Ve

Burroughs @

B 7800
Information

Processing

Systems

REFERENCE MANUAL

PRICED ITEM

uuuuuuuuuu

Burroughs @
~ ~N
B 7800
Information
Processing
Systems
REFERENCE MANUAL
N Y

PRICED ITEM

ii

Burroughs believes that the information described in this

“manual is accurate and reliable, and much care has been
taken in its preparation. However, no responsibility, financial
or otherwise, is accepted for any consequences arising out of
the use of this material. The information contained herein is
subject to change. Revisions may be issued to advise of such
changes and/or additions.

Warning: This equipment generates, uses, and can radiate radio frequency energy
and if not installed and used in accordance with the instructions manual, may cause
interference to radio communications. ~As temporarily permitted by regulation it
has not been tested for compliance with the limits for Class A computing devices
pursuant to Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable
protection against such interference. Operation of this equipment in a residential
area is likely to cause interference, in which case the user at his own expense will be
required to take whatever measures may be required to correct the interference.

Correspondence regarding this document should be addressed directly
to Burroughs Corporation, Box CB7, Malvern, PA. 19355, Attn:
Systems Documentation Dept., TIO East.

TABLE OF CONTENTS

Chapter Title Page
1-1 Introduction }
DESCRIPTION OF B 7800
SYSTEM 1-1-1
The B 7800 System 1-1-1
Distinguishing Features 1-1-1
System Configuration 1-1-3
Maximum Configuration 1-1-3
Minimum Configuration 1-1-4
2-1 SYSTEM ARCHITECTURE 2-1-1
DATA REPRESENTATION 2-1-1
General 2-1-1
Internal Character Codes and
Collating Sequences 2-1-1
Numbers and Numbering
Systems 2-1-1
Binary Notation 2-1-1
Hexadecimal and Octal
Notation 2-12
Number Conversion 2-1-2
Binary to Decimal Conversion 2-1-2
Integral 2-1-2
Fractional 2-14
Decimal to Binary Conversion 2-1-4
Integral 2-14
Fractional 2-14
Decimal to Octal Conversion ~ 2-1-5
Integral 2-1-5
Fractional 2-1-5
Octal to Decimal Conversion ~ 2-1-6
Octade 2-1-6
Integral 2-1-6
Fractional 2-1-6
Decimal to Hexadecimal
Conversion 2-1-7
Hexadecimal to Decimal
Conversion 2-1-7
Operand Formats 2-1-7
Numeric Operands 2-1-7
Single Precision Operands 2-1-7
Exponent Field 2-1-7
Mantissa Field 2-1-8

Double Precision Operands 2-1-8
Number Ranges and

Normalization 2-1-10
Logical Operands 2-1-11
String Operands 2-1-11
2-2 POLISH NOTATION AND

STACK 2-2-1
General 2-2-1
Polish Notation 2-2-1

General Rules for Generation
of Polish String 2-2-1
Evaluating Polish String 2-2-3

5010796001

Chapter

23

Title

Compilation Using Polish
Notation
Program Code String
Stack Concepts
General
Base and Limit of Stack
Bi-Directional Data Flow in
the Stack
Double Precision Stack
Operation
Addressing History
Direct Addressing
Relative-Addressing
Display Registers
Absolute Address Conversion
Addressing Environment
Addressing Environment List
Stack History
Simple Stack Operation
Interrupt Handling
Multiple Stacks and Re-Entrant
Code
Level Definition
Re-Entrance
Job-Splitting
Stack Descriptor
Stack Vector Descriptor
Presence Bit Interrupt
PROCESSOR WORD FORMATS
General
Words for Addressing Outside
of the Stack
Presence Bit
Index Bit
Invalid Index
Valid Index
Read-Only Bit
Copy Bit
Data Descriptor
String Descriptor
Segment Descriptors
Words for Addressing Within
Stacks
Program Control Word
Indirect Reference Word
Stuffed Indirect Reference
Word
Words for Storing Stack History
Mark Stack Control Word
Return Control Word-
Top-of-Stack Control Word
Words Used as Special
Parameters

Page

223
223
2:2:3
224
224
224

2-2-5

2-2-5
2-2-5
2-2-5
2-2-6
2-2-7
2-2-7
2-2-7
2-2-8
2-2-8
2-2-8
2-2-9

2-2-11
2-2-11
2-2-11
2-2-11
2-2-11
2-2-12
2-2-12

2-3-1

2-3-1

233
2-3-3
2-3-3
2-3-3
2-3-3
2-3-3
2-3-3
2-3-3
2-3-3
2-34

234
234
2.3:5

2-3-5
2-3-8
2-3-8
2-3-8
2-3-8

2-3-8

iii

Chapter

24

3-1

iv

TABLE OF CONTENTS (CONT.)

Title

Step Index Word
Occurs Index Word
Time of Day Function Word

INPUT/OUTPUT SUBSYSTEM

MAP STRUCTURE
Introduction
Queue-Driven 1/O
Error Handling
Deferment of Path Binding
I/O Subsystem Map
Commands and Requests
Map Integrity
Home Address Words
Unit Table
I/O Queue Head and Tail
Words
Status Queue Headers

Input/Output Control Blocks

CENTRAL PROCESSOR
MODULE

GENERAL DESCRIPTION
General

Program Control Unit

Data Reference Unit

Execution Unit
Store Queue
Memory Access Unit

FUNCTIONAL OPERATION
OF SUBSECTIONS
General
Program Control Unit
PIR Circuits
Preprocessing Conditional
Branch Operator
Address Registers
Address Associative Memory
Program Buffer and Branch
Storages
Program Barrel
PIE Level Registers
Write Level Register
Top of Stack Location
Registers
PCU Allocation and Deal-
location of CDB Locations
Allocation Paths
Deallocation Paths
PCU Job Number Registers
Data Reference Unit
Address Couple Queue
Top of Stack Queue
DRU Control Pipeline

DRU Data and Address Paths

Page

2-39
2-39
2-39

24-1
24-1
24-1
24-2
242
243
24-3
244
2-4-4
2-4-4

244
24.5
24-5

3-1-1
3-1-1
3-1-1
3-1-1
312
313
3-1-3

3-2-1
3-2-1
3-2-1
3-2-1

3-2-3
325
3-2-6

326
328
3-29
3-2-10

3-2-11

3-2-12
3-2-12
3-2-12
3-2-12
3-2-15
3-2-15
3-2-15
3-2-17
3-2-18

Title

Associative Memory

Stack Address Registers

LL Data Paths

Execution Unit

EU Operator Queue

Parameter Queue

EU Control Pipeline

EU Code Paths
ECDB PROM Network
ALU PROM Network
SAU PROM Network
EUMC PROM Network

CDB EU Read Pointer Register

A and B Selection Path

Store Data Read Address Path
Source and Destination Pointer

Path
EU Barrel
Short Arithmetic Unit (SAU)
Arithmetic Logic Unit (ALU)
EU Result Address Registers
EU Result CDB Address
Register (EPR)
CDB Level Result CDB
Address Register (ECR)
Barrel Level Result CDB
Address Register (ERB)
ALU Result CDB Address

Register (EAR)

SAU Result CDB Address
Register (ESR)

CDB EU Write Pointer
Register (CEW)

Interrupt Read Register (EIR)

EU Job Number Register
EU Store Subunit

Central Data Buffer
DRU Data Storage

Data Files

Address Files

Bypass Functions

Early Read Function
EU Data Storage

Flags

DRU Data File

DRU String Data File

PCU Big Lit File

EU Data File

Working Storage

PCU Small Lit File

X Storage

Data File RAMs

DRU Data Address RAM

Page

32-19
3220
3220
3222
3223
3223
3224
3226
3226
3226
3228
3228
3228
3228
3228

3-2-30
3-2-30
3-2-30
3233
3-2-36

32-36
3-2-36
3-2-36
3-2-36
3-2-36

32-36
3238
3238
3238
3240
3240
3-240
3241
3242
3242
3242
3242
3242
3242
3242
3244
3244
3244
3244
3244
3244

TABLE OF CONTENTS (CONT.)

Chapter Title Page Chapter Title Page
Bypass Functions 3244 Pack Operators 34-12
I Bus 3244 Relational Operators 34-13
Store Queue 3244 Scale Operators 34.13
Invalidation Check 3244 Stack Operators 34-14
Stack Cut Back 3246 String Operators 34-16
Make MAU Job 3246 String Transfer Operators 34-16
Fill Check 3-246 Subroutine Operators 34-19
Memory Access Unit 3246 Transfer Operators 3420
33 INTERRUPTS 3-3-1 Type-Transfer Operators 3421
Introduction 3-3-1 Miscellaneous Primary Mode
Hardware Interrupt System 3-3-1 Operators 3421
CPM States and Modes 3-3-1 Universal Operators 3422
Control State 3-3-1 Variant Mode Operators 3422
Normal State 3-3-2 String Operators 3422
Fault Control Logic 332 Scan Operators 3423
Fault Register 3-32 Scan While Operators 3423
Fault Mask Register 3-3-2 Tab Field Operators 3424
Interrupt Identification 332 Set State Operators 3425
Processor Fail Register 334 Unpack Operators 34-25
Control Mode Register 3-3-5 Searching Operators 3426
Interrupt Processing 335 Subroutine Operator 3427
Interrupt Processing in Special Interpretation Operator 3427
Normal Mode 335 Operators Exclusive to the B 7800 3428
Interrupt Processing in CM1 3-3-7 Edit Mode Operators 34-28
Interrupt Processing in CM2 3-3.7 Insert Operators 3429
Interrupt Processing in CM3 3-3.7 Move Operators 3429
Control Mode Advancement 3-3.7 Skip Operators 34-30
Alarm Interrupts (First 4-1 INPUT/OUTPUT SUBSYSTEM 4-1-1
Priority) 339 GENERAL DESCRIPTION OF
Syllable Dependent Interrupts INPUT/OUTPUT MODULE 4-1-1
(Second Priority) 339 Introduction 4-1-1
Special Interrupts 3-39 Basic IOM Configuration 4-1-1
External Interrupts (Fourth Control Word Flow 4-1-1
Priority) 339 Data Flow 4-1-1
Memory Related Interrupts 3-39 Functional System Inferface 4-1-2
Interrupt Descriptions 3-3-11 Mainframe Interface
Alarm Interrupts 3-3-12 Configuration 4-1-2
Syllable Dependent IOM/MCM Interface 4.12
Interrupts 3.3-14 IOM/CPM Interface 4-1 2
Special Interrupts 33221 IOM/Peripheral Interface
34 OPERATORS 34-1 Configuration 4-1-2
Introduction 34-1 Peripheral Control
Grouping of Operators 34-3 Interface (PCI) 4-1-2
Primary Mode Operators 34-5 Disk File Interface (DFI) 4-1-5
Arithmetic Operators 345 Scan Interface (SCI) 4-1-5
Bit Operators 34-6 Data Communications
Branch Operators 347 Processor Interface (DCI) 4-1-5
Compare Operators 34.8
Enter Edit Mode Operators 349 IOM Operational
Index and Load Operators 34-10 Characteristics 4-1-5
Input Convert Operators 34-11 IOM Job Map 4-1-7
Literal Call Operators 34-11 Home Address Word 4-1-7
Logical Operators 34-12 Unit Table Word 4-1.7

5010796001 v

Chapter

4.2

TABLE OF CONTENTS (CONT.)

Title

10Q Head (IOQH) and
10Q Tail (I0QT) Tables and
Words
I/O Control Blocks
Fail I/O Control Blocks
Status Queue
IOM Home (HA) Commands
Start I/O (Home Code 0001)
Set Channel Busy/Set
Channel Reserved (Home
Code 0010)
Reset Channel Busy/Reset
Channel Reserved (Home
Code 0011)
Load Address Commands
DCP Scan-Out Commands
(Home Code 1000)
Synchronous I/O Command
(Home Code 1010)
Interrogate Peripheral Status
Command (Home Code
1011) Inhibit IOM Command
(Home Code 1100)
Activate IOM Command
(Home Code 1101)
Automatic Disk-Pack
Operation
Data Translation
EBCDIC-BCL Exceptions
IOM-Generated Interrupts
IOM Fail Word

FUNCTIONAL OPERATION
OF INPUT/OUTPUT MODULE
SUBSYSTEMS
General
Translator
Job Service Initiation
PCI/DSB Control
DFI/DSB Control
Central Control
MIU/DSB Control
Peripheral Control Interface
Translator Service
Channel Designate
Channel Data Service
Memory Operations
Result Descriptor Read
Disk File Interface Unit
Channel and DSB Initiation
Operation
Channel Designate Operation
Data Service Operation

Page

419
419
4-1-10
4-1-10
4-1-11
4-1-11

4-1-11

4-1-11
4-1-11

4-1-13
4-1-13
4.1-13
4-1-13
4-1-13

4-1-13
4-1-14
4-1-14
4-1-16
4-1-16

421
4.2-1
421
421
429
429
429
429
429

42-11

42-11

42-11

4.2-11

42-12

4212

4214
42-14
4215

Chapter

Title

Channel Termination
Operations
Scan Bus-Interface
PERIPHERAL AND CONTROL
WORD FORMATS
Standard Result Descriptor
Unit Related Errors
Result Descriptors Common
to All Peripheral Devices
Internal DSU Error Result
Descriptors
IOM Peripheral Result
Descriptor
Result Descriptor Locations
Card Reader
CDL Word Format
Field
IOCW Information
Result Descriptor-Unit Error
Field
Operations
BCL (OP20)
Binary (OP21)
EBCDIC (0P22)
Test (OP99)
Card Punch
CDL Word Format
Field
IOCW Information
Result Descriptor-Unit
Error Field
Operations
BCL (OP23)
Binary (OP24)
Card Punch EBCDIC (0OP25)
Test (OP99)
Punch Check Error
Train Printers
CDL Word Format
Field
IOCW Information
Result Descriptor-Unit
Error Field
Operation
Print (OP10)
Space (OP11)
Skip (OP11)
Load Train Image Buffer
(0P29)
Test (OP99)
Magnetic Tape Subsystem
CDL Word Format
IOCW Information

Page

4215
42-15

4.3.1
432
433

4-34

434

4.3:5
4.35
4.3-5
4.3-5
436
436

436
436
4.36
4.3-6
4.37
437
4.37
437
4.37
4.37

4.38
4.38
4.38
438
4.38
438
4.38
439
439
439
4.39

4-3-10
4.3-10
4.3-10
4-3-10
4-3-10

4-3-10
4-3-10
4-2-12
4-3-12
4-3-13

Chapter

5010796001

TABLE OF CONTENTS (CONT.)

