320100 Rev. 1

National
Semiconductor

Programmable Logic
Design Guide

May 1986

3k > e

=2
L
O
Q
o, |
N
=
=3
N
=
®
i
O
2
o
O
@
-
Q
=
@)
=
Q
@

JO)ONPUODIWAS [euoneN




Programmable Logic
Design Guide

Programmable Logic
National Semiconductor Corporation-
Santa Clara, California



TRADEMARKS

Following is the most current list of National Semiconductor Corporation’s trademarks and registered trademarks.

Abuseable™ DPVMT™ MST™ SPIRE™™
Anadig™ ELSTAR™ National® STAR™
ANS-R-TRANT™ E-Z-LINK™ NAX 800T™ Starlink™
. Auto-Chem Deflasher™ GENIX™ Nitride Plus™ - STARPLEX™
BI-FET™ HEX 3000™ Nitride Plus Oxide™ STARPLEX lIT™
BI-FET II™ INFOCHEX™ NML™™ SuperChip™
BI-LINE™™ Integral ISE™ NOBUST™ SYS32™
BIPLANTM Intelisplay™ NSC800™ TAPE-PAK™
BLC™ ISE™ NSX-16™ TDS™

BLX™™ ISE/06™ NS-XC-16™ TeleGate™
Brite-Lite™ ISE/08™ NURAM™ The National Anthem®
BTL™ ISE/16™™ OXISS™™ TimewChek™
CIM™ ISE32T™ Perfect Watch™ TLC™
CIMBUS™ Macrobus™ PharmassChek™ Trapezoidal™
ClockirChek™ Macrocomponent™ PLAN™ TRI-CODE™
COMBO™ Meati*Chek™ Polycraft™ TRI-POLY™
COPS™ microcontrollers Microbus™ data bus POSitalker™ TRI-SAFE™
DATACHECKER® (adjective) QUAD3000™™ TRI-STATE®
DENSPAKTM MICRO-DAC™ RAT™ XMOS™
DIB™ ptalker™ RTX16™™ XPUT™
Digitalker® Microtalker™ ScriptrChek™ Z STAR™
DISCERNTM MICROWIRE™ Shelf-Chek™ 883B/RETS™
DISTILL™ MICROWIRE/PLUS™ SERIES/800™™ 883S/RETS™
DNRT™ MOLE™ Series 32000™™

PAL® is a registered trademark of Monolithic Memories, Inc.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR COR-
PORATION. As used herein:

1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and whose failure to per-
form, when properly used in accordance with instructions
for use provided in the labeling, can be reasonably ex-
pected to result in a significant injury to the user.

2. A critical component is any component of a life support
device or system whose failure to perform can be reason-
ably expected to cause the failure of the life support de-
vice or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-8090 (408) 721-5000
TWX (910) 339-9240

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time
without notice, to change said circuitry or specifications.

iv




PLD Selection Guide

ton ! I Outputs
PD CcC -
Family Part No. (max) (max) Comb. Reg. Pg.
TTL
20-Pin PAL10HS 35 90 8 - 276
Small PAL10LS 35 90 8 -
PAL PAL12HG6 35 90 6 -
(Standard PAL12L6 35 90 6 -
Speed) PAL14H4 35 90 4 -
PAL14L4 35 90 4 -
PAL16H2 35 90 2 -
PAL16L2 35 90 2 -
PAL16C1 35 90 1 -
20-Pin PAL10H8A 25 90 8 - 279
Small PAL10L8A 25 90 8 -
PAL PAL12HGA 25 90 6 -
Series-A PAL12L6A 25 90 6 -
PAL14H4A 25 90 4 -
PAL14L4A 25 90 4 -
PAL1GH2A 25 90 2 -
PAL16GL2A 25 90 2 -
PAL16C1A 30 90 1 -
20-Pin PAL10H8A2 35 45 8 - 284
Small PAL10L8A2 35 45 8 -
PAL PAL12HGA2 35 45 6 -
Series-A2 PAL12LGA2 35 45 6 -
PAL14H4A2 35 45 4 -
PAL14L4A2 35 45 4 -
PAL16H2A2 35 45 2 -
PAL16L2A2 35 45 2 -
PAL16C1A2 40 45 1 -
20-Pin PAL16LS 35 180 8 - 277
Medium PAL16R4 35 180 4 4
PAL PAL16RG 35 180 2 6
(Standard) PAL1GRS8 352 180 - 8
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ton! I Outputs
PD CC
‘Family Part No. (max) (max) Comb. Reg. Pg.
20-Pin PAL16L8A 25 180 8 - 280
Medium PAL16R4A 25 180 4 4
PAL PAL16RGA 25 180 2 6
Series-A PAL16RSA 252 180 - 8
20-Pin PAL16L8A2 35 90 8 - 286
Medium PAL16R4A2 35 90 4 4
PAL PAL16RG6A2 35 90 2 6
Series-A2 PAL16R8A2 352 90 - 8
20-Pin PAL16LSB 15 180 8 - 282
Medium PAL16R4B 15 180 4 4
PAL PAL1GR6B 15 180 2 6
Series-B PAL16RSB 152 180 - 8
20-Pin PAL16GL8B2 25 920 8 - 288
Medium PAL16R4B2 25 100 4 4
PAL PAL16R6B2 25 100 2 6
Series-B2 PAL16RSB2 252 100 - 8
20-Pin PAL16L8D 10 180 8 - 377
Medium PAL16R4D 10 180 4 4
PAL PAL16R6D 10 180 2 6
Series-D* PAL16R8D 102 180 - 8
24-Pin PAL12L10 40 100 10 - 290
Small PAL14L8 40 100 8 -
PAL PAL16L6 40 100 6 -
(Standard PAL18L4 40 100 4 -
Speed) PAL20L2 40 100 2 -
PAL20C1 40 100 1 -
24-Pin PAL20L10 50 165 10 - 290
XOR PAL20X4 50 180 6 4
PAL PAL20XS8 50 180 2 8
(Standard) PAL20X10 502 180 - 10
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*Preliminary

tonl I Outputs
PD CC
Family Part No. (max) (max) Comb. Reg. Pg.
24-Pin PAL20L10A 30 165 10 - 341
XOR PAL20X4A 30 180 6 4
PAL PAL20XSA 30 180 2 8
Series-A PAL20X10A 302 180 - 10
24-Pin PAL20LSA 25 210 8 - 292
Medium PAL20R4A 25 210 4 4
PAL PAL20RGA 25 210 2 6
Series-A PAL20RSA 252 210 - 8
24-Pin PAL20LSB 15 210 8 - 353
Medium PAL20R4B 15 210 4 4
PAL PAL20RGB 15 210 2 6
Series-B PAL20RSB 152 210 - 8
24-Pin PAL20LSD 10 210 8 - 393
Medium PAL20R4D 10 210 4 4
PAL PAL20R6D 10 210 2 6
Series-D* PAL20RSD 102 210 - 8
24-Pin PAL20PSB 15 210 8 - 365
Polarity PAL20RP4B 15 210 4 4
PAL PAL20RPGB 15 210 2 6
Series-B* PAL20RPSB 152 210 - 8
Register PAL16RAS 30 170 - 8 409
Asynch. PAL20RA10 30 200 - 10 417
20-Pin PLA87X153B 20 155 10 - 335
PLA
E2CMOS
20-Pin GAL16V8-15L 15 90 - 8 425
Generic GAL16VS8-20L 20 90 - 8
Array GAL16V8-25Q 25 45 - 8
Logic GAL16V8-25L 25 90 - 8
GAL16V8-30Q% 30 50 - 8
GAL16V8-30L3 30 90 - 8
GAL16V8-35Q 35 45 - 8



viii Programmable Logic Design Guide

tpp! Icc __Outputs
Family Part No. (max) (max) Comb. Reg. Pg.
24-Pin GAL20V8-15L 15 90 - 8 439
Generic GAL20V8-20L 20 920 - 8
Array GAL20V8-25Q 25 45 - 8
Logic GAL20V8-25L 25 90 - 8
GAL20V8-30Q% 30 50 - 8
GAL20V8-30L®> 30 90 - 8
GAL20V8-35Q 35 45 - 8
ECL
Combinatorial PAL1016P8 6 - 240 8 - 455
PAL10016P8 6 - 240 8 -
Registered* PAL1016RD8 62 -260 - 8 465
PAL1016RC8 % -260 - 8
PAL1016RD4 6 - 260 4 4
PAL1016RC4 6 - 260 4 4
PAL10016RD8 % -260 - 8
PAL10016RCS8 6° - 260 - 8
PAL10016RD4 6 -260 4 4
PAL10016RC4 6 - 260 4 4
Latched* PAL1016LD8 6 -260 - 8 465
PAL1016LD4 6 -260 4 4
PAL10016LDS8 6 -260 - 8
PAL10016LD4 6 - 260 4 4
Combinatorial PAL1016P4A 4 -220 4 - 483
Series-A* PAL10016P4A 4 -220 4 -
* Preliminary

Note 1: Maximum tpp for combinatorial outputs (commercial operating range).
Note 2: Denotes characteristic speed of family where product has all registered
outputs.

Note 3: Speed range offered for military grade product only.
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Introduction

1.1 PURPOSE OF THIS DESIGN GUIDE

This book was conceived to fill the need for a comprehensive Design Guide about
Field-Programmable Logic Devices. The Guide is organized to serve both the experi-
enced programmable logic user and the uninitiated. The primary objective of this guide
is to introduce the uninitiated logic designer to programmable logic and to take the
designer through a step-by-step approach to logic design by using programmable logic
devices. The Guide is comprehensive in that it covers all aspects of design, including:
Boolean logic basics, sequential and combinational circuit basics, testing, and applica-
tions. Every effort has been made to clearly illustrate points with examples. National
Semiconductor invites comments and suggestions from our users on improving this
Design Guide.

1.2 OVERVIEW OF PROGRAMMABLE LOGIC

Programmable Logic has been used for many years as the means of customizing logic
design. The early devices were primarily mask-programmed and were developed by
computer manufacturers for in-house use while the vast majority of other logic users
were relegated to the world of standard SSI/MSI devices. Then, in the mid to late seven-
ties, along came fuse-programmable logic. The logic devices could actually be custom-
ized by the designer who used external pulses generated by simple programmer
equipment. Now logic designers had devices that could be customized instantly and
that offered higher integration than standard logic. Field-programmable logic devices
became the first, true semicustom logic that was widely available for both the small and
the larger user.

Today, the user can choose from a variety of speeds, power, packages, logic fea-
tures and vendors.

The logic designer’s task is being simplified even further by the rapid development
of software tools that actually perform some of the design tasks such as logic minimiza-
tion, higher level Boolean representation, device selection, and test vector generation.
The final goal is to simply specify input-output or state descriptions in a high-level lan-
guage to obtain a completely programmed and functionally tested device.

Technology developments are also taking place to achieve field-programmable
logic devices in low-power CMOS technology and high-speed ECL technology.
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1.3 NATIONAL SEMICONDUCTOR, THE LEADER

National Semiconductor entered the field programmable logic marketplace in 1980
with the introduction of the PAL® device family. By 1984 National had taken the lead-
ership of this market through technological advances and customer support. In particu-
lar, National is the first company to come out with the 15 ns high-performance family of
PAL devices. National also has the broadest product line of programmable-logic prod-
ucts that will include CMOS and ECL products. National Semiconductor is committed
to maintaining its leadership in this area through technological innovation, customer
support and product quality.

PAL is a registered trademark of and used under license to Monolithic Memories, Inc.
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2.1 WHAT IS PROGRAMMABLE LOGIC?

Programmable logic devices are essentially uncommitted logic gates where the user
determines the final logic configuration of the device. Hence, programmable logic
devices are true semicustom products. A major feature of these devices is field-
programmability, which offers almost instant customization. A mask-programmable
option is also available for volume applications. The internal structure of these devices
is a fuse-programmable interconnection of AND gates, OR gates, and Registers. These
devices allow the user to design combinational as well as sequential circuits. The basic
programmable array is AND-OR logic in the familiar Sum-of-Products (SOP) representa-
tion. The conventional schematic representation is shown in Figure 2.1.1.

01

Figure 2.1.1 Conventional Representation
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Its programmable logic equivalent is shown in figure 2.1.2.

Wb

B A

e
00000

02 04

Figure 2.1.2 Programmable Logic Representation

Various programmable logic products are built around this structure by adding fea-
tures and other logic elements such as programmable Active-Low or Active-High out-
puts, output registers, internal feedback, and state registers.

A definition of programmable logic is not complete without including software.
An important part of these products is the software and design automation tools that
aid systems design with programmable logic devices.

2.2 USER-BENEFITS OF PROGRAMMABLE LOGIC

The use of programmable logic devices in systems design presents the user with many
benefits, some of which are obvious and some of which are not. The versatility and
power of programmable logic devices can be demonstrated through the most common
benefits described below.

Reduced Board Space

Today, programmable logic typically implements from 4 to 20 SSI and MSI logic devices
on a single chip. PC board real estate is one of the most valuable and limited items in a
system and programmable-logic devices are ideal for reducing board space. This can
allow the system manufacturer to reduce the size of a system or to increase the logic
power for a system of a given size.



Programmable Logic Basics 5

Fast Systems Design

Fast turnaround in systems design can be achieved. Systems can be prototyped quickly
by using available design automation development tools. Standard design tools reduce
the need for manual design and documentation. After the first prototype has been built,
modifications and correction to the logic can also be made quickly, without having to
rewire or rework the PC board. The net result is that the programmable-logic user can
enjoy a competitive advantage in the marketplace by bringing new products to
market early.

Design Flexibility

Systems design is generally an iterative process. It starts with ideas and concepts and
then progresses through an iterative series of evaluation, modification, and refinement
of the original design. Numerous logic configurations have to be evaluated in this proc-
ess and the painless way to perform these evaluations is through the use of programma-
ble logic. All of the changes can be made at the CAD terminal, which will also ensure
that the documentation is updated to include the changes.

With the use of programmable logic, the designer is not limited to standard off the
shelf parts and, therefore, can use non-standard logic structures. The engineer now
simply chooses what is needed instead of taking only what is available.

Design flexibility derived from using programmable logic means logic changes are
easy in all phases of the system life cycle. For example, logic changes can be made dur-
ing prototyping, during system testing, during system production, and in the field.

Many manufacturers need to be able to perform some final customization to the
system. The use of programmable logic allows this customization to be implemented
quickly.

Multilevel Logic Reduction

The designer can compress multiple levels of logic into a two-level AND-OR structure
through the use of programmable logic, thus simplifying the design and in many cases
obtaining a speed and/or power advantage. An example is shown on the following page
in Figure 2.2.1.

Cost Reduction

The systems manufacturer can realize cost reduction by the use of programmable logic
through a variety of factors, including:

e Lower component cost through

— PC board area reduction.

Reduction in connectors used.
Simpler back panel.
Smaller power supplies.
Reduced cooling.
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Figure 2.2.1 Multilevel Logic Reduction

e Lower design and development cost through
— Quick-turnaround software-supported design.
— Easy-to-make changes.
— Computerized documentation.
— Simplified layout.
e Lower manufacturing cost through
— Fewer component insertions.
— Fewer boards to manufacture.
- Less component, board and system testing.
® Lower service costs through
— Improved reliability.
— Fewer spare parts.
— Faster logic fixes.
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Example to lllustrate Lower Component Costs

Table 2.2.1 is an example of the elements of component cost. The costs used are typical
of those found in the industry and will have to be modified to reflect a specific

situation.

Cost Range Ave Cost Cost/IC
Cost Variable $ $ $
Purchasing, Receiving, Inventory 0.01-0.03 0.02 0.02
Incoming Inspection 0-0.15 0.08 0.08
PC Board 10-100 30.00 0.30
Assembly Labor 0.10-0.40 0.20 0.20
Connectors, Wire, etc. 30-100 60.00 0.10
Power Supplies, Cooling 45-120 60.00 0.10
System Assembly 40-80 60.00 0.10
Rack, Cabinet, Panels 20-50 30.00 0.05
Total Overhead 0.95
IC Cost 0.12-2.00 0.50
Total IC Cost in System 1.45

Table 2.2.1 Typical Component Cost Structure

Assume a system with 600 SSI/MSI ICs. The total cost of the system is therefore as
follows:

SSI/MSI System Cost = 600 X $1.45 = $870

PAL devices are used to replace the SSI/MSI discrete logic devices. The replace-
ment can be accomplished at various efficiencies, where efficiency is defined as:

Efficiency = Average number of SSI/MSI devices replaced by one PAL.

If we assume that the cost of programming a PAL device is $0.40 then the total cost
of a PAL based system is as follows:

PAL based system cost =
600
Efficiency

600
Efficiency

X (PAL Device Price + Overhead + Programming Cost)

X (PAL Device Price + $0.95 + $0.40)
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Various efficiencies and PAL device prices are substituted in the above equation to
obtain the PAL based system costs in Table 2.2.2 below.

SSUMSI PSkLD;vic_e System Cost {2) ata Your PAL Device
Efficiency System evice Purchase Price of Your SSI/MSI System Cost
Factor (EF) Cost (1) $8.00 | $6.00 | $4.00 | $3.00 System Cost @ /PAL Device
3:1 870 1870 1470 1070 870
4:1 870 1403 1103 803 653
6:1 870 935 735 635 435
8:1 870 701 551 401 325

(1) Cost = 600 ICs x 1.45/IC = $870

(2) Cost = [600 = EF] x [PAL Device price + Overhead + Programming Cost]
[600 = EF] x [PAL Device price + 0.95 + 0.40]

[600 + EF] x PAL Device price + 1.35

Table 2.2.2 System Cost Comparison Between SSI/MSI Based System and
PAL Device Based System.

Most users realize at least a 4:1 ratio and at today’s PAL device prices, it is clearly
more economical to use PAL devices. Furthermore, as prices decline, even low efficien-
cies become economical.

Example of Cost Reduction Through Reliability Improvements

A simple example is used here to illustrate the power of PAL devices to improve system
reliability. Assume that systems fail for only two reasons:

e External connection failures (70%)
- Solder.
— Connectors.
- Back plane wiring.

® IC failures (30%)

A hypothetical system is defined as having 5 boards each with 100 SSI/MSI devices.
With the following assumptions:

— System is in use for 3 years.

Single device failure probability is 0.01 % within the 3 years.

Single device failure will cause board failure, which will result in system
failure.

100 systems are sold.

$1000 cost for each system failure.
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The system failure probabilities and expected costs are computed below.
SSI/MSI device-related board failure probability = 1 — (0.9999)1%° = 0.009989
SSI/MSI device-related system failure probability = 1 — (0.990011)5 = 0.0489583

0.0489583 x 70

- 0.114236
30 >

External connection failure probability =

Total system failure probability within the three years= 0.1631943
Total Expected Cost from system failures during the three years= $1000 X 100 X
0.1631943 = $16,000

The logic designer now uses PAL devices and other LSI devices to realize a 5:1 SSI/MSI
chip replacement. The system will now have one board. The system failure probability
and expected cost of the PAL device-based system is computed below:

Device-related board failure probability =1 — (0.9999)1% = 0.009989
0.009989 X 70
External connection failure probability = 9933
= 0.023307666

Total PAL device-based system failure probability = 0.033296666
Total Expected Cost of PAL device based system= $1000 X 100 X 0.033296666
~$3300

On comparing the expected costs from system failures of the SSI/MSI based system
to that of the programmable-logic based system, there is approximately a 5:1 ratio of
cost in favor of the programmable-logic based system.

This example is somewhat simplistic and some gross assumptions were made to
illustrate the advantages of using programmable logic. In reality, the actual reliability
improvement will depend on numerous factors that have not been addressed here.

Small Inventory
The programmable logic family can be used to replace up to 90% of TTL components.

This allows the user to lower inventory costs considerably, in addition to simplifying
the inventory system.
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2.3 ELEMENTS OF PROGRAMMABLE LOGIC

The first programmable integrated circuit logic device was the diode matrix. It was
introduced in the early 1960s. This approach featured rows and columns of metalliza-
tion, connected at the crosspoints with diodes and aluminum fuses (Figure 2.3.1).
These fuses could be selectively melted, leaving some of the crosspoints open and oth-
ers connected. The result was a diode-logic OR matrix.

14 4

12 4

218721

ERAE
v

Fq Fa F3 Fq

Figure 2.3.1 Diode OR Matrix

The PROM

Integrated circuit designers added input decoders and output buffers to the basic diode
matrix, creating the field-programmable read-only memory (PROM) (Figure 2.3.2). This
extended the programmable-logic concept considerably, since the input variables
could now be encoded. It also reduced the number of pins required per input variable.
At the same time, the input circuitry, along with the output buffers, provided TTL com-
patibility, the lack of which was one of the drawbacks of the diode matrix. For the sake
of simplicity and clarity, the programmable diode matrix is shown at a simple cross-
point in Figure 2.3.3

A decoder is nothing more than a collection of AND gates that combine all the
inputs to produce product terms. The basic logic implemented by the PROM is
AND-OR with the AND gates all preconnected on the chip, making this portion fixed.
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The OR matrix is implemented with diode-fuse interconnections, making it program-
mable. Thus, the PROM is an AND-OR logic element with fixed AND matrix and pro-
grammable OR.

There are many advantages to using PROMs as logic devices. Because they are used
in many applications, they are produced in high volume. Also, the PROM is a universal
logic solution. In other words, all of the product terms of the input variables are gener-
ated. This makes it possible to implement any AND-OR function of these variables.

On the less positive side, it is difficult to accomodate a large number of variables
with PROMs. For each variable added to the PROM, not only does the package increase
by one pin, but the size of the fuse matrix doubles. For example, an eight-function,
five-variable PROM (32 X 8) requires a 256-fuse element matrix. An eight-function,
six-variable device (64 X 8) requires a 512-element matrix. As a practical matter, PROMs
are limited in the maximum number of input variables they can be designed to handle.
Manufacturers are currently producing no larger than 13-input PROMs.

DECODER FUSE MATRIX
AND (OR)
NN SN NN GENN NN GEED GENE NN TEN. S A
r ] ’

I[E e
14 ’——- 1| 2
|
1_1.|12
| \&g
—&- uly,
|
11'12

|
S — :
2 F3

Fq F

2121

12

2]

F——-——-

2]

Figure 2.3.2 4 x 4 Bit Prom
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' l . Lo “OR” ARRAY
I | | [ (PROGRAMMABLE)

\ Z\ \/4\
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1]
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|

“AND” ARRAY
(FIXED)

0; 0, 0, O

Figure 2.3.3 PROM with 16 Words x 4 Bits

The FPLA

The Field-Programmable Logic Array (FPLA) overcomes some of the size restrictions of
PROMs because its designers recognized that not all product terms are required to
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implement most logic functions. By having a second fuse matrix (an AND matrix), the
FPLA allows the designer to select and program only those product terms used in each
specific function (Figure 2.3.4). These product terms are then combined in the OR fuse
array to form an AND-OR logic equation.

1 lo “OR” ARRAY
(PROGRAMMABLE)

““AND”’ ARRAY

(PROGRAMMABLE) 0; 0, 0, O,

Figure 2.3.4 FPLA with 4 Inputs, 4 Outputs, and 16 Products
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In addition to specifying the number of inputs and functions, the FPLA manufac-
turer must also specify the number of product terms available, since there are less than
2™ terms (with n as the number of input variables). The fact that the number of product
terms is less than 2" is what allows the FPLA to accommodate larger values of n, i.e.,
more inputs. This is in contrast to the PROM where the number of product terms is
always equal to 21

Although the FPLA usually requires less fuses to implement a given logic function,
the additional fuse matrix does pose some difficulties of its own. The biggest problem
is the circuitry required to select and program these fuses — circuitry that is not used in
the final logic solution, but which is paid for in die area. This “chip overhead” cost is
not significant if the FPLA’s capabilities are fully utilized, but it does become significant
for less complex problems that leave unused logic.

As has been shown, PROMs provide all of the product terms for a limited number
of input variables in generating AND-OR logic functions. FPLAs, on the other hand,
provide a limited number of product terms for a larger number of input variables. How-
ever, the FPLA is unrestricted in combining the product terms in the OR matrix, which
adds considerable flexibility to this device.

Because of the dual fuse matrix and the overhead cost of the circuitry required for
programming, the FPLA cannot be used economically in some low complexity logic
problems. The cost saving associated with the removal of the AND matrix (by
hardwiring it) is evident when one compares price. PROMs cost less than FPLAs. As
mentioned, however, the PROM approach significantly restricts the number of input
variables.

The PAL (Programmable Array Logic) Device

Savings similar to those of PROMs could be made without the penalty of restricting the
input variables, by removing the OR matrix from the FPLA, or hardwiring it. In the PAL
device concept (Figure 2.3.5), the AND fuse array allows the designer to specify the
product terms required. The terms are then hardwired to a predefined OR matrix to
form AND-OR logic functions.

An immediate observation is that because the OR gates in PAL devices are pre-
wired, the degree to which the product terms can be combined at these OR gates is
restricted. PAL devices partially compensate for this by offering different part types that
vary the OR-gate configuration. Specifying the OR-gate connection therefore becomes
a task of device selection rather than of programming, as with the FPLA. With this
approach, PAL devices eliminate the need for a second fuse matrix with little loss in
overall flexibility.
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Iy I lo “OR” ARRAY

{ { I I (FIXED)

IIIIIIIH
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Figure 2.3.5 PAL Device Having 4 Inputs, 4 Ouputs, and 16 Products
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Comparison

To illustrate the difference among the three most popular field-programmable logic
concepts, the same four logic expressions will be solved with each, as shown in Figure
2.3.6(a). For comparison, each of the approaches is shown as an AND matrix, followed
by an OR matrix. The PROM solution shown in Figure 2.3.6(b) requires a 16-fuse

i

FUSIBLE OR

II ,‘ AB
LOGIC EQUATIONS M A8
Fi=A PROM L/
Fo=AB _ AB
F3=A+B _
F4=AB +AB AB
@ HARD AND E?
Fi F2 F3 Fa
(b)
A B
# HARD OR
L) A
A B v
- |/ (o]
FUSIBLE OR 11 AB
h ‘lo'l
A PAL H
[\ ¥ *—KB _T | —y A
J n
FPLA = B
B
-1 i
AB

AB
FUSIBLE AND(? | ¢
F2 Fa

Fq F3

()

FUSIBLE AND (? v

Fq
(d)

VY

F2 F3 Fa

Figure 2.3.6 (a) Logic Equation, (b) PROM Solution, (c) FPLA Solution and

(d) PAL Device Solution
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matrix, whereas the FPLA and PAL device require 32 fuses each. If we were to add
another input variable, the number of fuses in a PROM increases to 32, while the FPLA
needs only 8 more and the PAL device needs 16 more. A fourth input again doubles the
number of PROM fuses to 64, but adds only 8 to the FPLA and 16 to the PAL device.
This example illustrates the previous statement that as the number of inputs increases,
PROMSs consume more fuses than either FPLAs or PAL devices.

