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On the Distribution of Numbers

By R. W. HAMMING
(Manuseript received March 17, 1970)

This paper examines the distribution of the mantissas of floating point
numbers and shows how the arithmetic operations of a computer transform
various distributions toward the limiting distribution

1
= <z <
r(z) e /b =2 =1)
(where b 1s the base of the number system). The paper also gives a number
of applications to hardware, software, and general computing which show
that this distribution is not merely an amusing curiosity. A brief exami-
nation of the distribution of exponents is included.

I. INTRODUCTION

The main purpose of this paper is to examine, from the computing
machine’s point of view, the well-known (to comparatively few people)
unequal distribution of the “mantissas” of ‘“naturally occurring” sets
of numbers. The observed probability density distributions are often
close to the reciprocal density distribution

1

r® =T 1/b =t =1, )
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where b is the number base (usually 2, 8, 10, or 16). The corresponding
cumulative probability distribution is

R(t)
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where, of course,
R(1/b) =0 and R() = 1.

From the cumulative distribution, it follows that the probability of
observing the leading digit N of a number that is drawn at random
from 7(¢) is

R 3)

and this is usually what is measured in experiments.

A typical experiment is that of tabulating the number of physical
constants in a table having a given leading digit (see Table I and Ref. 1,
p. 7). The result looks reasonable. Many other examples of observing
the reciprocal distribution have been reported. For references see
Refs. 2 and 3.

The reciprocal distribution has been explained in many ways. One
popular but not immediately obvious explanation for the distribution of
physical constants is as follows. Consider the distribution of the leading

TABLE [—THE DISTRIBUTION OF THE LEADING
Dicirs oF 50 PaysicalL CONSTANTS

Number of cases | Expected number
Leading digit N observed eq. (3) Difference
1 16 15 1
2 11 9 2
3 2 6 —4
4 5 5 0
5 6 4 2
6 4 3 1
7 2 3 -1
8 1 3 -2
9 3 2 1
50 50
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digits of the set of all the physical constants that might occur. If the
units of measurement were to be changed then the corresponding leading
digit of any particular physical constant would probably change, but
it is difficult to believe that the distribution itself would change sig-
nificantly. To believe so seems to indicate a belief that either the present
units of measurement or else the new set have some intimate connection
with the real world. An alternative, and more elegant, explanation is
given by Roger Pinkham in his classic paper (Ref. 2). The explanation
given in the present paper is based on how the computer transforms
distributions during arithmetic operations. In particular the paper shows
how, from any reasonable distributions, repeated multiplications and/or
divisions rapidly move the distributions toward the reciprocal dis-
tribution. The effect for addition and subtraction is somewhat different.
The paper also shows the persistance of the reciprocal distribution
once it is attained.

Since floating point numbers are the basis of most of numerical
analysis one may well ask why this obvious and experimentally well-
verified distribution is so often ignored. Is it because it appears to
contradict the usually accepted model of the number system in which
numbers correspond to points on a homogeneous straight line? Not only
are the floating point numbers not uniformly spaced in a computer
(the difference between the two largest possible numbers is very large,
while the distance between the two smallest positive number is very
small, and zero is relatively isolated), but the reciprocal distribution
shows that even in intervals in which the numbers are equally spaced
they are not equally likely to occur.

Thus in analogy with non-Euclidean geometry this paper proposes
an alternative to the conventional identification of numbers with points
on a homogeneous straight line. Instead of adopting a measure for sets
that is invariant under translation

=z -+ Fk,
we often prefer a measure that is invariant under scaling, namely
2 = kx (k = 0).

The reciprocal distribution is of practical as well as theoretical interest
as we shall show in Section VII. In view of these examples, it is hoped
that by adopting the machine’s point of view with respect to how
numbers are transformed by arithmetical operations, the computer
scientists will become more aware of the importance of this distribution
in many situations including numerical analysis.
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II. THE MODEL

The floating point numbers in a computing machine form a discrete,
finite set. As is true in so many applications of mathematics to practical
problems, we shall approximate a diserete distribution by a continuous
one of sufficient smoothness. Anyone familiar with the upper and lower
Riemann Integral sums can appreciate the degree of approximation
being made (provided common sense is used in choosing the values of
the curve between the given points). In the limit of the Riemann sum
all the | Az; | become less than any given ¢ > 0; we of course need to
stop at the granularity of the number system used, typically 10~° or
smaller.

In principle, it is possible to carry this error estimate throughout all
the subsequent steps of the mathematics to see how much the mathe-
matics errs from reality; but it is customary to recognize that a little
intuition will suffice to convinee the user that the error will be much less
than the accuracy of the experiments that the theory is designed to
account for. Thus we have no need to get excited about such things as
the Banach measure of a set (Ref. 4); we do not intend in this paper to
let the mathematics obscure what is going on. The fact that computers
are finite and operate at a finite speed for a finite length of time spares us
from taking seriously all the confusions that can arise in mathematics
when dealing with the infinite.

III. THE BASIC FORMULAS

In this section we derive the basic formulas which describe how dis-
tributions are combined and transformed by the four arithmetic opera-
tions of a computer. Let f(x) be the density distribution of the factor z,
g(y) be the density distribution of the factor ¥, and A(z) be the density
distribution of the result z of the arithmetic operation. Further, let
F(z), G(y), and H(z) be the corresponding cumulative distributions.

TFor both multiplication and division, the mantissas are directly
combined and the exponents do not enter into the formation of the
distribution of the result of the operation. Thus, it is sufficient in these
cases to consider the distributions for (1/b =< 2,y = 1).

For multiplication, an examination of Tig. 1 shows that when the
product falls in the shaded regions then the mantissa of the product is
in the interval (1/b, ). Thus the cumulative distribution H(z) is given by

1o = [ [ f@ew v+ [ [ fwow) iy do

+ [ 7 0w ay ae
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= f/b f@)[GE/bx) — G1/b) + GA) — G(1/bx)] dx

+ [ @66/ — 6/ de.

Differentiating with respect to z to get the density distribution we have

hz) = [@[G(1/b) — G(1/b) + G(1) — G(1/bz) — G(1) + G(1/bz)]

+ fljb f@)g(e/bx)(1/bx) dx + fl f@)gle/x)(1/x) da

= lb fl/b f—(x@ g(z/bx) dx + f 1) g(z/x) dx. 4)

Similarly for division. The shaded region of Fig. 2 shows where the
quotient z/y is less than z; thus the cumulative distribution for the
quotient is

10 = [ [ o ayaz+ [ [ @ow ayas
+ [ [ s@ew ayda
= [ 1016 ~ 6a/b) + 60) — Ge/2) o

+ [ @166 — 66/ da.

y
\
Z
973
/
y=_2-
_,ba:I
| B
/I L1
1 bx
'y =
|
1 Z ¥
b 1

Fig. 1—The cumulative probability distribution for the product z = zy.
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Fig, 2—The cumulative probability distribution for the quotient z = z/4.

Again differentiating with respect to z to get the density distribution
we have

L) = fR[GE) — G(1/b) + GL) — G(1) — GE) + G(1/b)]
+ [ 0= g/ ds + [ 10— ate /) e /0] de

=5 [ et ar+ 5 [ 21wt as. (3)

For both addition and subtraction the difference in the exponents of
the two numbers z and ¥ is used to shift one mantissa with respect to
the other before they are combined. For addition, we may suppose that
one of the numbers, say @, lies in the range z/2 < x =< z. The other
term, y, therefore lies in the range 2/2 = y = 2z-b™*, where k is the
number of digits in the mantissa and we set b™* = e. Thus the density
distribution of the sum is

z(1—¢)
hes) = f (@) — ) da. ©)

For subtraction we suppose, without loss of generality, thatz = y > 0,
and

r=z—y
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with z £ 2 < z/e. Then the density distribution is given by

hs) = f 7 e + 1) do, %

We have now derived the basic relations for the density distributions
that arise from combining two numbers from arbitrary distributions
according to the four arithmetic operations of a computer.

IV. THE PERSISTENCE OF THE RECIPROCAL DISTRIBUTION

In this section, we first show for both multiplication and division
that if one of the factors x or y comes from the reciprocal distribution,
and regardless of the distribution of the other factor, then A(z) is the
reciprocal distribution. In particular, if a number is chosen from the
reciprocal distribution, then its reciprocal is also from the reciprocal
distribution. For addition and subtraction we show somewhat less.

For the product set

o) = 7 ®)
in equation (4). We get for any distribution f(z)
1 flx) b i) =
Mo =%, % smo @t ) % imp®™
1 ? ! 1
=zlnb|:f1,,,f(x) a4 [ 1) dx] =il ®

Obviously since z = zy, the same applies if we assume that f(z) is the
reciprocal distribution.
For the quotient, again assume equation (8) and put it in equation (5).

—f 2f(@) i da + 53 fxf()——d

- 1111 - {fm f(@) dz + f f(@) dx} = - 1r11 - (10)

In the special case of f(2) being the ‘“‘spike distribution” with all of its
probability at z = 1 we see that the reciprocal of a variable having the
reciprocal distribution has the reciprocal distribution. The case of z
having the reciprocal distribution and producing the reciprocal distri-
bution, regardless of the distribution of the denominator, is covered by
the produet form, or ean be worked out directly if desired.

Thus, if in a long sequence of multiplications and divisions at least one

Il

h(z)




1616 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1970

factor has the reciprocal distribution, then regardless of how the distri-
butions of the other factors are chosen the result is still the reciprocal
distribution; the reciprocal distribution persists under multiplication
and division and cannot be broken by any choices for the other factors.

For addition let z come from the reciprocal distribution for some range
with normalization factor N, , and ¥ also eome from a reciprocal dis-
tribution with its corresponding range and normalization factor N, .
Then writing ¢ = b™*

z(1—¢)
hes) f Ny N. o

/2 T 22—

z(1—e)
=N, [ 1[1+ L :ldx
2/2 2 X g —X

_ NlNz ln[ z ] z(1—€)
2 g — X

N,
== (11)

z/2

where N, is some constant.
Similarly for subtraction (different N,)

z/¢€
N, N dx

. r 2+ =z

_ z/el 1 1 ] ]
_N1N2£ z[x—z-}-x dz

_]v]]v2 [CE :lz/e
=, In 2+

h(z) =

z

N,

==k (12)

It should be noted, however, that in the last two cases the assumption
of the reciprocal distribution for such great ranges is suspicious to say
the least, since we know from experience that all exponents are not
equally likely. That the reciprocal distribution over a large range implies
the equally likely distribution of the relevant exponents can be seen by
examining the base 16 number system in exponents, but where the
mantissas are in binary. Thus the mantissas can have one of the forms:

0.1zzx- - -
0.01zz- - -
0.001z- - -
0.0001--- .
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If we assume

1
P@) = g WsSz=),

what are the probabilities of each of the four forms? For the first one

1
1 — 1
Lxlnl(idx—éil 2[ln1 In 3]

i

Similarly, each of the others is . This result is quite different from that
of the flat distribution (see Table IT).

V. THE APPROACH TO THE RECIPROCAL DISTRIBUTION

Having shown that once it arises the reciprocal distribution persists
for multiplication and division, we need to show how it can arise. For
this we need a measure of how far a distribution h(z) is from the recip-
rocal distribution r(z). It is obvious that

f ) — r@) dz = 0 (13)

for any h(z) and this does not provide a useful measure of distance. We
shall define the distance of h(z) from the reciprocal distribution r(z) by

h(@) — 1)
r(2)
which measures the maximum of the difference relaiive to the reciprocal

distribution (it is natural to use the relative error when dealing with
floating point numbers).

D{n@)} = D{h}, (14)

max
1/bszs1

TaBLE II—PROBABILITY OF OBSERVING MANTISSAS WITH LEADING
ZEROS IN BASE 16 NuMBERS WHEN WRITTEN IN BASE 2

Probabilities
Binary
Form Range Exponent Flat Reciprocal
0.0001.... |1/16 <2 <1/8 -3 1/15 1/4
0.00Ix.... | 1/8<z=<1/4 -2 2/15 1/4
0.0Ixx.... | 1/4 <z =<1/2 -1 4/15 1/4
0.1xxx.... 12z =1 0 8/15 1/4
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We showed in equation (9) that for a product,
v =1 [ D0y an + f(x)r(z/x) dz.
s X

Subtracting this from equation (4) and dividing by r(z) we have
he) —rG) _ 1 [ @) [g@/b@ - r(z/bx)} g

r(z) blin = r(z)

+ f 1 f%) [ 9/ x)ré)T(Z/x):'

But
ba
bar(z) = z—lric_b = r(z/bx)

are) =

and we have

he) — G 9(e/b2) — r(z/bz)
e f f(”i (e ) ]

Sinece f(x) = 0 for (1/b £ 2z £ 1),

] h) — 1)
7(z)

IA

[ 1@ pig) @z + [ 1t2) Dig) d
< Dig}

for all z. From this it follows that
D{h} = D{g} (16)

regardless of the choice of f(x).

We note that the equality would hold if f(x) were a single spike at

= 1, say, but that in view of equation (13), we generally expect a
great deal of cancellation in the square brackets of equation (15) as it
is integrated over the range.

It is easy to examine the rapidity of the approach in the case of all the
factors coming from the flat distribution

_ 1 b
@) =T ip " %=1
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Equation (14) gives for two factors
_ l b 2 z @ ( b )2 1@
h(Z)_b(b"‘l) 1/b$+b—1 /;x
b
=G =17 {flIndb — (b — 1) Inz}.
In the base b = 10, this is
h(z) = 3{ln 10 — 9 In 2}, @17)

which (for the proper range) is given by Ref. 5 (p. 37). The distance of
the flat distribution is

10 In 10 10 In 10
max | z=—g— == -
1/102z<1

while the distance of equation (17) is equal to 0.3454- - - . See Table III
for further results.
Similarly for division using equations (10) and (5), we have

o) =@ _ L [* oy [g(x/z) - r(x/z)] e

7(2) 2 Jin 7(2)

+L f 2(2) [g(x/bz)r(;)m/bz)] .

1 = 1.558...

|

But

P 7%3}’) = r(z/2)

b 1%:) = r(z/b2),
and we have

h(z) — @)
7(2)

A

([ s dx+ [ 1)

TaBLE III—THE DI1STANCE OF A CONTINUED PRODUCT AS A
FuNcoTioN OF THE NUMBER OF F'ACTORS SELECTED
FROM A FLAT DISTRIBUTION

Number of Factors Distance
1 1.558
2 0.3454
3 0.0980
4 0.0289
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or
D{r} = Dig}.

In the case of flat distributions

1 1
w-sglo o]
which for the base 10 is (see Ref. 5, p. 37)

hiz) = % |:10 + ;15]

and has a distance of 0.4071 .- . .

For addition we select g(y) as a reciproeal distribution (with suitable
normalization factor N), subtract the corresponding equations and
divide by r(z) to get

CELON [ﬂx)zZX?x _N N, ]@

r(2) /2 z 2z — 2 ]r@)

2(1-o lif(x) - %} N, r(@
[ e e

But by the mean value theorem for integrals

N,
he) — @) _ {f(") _ 7} f N @,
@ ) . z—2r@)™

where 2/2 = 6 = 2(1 — ¢). The integral has been shown in equation (11)
to be exactly 1. Hence

D{h(z)} = D{f(x)}.

A similar derivation works for subtraction.

In view of the dubious assumption of having the reciprocal distribu-
tion over a very large range we need to examine more carefully the
behavior of the mantissas of sums of numbers selected from some
distribution. Let us imagine a Monte Carlo experiment. We select
numbers from the range (0 < a = z =< b) having the probability density
distribution p(x) with mean p and variance ¢”. Divide the range into
n equal intervals

(a)a_l_h); (a+h:a+2h)7"':[a+(n'—1)h:b]:
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where h = (b — a)/n. By counting how many numbers fall in each‘
interval we get estimates of p(z). '
Let us add 2™ numbers of this set of numbers. The range for the sum is

(2"a, 2™),

the mean p; = 2"u and ¢ = 2°¢* But the central limit theorem says
that the distribution of the sum approaches a normal distribution about
the mean with half width ¢, . Suppose, for convenience, that u fell in
the middle of an interval. Then as m increases and we count the number
of cases of mantissas in each interval (note that the m in the term 27
appears in the exponent only) we will find more and more of them will
fall in the interval containing x (which has the same mantissa as u,);
the distribution approaches a spike! This does not contradict the central
limit theorem; it merely says thatif x %% 0 (u = 0is the exceptional case),
the distribution contracts as seen from the point of view of floating
point numbers. In loose words, standing at the origin and viewing the
rapidly receding mean y, , the width of the distribution o, seems to get
narrower as compared to the sum—the sum recedes as 27, the half
width changes as 2™/°.

VI. RANGE OF EXPONENTS

It is now clear that in order to examine carefully the effect of addition
(and subtraction) on the reciprocal distribution, it is necessary to know
the distribution of the exponents of the numbers to be combined.
Unfortunately at this time about the only model we have is as follows.
Assume a distribution of exponents. Under multiplication and division
the exponents are added and subtracted (with, due to carries an extra 1
occasionally added, or subtracted) and by the central limit theorem
we can expect: (2) that the distribution of the exponents will approach
a normal distribution (assuming that overflow and underflow do not
happen first) and (¢7) that this distribution will gradually spread out
proportional to the square root of the number of operations. Thus, it
appears that in practice the distribution of exponents is probably not
stationary. Addition tends to eliminate the smaller exponents, while
subtraction tends to increase them.

Experience in numerical analysis shows that the range of the output
numbers is usually much greater than the range of the input numbers,
enough so to make one suspect that the variance increases as indicated
in the above model.

As one thinks carefully about the matter of addition and subtraction
it seems reasonable to believe that they will not greatly perturb the
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reciprocal distribution; and the experimental data from “naturally
occurring numbers”, which must have included some additions and
subtractions, seem to bear out this belief.

The feeling that under repeated additions and subtractions the central
limit theorem applies to numbers (which is true), and therefore con-
tradicts the reciprocal distribution of the mantissas, is typical of the
“fixed point arithmetic”’ viewpoint of numbers—we are representing the
sums and differences as floating point numbers, and it is the distribution
of these mantissas and their possible approach to the reciprocal distri-
bution that is of relevance here.

VII. APPLICATIONS OF THE RECIPROCAL DISTRIBUTION

Besides accounting for the experimentally found distributions, the
reciprocal distribution is relevant to many optimization situations.

As a first example,’ consider the problem of placing the decimal
(binary) point in the number representation system in order to minimize
the number of normalization shifts after the computation of a product.
(It was probably the minimization of normalizing shifts that caused
IBM to adopt the base 16 in the system 360). If the point is placed
before the first digit, then products of the form

0.zzz...
0.xzx...

0.0xzx...

will require a shift to normalize the result; while if it is placed after the
first digit, then products like

will require a shift. Clearly these two cases have complementary prob-
abilities. For the reciprocal distributions the probability p of

2y < 1/b
is

1 1/bx 1 1 d d
”‘ff clnbymp™¥*
o <1n1/bx—1n1/b) _f‘ 1 (_1_n_g)
= fm, b . de=| W\~ 5 /&

__1{_1n"x} '
T In®*b 2

1
w2
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But for a flat distribution,
_ b 2 1 1/bz _ ( b )2 1 <l _ —>
v= () Lol e =G=5) [, G5
o) 5o (-3
Q—1 3 R Gl

bInb — (b — 1)
b—-17

For b = 2 this is

Il

p=2In2—1220.38.

As a second application, consider the estimation of the effect of the
representation error of numbers in base 2 and base 16. In Ref. 7
MeKeeman reports that the maximum relative representation error
(MRRE) and the average relative representation error (ARRE) are
as shown in Table IV, where the average is over the reciprocal distri-
bution.

A third example is the application to roundoff propagation. If x, has
an error ¢ and @, has error ¢, , then in the product

T, + e
Zs + €

TiTy + Tieo + Tae, T €16

it is the leading digits that control the estimate of the propagated error.
For the reciprocal distribution the mean is

__flzzd _1—1/b _b~—1
Y= ),,emb®™ T Tnb T bhnbd

For base 2, this is

Pt~
T =5y = 0.72134.

TABLE IV—MaXxIMUM RELATIVE REPRESENTATION ERROR AND
AVERAGE RELATIVE REPRESENTATION ERROR

MRRE ARRE
binary 1/2 X 2737 0.18 X 2737
octal 231 0.21 X 10~%7

hexadecimal 2-381 0.17 X 2737
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The second moment about the mean is

L1 @ — @) _b—l{b—l—l b—l}
M2_lnbf1,,, z Ty mel 2 T b

which for b = 21is

1 (3 1)\
M, = in2 (2 I 2) = (0.020674.
For the flat distribution, £ = 0.75 and M, = 0.020833.

Thus we see that the effect of the reciprocal distribution on the average
roundoff propagation is surprisingly small.

Another example in which the reciprocal distribution must be con-
sidered is that of producing ‘“random’ floating point mantissas. To
generate these mantissas we use the earlier result that a long sequence
of multiplications of numbers from a flat distribution will approximate
a reciprocal distribution. Thus random mantissas can be generated by

Y,=Y,. 11, (shifted)

where r, is from the usual (flat) random number generator and “‘shifted”
means after each product the leading zeros are shifted off. How well does
this work? Experimental verification* is given by 8192 trials. Counting
the number of mantissas falling in each of N catagories (see Table V).

The last two columns of Table V give the sign changes observed in
the difference between the observed and theoretical reciprocal distri-
bution. The expected number of sign changes might be expected to be
(N — 1)/2, but since for N = 2 it is clear that one sign change will
occur (because the mean of the residuals is zero) we have used N/2 as
the expected number. The chi-square test shows that the two distribu-
tions are close; the sign change test shows that the residuals are not
systematically distributed. From these tests, we see that the generator
“works.” It is interesting to note that the period of this generator may
well be much longer than that of the underlying flat random number
generator.

It is easy to see as a general rule that when we try to optimize a
library routine for minimum mean running time (as against the
Chebyshev minimax run time) we need to consider the distribution of
the input data. Hence floating point numerical routines need to consider
the reciprocal distribution; the square root, log, exponential, and sine

* Thanks to Brian Kernighan,
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TABLE V—DI1sTRIBUTION OF 8192 RANDOM MANTISSAS

Residuals
Degrees of Sign

N x? Freedom Changes Expected
64 61.392 63 30 32
32 22.804 31 14 16
16 11.150 15 8 8

8 7.724 7 5 4
4 3.261 3 2 2
2 1.467 1 1 1

are all examples. In the case of the exponential and sine, some study of
the exponents is also necessary.
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A Mathematical Study of a Model of

Magnetic Domain Interactions

By R. L. GRAHAM
(Manuscript received March 18, 1970)

In this paper, we initiate a study into the combinatorial aspects of a
model of the inleractions between discrete magnetic domains and their
potential use in informaiton processing devices. Starting with a simple
model suggested by W. Shockley, we demonsiraie certain (surprising)
capabilities as well as inherent limitations upon the possible applications
of the inieractions described by this model. It should be noted that this simple
model does not take tnto account all of the possible interactions between
magnetic domains.

I. INTRODUCTION

The subject of diserete magnetic domains in certain orthoferrite
materials has been under active investigation during the past several
years, both from a theoretical physical viewpoint as well as that of the
device-oriented physicist (for example, see Refs. 1-6). Considerable
progress has resulted from these efforts, although needless to say, the
end is certainly not in sight. Particular attention has been directed
toward the problem of applying this new technology to the very im-
portant area of information processing devices, an area in which it
seems to have natural and significant applications.’”” It is our intention
in this paper to examine certain mathematical aspects of these applica-
tions for a simple model of magnetic domain interactions suggested by
W. Shockley.

II. DESCRIPTION OF THE MODEL

We shall begin by giving a very brief description of the physical
situation and its translation into the mathematical model under con-
sideration. The reader whose interests motivate him to seek a more
technical explanation is referred to Refs. 6 or 8.

Roughly speaking, thin platelets of certain orthoferrite materials

1627
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possess the property that under suitable (magnetic) conditions, small
(~ 3 mils) discrete cylindrical magnetic domains, hereafter called
“bubbles”’, may be stably supported. Moreover, these bubbles may be
manipulated by the application of external magnetic fields as well as
by their own mutual interaction (which in general causes two bubbles
to repel one another). In a suitable physical environment, the location
of a bubble in a piece of orthoferrite can be restricted to a finite set of
possible positions within the material; these are ordinarily arranged in
a rectangular array. It is possible to apply a local magnetic field to
specific locations within the array with the following results:t

(?) If a bubble already occupies the position at which the field was
applied, then nothing happens.

(#7) If no bubble occupies the position at which the field was applied
and no bubble occupies any ‘nearby’’ position as well, then
(still) nothing happens.

(7%7) If no bubble occupies the position at which the field was applied
but at least one bubble occupies some ‘nearby’” position, then
some bubble at a nearby position will leave its original posmon
and now occupy the position selected by the field.

To eliminate the annoying indeterminancy in item (77) it is possible
to apply “holding” fields to all but one of the ‘“‘nearby’’ sites which has
the effect that only a bubble at the unheld position can move.

The mathematical model which will correspond to the preceding
deseription will be phrased in the terminology of graph theory. The
discrete positions at which bubbles may lie correspond to the set V of
vertices of a graph G. Two sites which are ‘“nearby’” or “adjacent” to
one another (this is assumed to be a symmetric relation) correspond to
two vertices of G which are joined by an edge of G. Suppose bubbles are
located at (the sites corresponding to) the subset X of vertices V. We
define a command to be a directed edge ¢ = (v, , v,) with v; and v, adjacent
vertices of G. The command e transforms the locations of the bubbles
from X to X° where

X = {X — U ) i neX, u#X;
X, otherwise.
In other words, if there is a bubble at v; but no bubble at v, and the

T Of course, “careless’”’ application of a magnetic field to an orthoferrite with
bubbles can annihilate bubbles, create bubbles, split bubbles in two, deform bubbles
into strips, and so on; but these pathologlcal (though certainly useful) operations
will not be considered in our model.
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command e = (v, , v,) is applied to X, then the bubble at v; is moved
to v, . Otherwise, the command ¢ has no effect on X. A program is
defined to be sequence P = (e;, €, -+, e,) of commands ¢;. In
general, a program P maps the set 2" of all subsets of V into itself
by X* = (---(X*)**)---)*. It is the purpose of this paper to inves-
tigate the mathematical properties of these maps.

III. SOME BASIC PROPERTIES OF PROGRAMS

We begin by making the assumption that G is the complete graph on
n vertices, that is, all pairs of vertices of G are joined by an edge.” As
mentioned in the previous section, a program P is a sequence of directed
edges (e,, €., -+, e,) and P acts on a subset X of the vertices V of G by

X7 = (e (X)) )"
where for e = (v, V'),
X,z{X—{v}U{v’} if ovelX, v §X;
X, otherwise.

If X C V then |X| denotes the cardinality of X. We note

Fact 1: For all X C V, and all programs P, |X7| = |X].

This follows immediately from the definition of X*.
“ The first interesting result we state is due to W. Shockley who
called it the
Non-decreasing Overlap Theorem: (Shockley) For all X, Y C V and all
programs P,

IX*NY | z]XNY].

Proof: Assume for some P = (e;, - -+ ,¢,) and subsets X, Y C V we
have | X" N Y?| < |XNY].Since X* = (---((X*)**)---)*, there
must exist a least j such that

|XP1'+1 n YP:‘+: | < IXPi n YP:‘ |
where P, denotes the program (e,, ---,e;). Thus, for X = X*,

A

YV =YY" and e = ¢;,, = (a, b) we have

XN I<|XNT].

t Nothing essential is lost by this simplifying assumption, The vertices and edges
of the present model should not be confused with any incidental physical vertices
or edges in a particular device. An edge of the model may be generated for example
by transferring bubbles from a storage zone to an interaction zone and then returning
the resultant to the storage zone.
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Ifc < a,¢c = bthence X N ¥impliesce X° N 7. Ifeitherae X N ¥
orbe X (N ¥ but not both then be £° N T*. If both ae X N ¥ and
beX N Ythenae XN Y°and be X° N Y*. Hence, in any case

1Nz |XNT|

which is a contradiction. This proves the theorem.

Shockley noted that this result shows that there is no replicating
program P*, By a replicating program, we mean the following: Starting
with two fixed sets of vertices V' and V" with V N\ V"' = ¢
and 1-to-1 map 0: V"’ — V', we require that for each X C V,

XAV =XNV and XNV =XNV".

In other words, P* does not disturb X () V' and in V", P* creates a
“eopy’of X N V.

To show this, suppose there were such a program P*. By choosing
two subsets X and X’ differing in a single element of V, their images
X** and X’ must differ in fwo points, namely, one in ¥’ and the
corresponding point (under 6) in V. This, however, contradicts the
non-decreasing overlap (NDO) theorem and therefore P* cannot exist.

Another consequence of the NDO theorem is the nonexistence of a
program P* which performs binary addition in the following way.

Suppose V' denotes a set of m = 1 pairs of vertices of G, V”’ denotes
another set of m pairs of vertices disjoint from V’, and V"' denotes a
set of m + 1 pairs of vertices, disjoint from ¥’ and V"’. We can imagine
these sets arranged as shown in Fig. 1.

We can represent an integer M, 0 £ M < 27, in the m pairs of ¥V’
by letting the jth pair of V' denote the jth binary digit in the binary
expansion of M. This can be done, for example, by assuming that

O U,

for each pair o o either U, £ X, U, ¢ X, which will correspond to
1

a0, or Uy, ¢ X, U, e X, which will correspond to a 1. Thus, form = 5
the configuration {V, , U, , Us , V., Vs} (Fig. 2) would denote the
integer 10011, = 19. '

The addition program P* would operate by starting with V' in some
fixed configuration (for example, all zeros) and with arbitrary integers
M’, M" loaded into V', V", respectively, to form the initial state X;
after applying P* to X we should get the sum M’ 4+ M" in V"

The reason that P* cannot exist as described is precisely that the
NDO theorem would be violated. For consider the two additions:
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1 2 m
.o o o
\%
0 o) o
L | I— L
— _
o) o @
VII
0 o) @
Il el
o o) o
V "
o 0o o
L (I L

Fig. 1—Symbolic arrangement of vertex locations for addition.

0+ @"—1)=2"—1and1+ (2" — 1) = 2". The initial configurations
differ in only two positions. The final configurations differ in at least

— —_
m + 1 however, since 2" — 1 = 11 -+ 1, and 2" = 100 --- Oy .
Thus, by the NDO theorem we get a contradiction and our assertion
is proved.

We give another example of a program which does not exist. If
¢ = (a, b) is a command and a, b e X then X° = X. In the case that
a and b are both in X, we say that there is inlerference as e acts on X.
(We can think of the bubble at b as interfering with the attempted

movement of the bubble at a to vertex b.) Similarly, if P = (e;, - - - , €,)
we say that there is interference as P acts on X if for some 7 there is
interference as e; acts on X' ‘. We note
Fact 2: If P acts on X with no interference then
X? = U f{z}".

zeX

Proof: 1t is sufficient to establish this for the case P = e = (a, b).
In this case

U Uz ® | Us Ug Us
Vy Vo Ol Va Va Vg

Fig. 2—A typical configuration representing an integer.
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{x}p _ {b, if 2= aq;

z, otherwise.

Thus
U {z}® = {X — (@ U}, ifacX;
ze X X’

otherwise.

But by the hypothesis of no interference, we cannot have both ¢ and
b e X. Thus
X = {X — (U, i eeX e
zeX

X, otherwise

and the fact is established.
Fact3: Tor X = {a, b, ¢, 2}, there does not exist a program P such that

{a, b}" = {c, 2},
{b, ¢} = {a,2},
{e,a}” = {b,2].

Proof: Suppose such a P exists. If P acts on these sets with no
interference then we would have by Fact 2,

e, 2} = {{a}”, {b}},
{a, 2} = {{b}", {c}"},
{b,2} = {{e}”, {a}7},

which is impossible since the union of the left-hand sides of the equations
cannot equal the union of the right-hand sides. Thus, it P = (e;, - -+ , e,)
we may assume that thereis aleast 7,1 < ¢ < n, with P;_; = (ey, -+,
e:—1) such that e; acts on at least one of the sets {a, b}"*™*, {b, ¢},
{¢, a}7* with interference. To be specific, assume that it is the set
{a, b}T™*, that is, e; = ({a}”*, {b}7"*) (the other two cases are
similar). By Fact 2 we have

fa, B = ({a}™*™, (0)77,
(b, e} = (B}, (o)),
fer @l = (1}, {a) ™).
Therefore
{Be}™ = (B, (™ = (0 ()™
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and
fe,al™ = {{e}", fa} ") = (e}, {0}
Hence,
{a,2} = {b,c}” = {c,al” = {b,2}

which is a contradiction. This proves the Fact 3.

Note that the nonexistence of the program of Faet 3 does not follow
directly from Fact 1 or the NDO theorem. A similar argument can be
given to show that for X = (a, b, ¢, d, A, B, C, D, z) there is no program
P such that

fa,c}” = {42},
{a, d}” = {B,z},
{b,e}” = {C, 2},
{b,d}” = (D, 2}.

IV. THE 2-VALUED BOOLEAN FUNCTIONS

Our attention will now be focussed on the positive aspects of the
model. In particular we shall be concerned with the problem of repre-
senting the Boolean functions of m variables with appropriate programs.
The way in which a function is to be represented is as follows. Suppose
m = 2 and consider the function f: {0, 1} X {0, 1} — {0, 1} by

x y 1z, v)
0 0 0
0 1 1
1 0 1
1 1 1

If the values 1 and 0 are interpreted as “true’” and “false”, respectively,
then f is just the truth funetion of the familiar operation of alternation.
V will be the set of six vertices (2o, 21, Yo, ¥1, fo , f1) Which we indicate
in Fig. 3. It is not difficult to show that no generality is lost by assuming
there are no additional vertices. In fact, by using the pair of positions
%o , 2; in which to observe the result of the program, instead of providing
the separate positions f, , f1 , it is true that if a Boolean function of
m = 2 variables can be represented by a program in this general way,
then it can be represented using just 2m vertices. The program P(f)
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Fig. 3—Symbolic arrangement of vertex locations for computing Boolean functions
of two variables.

which represents f is required to have the property that

foe (2o, 30} """, fi g {20, 5o} "7,
foe {zo, yu}7", fog {zo, )77,
Jcos {0, 40)77, frg fo, 9o},

¢ {z,p)", foe @,y

The correspondence between the indices of the vertices of V and the
values of the variables of f is immediate. In terms of bubbles, one may
think of the configurations shown in Fig. 4 as representing a 0 and 1
respectively (compare Fig. 2); P(f) is required to map each of the four
possible initial states of the z;-pair and y.-pair into the correct value
in the f,-pair.

It is not difficult in this case to find an appropriate P(f), for example,
we can take

P(f) = (20, Yo) (@o , fo) (@1, y1) W1 , f1).

This is easily checked, as shown in Table I. We can write the preceding
result in the shorthand form

/ P(f)
0,0,0,1) (@, Yo)(@o , fo) (@1 , Y1) W1 , f1)-

Note that if fis defined by f(z, y) = 1 — f(z, y), that is, fis the com-
plement of f, then we can take

P()?) = P(f)(z0 , 1) (20 , Y1) @o , ¥2) (f1 , o) (fo » 1) (@0 , fo)

I‘- BUBBLE-*I
0 I

Tig. 4—Configurations which represent 0 and 1,
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TaBLe I—CumurATIvE EFFECT OF P(f)
(z, v) (@o, yo)  (zoy fo) (1, y1) (y1, 1) f, v)
(0, 0) & {0, yo} {Zo, yo}  {fo, yog {fo, Yo} {fo o} 0
0, 1) & {zo, 31} Y1, Yol {y1, Yo Y1, Yo 1, Yo © 1
(1,0) & {x1, yoi Zo, Yo} 1Ty, Yol (Y1, Yo ifi, 90} & 1
(1: 1) & {xl; Y1} {xl, yl} Ty, Y1} {131; :1/1} z, f1 = 1

as a program which represents f (we leave this to the reader to verify).
Table II, together with this remark about f, show that all of the
16 possible 2-valued Boolean functions of two variables can be repre-
sented by programs.

A question which naturally arises at this point is whether all Boolean
functions of m variables can be represented by programs in this manner.
For m = 1, the answer is in the affirmative (the specific programs are
left to the reader to discover); for m = 2, we have given the required
16 programs; for m = 3, the answer is in the affirmative but the number
(2*° = 256) of programs prohibits their listing here; for m = 4, the
answer is once again in the affirmative but the calculations necessary to
establish this are much too long to be exhibited (there are, after all,
2%* = 65536 functions to consider). The cases m = 3 and m = 4 were
established by J. H. Spencer.®

One may note that since all Boolean functions of two variables can
be represented, then in particular the Sheffer stroke function given by

1z, v)
1

Y
0
1
0
1

= =0 0|8

0
0
0

TABLE II—PROGRAMS FOR BOOLEAN FUNCTIONS OF 2 VARIABLES

f P(f)

(0; 01 0; 0) (1:0: fO) (xl} fO)

(O) 0; 0) 1) (xl: yl) (xly fl) (xoy fO) (Z/o, fO)

(0,0,1,0) (1, Yo) (@1, f1) (zoy fo) (y1, So)

0,0,1,1) z1, f1) (e, fo

(01 17 0; 0) (xo, yl) (xO, fl) (xly fO) (yox f‘))

(01 1: 07 1) (yoy fO) (yly fl

0,1,1,0) (o, Yo) (o, fo) (21, 1) (¥1, Yo) (%1, fo) (w1, f1)
©0,1,1,1) (@0, Yo) (%o, fo) (x1, f1) (w1, 1)
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can also be represented. It is well known that any Boolean function
of m variables can be generated by expressions containing just the
variables and the stroke function.'® Hence, one is tempted to conclude
that any Boolean function is representable by a program. The flaw in
this line of reasoning is that in order to express a particular Boolean
function in terms of the stroke function, many occurrences of the stroke
function and the variables are usually required. This in turn requires
many ‘“‘copies” of the variables to be available to the program in order
to represent f. But we initially have only one pair of positions which
indicates the value of any particular variable and by the NDO theorem
we have seen that there cannot exist a ‘“replication” program which
would form extra copies of the values of the variables. Hence, within
this model, we cannot use this technique to generate all the Boolean
functions. It is certainly true however that if the model were extended
to include bubble interactions which would allow replication of con-
figurations (and such are known to exist physically), then all Boolean
functions of m variables could be represented exactly in the manner
described.

These initial results create considerable optimism concerning the
possibility of representing all the Boolean functions of m variables.
Such hopes are shattered however by the result (which we later prove)
that there exists a Boolean function of 11 variables which cannot be repre-
sented by any program of this type. In fact, even though the fraction of
the total number of Boolean functions of 11 variables which can be
represented by programs can be shown to be < 107'*%, the author is
currently unable to exhibit any specific function which cannot be
represented. Clearly, our understanding of this is less than complete.
It is not unreasonable to hope that the representable functions could
eventually be effectively characterized.

‘We now restrict ourselves (without loss of generality) to representing
the Boolean functions of m variables in the following way. We shall
take V = {ay, !, 22,25, -+ z,, 2.} to be a set of 2m vertices which
we imagine to be arranged in pairs as illustrated in Fig. 5. As before, a
bubble in the z,(x!) location of the pair (z; , /) will denote that the 7th
variable of the function f has the value 0(1). The way in which a program
P(f) represents f is as follows. Choose a distinguished vertex a:e V. There
is an obvious 1-1 correspondence between {0, 1}™ and the class C of
all subsets X C V such that X intersects each {z; , !/} in exactly one
element given by

l

a=(a,, - ,a,) < {y.e V iy, z; if a; = 0,
1

y: = af if a; =
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Ty X,

Tm

Fig. 5—Symbolic arrangement of vertex locations for computing Boolean functions
of m variables.

Let A, € {0,1}",7 =0, 1, be the set of all @ ¢ {0, 1}" such that f(a) = <,
and let C, be the corresponding subsets of €. Our object is to find a
program P(f) which distinguishes between the sets C, and €, . (Note
that C, U €, = C.) Specifically we shall say that P(f) represents f if

ae XTP for all XeC,,
ag X0 forall XeC,.

Let C denote the subset of all subsets x € V with | 2 | = m and
for x and y distinet elements of V, let C(x) be the set of elements of C
which contain z with C(y) defined similarly.! Consider the effect of
the command (z, ) on the members of C(z) and C(y). There are four
cases:

@) XeC), X ¢ CW).
Then X®* = X and X®* ¢ C(z), X®* ¢ C(y).
(@) X eC(x), X ¢Cy).
Then X% = X — {a} U {y} and X¥ ¢ C(a), X** & C(y).
(%) X ¢ C(@), X & Cy).
Then X** = X and X* ¢ C(@), X ¢ C(y).
(w) X ¢C(x), X ¢ C(y).
Then X¢* = X and X* ¢ C(a), X ¢ C(y).

Hence, after the application of (x, ) to all the sets in C, the new sets
C'(z), C'(y) (which now consist of all the subsets in C which contain z
and y respectively) are related to C(z) and C(y) by

C'(x) = C(x) N C(y),
C'(y) = C(x) U Cy).

Stated in these terms, the object of the program P(f) is finally to have
C"" (a) N\ € = C, after it has been applied to all the sets in C.

We give an example which illustrates these concepts. Let f be the
Boolean funection of three variables defined by:

t This approach was first suggested by J. H. Spencer.®
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T Y z f(z, y, 2)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

I

v

{x,, @ , 2,2, 75,2, andwetake « = 2.
Co = {{r, 22, x5}, {0, 28, s}, {20, 2, 23}, {2l , 20, 23},
Co = {{z, 2o, 2}, (2], 20, 2d), {2l , 25, 2}, {2l , b, 25}).
A program P(f) which achieves the separation is

P(f) = (x] , )@l , z) (@3 , 2a)(@1 , T3) (@1 , 21).
That is,
XeCo=a=12le X"V,

XgCo=ua ¢ X",

If C(x) denotes the initial subset of C consisting of all the sets in C which
contain x then we may conveniently record the sequential changes
which occur in each current C(x) in terms of the original C(y)’s as
the successive commands of P(f) are applied as shown in Table ITI.
A little computation shows that the final set in the z{-row, the final
C(z!), when intersected with C gives exactly

{{xl yx2 yx3}! {xl )xé pxS}v {xl 1x5 1x3,1}7 {xl, yx2 va}}

which equals C, as required.

In general the problem of representing Boolean functions reduces to
the following problem. We start with the 2m classes C*”(y) = C(y) N C,
y e V. We are then allowed to replace two of the classes C‘”(y) and
C (") by two (possibly) new classes C'”(y) N C° (') and C”(y) U
C®(y"). We can repeat this operation as many times as desired with
any pair of classes currently in the list. Our objective is to eventually
generate a specified subset C* of C.

We have already mentioned that for m = 1, 2, 3 and 4 it is possible
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TasrLe IIT—CumuraTIvE ErrEcT oF P(f)

(x1, 2) (z, 23)
T1: C(z1) C(z1) C(x,
z1: C(x1) Clxy') n Clz,) (xl’) A C(xs) n Clzs)
Tt C(zs) Clzy) v C(z2) C(:cl) v Clza)
z' C(xy') C(x') (z2')
Zs: C(xs) C(xs) (C(xl') n C(zy)) v Clzy)
x4 Clzs) C(zs")
(o, x3) (xl, z3)
z1: C(z1) C(xx)n(C(a:z')U(C(ﬂcl')ﬁc(xz))uc(xa))
z,: C(x;')nC’(xg)nC(xs) (xl n xz r\ T3
T Clx/)uC(zz) z1")uC(z2)
2 Czd) n ((Clzy) n C22)) uC(zs)) Cz)n ((C(zl )nC(xa))uC’(xs))

z;: C)u(Cley)n C(@2)) v Clas) Clz1)uC(zy)u (C(xl )) nC(zr2)) uC(zs)

x4’ Clzs')

(xlx Z1 )

z1: Cz1) n (Clxy) v (Clxy) n Cze)) v C(xa)) n Clz) n Cxa) n Clxs)
z1': (C(z1) n (Czy) v (Clzy’) n C(x2))) v Clzs)) v (Clzy') n C(zs2) n Clzs))

T Cxi') v C(z,

zs: Cz') n ((Cxy) n C(xz)) v C(z3))
T Clz1) v Clzy) v (O((xl)) n Clxs)) v Clzs)
T3 o

to generate any subset of C in this manner. We proceed to show that
for m = 11, there is a subset of C' which cannot be generated. We first
need several preliminary observations.

To begin with, for a,b ¢ V, let A and B denote the current sets C** (a)
and C‘”(b), respectively, after the ¢th command of the program P has
been executed. In other words, at this point in time C'‘*’(a) is the class
of all the original subsets of C' which now contain a. For example, if
@ = 25 in the preceding example, then after the fifth (and final) com-
mand of P(f), C”(x}) is C*”(z) N (C () N C(z2) U C“ (x5)). Tt is
immediate that if C**’(a) € C*”(b) then the application of the command
(@, b) as the (7 -+ 1)-st command of the program changes nothing. Hence
we can assume that we only use commands (a, b) for which at the time of
their application C*(a) ¢ C(®) & C(a) (we say that C*(a) and
C*" (b) are incomparable).

Initially all the starting classes C‘”(z), = & V, are mutually incom-
parable. In general suppose we have a family of classes D = {4, ;
1 =4 =t}, A; CC, with exactly r of the (}) pairs of 4, being comparable
and assume A; and 4, are incomparable. Consider the family D’ =
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D — {4} — {4} U {4, N A4:} U {4, U 4,}. We wish to determine
how many pairs of the classes of D’ are comparable. By definition
D={4, NA4,,4,U4,,4;,4,, ---, A,}. Of course for 7, j = 3,
the comparability between the classes 4; and 4; remains unchanged.
There are several cases:

(1) A;, DA A, D A,.
Then A; D A, U A4,, A, D4, N A..
(W) A, DA, ,A; D A..
Then A; D A, N 4.
(wg) A;, DA ,A. D A,.
Then 4; D 4; N 4..
() A, CT A, ,A, C A,.
Then A; S A, N 42,4, CT A, U A4,.
W) A, CA4,,A: L A,.
Then A; C A, U 4,.
() A, T A,,4. C 4,.
Then A; C A, U 4,.

Finally, we have a most important new comparability in D’, namely
AN A; C 4, U A, . Thus, at least r + 1 pairs of classes of D’ are
comparable. An immediate consequence of this observation is

Fact 4: We can assume that no program P(f) consists of more than (°7")
commands.

Proof: Since after ¢ (nontrivial) commands of a program P(f) have
been applied, we must have (by induction) at least 7 pairs of the classes
C(x), x ¢ V, being comparable and since there are just 2m classes and
therefore (%) pairs of classes, then P(f) must have = (%) commands.

Theorem. There exists a Boolean function of 11 variables which cannot
be represented by a program.

Proof: It is sufficient to show that for m = 11, there is a subset C*
of C which cannot be generated by starting with the 2m classes C” (z),
x ¢ V, and recursively applying the transformation 4, B — A N B,
A U B. Consider a typical program P = (e, , e5, -+ , e,) and the corre-
sponding expressions C*’(t), presented in Table IV.

In choosing the ¢th command e; of P there are at most (%f") — 7 -+ 1
possibilities for e; since after (e, , - - + , e;-;) has been applied, at least ¢ —1
of the pairs C“™" (z), C“ " (y) are comparable and thus neither (z, y)
nor (y, z) can be the next command e; . Therefore there are at most

%) [(22"‘> — i+ 1] = [m@m — D]!

i=1
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TasLE IV—CumuraTive EFrFEcT OF P

P: €1 es e; [

zir CO(z)  CW()  C®(zy) cen QW (zy) e e CO(zy)

D CO&) CO@)  COE) e CO&) e Co ()
It OO  CWO(zn)  C®(zm) coe O (zp) e eee CO(z)
xm': C(O)(xml') C(l)(mm') O(?)(xm’) o C(i)(xm’) ...... C(l)(xm')

choices for the sequence of e; , since ¢ £ (%) = m(@m — 1) by Fact 4.
Also, for 7 = 1, each column C'”(z), z € V, contains at most two new
classes which did not occur in the preceding column since only two
classes are changed at each step. Hence there are at most

[m@m — ]! (2’2"> + 2m

classes which can be generated by these rules where the additional
term +2m comes from the 2m initial sets C‘“ (2), £ V. On the other
hand, since € contains 2" sets X < V, then there are 22" subsets of C
which we must try to generate. We are doomed to failure however since

{[m(2m — (22”) + 2m} / 2" 0

as m — o, We list these expressions for several small values of m in
Table V. Thus, not only are we guaranteed a single Boolean function
of 11 variables which cannot be represented by a program, but in fact
we have at least 10°*° of them. It seems quite likely that there exist
Boolean functions of five variables which cannot be represented.
However, at present, no specific example of a Boolean function is known
which cannot be represented by a program.

TABLE V—BounNDs oN THE NUMBER OF BoOOLEAN FFUNCTIONS WHICH
CaN BE GENERATED

m [m(2m —1)]!(%2”) + om gom
2 4324 16
3 1961511552006 256
10 5105 <101

11 <10453 >10616
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V. SOME REMARKS

A number of partial results are known concerning the preceding
problems which we shall only mention briefly here.

The generation of Boolean functions as described has the following
very natural geometrical interpretation. For a fixed integer n, consider
the set of the 2" vertices of an n dimensional cube C* and let A, , -+« , A,
represent the 2n sets of 2°7' vertices which each lie on one (n — 1)-
dimensional “face”. In other words, if the vertices of C" are labelled by
binary n-tuples in the usual way, then each A, corresponds to a set of
2""' n-tuples in which some component is constant. As before, we are
allowed to replace any two sets A and B in the class of 2nsetsof A N B
and A |J B. We can repeat this transformation as often as desired. The
question is: which subsets X C C” can be generated in this manner. We
have shown that there exists a set X C C*! which cannot be so generated.

More generally, suppose we start with a class of n formal sets
X,, -+, X, and ask which formal expressions in the X; can be generated
using the transformation X, Y — X N Y, X U Y iteratively. It can be
shown'' for example, that all the elementary symmetric functions (using
M and U in place of the usual - and +) can be generated. Let us call
a well-formed expression I in the X,’s symmetric in X; and X; if the
substitution X; — X; , X; — X, , leaves I unchanged. Thus we can
write F in the form

E=X.NXNWH)UX:UX)NW) U W

where the W, are well-formed (possibly empty) expressions in the X,’s
not involving X ; or X; . We say that we collapse X; and X; in E if we
apply the transformation X, N X; —» X, , X, U X; — X;, to form

E=XNWo)UX;N W)U Ws.

Certainly, if F can be generated using the transformations X,
Y—-XNY, XU Ystarting from X, , - -+, X,, then there is a sequence
of collapses starting with E and ending with some single variable X, .
A basic theorem can be proved which asserts that if it is possible to
generate F, then no matter how we collapse symmetric variables
starting with the expression £ we must reach some single variable X; .
In other words in attempting to collapse E to a single variable, we can
never make a “bad” move. Once the structure of the expressions E
which can be generated is sufficiently well understood, perhaps the
representable subsets of C* can then be determined.

Another line of research suggested by this bubble model is in the



MAGNETIC DOMAIN INTERACTIONS 1643

following direction. For binary sequences z and y, define d(x, y), the
(Hamming) distance between z and y, to be the number of positions in
which the sequences z and y differ. The fact which prevented the
existence of a program which could add two integers expressed to the
base 2 was the fact that there are pairs of additions in which the binary
expansions of the corresponding summands are close together (in the
metric d) but whose sums are not close, thus conflicting with the NDO
theorem. What we would like is & mapping m — 7(m) of integers into
binary sequences for which we have

d(r(m), 7(n)) + d(z(m’), 7(n")) = d(z(m + n), r(m" + n)).
With only this constraint there are trivial solutions, for example,

m— 111 --- 1.
Rl

m

With this mapping we are essentially expressing m to the base 1 (well-
known by many cultures to be inefficient for representing large numbers,
say, those exceeding 10). Hence, we might require in addition that the
number of binary sequences of length ¢ which are in the range of the
mapping 7 to be at least o' for some fixed a > 1. Is it possible to find
a suitable 7 for which an addition program #s possible in this model of
bubble interactions?

Finally, we have just considered just one rather simple model in this
paper. Physically, many other bubble interactions are possible (although
some presently operate with significantly smaller margins than others)
and this of course would lead to other models. It would be very interest-
ing to understand the corresponding questions in some of these other
models.
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Dielectric Guide with Curved Axis
and Truncated Parabolic Index

By E. A. J. MARCATILI
(Manuscript received May 5, 1970)

We find the field configurations and the propagation constants of the
guided modes in a dielectric waveguide with curved axis and rectangular
cross-section. Outside the guide, the refractive index is uniform. Inside,
the index profile in the radial direction (intersection of the meridional plane
and the plane of curvature) follows a parabolic law with the maximum at
the center of the guide; in the direction perpendicular to the plane of curva-
ture the index is either uniform or parabolic, again with the maximum af
the center of the guide. The guide with mixed profiles has been proposed as
an easy-to-support, low-loss, ribbon-like guide for millimeter and optical
waves while the other, with parabolic profile in both directions, is similar to
the “SELFOC®” or “GRIN” tmage transmitting guides.

The axial field components are small compared to the transverse com-
ponents and consequently the modes are almost of the TEM kind. Within
the guide the field distribution along a quadratic profile is a parabolic
cylinder function of order close to an integer, and is sinusoidal along the
uniform profile. The field components outside of the guide decay almost
with exponential law.

Inside the SELFOC-like guide, the field distribution of the funda-
mental mode 1s gaussitan and except for the altenuation the characteristics
of the beam are stmilar to those obtained for a guide in which the parabolic
index profile is not truncated.

The attenuation constant o of any mode ts very sensitive to the radius of
curvature R. Doubling R reduces o by several orders of magnitude.

Fizing R and the difference of refractive index between the center of the
gutde and the edge of t, the attenuation constant o passes through a mini-
mum for a guide width measured in the plane of curvature which is only a
few beam-widths.

Radiation loss for the fundamental gaussian mode is negligibly small if
the distance between the center of the beam and the edge of the guide 7s two
or more half beam-widths.

Guides with rectangular index profile in the plane of curvature have less
radiation loss than similar guides with truncated parabolic profile.

1645
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I. INTRODUCTION

A dielectric guide in which the refractive index decreases with para-
bolic law away from its axis acts as a lens-like medium.'** The trans-
mission through it is known even if the axis is not straight® and if the
parabolic decrease is different in two orthogonal directions® (astigmatic
guide).

Though extremely useful in many respects the parabolic medium is
not realizable since it has ever-decreasing refractive index away from
the axis and this in turn produces an untenable physical result. Thus
though we know that in any realizable dielectric guide with curved
axis, radiation losses are inevitable,® the modes in the parabolic medium
with curved axis can have no radiation loss since the refractive index
tending towards infinity far away from the axis prevents it.

A more realistic model is achieved by truncating the parabolic index
distribution. We begin, in Section II, studying the two dimensional
guide, Fig. 1a, in which the index profile, Fig. 1b, varies as a truncated
parabolic function along the z axis and is independent of ¥ while out-
side of the guide the index is uniform.

Later, this guide is modified in such a way that along y, the index
profile is either rectangular, Fig. 2a, or another truncated parabolic
function, Fig. 2b.

The first of these guides has the index distribution of the dielectric
thin-film guide proposed in Ref. 6 as a low-loss, easy-to-support ribbon-
like guide for millimeter and optical waves. It has also the configuration
of a possible guide for integrated optics.” This guide, with curved axis
has been analyzed in Ref. 8 ignoring radiation due to curvature. In
Section II, both the phase and attenuation coeflicients of the guided
modes are evaluated and compared to those in a similar guide with
rectangular index profiles along both z and y.

The results obtained for the guide with truncated parabolic profiles
along z and y, Fig. 2b, are applicable, at least in order of magnitude,
to “SELFOC”® or “GRIN”' fibers, and tubular gas lenses'' with
curved axes.

Finally conclusions are drawn in Section III, while all the mathe-
matics are given in the Appendix.

II. MODES IN THE CURVED GUIDE

Consider the two-dimensional curved guide in Fig. 1a. The parabolic
refractive index within the guide is independent of y and equal to

ne = n[l - A(l + 27:’)] , )
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Fig. 1—(a) Two-dimensional truncated parabolic guide; (b) Refractive index
profile; (¢) Electric field distribution of the fundamental mode.

where @ is the width of the guide, n, the refractive index in the center
of it and n(1 — A), the refractive index at the edges. Outside the guide,
the index is

n, = n(l — A — A). 2
We make the following assumptions:
AK1 3)
AK1
and
ﬁ L1 - &R 4)
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Fig. 2-—(a) Inhomogeneous dielectric thin film guide; (b) “SELFOC®” or
“GRIN” guides with rectangular cross-section.

where A is the free-space wavelength and R the radius of curvature
of the guide. The physical significance of inequality (3) is that the
guided modes will have phase velocities quite comparable to that of a
plane wave in a uniform medium of refractive index n. The inequality
(4) insures that the amplitude of the field components at the edge of the
guide are small compared to their maxima within the guide. In other
words, most of the electromagnetic field is well confined within the
guide, Fig. le¢, and consequently the loss per wavelength is small com-
pared to unity. Considering only guided modes with field configura-
tions independent of y, we can group them in two families: TE and
TM. The field components of any mode of the first family are E, ,
H, and H, while those of the second are H, , E, and E, . In each family
the transverse components are far larger than the axial components
and consequently both families are essentially of the TEM kind.
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The transverse components F, , H, , H, and E, of both families
have the same functional dependence within and without the guide.
Therefore we will talk from now on of the E field meaning either one of
those four components.

Within the guide, and subject to the conditions (3) and (4), the E
field distribution for the pth mode is essentially

E = exp ‘:— } He,

in which the first two factors describe the field distribution along z,
and the last gives the propagating wave dependence along the curvi-
linear z axis. Similarly to the field distribution in the lens-like medium
(¢ = =), the first factor is a gaussian with its maximum located at a
distance

x-i—g—p x-i-g-—p

w

exp [i(kz — )] (5)

2
w

2

a
P = GAR (6)
from the center of the guide. The normalizing 1/¢ half-width is
aN
w = . 7
\/wn V84 @)
The second factor in equation (5) is a Hermite polynomial of order p
which is also centered at z = —(a/2) + p and the argument is normal-

ized to w/2. Strictly speaking the expression (5) should have, instead
of the Hermite polynomial, a Hermite function of order close to p.
Interested readers can find the details in the Appendix.

For the fundamental mode p = 0 the Hermite polynomial is unity
and the transverse field distribution is the well-known gaussian.

The propagation constant k, = 8 + i« in equation (5) is complex
and the phase and attenuation constants calculated in equations (36)
and (37) are

_ @ 2 1-M
p= 5”[1 T 16aR® ~ wkn K(I F M):| ®
and
a 2p+1
S K”Rs IS J Y PP g_< 1)(29)]
* T 2+/zA dRp! eXp{ 3\:(1 e A

a 2
—2—w2(1—d)} )
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in which
]
| 2 \? 1
B, = knN1 — (El%) (p + §> , (10)
_ze_LGf
d= a @ \w/’ (1)
® = ‘%{’—‘ (AR, 12)

and the values of M and K can be found in equations (38) and (39).
Let us discuss the physical meaning of some of these formulas.

The phase constant 8 given in equation (8) is the product of the
phase constant 8,,(10) of the lens-like medium with straight axis (B =
a = ), multiplied by a bracket essentially equal to one; the two small
terms contained therein take into account the curvature of the axis
and the truncation of the parabolic profile.

More interesting is the attenuation constant (9). The value v/2A Ra
which is the normalized attenuation per radian has been plotted in
Fig. 3 for the fundamental mode p = 0 and A, = 0. The abscissa is
the square of the guide width ¢ normalized to the beam-width 2w or
its equivalent (wna/\)V/ A/2 which is the guide width normalized to
the free wavelength. The parameter used for the solid curves is the
normalized radius of curvature ®(12). For a given radius of curvature
the loss per radian is highly sensitive to the width of the guide and
passes through a minimum at width

1_®%

2w \8/°

For a wide range of values of ®, say 10 to 1000, that minimum loss
occurs when the guide width is only a few beam-widths.

The dotted lines are curves of constant d, that is constant ratio.
20/a between the beam displacement from the guide axis p and the
guide half-width a/2. It is easy to understand the downward trend of
these curves for large abscissas. Consider a guide with fixed geometry
and decrease the wavelength M of operation. The beam remains at the
same distance p from the guide axis but it becomes narrower and conse-
quently the field at the edge of the guide and the radiation loss de-
crease. It is surprising that the minimum radiation loss of the solid
curves occurs when the beam displacement is a small part of the gidue
width (d of the order of 0.1).

Why do the solid lines have a minimum? For very narrow guides
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(a/2w < 1), most of the electromagnetic field travels outside of the
guide and any curvature of the axis introduces substantial radiation
losses to this loosely guided beam. On the other hand, for very wide
guides (a/2w >> 1), any curvature of the axis displaces the beam close
to one edge of the guide (d close to unity) and once again substantial
losses occur. There must be a minimum in between.

It is interesting to compare the losses in these guides of truncated
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parabolic index profile with guides of identical width but with rectangu-
lar index profile of height nA. In Tig. 4, the solid curves are a repetition
of some of those in Fig. 3, while the dotted ones have been reproduced

from Ref. 12. The abscissa is again (a/2w)* which is identical to (x/4)a/4
in which

A = A
nV 8A
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/ 80
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Fig. 4—Radiation loss in curved guides with truncated parabolic index profile
(solid curves) and with rectangular index profile (dashed curves).
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is a dimension such that for @ < A, the guide with rectangular index
profile supports a single mode and for a > A, the guide is multimode.

IFor the same radius of curvature, guide width, and same A on axis,
the guide with truncated parabolic profile has more loss than the guide
with rectangular profile. The difference is very marked for large abscissas,
but this result should not be surprising because in the case of curved
guides with truncated parabolic profile the beam travels close to one
edge of the guide where there is little difference of refractive index
between the inside and outside, while in the case of rectangular profile,
though most of the power travels also close to one edge of the guide the
full difference of refractive index nA is there to help in the guidance.

In Fig. 5 we have plotted again the attenuation per radian as a
function of (a/2w)? but this time we use as parameter, the value of

which is the number of beam half-widths between the center of the
beam and the external edge of the guide. The curves have asymptotes
(dashed lines) parallel to both coordinates.

For h =z 2, A = 0.01, the attenuation per radian aR turns out to be
smaller than 0.003, which is very small for most purposes.

If the truncated parabolic profile is on a pedestal (4, 5 0), the
losses are even smaller than those depicted in Fig. 4. The influence of
A, in the attenuation constant (9), appears in the bracket of the ex-
ponent. The other two terms are in general small compared to unity.
Therefore even a modest value of A, , say A, = A, is enough to reduce
the losses depicted in Figs. 3 and 5 by several orders of magnitude.

What happens when p 5 0. From equation (9) we find as expected
that for a given guide the radiation loss increases fast with the order p
of the mode. The highest order mode that travels only slightly in-
fluenced by the guide width is characterized by

P
2 2
2
— 1 32 1
Prax = w _i—h'—g.

Naturally pum.: is independent of A, , and when the beam center is close
to a beam half-width from the edge, pp.. = O.

It is shown in the Appendix that if the refractive index profile along y,
Fig. 1a, is not uniform but has either rectangular or truncated para-
bolic shape, Figs. 2a and 2b, the guides have different phase constants
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than equation (8) but practically the same attenuation constant (9)
provided that most of the electromagnetic field travels within the
guide. Therefore everything said about attenuation in this section
applies to the three guides.

For the following examples we will only use Figs. 3, 4 and 5 since all
the important results and formulas are there.
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2.1 Example A
For a guide such that

A =0,
a = 0.1 mm,
A= lu,

what is the radius of curvature R for which the loss per radian is of
the order of 1073?
We caleulate the absecissa and ordinate of Fig. 5 to be

a 2_7ma\/Z_
<2w>_)\ 3 = 33

V2AaR = 1.4-107%

and

The parameter i obtained from Fig. 5 is approximately 2 and we derive

2
a

R=8Ap

= 3.9 mm.

A very small radius indeed.

2.2 Example B

For integrated optics a guide with truncated-parabolic profile may
have the following characteristics

n = 1.5,

A = 0.01,

A =0,

¢ = 10g,

A = 0.5y,

R = 0.6 mm.

What is the loss per radian?
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IF'rom Fig. 3 or 4 we get the abscissa and parameter

a 2
<%> = 6.7,

_ 4R

T (20)} 2 60,

®

Consequently the loss per radian results

aR = 0.018.

If instead of parabolic the index had been rectangular, from Fig. 4
we deduce that the loss per radian would have been 0.00018, two
orders of magnitude smaller.

III. CONCLUSIONS

For losses small enough, the field configurations and phase constants
of the modes in dielectric guides, Figs. 2a and 2b, with curved axis
and parabolic index profile on a pedestal, are quite comparable to
those in a similar guide in which the parabolic profile is extended to
infinity.

The attenuation constant of a mode is very sensitive (exponential
dependence) to the radius of curvature, size of the pedestal and order
of the mode. The higher the order of the mode and the smaller the size
of the pedestal the larger the loss.

Quantitative results about the attenuation constant for the funda-
mental gaussian mode in a guide without pedestal are given in Figs. 3,
4 and 5 and in typical examples at the end at the preceding section.
We find in these figures the loss per radian o R as a function of the guide
width a, using as parameter the radius of curvature R, or the ratio
between beam displacement p and guide width or the ratio between
the beam distance from the edge of the guide, a/2 — p and the beam
width w. The main conclusions are:

() Doubling R reduces the attenuation constant « several orders
of magnitude.

(72) For any R, there is a guide width that minimizes the loss per
radian. That dimension is only a few beam-widths.

(#7) For comparable characteristics, guides with rectangular pro-
files have lower attenuation than those with truncated-para-
bolic profile. Therefore if the transmission of images is not
important, such as in the case of the ribbon-like guide of Ref. 6
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and guides for integrated optics, rectangular index profiles are
more attractive than parabolic profiles.

(i) The attenuation per 90° bend is smaller than 10™° in a guide
such that the distance between beam center and the external
edge of the guide is larger than a couple of half beam-widths,
that is, if

APPENDIX

Modes in Curved Guides
With Truncated-Parabolic Index Profile

We start studying the two-dimensional curved guide depicted in
Fig. 1a in cylindrical coordinates. Later we will introduce a variation
of the index profile along y.