Title

Result Descriptor-Unit

Field Error
Operations

Rewind (OP01)

Read OP02 (Forward) or

OP03 (Reverse)

Erase (OP04)

Write (OP06)

Write Tape Mark (OP06)

Space OP08 (Forward):

OP09 (Reverse)

Test (OP99)

BCL Alpha Operation

(7-Track With Even Parity)
Exception Conditions

CRC Correction (9-Track,

800BPI Only)

Disk Pack Drive Subsystem
CDL Word General Format
CDL Word Format, Write
(OP50)

Write
Load Host
CDL Word Format, Read
(0Ps1)
Read
Read Absolute
Read Unit ID
Subsystem Pdll
Read Memory
CDL Word Format,
Initialize (OP56)
Initialize
Initialize Data Only
CDL Word Format, Verify
(0OP57)
Verify
CDL Word Format, Relocate
(0OP58)
Relocate
CDL Word Format, Test
Commands (OP99)
Controller Lock Disable
Controller Lock Enable
Power Unit Down
Power Unit Up
Place Unit Into Maintenance
Mode
Release Unit from
Maintenance Mode
Test Operation
File Addressing
Result Descriptors

Page

4313
4.3-14
4.3.14

4.3-14
4.3-14
4.3-14
4.3-14

4.3-14
4.3-14

4.3-14
4.3-15

4-3-15
4.3-15
4.3-15

4-3-16
4-3-16
4-3-16

4-3-16
4-3-16
4-3-17
4-3-17
4-3-17
4-3-18

4-3-18
4-3-18
4-3-19

4-3-19
4-3-19

4-3-19
4-3-19

4-3-19
4-3-19
4-3-20
4-3-20
4-3-20

4-320

4-3-20
4-3-20
4-3-20
4-3-20

Chapter

5-1

Title

Operation Complete
Seek Error
Seek Time-Out
Data Error Retry
Unit Busy
Data Error Correction
Unit Seeking
Seek Initiated
Address EPC Error
Address Position Error
Address Time-Out
Write Lockout
First Action with Unit
Memory Access Error
Host Parity Error
Speed Error
Link Parity Error
Data Error
Not Ready
HTC Time-Out
Local
Controller Locked
Controller Failure
Result Descriptor (R/D) Tags
Disk File Subsystem (Type
5N)
Segment Organization
Interlace Options
CDL Word Format
IOCW Information
Subsystem Commands
Read Normal
Read Maintenance
Read Status
Write Normal
Write Maintenance
Test Command
Initialize
Verify
Extended Status Message
(ESM)
Supervisory Display Control
il
CDL Word Format
IOCW Information
Result Descriptor-Unit
Error Field
Operation
Read (OP32)

GENERAL DESCRIPTION
OF MEMORY SUBSYSTEM
Introduction

Page

4.320
4.3:20
4321
4.321
4321
4.321
4321
4322
4.3.22
4322
4322
4322
4322
4.3.22
4322
4322
4.3:22
4322
4323
4323
4.3:23
4323
4323
4323

4.3:24
4.3:24
4.3:24
4.3:25
4.325
4.325
4.326
4.3-26
4.326
4.326
4.326
4.3-26
4-326
4.327

4-327

4.3:29
4.330
4331

4-3-31
4-3-31
4-3-31

5-1-1
1

vii

Chapter

viii

TABLE OF CONTENTS (CONT.)

Title Page
Memory Capacity 5-1-2
Minimum Memory Size 5-1-2
Maximum Memory Size 5-1-3
MSU Reconfiguration 5-1-3
Address Allocation 5-1-3
Subsystem Allocation 5-1-3
Clock Rate and Read Access
Times 5-1-3
Multiple Word Transfer
(Phasing) 5-1-3
Word Formats 5-1-3
MCM Control Word 5-14
Box ID Word (For Model 5-1-5
III MCM) 5-1-5
MCM Fail Word 5-1-6
Memory Address Limits
Word 5-1-8
Memory Requestor Inhibits
Word 5-1-8

Signal Interface Between
Requestor, MCM, and MSU 5-19
Signal Interface Between

MCM and Regulator 5-19

Signal Interface Between

MCM and MSU 5-1-11
Definition of MCM Operations 5-1-11
MCM Logic Functions 5-1-12

Priority Resolution Logic 5-1-12
Data Transfer and Control

Logic 5-1-12

Error Detection Logic 5-1-12
4K and 16K MSU Operations ~ 5-1-12
4K MSU Logic Functions 5-1-12

Data Transfer and Control

Logic 5-1-13

Data Register/Multiplex

Logic 5-1-15

Timing and Address Logic 5-1-15

Storage Area 5-1-15

Refresh Logic 5-1-15

16K MSU Logic Functions 5-1-15
Data Transfer and Control

Logic 5-1-15
Timing Logic 5-1-15
Address and Refresh Logic ~ 5-1-15
Storage Logic 5-1-15
MAINTENANCE DIAGNOSTIC
PROCESSING 6-1-1
Introduction 6-1-1
MDP Configuration 6-1-1

Chapter

Q™

Title

MDP Operations
Bus Operations
Bus Request Operation
Bus Release Operation
Data Type Operations
Fetch Operation
Store Operation
XMIT Data Operation
Control Type Operations
Clear Module Operation
Clear Row Operation
Issue Clock(s) Operation
Maintenance Processor
MP Operating Modes
Supervisor Commands
Card Tester
Functional Interface
General Operation
PROM Programmer
Functional Interface
General Operation
MDP/PROM Programmer
Operations
Control Word in Sequence
Data Word in Sequence
(DWI)
Read Status Operation
Data Out Operation
Module Interrogation and"
Command Interpreter Program
Module Interrogation Group
Display Command
Dump Command
Module Command Group
Clear Command
Load Command
Pulse Command
Set Command
Reset Command

Test Command

Interpreter Directive
Group

COLLATING INFORMATION
DATA REPRESENTATION
PROCESSOR OPERATORS,
BY HEXADECIMAL CODE
PROCESSOR OPERATORS
BY MNEMONICS

IOM WORD FORMATS

Page

6-1-1
6-1-3
6-1-3
6-1-3
6-1-3
6-1-3
6-14
6-14
6-14
6-14
6-14
6-1-5
6-1-5
6-1-5
6-1-6
6-1-6
6-1-6
6-1-6
6-1-7
6-1-8
6-1-8

6-1-10
6-1-10

6-1-10
6-1-11
6-1-11

6-1-11
6-1-12
6-1-12
6-1-12
6-1-12
6-1-12
6-1-12
6-1-12
6-1-12
6-1-13
6-1-13

6-1-13

A-l
B-1

C-1

D-1
E-1

Figure

1-1-1
1-1-2

2-1-1
2-1-2

2-1-3
2-1-5

2-1-4

2-1-6
2-1-7
2-1-8
2-19
2-1-10
2-1-11
2-1-12
2-1-13
2-1-14
2-1-15
2-1-16

2-2-1
222

2-2-3
2-24

2-2-5

2-2-6
2-2-7

2-2-8
2-2-9

2-2-10
2-2-11
2-3-1
2-32
2-3-3
234
2-3-5
2-3-6
2-3-7
2-3-8
2-3-9
2-3-10
2-3-11
2-3-12

LIST OF ILLUSTRATIONS

Title Page

Example of B 7800 Exchange 1-1-2
Maximum Configuration of

the B 7800 System

Word Structure

Number Base Graphic

Characters 2-1-1
Binary Integers 2-1-2
Relationship of Octal, Decimal,

and Hexidecimal Numbers 2-1-2
Binary to Hexadecimal and

Octal Conversion 2-1-3
Binary to Decimal Conversion 2-14
Decimal to Binary Conversion 2-1-5
Decimal to Octal Conversion 2-1-5

Powers of 8 2-1-6
Octal to Decimal Conversion 2-1-6
Single Precision Operand 2-1-7
Order of Magnitude Chart 2-1-8
Double-Precision Operand 2-19
Logical Operand 2-19
String Operands 2-1-11
Use of String Operand to

Store Signal Operands 2-1-12
Polish Notation Flow Chart 222

Evaluation of Polish String

ATBC+*= 223
Program Word 224
Top of Stack and Stack

Bounds Register 224
ALGOL Program with Lexico-
graphical Structure and Realted

Stack Structure 2-2-6
More Advanced ALGOL

Program 2-2.7
Addressing Environment Tree

of ALGOL Program 2-2.8
Stack History List 2-2-8
Stack Cut Back on Procedure

Exit 2-29
Stack Operation 2-2-10
Mutltiple Linked Stacks 2-2-12
Basic Word Format 2-3-2
Data Descriptor 2-34
String Descriptor 2-3-5
Segment Descriptor 2-3-6
Program Control Word 2-3-6
Indirect Reference Word 2-3-7 .
Stuffed Indirect Reference Word 2-3-8
Mark Stack Control Word 2-39
Return Control Word 2-3-10
Top of Stack Control Word 2-3-10
Step Index Word 2-3-11
Occurs Index Word 2-3-1

5010796001

Figure

2-3-13
24-1

24-2
24-3

244
2-4-5

3-1-1
3-2-1

322
3-2-3

324
325
3-2-6
327

328

329

3-2-10
3-2-11
3-2-12
32-13
3-2-14
3-2-15
3-2-16
3-2-17
3-2-18
32-19
3220
3221
3-2-22

3-2-23

3-2-24
3225

3226
3227

3-3-1
332

333
334

335

Title

Time-of-Day Function Word
Asynchronous I/O Operation,
Simplified Block Diagram

Data Transfer Path Selection
1/0 Subsystem Map, Simplified
Block Diagram

1/0 Subsystem Map, Protection
I0CB Format, Simplified

CPM Block Diagram
Program Control Unit, Block
Diagram

PIR Circuits

Conditional Branch Boolean
Test Logic

Address Registers

Address Associative Memory
Program Barrel

PCU Job Number Registers and
Logic Paths

DRU Control Pipeline

DRU Data and Address Paths
Stack Address Registers

LL Data Paths

Execution Unit Block Diagram
EU Control Pipeline

EU Code Paths

EU CDB Read Address Paths
Barre!l Data Paths

SAU Data Paths

ALU Data Paths

EU Result Address Registers
EU Job Number Registers
EU Store Subunit

Central Data Buffer DRU
Data Storage

Central Data Buffer, EU
Data Storage

Store Queue, Block Diagram
Memory Access Unit, Block
Diagram

Control Word Format

Error Word Format

Stack Format

Stack Format Prior to Calling
Interrupt Procedure While in

CM1 (Move Stack Operation)
Interrupt Reporting

Stack Format Before Re-entering

Interrupt Procedure to Report
Stack Overflow

Stack Format After Re-entering

Page
2-3-11

24-1
2.4.2

243
244
24.5

312

3-2-2
323

324
3-2-5
3-2-7
3-2-8

3-2-13
3-2-16
3221
3222
3223
3224
3225
3227
3229
3231
3232
3234
3-2-37
3-2-39
3240

3-241

3243
3245

3248
3248
3-2-50

3-3-6

337
338

3-3-10

ix

Figure

3-3-6
3-4-1
34-2
34-3

4.1-1
412

4.14
4.15
4.16
4.17
42-1

422
423
424
4.2-5
426
427

LIST OF ILLUSTRATIONS (CONT.)

Title Page

Interrupt Procedure and

Reporting Stack Overflow 3-3-11
Presence Bit Interrupt Chart 3-3-19
Program Buffer Word Format 34-2
Address Couple Bit Assignment 3-4-2
B 7800 CPM Program Operator
Hexadecimal Code Assignments 3-4-4

IOM Basic Block Diagram 4-1-1
Typical IOM/Main Memory

and IOM/CPM Interface .
Configurations 4-1.3
Typical Data-Transfer

Classifications and Related

IOM Subsections 4-14
Example of IOM Configuration 4-1-6
IOM Job Map 4-1-8
Home Address Commands 4-1-12
IOM Fail Word 4-1-17
Translator Component

Interface 4-2-2
Memory Interface Unit 4-2-5
Data Service Buffer 4-2-8
Peripheral Control Interface 4-2-10
Disk File Interface 4-2-13
Scan Bus Interface 4.2-16
Data Communications Inter-

face Unit 4-2-17

Figure

4.3.1
432
4.33

5-1-1

5-12

Title

SDC IIin B 7800 Systems
IOM/SDC:II Format

Page

4.330
4.3-32

Message from Terminal (Read) 4-3-33

B 7800 Memory Subsystem
with Model I Memory
Control Modules Diagram
B 7800 Memory Subsystem
with Model Il Memory
Control Modules Diagram
Requestor-MCM-MSU
Interface

Memory Control Module
Block Diagram

4K Memory Storage Unit
Block Diagram

16K Memory Storage Unit
Block Diagram

Typical MDP Configuration
Maintenance Processor
Configuration

Card Tester Data Flow,
Simplified Diagram

PROM Programmer Block
Diagram

5-1-1

5-12

5-1-10

5-1-13

5-1-14

5-1-16

2-2-1
3-2-1

322
323
3311
332

34-1
342

LIST OF TABLES

Title Page
Central Components of the
B 7800 System 1-14
Sign Configurations of
String Operands 2-1-12

Description of Stack Operation 2-2-11
Special Input Codes of DRU

and EU 3-2-10
Operator Cases for Loading

Code into RAC Register 3-2-11
Type Bit Codes in RAC

Register 3-2-15
B 7800 Interrupt Bit

Assignments 333
Processor Fail Register 3-34A
Instruction Decode Table 34-1

Register Address Assignment ~ 3-4-26

5010796001

Table

Title Page

IOM HA Operations and
Corresponding Home Codes 4-1-11
General Translation

Specification Codes 4-1-14
Translation Codes by Device ~ 4-1-15
MOD II IOM Data Service

Buffer Errors 433
Train ID Numbers 4-3-10

Controller and Host Transfer
Result Descriptor Information 4-3-21

B 7800 Memory Subsystem
Configurations 5-1-3
Operation Codes for

the MCM 5-14
PROM Programmer Components 6-1-8
Status Vector Cross Reference E-S

Xi

INTRODUCTION

This system reference manual presents the techni-
cal details about the general architecture, the compo-
nents, and the subsystems of the Burroughs B 7800
Information Processing System, which is the most
advanced, the largest, and the most powerful mem-
ber of the Burroughs family of 700 systems.

The chapters of this reference manual are as fol-
lows:

Chapter 1, Description of the B 7800 System, in-
troduces the idea of the interaction of independently
operating computing, input/output, and memory
modules through an exchange and a presentation of
the range of configurations of the system.

Chapter 2, System Architecture, discusses data
representation, Polish notation and stack concepts,
processor control words, and the concepts of the in-
put/output subsystem map.

Chapter 3, Central Processor Module, contains a
functional description of the operation of the central
processor module, an explanation of hardware inter-
rupts, and a brief description of each program
operator.

Chapter 4, Input/Output Subsystem, contains a
general description of the operation of the input/out-
put module, functional descriptions of the subsec-
tions of the input/output module, and detailed de-
scriptions of the control words and descriptors asso-
ciated with each type of peripheral device that may
be included in the system.

Chapter 5, Memory Subsystem, contains a general
description of the memory subsystem and details
about both the memory control module and the
memory storage unit.

Chapter 6, Maintenance Diagnostic Processing,
contains a general description of the maintenance di-
agnostic processing, a functional description of both
the programmer and card tester, and a general de-
scription of the control words associated with main-
tenance diagnostic processing.

The term software, as used in this manual, applies
to that category of Burroughs Program Products de-
fined as Systems Software.

Other categories of Burroughs Program Products
are:

Application Program Products

Program Product Conversion Aids

CHAPTER 1
DESCRIPTION OF
B 7800 SYSTEM

THE B 7800 SYSTEM

The Burroughs B 7800 Information Processing
System is a large-scale, general-purpose, balanced,
flexible, multiprogramming, and multiprocessing
computing system suitable for such diverse applica-
tions as time sharing, scientific problem solving, and
business data processing. The B 7800 is completely
object code compatible with B 7700, B 6700, and
B 6800 systems and affords Burroughs users the op-
portunity for growth without reprogramming or re-
compiling. Object code users’ programs that can be
executed successfully on the B 7700, B 6700, and
B 6800 can be executed without modification on the
B 7800.

The system is able to: 1) handle complex data
structures and sophisticated program structures dic-
tated both by higher-level languages now in use and
by the requirements of advanced problems; 2) effi-
ciently manage the massive on-line and archival stor-
age requirements of large data bases; and 3) accom-
modate vast networks of data communications de-
vices.

The B 7800 is a very fast, modular parallel proces-
sing system with versatility in configuration. The
B 7800 can be tailored to the processing needs of a
user by arranging central processor modules, input/
output processors, and memory modules on an ex-
change (figure 1-1). If the high performance and
adaptability of the B 7800 could be attributed to a
single factor, it would be to the balance attained by
the controlled interaction of independently operating
computing, input/output, and memory modules
through the exchange. Thus, the throughput of the
system as a whole is maximized, and the perform-
ance of no single element of the system is
maximized to the neglect or detriment of others.