2.4 PROGRAMMABLE LOGIC YERSUS OTHER LSI, SEMICUSTOM AND CUSTOM
ALTERNATIVES

Logic designers are noticing an apparent ‘“‘complexity gap” between TTL and LSI.
Products designed with discrete TTL devices would consume unacceptable amounts of
physical space and electrical power. Software-programmable LSI devices (microproc-
essors) offer high density and need relatively little power to operate. But the designer
pays a high price in software development and still has to use discretes to interface
them to the outside world. Until recently, there has been no device that provides a
really effective way of bridging this gap. National has seen this need, and now offers the
designer a family of PAL (Programmable Array Logic) devices to fill it. PAL devices offer
powerful capabilities for creating cost-effective new products or for improving the
effectiveness of existing logic designs. PAL devices save time and money by solving
many of the system partitioning and interface problems not otherwise effectively
solved by today’s semiconductor device technology.

Standardized LSI

LSI (Large Scale Integration) offers many advantages, but advances have been made at
the expense of either device flexibility or software complexity. LSI technology has
been and still is leading to larger and larger standard logic functions. LSI offers high
functional density and low power consumption; single ICs now perform functions that
formerly required complete circuit cards. However, most LSI devices don’t interface
with user systems without large numbers of support devices. Designers are still forced
to turn to random logic for many applications. LSI is slow, and it is rigidly partitioned.
For all its capability to perform varied and complex tasks, the microprocessor is a slow
and expensive way of doing simple, repetitive tasks when the necessary interface and
other support devices are added. And, when the time, money, and memory required
for software development are considered it is even more expensive.

Full Custom IC’s
Custom IC’s can be effective design solutions if the product is of low-to-medium com-

plexity, its logic function is well-defined, and its market is high-volume. Its design cycle
is typically long, and its cost can be prohibitive. This tends to discourage its use.
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Gate Arrays

A close relative of the custom circuit is the gate array. With gate arrays, the total logic
capability of the chip, its pinouts, and its performance are predefined by the
semiconductor manufacturer. The user specifies only the logic interconnection pattern, a
process much the same as interconnecting standard small-scale integration (SSI) logic cir-
cuits. Since only a metallization pattern is required, the setup costs and turnaround time
for gate arrays are lower than for custom circuits, but because the designer can seldom
utilize the entire logic capability of the chip, the unit cost per active element is often
higher. The setup costs and turnaround time for gate arrays are considerably higher than
that for programmable logic, which has practically no turnaround delay.
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3.1 BASIC OPERATORS AND THEOREMS

A gate is an electronic circuit which operates on one or more input signals to produce
an output signal. There are three basic gates from which all other logic can be realized:
AND, OR, and INVERTER gates. Figure 3.1.1 shows these three basic gates and their

truth table.

A INPUT OUTPUT
‘ 0 [} 0
0 1 0
(A) AND GATE 1 0 0
1 1 1
A
- J— F INPUT OUTPUT
B) OR GATE A B F
(B) OR G 0 0 0
(i} 1 1
1 0 1
1 1 1
A >~* F
INPUT OUTPUT
(C) INVERTER A 3
0 1
1 0

Figure 3.1.1 Basic Gates

To express the function of these gates by Boolean* algebra, we need to define

Boolean operators as follows:

Logical Equality

Negate (not, invert, complement)
OR (sum)

AND (product)

Exclusive OR

Exclusive NOR

* + e +

19
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The function of an AND gate in Figure 3.1.1 can be expressed as:
F=AeB
The function of an OR gate and INVERTER can be expressed as:

"F=A+B
and F=A

Boolean operators are logical operators, which are different from arithmetic oper-
ators. For example, + is logical addition, e is logical multiplication. We call such equa-
tions Boolean equations or logic equations.

A number of logic theorems and laws will be used to manipulate and reduce logical
equations. These theorems and laws are as follows:

Theorem 1 A+ 0 = A
Theorem 2 AeO =0
Theorem 3 A+ 1 =1
Theorem 4 Ael = A
Theorem 5 A+ A = A
Theorem 6 AeA = A
Theorem 7 A+ A =1
Theorem 8 AeA =0
Theorem 9 A = A
Theorem 10 A+ AeB = A
Theorem 11 AA + B) = A
Theorem 12 (A+B)e(A+C) = A+ BeC
Theorem 13 A +AeB =A+B

Commutative Law

A+B =B+
AeB =B

Associative Law
A+B+C =A+B)+C=A+B+0C)
AeBeC=(AeB)eC=Ae(Be(C
Distributive Law

A+(BeCeD)=(A+B)e(A+C)e (A+D)
Ae(B+C+D)=AeB + AeC+AeD
DeMorgan’s Theorem
A+B+C) =AeBeC
AeBeC) =A+B+C
*George Boole was the son of a shoemaker. His formal education ended in the third grade. Despite this, be was a brilliant

scholar, teaching Greek and Latin in bis own school, and an accepted mathematician who made lasting contributions
in the areas of differential and difference equations as well as in algebra.
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The complement of any Boolean expression, or a part of any expression, may be
found by means of DeMorgan’s theorem. Two steps are used to form a complement in
this theorem:

1. OR symbols are replaced with AND symbols or AND symbols with OR symbols.
2. Each of the terms in the expression is complemented.

DeMorgan’s theorem is one of the most powerful tools for engineering applica-
tions. It is very useful for designing with programmable logic devices because it pro-
vides a quick and simple conversion method between PRODUCT-OF-SUMS and
SUM-OF-PRODUCTS expressions, which will be defined later.

3.2 DERIVATION OF A BOOLEAN EXPRESSION

Any logic expression can be reduced to a two-level form and expressed as either a
SUM-OF-PRODUCTS (SOP) or PRODUCT-OF-SUMS (POS). Before we define SOP or
POS, we need to define “terms.”

1. Product Term — A product term is a single variable or the logical product of several
variables. The variable may or may not be complemented.

2. Sum Term — A sum term is a single variable or the sum of several variables. The vari-
ables may or may not be complemented.

3. Normal Term — A normal term is a product or sum term in which no variable
appears more than once.

4. Minterm — A minterm is a product term containing every variable once and only
once (either true or complemented).

5. Maxterm — A maxterm is a sum term containing every variable once and only once
(either true or complemented).

For example, the term A e B ¢ C is a product term; A + B isasum term; A is both a
product term and a sum term; A + B e C is neither a product term nor a sum term; A +
Bisasumterm; A o B o C is a product term; B is both a sum term and a product term.
We now define two most important forms:

1. SUM-OF-PRODUCTS Expression — A sum-of-products expression is a product term
or several product terms logically added together.

2. PRODUCT-OF-SUMS Expression — A product-of-sums expression is a sum term or
several sum terms logically multiplied together.

For example, the expression A ¢« B + A e B is a sum-of-products expression;
(A + B) ¢ (A + B) is a product-of-sums expression.
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One prime reason for using sum-of-products or product-of-sums expressions is

their straightforward conversion to very simple gating networks. In their purest, sim-
plest form they go into two-level networks, which are networks for which the longest
path through which a signal must pass from input to output is two gates long.

When designing a logic circuit, the logic designer works from two sets of known

values; the various states which the inputs to the logical network can take, and the
desired outputs for each input condition. The logic expression is derived from these
sets of values and the procedure is as follows:

1.
2a.

2b.

Construct a table of the input and output values (Tablé 3.2.1 left half).

To derive a SUM-OF-PRODUCTS (SOP) expression:

A product term column is added listing the inputs A, B, and C according to their
value in the input columns (Table 3.2.1). Then the product terms from each row
in which the output is a “1” are collected.

Therefore:
F=AeBeC +AeBeC +AeBeC (Eq. 3.2.1)

To derive a PRODUCT-OF-SUMS (POS) expression:

A sum term column is added listing the inputs A, B and C according to their com-
Dplement value in the input columns (Table 3.2.1). Then the sum terms from each
row in which the output is “0” are collected.

Therefore:

F=A+B+CA+B+C@A+B+C@A+B+C@A+B+ 0
(Eq. 3.2.2)

Inputs Outputs
A B C F Product Terms Sum Terms
0 0 0 0 ABC A+B+C
0 0 1 0 ABC A+B+C
0 1 0 1 ABC A+B+C
0 1 1 1 ABC A+B+C
1 0 0 0 ABC A+B+C
1 0 1 0 ABC A+B+C
1 1 0 1 ABT A+B+C
1 1 1 0 ABC A+B+C

Table 3.2.1 Truth Table of Eq. 3.2.1 and Eq. 3.2.2

Figure 3.2.1 is the logic circuit which direct derived from Eq. 3.2.1. Figure 3.2.2 is
derived from Eq. 3.2.2.
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Eq. 3.2.1 can be simplified as shown below:

eC +AeBeC +AeBeC
C+C +AeBeC

+ e C

F

0w

+
Ao
AeC

~ @

+ +
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e e e e
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Eq 3.2.2 can be simplified as shown:

F =A+B+CA+B+C@A@+B+C@A+B+C@A+B+0C
=A +B@A +B@A + C
=B@A + C)
=AeB + BeC
The two final expressions obtained are identical and can be implemented by, the circuit

shown in Figure 3.2.3. This is much simpler than the circuits in Figures 3.2.1 and 3.2.2.
This simplified procedure is called minimization.
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Figure 3.2.1 Logic Circuits of Eq. 3.2.1
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Figure 3.2.2 Logic Circuits of Eq. 3.2.2
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Figure 3.2.3 Simplified Logic Circuits
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3.3 MINIMIZATION
Logic circuits can be represented by logic expressions or so called logic equations. As

discussed, we can minimize the logic circuit through logic equations minimization. For
example, Figure 3.3.1 can be expressed by Eq. 3.3.1.

==
|

ow>»

—

I>o

Figure 3.3.1 A Random Logic Circuit

F=(AeBeC+D)e(B+D)+AeCe(B +D) (Eq 3.3.1)
By using the theorems and laws mentioned in 3.1, we minimize Eq. 3.3.1
as follows:

F = AeBeC +BeD +AeBeCeD+D +AeCeB +AeCeD
= AeBeC(1 +D)+D@B + 1)+ AeCeB + AeCeD Distributive Law
= AeBeC +D +AeCeB +AeCeD Theory 3
= AeB(C +C)+D(1 +AeC) Distributive Law
= AeB + D.
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The minimum SOP expression can now be implemented as the simple AND-OR
logic circuits as shown in Figure 3.3.2.

T { —
:>_F=AB+D
D

Figure 3.3.2 Minimized Logic Circuit

We can use Boolean Algebra to reduce the number of product terms. However,
Karnaugh Mapping and the Quine-McCluskey method are two other powerful tools to
minimize the logic equations. We’ll discuss Karnaugh Mapping method in the next
section.

3.4 K-MAP METHOD

A Karnaugh map, hereafter called a K-map, is a graphical method for representing a
Boolean function. It is similar to a truth table in that the K-map supplies the TRUE or
FALSE value of a Boolean function for all possible combinations of its logical argument.
There are many ways in which a K-map can be arranged. The most important consider-
ations of the arrangement are:

1. There must be a unique location on the K-map for entering the TRUE/FALSE value of
the function that corresponds to each combination of input variables.

2. The locations should be arranged so, with minimization mentioned in Section 3.3,
that they are readily apparent to the trained observer.

The second consideration implies that a successful K-mapping arrangement should
point to groups of minterms or maxterms that can be combined into reduced forms.
K-maps are also useful in expanding partially reduced expressions into standard forms
prior to the minimization process.

The K-map is one of the most powerful tools at the hands of the logic designer. The
power of the K-map does not lie in its application of any marvelous new theorems, but
rather in its utilization of the remarkable ability of the human mind to perceive patterns
in pictorial representations of data. This is not a new idea. Anytime we use a graph
instead of a table of numerical data, we are utilizing the human ability to recognize
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complex patterns and relationships in a graphical representation far more rapidly and
surely than in a tabular representation. A few examples of how to create'a K-map
follow.

First, consider a truth table for two variables. We list all four possible input combi-
nations and the corresponding function values, i.e., the truth tables for AND and OR.
(Figure 3.4.1)

A B AeB A B A+B
0 0 0 0o 0 0
0o 1 0 0 1 1
11 1 1 1 1
1 0 0 1 0 1

Figure 3.4.1 Truth Tables for AND and OR

As an alternative approach, set up a diagram consisting of four small boxes, one for
each combination of variables. Place a ““1” in any box representing a combination of
variables for which the function has the value 1. There is no logical objection to putting
“0’s” in the other boxes, but they are usually omitted for clarity.

The diagrams in Figure 3.4.2(a) are perfectly valid K-maps, but it is more common
to arrange the four boxes in a square, as shown in Figure 3.4.2(b).

AB AB
00 01 1 10 00 01 1 10
1 1 1 1
AeB A+B
(A)
A A
B 0 1 B 0 1
0 0 1
1 1 1 1 1
AB A+B

(8)

Figure 3.4.2 K-maps for AND and OR
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Since there must be one square for each input combination, there must be 20
squares in a K-map for n-variables. Whatever the number of variables, we may interpret
the map in terms of a graphical form of the truth table (Figure 3.4.3(a)) or in terms of
union and intersection of areas (Figure 3.4.3(b)).

The K-maps for some other three-variable functions are shown in Figure 3.4.4.

Particularly note the functions mapped in Figure 3.4.3(a) and 3.4.4(b). These are
both minterms. Each is represented by one square, obviously, and each one of the eight
squares corresponds to one of the eight minterms of three variables. This is the origin
of the name minterm. A minterm is the form of Boolean function corresponding to the
minimum possible area, other than 0, on a K-map. A maxterm, on the other hand, is the
form of Boolean function corresponding to the maximum possible area, other than 1,
on a K-map. Figure 3.4.3 (b) and 3.4.4 (c) are two examples.

A B Cc A-B.C
c AB 00 01 1" 10
0 0 0 0
0 0 1 0 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0 1 1
1 1 0 0
1 1 1 1
A-B-C
(a)
A A
/—'ﬁ'—ﬁ ’_A——
1 1 1 1
C 1 1 C 1 1
— ——
B B
A A
f__—k___“ ,———A——
1 1 1
C 1 1 1 1 C 1 1 1 1
——— e ——
B B
A + B + C = A+B+C

(b)
Figure 3.4.3 K-Maps for 3-variable AND and OR
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A AB
P o\ 00 o1 1 10
1 1 0 1
[+ 1 1 1
——
_B_ ABC
AC +AC (b)
(a)
A AB
—e— c 00 01 1 10
1 1 1 1 0 1
C 1 1 1 1 1 1 1 1
—_—————
B
A+B+C C+AB

(c) (d
Figure 3.4.4 Sample 3-variable K-maps

Since each square on a K-map corresponds to a row in a truth table, it is appropri-
ate to number the squares just as we numbered the row. These standard K-maps are
shown in Figure 3.4.5 for two and three variables. Now, if a function is stated in the
form of the minterm list, all we need to do is enter 1’s in the corresponding squares to
produce the K-map.

A AB
B 0 1 [+ 00 01 1" 10
0 0 2 0 0 2 6 4
1 1 3 1 1 3 7 5

Figure 3.4.5 K-maps for Two and Three Variables

If a function is stated as a maxterm list, we can enter 0’s in the squares listed or 1’s
in those not listed.

A map showing the 0’s of a function is a perfectly valid K-map, although it is more
common to show the 1’s.
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For example, the K-map of f(A, B, C) = m(0, 2, 3, 7) is shown in Figure 3.4.6 and
the K-map of f(A, B, C) = M(0, 1, 5, 6) is shown in Figure 3.4.7. where m means min-
term, M means maxterm.

AB

c 00 01 " 10
0 1 1
1 1 1

Figure 3.4.6 K-map of m(0, 2, 3, 7)

AB AB
c 00 01 1" 10 c 00 01 1" 10
0 0 0 0 1 1
OR
1 0 0 1 1 1

Figure 3.4.7 K-map of M(0, 1, 5, 6)

As shown, the K-map can be generated from the truth table on minterm expression
or maxterm expression. For the remainder of this section, we will learn how to mini-
mize the minterm expression by using the K-map.

The general principle of this minimization technique is “Any pair of n-variable
minterms which are adjacent on a K-map may be combined into a single product term
of n—1 literals” The definition of “adjacent” should include opposite edges of the
K-map, for instance, Figure 3.4.8(a) and 3.4.8(b) both have a pair of adjacent minterms.

(a) (b)

Figure 3.4.8 Adjacent Minterms on a K-map
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Consider this function
f(A, B, C) = m(0, 1, 4, 6)
= ABC + ABC + ABC + ABC

Which results on the K-map, on the pattern shown in Figure 3.4.9

Il

AB
00 01 11 10

Figure 3.4.9 Minimization

Therefore, combine minterms 0 and 1, 4 and 6 to get a minimal expression:
f(A, B, C) = AB + AC

Figure 3.4.10 shows some examples. Notice that it is permissible to include a min-
term in several terms if it helps make the term shorter.

AB AB
cD 00 01 1 10 cD 00 o1 1 10
00| 1 1 1 00| 1 1
o1 1 o1 1 1
1 1 1 1 1
10 1 10| 1 1

Figure 3.4.10 Minimization
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Quite often, some of the possible combinations of input values never occur. In this
case, we ‘“don’t care” what the function does if these input combinations appear. The
K-map makes it easy to take advantage of these “don’t care” conditions by letting the
“don’t care” minterms be 1 or 0, depending on which value results in a simpler expres-
sion. Figure 3.4.11 shows an example of the use of “don’t cares” (redundancies) to sim-
plify the terms.

N 00 o1 1 10
00| X X 1
o1
1
10( 1 X 1 1

Figure 3.4.11 Minimization

When working with larger functions, the tabular reduction developed by Quine and
modified by McCluskey is an alternative to the K-map method. The Quine-McCluskey
minimization method involves simple, repetitive operations that compare each min-
term that is present in a sun-of-minterms expression for a Boolean functions to all
other minterms with which it may form a combinable grouping.

The reader can refer to “Introduction to Switchihg Theory and Logic Design” by Hill
and Peterson to understand the Quine-McCluskey method.

3.5 SEQUENTIAL CIRCUIT ELEMENTS

Usually the subject of logic design is subdivided into two types: sequential and combi-
national. A purely combinational logic subsystem has no memory. Its outputs are com-
pletely defined by its present inputs. The analysis and design of combinational logic is
much easier. A sequential logic subsystem has memory and its outputs are functions of
not only present inputs but the previous outputs. Circuits of multiplexer/selector,
decoder/encoder, adder, and comparator are examples of combinational circuits. Shift
register, counter, state machine, and memory controller are examples of sequential
circuits.
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Figure 3.5.1 Basic Flip-Flops

Just as we have a logic gate as the basic combinational circuit element, we have a
flip-flop as a basic sequential circuit element. A flip-flop is a memory device which can
remember, or store, a binary bit of information. There are four basic flip-flop types: (1)
D flip-flop, (2) T flip-flop, (3) RS flip-flop, and (4) JK flip-flop. Figure 3.5.1 shows these
elements and their truth table.

With the memory elements, the output does not change as a function of the inputs
until the clock transition. Therefore, a superscript notation is used to indicate that the
output during clock period n + 1 is a function of the inputs during the previous clock
period n.

The D (delay) flip-flop means the input (D) is “stored” in the flip flop when the
clock occurs and will appear on the output (Q) during the next (n + 1) clock time. The
D flip-flop is thus very much like a single-bit RAM. It is very useful for data storage and
other special applications.

The other three types of flip-flops defined in Figure 3.5.1 are also one-bit storage
elements, but instead of simply storing the input, they change state in response to the
inputs by various logical rules. Since they hold their previous state in spite of the clock,
unless an input goes true, they often simplify the combinational logic functions
required to control them in control applications.
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The T (toggle) flip-flop, for example, stays in its previous state if the T input is false
before the clock. If the T input is true, the output changes to the opposite state (toggle)
on the clock. The T flip-flop is thus useful, for example, in binary counters where we
want each bit to invert every time there is a carry from the lower order bits.

The R-S flip-flop sets after the S input is true and resets after the R input is true. Its
output is undefined if both R and S are true. It is possible to define a Set Overrides Reset
(SOR) or a Reset Overrides Set (ROS) flip-flop. It will set or reset respectively if both the
R and the S inputs are true.

The J-K flip-flop sets after ] is true and resets after K is true. It is similar to an R-S
flip-flop except that if J and K are both true, the output changes to the opposite state
(toggle). It can be used as a T flip-flop by tying the J and K inputs together.

Since the J-K flip-flop can essentially do the job of both the R-S and the T flip-flop,
the R-S and the T flip-flops are seldom seen. The choice is between J-K flip-flops for
small counters and control or D flip-flops for data storage applications. Actually the J-K
flip-flop can even do the job of the D flip-flop with the addition of a single inverter, as
shown in Figure 3.5.2.

—_— ﬁ CLOCK

I

Figure 3.5.2 Implement D Flip-Flop by Using J-K

Another memory element type, called a latch, is often described on data sheets with a
truth table like the one for the D flip-flop in Figure 3.5.1. It is definitely not like a D flip-
flop, however because the output changes as soon as the clock goes high and does not
“latch” until the clock falls (if the input changes while the clock is high, the output fol-
low it). Because of this characteristic, a latch is not usable in the synchronous logic.



34 Programmable Logic Design Guide

3.6 STATE MACHINE FUNDAMENTALS

The relationships among present-state variables, primary input variables, next-state (or
excitation) variables, and primary output variables that describe the behavior of a
sequential system can be specified in several ways. As an example, consider the simple
sequential system that is shown in Figure 3.6.1.

g .
y .
\ Y
Iy
Y DELAY A

Figure 3.6.1 A Typical Sequential Circuit

This system has two primary input variables, having four different combinations of
values. There is one primary output variable and one state variable. It uses delay for
memory. There are only two possible present states: y = 0 and y = 1. When combined
with the four input combinations, these give eight different total present states. The
values of the next-state variable, Y, and the primary output variable, F, must be specified
for each total present state. The tabular arrangement shown in Table 3.6.1 is 2 common
method for presenting this information. This descriptive tool is called a state table.

NEXT-STATE OUTPUT
PRESENT - STATE Y F
y 14112=0001 1011 | I112=0001 10 11
0 0101 0000
1 01 11 0011

Table 3.6.1 State Table
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0, 0/0 1, 0/0

0, 1/0
0,000 Iy I,F
1, 1/0

1,11 U 1, 01

0, 1/0

Figure 3.6.2 State Diagram

A second method for describing the behavior of a sequential system is the use of a
state diagram. This method presents a pictorial representation of the
present-state/next-state sequences that apply to the sequential device. State changes are
marked with directed arrows, with the primary input and output conditions that apply
to each state transfer given beside the arrows. The state diagram for the system of Fig-
ure 3.6.1 is shown in Figure 3.6.2. A slash separates the input information from the out-
put information.

State tables and state diagrams are essential tools in the analysis and design of
sequential digital systems. The reader should be familiar with these two tools by read-
ing the references listed in the end of this section.
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Because a sequential system has feedback from its outputs to its input, certain
types of instabilities and uncertainties can occur. When present, these conditions make
the operation of circuit difficult or impossible to describe. They may even render the
circuit useless, since its behavior may not be predictable or consistent. Several of these
types of problems are listed below.

1) The input or output conditions of the system may be indeterminant. For example,
the circuit in Figure 3.6.3.

] >c F

Figure 3.6.3 Example of Hazard Circuit

2) The output condition of the system may be unstable, changing even though the
external inputs do not change. Figure 3.6.4. illustrates an example.

DELAY

Figure 3.6.4 Example of Unstable Circuit
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3) The output condition of the system, even though stable, may not be predictable
depending upon the primary input conditions. Figure 3.6.5 is an example.

4 \
. F
o/ !
Iy “ T A
]
DELAY
f2
DELAY

Figure 3.6.5 Example of Circuit with Unpredictable Output States

However, these problems mentioned above can be avoided by making certain
restrictions in the way sequential systems are designed and used. For instance, the fol-
lowing are some restrictions:

1. Avoiding continuing instabilities (oscillations).
2. Allowing only fundamental-mode operation.

3. Allowing only pulse-mode operation.

References

Hill & Peterson “Introduction to Switching Theory and Logical Design’
Kohavi “Switching and Finite Automata Theory”

Rhyne “Fundamentals of Digital Systems Designs”’

Krieger “Basic Switching Circuit Theory.”
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The Programmable Logic
Family

National’s programmable logic family consists of PAL devices and PROMs that come in
a variety of gate densities, pin-counts, architectures, speed and power specifications.
The following sections describe and tabulate these various options in addition to dis-
playing the logic schematics.

4.1 BASIC GROUPS

The programmable logic devices are divided into two sections: one to address PAL
devices and the other to address PROMs.

4.2 THE PAL DEVICE FAMILY

The PAL device family is separated by pin-count and by architecture. There is a 20-pin
family and a 24-pin family. Each family contains simple combinational logic devices and
more complex devices which have on-chip feedback options and output registers. The
20-pin small PAL devices and the 20-pin medium PAL devices are listed in Table 4.2.1.

Part No. of No. of No. of No. of Output

No. Inputs Outputs 1/0s Registers Polarity Functions
10H8 10 8 ’ AND-OR AND-OR Array
12H6 12 6 AND-OR AND-OR Array
14H4 14 4 AND-OR AND-OR Array
16H2 16 2 AND-OR AND-OR Array
10L8 10 8 AND-NOR AND-OR-Invert Array
12L6 12 6 AND-NOR AND-OR-Invert Array
14L4 14 4 AND-NOR AND-OR-Invert Array
16L2 16 2 AND-NOR AND-OR-Invert Array
16C1 16 1 AND-OR/NOR AND-OR/AND-OR:-Invert Array
16L8 10 8 6 AND-NOR AND-OR-Invert Array
16R8 8 8 8 AND:-OR AND-OR-Invert Register
16R6 8 8 2 6 AND-OR AND-OR:-Invert Register
16R4 8 8 4 4 AND-OR AND-OR-Invert Register

Table 4.2.1 Members of the 20-Pin PAL Device Family

39
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The 24-pin PAL devices are listed in Table 4.2.2 and Table 4.2.3 shows how to read the
part numbers.

