 

Hamilton/Avnet 
15313 w. 95th 
Overland Park 66215 
Tel: (913) 888-1055 
FAX: (913) 541-7951 

KENTUCKY 

Hamilton/Avnet 
805 A. Newtown Cfrcle 
Lexington 40511 
Tel: (806) 259-1475 
FAX: (606) 252-3238 

MARYLAND 

Arrow/Schweber Electronics 
9800J Patuxent Woods Dr. 
Columbia 21046 
Tel: (301) 596-7800 
FAX: (301) 995-6201 

Avnet Computer 
7172 Columbia Gateway Dr., #G 
Columbia 21045 
Tel: (301) 995-3571 
FAX: (301) 995-3515 

Hamilton/Avnet 
7172 Columbia Gateway Dr., #F 
Columbia 21045 
Tel: (301) 995-3554 
FAX: (301) 995-3515 

*North Atlantic Industries 
Systems Division 
7125 River Wood Dr. 
Columbia 21046 
Tel: (301) 312-5800 
FAX: (301) 290-7951 

Pioneer Technologies Group 
15810 Gaither Road 
Gaithersburg 20877 
Tel: (301) 921-0660 
FAX: (301) 670-6746 

MASSACHUSETTS 

Arrow/Schweber Electronics 
25 Upton Dr. 
Wilmington 01887 
Tei: (508) 658·0900 
FAX: (508) 694-1754 

Avnet Computer 
1 0 D Centennial Drive 
Peabody 01960 
Tel: (508) 532-9886 
FAX: (508) 532-9660 

Hamilton/Avnet 
1 o D Centennial Drive 

~=~~~~) 0~i1~430 
FAX (508) 532-9802 

Pioneer·Standard 
44 Hartwell Avenue 

~:re~~) g~i:9~00 
FAX: (617) 863-1547 

Wyle Laboratories 
15 Third Avenue 
Burlington 01803 
Tel: (617) 272-7300 
FAX: (617) 272-6809 

MICHIGAN 

Arrow/Schweber Electronics 
19880 Haggerty Road 
Livonia 48152 
Tel: (800) 231-7902 
FAX: (313) 462-2686 

~~~t2~~Bt~~e;t, s.w., #5 
Grandville 49418 
Tel: (616) 531-9807 
FAX: (816) 531-0059 

Avnet Computer 
41650 Garden Brook Rd. #120 
Novi 4&375 
Tel: (313) 347-1820 
FAX: (313) 347-4067 

Hamilton/Avnet 
2876 28th Street, S.W,, #5 
Grandville 49418 
Tel: (616) 243-8805 
FAX: (616) 531-0059 

Hamilton/Avnet 
41 SSD Garden Brook Rd .. # 1 00 
Novi 48375 
Tel: (313) 347-4270 
FAX: (313) 347-4021 

Pioneer·Standard 
4505 Broad:moor S.E. 
Grand Rapids 49512 
Tel: (616) 698-1800 
FAX: (616) 698-1831 

Pioneer-Standard 
13485 Stamford 
Livonia 48150 
Tel: (313) 525-1800 
FAX: (313) 427-3720 

MINNESOTA 

Arrow/Schweber Electronics 
10100 Viking Drive, #100 
Eden Prairie 55344 
Tel: (612) 941-5280 
FAX: (612) 942-7803 

Avnet Computer 
1 0000 West 76th Street 
Eden Prairie 55344 
Tel: (612) 829-0025 
FAX: (612) 944-2781 

Hamilton/Avnet 
12400 Whitewater Drive 
Minnetonka 55343 
Tel: (612) 932-0600 
FAX: (612) 932-0613 

Pioneer-Standard 
7625 Golden Triange Dr., #G 
Eden Prairie 55344 
Tel: (612) 944-3355 
FAX: (612) 944-3794 

MISSOURI 

Arrow/Schweber Electronics 
2380 Schuetz Road 
St. Louis 63141 
Tel: (314) 567-6886 
FAX: (314) 567-1164 

Avnet Computer 
739 Goddard Avenue 
Chesterfield 63005 
Tel: (314) 537-2725 
FAX: (314) 537-4248 

Hamilton/Avnet 
741 Goddard 
Chesterfield 63005 
Tel: (314) 537-1600 
FAX: (314) 537-4246 

NEW HAMPSHIRE 

Avnet Computer 
2 Executive Park Drive 
Bedford 031 02 
Tel: (800) 442-8638 
FAX: (803) 624-2402 

*Self Certified Small trusiness per Federal Acquisition Regulations 

NEW JERSEY 

Arrow/Schweber_Electronics 
4 East Stow Rd., Unit 11 
Marlton 08053 
Tel: (809) 596-8000 
FAX: (609) 596-9632 

Arrow/Schweber Electronics 
43 Route 46 East 
Pine Brook 07058 
Te:: (201) 227-7880 
FAX: (201) 538-4962 

Avnet Computer 
1-B Keystone Ave., Bldg. 36 
Cherry Hill 08003 
Tel: (609) 424-8961 
FAX: (609) 751-2502 

Hamilton/Avnet 
1 Keystone Ave., Bldg. 36 
Cherry Hitt 08003 
Tel: (809) 424-0110 
FAX: (609) 751-2552 

Hamilton/Avnet 
1 O Industrial 
Fairfield 07006 
Tel: (201) 575-3390 
FAX: (201) 575-5839 

MTI Systems Sales 
6 Century Drive 
Parsippany 07054 
Tel: (201) 882-8780 
FAX: (201) 539-6430 

Pioneer-Standard 
14-A Madison Rd. 
Fairfield 07006 
Tel: (201) 575-3510 
FAX: (201) 575-3454 

NEW MEXICO 

Alliance Electronics, Inc. 
1051 o Research Avenue 
Albuquerque 87123 
Tel: (505) 292-3360 
FAX: (505) 275-6392 

Avnet Computer 
7801 Academy Road 
Bldg. 1, Sufte 204 
Albuquerque 87109 
Tel: (505) 828-9725 
FAX: (505) 828-0360 

Hamilton/Avnet 
7801 Academy Rd. N.E 
Bldg. 1, Suite 204 
Albuquerque 87108 
Tel: (505) 765-1500 
FAX: (505) 243-1395 

NEW YORK 

Arrow/Schweber Electronics 
3375 Brighton Henrietta Townline Ad 
Rochester 14623 
Tel: (716) 427-0300 
FAX: (716) 427-0735 

Arrow/Schweber Electronics 
20 Oser Avenue 
Hauppauge 11788 
Tel: (516) 231-1000 
FAX: (516) 231-1072 

Avnet Computer 
933 Motor Parkway 
Hauppauge 11788 
Tel: (516) 434-7443 
FAX: (516) 434-7426 

Avnet Computer 
2060 Townline Ad. 
Rochester 14623 
Tel: (716) 272-9110 
FAX: (716) 272-9685 

Hamilton/Avnet 
933 Motor Parkway 
Hauppauge 11788 
Tel: (516) 231-9800 
FAX: (516) 434-7426 

Hamilton/Avnet 
2060 Townline Rd. 
Rochester 14623 
Tel: (716) 292·0730 
FAX: (716) 292·0810 

Hamilton/Avnet 
103 Twin Oaks Drive 
Syracuse 13120 
Tel: (315) 437-2641 
FAX: (315) 432·074-0 

MTI Systems 
1 Penn Plaza 
250 w_ 34th Street 
New York 10119 
Tel: (212) 643-1280 
FAX: (212) 643-1288 

Pioneer-Standard 
68 Corporate Drive 
Binghamton 13904 

~~(~~i'~~29~~~2 
Pioneer·Standard 
60 Crossway Park West 
Woodbury, Long Island 11797 
Tel: (518) 921-8700 
FAX: (516) 921-2143 

Pioneer·Standard 
840 Fairport Park 
Fairport 14450 
Tel: (716) 381-7070 
FAX: (716) 381-5955 

NORTH CAROLINA 

Arrow/Schweber Elecironics 
5240 Greensdairy Road 

~:1e(i~ 9r~i3132 
FAX: (919) 878-9517 

Avnet Computer 
2725 Millbrook Rd., #123 
Raleigh 27604 
Tel: (919) 790-1735 
FAX: (919) 872-4972 

Hamilton/Avnet 
5250·77 Center Or. #350 
Charlotte 28217 
Tel: (704) 527-2485 
FAX: (704) 527-8058 

Hamilton/Avnet 

~~1~g5t~ii~o~orest Drive 

Tel: (919) 878-0819 

