'MOSTEK 1981

Z80 MICROCOMPUTER
DATA BOOK

008 Viva 431NdIN0DJ0UHDIN 082 L86L IFLSOIN

1981
Z80 MICROCOMPUTER
DATA BOOK

Copyright © 1981 Mostek Corporation (All rights reserved)
Trade Marks Registered ®

Mostek reserves the right to make changes in specifications at any time and without notice. The information furnished by
Mostek in this publication is believed to be accurate and reliable. However, no responsibility is assumed by Mostek for its use;
nor for any infringements of patents or other rights of third parties resulting from its use. No license is granted under any
patents or patent rights of Mostek.

The “PRELIMINARY" designation on a Mostek data sheet indicates that the product is not characterized. The specifications
are subject to change, are based on design goals or preliminary part evaluation, and are not guaranteed. Mostek Corporation
or an authorized sales representative should be consulted for current information before using this product. No responsibility
is assumed by Mostek for its use; nor for any infringements of patents and trademarks or other rights of third parties resuiting
from its use. No license is granted under any patents, patent rights, or trademarks of Mostek. Mostek reserves the right to
make changes in specifications at any time and without notice.

PRINTED IN USA February 1981

1981 280 MICROCOMPUTER DATA BOOK

SIN3LINOD

Table
of Contents

@m

e

o,

5

%,

ey,
o

&

Bt

1981 280 MICROCOMPUTER DATA BOOK

| - Table of Contents

L8 Lo e (e g F= T I [T [G P l-i

Il - General Information - b
Package DeSCriPtioNSttt et ettt ettt ettt ettt e ettt e et e i, I1-iii 55 W
INFOUCHION 10 IMOSTEK . . o v e vttt ettt e et ettt e e e e e e e e e e et e et 11-vii = §
U.S. and Canadian Sales OffiCeso vvttin i et ettt 1-xi
U.S. and Canadian RepreSentativeSvuuettn et ie et ie et aeeneennenenannaeeennnn 11-xii
U.S. and Canadian Distributorsttt i ittt it e eii i eneaennn l-xiii
International Marketing Offices e e e e e e e e e e e e 1l-xv

1l - Z80 Family Technical Manuals

Central Processing Unit (MK3880)vuiiiitie ittt ittt et ti i e ieenenannanns -1
Parallel 170 Controller (MK3881)viitti ittt ittt ettt ittt et teetaeeeneaenaennan -91
Counter Timer Circuit (MKB882) i ittt it i ettt ettt ettt e i et aeeaannas mn-127
Serial 1/ O (MKB884/ 5,/ 7) o vttt ettt ettt ettt et ee ettt eae e eiee e etineeenaannnn -163
Z80 Combo CircUit (MK3886) ... vvviettiit et eiiee et tiee e tie e nneerennaenanans 11-235
IV - Z80 Family Data Sheets
Direct Memory Access Controller (MK3883)ttt ittt V-1
Serial Input/Output Controller (MK3884) . ..ottt ittt IV-19
Combo Chip (MK3886) v ottt ettt ittt et et ettt ite e iiaeeeaeannnnn IV-35
V - Z80 Development Equipment
AT R X DS ottt ittt ettt et ettt et e et e e e e e V-1
Keyboard Display Unit CRTttt et et et et e iai e eie e V-11
[T o 0 =Y {0 TP V-15
PROM Programmer (PPG 8/16)ttt et ittt V-19
Ansi Basic Software Interpreter (MK78157)ottt ittt it ieiieennann. V-23
Fortran IV Compiler (MK78158)ttt ittt ittt iiate e iiiee e eneaannn V-27
FLP80O DOS (MK78142, MKT77962) . .ttt ettt tee et eae ettt titeeeanaeenaennnn V-29
Fortran IV Cross Assembler (XFOR-80)ttt ittt eeaeannn V-33
FLP80 DOS Software Library (LIB 80 V1)ttt ittt et ettt eeeaeannns V-35
MAGCRO 80 (MK Z8T1685) . ittt et ettt et e ittt e et i et iae e ianneanaennnns V-37
AIM ZBOBE (MKT78205) . ..t i tttt et iee ettt et e ee e ie et ee et ie e eiae e V-39
VI - 280 Microcomputer Application Notes
Serial Communication Capability to the 8086,/8088 Family.Using the ZBOSIO VI-1
Z80 Interfacing Techniques for Dynamic RAMttt ittt eee e enns VI-7
Applying the Z80 SIO in Asynchronous Data Communicationsc.ccoeuuuuiiinnenennn. VI-23
Use of the MK3805 CIOCK/RAMottt ettt et et te e ettt eanaeannns VI-29
Using the MK3807 VCU in a Microprocessor Environmentooiiiiiiiiiiiiinnnn.. VI-87
VIl - Z80 Microcomputer Peripherals
CMOS Microcomputer Clock/RAM (MK3805) iiiiiiie ittt e e et ettt et e ieaaann VII-1
Programmable CRT Video Control Unit VCU (MK3807) oiiini i VII-9
STI-Z80 Version (MKB80T) . . .ottt ittt ettt ettt et i iiaannns VII-21
MKBOBOBttt ettt ittt ettt e e e e VII-25
uP-Compatible A/D Converters (MKBTB8(N)-1) ... vvir ittt it et ie e VII-33
MK B 0BT . .ottt e ettt ittt et ettt et e e e et e, VII-41
VIII - Z80 Military/Hi-Rel
Introductionc.uiiiiiiiii i e P VIII-3
ApPPlICatioNs GUIEottt et e e e VIII-5
MKB Military Products LiStingouttttnn it ittt VIil-6
MKI Industrial Products LiStiNg ovvrtt ittt 2ttt et ettt i eie e VIII-7
MKB 3880 DataSheetcccvvnunn... PPN VIII-9

1981 280 MICROCOMPUTER DATA BOOK

NOIL
—VWHO4INI

A2-ELED]
1]

General
Information

Ol

ORDERING INFORMATION

Factory orders for parts described in this book should include a four-part number as explained below:

Example: [MK|I3870] |f
1. Dash Number

2. Package

1]
GENERAL

1
Sz
33}
Or
uw
e

3. Device Number

4. Mostek Prefix

1. Dash Number
One or two numerical characters defining specific device performance characteristic.
2. Package

- Gold side-brazed ceramic DIP

- CER-DIP

- Epoxy DIP (Plastic)

P-PROM

- Tin side-brazed ceramic DIP

- Ceramic DIP with transparent lid
- Ceramic leadless chip carrier

m—-X>JDZ2& T

3. Device number

1XXX or 1XXXX - Shift Register, ROM

2XXX or 2XXXX - ROM, EPROM

3XXX or 3XXXX - ROM, EPROM

38XX - Microcomputer Components
4AXXX or 4XXXX - RAM

5XXX or 5XXXX - Telecommunication and Industrial
TXXX or 7XXXX - Microcomputer Systems

4. Mostek Prefix
MK-Standard Prefix

MKB-100% 883B screening, with final electrical test at low, room and high-rated temperatures.

MOSTEK.

MICROCOMPUTER PRODUCTS

Package Descriptions

Ceramic Dual-In-Line Package (P)
40 Pin

z
Q
=

|
<
=
x
o
w
z

H
1]
GENERAL

uuuuuu

L

: \ ¥
s{mBouzATION AREA FoR
OENTIFICATION OF N 1
r 2000 o0 o
_Ly o
026 —
™ ‘TITITIHII‘U'!\ I
e
i
ore dbz e N
Act @100 - 1.

Plastic Dual-In-Line Package (N)
40 Pin , o]

Cerdip Hermetic Packaging (J)
40 Pin

Ceramic Dual-In-Line Pa‘ckage.(P)
28 Pin

28 15
080R+ 010 : E 610+ 015
.

0953015

{»*m: mﬁ
)

010,002

885
590

050% 015

SPACES @ |

Cerdip Hermetic Packaging (J)

28 Pin ' ii?i :j::

1.450%

025

t.,.m: .m.i
Yo

mmx W WF
120 !
MIN,
.620 REF..
ouf .003
010% .003
2PLCs,

13 EQUAL SPACES AT.100 EACH.

Plastic Dual-In-Line Package (N)
28 Pin T —

A AN

o
b
120
\AVAVAW) \WASAPAY)
—'i ow.
.600 MAX. N‘D".: ———]
o, 030 Now.
i
180010 —-—T

€ €

.080 TYP.

NOTE: Ovarall length includes .00 flash on sither and of packege

H-iv

Cerdip Hermetic Package (J)
24 Pin u .

|e— 5302 .015—

i

L

2

1

=T

\: -
8

1]

GENERAL

!
Sz
xQ
Ok
w
E4

Leadless Hermetic Chip Carrier (E)

18 Pin [‘ j

I |

1295 + 015)

o) TR

1o

150 025 TvP.

T

Leadless Hermetic Chip Carrier (E)
18 Pin

1355 +.015.

025 TYP

S A

T

i

078

v

Dual-In-Line Double Density Ceramic Package (D)
18 Pin

&
g
H

Ceramic Dual-In-Line Package (P)
16 Pin

Cerdip Hermetic Package (J)
16 Pin

N-vi

Mostek - Technology For Today And Tomorrow

TECHNOLOGY

From its beginning, Mostek has been an
innovator. From the developments of the 1K
dynamic RAM and the single-chip calculator
in 1970 to the current 64K dynamic RAM,
Mostek technological breakthroughs have
proved the benefits and cost-effectiveness of
metal oxide semiconductors. Today, Mostek
represents one of the industry’s most
productive bases of MOS/LSI technology,
including Direct-Step-on-Wafer processing
and ion-implantation techniques.

The addition of the Microelectronics
Research Center in Colorado Springs adds a
new dimension to Mostek circuit design
capabilities. Using the latest computer-aided
design techniques, center engineers will be
keeping ahead of the future with new
technologies and processes.

QUALITY

The worth of a product is measured by
how well it is designed, manufactured and
tested and by how well it works in your

N-vii

system.

In design, production and testing, the
Mostek goal is meeting specifications the
first time on every product. This goal requires
strict discipline from the company and from
its individual employees. Discipline, coupled
with very personal pride, has enabled
Mostek to build in quality at every level of
production.

PRODUCTION CAPABILITY

The commitment to increasing production
capability has made Mostek the world's
largest manufacturer of dynamic RAMs. We
entered the telecommunications market in
1974 with a tone dialer, and have shipped
millions of telecom circuits since then. More
than two million of our MK3870 single-chip
microprocessors are in use throughout the
world. To meet the demand, production
capability is being constantly increased.
Recent construction in Dallas, Ireland and
Colorado Springs has added some 50
percent to the Mostek manufacturing
capacity.

-
g
o«

=uw
r4
w
U]

INFORMA —
TION

THE PRODUCTS
Telecommunications Products

Mostek is the leading supplier of tone
dialers, pulse dialers, and CODEC devices.
As each new generation of telecom-
munications systems emerges, Mostek is
ready with new generation components,
including PCM filters, tone receivers,
repertory dialers, new integrated tone
dialers, and pulse dialers.

These products, many of them using
CMOS technology, represent the most
modern advancements in telecom-

munications component design.
Industrial Products

Mostek's line of Industrial Products offers
a high degree of versatility per device. This
family of components includes various
microprocessor-compatible A/D converters,
a counter/time-base circuit for the division
of clock signals, and combined
counter/display decoders. As a result of the
low parts count involved, an economical

-viii

alternative to discrete logic systems is
provided.

Memory Products

Through innovations.in both circuit design,
wafer processing and production, Mostek
has become the industry’s leading supplier
of memory products.

An example of Mostek leadership is our
new BYTEWYDE™ family of static RAMs,
ROMs, and EPROMs. All provide high
performance, N words x 8-bit organization
and common pin configurations to allow
easy system upgrades in density and
performance. Another important product
area is fast static RAMs. With major
advances in technology, Mostek static RAMs
now feature access times as low as 55
nanoseconds. With high density ROMs and
PROMs, static RAMs, dynamic RAMs and
pseudostatic RAMs, Mostek now offers one
of industry’s broadest and most versatile
memory product lines.

Microcomputer Components

Mostek’s microcomputer components are
designed for a wide range of applications.

Our Z80 family is today’s industry
standard 8-bit microcomputer. The MK3870
family is one of the industry’s most popular
8-bit single-chip microcomputers, offering
upgrade options in ROM, RAM and 1/0, all
in the same socket. The 38P7X EPROM
versions support and prototype the entire
family. ‘

Microcomputer Systems

Complementing the component product
line is the powerful MATRIX™
microcomputer development system, a Z80-
based, dual floppy-disk system that is used to
develop and debug software and hardware
for all Mostek microcomputers.

A software operating system, FLP-80DOS,
speeds and eases the design cycle with
powerful commands. BASIC, FORTRAN, and
PASCAL are also available for use on the
MATRIX.

Mostek's MD Series™ features both
stand-alone microcomputer boards and
expandable microcomputer boards. The
expandable boards are modularized by

H-ix

function, reducing system cost because the
designer buys only the specific functional
modules his system requires. All MDX
boards are STD-Z80 BUS compatible.

Memory Systems

Taking full advantage of our leadership in
memory components technology, Mostek
Memory Systems offers a broad line of
products, all with the performance and
reliability to match our industry-standard
circuits. Mostek Memory Systems offers add-
in memory boards for popular DEC and Data
General minicomputers.

Mostek also offers special purpose and
custom memory boards for special
applications.

-
q
[+

=—w
z
m
[V}

INFORMA —
TION

1-x

U.S. AND CANADIAN SALES OFFICES

CORPORATE HEADQUARTERS

Mostek Corporation
1215 W. Crosby Rd.
P.0.Box 169
Carrollton, Texas 76006

REGIONAL OFFICES

Eastern U.S./Canada
Mostek

49 W. Putnam, 3rd Floor
Greenwich, Conn. 06830
203/622-0955

TWX 710-579-2928

Northeast U.S.

Mostek

29 Cummings Park, Suite #426
Woburn, Mass. 01801
617/935-0635

TWX 710-348-0459

Mid-Atiantic U.S.

Mostek

East Gate Business Center
125 Gaither Drive, Suite D

Mt. Laurel, New Jersey 08054
609/235-4112

TWX 710-897-0723

Southeast U.S.

Mostek

Exchange Bank Bidg.
1111 N. Westshore Bivd.
Suite 414

Tampa, Florida 33607
813/876-1304

TWX 810-876-4611

Atlanta Region

2 Exchange Place

2300 Peachford Rd. #2105
Atlanta, GA 30338
404/458-7922

TWX 810-757-4231

Upstate NY Region

Mostek

4651 Crossroads Park Dr., Suite 201
Liverpool, NY 13088
315/457-2160

Florida Region

Mostek

22521 Southwest 66th Ave.
A211

Apt. A21
Boca Raton, FL 33433

Chicago Region
Mostek

701 E. Irving Park Road
Suite 2

Roselle, lil. 60172
312/529-3993

TWX 910-291-1207

Nonh Central U.S.
tek

6101 Green Valley Dr
Bloomington, Mn. 55438
612/831-2322

TWX 910-576-2802

South Central U.S.
Mostek

3400 S. Dixie Ave.
Suite 101

Kettering, OhIO 45439
513/299-340!

TWX 810- 459 1625
Michigan

Mostek

Livonia Pavillion East
29200 Vassar, Suite 520
Livonia, Mich. 48152
313/478-1470

TWX 810-242-2978

H-xi

Central U.S.
Mostek

4100 McEwen Road
Suite 151

Dallas, Texas 75234
214/386-9340

Southwest Region
Mostek

4100 McEwen Road
Suite 237

Dallas, Texas 75234
214/386-9141
TWX 910-860-5437

Chevy Chase #4

7715 Chevy Chase Dr., #116
Austin, TX 78752
512/458-5226

TWX 910-874-2007

Western Region
Northern California

Mostek

1762 Technology Drive
Suite 1

San Jose, Calif. 95110

Seattle Region

Mostek

1107 North East 45th St.
Suite 411

Seattle, WA 98105
206/632-0245

TWX 910-444-4030

Southern California
Mostek

18004 Skypark Bivd.
Suite 140

Irvine, Calif. 92714
714/549-0397
TWX 910-695-2513

Arizona Region

Mostek

2150 East Highland Ave.
Suite 101

Phoenix, AZ 85016
602/954-6260

TWX 910-957-4581

Denver Region

3333 Quebec Street, #3090
Denver, CO 80207
303/321-6545

TWX 910-931-2583

GENERAL

[
g
=
o
o
o
Z

z
=}
=

U.S. AND CANADIAN REPRESENTATIVES

ALABAMA
Beacon Elect. Assoc., Inc.
11309 S. Memorial Pkwy.
Suite G
Huntsville, AL 35803

/1 1

1
TWX 810-726-2136

ARIZONA

Summit Sales

7825 E. Redfield Rd.
Scottsdale, AZ 85260
602/998-4850

TWX 910-950-1283

ARKANSAS

Beacon Elect. Assoc., Inc.
P.O. Box 6382, Brady Station
Little Rock, AK 72215
501/224-5449

TWX 910-722-7310

CALIFORNIA
Harvey King, Inc.
8124 Miramar Road
San Diego, CA 92126
714/566-5252

TWX 910-335-1231

COLORADO
Waugaman Associates
4800 Van Gordon
Wheat Ridge, CO 80033
303/423-1020

TWX 910-938-0750

CONNECTICUT

New England Technical Sales
240 Pomeroy Ave.

Meriden, CT 06450
203/237-8827

TWX 710-461-1126

FLORIDA

Conley & Associates, Inc.
P.0O. Box 309

235 S. Central

Oviedo, FL 32765
305/365-3283

TWX 810-856-3520

Conley & Associates, Inc.
4021 W. Waters

Suite 2

Tampa, FL 33614
813/885-7658

TWX 810-876-9136

Conley & Associates, Inc.
P.O. Box 700

1612 N.W. 2nd Avenue
Boca Raton, FL 33432
305/395-6108

TWX 510-953-7648

*Home Office

GEORGIA

Conley & Associates, Inc.
3951 Pleasantdale Road
Suite 201

Doraville, GA 30340
404/447-6992

TWX 810-766-0488

ILLINOIS

Carlson Electronic Sales*
600 East Higgins Road

Elk Grove Village, IL 60007
312/956-8240

TWX 910-222-1819

INDIANA

Rich Electronic Marketing*
599 Industrial Drive
Carmel, IN 46032
317/844-8462

TWX 810-260-2631

Rich Electronic Marketing
3448 West Taylor St.
Fort Wayne, IN 46804
219/672-3329

TWX 810-332-1404

IOWA

Cahill, Schmitz & Cahill, Inc.
208 Collins Rd. N.E. Suite K
Cedar Rapids, IA 52402
319/377-8219

TWX 910-525-1363

Carlson Electronic Sales
204 Collins Rd. NE
Cedar Rapids, IA 52402
319/377-6341

TWX 910-222-1819

KANSAS

Rush & West Associates*
107 N. Chester Street
Olathe, KN 66061
913/764-2700

TWX 910-749-6404

KENTUCKY

Rich Electronic Marketing
5910 Bardstown Road

P. 0. Box 91147
Louisville, KY 40291
502/239-2747

TWX 810-535-3757

MARYLAND

Arbotek Associates
3600 St. Johns Lane
Ellicott City, MD 21043
301/461-1323

TWX 710-862-1874

MASSACHUSETTS

New England Technical Sales*
135 Cambridge Street
Burlington, MA 01803
617/272-0434

TWX 710-332-0435

MICHIGAN

Action Components
19547 Coachwood Rd.
Riverview, Mi 48192
313/479-1242

MINNESOTA

Cahill, Schmitz & Cahill, Inc.
315 N. Pierce

St. Paul, MN 55104
612/646-7217

TWX 910-563-3737

MISSOURI

Rush & West Associates
481 Melanie Meadows Lane
Ballwin, MO 63011
314/394-7271

NORTH CAROLINA
Conley & Associates, Inc.
3301 Womans Club Drive
Suite 130

Raleigh, NC 27616
919/787-8090

TWX 510-928-1829

N-xii

NEW JERSEY
Tritek Sales, Inc.

215/627-0149 (Philadelphia Line)
TWX 710-896-0881

NEW MEXICO
Waugaman Associates
P.O. Box 14894
Albuquerque, NM 87111

or
9004 Menaul NE
Suite 7
Albuguerque, NM 87112
505/294-1437
505/294-1436 (Ans. Service)

NEW YORK

ERA Inc.

354 Veterans Memorial Highway
Commack, NY 11725
516/543-0510

TWX 510-226-1485

(New Jersey Phone #
800/645-5500, 5501)

Precision Sales Corp.

5 Arbustus Ln., MR-97
Binghamton, NY 13901
607/648-3686

Precision Sales Corp.*
Liverpool, NY 13088

TWX 710-545-0250

Precision Sales Corp.
3594 Monroe Avenue
Pittsford, NY 14534
716/381-2820

Precision Sales Corp.
Drake Road

Pleasant Valley, NY 12569
914/635-3233

OHIO

Rich Electronic Marketing
7221 Taylorsville Road
Dayton, Ohio 45424
513/237-9422

TWX 810-469-1767

Rich Electronic Marketing
141 E. Aurora Road
Northfield, Ohio 44067
216/468-0583

WX 810-427-9210

OREGON

Northwest Marketing Assoc.
9999 S.W. Wilshire St.

Suite 124

Portland OR 97225
503/297-2581

TELEX 36-0465 (AMAPORT PTL)

TEXAS

Southern States Marketing, Inc.
P.0. Box

Addison, TX 75001
214/387-2489

TWX 910-860-5138

Southern States Marketing, Inc.
7745 Chevy Chase

Suite 219

Austin, TX 78752
512/452-9459

Southern States Marketing, Inc.
9730 Town Park Drive, Suite 104
Houston, Texas 77036
713/988-0991

TWX 910-881-1630

UTAH

Waugaman Associates
2520 S. State Street
#22

4
Salt Lake City, UT 84115
801/467-4263

TWX 910-925-4073

WASHINGTON

Northwest Marketing Assoc.
12835 Bellevue-Redmond Rd.
Suite 203E

Bellevue, WA 98005
206/455-5846

TWX 910-443-2445
WISCONSIN

Carlson Electronic Sales
Northbrook Executive Ctr.
10701 West North Ave.
Suite 209

Milwaukee, WI 63226
414/476-2790

TWX 910-222-1819

CANADA

Cantec Representatives Inc.*
1573 Laperriere Ave.
Ottawa, Ontario

Canada K1Z 7T3
613/725-3704

TWX 610-562-8967

Cantec Representatives Inc.
83 Galaxy Blvd., Unit 1A
(Rexdale)

Toronto, Canada MOW 5X6
416/675-2460

TWX 610-492-2655

Cantec Representatives Inc.
15737 rue Pierrefonds St.
Ste-Genevieve, P. Q.
(Montreal) HOH 1G3
514/620-6313

TWX 610-422-3985

U.S. AND CANADIAN DISTRIBUTORS

ARIZONA

Kierulff Electronics
4134 E. Wood St.
Phoenix, AZ 85040
602/243-4101

TWX 810/951-1550
Wyle Distribution Group
8155 North 24th Avenue
Phoenix, Arizona 85021
602/249-2232

TWX 910/951-4282

CALIFORNIA

Bell Industries

1161 N. Fair Oaks Avenue
Sunnyvale, CA 94086
408/734-8570

TWX 910/339-9378
Arrow Electronics

521 Weddell Dr.
Sunnyvale, CA 94086
408/745-6/

TWX 910/339-9371
Kierulff Electronics
2585 Commerce Way
Los Angeles, CA 80040
213/725-0325

TWX 910/580-3106
Kierulff Electronics
8797 Balboa Avenue
San Diego, CA 92123
714/278-2112

TWX 810/335-1182
Kierulff Electronics
14101 Franklin Avenue

TWX 91 0/595 2599
Schweber Electronics
17811 Gillette Avenue
Irvine, CA 92714
714/556-3880

TWX 910/595-1720
Wyle Distribution Group
124 Maryland Street

El Segundo, CA 90245
213/322-8100

TWX 910/348-7111
Wyle Distribution Group
9525 Chesapeake Drive
San Diego, CA 92123
714/565-9171

TWX 910/335-15690
Wyle Distribution Group
17872 Cowan Ave.
Irvine, CA 92714
714/641-1600

TWX 910/348-7111
Wyle Distribution Group
3000 Bowers Ave.
Santa Clara, CA 95051
408/727-2500

TWX 910/338-0296

COLORADO

Kierulff Electronics
10890 E. 47th Avenue
Denver, CO 80239
303/371-6500

TWX 910/932-0169
Wyle Distribution Group
451 E. 124th Ave.
Thornton, CO 80241
303/457-9953

TWX 910/936-0770

CONNECTICUT

Arrow Electronics

12 Beaumont Rd.
Wallingford, CT 06492
203/265-7741

TWX 710/476-0162
Schweber Electronics
Finance Drive

Commerce Industrial Park

TWX 710/456 9405

FLORIDA
Arrow Electronics

1 N.W. 62nd St.
Suite 108
Ft. Lauderdale, FL 33309
305/776-7790
TWX 510/955-9456
Arrow Electronics
115 Palm Bay Road, N.W.
Suite 10 Bldg. 200
Palm Bay, FL. 32905
305/725-1480
TWX 510/959-6337
Diplomat Southland
2120 Calumet
Clearwater, FL 33515
813/443-4514
TWX 810/866-0436
Kierulff Electronics
3247 Tech Drive
St. Petersburg, FL 33702
813/576-1966
TWX 810/863-5625

GEORGIA

Arrow Electronics

2979 Pacific Ave.
Norcross, GA 30071
404/449-8252

TWX 810/766-0439
Schweber Electronics
4126 Pleasantdale Road
Atlanta, GA 30340
404/449-9170

ILLINOIS

Arrow Electronics

492 Lunt Avenue

P. 0. Box 94248
Schaumburg, IL 60193
312/893-9420

TWX 910/291-3544
Bell Industries

3422 W. Touhy Avenue
Chicago, IL 60645
312/982-9210

TWX 910/223-4519
Kierulff Electronics
1536 Lanmeier

312/640-
TWX 910/222 0351

Elk Grove Village, IL 60007
-0200

INDIANA

Advent Electronics

8446 Moller

Indianapolis, IN 46268

317/297-4910

TWX 810/341-3228

Ft. Wayne Electronics
606 E. Maumee

Ft. Wayne, IN 46803

219/423-3422

TWX 810,332-1562

Pioneer/Indiana

6408 Castleplace Drive

indianapolis, IN 46250

317/849-7300

TWX 810/260-1794

IOWA

Advent Electronics

682 58th Avenue
Court South West
Cedar Rapids, |IA 52404
319/363-0221

TWX 910/5625-1337

MASSACHUSETTES
Kierulff Electronics
13 Fortune Drive
Billerica, MA 01821
617/935-5134

TWX 710/390-1449
Lionex Corporation

1 North Avenue
Burlington, MA 01803
617/272-9400

TWX 710/332-1387
Schweber Electronics
25 Wiggins Avenue
Bedford, MA 01730
617/275-5100

TWX 710/326-0268
Arrow Electronics
96D Commerce Way
Woburn, MA 01801
617/933-8130

TWX 710/393-6770

11-xiii

MARYLAND

Arrow Electronics
4801 Benson Avenue
Baltimore, MD 21227
301/247-5200

TWX 710/236-3005
Schweber Electronics
9218 Gaither Rd
Gaithersburg, MD 20760
301/840-5900

TWX 710/828-9749

MICHIGAN

Arrow Electronics
3810 Varsity Drive
Ann Arbor, MI 48104
313/971-8220

TWX 810/223-6020
Schweber Electronics
33540 Schoolcraft Road
Livonia, Ml 48150
313/525-8100

TWX 810/242-2983

MINNESOTA
Arrow Electronics
5251 W. 73rd Street
Edina, MN 55435
612/830-1800
TWX 910/576-3125

Industrial Components

5229 Edina Industrial Blvd.

Minneapolis, MN 55435
612/831-2666
TWX 910/576-3153

MISSOURI

Olive Electronics

9910 Page Bivd.

St. Louis, MO 63132
314/426-4500

TWX 910/763-0720
Semiconductor Spec
3805 N. Oak Trafficway
Kansas City, MO 64116
816.7452-3900

TWX 910/771-2114

NEW HAMPSHIRE
Arrow Electronics

1 Perimeter Rd.
Manchester, NH 03103
603/668-6968

TWX 710/220-1684

NEW JERSEY

Arrow Electronics
Pleasant Valley Avenue
Morrestown, NJ 08057
609/235-1900

TWX 710/897-0829
Arrow Electronics

285 Midtand Avenue
Saddlebrook, NJ 07662
201/797-5800

TWX 710/988-2206
Kierulff Electronics

3 Edison Place
Fairfield, NJ 07006
201/575-6750

TWX 710/734-4372
Schweber Electronics
18 Madison Road
Fairfield, NJ 07006
201/227-7880

TWX 710/734-4305

GENERAL

|
<
b
o«
o
uw
2z

z
=t
=

U.S. AND CANADIAN DISTRIBUTORS

NEW MEXICO

Bell Industries

11728 Linn N.E.
Albuquerque, NM 87123
506/292-2700

TWX 910/989-0625
Arrow Electronics

2460 Alamo Ave. SE.
Albuquerque, NM 87106
505/243-4566

TWX 910/989-1679

NEW YORK

Arrow Electronics
900 Broad Hollow Rd.
Farmingdale, LI, NY 11735
516/694-6800

TWX 510/224-6494
Arrow Electronics
7705 Maltiage Drive
P. 0. Box 370
Liverpool, NY 13088
315/652-1000

TWX 710/545-0230
Arrow Electronics
3000 S. Winton Road
Rochester, NY 14623
716/275-0300

TWX 510/263-4766
Arrow Electronics

20 Oser Ave.
Hauppauge, NY 11787
516/231-1000

TWX 510/227-6623
Lionex Corporation
400 Oser Ave.
Hauppauge, NY 11787
516/273-1660

TWX 510/221-2196
Schweber Electronics
2 Twin Line Circle
Rochester, NY 14623
716/424-2222
Schweber Electronics
Jericho Turnpike
Westbury, NY 11590
516/334-7474

TWX 510/222-3660

NORTH CAROLINA
Arrow Electronics

938 Burke St.

Winston Salem, NC 27102
919/725-8711

TWX 510/931-3169
Hammond Electronics
2923 Pacific Avenue
Greensboro, NC 27406
919/275-6391

TWX 510/925-1094

OHIO

Arrow Electronics
7620 McEwen Road
Centerville, OH 45459
513/435-5563

TWX 810/459-1611
Arrow Electronics

10 Knoll Crest Drive
Reading, OH 45237
513/761-5432

TWX 810/461-2670
Arrow Electronics

TWX 810/427-9409
Schweber Electronics
23880 Commerce Park Road
Beachwood, OH 44122
216/464-2970

TWX 810/427-9441
Pioneer/Cleveland

4800 East 131st Street
Cleveland, OH 44105
215/587-3600

TWX 810/422-2211
Pioneer/Dayton-Industrial
4433 Interpoint Blvd.
Dayton, OH 45424
513/236-9900

TWX 810/459-1622

OREGON

Kierulff Electronics
14273 NW Science Park
Portland, OR 97229
503/641-9150

TWX 910/467-8753

PENNSYLVANIA
Schweber Electronics
101 Rock Road
Horsham, PA 19044
215/441-0600
Arrow Electronics
650 Seco Rd.
Monroeville, PA 15146
412/856-7000
Pioneer/Pittsburgh
560 Alpha Drive
Pittsburgh, PA 15238
412/782-2300

TWX 710/795-3122

SOUTH CAROLINA
Hammond Electronics
1035 Lown Des Hill Rd.
Greenville, SC 29602
803/233-4121

TWX 810/281-2233

TEXAS

Arrow Electronics
13715 Gamma Road
P.O. Box 401068
Dallas, TX 75240
214/386-7500
TWX 910/860-5377
Quality Components
10201 McKalla
Suite D

Austin, TX 78758
512/835-0220
TWX 910/874-1377
Quality Components
4257 Kellway Circle
Addison, TX 75001
214/387-4949
TWX 910/860-5459
Quality Components
6126 Westline
Houston, TX 77036
713/772-7100
Schweber Electronics
7420 Harwin Drive
Houston, TX 77036
713/784-3600
TWX 910/881-1109

-xiv

UTAH

Bell industries

3639 W. 2150 South
Salt Lake City, UT 84120
801/972-6969

TWX 910/925-5686
Kierulff Electronics

2121 South 3600 West
Salt Lake City, UT 84104
801/973-6913

WASHINGTON

Kierulff Electronics

1005 Andover Park East
Tukwiia, WA 98188
206/575-4420

TWX 910/444-2034
Wyle Distribution Group
1750 132nd Avenue N.E
Bellevue, Washington 98005
206/453-8300

TWX 910/443-2526

WISCONSIN

Arrow Electronics
434 Rawson Avenue
Oak Creek, Wi 53154
414/764-6600

TWX 910/262-1193
Kierulff Electronics
2212 E. Moreland Bivd.
Waukesha, WI 53186
414/784-8160

TWX 910/262-3653

CANADA

Prelco Electronics
2767 Thames Gate Drive
Mississauga, Ontario
Toronto L4T 1G5
416/678-0401

TWX 610/492-8974
Prelco Electronics

480 Port Royal St. W.
Montreal 357 P.Q. H3L 2B9
514/389-8051

TWX 610/421-3616
Prelco Electronics
1770 Woodward Drive
Ottowa, Ontario K2C OP8
613/226-3491

Telex 05-34301

R.AE. Industrial

3455 Gardner Court
Burnaby, B.C. V5G 4J7
604,/291-8866

TWX 610/929-3065
Zentronics

141 Catherine Street
Ottawa, Ontario

K2P 1C3
613/238-6411

Telex 05-33636
Zentronics

1355 Meyerside Drive
Mississauga, Ontario
(Toronto) LST 1C9
416/676-

Telex 06-983657
Zentronics

5010 Rue Pare
Montreal, Quebec
M4P 1P3
514/735-5361

Telex 05-827535
Zentronics

590 Berry Street

St. James, Manitoba
(Winnipeg) R2H OR4
204/775-8661
Zentronics

480A Dutton Drive
Waterloo, Ontario
N2L 4C6
519/884-5700

INTERNATIONAL MARKETING OFFICES

EUROPEAN HEAD OFFICE

Mostek International

Av de Tervuren 270-272
B-1150 Brussels/Belgium
02/762 18.80

GERMANY
PLZ1-5

Mostek GmbH
FriedlandstraBe
D-2085 Quickborn

PLZ8

Mostek GmbH
Zaunkonigstr. 18
D-8021 Ottobrunn
089-609 1017

JAPAN

Mostek Japan KK
Sanyo Bidg 3F

1-2-7 Kita-Aoyama
Minato-Ku, Tokyo 107

UNITED KINGDOM
Mostek U.K. Ltd.
Masons House,

1-3 Valley Drive
Kingsbury Road

Telex: 62011 (4106) 2077/78 Telex: 5216516 (03) 404-7261 London, NW.9
Telex: 213685 Telex: J23686 01-204 9322
FRANCE ITALY Telex: 25940
Mostek France s.a.rl PLZ 6-7 Mostek Italia SRL SWEDEN
30 Rue du Morvan Mostek GmbH Via G.D. Guerrazzi 27 Mostek Scandinavia AB
SILIC 505 SchurwaldstraBe 15 120145 Milano Magnusvagen 1/8 tr
F-94623 Rungis Cedex D-7303 Neuhausen/Filder (02) 318.5337/349.2696 $-1731 Jarfalla
(1)687 34.14 7158/66.45 and 34.23.98 0758-343 38/343 48
Telex: 204049 Telex: 72.38.86 Telex: 333601 Telex: 12997
2!
g
523
=W
Zor
u
INTERNATIONAL SALES REPRESENTATIVES/DISTRIBUTORS oz
AUSTRIA GERMANY THE NETHERLANDS PORTUGAL ISRAEL
Transistor Vertriebsges, mbH Dr Dohrenberg Nijkerk Elektronika BV Digicontrole LDA Telsys Ltd,
AuhofstraBe 41 A Bayreuther StraBe 3 Drentestraat 7 Rua Tenente Ferreira Durao 33 R/C 12, Kehilat Venetsia St.
A-1130 Vienna D-1000 Berlin 30 1083 HK Amsterdam 1300 Lisboa Tel Aviv. Israel
(0222) 82 9451, 82 9404 030-213.80.43 (020) 428. 933 19-688442/652613 482126/7/8
Telex 01-3738 Telex: 0 184860 Telex: 11625 Telex: 13639 Telex: 032392
BELGIUM Neye Enatechnik GmbH SWEDEN UNITED KINGDOM For all other countries
Sotronic SchillerstraBe 14 Interelko AB Celdis Limited MOSTEK INTERNATIONAL
14 Rue Pere De Deken D-2085 Quickborn Strandbergsgatan, 47 37-39 Loverock Road Av de Tervuren 270-272
B-1040 Brussels 04106-612-1 S§-12221 Enskede Reading B-1150 Brussels/Belgium
02 736.10.07. Telex: 0 213.590 081132160 Berks. RG 31 ED 02/762 1880
Telex: 25141 Telex: 10 689 0734-5851.71 Telex: 62011
Branch offices in: Berlin, Hannover, Telex: 848370 o
DENMARK Dusseldorf, Darmstadt, Stuttgart, Lagercrantz Elektronik AB
Semicap APS Munchen, Box M48 Kanalvagens Lock Distribution Ltd. MOSTEK CORPORATION
Gammel Kongevej 148 S-19421 Upplands Vasby Neville Street International Dept.
DK-1850 Copenhagen Raffel-Electronic GmbH 0760 861 20 Chadderton 1215 West Crosby Road, Carrollton,
01-22.15.10 LochnerstraBe 1 Telex: 11275 Oldham Texas 75006, USA
Telex: 15987 D-4030 Ratingen 1 Lancashire 214,/323.6000
02102-280.24 SPAIN OL9 6LF Telex: 730423
FINLAND Telex: 8585180 Comelta S.A. 061-652.04.31

S.W. Instruments
Karstulantie 4B
SF-00550 Helsinki 55
8-0-73.82.65

Telex: 122411

FRANCE

Societe Copel

Rue Fourny, Z.{

B.P. 22, F-78 630 BUC
(1)-735.33.20

Telex: 204 534

PEP.

4 Rue Barthelemy
F-92120 Montrouge
(1)-7356.33.20

Telex: 204 534

SCAIB

80 Rue d'Arcueil

SiLIC 137

F-94150 Rungis Cedex
(1)687.23.12

Telex: 204674

Sorhodis

150-162 Rue A. France
F69100 Villeurbanne
(78) 850044

Telex: 380181

Siegfried Ecker
Koenigsberger StraBe 2
D-6120 Michelstadt
06061-2233

Telex: 4191630

Matronic GmbH
Lichtenberger Weg 3
D-7400 Tubingen
07071-24331

Telex: 7262879

Dema-Electronic GmbH
BlutenstraBe 21
D-8000 Munchen 40
(089) 288018/19
Telex: 05-29345

ITALY

Comprel s.r.l.

V.le Romagna. 1

1-20092 Cinisello B. (Ml)
(02)61.20.641/2/3/4/5
Telex: 332484

EmesaSPA.