Part No. of No. of No. of No. of Output

No. Inputs Outputs 1/0s Registers Polarity Functions
12L10 12 10 AND-NOR AND-OR Invert Gate Array
14L8 14 8 AND-NOR AND-OR Invert Gate Array
16L6 16 6 AND-NOR AND-OR Invert Gate Array
18L4 18 4 AND-NOR AND-OR Invert Gate Array
20L2 20 2 AND-NOR AND-OR Invert Gate Array
20L8 14 2 6 AND-NOR AND-OR Invert Gate Array
20L10 12 2 8 AND-NOR AND-OR Invert Gate Array
20R8 12 8 8 AND-NOR AND-OR Invert w/Registers
20R6 12 6 2 6 AND-NOR AND-OR Invert w/Registers
20R4 12 4 4 4 AND-NOR AND-OR Invert w/Registers
20X10 10 10 10 AND-NOR AND-OR-XOR Invert w/Registers
20X8 10 8 2 8 AND-NOR AND-OR-XOR Invert w/Registers
20X4 10 4 6 4 AND-NOR AND-OR-XOR Invert w/Registers

Table 4.2.2 Members of the 24-Pin PAL Device Family

——————————— — PROGRAMMABLE LOGIC — FAMILY

PAL FOR PAL DEVICES

NL FOR NATIONAL MASKED LOG

PL FOR FACTORY PROGRAMMED PAL DEVICE

e NUMBER OF ARRAY INPUTS

r ——————— —OUTPUT TYPE:
H = ACTIVE HIGH

L =ACTIVE LOW

C = COMPLEMENTARY

R=REGISTER

X = EXCLUSIVE-OR WITH
REGISTER

P =PROGRAMMABLE
OUTPUT POLARITY

i — NUMBER OF OUTPUTS

= = — —— SPEED RANGE
NO SYMBOL = STANDARD SPEED
A = HIGH-SPEED
A2 = HIGH-SPEED, HALF-POWER
B = ULTRA HIGH SPEED, ETC.

— — —PACKAGE TYPE:
N =PLASTIC DIP
J = CERAMIC DIP
V =PLASTIC LEADED CHIP CARRIER

— TEMPERATURE RANGE:
C=0TO +75DEG. C
= -55TO +125 DEG. C

PAL L 2 A N C

Table 4.2.3 PAL Device Part Number Interpretation
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PAL Devices For Every Task

The members of the PAL device family are listed in Tables 4.2.1 and 4.2.2. They are
designed to cover the spectrum of logic functions at lower cost and lower package
count than SSI/MSI logic. This allows you to select the PAL device that best fits your
application. PAL devices come in three basic configurations: Gates, Register Outputs
With Feedback, and Programmable 1/O.

Gates

PALs are available in sizes from 12 X 10 (12 inputs, 10 outputs) to 20 X 2, with either
active-high or active-low output configurations. One part has complimentary outputs.
This wide variety of input/output formats allows the PAL to replace many
different-sized blocks of combinational logic with single packages.

Register Options With Feedback

High-end members of the PAL device family feature latched data outputs with register
feedback. Each Sum-Of-Product term is stored in a D flip-flop on the rising edge of the
system clock. (See Figure 4.2.1) The Q-output of the flip-flop can then be gated to the
output pin by enabling the active low TRI-STATE® buffer.

In addition to being available to transmission, the Q-output is also fed back into
the PAL array as an input term. This feedback allows the PAL device to “remember” its
prior state. And, it can alter its function based upon that state. This allows one to con-
figure the PAL device as a state machine that can be programmed to execute elementary
functions such as count up, count down, skip, shift, and branch.

INPUTS, FEEDBACK AND 1/O
CLOCK E

Da

[~]]

'Px 44———]

Figure 4.2.1 PAL Device Output Register Circuit, Simplified Logic Diagram
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Programmable 1/O

Another feature of the high-end members of the PAL family is programmable
input/output. This allows the product terms to directly control the outputs of the PAL
device. (Figure 4.2.2) One product term is used to enable the TRI-STATE buffer, which
in turn gates the summation term to the output pin. The output is also fed back into the
PAL device array as an input. Thus, the PAL drives the I/O pin when the TRI-STATE gate
is enabled. The I/O pin is an input to the PAL device array when the TRI-STATE gate is
disabled. This feature can be used to allocate available pins for 1/O functions or to pro-
vide bidirectional output pins for operations such as shifting and rotating serial data.

INPUTS, FEEDBACK AND 1/0

o—e— /O

P <

Figure 4.2.2 PAL Device Bidirectional Circuit, Logic Diagram

PAL Device - Speed/Power Groups

PAL devices are available with various speed/power specifications. For easy reference,
these are summarized in Tables 4.2.4 and 4.2.5.

20-Pin Small PAL
Devices 20-Pin Medium PAL Devices
10H8, 12H6, 14H4,
16H2, 10L8, 12L.6, 14L4,
16L2, 16C1 16L8, 16R8, 16R6, 16R4
Taa Max lgc Max Taa Max Tgy Min TeoLk Max lec Max
(ns) (mA) (ns) (ns) (ns) (mA)
Standard 35 90 35 35 25 180
A Series 25 90 25 25 15 180
B Series — — 15 15 12 180
A-2 Series 35 45 35 35 25 90
B-2 Series — — *25 *20 *15 *90

*Preliminary information.

Table 4.2.4 20-Pin PAL Device Speed/Power Groups
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20C1, 20L2,
18L4, 16L6, 14L8,
20L10 20X10, 20X8, 20X4 12L10 20L8, 20R8, 20R6, 20R4
Taa Max |lcc Max | Tgy Min | Te, « Max |lgc Max | Ty, Max | lgc Max | Ty, Max | Tgy Min | T ¢ Max |lgc Max

(ns) (mA) (ns) (ns) (mA) (ns) (mA) (ns) (ns) (ns) (mA)
Standard 50 165 50 30 180 40 100 — — - —
A Series | 30 165 30 15 180 *25 *100 25 25 15 210
B Series 20 20 15 210

PAL Device Logic Symbols

Table 4.2.5 24-Pin Speed/Power Groups

The logic symbols for each of the individual PAL devices gives a concise functional
description of that device. Figure 4.2.3 shows a typical logic symbol, that of the 10HS8
gate array.

PAL10H8

S

AND
GATE
ARRAY

YYYYIYYY

|

EIEl & E & EE =] 8

Figure 4.2.3 Logic Symbol, PAL10HS
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Figure 4.2.4 PAL Device Logic Symbols — Series 20
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PAL16L8 PAL16R8 PAL16R6
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EH @ & - {72 G |
G —m [ {11 m |

PAL16R4

j

a
-H  Bltm
H 7 [ofi7
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LA 3]
CH B
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B @

-1

Figure 4.2.4 PAL Device Logic Symbols — Series 20 (Contd.)
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Figure 4.2.5 PAL Device Logic Symbols — Series 24
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National’s broad PROM family extends from a 32 x 8 bit (256 bit) PROM to a 4096 x 8
bit (32K) PROM. Only the low density byte-wide PROMs are considered here for pro-
grammable logic applications. The products in this category are shown in Table 4.3.1.

Part No. of No. of Prod'::t. %:rmsl No. of Taa Max lcc Max

No. Density Inputs Outputs Output Pins (ns) (mA)
745288 256 Bit (32 x 8) 5 8 32 16 35 110
87X288B 256 Bit (32 x 8) 5 8 32 16 15 140
7415471 2K (256 x 8) 8 8 256 20 60 100
7415472 4K (512 x 8) 9 8 512 20 60 155
74S472A 4K (512x 8) 9 8 512 20 50 155
7454728 4K (512 % 8) 9 8 512 20 35 1565
745474 4K (512x 8) 9 8 512 24 65 170
74S474A 4K (512 % 8) 9 8 512 24 45 125
7454748 4K (512 x 8) 9 8 512 24 35 170
87SR474 4K (12x 8) 9 8 512 - 24* 35 185
87SR476 4K (512 x 8) 9 8 512 24* 35 185
87SR25 4K (512 x 8) 9 8 512 24+ 35 185

Military versions are also available. Above data is commercial.
*24 Pin Narrow Dual-In-Line Package

Table 4.3.1

PROM Configurations
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Size DIP Part TAA TEA IcC Temperature
(Bits) Organization (Pins) Number  (Max.)innS (Max.)innS (Max.)inmA Celsius
32 x 8 Standard PROMs

256 32x8 OoC 16 DM54S188 45 30 110 -55t0 +125
32x8 oCcC 16 DM745188 35 20 110 0to +70
32x8 TS 16 DM545288 45 30 110 -55t0 +125
32x8 TS 16 DM74S288 35 20 110 0to +70

32 x 8 Ultra High-Speed PROMs
256 32x8 TS 16 PL77X288 20 15 140 -55t0 +125
32x8 TS 16 PL87X288 15 12 140 Oto+70

256 x 8 Standard PROMs

2048 256x8 TS 20 DM54LS471 70 35 100 -55t0 +125
256x8 TS 20 DM74LS471 60 30 100 0to +70

512 x 8 Standard PROMs

4096 512x8 oCc 20 DM545473 75 35 155 -55t0 +125
512x8 oCc 20 DM748473 60 30 155 Oto +70
512x8 TS 20 DM54S472 75 35 155 -55t0 +125
512x8 TS 20 DM748472 60 30 155 0to +70
512x8 oC 20 DM54S473A 60 35 155 -55t0 +125
512x8 oCcC 20 DM74S473A 45 25 165 Oto +70
512x8 TS 20 DM545472A 60 35 155 -55t0 +125
512x8 TS 20 DM74S472A 45 25 155 Oto +70
512x8 TS 20 DM5454728B 50 35 155 -55t0 +125
512x8 TS 20 DM7454728B 35 25 155 0to +70
512x8 oCc 24 DM54S475 75 40 170 -55t0 +125
512x8 oCc 24 DM74S475 65 35 170 0to +70
512x8 TS 24 DM54S474 75 40 170 -55t0 +125
512x8 TS 24 DM74S474 65 35 170 Oto +70
512x8 oC 24 DM54S8475A 60 35 170 -55t0 +125
512x8 oC 24 DM74S475A 45 25 170 0to+70
512x8 TS 24 DM54S474A 60 35 170 -55t0 +125
512x8 TS 24 DM74S474A 45 25 170 0to +70
512x8 TS 24 DM54S474B 50 35 170 -55t0 +125
512x8 TS 24 DM74S474B 35 25 170 0to +70

512 x 8 Registered PROMs

4076 512x8 REG 24" DM77SR474 40 30 185 -55t0 +125
512x8 REG 24" DM87SR474 35" 25 185 0to +70
512x8 REG 24" DM77SR476 40 30 185 -55t0 +125
512x8 REG 24 DM77SR25 40" 30 185 —55t0 +125
512x8 REG 24" DM87SR476 35" 25 185 0to+70
512x8 REG 24" DMB87SR25 35" 25 185 0to +70

* 300 mil wide package.

** Set-up time.

Table 4.3.2 PROM Products for Logic




Figure 4.3.1 PROM Logic Symbols
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All of the virgin devices come with their fuses intact. But for the sake of simplicity, the

fuse-linked crosspoints in the array are shown unconnected.

4.4 LOGIC DIAGRAMS

The following pages show the logic diagrams of the PAL device and PROM family of
programmable logic devices. The logic diagrams are ordered in the following

sequence:

PAL Devices:

PROMs:

Figures 4.4.1—4.4.13 (20-pin PAL devices)
Figures 4.4.14—4.4.27 (24-pin PAL devices)

Figures

4.4.28—4.4.32
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Figure 4.4.1 Logic Diagram PAL10HS8
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How to Design with
Programmable Logic

There are two design objectives to keep in mind when using programmable logic
devices. The first objective is to use the programmable logic device to replace discrete
chips in the existing product. Each device will be able to replace 3 to 8 TTL chips. The
second objective is to design the programmable logic device into the new/next genera-
tion product.

Each design is different. But the procedures are similiar. Figure 5.0 shows a typical
design sequence.

DEFINE SELECT PROGRAM TEST
THE e e | THE e e e THE r—-—» THE
PROBLEM DEVICE DEVICE DEVICE

Figure 5.1.1 Design Sequence of the Programmable Logic Device

The design sequence can also be viewed as a set of five questions: (1) How do I
define the problem? (2) How do I select the logic device? (3) How do I write the logic
equations? (4) How do I program the device? (5) How do I test the device?

5.1 PROBLEM DEFINITION

First, we need to know the function of the logic circuit. Is it used for generating combina-
tional control signals, decoding addresses/operation codes, or multiplexing/demulti-
plexing signals? Is it used for counting or shifting bits, generating different control
sequences, or implementing a state machine for any usage?
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Then we can decide on the type of logic circuit. Is it combinational, sequential or
mixed? Table 5.1.1 shows the typical combinational and sequential circuits and the PAL
devices that can be adapted.

Typical Circuits PAL Devices Used For
10H8, 12H6, 14H4, 16H2,
COMBINATIONAL De.coder./encoder, multlplexer, adder, memory mapped 1/0, 10L8, 12L6, 14L4, 16L2,
strictly signal combination (no latch). 16C1, 12L10, 14L8, 16L6,
18L4, 20L2, 16L8
) ) 16L.8, 16R8, 16R6, 16R4,
SEQUENTIAL Counter, shift registers, accumulator, 20L10, 20X10, 20X8,
Control sequence generator 20X4, 20L8, 20R8, 20R6,
20R4

Table 5.1.1 Typical PAL Circuits

5.2 DEVICE SELECTION

The next question is, which PAL device should we choose to optimize space and cost?
To answer this, we first need to calculate the number of inputs and outputs of the logic
circuits being designed and decide on the outputs’ polarity: active-low or active-high.
For example, if there are 10 input and 7 output signals and the majority of outputs are
active-low, then the best choice is the 10L8. If the number of outputs are six, then we
can use either the 10L8 or 12L6. Since each PAL device has limited product terms, we
need to know how many product terms each output uses. The number of product
terms each output will use can be viewed from logic equations. For instance, the logic
equation of O1 = P1 + P2 + P3 + P4 + P5 will use five product terms for the output O1.
Fortunately, National’s software, PLAN, will help the user to select the right PAL device.
See chapter 6 for a discussion of PLAN.

Table 5.2.1 shows National’s 20 pin PAL device configurations and Table 5.2.2
shows the 24 pin PAL devices.
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Max Propagation Delay (ns)
1/0 (and CLK to Output) lec No. of
Complexity Series | Series Max Data No. of Outputs
PAL (1) Standard A B (mA) Inputs and Configurations
10H8 208 35 25 1) 10 | 8xBI1>—
10L8 208 35 25 % 10 | 8x —BI>—
12H6 20S 35 25 90 12 | ax—BT>—-> x%}—
12L6 208 35 25 90 12 | ax BI>—2x %}—
14H4 208 35 25 90 1 | ax %D_
14L4 208 35 25 9 14| 4x %}-
16C1 20S 35 25 90 16 1% iﬂ
16H2 20S 35 25 90 16 2x %}—
16L2 20S 35 25 90 16 2x %Dk
16L8 20M 35 25 15 180 16-10 | 6x % 2% %
16R4 20M 35/25 2515 | 15/12 | 180 12-8 % % |
16R6 20M 35/25 2515 | 15/12 | 180 10-8 %
16R8 20M 35/25 25/15 | 15/12 | 180 8

Table 5.2.1 20 Pin PAL Device Configuration
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Max Propagation Delay (ns)
1/0 (and CLK to Output) e No. of
Complexity Series | Series Max Data No. of Outputs
PAL 1) Standard A B (mA) | Inputs and Configurations
12L10 248 40 100 12 10x BT >—
14L8 248 40 100 14 | 6x BT >—o2x %
16L6 248 40 100 1 | 2xTBT>— 4«x %}-
18L4 24s 40 100 18 | 2x %} 2x %}—
20C1 248 40 100 20 1%
20L2 248 40 100 20 | 2x %}
20L10 24M 50 165 | 20-12 | 8 x@Z x @
e
20X4 24M 50/30 180 16-10 | 4x 6x
.
20X8 24M 50/30 180 12-10 | 8x 2x
20X10 24M 50/30 180 10 10 x
(1) Complexity:
20 =20-PinPAL S = Small PAL
24=24PinPAL M = Medium PAL

Table 5.2.2 24 Pin PAL Device Configuration
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5.3 WRITING LOGIC EQUATIONS

Writing logic equations from an existing combinational circuit is straightforward.
Examples are given in Chapter 3. Also, the generation of logic equations for a new

design combinational circuit is quite simple. The procedures are as follows:

1. Define the inputs and outputs.

2. Generate the Truth Table.

3. Use the techniques mentioned in Section 3.2 to get the SOP expression for each

output.

4. Use the minimization techniques mentioned in Section 3.3, i.e., Boolean Algebra, K-

Map or the Quine-McCluskey method to minimize every SOP expression.

5. These four steps result in the logic equations.

Figure 5.3.1 shows these steps:

FUNCTIONAL
DESCRIPTION

It is much more complicated to generate logic equations for a sequential circuit.

DEFINE INPUTS
AND OUTPUTS

b — o]

TRUTH
TABLE

KARNAUGH MAPS OR
BOOLEAN ALGEBRA

e o

———— - g

TRANSFER
FUNCTION
(LOGIC
EQUATIONS)

(PROGRAMMING THE PAL DEVICE)

b = —

CIRCUITS
(PAL)
DEVICE

FUNCTION
TABLE

Figure 5.3.1 Combinational PAL Device Design Steps

Generally, the procedures are as follows:

1. Define the inputs and outputs, different states and variables.

. Generate the state diagram.

2
3. Generate the state table.
4

. Minimize the state table.
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5. Assign the new state.
6.
-
8

Generate the transition table.

Figure 5.3.2 shows these seven steps.

Programmable Logic Design Guide

. These seven steps result in the logic equations.

. Use the minimization technique to minimize transition table.

MINIMIZING TH
STATE TABLE

STATE
TABLE

MINIMAL
STATE TABLE

KARNAUGH MAPS OR

BOOLEAN ALGEBRA

STATE
DIAGRAM [~ — —™
STATE
ASSIGNMENT
—_— A _]TRaNsiTION
TABLE [~———

—— — — —

TRANSFER
FUNCTION
(LOGIC
EQUATIONS)

(PROGRAMMING THE PAL DEVICE)

e w— —— v— -]

CIRCUITS
(PAL)
DEVICE

FUNCTION
TABLE

Figure 5.3.2 Sequential PAL Device Design Steps

5.4 PROGRAMMING THE DEVICE

Given the logic equations, the PAL device programmer will manage the programming
job for us. All we need to do is to enter those logic equations into the terminal. The
programming procedures are shown in Figure 5.4.1.

After programming, the fuse status should be verified. Most programmers will pro-
vide this fuse verification capability.

Manually coding the programming format sheet, which has appeared in National’s
1983 PAL Device Data Book will not be discussed in this Design Guide.
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EXERCISE N
ENTER ENTER FUNCTION TABLE[™™]  cpeate
LOGIC —>|  FUNCTION -+ INTOLOGIC BIT PATTERN [——
EQUATIONS TABLE EQUATION
(SIMULATION)

IF NO FUNCTION TABLE AVAILABLE

LOAD PATTERN PROGRAM VERIFY TEST PALs
——— INTO - FUSE —_ FUSE > FUNCTION =
PROGRAMMER MATRIX MATRIX WITH TEST
VECTORS
ANOTHER *
LOGIC
TEST
BLOW
—3{ SECURITY FUSE
IF WANT
* FOR EXAMPLE: DATA 1/0’s FINGERPRINT TEST.

Figure 5.4.1 PAL Device Programming Procedures

5.5 TESTING THE DEVICE*

Fuse verification tells us if the fuse was blown correctly or not; but it doesn’t tell us if
the PAL device functions properly. Therefore, we also need to do functional testing.
There are two ways to do functional testing. One method uses function tables. Another
method uses test vectors. Each of these methods may give a different result.

Function tables are generated without reference to the logic equations. The func-
tion table tells what the PAL device should do. Function tables are used to determine if
the device functions as intended. If it does not, we have to go back to the equations,
since there may be a problem there.

Test vectors are generated directly from the logic equations. They are used to verify
the internal operation of the PAL device. If a problem is detected, it implies that some-
thing is internally wrong with the device. However, a device may pass the test vector
screening and still not function properly if the logic equations were derrived incorrectly.

It is the logic designer’s responsibility to generate the function table. This is the
person who best knows the design. After the design is released, the test engineer will

*Also see Chapter 7 for details about testing.
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take the responsibility for testing incoming devices. As mentioned before, the function
table can’t catch all the interior bugs. Therefore, the test engineer needs to write the
test vectors. It is a large and sophisticated job to create test vectors. Figure 5.5.1 shows
these steps and will be explained in chapter 7. There are a few software packages availa-
ble for generating test vectors, for example; HILO!, and TEGAS?, LOGCAP?, LAZAR?.

S-A-0 TEST FOR EACH PRODUCT TERM TEST
P S-A-1 TEST FOR EACH PRODUCT TERM e = VECT% s
S-A-1 TEST FOR EACH LOGIC EQUATION R

LOGIC
EQUATIONS

Figure 5.5.1 Test Vectors Creating Steps

5.6 PROGRAMMER VENDOR LIST

PAL
Device Storage Media for | Programs
PAL- Design- | Performs Blows
Basic Device Software Logic Bit Test 20- | 24- | Security
Mfgr. Equipment | Module | Adapters| Included | Simulation | Pattern | Vectors | Pin | Pin | Fuses
Data /O | Model 19, 1427 1428-1 No No Master — Yes | No No
19A or -2 PAL
100A -3
Digelec uP 803 FAM 51 20+24 Yes No Master + Yes | Yes Yes
Pin PAL
Socket
Kontron | EPP80or | MOD 21 | SA27+ No No Master — Yes | Yes Yes
MPP 80S SA 27-1 PAL
Stag PPX PM 202 + | AM10H8 Yes No Master — Yes | No Yes
BRAL . PAL
L]
L]
AM16C1
Citel System 47 PL1 No No Master 7 | PROM | Yes | Yes Yes
PAL,
PROM,
EPROM

All these systems program and verify the PAL in the PROM mode. They do not perform a logic simulation in the PAL device
mode. Additional (external) circuitry for logic simulation should be used if PAL devices go into volume production — otherwise, a
small percentage of the PAL devices will show failures when testing the complete PC board. OK for prototype-making.

Table 5.6.1 PAL Device Programmers

1. HILO is a registered trademark of Gen Rad.

2. TEGAS is a registered trademark of CDC.

3. LOGCAP is a registered trademark of Phoenix Data Systems.
4. LAZAR is a registered trademark of Teledyne.
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PAL .
Device Storage Media for Programs
PAL- Design- | Performs Blows
Basic Device Software Logic Bit Test 20- | 24- | Security
Mfgr. Equipment| Module | Adapters | Included | Simulation | Pattern | Vectors | Pin | Pin Fuses
Data 10 Model 19, | Logic- Design Yes Yes, Master | External | Yes [ Yes Yes
29A or Pack Ad. and Automatic PAL or
100 and Progr. or Manual or
Any Ad. Generation
Terminal of Test EPROM
Vectors
Digelec uP 803 FAM 52 | 20- and Yes Yes, Master | External | Yes | Yes Yes
24-Pin Automatic PAL
Adapter or Manual
Generation
of Test
Vectors
Stag — ZL 30 — Yes Yes, Master | External | Yes | Yes Yes
Automatic PAL
or Manual
Generation
of Test
Vectors
Structured Any SD20/ — Yes Yes, Master | External | Yes | Yes No
Design Terminal 24 Manual PAL or
Generation or
of Test
Vectors On Wafertape
Structured Any SD1000 — Yes Yes, Master | External | Yes | Yes Yes
Design Terminal Manual PAL or
Generation or
of Test
Vectors EPROM

All these systems allow software supported PAL device design. They perform a fuse-verify in the PROM mode and can do a
logic simulation in the PAL device mode. All 5 programmers and 5 development systems can be connected with a host com-
puter to run more sophisticated design software and/or for storage use.

Table 5.6.2 PAL Device Development Systems
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5.7 EXAMPLES

Example 1: Replace the existing logic circuit in Figure 5.7.1 by a PAL device.

h 0—~>—D<%

2 0-
130 I ) 4 -0 03

—

70 —0 Og

¥ =

Figure 5.7.1 Design Example, Logic Diagram
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-
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We will follow the procedure discussed in this chapter. We know the first step is to
understand the function of this circuit. There is no register and latch involved. By
experience, we understand that this circuit is used to manipulate different input signals
and generate different outputs. We should select the combinational PAL device (i.e.,
PAL10HS, PALIOL8, PAL12HG, etc.).

The second step is to choose the specific device. Because the number of inputs is
10 and the number of outputs is 6, we limit our choice to be 10H8, 10L8, 12H6 and
12L6. Three outputs have AND-OR functions and 3 outputs have AND-OR-INVERT
functions. We could still select from either active-high or active-low (H or L) parts.
Since the more complex functions are AND-OR-INVERT, the active LOW (L) series is
most likely. Therefore, we now limit our choice to the 10L8 and 12L6 devices. A review
of the 10L8’s logic diagram shows that all of its NOR gates are two-input gates, and the
design example requires a three-input gate. On the other hand, the 12L6 has two 4-
input gates which will accommodate the 3-input requirement. It, therefore, is selected.

The third step is to write the logic equation. It is very straightforward for this
example.
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We get:

0, =/

0 = /11 x I

03 =1) + 13
04 =/(/13* 1y)

05 =/(/I3*15*16+ I+ 18*19)
06 =/(18*19 +/I3*/I7*19*110)

Since we have selected a PAL12L6 (which has inverting outputs) we need to apply
DeMorgan’s theorem to convert these equations from active-high to active-low out-
puts. DeMorgan’s theorem can be used to convert any logic form to the AND-OR or
AND-NOR structure used in PALs. Applying DeMorgan’s theorem gives the active LOW
form of the equation:

/01 = I]

/02 =1 + /Iz

/03 = /Il * /13

104 = 13 = 14
/05=/13*15*16+I7+18*I9

106 = Ig * Ig + /13 * /I3 = Ig * 1o

Assuming that there are no board layout constraints, input I; through I;o may be
assigned to pins 1 through 11 (pin 10 is ground). The only constraint on output pin
assignment is that 05 must be assigned to pin 13 or 18 to take advantage of one of the 4-
input NOR gates.

The fourth step is to program the PAL device. To do this we must enter the logic
equations into the computer or the PAL device programmer. National’s PLAN software
allows users to enter logic equations in any format. But PALASM requires the program
shown in Figure 5.7.2 in its host computer to be used as follows:

Line 1 PAL12L6

Line 2 PAT201

Line 3 PAL DESIGN EXAMPLE

Line 4

Line5 4121313151617 1g1g GND l4g NC 05

Line 6 0g 04 03 02 04 NC Vcc

Line 7

Line8 /04=1

Line9 /02=11+/l2

Line 10 /03=/11 + /I3

Line 11 /0g=/I3 * |,

Line 12 /0g=Ig * lg+/l3 * /l7 = lg * lo

Line13 /0s=/l3 *Is+lg + I7 + lg * Ig

Line 14

Line 15 DESCRIPTION

Line 16

Line 177 THIS PROGRAM IS A DESIGN SAMPLE DESCRIBING
Line 18 THE USE OF PALASM AS A PAL DESIGN AID.