~~~e~~s~e~~~~~o~ii~! ~1~oJp 
Charlotte 28210 
Tel: (704) 527-8188 
FAX: (704) 522-8564 

Pioneer Technologies Group 
2810 Meridian Parkway, #148 
Durham 27713 
Tel: (919) 544-54-00 
FAX: (919) 544-5885 

OHIO 

Arrow Commercial Systems Group 
284 Cramer Creek Court 
Dublin 43017 
Tel: (614) 889·9347 
FAX: (614) 889-9680 

Arrow/Schweber Electronics 
6573 Cochran Road, #E 
Solon 44139 
Tel: (216) 248-3990 
FAX: (216) 248-1106 

Arrow/Schweber Electronics 
8200 Washington Village Dr. 
Centerville 45458 
Tel: (513) 435·5583 
FAX: (513) 435-2049 

CG/SALE/041692 



OHIO (Con1d.) 

Avnet Computer 
~;':$~f°" vina9e or. 
Tef: (513) 43!H!756 
FAX: (513) 439-6719 

Avnet Computer 
30325 Bainbridge Rd., Bldg. A 
Solon 44139 
Tel: (216) 349-2505 
FAX: (216) 349-1894 

Hamilton/Avnet 
7760 Washington Village Dr. 

~r5~~-6733 
FAX: (51~) 439-6711 

Hamilton/Avnet 
30325 Bainbridge 
Solon 44139 
Tel: (216) 349-4910 
FAX: (216) 349-1894 

Hamilton/Avnet 
2600 Corp Exchange Drive, #160 
Columbus 43231 
Tel: (614) 882·7004 
FAX: (614) 882·6650 

MTI Systems Ssles 
23404 Commerce Park Rd. 
Beschwood 44122 
Tel: (216) 464-6688 
FAX: (216) 464-3564 

Pioneer-standard 
4433 lnterpoint Boulevard 
Dayton 45424 
Tel: (513) 236-9900 
FAX: (513) 236-6133 

Pioneer-Standard 
4600 E. 131st Street 
Cleveland 44105 
Tel: (216) 587-3600 
FAX: (216) 663-1004 

OKLAHOMA 

Arrow/Schweber Electronics 
12111East51st Street, #101 
Tulsa 74146 
Tel: (918) 252-7537 
FAX: (918) 254-0917 

Hamilton/Avnet 
12121 E. 51st St., #102A 
Tulsa 74146 
Tel: (918) 252-7297 
FAX: (918) 250-8763 

OREGON 

AJmac/Arrow Electronics 
1885 N.W. 169th Place 
Beaverton 97006 

m,'~~)6~=1 
Avnet Computer 
9409 Southwest Nimbus Ave. 
Beaverton 97005 
Tel: (503) 627·0900 
FAX: (503) 526-6242 

Hamll!On/Avnet 
9750 Southwest Nimbus Ave. 
Beaverton 97005 
Tel: (503) 627-0201 
FAX: (503) 641-4012 