Via L. da Viadana, 9
1-20122 Milano
(02) 869.0616
Telex: 335066

Branch offices in
Bologna, Firenze,
Lavagna, Loreto,
Padova, Roma, Torino

CiaElectronica Tecnicas Aplicadas
Diputacion, 79

Entlo 1-2

Barcelona-15

3257062

3257554

Telex: 519 34

Comelta S.A

Emilio Munoz 41, ESC 1
Planta 1 Nave 2
Madrid-17

01-754 3001/3077
Telex: 42007

SWITZERLAND
Memotec AG
CH-4932 Lotzwil
063-28.11.22
Telex: 68636

NORWAY

Hefro Tekniska A/S
Postboks 6596
Rodelkka

Oslo 5
02-38.02.86

Telex: 16205

I-xv

Telex: 669971

Pronto Electronic Systems Ltd,
466-478 Cranbrook Road
Gants Hill lliford

Essex 1G2 6LE

01-544 6222

Telex: 895 4213

VS| Electronics (UK) Ltd.
Roydondury Industrial Park
Horsecroft Rd.

Harlow

Essex CM19 5BY

(0279) 35477

Telex: 81387

YUGOSLAVIA
Chemcolor

Inozemma Zastupstva
Proleterskih brigada 37-a
41001 Zagreb
041-513.911

Telex: 21236

Branch office in Beograd

1981 280 MICROCOMPUTER DATA BOOK

.

dnhy

STVNNVYIN
TVIINHO3L
ANWVA 082
n

F
e
£l

‘?{Wﬂ
]

L

280 Family
Technical
Manuals

iy

Iy

MOSTEK.

Z80 MICROCOMPUTER DEVICES

Technical Manual

MK3880
CENTRAL
PROCESSING
UNIT

-2

TABLE OF CONTENTS

Chapter Page
1.0 Introduction e 111-5
2.0 ZBO-CPUAIChIteCIUreottt ittt -7
3.0 ZB80-CPU Pin DesCriptionuuuuiiiiiieeeeeeiiaaneeeeeeeneenn m-11
4.0 CPUTIMING. ... i e 1-15
5.0 Z80-CPUINStruction Setouiiiiuiiiit it 111-23
B.0 Flagsot e 1n-43
7.0 Summary of OP Codes and ExecutionTimesccvuiunnnnnnn. 1-47
8.0 INterrupt RESPONSEottt 11-59

9.0 Hardware Implementation Examplesc.oiiiiiiiiiiiiiiia 111-65

10.0 Software Implementation Examples oL, 1-71

11.0 Electrical Specifications i i m-77

12.0 Z80 Instruction Breakdown by MachineCycle 111-83

13.0 Ordering Information iiiiiiiiiiiiiee et 11-90

Hi-3

280 FAMILY
TECHNICAL

MANUALS

-4

1.0 INTRODUCTION

The term ‘“‘microcomputer’’ has been used to describe virtually every type of small
computing device designed within the last few years. This term has been applied to
everything from simple ““microprogrammed’” controllers constructed out of TTL MSI up
to low end minicomputers with a portion of the CPU constructed out of TTL LSI “bit
slices.’”” However, the major impact of the LS| technology within the last few years has been
with MOS LSI. With this technology, it is possible to fabricate complete and very powerful
computer systems with only a few MOS LS| components.

The Mostek Z80 family of components is a significant advancement in the state-of-art of
microcomputers. These components can be configured with any type of standard semi-
conductor memory to generate computer systems with an extremely wide range of
capabilities. For example, as few as two LS| circuits and three standard TTL MSI packages
can be combined to form a simple controller. With additional memory and 1/O devices a
computer can be constructed with capabilities that only a minicomputer could previously
deliver. This wide range of computational power allows standard modules to be constructed
by a user that can satisfy the requirements of an extremely wide range of applications.

The major reason for MOS LSI domination of the microcomputer market is the low cost of
these few LS| components. For example, MOS LSI microcomputers have already replaced
TTL logic in such applications as terminal controllers, peripheral device controllers, traffic
signal controllers, point of sale terminals, intelligent terminals and test systems. In fact the
MOS LSI microcomputer is finding its way into almost every product that now uses
electronics and it is even replacing many mechanical systems such as weight scales and
automobile controls.

The MOS LSI microcomputer market is already well established and new products using
them are being developed at an extraordinary rate. The Mostek Z80 component set has been
designed to fit into this market through the following factors:
1. The Z80 is fully software compatible with the popular 8080A CPU offered from
several sources. Existing designs can be easily converted to include the Z80 as a
superior alternative.

2. The Z80 component set is superior in both software and hardware capabilities to
any other 8-bit microcomputer system on the market. These capabilities provide the
user with significantly lower hardware and software development costs while also
allowing him to offer additional features in his system.

3. A complete development and OEM system product line including full software
support is available to enable the user to easily develop new products.

Microcomputer systems are extremely simple to construct using Z80 components. Any such
system consists of three parts:

1. CPU (Central Processing Unit)
2. Memory
3. Interface circuits to peripheral devices

-5

280 FAMILY
TECHNICAL

MANUALS

The CPU is the heart of the system. Its function is to obtain instructions from the memory
and perform the desired operations. The memory is used to contain instructions and in most
cases data that is to be processed. For example, a typical instruction sequence may be to
read data from a specific peripheral device, store it in a location in memory, check the
parity and write it out to another peripheral device. Note that the Mostek component set
includes the CPU and various general purpose 1/O device controllers, as well as a wide range
of memory devices. Thus, all required components can be connected together in a very
simple manner with virtually no other external logic. The user’'s effort then becomes
primarily one of software development. That is, the user can concentrate on describing his
problem and translating it into a series of instructions that can be loaded into the micro-
computer memory. Mostek is dedicated to making this step of software generation as simple
as possible. A good example of this is our assembly language in which a simple mnemonic
is used to represent every instruction that the CPU can perform. This language is self docu-
menting in such a way that from the mnemonic the user can understand exactly what the
instruction is doing without constantly checking back to a complex cross listing.

-6

2.0 Z80-CPU ARCHITECHURE

A block diagram of the internal architecture of the Z80-CPU is shown in Figure 2.0-1
The diagram shows all of the major elements in the CPU and it should be referred to
throughout the following description.

Z80-CPU BLOCK DIAGRAM

8-8IT
DATA BUS
DATA BUS
CONTROL
< : IR"IESJ INTERNAL DATA BUS ALU
INSTRUCTION 232
DECODE E
: zq22
cPy goi
cm}?;\nn CONTROL cPy ges
N -
cPU AN v REGISTERS
CONTROL CONTROL
SIGNALS @

ADDRESS
CONTROL

+5V GND ¢ 16.8IT
ADDRESS BUS

FIGURE 2.0-1

2.1 CPU REGISTERS

The Z280-CPU contains 208 bits of R/W memory that are accessible to the programmer.
Figure 2.0-2 illustrates how this memory is configured into eighteen 8-bit registers and
four 16-bit registers, All Z80 registers are implemented using static RAM. The registers
include two sets of six general purpose registers that may be used individually as 8-bit
registers or in pairs as 16-bit registers. There are also two sets of accumulator and flag
registers.

Special Purpose Registers

1. Program Counter (PC). The program counter holds the 16-bit address of the current
instruction being fetched from memory. The PC is automatically incremented after
its contents have been transferred to the address lines. When a program jump occurs
the new value is automatically placed in the PC, overriding the incrementer.

2. Stack Pointer (SP). The stack pointer holds the 16-bit address of the current top of
a stack located anywhere in external system RAM memory. The external stack
memory is organized as a last-in first-out (LIFQ) file. Data can be pushed onto the
stack from specific CPU registers or popped off of the stack into specific CPU regis-
ters through the execution of PUSH and POP instructions. The data popped from the
stack is always the last data pushed onto it. The stack allows simple implementation
of multiple level interrupts, unlimited subroutine nesting and simplification of many
types of data manipulation.

ni-7

Z80-CPU REGISTER CONFIGURATION

FIGURE 2.0-2

MAIN REG SET ALTERNATE REG SET
ACCUMULATOR FLAGS ACCUMULATOR FLAGS
A F A’ F
B c B c
GENERAL
D E D’ E PURPOSE
REGISTERS
H L W v
INTERRUPT MEMORY
VECTOR REFRESH
) R

INDEX REGISTER IX
SPECIAL

PURPOSE
INDEX REGISTER 1Y REGISTERS

STACK POINTER SP

PROGRAM COUNTER PC

. Two Index Registers (IX & 1Y). The two independent index registers hold a 16-bit

base address that is used in indexed addressing modes. In this mode, an index register
is used as a base to point to a region in memory from which data is to be stored or
retrieved. An additional byte is included in indexed instructions to specify a dis-
placement from this base. This displacement is specified as a two’'s complement
signed integer. This mode of addressing greatly simplifies many types of programs,
especially where tables of data are used.

. Interrupt Page Address Register (). The Z80-CPU can be operated in a mode where

an indirect call to any memory location can be achieved in response to an interrupt.
The | Register is used for this purpose to store the high order 8-bits of the indirect
address while the interrupting device provides the lower 8-bits of the address. This
feature allows interrupt routines to be dynamically located anywhere in memory with
absolute minimal access time to the routine.

. Memory Refresh Register (R). The Z80-CPU contains a memory refresh counter to

enable dynamic memories to be used with the same ease as static memories. This 7-bit
register is automatically incremented after each instruction fetch. The data in the
refresh counter is sent out on the lower portion of the address bus along with a
refresh control signal while the CPU is decoding and éxecuting the fetched instruc-
tion. This mode of refresh is totally transparent to the programmer and does not
slow down the CPU operation. The programmer can load the R register for testing
purposes, but this register is normally not used by the programmer.

Accumulator and Flag Registers

The CPU includes two independent 8-bit accumulators and associated 8-bit flag registers.
The accumulator holds the results of 8-bit arithmetic or logical operations while the flag
register indicates specific conditions for 8 or 16-bit operations, such as indicating whether
or not the result of an operation.is equal to zero. The programmer selects the accumulator
and flag pair that he wishes to work with with a single exchange instruction so that he may
easily work with either pair.

-8

General Purpose Registers

There are two matched sets of general purpose registers, each set containing six 8-bit regis-
ters that may be used individually as 8-bit registers or as 16-bit register pairs by the prog-
rammer. One set is called BC, DE, and HL while the complementary set is called BD’, DE’
and HL’. At any one time the programmer can select either set of registers to work with
through a single exchange command for the entire set. In systems where fast interrupt
response is required, one set of general purpose registers and an accumulator/flag register
may be reserved for handling this very fast routine. Only a simple exchange comimand need
be executed to go between the routines. This greatly reduces interrupt service time by
eliminating the requirement for saving and retrieving register contents in the external
stack during interrupt or subroutine processing. These general purpose registers are used for
a wide range of applications by the programmer. They also simplify programming, especially
in ROM based systems where little external read/write memory is available.

2.2 ARITHMETIC & LOGIC UNIT (ALU)

The 8-bit arithmetic and logical instructions of the CPU are executed in the ALU. Internally
the ALU communicates with the registers and the external data bus on the internal data bus.
The type of functions performed by the ALU include:

Add Left or right shifts or rotates (arithmetic and logical)
Subtract Increment

Logical AND Decrement

Logical OR Set bit

Logical Exclusive OR Reset bit

Compare Test bit

2.3 INSTRUCTION REGISTER AND CPU CONTROL

As each instruction is fetched from memory, it is placed in the instruction register and
decoded. The control section performs this function and then generates and supplies all of
the control signals necessary to read or write data from or to the registers, controls the
ALU and provides all required external control signals.

-9

>
=
_=2
=«
w
=}
®
N

TECHNICAL
MANUALS

m-10

3.0 Z80-CPU PIN DESCRIPTION

The Z80-CPU is packaged in an industry standard 40 pin Dual In-Line Package. The 1/0
pins are shown in Figure 3.0-1 and the function of each is described below.

Z80 PIN CONFIGURATION

SYSTEM o
CONTROL Y RD

cPU
CONTROLY iNT

cPU 8USRA
BUSRQ

BUS

CONTROL BUSAK

FIGURE 3.0-1

27 30
- —— AO
| 31 o A
19 32
20 n
21 34 "3
22 35 M
- ———— A5
36 Ag
28 37 A
- —"38 7 ADDRESS
L~ » Ag BUS
18 39
- ™ Ag
——— A
24 1
— A
. 280 CPU — A2
-5 MK 3880 ™ 3
— MK 3880-4 ™ Ata
2% F——= A5
—
25
23
-
14
ft——— DO
15
e 0,
6 12
—_— '48—> D2
1
LI la——» D
29 7 3 DATA
— 49—» D, BUS
[«—— Dg
=
[e— 0;

Ag-A1s
(Address Bus)

Dg-D7
(Data Bus)

My
(Machine Cycle one)

MREQ
(Memory Request)

Tri-state output, active high. Ag-A1g5 constitute a 16-bit address
bus. The address bus provides the address for memory (up to 64K
bytes) data exchanges and for |/O device data exchanges. 1/O
addressing uses the 8 lower address bits to allow the user to
directly select up to 256 input or 256 output ports. Ag is the
least significant address bit. During refresh time, the lower 7 bits
contain a valid refresh address.

Tri-state input/output, active high. Dg-D7 constitute an 8-bit
bidirectional data bus. The data bus is used for data exchanges
with memory and 1/O devices.

Output, active low. My indicates that the current machine cycle
is the OP code fetch cycle of an instruction execution. Note that
during execution of 2-byte op-codes, W is generated as each op
code byte is fetched. These two byte op-codes always begin with
CBH, DDH, EDH, or FDH. M1 also occurs with IORQ to indicate
an interrupt acknowledge cycle.

Tri-state output, active low. The memory request signal indicates
that the address bus holds a valid address for a memory read or
memory write operation.

H-11

280 FAMILY
TECHNICAL
MANUALS

IORQ

(Input/Qutput Request)

RD
(Memory Read)

WR
(Memory Write)

RFSH
(Refresh)

HALT
(Halt state)

WAIT*
(Wait)

iNT
(Interrupt Request)

=

Tri-state output, active low, The IORQ signal indicates that the
lower half of the address bus holds a valid 1/0 address for a 1/0
read or write operation. An TORQ signal is also generated with
an M1 signal when an interrupt is being acknowledged to indicate
that an interrupt response vector can be placed on the data bus.
Interrupt Acknowledge operations occur during Mq time while
1/0 operations never occur during M1 time.

Tri-state output, active low. RD indicates that the CPU wants to
read data from memory or an |/O device. The addressed 1/0 device
or memory should use this signal to gate data onto the CPU data
bus.

Tri-state output, active low. WR indicates that the CPU data bus
holds valid data to be stored in the addressed memory or 1/0
device.

Qutput, active low. RFSH indicates that the lower 7 bits of the
address bus contain a refresh address for dynamic memories and
current MREQ signal should be used to do a refresh read to all
dynamic memories. A7 is a logic zero and the upper 8 bits of the
Address Bus contains the | Register.

Output, active low. HALT indicates that the CPU has executed a
HALT software instruction and is awaiting either a non maskable
or a maskable interrupt (with the mask enabled) before operation
can resume. While halted, the CPU executes NOP’s to maintain
memory refresh activity.

Input, active low. WAIT indicates to the Z80-CPU that the add-
ressed memory or 1/O devices are not ready for a data transfer.
The CPU continues to enter wait states for as long as this signal is
active. This signal allows memory or 1/O devices of any speed to
be synchronized to the CPU.

Input, active low. The Interrupt Request signal is generated by
1/0 devices. A request will be honored at the end of the current
instruction if the internal software controlled interrupt enable
flip-flop (IFF) is enabled .and if the BUSRQ signal is not active.
When the CPU accepts the interrupt, an acknowledge signal
(IORQ during M4 time) is sent out at the beginning of the next
instruction cycle. The CPU can respond to an interrupt in three
different modes that ‘are described in detail in section 8.

Input, negative edge triggered. The non maskable interrupt request
line has a higher priority than INT and is always recognized at the
end of the current instruction, independent of the status of the
interrupt enable flip-flop. NMI automatically forces the Z80-CPU
to restart to location 0066. The program counter is automati-
cally saved in the external stack so that the user can return to the
program that was interrupted. Note that continuous WAIT cycles
can prevent the current instruction from ending, and that a

BUSRQ will override a NMI.

H-12

RESET Input, active low. RESET forces the program counter to zero and
initializes the CPU. The CPU initialization includes:

1) Disable the interrupt enable flip-flop
2) Set Register | = 00H

3) Set Register R = 00H

4) Set Interrupt Mode O

During reset time, the address bus and data bus go to a high
impedance state and all control output signals go to the inactive
state. No refresh occurs.

BUSRQ Input, active low. The bus request signal is used to request the
(Bus Request) CPU address bus, data bus and tri-state output control signals to
go to a high impedance state so that other devices can control
these buses. When BUSRQ is activated, the CPU will set these

buses to a high impedance state as soon as the current CPU
machine cycle is terminated.

BUSAK* Output, active low. Bus acknowledge is used to indicate to the

(Bus Acknowledge) requesting device that the CPU address bus, data bus and tri-
state control bus signals have been set to their high impedance
state and the external device can now control these signals.

MANUALS

>
2
_2
=<
w
Q
[
N

TECHNICAL

[Single phase system clock.

*While the Z80-CPU is in either a WAIT state or a Bus Acknowledge condition, Dynamic Memory Refresh
will not occur.

1m-13

Hn-14

4.0 CPU TIMING

The Z80-CPU executes instructions by stepping through a very precise set of a few basic
operations. These include:

Memory read or write
1/0 device read or write

Interrupt acknowledge

All instructions are merely a series of these basic operations. Each of these basic operations
can take from three to six clock periods to complete or they can be lengthened to syn-
chronize the CPU to the speed of external devices. The basic clock periods are referred to as
T states and the basic operations are referred to as M (for machine) cycles. Figure 4.0-0
illustrates how a typical instruction will be merely a series of specific M and T cycles. Notice
that this instruction consists of three machine cycles (M1, M2 and M3). The first machine
cycle of any instruction is a fetch cycle which is four, five or six T states long (unless
lengthened by the wait signal which will be fully described in the next section). The fetch
cycle (M1) is used to fetch the OP code of the next instruction to be executed. Subsequent
machine cycles move data between the CPU and memory or 1/O devices and they may have
anywhere from three to five T cycles (again they may be lengthened by wait states to
synchronize the external devices to the CPU). The following paragraphs describe the timing
which occurs within any of the basic machine cycles. In section 7, the exact timing for
each instruction is specified.

MANUALS

>
2
_e
=g
uw
o
®
N

TECHNICAL

BASIC CPU TIMING EXAMPLE

Machine Cycle

M1 m2 M3
(OP Code Fetch) (Memory Read) (Memory Write)

Instruction Cycle

FIGURE 4.0-0

All CPU timing can be broken down into a few very simple timing diagrams as shown in
Figure 4.0-1 through 4.0-7. These diagrams show the following basic operations with and
without wait states (wait states are added to synchronize the CPU to slow memory or
1/0 devices).

4.0-1. Instruction OP code fetch (M1 cycle)

4.0-2. Memory data read or write cycles

4.0-3. 1/0 read or write cycles

4.0-4. Bus Request/Acknowledge Cycle

4.0-5. Interrupt Request/Acknowledge Cycle

4.0-6. Non maskable Interrupt Request/Acknowledge Cycle

4.0-7. Exit from a HALT instruction

1i-15

INSTRUCTION FETCH

Figure 4.0-1 shows the timing during an M1 cycle (OP code fetch). Notice that the PC is
placed on the address bus at the beginning of the M1 cycle. One half clock time later the
MREQ signal goes active. At this time the address to the memory has had time to stabilize
so that the falling edge of MREQ can be used directly as a chip enable clock to dynamic
memories. The RD line also goes active to indicate that the memory read data should be
enabled onto the CPU data bus. The CPU samples the data from the memory on the data
bus with the rising edge of the clock of state T3 and this same edge is used by the CPU
to turn off the RD and MREQ signals. Thus the data has already been sampled.by the CPU
before the RD signal becomes inactive. Clock state T3 and T4 of a fetch cycle are used to
refresh dynamic memories. (The CPU uses this time to decode and execute the fetched
instruction so that no other operation could be performed at this time). During T3 and T4
the lower 7 bits of the address bus contain a memory refresh address and the RFSH signal
becomes active to indicate that a refresh read of all dynamic memories should be accom-
plished. Notice that a RD signal is not generated during refresh time to prevent data from
different memory segments from being gated onto the data bus. The MREQ signal during
refresh time should be used to perform a refresh read of all memory elements. The refresh
signal can not be used by itself since the refresh address is only guaranteed to he stable
during MREQ time.

INSTRUCTION OP CODE FETCH

M1 Cycle
T T2 T3 Tq T

4 1 L \ \ \ \

A0 ~ A5) REFRESH ADDR.

wRea |\ I\ T

D T L /

LZ2LL N IV E [U AOS G PR,

mi T J A k-

DO — D7 E’_‘r

P \ T

FIGURE 4.0-1

Figure 4.0-1A illustrates how the fetch cycle is delayed if the memory activates the WAIT
line. During T2 and every subsequent Tw, the CPU samples the WAIT line with the falling
edge of ®. If the WAIT line is active at this time, another wait state will be entered during
the following cycle. Using this technique the read cycle can be lengthened to match the
access time of any type of memory device.

1-16

INSTRUCTION OP CODE FETCH WITH WAIT STATES

Mi Cycle N
T T2 Tw Tw T3 Ta
® 4\ \ | G A VY (R
AD ~ A5 X PC REFRESH ADDR.
WREG | \ / \ / B
= —
DO — D7 ‘IE'_\h
i L
it WY s e W ko e o et i
RFSH \ 20
0%
=az2
[N 4
FIGURE 4.0-1A gus
N

MEMORY READ OR WRITE

Figure 4.0-2 illustrates the timing of memory read or write cycles other than an OP code
fetch (M1 cycle). These cycles are generally three clock periods long unless wait states are
requested by the memory via the WAIT signal. The MREQ signal and the RD signal are used
the same as in the fetch cycle. In the case of a memory write cycle, the MREQ also becomes
active when the address bus is stable so that it can be used directly as a chip enable for
dynamic memories. The WR line is active when data on the data bus is stable so that it can
be used directly as a R/W pulse to virtually any type of semiconductor memory. Further-
more the WR signal goes inactive one half T state before the address and data bus contents
are changed so that the overlap requirements for virtually any type of semiconductor
memory type will be met.

MEMORY READ OR WRITE CYCLES

Memory Read Cycle Memory Write Cycle ——————=

T T2 T3 T T2 T3
4 \ \ \ \ \ \
A0 ~ AT5 MEMORY ADDR. MEMORY ADDR)
we o T /. T
b T]
WR ____J_—
I(Jggigl;? @7 { DATA OUT }—
LU A Y [U S B I_Y____TL:::'Z_"‘___

FIGURE 4.0-2

n-17

Figure 4.0-2A illustrates how a WAIT request signal will lengthen any memory read or
write operation. This operation is identical to that previously described for a fetch cycle.
Notice in this figure that a separate read and a separate write cycle are shown in the same
figure although read and write cycles can never occur simultaneously.

MEMORY READ OR WRITE CYCLES WITH WAIT STATES

T T2 Tw Tw T3 T
@ 4\ \ 1 \ L 1
A0 ~ A15 1 MEMORY ADDR.]
wRea T\ J
RD L |/ READ
DATA BUS Tarat CveLe
(D0-D7) T
WR \ / }wmrs
(Eg\gi\g;’)ﬁ ——{ DATA OUT - cvete
war TTTTTTA [_"__/__:F R U N R S

FIGURE 4.0-2A
INPUT OR OUTPUT CYCLES

Figure 4.0-3 illustrates an 1/O read or /O write operation. Notice that during I/O operations
a single wait state is automatically inserted. The reason for this is that during 1/0 operations,
the time from when the IORQ signal goes active until the CPU must sample the WAIT line
is very short and without this extra state sufficient time does not exist for an 1/0 port to
decode its address and activate the WATT line if a wait is required. Also, without this wait
state it is difficult to design MOS 1/0O devices that can operate at full CPU speed. During
this wait state time the WAIT request signal is sampled. During a read 1/0 operation, the
RD line is used to enable the addressed port onto the data bus just as in the case of a
memory read. For /O write operations, the WR line is used as a clock to the /O port, again
with sufficient overlap timing automatically provided so that the rising edge may be used as
a data clock.

Figure 4.0-3A illustrates how additional wait states may be added with the WAIT line.
The operation is identical to that previously described.

BUS REQUEST/ACKNOWLEDGE CYCLE

Figure 4.0-4 illustrates the timing for a Bus Request/Acknowledge cycle. The BUSRQ
signal is sampled by the CPU with the rising edge of the last clock period of any machine
cycle..lf the BUSRQ signal is active, the CPU will set its address, data and tri-state control
signals to the high impedance state with the rising edge of the next clock pulse. At that
time any-external device can control the buses to transfer data between memory and 1/0
devices. (This is generally known as Direct Memory Access [DMA] using cycle stealing).
The maximum time for the CPU to respond to a bus request is the length of a machine
cycle and the external controller can maintain control of the bus for as many clock cycles
as is desired. Note, however, that if very long DMA cycles are used, and dynamic memories
are being used, the external controller must also perform the refresh function. This situation
only occurs if very large blocks of data are transferred under DMA control. Also note that
during a bus request cycle, the CPU cannot be interrupted by either a NMI or an INT signal.

1-18

INPUT OR OUTPUT CYCLES

T T2 Tw’ T3 T
AD - A7)| PORT ADDRESS) A
iORQ \ y
RD 1 J } Read
Cycle
DATA BUS —{v }— !
—— ——— s o e e e . - - ——--———-———‘—-———-
WAIT N IS T SR A I
I %30
WA 3 T _33¢
Cycle “uzx2Z
— — a
pATReS 2 *Inserted by Z80 CPU i3
FIGURE 4.0-3
INPUT OR OUTPUT CYCLES WITH WAIT STATES
T T, Tw' Tw T3
N \ (U al T
A0 ~ A7 1 PORT ADDRESS 1
ioAa \ [
DATA BUS {in} AEAD
&5 — CYCLE
war TN [TV T
DATA BUS ———{ ouT — -
- \ — CYCLE
*Inserted by Z80 CPU
FIGURE 4.0-3A

1-19

BUS REQUEST/ACKNOWLEDGE CYCLE

Any M Cycl Bus Available States———————l
Last T State Tx Tx Tx T

@ I \ 1 \ 1 \ n
BUSRQ . \ [g

Sample —% Sample
BUSAK \ I
A0 ~ A15 }— __.___._.__.___4.(:
DO~ D7 —_— __.__.d-_.____..‘:
MREQ, RD, —— e
i pre— S

FIGURE 4.04

INTERRUPT REQUEST/ ACKNOWLEDGE CYCLE

Figure 4.0-5 illustrates the timing associated with an interrupt cycle. The interrupt signal
(INT) is sampled by the CPU with the rising edge of the last clock at the end of any in-
struction. The signal will not be accepted if the internal CPU software controlled interrupt
enable flip-flop is not set or if the BUSRQ signal is active. When the signal is accepted a
special M1 cycle is generated. During this special M1 cycle the IORQ signal becomes active
(instead of the normal MREQ) to indicate that the interrupting device can place an 8-bit
vector on the data bus. Notice that two wait states are automatically added to this cycle.
These states are added so that a ripple priority interrupt scheme can be easily implemented.
The two wait states allow sufficient time for the ripple signals to stablilize and identify
which 1/0 device must insert the response vector. Refer to section 8.0 for details on how the
interrupt response vector is utilized by the CPU.

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE

Last M Cycle i
of Instruction
Last T State Ty T, Tw"* Tw" T3
e _I\ \ \ \ (S L
W ﬂ::::l__[:::—_.__—:) ey S S B
A0 ~ A15 1 PC] REFRESH
i \ I——
WREG |-
ioRa ' \ /_'_
DATA BUS ™)
(25 2 S USNU DR O A S [W S
1—

RD I Mode 0 shown

FIGURE 4.0-5

11-20

Figure 4.0-5A illustrates how additional wait states can be added to the interrint response
cycle. Again the operation is identical to that previously described.

INTERRUPT REQUEST/ACKNOWLEDGE WITH WAIT STATES

M
T T2 Tw Tw' Tw T3 T4
4 | \ \ \ \ \ -\ .
A0 ~ A5 PC REFRESH ADDR.
_
i A
1
P R e e LTy —— —_— —— — —— e ——— — — o ———— ﬁ--—
war T T T T T T I W 0 Y W S I _ %30
s
=g
iGRG \ ; 554
—t— 2wz
DATA BUS —N]
MREQ L—-_——J T
RD

Mode 0 shown
FIGURE 4.0-5A

NON MASKABLE INTERRUPT RESPONSE

Figure 4.0-6 illustrates the request/acknowledge cycle for the non-maskable interrupt,
A pulse on the NMI input sets an internal NM| latch which is tested by the CPU at the
end of every instruction. This NMI latch is sampled at the same time as the interrupt line,
but this line has priority over the normal interrupt and it can not be disabled under soft-
ware control. Its usual function is to provide immediate response to important signals
such as an impending power failure. The CPU response to a non maskable interrupt is
similar to a normal memory read operation. The only difference being that the content
of the data bus is ignored while the processor automatically stores the PC in the external
stack and jumps to location 0066H. The service routine for the non maskable interrupt
must begin at this location if this interrupt is used.

HALT EXIT

Whenever a software halt instruction is executed the CPU begins executing NOP’s until an
interrupt is received (either a non-maskable or a maskable interrupt while the interrupt
flip flop is enabled). The two interrupt lines are sampled with the rising clock edge during
each T4 state as shown in Figure4.0-7. |If a non-maskable interrupt has been received or a
maskable interrupt has been received and the interrupt enable flip-flop is set, then the halt
state will 'be exited on the next rising clock edge. The following cycle will then be an inter-
rupt acknowledge cycle corresponding to the type of interrupt that was received. |f both are
received at this time, then the non maskable one will be acknowledged since it was highest
priority. The purpose of executing NOP instructions while in the halt state is to keep the
memory refresh signals active. Each cycle in the halt state is a normal M1 (fetch) cycle
except that the data received from the memory is ignored and a NOP instr: ztion is forced
internally to the CPU. The halt acknowledge signal is active during this time to indicate
that the processor is in the halt state.

1-21

NON MASKABLE INTERRUPT REQUEST OPERATION

Last M Cycle = M - M2, M3*
Last T Time Tq Ty T3 Ta Ts
® g\ 1 | Y \ L A
L W e o O O A A
A0 ~ A15 B PC REFRESH [)
w yl
MREQ \ / \ N
AD | [
RFSH \ / N
*M2 and M3 are stack write operations
FIGURE 4.0-6
HALT EXIT
M1 M1 M1
Ts T T, T3 Ta T T2
s — \ \ \ \ 1 1 __
HALT \ /
—_— — RS R — S —— e e e e ————
INT or r
il S A A W SO AN ===
HALT INSTRUCTION)
1S RECEIVED
DURING THIS
MEMORY CYCLE
FIGURE 4.0-7

1m-22

5.0 Z80-CPU INSTRUCTION SET

The Z80-CPU can execute 158 different instruction types including all 78 of the 8080A
CPU. The instructions can be broken down into the following major groups:

» Load and Exchange

« Block Transfer and Search

+ Arithmetic and Logical

» Rotate and Shift

* Bit Manipulation (set, reset, test)
+ Jump, Call and Return
Input/Output

- Basic CPU Control

.

5.1 INTRODUCTION TO INSTRUCTION TYPES

The load instructions move data internally between CPU registers or between CPU registers
and external memory. All of these instructions must specify a source location from which
the data is to be moved and a destination location. The source location is not altered by
a load instruction. Examples of load group instructions include moves between any of the
general purpose registers such as move the data to Register B from Register C. This group
also includes load immediate to any CPU register or to any external memory location.
Other types of load instructions allow transfer between CPU registers and memory locations.
The exchange instructions can trade the contents of two registers.

A unique set of block transfer instructions is provided in the Z80. With a single instruction a
block of memory of any size can be moved to any other location in memory. This set of
block moves is extremely valuable when large strings of data must be processed. The Z80
block search instructions are also valuable for this type of processing. With a single
instruction, a block of external memory of any desired length can be searched for any 8-bit
character. Once the character is found the instruction automatically terminates. Both the
block transfer and the block search instructions can be interrupted during their execution so
as to not occupy the CPU for long periods of time.

The arithmetic and logical instructions operate on data stored in the accumulator and other
general purpose CPU registers or external memory locations. The results of the operations
are placed in the accumulator and the appropriate flags are set according to the result of
the operation. An example of an arithmetic operation is adding the accumulator to the con-
tents of an external memory location. The results of the addition are placed in the
accumulator. This group also includes 16-bit addition and subtraction between 16-bit CPU
registers.

The bit manipulation instructions allow any bit in the accumulator, any general purpose
register or any external memory location to be set, reset or tested with a single instruction.
For example, the most significant bit of register H can be reset. This group is especially
useful in control applications and for controlling software flags in general purpose prog-
ramming.

The jump, call and return instructions are used to transfer between various locations in the
user’s program. This group uses several different techniques for obtaining the new program
counter address from specific external memory locations. A unique type of jump is the
restart instruction. This instruction actually contains the new address as a part of the 8-bit
OP code. This is possible since only 8 separate addresses located in page zero of the external
memory may be specified. Program jumps may also be achieved by loading register HL, IX
or 1Y directly into the PC, thus allowing the jump address to be a complex function of the
routine being executed.

1n-23

280 FAMILY
TECHNICAL
MANUALS

The input/output group of instructions in the Z80 allow for a wide range of transfers
between external memory locations or the general purpose CPU registers, and the external
1/O devices. In each case, the port number is provided on the lower 8 bits of the address
bus during any 1/0O transaction. One instruction allows this port number to be specified by
the second byte of the instruction while other Z80 instructions allow it to be specified
as the content of the C register. One major advantage of using the C register as a pointer to
the 1/O device is that it allows different 1/0 ports to share common software driver routines.
This is not possible when the address is part of the OP code if the routines are stored in
ROM. Another feature of these input instructions is that they set the flag register automati-
cally so that additional operations are not required to determine the state of the input data
(for example its parity). The Z80-CPU includes single instructions that can move blocks or
data (up to 256 bytes) automatically to or from any 1/O port directly to any memory
location. In conjunction with the dual set of general purpose registers, these instructions
provide for fast 1/0 block transfer rates. The value of this 1/O instruction set is demon-
strated by the fact that the Z80-CPU can provide all required floppy disk formatting (i.e.,
the CPU provides the preamble, address, data and enables the CRC codes) on double density
floppy disk drives on an interrupt driven basis.

Finally, the basic CPU control instructions allow various options and modes. This group
includes instructions such as setting or resetting the interrupt enable flip flop or setting
the mode of interrupt response.

5.2 ADDRESSING MODES

Most of the Z80 instructions operate on data stored in internal CPU registers, external
memory or in the 1/O ports. Addressing refers to how the address of this data is generated
in each instruction. This section gives a brief summary of the types of addressing used
in the Z80 while subsequent sections detail the type of addressing available for each in-
struction group.

Immediate. In this mode of addressing the byte following the OP code in memory contains
the actual operand.

OP Code }one or 2 bytes

Operand
dz do

Examples of this type of instruction would be to load the accumulator with a constant,
where the constant is the byte immediately following the OP code.

Immediate Extended. This mode is merely an extension of immediate addressing in that the
two bytes following the op codes are the operand.

OP Code one or 2 bytes

Operand low order

Operand high order

Examples of this type of instruction would be to load the HL register pair (16-bit register)
with 16 bits (2 bytes) of data.

111-24

Modified Page Zero Addressing. The Z80 has a special single byte call instruction to any of
8 locations in page zero of memory. This instruction (which is referred to as a restart) sets
the PC to an effective address in page zero. The value of this instruction is that it allows a
single byte to specify a complete 16-bit address where commonly called subroutines are
located, thus saving memory space.

one byte

by bg Effective address is (00bsb4b3000)

Relative Addressing. Relative addressing uses one byte of data following the OP code to
specify a displacement from the existing program to which a program jump can occur.
This displacement is a signed two’s complement number that is added to the address of the
OP code of the following instruction.

OP Code Jump relative (one byte OP code)

Operand 8-bit two’s complement displacement added to
Address (A+2)

The value of relative addressing is that it allows jumps to nearby locations while only
requiring two bytes of memory space. For most programs, relative jumps are by far the
most prevalent type of jump due to the proximity of related program segments. Thus,
these instructions can significantly reduce memory space requirements. The signed dis-
placement can range between +127 and -128 from A + 2. This allows for a total displace-
ment of +129 to -126 from the jump relative OP code address. Another major advantage
is that it allows for relocatable code.

Extended Addressing. Extended Addressing provides for two bytes (16 bits) of address to
be included in the instruction. This data can be an address to which a program can jump or
it can be an address where an operand is located.

OP Code } one or two bytes

Low Order Address or Low order operand

High Order Address or High order operand

Extended addressing is required for a program to jump from any location in memory to any
other location, or load and store data in any memory location.

When extended addressing is used to specify the source or destination address of an operand,
the notation (nn) will .be used to indicate the content of memory at nn, where nn is the
16-bit address specified in the instruction. This means that the two bytes of address nn are
used as a pointer to a memory location. The use of the parentheses always means that the
value enclosed within them is used as a pointer to a memory location. For example, (1200)
refers to the contents of memory at location 1200.

Indexed Addressing. [n this type of addressing, the byte of data following the OP code
contains a displacement which is added to one of the two index registers (the OP code
specifies which index register is used) to form a pointer to memory. The contents of the
index register are not altered by this operation.

OP Code

two byte OP code
OP Code

Displacement|Operand added to index register to form a pointer
to memory.

-25

MANUALS

>
=
_=2
=4
w
(=}
@©
N

TECHNICAL

An example of an indexed instruction would be to load the contents of the memory loca-
tion (Index Register + Displacement) into the accumulator. The displacement is a signed
two’s complement number. Indexed addressing greatly simplifies programs using tables of
data since the index register can point to the start of any table. Two index registers are
provided since very often operations require two or more tables. Indexed addressing also
allows for relocatable code.

The two index registers in the Z80 are referred to as IX and Y. To indicate indexed add-
ressing the notation:
(IX+d) or (1Y+d)

is used. here d is the displacement speclﬁed after the OP code The parentheses indicate that
this value is used as a pointer to.external memory.

Register Addressing. Many of the Z80 OP codes contain bits of information that specify
which CPU register is to be used for an operation. An example of register addressing would
be to load the data in register B into register C.

Implied Addressing. Implied addressing refers to operations where the OP code automati-
cally implies one or more CPU registers as containing the operands. An example is the set of
arithmetic operations where the accumulator is always implied to be the destination of the
results.

Register Indirect Addressing. This type of addressing specifies a 16-bit CPU register pair
(such as HL) to be used as a pointer to any location in memory. This type of instruction is
very powerful and it is used in a wide range of applications.

OP Code } one or two bytes

An example of this type of instruction would be to load the accumulator with the data in
the memory location pointed to by the HL register contents. Indexed addressing is actually
a form of register indirect addressing except that a displacement is added with indexed
addressing. Register indirect addressing allows for very powerful but simple to implement
memory accesses. The block move and search commands in the Z80 are extensions of this
type of addressing where automatic register incrementing, decrementing and comparing
has been added. The notation for indicating register indirect addressing is to put paren-
theses around the name of the register that is to be used as the pointer. For example, the
symbol '

(HL)

specifies that the contents of the HL register are to be used as a pointer to 'a memory
location. Often register indirect addressing is used to specify 16-bit operands. In this case,
the register contents point to the lower order pertion of the operand while the register
contents are automatically incremented to‘obtain the upper portion of the operand.