Figure 5.7.2 Example of PALASM Program Input
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Line 1:
Line 2:
Line 3:
Line 4:

Lines 5, 6,
and 7:

Line 8:

At the left margin, the PAL device is specified. For this example, the 12L6
remains the best solution, therefore entering PAL12L6 at the left margin.

A unique pattern number for this PAL device design is entered at the left
margin on Line 2, followed by designer’s name and date.

The name or description of the device or function is entered. If this runs
over one line, Line 4 may be used to complete it.

If not used to complete Line 3, this line is skipped.

These lines are used for pin assignments. All 20 of the pins on the PAL are
assigned symbolic names, usually corresponding to the symbols used on
the logic diagram. (Note that GND and V.. must be included.) Assignment
starts at pin 1 and proceeds sequentially, through pin 20.

Beginning on Line 8 or Line 6, if only Line 5 is needed for the pin assign-
ments, the logic equations that describe the required functions are written
using the symbols defined in Lines 5, 6 and 7, in the format applicable to
the PAL device selected. For example, the output of the 12L6 is low for the
selected product term; therefore, the logic equations must be of the form
104 = (I}, L,,...). The symbology used must be that shown in Figure 5.7.3.

EQUAL
REPLACED BY, FOLLOWING CLOCK
COMPLEMENT
AND, PRODUCT
OR, SUM
: XOR
XNOR
CONDITION TRI-STATE IF STATEMENT, ARITHMETIC

St oe =y

—_
~

Figure 5.7.3 PALASM Operators

Then the PAL device software will generate the fuse map and bit pattern shown in
Table 5.7.1, load pattern into programmer, program the device and verify the fuse
matrix. Since there is no function table in this example, we need to do another logic
test to guarantee it works properly. For example, we can do the fingerprint test if we
already have a known good device, or we can generate a few (or whole) test vectors to
do the structure test in a DATA I/O programmer.
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8 -=-X- -———- - - - - - - -- -——- -———-

9 XXXX XXXX XX XX XX XX XXXX X XXX
10 XXXX XXXX XX XX XX XX XXXX X XXX
n XXXX XXXX XX XX XX XX XX XX XXXX

16 -—X- ——— - -— - -- ———- ———
17 -X-- ——— -— - -- - _———- ——_—
24 | ---Xx -X-- - -- - -- _——— _———
25 | XXXX XXXX XX XX XX XX XXXX XXXX
32 _——- -X-- X-  -- - - ——— _———
33 | XXXX XXXX XX XX XX XX XXXX XXXX
0| ---- - - S X--- X ==
a _—- -X-- -- -- -—— =X ———- X-X-
48 _———- -X-- - X-  X- - —_——— _——
49 | ---- ——— - - - X- ——— ——_——
50 | ---- _——— - _—_ e - X--- X-=-

51 XXXX XXXX X X XX XX XX XXXX XXXX

Table 5.7.1 Fuse Map

Figure 5.7.4 is the logic diagram of this PAL device and Figure 5.7.5 shows the PAL
device legend.

Example 2: Design a multiplexer to select one of three input data buses which contain
4 data lines, as shown in Figure 5.7.6. The output should be high if we don’t select any
data bus.

From Figure 5.7.6 we know there are 14 input lines and 4 outputs. Since we select
one out of three, we need 3 product terms in each output. In addition, we need
another product term to implement diselection which will cause all output-high. From
the PAL device select chart (Table 5.2.1) we find 14H4 is the best fit.

The logic equation is very easily derived from intuition or we can get from the
truth table shown in Table 5.7.2.

PLAN software will help us to select the device, assign pinouts, and generate a fuse-
map. All we need to do is enter the logic equations.

Y1 = /SELA * /SELB * A1 + SELA = /SELB * B1 + /SELA * SELB * C1 + SELA =

SELB

Y2 = /SELA * /SELB = A2 4+ SELA  /SELB *« B2 + /SELA « SELB = C2 + SELA =
SELB

Y3 = /SELA = /SELB » A3 + SELA » /SELB * B3 + /SELA » SELB = C3 + SELA =«
SELB

Y4 = /SELA = /SELB * A4 + SELA = /SELB * B4 + /SELA * SELB * C4 + SELA »
SELB
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Figure 5.7.4 Logic Diagram of the National Type 12L6 PAL®
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PAL Legend
Constants
LOW (L) NEGATIVE (N) ZERO(0) GND FALSE x —+— FusE NoT BLOWN
HIGH (H) POSITIVE(P) ONE(1) Ve TRUE - —| — FUSE BLOWN
Operators = EQUAL
:= REPLACED BY FOLLOWING CLOCK
/ COMPLEMENT
* AND, PRODUCT
+ OR, SUM
HE XOR
:*: XNOR
( ) CONDITIONAL THREE STATE, IF STATEMENT, ARITHMETIC
Equations

Ll +1y 1
I1*/12 + JI1l*12

Standard Qy =
PALASM 0l

Conventional Symbology

Iy
L+ Tl
Iy

PAL Device Symbology

LOGIC STATE
FUSE iIC STA
BLOWN Vee HLLH PRODUCT WITH ALL
INPUTH s—1 FUSES BLOWN REMAINS
FUSE HIGH ﬂl{l ALWAYS
NOT BLOWN D H
S D_P—m‘DUCT WITH ALL
o gy >3 FUSES INTACT REMAINS
Iyl +14 1y B LOW ALWAYS

SHORTHAND NOTATION

FOR ALL FUSES INTACT
D A

PAL Logic Diagram

INPUT LINE NUMBER

ACTIVE HIGH THREE-STATE ENABLE

011 vwegow

WU U RIS 20002000 A6 N30T

CLOCK+
e

PRODUCT [ :
LINE | !

NUMBER | :

19
@éﬂ STANDARD SUM OF PRODUCTS
IS EQUATED AT THESE NODES

2

P

(BEFORE THE BUBBLE)

PIN

NUMBERS

A

Figure 5.7.

5 PAL Legend
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EN ——] B
UP/DOWN ——] _ BCD AL USA

_ | COUNTER If /

EN

>1 BCD 4/ BUS B
UP/DOWN >
1 COUNTER [ Y
CLK =————>1 4
4 I BUSC
/
MULTI- 47| DECODER |7/ | 7-SEGMENT
2 PLEXER DRIVER 7 DISPLAY
SELECT /

Figure 5.7.6 Block Diagram of a Multiplexer

A1 A2 A3 A4 | B1 B2 B3 B4 | C1 C2 C3 C4 | SELA [SELB| Y1 Y2 Y3 Y4
A1l A2 A3 AAd| X X X X X X X X L L | A1 A2 A3 A4

X X X X |BtB2B3B4| X X X X H L B1 B2 B3 B4
X X X X X X X X |C1 C2 C3 C4 L H C1 C2 C3 C4
X X X X X X X X X X X X H H H H H H

Table 5.7.2 Truth Table

We can replace 2 of 745153 in this application.
The Function Table and logic diagram are shown in Table 5.7.3 and Figure 5.7.7.

A1 A2 A3 A4 | Bt B2 B3 B4 | C1 C2 C3 C4 | SELA|SELB| Y1 Y2 Y3 Y4
L L L L X X X X X X X X L L L L L L
X X X X X X X X X X X X H H H H H H
H H H H X X X X X X X X L L H H H H
X X X X H H H H X X X X H L H H H H
X X X X X X X X L L L H L H L L L H
X X X X X X X X L L H L L H L L H L

Table 5.7.3 Function Table
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Inputs (0-31)
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Figure 5.7.7 Logic Diagram of the National Type 14H4 PAL Device
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Example 3: Design a 3-bit counter which causes only one bit change for each change
of state shown in Figure 5.7.8. A RESET input will initialize the counter to 000.

The PAL device under design is used for a 3-bit counter with only one input line,
RESET. When active, it will reset all three flip-flops. Obviously we can use a 16R4 to
implement this application.

A B C

0 0 0
0 0 1

0 1 1

0 1 0

1 1 0 REPEAT
1 1 1

1 0 1

1 0 0

0 0 0

0 0 1

Figure 5.7.8 3-Bit Counter

Q" — — — . Qn+T” D J K ] R T
0 —————> 0 0 0 X 0 X 0
06 ————— 1 1 1 X 1 (i} 1
1 ————— 0 0 X 1 (] 1 1
1 ———— = 1 1 X 0 X 0 0

*Q", Q"+1 STAND FOR PRESENT AND NEXT STATE; X IS DON’T CARE.

Table 5.7.4 Transition Lists
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We can easily write the transition table for this simple example as shown in

Table 5.7.5.
CLK | R(RESET) AP B" cn AN+ gn+1 cn+i
} 0 0 0 0 0 0 1
) 0 0 ] 1 0 1 1
4 0 0 1 1 0 1 0
A ° 0 1 0 1 1 0
4 (] 1 1 (] 1 1 1
4 0 1 1 1 1 0 1
4 0 1 0 1 1 0 0
A 0 1 0 0 0 (] 0
4 1 X X X 0 0 0

Table 5.7.5 Transition Table

We can get the logic equation from Table 5.7.5 by K-map minimization technology
as shown in Figure 5.7.9.

AB

CR 00 o1 1 10
0| o ‘ 1 1 I 0
01 0 0 0 0

1 0 0 0 0

10 0 0 |1

AB AB

CR\ 00 01 11 10 CR\_00 o1 11 10
0| o ‘ 11 1] o 00 | 1 l 0 | 1|l o
ool o o oo o0l o |0 ]| o0 ]| o0
1/ 0| 0| 0] o0 n| 0| 0] o0]oO
10 || 1 11/ 0] o 0 1] ofl1]l o

B Cc
Figure 5.7.9 K-map

We can also get the Function Table from Table 5.7.5. In this case, we replace 2 of
74S00 and 1 of 74S175.
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Example 4: Design a video-telephone sync pulse detector.

The video-telephone set contains a CRT for displaying the received picture from
another video-telephone, and a vidicon camera for generating the picture to be trans-
mitted.

The vidicon sweeps across the head and shoulders view of the person talking,
starting at the upper left of the picture and moving right as shown in Figure 5.7.10.

Figure 5.7.10 Sweep Generation

The dots shown in the figure represent samples taken by the vidicon. The vidicon
produces a voltage that is proportional to the light intensity for each sample taken. The
voltage is then quantized into seven levels. These seven levels correspond to light levels
from white to black with intermediate levels of gray. Because there are seven quantized
levels, a 3-bit quantizer is employed. These seven levels are then channel-encoded such
that where the code 1 1 1 is reserved for the line sync pulse. The data are transmitted in
a bit-serial manner. When the sync pulse is detected, the receiver camera flies back to
start a new line, as shown in Figure 5.7.10. The use of the line sync pulse ensures that

0 0 0 |————— WHITE

o0 1)

01 0

0 1 1 L LEVELS OF GRAY
100

1.0 1| |

i1 0 |————— BLACK
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all the lines start at a well-defined left edge. This prevents the occurrence of skewed
lines which will distort the picture.

The PAL device under design is used as a sync pulse detector which will trigger the
flyback circuit. There is another feature we need to design into this PAL device which
automatically resets to the initial state after three input pulses. This reset procedure will
ensure that no false output occurs due to consecutive sequences which produce an
overlapping 1 1 1 sequence.

From the function description above, we can generate the State Diagram and State
Table as shown in Figure 5.7.11 (a) and (b).

0/0, 111 X

1/0 -\ 1o 2 k

A —( B »{ ¢

J A D/0 B/0
B E/0 clo
c Al0 Al
D E/0 E/0
E Al0 A/O

(A) STATE DIAGRAM (B) STATE TABLE

Figure 5.7.11 (A) State Diagram (B) State Table

Where A is the initial state, the sequence A 10, g 10, ¢ UL, Awill detect the
sync pulse (1 1 1) and generate a “1” output. Note that the state diagram is arranged so
that every sequence of length 3 returns the machine to the initial state A.

Since we have 5 different states (3 registers are enough), 1 input for serial data, 1
non-register output for sync pulse detecting, we may use the 16R4 to implement this
application.
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Let’s assign these 5 different states as in Table 5.7.6.

STATE ASSIGNMENT
STATE Y1, Y2, Y3
000

001

010

101

110

mooOw>»

Table 5.7.6 State Assignment

Then from the State table Figure 5.7.11 (B) we get the Transition table shown in
Table 5.7.7.

X X
vl y2 y3 0 1 0 1
000 101 00 1 0 0
0 0 1 110 010 0 0
010 000 000 0 1
011 X X X| X X X X X
100 X X X| X X X X X
101 110 110 0 0
110 000 000 0 0
111 X X X| X X X X X
Y1 Y2 VY3 z

Table 5.7.7 Transition Table

From Table 5.7.7 Transition Table we can draw the K-map of each register output
Y1, Y2, Y3 and the non-register output Z as shown in Figure 5.7.12.
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y3 X y3 X
yioy2 00 01 11 10 yiy2 00 01 11 10
0o o 1 0 0 1 0 0 0 0 1 1
o 1 0 0 X X 0 1 0 0 X X
1 1 0 0 X X 11 0 0 X X
1 0 X X 1 1 1 0 X X 1 1
Y1 Y2
Y1 = Y1°Y3 + Y2*X Y2 = Y3
Y3 X Y3 X
0 01 11 10 00 01 11 10
Y1 Y2 0 Y1 Y2
00 1 1 0 0 o0 0 0 0 0
0o 1 0 0 X X o 1 (] 1 X X
11 0 0 X X 11 (] 0 X X
10 X X 0 0 1.0 X X 0 0
Y3 z
Y3 = Y2'V3 Z = Yi'v2*'x

Figure 5.7.12 K-map

Therefore, we get the logic equations as:

Y1 = Y1*xY3+Y2*X
Y2 = Y3
Y3 = Y2+Y3

Z = Y1+Y2+X
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Summary

The four design examples are quite simple for purposes of illustration. The author
has attempted to give the reader a very clear idea and to encourage the reader to use
PAL devices. The reader can find other examples in the applications section of
Chapter 8.

Here the author would like to point out one thing; “There are many different
approaches to designing a PAL device circuit.” Some users like to directly code the PAL
device logic diagram (coding “x”). In this case, users may not need logic equations. But
if circuits become more complicated, then the user will find that the logic equations are
much easier to get than directly coding “x” in the PAL device logic diagram. There are
many ways to develop logic equations. One approach is to use truth tables or transition
tables. Another way, which is widely used, is from timing waveforms.

The user can draw the timing diagram for each output, then derive his logic equa-
tions from these timing waveforms. But no matter what method is used, the user still
needs to know the K-map or other techniques (the Quine-McCluskey method is fre-
quently used) to minimize his logic gates.

The author strongly recommends deriving the logic equations for PAL devices
rather than coding “X” in the PAL device logic diagram. Then the user can take advantage
of PAL device software (PLAN, PALASM, etc.) instead of manually coding the PAL de-
vice programming format sheet.



Software Support

Today a variety of software products makes the logic design engineer’s task much eas-
ier. The designer can now focus on the intricacies of logic design at the Boolean level
instead of filling in tedious fuse map charts, or worrying whether a standard logic part
exists to implement the logic. Some of the traditional programmer vendors are now
marketing full-fledged development systems or CAD systems that include the terminal,
software and the hardware for fuse blowing, and logic verification. Other vendors mar-
ket software only or programmer/verifier only. The key part of any development sys-
tem is the software and this section describes the attributes of these products.

6.1 ADVANTAGES OF SOFTWARE-BASED PROGRAMMABLE LOGIC DESIGN

When programmable logic devices were first introduced, the only method for specify-
ing the logic to be implemented was to manually code the status of each fuse on a form
and then enter this information into a programmer. With a device like the PAL16LS8
which has 2048 fuses, this manual method is clearly time-consuming and error-prone.
Furthermore, these early programmers could not verify if the programmed device was
functional. They could only check if the correct fuses were blown. Information about
testing is found in Chapter 7.

The first phase in software development was the development of tools to eliminate
the manual fuse-map entry. Users could enter Boolean equations in Sum-Of-Products
format on a computer and the program would generate the fuse-map information
which could be downloaded to a programmer unit (Figure 6.1.1).

aononoonnnn

LOGIC
= PAL DEVICE ggsngMMED

EQUATIONS ~
quuduuduuuuul

Figure 6.1.1 Early Role of Software
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Subsequent developments in software goes further in providing two additional capa-
bilities. The first area of improvement is logic design. Recent developments are emphasiz-
ing design tools for logic circuit design with features like high level logic design options
and plans for logic minimization, and state-machine synthesis. The second area being
addressed is that of functional testing of programmed devices. Most of the current soft-
ware has features to perform simulation for design verification, i.e., verify if the user sup-
plied test vectors match the logic conditions described by the equations for the logic
being implemented. These test vectors can also be downloaded to a programmer which
will perform a functional test on the programmed device (Figure 6.1.2).

gooonooonon

Loaic . PROGRAMMED
EQUATIONS - PAL DEVICE C DEVICE
A R RN L L L LY
oonooannooonn
LOGIC FUNCTIONAL
DESIGN AIDS - PALDEVICE DEVICE

[VJIQERIRupsgupngops|

Figure 6.1.2 Expanded Role of Software

The next section describes National’s contribution to advanced programmable
logic design software called Programmable Logic Analysis by National (PLAN).

6.2 PROGRAMMABLE LOGIC ANALYSIS BY NATIONAL (PLAN)

PLAN is a set of interactive software tools for logic designers who will be using pro-
grammable logic devices in their circuits. The advantages of PLAN are that: (1) it is easy
to use; and (2) it comes with clear and simple documentation that explains the numer-
ous features of PLAN and the methods of accessing and using these features. PLAN also
has a liberal sprinkling of error messages to help the user. PLAN does not have PALASM
type input format constraints and is available on more than one operating system. The
package actually contains three programs: PLUS, SERV, and PROG.

PLUS allows the user to define logic via Boolean equations and also selects an
appropriate device and assigns pin-outs. The resulting equations, device, and pin-outs
are stored in a file.
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The next program, called SERV, can then be used to access the logic defined by
PLUS for possible reassignment of the device and pin-out. When the device and
pin-outs are finalized, SERV also displays the pin-out diagrams, fuse-maps and equa-
tions. For documentation purposes, the above data can also be printed out.

The third program, called PROG, takes the logic and pin assignment data and pro-
vides it to a programmer in a format that the user selects. This program can also acquire
a previously defined file containing test vectors and download it to a programmer for
functional verification.

The software package is available on 8-inch SSSD (Single Side Single Density)
floppy disks to run under CP/M-80 and 5 1/4-inch SSSD floppy disks for operation
under MS-DOS and APPLE-DOS. Future revisions will include other operating systems.

Boolean Entry

The Boolean entry operators that PLAN supports are shown in Table 6.2.1

EQUALITY
AND, PRODUCT
OR, SUM
COMPLEMENT
REPLACED BY (AFTER CLOCK)
CONDITIONAL TRI-STATE
: EXCLUSIVE OR

P T

Table 6.2.1 Boolean Operators

An example of a logic equation using these operators is:
(/INP1 * INP2) OUT2 = /INP3 x INP4

A useful feature that PLAN offers during Boolean logic entry is the definition and
inclusion of logic macros. Table 6.2.2 is an example of the use of the macro feature in
PLAN.

MACRO IS EN1*/CK2
INPUT RESULTING EQUATION
OUT1 = INP1*/INP2 OUT1 = INP1*/INP*1EN1*/CK2
+/INP1*INP2 + /INP1*INP2*EN1*/CK2
OUT2 =INP3 + INP4 OUT2=INP3 + INP4EN1*/CK2
*INP5*INP6 | *INP5*INP6

Table 6.2.2 Macro Entry with PLAN
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PLAN allows the user to edit the Boolean equations after entry. When the equations
are finalized, the program will automatically select a device that can implement the
defined logic and assign pin-outs to that device. This process is shown in Figure 6.2.3.

The information can also be stored in a file and the data in the file is essentially the
information in Figure 6.2.3.

EQUATIONS/VARIABLES PINOUTS
LADSHG = D*KJR*/RDIUH —
+ OJH*IH
OEU = EUY*KJR + DU K 20 |—Vee
ERIJH = DJ*JD*JJJ *JPP KJR—] 2 1}
+ IODF*DFJ*JJJ*JPP RDIUH—] 3 18 }-pFy
oH—4 -
IH— 5 16 |- oeu
' EUY— 6 15 |- LADSHG
DEVICE pu—7 14 |- ERH
pJ—18 13 —IODF
LOGIC DEVICE NAME IS PAT0099 el s 12 b upp
THE SOURCE DEVICE IS A PAL 14H4 >
A SERIES 20 SMALL PAL WITH GND—]10 np=Ja
ACTIVE HIGH OUTPUTS

Figure 6.2.1 PLAN File Information

File Editing and Documentation

The program SERV can be used to change the selected device and also to change the
pin-out assignment. When the device and pin-outs have been finalized, the device dia-
gram with pin-out, the equations or the fuse-map of the programmed device can be
printed out or viewed on the screen. Figure 6.2.4 is an example of the fuse-map display.

Programming and Testing

In order for a programmer to function, it has to receive the fuse-map information in a
specified format. The third program in PLAN, called PROG, will provide the fuse-map
information, at the users option, in any of the five formats listed in Table 6.2.3.

The programmer fuse-map data can be saved in a file for later use. PROG can also
access a file containing test vectors and download them to a programmer for functional
verification of a programmed device.

Because of its ability to support the various data formats, many programmers are
supported by PLAN and most are physically interfaced through a standard RS-232 cable.
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INPUTS (0-31)

02
16 XXXX
17 XXXX
19 XXXX

24 Xe—o
P 1 J—
26 XXXX
27 XXXX
32 X-X-
33
34 XXXX
35  XXXX

Y J—
F —
42 XXXX
43 XXXX

PRODUCT
TERMS
(0-63)

46

XXXX
XXXX
XXXX

XXXX
XXXX
~Xem
XXXX
XXXX

XXXX
XXXX

XXXX
XXXX
XXXX

XXXX
XXXX

X
XXXX
XXXX
——X-
XXXX
XXXX

22
02
XXXX
XXXX
XXXX

X
XXXX
XXXX

XXXX
XXXX
—X-
XXXX
XXXX

22
46
XXXX
XXXX
XXXX

XXXX
XXXX

XXXX
XXXX
X-X-
——X-
XXXX
XXXX

23
80
XXXX
XXXX
XXXX

XXXX
XXXX

XXXX
XXXX
X-X-
——X-
XXXX

FUSE MAP FOR LOGIC PAT0099 — SOURCE DEVICE IS DMPAL 14H4

EUY*KJR
DU

D*KJR*/RDIUH
OJH*IH

DJ*JD*JJJ*JPP
|IODF*DFJ*JJJ*JPP

X’S REPRESENT INTACT FUSES, 152 HAVE BEEN REMOVED.

Figure 6.2.2 Fuse-Map Display from PLAN

MMI Hex
JEDEC

Intel Hex
Standard Hex
PALASM Format

Table 6.2.3 Fuse-Map File Formats in PLAN

Order from: National Semiconductor Corporation PLAN
2900 Semiconductor Drive

M/S D3698

Santa Clara, CA. 95057

(408) 721-4107

111



112 Programmable Logic Design Guide

6.3 OTHER SOFTWARE
CUPL™ by Assisted Technology

CUPL is the first software CAD tool designed especially for the support of all programma-
ble logic devices (PLDs), including PALs and PROMs. It was developed specifically for
YOU, the Hardware Design Engineer. Each feature of the CUPL language has been
chosen to make using programmable logic easier and faster than conventional TTL
logic design.

Major Features of CUPL

Universal

e PRODUCT SUPPORT: CUPL supports products from every manufacturer of of
programmable logic. With CUPL you are free to use not only programmable
logic. With CUPL you are free to use not only PALS, but also other programmable
logic devices.

® PALASM CONVERSIONS: CUPL has a PALASM to CUPL language translator which
allows for an easy conversion from your previous PALASM designs to CUPL.

e LOGIC PROGRAMMER COMPATIBILITY: CUPL produces d standard JEDEC down-
load file and is compatible with any logic programmer that JEDEC files.

High Level Language
High Level Language means that the software has features that allow you to work in terms
that are more like the way you think than like the final PLD programming pattern. Exam-
ples of these are:
e FLEXIBLE INPUT: CUPL gives the engineer complete freedom in entering logic
descriptions for their design.
— Equations
— Truth Tables
— State Machine Syntax
e EXPRESSION SUBSTITUTION: This allows you to pick a name for an equation
and then, rather than write the equation each time it is used, you need only use
the name. CUPL will properly substitute the equation during the compile pro-
cess.
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o SHORTHAND FEATURES: Instead of writing out fully expanded equations CUPL
provides varous shorthand capabilities such as:
— List Notation: Rather than [A6,A5,A4,A3,A2,A1,A0)
CUPL only requires [A7..0]
— Bit Fields: A group of bits may be assigned to a name,
as in FIELD ADDR = [A7..0]
Then ADDR may be used in other expressions
— Range Function: Rather than Al5 & 1A14 #
Al5 & Al4 & 'A13 #
AlS & Al4 & A13 & 1A12
CUPL only requires ADDR: [8000..EFFF]
— The Distributive Property:

From Boolean Algebra, where A& (B #C)
is replaced by A&B#A&C
— DeMorgan’s Theorem:
From Boolean Algebra, where I(A & B)
is replaced by IA# B
Self Documenting

CUPL provides a template file which provides a standard “fill-in-the-blanks” documenta-
tion system that is uniform among all CUPL users. Also, CUPL allows for free form com-
ments throughout your work so there can be detailed explanations included in each part
of the project.

Error Checking
CUPL includes a comprehensive error check capability with detailed error messages de-
signed to lead you to the source of the problem.

Logic Reduction

CUPL contains the fastest and most powerful minimizer offered for Programmable Logic
equation reduction. The minimizer allows the choice of various levels of minimization
ranging from just fitting into the target device to the absolute minimum.

Simulation

With CSIM, the CUPL Simulator, you can simulate your logic prior to programming an ac-
tual device. Not only can this save devices but it can help in debugging a system level
problem.