Wyle laboratories 
9640 Sunshine Court 
Bldg. G, Sutte 200 
Beaverton 97005 
Tel: (503) 643·7900 
FAX: (503) 646-5466 

PENNSYLVANIA 

~~~~~~rive, #320 
Mars 16046 
Tel: (412) 772-1888 
FAX: (412) 772-1890 

NORTH AMERICAN DISTRIBUTORS (Contd.) 
Hamirton/Avnet 
213 Executive, #320 
Mars 16045 
Tel: (412) 281·4152 
FAX: (412) 772-1890 

Pioneer-Standard 
259 Kappa Drive 

~:ittI~f ia5:i~o 
FAX: (412) 963-6255 

Pioneer Technologies Group 
500 Enterprise Road 
Keith Valley Business Center 
Horsham 19044 
Tel: (215) 674-4000 
FAX: (215) 674-3107 

TEXAS 

Arrow/Schweber Electronics 
3220 Commander Drive 
Carrolhon 75006 
Tel: (214) 380-6464 
FAX: (214) 248-7208 

Avnet Computer 
4004 Belttine, Suite 200 
Dallas 75244 
Tel: (214) 308-8181 
FAX: (214) 308-8129 

Avnet Computer 
1235 North Loop West, #525 
Houston 77008 
Tel: (713) 867-7500 
FAX: (713) 861-6851 

Hamilton/Avnet 
1826-F Kramer Lane 
Austin 78758 
Tel: (512) 832-4306 
FAX: (512) 832-4315 

Hamilton/Avnet 
4004 Beltline, Suite 200 
Dallas 75244 
Tel: (214) 308-8111 
FAX: (214) 308-8109 

Hamilton/Avnet 
1235 North Loop West, #521 
Houston 77008 
Tel: (713) 240-n33 
FAX: (713) 861-6541 

Pioneer-Standard 
1826·0 Kramer Lane 
Austin 78758 
Tel: (512) 835-4000 
FAX: (512) 635-9829 

Pioneer-Standard 
13765 Beta Road 
Dallas 75244 
Tel: (214) 263-3188 
FAX: (214) 490-6419 

Pioneer-Standard 
10530 Reckley Road, #100 
Houston no99 
Tel: (713) 495-4700 
FAX: (713) 495-5642 

Wyle Laboratories 
1810 Greenville Avenue 
Richardson 75081 
Tel: (214) 235.9953 
FAX: (214) 644-5064 

Wyle Laboratories 
4030 West Braker Lane, #330 
Austin 78758 
Tel: (512) 345-6853 
FAX: (512) 345-9330 

Wyle Laboratories 
11001 South Wllcrest, #100 
Houston 77099 
Tel: (713) 879·9953 
FAX: (713) 879-6540 

UTAH 

Arrow/Schweber Electronics 

~~~:~:-:.r1~~ 
Tel: (801) 973-6913 

~rggi Eco:;~~':iuth, #150 
Salt Lake City 84121 
Tel: (801) 266-1115 
FAX: (801) 266-0362 

Hamilton/Avnet 
1100 East 6600 South, #120 
Salt Lake City 84121 
Tel: (801) 972·2800 
FAX: (801) 263·0104 

Wyle Laboratories 
1325 West 2200 South, #E 

f.~:0~~7~~~ 
FAX: (801) 972-2524 

WASHINGTON 

Aimee/Arrow Electronics 
14360 S.E. Eestgete Wey 
Bellevue 98007 
Tel: (206) 643·9992 
FAX: (206) 643-9709 

Hamilton/Avnet 
17761 N.E. 781h Place, #C 
Redmond 98052 
Tel: (206) 241-8555 
FAX: (206) 241-5472 

Avnet Computer 
17761 Northeest 781h Place 
Redmond 98052 
Tel: (206) 867-0160 
FAX: (206) 887·0161 

Wyle Laboratories 
15385 N.E. 90th Street 
Redmond 98052 
Tel: (206) 881-1150 
FAX: (206) 881-1567 

WISCONSIN 

Arrow/Schweber Electronics 
200 N. Patrick Blvd., #100 
Brookfield 53005 
Tel: (414) 792-0150 
FAX: (414) 792-0156 

Avnet Computer 
20875 Crossroads Circle, #400 
Waukesha 53186 
Tel: (414) 784-6205 
FAX: (414) 784-6006 

Hamilton/Avnet 
28875 Crossroads Circle, #400 
Waukesha 53186 
Tel: (414) 784-4510 
FAX: (414) 784-9509 

