MOSTEK 1979

MICROCOMPUTER
DATA BOOK

1979
Microcomputer Products
Data Book

Copyright © 1979 Mostek Corporation (All rights reserved)
Trade Marks Registered ®

Mostek reserves the right to make changes in specifications at any time and without notice. The information
furnished by Mostek in this publication is believed to be accurate and reliable. However, no responsibility is assumed
by Mostek for its use; nor for any infringements of patents or other rights of third parties resulting from its use. No
license is granted under any patents or patent rights of Mostek.

The “PRELIMINARY’ designation on a Mostek data sheet indicates that the product is not characterized. The
specifications are subject to change, are based on design goals or preliminary part evaluation, and are not
guaranteed. Mostek Corporation or an authorized sales representative should be consulted for current information
before using this product. No responsibility is assumed by Mostek for its use; nor for any infringements of patents
and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent
rights, or trademarks of Mostek. Mostek reserves the right to make changes in specifications at any time and without
notice.

PRINTED IN USA June 1979
Publication Number MK79707

1979 MICROCOMPUTER DATA BOOK

Micro Design Series
Single Board

Micro Development
Systems (U.S.)

Micro Development
Systems (Europe)

1979 MICROCOMPUTER DATA BOOK

S

X
<))
©
£,
T E
c o
oF
0
20
=
w o

e

ore

()

R ——

s i

1979 MICROCOMPUTER DATA BOOK
FUNCTIONAL INDEX

General Information....................... i
INEPOAUCHION .« & o et e et ettt ettt ee et ine e eneeeanneeannecennsenennnesenannnns iii
(01 L=V 1217 21 7=1 (o) 1R v
Package DESCIIDHONS . . .o oottt ittt ittt vii
U.S. and Canadian Sales OffiCeScuurureiiittiiniiiiiiiii i iiiiiieaaannns ix
U.S. and Canadian Representativesottt iiiiieeniiannaannnns X
U.S. and Canadian Distributorsc..iiuuiiiiineriiiieriineeennannnannnan xi
International Sales and Marketing Officesiiiiiiiiiiiiiiiiiiiiinnn, xii
Micro Design Series-Expandable 1
Product Specifications
Central Processor Module (MDX-CPUT) iiiiiniiiiiiiiiee e ieieannannnns 3
Dynamic RAM Module (MDX-DRAM)ttt aeans 7
EPROM/UART Module (MDX-EPROM/UART).ttt et iiiiiiiiieeeiieiaeeannn. 1
Programmabile Input/Output Unit (MDX-PIO)ttt 15
Serial Input/Output Module (MDX-SIO)oniiii it ieeiaeeeanns 21
Z80 Debug Module (MDX-DEBUG)outttttniiiieiiiiie et eiiiieennnnnnns 27
Z80 Single Step Module (MDX-SST) ...ttt et ittt iiieeieennns 35
Prototyping Package (MDX-PROTO)uuineiiet ittt eieeeeeeeannnannn 37
Universal Memory Card (MDX-UMC)ttt ineiiieeannns 45
EPROM Module (MDX-EPROM). . ..ottt iieii i eaeneeennns 47
Static RAM Module (MDX-SRAM) ..ottt eieiieeeenns 51
IMD AcCCESSOriEs (MD-ACC) . .ottt ittt ettt ettt ettt neeenns 55
Analog to Digital Conversion Module (MDX A/D)vviiiiiiiiiiiiniinneennnn. 59
Application Note
STD Z80 Bus Description and Electrical Specificationsooviiiiiiia.. 63
Micro Design Series - Single Board...................................... 67
Product Specifications
280 Single Board Computer (MD-SBCT).......oovniiniiiiiiiiii e 69
Z80 Microcomputer Family ... 73
Device Specifications
Central Processing Unit (MK3880)oouttiiiiiiiieiiiienieneeatennnns 75
Parallel 1/0 Controller (MK3881) .. .ivuiiiiii ittt ittt iiiiee e 165
Counter Timer Circuit (MK3882)ciiiiiiiiiiiiiii ittt 203
Direct Memory Access (MK3883) ...ttt 239
Serial 170 Controller (MK3884/3885/3887)vvvirriiiiiineiiineennnneeens 259
Z80 Combo Circuit (MK3886). ... ouunerirtttiiiiiiiiireeeeeranieeesnnnns 307
Application Note
Z80 Dynamic RAM Interfacing Techniquecooiiiiiiiiiiniininnennnn 309
3870 Microcomputer Family......................i 325
Device Specifications
2K ROM Single-Chip Microcomputer (MK3870)coviiiiiiininiinenn. 327
4K ROM Single-Chip Microcomputer (MK3872).......couviiiirinineennannnn. 361
SIO Single-Chip Microcomputer (MK3873) ...ttt 395
P-PROM Microcomputer (MK3874)ttt eianneenns 397

Single-Chip Microcomputer (MK3876)ccvirreiiniiiiiiieeeennnnn 401

F8 Microcomputer Family 439
Device Specifications ‘

Central Processing Unit (MK3850)ottt iiiiiiieenaanns 441
Program Storage Unit (MK3851). ...ttt 467
Dynamic Memory Interface (MK3852) ..., 485
Static Memory Interface (MK3853)coviiiiiiiiiiiiiiiiiiirinananne, 503
Static Memory Interface (MK3854)ovviiiiiiiiiiiiiiii i 521
Peripheral Input/Output (MK3861)ccoiiiiiiiiiiiiiiiiiii i 529
Peripheral Input/Output (MK3871) ...ttt 545
Application Notes
F8 Keyboard SCanNINGc.uteneenteneenreanenserueeateneenneaneananeenss 567
F8 Display MUIIpIEXing . ..o ovvirtitii ettt 573
F8 External Interrupt EXpansionoeeiiieiieniieieiiiiiiieiinaennss 581
F8 Subroutine Interrupt Nestingovvviire i 587
European Software Development (SD/E) Series OEM Modules 597
Product Specifications
Software Development Board (SDB-80E)c.ccviiiiiiiriiiiniirinnnnnnnns 599
Random Access Memory (RAM-80E)ooiiiiiiiiiiii i iiiiiiiinnen, 605
Flexible Disk Drive Controller (FLP-80-E)ccviiiiiiniiiiiiiiinennnnnn, 609
SYS-80F Flexible Disk Operating System (FLP-80-DOS) 613
Software Developoment (SD) Series OEM Modules...................... 617
Product Specifications o
Software Development Board (SDB-80)overenreneeneneenennn. P 619
Random Access Memory (RAM-80)ctiitiiiiiiiiiiiiiiiiriiinneennns 623
Flexible Disk Drive Controller (FLP-80)oiivirititiiiiiiiiiiiieeenennnns 627
Flexible Disk Operating System (FLP-80DOS)ccovviiiiiiiiiinernennnnen. 631
Analog/Digital Converter (A/D-80)vuuiiiiine ittt 637
Video Adapter Board (VAB-2).vitiniiiiii it ittt eeaeenaeeens 643
Military/Hi-Reliability 647
Product Specifications
Reference GUIdEouuuiniiir ittt iiiiieneeeeeennnneannannannnns 649
Z80 Central Processing Unit (MKB3880-P)coiiiiiiiiiiieiiennnnnennn. 653
Z80 Parallel 1/0 Controller (MKB3881-P). ... ciiiiii ittt ininaennn 657
280 Counter Timing Circuit (MKB3882-P)ccviviriiiiiiiiiiiienienenn. 661
Quality Specification........covv it e e 665
MIL-M38510 Sampling Planueiiiiiiiiiiiiiiii i iiniieeenenanns 679
U.S. Disk-Based Development Systems 681
Product Specifications
Floppy Disk-Based Computer (AID-80F).ttt iieenens 683
280 Application Interface Module (AIM-80). ...ttt 691
3870 Application Interface Module (AIM-72) oiiiiiiiiiiiiiiiiiinnn. 695
PROM Programmer (PPG-08)itiiiiiiiiiiiiiiet et ieiinieninnnanes 701
PROM Programmer (PPG-8/16)covuiiniiiiiiiiitiiiiiiiiiiieinnnnenns 703
Keyboard Display Unit (CRT) .. .vut ittt et 707
[T U= o T 3 1= P 711
AID-80F Cross Assembler 3870/F8 (FZCASM).ciiiiiniiiiiniiannnennnn, 715
BASIC Software Interpreterot in it iiianiinnnnannnnns 719
FORTRAN [V ComMPiler . oottt ittt ettt ettt ieeiiieeeanannanes 723

FLP-80-DOS Software Library (LIB-80-V1).... ..ottt 725

European Disk-Based Development Systems............................... 727
Product Specification

Microcomputer Development System (SYS-80FT)cviiiierrinniinnnennnnnns 729
Z80 Application Interface Module (AIM-80E).cvviiiiriiiiiiininnennnn. 737
3870 Application Interface Module (AIM-72E) ...t 741
PROM Programmer (PPG-08).cuuiiiiiiiiit e ettt eeniiinnennnnn 747
PROM Programmer (PPG-8/16)uiuiii ettt eeeiiiiieennn. 749
Line Printer . .o i e e e i e 753
AID-80F Cross Assembler 3870/F8 (FZCASM).c.vvieiiiiiinnnnnnnnnn 757
BASIC Software INterpreterovuuiiiitiniiieiieieiieaeraineenneenn 761
FORTRAN IV COmMPiler .« oottt ittt et e et ettt ie e eeeeiiaannnns 765
FLP-80-DOS Software Library (LIB-80-V1).....ovuiiiiiiiiiiiiieiennnnnn. 767
Microcomputer Development Aids............................. 769
FORTRAN Cross Software
FORTRAN IV Cross Assembler (XFOR-50/70)vvvuutennnnernrenierneneennnnns 771
FORTRAN IV Cross Assembler (XFOR-80)cvvvtiiriiiiiriiiieeennnnanns 773
Single-Chip Microcomputer Emulators
3870 Emulator (EMU-70)ottt et e e e et 775
3870 Series Emulator (EMU-72)ottt et 777
P-PROM Microcomputer (MK3874)ottt i, 779
Miscellaneous Development Equipment
Evaluation Kit (MCKBO/70). ouvitittee ittt et e e e e et 783
3870/F8 Software Development Board (SDB-50/70). v.overeernrnnnnnnnn. 785
Application Interface Module (AIM-70)ouunen et 791
F8 PSU Emulator (EMU-5T) .. ooouiiiti ittt e e 795
Video Adapter Board (VAB-2)ouvuiniin ettt et ee, 799
Z80 Software Development Board (SDB-80)euveneeeeennennnnnnnns 803
Z80 Software Development Board-E (SDB-80E)vuvvneneneseeennnnnnnnss 807
Z80 Operating System (DDT-80)vvutrteeetetee e e e 813
Assembler/Editor/Loader (ASMB-80)...........ovuvunerneneneeenennnnnnns 817

Video Display Interface (VDI)vvniiintii i it eeieeens 823

1979 MICROCOMPUTER DATA BOOK

-
¢
<
.
L
S
G
i
w827
2 I o
To
eI~
Brhpxw ﬁwﬁ i
YN
o Rt
fik. O

|e13uan)

General
Information

LI/

L

HCre

- Device Family

| 3870 M

g

P

L F8 Micro

| Device Family

2 s
S
=R

i
L

HIES

&

SO S8

$ it

i
H

i

¥

§

" Micro Develop
| Systems (U.

o

&

W

i
«9

C Micro De

:
!

g
]

velopment

MOSTEK 1969-1979
Ten Years of Technology Leadership

Mostek Technology. Technology links the past,
present, and future of Mostek. Innovations in both
circuit and system design, and wafer processing have
accounted for our rapid growth and for the strong
acceptance of Mostek as a technology leader.

The proven process technology in the semicon-
ductor industry is N-Channel silicon-gate MOS.
Mostek is recognized as an important innovator in this
process because of the continuing development of
new techniques and enhancements which allow
significant performance breakthroughs in our
products. Competing technologies have not yet been
able to approach either the performance or
producibility of N-Channel MOS. Therefore, it appears
that NMOS silicon-gate will continue to lead industry
developments for several years to come.

Microcomputer
computer products cover

Components. Mostek's micro-
the full spectrum of

microprocessor applications worldwide.

Mostek’s Z80 is the most powerful 8-bit microcom-
puter available. It is software compatible with the
8080A yet has some significant system advantages —
an increased instruction set, reduced dynamic
memory interfacing costs, reduced /0O costs and
reduced support circuitry costs.

Mostek’'s 3870 Family of single-chip microcom-
puters allow system flexibility and expansion while
retaining the design and economic advantages of
single-chip construction. Software compatible with
the F8, Mostek's 3870 family 1s the answer to a wide
range of low-cost microcomputer applications.

Microcomputer Systems. Mostek’s microcomputer
line is supported by a wide array of development aids.
These include software development boards that may
be used as software development aids or as stand-
alone microcomputers. Add-on memory boards,
application interface modules, and emulators assist in
system design, debugging. and field testing.

AID-80F with docum

Mostek’'s microcomputer line includes Mostek's MD
Series™ of OEM microcomputer boards. The MD
Series features both stand-alone boards (designated
MD) and expandable boards (designated MDX) that
are STD-Z80 BUS compatible. These powerful Z80-
based boards are simple and economical to use.

Also available is Mostek’s AID-80F™, a dual floppy-
disk development system that develops and debugs
software for Mostek’s entire microcomputer line.

Mostek provides a complete base of powerful

software and software aids, complete documentation,
and factory and field-application engineers.

ORDERING INFORMATION

Factory orders for parts described in this book should include a four-part number as explained below:

Example: MK Iﬁ)ﬂl J - 13
lJ————L Dash Number

2. Package

General

3. Device Number

4. Mostek Prefix
1. Dash Number

One or two numerical characters defining spacific device performance characteristic.
2. Package

- Gold side-brazed ceramic DIP

- CER-DIP

- Epoxy DIP (Plastic)

- Tin side-brazed ceramic DIP

- Ceramic DIP with transparent lid
- Ceramic leadless chip carrier

m—4XZ2¢DT

3. Device Number

1XXX or 1XXXX - Shift Register, ROM

2XXX or 2XXXX - ROM, EPROM

3XXX or 3XXXX - ROM, EPROM

38XX - Microcomputer Components

4XXX or 4XXXX - RAM

BXXX or BXXXX - Counters, Telecommunication and Industrial
TXXX or 7ZXXXX - Microcomputer Systems

4. Mostek Prefix
MK-Standard Prefix

MKB-100% 883B screening, with final electrical test at low, room and high-rated temperatures.

CYEIVETS)

vi

MOSTEK.

MICROCOMPUTER DEVICES
Package Descriptions

PLASTIC DUAL-IN LINE PACKAGING (N)
28 PIN

28
P P
100N0M)
.
1 14
1450 *

600NOM ——nf

— l._ 100NOM 150 * 005 5‘°N°M‘I

‘T 020 MIN
030NOM! ' ;l_r
100TYP—. l._ L‘ -—] ‘| 1307 005
018TYP 060 + ooz
13 EQUAL SPACES @ 100-

Sar

010 * 002
GZSNOM—J

40 PIN

e»HigF

———-2040

)
l+— saonom
\80
I D) l 0
125 i

—T— OZDNDM

—-Hﬂ

°
2
8
z
2

42““ _jL

625 0025

p N SPACING (SEE NOTE 1)

NOTES:
1. The true-position pin spacing is 0.100 between centerlines. Each pin centerline
is located within : 0.010 of its true longitudinal position relative tc pins 1 and 40.

vii

CERAMIC DUAL-IN-LINE HERMETIC PACKAGING (P)

28 PIN
H“T‘ !
T

SYMBOLIZATION AREA
£OR IDENTIFICATION

W sijiis s

010
ou ooz oaowp 001
osvvr_.| I SPC. S 100 |
032R
MAX
578
010
506 600
sayare o
SYMBOLIZATION ARE on
IDENTIFICATION
625
ow 025

—

018 002 Tv1

|
1
001
A‘ 19 EQUAL SPACES 100 m

viii

U.S. AND CANADIAN SALES OFFICES

CORPORATE HEADQUARTERS

Mostek Corporation
1215 W. Crosby Rd.

P. O. Box 169
Carroliton, Texas 75006

REGIONAL OFFICES

Mostek (Eastern U.S./Canada)
34 W. Putnam, 2nd Floor
Greenwich, Conn. 06830
203/622-0955

TWX 710-579-2928

Mostek (Northeast U.S.)

29 Cummings Park, Suite #426
Woburn, Mass. 01801
617/935-0635

TWX (Temp.) 710-332-0435

Mostek (Mid-Atlantic U.S.)
East Gate Business Center
125 Gaither Drive, Suite D
Mt. Laurel, New Jersey 08054
609/235-4112

TWX 710-897-0723

Mostek (Southeast U.S.)
Exchange Bank Bldg.
1111 N. Westshore Blvd.
Suite 414

Tampa, Florida 33607
813/876-1304

TWX 810-876-4611

Mostek (Central U.S.)
701 E. Irving Park Road
Suite 206

Roselle, 1ll. 60172
312/529-3993

TWX 910-291-1207

Mostek (North Central U.S.)
6125 Blue Circle Drive, Suite A
Minnetonka, Mn. 55343
612/935-4020

TWX 910-576-2802

Mostek (South Central U.S.)
228 Byers Road

Suite 105

Miamisburg, Ohio 45342
513/866-3405

TWX 810-473-2976

Mostek (Michigan)
Livonia Pavillion East
29200 Vassar, Suite 815
Livonia, Mich. 48152
313/478-1470

TWX 810-242-2978

Mostek (Southwest U.S.)
4100 McEwen Road
Suite 237

Dallas, Texas 75234
214/386-9141

TWX 910-860-5437

Mostek (Northern California)
2025 Gateway Place

Suite 268

San Jose, Calif. 95011
408/287-5081

TWX 910-338-7338

Mostek (Southern California)
17870 Skypark Circle

Suite 107

frvine, Calif. 92714
714/549-0397

TWX 910-595-2513

Mostek (Rocky Mountains)
8686 N. Central Ave.
Suite 126

Phoenix, Ariz. 85020
602/997-7573

TWX 910-957-4581

Mostek (Northwest)

1107 North East 45th Street
Suite 411

Seattle, Wa. 98105
206/632-0245

U.S. AND CANADIAN REPRESENTATIVES

ALABAMA

Beacon Elect. Assoc., Inc.
11309 S. Memorial Pkwy.
Suite G

Huntsville, AL 35803
205/881-5031

TWX 810-726-2136

ARIZONA

Summit Sales

7336 E. Shoeman Lane
Suite 116E

Scottsdale, AZ 85251
602/994-4587

TWX 910-950-1283

CALIFORNIA
Harvey King. Inc.
8124 Miramar Road
San Diego, CA 92126
714/566-5252

TWX 910-335-1231

COLORADO
Waugaman Associates
4800 Van Gordon
Wheat Ridge, CO 80033
303/423-1020

TWX 910-938-0750

CONNECTICUT

New England Technical Sales
33 Trotwood Drive

W. Hartford, CT 06117
203/236-4705

FLORIDA

Beacon Elect. Assoc., Inc.
6842 N.W. 20th Ave.

Ft. Lauderdale, FL 33309
305/971-7320

TWX 510-955-9834

Beacon Elect. Assoc., Inc.
P. 0. Box 125

Ft. Walton Beach, FL 32548
904/244-1550

Beacon Elect. Assoc., Inc.
235 Maitland Ave.

P. 0. Box 1278

Maitland, FL 32751
305/647-3498

TWX 810-853-5038

Beacon Elect. Assoc., Inc.
316 Laurie

Melbourne, FL 32901
305/259-0648

TWX 810-853-5038

GEORGIA

Beacon Elect. Assoc., Inc.”
6135 Barfield Rd.

Suite 112

Atlanta, GA 30328
404/256-9640

TWX 810-751-3165

ILLINOIS

Carlson Electronic Sales*
600 East Higgins Road

Elk Grove Village, 1L 60007
312/956-8240

TWX 910-222-1819

INDIANA

Rich Electronic Marketing”
599 Industrial Drive
Carmel, IN 46032
317/844-8462

TWX 810-260-2631

Rich Electronic Marketing
3448 West Taylor St.

Fort Wayne, IN 46804
219/432-5553

TWX 810-332-1404

IOWA

Cahill Associates

226 Sussex Dr. N.E.
Cedar Rapids, |A 52402
319/377-4018

Carlson Electronic Sales
204 Collins Rd. N.E.
Cedar Rapids, |A 52402
319/377-6341

KANSAS

Rush & West Associates*
107 N. Chester Street
Olathe, KN 66061
913/764-2700

TWX 910-749-6404

KENTUCKY

Rich Electronic Marketing
5910 Bardstown Road

P. 0. Box 91147
Louisville, KY 40291
502/239-2747

MASSACHUSETTS

New England Technical Sales*

135 Cambridge Street
Burlington, MA 01803
617/272-0434

TWX 710-332-0435

MICHIGAN

A.P.J. Associates, Inc.
496 Ann Arbor Trail
Plymouth, MI 48170
313/459-1200

TWX 810-242-6970

MINNESOTA
Cahill Associates*
315 N. Pierce
St. Paul, MN 55104
612/646-7217
TWX 910-563-3737

MISSOURI

Rush & West Associates
481 Melanie Meadows Lane
Ballwin, MO 63011
314/394-7271

NEW MEXICO
Waugaman Associates
9004 Menaul N.E.

Suite 7

P. O. Box 14894
Albuguerque, NM 87111

NORTH CAROLINA
Beacon Elect. Assoc., Inc.
1207 West Bessemer Ave.
Suite 112

Greensboro, NC 27408
919/275-9997

TWX 510-925-1119

NEW YORK

E R A (Engrg. Rep. Assoc.)
One DuPont Street
Plainview, NY 11803
516/822-9890

TWX 510-221-1849

Precision Sales Corp.
5 Arbustus Ln., MR-97
Binghamton, NY 13901
307/648-3686

Precision Sales Corp.*
1 Commerce Blvd
Liverpool, NY 13088
315/451-3480

TWX 710-541-0483

Precision Sales Corp.
3594 Monroe Avenue
Rochester, NY 14534
716/381-2820

PENNSYLVANIA
CMS Marketing

121A Lorraine Avenue
P.O. Box 300
Oreland, PA 19075
215/885-5106

TWX 510-665-0161

TENNESSEE

Beacon Elect. Assoc., Inc.
100 Tulsa Road

Oak Ridge, TN 37830
615/482-2409

TWX 810-572-1077

Rich Electronic Marketing
1128 Tusculum Bivd.
Suite D

Greenville, TN 37743
615/639-3139

TEXAS

West & Associates, Inc.
8403 Shoal Creek Road
Austin, TX 78758
512/451-2456

West & Associates, Inc.*
4300 Alpha Road, Suite 106
Dallas, TX 75234
214/661-9400

TWX 910-860-5433

West & Associates, Inc.
9730 Town Park #101
Houston, TX 77036
713/777-4108

UTAH

Waugaman Associates
445 East 2nd South
Suite 304

Salt Lake City, UT 84111
801/363-0275

TWX 910/925-5607

WISCONSIN

Carlson Electronic Sales
Northbrook Executive Ctr.
10701 West North Ave.
Suite 209

Milwaukee, WI 53226
414/476-2790

TWX 910-222-1819

CANADA

Cantec Representatives inc.*
17 Bentley Avenue

Ottawa, Ontario

Canada K2E 6T7-
613/225-0363

TWX 610-562-8967

Cantec Representatives Inc.
15737 Rue Pierrefonds

Ste. Genevieve, P.Q.
Canada H9H 1G3
514/694-4049

TELEX 05-822790

Cantec Representatives Inc.
83 Galaxy Blvd., Unit 1A
(Rexdale)

Toronto, Canada MOW 5X6
416/675-2460

TWX 610-492-2655

‘Home Office

U.S. AND CANADIAN DISTRIBUTORS

ARIZONA

Krerulff Electronics
4134 E. Wood St.
Phoenix. AZ 85040
602/243-4104
TWX 910/9561-1550

CALIFORNIA

Bell Industries

1161 N. Fair Oaks Avenue
Sunnyvale, CA 94086
408/734-8570

TWX 910/339-9378
Arrow Electronics

720 Palomar Avenue
Sunnyvale. CA 94086
408/739-3011

TWX 910/339-9371
Intermark Electronics
1802 E. Carnegie Avenue
Santa Ana, CA 92705
714/540-1322

TWX 910/595-1583
Intermark Electronics

4125 Sorrento Valley Bivd.

San Diego. CA 92121
714/279-5200

TWX 910/335-1615
Intermark Electronics
1020 Stewart Drive
Sunnyvale, CA 94086
408/738-1

TWX 910/339 9312
Kierulff Electronics
2585 Commerce Way
Los Angeles. CA 90040
213/725-0325

TWX 910/580-3106
Kierulff Electronics
3969 E. Bayshore Road
Palo Alto. CA 94303
415/968-6292

TWX 810/379-6430
Kierulff Electronics
8797 Balboa Avenue

2
TWX 910/335 1182
Kierulff Electronics
14101 Frankhin Avenue
Tustin, CA 92680
714/731-5711
TWX 910/595-2599
Schweber Electronics
17811 Gillette Avenue

TWX 910/595 1720

COLORADO

Bell Industries

8155 W. 48th Avenue
Wheatridge, CO 80033
303/424-1985

TWX 910/938-0393
Kierulff Electronics
10890 E. 47th Avenue
Denver, CO 80239
303/371-6500

TWX 910/932-0169

CONNECTICUT
Arrow Electronics
295 Treadwell
Hamden, CT 06514
203/248-3801

TWX 710/465-0780
Schweber Electronics
Finance Drive
Commerce Industnal Park
Danbury. CT 06810
203/792-3500

TWX 710/456-9405

FLORIDA
Arrow Electronics
1001 N.W. 62nd St.

Suite 108
Ft. Lauderdale, FL 33309
305/776-7790

TWX 510/955-9456
Arrow Electronics

115 Palm Bay Road. N.W.
Suite 10 Bldg. 200

Palm Bay. FL 32905
305/725-1480

TWX 510/959-6337
Diplomat Southland
2120 Calumet
Clearwater, FL 33515
813/443-4514

TWX 810/866-0436
Kierulff Electronics

3247 Tech Drive

St. Petersburg FL 33702
813/576-1966

TWX 810/863-5625

GEORGIA

Arrow Electronics

3406 Oakchff Road
Doraville, GA 30340
404/455-4054

TWX 810/767-4213
Schweber Electronics
4126 Pleasantdale Road
Atlanta, GA 30340
404/449-9170

ILLINOIS
Arrow Electronics
492 Lunt Avenue
P. 0. Box 94248
Schaumburg, IL 60193
312/893-9420
Bell Industries

422 W. Touhy Avenue
Chicago. IL 60
312/982-92
TWX 910/223/4519
Kierulff Electronics
1536 Lanmeter
Elk Grove Village, IL 60007
312/640-0200
TWX 910/222-0351

INDIANA

Advent Electronics
8505 Zionsville Road
Indianapolis. IN 46268
317/297-4910

TWX 810/341-3228
Ft. Wayne Electronics
3606 E. Maumee

Ft. Wayne, IN 46803
219/423-3

TWX 810/332 1662
Graham Electronics
133 S. Pennsylvania St.
Indianapohs, IN 46204
317/634-8202

TWX 810/341-3481

IOWA

Advent Electronics

682 58th Avenue

Court South West
Cedar Rapids, IA 52404
319/363-0221

LOUISIANA

Sterling Electronics
4613 Farrfield Avenue
Metairie, LA 70005
504/887-7610

Telex 58-328

MASSACHUSETTES
Kierulff Electronics
13 Fortune Drive
Billerica. MA 01821
617/667-8331
TWX 710/390-1449
Lionex Corporation
1 North Avenue
Burhington. MA 01803
617/272-9400
TWX 710/332-1387
Schweber Electronics
25 Wiggins Avenue
730

0
TWX 710/326 0268
Arrow Electronics
96D Commer Way
Woburn. MA 01801

MARYLAND

Arrow Electronics
4801 Benson Avenue
Balumore MD 21227
301/247-5200

TWX 710/236 9005
Cramer Electronics
16021 Industrial Drive
Gaithersburg, MD 20760
301/948-0110

TWX 710/828-0082

MICHIGAN
Arrow Electronics
3921 Varsity Drive

0
TWX 81072236020
Schweber Electronics
33540 Schoolcraft Road
Livonia, Ml 48150
313/525-8100

MINNESOTA
Arrow Electronics
5251 W. 73rd Street

30-1800
TWX 910/576 3125

MISSOURI

Olive Electronics

9910 Page Bivd.

St. Louts, MO 63132
314/426-4500

TWX 910/763-0710
Semiconductor Spec
3805 N. Oak Trafficway
Kansas City, MO 64116
816/452-3900

TWX 910/771-2114

NEW JERSEY

Arrow Electronics
Pleasant Valley Avenue
Morrestown. NJ 08057
609/235-1900

TWX 710/897-0892
Arrow Electronics

285 Midland Avenue
Saddlebrook, NJ 07662
201/797-5800

TWX 710/988-2206
Kierulff Electronics

3 Edison Place
Farfield, NJ 07006
201/5675-6750

TWX 710/734-4372
Schweber Electronics
18 Madison Road
Fairfield. NJ 07006
201/227-7880

TWX 710/734-3405

NEW MEXICO

Bell Industries

11728 Linn N.E.
Albuquerque, NM 87123
505/292-2700

TWX 910/989-0625

NEW YORK

Arrow Electronics
900 Broad Hollow R
Farmingdale. L.I.. NV 11735
516/694-6800

TWX 510/224-6494
Cramer Electronics
7705 Maltage Drive
P. 0. Box 370
Liverpool, NY 13088
315/652-1000

TWX 710/545-0230
Cramer Electronics
3000 S. Winton Road
Rochester, NY 14623
716/275-0300

TWX 5610/253-4766
Lionex Corporation
415 Crossway Park Drive
Woodbury. NY 11797
516/921-4414

TWX 510/221-2196
Schweber Electronics
2 Twin Line Circle
Rochester, NY 14623
716/424-2222
Schweber Electronics
Jericho Turnpike
Wes(burv NV 11590
516/3 474
TWX 510/222 3660

NORTH CAROLINA
Arrow Electronics
1369G South Park Drive
Kernersville, NC 27282
919/996-2039
Hammond Electronics
2923 Pacific Avenue
Greensboro. NC 27406
919/275-6391

TWX 510/925-1094

OHIO

Arrow Electronics
3100 Plainfield Road
Kettering, OH 4543
513/2563-9176

TWX 810/459-1611
Arrow Electronics

10 Knoll Crest Drive
Reading. OH 44139
513/761-5432
TWX 810/461-2670
Arrow Electronics
6238 Cochran Road
Solon, OH 44139
216/248-3990
TWX 810/427-9409
Schweber Electronics
23880 Commerce Park Road
Beachwood, OH 44122
216/464-2970

TWX 810/427-9441

OKLAHOMA
Sterling Electronics
9810 E 42nd Street
Suite

Tulsa, OK 74145
918/663-2410
Telex 49-9440

PENNSYLVANIA
Schweber Electronics
101 Rock Roa
Horsham. PA 19044
215/441-0600

SOUTH CAROLINA
Hammond Electronics
1035 Lown Des Hill Rd
Greenwville, SC 29602
803/233-4121

TWX 810/281-2233

TEXAS

Arrow Electronics
13740 Midway Road
P.0. Box 401068
Dallas, TX 75240
214/661

TWX 910/861 5495
Quality Components
10201 McKalla
Suite D

Austin, TX 78758
512/838-0651
Quality Components
4303 Alpha Road
Dallas, TX 75240
214/387-4949
TWX 910/860-5459
Quahty Components
6126 Westline
Houston, TX 77036
713/772-7100
Schweber Electronics
7420 Harwin Drive
Houston. TX 77036
713/784-3600

TWX 910/881-1109
Sterling Electronics
2800 Longhorn Blvd
Suite 101

Austin, TX 78759
512/836-1341
Telex - 776-407
Sterling Electronics
2875 Merrell Road
P.0O. Box 29317
Dallas, TX 76229
214/357-9131
Telex - 025

Sterling Electronics
4201 Southwest Freeway
Houston, TX 77027
713/627-9800
TWX 910/881-5042

UTAH

Bell Industries

2258 S. 2700 W.

Salt Lake City, UT 84119
801/972-6969

TWX 910/925-5686
Kierulff Electronics
3695 W. 1987 South St.
Salt Lake City. UT 84104
801/973-6913

WASHINGTON

Kierulff Electronics
1005 Andover Park East
Seattle, WA 98188
206/575-4420

TWX 910/444-2034

WISCONSIN

Arrow Electronics
434 Rawson Avenue
Oak Creek, WI 63154
414/764-6600
TWX 910/262-1192

CANADA

Prelco Electronics

2767 Thames Gate Drive
Mississauga. Ontario
Toronto L4T 1G5
416/678-0401

TWX 610/492-8974
Prelco Electronics

480 Port Royal St. W.
Montreal 357 P.Q. H3L 289
514/389-8051

TWX 610/421-3616
Prelco Electronics

1770 Woodward Drive
Ottowa, Ontario K2C 0P8
613/226-3491

TWX 610/562-8724
R.A.E. Industrial

3455 Gardner Court
Burnaby. B.C. V56G 4J7
604/291-8866
TWX-604/291-8866
W.ES. Ltd

1515 King Edward St.
Winnipeg. Manuoba R3H OR8
204/632-1

Telex - 07- 57347

General

General

INTERNATIONAL MARKETING OFFICES

EUROPEAN HEAD OFFICE
Mostek International

150 Chausee de la Hulpe
B-1170 Brussels

Belgium

32 2-660.69.24

Telex - 62011

Austria
Transistor-Vertriebs GmbH
Auhofstrasse 41 A
A-1130 Vienna

43 222-829.45.12

Telex - 13738

Belgium

Sotronic

14, Rue Pere de Deken
B-1040 Brussels

32 2-736.10.07

Telex - 25141

Denmark

Semicap APS

Gammel Kongeve; 184.5
DK-1850 Copenhagen
45 1-22.16.10

Telex - 15987

Finland

S.W. Instruments
Karstulantie 4B
SF-00550 Helsinki 55
358-0-73.82.65
Telex - 122411

France

Mostek France s.a.r.l
30 Rue de Morvan
SILIC 505

F-94623 Rungis Cedex
33 1-687.34.14

Telex - 204049

LP.C.

113. Rue Artistide Briand
F-91400 Orsay

33 10-19.27

Telex - 691451

P.E.P.

4, Rue Barthelemy
F-92120 Montrouge
33 1-7356.33.20
Telex - 204534

SCAIB

80. Rue d'Arcuil

SILIC 137

F-94150 Rungis Cedex
33 1-687.23.12

Telex - 204674

Argentina

Rayo Electronics. S.R.L
Belgrano 990, Pisos 6y2
1092 Buenos Aires
38-1779. 37-9476
Telex - 122153

Australia

Amtron Tyree Pty. Ltd.
176 Botany Street
Waterioo. N.S.W. 2017
61 69-89.666

Telex - 25643

Brasil

Cosele, Ltda.

Rua da Consolacao, 867
Cony. 31

01301 Sao Paulo

55 11-257.35.35/258.43.25

Telex - 1130869

Hong Kong

Cet Limited

1402 Tung Wah Mansion
199-203 Hennessy Road
Wanchai. Hong Kong
5-72.93.76

Telex - 85148

Germany

Mostek GmbH
Talstrasse 172
D-7024 Filderstadt 1
49 711-70.10.45
Telex - 7255792

Mostek GmbH
Friedlandstrasse 1
d-2085 Quickborn
49 4106-2077/78
Telex - 213685

Neye Enatechnik GmbH
Schillerstrasse 14
D-2085 Quickborn

49 4106-61.22.95
Telex - 213.590

Dr Dohrenberg
Bayreuther Strasse 3
D-1 Berlin 30

49 30-213.80.43
Telex - 184860

Raffel-Electronic GmbH
Lochnerstrasse 1
D-4030 Ratingen
49 2102-280.24
Telex - 8685180

Siegfried Ecker
Konigsberger Strasse 2
D-6120 Michelstadt
49 6061-2233

Telex - 4191630

Matronic GmbH
Lichtenberger Weg 3
D-7400 Tubingen
49 7071-24.43.31
Telex - 726.28.79

Dema-Electronic GmbH
Blutenstrasse 21

D-8 Munchen 40

49 89-288018

Telex - 28345

Italy

Mostek Italia S.p.A
Via G. da Procida, 10
1-20149 Milano

39 2-349.26.96
Telex - 333601

Comprel S.r.L
Viale Romagna, 1

1-20092 Cinisello Balsamo
39 2-928.08.09/928.03.45

Telex - 332484

Israel

Telsys Limited

54 Jabotinsky Road
Ramat-Gan 52462
972 73.98.65
72.23.62

Telex - 32392

Japan

Systems Marketing. Inc.
4th Floor, Shindo Bldg,
3-12-5 Uchikanda.
Chiyoda-Ku.