Test Vector Generation

Once the stimulus/response function table information has been entered into the
simulator, CSIM will verify the associated test vectors and append them to the JEDEC file
for downloading to the logic programmer. The programmer will verify not only the fuse
map, but also the functionality of the PLD, giving you added confidence in the operation
of your custom part.
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Expandability
CUPL is designed for growth so as new PALs and other devices are introduced you will
be kept current with updated device libraries and product enhancements.

CUPL-GTS™

In recent years, programs like CUPL and ABEL have become available to provide high
level language support for PAL designs. These languages allow the designer to represent
a PAL function in terms of high-level equations, truth tables or state machines.

Many hardware designers, however, are most comfortable with the traditional logic
schematic as a logic description format.

CUPL-GTS is a powerful combination of hardware and software which turns an IBM-
PC type computer into a programmable logic workstation allowing the user to draw logic
schematics for the function of a PAL. A basic premise in creating GTS was to provide a
friendly environment where the user is isolated from the traditional keyboard as much
as possible. Virtually all functions can be actuated with one button by way of the mouse
and a series of pop-up menus which ease the user’s task. An area is provided at the top of
the CUPL-GTS screen for prompting the user regarding the next operation in a command
sequence. Highlighting of various elements on the screen is coordinated with these
prompts. For the most part, the user need only utilize the conventional keyboard for de-
fining symbolic names for wires, pins, objects, and files.

An on-screen HELP facility is provided to aid the user with CUPL-GTS commands. In
addition to the basic set of object types which can be easily picked from a pop-up menu,
the ability to call up macro-objects is also provided. These macro-objects have been pre-
viously drawn using GTS and stored away on the disk under their own symbolic name.

After a logic schematic has been entered, the user may quickly check to see if the de-
sign fits into a specific PAL. This is done by selecting the “Translate to PLD” command
from the main menu which automatically invokes the GTS translation programs. These
programs run in an on-screen window which overlays the graphical information, provid-
ing feedback in the form of error messages displayed in this window. In this way many
errors can be quickly determined and remedied without ever having to let go of
the mouse.

When the user wishes a hard copy version of a design, the print command from the
main menu may be selected. This causes the GTS print program to execute in an on-
screen wndow according to the printer configuration file (PRINTCAP). The PRINTCAP
file allows the user to configure the GTS print function for any dot matrix printer they
might have.

Often a logic description does not fit in a particular PAL due to a logic capacity
(product-term) limitation. When this occurs, the universal capability of GTS will easily
allow the user to try placing this same logic in a different PAL of a similar architecture.
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Since CUPL-GTS incorporates CUPL the high level language in its internal operation,
it also benefits from CUPL’s powerful “Quine Procedure” logic minimizer. This is espe-
cially advantageous for CUPL-GTS as logic descriptions showing many levels of gates can
be very deceptive in their ability to consume the logic capacity of a PAL. The presence of
the logic minimizer can eliminate unnecessary and redundant logical functions, and
maximizes the probability that a design will fit in a target PAL.

Also included with CUPL-GTS is the CUPL simulator, CSIM, which allows the user to
simulate a logic design prior to physically creating a programmed PAL. Not only can this
save devices, but it can help significantly in debugging a system level problem.

CUPL-GTS is designed for growth and expandability. As new programmable logic
devices are introduced users will be kept current with updated device libraries and
product enhancements.

Most of us first use PAL devices to replace TTL in order to shrink a design and/or add
functionality. The following example shows how a simple I/O decoder design would ap-
pear on the CUPL-GTS screen prior to translation to a PAL16L8 or PAL16P8.

Select Command From Main Menu Help

Change Scale

Set Center

AEN LS32 Lso4 Redraw Screen
E READ E
Add Object

1 .
, OD Add Wire

LS00

LS00 LS04 i
O . IOREQ JENABLE Add Pin
wow [ D('L =]
- Change Object
RANGE
LS04 Name/Rename

m A5 D
Move

LS04 -

L Sy Ls21 LS04
110 DECODE
[ ——{>doeee ] | o

m A7 D Find

Translate to PLD

Delete

7 Load From Disk

Save On Disk

- A9

Quit

More ...

Figure 6.3.1 CUPL-GTS Screen Display Example
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PALASM

The oldest design aid for PAL devices is PALASM, which is a FORTRAN IV-based soft-
ware package. PALASM accepts logic equations in a rigid format and assembles them
into fuse-map data for programmers. In addition, PALASM also accepts user input test
vectors, performs simulation and formats them to be programmer compatible. Table
6.3.2 lists the PALASM operators.

Comment follows

Complement, prefix to a pin name.
AND (product)
OR (sum)

XOR (exclusive OR)

XNOR (exclusive NOR)
Conditional three-state

Equality

Replaced by after the low to high
transition of the clock.

%o+ o+ o~

—
~

Table 6.3.2 PALASM Operators
ABEL™ by Data I/0

As the use of PALs and PLEs (PROMs) increases, high level design tools become neces-
sary. Designers need easier, faster, and more efficient ways to design with such pro-
grammable devices. With the more complex devices currently being introduced to the
market, this need is even greater. Additionally, a designer should be able to specify logic
designs in a way that makes sense in engineering terms; he or she should not have to
learn a new way of thinking about designs.

ABEL™, a complete logic design tool for PALs, PLEs, and FPLAs meets these require-
ments. ABEL™ incorporates a high-level design language and a set of software programs
that process logic designs to give correct and efficient designs. ABEL™ was developed by
Data I/O Corporation, Redmond, WA.

The ABEL™ design language offers structures familiar to designers: state diagrams,
truth tables, and Boolean equations. The designer can choose any of these structures or
combine them to describe a design. Macros and directives are also available to simplify
complex designs.

The ABEL™ software programs process designs described with the high-level lan-
guage. Processing includes syntax checking, automatic logic reduction, automatic design
simulation, verification that a given design can be implemented in a chosen device, and
automatic generation of design documentation.
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To use ABEL™, the designer uses an editor to created a source file containing an
ABEL™ design description. He then processes the source file with the ABEL™ software
programs to produce a programmer load file. The programmer load file is used by logic
and PLE programmers to program devices. Several programmer load file formats are
supported by ABEL™ so that different programmers may be used.

The source file created by the designer must contain test vectors if simulation is to
be performed. Test vectors describe the desired (expected) input-to-output function of
the design in a truth table format. The ABEL™ simulator applies the inputs contained in
the test vectors to the design and checks the obtained outputs against the expected out-
puts in the vectors. If the outputs obtained during simulation do not match those
specified in the test vectors, an error is reported.

Following is a design described in the ABEL™ design language. This design would
be processed to verify its correctness and to reduce the number of terms required to im-
plement it. The design is implemented in a PAL.

6809 Memory Address Decoder

Address decoding is a typical application of programmable logic devices, and the follow-
ing describes the ABEL™ implementation of such a desing.

Design Specification

Figure 6.3.2 shows a block diagram for the design and a continuous block of memory di-
vided into sections containing dynamic RAM (DRAM), I/O (I0O), and two sections of ROM
(ROM1 and ROM2). The purpose of this decoder is to monitor the six high-order bits
(A15-A10) of a sixteen-bit address bus and select the correct section of memory based on
the value of these address bits. To perform this function, a simple decoder with six inputs
and four outputs is designed with a 1414 PAL.

A15 —>>
[O—=> ROM1
Al14 —>>
[O—> ROM2
A13 —>
D—> 10
A12 —3>
O—> DRAM
A1l —3>
A10 —>
ROM1 ROMZ% 1/0 | DRAM l
7\ ]
FFFF F800 FO00 ESGO E0OOD 0000

Figure 6.3.2 Block Diagram: 6809 Memory Address Decoder
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Table 6.3.1 shows the address ranges associated with each section of memory. These
address ranges can also be seen in figure 6.3.2.

Memory Section Address Range (hex)
DRAM 0000-DFFF
1/10 E000-E7FF
ROM2 FO00-F7FF
ROM1 F800-FFFF

Table 6.3.1 Address Ranges for 6809 Controller
Design Method

Figure 6.3.3 shows a simplified block diagram for the address decoder. The address de-
coder is implemented with simple Boolean equations employing both relational and
logical operators as shown in figure 6.3.4. A significant amount of simplification is
achieved by grouping the address bits into a set named Address. The lower-order ten ad-
dress bits that are not used for the address decode are given “don’t care” values in the ad-
dress set. In this way, the designer indicates that the address in the overall design (that
beyond the decoder) contains sixteen bits, but that bits 0-9 do not affect the decode
‘of that address. This is opposed to simply defining the set as, Address =
[A15,A14,A13,A12,A11,A10], which ignores the existence of the lower-order bits. Specify-
‘ing all 16 address lines as members of the address set also allows full 16-bit comparisons
of the address value against the ranges shown in table 6.3.1.

>—> ROM1
O—> ROM2
O—> 10

O—> DRAM

Address —>»

Figure 6.3.3 Simplified Block Diagram: 6809 Memory Address Decoder
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module me809%a
title *€809 memory decode

Jean Desigrier Data I/0 Corp Redmornd WA 24 Feb 1984
uo9 device 'P14L4';

A1S,A14,A13,A18,A11,A10 pin 1,8&,3,4,5,63

ROM1, I0, ROMZ, DRAM pin 14,15,16,17;

HyLy X = 1,0,.%X.3

Address = [A15,A14,A13,A12, AL11,A10, X, X, X, X, X, X, X, X, X, X713
equations

! DRAM = (Address (= "“hDFFF)}

'10 = (Address )= “hEO0O) & (Address (= “hE7FF);

'ROME = (Radress )= “hFO00) & (Address (= “hF7FF);

!ROM1 (Rddress )= “hF800);
test_vectors (Address -) (ROM1, ROM&, 10, DRAMI)

~hOOOO => € Hy, H, H, L 13
“h4000 =) [ Hy H, H, L 3;
~h8000 =) [ H, H, H, L 1;
“hCOOO => [ Hy, H, H, L 1;
“hEOQOO =) [ H, H, L H 33
“nEBOO =) [ Hy, H, H, H I
“RFOOO => € H, L, H, H 1j
~hFBOO0 =) [ L, H, H, HI;

end me803a

Figure 6.3.4 Source File: 6809 Memory Address Decoder

Test Vectors

In this design, the test vectors are a straightforward listing of the values that must appear
on the output lines for specific address values. The address values are specified in
hexadecimal notation on the left sife of the “->" symbol. Inputs to a design always appear
on the left side of the test vectors. The expected outputs are specified to the right of the
“->” symbol. The designer chose in this case to use the symbols H and L instead of the
binary values 1 and 0 to describe the outputs. The correspondence between the symbols
and the binary values was defined in the constant declaration section of the source file,
just above the section labeled equations.

Summary

A design described with the ABEL™ design language has been shown. This design shows
how Boolean equations with logical and relational operators are used to describe an ad-
dress decoder. Test vectors were written to test the function of the design using ABEL™’s
simulator. In addition to the Boolean equations shown in this example, ABEL™ features
truth tables and state diagrams. State diagrams allow the designer to fully describe state
machines in terms of their states and state transitions. Truth tables specify designs in
terms of their inputs and outputs, much like test vectors.

Regardless of the method used to describe logic, ABEL™’s automatic logic reduction
and simulation ensure that the design uses as few terms as possible and that it operates
as the designer intended. The end results are savings in time, devices, board space,
and money.
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6.4 SOFTWARE FOR TESTING PROGRAMMABLE LOGIC

Some of the test equipment vendors also have software that can be used for testing pro-
grammed devices in a production environment. These software packages do not have
any design aids but have automatic test vector generation and simulation tools and are
generally written to run on powerful mini-computers.

6.5 SOFTWARE VENDOR LIST
Listed below are the major software vendors for Programmable Logic.

NATIONAL SEMICONDUCTOR CORPORATION
PLAN

2900 Semiconductor Drive

M/S 16-198

P.O. Box 58090

Santa Clara, CA 95052-8090

(408) 721-4107

ASSISTED TECHNOLOGIES, INC.
2381 Zanker Road, Suite 150
San Jose, CA 95131

DATA I/O CORPORATION
10525 Willows Road N.E.
C-46

Redmond, WA 98052

A vendor who supplies software for production testing of Programmable Logic is
provided below.

GENRAD
170 Tracer Lane
Waltham, MA 02254
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7.1 NATIONAL FACTORY TESTING

National’s PAL devices include special test circuitry designed to permit thorough AC
and DC testing to be accomplished on an unprogrammed unit. This test circuitry is
used to ensure good programming yield and to verify that devices will meet all para-
metric and switching specifications after programming.

Each PAL device has special test fuses. These test fuses are blown during factory
testing and demonstrate beyond reasonable doubt that the device is capable of opening
all fuses when programmed by the user. They also increase the confidence level in
unique addressing.

Table 7.1.1 shows the total number of fuses and test fuses for each device. Figure
7.1.1 shows the PAL test flow in National’s factory.

Since PAL devices are logic devices, in addition to testing the fuses blown their
logic function should be tested after programming. This can be performed on a
National tester, or on some PAL device programmers, using user defined test vectors
or by comparison against a known good unit (fingerprint test).

Test vectors are relatively easy to generate for combinational designs using PAL
devices. Sequential function testing is more difficult.

National’s application Note # 351 by Tom Wang tells the user how to generate these
test vectors. National also supports customer test vectors and fully tests its custom
order NML or programmed PAL devices.

AND Array Organization

Device Input Tic Product Number Number of

Number Lines X X Lines = of Fuses Test Fuses
PAL10H8 10 2 16 320 42
PAL12H6 12 2 16 384 44
PAL14H4 14 2 16 448 46
PAL16H2 16 2 16 512 48
PAL16C1 16 2 16 512 48
PAL16L8 16 2 64 2048 98
PAL16R8 16 2 64 2048 98
PAL16R6 16 2 64 2048 98
PAL16R4 16 2 64 2048 98

Table 7.1.1 Test Fuses
121
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Figure 7.1.1 PAL Device Test Flow
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7.2 LOGIC VERIFICATION

PAL devices are not only memory devices, but also logic devices. Therefore, in addition
to verifying the fuses blown after programming, we also need to verify the logic opera-
tion before it is put in a system. Logic verification provides assurance that a device will
function in a board. Figure 7.2.1 shows the PAL device’s architecture which will clarify
the difference between fuse programming/verification and logic verification. The
programming/verification circuit is required to allow custom configuration by the user.
This circuit is operational only when a super voltage is applied to Vcc. Under normal
5.0 volt operation, this circuit is invisible and the logic circuit will take over. Therefore
the skills we use to check the PAL device under normal 5.0 volt operation are called
logic verification. The most important skill we use now is called functional test.

PROGRAMMING/
> VERIFICATION
CIRCUIT

Al

INPUT PROGRAMMABLE OUTPUT
ARRAY

\

LOGIC
o CIRCUIT

=== PROGRAMMING/VERIFICATION FLOW
==—==FUNCTIONAL FLOW

Figure 7.2.1 PAL Device’s Architecture
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Functional testing must accomplish two purposes:

1) It must verify that the PAL device, after programming, performs the function
intended.

2) It must verify the circuit removed through programming does not affect the PAL
device’s operation.

The functional testing technique relies on the test vectors. A test vector means a
combination of desired input variable values and expected output variable values. The
PAL device will be exercised by the desired input values. Then, the received outputs
will be compared with the expected output values. The device is considered a “mal-
function” if the comparison does not match. Figure 7.2.2 shows an example.

EXERCISED INPUTS  EXPECTED OUTPUTS
1101101101 10110110 PAL OUTPUTS
N
v d h v g DEVICE
| INPUTS
\
- ERROR IF
COMPARISON -
— MISMATCH

Figure 7.2.2 Function of Test Vector

There are many methods of generating test vectors:

1. Exhaustive — generate the whole different input combination and the expected out-
put values. For instance, for 3-input AND gate in Figure 7.2.3, we get eight test vec-
tors as in Table 7.2.1. For an n-inputs device, we get 21! test vectors.

Figure 7.2.3 3-Input AND Gate



Testing and Reliability 125

A B (o F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Table 7.2.1 Test Vectors Generated by Exhaustive Methods

2. Fault modeling — Use the stuck at 0 and stuck at 1 technique to sensitize the differ-
ent logic path. For instance, in Figure 7.2.3, there are three different paths, i.e. AF,
BF and CF. Therefore we get six test vectors shown in Table 7.2.2 (a). Due to vector
1,3 and 5 being the same, we can reduce to four test vectors as in Table 7.2.2 (b).

A B C F A B Cc F
1 1 1 1 1 1 1 1
0 1 1 0 0 1 1 0
1 1 1 1 1 0 1 0
1 0 1 0 1 1 0 0
1 1 1 1

1 1 0 0

(R) (|

Table 7.2.2 Test Vectors Generated by Fault Modeling

3. Structure Test — Only pick up the possible existing input states and their corres-
ponding output states.

There is another skill to do the logic verification. It uses the signature analysis technique.
This technique uses random input values exercising on a good device to generate differ-
ent outputs. The outputs are manipulated in certain ways to get a “test sum” called a “sig-
nature.” Then, using the same sequence of input values to another device we get its sig-
nature which is compared with the known good one. Some PAL device programmer ven-
dors offer user fingerprint tests which are based on signature analysis techniques such as
DATA I/O, Digital Media.
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7.3 CUSTOMER’S RESPONSIBILITIES

The number of parts that are non-functional after programming is generally less than
2% and may be picked up during board-level check. However, the author strongly
recommends that the user do the logic verification before putting PAL device compo-
nents into the system.

Since the user defines the function of the PAL device, it is impossible for the sup-
plier to perform full functional testing prior to shipment unless the user orders an NML
or programmed PAL device from National.

It is the user’s responsibility to generate test vectors or do the fingerprint test. The
methods for generating test vectors was discussed in Section 7.2.

7.4 RELIABILITY DATA

Following is sample reliability data on National’s PAL devices. For additional information
please contact your National representative or distributor.

Product: Bipolar PALs (DM3300)
Package: Molded (N) and Hermetic (J)

Test Method: Dynamic (DHTL)/Static (SHTL) High Temperature Operating Life
Conditions: Continuous Operation at Rated Supply Voltage, and 125°C
Duration: 1000 Hours

Filel.D. Device Package Test Sample 168 500 1000 Failure Mode
Type Type Size Hours — —
RMB75131 16R4 J DHTL 77 0 0 0
RMB75133  16L8 77 0 0 0
RMB75101 16R6 77 0 0 0
RMB75137  16R6 77 0 1 0 Fuse verify and functional
RMB75096 16R4 SHTL 77 0 0 0
RMB75132 16R4 77 0 0 0
RMB75097  16L8 77 0 0 0
RMB75142  16R8 77 0 0 0
RMB75143  16L8 N DHTL 77 0 0 0
RMB75144  16R8 77 0 0 0
RMB75190 16R4 77 0 0 0
RMB75144 16R8 SHTL 77 0 0 0
RMB75154 16L8 77 0 0 0

Total Devices: 1001
Total Device Hours at 125°C: 1001+10°



Testing and Reliability 127

Failure Rate at Stress = 0.2%/1000 Hours

Total Device Hours at 55°C, and 0.4EV = 12.012%10°

Failure Rate at 55°C, 0.4EV and 60% Confidence Level:

% /1000 Hours: 0.0168; PPM Hours: 0.168; Fits: 168; MTBF: 5.9¥10°
Test Method: Temperature Humidity Bias Test

Conditions: Continuous Operation at Rated Supply Voltage, 85°C, and 85%RH
Duration: 1000 Hours

Filel.D. Device Package Sample 168 500 1000 Failure Mode
Type Type Size Hours —_ —
RMB75143 16L8 N 77 0 0 0
RMB75144 16R8 77 0 0 0
RMB75199 16R4 77 0 0 0

Total Devices: 231
Failure Rate at Stress: 0.4%/1000 Hours

7.5 PAL DEVICE FUNCTIONAL TESTING
Combinational and Sequential Circuits

Digital circuits can be classified as either combinational or sequential. Combinational cir-
cuits (e.g., decoder, multiplexer, adder, etc.) whose present value of the outputs at any
time are functions of only the present circuit inputs at that time can be described as:

Y = F(X)

where F is Boolean sum of products transfer function (Figure 7.5.1).

INPUTS X =] F(X) = OUTPUTS Y

Figure 7.5.1 Combinational Circuit

Sequential circuits (e.g., counter, shift register, accumulator, etc.) whose present
value of the outputs at any given time will be the functions not only of the present cir-
cuit inputs at that time, but also the previous value of the outputs can be described as:

Y =F(X,Y)

where F is the Boolean Sum-of-Product transfer function. See (Figure 7.5.2).
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CLOCK
]

INPUTS X —>]
F(X,Y) =] REG —r—p OUTPUTS Y

I
>

Figure 7.5.2 Sequential Circuit

Description of PAL (Programmable Array Logic) Device

Due to rapidly increasing integrated circuit technology, logic circuit designers face a
difficult decision: should they use conventional TTL gates or custom LSI to implement
desired combinational/sequential circuits.

Use of conventional TTL gates does not take advantage of the increased integra-
tion available. However, expensive and complicated software often makes custom LSI
unsatisfactory. There is a big void between these two solutions. This void is now being
addressed by semicustom approaches (e.g., PAL devices or gate array, etc). Since PAL
devices have advantages over other semicustom chips in many areas (for instance, cost
effectiveness, quick turnaround, complete software support, multi-source, etc.), it may
be the best approach for the logic designer designing combinational/sequential circuits.

National offers the designer a family of PAL devices. See Table 7.5.1 for a broad
overview of National’s products.

PAL Device Design Procedure

Designing combinational circuits is straightforward. The first step is to define the cir-
cuit’s function. The second step is to build a truth table. The third step is to minimize
the truth table by using Karnaugh maps or Boolean algebra, in order to get the transfer
function (i.e., logic equations). Step four is programming the circuits. Figure 7.5.3 is a
flow diagram which applies to designing combinational PAL devices.

It is much more complicated to design a sequential circuit, as discussed in many
textbooks and articles. Figure 7.5.4 is a flow diagram which applies to designing
sequential PAL devices.

The last step in both Figures 7.5.3 and 7.5.4 is programming the PAL device. The
entire procedure for programming a PAL device is shown in Figure 7.5.5. The first step
is to generate the logic equations and function table. The second step is, using PAL
device software tools (e.g., PALASM®, PLAN™, etc.), to create a bit pattern and exercise
the function table, if any, in the logic equations. The third step is to load the bit pattern
into a PAL device programmer to program and verify the fuse matrix. The fourth step is
to functionally test the PAL device. The last step is to blow the security fuse. This last
step is optional.
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High Speed Ultra-High Low Power | Package
Standard (25 ns) Speed (15 ns) (35 ns) (Pins) Description
(35 ns)
10H8 10H8A 10H8A2 20 10 Input, 8 Output AND-OR Array
12H6 12H6A 12H6A2 20 12 Input, 6 Output AND-OR Array
14H4 14H4A 14H4A2 20 14 Input, 4 output AND-OR Array
16H2 16H2A 16H2A2 20 16 Input, 4 Output AND-OR Array
10L8 10L8A 10L8A2 20 10 Input, 8 Ouptut AND-OR Array
12L6 12L6A 12L6A2 20 12 Input, 6 Output AND-OR Array
14L4 14L4A 14L4A2 20 14 Input, 4 Output AND-OR Array
16L2 16L2A 16L2A2 20 16 Input, 2 Output AND-OR Array
16C1 16C1A 16L1A2 20 16 Input, 1 Output AND-OR/NOR Array
16L8 16L8A 16L8B 16L8A2 20 16 Input, 8 Output AND-OR-Inv Array
16R8 16R8A 16R8B 16R8A2 20 16 Input, 8 Output AND-OR-Reg Array
16R6 16R6A 16R6B 16R6A2 20 16 Input, 6 Output AND-OR Reg Array
16R4 16R4A 16R4B 16R4A2 20 16 Input, 4 Output AND-OR-Reg Array
(40 ns)
12L10 24 12 Input, 10 Output AND-OR Array
1418 24 14 Input, 8 Output AND-OR Array
16L6 24 16 Input, 6 Output AND-OR Array
18L4 24 18 Input, 4 Output AND-OR Array
20L2 24 20 Input, 2 Output AND-OR Array
20C1 24 20 Input, 1 Output AND-OR/NOR Array
20L8A 24 20 Input, 8 Output AND-OR-Inv Array
20R8A 24 20 Input, 8 Output AND-OR-Reg Array
20R6A 24 20 Input, 6 Output AND-OR-Reg Array
20R4A 24 20 Input, 4 Output AND-OR-Reg Array
(50 ns)
20L10 24 20 Input, 10 Output AND-OR:-Inv Array
20X10 24 20 Input, 10 Output AND-OR-XOR-Reg Array
20X8 24 20 Input, 8 Output AND-OR-XOR-Reg Array
20X4 24 20 Input, 4 Output AND-OR-XOR-Reg Array

Table 7.5.1 National’s PAL Device Family

Description of Functional Table

In Figures 7.5.3, 7.5.4 and 7.5.5 we encounter a step called “generating function table.”
However, what is the meaning of a function table and why do we need it? A function
table is a sequence of test conditions which are representative of the device in actual
circuit operation. When we derive the logic equations by using Karnaugh maps or
Boolean algebra, it is possible to introduce errors that may not be obvious. The func-
tion table is a means of expressing what we expect the PAL device to do in the system.
PALASM or other software simulators will exercise the function table in the logic equa-
tions and report simulation errors. Then, we can correct the function table and/or the
logic equations until no simulation error occurs.
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FUNCTIONAL
DESCRIPTION

v

- — e

FUNCTION
TABLE -

TRUTH
TABLE

A

y

TRANSFER

FUNCTION
(LOGIC

EQUATIONS)
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CIRCUITS
(PAL)
DEVICE

DEFINE INPUTS
AND OUTPUTS

KARNAUGH MAPS OR
BOOLEAN ALGEBRA

(PROGRAMMING THE
PAL DEVICE)

Figure 7.5.3 Combinational PAL Device Design Steps

Even if both the logic equations and blown fuses are correct, there is no guarantee
that the PAL device will function properly. PALASM or other software tools can gener-
ate test vectors from the function table entries and exercise these test vectors in the PAL
device after it has been programmed. Even though the functional verification fallout is
very small (typically less than 2%), it is necessary to perform this test at the device
level. Ten devices on a board with a 2% device fallout translates into 18% fallout at the
board level if these devices are not individually tested.