Bit Addressing. The Z80 contains a large number of bit set, reset and test instructions.
These instructions allow any memory location or CPU register to be specified for a bit
operatiori through one of three previous addressing modes (register, register indirect and
indexed) while three bitsin the OP code specify which of the eight bits is to be manipulated.

ADDRESSING MODE COMBINATIONS

Many instructions include more than one operand (such as arithmetic instructions or loads).
In these cases, two types of addressing may be employed. For example, load can use im-
mediate addressing to specify the source and register indirect or indexed addressing to
specify the source and register indirect or indexed addressing to specify the destination.

111-26

5.3 INSTRUCTION OP CODES

This section describes each of the Z80 instructions and provides tables listing the OP codes
for every instruction. In each of these tables the shaded OP codes are identical to those
offered in the 8080A CPU. Also shown is the assembly language mnemonic that is used for
each instruction. All instruction OP codes are listed in hexadecimal notation. Single byte
OP codes require two hex characters while double byte OP codes require four hex characters.
The conversion from hex to binary is repeated here for convenience.

Hex Binary Decimal Hex Binary Decimal
0 = 0000 = O 8 = 1000 = 8
1 = 0001 = 1 9 = 1001 = 9
2 = 0010 = 2 A = 1010 = 10
3 = 0011 = 3 B = 1011 = 11
4 = 0100 = 4 cC = 1100 = 12
5 = 0101 = 5 D = 1101 = 13
6 = 0110 = 6 E = 1110 = 14
7 = o1l = 7 F = 1111 = 15

280 instruction mnemonics consist of an OP code and zero, one or two operands.
Instructions in which the operand is implied have no operand. Instructions which have
only one logical operand or those in which one operand is invariant (such as the Logical OR
instruction) are represented by a one operand mnemonic. Instructions which may have
two varying operands are represented by two operand mnemonics.

LOAD AND EXCHANGE

Table 5.3-1 defines the OP code for all of the 8-bit load instructions implemented in the
Z80-CPU. Also shown in this table is the type of addressing used for each instruction. The
source of the data is found on the top horizontal row while the destination is specified by
the left hand column. For example, load register C from register B uses the OP code 48H.
In all of the tables the OP code is specified in hexadecimal notation and the 48H (=0100
1000 binary) code is fetched by the CPU from the external memory during M1 time,
decoded and then the register transfer is automatically performed by the CPU.

The assembly language mnemonic for this entire group is LD, followed by the destination
followed by the source (LD DEST., SOURCE). Note that several combinations of addressing
modes are possible. For example, the source may use register addressing and the destination
may be register indirect, such as load the memory location pointed to by register HL with
the contents of register D. The OP code for this operation would be 72. The mnemonic for
this load instruction would be as follows: LD (HL), D

The parentheses around the HL means that the contents of HL are used as a pointer to a
memory location. In all Z80 load instruction mnemonics the destination is always listed
first, with the source following. The Z80 assembly language has been defined for ease of
programming. Every instruction is self documenting and programs written in Z80 language
are easy to maintain.

Note in Table 5.3-1 that some load OP codes that are available in the Z80 use two bytes.
This is an efficient method of memory utilization since 8, 16, 24 or 32 bit instructions
are implemented in the Z80. Thus often utilized instructions such as arithmetic or logical
operations are only 8-bits which results in better memory utilization than is achieved with
fixed instruction sizes such as 16-bits.

All load instructions using indexed addressing for either the source or destination location
actually use three bytes of memory with the third byte being the displacement d. For
example a load register E with the operand pointed to by 1X with an offset of +8 would be
written: LD E, (IX + 8)

1n-27

>
=
_=
=g
w
o
®
N

TECHNICAL
MANUALS

The instruction sequence for this in memory would be:

Address A DD

P Code
A+1 5F

A+2 08 | Displacement operand

The two extended addressing instructions are also three byte instructions. For example
the instruction to load the accumulator with the operand in memory location 6F32H would
be written:

LD A, (6F 32H)

and its instruction sequence would be:

Address A 3A | OP Code

A+1 32 | low order address

A+2 6F | high order address

Notice that the low order portion of the address is always the first operand.

The load immediate instructions for the general purpose 8-bit registers are two-byte instruc-
tions. The instruction load register H with the value 36H would be written:

LD H, 36H

and its sequence would be:

Address A 26 | OP Code

A+1 36 | Operand

Loading a memory location using indexed addressing for the destination and immediate
addressing for the source requires four bytes. For example:

LD (I1X - 15), 21H

would appear as:

Address A DD
OP Code

A+1 36

A+2 F1 | displacement (-15 in
signed two’s complement)
A+3 21 | operand to load

Notice that with any indexed addressing the displacement always follows directly after the
OP code.

Table 5.3-2 specifiesthe 16-bit load operations. This table is very similar to the previous one.
Notice that the extended addressing capability covers all register pairs. Also notice that
register indirect operations specifying the stack pointer are the PUSH and POP instructions.
The mnemonic for these instructions is “PUSH’ and "POP"’, These differ from other 16-bit
loads in that the stack pointer is automatically decremented and incremented as each byte
is pushed onto or popped from the stack respectively. For example the instruction:

111-28

PUSH AF

is a single byte instruction with the OP code of F5H. When this instruction is executed the
following sequence is generated:

Decrement SP

LD (SP), A

Decrement SP

LD (SP), F
Thus the external stack now appears as follows:
(SP) F Top of stack
(SP+1) A
8 BIT LOAD GROUP
SOURCE
EXT.
IMPLIED REGISTER REG INDIRECT INDEXED lADDR.| IMME.
1 R (HL)
A ED ED
57 5F
B
c
REGISTER | D
E
H
L
DESTINATION (HL)
Womect | ©0)
(DE)
oo | oo | oo| oo | bo | oD »
(1X+d) 70 71 72 73 74 75 M
d d d d d d o
INDEXED FD
FD FD FD FD FD FD FD 36
(1Y +d) 77 70 n 72 73 74 75 M
d d d d d d a
EXT. ADDR | (nn)
] ED
47
IMPLIED
R ED
aF
TABLE 5.3-1

1-29

280 FAMILY
TECHNICAL
MANUALS

The POP instruction is the exact reverse of a PUSH. Notice that all PUSH and POP instruc-
tions utilize a 16-bit operand and the high order byte is always pushed first and popped last.
That is a:

PUSH BC is PUSH B then C
PUSH DE is PUSH D then E
PUSH HL is PUSH H then L
POP HL isPOP L thenH

The instruction using extended immediate addressing for the source obviously requires
2 bytes of data following the OP code. For example:

LD DE, 0659H
will be:

Address A m OP Code
A+1. E Low order operand to register E
A+2 m High order operand to register D

In all extended immediate or extended addressing modes, the low order byte always appears
first after the OP code.

Table 5.3-3 lists the 16-bit exchange instructions implemented in the Z80. OP code 08H
allows the programmer to switch ‘between the two pairs of accumulator flag registers while
D9H allows the programmer to switch between the duplicate set of six general purpose
registers. These OP codes are only one byte in length to absolutely minimize the time
necessary to perform the exchange so that the duplicate banks can be used to effect very
fast interrupt response times.

BLOCK TRANSFER AND SEARCH

Table 5.3-4 lists the extremely powerful block transfer instructions. All of these instructions
operate with three registers.

HL points to the source location.
DE points to the destination location.
BC is a byte counter.

After the programmer has initialized these three registers, any of these four instructions may
be used. The LDI (Load and Increment) instruction moves one byte from the location
pointed to by HL to the location pointed to by DE. Register pairs HL and DE are then
automatically incremented and are ready to point to the following locations. The byte
counter (register pair BC) is also decremented at this time. This instruction is valuable when
blocks of data must be moved but other types of processing are required between each
move. The LDIR (Load, increment and repeat) instruction is an extension of the LDI
instruction. The same load and increment operation is repeated until the byte counter
reaches the count of zero. Thus, this single instruction can move any block of data from one
location to any other.

Note that since 16-bit registers are used, the size of the block can be up to 64K bytes
(1K = 1024) long and it can be moved from any location in memory to any other location.
Furthermore the blocks can be overlapping since there are absolutely no constraints on the
data that is used in the three register pair.

The LDD and LDDR instructions are very similar to the LDI and LDIR. The only difference
is that register pairs HL and DE are decremented after every move so that a block transfer
starts from the highest address of the designated block rather than the lowest.

111-30

16 BIT LOAD GROUP ‘LD’ ‘PUSH’ AND ‘POP’

SOURCE
IMM. | EXT. | REG.
REGISTER EXT. | ADDR.| INDIR.
AF B8C DE HL SP IX 1y nn (nn) (SP)
AF
BC
R DE
E
G
L HL
DESTINATION T
£ 9
SP DD sQ g
=q2
” “iE2
Sus
X N
1y
EXT. 920
apps.| ™ n
PUSH » | REG. (SP) DD FD
INSTRUCTIONS IND. E5 E5
NOTE: The Push & Pop Instructions adjust POP
the SP after every execution . INSTRUCTIONS

TABLE 5.3-2

EXCHANGES ‘EX’ AND ‘EXX’

IMPLIED ADDRESSING
AF | BC,DE'&HL| HL | Ix Iy

AF 08

BC,
DE

IMPLIED] &
HL

D9

DE

REG. (sP)
INDIR.

DD FD
E3 E3

TABLE 5.3-3

111-31

BLOCK TRANSFER GROUP

SOURCE

‘LDI’ — Load (DE)=e— (HL)
inc HL & DE, Dec BC

‘LDIR,’ — Load (DE)-e—(HL)
Inc HL & DE, Dec BC, Repeat until BC =0

REG.
DESTINATION |,npiR | (DE)

‘LDD’ — Load (DE)w—(HL)

Dec HL & DE, Dec BC

‘LDDR’ — Load (DE)-—(HL)

Dec HL & DE, Dec BC, Repeat until BC=0
Reg HL points to source
Reg DE points to destination

Table 53-4 Reg BC isbyte counter

Table 5.3-5 specifies the OP codes for the four block search instructions. The first, CPI
(compare and increment) compares the data in the accumulator, with the contents of the
memory location pointed to by register HL. The result of the compare is stored in one of
the flag bits (see section 6.0 for a detailed explanation of the flag operations) and the HL
register pair is then incremented and the byte counter (register pair BC) is decremented.

The instruction CPIR is merely an extension of the CPI instruction in which the compare
is repeated until either a match is found or the byte counter (register pair BC) becomes
zero. Thus, this single instruction can search the entire memory for any 8-bit character.

The CPD (Compare and Decrement) and CPDR (Compare, Decrement and Repeat) are
similar instructions, their only difference being that they decrement HL after every compare
so that they search the memory in the opposite direction. (The search is started at the
highest location in the memory block).

It should be emphasized again that these block transfer and compare instructions are
extremely powerful in string manipulation applications.

ARITHMETIC AND LOGICAL

Table 5.3-6 lists all of the 8-bit arithmetic operations that can be performed with the
accumulator, also listed are the increment (INC) and decrement (DEC) instructions.
In all of these instructions, except INC and DEC, the specified 8-bit operation is performed
between the data in the accumulator and the source data specified in the table. The result
of the operation is placed in the accumulator with the exception of compare (CP) that
leaves the accumulator unaffected. All of these operations affect the flag register as a result
of the specified operation. (Section 6.0 provides all of the details on how the flags are
affected by any instruction type). INC and DEC instructions specify a register or a memory
location as both source and destination of the result. When the source operand is addressed
using the index registers the displacement must follow directly. With immediate addressing
the actual operand will follow directly. for example the instruction:

AND 07H
would appear as:

Address A OP Code
A+1| 07 | Operand

1-32

BLCCK SEARCH GROUP

SEARCH
LOCATION
REG.
INDIR.
(HL)
ED ‘P’
A1l Inc HL, Dec BC
ED ‘CPIR’, Inc HL, Dec BC
B1 repeat until BC = 0 or find match
ED «OPD’
A9 CPD’ Dec HL & BC
ED ‘CPDR’ Dec HL & BC
B9 Repeat until BC = 0 or find match

HL points to location in memory
to be compared with accumulator
contents

TAB LE 5.3-5 BC is byte counter

MANUALS

>
=2
_=
=4
o
o
©
N

TECHNICAL

Assuming that the accumulator contained the value F3H the result of 03H would be placed
in the accumulator:

Acc before operation 11110011 = F3H
Operand 0000 0111 =07H
Result to Acc 0000 0011 = 03H

The Add instruction (ADD) performs a binary add between the data in the source location
and the data in the accumulator. The subtract (SUB) does a binary subtraction. When the
add with carry is specified (ADC) or the subtract with carry (SBC), then the carry flag is also
added or subtracted respectively. The flags and decimal adjust instruction (DAA) in the
Z80 (fully described in section 6.0) allow arithmetic operations for:

multiprecision packed BCD numbers
multiprecision signed or unsigned binary numbers
multiprecision two’s complement signed numbers

Other instructions in this group are logical and (AND), logical or (OR), exclusive or (XOR)
and compare (CP).

There are five general purpose arithmetic instructions that operate on the accumulator or
carry flag. These five are listed in Table 5.3-7. The decimal adjust instruction can adjust for
subtraction as well as addition, thus making BCD arithmetic operations simple. Note that to
allow for this operation the flag N is used. This flag is set if the last arithmetic operation was
a subtract. The negate accumulator (NEG) instruction forms the two’s complement of the
number in the accumulator. Finally notice that a reset carry instruction is not included in
the Z80 since this operation can be easily achieved through other instructions such as a
logical AND of the accumulator with itself.

Table 5.3-8 lists all of the 16-bit arithmetic operations between 16-bit registers. There are five
groups of instructions including add with carry and subtract with carry. ADC and SBC affect
all of the flags. These two groups simplify address calculation operations or other 16-bit
arithmetic operations.

1-33

8 BIT ARITHMETIC AND LOGIC

SOURCE
REG.
REGISTER ADDRESSING INDIR.| INDEXED [IMMED,
A B c D E (HL) [(X+d) | (Y+d) |

FD

‘ADD’ 86
d

FD

ADD w CARRY 8E
‘ADC’ d

FD

SUBTRACT 9%
‘SUB’ d

FD

SUBw CARRY 9E
*SBC’ d

FD

AND’ A6
d

FD

“XOR' AE
d

FD

‘OR’ B6
d

FD

COMPARE BE
‘cP’ d

FD

INCREMENT 34
‘INC’ d

FD

DECREMENT 35
‘DEC’ d

TABLE 5.3-6

GENERAL PURPOSE AF OPERATIONS

Decimal Adjust Acc, ‘DAA’ 27
Complement Acc, ‘CPL’ 2F
Negate Acc, ‘NEG’ ED
(2’s complement) 44
Complement Carry Flag, ‘CCF’ 3F
Set Carry Flag, 'SCF’ 37

TABLE 5.3-7

1n-34

16 BIT ARITHMETIC SOURCE

Bc | bE | HL | sp | 1x %
HL .09 .}
‘ADD’ X oo | op op | oo
09 19 39 29
% FD | FD FD FD
09 19 39 29

DESTINATION

ADD WITH CARRY AND | HL ED ED ED ED
SET FLAGS ‘ADC’ 4A 5A 6A 7A

SUBWITH CARRY AND HL ED ED ED ED
SET FLAGS 'SBC’ 42 52 62 72

INCREMENT “INC. FD

23

DECREMENT 'DEC’ FD

28

TABLE 5.3-8

L
280 FAMILY
TECHNICAL
MANUALS

ROTATE AND SHIFT

A major capability of the Z80 is its ability to rotate or shift data in the accumulator, any
general purpose register, or any memory location. All of the rotate and shift OP codes are
shown in Table 5.3-9. Also included in the Z80 are arithmetic and logical shift operations.
These operations are useful in an extremely wide range of applications including integer
multiplication and division. Two BCD digit rotate instructions (RRD and RLD) allow a digit
in the accumulator to be rotated with the two digits in a memory location pointed to by
register pair HL. (See Figure 5.3-9). These instructions allow for efficient BCD arithmetic.

BIT MANIPULATION

The ability to set, reset and test individual bits in a register or memory location is needed
in almost every program. These bits may be flags in a general purpose software routine,
indications of external control conditions or data packed into memory locations to make
memory utilization more efficient.

The Z80 has the ability to set, reset or test any bit in the accumulator, any general purpose
register or any memory location with a single instruction. Table 5.3-10 lists the 240 instruc-
tions that are available for this purpose. Register addressing can specify the accumulator or
any general purpose register on which the operation is to be performed. Register indirect and
indexed addressing are available to operate on external memory locations. Bit test operations
set the zero flag (Z) if the tested bit is a zero. (Refer to section 6.0 for further explanation
of flag operation).

JUMP, CALL AND RETURN

Figure 5.3-11 lists all of the jump, call and return instructions implemented in the Z80
CPU. A jump is a branch in a program where the program counter is loaded with the 16-bit
value as specified by one of the three available addressing modes (Immediate Extended,
Relative or Register Indirect). Notice that the jump group has several different conditions
that can be specified to be met before the jump will be made. If these conditions are not met,
the program merely continues with the next sequential instruction. The conditions are all
dependent on the data in the flag register. (Refer to section 6.0 for details on the flag
register). The immediate extended addressing is used to jump to any location in the memory.
This instruction requires three bytes (two to specify the 16-bit address) with the low order
address byte first followed by the high order address byte.

11l-35

ROTATES AND SHIFTS

TABLE

Source and Destination

H Rotat
A e c o E H L (HL) [(1X +) (1Y + @) -— b L:"'C'"mh,
FD
e | cs | cs ! ca | o8| 8| ca| c8 | s | & | &
07 00 01 02 03 04 05 06 d d Rotate
‘RRc'| c8 | c8 | c8 | ca | c8 | c8 | c8 | c8 | c8 | cs8
OoF 08 09 0A 08 oc oD 0E d d
o — 3w
‘ALY 8 | c8 | c8 | ce | c8 | cB| c8 | cB | cB | CB Left
17 10 n 12 13 14 15 16 d d
s | 3 = ——]
00 | FD Rotate
Ar | c8 | c8 | c8 | ce | ce | 8| ca | c8 | 88 | B cv
o W | 8| 19 | iaflw | ac| 0| € |d |4 e Fught
ROTATE :;ED ‘;f) Shift
OR sta| ¢ | c8 | c8 | cB | c8 | c8 | c8 | cB C ¢_ ’
SHIFT 27 | 20 21| 22 | 23 2 w | | & | & O Lot arithmetic
26 26
DD F
sra'| c8 | c8 | c8 | ca | c8 | ce | c8|ce | 3B | cn St
(| 29)2l || w2 |d |4 l—. Rught Arithmatic
s | ce | c8 | c8 | co | 8| 8| e | co | 8| &
3F | a8 | % | 3a | 3 | 3 | 3 | € | d d Shitt
L [—= | Rione cogeat
ALD' €0
RLD’ oF °
- Rotate Digit
RRD’ €0 ®3~"% ©7~bg| b3~ bo| (ML) |y
RRD' 67
ACC
Rotate Digit
(I o B e
AcCC Q

For example an unconditional Jump to memory location 3E32H would be:

OP Code
32 | Low order address

High order address

Address A
A+l

A+2

The relative jump instruction uses only two bytes, the second byte is a signed two’s com-
plement displacement from the existing PC. This displacement can be in the range of +129
to -126 and is measured from the address of the instruction OP code.

Three types of register indirect jumps are also included. These instructions are implemented
by loading the register pair HL or one of the index registers |X or 1Y directly into the PC.
This capability allows for program jumps to be a function of previous calculations.

A call is a special form of a jump where the address of the byte following the call instruction
is pushed onto the stack before the jump is made. A return instruction is the reverse of a call
because the data on the top of the stack is popped directly into the PC to form a jump
address. The call and return instructions allow for simple subroutine and interrupt handling.
Two special return instructions have been included in the Z80 family of components. The
return from interrupt instruction (RETI) and the return from non-maskable interrupt
(RETN) are treated in the CPU as an unconditional return identical to the OP code C9H.
The difference is that (RETI) can be used at the end of an interrupt routine and all Z80 peri-
pheral chips will recognize the execution of this instruction for proper control of nested
priority interrupt handling. This instruction coupled with the Z80 peripheral devices imple-
mentation simplifies the normal return from nested interrupt. Without this feature' the
following software sequence would be necessary to inform the interrupting device that the
interrupt routine is completed:

11-36

BIT MANIPULATION GROUP

REG.
REGISTER ADDRESSING INDIR.| INDEXED
A B c [} € H L (HL) | (1x+d) | (1Y+d)
BIT
oD | FD
0 c8 | c8 | ca c8 | cB c8 [c8 | cB c8 cB
47 4 4 4 44 4 4 d d
0 2 43 5 6 e do
0D | F
1 c8 [c8 | cB cB c8 | c8 [cB | cB cB 8
a4F | a8 49 4A | 4B 4ac | 4D | 4E d d
4E 4
D | FD
2 c8 | c8 | cB c8 ce | o8 | 8 | cs | B c8
7 1 52 55 d d
5 50 5 53 54 56 g &%
3 c8 | c8 | c8 cB ce | c8 e | ce | B |8
TesT SF 58 59 5A 58 | 5C s | se | g d
BIT'
4 c8 | cB | cB c8 cB | cB e | ce | & | &
7 d d >
6 60 | 61 62 63 | 64 65 66 N de 3 5 "
5 c8 | c8 | c8 cB cs | c8 s | ce | 28| &8 - E > ‘3‘
6F 6 | 69 6A 68 | 6C 6D | 6E 4 4 =%z
o0dq
DD | FD [uws
6 c8 | c8 | c8 cB c8 | c8 e | cB cB | cB N
77 70 n 72 73 74 7% 76 d
6 76
F
7 c | cB | cB c8 cB | cB e | o8 | 20| BB
7F 78 79 7A 78 7c 70 7€ d
7€ 7€
DD | FD
0 c8 | c8 | c8 cB c8 | cB R I =
87 | & 81 82 85 | 86
83 84 & &
1 c8 | cB | cB c8 c8 | cB cs | s | B8 | BB
8F 88 | 89 8A 88 | 8C 8D | 8E d
8¢ 8E
FD
2 cB | cB | cB cB c8 | cB | | % | &
7 91 95 d
9 % 92 93 () % 4 g
£
3 | c8 |c |cs [ca |cs |c |c8|ce | B8 |88
RESET oF 98 99 9A 98 9C o | 9 | d d
8IT 9E 9E
RES c8 | c8 | cB | cB c8 | c8 cs | ce | B | &8
A7 A0 Al A2 A3 A4 A5 A6 d d
A6 | A
5 c8 | cB8 | cB | cB c8 | cB e | ca | 2| &8
AF | A8 | A9 | AA | AB | AC | AD | AE d
AE_| AE
6 c8 | c8 | cB cB c8 | cB s | e | B |8
87 | B0 | 81 82 83 | 84 85 | 86 | d
86 86
FD
7 c8 | c8 | c8 | cB cB | cB e | cs | 2| &
BF | B8 B9 BA | BB | BC 8D | BE
BE BE
DD | FD
0 c | cB | c8 | cB cB | cs | c8 |cB | CB c8
¢ | o c c2 cz | ca | oo c6 &5 s
0D | FO
1 c8 c8 | c8 | cB c8 | c8 | c8 | c8 | CB c8
CF c8 c9 CA c8 cc cD CE gE dcs
DD | FD
2 cB c8 | c8 | cB c8 | c8 | c8 | cB ce | ce
[
o7 oo | Dt | D2 03 4 | D5 | D6 4 | B
DD | FD
3 c8 | c8 [cB | cB c8 | c8 | cB8 | cB c8 | cB
SET OF 08 09 DA DB oc DD | DE S
BIT DE | D
SET' D | FD
4 cB | cB8 | cB8 | cB c8 | cB c8 | c8 B | CB
€7 0 E1 E2 E3 | E4 E5 | E6 4 4
00 | FD
5 c8 | c8 | c8 | cs c8 | c8 | c8 | c8 cB | c8
EF €8 €9 EA EB EC ED EE e S
DD | FD
6 c8 [cs8 | c8 | cB c8 [c8 [cB | cB e | ¢cB
F7 Fo F1 F2 F3 | Fa F5 | F6 de a4
oD | FD
7 c | cB8 | cB | cB cB | ca | cB | cB c8
FF F8 F9 FA FB | FC | FD | FE de | d¢

TABLE 5.3-10

m-37

Disable Interrupt — prevent interrupt before
routine is exited.

LD A, n — notify peripheral that service
OUTn, A routine is complete

Enable Interrupt

Return

This seven byte sequence can be replaced with the three byte EI RETI instruction sequence
in the Z80. This is important since interrupt service time often must be minimized.

To facilitate program loop control the instruction DJNZ e can be used advantageously.
This two byte, relative jump instruction decrements the B register and the jump occurs if
the B register has not been decremented to zero. The relative displacement is expressed
as a signed two’s complement number. A simple example of its use might be:

Address
N, N+1

N+2toN+9

N+10, N+ 11

N+12

Instruction Comments

LDB,7 ; set B register to count of 7
(Perform a sequence

of instructions) ; loop to be performed 7 times
DIJNZ -10 ;tojump from N +12to N +2

(Next Instruction)

JUMP, CALL AND RETURN GROUP

CONDITION

UN- NON NON |PARITY |PARITY | SIGN SIGN REG
COND. | CARRY| CARRY| ZERO | ZERO |EVEN |ODD NEG POS B0

JUMP “JP’ IMMED.
EXT.
JUMP “JR’ RELATIVE
Jump P’ (HL)
JUMP "JP’ REG. (1X) DD
INDIR. E9
JUMP “JP* (1Y)
‘CALL’ IMMED. nn
EXT.

DECREMENT B,
JUMP IF NON
ZERO 'DINZ'

RELATIVE | PC+e

‘RET’

RETURN

REGISTER | (SP)

RETURN FROM
INT ‘RETI"

RETURN FROM
NON MASKABLE
INT ‘RETN’

INDIR. (SP+1)

REG. (SP)

INDIR. (SP+1)

REG. (SP) ED
INDIR. (sP+1) | 45

TABLE 5.3-11

NOTE—CERTAIN
FLAGS HAVE MORE
THAN ONE PURPOSE.
REFER TO SECTION
6.0 FOR DETAILS

1-38

Table 5.3-12 lists the eight OP codes for the restart instruction. This instruction is a single
byte call to any of the eight addresses listed. The simple mnemonic for these eight calls is
also shown. The value of this instruction is that frequently used routines can be called with
this instruction to minimize memory usage.

RESTART GROUP
op
CODE
0000, | €7 | RSTO'
0008, | CF | RST®
239
sQ«

¢ | o010, | B7 | -msTIE =322
L S0g
L gus
A |08 | PF | ‘RsT 24
D
D %
R 0020, | E7 | sty
s
s 2 :

0028, | EF | st agr

0030, F7 ‘RST 48"

0038, | FF | ‘RsTs6’

TABLE 5.3-12
INPUT/OUTPUT

The Z80 has an extensive set of Input and Output instructions as shown in table 5.3-13 and
table 5.3-14. The addressing of the input or output device can be either absolute or register
indirect, using the C register. Notice that in the register indirect addressing mode data can be
transferred between the 1/0 devices and any of the internal registers. In addition eight block
transfer instructions have been implemented. These instructions are similar to the memory
block transfers except that they use register pair HL for a pointer to the memory source
(output commands) or destination (input commands) while register B is used as a byte
counter. Register C holds the address of the port for which the input or output command
is desired. Since register B is eight bits in length, the 1/0 block transfer command handles up
to 256 bytes. :

In the instructions IN A, nand OUT n, A an I/O device address n appears in the lower half
of the address bus (Ag-A7) while the accumulator content is transferred in the upper half
of the address bus. In all register indirect input output instructions, including block 1/0
transfers the content of register C is transferred to the lower half of the address bus (device
address) while the content of register B is transferred to the upper half of the address bus.

11-39

INPUT GROUP ‘ PORT ADDRESS

{IMMED.| REG.
INDIR.
n (c)
A ED
78
B ED
40
R
E
G c ED
48
INPUT “IN’ é
D D ED
R 50
E
S
s E ED
| 58
INPUT N
DESTINATION G " .
60
L ED
68
‘INI" — INPUT & ED
Inc HL, Dec B A2
‘INIR'= INP, Inc HL, ED
Dec B, REPEAT IF B#0 B2
REG, | (HL) BLOCK INPUT
INDIR COMMANDS
‘IND'~ INPUT & ED
Dec HL, Dec B AA
‘INDR’— INPUT, Dec HL, ED
Dec B, REPEAT IF B#0 BA

TABLE 5.3-13

CPU CONTROL GROUP

The final table, table 5.3-15 illustrates the six general purpose CPU control instructions. The
NOP is a do-nothing instruction. The HALT instruction suspends CPU operation until a
subsequent interrupt is received, while the DI and El are used to lock out and enable inter-
rupts. The three interrupt mode commands set the CPU into any of the three available
interrupt response modes as follows. If mode zero is set the interrupting device can insert
any instruction on the data bus and allow the CPU to execute it. Mode 1 is a simplified
mode where the CPU automatically executes a restart (RST) to location 0038H so that no
external hardware is required. (The old PC content is pushed onto the stack). Mode 2 is the
most powerful in that it allows for an indirect call to any location in memory. With this
mode the CPU forms a 16-bit memory address where the upper 8-bits are the content of
register | and the lower 8-bits are supplied by the interrupting device. This address points
to the first of two sequential bytes in a table where the address of the service routine is
located. The CPU automatically obtains the starting address and performs a CALL to this
address.

l@— Pointer to Interrupt table. Reg.
1 is upper address,
Peripheral supplies lower address

Address of interrupt
service routine

111-40

OUTPUT GROUP

SOURCE
REG.
REGISTER IND.
A] c D E H L (HL)
D3
IMMED.| n e
‘ouT’ -
REG.| () | ED | ED | €D | ED | ED | ED | ED
IND. 79 | 41 49 51 59 | 61 69
‘OUTI — OUTPUT REG. | (C) ED
Inc HL, Dec b IND. A3
‘OTIR’ — OUTPUT, Inc HL, | REG. | (C) ED >
Dec B, REPEAT IF B0 IND. 83 BLOCK 333
OUTPUT =<22
‘OUTD’ — OUTPUT REG. | (C) ED COMMANDS “TZ
Dec HL& B IND. AB Qus
N
‘OTDR’ — OUTPUT, Dec HL | REG. | (C) ED
& B, REPEAT IF B#0 IND. B8
S~
PORT
DESTINATION
ADDRESS
TABLE 5.3-14

MISCELLANEOUS CPU CONTROL

DISABLE INT ‘(DI)’

ENABLE INT “(EI)

SET INT MODE 0 ED
™Mo’ 46 | 8080A MODE

SET INT MODE 1 ED
i 56 | CALLTO LOCATION 0038,

SET INT MODE 2 ED | INDIRECT CALL USING REGISTER
Mz’ SE | IAND8BITS FROM INTERRUPTING

DEVICE AS A POINTER.

TABLE 5.3-15

1-41

11-42

6.0 FLAGS

Each of the two Z80-CPU Flag registers contains six bits of information which are set or
reset by various CPU operations. Four of these bits are testable; that is, they are used as
conditions for jump, call or return instructions. For example a jump may be desired only if
a specific bit in the flag register is set. The four testable flag bits are:

1) Carry Flag (C) — This flag is the carry from the highest order bit of the accumulator.
For example, the carry flag will be set during an add instruction where a carry from
the highest bit of the accumulator is generated. This flag is also set if a borrow is
generated during a subtraction instruction. The shift and rotate instructions also
affect this bit.

2) Zero Flag (Z) — This flag is set if the result of the operation loaded a zero into the
accumulator. Otherwise it is reset.

3) Sign Flag(S) — This flag is intended to be used with signed numbers and it is set if
the result of the operation was negative. Since bit 7 (MSB) represents the sign of the
number (A negative number has a 1 in bit 7), this flag stores the state of bit 7 in the
accumulator.

4) Parity/Overflow Flag(P/V) — This dual purpose flag indicates the parity of the result
in the accumulator when logical operations are performed (such as AND A, B) and it
represents overflow when signed two’s complement arithmetic operations are per-
formed. The Z80 overflow flag indicates that the two’s complement number in the
accumulator is in error since it has exceeded the maximum possible (+127) or is
less than the minimum possible (—128) number that can be represented two’s
complement notation. For example consider adding:

+120= 0111 1000
+105= 0110 1001

C=0 11100001 =-95 (wrong) Overflow has occurred;

Here the result is incorrect. Overflow has occurred and yet there is no carry to indicate an
error. For this case the overflow flag would be set. Also consider the addition of two
negative numbers:

-5
1

= 1111 1011
= 1111 0000

1 1110 1011 =-21 correct

6

Notice that the answer is correct but the carry is set so that this flag can not be used as an
overflow indicator. In this case the overflow would not be set.

For logical operations (AND, OR, XOR) this flag is set if the parity of the result is even and
it is reset if it is odd.

There are also two non-testable bits in the flag register. Both of these are used for BCD
arithmetic. They are:

1) Half carry(H) — This is the BCD carry or borrow result from the least significant
four bits of operation. When using the DAA (Decimal Adjust Instruction) this
flag is used to correct the result of a previous packed decimal add or subtract.

2) Add/Subtract Flag (N) — Since the agorithim for correcting BCD operations is
different for addition or subtraction, this flag is used to specify what type of in-
struction was executed last so that the DAA operation will be correct for either
addition or subtraction.

11-43

Z80 FAMILY
TECHNICAL

MANUALS

The Flag register can be accessed by the programmer and its format is as follows:

D7 D@
[sTzTxTHIXTP/VIN]C]

X means flag is indeterminate.

Table 6.0-1 lists how each flag bit is affected by various CPU instructions. In this table
a '+ "'indicates that the instruction does not change the flag, an ‘X’ means that the flag goes
to an indeterminate state, an ‘O’ means that it is reset, a ‘1’ means that it is set and the
symbol 3 indicates that it is set or reset according to the previous discussion. Note that
any instruction not appearing in this table does not affect any of the flags.

Table 6.0-1 includes a few special cases that must be described for clarity. Notice that the
block search instruction sets the Z flag if the last compare operation indicated a match
between the source and the accumulator data. Also, the parity flag is set if the byte counter
(register pair BC) is not equal to zero. This same use of the parity flag is made with the
block move instructions. Another special case is during block input or output instructions,
here the Z flag is used to indicate the state of register B which is used as a byte counter.
Notice that when the /O block transfer is complete, the zero flag will be reset to a zero
(i.e. B=0) while in the case of a block move command the parity flag is reset when the
operation is complete. A final case is when the refresh or | register is loaded into the
accumulator, the interrupt enable flip flop is loaded into the parity flag so that the complete
state of the CPU can be saved at any time.

Hni-44

SUMMARY OF FLAG OPERATION

D7 DO
P/

Instruction S |Z H V[N | C | Comments
ADD A;s; ADC As Pt X [y X v[o |} | 8bitaddoradd with carry
SUB,s; SBCAs; CPs; NEG { bIX b x| v { | 8bit subtract, subtract with carry, compare and negate accumulator
AND s tidbx lalx|Plo]o }))
OR's; XOR's 1 tix|olxlelolo Logical operations
INCs Vb x| 4 ix | v|o |e | 8bitincrement
DECs b X bIX | v|1 | e | 8bitdecrement
ADD DD, SS e |e | X | XIX|® |0 |} | 16bitadd
ADC HL, SS Pl X | XX]| V|0 |} | 16bitadd withcarry
SBC HL, SS ford X XX | V|1 |} | 16bitsubtract with carry
RLA; RLCA; RRA; RRCA e | [X |0 |X|® |0 4 Rotate accumulator
RLs; RLCs; RRs; RRCs; H b IX {0 (X PO } Rotate and shift locations

SLAs; SRAs; SRLs

RLD; RRD f 14 X |0 |[X]| P |0 |e | Rotatedigit left and right
DAA oy X [} X | P e |} | Decimaladjustaccumulator
CPL e o [X |1 [X] e |1 ® | Complement accumulator
SCF e | e X |0 X |® |0 |1 Setcarry
CCF e e [X |[X|X]|e® |0 { | Complement carry
INT, (C) b IX 0 X | P {0 |e | Inputregisterindirect Z39
INI; IND; OUTI; OUTD X bix | xix| x|t |x }Block input and output :ggg
INIR; INDR; OTIR; OTDR X |1 (X | X|X| X1 X |JZ=0if B+ 0otherwise Z=1 —‘;5‘2(
LDI; LDD X | X|X |0 |X|}t]|o |e }Block transfer instructions QWS
LDIR; LDDR X | X|{X {0 /[X|0{0 |e [JP/V=1if BC# 0, otherwise P/V =0
CPI; CPIR; CPD; CPDR $ LY X [y X | ¥ |1 | e | Blocksearch instructions
Z=1if A=(HL), otherwise Z=0
P/V =1if BC # 0, otherwise P/V = 0
LDA, I;LDAR t |4 X |0 | X |IFF{0 | e | Thecontentof the interrupt enable flip-flop (IFF) is copied into
the P/V flag
BITb,s X |4 X 11 | X| X|]0 | e | Thestateof bit b of location s is copied into the Z flag
The following notation is used in this table:
SYMBOL OPERATION

Carry/link flag. C=1 if the operation produced a carry from the MSB of the operand or result.

Zero flag. Z=1 if the result of the operation is zero.

Sign flag. S=1 if the MSB of the result is one.

P/V Parity or overflow flag. Parity (P) and overflow (V) share the same flag. Logical operations affect this flag
with the parity of the result while arithmetic operations affect this flag with the overflow of the result.
If P/V holds parity, P/V=1 if the result of the operation is even, P/V=0 if result is odd. If P/V holds over-
flow, P/V=1 if the result of the operation produced an overflow.

»” NO

H Half-carry flag. H=1 if the add or subtract operation produced a carry into or borrow from bit 4 of the
accumulator,

N Add/Subtract flag. N=1 if the previous operation was a subtract.
H and N flags are used in conjunction with the decimal adjust instruction (DAA) to properly correct the

result into packed BCD format following addition or subtraction using operands with packed BCD format.
The flag is affected according to the result of the operation.

[] The flag is unchanged by the operation.
(1] The flag is reset by the operation.
1 The flag is set by the operation.
X The flag is a “don‘t care’’.
v P/V flag affected aceordiﬁg to the overflow result of the operation.
P P/V flag affected according to the parity result of the operation.
r Any one of the CPU registers A, B,C, D, E, H, L.
s Any 8-bit location for all the addressing des all d for the particular instruction.
ss Any 16-bit location for all the addressing modes all d for that instr
i Any one of the two index registers 1X or 1Y.
R Refresh counter.
n 8-bit value in range <0, 255>
nn 16-bit value in range <0, 65535>
TABLE 6.0-1

111-45

11-46

7.0 SUMMARY OF OP CODES AND EXECUTION TIMES

The following section gives a summary of the Z80 instruction set. The instructions are
logically arranged into groups as shown on Tables 7.0-1 through 7.0-11. Each table shows
the assembly language mnemonic OP code, the actual OP code, the symbolic operation,
the content of the flag register following the execution of each instruction, the number
of bytes required for each instruction as well as the number of memory cycles and the
total number of T states (external clock periods) required for the fetching and execution
of each instruction. Care has been taken to make each table self-explanatory without
requiring any cross reference with the text or other tables.