Tokyo. 100

81 3-254.27.51

Telex - 25761

Teiin Advanced Products Corp

1-1 Uchisaiwai-Cho
2-Chome Chiyoda-Ku
Tokyo. 100

81 3-506.46.73
Telex - 23548

The Netherlands
Nijkerk Elektronika BV
Drentestraat 7

1083 HK Amsterdam
020.428.933
Telex- 11625

Norway

Hefro Tekniska A/S
Postboks 6596
Rodelkka

Oslo 5

47 2-38.02 86
Telex - 16205

Sweden

Mostek Scandinavia AB
Magnusvagen 1, 8 tr.
$-17531 Jarfalla

46 758-343.38

Telex - 12997

Interelko AB
Strandbergsg. 47
S-11251 Stockholm
46 8-13.21.60
Telex - 10689

Spain

Comelta SA

Cia Electrinica Tecnicas
Aplicadas

Consejo de Ciento, 204
Entlo 3A

Barcelona 11

34 3-254.66.07/08
Telex - 51934

Switzerland
Memotec AG
CH-4932 Lotzwil
4163-28.11.22
Telex - 68636

Korea

Vine Overseas Trading Corp.

Room 303-Tae Sung Bidg.
199-1 Jangsa-Dong
Jongro-Ku

Seoul

26-1663, 25-9875

Telex - 24154

New Zealand

E.C.S. Div. of Airspares
P.0. Box 1048

Airport Palmerston North
77-047

Telex - 3766

South Africa
Radiokom

P.O. Box 56310
Pinegowrie

2123,

Transvaal
789-1400

Telex - 8-0838 SA

United Kingdom
Mostek UK. -Ltd.
Masons House

1-3 Valley Drive
Kingsbury Road.

London, NW. 9

44 1-204.93.22

Telex - 26940
Celdis Limited
37-39 Loverock Road
Reading

Berks RG 31 ED
44 734-58.51.71
Telex - 848370

Distronic Limited

50-51 Burnt Mill
Ehzabeth Way,

Harlow

Essex CM 202 HU

44 279-32.497/39.701
Telex - 81387

A.M. Lock co.. Ltd
Neville Street,
Chadderton,
Oldham, Lancashire
44 61-652.04.31
Telex - 669971

Pronto Electronic Systems Ltd.

645 High Road,
Seven Kings.
liford,

Essex IG 38 RA
44 1-5699.30.41
Telex - 24507

Yugoslavia

Chemcolor

Inozemma Zastupstva
Proleterskih brigada 37-a
41001 Zagreb
41-513.911

Telex - 21236

Taiwan
Dynamar Taiwan Limited
P.O. Box 67-445

2nd Floor, No. 14, Lane 164

Sung-Chiang Road
Taipet

5418251

Telex - 11064

| ,
| 41N E1S deiaie
|
| 7] m H ot At
2 m & g
P mm DR e
%)] i e &
N 1 . PR = G
o @ 2 Sl 122
c = 7 & ow @
Do Elles = G50 1w
8% eSSl 182l 1y 1182 &%
3 el 1921152 |2 ICE| |2 €
o b BE 6l a3 g o
m S WMM fMAmm ﬁ@% m«mmm w% %w Mm Wm
Loa ol oWl Inpwl 2L (£L 2¢
s X LD o O lpO 12T (EZ0) 20

1979 MICROCOMPUTER DATA BOOK

puedx3

Sauag
anw

MOSTEK.

MD SERIES MICROCOMPUTER MODULES

Z80 Central Processor Module (MDX-CPU1)

FEATURES

O Z80 CPU
O 4K x 8 EPROM (two 2716's, customer provided)

O 256 x 8 Static RAM (compatible with DDT-80
debugger).

Flexible Memory decoding for EPROM and RAM
Four counter/timer channels

Restart to 0000H or EQOOH (strapping option)
Debug compatible for single step in DDT-80
4MHz version available

+5V only

Fully buffered signals for system expandability
STD-Z80 BUS compatible

DESCRIPTION

Ooooooooao

The MD Series and the STD-Z80 BUS were designed
to satisfy the need for low cost OEM microcomputer
modules. The STD-Z80 BUS uses a motherboard
interconnect system concept and is designed to han-
dle any MD Series Card type in any slot. The modules
for the STD-Z80 BUS are a compact 4.5 x 6.5 inches
which provide for system partitioning by function
(RAM, EPROM, 1/0). This smaller module size makes
system packaging easier while increasing MOS-LSI
densities provide high functionality per module.

The MD Series of OEM microcomputer boards and
the STD-Z80 BUS offer the most cost effective
system configuration available to the OEM system
designer.

MDX-CPU1 DESCRIPTION

The MOSTEK MDX-CPU1 is the heart of an MD
Series Z80 system. Based on the powerful Z80 micro-
processor, the MDX-CPU1 can be used with great ver-
satility in an OEM microcomputer system applica-
tion. This is done simply by inserting custom ROM or
EPROM memories into the sockets provided on the
board and configuring them virtually anywhere
within the Z80 memory map.

On board memory is provided in the form of sockets
for 4K of EPROM (2-2716's) and 256 bytes of
scratchpad RAM as pictured in the block diagram. In

addition, an MK3882 Counter Timer Circuit is
included on the MDX-CPU1 to provide counting and
timing functions for the Z80. Either 2716 EPROM
can be located at any 2K boundary within any given
16K block in the Z80 memory map via a jumper
arrangement.

The MDX-CPU1 can be used in conjunction with the
MDX-DEBUG and MDX-DRAM modules to utilize
DDT-80 and ASMB-80 in system development. This is
accomplished by strapping the scratchpad RAM to re-
side at location FFOO so that it will act as the Oper-
ating System RAM for DDT-80.

The MDX-CPU1 is also available in 4MHz version
(MDX-CPU1-4). In this version, one wait cycle is
automatically inserted each time on-board memory is
accessed by a read or write cycle. This is necessary to
make the access times of the 2716 PROMs and the
3539 scratchpad RAM compatible with the MK3880-
4 MHz Z80-CPU.

ELECTRICAL SPECIFICATIONS
WORD SIZE

Instruction:
Data:

8, 16, 24, or 32 bits
8 bits

CYCLE TIME

Clock period or T state = 0.4 microsecond @ 2.5MHz
or = 0.25 microsecond @
4.00MHz
Instructions require from 4 to 23 T states

MEMORY ADDRESSING

On-Board EPROM: jumper selectable for any 2K
boundary within a 16K block of Z80 memory map.
On-Board RAM: FFOO-FFFF

MEMORY CAPACITY

On-Board EPROM - 4K bytes (sockets only)
On-Board RAM - 256 bytes

Off-board Expansion - Up to 65,536 byte, with user-
specified combinations of RAM, ROM, PROM.

CPU1 BOARD WITH OVERLAY

MDX

MDX-CPU1 BLOCK DIAGRAM oTC

CE
MK 3882

PN
CONTROL

I
PORT
SELECT DATA USER
P%?M
2 '
— ———————L————:J 2716's

CPU
o MK 3880 MEMORY DECODE 2 > cs.
AND —]
e A ;> BUFFER CONTROL BUEFEESLE Tim
o e 16 STATE
O DATA BUFFER
GFNERATOR avsar ADDRE SS —
. iLg BUFFER
b ALV
CONTROL, SCRATCHPAD RAM
BUFFER o
a 256 BYTES
i 5 T ENA
8 RAM A O
_ < ENA >
3 BUFFER
lod > BI-DIRECTIONAL
= DATA BUFFER
8 CONTROL 6 T .
v +5V 117GND v
STD-Z80 BUS INTERFACE
MEMORY SPEED REQUIRED INTERRUPTS
MEMORY l ACCESS TIME ‘ CYCLE TIME Multi-level with three vectoring mode (Mode O, 1, 2).
Interrupt requests may originate from user-specified
2716* l 450nS ‘ 450nS 1/0 or from the on-board MK3882 CTC.
* Single b volt type required PARALLEL BUS INTERFACE - STD-Z80 3US
COMPATIBLE
1/0 ADDRESSING
Input One 74LS load max
On-Board Programmable Timer Bus Outputs IQH =-15 mA min at 2.4 volts
loL = 24 mA min at 0.5 volts
PORT MK3882
ADDRESS (HEX) CHANNEL SYSTEM CLOCK
7C 0 MIN MAX
7D 1)
7E 2 MDX-CPU1 500 KHz 2.500 MHz
7F 3 MDX-CPU1-4 500 KHz 4,000 MHz
1/0 CAPACITY POWER SUPPLY REQUIREMENTS

Up to 252 port addresses can be decoded off board. 5V + 5% at 1.1A maximum
Four port addresses are on board. 252 + 4 = 256 total
1/0 ports.

OPERATING TEMPERATURE

0°C to 50°C

MECHANICAL SPECIFICATIONS

CARD DIMENSIONS

FUNCTION

CONNECTORS

CONFIGURATION

MATING
CONNECTOR

STD-Z80
BUS

4.5 in (11.43cm) high by 6.50 in. (16.51cm) long
0.48 in. (1.22cm) maximum profile thickness
0.062 in. (0.16cm) printed circuit board thickness

ORDERING INFORMATION

56 pin dual read out

0.125 in. centers

DESIGNATOR DESCRIPTION PART NO.
MDX-CPU1 Module with Operation Manual MK77850
less EPROMs and mating connectors.
2.56MHz version.
MDX-CPU1-4 Module with Operations Manual less MK77850-4
EPROMs and mating connectors.
4.0 MHz version.
MDX-CPU1 and -4 Operations Manual MK79612
MDX-PROTO MD Series Protyping MK79605
data sheet package
AID-80F Disk based development system for MK78568
data sheet MD Series
AIM-80 Z80 In-circuit Emulation module MK78537
data sheet (2.5 MHz only)

Printed Circuit
Viking 3VH28/
ICEbS

Wire Wrap
Viking 3VH28/
1CND5

Solder Lug
Viking 3VH28/
1CN5

MOSTEK.

MD SERIES MICROCOMPUTER MODULES

Dynamic Ram Module (MVDX-DRAM)

FEATURES

0 Three memory sizes
8K x 8 (MDX-DRAMS)
16K x 8 (MDX-DRAM16)
32K x 8 (MDX-DRAM32)

[0 Selectable addressing on 4K boundaries.
O 4MHz version available (MDX-DRAM-4)
0 STD BUS compatible

DESCRIPTION

The MD Series and the STD-Z80 BUS were designed
to satisfy the need for low cost OEM microcomputer
modules. The STD-Z80 BUS uses a motherboard
interconnect system concept and is designed to han-
dle any MD Series card type in any slot. The modules
for the STD-Z80 BUS are a compact 4.5 x 6.5 inches
which provides for system partitioning by function
(RAM, EPROM, 1/0). This smaller module size makes
system packaging easier while increasing MOS-LSI
densities provide high functionality per module.

The MD Series of OEM microcomputer boards and
the STD-Z80 BUS offer the most cost effective
system configuration available to the OEM system
designer.

MDX-DRAM DESCRIPTION

The MDX-DRAM is designed to be a RAM memory
expansion board for the MOSTEK MD SERIES of
Z80 based microcomputers. It is available in three
memory capacities: 8K bytes (MDX-DRAMS8), 16K
bytes (MDX-DRAM16), and 32K bytes (MDX-
DRAMS32). Additionally, the MDX-DRAM16 and the
MDX-DRAM32 are available in a 4MHz version. Thus,
the designer can choose from the various options to
tailor his add-on dynamic RAM directly to his system
requirements.

The MDX-DRAMS8 is designed using MOSTEK's
MK4108, 8,192-bit dynamic RAM. The MDX-
DRAM16 and MDX-DRAM32 utilize high-perfor-
mance MK4116, 16,384-bit dynamic RAMs which
allow 4MHz versions of these boards to be offered.
No wait-state insertion circuitry is required on any of
the RAM cards.

Address selection is provided on all MDX-DRAM
cards for positioning the 8K, 16K, or 32K of memory

to start on any 4K boundary.
ELECTRICAL SPECIFICATIONS
WORD SIZE

8 bits

MEMORY SIZE

MDX-DRAMS - 8,192 bytes
MDX-DRAM16 - 16,384 bytes
MDX-DRAMS32 - 32,768 bytes

ACCESS TIMES

SYSTEM MEMORY MEMORY
CLOCK ACCESS CYCLE
TIMES TIMES
MDX-DRAM 2.5 MHz | 350ns max. 465ns min.
MDX-DRAM-4 4.0 MHz | 200ns max. | 325ns min.

ADDRESS SELECTION

Selection of 8K, 16K, or 32K contiguous memory
blocks to reside at any 4K boundary

PARALLEL BUS INTERFACE-STD BUS
COMPATIBLE

One 74LS load max
I0H = -15mA min. at 2.4 volts
loL = 24mA min. at 0.5 volts

Inputs
Bus Outputs

SYSTEM CLOCK

Min Max
MDX-DRAM 1.25MHz 2.56MHz
MDX-DRAM-4 1.25MHz 4.0MHz

POWER SUPPLY REQUIREMENTS
+5V + 5% at 0.6 A max.

+12V + 5% at 0.25A max.

-12V + 5% at 0.03A max.

OPERATING TEMPERATURE

0°C to 50°C

MDX-DRAM BOARD

3% a %i
S
S

:
3
'
¥
¥
¥
"
'
1
:

MDX-DRAM BLOCK DIAGRAM
MEMORY ARRAY

RAS 2.5MHz 4.0MHz
MEMORY DECODE :> 8Kx8 B-MK4I08 16KX8 B-MK4IIE
& I6KX8 16-MK4I08 32Kx8 16-MK4IIE
N CAS 32Kkx8 16-MK4IIE
BUFFER CONTROL
P WRITE

ﬁ /4\
| A DIN DouT
BUFFER (7\ 8 .

£
— | MUX BUFFER
14 8
ADDRESS
CONTROL
DATA
BUFFER
T—sv
REGULATOR
J v vV
T~ ADDRESS DATA GND *5 *12 -12
CONTROL BUS BUS

LINES

MECHANICAL SPECIFICATIONS

CARD DIMENSION

4.5in. (11.43cm) high by 6.50 in. (16.51cm) long
0.48 in. (1.22cm) maximum profile thickness
0.062 in. (0.16¢cm) printed circuit board thickness
CONNECTORS

FUNCTION | CONFIGURATION | MATING
CONNECTOR

Printed Circuit
STD-Z80 56 pin dual read out | Viking 3VH28/
BUS ICES

Wire wrap
0.125 in centers Viking 3VH28/
1CND5

Solder Lug
Viking 3VH28/
1CN5

ORDERING INFORMATION

DESIGNATOR DESCRIPTION PART NO.

Module with Operation Manual

less mating connectors in the

following memory capacities,

2.5MHz versions.
MDX-DRAMS8 8K Bytes (4108's) MK77750
MDX-DRAM16 16K Bytes (4108’s) MK77751

(4116's) MK77754

MDX-DRAM32 32K Bytes (4116's) MK77752

Module with Operations Manual less

mating connectors in the following

memory capacities, 4.0 MHz version:
MDX-DRAM16-4 16K Bytes (4116's) MK77754-4
MDX-DRAM32-4 32K Bytes (4116's) MK77752-4
MDX-PROTO MD Series prototyping MK79605
Data Sheet package
AID-80F Disk based development MK78568
Data Sheet system for MD Series
AIM-80 Z80 In-circuit emulation module MK78537
Data Sheet (2.5MHz only)

10

MOSTEK.

MD SERIES MICROCOMPUTER MODULES

EPROM/UART Module (MDX-EPROM/UART)

FEATURES

O 10K x 8 EPROM/ROM (2716’s not included)

0O Serial 1/0 channel
RS - 232 and 20 mA interface
Reader step control for Teletypes
Baud rate generator 110-19200 Baud

O 4MHz version available (MDX-EPROM/UART-4)
O STD BUS compatible.

DESCRIPTION

The MD Series and the STD-Z80 BUS were designed
to satisfy the need for low cost OEM microcomputer
modules. The STD-Z80 BUS uses a motherboard
interconnect system concept and is designed to han-
dle any MD Series card type in any slot. The modules
for the STD-Z80 BUS are a compact 4.5 x 6.5 inches
which provides for system partitioning by function
(RAM, EPROM, 1/0). This smaller module size makes
system packaging easier while increasing MOS-LSI
densities provide high functionality per module.

The MD Series of OEM microcomputer boards and
the STD-Z80 BUS offer the most cost effective
system configuration available to the OEM system
designer.

MDX-EPROM/UART DESCRIPTION

The MDX-EPROM/UART is one of MOSTEK's com-
plete line of STD-Z80 BUS compatible Z80 micro-
computer modules.

Designed as a universal EPROM add-on module for
the STD-Z80 BUS, the MDX-EPROM/UART pro-
vides the system designer with sockets to contain up
to 10K x 8 of EPROM memory (5-2716’s) as shown
in the Block Diagram.

The EPROM memories can be positioned to start on
any 2K boundary within a 16K block of memory via
a strapping option provided on the MDX-EPROM/
UART.

Included on-board the MDX-EPROM/UART is a fully
buffered asynchronous [/0 port with a Teletype
reader step control. A full duplex UART is used to re-
ceive and transmit data at the serial port. Operation
and UART options are under software control. Once

the unit has been programmed, no further changes are
necessary unless there is a modification of the serial
data format. Features of the UART include:

Full duplex operation

Start bit verification

Data word size variable from 5 to 8 bits

One or two stop bit selection

0dd, even, or no parity option

One word buffering on both transmit and receive
The MDX-EPROM/UART is also available in a 4MHz
version. Circuitry is provided to force one wait state

each time on board EPROMs or the UART are
accessed.

ELECTRICAL SPECIFICATIONS
WORD SIZE

8 bits for PROM
5 to 8 bits for Serial 1/0.

MEMORY ADDRESSING

ROM/EPROM

2K blocks jumper selectable for any 2K boundary
within a given 16K boundary of Z80 memory map.

MEMORY CAPACITY

10K bytes of 2716 memory.
(2716's not included)

MEMORY SPEED REQUIRED

MEMORY | ACCESS TIME l CYCLE TIME

2716* 450ns 450ns

* Single 5 Volt type required

1/0 ADDRESSING

On-board Serial 1/0 Port
Control Port DDH
Data Port DCH
Modem and Reader Step Control DEH

11

E
'

BOARD PHOTO

5026005
SME 7728

L
¥
¥
é
.
£
£
¥
¥
L
¥
¥
&
¥

>

. o e

12

MDX-EPROM/UART BLOCK DIAGRAM

ADDRESS AND CONTROL BUS

BUS MEMORY
EPROM /ROM
INTERFACE SELECTION—
Looic Locic SOCKETS (5)

STD-Z80 BUS

OUTPUT

LOGIC

AND

k DATA BUS

L99625

PORT RS-232 @READER STEP
[SELECTION UART AND
20 MA

RS-232
BUFFERS (::) INPUT, OUTPUT

20MA INPUT

AND

MODEM CONTROL

1/0 TRANSFER RATE

X16 BAUD RATE CLOCK BAUD RATE (Hz)

1760 110
4800 300
9600 600
19200 1200
38400 2400
76800 4800
153600 9600
317200 19200

SERIAL COMMUNICATIONS CHARACTERIETICS

Asynchronous
Full duplex operation
Start bit verification
Data word size variable from 5 to 8 bits.
One or two stop bits
0dd, even, or no parity
One word buffering on both transmit and receive.

SYSTEM CLOCK

MIN. MAX.

MDX-EPROM/UART 250 KHz 2.5 MHz
MDX-EPROM/UART-4 250 KHz 4.0 MHz

SERIAL COMMUNICATIONS INTERFACE

BUFFERED
FOR
20mA Current
SIGNAL Loop
Transmitted data Output
Received data Input
Reader Step Relay (RSR) Output
(40mA)

Data Terminal Ready (DTR)
Request to Send (RTS)
Carrier Detect (CDET)
Clear to Send (CTS)

Data Set Ready (DSR)

RS-232

Output
Input

Input
Input
Output
Output
Output

PARALLEL BUS INTERFACE - STD-Z80 BUS

COMPATIBLE

Inputs One 74LS Load Max

Bus Outputs IgH =-15mA min at 2.4 Volts
1oL = 24mA min at 0.5 Volts

MECHANICAL SPECIFICATIONS
CARD DIMENSIONS

4.5in. (11.43cm) high by 6.50in. (16.51 cm)
0.48 in. (1.22cm) maximum profile thickness

long

0.062 in. (0.16cm) printed circuit board thickness

13

CONNECTORS

CONNECTORS (Contd.)

Flat Ribbon
Ansley 609-
2600M
Discrete Wires
Winchester
PGB26A
(housing)
Winchester
100-70020S
(contacts)

MATING
FUNCTION| CONFIGURATION | CONNECTOR Serial 1/0 26 pin dual
- — 0.100 in. grid
Printed Circuit
STD-Z80 56 pin dual Viking 3VH28/
BUS 1CEb
Wire Wrap
0.125 in. centers Viking 3VH28/
1CND5
Solder Lug
Viking 3VH28/ POWER SUPPLY REQUIREMENTS
1CNb
+12 Volts + 5% at 50 mA max.
-12 Volts £ 5% at 35 mA max.
+5 Volts + 5% at 1.2 A max.
OPERATING TEMPERATURE RANGE
0°C to +560°C
ORDERING INFORMATION
DESIGNATOR DESCRIPTION PART NO.
MDX-EPROM/UART Module with Operation MK77753
Manual Less EPROMs and
mating connectors.
2.6MHz version.
MDX-EPROM/UART-4 Module with Operation MK77753-4
Manual less EPROMs and Mating
connectors. 4.0 MHz version.
MDX-EPROM/UART MK79604
Operations Manual only
MDX-PROTO MD Series Prototyping MK79605
Data Sheet Package
AID-80F Data Sheet of disk based MK78568
Data Sheet development system for MD
Series
AIM-80 Z80 In-Circuit Emulation MK78537
Data Sheet Module (2.5 MHz only)

14

MOSTEK.

MD SERIES MICROCOMPUTER MODULES

Programmable Input/Output Unit (MDX-PIO)

FEATURES:

O Four 8-bit I/0 ports with 2 handshake lines per

port
All 1/0 lines fully buffered

1/0 lines TTL compatible with provision for
termination resistor networks

Jumper options for inverted or non-inverted
handshake

Two 8-bit ports capable of true bidirectional 1/0
Programmable In only, Out only, or Bidirectional

Output data buffers selectable to provide inverted
or non-inverted drive capability

Interrupt driven programmability

Address strap selectable

STD-Z80 BUS Compatible

4 MHz Option

Fully buffered for MD Series expandability

DESCRIPTION

ooo

ooooao

The MD Series and the STD-Z80 BUS were designed
to satisfy the need for low cost OEM microcomputer
modules. The STD-Z80 BUS uses a motherboard
interconnect system concept and is designed to han-
dle any MD Series card type in any slot. The modules
for the STD-Z80 BUS are a compact 4.5 x 6.5 inches
which provides for system partitioning by function
(RAM, EPROM, 1/0). This smaller module size makes
system packaging easier while increasing MOS-LSI
densities providing high functionality per module.

The MD Series of OEM microcomputer boards and
the STD-Z80 BUS offer the most cost effective
system configuration available to the OEM system
designer.

MDX-P10 DESCRIPTION

The parallel 1/0 controller (MDX-PI0) is a highly ver-
satile unit designed to provide a variety of methods
for inputting and outputting data from the MD Series
microcomputer system. The system is designed
around two Mostek MK3881 Z80-PI0 parallel 1/0
controllers which give four independent 8-bit 1/0
ports with two handshake (data transfer) control lines
per port. The Z80-PIQ’s are designated PI01 and P102.
Each has an |/0 port pair designated A and B. Each
port pair of each PI0 have similar output circuitry.

All 1/0 lines are buffered and have provisions for
termination resistors on board. All port lines are
brought to two 25 pin connectors; two ports per
connector.

Figure 1 illustrates in block diagram from the major
functional elements of port pair A and B of P10 1.
These elements can be defined as the resistor termina-
tion networks, data buffers, port configuration con-
trol, MK3881 P10, and address decode and data bus
buffers. Input and output from the ports are provided
through J1, a 26 pin connector. This connector pro-
vides data paths for the two ports and their respective
handshake signals.

One 14-pin socket is provided per port for resistor
dual inline packages so that terminations may be
placed on the data lines. A parallel termination is pro-
vided for each 8-bit port data line plus the input
strobe (STB) handshake line. The MDX-PI0 is nor-
mally shipped with 1K pullup terminators. In ad-
dition to the parallel termination resistors, the ready
(RDY) handshake output line is series terminated
with a 47 Q2 resistor. This is used to damp and reduce
reflections on this output line.

Port A and B data bus lines are buffered using qua-

druple non-inverting transceivors. The buffers can be

configured using port configuration jumpers to pro-
vide fixed Input, fixed Output or Bidirectional
(Port A only) signals. Further the transceivers are
configured such that port direction can be selected in
4-bit sections. The transceivers are mounted in
sockets so that they can be easily replaced with their
complements in order to achieve a polarity change if
desired.

The handshake lines are also fully buffered. The port
configuration control provides jumper options to
independently control the polarity or “‘sense’’ of each
handshake line so as to further ease the interfacing
between the MDX-PI0 and peripheral devices.

The MK3881, PI0 parallel 1/0 controller is the heart
of the module. This circuit is a fully programmable
two port device which provides a wide range of con-
figuration options. Any one of four distinct modes of
operation can be selected for a port. They are byte
output, byte input, byte bidirectional (Port A only)
and bit control mode. The P10 also automatically gen-
erates all handshaking signals in all the above modes.

15

MDX-PIO BOARD

H
il
1
.
i
i
i
i
i
4

PR BR MKMW N MW R SR NG W R R W e

e e ws e e e
W ow we e o e

MDX-PIO BLOCK DIAGRAM FOR

47Q RDY

PIO1 (P102 IS IDENTICAL)

N A
12g MV N
_ <}

ZZN

~N
DATA BUFFER T T8

TERMINATION

DATA (8) ﬁ

DATA BUFFER

¢ PORT
A

T

BUFFERS

1

(%]
2 ADDRESS

o DECODE PORT)
Q AND MK388I CONFIGURATION|— — — — — — _—— - ——— ——
a DATA BUS PIO | CONTROL DATA BUFFER N
o

(%)

ol
DATA BUFFER L poRT B
(4) (4)
TERMINATION
L . STB
~
—> WA p
70 RDY

The PIO permits total interrupt control so that full
usage of the MDX-CPU1 interrupt capabilities can be
utilized during 1/0 transfers. Also the P10 can be pro-
grammed to interrupt the CPU on the occurrence of a
specified status condition in a specific peripheral
device. The PIO circuit will provide vectored inter-
rupts and maintain the daisy chain priority interrupt
logic compatible with the STD BUS.

The address decoding, interface and bus management
for the board are performed by the address decode
and data bus circuit. Each MDX-P10 port has two ad-
dresses, one for Control and one for Data. A total of
eight addresses are utilized per board. These addresses
are defined in the table below.

TABLE 1
PIO 1 Pl0 2
PORTA PORTB PORTA PORTB
Data XX0g XX2g XX4g XX6g
Control XX1g XX3g8 XX5g XX78

The XX symbols stand for the upper 5 bits of the 1/0
channel address. These bits are jumper selectable on
the MDX-PIO board in order to provide address
selectable,fully decoded ports.

The circuitry for the other two ports provided by P10
#2 is identical to PIO #1. The port configuration
logic, buffers, termination and pin out on connector
J-2 is duplicated for P10 #2. These two ports share the
address decode and data bus buffer circuitry with P10
#1. The only differences are in the address decoding
as given in the port address table, and P10 #2 is lower
priority in the daisy chain interrupt structure.

ELECTRICAL SPECIFICATIONS
WORD SIZE:

Data: 8-bits
1/0 Addressing: 8-bits

1/0 ADDRESSING:

On-board programmable - See Table 1

1/0 CAPACITY:

Four parallel 8-bit ports. On board jumper, selectable
in 4 bit bytes as either In only, Out only, or Bidi-

rectional. (Port 1A or 2A only) Automatic handshake
provided with each port.

17

INTERRUPTS SYSTEM CLOCK

Vectored interrupts generated. Interrupt vector pro- MIN MAX
grammable upon initialization. Daisy chained inter-
rupt priority. Selected bit channels can be masked MDX-PIO 250KHz 2.5 MHz
out under program control. MDX-P10-4 250KHz 4.0 MHz
1/0 DRIVERS
The following line drivers and terminations-are all compatible with the 1/0 driver sockets on the MDX-PI0.
SIGNALS TYPE OUTPUT SINK CURRENT (mA)
Address, Data 74L.S245 NI 24
Bus & Control Tri-State

Bidirectional
1/0 Ports 1A *74LS244 NI 24
and 2A Tri-State

Bidirectional

7415241 | 24

Tri-State

Bidirectional
1/0 Ports 1B *741.S243 NI 24
and 2B Tri-State

Bidirectional

7415242 NI 24

Tri-State

Bidirectional
Handshake: 741586 I/NI (strap 8
RDY selectable)
Note: | =inverting N | = non-inverting

* These chips are supplied with the board. They may be exchanged with the other unit listed to provide the
alternate signal polarity.

TERMINATORS: POWER SUPPLY REQUIREMENTS

1K ohm resistors on all 1/0 port lines. +5 volts + 5% at 1.1A max.

+
S OPERATING TEMPERATURE RANGE
0°C to 50°C
IKn °
! NV O MECHANICAL SPECIFICATIONS
74LS86 47N
:)D AN > RDY CARD DIMENSIONS

4.5in. (11.43cm) high by 6.50 in. (16.51cm) long
0.48 in. (1.22cm) maximum profile thickness
0.062 in. (0.16cm) printed circuit board thickness

PARALLEL BUS INTERFACE-STD-Z80 BUS
COMPATIBLE

One 74LS Load Max.
I0H =-15mA min. at 2.4 volts
IoL = 24mA min. at 0.5 volts

Inputs
Bus Outputs

18

CONNECTORS

FUNCTION CONFIGURATION MATING CONNECTOR

Printed Circuit
STD-Z80 BUS 56 pin dual Viking 3VH28/1CES

Wire Wrap
0.125 in. centers Viking 3VH28/1CND5

Solder Lug
Viking 3VH28/1CN5

Flat Ribbon

Parallel 1/0 26 pin dual Ansley 609-2600M

0.100 in. center Discrete Wires

Winchester PGB26A (housing)
Winchester 100-70020S (contacts)

ORDERING INFORMATION

DESIGNATOR DESCRIPTION PART NO.

MDX-PIO Module with Operation MK77650
Manual less mating
connectors. 2.5MHz version

MDX-P10-4 Module with Operation MK77650-4
Manual less mating connectors.
4.0 MHz version

MDX-PI0 Operations MK79606
Manual only
MDX-PROTO MD Series prototyping MK79605
Data Sheet package data sheet
AID-80F Data Sheet of disk based MK78568
Data Sheet development system for MD Series
AIM-80 Z80 In-circuit Emulation MK78537
Data Sheet module (2.5 MHz only)

19

puedxy

“sauag
[e])]

20

MOSTEK.

MD SERIES MICROCOMPUTER MODULES

Serial Input/Output Module (MDX-SIO)

FEATURES

O Two independent full-duplex channels
O Independent programmable Baud rate clocks

O Asynchronous data rates - 110 to 19.2K bits per
second

Receiver data registers quadruply buffered
Transmitter data registers double buffered
Asynchronous operation

Binary synchronous operation

HDLC or IBM SDLC operation

Both CRC-16 and CRC-CCITT (-0 and -1) hard-
ware implemented

Modem control
Operates as DTE or DCE

O Serial input and output as either RS-232 or 20mA
current loop

O Current loop optically isolated

O Current loop selectable for either active or passive
mode

O Address programmable
O 4 MHz option
O Compatible with STD-Z80 BUS

OoooOoooan

oo

DESCRIPTION

The MD Series and the STD-Z80 BUS were designed
to satisfy the need for low cost OEM microcomputer
modules. The STD-Z80 BUS uses a motherboard
interconnect system concept and is designed to han-
dle any MD Series card type in any slot. The modules
for the STD-Z80 BUS are a compact 4.5 x 6.5 inches
which provides for system partitioning by function
(RAM, EPROM, 1/0). This smaller module size makes
system packaging easier while increasing MOS-LSI
densities providing high functionality per module.

The MD Series of OEM microcomputer boards and
the STD-Z80 BUS offer the most cost effective
system configuration available to the OEM system
designer.

MDX-SIO DESCRIPTION

The Serial Input/Output Module, MDX-SIO, is
designed to be a multiprotocol asynchronous or syn-
chronous I/O module for the STD-Z80 Bus. The

module is designed around the Mostek MK3884 Z80-
SI0 which provides two full duplex, serial data chan-
nels. Each channel has an independent programmable
baud rate clock generator to increase module flexibil-
ity. The MDX-SIO is capable of handling asynchron-
ous, synchronous, and synchronous bit oriented pro-
tocols such as IBM BiSync, IBM SDLC, HDLC and
virtually any other serial protocol. It can generate CRC
codes in any ‘synchronous mode and can be program-
med by the CPU for any traditional asynchronous
format. The serial input and output data are fully
buffered and are provided at the connector as either a
20mA current loop or RS-232-C levels. A modem
control section is also provided for handshaking and
status. The MDX-SIO module can be jumper config-
ured as a data terminal (DTE) orasa modem (DCE) in
order to facilitate a variety of interface configurations.

Figure 1 is a block diagram of the MDX-SIO module.
It consists of five main elements. They are the
channel configuration headers, line drivers and re-
ceivers, MK3884 Z80-S10, programmable Baud rate
generators, and address decode and data bus buffers.
Input and output to the board is provided via two 26
pin connectors. One connector is dedicated for each
channel.

Several features are -available as options that are
selected via the channel configuration header. The
headers are used to select the orientation of the data
communication interface and the mode of the 20mA
current loop. The MDX-SIO can be selected to act as
either a terminal or processor (Data Terminal Equip-
ment DTE) or as the modem (Data Communications
Equipment - DCE). The header allows reconfiguration
of both data interchange and modem control signals.
This allows increased flexibility necessary to link dif-
ferent hardware elements in OEM data link systems
and networks. The module is shipped from the
factory wired as a DTE interface.

The MDX-SIO has different selectable options for the
20mA current loop. The receiver and transmitter
functions can be reconfigured- on the module to
allow for reorientation of these signals. Also the
receive and transmit circuits can be selected to
function in either an active or passive mode. In the
active mode, the MDX-SIO module provides the
20mA current source. In the passive mode, the
module requires that the loop current be provided.
The latter is the same mode as that of a Teletype.

21

MDX-SIO BOARD

MDX-SI0 BLOCK DIAGRAM

[PROGRAMMABLE]
FIGURE 1 BAUD RATE PORT CHANNEL A
GENERATOR }\ CONFIGURATION
MODEM CTL HEADERS
__/ RS 232 RS 232 DATA
RECEIVERS / AND
DRIVERS MODEM CONTROL
20 mA R
Ve 20 MA SERIAL
DATA (8) Serial Data LooP <:> @’Npu-r/ou‘rpu‘r
ADDRESS Interface
DECODE
MK
STD-Z80 AND w4
BUS DATA BUS s.1.0. CHANNEL B
BUFFERS
20mA
X 20 MA SERIAL
(CONTROL.(0) Serial Data LooP C>|Npur/ou-rpu1'
Interface
RS232 RS 232 DATA
v RECEIVERS / AND
DRIVERS MODEM CONTROL
MODEM CTL PORT

PROGRAMMABLE]
BAUD RATE
GENERATOR

CONFIGURATION
HEADERS

An EIA and 20mA current loop interface circuit is
used to provide the necessary level shifting and signal
conditioning between the MK3884 Z280-SIO and the
connector. These line drivers and receivers provide
the correct electrical signal levels, slew rate and impe-
dance for interfacing RS-232C and 20mA current
loop peripherals. Additionally, optical isolation is
provided for both transmit and receive circuits in the
20mA current loop mode.