Thus, we can see that a good function table will provide a high degree of confi-
dence that the design is correct. It will also help ensure that the PAL device will work
properly the first time it is plugged into the system.
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Figure 7.5.4 Sequential PAL Device Design Steps
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Figure 7.5.5

ENTER LOGIC EQUATIONS

ENTER FUNCTION TABLE

CREATE BIT PATTERN

EXERCISE FUNCTION TABLE
IN LOGIC EQUATIONS
(SIMULATION)

A

LOAD PATTERN INTO
PROGRAMMER

PROGRAM FUSE MATRIX

VERIFY FUSE MATRIX

TEST PAL DEVICE FUNCTION
WITH TEST VECTORS OR DO
OTHER LOGIC TEST

BLOW SECURITY FUSE
(DO FUNCTIONAL
TESTING AGAIN)

PAL Device Programming Procedures
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How to Generate Test Vectors and the Function Table from Logic Equations

It is the PAL device designer’s responsibility to generate the function table since he/she
knows the operation of the design best. However, if this is not possible, we can gener-
ate the function table manually from the existing logic equations. To do this, the cor-
rect logic equations are needed. Figure 7.5.6 outlines the procedure which will be
detailed by examples in the next section. The “optimization” procedure is sometimes
difficult and may need intuition. (Notice the different procedure between combina-
tional and sequential PAL in the last step.)

LOGIC EQUATIONS (KNOWN GOOD)

v

SA0 TEST FOR EACH PRODUCT TERM
SA1 TEST FOR EACH PRODUCT TERM
SA1 FOR EACH PRODUCT EQUATION

MINIMIZATION
v
TEST VECTORS
OPTIMIZATION
v
GENERATE STATE DIAGRAM AND
COMBINATIONAL TRANSITION TABLE FOR STATE
PAL SEQUENTIAL PAL
y
FUNCTION TABLE

Figure 7.5.6 Test Vector and Function Table Creating Steps
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Before going to the next section, a few conventions are defined. First, only the fol-
lowing symbols can be accepted in the test vectors or function table:

H—Logic High

L—Logic Low

X—Irrelevant “Don’t Care”

Z—High Impedance

C—Clock

?—Undetermined

0 and 1 can be treated as Low and High.

Second, let’s consider a general logic equation (or product equation)
0O1=P1 +P2 +P3
where O is the output; P1, P2 and P3 are the product terms.

IFPL=1; % I, # /I3
P2=/T « I3 % I5
P3 =I5 x /Ig % /g

where 1y, I, I3, Is, I, Ig and Ig are inputs.
Then the output O; will be

O1=11 %« Ip « I3 +/I % I3 % Is+1g % /Ig % /lg

where, Iy, I, /13, Is, Ig, /1g, /Ig are called factors.

Consider a particular test vector, V1, which will cause the product term P1 to be
high and the product terms P2 and P3 to be low. In this case the output, O, will be
high. Now, if a fault is created by the PAL device which causes P1 to be low, then the
output, Oy, will be low which is different from the fault-free condition. This fault con-
dition is called “stuck at 0" (SAO) fault. Thus, the vector, V1, is able to detect the pro-
duct term, P1, for the SAO fault and we can say that V1 covers P1 for the SAO fault.

In order to get P1 to be high, all factors of P1 should be high (i.e., I}, I, and /I3 are
high). Both I, = high and /I3 = high will cause P2 to be low no matter what I5 is. There-
fore, the vector of:

I Ip I3 I Is Ig 17 Iglg Iyp I Iz O Oz O3 O4 Os Og
HHLXXILXXX X X X H X X X X X

will cover P1 for the SAO fault.

Similarly, if there is another vector, V2, which causes P1 to be lowT (only one fac-
tor of P1 is low, the other factors of P1 are high) provided that P2 and P3 are low, then
the output, Oy, is low. Now if a fault is created by the PAL device which causes P1 to be
high then the output, O, will be high which is different from the fault-free condition.

T To talk about letting a product term which is under test be low means that we only force one factor of this term to be low
and the other factors should remain high.
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This fault condition is called “stuck at 17 (SA1) fault. Thus, the vector, V2, is able to
detect the product term, P1, for SA1 fault and we can say that V2 covers P1 for SAl
fault.

For example, if Ij is low, I and /I3 are high, the P1 is low. Therefore the vector of

I I Iz I4 Is Ig I7 Ig Ig Ijg Iyp Iiz O1 Oy O3 O4 Os Og
LHLXX LXXX X X X L X X X X X

will cover P1 for the SA1 fault.
Similarly, the following vectors will cover P1 for the SA1 fault, too.

I Ib Is I Is Ig I7 Ig Ig Ijp Iy Iz Op Oz O3 O4 Os Og
HLLXXLXXXJXJXJXUL X X X X X
HHHXXLXXXXX X L X X X X X

To get an SA1 fault test for a product equation, generate a vector which sets all the
factors in each product term to be low. The output of this product equation will then
be low. If a fault is created by an AND or OR gate of the PAL device which causes the
product term to be high, then the output will be high, which is different from the fault-
free condition. For example, if Iy, I, /I3, Is, I, /Ig, /Ig are low, then the following vector
will cover equation O; for an SA1 fault. '

L b I3 1515 Ig 17 Ig Ig Ijp In Iz O3 Oz O3 O4 Os Og
LLHXLLXHHZXX X L X X X X X

A good function table should cover all of the product terms for the SAO and SAl
faults. The Product Term Coverage (PTC) is calculated as:
Total # of SAO Faults Tested + Total # of SA1 Faults Tested

PTC = x 100 (%)
2 x Total Number of Product Terms

To achieve 100% PTC is the goal of generating a function table. PALASM version
1.5 and up will inform the user of:

e Total number of SA1 faults tested
® Total number of SAO faults tested
® Product term coverage (PTC)

In case all the product terms are not covered, the user receives a message which
tells him the product term and the type of fault for which it was not tested (e.g., “Prod-
uct P, of EQN 1 Untested (SA0) Fault”). This implies that the user must update the func-
tion table by including vectors which will cover product terms for the faults.
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7.6 EXAMPLES OF TESTING

Example 1: Combinational PAL12H6

PAL12H6

PTAN301

Tom Wang

Portion of random control logic for 8086 CPU board

PD EN ED EA S1 SA E1 DO DE GND SO NC3 NO C3 HA SS LA MW PW VCC

MW =/SO + PW * DE ;o (D)
LA =/SA * /DO i (2)
SS=S1 * PD * /SA i (3)
HA =S1 * PD * /SA * EA * El ;o (4)
C3=PD * ED * EA ;o (5)
NO =PD * /EN

Description

This is a portion of random control logic for 8086 CPU board. See (Figure 7.5.7).

oe __QD—F:)_E:} w

SO

) _D_l—b_‘ -
NO

o I

-o—

c3

L/
ED )
SA
El _)0—13_ HA

1T o—

N
SA 17

LA
Do

Figure 7.5.7 Logic Circuit of Example 1
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The generation of function table is described in the following steps:

Step 1:
Step 2:

Step 3:

Step 4:

Step 5:

Step 6:
Step 7:

Step 8:

Get Test Vector Coding Form; Fill in the input and output names.

Exercise the product term 1 (/SO) of equation 1.

SAOQ Fault Testing: Let PT1 be high and PT2 be low, then the output of equa-
tion 1, MW, should be high; so, we get vector 1.

SA1 Fault Testing: Let PT1 and PT2 be low, then the output of equation 1, MW
should be low; so we get vector 2.

Exercise product term 2 (PW * DE) of equation 1.

SAQ Fault Testing: Let PT1 be low and PT2 be high, then the output of equa-
tion 1, MW, should be high (i.e., vector 3).

SA1 Fault Testing: Let PT1 and PT2 be low, then the output of equation 1,
MW, should be low.

Since PT2 consists of two factors, PW and DE, we create two SA1 test vectors

(i.e., vectors 4 and 5).

SA1 Fault Testing for product equation 1.

Let PT1 and PT2 be low, then the output of equation 1, MW, should be low
(i.e., vector 6).

This step is similar to the SA1 test in step 3 but is different, since all the factors
in this equation were set to be low.

Exercise product term 1 (/SA * /DO) of equation 2.

SAOQ Fault Testing: Let PT1 be high, then the output LA should be high.
SA1 Fault Testing: Let PT1 be low, then the output LA should be low.
So, we get vectors 7, 8, and 9 in Table 7.5.2

SA1 fault test for product equation 2, we get vector 10.

Continue to exercise the rest of the product terms, completing all 31 test vec-
tors (Table 7.5.2).

Optimize the test vectors to get the function table.
1) Because of vector 2, we don’t need vectors 4 and 6.

2) Combine vectors 7-10 with vectors 1-6.

3) Rearrange vectors 11-15, then combine with the preceding vectors.
4) Merge vectors 28-31 with vectors 23-27.

5) This results in only 17 vectors (Table 7.5.3).

6) These 17 vectors can still be minimized by comparison and intuition to get
only 7 vectors (Table 7.5.4).

7) By inserting “X” into unused spaces, the result is Table 7.5.5, which is the
function table.
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Table 7.5.2 Test Vectors
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Outputs

NO [ C3 [ HA | SS | LA | MW

Inputs

DO [DE | SO | NC3 | PW

H

H

H

SA | El

L

L

L

H | H

H|H

H|H|[H|H
L|H

H

L

L

PD |EN | ED |EA | SI

H

H

L

10
11

12

13| H
14

15| H|H
16
17

Table 7.5.3 Test Vectors

Outputs
HA | SS | LA | MW

H

H|H

H

H

NO | C3

Inputs

X

DO | DE | SO [ NC3 | PW

L

HIH|H|H

SA | El

L

L

H|H|H|H

L

L

L

H|H|H

L|H|H|H

H

L

PD |EN | ED |EA | SI

H
H

L

1

4| L |H

Table 7.5.4 Final Test Vectors
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Inputs Outputs

PD | EN | ED | EA | SI | SA [ El | DO | DE | SO | NC3 | PW NO | C3 | HA | SS | LA | MW
1flH|L|H|H|H]|]L{H|L|[X]L]| X L HI{H|H|H|H]|H
2I|H|H|{L|H|H|H[H|]L|[X]|H]| X L Lf{L|L|L|fL]|L
3/H|X|X|H|L|L|JH|H|H|H]| X |H X|X|L|L|L]|H
4|L|H|L|L|L|H|L{H|L|[H]| X |H LjLjLfrfr|tL
S5|LJL|JH]JH]|H|L|H|X|X|X] X |X L|L|{L]|L|X]| X
6|H|X[H|L|H|L[H|X|X]|X]| X |X X|LJL|X]|X]|X
7IH|X|[X|H[H[L|L|X|X|X]| X |X X|X|{L[X]|X]|X

The following are printouts of PAL device design specifications, function table, pinout
list, fuse map, simulation result, and fault testing result. We get 100% PTC!

Table 7.5.5 Final Function Table

PALASM VERSION 1.5

PAL12H6
PTAN301
TOM WANG
PORTION OF RANDOM CONTROL LOGIC FOR 8086 CPU BOARD
EN ED EA S1 SA E1 DO DE GND SO NC3 NO C3 HA SS LA

PD
MW

PW VCC

= /SO + PW*DE

/SA*/D0

PD*ED*E
PD*/EN

[T TR T ]

A

S1*PD*/SA
S1*PD*/SA*EA*E]

FUNCTION TABLE

PD EN ED EA S1 SA E1 DO DE

NC3 PW NO C3 HA SS LA MW

DESCRIPTION
PORTION OF RANDOM CONTROL LOGIC

FOR 8086 CPU BOARD



TOM WANG

TOM WANG

1 10111010XX0XHHHHHHO1
2 11011110XX1XLLLLLLOL
3 1XX100111X1XXXLLLHI1
4 010001010X1XLLLLLLLL
5 0011101XXXXXLLLLXXX1
6 1X10101XXXXXXLLXXXX1
7 1XX1100XXXXXXXLXXXX1

PASS SIM
TOM WANG

0123

BEG*FPLT
0 0000
1 0000
2 0000
3 0000
4 0000
5 0000
6 0000
7 0000

ULATION

11
4567 8901

PAL12H6

0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000

1111
2345

0000
0000
0000
0000
0000
0000
0000
0000

49

1111
6789

0000
0000
0000
0000
0000
0000
0000
0000

2222
0123

0000
0000
0000
0000
0000
0000
0000
0000

PD

EN

ED

EA

Sl

SA

El

DO

DE

GND

2222
4567

0000
0000
0000
0000
0000
0000
0000
0000

dkkkdk ik dkddkd

¥
ek
* |
hkk

*
Ahak
* %
*hk

*
*hhk
* 3*
*hkk

*
dkk
* 4%
*hkk

*
hkk
* G
Akdk

*
hhkk
* 6*
*hkk

*
Hhkk
* 7%
dddd

*
dekhk
* B
dkkk

*
kkk
* 9*
hhkk

*
drkdk
‘10*
*hkk

*

* &

PA
12H
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dhhddrkkkhkihkd

L
6

*

hkk
*20*
*hhk
*

Thhh
*]1g%
whkk
*

*hkk
*]1g*
*hkk
*

*hhk
*]7*
*hkk
*

Tk
*16%
hkk
*

*hkk
*]15%
*dkk
*

*hAK
*14%
*kkk
*

*hAk
*]3*
*hkk
*

*hkk
*]2%
*hkk
*

Ak
*]1*
*kkk
*

dkkkkkhkkkkhkhhkkkkkhkhhkrhhkhhrd

2233
8901

0000
0000
0000
0000
0000
0000
0000
0000

---------- 00 --00

--00 --00
XX00 XxQ0
XX00 XX00
0000 0000
0000 0000
0000 0000
0000 0000

---------- 00 --00

XX00 XX00
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000

--00 X-00
XX00 XX00
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000

vce

PW

MW

LA

SS

HA

C3

NO

NC3

SO

--00
--00
XX00
XX00
0000
0000
0000
0000

-X00
XX00
0000
0000
0000
0000
0000
0000

-X00
XX00
0000
0000
0000
0000
0000
0000

———— (-
XXXX XXXX
XXXX XXXX
0000 0000
0000 0000
0000 0000
0000 0000

B CEE
XXXX XXXX
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000

141

PW*DE

/SA*/DO

S1*PD*/SA
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32 --X- ---- X-00 X-00
33 XXXX XXXX XX00 XX00
34 0000 0000 0000 0000
35 0000 0000 0000 0000
36 0000 0000 0000 0000
37 0000 0000 0000 0000
38 0000 0000 0000 0000
39 0000 0000 0000 0000

40 --X- X--- X-00 --00
41 XXXX XXXX XX00 XX00
42 0000 0000 0000 0000
43 0000 0000 0000 0000
44 0000 0000 0000 0000
45 0000 0000 0000 0000
46 0000 0000 0000 0000
47 0000 0000 0000 0000

48 -XX- ---- --00 --00
49 XXXX XXXX XX00 XX00
50 XXXX XXXX XX00 XX00
51 XXXX XXXX XX00 XX00
52 0000 0000 0000 0000
53 0000 0000 0000 0000
54 0000 0000 0000 0000
55 0000 0000 0000 0000

56 0000 0000 0000 0000
57 0000 0000 0000 0000
58 0000 0000 0000 0000
59 0000 0000 0000 0000
60 0000 0000 0000 0000
61 0000 0000 0000 0000
62 0000 0000 0000 0000
63 0000 0000 0000 0000

END*FPLT

-X00
XX00
0000
0000
0000
0000
0000
0000

--00
XX00
0000
0000
0000
0000
0000
0000

--00
XX00
XX00
XX00
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000

LEGEND: X : FUSE NOT BLOWN
0 : PHANTOM FUSE

NUMBER OF FUSES BLOWN =

TOM WANG

1 10111010XX0XHHKHHHO1
2 11011110XX1XLLLLLLOL
3 IXX100111X1XXXLLLH11
4 010001010X1XLLLLLLLL
5 0011101XXXXXLLLLXXX1
6 1X10101XXXXXXLLXXXX1
7 1XX1100XXXXXXXLXXXX1

PASS SIMULATION
NUMBER OF STUCK AT ONE (

206

49
SAl)

X-00 ---- ---- S1*PD*/SA*EA*EL

XX00 XXXX XXXX
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000

--00 ---- ---- PD*ED*EA
XX00 XXXX XXXX
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000

--00 ---- ---- PO*/EN
XX00 XXXX XXXX
XX00 XXXX XXXX
XX00 XXXX XXXX
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000

0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000

(L,N,0) - : FUSE BLOWN
(L,N,0) O : PHANTOM FUSE

FAULTS ARE = 7

NUMBER OF STUCK AT ZERO (SAO) FAULTS ARE = 7

PRODUCT TERM  COVERAGE
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The differences between sequential and combinational circuits have been dis-
cussed. The output of sequential circuits is a function not only of the present inputs,
but the previous outputs.

There are two kinds of outputs in the sequential PAL device: registered output, and
non-registered output. For example, pin 14 of the PALI6R4 is a registered output;
pin 13 is a non-registered output. Different combinations of registered outputs are
defined as different states. Each present-state is related to the present inputs and pre-
vious state, so the function table vectors need to be arranged in proper sequential
order.

Furthermore, since the previous state is obtained from the previous vector, it is
necessary to “initialize” the registers to a “known state”. (Output is a function of the
inputs but is independent of the previous state, similar to a clear or preset function).

The following is an example of the sequential PAL16R4. Referring to Figure 7.5.6,
generate the state diagram and state transition table to derive the proper function table.

Example 2: Sequential PAL16R4

PAL16R4
PTAN302

Tom Wang

Op code analyzer

CLK /2B12 /2B23 /B2B1 /B2B3 /3B /B3B /B1B GND /EN FIST /ILLOP
/C /B /A 117 /RD F23 VCC

If (VCC) /F1ST = F23 ;o (D)
If (VCC) ILLOP=/A * /B * /C i (2)
C:=A*/B*/C*/B3B+/A*/B*C#*/B2B2+RD+A*B*C*/BIB+A*/B*C#*
/B2B3 * /3B + /A * B * /B2B1 : (3)
B:=A * /B * /C % /[B3B+/A * /B * C * /[B2B2+RD+A * B * C * /B1B * /2B23 +
A * /B * C * /[B2B3 +/A * B * /B2BI ;(4)
Ar=A * /B % /C * /[BAB+/A * /B * C * /[B2B2+RD+A * B * C * /BIB * /2B12 +
A * /B * C*/B2B3+/A * B * /[B2B1 +B * /C ; (5)
17:.=A * B * C ;i (6)

If (VCC) /F23=/A % [B * [C+A * B * C . (7)

Description

The function of this PAL device is to analyze the incoming op code.
The generation of the function table is described in the following steps:

Step 1:  Get test vector coding form. Fill in the input and output names. Since the
outputs C, B and A act as inputs as well, they appear on both sides and are
considered first because they feed back to themselves. Therefore, equations
3, 4, and 5 are exercised first.
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Step 2:

Step 3:

Step 4:

Step 5:

Step 6:
Step 7:

Step 8:

Programmable Logic Design Guide

Exercise product term 1 of equation 3.

SAO Fault Testing: Let PT1 (A * /B * /C * /B3B) be high and PT2, 3, 4, 5, and
6 be low; the output of equation 3 should be high; so, we
get vector 1 in Table 7.5.6.

SA1 Fault Testing: Let PT1, 2, 3, 4, 5, and 6 be low; the output of equation 3
should be low; so, we get vectors 2, 3, 4, and 5 in Table
7.5.6.

Exercise product term 2 of equation 3.

SAO Fault Testing: Let PT2 be high and PT1, 3, 4, 5, and 6 be low; the output
of equation 3 should be high; so, we get vector 6 in Table
7.5.6.

SA1 Fault Testing: Let PT1 2, 3, 4, 5, and 6 be low; the output of equation 3
should be low; so, we get vectors 7, 8, 9, and 10 in Table
7.5.6.

Exercise product term 3 of equation 3 (only SAO fault testing is needed).

SAO Fault Testing: Let PT3 be high and PT1, 2, 4, 5, and 6 be low; the output
of equation 3 should be high; so, we get vector 11 in Table
7.5.6.

Continue to exercise the rest of the product terms, completing all of
equation 3.

SA1 fault test for product equation 3; so, we get vector 25.

Repeat step 2 through step 6 for equation 4; i.e.,

SAQ Fault Testing: Let PT1 be high and PT2, 3, 4, 5, and 6 be low; the output
of equation 4 should be high.

SA1 Fault Testing: Let PT1, 2, 3, 4, 5, and 6 of equation 4 be low, the output
of equation 4 should be low.

SAQ Fault Testing for PT2, SA1 Fault Testing for PT2.

SAO Fault Testing for PT3, SA1 Fault Testing for PT3.

SAO Fault Testing for PT4, SA1 Fault Testing for PT4.

SAQ Fault Testing for PT5, SA1 Fault Testing for PT5.

SAOQ Fault Testing for PT6, SA1 Fault Testing for PT6.

SAO Fault Testing for equation 4.

So, we get vectors 26 to 50.

Repeat step 2 through step 6 for equation 5: i.e.,

SAOQ Fault Testing: Let PT1 be high and PT2, 3, 4, 5, 6, and 7 be low; the out-
put of equation 5 should be high.

SA1 Fault Testing: Let PT1, 2, 3, 4, 5, 6, and 7 of equation 5 be low; the out-
put of equation 5 should be low.

SAQ Fault Testing for PT2, SA1 Fault Testing for PT2.

SAO Fault Testing for PT3, SA1 Fault Testing for PT3.

SAQ Fault Testing for PT4, SA1 Fault Testing for PT4.
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Outputs
ILLOP |C|{B|A |17 | F23

RIST

Inputs
CLK | 2B12 | 2823 | B2B1 | B2B2 | B2B3 | 3B | B3B |B1B | EN |C (B [A [ RD

L{L[H| L
LiLjL]| L
LIH|H| L
HIL|H| L
LIL|H| L
HiL|L| L

H{L[H| L
HIH|L| L

L{L|L] L

HIL|L| L

HIH|H| L

HIH|L| L

HIL|H| L
LIH|H| L

HIH|H| L

HIL{H| L

H|L|L| L

H|H|H| L

L(L{H| L
HIL|H| L

HIL|H| L

HIH|L]| L

LIL|H| L
L|iL|L]| L
LIH|H| L
HIL|H| L

L{L|H[L
HiL|{L] L

HIL|H| L

HI{H|L| L

LIL|L| L
HIL|L| L

HIH|H| L

HIH|L| L

HIL[H| L

L
L
L
L
H

H

L
L
L

10
11

12
13
14
15
16
17
18
19
20

21

22
23

24

25

26

27
28
29

30
31

32

33
34

35

37

37

38
39

Test Vectors

Table 7.5.6
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Table 7.5.6 Test Vectors Continued



Step 9:

Step 10:
Step 11:

Step 12:
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SAOQ Fault Testing for PT5, SA1 Fault Testing for PT5.
SAOQ Fault Testing for PT6, SA1 Fault Testing for PT6.
SAO Fault Testing for equation 5.

So, we get vectors 51 to 74.

Minimize the vectors following these rules:
1) Vectors which have same inputs can be combined to be one vector.

2) If the inputs of a vector are subsets of another vector’s inputs, then they
can be combined to form one vector.

So, vectors 1, 26, and 51 can be combined to one vector 1 in Table 7.5.7; vec-

tors 12 and 37 can be combined to one vector 21 in Table 7.5.7, etc.

3) Decide the “?” (undetermined) state in the output by using the inputs and
logic equations (inserting the known values into logic equations).
Therefore, we get Table 7.5.8.

Assign the state numbers. See Table '7.5.9, then we get Table 7.5.10.

Build the state diagram and transition path (Figure 7.5.8) from the vector
Table 7.5.10.

Generate the function table from the state diagram.

1) Be aware of two rules:
a) Generate the initial state first.
b) Generate the function table in sequential order and cover all possible
paths.

2) The value of outputs F1ST, ILLOP, 17 and F23 in each test vector can be
derived easily by inserting the previous values of outputs C, B, and A and
the present values of inputs (none in this example) into their correspond-
ing logic equations.

3) We can quickly identify that the RD signal in this example is the initialize
or reset signal, so RD is set high as the first vector in the function table.

4) Finally, insert an “X” into the unused space. We get the function table as
shown in Table 7.5.11.
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Outputs
ILLOP |C|B|A |17 | F23

L
L

H
L
L

L
L
H
H

L
L
L
L
L
H

L
L

L
L
L
L
?

?

?

?

?

?

H|[H

RIST

Inputs
CLK (2B12 | 2B23 | B2B1 | B2B2 | B2B3 | 3B | B3B |B1B|EN |C|B |A | RD

LIL|H| L
LIL|L| L

LIH|H| L
H|L|H| L
LIL|H| L
H|L|L| L

HIL|H| L
HIH|L| L

L{L[L] L

HIL|L| L

X[X|X]| H

H{L{H] L

HiL[L| L

H(H[H| L

LILJH| L
H|L|H| L

HIL[H|] L

X{H|L| L

X[(H|L| L

H{H[L] L

H|H|H| L

HIH|L]| L

HIL|H| L
L|HIH| L

H|H|H]| L

HIH|H| L

HIH|H| L

H{H[L| L

HIL|H| L

H(H|H| L

LIH|X]| L

H

L
L
L
L
H
L
L
L
L

L

10

"

12
13
14
15
16
17
18
19
20
21

22

23
24

25

26

27

28
29

30
31

32

Table 7.5.7 Test Vectors



=

149

Testing and Reliability

Outputs
ILLOP |C|B |A |17 | F23

H

L
L
L
L
H

L
L
L
L
H
H

L
L
L
L
H
L
L
H
H

L
L
L
L
L

L
H

H

H

L

H

RIST

Inputs
CLK |2B12 | 2B23 |B2B1 | B2B2 ( B2B3 | 3B [ B3B |BIB|EN |[C (B [A | RD

H

H-
H
H
H
H

LIL|H| L
L|L|L]L
LIH|H| L

H|L|H| L
LIL|{H| L
HiL|L|L

H|L|H| L
HIH|L| L

LIL|L| L
HIL|L| L

HIL{H| L

HiL{L|L

HiIHIH| L

LIL[H| L
HIL[H| L
HIL|{H| L
X|H|L| L

XIH[L| L

HI|H|L| L

H{H{H| L
HIH[H| L

HIH|L| L

HIL[H| L
H|L|H| L
LIH|H| L
LIH|H| L
H|H|H| L

HIH|H| L

HIH|H| L

HIH[H] L

HIH[H| L

HIHIL| L

HIL[H| L

HILIH| L

H
L
L
L
L
L
L
L
H

L
L
L
L
L

L
L

10

1

12
13
14
15
16
17
18
19
20
21

22
23
24

25

26

27
28
29
30

31

32

33
34

35

36
37

38
39

40

41

Table 7.5.8 Test Vectors
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State #

A

State Assignment

Table 7.5.9
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Table 7.5.10 Transition Table
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1
5(5|5
REIE
EIE
3|3|3
3|3(a
2(2|2
4l4]4
7\7(7
717|7
1
z|z|z

Outputs

RIST | ILLOP [C|B|A |17 | F23
5/5|5

4|44

RD

Testing and Reliability

c

H{8or6|8or6|8or6|L

Inputs

CLK |2B12|2B23 |B2B1|B2B2 | B2B3 | 3B | B3B [B1B | EN

Table 7.5.10 Transition Table Continued

CLK /2812 /2B23 /B2Bl /B2B2 /B2B3 /3B /B3B /B1B /EN F1ST

/ILLOP /C /B /A /17 /RD F23

FUNCTION TABLE

H
H
H

29
30( C
31
32
33
34
35
36
37| C
38| C
39
40
41
42

- rJ4rJJrJd4r JJ I J X Jd AT AddIT T dddd
4 rIrrr JrXrrrrJrXrXrXrrJIXIXIrXIrXJIXIXIITITxJJ
d T J XX rJrrJrJrrXrJTTIXITXTTxTJITIXTxT I I
ST JIrIrJdrJdrrJddddrdJdddTTaddI 0T da
)t T T J T I JXJ T T JIXTJIT T JITJXT XD
—“tAdJdId T JdJJd AT JJdIJIJXT J T T T A IdJTT XTI IS
rIrXIrrJdrrXrrJrxrrrxxrJrrrrJrxrrxrrrJ4xrxT
rJ4rJdJrrJ4JrdJrxrxrJrJrxrJdJIJxrrJdJaxTrxTITxT
P I [ T s [l Uy [ Y R U [ [ S | N S U S N N R RN [ Y N |
HMIEXITXNI>NIOXIXINXINIRINI;NNXIKX T XXX JIXI
€ € 3 3¢ 3K > < > DK X D> O 3K DK >C DK X > D d X< > > > T > X X<
€ >C 3K 3K > 3K X > € > > > I 3K 3K 2K D 0 3K > O > —J > > > > X<
5€ > >C >C > >C > > > > > > T > o D > T > > > > T > X< > > X<
3 >€C >C >C > 3K > . > —f > > D 3 > 3K 2 3K > X< > X< X< 2 X< XK > X
3€C >C I > —J 2 >C > > < > I > > 3 O 2 > DK X< X< XK > X > X< XX X<
ML I MO I I I AN AXXKXEXIXXKXK XTI
MadI dXIX I DX IX TN INKXXKXITNNKNNKNXTI
LCOOLLLLLLLLLLLLLLOULLLLLLLLLLLL

Table 7.5.11 Final Function Table

DESCRIPTION
OP CODE ANALYZER
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Now we can get any test sequence we like just by
following the state transition. The first vector
should be the initialize vector and, by intuition,
we know state (D is the initialize state.