The key to the efficient balanced use of the sys-
tem is the Burroughs master control program (MCP),
a unique executive software operating system that
automatically makes optimum use of all system re-
sources. It is this operating system that makes multi-
programming and multiprocessing both functional
and practical by controlling system resources and by
scheduling jobs in the multiprogramming mix. In
use, the master control program allocates system re-
sources to meet the needs of the programs intro-
duced into the computer. It continually and automat-
ically reassigns resources, starts jobs, and monitors
their performance.

5010796001

Further implications of the modularity and flexibil-
ity of the system are its expandability (a capacity to
add hardware modules without reprogramming) and
its increased reliability (thus increasing availability to
the user). The reliability is achieved by the use of
continuous processing techniques that (in addition to
providing for error detection, error correction, inde-
pendence, and redundancy of power supplies) ex-
clude faulty modules from the system and permit
processing to continue (without reprogramming)
even with a temporarily reduced configuration.

Although it is very large and immensely compli-
cated, the B 7800 is comprehensible to the user. Pro-
gramming is done only in higher-level, problem-ori-
ented languages (COBOL, ALGOL, FORTRAN,
PL/1, and ESPOL). The control language used in en-
tering jobs into the system is a simple, free-form,
English-like language, and the messages that pass
between the system and the operator are brief, clear,
and easy to learn.

DISTINGUISHING FEATURES

Although the balanced use of the principal compo-
nents of the system (as a whole under the control
and coordination of the master control program) is
the key to the high throughput of the B 7800, the
high performance of the system is in large part
achieved by:

1. Improving the speed of execution of instruc-

tions.

2. Reducing or masking the overhead associated

with references to memory.

3. Freeing the central processor from concern

with input/output operations.

4. Employing continuous processing measures that

minimize system degradation.

The three goals of the continuous processing fea-
tures of the B 7800 are to: 1) keep the system run-
ning 100% of the time; 2) minimize system degrada-
tion; and 3) provide the user with tools for perform-
ing one’s own data recovery. These goals are
achieved by the combination of hardware and soft-
ware throughout the system.

The first goal, to keep running, is achieved as fol-
lows:
1. By the high reliability of system hardware.
2. By the incorporation of error detection circuits
throughout the system.

1-1-1

786KB
MEMORY
STORAGE
UNIT

786KB
MEMORY
STORAGE
UNIT

786KB
MEMORY
STORAGE
UNIT

786KB
MEMORY
STORAGE
UNIT

DUAL MEMORY CONTROL

I 786kB ' 786kB | 786KB | 786KkB !

I MeMORY ! MEMORY IMEMORY IMEMORY:

| STORAGE |STORAGE 'STORAGE | STORAGE
UNIT | UNIT UNIT | uNIT

1 '
' B S __'___.__J'
|

L DUAL MEMORY CONTROL

r..__._l_._.___...._.J

[]

[]

CENTRAL
PROCESSOR

DATA
REFERENCE
UNIT

PROGRAM
UNIT

EXECUTION
UNIT

MEMORY
ACCESS UNIT

OPERATOR

DISPLAY

e 6 & & ¢

MAINTE-
NANCE
PROCESSOR

INPUT/
OUTPUT
PROCESSOR

TERMINAL

20 PERIPHERAL
CHANNELS

oDT

OPERATOR
DISPLAY
TERMINAL

4 DISK
CHANNELS

4 DISK
CHANNELS

4 DCP PORTS

CENTRAL
PROCESSOR

DATA
REFERENCE
UNIT

PROGRAM
UNIT

EXECUTION
UNIT

MEMORY

ACCESS UNIT OPERATOR

DISPLAY
TERMINAL

INPUT/
OUTPUT
PROCESSOR

20 PERIPHERAL
CHANNELS

ooT

OPERATOR
DISPLAY
TERMINAL

4 DISK
CHANNELS

4 DISK
CHANNELS

B Figure 1-1. Example of B 7800 Exchange

4 DCP PORTS

1-1-2

3. By single-bit error correction of errors in mem-

ory.

By recording errors for software analysis.

. By modular design. (The use of separate power
supplies and redundant regulators for each
module, and the use of redundant buses).

6. By the ability of the master control program to
reconfigure the modules of the system to ex-
clude (temporarily) a faulty module.

7. By automatic instruction retry. If a hardware
malfunction occurs during the performance of
an instruction, the master control program
analyzes the error and writes the appropriate
entry in the on-line maintenance log. The pro-
cessor is reset to its state prior to the error and
the instruction is performed again.

“ s

The detection and reporting of errors is done by
hardware; analysis of errors is done by software;
and the reconfiguration of the system is done by
software. Because of the modularity of power sup-
plies and the use of redundant regulated supplies for
critical voltages, the impact of a malfunctioning dc
supply is minimized and does not result in a cata-
strophic failure.

The second goal, to minimize system degradation,
is achieved by providing diagnostic programs, and
equipment for rapidly identifying and repairing faults
and for re-establishing confidence in a repaired mod-
ule before it is returned to the user’s system. The di-
agnostic programs of the B 7800 system identify a
faulty module.

By use of the maintenance diagnostic processing
programs, a fault in any mainframe module is nar-
rowed to a single clock period and to a flip-flop and
associated logic circuitry. Once the maintenance di-
agnostic program has been used to isolate a fault to
within one or more suspect circuit cards in a mod-
ule, the card test facility can be used to test the
card.

In addition to diagnostic programs, an interpreter
program, MICI (module interrogation and command
interpreter), allows the manipulation, control, inter-
rogation, and display of B 7800 mainframe modules
from a standard system SPO. The strategy of con-
trolling modules, by use of MICI, is to exercise a
suspected logic circuit for fault isolation.

The third goal, to provide the user with tools for
performing their own data recovery, is achieved by
the use of such features as installation allocated
disk, protected disk files duplicated disk files, and
fault statements in the higher-level programming lan-
guages used on the system.

Installation allocated disk allows the user to
specify the physical allocation of critical disk files to
facilitate the maintenance and reconstruction of
these files. Protected disk files allow a user to gain
access to the last portion of valid data written in a
file before an unexpected system halt. The use of
duplicated disk files is to avoid the problem of fatal
disk file errors. The master control program main-
tains more than one copy of each disk file row, and,
if access cannot be gained to a record, an attempt is
made to gain access to a copy of the record. By use
of fault statements, the user can stipulate actions to
be taken by one’s own programs in the event errors
occur.

SYSTEM CONFIGURATION

Physically, the components of theB 7800 system

fall into the following categories:

1. Central components of the B 7800 system: the
central processor module; input/output proces-
sor; the memory module; the maintenance pro-
cessor; and the operator’s console (refer to ta-
ble 1-1).

2. Standard Burroughs cabinets that contain pe-
ripheral controls and exchanges: the data com-
munications processor; and ac power supplies.

3. Standard peripheral devices that are joined to
the central system by standard Burroughs pe-
ripheral controls: adapters and exchanges;
standard remote devices that are joined to the
central system by line adapters; and data com-
munications processor.

The arrangement of these components into a sys-
tem and the size of the system depend on the appli-
cation and workload of the user. In the following
paragraphs, the range of configurations of the
B 7800, the maximum configuration, and the
minimum configuration is described.

Maximum Configuration

Figure 1-2 illustrates the theoretical maximum con-
figuration of the B 7800 system.

As many as eight memory modules may be ar-
ranged on the exchange with a combined total of up
to eight requestors of memory-central processor
modules and input/output modules. Any single re-
questor of memory may address and gain access to
the entire contents of high-speed main memory
(1,048,576 words, or 6,291,456 eight-bit bytes). On
the maintenance bus (which services the memory
control modules, central processor modules, and
input/output modules) a maintenance processor is
placed.

Table 1-1. Central Components of the B 7800 System

B 7811 System includes: one central processor (8 MHz),
one input/output processor with 24 data
switching channels,* one maintenance processor,
one operator console with dual displays and
control.

B 7821 System includes: two central processor (8 MHz),

two input/output processors with 24 data

switching channels each,* one maintenance grocessor,

one operator console with dual displays and
control.

B 9955 Additional operator console and control with

dual operator displays.

B 7801 Additional central processor.

B 7882 Additional input/output processor.

B 7007 Dual Access Memory Control Module and four
Memory Storage Units - 3,145,728 bites of
storage, error correcting memory, 8-way
interleaving that permits 8-word transfer to
and from memory.

B 7008 Dual Access Memory Control Module and two

Memory Storage Units -1,572,864 bites of
storage, error correcting memory, 8-way
interleaving that permits 8-word transfer to
and from memory.

* Throughout this manual the I/O Processor is referred to as the 1/O Module.

At rates of up to 6.75 million bytes per second, a
single input/output module is capable of transferring
data simultaneously between main memory and 28
peripheral controls (including eight high-speed con-
trols) and between main memory and as many as
four data communications processors. At present,
the maximum number of high-speed, medium-speed,
and low-speed peripheral devices that may be at-
tached through controls and exchanges to a single
input/output module or that may be included in the
input/output subsystem of the B 7800 is 2585.

By suitable cross-connection through exchanges, it
is possible to establish pathways between disk files,
disk packs or magnetic tape units, and more than
one input/output module; hence, these peripheral de-
vices can be shared by all of the input/output mod-
ules in the system.

Among the peripheral devices available are disk
file and disk pack memory modules that constitute a
virtual memory that, in effect, greatly expand the
storage capacity of the main memory of the system.
These modules are interfaced with the input/output
module.

In addition to the 255 peripheral devices that may
be included in the input/output subsystem, there is a
vast network of remote terminals, remote controller,
and remote computers that can be accommodated by
as many as 1024 remote lines. These are served by

1-14

the four programmable data communications proces-
sors which can be controlled by a single input/output
module. Normally, each line handles a number of re-
mote devices; systems that have more than one
input/output module can have more than one data
communications network. Theoretically, the
maximum number of data communications proces-
sors that could be included in a B 7800 system is 28.
(Currently, the software can only handle a maximum

of eight.)
Minimum Configuration

The smallest possible B 7800 system is composed
of the central components listed below.

Central Componerits Qty

Central processor module (CPM)
Input/output module (IOM)
Memory control module (MCM)
Memory storage cabinet (MSC)
Memory storage unit (MSU)
Maintenance Processor
Operator’s consolz

_— N0 = e e

In addition, the minimum configuration must con-
tain a disk file memory subsystem large enough to
hold the master control program, a card reader, a
line printer, a magnetic tape unit, peripheral con-
trols, and ac power cabinets. In practice, other pe-
ripheral devices and their controls are used with this
minimum configuration.

S-1-1

MsC

MEMORY
BUS

UPTO2MSU'S
|— PERMCM
L MSU-0 I MSU-1] l Msu-2 MSU-3 J‘/
UPTO4MCM'S T]
PERSYSTEM DATA DATA DATA DATA
MCM-0 MCM-1 COMMUNICATIONS COMMUNICATIONS COMMUNICATIONS COMMUNICATIONS
° PROCESSOR PROCESSOR PROCESSOR PROCESSOR
l l l l L// SCAN BUS
2 &
110
MODULE
—
INTERRUPT
BUS pcC pcC EX /{I—l /E
1 DFC ° DFC °
L]
— — DFC) . DFC 4
iloet sPC spc | sPC 5PC x . x .
— — — DFC 2 . oFC . 2 .
CENTRAL .
— R DFC ® DFC
S
DF PCC Eu20 DF PCC
2 DF PCC EUi DF PCC /{E
—1 —1
DFC . DFC .
.’CENTRAL] N] P . . s . .
MODULE sPC 5PC 5PC 5PC X . X .
4] I] DFC 20 ° DFC 2 o
DFC . oFC .
pec pec e N ewm &
3
110
MODULE
° SCAN BUS
I r/
. DATA DATA DATA DATA
. COMMUNICATIONS COMMUNICATIONS COMMUNICATIONS COMMUNICATIONS
s PROCESSOR PROCESSOR PROCESSOR PROCESSOR
—————
! |
: oM |
{ OR ® L
1 cPm
||
7 LEGEND
i ! MSU = MEMORY STORAGE UNIT
1 oM ! MCM = MEMORY CONTROL MODULE
—: OR ' PC = PERIPHERAL CONTROL
L4 CPM pcC PERIPHERAL CONTROL CABINET
DFC = DISK FILE CONTROL
MA'NE};‘”CE - S DF PCC = DISK FILE PERIPHERAL CONTROL
INET
[= ELECTRONICS UNIT
EX EXCHANGE
' MP = MAINTENANCE PROCESSOR

ED1272

mMP

Figure 1-2. Maximum Configuration of the B 7800 System

CHAPTER 2
SYSTEM
ARCHITECTURE

SECTION 1
DATA REPRESENTATION

GENERAL

The basic information structure used in the
B 7800 Information Processing System is the
word. Each word contains 48 information bits,
three tag bits, and one parity bit. (See figure
2-1-1.) The information bits may be used to
store character values, logical values, or nu-
meric values. The tag bits are control bits
which identify the type of information con-
tained in the information field. The tag bits
are inaccessible to normal state (user) pro-
grams. The parity bit is used to check for cor-
rect information transfer between the CPM or
IOM and main memory.

ParITY

\ 51 47| 43[39| 35 31 27] 23 19| 15 11 74 3

50| 46| 42| 38 34| 30| 26/ 22| 18] 14| 10 6] 2

TAG
FIELD 49 45| 41) 37| 33 20| 25| 21| 17| 13| 9| 5| 1

48] 44| 40| 36] 32| 28] 24| 20 16 12 8 4| o

R4
INFORMATION FIELD
40930

Figure 2-1-1. Werd Structure

INTERNAL CHARACTER CODES
AND COLLATING SEQUENCES

Extended Binary Coded Decimal Inter-
change Code (EBCDIC) is the primary internal
character code of the B 7800. EBCDIC is an
eight-bit alphanumeric code containing four
zone bits and four numeric bits. Other internal
codes which may be used include the American
Standard Code for Information Interchange
(ASCII), and the Burroughs Common Lan-
guage Code (BCL). ASCII is the primary data
communication code; BCL is used to interface
with peripheral units. Numeric EBCDIC and
BCL codes may be packed into four-bit digits
by internal commands which delete the zones
and compress the numeric portion of the char-
acters. In general, characters are collated ac-
cording to their internal binary value. Charac-
ter codes and collating sequences are provided
in the appendices.

NUMBERS AND NUMBERING
SYSTEMS

The B 7800 is a digital computer; that is, val-
ues are stored internally in binary digits (bits).
Data displayed in registers and printed forms
may be in octal or hexadecimal format. Gener-
ally, we think in terms of, and manually per-
form arithmetic with, decimal numbers. Thus,
an understanding of all of these numbering
systems is desirable.

The decimal system is based on the ten dig-
its 0, 1, 2, 3,4, 5, 6,7, 8, and 9, and upon the
powers of ten. The binary system is based up-
on the two digits 0 and 1, and the powers of
two. Two raised to the third power (29) is 8, the
base of the octal system. Two raised to ‘the
fourth power (24) is 16, the base of the
hexadecimal system. The set of digits for each
number system is shown in figure 2-1-2.

The digits 0 through 9 and the alphabetic
characters A through F comprise the 16-char-
acter requirement for the hexadecimal num-
bering system. The letter A is assigned a value
of 10. B equals 11, etc., to F, which equals 15.