111-47

280 FAMILY
TECHNICAL
MANUALS

8-BIT LOAD GROUP

Symbolic Flags 0p-Code No. of |No.of M |[No.of T
Mnemonic Operation | S [2 H P/V[N | C [76 543 210 Hex Bytes | Cycles | States C
LDr,s r—s o o | X|o|X|®]| e e |0 r s 1 1 4 1ns Reg.
LDr,n r—n e o X|oe|X!|eiele |00 r 110 2 2 7 000 B
- n - 001 c
LD, (HL) r—(HL) e |o| X|® X | @ e e I0] r 110 1 2 7 010 D
LDr, (IX+d) |r—(IX+d) |® | @ [X [e [X |e | o | e 11 011101 pD |3 5 19 [1A] E
01 r 110 100 H
- d - 101 L
LD r, (1Y+d) r—(IY+d) |® | @ | X | @ [X | o | e e |11 111101 FD 3 5 19 m A
01 r 110
- d -
LD (HL), r (HL) -r e o/ X|e® | X |® e e (01110 1 2 7
LD (IX+d), r (IX#d)=—r (@ [@ | X | @ | X @ e e 11011101 DD 3 5 19
01 110 r
- d -
LD (1Y+d),r |(IY+d)=r |® | @ | X | @ | X | ® | @ | e |11 111101 FD 3 5 19
01110 r
—d -
LD (HL), n (HL) ~n e o X|[e | X |®| e]e 00110110 36 2 3 110
-— N -
LD (I1X+d), n (IX+d)=n |® | @ | X | ® | X [® | e | e 11011101 DD 4 5 19
00 110110 36
- d -
-— N -
LD (IY+d), n (IY+d)~n |[® e [X [e | X |® | @ | e |11 111101 FD 4 5 19
00 110110 36
- d -
- n -
LD A, (BC) A-—(BC) |e [e | X |e|X |e® | e]|e 00001010 0A 1 2 7
LD A, (DE) A-—(DE) |e e | X | e |X |e | e]|e 00011010 1A 1 2 7
LD A, (nn) A -(nn) e e |X|e|X |e|e|e 00111010 3A 3 4 13
~n -
- n -
LD (BC), A (BC)--A (o |® | X |[® X |® e |e (00000010 02 1 2 7
LD (DE), A (DE)--A e | X |e | X |® | e e 00(G10010 12 1 2 7
LD (nn), A (nn) A e e |X|e|X |e|e|e 00110010 32 3 4 13
-— n -
-~ n -
LDA,I A1 } PIX]o|X IFF| 0 [e [11 101101 ED 2 2 9
01 010111 57
LD AR A-R Pidbix|o|x IFF| o [e |11 101101 ED |2 2 9
01 01111 5F
LDI, A I —-A e | (X |e (X (e |e e 11101101 ED 2 2 9
01 000111 47
LDR,A R-—A o (e (X]|e X |o e e (11101101 ED 2 2 9
01 001111 4F

Notes: r, s means any of the registers A, B, C, 0, E, H, L
IFF the content of the interrupt enable flip-flop (IFF) is copied into the P/V flag

Flag Notation: ®= flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
1= flag is affected according to the result of the operation.

Table 7.0-1

11-48

16-BIT LOAD GROUP

Symbolic Flags 0p-Code No. of |[No.of M| No.of T
Mnemonic Operation S |Z H P/V{ N| C |76 543 210/ Hex Bytes | Cycles | States C
LD dd, nn dd - nn e e X (e X |e e | e|(00dd0 001 3 3 10 dd Pair
- n - 00 BC
- n - 01 DE
LD IX, nn IX - nn e|e | X!/ e | X |e e | ®]|11011 101 DD 4 4 14 10 HL
00 100 001 21 1 SP
-— n ~-
- n -
LD 1Y, nn 1Y = nn e | e X |e® | X |e e | e|11111101] FD 4 4 14
00 100 001 | 21
~ n -
~ n -
LDHL (hn) | H ~(nn+1) | @ | @ | X | @ | X | e e | o|(00101 010 2A 3 5 16
L = (nn) -~ n -
- n -
LD dd, (nn) ddy=(nn+1) | e [e | X e [X |e e | | 11101 101| ED 4 6 20
ddy -(nn) 01 dd1 011
- n -
. - 39
LD IX, (nn) IXH=(nn+1) | ® | & | X | & [X | e & | o 11011 101 DD 4 6 20 =§§g
1 IXL~(nn) 00 101 010, 2A “ze
1 - n - WS
! - n - N -
LDIY, (n) [IYH=(nn+1) [e e | X | ® [X |e e | o 11111 101| FD 4 6 20
1Y =(nn) 00 101 010 | 2A
- n -
-— n -
LD (nn), HL | (nn+1) = H e e | X|® X |e e [e/(00100010 22 3 5 16
(nn) - L P ——
- n -
LD (nn), dd (nn+1) ~ddy | ® | ® [X | ® | X |[e e [11101 101| ED 4 6 20
(nn)=dd 01 dd0 011
- n —-
- n -)
LD (nn), IX (nn+1) = IXy| ®|® | X |® X |® e | e|11011101]| DD 4 6 |20
(nn) =1X| 00 100 010 | 22
~ n -
| | -~ n -
LD (nn), 1Y ifan+l) =IYy!| @ 1@ | X e | X | e | e | e} 11111 101| FD 4 6 20
(on)=1YL | 00 100 010 | 22
| - n -
i o
LD SP, HL SP ~ HL e je | X e X |e e | e 11111001 F9 1 1 6
LD SP, IX SP - IX e e | X |e X | e |e | e|11011101] DD 2 2 10
i 11 111001 F9
LD SP, 1Y SP - 1Y e e X |® X |e e | e 11111101 FD 2 2 10
11111001 | F9 qq Pair
PUSH qq (SP-2) ~qgqL | ® |[® (X |® X | [[e 11 qq0 101 1 3 1" 00 BC
(SP-1) - qay 01 DE
PUSH IX (SP-2) —IX (® |® | X |® | X |e e | ©]11011101| DD 2 4 15 10 HL
: (SP-1) = IXy 11100 101 | E5 11 AF
PUSH 1Y (SP-2) =1y |e® e | X |® | X |e® [e | 11111101 | FD 2 4 15
(SP-1) = 1Yy 11 100 101 | E5
POP qq qqy~(SP+1) (e e | X |[e | X e (e | ® 11 qqD 001 1 3 10
30 qq ~(SP)
OP IX IXH=(SP+1) | e |e | X |® I X o |@ e | 11 011 101 Do 2 4 14
IX = (SP) 11 100 001 | E1
POP 1Y IYy=(SP+1) (e (@ | X @ [X e (@ | ® 11111101 | FD 2 4 14
1Y —(SP) 11 100 001 | E1

Notes: dd is any of the register pairs BC, DE, HL, SP
qq is any of the register pairs AF, BC, DE, HL
(PAIR)H, (PAIR) | refer to high order and low order eight bits of the register pair respectively.
eg. BCp=C, AFy=A
Flag Notation: @ = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
fiag is affected according to the result of the operation.

Table 7.0-2

111-49

EXCHANGE GROUP AND BLOCK TRANSFER AND SEARCH GROUP

Symbolic Flags 0p-Co No. of | No.of M{No.of T
Mnemonic| Operation | § | Z H P/V]| N | C [76 543 210| Hex | Bytes | Cycles | States | Comments
EX.DE, HL | DE-=HL e e X |® | X|e® e | e 11101011 EB 1 1 4
EX AF,AF' | AF --AF' e (e X |e |X|e|e | e 00001000 08 1 1 4)
EXX BC-BC' e e | X |(® | X]|e® e e 11011001 D9 1 1 4 Register bank and
<DE~DE'> ‘ auxiliary register
HL--HL' : . bank exchange
EX(SP), HL| H ~~(SP+1) |® | e | X |® | X | ® | e | 11100 011| E3 1 5 19
L --(SP) '
EX(SP), IX | IXH~~{SP+1){® | @ | X @ | X | ® |e | e 11011101 DD |2 6 23
IX -(SP) ‘) J11 100 011 E3
EX(SP), 1Y | IYH=-{SP+1)|® | @ | X e | X | @ | e | e |11 111101 FD 2 6 23
Yy --{sP) 11 100 011 | E3
0) _
LDt (DE)=(HL) o [e | X |0|X | }]|0]e[17101 101 ED 2 4 16 - Load (HL) into
DE - DE+1 10 100 000 AO (DE), increment the
HL — HL+1 pointers and
BC - BC-1 decrement the byte
counter (BC)
LDIR (DE)~(HL) |® e | X [0)X| 0| 0|e [11101101] ED 2 5 21 IfBC+0
DE - DE+1 ') 10 110 000, BO 2 4 16 IfBC=0
HL - HL+1 g
BC - BC-1
Repeat until
BC=0
®
LDD (DE)~~(HL) |® | e | X |0 |X| 4|0 |e 11101101 ED 2 4 16
DE - DE-1 . 10 101 000 A8
HL = HL1
BC - BC1
LDDR (DE)=(HL) {® [| X |0 |X| 0|0 e (11101101 ED 2 5 21 IfBC=+0
DE - DE-1 10 111 000 B8 2 4 16 1fBC =0
HL = HL1
BC -—BC-1
Repeat until
BC=0
@ ®
CPI A~ (HL) Py X X 41| e jt1101 101 ED 2 4 16
HL —HL+1 10 100 001 | A1
BC - BC1
@ @
CPIR A— (HL) b x b x |41 e n1101101] ED 2 5 21 I1f BC+ 0and As(HL)
HL = HLH 10 110 001 | B1 2 4 16 IfBC=00r A=(HL)
BC - BC-1
Repeat until
A=(HL) or
BC=0
@ ®
CcPD A—(HL) bl x PIX] b1 e 11101 101 ED 2 4 16
HL ~HL1 10 101 001| A9
BC - BC-1
@ @®
CPDR A—(HD Pl x by x b1 e fii101101] ED . |2 5 21 1§BC#0and A#(HL)
HL = HL1 10 111 001| BY - |2 4 16 IfBC=00r A=(HL)
BC - BC-1 '
Repeat until
A= (HL) or
BC=0

Notes: (D P/V flagis 0 if the result of BC-1 = 0, otherwise P/V = 1
@ Zfiagis 1if A= (HL), otherwise Z = 0.

Flag Notation: @ = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
= flag is affected according to the result of the operation.

Table 7.0-3

Hi-50

8-BIT ARITHMETIC AND LOGICAL GROUP

Symbolic Flags Op-Code No.of {No.ofM{No.of T
Mnemonic Operation S | Z H P/V| N | C [76 543 210| Hex | Bytes |Cycles |States | Comments
ADD A, r A-A+r vl xly I x{v]o] 41000« 1 1 4 r Reg.
ADD A, n A ~A+n bl x| Y xvio |t |1[@oo]io 2 2 7 000 B
- n - 001 C
010 D
ADD A, (HL) A - A+(HL) tiby X[y i x|vio |4 10[oo0]110 1 2 7 on E
ADD A, (IX+d) | A=A+(IX+d) Vb Xy x|vio|4tj1monniof op |3 5 19 100 H
10 [000]110 101 L
- d = 1 A
ADD A, (1Y+d) | A=A+(1Y+d) 4 blX] X{v /| 0|} 11111101 FD |3 5 19
10 [000] 110
: - 4 -
ADCA,s A~ A+s+CY byl X ' t I Xjvi]o ¢ | 001 sisany of r, n,
SUB's A~A-s by oxtb b xfvir ot oo (HL), (1X+d),
SBCA, s A<A-s-cy | bt xld{x|v|1]t] @O (1'Y+d) as shown for
AND s A-A s tlyixitix|erlolo ADD instruction.
ORs A<A v s tiy x| 0 x|plojo! The indicated bits 239
XOR's A~Aes |}t X O X|P 00 101 replace the [000] in =§§§
CPs A-s S I O D G I O B G N VA B B [{1] the ADD set above. _‘555
INCr r-r+1 Py Xt xivio 1’ 00 r 1 1 4 =
INC (HL) (HO=(HLU+1 | ¢+ 4 [X0 t| X[V |0 |e (o0 110[100] 1 3 1
INC (1X+d) (IX+d) - } bIX b xivioge 111 011 101 DD |3 6 23
(IX+d)+1 100 110[100)
- d -
INC (1Y+d) (1Y+d) - Pldix g xjviolelnnmaon f0 |3 s 23
(1Y+d)+1 . | 00 110[100)
H - d -
DECs s~s-1 Pl X[s x| |vit|e sisany of r, (HL),
i i (IX+d), (1Y+d) as
i | shown for INC.
’ DEC same format
and states as INC.
Replace (T00] with
[101)in OP Code.

Notes: The V symbol in the P/V flag column indicates that the P/V flag contains the overflow of the resuit of the
operation. Similarly the P symbol indicates parity. V = 1 means overflow, V = 0 means not overflow, P = 1
means parity of the result is even, P = 0 means parity of the result is odd.

Flag Notation: @ = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown.
} = flag is affected according to the result of the operation.

Table 7.04

111-51

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

Symbolic Flags 0p-Code No. of |No.of M |No.of T
Mnemonic | Operation S|z H P/V| N | C [76 543 210| Hex Bytes | Cycles | States Comments
DAA Convertsacc, | 4 (¢ | X[¢ | X [P [e | 4100100 111] 27 1 1 4 Decimal adjust
content into accumulator
packed BCD
following add
or subtract
with packed
BCD operands
CPL A-A o | o X| 1| X|e 1 e 00 101 111 2F 1 1 4 Complement
accumulator
(One's complement)
NEG A-A+1 (b x| xivi1] o101y b |2 2 8 Negate acc, (two's
01 000 100| 44 complement)
CCF cY-CY o o X[X | X[e {04001 1M 3F 1 1 4 Complement carry
flag
SCF CY-1 e /e | X|0 | X e 0| 100110111 37 1 1 4 Set carry flag
NOP No operation| ® e | X |® | X | e | e | e |00 000 000 00 1 1 4
HALT CPUhalted (o (@ | X |® | X | e e | @ 01 110 110| 76 1 1 4
DI* IFF = 0 e |e [X|® | X|e|e | e 11110011 F3 1 1 4
El* IFF -1 e o | X|® I X|e® e | e (11111011 FB 1 1 4
IMO Setinterrupt | @ (@ | X (o | X[e | e | @ {11 101 101 ED 2 z 8
mode 0 01 000 110| 46
M1 Setinterrupt | ® |® | X (e | X | e | e | e |11 101 101| ED 2 2 8
mode 1 01 010 110| 56
M2 Setinterrupt | ® |® | X (e | X | e | e | e |11 101 101 ED 2 2 8
mode 2 01 011 110| 5E
Notes: IFF indicates the interrupt'enable flip-flop

Flag Notation:

CY indicates the carry flip-flop.

} = flag is affected according to the result of the operation.

*Interrupts are not sampled at the end of El or DI

Table 7.0-5

® = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,

52

16-BIT ARITHMETIC GROUP

Symbolic Flags 0Op-Code No.of |No.ofM{No.of T
Mnemonic Operation S|z H P/V[N | C |76 583 210] Hex | Bytes |Cycles | States | Comments
ADD HL,ss | HL = HL+ss e e X | X[X |e®| 0]} |00s1 001 1 3 1" ss Reg.
00 BC
ADCHL,ss |HL<HL+ss+CY |} |} | X | X| X | V| 0|} 11101101 ED |2 4 15 01 DE
01 ss1 010 10 HL
1" SP
SBC HL, ss HL=HLssCY | 4 |} | X | X| X | V]| 1]} 11101101 ED |2 4 15
01 ss0 010
ADD IX,pp |IX = IX+pp e e | X | X|X e | 0|} |11011101] DD |2 4 15 pp Reg.
00 pp1 001 00 BC
01 DE
10 I1X
n SP
ADD 1Y, rr 1Y = 1Y +rr e o [X I X|X|®| 0]} |11111101 FD |2 4 15 1s Reg.
00 rr1 001 00 BC I
01 DE _g‘i’
S
10 Y =q22
wuxrZ
n SP 04
ows
INCss ss = ss+1 e (o [X |® | X |e® | e e (0050 011 1 1 6 NF
INC IX IX = IX+1 e (e (X e X |e | e e (11011101 DD |2 2 10
00 100 011 23
INC 1Y 1Y = 1Y +1 e (e (X | e X |e e e (11111101 FD |2 2 10
00 100 011 23
DECss ss < ss- 1 o |o | X |e® | X |® | e e 00sT 011 1 1 6
DEC X IX - 1X-1 ® (o (X |® | X |e® | e e (11011101 DD |2 2 10
00 101 011 2B
DEC1Y 1Y <1Y-1 e (o X |e® X |e | e e 11111101 FD |2 2 10
00 101 011| 2B

Notes: ssis any of the register pairs BC, DE, HL, SP
pp is any of the register pairs BC, DE, IX, SP
rr is any of the register pairs BC, DE, |Y, SP.

Flag Notation: @ = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown.
{ = flag is affected according to the result of the operation.

Table 7.0-6

111-63

ROTATE AND SHIFT GROUP

Symbolic Flags Op-Code No.of|No.of |No.of
P/ M T
Mnemonic Operation S H v C |76543210 | Hex |Bytes|Cycles/States] Comments
RLCA 71-—0 L 0[X]|e $ 100 000 111] 07 11 1 4 Rotate left circular
A accumulator
RLA E‘* . 0(X|e t oo 010 111 17 1 1 4 |Rotate left
A accumulator
RRCA . 0[X]|e { 100 001 111 | OF |1 1 4 Rotate right circular
A accumulator
RRA Lg—a-cvH . 0|X|elol[4io0o01t 111 1F 1 |1 |4 |Rotateright
A accumulator
RLCr } 0|x|p {11001 011 CB 12 2 8 Rotate left circular
00 r register r
RLC (HL) H 0{X|P $ (11 001 011 CB |2 4 15 |r Reg.
00 [000] 110 000 B
001 c
RLC (1X+d) .74—0- H 0|X|{P {11 011 101 DD 4 [23 {010 D
r,(HL),(1X+d),(1Y+d) 11 001 011 CB on E
- d - 100 H
00 [000] 11 101 L
m A
RLC (1Y+d) } 0 |X|P {11 111101 | FD |4 6 23
11 001 011 B |
- d - |
00 [000] 110 |
RLs } 0|X|P } ’ Instruction format and
s=r,(HL), (1X+d),(1Y+d) | states are as shown for
RLC's. To form new
RRCs =g L&V) olx|p t | ool Op-Code replace [300]
s =r,(HL), (IX+d),(1Y+d) of RLC's with shown
code
RR's [T —=0]—[CY] 4 0[X|P }
s =r,(HL), (1X+d),(1Y+d)
SLAs EY]e—fF=—0]=0 |t 0|x|Pp t
s=r,(HL), (1X+d),(1Y+d)
SRAs 7—10 H 0 X |P §
s=r,(HL), (1X+d),(1Y+d)
SRLs 0-T—10]—-CY] H 0!x|P 4 i1
s =r,(HL), (IX+d),(1Y+d)
RLD A (HL ! 0 X |P el1101 101 ED 2 |5 |18 |Rotate digit left and
— 01 101 111 | 6F right between the
accumulator
— and location (HL).
RRD A | EaBgmy 0o (x|p ©11101101 | ED 2 |5 |18 |Thecontent of the
01 100 111 | 67 upper half of the
accumulator is
unaffected

Flag Notation: @ = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,

Table 7.0-7

{ = flag is affected according to the result of the operation.

11-54

BIT SET, RESET AND TEST GROUP

Symbolic Flags Op-Code No. of [No.ofM|No.of T
Mnemonic Operation S |2 H P/V| N | C |76 543 210 Hex |Bytes |Cycles |States | Comments
BITb, r PN X{ 4| X| v X|X|0]|e|1100 011 CB |2 2 8 r Reg.
01t b r 000 B
BITb, (HL) Z -~ (HDy X| 4| X V| X|X|0]|e|11001011] CB |2 3 12 001 C
01 b 110 010 D
BITb, (IX+d)p (Z~(IX+d)y | X | § | X| 1| X|[X |0 |e (11011101 DO |4 5 20 011 E
11 001 011| CB 100 H
- d - 101 L
01 b 110 m A
b Bit Tested
BITh, (1Y+d)y [Z-0Y+d)y | X | ¢ | X| 1| X|X | 0| e|i1 111101 FD |4 5 20 000 0
11 001 011, CB 001 1
- d - 010 2
01 b 110 011 3
100 4
101 5 ;'-(‘9
110 6 s«
m 7 =822
SETb, r h - 1 e | e/ X| | X|e]e | e[11001011 CB |2 2 8 §§§
b r
SET b, (HL) (HL)p = 1 e e Xi e | X|e e | e[1100 011 CB |2 4 15
i b 110
SETb, (IX+d) |[(IX+d)p~1 |® | e X| e | X | e e | e 11011101 DD |4 6 23
11 001 011| CB
- d -
1] b 110
SETb, (IY+d) |(IY+d)p =1 | @ | e | X | ® | X | e e | e [11 111101 FD |4 6 23
11 001 011 CB
- d -
] b 110
RESb, s sp - 0 oo x| o|x|eo]|e eji0 To form new Op-
s=r, (HL), Code replace (11]
(IX+d), of SET b, s with
(1Y+d) [10]. Flags and time
states for SET
instruction

Notes: The notation sp indicates bit b (0 to 7) or location s.

Flag Notation: @ = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
{ = flag is affected according to the result of the operation.

Table 7.0-8 |

111-565

JUMP GROUP

Symbolic Flags 0p-Code No.of | No.of M|No.of T
Mnemonic | Operation H P/V] C |76 543 210/ Hex | Bytes |Cycles | States | C
JPnn PC - nn e | X | 11 000 011} C3 | 3 3 10
- n -
- n - cc Condition
JPcc, nn If condition cc o | X |eo 11 cc 010 3 3 10 000 | NZ non zero
is true PC - nn, - n - 001 |Z zero
otherwise - n - 010 | NC non carry
continue 011 |C carry
100 | PO parity odd
101 | PE parity even
110 | P sign positive
JRe PC~PC+e e | X |e 00 011 000 18 | 2 3 12 111 | M sign negative
- e-Z -
JRC, e fC=0, e | X|e 00 111 000 38 | 2 2 7 If condition not met
continue - e2 -
fCc=1, 2 3 12 If condition is met
PC ~ PC+e
JRNC, e IfC=1, * | X |e 00 110 000f 30 | 2 2 7 If condition not met
continue - e2 -
1fC=0, 2 3 12 If condition is met
PC - PC+e
JRZ e 1fZ=0 e | X | 00 101 000, 28 | 2 2 7 If condition not met
continue -~ e2 -
1fZ=1, 2 3 12 If condition is met
PC ~ PC+e
JRNZ e fz=1, e | X | 00 100 000, 20 | 2 2 7 If condition not met
continue -~ e2 -
1fZ=0, 2 3 12 If condition is met
PC ~ PC+e
JP (HL) PC ~ HL * | X |e 11 101 001, E9 | 1 1 4
JP(IX) PC - IX e X |e 11011 101 DD | 2 2 8
11 101 001] E9
JP (1Y) PC -~ IY e | X |e 11 111 101 FD | 2 2 8
11 101 001| E9
DINZ, e B -~ B1 e | X | 00 010 000 10 | 2 2 8 1fB=0
1fB=0, - e2 -
continue
1fB#0, 2 3 13 1fB#0
PC - PC+e
Notes: e represents the extension in the relative addressing mode.

e is a signed two's complement number in the range <<126, 129>

e-2 in the op-code provides an effective address of pcte as PC is
incremented by 2 prior to the addition of e.

Flag Notation:

Table 7.0-9

® = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
4 = flag is affected according to the result of the operation.

111-56

CALL AND RETURN GROUP

Symbolic Flags Op-Code No. of [No.of M|No.of T
Mnemonic | Operation S |2 H P/V] N | C [76 543 210] Hex | Bytes |Cycles |States | Comments
CALLnn (SP-1) ~PCy| ® [®| X | ® | X[e e | e 11001 101 CD |3 5 17
: (SP-2) - PC_ - n -
PC - nn - n -
CALLcc, nn|lfcondition | ® |® | X | ® | X | ® | e | e (11 cc 100 3 3 10 If cc is false
cc is false - n -
continue, - n - 3 5 17 If cc is true
otherwise
same as
CALLnn
RET PC_~(SP) |® e | X|® | X| e e | @i11001 Ollli cg |1 3 10
PCy - (SP+1) |
|
. 39
RET cc If condition | ® | e | X | e | X| e | e | e |11 cc 000 1 1 5 If cc is false =<§t§§
cc is false Tuzx2z
i . o0g
continue, 1 3 " | If ccis true QWS
otherwise cc__| Condition
same as 000 | NZ non zero
RET 1001 | Z zero
010 | NC non carry
RETI Returnfrom |® | | X [® | X | e | e | e (11 101 101| ED |2 4 14 01| c carry
interrupt 01 001 101 4D 100 | PO parity odd
RETNIT Returnfrom (o | e | X | e | X | ® | e | e (11101 101| ED |2 4 14 101 | PE parity even
non maskable 01 000 101| 45 10| P sign positive
interrupt Mmim sign negative
RST p (SP-1) =PCyl® [| X |® X |® o eI t 1N 1 3 "
(8P-2) ~ PC|_
PCyH -0
PCL - p
t ip
000 | OOH
001 | 08H
010 | 10H
011 | 18H
100 | 20H
101 | 28H
110 | 30H
111 | 38H

TRETN loads IFFy = IFFq

Flag Notation: ® = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
{ = flag is affected according to the result of the operation.

Table 7.0-10

11-57

INPUT AND OUTPUT GROUP

Symbolic Flags 0Op-Code No.of |No.of M No.of T
Mnemonic Operati Z H P/V|N | C |76 543 210] Hex Bytes | Cycles |States C
IN A, (n) A - (n) . e | X| e e | e 11011011 DB |2 3 1" ntoAg~ Ay
- n - ACClOAB""A]s
INT, (C) r - (C) ! H %1 plo|e 11101101 ED |2 3 12 CtoAg~ Ay
if r=110 only 01 r 000 Bto Ag~ Aqg
the flags will
be affected
@ i
INI (HL) - (C) H X | X | X| 1| X{11101 101 ED |2 4 16 Cto Ag~ Ay
B ~-B-1 10 100 010f A2 Bto Ag~ Ay
HL = HL+1
INIR (HL) ~ (C) 1 X | X| X| 1] X{11101101 ED |2 5 21 CtoAg~ Ay
B~ B-1 10 110 010) B2 (If B #0) Bto Ag~ Aqyg
HL = HL+1 2 4 16
Repeat until (If B=10)
B=0
@I
IND (HL) = (C) I X {X| X{ 1| X |[11101101 ED (2 4 16 CtoAg~ Az
B ~B-1 10 101 010 AA B to Ag~ Ayg
HL = HL-1
INDR (HL) -~ (C) 1 X | X | X| 1] X /{11101 101, ED 2 5 21 CtoAg~ Ay
B ~B-1 10 111 010] BA (1f B #0) Bto Ag~ Arg
HL = HL-1 2 4 16
Repeat until (If B=0)
B=0
oUT (n), A | (n)~A ° e (X} e | e e 11010011 03 |2 3 1" ntoAp~ Ay
. Acc to Ag ~ Aqg
ouT(Chr |(C)~r . e (X| e | e |e 11101 101 ED |2 3 12 Cto Ag~ Ay
0t r 001 Bto Ag~ Ayg
[©) .
ouTl B ~B-1 t XX | x| 1|x 11101101 ED |2 4 16 Cto Ag~ A7
(C) = (HL)™ 10 100 011 A3 Bto Ag~ Ay
HL = HL+1
OTIR B~B-1 1 XX | X| 1| X|11101101] ED 2 5 21 Cto Ag~ Ay
(C) ~ (HY) 10 110 011} B3 (1f B#0) Bto Ag~ Ayg
HL - HL+1 2 4 16
Repeat until (If B =0)
B=0
@
ouTD (C) -~ (HL) 1 XX} X} 1|, X {11101 101 ED 2 4 16 Cto Ag~ Ay
B-B-1 10 101 011 AB Bto Ag™~ At
HL < HL-1
0TOR (C) = (HL) 1 X | X | X| 1| [11101101 ED 2 5 21 CtoAg~ Ay
B ~B-1 10111011 88 (if B #0) Bto Ag~ Ayg
HL < HL-1 2 4 16
Repeat until (1f B=0)
B=0

Notes: (D If the result of B - 1 s zero the Z flag is set, otherwise it is reset.

Flag Notation: @ = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,

} = flag is affected according to the result of the operation.

Table 7.0-11

11-58

8.0 INTERRUPT RESPONSE

The prupose of an interrupt is to allow peripheral devices to suspend CPU operation in an
orderly manner and force the CPU to start a peripheral service routine. Usually this service
routine is involved with the exchange of data, or status and control information, between
the CPU and the peripheral. Once the service routine is completed, the CPU returns to the
operation from which it was interrupted.

INTERRUPT ENABLE — DISABLE

The Z80-CPU has two interrupt inputs, a software maskable interrupt and a non-maskable
interrupt. The non-maskable interrupt (NMI) can not be disabled by the programmer and
it will be accepted whenever a peripheral device requests it. This interrupt is generally
reserved for very important functions that must be serviced whenever they occur, such as
an impending power failure. The maskable interrupt (INT) can be selectively enabled or
disabled by the programmer. This allows the programmer to disable the interrupt during
periods where his program has timing constraints that do not allow it to be interrupted.
In the Z8O-CPU there is an enable flip flop (called IFF) that is set or reset by the prog-
rammer using the Enable Interrupt (El) and Disable Interrupt (DI) instructions. When the
IFF is reset, an interrupt can not be accepted by the CPU.

Actually, for purposes that will be subsequently explained, there are two enable flip flops,
called IFF 1 and IFF2.

[Fr] [FF2]

Actually disables interrupts Temporary storage location
from being accepted. for IFFq.

The state of IFFq is used to actually inhibit interrupts while IFF9 is used as a temporary
storage location for IFFq. The purpose of storing the |FF 1 will be subsequently explained.

A reset to the CPU will force both IFFq1 and IFF9 to the reset state so that interrupts are
disabled. They can then be enabled by an El instruction at any time by the programmer.
When an El instruction is executed, any pending interrupt request will not be accepted until
after the instruction following El has been executed. This single instruction delay is neces-
sary for cases when the following instruction is a return instruction and interrupts must not
be allowed until the return has been completed. The El instructions sets both IFF{ and
IFF7 to the enable state. When an interrupt is accepted by the CPU, both IFFq and IFF
are automatically reset, inhibiting further interrupts until the programmer wishes to issue a
new El instruction. Note that for all of the previous cases, IFF{ and IFF5 are always equal.

The purpose of IFF9 is to save the status of IFF{ when a non-maskable interrupt occurs.
When a non-maskable interrupt is accepted, |FFq is reset to prevent further interrupts
until reenabled by the programmer. Thus, after a non-maskable interrupt has been accepted
maskable interrupts are disabled but the previous state of |FFq has been saved so that the
complete state of the CPU just prior to the non-maskable interrupt can be restored at any
time. When a Load Register A with Register | (LD A, 1) instruction or a Load Register A
with Register R (LD A, R) instruction is executed, the state of IFF5 is copied into the
parity flag where it can be tested or stored.

A second method of restoring the status of IFF is thru the execution of a Return From
Non-Maskable Interrupt (RETN) instruction. Since this instruction indicates that the non
maskable interrupt service routine is complete, the contents of IFF2 are now copied back
into IFFq, so that the status of IFFq just prior to the acceptance of the non-maskable
interrupt will be restored automatically.

11i-59

>
=
_=2
=4q
w
o
®
N

TECHNICAL
MANUALS

Figure 8.0-1 is a summary of the effect of different instructions on the two enable flip flops.

INTERRUPT ENABLE/DISABLE FLIP FLOPS

Action IFF{ IFF,

CPU Reset 0 0

DI 0 0

El 1 1

LD A, . . IFF —Parity flag
LD A,R . . IFF, = Parity flag
Accept NMI 0 .

RETN IFFy e IFF, ~>1FF
Accept INT ’ 0 0

RETI . .

[T3e1)

o’ indicates no change

FIGURE 8.0-1

CPU RESPONSE
Non-Maskable

A non-maskable interrupt will be accepted at all times by the CPU. When this occurs, the
CPU ignores the next instruction that it fetches and instead does a restart to location
0066H. Thus, it behaves exactly as if it had received a restart instruction but, it is to a
location that is not one of the 8 software restart locations. A restart is merely a call to a
specific address in page O memory.

Maskable

The CPU can be programmed to respond to the maskable interrupt in any one of three
possible modes.

Mode 0

This mode is identical to the 8080A interrupt response mode. With this mode, the interrupt-
ing device can place any instruction on the data bus and the CPU will execute it. Thus, the
interrupting device provides the next instruction to be executed instead of the memory.
Often this will be a restart instruction since the interrupting device only need supply a
single byte instruction. Alternatively, any other instruction such as a 3 byte call to any lo-
cation in memory could be executed by issuing a restart to the 3 byte op code.

The number of clock cycles necessary to execute this instruction is 2 more than the normal
number for the instruction. This occurs since the CPU automatically adds 2 wait states to an
interrupt response cycle to allow sufficient time to implement an external daisy chain for
priority control. Section 4.0 illustrates the detailed timing for an interrupt response. After
the application of RESET the CPU will automatically enter interrupt Mode 0.

Mode 1

When this mode has been selected by the programmer, the CPU will respond to an interrupt
by executing a restart to location 0038H. Thus the response is identical to that for a non
maskable interrupt except that the call location is 0038H instead of 0066H. Another
difference is that the number of cycles required to complete the restart instruction is 2
more than normal due to the two added wait states.

111-60

Mode 2

This mode is the most powerful interrupt response mode. With a single 8-bit byte from the
user an indirect call can be made to any memory location.

With this mode the programmer maintains a table of 16 bit starting addresses for every in-
terrupt service routine. This table may be located anywhere in memory. When an interrupt
is accepted, a 16 bit pointer must be formed to obtain the desired interrupt service routine
starting address from the table. The upper 8 bits of this pointer is formed from the contents
of the | register. The | register must have been previously loaded with the desired value by
the programmer, i.e. LD I, A. Note that a CPU reset clears the | register so that it is ini-
tialized to zero. The lower eight bits of the pointer must be supplied by the interrupting
device. Actually, only 7 bits are required from the interrupting device as the least
bit must be a zero. This is required since the pointer is used to get two adjacent bytes to
from a complete 16 bit service routine starting address and the addresses must always start
in even locations.

desired starting address
Interrupt pointed to by:
Service
Routine low order 1 REG 7 BITS FROM
Starting high order CONTENTS PERIPHERAL
Address
Table

The first byte in the table is the least significant (low order) portion of the address. The
programmer must obviously fill this table in with the desired addresses before any interrupts
are to be accepted.

Note that this table can be changed at any time by the programmer (if it is stored in Read/

Write Memory) to allow different peripherals to be serviced by different service routines.

Once the interrupting device supplies the lower portion of the pointer, the CPU automat -
cally pushes the program counter onto the stack, obtains the starting address from the table
and does a jump to this address. This mode of response requires 19 clock periods to com-
plete (7 to fetch the lower 8 bits from the interrupting device, 6 to save the program
counter, and 6 to obtain the jump address.)

Note that the Z80 peripheral devices all include a daisy chain priority interrupt structure

that automatically supplies the programmed vector to the CPU during interrupt acknow-
ledge. Refer to the Z80-P10, Z80-SI0 and Z80-CTC manuals for details.

11-61

280 FAMILY
TECHNICAL
MANUALS

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE

INT

A0-A15

Mi

MREQ

QRO

DATA BUS

WAIT

RD

Last M Cycle Ml

of Instruction
Last T State

PC X REFRESH
\
l
, -
!
| \ /
|
. ! D
| : Nt/
JRPSR, F E P - -
________________ T=—- - o ——— -
S SR B iyt R Wil A0 7/ Wl
1
| |
!‘ Daisy Chain : Vector Placed
| Priority Frozen | onto Data Bus
| |

Z80 INTERRUPT ACKNOWLEDGE SUMMARY

1)

2)

3)

PERIPHERAL DEVICE REQUESTS INTERRUPT. Any device requestmg and interrupt
can pull the wired-or line INT low.

CPU ACKNOWLEDGES INTERRUPT. Priority status is frozen when M1 goes low
during the Interrupt Acknowledge sequence. Propagation delays down the IEI/IEQ
daisy chain must be settled out when [ORQ goes low. If IEl is HIGH, an active Peri-
pheral Device will place its Interrupt Vector on the Data Bus when |ORQ goes low.
That Peripheral then releases its hold on TNT allowing interrupts from a higher

priority device. Lower priority devices are inhibited from placing their Vector on
the Data Bus or Interrupting because IEQO is low on the active device.

INTERRUPT IS CLEARED. An active Peripheral device (IEI=1, IEO=0) monitors
OP Code fetches for an RETI (ED 4D) instruction which tells the peripheral that its
Interrupt Service Routine is over. The peripheral device then re-activates its internal
Interrupt structure as well as raising its 1EO line to enable lower priority devices.

11-62

INTERRELATIONSHIP OF INT, NMI, AND BUSRQ
The following flow chart details the relationship of three control inputs to the Z80-CPU. Note
the following from the flow chart.

1. TNT and NMI are always acted on at the end of an instruction.

2. BUSRQ is acted on at the end of a machine cycle.

3. While the CPU is in the DMA MODE, it will not respond to active inputs on INT o
4. These three inputs are acted on in the following order of priority: a)BUSRQ b

or NMI.__
M1 o) TNT

N

Z80-CPU INTERRUPT SEQUENCE

LAST

NO STATE OF

MACHINE
CYCLE,

YES
BUSRQ

SET BUSRQ F/F
l

INSTRUCTION

YES

NO

SET NMI F/F

Y
A

SET INT. F/F

Y

RESET
BUSRQ F/F

—
NON

MASKABLE
L_INTERRUPT

NO

INT

F/F SET

MASKABLE
INTERRUPT
MODE

—

111-63

280 FAMILY
TECHNICAL
MANUALS

111-64

9.0 HARDWARE IMPLEMENTATION EXAMPLES

This chapter is intended to serve as a basic introduction to implementing systems with the
Z80-CPU.

MINIMUM SYSTEM

Figure 9.0-1 is a diagram of a very simple Z80 system. Any Z80 system must include the
following five elements:

1) Five volt power supply
2) Oscillator

3) Memory devices

4) 1/0 circuits

5) CPU

MINIMUM Z80 COMPUTER SYSTEM

+5 VOLT
POWER SUPPLY

T

Ag-A10 +5V GND

ADDRESS
IN

CE; MK 34000
aﬁz 16K BIT ROM

osc

>
=
_2
=g
u
(=3
]
N

TECHNICAL
MANUALS

MREQ
RD

MK 3880 DATA
280 DATA BUS out
cPU

¢
RESET IORQ l

MK 3881 B8/A le——~A¢

I I VY Z80-PIO C/Dja——Ay
PORT A PORT B

I

OUTPUT INPUT
DATA DATA

+5V

2|
Sig
bl
o

FIGURE 9.0-1

Since the Z80-CPU only requires a single 5 volt supply, most small systems can be imple-
mented using only this single supply.

The oscillator can be very simple since the only requirement is that it be a 5 volt square
wave. For systems not running at full speed, a simple RC oscillator can be used. When the
CPU is operated near the highest possible frequency, a crystal oscillator is generally required
because the system timing will not tolerate the drift or jitter that an RC network will
generate. A crystal oscillator can be made from inverters and a few discrete components
or monolithic circuits are widely available.

The external memory can be any mixture of standard RAM, ROM, or PROM. In this simple
example we have shown a single 16K bit ROM (2K bytes) being utilized as the entire memory
system. For this example we have assumed that the Z80 internal register, configuration
contains sufficient Read/Write storage so that external RAM memory is not required.