The Mostek MK3884 Z80-S10 is the central element
of this module. This device is a multifunction compo-
nent designed to satisfy a wide variety of serial data
communications requirements in microcomputer sys-
tems. Its basic role is that of a serial to parallel,
parallel to serial converter/controller but within that
role it is configured by software programming so that
its function can be optimized for a given serial data
communications application. The MK3884 provides
two independent full duplex channels; A and B.

® Asynchronous operation (Channel A and B)
-5,6, 7, or 8 bits/character
-1, 1 % or 2 stop bits
- Even, odd or no parity
-x1,x16, x32 and x64 clock modes
- Break generation and detection
- Parity, Overrun and Framing error detection

® Binary Synchronous operation (Channel A only)
- One or two Sync characters in separate registers
- Automatic Sync character insertion
- CRC generation and checking

® HDLC or IBM SDLC operation (Channel A only)
- Automatic Zero insertion and deletion
- Automatic Flag Insertion
- Address field recognition
- I-Field residue handling
- Valid receive messages protected from overrun
- CRC generation and checking

The MK3884 also provides modem control inputs and
outputs as well as daisy chain priority interrupt logic.
Eight different interrupt vectors are generated by the
SI10 in response to various conditions affecting the
data communications channel transmission and re-
ception.

Address decoding, STD-Z80 BUS interface and bus
management for the module are performed by the
Address Decode and Data Bus circuit. The MDX-SIO
contains command registers that are programmed to
select the desired operational mode. The addressing
scheme is as follows:

XXXXX 00 Channel A Data’
XXXXX 01 Channel A Control Status
XXXXX 10 Channel B Data
XXXXX 11 Channel B Control Status

The X indicates the binary code necessary to repre-
sent which of the 64 port addresses is selected by on-
board strapping.

Each channel has an individual programmable-Baud
rate generator. The X1 multiplier on the Z80-SIO
23

must be used in the synchronous mode. The X186,
X32, or X64 Z80-SI0 clock rate can be specified for
the asynchronous mode. Table 1 indicates the pos-
sible Baud rates available for both operation modes
with the Z80-S10 Data Rate multipliers.

Figure 1 BAUD RATE (Hz)

SYNCHRONOUS ASYNCHRONOUS
X1 X16 X32 X64
800 50 25 12.5
1200 75 37.5 18.75
1760 110 55 27.50
2152 134.5 67.25 33.63
2400 150 75 37.50
4800 300 150 75
9600 600 300 150
19200 1200 600 300
28800 1800 900 450
32000 2000 1000 500
38400 2400 1200 600
57600 3600 1800 900
76800 4800 2400 1200
115200 7200 3600 1800
153600 9600 4800 2400
307200 19200 9600 4800

ELECTRICAL SPECIFICATIONS
WORD SIZE

Data: 8-bits
1/0 addressing: 8-bits

1/0 ADDRESSING
On board upper six bits programmable
1/0 CAPACITY

Serial - Two full duplex serial ports. Channel A is
capable of synchronous and asynchronous operation.
Channel B is asynchronous only. Special control reg-
isters and ‘circuitry to permit implementation of
SDLC, BiSync, MonoSync, HDLC. Other formats can
be programmed on Channel A only.

SERIAL BAUD RATES
See Table 1

INTERRUPTS

Generates vectored interrupts to 8 different locations
corresponding to conditions within both channels.
Interrupt vector location programmable. Daisy
chained priority hardware interrupt circuitry.

24

SYSTEM CLOCK

MIN MAX
MDX-SI0 250KHz 2.6 MHz
MDX-S10-4 250KHz 4.0 MHz

SERIAL COMMUNICATION INTERFACE

20mA
SIGNAL LOOP RS-232-C
Transmitted data Output Output
Received data Input Input
Data Terminal Input/Output
Ready (DTR)
Request to Send Input/Output
(RTS)

Clear to Send (CTS)
Carrier Detect
(CDET)

PARALLEL BUS INTERFACE - STD-Z80 BUS
COMPATIBLE

Qutput/Input
Output/Input

One 74LS load max.
IOH = -15mA min at 2.4 Volts
loL = 24mA min at 0.5Volts

Inputs
Bus Outputs

POWER SUPPLY REQUIREMENTS

+12 volts + 5% at 72 mA max.
-12 volts + 5% at 46 mA max.
+5 volts + 5% at 650 mA max.

OPERATING TEMPERATURE
0°C to 50°C

MECHANICAL SPECIFICATIONS
CARD DIMENSIONS

4.5 in. (11.43cm) high by 6.50 in. (16.51cm) long
0.48 in. (1.22cm) maximum profile thickness
0.062 in. (0.16¢cm) printed circuit board thickness

CONNECTORS
MATING

FUNCTION CONFIGURATION CONNECTOR

Printed Circuit
Viking 3VH28/
1CEb

Wire Wrap
Viking 3VH28/
1CND5

Solder Lug
Viking 3VH28/
1CN5

STD-Z80
BUS

56 pin

0.125in.centers

CONNECTORS Cont'd.

SERIAL 1/0 26 pin Flat Ribbon
0.100 in. center Ansley 609-
2600M
Discrete Wires:
WINCHESTER
PGB26A
(housing)
WINCHESTER
100-70020S
(contacts)
ORDERING INFORMATION
DESIGNATOR DESCRIPTION PART NO.
MDX-SI0 Dual channel, Full-Duplex Serial MK77651
1/0 Module less mating connectors with
Operations Manual. 2.5MHz version.
MDX-S10-4 Module with Operations MK77651-4
Manual less mating connectors.
4.0MHz version
MDX-SI0 Operations Manual MK79608
MDX-PROTO MD Series Prototyping MK79605
Data Sheet Package
AID-80F Disk based development MK78568
Data Sheet system for MD series
AIM-80 Z80 In-circuit Emulation MK78537
Data Sheet module (2.5 MHz only)

25

U:maxw

26

MOSTEK.

MD SERIES MICROCOMPUTER MODULES

Z80 Microcomputer Debug Module (MDX-DEBUG)

HARDWARE FEATURES

O STD-Z80 BUS compatible
4 MHz version available
Serial 1/0 Channel

10K bytes of ROM contain the following firm-
ware: DDT-80, ASMB-80

Oooano

DEBUGGER FEATURES

O Z80 Operating System with debug capability
O Channelized 1/0 for versatility

O 1/0 peripheral drivers supplied

O ROM based

TEXT EDITOR FEATURES

O Input and modification of ASCII Text
O Line and character editing

O Alternate command buffers for pseudo-macro
command capability

O ROM based
ASSEMBLER FEATURES

O Assembles all Z80 mnemonics

O Object output in industry standard hexadecimal
format extended for Relocatable and Linkable
Programs

O Over fifteen pseudo-ops
Two pass assembly
O ROM based

O

LINKING LOADER FEATURES

O Loads into memory both relocatable and non-
relocatable object output of the assembler

O Loads Relocatable modules anywhere in memory

O Automatically provides linkage of global symbols
between object modules as they are loaded

O Prints system load map
O ROM based

MD SERIES GENERAL DESCRIPTION

The MD Series and the STD-Z80 BUS were designed
to satisfy the need for low cost OEM microcomputer
modules. The STD-Z80 BUS uses a motherboard
interconnect system concept and is designed to han-
dle any MD Series card type in any slot. The modules
for the STD-Z80 BUS are a compact 4.5 x 6.5 inches
which provides for system partitioning by function
(RAM, EPROM, 1/0). This smaller module size makes
system packaging easier while increasing MOS-LSI
densities provide high functionality per module.

The MD Series of OEM microcomputer boards and
the STD-Z80 BUS offer the most cost effective
system configuration available to the OEM system
designer.

HARDWARE DESCRIPTION

The MDX-DEBUG module has sockets for 10K bytes
of masked ROM that are filled with a Z80 firmware
package (DDT-80/ASMB-80). This module has a STD-
Z80 BUS interface and is available in both 2.56MHz
and 4.0MHz versions. Included on-board is a fully
buffered asynchronous 1/0 port capable of 110-19200
Baud rates. Serial data interfaces are available for
20mA current loop (with reader step control) and
RS-232. The on-board Baud Rate Generator is select-
able to all common Baud rates from 110 to 19,200
Baud.

FIRMWARE DESCRIPTION
DEBUGGER DESCRIPTION

DDT-80 is the Operating System for the MDX-
DEBUG Module. It resides in a 2K ROM (MK34000
series) resident on the MDX-DEBUG Module. It pro-
vides the necessary tools and techniques to operate
the system, i.e., to efficiently and conveniently per-
form the tasks necessary to develop microcomputer
software. DDT-80 is designed to support the user
from initial design through production testing. It
allows the user to display and update memory, regis-

“ters, and ports, load and dump object files, set break-

points, copy blocks of memory, and execute pro-
grams,

MDX-DEBUG BLOCK DIAGRAM

ADDRESS AND CONTROL BUS

20MA INPUT
(o) Sumrer a2,
MEMORY PORT Al
8 INTERFACE ELECTION]| ROM FIRMWARE ISELECTION———’ UART
§ <:> LOGIC P Loeic ~Ploor-e0 ano ASMB-80 LoGIC @ RS-232
= INPUT, OUTPUT
@ AND
MODEM CONTROL
K DATA BUS
L99627
DDT-80 COMMAND SUMMARY MEMORY, PORT AND REGISTER COMMANDS
(M, P, R)
Ms - Display and/or update the contents of
memory location s. The M, P, and R commands provide the means for
Ms, f - Tabulate the contents to memory loca- displaying the contents of specified memory loca-
tions s through f. tions, port addresses, or CPU registers. The M and P
Ps Display and/or update the content of commands sequentially access memory locations or
1/0 port s. ports and display their contents. The user has the
Ds, f Dump the contents of memory loca- option of updating the content of the memory loca-

tions s through f in a format suitable to

be read by the L command.
L - Load, into memory, data which is in
the appropriate format.
Transfer control from DDT-80 to a
user’s program starting at location s.
Perform 16 bit hexadecimal addition
and/or subtraction.
Copy the contents of memory locations
s through f to another location in mem-
ory starting at location d.
Insert a breakpoint in the user’s pro-
gram (must be in RAM) at location s
which transfers control back to DDT-
80. This allows the user to intercept his
program at a specific point (location s)
and examine memory and CPU registers
to determine if this program is working
correctly.
Display the contents of the user regis-
ters.
The s, f, and d represent start, finish, and destination
operands required for each command.

28

R -

tion or port. (Note some ports are output only and
their contents cannot be displayed). The M command
also gives the user access to the CPU registers through
an area in RAM called the Register Map (discussed in
the Execute, Breakpoint section below).

The M and R commands are used to tabulate blocks
of memory locations (M) or the CPU registers (R).
The M command will accept two operands, the start-
ing and ending address of the memory block to be
tabulated. The R command will accept either no
operand or one. If no operand is specified, the CPU
registers will be displayed without a heading. If an
operand is specified then a heading which labels the
registers contents will be displayed as well.

EXECUTE AND BREAKPOINT (E, B)

The E command is used to execute all programs,
including aids such as the Assembler. The B command
is used to set a breakpoint to exit from a program at
some predetermined location for debugging purposes.
At the instant of a breakpoint exit, the contents of all

CPU register are saved in a designated area of MDX-
DEBUG RAM called the Register Map. In the Reg-
ister Map, the register contents may be examined or
modified using the M command and a predefined
mnemonic (or absolute address) of the storage loca-
tion for that register (example :PC, :A, ..., :SP). The
Register Map is also used to initialize the CPU regis-
ters whenever execution is initiated or resumed. Thus
the E and B commands can be used together to initia-
lize, execute, and examine the results of individual
program segments.

The B command gives the user the option of having
all CPU registers displayed when the breakpoint is en-
countered. This is done by entering a second operand
to the B command. Otherwise DDT-80 defaults to
displaying the PC and AF registers. When all CPU reg-
isters are displayed, the format is the same as for the
R command previously discussed.

LOAD, DUMP, AND COPY (L, D, C)

The L and D commands load and dump object files
through the object /0 channel in standard Intel Hex
format. Checksums are used for error detection, and
the addresses of questionable blocks are typed auto-
matically while loading.

The C command will copy the contents of the mem-
ory block specified to another block of memory.
There are no restrictions on the direction of the copy
or on whether the blocks overlap.

HEXADECIMAL ARITHMETIC (H)

The H command is a dummy command used to allow
hexadecimal addition and subtraction for expression
evaluation without performing any other operation.

DDT-80 1/0 CAPABILITIES

DDT-80 specifies 1/0 channels, designated ‘Console’,
‘Object’, and ‘Source’, to which any suitable devices
may be assigned. The Channel Assignment Table is
located in MDX-DRAM where it may be examined or
modified using the M command. The table addresses
correspond to the 1/0 channels and the table contents
correspond to the addresses of the peripheral driver
routines. A channel which has a device assignment
may have that device assignment changed using the M
command. This is accomplished by merely modifying
the table contents of that channel’s table address to
correspond to the new peripheral driver routine. A set
of peripheral driver routines is supplied and listed be-
low. This scheme also allows the user to write a driver
routine for his own peripheral, load it into memory,
and easily configure that peripheral into the system.

DDT-80 1/0 PERIPHERAL DRIVERS

A serial input driver (usually a keyboard).

A serial output driver (usually a CRT or teletype
typehead).

A serial input driver which sends out a reader step
signal (usually a teletype reader).

A serial output driver which forces a delay after a
carriage return (usually a Silent 700 typehead).

A parallel input driver (usually for high speed
paper tape input).

A parallel output driver (usually for high speed
paper tape output).

7. A parallel output driver (usually for a line
printer).

N —

o o > W

TEXT EDITOR DESCRIPTION

The Text Editor permits random access editing of
ASCII character strings. It can be used as a line or
character oriented editor. Individual characters may
be located by position or context. The Editor works
on blocks of characters which are typically read into
memory from magnetic tape or paper tape. Each
edited block can be output to magnetic tape or paper
tape after editing is completed. While the primary
application for the Text Editor is in editing assembly
language source statements, it may be applied to any
ASCII text delimited by “‘carriage returns”’.

The Editor has a macro command processing option.
Up to two sets of commands may be stored and pro-
cessed at any time during the editing process.

All 1/0 is done via the DDT-80 channels. The Editor
can be used with the MOSTEK ASMB-80 Assembler
and Loader to edit, assemble, and load programs in
memory without the need for external media for
intermediate storage.

The following commands are recognized by the Text
Editor:

An - Advance record pointer n records

Bn - Backup record pointer n records

Cn dS1dS2d - Change string S1 to string S2 for n
occurrences

Dn - Delete next n records

E- Exchange current record with records
to be inserted

|- Insert records

Ln- Go to line number n

Mn - Enter command buffers (pseudo-
macro)

N - Print top, bottom, and current line
number

Pn - Punch n records from buffer

R - Read source records into buffer

Sn dS1d - Search for nth occurrence of string S1

29

ASSEMBLER DESCRIPTION

The Assembler reads Z80 source mnemonics and
pseudo-ops and outputs an assembly listing and
object code. The assembly listing shows address,
machine code, statement number, and source state-
ment. The object code is in industry standard hexa-
decimal format modified for relocatable, linkable
assemblies.

The Assembler supports conditional assemblies,
global symbols, relocatable programs, and a printed
symbol table. It can assemble any length program,
limited only by a symbol table size which is user
selectable. Expressions involving addition and sub-
traction are allowed. A global symbol is categorized
as “internal’ if it appears as a label in the program;
otherwise it is an “external” symbol. The printed
symbol table shows which symbols are internal and
which are external. The Assembler allows the user to
select relocatable or non-relocatable assembly via the
“PSECT" pseudo-op. Relocation records are placed in
the object output for relocatable assemblies (the
MOSTEK object format is defined below). The
Assembler can be run as a single pass assembler or as a
learning tool. (In this mode, global symbols and for-
ward references are not allowed).

The following pseudo-ops are recognized by the
Assembler:

ORG - program origin

EQU - equate label

DEFL - define label

DEFM - define message

DEFB - define byte

DEFW - define word

DEFS - define storage

END - end statement

NAME - program name definition

PSECT - program section definition

GLOBAL - global symbol definition Supports the
following assembler pseudo-ops

EJECT - eject a page of listing

TITLE - place heading at top of each page

LIST - turn listing on

NLIST - turn listing off

RELOCATING LINKING LOADER DESCRIPTION

The MOSTEK Relocating Linking Loader provides
state-of-the-art capability for loading programs into
memory by allowing loading and linking of any num-
ber of relocatable and non-relocatable object
modules. Non-relocatable modules are always loaded
at their starting address as defined by the ORG
pseudo-op during assembly. Relocatable object
modules can be positioned anywhere in memory at an
offset address.

30

The Loader automatically links and relocates global
symbols which are used to provide communication or
linkage between program modules. As object pro-
grams are loaded, a table containing global symbol
references and definitions is built up. At the end of
each module, the loader resolves all references to glo-
bal symbols which are defined by the current or a
previously loaded module. It also prints on the con-
sole device the number of defined global symbols that
have been referenced. The symbol table can be
printed to list all global symbols and their load ad-
dress. The number of object modules which can be
loaded by the Loader is limited only by the amount
of MDX-RAM available for the modules and the sym-
bol table.. Space for the symbol table is allocated
dynamically downward in memory from either the
top of memory or from a specified address entered as
an operand of the load command.

All 1/0 is done via the DDT-80 channels. Assemblies
can be done from source statements stored in mem-
ory (by the Editor). The object output can be
directed to a memory buffer rather than to an exter-
nal device. Thus, assembly and loading can be done
without external storage media.

The Loader prints the beginning and ending address
of each module as it is loaded. The transfer address as
defined by the END pseudo-ops is printed for the
first module loaded. The Loader execute command
(E) can be used to automatically start execution at
the transfer address.

The Loader Commands are the following:

L offset - load object module at address ‘‘off-
set’” plus program origin address

E - execute loaded program at transfer
address of first module

T - print global symbol table

MOSTEK OBJECT OUTPUT DEFINITION

Each record of an object module begins with a de-
limiter (colon or dollar sign) and ends with carriage
return and line feed. A colon (:) is used for data re-
cords and the end-of-file record. A dollar sign ($) is
used for records containing relocation information
and linking information. All information is in ASCII.
Each record is identified by ‘“‘type’’. The type is de-
termined by the 8th and 9th bytes of the record
which can take the following values:

00 - data

01 - end-of-file

02 - internal symbol

03 - external symbol

04 - relocation information
05 - module definition

DELIMITER
RECORD TYPE

1 2 3 4 5 6 7 8 9 10
¥
E of ® T T T T
* [BINARY START ADDRESS o o DATA CHECK
OF DATA T e sum
* |PAT% ayres) ®
L L L L 1 L
1] 1 1 1 1 1]
. o o TRANSFER ADDRESS o . |eneck
. OF MODULE sum ()
i 1 'l 1 L A
| 4 L T] T L] | 1
INTERNAL CHECK
$ SYMBOL NAME ° 2 ADDRESS sum (D)
1L L L ! L 1 4 L 1 []
1] 1 1 1 ¥ 1 1 1 4 1 1
s EXTERNAL 3 LINK CHECK
SYMBOL NAME 0 Aooness® SuM @
Il 1 I ' 1 1 N 1 [l
T @ T T T T]
of
ADDRESSES WHICH CHECK
$ |BINARY (4]] [} 4} (] 4 sum
Bvtes ... REQUIRE RELOCATION .., @
1 L L L L - .
L) T L] T 1 T T
@ CHECK
$ MODULE NAME 0 5 |FLacs SUM
1 ' 1 ' 1 : 1 '

NOTES:

1. Check Sum is negative of the binary sum of all bytes except delimiter and carriage return/line feed.

2. Link Address points to last address in the data which uses the external symbol. This starts a backward link list through the data records for that
external symbol. The list terminates at OFFFFH.

3. The flags are one binary byte. Bit 0 is defined as:
0 - absolute module
1 - relocatable module

4, Maximum of 64 ASCII bytes.

ELECTRICAL SPECIFICATIONS SERIAL COMMUNICATIONS INTERFACE
1/0 TRANSFER RATE SIGNAL BUFFERED FOR:
20mA Current Loop
X16 Baud Rate Clock Baud Rate (Hz) RS-232
1,760 110 Transmitted data Output Output
4,800 300 Received data Input Input
9,600 600 Data Terminal Ready (DTR) Input
19,200 1,200 Request to Send (RTS) Input
38,400 2,400 Carrier Detect (CDET) Output
76,800 4,800 Clear to Send (CTS) Qutput
153,600 9,600 Data Set Ready (DSR) Output
307,200 19,200 Reader Step relay (RS) Output
(40mA)

SERIAL COMMUNICATIONS CHARACTERISTICS
PARALLEL BUS INTERFACE-STD-Z280 BUS

Asynchronous COMPATIBLE
Full duplex operation
Start bit verification Inputs One 74LS load Max
Data word size variable from 5 to 8 Bus Outputs IOH = -15mA min at
bits. 2.4 Volts
One or two stop bits loL = 24mA min at
0Odd, even, or no parity 0.5 Volts

One word buffering on both transmit
and on receive.

1/0 ADDRESSING CONNECTORS

MATING
On-board Serial 1/0 Port FUNCTION CONFIGURATION CONNECTOR
Control Port DDH -
Data Port DCH Printed Circuit
Module and Reader Step Control Port DEH STD BUS 56 pin dual read out Y(I:'E'gg 3VH28/
SYSTEM CLOCK Wire Wrap
0.125 in. centers Viking 3VH28/
MDX-DEBUG 1.26MHz 2.5MHz 1CND5
MDX-DEBUG-4 1.26MHz 4, 0MHz Solder Lug
i Viking 3VH28/
POWER SUPPLY REQUIREMENT 1CN5
Flat Ribbon
+12 Volts + 5% at 50 mA max. Serial 1/0 26 pin dual readout | Ansley 609-
-12 Volts + 5% at 35 mA max. 0.100 in. grid 2600M
+5 Volts + b% at 1.2 A max. Discrete Wires
Winchester
OPERATING TEMPERATURE PGB26A
(housing)
0°C to +50°C Winchester
100-70020S
MECHANICAL SPECIFICATIONS (contacts)

CARD DIMENSIONS
4.5 in. (11.43cm) high by 6.50 in. (16.51cm) long
0.48 in. (1.22cm) maximum profile thickness
0.062 in. (0.16¢cm) printed circuit board thickness

ORDERING INFORMATION

DESIGNATOR DESCRIPTION PART NO.

MDX-DEBUG Module with 10K bytes of firmware MK77950
and Operations Manual. No mating
connectors. 2.5MHz version.

MDX-DEBUG-4 Module with 10K bytes of firmware MK77950-4
and Operations Manual. No mating
connectors. 4.0MHz version

MDX-DEBUG Operations MK79611
Manual only

Program Source Listing MK78536
of 10K byte firmware package and

(DDT/ASMB-80) including comments | MK78534
and flow charts. (Available free with
purchase of either MDX-DEBUG

Module).
MDX-PROTO MD Series Prototyping package MK79605
Data Sheet
AID-80F Disk based development system MK78568
Data Sheet for MD Series
AIM-80 Z80 In-circuit emulation module MK78537
Data Sheet (2.5MHz only)

32

* The DDT-80 and ASMB-80 listings are available di-
rectly from MOSTEK by filling out a copy of the
Software Licensing Agreement printed on the op-
posite page of this data sheet and returning it with
the appropriate payment of Customer Purchase Order
to:

MOSTEK CORPORATION
Microcomputer Systems Div.
1215 West Crosby Road
Carrollton, Texas 75006

33

STANDARD SOFTWARE LICENSE AGREEMENT
All Mostek Corporation products are sold
on condition that the Purchaser agrees to
the following terms:
1. The Purchaser agrees not to sell, provide, give away, or otherwise make available to any unauthorized
persons, all or any part of, the Mostek software products listed below; including, but not restricted
to: object code, source code and program listings.

2. The Purchaser may at any time demonstrate the normal operation of the Mostek software product
to any person.
3. All software designed, developed and generated independently of, and not based on, Mostek's soft-

ware by purchaser shall become the sole property of purchaser and shall be excluded from the
provisions of this Agreement. Mostek’s software which is modified with the written permission of
Mostek and which is modified to such an extent that Mostek agrees that it is not recognizable as
Mostek's software shall become the sole property of purchaser.

4. Purchaser shall be notified by Mostek of all updates and modifications made by Mostek for a one-
year period after purchase of said Mostek software product. Updated and/or modified software and
manuals will be supplied at the current cataloged prices.

5. In no event will Mostek be held liable for any loss, expense or damage, of any kind whatsoever,
direct or indirect, regardless of whether such arises out of the law of torts or contracts, or Mostek's
negligence, including incidental damages, consequential damages and lost profits, arising out of or
connected in any manner with any of Mostek'’s software products described below.

6. MOSTEK MAKES NO WARRANTIES OF ANY KIND, WHETHER STATUTORY, WRITTEN,
ORAL, EXPRESSED OR IMPLIED (INCLUDING WARRANTIES OF FITNESS FOR A PARTIC—
ULAR PURPOSE AND MERCHANTABILITY AND WARRANTIES ARISING FROM COURSE
OF DEALING OR USAGE OF TRADE) WITH RESPECT TO THE SOFTWARE DESCRIBED

BELOW.
The Following Software Products Subject to this Agreement:
Order Number Description Price*
Ship To: Bill To:
Method of Shipment: Customer P.O. Number
Agreed To:
PURCHASER MOSTEK CORPORATION
By: By:
Title: Title:
Date: Date:

* Prices Subject to Change Without Notice

34

MOSTEK.

MD SERIES MICROCOMPUTER MODULES

Z80 Single Step Module (MIDX-SST)

FEATURES

0O Hardware single-step capability
O Compatible with DDT-80 Operating System
0O STD-Z80 BUS compatible

DESCRIPTION

The MD Series and the STD BUS were designed for low-
cost OEM microcomputer modules. The STD BUS uses a
motherboard interconnect system concept and is
designed to handle any MD Series Card type in any slot.
The modules for the STD BUS are a compact 4.5 x 6.5
inches which provide for system partitioning by function
(RAM, EPROM, 1/0). This smaller module size makes
system packaging easier, while increasing MOS-LSI
densities provide high functionality per module.

The MD Series of OEM microcomputer boards and the
STD BUS offer the most cost-effective system
configuration available to the OEM system designer.

MDX-SST DESCRIPTION

The MOSTEK MDX-SST was designed to enhance the
hardware and software debug capability for MD Series
systems. The use of the MDX-SST with the MDX-CPU1
and MDX-DEBUG boards allows the user to single-step
instructions through RAM and/or EPROM/ROM with
the capability of displaying all of the MDX-CPU1
registers on each instruction execution.

The MDX-SST board is implemented using the MDX-
CPU1’s nonmaskable interrupt and is controlled by
firmware from the keyboard. When the command to
single step an instruction is given, the sequence of
events is the same as executing a program except thata
“1" is output to the single step control port (DFH)
instead of a “0”". The circuit decodes the double M1
instructions (CBH, DDH, EDH, or FDH)and M1 is usedto
clock a shift register circuit which (if a “1"" is output to
port DFH) generates a nonmaskable interrupt at the
start of the instruction to be single stepped. The
nonmaskable interrupt saves the address of execution
on the stack and causes the next instruction to be
fetched from address EO66H. The shift register is
clocked twice after the nonmaskable interrupt, causing
the signal DEBUG to go low, forcing “E”* on the most
significant address lines, and causing the instruction to
be fetched from the EO66H in the operating system
DDT-80. The operating system then jumps to EO69H,
clears the debug flip-flop by reading PORT DFH, saves
the MDX-CPU1 registers in the MDX-CPU1 scratch
RAM, and waits for the next command.

The single-step command is implemented in DDT-80
which resides on the MDX-DEBUG board and has the
following format:

S COMMAND, Single-step

This command allows the user to start single-stepping
from a given location for a given number of instructions
and to display the CPU registers after each step.

Format:

.S aaaa,nn,b(cr) start single-stepping at location aaaa
for nn steps or instructions. If b=0,
display only the PC and AF registers,
if b#0, display all the CPU registers.
the same as above with b = O
assumed.

.S aaaa,nn (cr)

.S aaaa (cr) the same as above with nn=1 and
b=0 assumed.
.S (cr) the same as above with nn=1 and

b=0 assumed; aaaa is set equal tothe
contents of the user’s PC.

The use of the MDX-SST boardrequires the MDX-CPU1
and the MDX-DEBUG.

ELECTRICAL SPECIFICATIONS

PORT ADDRESS (HEX)
DF

35

MDX-SST BLOCK DIAGRAM

DATA BUS
[Do-br > PORT

DECODE _—_—l = NMIRQ Pin 46

ONTROL B
¢ us INSTRUCTION
DETECTOR
DOUBLE
ADDRESS BUS OP CODE »DEBUG Pin 38
L__Ao-A7 > DETECT
SYSTEM CLOCK CONNECTOR CONTINUED Wire Wrap
MIN MAX Viking
PARALLEL BUS INTERFACE 1CNDS
STD-Z80 BUS COMPATIBLE Solder Lug
Viking
POWER SUPPLY REQUIREMENTS 3VH28/
+5Vdc @ 85mA 1CN5
OPERATING TEMPERATURE
°C t °C
0°C 10 50 ORDERING INFORMATION
MECHANICAL SPECIFICATIONS DESIGNATOR | DESCRIPTION PART NO.
CARD DIMENSIONS MDX-SST Single Step \ MK77958
Module
4.5in(11.43cm) highby6.50in.(16.51cm) long
0.48 in (1.22cm) maximum profile thickness MDX-SST Operations MK79638
0.062 in. (0.16cm) printed circuit board thickness Manual
CONNECTORS MDX-PROTO MD Series Pro- MK79605
data sheet typing package
FUNCTION CONFIGURATION MATING
CONNECTOR
AIM-80 Z80 In-circuit MK78537
STD BUS 56 pin Printed Cir- data sheet Emulation module
0.125 in. centers cuit Viking (2.5 MHz only)
3VH28/1CE5

36

MOSTEK.

MD SERIES MICROCOMPUTER MODULES

Prototyping Package (MIDX-PROTO)

FEATURES

O 8-slot card cage with mother board (MK77954)
O MDX-CPU1 module (MK77850)

O MDX-DRAMS8 module (MK77750)

O MDX-DEBUG module (MK77950)

0O MD-WW2 Wire wrap board (MK77952)

O MD-EXT Extender board (MK77593)

O Cables for RS232 device (MK77955)
or TTY (MK77956)

0O 4MHz option available (MDX-PROTO-4)

O STD BUS compatible

DESCRIPTION

The MD Series and the STD BUS were designed to
satisfy the need for low-cost OEM microcomputer
modules. The STD BUS uses a mother board
interconnect system concept and is designed to handle
any MD Series Card type in any siot. The modules for the
STD BUS are a compact 4.5 x 6.5 inches which provide
for system partitioning by function (RAM, EPROM, 1/0).
This smaller module size makes system packaging
easier while increasing MOS-LSI densities provide high
functionality per module.

The MD Series of OEM microcomputer boards and the
STD BUS offer the most cost-effective system
configuration available to the OEM system designer.

MDX-PROTO DESCRIPTION
HARDWARE DESCRIPTION
MDX-CPU1 DESCRIPTION

The MOSTEK MDX-CPU1 is the heart of an MD Series
Z80 system. Based on the powerful Z80
microprocessor, the MDX-CPU1 can be used with great
versatility in an OEM microcomputer system
application. This is done simply by inserting custom
ROM or EPROM memories into the sockets provided on
the board and configuring them virtually anywhere
within the Z80 memory map.

On-board memory is provided in the form of 4K of
EPROM (2-2716's) and 256 bytes of scratchpad RAM as
pictured in the block diagram. In addition, a MK3882
Counter Time Circuit is included on the MDX-CPU1 to
provide counting and timing functions for the Z80.
Either 2716 EPROM can be located at any 2K boundary
within any given 16K block inthe ZBO memory mapviaa
jumper arrangement.

The MDX-CPU1 can be used in conjunction with the
MDX-DEBUG and MDX-DRAM modules to utilize DDT-
80 and ASMB-80 in system development. This is
accomplished by strapping the scratchpad RAM to
reside at location FFOO so that it will act as the
Operating System RAM for DDT-80.

The MDX-CPU1 is also available in 4MHz version (MDX-
CPU1-4). In this version, one wait cycle is automatically
inserted each time on-board memory is accessed by a
read or write cycle. This is necessary to make the access
times of the 2716 PROMs and the 3539 scratchpad
RAM compatible with MK3880-4 4MHz Z80-CPU.

MDX-DRAM DESCRIPTION

The MDX-DRAM is designed to be a RAM memory
expansion board for the MOSTEK MD SERIES of Z80
based microcomputers. It is available in three memory
capacities: 8K bytes (MDX-DRAMS), 16K bytes (MDX-

37

BLOCK DIAGRAM MDX-PROTO

L

STD Z80 BUS

U

U U

ADDRESS,CONTROL,DATA

ADDRESS,CONTROL,DATA

ADDRESS, CONTROL,DATA

| |
| I
| |
BUFFERS | BUFFERS | BUFFERS
T | +5 -2 |]\
= ALl 3
| MEMORY , e 9 : SELECTION _Losic[S8
| Ieort DECODE | by £
a MEMORY s
SELECT] L ONTROL | oecone K< s REGULATOR | ROM FIRMWARE g
ADDRESS| LoGIC BURER I [| Aasme-so N
| _sv By
CONTROL | 2
| : T ¢
I A SELECTION LOGIC §
LECTION
cpPu USER | \/ [7
PROMS o
MK 3880 2716 | I 9 L
CONTROL | MUX SuFFem) 8
— Ui
| | UART K S|
8]
BUFFER : U @ ﬂ l
| A DIN DOUT |
I WRITE
SCRATCH | MEMORY ARRAY '
MEPD::RY 08 | (6Kx8 8-MKag |
| 18 16-wK41l6f
CE 256x8 I
crc | | 20MA INPUT, RS-232
DATA | OUTPUT AND INPUT,OUTPUT
E> MK 3882 READER STEP AND MODEM
CONTROL
MDX-CPU | MDX-DRAM MDX - DEBUG

DRAM 16), and 32K bytes (MDX-DRAM32).
Additionally, the MDX-DRAM16 and the MDX-
DRAMS32 are available in a 4MHz version. Thus, the
designer can choose from the various options to tailor
his add-on dynamic RAM directly to his system
requirements.

The MDX-DRAMS8 is designed using MOSTEK's
MK4108 8,192-bit dynamic RAM. The MDX-DRAM32
utilizes high-performance MK4116, 16K-bit dynamic
RAMs which allow 4MHz versions of these boards to be
offered. No wait-state insertion circuitry is required on
any of the RAM cards.

Address selection is provided on all MDX-DRAM cards
for positioning the 8K, 16K, or 32K of memory to starton
any 4K boundary.

MDX-DEBUG DESCRIPTION

The MDX-DEBUG Module has sockets for 10K bytes of
masked ROM that are populated with a Z80 firmware
package (DDT-80/ASMB-80). This module has a STD
BUS interface and is available in both 2.5MHz and
4 .OMHz versions. Included on board is a fully buffered
asynchronous |/0 port capable of 110-19200 Baud
Rates. Serial Data interfaces are available for 20mA
current loop (with reader step control) and RS-232. The
on-board Baud Rate Generator is selectable to all
common Baud Rates from 110 to 19,200 Baud.

38

FIRMWARE DESCRIPTION
DEBUGGER DESCRIPTION

DDT-80 is the Operating System for the MDX-DEBUG
Module. It resides in a 2K ROM (MK34000 series)
resident on the MDX-DEBUG Module. It provides the
necessary tools and techniques to operate the system,
i.e., to efficiency and conveniently develop micro-
computer software. DDT-80 is designed to support the
user from initial design through production testing. It
allows the user to display and update memory,
registers, and ports, load and dump object files, set
breakpoints, copy blocks of memory, and execute
programs.

DDT-80 COMMAND SUMMARY

M s - Display and/or update the contents of
memory location s.

Ms, f - Tabulate the contents of memory locations s
through f.

Ps - Display and/or update the contents of I/0
port s.

Dsf - Dump the contents of memory locations s
through f in a format suitable to read by the
L command.

L - Load, into memory, data which is in the
appropriate format.

Es - Transfer control from DDT-80 to a user's

program starting at location s.

H - Perform 16-bit hexadecimal additionand/or
subtraction.

- Copy the contents of memory locations s
through f to another location in memory
starting at location d.