DEC IMAL 0123L4567891011 12131415
BINARY 01

OCTAL 01234567

DEC IMAL 0123456789

HEXADEC IMAL 0123456789A B C D E F

40951

Figure 2-1-2. Number Base Graphic Characters

Binary Notation

Because a binary digit may have only one of
two values, it can be represented by a flip-flop
or a bit. A number in internal binary represen-
tation is then a series of bits which are either
on or off. When a bit is on (1), its position de-
termines the value. Consider an example of
five bits.

The least significant bit, if on (1), has a val-
ue of 29 or 1; the next most significant bit to

2-1-1

value of position = 24 23 22 21 20

o o
o o
o o
- o
[T
] 1]

o
o

o
L]

40952

= 244234224214

0 +0 +0 +0 + 1 = decimal 1
0 +0 +0 +2 + 0 = decimal 2

0 +0 +0 +2 + | = decimal 3

1=16+8+ L4+ 2+ 1 =decimal 31

Figure 2-1-3. Binary Integers

the left of the binary point has the value of 21,
or 2; the third bit (count from right to left) has
the value of 22, or 4; ete. In this way, any inte-
ger can be represented in binary form. Figure
2-1-3 illustrates some integers. Fractions in
binary are much the same as integers. Here,
though, the powers are negative powers with
the first power to the right of the binary point
having the value of 2-1, or 1/2; the second bit
has the value of 2-2, or 1/4; the third bit 2-3,
or 1/8; the fourth bit, 2-4, or 1/16; ete. It is ap-
parent that while some fractions are repre-
sented correctly, others can only be
approximated. However, the degree of error is
very small when a sufficient number of bits
are used.

Hexadecimal and Octal Notation

Since binary words are cumbersome to dis-
play, the more efficient methods of
hexadecimal and octal notation are used. The
hexadecimal representation of a binary word
is obtained by dividing the bits into groups of
four with each group assigned a successive
power of 16. A binary-to-octal conversion is ob-
tained by dividing the bits into groups of three
and assigning successive powers of 8 to each
group (figure 2-1-4).

The relationship between octal, decimal and
hexadecimal is shown in figure 2-1-5 using
the decimal number 013, (equivalent to 1765
and 3% where the subscript 8, 10, of 16 in-
dicates the base).

2-1-2

1765 = 1 x83 +7x8 +6x8 +5x80 =
1 x512 +7x6h +6x8 +6x1 =

512 + L48 + k8 + 5 = 101310
101315= 1x103 +0x102+1x10 +3x10 =«
1x1000+0x100+1x10 +3x1 =
1000 + 0 10 -

; + + 3 1013,
351 = 0x 163 +3x162+F x 16 +5x160 =
0 x 4096 + 3 x 256 + Fx 16 +5x 1 =

0 + 768 + 20 + 5 = 10)3‘0

40954

Figure 2-1-5. Relationship ot Octal,
Decimal, and Hexadecimal Numbers

NUMBER CONVERSION

Binary to Decimal Conversion

Integral

This conversion is effected by adding togeth-
er thg value of each bit that is on. In this way,
the binary number 11010011 would be equal to:

1x27+1x26+0x25+1x24+0x23+0x22+1x21 +1x20=
1x27+1x26+ 0 +1x2%+ 0*041x2141x20=

128 + 64 + 16 + 2 + 1 211,

€1

Nxi6*

Nxt6® Nx16® Nxi6' Nx16® Nxle Nx167
8 8 8 8 8 8 8
q q 4 4 4 4 4
HEXADECIMAL 2 2 2 2 2 2 2
1 1 1 1] 1]
324 | 262 131 65 32 16
BINARY 288 | 1aa | 072 | 536 | 768 | 384 | B!92 |4096}2048/1024 | 512 | 256 | 128 | 64 | 32 16 8 4 2 1 172 | wva | /8 | 116 f /32) 1/6a f1/28 |1/256
nNxg® Nxg* nxe® Nx8? Nx8' g Nx8° Nxg™ Nxg?
q 4 4 4 4 4 4
2 2 2 2 2 2 2 2
oCTAL
I 1 1 1]] 1 1
131 |65 |3 1 1
BINARY 2 © 8192 | 40962048 {1024 | 512 | 256 | 128 | 64 | 32 16 8 4 2 ' /2 Ya 1/8 | 116 | 1/32] /64
072 | 536 | 768 | 384
40953

Figure 2-1-4. Binary to Hexadecimal and Octal Conversion

A second method of effecting a binary-to-
decimal conversion is the ‘‘double dabble”
method. In this procedure, the high-order bit
is doubled (multiplied by 2) and then added to
the next lower-order bit. This sum is then dou-
bled and again added to the next lower bit.
This process is continued until the entire bina-
ry number has been expended (figure II-1-6A).
The correct result is obtained after the low-or-
der bit (units) has been added.

Fractional

The above process will work for integral
numbers and for the integral part of frac-
tional numbers, but it will not work for the
fractional part of fractional numbers. To con-
vert binary fractions to decimal fractions, divi-
sion is used. As was previously stated, the bits
to the right of the binary point have the de-
creasing values of 2-1, 2-2, 2-3, 2-4, etc., or, as
fractions 1/2, 1/4, 1/8, 1/16, etc., respectively.

To find the decimal equivalent of a binary
fraction, the lowest order significant bit is tak-
en as the integer 1 and divided by 2. The next
higher-order bit is then added into the units
position of the resulting quotient, and the divi-
sion is repeated. This is repeated until the bi-
nary point is reached. The result is complete
when the bit to the immediate right of the bi-
nary point has been added into the units posi-
tion and the result divided by 2. This process
is shown in ‘figure 2-1-6B.

BINARY | O | 1| | = DECIMAL 23
| =
|

Xe
2+40=2
x2
441:5
x2
—
1041 =141
x2
-
22+1:=23
40988

Decimal To Binary Conversion
Integral

Decimal to binary conversion may be ef-
fected in several ways. If the powers of 2 are
known, then the binary equivalent can be
found by subtracting from the number the
largest power of 2, which is smaller than the
decimal number, and then recording a bit for
that power of two. The largest power of 2,
which is smaller than the result of the preced-
ing subtraction, is then found, subtracted, and
the corresponding binary bit recorded. In ef-
fect, this is the reverse of the first method of
converting from binary to decimal.

A second method of conversion is done by
successive division. The decimal number to be
converted is divided by 2 and the quotient and
remainder are noted. The remainder will al-
ways be either 0 or 1. Then the quotient is di-
vided by 2, resulting in another quotient and
remainder. This is repeated until the quotient
is 0. The remainder, resulting from the first
division, is the low order bit; the last remain-
der is the high order bit. This process is valid
for the integral part of a number (figure 2-1-
TA).

Fractional

The fractional part of a number may be con-
verted in a method similar to the preceding
method of division. The fraction is multiplied

8125
2/1.625

BINARY .1 1 Ol = DECIMAL .8125

Figure 2-1-6. Binary to Decimal Conversion

2-14

w
o

WITH REMAINDER OF
DEC IMAL

~
— :q
© W

WITH REMAINDER OF 0O

N

WITH REMAINDER OF 0

[

e J- S ol e &

WITH REMAINDER OF

pu

WITH REMAINDER OF 0

2

WITH REMAINDER OF O
2

WITH REMAINDER OF

1
_l Al
DECIMAL 73 = BINARY 100 1

®

40956

001

8125
x2
1.6250

.6250
x2
1.2500

.2500
x2
0.5000

.5000
x2

I—————I.OOOO

} DECIMAL .8125 = BINARY .1 1 01

Figure 2-1-7. Decimal to Binary Conversion

by 2 and, if the result is greater than 1, the 1
is recorded in the binary string as a 1 bit. If
the product remains less than 1, the binary bit
is 0. The fractional part of the product is car-
ried down and again multiplied by 2. This is
repeated until the fractional part is equal to 0,
or the required degree of accuracy is attained.
This process is shown in figure 2-1-7B.

Decimal To Octal Conversion

Integral

To convert a decimal number to its octal
form, the powers of eight may be used. An-
other method is to divide the number by eight.

66 WITH REMAINDER OF 3
8/531

WITH REMAINDER OF 2

8
8/ 66

1 WITH REMAINDER OF 0

0 WITH REMAINDER OF 1

[

DECIMAL 531 = OCTAL 1023

®

40957

The remainder is the low-order octal digit. The
quotient is then again divided by eight, and
the remainder resulting is the next higher-or-
der octal digit. This process is repeated until
the quotient is zero. This method is used for
the integral part of numbers (figure 2-1-8A).
Fractional

When a fractional part of the number is -to
be converted, multiplication is used. Here, the
fraction is multiplied by eight and the integral
portion formed is the first octal digit to the
right of the octal point. This process is re-
peated until either the fraction is zero, or the
desired degree of accuracy is attained. This
conversion is shown in figure 2-1-8B.

439453125
x8
3.515625000

515625

x8

4,125000
.125

x8
1.000

DECIMAL .439453125 = .3 4 1

IN OCTAL

Figure 2-1-8. Deciral to Octal Conversion

g" n g™
1 0 1.0
8 1 0.125
64 2 0.015625
512 3 0.001953125
4096 L 0.000244140625
32768 5 0.000030517578125
262144 é 0.000003814697265625
2097152 7 0.000000476837158203125
16777216 8 0.000000059604644775390625
134217728 9 0.000000007450580596923828125
1073741824 10 0.000000000931322574615478515625
8589934592 n 0.000000000116415321826934814453125
68719476736 12 0.000000000014551915228366851806640625
549755813888 13 0.000000000001818989493545856475830078125

40958

Figure 2-1-9. Powers of 8

Octal To Decimal Conversion
Octade

In octal to decimal or decimal to octal con-
versions, if the powers of 8 are known, then
the procedure is much the same as the corre-
sponding subtraction method of binary. The
difference is the digital multiplier which will
have a value of from 0 through 7 in octal.
Each octal digit will be referred to as an oc-
tade. The values of the octades are shown in
figure 2-1-9.

Integral

On the conversion from octal to decimal, a
method very similar to ‘“double dabble” may
be used. Here, the higher-order octade is mul-
tiplied by 8 and then added to the next lower
octade. This sum is then multiplied by 8 and
again added to the next lower octade. This is
continued until the first octade to the left of
the octal point is reached. After the units oc-
tade has been added, the result should be com-
plete (figure 2-1-10A).

Fractional

The above method is valid for the integral
part of a number, but for the fractional part
of a number, the following must be used. The
lowest order octade is considered to be an inte-
ger. As such, it is divided by 8. The next high-
er octade is then added to this quotient in the

2-1-6

OCTAL 2672:=

DECIMAL 1466

I76+7 = 183
x8

1464 +2 = 1466

®

,439453125

i
5|5625
8/4. |25

ti4
125

/l 000

OCTAL .341: DECIMAL 439453125

Figure 2-1-10. Octal to Decimal Conversion

units position and the sum is again divided by
8. This continues until the first octade to the
right of the octal point has been added and the
result divided by 8. (See figure 2-1-10B.)

Decimal To Hexadecimal

Conversion

To convert an integral or a fractional
decimal number to its hexadecimal form, the
powers of 16 may be used. Methods similar to
those used for conversion to octal representa-
tion may also be used, with the multiplication
or division being by 16 rather than eight; how-
ever, such methods are very cumbersome. The
simplest method is to convert the decimal
number to a binary number as described ear-
lier, and then convert the binary number to its
hexadecimal representation (each four binary
digits are used to form one hexadecimal digit).

Hexadecimal To Decimal
Conversion

The simplest method for converting integral

or fractional hexadecimal numbers to their
decimal equivalent is to first convert the
hexadecimal number to its binary equivalent
(each hexadecimal digit is used to from four
binary digits) and then convert the resulting
binary number to its decimal representation
as described earlier.

OPERAND FORMATS

Operands are the words of information that
are worked with when processing. An operand
may be used to store numeric values (a numer-
ic operand), logical values (a logical operand),
or character values (a string operand). Most
operands are one word in length, and are iden-
tified by a tag field of zero. Double precision
operands, which are used to store numbers in
which many significant digits of accuracy are
needed, are two words in length and are iden-
tified by a tag field of two. Thus, the tag field
of an operand indicates the size of the operand
(one or two words).

Numeric Operands

Numeric operands are used to store numeric
values (numbers) in floating point format. A
numeric operand may be single or double pre-
cision.

When the tag bits of a memory word (bits 50,
49, 48) are 0 (000), they denote a single-preci-
sion operand. When the tag bits are 2 (010),
ie., bit 49 set, they denote a double precision
operand.

Single Precision Operands

All numeric operands are expressed in float-
ing point form, where each numeric operand
has both a mantissa and an exponent. This

form may be related to power of ten notation
where 13297. is the mantissa and -3, the expo-
nent in a representation of the number 13.297
(13297. x 10-3). The mantissa of a single preci-
sion operand is comprised of 89 bits which
make up 13 octades. The mantissa of a single
precision numeric operand is considered to be
an integer and is treated as such; i.e., the bi-
nary point is considered to be to the right of
the least significant octade. The exponent of
the number is represented by 6 bits (bits 44
through 39) which form two octades. Bit num-
ber 45 is the sign of the exponent. When 45 is
off, the exponent is positive; when on,
negative. Bit 46 is the sign of the mantissa,
which is the overall sign of the operand.

The structure of a single precision operand
is shown in figure 2-1-11. Because the expo-
nent is an octal scale factor, the single preci-
sion operand is shown in both hexadecimal
and octal representation.

Exponent Field

The exponent is a binary number which,
with its sign, is an octal scale factor for the
mantissa. That is, the binary point in the man-
tissa must be shifted left three binary places
(the mantissa must be shifted right three bi-
nary places) for each increase by one in the
value of the exponent. The exponent is used
for automatic scaling of operands when arith-
metic, comparison and integer operations are
being performed. The range of the exponent is
from +63 to -63 for single-precision operands.

SINGLE PRECISION OPERAND (OCTAL REPRESENTATION)

21 23| 19| 15| 11| 7 3|
MANTISS
38| 34| 30 26 22| 18

25| 21) 17} 13 9] 5 1

37| 33| 29
48] 44| Tao] 36| 32| 28 z4| 20| 16 121 gl 4| o
Binary
Point
TAG 50:3 000

47:1 Not used

M 46:1 Sign of Mantissa.
1 = Negative, 0 = Positive.
E 45:1 Sign of exponent.
1 = Negative, 0 = Positive.
EXPONENT 44:6 Exponent.
MANTISSA 38:39 Mantissa.

Figure 2-1-11. Single Precision Operand

Mantissa Field

The mantissa is the significant part of the
operand. The magnitude of the operand is ob-
tained by multiplying the value contained in
the mantissa by eight raised to the value of
the exponent sign and exponent as follows:

V=xMx8+t E

where:
V = Value of number
+ M = Mantissa with sign

+E = Exponent with sign

The order of number magnitude in the 89 bit
mantissa, as decimal numbers and powers of
base 16, 8, and 2 is shown in figure 2-1-12.

Double Precision Operands

Double precision operands are identified by a
tag field of two, indicating that the operand is
one of a pair of two words (figure 2-1-13).

The first word of the double precision oper-
ang is identical to the single precision oper-
and.

The integral part of the mantissa is con-
tained in the mantissa field of the first word.
The fractional part of the mantissa is con-
tained in the mantissa extension field of the
second word.