111-65

Every computer system requires 1/O circuits to allow it to interface to the ‘‘real world.”
In this simple example it is assumed that the output is an 8 bit control vector and the input
is an 8 bit status word. The input data could be gated onto the data bus using any standard
tri-state driver while the output data could be latched with any type of standard TTL latch.
For this example we have used a Z80-P10 for the I/O circuit. This single circuit attaches to
the data bus as shown and provides the required 16 bits of TTL compatible 1/0. (Refer to
the Z80-PIO manual for details on the operation of this circuit.) Notice in this example that
with only three LSI circuits, a simple oscillator and a single 5 volt power supply, a powerful
computer has been implemented.

ADDING RAM

Most computer systems require some amount of external Read/Write memory for data
storage and to implement a ‘‘stack’’. Figure 9.0-2 illustrates how 256 bytes of static memory
can be added to the previous example. In this example the memory space is assumed to be
organized as follows:

ROM & RAM IMPLEMENTATION EXAMPLE

ADDRESS
0000H

2K bytes
ROM_ 1o7FFH

256 bytes |08OOH
RAM O8FFH

u ADDRESS BUS (

Ao A HAO.A?

l

RD =
Al CE, MK2 ;.2:4%00 RD|op 256x8 °F | MREQ
—qece x WR
MREQ c‘ei ROM WRIR/W RAM I Lol L
Do-D7 H)o -D7
¢ DATA BUS {

FIGURE 9.0-2

In this diagram the address space is described in hexidecimal notation. For this example,
address bit A1 separates the ROM space from the RAM space so that it can be used for the
chip select function. For larger amounts of external ROM or RAM, a simple TTL decoder
will be required to form the chip selects.

MEMORY SPEED CONTROL

For many applications, it may be desirable to use slow memories to reduce costs. The
WAIT line on the CPU allows the Z80 to operate with any speed memory. By referring
back to section 4 you will notice that the memory access time requirements are most
severe during the M1 cycle instruction fetch. All other memory accesses have an additional
one half of a clock cycle to be completed. For this reason it may be desirable in some
applications to add one wait state to the M1 cycle so that slower memories can be used.
Figure 9.0-3 is an example of a simple circuit that will accomplish this task. This circuit can
be changed to add a single wait state to any memory access as shown in Figure 9.0-4.

111-66

ADDING ONE WAIT STATE TO AN M1 CYCLE

WAIT
5V M1
| EARAES RN
— S S 'y
M1
D Q D Q
7474 — P —
& 7474 _ _ Yo _—‘ r
C Q ’—-C Q
R R
T T WAIT \ ’
+5V +5V :

FIGURE 9.0-3

n
280 FAMILY
TECHNICAL
MANUALS

ADDING ONE WAIT STATE TO ANY MEMORY. CYCLE

WAIT

+5V +5V 7400
l l T T

MREQ s s b

®

FIGURE 9.04

INTERFACING DYNAMIC MEMORIES

This section is intended only to serve as a brief introduction to interfacing dynamic
memories. Each individual dynamic RAM has varying specifications that will require minor
modifications to the description given here and no attempt will be made in this document
to give details for any particular RAM.

Figure 9.0-5 illustrates the logic necessary to interface 8K bytes of dynamic RAM using
16-pin 4K dynamic memories. This Figure assumes that the RAM’s are the only memory in
the system so that Aqo is used to select between the two pages of memory. During refresh
time, all memories in the system must be read. The CPU provides the proper refresh address
on lines Ag through Ag. To add additional memory to the system it is necessary to only
replace the two gates that operate on A with a decoder that operates on all required
address bits. For larger systems, buffering for the address and data bus is also generally
required.

An application;no.te entitled “Z80 Interfacing Techniques féer'ynarvnic RAM’ is avail-
able from your MOSTEK representative which describes dynamic RAM design techniques.

1-67

INTERFACING DYNAMIC RAMS

FIGURE 9.0-5 WR

MREQ DELAY DELAY

° 4Kx8 DYNAMIC
R/W. RAM MEMORY

AES ARRAY
= D j
DATA

AoAs BUS

PAGE |
(1000 to IFFF)

RFSH

Az =
MlT»r((o S 4Kx8 DYNAMIC PAGE O
CONTROL R/W RAM MEMORY {0000 10 oFFF)

' . ARRAY
Yoy ADDRESS E— s
all MULTIPLEXER

® NO REFRESH ADDRESS MULTIPLEXER REQUIRED
o MREQ INITIATES MEMORY CYCLE
® RFSH SELECTS REFRESH CYCLE

ADDRESS
BUS

Z80—CPU DESIGN CONSIDERATIONS: CLOCK CIRCUITRY

Proper 280 clock circuitry design is of paramount importance when designing a Z80
system. Parameters such as clock rise and fall times, min./max. clock high and low
times, and max clock over and under shoot should be closely adhered to. Violation of
these specs will resultin unreliable and unpredictable CPU/peripheral behavior. Several
manufacturers offer a wide variety of combination oscillator/drivers housed in 14 pin
DIP packages. The following is a suggested source of reliable oscillators/drivers
currently available.

Vendor Function Part No.
Motorola Oscillator/Driver K1160 series
Motorola Oscillator K1114

MF Electronics Oscillator MF1114
Hybrid House Driver HH3006A

Figure 9.0-6 illustrates a schematic recommended for driving the Z80 CPU, as well as
other Z80 peripherals. This configuration meets the 30 nsrise and fall time while driving
uptoa 150 pf. load. Note the divide by two input flip flop to provide a 50 percent duty cycle
clock. This stage may be omitted if the oscillator is guaranteed to be within the
specifications. '

33 pf.

74874 I\ +5V A uF »
5 a 1t I"—__] ‘
82K 2N2907A - =
2% _
74504 220
FIGURE 9.0-6

RESET CIRCUITRY

The Z80-CPU has the characteristic that if the RESET input goes low during T2 or T4 of a
cycle that the MREQ signal will go to an indeterminate state for one T-State approximately
3 T-States later. If there are dynamic memories in the system this action could cause an

111-68

aborted or short access of the dynamic RAM which could cause destruction of data within
the RAM. If the contents of RAM are of no concern after RESET, then this characteristic
is no problem as the CPU always resets properly. If RAM contents must be preserved,
then the falling edge of the RESET input must be synchronized by the falling edge of M1.

The circuitry of Figure 9.0-7 does this synchronization as well as providing a one-shot
to limit the duration of the CPU RESET pulse. The CPU RESET signal must be a pulse
even though the EXTERNAL RESET button is held closed to avoid suspending the CPU
refresh of dynamic RAM for a time long enough to destroy data in the RAM.

MANUAL AND POWER—ON RESET CIRCUIT

+5
+5
10K
1000pF Soq
=qZ2
wrzZ
J
S 68uf
D Q B —
W>_‘C{>—‘ P> cK CPU RESET
7 DR
- O
A Q| Q
EXTERNAL 10K R 74132 7404
RESET 7474 L 74121
2209

FIGURE 9.0-7

ADDRESS LATCHING

In order to guarantee proper operation of the Z80-CPU with dynamic RAMs the upper
4 bits of the address should be latched as shown in Figure 9.0-8. This action is required
because the Z80-CPU does not guarantee that the Address Bus will hold valid before the
rising edge of MREQ on an OP Code Fetch.

This action does not directly affect dynamic memories because they latch addresses in-
ternally. The problem comes from the address decoder which generates RAS. if the address
lines which drive the decoder are allowed to change while MREQ is low, then a “‘glitch’’
can occur on the RAS line or lines, which may have the effect of destroying one row of
data within the dynamic RAM.

111-69

ADDRESS LATCH

FIGURE 9.0-8

74175
A12 »—_{1D 10 5
A13 » |2D 20
Z80-CPU
A14 » 13D <Jo]
A15 »___laD s 5
G G
MREQ »

A12

A13

Al4

A15

DYNAMIC
RAM
DECODING
CIRCUITRY

» TO RAS DECODE

RAS TIMING WITH AND WITHOUT ADDRESS LATCH.

OP CODE FETCH

’ \ REFRESH ADDRESS

5

VALID MEMORY ADDRESS

VALID REFRESH ADDRESS

Al

_—

‘ iJ

)
>
%

WITH ADDRESS LATCH

WITHOUT ADDRESS LATCHA / \

FIGURE 9.0-9

R

11-70

10.0 SOFTWARE IMPLEMENTATION EXAMPLES
10.1 Methods of Software Implementation

Several different approaches are possible in developing software for the Z80 (Figure 10.1)
First of all, Assembly Language or a high level language may be used as the source language.
These languages may then be translated into machine language on a commercial time sharing
facility using a cross-assembler or cross-compiler or, in the case of assembly language, the
translation can be accomplished on a Z80 Development System using a resident assembler.
Finally, the resulting machine code can be debugged either on a time-sharing facility using
a Z80 simulator or on a Z80 Development System which uses a Z80-CPU directly.

SOFTWARE GENERATION TECHNIQUES

SOURCE

LANGUAGE TRANSLATION DEBUGGING
RESIDENT ASSEMBLER »

ASSEMBLY DEVELOPMENT Z39

LANGUAGE SYSTEM $9%

. MACHINE =2z3

CROSS ASSEMBLER LANGUAGE Lx2

PL/Z OR OTHER Qus
HIGH LEVEL SIMULATOR

LANGUAGE CROSS COMPILER

FIGURE 10.1

In selecting a source language, the primary factors to be considered are clarity and ease of
programming vs. code efficiency. A high level language with its machine independent con-
straints is typically better for formulating and maintaining algorithms, but the resulting
machine code is usually somewhat less efficient than what can be written directly in assem-
bly language. These tradeoffs can often be balanced by combining high level language and
assembly language routines, identifying those portions of a task which must be optimized
and writing them as assembly language subroutines.

Deciding whether to use a resident or cross assembler is a matter of availability and short-
term vs. long-term expense. While the initial expenditure for a development system is higher
than that for a time-sharing terminal, the cost of an individual assembly using a resident
assembler is negligible while the same operation on a time-sharing system is relatively
expensive and in a short time this cost can equal the total cost of a development system.

Debugging on a development system vs. a simulator is also a matter of availability and ex-
pense combined with operational fidelity and flexibility. As with the assembly process,
debugging is less expensive on a development system than on a simulator available through
time-sharing. In addition, the fidelity of the operating environment is preserved through
real-time execution on a Z80-CPU and by connecting the |/O and memory components
which will actually be used in the production system. The only advantage to the use of a
simulator is the range of criteria which may be selected for such debugging procedures
as tracing and setting breakpoints. This flexibility exists because a software simulation can
achieve any degree of complexity in its interpretation of machine instructions while deve-
lopment system procedures have hardware limitations such as the capacity of the real-time
storage module, the number of breakpoint registers and the pin configuration of the CPU.
Despite such hardware limitations, debugging on a development system is typically more
productive than on a simulator because of the direct interaction that is possible between
the programmer and the authentic execution of his program.

n-71

10.2 Software Features Offered by the Z80-CPU

The Z80 instruction set provides the user with a large and flexible repetoire of operations
with which to formulate control of the Z80-CPU.

The primary, auxiliary and index registers can be used to hold the arguments of arithmetic
and logical operations, or to form memory addresses, or as fast-access storage for frequently
used data.

Information can be moved directly from register to register; from memory to memory;
from memory to registers; or from registers to memory. In addition, register contents and
register/memory contents can be exchanged without using temporary storage. In particular,
the contents of primary and auxiliary registers can be completely exchanged by executing
only two instructions. EX and EXX. This register exchange procedure can be used to
separate the set of working registers between different logical procedures or to expand the
set of available registers in a single procedure.

Storage and retrieval of data between pairs of registers and memory can be controlled on
a last-in first-out basis through PUSH and POP instructions which utilize a special stack
pointer register, SP. This stack register is available both to manipulate data and to auto-
matically store and retrieve addresses for subroutine linkage. When a subroutine is called,
for example, the address following the CALL instruction is placed on the top of the push-
down stack pointed to by SP. When a subroutine returns to the calling routine, the address
on the top of the stack is used to set the program counter for the address of the next
instruction. The stack pointer is adjusted automatically to reflect the current ‘‘top’’ stack
position during PUSH, POP, CALL and RET instructions. This stack mechanism allows
pushdown data stacks and subroutine calls to be nested to any practical depth because the
stack area can potentially be as large as memory space.

The sequence of instruction execution can be controlled by six different flags (carry, zero,
sign, parity/overflow, add-subtract, half-carry) which reflect the results of arithmetic, logical,
shift and compare instructions. After the execution of an instruction which sets a flag,
that flag can be used to control a conditional jump or return instruction. These instructions
provide logical control following the manipulation of single bit, eight-bit byte {or) sixteen-
bit data quantities.

A full set of logical operations, including AND, OR, XOR (exclusive —OR), CPL (NOR) and
NEG (two’s complement) are available for Boolean operations between the accumulator and
1) all other eight-bit registers, 2) memory locations or 3) immediate operands.

In addition, a full set of arithmetic and logical shifts in both directions are available which
operate on the contents of all eight-bit primary registers or directly on any memory location.
The carry flag can be included or simply set by these shift instructions to provide both the
testing of shift results and to link register/register or register/memory shift operations.

10.3 Examples of Use of Special Z80 Instructions

A. Let us assume that a string of data in memory starting at location “DATA’’ is to be
moved into another area of memory starting at location “BUFFER’’ and that the
string length is 737 bytes. This operation can be accomplished as follows:

LD HL, DATA START ADDRESS OF DATA STRING

LD DE, BUFFER ;START ADDRESS OF TARGET BUFFER
LD BC, 737 ;LENGTH OF DATA STRING
LDIR ;MOVE STRING — TRANSFER MEMORY

;POINTED TO BY HL INTO MEMORY
;LOCATION POINTED TO BY DE INCREMENT
;HL AND DE, DECREMENT BC PROCESS
JUNTIL BC=0.

11 bytes are required for this operation and each byte of data is moved in 21 clock cycles.
-72

Let’s assume that a string in memory starting at location “DATA’ is to be moved
into another area of memory starting at location “BUFFER’’ until an ASCII $ char-
acter (used as string delimiter) is found. Let’s also assume that the maximum string
length is 132 characters. The operation can be performed as follows:

LD HL, DATA
LD DE, BUFFER
LD BC, 132
LD A S

LOOP: CP {HL)
JR Z, END-$
LDI
JP PE,LOOP

END:

;STARTING ADDRESS OF DATA STRING
;STARTING ADDRESS OF TARGET BUFFER
;MAXIMUM STRING LENGTH

;STRING DELIMITER CODE

;COMPARE MEMORY CONTENTS WITH DE-
;LIMITER

;GO TO END IF CHARACTERS EQUAL

;MOVE CHARACTER (HL) TO (DE)
;INCREMENT HL AND DE, DECREMENT BC
;GO TO “LOOP” IF MORE CHARACTERS
;OTHERWISE, FALL THROUGH

;NOTE: P/V FLAG IS USED _

;TO INDICATE THAT REGISTER BC WAS
;,DECREMENTED TO ZERO.

19 bytes are required for this operation.

Let us assume that a 16-digit decimal number represented in packed BCD format (two
BCD digits/byte) has to be shifted as shown in the Figure 10.2 in order to mechanize
BCD multiplication or division. The operation can be accomplished as follows:

C.
LD HL, DATA
L.D B, COUNT
XOR A
ROTAT: RLD
INC HL
DJINZ ROTAT-$

;ADDRESS OF FIRST BYTE

;BISNOT ZERO, OTHERWISE FALL THROUGH

BCD DATA SHIFTING
11 bytes are required for this operation.

FIGURE 10.2

|

Tl

n-73

280 FAMILY
TECHNICAL
MANUALS

11 bytes are required for this operation.

D. Let us assume that one number is to be subtracted from another and a) that they are
both in packed BCD format, b) that they are of equal but varying length, and c) that
the result is to be stored in the location of the minuend. The operation can be accomp-
lished as follows:

LD HL, ARG1 ;ADDRESS OF MINUEND
LD DE, ARG2 ;JADDRESS OF SUBTRAHEND
LD B, LENGTH ;LENGTH OF TWO ARGUMENTS
AND A ;,CLEAR CARRY FLAG
SUBDEC:LD A, (DE) ;SUBTRAHEND TO ACC
SBC A, (HL) ;SUBTRACT (HL) FROM ACC
DAA ;ADJUST RESULT TO DECIMAL CODED VALUE
LD (HL), A ;STORE RESULT
INC HL ;ADVANCE MEMORY POINTERS
INC DE

DJINZ SUBDEC-$;DECREMENT B AND GO TO “SUBDEC” IF B
;NOT ZERO, OTHERWISE FALL THROUGH

17 bytes are required for this operation.

10.4 Examples of Programming Tasks

A.

The following program sorts an array of numbers each in the range <0,255> into
ascending order using a standard exchange sorting algorithm.

01/22/76 11:14:37 BUBBLE LISTING
LOC OBJCODE STMT SOURCE STATEMENT

1 ; *** STANDARD EXCHANGE (BUBBLE) SORT ROUTINE***
2 ;

3 ; AT ENTRY: HL CONTAINS ADDRESS OF DATA

4 . C CONTAINS NUMBER OF ELEMENTS TO BE SORTED
5 H (1<C<256)

6 ;

7 ; AT EXIT: DATA SORTED IN ASCENDING ORDER

8 ;

9 ; USE OF REGISTERS

10 ;

11 ; REGISTER CONTENTS

12

13 ; A TEMPORARY STORAGE FOR CALCULATIONS
14 ;B COUNTER FOR DATA ARRAY

5 ; C LENGTH OF DATA ARRAY

%6 ;D FIRST ELEMENT IN COMPARISON

17 ; E SECOND ELEMENT (N COMPARISON

18 ; H FLAG TO INDICATE EXCHANGE

19 ;L UNUSED

20 ; IX POINTER INTO DATA ARRAY

21 Y UNUSED

2

1-74

01/22/76 11:14:37

BUBBLE LISTING (Cont’d.)

STMT SOURCE STATMENT

LD (DATA), HL
RES FLAG, H

LD B,C

DEC B

LD IX, (DATA)
LD A, (1X+0)

LD D, A

LD E, (IX+1)
SuUB E

JR NC, NOEX-$
LD (IX), E

LD (IX+1), D
SET FLAGH
INC IX

DINZ NEXT-$

BIT FLAG, H
JR NZ, LOOP-$
RET

EQU ©
DEFS 2
END

;SAVE DATA ADDRESS

JINITIALIZE EXCHANGE FLAG
JINITIALIZE LENGTH COUNTER
;ADJUST FOR TESTING

JINITIALIZE ARRAY POINTER
;FIRST ELEMENT IN COMPARISON
;TEMPORARY STORAGE FOR ELEMENT
;SECOND ELEMENT IN COMPARISON
;COMPARISON FIRST TO SECOND

;IF FIRST> SECOND, NO JUMP
;EXCHANGE ARRAY ELEMENTS

;RECORD EXCHANGE OCCURRED
;POINT TO NEXT DATA ELEMENT
;COUNT NUMBER OF COMPARISONS
;REPEAT IF MORE DATA PAIRS
;DETERMINE IF EXCHANGE OCCURRED
;CONTINUE IF DATA UNSORTED
JOTHERWISE, EXIT

>
=
b3
=«
w
[=]
[
N

TECHNICAL
MANUALS

;DESIGNATION OF FLAG BIT
;STORAGE FOR DATA ADDRESS

The following program multiplies two unsigned 16-bit integers and leaves the result

MULTIPLY LISTING

STMT SOURCE STATEMENT

LOC OBJ CODE
0000 222600 23 SORT:
0003 CB84 24 LOOP:
0005 41 25
0006 05 26
0007 DD2A2600 27
0008 DD7EOQ0 28 NEXT:
000E 57 29
000F DD5EO1 30
0012 93 31
0013 3008 32
0015 DD7300 33
0018 DD7201 34
001B CBC4 35
001D DD23 36 NOEX:
001F 10EA 37
0021 CB44 39
0023 20DE 40
0025 C9 41
42 H
0026 43 FLAG:
0026 44 DATA:
45
B.
in the HL register pair.
01/22/76 11:32:36
LOC OBJ CODE
0000 1 MULT:;
2 ;
3 H
4 ;
5 ;
6 ;
7 ;
8 ;
9 ;
10 H
11 H
12 ;
13 H
14 ;
15 ;
16 ;
17 H
0000 0610 18
0002 4A 19
0003 7B 20
0004 EB 21
0005 210000 22
0008 CB39 23 MLOOP:
000A 1F 24
000B 3001 26

UNSIGNED SIXTEEN BIT INTEGER MULTIPLY.
ON ENTRANCE: MULTIPLIER IN HL.
MULTIPLICAND IN DE.

ON EXIT: RESULT IN HL.

REGISTERS USES:

>POWMOr T

LD B, 16;
LD C,D;
LD A,E;
EX DE,HL;
LD HL,0;
SRL C;

RR A;

JR NC, NOADD-$

111-75

HIGH ORDER PARTIAL RESULT
LOW ORDER PARTIAL RESULT
HIGH ORDER MULTIPLICAND

LOW ORDER MULTIPLICAND
COUNTER FOR NUMBER OF SHIFTS
HIGH ORDER BITS OF MULTIPLIER
LOW ORDER BITS OF MULTIPLIER

NUMBER OF BITS—INITIALIZE
MOVE MULTIPLIER

MOVE MULTIPLICAND
CLEAR PARTIAL RESULT
SHIFT MULTIPLIER RIGHT
LEAST SIGNIFICANT BIT IS
IN CARRY.

IF NO CARRY’ SKIP THE ADD.

01/22/76 11:32:36 MULTIPLY LISTING (Cont'd.)

LOC OBJCODE STMT SOURCE STATMENT .
000D 19 27) ADD HL, DE; ELSE ADD MULTIPLICAND TO

PARTIAL RESULT.
O00E EB 29 NOADD: EX DEHL; SHIFT MULTIPLICANT LEFT
000F 29 30 ADD HL,HL; BY MULTIPLYING IT BY TWO.
0010 - EB ... 31 EX DEHL; E
0011 10F5 32 DJNZ MLOOP-$; REPEAT UNTIL NO MORE BITS.
0013 .C9 33 . RET;
34 END;

Hi-76

11.0 ELECTRICAL SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias. v Specified Operating Range
StOrage TeMPEIatUIE. . o\ v\ v ettt et e et ettt et ettt n e —65°C to +150°C
Voltage on Any Pin with Respectto Ground iiiinnenn.. —-0.3V to +7V
POWer DisSiPatioN . . v vttt e e e e 1.56W

D.C. CHARACTERISTICS
Tao=0°Cto 70°C, Ve = 5V + 5% unless otherwise specified

SYMBOL| PARAMETER MIN. | TYP. | MAX.| UNIT | TEST CONDITION .
ViLe Clock Input Low Voltage -0.3 0.8 Y %gg
ViHC Clock Input High Voltage Vee-.6 Vee+3 V

ViL Input Low Voltage -0.3 0.8 Y

VIH Input High Voltage 2.0 Vee \%

VoL Output Low Voltage 0.4 \% loL = 1.8mA

VoH Output High Voltage 24 \ loH = —250 vA

Icc Power Supply Current 150* mA

Iy Input Leakage Current +10 uA ViN=0to Ve

ILOH Tri-State Output Leakage Current in Float 10, MA VoyTt =24t Ve
ILoL Tri-State Output Leakage Current in Float -10 HA VouTt = 0.4V

ILD Data Bus Leakage Current in Input Mode ' 10 HA 0<VINsV(ee

*200mA for -4, -10 or -20 devices
NOTE: All outputs are rated at one standard TTL load.

CAPACITANCE
Ta=25°C, f = TMHz unmeasured pins returned to ground

SYMBOL | PARAMETER MAX.| UNIT
Co Clock Capacitance | 35 pF
CiN Input Capacitance |5 pF

Cout Output Capacitance | 10 pF

*Comment

Stresses above those listed under ‘‘Absolute Maximum Ratings’’ may
cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other condition
above those indicated in the operational sections of this specification
is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.

n-77

MK 3880, MK 3880-10, MK 3880-20 Z80-CPU

A C CHARACTERISTICS

Ta= 0°C to 70°C, Ve = +5V £ 5%, Unless Otherwise Noted

SIGNAL SYMBOL PARAMETER MIN. | MAX. UNIT | TEST CONDITION
Clock Period 4 [12] Msec
tW(<I>H) Clock Pulse Width, Clock High 180 (D) nsec
(<] ty(PL) Clock Pulse Width, Clock Low 180 2000 nsec
tf Clock Rise and Fall Time 30 nsec
tD(AD) Address Output Delay 145 nsec
tF(AD) Delay to Float 110 nsec
tacm Address Stable Prior to MREQ [11 nsec | Cp =50pF
{(Memory Cycle) -
Ag.-15 taci Address Stable Prior to IORQ, RD [2] nsec
or WR (1/0 Cycle)
tea Address Stable From RD, W_R__IO Qor MREQ] [3] nsec Except T3-M1
tcaf Address Stable From RD or WR (4] nsec
During Float
tp(D) Data Output Delay 230 nsec
tE(D) Delay to Float During Write Cycle 920 nsec
tsd(D) Data Setup Time to Rising Edge of 50 nsec
Clock During M1 Cycle
Do.7 tS@_(J(D) Data Setup Time to Falling Edge at 60 nsec Cy =50pF
Clock-During M2 to M5
tdem Data Stable Prior to WR (Memory [5] nsec
Cycle)
tdci " Data Stable Prior to WR (1/0 Cycle) [6] nsec
tedf Data Stable From WR [7] nsec
tH Input Hold Time 0 nsec
tDLHMR) MREQ Delay From Falling Edge of 100 nsec
Clock, Q Low
DHBMR) MREQ Delay From Rising Edge of 100 nsec
_ Clock, MREQ High
MREQ tDHB(MR) MREQ Delay From Falling Edge of 100 nsec | C_ =50pF
Clock, MREQ High)
tw(MRL) Pulse Width, MREQ Low [8] nsec
tw(MRH) Pulse Width, MREQ High (9] nsec
IDLO(IR) TORQ Delay From Rising Edge of 90 nsec
__Clock, IORQ Low
tpLB(IR) TORQ Delay From Falling Edge of 110 nsec | Cp =50pF
I0RQ Clock, IORQ Low
tDH®(IR) IORQ Delay From Rising Edge of 100 nsec
Clock, IORQ High
tDHP(IR) {ORQ Delay From Falling Edge of 110 nsec
Clock, IORQ High
tDLP(RD) RD Delay From Rising Edge of Clock, 100 nsec
_ __RD Low
_ tDLD(RD) D_Delay From Falling Edge of Clock, 130 nsec Cy =50pF
RD __RD Low
tDHP(RD) RD Delay From Rising Edge of Clock, 100 nsec
_ __RD High
tDH®(BD) D _Delay From Falling Edge of Clock, 110 nsec
RD High
tDLBWR) WR Delay From Rising Edge of Clock, 80 nsec
_ __WR Low .
. tDLOWR WR_gelay From Falling Edge of Clock 90 nsec Cy =50pF
WR BIWR) WR Low
IDHP(WR) WR_Delay From Falling Edge of Clock, 100 nsec
WR High __
tw(WRL) Pulse Width, WR Low [10] nsec
NOTES:
A Data should be enabled onto the CPU data bus when RD is active. Dunng mterrupt acknowledge data should be enabled when M1

and TORQ are both active,

B The RESET signal must be active for a minimum of 3 clock cycles.

corit’d on page 81

11-78

MK 3880, MK 3880-10, MK 3880-20 Z80-CPU

SIGNAL SYMBOL PARAMETER MIN. | MAX. UNIT | TEST CONDITIONS
tpLM1) M1 _Delay From Rising Edge of Clock 130 nsec
. __M1 Low C| =50pF
M1 tDH(M1) 1_Delay From Rising Edge of Clock 130 nsec
M1 High
RFSH IDL(RF) RFSH Delay From Rising Edge of Clock, 180 nsec
RFSH Low CL = 30pF
tDH(RF) RFSH SH Delay From Rising Edge of Clock, 150 nsec
RFSH High
WAIT tS(WT) ‘WAIT Setup Time to Falling Edge of 70 nsec
Clock
HALT tD(HT) HALT Delay Time From Falling Edge 300 nsec Cp = 50pF
of Clock
INT ts(1T) TNT Setup Time to Rising Edge of Clock 80 nsec ;gzg
-2=g
NI t (NMIL) Pulse Width, NMI Low 80 nsec =iz2
gus
BUSRQ t5(BQ) BUSRQ Setup Time to Rising Edge of 80 nsec NE
Clock
BUSAK tDL(BA) BUSAK Delay From Rising Edge of 120 nsec
Clock, BUSAK Low Cp =50pF
tDH(BA) BUSAK Delay From Falling Edge of 110 nsec
Clock, BUSAK High
RESET t5(RS) RESET Setup Time to Rising Edge of 90 nsec
Clock
tE(c) Delay to/from Float (MREQ, IORQ, 100 nsec
RD and WR)
tmr ‘M1 Stable Prior to IORQ (Interrupt Ack.) [11] nsec
LOAD CIRCUIT FOR OUTPUT Vee
TEST POINT R 21K
(1] taem =ty (PH) +t;—75 !
FROM OUTPUT)
[2] tgej=t.—80 UNDER TEST
[3] tgg=ty (PL) +t,—40
c
[4] teaf=ty (PL) +1t,—60 L 2500A
[6] tgem=tc— 210
[6] tdci = tw (dL) + t— 210 — — —
[7] togs=ty (PL) +t, — 80
odf ™ tw r NOTES (Cont'd.)
VIRL) = C. Output Delay vs. Load Capacitance
(8] tw (MRL) =t; —40 Ta = 70C Vg = 5V#5%
[9] t (m) =ty (BH) + tf— 30 Add 10 nsec delay for each 50pF increase in load up
W

to a maximum of 200pF for the data bus and 100pF for

—_— address and control lines.
[10] tw (WR) = tc —-40 D. Although static by deslgn testing guarantees tyy ((I) H) of

200 M sec maximum.

[11] tyr =2t + 1ty (PH) + 15— 80
[12] tg =ty (PH) + 1y (PL) + 1, +1¢

m-79

MK 3880-4 Z80A-CPU
A. C.CHARACTERISTICS

Tp =0°C to 70°C, Vce = +5V £5%, Unless Otherwise Noted

SIGNAL SYMBOL PARAMETER MIN. MAX. UNIT | TEST CONDITIONS
te Clock Period .25 [12] Msec
Ty (BH) Clock Pulse Width, Clock High 110 (D) nsec
P tw(dL) Clock Pulse Width, Clock Low 110 2000 nsec
te, Clock Rise and Fall Time 30 nsec
tD(AD) Address Output Delay 110 nsec
tE(AD) Delay to Float 20 nsec
acm Address Stable Prior to MREQ [1] nsec Cp =50pF
(Memory Cycle) .
Ag.15 taci Address Stable Prior to IORQ, RD [2] nsec
or WR (/O Cycle) __ __
tea Address Stable From RD, WR, IORQ or MREQ| [3] nsec Except T3.M1
teaf Address Stable From RD or WR [4] nsec
During Float
tp(D) Data Output Delay 150 nsec
tE(D) Delay to Float During Write Cycle 90 nsec
ts®(D) Data Setup Time to Rising Edge of 35 nsec
- Clock During M1 Cycle
Do.7 tsd(D) Data Setup Time to Falling Edge at 50 nsec C =50pF
Clock During M2 to M5
tdem Data Stable Prior to WR (Memory [5] nsec
Cycle) _
tdci Data Stable Prior to WR (1/0 Cycle) [6] nsec
tedf Data Stable From WR [7] nsec
tH Input Hold Time 0 nsec
tDLE)(MR) MREQ Delay From Falling Edge of 20 85 nsec
Clock, MREQ Low
tpHPMR MREQ Delay From Rising Edge of 85 nsec
MREQ (MR) Clock, MREQ High
tDH@(M R) MREQ Delay From Falling Edge of 85 nsec C| =50pF
Clock, MREQ High
tw(MRL) Pulse Width, MREQ Low [8] nsec
tw(MRHA) Pulse Width, MREQ High [9] nsec
tDLP(IR) I0RQ Delay From Rising Edge of 75 nsec
_ Clock, IORQ Low
tDLP(IR) I0RQ Delay From Falling Edge of 85 nsec C =50pF
IORQ Clock, IORQ Low
tDHP(IR) [ORQ Delay From Rising Edge of 85 nsec
_ Clock, IORQ High
tDHP(IR) TORQ Delay From Falling Edge of 85 nsec
Clock, IORQ High
tpLP(RD) ﬁﬁ%elfgvs rom Rising Edge of Clock, 85 nsec
=5 tDLD(RD) —R_Di%zliyo/“l’:rom Falling Edge of Clock, 95 nsec | Cp_ =50pF
tDH®B(RD) ﬁﬁ%lﬁ\{g:rom Rising Edge of Clock, 85 nsec
tDHT}S(RD) lﬁﬁ%elﬁyi/g::rom Falling Edge of Clock, 85 nsec
tDLDWR) W_ﬁv_%slfzvf;rom Rising Edge of Clock, 65 nsec
_ tn| & “WR Delay From Falling Edge of Clock, 80 nsec C = 50pF
WR DLOWR) WR Low L
IDHPWR) WR Delay From Falling Edge of Clock, 80 nsec
WR High __
tw(WRL) Pulse Width, WR Low [10] nsec
NOTES:

A Data should be enabled onto the CPU data bus when RD is active. During interrupt acknowledge data should be enabled when M1

and IORQ are both active.

B The RESET signal must be active for a minimum of 3 clock cycles.
(Cont'd. on page 83)

111-80

MK 3880-4 Z80A-CPU

SIGNAL SYMBOL PARAMETER MIN. | MAX. UNIT | TEST CONDITION
_ tpL(M1) M1 Delay From Rising Edge of Clock 100 nsec
M1 M1 Low C| = 50pF
tDH(M1) 1 Delay From Rising Edge of Clock, 100 nsec
M1 High
RFSH tIDL(RF) RFSH Delay From Rising Edge of Clock, 130 nsec
RFSH Low C =50pF
tDH(RF) RFSH Delay From Rising Edge of Clock 120 nsec
RFSH High
WAIT tS(WT) WAIT Setup Time to Falling Edge of 70 nsec
Clock
HALT tD(HT) HALT Delay Time From Falling Edge 300 nsec Cp = 50pF
of Clock
NT t5(1T) TNT Setup Time to Rising Edge of Clock 80 nsec
NV — o 239
NMI tw(NML) Pulse Width, NMI Low 80 nsec E§§§
[o
BUSRQ t5(BQ) BUSRQ Setup Time to Rising Edge of 50 nsec §§u_’§
Clock
BUSAK tDL(BA) BUSAK Dglay From Rising Edge of 100 nsec
Clock, BUSAK Low C =50pF
tDH(BA) BUSAK Delay From Falling Edge of 100 nsec
Clock, BUSAK High
RESET t5(RS) RESET Setup Time to Rising Edge of 60 nsec
Clock
tF(C) Delay to/From Float (MREQ, IORQ, 80 nsec
RD and WR)
tr ‘M1 Stable Prior to IORQ (Interrupt Ack.) [11] nsec
LOAD CIRCUIT FOR OUTPUT Vee
POINT
TEST R,21KQ
(1] taem =ty (PH) +t; — 65 I
FROM OUTPUT
[2] tai=tc—70 UNDER TEST
[3] tgq =ty (PL) +t,—50
CL
[4] toaf=ty (PL) + 1, —45 25008
[6] t4em =tc —170
[6] tyej=ty (PL) +1t,— 170 — = =
[7] tegs=tyw (PL) +t, _70 NOTES (Contd.)
— C. Output Delay vs. Load Capacitance
(81 t, (MRL)=1.-30 Ta =70 CVcc = 5V6%
Add 10 nsec delay for each 50pF increase in load up
[91 tw (MRH) = tw (PH) + tg- 20 to a maximum of 200pF for the data bus and 100pF for
address and control lines
[10] tw (W) = tc - 30 D. Although static by design, testing guarantees ty, (PH) of

200 Msec maximum.

[11] ty = 2t +ty, (PH) + t4— 65
[12] to =ty (PH) + 1, (PL) + t, + t;

111-81

A.C. TIMING DIAGRAM

Timing measurements are made at the following voltages, unless otherwise specified:

g g
CLOCK Vec—6 8V
OUTPUT 20V .8V
IR INPUT 20V 8V
WOH) FLOAT AV +0.5V
. S [\ RYRYRYER
LJ F (AD)
WidL) ':"‘:—
Ao-A15 B3
0 (AD) —_—
'\, N ’ ‘r"_-'
AO— 15 Xr /z‘l‘ N\
'S¢ (D)
—— | N
IN
‘o —r'
Do-7 = H—tF (D)
TN M.
ouT _)q’ s
‘oL m1) '0H (M) _.‘ teat
_ J] N |
M1 N ca
"DH (RF) . e tedf
D1 (RF)—=]f __..DF
3t 'F(C)
RFSH / | - r_
T Y10y
<= ‘oL MRy {OH(MR)1—] - OHBMA) 1O Hab (MA)——| }_«—
! ™=,
MREQ ! ! | 1w (AL \\ H ¥ A e
I W (MRA) A
=t ‘oL® (RD) 'DH (RD)— ‘0H® (RD)—~ —
— — /____
i } N\ VIR
{
0L (WR)| . k-‘nﬂdﬂwm
_— — /—
WR _ =l tgem »iwtwm ;t Sodee
oL R ‘oL IR !
'OHGUR)—— ; = 'DH (1R) = ~1=
ToRG i BN /—
! ™~ tmr | ! | F=—t—tac1 — ,| |)% N
'DLP(RD) ‘Dwn!cbmmo ~
—
RD Nedae”
I 7Z
‘oL WRI (' & i
= DH® (WR) iy
WR NN g
Yo) d
WAL
0 (HT) t (HT)
HALT
'san|| ™
iNT 2 4
J— —
i q
W (NML)
BUSRQ
[‘DH (BA)
BUSAK
'S(Rs)|| W w_—
RESET 2 4
~

11-82

12.0 280 INSTRUCTION BREAKDOWN BY MACHINE CYCLE

This section tabulates each Z80 instruction type and breaks each instruction down into its
machine cycles and corresponding T States. The different standard machine cycles (OP
Code Fetch, Memory Read, Port Read, etc.) are described in Section 4.0 of this manual.
This chart will allow the system designer to predict what the Z80 will do on each clock
cycle during the execution of a given instruction. The instruction types are listed together
by functions and in the same order as the Tables in Section 7.

The best way to learn how to use these tables is to look at a few examples. The first
example is to register exchange instructions (LD r, s) where r,s can be any of the following
CPU Registers: B,C,D,E,H,L, or A. The instruction breakdown table shows this instruction
to have one machine cycle (M1) four T-States long (number in parenthesis) which is an OP
Code Fetch. Referring to Figure 4.0-1 one sees the standard form for an OP Code Fetch and
the state of the CPU bus during these four T-States. Taking the next instruction shown
{LD r, n) which loads one of the previous registers with data or immediate value ‘’n’’ one
finds the breakdown to be a four T-State OP Code Fetch followed by a three T-State Ope-
rand Data Read. An Operand Data Read takes the form of the Standard Memory Read
shown in Figure 4.0-2.