-Insert a breakpoint in the user’s program
(must be in RAM) at location s which
transfers control back to DDT-80. This
allows the user to intercept his program at a
specific point (location s) and examine
memory and CPU registers to determine if
this program is working correctly.

R - Display the contents of user registers.

Csfd

Bs

The s,f, and d represent start, finish, and destination
operands required for each command.

MEMORY, PORT AND REGISTER COMMANDS
(M,P.R)

The M, P, and R commands provide the means for
displaying the contents of specified memory location,
port addresses, or CPU registers. The M and P
commands sequentially access memory locations or
ports and display their contents. The user has the option
of updating the content of the memory location or port.
(Note some ports are output only and their contents
cannot be read or displayed). The M command also gives
the user access to the CPU registers through an area in
RAM called the Register Map (discussed in the Execute,
Breakpoint section below).

The M and R commands are used to tabulate blocks of
memory locations (M) or the CPU registers (R). The M
command will accept two operands, the starting and
ending addresses of the memory block to tabulated. The
R command will accept either no operand or one. If no
operand is specified, the CPU registers will be displayed
without a heading. If an operand is specified then a
heading which labels the register contents will be
displayed as well.

EXECUTE AND BREAKPOINT (E,B).

The E command is used to execute all programs,
including aids such as the Assembler. The B command
is used to set a breakpoint to exit from a program at
some predetermined location for debugging purposes.
At the instant of a breakpoint exit, the contents of all
CPU registers are saved in a designated area of MDX-
DEBUG RAM called the Register Map. In the Register
Map, the register contents may be examined or modified
using the M command and a predefined mnemonic (or
absolute address) of the storage location for that
register (Example: PC, :A,...,:SP). The Register Map is
also used to initialized the CPU registers whenever
execution is initiated or resumed. Thus the E and B
commands can be used together to initialize, execute,
and examine the results of individual program
segments.

The B command gives the user the option of having all
CPU registers displayed when the breakpoint is
encountered. This is done by entering a second operand
to the B command. Otherwise DDT-80 defaults to
displaying the PC and AF registers. When all CPU

registers are displayed, the format is the same as for the
R command previously discussed.

LOAD, DUMP, AND COPY, (L,D,C)

The L and D commands load and dump object files
through the object I/0 channel in standard Intel Hex
format. Checksums are used for error detection, and the
addresses of questionable blocks are typed
automatically while loading.

The C command will copy the contents of the memory
block specified to another block of memory. There are no
restrictions on the direction of the copy or on whether
the blocks overlap.

HEXADECIMAL ARITHMETIC (H)

The H command is a dummy command used to allow
hexadecimal addition and subtraction for expression
evaluation without performing any other operation.

DDT-80 I/0 CAPABILITIES

DDT-80 specifies I/0 channels, designated ‘Console’,
‘Object’, and ‘Source’, to which any suitable devices
may be assigned. The Channel Assignment Table is
located in MDX-RAM where it may be examined or
modified using the M command. The table addresses
correspond to the 1/0 channels and the table contents
correspond to the addresses of the peripheral driver
routines. A channel which has a device assignment may
have that device assignment changed using the M
command. This is accomplished by merely modifying
the table contents of that channel’s table address to
correspond to the new peripheral driver routine. A set of
peripheral driver routines is supplied and listed below.
This scheme also allows the user to write a. driver
routine for his own peripheral, load it into memory, and
easily configure that peripheral into the system.

DDT-80 I1/0 PERIPHERAL DRIVERS

. A serial input driver (usually a keyboard).

. A serial output driver (usually a CRT or teletype
typehead).

. A serial input driver which sends out a reader step
signal (usually a teletype reader).

. A serial output driver which forces a delay after a
carriage return (usually a Silent 700 typehead).

. A parallel input driver (usually for high-speed paper
tape input).

6. A parallel output driver (usually for high-speed paper

tape output).
7. A parallel output driver (usually for a line printer).

A W N=

o

TEXT EDITOR DESCRIPTION

The Text Editor permits random access editing of ASCI|
character strings. It can be used as a line or character-
oriented editor. Individual characters may be located by
position or context. The Editor works on blocks of
characters which are typically read into memory from
magnetic tape or paper tape. Each edited block can be
output to magnetic tape or paper tape after editing is
completed. While the primary application for the Text

39

Editor is in editing assembly language source
statements, it may be applied to any ASCIl text delimited
by “‘carriage returns’’.

The Editor has a macro command processing option. Up
to two sets of commands may be stored and processed
at any time during the editing process. All 1/0 is done
via the DDT-80 channels. The Editor can be used with
the MOSTEK ASMB-80 Assembler and Loader to edit,
assemble, and load programs in memory without the
need for external media for intermediate storage.

The following commands are recognized by the Text
Editor:

An - Advance record pointer n seconds

Bn - Backup record pointer n seconds

Cn dS1dS2D - Change string S1 to string S2 for n
occurences

Dn - Delete n records

E - Exchange current record with records

to be inserted
| - Insert records

Ln - Go to line number n

Mn -Enter command buffers (pseudo-
macro)

N -Print top, bottom and current line
number

Pn - Punch n records from buffer

R - Read source records into buffer

Sn dS1d - Search for nth occurrence of signal S1

ASSEMBLER DESCRIPTION

The Assembler reads Z80 source mnemonics and
pseudo-ops and outputs an assembly listing and object
code. The assembly listing shows address, machine code,
statement number, and source statement. The object
code is in industry-standard hexadecimal format modi-
fied for relocatable, linkable assemblies.

The Assembler supports conditional assemblies, global
symbols, relocatable programs and a printed symbol
table. It can assemble any length program, limited only
by a symbol table size which is user selectable.
Expressions involving addition and subtraction are
allowed. A global symbol is catagorized as ““internal " if it
appears as a label in the program; otherwise it is an
“external” symbol. The printed symbol table shows
which symbols are internal and which are external. The
assembler allows the user to select relocatable or non-
relocatable assembly via the “PSECT” pseudo-op.
Relocation records are placed in the object output for
relocatable assemblies. (The MOSTEK object format is
defined below.) The Assembler can be run as a single-
pass assembler or as a learning tool. (In this mode,
global symbols and forward references are not allowed.)
The following pseudo-ops are recognized by the
Assembler:

EQU - equate label
DEFL - define label
DEFM - define message
DEFB - define byte
DEFW - define word
DEFS - define storage
END - end statement

40

NAME - program name definition

PSECT - global symbol definition Supports the
following assembler psuedo-ops

EJECT - eject a page of listing

TITLE - place heading at top of each page

LIST - turn listing on

NLIST - turn listing off

RELOCATING LINKING LOADER DESCRIPTION

The MOSTEK Relocating Linking Loader provides state-
of-the-art capability for loading programs into memory
by allowing loading and linking of any number of
relocatable and non-relocatable object modules. Non-
relocatable modules are always loaded at their starting
address as defined by the ORG pseudo-op during
assembly. Relocatable object modules can be
positioned anywhere in memory at an offset address.

The Loader automatically links and relocates global
symbols which are used to provide communication or
linkage betweeen program modules. As object
programs are loaded a table containing global symbol
references and definitions is built up. Atthe end of each
module, the loader resolves all references to global
symbols which are defined by the current or a previously
loaded module. It also prints on the console device the
number of defined global symbols that have been
referenced. The symbol table can be printed in order to
list all global symbols and their load address. The
number of object modules which can be loaded by the
Loader is limited only by the amount of MDX-RAM
available for the modules and the symbol table. Space
for the symbol table is allocated dynamically downward
in memory from either the top of memory or from a
specified address entered as an operand of the load
command.

All I/0 is done via the DDT-80 channels. Assemblies
can be done from source statements stored in memory
(by the Editor). The object output can be directed to a
memory buffer rather than to an external device. Thus,
assembly and loading can be done without external
storage media.

The Loader prints the beginning and ending address of
each module as it is loaded. The transfer address as
defined by the END pseudo-op is printed for the first
module loaded. The Loader execute command (E) can be
used to automatically start execution at the transfer
address.

The Loader Commands are the following:

L offset - load object module at address “offset” plus
program origin address

E - execute loaded program at transfer address
of first module

T - print global symbol table

MOSTEK OBJECT OUTPUT DEFINITION

Each record of an object module begins with a delimiter
(colon or dollar sign) and ends with carriage return and
line feed. A colon (:) is used for data records and end-of-
file record. A dollar sign ($) is used for records
containing relocation information and linking

information. All information is in ASCII. Each record is
identified by ““type’’. The type is determined by the 8th
and 9th bytes of the record which can take the following

values:
00 - data
01 - end-of-file

02 - internal symbol

03 - external symbol

04 - relocation information
05 - module definition

DELIMITER
RECORD TYPE
1 2 3 4 5 6 7 8 9 10
T T T T T T
of @
¢ IBINARY START ADDRESS o o DATA CHECK
OF DATA SUM
* |PATAgyTES @
L 3 1 ' i 1
) 1 L) T V L
. o o TRANSFER ADDRESS o , |ereck
. OF MODULE SUM @
L L L 1 L 1l
1 T T L] T L T]
INTERNAL CHECK
s SYMBOL NAME o 2 ADDRESS suM(?)
1 1 L 1 L L i L L 1
L] 1 ¥ T T 1 R L4 1 L
s EXTERNAL 3 LINK CHECK
SYMBOL NAME o ADDRESS@ suM (7)
: —+—+ t L—t— : T
#4 @
ADDRESSES WHICH CHECK
$ |BINARY o o o "] o 4 SUM
BYTES ... REQUIRE RELOCATION ... @
L 1 'l L 1 1
L) T v T T || T
@ CHECK
$ MODULE NAME 0 s |FLAGS SUM @
1 A 1 1 1 1 1 1

NOTES:
1. Check Sum is negative of the binary sum of all bytes except delimiter and carriage return/line feed.
2. Link Address points to last address in the data which uses the external symbol. This starts a backward link list through the data records for the ex-
ternal symbol. The list terminates at OFFFFH.
3. The flags are one binary byte. Bit O is defined as:
0 - absolute module
1 - relocatable module
4. Maximum of 64 ASCI! bytes.

ELECTRICAL SPECIFICATIONS MEMORY CAPACITY
MDX-CPU1 On-Board EPROM - 4K bytes (sockets only)
On-Board RAM-256 bytes
WORD SIZE
Off-board Expansion - Up to 65,536 bytes with user-
Instruction: 8, 16, 24, or 32 bits specified combinations of RAM,
Data: 8 bits ROM, PROM.
CYCLE TIME MEMORY SPEED REQUIRED
Clock period or T state = 0.4 microsecond @ 2.5MHz
0.25 microsecond @ 4.00 MHz MEMORY ACCESS TIME CYCLE TIME
Instructions require from 4 to 23 T states 2716+ 450ns 450ns

MEMORY ADDRESSING

On-Board EPROM: jumper selectable for any 2K
boundary within a 16K block of 1/0 ADDRESSING
Z80 memory map.
On-Board RAM: FFOO-FFFF On-Board Programmable Timer

*Single 5 volt type required

41

PORT MK3882
ADDRESS (HEX) CHANNEL
7C 0]

7D 1

7E 2

7F 3

1/0 CAPACITY

Up to 252 port address can be decoded off board. Four
port addresses are on board. 252 + 4V = 256 total I/0
ports.

INTERRUPTS

Multi-level with three vectoring modes (Mode 0,1,2).
Interrupt requests may originate from user-specified
1/0 or from the on-board MK3882 CTC.

PARALLEL BUS INTERFACE -
STD BUS COMPATIBLE

One 74LS load max
IoH = -3mA min at 2.4 volts
loL = 24mA min at 0.5 volts

Inputs
Bus Outputs

SYSTEM CLOCK

MIN MAX
MDX-CPU1 500 KHz 2.500MHz
MDX-CPU-4 500 KHz 4.000MHz

POWER SUPPLY REQUIREMENTS
5V = 5% at 1.1A maximum

OPERATING TEMPERATURE
0°C to 50°C

MDX-DRAM
WORD SIZE

8 bits
MEMORY SIZE

MDX-DRAM8 - 8,192 bytes
MDX-DRAM16 - 16,384 bytes
MDX-DRAM32 - 32,768 bytes
ACCESS TIME
SYSTEM MEMORY MEMORY
CLOCK ACCESS CYCLE
TIMES TIMES
MDX-DRAM 25MHz 350ns max. 465ns min.

MDX-DRAM-4 4 .0MHz
ADDRESS SELECTION

Selection of 8K, 16K, or 32K contiguous memory blocks
to reside at any 4K boundary.

SYSTEM CLOCK

200ns max. 325ns min.

MDX-DRAM MIN MAX
: 1.25MHz 2.5MHz
MDX-DRAM-4 1.25MHz 4.0MHz

42

PARALLEL BUS INTERFACE-STD BUS
COMPATIBLE
Inputs One 74LS load max

I0H =-15mA min. at 2.4 volts
I0L = 24mA min at 0.5 volts

Bus Outputs

POWER SUPPLY REQUIREMENTS
+5V £ 5% at 0.6A max.

+12V £ 5% at 0.25A max.

-12V £ 5% at 0.03A max.

OPERATING TEMPERATURE
0°C to 50°C

MDX-DEBUG

1/0 TRANSFER RATE

X 16 Baud Rate Clock Baud Rate (Hz)

1,760 110
4,800 300
9,600 600
19,200 1,200
38,400 2,400
76,800 4,800
153,600 9,600
307,200 19,200
SERIAL COMMUNICATIONS CHARACTERISTICS
Asynchronous

Full duplex operation

Start bit verification

Data word size variable from 5 to 8 bits
One or two stops bits

Odd, even, or no parity

One word buffering on both transmit
and on receive.

SERIAL COMMUNICATIONS INTERFACE

SIGNAL BUFFERED FOR:
20mA Current Loop
RS-232

Transmitted data Output Output
Received data Input Input
Data Terminal

Ready (DTR) Input
Request to Send (RTS) Input
Carrier Detect Output
(CDET)

Clear to Send (CTS) Output
Data Set Ready (DSR) Output

Reader Step relay (RS) Output
(20mA)

PARALLEL BUS INTERFACE-STD BUS
COMPATIBLE

Inputs One 74LS load max

Bus Outputs IgH = -3mA min. at 2.4 volts

loL = 24mA min. at 0.5 volts

1/0 ADDRESSING CONNECTORS

On-Board Serial 1/0 Port MATING
Control Port DDH FUNCTION CONFIGURATION | CONNECTOR
Data Port DCH
Module and Reader Step Control Port DEH Printed Circuit
STD BUS 56 pin dual Viking 3VH28/
SYSTEM CLOCK 1CE5
Wire Wrap
MDX-DEBUG 1.25MHz 2.5MHz 0.125 in. Viking 3VH28/
MDX-DEBUG-4 1.26MHz 4.0MHz centers 1CND5
Solder Lug
Viking 3VH28/
POWER SUPPLY REQUIREMENT 1CN5
MD-CC8 STD BUSSED 1/4 rack (MK77954) bussed
+12 Volts = 5% at 50 mA max. motherboard with eight connectors on 0.5 in. centers.
-12 Volts & 5% at 35 mA max.
+5 Volts = 5% at 1.2 mA max. STD BUS Organization

RS232 Cable MD-RS232 26 pin socket connector
ANSLEY #609-2061M 5
feet of 26 wire flatcable

OPERATING TEMPERATURE

0° to 50°C
ANSLEY #171-26
25-pin standard EIA
MECHANICAL SPECIFICATIONS ANSLEY #609-25S
CARD DIMENSIONS TTY Cable MD-TTY 26 pin socket connector
ANSLEY #609-2061M
4.5 in. (11.43cm) high by 6.50 in (16.51 cm) long 2 oot of 26 wire flatcable
0.48 in. (1.22cm) maximum profile thickness ITY Molex 15 Pi
0.062 in. (.016 cm) printed circuit board thickness connector Volex 15 Fin
P Molex #03-09-2151
STD BUS
COMPONENT SIDE CIRCUIT SIDE
PIN| MNEMONIC |SIGNAL DESCRIPTION PIN | MNEMONIC |SIGNAL DESCRIPTION
FLOW FLOW
LOGIC 1 +5V IN +5 Volts DC (Bussed) 2 +5V In +5VDC (Bussed)
POWER 3 GND IN Digital Ground (Bussed)| 4 GND In Digital Ground (Bussed)
BUS 5 -5V IN -5 Volts DC 6 -5V In -5 Volts DC
DATA 7 D3 In/Out Low Order Data Bus 8 D7 In/0ut High Order Data Bus
BUS 9 D2 In/0ut Low Order Data Bus 10 D6 In/Out High Order Data Bus
11 D1 In/0ut Low Order Data Bus 12 D5 In/0ut High Order Data Bus
13 DO In/0ut Low Order Data Bus 14 D4 In/Out High Order Data Bus
15 A7 Out Low Order Address Bus 16 Al5 Out High Order Address Bus
17 A6 Out Low Order Address Bus 18 Al4 Out High Order Address Bus
19 AS Out Low Order Address Bus 20 Al3 Out High Order Address Bus
ADDRESS |21 Ad Out Low Order Address Bus 22 Al2 Out High Order Address Bus
BUS 23 A3 Out Low Order Address Bus 24 All Out High Order Address Bus
25 A2 Out Low Order Address Bus 26 Al0 Out High Order Address Bus
27 Al Out Low Order Address Bus 28 A9 Out High Order Address Bus
29 AO Out Low Order Address Bus 30 A8 Out High Order Address Bus
31 WR_ Out Write to Memory or 1/0 |32 RD Out Read to Memory or 1/0
33 T0RQ Out 1/0 Address Select 34 MEMRQ Out Memory Address Select
35 10EXP Out 1/0 Expansion 36 MEMEX In/Out Memory Expansion
37 |REFRESH [Out Refresh Timing 38 | MC_SYNCU ** **
CONTROL |39 TATUS 1 |Out ** 40 TATUS O Out CPU Status
BUS 41 USAK Out Bus Acknowledge 42 USRQ In Bus Request
43 NTAK Out Interrupt Acknowledge 44 TRQ In Interrupt Request
45 WATTRQ In Wait Request 46 1RQ In Non-Maskable interrupt
47 SYSRESET |Out System Reset 48 PBRESE In Push Button Reset
49 CLOCK Out Clock from Processor 50 CNTRL In AUX Timing
51 PCO Out Priority Chain Out 52 PCI In Priority Chain In
POWER 53 AUXGND In AUX Ground (Bussed) 54 AUXGND In AUX Ground (Bussed)
BUS 55 AUX+V In +12 Volts DC) 56 | AUX-V In -12 Volts DC

**Refer to a STD-Z80 BUS Description

43

ORDERING INFORMATION

MDX-PROTO-4

Operations Manuals. 4.0 MHz version.

DESIGNATOR DESCRIPTION PART NO.
MDX-PROTO Prototyping package with Operations MK77951
Manuals. 2.5 MHz version, Note: 2.5 MHz version includes 8K
dynamic RAM board MDX-DRAMS8
only.
Prototyping package with MK77951-4

NOTE: 4.0 MHz version includes 16K
dynamic RAM board MDX-DRAM 16-4.

AID-80F data sheet

Disk-based development system for
system for MD series,

MK78568

AIM-80 data sheet

Z80 In-Circuit Emulation
module (2.5 MHz only).

MK78537

44

MOSTEK.

MD SERIES MICROCOMPUTER MODULES

Universal Memory Card (MDX-UMC)

FEATURES

0O Can be strapped to accept the following industry-
standard memory devices:

EPROM STATIC RAM
2758 (1K x 8) MK4118 (1K x 8)
2716 (2K x 8) MK4802 (2K x 8)
2732 (4K x 8)

ROM

MK34000 (2K x 8)

O Memories can be mixed to form a combination
memory board

0O Wait state generator for 4MHz operation
O STD-Z80 BUS compatible

0O +5 Volt only
DESCRIPTION

The MD Series and the STD-Z80 BUS were designed to
satisfy the need for low cost OEM microcomputer
modules. The STD-Z80 BUS uses a motherboard
interconnect system concept and is designed to handle
any MD Series card type in any slot. The modules for the
STD-Z80 BUS are a compact 4.5 x 6.5 inches which
provides for system partitioning by function (RAM,
EPROM, 1/0). This smaller module size makes system
packaging easier while increasing MOS-LSI densities
provide high functionality per module.

The MD Series of OEM microcomputer boards and the
STD-Z80 BUS offer the most cost effective system
configuration available to the OEM system designer.

MDX-UMC DESCRIPTION

The MDX-UMC is one of MOSTEK's complete line of
STD-Z80 BUS compatible microcomputer modules.

Designed as a universal memory card for the STD-Z80
BUS, the MDX-UMC provides the user with the
capability of configuring the board to meet the system
requirement of ROM/EPROM and/or RAM. By the use
of strapping options, the user is able to configure pairs
of sockets for ROM/EPROM/RAM to form a
combination memory board.

Other MDX-UMC features include 4K boundary
addressing and an optional wait-state generator to
accomodate slower memories for 4MHz operations.

MECHANICAL SPECIFICATIONS
CARD DIMENSION

4.5 in. (11.43cm) high by 6.50 in. (16.51cm) long
0.48 in. (1.22cm) maximum profile thickness
0.062 in. (0.16cm) printed circuit board thickness

CONNECTORS

JMATING

FUNCTION | CONFIGURATION| CONNECTOR

Printed Circuit
Viking 3VH28/
1CE5S

STD-Z80 56 pin dual read
BUS out

Wire Wrap
Viking 3VH28/
1CND5

0.125 in. centers

Solder Lug
Viking 3VH28/
1CN5

ELECTRICAL SPECIFICATIONS

WORD SIZE
8 bits

MEMORY ADDRESSING
4K boundaries

MEMORY CAPACITY

8 sockets
Sockets are strapped in pairs to accomodate the
following memories:

EPROM STATIC RAM ROM
2758 MK4118

2716 MK4802 MK34000
2732

PARALLEL BUS INTERFACE - STD-Z80 BUS
COMPATIBLE
Inputs:

BUS Outputs:

One 74LS load max.
lon = -15mA min at 2.4 Volts
lo. = 24mA min at 0.5 Volts

POWER SUPPLY REQUIREMENTS*
+5V + 5% at 0.450 A max
*Does not include power for memories

OPERATING TEMPERATURE
0°C to 50°C

45

MDX-UMC BLOCK DIAGRAM

_ MEMORY ARRAY
8 Ccs
MEMORY 8 > DEVICES %
DECODE — E PROM RAM ROM
8 OE 2758 Mlé4|l082 MK 34000 <:
2716 MK 48
CONTROL »|WRITE 2732
LOGIC
% MEMORY DEVICES CAN BE MIXED TO
FORM A COMBINATION MEMORY BOARD
4 10 0E 8
6
CONTROL BUS ADDRESS BUS DATA BUS
BUFFER BUFFER BUFFER
MEWRG. RD +5V GND
WR.GLOCK |4 WAITRQ 16 T T
‘ t
é STD-Z80 BUS
MDX-UMC BLOCK DIAGRAM
ORDERING INFORMATION
DESIGNATOR DESCRIPTION PART NO.
MDX-UMC Module with operation manual less mating connectors MK77759
MDX-PROTO MD Series prototyping package MK77951
AID-80F MD Series development system MK78125
AIM-80 Z80 In-Circuit Emulation module (2.5MHz only) MK78132

46

MOSTEK.

MD SERIES MICROCOMPUTER MODULES

EPROM Module (MDX-EPROM)

FEATURES

O Accepts the following industry standard EPROMS:
2758 (1K x 8)
2716 (2K x 8)
2732 (4K x 8)

O Eight EPROM sockets for maximum storage of:
8K x 8 using 2758's
16K x 8 using 2716's
32K x 8 using 2732's

O Wait state generator for 4MHz operation
0O STD-Z80 BUS compatible

O +5 Volt only

Description

The MD series and the STD-Z80 BUS were designed to
satisfy the need for low cost OEM microcomputer
modules. The STD-Z80 BUS uses a motherboard
interconnect system concept and is designed to handle
any MD Series card type in any slot. The modules for the
STD-Z80 BUS are a compact 4.5 x 6.5 inches which
provides for system partitioning by function (RAM,
EPROM, 1/0). This smaller module size makes system
packaging easier while increasing MOS-LSI densities
provide high functionality per module.

The MD Series of OEM microcomputer boards and the
STD-Z80 BUS offer the most cost effective system
configuration available to the OEM system designer.

MDX-EPROM DESCRIPTION

The MDX-EPROM is designed to be an EPROM memory
expansion board for the MOSTEK MD SERIES™ of Z80-
based microcomputers. The MDX-EPROM accepts the
following EPROMS; 2758 (1K x 8), 2716 (2K x 8) and
2732 (4K x 8) which gives a maximum storage capacity
of 8K, 16K, or 32K bytes respectively.

Starting address selection is provided for positioning
the MDX-EPROM on any 4K boundary. A wait-state
generator is also provided for optional 4MHz operation.

ELECTRICAL SPECIFICATIONS

WORD SIZE

8 bits
MEMORY CAPACITY
8K x 8 using eight 2758's
16K x 8 using eight 2716°s*
32K x 8 using eight 2732's
*EPROMS included
REQUIRED ACCESS TIME

MEMORY MIN ACCESS

TIME TIME CYCLE TIME
2758, 2716,

2732 450ns* 450ns

*One wait state must be added for 4

ADDRESS SELECTION
4K boundaries

BUS INTERFACE
STD-Z80 BUS compatible
Inputs:
Bus Outputs:

MHz operation.

One 74LS load max.
low = -15mA min at 2.4 Volts

los = 24mA min at 0.5 Volts

CONNECTORS
MATING
FUNCTION | CONFIGURATION|CONNECTOR
Printed Circuit
STD-Z80 56 Pin dual Viking 3VH28/
BUS 0.125 in centers 1CE5

Wire Wrap
Viking 3VH28/
1CND5

Solder Lug
Viking 3VH28/
1CN5

47

MECHANICAL SPECIFICATIONS POWER SUPPLY REQUIREMENTS*
+5 Volts + 5% at 0.45A

CARD DIMENSION *Does not include EPROMs. Add 100 mA for each
4.5 in. (11.43cm) high by 6.50 in. (16.51¢cm) long EPROM.
0.48 in. (1.22cm) maximum profile thickness OPERATING TEMPERATURE

0.062 in. (0.16cm) printed circuit board thickness 0°C to 50°C

ORDERING INFORMATION

DESIGNATOR DESCRIPTION PART NO.
MDX-EPROM Module with Operation Manual less mating MK77758
connectors (does not include EPROMS).
MDX-EPROM Operations Manual only MK79671
MDX-PROTO MD Series prototyping package MK77951
AID-80F Disk-based development system for MD series MK78125
AIM-80 Z80 In-Circuit-Emulation module (2.5 MHz only) MK78132

48

MDX-EPROM BLOCK DIAGRAM

5 >
MEMORY

MEMORY ARRAY

DECODE - 8K x8 8-2758
a I6KX8 8-2716
LOGIC

N\

4 10 0E 8
6
CONTROL BUS ADDRESS BUS DATA BUS
BUFFER BUFFER BUFFER
MEMRQ, RD WATTRG +5V GND
WR,CLOCK |4 16 T T 8
é STD-80 BUS

49

puedx3

Sauas
aw

50

MOSTEK.

MD SERIES MICROCOMPUTER MODULES

Static RAM Module (MDX-SRAM)

FEATURES

O Three memory sizes
4K x 8 (MDX-SRAM4)
8K x 8 (MDX-SRAMS)
16K x 8 (MDX-SRAM16)

O Selectable starting adddress on 4K boundaries
0O 2.5 MHz and 4.0 MHz compatible

0O STD-Z80 BUS compatible

0O +5 Volt only

DESCRIPTION

The MD Series™ and the STD-Z80 BUS were designed
to satisfy the need for low-cost OEM microcomputer
modules. The STD-Z80 uses a motherboard inter-
connect system concept and is designed to handle any
MD Series card type in any slot. The modules for the
STD-Z80 BUS are a compact 4.5 x 6.5 inches which
provides for system partitioning by function (RAM,
EPROM, 1/0). This smaller module size makes system
packaging easier while increasing MOS-LSI densities
provide high functionality per module.

The MD Series of OEM microcomputer boards and the
STD-Z80 BUS offer the most cost-effective system
configuration available to the OEM system designer.

MDX-SRAM DESCRIPTION

The MDX-SRAM is designed to be a static RAM Memory
expansion board for the MOSTEK MD SERIES of Z80
based microcomputers. It is available in three memory
capacities; 4K bytes (MDX-SRAM4), 8K bytes (MDX-
SRAMS), and 16K bytes (MDX-SRAM16). Additionally,
all MDX-SRAM boards are 2.5MHz and 4.0MHz
compatible. Thus, the designer can choose from three
options available and tailor the add-on static RAM
directly to the system requirements.

The MDX-SRAM is designed using the state of the art
MK4118 (1Kx8) static RAM and MK4802 (2Kx8) static

ADDRESS SELECTION

Selection of 4K, 8K, or 16K contiguous memory blocks
to begin on any 4K boundary.

BUS INTERFACE
STD-Z80 BUS compatible
Inputs: One 74LS load max

Bus Outputs: lon = -15mA min at 2.4 Volts
lo. = 24mA min at 0.5 Volts

POWER SUPPLY REQUIREMENTS

BOARDS l +5V *+ 5%
MDX-SRAM4 0.8 A max
MDX-SRAMS8 1.2 A max
MDX-SRAM16 1.2 A max

RAM memory devices. Because of the high speed of the
MK4118 and MK4802, no wait states are necessary for
operating the MDX-SRAM at 2.5MHz or 4.0MHz.
Address selection is provided on all MDX-SRAM cards
for positioning the 4K, 8K, or 16K of memory to starton
any 4K boundary.

ELECTRICAL SPECIFICATIONS

WORD SIZE
8 bits

MEMORY SIZE
MDX-SRAM4 -4,096 bytes

MDX-SRAM8 -8,192 bytes
MDX-SRAM16 - 16,384 bytes

TIMING
MEMORY MEMORY
ACCESS CYCLE
MDX-SRAM l 250ns max. | 250ns min.

51

OPERATING TEMPERATURE MECHANICAL SPECIFICATIONS
0°C to 50°C CARD DIMENSION
4.5 in. (11.43 cm) high by 6.50 in. (16.51 cm) long

0.48 in. (1.22 cm) maximum profile thickness
0.062 in. (0.16 cm) printed circuit board thickness

MDX-SRAM BLOCK DIAGRAM

MEMORY ARRAY

MEMORY I> s
aKx8

4-MK4118
DECODE
8 o 8Kx8 8-MK4li8 <:
CONTROL T I6KXx8 8- MK4802
LOGIC

=== !

CONTROL ADDRESS ot DATA
BUS BUS BUS

BUFFER BUFFER BUFFER

MEMRQ |4 16

RD ___ +s| &

WR WAITRQ

CLOCK

} STD-780 BUS

52

CONNECTORS

MATING
FUNCTION CONFIGURATION CONNECTOR

Printed Circuit

STD-Z80 56 pin dual Viking 3VH28/
BUS read out 1CE5
Wire Wrap

0.125 in centers Viking 3VH28/
1CND5

Solder Lug
Viking 3VH28/
1CN5

ORDERING INFORMATION

DESIGNATOR DESCRIPTION PART NO.

MDX-SRAM4 4K Bytes (4118’s) module MK77755
with operation manual
less mating connectors

MDX-SRAMS8 8K Bytes (4118’s) module MK77756
with operation manual
less mating connectors

MDX-SRAM16 16K Bytes (4802's) module MK77757
with operation manual
less mating connectors

MDX-PROTO MD Series prototyping MK79605
Data Sheet package

AID-80F Disk based development MK78568
Data Sheet system for MD Series

AIM-80 Z80 In-circuit emulation MK78537
Data Sheet module (2.5 MHz only)

53

54

MOSTEK

MD SERIES ACCESSORIES

MD-ACC

The following items are available as accessories to

support design, development, and production of

products designed around the MOSTEK MD Series Z80

microcomputer modules:

* WW1 wire wrap card with bussed power and ground

¢ WW2 wire wrap card without bussed power and
ground

o MD-CC8 8-slot card cage

o MD-CC14 14-slot card cage

* MD-CC28 28-slot card cage

* MD-EXT Extender card.

Description

The STD BUS concept is a joint design between Mostek
and Pro-Log to satisfy the need for cost-effective OEM
Microcomputer Systems. The definition of the STD BUS
and the MD Series of OEM microcomputer modules are
a result of years of microcomputer component and
module manufacturing experience. The STD BUS uses a

motherboard interconnect system concept and is
designed to handle any MD Series card in any card slot.
Modules for the STD BUS range from CPU, RAM and
EPROM Modules to Input, Output, A/D, and TRIAC
control modules. A ROM-based DEBUG module
provides users of the STD BUS with Edit, Assembly, and
Debug capability using only an ASCIl terminal.

Printed circuit modules for the STD BUS are a compact
4.5 x 6.5 inches providing for system partitioning by
function (RAM, PROM, |/0). This smaller module size
makes system packaging easier while increasing MOS-
LS| densities provide high functionality per module.

MECHANICAL SPECIFICATIONS

CARD DIMENSIONS
4.5 in (11.43cm) high by 6.50 in. (16.51cm) long
0.48 in. (1.22cm) maximum profile thickness
0.062 in. (0.16cm) printed circuit board thickness

CONNECTORS

FUNCTION CONFIGURATION MATING
CONNECTOR
Printed Circuit

STD-Z80 BUS 56 pin dual read out Viking 3VH28/ICE5S

0.125 in. centers

Wire Wrap
Viking 3VH28/1CND5

Solder Lug
Viking 3VH28/1CN5

ORDER INFORMATION

DESIGNATOR DESCRIPTION PART NO.

MD-WWwWi1 MD Series wire wrap card with MK77959
bussed power and ground

MD-WW2 MD Series wire wrap card with- MK77952
out bussed power and ground

MD-EXT MD Series extender card MK77953

MD-CC8 MD Series 8-slot card cage MK77954
with STD BUS motherboard

MD-CC14 MD Series 14-slot card cage MK77960
with STD BUS motherboard.

MD-CC28 MD Series 28-slot card cage MK77961
with STD BUS motherboard

55

WW1 PHOTO MK77959

s
.
.
.

.
. -
G e
.

e

. - -
e S
e e e
. ..
-

o e

.
.
.
.

S
o
G2
2
&
o
S

CAODIBOGORO
DO~ BRE0G- 05

2 0806058006806060
08850000008

TAM-L0%

A

3
i

Ol

2092

o
20060
DLOCOIBOOO

L

£

5
S
a
©
S
o
S
o
o
b3
&
¥
S
o
S
4
S

.
e

.

G R

MD-CC 8 Drawing with Dimensions

57

|

MD-CC 14 Drawing with Dimensio!
MD-CC 28 Drawing with Dimensions

MD-CC8 8-Slot Card Cage

MD

puedx3

sauag
aw

Slot Card Cage

CC14 14

-It Card agg ’

-CC28 28

MD

58

MOSTEK.

MD SERIES MICROCOMPUTER MODULES

Analog to Digital Conversion Module (MIDX-A/D)

FEATURES

O 8-Bit A/D converter with 16 single-ended analog
inputs

O 3 fuli-scale input ranges
e O0to +1 Volts
e 0 to +2 Volts
e O to +5 Volts

O Total unadjusted error < * V2 LSB
O Linearity error < * %> LSB

0O No missing codes

O Guaranteed monotonicity

O No zero adjust required

O No full scale adjust required

O Provisions for additional channel expansion
] Optionél sample and hold

O Address programmable

0O 4MHz option

O Compatible with STD-Z80 BUS

DESCRIPTION

The MD Series and the STD-Z80 BUS were designed to
satisfy the need for low-cost OEM microcomputer
modules. The STD-Z80 BUS uses a motherboard
interconnect system concept and is designed to handle
any MD Series card type in any slot. The modules for the
STD-Z80 BUS are a compact 4.5 x 6.5 inches which
provides for system partitioning by function (RAM,
EPROM, 1/0). This smaller module size makes system
packaging easier while increasing MOS-LSI densities
providing high functionality per module.

The MD Series of OEM microcomputer boards and the
STD-Z80 BUS offer the most cost effective system
configuration available to the OEM system designer.

MDX-A/D DESCRIPTION

The Analog to Digital Converter Module, MDX-A/D, is
designed to be a 16 channel single-ended A/D module

for the STD-Z80 BUS. The module is designed around
the MOSTEK MK5160 8-bit A/D converter/16 channel
analog muitiplexer. Additional provisions have been
included to allow further analog expansion if desired.
Also, an optional Sample and Hold module (AD582) may
be added to increase system performance. Figure 1 is a
block diagram of the MDX-A/D showing the major
elements of the module.