The 15-bit exponent of a double precision op-
erand is formed by the concatenation of the

Rgf}slg$ DEC I MAL ngfgégﬁkL HEX. | OCTAL | BINARY
0 1]1.0 160 | 80 20
1 2/0.5
2 510,25 : —
3 810.125 |8 2
] 16 | 0.0625 16
5 32| 0.03125 P
4 64 10.015625 32 2
7 128 [0.0078125
8 256 | 0.00390625 162]
9 512 1 0.001953125 83 29
10 7025 [0.0009765625
1 2048 | 0.00048828125] P R
12 096 | 0.0002441540625 16° | 8 2
13 8192 | 0.0001220703125
14 16384 | 0.00006103515625 : 15
15 32768 [0.000030517578125 P 2
16 65536 | 0.0000152587890625 16
17 131072 | 0.00000762939453125 p 18—
18 262145 | 0.000003814697265625 B 2
19 5254288 | 0.0000019073486328125
20 1048576 | 0.0000009536743 1640625 16°]
21 2097152 | 0.000000476837158203125 g7 22!
22 4194304 | 0.0000002384185791015625
23 8388608 | 0.00000011920928955078125 p P P
20 16777216 | 0.000000059604644775390625 3 8 2
25 33554532 | 0,0000000293023223876953125
26 67108864 | 0.00000001490116119384765625 A 27—
27 134217728 | 0.000000007450580596923828125 82 2
28 268435456 | 0.00000000372529029846 19140625 16/
29 536870912 | 0.00000000186264514923095703125 0 30—
30 107374182k | 0.000000000931322574615478515625 § 2
31 2147483648 | 0.0000000004556612873077392578125 .
32 4294967296 | 0.00000000023283064365386962890625 16 —
33 8589934592 | 0.000000000116415321826934814453125 gl 1233
34 17179869184 | 0.0000000000582076609134674072265625
35 34359738368 | 0.00000000002910383045673370361328125 a —
36 68719476736 | 0.000000000014551915228366851806640625 765 82T 33
37 137438953472 | 0.0000000000072759576141834259033203125
38 274877906954 [0.00000000000363797880709171295166015625
* | 549755813887 S P
39 549755813888 | 0.000000000001818989403545856575830078125 8 3

2-1-8

Figure 2-1-12. Order of Magnitude Chart

* FIRST 32 BITS SET. (MAXIMUM INTEGER VALUE ALLOWED) .

DOUBLE PRECISION OPERAND (OCTAL REPRESENTATION)

FIRST WORD SECOND WORD
1B ?-
Qo onn ?}: 38i_35, 32| 29| 26| 23] 20{ 7] 4] u| 8 05 Ea?‘Pn 41 38
| q
_'4_9 M N4E3 "a0, 37j 34| 31| 28 mnnz?sls el i3 o 7l e lns N Nz 40} 37
O|E|LSP °L O | MSP
aal 30l 271 24l 211 18l 15 82
Binary
Point
DOUBLE PRECISION OPERAND (HEXADEC IMAL REPRESENTATION)
FIRST WORD SECOND WORD
E E
47X 43 39] 3 31 27 23] 19/ 15 11 7 3| X47| 43| 39) 35] 31f 27 23] 19(15(11 7 3|
O M |PL MANTISSA o_|P MANTIISS/
500 46/OS| 38 34 30 26| 22 15 14 10] 6] 2 50 046M42 38| 34| 30} 2 'gZ 18] 14] 10 6] 2
1 | |NP (MSP) I IN |p (LSP)
49 45]E 41} 37 33 29 25| 21| 17| 13 9 5 1 49 E 45 P4l 37| 33| 29] 25 21| 17| 13 9 5 1
[§) N | O IN
48] 44| T40] 36l 32| 28 24| 20| 16 12l 8 4 0 481 T44| 40] 36| 32| 28 24| 20| 16/ 12 8 4 0
First Word Binary Second Word
Point
Field Bits Description Field Bits Description
TAG 50:3 010 TAG 50: 3 010
47:1 Not used EXPONENT MSP™ 47:9 Most significant portion of exponent.
M 46:1 | = negative, 0 = positive. MANTISSA LSP 38:39 Least significant portion of mantissa.
E 45:1 Sign of exponent.

1 = negative, 0 = positive.
EXPONENT LSP LL:6 Least significant portion of exponent.

MANTISSA MSP 38:39 Most significant portion of mantissa.
40962

Figure 2-1-13. Double-Precision Operand

047 043 039 C)35031 027 O23 019 C’15 o11 0 7 0 3|
050 046 042 038 034 030 026 022 C}18 014010 0 6 0 2
349 (_)45 ?31 (_)37 9'33 329 925 021 O17 o13 O 9 0 5 0 1
048 44 040 36 Oy, oze 24 020 016 O 0,0, T/|:0|

Field Bits Description

TAG 50:3 000
47:47 A1l zeroes.
T/F 0:1 True/false bit.

1 = True, 0 = False
40963

Figure 2-1-14. Logical Operand

2-19

exponent extension with the exponent. The ex-
ponent extension is more significant than the
exponent.

Number Ranges and Normalization

To add and subtract two numeric operands
on the B 7800, the exponents of the two oper-
ands must be equal. The B 7800 equalizes the
exponents of the two operands automatically;
this equalization may require that one of the
operands be ‘“normalized.” Normalization oc-
curs if the exponent difference of the two op-
erands is greater than the number of leading
zero (octal) digits in the mantissa of the oper-
and with the larger exponent. In such cases,
the larger operand is normalized, and the
mantissa of the smaller operand is then
shifted right until the exponents are equal.

A normalized number is a number which has
the smallest exponent with which the number
can be expressed without losing the most sig-
nificant digit of the number. A number is nor-
malized by shifting the mantissa to the left,
(moving the binary point right) in three-bit in-
crements until the number of leading zeroes in
the mantissa is less than three. For each
three-bit shift to the left (of the mantissa), the
exponent is decreased by one.

Because of automatic normalization by the
CPM, the range of numbers which are useable
on the B 7800 includes both normalized and
unnormalized numbers. In general, normalized
numbers are those which the system may use
for arithmetic, and unnormalized numbers are
those which the system may store.

The largest and smallest numbers representable as normalized and unnormalized operands

are:
The largest single precision integer 54975581388710
or decimal
8131
0007777777777 } octal
The largest single precision number 4.31359146673x1068
or decimal
(813-1)x883 }
0TI octal
The largest double precision integer 302231454903657293676543
or decimal
8261
(first word) 0157777777777777 }
octal
(second word) 0007777777777777
The largest double precision number 1.948828382050280791124469x1020603
or decimal
(1__8_28) x 832780
(first word) O7777T7TTT77T777177 %
octal
(second word) 7777777117717
The smallest positive unnormalized single 1.27447352891x10-57
precision number
or } decimal
863
177 1 octal
The smallest positive normalized single 8.7581154020x10-47
precision number
or decimal
8-51
1771000000000000 }octal
The smallest positive normalized double 1.93854585713758583355640x10-29581
precision number
or decimal
(first word) 1771000000000000
octal

(second word) 7770000000000000

The number sets are symmetrical with respect to zero. The negative number corresponding
to any valid positive number may also be expressed. From the ranges above, one can see that
a single precision integer must always have an exponent of zero.

2-1-10

Logical Operands

Logical operands (figure 2-1-14) have one of
two values: true (on) or false (off). Logical val-
ues are the result of Boolean operations or re-
lational operations. Relational operators gen-
erate a logical value as the result of an alge-
braic comparison of two arithmetic expres-
sions. Bit 0 contains the logical value. Rela-
tional operators set bit 0, where conditional
operators use bit 0 for the decision.

NOTE

Logical operators (LAND, LOR,
LNOT, and LEQV) cause a logical
operation to be performed on each
bit of the two operands and the re-
sults of these operations (48 single
precision values or 96 double preci-
sion values) are left in the top-of-
stack operand. Logical operators
may operate on logical, string, or
numeric operands.

String Operands

A string operand is a single word operand
(identified by a tag of zero) which is used to
store characters. Character representation
may be 8-bit (EBCDIC), 7-bit (USASCII), 6-bit
(BCL), or 4-bit (packed BCD) characters. Gen-
erally, a string of characters is stored in one
or more string operands in memory as an ar-
ray or table. Such arrays or tables are ad-
dressed by means of string descriptors. The
format of string operands for storage of 8-bit,
7-bit, 6-bit, and 4-bit characters is shown in
figure 2-1-15.

String operands may also be used to store
signed numeric characters in 8-bit, 6-bit, and
4-bit formats. Each string operand can store
one signed numeric number consisting of six 8-
bit characters, eight 6-bit characters, or 11 4-
bit characters. Eight-bit and 6-bit characters
are divided into a zone portion and a number
portion. The number portion consists of the
four least significant bits of each character;
the remaining bits form the zone. When 8-bit
or 6-bit signed numeric characters are stored
in a string operand, the sign of the characters
is stored in the zone bits of the least
significant character. When 4-bit signed nu-
meric characters are stored in a string oper-
and, the sign of the characters is stored as the
most significant character of the operand. Ta-
ble 2-1-1 shows the bit configurations for neg-
ative and positive signs in 8-bit, 6-bit, and 4-bit
formats. Figure 2-1-16 illustrates the manner
in which a signed number (-4259) is stored in
8-bit, 6-bit, and 4-bit code.

8-BIT BYTES (EBCDIC CODE)

1 2 3 4 S 6
N —"— —"N—
47| 43] 39| 351 31 27] 23] 19] 15 11 7 3'
50] 46| 42] 38/ 34 30| 26] 22| 18] 14 10} 6 2
(0]
49) 45| 41] 37| 331 29/ 25f] 21| 17} 13 9 5 1
48| 44| 4o 36| 32f 28| 24f 20| 14 12 o 4 o
MOST SIGNIF ICANT LEAST SIGNIFICANT
CHARACTER CHARACTER
7-BIT CHARACTERS (USASC11 CODE)
4 5 6
sl ol o uf 1 3
300 26] 22| 1 14| 104 6 2
49] 45| 41} 37 3:1 29 25p 21 17} 13 9 5 1
48] 44| 40] 36 34 28] 24] 20/ 16f 12 8] 4 O
MOST SIGNIFICANT LEAST SIGNIFICANT
CHARACTER CHARACTER
(BITS 47,39,31,23,15,AND 7 ARE NOT USED)
6-BIT CHARACTERS (BCL CODE)
MOST SIGNIFICANT
CHARACTER
1 5 7
47 43I 390 35 31 27| 23| 19] 1§ 11 7 —3]
0 |
50] 46| 42| 38 34 300 26] 22| 18] 1 10, 6 2
049 45) 41) 371 33 29 251 21} 171 1§ 9 5 1
0
48 40] 36 3 28] 24] 20} 16] 12 8] 4 d
2 4 6 8
LEAST SIGNIFICANT
CHARACTER
4-BIT DIGITS (PACKED BCD)
1 2 4 7 8 9 10 11 12
N
471 43| 39 351 31 271 23] 19] 151 11 7 3]
0
50] 46] 42] 38 34 30§ 26| 22] 18] 14 10| 6 2
0 !
49) 45| 41] 371 33] 29 25] 21} 17} 13} 9 5 1
048 44] 40] 36 32| 28] 24] 20] 16 ml 8l 4 0

MOST SIGNIFICANT

CHARACTER

40964

Figure 2-1-15. String Operands

LEAST SIGNIFICANT
CHARACTER

2-1-11

2-1-12

Size
8-bit

6-bit

4-bit

8-BIT BYTES (EBCDIC CODE)
] 4

10|101010101|11
47 43| 30| 35 31 27] 23 19 15| 11 7

1o|1o11 1
50 46| 42| 38 3 300 26] 22 18 14/ 10 6

1 0

101041011,1000
33 29

1 1

9

49] 45| "41] 37 21 11 13| 9| 5

o |t [0 |t (O I LR l1

48] 44| “q0] ‘36| 32| 28] 24| 20 "16] 12| 8 4
0 0

6-BIT CHARACTERS (BCL CODE)

A2 4 1 2R M
O 10 |0 10 |0 |0 O |t |O 510 oIt

47| "43] 39| 35| 31] 27) 23] 19] 15 11 7] 3

50]046 042 038 034 ° 30!026 Ozz 1] 14'010 T 0 2
]O 010 1010 _10_JO 10 IO 4 1 10 |0

49| 45| "41] 37| 33| 29] 25| "21] 17| 13 " of " 5| 1
O |0 |0 |0_|O 4]0 1 10 ZIO LI B

48| “44] “40] “36] "32| " 28] 24| 20| 16] 12} " 8] 4] o

0O 000 OOO - 425 9

40965

Figure 2-1-16. Use of String Operand to Store Signed Number (-4259)

Table 2-1-1. Sign Configurations of String Operands

Sign Location Negative) Positive
Zone, least significant 1101 Any bit configuration other than the negative bit
character configurations
Zone, least significant 10 Any bit configuration other than the negative bit
character configurations
Most significant digit 1101 Any bit configuration other than the negative bit
configurations

SECTION 2
POLISH NOTATION AND STACK

GENERAL

To facilitate the understanding of the
B 7800 stack concept, a method of
mathematical notation known as Polish nota-
tion must be understood. A problem that ex-
ists with most forms of mathematical notation
is clarifying the boundaries of specific terms.
This has been eliminated with the use of pa-
rentheses, brackets, and braces. However, with
g complex equation, it becomes necessary to
duplicate the use of the few types of delimit-
ers that exist. It might be noted that it is com-
mon to encounter mathematical equations
such as Y = 6Z + 7/2Z and Y = (6Z + T7)2Z.
Two equations express different functions of
Z, but one could easily be used when the other
was intended. From this it can be seen that an
error in notation can change the whole prob-
lem, because the parentheses have definite
meaning.

Polish notation is an arithmetical or logical
notational system using only operands and op-
erators arranged in a sequence or string which
eliminates the necessity of factor boundaries.
The B 7800 compilers translate source state-
ments to Polish strings, and convert these Po-

Name
A Variable

An Operator
-Separator

-Arithmetic or Boolean operator and last entered
delimiter list symbol was:

a. an operator of lower priority.

b. a left bracket “ [” or paren “(”.
c. a separator.

d. nothing (delimiter list empty).

-An Arithmetic or Boolean operator and last entered
delimiter list symbol was: an operator of priority equal
to or greater than the symbol in the source.

-A right bracket “ 1” or parenthesis *)”

lish strings to a series of machine instructions
(program operators).

POLISH NOTATION

The essential difference between Polish no-
tation and conventional notation is that
operators are written to the right of operands
instead of between them. For example, the
conventional B + C would be written B C + in
Polish notation. Looking at the example, A =
7 (B + C), it would be written in Polish nota-
tion as follows:

ATBC+*=

Any expression written in Polish notation is
called a Polish string. In order to fully under-
stand this concept, the rule for evaluating a
Polish string should be known.

General Rules For Generation of
Polish String

Figure 2-2-1 is a flow chart for generation
of a Polish string. In general, the rules for
generation of a Polish string may be stated as
follows. If the source of expression is:

Action

Place variable in string being built and examine next
symbol.

Place in delimiter list and examine next symbol.

Place operator in the delimiter list and examine next
source symbol.

Remove the operator from the delimiter list and place
in the string being built. Then compare the next symbol
in the delimiter list against the source expression
symbol.

Pull out from delimiter list or until corresponding left
bracket or parenthesis.