The parabolic refractive index distribution within the guide is

n; = n[l — A(l +21= Rﬂ (13)

a

where a is the width of the guide, n the refractive index in the center
and n(l — A) the refractive index at the edges. The refractive index
outside the guide is

n, =n(l — A — A). (14)

Assuming that the electromagnetic field does not vary along y and
that the only component along that direction is H, , all the field com-
ponents either inside or outside the guide are'

H,=H
o
wedtr ! exp [i(p0 — wi)] (15)
__1 oH
By = wegn: or

where w is the angular frequency, ¢, the refractive index of free space,
and the indices 7 and o refer to the inside and outside of the guide.
The resulting wave equation for both media is
d°H | 1dH ( 2a ¥
k n; —

"o L) =0 ae
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in which k& = 2x/\ and A is the free space wavelength. Within the
guide #; is given by equation (13) and the wave equation can be re-
duced to

d’H
v 43— e+ &)H = 17
by making the following substitutions
2(r — R)
E==—""0 >
(18)
f= (1 —d),
v = szy (19)
Fni — K .  a’d < g) 1
in which
lad an
S (L2 S V) S 21
s \/ T ™mV/8A @
@ _ _a _2
1= a1k a’ 22)
® = ‘i’—;—” (2A)R, 23)
and
4=—2 24)
nV 8A

TFurthermore, equation (17) has been derived making the following
simplifying assumptions

AL,
A K1, (25)
a
a\/ L1 -

The physical significance of w, d, A and the inequalities are given in
the text.
The solution of equation (17) is**

To=D+e) = ew | (55 mee+e) oo



DIELECTRIC WAVEGUIDE 1659

where D,(¢ + &) is the parabolic cylinder function of order 5 and
He, (¢ + &) is the Hermite function of order 5. Only if a — «, g
becomes an integer, the Hermite function is reduced to a polynomial
and H; becomes the well-known solution of the parabolic lens-like
medium extending to infinity.®

Outside of the guide, that is for r > R, the refractive index n, is
uniform, equation (14), and the solution of the wave equation (16) is*
the Hankel function of order » and argument kn,r. That is

H, = H® (kn,r). 27)

To match fields at the boundary » = R, the radial admittance
H,/E, inside and outside the guide must be identical. With the help
of equations (15), (26) and (27), we obtain the characteristic equation

w nDn(So) . Hz(/l)(knoR)

b D) ~ HO(tnoR)

(28)

in which the derivatives are taken with respect to the arguments of the
functions.

We should have another boundary equation for the other side of the
guide, 7 = R — a, but we are interested in guides with radius of curva-
ture R small enough to push the field away from the center of the
guide, and consequently the field at the interface r = R — ais negligibly
small.

To solve explicitly the boundary or characteristic equation (28) for
k. , we need asymptotic expansions of the functions involved. From the
inequalities in equation (25), it can be deduced that

| &|>1 and |&| > |7l (29)

The asymptotic expansion for D,(£,) is then'*

D) = exp (5 —imn) + f;) e (%) G0

where T'(—17) is the gaussian function of argument (— 7).
The asymptotic expansion for the Hankel function results from
observing that as a consequence of equation (25)

kn,R>1,
k.R>1, (31)

kng ~

kool
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and
% — ) >> 1.

Therefore we can replace the Hankel function by Watson’s approxi-
mation.' This approximation involves Bessel functions of order one-
third and large arguments. Keeping the first term of their asymptotic
expansions, the Hankel function results

2 . R 3
H;"(kn,R) = \fm)—% {—1 exp [ﬁa (k: — kzni)’]

R 2 2
+3exp [—3705 * - km)ﬂ}- (32)

Substituting equations (30) and (32) in equation (28) we obtain a
simpliﬁed version of the characteristic equation

e+

1 — \(/271') E-2,, 1 exp < L wrn)
1+ 7exp |i—~~~(lc2 — i 2)]
= ‘EO (kZ ),w (33)
To solve this equation for k, we rewrite it as
T(—n) = F(n) (34)

and notice that F(») is a large quantity. Therefore the gamma func-
tion is also large and hence 4 must be near a pole, which makes 5 close
to an integer p. Then we can replace the gamma function by the first
term of the Laurent series (—1)%/p !(p — 7), and equation (34) becomes

(=1
=p— : 35
n P p! F(p) ( )
Substituting 4 by the value given in equation (20) we derive the ex-
plicit value of &, . This propagation constant is complex, k, = 8 + ia,
and the real and imaginary parts are the phase and attenuation con-
stants of the pth mode:

B = Rek,

(36)
-t = i [+ + 3t - )+ i)
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- (5]
poo PLTEN M ) )1 om — A

72V TS (= 1% D
where
A, ( 1\ 4 |
AT 5) (R_d}
M= L + T=ar 38)
_exp I:%i (1 - d){l
K = Vrp! (39)

[V&d (1 — a

In equation (37), M affects the value of & mostly via the exponential
and not via the fraction

14+ 2M — M*
1+ M)®

which for all practical purposes can be replaced by 1. Consequently
the normalized loss per radian 4/ 2ARa results

exp [—(‘R‘ <_—1 — d)a]
—_ 3\ M
L = V2ARa = K .

(40)

Now we turn to guides in which the refractive index is a function
of y, Figs. 2a and 2b.

Let us start with the ribbon-like structure of Fig. 2a and assume as
in Ref. 6 that

A > A (41)

Provided that most of the electromagnetic field travels within the
ribbon, the attenuation per radian is still given by equation (40), but
the phase constant is a slight modification of equation (36). From Ref. 12
is deduced

(1 i 2(1 — A1)2A1>'2 for field
8, =8 kn [w(q + 1):|2 b polarized along y,
=8 — g Tl
2 b ( 2 Al)'2 for field
14241
T b

polarized along z,

(42)

where ¢ + 1 indicates the number of maxima of electric field within
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the guide along ¥ and

A (43)

—_— -—)\—.
' nV 8A,
Consider another guide, Fig. 2b, with rectangular cross-section and
truncated parabolic index profile along both the x and y directions

ni = n[l - A(l + 2L_a—13)2 - A(%)z:lo (44)

Provided that most of the electromagnetic field is within the guide
cross-section, the loss per radian is still given by equation (40), but
the phase constant becomes*
_ é_l)‘% 1
1 <1 -+ A

> |

1
ﬁz=ﬂ"' z q+—+2 —
2] 2 2¢+1 3
wml \/2—7rq!(£—2> [1+(1+ﬁ> ][

A

(45)

where ¢ 4+ 1 is the number of maxima of the electric field along y and

_
o \ovm 4o

If
and

the guide has square cross-section and equations (40) and (45) yield
a first approximation of the phase and attenuation constants in a
curved SELFOC® guide.

REFERENCES

1. Tonks, L., “Filamentary Standing-Wave Pattern in Solid State Maser,” J. Appl.
Phys., 33, No. 6 (June 1962), pp. 1980-1986.

2. Kogelnik, H., “On the Propagation of Gaussian Beams of Light Through
Lens-Like Media Including Theose with a Loss or Gain Variation,” Appl.

: Opt., 4, No. 2 (December 1965), pp. 1562-1569.

3. Tien, P. K., Gordon, J. P., and Whinnery, J. R., “Focusing of a Light Beam
of Gaussian Field Distribution in Continuous and Periodic Lens-Like Media,”
Proc. IEEE, 63, No. 2 (February 1965), pp. 129-136.

4, Marcatili, E. A. J., “Modes in a Sequence of Thick Astigmatic Lens-Like
Focusers,” B.S.T.J., 43, No. 6 (November 1964), pp. 2887-2903.

5. Mareatili, E. A. J., and-Miller, S. E., “Improved Relations Describing Direc-



DIELECTRIC WAVEGUIDE 1663

tional Control in Electromagnetic Wave Guidance,” B.S.T.J., 48, No. 7
(September 1969), pp. 2161-2188.

6. Kumagai, N., Kurazono, S., Sawa, S., and Yoshikawa, N., “Surface Waveguide

10.

11.
12.
13.
14.

Consisting of Inhomogeneous Dielectric Thin Film,” Elee. and Commun. in
Japan, §1-B, No. 3 (March 1968), pp. 50-56.

. Miller, S. E., “Inte rated Optics: An Introduction,” B.S.T.J., 48, No. 7 (Sep-

tember 1969), pp. 2059-2070.

. Sawa, 8., and Kumagai, N., “Surface Wave Along a Circular H-Band of an

Inhomogeneous Dielectric Thin Film,” Elec. and Commun. in Japan, §2-B,
No. 3 (March 1969), pp. 44-50.

. Uchida, T., Furukawa, M., Kitano, 1., Kaizuki, K., and Matsumura, H., “A

nght-Focusmg Fiber Gulde 71969 IEEE Conference on Laser Eng. "and
Appl., Washington, D. C.

Rawson, E. G., Herriott, D. R., and McKenna, J., “Refractive Index Dis-
tributions in Cyhndncal Graded Index Glass Rods (GRIN Rods) Used as
Image Relays,” Appl. Opt 9, No. 3 (March 1970), p. 753-759.

Marcuse, D., and Miller, S. E., “Analysis of a Tubular Gas Lens,” B.S.T.J.,
43, No. 4 Part 2 (July 1964) pp. 1759-1782.

Marcatlh, E. A. J., “Bends in Optlcal Dielectric Guides,” B.S.T.J., 48, No. 7
(September 1969), pp. 2103-2132.

Stlé%t(;con, J. A., Electromagnetic Theory, New York: McGraw-Hill, 1941, pp.

361.

Magnus, W., Oberhettinger, F., and Soni, R. P., Formulas and Theorems for
the Special Functions of Mathematical Physics, Chelsea Publishing Co., New
York: Springer-Verlag, 1966, p. 144 (on page 1660); p. 332 (on page 1659).






Radiation Losses of the Dominant Mode
in Round Dielectric Waveguides

By DIETRICH MARCUSE

(Manusecript received March 5, 1970)

The radiation loss theory that has been developed in a series of earlier
papers is extended to the dominant mode of the round dielectric waveguide.
The theory s applied to the calculation of radiation losses of abrupt steps,
gradual tapers, and random wall perturbations of the round dielectric
waveguide.

The radiation losses caused by an abrupt step, and consequently the losses
of tapers, are far higher for the dominant mode of the round dielectric wave-
guide than they are for corresponding steps and tapers of the dielectric slab
waveguide. However, the losses caused by infinitesimal random wall pertur-
bations of the round waveguide are nearly equal to the random wall losses pre-
dicted on the basts of the slab waveguide theory. In fact the losses of the
dominate mode as well as the circular electric T Ey, mode of the round rod due
to random wall perturbations are very nearly the same.

The theory s limited to circular symmetric distortions of the round dielec-
tric rod (diameter changes). The radiation losses caused by steps of the
round dielectric waveguide that carries the dominate guided mode have been
verified by expertments at millimeter wave frequencies.

I. INTRODUCTION

A series of earlier papers was devoted to radiation losses of TE and
TM modes in dielectric slab waveguides.'™® The radiation losses were
assumed to be caused either by random perturbations of the waveguide
boundary® or by steps and tapers of the slab waveguide.’ Experiments
to verify the radiation loss theory were conducted with millimeter
waves in round teflon rods, and the theory was extended to cover this
case.”

These earlier publications were limited to the simplified case of

1665
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electromagnetic fields that are independent of one coordinate. In the
case of the slab waveguide we assumed

[¢]

5 =0 (1)
while

i)

35 =0 )

was required of the fields of the round dielectric waveguide. Restrictions
(1) and (2) made it possible to separate the fields into transverse
electric (TE) or transverse magnetic (TM) modes.

The study of the simple slab waveguide yielded much useful informa-
tion about the general properties of radiation losses and allowed us to
infer the order of magnitude of the radiation losses caused by random
wall imperfections. However, the dielectric slab is not a useful practical
waveguide and can be used only as a simplified model to obtain informa-
tion about the behavior of more realistic and more complicated struc-
tures. Limitation (2) for the modes of the realistic and practical round
dielectric waveguide precludes the application of the theory to the most
important dominant mode of this structure.

The present paper is devoted to a study of the radiation losses of the
dominant mode of the round dielectric waveguide (optical fiber). To
be able to handle the theory we still impose condition (2) on the deriva-
tives related to the geometry of the waveguide but not on the field
distribution. The resulting theory is still very complicated so that we
must limit ourselves to sketching the theory and stating the final results.

The radiation losses caused by random imperfections [obeying restric-
tion (2)] are very nearly identical to the losses of the corresponding slab
waveguide problem. However, the radiation losses of the dominant
mode caused by steps and tapers in the waveguide are much higher
than the corresponding losses of the TE or TM modes in the slab
waveguide. The radiation losses of the dominant mode due to waveguide
steps have been found experimentally to be in agreement with the
theory.

In order to allow the reader to obtain the information concerning the
results of the theory unencumbered by complex mathematical formulas
we start the paper with a discussion of the results. The remainder of
the paper is devoted to an outline of the theory that was used to obtain
these results,
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II. NUMERICAL AND EXPERIMENTAL RESULTS

2.1 Radiation Losses of Waveguide Steps

We begin the discussion of the consequences of the radiation loss
theory of the dominant mode of the round dielectric waveguide by
considering the radiation losses caused by the abrupt step of the wave-
guide diameter shown in Fig. 1. As described in Section IT, the radiation
losses caused by an abrupt step can be calculated by two different
methods. The mode matching technique infers the loss from the trans-
mission coefficient of the guided mode that continues to travel in the
waveguide after it has passed the step. The radiation loss method
accounts for the lost power by directly calculating the amount of power
radiated into space. Both methods involve approximations so that we
cannot expect to obtain exactly the same results either way.

Figure 2 shows the results of both methods of calculation. The radia-
tion loss caused by a step with a./a;, = 0.5 as a function of ka, (as
computed by means of the mode matching technique) is shown as the
dotted line in the figure, while the solid line represents the result of the
radiation loss method. The curve holds for a dielectric rod with index
of refraction n = 1.432 (n® = 2.05). This index was chosen since it is
representative of teflon at a frequency of 55 GHz. The agreement of
the two methods is remarkably good considering the approximations
involved in deriving the theoretical expressions.

Even better agreement is obtained by a similar calculation that applies
to a dielectric rod with index of refraction n = 1.01 as shown in Fig. 3.
Both figures are extended over ka, values that correspond to single
guided mode operation. There are other guided modes possible over
part of the range of ka, values but these other modes do not couple
to the dominant mode of the round dielectric rod because of the restric-
tion on symmetry imposed by equation (2). It is in this sense that the
operation of the waveguide is single mode. No other guided mode occurs
under the imposed conditions. The shape of the two curves in Figs. 2

Tig. 1—Step in the round dielectric waveguide.
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Fig. 2—Relative radiation loss caused by an abrupt step with a;/a; = 0.5 of the
waveguide. The two curves labeled dominant mode of the round waveguide were
obtained by the mode matching technique (dotted line) and by the radiation loss
technique (solid line). The two curves at the bottom of the figure labeled TE and
TM modes represent the step losses of the slab waveguide. The radius @, (appearing
in ka,) belongs to the larger waveguide section. Index of refraction n = 1.432.

and 3 is very similar. Both curves reach into high loss regions for small
values of ka; . The curve of Fig. 3 is applicable to a clad optical fiber
with 1 percent index difference between core and cladding. The curves
shown on the bottom of Figs. 2 and 3 represent the step losses of TE
and TM modes of the slab waveguide.® These curves are computed for
the same index of refraction. The dimension a; (of ka,) is the half width
of the slab in the case of the slab waveguide. It is striking how much
lower the radiation losses of the guided modes of the slab waveguide are
compared to the dominant mode of the round dielectric rod.

Because of the complexity of the theory and because the step loss
results are so different for the round rod and the slab waveguide, it
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appeared desirable to confirm the loss predictions of the theory with an
experiment. The experiment was conducted with millimeter waves
(approximately 55 GHz). A round teflon rod of 0.191 ¢m diameter was
mounted between two metallic reflectors as shown in Fig. 4. The resulting
resonant cavity could be excited through small holes in the reflector
plates that, simultaneously, acted as supports for the teflon rod. Two
teflon sleeves of 0.216 ¢cm and 0.242 em outer diameter could be slid over
the teflon rods to produce a round dielectric waveguide with two steps.
The losses caused by the steps could be determined from @ measure-
ments of the cavity with and without the teflon sleeves. The results
of these loss measurements (applied to one step) are shown as crosses
in Fig. 5. This figure also shows the theoretical loss predictions of the
mode matching (dotted line) and the radiation loss approach (solid line)
of the theory. Note that the parameter value ka, = 1.1 of this figure
uses the fixed value of the narrower portion of the waveguide as reference.
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Fig. 3—This curve is similar to Fig. 2 with » = 1.01 and a»/a; = 0.5.
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Fig. 4—Experimental resonant cavity set up to measure radiation losses of wave-
guide steps.

The point a./a; = 0.5 of Fig. 5 corresponds to the point ka, = 2.2 of
Fig. 2. The measurements support the result of the round rod theory.
The radiation losses of the slab waveguide even for much larger steps
are still far lower than the measured values of these smaller steps of
the round rod.

It is not as easy to confirm the loss predictions of the slab theory
since a dielectric slab waveguide is somewhat of an idealization. In
particular it is hard to excite a slab with a mode that has no field varia-
tion in the y-direction. In order to obtain some approximation to the
slab waveguide "we constructed a dielectric (teflon) ribbon whose
dimensions on the narrower portion were 0.380 by 0.095 ¢cm and whose
wider dimensions were 0.380 by 0.190 em. Note that only the narrow
side is affected by the step. The losses of this ribbon waveguide with
a 2:1 step were measured in the same resonant setup and compared to
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the losses of a smooth ribbon with dimensions 0.380 by 0.095 ¢m. The
radiation loss of the ribbon guide was AP/P = 0.08 for kd, = 1.1
(or kd;, = 2.2). This radiation loss value is shown as the circle in Fig. 5.
It is apparent that the loss of the ribbon guide is far smaller than
the loss of the round waveguide. It is about four times higher than
the step loss predicted for the slab waveguide. However, we must keep
in mind that the ribbon is only a poor approximation of the slab wave-
guide. It is therefore not surprising that its radiation loss cannot be
predicted by the slab waveguide theory. The slab waveguide apparently
can tolerate steps in its width exceptionally well.

2.2 Radiation Loss of Tapers

The radiation loss theory that is presented in the theoretical part
can be used to determine the loss of round dielectric waveguides with
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Fig. 5—Comparison of theory and experiment. The crosses are measured step
losses of the round dielectric waveguide. The circle is the step loss of aribbon guide.
The curves represent the results of the mode matching theory (dotted line) and
the radiation loss theory (solid line). (n = 1.432, ka, = 1.1.) Note that the curve
parameter ka, uses the radius of the smaller waveguide section.
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arbitrary diameter changes. Since the radiation losses of an abrupt step
are very high for round dielectric waveguides it is interesting to study
the radiation losses of gradual tapers.®”’

The calculation of the radiation losses of tapers can be simplified by
observing that the dependence of 8, on the radius of the waveguide is
nearly linear over a considerable range of values. Figure 6 shows the
ratio of Bo/k as a function of ka for n = 1.432. It is apparent that a
straight line approximation is possible in the region 1.2 < ka < 2.5.

We study the radiation losses of two different tapers. The linear taper
is the simplest and therefore the most reasonable taper to investigate.
However, there are reasons to suspect that the linear taper may have
higher radiation losses than other forms of tapers. It is apparent from
equation (36) of Section IT that the result of the integration (aside from
the complicated factor I(p, 2) which is difficult to evaluate) depends on
the product of the derivative of the radius function a(z) with sine and
cosine functions of the form cos [} [8.(z) — Bldz. (B, is the propagation
constant of the guided mode; 8 is the z-component of the propagation
constant of the radiation modes.) The oscillatory function has the
tendency to cancel contributions from those functions that appear
multiplied with it under the integrand. The more rapidly the cosine
function oscillates, the more effective will be its canceling influence.

.28

.24

.20 /

v

1.04
.00 /
0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0
ka

Fig. 6—Plot of the propagation constant 8o of the dominant mode of the round
dielectric waveguide. (n = 1.432.)
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This consideration shows that we would like to see the values of
Bo(2) — B as large as possible. The smallest possible value, and conse-
quently the most harmful, is the value 8,(z) — k that is assumed at
the upper end of the integration range in equation (34). However,
because of the z dependence of 8, the values of 8,(z) — k are smaller
at the narrow portion of the taper than they are on its wider portion.
One might expect, therefore, that the narrow region of the linear taper
contributes more to the overall radiation loss than its wider portions.
It appears that the taper could be optimized if larger values of da/dz
appeared at the wider end of the taper where the canceling effect of the
sinusoidal functions is still more effective. Following this idea, it is
possible to show that an exponential taper should distribute the radia-
tion loss more evenly over its entire length in comparison with the
linear taper. A linear taper and an exponential taper are shown in
Fig. 7. The exponential taper was calculated from

al®) = a, + (a, — ay) exp (—4_6 zf)

This taper is designed to equalize the contribution of the integral (36),
at least approximately, over the entire length of the taper assuming
that I(p, 2) is constant. The discontinuity of da/dz at z = 0 does not
contribute to the radiation loss. It would, therefore, be of no advantage
to shape the taper such that da/dz is continuous over its entire length.

The radiation losses of the linear and exponential tapers are compared
in Fig. 8. Even though the radiation loss of the exponential taper is less
than that of the linear taper, in agreement with our expectation, the
amount of improvement is insufficient to warrant the greater com-
plexity required to produce such a more complicated taper. Figure 8
also shows that the radiation loss of a taper is far less than the losses
caused by an abrupt step. The radiation losses can be made as small as
desired with a taper of sufficient length. A linear taper with a length to
waveguide radius (on the larger portion of the guide) ratio of L/a, = 400
reduces the radiation losses, that would occur on an abrupt step, by a
factor of 100. With A = 1 pm the value ka, = 2.5 is realized for a, =
0.4 pym so that the taper would have an actual length of L = 160 pm
or 0.16 mm. It is apparent that much longer, more effective tapers
are feasible.

Figure 8 indicates that there are two distinctly different regions.
Below L/a, = 2 the taper is so short that it acts like an abrupt step.
The beneficial effect of the taper makes itself felt only if the taper is
long enough. The reduction of the radiation loss of a gradual taper
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Fig. 7—The profile of the linear (dotted line) and the exponential (solid line) taper.

compared to an abrupt step or steep taper is caused by the canceling
influence of the (complex) exponential function in the integral of
equation (36).

2.3 Losses Caused by Random Wall Imperfections

An important loss contribution is caused by the random deviations
of the dielectric waveguide boundary from perfect straightness. These
radiation losses have been investigated for the slab waveguide' and for
the circular electric TEy mode.” The theory of radiation losses of the
dominant mode of the round dielectric waveguide is sketched in
Section ITI.

We have seen that the radiation losses caused by arbitrary deforma-
tions of the waveguide wall can be computed by describing the wall
deviation as a series of infinitesimal steps. We have also seen that the -
single loss for large steps is far higher for the round dielectric waveguide
than it is for the slab waveguide. We might thus worry that the losses
caused by random wall perturbations may also be far higher for the
dominant mode of the round dielectric waveguide. Fortunately, this
pessimistic expectation is not true. The radiation losses caused by wall
roughness of the round dielectric rod are no worse than they are for the
modes of the slab waveguide.

The random wall losses are treated on the basis of a statistical model.
The correlation function describing the wall perturbation is assumed
to be a simple exponential function that is characterized by two param-
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eters, the rms deviation from perfect straightness A and the correlation
length B.

Figure 9 shows a series of curves of the normalized relative radiation
loss as a function of the ratio of correlation length to waveguide radius
B/a for a guide with index of refraction n = 1.432 (teflon). The curve
parameter is the product of vacuum propagation constant times wave-
guide radius, ka. Also shown for means of comparison is the loss of the
circular electric mode of the round waveguide as a dotted line. It is
apparent that the radiation losses of the dominant mode are approxi-
mately equal to the radiation loss of the ecircular electric mode. A
comparison with the results of Ref. 1 shows that the losses of Fig. 9 are
approximately four times as high as the corresponding losses for the
slab waveguide. For a meaningful comparison we must remember,
however, that the slab waveguide losses were computed under the
assumption that only one of the two slab boundaries was randomly
perturbed. It seems reasonable to compare the losses of the round rod
to a slab waveguide whose two walls are perturbed in a correlated way.
In fact, if we assume that the thickness of the slab waveguide changes
in a manner that provides equal but opposite displacement of each side
of the guide we would obtain a four times higher loss than is shown in
the curves of Ref. 1. The agreement between the radiation losses of the
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Fig. 8—Relative radiation loss of the linear (dashed line) and the exponential
(solid line) taper. (n = 1.432, as/a; = 0.5, kay = 2.5.)
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Fig. 9—Normalized radiation losses caused by random wall perturbations. The
solid lines correspond to the dominant mode of the round guide, the dashed line
represents the Ty mode of this waveguide. (n = 1.432.) The curve parameters
are the values of ka.

slab waveguide and the random wall losses of the round dielectric
waveguide is quite close.

Tigure 10 shows similar loss curves for a round waveguide with index
of refraction n = 1.01. These curves too are about four times as high
as the corresponding slab waveguide losses for the reason explained
above. The curves of Fig. 10 are representative of the wall losses of
a clad optical fiber with 1 percent index difference. As an example let
us assume that we operate an optical fiber with a vacuum wavelength of
A = 1 um. The value ka = 15 corresponds to a radius ¢ = 2.4 pm for
the inner core of the fiber. If we assume that the correlation length of
the exponential correlation function assumes its worst possible value
B/a = 2.0, we find from Fig. 10 the normalized loss

a® AP

A2L _F = 0.04:.

A loss factor of

o =

épf — 2.3km™ = 10 dB/km

e~

would be caused bgf an rms deviation of the waveguide radius = 4
9-107® em = 9 A. This example shows how very stringent the
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tolerance requirements can be. In a realistic case there will not only be
variations of the waveguide radius. In addition we do not know the
statistical model of the correlation function that must be applied in
each case. However, comparison of different correlation funetion models
has shown that the peak and its location in Figs. 9 and 10 is not de-
pendent on the assumed statistical model. The decay of the loss curves
toward increasing values of B/a is strongly model dependent.

III. THEORY

3.1 The Dominant Guided M ode

The field components of an arbitrary guided mode in the waveguide
are described by the following equations:®

E, = AJ,(xr) cosvé (3a)
H, = BJ ,(xr) sin vd (3b)
B, = 5[ A7) + cuB 1.6) |acnr 6o
E, = % l:ﬁoA ;{ J, (k) + KwuBJﬁ(Kr)] sin v (3d)
10°
5
2
107! 23 - —_/ A_
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Fig. 10—These curves are similar to Fig. 9 with n = 1.01. The curve parameters
are the values of ka.
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H,

_;7'3 [nzweoA ;i J(kr) + kBoBJ ;(Kr)] sin v (3e)

o, = —55 [nzxweoAJﬁ(xr) + 8,8 ; J,,(KT)] COoS vo. (3f)

These equations describe the field inside of the round dielectric rod,
r = a. The functions J, are the Bessel functions of order », a prime
indicates the derivative with respect to the argument (not with respect
to 7). The parameter » must be an integer in order to make sine and
cosine periodic functions of the aximuth ¢ with period 2. The factor

ei(mt—ﬁqz) (4)

was omitted from equations (3). The propagation constant g, is related
to the constants x and the free space propagation constant & by the
relations

K = «’eopo (%)

and

K =2’k — 82, (6)
where 7 is the index of refraction of the dielectric material. The con-
stants 4 and B are not independent of each other. Their mutual de-
pendence is given by the boundary conditions for the field components.
The fields on the outside of the dielectric rod r = a are given by the
equations

E, = CH®(Gvyr) cos vg (7a)
H, = DH (iyr) sin v (7b)
E, = ;za l:ivﬁoCH(v”'(iW) + w#D:'Hf”(iW)] COs v (7c)
E, = —% l:ﬁoC :7 HV (iyr) + iyouDH 5”’(2'77)] sin v (7d)
H, = % [weoC’ :: H." (iyr) + iyB,.DH," '(W)] sin v (Te)
H, = % [ivweoCH 2oy + 60D%H 5”(7577“)] cos v ()

where H!" is the Hankel function of order » and of the first kind. The
prime indicates again its derivative with respect to its argument. The
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argument is imaginary in order to ensure that the field distribution
decays exponentially at large distance from the rod. The time and
z-dependent factor (4) has again been suppressed. The parameter v is
related to the propagation constant 8, by the equation

=8 — k.
The field components were written down quite generally for an arbitrary

guided mode. The lowest order or dominant mode of the guide follows
from these equations with

v = 1. (8)

The following discussion will be limited to the special case » = 1. The
connection between the amplitude coefficients and the determination of
the propagation constant follows from the boundary conditions for the
field components. The requirement that &, , E, , H, and H, are con-
tinuous at the boundary » = a leads to the following eigenvalue equation
for the determination of the propagation constant 8, of the guided mode

20y’ | Jolka) 1 il (iya) }}
{n K I:Jl(Ka)_K(l] + |:'ya {(1)(7/)/(1) -1

{2 [ 2] a0y )= [or -0 2]

A few numerical values obtained from (9) are shown in Table I. The

TaBLE [—SoME NUMERICAL VALUES OF 3,

n ~ 1.432 (n? = 2.05) n = 1.01

ka Bot ka Bot
0.5 0.50000013 2.0 2.0000001
0.625 0.62500485 4.0 4.0000011
0.75 0.75006586 5.0 5.0000672
0.875 0.8758141 6.0 6.0006747
1.0 1.0043348 7.0 7.0026448
1.125 1.1387424 8.0 8.0064648
1.25 1.2816903 9.0 9.0121047
1.375 1.434524 10.0 10.019281
1.5 1.5970437 12.0 12.03695
1.75 1.9458015 14.0 14.057344
2.0 2.3149367 16.0 16.07916
2.25 2.6937751 18.0 18.101671
2.5 3.0761411 20.0 20.124481
2.75 3.458978 23.0 23.158808
3.0 3.8409082 24.0 24.170225

27.0 27.204311
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connection between the amplitude coefficients as a consequence of the
boundary conditions is stated in the following equations:

€& P (ka)(ka)?
Ho. '
(Boar) (1 + 7)

A [ Tolka) 17} 1 [iH Gya) 1 ]}
{Ka [.h(xa) xa] +va[Hi”(iW) valf4 (0

B=-—

_Jika)

C = Ba) {1
_ J 1 (ka)

D= 56 B (12)

It is necessary to know the relation between the amplitude coefficients
and the power P carried by the mode:

P = Z [k@ﬂ {(ac)’[J3(ka) + Ji(ka)] — 2Jf(xa)}<n2 + %z g{})

4
K

71@{ {Hé”’(iva) 1] } . ( o gi)
+ i @ T o)1+ 20

po) B (63 + K B+ k?) , :|<£9>% ]
+2<€0> A & o J1(ka) o A, (13)

Equations (3) through (13) provide a complete description of the guided
modes of symmetry cos ¢. The lowest order solution of the eigenvalue
equation (9) is the dominant mode of the round dielectric rod. This
mode does not experience a cutoff. In principle it can be supported by
any round dielectric rod of arbitrarily small cross section and arbitrarily
low frequency. All other modes of the round dielectric waveguide exist
only above their respective cutoff frequencies. All entries in Table I
belong to single mode (with cos ¢ symmetry) operation.

3.2 Radzation Modes of the Round Dielectric Rod

The number of guided modes that the round dielectric rod can
support is finite at any given frequency. In order to obtain a complete
set of normal modes of the structure we need to consider also the
continuous spectrum of unguided modes.

Any solution of Maxwell’s equations that satisfies the boundary
condition is called a mode if its 2-dependence (and time dependence) is
given by equation (4). The guided modes are distinguished from the
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unguided or radiation modes by the fact that their field distributions
decay exponentially for increasing values of r outside of the waveguide.
The radiation modes, on the other hand, extend to infinity. As their
name indicates they are necessary to describe the radiation field outside
(and inside) of the dielectric waveguide. Since there is no need to limit
the functions describing the radiation modes to those that decay
exponentially in the limit of large values of r we use a2 combination of
Bessel and Neumann functions to express the unguided modes. How-
ever, we must require that the field remains finite on axis at »r = 0.
These considerations allow us to express the unguided solutions of
Maxwell’s equations as follows: For » < a

E, = I, (or) cos v (142)
H, = GJ ,(or) sin vp (14b)
B =% {UBFJ:(W) + ou@ Jy(ar)} cos (140)
B, — ;’ [w LTG0 + quJ;(or)] sin v (14d)
H =% [nzweoFgJy(m n aﬁGJ;(w)] sin (14¢)
o, = —fg I:nzoweoFJ,',(or) + 86 Jy(or):l CoS v, (14f)

There is now no restriction to the possible values that the propagation
constant 8 can assume. The relation between 8 and o is given by

o = n’k — g (15)

The field outside of the dielectric rod, r = a, is given by
E, = [HJ ,(pr) + IN,(pr)] cos v (16a)
H, = [KJ,(pr) + MN,(pr)] sin vp (16b)

E, = —;fa {pB[HJﬁ(pr) + IN/(pr)]
+ ou 2 [KJ (1) + MN,(pr)]} cosvp  (16¢)
7

B, = {B:—, [HT(or) + IN. ()]

+ pwp[KJ(pr) + MNﬁ(pT)]} sinwp  (16d)
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H, = ";:‘:é {wfo; (HJ,(pr) + IN,(pr)]
+ pBK T (pr) + MN £(pr)]} sinvp  (16e)
= —% {pweo[HJ:w) + INY(p)]

+8 f (K J,(pr) + MN,(prn} cosvp  (16f)

with
o=k —p. 'y

The Neumann functions N, are here expressed in the notation of
Jahnke-Emde.* The determination of the coefficients of the radiation
modes is complicated by an interesting phenomenon. The boundary
conditions provide us with four equations. However, there are six
undetermined coefficients in the set of equations (14) and (16). Even
allowing for the fact that the power of the mode can be chosen arbitrarily
so that one coefficient must remain undetermined by the boundary
conditions, we have still one more coefficient than the boundary condi-
tions, combined with the requirement of total power carried by the mode,
are able to determine. This situation means physically that the sets
of equations (14) and (16) represent a superposition of two modes that
could be taken apart. A similar situation would have arisen in the case
of the slab waveguide had we not been careful to separate the modes
into even and odd field distributions from the very beginning. The
present structure does not lend itself to a natural separation of the
modes into even and odd ones. However, the formal field expressions
(14) and (16) do, nevertheless, represent a superposition of two possible
sets of modes. One might try to take arbitrarily either the coefficient
F or @ appearing in equation (14) equal to zero to try to separate out
the two sets of modes. This procedure is mathematically beyond re-
proach but it suffers from a practical inconvenience. The resulting sets
of modes would not be orthogonal. It is very desirable to choose the
modes in such a way that they are all mutually orthogonal to each other.
It is therefore necessary to determine the coefficients in a way that
assures the orthogonality of all the modes. The boundary conditions
combined with the requirement of mode orthogonality and a certain
amount of power carried by each mode are still not enough to assure
a unique solution of our problem. This is not surprising since it is always
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possible to combine two arbitrary vectors in an infinite number of ways
into two mutually orthogonal vectors.

The boundary conditions alone yield the following relations between
the coefficients

H=3 <pa>{[J,<aa>N¢<pa) —n*t J:(w)N,(pa)]F

n® — DK
+ powe,

8- J,(aa)N,(pa)G} (18)

I = g(pa){[ﬁ f J'(ea)J ,(pa) — J,(aa)J:(pa)]F

e b Jxaa)J,(pa)G} (19)

2
PO weg

K = 73; (pa){(ﬂ—_—l)k— B 7: J.(ea)N,(pa)F

powu
+ [J (oa)Ni(pa) — ;pJ W(oa)N v(pa)]G} (20)

2 __ 1 k2
o = S0~ S8 52 oy G

+ [:—: Ji(ea)J (pa) — Jy(va)Ji(pa)]G}' 21

Equations (14), (16) and (18) through (21) are sufficient to satisfy
Maxwell’s equations and the boundary conditions. The coefficients F
and @ are, so far, completely arbitrary. We consider now two sets of
radiation modes. The first set is distinguished by using the coefficients
with subseripts F; and (; while the coefficients of the second set are
designated by Fs and (f2 . The two sets of coefficients must now be
adjusted to render the two sets of modes orthogonal. One of the infinitely
many solutions of this problem is

F, F
¢~ G 2
The ratio of F;/G, is now no longer arbitrary but is given by
Py _ <u_>[ (g =8+ (= d'+ +£) ] 230)
G, &/ Lg —n°b)° + (e — n’d)’ + & + f)
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with
b =2 Jica)N:(p0) (23b)
¢ = (L;;”—’“ B 1, (ca)N (pa) @30)
d = £ Ji(ea)J:(pa) (23d)
e = J1(00)J!(o0) 23¢)
1= E =R g (oo (231)
g = Ji(ea)Ni(pa). (23g)

Equation (23) was already specialized to the mode of symmetry cos ¢,
taking v = 1. The power carried by the radiation modes is given by

P= @ Qf‘ ‘*’60{[(‘1 —n'b) + c(‘f‘(’)i %] + [(e — n'd) + )‘(%) I—Cf]

et - S + [+ e-a®) ¢ o

The normalization of the radiation modes involves the delta function in
the same way as it did in the case of the slab waveguides.

3.3 Radiation Losses Caused by a Step

It has been shown previously® that the radiation losses of arbitrary
deformations of dielectric waveguides can be calculated from the
knowledge of the radiation loss of a step. For simplicity we limit the
discussion to waveguide imperfections that do not violate the condition
(2). Condition (2) restricts the waveguide deformations to symmetrical
changes of the waveguide diameter. More general deformations are far
more difficult to calculate.

A step in the round dielectric rod is shown in Fig. 1. We restrict
ourselves to a dominant mode waveguide. The radius of the larger part
of the waveguide must be small enough to ensure that only the dominant
mode of the structure can propagate. Waveguides with larger radii
suffer conversion losses to other guided modes in addition to the radiation
losses. Such losses have been studied for the case of the slab waveguide'
and for circular electric modes in round dielectric waveguides.”

The radiation field can be expressed as an integral over all the radia-
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tion modes. Indicating the modes by script letters with the superseript ¢
for the incident guided mode, r for the reflected guided and radiation
modes and ¢ for the transmitted guided and radiation modes we can
write the boundary condition at the step as follows:

67 + 0,67 + [ [6()e2(6) + ()06 dp
s + [ @6 +p G dp @3
& + 0.0 + [ 0@E00) + ()80 dp
— et + [ W6 +p) @l dp (20
56 + a5 + [ (00520 + p (e (a) do
= e + [ 10l ) + p(e @ dp @)
56 + a0 + [ 10,5 () + p 05 (] do

= o + [ " [0 () + p (L] d. (28)

These equations express the continuity of the transverse electric and
magnetic field components at the step. The field components that are
shown to be functions of p belong to radiation modes while field com-
ponents that are not explicitly indicated as funections of p belong to the
dominant guided mode. The amplitude of the incident guided mode is
unity. The approximate solution of the equation system (25) through
(28) follows the same reasoning that was presented for the case of the
slab waveguide.® The coefficient ¢, can be calculated by using the ortho-
gonality of the waveguide modes to the right of the step. The modes
to the right of the step are not orthogonal to the modes to the left of the
step because of the different waveguide size. It is thus not possible to
separate the coefficients ¢, and p, (which, incidentally, belong to the
two orthogonal sets of radiation modes) from the coefficient a, of the
reflected guided mode. This problem makes it impossible to obtain an
exact solution of the equation system. We neglect the reflected radiation
modes when we calculate the coefficient ¢, . This approximation is
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justified by the fact that for large steps the radiation favors the forward
direction so that ¢, and p, can be assumed to be small. For very small
steps where the ratio of forward to backward scattered power can be
expected to be more nearly unity we need not worry about the coeffi-
cients of the reflected radiation modes since the modes of the two guide
sections become more nearly orthogonal to each other.

The transmission and reflection coefficients can thus be determined
approximately with the result

oLl
YT, + I)P (29)
and
_ Il - Iz
“ =L ¥ (30)
with

. J 1 (k05
I, = g{% (814, — wuB)) (e d: — B:B:) IT‘IT:)((—K;Y(}:ZL:)

[( )J (k100) H, 1)<7«’Yzax) - 73 Jl(K1a2)H:I)(7:’Y2a2):]
- ?12 B, 4, — wpB, )(’n wegdy — B:B3)J, (K1a2)J (xe0t2)

T2 2 (wfon B84, 45 4+ wuB:B.B,)
K1K2(K1 - Kz)

% 1(k102)J o (ko002) — KzJo(Klaz)J1(Kza2)]

__Z_I(K2a2)
Hl(l)(i'}’zaz)

1
=+ ;‘ (‘—05061141142 + wl-leBle)
2
1 . . . .
. l:‘f_—i <1a2J1(K1az)H(()l)(@‘Yzaz) - zal‘]1("1‘11)I{:>('L’)’2¢11)
kK1 + 72

+ % [azc]o(’flaz)Hin('i'Yzaz) - alJo(Klal)Hil)(i’)’zal)])
1

ay J1(k101)
3 3 ;
Y2 — M1 H;”(’VYIal)

(iH P (v10)HiY (1v,0,)

-1 % H(()l)(i'Ylal)Hl(l)(inal)):l} (31)
1
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and with

7&11 (Kz a)

1
IZ = {—I;? (nzwfoAl - ﬁlBl)(62‘42 - w#B2) Hl(l)(i'YZa?)

SR

1 1 . 1 -
. |:<_§ + _§>J1(K1a2)H;1)('VYza2) ) J1(K101)Hi )(“’2(11):]
K Y2 Ye

2

1 J 2 1 -
+ ;?yg (‘*’foAl - 6131)(624‘12 — wulB,) ﬁﬁsgszl)lz) Jl(Klal)H(l )('L'Yzal)

IS S J1<K1a1) JI(K2a2)
Yy2(vs — 73) (e Az + wubiBiBs) g PV ma) Hi  (@y.a,)

' [i’YlHil) (i71a1)H(()1) (@yea) — i'Y2H:)l) ('i71a1)H;1)(7:72a1)]

1.,
+ . (n'weeBaA Ay + wuB,BBs)

I: @ (';—‘2 J 1 (k000) o (koa2) — JO(K1a2)J1(K2a2)>

2
Ki — K2

+ 1 J 1(Kza2)
Kf + 'Y; Hl(l)(i72az)

(azJo(Klaz)Hil)(i’Yz%) - alJo(Kl%)H;”(i’YzaJ

+ ;—1 [ia2J1(Kxaz)H(()”(i'Yza2) - ialJl(Klal)H(()l)(i72al)]>]}' (32)
2

The indices 1 and 2 attached to the coefficients and parameters indicate
that the corresponding quantities belong to the waveguide to the left
of the step (index 1) or to the right of the step (index 2). The coefficients
A and B are the amplitude coefficients introduced in equations (3), (10)
and (13). The factor P in equation (29) is the power carried by the
incident guided mode. It was assumed that the power of all the modes is
identical. The actual power carried by the mode is accounted for by the
expansion coefficients a, , ¢, , 9, , ¢. , D: , and ¢, . The power coefficients
appearing in equations (13) and (29) are also identical.

The theory of the dominant mode of the round dielectric waveguide
is far more complex than the corresponding theory of the slab waveguide.
This explains why the slab waveguide is so much more convenient to
use for studying the general properties of radiation losses.

The radiation loss caused by the step is obtained from

AP

?=1_Icti2_larl2' (33)

However, the same radiation loss ean also be obtained by accounting
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for the power carried away in the radiation modes. We can therefore
write also

AP _ » |81
7= [ dar+1priElas. (34)

The subscripts r and ¢ have been dropped from the expansion coefficients
p and ¢. Both reflected and transmitted radiation modes are automati-
cally included by extending the integration range from —k to k so that
backward as well as forward traveling waves are included. The factor
| 8/p appearing under the integration sign arose from converting the
integration variable p to 8.

The theory becomes much simpler when we limit the derivation of
the p and ¢ coefficients to small steps. It was shown in the work on slab
waveguides® that arbitrary deformations of the waveguide wall can be
treated as a succession of small steps. Even abrupt tapers can be de-
scribed this way. In the limit of small step height Aa we can write

da
Aa = 7 Az. (35)
The expansion coefficients ¢, and ¢, can approximately be obtained
from equations (25) through (28) by a method that has been explained
in some detail in Ref. 3.

r da _if§ ga—pras
ao) = [ 16a) Ee dz. (36)

The subseript r or ¢ of ¢ is no longer necessary since ¢, corresponds to
negative values of 8 while ¢, corresponds to positive values of 8. The
derivation of ¢ has been simplified by expressing quantities pertaining
to the waveguide to the right of the step in terms of the corresponding
quantities for the waveguide to the left of the step. This approximation
involves an expansion of the field quantities in Taylor series keeping
only the first two terms of the expansion

aF
F(as) = F(a,) + (—6_a> ~ Aa. @37
The orthogonality of the modes belonging to the same section of wave-
guide can be employed to eliminate many terms from the expressions.
The resulting expressions for I(p, 2) is far simpler than it would be had
we considered a large step. We obtain
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1p,2) = pozzp i)

1(60 + B)'YP(weOA + wuB LK)

- HP(va)
.{a vJo(pa) + ip H{l)giva) J1(pa) 3 1
72 ¥ pz

+ (B0 + 6)'Yp<weoA + wuB a—M)

. HOI (iva)
( YNo(pa) + ip Elﬁ)(i’m) N1(pa) _ 1 N (pd)i]

-]‘_a v+ 0

+ (& + 606)[(A XK p )J (pa)

(4% pol)y, (p@]} (38)

The derivatives of the amplitude coefficients H, I, K, and M of equa-
tions (18) through (21) are taken by keeping F and G constant. The
reason for this preseription is the fact that the terms containing deriva-
tives of ' and @ disappear from the equations because of mode ortho-
gonality.

%I(;—I = ’—'2—” [{a ”——U& Jo(aa)[No(pa) - é Nl(pa)]
+ [_2__ _ + ( — 2—>:|J YN (pa)
pa pa n’\ pa o (O'a pa

+ ( 12 1>J (aa)NO(pa)}p G V15

weopo

'{O'JO(UQ)Nl(Pa) + pJ 1 (ca)No(pa) — 2 Jl(aa)Nl(pa)}G] (39)

ol 2 22 1
5(_1 = _7—1-2£ [{a E._._a"l’_p_ Joloa) [Jo(pa) — ;l J1(Pa):|
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4 [2 — pa +n (pa - ;‘“)ilz] (ea)J 1 (pa)

pa

l)lc [¢]

wWeopo”

+ ( J )J <oa>J0<pa)}r Lo =1

-{(;J o(ca)J1(pa) + pJ (0a)Jo(pa) — %J 1(ea)] 1(pa)}G] (40)

ﬂc__ﬂ_’(nz

o 2
92— 9 Dk

: [ 8 {O'Jo(o'a)Nl(Pa) + pJ(ea)No(pa) — % Jl(Ua)Nl(Pa)}F

WUT P

+ {aJo(aa) [N o(pa) — i N l(pa)]

+ i—a Ji(ea)N1(pa) — %‘ Jy oa)No(pa)}G] (41)

%]g = —’5—;’ ®® — 1)k
[w—;ﬁr; {oJo(aa)Jl(pa) + pJ(ea)To(pa) — % J,(aa)Jl(pa)}F
+ {aJo(oa)[Jo(pa) - i J l(pa)}

+ ;i_& T (ea) T \(pa) — % Jl(oa)JO(pa)}Gj]- 42)

Equation (36) holds for ¢ as well as for p. It is only necessary to insert
F, and G; in equations (38) through (42) to obtain the ¢ coefficients
while the p coefficients are obtained by replacing F, , G; with F; , G, .

In order to use equation (34) for the relative power loss caused by
radiation, it is necessary to calculate ¢ and p with the help of equations
(36) and (38). The coefficients appearing in these equations must be
obtained from equations (39) through (42), and (10), (13), (22), (23),
and (24). It should be apparent that this theory is of considerable
complexity and can be handled only on an electronic computer. It is
sad that the dominant mode in a round dielectric waveguide leads to
such a complicated theory in comparison with the simple treatment of
the slab waveguide.
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3.4 Random Wall Perturbations

An important source of loss is the radiation that is caused by small
random perturbations of the waveguide wall. Such radiation losses have
been discussed for slab waveguides in Ref. 1 and for round dielectric
waveguides operating with the circular electric guided mode in Ref. 2.
Equation (36) of our present analysis can be used to calculate the loss
of the dominant mode of the round waveguide caused by random wall
perturbations. Since the step losses of the dominant mode of the round
waveguide are so much higher than the corresponding losses of TE and
TM modes of the slab waveguide one might fear that the losses caused
by infinitesimal random perturbations of the waveguide wall may also
be substantially higher. Fortunately, this is not the case. The losses
caused by random wall perturbations are of the same order of magnitude
for all types of dielectric waveguides that have been studied so far.

The losses caused by random wall perturbations are calculated with
the help of a statistical model. Instead of using equation (34) for a
particular waveguide we form the ensemble average (AP/P) over many
statistically similar systems. For very slight perturbations of the wave-
guide wall we can assume that I(p, 2) is independent of the z coordinate
and write equation (36), after a partial integration, in the form

o) = +i6y — OIG) [ ade O d. (43)

The argument z has been dropped from I(p) since this function is no
longer dependent on z. The partial integration had the beneficial effect
of causing a(z) instead of its derivative to appear under the integration
sign. It was shown in Ref. 1 how substitution of equation (43) in (34)
makes the scattering loss dependent on the correlation function

E(w) = (a()alz — w)) (44)

after the expectation value has been taken. It is, therefore, possible to
write the average value of the relative radiation loss as

(Y <o [ - 11120 1+ 119 [170) Elas a5
with
FB) = /; i R(u) cos (8, — B)u du. (46)

The superseripts 1 and 2 indicate that the function I(p) has been com-
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puted for both types of radiation modes that are associated with I, , G,

and I, , G, .
If we use for the correlation function a simple exponential function
Ru) = A® exp (—L%—I) , (47
F(B) specializes to'
#@) = A (48)

. 1]
B l:(ﬁo — B) + Ef:l
IV. CONCLUSION

We have found that the radiation losses of the dominant mode of a
round dielectric waveguide are much higher than the corresponding
losses of TE and TM modes of the slab waveguide. The radiation losses
of the dominant mode of the round dielectric waveguide with an abrupt
step have been verified by a millimeter wave experiment. The step
losses of a ribbon waveguide were also measured and found to lie between
the losses of the dominant mode of the round waveguide and the TE
mode losses of the slab waveguide, but closer to the latter. It is thus
apparent that the slab waveguide can tolerate abrupt steps exceptionally
well.

The radiation loss of a tapered round waveguide can be minimized
by using a gentle taper instead of an abrupt step to accomplish the
change of the waveguide radius. The losses of a linear taper are only
slightly higher than the losses of a taper that was designed to equalize
the loss contributions from different parts of the taper. It appears,
therefore, that the design of optimum tapers is not profitable compared
to their greater mechanical complexity.

The losses caused by slight random wall imperfections are very similar
for the dominant mode and the circular electric TE,; mode of the round
dielectric rod as well as the TE and TM modes of the dielectric slab
waveguide. This result is surprising since the step losses of the dominant
mode of the round waveguide are so much higher than the step losses
of the slab waveguide. However, this result shows that the radiation
losses caused by slight random wall perturbations can be studied with
the help of the simple model of the slab waveguide and the results so
obtained can be used to evaluate the performance of round dielectric
waveguides.
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Excitation of the Dominant Mode of a
Round Fiber by a Gaussian Beam

By DIETRICH MARCUSE
(Manuscript received May 4, 1970)

The excitation of the dominant HE,; mode of a round optical fiber by a
gaussian beam has been calculated. The calculation is based on the assump-
tion that reflected waves can be neglected. It is thus applicable only to fibers
with low index difference between core and cladding.

It is found that optimum excitation of the HE,, mode is achieved for
loosely guided beams if the product of the beam half-width w times the
radial decay constant v of the HE,, mode outside of the guide is unity,
yw = 1. For tightly coupled modes 2*w must be equal lo the core radius in
order to achieve optimum excitation. As much as 99 percent of the power
can be transferred to the HE,, mode.

Also investigated are the effects of an off-set or tilted beam on the mode
excitation. The mode excitation drops to 36 percent if the amount of off-set
equals the beam half-width. The effect of tilts depends on the parameter kd,
free space propagation constant times core radius of the fiber. For small
values of kd or loosely guided modes, the mode excitation s very sensilive
to tilts of the gaussian beam. As long as the HE,, mode 1s the only mode that
can propagate, increasing values of kd lead to less sensilivity with respect
to tits. For mulltimode operation of the fiber, the sensitivity to tilts increases
with increasing values of kd. The minimum of tilt sensitivity coincides with
the minimum spot size of the guided mode.

I. INTRODUCTION

Communication by means of optical fibers requires that light energy
can be coupled into the fiber in an efficient way. Of the different
methods of exciting an optical fiber, the simplest consists of shining
a beam of laser light on the end of the fiber. It is the purpose of
this paper to investigate the power loss that results at the transition
from a laser beam propagating in free space to the lowest order
HE;; mode of a round optical fiber.

1695
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The geometry of the problem is sketched in Fig. 1. It is assumed
that the fiber core is embedded in an infinite material, its cladding.
For simplicity it is assumed that the value of the refractive index
outside of the core is unity. The theory is manageable only if re-
flections from the end of the fiber are neglected. The transmission
coefficients are calculated by matching only the transverse component
of the electric or of the magnetic field at z = 0. Finally, an average of
these two values is taken.

The incident beam is assumed to have a field distribution of the
form

2
E. = A exp [~<ﬁ) il exp (—iks) for 2z~ 0 )
and
e \/2 )
H, = (—) B, @
Mo
with
R @
0

Since the field components of the fiber modes are conveniently ex-
pressed in eylindrical polar coordinates 7, ¢ and 2z, it is advantageous
to transform the incident field to these coordinates.

E, = E, cos ¢; E, = —E,sin ¢; 4)
l
\7} FIBER CORE n=1
1 !
—————— ewl——— — — — — — _n>1——»2
I )
| 2d

. g‘ig. 1—Gaussian beam incident on the core of a dielectric fiber with refractive
index n.
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H, = H,sin ¢; H, = H, cos ¢. %)

The amplitude coefficient ¢; of the HE;; mode is approximately de-
termined by the equation

T.1,)'?
o = LT ©®
with
I = [ @z — Bachrdr ds @
and
I, = f (8%*H, — &%H )r dr do. (8)

P is the power carried by the incident gaussian mode. The script
letters indicate the field components of the guided HE;; mode,* while
the other field components belong to the incident gaussian mode.

The r integrations must be carried out numerically while the ¢ in-
tegrations can be done analytically even in the more complicated cases
of an off-set incident field distribution shown in Fig. 2 or a tilted in-
cident field distribution shown in Fig. 3.

The field components of the guided modes are described by cylinder
functions. The arguments of these functions inside of the fiber core at
r < d are «r with the radial propagation constant « determined by

K2 — n2k2 _ ﬁ2 (9)
where 8 is the propagation constant of the guided mode in z direction.
On the outside, r > d, the argument of the cylinder functions is yr
with

Y =8 —K. (10)

The decay constant y determines the rate at which the field in-

tensity of the guided mode decays outside of the fiber core. For large
values of r the fields behave like

exp (—r). (11)

Equation (6) for the amplitude transmission coefficient is not exact.

It was derived under the assumption that reflections at z = 0 are
negligible. The power transmission coefficient 7 follows from

T = |C‘ iz. (12)



1698 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1970

Fig. 2—Fiber excited by a gaussian beam off-set with respect to the fiber
axis by an amount a.

II. NUMERICAL RESULTS

We begin the discussion of the dependence of the transmission
coefficient T' from the incident gaussian field to the guided HIE,
mode with the simplest case shown in Fig. 1 for a refractive index
n = 1.01. The gaussian beam is perfectly aligned with its beam waist
being coincident with the end of the fiber core at z = 0. The trans-
mission coefficient as a function of the product vw is shown
in Fig. 4. Each curve belongs to a different value of kd.
The normalization of the curves with respect to the radial decay con-
stant v is convenient since it compresses the dependence of the curve
on the horizontal axis. The position of the peaks would differ by two

Fig. 3—Fiber excited by a tilted gaussian beam.
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Fig. 4—Transmission coefficient 7' as a function of ~yw for several values of
kd and n = 1.01.

orders of magnitude if the curves were drawn simply as functions
of w.

Two remarkable properties can be deduced from Fig. 4. The
transmission coefficient approaches extremely close to 100 percent.
The dependence of the transmission peaks as a function of kd is
shown in more detail in Fig. 5. According to this figure, the transmis-

R

1.0

0.98

0.96

/ n=10t
0.94 /
0.92

0.90 /

0.88
o] 10 20 30 40 50 60 70

kd

TMAX

Fig. 5—The peak values of the transmission coefficient as a function of kd.
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sion coefficient can be as high as 99.7 percent. These values are prob-
ably slightly optimistic as we shall see shortly.

The position of the transmission peaks can be predicted for two
regions of operation. For small values of kd the guided mode is
only loosely supported by the fiber core. Most of the field is on the
outside decaying according to equation (11). In this case the trans-
mission curves peak at

yWw = 1. (13)

This means that the 1/e point of the exponential decay of the mode
field coincides with the corresponding point of the gaussian curve.
For A = lp and kd = 5, we have d = 0.8x so that for this example
1/y = w = 31p; kd = 10 correspond to 1/y = w = 2.6p.

The HE,;; mode is no longer the only possible guided mode for
large values of kd. At the value

2.405
kd = @ = D7~ (14)
the TEy; mode begins to propagate. For n = 1.01, this point appears
for kd = 17. For tightly guided modes, most of the field energy is
concentrated inside of the fiber core. In this case, the peak of the
transmission coefficient occurs at

w = d/2t, (15)

For a very tightly guided mode, the propagation constant ap-
proaches 8 = nk so that we obtain from equations (10) and (15)

yw = (n* — 1)d/2}. (16)

For n = 1.01, we thus have yw = 0.1 kd. This relationship is indeed
apparent in Fig, 4,

For larger refractive indices of the core, our approximation becomes
questionable. This breakdown of the approximation is apparent in
Fig. 6 where n = 1.432. The curve with kd = 3 exceeds the value unity
very slightly, violating the principle of conservation of power. This
shows that our approximate values for T are slightly too large.
However, for small values of n — 1, it can be expected that the ap-
proximation is good because back-scattering of power from the end
of the fiber core becomes negligible. This expectation is confirmed
by the fact that none of the curves in Fig. 4 exceeds the value unity.
It is hard to predict the degree of accuracy of the approximation.
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Fig. 6—Transmission coefficient T' as a function of yw for n = 1432. The curve
with kd = 3 exceeds T = 1 indicating a breakdown of the approximation.

The values of Fig. 4 are perhaps slightly too high but it is clear that the
power transmission from the gaussian mode to the guided HE;; mode
is very efficient even if it does not quite reach 99.7 percent.

Since perfect beam alignment cannot be achieved, it is important
to know how sensitive the transmission coefficient is to misalignments
of the beam.

Fig. 7 shows data for the transmission coefficient 7' as a function
of the amount of off-set “a” of the gaussian beam shown in Fig. 2.
The independent variable of Fig, 7 is the product ya. Each curve
was drawn for its optimum value of yw according to Fig. 4. Fig. 7
shows that the transmission coefficient decreases to 0.36 if a = w.
This is a simple relationship that apparently holds for all values of
kd. An off-set of the gaussian beam is thus not as critical as one might
have feared. The direction in which the beam is off-set with respect
to the polarization of the input field has been found to be unimportant.
The same curves shown in Fig. 7 were obtained for any direction of
the off-set.

The dependence of the transmission coefficient on tilts of the input
field is shown in Fig. 8. Again w was chosen so that the maximum
transmission coefficient is obtained in the absence of a tilt. The trend
of these curves is interesting. The transmission coefficient is very
sensitive to tilts for small values of kd. This is not surprising since the
fields extend far from the fiber core so that a slight tilt causes the
two wavefronts of the input field and the guided mode to become
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Tig. 7—Peak transmission coefficient 7' as a function of beam off-set.

seriously misaligned. As the guided mode (and since maximum trans-
mission is assumed also the input field) contracts, the transmission
coefficient is far less semsitive to tilts. The least sensitive curve ap-
pears for kd = 20 in Fig. 8. The next guided mode can be excited
by the input field as soon as kd exceeds the value 17. As more and
more guided modes appear, the transmission coefficient to the lowest
order mode, the HE;; mode, becomes more sensitive to tilts. The
best operating point as far as sensitivity to tilts is concerned is ap-

RN
)

NN Y
0 2 [
[¢] 0.02 0.04 0.06 0.08 0.10 0.2 0.14 0.16 0.18 0.20

a(rad)

Tig. 8—Peak transmission coefficient as a function of tilt angle a.
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parently close to the point where the next guided mode begins to
propagate. This behavior can be explained as follows. If the wave
length is kept constant and d is increased, the radial extension of the
field deereases at first for increasing values of d. However, as d in-
creases further, the field cross-section increases again. The least
sensitivity to tilts occurs at the minimum field cross-section.

III. CONCLUSIONS

A numerical study of the excitation of the lowest order HE;; mode
of the round optical fiber by an incident gaussian mode showed that
the achievable transmission coefficient is very high. The predicted
optimum value of 99.7 percent may be slightly overoptimistic because
of the approximate nature of the calculation. However, Snyder?
predicts transmission coefficients as high as 80 percent for the case
of excitation by a truncated plane wave. The gaussian beam is far
better matched to the HE;; mode so that a much higher transmission
coefficient, is not surprising.®

An off-set of the peak of the gaussian beam equal to its beam half-
width w decreases the transmission coefficient to 36 percent. Tilts of
the input field distribution are more serious for small values of the
ratio of fiber core radius to wavelength. The least tilt sensitivity is
obtained under conditions where the HE;; mode is operated close to
the cut-off frequency of the THEy; mode. The beam cross-section as-
sumes a minimum at this point.
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The Capacity of the Gaussian
Channel with Feedback

By P. M. EBERT
(Manuscript received April 28, 1970)

In this paper we provide a rigorous proof that feedback cannot increase
the capacity of the channel with additive colored gaussian noise by more
than a factor of two. We also give a tighter bound showing that any increase
n capacity ts less than the normalized correlation between the signal and
notse. It 7s further shown that gaussian signals and linear feedback process-
ing will achieve capacity.

The practical implications are that (5) feedback should be used to stmplify
encoding and decoding since there is little to be gained in the way of in-
creased capacity and (1) the various proposed schemes which use linear
feedback are doing the correct thing.

I. INTRODUCTION

When Shannon first showed that feedback could not increase the
capacity of a memoryless channel, he mentioned that the capacity
could be increased when the channel had memory.' One example of
such a channel is the additive colored gaussian noise channel with an
average power limitation on the transmitted signal. We prove here
that the capacity of this channel is never more than twice the capacity
without feedback and as the noise becomes white the capacity ap-
proaches the forward capacity. The limiting case has been attributed to
Shannon for years and has only recently been rigorously proven.’

We derive an exact expression for the mutual information between
the input and output of the channel. The application of different bounds
to this expression produces twice the forward capacity with the weakest
bound, or the forward capacity plus the normalized correlation of the
signal and noise with a slightly stronger bound. It is shown that a
gaussian signal maximizes the information, and consequently the opti-
mum feedback technique is linear.

Our results are based on the model shown in Fig. 1. The added noise

1705
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n(j\
m St) + g
N

——>1 MODULATOR

Fig. 1—Channel with noiseless feedback.

spectrum is normalized to 1 at infinite frequency, is bounded, and has
an integrable logarithm. This allows us to represent the noise as in
Fig. 2. The noise now consists of a white component plus a filtered
version of the white noise. The imposed restrictions are for mathematical
purposes only and are of no practical significance.

Theorem 1: The mutual information between the tnput and output
of a channel with additive gaussian noise with spectral density N(w) and
arbitrary causal feedback processing, as shown in Fig. 1, is given by:

Ion; o) = 5 [ B0 +20) | m, V) de

_%ﬁ.wmo+z@lYJM )

where Y, is y(1), 0 £ 7 < t and the expectations are conditioned on Y,
or Y, and m. z(t) is a linear causal functional of white noise with the
properties that:

zm=fﬁa—awm+fﬁa+ﬂma (
0 0 2)
|14+ H) |* = Nw).

The two funciions w(t) and v(t) are independent Wiener processes. The
reason for iniroducing the second term is to make n(t) = 2(t) + w({t) a
stationary process.

W) O\

hery | 2z

Fig. 2—Model of nonwhite noise.
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Proof: We first observe that w(t) + 2(t) is equivalent to noise with
spectral density N(w). A causal filter, h(r), will exist whenever N(w)
represents the square magnitude of a causal filter

| G(w) |" = N(w)
H(w) = G(w) — 1.
The logarithm of G(w) is
1 In N(w) + iB(w)

where B(w) is the phase characteristic of G(w). The conditions of cau-
sality, no lower half plane poles, will be met when B(w) is one half the
Hilbert transform of In N(w). The conditions on N(w) insure that
In N{(w) has a Hilbert transform.

Now to prove formula (1) we use a theorem due to Kadota, Zaki
and Ziv®, which we state without proof:

Theorem A: The mutual nformation between the input parameter
m and the output processes Y 5 of a finite power system disturbed by addi-
tive white gaussian notse s

T 7
03 ¥) = 38 [ 6, m, Y dt =38 [ Lot m, Y/ dt
[} 0

where ¢(t, m, Y,) 1s the causal modulating function.

This result is applied to the non-white noise problem by considering
2(t) to be part of the signal. The inclusion is only useful when one is
calculating the mutual information; it is not to be included in the
calculation of transmitter power. Theorem A cannot be applied directly
since the signal, ¢, which is taken as s(t) + z(¢) is not completely de-
termined by m and Y, , but is also a function of the process v(f). To
find I(m; Y r) we use the decomposition,

I(m, V; Yy) = I(m; Yo) + I(V; Yy | m), ®3)

where V is the process v(r).
From Theorem A we have,

7

I0m, V; Vo) = 38 [ (s + 2(0F d

— 1B f () +2(0) | Y)dt (4
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and

V3 Ve lm) = 38 [ () + 200 d

— 38 [ B0+ 20 | V., m s

which together with equation (3) proves Theorem 1. s(f) -+ z(f) has
finite energy because s(f) must have finite energy and z(¢) will have
finite energy whenever the channel has finite capacity without feed-
back, as we shall see when we evaluate E[z°(¢)]. With this basic result
we can derive several interesting corollaries concerning the information.