After these two simple examples, a more complex one is in order. The LD r, (IX+d) is the
first double byte OP Code shown and executes as follows: First there are two M1 cycles
(and related memory refreshes) followed by an Operand Data Read of the displacement
'd”’. Next M3 consists of a five T-State Internal Operation which is the calculation of the
Indexed address (IX+d). The last machine cycle (M4) consists of a Memory Read of the
data continued in address | X+d and the loading of register ““r’* with that data.

The LD dd, (nn) instruction loads an internal 16-bit register pair with the contents of the
memory location specified in the Operand Bytes of the instruction. This instruction is four
bytes long (two bytes of OP Code + two bytes of Operand Address). As shown, there are
two M1 cycles to fetch the OP Code and then two Machine Cycles to read the Operand
Addresses, low order byte first. Machine cycle 4 is a read of memory to obtain the data for
the low order register (e.g., C of BC, E of DE and L of HL) followed by a read of the data
for the high order register.

The first instruction to use the Stack Register is the PUSH qq instruction which executes
as follows: Machine cycle 1 is extended by one cycle and the Stack Pointer is decremented
in the extra T-State to point to an empty location on the Stack. Machine cycle 2 is a write
of the high byte of the referenced register to the address contained in the Stack Pointer.
The Stack Pointer is again decremented and a write of the low byte of the referenced regis-
ter is made to the Stack in Machine Cycle 3. Note that the Stack Pointer is left pointing to
the last data referenced on the Stack. The block transfer instructions such as LDI and LDIR
are very similar. LDI is 16 T-States long and is composed of a double byte OP Code Fetch
(two memory refreshes) followed by a memory read and a memory write. The memory
write is 5 T-States long to allow updating of the block length counter —BC. The repetitive
form of this instruction (LDIR) has an additional Machine Cycle (M4) of 5 T-States to
allow decrementing of the Program Counter by two (PC-2) which results in refetching of
the OP Code (LDIR). Each movement of data by this instruction is 21 T-States long (except
the last) and the refetching of the OP Codes results in memory refresh occurring as well as
the sampling of interrupts and BUSRQ.

The NMI Interrupt sequence is 11 T-States long with the first M1 being a dummy OP
Code Fetch of 5 T-States long. The Program Counter is not advanced, the OP Code on the
data bus is ignored and an internal Restart is done to address 66H. The following two
Machine Cycles are a write of the Program Counter to the Stack.

The INT Mode O is the 8080A mode and requires the user to place an instruction on the
data bus for the CPU to execute. If a RST instruction is used, the CPU stacks the Program
Counter and begins execution at the Restart Address. If a CALL instruction is used, the
CALL Op Code is placed on the data bus during the INTA cycle (M1). M2 and M3 are

1-83

280 FAMILY
TECHNICAL
MANUALS

normal Memory Read cycles ‘not INTA cycles) of the CALL>addresses (low byte first).
Program Counter is stacked in M4 and M5.

Mode 2 is used by the Z80 System Peripherals and operates as folleWs: During the INTA
cycle (M1) a Vector is sent in from the highest priority interrupting device. M2 and M3
are used to Stack the Program Counter. The Vector (low byte) and an internal Interrupt
Register (1) from a pointer to a table containing the addresses of Interrupt Service Routines.
During M4 and M5 the Service Routines address is read from this table into the CPU.
The next M1 cycle will fetch an OP Code from the address received is M4 and M5.

111-84

LEGEND
10 — Internal CPU Operation

MR — Memory Read ODL — Operand Data Read of Low Byte

MRH — Memory Read of High Byte PR — Port Read

MRL — Memory Read of Low Byte - PW — Port Write

MW — Memory Write SRH — Stack Read of High Byte

MWH — Memory Write of High Byte SRL — Stack Read of Low Byte

MWL — Memory Write of Low Byte SWH — Stack Write of High Byte

OCF — Op Code Fetch SWL — Stack Write of Low Byte

ODH — Operand Data Read of High Byte () — Number of T-States in that Machine Cycle

Z80 INSTRUCTION BREAKDOWN BY MACHINE CODE

MACHINE CYCLE

INSTRUCTION
TYPE BYTES M1 M2 M3 M4 M5
LDr,s 1 OCF (4)
LDrn 2 OCF (4) oD (3)
LD, (HL) 1 OCF (4) MR (3)
LD (HL), r OCF (4) MW (3)
LD, {IX+d) 3 OCF (4)/OCF (4) | oD (3) 10 (5) MR (3)
LD (1X+d), r OCF (4)/OCF (4) | 0D (3) 10 (5) MW (3)
LD (HL), n 2 OCF (4) oD (3) MW (3)
BC
LD A, (DE) 1 OCF (4) MR (3)
LD (36, A OCF (4) MW (3)
LD A, (nn) 3 OCF (4) oDL (3) ODH (3) MR (3)
LD (nn), A OCF (4) oDL (3) ODH (3) MW (3)
LD A,"_‘, 2 OCF (4)/OCF(5)
|

LDg, A
LD dd, nn 3 OCF (4) 0DL (3) ODH (3)
LD IX, nn 4 OCF (4)/OCF (4) | ODL (3) ODH (3)
LD HL, (hn) 3 OCF (4) ODL (3) ODH (3) MRL (3) MRH (3)
LD {nn), HL OCF (4) ODL (3) ODH (3) MWL (3) MWH (3)
LD dd, (nn) 4 OCF (4)/OCF (4) | ODL (3) ODH (3) MRL (3) MRH (3)
LD (nn), dd OCF (4)/OCF (4) | oDL (3) ODH (3) MWL (3) MWH (3)
LD IX, (nn) OCF (4)/OCF (4) | ODL (3) ODH (3) MRL (3) MRH (3)
LD (nn), IX OCF (4)/OCF (4) | ODL (3) ODH (3) MWL (3) MWH (3)
LD SP, HL 1 OCF (8)
LD SP, IX 2 OCF (4)/OCE (6),
PUSH qq 1 OCF (5) SWH (3) SWL (3)

SP-1 SP-1 R
PUSH IX 2 OCF (4)/OCF (5) | SWH (3) SWL (3)

SP-1 SP-1 N
POP qq 1 OCF (4) SRH (3) SRL (3)
SP+1 _ SP+1
POP IX 2 OCF (4)/OCF (4) | SRH (3) SRL (3)
SP+1 SP+1

EX DE, HL 1 OCF (4)
EX AF, AF’ 1 OCF (4)

111-85

280 FAMILY
TECHNICAL
MANUALS

MACHINE CYCLE

INSTRUCTION
TYPE

BYTES

M1

M2

M3

M4

M5

EXX

EX (SP), HL

EX (SP), IX

LDI
LDD
CPI
CPD

LDIR
LDDR
CPIR
CPDR

ALUA, r
ADD ADC
SUB SBC
AND OR
XOR CP

ALUA, n
ALU A, (HL)
ALU A, (IX+d)

DEC
INCr

DEC
INC (HL)

DEC
INC (I1X+D)

DAA
CPL
CCF
SCF
NOP
HALT
DI

El

NEG
IMO
M1
M2

OCF (4)
OCF (4)

OCF (4)/OCF (4)

OCF (4)/OCF (4)

OCF (4)/OCF (4)

OCF (4)

OCF (4)
OCF (4)
OCF (4)/OCF (4)

OCF (4)

OCF (4)

OCF (4)/OCF (4)
OCF (4)

OCF (4)/OCF (4)

SRL (3)
SP+1

SRL (3)
SP+1

———

MR (3)

MR (3)

0D (3)
MR (3)
0D (3)

MR (4)

0OD (3)

SRH (4)

SRH (4)

>
MW (5)

MW (5)

10 (5)

MW (3)

10 (5)

SWH (3)
SP-1

SWH (3)
SP-1

10 (5)*

*only if BC£ 0

MR (3)

MR (4)

SWL (5)

-
SWL (5)

-

MW (3)

111-86

MACHINE CYCLE

INSTRUCTION
TYPE

BYTES

M1

M2

M3

M4

- M5

ADD HL, ss

ADC HL, ss
SBC HL, ss
ADD IX, pp

INC ss
DEC ss

DEC IX
INC IX

RLCA
RLA
RRCA
RRA

RLCr
RL
RRC
RR
SLA
SRA
SRL

RLC (HL)
RL

RRC

RR

SLA

SRA

SRL

RLC (IX+d)
RL

RRC

RR

SLA

SRA

SRL

RLD
RRD

BITb, r
SET
RES

OCF (4)

OCF (4)/OCF (4)

OCF (6)

OCF (4)/OCF (6)

OCF (4)

OCF (4)/OCF (4)

OCF (4)/OCF (4)

OCF (4)/OCF (4)

OCF (4)/OCF (4)

OCF (4)/OCF (4)

10 (4)

10 (4)

MR (4)

oD (3)

MR (3)

10 (3)

10 (3)

MW (3)

10 (5)

10 (4)

MR {4)

MW (3)

>
=
2
=4
'S
Q
@
N

TECHNICAL
MANUALS

MW (3)

11-87

MACHINE CYCLE

M4

INSTRUCTION BYTES M1 M2 M3 M5
TYPE
BIT b, (HL) 2 OCF (4)/OCF (4) MR (4)
SET b, (HL) 2 OCF (4)/OCF (4) MR (4) MW (3)
RES)
BIT b, (IX+d) 4 OCF (4)/OCF (4) oD (3) 10 (5) MR (4)
SET b, (1X+d) 4 OCF (4)/OCF (4) oD (3) 10 (5) MR (4) MW (3)
RES :
JP nn 3 OCF (4) oDL (3) ODH (3)
JP cc, nn
JRe 2 OCF (4) oD (3) 10 (5)
JRC,e 2 OCF (4) oD (3) 10 (5)*
JRNC, e * 1f condition is met
JRZ e
JRNZ, e
JP (HL) 1 OCF (4)
JP (I1X) 2 OCF (4)/OCF (4)
DJNZ, e 2 OCF (5) oD (3) 10 (5)*
*1£B£O
CALL nn 3 OCF (4) ODL (3) ODH (4) SWH (3) SWL (3)
CALL cc, nn SP-1 SP-1 -
cc true .
CALLcc, nn 3 OCF (4) ODL (3) ODH (3)
cc false
RET 1 OCF (4) SRL (3) SRH (3)
SP+1 o SP+1
RET cc 1 OCF (5) SRL (3)* SRH (3)*
*If cc is true

SP+1 SP+1

— —_—
RETI 2 OCF (4)/OCF (4) SRL (3) SRH (3)
RETN SP+1 SP+1

e —_—t
RST p 1 OCF (5) SWH (3) SWL (3)

SP-1 SP-1

R

>

111-88

MACHINE CYCLE

INSTRUCTION BYTES | M1 M2 M3 M4 M5
TYPE
IN A, (n) 2 OCF (4) oD (3) PR (4)
INT, {c) 2 OCF (4)/OCF (4) | PR (4)
INI 2 OCF (4)/OCF (5) | PR (4) MW (3)
IND
INIR) OCF (4)/OCF (5) | PR (4) MW (3) 10 (5)
INDR
OUT (n), A 2 OCF (4) oD (3) PW (4)
OUT (C), r 2 OCF (4)/OCF (4) | PW (4)
ouTI 2 OCF (4)/OCF (5) | MR (3) PW (4) %20
ouUTD =225
N 4
503
OTIR 2 OCF (4)/OCF (5) | MR (3) PW (4) 10 (5) S
OTDR
INTERRUPTS
NMI1 - OCF (5) * SWH (3) SWL (3) *Op Code Ignored
SP-1 | SP-1
INT
MODE 0 - INTA (6) oDL (3) ODH (4) SWH (3) SWL (3)
(CALL INSERTED) SP-1 , SP-1 ,
- INTA (6) SWH (3) SWL (3)
(RST INSERTED)
SP-1 SP-1 R
MODE 1 INTA (7) SWH (3) SWL (3)
(RST 38H
INTERNAL
SP-1 - SP-1
MODE 2 - INTA (7) SWH (3) SWL (3) MRL (3) MRH (3)
(VECTOR
SUPPLIED)
SP-1 . SP-1

11-89

ORDERING INFORMATION

. MAX CLOCK
PART NO. PACKAGE TYPE | FREQUENCY TEMPERATURE RANGE
MK3880N Z80-CPU Plastic 2.5MHz
MK3880P Z80-CPU Ceramic 2.5 MHz
MK3880J Z80-CPU Cerdip 2.5 MHz 0° to +70°C
MK3880N-4 Z80-CPU Plastic 4.0 MHz
MK3880P-4 Z80-CPU Ceramic 4.0 MHz
MK3880J-4 Z80-CPU Cerdip 4.0 MHz
MK3880P-10 Z80-CPU Ceramic 2.5 MHz -40°C to +85°C

11-90

MOSTEK.

Z80 MICROCOMPUTER DEVICES

Technical Manual

Y

MK3881
PARALLEL 170
CONTROLLER

IIIIII

111-92

TABLE OF CONTENTS

SECTION PAGE
1.0 INTRODUCTION . ..o e e e e e e e 1-95
20 ARCHITECTURE e e e e e m-97
3.0 PINDESCRIPTION e e e 11-99
40 PROGRAMMING THE PIOttt e et 11-103
5.0 TIMING . oo e e m-107
6.0 INTERRUPT SERVICING ... ottt ittt ettt e -113
7.0 APPLICATIONS ... e e e e e W-115
8.0 PROGRAMMING SUMMARYt e n-119
9.0 ELECTRICAL SPECIFICATIONS it e n-121 = % %’g
10.0 ORDERING INFORMATION . ..ottt e e e -125 %@;

11-93

111-94

1.0 INTRODUCTION

The Z80 Parallel 1/0 Circuit is a programmable, two port device which provides a TTL
compatible interface between peripheral devices and the Z80-CPU. The CPU can configure
the Z80-P10 to interface with a wide range of peripheral devices with no other external
logic required. Typical peripheral devices that are fully compatible with the Z80-PIO include
most keyboards, paper tape readers and punches, printers, PROM programmers, etc. The
Z80-P1O utilizes N channel silicon gate depletion load technology and is packaged in a
40 pin DIP. Major features of the Z80-PIO include:

- Two independent 8 bit bidirectional peripheral interface ports with ‘handshake’
data transfer control

+ Interrupt driven ‘handshake’ for fast response
- Any one of four distinct modes of operation may be selected for a port including:

Byte output
Byte input
Byte bidirectional bus (Available on Port A only)
Bit control mode
All with interrupt controlled handshake

MANUALS

>
=
_=
=4q
w
(=]
@®
N

TECHNICAL

Daisy chain priority interrupt logic included to provide for automatic interrupt
vectoring without external logic

« Eight outputs are capable of driving Darlington transistors
All inputs and outputs fully TTL compatible

Single 5 valt supply and single phase clock required.

One of the unique features of the Z80-PIO that separates it from other interface controllers
is that all data transfer between the peripheral device and the CPU is accomplished under
total interrupt control. The interrupt logic of the PIO permits full usage of the efficient in-
terrupt capabilities of the Z80-CPU during 1/0 transfers. All logic necessary to implement a
fully nested interrupt structure is included in the PIO so that additional circuits are not
required. Another unique feature of the PIO is that it can be programmed to interrupt
the CPU on the occurrence of specified status conditions in the peripheral device. For
example, the PIO can be programmed to interrupt if any specified peripheral alarm con-
ditions should occur. This interrupt capability reduces the amount of time that the pro-
cessor must spend in polling peripheral status.

11-95

111-96

2.0 PIO ARCHITECHTURE

A block diagram of the Z80-PIO is shown in figure 2.0-1. The internal structure of the
Z80-PIO consists of a Z80-CPU bus interface, internal control logic, Port A 1/0 logic,
Port B 1/0 logic, and interrupt control logic. The CPU bus interface logic allows the
PIO to interface directly to the Z80-CPU with no other external logic. However, address
decoders and/or line buffers may be required for large systems. The internal control logic
synchronizes the CPU data bus to the peripheral device interfaces (Port A and Port B).
The two |/0 ports (A and B) are virtually identical and are used to interface directly to
peripheral devices.

P10 BLOCK DIAGRAM GND &

Figure 2.0-1 l l l

N
INTERNAL PORT k34— DATA OR CONTROL
CONTROL A
LOGIC wo
| o { HANDSHAKE
8 —
cPU >2n
cPy DATABUS BUS INTERNAL BUS fﬁ?&?ﬁ"c’é" 3 LE) <
INTERFACE § 1o =323
PIO CONTROL Lz2
LINES . ggs
INTERRUPT pORT K—7—>DATA OR CONTROL
8 -
CONTROL wo kK——
HANDSHAKE

INTERRUPT CONTROL LINES

The Port 1/0 logic is composed of 6 registers with handshake’’ control logic as shown in
figure 2.0-2. The registers include: an 8 bit data input register, an 8 bit data output register,
a 2 bit mode control register, an 8 bit mask register, an 8 bit input/output select register,
and a 2 bit mask control register.

PORT 1/0 BLOCK DIAGRAM
Figure 2.0-2

INPUT/OUTPUT
D>l SELECT REG
(8 BITS)

MODE
CONTROL OUTPY
REG ENABLE

(2817S)

DATA

INTERNAL BUS P O:T'UT

REG
(8BITS)

sBIT
PERIPHERAL

:> DATA OR
CONTROL BUS

was l—

MASK DATA

124l m—" 2 [y
(281Ts) s ors) —

INPUT DATA (8 8ITS)

READY
TERRUPT HANDSHAKE P nanosmaxe
INTERRUPT o ___ | CONTROL
REQUESTS Toate STROBE [LINES

1-97

The 2-bit mode control register is loaded by the CPU to select the desired operating mode
(byte output, byte input, byte bidirectional bus, or bit control mode). All data transfer
between the peripheral device and the CPU is achieved through the data input and data
output registers. Data may be written into the output register by the CPU or read back to
the CPU from the input register at any time. The handshake lines associated with each port
are used to control the data transfer between the PIO and the peripheral device.

The 8-bit mask register and the 8-bit input/output select register are used only in the bit
control mode. In this mode any of the 8 peripheral data or control bus pins can be prog-
rammed to be an input or an output as specified by the select register. The mask register
is used in this mode in conjunction with a special interrupt feature. This feature allows an
interrupt to be generated when any or all of the unmasked pins reach a specified state
(either high or low). The 2-bit mask control register specifies the active state desired (high
or low) and if the interrupt should be generated when all unmasked pins are active (AND
condition) or when any unmasked pin is active (OR condition). This feature reduces the
requirement for CPU status checking of the peripheral by allowing an interrupt to be auto-
matically generated on specific peripheral status conditions. For example, in a system with
3 alarm conditions, an interrupt may be generated if any one occurs or if all three occur.

The interrupt control logic section handles all CPU interrupt protocol for nested priority
interrupt structures. The priority of any device is determined by its physical location in a
daisy chain configuration. Two lines are provided in each PIO to form this daisy chain. The
device closest to the CPU has the highest priority. Within a PIO, Port A interrupts have
higher priority than those of Port B. In the byte input, byte output or bidirectional modes,
an interrupt can be generated whenever a new byte transfer is requested by the peripheral.
In the bit control mode an interrupt can be generated when the peripheral status matches a
programmed value. The PIO provides for complete control of nested interrupts. That is,
lower priority devices may not interrupt higher priority devices that have not had their
interrupt service routine completed by the CPU. Higher priority devices may interrupt the
servicing of lower priority devices.

When an interrupt is accepted by the CPU in mode 2, the interrupting device must provide
an 8-bit interrupt vector for the CPU. This vector is used to form a pointer to a location
in the computer memory where the address of the interrupt service routine is located.
The 8-bit vector from the interrupting device forms the least significant 8 bits of the indirect
pointer while the | Register in the CPU provides the most significant 8 bits of the pointer.
Each port (A and B) has an independent interrupt vector. The least significant bit of the
vector is automatically set to a O within the PIO since the pointer must point to two ad-
jacent memory locations for a complete 16-bit address.

The PIO decodes the RETI (Return from interrupt) instruction directly from the CPU data

bus so that each PIO in the system knows at all times whether it is being serviced by the
CPU interrupt service routine without any other communication with the CPU.

111-98

3.0 PIN DESCRIPTION

A diagram of the Z80-PIO pin configuration is shown in figure 3.0-1. This section describes
the function of each pin.

D7-Do

B/A Sel

C/D Sel

Z80-CPU Data Bus (bidirectional, tristate)
This bus is used to transfer all data and commands between the Z80-
CPU and the Z80-PIO. Dq is the least significant bit of the bus.

Port B or A Select (input, active high)

This pin defines which port will be accessed during a data transfer bet-
ween the Z80-CPU and the Z80-PIO. A low level on this pin selects
Port A while a high level selects Port B. Often Address bit Ag from the
CPU will be used for this selection function.

Control or Data Select (input, active high)

This pin defines the type of data transfer to be performed bwtween the
CPU and the PIO. A high level on this pin during a CPU write to the
PIO causes the Z80 data bus to be interpreted as a command for the
port selected by the B/A Select line. A low level on this pin means that
the Z80 data bus is being used to transfer data between the CPU and
the PIO. Often Address bit Aq from the CPU will be used for this func-
tion.

Chip Enable (input, active low)

A low level on this pin enables the PIO to accept command or data
inputs from the CPU during a write cycle or to transmit data to the
CPU during a read cycle. This signal is generally a decode of four
1/0 port numbers that encompass port A and B, data and control.

System Clock(input)
The Z80-P10O uses the standard Z80 system clock to synchronize certain
signals internally. This is a single phase clock.

Machine Cycle One Signal from CPU (input, active low)

This signal from the CPU is used as a sync pulse to control several
internal PIO operations. When M1 is active and the RD signal is active,
the Z80-CPU is fetching an instruction from memory. Conversely,
when M1 is active and IORQ is active, the CPU is acknowledging an
interrupt. In addition, the MT signal has two other functions within the
Z80-P10.

1. M1 synchronizes the PIO interrupt logic.

2. When M1 occurs without an active RD or TORQ signal the
P10 logic enters a reset state,

Input/Output Request from Z80-CPU (input, active low)

The IORQ signal_is used in conjunction with the B/A Select, C/D
Select, CE, and RD signals to transfer commands and data between
the Z80-CPU and the Z80-PIO. When CE, RD and TORQ are active,
the port addressed by B/A will transfer data to the CPU (aread oper-
ation). Conversely, when CE and IORQ are active but RD is not active,
then the port addressed by B/A will be written into from the CPU with
either data or contiol information as specified by the C/D Select signal.
Also, if IORQ and M1 are active simultaneously, the CPU is acknow-
ledging an interrupt and the interrupting port will automatically place
its interrupt vector on the CPU data bus if it is the highest device re-
questing an interrupt.

111-99

280 FAMILY
TECHNICAL
MANUALS

IEI

IEO

Ao-A7

ASTB

A RDY

Read Cycle Status from the Z80-CPU (input, active low)

If RD is active a MEMORY READ or I/0O READ operation is in prog-
ress. The RD signal is used with B/A Select, C/D Select, CE and TORQ
signals to transfer data from the Z80-PIO to the Z80-CPU.

Interrupt Enable In (input, active high)

This signal is used to form a priority interrupt daisy chain when more
than one interrupt driven device is being used. A high level on this pin
indicates that no other devices of higher priority are being serviced
by a CPU interrupt service routine.

- Interrupt Enable Out (output, active high)

The IEO signal is the other signal required to form a daisy chain prio-
rity scheme. It is high only if IEl is high and the CPU is not servicing
an interrupt from this PIO. Thus this signal blocks lower priority de-
vices from interrupting while a higher prlorlty device is being servnced
by its CPU interrupt service routine.

Interrupt Request (output, open drain, active low)
When INT is active the Z80-P1O is requesting an interrupt from the
Z80-CPU.

Port A Bus (bidirectional, tri-state)

This 8 bit bus is used to transfer data and/or status or control infor-
mation between Port A of the Z80-PIO and a peripheral device. Ag
is the least significant bit of the Port A data bus.

Port A Strobe Pulse from Peripheral Device (input, active low)
The meaning of this signal depends on the mode of operation selected
for Port A as follows:

1) Output mode: The positive edge of this strobe is issued by the
peripheral to acknowledge the receipt of data made available by
the P10,

2) Input mode: The strobe is issued by the peripheral to load data
from the peripheral into the Port A input register. Data is load-
ed into the PIO when this signal is active.

3) Bidirectional mode: When this signal is active, data from the
Port A output register is gated onto Port A bidirectional data
bus. The positive edge of the strobe acknowledges the receipt
of the data.

4) Control mode: The strobe is inhibited internally.

Register A Ready (output, active high)
The meaning of this signal depends on the mode of operation selected
for Port A as follows:

1) Output mode: This signal goes active to indicate that the Port
A output register has been loaded and the peripheral data bus
is stable and ready for transfer to the peripheral device.

2) Input mode: This signal is activé when the Port A input register
: is empty and is ready to accept data from the peripheral device.

3) Bidirectional mode: This signal is active when data is available
in Port A output register for transfer to the peripheral device.
In_this mode data is not placed on the Port A data bus unless
A STB is active.

-100

4) Control mode: This signal is disabled and forced to a low state.

Bo-B7 Port B Bus (bidirectional, tristate)
This 8 bit bus is used to transfer data and/or status or control infor-
mation between Port B of the PIO and a peripheral device. The Port B
data bus is capable of supplying 1.5ma@ 1.5V to drive Darlington
transistors. Bq is the least significant bit of the bus.

B STB Port B Strobe Pulse from Peripheral Device (input, active low)
The meaning of this signal is similar to that of A STB with the follow-
ing exception:
In the Port A bidirectional mode this signal strobes data from the
peripheral device into the Port A input register.

B RDY Register B Ready (output, active high)
The meaning of this signal is similar to that of A Ready with the follow-
ing exception:
In the Port A bidirectional mode this signal is high when the Port A
input register is empty and ready to accept data from the peripheral

device. %30
seg
=222
P10 PIN CONFIGURATION 552
Figure 3.0-1 f=d
19 15 A
4 Do < —» —> Ao 3
4
01«22 2> A1
1
Dz<———>1 <——>3 A2
40 12
cPU D3 —> l——» A3
DATA 39 10
BUS j D4 <t—— > Ay
38 9 PORT A
D5 <———»] — As > 1/0
Dpa—] <2 s
\ qu——54> -1——14>1h
© PORTB/ASEL— 3! L 18 o ARDY
CONTROL/DATA 5 » 2Z80PI10 & _ASTB)
SEL N MK 3881
PIO CHIP ENABLE —— P> 27
CONTROL — 37 <¢——— Bg 3
M1 —————P 28
R 36 <—> B
iORQ ————» 29
t 35 < > B2
RD ———»> 30 p g
1
+5V ._26_> <—3‘-—>B4
GND — 113 32 85 > :’/%RT 8
33
25 <—» 5
D> 34
——»B7
. 23
INT ——— -
INTERRUPT INT ENABLE IN——2% 3] ——— BRDY
CONTROL 22 17 _—
INT ENABLE OUT <—=——— [<¢——— BSTB 2

11-101

11-102

4.0 PROGRAMMING THE PIO
4.1 RESET

The Z80-PIO automatically enters a reset state when power is applied. The reset state per-
forms the following functions:

1) Both port mask registers are reset to inhibit all port data bits.

2) Port data bus lines are set to a high impedance state and the Ready “handshake’’
signals are inactive (low). Mode 1 is automatically selected.

3) The vector address registers are not reset.
4) Both port interrupt enable flip flops are reset.
5) Both port output registers are reset.

In addition to the automatic power on reset, the PIO can be reset by applying an M1 signal
without the presence of a RD or TORQ signal. If no RD or TORQ is detected during M1
the P1O will enter the reset state immediately after the M1 signal goes inactive. The purpose
of this reset is to allow a single external gate to generate a reset without a power down
sequence. This approach was required due to the 40 pin packaging limitation. It is recom-
mended that in breadboard systems and final systems with a “'Reset’” push button that a
M1 reset be implemented for the P1O.

7408

CPU RESET —
_ PIO M1
CPU M1

A software RESET is possible as described in Section 4.4, however, use of this method
during early system debug may not be desirable because of non-functional system hardware
(bus buffers or memory for example).

Once the PIO has entered the internal reset state it is held there until the Pl1O receives a
control word from the CPU.

4.2 LOADING THE INTERRUPT VECTOR

The PIO has been designed to operate with the Z80-CPU using the mode 2 interrupt res-
ponse. This mode requires that an interrupt vector be supplied by the interrupting device.
This vector is used by the CPU to form the address for the interrupt service routine of that
port. This vector is placed on the Z80 data bus during an interrupt acknowledge cycle by
the highest priority device requesting service at that time. (Refer to the Z80-CPU Technical
Manual for details on how an interrupt is serviced by the CPU). The desired interrupt
vector is loaded into the PIO by writing a control word to the desired port of the PIO with
the following format:

D7 D6 D5 D4 D3 D2 D1 DO

V7 V6 V5 V4 V3 V2 Al 0

Zgniﬁes this control word

is an interrupt vector

11-103

280 FAMILY
TECHNICAL

MANUALS

DO is used in this case as a flag bit which when low causes V7 thru V1 to be loaded into the
vector register. At interrupt acknowledge time, the vector of the interrupting port will
appear on the Z80 data bus exactly as shown in the format above.

4.3 SELECTING AN OPERATING MODE

Port A of the PIO may be operated in any of four distinct modes: Mode 0 (output mode),
Mode 1 (input mode), Mode 2 (bidirectional mode), and Mode 3 (control mode). Note
that the mode numbers have been selected for mnemonic significance; i.e. 0=0ut, 1=In,
2=Bidirectional. Port B can operate in any of these modes except Mode 2.

The mode of operation must be established by writing a control word to the PIO in the
following format:

D7 D6 D5 D4 D3 D2 D1 DO

M1 MO X X 1 1 1 1 X=unused bit

\ s
vV \'4

mode word signifies mode word to be set

Bits D7 and D6 from the binary code for the desired mode according to the following
table: :

D7 D6 MODE

0 0 0 (output)

0 1 1 (input)

1 0 2 (bidirectional)
1 1 3 (control)

Bits D5 and D4 are ignored. Bits D3-D0 must be set to 1111 to indicate ““Set Mode".

Selecting Mode O enables any data written to the port output register by the CPU to be
enabled onto the port data bus. The contents of the output register may be changed at any
time by the CPU simply by writing a new data word to the port. Also the current contents
of the output register may be read back to the Z80-CPU at any time through the execution
of an input instruction.

With Mode O active, a data write from the CPU causes the Ready handshake line of that
port to go high to notify the peripheral that data is available. This signal remains high until
a strobe is received from the peripheral. The rising edge of the strobe generates an interrupt
(if it has been enabled) and causes the Ready line to go inactive. This very simple handshake
is similar to that used in many peripheral devices.

Selecting Mode 1 puts the port into the input mode. To start handshake operation, the CPU
merely performs an input read operation from the port. This activates the Ready line to
the peripheral to signify that data should be loaded into the empty input register. The peri-
pheral device then strobes data into the port input register using the strobe line. Again, the
rising edge of the strobe causes an interrupt request (if it has been enabled) and deactivates
the Ready signal. Data may be strobed into the input register regardless of the state of
the Ready signal if care is taken to prevent a data overrun condition,

Mode 2 is a bidirectional data transfer mode which uses all four handshake lines. Therefore
only Port A may be used for Mode 2 operation. Mode 2 operation uses the Port A hand-

11-104

shake signals for output control and the Port B handshake signals for input control. Thus,
both A RDY and B RDY may be active simultaneously. The only operational difference
between Mode 0 and the output portion of Mode 2 is that data from the Port A output
register is allowed on to the port data bus only when A STB is active in order to achieve a
bidirectional capability.

Mode 3 operation is intended for status and control applications and does not utilize the
handshake signals. When Mode 3 is selected, the next control word sent to the PIO must
define which of the port data bus lines are to be inputs and which are outputs. The format
of the control word is shown below:

D7 D6 D5 D4 D3 D2 D1 DO

1/07 | 1/0g | 10/5 | 1104 | 1103 | 1/02 | 109 | 1/0g

If any bit is set to a one, then the corresponding data bus line will be used as an input.
Conversely, if the bit is reset, the line will be used as an output.

During Mode 3 operation the strobe signal is ignored and the Ready line is held low. Data
may be written to a port or read from a port by the Z80-CPU at any time during Mode 3
operation. (An exception to this is when Port A is in Mode 2 and Port B is in Mode 3).
When reading a port, the data returned to the CPU will be composed of input data from
port data bus lines assigned as inputs plus port output register data from those lines assigned
as outputs.

4.4 SETTING THE INTERRUPT CONTROL WORD

The interrupt control word for each port has the following format:

D7 D6 D5 D4 D3 D2 D1 DO

Enable | AnD/ High/ Masks 0 1 1 1
Interrupt]l OR Low follows
A / \ /

V —V
used in Mode 3 only signifies interrupt control word

If bit D7=1 the interrupt enable flip flop of the port is set and the port may generate an
interrupt. If bit D7=0 the enable flag is reset and interrupts may not be generated. If an
interrupt occurs while D7=0, it will be latched internally by the PIO and passed onto the
CPU when PIO Interrupts are Re-Enabled (D7=1). Bits D6, D5 and D4 are used mainly with
Mode 3 operation, however, setting bit D4 of the interrupt control word during any mode
of operation will cause a pending interrupt to be reset. These three bits are used to allow
for interrupt operation in Mode 3 when any group of the 1/O lines go to certain defined
states. Bit D6 (AND/OR) defines the logical operation to be performed in port monitoring.
If bit D6=1, and AND function is specified and if D6=0, an OR function is specified. For
example, if the AND function is specified, all bits must go to a specified state before an
interrupt will be generated while the OR function will generate an interrupt if any specified
bit goes to the active state.

Bit D5 defines the active polarity of the port data bus line to be monitored. If bit D5=1
the port data lines are monitored for a high state while if D5=0 they will be monitored
for a low state.

111-105

280 FAMILY
TECHNICAL

MANUALS

If bit D4=1 the next control word sent to the PIO must define a mask as follows:

D7 D6 D5 D4 D3 D2 D1 DO

MB7 | MBg | MBs | MBg MB3 | MBy | MBq | MBg

Only those port lines whose mask bit is zero will be monitored for generating an interrupt.

The interrupt enable flip flop of a port may be set or reset without modifying the rest of
the interrupt control word by using the following command:

Int
Enable X X X 0 0 1 1

If an external Asynchronous interrupt could occur while the processor is writing the disable
word to the PIO (O3H) then a system problem may occur. If interrupts are enabled in the
processor it is possible that the Asynchronous interrupt will occur while the processor is
writing the disable word to the P1O. The PIO will generate an INT and the CPU will acknow-
ledge it, however, by this time, the PIO will have received the disable word and de-activated
its interrupt structure. The result is that the PIO will not send in its interrupt vector during
the interrupt acknowledge cycle because it is disabled and the CPU will fetch an erroneous
vector resulting in a program fault. The cure for this problem is to disable interrupts within
the CPU with the DI instruction just before the PIO is disabled and then re-enable interrupts
with the El instruction. This action causes the CPU to ignore any faulty interrupts produced
by the P10 while it is being disabled. The code sequence would be:

LD A,03H

DI ; DISABLE CPU
OUT (P10),A ; DISABLE PIO
El ; ENABLE CPU

1-106

5.0 TIMING
5.1 OUTPUT MODE (MODE 0)

Figure 5.0-1a illustrates the timing associated with Mode O operation. An output cycle is
always started by the execution of an output instruction by the CPU. A WR* pulse is
generated by the PIO during a CPU 1/0O write operation and is used to latch the data from
the CPU data bus into addressed port’s (A or B) output register. The rising edge of the
WR* pulse then raises the READY line after the next falling edge of & to indicate that
data is available for the peripheral device. In most systems, the rising edge of the READY
signal can be used as a latching signal in the peripheral device. The READY signal will
remain active until a positive edge is received from the STROBE line indicating that the
peripheral has taken the data shown in Figure 5.0-1a. If already active, READY will be
forced low 1% @ cycles after the falling edge of IORQ if the port’s output register is written
into. READY will return high on the first falling edge of ® after the rising edge of IORQ
as shown in figure 5.0-1b. This action guarantees that READY is low while port data is
changing and that a positive edge is generated on READY whenever an Output instruction

is executed.
MODE 0 (OUTPUT)TIMING MODE 0 (OUTPUT) TIMING >,
Figure 5.0-1a Figure 5.0-1b 333
=422
wr2Z
0o0d
oWsS
T2 ™ T3 T T2 ™ T3 T N
& o
_ pl 7
PORT OUTPUT
wams X / il @ BiTS) \C /
READY) READY ;E 9
STROBE 1", .
STROBE
I T 1
WR*=RD - CE - C/D - I0RG WR* =RD - CE - C/D - IORQ

By connecting READY to STROBE a positive pulse with a duration of one clock period
can be created as shown in Figure 5.0-1c. The positive edge of READY/STROBE will not
generate an interrupt because the positive portion of STROBE is less than the width of M1
and as such will not generate an interrupt due to the internal logic configuration of the
P10.

If the PIO is not in a reset status (i.e. a control mode has been selected), the output register
may be loaded before Mode O is selected. This allows port output lines to become active
in a user defined state. For example, assume the outputs are desired to become active in
a logic one state, the following would be the initialization sequence:

a) PIO RESET

b) Load Interrupt Vector

c) Select Mode 1 (input) (automatic due ro RESET)

d) Write FF to Data Port

e) Select Mode O (Outputs go to “‘1's*’)

f) Enable Interrupt if desired

1-107

MODE 0 (OUTPUT) TIMING - READY TIED TO STROBE
Figure 5.0-1c

T2 W T3 T T2
[

PORT OUTPUT
(8 BITS) X /
READY/STROBE y :\

e

T -

WR'=RD - CE - C/D - IORQ

B

5.2 INPUT MODE (MODE 1)

Figure 5.0-2 illustrates the timing of an input cycle. The peripheral initiates this cycle using
The STROBE line after the CPU has performed a data read. A low level on this line loads
data into the port input register and the rising edge of the STROBE line activates the
interrupt request line (INT) if the interrupt enable is set and this is the highest priority
requesting device. The next falling edge of the clock fine (®) will then reset the READY
line to an inactive state signifying that the input register is full and further loading must be
inhibited until the CPU reads the data. The CPU will in the course of its interrupt service
routine, read the data from the interrupting port. When this occurs, the positive edge from
the CPU RD signal will raise the READY line with the next low going transition of &,
indicating that new data can be loaded into the PIO.

Since RESET causes READY to go low a dummy Input instruction may be needed in some
systems to cause READY to go high the first time in order to start ““handshaking”.

MODE 1 (INPUT) TIMING

Figure 5.0-2a Figure 5.0-2b

®

STROBE

PORT INPUT
(8 BITS)

READY

2l i) ™ T3 T

MODE 1 (INPUT) TIMING (NO STROBE INPUT)

o
sawpLe
PORT INPUT
(8BITS) \ DATA IN \ ‘ NEW DATA IN
+ I0RQ \(
READY
STROBE 0"
P~

MODE 1 (INPUT) TIMING (NO STROBE INPUT)

If already active, READY will be forced low one and one-half ® periods following the
falling edge of IORQ during a read of a PIO port as shown in Figure 5.0-2b. If the user
strobes data into the PIO only when READY is high, the forced state of READY will
prevent input register data from changing while the CPU is reading the P1O. Ready will
go high again after the rising edge of the IORQ as previously described.