Pioneer-Standard 
120 Bishops Way #163 
Brookfield 53005 
Tel: (414) 784-3480 

ALASKA 

Avnet Computer 
1400 West Benson Bivd., #400 

~:,~gh~~~~ 
FAX: (907) 277-2639 

CANADA 
ALBERTA 

~~~: 2~~m£= Northeast 

r:!l~f~~84 
FAX: (403) 250-1591 

Zentronics 
6815 8th Street N.E .. #100 
Calgary T2E 7H 
Tel: (403) 295-6838 
FAX: (403) 295-8714 

BRITISH COLUMBIA 

Almac·Arrow Electronics 
8544 Baxter Place 
Burnaby VSA 4TB 
Tel: (604) 421·2333 
FAX: (604) 421 ·5030 

Hamilton/Avnet 
8610 Commerce Court 
Burnaby V5A 4N6 
Tel: (604) 42D-4101 
FAX: (604) 420-5376 

Zantronics 

~/c~!~,~oMd., #108 
Tel: (604) 273-5575 
FAX: (604) 273·2413 

ONTARIO 

Arrow/Schweber Electronics 
36 Antares Or., Unit 100 
Nepesn K2E 7W5 
Tel: (613) 226-6903 
FAX: (613) 723-2018 

Arrow/Schweber Electrontcs 
1093 Meyerside, Unit 2 
Mississauga LST 1M4 
Tel: (416) 670-7769 
FAX: (416) 67D-n81 

Avnet Computer 
151 Superior Blvd. 
Mlsslssuaga L5T 2L 1 
Tel: (416) 795-3835 

Avnet Computer 
190 Colonade Rood 
Nepesn K2E 7J5 
Tel: (613) 727-2000 
FAX: (613) 226-1184 

Hamitton/Avnet 
151 Superior Blvd., Uni1s 1-6 
Mississauga L5T 2L 1 
Tel: (416) 564-6060 
FAX: (416) 564·6033 

Hamilton/Avnet 
190 Colonade Rood 
Nepesn K2E 7J5 
Tel: (613) 226-1700 
FAX: (613) 226-1184 

Zantronics 
1355 Meyerslde Drive 
Mississauga L5T 1 C9 
Tel: (416) 564-9600 
FAX: (416) 564-3127 

Zentronlcs 
155 Colonade Rd., South 
Unit 17 
Nepesn K2E 7K1 
Tel: (613) 226-6840 
FAX: (613) 226-6352 

QUEBEC 

Arrow/Schweber Eleclronics 

b~~~~:~5 Blvd. 
Tel: (514) 421·7411 
FAX: (514) 421-7430 

Arrow/Schweber Electronics 
500 Boul. St-Jean-Baptiste Ave. 
Quebec H2E 5R9 
Tel: (418) 871-7500 
FAX: (418) 871-8816 

Avnet Computer 

~ra~::."n1H.%'%8 
Tel: (514) 335-2483 
FAX: (514) 335-2481 

Hamilton/Avnet 
2795 Halpam 
St. Laurent H4S 1 PB 
Tel: (514) 335-1000 
FAX: (514) 335-2461 

Zantronics 
520 McCalfrey 
St. Laurent H4T 1 N3 
Tel: (514) 737-9700 
FAX: (514) 737·5212 

CG/SALE/041692 



FINLAND 

Intel Finland OY 
Ruoollantle 2 
00390 Helslnkf 
Tel: (358) 0 544 644 
FAX: (358) 0 544 030 

FRANCE 

\~~,;o=Gi>s~R.L. 
78054 St. Quentln·•n·Yvellnoa 
Cedex 
Tai: (33) (1) 30 57 70 00 
FAX: (33) (1) 30 64 80 32 

EUROPEAN SALES OFFICES 
GERMANY ITALY SPAIN UNITED KINGDOM 

Intel GmbH lntal Corporation Italia S.p.A Intel Iberia S.A. 
Dornacher Strasse 1 Mllanoflorl Palazzo E Zubaran, 28 
8018 Feldklrchen bel Muenchen 20094 Aooago 2801 O Madrid 
Tel: (49) 088/90992-0 Miiano Toi: (34) 308 25 52 
FAX: (49) 089/9043948 Tel: (39) (02) 89200950 FAX: (34) 410 7570 

FAX: (39) (2) 3498464 
ISRAEL 

SWEDEN 
Intel Semloonduelor Ltd. NETHERLANDS 

~~~w:ratlon (U.K.) Ltd. 

Swindon, Wiltshire SN3 1 RJ 

~~:l(tl,(~&~): 

Atldlm Industrial Park-Nave Sharet Intel Semlconduelor B.V. Intel SWeden AB. 
P.O. Box 43202 Pootbua 94130 Dalvagen 24 
Toi-Aviv 61430 3009 CC Rotterdam 171 36 Sotna 

~~,<~$~>% 4:s8Wo Tel: (31) 10 407 11 11 
FAX: (31) 10 455 4688 

Tel: 146) a 734 01 oo 
FAX: (46) 8 278085 

EUROPEAN DISTRIBUTORS/REPRESENTATIVES 
AUSTRIA Proeloelron Vertrlebs GmbH Laei Elettronlca S.p.A. ITT Mul!Jkomponen1 AIS By1ech Sys1ems 

Bacher ElettrDnicl GmbH MP·Planck·Strasse 1-3 P.1. 00839000155 Naverland 29 Unlt3 
6072 Dre1eich Viale FuMo Teetl, N.280 01(.2600 Glostrup The Western Centre 

Rotenmuahlgasse 26 Tel: 49 6103 304343 20126 Milano Denmark Westem Road 
A·1120Wien FAX: 49 6103 304425 Tel: 39 2 66101370 Toi: 010 4542 451822 Bracknen Tai: 43 222 81358460 FAX: 39 2 66101385 FAX: 010 45 42 457624 Berks RG12 1 AW 
FAX: 43 222 8341!76 Rein Electronlk GmbH Tel: 0344 55333 

BELGIUM 
Loetscher Wag 66 Telcom s.r.l.'-DMsione MOS Nordisk Elektronik A/S FAX: 0344 667270 
4054 Nettetel 1 Via Trombetta P001boks 122 

lnelco Belgium S.A. Tel: 49 2153 7330 Zona Marconi Smedsvingan 4 ~:~~~~SB ~~·~~:i:::n 94 
FAX: 49 2153 733513 Strada Cessanese N·1364 Hvalstad 

Segrate-Milano ~~2846210 O><lord Road 
Tel: 32 2 244 2811 GREECE 

Tel: 39 2 2138010 High Wycombe 
FAX: 32 2 216 4301 FAX: 39 2 216081 FAX: 47 2 646545 Bucks 

HerteHP112EE 
FRANCE Pouliadie Aosoclates Corp. Nordisk Electronik AB Tel: 0494 474147 