Figure 7.5.8 State Diagram

The following are printouts of PAL device design specifications, function table, pinout
list, fuse map, simulation result, and fault testing result. We get 100% PTC!

PALASM VERSION 1.5

PAL16R4
PTAN302
TOM WANG
OP CODE ANALYZER
CLK /2B12 /2B23 /B2B1 /B2B2 /B2B3 /3B /B3B /B1B GND
/JEN FIST /ILLOP /C /B /A /17 /RD F23 VCC
IF (VCC)/F1ST = F23
IF (VCC)ILLOP = /A*/B*/C
C:=A*/B*/C*/B3B + /A*/B*C*/B2B2 + RD + A*B*C+/B1B +
A*/B*C*/B2B3%/38 + /A*B*/B2B1
B:=A*/B¥/C*/B3B + /A*/B*C*/B2B2 + RD + A*B*C*/B1B*/2B23 +
A%/B*C*/B2B3 + /A*B*/B2Bl
:=A*/B*/C*/B3B + /A*/B*C*/B2B2 + RD + A%B*C*/B1B*/2B12 +
A*/B*C*/B2B3 + [A*B*/B2Bl + B*/C
17:= A%B*C
IF(VCC)/F23 =/A%/B*/C + A%B*C



TOM

TOM

LONONBWN -

16
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dedededede e ko ke k b ok

*

ddkd

CLk * 1
dodkdk

*

ok kk

/2812 * 2*
dokkk

*

Jedkk ok

/2823 * 3%
drkodek

*

Jdkk

/B2BL  * 4%
*dkkk

*

*kkk

/B2B2  * 5
dkkk

*

dedokk

/B2B3  * 6*
Jekkk

*

dkkk

/3B * T
ddedkk

*

ddkkk

/B3B  * 8*
dedkekok

*

dekkk

/BIB  * 9*
ddekk

*

*kkk

GND  *10*
*kkok

*

* *

PAL
16R4
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A de e g ek e ek dkededke ok

*

ek
*20*
Sk
*

ddkkk
*1g*
*kkk
*

*kkk
*18*
*kkh
*

ek
*17*
*kkk
*

F*kkk
*16%
*kkk
*

*kkk
*15*
*hkk
*

*k kK
*]14%
e ek
*

ddkk ok
*]3%
* ok kK
*

*kkk
*12*
*kkk
*

kK
*]1*
*kkk
*

khkhkhkkhkAA kA kATAAA kA kkhkkdhhdddhh

WANG

CXXXXXXXXXOHHLLLLOLL
COLXXXXX1XOLHLLHLIH1
CXX1XXXXXXOHHLLLHILL
COIXXXXX1XOLHLLHL1HL
CXXOXXXXXXOHLHHHH1LL
CXXXXXXXXXOHHLLLHOLL
COOXXXXX1XOLHLHHL1H1
CXXX1XXXXXOHHLLLH1L1
COOXXXXX1XOLHLHHL1H1
CXXXOXXXXXOHLHHHH1L1
CXXXXXXXXXOHHLLLHOL1
C10XXXXX1XOLHLHLL1H1
CXXXX11XXXOHHLLLH1L1
C1OXXXXX1XOLHLHLL1H1
CXXXXOXXXXOHLHHHH1L1
CXXXXXXXXXOHHLLLHOL1

vce

F23

/RD

/17

/A

/B

/C

/ILLOP

F1ST

JEN
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PASS SIMULATION

17 CLOXXXXX1XOLHLHLL1H1
18 CXXXX10XXXOLHHLLH1H1
19 CXXXXXXXXXOLHHHLH1H1
20 CXXXXXXOXXOHLHHHH1L1
21 CXXXXXXXXXOHHLLLHOL1
22 C1OXXXXX1XOLHLHLL1H1
23 CXXXX10XXXOLHHLLH1H1
24 CXXXXXXXXXOLHHHLH1H1
25 CXXXXXX1XXOHHLLLH1L1
26 CXXXXXXXOXOHLHHHL1L1
27 CXXXXXXXXXOHHLLLHOL1
28 C1IXXXXXIXOHHLLLLOLL

TOM WANG

BEG*FPLT

0123 4567

11
8901

PAL16R4

1111
2345

672

XXXX
XXXX

--X-
o=

---X
X-X-
---X

XXXX

%~
—-X-

---X
X-X-
---X
XXXX
XXXX

29

/A*/B*/C
A*B*C

A*B*C

A*/B*/C*/B3B
/A*/B*C*/B2B2
RD

A*B*C*/B1B*/2B12
A*/B*C*/B2B3
/A*B*/B2B1

B*/C

A*/B*/C*/B3B
/A% /B*C*/B2B2
RD

A*B*C*/B1B*/2B23
A*/B*C*/B2B3
/A*B*/B2B1



FILE:

——
HOWVWONOUHWN -

DN bt 4= bt e et s et
CLVODNOLBWN

NN NN
B wWwN—

25
26
27
28

1 X
. X-X-
S X
. X
45 —-e —o- X--- --X-

47 XXXX XXXX XXXX XXXX
49 -ooe ceee s X

END*FPLT

LEGEND: X : FUSE NOT BLOWN (L,N,0) - :
NUMBER OF FUSES BLOWN =

TOM WANG

PTAN302 FUSEPLOT A <<<

CXXXXXXXXXOHHLLLLOLL
COIXXXXX1XOLHLLHL1H1
CXXIXXXXXXOHHLLLH1L1
COLXXXXXIXOLHLLHLIHL
CXXOXXXXXXOHLHHHH1L1
CXXXXXXXXXOHHLLLHOL1
COOXXXXX1XOLHLHHL1H1
CXXX1XXXXXOHHLLLH1L1
COOXXXXX1XOLHLHHL1H1
CXXXOXXXXXOHLHHHH1L1
CXXXXXXXXXOHHLLLHOL 1
C1OXXXXX1XOLHLHLL1H1
CXXXX1IXXXOHHLLLH1L1
CIOXXXXX1XOLHLHLL1H1
CXXXXOXXXXOHLHHHH1L1
CXXXXXXXXXOHHLLLHOL1
CLOXXXXX1XOLHLHLL1H1
CXXXX10XXXOLHHLLH1H1
CXXXXXXXXXOLHHHLH1H1
CXXXXXXOXXOHLHHHH1L1
CXXXXXXXXXOHHLLLHOL1
CLOXXXXX1XOLHLHLL1HL
CXXXX10XXXOLHHLLH1H1
CXXXXXXXXXOLHHHLH1H1
CXXXXXX1XXOHHLLLHILL
CXXXXXXXOXOHLHHHL1L1
CXXXXXXXXXOHHLLLHOL1
C11XXXXX1XOHHLLLLOLL

PASS SIMULATION 672

NUMBER OF STUCK AT ONE (SAl)

X-X= X==X -=- --e- A*/B*C*/B2B3*/3B

786

NATIONAL SEMICONDUCTOR TIMESHARING SERVICES SYST

29

FAULTS ARE

NUMBER OF STUCK AT ZERO (SAO) FAULTS ARE

PRODUCT TERM

COVERAGE

Testing and Reliability

X-=- === A*/B*/C*/B3B
-------- /A% /B*C* /B282
RD

---- X--- A¥B*C*/BIB
-------- /A*B*/B281

——-- —--- [A*/B*/C

FUSE BLOWN

24

"

24
=100%

(H,P,1)

155
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Applications*

8.1 BASIC GATES

This example demonstrates how fusable logic can implement the basic inverter, AND
OR, NAND, NOR and exclusive -OR functions. The PAL 12H6 is selected because it has 12
inputs and 6 outputs.

PAL12H6

\J

G|l 4 D—17E

¢—1 ML?_‘ | =l
- g
:>c——

Df2 19| A
.

D

119 I— 12K

GND |10 1)J

Figure 8.1.1 Basic Gates

* Applications cc ined in this chapter are for illustration purposes only and National makes no representation or
warranty that such applications will be suitable for the use specified without further testing or modification.
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PALASM VERSION 1.5

PAL12H6

TOM WANG

BASIC GATE

NSC SANTA CLARA

CDFGMNPQIGNDJKLRDO

= /A
*D
+

*/Q + /P*Q
CTION TABLE
DEFGHI

Z 0 nononono

C
F
/
/M*/N
P
UNCT
c

DI ICICIIIKC IO XXX XX T TTOOTMOrrTmw
I IXI KX XKXINXIXIX XX XX T @
KOOI KKK XX XXX T > ><
DO ICIKC I IR XX T~ T r >< >
MO XX X T r >xX >
MM XK XXX T I rr>xX>xX XX XX
KX XX XK XXX T >X X >X>X X >
MK XXX TT LI > >X DX >X X XX

XXX XXX T T r > > > > > >< > >X >X XX

XXX T D M > > > > X ><X X< >< XX X<
DX DI ICIC DI T M I K~ 5 > DK 2K 5K > >< >< ><X ><
XXX I XX~ LT L > > > > > XX >X XX XX >

o

XXX T I > 2K DK 2K X 2K 3K 2K 2K > ><X <X ><X <
MO XX T~ T~ > > > > 5K > > > X > > > XX X< ><
XXX I~ 1 & > 2K <X < > ><K > > >< >< > ><X XX XX ><

©
o
)

T 23K 2K 5K < X 3K X < <K 3K D<K DX DK > <K XX < >
T D > 3K 3K 5K 2 2K 3K K 3K 3K 2K XK X O > X< X X XX
M >< 3K 3K 3K 3K DK 3K DK 3K 2K > > 2K D<K ><X XX XX > ><

HEBAVCC

sTEST INVERTER

sTEST INVERTER

sTEST AND GATE

sTEST AND GATE

sTEST AND GATE

sTEST AND GATE

sTEST OR GATE

sTEST OR GATE

sTEST OR GATE

sTEST OR GATE

sTEST NAND GATE

sTEST NAND GATE

sTEST NAND GATE

sTEST NAND GATE

sTEST NAND GATE

sTEST NOR GATE

sTEST NOR GATE

sTEST NOR GATE

sTEST NOR GATE

3TEST EXCLUSIVE OR GATE
sTEST EXCLUSIVE OR GATE
sTEST EXCLUSIVE OR GATE
sTEST EXCLUSIVE OR GATE

Jedkek ke dekeok dede ok kokok

X X

DESCRIPTION
BASIC GATE

*

*hkk

C  * 1%

Hekkek

*

dekokek

D *2*

ek

*

Kok

F % 3%

*kkk

*

dkkk

G * 4%
*kkk

* *

PAL
12H6

e e e ke e e e ok ok k ke ke ok

*
%k kok

*20%  VCC
dkdkk

*

Fkkk
*1g% A
*kkk

*

Fdkdkk
*1g% B
ddkkk

*

dekdek
*17%  E

dkkk



*
*kkk

M * 5%
Fhdk

*

Kok dk

N  * 6*
*EAK

*

*kFK

P * 7%
KAk k

*

*Hkk

Q * 8*
KA kK

*

Kk kk

I * 9%
*kkk

*

*kkk

GND  *10*

*kkk
*

Applications

*
Fkkk

*16%  H
*kkk

*

dkkk
*¥15% 0
*kkk

*

*kkk
*14% R
*kkk

*

*kkk
*13% |
F*kkk

*

*kkk
*1p% K
*kkk

*

*kkk
*11* g

*kkk
*

dkkkkkhkhkkkkhkdkkkhkkkkhkkkhkkkhkkkkhkk

BASIC GATE

0123 4567

11 1111 1111 2222

8901

BEG*FPLT PAL12H6

51 XXXX XXXX

END*FPLT

LEGEND: X : FUSE NOT BLOWN
0 : PHANTOM FUSE

--00
XX00
XX00
XX00

--00
XX00

NUMBER OF FUSES BLOWN =

2345
8

--00
XX00
XX00
XX00

--00
XX00

--00
--00

-X00
XX00

--00
--00

--00
--00
--00
XX00

306

6789

--00
XX00
XX00
XX00

--00
XX00

--00
--00

-X00
XX00

--00
--00

--00
--00
--00
XX00

0123

--00
XX00
XX00
XX00

--00
XX00

--00
--00

--00
XX00

X-00
-X00

--00
--00
--00
XX00

(L,N,0)
(L,N,0) 0 :

________ /A

-------- C*D

________ IM* /N

"
Xemm = /P*Q

cee X /I
X —mmm /K

¢ FUSE BLOWN
PHANTOM FUSE
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BASIC GATE

N = = = b b e
CQWVWONOOBWNFOWVWONOOGTS WM

NN N
W N =

XXXXXXXXXXXXXXXXXHOL
XXXXXXXXXXXXXXXXXL11
00XXXXXXXXXXXXXXLXX1
OLXXXXXXXXXXXXXXLXX1
10XXXXXXXXXXXXXXLXX1
TIXXXXXXXXXXXXXXHXX1
XXOOXXXXXXXXXXXLXXX1
XXOIXXXXXXXXXXXHXXX1
XXIOXXXXXXXXXXXHXXX1
XXTIXXXXXXXXXXXHXXX1
XXXXXXXXOXO0OHXXXXXX1
XXXXXXXXOXOLHXXXXXX1
XXXXXXXXOXLOHXXXXXX1
XXXXXXXX1XOOHXXXXXX1
XXXXXXXXIX11LXXXXXX1
XXXXOOXXXXXXXXHXXXX1
XXXXO1XXXXXXXXLXXXX1
XXXX1OXXXXXXXXLXXXX1
XXXXT1IXXXXXXXXLXXXX1
XXXXXX00XXXXXLXXXXX1
XXXXXXOIXXXXXHXXXXX1
XXXXXX10XXXXXHXXXXX1
XXXXXXTIXXXXXLXXXXX1

PASS SIMULATION

PASS SIMULATION

230

230

PRODUCT: 1 OF EQUATION.
PRODUCT: 2 OF EQUATION.
PRODUCT: 3 OF EQUATION.

4
4
4

24

24

NUMBER OF STUCK AT ONE (SAl) FAULTS ARE

NUMBER OF STUCK AT ZERO (SAO) FAULTS ARE

PRODUCT TERM

COVERAGE

BASIC GATE

XXXXXXXXXXXXXXXXXHO1
XXXXXXXXXXXXXXXXXL11
O0XXXXXXXXXXXXXXLXX1
O1XXXXXXXXXXXXXXLXX1
LOXXXXXXXXXXXXXXLXX1
LIXXXXXXXXXXXXXXHXX1
XX00XXXXXXXXXXXLXXX1
XXO1XXXXXXXXXXXHXXX1
XX1OXXXXXXXXXXXHXXX1
XXTIXXXXXXXXXXXHXXX1
XXXXXXXX0XOOHXXXXXX1
XXXXXXXX0XOLHXXXXXX1
XXXXXXXX0X1OHXXXXXX1
XXXXXXXX1XOOHXXXXXX1
XXXXXXXX1X11LXXXXXX1
XXXXOOXXXXXXXXHXXXX1
XXXXO1XXXXXXXXLXXXX1
XXXX1OXXXXXXXXLXXXX1
XXXXTIXXXXXXXXLXXXX1
XXXXXX00XXXXXLXXXXX1
XXXXXXOIXXXXXHXXXXX1
XXXXXX1OXXXXXHXXXXX1
XXXXXXLIXXXXXLXXXXX1

UNTESTED(SAO)FAULT
UNTESTED(SAQ)FAULT
UNTESTED(SAQ) FAULT

10
7
85%



Product Terms (0-63)

Applications 161

Inputs (0-31)
1 " 012 567 [ ) 173 AL wn 24252827 28293001
b2 b | 53—19 A
: E}_—_‘P B
3 ~
F—1»
; Bl o— ¢
G4
u B >
5 N
m—7P%
; g %o
6 N
N—T%
: B>
7
P
] 13
5 ﬁ >—1
8 N A 12
a—Px— g4«
9 1
1 S

1231 a8 s [LRE] wy 02 N W2IN

Figure 8.1.2 Logic Diagram PAL12H6
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8.2 BASIC CLOCKED FLIP FLOPS

This example demonstrates how fusable logic, PAL16R8, can implement the basic flip-
flops; J-K flip-flop; T flip-flop, D flip-flop, and S-R flip-flop. A PAL16L8 can be substituted
for this application. Then, the clock input (CLK) would be gated with the data inputs to
implement the basic flip-flop.

PALASM VERSION 1.5

PAL16R8
BFLIP
BASIC
NSC
CLK J K TPRCLRD S RGND
/0C /SRC /SRT /DC /DT /TC /TT /JKC /JKT VCC
JKT:=Jd*/JKT*/CLR
+/K*JKT*/CLR
+PR
JKC:=/J*K*/PR
+/J%/JKT* /PR
+K*JKT* /PR
+CLR
TT:=T*/TT*/CLR
+/T*TT*/CLR
+PR
TC:=/T*/TT*/PR
+T*TT* /PR
+CLR
DT:=D*/CLR
+PR
DC:=/D*/PR
+CLR
SRT:=S*/CLR
+/R*SRT*/CLR
+PR
SRC:=/S*R*/PR
+/S*/SRT*/PR
+CLR
FUNCTION TABLE
CLK /0C PR CLR J K JKT JKC T TT TC D DT DC S R SRT SRC

rrrreerrree
r—rxxreeeeer
- rx
T ITXrrrrITITrrr>x
FIIXIrrITIor X
X mr T xXTITITrrrre
mrTrrTXrr-rrTTITxT
> 2K > > > XX XX XX XX <
< > > > XK XX X XX XX X
> > > > > > XX X< > X
< > > > > > XX X< XX X
< < > > 2K DK XX XX X X
> > > > > > XX X< <X <
> 5K 2K > XX XX XX > ><X X
< > > > > > XX > XX XX
2< 3K XK XK XX XX XX XX XX XX

X;CLEAR
X3

X; TOGGLE
X3 TOGGLE
X;PRESET

OOOO0O OOOOOOOOOOO0O

rrrrrrr
zrrrr—
rrrrx
>< > > >< ><
>X XX XX X X
>< > > XX X<
> > XX X X
XX X >x
rxrr
mrIrTITx
>< >< > > >
> XX X X X
> > > X X<
> > > > >
>< > XX > >
>X > XX X X
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X;CLEAR
X3

X3
X3
X;PRESET
H3CLEAR
Hs

L;SET
H3RESET
H;HOLD
L;PRESET
L;
L;

vce
/IKT
/JKC
anl
/TC
/DT
/DC
/SRT
/SRC

/0C

CLLH XXX X XXX XLH XXX
CLLL XXX X XXX LLH XXX
CLLL XXX X XXX HHL XXX
CLLL XXX X XXX LLH XXX
CLHL XXX X XXX XHL XXX
CLLH XXX X XXX XXX XXL
CLLL XXX X XXX XXX LLL
CLLL XXX X XXX XXX HLH
CLLL XXX X XXX XXX LHL
CLLL XXX X XXX XXX LHL
CLHL XXX X XXX XXX XXH
CLLL XXX X XXX XXX LLH
CLLL XXX X XXX XXX HLH
DESCRIPTION
BASIC
*kkkkkdkkhkkkkkk * ke ke gk ok dkodokokok ok ok
* * * *
*kkk *kkk
CLk * 1+ PAL *20%
*dkk *kkk
* 16R8 *
*kkk *kkk
J * 2* *19*
*kkk *kkk
* *
*kkk *kkk
K * 3% *1g%
dkdk *kkk
* *
*kkk *kkk
T * 4* *17*
*kdkk dekdkk
* *
dekkk dkkk
PR * 5 *16%
dkkk dekkk
* *
d*kkk dkkk
CLR  * 6% *15%
*dkkk *kkk
* *
dkdk dek ok
D * 7* *]14%
dkdk dkkk
* *
dekdkk dkkk
s * gk *13%
*kkk F*kkk
* *
*dkkk K*kkk
R * gx *]2%
ek dek dedkkk
* *
*kkk Kk
GND  *10* *11%
*kdkk *kkk

*

*

dkdkkdkkkkdkkhkkdkkkkkkkkkkkkkkkkkk

163



164

Programmable Logic Design Guide

BASIC

0123

BEG*FPLT

X-X-
——-X

11
4567 8901

PAL16R8

Xem —mme

1111
2345

1111 2222 2222 2233
6789 0123 4567 8901

Xem mmmm mmm oo
Xem mmmm e e

XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX

J*/JKT*/CLR
/K*JKT*/CLR
PR

/JI*K* /PR
/J*/JIKT*/PR
K*JKT*/PR
CLR

T*/TT*/CLR
JT*TT*/CLR
PR

[T*/TT*/PR
THTT* /PR
CLR

D*/CLR
PR

/D*/PR
CLR



48 —---
49 --—-

) P — Xoom s mmmm e —oee

51 XXXX
52 XXXX
53 XXXX
54 XXXX
55 XXXX

56 —---
yg—

58 mmmm e mmmm oo Koo mmom mmmm omem

59 XXXX
60 XXXX
61 XXXX
62 XXXX
63 XXXX

END*FPLT
LEGEND:

X :

FUSE NOT

BLOWN (L,N,0) - :

NUMBER OF FUSES BLOWN = 686

BASIC

DN b= = b s = b e s
OWO NOUMAHAWNFHFOWVWONOUIEWN

NN
wn -

NN
o

~nN N
No

WWWWMN N
WN— O W

XXXXXXXXXX1227777771
CXXXO1XXXXOXXXXXXLH1
CXXXO1XXXXOXXXXXXLH1
COOX00XXXXOXXXXXXLH1
CO1X00XXXXOXXXXXXLH1
C11X00XXXXOXXXXXXHL1
C10X00XXXXOXXXXXXHL1
COOXO0XXXXOXXXXXXHL1
CO1XO00XXXXOXXXXXXLH1
CXXX10XXXXOXXXXXXHL1
C11X00XXXXOXXXXXXLH1
C10X00XXXXOXXXXXXHL1
CXXXO1XXXXOXXXXLHXX1
CXXXO1XXXXOXXXXLHXX1
CXX000XXXXOXXXXLHXX1
CXX100XXXXOXXXXHLXX1
CXX100XXXXOXXXXLHXX1
CXXX1OXXXXOXXXXHLXX1
CXXXO1XXXXOXXLHXXXX1
CXXXO1XXXXOXXLHXXXX1
CXXX000XXXOXXLHXXXX1
CXXX001XXXOXXHLXXXX1
CXXXO00XXXOXXLHXXXX1
CXXX1OXXXXOXXHLXXXX1
CXXXO1XXXXOLHXXXXXX1
CXXXOLIXXXXOLHXXXXXX1
CXXXOO0X00XOLHXXXXXX1
CXXXO00X10XOHLXXXXXX1
CXXXOOXO1XOLHXXXXXX1
CXXXOOX01XOLHXXXXXX 1
CXXXLOXXXXOHLXXXXXX1
CXXXOO0XO00XOHLXXXXXX1
CXXX00X10XOHLXXXXXX1

PASS SIMULATION

Applications

/S*R*/PR
/S*/SRT* /PR
CLR

FUSE BLOWN

759

(H;P,l)

34

165
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PASS SIMULATION
PRODUCT ¢
PRODUCT :
PRODUCT:
PRODUCT:
PRODUCT =
PRODUCT:

NUMBER OF STUCK AT ONE (SAL)
NUMBER OF STUCK AT ZERO (SAQ) FAULTS ARE

PRODUCT TERM

BASIC

OCONOOTH WN -

1 OF EQUATION.
4 OF EQUATION.
2 OF EQUATION.
3 OF EQUATION.
2 OF EQUATION.
3 OF EQUATION.

XXXXXXXXXX12ZZZ77771
CXXXO1XXXXOXXXXXXLH1
CXXXO1XXXXOXXXXXXLH1
COOXO0XXXXOXXXXXXLH1
CO1X00XXXXOXXXXXXLH1
C11X00XXXXOXXXXXXHL1
C10X00XXXXOXXXXXXHL1
COOXOOXXXXOXXXXXXHL1
CO1XOOXXXXOXXXXXXLH1
CXXX10XXXXOXXXXXXHL1
C11XO0XXXXOXXXXXXLH1
C10X00XXXXOXXXXXXHL1
CXXXOLXXXXOXXXXLHXX1
CXXXOLXXXXOXXXXLHXX1
CXXO0OXXXXOXXXXLHXX1
CXX100XXXXOXXXXHLXX1
CXX100XXXXOXXXXLHXX1
CXXXLOXXXXOXXXXHLXX1
CXXXO1XXXXOXXLHXXXX1
CXXXOLXXXXOXXLHXXXX1
CXXXOO00XXXOXXLHXXXX1
CXXX001XXXOXXHLXXXX1
CXXX00O0XXXOXXLHXXXX1
CXXX10XXXXOXXHLXXXX1
CXXXO1XXXXOLHXXXXXX1
CXXXO1XXXXOLHXXXXXX1
CXXXOO0X00XOLHXXXXXX1
CXXX00X10XOHLXXXXXX1
CXXX00X01XOLHXXXXXX1
CXXX00X01XOLHXXXXXX1
CXXX10XXXXOHLXXXXXX1
CXXXOO0XO00XOHLXXXXXX1
CXXX00X10XOHLXXXXXX1

759 34

OO WMNN

FAULTS ARE

COVERAGE =

23
17
86%

UNTESTED(SAO) FAULT
UNTESTED (SAO) FAULT
UNTESTED (SAO) FAULT
UNTESTED(SAO) FAULT
UNTESTED (SAO)FAULT
UNTESTED (SAO)FAULT
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Applications

CLKL-D

01213

4567

8 91001 131815 1610100y 20242443

a18L 230

L

UL

d

8

UL

U

4
T—1X

5
PR— %

n

T

CLR

2

2?.