111-108

5.3 BIDIRECTIONAL MODE (MODE 2)

This mode is merely a combination of Mode 0 and Mode 1 using all four handshake lines.
Since it requires all four lines, it is available only on Port A. When this mode is used on
Port A, Port B must be set to the Bit Control Mode. The same interrupt vector will be
returned for a Mode 3 interrupt on Port B and an input transfer interrupt during Mode 2
operation of Port A. Ambiguity is avoided if Port B is operated in a polled mode and the
Port B mask register is setto inhibit all bits. Furthermore, interrupts from Port B (Mode 3) will not
be generated whenr Port A is programmed for Mode 2, as BSTB would have to be active (low) in
order to generate interrupts. (BSTB is normally high).

Figure 5.0-3 illustrates the timing for this mode. It is almost identical to that previously
described for Mode O and Mode 1 with the Port A handshake lines used for output control
and the Port B'lines used for input control. The difference between the two modes is that,
in Mode 2, data is allowed out onto the bus only when the A STROBE is low. The rising
edge of this strobe can be used to latch the data into the peripheral since the data will
remain stable until after this edge. The input portion of Mode 2 operates identically to
Mode 1. Note that both Port A and Port B.must have their interrupts enabled to achieve an
interrupt driven bidirectional transfer.

29
_EE;
:5%5
- o
PORT A, MODE 2 (BIDIRECTIONAL) TIMING qre
Figure 5.0-3
o

A RDY

]t S

ASTB

PORT A {oatam -

DATA BUS ! DATA ouT /
SAMPLE
NT 5 /
B STB (\
B RDY \
- e
WR* =RD - CE - €7D - IORQ
Fb* =RD- CE- T/D - TORQ

The peripheral must not gate data onto a port data bus while A STB is active. Bus con-
tention is avoided if the peripheral uses B STB to gate input data onto the bus. The P10 uses
the B STB low level to sample this data. The PIO has been designed with a zero hold time
requirement for the data when latching in this mode so that this simple gating structure can
be used by the peripheral. That is, the data can be disabled from the bus immediately after
the strobe rising edge. Note that if A STB is low during a read operation of Port A (in res-
ponse to a B STB interrupt) the data in the output register will be read by the CPU instead
of the correct data in the data input register. The correct data is latched in the input register
it just cannot be read by the CPU while A STB is low. If the A STB signal could go low
during a CPU Read, it should be blocked from reaching the A STB input of the PIO while
BRDY is low (the CPU read will occur while BRDY is low as the RD signal returns BRDY
high).

11i-109

5.4 CONTROL MODE (MODE 3)

The control mode does not utilize the handshake signals and a normal port write or port
read can be executed at any time. When writing, the data will be latched into output regi-
sters with the same timing as Mode 0. A RDY will be forced low whenever Port A is ope-
rated in Mode 3. B RDY will be held low whenever Port B is operated in Mode 3 unless
Port A is in Mode 2. In the latter case, the state of B RDY will not be affected.

When reading the P10, the data returned to the CPU will be composed of output register
data from those port data lines assigned as outputs and input register data from those port
data lines assigned as inputs. The_input register will contain data which was present immed-
iately prior to the falling edge of RD. See Figure 5.0-4.

MODE 3 TIMING
Figure 5.0-4a

T T2 Tw* T3
o UYLy yuruys

PORT
DATA BUS _X DATA WORD 1 K DATA WORD 2 X
A A

iNT \

DATA MATCH OCCURS HERE 4§
10RQ /
RD & /

{ DATAIN }

Z DATA WORD 1 PLACED ON BUS

Do-D7

*Timing Diagram Refers to Bit Mode Read

An interrupt will be generated if interrupts from the port are enabled and the data on the
port data lines satisfies the logical equation defined by the 8-bit mask control registers.
Andther interrupt will not be generated until a change occurs in the status of the logical
equation. A Mode 3 interrupt will be generated only if the result of a Mode 3 logical oper-
ation changes from false to true. For example, assume that the Mode 3 logical equation is
an “OR’ function. An unmasked port data line becomes active and an interrupt is requested.
If a second unmasked port data line becomes active concurrently with the first, a new
interrupt will not be requested since a change in the result of the Mode 3 logical operation
has not occurred. Note that port pins defined as outputs can contribute to the logical
equation if their bit positions are unmasked.

If the result of a logical operation becomes true immediately prior to or during M1, an
interrupt will be requested after the trailing edge of M1, provided the logical equation re-
mains true after M1 returns high.

1-110

Figure 5.0-4b is an example of Mode 3 interrupts. The port has been placed in Mode 3
and OR logic selected and signals are defined to be high. All but bits A0 and A1 are masked
out and are not monitored thereby creating a two input positive logic OR gate. In the
timing diagram AQ is shown going high and creating an interrupt (INT goes low) and the
CPU responds with an Interrupt Acknowledge cycle (INTA). The PIO port with its interrupt
pending sends in its Vector and the CPU goes off into the Interrupt Service Routine. AQ is
shown going inactive either by itself or perhaps as a result of action taken in the Interrupt
Service Routine (making the logical equation false). An arrow is shown at the point in time
where the Service Routine issues the RETI instruction which clears the PIO interrupt
structure. A1 is next shown going high making the logical equation-true and generating
another interrupt. Two important points need to be made from this example:

1) A1 must not go high before AO goes low or else the logical equation will not go
false — a requirement for A1 to be able to generate an interrupt.

2) In order for A1 to generate an interrupt it must be high after the RETI issued
by AOQ’s Service Routine clears the PIO’s Interrupt structure. In other words, if
A1 were a positive pulse that occurred after AO went low (to make the equation
false) and went low before the RET! had cleared the Interrupt Structure it would
have been missed. The logic equation must become false after the INTA for
AO’s service and then must be true or go true after RETI clears the previous
interrupt for another interrupt to occur.

>
=
_=2
=4
w
o
@
N

TECHNICAL
MANUALS

MODE 3 EXAMPLE
Figure 5.0-4b

EQUATION TRUE

A0
LOGICAL
EQUATION EQUATION T
A1 GOES FALSE URE

y N L
RETI ISSUED HERE
MODE 3 INTERRUPT CLEARED

INT :g:D——INTERRUPT
VECTOR IN VECTOR IN
INTA N/

1-111

n-112

6.0 INTERRUPT SERVICING

Some time after an interrupt is requested by the PIO, the CPU will send out an interrupt
acknowledge (M1 and TORQ). During this time the interrupt logic of the PIO will determine
the highest priority port which is requesting an interrupt. (This is simply the device with
its Interrupt Enable Input high and its Interrupt Enable Output low). To insure that the
daisy chain enable lines stabilize, devices are inhibited from changing their interrupt request
status when M1 is active. The highest priority device places the contents of its interrupt
vector register onto the Z80 data bus during interrupt acknowledge.

Figure 6.0-1 illustrates the timing associated with interrupt requests. During M1 time, no
new interrupt requests can be generated. This gives time for the Int Enable signals to ripple
through up to four PIO circuits. The PIO with |El high and IEO fow during INTA will place
the 8-bit interrupt vector of the appropriate port on the data bus at this time.

If an interrupt requested by the P10 is acknowledged, the requesting port is ‘under service’.
IEO of this port will remain low until a return from interrupt instruction (RETI) is executed
while |EIl of the port is high. If an interrupt request is not acknowledged, IEO will be forced
high for one M1 cycle after the PIO decodes the opcode ‘ED’. This action guarantees that
the two byte RETI instruction is decoded by the proper PIO port. See Figure 6.0-2.

>
aq9
233
INTERRUPT ACKNOWLEDGE TIMING =323
Figure 6.0-1 LASTT 83;
STATE T T2 Tw* w* T3 NFE
@
— * SAMP|
NT MPLE INT
— iORQG AND M1
I0ORQ INDICATE
INTERRUPT
ACKNOWLEDGE
_ (INTA)
M1 ,
A4
IEO
1E1""1"”
RETURN FROM INTERRUPT CYCLE
Figure 6.0-2 T1 T2 T3 T4 e T T3 Ta T
@
RD \ / \ /
DO - D7y “ ED 'L “ 4D 'L
@ T TTT 0T |EO of higher priority PIO goinghigh 0 \
__________ allow lower priority device to decode RETI.

Higher priority device is not under service.

IE0 f

-113

DAISY CHAIN INTERRUPT SERVICING
Figure 6.0-3

HIGHEST PRIORITY PORT

g PORT 1A PORT 1B PORT 2A PORT 2B

| HI HI HI HI HI
IEl IEO IEl IEO IEl IEQ IEl IEOf—

1. PRIORITY INTERRUPT DAISY CHAIN BEFORE ANY INTERRUPT OCCURS.

e UNDER SERVICE

I HI HI Hi Lo LO
IEl IEO IEL IEO IEI IEO [13] IEO}———

2. PORT 2A REQUESTS AN INTERRUPT AND IS ACKNOWLEDGED.

g UNDER SERVICE SERVICE SUSPENDED

l HI ' HI Lo LO Lo
IEI IEO IEI 1IEO IEI IEO IEI 1EO]

3. PORT 1B INTERRUPTS, SUSPENDS SERVICING OF PORT 2A.

g SERVICE COMPLETE SERVICE RESUMED

I HI HI HI LO Lo
13 IEO 1E1 IEO IEI IEO 13} IEO|

4. PORT 1B SERVICE ROUTINE COMPLETE, “RETI” ISSUED, PORT 2A SERVICE RESUMED.

e SERVICE COMPLETE
HI HI HI HI HI
l—— IEl IEO IEI IEC IEl IEO IEl IEOp——

5. SECOND ”"RETI” INSTRUCTION ISSUED ON COMPLETION OF PORT 2A SERVICE ROUTINE.

Figure 6.0-3 illustrates a typical nested interrupt sequence that could occur with four ports
connected in the daisy chain. In this sequence Port 2A requests and is granted an interrupt.
While this port is being serviced, a higher priority port (1B) requests and is granted an
interrupt. The service routine for the higher priority port is completed and a RETI inst-
ruction is executed to indicate to the port that its routine is complete. At this time the
service routine of the lower priority port is completed.

-114

7.0 APPLICATIONS
7.1 EXTENDING THE INTERRUPT DAISY CHAIN

Without any external logic, a maximum of four Z80-P1O devices may be daisy chained
into a priority interrupt structure. This limitation is required so that the interrupt enable
status (IEQ) ripples through the entire chain between the beginning of M1, and the beginn-
ing of TORQ during an interrupt acknowledge cycle. Since the interrupt enable status cannot
change during M1, the vector address returned to the CPU is assured to be from the highest
priority device which requested an interrupt.

If more than four PIO devices must be accommodated, a ‘‘look-ahead’’ structure may be
used as shown in figure 7.0-1. With this technique more than thirty PIO’s may be chained
together using standard TTL logic.

A METHOD OF EXTENDING THE INTERRUPT PRIORITY DAISY CHAIN

Figure 7.0-1
L E @ ﬁ E
Z80- >
u [
cP DATA BUS

7.2 1/O DEVICE INTERFACE

In this example, the Z80-PIO is connected to an 1/O terminal device which communicates
over an 8 bit parallel bidirectional data bus as illustrated in figure 7.0-2. Mode 2 operation
(bidirectional) is selected by sending the following control word to Port A:

EXAMPLE 1/O INTERFACE
Figure 7.0-2

D7 D6 D5 D4 D3 D2 D1 DO

1 0 X X 1 1 1 1

Vv
MODE CONTROL

1-115

>
=2
_2
=4
uw
o
®
N

TECHNICAL
MANUALS

EXAMPLE 1/0 INTERFACE

A RDY Dc

ASTB

B RDY Dc

B STB

Figure 7.0-2

DATA BUS

780-CPU 10RQ

MK3880 M1 >

INT
<
ADDRESS
ADDRESS BUS

BUS
DECODER

Z80-PIO

MK3881

B/A c/D CE

PORT DATA BUS

P20 |t—

D D
S R
T c
B \
D
1/0
TERMINAL

<>O |-

Next, the proper interrupt vector is loaded (refer to CPU Manual for details on the opera-
tion of the interrupt).

V7 V6

V5

V4 V3

v2 [vi| o

Interrupts are then enabled by the rising edge of the first M1 after the interrupt mode
word is set unless that M1 defines an interrupt acknowledge cycle. If a mask follows the
interrupt mode word, interrupts are enabled by the rising edge of the first M1 following
the setting of the mask.

Data can now be transferred between the peripheral and the CPU. The timing for this

transfer is as described in Section 5.0.

7.3 CONTROL INTERFACE

A typical control mode application is illustrated in figure 7.0-3. Suppose an industrial
process is to be monitored. The occurrence of any abnormal operating condition is to be
reported to a Z80-CPU based control system. The process control and status word has
the following format:

11-116

D7 D6 D5 D4 D3 D2 D1 DO
. Turn Power | Halt Temp Pressur-
?2::'8‘ on Failure | Process- Zf::ﬁ_‘ Heaters | ize Ze:rsmure
Power | Alarm | ing on System
CONTROL MODE APPLICATION
Figure 7.0-3 PORT A
BUS
A7 SPEC. TEST
As TURN ON PWR.
A5 PWR. FAIL ALM.
-
24 HALT INDUSTRIAL %zwn
280-CPU - D7-D0 Z80-PIO PROCESSING § g 2
MK 3880 > MK3881 A3 TEMP. ALM. SYSTEM =<z2
< [N -4
29 g
Az Dﬁ HTRS.ON o f=td
-
Aq |> PRESS. SYS.
o PRESS. ALM.
-
B/A C/D CE
N
A0-A15 ADDRESS
! DECODER

The PIO may be used as follows. First Port A is set for Mode 3 operation by writing the
following control word to Port A.

D7 D6 D5 D4 D3 D2 D1 DO

Whenever Mode 3 is selected, the next control word sent to the port must be an 1/O select
word. In this example we wish to select port data lines A5, A3, and AOQ as inputs and so the
following control word is written:

D7 D6 D5 D4 D3 D2 D1 DO

0 0 1 0 1 0 0 1

n-117

Next the desired interrupt vector must be loaded (refer to the CPU manual for details);

D7 D6 D5 D4 K] D2 D1 DO

v7 V6 Vb5 v4 V3 V2 \Al vo

An interrupt control word is next sent to the port:

D7 D6 D5 D4 D3 D2 D1 DO

1 0 1 1 0 1 1 1
a /
Enable OR Active Mask Vv
Interrupts Logic High Follows Interrupt Control

The mask word following the interrupt mode word is:

D7 D6 D6 D4 D3 D2 D1 DO
1 1 0 1 0 1 1 0

Selects A5, A3 and AO to be monitored

Now, if a sensor puts a high level on line A5, A3, or AQ, an interrupt request will be gene-
rated. The mask word may sele¢t any combination of inputs or outputs to cause an inter-
rupt. For example, if the mask word above had been:

D7 D6 Db D4 D3 D2 D1 DO

0 1 0 1 0 1 1 (0]

then an interrupt request would also occur if bit A7 (special Test) of the output register
was set.

Assume that the following port assignments are to be used:

EOy= Port A Data
E1n= Port B Data
E2p= Port A Control
E3y= Port B Control

All port numbers are in hexadecimal notation. This particular assignment of port numbers
is convenient since A of the address bus can be used as the Port B/A Select and A1 of the
address bus can be used as the Control/Data Select. The Chip Enable would be the decode
of CPU address bits Ay thru Ao (111000). Note that if only a few peripheral devices are
being used, a Chip Enable decode may not be required since a higher order address bit
could be used directly.

111-118

8.0 PROGRAMMING SUMMARY
8.1 LOAD INTERRUPT VECTOR

V7 V6| V5 | V4 V3 | V2 Vi 0]

8.2 SET MODE

M1 MO X X 1 1 1 1

MANUALS

>
=
_=
=g
w
(=]
@
N

TECHNICAL

MODE NUMBER M; Mg MODE
0 0 0 Output
1 0 1 Input
2 1 0 Bidirectional
3 1 1 Bit Control

When selecting Mode 3, the next word to the PIO must set the |/O Register:

1/07 | 1/0g | 1/05 | 1/04 | 1/03 | 1102 | 1/04 | 1/0¢g

1/0 = 1 Sets bit to Input
1/0 = 0 Sets bit to Output

8.3 SET INTERRUPT CONTROL

Int AND/ High/ | Mask

Enable | OR Low |Follows 0 1 1 !

\ /

USED IN MODE 3 ONLY

-119

If the ““mask follows’’ bit is high, the next control word written to the PIO must be the
mask:

MB7 | MBg | MBg | MB4 | MB3 | MBy | MBq | MBg

MB = 0, Monitor bit
MB = 1, Mask bit from being monitored

Also, the interrupt enable flip flop of a port may be set or reset without modifying the
rest of the interrupt control word by using the following command:

Int
Enable

n-120

9.0 ELECTRICAL SPECIFICATIONS

9.1 ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias Specified operating range.
Storage Temperature —65°C to +150°C
Voltage On Any Pin With —0.3V to +7V

Respect To Ground

Power Dissipation .6W

9.2 D. C. CHARACTERISTICS
Table 9.2-1

Ta=0°Cto70°C, Ve =5V + 5% unless otherwise specified

hE

Symbol Parameter Min Max Unit | Test Condition [E=
ViLe Clock Input Low Voltage -0.3 0.80 Y,
ViHC Clock Input High Voltage Ve8| Veet3 Y
Vi Input Low Voltage -0.3 0.8 \%
ViH Input High Voltage 2.0 Vee \Y
VoL Output Low Voltage 0.4 \Y loL =2.0mA
Vou Output High Voltage 2.4 \Y loH =-250uA
Icc Power Supply Current 70* mA
I Input Leakage Current +10 MA VinN=0to Ve
ILOH Tri-State Output Leakage Current in Float 10 MA VouT=2.4 to Ve
ILoL Tri-State Output Leakage Current in Float -10 MA Vout =04V
LD Data Bus Leakage Current in Input Mode +10 MA o<V INSVee
loHD Darlington Drive Current -1.5 mA | Vou=1.5V

Port B Only

* 150mA for -4, -10, and -20 devices.

9.3 CAPACITANCE
Table 9.3-1

Ta=25°C, f=1MHz

Symbol Parameter Max Unit Test Condition

Cop Clock Capacitance 10 pF Unmeasured Pins
CIN Input Capacitance 5 pF Returned to Ground
CouT Output Capacitance 10 pF

*Comment

Stresses above those listed under “’Absolute Maximum Rating’’ may cause permanent damage to the device. This is a
stress rating only and functional operation of the device at these or any other condition above those indicated in the
operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended
periods may affect device reliability.

121

9.4A A.C. CHARACTERISTICS MK3881, MK3881-10, MK3881 -20, 280-PIO

Table 9.41A Ta=0°Cto 70°C, VCC = +5V £ 5%, unless otherwise noted
SIGNAL SYMBOL PARAMETER MIN MAX UNIT COMMENTS
te Clock Period 400 [1] nsec
[} tyw (DH) Clock Pulse Width, Clock High 170 2000 nsec
tw (PL) Clock Pulse Width, Clock-Low 170 2000 nsec
ty, tg Clock Rise and Fall Times 30 nsec
th Any Hold Time for Specified Set-Up Time 0 nsec
C/D SEL ts dycs) Control Signal Set-up Time to Rising Edge of P During Read 280 nsec
CE ETC. or Write Cycle
tpR(D) Data Output Delay from Falling Edge of RD 430 nsec [2]
tsdp) Data Set-Up Time to Rising Edge of P During Write or M1 50 nsec
DO-D7 Cycle CL =50pF
tpI(D) Data Output Delay from Falling Edge of IORQ During INTA 340 nsec (3]
Cycte
tE(D) Delay to Floating Bus (Output Buffer Disable Time) 160 nsec
IEI s (1E1) |E| Set-Up Time to Falling Edge of IORQ During INTA Cycle 140 nsec
tDH (10) [EO Delfay Time from Rising Edge of IE} 210 nsec (5]
IEO DL (10) IEO .Delay Time from Falling Edge of IE| 190 nsec [6] C_ =50pF
tpMm (10) IEO Delay from Falling Edge of M1 (Interrupt Occurring Just 300 nsec [5]
Prior to M1) See Note A.
I0RQ ts PIR) IORQ Set-Up Time to Rising Edge of ® During Read or Write 250 nsec
Cycle
M1 tsd (m1) WSet-Up Time to Rising Edge of P During INTA or M1 210 nsec
Cycle. See Note B.
RD ts P (RD) 'ﬁSet—Up Time to Rising Edge of <I>During Read orM_1 240 nsec
Cycle
ts (PD) - Port Data Set-Up Time to Rising Edge of STROBE (Mode 1) 260 nsec
tps (PD) Port Data Output Delay from Falling Edge of STROBE 230 nsec [5]
Ag-Az (Mode 2)
BO~B7 tE (PD) Delay to Floating Port Data Bus from Rising Edge of 200 nsec C = 50pF
STROBE (Mode 2)
tp) (PD) Port Data Stable from Rising Edge of IORQ During WR 200 nsec (5]
Cycle (Mode 0)
ASTB tw (ST) Pulse Width, STROBE 150 nsec
BSTB [4] nsec
INT D (17T) INT Delay Time from Rising Edge of STROBE 490 nsec
tD (1IT3) INT Delay Time from Data Match During Mode 3 Operation 420 nsec
ARDY tDH (RY) Ready Response Time from Rising Edge of IORQ tet nsec (5]
BRDY 460 Cy =50pF
DL (RY) Ready Response Time from Rising Edge of STROBE tot nsec [5]
400

A. 2.5t >(N'z)‘DL(IOH tpm (10) Ttsyen + TTL Buffer Delay, if any
B. M1 must be active for a minimum of 2 clock periods to reset the P10,

1) to =ty (P +tw (PL

)+tr+tf

[2] Increase tpR(D) bY 10 nsec for each 50pF increase in loading up to 200pF max.

3
(4

[5

Increase tp (D) by 10 nsec for each 50pF increase in loading up to 200pF max.

For Mode 2: tyy (sT)>t5(PD)
Increase these values by 2 nsec for each 10pF increase in loading up to 100pF max.

m-122

9.4B A.C. CHARACTERISTICS MK3881-4, Z80A-PIO

>
2
_2
=4q
w
=]
®
N

TECHNICAL
MANUALS

Table 9.4-1B Tp=0°C to 70°C, V¢ = +bV + 5%, unless otherwise noted
SIGNAL SYMBOL PARAMETER MIN MAX UNIT COMMENTS
te Clock Period 250 [1] nsec
[} tw (DH) Clock Pulse Width, Clock High 105 2000 nsec
tw (P L) Clock Pulse Width, Clock Low 105 2000 nsec
t, tg Clock Rise and Fall Times 30 nsec
th Any Hold Time for Specified Set-Up Time o] nsec
C/D SEL ts d(cs) Control Signal Set-Up Time to Rising Edge of ®During 145 nsec
CE ETC. Read or Write Cycle
tDR(D) Data Output Delay From Falling Edge of RD 380 nsec (2]
ts d (D) Data Set-Up Time to Rising Edge of (I)During Write or 50 nsec
DyDy M1 Cycle Cp =50pF
tpy (D) Data Output Delay from Falling edge of IORQ Duririg INTA 250 nsec [3]
Cycle
tF (D) Delay to Floating Bus (Output Buffer Disable Time) 110 nsec
1EI t's (1EN) IEI Set-Up Time to Falling edge of IORQ during INTA Cycle 140 nsec:
tDH (10) IEO Delay Time from Rising Edge of IEI 160 nsec 5]
toL (10) IEO Delay Time from Falling Edge of |EI 130 nsec [56] C|_=50pF
IEO tDMm (10) IEO Delay from Falling Edge of M1 (Interrupt Occurring Just 190 nsec [5)
Prior to M1) See Note A.
IORQ ts d(IR) IORQ Set-Up Time to Rising Edge of <I>During Read or 115 nsec
Write Cycle
™M1 ts P (m1) l\—ll—f Set-Up Time to Rising Edge of 6] During INTA or W 90 nsec
Cycle. See Note B.
RD ts & (RD) RD Set-Up Time to Rising Edge of ®During Read or M1 115 nsec
Cycle
ts (PD) Port Data Set-Up Time to Rising Edge of STROBE (MODE 1) 230 nsec
tps (PD) Port Data Output Delay from Falling Edge of STROBE 210 nsec [5]
AO-A7 (Mode 2)
BO-B7 tE (PD) Delay to Floating Port Data Bus from Rising Edge of STROBE 180 nsec CL= 50pF
(Mode 2)
tp} (PD) Port Data Stable from Rising Edge of IORQ During WR 180 nsec [5]
Cycle (Mode 0)
ASTB W (ST) Pulse Width, STROBE 150 nsec
BTSB [4] nsec
INT D (IT) INT Delay Time from Rising Edge of STROBE 440 nsec
D (1T3) INT Delay Time from Data Match During Mode 3 Operation 380 nsec
ARBY, tDH (RY) Ready Response Time from Rising Edge of IORQ et nsec [5]
BRDY 410 C_ = 50pF
DL (RY) Ready Response Time from Rising Edge of STROBE tet nsec [5]
360

A. 2.5t >(N-2)tp((10)*+ tDM (10) *+ ts(IE) + TTL Buffer Delay, if any

B. M1 must be active for a minimum of 2 clock periods to reset the P1O.

1) te=ty (P H) +tw (PL +1,+ 1

[2] Increase tPDR(D) by 10 nsec for each 50pF increase in loading up to 200pF max.

[31 Increase tpy, (D) by 10 nsec for each 60pF increase in loading up to 200pF max.

[4] For Mode 2: tyy (sT)>ts(PD)
[5] Increase these values by 2 nsec for each 10pF increase in loading up to 100pF max.

1n-123

OUTPUT LOAD CIRCUIT TEST POINT
Figure 9.4-1 T Vee

Ri= 2.1k

FROM OUTPUT CR4-CRq IN914 OR EQUIVALENT

UNDER TEST
: CRq CL= 60pF on Dy-D7
CR, CL= 500F on All Others
Ic |

@ CR3

250uA

CRy

9.5 TIMING DIAGRAM

Timing measurements are made at the following voltages, unless otherwise specified: e e

CLOCK 4.2v 0.8v
OUTPUT 2.0v 0.8v
INPUT 2.0v 0.8v
FLOAT AV = +05V

T2 TITW T4/T3 il
@
L) -] -]ty
le—tc | 1 (CS)—| — t(CS) =
cE
| ~—tg,.(RD)
RD
| tsu(D) |+ | [«=1¢(D), t44(D)
Dg-D7 x [—-———
|—tp)(D)—
IRl —
iorRQ
mi /.

1E}
(j <= to4(10)

139

| 15 10) |=—
—————— -

Ag=Ay. \

Bg~8y

READY
(A RDY OR
8 RDY)

RG]
| toulRY) |- DL

STROBE
(A'STB OR B STB)

ty(ST)
(MODE 2) X)
/ Y
-
—| tps(PD) |« =t (POI=—
- ——
Ag-A /
o (MODE 1)
Bp=87
Aol ety
< t5(PD)—>|

MODE 3}

< toUTa—>|

. |

a

e tp (IT) ——|

11-124

10.0 ORDERING INFORMATION

PART NO. DESIGNATOR PACKAGE TYPE MAX CLOCK FREQUENCY TEMPERATURE|
RANGE

MK3881N Z80-PIO Plastic 2.5 MHz

MK3881P Z280-PIO Ceramic 2.5 MHz

MK3881J 7280-PIO Cerdip 2.5 MHz

MK3881N-4 Z8OA-PIO Plastic 4.0 MHz 0° to 70°C

MK3881P-4 Z80A-PIO Ceramic 4.0 MHz

MK3881J-4 Z80A-PIO Cerdip 4.0 MHz

MK3881P-10 Z280-PIO Ceramic 4.0 MHz -40° to +85°C

MANUALS

>
=
_=
=dq
w
=}
©
N

TECHNICAL

1-125

111-126

MOSTEK

Z80 MICROCOMPUTER DEVICES

Technical Manual

MK3882
COUNTER TIMER
CIRCUIT

lllllll

1-128

TABLE OF CONTENTS

SECTION PAGE
1.0 INTRODUCTION . .ot e e e e m-131
2.0 CTC ARCHITECTURE.ttt i i e it W-133
3.0 CTCPINDESCRIPTION . .\ttt e et e ee e -137
40 CTCOPERATING MODES it e i ettt n-141
5.0 CTCPROGRAMMING i i e e e e i -143
6.0 CTCTIMING ..ottt e et e l1-149
7.0 CTCINTERRUPT SERVICINGt i i i i I-153
8.0 ABSOLUTE MAXIMUM RATINGS ... e -157

1m-129

280 FAMILY
TECHNICAL
MANUALS

1-130

1.0

INTRODUCTION

The Z80-Counter Timer Circuit (CTC) is a programmable component with four independent channels that
provide counting and timing functions for microcomputer systems based on the Z80-CPU. The CPU can
configure the CTC channels to operate under various modes and conditions as required to interface with a
wide range of devices. In most applications, little or no external logic is required. The Z80-CTC utilizes

N-channel silicon gate depletion load technology and is packaged in a 28-pin DIP, The Z80-CTC requires
only a single 5 volt supply and a one-phase 5 volt clock. Major features of the Z80-CTC include:

o All inputs and outputs fully TTL compatible.

® Each channel may be selected to operate in either Counter Mode or Timer Mode.
® Used in either mode, a CPU-readable Down Counter indicates number of counts-to-go until zero.

® A Time Constant Register can automatically reload the Down Counter at Count Zero in Counter and
Timer Mode.

® Selectable positive or negative trigger initiates time operation in Timer Mode. The same input is moni-
tored for event counts in Counter Mode.

® Three channels have Zero Count/Timeout outputs capable of driving Darlington transistors.
® Interrupts may be programmed to occur on the zero count condition in any channel.

® Daisy chain priority interrupt logic included to provide for automatic interrupt vectoring without ex-
ternal logic.

11131

m
Z80 FAMILY
TECHNICAL
MANUALS

111-132

2.0 CTC ARCHITECTURE

2.1 OVERVIEW

A block diagram of the Z80-CTC is shown in Figure 2.0-1. The internal structure of the Z80-CTC consists
of a Z80-CPU bus interface, Internal Control Logic, four sets of Counter/Timer Channel Logic, and Inter-
rupt Control Logic. The four independent counter/timer channels are identified by sequential numbers
from 0 to 3. The CTC has the capability of generating a unique interrupt vector for each separate channel
(for automatic vectoring to an interrupt service routine). The 4 channels can be connected into four con-
tiguous slots in the standard Z80 priority chain with channel number O having the highest priority.The
CPU bus interface logic allows the CTC device to interface directly to the CPU with no other external
logic. However, port address decoders and/or, line buffers may be required for large systems.

Z80-CTC BLOCK DIAGRAM
Figure 2.0-1

+5V GND &

P

DATA <vsf CPU

INTERNAL
CONTROL
LOGIC

CHANNEL 0

— ZERO COUNT/TIMEOUT 0

«— CLOCK/TRIGGER 0

N

INTERNAL BUS

8 BUS <

CONTROL —= 1/0
6

Il

CHANNEL 1

— ZERO COUNT/TIMEOUT 1

[*— CLOCK/TRIGGER 1

INTERRUPT
CONTROL
LOGIC

} 3
INTERRUPT

CONTROL
LINES

CHANNEL 2

—ZERO COUNT/TIMEOUT 2

le— CLOCK/TRIGGER 2

il

CHANNEL 3

le—CLOCK/TRIGGER 3

MANUALS

>
=
_2
=g
w
Q
@
N

TECHNICAL

2.2 STRUCTURE OF CHANNEL LOGIC

The structure of one of the four sets of Counter/Timer Channel Logic is shown in Figure 2.0-2. This logic
is composed of 2 registers, 2 counters and control logic. The registers are an 8-bit Time Constant Register

and an 8-bit Channel Control Fagister.

8-bit Prescaler.

The counters are an 8-bit CPU-readable Down Counter and an

CHANNEL BLOCK DIAGRAM
Figure 2.0-2

CHANNEL
CONTROL
REGISTER
AND LOGIC
(8 BITS)

INTERNAL BUS

P —————>1 (8BITS)

PRESCALER

EXTERNAL CLOCK/TIMER TRIGGER

TIME
CONSTANT
REGISTER
(88ITS)
<
%
ZERO COUNT/
DOWN TIMEOUT
COUNTER >
(8BITS)

-133

2.2.1

THE CHANNEL CONTROL REGISTER AND LOGIC

The Channel Control Register (8-bit) and Logic is written to by the CPU to select the modes and
parameters of the channel. Within the entire CTC device there are four such registers, correspond-
ing to the four Counter/Timer Channels. Which of the four is being written to depends on the en-
coding of two channel select input pins: CSO and CS1 (usually attached to AO and A1 of the CPU
address bus). This is illustrated in the truth table below:

Cs1 CS0
Cho 0 0
Ch1 0 1
Ch2 1 0
Ch3 1 1

In the control word written to program each Channel Control Register, bit O is always set, and the
other 7 bits are programmed to select alternatives on the channel’s operating modes and parameters,
as shown in the diagram below. (For a more complete discussion see section 4.0: ““CTC Operating
Modes"’ and section 5.0: “CTC Programming."’)

CHANNEL CONTROL REGISTER

D7 Dg Dsg Da D3 D2 D1 Do
LOAD
ISJE:S:PT MODE | RANGE | SLOPE | TRIGGER |1img RESET 1
CONSTANT
USED IN

TIMER MODE ONLY

2.2.2 THE PRESCALER

223

Used in the Timer Mode only, the Prescaler is an 8-bit device which can be programmed by the CPU
via the Channel Control Register to divide its input, the System Clock (®), by 16 or 2566. The out-
put of the Prescaler is then fed as an input to clock the Down Counter, which initially, and every
time it clocks down to zero, is reloaded automatically with the contents of the Time Constant Re-
gister. In effect this again divides the System Clock by an additional factor of the time constant.
Every time the Down Counter counts down to zero, its output, Zero Count/Timeout (ZC/TO), is
pulsed high.

THE TIME CONSTANT REGISTER

The Time Constant Register is an 8-bit register, used in both Counter Mode and Timer Mode, pro-
grammed by the CPU just after the Channel Control Word with an integer time constant value of 1
through 256. This register loads the programmed value into the Down Counter when the CTC is first
initialized and reloads the same value into the Down Counter automatically whenever it counts down
thereafter to zero. If a new time constant is loaded into the Time Constant Register while a channel
is counting or timing, the present down count will be completed before the new time constant is
loaded into the Down Counter. (For details of how a time constant is written to a CTC channel, see
section 5.0: “CTC Programming.”’)

1-134

2.2.4 THE DOWN COUNTER

The Down Counter is an 8-bit register used in both Counter Mode and Timer Mode loaded initially,
and later when it counts down to zero, by the Time Constant Register. The Down Counter is decre-
mented by each external clock edge in the Counter Mode, or in the Timer Mode, by the clock out-
put of the Prescaler. At any time, by performing a simple |/O Read at the port address assigned to
the selected CTC channel, the CPU can access the contents of this register and obtain the number of
counts-to-zero. Any CTC channel may be programmed to generate an interrupt request sequence
each time the zero count is reached.

In channels O, 1, and 2, when the zero count condition is reached, a signal pulse appears at the corres-
ponding ZC/TO pin. Due to package pin limitations, however, channel 3 does not have this pin and
so may be used only in applications where this output pulse is not required.

2.3 INTERRUPT CONTROL LOGIC

The Interrupt Control Logic insures that the CTC acts in accordance with Z80 system interrupt protocol
for nested priority interrupting and return from interrupt. The priority of any system device is deter-
mined by its physical location in a daisy chain configuration. Two signal lines (IEl and |EQ) are provided
in CTC devices to form this system daisy chain. The device closest to the CPU has the highest priority;
within the CTC, interrupt priority is predetermined by channel number, with channel O having highest
priority down to channel 3 which has the lowest priority. The purpose of a CTC-generated interrupt, as
with any other peripheral device, is to force the CPU to execute an interrupt service routine. According to
Z80 system interrupt protocol, lower priority devices or channels may not interrupt higher priority de-
vices or channels that have already interrupted and have not had their interrupt service routines com-
pleted. However, high priority devices or channels may interrupt the servicing of lower priority devices or
channels.

L

MANUALS

>
_2
=g
w
[=3
-]
N

TECHNI

A CTC channel may be programmed to request an interrupt every time its Down Counter reaches a count
of zero. (To utilize this feature requires that the CPU be programmed for interrupt mode 2.) Some time
after the interrupt request, the CPU will send out an interrupt acknowledge, and the CTC’s Interrupt Con-
trol Logic will determine the highest-priority channel which is requesting an interrupt within the CTC de-
vice. Then if the CTC’s IEI input is active, indicating that it has priority within the system daisy chain, it
will place an 8-bit Interrupt Vector on the system data bus. The high-order 5 bits of this vector will have
been written to the CTC earlier as part of the CTC initial programming process; the next two bits will be
provided by the CTC'’s Interrupt Control Logic as a binary code corresponding to the highest-priority
channel requesting an interrupt; finally the low-order bit of the vector will always be zero according to a
convention described below.

INTERRUPT VECTOR

D7 Dg D5 D4 D3 D2 D1 Do

\%/ Vg Vg Va V3 X X 0
| T
4] 0 CHANNEL 0O
0 1 CHANNEL 1
1 0 CHANNEL 2
1 1 CHANNEL 3

This interrupt vector is used to form a pointer to a location in memory where the address of the interrupt
service routine is stored in a table. The vector represents the least significant 8 bits, while the CPU reads
the contents of the | register to provide the most significant 8-bits of the 16-bit pointer. The address in
memory pointed to will contain the low-order byte, and the next highest address will contain the high-
order byte of an address which in turn contains the first opcode of the interrupt service routine. Thus in
mode 2, a single 8-bit vector stored in an interrupting CTC can result in an indirect call to any memory
location.

11-135

Z80 16-BIT POINTER (INTERRUPT STARTING ADDRESS)

I REG 7 BITS FROM 0
CONTENTS PERIPHERAL

VECTOR

2.3 INTERRUPT CONTROL LOGIC (Cont'd)

There is a Z80 system convention that all addresses in the interrupt service routine table should have their
low-order byte in an even location in memory, and their high-order byte in the next highest location in
memory, which will always be odd so that the least significant bit of any interrupt vector will always be
even. Hence the least significant bit of any interrupt vector will always be zero.

The RETI instruction is used at the end of any interrupt service routine to initialize the daisy chain enable
line IEO for proper control of nested priority interrupt handing. The CTC monitors the system data bus
and decodes this instruction when it occurs. Thus the CTC channel control logic will know when the CPU
has completed servicing an interrupt, without any further communication with the CPU being necessary.

11-136

3.0 CTC PIN DESCRIPTION

A diagram of the Z80-CTC pin configuration is shown in Figure 3.0-1. This section describes the function
of each pin.

D7 - DO
Z80-CPU Data Bus (bi-directional, tri-state)

This bus is used to transfer all data and command words between the Z80-CPU and the Z80-CTC. There
are 8 bits on this bus, of which DO is the least significant.

CS1-CS0
Channel Select (input, active high)

These pins form a 2-bit binary address code for selecting one of the four independent CTC channels for an
1/O Write or Read (See truth table below.)

239

CS1 cso _39%

Cho 0 0 Siz2

Ch1 0 1 L=
Ch2 1 0
Ch3 1 1

CE
Chip Enable (input, active low)

A low level on this pin enables the CTC to accept control words, Interrupt Vectors, or time constant data
words from the Z80 Data Bus during an 1/O Write cycle, or to transmit the contents of the Down Counter
to the CPU during an 1/0O Read cycle. In most applications this signal is decoded from the 8 least signifi-
cant bits of the address bus for any of the four 1/O port addresses that are mapped to the four Counter/
Timer Channels.

Clock (P)
System Clock (input)

This single-phase clock is used by the CTC to synchronize certain signals internally.