Corollary 1: (Pinsker)* Under the conditions of Theorem 1,
I(m; Yr)
T

where C 1is the capacity ot the channel without feedback.
First we observe by equation (3) that

I(m; Y7) = I(m, V; Yop)

<2C

which is given by equation (4). Furthermore the second term in equa-
tion (4) is negative and can be ignored, thus

T
Im; Y) <38 [ (s + 27 dt (5)
0
I(m; Y1) can be further bounded by
T T
(m; YT)gEf szdt-}—Ef 2 dt ©)
0] 0

since (s + 2)* < 25° + 27°.
The next step is to calculate the variance of z, since this enters di-
rectly into I(m; Y 5).

B f A at = TEE),

B =21—7Tf IH(w)lzdw=—21;J | G) — 11 dw

_1_/°°
T2 J,

* The factor of 2 has been mentioned earlier by Pinsker but no proof has yet
been published.
t Indicates the Hilbert transform.

2

dw

1 i ~7 Tt
exp [élnN(w) +§lnN(w)] -1
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_ :_1 f ” [1 _ N( )] d
=5 . w)] dew
0 - \/
_ Re f {exp B In V@) + % In N(w)] - 1} do.

™

This latter integral, as chance would have it, is almost identical in
structure to an integral which arises in evaluating the spectral density
of a single sideband FM wave (at the carrier frequency) which is
modulated by a gaussian signal. The quantity 1/2 In N(w) here plays
the role of the autocorrelation function of the gaussian signal, and
although for our problem 1/2 In N(w) is not in general an autocorre-
lation function, the integral may be discussed via the technique used
in the FM problem (see Mazo and Salz)®.
Define:
L[ [1 L e
= f_ Eh V@ +5m N(co):le = 1)

then
j—w [Gw) — 1] = G(w)jToF(w) = [Gw) — IJ%F(@ +%F(w)-
In the time domain this becomes
—th(t) = —itf(l) — 4 f "R — 1) dr

because both i(r) and f(r) are zero for negative r. Both f(r) and h(r)
are finite for small = and thus

hir = 0) = f(r = 0).

The integral we are interested in is 2 Re h(r = 0) which is equal to

2 Re f(r = 0) = 217 In N(w) do.

-0

Thus far we have shown that
T T
Ef szdt—l—Ef 2 dt
0 0

iy foTsz dt — %f: [l — N@)] do — %f:mN(w) do. ()

One more trick is needed to prove the corollary. We have, up to this
point, considered only normalized channels which had N(«) = 1.
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This is valid because normalization cannot affect the ratio between
capacity without feedback to that with feedback. Some channels can-
not be normalized in this manner, i.e., N(®) = « or N(») = 0.
The latter case has infinite capacity and thus the corollary applies.
The former presents no problems due to the following lemma.

Lemma: Consider the channel without feedback. By the water pouring
argument* we know that the signal energy which achieves capactly obeys:

@) = {K — N(@), N@ =K;
0, otherwise.
If we define a new noise N°(w)
N%) = {N @), N = K;
K, N > K.

This new channel has the same capacity without feedback and a larger
capacity with feedback.

Proof: The expression for capacity without feedback is the same
for N(w) and N°(w). The capacity with feedback can only be increased
since N°(w) £ N(w) for all w. For if the capacity with N(w) were larger,
one could add a noise with spectrum N(w) — N°(w) at the receiver
and do just as well as if the noise were N (w).

We now normalize the noise, N°(w), in order to apply equation (6),
which makes K = 1. The capacity without feedback is:

11
C=4 f_m In Fogy 4
_ L * _ 0

P—%f_w[l N@w)] do.

With feedback from equations (6), (7) and (8)

(8)

I(m; Yy) gEf & di — TP + 2TC
o

or

I(m; Yy)
T

A tighter bound can be obtained by returning to equation (5) and
writing:

t t t
I(m; YT)éé[Ef szdt—}—Efzzdt]-i-Efszdt,
0 0 0

=< 2C.
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which by the preceding argument is equal to
t
C+E f sn® dt.
0

The correlation Esz° is equal to Esn’ because n° and 2° only differ by a
white component. Thus the capacity can be increased only by the
correlation of the signal with the noise. The noise n° is not the original
noise, however the difference occurs only at frequencies not used for
signaling without feedback. As N(w) becomes white, the energy in 2°
decreases and consequently Esz’ must go to zero.

More insight into the problem is supplied by the following theorem.

Theorem 2: Capacity can be atlained with a gaussian signal s(t).
Proof: Tirst we observe that
Els(t) + 2(t) [ m, Y.] = s, m, Y,) + Elz() | W.].

This is true because s(t) is known given m and Y, , and 2(¢) is dependent
on W, which can be calculated given Y, and s(t). E[z(t) | W,] is a linear
functional of w because w is gaussian.

ERQ) | W] = fo K(, 7) dalr).

The first term in equation (1) depends only on the correlation prop-
erties of s(¢, m, Y,) and w(s) and therefore we can use a gaussian s of
the appropriate correlation. For the second term we use the property
that a least-squares linear estimate has no more energy than the more
general least square estimate.

Ex* = B# + E(w — §)° = E&* + E(z — 3)°

where & is the least-square linear estimate of « and £ is the least-square
estimate. Since

E@ — ©)° £ E(x — 2,
E#* =z B&°.

Therefore, since E[s(t) + z() | ¥.] is the least-squares estimate of
s(t) + z(t) given Y, we have

S
1 T 1 T N
I(m; V) < -2—Ef s+ 2| m, Y.]dt — 5Ef (s + 2 di
0 0

but for a gaussian signal this inequality is an equality. In addition the
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signal power is unchanged and the feedback processor need only be
linear. Therefore one need consider only gaussian input and linear
processing in calculating capacity.

II. GENERALITY OF THE MODEL

The restrictions on N(w) are in fact only needed for N°(w). If a
noise spectrum is such that the logarithmic integral of N°(w) is minus
infinity then the capacity of the channel is infinite without feedback.
Therefore the bound applies to any channel which has a finite capacity
without feedback.

The bounds are all valid for noisy feedback as well, however it is not
clear that gaussian signals are optimum in that case.
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New Theorems on the Equations of
Nonlinear DC Transistor Networks

By ALAN N. WILLSON, JR.

(Manuseript received March 26, 1970)

It has long been recognized that equations describing dc transistor net-
works do not necessarily have unique solutions. The Eccles-Jordan (flip-
flop) circuit s an excellent example of one for which the dc equations may
have more than one solution.

Only recently, however, has a comprehensive theory concerning matters
such as the existence and uniqueness of soluiions of the dc equations of
general transistor networks begun to take shape. This paper represents
another contribution to the evolution of that theory.

A key concept in the development of the recent theory s the concept of a
“Po matriz.”” We give a generalization of that concept, showing that one
can specify properties possessed by certain pairs of square matrices, analo-
gous to the properties possessed by a single P, matrix. Pairs of matrices
possessing these properties are called W, pairs. Use s made of this W, pair
concept to prove results which are more general than some of the existing
ones. We provide an extension of much of the existing theory in such a
manner that a broader class of dc transistor networks may be considered.
In particular, the new results provide one with the ability to answer certain
questions concerning the existence, uniqueness, boundedness, and so on,
of solutions of the equations for any network which is comprised of tran-
sistors, diodes, reststors, and independent sources.

I. INTRODUCTION

Suppose a network is constructed by connecting in an arbitrary
manner any number of transistors, diodes, resistors, and independent
voltage and eurrent sources. Without loss of generality, we may consider
the network to have the canonical form shown in Fig. 1; that is, we may
consider the network to be a multiport containing resistors and inde-

1713
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Fig. 1—Canonical form of a transistor network.

pendent sources, with transistors and diodes connected to the ports.*

There are some fundamental questions that one should then, hopefully,
be able to answer. For example: Do the equations that describe this de
network have a unique solution? With the exception of certain uniqueness
results for a special (but none the less important) class of transistor
networks, all of the previous explicit results in Refs. 1, 2, and 3, which
have shown methods for obtaining answers to such questions, have
been concerned only with the class of transistor networks for which,
after setting the value of each independent source to zero, there exists a
short-circuit admittance matrix (a G matrix) to characterize the linear

* It will become apparent that the theory can also accommodate many other struc-
tures which are of the Fig. 1 type except that the multiport contains additional

linear elements (such as controlled sources). We do not stress this point though,
since in the present context such elements seem somewhat unnatural.
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multiport of Fig. 1. It is the primary purpose of this paper to show how
that restriction can be removed. We shall show in fact that almost all
of the previous results are but special cases of results that follow from
a more general theory in which the assumption of the existence of a G
matrix for the linear multiport is unnecessary.*

Section IT concerns methods for characterizing a general multiport
containing resistors and independent sources. In Section III, we consider
the model for a transistor. An equation for de transistor networks is
then developed in Section IV and, after explaining some notation in
Section V, we develop the W, pair concept in Section VI. Sections VII,
VIII and IX show how the W, pair concept provides a generalization
of the existing results concerning de transistor networks. Finally, we
consider an example network in Section X.

II. LINEAR MULTIPORT CHARACTERIZATION

A multiport having n ports (an n-port) is characterized by determining
every combination of the 2n port voltages and currents that the network
admits (see Ref. 4). We discuss here two methods of characterizing
multiports that contain resistors and independent sources. The first
method makes use of the familiar concept of a hybrid matrix. The second
method uses a pair of matrices in a manner that was apparently first
suggested—for multiports containing no independent sources—by
V. Belevitch.®

2.1 The Hybrid Formalism

‘When the value of each independent source is set to zero, for a multi-
port containing only resistors and independent sources, the multiport
becomes, of course, a resistive multiport. H. C. So has proved (as a special
case of a theorem in Ref. 6) that any resistive multipori has a hybrid
matriz description. That is, for any resistive n-port, it is always possible
to label the port voltage and current variables in such a way that there

* Pragmatists might argue that in any “physical’”’ network, there will always be
enough ‘‘stray’’ resistance present which, if taken into account, will guarantee the
existence of, say, a G matrix. It seems to this writer, however, that by taking such a
point of view, one does not obtain an entirely satisfactory understanding of matters
(even practical matters). To know that fundamental results do not depend (if, in
fact, they don’t) upon such fortunate occurrences as these (and for many transistor
networks this is the case) seems to be the more satisfactory situation. Furthermore,
it should be noted that in the analysis of a physical network, to obtain a tractable
problem, it often behooves one to neglect the presence of unimportant elements.
Thus, it is not necessarily true that such stray resistors will always be present in the
model of the network which the analyst desires to consider.
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exists an integer m, 0 £ m = n, a pair of n-vectors*
. . I
x'—:(zl)"';lm7vm+1;"'yvn)r
. CNT
y:(vly""vmyzmﬂa"';'Ln):

and a real n X n matrix H, the hybrid matrix, such that the network
admits the port variables v, , 7, as the voltage and current, respectively,
at the kth port, fork = 1, - - - | n, if and only if the vectors z and y satisfy

y = Hz. 1)

Thus, a resistive multiport may always be characterized by a hybrid
matrix.

When independent sources whose values are nonzero are present
in an otherwise resistive multiport, a hybrid matrix will not generally
suffice to characterize the multiport. Clearly the vectors z = y =
(0,0, - - -, 0)” which satisfy equation (1) for any matrix H do not always
specify an admissible combination of port variables when independent
sources are present. One might hope, however, that a characterization
of the type

y = Hzx + ¢, (2)

where ¢ is some constant vector (whose elements are real numbers),
might always be possible. Indeed, we are about to show that this is the
case. There is one problem, however, that was not present in the con-
sideration of resistive n-ports that must first be dealt with: there are ways
to interconnect independent sources and resistors such that the resulting
structure doesn’t make sense. That is, the independent sources might
impose self-contradictory constraints on the network. We rule out such
possibilities by agreeing that, when we refer to “a multiport containing
resistors and independent sources,” we always assume that the multiport
possesses the following property:

Assumption: The linear graph that is formed by associating an edge
with each resistor, each independent source, and each port, has no
cut-sets containing only current source edges for which the values of
the current sources cause a violation of Kirchhoff’s current law. Similarly,
no circuits of voltage source edges for which the values of the voltage
sources cause a violation of Kirchhoff’s voltage law are present.

This assumption in no way restricts the generality of our work. We

* We use the superscript 7' to denote the transpose of a vector or a matrix. Thus,
the vectors z and y above are both column vectors.
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are simply ruling out multiports, like the 2-port of Fig. 2, for which the
set of admissible port voltage and current combinations is empty.

We have worded the Assumption so that the presence of, say, a series
connection of two l-ampere current sources in an otherwise resistive
multiport does not cause the multiport to be inadmissible. We have
done this because no violation of Kirchhoff’s laws results from such
interconnections of resistors and sources; the network is perfectly legiti-
mate. One should be aware, however, that if “superfluous” sources are
present in a network, it will follow that one cannot uniquely determine
the value of each branch voltage and current in the network. That is,
even though one might be able to uniquely determine the value of the
voltage across the pair of 1-ampere sources, there is no way to determine
the value of the voltage across each individual source. Aside from such
ambiguities, it follows (see below and the proof of Theorem 1 in Ref. 6)
that the value of all branch voltages and currents can be uniquely deter-
mined for a multiport satisfying the Assumption, whenever the values
of the “independent’’ port variables are known.

Theorem: Any mulliport containing resistors and independent sources
can be characterized by equation (2), where H is a hybrid matriz charac-
lerization of the corresponding resistive muliiport that is obtained by setting
all independent source values to zero, and c is a vector of real numbers.

A proof of this theorem can be constructed by incorporating a few
simple observations and minor modifications into the arguments used
by So in Ref. 6. We therefore simply sketch the main ideas: First, if the
linear graph mentioned in the Assumption contains any current source
cut-sets, then it must be the case (because of that Assumption) that
these sources have values such that Kirchhoff’s current law is satisfied.
That being the case, the port behavior of the multiport will clearly be
unaltered if a sufficient number of current sources are removed (by
coalescing appropriate nodes) to eliminate such cut-sets. A similar
observation applies to voltage source circuits. Therefore without any
loss of generality, we may consider the linear graph to have no current
source cut-sets and no voltage source circuits. Next, by Lemmas 1 and
2 of Ref. 6, it then follows that there exists a tree* for the linear graph
for which all voltage source edges are branches and all current source
edges are links. At each port, one of the two port variables is then desig-
nated as “independent,” the choice depending upon whether the edge
corresponding to that port is a branch or a link. The existence of the

* In case the linear graph is not connected each reference to the word tree should,
of course, be changed to forest.
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Fig. 2—An inadmissible n-port.

hybrid matrix H and the vector ¢ for the characterization (2) then follows
in the same manner as the existence of a hybrid matrix for a resistive
multiport follows from So’s arguments.

2.2 Belevitch’s Formalism

For some multiports, it might be that (after setting all independent
source values to zero) a hybrid matrix exists such that the vectors x
and y in equation (1) satisfyz = v = (v;, -+ ,v,) andy =1 = (41, - - -,
7,)7. In this case the hybrid matrix is given the special name, admiitance
matriz. Similarly, if it happens that H exists such that 2 = zand y = v,
then H is called the mpedance matriz. For many resistive multiports,
neither an impedance matrix nor an admittance matrix exists. It is still
possible, however, to characterize any n-port for which a hybrid matrix
exists in terms of the vectors » and 7. Obviously, = and y satisfy equation
(1) if and only if v and < satisfy

(I,{ —H£ =[H, | —L), (3)

where the n X m matrix H; and the n X (n — m) matrix H, are defined
by H = [H, | H,], and similarly [I, | I,]is the n X n identity matrix.

The characterization (3), being equivalent to equation (1), is perfectly
adequate for any resistive n-port. It is, however, but a special case of a
more general characterization due to Belevitch, namely:

Py = Qi, )

where P and @ are n X n real matrices. Belevitch’s characterization
can be used for quite a broad class of networks, including some rather
pathological ones which require dependent sources, or gyrators and
negative resistors to realize, and for which no hybrid characterization
exists. For example, the one-port called a norator, for which the set of
admissible port voltage and current combinations is the set of all pairs of
real numbers, may be characterized by [0lv = [0]¢. We should note,
however, that if one allows the aforementioned elements to be present
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in an n-port, then even equation (4) cannot always provide a charac-
terization. The nullator, for example, a one-port whose only admissible
combination of port voltage and current variables is the pair (0, 0), is
such an n-port.

When an n-port contains independent sources it can often be charac-
terized by the equation

= Qi+ ®)
where P and @ are real n X n matrices, and cis a constant vector. Clearly,
any n-port containing only resistors and independent sources has such a
characterization. It is this class of n-ports which is our primary concern

in the study of transistor networks. We note, however, that equation
(5) is adequate for characterizing a much broader class of n-ports.

III. NONLINEAR TRANSISTOR CHARACTERIZATION

In Fig. 8, a commonly used large signal dc transistor model is dis-
played. It is easily verified that the voltage and current variables defined
in that figure obey the following relationships:

{il} _ l' 1 "'ar:! fl(vl)J : (6)
Uy)  L—a, 1

12(1’ 2)
{02}
v

[51} _ [7'; + Ty —‘ ['Ll] . (7)
by Ty 7o+ 1y ‘!12/
COLLECTOR

o

% Le=fz (V2) afly

Te

Ly
EMITTER

Fig. 3—Large signal de¢ transistor model.
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Each of the parameters o, and «, may assume any value in the open
interval (0, 1). The parameters r, , 7. , and r, , which account for lead
resistances, are sometimes omitted by device modelers (their presence
is sometimes accounted for by including appropriate additional resistors
in the network to which the transistor model is connected). To accom-
modate these various points of view we specify only, therefore, that the
values of the parameters r, , . , and r, be nonnegative. Thus any or all
of them may be zero.

Depending upon whether the transistor being modeled is a pnp or
an npn, the graph of each of the functions f; and f, has one of the general
shapes shown in Fig. 4 (at least for values of |v] that are “not too large”).
Often these functions are described by an equation of the form

fe(v) = mulexp(new) — 1], k=1,2), (8)

where m,, and n, are appropriately chosen constants, both being positive
for a pnp transistor, and both negative for an npn. On the other hand,
for example, a piecewise-linear representation is sometimes specified
for fand f, .

The nature of the functions f, and f, for large values of |v| depends
upon which assumptions the modeler is willing to make, and which
effects he is interested in considering. For large negative (in the pnp
case) values of v, for example, the graph of f, approaches—according
to equation (8)—the horizontal asymptote ¢ = —m, . Thus, if the
modeler chooses to use equation (8) to describe f, for all values of v,
the range of f, will not be the entire real line. If, on the other hand, the
effect of ohmic surface leakage across the p-n junction is included in
the model, the graph of the function f, will approach asymptotically
a straight line having a small, but positive, slope. The range of such
a function is, obviously, the whole real line. One might also wish to
include the effect of avalanche breakdown in the reverse-biased region.
If this is done, the graph of f, will have a shape reminiseent of that of
a Zener diode in the » < 0 part of its domain.

In the forward-biased region there are also effects, particularly apparent
for large values of v, which the modeler may or may not wish to recognize.
For example, there is the so-called high-level injection phenomenon
which tends to decrease the value of the forward current and which,
using equation (8), is usually accounted for by a decrease in the magni-
tude of n, for large values of v. In addition, there is the effect of the ohmic
resistance of the crystal which tends to reduce the value of forward
current for large values of v.

TFrom the point of view of the device modeler, the question of whether
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or not to include some of the effects mentioned above is often a minor
issue. For many networks the behavior will be essentially the same
whether or not, say, surface leakage is accounted for in the transistor
model. From the point of view of the network analyst, however, the
situation is somewhat different. For example, the matter of whether
or not the functions f, map the real line onfo the real line can, in some
cases, make the difference between whether or not there exists a solution
of the network’s equations. Similarly, other results that have been
obtained recently (presented later, beginning in Section VII) also seem
to depend upon the graphs of the functions f, having certain special
properties.

It seems safe to say that no matter which “‘special effects’ are included
(or omitted) in the description of the transistor, the functions f, may
at least be considered to be strictly monotone increasing mappings of
the real line into itself. For the purpose of formulating the equations
for transistor networks, this is the only hypothesis that we shall make.
When additional hypotheses regarding the nature of these functions
are needed (to obtain certain results concerning properties of these
equations) those hypotheses will be mentioned explicitly. In each case
it will be clear that the additional hypotheses are, in some appropriate
sense, rather weak.

Similar remarks can be made for the diodes that are shown in Fig. 1,
which might also be present in transistor networks. Thus, we assume
that each diode is described by an equation of the type ¢ = f(v) where,
at this point, we only assume that the function f is a strictly monotone
increasing mapping of the real line into itself.

IV. EQUATIONS FOR TRANSISTOR NETWORKS

Suppose we are given a de network consisting of transistors, diodes,
resistors, and independent voltage and current sources, connected to-
gether in an arbitrary manner. Let there be n transistors and d diodes.
Clearly, there is no loss of generality if we consider the network to be of
the type shown in Fig. 1. Using the results of Section ITI, we may describe
the nonlinear devices in the network by the equations

y=TF(), z=2— Ry, O]

where T = diag(T, , T,], with T, a block diagonal matrix with » 2 X 2
diagonal blocks of the form

1 —a®
[ '}, for k=1,---,n, (10)

(k)
—Cy 1
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Fig. 4—General shape of the functions f; and f;; (a) pnp transistor, (b) npn transistor.

and T, the d X d identity matrix. Also, B = diag [R, , R.], with B, a
block diagonal matrix with n 2 X 2 diagonal blocks of the form

rgk) _I_ T(k) r(k)
I: ’ ’ ’ IC=1,"',’)’L, (11)

(k) (%) (k)
Ty re 1y

and R, the d X d matrix whose elements are all zeros. The function F
has the form F(z) = [f;(®1), -+ , fansa(T2nra)]”, Where each of the f, is a
strictly monotone increasing mapping of the real line into itself.

Using the results of Section II, the effect of the linear multiport in
Tig. 1 is to constrain the vectors of port variables, & and y, to obey the
relationship

where P and @ are (2n + d) X (2n + d) real matrices and ¢ is a real
(2n 4 d)-vector. The minus sign appearsin equation (12) as a consequence
of having chosen the reference direction for the port currents (the elements
of the vector y) to be opposite to that which is usually assumed.

By using equations (9), we may easily eliminate the variables & and
y from equation (12), resulting in the equation

(PR + Q) TF(z) + Px = c. (13)

The central problem in determining the values of all branch voltages
and currents in a de transistor network is the determination of a solution
of equation (13). The restisrelatively straightforward, forif zis a (unique)
solution of equation (13), then the (unique) vectors & and y, such that
equations (9) and (12) are satisfied, may immediately be computed
from equations (9).

Since the matrix 7' is nonsingular, it follows that whenever either
(PR + Q) or P is nonsingular, equation (13) can be transformed into,
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respectively, one of the equations
F(z) + Az = b, (14)
AF(x) + x = b. (15)

The first of these equations has been studied rather extensively (see
Refs. 1-3 and 7) and for most of the results obtained there, it can be
shown that parallel results are possible for equation (15). Both of these
equations, however, are but special cases of the equation

AF(z) + Bx = ¢, (16)

which accommodates equation (13) directly. It is, therefore, this equation
to which we shall now direct our attention. It will be shown that most
of the results which have been obtained to date for equation (14) have
rather natural (though not obvious) extensions to equation (16). It is
important that such extensions be possible because one is often forced
to deal with equations like (16) in the analysis of transistor networks.
Clearly, this is the case whenever both of the matrices (PR + @) and
P of equation (13) are singular—and this can easily happen (for example,
if the matrix R contains all zeros, then it will happen whenever there
exists no admittance matrix nor impedance matrix for the linear multi-
port of Fig. 1).

Il

V. NOTATION

The following notation shall be used throughout the remainder of
the paper: For each positive integer n we denote by E™ the n-dimensional
Euclidean space, the elements of which are ordered n-tuples of real
numbers, which we consider to be column vectors. The origin in E* is
denoted by 8. If . = (z,, -++,z,) andy = (y1, -+, y.)” are elements
of E" we denote their inner product by (z,y) = >_r., 3% . The norm of
each 2 € E"is denoted by ||z|| = (z, ).

If 4 is ann X n matrix, then fork = 1, --- , n, A, denotes the kth
column of A. A principal submatrix of a square matrix A is any square
submatrix of 4 whose main diagonal is contained in the main diagonal
of A. A principal minor of A is the determinant of any principal sub-
matrix of 4. If D is a diagonal matrix, then D > 0 means that each
element of the main diagonal is a positive number; similarly, D = 0
denotes that each element of the main diagonal is nonnegative. We
denote the n X n identity matrix by either I, or, when the dimension
is unimportant or is clear from the context, simply by I. The direct
sum of two matrices 4, B is denoted by 4 @ B. A square matrix of real
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numbers 4 is said to be strongly row-sum dominant if its elements
a;; satisfy a;; > D iwi Jag|fori =1, -+, n.

If f is a real valued function defined on E* then f is said to be monotone
increasing if for all z < y it follows that j(z) = f(y). We say that f is
strietly monotone increasing if f(z) < f(y) for all z < y. For each positive
integer n, we denote by §* that collection of mappings of E" onto itself
defined by: FF &€ §" if and only if there exist, forz = 1, - - - , n, strictly
monotone increasing functions f; mapping E' onto E' such that for
eachz = (v, -+ ,2)" € B, F(z) = [fi(z)), -+, fulz)]".

VI. PAIRS OF MATRICES OF TYPE W,

Many of the recent results referred to above, concerning equation
(14), have relied heavily upon certain properties that a matrix is known
to possess whenever it is a member of a class of matrices that has been
given the name P, . In a similar way the results that follow rely upon
useful properties that are possessed by certain pairs of matrices. We
shall define a class, the elements of which are these pairs of matrices,
and give it the nameW, .

The class of matrices called P, was defined by M. Fiedler and V.
Pt4k.® They proved that the following properties of a square matrix of
real numbers, 4, are equivalent:

(7)  All principal minors of A are nonnegative.
(#1) For each vector x 5% 0 there exists an index k such that z, £ 0
and z.(4dz), = 0.
(#2) For each vector x £ 6 there exists a diagonal matrix D, = 0
such that (z, D.z) > 0 and {4z, D,z) = 0.
() Every real eigenvalue of A4, as well as of each principal submatrix
of 4, is nonnegative.
Sandberg and Willson proved that another property can be added to
this list of equivalent properties,®'® namely:
(v) det (D 4+ A) £ 0 for every diagonal matrix D > 0.

The class of all matrices possessing one (and hence all) of the above
properties is called P, .

We shall now state a theorem which provides a useful generalization
of the concept of the class of P, matrices.

Definition: For each pair of n X n matrices (4, B) we shall denote by
C(4, B) the collection of all the n X n matrices that ean be constructed
by juxtaposing columns taken from either A or B while maintaining
the original relative ordering of the columns. Thus, M & €(4, B) if
and only if foreach k = 1, --- , n, either M}, = A or M, = B,



NONLINEAR DC TRANSISTOR NETWORKS 1725

Obviously ©(4, B) contains 2" matrices (for certain pairs (4, B)—
namely for those having A, = B, for one or more values of k—it can
happen that two or more matrices in @(4, B) are identical).

Definition: The pair of n X n matrices (M, N) is said to be a comple-
mentary pair taken from €(4, B) if and only if both M and N are members
of @(4, B) and foreach k&t = 1, - -+ , n, either M, = A, and N, = B, ,
orelse M, = B,and N, = 4, .

It is obvious that (4, B) is a complementary pair taken from €(4, B).
It is also clear that €(4, B) = @(B, A) and, moreover, that if (M, N) is
any complementary pair taken from €(4, B), then €¢(M, N) = €(4, B).
Furthermore, for each M & @(4, B) there exists N & @(4, B) such that
(M, N) is a complementary pair.

Theorem 1: The following properties of a pair of n X n matrices of real
numbers (A, B) are equivalent:

(2) det (AD + B) 5 0 for every diagonal matriz D > 0.

(#0) There exists a matrix M & C(A, B) such that det M £ 0 and such
that det M -det N = 0 for ol N € ©(4, B).

(712) Foreachvector x 5 0 there exists an index k such that either (A"x), #
0 or (B"x), # 0, and such that (A"z),(B"x), = 0.

(i) For each vector x % 0 there exists a diagonal matrix D, = 0 such
that either (A"x, D,ATz) > 0 or (B"z, D,B"x) > 0 (that s,
such that {(A"x, D,A"z) + (B"x, D,B"z) > 0), and such that
(A%z, D,B"z) = 0.

(v) For each complemeniary pair of malrices (M, N) taken from
(4, B), each real value of N that satisfies det(M — AN) = 0 s
nonnegative.

(vi) There exists a complemeniary pair of matrices (M, N) taken from
C(4, B) such that M'N € P, .

(viz) There exists a matriz M & C(A, B) such that det M = 0; and,
for any complementary pair of matrices (M, N) taken from (4, B)
withdet M £ 0, M™'N € P, .

In this paper, we do not make use of properties (#i7), (i), or (v) of
Theorem 1. The proof that the remaining four properties are equivalent
is given in the Appendix. A complete proof of Theorem 1 is given else-
where.’

Definition: The class of all pairs of matrices which possess one (and
hence all) of the properties listed in Theorem 1 is called W, .
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To see that properties (¢) and (#7) of Theorem 1 are in fact generaliza-
tions of the previously mentioned properties (v) and (z), respectively,
that define P, is a simple matter. It happens that for any n X n matrix
B the pair (I, , B) €W, if and only if B € P, . (This follows from pro-
perty (vi7) of Theorem 1.) With our attention restricted to pairs of
matrices of the type (I, , B), it is clear that property (¢) of Theorem 1
is equivalent to property (v) which determines those matrices B that
that are in P, . Concerning property (77) of Theorem 1, an arbitrary
matrix N € €(I,, B) is either the matrix 7, or else, a matrix formed from
B by replacing some of the columns of B by the corresponding columns
of I, . Consequently, det N = det By where By is the principal sub-
matrix of B that is formed by removing from B the columns that are
not present in N and then removing the corresponding rows. Hence,
since det I,, 5% 0, we may take I, to be the matrix M in property (¢7) of
Theorem 1, and observe that this property then becomes: det By = 0
for all N & &(I, , B). It is now clear that this property is equivalent
to the property (7) that defines the class of P, matrices. (Note that there
are exactly 2° — 1 principal minors for each n X n matrix, and that
the set €(Z, , B)\{I.} contains exactly 2° — 1 members.)

VII. THEOREMS ON EXISTENCE AND UNIQUENESS

7.1 I[Mirst BExistence and Uniqueness Theorem

The following theorem, which is proved in Ref. 2, provides a necessary
and sufficient condition for the existence of a unique solution of equation
(14) for all F that are strictly monotone increasing ‘“‘diagonal”’ mappings
of E" onto E" and for allb & E".

Theorem 2: If A is an n X n matrixz of real numbers, then there exists a
unique solution of equation (14) for each F € §* and for each b & E" if
and only if A & P, .

Using this theorem along with the results of Section VI we can prove
the following (more general) theorem.

Theorem 3: If A and B are n X n matrices of real numbers, then there
exists a unique solution of equation (16) for each F & §" and each ¢ & E"
if and only +f (4, B) € W, .

Proof: (¢f) Let (A, B) & W, . Then, by Theorem 1, there exists a com-
plementary pair (3, N) taken from @(A4, B) such that M'N € P, .

Foreach F' = [fl()) Tt )fn(')]T E %nletG = [gl(): D] gn(')]TdeHOt’e
the mapping (also in §") defined by
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for k=1, .- ,n.

() = {fk(-) it M, = 4,,
() it M, # A,
Clearly, the vectors « and y satisfy
AF(z) + Bx = MG(y) + Ny
if they satisfy the relation

yk={x’° My = Ay, for k=1,---,n, (17)
fk(xk) if Zl[k = Ak s

and since this relation defines a homeomorphism of E" onto itself, it
follows that there exists a unique solution of equation (16) for each
¢ € E"if there exists a unique solution of the equation

MGQy) + Ny = ¢ (18)

for each ¢ & E". But, that this is so follows immediately from Theorem
2 and from the fact that M ~'N € P, .

(only if) Suppose (4, B) & W, . Then, by Theorem 1, there exists a
diagonal matrix D > 0 such that det(4D + B) = 0. Choosing F (z) = Dz,
we have F & §", while equation (16) does not have, with this choice of
F, a unique solution for all ¢ & E™. a

There are corollaries to Theorem 2, given in Ref. 2, that also may be
generalized in a similar manner. For example, the following result is a
generalization of an important special case of Corollary 1 of Ref. 2;
it shows that the condition (4, B) & W, is still sufficient to insure the
uniqueness of a solution of equation (16) (if a solution exists) even
when the mapping # is not ontfo.

Theorem 4: If F(z) = [fi(x), -+ , f.(x.)]", where each f. is a strictly
monotone increasing mapping of E* into B, and if (4, B) € W, , then
there exusts at most one solution of equation (16) for each ¢ & E™.

Proof: Suppose that, for some ¢ € E*, 2" and z° are solutions of equation
(16) with ' — 2° # 6. Then, A[F(z") — F(2*)] + B(z' — 2°) = 6. But
then, sinece F is a strictly monotone increasing ‘‘diagonal’”’ mapping;
there exists a diagonal matrix D > 0 such that F(z') — F(z") =
D(z' — 2°), and hence (4D + B)(z' — 2°) = 0. Since ' — 2° > 0 it
follows that det(4AD + B) = 0, which implies that (4, B) W, . O

7.2 A Nonuniqueness Theorem

From the proof of the “only if”” part of Theorem 2 (given in Ref. 2)
it follows that whenever A & P, , there exists a mapping F € " and a
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vector b € E” such that equation (14) has more than one solution. On
the other hand, even if A & P, , if the mapping I & " is “fixed,” then
it is easy to see that the nonuniqueness of solutions of equation (14)
need not necessarily follow for any b &€ E"[take F(z) = xand Az = —2z,
for example]. I. W. Sandberg has shown,'® however, that if one assumes
that the “fixed” mapping F has another special property, rather than
assuming that F' € §", then the nonuniqueness of solutions of equation
(14) follows, for some b & E", whenever A ¢ P, . Moreover, he has
shown that under these hypotheses and for any § > 0, there exists some
b &€ E” such that equation (14) has two solutions, x and y, which satisfy
|l — y|| = 8. The special property that F is assumed to have is given in
the following definition (in words, the property is: that it be possible
to draw a straight line having any given positive slope, and any given
length, between some pair of points on the graph of each of the functions

f)-

Definition: For each positive integer n we denote by &" that collection
of mappings of E" into itself defined by: F & &" if and only if there exist,
fork = 1, - -+, n, continuous functions f, mapping E' into E* such that
foreachz € E*, F(z) = [f(x1), * - - , fa(2,)]", with each of the f, satisfying,
forallg > 0,

inf {filw + B) — fil@): —0 <a < o} =0,
sup {frile +B) — fil@): —0 <a < o} = =,

By using Theorem 1 it is possible to prove the following generalization
of Sandberg’s result:

Theorem 5: Let F € &", let (A, B) & W, be a pair of real n X n matrices,
and let & be a positive constant. Then, for some ¢ & E™ there exist solutions
of equation (16), z and y, satisfying ||z — y|| = 6.

Proof: Since (4,B) & W, there exists a diagonal matrix D =
diag(d, , --- , d,) > 0, such that det(4D + B) = 0. Therefore, there
exists * € E", with ||z*|| = 6, such that (AD -+ B)z* = 0. Since F € &"
there exists ¢ & E” such that

ful@e) — fulee — 2%) = x%d,, for E=1,---,n.
Let ¢ = AF(z) + Bz, and let y = z — z* Then
AlF(x) — Fy)] + Bz — y) = A[F(x) — F(z — z*)] 4+ Ba*
= (AD + B)z* = 6. O

For a mapping F to be a member of &7, it is not necessary that F & §".
It follows from the above definition of &" that F & &” implies that each
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of the functions f, is a monotone increasing function from E' onto some
interval in E' whose length is infinite; the f, need not, however, be
strictly monotone increasing, nor onto E'. Tor those F € &" for which
each of the functions f, is strietly monotone increasing, we have the
following corollary to the two preceding theorems.

Corollary: LetF(x) = [f,(z1), - - - , f.(x.)]" € &" and let each of the functions
f. be strictly monotone increasing. Then there exists at most one solution
of equation (16) for each ¢ € E" if and only if (A, B) EW, .

VIII. RESULTS ON CONTINUITY AND BOUNDEDNESS

For many systems whose behavior is described by an equation having
the form (16), the vector ¢ may be regarded as the system’s input and
the vector  may be regarded as the system’s response or output. Those
properties that one might expect well-behaved systems to possess are
likely to include continuity and boundedness. Thus, one might expeet (¢)
“small” changes to result in the value of the system’s output when
“small” changes are made in the value of the system’s input, and (#7) a
bounded sequence of input vectors to yield a bounded sequence of
outputs. We now show that such properties are indeed possessed by
the type of system that is the main conecern of this paper.

8.1 Conttnuity

When the n X n matrix A is a member of the class P, and the mapping
F & g, it follows that the solution z of equation (14) is a continuous
function of the (input) vector b.” Using this fact, it is easy to prove the
following theorem.

Theorem 6: For each F & F" and each pair of n X n matrices (A, B) €W,
the solution x of equation (16) s a continuous function of the vector c.

Proof: Proceeding as in the “if”’ part of the proof of Theorem 3, we see
that the theorem follows immediately from the facts that equation
(17) is a homeomorphism and that the aforementioned result guarantees
that y, the solution of equation (18), is a continuous function of c. O

8.2 Boundedness

In Ref. 2 a theorem (Theorem 5) is proved which shows that, when
F &€5"and A € P,, bounds can be obtained for the solution of equation
(14) whenever bounds for b € E" are given. The proof of a more general
theorem concerning equation (16) can be constructed quite easily by
using that theorem, and by using the same technique that was used in
the proof of the preceding theorem, along with the trivial observations:
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(#) For any nonsingular n X n matrix of real numbers, M, and any
real numbers o; < 8, ,7 = 1, - -- , n, there exist real numbers,
af £ 84,7 =1, -+, n, such that when each of the components
c; of the vector ¢ satisfies a; < ¢; = B: , it follows that
af £ (ﬂ[—lc)i = 6£,fOI"L. = 1} I (2

(i) For any given real numbers y; £ 6, ,7 = 1, --- , n, there exist
for the homeomorphism (17), real numbersvy} < 6/ ,2 =1, --- ,n,
such that whenever z, y satisfy equation (17) withy; £ y; < 4.,
fori =1, ---,n,it follows that v, < 2, £ ¢/ ,fore =1, --- , n.

The more general theorem, whose quite obvious proof is omitted,
is the following:

Theorem 7: Let F & §", let (A, B) €W, be a pair of n X n matrices, and,

fori =1, ,n,let a; £ B, be given. There exist, fori = 1, - -+ , n,real
numbersy; < 8; such that foranyc = (¢y, -+ ,¢)" € E*witha; £ ¢; £ Bs
fori =1, --- | n, if x satisfies equation (16), then v; < z; = 6, for i =
1, -+, n.

According to Theorem 7, (4, B) & W, is a sufficient condition for a
bounded sequence of vectors ¢ to yield a bounded sequence of solution
vectors of equation (16), for all F & §". The following theorem shows
that (4, B) €W, is also a necessary condition.

Theorem 8: If (A, B) is a pair of real n. X n matrices, then (A, B) &W, if
and only if for each F & 5" and each unbounded sequence of pointsx*, 2*, 2%, - - -
in IT", the corresponding sequence c¢', ¢*, ¢*, -+ [¢¢ = AF(2*) 4+ Bz,
E=1,2,38, ---]is unbounded.

This theorem, which is a generalization of Theorem 4 of Ref. 2, can be
proved in a manner which is a quite obvious generalization of the proof,
given there, of that theorem. Thus, an appeal to Theorem 7 proves the
“only if”” part, and the “if”’ part is proved by assuming that (4, B) €W,
and then choosing the same kind of mapping ' & §" as was chosen in
Ref. 2, for which an unbounded sequence of vectors x* yields a bounded
sequence of vectors c.

IX. COMPUTATION OF THE SOLUTION

A. Gersho” has shown that whenever F & §* M\ C* (that is, whenever
each of the functions f, is a continuously differentiable strictly monotone
increasing mapping of the real line onto itself), it is possible to compute
the solution of equation (14), for any A € P, and any b & E", by making
use of a gradient descent algorithm due to A. A. Goldstein.'! The following
theorem extends this result to the class of equations of the type (16).
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Theorem 9: Let M be an arbitrary posttive definite symmetric malriz,
and let Q : B* — E* be defined by
Q(z) = [AF(z) + Bz — c]"M[AF(z) + Bx — ¢,

where F € 5" M C*, (A, B) EW,, and ¢ € E". For each x & E" and each
v =0let

Q) — Qlz — vVQ(R)]
gz, 7) = v I VQ@ 1P 7
1, v =0;
where 7 Q(x) denotes the gradient of @ at the point x. Then, if 6 is any real
number satisfying 0 < & < i, and if 2° is an arbitrary point in E*, the

sequence {x": k = 0,1, 2, ---1 converges to the solution of equation (16),
where (fork = 0,1, 2, --+) the z" satisfy

$k+l — xk _ 7ka(xk),

each v* being any real number that satisfies 6 < g(@*, v*) < 1 — 6 if
g@*, 1) < 6, 0rv" = 14f g(z*, 1) = 6.

v > 0;

Proof: This proof uses generalizations of some of the ideas in Ref. 7 and
relies ultimately upon the Goldstein algorithm.

We first remark that the sequence {2*} is well-defined: It is easy to
show (see the first part of the proof of Theorem 1, p. 31, Ref. 11) that
for each z € E", g(z, ) is a continuous function on [0, «). This being
the case, it is clear that if g(z*, 1) < &, then for each £ in the interval
[6, 1)—and, in particular, for each ¢ in the interval [§, 1 — &]—there is
some v* in the interval (0, 1) such that g(2*, v*) = &.

Let S = {x € E*: Q(x) < Q(2°)}. Using the fact that M is a positive
definite symmetric matrix, and using the fact that F € §", (4, B) EW,
implies that || AF(z) + Bz || — « if and only if || z || = % (Theorem 8)
we have that the set S C E" is bounded. By continuity of @, S is closed.
Thus, S is compact and, therefore, the gradient V@ (which is continuous
on E*, since F & (%) is uniformly continuous on S, and V@ is bounded
on 8. Also, @ is bounded below on S. [Indeed, we have Q@ = 0 on E™ and
by. the existence and uniqueness theorem, Theorem 3, there exists
exactly one point z* (z* € §) at which Q(z*) = 0.]

It is easily verified that, for each z & £7,

VQ(z) = 2(4D. + B)"M[AF(x) + Bz — d,

where, fork = 1, - - - , n, the kth diagonal element of the diagonal matrix
D, > 0 has the value of the derivative of the function f, , evaluated at
the point z,, . Since (4, B) & W, implies that det (AD, + B) £ 0, and



1732 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1970

since det M = 0, it follows that VQ(z) = 0if and only if x is the solution
of equation (16).

In view of the above, it follows directly from Goldstein’s theorem that
the sequence {z*} converges to the solution of equation (16). O

Other methods of computing the solution of equation (16), in certain
cases, also exist. If one performs a transformation of the type (17) on
the independent variable z (in theory this can always be done) then the
solution of equation (16) can easily be computed by first computing the
solution of an equation of the type G(y) + M 'Ny = M 'c, where
G € 5" and M'N € P, . Methods of computing the solution of certain
equations of this type may be found in Refs. 1-3.

X. EXAMPLE

With the aid of the modern computing facilities that are commonly
available today, it is clearly a rather routine matter to obtain an equation
of the type (16) for any given transistor network. Moreover, it is not
unfeasible, even for networks of moderately large size (say, up to 4 or
5 transistors), to consider the straightforward evaluation of the 2"
determinants specified in property (2) of Theorem 1, and thereby resolve
the issue of whether or not the matrices involved in the equation are
a“W, pair. Due regard would of course have to be paid to the matter of
performing sufficiently accurate computations.

On the other hand, even without the aid of a computer, it should often
be possible to use a little ingenuity and a few devices® to reduce the
computations involved in the application of the above theory to many
specific problems to a point where they will just about fit onto the back
of an envelope. Consider, for example, the following analysis of a three-
transistor network:

For the network of Fig. 5, the voltage and current variables defined
there must satisfy the following equations:

Q) [1100)

B 102

G| _ |- _i —f(;’—i - fa(vs) ’ (19)
14 _:____:_7’73_) fas)

s ’ f5(0s)

4 fo(vs)

* According to R. Bellman: “a device is a trick that works at least twice.”” 12
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"] [0 o0 o E 1 0 0]lf—i) [E
Vs 0 R, 0 E 11 0 || —is E
w00 B0 0 IR0, e
—1, -1 -1 0 5 0 0 0| v 0
—i, 0 -1 0 E 0 G, G|l v 0
(=4 L 0 0 —1:0 G Gl v) L0

where (we are using the transistor model of Fig. 3, withr, =7, = r, = 0)
each of the 2 X 2 matrices T, & = 1, 2, 3, is of the form (10). A hybrid
characterization has been used for the linear part of the network. As
indicated in equation (3), this hybrid characterization can easily be
converted into a characterization of the Belevitch type. Thus, denoting
the 3 X 3 blocks of the hybrid matrix in equation (20) by H,y , His , Hai
H,, , in the usual manner, one obtains

[I _HWJ”:—[H“ O}i—}-c, @)
0 _H22 H2l -

wherev = (v, 05,05, 02, 0s,0;)" and 7 is similarly defined. We could now
simply reorder the columns of each matrix in equation (21) in such a way
that the resulting equation would have the same form, except that the
subseripts on the components of the vectors » and ¢ would ocecur in the
natural order (1, 2, 3, 4, 5, 6) and then use that equation, along with
equation (19), to produce an equation of the type (16) for our network.
In this example, though, it’s probably easier to reorder the rows and
columns of the matrix T (recall, T = T @ T @ T*) to obtain
from equation (19) an equation that is compatible with equation (21).

Thus,
z‘=[ r=r JF@, (22)
—Q I
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where

F@) = [f1(v), fs(vs), fs(06), f2(v2), fa(vs), f5(1)5)]T:

and

: - (1) (2) (3) : 1) (2) (3)7
Pzdla‘g[ar y Oy 5 Qf ]y Q:dlag[af ) Oy Oy J

Eliminating 7 from equations (21) and (22), we obtain

{H“ 0 \l[ I n_P}F(v) + l:l —Hu v = c. (23)
w —Il-Q I 0 —H)

Note that since det H,; = det H,, = 0, it isimpossible to put this equation
into either of the forms (14) or (15). Clearly this would be the same situa-
tion no matter which ordering of subscripts was chosen for the components
of v. The cause of the difficulty is simply the fact that neither an impedance

matrix nor an admittance matrix exists for the linear part of our network.
Let us determine whether or not the pair of matrices

H:Hll 0 }[ I _ :| {I _le}J
21 _Q 1 0 _sz
isa W, pair. We shall try to verify property (1) of Theorem 1. Let 8, , - - -, &

denote arbitrary positive real numbers, and let A; = diag (5, , 6., 83),
AII = diag (64 3 65 3 66)' We WiSh tO ShOW that

— -1 —
det {[H“ 0 J[ I P}[A’ 0 —[ + P H“’]} #= 0.
o —IIL—Q I 0 Apr LO —H,,
By multiplying the above matrix on the left by the (nonsingular) matrix

diag (I; , —I;) and then multiplying on the right by diag (4, , I5), we
obtain the equivalent statement:

det[ Hll + AI l: —H12 - HuP A1'I }

_Hzl - Q } sz + (I ‘|‘ H21P) AII

The 3 X 3 submatrix in the upper left corner is nonsingular and diagonal.
The 3 X 3 submatrix in the lower left corner can be diagonalized by
performing a single elementary row operation on the matrix; namely, by
subtracting 1/(6, + R,) times the second row from the fourth row.
Having done this, our problem reduces to one of showing that
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T 0 0 ;‘ —1 0 0 1
0 5 + R, 0 i -1 —(1 + «®R, 5;) 0
dot| 00 mkRy o ] 0 TUtaPRaE) |,
1
_ Lo 1 1—a 88
1—af 0 0 i(1 ) s+ g TR 0
0 1—af® 0 i G+ (1 — ™) 5 G,
L o 0 1-—a®| 0 G, G: + (1 — ) a“J

It is easy to verify that whenever det A4;;, 0, then
det (Au AHJ -0
_A21 A22

if and only if det (A,, — A5 A71A L) # 0. In our case both A;; and A,
are diagonal and hence we can immediately reduce our problem to:

1 1—a® 1—af 5,8
—V —_— 1 =T Qr 020
A=aet s iR T s, 5t B, 0
det 1—af” @ 1—af® @
_L$2+R, Gyt (1—a )55+T+Rl(l+a, R, 55) G, = 0.
(3) l—af” [€3)
0 Gz G2+(1_0‘l )56+ 53+R3(1+a! Rsau)

It is obvious that the above determinant is always positive. First, note
that every term in the matrix is nonnegative except, possibly, the
(1, 2) term, which may be either positive or negative (or zero). In the
event that the (1, 2) term is positive (or zero), we have 1/(5; + R,) =
1 — af?6,85)/(6, + R,), and hence we observe that the matrix is
strongly row-sum dominant. This implies that its determinant is positive.

In the event that the (1, 2) term is negative, we do not necessarily
have dominance; however, considering an expansion of the determinant
along its first row we see that, because of the assumption that the (1, 2)
term is negative, the value of the determinant is computed as the sum of
two positive terms.

We have thus shown that, no matter which (positive) values are
assigned to R, , R, , R, , or which values the transistor’s current gains
assume [0 < o < 1,0 < o < 1], the pair of 6 X 6 matrices that appear
in equation (23) is a W, pair. Thus, all of the results concerning a solu-
tion’s existence, uniqueness, continuity, boundedness, and so on, hold
for this equation.
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APPENDIX

Proof of Part of Theorem 1

In this appendix we prove the equivalence of properties (¢), (¢2), (v3),
and (viz) of Theorem 1, which define the class of pairs of matrices W, .
We omit the proof of the equivalence of the three remaining properties,
since those properties are not referred to in this paper. A complete proof
of Theorem 1 is given elsewhere.” We begin by proving a useful lemma:

Lemma 1: For each positive integer n the polynomial
(CO) d1d2 e dn+ (cl) dl d2 tet dn-—l + ct + (Cn) d2 e dn
F Cur)dide - dpz F+ - F (G Dz o du + o0 (Cn-1)

in the n variables d, , ds , - -+ , d. s nonzero for all positive values of the
variables tf and only if at least one of the coefficients ¢, , - - - , Con—y 1S NONZETO,
and all nonzero coefficients have the same sign.

Proof: (By induction) For » = 1 the statement is obviously true.
Let N be a positive integer. Then any polynomial of the above type in
N + 1 variables, (co)dy « -+ dy+1 + - -+ + (cav+:—y), can be written as
P{d,, - ,dy)-dysy + Q(d,, --- , dy) where P and @ are both poly-
nomials of the above type in N variables. Then, assuming that the state-
ment is true forn = N, P + @ # 0and P-@Q = 0 for all positive values of
the variables d, , --- , dy if and only if at least one of the coefficients
Co, *** , Con+:—y 18 NONZero and all nonzero coefficients have the same sign.
But, we know that P-dy., + Q £ 0 for all dy,,; > 0if and only if P +
Q#0and P-Q=0 0O

A.1 Property (4) is Equivalent to (i1)

Let D = diag (d, , --- , d,). By expanding det (AD + B) along the
first column we have

det (AD -+ B) = d,-det P + det @,

where the first columns of P and @ satisfy P, = 4, , @, = B, , and for
k=2 --+,n P, =Q, = (AD 4+ B),.Both P and @ are independent
of d, . We now expand det P and det @ along their second columns,
resulting in

det P = dy-det R + det S,
det @ = dy-det U + det V7,

and hence,
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det (AD + B) = dyd,-det B + d,-det S 4 dy-det U + det V,
where
R, =4,, R, = 4, ,
S, =4,, S, =B, ,
U, =B,, U, = 4,,
V, =158, Vs = By,
and fork =3, --- , n,
R.=8=U,=V,= (4D + B),.

Proceeding in this manner until all columns of (4D + B) have been
encountered, we obtain an expansion of det (AD + B) as a polynomial
in the variables {d, ,d,, - -+ , d.} whose coefficients are the determinants
of the matrices in €(4, B). By using Lemma 1 it thus follows that (¢)
and (:z) are equivalent.

A.2 Property (vi) Follows from (z) and (i7)

According to (¢) there exists a complementary pair of matrices (M, N)
taken from C(4, B) such that det M £ 0. Let D = diag (d, , --- ,d,) >
0, then det (M 'N -+ D) s 0 if and only if det (MD + N) 5 0. But,
using property (), det (MD + N ) = det (AD + B)- det D # 0, where
the matrices D = diag (dl, cor,d)>0and D = diag (d,, - - ,,) >0
are defined by d, = dyand d, = 1if M, = 4, ,and d, = l/d,c, r = dy
otherwise (for k = 1, --+ , n). Thus, M ‘N & P, .

A.3 Property (t) Follows from (vi)

Using the notation above, it is clear that {or each diagonal matrix
D > 0,det (AD + B) = det (MD + N)-det D. Thus, if M'N € P, it
follows that det (4D + B) = 0.

A4 Property (viz) is Equivalent to (v7)

Clearly property (vi) follows from property (viz). Thus, we need
only prove that (v7) implies (viZ). Let (M, N) and (P, @) both be comple-
mentary pairs taken from €(4, B) with M 'N & P, and det P = 0.
Forany D = diag (d,, --- ,d,) > 0, det (P7'Q + D) £ 0if and only if
det (PD + Q) 0. But det (PD 4 Q) =det (MD+ N)-det D =0, where
the matrices D = diag (dy,--,d)>0andD = diag (d,, ---,d,) >0
are defined by d, = d, and d, = 1if P, = M, ,and d, = 1/d, , d, = d,
otherwise (fork = 1, ---, n). Thus, P'Q & P,. 0O
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Theorems on the Computation of the
Transient Response of Nonlinear
Networks Containing Transistors

and Diodes
By I. W. SANDBERG
(Manuscript received June 15, 1970)

We consider in detail the nonlinear equations encounlered at each time
step when certain tmplicit numerical-integration algorithms are wused.
In terms of only the properties of the Jacobian matrix of the pertinent set of
differential equations, we present necessary and sufficient conditions for
the existence and uniqueness of the solution of the nonlinear equations for
all continuous forcing functions and any given step size. Since engineers
often think about dynamic nonlinear iransistor network problems in terms
of the eigenvalues of the relevant Jacobian matriz, the results described are
of 1mmediate conceptual value. In particular, it is possible to carry out
the algorithms whenever the conditions presented are satisfied.

Several other types of results are also presenied. For example, for a
special but significant and useful numerical-integration formula, theorems
are proved concerning properiies of the compuled sequence such as the
extent to which the sequence is relatively immune to small local errors in-
troduced at each step as a result of the fact that it 7s ordinarily not possible
to compute the solution of a certain equation exactly.

All of the results are concerned with network models that are often used
in computer stmulations. In fact, we heavily exploit some spectal properties
possessed by the nonlinear functions associated with such models.

I. INTRODUCTION

The set P, of all real square matrices each with all principal minors
nonnegative plays a key role in the study'™ of nonlinear equations of
the form F(z) + Az = B, and more generally”* of equations of the form
CF(z) + Az = B, in which F(-) is a “diagonal monotone-nondecreasing
mapping”’ of real Euclidean n-space E" into itself, A and C are real

1739
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n X n matrices and B is an element of E". Such equations arise in the
de analysis of transistor networks, the computation of the transient
response of transistor networks, and the numerical solution of certain
nonlinear partial-differential equations.

In Ref. 3 a nonuniqueness theorem is proved which focuses attention
on a simple special property of transistor-type nonlinearities. It shows
that for any transistor-type exponential F(-) the equation F(z) +
Az = B has at least two solutions z for some B ¢ E™ whenever A ¢ P,.
The theorem shows that some earlier conditions'** for the existence of a
unique solution cannot be improved by taking into acecount more in-
formation concerning the nonlinearities, and therefore makes more
clear that the set of matrices P, plays a basic role in the theory of
nonlinear transistor networks. Ref. 3 also contains material concerned -
with the convergence of algorithms for computing the solution of
F(z) + Az = B as well as of more general equations, and some related
problems concerning the numerical integration of the ordinary dif-
ferential equations which govern the transient response of nonlinear
transistor networks are considered briefly.

The primary purpose of this paper is to present the results of a
continuation of the numerical integration study initiated in Ref. 3.
Here we further exploit the special property of transistor-type exponen-
tial nonlinearities used in Ref. 3.

We consider in detail the nonlinear equations encountered at each
time step when certain implicit numerical-integration algorithms are
used, and, in terms of only the properties of the Jacobian matrix of the
pertinent set of differential equations, we present necessary and suffi-
cient conditions for the existence and uniqueness of the solution of the
nonlinear equations for all continuous forcing functions and any given
step size. Since engineers often think about dynamic nonlinear transistor
network problems in terms of the location of the eigenvalues of the
relevant Jacobian matrix, the results described in Section 2.2 are of
immediate conceptual value. In particular, these results are of a very
different character than those that appear in the literature, and when-
ever the conditions presented are satisfied, it is possible to carry out
the algorithms. Under the assumption that the conditions are satisfied,
we also show that there are convergent algorithms for solving the non-
linear equations, and that the Jacobian matrix of the nonlinear equa-
tions is essentially always at least weakly well-conditioned in a sig-
nificant sense.

A part of Section 2.3 reports on a general result concerning conditions
under which it is possible to invert nonlinear mappings in E”. More
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explicitly, we show that a proposition proved by G. H. Meyer enables
us to give a short proof of a new theorem which is a considerably
stronger result than that described and used in Ref. 11.

We also present a set of results concerning properties of an important
class of transistor-diode networks for which certain implicit numerical-
integration algorithms can be carried out for all values of the step size,
and, for a special but significant and useful numerical-integration for-
mula, theorems are proved concerning some properties of the computed
sequence such as the extent to which the sequence is relatively immune
to small local errors introduced at each step as a result of the fact that
it is ordinarily not possible to compute the solution of a certain equation
exactly.

Finally, in addition to other results, we present new theorems con-
cerning the existence of solutions of the nonlinear de¢ equation under
very realistic assumptions from the viewpoint of models often used
in computer simulations.t

Section II contains a detailed discussion of the results and their
significance.

II. TRANSIENT RESPONSE OF TRANSISTOR-DIODE NETWORKS AND IM-
PLICIT NUMERICAL-INTEGRATION FORMULAS

2.1 Iniroduction

We shall consider explicitly only networks containing transistors,
diodes, and resistors. However, the material to be presented can be
extended to take into account other types of elements as well. In addi-
tion, we shall focus attention on the use of linear multipoint integration
formulas of closed (i.e., of implicit) type, since such formulas are of
considerable use in connection with the typically “stiff systems” of
differential equations encountered.

A very large class of networks containing resistors, transistors, and
diodes modeled in a standard manner is governed by the equation®'*

%‘ + TFIC”W)] + GC7'w) = BR), tz0 @

T Results concerning the dc equation are directly relevant to the problem of
computing the transient response to the extent that in order to numerically integrate
the differential equations it is ordinarily necessary to first solve a de¢ problem to
determine the initial conditions.

+ As a practical matter, the models of transistors and diodes employed here are
often used in computer simulations. Of course in some cases it is necessary to use
more complicated models.
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with G = G(I + RG)™" and where, assuming that there are ¢ diodes
and p transistors,

@HT=T,T.P® - DT, P I,, the direct sum of the identity
matrix of order ¢ and p 2 X 2 matrices T, in which

L)
Tk = l: 1 & ]
—a 1

with0 < o¢® < 1and0 < o < 1fork =1,2, -, p.

@ R=R PR, P -+ DR, P Ry, the direct sum of a diagonal
matrix B, = diag (r, , 12, -+ - , 7)) withr, Z 0fork = 1,2, --- , ¢
and p 2 X 2 matrices R in which forallk = 1,2, --- , p

(k) (k) (k)
re 1y Ty
Rk = [ ¢
(k) (k) (%)
Ty re Ty

with »¥? = 0, r{® = 0, and ¥ = 0. (The matrix R takes into
account the presence of bulk resistance in series with the diodes
and the emitter, base, and collector leads of the transistors.)

(#43) G is the short-circuit conductance matrix associated with the re-
sistors of the network. (It does not take into account the bulk
resistances of the semiconductor devices.)

(@) F(-) is a mapping of E“”*? into E*”*® defined by the condition
that

F(.’E) = [fl(xl)J f2(m2)7 R} f2p+q(x2p+q)]n
for all z ¢ E®”*? with each f;(-) a continuously-differentiable

mapping of E' into E' such that fi(«) > 0 for all a ¢ E*.
() C7*(+) is the inverse of the mapping C(-), of E***® into itself,

defined by

. C{z) = cx + 7F(x)
forallze B with ¢ = diag (¢;, C2, =+, Capen), 7 = diag (1,
To, *°, Tamea), 2a0d with each 7; and each ¢; a positive constant.

(v7) B(t)isa (2p + g)-vector which takes into account the voltage and
current generators present in the network, and
(vi7) w is related to v the veetor of ideal-junction voltages of the semi-
conductor devices (v does not take in account the voltage drops
across the bulk resistors) through C(») = wu for all v ¢ E®*? .
Equation (1) is equivalent tof
t In Ref. 5 it is shown if B(-) is a continuous mapping of {0, =) into E®P+9, then

for any initial condition u(® ¢ E@+0 there exists a unique continuous (2p + ¢)-
vector-valued function u(-) such that u(0) = u® and (1) is satisfied for all ¢ > 0.
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v
o

U + f(ur t) = 0(21)+q) ) l (2)

in which of course
fu, ) = TFC™'(w)] + GC'(w) — B(t) (3)

and 03, 18 the zero vector of order (2p + ¢).
It is well known that certain specializations of the general multipoint
formula®’

Ynt1 = ;) Yot + h ,Z b;.»z?n_k (4)

h=—1
in which
gn—k = _f(ynfk) (“ - ]C)h') (5)

can be used as a basis for computing the solution of equation (2). Here
h, a positive number, is the step size, the a, and the b, are real numbers,
and of course ¥, is the approximation to w(nh) for n = 1.

In the literature dealing with formulas of the type (4) in connection
with systems of equations of the type (2), information concerning the
location of the eigenvalues of the Jacobian matrix J, of f(u, t) with re-
spect to u plays an important role in determining whether or not a given
formula will be (in some suitable sense) stable. In particular, an as-
sumption often made is that all of the eigenvalues of J, lie in the strict
right-half plane for all ¢ = 0 and all u. For f(u, {) given by equation (3),
we have

o= Tdiag {cf+rff;[gi<uf>] + Gdiag - ey ©

in which forj = 1,2, ---, (2p + q) ¢;(u;) is the jth component of C~'(u).
Thus here J, is 2 matrix of the form
TD, + GD, (™)

where D, and D, are diagonal matrices with positive diagonal elements.
A simple result concerning (7), Theorem 4 of Ref. 3, asserts that if there
exists a diagonal matrix D with positive diagonal elements such that'

(#) DT is strongly column-sum dominant, and
(it) DG is weakly column-sum dominant,
then for all diagonal matrices D, and D, with positive diagonal elements,

t The terms “strongly-column sum dominant’”’ and ‘“weakly column-sum domi-
nant” are reasonably standard. However, they are defined in Section IIL
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all eigenvalues of (7) lie in the strict right-half plane. This condition
on T and G is often satisfied.

The subclass of numerical integration formulas (4) defined by the
condition that b_, > 0 are of considerable use* *° in applications involv-
ing the typically “stiff systems’” of differential equations encountered
in the analysis of nonlinear transistor networks. With b_; > 0, ¥, is
defined tmplicitly through

Yns1 T B0 f(Yosr , (0 + DR) = kZ; Y-t + A };) biff—r

in which the right side depends on y,—, only for k¢ {0, 1, 2, - - - , #}, and
for f(u, t) given by equation (3), we have

Yps1 T hb—l{TF[C—l(yn“)] -+ Gc—l(yru-l)} = n S
in which

G = 2 Gos + b 2 b + BOBl0 + DAL

Obviously, the numerical integration formula (8) makes sense only if
there exists for each n a y,., ¢ E®”*® such that (8) is satisfied.

2.2 The Jacobian Matrix J, and Necessary and Sufficient Conditions for
the Existence of a Unique Solution y,., of (8) for All ¢, ¢ E®™*®

Here we shall make the additional assumption that the functions
fi(+) are such that the mapping F(-) belongs to the set F$**** defined
in Section 3.1. This assumption is satisfied whenever the f;(-) are the
usual Ebers—Moll exponential-type nonlinearities. That is, F$*?*? con-
tains all of the mappings F(-) such that for each j

fitx) = ajlexp bz;) — 1] or fi(x;) = a1l — exp (—b;z;)]

for all z; ¢ E* with a; and b; positive constants.

Our first result, Theorem 1 of Section III, is a rather strong result
concerning the relation between properties of the Jacobian matrix J,
and properties of equation (8). Let = denote the set of all real numbers
o such that det (¢ 4 J,) = 0 for some u ¢ E***®, In other words, let
= denote the set of all real numbers ¢ such that —c is an eigenvalue of
J. at some point u. According to Theorem 1, equation (8) possesses a
unique solution ¥,., for each ¢, ¢ £**® (and hence each B[(n + 1)h] ¢
E“?*®Y if and only if (hb_,)”" ¢ &, and also if (hb_,) ™" ¢ = then equation
(8) possesses at least two solutions for some ¢, ¢ E“”*® (and hence for

t See Ref. 5 for examples,
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some B[(n + 1)h] ¢ E***®), Therefore, in particular, equation (8) pos-
sesses a unique solution for all ¢, ¢ E*”*® and all & € (0, ], in which %
is an arbitrary positive constant, if and only if the intersection of the
interval [(Ab_,)”", ») and Z is the null set, and equation (8) possesses
a unique solution for all ¢, ¢ £***® and all & > 0 if and only if = contains
no points of the interval (0, «). Finally, as a somewhat peripheral
matter, according to Theorem 1, the dc equation TF(v) + Gv = B has
at most one solution v for each B ¢ I7***® if and only if 0 ¢ Z.