The first element of this board is the multiplexer. This
16-channel multiplexer can directly access any one of
16 single-ended analog channels and provides logic for
additional channel expansion. All analog input lines
contain a diode/resistor protection circuit to reduce
damage potential from overvoltage and transient
inputs.

The output of the multiplexer can either drive the A/D
converter directly or a Sample and Hold (S/H) module
version is available. The board is shipped normally
without a Sample and Hold.

If an S/H function is required, an Analog Devices
AD582 needs to be inserted and one jumper removed.
This circuitry allow sampling of signals up to 5KHz with
a nominal 150nsec aperture time.

The other haif of the MK5160 is the A/D converter. The
8-bit A/D consists of 256 series resistors with an
analog switch tree, a chopper stabilized comparator and
a sucessive approximation register. The series resistor
approach guarantees monotonicity and no missing

-codes. The need for external zero and full-scale

adjustments has been eliminated and an absolute
accuracy of < 1 LSB including quantizing error is
provided. A start convert signal initiates the conversion
process and can be jumper selected from either an
external source or under program control. Upon
completion, a DONE signal is generated to indicate end
of conversion. This signal is used to flag the program as
well as any external device.

The Data Bus Buffer and Interface Logic allows the
MDX-A/D module to interface with the STD-Z80 BUS. It
provides buffering for all signals as well as address
decoding and A/D port control. A total of 4 port address
locations are required and can start on any four-word
boundary.

ELECTRICAL SPECIFICATIONS

WORD SIZE
Data: 8 bits
1/0 Addressing: 8 bits

1/0 ADDRESSING

On board programmable on 4-word boundaries
XX X XX XO0O0 A/D Port Configuration Data
XXX XXXO01A/D Port Configuration Control
XXX XXX 10 A/D Data Input/Output Port
XXX XXX 11 Data Control Port

1/0 CAPACITY

Eight bit analog to digital converter with up to sixteen
single ended analog input channels. Channel expansion
available. Start conversion and done handshake signals
available at the edge connector.

Three full scale input ranges: O to +1 Volt, O to +2 Volts
and O to +5 Volts.

INTERRUPTS

Vectored interrupts generated. Interrupt vector
programmable upon initialization. Daisy-chained
interrupt priority. Interrupts are controlled by a
MOSTEK MK3881 Parallel I/0 controller chip.

SYSTEM CLOCK

MIN MAX
MDX-A/D 250 KHz 2.5 MHz
MDX-A/D-4 250 KHz 4.0 MHz

ELECTRICAL SPECIFICATIONS

POWER SUPPLY REQUIREMENTS
+12 Volts 5% at 30 mA max

-12 Volts 5% at 15 mA max

+5 Volts +5% at 0.6 A max

SAMPLE/HOLD OPTION DATA
DROOP RATE: 100mV at 25°C
APERTURE TIME: 150nsec
MAX INPUT FREQUENCY: 5KHz
APERTURE JITTER: 15 nsec

CONVERSION TIME
138 microseconds max

OPERATING TEMPERATURE RANGE
0° to +50°C

MECHANICAL SPECIFICATIONS

CARD DIMENSIONS

4.5 in. (11.43cm) high by 6.50 in. (16.51cm) long
0.48 in. (1.22cm) maximum profile thickness
0.062 in. (0.16cm) printed circuit board thickness

MDX-A/D BLOCK DIAGRAM

Figure 1
DONE
MK 5160 CONVERT
- c > ADDITIONAL
ANALOG
MUX CHANNEL
SAMPLE |V EXPANSION
DATA BUS :::>> AND 1 ir o
STD BUFFER HOLD N
z80 > anp !
BUS INTERFACE !
LOGIC CONTROL ::> :
A/D ! 16 ANALOG
| S.E. INPUTS
DATA ! '
|
|
1
1

60

CONNECTORS
MATING
FUNCTIONS | CONFIGURATION|CONNECTOR
STD-Z80 BUS| 56 pin dual Printed Circuit
0.125 centers Viking
3VH28/1CE5
Wire Wrap
Viking
3VH28/1CND5
Solder Lug
Viking
3VH28/1CN5
Analog 170 40 pin dual Ansley 609-4000
0.100 centers

ORDERING INFORMATION

DESIGNATOR DESCRIPTION PART NO.

MDX-A/D Module with Operation Manual less mating connector: MK77653
2.5 MHz version

MDX-A/D-4 Module with Operation Manual less mating connector: MK77653-4
4.0 MHz version

MDX-A/D Operations Manual only MK79632

61

STANDARD LICENSE AGREEMENT AND REGISTRATION FORM

All Mostek Corporation software products are sold
on condition that the Purchaser agrees to
the following terms:

1. The Purchaser agrees not to sell, provide, give away, or otherwise make available to any unauthorized persons,
all or any part of, the Mostek software products listed below, including, but not restricted to: object code, source
code and program listings.

2. The Purchaser may at any time demonstrate the normal operation of the Mostek software product to any person.

3. All software designed, developed and generated independently of, and not based on, Mostek’s software by
purchaser shall become the sole property of purchaser and shall be excluded from the provisions of this
Agreement. Mostek’s software which is modified to such an extent that Mostek agrees that it is not recognizable
as Mostek’s software shall become the sole property of purchaser.

4. Mostek’s sole obligation shall be to make available all published modifications of updates made by Mostek to
licensed software products which are published within one (1) year from date of purchase, provided Purchaser
has completed and returned the Software License Agreement and Registration Form.

5. In no event will Mostek be held liable for any loss, expense or damage, of any kind whatsoever, direct or indirect,
regardiess of whether such arises out of the law of torts or contracts, or Mostek’s negligence including
incidental damages, consequential damages and lost profits, arising out of or connected in any manner with any
of Mostek's software products described below.

6. MOSTEK MAKES NO WARRANTIES OF ANY KIND, WHETHER STATUTORY, WRITTEN, ORAL, EXPRESSED OR
IMPLIED (INCLUDING WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE AND MERCHANTABILITY
AND WARRANTIES ARISING FROM COURSE OF DEALING OR USAGE OF TRADE) WITH RESPECT TO THE
SOFTWARE DESCRIBED BELOW.

To be eligible for software product updates this form must be completed and returned to:

Mostek Corporation
Microcomputer Department
Software Librarian
MS503
P.O. Box 169
1215 W. Crosby Road
Carrollton, TX 75006

The following software products are subject to this agreement:

Part Number Description

Ship to:

Customer

P.O. Number: Purchase Date:
System Serial Number:

PURCHASER MOSTEK CORPORATION

By: By:

Title: Title:

Company: Date:

Date:

62

MOSTEK

STD-Z80 BUS DESCRIPTION AND ELECTRICAL SPECIFICATIONS

Application Note

DESCRIPTION

The purpose of this application note is to provide the
O.E.M. system designer with more information about
the STD-Z80 BUS. The information presented is a
bus description of the STD-Z80 BUS, the pin out,
and the recommended BUS loading specifications.

In April of 1978, several meetings were held between
MOSTEK CORP. and PROLOG CORP. to discuss the
possibility of defining a new O.E.M. microcomputer
board BUS. The goals for the new BUS were that it be
simple to interface to, be well defined, and be able to use
a standard 56 pin edge card connector. The results of
these meetings were successful, and the STD BUS was
defined.

The STD BUS was defined as a general purpose micro-
processor bus which is capable of supporting the
following processors: Z80, 8080, 8085, 6800, and
6809. It is possible to design simple function cards
which will work with each of the processors, however it
may be difficult or impossible to design an add on card
which used one of the many peripheral chips and then
have the card work with all of the STD BUS processors.
It was for this reason that MOSTEK defined the
STD-Z80 BUS. The STD-Z80 is a subset of the general
purpose STD BUS and is defined exclusively for the Z80.
By specifying the STD-Z80 bus, exact functional pin
descriptions and bus timing can be given. Therefore, a
STD-Z80 system will be guaranteed to work with all
STD-Z80 designed boards.

The STD-Z80 backplane pin assignments are listed and

described in Table 1. A table showing the BUS pins
versus BUS signals is shown in Table 2.

STD-Z80 BUS DESCRIPTION

Table 1
BUS
PIN MNEMONIC DESCRIPTION
1 +5V +5Vdc system power
2 +5V +5Vdc system power
3 GND Ground-System signal
ground and DC return
4 GND Ground-System signal
ground and DC return
5 -5V -5Vdc system power
6 -5V -5Vdc system power

[{e]e o IEN]

10

12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31

32

33

/WR

/RD

/I0RQ

Data Bus (Tri—state,
input/output, active high).
DO-D7 constitute an 8-bit
bi-directional data bus. The
data bus is used for data
exchange with memory and
1/0 devices.

Address Bus (Tri-state,
output, active high). AO-A15
make up a 16-bit address
bus. The address bus pro-
vides the address for memory
(up to 65K bytes) data ex-
changes and for 1/0 device
data exchanges. 1/0 ad-
dressing uses the lower 8
address bits to allow the user
to directly select up to 256
input or 256 output ports. AO
is the least significant ad-
dress bit. During refresh
time, the lower 7 bits
contain a valid refresh
refresh address for dynamic
memories.

Write (Tri-state,output,
active low) /WR indicates
that the CPU data bus holds
valid data to be stored in the
addressed memory or 1/0
device.

Read (Tri-state, output,
active low). RD indicates that
the CPU wants to read data
from memory or an |/0
device. The addressed 1/0
device or memory should use
this signal to gate data onto
the CPU data bus.

Input/Output Request (Tri-
state, output, active low). The
/I0RQ signal indicates that
the lower half of the address
bus holds a valid I/0 address
for an 1/0 read or write
operation. An /IORQ signal is
also generated with a /M1
signal when an interrupt is
being acknowledged to
indicate that an interrupt

34

36

37

38

64

/MEMRQ

/I0EXP

/MEMEX

/REFRESH

/MCSYNC

response vector can be
placed on the data bus.
Interrupt Acknowledge
operations occur during /M1
time, while I/O operations
never occur during /M1
time.

Memory Request (Tri-state,
output, active low). The
/MEMRQ signal indicates
that the address bus holds a
valid address for a memory
read or memory write
operation.

1/0 Expansion, not used on
MDX cards. (Normally strap-
ped to ground on the
MOSTEK motherboard)

Memory Expansion, not used
on Mostek MDX cards.(Norm-
ally strapped to ground on
the MOSTEK motherboard)

REFRESH (Tri-state, output,
active low). /REFRESH in-
dicates that the lower 7 bits
of the address bus contain a
refresh address for dynamic
memories and the /MEMRQ
signal should be used to
perform a refresh cycle for all
dynamic RAMs in the
system. During the refresh
cycle A7 is a logic O and the
upper 8 bits of the address
bus contains the | register.

Not generated on the
MOSTEK MDX-CPU1. Can
be generated by gating the
following signals:/RD+ /WR
+ /INTAK. By connecting a
jumper on the MDX-CPU1,
this line becomes /DEBUG
(Input). /DEBUG is used in
conjunction with the DDT-80
operating system on the
MDX-DEBUG card, and the
MDX-SST card for imple-
menting a hardware single
step function. When pulled
low, the /DEBUG line will set
an address modification
latch which will force the
upper three address lines
A15, A14, and A13 to a logic
1. These address lines will
remain at a logic 1 until reset
by performing any |/0 opera-
tion.

39

40

41

42

43

44

/STATUS 1

/STATUS O

/BUSAK

/BUSRQ

/INTAK

/INTRQ

Machine Cycle One (Tri-
state, output, active low).
/M1 indicates that the
current machine cycle is in
the op code fetch cycle of an
instruction. Note that during
the execution of two-byte op-
codes /M1 will be generated
as each op-code is fetched.
These two-byte op-codes
always begin with a CBh,
DDh, EDh, or FDh. /M1 also
occurs with IORQ to indicate
an interrupt acknowledge
cycle.

Not used on Mostek MDX
cards.

Bus Acknowledge (Output,
active low). Bus acknowledge
is used to indicate to the
requesting device that the
CPU address bus, data bus,
and control bus signals have
been set to their high im-
pedance state and the ex-
ternal device can now
control the bus.

Bus Request (Input, active
low). The /BUSRQ signal is
used to request the CPU
address bus, data bus, and
control signal bus to go to a
high impedance state so that
other devices can control
those buses. When /BUSRQ
is activated, the CPU will
set these buses to a high
impedance state as soon as
the current CPU machine
cycle is terminated and the
/BUSAK signal is activated.

Interrupt Acknowledge (Tri-
state, output, active low). The
/INTAK signal indicates that
an interrupt acknowledge
cycle is in progress, and the
interrupting device should
place its response vector on
the data bus. The /INTAK
signal is equivalent to an
I0RQ during an /M1.

Interrupt Request (Input,
active low). The Interrupt

Request signal is generated
by 1/0 devices. Arequest will
be honored at the end of the
current instruction if the
internal software controlled

~ interrupt enable flip flop (IFF)

45

46

47

/WAITRQ

/NMIRQ

/SYSRESET

is enabled and if the BUSRQ
signal is not active. When the
CPU accepts the interrupt,
an interrupt acknowledge
signal /INTAK (IORQ during
an M1) is sent out at the
beginning of the next
instruction.

Wait Request (Input, active
low). Wait Request indicates
to the CPU that the
addressed memory or 1/0
device is not ready for a data
transfer. The CPU continues
to enter wait states for as
long as this signal is active.
This signal allows memory or
1/0 devices of any speed to
be synchronized to the CPU.
Use of this signal postpones
refresh as long as it
held active.

Non-Maskable Interrupt
Request (Input, negative
edge triggered). The Non-
Maskable Interrupt Request
line has a higher priority than
the /INTRQ line and is always
recognized at the end of the
current instruction, in-
dependent of the status
of the ‘interrupt enable
flip-flop. /NMIRQ auto-
matically forces the CPU to
restart to location OO66h.
The program counter is auto-
matically saved in the
external stack so that the
user can return to the pro-
gram that was interrupted.
Note that continuous WAIT
cycles can prevent the cur-
rent instruction from ending
and that a /BUSRQ will over-
ride a /NMIRQ.

System Reset (Output,
active low). The System
Reset line indicates that
a reset has been generated
either from an external reset
or the power on reset
circuit. The system reset will
occur only once per reset and
will be approximately 2
microseconds in duration.
A system reset will also force
the CPU program counter to
zero, disable interrupts, set
the | register to OOh, set the
R register to O0h, and set
Interrupt Mode O.

48

49

50

*51

*52

53
54

55
56

/PBRESET Push Button Reset (Input,
active low). The Push Button
Reset will generate a de-
bounced system reset.

/CLOCK Processor Clock (Output,
active low).
Single phase system clock.

/CNTRL Not used on MOSTEK MDX
cards.

PCO Priority Chain Output (Out-
put, active high). The signal is
used to form a priority-
interrupt daisy chain when
more than one interrupt-
driven device is being used.
A high level on this pin in-
dicates that no other devices
of higher priority are being
serviced by a CPU interrupt
service routine.

PCI Priority Chain In (Input,
active high). This signal is
used to form a priority-
interrupt daisy chain when
more than one interrupt-
driven device isbeing used. A
high level on this pin in-
dicates that no other devices
of higher priority are being
serviced by a CPU interrupt
service routine.

AUX GND Auxiliary Ground (Bussed)
AUX GND Auxiliary Ground (Bussed)

+12V +12Vdc system power

-12V -12Vdc system power

NOTES:

1.

2.

*Th

Input/Output references of each signal are made with respect to
MDX-CPU1 module.

The following signals have pull-up resistors: /WR, /RD, /IORQ, /MEMRQ,
/REFRESH, /DEBUG, /M1, /BUSRQ, /INTAK, /INTRQ, /WAITRQ,
/NMIRQ, /SYSRESET, /PBRESET, and /CLOCK. The value of the pull-up
resistors are 1K except for /WAITRQ which is 500 ohms and /PBRESET
which is 10K ohms. These resistors are located on the MDX-CPU1 module.
e Mostek card cage is prioritized from left to right as viewed from

the top with component side of boards to the left.

STD—Z80
ELECTRICAL BUS SPECIFICATIONS

BUS RECEIVERS
Logical Low: 0.8V maximum at -0.36mA
Logical High: 2.0V minimum at 20uA

BUS DRIVERS

Logical Low: 0.5V maximum at 24mA
Logical High: 2.4V minimum at -15mA
Off State Output Current (tri-state): ==100uA

65

RECOMMENDED BUS DRIVERS
AND RECEIVERS

Bus Drivers: 74LS240, 74LS241, 74LS373,

74LS374, and 74LS244.
Bus Receivers: 74LS240, 74LS241, and
74LS244.
Bus Transceivers: 74LS245, 741L.S242,
and 74LS243.

66

STD-Z80 BUS PIN-OUT

Table 2

Pin

15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51

53
55

Component
Side
Mnemonic

+5V
GND

-5V

D3

D2

D1

DO

A7

A6

A5

A4

A3

A2

Al

AO

/WR
/I0RQ
/10EXP
/REFRESH
/STATUS 1
/BUSAK
/INTAK
/WAITRQ
/SYSRESET
/CLOCK
PCO

AUX GND
+12V

Pin

38
40
42
44
46
48
50
52
54

Circuit
Side
Mnemonic
+5V

GND

-5V

D7

D6

D5

D4

A15

Al14

A13

A12

A1l1

A10

A9

A8

/RD
/MEMRQ
/MEMEX
/MCSYNC
/STATUS O
/BUSRQ
/INTRQ
/NMIRQ
/PBRESET
/CNTRL
PCl

AUX GND
-12V

1979 MICROCOMPUTER DATA BOOK

‘u,é g st T 1
liero Desiagn Series

Expandable

Micro Design Series
Single Board

3870 Micro
Device Family

L,

O

i Modules

H

Micro Developmen
Systems (Europe)

Micro Development
Aids o

67

S

obus

68

MOSITEK. |

PRELIMINARY

MD SERIES MICROCOMPUTER MODULES |

280 Single Board Computer (MD-SBC1)

FEATURES

0O Z80 Microprocessor

O 2K byte RAM capacity with 1K included
0 Sockets for 8K bytes 2716 EPROM

O Crystal Clock - 2.5 MHz

O Three TTL buffered 8-bit OUTPUT ports
O Two TTL buffered 8-bit INPUT ports

O Two Interrupt Inputs

O Single +5 volt power supply

DESCRIPTION

The MD-SBC1 is a complete Z80 based microcom-
puter on 4 % in. by 6 % in. circuit module. All I/0 is
fully TTL buffered and is brought to a 56 pin edge
connector.

The smaller card size and the single power supply
makes the MD-SBC1 easier to package and easier to
use than most other modules. While the module size
is small no compromises have been made in comput-
ing power due to increasing MOS-LSI densities and
the use of the Z80 microcomputer. The 40 buffered
TTL 1/0 lines and the 8K bytes of EPROM provide
the capability to solve many control problems en-
countered by the OEM microcomputer user. The ex-
pandable MD Series (MDX) has the same form factor
allowing easy expansion to a multi-board system with
increased capability.

Figure 1 is a block diagram of the MD-SBC1. The
basic module comes with 1K bytes of RAM expand-
able to 2K bytes by the addition of two 2114 type
RAMs. Four 2716 sockets are provided for up to 8K
bytes of EPROM, and are decoded in 2K blocks start-
ing at address zero. The output ports are 74L.S244
latches which are brought to the card cage connector.
The input ports are 741.5240 Octal Buffers with 4.7K
OHM pull-up resistors on the inputs. These input lines
are also brought to the edge connector. The Z80-CPU
is driven by a crystal clock at 2.5MHz (400nsec
T-State).

Both the NMI and INT interrupt inputs to the Z80-
CPU are terminated with 4.7K Ohm pull ups and
brought to the card edge connector. An external
clock can be used by changing strapping options on

the board. Power on reset circuitry is included on the
CPU’s RESET input. Provision is made to expand the
1/0 capability through the use of on-board con-
nectors.

MD-SBC1 BLOCK DIAGRAM
Figure 1

uaskasLE . oAt _aus . B
INTERRUPT 9 o
NON-WASKABLE PROCESSOR outeut .
INTERRUPT 280 o
«
Reser s froncl s, { H

EXTERNAL
cLock f .

ouTPUT
PORT 00
DATA

ouTPUT
PORT 01
DATA

ON-BOARD
cLock

GENERATOR

2.5 MHz

ADDRESS
8US

P
EP
weur L
o -

" 00 1___,_q Led | gan

INPUT i
PORTS

DECODED STROBES
T 1/0 PORTS 02:07

pRA oaTa sus

SHADING INDICATES SOCKETS ONLY

ELECTRICAL SPECIFICATIONS
WORD SIZE

INSTRUCTION 8,16, 24 or 32 bits
DATA 8 bits

CYCLE TIME

T-STATE = 400nSec, fastest instruction is 1.6 micro-
second.

MEMORY ADDRESSING

EPROM HEX
NUMBER ADDRESS
0 0000-07FF
1 0800-OFFF
2 1000-17FF
3 1800-1FFF
RAM HEX
NUMBER ADDRESS
STANDARD 2000-23FF
OPTIONAL 2400-27FF

69

MD-SBC 1 BOARD PHOTO

o

i
o
Ll

a8
g W
- O

e
MW e

——ry
: I-‘uw\\t!l!i#lu

: mm‘w!!il!fﬁ.

70

MEMORY CAPACITY SYSTEM CLOCK

8 K bytes of 2716 memory (none included) i | _MIN | MAX
2 K bytes of 2114 memory (1K bytes included) vID-SBC1 [250KHz | 2.5MHz
MEMORY SPEED REQUIRED POWER SUPPLY REQUIREMENTS
Memory Access Time Cycle Time +5 volts + 5% at 1.2A max (fully loaded)

Required l Required (100mA per RAM, 100mA per EPROM)
2716* l 450nSec 450nSec
2114 450nSec 450nSec OPERATING TEMPERATURE RANGE
* Single 5 volt type required 0°C to +50°C
1/0 ADDRESSING AND CAPACITY MECHANICAL SPECIFICATIONS

HEX DATA CARD DIMENSIONS
PORT TYPE ADDRESS I CAPACITY
Input 00 and 01 16 lines 4.5 in. (11.43cm) high by 6.50 in. (16.51cm) long
Output 00, 01, 02 24 lines 048 in. (1.22cm) maximum profile thickness

0.062 in. (0.16cm) printed circuit board thickness

INTERRUPTS

CONNECTORS
Two active low; NMI and INT. See Z80-CPU

(MK3880) Technical Manual for a full description of =~ FUNCTION CONFIGURATION | MATING

Z80 interrupts. CONNECTOR
Printed Circuit

1/O INTERFACES Paralled 1/0 56 pin (28 position) | VIKING 3VH-
28/1CE5

Inputs - One 74LS load plus a 4.7K Ohm pull up re- 0.125 in centers Wire Wrap

sistor VIKING 3VH-

Outputs - IQH =-15mA at VOH = 2.4 volts 28/1CND5

loL =24mA at VoL = 0.5 volts Solder Lug

VIKING 3VH-
28/1CN5

ORDERING INFORMATION

DESIGNATOR DESCRIPTION PART NO.
MD-SBC1 Complete Z80 Single Board MK77851
Computer with Operations
Manual less EPROMs and mating
connector.
MD-SBC1 Operations MK79609
Manual only.
MDX-PROTO MD Series prototyping MK78605
Data Sheet package
AID-80F Disk based development MK78568
Data Sheet system for MD Series
AIM-80 Z80 In-Circuit Emulation MK78537
Data Sheet Module for AID-80F

71

albuig

sauag
aw

72

1979 MICROCOMPUTER DATA BOOK

eneral
g; dosrrmation

| Micro Design Series
Expandable

{ 3870 Micro
Device Family

| F8 Micro
| Device Family

gg SD Series
OEM Mod

i Micro Development
§ Systems (U.8))

Micro @@Wk}g}ﬁ@ﬁg
Systems (Europe)

| Micro Devel
| pids__

Aey

[0:74

74

MOSTEK.

Z80 MICROCOMPUTER DEVICES

Technical Manual

MK 3880
CENTRAL
PROCESSING
UNIT

Ajwe 4

08z

76

TABLE OF CONTENTS

Chapter Page
1.0 Introduction ittt i e e e i 5
2.0 Z80-CPU Architecturecvvinii it ii e iininennens 7
3.0 ZBO-CPUPIn Descriptionciitiininnnninnnnnnnneeeenennennnes 11
40 CPUTIMING . .ottt ittt ittt it ittt ittt ata s 15
5.0 ZBO-CPU Instruction Setttt ininianeenenenannenns 23
B.0 Flags . ..o ittt e e e 43
7.0 Summary of OP Codes and Execution Timesccviuiinnnnnnnn 47
8.0 INterrupt ReSPONSettt it it e it e e et e s 59
9.0 Hardware Implementation Examplesc.oouiiiitiniiinnnenns 65
10.0 Software Implementation Examples i, 71
11.0 Electrical Specificationsc.iiiiitiiiiiintretnnneinennnns 77
12.0 Z80 Instruction Breakdown by MachineCycleciitivnnnn. 83
13.0 Package Description and Ordering Information 90

77

Anwey

082

78

1.0 INTRODUCTION

The term “‘microcomputer’” has been used to describe virtually every type of small
computing device designed within the last few years. This term has been applied to
everything from simple ““microprogrammed’’ controllers constructed out of TTL MSI up
to low end minicomputers with a portion of the CPU constructed out of TTL LS| “bit
slices.”” However, the major impact of the LSI technology within the last few years has been
with MOS LSI. With this technology, it is possible to fabricate complete and very powerful
computer systems with only a few MOS LS! components.

The Mostek Z80 family of components is a significant advancement in the state-of-art of
microcomputers. These components can be configured with any type of standard semi-
conductor memory to generate computer systems with an extremely wide range of
capabilities. For example, as few as two LS| circuits and three standard TTL MSI packages
can be combined to form a simple controller. With additional memory and 1/O devices a
computer can be constructed with capabilities that only a minicomputer could previously
deliver. This wide range of computational power allows standard modules to be constructed
by a user that can satisfy the requirements of an extremely wide range of applications.

The major reason for MOS LS| domination of the microcomputer market is the low cost of
these few LS| components. For example, MOS LS| microcomputers have already replaced
TTL logic in such applications as terminal controllers, peripheral device controllers, traffic
signal controllers, point of sale terminals, intelligent terminals and test systems. In fact the
MOS LSI microcomputer is finding its way into almost every product that now uses
electronics and it is even replacing many mechanical systems such as weight scales and
automobile controls.

The MOS LSI microcomputer market is already well established and new products using
them are being developed at an extraordinary rate. The Mostek Z80 component set has been
designed to fit into this market through the following factors:
1. The Z80 is fully software compatible with the popular 8080A CPU offered from
several sources. Existing designs can be easily converted to include the Z80 as a
superior alternative.

2. The Z80 component set is superior in both software and hardware capabilities to
any other 8-bit microcomputer system on the market. These capabilities provide the
user with significantly lower hardware and software development costs while also
allowing him to offer additional features in his system.

3. A complete development and OEM system product line including full software
support is available to enable the user to easily develop new products.

Microcomputer systems are extremely simple to construct using Z80 components. Any such
system consists of three parts:

1. CPU (Central Processing Unit)
2. Memory

3. Interface circuits to peripheral devices

79

80

The CPU is the heart of the system. Its function is to obtain instructions from the memory
and perform the desired operations. The memory is used to contain instructions and in most
cases data that is to be processed. For example, a typical instruction sequence may be to
read data from a specific peripheral device, store it in a location in memory, check the
parity and write it out to another peripheral device. Note that the Mostek component set
includes the CPU and various general purpose I/0O device controllers, as well as a wide range
of memory devices. Thus, all required components can be connected together in a very
simple manner with virtually no other external logic. The user’s effort then becomes
primarily one of software development. That is, the user can concentrate on describing his
problem and translating it into a series of instructions that can be loaded into the micro-
computer memory. Mostek is dedicated to making this step of software generation as simple
as possible. A good example of this is our assembly language in which a simple mnemonic
is used to represent every instruction that the CPU can perform. This language is self docu-
rnenting in such a way that from the mnemonic the user can understand exactly what the
instruction is doing without constantly checking back to a complex cross listing.

2.0 Z80-CPU ARCHITECHURE

A block diagram of the internal architecture of the Z80-CPU is shown in Figure 2.0-1
The diagram shows all of the major elements in the CPU and it should be referred to
throughout the following description.

Z80-CPU BLOCK DIAGRAM

8-BIT
DATA BUS
DATA BUS
CONTROL
K 'RNESGT- INTERNAL DATA BUS ALU
INSTRUCTION
DECODE
&
3 cPU
TR
cruanp [CONTROL REGIsTERS
SYSTEM cPU -
CONTROL CONTROL 8E
SIGNALS @ N &
[V
ADDRESS
CONTROL

+5V GND 6BIT
ADDRESS BUS

FIGURE 2.0-1

2.1 CPU REGISTERS

The Z80-CPU contains 208 bits of R/W memory that are accessible to the programmer.
Figure 2.0-2 illustrates how this memory is configured into eighteen 8-bit registers and
four 16-bit registers. All Z80 registers are implemented using static RAM. The registers
include two sets of six general purpose registers that may be used individually as 8-bit
registers or in pairs as 16-bit registers. There are also two sets of accumulator and flag
registers.

Special Purpose Registers

1. Program Counter (PC). The program counter holds the 16-bit address of the current
instruction being fetched from memory. The PC is automatically incremented after
its contents have been transferred to the address lines. When a program jump occurs
the new value is automatically placed in the PC, overriding the incrementer.

2. Stack Pointer (SP). The stack pointer holds the 16-bit address of the current top of
a stack located anywhere in external system RAM memory. The external stack
memory is organized as a last-in first-out (LIFQ) file. Data can be pushed onto the
stack from specific CPU registers or popped off of the stack into specific CPU regis-
ters through the execution of PUSH and POP instructions. The data popped from the
stack is always the last data pushed onto it. The stack allows simple implementation
of multiple level interrupts, unlimited subroutine nesting and simplification of many
types of data manipulation.

Z80-CPU REGISTER CONFIGURATION

FIGURE 2.0-2

MAIN REG SET ALTERNATE REG SET
ACCUMULATOR FLAGS ACCUMULATOR FLAGS
A F A’ F
B c B c
GENERAL
D E D E PURPOSE
REGISTERS
H L H v
INTERRUPT MEMORY
VECTOR REFRESH
| R

INDEX REGISTER IX
SPECIAL

PURPOSE
INDEX REGISTER 1Y REGISTERS

STACK POINTER SP

PROGRAM COUNTER PC

3. Two Index Registers (IX & 1Y). The two independent index registers hold a 16-bit

base address that is used in indexed addressing modes. In this mode, an index register
is used as a base to point to a region in memory from which data is to be stored or
retrieved. An additional byte is included in indexed instructions to specify a dis-
placement from this base. This displacement is specified as a two’'s complement
signed integer. This mode of addressing greatly simplifies many types of programs,
especially where tables of data are used.

Interrupt Page Address Register (1). The Z80-CPU can be operated in a mode where
an indirect call to any memory location can be achieved in response to an interrupt.
The | Register is used for this purpose to store the high order 8-bits of the indirect
address while the interrupting device provides the lower 8-bits of the address. This
feature allows interrupt routines to be dynamically located anywhere in memory with
absolute minimal access time to the routine.

. Memory Refresh Register (R). The Z80-CPU contains a memory refresh counter to

enable dynamic memories to be used with the same ease as static memories. This 7-bit
register is automatically incremented after each instruction fetch. The data in the
refresh counter is sent out on the lower portion of the address bus along with a
refresh control signal while the CPU is decoding and executing the fetched instruc-
tion. This mode of refresh is totally transparent to the programmer and does not
slow down the CPU operation. The programmer can load the R register for testing
purposes, but this register is normally not used by the programmer.

Accumulator and Flag Registers

The CPU includes two independent 8-bit accumulators and associated 8-bit flag registers.
The accumulator holds the results of 8-bit arithmetic or logical operations while the flag
register indicates specific conditions for 8 or 16-bit operations, such as indicating whether
or not the result of an operation is equal to zero. The programmer selects the accumulator
and flag pair that he wishes to work with with a single exchange instruction so that he may
easily work with either pair.

82

General Purpose Registers

There are two matched sets of general purpose registers, each set containing six 8-bit regis-
ters that may be used individually as 8-bit registers or as 16-bit register pairs by the prog-
rammer. One set is called BC, DE, and HL while the complementary set is called BD’, DE’
and HL'. At any one time the programmer can select either set of registers to work with
through a single exchange command for the entire set. In systems where fast interrupt
response is required, one set of general purpose registers and an accumulator/flag register
may be reserved for handling this very fast routine. Only a simple exchange command need
be executed to go between the routines. This greatly reduces interrupt service time by
eliminating the requirement for saving and retrieving register contents in the external
stack during interrupt or subroutine processing. These general purpose registers are used for
a wide range of applications by the programmer. They also simplify programming, especially
in ROM based systems where little external read/write memory is available.

2.2 ARITHMETIC & LOGIC UNIT (ALU)

The 8-bit arithmetic and logical instructions of the CPU are executed in the ALU. Internally
the ALU communicates with the registers and the external data bus on the internal data bus.
The type of functions performed by the ALU include:

Add Left or right shifts or rotates (arithmetic and logical)
Subtract Increment

Logical AND Decrement

Logical OR Set bit

Logical Exclusive OR Reset bit

Compare Test bit

2.3 INSTRUCTION REGISTER AND CPU CONTROL

As each instruction is fetched from memory, it is placed in the instruction register and
decoded. The control section performs this function and then generates and supplies all of
the control signals necessary to read or write data from or to the registers, controls the
ALU and provides all required external control signals.

83

Apwey

(0:74

84

3.0 Z80-CPU PIN DESCRIPTION

The Z80-CPU is packaged in an industry standard 40 pin Dual In-Line Package. The 1/0
pins are shown in Figure 3.0-1 and the function of each is described below.

Z80 PIN CONFIGURATION

SYSTEM t0RQ
CONTROL) RD

cPu
controLN iNF

CPU BUSRQ
BUSRQ

BUS

CONTROL | BUSAK

FIGURE 3.0-1

27 30
-] F———= A
31 Ay
19 32
20 R
21 34 "3
SETH ERN
<——2—— ——» Ag
36 Aq
28 37 A
-— —58—’ 7 ADDRESS
18 — = Ag BUS
-] 39 Ag
20 _4_0___> AIO
— —;—» Aqq
" 780 CPU ™ Ar2
— MK 3880 " "3
— MK 3880-4 —’5 A1
—— Ag
26
e
25
23
-]
14
15 %
12 %
_6.. "—8—’ D2
”. e—— D3
29 7 DATA
— <9—> D, BUS
[D5
DA
. ——— D7

Apg-A15
(Address Bus)

Do-D7
(Data Bus)

My
(Machine Cycle one)

MREQ
(Memory Request)

Tri-state output, active high. Ag-A15 constitute a 16-bit address
bus. The address bus provides the address for memory (up to 64K
bytes) data exchanges and for 1/O device data exchanges. 1/0
addressing uses the 8 lower address bits to allow the user to
directly select up to 256 input or 256 output ports. Ag is the
least significant address bit. During refresh time, the lower 7 bits
contain a valid refresh address.

Tri-state input/output, active high. Dg-D7 constitute an 8-bit
bidirectional data bus. The data bus is used for data exchanges
with memory and 1/O devices.

Output, active low. M_1 indicates that the current machine cycle
is the OP code fetch cycle of an instruction execution. Note that
during execution of 2-byte op-codes, M_1 is generated as each op
code byte is fetched. These two byte op-codes always begin with
CBH, DDH, EDH, or FDH. Mq also occurs with IORQ to indicate
an interrupt acknowledge cycle.

Tri-state output, active low. The memory request signal indicates
that the address bus holds a valid address for a memory read or
memory write operation.

85

z80
Family

280
Family

IORQ

(Input/Output Request)

RD
(Memory Read)

WR
(Memory Write)

RFSH
(Refresh)

HALT
(Halt state)

WAIT*
(Wait)

iNT
(Interrupt Request)

p=

Tri-state output, active low. The IORQ signal indicates that the
lower half of the address bus holds a valid I/O address for a 1/0
read or write operation. An IORQ signal is also generated with
an 'M_1 signal when an interrupt is being acknowledged to indicate
that an interrupt response vector can be placed on the data bus.
Interrupt Acknowledge operations occur during Mq time while
1/0 operations never occur during Mq time.