5 Koumbari Street NETHERLANDS S0.38 FAX: 0494 452144 
Almax Koloneki Square Torshamnsgatan 39 
46, Rueda l'Aubeplne 10874 Alhena ~~~~?S:~~rtman B.V. S· 16493 KIS1a Jermyn 
B.P.102 Tel: 30 1 380 3741 Sweden Vestry ES1ate 

ms:s'f"~= FAX: 30 1 380 7501 2627 AP Delft Tel: 46 8 7034630 Otlord Road 
Tel: 31 15 609 908 FAX: 46 8 7039645 Sevenoaks 

FAX: 33 1 4666 8026 
IRELAND 

FAX: 31 15 619194 Kent TN14 5EU 
Lax Electronics Tel: 0732 450144 
SMIC585 Micro Marketing PORl\JGAL 

SWITZERLAND FAX: 0732 451251 
80 Rue des Gemeaux Tany Hall lndustrade A.G. MMD 
~ ~u~~8 ~ecra· Eglinton Terrace ATO Etectronlce LOA Hertlstraase 31 3 Bennet Court Dundrum Rua Dr. Faria de CH-8304 Walllsellen Bennet Road FAX: 33 1 4978 0596 Dublin Vasconcelos, 3a Tel:4118328111 Readin~ 

~~~~ieres 
Tel: 0001 969 400 1900 Lisboa FAX: 41 1 8307550 Berkshire RG2 OQX FAX: 0001 989 8282 Tel: 351 1 6472200 Tel: 0734 313232 

4, Avenue Lauren1 Cely FAX: 351 1 6472197 FAX: 0734 313255 
92606 Aonleres Cedax ISRAEL 

TURKEY 
Tel: 33 1 4790 6240 SPAIN EMPA Rapid Silicon 
FAX: 33 1 4790 5947 Eastronlcs Ltd: 80050 Sishane 

3 Bennet Court 
Bennet Road Tei<elec-Alrtronlc Rozanis 11 ATD Eloelronice SA Reftk Saydam Cod No. 89/5 Reading Cite Des Bruyeres P.O.B. 39300 Avda de la lndustria, 32 letsnbul Berks RG2 OQX 

Rue Carle Vemet Tel Baruch Nave 17, 28 Tel: 90 1 143 6212 Tel: 0734 752266 
BP2 Tel·Aviv 61392 28100 Alcobendas FAX: 90 1 143 6547 
92310 Savres Tel: 972 3 475151 Madrid FAX: 0734 312728 

Tet: 33 1 4623 2425 FAX: 972 3 475125 Tai: 1 661 65 51 Metro Systems FAX: 33 1 4507 2191 FAX: 1 661 63 00 UNITED KINGDOM 

~=rif= GERMANY ITALY Metrologia lberica Access EleCI Comp Ltd. 
Avenida de la lndustria NA 32-2o Jubilee House High Wycombe 

E2000VertrlelJs.AG Celdie Spa Oflcina 17 Jubilee Road Bucks HP11 2EE 
=uberrlng12 Via F.11i Gracchl 36 28100 Alcobendas Letchworth Tel: 0494 474171 
8000 uenchen82 20092 Cinisello Balsamo Madrid Hertfordshire FAX: 0494 21860 
Tel: 49 89 420010 Milano Tel: (1) 661 11 42 SG61QH 
FAX: 49 89 42001209 Tel: 38 2 66012003 FAX: (1) 661 57 55 Tel: 0462 480888 YUGOSLAVIA 
JermynGmbH FAX: 39 2 6162433 FAX: 0462 582467 
Im Dachea1Ueck 9 lntest Div. Delta Deutsche SCANDINAVIA ~ra·~=ents Ltd 

H.R. Microelectronlcs Corp. 

f.F ~={°so90 OlvisioneITT 2005 de la Cruz Blvd. 
Industries GmbH OY Fintronic AB Chlnehem Business Park Suite 220 

FAX: 49 6431 508289 P.I. 06550110156 Heikkilantie 2a Crockford Lane Santa Clara, CA 95050 

~m"~~~~~ 
Mllanoflori Palazzo ES SF-0021 O Helsinki Basingstoke 

U.S.A. 
20094 Assago (Milano) Tel: 358 0 6926022 Hants RG121RW 

Tel: (408) 988-0286 

8000 Musnchen 70 Tel: 39 2 624701 FAX: 356 0 5821251 Tel: 0256 707107 FAX: (408) 988·0306 

Tel: 49 89 724470 FAX: 39 2 8242631 FAX: 0256 707162 
FAX: 49 89 72447111 

CG/SALE/041692 



AUSTRALIA 

Intel Australia Pty. Ltd. 
Unit 13 
Allambie Grove Business Park 
25 Frenchs Forest Road East 
Frenchs Forest, NSW, 2086 
Sydney 
Tel: 61-2-975-3300 
FAX: 61-2-975-3375 

Intel Australia Pty. Ltd. 
711 High Street 
1st Floor 
East Kw. Vic., 3102 
Melbourne 
Tel: 61-3-810-2141 
FAX: 61-3-819 7200 

BRA21L 

Intel Sem1conductores do Brazil L TDA 
Avenida Paulista, 1159-CJS 404/405 
CEP 01311 - Sao Paulo S.P. 
Tel: 55-11-287-5899 
TU<: 11-37-557-ISOB 
FAX: 55-11-287-5119 

CHINA/HONG KONG 

Intel PAC Corporation 
15/F, Office 1, Citic Bldg. 
Jian Guo Men Wai Street 
Beijing, PRC 
Tel: (1) 500-4850 
TU<: 22947 INTEL CN 
FAX: (1) 500-2953 

INTERNATIONAL SALES OFFICES 
Intel Semiconductor Ltd.* 
10/F East Tower 
Bond Center 
Oueensway, Central 