U0

U

2|\..

0123

4561

891011 12151615 16171819 20212025

629821 2849300

Figure 8.2.1 Logic Diagram PAL16R8
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8.3 MEMORY-MAPPED I/0 (ADDRESS DECODER)

Memory-mapped I/O is an interface technique that treats I/O devices’ physical
addresses the same as memory address space. That is, no Memory-1/O decoding is
required. Furthermore, most computers have more instructions to manipulate the con-
tents of memory than they have I/O instructions. Therefore, the use of memory map-
ping can make I/O control much more flexible. PAL devices can be used to make
memory-mapped I/O implementation easy, even if changes in memory addresses are
required.

Functional Description

Figure 8.3.1 shows a circuit that is typical of those found in memory-mapped I/O appli-
cations. The inputs to the decode logic are the system memory address lines, Ag-Ag
The logic shown compares the address on the memory bus with the programmed com-
parison address. When an address on the bus matches, the corresponding 1/0O port
enable signal is set. In conjunction with other system control signals, this enable can be
used to transfer data to and from the system data bus.

PORT 0=1F78 PORT 1=1F79
ABF D> Do ABF D— Do

ABE > Do— ABE > P>o—

ABD ABD D> P>o—

ABC D— ABC D>

ABB > ABB D>

ABA D— ABA D—

ABY [>— ABY >

AB8 D>—— ABS D>

AB7 > o }—PORTO o S Do PORT 1
AB6 > ABE D—

ABS > AB5 O~

ABA D— AB4 D>

AB3 D> AB3 >

AB2 > P>o— AB2 D> Do

AB1 > Do AB1 > »0

ABO D> Do ABO >

MEMORY MAPPED 10

MEMORY MAPPED 10

Figure 8.3.1 Memory Mapped I/O Logic Diagram
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PAL Device Design

One PAL16L2 can be used to monitor a 16-bit address bus, fully decode addresses,
and furnish enables to two ports, each of which can be anywhere within 64K of
address space. Partial decoding for a larger number of ports can be done using other
members of the PAL device family.

Typical logic equations for the memory-mapped I/O logic are as follows:

Port 0 = /ABO®/AB1¢/AB2®*AB3®AB4®AB5¢ABGe/AB7®
AB8eAB9*ABA®*ABB*ABC®/ABD®/ABE®/ABF

Port 1 = ABO®/AB1¢/AB2¢AB3eAB4eAB5°ABG®/AB7®
AB8eAB9*ABA®*ABB®*ABC®/ABD®/ABE®/ABF

The above example shows address decoding for memory locations 1F78y and
1F79y. The equation terms could be changed to accommodate any 16-bit address.

PALASM VERSION 1.5

PAL16L2

PAT

MEMORY

MAP

ABO AB1 AB2 AB3 AB4 AB5 AB6 AB7 AB8 GND

AB9 ABA ABB ABC /PORT1 /PORTO ABD ABE ABF VCC

PORTO=/ABO* /AB1*/AB2*AB3 *ABA4*AB5*AB6*/AB7*AB8*ABI*
ABA*ABA*ABC*/ABD* /ABE* /ABF

PORT1=ABO*/AB1*/AB2*AB3*AB4*AB5*AB6* /AB7*AB8*ABI*
ABA*ABB*ABC* /ABD* /ABE* /ABF

DESCRIPTION

MEMORY

edkekokdekkkdokkkkok Jede e dedodk ok ok ke ok ko

* * * *
*Kkkk *kkk
ABO  * 1% PAL *20%  VCC
Jekekk *dkkk
* 16L2 *
Jedkkk *kkk
ABL  * 2% *19%  ABF
dkdk *kkk
* *
*kkk *kkk
AB2  * 3* *x18%  ABE
Jedkkk *kkk
* *
*kkk Jokkk
AB3  * 4* *17%  ABD
d*kkk Fdkkdk
* *
*kkk *kkk
AB4  * 5 *16*  /PORTO

*kkk Kkkk
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MEMORY

0123
BEG*FPLT

24 -X-X
25 XXXX
26 XXXX
27 XXXX
28 XXXX
29 XXXX
30 XXXX
31 XXXX

32 -XX-
33 XXXX
34 XXXX
35 XXXX
36 XXXX
37 XXXX
38 XXXX
39 XXXX

END*FPLT
LEGEND:

NUMBER OF FUSES BLOWN =

ABS

AB6

AB7

AB8

GND

11

4567 8901

PALL

6L2

-X-X X--X

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

-X-X
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

X--X
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

*
dkekk
* Gk
*okekok

*
Fokkok
* 7k
Fekdok

*
*okekok
* g
Fokkok

*
Fekkk
* Q%
Fkkk

*
Fdkk
*10%
Fkekk

*

*

*kkk
*15%
*kkk
*

*kkk
*]14%
*kkk
*

Kk kk
*13%
*kkk
*

*kkk
*]12%
dkkk
*

Jkkk
*11*
*kkk
*

dkkkkdkhkkkkkkhkhkkkkkhkhkkkkkhkkhkkhkid

1111
2345

8

X--X
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

X--X
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

1111
6789

X-X-
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

X-X-
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

X : FUSE NOT BLOWN
0 : PHANTOM FUSE

32

2222
0123

X-==
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

X-X-
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

2222
4567

-XX-
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

-XX-
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

2233
8901

X-X-
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

X-X-
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

/PORT1

ABC

ABB

ABA

AB9

/ABO* /AB1*/AB2*AB3*AB4*AB5*AB6*

ABO*/AB1*/AB2*AB3*ABA*AB5*AB6*/

- ¢ FUSE BLOWN
0 : PHANTOM FUSE
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0123 4567 8931011 12131415 16171819 2021222) 24252620 20292011

AB—12Z

2 4 19

AB—3 1 <H————A°8F

AB,— 5 —aBE

AB, 4_12 <——~neD

i ®
n PORT 0
» ]

AB 5__1} n Pﬁ

7

13 ~—)
i ® soRTT
i =

AB—J3 ﬂ———LABB

0123 4567 091011 213105 1811819 20212223 24252620 26283031

Figure 8.3.2 Logic Diagam PAL16L2
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8.4 HEXADECIMAL DECODER/LAMP DRIVER

The increasing use of microcomputers has led to an increased need to display numbers in
hexadecimal format (0-9, A-F). Standard drivers for this function are not available, so
most applications are forced to use several packages to decode each digit, of the display.
Since 6 to 12 digits are often being displayed, this approach can become very expensive.
This example demonstrates how the hexadecimal display format can be both decoded
and the LED indicators driven using a single PAL for each digit of the display.

Functional Description

A hex decoder/lamp driver accepts a four-bit hex digit, converts it to its corresponding
seven-segment display code, and activates the appropriate segments on the display.
These drivers can be used in both direct-drive and multiplexed display applications. A
single PAL can provide both the basic decode/drive functions, and additional useful fea-
tures as well.

General Description

Figure 8.4.1 shows three digits of a display system that uses three PALs to implement
‘the complete decoding and display-driving functions. The inputs to each section are a
hex code on pins D(-D3, a ripple blanking signal, an intensity control signal, and a lamp
test signal.
The hex codes are decoded to form the seven-segment patterns shown in Figure
8.4.1. The input codes, digit, represented, and segments driven are as follows:

D, D, D, D, Digit Segments
0 0 0 0 0 ABCDEF
0 0 0 1 1 BC
0 0 1 0 2 ABDEG
0 0 1 1 3 ABCDG
0 1 0 0 4 BCFG
0 1 0 1 5 ACDFG
0 1 1 0 6 ACDEFG
0 1 1 1 7 ABC
1 0 0 0 8 ABCDEFG
1 0 0 1 9 ABCDFG
1 0 1 0 A ABCEFG
1 0 1 1 B CDEFG
1 1 0 0 C ADEF
1 1 0 1 D BCDEG
1 1 1 0 E ADEFG
1 1 1 1 F AEFG

Table 8.4.1 Function Description
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THREE STAGE HEXADECIMAL DECODER /DRIVER

A PAL16L8
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S DECODER/7SEGMENT
g Ic DRIVER WITH RIPPLE BLANKING
O
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L F
—o B
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Figure 8.4.1 Hex Display Decoder-Driver, Combinational Logic Diagram
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Ripple-blanking input RBI is used to suppress leading zeroes in the display. The sig-
nal is propagated from the most significant digit to the least significant digit. If the digit
input is zero and RBI is low (indicating that the previous digit is also zero), all segments
are left blank and this digit position’s ripple-blanking output RBO is set low.

Intensity control signal IC controls the duty cycle of the display driver. When IC is
high, all segment drivers are turned off. Pulsing this pin with a duty-cycled signal
allows the adjustment of the display’s apparent brightness.

Lamp test signal LT lets you check to see if all LED segments are energized.

PAL Device Implementation

The PAL16L8 has both the required I/O pins and the drive current capability to perform
as the complete display decoder-driver circuit with seven inputs and eight outputs. The
logic equations for this circuit are shown in the listing. One PAL device drives each
digit; they may be cascaded without limit. With minor changes, the same logical struc-
ture could be used with multiplexer logic to allow a single PAL device to decode and
drive multiple digits.

PALASM VERSION 1.5

PAL16L8

PATO7

HEX

BLANK

/RBI DO D1 D2 D3 IC LT NC NC GND

NC G /RBOF EDCBAVC

IF(/1C)/A=/RBO*/D0*/D2+/RBO*/D0*D3+/RBO*D1*D2+
/RBO*D1*D2*/D3+/RBO*D0*D2* /D3+/RBO* /D1*/D2*D3+LT

IF(IC)/B=/RBO*/D2*/D3+/RBO*/D0*/D2+/RBO*/DO*/D1*/D3+
/RBO*DO*D1*/D3+/RBO*D0*/D1*/D3+LT

IF(1IC)/C=/RBO*DO*/D1+/RBO*DO*/D2+/RBO*/D1*/D2+
/RBO*D2*/D3+/RBO*/D2*D3+LT

IF(IC)/D=/RBO*/D1*D3+/RBO*/DO*/D2*/D3+
/RBO*D0*D1*/D2+/RBO*/D0*D1*D2+/RBO*DO*/D1*D2+LT

IF(IC)/E=/RBO*/DO*/D2+/RBO*D2*D3+/RBO*/D0O*D1+
/RBO*D1*D3+LT

IF(IC)/F=/RBO*/D0O*/D1+/RBO*/D2*D3+/RBO*D1*D3+
/RBO*/D0*D2+/RBO*/D1*D2* /D3+LT

IF(VCC)RBO=/D0*/D1*/D2*/D3* /RBI

IF(/1C)/G=/RBO*D1*/D2+/RBO*DO*D3+/RBO* /D2*D3+
/RBO*/D0*D1+/RBO*/D1*D2*/D3+LT

DESCRIPTION
HEX
Fhcdkkkkkhhkkkkk  kkkkkkkkkkkdokk
* * % *
Fkdkk e
/RBI  * 1* PAL *20*  VCC
Kk e
* 16L8 *
*kkk "
D0 * 2* *19% A

dkkk Jededek
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* *
. e——
D1 * 3% *x1g* B
——— -
* *
*kkk o
D2 * 4% *17* C
- Jekkdke
* *
*hkk Fedkke
D3 * o* *16* D
—— .
* *
- Hkkk
IC * 6% *15* E
Fokkk ranmen
* *
o e
LT * 7% *14* F
. Fkkk
* *
- Fkkk
NC * 8% *13*  /RBO
- e
* *
- e
NC * 9% *12* G
—— Fkkk
* *
- Jr—
GND  *10* *11*  NC
P *kkk
* *

*kkhkdkkhkhkkkhkhkhkkkhkhkkhkkhkkhkhkkhkkhkhkh

HEX

11 1111 1111 2222 2222 2233
0123 4567 8901 2345 6789 0123 4567 8901

BEG*FPLT PAL16L8 8

T CRICEEEIEEE) (o
{ ko= === -X== === ==-= === -=X- ---- /RBO*/D0*/D2

2 Ko === =mm= Xem= === === =-X- --== /RBO*/D0*D3

3 === X=== X=== === =e== -m-- —-X- ---- /RBO*D1*D2

4 —=-= X=== X-== —X-= ==== === --X- ---- /RBO*D1*D2*/D3

5 X--n -—-- X-== =X-= ==== === --X- ---- /RBO*D0*D2*/D3

6 ---= -X-= ~X-= X=-= ==== ==== =-X- ---- /RBO*/D1*/D2*D3
7 mmmm mmmm mmmm e oe- X-m= —mmm —oe- LT

B —omm e mmmm meee O IC

9 === === X-= =K== === ==== --X- ---- /RBO*/D2*/D3
10 ~X-= ==== =X== ==== ==== === --X- --=~ /RBO*/D0*/D2
11 ~X-= -X== ==== =X-= =-== === ==X~ ---- /RBO*/D0*/D1*/D3
12 X-== X=== ==== =X== ==== === -=X- ---~ /RBO*DO*D1*/D3
13 X-== =X-= ==== =K== === -=== --X- ---- /RBO*D0*/D1*/D3
14 === === mmm e e X-== —=mm —m- LT
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END*FPLT

LEGEND:

X : FUSE NOT BLOWN (L,N,0)

R .
XXXX XXXX XXXX XXXX
Xm=m mmmm mmme meem
SRR S
SR
e e mXm e
S SR
RO
D O el
XXXX XXXX XXXX XXXX
| U
S SR,

NUMBER OF FUSES BLOWN = 1496

- : FUSE BLOWN

IC
/RB0O*D0*/D1
/RBO*DO*/D2
/RBO*/D1*/D2
/RBO*D2*/D3
/RBO*/D2*D3
LT

IC

/RBO*/D1*D3
/RBO*/D0*/D2* /D3
/RBO*DO*D1*/D2
/RBO*/D0*D1*D2
/$BO*DO*/DI*DZ
L

IC
/RBO*/D0*/D2
/RBO*D2*D3
/RBQ*/D0*D1
/RBO*D1*D3
LT

IC

/RBO*/D0* /01
/RBO*/D2*D3
/RBO*D1*D3
/RBO*/D0*D2
/RBO*/D1*D2*/D3
LT

/D0*/D1*/D2*/D3*/RBI

/1C

/RBO*D1*/D2
/RBO*D0*D3
/RBO*/D2*D3
/RBO*/D0*D1
/RBO*/D1*D2*/D3
LT

(H,P,1)
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0123 4567 91011 12131415 16171919 20212223 24252627 2829300

~ovswm—o

17

LT

ne 1P

ne *—TPx " ne

0123 4567 83101 12111815 15171819 20212223 20252627 28293001

Figure 8.4.2 Logic Diagram PAL16L8



178 Programmable Logic Design Guide

8.5 BETWEEN LIMITS COMPARATOR/LOGIC

PAL16C1
mo— 20] Ve
W 2H 19] GTy
EQiL [3 E T,
ar, [AH 7] &,

EQ2U [ 5 AND EW
EE-—A(;,:IEY El NC
EQaL | 7 H 14] NC
o GH Bk

EQau [ 9]+ EE] EQ3L
awo )] {7

LOGIC SYMBOL

Figure 8.5.1 PAL Device 16C1 Limit Checker

PALASM VERSION 1.5

PAL16C1

PAT 0021

BETWEEN LIMITS COMPARITOP LOGIC

NSC

/EQIU /LT1 /EQIL /GT2 /EQ2U /LT2 /EQ2L /GT3 /EQ3U GND

/LT3 /EQ3L NC NC NC /BTWL /GTO /LTO /GT1 VCC

/BTHWL = GT3 + GT2*EQ3U + GT1*EQ3U*EQ2U + GTO*EQ3U*EQ2U*EQLU +
LT3 + LT2*EQ3L + LT1*EQ3L*EQ2L + LTO*EQ3L*EQ2L*EQIL
DESCRIPTION

BETWEEN LIMITS COMPARITOP LOGIC

dekdkddkdkk ok kkkokk dkkkkkkkkkkkkk

* * * *
*kkk Jodkkk
/EQLU * 1* PAL *20%  VCC
Fkkk Fkkk
* 16C1 *
Kk kk Jkkk
JLTL % 2% *19%  /GT1
dkkk *dkkk
* *
Fkkk dkkk
JEQIL  * 3% *18%  /LTO
dkkk *dkkk

* *
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*dkk *kkk
/6T2  * 4% *17%  /GTO
Fdkkk Jdkdkk
* *
F*kkk *kkk
/EQU  * 5 *16%  /BTHL
dkdkok Jkkk
* *
Kkkk Jekdkk
/LT2  * 6% *15%  NC
*dkk . *kkk
* ) *
*kkk dddok
[EQ2L  * 7% *14%  NC
Jkkk dkdkk
* *
*dedkk dkdkk
/613 * g* *13*  NC
*dkkk dededkk
* *
*kkk Kk
/EQ3U  * 9% *12%  /EQ3L
*kkk ddkdkk
* *
*kkk Jekkk
GND  *10% *11* /LT3
*Kkkk Fekdkk
* *

Fdkkkkkkdkkhkkkkkkhkkkhkhkhkkhhkdkhkhkkk

BETWEEN LIMITS COMPARITOP LOGIC

11 1111 1111 2222 2222 2233
0123 4567 8901 2345 6789 0123 4567 8901

BEG*FPLT PAL16C1 8

28 —mem mme e e e oo X —me- GT3
25 —mom —mm Xee mmoe mmoe cmoo cmen SX-- GT2*EQ3U

P J— X mmme Xem mcmm oo oo —X-- GTI*EQ3U*EQ2U

27 ==X === mmee X=X =mom —moc —-oo —X-- GTO*EQ3U*EQ2U*EQLU
28 —m- mmmm mmmm e e e e e X LT3

P S S —, v L0k TN

30 -X-= ==-= mmom mmom moon Xem —-oX —--- LTI*EQ3L*EQ2L

31 —m= <X== ==X =mo= —oe X-= -=-X ---- LTO*EQ3L*EQ2L*EQIL

32 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
33 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
34 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
35 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
36 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
37 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
38 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
39 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

END*FPLT

LEGEND: X : FUSE NOT BLOWN gL,
L

: N,0) - : FUSE BLOWN
0 : PHANTOM FUSE ,N,0)

(H,P,1)
0 : PHANTOM FUSE (H,P,1)

0
0

NUMBER OF FUSES BLOWN = 236



180 Programmable Logic Design Guide

0123 4567 891011 12131415 16171819 20212223 24252627 28293031
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EQii—3
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— 3 . . 18 —
EQiL —1F G—17,
—_—a ~ A 17 —
GT,—1I® N———GT,
. ~)
: s=
H <
2 - 16
— 5 BTWL
EQ20 —1F s 15 Ne
z
3
3 a-—
39 Pﬁ
— 6 N ) 14
LT, 12 N———NC
— 7 < — 13
EQaL —{3— <4+——ne
—8 ~ Pl 12 ——
ar,—1I3 — ———=Eaar
9 P 11—
EQaU —J3 1,

0123 4567 891011 1213141> 16171819 20212223 24252627 28293031

Figure 8.5.2 Logic Diagram PAL16C1
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8.6 QUADRUPLE 3-LINE/1-LINE DATA SELECTOR MULTIPLEXER

PALASM VERSION 1.5

PAL14H4

PAT0016

DATA SECLECTOR MULTIPLEXER

PAL DESIGN

1A 2A 3A 4A 1B 2B 3B 4B 1C GND
2C 3C 4C 4y 3y 2Y 1y S1 S0 vce

1Y = 1A*/S0*/S1 + 1B*S0*/S1 + 1C*/SO*S1
2Y = 2A*/S0*/S1 + 2B*S0*/S1 + 2C*/S0*S1
3Y = 3A*/S0*/S1 + 3B*S0*/S1 + 3C*/SC*Si
4Y = 4A*/S0*/S1 + 4B*S0*/S1 + 4C*/S0*S1
DESCRIPTION

DATA SECLECTOR MULTIPLEXER

11 1111 1111 2222 2222 2233
0123 4567 8901 2345 6789 0123 4567 8901

BEG*FPLT PAL14H4 8

16 --X- -==X ==-X ==00 --00 ---- === -=--

17 --== ==X= ===X X-00 =-00 ---- ---= ----
18 ---- --- X --X- =-00 --00 ---- ---- X---
19 XXXX XXXX XXXX XX0O XX0O XXXX XXXX XXXX
24 X--- --- X ===X =-00 --00 --== --=- ----
25 ---= =X- ==X ==00 X-00 =--- -=-== --—-
26 ---- --- X --X- =-00 --00 ---- ---- --X-
27 XXXX XXXX XXXX XX0O XX0O XXXX XXXX XXXX
32 -=== X=X ===X ==00 ==00 ---= -=== ----
33 -==- ==X= ==X ==00 =-00 X--- ---- ----
34 ---m - X ==X- -~00 --00 ---- -=X- ----
35 XXXX XXXX XXXX XX0O XX0O XXXX XXXX XXXX
40 ---- --- X X==X ==00 =00 -=-= ==== ===
4] —-=- -X= ==-X ==00 --00 --== X--- =---
42 ———- -—- X =-X= -=00 --00 --X- -=-= ----

43 XXXX XXXX XXXX XX00 XX00 XXXX XXXX XXXX

END*FPLT

LEGEND: X : FUSE NOT BLOWN

LN,0) -
0 : PHANTOM FUSE 0)

(L
(L,N, 0:
NUMBER OF FUSES BLOWN = 348

: FUSE BLOWN  (H
PHANTOM FUSE (H

S(1-2)

Bu4)|-al'> MUX --'pvn-@

ZA*/S0*/S1
_3xS0*/S1
LC*/S0*S1

2A*/S0*/S1
2B*S0*/S1
2C*/S0*S1

3A*/S0*/S1
36*S0*/S1
3C*/S0*S1

4A*/S0*/S1
4B*S0*/S1
4C*/S0*S1

P,1)
P,1)

181
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123 48587 asnen 2 1 021220 WD VNN
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Figure 8.6.1 Logic Diagram PAL14H4
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8.7 4-BIT COUNTER WITH 2-INPUT MULTIPLEXER

INPUT A INPUT B

CARRY | CARRY
IN 4-BIT COUNTER out
WITH
2-INPUT MUX
AND
oP 3.STATE OUTPUTS | CLOCK
SELECT | —— ENABLE
OUTPUT

OUTPUTS

Figure 8.7.1 Four-Bit Counter With Two-Input Multiplexer

PALASM VERSION 1.5

PAL16R4

PAT0034

4 BIT COUNTER WITH2 INPUT MUX

NSC

CLOCK A0 Al A2 A3 BO B1 B2 B3 GND

/E COUT I1 Q3 Q2 Q1 QO IO CIN VCC

/Q0:=/11%/10%/Q0 + /I1*10%/A0 + 11%/10%/BO +

T11*10%/CIN*/Q0 + I1XI0*CIN*QO

/Ql:=/11%/10%/Q1 + /I1*10%/Al + 11*/10%/B1 +

I1*10*%/CIN*/QL + I1*IO*CIN*Q1*Q0 + 11*I0%*/Q1*/Q0
/Q2:=/11%/10%/Q2 + /I1*I0%/A2 + 11%/I0%*B2 + I1*I0*/CIN*/Q2 +
T1*I0*CIN*Q2*QL*Q0 + I1%*10%/Q2*/QL + I1*10%/Q2*/Q0
/Q3:=/11%/10%/Q3 + /I1¥10%/A3 + I1%¥/I0%/B3 + I1¥I0*/CIN*/Q3 +
T1*I0*CIN*Q3*Q2*Q1*Q0 + 11*I0%/Q3*/Q2 + I1*¥10*/Q3*/Ql +
11*10%/Q3*/Q0

IF(VCC)/COUT = /CIN + /Q3 + /Q2 + /Ql + /QO

DESCRIPTION

4 BIT COUNTER WITH2 INPUT MUX

Jodkdodkddkkkkkkk ek dod ke kkdkkdkkkk

* * * *
Fkkk *kkk
CLOCK  * 1* PAL *20%  VCC
*kkk Kk kk
* 16R4 *
Fokkk Jodkekk
A0 * 2% *¥19%  CIN
*kkk Fekdkok
* *
¥k Fedkdkk
AL * 3% *18% 10

*kkk *kkk
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A2

A3

BO

Bl

B2

B3

GND

*

Jedededk
* 4x
dekkdk

*

dededek
* Bk
ddkkdk

*

Jdekkdk
* gk
dkkk

*

dkkk
* T*
dkkk

*

*kdkok
* gk
Jededkk

*

Fekkk
* g%
*ekkk

*

dekdek

*10*
Fekkk

*

*

dekkk

*17% Q0
kdkk

*

*kkk
*16% QL
dkkk

*

dekdkk

*15% Q2
*kdkk

*

dkkk

*14% Q3
*dkkk

*

*dkdek

x13¢ 11
dedkkk

*

dkdkkk
*12%  COUT
dkkk

*

dekdk
*11*/E

kkkk

*

ek kkkkk ok kkkkhkdkkhhkhhkhhhkdhkdhkk

4 BIT COUNTER WITH2 INPUT MUX

0123

BEG*FPLT

0
1
2
3
4
5
6
7

8

9
10
11
12
13
14
15

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

4567

11
8901

PAL16R4

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

1111
2345

8

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

1111
6789

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

2222 2222 2233

0123

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
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XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

8901

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
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