Tri-state output, active low. RD indicates that the CPU wants to
read data from memory or an 1/0 device. The addressed /O device
or memory should use this signal to gate data onto the CPU data
bus.

Tri-state output, active low. WR indicates that the CPU data bus
holds valid data to be stored in the addressed memory or /O
device.

QOutput, active low. RFSH indicates that the lower 7 bits of the
address bus contain a refresh address for dynamic memories and
current MREQ signal should be used to do a refresh read to all
dynamic memories. A7 is a logic zero and the upper 8 bits of the
Address Bus contains the | Register.

Output, active low. HALT indicates that the CPU has executed a
HALT software instruction and is awaiting either a non maskable
or a maskable interrupt (with the mask enabled) before operation
can resume. While halted, the CPU executes NOP’s to maintain
memory refresh activity.

Input, active low. WAIT indicates to the Z80-CPU that the add-
ressed memory or |/O devices are not ready for a data transfer.
The CPU continues to enter wait states for as long as this signal is
active. This signal allows memory or I/O devices of any speed to
be synchronized to the CPU.

Input, active low. The Interrupt Request signal is generated by
1/0 devices. A request will be honored at the end of the current
instruction if the internal software controlled interrupt enable
flip-flop (IFF) is enabled and if the BUSRQ signal is not active.
When the CPU accepts the interrupt, an acknowledge signal
(TORQ during M1 time) is sent out at the beginning of the next
instruction cycle. The CPU can respond to an interrupt in three
different modes that are described in detail in section 8.

Input, negative edge triggered. The non maskable interrupt request
line has a higher priority than INT and is always recognized at the
end of the current instruction, independent of the status of the
interrupt enable flip-flop. NMI automatically forces the Z80-CPU
to restart to location 0066H. The program counter is automati-
cally saved in the external stack so that the user can return to the
program that was interrupted. Note that continuous WAIT cycles
can prevent the current instruction from ending, and that a
BUSRQ will override a NM.

BUSRQ
(Bus Request)

BUSAK*
(Bus Acknowledge)

d

*While the Z80-CPU is in either a WAIT state or a Bus Acknowledge condition, Dynamic Memory Refresh

will not occur.

Input, active low. RESET forces the program counter to zero and
initializes the CPU. The CPU initialization includes:

1) Disable the interrupt enable flip-flop
2) Set Register | = 00H

3) Set Register R = 00H

4) Set Interrupt Mode O

During reset time, the address bus and data bus go to a high
impedance state and all control output signals go to the inactive
state. No refresh occurs.

Input, active low. The bus request signal is used to request the
CPU address bus, data bus and tri-state output control signals to
go to a high impedance state so that other devices can control
these buses. When BUSRQ is activated, the CPU will set these
buses to a high impedance state as soon as the current CPU
machine cycle is terminated.

Output, active low. Bus acknowledge is used to indicate to the
requesting device that the CPU address bus, data bus and tri-
state control bus signals have been set to their high impedance
state and the external device can now control these signals.

Single phase system clock.

87

280
Family

88

4.0 CPU TIMING

The Z80-CPU executes instructions by stepping through a very precise set of a few basic
operations. These include:

Memory read or write
1/0 device read or write

Interrupt acknowledge

All instructions are merely a series of these basic operations. Each of these basic operations
can take from three to six clock periods to complete or they can be lengthened to syn-
chronize the CPU to the speed of external devices. The basic clock periods are referred to as
T states and the basic operations are referred to as M (for machine) cycles. Figure 4.0-0
illustrates how a typical instruction will be merely a series of specific M and T cycles. Notice
that this instruction consists of three machine cycles (M1, M2 and M3). The first machine
cycle of any instruction is a fetch cycle which is four, five or six T states long (unless
lengthened by the wait signal which will be fully described in the next section). The fetch
cycle (M1) is used to fetch the OP code of the next instruction to be executed. Subsequent
machine cycles move data between the CPU and memory or 1/O devices and they may have
anywhere from three to five T cycles (again they may be lengthened by wait states to
synchronize the external devices to the CPU). The following paragraphs describe the timing
which occurs within any of the basic machine cycles. In section 7, the exact timing for
each instruction is specified.

BASIC CPU TIMING EXAMPLE

Machine Cycle

w1 M2 | M3
(OP Code Fetch) (Memory Read) (Memory Write)

Instruction Cycle

FIGURE 4.0-0

All CPU timing can be broken down into a few very simple timing diagrams as shown in
Figure 4.0-1 through 4.0-7. These diagrams show the following basic operations with and
without wait states (wait states are added to synchronize the CPU to slow memory or
1/0 devices).

4.0-1. Instruction OP code fetch (M1 cycle)

4.0-2. Memory data read or write cycles

4.0-3. 1/0 read or write cycles

4.0-4. Bus Request/Acknowledge Cycle

4.0-5. Interrupt Request/Acknowledge Cycle

4.0-6. Non maskable Interrupt Request/Acknowledge Cycle
4.0-7. Exit from a HALT instruction

89

INSTRUCTION FETCH

Figure 4.0-1 shows the timing during an M1 cycle (OP code fetch). Notice that the PC is
placed on the address bus at the beginning of the M1 cycle. One half clock time later the
MREQ signal goes active. At this time the address to the memory has had time to stabilize
so that the falling edge of MREQ can be used directly as a chip enable clock to dynamic
memories. The RD line also goes active to indicate that the memory read data should be
enabled onto the CPU data bus. The CPU samples the data from the memory on the data
bus with the rising edge of the clock of state T3 and this same edge is used by the CPU
to turn off the RD and MREQ signals. Thus the data has already been sampled by the CPU
before the RD signal becomes inactive. Clock state T3 and T4 of a fetch cycle are used to
refresh dynamic memories. (The CPU uses this time to decode and execute the fetched
instruction so that no other operation could be performed at this time). During T3 and T4
the lower 7 bits of the address bus contain a memory refresh address and the RFSH signal
becomes active to indicate that a refresh read of all dynamic memories should be accom-
plished. Notice that a RD signal is not generated during refresh time to prevent data from
different memory segments from being gated onto the data bus. The MREQ signal during
refresh time should be used to perform a refresh read of all memory elements. The refresh
signal can not be used by itself since the refresh address is only guaranteed to be stable
during MREQ time.

INSTRUCTION OP CODE FETCH

M1 Cycle
' T1 T2 T3 Ta L8

A \ L —

A0 ~ AlS) I REFRESH ADDR.

WMREQ T\]——_—___

D T I

s it o s O S SR

W T S -

DO — D7 —{ W]}

RFSH \ ‘“

FIGURE 4.0-1

90

Figure 4.0-1A illustrates how the fetch cycle is delayed if the memory activates the WAIT
line. During T2 and every subsequent Tw, the CPU samples the WAIT line with the falling
edge of @. If the WAIT line is active at this time, another wait state will be entered during
the following cycle. Using this technique the read cycle can be lengthened to match the
access time of any type of memory device.

INSTRUCTION OP CODE FETCH WITH WAIT STATES

M1 Cyel
T, T, Tw Tw T3 s

LS o VD e WY o W s WD s W o W
AO ~ A15 i PC) REFRESH ADDR. 1
wRea | L T
7B T\

DO - D7 E}

i m! f

war LT\ [T T ___"__.'/—\'__ﬁl' RO SO
- 7

FIGURE 4.0-1A

y4:1]
Family

MEMORY READ OR WRITE

Figure 4.0-2 illustrates the timing of memory read or write cycles other than an OP code
fetch (M1 cycle). These cycles are generally three clock periods long unless wait states are
requested by the memory via the WAIT signal. The MREQ signal and the RD signal are used
the same as in the fetch cycle. In the case of a memory write cycle, the MREQ also becomes
active when the address bus is stable so that it can be used directly as a chip enable for
dynamic memories. The WR line is active when data on the data bus is stable so that it can
be used directly as a R/W pulse to virtually any type of semiconductor memory. Further-
more the WR signal goes inactive one half T state before the address and data bus contents
are changed so that the overlap requirements for virtually any type of semiconductor
memory type will be met.

MEMORY READ OR WRITE CYCLES

Memory Read Cycle Memory Write Cycle ——
T T2 T3 T T2 T3
@ S N VY VY B W B \ \
A0 - ATS5 MEMORY ADDR) MEMORY ADDR [
mRea |\ [1 \ 1
7 T /
R | SN
s m——([o
war T T T T L _1_:::_______
FIGURE 4.0-2

91

280
Family

Figure 4.0-2A illustrates how a WAIT request signal will lengthen any memory read or
write operation. This operation is identical to that previously described for a fetch cycle.
Notice in this figure that a separate read and a separate write cycle are shown in the same
figure although read and write cycles can never occur simultaneously.

MEMORY READ OR WRITE CYCLES WITH WAIT STATES

T T2 Tw Tw T3 T
@ Y \ \ \ \ \
A0 ~ A15 EMORY ADDR.)
wees T /
RD \ I READ
DATA BUS) CYCLE
(D0-D7) _J
WR ! / WRITE
DATABUS 1 { DATA OUT D —— cvete
(D0-D7)
s i i S i W W S A —-
—_————r [R —_—_,—————
FIGURE 4.0-2A
INPUT OR OUTPUT CYCLES

92

Figure 4.0-3 illustrates an 1/O read or /O write operation. Notice that during I/O operations
a single wait state is automatically inserted. The reason for this is that during |/O operations,
the time from when the IORQ signal goes active until the CPU must sample the WAIT line
is very short and without this extra state sufficient time does not exist for an 1/0 port to
decode its address and activate the WAIT line if a wait is required. Also, without this wait
state it is difficult to design MOS /O devices that can operate at full CPU speed. During
this wait state time the WATT request signal is sampled. During a read 1/0 operation, the
RD line is used to enable the addressed port onto the data bus just as in the case of a
memory read. For 1/O write operations, the WR line is used as a clock to the /O port, again
with sufficient overlap timing automatically provided so that the rising edge may be used as
a data clock.

Figure 4.0-3A illustrates how additional wait states may be added with the WAIT line.
The operation is identical to that previously described.

BUS REQUEST/ACKNOWLEDGE CYCLE

Figure 4.0-4 illustrates the timing for a Bus Request/Acknowledge cycle. The BUSRQ
signal is sampled by the CPU with the rising edge of the last clock period of any machine
cycle. If the BUSRQ signal is active, the CPU will set its address, data and tri-state control
signals to the high impedance state with the rising edge of the next clock pulse. At that
time any external device can control the buses to transfer data between memory and 1/0
devices. (This is generally known as Direct Memory Access [DMA] using cycle stealing).
The maximum time for the CPU to respond to a bus request is the length of a machine
cycle and the external controller can maintain control of the bus for as many clock cycles
as is desired. Note, however, that if very long DMA cycles are used, and dynamic memories
are being used, the external controller must also perform the refresh function. This situation
only occurs if very large blocks of data are transferred under DMA control. Also note that
during a bus request cycle, the CPU cannot be interrupted by either a NMI or an INT signal.

INPUT OR OUTPUT CYCLES

T T2 Tw' T3 T
A0 ~ A7 PORT ADDRESS 1
iORQ \ |
RD \ J } Read
Cycle
DATA BUS {in}
CZ L s I Y WO o
W 1 J }Wme
Cycle
PATABYS = *|nserted by Z80 CPU
FIGURE 4.0-3
INPUT OR OUTPUT CYCLES WITH WAIT STATES
T T2 Tw' Tw T3
& 1 L \ \ \ \ |-
A0 ~ A7 1 PORT ADDRESS
iORQ \ [
DATA BUS J\I_N_,‘ } READ
a5 1 e J CYCLE
F220 O N VO SO VO A
DATA BUS ——tf——o{_ ouT) — wRiTE
wE \ N CYCLE
*Inserted by Z80 CPU
FIGURE 4.0-3A

93

BUS REQUEST/ACKNOWLEDGE CYCLE

Any M Cycl Bus Available States — s
Last T State Tx Tx Tx Tq

¢ I \ \ 1 I T \
BUSRQ A [

Sample —% Sample/
BUSAK \ [
A0~ A5).__._._._____J ______ _(
DO~ D7 r———1————t——— -(
MREQ, RD, ———
WR, IORQ, r Floating F:
RFSH

FIGURE 4.0-4

INTERRUPT REQUEST/ ACKNOWLEDGE CYCLE

Figure 4.0-5 illustrates the timing associated with an interrupt cycle. The interrupt signal
(TNT) is sampled by the CPU with the rising edge of the last clock at the end of any in-
struction. The signal will not be accepted if the internal CPU software controlled interrupt
enable flip-flop is not set or if the BUSRQ signal is active. When the signal is accepted a
special M1 cycle is generated. During this special M1 cycle the IORQ signal becomes active
(instead of the normal MREQ) to indicate that the interrupting device can place an 8-bit
vector on the data bus. Notice that two wait states are automatically added to this cycle.
These states are added so that a ripple priority interrupt scheme can be easily implemented.
The two wait states allow sufficient time for the ripple signals to stablilize and identify
which 1/0 device must insert the response vector. Refer to section 8.0 for details on how the
interrupt response vector is utilized by the CPU.

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE

Last M Cycle MI
of Instruction
Last T State T Ta Tw* Tw* T3
® — L \ \ \ 1\ \ | S
(LS AN U Y A D— .::_'.'_'_'_'1_—_-"—4 __________
A0~ A15 M PC " Y REFRESH
wi \ f
MREQ \
ioRa \ [
DATA BUS W)
— _(___________ - —— — e e e s e
warr o _ 8 R AR R N SN [W R
RD Mode 0 shown
FIGURE 4.0-5

94

Figure 4.0-5A illustrates how additional wait states can be added to the interrupt response
cycle. Again the operation is identical to that previously described.

INTERRUPT REQUEST/ACKNOWLEDGE WITH WAIT STATES

M
T T2 Tw’ Tw' Tw T3 Ta
® I 1\ 1\ | Y R WD R W
A0 ~ A5 PC REFRESH ADDR.
W A [
—_—t i S —— e L - b —_— g - —
Lz I J] I VY W V) J-
iORG \ /
DATA BUS % IN| OET
[+
MREG \ | NE
RD

Mode 0 shown

FIGURE 4.0-5A

NON MASKABLE INTERRUPT RESPONSE

Figure 4.0-6 illustrates the request/acknowledge cycle for the non-maskable interrupt.
A pulse on the NMI input sets an internal NMI latch which is tested by the CPU at the
end of every instruction. This NMI latch is sampled at the same time as the interrupt line,
but this line has priority over the normal interrupt and it can not be disabled under soft-
ware control. [ts usual function is to provide immediate response to important signals
such as an impending power failure. The CPU response to a non maskable interrupt is
similar to a normal memory read operation. The only difference being that the content
of the data bus is ignored while the processor automatically stores the PC in the external
stack and jumps to location 0066H. The service routine for the non maskable interrupt
must begin at this location if this interrupt is used.

HALT EXIT

Whenever a software halt instruction is executed the CPU begins executing NOP’s until an
interrupt is received (either a non-maskable or a maskable interrupt while the interrupt
flip flop is enabled). The two interrupt lines are sampled with the rising clock edge during
each T4 state as shown in Figure4.0-7. If a non-maskable interrupt has been received or a
maskable interrupt has been received and the interrupt enable flip-flop is set, then the halt
state will ‘be exited on the next rising clock edge. The following cycle will then be an inter-
rupt acknowledge cycle corresponding to the type of interrupt that was received. |f both are
received at this time, then the non maskable one will be acknowledged since it was highest
priority. The purpose of executing NOP instructions while in the halt state is to keep the
memory refresh signals active. Each cycle in the halt state is a normal M1 (fetch) cycle
except that the data received from the memory is ignored and a NOP instruction is forced
internally to the CPU. The halt acknowledge signal is active during this time to indicate
that the processor is in the halt state.

NON MASKABLE INTERRUPT REQUEST OPERATION

Last M Cycle Iteat mi - M2, M3*
Last T Time T T, LY Ta Ts
® I B \ \ \ \ \ I
I A o A S
AO ~ A15 1 PC X REFRESH |)
i \ [
wREG \ [\ y
RD \ /
AFSH \ —

*M2 and M3 are stack write operations

FIGURE 4.0-6
HALT EXIT
M1 M1 M
Tq Tq Ty T3 Tq T T,
F - \ \ \ \ \ \ L
AALT \ /
Ly Ve o o W S O SO
NME
HALT INSTRUCTION
IS RECEIVED
DURING THIS
MEMORY CYCLE
FIGURE 4.0-7

96

5.0 Z80-CPU INSTRUCTION SET

The Z80-CPU can execute 158 different instruction types including all 78 of the 8080A
CPU. The instructions can be broken down into the following major groups:

- Load and Exchange

- Block Transfer and Search

+ Arithmetic and Logical

- Rotate and Shift

* Bit Manipulation (set, reset, test)
+ Jump, Call and Return

+ Input/Output

- Basic CPU Control

5.1 INTRODUCTION TO INSTRUCTION TYPES

The load instructions move data internally between CPU registers or between CPU registers
and external memory. All of these instructions must specify a source location from which
the data is to be moved and a destination location. The source location is not altered by
a load instruction. Examples of load group instructions include moves between any of the
general purpose registers such as move the data to Register B from Register C. This group
also includes load immediate to any CPU register or to any external memory location.
Other types of load instructions allow transfer between CPU registers and memory locations.
The exchange instructions can trade the contents of two registers.

A unique set of block transfer instructions is provided in the Z80. With a single instruction a
block of memory of any size can be moved to any other location in memory. This set of
block moves is extremely valuable when large strings of data must be processed. The Z80
block search instructions are also valuable for this type of processing. With a single
instruction, a block of external memory of any desired length can be searched for any 8-bit
character. Once the character is found the instruction automatically terminates. Both the
block transfer and the block search instructions can be interrupted during their execution so
as to not occupy the CPU for long periods of time.

The arithmetic and logical instructions operate on data stored in the accumulator and other
general purpose CPU registers or external memory locations. The results of the operations
are placed in the accumulator and the appropriate flags are set according to the result of
the operation. An example of an arithmetic operation is adding the accumulator to the con-
tents of an external memory location. The results of the addition are placed in the
accumulator. This group also includes 16-bit addition and subtraction between 16-bit CPU
registers.

The bit manipulation instructions allow any bit in the accumulator, any general purpose
register or any external memory location to be set, reset or tested with a single instruction.
For example, the most significant bit of register H can be reset. This group is especially
useful in control applications and for controlling software flags in general purpose prog-
ramming.

The jump, call and return instructions are used to transfer between various locations in the
user’s program. This group uses several different techniques for obtaining the new program
counter address from specific external memory locations. A unique type of jump is the
restart instruction. This instruction actually contains the new address as a part of the 8-bit
OP code. This is possible since only 8 separate addresses located in page zero of the external
memory may be specified. Program jumps may also be achieved by loading register HL, IX
or 1Y directly into the PC, thus allowing the jump address to be a complex function of the
routine being executed.

97

280
Family

280
Family

98

The input/output group of instructions in the Z80 allow for a wide range of transfers
between external memory locations or the general purpose CPU registers, and the external
1/0 devices. In each case, the port number is provided on the lower 8 bits of the address
bus during any |/O transaction. One instruction allows this port number to be specified by
the second byte of the instruction while other Z80 instructions allow it to be specified
as the content of the C register. One major advantage of using the C register as a pointer to
the /0 device is that it allows different 1/0 ports to share common software driver routines.
This is not possible when the address is part of the OP code if the routines are stored in
ROM. Another feature of these input instructions is that they set the flag register automati-
cally so that additional operations are not required to determine the state of the input data
(for example its parity). The Z80-CPU includes single instructions that can move blocks or
data (up to 256 bytes) automatically to or from any 1/O port directly to any memory
location. In conjunction with the dual set of general purpose registers, these instructions
provide for fast I/O block transfer rates. The value of this 1/O instruction set is demon-
strated by the fact that the Z80-CPU can provide all required floppy disk formatting (i.e.,
the CPU provides the preamble, address, data and enables the CRC codes) on double density
floppy disk drives on an interrupt driven basis.

Finally, the basic CPU control instructions allow various options and modes. This group
includes instructions such as setting or resetting the interrupt enable flip flop or setting
the mode of interrupt response.

5.2 ADDRESSING MODES

Most of the Z80 instructions operate on data stored in internal CPU registers, external
memory or in the 1/O ports. Addressing refers to how the address of this data is generated
in each instruction. This section gives a brief summary of the types of addressing used
in the Z80 while subsequent sections detail the type of addressing available for each in-
struction group.

Immediate. In this mode of addressing the byte following the OP code in memory contains
the actual operand.

1 OP Code }one or 2 bytes

Operand
dz do

Examples of this type of instruction would be to load the accumulator with a constant,
where the constant is the byte immediately following the OP code.

Immediate Extended. This mode is merely an extension of immediate addressing in that the
two bytes following the op codes are the operand.

OP Code one or 2 bytes

Operand low order

Operand high order

Examples of this type of instruction would be to load the HL register pair (16-bit register)
with 16 bits (2 bytes) of data.

Modified Page Zero Addressing. The Z80 has a special single byte call instruction to any of
8 locations in page zero of memory. This instruction (which is referred to as a restart) sets
the PC to an effective address in page zero. The value of this instruction is that it allows a
single byte to specify a complete 16-bit address where commonly called subroutines are
located, thus saving memory space.

one byte

b7 bg Effective address is (00bsb4b3000)

Relative Addressing. Relative addressing uses one byte of data following the OP code to
specify a displacement from the existing program to which a program jump can occur.
This displacement is a signed two’s complement number that is added to the address of the
OP code of the following instruction.

OP Code Jump relative (one byte OP code)

Operand 8-bit two’'s complement displacement added to
Address (A+2)

The value of relative addressing is that it allows jumps to nearby locations while only
requiring two bytes of memory space. For most programs, relative jumps are by far the
most prevalent type of jump due to the proximity of related program segments. Thus,
these instructions can significantly reduce memory space requirements. The signed dis-
placement can range between +127 and -128 from A + 2. This allows for a total displace-
ment of +129 to -126 from the jump relative OP code address. Another major advantage
is that it allows for relocatable code.

Extended Addressing. Extended Addressing provides for two bytes (16 bits) of address to
be included in the instruction. This data can be an address to which a program can jump or
it can be an address where an operand is located.

OP Code } one or two bytes

Low Order Address or Low order operand

High Order Address or High order operand

Extended addressing is required for a program to jump from any location in memory to any
other location, or load and store data in any memory location.

When extended addressing is used to specify the source or destination address of an operand,
the notation (nn) will be used to indicate the content of memory at nn, where nn is the
16-bit address specified in the instruction. This means that the two bytes of address nn are
used as a pointer to a memory location. The use of the parentheses always means that the
value enclosed within them is used as a pointer to a memory location. For example, (1200)
refers to the contents of memory at location 1200.

Indexed Addressing. In this type of addressing, the byte of data following the OP code
contains a displacement which is added to one of the two index registers (the OP code
specifies which index register is used) to form a pointer to memory. The contents of the
index register are not altered by this operation.

OP Code

two byte OP code
OP Code

Displacement|Operand added to index register to form a pointer
to memory.

99

280
Family

100

An example of an indexed instruction would be to load the contents of the memory loca-
tion (Index Register + Displacement) into the accumulator. The displacement is a signed
two's complement number. Indexed addressing greatly simplifies programs using tables of
data since the index register can point to the start of any table. Two index registers are
provided since very often operations require two or more tables. Indexed addressing also
allows for relocatable code.

The two index registers in the Z80 are referred to as X and 1Y. To indicate indexed add-
ressing the notation:
(1X+d) or (I'Y+d)

is used. here d is the displacement specified after the OP code. The parentheses indicate that
this value is used as a pointer to external memory.

Register Addressing. Many of the Z80 OP codes contain bits of information that specify
which CPU register is to be used for an operation. An example of register addressing would
be to load the data in register B into register C.

Implied Addressing. Implied addressing refers to operations where the OP code automati-
cally implies one or more CPU registers as containing the operands. An example is the set of
arithmetic operations where the accumulator is always implied to be the destination of the

_results.

Register Indirect Addressing. This type of addressing specifies a 16-bit CPU register pair
(such as HL) to be used as a pointer to any location in memory. This type of instruction is
very powerful and it is used in a wide range of applications.

OP Code } one or two bytes

An example of this type of instruction would be to load the accumulator with the data in
the memory location pointed to by the HL register contents. Indexed addressing is actually
a form of register indirect addressing except that a displacement is added with indexed
addressing. Register indirect addressing allows for very powerful but simple to implement
memory accesses. The block move and search commands in the Z80 are extensions of this
type of addressing where automatic register incrementing, decrementing and comparing
has been added. The notation for indicating register indirect addressing is to put paren-
theses around the name of the register that is to be used as the pointer. For example, the
symbol

(HL)

specifies that the contents of the HL register are to be used as a pointer to a memory
location. Often register indirect addressing is used to specify 16-bit operands. In this case,
the register contents point to the lower order portion of the operand while the register
contents are automatically incremented to obtain the upper portion of the operand.

Bit Addressing. The Z80 contains a large number of bit set, reset and test instructions.
These instructions allow any memory location or CPU register to be specified for a bit
operation through one of three previous addressing modes (register, register indirect and
indexed) while three bitsin the OP code specify which of the eight bits is to be manipulated.

ADDRESSING MODE COMBINATIONS

Many instructions include more than one operand (such as arithmetic instructions or loads).
In these cases, two types of addressing may be employed. For example, load can use im-
mediate addressing to specify the source and register indirect or indexed addressing to
specify the source and register indirect or indexed addressing to specify the destination.

5.3 INSTRUCTION OP CODES

This section describes each of the Z80 instructions and provides tables listing the OP codes
for every instruction. In each of these tables the shaded OP codes are identical to those
offered in the 8080A CPU. Also shown is the assembly language mnemonic that is used for
each instruction. All instruction OP codes are listed in hexadecimal notation. Single byte
OP codes require two hex characters while double byte OP codes require four hex characters.
The conversion from hex to binary is repeated here for convenience.

Hex Binary Decimal Hex Binary Decimal
0 = 0000 = O 8 = 1000 = 8
1 = 0001 = 1 9 = 1001 = 9
2 = 0010 = 2 A = 1010 = 10
3 = 0011 = 3 B = 1011 = 11
4 = 0100 = 4 c = 100 = 12
5 = 0101 = 5 D = 1101 = 13
6 = 0110 = 6 E = 1110 = 14
7 = o111 = 7 F = 1111 = 15

Z80 instruction mnemonics consist of an OP code and zero, one or two operands.
Instructions in which the operand is implied have no operand. Instructions which have
only one logical operand or those in which one operand is invariant (such as the Logical OR
instruction) are represented by a one operand mnemonic. Instructions which may have
two varying operands are represented by two operand mnemonics.

LOAD AND EXCHANGE

Table 5.3-1 defines the OP code for all of the 8-bit load instructions implemented in the
Z80-CPU. Also shown in this table is the type of addressing used for each instruction. The
source of the data is found on the top horizontal row while the destination is specified by
the left hand column. For example, load register C from register B uses the OP code 48H.
In all of the tables the OP code is specified in hexadecimal notation and the 48H (=0100
1000 binary) code is fetched by the CPU from the external memory during M1 time,
decoded and then the register transfer is automatically performed by the CPU.

The assembly language mnemonic for this entire group is LD, followed by the destination
followed by the source (LD DEST., SOURCE). Note that several combinations of addressing
modes are possible. For example, the source may use register addressing and the destination
may be register indirect; such as load the memory location pointed to by register HL with
the contents of register D. The OP code for this operation would be 72. The mnemonic for
this load instruction would be as follows: LD (HL), D

The parentheses around the HL means that the contents of HL are used as a pointer to a
memory location. In all Z80 load instruction mnemonics the destination is always listed
first, with the source following. The Z80 assembly language has been defined for ease of
programming. Every instruction is self documenting and programs written in Z80 language
are easy to maintain.

Note in Table 5.3-1 that some load OP codes that are available in the Z80 use two bytes.
This is an efficient method of memory utilization since 8, 16, 24 or 32 bit instructions
are implemented in the Z80. Thus often utilized instructions such as arithmetic or logical
operations are only 8-bits which results in better memory utilization than is achieved with
fixed instruction sizes such as 16-bits.

All load instructions using indexed addressing for either the source or destination location
actually use three bytes of memory with the third byte being the displacement d. For
example a load register E with the operand pointed to by IX with an offset of +8 would be
written: LD E, (IX + 8)

102

The instruction sequence for this in memory would be:

Address A DD

OP Code
A+1 5F

A+2 08 | Displacement operand

The two extended addressing instructions are also three byte instructions. For example
the instruction to load the accumulator with the operand in memory location 6F32H would
be written:

LD A, (6F 32H)

and its instruction sequence would be:

Address A 3A | OP Code

A+1 32 | low order address

A+2 6F | high order address

Notice that the low order portion of the address is always the first operand.

The load immediate instructions for the general purpose 8-bit registers are two-byte instruc-
tions. The instruction load register H with the value 36H would be written:

LD H, 36H

and its sequence would be:

Address A 26 | OP Code

A+1 36 | Operand

Loading a memory location using indexed addressing for the destination and immediate
addressing for the source requires four bytes. For example:

LD (IX - 15), 21H

would appear as:

Address A DD
OP Code

A+1 36

A+2 F1 | displacement (-15 in
signed two's complement)
A+3 21 | operand to load

Notice that with any indexed addressing the displacement always follows directly after the
OP code.

Table 5.3-2 specifies the 16-bit load operations. This table is very similar to the previous one.
Notice that the extended addressing capability covers all register pairs. Also notice that
register indirect operations specifying the stack pointer are the PUSH and POP instructions.
The mnemonic for these instructions is “PUSH’’ and ""POP”’. These differ from other 16-bit
loads in that the stack pointer is automatically decremented and incremented as each byte
is pushed onto or popped from the stack respectively. For example the instruction:

PUSH AF

is a single byte instruction with the OP code of F5H. When this instruction is executed the
following sequence is generated:

Decrement SP
LD (SP), A

Decrement SP

LD (SP), F
Thus the external stack now appears as follows:
(SP) F Top of stack
(SP+1) A
. .
. .
.
8 BIiT LOAD GROUP
SOURCE
EXT. r
IMPLIED REGISTER REG INDIRECT INDEXED ADDR.| IMME.
1 R A B 4 D E L (HL) | (BC) (DE) (X +d)(1Y +d)| (nn) n
i oaap ; 1 oo [F0 [izal]
A ED ED 7€ 7€ e
57 5F d d]
DD FOD
B8 46 46
d d
DD FD
c 4E 4E
d d
DD FD
REGISTER D 56 56
d d
DD FD
E SE 5E
d d
0D FD
H 66 66
d d
DD FD
L 6E 6E
d d
DESTINATION (HL)
REG
NDIReCT | (BC)
(DE)
oo | oo | oo| oo | oo | oo o
(1X+d) 77 70 n 72 73 74 7% d
d d d d d d d n
INDEXED 129)
FOD FOD FD FD FD FD 36
(1Y+d) 70 n 72 73 74 7% d
d d d d d d n
EXT. ADDR | (nn)
1 ED
47
IMPLIED
R ED
4F

TABLE 5.3-1

103

104

The POP instruction is the exact reverse of a PUSH. Notice that all PUSH and POP instruc-
tions utilize a 16-bit operand and the high order byte is always pushed first and popped last.
That is a:

PUSH BC is PUSH B then C
PUSH DE is PUSH D then E
PUSH HL is PUSH H then L
POP HL isPOP L thenH

The instruction using extended immediate addressing for the source obviously requires
2 bytes of data following the OP code. For example:

LD DE, 0659H
will be:

Address A OP Code
A+1 E Low order operand to register E
A+2 m High order operand to register D

In all extended immediate or extended addressing modes, the low order byte always appears
first after the OP code.

Table 5.3-3 lists the 16-bit exchange instructions implemented in the Z80. OP code 08H
allows the programmer to switch between the two pairs of accumulator flag registers while
D9H allows the programmer to switch between the duplicate set of six general purpose
registers. These OP codes are only one byte in length to absolutely minimize the time
necessary to perform the exchange so that the duplicate banks can be used to effect very
fast interrupt response times.

BLOCK TRANSFER AND SEARCH

Table 5.3-4 lists the extremely powerful block transfer instructions. All of these instructions
operate with three registers.

HL points to the source location.
DE points to the destination location.
BC is a byte counter.

After the programmer has initialized these three registers, any of these four instructions may
be used. The LDI (Load and Increment) instruction moves one byte from the location
pointed to by HL to the location pointed to by DE. Register pairs HL and DE are then
automatically incremented and are ready to point to the following locations. The byte
counter (register pair BC) is also decremented at this time. This instruction is valuable when
blocks of data must be moved but other types of processing are required between each
move. The LDIR (Load, increment and repeat) instruction is an extension of the LDI
instruction. The same load and increment operation is repeated until the byte counter
reaches the count of zero. Thus, this single instruction can move any block of data from one
location to any other.

Note that since 16-bit registers are used, the size of the block can be up to 64K bytes
(1K = 1024) long and it can be moved from any location in memory to any other location.
Furthermore the blocks can be overlapping since there are absolutely no constraints on the
data that is used in the three register pair.

The LDD and LDDR instructions are very similar to the LDl and LDIR. The only difference
is that register pairs HL and DE are decremented after every move so that a block transfer
starts from the highest address of the designated block rather than the lowest.

16 BIT LOAD GROUP ‘LD’

‘PUSH’ AND ‘POP’

SOURCE
IMM. | EXT. | REG.
REGISTER EXT. | ADDR.|INDIR.
AF BC DE HL spP IX 1y nn (nn) (sP)
AF
BC
R DE
E
G
4 HL
DESTINATION T
E
R % 7
sP : DD
g8 F9
X
A4
ED DD
EXT. 73 22
ADDR. n n
n
PUSH » | REG. DD FD
INSTRUCTIONS IND. E5 E5
NOTE: The Push & Pop Instructions adjust POP
the SP after every execution INSTRUCTIONS
TABLE 5.3-2
EXCHANGES ‘EX’ AND ‘EXX’
IMPLIED ADDRESSING
AfF |sc.pE&aHL’ | HL | X M
AF 08
BC,
DE
IMPLIED| & b9
HL
DE
REG. (sP) DD FD
INDIR. E3 E3

TABLE 5.3-3

105

BLOCK TRANSFER GROUP

SOURCE
REG.
INDIR.
(HL)
ED ‘LDI’ — Load (DE)e— (HL)
AQ Inc HL & DE, Dec BC
ED ‘LDIR,’ — Load (DE)-e—(HL)
BO Inc HL & DE, Dec BC, Repeat until BC=0
pESTINATION |RES. | (DE)
ED ‘LDD’ — Load (DE)-—(HL)
A8 Dec HL & DE, Dec BC
ED ‘LDDR’ — Load (DE)-#—(HL)
B8 Dec HL & DE, Dec BC, Repeat until BC = 0

Reg HL points to source

Reg DE points to destination
Table 5.3'4 Reg BC is byte counter

106

Table 5.3-56 specifies the OP codes for the four block search instructions. The first, CPI
(compare and increment) compares the data in the accumulator, with the contents of the
memory location pointed to by register HL. The result of the compare is stored in one of
the flag bits (see section 6.0 for a detailed explanation of the flag operations) and the HL
register pair is then incremented and the byte counter (register pair BC) is decremented.

The instruction CPIR is merely an extension of the CPl instruction in which the compare
is repeated until either a match is found or the byte counter (register pair BC) becomes
zero. Thus, this single instruction can search the entire memory for any 8-bit character.

The CPD (Compare and Decrement) and CPDR (Compare, Decrement and Repeat) are
similar instructions, their only difference being that they decrement HL after every compare
so that they search the memory in the opposite direction. (The search is started at the
highest location in the memory block).

It should be emphasized again that these block transfer and compare instructions are
extremely powerful in string manipulation applications.