2-2-1

(X 44

EXPRESS | ON

VARIABLE

MO

OF

OPERATOR

EXPRESS 10N

YES YES
>
LAST ENTERED ‘DELIMITER
LIST SYMBOL IS
YES 1. LOWER PRIORITY -
Y 2. LEFT BRACKET
3. SEPARATOR
YES PLACE 4. LIST EMPTY
SYMBOL IN
DELIMITER LIST - NO
AND
¢— PROCEED
T LAST ENTERED
REMOVE
DELETE 1 LAST ENTERED YES DEL|MITER.LIST
! DELIMITER LIST SYMBOL 15:
SYMBOL YHBOL 1. = PRIORITY
1 | 2. > PRIORITY
PLACE SYMBOL REMOVE | | L
IN THE POLISH REMOVE LAST ENTERED
NOTATION STRING LEFT LAST ENTERED | | DELIMITER LIST SYMBOLS
AND BRACKET DELIMITER LIST AND PLACE INTO POLISH
PROCEED syMBoL | | NOTATION STRING UNTIL
I LIST IS EMPTY
} I l
|
] Y | 1
[POLISH NOTATION STRING | 1 DELIMITER LIST |
|

40966

Figure 2-2-1. Polish Notation Flow Chart

Evaluating Polish String

The following procedure may be used to
evaluate a Polish string.
a. Scan the string from left to right.
b. Remember the operands and the order in
which they occur.
c. When an operator is encountered do the
following:
1) Take the two operands which were last
encountered.
2) Operate upon them according to the
type of operator encountered.
3) Eliminate these two operands from fur-
ther consideration.
4) Remember the result of (2) and consider
it as the last operand encountered.
Following this procedure through the Polish
string ATBC+* = would evaluate to A as-
suming the value 7 (B + C) (figure 2-2-2).

NOTE
Because replacement operators
vary depending upon the language
used, g== , =, and := may be used
interchangeably in discussing Po-
lish strings.

Program Code String

When a program is compiled, the source lan-
guage statements are converted into a string
of machine language operators. These
operators are assembled into a Polish notation
string and are referred to as the program code
string. Each machine instruction in the string
normally consists of one to three 8-bit sylla-
bles. The instructions are packed consecutively
into program words. (See figure 2-2-3.) An ar-
ray of program words, which can be any
length, is called a program code segment. The
compiler usually divides the generated code
string into two or more program segments.
The number of segments depend on the struc-
ture of the source program. Program segments
are normally stored on disk files. When a pro-
gram is executed, program segments are made
present in memory as needed. Because pro-
gram segments are not modified during execu-
tion, a single copy of a program segment in
memory may be used for several concurrent
executions of the same program; thus, the pro-
gram code string is often described as “re-en-
trant”.

Step Symbol Symbol Operands Being Remembered and Their Order of Operation Results
Being Type Occurrence (1 or 2) Before Operation Taking Place Operation
Examined
a B Operand
b C Operand 1B
+ Add 2C B +C B+ 0
Operator 1B
d 7 Operand 1B +0
e x Multiply 27 7x (B + C) 7x B + C)
Operator 1B + 0
f A Operand 178 + C)
g = Replace 2A A&TB +C A=17B+ 0
Operator 17B + C)

Figure 2-2-2. Evaluation of Polish String A7BC+*=

Compilation Using Polist
Notation

Polish notation is used as the base for the
B 7800 ALGOL compilation algorithm. An
ALGOL arithmetic or Boolean expression or
assignment statement may be translated to
Polish notation in much the same way as the
arithmetic (or algebraic) expression that al-
ready has been considered. In compiler trans-
lation, the source expression is examined one
symbol at a time with a left to right scan and
is combined into logical entities. As each
logical entity is examined, a specific procedure
is followed so that the Polish notation expres-
sion is constructed in its finalized form with
one scan of the source expression.

5010796-001

For each program segment, there is a single
segment descriptor, which defines the length
and location of the program segment. The seg-
ment descriptors are stored in a special stack
known as the segment dictionary.

Each job is associated with an unique job
stack and with a segmented dictionary stack
which may be shared by several jobs. (In addi-
tion, the MCP has its own stack and segment
dictionary.) Within the job stack, a Program
Control Word is provided for each point of en-
try into a segment of code. The PCW provides
an index, not only into the segment dictionary
to locate the proper segment descriptor, but
also into the program segment itself to locate

2-2-3

SYLLABLE SYLLABLE SYLLABLE
SYLLABLE i SYLLZABLE 3 SYLL4ABLE 5
0
47| 43] 39| 35] 31| 27 23] 19 15] 11 7 3
50] 46| 42] 38| 34] 30| 26f 22| 18 l4| 10 .6 2
Vol 45| a1 1] 33| 20 25| 21| 17 13! 9] 5| 1
48] 44| 40} 36f 321 28 24] 20{ 16 ng 8] 4 0
Field Bits Description
Tag 50:3 Tag field. Value of three indicates
that this word is non-modifiable
(except by Overwrite operators).
47:8 Syllable 0
39:8 Syllable 1
31:8 Syllable 2
23:8 Syllable 3
15:8 Syllable 4
7:8 Syllable 5

Figure 2-2-3. Program Word

the proper program word and syllable. The for-
mats of the segment descriptor and the PCW
are described in detail in section 3 of this
chapter.

STACK CONCEPTS

The constants and variables of a program
are assigned locations within the “stack” of
the program when it is compiled. The stack
can be thought of as analogous to a physical
stack where the last item placed on the stack
is the top of the stack. When items are re-
moved (one at a time) from the stack, the item
on the top of the stack is the first item to be
removed. The item at the bottom of the stack
remains at the bottom of the stack until all
other items have been removed from the
stack. The stack not only provides an easily
manageable means for keeping a dynamic hi-
story of the program as it is being processed,
but also lends itself to the use of program code
strings based on Polish notation.

General

A job is activated by having a processor assign to
the job stack. Four top-of-stack locations are linked
to the job’s stack (figure 2-2-4). This linkage is estab-
lished by the stack-pointer register (S). which con-

2-2-4

tains the memory address of the last word placed in
the stack. The four top-of-stack locations extend the
stack to provide quick access for data manipulation.

Data are brought into the stack through the top-of-
stack locations in such a manner that the last oper-
and placed into the stack is the first to be extracted.
The stack-pointer register (S) is incremented by |1
before a word is placed into the stack and is decre-
mented by 1 after a word is withdrawn from the
stack and placed in the top-of-stack locations. As a
result. the S register continually points to the last
word placed into the job’s stack.

Base and Limit of Stack

A job’s stack is bounded, for memory protec-
tion, by two registers: the Base-of-Stack regis-
ter (BOSR) and the Limit-of-Stack register
(LOSR). The contents of BOSR define the base
of the stack, and the contents of LOSR define
the upper limit of the stack. The job is inter-
rupted if the S register is set to the value, con-
tained in either LOSR or BOSR.

| CPM CENTRAL DATA BUFFER !

I TOP OF STACK

LOCATIONS |
| | — |
) S— — |
| C—3-==5 |
L=
‘WORD ntx ﬁ
. e fe—— 7]
g || | [
l }
woror o]
J sTacx L_.._. —-——]
MEMORY
riese AREA

- Figure 2-2-4. Top of Stack and Stack Bounds Register

Bi-directional Data Flow in the Stack
The contents of the top-of-stack locations are
maintained automatically by the processor to
meet the requirements of the current
operator. If the current operator requires data
transfer into the stack, the top-of-stack loca-
tions receive the incoming data, and the sur-
plus contents, if any, of the top-of-stack loca-
tions, are pushed into the stack. Words are
brought out of the stack into the top-of-stack
locations. These words are used by operators
which require the presence of data in the top-
of-stack locations. These operators, however,
do not explicitly move data into the stack.

Double Precision Stack Operation

Each top-of-stack location (A and B) can ac-
commodate two memory words. For single pre-
cision operations, location A will contain one
single precision operand and location B will
contain the other single precision operand.
However, calling a double precision operand
into either top-of-stack location (A or B) will
cause both halves of the double precision oper-
and to be loaded into the A or B location. The
first word is loaded into the top-of-stack loca-
tion and its tag bits are checked. If the value

5010796001

of the tag bits indicates double precision, the
second half of the operand is loaded into the
second half of the top-of-stack location.

Addressing History

The B 7800 CPM provides two methods for
addressing data. Direct addressing is provided
by descriptors, which contain the address (core
or disk) of the data. Descriptors are used to
address data which are located outside of the
stack area of the job. Relative addressing is
provided by the Indirect Reference Word
(IRW) and the Stuffed Indirect Reference
Word (SIRW). The IRW and SIRW address
components are both relative address compo-
nents. The IRW addresses within the immedi-
ate environment of the job relative to one of
32 CPM display registers. The SIRW addresses
beyond the immediate environment of the cur-
rent procedure, the addressing being relative
to the base of some job stack. Addressing
across stacks is accomplished with an SIRW.

Direct Addressing

In general, the descriptor describes and lo-
cates data associated with a given job. String
descriptors and data descriptors are used to
fetch data to the stack or to store data from
the stack into an array located outside the

2-2-5

stack area of the job. The address contained in
one of these descriptors is the absolute ad-
dress of an array in either system main
memory or in the backup disk file, as indicated

by the setting of a single bit called the presence bit.
Another bit, called the double-precision bit, is used
to identify the referenced data as single precision or
double precision. The formats of string and data de-
scriptors, and detailed discussions of each, are pres-
ented in section 3 of this chapter.

Relative-Addressing

Analyzing the structure of an ALGOL pro-
gram results in a better understanding of the
relative-addressing procedures used in the
B 7800 stack. The addressing environment of
an ALGOL procedure is established
automatically as the program is structured by
the programmer and is referred to as the lexi-
cographical ordering of the procedural blocks.
At compile time, the lexicographical ordering
is used to form address couples. An address
couple consists of two items:

1. The lexicographical addressing level (LL)
of the variable,

2. An index value (I) used to locate the spe-
cific variable within its addressing level.

40971

The lexicographical ordering of the program
remains static as the program is executed,
thereby allowing variables to be referenced
via address couples as the program is
executed. ‘

The lexicographical structure of a very sim-
ple ALGOL program is illustrated in figure 2-
2-5. When executed, this program would call
procedure C (LL=3) from the outer block of
the program (LL=2), and, in turn, procedure C
would call procedure D (LL=4). The stack
structure is illustrated as it would exist as
procedure D was being executed. It can be
seen that, as the outer block of the program
was entered, and again as each procedure was
entered, a Mark Stack Control Word (MSCW)
was placed in the stack. The MSCW (described
in detail in section 3 of this chapter) denotes
the base of each lexicographical addressing
level.

Display Registers

Each MSCW provides a point in the stack
relative to which the variables for the associ-
ated addressing level may be referenced. The
B 7800 CPM unit contains 32 display registers

(D [0] through D for [31 1).As shown, the
base of each addressing level is addressed by

~ ~v
— BEGIN LEXICOGRAPHICAL LEVEL2 [S }—{T0S WORD) -1
REAL VI LL=2,1=2
REAL ' V2; LL=2,1=3 =
PROCEDURE C; = =
i LL=2,1=4 ~ ~ PROCEDURE D
— BEGIN LEXICOGRAPHICAL LEVEL 3
REAL V4; LL=3,T=2 ' vs
PROCEDURE 0; LL=3,1:=3
MSCW
BEGIN LEXICOGRAPHICA - <"
CoG ICAL LEVEL 4 | oo o reRs T 1,
REAL VS; LL=4,1:=2 o [31]
V4 : = 4,
V5 iz 8; ~ ~
V2 = V4,
PROCEDURE C
PCW-D
END; of4 va
D[3] \.
D: o[2 MSCW
— END:, D (1] ~ ~ - <
o[o] PCW-C
c; 53
L e i OUTER PROGRAM BLOCK
’
msew | 0 J
~ ~

Figure 2-2-5. ALGOL Program With Lexicographical Structure and Related Stack Structure

2-2-6

one of these registers. The local variables of
the outer block or of the procedures are ad-
dressed relative to the D registers. The D reg-
isters are updated at each procedure entry or
exit.

Absolute Address Conversion

Each variable is indirectly addressed by an
address couple containing a lexicographical
level and an index value. The address couple is
converted into an absolute memory address
when the variable is referenced. The lexicogra-
phical level portion of the address couple se-
lects the D register which contains the abso-
lute memory address of the MSCW for the en-
vironment (lexicographical level) in which the
variable is located. The index value of the ad-
dress couple is added to the contents of the D
register to generate the absolute memory ad-
dress of the desired variable.

Addressing Environment

Thus far we have considered a very simple
program in which each procedure has a differ-
ent lexicographical addressing level. General-

~B8EGIN LEXICOGRAPHICAL LEVEL 2
REAL Vi; LL=2,I=2
REAL V24 LL=2,1I=3
PROCEDURE A; LL=2,1=4

— BEGIN LEXICOGRAPHICAL LEVEL 3
REAL V3; LL=3,TI=2
PROCEDURE B; LL=3,1I=23

BEGIN LEXICOGRAPHICAL LEVEL 4
V3 := 3,
VI i = V3
END;

8
L— eno;

PROCEDURE Cj LL=2,1:8
r— BEGIN LEXICOGRAPHICAL LEVEL 3

REAL V4, LL= 3,I=2

PROCEDURE D3 LL= 3,I=3

BEGIN —————— LEXICOGRAPHICAL LEVEL 4

REAL V§; LL=4,1=2
V4 = 4
V8 :z 8
A
V2 = V&,

END;

L—END;

C;
- END}

ly, however, many procedures of a program
may have the same lexicographical addressing
level; however, no two procedures of a pro-
gram may have the same addressing environ-
ment. Consider the more advanced exemplary
program shown in figure 2-2-6.

This program consists of an outer block
(LL=2), two procedures which have a lexico-
graphical addressing level of three (procedures
A and C), and two procedures which have a le-
xicographical level of four (procedures B and
D). The addressing environment of the pro-
gram is maintained automatically by linking
the MSCWs together in accordance with the le-
xicographical structure of the program. This
linkage is composed of the stack number
(STACK NO.) and displacement (DISP) fields
of the MSCW, and is inserted into the MSCW
when the procedure is entered. A tree-struc-
tured addressing environment list is formed
by linking the MSCW to the MSCW at the pre-
ceding lexicographical level to the procedure
being entered. This tree-structured list indi-
cates the addressing environment of the proce-
dures.

ADDRESS

STACK ENVIRONMENT

memory ST
~s AREA
[S }—e{TOS wond l:
1 i
'T g PROCEDURE B
F wscw | [oisP }— —
~ ~S
PCW-8
v
2 1 PROCEDURE A
wsew | [(oisP L— "
D REGISTERS
~ ~
~ ~ 3 PROCEDURE D
o(e]
O[5]
D43
D[3] PROCEDURE C
Or2] —
of1] —
0[o]
OUTER PROG BLOCK

Figure 2-2-6. More Advanced ALGOL Program

2-2-7

Comparing the addressing tree in figure 2-
2-7 with the exemplary program, one can see
that when procedure B is being executed, the
addressing environment includes only the var-
iables in procedures B and A and the outer
block; variables declared in procedure C and D
are not addressable by procedure B. Thus, one
can see that the address couples assigned to
the variables in a program need not be unique.
This is true because if there is no procedure
which can address both of any two variables,
then the two variables may have identical ad-
dress couples. This addressing scheme is prac-
tical because two variables which have the
same address couples will be contained within
two different addressing environments.

PROCEDURE D

PROCEDURE B

40973

Figure 2-2-7. Addressing Environment
Tree of ALGOL Program

Addressing Environment List

There is a unique set of MSCWs which the D
registers must address during the execution of
any particular procedure. The D registers
must be changed, upon procedure entry or ex-
it, to address the correct MSCWs. The process
of changing the D registers is referred to as
display update. The list of MSCWs which the D
registers address is is the addressing environ-
ment list, and the areas of the stack which can
be addressed relative to the settings of the D
registers are the addressing environment.

Stack History

The B 7800 stack provides an easily manage-
able means for keeping line control informa-
tion (program history) necessary for procedure
entry and exit. The stack history list is a list
of Mark Stack Control Words, linked together
by their DF fields (figure 2-2-8).