The statements made in the preceding paragraph are surprising to
the extent that on the one hand they are rather definitive and on the
other hand they involve only the location of the real eigenvalues of
J..T Since engineers often find it helpful to think about nonlinear
systems in terms of the location of the eigenvalues of a pertinent
Jacobian matrix, it is also of interest to note here that equation (8) can
possess more than one solution y,,, for some ¢, and some & > 0 only if
the transistor-diode network is locally exponentially unstable at some
operating point, that is, only if at some operating point u, —J, has a
real positive eigenvalue.

2.3 Euistence of Convergent Algorithms for Computing the Solution of (8)

Throughout this section we assume that the f;(-) are such that the
additional condition that IF(-) e F°**? is satisfied.

Whenever (hb_,) " is not contained in the set = of Section 2.2, equation
(8), which we shall write as @(¥..1) = ¢., possesses a unique solution
Yns1 for any ¢, e E®**%, We show here that when (hb_,)”" ¢ = and each
f:(+) is twice continuously differentiable on E',* there exist steepest
descent as well as Newton-type algorithms each of which generates a
sequence in E“”*® which converges to #,.1 .

Assume that (hb_,) ¢ E. The Jacobian matrix (I + hb_,J,,,,) of @(+)
satisfies

det (I + hb_,J,,,.) # 0 forall y,.,e B, 9)

Hence Q(-) is a local homeomorphism on E“?*® and since there exists
a unique ¥, ¢ £%"*® such that Q(¥..,) = g¢. for each ¢, ¢ E***?, Q(+)

T Indeed, while we can write (8) as Q(¥n41) = ¢» with Q(-) a continuously-dif-
ferentiable mapping of E®r*a into itself with Jacobian matrix (I + kb_1Jy, ,,) recall
that for B(-) a general continuously-differentiable mapping of E» into itself with
Jacobian matrix J, det J # 0 throughout E* does not imply that (and is not implied
by the statement that) for each z ¢ E* there exists a unique y £ E» such that
RE(y) = z, even forn = 1. :

+ This differentiability condition is obviously satisfied if the f;(:) are the usual
exponential functions.
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is a homeomorphism of Z“”*® onto itself. Thus, with ||-|| any norm
Er(2p+a)
on ,

W) || = = as |ly]l = .t

Let R(-) be defined by the condition that R(y) = Q(y) — g, for all
y e E®*Y | Then R(-) satisfies || R(y) || = « as ||y || — « and the
determinant of the Jacobian matrix of R(-) does not vanish throughout
E®*9 | Therefore, assuming that R(-) is twice continuously differenti-
able on E®”*? | it follows (see the Appendix) that the solution ., of
RYns1) = 025+ can be computed by using certain steepest descent or
Newton-type algorithms.

2.4 The Jacobian Matriz (I + hb_.J,...), and Inversion of Nonlinear
Operators on E" and Jacobian Matrices

As in Section 2.3, let the additional condition that F(-) ¢ F***® be
satisfied and let Q(-) be the mapping of E***? into itself with the prop-
erty that equation (8) can be written as Q(¥..1) = ¢.. According to
Theorem 2 of Section III the Jacobian matrix (I 4+ hb_,J,,,,) possesses
the property that there exists a constant ¢ > 0 such that

det (I + hb_iJ,,,.) = e forall y,.,e B+ (10)

if and only if the matrix
[(hb_y)~'r + T [(hb_y) e + G,

which we shall call S, belongs to the set P of all real square matrices
each with all principal minors positive. Thus when S £ P the matrix
(I + hb_.J,,,,) is well conditioned in at least the weak sense of (10).
This fact is of some interest for two reasons. First, certain standard
algorithms require that the matrix (I 4+ hb_,J,.,,) be inverted along a
sequence of points {y,4]} in order to compute the solution ¥,., of equa-
tion (8), and, secondly, Theorem 3 of Section III shows that if
det [(hb_,) ' T + J.] = 0 for all w e E“"*® and all (hb_,) ' £ 9’ in which
4’ denotes either (0, ») or any interval contained in (0, «), then Se P
for all but at most a finite number of points (hb_;)™" contained in ¢’.
Therefore, referring to the material of Section 2.2, if Q(y,.1) = ¢. pos-
sesses a unique solution y,.,, for all ¢, e E*”* and all (hb_,) " & ¢’, then
I + hb.yJ,..,) is at least weakly well conditioned at all but at most a
finite number of points contained in 4”.

t Since Q(-) is a homeomorphism of E@*2 onto itself, Q(-)~?! exists and is contin-
uous. Therefore, the image of any closed ball in E¢®*9 under @(-)~! is contained in
some closed ball in E¢*9, and hence || Q(¥) || & = as |y || = o.
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Since the elements of (I 4+ &b_,J,..,) are bounded on ¥,,, ¢ E®**, it
follows from a theorem described by M. Vehovec' that for each g, ¢
E**9 there exists a unique y,,1 € E®**? such that Q(¥ns1) = ¢, if Se P.
More explicitly, the theorem described! by Vohovee asserts that if R(-) is
a continuously-differentiable mapping of E" into E" with J(R), the Jaco-
bian matrix of RB(-) at an arbitrary point ¢ ¢ £°, if the elements of
J(R), are bounded on E", and if there exists a positive constant e such
that det J(R), = e for all ¢ £ I, then E(-) is a homeomorphism. Thus,
using the theorem of Ref. 11 and Theorems 2 and 3 of Section III,
we are able to show that if det [(hb_,) "I + J,] # O for all u ¢ E®***®
and all (kb_,)"" £ ¢’, then for all but at most a finite number of points
(hb_,)™" & 9’, (8) possesses a unique solution ¥,,, for each ¢, ¢ E***,
Although this result is obviously much weaker than the existence
proposition presented in Section 2.2, it shows that the theorem of
Ref. 11 can be exploited to provide some insight in connection with
the specific problem considered here.

The theorem of Ref. 11 is of interest primarily because the key hy-
pothesis concerns only the determinant det J(R), (as opposed to the
condition of Palais* that || B(g) || — « as || ¢|| — ). Theorem 4 of
Section III is a general result which is counsiderably stronger than the
theorem of Ref. 11. It shows that the condition of the theorem of Ref.
11 that there exist a positive constant e such that det J(R), = ¢ for all
g can be replaced with the condition that there exist real constants ¢ > 0
and b = 0 such that

det J(R), = forall qeE".

N S

a+bllqll

2.5 A Class of Networks for Which (8) Possesses a Unique Solution for
All Values of the Step Size

There is an interesting class of transistor-diode-resistor networks
with the property that for each network in the class, equation (8) pos-
sesses a unique solution for all & > 0 (i.e., for all h > 0, all ¢, € E“”*® ,
and all diagonal matrices ¢ and 7 with positive diagonal elements). In
order to define and discuss that class, consider the de equation TF(v) +
Gv = Bin which v is the (2p + ¢)-vector of semiconductor ideal-junction
voltages and B ¢ E®”*® . If p > 0 and the matrix R of Section 2.1 is
the zero matrix, v, is the emitter-to-base voltage of transistor one, v,
is the collector-to-base voltage of transistor one, and so forth. By port

t According to Vehovec, the theorem was recently proved by I. Vidar, and the

proof is expected to appear in the journal Glasnik Matematicki.
t See Ref. 12 and the appendix of Ref. 13. Here ||-|| denotes any norm on Er,
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7 of the transistor-diode-resistor network we mean the terminal pair
between which the voltage v; appears. Again we shall make the assump-
tion that F(-) e ¥+ 9 ,

In Ref. 3 it is proved that TF(v) 4+ Gv = B possesses at most one
solution v for each B ¢ E®**® if and only if 77'G ¢ P, . It is also proved
in Ref. 3 that equation (8) possesses a unique solution ¥,., for each ¢, ¢
E®*? and each h > 0if M7'G ¢ P, for all M ¢ 3(T) in which here 3(T')
denotes the set of all real matrices having the same form as T and with
the “a’s” of M not larger than those of 7.7 In other words, it was also
proved in Ref. 3 that equation (8) possesses a unique solution y,.; for
each ¢, ¢ £“°*® and each h > 0 if the dc equation possesses at most
one solution for each B ¢ E**® for “the original set of o’s as well as
for an arbitrary set of not-larger o’s.” Before proceeding, and for the
sake of completeness, we mention here that the same result can be ob-
tained by way of the approach of Section 2.2; a direct corollary of The-
orem 5 of Section III, Corollary 1, shows that if M ™'G ¢ P, for all I ¢
3(T), then det (¢I + J.) 5% 0 for all real ¢ = 0 and all u e E**?,

Theorem 5 of Section 11T provides considerableinformation concerning
the nature of the class of networks for which MG ¢ P, for all M £ 3(T).
In particular, the theorem shows that M~'G & P, for all M ¢ 3(T)
if and only if M™'G ¢ P, for all M ¢ 3,(T) in which 3,(7T) is the set of
all 2% real square matrices M having the same form as T and with
each “a” of M either zero or the corresponding “o’” of T.' The the-
orem also shows that “M™'G ¢ P, for all M & 3(T)” is equivalent to
each of six other statements involving T’ and G. For example, according
to Theorem 5, we have M ~'GQ ¢ P, for all M ¢ 3(T) if and only if either
TG + D) ¢ P, for all diagonal matrices D with positive diagonal
elements, which has an obvious network interpretation in terms of the
addition of resistors to the network characterized by @, or T7'G ¢ P,
and (T,)”'G, ¢ P, for all pairs of matrices T,, and @, obtained from T
and @, respectively, by deleting an arbitrary set w of rows, and the same
set of columns, of both 7" and G.

When the matrix R of Section 2.1 is the zero matrix, the last condition
on T and @ of the preceding paragraph also has a simple network
interpretation: Given T and G, we have T7'G ¢ P, , and any network
obtained from the network characterized by T and G by short-circuiting
an arbitrary set w of at most all but one of the (2p 4 ¢) semiconductor
junctions possesses the following property. With respect to the voltage
vector v, associated with the junctions not short-circuited, and with

t See Definition 4 of Section III for a precise definition of §(7').
* See Definition 5 of Section III for a precise definition of go(T).
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the components of »,, taken in the same order as those of », the “new
T and G” matrices' T, and @, satisfy (T.) 'G. & P, . As reasonable
as this condition or any of the other seven equivalent conditions of
Theorem 5 might seem, and even though, as Theorem 6 of Section III
shows, T7'G ¢ P, implies that (T',) "'G,, £ P, whenever w has the property
that if the port number associated with one junction of a given transistor
is contained in w, then the port number associated with the other
junction of that transistor is also contained in w, it is the case that
there are transistor-diode-resistor networks for which 77'@ ¢ P, and
M™'G ¢ P, for some M ¢ 3(T). In fact, Ref. 14 presents an example in
which p = 3,q = 0, T7'Ge Py, and T7(G + D) ¢ P, for some diagonal
matrix D with positive diagonal elements. However, the class of networks
for which T7'G ¢ P, implies that M~ 'G & P, for all M ¢ 3(T) is clearly
quite large; it obviously includes all networks in which p = 0, it includes
all networks in which the base terminals of all transistors are connected
to a common point, and as Theorem 7 of Section IIT shows, the class
includes all networks in which T7'G e Poand p = 1 or p = 2.1t

2.6 Results Concerning the Numerical-Iniegration Formula y,., = y. +
RJns1
The general multipoint formula (4) reduces to the well-known
implicit numerical-integration formula ¥,.; = ¥, -+ hf..1 when a, =
boi=1,bo=0,anda, = b, =0fork = 1,2, -- -, r. For that important
special case, and with 7,.; given by equations (8) and (5), {¥..:} is
defined implicitly through

yn+1 + h{TF[C—l(yn-i-l)] + GC_I(ymH)} = yn + th (11)

for allm = 0, in which B, = B[(n + 1)h]. Here we describe some detailed
results concerning the relation between the sequences {y,.,} and {B,}.
We assume throughout this section that @G is such that there exists a
diagonal matrix D with positive diagonal elements with the property
that both DT and D@ are strongly column-sum dominant. This condi-
tion, which is often satisfied,? guarantees that there exists a unique
solution? 7/, of equation (11) for each (y, -+ kB,) ¢ E***9.

T It is a simple matter to show that the “new T and G’ matrices are T, and G.,,.

Tt It is proved in Ref. 14 that if ¢ = O and if p = 1 or p = 2, then TG ¢ P,
implies that 7-1(G 4 D) ¢ P, for all diagonal matrices with positive diagonal ele-
ments. Thus, by the equivalence of statements (2) and () of Theorem 5 of Section
I11, it follows at once that if 771G ¢ Py then MG ¢ Pyfor all M ¢ §(T)if ¢ = 0 and
p = 1orp = 2. The proof of essentially the same end result given here is of a very
different nature and is quite short.

§ See Ref. 5 for examples.

+ A result mentioned in Section 2.1 implies that if DT and D@ are both strongly
column-sum dominant, then det [(h)" + J.] # O for all u ¢ E@+0 and all b > 0.
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Let ||+ ||, be defined by the condition that || v ||, = 2 5 | v; | for all
ve E¥*? According to Theorem 8 of Section III, there exists a positive
constant & depending only on the ¢; , the =; , T, G, and D such that

[ Dyl = @+ 307 | Dy [l + b 3 (1 o)™ || DBy [l

for all n = 1. Therefore, it follows that for all b > 0, the sequence

Y1, Y2, * -+ is bounded whenever the sequence B, , B, , - - - is bounded,
and ¥, , Y2, --- approaches 6, the zero vector of E“”*® whenever
By, By, - -+ approaches 0(zp.q)-

Typically at each step an iterative algorithm is employed to compute
the solution y,., of equation (11). Since it is ordinarily not possible to
compute y,,; with infinite preecision, it is important to consider the
effects of the errors which are introduced. While, ideally, we would like
to determine the sequence {#,.,} defined by equation (11) and some
initial-condition vector y, , suppose that we determine instead a sequence
{#,+1} such that, with e an arbitrary positive constant, || D@, — v*) ||
< eforalln = 1 and

Y+ h{TF[C—l(yfn)] + GC—l(yfﬂ)} = ¢, + hB, (12)

for all n = 0. That is, suppose that at each step the local error || D(7, —
¥%) || in solving for “y,,,”’ is at most e. Then, according to Theorem 8,
and with § the positive constant referred to above,

H D(y, — §.) “1 s(1+ H D(yo — o) ”1
4+ € i(l 4+ k)" forall n =1
k=0

in which g, is the approximation to y, . Therefore, given an arbitrarily
small positive constant p, for any h > 0 it is possible to choose §, and
e > 0 such that the accumulated-error vector (y, — 4,) satisfies || y, —
O lls S pforalln = 1.

Finally, Theorem 9 of Section III provides us with a conceptually
interesting uniform bound on the norm of the difference between cor-
responding elements of the sequences {¥,} and {,} in which u, = u(nh)
for all n» = 0 and u(-) satisfies the differential equation (1). According
to Theorem 9, there exist positive constants § and p, both independent
of A, such that

| Dwn — y) |ls £ @ + 60)7" || D(uo — ¥o) |l1 + ok
for all » = 1, assuming that the elements of B(-) and (d/df)B(-) are
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bounded and continuous on [0, «). In particular, if ¥, = u, we see that
there exists a positive constant o, independent of A, such that || v, —
¥ |L £ p'h for all w = 1, provided only that the assumptions of this
section are satisfied and that B(-) and (d/dt)B(-) are bounded and
continuous on [0, «=).

2.7 Conditions Which Imply That T'G(I + R@Q)™ & P,

In this section and in Section 2.8 we present some results concerning
properties of the de equation TF (v) + Gv = B. These results are directly
relevant to the problem of computing the transient response of tran-
sistor-diode networks to the extent that in order to numerically integrate
the differential equation (1) it is ordinarily necessary to first solve a
de problem to determine the initial conditions.

As indicated in Section 2.1, G = G(I 4+ RG)™" in which R takes into
account the bulk resistances associated with the semiconductor devices.
Here we present some material concerning conditions which imply
that T7'G(I + RG)™ belongs to P, .

Let p > 0. Theorem 10 of Section IIT asserts that T'G(I + RG) & P,
whenever T7'(G & P, and R satisfies

*) Q)" ip® (%)

228 (1 ) =T
1) (=1, (k) 0

a; (1 —a )" r,” =y

fork = 1,2, ---, p. This rather special result shows that if F(-) satisfies
the additional condition that F(-) belongs to the set §{*** defined in
Section 3.1, and if the network associated with 7' and @ possesses the
property that there is at most one solution v of the de equation TF(v) +
Gv = B for each B ¢ E**®, then it is always possible to add certain
resistors of positive value in series with each transistor lead such that
the de equation of the resulting network possesses at most one solution.

Theorem 11 of Section ITI directs attention to the fact that there is
a nontrivial class of transistor networks for which 77'G(I 4+ RG) ™' & P,
for all R. According to Theorem 11, if p > 0 and @ is such that T 'G e P,
for all “a’s”’ (i.e., for all «!® and a"" belonging to (0, 1)), then for any
particular set of “a’s” T~ lG’(I 4+ RG) e P, for all R.t

Given T, an interesting characterization of the class of short-circuit-
conductance matrices G such that 3 7'GQ & P, for all M & 3(T) is provided
by Theorem 12 of Section III.} According to Theorem 12, MG & P,
for all M e 3(T) if and only if T7'G(I + RG)™" & P, for all R satisfying
certain inequality-type conditions. In particular, if the base-lead

A similar result is proved in Ref. 2 under the assumption that @ is not singular.
¥ The set §(T') is described in Section 2.5.
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resistance of each transistor is taken to be zero, then M “1Q ¢ P, for all
M ¢ 3(T) implies that T7'G(I + RG)™" ¢ P, for all nonnegative values
of each emitter-lead resistor and each collector-lead resistor.

2.8 Ebers-Moll Models and the Existence of a Solution of TF(v) + Gv = B

In Section III, a set F5 of mappings F(-) is defined such that each
element of §; possesses certain important properties possessed by an
arbitrary F(-) of the type that arises when an Ebers-Moll exponential-
nonlinear-function model is used for each transistor and diode. In
contrast with the set of all F'(+) such that each f,(-) is a strictly-mono-
tone-increasing mapping of E' onto E' , an arbitrary element F(-) of
F 5 possesses the properties that for each j, f;(+) is bounded on either
[0, ) or (— «, 0], and the two nonlinear functions associated with the
same transistor are both bounded on either [0, ) or (— =, 0]. The set
¥, is contained in F{**¥ and contains every Ebers-Moll exponential-
nonlinear-function-type F(-).

The first part of Theorem 13 of Section III asserts that the equation
TF(@) 4+ Gv = B possesses a unique solution » for each F(-) ¢ §5 and
each B e E¥**? if and only if T7'G ¢ P, and det G 5% 0. It is the “only if”’
part of this proposition which is the new result presented here. The
proof exploits some special properties of transformerless resistor net-
works; it shows that if T7'G £ P, but det G = 0, then there are functions
¢(+) and d(-), both functions taking on only the values 1 or —1, such
that there is no solution v of TF(v) + Gv = B for some B ¢ E***® for any
set of Ebers-Moll-modeled transistors and diodes with the property
that for all k transistor k is a pnp device (as opposed to a npn device)
if and only if ¢(k) = 1, and for all j diode j is a p-n junction if and only
ifd(j) = 1.t

The discussion of the preceding paragraph concerning the proof of
Theorem 13 shows that it is not possible to make stronger assertions
concerning the existence of a unique solution of TF(v) 4+ Gv = B for
all B ¢ E®”* for Ebers-Moll-modeled transistors and diodes unless
we take into account more information about the nature of the semi-
conductor junctions. A good deal of progress in this direction has
recently been made, and we state here without proof the following
complete result dealing with diode-resistor networks.

Theorem 14:3 Let p = 0 and ¢ > 0. Let F(-) e 5 (see Definition 12 of

t In contrast, the proof of the “only if”’ part of Theorem 3 of Ref. 1 shows that if
A # P then there is a mapping F(- ) with each f;( ) a linear function such that F(z) 4
Az = B does not possess a unique solution for all B ¢ E~.

+ The proof of Theorem 14 will be presented in a subsequent paper.
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Section 3.31), and forj = 1,2, - - -, qlet s; equal either 1 or —1 depending
on whether {;(+) is bounded on [0, =) or (— «, 0], respectively. Then, with A
any real symmetric nonnegative-definite matrixz of order g, there exists a
unigue solution v of F(v) + Av = B for all B ¢ E° if and only if there is no
real g-vector u such that n £ 6, , Aq = 6, , and 7 € S, in which

S={y:yeEandy;s; Z0forj=1,2, ---,¢q}}

III. THEOREMS AND PROOFS

3.1 Notation and Definitions
Throughout Section III,

(2) unless stated otherwise, p and ¢ denote nonnegative integers
such that (p + ¢) > 0, and n denotes an arbitrary positive
integer;

(#7) the set of all real n-vectors is denoted by E*, 6 is the zero element
of I”, and if » ¢ " and j is an integer such that 1 = j =< n, then
v; denotes the jth component of v,

@@0) |||l = (X5 v and || [y = 227, | ; | forallv e E; for any
real n X n matrix M, || M || denotes sup {m: || Mz || £ m || z ||,
ze B}

() the transpose of an arbitrary (not necessarily square) matrix
M is denoted by A7t

(v) I, denotes the identity matrix of order n, and I denotes the
identity matrix of order determined by the context in which
the symbol is used; if @, , @2, - - - , @, are square matrices, then
QP QP -+ P Q, denotes the direct sum of @, , Qs , - -+ , Q.
in the order indicated;

(i) if D is a real diagonal matrix, then D > 0(D = 0) means that
the diagonal elements of D are positive (nonnegative); and

(v#7) we say that a real n X n matrix M is strongly (weakly) column-
sum dominant if and only if forj = 1,2, --- , n

m;; > (Z) Z I mq; l

i#]

Definition 1: The set of all real square matrices M such that every princi-
pal minor of M is nonnegative (positive) is denoted by Po(P).

Defination 2: Let §§*® denote that collection of mappings of E“**?
into itself defined by: F(-) £ F**? if and only if there exist for j =

+ In the network case, A = @, and it is often possible to determine by inspection
whether or not there exists an y # 6, such that Gy = 6,and n ¢ S,
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1,2, -+, (2p + ¢ continuous functions f;(-) mapping E' into E'
such that for each z e B F(z) = [f,(x1), f2(x2), -, feavre @zpra)]t
and

@ f ffile+ ) = L)) =0,

ae(—w,0

(@)  sup ) il + B8) — fi(@)] = + =

ag(—c0,0

forallg > Oandallj =1,2, ---, 2p + o).

Definition 3: Let 3 denote the set of all real matrices A7 such that M =
MM, P - P M, P I, with

)
Il{k = |: 1 o :| y
—a® 1

0=2a” <l,and0 £ o < 1forallk = 1,2, ---, p. As suggested,
ifg=0,then M = M, P M, D --- P M,, while if p = 0, then M =
I,.

Assumption 1: Throughout Section III, @ denotes a real nonnegative-
definite matrix of order (2p + ¢).

A tool that we shall use often is:

Lemma 1: A real square matrix M is an element of P, if and only if det
(D + M) # 0 for all real diagonal matrices D > 0.

Lemma 1 is proved in Ref. 2.

3.2 Theorem 1: Let F(-) £ 5 with each f;(-) continuously differentiable
on (—ow, o) and fi{a) > 0 for all @ ¢ (—w, ). Let T £ 3, let C(+)
[that is, ¢ + 7F ()], G, and J, be as defined in Section 2.1, and let ¢ be a
real nonnegative constant. Then

oy + TF[CT' ()] + GC'(y) = r (13)
possesses at most one solution y for each r e E**% if and only if
det (¢ + J,) # 0 forall ueE®", (14)

and if ¢ > 0 and condition (14) is satisfied then for each r £ " there
extsts a solution y of (13).

3.3 Proof of Theorem 1
We have
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det (oI + J.)
= det (oI + TF'[gw)]{c + 7F'[gw)]} ™" + Glc + F'[gw)]}™)
= det {c + rF'[g@)]} " -det {oc + orF'[gw)] + TF'[g@w)] + G},

in which g(-) is the mapping of £“”*® onto itself defined by g(u) =
C™'(w) for all w ¢ E®*¥ and F'[g(u)] = diag {f/[g;(u;)]}. Since det
fe + 7F'[g(w)]} > 0 for all u, det (¢ + J,) = O for all « if and only if

det{(ecr 4+ T)F'[g(uw)] + (sc + G)} £ 0 for all u.

For each j g;(-) maps E' onto E', and since F(-) & %9 with each
fi(+) continuously differentiable on (— «, ) and fi(a) > 0 for all
a e (—», «), the image of ' under the mapping f/[g;(-)] is (0,)*
for all j. Thus, by Lemma 1 (since det(er + T) # 0)(or + T) *(oc +
() & P, if and only if

det(cl + J,) = 0 forall wu. (15)

The equation
oy + TFICT' ()] + GC'(y) = r
possesses a solution y if and only if z = C7'(y) satisfies
oC@) + TF(x) + Gz = r,
that is, if and only if
(o7 + TYF(z) + (oc + Gz = 1. (16)

But equation (16) possesses at most one solution for each r ¢ E®**?
if and only if (o7 + T) '(ec + G) ¢ P, (see pp. 105-107 of Ref. 3) and
hence if and only if condition (15) is met.

Suppose now that ¢ > 0. Since @ is nonnegative definite, det(occ -+
@) = 0. If condition (15) is satisfied then (or -+ T) '(oc + @) & P,
and hence for each » ¢ E®”*?  equation (16) possesses a solution z
(see p. 99 of Ref. 3).0

3.4 Theorem 2: Let T ¢ 3, and let F(-) £ & with each ;(+) continuously
differentiable on (— w0, ) and fi(a) > 0 for all @ e (— «, «). Then for
each o = 0 there exists a positive constant e such that det(cl + J,) = ¢
for all w e E***® if and only if (o + T) "(oc + G) ¢ P.

tTForany 8 > 0 and any @ ¢ (— ®, @), fi(a + B) — fi{e) = Bf;'(8) for some
8 ela, a + 8]
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3.5 Proof of Theorem 2
We have

det (¢I + J,)
= det (oI + TF'[gw)]{c + 7F'[gw))} ™" + Glc + 7F'[gw)]}™)
= det {¢c + 7F'[gw)]} " -det {(o7 + T)F'[gw)] + (oc + @)}

— det (o7 + T) et "lg@)] + A) -

111 (c; + 7:filg; )

in which 4 = (o7 + T) "' (oc + &.

For each sequence ¢, , €5, -+ , €(2p+ With each e; either zero or unity
and e;, €, -+ , €uprep DOt the sequence 1, 1, --- , 1: let m,, ..., ...,
csr+or denote the determinant obtained from A by deleting rows
P13 P2, """, M a‘ndCOIHmHSPIJPZ: ;plin‘VhiCh {pl)F’Z; ;Pl} =
{j: e; = 1}. Thus for each sequence e, , €5, *** , €cp+o Obher than the
sequence 1, 1, <+ | 1 M, 0. oereapsq 18 & Prineipal minor of A. Let
Mya,....1 = 1, and let d; = f/[g;(w;)] for all j. Then by a standard
expression'’® for the determinant of the sum of two matrices

det (F'lg@)] + A) = 22/ di'ds® -+ dSHEMeen oo tanra

2(2p+a)

in which )’ denotes a summation over all
e+ and di = 1 for all 4. It is clear that

sequences €;, €z, * ** ,

(2p+q)

Hl © + i lg:@))) = 22/ ddy - dET S en e eanrn
7=

in which each ¢,, ,,.-.c.c,p+q0 1S & positive constant. Thus with 4 =
det(or -+ T),

_ 7 dexdez . 8(zzz+a)m e
ydet (o] + J) = 2 B EE M e (1
7 d¢1d82 . 9(:p+q)c
z : 1 W2 @2p+a)ver,ea, >t e(antq)

Suppose that all principal minors of A are positive. Then there is a
positive constant § such that

777’21,22,"',6(21:1-«) g 6621.82."‘.3(zv+q)

foralle, , e;, -, €wpre and hence (since d; > 0 for all ) det(sl +
J.) = 36 for all u e B9,

Asin the proof of Theorem 1, the range of each d; = fi[g,(u;)]is (0, =),
and for any positive constants p; , Po, - -+, Denrqe there exists a u e
E“"*® such that d; = p; for all j. If A ¢ P then at least one principal
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minor of A is not positive. If A ¢ P, , then det(F'[g(u) + A]) = 0
for some u. Therefore to complete the proof it is sufficient to show that
if A £ P, but A ¢ P then there is no constant ¢ > 0 such that det (¢ +
J.) > efor all u.

With A ¢ P, and A ¢ P, for at least one sequence e{ , e}, -+ , €loi0)

Moy oy vve o’ pray = 0.
If det A = my 4 ... o = 0 we have

inf det(cl +J.) =0

ueE (ap+ @)
since det(eI 4 J,) — 0 as d; — 0 for all j. Suppose now that det 4 > 0
and that m,., .+, ... o7 1,000 = O for some sequence ef , €5, -+, €lsuq -

Then with d; = d for all j for which ¢/ = 1and d; = d~" for all j for which
el = 0, we have [see equation (18)] det(cf + J.) > 0asd — «.O

3.6 Theorem 3: Let T ¢ 3, let F(+) & 749 with each f;(+) continuously
differentiable on (— =, ) and fi(a) > 0 for all a e (— o, »), and let
g denote [0, ») or an tnterval contained in [0, «). Then for all but at most
a finite number of points ¢ contained in 9, there is a real constant ¢, > 0
such that det(c + J.) = ¢, for all ue E®?*® if and only if det(cl + J,) 5%
0 for all o & 9 and all u e E***°,

3.7 Proof of Theorem 3

As in the proof of Theorem 1, (o7 + T) '(oc + G) e Pyforall o e 9
if and only if det(¢I + J.) # 0 for all ¢ £ 4 and all u. We shall also use
the fact that since det(or + T) > 0 for all ¢ = 0, each principal minor
of (e + T) '(cc + @) is a finite-valued rational function of ¢ for all
g = 0.

(if) If det(el 4+ J,) # O for all  and all o ¢ 9, then (o7 + T) *(cc +
G) & P, for all o £ 9. Tt is clear that (67 + T) '(oc + G) & P for all suffi-
ciently large ¢ > 0. Thus each principal minor of (67 + T) '(sc + G)
is nonnegative for all ¢ & 9 and is positive for all sufficiently large ¢ > 0.
They are therefore positive for all but at most a finite number of values
of ¢ £ 4. Thus, by Theorem 2, if det(¢I + J,) 5= 0 for all ¢ £ 4 and all »
there exist for all but at most a finite number of points ¢ £ 9 a positive
constant e, such that det(¢l + J,) = e, for all u.

(only if) If det(cl + J.) = 0 for some ¢ £ 9 and some u, then, for
that o, (o7 + T) *(oc -+ @) ¢ P, . That is, for that o at least one principal
minor of (o7 4+ T) *(cc 4+ @) is negative. This means that (o7 + T)*
(s¢c + G) ¢ P, for all ¢ contained in some interval ¢" C 4, and by Theorem
2, for all o e 9’ thereis no ¢, > 0 such that det( + J,) = ¢, forall u. O
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3.8 Theorem 4: Let R(-) be a continuously differentiable mapping of
E" into E", and let J (R), denote the Jacobian mairix of R(-) at an arbitrary
point q & B". If the elements of J(R), are bounded on E", and if there exist
real constants a > 0 and b = 0 such that det J(R), 2 (@ + b || ¢ ||)~" for

all g & K", then R(-) is a homeomorphism of E" onto ",

3.9 Proof of Theorem 4

If Ref. 16 Meyer proves' that B(-) is a homeomorphism of I onto
E* if J(R);" exists for all ¢ ¢ E* and there exist real constants & > 0
and 8 > 0 such that || J(R);' || < a + Bl ¢ || for all g e E".

With ¢ an arbitrary element of £, let \; , A., -+ , A, denote the
eigenvalues of J(R)!"J(R), , and let A, = min;{\;}. Then A\, - -+ \, =
[det J(R),)* = (@ + b || ¢]])7% and since the elements of J(R), are
bounded on E”, there is a constant A > 0 such that A\; = X for all § and
all g e E". Thus

(0¥ 2 NP 3] g )7 (19)
for all ¢. For any x ¢ E™ and any g e ", xt*J (R);"J (R) & = Aztz; that is,
TRz | 2 ()l Il 2 2@+ bl ¢ D7 = [I.
With 2 = J(R);'y in which y is an arbitrary element of E", we have
W@yl = X2 (a+0llq ) lyll,

which shows that our hypothesis concerning det J(R), ensures that
Meyer’s condition on ||J(R);"|| is satisfied. O
3.10 Some Further Definitions

Definition 4: For each T ¢ 3, let 3(T) denote the set of all matrices M
suchthat M = M, P M. P --- ® M, P I, with

)
o= ! b
-8 1

0<8® 2a® if o >0 and 6 =0 if & =0,
0< 8P =af if >0 and 5 =0 if o« =0,

forallk = 1,2, ---, p. As suggested, if ¢ = 0, then M = M, P M, P
- @ M,, whileif p = 0, then M = 1I,.

T Meyer’s result is a generalization of a well-known result of Hadamard.'” Hada-
mard proved that R(-) is a homeomorphism if J(R),™! exists for all ¢ ¢ E» and
satisfies || J(B)¢t || £ afor all ¢ = E» for some positive constant a.V

and
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Definition 5: For each T = 3, let 5,(T) denote the set of all 2°” matrices
Msuch that M = M, @ M, P --- P M, P I, with

)
i, = 1 o
P

and
8 = o or &M =0
8 = o or 8 =0
forallk = 1,2, ---, p. As suggested, if ¢ = 0, then M = M, P M, P

-+ @ M,, whileif p = 0, then M = 1I,.

Definition 6: Let Qsy. denote the family of all 27" — 1 sets w =
{t1, %2, -+, i}, including the null set, such that »r < (2p + ¢) and

w C {1:27;(21)‘{‘(1)}

Definition 7:  For M an arbitrary square matrix of order (2p + ¢), and
for each w & Q2,4 , let M, denote the principal submatrix obtained
from M by deleting rows 4, , 2, -+ , 7, and columns %, , 75, -+ , 2, .
(If w is the null set, then M, = M.)

Definition 8: For each j e {1, 2,---,(2p -+ @}, let U; denote the
(2p + g@)-column-vector with unity in the jth position and zeros in all
other positions.

Definition 9: For each T £ 3 and each w = Q(zp@ , let T denote the
matrix obtained from T by replacing the jth column of T with U; for
all jew.

3.11 Theorem 5: Let T & 3. Then the following statements are equivalent.

(©) M7'G ¢ P, for all M € 3(T).
(#) (D, + T)"'(Dy, + Q) & P, for all diagonal D, = 0 and all diagonal
Db g 0.
(@5) T (G + D) ¢ P, for all diagonal D = 0.
(i) (D, + T) YD, + @) ¢ P, for all diagonal D, > 0 and all diagonal
D, > 0.
() TG + D) ¢ P, for all diagonal D > 0.
i) (T.) "G, e Py for all we Qapryy -
(’U%) [(Tw)—lG]w 3 PO fOT all we Q(2p+a) .
(iis) M7'G e P, for all M = 3,(T).
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3.12 Proof of Theorem 5
[?) and (¢%) are equivalent]

By Lemma 1, (D, + T)"(D, + @) ¢ P, if and only if det [(D, + 7)™
(Dy + G) 4 D] # 0 for all diagonal D > 0. Thus (D, + T)7'(D, + G)

e Py forall D, = 0 and all D, = 0if and only if
det [(D,D™' 4+ D, + T)D + G] # 0
for all D, = 0, all D, = 0, and all D > 0, and hence if and only if
det [(A+T)D 4+ Gl #0

for all diagonal A = Oand D > 0. Let Ty, = (A + T)(I + A)™". Then
(D. + T)7(D, 4+ G) ¢ P, for all D, = 0 and all D, = 0 if and only if

det [To(I + A)D + Gl # 0

for all A = 0 and all D > 0, and hence if and only if det (T,D + @) # 0
for all diagonal D > 0and all A = 0. By Lemma 1, this means that
T:'G e P, for all A = 0 if and only if (D, + T)"'(D, + @) ¢ P, for all
D, z0andall D, = 0. Weobservethat Ty = (T2): @ (T4): B --- P
(Ts), @ I, in which, with A = diag (\1, A2, *** , ANzsa)s

—a®
1 T
(TA)k = 1+ Aar
(k)
.7 S 1
1+ Aoy

fork = 1,2, .-+, p. Thus for each A = 0, T, £ 3(T); and if M is an
arbitrary element of 3(T'), there is a A = 0 such that M/ = T, . There-
fore (D, + T)"'(Dy + @) £ P, for all D, = 0 and all D, = 0 if and only
if MG ¢ P, for all M ¢ 3(T).

[(?) and (#i7) are equivalent)]

Repeat the proof of “(7) is equivalent to (¢7)” with each statement
that D, = 0 replaced with D, = diag (0,0, --- , 0).

[(#@) and (iv) are equivalent and (%) and (v) are equivalent]

Suppose that (i) and () are not equivalent. Then (D, + T)"'(D, +
@) e Py for all D, > 0 and all D, > 0, and for some D* = 0 and some
D% =z 0, with D* > Oor D% » 0or D¥ » 0and D%t > 0, (D* +
T)7 (D% + G) ¢ P, . Thus some principal minor of (D% + T)7*(D% + @),
and hence of (D% 4+ T)"'(D% + G) det (D* + T), is negative. Let
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m(D*%, D%*) be some negative principal minor of (D% + T)™'(D% +
G) det (D* + T), and let m(D% + eI, D% + eI) be the corresponding
principal minor of (D* 4 e + T) ' (D% + el + G)det (D* + eI + T)
for all real € = 0. Thus m(D* + eI, D% + €I) is a polynomial p(e) in e
for e = 0, and p(e) = 0 for all ¢ > 0. Therefore p(0) = 0, which con-
tradicts m(D* , D%) < 0.

A proof that (¢27) and (v) are equivalent can be obtained by modifying
the previous paragraph in an obvious manner.

[(v?) is equivalent to ()]

By Lemma 1, T7'(G + D) ¢ P, for all diagonal D > 0 if and only
if det [T™*(G + D) + D*] 5 0 for all diagonal D* > 0 and D > 0, and
hence if and only if det (G + TD* 4+ D) £ 0 for all D* > 0 and all
D > 0. Therefore, by Lemma 1, T7'(G + D) ¢ P, for all D > 0 if and
only if (G 4+ TD%*) e P, for all D* > 0, that is, if and only if det [G,, +
(TD*),] = 0for all we Qzp4q and all D* > 0. Since (TD*), = T,D*%,
we see that T7'(G 4+ D) ¢ P, for all D > 0 if and only if

det [(T,)'G, + D% =0 forall weQu.y.y andall D*>0. (20)

But, by Lemma 2 (which follows) condition (20) is equivalent to the
condition that det [(T,)"'G, + D] > 0, and hence that det [(T,)”'G.,
+ D3] 5 0, for all w & Q(zp4+q and all D* > 0. Thus by Lemma 1, T7'(G
+ D) e P, for all D > 0 if and only if (T,)™'G, & P, for all w & Q2 qy -

Lemma 2: If A is a real square matriz of order n such that det (D + 4) = 0
for some diagonal D > 0, then det (D + A) < 0 for some diagonal D > 0.

Proof: Using the notation of the proof of Theorem 2,

det (D -+ A) = 2./ dyrdy «+d” My, oyienen (21)
for all D > 0. Sinee m; 4.....; = 1, if det (D + A) = 0 for some D > 0,
then for at least one sequence e} , e}, --- , e, wehavem,., oy oo o, < O.

If mq,0,....0 = det 4 < 0, then there exists a positive constant o, such
that det (D 4+ 4) < 0 whenever 0 < d; < o, for all j. If det A = 0,
then, with d; = d for all j such that ¢} = 1 and d; = d™" for all j such
that e/ = 0, there exists a positive constant o, such that det (D + 4) < 0
foralld > o, [see (21)]. O

[(»t) and (viz) are equivalent]
We shall prove that
(TG, = (T,)'G,, forall we Qupiy - (22)
Obviously the equality of (22) is satisfied if w is the null set,
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It is convenient to introduce the following notation. Let « denote the
1 X 1 matrix containing the entry 1. Let ¢ denote what might be called
the empty matrix, a matrix with no rows or columns; by this we mean
that ¢ is to be interpreted in the following manner: e P ¢ = ¢, I, = ¢
whens = 0, ™' = ¢, and if M, and M, are any two (ordinary) matrices,
thene @M, =M, M Peo=M,,andM, PP M, =M, P M,.

Let w e Q2,+4) and let w not be the null set. The matrix 7' can be writ-
ten as the direct sum 7', @ 7. P - D T, P I, . In terms of v and ¢,
T, =6Pt.P---Pt,PI,,in which s = ¢ — § where 7 is the num-
ber of elements contained in the intersection of the sets w and {2p + 1,
2p+2,---,2p 4+ q},andfork = 1,2, --- , p: t, = T, if both (2k — 1)
and 2k are not elements of w, t, = ¢ if both (2k — 1) and 2k are elements
of w, and #, = u if either 2k — 1) ew and 2k ¢ w or (2k — 1) ¢ w and
2%kew. Thus (T,) ' = '@ ' D --- B DI,. But (T°)' =
e ®- - @T;'@I,,inwhich fork = 1,2, -+, p: T, = T
if both (2k — 1) and 2k are not elements of w,

i |:1 O:I
-
0 1

if both (2k — 1) and 2k are contained in w,

wely )
.
0 1

if @k — 1) e w and 2k ¢ w, and

T-l — 1 0
' at® 1

if 2k — 1) ¢ w and 2k £ w. Thus we see that [(T*) '], = (T.)". Let
wn (T)7" denote the (2p + ¢ — r) X (2p + q) matrix obtained from
(T*)™" by deleting rows ¢, , 2,, -+ , 7, . But all elements of columns
T3, %2, +* , 4 of (,(T*)™" are zeros, and hence, with G(,, the matrix
obtained from @ by deleting columns ¢, , 25, - -+ , 7.,

[(Tw)—lG]w = (w)(Tw)_lGW)
= [(T")7'.G. = (T.)'G..
[(v277) and (7) are equivalent]

If M~'G e P, for all M € 5,(T), then [(T*) '@, ¢ P, for all w € Q2p4q) -
Thus, statement (viiz) implies statement (vit). Since we have proved
that (vi7) is equivalent to (), it suffices to prove that (¢) implies (viz7).
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Suppose that M ™'G ¢ P, for all M & 3(T). Let M be an arbitrary ele-
ment of 3,(T). Then [M + 8(T — )] e 3(T) for all 6 £ (0, 1], and
therefore [M =+ (T — M)]™'G & P, for all 6 ¢ (0, 1]. At this point a
continuity-type argument similar to that used in the proof of [(¢Z) and
(iv) are equivalent] shows that M 'Ge P,. O

3.13 Corollary 1 (Corollary to Theorem &§):

If Te3 and MG P, for all M ¢ 3(T), then det (¢ 4 J,) 5 O for all
o = 0 and all u e E®** provided that for all j {;(+) is continuously dif-
ferentiable on (— o, «) and fi(a) > 0 for all a e (— », =),

3.14 Proof of Corollary 1.

If Te3and M™'G ¢ P, for all M ¢ 3(T), then, by the equivalence of
() and (#2) of Theorem 5, (o7 + T) *(oc + @) & P, for all ¢ = 0. The
first portion of the proof of Theorem 1 shows that if (67 -+ 1) '(cc +
() & P, for all ¢ = 0 and if for all § f,(-) is continuously differentiable
on (—e, ) and fi(a«) > Oforall ae (— o, ), thendet (¢ + J,) = 0
forall ¢ = 0 and all u e B9 .

3.15 Definttion 10: For p > 0 let Q/,,.,, denote the subset of Qzp+q
containing all sets w belonging to Qs,+, such that w is not the null set
and 2k e wif and only if 2k — D)ewfork = 1,2, ---, p. For p = 0,
let Qfs,,, denote the family of all sets contained in Qz,+y with the
exception of the null set.

3.16 Theorem 6: If T ¢ 3 and T™'G ¢ Py, then (T,) ‘G, ¢ P, for all
we Q€2p+q) N

3.17 Proof of Theorem 6

Let Te 3, and let 77'G ¢ P, . By Lemma 1, det (D + @) 5 0 (and
hence det (TD + @) > 0) for all diagonal D > 0. Let w = {¢,,4,, -+,
7.} € Qloprg ;and let d; = dfork = 1,2, --- 7.

It may be the case that (T'D + @) is a block matrix of the form

[(TD + 6., H., ] ©3)
H, @l + H,,)

in which 7' is a direct sum of all 2 X 2 and 1 X 1 block matrices on the
diagonal of T which do not appear in 7', , and H,;, H,, , and H,, are
independent of D. Clearly det 7' > 0. If (T'D + G) is not of the form (23),
then by a sequence of interchanges of rows and corresponding columns of
(TD + @) we obtain a matrix of that form.
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Thus, for some 7' of the form indicated above and for the correspond-

ing constant matrices H,,, Hz( , and H,, whose elements are elements
of G,

, _ det | @D+, Hy, ]
det (T'D + @) = det [ H., @F + Hy)

for all d; > 0 for j ¢ w. For all sufficiently large d > 0, det (dT' + Ha»)
> 0, and then

0 < det (TD + @) = det (T + Hs)-det [(TD + Q).
— Hy,(dT + Hyp) 'Hoi)

for all d; > 0 for j ¢ w. Since H,(dT + H,) *H,, approaches the zero
matrix of order (2p + ¢ — r) as d — «, we must have det (TD + @),
= 0 forall d; > 0 for j ¢ w. Therefore, since (T'D),, = T,D, , we must
have det (T',D,, + G,,) = 0for all D, > 0. But this means (see Lemma
2) that det (T',D, + @,) # 0 for all D, > 0. Thus, by Lemma 1,
() 'G,ePy. O

3.18 Theorem 7: If Te3withp = 1 or p = 2, and if T7'G ¢ P, with
G the short-circuit conductance matrixz of a transformerless positive-
element resistance network, then (T,)"'G, € P, for all w & Qzprqy -

3.19 Proof of Theorem 7

Suppose that T7'G ¢ P, with p = 2. Theorem 6 asserts that (T.,)'G.
e P, for all w ¢ Qf,,, - But, aside from the null set, the sets
w = {¢, %, -+, i} that are contained in Qs+, but not in Q.
possess the property that 7', = T, @ Iissqn,0r T, = u P T, @
I11q-n Where u is the 1 X 1 matrix containing the element 1, or
Tw = I(4+q—r) .

If T, = Iiq-n, then obviously (T,) 'G, e P, . If T, = T, @®
I34q-ny , then for any D, = diag [Dy @ Diq-n] with D, > 0 and
D24e—n > 0 diagonal matrices of order 2 and (2 + ¢ — r) respectively,

T.D, 4+ Gy, G2
G21 D(2+a—r) + G22

in which Gy;, Gi5, G, and G,y are the appropriate block matrices
of @, . Since det [D21q-ry + G22] > 0, we have

det (Twa + Gw) = det [D(2+q—r) + G22]'det {T1D2 + Gll
- G12[D(2+a~r) + G22]—1G21}-

det (T,.D, + G,) = (24)
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But G;, — GuDiveery + G2]'Gay is the short-circuit conductance
matrix of a transformerless common-ground 2-port network; it is of the

form
[ g1 —!]wJ
— G2 22

with g1 = 0, g22 = 0, g12 2 0, 11 = ¢12, and ¢z2 = ¢1 . Therefore'
det {T\D: + G11 — Gia[Dzig-n + G 7o} >0

forall D, > Oand all D3, qry > 0, det (T, D, + G,) = Oforall D, > 0,
and hence, by Lemma 1, (T,)7'G, ¢ P,. Finally, the case in which
T, =u@® Ty @ Isqe-n can be treated in & manner similar to that used
to show that (T,)'G, ¢ P, when T, = T @ I(s4q-r , Since, with w
such that T, = u @ T2 @D [(144-n) , and with D an arbitrary diagonal
matrix of order (4 + ¢ — r), a sequence of interchanges of rows and
corresponding columns of (T',D + G,) can be performed to obtain a
matrix of the type that appears on the right side of equation (24).
Therefore (T,) ‘G, & P, for all w & Qeapsqy -

When p = 1, aside from the null set, the sets w = {4;, 45, =-- , 2.}
that are contained in Qs+ but not in Qf,,., possess the property
that T, = I(s4e-ry and obviously when T, = Iarqony , (TW) ‘G e Py . O

3.20 Theorem 8: Let T ¢ 3 and let G possess the property that for some
diagonal matrix D > 0, both DT and DG are strongly-column-sum dom-
tnant. For each j = 1,2, -+, 2p + @) let {;(+) be a conttnuous mono-
tone-nondecreasing mapping of E' into itself such that f;(0) = 0, let
he (0, ), and, with F(-) and C(:) defined relative to the f;(+) as in
Section 2.1, suppose that the sequences {y,} and {w,} in E***® satisfy

Yns1 T h{TF[C—I(yrwl)] + GC_I(yn+1)} = Yo + Wa

for all n = 0. Then there exists a positive constant § depending only on the
¢;,ther;, T, G, and D such that

@ 11Dyl S @+ 71 Dy b+ 2 (1 + o)™ || D |l

forallmn = 1, and

n

@ | D= ) |l SA+ W) 71 Dlyo — Fo) [l +e 21+ o1)™"

k=0

for all m = 1, in which {§.} is any sequence in E***® with the property
that || D@, — y%) |1 = e for all n = 1 with € a positive constant and the
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sequence {y*} such that
y¥a + MTFICT (k)] + GO k)Y = §u + wa
for all n = 0.

3.21 Proof of Theorem 8

We shall first prove part (¢7). With D such that DT and DG are
strongly-column-sum dominant, we have for all n = 0

Dynir + H{DTFIC™ Yus1)] + DGC™'Yosr)} = Dyn + Duw,
and
Dy¥. + {DTF[C™(y¥.)] + DGC™ (yk.1)} = Dy + D(i. — y¥) + Dw,

in which we shall take y% to be §,. As in the proof of Theorem 2 of
Ref. 3, we write

FIC™ ()] = FIC™ 7)) = ding () G — 220 @)

and
-1 -1 1 .
C7 ' Ynsr) — C™ (yk 1) = diag < (), >(Jn+l Yikes) (26)

in which r(n); depends on the jth components of ,,, and y*,, , and
r(n); = Oforalln = 0 and all j.
Thus, with @ = DTD ' and R = DGD™',

; _Z‘_(@__) : <__1___>} _
{I -+ hQ diag (Ci gy -+ AR diag o F ), D11 yEL)

for all n = 0. At this point we shall use the proposition that if M is any
real matrix of order (2p + ¢) with the property that there exists a
positive constant 5 such that m,; — >_..; |m,;| = 7 for all j, then
| Mz ||, = n]| 2| forall z ¢ E®*** . Now let

M = {I + hQ diag (c—,_—i—r(—i);@_):) + hit diag (c + 71-r(n >}

for arbitrary n = 0. Then for arbitrary j

- - __’_‘%_> (__1___)
; mis = 1+ hq”<ﬂa‘ + rir(n); + b ¢; + rr(n);

—h Z Qii r(n)i 1

(=X . 2] + T,-T(n);; + i ¢; + Tir(n)i
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> 1+ h<q,, > g )c. -11“(?1«—(5)_

i

+ h<r ,;, [r,,|> ¢; + Tr(n),
= 1+ éh,

in which
6= min{min C;1<7','j - Z [7'1',' l) , min T;'_l(q“ _ z l q“ l)}'
i i i iei
Therefore
H D(yn+l - y:‘+l) Hl
= A4+ w7 DyY. — yH — D@ — v L
A+ o) [| Dlyn =y |+ A + )7 || DG — %) s
(14 on)7" || Dyu — y%) |1n + A + ob)7"

for all n = 0, and hence

IIA

IA

| D@ — y%) [h < A + )™ || Dyo — v&) |l + eZ (1 + sh)~*

. Finally, since || D(y, — %) | S || Dy — v%) |l +
||1 < || Dly. — %) |1 + ¢ and since y% = 7o,

for all n
[| D(y%

1D = 3 1l = L+ 07 11 Do = 0 [l + 23 (1 + an”™*

=1
— G

for all n = 1, which completes the proof of part (¢7) of the theorem.
The proof of part (z) is similar to that of part (¢Z). Using

Dyuss + M{DTFICT Yas)] + DGC™' (Yns1)} = Dy, + Dw,

for all n = 0, and equations (25) and (26) with y*,, = 6 for all n, we
find that

Dy [i £ @+ 7)™ || Dyalls + A + h )7 || Dw, ||
for all n = 0. Therefore

[| Dy, |l £ (0 + k&)™ || Dyo |I, + E (1 + 187" || Dweness |l

foralln = 1. O
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3.22 Theorem 9: Let T ¢ 3 and let G possess the property that for some
diagonal matrix D > 0, both DT and DG are strongly-column-sum dom-
inant. Let B(-) denote a real continuously-differentiable (2p -+ q)-vector-
valued function of ¢ for t € [0, =) such that both B(-) and (d/dt)B(-) are
bounded on [0, ). With F(-) such that each f;(0) = 0, and with C(-)
defined relative to F(-) as in Section 2.1, let w(-) salisfy

W TRICT] + GO = BO, 120

and, with h an arbitrary positive constant, let u, denote u(nh) for all
n = 0. Let {y,} be a sequence in E*"*® such that

Yner + RITFICT Yas1)] + GO (Wasr)] = ¥ + hB[(n + 1A, n Z 0.

Then there exist positive constants 6 and p, both independent of h, such that
” D(u, — y,) ||1 =@+ ” D(uy — ¥o) ”1 + oh

forallm = 1.

3.23 Proof of Theorem 9

The sequence {u,} satisfies
Uner + B{TF[C7 (Wns1)] + GC7 (s}
= u, + B[(n + Dh] +&, n=0

in which £, is often referred to as “the local-truncation error at step
n.”” We shall first bound &, .

Since B(-) is bounded on [0, »), and since for some D > 0, both
DT and DG are strongly-column-sum dominant, a direct modification
of the proof of Theorem 1 of Ref. 5 shows that u(-) is bounded on
[0, «); and hence since
du

T = LITPICT @] + 6C7@) — LBO + ZBO, tz0 @)

with (d/dt)B(-) and the elements of the Jacobian matrix J, bounded,
it is clear that (d*w/dt®) is bounded on [0, «). By the usual Taylor-
series-type argument we can show that for arbitrary n = 0, &, = 3h°U,
in which for each j the jth component of U, is the jth component of
(d®u/dt?) evaluated at some point contained in the interval [nh, (n +
1)h]. Thus there exists a positive constant p; such that

|| D& ||y < 3%p, forall n = 0. (28)
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Therefore, using (28) and the equations
Uns1 F+ B{TFIC™ (Uns)] + GO (Unir) }
=u, + Bl(n+Dhl +&, n=0
Yar1r + B{TF[C7 Wur1)] + GC7' (Yns) }
=y, + Bl(n 4+ 1)A], n=0

by an argument similar to that used in the proof of part (i2) of Theorem
8, and with § as defined there, we find that

” D(un+1 - Z/n+1) ”1 = (1 -+ 5]7/)_1 H D(un — Yn) ”1 + (1 -+ Bh)—l%hzl’l
for all n = 0, and hence that

i D = ga) [l = (L4 1) || Do = o) [l + 3% 2, (1 + o)™

< (U4 a7 Do — o) [l + 3% 20 (1 + o)™

= (1 4+ om)~" H D(uo - yo) ]|1 -+ %ha_lpl
foralln = 1. O

3.24 Definition 11: Let R = R, @ R, P -+ @ R, @ R, in which
R, = diag (ry,ra, -+ ,rg) withr; 2 0forj =1,2, .-+, qand

(k) (k) (k)
T 1 Ty
(k) ) k)
T Te T

with 7 = 0, r{® =2 0,and s = Oforallk = 1,2, -- -, p. As suggested,
if¢g=0thenR =R, PR, P--- PR,,whileif p =0,then B = R, .

3.25 Theorem 10: Let T ¢ 3. If p > 0 and if R satisfies
a1 — )P = P
a1 — af)7rP = P
fork =1,2, ---, p, then T7'GU + RG)™" ¢ P, whenever T7'G ¢ P, .
3.26 Proof of Theorem 10
By Lemma 1, T'G(I + RG)™' & P, if and only if
 det [T7'GU + R®)™" + D¥] # 0 (29)
for all diagonal D* > 0. But (29) is satisfied if and only if
det (T7'G + D*RG + D*) # 0.

Rk=
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Here, since
(k) N=1 (&) __ (k)
(e (1 — & ) Te =T
(k) (k)\—1_ (k) (k)
ay (]. — oy ) re =T

fork = 1,2, ---, pwehave R = DT for some diagonal matrix D = 0.
Thus (29) is satisfied if and only if

det [I + DD®T™'G + D*] = 0.
When T7'G & P, we have
det (TG + D) # 0

for all diagonal D > 0. Thus (29) is satisfied for all D* > 0 whenever
T—IG € PQ . O

3.27 Theorem 11: If M7'G e P, for all M ¢3, then for any T €3,
T'G(I + R@)™"' ¢ P, for all R.

3.28 Proof of Theorem 11

Let T ¢ 3. As in the proof of Theorem 10, T7'G(I + RG)™' ¢ P, if
and only if

det [(T™' 4+ D*R)G + D*] # 0

for all diagonal D* > 0. It is a simple matter to verify that for each
D* > 0 and each R there exists an /7 ¢ 3 and a diagonal matrix D > 0
such that (T™* 4+ D*R) = DM ™. Since M'G ¢ P, for all M ¢ 3, we
have (by Lemma 1)

det (DIT™'G + D*) # 0
for all D* > 0. O

3.29 Theorem 12: Let T ¢ 3 with p > 0 and ¢ = 0. Then M~'G ¢ P, for
all M ¢ 3(T) if and only if T'G(I + R®)™' ¢ P, for all R such that
(k)

(k) (k)\—~1 (k)
«y (1 — Qr ) e Ty

(k) (k)\—1_(k) (k)
af(l-—a,)rc g?"b

v

fork =1,2,--- ,pandr; = 0 for all j such that 1 < § = q.
3.30 Proof of Theorem 12
As in the proof of Theorem 10, T77'G(I + RG)™' ¢ P, if and only if
det (T™'G + D*RG + D*¥) 0 (30)
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for all diagonal D* > 0. The inequalities »; = 0 for all j such that 1 <
j = qand

aik)(l _ a,(.k))—lfik) T;’c)
a;k)(l _ a}k))—lrik) > T{)k)

fork =1,2, ---, p are equivalent to the condition that R = D,T~* + D,
for some diagonal matrix D, = 0 and some diagonal matrix D, ¢ S, in
which S is the set of all diagonal matrices D = 0 such that DT is
symmetric. Hence T7'G(I + RG)™' ¢ P, for all such R if and only if

det {[(I + D.D*)T™" + D*D,|G + D*} # 0 31
for all diagonal D* > 0, D, = 0, and D, ¢ S.
Let A = diag (\, A2, -+ - , Aap+o) be such that
D, = D*' AT'A(I + D.D¥)

v

in which
A = diag (8, 61, 82, 82, - -+, 8,, 6,) D I,
if g > 0,A=diag (6,, 8,,62,0,, -, 8,,8,)if g =0, and
& =1—aPa® for k=1,2---,p.
The left side of (31) is
det [(I + D,D*)(T™" + A™'A)G + D¥|

which can be written as

det [(I + D.D*) A™'(I 4+ A) A\T{'G + D¥ (32)
with
T = A7 A + AT+ A7)
and
Ay = diag (8], 81, 84, 84, --- , 85, 85 DI,
if g > 0and A, = diag (8], 8], 85,85, -+, 85,6, if ¢ = 0, in which
fork=1,2---,p

8 = 1 — o™ 4+ Nawesy) A+ Ao

But (32) vanishes if and only if det (T3'G + D) vanislles, in which
D = A7'U + A7V AU + D,D*)7'D*. We observe that D is a positive
diagonal matrix and that given any diagonal D’ > 0 and given any
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A = 0 we can choose D* > 0 and D, £ S so that D =D’. Thus T7'G{I. +
RG) e Pyforall R = (D,T" + D,) with D, ¢ S and D, = 0 if and
only if

det (T7'G + D) # 0
forall A = 0 and D > 0, that is, if and only if T;'G ¢ P, for all A = 0
(see Lemma 1 of Section 3.1). But

Ty=T'7T.®--- T, DI, if ¢>0

and
T, =T®T-®---PT, if ¢=0
with
(k)
1 %
T, = L+ Noiy
o .
14 Ao
forallk = 1,2, --- , p. Therefore T7'G(I + R@)™' ¢ P, for all R =

(D,T"' + D,) with D, = 0 and D, ¢ S if and only if M~'G ¢ P, for all
Me3(T). O

3.31 Definition 12: Let F; denote the set of all F(+) such that

(@) F(-) 58, and
(i7) for each j = 1,2, --- , (2p + ¢) there exists a real constant
B; such that f;(+) is a strictly-monotone-increasing mapping of
E" onto either (8;, ») or (— =, 8;), and
(77) whenever p > 0, fiar—n (+) and f,(+) are both bounded on either
[0, ©)or (—,0lfork =1,2, ---, p.

3.32 Theorem 13: Let T ¢ 3, and, referring to the network of Fig. 1 in
which it 1s assumed that B (see Section 2.1) 1s the zero matriz, let G denote
the short-circuit conductance matriz of the linear portton of the network.
(The linear portion is assumed to contain only sources and linear resistors
of nonnegative resistance.) Then the equation F(x) + T 'Gx = B pos-
sesses a unique solution x for each F(-) ¢ 5 and each B ¢ E®**® if and
only if T7'G e Py and det G 5 0. If T™'G & P, and det G = 0, then there
exists a real (2p + q)-vector n such that (7) n # 6, and for some F(-) ¢ F4
all of the components of F(an) are bounded on a ¢ [0, »), and (i7) for any
F(-) & F5 with the property that all of the components of F(an) are bounded
on ael0, ) the equation F(x) + T 'Gx = B does not possess a solution
for some B ¢ E®**®
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Fig. 1—General network containing transistors, diodes, resistors, and sources.
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3.33 Proof of Theorem 13

(if) If T7'G ¢ P, with det T7'G' ¢ 0, and if F(-) ¢ F5, then, since
each f;(+) is a strictly-monotone-increasing mapping of E* onto (8;, »)
or (—, B;) for some real constant 8;, by Theorem 4 of Ref. 2, the
equation F(x) + T 'Gx = B possesses a unique solution z for each
B e E(Zp-ﬂz).

(only if) Assume that T7'G ¢ P,. Then since F; is contained in
F#*2 by Theorem 1 of Ref. 3, for each F(-) £ 55 there exists a Be E***9
such that there are at least two solutions x of F(x) 4+ T 'Gx = B.

Assume now that T7'G ¢ P, and that det G = 0. We shall use the
proposition that if R(-) is any continuous mapping of E‘***® into itself,
then R(-) is a homeomorphism of E‘***® onto itself if and only if R(+)
is a local homeomorphism on E”*® and || R(z) || = = as ||z || — .t

Let R(-) be defined by the condition that R(z) = F(z) + T 'Gz for
all z ¢ E®*® | TFor any F(-) £ §; the operator R(-) is a local homeo-
morphism on E®”*® | since with F(-) such that each f;(+) is a strictly-
monotone-increasing mapping of E* onto E' the mapping [F(-) + T7'G]
is a homeomorphism of £“”*® onto itself." In addition, for any F(-) & %4
and any B e E“”*? | there is at most one z ¢ B”***? such that R(z) = B."

Let us suppose that for each B ¢ E***® and each F(-) £ F5 there
exists a solution z of B(x) = B. Then for all F(-) £ F5, B(-) is a homeo-
morphism of E**** onto itself, and hence for all F(-) £ 55 || R(x) || = o
as || 2 || — «. But, by Lemma 3 (which appears below) E‘***® contains
a vector g such that n 5 6, n; ¢ {0, +1, —1} for all §, and Gy = 6; and if

t See Ref. 12 and the appendix of Ref. 13.
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p > 0, g satisfies gap—nn2 = Oforallk = 1,2, --- | p. Let F45(n) denote
the subset of ¥; containing all elements F(-) with the property that
fi(an;) is bounded on a £ [0, «) forallj = 1,2, --- , 2p 4+ ¢). Since

Near-pfae = Oforallk = 1,2, .-+ | p when p > 0, it is clear that F(y)
is not empty. However, for any F(-) ¢ F;(n) we have || R(an) || =
[| Fan) || with || F(an) || bounded on « & [0, «), which contradicts the
assumption that there exists a solution z of R(z) = B for each F(-) £ 5
and each B e E®7*9 |

Lemma 3: Let G be the short-circuit conductance malriz of the linear
portion of the network of Fig. 1. If det G = 0, then there exists a vector
n e B such that Gn = 6, 5 # 0, and n; € {0, +1, —1} for all j =
1,2, ---, @2p + @; and if p > 0 n also satisfies nar-1n2 = 0 for kb =
1,2 --,p

Proof of Lemma 3:

Let N denote the (2p -+ ¢)-port resistor network obtained from the
network of Fig. 1 by removing all transistors and diodes and by setting
the value of each source to zero. The short-circuit conductance matrix
G possesses the property that if » ¢ E®”*® denotes the vector of port
voltages of N and 4 ¢ £“”*® denotes the corresponding vector of port
currents (with polarities as indicated in Iig. 1), then z = —Gw.

Let det G = 0. Then the open-circuit resistance matrix of N does not
exist. Therefore there exists a port £ of N such that there is no path
through resistors of N that connects the two terminals of port £ when
all other ports are open-circuited. Let a one-volt source be placed at
port £ so that », = 1. Then when all ports j of N with § # £ are open-
circuited, z, = 0 and there is zero current in every resistor of N. Let S
denote a set of port numbers of N with the following properties. The
number £ is not contained in S and when all ports j with j ¢ S are short-
circuited and all ports § with j ¢ S \U {{} are open-circuited then zero
current flows through the one-volt source; when any port j, ¢ S \J {£}
and all ports j with j e S are short-circuited and all ports j with j ¢ S \U
{£, 7.} are open-circuited then nonzero current flows through the one-
volt source. It is clear that such a set S exists (with the understanding
that S might be the null set). In general S contains » port numbers
where 0 < r =< (2p + ¢ — 1).