ARITHMETIC AND LOGICAL

Table 5.3-6 lists all of the 8-bit arithmetic operations that can be performed with the
accumulator, also listed are the increment (INC) and decrement (DEC) instructions.
In all of these instructions, except INC and DEC, the specified 8-bit operation is performed
between the data in the accumulator and the source data specified in the table. The result
of the operation is placed in the accumulator with the exception of compare (CP) that
leaves the accumulator unaffected. All of these operations affect the flag register as a result
of the specified operation. (Section 6.0 provides all of the details on how the flags are
affected by any instruction type). INC and DEC instructions specify a register or a memory
location as both source and destination of the result. When the source operand is addressed
using the index registers the displacement must follow directly. With immediate addressing
the actual operand will follow directly. for example the instruction:

AND O7H
would appear as:

Address A OP Code
A+l Operand

BLCCK SEARCH GROUP

SEARCH
LOCATION
REG.
INDIR.
(HL)
ED ‘CPI’
A1l Inc HL, Dec BC
ED ‘CPIR’, Inc HL, Dec BC
B1 repeat until BC = 0 or find match
ED ’ .
A9 CPD’ Dec HL & BC
ED ‘CPDR’ Dec HL & BC
B9 Repeat until BC = 0 or find match

HL points to location in memory
to be compared with accumulator
contents

TAB LE 53'5 BC is byte counter

280
Family

Assuming that the accumulator contained the value F3H the result of 03H would be placed
in the accumulator:

Acc before operation 11110011 =F3H
Operand 00000111 =07H
Result to Acc 0000 0011 = O3H

The Add instruction (ADD) performs a binary add between the data in the source location
and the data in the accumulator. The subtract (SUB) does a binary subtraction. When the
add with carry is specified (ADC) or the subtract with carry (SBC), then the carry flag is also
added or subtracted respectively. The flags and decimal adjust instruction (DAA) in the
Z80 (fully described in section 6.0) allow arithmetic operations for:

multiprecision packed BCD numbers
multiprecision signed or unsigned binary numbers
multiprecision two’s complement signed numbers

Other instructions in this group are logical and (AND), logical or (OR), exclusive or (XOR)
and compare (CP).

There are five general purpose arithmetic instructions that operate on the accumulator or
carry flag. These five are listed in Table 5.3-7. The decimal adjust instruction can adjust for
subtraction as well as addition, thus making BCD arithmetic operations simple. Note that to
allow for this operation the flag N is used. This flag is set if the last arithmetic operation was
a subtract. The negate accumulator (NEG) instruction forms the two’s complement of the
number in the accumulator. Finally notice that a reset carry instruction is not included in
the Z80 since this operation can be easily achieved through other instructions such as a
logical AND of the accumulator with itself.

Table 5.3-8 lists all of the 16-bit arithmetic operations between 16-bit registers. There are five
groups of instructions including add with carry and subtract with carry. ADC and SBC affect
all of the flags. These two groups simplify address calculation operations or other 16-bit
arithmetic operations.

107

8 BIT ARITHMETIC AND LOGIC

SOURCE

REGISTER ADDRESSING

REG.
INDIR.

INDEXED

IMMED.|

'ADD’
ADD w CARRY
‘ADC’
SUBTRACT
'SUB’

SUB w CARRY
‘SBC"

‘AND’
‘XOR’
‘OR’

COMPARE
cp*

INCREMENT
‘INC’

DECREMENT
‘DEC’

TABLE 5.3-6

(HL)

GENERAL PURPOSE AF OPERATIONS

TABLE 5.3-7

Decimal Adjust Acc, ‘DAA’

Complement Acc, ‘CPL’

Negate Acc, ‘NEG’
(2's complement)

Complement Carry Flag, ‘CCF’

Set Carry Flag, 'SCF’

108

16 BIT ARITHMETIC SOURCE

BC DE HL SP IX 1y

HL
‘ADD’ (4 DD DD DD DD
09 19 39 29
1Y FD FD FD FD
09 19 39 29

DESTINATION

ADD WITH CARRY AND | HL ED ED ED ED
SET FLAGS ‘ADC’ 4A 5A 6A 7A

SUB WITH CARRY AND HL
SET FLAGS 'SBC’

INCREMENT “INC. FD

23

DECREMENT 'DEC’ FD

2B

TABLE 5.3-8

ROTATE AND SHIFT

80
Family

A major capability of the Z80 is its ability to rotate or shift data in the accumulator, any
general purpose register, or any memory location. All of the rotate and shift OP codes are
shown in Table 5.3-9. Also included in the Z80 are arithmetic and logical shift operations.
These operations are useful in an extremely wide range of applications including integer
multiplication and division. Two BCD digit rotate instructions (RRD and RLD) allow a digit
in the accumulator to be rotated with the two digits in a memory location pointed to by
register pair HL. (See Figure 5.3-9). These instructions allow for efficient BCD arithmetic.

BIT MANIPULATION

The ability to set, reset and test individual bits in a register or memory location is needed
in almost every program. These bits may be flags in a general purpose software routine,
indications of external control conditions or data packed into memory locations to make
memory utilization more efficient.

The Z80 has the ability to set, reset or test any bit in the accumulator, any general purpose
register or any memory location with a single instruction. Table 5.3-10 lists the 240 instruc-
tions that are available for this purpose. Register addressing can specify the accumulator or
any general purpose register on which the operation is to be performed. Register indirect and
indexed addressing are available to operate on external memory locations. Bit test operations
set the zero flag (Z) if the tested bit is a zero. (Refer to section 6.0 for further explanation
of flag operation).

JUMP, CALL AND RETURN

Figure 5.3-11 -lists all of the jump, call and return instructions implemented in the Z80
CPU. A jump is a branch in a program where the program counter is loaded with the 16-bit
value as specified by one of the three available addressing modes (Immediate Extended,
Relative or Register Indirect). Notice that the jump group has several different conditions
that can be specified to be met before the jump will be made. If these conditions are not met,
the program merely continues with the next sequential instruction. The conditions are all
dependent on the data in the flag register. (Refer to section 6.0 for details on the flag
register). The immediate extended addressing is used to jump to any location in the memory.
This instruction requires three bytes (two to specify the 16-bit address) with the low order
address byte first followed by the high order address byte.

280
Family

ROTATES AND SHIFTS

TABLE

Source and Destination

] H Rotate
A o + . b,
e c 3 oL (HL) [0X + @)UY +) Left Circular
FD
‘RLCY cB c8 cs cB cB c8 cB cs EBD cB
07 00 o1 02 03 04 05 06 d d Rotate
%60 ‘:5[) cy Right Circular
Rac'| cB | cs | c8 | ca | cs | cs | c8 | cs | &5 | o8
oF | 08 | 0o | oa | 08 | oc | o0 | OE | d d
% | G Rotate
o5 [£ L
wu | ce | ce | ca | ce | cs | ca| ce|ocs|ca| e
1 14 1 1 d
S T A N SR = —]
DD FD Rotate
AR | c8 | c8 | ca | ce | c8 | c8| c8 | c8 | 28 | B cv [—= 1}
TYee 1F 8 | 19 | 1a|w | wc| 0| e |d d (o] it
2ZTATE i€ 1E_|
SLA 0o [FD Shift
oRr sta| co | co | co | ca | c8 | cs | cs | cs | 25 | &9 | o
SHIFT 27 20 2 | 2 | 23 2 2% | 2 & Left arithmetic
26 26
00 | fo
"SRA" cB c8 c8 cB8 c8 cB cB8 c8 (-] cB Shift
| ® | 2 | 2alm || oo || g . Rught Arithmetic
. 00 | fO
SRL’ cB cB cs] c8 c8 cB c8 cB cB
3 | 8 | 3 | 3a| 3 | 3| 3 |k |4 shift
e | s Rugh Logeat
ALD €0
ALD oF 0
Rotate Digit
Ty -
o & N Y R [(S (L
6 Acc]
Rotate Digit
C T = T e
Acc ’

110

For example an unconditional Jump to memory location 3E32H would be:

Address A OP Code
A+l Low order address
A+2 High order address

The relative jump instruction uses only two bytes, the second byte is a signed two’s com-
plement displacement from the existing PC. This displacement can be in the range of +129
to -126 and is measured from the address of the instruction OP code.

Three types of register indirect jumps are also included. These instructions are implemented
by loading the register pair HL or one of the index registers IX or 1Y directly into the PC.
This capability allows for program jumps to be a function of previous calculations.

A call is a special form of a jump where the address of the byte following the call instruction
is pushed onto the stack before the jump is made. A return instruction is the reverse of a call
because the data on the top of the stack is popped directly into the PC to form a jump
address. The call and return instructions allow for simple subroutine and interrupt handling.
Two special return instructions have been included in the Z80 family of components. The
return from interrupt instruction (RETI) and the return from non-maskable interrupt
(RETN) are treated in the CPU as an unconditional return identical to the OP code C9H.
The difference is that (RET1) can be used at the end of an interrupt routine and all Z80 peri-
pheral chips will recognize the execution of this instruction for proper control of nested
priority interrupt handling. This instruction coupled with the Z80 peripheral devices imple-
mentation simplifies the normal return from nested interrupt. Without this feature the
following software sequence would be necessary to inform the interrupting device that the
interrupt routine is completed:

BIT MANIPULATION GROUP

REG,
REGISTER ADDRESSING INDIR.| INDEXED
A B c D E H L (HL) | (1X+d) | (1Y+d)
BIT
DD FD
[c8 cs | cs cs cB cB cs | cB cs ce
4
47 40 4 42 3 a4 45 | 46 % %
DD FD
1 c8 cB c8 cB CcB c8 cB cB gB ga
aF 4
48 49 4A 48 ac a0 3 % % |
F
2 [e:] CcB CcB cs [=:] CcB cs8 cs ([:)E CBD
57 50 51 52 53 54 55 56 d d
SD(; 56
3 c8 CB | CB c8 c8 | cB c8 c8 cB

D
c8
Test 5 | s | s [sa [se [sc | | s |g |
BIT
o0 | FD
4 |8 |cea|ce |c8 |[ce|ce |ce|ca |08 | &R
67 |6 |6 |6 |6 |6 | 65 | 66 | d d
6 | 66
F
5 | c8 | cs [cs |8 |cs |cs | cs|ce | 2B |&
6F |68 |69 [ea |68 [ec |60 | 6 | d d
6 | 6
o0 | FD
6 | ce [ca |c8 |c8 [ce|ce || ce |G |c8
|l |n |72 |73 | {5 |7 |4 |d
% | 7
7 |8 |ce |c8 | |ca|ce |ce|cs | 20|88
7 |78 |79 [7alm || mwm|e|d |4
e | %
00 | FD
o | |cs | |cs|cs|ca|ocs|ocn| e | oce
7 1 85
87 | 60 |8 |6 | 8 |8 S | & |
1 | | ce|{ce |8 |cas|ce|cs|ce |8 |ER
8 | 8 |6 |6 |6 |8 |8 |8 |d |d
8e B
3
2 | ce |ce|ce |cs | cs|ca | ce|ece | R Sg
7 1 % d
97 | % |9 2 | 83 | % % |4 |4
3 | ca | c8|c8 |c8 |ce|ce |ce|ce | B0 |8
RESET oF | 98 |9 |9a |98 |[oc | o | o€ d
BIT 9E_ | 9E
‘RES’ 00 | FD
4 | c8|ce|cs |ce|ce|cs|ca|ca| Q8| &R

A7 A0 Al A2 A3 A4 A5 A6

AF A8 A9 AA AB AC AD AE

B7 BO B1 B2 B3 B4 BS B6

BF | B8 B9 BA | BB | BC 8D | BE | d
BE BE
DD FD
0 cs | c8 | c8 | cB c8 | c8 | cB | cB c8 8
c7 c c c2 c3 | ca | Cs 3 i a5
0D [FD
1 c8 c8 | c8 | cB c8 [c8 [cB | cB c8 cB
CF c8 c9 CA cB cc co CE d d
CE CE
o0 | FD
2 c8 c8 | c8 | cs c8 [c8 | c8 | cB cs | c8
D: d
o7 oo | D1 2 03 | D4 | D5 | D6 8 | 3
oD | FD
3 cB | c8 | c8 | c8 c8 | cB | c8 | cB cB | cB
SET OF | D8 | D9 | DA | DB [DC | DD | DE 8 | B¢
BIT
SET' D | FD
4 cB c8 | c8 | cB cs | c8 c8 | cs B | CB
E7 €0 E1 E2 E3 E4 ES E6 i 8
DD | FD
5 c8 c8 | c8 | cB c8 [c8 | cB | cB c8 | c8
EF E8 E9. | EA EB | EC | ED | EE e e
oD | FD
6 cs | cB c8 | c8 c8 [c8 | c8 | cB cs cs
F7 FO F1 F2 F3 | Fa Fs | Fe e e
DD | FD
7 c8 c8 [cB | cB c8 | c8 cs | cs cs | c8
FF F8 F9 FA FB8 | FC FD | FE 4| 4

TABLE 5.3-10

280
Family

Disable Interrupt

routine is exited.
LD A, n — notify peripheral that service

OUTn, A
Enable Interrupt

Return

routine is complete

— prevent interrupt before

This seven byte sequence can be replaced with the three byte EI RETI instruction sequence
in the Z80. This is important since interrupt service time often must be minimized.

To facilitate program loop control the instruction DJNZ e can be used advantageously.
This two byte, relative jump instruction decrements the B register and the jump occurs if
the B register has not been decremented to zero. The relative displacement is expressed
as a signed two’s complement number. A simple example of its use might be:

Address
N, N+1
N+2toN+9

N+10, N+ 11
N+12

Instruction

Comments

LDB,7 ; set B register to count of 7

(Perform a sequence
of instructions)

DJNZ -10
(Next Instruction)

; loop to be performed 7 times
;to jump from N +12to N +2

JUMP, CALL AND RETURN GROUP

CONDITION

UN- NON
COND. { CARRY| CARRY| ZERO

NON
ZERO

PARITY
EVEN

PARITY
oDD

SIGN
NEG

SIGN
POS

REG
B+#0

JUMP “JP’ IMMED. nn
EXT.

JUMP "R’ RELATIVE | PC+e

JUMP P’ (HL)

JUMP JP* REG. (1x)
INDIR.

JUMP P’ ay)

‘CALL’ IMMED. mn
EXT.

DECREMENT B,

JUMP IF NON | RELATIVE | PCte

ZERO ‘DINZ’

RETURN REGISTER | (SP)

‘RET' INDIR. (sP+1

RETURN FROM | REG. (sp)

INT ‘RETI’ INDIR. (sP+1)| 4D

RETURN FROM

NON MASKABLE | REG. (SP) ED

INT ‘RETN' INDIR. (SP+1) | 45
NOTE—CERTAIN
FLAGS HAVE MORE

TABLE 5.3-11 THAN ONE PURPOSE.

REFER TO SECTION
6.0 FOR DETAILS

112

Table 5.3-12 lists the eight OP codes for the restart instruction. This instruction is a single
byte call to any of the eight addresses listed. The simple mnemonic for these eight calls is
also shown. The value of this instruction is that frequently used routines can be called with
this instruction to minimize memory usage.

RESTART GROUP

‘RST O’

‘RST 8’

‘RST 16’

‘RST 24°

| “RsT 32"

»womuoOo>» rr>»o

‘RST 40"

‘RST 48’

| ‘RST 56’

TABLE 5.3-12

INPUT/OUTPUT

The Z80 has an extensive set of Input and Output instructions as shown in table 5.3-13 and
table 5.3-14. The addressing of the input or output device can be either absolute or register
indirect, using the C register. Notice that in the register indirect addressing mode data can be
transferred between the 1/0 devices and any of the internal registers. In addition eight block
transfer instructions have been implemented. These instructions are similar to the memory
block transfers except that they use register pair HL for a pointer to the memory source
(output commands) or destination (input commands) while register B is used as a byte
counter. Register C holds the address of the port for which the input or output command
is desired. Since register B is eight bits in length, the 1/0 block transfer command handles up
to 256 bytes.

In the instructions IN A, nand OUT n, A an I/O device address n appears in the lower half
of the address bus (Ag-A7) while the accumulator content is transferred in the upper half
of the address bus. In all register indirect input output instructions, including block 1/0
transfers the content of register C is transferred to the lower half of the address bus (device
address) while the content of register B is transferred to the upper half of the address bus.

INPUT GROUP PORT ADDRESS

LMMED. REG.
WDIR.
n ©)
A ED
78
B ED
40
R
E
G [ED
48
INPUT “IN’ S
D D ED
R 50
E
s
s E ED
1 58
INPUT N
DESTINATION 6 |, 0o
60
L ED
68
“INI — INPUT & ED
Inc HL, Dec B A2
INIR’= INP, Inc HL, ED
Dec B, REPEAT IF B0 B2
REG, | (HL) BLOCK INPUT
INDIR COMMANDS
‘IND’— INPUT & ED
Dec HL, Dec B AA
‘INDR'—INPUT, Dec HL, ED
Dec B, REPEAT IF B#0 BA

TABLE 5.3-13

CPU CONTROL GROUP

The final table, table 5.3-15 illustrates the six general purpose CPU control instructions. The
NOP is a do-nothing instruction. The HALT instruction suspends CPU operation until a
subsequent interrupt is received, while the DI and El are used to lock out and enable inter-
rupts. The three interrupt mode commands set the CPU into any of the three available
interrupt response modes as follows. |f mode zero is set the interrupting device can insert
any instruction on the data bus and allow the CPU to execute it. Mode 1 is a simplified
mode where the CPU automatically executes a restart (RST) to location 0038H so that no
external hardware is required. (The old PC content is pushed onto the stack). Mode 2 is the
most powerful in that it allows for an indirect call to any location in memory. With this
mode the CPU forms a 16-bit memory address where the upper 8-bits are the content of
register | and the lower 8-bits are supplied by the interrupting device. This address points
to the first of two sequential bytes in a table where the address of the service routine is
located. The CPU automatically obtains the starting address and performs a CALL to this
address.

l<@— Pointer to Interrupt table. Reg.
I is upper address,
Peripheral supplies lower address

Address of interrupt
service routine

OUTPUT GROUP

SOURCE
REG.
REGISTER IND.
A B c D E H L (HL)
LMMED. n
‘ouT’
REG. | (C) ED ED ED ED ED ED ED
IND. 79 41 49 51 59 61 69
‘OUTI’ — OUTPUT REG. [(C) ED
inc HL, Dec b IND. A3
‘OTIR" — OUTPUT, Inc HL, REG. | (C) ED
Dec B, REPEAT IF B#0 IND. B3 BLOCK
OuTPUT
‘OUTD’ — OUTPUT REG. (c) ED COMMANDS
Dec HL & B IND. AB
2
‘OTDR’ — OUTPUT, Dec HL | REG. | (C) ED SE
& B, REPEAT IF B#0 IND. BB R &
N
PORT
DESTINATION
ADDRESS
TABLE 5.3-14

MISCELLANEOUS CPU CONTROL

DISABLE INT “(DI)’

ENABLE INT ‘(EI)

SET INT MODE 0 E
MO’ 52 | 8080 moDE

SET INT MODE 1
T 56 | CALLTOLOCATION 0038,

SET INT MODE 2 ED | INDIRECT CALL USING REGISTER
™Mz 5E | 1AND 8 BITS FROM INTERRUPTING

DEVICE AS A POINTER.

TABLE 5.3-156

115

116

6.0 FLAGS

Each of the two Z80-CPU Flag registers contains six bits of information which are set or
reset by various CPU operations. Four of these bits are testable; that is, they are used as
conditions for jump, call or return instructions. For example a jump may be desired only if
a specific bit in the flag register is set. The four testable flag bits are:

1) Carry Flag (C) — This flag is the carry from the highest order bit of the accumulator.
For example, the carry flag will be set during an add instruction where a carry from
the highest bit of the accumulator is generated. This flag is also set if a borrow is
generated during a subtraction instruction. The shift and rotate instructions also
affect this bit.

2) Zero Flag (Z) — This flag is set if the result of the operation loaded a zero into the
accumulator. Otherwise it is reset.

3) Sign Flag(S) — This flag is intended to be used with signed numbers and it is set if
the result of the operation was negative. Since bit 7 (MSB) represents the sign of the
number (A negative number has a 1 in bit 7), this flag stores the state of bit 7 in the
accumulator.

4) Parity/Overflow Flag(P/V) — This dual purpose flag indicates the parity of the result
in the accumulator when logical operations are performed (such as AND A, B) and it
represents overflow when signed two’s complement arithmetic operations are per-
formed. The Z80 overflow flag indicates that the two’s complement number in the
accumulator is in error since it has exceeded the maximum possible (+127) or is
less than the minimum possible (—128) number that can be represented two's
complement notation. For example consider adding:

+120= 0111 1000
+105= 01101001

C=0 11100001 =-95 (wrong) Overflow has occurred;

Here the result is incorrect. Overflow has occurred and yet there is no carry to indicate an
error. For this case the overflow flag would be set. Also consider the addition of two
negative numbers:

5 1111 1011
-16 1111 0000

c=1 1110 1011 =-21 correct

Notice that the answer is correct but the carry is set so that this flag can not be used as an
overflow indicator. In this case the overflow would not be set.

For logical operations (AND, OR, XOR) this flag is set if the parity of the result is even and
it is reset if it is odd.

There are also two non-testable bits in the flag register. Both of these are used for BCD
arithmetic. They are:

1) Half carry(H) — This is the BCD carry or borrow result from the least significant
four bits of operation. When using the DAA (Decimal Adjust Instruction) this
flag is used to correct the result of a previous packed decimal add or subtract.

2) Add/Subtract Flag (N) — Since the agorithim for correcting BCD operations is
different for addition or subtraction, this flag is used to specify what type of in-
struction was executed last so that the DAA operation will be correct for either
addition or subtraction.

118

The Flag register can be accessed by the programmer and its format is as follows:

D7 D@
[sTZzIxJnIxTpr/VIN]C]

X means flag is indeterminate.

Table 6.0-1 lists how each flag bit is affected by various CPU instructions. In this table
a '+ "'indicates that the instruction does not change the flag, an ‘X’ means that the flag goes
to an indeterminate state, an ‘0O’ means that it is reset, a ‘1’ means that it is set and the
symbol t indicates that it is set or reset according to the previous discussion. Note that
any instruction not appearing in this table does not affect any of the flags.

Table 6.0-1 includes a few special cases that must be described for clarity. Notice that the
block search instruction sets the Z flag if the last compare operation indicated a match
between the source and the accumulator data. Also, the parity flag is set if the byte counter
(register pair BC) is not equal to zero. This same use of the parity flag is made with the
block move instructions. Another special case is during block input or output instructions,
here the Z flag is used to indicate the state of register B which is used as a byte counter.
Notice that when the 1/O block transfer is complete, the zero flag will be reset to a zero
(i.e. B=0) while in the case of a block move command the parity flag is reset when the
operation is complete. A final case is when the refresh or | register is loaded into the
accumulator, the interrupt enable flip flop is loaded into the parity flag so that the complete
state of the CPU can be saved at any time.

SUMMARY OF FLAG OPERATION

D7 DO
P/

Instruction S |Z H V|N |C | Comments
ADD A5; ADC As POy ix {t[x] vio |1 | 8bitaddoradd with carry
SUB,s; SBCA s; CPs; NEG 4 PUX x| vt { | 8bit subtract, subtract with carry, compare and negate accumulator
AND s iy X1 |x|pPjo o0 ')
0Rs: XORs f it ix|oixiplolo } Logical operations
INCs Pltax b Ix | vio | e | 8bitincrement
DECs b X [b iX | v]1 | e | 8bitdecrement
ADD DD, SS e e I X | X[X|e® [0 |} | 16btadd
ADC HL, SS Py X x| x| v/|o |t | 16bitaddwith carry
SBC HL, SS oLy X XX | v]1 |} | 16bitsubtract with carry
RLA; RLCA; RRA; RRCA e (e [X [0 |X|e® |0 |} | Rotateaccumulator
RLs; RLCs; RR's; RRCs; bl (X (o (X|Pio0 { Rotate and shift locations

SLAs; SRAs; SRLs

RLD; RRD f 1t IX |0 X]| P |0 |e | Rotatedigit left and right
DAA Pl x|t | x| Ple |} | Decimaladjust accumulator
CPL e (e | X |1 {X]| e |1 |e | Complementaccumulator
SCF e | X |0 X |® |0 |1 | Setcarry
CCF e e | X | X | X|® |0 |} | Complementcarry
INT, (C) t 1Y X |0 X]| P |0 |® | Inputregisterindirect
INI; IND; OUTI; OUTD X b x| Xix|xi X }Block input and output
INIR; INDR; OTIR; OTDR X 1 | X | XX | X[1 | X |{JZ=0if B+ 0otherwise Z=1
LDI; LDD X IX{X [0 X|}|0 e }Block transfer instructions
LDIR; LDDR X | X|X |0 [X][0.0 [* [JP/V=1if BCFO0, otherwise P/V =0
CPI; CPIR; CPD; CPDR t b X |4 | X |4 |1 | e | Blocksearch instructions
Z=1if A=(HL), otherwise Z =0
P/V =1if BC +# 0, otherwise P/V = 0
LDA,I;LDAR 1 $ |X |0 [X |IFF{0 |® | Thecontent of the interrupt enable flip-flop (IFF) is copied into
the P/V flag
BITb,s X |4 X |1 X | X|0 |e | Thestate of bitb of location s is copied into the Z flag
The following notation is used in this table:
SYMBOL OPERATION

Carry/link flag. C=1 if the operation produced a carry from the MSB of the operand or result.

Zero flag. Z=1 if the result of the operation is zero.

Sign flag. S=1 if the MSB of the result is one.

P/V Parity or overflow flag. Parity (P) and overflow (V) share the same flag. Logical operations affect this flag

with the parity of the result while arithmetic operations affect this flag with the overflow of the result.
If P/V holds parity, P/V=1 if the result of the operation is even, P/V=0 if result is odd. If P/V holds over-
flow, P/V=1 if the result of the operation produced an overflow.

“© NO

H Half-carry flag. H=1 if the add or subtract operation produced a carry into or borrow from bit 4 of the
accumulator.

N Add/Subtract flag. N=1 if the previous operation was a subtract.
H and N flags are used in j ion with the decimal adjust instruction (DAA) to properly correct the

result into packed BCD format following addition or subtraction using operands with packed BCD format.
The flag is affected according to the result of the operation.

[] The flag is unchanged by the operation.
[} The flag is reset by the operation.
1 The flag is set by the operation.
X The flag is a “don’t care”’.
v P/V flag affected according to the overflow result of the operation.
P P/V flag affected according to the parity result of the operation.
r Any one of the CPU registers A, B,C, D, E, H, L.
s Any 8-bit location for all the addressing modes allowed for the particular instruction.
ss Any 16-bit location for all the addressing modes allowed for that instruction.
i Any one of the two index registers IX or 1Y.
R Refresh counter.
n 8-bit value in range <0, 255>
nn 16-bit value in range <0, 65535>
TABLE 6.0-1

LU

Apwsey

08z

120

7.0 SUMMARY OF OP CODES AND EXECUTION TIMES

The following section gives a summary of the Z80 instruction set. The instructions are
logically arranged into groups as shown on Tables 7.0-1 through 7.0-11. Each table shows
the assembly language mnemonic OP code, the actual OP code, the symbolic operation,
the content of the flag register following the execution of each instruction, the number
of bytes required for each instruction as well as the number of memory cycles and the
total number of T states (external clock periods) required for the fetching and execution
of each instruction. Care has been taken to make each table self-explanatory without
requiring any cross reference with the text or other tables.

121

Z80

Family

8-BIT LOAD GROUP

Symbelic Flags Op-Code No. of [No.of M |No.of T
Mnemonic Operation | S H P/V 76 543 210 Hex Bytes | Cycles | States C
LDr,s r-s . X|o|X|e 01 r s 1 1 4 rs Reg.
LDrn r-—n . X|o[X|e 00 r 110 2 2 7 000 B
- n - 001 C
LD, (HL) r —(HL) . X|o|X|e 01 r 110 1 2 7 010 D
LD, (IX+d) r—(IX+d) | @ X|®oiX|e 11 011101 DD 3 5 19 on E
01 r 110 100 H
- d - 101 L
LD, (1Y+d) r—{(1Y+d) | ® X|e i X|e " 1M1 FD 3 5 19 1 A
01 r 110
—~d -
LD (HL), r (HL) - . X|eo[X|e 01 110 r 1 2 7
LD (1X+d), r [(IX+d)=r | @ X|{o{X|e 11 011101 DD 3 5 19
01 110 r
- d -
LD (1Y+d), r (IY+d)=r | ® Xj{o|X|e 11 11110 FD 3 5 19
01 110 r
- d -
LD (HL), n (HU~n | X|®|X|e 00 110110 36 2 3 10
-— n -
LD (IX+d),n |(IX+d}=n | @ X|e|X]|e 11 011101 DD (4 5 19
00 110 110 36
~ d -
-— N -
LD (IY+d),n |(IY+d)~—n | e X|o|X|e 1 1nin FD 4 5 19
00 110110 36
—d -
-— N —
LD A, (BC) A—(BC) | Xje|X]|e 00 001010 0A 1 2 7
LD A, (DE) A—(DE) | X|eo|X|e® 00 011010 1A 1 2 7
LD A, (nn) A —(nn) ° X|e|X|e 00 111 010 3A 3 4 13
- -
-— N -
LD (BC), A (BC)—A . X|® | X |e 00 000010 02 1 2 7
LD (DE), A (DE)--A . X|o|X|e 00 G10010 12 1 2 7
LD (nn), A (nn) --A] X|eo|X]e 00 110010 32 3 4 13
-— N -
- n -
LD A I A1 } X |0 | X |IFF 11 101101 ED 2 2 9
01 010111 57 ’
LDA R A-R H X |0 | X |IFF 11 101101 ED 2 2 9
01 01111 5F
LD I, A 1 —A ° X|®o X |]e 11 101101 ED 2 2 9
01 000 111 47
LD R, A R-A ° X|eo[X|e 11 101101 ED 2 2 9
01 001111 AF

Notes: r, s means any of the registers A, B, C, D, E, H, L
IFF the content of the interrupt enable flip-flop (IFF) is copied into the P/V flag

Flag Notation:

Table 7.0-1

o= flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
1= flag is affected according to the result of the operation.

122

16-BIT LOAD GROUP

Symbolic Flags 0p-Code No. of |No.of M| No.of T
M i Operation S |2 H P/V| N[C |76 543 210] Hex Bytes | Cycles | States C
LD dd, nn dd - nn e el X|®|X|o e ® | 00 dd0 001 3 3 10 dd Pair
- n - 00 BC
- n - 01 DE
LD IX, nn IX = nn oo | X|® | X|e® e | o] 11011101 DD 4 4 14 10 HL
00 100 001 | 21 1msp
~'n -
- n -
LD 1Y, nn 1Y - nn oo X e | X|e e e 11 111 101 FD 4 4 14
00 100 001 21
~ n -
~ n -
LDHL () [H ~(n+1) | @@ | X | e | X|e e [efQ0101010| 2A 3 5 16
L - (nn) - n -
~ n -
LD dd, (nn) ddy~(nn+1) | e e | X |® | X |e |@ e 11101 101 ED 4 6 20
ddy -(nn) 01 dd1 011
-~ n -
-~ n -
LD I1X, (nn) IXH=(nn+1) | @ [@ [X | @ | X | @ [@ e 11 011 107 DD 4 6 20
IXL~(nn) 00 101 010 | 2A
-— n -
- n -
LD 1Y, (nn) IYy~(nn+1) | @ | e | X | @ | X |o e | ol 11111 101| FD 4 6 20
1Y ~(nn) 00 101 010 2A
- n b
-— n -
LD (nn), HL | (nn+1) = H ®e|e | X |[® | X |e® |e | (00100010 22 3 5 16
(nn) =L -~ n -
- n -
LD (nn), dd (nn+1) ~ddy | ® |® [X [® | X |® |@ e | 11 101 101 ED 4 6 20
(nn)—dd 01 ddo 011
- n -
~ n -
LD (nn), IX | (an+1) ~1Xy | ® {® [X [® | X |o e | o|11011101| DD |4 6 |20
(nn) =1X 00 100 010 | 22
- n -
~ n -
LD (nn), 1Y (nn+1) ~1Yp| e |® [X [o | X |o |@ e 11 111 101 FD 4 6 20
(nn) =1Y 00 100 010 22
-— n —_
- n -
LD SP, HL SP - HL oo | X |[o X |o® | e | 11 111 001 F9 1 1 6
LD SP, IX SP - IX oo X |® |X |o | e 11011 101 DD 2 2 10
11 111001 | F9
LD SP, 1Y SP - 1Y oo (X |® |X o |e e | 11 111 101 FD 2 2 10
11 111 001 F9 qq Pair
PUSH qq (SP-2) ~qqL [®|® [X |® |[X [® [e | |11 qgq0 101 1 3 n 00 BC
(SP-1) ~ qqy 01 DE
PUSH IX (SP-2) —IXp |®|® | X |® [X |® | e 11 011 101 DD 2 4 15 10 HL
(SP-1) = IXy 11 100 101 ES 1" AF
PUSH 1Y (SP-2) <1y |e [® | X |® | X |o |e e 11 111 101 FD 2 4 15
(SP-1) ~ 1Yy 11 100 101 E5
POP qq qqH~(SP+1) | e |e | X |e® | X [e |e | e |11 gq0 001 1 3 10
qq ~(SP)
POP IX IXH=(SP+1) [@ fo | X |® [X |o |@ e | 11 011 101 DD 2 4 14
IXL ~(SP) 11 100 001 E1
POPIY IYH=(SP+1) | @ |e | X [® | X |o |@ e 11 111 101 FD 2 4 14
1Y -(SP) 11 100 001 | E1

Notes: dd is any of the register pairs BC, DE, HL, SP
qq is any of the register pairs AF, BC, DE, HL
(PAIR)H, (PAIR) | refer to high order and low order eight bits of the register pair respectively.
eg. BCL =C AFy=A
Flag Notation: @ = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
flag is affected according to the result of the operation.

Table 7.0-2

123

EXCHANGE GROUP AND BLOCK TRANSFER AND SEARCH GROUP

Symbolic Flags Op-Code No. of |No.of M{No.of T
Mnemonic Operation | S | Z H P/V| N | C |76 543 210| Hex | Bytes [Cycles | States | Comments
EX DE, HL | DE~-HL o |o | X|®|X|e®|e®|e 11101 011] EB 1 1 4
EX AF, AF' | AF --AF’ e |eo| X|®|X|e®|e | e 00001 000] 08 1 1 4
EXX BC -BC’ o |eo| X |®o | X|e® e |e 11011001 D9 1 1 4 Register bank and
<DE *DE’) auxiliary register
HL--HL' bank exchange
EX(SP), HL| H ~~(SP+1) (e (e [X |® | X | o | o | o (11100 011 E3 1 5 19
L ~=(SP)
EX(SP), IX [IXy=={SP+1)[® | @ | X |® | X | e | ® | ® 111 011 101| DD 2 6 23
IX -{SP) 11 100 011 E3
EX(SP), 1Y [IYH=~{SP+1)|® | @ | X @ | X | ® | ® | ® {11 111 101| FD 2 6 23
1Y ~~{SP) 11 100 011| E3
®
LDI (DE)=(HL) o | e} X |0 |X]| }]| 0fe 171101101 ED 2 4 16 Load (HL) into
DE - DE+1 10 100 000 AO (DE), increment the
HL = HL+1 pointers and
BC - BC-1 decrement the byte
counter (BC)
LDIR (DE)=(HL) |® (e | X [O (X | O Ofe® [11101101| ED 2 5 21 IfBC#0
DE - DE+1 10 110 000 BO 2 4 16 IfBC=0
HL = HL+1
BC = BC1
Repeat until
BC=10
©)
LDD (DE)=(HL) |® [e | X |0 |X t 0 | e |11101 101 ED 2 4 16
DE - DE1 10 101 000| A8
HL = HL1
BC - BC1
LDDR (DE)=(HL) |® |® [X [0 {X|{O {0 |® (11101 101| ED 2 5 21 IfBC#0
DE - DE-1 10 111 000| B8 2 4 16 IfBC =0
HL = HL1
BC - BC1
Repeat until
BC=0
@ ®
CcPI A—(HL) LY IX X Py 1 e prioni0m| ED |2 4 16
HL = HL+1 10 100 001| A1
BC - BC-1
@ ®
CPIR A - (HL) b X [X4 |e 11101101 ED 2 5 2 IfBC+# 0and A#(HL)
HL = HL#1 10 110 001 B1 2 4 16 1fBC=00r A=(HL)
BC - BC1
Repeat until
A=(HL) or
BC=10
@ @®
CPD A-(HL tpb X P bIxpt] e firio1101| ED 2 4 16
HL — HL1 10 101 001| A9
BC - BC-1
@ @
CPDR A—(HL) b x4 x 4|1 [ep1101101] ED 2 5 21 1fBC#0and A#(HL)
HL - HL1 10 111 001} B9 2 4 16 IfBC=00r A=(HL)
BC - BC-1
Repeat until
A=(HL or
BC=0

Notes: (D P/V flagis 0 if the result of BC-1 = 0, otherwise P/V = 1
@ Zflagis 1if A= (HL), otherwise Z = 0.