An MSCW is inserted into the stack as a pro-
cedure is entered and is removed as that pro-
cedure is exited. Therefore, the stack history
list grows and contracts with the procedural
depth of the program. Mark Stack Control
Words identify the portion of the stack related
to each procedure. When the procedure is en-

2-2-8

tered, its parameters and local variables are
entered in the stack following the MSCW.
When the procedure is executed its
parameters and local variables are referenced
by addressing relative to the MSCW.

~

~
s }——— 705 woro]

PROCEDURE B8

\i
4

E 4
I3
o
€
L}
(=]
b
'
)

PROCEDURE A’

%

~ ~

PROCEDURE D
P
PROCEDURE C 7’ ~

MSCw Cor 1)

OUTER PROG BLOCK ~~ ~

\\‘:@EI

40974 ~ ~

Figure 2-2-8. Stack History List

Each MSCW is linked to the prior MSCW
through the contents of its DF field in order to
identify the point in the stack where the prior
procedure began. When a procedure is exited,
its portion of the stack is discarded. This ac-
tion is achieved by setting the stack-pointer
register (S) to address the memory location
preceding the most recent MSCW (figure 2-2-
9). This topmost MSCW, addressed by another
register (F), is deleted from the stack-history
list by changing F to address the prior MSCW,
placing this MSCW at the head of the stack hi-
story.

SIMPLE STACK OPERATION

All program information must be in the sys-
tem before it can be used. Input areas are allo-
cated for information entering the system and
output areas are set aside for information
exiting the system; array and table areas are
also allocated to store certain types of data.
Thus data is stored in several different areas:
the input/output areas, data tables (arrays),
and the stack. Since all word is done in the
top-of-stack locations, all information or data
is transferred to the top-of-stack locations and
the stack itself.

At this point, an ALGOL assignment state-
ment and the Polish notation equivalent will
be related to the stack concept of operation.
The example is Z:=Y + 2x(W+V), where :=

~ ~ DISCARDED STACK
PORTION HISTORY
[§ [e*++%+>470s woRD| OF STACK LIST

~ ~

PROCEDURE " D"

[wsew L —_ T [OF— T

PROCEDURE "¢"

MSCW o=

===

OUTER BLOCK

st L a— ':_L_Q_Llf.r p—

~ ~

Figure 2-2-9. Stack Cut Back on Procedure Exit

means “is replaced by.” In terms of a comput-
er program, this assignment statement indi-
cates that the value resulting from the
evaluation of the arithmetic expression is to
be stored in the location representing the
variable Z.

When Z:=Y + 2x(W+V) is translated to Po-
lish notation, the result is ZY2WV+ x +:=.
Each element of the example expression
causes a certain type of syllable to be included
in the machine language program when the
source problem is compiled. The following is a
detailed description of each element of the ex-
ample, the type of syllable compiled, and the
léegtil)ting operation (see figure 2-2-10 and table

In the example statement, Z is to be the re-
cipient of a value, so the address of Z must be
placed in the stack. This is accomplished by a
Name Call (NAMC) syllable which places an
Indirect Reference Word (IRW) in the stack.
The IRW contains the address of Z in the form
of an ‘“address couple” that references the
memory location reserved in the stack for the
variable Z.

Since Y is to be added to a quantity, Y is
brought into the top of the stack as an oper-
and. This is accomplished with a Value Call
(VALC) syllable that references Y. The value 2
is then brought to the stack, with an eight-bit
literal syllable (LT8). Since W and V are to be
added, the respective variables are brought to
the stack with Value Call syllables. The ADD

operator adds the two top operands and places
the sum in the top of stack. This example as-
sumes, for simplicity, single-precision operands
not requiring use of additional top-of-stack lo-
cations which are used in double-precision op-
erations.

The multiply operator (MULT) is the next
symbol encountered in the Polish string; when
executed, it places the product “2x(W+V)” in
the top of the stack. The next symbol, ADD,
when executed, leaves the final result
“Y+2x(W+V)” in the top of the stack.

The store syllable (STOD) completes the
execution of the statement Z:=Y + 2x(W+V).
The store operation examines the two top-of-
stack operands looking for an IRW or Data De-
scriptor. In this example, the IRW addresses
the location where the computed value of Z is
to be stored. The stack is empty at the comple-
tion of this statement.

Thus, the Polish string ZY2WV + x+:= is
used to produce the following code string:

NAMC (Z)
VALC (Y)
LT8 2
VALC (W)
VALC (V)
ADD
MULT
ADD
STOD

When this code string is executed on the
B 7800, the value of the expression
Y+2x(W+V) is stored in the stack location re-
served for the variable Z.

INTERRUPT HANDLING

In the B 7800, hardware interrupts are
treated as hardware-originated procedure
calls. When the hardware detects an interrupt
condition, the CPM causes a MSCW to be
placed in the stack, then places in the stack an
IRW addressing the interrupt handling proce-
dure, places two parameters in the stack to
identify and describe the interrupt condition,
and then causes the interrupt handling proce-
dure to be entered. When the interrupt han-
dling procedure is entered, the D registers are
updated to make all legitimate variables ad-
dressable. Similarly, upon return from the in-
terrupt handling procedure, the D registers
are again updated to make all of the variables
of the former procedure addressable again. A
detailed description of interrupt handling is
provided in chapter 3.

2-29

01-2-¢

ALGOL STATEMENT Z = 2 X (W+V)
POLISH STRING y" v + X + =
nmc VALC VALC VALC ADD MULT ADD STOD
Y w v
TOP OF STACK INV IRW 2 Y M 2 w v m (W+Vv) 2x(W+V) Y+2x(W+V) INV
LOCATIONS INV INV IRW 2 Y 2 W INV INV - INV INV
STACK
AREA
W 2 S 2 2 2 2
Sy Y Y Sl v Y Y
S rw 2 IRW Z IRW 2 IRW 2 IRWZ |3e{ IRW2Z :] IRW 2
F3 S Zz —§- Zz Z Z 2z z z z < Y+2(W+V)
Y Y Y Y Y Y Y Y Y Y
w w w w w w w w w w
v v v v v v = v v v v
P é JL T ,J][': JjT F :lz 4 ¥ x Er *= JIL + + 1L J‘: %

4097¢

SYLLABLE TYPES

VALC VALUE CALL STOD STORE DESTRUCTIVE
NAMC NAME CALL ADD ADD
LT8 LITERAL (8 BIT) MULT MULTIPLY

Figure 2-2-10. Stack Operation

Table 2-2-1. Description of Stack Operation

Function of Syllable During Running of the Program

Stack location of program variables illustrated.
Build an indirect reference word that contains the address of Z

and place it in the top of the stack.

Place the value of Y in the top of the stack.

Place a 2 in the top of the stack.

Place the value of W in the top of the stack.

Place the value of V in the top of the stack.

Add the two top words in the stack and place the result in the

A location as the top of the stack operand.

Multiply the two top-of-stack operands. The product is left in

the A location as the top of the stack operand.

Add the two top words in the stack and leave the result in the

A location as the top of the stack operand.

Execution Polish Syliable Type
Sequence Notation Compiled
Element
0 - -
1 Z Name call for Z:
2 Y Value call for Y.
3 2 Literal 2.
4 w Value call for W.
5 \"% Value call for V.
6 + Operator add.
7 X Operator multiply.
8 + Operator add.
9 = Operator store

destructive.

Store an item into memory. The address in which to store is
indicated by an indirect reference word or a data descriptor.

The address can be above or below the item stored.

MULTIPLE STACKS AND RE-
ENTRANT CODE

The B 7800 stack mechanism provides a fa-
cility for handling several active stacks, which
are organized in a tree structure. The trunk of
this tree structure is a stack containing MCP
global quantities.

Level Definition

As the MCP is requested to run an execution
‘of a program, a level-1 branch of the stack is
created. This level-1 branch is a separate stack
which contains only the descriptors pointing to
the executable code and the read-only data
segments for the program. Emerging from this
level-1 branch is a level-2 branch, containing
the variables and data for this job. Starting
from the job’s stack and tracing downward
through the tree structure, one finds first the
stack containing the variables and data for
the job (at level 2), the segment descriptor to
be executed (at level 1), and the MCP’s stack
at the trunk (level 0).

Re-entrance

A subsequent request to run another execu-
tion of an already-running program. Thus two
jobs which are different executions of the
same program have a common node, at level-
1, describing the executable code. It is in this
way that program code is re-entrant and
shared. This results simply from the proper
tree-structured organization of the various
stacks within the machine. All programs

within the system are re-entrant, including all
user programs as well as the compilers and
the MCP.

Job-Splitting

The B 7800 stack mechanism also provides
the facility for a single job to split itself into .
two independent jobs. A common use of this
facility occurs when there is a point in a job
where two relatively large independent proc-
esses must be performed. This splitting can be
used to make full use of a multiprocessor con-
figuration, or to reduce elapsed time by multi-
programing the independent processes.

A split of this type establishes a new limb of
the tree-structured stack, with the two inde-
pendent jobs sharing that part of the stack
which was created before the split was re-
quested. The process is recursively defined
and can happen repeatedly at any level.

Stack Descriptor

Stack branches are located by an array of
descriptors, the stack vector array (figure 2-2-
11). There is a data descriptor in this array for
every stack branch. This data descriptor, the
stack descriptor, describes the length of the
memory area assigned to a stack branch and
its location in either main memory or disk.

A stack number is assigned to each stack
branch. The stack number is the index value
of the stack descriptor in the stack vector ar-
ray.

2-2-11

Stack Vector Descriptor

The array size of the stack vector and its lo-
cation in memory is described by the stac}t
vector descriptor, located in a reserved posi-
tion of the trunk of the stack (figure 2-2-11).
All references to stack branches are made
through the stack vector descriptor, indexed
by the stack number.

Presence Bit Interru pt

A Presence Bit Interrupt results when an
addressed stack is not present in memory. This
Presence Bit Interrupt facility permits stack
overlays and recalls under dynamic conditions.
Idle or inactive stacks may be moved from
main memory to disk as the need arises and,
when a stack is subsequently referenced, a
Presence Bit Interrupt is generated to cause
gl}ekMCP to recall the nonpresent stack from

isk.

2-2-12

STACK STACK STACK STACK STACK
NO.» NO. 4 NO. 2

VECTOR NO. 3
L4 ~n " " qf ~N e e N "
MSCW MSCW [+
~ ~ -~ L
DDn~| == TOSCW MSCW MSCW o
LY b L L MSCW ~ -+~

0D Toscw | T | MScw

- DD4 TOSCW | P +
D03 PROC. 1D
002 SEGMENT

STACK DESCRIPTORS
DDI ~ap TRUNK A ~ "
DDO I vy DISPLAY
e gTacK REGISTERS
i -, VECTOR | + 031
’ DESCRIPTOR
MSCW
. o "~
4 + L 0s
| sosr TOSCW D4
“—~ o3

2]

40977

Do

Figure 2-2-11. Multiple Linked Stacks

SECTION 3
PROCESSOR WORD FORMATS

GENERAL

The basic information structure of the
B 7800 is the word. As transferred between
CPMs or IOMs and main memory, a word con-
sists of 52 bits (see figure 2 -3-1), and is consid-
ered in three parts: a parity bit, which is used
to maintain overall parity for the word being
transferred; a 3-bit tag field, which indicates
the type of information contained within the
word, and a 48-bit information field, which
contains the actual information.

The tag field not only serves to identify the type
of information contained in the word but also can be
thought of as an extension of the operator being
executed against the word. For example, because
the tag field indicates to the CPM whether the
operation involves single precision or double preci-
sion operands, a single instruction (ADD) serves
both types of operations. In similar fashion, if the
sum obtained was a double precision number (requir-
ing two memory words of storage), and the receiving
memory word indicates that a single precision oper-
and was resident there, the CPM will round the sum
to single precision and then store it.

The tag field also prevents the user from
writing over program code or read-only data
areas, and prevents him from reading (as
data) program code, processor control words,
and uninitialized operands.

Consider the bit assignments for the tag
field, as illustrated. One can see that words
which have bit 48 set, such as IRW’s, SIRW’s,
Segment Descriptors, MSCW’s, RCW’s, Data
Descriptors, and Program Control Words,
should not be alterable by the user. The CPM
will not allow such words to be modified except
by use of the overwrite operators. Words that
are used for stack control, MSCW’s, RCW'’s,
and PCW’s, have bits 49 and 48 of the tag field
set. The CPM will not allow such words to be
interpreted as operands.

The information field may be used to store
data (logical operands, string operands, nu-
meric operands), to store program code (pro-
gram word), to address data or code outside of
the stack (data descriptor, string descriptor,
segment descriptor), to address within stacks
(indirect reference word, stuffed indirect ref-
erence word, stuffed indirect reference word,
program control word), to store information re-

2-3-1

51] 47| 43| 39 35 31 27| 23| 19| 15 11} 7 3

T50 46| 42| 38 3 IN3€p§6MA2T2|O'1“8 14 10f 6] 2

40] 45| 41 37 331 29| 25| 21} 17f 13 9 5 1

48] 44| 40| 36| 32| 28| 24| 20| 16| 12| 8 4| 0}

Field Bits Description
Parity 51:1 Parity bit. 0dd parity for the 52 bit word.
Tag 50:3 Value of this field indicates the usage of the
information field, as described below.
Tag Value Information Field Usage
0 Single Precision Operand, Logical

Operand, String Operand, Occurs
Index Word, Time of Day Function Word

] Indirect Reference Word, Stuffed
Indirect Reference Word

2 Double Precision Operand
3 Mark Stack Control Word, Return

Control Word, Top of Stack Control
Word, Program Word, Segment

Descriptor
4 Step Index Word
5 Data Descriptor, String Descriptor
6 Uninitialized Operand
7 Program Control Word
INFORMAT 10N 47:48 Use of this field depends on the value of the
tag field.

40978

Figure 2-3-1. Basic Word Format

232

garding stack history (mark stack control
word, return control word, top of stack control
word), or to provide a parameter for use with
certain operators (step index word, and occurs
index word. Data words (operands) and pro-
gram words were described in the previous
sections of this chapter. The other various
processor words are described in this section.

WORDS FOR ADDRESSING
OUTSIDE OF THE STACK

There are three types of descriptors which
are used for addressing data or code which is
not resident in the stack. The type of descrip-
tor is directly related to the data or code being
referenced. Thus, a segment descriptor will al-
ways address a segment of program code (con-
tained in program words), a string descriptor
will always address a string operands), and a
data descriptor will address an array of word
operands.

The ADDRESS field in each of these de-
scriptors is 20 bits in length; this field con-
tains the absolute address of an array in ei-
ther system main memory or in the backup
disk file, as indicated by setting of the Pres-
ence bit (P). The referenced data is in main
memory when the presence bit is set.

Presence Bit

A Presence Bit Interrupt occurs when the
job references data by means of a descriptor
in which the P-bit is equal to 0; i.e., the data
is located in a disk file, rather than in main
memory. The Master Control Program (MCP)
recognizes the Presence Bit Interrupt and
transfers data from disk file storage to main
memory. After the data transfer to main mem-
ory is completed, the MCP marks the descrip-
tor present by setting the P-bit to 1, and
places the new main memory address into the
address field of the descriptor. The inter-
rupted job is then reactivated.

index Bit

A Data Descriptor describes either an entire
array of data words, or a particular element
within an array of data words. If the descrip-
tor describes the entire array, the Index bit (I-
bit) in the descriptor is 0, indicating that the
descriptor has not yet been indexed. The
length field of the descriptor defines the
length of the data array.

Invalid Index

A particular element of an array is de-
seribed by indexing an array descriptor. Mem-
ory protection is ensured during indexing op-

erations by performing a comparison between
the length field of the descriptor and the index
value. An Invalid Index Interrupt results if
the index value exceeds the length of the
memory area defined by the descriptor, or if
the index is less than 0.