If »r = 2p + ¢ — 1), then with v, = 1 and with all remaining com-
ponents of » equal to zero, we have Gv = 6. Obviously in this case we
can take the vector » of the statement of Lemma 3 to be v.

If r # 2p 4+ ¢ — 1), then, with v, = 1, with v; = 0 for all j ¢ S,
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and with all ports j ¢ S \U {£} open-circuited, there exists for each
j¢ S\U {£} some path through the one-volt source and the resistors of
N that connects the two terminals of port j. Therefore when r # (2p +
g — 1), when all ports j ¢ S\U {£} are open circuited, when v, = 1, and
when v; = 0 for all j £ S, the open-circuit voltage v; at each port j with
¢ 8S\U {£} is well defined and nonzero. Since no current flows in any
resistor of N when v, = 1,2; = Ofor all j& S, and all ports j ¢ S \J {¢}
are open-circuited, it follows that v; ¢ {—1, 41} for all j ¢ S. With
v, = 1, with v; = 0 for all j ¢ S, and with v; the corresponding open-
circuit voltage for each j ¢ S\U {£}, we have Gv = 6. When p > 0, the
vector v also satisfies the condition that v v = 0 forall & =

1,2, -+, p since if v_1,vsr Were negative for some %, then for that
k vy = land vy, = —1 or v,y = —1 and vy, = 1; in either case
| vesk-1y — V| = 2 which contradicts the proposition that a network

of nonnegative resistors can have no voltage gain. O

APPENDIX*

A theorem due to R. S. Palais’ asserts that if B(-) is a continuously-
differentiable mapping of E" into itself with values R(q) for ¢ ¢ E",
then R(-) is a diffeomorphism’ of E" onto itself if and only if

(%) det J, % 0 for all g £ ", in which J, is the Jacobian matrix of
R(-) with respect to ¢, and
@) |[B(@ || > = as|lq]| = =.

If R(-) is any twice-continuously-differentiable mapping of E* into
itself such that conditions () and (7z) of Palais’ theorem are satisfied,
then E* contains a unique element x such that R(z) = ¢ in which 6
is the zero element of E", and there are steepest decent as well as
Newton-type algorithms each of which generates a sequence in E* that
converges to x. To show this, let ** f(y) = || R(¥) ||” for all y ¢ E" in
which ||-|| denotes the usual Euclidean norm (i.e., the square-root
of the sum of squares). Since condition (z) of Palais’ theorem is satisfied,
the gradient Vf of f(+) satisfies (Vf)(y) # 0 unless f(y) = 0,% and
since condition (77) of Palais’ theorem is satisfied, the set S = {ye E*:
) £ {@)} is bounded for any z‘” & E". Therefore we may appeal to,
for example, the theorem of page 43 of Ref. 18 according to which for

any z'° ¢ E", for any member of a certain class of mappings ¢(-) of S

* The material of this appendix together with some misprints appears in Ref. 3.

t See Ref. 12 and the appendix of Ref. 13.

t A diffeomorphism of E, onto itself is a continuously differentiable mapping of
E, into E, which possesses a continuously differentiable inverse.

¢ Here we have used the fact that (Viy) = 2J,"E(y) for all y £ B8
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into E", and for suitably chosen constants v, , v, , -- -, the sequence
9, 2V, ... defined by
Y = 2% L y0@®) forall k=0

belongs to S and is such that || R@®) || — 0 as k — «. However,
since B™'(-) exists and is continuous, it follows from

z® = RTR@™)] forall k=0
and the fact that R(z*®) — 6 as k — 0, that lim,_,, 2 exists and

lim 2® = R7(0),

k—

(k)

which means that lim,_., '* is the unique solution z of R(y) = 6.
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Characterization of Second-Harmonic

Effects in IMPATT Diodes

By C. A. BRACKETT
(Manuscript received May 20, 1970)

We discuss characterization of the tuned-harmonic mode of operalion in
IMPATT oscillators, and iniroduce an equivalent circuit which incorpo-
rates the large-signal, “‘single-frequency” oscillator admittances at the
fundamental and second-harmonic frequencies. Complete characterization
of this mode 1is equivalent to specifying the behavior of each of the four
elements of the equivalent circuit as functions of the oscillation state vari-
ables: fundamental voltage and frequency, second-harmonic vollage and
relative phase. Using the approximate large-signal analysis of Blue," the
values of the equivalent circuil elements are presented, as an example, for
a 6-GHz IMPATT diode under a variely of oscillalton conditions. This
equivalent circuit 1s used to clartfy the role played by the fundamental and
second-harmonic, single-frequency oscillator admiitances in the tuned-
harmonic mode.

Using an approximation to the equivalent circuit, we investigale the
criteria for stable osctllation of the tuned-harmonic mode. It s found that
the stability criteria are in general quite restrictive. For the same 6-GHz
germanium diode, the range of stable phase is investigated, as a function
of the RF parameters, for certain special cases. It is found to be possible
to satisfy the stability criteria for the phase which gives an optimum en-
hancement of the fundamental power output if cerlain conditions on the
external RF circuit are satisfied.

I. INTRODUCTION

It was found by Swan?® that the introduction of a trapped resonance
at the second harmonic of the oscillation frequency in a 6-GHz Ge
IMPATT diode oscillator provided dramatic increases in the output
power and efficiency, as compared with the results obtained with the
ordinary single quarter-wave transformer coaxial circuit. Since that
time several authors'®~® have reported both theoretical and experi-

1777
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mental examinations of the effect. It appears that the addition of a
properly phased second-harmonic voltage improves the phasing of the
RF current relative to the fundamental voltage so as to increase the
negative conductance and (at least at lower frequencies) give an in-
crease in the power output at the fundamental frequeney. The circuit
conditions required for the observation of this effect have been incom-
pletely understood.

The purpose of this paper is to present the results of an analytical
study of the interaction of an IMPATT diode with a circuit having
resonances at two harmonically related frequencies. The analysis is
begun by the introduction of an equivalent circuit for the diode by
which these two-frequency oscillators may be characterized. A stability
theory is then developed along the lines taken by Kurokawa which
examines whether a particular circuit, even though matching the
impedances required by the diode at both frequencies, will or will not
provide a stable oscillation.’’® The stability theory is examined in
some generality, and three special cases are studied for which tractable
analytical results can be obtained. It is found that in the case of zero
fundamental or second-harmonic voltage, the theory reduces to the
single-frequency stability criteria derived by Kurokawa. In more
general cases, the theory indicates that by designing (or adjusting)
the circuit carefully one can obtain stable operation at phase angles
which enhance the fundamental power. However, the theory also
indicates that stable operation may be impossible if the circuit-diode
interaction is not just right, even though the diode and circuit are
matched to each other at the two frequencies.

In a final section, a numerical example is given in which the theory
is applied to a model of a 6-GHz germanium IMPATT diode, using
the approximate large-signal analysis of Blue.

II. TWO-FREQUENCY CHARACTERIZATION

The IMPATT oscillator is truly a single-frequency oscillator only at
very small ac voltages and currents. At larger signal levels the non-
linearity is very strong, and therefore there should be strong inter-
actions between harmonically related signals. However, by operating
the diode in a well-designed single-frequency circuit, the power output
may be limited to a single frequency. This may be done, for example,
by presenting short-circuit, open-circuit, or reactive loads at the har-
monic frequencies. In the case of short circuited harmonics, the har-
monic voltage amplitudes V, are zero, and only the fundamental
voltage V, is nonzero. It is then common practice to calculate a large-
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signal diode admittance as a function of V,; and to use this admittance
to describe device behavior. On the other hand, for the case of open-
circuited harmonies, the harmonic currents, I, are zero, and only the
fundamental current I, is nonzero. It is then preferable to characterize
the diode by a large-signal impedance which is a function of the RIF
current amplitude 7, . Both of these conditions constitute tunings at
the harmonic frequencies, albeit ones that are particularly useful and
simple to express analytically.

To consider other, more general, loading conditions at the harmonic
frequencies, one must introduce two more variables (amplitude and
phase) for each additional frequency for which the amplitude is nonzero.
One of the most important points is that the input admittance (for
example) at the fundamental frequency is no longer a unique function
of V, and the frequency f; but instead defining the state of oscillation
requires a vector whose components are Vy, -+ , Vy, f, 0o, -+, on
where N is the maximum harmonic number of interest and ¢, is the
phase of the kth harmonic voltage relative to the fundamental. This
vector does uniquely describe the state of oscillation, and for every
such vector, there exists a set of complex admittances ¥, - -+ yx which
are uniquely determined. If this is not so, it simply means we have
inadequately described the system and must include more component
signals, either harmonics or subharmonies.

We shall limit the discussion to include only two harmonically related
frequencies and consider that V, = 0 for £ > 2. This also means that
we will only discuss the admittance characterization and not the im-
pedance characterization.

A convenient way of utilizing the information already known about
the large-signal single-frequency admittance of the diode is to separate
the input admittances at the two frequencies as shown in Fig. 1. This
equivalent circuit shows a fundamental port and a second-harmonic

" Iz
L= r . 0
| + +
Yy \2 Yu lylezeN’Z /rl Uao VeBI?2
Yoty
- -o—4 . . 5-|--0
Yin| Ylnz

Tig. 1—Equivalent circuit of the IMPATT diode which includes nonzero voltages
at two harmonically related frequencies. Port 1 is the fundamental port and port 2
is the second-harmonic port; y11 and ys» are the large-signal single-frequency diode
admittances at the fundamental and second-harmonic frequencies, respectively.
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port. The admittances y,,(V,) and y;:(V:) are the large-signal single-
frequency admittances that would be measured at the fundamental if
there were no harmonic (or subharmonic) voltages present. That is,
they are just the ordinary large-signal admittances y(V) at the fre-
quencies f and 2f.

The admittances 1,:(Vy, Vs, f, ¢2) and y:(V,, V2, f, ©.) account
for the conversion of current between the two frequencies and it is the
study of their effects that is the main subject of this paper. The phase
@9 1s defined by the assumed voltage waveforms

1,(1) = V, cos wol
and
vo(1) = Vs cos Lwet + ¢2).
The input admittances are

Vs exp (jeo)

Yie = Y1 + V12 _—Ifl——— (1)

and
- - '
Yie = Y22 + Y V, exp (j%) 2

at the fundamental and second-harmonic frequencies respectively.
Sinee y,; and y,, are independent of the phase ¢, by definition, equations
(1) and (2) show that the input admittance loci for fixed V, and V, will
be counter rotating closed curves as a function of ¢, . These curves will
enclose the admittance points y,, and y.. separately providing that
Y12 and ¥, are not strong functions of ¢, . If, for example, y,, and y,,;
are independent of ¢,, Y. and Y., will be circles centered about
Y1 and ¥., respectively, the radii of which depend upon the ratio
V,/V,. They generally turn out to be somewhat elliptical in shape®
although, in many cases, of very low eccentricity.

Figure 2 is the calculated' large-signal, single-frequency, admittance
plane plot for a 6-GHz germanium diode, from which ¥,, and ¥,, may
be obtained directly. Figures 3 and 4 show Y, and Y,,, for various
fundamental frequencies when the voltages are held constant, demon-
strating the elliptical and circular behavior noted above. Note that in
Fig. 4 the second-harmonic input admittance has a positive real part
for some ranges of the phase ¢, . To operate at such phase angles and
RF voltages, the external circuit must supply power to the diode at
the second-harmonic frequency, and thus these conditions are un-
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Fig. 2—The calculated large-signal single-frequency admittance of a 6-GHz
germanium IMPATT diode at a bias current density J, = 340 A/cm?

realizable when operating into a passive circuit. The diameter of these
admittance contours is inversely proportional to the second-harmonic
voltage amplitude V,, however, so that at higher values of V,, the
entire contour may lie in the left-half plane.

The rather simple structure of the Y;,; and Y, loci of Figs. 3 and 4
suggests that y;» and ., might be rather insensitive functions of ¢, .
This is borne out by the plots of Fig. 5 in which ;. and y., are shown
at constant fundamental voltage V, and several values of V,, with ¢,
ranging 0 = ¢, = 27. This figure also establishes that ¢, and y.; do
not change drastically as a function of V,. It was also found that y,,
and ¥, depend upon V; in an approximately linear fashion. This is
shown in Fig. 6 where y,,/V, and y.,/V, are plotted versus V; for
several values of ¢, with V, constant. Thus, for moderate values of
V. and V,, we can make the approximation that y,. and y,, are both
proportional to V,; and independent of ¢, and V, . To demonstrate this
analytically, let the phase of the fundamental voltage ¢; 5 0, and con-
sider a power series expansion of the currents 7,, = y,,V, exp (jo.) and
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Fig. 3—The input admittance, Y, at 3, 4, 5 and 6 GHz as it is modified by
the presence of a second-harmonic voltage for Vi = 10 volts, V. = 1 volt and
Jo = 340 A/cm?e.

191 = YV exp (o). Selecting the lowest-order terms having the
appropriate frequencies, we find that
Yz < Viexp (—jo1)
and 3)
Y = Vyiexp (o)

which confirms the approximate linear dependence on V, and gives
the appropriate form of the ¢, dependence. It will be convenient later
to approximate y,, and y,, by the quantities
He = K Vi exp (—jo) = 1, Vi exp [—jler — ¥1)], (4)
Far = KV, exp (o) = Vi exp [jlen + ¢2)],
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where ;, = | Ki |, ks = | K. |, ¢ = arg (K,) and ¢, = arg (K,). Note
that for ¢, = 0 (only the phase ¢, — ¢, is important), ¥, = arg (y1»)
and ¥, = arg (¥,;) which is what will usually be assumed.

The quantities #;, and §,, may be defined as the average of y,, and
Y21 over the phase ¢,. Ifor the 6-GHz oscillator example, the calcu-
lated values of 7;, and @, as a function of frequency are shown in Figs.
7 and 8 and the phases ¥, , ¥. and ¢, - ¢, are shown in Fig. 9. Obvi-
ously these are only first-order approximations, but the complexity of
the stability analysis requires some suitable approximation to obtain
qualitative understanding.

The interaction of the diode equivalent circuit of Fig. 1 with an
external circuit can be visualized by connecting an admittance Y, to
the second-harmonic port. The fundamental input admittance is then

280

240
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-40 1 1 | 1 |
~160 =120 -80 -40 o] 40 80 120
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Fig. 4—The input admittance, Yins, at the second harmonic of 3, 4, 5 and 6 GHz
for the same conditions as Fig. 3. '
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volts at 6 GHz, showing the relative insensitivity of y:» and ya to changes in Vs
and ¢; for moderate values of V.

_ _ _ Yol
Yim = yn Yor + Vs (5)

Tuning the second harmonic by adjusting ¥, provides the possibility
of almost any input admittance ¥, . In particular, | ¥, | = o gives
the short-circuit termination and Y., = y,; . Equation (5) also pre-
dicts a pole in Y,,; at the frequency for which y., + Y, = 0. This is
not an ordinary pole as in linear circuit theory however for two reasons:
(%) ¥22 may have a negative real part because it is an active device, and
(%) Y22 18 a function of V, so that the “pole’” at y,2 + Y, = 0 moves
with changing V, . This means that a resonance type of behavior should
be observed, but that the only condition where 3, + Y, = 0 is for
V. = 0, which is just the single-frequency oscillator condition at 2f.
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III. STABILITY OF THE OSCILLATION STATE

Given an oscillation state which prescribes the admittances at the
two frequencies, there are two requirements on the circuit that must
be met in order that this be an obtainable state of steady oscillations.
These are the requirements of circuit realizability and oscillation-state
stability. The realizability criterion is simply that the required circuit
have admittances whose real parts are greater than zero. The stability
criterion is that any perturbation away from the given state will asymp-
totically return to the original state.

The stability problem has been recently discussed by Kurokawa’'*°
for the single-frequency negative-resistance oscillator. By following the
approach used by Kurokawa and extending it to two-frequency inter-
actions, the equations governing the stability of the harmonically
tuned oscillator are derived in Appendix A. In this section, they are

1.0
K2 /AREA IN MHOS /CM2 —VOLT
] 1.2
0.8}~ \
0.8 \ ——1--00= ¢2(77RADIANS)
O— \ //’
-~ -~
0.6 - \*\\\ //
\ ~N !
\\1’-—6-
0.4} \ ':5 -\Q
(
‘\ \\\ =
0.2 \ \\\ﬂ
et E 1.6
% 0.4
Z o
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b3 MHOS /CM2 -VOLT
02 0= (7 RADIANS)
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-04 0.8
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-0.8 F \
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Fig. 6—Complex plane plot of K; = y12/Vy and K» = y21/V, as a function of ¥V,
for various values of second-harmonic phase ¢;, at 4 GHz,
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Fig. 9—The arguments 1, Y2 and y¥1 + y2 versus frequency, showing a nearly
linear dependence.

applied to several special cases, and theoretical examples of their use
with the 6-GHz germanium oscillator model of Blue are given in
Section IV,

In Appendix A, it is shown that the stability of an oscillation-state
for small perturbations is determined by the solution of the system of
equations

— 4+ Be=0 (6)

where the vector e is defined as
da,/V,
e= | da/V, @
ez — 2¢1))

and the matrix B is given by
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As discussed in the Appendix, da,, da, and 6(¢s — 2¢,) are the
perturbations in the fundamental and second-harmonie voltage ampli-
tudes and the relative phase, respectively. V, and V, are the unper-
turbed values of fundamental and second-harmonic voltage amplitudes.

The remaining quantities in the B matrix are defined as follows. The
fundamental and second-harmonic external circuit admittances are
Yi(w) = Gy 4+ jB1o and Y,(2w,) = Gy + jBsy, respectively. The
primes on Y; and Y, in equation (8) denote differentiation with respect
to frequency at w, and 2w, respectively. x; and «, are defined in equation
4).

The saturation parameters s, r and u, v are defined by equations
(55) through (58) in the Appendix. They relate to the nonlinear satura-
tion of the diode’s conductance and susceptance at the fundamental
and second harmonic frequencies, respectively. The significance of s
and r is shown schematically in Fig. 10, with % and v interpreted by a
similar diagram for the second-harmonic admittance.

We have also introduced the angles o; and «, which give the slope
on the complex plane of the circuit admittances at w, and 2w,

4
cos a; = G sihg, = —F—22— 9
“= Ve U~ Vastm: 9
G20 . BéO
y SIn o, = —I'—-—______
G + B2 * G+ BE
and the angles v, and v, which measure the slope of the admittance
curves y,; (V) and ..(Vs,);

COS a; =

(10)

S

COS Y = T, Sin Y1 = —r_;_—. (]_1)
\/7‘2 + e ’\/1‘2 + $

COS vy = S — ,  siny, = S — (12)
Vu? +° VUi +0°

Also, 0,0 and 8,, are defined as in equations (48) and (49) of the Appendix
but with the phase ¢; set to zero. That is

b0 = —¢2 — ¥
and ' (13)
00 = @2 — Y.
Note that
010 + 020 = —Y¥1 — Y. (14)
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Fig. 10—Interpretation of the saturation parameters s and r for the fundamental
admittance y;;. Similar definitions hold for « and » for the second-harmonic ad-
mittance ¥s,.

For the Ge oscillator considered here, the direct relationship between
@ay 05 and 6y, as determined from equation (13), is shown in Fig. 11
for several frequencies.

The angles «y, v; and 6,, are shown in Fig. 12 which is a plot of the
negative of an assumed circuit admittance —Y,(w) and the diode
single-frequency admittance y,,(V;) in the neighborhood of the funda-
mental frequency. The point of intersection at w, gives the frequency
and amplitude of the fundamental oscillation with zero second-har-
monic voltage. As the voltage V. is increased by presenting an appro-
priate value of Y,(2w,), the frequency will shift to some new value
wo generally accompanied by a change in voltage to V,. This shows
that the current injected into the fundamental circuit by the ¥,,V,
exp(jg.) current source of Fig. 1 is just that sufficient to obtain the
difference between the admittances — Y (w,) and y,,(V,). This addi-
tional admittance may be considered as a vector pointing from y,,(V )
to —Y,(w,), and it is the angle 8, measured clockwise about the y,,(V,)
point that determines the orientation of this vector. Its length is given
by |yi2| V./V,. The angle «, gives the slope of the circuit curve at
— Y, (w,), and the angle v, gives the relative change in reactive to real
part of y,;(V,) with increasing voltage V, at the operating point. The
angles as, v, and 65, may be defined in a similar manner in the second-
harmonic admittance plane.

The solution of equation (6) subject to a small initial perturbation
has a decreasing amplitude with increasing time if the eigenvalues of
the stability matrix B all have real parts greater than zero. Suitable
tests have been devised to determine this property.'' The general case
is difficult to do analytically and generally difficult to interpret if done
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numerically because of the large number of parameters of the system.
This is done however for the 6-GHz oscillator example given in Section
IV, and the results are compared with the simplified results of this
section.

In the remainder of this section, three special cases are examined
which are severe approximations to the general case, but which yield
interesting information. The first of these is that of a single-frequency
oscillator, ¥V, = 0. The second is the fictitious weak-coupling case
which does not apply to the germanium diodes modeled here, but is
included because of simplicity and for completeness. The third case is
that of a strongly coupled small-signal approximation which gives
qualitatively most of the features observed from the complete study

3.0

0o | 1 | i

] 0.5 1.0 1.5 2.0 %.5
b20/T

Tig. 11—Oscillator phase relations for the 6-GHz germanium example; ¢, versus
620 with loci of constant 8y, at 3, 4, 5, 6, 7 and 8 GHz.
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(+) SUSCEPTANCE

(—) CONDUCTANCE

Fig. 12—An assumed fundamental admittance plane plot showing the angles
a1, 71 and 61 The device admittance is y1i(a1) and the negative of the circuit ad-
Iréltécance is —Y1(w). A similar diagram defines «s, v2 and 62 in the neighborhood
O wo.

of the eigenvalues of B, which is carried out in Section IV for the ger-
manium diode case.

3.1 Single-Frequency Limit

In the very special case of V, = 0, only the first and third parts
of equation (6) remain and they give the conditions

sin(a; — v, > 0 (15)

and

k2 V1 cin (@ + ) < 0. (16)

| Yz |
These are simply the conditions required for stability of a single-
frequency oscillator {equation (15)] with the added condition (16) due
to the coupling to the harmonic. If the coupling to the harmonie,
k2, 18 zero for V, = 0, equation (16) does not apply. Thus, for the
single frequency oscillator with V, = 0, the familiar stability relation is
recovered.’’
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3.2 Weak-Coupling Limit
For an oscillator having very small «, and «,, the first two parts of
equation (6) decouple. This gives
sina; —7) >0 (i=1,2)

which are the single-frequency stability conditions at w, and 2w, for
j = 1 and 2, respectively. The third equation then requires

sin(e; + 010) + psin(as + 65) < 0 (17)

where the parameter p is defined by
“= 5§K/12||I§le| (18)

We may write equation (17) as

sin(g, +£) <0 (19)

where ¢ is defined by the equations
psing = —[sin(¥y — o) + psin(ye — )] (20)

and

peost = —[ecos(¥; — a;) — wcos(Ps — az)l. (21)

For a given pair of V;, V, and for a fixed circuit, equation (19) thus
gives the range of ¢, for stable operation in the weak coupling limit.

3.3 Small-Signal, Strong-Coupling Limit

Tor very small signals the admittances y;; and y,. are independent
of ¥, and V, so that s = r = u = v = 0 provides another approxima-
tion of some interest, providing that the coupling is still significant.
In this limit, we obtain four constraints which are necessary and
sufficient’’ to insure that the matrix B have positive eigenvalues.
These are

k, —sin (o, + 6y) — wsin (@ + 65) > 0, (22)
ks = —sin (@; + 6050)-sin (s + 05)

+ 3 cos (a; + 60)- 08 (@2 + 030) > 0, (23)

ks = sin (@ + ) + psin (o, + 6,0) > 0, (24)

ko = ik, — ks > 0, (25)
where p is defined by equation (18).
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The significance of this case is that for ¢ = 1, conditions &, > 0
and k; > 0 are contradictory. This implies that 4 = 1 is a ecritical
value and is indeed unstable, whereas for p approaching zero or in-
finity stable states of oscillation do exist. These p < 1 and p > 1
stable states are exclusive of each other so that, as the conditions of
oscillation are changed, if u passes through the value unity a discon-
tinuity in the oscillation will occur wherein the phase, the power and
the frequency may all jump suddenly to new wvalues.

To demonstrate the existence and exclusive nature of the p < 1
and g > 1 limits, consider equations (22) through (25) Note first of
all that if a solution is obtained for a given value of u, the solution for
the reciproecal of that value of u is obtained by interchanging the sub-
scripts 1 and 2 on the angles o and 0. Thus, we need only consider the
limit g << 1; the limit g >> 1 being obtained from symmetry. For u <
1, equations (22) and (24) yield [Using equation (13)]

r—ta<e<2r—¢Yi+a (k >0) (26)

and '
Vo — s < oo <+ Yo —ay (k; > 0) 27)
respectively. For purposes of illustration we consider ¢y = a, = a@.

Then the regions defined by equations (26) and (27) may be plotted
in the ¢,, @ plane. From equation (25), if k,, ks and k, are > 0, k; >
0 is automatically satisfied. Consider the constraint &, > 0, which may
be written

—OOS(a1 + 010)[2 Sin(al + 010 + (¢4 + 020)
+ sin(oy + 610 — az — 05)] > 0. (28)

We see that cos(a; + 6) = 0 is a critical condition, on either side
of which the term in the brackets must also change sign. Thus, the
lines

o2 =1 —azxn/2 (b =0) (29)

in the ¢,, & plane are critical lines. Further, consider cos(a; + 61) >
0, then

sin(¥, + ¥ — 2a) > —sin2e: + ¥1 — ¥2)/2 (ke > 0).  (30)

Equation (30) represents a curved boundary in the ¢, @ plane and
must be computed numerically. In Fig. 13 the regions bounded by
equations (26), (27), (29) and (30) are plotted. The data used for this
figure (¢, and ¢.) were taken from the Ge IMPATT example at a fre-
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Fig. 13—Regions of stable ¢; versus @(on = @2 = &) in the strongly coupled
small-signal limit at 4 GHz; p < 1.

quency of 4 GHz from Fig. 9. Figure 13 shows that, for u < 1, there
are two disjoint regions. Also indicated are the values of ¢, for which
6,0 = 0, m/2, 7, 3n/2. The angle 0,, (Fig. 12) measures the relative
location of the diode’s actual input conductance with respect to the
single-frequency large-signal negative conductance, at the fundamental
frequency. For —7/2 < 6,, < 7/2, cos 0, is positive and the input
conductance is less negative than it would be for zero harmonic voltage.
For this range of 6,, then, the fundamental output power is degraded
by harmonic tuning. On the other hand, for /2 < 6,, < 3x/2, the
input conductance is more negative than for ¥V, = 0, and the funda-
mental output power is enhanced by the presence of harmonic tuning.
These relationships can readily be seen by rewriting equation (1)

Vs, cos @
Re (Yim) = —g: + I?/12 I 2 7% 19,
1
Indeed, 6,, = = maximizes the fundamental output power for the

particular values of V,, V, being studied. We see that at 4 GHz, the
maximum fundamental power point exists within a stable region for
p K 1. It is also interesting that the minimum fundamental power
phase (8,, = 0) is in a separate region which requires a considerably
different circuit.
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To obtain the similar diagram for p 3> 1, the same considerations
can be reapplied to &, through %,, or the subseripts on ¢ and « can be
interchanged. Either way, Fig. 14 shows the result. Comparison of
Figs. 13 and 14 shows indeed the disjointed, mutually exclusive be-
havior of the y << 1 and u > 1 regions of stability. Additionally, it
shows that for a given circuit (i.e., a given &), there are two stable
ranges of phase ¢, (if any at all) depending on .the value of u relative
to unity. One of these encompasses the 6,, = = maximum power phase
and the other encompasses the 6;, = 0 minimum power phase. A change
in the bias current, which does not alter significantly the circuit vari-
able & may well change the relative value of u from >1 to <1 or
vice versa, and such a change would necessitate a change of phase
to a different branch. Thus, which branch of the stability diagram
the oscillation state is in is determined by the history of tuning and
bias eurrent changes. This type of behavior would be observed experi-
mentally as a hysteresis in frequency or power or both, which if analyzed
would indicate that the input admittance of the diode at the funda-
mental frequency is a nonunique function of the fundamental RF volt-
age. The presence of this effect would be indicated if one were able
to obtain two different values of power output for the same frequency

2.5 — /‘\

N T T T
AN

2.0

0.5

o] 0.5 1.0 1.5 2.0

a/w

Fig. 14—Regions of stable ¢, versus ale1r = «; = &) in the strongly coupled
small-signal limit at 4 GHz; u > 1.
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by changing the bias current only, without retuning the RF circuit
in any respect. Observation at a single frequency is required in order
to rule out the possibility of multiple-valued ecircuit admittances.*

In the next section, we compute the regions of stability for the
germanium IMPATT example in full generality; that is, we use the
complete form of the matrix B, equation (8). This must be done nu-
merically so a limited number of cases can be examined, and the results
are compared with the approximate forms of this section.

1V. 6-GHZ GERMANIUM OSCILLATOR EXAMPLE

Using Blue’s approximate large-signal analysis,’ the equivalent cir-
cuit parameters of Fig. 1 have been calculated for a germanium diode
of depletion layer width 4.75 microns with an assumed avalanche zone
width of 1.5 microns. This gives a critical field £, = 1.87 X 10° V/em
for a bias current density J, = 340 A/cm?® which agrees quite well
with the value obtained from a more exact numerical treatment. The
design of this model was an attempt to model the germanium diodes
reported by Swan® and by Gewartowski and ‘Morris.'* Because the
Read theory is slightly incorrect in its reactive effects, the frequency
of maximum negative conductance was at about 6 GHz for the model
but appeared to be at about 8 or 9 GHz for the actual diodes. In com-
paring the results of this work with those of the experiments, it there-
fore seems most useful to discuss frequency relative t0 fma.x, at which
maximum output power is obtained. Thus, 4 GHz in this analytical
work is roughly equivalent to 6 GHz in Swan’s experiments. Table I
lists the large-signal information obtained from Figs. 2, 8 and 9 that is
needed for the solution of the stability constraints. This information
was obtained for V, = 10 volts and ¥, = 10 volts, and a de bias current
density J, = 340 A/cm’.

It is known that at resonance in a low-loss circuit where the real
part of the admittance is constant or nearly so, the external @ can be
written

_ o dB
Qext — 2G0 dw

where G, is the real part of the admittance at w, and B is the suscep-
tance. Resonance is defined by the vanishing of B(w,). It is useful
here to extend this definition to define the slope parameters

ay,
dw

@W=wWo

Wo

=26,

D,

w=wo
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TaBLE [—D1opE LARGE-SIGNAL PARAMETERS ATV, = V, = 10 VoLts
3 GHz 4 GlIz 5 GIIz 6 GHz
gn (mhos/cm?) 5.8 12.7 15.4 15.6
g22 (mhos/cm?) 15.6 12.7 8.5 4.3
%"VL (mhos/em®-volt) 0.0 0.22 0.24 0.21
1
9by \
v (mhos/em?2-volt) 1.1 0.65 0.30 0.20
%’Vi (mhos/emi-volt) 0.21 0.125 0.065 0.035
2
9 (mmhos /em-vol
W (mhos/cm?-volt) 0.20 0.0 0.0 0.0
Y1 (7 radians) —0.2089 —0.3056 —0.395 —0.477
Y2 (= radians) 0.9031 0.7742 0.6181 0.4798
«1 (mhos/em?volt) 1.25 0.86 0.59 0.42
k2 (mhos/em2-volt) 1.25 0.70 0.385 0.205

at the fundamental frequency and

_ @ | dY,
D. = G20| de

at the second harmonie. If, at w = w, and w = 2w,, G4, and G4, vanish
respectively, then D, and D, reduce to the external @’s of the circuit
at these two frequencies, particularly since the major portion of the
diode’s susceptance is considered to be part of the external circuit.

Since, at an equilibrium point, from equations (44) and (46) of the
Appendix

w=2wo

G = g1 — V5 cos 6,
and
Gy = g — ks V1 COS O, R
specification of the parameters D; and D, permits the calculation of

| Y7] and | Y} | from the information of Table I.
The general stability criteria for the matrix B are as follows: Let
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B be represented
a b c
B=|d ¢ fl-
g h ¢
The condition that the eigenvalues of B all be positive implies that
khk=a+e+171>0,
ke = ae + et + at — bd — fh — ge > 0,
ky =detB >0
and
ky = kky — ks > 0. 31

These conditions must be checked numerically, and the number of
independent variables for a general study is quite large. In the calcula-
tions done here, the circuit variables have been restricted to «; = a, =
a, with two sets of slope parameters; (i) D, = 50, D, = 500 and (¢2)
D, = 50, D, = 10. The restriction on «; and «a, is quite artificial but
allows comparison with the approximately determined regions of Section
III. The two sets of slope parameters D,, D, are an attempt to model
(7) a high @ and (4) a low @ second-harmonic circuit, respectively,
and to thereby approximate the two conditions 4 << 1 and p > 1 for
the same set of diode data.

The results of these calculations are shown in Figs. 15 and 16 for
the frequencies 3, 4, 5 and 6 GHz. These show the values of stable
second-harmonic phase ¢, as functions of the circuit angles, o; = a; =
@. These regions repeat themselves with a periodicity of 27 in both
¢, and @. Only the principle branches are shown but it should be under-
stood that wherever one of these regions extends across the boundaries
chosen, it should be reflected back into the region at the opposite
boundary. Figure 15 is for the case D, = 50, D, = 500, and corresponds
to a value of p < 0.4 everywhere. Figure 16, for which D, = 50, D, =
10, corresponds to values of u from near or slightly less than unity, to
greater than 4 to 8 (the only exception is in Fig. 16a where one region
appears having a value of u ~ 0.02). It should be noted that the value
of p = 1 is no longer a critical value, inasmuch as stable states may
now exist for which p = 1. They do not appear to be large in number,
however, and one may think of 4 = 1 as a transition value for which
the area of the stable regions in the ¢,, & plane becomes small.
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Fig. 15—Large-signal regions of stable ¢, versus a(a:1 = a2 = &) as obtained
from the eigenvalues of the complete B matrix for the germanium oscillator example
at (a) 3 GHz, (b) 4 GHz, (¢) 5 GHz, and (d) 6 GHz; circuit variables D; = 50,
D; = 500; diode variables V; = ¥V, = 10 volts, Jo, = 340 A/em? This figure has
u# < 1 everywhere.

Consider the 4-GHz results and compare Figs. 15b and 16b with
Figs. 13 and 14. The locations of the stable regions in the ¢,, @ plane
show a one-to-one correspondence but with greatly distorted shapes.
It therefore appears that the strongly coupled small-signal approxima-
tion used in Figs. 13 and 14, together with the u < 1 and u >> 1 cases,
does give useful information about the general location of these stable
regions for more realistic cases. The general properties of disjointedness
and mutual exclusiveness are no longer strictly true (for example,
there is some overlap of the regions centered at & = = in Figs. 15d
and 16d). However, it is easy to see that tuning discontinuities may
still occur, and that the circuit angles @ must be considerably different
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to obtain oscillation at 6,, = , for example, for the two different sets
of values of slope parameters considered.

It is interesting that the angles a; and «, (and therefore, &) are
equal to w/2 for simple shunt resonant circuits at both » and 2w, and
that the stability diagrams show no cases of stable operation for this
condition. Because of the approximations of this analysis, this cannot
be construed to be a general conclusion, even for the diode modeled.
It does show however, that such conditions may arise and that obtaining
just the correct phase relations for maximum output power with a
given circuit may be extremely difficult.
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Fig. 16—Large-signal regions of stable ¢, versus a(a; = a2 = &) as obtained
from the eigenvalues of the complete B matrix for the germanium oscillator example
at (a) 3 GHz, (b) 4 GHz, (¢) 5 GHz, and (d) 6 GHz; circuit variables D; = 50,
D; = 10; diode variables V; = V, = 10 volts, J, = 340 A/cm? This figure has
p > 1 everywhere except as noted.



1802 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1970

Another observation is that the angle 6, = 7 for maximum funda-
mental power output does have a stable realization in almost every
case examined, even with the restriction «; = as.

If the points of operation along the circuit admittance curves Y, (w,),
Y:(2w,) are near minima of their real parts, the angles «; and «, are
restricted to lie in the range 0 < «; < 7, j = 1, 2. Such a limitation
seems to imply different possibilities at the four frequencies calculated.
At 3 GHz, stability is obtained in the neighborhood of 6, = 7 and
only for the D, = 500 case (p < 1). At 4 GHz, stability near 6,, = =«
is only obtained for the D, = 500 (u < 1) case, but there are additional
stable states at or near 6,, = 0 for both the D, = 500 (v < 1) and D,
= 10 (u > 1) cases. Also, at 4 GHz, TFig. 16b shows a region which
encompasses the 6, = /2 point which is a crossover between enhanced
and degraded fundamental power. The 5-GHz cases are very similar
to those at 4 GHz except that there are more enhanced-power stable
states for the D, = 10 (u > 1) case than at the lower frequencies.
At 6 GHz, this shift is more advanced with roughly an equal number
of stable states in the enhanced power region for the D, = 10 (u > 1)
and D, = 500(u < 1) cases.

V. SUMMARY AND CONCLUSIONS

An analysis of the stability of the tuned-harmonic mode in IMPATT
oscillators has been presented using a simplified model of the frequency
conversion in the avalanche diode. It has been shown that the stability
constraints are generally quite restrictive and difficult to satisfy, par-
ticularly for diodes showing strong harmonic interactions. The goal
of this work has not been to present a set of design curves which insure
stable tuned-harmonic operation, but rather to consider the difficulties
which the stability constraints present.

When the circuit restricts the voltage across the diode to be largely
sinusoidal, this analysis reduces to that of the stability of a “single-
frequency’’ oscillator. For nonzero fundamental and second-harmonic
voltages V; and V,, a characteristic parameter p has been defined
[equation (18)] which is dependent upon both diode and ecircuit char-
acteristics and degree of excitation. The value of u = 1 appears to be
somewhat critical in that the stable regions for u > 1 and p < 1 are
usually separate. Any tuning or bias changes which force p to pass
through unity are very likely to produce sudden changes in the output
variables, i.e., power and frequency. For example, the single-frequency
oscillator is destined to have p >> 1 because of the small value of V,.
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However, for equal V; and V, and D,/D, ~ 10, p < 0.4. Thus the
single-frequency oscillator and the tuned-harmonic oscillator (high @,
2w, cireuit) are likely to operate in different regions of stability.

The numerical treatment of the stability criteria have been restricted
to the case where the circuit angles «; and a, are equal. Thus the
results presented here cannot be considered complete. However, in the
example studied, it was found that at an operating frequency two-
thirds the frequency of maximum output power, the phase ¢, for maxi-
mum power is indeed stable and also corresponds to a realizable cir-
cuit. It was also found that it is possible to degrade the output power,
and therefore, harmonic interactions when improperly adjusted can
severely lower a diode’s output power from that which would exist
with no harmonic voltage at all.

As a necessary part of this instability analysis, a two-port model
for the interaction was introduced and characterized for the 6-GHz
germanium IMPATT model presented. This characterization illustrates
the role of the second harmonic in introducing a “pseudo-pole’” into
the nonlinear admittance of the fundamental, and it clarifies the rele-
vance of the single-frequency admittance plane characterization for
the tuned-harmonic mode of operation.

This analysis also has assumed that ¥, and y,; may be described
by equation (4). If, on the other hand, y,, and 7., are assumed constant,
then this analysis becomes identical with that of two nonlinear oscilla-
tors coupled through a linear circuit. That analysis can be carried
through in the same manner as presented here. In such a case, the
weakly coupled case becomes of considerable interest and has been
treated by Schlosser.’®

It is not necessary, of course, to introduce the two-port model of
Fig. 1 at all, with its attendant assumptions and approximations, but
it is possible to consider the perturbation of the oscillation-state di-
rectly from the numerical solution of the IMPATT equations. This
would be a more accurate method to pursue; however, it is felt that
the approach presented in this paper provides insight that might be
obscured in a more complicated approach.
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APPENDIX A

Derivation of the Stability Matrix

In this appendix, the stability of the oscillation-state is considered
using a linearized perturbation treatment about any general large-
signal operating state. The result of this appendix is the derivation of
the state-equation (6) and the stability matrix B, equation (8).

Consider a prescribed state of oscillation satisfying the two condi-
tions

Yl(wo) + Yinl(Vl ) V. y 1 yﬁé’z) =0 (32)
and
Y2(2C°o) + YinZ(Vl ) V, y P1 >¢2) = 0, (33)

where Y(w,) and Y,(2w,) are the circuit admittances at w, and 2w,
respectively. An approximation is made that the input admittances
of the diode, Y,,; and Y,,,, are slowly varying functions of frequency
as compared with the circuit admittances Y;(w,) and Y,(2w,). This is
facilitated by considering the depletion layer capacitance, for example,
to be a part of the external circuit. Generally speaking, equations
(32) and (33) prescribe a functional dependence of w, the frequency
of oscillation, upon the voltage amplitudes and phases for small varia-
tions. For small variations in « we can approximate

dY,
Yl(wﬂ + 51) = Yl(wﬂ) + d - 6,
W Wo
and
dY
Yz(Qwo + 62) ~ Y2(2w0) + dw2 . <6y .

The 6§, can be determined by allowing the voltage amplitudes and
phases to be slowly varying functions of time

v,(t) = a;(?) cos [wot + ¢4(1)] (34)
and
0,(1) = ay(t) cos [2wet + 2(1)]. (35)

Differentiating with respect to time gives

. . d 1d ;
% = Re {l:jwo + ]—d@tl + Py %ilﬂq exp [j(wot + “’1)]} (36)
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and
dvy _ o des L%] : }.
a = Re {[2on +ig o di % exp [jwot + ¢2)] (87)
Thus, we can identify"’
_dey_ 1da
& = dt Ia, dt
and
_des _ 1 das
=0 " gt
and therefore
dY d . 1 da,
Vi, + o) = Yi(wo) + dwl (j% - ]a—1 'da?> (38)
and
dY2

Y. (2wy -+ 8,) & Vo(2w,) + do

de. _ ;1 o)
. (dt I dt (39)

are the circuit admittances related to slow variations of the amplitudes
and phases.

From the equivalent circuit of Fig. 1, the currents at the fundamental
and second harmonic are

u(t) = Re {[y1.a: exp (jou) + Y1202 exp (jeo)]- exp (juod)}
and
i2(t) = Re {[y210, exp (1) + Y2202 exp (jeo)]- exp (j2w01)},
which may be rewritten using the assumptions (4) as
4, = [—gi1a1 + 10,02 c0s(20; — @02 — ¥1)] cos(wet + 1)
F{—bia; + rxi010; sin(2p; — @2 — ¥1)] sin{wet + 1) (40)
and
(1) = [—g2as + K207 cos(p2 — 201 — ¥2)] c08(2wet + ¢2)
+[—02as + K20% sin(os — 201 — Pa)] sin(2wet + @s). (41)
Here we have introduced

Yu = —¢: + jb,
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and

Yoo = — g2 + Jb2 .

Kirchoff’s laws for the nonequilibrium case are

(1) + Re {Yl(wl)al exp (jei) exp (o)} = 0 (42)
and

72(t) 4+ Re {Ya(wo)a, exp (jeo) exp (j2wot)} = 0, (43)
where w, and w, are the perturbed fundamental and second-harmonic
frequencies.

Equations (40) and (41) with (42) and (43) give the following four
differential equations for the quantities a,(t), a:(t), ¢:(f) and ¢.(t)

G — g + G1 d% 4+ Bl = 1 (f;’ = —K,ay cOS 0, , (44)
—(By + b) — d% + @/ ;1 % = —Ka,sin 0, , (45)
G — g2 + Gz d% + B; ;2 (fzz = —kya, €OS 0, , (46)
~B b - B G Y s, @)

Here we have defined Y, = G, 4 jB,, Y, = (. + jB, and the primes
denote differentiation with respect to . Also

0, = 2¢, — ¢ — Y (48)
and
0 = ¢ — 20, — ¥ . (49)

Equations (44) through (47) may be rewritten so as to contain only
a single time derivative in each

.1 da,
a, dit

= “‘Klaz[Bl, [{0] 01 + Gll Sin 01J, (50)

Bi(G, — ¢) — Gi(B, + b)) + | Y] l

Gi(G, — ¢) + BB, + b) + | VI %

= —ia,[G] cos 6, — B sin 6,], (61)
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2 1 da,
a, dt

= —xa,[B} cos 6, + G4 sin 6,], (52)

Bé(Gz - gz) - G2,(Bz + bz) + [ Yé I

GHGy — g) + BY(B, + by) + | Y3 |? %

= —xa,[G5 cos 0, — Bfsin 6,]. (53)

Since ¢, is an aribitrary quantity with no physical significance, it can
be eliminated in favor of the difference phase ¢, — 2¢, since this appears
in both 8, and 6,. This is done by multiplying equation (51) by 2/| Y7 |,
equation (53) by 1/| ¥} |* and subtracting equation (51) from (53),
giving

d
71— 2e)

Gi(G, — g») + Bi(B, + b,) _ GG, — g) + Bi(B, + b))
| Y2 | B

G5 cos 6, — Bisin 0 G! cos 8, — B{sin 6
—_ —K2a1< 2 IZY; |22 2) + 2K1a2( 1 11Y; |21 1)‘

+ 2

(54)

Equations (50), (52) and (54) form the set of differential equations
for a,(t), a;(t) and ¢,(t) — 2¢,(t) which will be linearized for small
perturbations around the oscillation state. These perturbations take
the form

a, =V, + da,,
Vz + 502 )

[¢2
and

02 — 201 = @20 — 210 + 5(@2 - 2@1):

where Vy, Vs, @10 and ¢s are the unperturbed values of a,(t), a-(?),
o,(t) and @,(t). The perturbations in the voltage amplitudes will change
g1, b1, g2, by away from their values §,, by, J», b, which correspond to
8a; = 8a, = 6(ps — 2¢,) = 0. Thus, we define the saturation parameters
s, 7, 4, ¥ which describe the linearized variation of g, around §,, ete.,
by the equations (see Fig. 10)

8(Go — g1)

Pl (55)

S:L
Gho
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_ Vi 8By + b))

ro= Gon 5, , (56)
_ V2 8Go — g2)
w=Gr 5. , (67
and
L Ve 8B+ b) -

v= G20 5012

where the zero subscript on the circuit variables denotes their evalua-
tion at w, or 2w, as appropriate.

Equations (50), (52) and (54) may now be cast in a simple matrix
form

%+ Be=0 (59)
where the vector e is defined as
sa,/V,
€ = sas/V, (60)
82 — 2¢,)

and the matrix B is given by equation (8) of Section I1I. Equation (59)
indicates that the perturbations decay with time, giving a stable state
of oscillation, if the eigenvalues of the matrix B are all positive.

APPENDIX B

. Last of Symbols

a; , a, Slowly varying amplitudes of the fundamental and second-
harmonic voltages; equations (34) and (35).

B Stability matrix; equation (8).

B, , B, Fundamental and second-harmonie external circuit suscep-
tances; following equation (47).

by , by Imaginary parts of y,; and y.,, the susceptances of the
single-frequency oscillator admittances; following equa-
tion (41).

D, D, Fundamental and second-harmonic external circuit slope
parameters; Section IV,

G, q, Fundamental and second-harmonic external circuit con-

ductances; following equation (47).
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g1 5 G2 Negative of the conductances of the single-frequency os-
cillator admittances; following equation (41).

K, , K, Complex normalized form of y;» and y.:; equation (4).

s, Saturation parameters for the admittance y,;; equations
(55) and (56).

w, v Saturation parameters for the admittance y.,; equations
(57) and (58).

Vi, Vs Fundamental and second-harmonic voltage amplitudes;
preceding equation (1).

Y,, Y, Fundamental and second-harmonic external circuit admit-
tances; Fig. 1.

Yiu, Vi Fundamental and second-harmonic IMPATT diode input
admittances; equations (1) and (2) and Fig. 1.

Y11 s Yoz Fundamental and second-harmonic “single-frequency” os-
cillator admittances; Fig. 1.

Yiz 5 Y21 Conversion transfer admittances between fundamental and
second harmonic; Fig. 1.

T Approximate form of y;, and y.;; equation (4).

ay, o Fundamental and second-harmonic circuit admittance
slope angles; Fig. 12.

Y1, Y2 Fundamental and second-harmonic single-frequency diode
admittance slope angles; Fig. 12.

6y, 0, phase variables; equations (48) and (49).

010 5 Oa0 6, and 0, for ¢, = 0, equation (13).

Ky, Kg Magnitudes of K, and K, ; equation (4).

i Stability parameter, equation (18).

@1, @2 Fundamental and second-harmonic voltage phases; pre-
ceding equation (1).

¥, ¥ Arguments of K, and K ; equation (4).

W, FFundamental radian frequency.
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An Analysis of Adaptive ‘Retransmission
Arrays in a Fading Environment

By Y. S. YEH
(Manuscript received December 3, 1969)

We analyze in this paper the performance of adaptive retransmission for
improving two-way communication between antenna arrays in a randomly
fading environment. ’

For a stationary environment, S. P. Morgan has shown that complex
conjugate retransmission reaches a stable state and maximizes the signal-
to-noise ratio of a maximal ratio diversity reception system. We show that
a simpler system using phase conjugate retransmission will also stabilize
and maximize the signal-to-noise ratio of an equal gain diversity reception
system. ‘ ,

W here the fading is slow in comparison to the system settling-down time,
both systems provide a significant improvement in transmission,

Subject to Rayleigh fading, we have obtained the average signal strength
and its cumulative probability distribution for vartous combinations of
numbers of antennas in the two arrays for each of the above mentioned
systems. This information is useful in choosing an optimal division of
diversity branches for the two antenna arrays. It is further observed that
although the phase conjugate retransmission system s much simpler to
implement, its performance is only slightly inferior to the corresponding
complex conjugate system.

I. INTRODUCTION

Adaptive antenna arrays have been the subject of numerous in-
vestigations.’® In an adaptive transmitting array, the individual
element is excited according to information derived from the incident
pilot field. For example, in a compler conjugate system, the excitation
currents are proportional to the complex conjugate of the incident
voltages while the total power radiated is kept constant. In a phase
conjugate system, the currents are kept constant while the phases
are adjusted according to the conjugate phase of the incident voltages.

1811
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In a free-space environment, that is, plane wave incident from
a particular direction, it is well known that phase reversal would
steer the radiated beam toward the source antenna. Cutler and others?
have shown how phase reversal can be achieved by frequency con-
version of the pilot signal.

The role of adaptive retransmission in a multipath fading environ-
ment, for example, mobile radio, tropscatter communication, and so on,
has received far less attention. Still unanswered is the question of
whether the phase conjugate or the complex conjugate retransmission
schemes could improve the communication link and reach a stable
state. In his work, S. P. Morgan has shown that, in a stationary
arbitrary environment, stable state and maximal power transfer can
be achieved by complex conjugate retransmission.?

In this paper, we show that the much simpler phase conjugate
system will also reach a stable state. Furthermore, assuming equal
amplitude transmitting currents on the antenna elements, the sum-
mation of voltages received at one array is equal to that of the other
array and is maximized. Consequently, the phase conjugate retrans-
mission system will maximize the signal-to-noise ratio (S/N) of an
equal gain diversity reception system.t

In general, the fundamental differences of the two retransmission
schemes are that the phase conjugate retransmission maximizes the
sum of the amplitudes of the voltages received and the complex
conjugate retransmission maximizes the total power received.

Where fading is slow in comparison to the time required to reach
an equilibrium state, both systems could be used to improve the
quality of a fading communication link.

We investigate the performance of these two systems in actual
fading environments. In particular, we want to know how these two
systems differ in average S/N, what the S/N probability distributions
are, how much they improve fading statistics over a single branch
system and, finally, what the optimal division of number of antennas
would be between the two antenna arrays.

In order to answer these questions, we must first establish the
characteristics of the medium which links the two antenna arrays.
For example, in a mobile radio the signal received by a single antenna
is rapid varying and can be characterized by Rayleigh statistics over
distances of a few hundred wavelengths.® However, over an extended
range of observations, other large-scale phenomena such as distance
variations, shadowing, and channeling by streets will produce slow
variations of the average signal strength received. The adaptive
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retransmission system per se can reduce the rapid fluctuations but will
be of little help in reducing those long-term variations. Consequently,
the comparison of the performance of adaptive retransmission ar-
rays will be based on their relative effectiveness in reducing the
rapid Rayleigh fading.

The Rayleigh fading is also an excellent approximation in other
communication systems such as long-range UHF and SHF tropospheric
transmission,* and so on. Furthermore, results obtained from Ray- '
leigh fading can give significant insight into the performance of
adaptive antenna arrays under other fading conditions,

Based on Rayleigh fading statistics, we investigated the cumulative
probability distribution (CPD) of the signal strength of an m:n array
system. By m:n we mean that there are m antennas at station 1 and
n antennas at station 2. The analysis is done by the Monte Carlo
method on a digital computer. The 99 percent reliability level* as
well as the average signal strength for a unity transmitter power are
obtained. It is interesting to note that with the help of interpolation,
in most cases, only 96 computer samples are sufficient to yield a
CPD which is accurate up to a few tenths of a dB for all the infor-
mation we need.

The average S/N of the two retransmission schemes are compared.
It is observed that although the phase conjugate system is much
simpler to build, it is only slightly inferior to the complex conjugate
retransmission system.

For other types of fading distributions, the techniques described
here can readily be applied.

II. ANALYSIS OF THE PHASE CONJUGATE RETRANSMISSION

The configuration of the arrays is depicted in Fig. 1. The open cir-
cuit voltages and the transmitting currents in each array are rep-
resented by column vectors with the time factor exp (jwt) suppressed.
The mutual couplings are neglected and the antennas in each array
are assumed to be identical, with input resistance R during trans-
mission and admittance G during reception.

The transmitting current vector I, at array 2 produces the received
voltage vector at array 1,

where T' is an m X n matrix whose elements are proportional to the

* The 99 percent reliability level is defined such that for 99 percent of the time
the signal strength is above this level.
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Fig. 1—Arrays in adaptive retransmission system.

transmission between a particular pair of antennas. The real constant
C stands for the average transmission loss.
By reciprocity, the received voltage at array 2 is,
V2 = CI“I] (2)
where the superseript ¢ stands for the transpose of the I' matrix.
Here according to our definition of phase conjugate retransmission,
the elements of I; and I are of unity amplitudes although their phases
could be different, Multiplying equations (1) and (2) by I, and I,
respectively, we obtain the following
<V1 |Il> = C<PI2 )Il>y (3)
(Vz , I?) = C<Ptfl ) Iz) (4)
where the brackets ( ) stand for inner product. Equations (3) and
(4) are equal, and we obtain the following reciprocity relation

<V1 s L) = <V2 y Ip). ®) -

2.1 Stabilization of the Phase Conjugate Retransmission System

Let array 1 be excited initially with current I, which produces V, at
array 2. And let array 2 be excited with I, which produces V, at array 1.
Equation (5) holds and we have the following

Z VnIn‘ = ; V2iI2i (6)

i=1

where the subscript ¢ stands for the ¢th element of the array.
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Consider now the excitation at array 2. Since the I..,’s are of unity
amplitude, the quantity .., Va:.I.; can be maximized by choosing
I}, to be phase conjugate to V; .. We shall call this real maximum quan-
tity \. Let V{ be the voltage vector produced by I3; ; then we have

n

Z Vil = Z_; Voili: = Z IVZiI =\ (7)

i=1 i=1

Let us now consider the excitation of array 1. Obviously the quantity
71 V{:I,; can be maximized if we choose I}, to be the phase conjugate

of V, . It then follows that
Zl Vl,i lli = Zl |Vl,i‘ =\ 2 A, (8)

Let Vi, be the voltages produced by I, . We obtain, by applying equa-
tion (6), the following,

m

VLI = X ViDL =N Z )
i=1

i=1

Now I}/ can again be chosen to be phase conjugate to V}; and we obtain

VLI = 2 [Vi| =N zZ Nz )\ (10)
i=1 i=1

This process continues with each new choice of I representing the actual
retransmission adjustment made by the antenna system. It is obvious
from equation (10) that each retransmission yields a new value of
which is real and bigger than or equal to the previous value. However,
because of the finite number of antennas involved, A cannot increase
indefinitely. The iteration process must therefore finally settle down to
a value A, which no longer changes. If this is so, we have

Z V{J{i = Z Véiléi = )‘f- (11)
i=1 i=1
The fact that A; is real, and also that we cannot vary the phase of
I, and I, to make \, larger automatically guarantees that I7; and IZ;
are phase conjugate to V{, and V7, , respectively. In this case, our phase
conjugate retransmission apparatus will no longer change the phases of
I{; and Ij; because they have already reached their proper value.
Therefore, we have arrived at a stable state. In this case equation (11)
can be further simplified to

m n

Z |V{»‘| = Z |V£i| = As. (12)

i=1 =1
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So far we have demonstrated that each retransmission tends to in-
crease A and a stable state must finally be reached. It still remains
to be shown that this stable state yields the absolute maximum .
It is quite possible that several pairs of I, and I, exist such that they
are phase conjugate to Vy and V, but their corresponding A/s are
different. This is similar to the existence of different eigenstates in
matrix analysis. As is well known in matrix algebra, unless the
initial vector is orthogonal to the maximum eigenstate, we would in-
variably obtain the maximum eigenstate through iterations.

Since the phase conjugate operation on V to produce I is a non-
linear operation, an analytical analysis along the above lines is ex-
tremely difficult, if not impossible. However, in the next section we
show with computer simulation that the phase conjugate retransmis-
sion process converges rapidly and the probability of ending up in
a nonmaximum state of A; is practically zero.

2.2 Computer Simulation

The convergence test was done by choosing a 3 : 4 array system asa
particular trial case. We started by arbitrarily choosing a T' matrix,
which was defined by I';; = I/1.2 + J/2 — 1 + 4[I/23 4+ 2 — J/1.2].
The initial values of I; were chosen such that,

I = [1, exp(j0), exp(jp)]. (13)

The phase angles 6 and ¢ were allowed to run through 0 to 2, in 10
equal steps. Therefore, we had 100 different initial trial values of I, .
For each initial set of I, , we calculated V, produced and formed I, which
produced V, . I; was then readjusted according to the ¥, just produced.
In each retransmission, we also computed the quantity A\. It was ob-
served that in all these one hundred trials, the currents and A approached
their specific final values within a few retransmissions. For this particular
choice of T, \, = 31.3719. The first value of A obtained, that is,

ie1 | Vai | , was always smaller than )\, but after the first retrans-
mission, it invariably came very close to A; . For example, in one case
the first X was 10.72; after retransmission at array 2 we obtained a M\ of
30.73 at array 1. After this array retransmitted back to array 2, the
value agreed with A, to the fourth decimal place.

Next we tried to determine if )\, is the absolute maximum. In other
words, we wanted to check if A, was bigger than the \, that is, D 5., Vs,
produced by any arbitrary I, . This survey was done by varying 6 and ¢
in 50 steps from 0 to 2x. Computation indicated that all the 2500 values
of N\ produced were smaller than A\, and that A\, was indeed the real
maximum,
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A similar test was performed on a 4 : 5 array system and we obtained
similar results as reported for the 3 : 4 system. In the 4 : 5 array system,
the Ty, were defined as (I — J)/3 + I*J/6 — 5+ j[(I — I* + J)/1.4 +
3.5].

III. SIGNAL-TO-NOISE RATIO

Let V,: be the voltage response at the ith elementary antenna.
Turthermore, let 7,; be the corresponding noise voltage which satisfies,

(ﬂli"li)av = N2 i = jy (14)
0 757
where the ( )., stand for time average.

3.1 S8/N of Phase Conjugate System Using Equal Gain Diversity Com-
bining Technique

The S/N of an m-branch diversity equal gain system is,

S/N = [:V; |V1,.1T / mN® = \/mN?. (15)

Recall that there are n elements at the other array, which radiates a
total power to the amount of nR, therefore the S/N of the received
signal per unit power radiated is,

S/N = \}/nmN°’R. (16)
It is therefore obvious that the S/Ns at both arrays are identical.

3.2 S/N of Complex Conjugate System Using Maximal Ratio Diversity
Combining Technique

The excitation currents of a complex conjugate retransmission sys-
tem are related to the incoming voltages by,

IQ = K2V>§ 5 (17)
I, = K,\V% (18)

where K; and K are scalars to keep the total radiated power constant.
For unity transmitter power, the received power at arrays 1 and 2
are maximized and are equal,?

PlR = sz = 1%02)\”; (19)

where A, is the maximum eigenvalue of the hermitian matrix I'T"
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The validity of equation (19) is subject to the constraint that when
the adaptive retransmission array starts operation, its current vector
should not be orthogonal to the maximum eigenvector of the I'T*
matrix. The S/N of a multibranch maximal ratio reception system
then is,
02
S/N = RN ) - (20)

It can be seen that the S/Ns at both arrays are equal.

IV. EVALUATION OF THE CUMULATIVE PROBABILITY DISTRIBUTION

The complexity of the quantities A, and X, makes a closed form
solution of the CPD extremely difficult, if not impossible. Therefore,
we try instead the Monte Carlo method and aim at a numerical
solution. The essence of the method is to choose for each element of
the T' matrix a random variable of the form u + jv. The variables
% and v, according to our assumption of independent Rayleigh fading
statistics, are normalized independent gaussian variables. For a par-
ticular m:n array system, we can therefore evaluate the maximum
eigenvalue A, by repeated matrix multiplication.® The value A; is
evaluated by iterations according to the retransmission schemes defined
in Section 2.2. '

The computed values of A, and A; are stored. Then we start the
whole process again by choosing elements for another I' matrix and
evaluate the corresponding A, and ;. The CPD curves are developed
after a sufficient number of calculations.

Two tests of convergence are made. The first is the comparison of
the calculated CPD curves of variables | uy + vy |2 or | uy + juy |2 +
| us + juo |* to that of the known theoretical curves. It is understood
here that w’s and v’s refer to independent normalized gaussian random
variables. Hence, these curves represent respectively the CPD of
maximal reception of single or two-channel Rayleigh signals.*

The results are presented in Fig. 2. A close look at Fig. 2 indicates
that as far as the 99 percent reliability and the average signal levels
are concerned, 900 sample points are sufficient for a single Rayleigh
and 300 sample points for two Rayleighs.

A second test is made on the 2:2 and 2:4 antenna system and is
shown in Fig. 3. The dB scale is chosen such that the average S/N
of a single Rayleigh variable, that is, the received S/N of a 1:1 array
system, is at 0 dB. It is observed that 96 samples are already sufficient
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to yvield what we want since these points lie very close to the curve
drawn through the points computed from 900 samples. With the re-
quired sample points greatly reduced to this number, it is possible
to make a fast and inexpensive check of an extensive combination
of m:n arrays.
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V. DISCUSSION OF NUMERICAL RESULTS

We look at the complex conjugate retransmission system first.
Incorporated with maximal ratio diversity reception, this system
provides the best S/N performance obtainable from a particular
m:n array system.

The average S/N is presented in Fig. 4. It is seen that for small
numbers of 7, there do exist appreciable improvements in average
signal level as m changes from 1 to 4. However, as n increases the
advantage diminishes. For example, a 1:50 array has the same average
signal level as 2:44, 3:39, and 4:35 arrays. This is in sharp contrast
to the case of adaptive arrays with nonfading signals. In that case,
plane wave incidence is assumed and an m:n array would have the
same S/N as a 1:mn array (Fig. 4).

A simple explanation of the difference between the fading and the
nonfading arrays is the following: In both cases, the 1:mn adaptive
retransmission system guarantees that the voltages produced by the
mn elements at the single array add in phase. In the m:n system, the

20

ARRAYS IN  [4 tN———_
NONFADING 2 :n———-~2 N /
ENVIRONMENT

n ~
1 :N———~

AVERAGE S/N DECIBSL ABOVE AVERAGE OF ONE CHANNEL

o

| 1 1
910 20 30 40 50 60

Fig. 4—Average S/N of complex conjugate retransmission arrays.
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Fig. 5—99 percent reliability level. Complex conjugate retransmission maximal
ratio diversity reception.

voltage components produced by the n antennas again add in phase
at each antenna of the “m” array if plane wave incidence is assumed.
Consequently, the power received is identical to that of the l:mn
array. However, in a random environment the n voltages components
at each antenna element in the m array no longer add in phase; there-
fore, the m:n system receives less power than that of the 1:mn system.

With reference to Fig. 2, we notice that for 99 percent of the time,
the single Rayleigh signal has a value above —20.6 dB; we will
designate —20.6 dB as the 99 percent reliability level. Hence the dif-
ference in dB values of two antenna systems for a particular re-
liability indicates their difference in signal threshold or their difference
in the required transmitter power. The 99 percent reliability level
is presented in Fig. 5. We next define fading range as the dB difference
between the average S/N and the 99 percent reliability level. There-
fore, fading range should provide a good indication of the smooth-
ness of the received signal. The fading range is presented in Fig. 6.
It is seen that as n increases, the 99 percent reliability level ap-
proaches the average signal level. In other words this means that as
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FADING RANGE IN DECIBELS
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Fig. 6—Fading range of an m:n array system, Complex conjugate retransmis-
sion maximal ratio diversity reception.

the number of diversity branches increases, the fading range starts
to diminish. Figure 7 presents the CPD of a 4:32 array system. We
note that the CPD curve is extremely flat and the signal level varies
within a =1 dB range, indicating a greatly reduced fading range as
compared to either Figs. 2 or 3.

We discuss now results obtained from the phase conjugate retrans-
mission system. In this system, as was discussed in Section II, the
S/N, of an equal gain diversity reception system is maximized. It is
observed that because of this maximization effect, the performance
of the phase conjugate system is not much inferior to that of the
complex conjugate system. For example, the CPDs of the S/N for
both systems in the case of a 2:4 array system are presented in
Fig. 8. The CPD curves of the two systems differ approximately by
the average S/N difference. Therefore, the difference in average S/N
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of the two systems is also a good indication of their difference in
percentile reliability levels.

The average S/N of the two systems is shown in Fig. 9 for 2:n
and 4:n array systems. It is seen that for the same m:n array, the
difference of the two systems is small, that is, within a dB or so.

VI. CONCLUSIONS

We observed that in a fading environment, both complex conjugate
retransmission and phase conjugate retransmission systems are capable
of reaching a stable state and yield optimum results by greatly in-
creasing the S/N at the receiving stations.