~~~~~~)~4-4555 
FAX: (852) 868-1989 

INDIA 

Intel Asia Electronics, Inc. 
4/2, Samrah Plaza 
St. Mark's Road 

~!17i~~~ 2~ftg~;3 
TU<: 953-845-2646 INTEL IN 
FAX: 091-812-215067 

JAPAN 

Intel Japan K.K. 
5-6 Tokodai, Tsukuba-shi 
lbaraki, 300-26 
Tel: 0298-47-8511 
FAX: 0298-47-8450 

fntel Japan K.K.* 
Hachioji ON Bldg. 
4-7-14 Myojin-machi 
Hachioji-shi, Tokyo 192 
Tel: 0426-48-8770 
FAX: 0426-48-8775 

Intel Japan K.K. * 
Bldg. Kumagaya 
2-69 Hon.cha 
Kumagaya-shi, Saitama 360 
Tel: 0485-24-6871 
FAX: 0485-24-7518 

Intel Japan K.K.* 
Kawa-asa Bldg. 
2-11-5 Shin-Yokohama 
Kohoku-ku, Yokohama-shi 
Kanagawa, 222 
Tel: 045-474-7660 
FAX: 045-471-4384 

Intel Japan K.K. * 
Ayokuchi-Eki Bldg. 
2-4-1 Terauchi 

i~r:oo"s~:.J-~i~saka 560 

FAX: 06·863-1084 

Intel Japan K.K. 
Shinmaru Bldg. 
1-5-1 Marunouchi 
Chiyoda-ku, Tokyo 100 
T et 03-3201 -3621 
FAX: 03-3201-6650 

Intel Japan K.K. 
Green Bldg. 
1-16-20 Nishiki 
Naka-ku, Nagoya-shi 
Aichi 460 
Tel: 052-204·1261 
FAX: 052-204-1285 

KOREA 

Intel Korea, Ltd. 
16th Floor, Life Bldg. 
61 Yoido-dong, Youngdeungpo-Ku 
Seoul 150-010 
Tel: (2) 784-8186 
FAX: (2) 784-8096 

SINGAPORE 

Intel Singapore Technology, Ltd. 
101 Thomson Road #08-03/06 
United Square 
Singapore 1130 
Tel: (65) 250-7811 
FAX: (65) 250-9256 

TAIWAN 

Intel Technology Far East Ltd. 
Taiwan Branch Office 
8th Floor, No. 205 
Bank Tower Bldg. 
Tung Hua N. Road 
Taipei 
Tel: 886-2-5144202 
FAX'. 886-2-717-2455 

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES 
ARGENTINA 

Dafsys S.R.L. 
Chacabuco, 90-6 Piso 
1069-Buenos Aires 
Tel & FAX: 54.1334.1871 

AUSTRALIA 

Email Electronics 
15-17 Hume Street 
Huntingdale, 3166 
Tel: 011-61-3-544-8244 
TU<: AA 30895 
FAX: 011-61-3-543-8179 

NSD-Australia 
205 Middleborough Rd. 
Box Hill, Victoria 3128 
Tel: 03 8900970 
FAX: 03 8990819 

BRA21L 

Microlinear 
Largo do Arouche, 24 
01219 Sao Paulo, SP 
Tel: 5511-220-2215 
FAX: 5511-220-5750 

CHILE 

Sisteco 
Vecinal 40-Las Condes 
Santiago 
Tel: 562-234-1644 
FAX: 562-233-9895 

CHINA/HONG KONG 

Novel Precision Machinery Co., Ltd. 
Room 728 Trade Square 
681 Cheung Sha Wan Road 
Kowloon, Hong Kong 
Tel: (852) 360-8999 
TWX: 32032 NVTNL HX 
FAX: (852) 725-3695 

GUATEMALA 

Abinitio 
11Calle2-Zona 9 
Guatemala City 
Tel: 5022-32-4104 
FAX: 5022-32-4123 

*Field Application Location 

INDIA 

Micronic Devices 
Arun Complex 
No. 65 D.V.G. Road 
Basavanagudi 
Bangalore 560 004 
Tel: 011-91-812-600-631 