™M1
Machine Cycle One Signal from CPU (input, active low)

When M1 is active and the RD signal is active, the CPU is fetching an instruction from memory. When M1
is active and the IORQ signal is active, the CPU is acknowledging an interrupt, alerting the CTC to place an
Interrupt Vector on the Z80 Data Bus if it has daisy chain priority and one of its channels has requested
an interrupt.

IORQ
Input/Output Request from CPU (input, active low)

The TORQ signal is used in conjunction with the CE and RD signals to transfer data and Channel Control
Words between the Z80-CPU and. the CTC. During a CTC Write Cycle, IORQ and CE must be true and
RD false. The CTC does not receive a specific write signal, instead generating its own internally from the
inverse of a valid RD signal. Ina CTC Read Cycle, TORQ, CE and RD must be active to place the contents
of the Down Counter on the Z80 Data Bus. |f TORQ and M1 are both true, the CPU is acknowledging an
interrupt request, and the highest-priority interrupting channel will place its Interrupt Vector on the Z80
Data Bus.

1-137

3.0 CTCPIN DESCRIPTION (CONT’'D)
RD

Read Cycle Status from the CPU (input, active low)

The RD signal is used in conjunction with the IORQ and CE signals to transfer data and Channel Control
Words between the Z80-CPU and the CTC. During a CTC Write Cycle, IORQ and CE must be true and
RD false. The CTC does not receive a specific write signal, instead generating its own internally from the
inverse of a valid RD signal. In a CTC Read Cycle, TORQ, CE and RD must be active to place the contents
of the Down Counter on the Z80 Data Bus.

1EI
Interrupt Enable In (input, active high)
This signal is used to help form a system-wide interrupt daisy chain which establishes priorities when more

than one peripheral device in the system has interrupting capability. A high level on this pin indicates that
no other interrupting devices of higher priority in the daisy chain are being serviced by the Z80-CPU.

IEO

Interrupt Enable Out (output, active high)

The IEO signal, in conjunction with IEI, is used to form a system-wide interrupt priority daisy chain. 1EO
is high only if IEIl is high and the CPU is not servicing an interrupt from any CTC channel. Thus this sig-

nal blocks lower priority devices from interrupting while a higher priority interrupting device is being
serviced by the CPU.

INT
Interrupt Request (output, open drain, active low)

This signal goes true when any CTC channel which has been programmed to enable interrupts has a zero-
count condition in its Down Counter.

RESET

Reset (input, active low)

This signal stops all channels from counting and resets channel interrupt enable bits in all control registers,
thereby disabling CTC-generated interrupts. The ZC/TO and INT outputs go to their inactive states, IEO
reflects |El, and the CTC’s data bus output drivers go to the high impedance state.
CLK/TRG3—-CLK/TRGO

External Clock/Timer Trigger (input, user-selectable active high or low)

There are four CLK/TRG pins, corresponding to the four independent CTC channels. In the Counter
Mode, every active edge on this pin decrements the Down Counter. In the Timer Mode, an active edge on
this pin initiates the timing function. The user may select the active edge to be either rising or falling.
ZC/T02-2ZC/TO0

Zero Count/Timeout (output, active high)

There are three ZC/TO pins, corresponding to CTC channels 2 through 0. (Due to package pin limita*

tions channel 3 has no ZC/TO pin.) In either Counter Mode or Timer Mode, when the Down Counter
decrements to zero an active high going pulse appears at this pin.

111-138

Z80-CTC PIN CONFIGURATION

Figure 3.0-1

CPU
DATA BUS

CTC <
CONTROL

INTERRUPT
CONTROL

D(Q-—>

D2 <>

18
CSp—]

19
CS1—>

CHIP 16
ENABLE >
__ 14
M1—>
— 10
IORQ—>
— 6
RD—

17
RESET—

24
+5V —

5
GND —>»

15

b —>

12

INT -

INT ENABLE__.1_3.,
IN

INT ENABLEL‘
ouT

MK3882
Z80-CTC

MK3882-4
Z80A-CTC

l«— CLT/TRGp
7
| s ZC/TO0

22
«— CLK/TRG1
8
— ZC/TO1

21
<?CLK/TRGZ
— ZC/TO2

20
<«—CLK/TRG3

23 N

y, CHANNEL
SIGNALS

MANUALS

>
2
_s
=«
w
[=]
®
N

TECHNICAL

111-139

111-140

4.0 CTC OPERATING MODES

At power-on, the Z80-CTC state is undefined. Asserting RESET puts the CTC in a known state. Before
any channel can begin counting or timing, a Channel Control Word and a time constant data word must be
written to the appropriate registers of that channel. Further, if any channel has been programmed to
enable interrupts, an Interrupt Vector word must be written to the CTC’s Interrupt Control Logic. (For
further details, refer to section 5.0: ““CTC Programming.’’) When the CPU has written all of these words to
the CTC, all active channels will be programmed for immediate operation in either the Counter Mode or
the Timer Mode.

4.1 CTC COUNTER MODE

In this mode the CTC counts edges of the CLK/TRG input. The Counter Mode is programmed for a
channel when its Channel Control Word is written with bit 6 set. The Channel’s External Clock (CLK/
TRG) input is monitored for a series of triggering edges; after each, in synchronization with the next ris-
ing edge of ® (the System Clock), the Down Counter (which was initialized with the time constant data
word at the start of any sequence of down-counting) is decremented. Although there is no set-up time
requirement between the triggering edge of the External Clock and the rising edge of ®, (Clock), the
Down Counter will not be decremented until the following ® pulse. (See the parameter ts(CK) in section
8.3: “A.C. Characteristics.”’) A channels’s External Clock input is pre-programmed by bit 4 of the Chan-
nel Control Word to trigger the decrementing sequence with either a high or a low going edge.

MANUALS

>
=
_2
=g
w
Q
®
N

TECHNICAL

In any of Channels 0, 1, or 2, when the Down Counter is successively decremented from the original time
constant until finally it reaches zero, the Zero Count (ZC/TO) output pin for that channel will be pulsed
active (high). (However, due to package pin limitations, channel 3 does not have this pin and so may
only be used in applications where this output pulse is not required.) Further, if the channel has been so
pre-programmed by bit 7 of the Channel Control Word, an interrupt request sequence will be generated.
(For more details, see section 7.0: ““CTC Interrupt Servicing.”’)

As the above sequence is proceeding, the zero count condition also results in the automatic reload of the
Down Counter with the original time constant data word in the Time Constant Register. There is no
interruption in the sequence of continued down-counting. |f the Time Constant Register is written to
with a new time constant data word while the Down Counter is decrementing, the present count will be
completed before the new time constant will be loaded into the Down Counter.

CHANNEL - COUNTER MODE

Figure 4.1-0
CHANNEL
TIME
CONTROL CONSTANT
REGISTER
REGISTER
AND LOGIC 6 BITS)
(8 BITS)

PERN

INTERNAL BUS

iy

ZERO COUNT/

DOWN TIMEOUT
COUNTER >
o (8 BITS)

EXTERNAL CLOCK/TIMER TRIGGER

111-141

4.2

CTC TIMER MODE

In this mode the CTC generates timing intervals that are an integer value of the system clock period. The
Timer Mode is programmed for a channel when its Channel Control Word is written with bit 6 reset. The
channel then may be used to measure intervals of time based on the System Clock period. The System
Clock is fed through two successive counters, the Prescaler and the Down Counter. Depending on the
pre-programmed bit 5 in the Channel Control Word, the Prescaler divides the System Clock by a factor of
either 16 or 256. The output of the Prescaler is then used as a clock to decrement the Down Counter,
which may be pre-programmed with any time constant integer between 1 and 256. As in the Counter
Mode, the time constant is automatically reloaded into the Down Counter at each zero-count condition,
and counting continues. Also at zero-count, the channel’s Time Out (ZC/TO) output (which is the out-
put of the Down Counter) is pulsed, resulting in a uniform pulse train of precise period given by the pro-
duct.

tc* P *TC

where tc is the System Clock period, P is the Prescaler factor of 16 or 256 and TC is the pre-program-
med time constant.

Bit 3 of the Channel Control Word is pre-programmed to select whether timing will be automatically
initiated, or whether it will be initiated with a triggering edge at the channel’s Timer Trigger (CLK/TRG)
input. |If bit 3 is reset the timer automatically begins operation at the start of the CPU cycle following
the |/O Write machine cycle that loads the time constant data word to the channel. If bit 3 is set the
timer begins operation on the second succeeding rising edge of ® after the Timer Trigger edge following
the loading of the time constant data word. If no time constant data word is to follow then the timer
begins operation on the second succeeding rising edge of ® after the Timer Trigger edge following the
control word write cycle. Bit 4 of the Channel Control Word is pre-programmed to select whether the
Timer Trigger will be sensitive to a rising or falling edge. Although there is no set-up requirement be-
tween the active edge of the Timer Trigger and the next rising edge of ®. If the Timer Trigger edge
occurs closer than a specified minimum set-up time to the rising edge of ®, the Down Counter will not
begin decrementing until the following rising edge of ®. (See parameter ts(TR) in section 8.3: "A.C.
Characteristics”.)

If bit 7 in the Channel Control Word is set, the zero-count condition in the Down Counter, besides
causing a pulse at the channel’s Time Out pin, will be used to initiate an interrupt request sequence, (For
more details, see section 7.0: ““CTC Interrupt Servicing.”’)

CHANNEL - TIMER MODE
Figure 4.2-0

CHANNEL
TIME
CONTROL CONSTANT
REGISTER
REGISTER
AND LOGIC SBITS)
(8 BITS) (
< -~
INTERNAL BUS
4 b
ZERO COUNT/
PRESCALER > DOWN TIMEOUT
S ————>1 (8BITS) COUNTER [——»
> (8 BITS)

EXTERNAL CLOCK/TIMER TRIGGER

-142

5.0 CTC PROGRAMMING

Before a Z80-CTC channel can begin counting or timing operations, a Channel Control Word and a Time
Constant data word must be written to it by the CPU. These words will be stored in the Channel Control
Register and the Time Constant Register of that channel. In addition, if any of the four channels have
been programmed with bit 7 of their Channel Control Words to enable interrupts, an Interrupt Vector
must be written to the appropriate register in the CTC. Due to automatic features in the Interrupt Con-
trol Logic, one pre-programmed Interrupt Vector suffices for all four channels.

5.1 LOADING THE CHANNEL CONTROL REGISTER

To load a Channel Control Word, the CPU performs a normal 1/0 Write sequence to the port address
corresponding to the desired CTC channel. Two CTC input pins, namely CS0 and CS1, are used to form
a 2-bit binary address to select one of four channels within the device. (For a truth table, see section
2.2.1: "The Channel Control Register and Logic’’.) In many system architectures, these two input pins
are connected to Address Bus lines A0 and A1, respectively, so that the four channels in a CTC device
will occupy contiguous I/O port addresses. A word written to a CTC channel will be interpreted as a
Channel Control Word, and loaded into the Channel Control Register, its bit O is a logic 1. The other
seven bits of this word select operating modes and conditions as indicated in the diagram below. Follow-
ing the diagram the meaning of each bit will be discussed in detail.

> -
383
CHANNEL BLOCK DIAGRAM =:§§
Figure 5.1-0 §§§
CHANNEL
TIME
CONTROL
REGISTER Ffé’ggé’:T
AND LOGIC (8 BITS)
(8 BITS)
PEAN
INTERNAL BUS
*v’
ZERO COUNT/
PRESCALER > DOWN TIMEOUT
P —> (8 BITS) COUNTER "
s (8 BITS)
EXTERNAL CLOCK/TIMER TRIGGER
CHANNEL CONTROL REGISTER
D7 Dg Dg D4 D3 D2 D1 Do
INTERRUPT| VIODE | RANGE | SLOPE [TRIGGER[Time | RESET | 1
CONSTANT

\-_\/_/

USED IN TIMER USED IN TIMER
MODE ONLY MODE ONLY

11-143

5.1

LOADING THE CHANNEL CONTROL REGISTER (CONT'D)

Bit7 =1

The channel is enabled to generate an interrupt request sequence every time the Down Counter reaches a
zero-count condition. To set this bit to 1 in any of the four Channel Control Registers necessitates that
an Interrupt Vector also be written to the CTC before operation begins. Channel interrupts may be pro-
grammed in either Counter Mode or Timer Mode. If an updated Channel Control Word is written to a

channel already in operation, with bit 7 set, the interrupt enable selection will not be retroactive to a pre-
ceding zero-count condition.

Bit7=0
Channel interrupts disabled. Any pending interrupt by that channel will be cleared.
Bit6=1

Counter Mode selected. The Down Counter is decremented by each triggering edge of the External
Clock (CLK/TRG) input. The Prescaler is not used.

Bit6=0
Timer Mode selected. The Prescaler is clocked by the System Clock ®, and the output of the Prescaler in
turn clocks the Down Counter. The output of the Down Counter (the channel’s ZC/TO output) is a
uniform pulse train of period given by the product.

tc*P*TC

where t¢ is the period of System Clock @, P is the Prescaler factor of 16 or 256, and TC is the time
constant data word.

3it5 =1
(Defined for Timer Mode only.) Prescaler factor is 256.
Bit5=0

(Defined for Timer Mode only.) Prescaler factor is 16.

D7 De Dsg Dg D3 D2 D1 Do
INTERRUPT| MODE | RANGE | SLOPE [TRIGGER|Tme | RESET | 1
CONSTANT

USED IN TIMER USED IN TIMER
MODE ONLY MODE ONLY

Bit4 =1

TIMER MODE - positive edge trigger starts timer operation.
COUNTER MODE - positive edge decrements the down counter.

Bit4=0

TIMER MODE - negative edge trigger starts timer operation.
COUNTER MODE - negative edge decrements the down counter.

11-144

5.1

5.2

LOADING THE CHANNEL CONTROL REGISTER (CONT’'D)

Bit3=1

Timer Mode Only - External trigger is valid for starting timer operation after rising edge of T2 of the
machine cycle following the one that loads the time constant. The Prescaler is decremented 2 clock
cycles later if the setup time is met, otherwise 3 clock cycles. Once timer has been started it will free run
at the rate determined by the Time Constant register.

Bit3=0

Timer Mode Only - Timer begins operation on the rising edge of T2 of the machine cycle following the
one that'loads the time constant.

Bit2=1

The time constant data word for the Time Constant Register will be the next word written to this chan-
nel. If an updated Channel Control Word and time constant data word are written to a channel while it
is already in operation, the Down Counter will continue decrementing to zero before the new time con-
stant is loaded into it.

>
=
_=
=g
w
=)
®
N

TECHNICAL
MANUALS

Bit2=0

No time constant data word for the Time Constant Register should be expected to follow. To program
bit 2 to this state implies that this Channel Control Word is intended to update the status of a channel al-
ready in operation, since a channel will not operate without a correctly programmed data word in the
Time Constant Register, and a set bit 2 in this Channel Control Word provides the only way of writing to
the Time Constant Register.

Bit1=1

Reset channel. Channel stops counting or timing. This is not a stored condition. Upon writing into this
bit a reset pulse discontinues current channel operation, however, none of the bits in the channel control
register are changed. If both bit 2= 1 and bit 1 = 1 the channel will resume operation upon loading a
time constant.

Bit1=0
Channel continues current operation.
DISABLING THE CTC’S INTERRUPT STRUCTURE

If an external Asynchronous interrupt could occur while the processor is writing the disable word to the
CTC (01H); a system problem may occur. If interrupts are enabled in the processor it is possible that the
Asynchronous interrupt will occur while the processor is writing the disable word to the CTC. The CTC
will generate an INT and the CPU will acknowledge it, however, by this time, the CTC will have received
the disable word and de-activated its interrupt structure. The result is that the CTC will not send in its
interrupt vector during the interrupt acknowledge cycle because it is disabled and the CPU will fetch an
erroneous vector resulting in a program fault. The cure for this problem is to disable interrupts within
the CPU with the DI instruction just before the CTC is disabled and then re-enable interrupts with the El
instruction. This action causes the CPU to ignore any interrupts produced by the CTC while it is being
disabled. The code sequence would be:

LD A, O1H

DI ; DISABLE CPU
OUT (CTC), A ; DISABLE CTC
El ; ENABLE CPU

111-145

5.3

LOADING THE TIME CONSTANT REGISTER

A channel may not begin operation in either Timer Mode or Counter Mode unless a time constant data
word is written into the Time Constant Register by the CPU. This data word will be expected on the
next 1/0 Write to this channel following the |/O Write of the Channel Control Word, provided that bit 2
of the Channel Control Word is set. The time constant data word may be an integer value in the range 1-
256. If all eight bits in this word are zero, it is interpreted as 256. If a time constant data word is loaded
to a channel already in operation, the Down Counter will continue decrementing to zero before the new
time constant is loaded from the Time Constant Register to the Down Counter.

TIME CONSTANT REGISTER

D7 De D5 Dg D3 D2 D1 Do
TC7 TCe TCs TC4 TC3 TC2 TCq TCo
MSB LSB
CHANNEL BLOCK DIAGRAM
Figure 5.3-0 CHANNEL TIME
CONTROL
REGISTER ikl
AND LOGIC 8 BITS)
(8 BITS) (
PN
INTERNAL BUS
< b
ZERO COUNT/
> DOWN TIMEOUT
¢ ———] '{;‘é.sfs‘}““ COUNTER >
- (8 BITS)
EXTERNAL CLOCK/TIMER TRIGGER
54 LOADING THE INTERRUPT VECTOR REGISTER

The Z80-CTC has been designed to operate with the Z80-CPU programmed for mode 2 interrupt re-
sponse. Under the requirements of this mode, when a CTC channel requests an interrupt and is acknow-
ledged, a 16-bit pointer must be formed to obtain a corresponding interrupt service routine starting ad-
dress from a table in memory. The upper 8 bits of this pointer are provided by the CPU’s | register, and
the lower 8 bits of the pointer are provided by the CTC in the form of an Interrupt Vector unique to the
particular channel that requested the interrupt. (For further details, see section 7.0: “'CTC Interrupt
Servicing’’.)

MODE 2 INTERRUPT OPERATION

Desired starting address pointed to by:
INTERRUPT

SERVICE
ROUTINE LOW ORDER }l | REG 7 BITS FROM
STARTING HIGH ORDER CONTENTS | PERIPHERAL
ADDRESS
TABLE

l-146

5.4 LOADING THE INTERRUPT VECTOR REGISTER (Cont’d)

The high order 5 bits of this Interrupt Vector must be written to the CTC in advance as part of the initial
programming sequence. To do so, the CPU must write to the |/O port address corresponding to the CTC
channel 0, just as it would if a Channel Control Word were being written to that channel, except that bit
0 of the word being written must contain a 0. (As explained above in section 5.1, if bit 0 of a word
written to a channel were set to 1, the word would be interpreted as a Channel Control Word, so a O in
bit O signals the CTC to load the incoming word into the Interrupt Vector Register.) Bits 1 and 2, how-
ever are not used when loading this vector. At the time when the interrupting channel must place the
Interrupt Vector on the Z80 Data Bus, the Interrupt Control Logic of the CTC automatically supplies a
binary code in bits 1 and 2 indentifying which of the four CTC channels is to be serviced.

INTERRUPT VECTOR REGISTER

D7 D6 D5 D4 D3 D2 D1 Do
>,
v7 Ve 3 Va V3 X X 0 383
=523
N 7 223
=V | | R -
SUPPLIED BY USER 0 0 CHANNEL 0 (Highest Priority) ™
0 1 CHANNEL 1
1 0 CHANNEL 2
1 1 CHANNEL 3 (Lowest Priority)
\)
Ve

AUTOMATICALLY INSERTED BY Z80-CTC

n-147

11-148

6.0

6.1

CTC TIMING

This section illustrates the timing relationships of the relevant CTC pins for the following types of oper-
ation: writing a word to the CTC, reading a word from the CTC, counting, and timing. Elsewhere in this
manual may be found timing diagrams relating to interrupt servicing (section 7.0) and an A.C. Timing
Diagram which quantitatively specifies the timing relationships (section 8.4).

CTC WRITE CYCLE

Figure 6.1-0 illustrates the timing associated with the CTC Write Cycle. This sequence is applicable to
loading either a Channel Control Word, an Interrupt Vector, or a time constant data word.

In the sequence shown, during clock cycle T1, the Z80-CPU prepares for the Write Cycle with a false
(high) signal at CTC input pin RD (Read). Since the CTC has no separate Write signal input, it generates
its own internally form the false RD input. Later, during clock cycle T2, the Z80-CPU initiates the Write
Cycle with true (low) signals at CTC input pins IORQ (I/O Request) and CE (Chip Enable). (Note: M1
must be false to distinguish the cycle form an interrupt acknowledge.) Also at this time a 2-bit binary
code appears at CTC inputs CS1 and CSO (Channel Select 1 and 0), specifying which of the four CTC
channels is being written to, and the word being written appears on the Z80 Data Bus. Now everything is
ready for the word to be latched into the appropriate CTC internal register in synchronization with the
rising edge beginning clock cycle T3. No additional wait states are allowed.

MANUALS

>
=2
_=2
=g
w
o
®
N

TECHNICAL

CTC WRITE CYCLE

Figure 6.1-0
L T2 Tw= T3 T1
®
CSo.1, CE >< CHANNEL ADDRESS X
IORQ \ /
RD
m g

DATA K IN X

*AUTOMATICALLY INSERTED BY Z80-CPU

6.2

CTC READ CYCLE

Figure 6.2-0 illustrates the timing associated with the CTC Read Cycle. This sequence is used any time
the CPU reads the current contents of the Down Counter. During clock cycle T2, the Z80-CPU initiates
the Read Cycle with true signals at input pins RD (Read), TORQ (1/0 Request), and CE (Chip Enable).
also at this time a 2-bit binary code appears at CTC inputs CS1 and CSO (Channel Select 1 and 0), speci-
fying which of the four CTC channels is being read from. (Note: M1 must be false to distinguish the
cycle form an interrupt acknowledge.) On the rising edge of the cycle T3 the valid contents of the Down
Counter as of the rising edge of cycle T2 will be available on the Z80 Data Bus. No additional wait states
are allowed.

111-149

CTC READ CYCLE
Figure 6.2-0

T T2 Tw* T3 T

CSo-1, CE X CHANNEL ADDRESS X

ioRG \ /_——
RD \ /

:1111

DATA ouT

*AUTOMATICALLY INSERTED BY Z80-CPU

6.3 CTC COUNTING AND TIMING

Figure 6.3-0 illustrates the timing diagram for the CTC Counting and Timing Modes.

CTC COUNTING AND TIMING
Figure 6.3-0

g

CLK / \ / \

INTERNAL
COUNTER / ZERO COUNT \

zc/To / AN

(4] I

TRG / \

INTERNAL /

TIMER START TIMING

111-150

6.3 CTC COUNTING AND TIMING (Cont'd)

In the Counter Mode, the edge (rising edge is active in this example) form the external hardware con-
nected to pin CLK/TRG decrements the Down Counter in synchronization with the System Clock ®. As
specified in the A.C. Characteristics (Section 9.1) this CLK/TRG pulse must have a minimum width and
the minimum period must not be less than twice the system clock period. Although there is no set-up
requirement between the active edge of the CLK/TRG and the rising edge of ® if the CLK/TRG edge
occurs closer than a specified minimum time, the decrement of the Down Counter will be delayed one
cycle of ®. Immediately after the decrement of the Down Counter, 1 to 0, the ZC/TO output is pulsed
true.

In the Timer Mode, a pulse trigger (user-selectable as either active high or active low) at the CLK/TRG
pin enables timing function on the second succeeding rising edge of ®. As in the Counter Mode, the trig-
gering pulse is detected asynchronously and must have a minimum width. The timing function is initi-
ated in syncronization with &, and a minimum set-up time is required between the active edge of the
CLK/TRG and the next rising edge of ®. If the CLK/TRG edge occurs closer than this, the initiation of
the timer function will be delayed one cycle of .

>
=2
_2
=g
w
o
®
N

TECHNICAL
MANUALS

11-151

1-152

7.0 CTCINTERRUPT SERVICING

Each CTC channel may be individually programmed to request an interrupt every time its Down Counter
reaches a count of zero. The purpose of a CTC-generated interrupt, as for any other peripheral device, is
to force the CPU to execute an interrupt service routine. To utilize this feature the Z80-CPU must be
programmed for mode 2 interrupt response. Under the requirements of this mode, when a CTC channel
requests an interrupt and is acknowledged, a 16-bit pointer must be formed to obtain a corresponding
interrupt service routine starting address from a table in memory. The lower 8 bits of the pointer are
provided by the CTC in the form of an Interrupt Vector unique to the particular channel that requested
the interrupt. (For further details, refer to Chapter 8.0 of the Z80-CPU Technical Manual.)

The CTC'’s Interrupt Control Logic insures that it acts in accordance with Z80 system interrupt protocol
for nested priority interrupt and proper return from interrupt. The priority of any system device is
determined by its physical location in a daisy chain configuration. Two signal lines (IEl and |IEQ) are
provided in the CTC and all Z80 peripheral devices to form the system daisy chain. The device closest to
the CPU has the highest priority; within the CTC, interrupt priority is predetermined by channel number,
with channel O having highest priority. According to Z80 system interrupt protocol, low priority
devices or channels may not interrupt higher priority devices or channels that have already interrupted
and not had their interrupt service routines completed. However, high priority devices or channels may
interrupt the servicing of lower priority devices or channels. (For further details, see section 2.3: “Inter-
rupt Control Logic".)

MANUALS

>
=
_=2
=d
w
o
®
N

TECHNICAL

Sections 7.1 and 7.2 below describe the nominal timing relationships of the relevant CTC pins for the
Interrupt Acknowledge Cycle and the Return form Interrupt Cycle. Section 7.3 below discusses a typ-
ical example of daisy chain interrupt servicing.

7.1 INTERRUPT ACKNOWLEDGE CYCLE

Figure 7.1-0 illustrates the timing associated with the Interrupt Acknowledge Cycle. Some time after an
interrupt is requested by the CTC, the CPU will send out an interrupt acknowledge (M1 and TORQ). To
insure that the daisy chain enable lines stabilize, channels are inhibited from changing their interrupt re-
quest status when M1 is active. M1 is active about two clock cycles earlier than TORQ, and RD is false to
distinguish the cycle from an instruction fetch. During this time the interrupt logic of the CTC will de-
termine the highest priority interrupting channel within the CTC places its Interrupt Vector onto the
Data Bus when IORQ goes active. Two wait states (Tyy*) are automatically inserted at this time to allow
the daisy chain to stablize. Additional wait states may be added.

INTERRUPT ACKNOWLEDGE CYCLE
Figure 7.1-0

T1 T2 Tw* Tw* T3 Ta

LI I S N S B A A

DATA VECTOR

11-163

7.2

RETURN FROM INTERRUPT CYCLE

Figure 7.2-0 illustrates the timing associated with the RETI Instruction. This instruction is used at the
end of an interrupt service routine to initialize the daisy chain enable lines for proper control of nested
priority interrupt handling. The CTC decodes the two-byte RET! code internally and determines whe-
ther it is intended for a channel being serviced.

When several Z80 peripheral chips are in the daisy chain IEl will become active on the chip currently
under service when an EDH opcode is decoded. If the following opcode is 4DH, the peripheral being ser-
viced will be re-initialized and its IEO will become active.. Additional wait states are allowed.

RETURN FROM INTERRUPT CYCLE
Figure 7.2-0

T1 T2 T3 Tq T1 T2 T3 T4 T1

Do-D7 { ED) —{ 4D)
IEI _—__—__:/’

IEO /

7.3

DAISY CHAIN INTERRUPT SERVICING

Figure 7.3-0 illustrates a typical nested interrupt sequence which may occur in the CTC. In this example,
channel 2 interrupts and is granted service. While this channel is being serviced, higher priority channel 1
interrupts and is granted service.. The service routine for the higher priority channel is completed, and a
RETI instruction (see section 7.2 for further details) is executed to signal the channel that its routine is
complete. At this time, the service routine of the lower priority channel 2 is resumed and completed.

DAISY CHAIN INTERRUPT SERVICING
Figure 7.3-0

HIGHEST PRIORITY CHANNEL
CHANNEL @ ' CHANNEL 1 CHANNEL 2 CHANNEL 3

N
HI | HI
L—Im o d e o i T3] LI i €0

1. PRIORITY INTERRUPT DAISY CHAIN BEFORE ANY INTERRUPT OCCURS.
NDER SERVICE

HI 10
13} IE0 LI P o e 1EO L0 1] 1E0

+

2. CHANNEL 2 REQUESTS AN INTERRUPT AND IS ACKINOWLEDGED.
UNDER SERVICE SERVICE SUSPENDED

I
L |£o}“—'[m 160 L2 e IEDHH 1£0 j—2

3. CHANNEL 1 INTERRUPTS, SUSPENDS SERVICING OF CHANNEL 2.
SERVICE COMPLETE SERVICE RESUMED

Lo
i P |sol-l“——llsl 10 L J e M neo]———

4. CHANNEL 1 SERVICE ROUTINE COMPLETE, "RETI” ISSUED, CHANNEL 2 SERVICE RESUMED.
SERVICE COMPLETE

H H
Et IEDHEI IEO " [13] IEOli-—Fﬁl IEQ

5. SECOND “RET!I” INSTRUCTION ISSUED ON COMPLETION OF CHANNEL 2 SERVICE ROUTINE.

-

3

3
I
T

11-154

7.4 USING THE CTC AS AN INTERRUPT CONTROLLER

All of the Z80 family parts contain circuitry ‘for prioritizing interrupts and supplying the vector to the
CPU. However, in many Z80 based systems interrupts must be processed from devices which do not con-
tain this interrupt circuitry. To handle this requirement the MK3882 CTC can be used, providing prior-
itized, independently vectored, maskable, edge selectable, count programmable external interrupt inputs.
The MK3882 parts may be cascaded, expanding the system to as many as 256 interrupt inputs.

Each MK3882 contains 4 channels with counter inputs able to interrupt upon one or more (up to 256)
edge transitions. The active transition may be programmed to be positive or negative. Each of the 4
channels has a programmable vector which is used in powerful Z80 mode 2 interrupt processing. When
an interrupt is processed the vector is combined with the CPU | register to determine where the interrupt
service routine start address is located. Additionally, priority resolution is handled within the MK3882
when more than one interrupt request is made simultaneously. When more than one MK3882 is used,
the prioritizing is done, with the IEI/IEQ chain resolving inter-chip priorities. Each channel can be inde-
pendently ““masked’’ by disabling that channel’s local interrupt.

When programming the MK3882 to handle an input as a general purpose interrupt line, the channel is put
in the counter mode, with the count set to 1, the active edge specified and the vector is loaded. When
the programmed edge occurs a mode 2 interrupt will be generated by the CTC and the Z80-CPU can
vector directly to the service routine for the non-Z80 peripheral device. Note that after the interrupt, the CTC:
down counter is automatically reloaded with a count of one and the CTC channel begins looking for another
active edge after the RET! of the interrupt routine. Therefore, once a particular channel is under service, no
active edges will be recognized by that channel until execution of the RETI instruction of the corresponding
interrupt routine. Of course, other channels of the CTC can generate interrupts and/or pending interrupts
asynchronously, depending on their priority.

CTC AS AN INTERRUPT CONTROLLER
Figure 7.4-0

>
=
2
=d
uw
=}
®
N

TECHNICAL
MANUALS

+8v

SYS RESET
3 13 HIGHEST

1€1 PRIORITY
To cru < 8 DATA _BUS 8 040,

’ 11y 23

INTERRUPT

o

-

Ao

>
o
o
2
a

INTERRUPT

5‘
H
ol
S
3
2
K

INTERRUPT 2

3=
x|
H

~
N
S

INTERRUPT

=z
2
~
F]
>
-

To
Z80-CPU

23

INTERRUPT

>

22——< inTernupT

-

2!

INTERRUPT

20

INTERRUPT

~

c 10 LOWEST

PRIORITY
m DECODE 24 ‘5 " °!

+5V GND

TO ADDITIONAL
MK 3882'S

111-155

111-156

8.0 ABSOLUTE MAXIMUM RATINGS

Temperature Under Bias it e e e Specified Operating Range
Storage TeMPEratUIe. . . oo\ v ittt et et et e e e e et e -65°C to +150°C
Voltage on Any Pin with Respect to Groundttt nnnnnnnn -0.3V to +7V
PoWeEr DissiPation . o ..ttt e e e e e e 0.8v

8.1 D.C. CHARACTERISTICS
TA =0°C to 70°C, Vcc = 5V + 5% unless otherwise specified

SYMBOL | PARAMETER MIN MAX UNIT| TEST CONDITION

ViLe Clock Input Low Voltage -0.3 0.80 \

ViHC Clock Input High Voltage (1) Vee—6| Ve +3 | V

ViL Input Low Voltage —0.3 0.8 \

ViH Input High Voltage 2.0 Vee \

VoL Output Low Voltage 0.4 \% loL=2mA

VOoH Output High Voltage 24 \% loH = —250 A %30
icc Power Supply Current 120 mA Tc =400 nsec*™ EE;;
Il Input Leakage Current +10 LA ViN=0to Ve §§§
ILOH Tri-State Output Leakage Current In Float 10 HA VouT =241toVce "
ILoL Tri-State Output Leakage Current In Float -10 HA VouTt = 0.4V

lOHD Darlington Drive Current -1.6 mA | VoH = 1.5V

**Tc = 250 nsec for MK 3882-4

8.2 CAPACITANCE

TA=25°C, f=1 MHz

SYMBOL | PARAMETER MAX UNIT| TEST CONDITION
Cop Clock Capacitance 20 pF Unmeasured Pins
CiN Input Capacitance 5 pF Returned to Ground
CouT Output Capacitance 10 pF

*COMMENT

Stresses above those listed under ““Absolute Maximum Rating’” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

n-157

8.3 A.C. CHARACTERISTICS MK 3882, MK 3882-10, Z80-CTC
TA=0°Cto 70° C, Vcé =+5V + 5%, unless otherwise noted

Signal

Symbol Parameter Min Max Unit Comments
) tc Clock Period 400 (1 ns
tw(PbH) Clock Pulse Width, Clock High 170 2000 ns
tw(dbL) Clock Pulse Width, Clock Low 170 2000 ns
tr, tf Clock Rise and Fall Times 30 ns
tH Any Hold Time for Specified Setup Time|O ns
CS, CE, etc. [tg®(CS) | Control Signal Setup Time to Rising 160 ns
Edge of ® During Read or Write Cycle
tpRr(D) Data Output Delay from Rising Edge of 480 ns |(2)
RD During Read Cycle
tsd(D) Data Setup Time to Rising Edge of ¢ 60 ns
During Write or M1 Cycle
Do-D7 tp 1 (D) Data Output Delay from Falling Edge 340 ns [(2)
of IORQ During INTA Cycle
tF(D) Delay to Floating Bus (Output Buffer 230 ns
Disable Time)
1EI tg(IEl) IEI Setup Time to Falling Edge of IORQ {200 ns
. During INTA Cycle .
tpH(10) | IEO Delay Time from Rising Edge of IEI 220 ns [(3)
tpL(10) | IEO Delay Time from Falling Edge of IEI 190 ns |(3)
IEO tpm(10) | 1EO Delay from Falling Edge of M1_ 300 ns |(3)
(Interrupt Occurring just Prior to M1)
IORQ ts®(IR) | TORQ Setup Time to Rising Edge of ¢ 250 ns
During Read or Write Cycle
tgP(M1) | M1 Setup Time to Rising Edge of & 210 ns
During INTA or M1 Cycle
RD tgP(RD) | RD Setup Time to Rising Edge of & 240 ns
During Read or M1 Cycle
tpck (IT)] INT Delay Time from Rising Edge of 2tc(®) + 200 Counter Mode
INT CLK/TRG
tp®(IT) | TNT Delay Time from Rising Edge of ® tc(d) + 200 Timer Mode
tc(CK) Clock Period 2tc(P) Counter Mode
tr, tf Clock and Trigger Rise and Fall Times 50 ns
tg(CK) Clock Setup Time to Rising Edge of & 210 ns |Counter Mode
for Immediate Count
ts(TR) Trigger Setup Time to Rising Edge of & {210 ns |Timer Mode
for Enabling of Prescaler on Following
Rising Edge of @
CLK/TRGQ-3
tw(CTH) | Clock and Trigger High Pulse Width 200 ns |Counter and
. Timer Modes
tw(CTL) | Clock and Trigger Low Pulse Width 200 ns [Counter and
Timer Modes
tpH(ZC) | ZC/TO Delay Time from Rising Edge of 190 ns |Counter and
&, ZC/TO High Timer Modes
ZC/TO@.2 |tpL(ZC) | ZC/TO Delay Time from Falling Edge of 190 ns |Counter and
® , ZC/TO Low Timer Modes
OUTPUT LOAD CIRCUIT
NOTES: (1) tc=tw(PH) + ot D) +1, + 14,

(2)

(3)

(4)

fncrease delay by 10 nsec for each 50 pF increase in
loading 200pF maximum for data lines and 100pF
for control lines.
Increase delay by 2nsec for each 10pF increase in
loading, 100pF maximum,

must be active for a minimum of 3 clock

cycles.

111-158

8.4 A.C. TIMING DIAGRAM

e o
CLOCK Ve - 8V 45v
QuUTPUT 2.0V 8V
Timing measurements are made at the following voltages, unless otherwise specified INPUT 20V 8V
FLOAT av +0.5V
|ty (PHI
- W 8 T2 T3 TW T4/T3 T
’ m
| i i
ty (L) = - | |- - -y
i
DU S| [tg 1. (CS)- -» | —= ty(CS) |e—

CE | |
!
!
_j - tg, (RD)
| |
55 ﬁrloﬂ«m [
L 239
| ' 1 59«
‘ =<Z2
| tg (D) | — <— 1 (D), tyg(D} wr2
o0
Q gus
Dg-D7 N
<t (D)
- ts,l,uR)L_
iORG \ /
- gy, (M1)—>|
M1 /
’ !
tom(10) —> - N
IEI
tslIET) — —tppu(10)
EIO
—| tp (10) |=—
INT
-« tpck (IT)——s]
tc (CK)
—{tg (CK)|=—- <ty (CTH)—|
‘((COUNTER MODE) / -\
Lk | tylCTL) e
TRGg 3 ’ |t (TRI|e—
| (TIMER MODE)
N
—> gy (2C)|=— |=—1y
2C/T0q_,
—»| 1p(2C) L_#

111-159

8.5 A.C.CHARACTERISTICS MK 3882-4,Z80A-CTC

TA=0° Cto 70° C, Vcc = +5 V + 5%, unless otherwise noted

Signal Symbol Parameter Min Max Unit| Comments
tC Clock Period 250 (1) ns
P tw(PH) Clock Pulse Width, Clock High 105 2000 ns
tw(dL) Clock Pulse Width, Clock Low 105 2000 ns
tr, tf Clock Rise and Fall Times 30 ns
tH Any Hold Time for Specified Setup Time |0 ns
CS, CE, etc [tg®(CS) | Control Signal Setup Time to Rising Edge|145 ns
of ® During Read or Write Cycle
tpDR(D) Data Output Delay from Falling Edge of 380 ns |(2)
RD During Read Cycle
ts®(D) Data Setup Time to Rising Edge of ® 50 ns
During Write or M1 Cycle
Do-D7 tD (D) Data Output Delay form Falling Edge 160 ns [(2)
of IORQ During INTA Cycle
tr(D) Delay to Floating Bus (Output Buffer 110 ns
Disable Time)
IEI ts(1E1) IE1 Setup Time to Fall<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>