The performance of these two systems differs little. Therefore the
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Fig. 8—CPD curves of a 2:4 array system. o, complex conjugate retransmis-
sion with maximal ratio reception; x, phase conjugate retransmission with equal
gain reception.
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Fig. 9—Average S/N of antenna systems 2:n and 4:n —
complex conjugate maximal ratio reception; — ., phase conjugate retrans-
mission equal gain reception.

choice of a particular scheme should be based on practical con-
siderations. For example, in the phase conjugate system, the total
power is divided equally among all the antenna elements. On the other
hand, the complex-conjugate retransmission system requires that the
total power be distributed in a complicated fashion. In practice this
means that each antenna-feeding appartus must be equipped to
handle power far exceeding that of the phase conjugate system.

In view of the simplicity of the phase conjugate retransmission com-
pared to the complex conjugate retransmission (which must keep the
total power transmitted constant), and only slightly inferior per-
formance, the former appears to be a more attractive system.

As far as the division of diversity branches is concerned, it can
be seen from Fig. 4 that for small numbers of antennas,
an m:n array would have similar performance to an mn:1 array.
However, as the number of elements involved becomes larger, this
relation no longer holds. For example the performance of a 4:n array
would approach a 1:n array as n increases indefinitely.
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Microwave Line-of-Sight Propagation With
and Without Frequency Diversity

By W. T. BARNETT
(Manuscript received May 5, 1970)

Amplitude measurements were made for 68 days in 1966 for seven
4-GHz and 6-GHz signals on a typical radio relay path. Identical mea-
surements were also made for one 4-GHz signal on a second path having a
common reception point with the first path. We present the results from an
analysis centered on the fade-depth distribution for fades exceeding 20 dB.
The more significant results are:

(#) The fade-depth distribution for all single (nondiversity) channels
i a 5-10 percent band on the same path are essentially the same. Further,
the dustribution has the Rayleigh slope.

(42) The single-channel fade-depth distributions differ for 4 and 6 GHz
on the same path; the distributions also differ for the same 4-GHz frequency
on adjacent paths with a common reception point.

(221) One-for-one frequency diversity can be characterized during multi-
path fading periods for either the 4- or 6-GHz bands by the ratio of two
quantities. The first is the precent frequency separation between diversity
components. The second is the nondiversity fade-depth distribution.

I. INTRODUCTION

Line-of-sight microwave systems are affected by multipath propaga-
tion. When this phenomenon is present, the output from a receiving an-
tenna can be practically zero for seconds at a time. Experimental data
are difficult to obtain because long time periods of continuous coverage
are needed to observe sufficient fading activity at the fade depths (30-
40 dB) of interest for high performance systems. The literature is ex-
tensive on this general topic'™” but limited and in some cases contradic-
tory® for these fade depths. The results available regarding frequency
diversity are even more limited®. For these and other reasons, an extensive
experimental program was undertaken in 1966.

1827
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Continuous amplitude measurements were made for 68 days at a rate
of 5 samples per second per channel for seven 4-GHz and six 6-GHz
signals on a radio relay path at West Unity, Ohio. Identical measure-
ments were also made for one 4-GHz signal on a second path having a
common reception point with the first path. Here a 68-day summer
period (July 22 to September 28) in 1966 has been subjected to detailed
analysis.

We present the results of the data analysis and their interpretation
along with pertinent background information. Briefly the order of
presentation is (Z) experiment description, (¢7) determination of the
reference values used for calibration, (7)) nondiversity results, (iv)
frequency diversity results, (v) a mathematical description of pairwise
fading which is used to interpret the improvement obtained from fre-
quency diversity, (v7) 4/6 GHz crossband results, (vi7) adjacent hop
results, and (vié7) a comparison of space and frequency diversity.

II. SUMMARY

New results have been obtained from the data concerning 4- and 6-GHz
propagation on line-of-sight paths. The present analysis was centered
on the fade-depth distribution for fades of 20 dB or more. A simplified
listing of the significant findings follows.

(7) During nonfading conditions, the received microwave signal
power was constant for the entire test period to within £1 dB
including equipment variations.

(77) The fade-depth distributions for all single (nondiversity) chan-
nels in a 5-10 percent band are essentially the same and have a
Rayleigh slope.

(#7) The single-channel fade-depth distributions differ for 4 and 6
GHz on the same path; the distributions also differ for the same
4-GHz frequency on adjacent paths with a common reception
point.

() The performance of a one-for-one frequency diversity system
can be specified for either the 4- or 6-GHz bands by the ratio
of two quantities. The first is the percent frequency separation
(100 Af/f) between in-band diversity signal components. The
second is the experimental nondiversity fade-depth distribution
P(L). In these terms the improvement (I) of a diversity system
relative to the nondiversity system as obtained from the data is
simply

— 0134
I=0135 /P(L).
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This model is based upon the in-band frequency diversity data
and is in agreement therewith.

The factor I characterizes frequency diversity during multi-
path fading periods. As such, it should be applicable to different
climates and terrains for path lengths of approximately 28
miles.

(v) The improvement from 4/6 GHz crossband diversity was not
significantly better than in-band diversity of 2 percent or more
separation.

(vi) Adjacent section diversity with a common point (as based on
data on a single channel) was not significantly better than in-
band frequency diversity. This raises some provoking (unan-
swered) questions about the correlation of selective fading on
adjacent routes, for example, limitations on the maximum pos-
sible diversity improvement to values less than those expected
from independent fading.

(vii) The performance of space diversity'® is comparable to that of
one-for-one frequency diversity on the same hop.

(viiz) The polarization of the radio signals had no noticeable effect on
the amount of fading.

These results are presented in detail along with the necessary back-
ground information in the following sections.

III. EXPERIMENT DESCRIPTION

The transmitted power in microwave radio systems is constant. Prop-
agation data can therefore be obtained from in-service systems without
interfering with their operation by using suitable monitoring equipment.
Such equipment (MIDAS*) was installed at West Unity, Ohio, to monitor
and record the received envelope voltages of standard TD-2 (4 GHz)
and TH(6 GHz) signals. A list of the channels is given on Table I.
Briefly there were seven 4-GHz, six 6-GHz, and two space-diversity
channels on one hop and one 4-GHz channel on a second hop. A functional
block diagram is shown on Fig. 1.

West Unity, Ohio, was chosen as the measuring site for this experiment
because it lies along a major route in an area with a reputation for con-
siderable fading. Further, the hops measured have average lengths (28.5
and 29.4 miles) with negligible ground reflections. The two paths differ
in azimuth by 68 degrees and their profiles are given on Figs. 2 and 3;
clearance is adequate even for the extreme case of equivalent earth radius
(k) equal to two-thirds.

* An acronym for Multiple Input Data Acquisition System.
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TaBLE I—Rap1o CHANNELS MEASURED AT WEST UNITY, OHIO
From Pleasant Lake, Indiana (28.5 mi) '

Channel No. Frequency Antenna Polarization
4-7 3750 Horn v
Reflector
4-1 3770 H
4-8 3830 N
4-2 3850 H
4-9 3910 v
4-11 4070 \i
4-6 4170 H
6-11 5945.2 H
6-13 6004.5 H
6-14 6034 .2 \
6-15 6063.8 H
6-17 6123.1 H
6-18 6152.8 v
6-UD 6152.8 Upper Dish \i
6-LD 6152.8 Lower Dish v
From Paulding, Ohio (29.4 mi)
4-6 4170 Horn A%
Reflector

Note: The 4-X channels correspond to standard TD-2 radio system signals;
6-X corresponds to TH.

The MIDAS equipment derived received signal strength information
by sampling the voltage of the 70-MHz IF signal at a point where it was
linearly related to the RF signal. At any instant the particular channel
being measured was selected automatically by MIDAS. A common
detector then converted the IF amplitude measurement to a de voltage
which was quantized into one of 32 contiguous steps over a 45-dB range.
The MIDAS input-output curve is given as Fig. 4.

The data were recorded on paper tape along with the necessary timing
information. Measurements were made throughout the 68-day period
at a rate of 5 samples per second on each channel. The information was
recorded for all channels at rates of either 1 sample per 30 seconds, 1
sample per 2 seconds and 5 samples per second (normal, intermediate,
and fast rates) depending on the fading activity of the channels under
test. The recording rate was automatically selected by MIDAS so as
to record all significant fading. During computer processing of the data,
the amplitude value at a sampling instant was assumed to hold until the
next sampling"instant.
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An important feature of the experiment was long-term continuous
coverage. Deep fades are rare events occurring at unpredictable times;
the test equipment had to be on-line continuously to obtain an adequate
sample.

The required test equipment reliability and measurement uniformity
was obtained by maximum use of common equipment. The essentially
continuous coverage was obtained by recording mainly the significant
fading data. Even so the subsequent processing was a formidable task,
even with the computer, because of the high volume of raw data.

IV. NONFADING SIGNAL VALUES

A fade is defined as a decrease in the envelope of the received signal
voltage with respect to a reference or free-space value. Thus before fading
data can be quantified, the reference or nonfading value must be deter-
mined.

If the atmosphere between the transmitting and receiving antennas
was homogeneous (that is, no vertical or horizontal variations in the
index of refraction), then the single frequency RE power at the output
of the receiving antenna would be invariant for a fixed transmitted
power.* Its value (called the free-space value) could be calculated in a
straightforward manner. However, even during nonfading periods, there
are small time-varying random deviations in the refractive index which
cause small scintillations in the received power even when the average
value remains constant. There are also long-term variations in the re-
ceived RF power due to equipment variation. For our purposes we must
determine the nonfaded received power as a function of time and, if
possible, quantify the scintillations.

Inspection of the data showed that the midday hours had the least
amount of fading. Here the differentiation between fading and free-space
scintillations is made on the basis of the magnitude of the effect. Fading
causes variations of one or more quantizing levels in the envelope from
hour-to-hour on most of the 15 channels.

To establish a reference value, midday periods were sought which had
no fading with respect to either time or frequency. It was easy to find a
total of 129 midday hours simultaneously for all channels on 30 different
days scattered throughout the entire 68-day period.

Table 1T gives the summaries for the midday values. The table shows
the average signal in terms of quantizing level for five consecutive time
periods of from 9 to 20 days duration. Several points can be made about

* Assuming adequate ground clearance and no ground reflections.
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TABLE II—AVERAGE NONFADED VALUES
(in terms of quantizing levels)

Time Periods

1 2 3 4 5
Pleasant Lake
- 4 4 4.5 4 4.5
-1 2 2 2 1.5 1.5
-8 3 3 3 2.5 2.5
-2 3 3 2.5 3 3
-9 4 4 4 4 4
-11 4 4 4 4 3.5
-6 4 3.5 3.5 3. 3.5
6-11 2 1.5 2 1. 1.4
-13 2 2 2 1 1
-14 2 2 2 2 2
-15 1 1 1.5 1 1
-17 2 2 2 2 2
-18 2 1.5 2 2 1.5
6-UD 4 3.5 3.5 3.8 3.5
6-LD 5 4.5 5 4.5 4.2
Paulding
4- 6 2 2 2 3 2.8
Total
Hours in
Period 254 375 482 264 263
Hours
Used 31 22 24 25 27
Total
Days in i
Period 9 16 20 11 12
Days
Used 7 7 7 5 4

Note: Quantizing level 4.X means that the average value was 0.X of a level
offset from the center of level 4 in the direction of level 5.

this data. First the maximum peak-to-peak variation on any channel is
one level or about 2 dB while the average variation is =1 of a level or
about +0.5 dB. Further some of the channels, for example, 4-1 and
6-13, exhibit a definite trend over the 129 hours. The belief is that these
long-term effects are attributable to the radio equipment.

In any case, the average deviation of 420.5 dB is small enough so that
a single reference value for each channel can be used for the entire
time period. This simplifies data reduction considerably.

Now consider the statistics of small scintillations in the received signal
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power. Table III gives the percent distributions by level for all the chan-
nels for the 129 midday hours. Of course this distribution includes the
long-term equipment variations in the reference values as well as the
short-term scintillations. Note that the channels with the minimum
variations in average value from Table II are those with most of their
“90 percent hours” in a single level. These are 4-9, 4-11, 6-14, and 6-17.
Itis assumed that the variations on these channels are due only to scintilla-
tion and that this effect can be represented by a probability distribution
which is normal in dB. The ¢ of this distribution can be found from the
percent values given in Table III with the results shown in Table IV.
The agreement between these channels is excellent. The conclusion is
that the scintillation effect over a 68-day period is universal with a o of
0.6 dB superimposed on an equipment variation of £0.5 dB. The rms
variation in reference value is then £0.8 dB.

4.1 Channel Calibration

The data on reference values were combined with the MIDAS calibra-
tion curve to calibrate the 15 RF channels in dB. First, all the 6- and 4-

TaBLE ITI—SumMMARY OVER ENTIRE 68 DaAYs
(Data for 129 Hours on 30 Days)

Hours with 90 Percent

Percent of Time in Level or More of Time in Level
Channel

Freq. 1 2 3 4 5 1 2 3 4 5
West
Unity
4- 7 0.32 | 78.25 | 21.43 63

-1 18.1 80.50 1.40 12 93

-8 17.52 | 81.34 1.13 0.01 9 88

-2 0.01 | 86.25 | 13.74 95

-9 7.41 | 91.94 0.65 1111

-11 10.36 | 88.93 0.71 96

-6 0.77 | 32.50 | 66.73 1 16 | 58
6-11 28.57 | 69.60 1.83 9 47

-13 34.56 | 63.68 1.76 31 71

-14 6.01 | 92.65 1.34 4 118

-15 83.95 | 16.01 0.04 94 6

-17 2.10 | 94.96 2.94 113

-18 17.88 | 78.96 3.16 4 69 1

6-UD 34.65 | 65.27 0.08 18 42 | 8
6-LD 33.2 66.80 24 | 66

Paulding
4- 6 4.09 | 58.04 | 37.87 2 59 | 42
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TaBLE IV—LoNG-TERM STANDARD DEVIATION

Channel oin dB
4-9 0.56
4-11 0.59
6-14 0.58
6-17 0.56

GHz channels were simultaneously lined up at their reference level which
was specified as 0 dB. By inspection, 29 dB values were chosen over the
fading range in order to give minimum ambiguity over the entire set of
channels; thus each quantizing step on each channel was not used more
than once. In this way all the 6- and 4-GHz channels were simul-
taneously calibrated; this was done so that an arbitrary subset could
be chosen for analysis without having to recalibrate. Tigure 5 gives an
example of the results of the calibration procedure for channels 4-7,
4-2, and 4-9 for fades greater than 20 dB.

Beeause the calibration curve is nonlinear, this process requires some
judgment. The minor combined effects of the nonlinear calibration

4-7 4-2 4-9
13 - -
20 20.4 — 12 13
14 - 2
22.7 e 13 =
24.4 =
25- ” - 16
26 47 12 =
’ 17
27.6 18— LIS —
- a
19 17w -
o 29.1 12 —.F 5
30 - 4 20 i8
< 3y = =2 20
19 z }_z =
0 — 19 NE:AR
o #4EE— 5o )E e
T 33.6 == - " Z 23
24 a2l 5 3
35 — 34.8 —¢ 22— O =
26 23 22
36.6 —= 24— _2%_-
7 — 2
e aa -
H = 3
27 30
40 — 40.1 —5— i
41,3 29 _
30
42.3 _

Fig. 5—Calibration example.
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curve and differing reference levels for different channels are discussed
in conjunetion with the single channel outage statistics.

V. SINGLE CHANNEL RESULTS

The raw data were obtained continuously for almost all of the 68 days
(5.9 X 10° seconds). Of this total, 5.26 X 10° seconds was used as the
data base; the balance was lost mainly because of routine radio main-
tenance. To condense the data, a criterion was used to select by computer
only those time periods which exhibited fading. The start of such a time
period was defined by, and included, ten consecutive measurements
containing any one channel faded below approximately 10 dB. The
end of the time period was defined as that instant for which the next
110 consecutive measurements on any channel did not have a fade
exceeding approximately 10 dB.

Trom the total of 5.26 X 10° seconds, 7.8 X 10° seconds (14.8 percent)
were selected for analysis. The average length of the periods selected
was sizeable. There were only 96 distinct periods selected; these had
an average length of 8.1 X 10* seconds (2 1) hours.) Further one-half
of the analysis time was in intervals of four hours or longer. Thus
any effects due to beginning or ending a time period should be minimal.

The data were processed by computer to determine the total amount
of time during which each signal was less than a certain amount. The
4-GHz single-channel fading results are given on Fig. 6 for fades greater
than 20 dB. These results and all those to follow are given as a fraction
of 5.26 X 10° seconds. It is apparent that these statistics are essentially
the same for all the 4-GHz channels and have the Rayleigh slope,
that is, 10 dB per decade of probability over the entire range of data
points. The solid line on the figure is a least-square fit of a Rayleigh
slope line to the data points, most of which are within &1 dB as shown
by the dashed lines. This scatter is due to both the uncertainties in
the reference value and to the nonlinear calibration.

The 4-2 points outside the 2-dB corridor from 22 to 29 dB are due
to the nonlinear quantized calibration. From Fig. 5 note that for 4-2
the dB wvalues used lie near the bottom of the quantizing levels up to
31 dB at which point they change to the middle of the quantizing levels.
This gives the effect noted on Fig. 6, that is, the data points are shifted
to higher fade values for a constant probability. Other anomalies of
this type in the single-channel results are explainable in this manner.
For these results and for all others described here, the polarization of
the signal (s) had no apparent effect.

The 6-GHz signal channel results are given on Fig. 7 for fades greater
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Fig. 6—Fade-depth distribution; 4-GHz channels.

than 20 dB. Again all 6-GHz channels have essentially the same statistics
with the solid line being the least-squares fit with a Rayleigh slope-
Almost all data points are within 1 dB of the average above 40 dB
except for 6-15 from 37 to 40 dB. This discrepancy is attributable to
nonlinear quantizing as discussed for 4 GHz. The increased scatier
above 40 dB is thought to be due to deereasing measurement sensitivity.

The single-channel results for the space diversity grouping'® (the
6-18 signal is received on the horn reflector and two dishes) and for
the 4-GHz channel on the Paulding route are given on Fig. 8. The lines
are the least-squares fit with a Rayleigh slope.

Figure 9 gives a summary of the single-channel statistics and for
comparison, the true Rayleigh curve. The equations of the least-square
lines are

West Unity  4: P = 0.251077"°
6: P =0.5310"""

SD: P =0.43107""°

Paulding 4: P =07710""""

where F is the fade depth expressed in dB (F = 20 dB). The channel
with the most fading was the 4-GHz Paulding followed by 6 GHz, space
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Fig. 9—Summary of fade-depth distributions.

diversity grouping (SD) and 4 GHz. The 4-GHz channels have signifi-
cantly less fading than either 6-GHz (by 3.3 dB) or 4-GHz Paulding
(by 4.9 dB). The 0.9-dB difference between signals on antennas of
different height, that is, 6 GHz compared to SD, is thought to be more
apparent than real, although it may be a small height effect.

It should be noted that having essentially the same fade distribution
for the 6-18 signal as received on both the dishes and horn reflector
implies two things. First, the effect of 6-GHz multimoding in the horn
reflector, circular waveguide, and combining networks must be negligible
because the dishes use dominant mode elliptical waveguide and no
combining networks. Secondly the effect of decreased clearance at
midpath for the lowest dish is less than 0.9 dB.

One way of explaining the significant differences shown on Fig. 9 is
to examine them in terms of the terrain and the radio path lengths.
Pearson’ has given data taken in Britain on the relation between worst-
month fading and the terrain as characterized by the path roughness.*

* Path roughness is the standard deviation of terrain height measurements at

one-mile intervals on a line between transmitter and receiver with the end points
of the path excluded,
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Assuming that the 68-day period is equivalent to the British worst-
month data, Table V can be compiled from Fig. 9 and Ref. 7.

The 6-GHz British point has been obtained by assuming that the
path length is 50 percent longer at 6 GHz than it is at 4 GHz; that is,
the path length is cast in terms of wavelengths.

There is good agreement between the British and the West Unity data.
Thus the difference in depth of fade for a given percentage of time is
apparently directly related to the terrain roughness and to the path
length in wavelengths. Of course this is not sufficient evidence to justify
the extensive use of these parameters. It has long been known, at least
qualitatively, that fading is more severe over smooth terrain or water
than on rough paths of comparable frequency, length, and atmospherie
conditions.

VI. FREQUENCY DIVERSITY RESULTS

The simultaneous measurements on a number of different frequencies,
together with computer processing of the differences in signal level with
frequency, have provided much more quantitative information than
previously available on the improvements to be expected from the use
of frequenecy diversity. The diversity results specify the total amount of
time during which the stronger of two signals was less than a certain
amount (this means that both signals simultaneously were less than
the given amount).

6.1 6 GHz
The results for the 6-GHz pairs for fade depths = 20 dB are given

on Figs. 10 through 16. Fifteen pairs were obtained from the six 6-GHz
channels and they are grouped according to frequency separations as
shown in Table VI.

Four lines are shown on each figure. The uppermost is the nondiversity

line which is the average single-channel fade-depth distribution as dis-

TaBrLE V—Para RoucHNEsSS ErrFEcTs

0.1 Percent Fade Depth

Roughness British West Unity

Pleasant Lake 4 GHz 16.0 meters 23.5dB 24.0 dB
6 GHz 16.0 meters 29.0 dB 27.3 dB

Paulding 4 GHz 8.5 meters 28.0 dB 28.9 dB
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Fig. 10—6-GHz frequency diversity; 30-MHz separation.

cussed previously. The bottom solid line which is tagged with a value
of a parameter my is a curve fitted to the data. The dashed lines are
relative to the fitted line and denote a £=2-dB corridor which is an estimate
of the uncertainties in the data due to nonlinear calibration and reference
value determination. The fitted curve is obtained by assuming that the
diversity data is jointly Rayleigh distributed with respect to the non-
diversity curve. The parameter my, is related to the amount of correlation
between the two components of the distribution. This concept will be

discussed in more detail 1

ater.
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Fig. 11—6-GHz frequency diversity; 60-MHz separation.

Inspection of these results (Figs. 10 through 16) shows that for a
fixed frequency separation, the scatter of the data points with respect
to the fitted diversity line is small below 30-dB fade depth but increases
somewhat for larger fade depths.* However for fade depths of 40 dB
or less, all the data points lie within the +2-dB corridors except for

* On_the figures, 10~% = 5.26 seconds which means that there were few samples
at the higher fade depths.



1844 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1970

17/18 on Fig. 10. This latter result is an anomaly because all other
combinations which include 6-17 or 6-18 are quite consistent within
their group. In fact, the consistency of the data points for different
pairs having the same frequency separation is remarkable. Also note
the excellent agreement between the data and the fitted line for the
pair with the maximum frequency spacing (210 MHz).

As the frequency separation increases, it is to be expected that the
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Fig. 12—6-GHz frequency diversity; 90-MHz separation.
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Fig. 13—6-GHz frequency diversity; 120-MHz separation.

diversity performance will improve. This is borne out on Figs. 10 through
16 and is described by increasing values of my for increasing frequency
separation. The performance of frequency diversity relative to non-
diversity will be discussed in a later section.

6.2 4 GHz

The results for the 4-GHz frequency diversity pairs are given on
Figs. 17 through 24. Twenty-one pairs were obtained from the seven
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Fig. 14—6-GHz frequeney diversity; 150-MHz separation.

different TD-2 channels and they are grouped according to frequency
separations as shown in Table VII.

The lines on the figures have exactly the same meaning as in the 6-GHz
case discussed in the previous paragraphs.

Inspection of the results shows that the scatter of the points with
respect to the fitted diversity line is small for fade depths less than 30
dB except for 7/1 on Tig. 17 which has been ignored as an anomaly.
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For greater fade depths, the scatter increases and the data points tend
to fall off faster than the fitted line except for Fig. 23 which has a distinet
upward bulge. The fast rolloff might result from noise or interference
effects in the radio system. Since the 6-GHz results do not exhibit these
effects, the MIDAS system and the data reduction procedures are
probably not the source of this rolloff since all of the radio channels
were treated identically. Further some of the pairs follow the fitted
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Fig. 15—6-GHz frequency diversity; 180-MHz separation.
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line without any rolloff, for example, 4-9/11 on Fig. 21 and 4-7/2 on
Fig. 20. The reasons for the anomalies are not explicitly known but it is
assumed that they are not generated by multipath fading. In any case,
the fitted line is a conservative approximation to the data except for
Fig. 23.

Just as in the 6-GHz case when the frequency separation increases,
the diversity performance improves. This is described by increasing
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TasLeE VI—6-GHz FrREQUENCY DIvERSITY RESULTS

Frequency Number

Figure Separation (MHz) of Pairs
10 30* 3
11 60 3
12 90 3
13 120 3
14 150 1
15 180 1
16 210 1

* This is also the nominal bandwidth of the working channel.

values of mg for increasing frequency separation and will be discussed
in g later section.

VII. DESCRIPTION OF SIMULTANEOUS FADING AT DIFFERENT FREQUENCIES

Multipath fading is eaused by complicated interference phenomena
and it is possible that various descriptions of simultaneous fading are
useful. Models for fading can be postulated on two levels. First there
is a mathematical (statistical) description of the characteristics of
multipath fading. Second, on a more fundamental level, there is the
model for the physical process that creates fading and from which the
mathematical (statistical) model could be derived. At the present
time there is no physical process model which gives results that agree
well with the experimental data. On the other hand, a statistical model
based on the joint Rayleigh probability distribution has been useful
in the description of space diversity, and it is applied here (with con-
siderable success) to frequency diversity. However the physical process
model is still the ultimate goal and the experimental data and empirical
formulas presented here should aid in attaining this goal.

The following discussion briefly gives the relevant details of the joint
Rayleigh distribution as applied to the data. For a Rayleigh variate,
the probability that the envelope voltage R; of the signal normalized
to its rms value has a value less than L is

Pr(R, < L) = 1 — exp(—L?. (1)
Similarly the probability distribution of the envelope voltage R, of a
second signal normalized to the rms value of the first signal is

Pr(R, <L) = 1 — exp (—%) 2)
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where

V' = (R ((BD)w) 3)
The joint probability distribution function of the variables R, and R, is"’

Pr(R, < L, Ry < L) =f

0

L3/(1—k?) (L/v)2/(1—k?%)
ix, f dX,P(X, , X,)
0
@)



LINE-OF-SIGHT PROPAGATION 1851

with
P(X:, X2) = (1 — E)I[2k(X.X2)"*] exp[— (X + X>)

where k? is the correlation coefficient of B? and R? . For use in this paper
mp has been defined as

my = 10°(1 — k). %)
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Typical computed results are shown in Fig. 25 for »* = 1. For deep fades,
asymptotic forms of equations (2) and (4) are quite useful.

Pr(R, < L) =~ L** (6)
and .
Pr(R, < L, R, < L) =2 (10°/mz) (L*/v"). )

The region of validity of equations (6) and (7) depends on v, L, and m;, .
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Fig. 19—4-GHz frequency diversity; 80-MHz separation.
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Fig. 20—4-GHz frequency diversity; 100-MHz separation.

For example it is the region in Fig. 25 where the lines are parallel to
the my = 10° line.

The joint Rayleigh distribution, calculated from equation (4), was
fitted to the diversity data points by overlaying plots of the joint dis-
tribution for various values of my and choosing the one with the best
apparent fit. The results of this are the bottom solid lines on the diversity
plots with the value of mz next to each line. In the fitting, somewhat
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Fig. 21—4-GHz frequency diversity; 140/160-MHz separation.

more weight was given to the values at 30-dB fade rather than at 40 dB
because of relative sample size. Also note that the curvature of the
joint Rayleigh fits the curvature of the data points for the smaller fade
values.

VIII. IMPROVEMENT

The quantity of interest in any diversity scheme is the amount of
improvement relative to the nondiversity performance. Iere this per-
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formance measure is defined as the ratio of fractional outage of the
nondiversity signal to that of the diversity signal for a fixed fade depth.
Description by this factor () is convenient because it avoids detailed
description of the many schemes that are used to process the two signals.
The best of these switching or combining schemes will provide per-
formance equal to or somewhat better than that described by the fade
reduction factor.

The fraction of the total time that a nondiversity signal is faded
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depends on frequency, path length, terrain, antenna placement, and
climate. The last of these determines the fraction of the total time that
fading conditions exist on a given path. The periods used in analysis
were those for which fading conditions were in existence. Any change
in the total time of such fading periods would have no effect on the
statistics since they pertain to the fading phenomena and not to the
length of time (assuming an adequate number of samples are available).
However, the statistics have been normalized by adding in the remaining
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Fig. 23—4-GHz frequency diversity; 300/320/340-MHz separation.
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Fig. 24—4-GHz frequency diversity; 400/420-MHz separation.

or nonfading time. The effect of this or any like change in the amount
of the nonfading time is a uniform shift in the nondiversity and diversity
curves without changing their shape or their ratio; that is, the fractional
time scale is multiplied by a constant. This last fact has been heavily
utilized in the analysis where this ratio has been called the improvement
factor (I). Note that the improvement factor does not depend on how
often fading conditions exist but rather upon what happens within
these selective fading periods.
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TaBLE VII—4-GHz IFREQUENCcY DIivERSITY RESULTS

Frequency Number

Figure Separation (MHz) of Pairs
17 20* 2
18 60 2
19 80 3
20 100 2
21 140 1
160 2
22 220 1
240 1
260 1
23 300 1
320 2
340 1
24 400 1
420 1

* This is also the nominal bandwidth of the working channel,

Referring to the asymptotic forms for the joint Rayleigh model,
equations (6) and (7), the asymptotic form of the improvement factor
(I) for Rayleigh fading can be stated as

PR <L) __(my/10% ®
Pr(R, <L,R, <L) Pr(® <L)

where, for the time being, it is assumed that both signals have the same
rms value (that is, v* = 1).

The experimental improvement factors were obtained from the ratio
between the fitted diversity line and the nondiversity lines for the 6-GHz
and 4-GHz frequency pairs at a 40-dB fade depth. The values are plotted
on Fig. 26 versus the parameter Af/f. Here f is taken as 3950 MHz for
the 4-GHz band and 6175 MHz for the 6-GHz band and Af is the average
frequency separation for a grouping on a single figure, for example,
Af = 240 MHz for Fig. 22. If the =2-dB uncertainty were included,
the points plotted on Fig. 26 would change to vertical lines between
1.58 and 1/1.58 of the average value shown. Even with this Iarge range
of uncertainty, it appears that the improvement and Af/f are linearly
related as shown by the lines on the figure. The equations of the lines are

I

4 GHz: I = 1 (Af)L"2 for I = 10, good accuracy;
2\{
©)
6 GHz: I = i (%)L‘Z for 1 £ 1 £ 10, less accurate but conservative;
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where F' = —20 log L is the fade depth in dB. This is the asymptotic
form of the formulas including the variation with fade depth as shown
in equation (8).

Using equation (8) as a guide, it is conjectured that the experimental
improvement can be separated into two parts which contain respectively
the nondiversity fading and the frequency diversity effect, that is,
m/10°
P(L)

[= (10)

(NONDIVERSITY)
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DECIBELS RELATIVE TO NORMAL

Fig. 25—Probability that both signals are simultaneously less than a given
amount (Joint Rayleigh Distribution).
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where P(L) is the measured probability that a nondiversity fade exceeds
—20 log L dB and m is a frequency diversity parameter. Of course both
these quantities are functions of frequency, path geometry, terrain,
and antenna placement.

Consider first the variation of m with Af/f and secondly the difference
in improvement between the 4-GHz and 6-GHz bands.

The nondiversity results [P(L)] can be written as (see Fig. 9)

6 GHz: P, = (.53)L%
4 GHz: P, = (25)L7,

1n

where F = —20 log L is the fade depth in dB. Then from equations (9)
and (10)

6 GHz: my = (103)(1> (A—f)L—Z(ﬁg)L?,

4
f (12)
A
= 132.5 Tf s
1000

500 ud
= 200 g
-
z
b
Z 100 ol
>
e 4 GHz o
o
2 50

0,
1 Af, -2
4 GHz: [ =5 —L
6 GHZ 2 f
20 L p = L Af -2
6 GHz: [ =7 ;3 L
old I I
0.004 0.0l 002 004 0.1 0.2
_Af _ SEPARATION BETWEEN FREQUENCIES
£ CENTER FREQUENCY

Fig. 26—1966 West Unity in-band frequency diversity improvement ratio at
40-dB Fade Depth (L = 0.01).
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4 GHz: my = 003)(%)(%’3—2(25)”’ (13)
= 125 A7f .

The difference between m, and m, is small. Thus as desired m depends
primarily upon normalized frequency spacing and not upon either the
nondiversity fading distribution or the radio frequency band (4 vs 6 GHz).
For further use it is assumed that m = 130 Af/f.

Using equations (9) and (10) again and forming a ratio gives

I, _Ps

I—ﬁ = E = 2.1 (14)
which agrees very closely with the experimental ratio of 2 shown on
Fig. 26. Thus equation (10) correctly predicts the relative improvement
between the 6- and 4-GHz bands. Further this relative improvement
depends upon the nondiversity fading results and not upon the normalized
frequency spacing.

To recapitulate, the asymptotic value of improvement of an in-band

frequency diversity pair relative to the nondiversity signal at a fade
depth of —20 log L dB can be stated for the experimental data as

0.13 —A);I

I =55 (15)
where P(L) is the probability that the nondiversity signal fades below
the given depth. In this formula, I is not affected by the relative amount
of time that fading conditions do or do not exist. However both the
numerator and denominator in equation (15} would change by the
same multiplicative constant when the ratio of nonfading to fading
time changes. Thus the terms P(L) and 0.13 Af/f individually apply
only to the experimental path but their ratio is more generally useful.
This ratio (I) characterizes frequency diversity during multipath
fading periods. Although I was obtained from experimental data on
one path, it should pertain to other paths of about the same length
but having different terrain and climate. The terrain and climate play
a major role in determining the fraction of time that multipath fading
conditions exist but they probably will have only a secondary effect
on the relation between a nondiversity signal and a diversity signal

within a multipath fading period.
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IX. CROSSBAND FREQUENCY DIVERSITY

Results were also obtained for a subset of the 4-GHz and 6-GHz
channels where the diversity pair consists of one channel from each group.
The channels used for analysis were 4-2, 4-1, 4-7, 4-6 and 6-11, 6-15, 6-18.
The results are given in Figs. 27 through 30. The groupings for each
figure are for one of the 4-GHz channels in diversity with each of the
6-GHz channels. As before, there are several curves on each figure. The
two uppermost are the average nondiversity results for each band with
the 6 GHz being 3.3 dB poorer than the 4 GHz for a fixed probability.
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Fig. 27—4/6-GHz crossband frequency diversity.
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Again the joint Rayleigh distribution was fitted to the data by over-
laying plots of the joint distribution for various values of m, . In this
case the rms values are unequal by an amount

—10 logv?® = 3.3dB

or (16)

= 0.47.

The asymptotic form of the improvement factor I between the diversity
curve and the top nondiversity curve (6 GHz) is given as in equation (8)
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Fig. 20—4/6-GHz crossband frequency diversity.

by
me/10°
Pr(R, < L)

This corresponds to the improvement obtained if a 4-GHz channel were
used to protect a 6-GHz channel.

The asymptotic ratio between the bottom nondiversity curve (4
GHz) and the diversity curve is then

2 mR/103 _
Pr(R, <L)

Imax = (17)

Imin =7 DZImax (18)
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which corresponds to the improvement obtained if a 6-GHz channel were
used to protect a 4-GHz channel. In these formulas, m; and Pr (R, < L)
are Rayleigh quantities with m related to the correlation coefficient and
—20 log L equal to the fade depth in dB exceeded by the envelope voltage
R,.

Inspection of the results shows that the points have more scatter than
the 6-GHz in-band diversity data and just about the same scatter as the
4-GHz in-band diversity data, that is, the fitted line is a good repre-
sentation of the data from 20 to 30 dB with increasing divergence for
greater fade depths.

As to quantitative interpretation, the results do not appear to be as
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Fig. 30—4/6-GHz crossband frequency diversity.
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yielding to analysis as the in-band diversity. This may result because the
frequency spacings are a significant percentage of the average center
frequeney, for example, spacings of 1775 MHz (4-6/6-11) to 2405 MHz
(4-7/6-18). The improvement values obtained from the fitted lines on
the figures at 40-dB fade depth are presented in Table VIII.

The results do not show a consistent behavior as a function of frequency
separation. 4-7, which has the largest frequency separation, shows slightly
more improvement than 4-1 or 4-2 but less than 4-6 which has the smallest
frequency separation. However, 4-2, 4-1, 4-7 are tightly bunched in
frequency whereas 4-6 is about 300 MHz closer to the 6-GHz band.

In any case, these results are comparable to the in-band diversity re-
sults, that is, the improvement from crossband diversity was not sig-
nificantly better than in-band diversity of two percent or more separation.
Thus there may be a saturation effect which will appear for frequency
separations above say 10 percent. There is neither enough data nor a
theory to prove or disprove such speculation.

X. CROSS ROUTE DIVERSITY

Diversity results were obtained for various 4-GHz and 6-GHz channels
on the Pleasant Lake hop in diversity with the single 4-GHz channel
measured on the Paulding hop. The previous data strongly implies that
it may be very misleading to rely on the results for a single channel.
However, this data is included for completeness. To review: the Paulding
data is for a different path but for the same time periods. One would there-
fore expect the diversity performance to be very good since the signals
from the pair of paths should be reasonably independent. However this
did not appear to be the case.

The data are shown in Figs. 31 and 32 in the groupings presented in
Table IX. The lines on the figure have exactly the same meaning as the
corresponding ones in the crossband section. In this case the 6-GHz fit

TaBLE VIII—CRoSSBAND IMPROVEMENT VALURS

Imux Imin*
Tig. 27 250 125
Fig. 28 200 100
Fig. 29 150 75
Fig. 30 500 250

* Imin = % Imax from equation (16) with » *= 0.47 but 0.5 has been used in this
table for convenience.
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Fig. 31—4/6-GHz cross route diversity.

is good but the 4-GHz fit is poor below 30 dB in that the data has an
upward bulge. There is no explanation available for this anomaly.

In any case, the improvement obtained when the two channels in the
diversity pair are on different hops is not significantly better than in-band
diversity (see Fig. 26). This is surprising and raises questions about the
correlation between fading on adjacent hops, for example, the maximum
possible diversity improvement may be limited to values less than that
expected from independent fading.

To repeat, this is based on a single channel and as such the data base
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Tanre IX—Cross-RouTe RESULTS

Figure Diversity Pairs Tmax Imin*
31 6-11 with 4-6 PA 400 300
6-18 with 4-6 PA
32 4- 7 with 4-6 PA 800 250
4- 6 with 4-6 PA

* Imm = 1') Ima
4/4-PA, »* = 0. 322 (used 0.31)
6/4-PA, »» = 0.715 (used 0.75)
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is simply not sufficient to draw any profound conclusions about cross-
route effects.

XI. COMPARISON OF FREQUENCY AND SPACE DIVERSITY IMPROVEMENT

The empirical results for space diversity given in Vigants'® can be
compared with those obtained here for frequency diversity. The improve-
ment factor for space diversity is

ISD - IOF/IO (19)

s
275D\
where

s is vertical separation between equal antennas in feet,
D is path length in feet,

M is wavelength in feet, and

F is fade depth in dB.

Using D = 28.5 miles and equation (9) gives the various diversity
improvement factors as presented in Table X.

These are plotted in Fig. 33 for a fade depth of 40 dB. Several points
are immediate. First the improvement increases with frequency for space
diversity and decreases with frequency for frequency diversity; that is,
space diversity becomes relatively more effective as the operating fre-
quency increases. The maximum improvement for frequency diversity
is 100 for the maximum allowable spacing of 4 percent in the standard
6-GHz frequency plans. Space diversity of 26 feet will give this improve-
ment. Since this spacing is reasonable, it can be said that space diversity
is “better’” than frequency diversity at 6 GHz. At 4 GHz, the correspond-
ing values are I = 625 for 12.5 percent and 79’ spacings. In this case,
frequency and space diversity are comparable in performance.

These comparisons have been made only for one-for-one space and
frequency diversity on a single hop; additional data and studles are
needed to clarify our understanding.

TABLE X—DIVERSITY IMPROVEMENT FFACTORS

4 GHz 6 GHz
Frequency 0.5(Af/f)10F/10 0.25(Af/f)10F 10

Space (s2/108)107 10 1.5(s2/105)10F 10
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Fig. 33—Comparison of space and frequency diversity at a 40-dB fade depth.
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Computed Transmission Through Rain at
Microwave and Visible Frequencies

By DAVID E. SETZER

(Manuscript received May 5, 1970)

In this paper we present tables which contain the Mdie scattering coef-
ficient, absorption coefficient, extinction coefficient, equivalent medium index
of refraction and phase delay for rains conforming to the Laws and Parsons
drop-size distribution. These transmission characteristics have been calcu-
lated for microwave frequencies of interest in common carrier radio relay
systems, 300 to 1.43 GHz, that is, 0.1 to 21.0 cm, at rain rates from 0.25
to 150.0 mm/hr. We also include the extinction coefficients for the visible
wavelength 0.6328 u.

The microwave tables were generated by using a Mie scaltering computer
program stmilar to that designed and previously reported by Deirmendjian.
The calculations at 0.6328 u were made separately by employing the usual
assumptions for droplets with very large circumference to wavelength ratios.

I. INTRODUCTION

The Mie extinction properties are of basic importance to those
interested in developing an understanding of the influence of rainfall
on open air communication systems. In this connection we have gen-
erated a rather extensive set of tables of extinction properties of rain.
The tables have been used within Bell Laboratories to study a variety
of transmission problems, examples of which are the investigation of
satellite ground station interference by Gusler and Hogg (1970),* the
study of microwave transit time variations by Gray (1970), Pierce’s
(1969) investigation of the problems associated with the synchronization
of digital networks and Setzer’s (1969) study of the extinction properties
of atmospheric aerosols.'™* A set of tables with similar results was
published by Medhurst (1965); however, his presentation only includes

* The attenuation constants used by Gusler and Hogg were based on empirical

da{a. The calculated values presented in this paper were used for comparison purposes
only.

1873
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total attenuation.® Our tables include the Mie scattering coefficient,
absorption coefficient, extinction coefficient, the van de Hulst equivalent
medium index of refraction and the van de Hulst phase delay for rains
conforming to the Laws and Parsons drop-size distribution. These
transmission characteristics have been calculated for incident micro-
wave wavelengths of 0.1, 0.2, 0.3, 0.5, 1.0, 1.62, 1.88, 2.73, 5.0, 7.5, 10.0,
15.0 and 21.0 em (corresponding to 300, 150, 100, 60, 30, 18.5, 16, 11,
6, 4, 3, 2 and 1.43 GHz) at rain rates of 0.25, 1.25, 2.5, 5.0, 12.5, 50.0,
100.0 and 150.0 mm/hr. Also included are the extinction coefficients
for the visible wavelength 0.6328 u at the above rain rates.

The calculations in the microwave region were performed on a
GE 635 computer using a scattering program similar to that previously
presented by Deirmendgian (1963).° Since the raindrop circumference-
to-wavelength ratio (wd/)\), that is, size parameter, for the visible
wavelength, is outside the range of validity of the computer program,
approximate characteristics were calculated for 0.6328 u. The usual
assumptions for spheres with very large parameters were employed.

The indices of refraction used in this report and shown in Table I
are for a rain temperature of 20°C. They were obtained by cross check-
ing many of the standard optical and microwave references and are
thought to be reliable.

II. DROPLET SIZE DISTRIBUTION

All computations in this paper are based on the assumption that
raindrops are spherical and the distribution of rain is as was measured
by Laws and Parsons and quoted by Kerr (1951).” The Laws and
Parsons distribution is presented in Table II as the percentage of
total water volume within specific size ranges. In order to use the
computer program, it is necessary to express the distribution in terms
of the number of droplets per unit volume within specific size ranges.
If the droplets are assumed to fall at the terminal velocity V, , that is,
up and down drafts are neglected, then the conversion is

D(dss1 , d1) = By Pdira , )/ V(@) Vo(d)], ey

where D(d;., , d,) represents the size distribution in units of droplets
per unit volume in the droplet diameter range d;,, to d; . Henceforth,
the diameter range d;.; to d; will be called Ad; . R, is the total rainfall
rate which is typically specified in mm/hr; P(d;., , d;) is the volume
percentage rainfall in the diameter range Ad; as measured by Laws
and Parsons; d is the average diameter in the range Ad; ; and V(d)
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is the volume of a sphere of diameter d. The terminal velocities of
raindrops Vo(d) are presented in Table III.”

For an example of the function D(d;,, , d;) resulting from the use of
equation (1), refer to Fig. 1.

III. TRANSMISSION PARAMETERS FOR MICROWAVE FREQUENCIES

The Mie coefficients and the equivalent index of refraction of the
rain medium are defined by van de Hulst (1957).® For a detailed des-
cription of these parameters, please refer to his work. Essentially,
the scattering coefficient 8,,.. (A\) and the absorption coefficient B,,. (\)
are measures of the total energy scattered and absorbed by a unit
volume of rainfall. In the simple case of a single scattering aerosol
the ratio of intensity of the transmitted beam I,(\) to that of the
incident beam I,(2) is

Ir(N)/Io(N) = exp[—Bexe(N) -1, 2)

where [ is the length of the propagation path through the rain and the
extinction coefficient B...(\) is

Bext(N) = Bacat(N) + Bans(A). (3)

A plane-parallel medium containing many scattering particles can
be represented by a slab of homogeneous material having a complex
refractive index . Carefully note that this sort of representation can-
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DIAMETER (MILLIMETERS)

Fig. 1—Laws and Parsons drop-size distribution for 150 mm/hr rain.
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be designed, by selecting the appropriate value of i, to preserve the
input-output relationships but all detail of the scattering process
within the medium is lost. According to the van de Hulst (1957) defini-
tion of #i, the amplitude and phase of the incident wave are changed
by the slab in the proportion

expl— 2xl/N)Im(1 — M)]- expl— (2#l/N)Re(fi — 1)], (4)

where the first term is recognized as defining the amplitude ratio and
the second the phase.® The values of Bexs ; Bavs 5 Bscat , 7 and the phase
angle described above have been calculated for the specified microwave
frequencies. The results appear in Tables IV through XVI. The reader
is advised to use special care when attempting to apply the van de Hulst
phase angle and medium index #i. It is recommended that van de Hulst’s
derivation be studied carefully so that the meaning and limitations of
these functions are well understood. For example, light reflected from
the slab cannot be derived by using the refractive index #%, but should
be computed by means of the actual scattering functions.

Also, it should be noted that although # is caleculated, (7 — 1) is
used to determine the phase angle. Since i is very close to one, cancel-
lation of the leading terms reduces the significant places in the numerical
value of the phase angle to one or two at most. Consequently the values
given in the phase change column of Tables IV through XVI exhlblt
noticeable discontinuous jumps.

IV. TRANSMISSION PARAMETERS FOR 0.6328 u

The Mie coeflicients 8; are defined as

B:0) = f T, @) dr, i=1,2,3, )

where r is the droplet radius; n(r) is the continuous size distribution,
and v;(\, r), 2 = 1, 2, 3 are the extinction, scattering and absorption
cross sections, respectively for droplets of radius r. The smallest ratio
of raindrop circumference to wavelength for the combination of a Laws
and Parsons rain and 0.6328 u is approximately 1500. For most purposes,
the laws of geometric optics can be applied in such cases and therefore

Yext (N, 1) R 207, (6)

Also, since the index of refraction of water at 0.6328 u is a real number,
1.33, the absorption coefficient will be zero. It follows from equations
(3), (6) and (6) that

ﬁext(0'6328”') = ﬁscat(0-6328”')y (7)
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~ 21 f . ) dr. (8)

This expression and the Laws and Parsons distribution were used to
generate Table XVII. In this connection the Laws and Parsons dis-
tribution D(d.., , d;) was used to approximate the continuous function

n(r).

V. GRAPHICAL REPRESENTATION

For the purpose of illustration, a graph of extinction coefficients
versus total water content and rain rate is included (see Fig. 2). Not
all wavelengths are represented because some of the curves are too
closely grouped in the neighborhood of those shown. Those that were
excluded, were excluded for reasons of clarity only. One point of some
interest is the location of the attenuation curve for 0.6328 p in Fig. 2.
Note that it represents a reversal of the trend exhibited as wavelength
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Fig. 2—Rainfall water content and rain rate versus extinction coefficient Bex:.
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TaBLE I—INDEX oF REFRACTION OF WATER AT 20°C
Wavelength (cm) | Index of Refraction

0.10 2.587 - 0.937(i)
0.20 3.039 - 1.575(i)
0.30 3.505 - 2.007(i)
0.50 4.364 - 2.521(i)
1.00 5.900 - 2.900(i)
1.62 7.001 - 2.544(i)
1.88 7.500 - 2.500(1)
2.73 8.070 - 1.990(i)
5.00 8.670 - 1.202(i)
7.50 8.770 - 0.915(1)

10.00 8.871 - 0.628(i)

15.00 8.916 - 0.422(i)

21.00 9.000 - 0.275(1)
0.6328 1 1.33 -0.0%)

TaBLE II— Laws AND ParsoNs Dropr-SizE DISTRIBUTIONS FOR
VARIOUS PRECIPITATION RATES

Rain Rate (mm/hour)
Drop
Diameter (ecm) | 0.25 | 1.25 | 2.5 5 12.5 25 50 100 150
Percent of Total Volume
0.05 2801109 7.3 | 47| 26| 1.7| 1.2 1.0] 1.0
0.1 50.1 137.1|27.8|203[11.5| 7.6 | 54| 4.6 4.1
0.15 18.2 | 31.3 {32.8 {31.0|24.5|18.4 | 12.5 8.8 7.6
0.2 3.0113.5119.0|22.2|25.4|23.9]|19.9|13.9 | 11.7
0.25 0.7 49| 7.9|11.8|17.3{19.9|20.9|17.1|13.9
0.3 1.56] 3.3 5.7110.1|12.8|15.6 | 18.4 | 17.7
0.35 0.6 1.1 2.5 4.3 8.2110.9|15.0 | 16.1
0.4 0.2 0.6 1.0 2.3 3.5 6.7 9.0 11.9
0.45 0.2 0.5 1.2 2.1 3.3 5.8 7.7
0.5 0.3 0.6 1.1 1.8 3.0 3.6
0.55 0.2 05| 1.1 1.7 2.2
0.6 0.3 0.5 1.0 1.2
0.65 0.2| 07| 1.0
0.7 0.3

TasLE III—RAINDROP TERMINAL VELOCITY

Radius, ecm Velocity, m/sec

0.025
0.05
0.075
0.10
0.125
0.15
0.175
0.2
0.225
0.25
0.275
0.30
0.325

[}

mmgwouwb&#wow




TasLe IV—MiE ExrtiNcrioN PARAMETERS AT 0.1 cm WavELENGTH (300 GHz), H,O INDEX OF REFRACTION
2.587—0.937i, For Laws AND Parsons RaiN '

Phase

Change
Scattering Absorption Extinction Medium Index of Refraction 7 deo

Rain Rate Coef. Coef. Coef. (k ")
(mm /hr) (km)™? (km)™1 (km)—? Re(m — 1) Im(1 — ) m
0.25 0.05390 0.05878 0.1127 0.0 X 10°¢ 0.1051 X 1077 0.0
1.25 0.1705 0.1723 0.3428 0.0 X 10°¢ 0.3051 X 1077 0.0
2.5 0.2760 0.2693 0.5452 0.0 X 10°¢ 0.4763 X 1077 0.0
5.0 0.4550 0.4306 0.8856 0.0 X 10-¢ 0.7630 X 1077 0.0
12.5 0.8913 0.8133 1.705 0.0 X 10-¢ 1.451 X 1077 0.0
25.0 1.452 1.284 2.736 0.0 X 10°¢ 2.305 X 1077 0.0
50.0 2.270 1.914 4.187 0.0 X 10—® 3.471 X 1077 0.0
100.0 3.993 3.354 7.347 0.0 X 10~ 6.109 X 1077 0.0
150.0 5.636 4.730 10.37 0.0 X 10°¢ 8.636 X 1077 0.0

NIVY J0 SHILYId0Yd NOLLONILXH
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TaBLE V—Mi1E ExTiNcTioN PARAMETERS AT 0.2 cM WavVELENGTH (160 GHz), H.O INDEX OF REFRACTION
3.039—1.5751, For LAws AND PARSONS RAIN

Phase

Change
Scattering Absorption Extinction Medium Index of Refraction % deg

Rain Rate Coef. Coef. Coef. (k—>
(mm /hr) (km)—! (km)~? (km)—t Re(m — 1) Im(1 — %) m
0.25 0.05581 0.05445 0.1103 0.0 X 10-¢ 0.2276 X 1077 0.0
1.25 0.1828 0.1685 0.3514 0.0 X 10-¢ 0.6657 X 1077 0.0
2.5 0.2991 0.2686 0.5677 0.0 X 10-¢ 1.042 X 1077 0.0
5.0 0.4965 0.4349 0.9314 0.0 X 10 1.671 X 1077 0.0
12.5 0.9766 0.8283 1.805 0.0 X 106 3.176 X 1077 0.0
25.0 1.596 1.315 2.911 0.0 X 108 5.044 X 1077 0.0
50.0 2.512 1.988 4.500 0.0 X 10-¢ 7.592 X 1077 0.0
100.0 4.406 3.449 7.856 0.1 X 10-¢ 13.33 X 1077 18.0
150.0 6.212 4,846 11.06 0.1 X 10-¢ 18.83 X 1077 18.0

0881
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TaBLE VI—MIE ExTINCTION PARAMETERS AT 0.3 ¢cM WavELENGTH (100 GHz), H,0 INDEX OF REFRACTION
3.505—2.007i, ror Laws AND Parsons Rain

Phase
Change
Scattering Absorption Extinction Medium Index of Refraction m deg
Rain Rate Coef. Coef. Coef. (k—>
(mm /hr) (km)~1 (km)™? (km)—? Re@inn — 1) Im(1 — 1) m
0.25 0.04252 0.04991 0.09243 0.0 X 10°¢ 0.2886 X 1077 0.0
1.25 0.1544 0.1586 0.3130 0.0 X 10°¢ 0.8927 X 1077 0.0
2.5 0.2634 0.2555 0.5189 0.1 X 107¢ 1.432 X 1077 12.0
5.0 0.4520 0.4175 0.8695 0.1 X 10-¢ 2.342 X 1077 12.0
12.5 0.9211 0.8026 1.723 0.1 X 10¢ 4.542 X 1077 12.0
25.0 1.542 1.283 2.825 0.2 X 10°¢ 7.320 X 1077 24.0
50.0 2.502 1.957 4.459 0.2 X 10-¢ 11.27 X 1077 24.0
100.0 4.382 3.389 7.770 0.4 X 1078 19.72 X 1077 48.0
150.0 6.153 4.751 10.90 0.6 X 10°¢ 27.76 X 1077 72.0

NIVY J0 SHITIHJdOYd NOLLDNILXH
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TaBLE VII—MiE ExTiNcTION PARAMETERS AT 0.5 cM WavELENGTH (60 GHz), H,O INDEX OF REFRACTION
4.364—2.5211, For LAaws AND Parsons RAIN

Phase
change
Scattering Absorption Extinction Medium Index of Refraction s de

Rain Rate Coef. Coef. Coef. ( E_g>
(mm /hr) (km)—! (km)™! (km)~1 Re(m — 1) Im(1 — m) m,
0.25 0.01638 0.02856 0.04493 0.0 X 10°8 0.2281 X 1077 0.0
1.25 0.08590 0.1085 0.1945 0.1 X 10°¢ 0.9094 X 1077 7.2
2.5 0.1667 0.1876 0.3544 0.1 X 10°¢ 1.608 X 1077 7.2
5.0 0.3157 0.3236 0.6393 0.2 X 10~¢ 2.832 X 1077 14 .4
12.5 0.7145 0.6574 1.372 0.4 X 10-¢ 5.924 X 1077 28.8
25.0 1.279 1.089 2.368 0.6 X 10-¢ 10.06 X 1077 43.3
50.0 2.233 1.743 3.977 0.8 X 10-¢ 16.59 X 1077 57.6
100.0 3.934 2.999 6.933 1.3 X 108 28.80 X 1077 93.6
150.0 5.505 4.165 9.670 1.8 X 10—¢ 41.65 X 1077 129.6

2881
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TaBLE VIII—MiE ExTincrioN PARAMETERS AT 1.0 oM WaveLENGTH (30 GHz), H,O INDEX OF REFRACTION
5.9—2.9i, ror Laws AND Parsons RaIN

Phase
Change
Scattering Absorption Extinction Medium Index of Refraction de

Rain Rate oef. Coef. Coef. - (k—g>
(mm /hr) (km)™? (km )1 (km)™t Re(i — 1) Im(l — ) m
0.25 0.001459 0.009006 0.01046 0.0 X 10°¢ 0.01046 X 1077 0.0
1.25 0.01303 0.04392 0.05695 0.1 X 10°¢ 0.5248 X 1077 3.6
2.5 0.03112 0.08465 0.1158 0.2 X 10~ 1.038 X 1077 7.2
5.0 0.07387 0.1617 0.2355 0.4 X 10~ 2.066 X 1077 14 4
12.5 0.2210 0.3751 0.5961 0.8 X 108 5.106 X 1077 28.8
25.0 0.4939 0.6890 1.183 1.4 X 10°°¢ 9.978 X 1077 50.5
50.0 1.071 1.234 2.305 2.1 X 107 19.16 X 1077 75.6
100.0 2.184 2.207 4.397 3.6 X 10~ 36.26 X 1077 130.0
150.0 3.280 3.106 6.386 4.9 X 10°¢ 52.58 X 1077 177.0

NIVY JO SAITYAd0dd NOILONILXHA
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TABLE IX—MI1E EXTINCTION PARAMETERS AT 1.62 oM WavELENGTH (18.5 GHz), H,O INDEX OF REFRACTION
7.001—2.544i, For Laws AND PArsons Rain

7881

Phase
Change
Scattering Absorption Extinction Medium Index of Refraction deg
Rain Rate Coef. Coef. Coef. <l )
(mm /hr) (km)~1 (km)t (km)—? Re(m — 1) Im(1 — 1) <m
0.25 0.0001932 0.002970 0.003162 0.0 X 10°¢ 0.05064 X 1077 0.0
1.25 0.002003 0.01814 0.02015 0.1 X 10°¢ 0.2982 X 1077 2.2
2.5 0.005166 0.03855 0.04372 0.3 X 10°¢ 0.6316 X 1077 6.6
5.0 0.01373 0.08067 0.09440 0.5 X 10°¢ 1.336 X 1077 11.1
12.5 0.04672 0.2093 0.2560 1.0 X 10 3.544 X 1077 22.2
25.0 0.1198 0.4172 0.5370 1.7 X 10°¢ 7.320 X 1077 37.8
50.0 0.3051 0.8111 1.116 2.9 X 10°¢ 15.01 X 1077 64.5
100.0 0.7365 1.525 2.262 5.2 X 10°° 30.19 X 1077 115.5
150.0 1.209 2.210 3.420 7.4 X 10°¢ 45.49 X 1077 164.4
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TaBLE X—MiE ExTiNcrioN PARAMETERS AT 1.88 ¢cm WavELENGTH (16 GIz), H,O INDEX OF REFRACTION

7.5—2.51, For Laws AND PArsons RAIN

Phase

Medium Index of Change

Refraction % deg

Rain Rate Scattering Coef. Absorption Coef. | Extinction Coef. (—)
(mm/hr) (km)~! (km)—1 (km)™! Re(m — 1) Im(1 — M) km
0.25 0.0001035 0.002018 0.002121 0.0 X 10°¢ 0.03934 X 1077 0.0
1.25 0.001083 0.01299 0.01407 0.1 X 10-¢ 0.2410 X 1077 1.91

2.5 0.002821 0.02836 0.03118 0.3 X 10-¢ 0.5216 X 1077 5.74

5.0 0.007659 0.06135 0.06901 0.5 X 10-¢ 1.131 X 1077 9.56
12.5 0.02667 0.1661 0.1928 1.0 X 10-¢ 3.094 X 1077 19.1
25.0 0.07037 0.3422 0.4126 1.8 X 10 6.524 X 1077 34.4
50.0 0.1853 0.6849 0.8702 3.1 X 10-¢ 13.58 X 1077 59.2
100.0 0.4643 1.308 1.773 5.5 X 10-¢ 27.44 X 1077 105.5
150.0 0.7701 1.907 2.678 7.9 X 10-¢ 41.31 X 1077 151.0
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TaBLE XI—MiIE ExTiNcTiON PARAMETERS AT 2.73 WavELENGTH (11 GHz), H,O INDEX OF REFRACTION
8.07—1.99i, For Laws aND Parsons Raiv

9881

Phase

Medium Index of Change
. Refraction deg
Rain Rate Scattering Coef. Absorption Coef. | Extinction Coef. (1——>
(mm/hr) (km)—1 (km)—1 (km)~1 Re(m — 1) Im(1 — m) <m
0.25 0.00002176 0.0006630 0.0006630 0.0 X 10~ 0.01786 X 1077 0.0
1.25 0.0002257 0.004325 0.004550 0.1 X 10-¢ 0.1123 X 1077 1.3
2.5 0.0005954 0.009876 0.01047 0.3 X 10-¢ 0.2525 X 1077 4.0
5.0 0.001664 0.02377 0.02543 0.5 X 10—¢ 0.6008 X 1077 6.6
12.5 0.005980 0.07349 0.07947 1.1 X 1076 1.844 X 1077 14.5
25.0 0.01652 0.1725 0.1890 1.9 X 10-¢ 4.330 X 1077 25.0
50.0 0.04603 0.3936 0.4396 3.4 X 10-¢ 9.956 X 10~7 44 .8
100.0 0.1227 0.8482 0.9710 6.3 X 10-¢ 21.80 X 1077 83.0
150.0 0.2057 1.303 1.508 8.9 X 10~¢ 33.72 X 1077 118.7
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TaprLe XII—Mie ExTiNcTION PARAMETERS AT 5.0 cM WavELENGTH (6 GHz), H,O INDEX oF REFRACTION
8.670—1.202i, For Laws aND Parsons Rain

Phase

Medium Index of Change
Refraction i deg

Rain Rate Scattering Coef. Absorption Coef. | Extinction Coef. (k_>
(mm/hr) (km)™1 (km)—1 (km)™1 Re(it — 1) Im(1 — ) m
0.25 0.000001855 0.0001138 0.0001156 0.0 X 10-¢ 0.05728 X 108 0.0
1.25 0.00001769 0.0005516 0.0005692 0.1 X 10-¢ 0.2604 X 1078 0.7
2.5 0.00004546 0.001138 0.001183 0.3 X 10-¢ 0.5262 X 1078 2.2
5.0 0.0001254 0.002589 0.002714 0.5 X 10-¢ 1.177 X 10°# 3.6
12.5 0.0004493 0.007932 0.008380 1.0 X 10-¢ 3.564 X 108 7.2
25.0 0.001290 0.02076 0.02205 1.9 X 10-¢ 9.200 X 10—¢ 13.7
50.0 0.003760 0.05599 0.05975 3.5 X 10-¢ 24 .63 X 108 25.2
100.0 0.01065 0.1509 0.1615 6.8 X 1078 66.19 X 1078 49.0
150.0 0.01777 0.2542 0.2720 10.1 X 107¢ 111.4 X 1078 80.0

NIVY J0 SHLLYEJOYd NOLLONILXH
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Tasue XIII—M1e EXTINCTION PARAMETERS AT 7.5 oM WAvELENGTH (4 GHz), H,0O INpEX 0F REFRACTION
8.77—0.915i1, For Laws AND PArsons RaIN

Phase

Medium Index of Change
. . Refraction 7 deg

Rain Rate Scattering Coef. Absorption Coef. | Extinction Coef. <k—>
(mm/hr) (km)—! (km)—1 (km)—1 Re(m — 1) Tm(l — ) m
0.25 0.0000003639 0.00004853 0.00004889 0.0 X 10-¢ 0.03631 X 10-8 0.0
1.25 0.000003433 0.0002078 0.0002112 0.1 X 10-¢ 0.1456 X 107 0.5
2.5 0.000008733 0.0003957 0.0004044 0.3 X 1078 0.2712 X 1078 1.4
5.0 0.00002337 0.0007859 0.0008092 0.4 X 10~¢ 0.5307 X 102 1.9
12.5 0.00008091 0.002002 0.002083 1.0 X 10-¢ 1.335 X 10°8 4.8
25.0 0.0002185 0.004256 0.004474 1.8 X 107 2.823 X 1078 8.6
50.0 0.0006030 0.009508 0.01011 3.3 X 10-8 6.285 X 1078 15.8
100.0 0.001629 0.02251 0.02414 6.4 X 10-¢ 14.90 X 1078 30.7
150.0 0.002705 0.03549 0.03820 9.5 X 10~¢ 23.54 X 10°¢ 45.6

8881
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TaBLE XIV—MIit ExTiNcTION PARAMETERS AT 10.0 cM WAVELENGTH

(3 GHz), H,O InpEx oF REFRACTION 8.871—0.62801, FOR LAWS AND PARsoNs RaIN

Phase

Medium Index of Change
Refraction deg

Rain Rate Scattering Coef. Absorption Coef. | Extinection Coef. ( >
(mm/hr) (km)—t (km)~ (km)~ Re( — 1) Im(1 — ) km
0.25 0.0000001149 0.00002309 0.00002320 0.0 X 10—¢ 0.02296 X 10-8 0.0
1.25 0.000001081 0.00009474 0.00009582 0.1 X 10-¢ 0.08815 X 10-8 0.36
2.5 0.000002746 0.0001758 0.0001786 0.2 X 10-¢ 0.1599 X 10-8 0.72
5.0 0.000007326 0.0003369 0.0003443 0.4 X 10-¢ 0.3017 X 1078 1.44
12.5 0.00002528 0.0008147 0.0008400 1.0 X 1075 0.7200 X 10°8 3.6
25.0 0.00006790 0.001627 0.001696 1.8 X 10=¢ 1.430 X 108 6.5
50.0 0.0001857 0.003336 0.003521 3.3 X 1078 2.924 X 108 11.9
100.0 0.0004946 0.007142 0.007637 6.2 X 10~¢ 6.302 X 10-8 22.3
150.0 0.0008220 0.01099 0.01181 9.2 X 1076 9.729 X 1078 33.2

NOILD NILXH
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TABLE XV—MIE EXTINCTION PARAMETERS AT 15.0 cMm WaveELENGTH (2 GHz), H,O INDEX OF REFRACTION
8.916—0.42201, ror Laws AND PAarsoNs Rain

0681

Phase

Medium Index of Change

Refraction 7 deg

Rain Rate Scattering Coef. Absorption Coef. | Extinction Coef. (~)
(mm/hr) (km)™? (km)™! (km)™? Re(m — 1) Im(l — m) km
0.25 0.002267 X 1073 0.9807 X 1075 0.9830 X 1075 0.0 X 10-¢ 0.01459 X 10°8 0.00
1.25 0.02129 X 10°5 3.894 X 1073 3.916 X 10-° 0.1 X 10~¢ 0.05408 X 10-8 0.24
2.5 0.05403 X 1078 7.087 X 107% 7.141 X 1078 0.2 X 107® 0.09604 X 10-® 0.48
5.0 0.1439 X 107% 13.22 X 107% 13.37 X 1073 0.4 X 10~¢ 0.1760 X 108 0.96
12.5 0.4957 X 1078 30.73 X 107¢ 31.23 X 1073 1.0 X 107¢ 0.4022 X 10-8 2.40
25.0 1.328 X 1078 58.70 X 1075 60.03 X 107 1.8 X 10°¢ 0.7612 X 1073 4.32
50.0 3.622 X 10— 113.2 X 103 116.8 X 1073 3.2 X 107 1.456 X 108 7.68
100.0 9.608 X 1078 227.4 X 10°° 237.0 X 10°°® 6.1 X 10°¢ 2.941 X 10°® 14.64
150.0 15.96 X 1075 341.7 X 1078 357.6 X 1078 9.0 X 10°¢ 4.429 X 10°¢ 21.60
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TapLE XVI—MiE EXTiNcTiON PARAMETERS AT 21.0 cM WaveELENGTHE (1.43 GHz), H,O INDEX OF REFRACTION
9.00—0.2751, For LaAws AND ParRsoNs RAIN

Phase

Medium Index of Change
Refraction dec

Rain Rate Scattering Coef. Absorption Coef. | Extinction Coef. (——”)
(mm/hr) (km)™ (km)™t (km)~? Re(® — 1) Im(1 — ) km
0.25 0.0005909 X 10~® 0.4531 X 1073 0.4537 X 10°°® 0.0 X 10°¢ 0.009192 X 1078 0.0
1.25 0.005543 X 107% 1.746 X 1078 1.752 X 1075 0.1 X 108 0.03347 X 1078 0.17
2.5 0.01406 X 1073 3.137 X 107 3.151 X 1075 0.2 X 10°¢ 0.05885 X 1078 0.34
5.0 0.03743 X 107% 5.774 X 107 5.811 X 1075 0.4 X 10°¢ 0.1065 X 108 0.68
12.5 0.1288 X 1078 13.17 X 1073 13.30 X 107® 1.0 X 107 0.2390 X 1078 1.71
25.0 0.3449 X 1078 24.66 X 1078 25.01 X 107% 1.8 X 10°¢ 0.4431 X 108 3.09
50.0 0.9399 X 1078 46.29 X 1075 47.23 X 1075 3.2 X 10°¢ 0.8237 X 1078 5.50
100.0 2.491 X 1075 90.75 X 1075 93.24 X 107® 6.1 X 10°¢ 1.619 X 1078 10.5
150.0 4.138 X 1073 |134.8 X 1075 |139.0 X 1075 8.9 X 10°¢ 2.408 X 1078 15.3

SHILYAJOUd NOILDNILXH
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TaBLE XVII—Mie ExrincrioN PARAMETERS AT 0.6328 u WAVE-
LENGTH, H,0 INDEX OF REFRACTION 1.33—0.0i, FOR LAWS AND
Parsons Rain

Rain Rate Scattering Coef. Absorption Coef. Extinction Coef.
(mm/hr) m)~? (km)™! (km)—?
0.25 0.08093 0.00 0.08093
1.25 0.2482 0.00 0.2482
2.5 0.3977 0.00 0.3977
5.0 0.6519 0.00 0.6519
12.5 1.273 0.00 1.273
25.0 2.069 0.00 2.069
50.0 3.221 0.00 3.221
100.0 5.689 0.00 5.689
150.0 8.046 0.00 8.046

decreased from 21 to 0.1 cm. This phenomenon is also illustrated in
Fig. 26 of a paper previously presented in this journal by Chu and

Hogg (1968).°

It serves to warn the reader that he should be very

careful when applying the common rules of thumb relating wavelength
and attenuation.
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A Linear Phase Modulator for
Large Baseband Bandwidths

By C. L. RUTHROFF and W. F. BODTMANN
(Manuscript received June 3, 1970)

A linear phase modulator with a stable carrier frequency would be a
useful component in radio systems—espectally in coherent phase-shift-
keyed PCM systems with baud rates of the order of 100 megabauds per
second.