011-91-812-611-365 
TU<: 9538458332 MOBG 

Micronic Devices 
No. 516 5th Floor 
Swastik Chambers 
Sion, Trombay Road 
Chembur 

~~~311\°1~.U7 MDEV 

Micronic Devices 
25/8, 1st Floor 
Bada Bazaar Marg 
Old Rajinder Nagar 
New Delhi 11 o 060 
Tel: 011-91-11-5723509 

011-91-11-589771 
TU<: 031-63253 MONO IN 

Micronic Devices 
6-3-348/12A Dwarakapuri Colony 
Hyderabad 500 482 
Tel: 011-91-842-226748 

S&S Corporation 
1587 Kooser Road 
San Jose, CA 95118 
Tel: (408) 978-6216 
TU<: 820281 
FAX: (408) 978-8635 

JAMAICA 

MC Systems 
10-12 Grenada Crescent 
Kingston 5 
Tel: (809) 929-2638 

(809) 926-0188 
FAX: (809) 926-0104 

JAPAN 

Asahi Electronics Co. Ltd. 
KMM Bldg. 2-14·1 Asano 
Kokurakita-ku 

~!!rkJ~~~-~~4~~2 
FAX: 093-551-7861 

CTC Components Systems Co., Ltd. 
4-8-1 Dobashi, Mlyamae-ku 
Kawasaki-shi, Kanagawa 213 
Tel: 044-852-5121 
FAX: 044-877-4268 

Dia Sernicon Systems, Inc. 
Flower Hill Shinmachl Higashi-kan 
1-23 Shinmachi, Setagaya-ku 
Tokyo 154 
Tel: 03-3439-1600 
FAX: 03-3439-1601 

Okaya Koki 
2·4-18 Sakae 
Naka-ku, Nagoya-shi 460 
Tel: 052-204-8315 
FAX: 052-204-8380 

Ryoyo Electro Corp. 
Konwa Bldg. 
1-12-22 Tsukiji 
Chuo-ku, Tokyo 104 
Tel: 03-3548-5011 
FAX: 03-3546-5044 

KOREA 

J-Tek Corporation 
Dong Sung Bldg. 9/F 
158-24, Samsung-Dong, Kangnam-Ku 
Seoul 135-090 
Tel: (822) 557-8039 
FAX: (822) 557-8304 

Samsung Electronics 
Samsung Main Bldff<A 
~~Jia1egJ.~~~·Ro-2 , Chung-Ku 

C.P.O. Box 8780 
Tel: (822) 751-3880 
TWX: KORSST K 27970 
FAX: (822) 753-9065 

MEXICO 

PSI S.A. de C. V. 

~:·r~!~~:.\fc!~~1~6 
Tel: 52-73-13-8412 

52-73-17·5340 
FAX: 52-73-17-5333 

NEW ZEALAND 

Email Electronics 
36 Olive Road 
Penrose, Auckland 
Tel: 011-84-9-591-155 
FAX: 01 J.64-9-592-681 

SAUDI ARABIA 

AAE Systems, Inc. 
642 N. Pastorla Ave. 
Sunnyvale, CA 94086 
U.S.A. 
Tel: (408) 732-1710 
FAX: (408) 732-3095 
TLX: 494-3405 AAE SYS 

SINGAPORE 

Electronic Resources Ple, Ltd. 

~~~~~~n~~~~re 1336 
Tel: (65) 283-0888 
TWX: RS 56541 ERS 
FAX: (65) 289-5327 

SOUTH AFRICA 

~~~~;~~~~i~Lnro~1W~~~~eyet St.} 
Meyerspark, Pretoria, 0184 
Tel: 011-2712-803-7680 
FAX: 011-2712-803-8294 

TAIWAN 

Micro Electronics Corporation 
12th Floor, Section 3 

i:~~~~~~.it~ast Road 
Tel: (886) 2-7198419 
FAX: (886) 2-7197916 

Acer Sertek 1nc. 
15th Floor, Section 2 
Chien Kuo North Ad. 
Taipei 18479 R.O.C. 
Tel: 868-2-501-0055 
TWX: 23756 SERTEK 
FAX: (886) 2-5012521 

URUGUAY 

lnterfase 
Zabala 1378 
11000 Montevideo 
Tel: 5982·96-0490 

5982-96-1143 
FAX: 5982-96-2965 

VENEZUELA 

Unixel C.A. 
4 Transversal de Monte Cristo 
Edf. AXXA, Piso 1, of. 1 &2 
Centro Empresarial Boleita 
Caracas 
Tel: 582-238-6082 
FAX: 582-238-1816 

CG/SALE/04189; 



ALASKA 

Intel Corp. 
c/o TransAlaska Network 
1515 Lore Rd. 

~~~~~~85~~0710 
Intel Corp. 
c/o TransAlaska Data Systems 

~20 ~h 0.fv:.~t~~f e 407 
Fairbanks 99701 
Tel: (907) 452-6264 

ARIZONA 

*Intel Corp. 410 North 44th Street 
Suite 500 
Phoenix 85008 
Tel: (602) 231-0386 
FAX: (602) 244-0446 

*Intel Corp. 
500 E. Fry Blvd., Suite M-15 
Sierra Vista 85635 
Tel: (602) 459-5010 

ARKANSAS 

Intel Corp. 
c/o Federal Expr85S 
1500 West Park Drive 
Little Rock 72204 

CALIFORNIA 

•1ntet Corp. 
21515 Vanowen St., Ste. 116 

~!i~(Bf a)~~4~~~gg 
*Intel Corp. 
300 N. Continental Blvd. 
Suite 100 
El Segundo 90245 
Tel: (213) 640-6040 

*Intel Corp. 

~~:,~r;~i~~~5~~-
Tel: (916) 351-6143 

*Intel Corp. 
9665 Chesapeake Dr., Suite 325 
San Diego 92123 
Tel: (619) 292-8086 

**Intel Corp. 
400 N. Tustin Avenue 
Suite 450 
Santa Ana 92705 
Tel: (714) 835-9642 

;;~e~~fOmas Exp., ~st Floor 
Santa Clara 95051 
Toi: (408) 970-1747 

COLORAOO 

"'Intel Corp. 
600 S. Cherry St., Suite 700 
Denver 80222 
Tel: (303) 321-8086 

ARIZONA 

2402 W. Beardsley Road 
Phoenix 85027 
Tel: (602) 869-4288 

1-800-468-3548 

MINNESOTA 

3500 W. 80th Street 
Suite 360 

~~~~mr2~1~3s~~g~ 

*Carry-in locations 
"*Garry-in/mail-in locations 

NORTH AMERICAN SERVICE OFFICES 
CONNECTICUT MARYLAND NEW YORK 

;~te~;0~rm Corporate Park 
**Intel Corp. *Intel Corp 
10010 Junction Dr., Suite 200 2950 Expressway Dr. South 

83 Wooster Heights Rd. Annapolls Junction 20701 Suite 130 
DanbtJry 06811 Tel: 1301) 206-2860 Islandia 11722 
Tel: (203) 748-3130 Tel (516) 231-3300 

Fl.ORIOA 
MASSACHUSETTS Intel Corp 
"*Intel Corp. 300 Wastage Business Center 

**Intel Corp. Westford Corp. Center Suite 230 
800 Fairway Dr., Suite 160 3 Carlisle Rd., 2nd Floor Fishkill 12524 
Deerfield Beach 33441 Tel (914) 897-3860 
Tel: 1305) 421-0506 

Westford 01886 

FAX: (305) 421-2444 
Tel (508} 692-0960 Intel Corp. 

5858 East Molloy Road 
*Intel Corp. MICHIGAN Syracuse 13211 
5850 T.G. Lee Blvd., Ste. 340 Tel: (315} 454-0576 
Orlando 32822 *Intel Corp 
Tel: (407) 240-8000 7071 Orchard Lake Rd., Ste. 100 

West Bloom1ield 48322 NORTH CAROLINA 

GEORGIA Tel: (313) 851-8905 
*Intel Corp, 

*Intel Corp. MINNESOTA 
5800 Executive Center Drive 