Flag Notation: @ = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
= flag is affected according to the result of the operation.

Table 7.0-3

124

8-BIT ARITHMETIC AND LOGICAL GROUP

Symbolic Flags 0p-Code No.of |{No.ofM|No.of T
Mnemonic Operation stz H P/VI N | C {76 543 210| Hex | Bytes |Cycles |States | Comments
ADD A, r A~A+r t e Xy x|{v]o|y|0[@og] r 1 1 4 r Reg.
ADD A, n A ~A+n tlv x| b x|vi{o]| t|11[@00]110 2 2 7 000 B
~n - 001 c
010 D
ADD A, (HL) A -~ A+(HL) tly x4y x|v|o|} [10[000]110 1 2 7 011 E
ADD A, (IX+d) | A= A+(1X+d) b x)P i xjvio |t 1o1m1o1| op |3 5 19 100 H
10 [000]110 101 L
- d = m A
ADD A, (IY+d) [A=A+(Y+d) | ¢ [4 I x| ¢ | X[{Vv |0 11111101 FD |3 5 19
10 [000]110
« d -

ADCA, s A-A+s+CY | 4|4 [x| ¢ x|v]o|¢ | [01] sisany of r, n,

SUB's A~A-s Py xXp x|t [o70] (HL), (IX+d),

SBCA,s A<A-s-CY | b x| b x|v]t]|! (1'Y+d) as shown for

AND s A~Ans try) x{ vV ixlelolo ADD instruction.

ORs A=A v s tly i x{oyixiplojo 110 The indicated bits

XOR's A~A®s il xjo(x|pPpjolo 101 replace the in

CPs A-s tErI X x|vy|t|] the ADD set above.

INCr r-r+1 P4 X ¢ x|v|o]|e |00 r [100 1 1 4

INC (HL) (HU=(HU+1 | H1 4 x| ¢ x|v |0 |e |00110[100) 1 3 1

INC (1X+d) (IX+d) - { b X 4] X|jv]|0o|e 11011101 DD |3 6 23

(1X+d)+1 00 110[700)
-~ d -
INC (1Y+d) (1Y+d) - { bl X4 X|v|o]e 11111101 FD |3 6 23
(1Y+d)+1 00 110[100)
~ d -

DECs s~s-1 PrbixitIxjvit]e sisany of r, (HL),
(I1X+d), (1Y+d) as
shown for INC.
DEC same format
and states as INC.
Replace with
[107)in OP Code.

Notes: The V symbol in the P/V flag column indicates that the P/V flag contains the overflow of the result of the
operation. Similarly the P symbol indicates parity. V = 1 means overflow, V = 0 means not overflow, P =1
means parity of the result is even, P = 0 means parity of the result is odd.

Flag Notation:

Table 7.04

® = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown.
} = flag is affected according to the result of the operation.

125

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

. Symbolic Flags ‘ Op-Code No. of |No.ofM | No.of T
Mnemonic | Operation S|z H P/V| N| C |76 543 210 Hex Bytes | Cycles | States Comments
DAA Convertsacc, | 4 [4 | X| 4 | X|P [| 4100100 111} 27 1 1 4 Decimal adjust
content into accumulator
packed BCD
following add
or subtract
with packed
BCD operands
CPL A-A e e | X| 1| X|e®| 1| ei|00101 111 2F 1 1 4 Complement
accumulator
(One's complement)
NEG A-R+1 (b x| b x|v]{t1]{n1om101| e |2 2 8 Negate acc, (two's
01 000 100| 44) complement)
CCF cY-CY e e [XX |X|e|0]| }i00111111] 3F 1 1 4 Complement carry
flag
SCF CY-1 e e | X|0 | X|® 010010111 37 1 1 4 Set carry flag
NOP No operation| ® | ® | X |® | X | e |e | e 00 000 000{ 00 1 1 4
HALT CPUhalted | ® |® | X |® | X | ® e e 01110110 76 1 1 4
Di* IFF -~ 0 oo | X|® | X|e|e® ‘e (11110011 F3 1 1 4
El* IFF -1 e e | Xi® | X|® e | e |11 111011 FB 1 1 4
Mo Setinterrupt | ® [® | X |® | X | e e e (11 101 101 ED 2 2 8
mode 0 01 000 110 46
M1 Setinterrupt | @ |® | X |® | X | e | e | e 11 101 101| ED 2 2 8
mode 1 01 010 110 56
M2 Setinterrupt | ® |® | X |e | X | e e e (11101 101] ED 2 2 8
mode 2 01 011 110 5E

Notes: |FF indicates the interrupt enable flip-flop
CY indicates the carry flip-flop.

Flag Notation: @ = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
} = flag is affected according to the result of the operation.

*Interrupts are not sampled at the end of El or DI

Table 7.0-6

126

16-BIT ARITHMETIC GROUP

Symbolic Flags Op-Code No.of |No.of M{No.of T|
Mnemonic Operation H P/V 76 543 210| Hex | Bytes |Cycles | States | Comments
ADD HL,ss | HL = HL+ss X{ X | e 00 ss1 001 1 3 1 ss Reg.
00 BC
ADC HL, ss HL < HL+ss+CY XX |V 11 101 101 ED |2 4 15 01 DE
01 ss1 010 10 HL
1 N
SBC HL, ss HL = HL-ss-CY XX |V 11101 101 ED |2 4 15
01 ss0 010
ADDIX,pp |IX < IX+pp X|{ X |e 11 011 101 DD |2 4 15 pp Reg.
00 pp1 001 0o BC
01 DE
10 1X
1 SP
ADD 1Y, r 1Y = 1Y +rr X | X |e® 11 111 101 FD |2 4 15 r Reg.
00 rr1 001 00 BC
01 DE
10 Y
" SP
INCss ss - ss+1 e X | 00 ss0 011 1 1 6
INCIX IX = IX+1 e X | e 11 011 101 bD |2 2 10
00 100 011 23
INC 1Y 1Y = 1Y +1 e X | e 1 111 101 FD |2 2 10
00 100 011 23
DECss ss - ss-1 e | X | 00 ss1 011 1 1 6
DECIX IX < 1X-1 e (X |e® 11011 101 DD |2 2 10
00 101 011 2B
DEC1Y 1Y <1Y-1 e X |e 11111 101 FD |2 2 10
00 101 011| 2B

Notes: ssis any of the register pairs BC, DE, HL, SP
pp is any of the register pairs BC, DE, 1X, SP
rr is any of the register pairs BC, DE, 1Y, SP.

Flag Notation:

Table 7.0-6

® = flag not affected, 0 = fiag reset, 1 = flag set, X = flag is unknown.
} = flag is affected according to the result of the operation.

280
Family

127

ROTATE AND SHIFT GROUP

Symbolic Flags Op-Code No.of|No.of |No.of
Iz M| T
M i Operati S|z H V| N |C (76543210 | Hex |Bytes|Cycles|States| C
RLCA 7=-—0 e (e | X 0O iX|e| 04100000111 |07 1 4 Rotate left circular

A accumulator

RLA Ek e e X0 |X|e|0|tooo0t0111] 17 |1 1 4 Rotate left
A

accumulator

RRCA ". 00 001 111 | OF 1 1 4 Rotate right circular

A accumulator

RRA G7——0gcv:] e o X|O0|X|® 0

L]

L]
x
o
=

L]
o

00 011 111 | 1F |1 1 4 Rotate right

A accumulator
RLCr pldIx|o[x{p|o|$11001011] CB ({2 {2 |8 [Rotateleftcircular
00 r register r
RLC (HL) tld|X|o[x|{P|o|y 11001011 CB 2 |4 {15 |r Reg
00 [000] 110 000 B
001 c
RLC (1X+d) } [p—o] tidixlof{x|{pPlolsjimonnier|oola |6 |23 |010 D
r(HL)(1X+d), (1Y+d) 11 001 011 CB 011 E
-~ d - 100 H
00 [000] 11 101 L
m A
RLC (1Y+d) plrixjo|x(plo|tprimion| Fo (4 (6 |23
11 001 011 CB
- d -
00 [000] 110
RLs VlbIX i olx|Ploly Instruction format and
s=r,(HL), (1X+d), (1 Y+d) states are as shown for
RLC's. To form new
RRCs lr=gL&v] pla(x|olx|plolt| @at 0p-Code replace [000]
s =r,(HL), (1X+d), (1Y+d) of RLC's with shown
code
RR's (=0 kv bralxoixiplo)t| @
s =r1,(HL), (1X+d),(1Y+d)
SLAs EY]e—ff=—0]=0 titixjo{xiplo]t
s =r,(HL), (1X+d),(1Y+d)
SRAs =20 Pl ixjolx|plo|t| [o1
s =r,(HL),(1X+d),(1Y+d)
SRLs 0-7—10]—[CY] plpixlolxipiolt| OO

s Zr,(HL), (1X+d),(1Y+d)

RLD A (HL

-~
-
x
(=]
>
o
o
L]

11 101 101 | ED |2 5 18 Rotate digit left and
01 101 111 | 6F right between the
accumulator

and location (HL).

RRD A | BEaBot0) ¢+t IX |0 [x [P 0| et 101101 ED 2 |5 |18 |The content of the
01 100 111 | 67 upper half of the
accumulator is
unaffected

Flag Notation: @ = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
{ = flag is affected according to the result of the operation.

Table 7.0-7

128

BIT SET, RESET AND TEST GROUP

Symbolic Flags Op-Code No. of [No.ofM{No.of T
M i Operation S|z H [P/VI N C |76 543 210] Hex |Bytes |Cycles |States | Comments
BITh, r Z-Tp X| 4] X| 1| X|X|0]|e]|11001011] CB |2 2 8 T Reg.
01 b r 000 B
BIT b, (HL) Z’(H_L)b X| 4| X 1| X{X|0]|e{11001011 CB |2 3 12 001 C
01 b 110 010 D
BITh, (IX+d)p {Z~{IX+d)p | X | §| X} 1| X|]X | 0| e|11011 101 DD |4 5 20 o1 E
11 001 011 CB 100 H
- d - 101 L
01 b 110 m A
b Bit Tested
BITh, (IV+#d)y {Z={1Y+dlp | X[| X| 1| X|X |0 |e|11111101| FD |4 5 20 000 0
11 001 011 CB 001 1
- d - 010 2
01 b 110 011 3
100 4
101 5
110 6
1 7
SET b, r rh - 1 o X e | X|e® e e |11001011 CB |2 2 8
i o2
SETb, (HL) |[(HUp~1 |e | e X| e | X|e®|e|e1700 011 CB {2 4 15 @ E
i1 b 110 *
SETb, (IX+d) |[(IX+d), =1 |® | ®| X| e | X | e | e | o111 011 101| DD |4 6 23
11 001 011} CB
- d -
M1 b 110
SETb, (IY+d) |(IY+d)p =1 |® | @ X| e | X | e | e e [11 111101 FD |4 6 23
11 001 011| CB
- d -
@] b 110
RESbH, s sp~ 0 e|e| x| e x|eo o el|f] To form new Op-
s=r, (HL), Code replace (T1]
(IX+d), of SET b, s with
(1Y+d) [10]. Flags and time
states for SET
instruction

Notes: The notation s, indicates bit b (0 to 7) or location s.

Fiag Notation: @ = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
{ = flag is affected according to the result of the operation.

Table 7.0-8

129

280
Family

JUMP GROUP

Symbolic Flags Op-Code No.of | No.of M{No.of T
M Operati H P/V 76 543 210{ Hex | Bytes |Cycles | States | Comme
JPnn PC - nn e | X|e® 11000 011 C3 |3 3 10
- n -
- n - [Condition
JPcc, nn If condition cc o | X |e 11 cc 010 3 3 10 000 | NZ non zero
is true PC = nn, - n - 001 |Z zero
otherwise - n - 010 | NC non carry
continue 011 |C carry
100 | PO parity odd
101 | PE parity even
110 [P sign positive
JRe PC~PC+e e | X |e 00 011 000f 18 | 2 3 12 111 | M sign negative
- 9'2 -
JRC,e 1fC=0, e | X|e 00 111 000, 38 | 2 2 7 If condition not met
continue -~ e2 -
ifc=1, 2 3 12 If condition is met
PC '~ PC+e
JRNC, e ifc=1, e | X |e 00 110 000 30 | 2 2 7 If condition not met
continue - e2 -
1fC=0, 2 3 12 If condition is met
PC = PC+e
JRZ e 1fZ2=0 o | X | 00 101 000, 28 | 2 2 7 If condition not met
continue - e2 -
ifzZ=1, 2 3 12 If condition is met
PC ~ PC+e
JRNZ e 1£z=1, o | X |eo 00 100 000] 20 | 2 2 7 If condition not met
continue - e2 -
1fZ=0, 2 3 12 If condition is met
PC - PC+e
JP(HL) PC -~ HL e X |e 11 101 001] E9 |1 1 4
JP (1X) PC - IX e (X |e 11011 101) DD | 2 2 8
11 101 001| E9
JP (1Y) PC - 1Y e | X |e 11 111101 FD | 2 2 8
11 101 001 E9
DINZ, e B -~ B1 o | X |eo 00 010 000{ 10 | 2 2 8 fB=0
1fB=0, « @2 -
continue
IfB #0, 2 3 13 1fB#0
PC - PC+e
Notes: e represents the extension in the relative addressing mode.

e is a signed two's complement number in the range <126, 129>

e-2 in the op-code provides an effective address of pc+e as PCis
incremented by 2 prior to the addition of e.

Flag Notation:

Table 7.0-9

© = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,

{ = flag is affected according to the result of the operation.

130

CALL AND RETURN GROUP

Symbalic Flags ' 0p-Code No. of {No.of M|No.of T
M ic | Operation S1Z H P/VI N [C (76 543 210] Hex | Bytes |Cycles |States | C
CALLnn (SP-1) =PCy| ® [e | X | o] X| e | e [e[1700 101 CDO |3 5 17
(8P-2) - PCy. - n -
PC - nn - n -
CALLcc, nn|lf condition | ® | e | X | ® | X| @ | e | e |11 cc 100 3 3 10 If cc is false
cc is false - n -
continue, - n - 3 5 17 If cc is true
otherwise
same as
CALLnn
RET PC,~(SP) o |e| X|® | X| e e e/17001000 C9 |1 3 10
PC - (SP+1)
RET cc Ifcondition [® |e | X | e | X | e e e |11 ¢cc 000 1 1 5 If cc is false
cc is false
continue, 1 3 1 If cc is true
otherwise cc Condition
same as 000 | NZ non zero
RET 001 | Z zero
010 | NC noncarry
RETI Returnfrom |® (e | X | ® | X | e | e | e 11 101 101| ED |2 4 14 011 | C carry
interrupt 01 001 101| 4D 100 | PO parity odd
RETN! Returnfrom | ® | e | X | e | X | e | e | @ (11 101 101| ED |2 4 14 101 | PE parity even
non maskable 01 000 101| 45 10 | P sign positive
interrupt M| M sign negative
RSTp (SP-1) ~PCyl® |@ | X | @ X|®|e o171 t 11 1 3 "
(SP-2) - PCy.
PCH -0
PCL - p
t (s
000 | OOH
001 | 08H
010 | 10H
011 | 18H
100 | 20H
101 | 28H
110 | 30H
111 | 38H

TRETN loads IFFy = IFF;

Flag Notation: ® = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
§ = flag is affected according to the result of the operation.

Table 7.0-10

131

INPUT AND OUTPUT GROUP

Symbolic Flags 0Op-Code No.of |No.ofM |No.of T
M i Operation S|z | H P/VIN | C [76 543 210] Hex Bytes | Cycles |States C
INA, (n) A~ (n) e le X |®[X]| ®|e | e 11011011 DB |2 3 " nto Ag~ Ay
- n - Acc to Ag ~ Aqg
INT, (C) r - (C) X | e|o{e 11100101 ED |2 3 12 Cto Ag~ Ay
ifr=1100nly 01 r 000 Bto Ag~ Arg
the flags will
be affected
®
INI (HL) = (C) XX [XX | X| 1{X/[11101 101 ED |2 4 16 CtoAg ™~ Ay
B ~B-1 10 100 010, A2 Bto Ag ~ Ag
HL = HL+1
INIR (HL) = (C) X1 X | XX} X| 1] X[{11101 101 ED |2 5 21 Cto Ag~ Ay
B~+B-1 10 110 010 B2 (1f B #0) Bto Ag ™~ Aqg
HL = HL+1 2 4 16
Repeat until (If B=0)
B=0
©)
IND (HL) - (C) XP4HiX [XX} X} 1| X (11101101 €D |2 4 16 CtoAg~ Ay
B~B-1 10 101 010 AA Bto Ag~ A
HL = HL-1
INDR (HL) = (C) X|1 [X | X|X]| X| 1]X][11101101] ED |2 5 2 CtoAg~ Ay
B -~B-1 10 111 010{ BA (If B#0) Bto Ag~ Ag
HL = HL-1 2 4 16
Repeat until (If B=0)
B=0
OUT (n), A |(n)=A e |e (X j® X | e]| e |e 11010011 D3 |2 3 " ntoAg~ Ay
AcctoA8~A]5
ouT(C),r |(C)~¢ e e (X |e® X | e e e 11101101, ED |2 3 12 Cto Ag~ Ay
01 r 001 Bto Ag~ A
®
ouTi (C) = (HL) X4 X [X[X] X[1|X][11101 101 ED |2 4 16 Cto Ag~ Ay
B ~B-1 10 100 011| A3 Bto Ag~ Arg
HL = HL+1
OTIR (C) = (HL) X1 X | X {X| X|1]X{11101 101 ED |2 5 21 Cto Ag~ Ay
B~+B-1 10 110 011] B3 (if B #0) Bto Ag~ Aqg
HL = HL+1 2 4 16
Repeat until (1f B=0)
B=0
®
0uTD (C) = (HL) X1 4 IX XX | X| 1]X 11101101 ED |2 4 16 Cto Ag~ Ay
B-B-1 10 101 011 AB Bto Ag~ Ay
HL = HL-1
OTDR (C) = (HL) X1 X | X [X|X|1]X|[11101101] ED |2 5 21 CtoAg~ Ay
B~B-1 10111 011| BB 1fB#0) BtoAg~ Arg
HL < HL-1 2 4 16
Repeat until (If B=10)
B=0

Notes: (D If the result of B - 1 is zero the Z flag is set, otherwise it is reset.

Flag Notation: ® = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
} = flag is affected according to the result of the operation.

Table 7.0-11

132

8.0 INTERRUPT RESPONSE

The prupose of an interrupt is to allow peripheral devices to suspend CPU operation in an
orderly manner and force the CPU to start a peripheral service routine. Usually this service
routine is involved with the exchange of data, or status and control information, between
the CPU and the peripheral. Once the service routine is completed, the CPU returns to the
operation from whieh it was interrupted.

INTERRUPT ENABLE — DISABLE

The Z80-CPU has two interrupt inputs, a software maskable interrupt and a non-maskable
interrupt. The non-maskable interrupt (NMT) can not be disabled by the programmer and
it will be accepted whenever a peripheral device requests it. This interrupt is generally
reserved for very important functions that must be serviced whenever they occur, such as
an impending power failure, The maskable interrupt (INT) can be selectively enabled or
disabled by the programmer. This allows the programmer to disable the interrupt during
periods where his program has timing constraints that do not allow it to be interrupted.
In the Z80~CPU there is an enable flip flop (called |FF) that is set or reset by the prog-
rammer using the Enable Interrupt (El) and Disable Interrupt (DI) instructions. When the
IFF is reset, an interrupt can not be accepted by the CPU.

Actually, for purposes that will be subsequently explained, there are two enable flip flops,
called IFFq and IFF2.

(72l

Actually disables interrupts Temporary storage location
from being accepted. for IFF .

The state of |FF is used to actually inhibit interrupts while IFF is used as a temporary
storage location for IFF{. The purpose of storing the |FF 1 will be subsequently explained.

A reset to the CPU will force both IFF{ and IFF5 to the reset state so that interrupts are
disabled. They can then be enabled by an El instruction at any time by the programmer.
When an El instruction is executed, any pending interrupt request will not be accepted until
after the instruction following El has been executed. This single instruction delay is neces-
sary for cases when the following instruction is a return instruction and interrupts must not
be allowed until the return has been completed. The El instructions sets both IFF{ and
IFF9 to the enable state. When an interrupt is accepted by the CPU, both IFF{ and IFF9
are automatically reset, inhibiting further interrupts until the programmer wishes to issue a
new El instruction. Note that for all of the previous cases, |FF{ and IFF are always equal.

The purpose of IFF is to save the status of IFF1 when a non-maskable interrupt occurs.
When a non-maskable interrupt is accepted, IFFq{ is reset to prevent further interrupts
until reenabled by the programmer. Thus, after a non-maskable interrupt has been accepted
maskable interrupts are disabled but the previous state of IFF{ has been saved so that the
complete state of the CPU just prior to the non-maskable interrupt can be restored at any
time. When a Load Register A with Register | (LD A, |) instruction or a Load Register A
with Register R (LD A, R) instruction is executed, the state of IFF9 is copied into the
parity flag where it can be tested or stored.

A second method of restoring the status of IFF is thru the execution of a Return From
Non-Maskable Interrupt (RETN) instruction. Since this instruction indicates that the non
maskable interrupt service routine is complete, the contents of IFF9 are now copied back
into IFF4, so that the status of IFFq just prior to the acceptance of the non-maskable
interrupt will be restored automatically.

280
Family

Figure 8.0-1 is a summary of the effect of different instructions on the two enable flip flops.

INTERRUPT ENABLE/DISABLE FLIP FLOPS

Action IFF; IFF,

CPU Reset 0 0

DI 0 0

EI 1 1

LD A,I . . IFF, — Parity flag
LD A,R . . IFF) = Parity flag
Accept NMI 0 .

RETN IFF, o IFF, —1FF)
Accept INT 0 0

RETI . .

w9

e’ indicates no change

FIGURE 8.0-1

134

CPU RESPONSE
Non-Maskable

A non-maskable interrupt will be accepted at all times by the CPU. When this occurs, the
CPU ignores the next instruction that it fetches and instead does a restart to location
0066H. Thus, it behaves exactly as if it had received a restart instruction but, it is to a
location that is not one of the 8 software restart locations. A restart is merely a call to a
specific address in page 0 memory.

Maskable

The CPU can be programmed to respond to the maskable interrupt in any one of three
possible modes.

Mode 0

This mode is identical to the 8080A interrupt response mode. With this mode, the interrupt-
ing device can place any instruction on the data bus and the CPU will execute it. Thus, the
interrupting device provides the next instruction to be executed instead of the memory.
Often this will be a restart instruction since the interrupting device only need supply a
single byte instruction. Alternatively, any other instruction such as a 3 byte call to any lo-
cation in memory could be executed.

The number of clock cycles necessary to execute this instruction is 2 more than the normal
number for the instruction. This occurs since the CPU automatically adds 2 wait states to an
interrupt response cycle to allow sufficient time to implement an external daisy chain for
priority control. Section 4.0 illustrates the detailed timing for an interrupt response. After
the application of RESET the CPU will automatically enter interrupt Mode 0.

Mode 1

When this mode has been selected by the programmer, the CPU will respond to an interrupt
by executing a restart to location 0038H. Thus the response is identical to that for a non
maskable interrupt except that the call location is 0038H instead of 0066H. Another
difference is that the number of cycles required to complete the restart instruction is 2
more than normal due to the two added wait states.

Mode 2

This mode is the most powerful interrupt response mode. With a single 8-bit byte from the
user an indirect call can be made to any memory location.

With this mode the programmer maintains a table of 16 bit starting addresses for every in-
terrupt service routine. This table may be located anywhere in memory. When an interrupt
is accepted, a 16 bit pointer must be formed to obtain the desired interrupt service routine
starting address from the table. The upper 8 bits of this pointer is formed from the contents
of the | register. The | register must have been previously loaded with the desired value by
the programmer, i.e. LD I, A. Note that a CPU reset clears the | register so that it is ini-
tialized to zero. The lower eight bits of the pointer must be supplied by the interrupting
device. Actually, only 7, bits are required from the interrupting device as the least
bit must be a zero. This is required since the pointer is used to get two adjacent bytes to
from a complete 16 bit service routine starting address and the addresses must always start
in even locations.

desired starting address
Interrupt pointed to by:
Service
Routine low order I REG 7 BITS FROM
Starting \ high order CONTENTS PERIPHERAL
Address
Table

The first byte in the table is the least significant (low order) portion of the address. The
programmer must obviously fill this table in with the desired addresses before any interrupts
are to be accepted.

Note that this table can be changed at any time by the programmer (if it is stored in Read/
Write Memory) to allow different peripherals to be serviced by different service routines.

Once the interrupting device supplies the lower portion of the pointer, the CPU automat -
cally pushes the program counter onto the stack, obtains the starting address from the table
and does a jump to this address. This mode of response requires 19 clock periods to com-
plete (7 to fetch the lower 8 bits from the interrupting device, 6 to save the program
counter, and 6 to obtain the jump address.)

Note that the Z80 peripheral devices all include a daisy chain priority interrupt structure
that automatically supplies the programmed vector to the CPU during interrupt acknow-
ledge. Refer to the Z80-P10, Z80-SI0 and Z80-CTC manuals for details.

1356

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE

Last M Cycle - Ml
of Instruction
Last T State T T2 Tw" Tw* T3
SR N A N N Y A
® — _/ / / / /
INT ——T=—==- |- A= ————— e ————
Y AN /A5 N EVRN EEERE E I R
A0-A15
PC "X REFRESH
" _ /[
I
MREQ 1
, -
|
1QRQ
]
; \ /
|
DATA BUS " ! N
PR S — I [P S K RS P M
WAIT | T
SR Y A 4-.,. __________________ :_...../—\.___ ______
RD ! |
:‘ Daisey Chain : Vector Placed
i Priority Frozen] onto Data Bus
| |

280 INTERRUPT ACKNOWLEDGE SUMMARY

1) PERIPHERAL DEVICE REQUESTS INTERRUPT. Any device requesting and interrupt
can pull the wired-or line INT low.

2) CPU ACKNOWLEDGES INTERRUPT. Priority status is frozen when M1 goes low
during the Interrupt Acknowledge sequence. Propagation delays down the IEI/IEO
daisy chain must be settled out when IORQ goes low. If IEl is HIGH, an active Peri-
pheral Device will place its Interrupt Vector on the Data Bus when IORQ goes low.
That Peripheral then releases its hold on INT allowing interrupts from a higher
priority device. Lower priority devices are inhibited from placing their Vector on
the Data Bus or Interrupting because IEO is low on the active device.

3) INTERRUPT IS CLEARED. An active Peripheral device (IEI=1, IEO=0) monitors
OP Code fetches for an RETI (ED 4D) instruction which tells the peripheral that its
Interrupt Service Routine is over. The peripheral device then re-activates its internal
Interrupt structure as well as raising its |EO line to enable lower priority devices.

136

INTERRELATIONSHIP OF iNT, NMI, AND BUSRQ
The following flow chart details the relationship of three control inputs to the Z80-CPU. Note
the following from the flow chart.

1. TNT and NMi are always acted on at the end of an instruction.
2. BUSRQ is acted on at the end of a machine cycle.

3. While the CPU is in the DMA MODE, it will not respond to active inputs on INT or NM
4, These three inputs are acted on in the following order of priority: a)BUSRQ b

Z80-CPU INTERRUPT SEQUENCE

LAST

NO STATE OF

MACHINE
CYCLE,

YES
BUSRQ

SET BUSRQ F/F
L

280
Family

INSTRUCTION

SET NMI F/F >l

SET INT. F/F

RESET
BUSRQ F/F

NON
{ MASKABLE
INTERRUPT

MASKABLE
INTERRUPT
MODE

NO INT

F/F SET

I

Anusey

08z

138

9.0 HARDWARE IMPLEMENTATION EXAMPLES

This chapter is intended to serve as a basic introduction to implementing systems with the
Z80-CPU.

MINIMUM SYSTEM

Figure 9.0-1 is a diagram of a very simple Z80 system. Any Z80 system must include the
following five elements:

1) Five volt power supply
2) Oscillator

3) Memory devices

4) 1/0 circuits

5) CPU

MINIMUM Z80 COMPUTER SYSTEM

+6 VOLT
osc POWER SUPPLY
» b
Ag-A10 +5V GND
ADDRESS
IN
MREQ <
— CEq MK 34000
RO ofCE, 16K BIT ROM
MK 3880 DATA
v 280 DATA BUS outr
cru K
@
RESET 10RQ l
cE RD
—a0rRQ MK 3881 B/A fa——Ag
M1 — .
——-———-1—-—-—-—-————0.\,11 280-P10 C/Dje——A4
PORT A PORT B
ouTPUT INPUT
DATA DATA

FIGURE 9.0-1

Since the Z80-CPU only requires a single 5 volt supply, most small systems can be imple-
mented using only this single supply.

The oscillator can be very simple since the only requirement is that it be a 5 volt square
wave. For systems not running at full speed, a simple RC oscillator can be used. When the
CPU is operated near the highest possible frequency, a crystal oscillator is generally required
because the system timing will not tolerate the drift or jitter that an RC network will
generate. A crystal oscillator can be made from inverters and a few discrete components
or monolithic circuits are widely available.

The external memory can be any mixture of standard RAM, ROM, or PROM. In this simple
example we have shown a single 16K bit ROM (2K bytes) being utilized as the entire memory
system. For this example we have assumed that the Z80 internal register configuration
contains sufficient Read/Write storage so that external RAM memory is not required.

Every computer system requires 1/0O circuits to allow it to interface to the ‘‘real world.”
In this simple example it is assumed that the output is an 8 bit control vector and the input
is an 8 bit status word. The input data could be gated onto the data bus using any standard
tri-state driver while the output data could be latched with any type of standard TTL latch.
For this example we have used a Z80-PIO for the 1/0 circuit. This single circuit attaches to
the data bus as shown and provides the required 16 bits of TTL compatible 1/O. (Refer to
the Z80-P10 manual for details on the operation of this circuit.) Notice in this example that
with only three LSI circuits, a simple oscillator and a single 5 volt power supply, a powerful
computer has been implemented.

ADDING RAM

Most computer systems require some amount of external Read/Write memory for data
storage and to implement a ‘“stack’’. Figure 9.0-2 illustrates how 256 bytes of static memory
can be added to the previous example. In this example the memory space is assumed to be
organized as follows:

ROM & RAM IMPLEMENTATION EXAMPLE

ADDRESS
0O000H

2 K bytes
ROM O7FFH

256 bytes |0800H
RAM

OB FFH

¢ ADDRESS BUS (

Ao-Ap l Ag-A7

RD
AL JoEr MK 34000 RDlop 2568 CF,|MAEC
M p—
MREQ %Z ROM WRip/w RAM o Lal
0o-D7 H)o -D7
§ DATA BUS !
FIGURE 9.0-2

In this diagram the address space is described in hexidecimal notation. For this example,
address bit A11 separates the ROM space from the RAM space so that it can be used for the
chip select function. For larger amounts of external ROM or RAM, a simple TTL decoder
will be required to form the chip selects.

MEMORY SPEED CONTROL

For many applications, it may be desirable to use slow memories to reduce costs. The
WAIT line on the CPU allows the Z80 to operate with any speed memory. By referring
back to section 4 you will notice that the memory access time requirements are most
severe during the M1 cycle instruction fetch. All other memory accesses have an additional
one half of a clock cycle to be completed. For this reason it may be desirable in some
applications to add one wait state to the M1 cycle so that slower memories can be used.
Figure 9.0-3 is an example of a simple circuit that will accomplish this task. This circuit can
be changed to add a single wait state to any memory access as shown in F.gure 9.0-4.

140

ADDING ONE WAIT STATE TO AN M1 CYCLE ‘

WAIT
+5V M1
l [Tl T2 | Tw | T | T
™ S S P
) a D aQ
® 774 7474 | i —-_____/__—_
c al —c a
R R
T T WAIT \ [
+5V +5V

FIGURE 9.0-3

ADDING ONE WAIT STATE TO ANY MEMORY CYCLE

WAIT

+5V +5V 7400
i l T1 TZ Tw
MREQ s s s
D Q D Q
WAIT \ '

FIGURE 9.0-4

INTERFACING DYNAMIC MEMORIES

This section is intended only to serve as a brief introduction to interfacing dynamic
memories. Each individual dynamic RAM has varying specifications that will require minor
modifications to the description given here and no attempt will be made in this document
to give details for any particular RAM.

Figure 9.0-5 illustrates the logic necessary to interface 8K bytes of dynamic RAM using
16-pin 4K dynamic memories. This Figure assumes that the RAM'’s are the only memory in
the system so that Aqo is used to select between the two pages of memory. During refresh
time, all memories in the system must be read. The CPU provides the proper refresh address
on lines Ag through Ag. To add additional memory to the system it is necessary to only
replace the two gates that operate on Aqo with a decoder that operates on all required
address bits. For larger systems, buffering for the address and data bus is also generally
required.

An application note entitled ‘“Z80 Interfacing Techniques for Dynamic RAM’’ is avail-
able from your MOSTEK representative which describes dynamic RAM design techniques.
‘ 141

INTERFACING DYNAMIC RAMS

MREQ DELAY

)
ol

4Kx8 DYNAMIC
w

|
b
ol

PAGE |

RAM MEMORY (1000 to IFFF)

ARRAY

DATA
BUS

Al
MUX
CONTROL
ADDRE: ADDRESS
805> AcAn '> MULTIPLEXER
WR
FIGURE 9.0-5

RAS

4Kx8 DYNAMIC| pace o
RAM MEMORY 0000 to oFFF)
ARRAY

® NO REFRESH ADDRESS MULTIPLEXER REQUIRED
® MREQ INITIATES MEMORY CYCLE
® RFSH SELECTS REFRESH CYCLE

Z80—CPU DESIGN CONSIDERATIONS: CLOCK CIRCUITRY

When using the Z80-CPU at less than its rated speed, the Clock Input (®) can be driven by a
7400 TTL gate with a resistor pull up (typically 330 ohms) to +5 Volts. Because of dynamic
currents flowing into the Clock Input Pin, the rise time of the Clock Input waveform will
be typically 60-80 nanoseconds. The resistor will eventually pull the clock input up to Vcc
but with a slow rise time which will limit the maximum frequency of operation. Figure
9.0-6 shows a Clock Input driver which has an active pull-up and which will allow maximum
frequency operation. The circuit is recommended for all but the most cost sensitive Z80

applications.

Z80 CPU CLOCK BUFFER CIRCUITRY

33pf

L
1.2K

AAA.

\AAQ

FROM >

74504

OSCILLATOR ~

FIGURE 9.06

P—‘M-?——%——-O +5V

2N3906 or Equivalent

cLOCK
r b BT

142

RESET CIRCUITRY

The Z80-CPU has the characteristic that if the RESET input goes low during T2 or T4 of a
cycle that the MREQ signal will go to an indeterminate state for one T-State approximately
3 T-States later. If there are dynamic memories in the system this action could cause an
aborted or short access of the dynamic RAM which could cause destruction of data within
the RAM. If the contents of RAM are of no concern after RESET, then this characteristic
is no problem as the CPU always resets properly. If RAM contents must be preserved,
then the falling edge of the RESET input must be synchronized by the falling edge of M1.

The circuitry of Figure 9.0-7 does this synchronization as well as providing a one-shot
to limit the duration of the CPU RESET pulse. The CPU RESET signal must be a pulse
even though the EXTERNAL RESET button is held closed to avoid suspending the CPU
refresh of dynamic RAM for a time long enough to destroy data in the RAM.

MANUAL AND POWER—-ON RESET CIRCUIT

+5
+5
10K
+5 10K
1000pF
D Q B —

Wﬁ>“‘f{:>*‘—'>CK CPU RESET
+5 !:::IIII’ I"" ,

O
x 3] Jo—>
74132 7404

74121

EXTERNAL
RESET

7474

+
I 68uf 7414

FIGURE 9.0-7

ADDRESS LATCHING

In order to guarantee proper operation of the Z80-CPU with dynamic RAMs the upper
4 bits of the address should be latched as shown in Figure 9.0-8. This action is required
because the Z80-CPU does not guarantee that the Address Bus will hold valid before the
rising edge of MREQ on an OP Code Fetch.

This action does not directly affect dynam<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>