The Armstrong modulator appears adequate for these applications; the
circuit functions required for its realization are well understood and
amenable to the techniques of integrated circuitry.

In this paper, an analysis of the signal and distortion properties of
the Armstrong circutt and variations of it are presented and applied to
three system applications: as a replacement modulator for existing low-
index analog systems; for muliilevel coherent phase-shift-keyed PCM
systems; and for frequency-division frequency-modulation multiplex
systems which are of interest in radio trunk systems.

I. INTRODUCTION

A linear phase modulator with a stable carrier frequency would be
a useful component for the following three applications.

(#) As a replacement modulator for the reflex Klystron in an
otherwise all solid-state repeater of the TL System.’
(#) For frequency-division frequency-modulation multiplex systems
with baseband bandwidths of the order of 100 MHz.?
(772) For multi-level coherent phase-shift-keyed PCM systems with
baud rates of the order of 100 megabauds per second.’

The modulator described in this paper appears adequate for these
applications. It is based upon the original Armstrong circuit which is
well suited to large baseband bandwidths and is reasonably linear for
low modulation indexes.* An important feature of this method of
modulation is that the carrier frequency can be stable with respect

1893
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to ambient effects since it can be derived from a temperature-stabilized
quartz crystal oscillator. The baseband bandwidths which may be
achieved are those for which low-index double sideband amplitude
modulators can be built.

An analysis of distortion is presented for the types of baseband
signals used in the three applications discussed above, and a circuit is
described in which the phase deviation can be increased to any desired
value.

II. CIRCUIT DESCRIPTION

The Armstrong modulator is illustrated in Fig. 1. The baseband
signal is modulated in a double-sideband suppressed-carrier amplitude
modulator with a sufficiently low index of modulation to ensure suitable
linearity. At the modulator output another carrier, 90° out of phase
with the first, is added to the sidebands. The residual AM is removed
by the limiter whose output is a low-index phase-modulated signal.
The phase distortion can be made arbitrarily small by choice of the
carrier to sideband power ratio at the limiter input; the result is a
nearly linear, low-index phase-modulated signal.

Let the baseband signal be

e = o), with |o@)]| = 1. ¢H)]

The output of the double-sideband suppressed-carrier amplitude modu-
lator is

e, = mu(l) cos wyt 2)
where m =< 1 is the index of modulation.

A quadrature carrier is added to e, in approximately the correct
phase to obtain

e, = sin (wol + €) + mo(t) cos wt. 3)

PHASE

BASEBAND DSB-SC €a €p MODULATED
— IT > > LIMITER

SIGNAL V(t) HOBULATOR + ' QUTPUT

SIGNAL

‘ Cos wot SN (wot +¢) siN[wot +e +¢ (1]

STABLE

-90°
CARRIER et
SOURCE PHASE SHIFT

Fig. 1—Armstrong phase modulator.
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e, = V1 4+ 2mo(l) sin € + m**(})

o -1 mw(l) cos e ]
sin I:wot + ¢ + tan T+ mo(f)smel ’ 4)
where e is small and represents any error in carrier phase.

If this signal is passed through a perfect limiter the envelope be-
comes constant, leaving an angle modulated signal whose phase modu-
lation is
mu(t) cos e

o(t) = tan™" T+ mo() sin e ®)

When the nonlinear distortion is small, the controlling distortions
will be second and third order so terms in the expansion of equation (5)
beyond the third will be omitted and (5) becomes

o(t) = mu(t) cos e — m’(t)® sin € cos ¢ + m(t)® sin’ € cos e

n

3

Ideally, ¢ = 0 and the first term in equation (6) is the desired modu-
lating signal; the second and third terms will be zero and the last term
is the third-order distortion. When e 5% 0, second-order distortion
occurs and the desired output signal amplitude is reduced by the
factor cos e

It can be seen from equation (6) that the distortion can be made
as small as desired by the proper choice of m, which is proportional to
the phase deviation. In order to determine suitable values of m, v({)
must be specified; we shall consider three signals of interest, corre-
sponding to the three applications listed in Section I.

v()® cos® e. (6)

2.1 Case I

The signal »(f) is gaussian noise uniformly distributed in a band-
width extending from O — W Haz.

For nonlinearities of the type described in equation (6) the desired
results can be computed by well-known methods.®

:308: - e o |flsw, (@
: 2m’s” sin® e(l — ﬁ)
S0 - . os(fi=w, @®

S s el:l - é (%)] |
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where,

So(f) = m® cos® e(a’/2W), with —W < f < W, is the spectral density
of the phase of the output signal,

Sa(f), Ss(f) are the spectral densities of the second- and third-order
distortion terms, respectively.

¢ is the mean square value of »(f), that is, the power in v(f), and

mo is the rms phase deviation.

2.2 Case IT

o(t) = Z} Q cos (np + gu)l. ©)

The baseband signal, v(f), is a frequency-division frequency-modu-
lated multiplex signal. Each term in equation (9) is an FM carrier with
its own frequency modulation ¢,. Bennett has derived the number
and types of modulation products produced by the last three terms of
equation (6) for v(f) as in equation (9).° The second-order term of
largest amplitude has the form

e, = m*Q” sin e cos e cos [(m = n)p + (g. &= g.)]t. (10)
Similarly, the controlling third-order product has the form

3
% Q®cos’ecos [(I = m £n)p + (q: &+ ¢. £ g)]t.  (11)

e; =
The total power in the signal of equation (9) is
2
s=NL (12)

where N is the number of terms in equation (9). From equation (6)
the output phase modulation for an individual channel is

e; = mQ cos e cos (np + gu)i. (13)
The ratios of signal-to-distortion power for single modulation prod-
ucts are,
41~ ]
les |° LmQsine]’ (14)
le, |2 I: 2 ]2
les |° Lm*Q% cos® e ° (15)

In order to determine the total signal-to-distortion power ratios it is
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necessary to compute the number of products falling in the kth channel,

1 £k £ N. Assuming power addition for these products the total
signal to distortion ratios become

s __ 1 <ﬁ>
D, 2m%"sin® € \N, (16)

S 2 <N2>
D, ~ m's" cos* € \2N, (17)

where

N is the total number of channels, i.e., the number of terms in
equation (9),

N, is the equivalent number of m 4= n type products and includes
other second-order products weighted in accordance with their
contribution to the distortion power. It is a function of £ and N,
and

N, is the equivalent number of I &= m -4 n type products and in-
cludes other third-order products weighted in accordance with
their contribution to the distortion power. It is a function of %
and N.

Expressions (16) and (17) for the signal consisting of N sine waves
are much like expressions (7) and (8) for the case of the noise-like
signal. It has been shown by Bennett that the sum of randomly phased
sine waves of equation (9) behave like noise as N increases without
bound and if the power and bandwidth are finite.” It is of interest to
see in the present context how fast expressions (16) and (17) approach
(7) and (8) as N increases; this is shown in Figs. 2 and 3. It is evident
from the figures that the signal-to-distortion ratios are not a strong
function of the number of channels, the ratios changing a maximum of
2 dB while the number of channels goes from 10 to infinity.

For a more detailed look at the behavior of the distortion products,
the number of the various types of products falling in the kth channel
for the 500-channel case are shown in Figs. 4 and 5.

2.3 Case II1

In this case the baseband signal is a sequence of pulses which phase
modulate a carrier in the format of a phase-shift-keyed system. A
4-level polar baseband signal is written

o) = Vo 3o haplt — ), (18)

n=-00
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Fig. 2—The effect of the number of channels on the ratio of signal-to-second-
order distortion.

where,

p(t) is the pulse shape,
T is the time interval between adjacent pulses, and

k, = +1, £3.

In a 4-level PSK system, a maximum peak deviation of =37/4 radians

4
n 3
-t
w
o
g N=10
o}
z2r
”
prd
o
> 25
Z
100
v/ [- (v3) (f/W)?]
0 | ; !
) 0.2 0.4 0.8 1.0

0.6
k/N or[f| /W

Fig. 3—The effect of the number of channels on the ratio of signal-to-third-
order distortion.
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Fig. 4—Number of second-order distortion products.
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Fig. 5—Number of third-order distortion products.
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4
¢=a TAN"' mv (L)
z < k=3, M=0.669
o
<
@ ~p=4TaAN1 Dy (t)
o / 3 —¢ —iﬁv(t)
w / - R 4
2 = /
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I 4
o
I o I
2 TIME, t ~—> z

Fig. 6—Modulator input and output pulses.

is required. Deviations of this magnitude may be obtained by multi-
plying the output of the modulator in a resistive multiplier circuit.

As an example, suppose the modulator output is multiplied by four.
The peak deviation required in the modulator is then 3x/16 radians.
Raised cosine input pulses, »(¢), and the corresponding phase devia-
tions in the output of the modulator are shown in Fig. 6 for this case.
The output pulses were computed from equation (5) for ¢ = 0. The
value of m was chosen to result in a peak deviation of 37/16 radians
for the pulse corresponding to k, = 3. For this example, m = tan
3w/16, and

27rt:| , T < T.

o(t) = %" |:1 + cos T

In Fig. 6, the phase deviation, ¢, is shown for pulses having k, = +1,
+3. Some pulse compression is present in the larger pulse and the
parameter m has been chosen for the correct peak deviation. For the
smaller pulse the peak deviation is seen to be too large by about five
degrees. If uncorrected, this error would cause the system performance
to be degraded a few tenths of a dB.* The peak deviation can be cor-
rected by a gain adjustment in the circuits in which the smaller pulses
are generated.’

TII. MODIFIED ARMSTRONG MODULATORS

There may be applications in which it is desirable that the output
carrier frequency equal the frequency of the source carrier. The circuit
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of Fig. 7 will accomplish this purpose while minimizing the degradation
due to tones generated in the final mixer. The carrier frequencies of
any high-order products of the two input signals which fall into the
output band will be exactly at the carrier frequency of the output
signal and result in minimum degradation.

If the times (N — 1) frequency multiplier is replaced by a times
M multiplier the flexibility in the choice of output carrier frequency
is increased while the feature described above is retained. In either case
the frequency multipliers should be resistive rather than reactive.

Finally, in the balanced modulator illustrated in Fig. 8 the phase
deviation is doubled for a specified ratio of signal-to-third-order dis-
tortion.

IV. CONCLUDING REMARKS
The Armstrong modulator has three attractive features.

(z) The carrier frequency can be derived from a frequency stabi-
lized oscillator. For example, a single source can be used in both
modulators used to derive two cross-polarized channels for a
short hop radio system or a satellite radio system. The identical
carrier frequencies serve to minimize the effect of co-channel
interference due to cross-polarization coupling.

(#¢) The functions required to realize the modulator—limiting,
mixing, and multiplication—are amenable to circuit integration.
(#2) The modulator is suitable for very large baseband bandwidths,
particularly high-speed pulse sequences for PSK-PCM systems.

A short hop radio system has been described recently which has about
the same communication capacity for either large index analog phase
modulation or digital PSK-PCM.® In a system designed for either type
of operation, it is convenient to do the digital processing at the inter-

vit) DSC-SC
AMPLITUDE } LIMITER xN[ MIXER

MODULATOR

°

PHASE SHIFT

STABLE T « (N—l)

CARRIER
SOURCE

Fig. 7—A modulator with output frequency equal to frequency of stable carrier
source.



1902 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1970
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MODULATOR
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o PHASE SHIFT siN [wot + ¢4 (t)]
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MODULATING SOURCE cos | wot+ealt)- t]
SIGNALV (t) I [ bt oalt) g t)
SIGNALV L) | MIXER
cos vt |
x2
_ +90° SIN [2 wolt + 92 (t)]
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Fig. 8—Balanced Armstrong modulator.
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Fig. 9—Repeater of configuration for analog phase modulation or digital CPSK-
PCM modulation.
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mediate frequency; if PSK-PCM is to be used, the IF amplifier can be
replaced by a digital regenerative repeater and no other changes need
be made (See Fig. 9).

A digital regenerative repeater has been described which is appro-

priate for this application; it requires a phase modulator with require-
ments which are met by the configuration of Figure 7: that incidental
AM be small, that the frequency be stable, that the linearity be adequate
for multi-level operation, and that the power consumption be small.’
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Eventual Stability for Lipschitz
Functional Differential Systems

By GERALD A. SHANHOLT
(Manuscript received April 3, 1970)

In this paper it is established that for Lipschitz functional differential
systems, the eventual uniform asymptotic stability of the origin is preserved
under absolutely diminishing perturbations.

I. INTRODUCTION AND NOTATION

In two recent papers, A. Strauss and J. A. Yorke have investigated
“eventual” stability properties for systems of ordinary differential
equations.’'® In particular, they have shown that for Lipschitz systems,
diminishing perturbations preserve eventual uniform asymptotic sta-
bility.! It is the purpose of this paper to extend a somewhat weaker
form of this result to functional differential systems. Namely, it will be
shown that for Lipschitz functional differential systems, the eventual
uniform asymptotic stability of the origin is preserved under absolutely
diminishing perturbations.

The following notation will be used in this paper: E” is the space of
n-vectors, and for z in E*, | z | denotes any vector norm. For a given
number 7 > 0, C denotes the linear space of continuous functions
mapping the interval [~-7, 0] into E", and for¢ in C, || ¢ || = sup | ¢(6) |,
—7 =< 6 £ 0.For H > 0, Cyy denotes the set of ¢ in C for which || ¢ || <H.
For any continuous function z(u) whose domainis — 7 = u < q,a = 0,
" and whose range is in £", and any fixed {, 0 < ¢ £ a, the symbol z, will
denote the function z,(0) = z(¢ + 0), —7 = 0 < 0; that is, z, is in C,
and is that segment of the function z(u) defined by letting » range in the
intervalt — r S u £ &.

Let F(t, ¢) be a function defined on Dy = [0, ») X Cy into E”, and
let ©(¢) denote the right hand derivative of xz(u) at u = {. Consider the
functional differential system

&(t) = F@t, ). (1)
1905
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Let (s, ¢) be in Dy. A function z(s, ¢)(¢) is said to be a solution of
equation (1) with initial function ¢ at ¢ = s if there exists a number
b > 0 such that

(1) fortels, s + 1), z.(s, ¢) is defined and in Cp;
(@) z,(s,¢) = ¢; and
(175) z(s, ¢) () satisfies equation (1) fors <t < s + b.

x(s, ¢)(?) is unique if every other solution with the same initial function
¢ att = s agrees with z(s, ¢) (f) in their common domain of definition.

If F is continuous on Dy, then for every (s, ¢) in Dy there is at least
one solution of equation (1) with initial function ¢ at ¢t = s.* If, more-
over, I is Lipschitzian in ¢, that is, there is a constant L such that for
every ¢y, ¢, in Cy

|F@t, ¢) — F(t, ¢2) | £ Ll — o2 | 2

for t = 0, then there is only one such solution. Generally, under such
assumptions, one can only expect solutions to exist over a finite interval.

1I. PRELIMINARIES

We now define the stability concepts to be used herein. These defini-
tions are stated for equation (1) in which it is assumed that for some
H,0 < H £ o, F is continuous and Lipschitzian on Dy.

Definition 1: The origin is eventually uniformly stable (EvUS) if for
every € > 0, there exists a 6 = 8(¢) > 0 and o = a(e) = 0 such that
[| (s, 8) || < eforall{l¢|| < dandt = s = o. It is uniformly stable
(US) if one can choose a(e) = 0.

Definition 2: The origin is eventually uniformly attracting (EvUA) if
there exists constants » > 0 and 8 = 0, and if for every ¢ > 0 there
exists a T = T(e) > 0 such that || z.(s,¢) || < efor||¢ || < n,s= 8,
and t = s + T. It is uniformly attracting (UA) if one can choose 8 = 0.

Definition 3: The origin is eventually uniform-asymptotically stable
(EvUAS) if it is both EvUS and EvUA. It is uniform-asymptotically
stable (UAS) if it is both US and UA.

The above definitions show that EvUS, EvUA, and EvUAS are
weaker stability concepts than their respective Lyapunov counterparts:
US, UA, and UAS. Also, it should be noted that in these definitions we
do not require that the zero function be a solution of equation (1).
When the origin is US, this implies that the zero function is a unique
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solution of equation (1) for any s = 0. Thus, we see that EvUS
(EvUAS) is a natural generalization -of US (UAS) in which it is not
assumed that the zero function is a solution. Finally, it is important
to note that UA does not imply that the zero function is a solution
(Ref. 1, example 2.8).

Definition 4: Let V (i, ¢) be a function defined for (¢, ¢) in Dy. The
Qerivative of V along solutions of equation (1) will be denoted by
V ult, 2.(s, $)] and is defined to be

Violt, 2.6 9] = limsup 3 VIt + b, 2asls, )] = VI, 2,65, 601

If F is continuous and Lipschitzian, and if the origin is EvUAS,
then the existence of a Lyapunov type comparison function can be
established. By following D. Wexler* and A. Halanay® one can prove
the following theorem.

Theorem 1: Let F be continuous and Lipschitzian on Dy, and let the
origin be EvUAS. Then there exists a number K, 0 < K < H, and a
function V(t, ¢) with the properties: (1) there exists functions a(r), b(r)
continuous, positive, and monotone increasing for r > 0, with a(0) =
b(0) = 0, such that for m in (0, K]

allle ) =V, é) = b(|[e]])

form = ||¢]|| £ K, t = d(m), where d(r) is a continuous, nonnegative,
and nonincreasing function for r > 0; (i1) there exists a function c(r)
continuous, positive, and monotone-increasing for r > 0, with ¢(0) =
such that

V(1)[t z.(s, ¢)] = H (s, ¢) H

for ||¢|| £ K, t = s = d(K); and (iii) for 0 < r £ [|¢: ]| £ K
¢ > d(K)

[V ¢1) — V(L o) { ]I{(T)H ¢ — b2 ],

where M (r) is continuous and monotone-decreasing on (0, KJ.

III. PERTURBED EQUATION

We now prove a theorem which shows that the EvUAS of the origin
of the nominal equation

y@t) = F(t, y.) )
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is preserved for the perturbed equation
i(t) = F@, z.) + G@, =) )

when F and G satisfy certain conditions. In particular, G(i, ¢) is required
to be absolutely diminishing, that is, for every m in (0, H), there exists
a v, = 0 and a function ¢,(f) continuous on [y,, «) such that for
m= |||l <H tZynm

|G, ¢)| < ga(t) and I.() = fm gu(s)ds —0 as t— o,

Theorem 2: Suppose that F and G are continuous and Lipschitzian
on Dy, that G is absolutely diminishing, and that the origin is EvUAS for
equation (N). Then the origin is EvUAS also for equation (P).

Proof: Define J,,(t) = sup [[.(s):t — 1 = s < »]fort = 1. Since
I,,@) — 0ast— «, this implies J,.(f) — 0 monotonically as { — .

Let 0 < ¢ £ K, choose ||¢]|] < 8(¢) = b7'[a(e)/2], and pick
6 = 6(¢) = 0 and such that
2LM (8)J5(t) < min [a(e), c(8)] 3)

for t = 6, where L is the Lipschitz constant associated with F. Then
fort = s = a9 = max [, 8(e), d(®)], || z.(s, ¢) || < e. Suppose not,
that is, for some t = s, || z.(s, ) || = e. Let ¢ be the first i-value greater
than s for which || z,(s, ¢) || = ¢ and let p be the last {-value less than
g for which || z,(s, ¢) || = 8. Then

sllaollse p=t=sg 4)
For ¢ in an interval on which z(s, ¢)(f) exists, we evaluate
Vinlt z.6s, )] £ Vanlt, x,(s ?)]

+ hmsup (V{t + h, z.alt, 205, §)1}

=0t

- V{t + h) yt+h[t7 111:(8, ¢)]})
= —clllz.s, ¢)|l]

-+ hm Sup L th+h[t Ty (S ¢‘)]

- yt+h[t) CB;(S, (I’)]H}

where the function V is as described in Theorem 1. By assuming—?with
no loss of generality—that I, > 1, we obtain® from the above inequality

v(P)[t: .’Bg(S, )] = —cl th(s’ ¢) “] + LM l G[ty (s, ¢)] l
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Employing the absolute diminishing character of @ and equation (4),
we obtain by integrating the above from p to ¢

o £ b() — (¢ — pe(@) + LM | g.(0) dr. (%)
Using the easily shown fact that
t t
f gm(s) ds = f I,.(s) ds, tzuz=1,
u u—1

and equations (3) and (5), we see that
a(e) = b(8) — (¢ — p)e(d) + LM(g — p + 1)J:(»)
< b(8) + ale)/2 = ale).

Hence, we arrive at a contradiction which shows that the origin is
EvUS.

Let 9 = 8(K), 8 = a(K), and
T(e) = ale) + 2[LMJ;(1) + b(K)]/c(5). (6)

Consider s = 8 and || ¢ || < 5. Thus, z(s, ¢)(t) exists for all ¢ = s
Moreover, since the origin is EvUS, to prove EvUA it is sufficient to
show the existence of au, s + @ £ u < s + T, such that || z.(s, ¢) || <
3(e). Assume the contrary, that is,

Sllas ol =K stast=s+ T
Employing the same procedure as above, we arrive at the estimate
a(®) < bK) — (T — a)e(8) + ML(T — a + 1)J:(s + a).

Using the monotonicity of J; and equations (3) and (6), we compute
a(9) < b(®) — “2 (1 — o) + MLIL1) =
This contradiction then completes the proof of this theorem.
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Information Theory and Approximation of
Bandlimited Functions

By DAVID JAGERMAN
(Manuscript received April 15, 1970)

For bandlimited functions, stmulianeous approximation of a function
and several of its derivatives is considered. Concomitant eniropy estimates
are obtained. A feasible algorithm for the transmission of information is
discussed. This algorithm has been applied to the design of a class of PCM
systems."

I. INTRODUCTION

It is the purpose of this paper to discuss both the best approximation
of sets of bandlimited functions under Sobolev norms and the con-
comitant information-theoretic estimates. The Sobolev norms are
useful when it is desired to approximate simultaneously the function
and some of its derivatives. This requires an amount of information
beyond that for approximating only the function. Section II gives the
necessary background definitions of width, entropy, and capacity;
theorems providing representations of bandlimited functions, as well as
a form of Mitjagin’s inequality relating approximability to entropy,
are proved. The distinction between capacity and entropy is comparable
to that between communication and storage, since capacity refers to
the number of distinguishable functions transmitted from a signal
source while entropy measures a bit requirement for the reproduction
of a function to within a specified accuracy. A constructive approach
to communication requirements implies an explicit means of representing
any function of the signal source by numbers with a uniformly bounded
number of digits. The procedure or algorithm used is usually obtained
from an infinite series representation with subsequent truncation and
quantization. Pulse code modulation systems provide examples of this
procedure. Section IT gives a precise definition, while Section ITI presents
an explicit construction of a feasible algorithm. This algorithm has been
applied to the design of a class of PCM systems.’

1911
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Sections IIT and IV contain the theorems and proofs which provide
upper bounds on widths and entropies. Section III discusses signal
sources with finite instantaneous power. Section IV considers signal
sources in which the total energy is finite.

II. PRELIMINARIES

Let A be a subset of a Banach space X; it is desired to approximate 4,
that is, uniformly all elements of A by means of n-dimensional sub-
spaces X, of X. The deviation Ex,(4) of A from X, is defined by

Ex,(4) =sup inf || f — ¢ ||. ey
fed geXn
The deviation provides information on how well A may be uniformly
approximated by elements of the given space X, ; however, another
choice of X, might provide a smaller deviation. Accordingly the nth
width, dX(A4), of A relative to the space X is defined by®
dX(A) = inf Ey,(A). 2
XncX
If the infimum is attained, then a corresponding X, is called an extremal
subspace. The following properties are immediate.

0=d5,(4) £d%4), nz0, 3)
dy(4) = sup Iz, 4)
B C A= d3(B) £ di(4). (5)

If X has finite dimension m, then d*(4) = 0 for » = m.

A set of sets whose diameters do not exceed 2e¢(e > 0) and whose
union contains A is called an e-covering of A. A finite set S C X such
that for f ¢ A thereisage Swith {|f — g || £ eis called an enet of 4.
Clearly dX(A) < efor a set A possessing an enet of n elements. If 4 is
totally bounded then lim,.., d%5(4) = 0. To see this, choose a covering
of A consisting of n eballs, then their centers constitute an enet of A.

Let N.(A) (presumed finite) be the number of sets in a minimal
e-covering of A; then the absolute e-entropy, H.(4), of A is defined by

H.(4) = log N.(4) 6)

in which the logarithm is taken to base two.*™*

Let N%(A) be the number of elements in a minimal e-net S C X of 4;
then the relative e-entropy, H%X(4), is defined by

H7(4) = log N'(4) ()
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in which the logarithm is taken to base two.?™* For A totally bounded,
let 2, , + -+ , @, be the elements of an enet, and let B;(1 < j < n) be a
ball of radius e about z; ; then the sets U; = B; M A constitute an
e-covering of A; hence

H.(4) £ H*(A). ®)

The minimum number of binary digits, d, of an integer expressed in
radix two needed to identify uniquely every element in a minimal
e-covering of A satisfies

[H(A)] =d = [HA)] +1 (9)

in which [z] designates the integral part of z, that is, the unique integer
satisfying « — 1 < [2] £ 2. Thus H.(4A) may serve as an absolute
measure of efficiency for processes designed for the storage and trans-
mission of information.

Let a set w of n real numbers be chosen, and also a mapping from 4
onto @, = w X -+ X w (p times); that is,

zed—oa= (o, " ,0)ed,,a, *,Ew

Let the algorithm I' define a one-to-one and onto mapping of 2, to an
enet S of 4 in which I'() £ S approximates x ¢ 4 to within ¢; then the
volume V(T) is defined by

V() = p log n. (10)
In view of expression (8), one has
V(T) z H{(4) =z H(4). (11)

Thus the greater V(I') is, the less efficient is the algorithm I' compared
to the absolute standard H,.(4).
If D C A has the property that

f=g, fgeD=|f—gll > ¢ 12)

then D is called e-distinguishable. Let M .(4) be the number of elements
(presumed finite) in a maximal e-distinguishable subset of 4, then the
e-capacity, C.(A4) is defined by

C.(4) = log M. (4), (13)

the logarithm being again taken to base two.® For a transmission
system, C.(4) measures the number of distinguishable signals of the
source or of the processed signal at the output of the receiver depending
on the identification of A. The following inequalities hold between
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e-capacity and e-entropy:
C:(4) = H(4) = C(4). (14)

To show this, consider the inequality on the right. Let D be a maximal
e-distinguishable subset of A4; then eballs about each element of D
constitute an e-covering of A for, otherwise, there would be an z ¢ A
not covered and hence more than e away from every element of D. This
would contradict the maximality of D. For the inequality on the left,
let D be a 2e-distinguishable subset of A, then the number of elements
of D cannot exceed the number of covering sets of diameter 2¢ or less
in an e-covering of A for, otherwise, there would be at least two elements
of D in the same covering set. This would contradict the 2e-distinguish-
ability of D.

It is possible to bound H*(A) above and below in terms of d*(4)
(refer to Ref. 2 where Mitjagin’s inequalities are given). An improved
form of Mitjagin’s upper bound is proved below.

Theorem 1: Let A be a totally bounded subset of & real, normed, vector
space X. Let the nth widths relative to X be d*(A), and let

N =max [n :di,(4) = (1 — a)e]
with @ an arbitrary number satisfying 0 < « < 1; then

X
HX(4) = N log (% +2= "‘)-

(4

Proof: Let Ey be an N-dimensional subspace of X for which Ez,(4) <
(1 —a)gthen Ve AJye EySlz —y|| < (1 — @)e Let Ay be the
set of all such y for every z ¢ A. An ae net of Ay is an e-net of 4; hence
H%(A) = HX.(4y) £ C.(Ay). Let yy, - - -, yu be an ae-distinguishable
subset of Ay, and let B, C Ey be balls with centers y, and radius 3ae,
then they are disjoint and are all contained in the ball B with center
the origin and radius d% 4+ (1 — %a)e. Let Ay be the volume element
in Ey ; then \yM (Rae)” = M[dE + (1 — 1a)€". The inequality of the
theorem follows on taking logorithms.

The class of functions to be studied consists of the space B, defined
by the conditions that f(f) ¢ B, be analytically continuable into the
complex plane as an entire function of exponential order one and type o,
and that it be bounded on the whole real axis — © < ¢ < «. The follow-
ing inequality is valid for B, :°

sup [ O | <o _swp SO I (15)

—oo<t <

Important subspaces of the space B, are the space C, defined by
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JeC,= A(n) = o(e") (16)
in which
A(n) = s [ 1E+m |, &2 real, 17
and the space W, defined by
feW,=fe L*(—w, o). (18)

Several representations for B, exist;’ however, the following repre-
sentations are needed for the present investigation. Let

8(t, o) = 22, (19)
¢1’(ty O') = d’(t - ]hy U); h = 77/”) (20)

then one has the following:
Theorem 2:

e Coef) = 25 f(j)$:(t, o)
for all complex t. The sertes converges uniformly in every closed, bounded
region.
Proof: Consider the integral

1 __I®

Y 2m Jop (6 — 1) sin o¢

g, ¢ =§&+um, 1)

taken over a square Cy with corners at (N 4+ 3) (%1 =%2)h, and N so
large that ¢ is in the interior of the region bounded by Cy . The theorem
is clearly true when ¢t = kh (k integral); it will hence be assumed ¢ # kh
for any integral k. The index N = 0 is an integer. Evaluation of Iy by
use of residues yields

N
f) = 22 fGMi(t, o) + Lysin ot; (22)
i=—N
thus, to prove the implication to the right, it is sufficient to show I — 0,
N — . Let I be the integral (21) extended over that part of Cy given
by ¢ = (N 4+ 3)h; then

1 1
| I ] < 5
(N+3)h Al
f TN XD F i =i sm GOV £ 5 T aom |9 @
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Since
[N+ Hh+in—t]z N+ Dh—|t],
[ sin (#(N + %) + 4o9) | = cosh o = Leoin!,

one has
(N+4)h

(N + 2)h - l ¢ \‘[(N-!—%)h
Writing equation (25) in the form

(1) 2 (2N + l)h b —alnl
e =GN+ Dh =211 @GN + Ok fw,,.e An) dn,
(26)

<1 AG) dn. (25)

I I(l)

using equation (16) and the following lemma’

=0, [nlow=lmd [ faa=0, @)

shows that I${" — 0 uniformly in ¢. The same conclusion applies to the
integral extended over § = — (N -+ $)h.
Let I be the integral (21) extended over n = (N + 1)h; then

2) 1
I | = 27r
f‘”*"" f + (W + DI & (28)
wepn | &+ 1N + Dh — ¢ | | sin (& + 7NV + 1)) |
Since
6+ N +Dh—t] =N+ dDh—|t] (29)
|sin (ot + iV + ) | = LS5 ey,
one has
P | s —2 @N kDb -eomed g 4 31). (30)

71 —e ™) @N +Dh —2|¢t]

In view of equation (16), I — 0 uniformly in ¢. The same conclusion
applies to the integral extended over = — (N + %)h. For the implica-
tion to the left, one may observe that ¢;(f, ¢) € C, , and that the series
converges uniformly.

The series of Theorem 2, which is clearly interpolatory, is called the
cardinal series,®
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Tor f(t) ¢ L*(— «, =), the Fourier transform relations are given by

1 * —iut
Fa) = gy [0 a (31)
1 ® iut
f(t) = @ f e™F ) du. (32)
The Fourier transform of ¢;(%, ¢) is
D WEAR )
q’i(u; 0') s (2> € ) Iu I < o; (33)
=0, |u| > 0.

The Parseval relation now shows that the sequence ¢;(t, ¢), — 0 <j < =
is orthogonal over (— «, =) with respect to unit weight; thus,

[ ot ositpa=0,  i=k; ”
= h, j=k.

The following theorem may now be stated for f e W, .
Theorem 3: fe W,

= [l ra=n3 G
) = (2—:0% f_a ™ Fu) du,

F) = g 5 106, Ju| <o,

j=—00

Proof: The Paley-Wiener theorem® shows that f ¢ W, has the repre-
sentation given in Theorem 3; hence, by the Cauchy—Schwartz inequality

| ¢+ in) | < {s“;};:’? f_ | F) 12du}’ = o(e”'™). (35)

Equation (35) shows that W, C C, ; thus, by Theorem 2, f is in the
closure of the system ¢;(f, ¢), — ® < j < . The Parseval relation now
follows from equation (34). To establish the formula for F(u), it is
only necessary to show

o N
f ot Z f(jh)e—iuih du — 0, M,N—> o, M,N— —o, (36)

i=M

because each term is the Fourier transform of the corresponding ¢; term
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of the cardinal series. One has

T N
f eiut Z f(jh)e—iuih du

i=M

2

> fGhye ™t | du,  (37)

i=M

2 [
< 2¢ f
< N » ‘2 N
e S gt a5 4 3 G0 P06
-0 i=M i=M
The limit zero is obtained as a consequence of the Parseval relation of

Theorem 3.
To obtain a representation for the class B, ,*° let

6 m
o) = d’(t’ (1 —Ua)m> ¢(t’ 1 = 5) (39)
m > 0 integral, 0o,

0,0) = 0¢t — jh), h=2(1—0); (40)

then one has
Theorem 4: feB,

=10 = 2 10,0
The series converges absolutely and uniformly in every closed, bounded
region.
Proof: The function

. oo "
sin ———— (s — 1)
MJ 0= o |

a=am® Y

(41)

belongs to W, -5, for each positive integer m and arbitrary s, hence the
cardinal series applied to this function yields the expansion

[sin —~—(1 _('Soa)m (s — t)lm

o0
a1— 6)m(s_ ) [

1
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Let s = ¢; then the required representation is obtained. The absolute
convergence follows from the boundedness of | f(jh) | and

[0;()) | = 0Cl3 ™). (43)

Approximation will be studied in the uniform norm and the following
Sobolev norm

il = {f/ AP+ mfOF+ - +wlf7OP dt}f (44)

in which g, , -+ + , u, are positive numbers. For the space B, , the symbol
Bf, will be used for the corresponding normed space. The symbol
B! (M) will be used for the subset defined by | f(t) | £ M, — o <t < .
For the space W, , the corresponding normed space will be denoted by

W, ,and W7 (B) for the subset in which

{ [ dt}% <5 (45)

I1I. THEORETICAL INVESTIGATION OF B,

Let BT designate the vector space B, normed by
10~ max 1101, ()

-T/25tsT,
and let BZ(M) be the subset of BY satisfying
[f®) ] = M, —w <t < o, (47)
The completion of B” is the space C” of functions continuous over
[—T/2, T/2] and normed by equation (46).
Let

T 2\ 2
¢=", 5,,=1—(Ec), n>;c, 48)

2
m=|:%(n—1)], m = 1;

then the following theorem provides a bound on the nth width,
d°"(BZ(M)), of BZ(M) relative to the space C”.

Theorem 5: dS"(BE(M) = (2M /xm)e™™.
Proof: The series representation of Theorem 4 will be used. The func-
tion

o0 = > f(Gh)6;(0) (49)

ils=N
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establishes an approximation to f(f) whose error is given by
@ — g = sz 1R 0;(8). (50)

From equations (39) and (40), one has

1 ({m\" 1 . T T
"’f“"é;(ﬁ)ﬁ)—’:" 31> 5 [H1=5 6D
I]l—2h
Define the function p(z) by
pry=3—2z 0=2z<1,

= plx +1) forall =z,

(52)

then the Sonin (Euler-Maclaurin) summation formula'® is

> w6 = [ Weyds + p(x)W@e)]i ~ [ @ @

a<igh a

in which @ < b are arbitrary numbers. Use of equation (53) with

1{m\" 1
W) = - (1r6> ( _T)"'” , x> T/h, (54)
T2k
a=N+ %: b= o«
yields
2 m n
2 1o)== (55)
HES Tm 7r6(N+l——T>
2 2h
Let
T 1 T .
m—[;(N—I—E—?—h)]gl, (56)
then
S 100 ] s 26 7
sy - am
Thus, from equation (50), one obtains
2M _.
Wf—=gll=s—"e™ (58)
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and hence
asia(Bian) = 2L o, 59
For n odd, one has
-5
d ’(Bf (M)) L2 TP U WL (60)
T Td T
[EZ <" - ﬁﬂ
while if 7 is even, one has d¢” < d°”, ; hence, in all cases
-1
T < 2M expi 2 \" h . (61)

T e )]

The fractional guardband é is now chosen as in equation (48) from which
the inequality of the theorem follows.

When 7 is large, a more accurate estimate of d°” may be obtained by
using a polynomial approximation to BY . Let

0 = 1(%4) = o), ©2

and let L(z) be the Lagrange interpolation polynomial established for
g(z) on the zeros of T,(z), the nth Tchebysheff polynomial of first kind,
over [—1, 1]; then the standard error formula for Lagrange interpola-
tion'" yields

1 n
max | g(z) — L@) | £ ~oer max | g™ (@) |. (63)
—15zs1 n: ~15z51
Bernstein’s inequality (15) and equation (62) now yield
' 2 oM (c>
— jll < S ().
H 1(?) L(T t) =78 (64)

hence one has

Theorem 6:
or 2M [c\"
d. (Bf(M)) =< T <§) , n = 0.

Let HZ be the space of functions f(¢) possessing derivatives up to
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order s satisfying f, f, -+ , ' ¢ L*(—T/2, T/2) and normed by equa-
tion (44); then Theorem 7 provides an estimate of the nth width of
BT (M) relative to HY .

Theorem 7: Let

> }
b {Z:oTz’(s —r- 1)!2(;;— 2r — 1)(s — 1) +T722_s#3}:
in which po = 1 and the sum 1is considered zero when s = 0, then
MT TH20)™*
(2”)(2n + 1t

Proof: Tor the function g(z) of equation (62), the identity

u)s 1

9@ = P + [ BN g0 au, (65)

&t (B S

(in which P(z) is a polynomial of degree not exceeding s — 1), will be
used to obtain a polynomial approximation to g(z) in the Sobolev norm
(44). Let L(z) be the Lagrange interpolation polynomial for ¢*’(x)
formed with n nodal points on [—1, 1] and w(z) the corresponding
fundamental poynomial; then one has

1 e
0" @) = L@ + 70" " ®ek), fe[-1,1] (66)
The polynomial I(x) defined by

I(z) = P() + f @ =Wy 67)

1)1

will be used to approximate g(z) in the Sobolev norm; its degree does
not exceed n + s — 1. Let

L@ = M;, x| =1 (68)
then, from equation (66), one has

g (@) — I‘”(x) |
s—r—1

/. X U
n! ) Es—r)— 1)!Ico(u)|0lu, 0=r<s, (69)

| 9”@ — IV@) | < "” | (@), |- (70)
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The norm (44) for the interval [—1, 1] may be written

1 8
lg=1IE=[ Trnle"@ 1@ Fd, @
-1 r=0
in which »y, --+ , », = 0; the », and u, are related through the change
of variable ¢ = (T'/2)z. Using equations (69) and (70), one has
2 ﬂ[:+s
g — I = e

.fl{Efw<_:%%;%%;gilwW)l¢02+-mw@f}d% (72)

-1 r=0

Define the function k(u, v) by

kmm=f @ — 0" — o) da; (73)

max (u,2)

then equation (72) may be written:

2 s—1
— 2 < ﬂ[we-s{ Vy
Il =Tl =% ,Ego(s—r——l)f

1

-f_ll f_ll k@, v) | o@w@) | du dv + v, fl w(z)? d’r} (74)

The Cauchy-Schwartz inequality shows that

1 — )7 — )t

(
<
k(u) U) = 28 _ 27_ _ 1 b (75)
hence,
M = v
. 2 < n+s r
Iy Im=nﬁ{ﬂww—nm%—w—n

1 2 1 A
<f (1 — w7} | w@) | du> + v, f w(x)? dx}- (76)
-1 -1
Further application of the Cauchy—-Schwartz inequality yields

le:,+s
lg—T1F= WE

s—1 Vr22s~27 1 2
{gg 2 —r — D 2s —2r — (s — 1) T Vs} [1 wle) de. (77)

A good choice for w(z) is
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(@) = 2 P.(a), 8)

()

n

where P,(z) is the nth Legendre polynomial. The coefficient of P,(z)
in equation (78) makes w(z) monie. Since

_1 P.(2)* dx = (79)

_2
2n + 17

one obtains

"M s s ( 2 )*
<2n) on + 1
n!
n

51 Vrzzs—zr 3
{,z_% 2 —r—D¥@s—2r — (s — 1) + ”8} ) (80)

The Bernstein inequality (15) shows that

g =11 =

M,... £ Mc, (81)
hence
Morert® 2 )’ﬂ‘
lg— Tl s e

2n

()
-1 Vr228-—2r 3

{Eo 56 —r—DF@ —2r—De—n T Vs} - (82)

Finally the change of variable ¢ = (T'/2)x and the replacement of », by
the original g, yield the result of the theorem.

The results of Theorems 5, 6, and 7, may be translated into estimates
of entropy by use of the Mitjagin inequality of Theorem 1. The estimates
so obtained will apply only to the subset of B,(M) for which f(¢) is real.
Doubling the bounds will provide estimates for complex valued (7).

Theorem 8: Let0 < a < 1, (1 — a)e < (2M/we), {(£) real,

2M
) 1+ In (1 — a)e .
€ 2M 2M ’
1+ 1o (1 — a)e - ln. In (1l — a)e

2M
(1 — a)

m = |In
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H(BIM) = {2 + Ef (1 + (i (m + 1)>%)2:|} log (—i—e +

1925

Proof: According to Theorems 1 and 5, one must solve the inequality

g—ﬂ—l—e—m = (1 — a)e
m
for the largest integer m; thus

y
me” = 7?1%;.
Consider the function
Flz) =6 —z — Inax, 6> 1.
One has

oy = 1 L.
F'z) = —1 o

hence, by the mean value theorem,

F(a—h)=—1na+h<1+1>, 5 —h <<

£
Let
F(6 — h) = 0

then, since A is positive,

1

0< —8Ins+ Al + 6+ 1nd) — A%

thus
oln 6
P> s fme
and
1+
S h < T T s
The inequality
z+Inz =%

(83)

(84)

(85)

(86)

(87)

(88)

(89)

(90)

oD

(92)

(93)
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is thus satisfied by
1435

SRS L ®
hence, setting
2M
§=1In m’; (95)
and taking cognizance of the integral character of m, one has
14+ m—2M
2M (1 — a)e
m =< | In . (96)
(1l — a)e 1+ 2M Ll 2M
7(1 — a)e n (1 — a)e
provided
(1 — a)e < 2L, ©o7)
me
For the computation of d,_; , one has from equation (48)
m = [216 8naln — 2)]° (98)
Hence
—;—eai_zn—z)<m+1, (99)
2¢ 12 2¢
{1 - <m>}(n_2) <;—(m—|—1) (100)
Let
n=2-+ 2 v; (101)
™
then
1Y e
Vl_ﬁ <(—:(m—l—1); (102)
accordingly

y < {1 + (i (m + 1)>%}2- (103)
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Thus n satisfies

n=24 Ef {1 + (i (m + 1)>§}2] ; (104)

the theorem now follows from equations (96), (97), (104), and Theorem 1.
When e1s small, a more accurate estimate of entropy may be obtained

by use of Theorem 6 in place of Theorem 5. Accordingly one has

Theorem 9: Let0 < a < 1,7 = (2M/(1 — a)e(rec)?),

1 ,e”z) , J()  real,;

> max <—
= ec

then

H(BI1)
2

to i im ()

J n 7y 2 5 In ecnn 1t10g<w+2—3>‘

1 e «a

=31+ )
1 1n(e_clnn>+l+2lnnj

Proof:  According to Theorem 6, one may consider

% (g) > (1 — . (105)
Stirling’s formula provides the inequality
n! > e "(2mn)t, (106)
and hence one may consider
Let
n=%e  n=g —205)1{ — (108)
then equation (107) becomes
xz+l/ec é 772/”- (109)
Consider the function
(110)

Fl)y =6 — (x + a) In z;
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then, by the mean value theorem

2
F@—m=a—(m+@ma+dma+1+%—fle—%f
0 2 \& ¢
5—h<Ei<ad. (L)
Let
r=0—hz=a, F(6 — h) = 0; (112)
then
oga—(w+@ma+hm(m+1+§- (113)
Let
8= 1/e; (114)
then
hé(a+a)1n5—5’ (115)
ms+1+%
and hence
x§25—|—a——aln¢$. (116)
ma+1+%
Thus, in terms of n and %, one has
2mn+%—%m(%m@
n = 117

2 1
1n<e—cln11)—I—1—l——-—2h177

The lower bound on % in the theorem assures the satisfaction of the
conditions on z and § in equations (112) and (114). Use of Theorem 1
now provides the inequality of the theorem.

Theorem 10 provides an entropy estimate deduced from the width
result of Theorem 7.

Theorem 10: 0 < a < 1,7 = (MI'(2)°/(1 — a)eles)?)

”gm“eafﬂ, v =1+ mo® + -+ + wo®™)l, fO) real;

then
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H (B (M)

2
21nn+%—%ln<—lnn>1 )
c _
<Jdsai1a . e 1 Iog(zzw.r Jr2 a).
1\ ln<&lnn>+l+ J

(673 (64
21n 9

Proof: The investigation parallels that of Theorem 9. A difference
occurs in the estimation of d, . The Bernstein inequality of (15) shows
that

dy < MyT (118)

hence the estimate of the theorem.

The case m = 1 of the representation given in Theorem 4 may be used
to obtain an explicit e-net for B,(M), and hence to provide a constructive
algorithm for the transmission of information from such a source. The
representation for f(¢) ¢ B,(M) takes the form

. sinla_aa(t—jh)sinlza(t—jh)

0 = 3 1Gh) — . :

o T—s¢—h 50—k

oh = a1l — 8.  (119)

In order to proceed, it is necessary to estimate the quantity A(6)
given by

o Lsin =27 (¢t — inysin —%— (1 — jn)
1— 9 1 — 6

AO = s 2| T e | 4
T ¢~ ¢~

Theorem 11: A@5) < 1/8for0 < 5 < 1.

Proof: The Cauchy-Schwartz inequality yields

oo 2

sin 7 B(t_]h)

AGP < sp 3

~0<t<0 j=—c do .
T & —ih

ag

2
o sinl_a(t—jh)
sup D, .21

—0<t<0 f=—00 a (t _ jh)

1—23
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TI'rom the Parseval relation of Theorem 3, one has
1 f N
hJ o

\
(t — jh) sin

_lf”
-3/

2
[on

1—36

T

oo
1— 4

oo
1_a(t—s)

T
= 1—35
2

iTTw 4 o
T~k )

t—9|

(t — jh) sin

sin

do
1—3

oo .
1= ¢ )

t—s) 2
ds

sin

©

2

j=—c0

o |

The theorem is established.
Let

S sup |(fih) |;

—< i<

then a corollary to Theorem 11 is
Corollary:
sup | f(t) | = S/¢'.

—<t<w
From equations (119) and (120), one has
1) | = SA(9).

Proof:

sup

—o<t <o

The result follows from Theorem 11.
The function

oo
1 — 6

oo .
;¢

[

i

T (t — jh)

sin (t — gh) sin

ih)

fGh)

RS

g(t) = I

1—3

ds =1,
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(122)

- (123)

(124)

(125)

(126)

constitutes an approximation to f(¢). The error may be assessed by
application of equation (51) for m = 1, and Sonin’s formula (53); thus

M 1 T\ 1T\
llf—gHué;fs<(N+§‘z—h) +<N+§+§z> )
For0 < a < 1, let
N/ _@;.M)}) _ 1]
N—[l—a)e7r25<1+{l+<(1—6)]” 2 +1

then direct verification establishes

I =gl <@ = a)e

(127)

; (128)

(129)
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It may be observed that for large ¢, one has

¢ T

N =~ m =5 (130)
that is, N is approximately the number of nodal points jhin (—7/2, T/2).
Let
B(p ~ AU 131)
and
B() = B-~(), -+, Bx(); (132)

then the set Uy, is defined to consist of all f(£) generating the same vector
B = B(f). It will now be shown that the diameter of U does not exceed
2¢. Let 1,(), f2(t) € Uy ; then

G — 160 | = T (13)
One has
1O = 10 = 35 (GG = 1)
oo oy . [ .
sin (t — jh) sin 7 (t — jh)
laa_ P 10— 5 sy

TS Gl (O e S Gl 1))
and hence, by equation (129),

L) — 100 | = |§v | fiGh) — f2(GiR) |

oo . . I .
1_6(t—jh)s1n1_6(t—]h)

sin

+ 2(1 — a)e (135)

oo . 4 .
1_5(t—]h) 1 6(t—yh)

in which N is chosen as in equation (128). From equation (133), one has

10 = £ | = 505
ey . . T .
sin 7—— (t — jh) sin 7——= (¢ — jh)
3 ; 8 1 J 1201 — e, (136)

i Gl /O B e A Rl )
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Use of equation (120) shows that
i = f2llu S 2e (137)

The sets Uy are centerable with respect to themselves; that is, there
exists an element ¢(f) = U whose distance from any other element of Uy
does not exceed e. Consider the function ¢(t) defined by

. oo . . .
sin —— (¢ — jh) sin (t — gh)
90 = 15 T 6.0+ e -
1= ¢~ ih jh)
(138)
One has
160 = gGh) | £ 47 11 SN, (139)
and
1@ — g(®
1_ 5 jh)sm E(t—jh)

- 6 — gy —
bitsy T—5¢—h 1= 6(t—jh)

sm1“ (t—hysing o= (t— )
+ > 1) 5 ; (140)
17 I>N (t ) 'it—a (t —_— ]h)
hence, by equations (120), (129), and (139)
Nf—gll = e (141)

The required constructive algorithm, T, is thus given by the mapping
f — ¢ in equations (131) and (138).

Theorem 12: V(T') = (2N + 1) log {{A(5)M /2ce] — [—A(8)M /2we] + 1},
in which N s given in equation (128).

Proof: Tt is necessary to enumerate the number of distinct g(¢) which
are generated by I'(B,(M)). Since

A®) |10 | _ A@M

2ae = 2o0e

) (142)
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the number of distinet values of 8;(f) is

[A(_B)M] _ [_M] +1, (143)

2we 2ce

and hence the number of distinet vectors 8(f) is

{[%?f‘—[] - [—%i)j—w] + 1}2“1. (144)

The theorem follows from equation (144).

Corollary 1: V(T) < 2N + 1) log (M /2aes?] — [—M/2aes*] + 1).
Proof: Theorem 11.

Corollary 2. V(I) < (2N + 1) log (M /ae(5)? + 2).
Proof: Corollary 1 and the inequalities

M M
[Qae( a)%] = Sne(8)F (145)

M M
—[—20[6(5)%:‘ < 2ae(5)% + L.

IV. THEORETICAL INVESTIGATION OF W,

Using Theorem 3 for f, g ¢ W, , the Sobolev inner product

T/2 —
G = [ Ga+mfi+ o+ ufga (140
takes the form

. sm
, 9. = f_f_ W(u_v)

(L + g + - F p U )F@)G) du dv,  (147)

in which F(w), G(u) are the Fourier transforms of f, ¢ respectively. The

corresponding positive definite quadratic form @ is

, 8in = (u
e=lirE= [ [ ,fu_,,)
1+ g + -0 F wuV)F@)FE) du dv, (148)

and an operator K generating @ is given by
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wmgw—m

KF = f_, r(u — v)

- A puw + -0+ puV)FQE) do, [u| £ o; (149)
thus

Q= f_ FKF du. (150)

The equation defining the eigenvalues and eigenfunctions of K is
I{q)k = )\kq)k’ k g 0, (151)

in which the ordering A\ = N\, = N\, = .- - is used. It follows from the

Hilbert-Schmidt theory'® that the eigenvalues are denumerable and of

finite multiplicity and the eigenfunctions form an orthonormal set

which, from the positive definite character of K, is complete in L*(—g, o).
Let

olt) = @,lr—) [ e au; 152)

then the Parseval relation for Fourier transforms shows that the
sequence ¢o(t), ¢,(t), ¢2(t), - - - is orthonormal over (— », «); further,
from equations (147), (150), and (151), one has

@, b, = f BKD, du = ) [ BB, du=0 j=h

=N j=Fk (153
Thus the sequence {¢:(t)}% forms an orthogonal system with respect to
the Sobolev inner product (146). The system {¢.(t)}% is also complete
in W!, as a consequence of the completeness of the system {&,(u)}% in
L*(—o, o).
Define the n-dimensional subspace X, C W, by

Xn = Xn(¢0 y T 7¢n—1) (154)
then Theorem 13 provides the nth width of W7 (B), relative to HY ,
in terms of the eigenvalues of K.
Theorem 13: d&*" (W7 ,(B)) = B\

Proof: Let f(t) ¢ W, .(B); then

f(t) = fl (D). (155)

k=0
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Let
00 = % apu( e X, (156
then the orthogonality of the ¢.(¢), (153), yields
Ilf~gllf=§;|aklzkk. 157
Thus
il = glEs X laln. (158)

From the monotonicity of the A, , one has

inf |1 =g IEsh > |l (159)

9eXn

however, the orthonormality of the ¢,(f) over (— «, «) shows that

00

[lra=Siarss (160)

and hence from equation (159)

Ex,W7.B)) = sup inf [[f—g]l, B\ (161)

feWs,s(B) geXan

Thus
d (W7 .(B)) = BN (162)
Consider the ball U,,, defined by

n

g®) = 2 ad®, |9l BN (163)

k=0
then, by a theorem on balls in a finite dimensional subspace of a Banach
space,”
du(Unsr) = BN (164)
Thus the theorem will be established if it is shown that the ball U,.,

defined in equation (163) is contained in W, (B). It is only necessary
to verify that

fw [g(9) " dt = ; | @ |* £ B (165)
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One has from

Ngllf = 2 la |\ = B\, (166)
k=0
that
n n k
Zlal=s Zlal B, (167)

and hence the theorem is proved.

Use of the series representation of Theorem 4 permits one to estimate
d®"(W? ,(B)). The quantities m and 3, are as in equation (48); addition-
ally, the corresponding interval h, is defined by h, = «(1 — 4,)/0.

Theorem 14:

HoT T 2_ B B—M
aTWIB) S 25 G
(o o1

Proof: Let
0 = % 1000, (168)
and
9() = 3 1h)6:(0; (169)
then
110 — 9@ 1= 32 116 116:0) |- (170)

Since, by Parseval’s relation of Theorem 3

[ Fac=n 3 G ¢ = B am)

-—- ==

Schwartz’s inequality applied to equation (170) yields

1) = o0 = 5 3 6,07 a72)

One has, from equation (51)

i>N

: _ 2B’ <ﬁ)'" 1 T
Hf_gHUéﬁ Y Z( )2m+27 N>2h' (173)
J
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One may use Sonin’s formula, equation (53), to effect the summation
in equation (173); thus

B m
1i=gls =7 L .
Wm+”@+§—ﬁ»’4N+yﬁﬂ
(174)
The choice
_ |78 1_ T
m= I:e (N Ts 2h>:| (175)
leads to
B o
17=gllss= 265 ()
("@m + D(N t5— ﬁ)
Thus equation (176) shows that
¢ (177)

o7 B (2 :
a1 (W o(B)) = - (h) ((2m N 1)(N 41 29)% ’

and, hence, for n odd

d"(WE(B)) < %% a Y (178)
(en + (- 1))
h
For n even, one has
dWEB) £ 25 a (179)
T h

% ((2m + 1)(n —-1- %))é ;

thus equation (179) applies in all cases. The fractional guardband is
now chosen as in equation (48), and the inequality of the theorem
follows.

Theorem 13 permits an immediate corollary to be obtained from
Theorem 14.

Corollary: For s = 0, one has

4: e—2m

“(2m+1)(n—1— T>.

hn—l

An

IIA

2
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As was done in Theorem 7, polynomial approximation will be used
to estimate d”"* (W ,(B)). The estimate is given in Theorem 15.
Theorem 15:

2e)"** )
n! @)((27» + D@ + 25 + D)

a2 @) = Br(%)

Proof: The estimate will be obtained from equation (80). In order to
estimate M,,, , consider

1 ! Tut
0 = Gy | ¢ au, (180)
from which one has
g(@) = (77% f_ e™ TP (u) du. (181)
Accordingly
(r) T " 1 ’ u(T/2)xf ) \T -
g7 () = (§> @t f_ e (W) Fu) du. (182)

By use of the Schwartz inequality, one obtains
1@ s () & (v [ 1rw ra asy
=\2/ 2r /)., . ’
The Parseval relation for Fourier transforms
[ lioFa= [ |FePdasp (184)

and equation (184) now yields

ch

%+ 1

g7 @) |* = Bzf (185)

Thus

3 nits

2 C

@n + 25 + 1)}

The remainder of the analysis is the same as in Theorem 7.
Theorem 13 again permits an immediate corollary to be obtained
from Theorem 15.

M,., £ B(j‘r) (186)
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Corollary:
(20)2n+25

nl (2”") ©@n + 1)@n + 25 + 1)

2¢
Auss S = I

Theorems 14 and 15 lead to corresponding estimates of entropy
through use of Theorem 1.

Theorem 16: Let

n=2 4+ (1 + <%§>%>2, 0<a<l, f(f) real,
and
then
H.(W;+(B))

o fon ) e 4229

Proof: TFrom Theorem 14, one has

4077 = 2 (1) (8D
" ((Zm + 1)(n -2 - 7 ))
From equation (48), one has
S R (—2—6 (n — 2))7; (188)
(- T
hence
V2B = 2 B(2) e Lo aso
s 3 m 1 20 *\?
(=2~ (Z))
Since
ne
1 %§1 for n§2+<1+<72r—0)>, (190)

(-2 - ()
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d.—1(W? ,(B)) obeys the inequality

r 2 (2_c) -
b (WEo(B) = =5 B(Z) . (191)
According to Theorem 1, one may consider
2 (2 . )
W—\/?;B(;) e = (1 — ae; (192)
and hence
[t )
m= []n <7r\/§ 1 — a)e \m (193)

The remaining analysis is the same as that of Theorem 8. The inequality
of the theorem now follows.

Theorem 17: Let 0 < a < 1,7 = TB(2)*/(1 — a)ee(nc)?,

7 = max (6—2%5 , e”?) , f(t) real,

then
H(W...(B)
2
21nn+1——1n(~1n7;>1 .
ec 7 —
S+l 2 1 {log(2§:0+2aa)'
1 ln<a:1nn>+1+l—ﬁ—n'

Proof: 'The proof parallels that of Theorem 9.
It may be useful to observe

Ao

lIA
Rt

Y. (194)
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A Satellite System for Avoiding Serial
Sun-Transit Outages and Eclipses

By C. W. LUNDGREN
(Manuscript received March 20, 1970)

The motions of satellites phased in particular, slightly inclined orbits
are timed so that different satellites are north and south of the equaltor
when sun-caused outages occur in geostationary equatorial systems.

I. INTRODUCTION

Communication satellite systems experience predictable service
interruptions involving the sun. A sun-transit outage occurs when the
pointing angles from a receiving earth terminal to a satellite and to
the sun so nearly coincide that the additional noise power presented
by the sun renders transmission unusable.! When a satellite passes
through the earth’s shadow, its solar primary power is interrupted and
its sunlight-dependent heat balance is upset.

A geostationary system serving a common coverage region may in-
clude several satellites spaced less than 10° (175 mrad) in the syn-
chronous equatorial orbit. Figure 1 illustrates the timing of sun transits
and eclipses occurring in rapid series for three geostationary satellites
during one day at the spring equinox, observed from an earth terminal
located on the equator at longitude 0°W. One sun transit near noon
and one eclipse 12 hours later are observed for each satellite served by
this terminal. Eclipses of closely spaced satellites may occur at the same
time, and sun transits of different satellites may also occur simultane-
ously within a large coverage region.

Daily sun transits of all geostationary satellites serving an earth
terminal occur during one week in the spring and again in the fall.
Service interruptions can last five minutes or more per satellite. Affected
outage regions are large and move so rapidly that terrestrial restoration
is unattractive.

Conversely, a minimum of one working and one spare geostationary
satellite are required for restoration independent of terrestrial facilities.

1943
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_.—SUN TRANSIT OF
SATELLITE 1

PARAL LEL
() = RAYS FROM
SUN

{
“~ECLIPSE OF SATELLITES
SATELLITE 1

Fig. 1—Sun transits for earth terminal on equator, and eclipses of geostationary
satellites at equinox.

Such redundancy is also required for adequate protection against
satellite failure, since satellite replenishment intervals are prohibitively
large.

A fully redundant geostationary system incorporates duplicate trans-
missions to working and spare satellites and duplicate reception from
these satellites continuously at all earth terminals. Partially redundant
systems depend upon redirection of earth antenna beams to spare
satellites.* ,

Rapid, highly coordinated switching between geostationary satellites
is required at all earth terminals to restore serial sun-transit outages.
Numerous residual transmission ‘“hits” result from such switching.
Also, the orbit spacing must be sufficiently large to prevent simul-
taneous mutual outages of the different satellites at different locations
within the coverage region to avoid additional switching complexity.
A spacing as large as 8° (140 mrad) is necessary to prevent mutual
sun-transit outages within the contiguous United States.?

Alternatively, serial sun transits are avoided by phasing the satel-
lites in particular, slightly inclined orbits with motions timed so that
one satellite is north of the equator and the other is south during both
the spring and fall outage events. Only one switch of reception between

* If the earth terminals are equipped with duplicate antennas, transmitters, and
receivers, the capacity of both satellites can be utilized except during outage periods.
t The 48 continental states, excluding Alaska and Hawaii.
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the separated satellites is required per sun-transit season. The exact
timing (hour) is unimportant and may be different for the convenience
of each earth terminal. Except for these two switches, all earth termi-
nals throughout the coverage region are afforded uninterrupted recep-
tion throughout the year. Mutual sun transits within the same coverage
region are also avoided by this satellite diversity, and the large orbit
spacing discussed above for geostationary satellites is unnecessary.