~~~:~~~88§lark, Suite 150 Suite 105 
"lntet Corp. Charlotte 28212 

Tel: (404) 449-0541 3500 W. Bath St., Suite 360 Tel: (704) 568-8966 

5523 Theresa Street Bloomington 55431 **Intel Corp 
Columbus 31907 Tel: (612) 835·6722 5540 Centerview Dr., Suite 215 

HAWAII MISSISSIPPI 
Raleigh 27606 
Tel: (919) 851-9537 

**Intel Corp. Intel Corp. 
Honolulu 96820 c/o Compu-Care OHIO 
Tel: (808) 847-6738 2001 Airport Road, Suii:e 205F 

""Intel Corp. Jackson 39208 
ILLINOIS Tel: (601) 932-6275 3401 Park Center Dr., Ste. 220 

Dayton 45414 
**t!ntel Corp. Tel: (513) 890-5350 
Woodfield Corp. Center Ill 

MISSOURI 

300 N. Martingale Rd., Ste. 400 *Intel Corp. *Intel Corp. 
Schaumburg 60173 3300 Rider Trail South 25700 Science Park Dr., Ste. 100 
Tel: (708) 605-8031 Suite 170 Beachwood 44122 

Ef:r~39~ ~~~~90 
Tel: (216) 464-2736 

IN DIANA 

"Intel Corp. Intel Corp. 
OREGON 

8910 Purdue Rd., Ste. 350 Route 2, Box 221 **Intel Corp. 
Indianapolis 46268 Smithville 64089 15254 NW. Greenbrier Pkwy. 
Tel: (317) 875-0623 Tel: (913) 345-2727 Building B 

Beaverton 97006 
KANSAS NEW JERSEY Tel: (503) 645-8051 

*Intel Corp. **Intel Corp. 10985 Cody, Suite 140 PENNSYLVANIA 
Overland Park 6621 O 300 Sylvan Avenue 

Tel: (913) 345-2727 Englewood Cliffs 07632 *tlntel Corp. 
Tel: (201) 567-0821 925 Harvest Drive 

Suite 200 KENTUCKY *Intel Corp. 
Uncroft Office Center Blue Bell 19422 

Intel Corp. 125 Half Mile Road Tel: (215) 641-1000 
133 Walton Ave., Office 1 A Red Bank 07701 1-800-468-3548 
Lexington 40508 Tel: (908) 747-2233 FAX: (215) 641-0785 
Tel: (606) 255-2957 

**tlntel Corp. 
Intel Corp. NEW MEXICO 400 Penn Center Blvd., Ste. 610 
896 Hillcrest Road, Apt. A Pittsburgh 15235 
Radcliff 40160 (Louisville) Intel Corp. Tel: (412) 823-4970 

Rio Rancho 1 
LOUISIANA 4100 Sara Road *Intel Corp. 

Rio Rancho 87124-1025 1513 Cedar Cliff Dr. 
Hammond 70401 (near Albuquerque) Camp Hill 17011 
(serviced from Jackson, MS) Tel: (505) 893-7000 Tel: (717) 761-0860 

CUSTOMER TRAINING CENTERS 

SYSTEMS ENGINEERING OFFICES 
NEW YORK 

2950 Expressway Dr., South 
Islandia 11722 
Tel: (506) 231-3300 

PUERTO RICO 

Intel Corp. 
South Industrial Park 
P.O. Box 910 
Las Piedras 00671 
Tel: (809) 733-8616 

TEXAS 

**lntet Corp. 
Wes1ech 360, Suite 4230 
8911 N. Capitol of Texas Hwy. 
Austin 78752· 1239 
Tel: (512) 794-8086 

**tlntel Corp. 
12000 Ford Rd., Suite 401 
Dallas 75234 
Tel: (214) 241-8087 

;;i~~e~~0fl:Seway, Suite 1490 
Houston 7707 4 
Tel: (713) 988·6086 

UTAH 

Intel Corp. 
428 East 6400 South 
Suite 104 
Murray 84107 
Tel: (801) 263-8051 
FAX: (801) 268-1457 

VIRGINIA 

*Intel Corp. 
9030 Stony Point Pkwy. 
Suite 360 
Richmond 23235 
Tel: (804) 330-9393 

WASHINGTON 

**Intel Corp. 
155 108th Avenue N.E., Ste. 386 
Bellevue 98004 
Tel: (206) 453-8086 

CANADA 
ONTARIO 

**Intel Semiconductor of 
Canada, Ltd. 
2650 Queensview Dr., Ste. 250 
Ottawa K2B 8H6 
Tel: (613) 829·9714 

"*Intel Semiconductor of 
Canada, Ltd. 
190 Attwell Dr., Ste. 102 
Rexdale (Toronto) M9W 6H6 
Tel: (416) 675-2105 

QUEBEC 

**Intel Semiconductor of 
Canada, Ltd 
1 Rue Holiday 
Suite 115 
Tour East 
Pt. Claire H9R 5N3 
Tel: (514) 694-9130 
FAK 514-694-0064 
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