II. SUN TRANSITS AND ECLIPSES

Sun transits and eclipses of geostationary satellites occur during the
spring and fall seasons. The exact dates of the former depend primarily
upon the latitude of the receiving earth terminal.

2.1 Sun Transits of Geostationary Satellites

The geometry and duration associated with a sun transit are con-
trolled by (¢) the off-axis gain of a properly pointed earth antenna,
(¢%) the receiving system noise temperature, (¢4¢) the solar noise power
profile, and (7v) the minimum acceptable signal-to-noise ratio.

In Fig. 2 the sun’s rays are assumed to be parallel; refraction cor-

BCRRE AT OUTAGE

CENTER P - PATH OF OUTAGE
\ - CENTER P

~—SATELLITE
( (/ SHADOW AXIS

SUN

'\
e e
. _— . /]’_‘__
\ DESIRED /s

SIGNAL PATH—

E <<77~ A
NGEOSTATIONARY \ 'TUDE g™
SATELLITE N_EARTH

TERMINAL

PLANAR CCNIC SECTION
————— ACTUAL OUTAGE REGION

Fig. 2—Planar approximation of geography affected by a sun-transit outage.

rections are neglected, assuming a sufficiently large angle of incidence
to the atmosphere for the desired ray SE. The affected outage region
is defined approximately by the locus of all points on the illuminated
earth’s surface for which earth antennas aimed at satellite S also point

¥ See Sections 3.3 and A.5.
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a preseribed minimum angular distance «® away from the sun’s center.

An estimate of the geography involved is provided by the elliptical
intersection of a cone of angular radius «°®, symmetrical about satellite-
shadow axis SP with its apex at S, and the horizontal plane at P. It is
elongated north-south in the figure.

The sun is assumed to be a uniform disk source of thermal noise
about 0.5° in diameter.* Shapes and magnitudes of the solar noise
power profile vary strongly with time and radio frequency. Edge
brightening at the lower microwave frequencies approaches a factor of
two, and comparable variations of total flux with time are common.*"*

A minimum solar noise temperature for the mean quiet sun (total
flux averaged over the disk) is about 25,000 K for a single polarization,
inferred from measurements at a wavelength of 10.3 em.*™* This is
approximately the minimum temperature presented to a sun-pointed
ideal antenna at 4 GHz whose beamwidth is less than 0.5°.

Convolution of an appropriate solar noise profile with a known earth
antenna gain pattern provides an estimate of increased noise versus
angular displacement of the sun center from the main beam axis.
Istimates for the minimum displacement permitting acceptable recep-
tion at 4 GHz range from about 0.6° (10 mrad) for very large earth
antennas (30 m) to greater than 1° (18 mrad) for small antennas
(8m)."® Corresponding minor axes of outage regions range from 800
to 1300 km. Major axes occurring along satellite-earth longitudes are
equal to the minor axes at the equator and approach 1.5 times the
latter at high latitudes.

Because of synchronism between earth rotation and satellite revolu-
tion, each outage region appears to move. One at 41° north latitude
traverses the contiguous United States from west to east in approxi-
mately one-half hour at noon of the time zone at the satellite’s longitude
(see Appendix A).

Figure 3 illustrates the path of an outage region. Each path is tangent
to the latitude intercept of the center of the satellite’s shadow at ap-
parent noon at the satellite’s longitude. For all other longitudes in the
Northern Hemisphere, the path lies slightly to the north of this latitude.

Hence, in very late February or early March, short daily outages
affect earth terminals situated near the United States—Canadian border.
Two to three days later these terminals experience maximum outages
lasting five minutes or more, depending upon transmission parameters
and permissible signal-to-noise ratios. Outages at these terminals end

* The optical disk has a diameter of about 29 minutes of are, in geocentered
angular measure.
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Fig. 3—Approximate paths of sun-transit outages for geostationary satellite.

after an additional two to three days, the outage paths progressing
southward at a rate of about 3° latitude per day. All outages affecting
United States earth terminals above north latitude 26° cease prior to
mid-March.

Conversely, in the fall the daily outage paths progress from south
to north, affecting southern United States terminals about October 1
and ending in the north about mid-October.

In Fig. 3, based on parameters adopted in Appendix A, a given earth
terminal is affected about six days, twice yearly, while the contiguous
United States experiences outages throughout a 14-day period, again
twice yearly. If a multiple-feed antenna or a rapid-slewing antenna is
employed to switch reception at an earth terminal from an affected
satellite to another 6.8° (120 mrad) westward in the geostationary
orbit, transmission from the latter satellite is interrupted only 30
minutes later.

2.2 Eclipses of Geostationary Satellites

Eclipses of geostationary satellites can be expected for a total of
about 90 evenings per year in the spring and fall. Concurrent eclipses
occur for geostationary satellites spaced less than 17.6° (310 mrad).
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Eclipses occur near apparent midnight of the time zone at each satel-
lite’s longitude, beginning in late February or early March and ending
by mid-April. Fall events begin about September 1 and end about mid-
October. Eclipses lasting about 70 minutes occur on the dates of the
spring and fall equinoxes; those lasting longer than one hour occur
about 50 days per satellite per year.

Communication satellites are provided with batteries to prevent
circuit outages and to maintain antenna pointing, attitude control,
station keeping, telemetry, and command capabilities during eclipses.
However, concomitant voltage and temperature fluctuations, loss of
the solar reference for antenna pointing, and related ground command
activities may contribute to an increased likelihood of satelite failure
or a reduction in transmission capacity during eclipses.

III. DIVERSITY SYNCHRONOUS SATELLITE SYSTEM

A minimum arrangement of two slightly inclined, circular synchro-
nous orbits with deliberate phasing of one working and one spare
satellite in their respective orbits is suggested for providing space
diversity during outage periods. The specific orbit parameters and
satellite phasing are chosen so that they may remain unchanged
throughout the year. Thus satellite station-keeping fuel expenditures
are comparable to geostationary values. The parameters are also chosen
so that only one noneritical handover of reception between satellites is
required per sun-transit season.

8.1 Basic Satellite Phasing in Specific Inclined Orbits

Figure 4 illustrates the relationship between a ‘‘figure 8’ pattern
traced out by a synchronous satellite and the magnitude of its orbit
inclination. Recent descriptions of such patterns are given by Rowe
and Penzias,’ treating the efficient use of orbit longitude.

Figure 5 illustrates the satellite phasing and timing of motions
required for a two-satellite diversity system. The time reference selected
for describing these motions is initial time ¢, mean solar hours, marking
the advent of 12 o’clock noon (apparent, or sun time) on the date of
the vernal equinox at average 6 of mean longitudes 6, and 8, degrees
west for satellites S, and S, , respectively (8 = (8, + 6:)..). For satel-
lites sharing radio frequency bands, a minimum orbit spacing between
interfering satellites is generally specified consistent with resolving
powers of the earth antennas. Accordingly, a minimum satellite spacing
x degrees is assumed between mean longitudes 6, and 6, .
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Fig. 4—Earth synchronous orbits and figure 8 patterns.

In terms of 4, chosen for service to a particular geographiecal region,
the mean orbit longitudes shown in Fig. 5 are

6, = (0 — x/2), 6, = (0 + z/2) degrees west. ¢))]

Dimensions of 8 patterns allowing adequate diversity between
properly phased satellites are determined in Appendix B. Peak satellite
displacements from the equatorial plane (geostationary orbit in Fig. 5)
coincide in the spring and fall with sun transits of each satellite’s mean
longitude meridian.

For example, in Fig. 5(a) satellite S, is northernmost in its 8 pattern
prior to apparent noon at average longitude 6. To an observer located
at earth longitude 6, , this coincides with alignment of the sun behind
the 8 pattern for satellite S, .

At apparent noon at longitude 6, satellite S, in Fig. 5(b) moves
very slowly toward the geostationary orbit, while S, is approaching
the southernmost point in its 8 pattern. The sun is located midway
between the 8 patterns.

Shortly after apparent noon at longitude 8, the sun aligns behind the
8 pattern for satellite S, , as observed from earth longitude 6, . At this
time, satellite S, reaches its peak excursion, while satellite S; moves
more rapidly towards the geostationary orbit [Fig. 5(c)]. Tick marks
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on the 8 patterns are labeled according to each satellite’s location at

times referred to longitude 6.

Paths of the sun on consecutive days during the spring sun-transit
season are also indicated. Note that these daily paths progress from
south to north in accordance with a decreasing southern declination of

the sun’s rays at this time of year (ef., Fig. 3).
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Circles of radius «° centered at each satellite define the minimum
pointing angle to the sun for earth antennas directed at the satellites.
Hence, reception from satellite S, is interrupted when the sun is within
the circle for S, . Tick marks give positions of the sun along its path,
again at times referred to longitude 6.

In Tig. 5, uninterrupted reception from satellite S; is assumed
throughout the late fall and winter, until March 7. At any convenient
time between March 1 and March 7, an earth terminal observing these
motions redirects its reception from satellite S; to satellite S,. This
allows uninterrupted reception from S, until the fall sun-transit season,
during which this noncritical procedure is reversed.

Note that the 8 patterns in Fig. 5 are larger than required by a
single earth terminal. The dimensions determined in Appendix B are
sufficient to prevent serial sun transits throughout the entire latitude
range of the coverage region, so that only one outage region from
either satellite may traverse any part of the coverage region on any
day. This simplifies switching between satellites in restoration schemes
involving large numbers of working satellites and a minimum of one
spare satellite.* However, for the basic scheme involving duplicate
transmission via equal numbers of working and spare satellites, the
dimensions of the 8 patterns may be reduced until the outage circles
(a®) are almost tangent to the geostationary orbit. Redirection of the
earth antenna appropriate for Fig. 5 is required on or about March 4
for such reduced 8 patterns.

Note also that the satellites spend most of the time near the extremes
of the 8 patterns, providing near-maximum diversity separation for
several hours near noon. This tolerance to timing errors is particularly
useful since the apparent alignments of the sun in Fig. 5 and the timing
of transit events are somewhat different for observers at different loca-
tions within the coverage region. Allowances are made in Appendix B
in the computation of required diversity separation for both latitude
and longitude ranges of the coverage region, assuming that uninter-
rupted reception from the unaffected satellite is required continuously
at all earth terminals throughout the coverage region.

The diversity performance is made nearly independent of arbitrary
satellite spacing x by phasing each satellite so that its maximum lati-
tude excursion occurs at sun transit of its mean longitude meridian.

Tick marks in Fig. 6 illustrate a daily progression of satellite posi-
tions at apparent noon at longitude 6 throughout the year. This regular
shift is observed in the ideal case at the earth terminals because such

* Discussed in Section 3.3.
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Fig. 6—Shift of daily satellite positions.

inclined synchronous orbits tend to maintain fixed orientations in
space as the earth revolves around the sun (about 1° per day), illus-
trated in Fig. 7, by virtue of conservation of orbit angular momenta
m; and m, . Orbit perturbations, or departures from the above ideal
motions, are approximately the same as those for geostationary orbits
and are corrected by firing small station-keeping rocket motors at
intervals throughout the lifetime of the satellites.

Specification of orbit stabilization with respect to the fixed stars is
necessary to obtain properly timed satellite diversity automatically
throughout the year; the precision required for diversity is needed only
during outage seasons.

Hence, the daily period of satellite motions in their figure 8 patterns
is less than 24 hours of civil time (mean solar hours). The actual side-
real period is 23" 56™ 045.09054 in mean solar time measure.

The daily shift of positions is utilized, by the deliberate orbit orien-
tations and satellite phasing in the orbits, so that the apparent positions
of satellites S, and S, are reversed automatically in time for diversity
reception again during the fall outage season (see Fig. 7). Positions are
also reversed daily, providing diversity for satellite eclipses near mid-
night, assuming sufficiently large orbit inclinations.

Conversely, lesser accumulated shifts must also be considered in
computing the minimum diversity separation for sun transits for
coverage regions located far from the equator, sinee sun transits occur
either before, or after actual equinoxes (see Figs. 5 and 6, and Appen-
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dix B). Sun transits are observed in the Northern Hemisphere prior
to the vernal equinox and again after the autumnal equinox. Offsets of
approximately two weeks from the symmetrical case are representative
for the contiguous United States. Of course, dates of satellite eclipses
are independent of earth latitude and the ideal symmetry is applicable.

3.2 Orbit Parameters

Satellite motions and initial conditions are illustrated in Figs. 7 and
8 for two diversity satellites.

3.2.1 Inclination of Orbits

The planes of orbits for satellites S; and S, are tilted slightly with
respect to the earth’s equatorial plane by inclination angles ¢, and <, .

For the idealized case of equal inclinations, the minimum required
magnitudes range from about 2 degrees for avoiding serial sun transits

to about 9 degrees for avoiding serial and concurrent eclipses (see
Appendix B).

3.2.2 Alignment of Inclined Orbit Planes

Positioning of the figure 8s is accomplished by aligning the orbit
planes in slightly offset opposition as shown in Fig. 8. Two plane inter-
sections with the earth’s equator result, each forming acute angles
(90 — z/2) degrees symmetrically with the mean equinox axis (inter-
section of planes of the equator and of the earth’s orbit around the
sun; direction from earth towards the sun at the vernal equinox).

LONGITUDE e‘i SATELLITE
\ SHADOWS — __

EQUINOX AXIS

MIDNIGHT SPRING

O%/re

T ~———EQUATORIAL
PLANE

Fig. 8—Synchronous orbits phased for sun diversity.
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3.2.3 Phasing of Satellite S,

The time of the ascending node in orbit 1 for satellite S, , for spacing
x degrees is

&, = t, — [(6 4+ 2/30)] mean solar hours, (2)

so that at time ¢ = {, — x/30 hours satellite S; necessarily assumes its
maximum north latitude (upper limit of excursion for left-hand figure 8
pattern in Fig. 5). From Fig. 8, note that the semi-major axis of the 8 in
geocentered angular measure is equivalent numerically to orbit inclina-~
tion 7, .

3.2.4 Phasing of Satellite S,
The descending node in orbit 2 for satellite S, is specified by
t, = t, — [(6 — x/30)] mean solar hours, 3)

for which satellite S, assumes its maximum south latitude at time
t = t, + /30 hours.

3.2.5 Satellite Motions Related to the Sun and Seasons

By synchronizing satellite motions and timing with respect to the
earth’s revolution about the sun as shown in Fig. 7, the required space
diversity is obtained during both spring and fall outage seasons.

Satellite motions and timing are specified above in terms of initial
conditions at the vernal equinox. Of course, actual satellite launching
is not restricted to any season, provided that satellite motions coincide
with those for the specified system at the times when sun-caused
outages oceur in geostationary equatorial systems.

3.3 Phased Multisatellite Systems

Two satellites are required for the basic diversity system. The
diversity satellites may be placed as desired in orbit longitude con-
sistent with an assumed minimum orbit spacing .

An obvious system growth is to add uniformly spaced, alternately
phased working and spare satellites along the orbit (Fig. 5). Note that
one of a diversity pair of spare satellites can restore all working satel-
lites if fast switching may be employed daily at the affected earth
terminals. Reception is transferred in sequence between transitted
active satellites and the unaffected spare.* The orbit spacing between
second-adjacent satellites (same phasing) should be sufficient to prevent
mutual sun transits of the latter satellites within the coverage region.

* The affected spare is available as an additional working satellite.
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For this case, only half of the orbit spacing required by geostationary
satellites is required by the diversity satellites (about 4° for avoiding
mutual outages within the contiguous United States).

Conversely, for satellites which may be closely spaced (x = 1°),
efficient use of the orbit may result from judicious incorporation, in a
manner consistent with the satellite phasing and timing described
above, of orbit loading techniques suggested by Rowe and Penzias.’
Deliberate relative phases in adjacent 8 patterns may prevent major
multiple sun transits of all satellites near the same latitude and mini-
mize daily switching to different unaffected satellites (Section 3.1).

For large orbit inclinations,* (¢) tracking of satellite and earth
antennas is required, (i7) reduction in latitude of the coverage region
results, (¢27) transmission at low angles of arrival is more susceptible
to atmospheric degradation, and (¢v) the interference exposure between
radio relay and satellite services is increased.

3.4 Antenna Requirements for Earth Terminals and Satellites

Only slight geometric departures from the geostationary case are
required to obtain diversity for avoiding sun-transit outages; some-
what larger departures are required for avoiding eclipses. Hence,
satellite radio transmission parameters appropriate for corresponding
geostationary designs are essentially retained.

Earth antennas need follow only slow and very small periodic satel-
lite motions. These motions are accomodated reliably by conventional
24-hour cyclic cam drives (sidereal time measure). Costs and mainte-
nance for such antenna drives are virtually insignificant when compared
with those for full automatic tracking. Cyclic drives are appropriate
for a large deployment of small earth antennas requiring moderate
beam-pointing precision, while costs for full automatic tracking are less
significant for a smaller number of large antennas requiring precise
beam pointing,.

A minimum earth antenna steering requirement accommodating
orbit inclinations up to 10° (175 mrad) and satellite longitude drifts
from assigned orbit stations of +10°, for satellite elevations of 5° or
more, is reported by the Communications Satellite Corporation for
quasi-stationary satellites.” Such earth terminals are compatible with
the diversity satellites, since in the ideal application the smaller de-
sired orbit inclinations are also maintained continuously.

The spin axis of a satellite is maintained perpendicular to its orbit
plane, in the simplest wheel-mode attitude stabilization. Satellite

*Forz = 1° 7 = 10.7° and for x = 5°, 7 = 24°, from equation (7) of Ref. 6.
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antenna pointing referred to this axis benefits from partial compensa-
tion of pointing errors otherwise accompanying departures from the
equatorial plane in the inclined orbits.*

IV. CONCLUSIONS

Space diversity is provided automatically at times of sun transits
and eclipses by a convenient modification of a geostationary system
in which the satellites appear to move in figure 8 patterns. Alternate
satellites are oppositely phased, so that when one satellite is north the
other is south. Orbit orientations and timing of satellite motions are
arranged so that near the spring and fall equinoxes, when geostationary
satellites transit the sun, the diversity satellites are at extreme north
and south positions, allowing uninterrupted reception from at least
one satellite.

The contiguous United States is cleared of serial sun-transit outages
if orbit inclinations of about two degrees are employed. Concurrent
satellite eclipses are also reduced in frequency and duration, and are
avoided by increasing the orbit inclinations to about nine degrees.

Neglecting perturbations ecommon to synchronous orbits including
the geostationary orbit, the satellite deployment is steady state.
Satellite launching requirements, mean station-keeping precision, and
lifetimes are comparable to the geostationary case.

Diversity is provided automatically during both spring and fall
outage seasons, requiring two nonecritical switches between satellites
per year.

Relatively minor modifications of earth terminals and satellites
designed for geostationary service are required.

The diversity satellites are positioned as desired in orbit longitude
without degrading system performance significantly, consistent with
minimum orbit spacings to control interference from neighboring
satellites.

Transmission via the unaffected satellite of a diversity pair can be
switched in sequence daily to restore all transitted active satellites of
a larger system.

One-half the minimum orbit spacing required by geostationary
systems to prevent mutual outages of neighboring satellites within
large coverage areas is required by the diversity system, since only
alternate satellites experience outages on a given day.

Sun-transit outages in satellite circuits can be restored without
involving terrestrial facilities.

* For ¢ = 2° a peak uncompensated pointing error of 0.3° is representative,
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APPENDIX A
Simplified Geometry and Numerical Examples for Geostationary Satellites

A1 Minimum-Latitude Circle Tangent to Outage Path

At the satellite longitude, conjunction of the sun and satellite occurs
at apparent noon and the satellite’s shadow intercepts a minimum
Iatitude, shown in Fig. 9. On successive days in the spring, the shadow
path becomes tangent to a smaller north latitude at the satellite’s
longitude, and lies slightly to the north of this latitude for all other
longitudes.

Figure 9 illustrates the sun’s rays on March 4, 1970. From an alma-
nac, the apparent declination of the sun for 0 hours ephemeris time
(E.T.) is —6° 40’ 54"".5 and on March 5, is —6° 17/ 49".0.°

Ephemeris transit of the sun on March 4 is given as 12» 11™ 505.39
and the reduction AT from universal time (U.T.) to E.T. for the year
1970.5 is approximately 405, The ephemeris time corresponding to solar
transit at west longitude A° is

A

ET. = E.T. (TRANSIT) 4 [1.002738] 360

(24" hours,

A< 180°, (4

where the coefficient in brackets is the approximate ratio of the mean
solar day to the mean sidereal day. Allowing for a 6-hour time differ-
ence from the Greenwich Meridian to the Central Time Zone,

C.S.T. = E.T. — AT — 6" hours. (5)
Assume a transit of geostationary satellite stationed at A = 95°W:
C.S.T. = 124 11m.84 4 6"20m.93 — OF 0™.67 — 6" O™. (6)

From equation (4), the ephemeris time of this event is 18* 32™.77 on
March 4. Interpolating between 0 on March 4 and 0" on March 5, the
sun’s apparent declination is

, ., 18.55 .
D = —6.682° + 5“0 (0.385°), @

= —6.38°.
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Note from Fig. 9,

- —l%sin D, ®)
_ h + R(l — Cos ﬁpmin)
S = s D km, 9)

where ¢,.;. 1s the north latitude of the satellite’s shadow at the time of
sun transit.
Then

sin D[(l — €OS @min) T 1—}21]

sin Pmin = T cos D ) (10)

from which it is determined that ¢,;, = 41.0° north latitude, assuming
geostationary orbit altitude 2 = 35,900 km and mean spherical earth
radius B = 6373 km.

A2 Estimate of Speed with Which Outage Centers Traverse U.S.A.

Figure 10 shows the contiguous United States represented by a
longitude span of 60° centered at the satellite longitude and located at
north latitude ¢n,;,(41°). Consider a projection of the extreme longitude
meridians (i.e., =30° referred to the satellite longitude) parallel to an
assumed shadow axis between the span center at B’ and the satellite

at B, such that orbit arc intercept AC is specified.
The geocentric orbit radius is

AO = CO = R + h = 42,270 km. (11)
Then the radius of latitude circle ¢, is

R"” = R cos onin = 4810 km. (12)

The approximate distance measured along latitude circle ¢,;, for this
model of the United states is

= 2760
| A'C7 oo = %R“ = 5040 km. 13)
Recognizing equilateral triangle A’OC’, the orbit chord is
AC = A'C" = R” = 4810 km. (14)

The solution of an oblique triangle with sides a, b, ¢ and opposite
angles 4, B, C'is
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. 2 2 2
cos A = __a_%él;_—i—_c , (15)
so that the orbit are may be found from
. 2 2
cos (A-0-C) = (AC) + 2R + h). (16)

2(R + n)’

Then the desired geocentered angle representing the orbit intercept of
all parallel sun’s rays simultaneously illuminating this model is

AC = cos ' (4-0-C) = 6.5 degrees. an

The time required for a satellite’s shadow to traverse a stationary
representation of the United States is numerically equivalent to the
time for the fractional revolution of a satellite from position A to C:

(24 X 60)"

teta = 6.5° X
360°

= 26.0 min. (18)

However, the actual elapsed time ¢, is greater by virtue of earth rota-

tion during this interval. The effective longitude span of the United

States is very approximately
N

—~ [=¢]
A'CT 4 A = 60° + 2670 X LD

m

= 66.5°. 19

Accounting for a correspondingly enlarged orbit intercept,

o=t X 0 = 288 min, (20)

so that an outage region traverses the United States from west to east
in approximately one-half hour. The exact interval depends primarily
upon. @pin -

A3 Estimation of Size of Outage Region—Example

A conic figure of revolution about axis SP in Fig. 2 defining the
affected outage region subtends total angle 2o measured at the satellite.
To enable example calculations without specific reference to antenna
pattern data, a worst-case minimum angular separation & = 1° be-
tween a satellite and the sun center is adopted.*

*The value @ = 1° is assumed for a hypothetical 4-GHz satellite system incor-
porating 55 percent efficient, 30-ft diameter parabolic reflector earth antennas, a
receiving system noise temperature of 200 K, and a 3-dB allowable increase in
received thermal noise power. .
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The horizontal plane at the location of the satellite’s shadow P at
time of transit is shown in edge view in Fig. 11. Slant range S = SP
is found from equation (9) to be about 37,470 km. The conic section
defined by this plane and the outage cone is elliptical; point P specifies
its motions.

The east-west semi-minor axis r is equivalent to the radius of the
right circular intersection of the cone and a plane through P normal to
satellite-shadow axis SP:

r = Ssina
= 655 km. (21)

The north-south semi-major axis ¢’ in Ifig. 11 is found from a pro-
jection of the above circular intersection upon the local horizontal
plane at P:

_r
€08 (¢min — D)

= 970 km. (22)

a4 Estimate of Outage Duration

The maximum duration of an outage occurring at an earth terminal
located on latitude ¢, is approximately that fraction of time ¢, [equa-
tion (20)] for the satellite’s shadow to travel the 1310-km width of the

Pmin

EQUATOR

2.
N Min~~ et

~
-
Pinin-p ——

Fig. 11—Determination of outage region at P.
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above outage pattern. Allowing for earth rotation, and noting that the
—~

60° longitude span A’C’ at latitude ¢,.; corresponds to chord A’C’:

2r o
ttX/'\<td<t:XTa7;
|[A7C|

(23)
7.5 minutes < {; < 7.8 minutes.

Iror the satellite stationed at longitude 95° west, the path of its
shadow on March 4, 1970, approaches latitude 41° north near Omaha
at 12:32 p.m. C.8.T. Taking dimensions of the outage region into
account, the West Coast should just begin to experience outages north
of Eureka, California, at about 10:16 a.m. Pacific Standard Time, and
the last outages, near Boston, should cease about 1:50 p.m. Eastern
Standard Time.

A.5 Geostationary Satellite Spacing and Serial Outages

Several identical satellites are assumed deployed along the geo-
stationary orbit. Earth terminals are assumed capable of receiving
signals from at least one pair of adjacent satellites, either simultane-
ously or one at a time. The orbit spacing between satellites is assumed
to be uniform, but adjustable to alter the timing of serial sun transits.
Numerical assumptions made in previous sections are retained for
illustration; earth terminals are assumed to be located along the outage
path (worst case).

A.5.1 Case I-Minimum of 30 Minutes Between Swrilches at an Earth
Terminal

If each satellite is assumed to possess spare circuit capacity adequate
for the restoration of one transitted satellite, it is of interest to esti-
mate the orbit spacing between satellites required for a prescribed
outage-free interval between switches at an affected earth terminal.
The interval between onsets of serial outages at a given earth terminal
for satellites spaced 6.5° in orbit, allowing for earth rotation is about
28.8 minutes (Section A.2). Then, an approximate minimum satellite
spacing for a 30-minute clear interval is (30=/28=.8) X 6.5° = 6.8°,

A.5.2 Case 2-Minimum of 30 Minutes Between Adjacent Outages

If multiple satellites are deployed without spare capacity and an
earth terminal receives simultaneously from adjacent satellites, but
does not switch between them, a 30-minute required clear time be-
tween outages of the adjacent satellites leads to a greater estimated
satellite spacing. The elapsed time for the center of a first (easterly)
outage region to depart an affected earth terminal and travel eastward
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until reception is regained (a distance equal to the semi-minor dimen-
sion; Section A.4) is approximately 72.6/2 = 3.8 minutes. The elapsed
time for the center of a second outage region to approach the same
earth terminal is also 3.8 minutes, measured from onset of the second
outage. The sum of elapsed times and the required 30-minute clear
interval is 37.6 minutes. The minimum satellite spacing, scaled from
the 28.8-minute interval between arrivals of shadows at the terminal
for satellites spaced 6.5° (Section A.2) is approximately (37™.6/28™.8) X
6.5° = 8.5°,

A.5.3 Case 3-Minimum of 80 Minutes Free of United States Outages

An estimate of the satellite spacing required for a 30-minute clear
interval between outages of earth terminals throughout the contiguous
United States for the case without switching is desired. A time equiva-~
lent of the satellite spacing for a 30-minute clear interval between
adjacent outages at a single earth terminal is about 37.6 minutes
(Section A.5.2). A satellite spacing of 6.5° is necessary for simultaneous
sun transit of a first satellite at the extreme eastern terminal and a
second satellite at the extreme western terminal; a time equivalent of
this spacing is approximately 28.8 minutes (Section A.2). The sum of
these intervals, 66.4 minutes, accounts for transits of all terminals
within the assumed 60° longitude span at 41° north latitude. The
approximate minimum satellite spacing for a 30-minute clear interval
throughout the United States is (66.4/28=.8) X 6.5° = 15.0°.

A.5.4 Case J—Minimum of 30 Minutes Free of Outages Throughout One
Time Zone

The time equivalent of spacing for a 30-minute clear interval at a
single terminal without switching is 37.6 minutes. The time equivalent
of spacing for simultaneous sun transits of adjacent satellites at eastern
and western terminals bounding a 15° time zone is approximately
(15°/60°) X 28=.8 = 7.2 minutes. The required interval is about 44.8
minutes, accounting for outage dimensions and all terminals within
one time zone. The resulting minimum satellite spacing is approxi-
mately (44=.8/28=.8) X 6.5° = 10.1°.

APPENDIX B
Estimation of Mintmum Required Space Diversity

B.1 Minimum Orbit Inclinations for a Prescribed Coverage Region

Figure 12 relates the latitude extremes of a desired coverage region
to limits of the sun’s apparent declination angle for which sun transits
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of diversity satellites can affect transmissions. First, two conic figures
of revolution as described in Section A.3 having angular radius o
define the northernmost and southernmost outage regions for geo-
stationary satellite S, . Minimum orbit inclinations for diversity satel-
lites S, and S, are estimated by geometric construction. Parallel sun
rays are assumed and atmospheric refraction is neglected for all but
extreme latitudes in the presence of fairly large angles of incidence.’

One approximation implicit in the figure is that the satellites occupy
the same mean orbit longitude. This enables a highly simplified geo-
metrical analysis and the uncertainty introduced is shown later to be
insignificant.

B.2 Determination of Minimum Orbit Inclinations

For geostationary satellite S, in Fig. 12, apparent declination angle
limits 6§, and &, are calculated for which the satellite shadows intercept
north geographic latitude limits ¢, and ¢, of an assumed coverage
region in the Northern Hemisphere between points P, and P, respec-
tively. Slant range segment P,S,, is determined from the solution of
oblique triangle P,OS,, :

P.S,. = [R* + (R + h)*> — 2R(R + h) cos ¢,}}, (24)
and
P.S,. = [R* + (R + h)?* — 2R(R + h) cos ¢,]! km. (25)

The declination angles corresponding to northern and southern
boundaries of the coverage region are

5 — cos~! [—RZ + (P.S,)° + (R + by
" 2(P,S,.)([E + h)

:l degrees S, (26)

and

5. = cos™! [—R + (P.S,)' + (R + 1)

2(P.S,) (B + h)

where the units designation S denotes angular displacement south from
the celestial equator.
The angle measuring bisector P, S,, is denoted by 4, , where

0w = (0, + 85)uv degrees S. (28)

:| degrees S, 27

Synchronous satellites S, and S, are shown in Fig. 12 located on
great circle C of a geocentered sphere of radius (B -+ %) whose plane
contains the mean geopolar axis and an assumed common satellite
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meridian circle. The satellites are also assumed to be symmetrically
opposite and equidistant from the equatorial plane. The required
distance between parallel sun’s rays through satellites S, and S, having
mean apparent declination §,, is determined by constructing segment
0,0, perpendicular to S, P, through P, . The base of isosceles triangle
0.8.0, represents the required ray separation. Making the approxi-
mation

0.8. = 0,8, = P,S.., (29)

and denoting the angle O,-S.-O, by 4,
¥ = 8, — 8, + 2a degrees. (30)

From the solution of an isosceles triangle,
0.0, = [2(P.S.)*(1 — cos 7] km. (31)

Constructing segment S,S, perpendicular to S,P, through S,, its
length is

S.S. = 0,0, km. (32)
The length of chord S,.S, between the satellites on circle C is
8.8, = 8.S./cos §,, km. (33)
VS

The total geocentered arc S.S, on circle C corresponding to chord

8.8, is found from the solution of isosceles triangle S,0S, (not illus-
trated). Note that

08, =08, =08, = (R + h) km. (34)
Then

—~ 2 2
_ (8.8 + 2008,
COS (Snsa) - 2(0Sm)2

Note from Fig. 12 that equal orbit inclinations 7, and 7, are determined
by the minimum geocentered angular displacements of synchronous
satellites S, and S, from the equatorial plane, necessary for avoiding
simultaneous sun-transit outages between latitudes ¢, and ¢, . Hence,

(35)

—~
tn = 2, = (8,8,)/2 degrees. (36)

While the simplified geometry of Fig. 12 results from an assumption
that the satellites’ mean longitudes are identical, recall from Section 3.1
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that the maximum satellite excursions are made to occur at the instant
of zenith transit viewed by an observer at each satellite’s longitude.
Thus, for earth terminals situated along the longitude meridian of—
and receiving from—satellite S;, the minimum required orbit incli-
nation %, is identical to 4, Very slightly increased inclinations are
necessary to accommodate receiving earth terminals far from this
longitude.

B.3 Correction for Longitude Span and Latitude Location of Coverage
Region

The maximum time difference Af, between sun transit of a geosta-
tionary satellite centered over the United States and observed along its
longitude, and sun transit of the same satellite observed at a longitude
displaced by +30°, for a minimum latitude of 26°N is about =F0.3
hour, allowing for earth rotation (Fig. 3; Section A.2). The magnitude
of accumulated time shift Ai, (civil time versus sidereal time) relating
positions of satellites at O to O* at the vernal equinox, arising from
location of the affected coverage region north of the equator, is about
1 hour (Fig. 6). An approximate worst-case adjustment of orbit inclina-
tions providing the required displacement of diversity satellites from
the equator at times when sun transits would otherwise be observed is

e in
Y s an | 1 | A6 D@00 28y “oEe 37

B.4 Illustrative Calculation

It is assumed that latitude limits ¢, and ¢, for the United States
coverage region to be cleared of outages are 49°N and 26°N, respec-
tively. A spherical earth model is assumed with radius B = 6373 km.
The height of the geostationary orbit % is assumed to be 35,900 km. A
conic sun-transit outage figure is assumed (Fig. 12), having a radius in
angular measure of « = 1°.

Numerical results are obtained using all preceding relationships:

From equations (24) and (25), P,S. = 38,394 km,
P8, = 36,652 km.

From equations (26) and (27), 8, = 7.200°,

8, = 4.375°.
From equation (28), o, = 5.788°.
From equation (30), v = 4.825°.
From equation (31), 0.0, = 3,232 km.

From equation (33), S.S, = 3,249 km.
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From equation (34), 08, = 42,273 km.
/N

TFrom equation (35), cos (S,8,) = 0.997047.

From equation (36), 1, = 1, = 2.201°.

From equation (37), 7 = 2.337°.

For larger earth terminals, assuming « = 0.7° for 25-m antennas,
the corresponding worst-case minimum equal orbit inclinations pro-
viding the specified diversity is 2.045 degrees.

B.5 Minimum Orbit Inclinations for Avoiding Serial Eclipses

The earth’s shadow is assumed to be a circular cylinder with a
diameter equal to the mean diameter of the earth. This amounts to
neglecting atmospheric refraction and the distinction between the
umbra and penumbra shadow regions. For satellites with batteries,
the net radiation energy lost per eclipse corresponds to a time inte-
gration of the actual solar-array power output. This is nearly the energy
loss which would result if the solar source were completely obstructed
while the satellite traversed the assumed eylindrical shadow.

An approximate relationship between declination D and the orbit
arc eclipsed is illustrated by Figs. 13 and 14. The length of geosta-
tionary orbit radius OS is (B + A) km, so that

0'S = (R + h) |sin D | km. (38)
Angle ¥ in Fig. 14 is thus determined:

’

Y = sin™! (ORS> degrees. (39)

GEOSTAT!

Fig. 13—Simplified geometry describing satellite eclipses.
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RIGHT CIRCULAR
SECTION THROUGH S—\\

¢ c’ GEOSTAT JONARY ORBIT

~__sg

—,:A’

EARTH

Fig. 14—Projection of points A, C upon right section of earth’s shadow through S.

The length of the chord intercept common to both the orbit and the
cylindrical earth shadow is determined by a normal projection of the
orbit upon a right circular section of the shadow through S. From
equations (38) and (39),

AC = A4'C" = 2R cos {sin" [(R + h)RI sin D q}km. 40)

If the fraction in brackets in equation (40) is smaller than unity for
a given declination D, an eclipse of the orbiting satellite is indicated.
For zero values of apparent declination, the chord AC is simply twice
the mean earth radius R. —

The corresponding orbit arc AC is next calculated from the solution
of oblique triangles:

~ _ 2 2
AC = cos™* {-—(499%—;——2&} degrees. (41)

Hence, the minimum space diversity in geocentered angular measure
necessary for avoiding serial satellite eclipses is identified numerically
with the maximum orbit arc intercept, occurring for D = 0°. From
equation (41), the maximum resulting geocentered angle, corresponding
to one earth diameter, is approximately 17.6°. Then each minimum
orbit inclination 7, = 7, necessary for avoiding serial eclipses in the
manner of Section 3.2 is approximately 17.6°/2 = 8.8°.

Finally, it is of interesi;\to estimate the time required for the satellite
to traverse shadow are AC. The interval A¢, is numerically equivalent

to the resulting arc fraction times the orbit period, corrected for the
earth’s revolution about the sun:

~

At, = [1.002738](24 X 60)" X % minutes. (42)
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Adaptive Predictive Coding of
Speech Signals

By B. S. ATAL and M. R. SCHROEDER
(Manuscript received December 13, 1968)

We describe in this paper a method for efficient encoding of speech
signals, based on predictive coding. In this coding method, both the trans-
mitter and the recetver estimate the signal’s current value by linear pre-
dictton on the previously transmitied signal. The difference between this
esttmate and the true value of the signal ts quantized, coded and trans-
matted to the recetver. At the receiver, the decoded difference signal is added
to the predicted signal to reproduce the input speech signal. Because of the
nonstationary nature of the speech signals, an adaptive linear predictor
is used, which 1s readjusted periodically to minimize the mean-square
error between the predicted and the true value of the stgnals.

The predictive coding system was stmulated on a digital computer. The
predictor parameters, comprising one delay and nine other coefficients
related to the signal spectrum, were readjusted every 6 milliseconds. The
speech signal was sampled at a rate of 6.67 kHz, and the difference signal
was quantized by a two-level quaniizer with variable step size. Subjective
comparisons with speech from a logarithmic PCM encoder (log-PCM)
indicate that the quality of the synthesized speech signal from the predictive
coding system is approximalely equal to that of log-PCM speech encoded
at 6 bits/sample.

Preliminary studies suggest that the binary difference signal and the
predictor parameters together can be transmitted at approximately 10
kilobits/second which is several times less than the bit rale required for
log-PCM encoding with comparable speech quality.

I. INTRODUCTION

The aim of efficient coding methods® is to reduce the channel capacity
required to transmit a signal with specified fidelity. To achieve this
objective, it is often essential to reduce the redundancy of the trans-
mitted signal. One well-known procedure for reducing signal redundancy

1973
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is predictive coding.**~® In predictive coding, redundancy is reduced
by subtracting from the signal that part which can be predicted from
its past. For many signals, the first-order entropy of the difference
signal is much smaller than the first-order entropy of the original
signal; thus, the difference signal is better suited to memoryless encod-
ing than the original signal. Predictive coding offers a practical way of
coding signals efficiently without requiring large codebook memories.

Many previous speech coding methods® have employed schemes
which attempt to separate the contributions of the voecal excitation
from that of the vocal-tract transmission function. The well-known
channel vocoder of Dudley’ was the first attempt in this direction. Al-
though vocoders can reproduce intelligible speech, there is appreciable
loss in naturalness and speech quality. This degradation in speech
quality arises from various operations in the vocoding process, which
are either inaccurately performed or are based on certain idealized
approximations of speech production and perception processes.

The present paper describes a different approach®® to encoding of
speech signals, based on predictive coding, which avoids the difficulties
encountered in vocoders and vocoder-like devices. Although predictive
coding utilizes such well-known characteristics of speech signals as
pitch and formant structure, its operation does not rely solely upon a
rigid parameterization of the speech signal. That part of the speech
signal which cannot be represented in terms of these characteristics is
not discarded but suitably encoded and transmitted to the receiver
where it is used in the synthesis of a close replica of the original speech
waveform.

Previous studies of predictive coding systems for speech signals®
have been limited to linear predictors with fixed coeflicients. However,
due to the nonstationary nature of the speech signals, a fixed predictor
cannot predict the signal values efficiently at all times. For example, the
speech waveform is approximately periodic during voiced portions;
thus, a good prediction of the present value of the signal can be based
on the value of the signal exactly one period earlier. However, the
period of the speech signal varies with time. The predictor, therefore,
must change with the changing period of the input speech signal. In
the predictive coding system described below, the linear predictor is
adaptive; it is readjusted periodically to match the time-varying charac-
teristics of the input speech signal. The parameters of the linear pre-
dictor are optimized to obtain an efficient prediction in the sense that

* Another name often used for this kind of encoding is Differential Pulse Code
Modulation.
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the mean-square error between the predicted value and the true value
of the signal is minimum.

II. PREDICTIVE CODING SYSTEM

2.1 Description

A block diagram illustrating the principle of predictive coding is
shown in Tig. 1. The input signal s(f) is sampled at the Nyquist rate
to produce the samples s, of the signal. The predictor forms an estimate
8, of the signal’s present value based on the past samples 7, , 7z, + +*
of the reconstructed signal at the transmitter. The predicted value §,
of the signal is next subtracted from the signal value s, to form the
difference 6, , which is quantized, encoded, and transmitted to the
receiver. At the same time, the transmitted signal is decoded at the
transmitter and the signal reconstructed in exactly the same manner as
is done at the receiver. The reconstructed signal is then used to predict
the next sample of the input signal.

At the receiver, the transmitted signal is decoded and added to the
predicted value of the signal to form the samples 7/, of the reconstructed
signal. The predictor used at the receiver is identical to one employed
at the transmitter. The samples 77, of the reconstructed signal are finally
low-pass filtered to produce the output signal 7'(z).

2.2 Signal-to-Quantizing Noise Ratio

Consider the predictive coding system shown in Fig. 1. Let P, be
the mean-square value of the input signal samples s, , P; be the mean-
square value of the difference signal samples 8, , P, be the mean-square
value of the quantizing noise in the decoded difference signal 82, and

TRANSMITTER RECEIVER
B DIGITAL
s(t) Sn In CHANNEL T'T)
I SAMPLER || — || QUANTIZER [ ENCODER — —»{ DECODER LOR PASSL 1o
+
— ’s\n 8'
n
+ | DECODER PREDICTOR

PREDICTOR | I'py

Fig. 1—Block diagram of a predictive coding system.
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P, be the mean-square value of the quantizing noise in the reconstructed
signal , . We will now show that, in the absence of digital channel
transmission errors, the signal-to-quantizing noise ratio P,/P, of the
reconstructed signal is given by
P._P.Py

P, P; P,
In other words, the signal-to-quantizing noise ratio of the reconstructed
signal exceeds the signal-to-quantizing noise ratio of the decoded differ-
ence signal by a factor equal to the ratio of the mean-square value of
the input signal to the mean-square value of the difference signal. The
predictive coding system is thus superior to a straight PCM system
whenever P,/P; is much greater than 1. For a signal such as speech,
this is indeed true. The results obtained by computer simulation of
the predictive coding system (see Section 3.3) show that P,/P; is
about 100 for speech signals. By using predictive coding, one could thus
expect improvement of about 20 dB in signal-to-quantizing noise ratio
over a PCM system using identical quantizing levels.

To prove equation (1), we will first show that the error between any
sample of the reconstructed signal and the corresponding sample of
the input signal is identical to the error introduced by the quantizer,
the encoder and the decoder.

The error e, between the sample r/ of the reconstructed signal and
the sample s, of the input signal is given by

o))

€, =71 — s, . 2)

In the absence of digital channel transmission errors, we can replace 7/
in equation (2) by 7, and rewrite equation (2) as

e = (rn — &) — (s, — 8). &)
It is readily seen in Fig. 1 that
T, =0, + 8, 4)
and
8, = 8, — &, . )
On combining equations (3), (4) and (5), one obtains
e, = 8, — 4, . (6)

The right side of equation (6) represents the error introduced by the
quantizer, the encoder, and the decoder. Thus, the error in the nth
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sample of the reconstructed signal is identical to the error in the nth
sample of the decoded difference signal.
The signal-to-quantizing noise ratio of the reconstructed signal is

by definition P,/P, and can be written as

P, _P, P,

P, P; P, @)
Since the mean-square value P, of the quantizing noise in the recon-
strueted signal is identical to the mean-square value P, of the quantizing
noise in the decoded difference signal, P, on the right side of equation (7)
can be replaced by P, , and one obtains

P, _P, P;

.~ PP, @

III. APPLICATION OF PREDICTIVE CODING TO SPEECH SIGNALS

3.1 Linear Prediction of Speech Signals

Two of the main causes of redundancy in speech are:

(¢) Quasi-periodicity during voiced segments® and,
(%) Lack of flatness of the short-time spectral envelope.®

The exact form of the predictor for the speech wave depends on the
model used to represent the human speech produection process. A
reasonable model for the production of voiced speech sounds is obtained
by representing them as the output of a discrete linear time-varying
filter which is excited by a quasi-periodic pulse train (see Fig. 2). The
output of the linear filter at any sampling instant is a linear combination
of the past p output samples and the input. The number of past samples
p is given by twice the number of resonances (formants) of the voeal
tract which are contained in the frequency range of interest. For ex-
ample, in the case of speech signals band-limited to 3 kHz, it can be

_T__LT_LL”\* Unp Q Sn

| TRANSVERSAL
FILTER

Fig. 2—Model for the production of voiced speech sounds.
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assumed that there are typically three to four formants.” A suitable
value of p is thus 8.

Let s, and U, be the amplitudes of the output and input signals
(see Fig. 2) at the nth sampling instant. The nth output sample s, is
then given by

Sy = Z ASp—rk + Un b (8)
k=1

where
Un = BUIL—JII y (9)

M is the period of the excitation signal and 8 takes account of the
variation of the amplitude of the input pulse train from one period to
the next. For natural speaking conditions, the period of the excitation
signal is usually below 15 milliseconds, and, as a first approximation,
the effect of time variation of the coefficients «;, from one pitch period
to the next can be neglected. Under this assumption, we find

yd

Sn — BSuca = Zalc(sn—k - Bsn—-k—ll1> + Un — BUp-sr - (10)

k=1
Since U,, = BU,-r , equation (10) reduces to
Sy = BSu_nr + Z ak(sn—k - 6sn—k—ll1)y (11)
k=1
which determines completely the structure of the linear predictor.

A block diagram of the predictor as deseribed by equation (11) is
shown in Fig. 3. The delay M as well as the parameters «; , @y, -+ , o,

P(z)=pz"M

PREDICTOR
Py (2)

INPUT
OUTPUT

PREDICTOR

=Py (2) PZ(Z)

8
P2(2)=Zanz—”
n=1

Fig. 3—Block diagram of the predictor for speech signals.
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and 8 are variable and are readjusted periodically to match the charac-
teristics of the input speech signal. Ideally the readjustment of the
predictor parameters need be done only when there are significant
changes in the characteristics of the speech signal. This implies that
the predictor should be readjusted at short intervals during transitions
and at long intervals during steady state portions of the speech signal
and, consequently, a long buffer storage is needed to ensure transmission
of parameters at a uniform rate on the channel. In order to avoid the
use of a long buffer storage, the predictor parameters were readjusted
at a fixed time interval in our study. This time interval was chosen
to be 5 milliseconds to ensure that the prediction be efficient even
during rapidly changing segments of the speech wave.

For unvoiced sounds, the quasi-periodic excitation U, in equation (8)
is replaced by a noise-like excitation. Generally speaking, the transfer
function of the filter for unvoiced sounds must include poles as well as
zeros. However, we find that for all practical purposes it is sufficient to
include only the effect of poles. Equation (11), thus, represents the
linear predictor for unvoiced sounds too if B is assumed zero.

3.2 Determination of Predictor Parameters

The predictor parameters are determined by minimizing the mean-
square error between the actual speech sample and its predicted value.
The predicted value §, of the nth speech sample is given by

§, = Bsponr T 1; @ (Sn—r — BSn—p—2r)- (12)

The prediction error sample E, is then given by

E, =s,— 38,

bd

= (sn - ﬁsn—M) - Z ak(sn—k - ﬂsn-—k—M)' (13)

k=1

The mean-square prediction error (£2),, is given by
1
(Ei>av = N EEi ’ (14)

where the sum extends over all the samples in the time interval during
which the predictor is to be optimum.

The problem of minimizing the mean-square error (£2),, by suitable
selection of the predictor parameters does not admit a straightforward
solution due to the presence of the delay parameter M in equation (13).
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A sub-optimum solution was obtained by minimizing the total error
in two steps. First the parameters 8 and M are determined such that
the error E, , defined by

El = -Z]\? ; (sn - 6sn—1|1)2 = <(sn - 6sn—ﬂ!)2>av ) (15)

is minimum. Using these values of 8 and M, the mean-square error (£2),,
is minimized by a suitable choice of parameters o, , - -+ , o -

To find the values of the parameters 8 and M which minimize the
error F; as defined in equation (15), we first set the partial derivative
of E, with respect to 8 equal to zero:

at,

98 = —2((Sp — BSn-10)Sn=1r)av

=0, (16)

where the ( )., indicates the averaging over all the samples in the
given 5-millisecond time segment during which the predictor is to be
optimum.

On solving for 8 from equation (16), we obtain

B = <3n3n—at>av/<3,2,—M>uv . (17)

We next substitute the value of 8 from equation (17) into equation (15).
After rearrangement of terms, we obtain

By = (s3) — (SaSucr)on/{Sh-tt)av - (18)

Since the first term on the right side of equation (18) does not depend
on M, it can be omitted in finding the minimum value of the error.
Further, E, is minimum if the second term on the right side of equation
(18) is maximum. The optimum value of M is thus determined from
the location of the maximum of the normalized correlation coefficient
p given by

P = {(snsn—M>av}/{<8121>M<83—M>av}%’ M > 0 (19)

Next, the predictor parameters «; , --- , a, are obtained such that
the mean-square error (I2),, as given in equation (14) with 8 and M
fixed at their optimum values is minimum. Let

Up = 8 — Bsn-—ll[ . (20)
The error (E2),, is then given by
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The optimum values of the coefficients @, , +-- , @, which minimize
(E2)., are obtained by setting the partial derivatives of (E2),, with
respect to @; , - -+ , &, equal to zero. Or,
=0 for j=1,2,---,p. (22)
Equation (22) can be rewritten in matrix notation as
da = 4, (23)
where & is a p by p matrix with its (7f)th term o,; given by
@ii = (Vn=ilaiav 5 (24)

a is a p-dimensional vector whose jth component is a; and 4 is a p-di-
mensional vector whose jth component ¢, is given by

¥ = <vnvn—i>av . (25)

The optimum predictor coefficients «, , @z , - -+ , a, are obtained by
solving equation (23) for a. For the case when & is a nonsingular matrix,
the solution of equation (23) presents no difficulty. The vector a can
be obtained by multiplying ¢ with the inverse of the matrix ®. A more
efficient computational procedure' for solving equation (23), which
does not involve matrix inversion, takes advantage of the fact that @
is & symmetric matrix, and thus can be expressed as the product of a
triangular matrix and its transpose. Equation (23) can then be written
as three separate matrix equations. These equations involve triangular
matrices only and their solutions can be expressed by a set of recursive
equations.™

A singular ® matrix implies that one or more of its eigenvalues is
zero. The matrix & can be modified to become nonsingular by adding a
small positive constant to its diagonal elements. Equation (23) is
solved again with the matrix ® replaced by the matrix . The modi-
fied matrix @' is symmetrie and has the same eigenvectors as the matrix
®, but its eigenvalues are all positive; thus it is a positive definite sym-
metric matrix and has a unique inverse & .

3.3 Computer Stmulation of the System

The predictive coding system using adaptive predictors was simu-
lated on a digital computer to determine its effectiveness for coding
speech signals. The transmitter and the receiver are illustrated sepa-
rately in Figs. 4 and 5, respectively. The sampling rate used in this
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Fig. 4—Transmitter of the predictive coding system.

simulation was 6.67 kHz. Prior to sampling, the input speech signal
was filtered with a low-pass filter with 3-dB attenuation at 3.1 kHz
and an attenuation of 40 dB or more for frequencies above 8.33 kHz.
At the transmitter, the difference §, formed by subtracting the pre-
dicted value §, from the speech sample s, was quantized by a two-level
(1 bit) quantizer with variable step size ¢. The parameter ¢ was re-
adjusted every 5 milliseconds to yield minimum quantization noise
power. The parameters of the adaptive predictor were also computed
once every 5 milliseconds and sent to the receiver together with the
binary difference signal and the step size ¢ of the quantizer. The opti-
mum value of the delay parameter M was obtained by locating the
maximum of the correlation coefficient p as defined in equation (19)
for values of M between 20 and 150. The parameter p was set at 8.

The speech signal was reconstructed at the receiver by a feedback
loop containing an adaptive predictor identical to the one used at the
transmitter. Here, the predictor too, was reset every 5 milliseconds
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Fig. 5—Receiver of the predictive coding system.
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according to the predictor-parameter information received from the
transmitter. The reconstructed speech samples were finally smoothed
by a 3.1-kHz low-pass filter to form the output speech signal +'(¢).

IV. RESULTS OF SUBJECTIVE TESTS

Two different subjective tests were conducted to judge the quality
of the reconstructed speech signal produced at the receiver of the pre-
dictive coding system. In the first test, trained listeners compared the
reconstructed speech signal with speech from a logarithmic PCM
(log-PCM) encoder'” that used the same input signals and a sampling
frequency of 6.67 kHz. The compression characteristic employed in a
log-PCM encoder is defined by the equation

Vlog[1+“—|vil]
Y= T g T+ w)

where y represents the output voltage corresponding to an input signal
voltage z, u is a dimensionless parameter which determines the degree
of compression and V is the compressor overload voltage.'* The com-
pressed signal y was quantized at bit rates varying from 5 bits/sample
to 7 bits/sample with p = 100 and V = 8 X the rms speech signal
voltage.! Speech samples from both male and female speakers were
used in these tests. The results of the subjective tests indicated that
the quality of the reconstructed speech signal was better than that of
log-PCM speech with 5 bits/sample but slightly inferior to one with
6 bits/sample. The corresponding measured signal-to-noise ratios for
log-PCM speech were 21 dB and 27 dB, respectively.

In the second test, the reconstructed speech signal was compared
with the input speech signal contaminated by additive white noise
obtained by randomly inverting the polarity of successive Nyquist
samples of the input speech signal.’® This noise is subjectively similar
to the distortion introduced by predictive coding and is therefore
particularly appropriate for reproducible comparisons. This noise has
an added advantage in that its absolute amplitude at any instant of
time is proportional to the absolute amplitude of the input speech
signal. This proportionality permits the calculation of a precise signal-
to-noise ratio (S/N). Based on the results of these tests, the equivalent
S/N of the reconstructed speech in the predictive coding system de-

sgn x, (26)

t The integration time for computing the rms value of the speech signal was
several seconds and included speech samples from a number of speakers.
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scribed above was found to be about 25 dB which is in good agreement
with results obtained by the subjective comparison with log-PCM.

V. ADDITIONAL MODIFICATIONS OF THE PREDICTIVE CODING SYSTEM

5.1 Spectrum of Quantizing Noise and Its Influence on the Subjective
Quality of the Reconstructed Speech

For frequencies above 500 Hz, the frequency spectrum of voiced
speech sounds generally falls off with frequency with an average slope
between —6 and —12 dB per octave. The spectrum of quantizing
noise in the predictive coding system, on the other hand, is approxi-
mately uniform. The signal-to-quantizing noise ratio (S/N) of the
reconstructed speech, thus, also falls off with frequency. This is illus-
trated in Fig. 6 where the speetrum of a short segment of the speech
signal is compared with the spectrum of the corresponding quantizing
noise. As can be seen, the S/N is very poor at high frequencies. In-
formal listening tests of the reconstructed speech appeared to confirm
the above observation. The quality of the reconstructed speech can
thus be improved by a suitable shaping of the spectrum of the quantiz-
ing noise so that the S/N is more or less uniform over the entire fre-
quency range of the input speech signal. The desired spectral shaping
can be achieved by pre-emphasizing the input speech signal at high
frequencies by means of a fixed filter whose amplitude versus fre-
quency characteristic rises with frequency above 500 Hz with a

80
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Fig. 6—Spectra of speech and quantizing noise.
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slope of 12 dB per octave. The spectral distortion can finally be elimi-
nated by a filter at the output of the receiver whose frequency versus
amplitude characteristic is exactly opposite to that of the pre-emphasis
filter. The results of computer simulation indicate that the quality of
the reconstructed speech in the predictive coding system employing
pre-emphasis is considerably better than that of the system without
pre-emphasis.

5.2 Improved Prediction of Voiced Speech

The redundancy due to the quasi-periodic nature of voiced speech
is removed in the predictive coding system described earlier by a pre-
dictor P,(2) consisting of a delay of M samples and an amplifier with
gain 8 as shown in Fig. 3. It is possible to improve the prediction of
voiced speech by employing a predietor P,(z) consisting of two delays
and two amplifiers such that

Pi(z) = 612—M + .322-21”- 27

The parameters B, and B, are calculated by minimizing the mean-
square error F, defined by

Ey = ((sa = BiSu-1r — B2Sn-210)"Yav - (28)

The modified predictive coding system including pre-emphasis of the
input speech signal together with the second-order predictor P,(z) as
given in equation (27) was simulated on the computer. The results of
subjective tests similar to those described in Section IV indicated that
the quality of the reconstructed speech was somewhat superior to that
of log-PCM speech at 6 bits per sample. The equivalent S/N was found
to be 30 dB.

VI. QUANTIZATION OF PREDICTOR PARAMETERS

No attempt was made in the study reported here to quantize the
predictor parameters. Preliminary calculations were made to estimate
the number of bits required to transmit the information to the receiver.
Since the predictor parameters (one delay and nine other coefficients)
carry the information about the signal spectrum, it should be possible
to encode them at a bit rate comparable to one used in conventional
formant vocoders. This suggests a bit rate of approximately 10 kilobits
per second for transmitting the binary difference signal (6.67 kb/s)
and the predictor parameters (3 kb/s). Recent studies by Kelly™
indicate that it is indeed possible to encode the transmitted informa-
tion within 9600 b/s without significant loss in speech quality.
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VII. CONCLUSIONS

The study reported here shows that predictive coding is a promising
approach to digital encoding of speech signals for high-quality trans-
mission at substantial reductions in bit rate. Unlike past speech coding
methods based on the vocoder principle, the predictive coding scheme
described here attempts to reproduce accurately the speech waveform,
rather than its spectrum. Listening tests show that there is only slight,
often imperceptible, degradation in the quality of the reproduced
speech. Although no detailed investigation of the optimum encoding
methods of the predictor parameters was made, preliminary studies
suggest that the binary difference signal and the predictor parameters
together can be transmitted at bit rates of less than 10 kb/s or several
times less than the bit rate required for PCM encoding with comparable
speech quality.
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All Terminal Bubbles Programs Yield the

Elementary Symmetric Polynomials

By R. P. KURSHAN
(Manuscript received May 18, 1970)

R. L. Graham has discussed various combinatorial aspects of the
behavior of magnetic domains or ‘“bubbles”.! Representing the initial
state of a configuration of n magnetic domains by the n-tuple of in-
determinates B = (X, --- , X,), he showed that subsequent configura-~
tions of magnetic domains obtainable (within the constraints of the
problem) correspond exactly to subsequent n-tuples of Boolean ex-
pressions in the X,’s* obtainable from B through an application to B
of a product of transformations (“commands” in Ref. 1) of the form
T:;A £<<j=n)whereif P = (P, ---, P,) is an n-tuple of Boolean
expressions in the X.’s, then 7;(P) = (@, - -+ , @),

P, \UP, if k= il
Q. =3P, N\P; if k=i, E=1,-,n.
IP,, otherwise J
Furthermore, he showed that

if 3is an (3)-fold product of such transformations M
and if 7 is any other, then (7' o 3)(B) = 3(B).

This provides a limitation on the number of distinet n-tuples of the
form w(B) = (Py, --- , P,) where U is a product of transformations,
and hence provides a limitation on the number of distinct P,’s thus
obtainable from various U’s. Graham showed that for n = 11, this
limitation implies that not all Boolean expressions in the X,’s are
realizable as a P,.

This led to an (as yet unsuccessful) attempt to characterize those ex-
pressions which are realizable. The purpose of this note is to observe a
fragmentary result in this direction: that if J is as above, then 3(B) =

* A Boolean expression in the X.'s is either a term of the form X; (1 £ =< n), a
term of the form P U @ or a term of the form P N @, where both P and @ are Boolean
expressions in the X;’s; expressions may be reduced as if the X,'s were sets.

1991



1992 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1970

(Sy, -+, 8.) where 8; is the elementary symmetric polynomial in
X,, +++, X, of degree ¢ (here interpreting \J as -+ and M as -). The
situation will be rephrased in terms of a semiring.

For a fixed n let R be the (Boolean) commutative semiring generated
by X,, - -+, X, subject to the relations:

for ¢=1,---,n, (1)X:=X,,
@ X, +f=1 forall {ER.

It follows that 2X; = X;(¢ = 1, --- , n) and hence, each f € Ris a
Boolean polynomial in the indeterminates X,, --- , X,, (that is, the
X.’s behave like sets with respect to + and - interpreted as \J and M
respectively).

Throughout, if x & R" (the set of n-tuples of elements of R), then
for 1 £ k £ n, z, will denote the kth coordinate of z, that is, z =
(@, *+* , X *+ , x,). Let T (or T,) be the set of transpositions of
{1, --- ,n} and fort € T—say t = (1, 9), 2 < j—define t : B*"—R" by

f+1f i k= zl
e = f:of; if k=3 - Let B=B,=X,,---,X,) eR"
L‘k otherwise {

and set @, = \Ur_,T*(B) wherem = ()*and T* = {t,t, -+ -t | by, b2, -+ -
i € T}. A point C € @, is said to be terminal if {(C) = Cforall¢ & T.
It is not hard to see that (S,, - -+ , S,) is a terminal element of €, where
S:(1 £ ¢ £ n) is the elementary symmetric polynomial in X, -+ , X,
of degree 7; in what follows it will be shown that this characterizes the
terminal elements of C,.

The elements of B may be partially ordered by f £ g & f —I— g =
ForD € R",1 £ j £ n, define D' € R" by D} = D,(X,, - X
0, X;y, -, X)), 12725 n.

Lemma 1: C ssterminal & C;, = C, = --- = C,.
Proof: Obvious.
* By (1), €, = U™k T*(B); on the other hand €, = U7 T¥B)=1r =

using notatlon developed below, this can be proved by induction on n as follows
If n = 11it is clear; assuming it is true for a given n, identify €, with {D»#1 | D &
Cni1} C Cuy1 (see remark following Lemma 3). Usmg the theorem below and the

induction hypothesis, there is a g such that §(Bny) = (817, S?, -+, 8 "+1,
Xny1), and ¢ is a product of at least (n) transpositions. Let 3’ = (1 2)(2 3)
(n n 4+ 1)g; then §'(Bnt1) = (Sy, - -, Say1), ¢ is a product of (;‘) +n = (”H)

transpositions and if for some U (‘LLg)(B,.+1) = §'(Bps1) then U must be a product
of at least n transpositions.
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Lemma 2: If f, g € R are such that X; divides no summand of either,
thenf + X:hy = g+ Xiho=f = g.

Proof: Writing f + X;h, as a sum of products of X,’s, both f and ¢
are precisely the sum of those products which are not divisible by X,.

Lemma 3: If D & @, then for each § = 1, -+« | n there exists ¢ such
that D% = 0.

Proof: Assume D € €,and 1 < j < n. Find ¢y, -+ - , ¢, € T such that
tB = Dwheret = ¢4, ---t,.Ifr = 1,sayt = (0, 8), 0 < B;if j # «
then Di = 0 and if j = « then Dj = 0. Now assume the assertion is
true whenever r < u, and D = ¢, -+ ¢,B. Find ¢ such that ({,-, --
tB)i = 0 and let ¢, = (o, 8), a < B. As above, if ¢ # « then D} = 0
and if 7 = « then D} = 0. Induction on r completes the proof.

Given D € @,, Lemma 3 provides the machinery for associating D’
in a natural way with an element D’ of ©,_,: making the initial associa-
tion X; » X._,inB,and ¢ — % — 1lin T, for ¢ > j, define D' = ¢/ ---
t/B,_, where if ¢, = (@, 8),a < 8 then

b {t,,, if (fpey -+ B # 0 for i =a, ﬁ}
identity otherwise

for 1 £ m £ r. It is clear that D’ represents a collapsing of D at a
coordinate ¢ where D! = 0 plus a permutation = of the other D’s:
D' = (D;(m D;.(z): ) € R™

However, the extent of possible permuting is limited by the com-
pleteness of the order < on the Di’s as is demonstrated in the next two
lemmas which apply for1 < 7,45,k = n.

Lemma 4: D € @,,D; £ D; = j = 1.

Proof: It suffices to note that an application of a transposition to a
member of @, preserves the order of the indices.

Lemma 6: D; £ D, = Di < Di.

Proof: Writing D; = D} + X;g and D, = Dj 4+ X;h, obtain Di +
X;h = D, = D; + D, = D} + Di 4+ X,;(g + h) which by Lemma 2
implies that Di = Di + D thatis, D! < Di.

It follows from Lemmas 1, 3, 4 and 5 that if C € @, is terminal, then
¢ = (Ci,Ci, -.-,Ci_,,0) and €’ is terminal in @,_, for 1 < j < n.

Theorem: C & @, isterminal & C; = S;, (1 £ 7 £ n).
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Proof: <. This direction is clear.

=. By induction on n—if n = 1 then € = {B} and B = (X,) so the
assertion holds. Now assume the assertion holds for n» < k, and let
C € e, be terminal. Then each ¢V is terminal in @,_, and hence by the
induction hypothesiseach C = Si(z=1,--- ,k—1;5=1,--- k).

In particular then C; # X, X, --- X, fore =1, --- |k — 1. Further-
more, each C; can be expressed as C; = P, 4+ -.- 4+ P, where each
P,, is a product of some but not all of the X,’s. It follows for ¢ < k that

k k
Ci= Y P, and consequently C; = ZﬂCi = ; Si = 8.

XitPum

It is left to the reader to show that €, = S, and thus complete the
induction argument.
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