Valid Index

If the index value is valid, the length field of
the descriptor is replaced by the index value,
and the I-bit in the descriptor is set to 1 to in-
dicate that indexing has taken place. The ad-
dress and index fields are added together to
generate the absolute machine address when-
ever an indexed Data Descriptor in which the
P-bit is set is used to fetch or store data.

The Double-Precision bit (D) is used to iden-
tify the referenced data as single-or double-
precision and directly affects the indexing op-
eration. The D-bit equal to 1 signifies double-
precision and causes the index value to be dou-
bled before indexing.

Read-Only Bit

The Read-Only bit (R) specifies that the
memory area described by the Data Descriptor
is read-only area. If the R-bit of a descriptor
is set to 1, and the area referenced by that de-
scriptor is used for storage purposes, an inter-
rupt results.

Copy Bit

The Copy bit (C) identifies a descriptor as a
copy of a master descriptor and is related to
the presence-bit action. The copy bit links mul-
tiple copies of an absent descriptor (i.e., the
presence bit is off) to the one master descrip-
tor. The copy bit mechanism is invoked when
a copy is made in the stack. If it is a copy of
the original, absent descriptor, the processor
sets the copy bit to 1 and inserts the address
of the master descriptor into the address field.
Thus, multiple copies of absent data descrip-
tors all point back to the master descriptor.

Data Descriptor

Data descriptors refer to data areas, includ-
ing input/output buffer areas. The data de-
scriptor defines an area of memory starting at
the base address contained in the descriptor.
The size of the memory area in operands is
contained in the length field of the descriptor.
Data descriptors may directly reference any
memory word address from 0 through
1,048,576. The structure of the data descriptor
is illustrated in figure 2-3-2.

String Descriptor

String descriptors refer to strings of 4-bit
digits, 6-bit or 7-bit characters, or 8-bit bytes.

2-3-3

P IR
a7] 43| 39| 35| 31| 27 23] 19| 15 11| 7| 3

Oy, 38l" EN GTs}(;l

I lc ADDR
50| “46 26| 22| 18| 14 10| 6| o

ISK)
2 8

34
049 I45 041 371 33| 291 25 21} 17| 13 9
l 48 S44 D40 36(32| 28] 24 20] 16 1
Field Bits Description
Tag 50:3 Tag field. Value of five.

P 47:1 Presence bit. Indicates the presence or absence of data in main memory. A 0 causes a
presence bit interrupt whenever the descriptor is used by a processor to obtain non-present
data. A 1 indicates that the data described is in main memory.

C 46:1 Copy bit. A 0 indicates that this is the original descriptor for the particular data area. A 1
indicates that this descriptor is a copy of the original descriptor.

I 45:1 Indexed bit. A 0 indicates that an indexing operation is required before the descriptor may be
used to obtain data. A 1 indicates that indexing has already taken place and the index value
is stored in bit positions 39:20 (Length or Index).

S 44:1 Segmented bit. A 0 indicates that the data is not segmented. A 1 indicates that the data is
divided into segments.

R 43:1 Read-only bit. A 0 indicates that the data may be referenced for reading or writing. A 1
indicates that the data can only be referenced for reading.

42:2 Size field, must be 0 to indicate a data descriptor.

D 40:1 Double-precision bit. A 0 indicates single-precision operands, a 1 indicates double-precision

operands.

Length 39:20 This field contains either the length (in operands) of the memory area (if bit 45 = 0) or an

or Index index value (if bit 45 = 1). If bit 45 equals 0, the descriptor has not been indexed. This field
is used for size checking during the indexing operation. If bit 45 equals 1, the descriptor has
been indexed. For a double-precision operation, the index is doubled after index size checking,
and the result is stored in the index field.

Address 19:20 This field contains either a main memory or disk address. If the presence bit (bit 47) equals 1,

(Memory this field contains the memory address of data. If the presence bit equals 0 and the copy bit

or Disk) (bit 46) equals 0, this field contains the disk address of the data. If the presence bit equals 0

and the copy bit equal 1, this field contains the memory address of the original descriptor.

Figure 2-3-2. Data Descriptor

The string descriptor defines an area of

memory starting at the base address con-

tained in the descriptor. The size of the

memory area in characters is contained in the

length field of the descriptor. The structure of

tzhg String Descriptor is illustrated in figure
-3-3.

Segment Descriptors

Segment descriptors refer to areas of pro-
gram code. The descriptor defines an area of
memory starting at the base address con-
tained in the descriptor. The size of the
memory area in program words is contained in
the length field of the descriptor. The struc-
ture of the segment descriptor is illustrated in
figure 2-3-4.

2-34

WORDS FOR ADDRESSING
WITHIN STACKS

There are three types of words which are
used for addressing data or descriptors which
are resident within a stack. A Program Con-
trol Word is used, at the time of procedure en-
try, to locate a segment descriptor (and the
proper word and syllable of code) for the pro-
cedure. An Indirect Reference Word is used to
address within the current addressing envi-
ronment of a procedure. A Stuffed Indirect
Reference Word is used to address outside the
current addressing environment of a proce-
dure.

Program Control Word

The Program Control Word (PCW), and the
MSCW are used during entry into a procedure.
The organization of the PCW is illustrated in
figure 2-3-5 and contains the following:

STRING DESCRIPTOR (NON-INDEXED)

P IR
47] 43] 39| 35] 31} 27 23} 19| 15 11 7 3
| JC LEINGTH ADDRESS
50] 46]~42] 38| 34| 30] 26/ 22] 18] 14| 10 6 2
I 1 (MEMORY OR
49] 45],41] 37| 33| 29 25 21} 17| 13 9 5 1
S | DISK)
48] 44] 40) 36| 32| 28] 24| 20] 16] 12 8 4 0
STRING DESCRIPTOR (INDEXED)
P IR [1
471 4312391 35 311 271 23f 19 15| 11 7 3
I |C Y WORD ADDRESS
50] 46] 42 34 3 26] 22] 18 14| 10 6 2
PbIlr” I INDEX (MEMORY OR
491 45{— 41 .’E 33 29 25{ 21} 171 13 9 5 1
[y
T 5 F% DISK)
48] 44] 40 32| 28 24| 20] 16/ 12 8 4 0

Presence bit. A 0 causes a presence bit interrupt if the descriptor is used to access data. A 1
Copy bit. A 0 indicates that this is the original descriptor for the particular data area. A 1
Indexed bit. A 0 indicates indexing is required. A 1 indicates that indexing has taken place

Segmented bit. A 0 indicates that the data area is not segmented. A 1 indicates that the data

Size field. 100 indicates character size of 8-bit bytes, 101 indicates 7-bit ASCII characters, 011

45=1). When bit 45 equals 0, this field contains the length of the area in digits, characters or

This field contains either a main memory or a disk address. If the presence bit (bit 47) is 1,
the field contains a memory address of the data. If both the presence bit and the copy bit (bit

Field Bits Description
Tag 50:3 Tag field. Value of five.
P 47:1
indicates the data is present in main memory.
C 46:1
indicates that this descriptor is a copy of the original descriptor.
I 45:1
and the word and character index are in the WORD INDEX and BYTE INDEX fields.
S 44:1
is segmented.
R 43:1 Read only bit. A 0 indicates that the data may be referenced for reading or writing. A 1
indicates that the data can be read only.
SZ 42:3
indicates 6-bit characters, and 010 indicates 4-bit digits.
Length 39:20 Bits 39:20, contain either the length of the memory area (bit 45=0) or an index value (bit
bytes.
Byte 39:4 Byte index (Bit 45=1).
Index
Word 35:16 Word Index (Bit 45=1).
Index
Address 19:20
(Memory
or Disk)

46) are equal to 0, the field contains the disk address of the non-present data. If the presence
bit is 0 and the copy bit is 1, the field contains the memory address of the original descriptor.

Figure 2-3-3. String Mescriptor

Indirect Reference Word

Referencing a variable within the current
addressing environment of a procedure is ac-
complished through the address couple in the
Indirect Reference Word (IRW). References
are relative to the D register specified by the
address couple. The format of the IRW is
shown in figure 2-3-6.

Stuffed Indirect Reference Word

Reference to variables outside the current
environment is accomplished by a Stuffed In-
direct Reference Word. This addressing is
relative to the base of the stack in which the
variable is located.

The SIRW contains the stack number, the lo-
cation (DISP) of the MSCW, and the index to

2-3-5

Fleld
Tag

Length

Address
(Memory
or Disk)

Field
Tag

Stack
Number

PSR
PIR

LL

SD
Index

2-3-6

35 31 27| 23] 19 15 11f 7 3

LENGTH ADDRESS
34 30 26| 22| 18 2

QMEMORV oR

33 29 25| 21

DISK)
32| 28 24] 20} 16f 12 8 4 0l

Bits
50:3
47:1
46:1

45:4
39:20
19:20

Description
Tag field. Value equals three.
Presence bit. A 0 indicates that the segment is absent from main memory.

Copy bit. A 0 indicates that this is the original segment descriptor. A 1 indicates that this is
a copy of the original segment descriptor.

Not used. Unused bits may be either 0 or 1.

The length of the program segment in words.

This field contains either the main memory address or the disk file address. If the presence
bit (bit 47 equals 1, the field contains the main memory address of the program segment. If
both the presence bit and the copy bit (bit 46) equal 0, the field contains the disk address of

the non-present program segment. If the presence bit equals 0 and the copy bit equals 1, the
field contains the absolute memory address of the original program segment descriptor.

Figure 2-3-4. Segment Descriptor

1P s N 1
39] 351 31} 27| 23] 19} 1 11 7 3

38] 344 30| 26| 22] 18

: 8 1 6
I STACK [R PIR 071 INDEX

49] 45 37 331 29| 25| 21} 17 3 1
484% 32| 28| 24| 20| 16| 12 8 4| o

Bits Description

50:3 Tag field. Value equals seven.

47:2 Not used.

45:10 The number of the stack which contains the PCW.

35:3 The program syllable (0-5) within the word located by PIR.

32:13 Index to the Program Base Register. Locates a word within the code segment.

19:1 Normal state (0) or control state (1).

18:5 The level of the procedure being entered.

13:14 The segment descriptor index. Bits 12 through 0 specify the value to be added to either D-

register 0 or 1. When bit 13 equals 0, D-register 0 is selected; when bit 13 equals 1, D-register
1 is selected. The sum of the contents of the display register and the index locates a segment
descriptor.

Figure 2-3-5. Program Control Word

2
1
0
Fleld Bits Description
Tag 50:3 Tag field. Value equals one.

47:1 Not used
46:1 Environment bit. Must equal zero for an IRW. (1 = SIRW).
45:32 Not used.

Address 13:14 Selects D Register (According to current program level as indicated by rLL) and provides index
Couple value (see below).

PROGRAM LEVEL PROGRAM LEVEL PROGRAM LEVEL
0-1 0-3 0-7
1 -
11} 171 3 11 17 3 1} 7| 3
INDEX INDEX 10 INDEX 9
1(FIELD—-—g 1CFIELD—-z- FIELD ——
1 12-0 ISJ 11-0 1 10-0
131 9 5 1 1 9] b5l 1 1y 9 5
2 2
12| 8 4 o 14 s 4| o 11 8 4/ 0
PROGRAM LEVEL PROGRAM LEVEL
0-15 0-31
4 4 l
11} 7/ 3 1] 7 3
8 INDEX 8 INDEX
10 FIELD-l la FIELD—24
1 9-0 1 |16 8-0
13 9| 51 1 13 5/ 1
2 2
120 8/ 4| o 121 8 4| o

NOTE: THE BIT ORDER OF THE LL FIELD IS INVERTED.
40983

Figure 2-3-6. Indirect Reference Word

2-3-7

the variable relative to the MSCW. The abso-
lute memory location of the variable is formed
by adding the contents of DISP and index to
the base address of the referenced stack from
the stack descriptor. The contents of the SIRW
(with the exception of index) are dynamic and
are accumulated as the program is executed.
The stack number and DISP fields are entered
into the SIRW by the Stuff Environment
(STFF) operator. The bit format of the SIRW
is shown in figure 2-3-7.

WORDS FOR STORING STACK
HISTORY

Certain words can be thought of as words
used for storing stack history. These words,
used for procedure entry and exit, as well as
for storing the stack state for inactive stacks,
include the Mark Stack Control Word, the Re-
turn Control Word, and the Top Of Stack Con-
trol Word.

Mark Stack Control Word

The Mark Stack Control Word (MSCW), to-
gether with the Return Control Word (RCW),
provides a linking mechanism for the history
of previous control-register settings through
the stack.

The MSCW is placed in the stack by the
Mark Stack operator. The MSCW is organized
as illustrated in figure 2-3-8.

Return Control Word

- The Return Control Word (RCW) and the
MSCW are used for subroutine handling. The
Return Control Word stores the environment
to which the subroutine will return. The or-
ganization of the RCW is illustrated in figure
2-3-9.

Top of Stack Control Word

The Top Of Stack Control Word (TOSCW)
contains all information needed to restore the
operating environment when a stack (or proc-
ess) is activated. When a stack is active, the
first word of the stack is a single precision op-
erand containing the processor ID (a number,
0 through 7). When the stack is made inactive,
the processor ID is changed to a TOSCW, con-
taining the status of various processor flip-
flops necessary to restore the stack’s environ-
ment when it is again activated. The TOSCW
is created by the Move Stack (MVST) operator.
The TOSCW is illustrated in figure 2-3-10.

WORDS USED AS SPECIAL
PARAMETERS

Certain control words are used only as a pa-
rameter to a single operator. Among these are
the Step Index Word, used with the Step and
Branch operator; the Occurs Index Word, used
with the Occurs Index operator; and the Read
Time Of Day Function Word, used with the
Scan In operator.

31 27 11 7 3
50 300 26 10 6 2
49 23 25 9 5 1
L 48 44] 40] 36] 32 28| 24 8 4 0
Fleld Bits Description
Tag 50:3 Tag field. Value equals one.
47:1 Not used.
46:1 Environment bit. Must be a one (0=1RW),
Stack No. 45:10 The number of the stack containing the referenced word.
Displace- 35:16 This number, added to the stack base address, addresses an MSCW.
ment
19:6 Not used.
14:1 Must be 0.
Index 12:13 This number, added to the address of the MSCW, addresses the referenced word.
Field

Figure 2-3-7. Stuffed Indirect Reference Word

2-3-8

47] @ 43 N39| 351 31) 27| 23] 19] 15| 11| 7| 3
J
0_[E |7 ISPLACE- [LL
50] 46] A 42|\M38] 34 30 26 22] 18] 1 10 6 2
A BF
| B MEINT
49] 45/C41 ~37 33| 29| 25| 21} 17] 13 9 5 1
l K |=
48] 44| 40|R36] 32| 28| 24| 20] 16 12| 8 4 of
Field Bits Description
Tag 50:3 Tag field. Value equals three.

DS 47:1 Different-stack bit. A 0 indicates that the stack-number field refers to the current stack. A 1
indicates that the stack-number field refers to a different stack.

E 46:1 Environment bit. A 0 indicates an inactive MSCW, generated directly by the Mark Stack
operator. The procedure entry has not been performed. A 1 denotes an active MSCW generated
upon entry into a procedure, at which time the environment fields {(stack number, displacement,
value, and LL fields) are stored into the MSCW.

Stack 45:10 Stack-number field. Contains the number of the stack from which the PCW was obtained at
Number procedure-entry.
Displace- 35:16 Displacement field. When added to the stack base address, locates the MSCW of the prior
ment lexicographic level.

\' 19:1 Value bit. A 0 indicates that the MSCW was generated during any opergtion that will be'
restarted from the beginning. A 1 indicates that the operator must continue after the Exit or
Return which refers to this MSCW (e.g., an accidental entry by a Value Call).

LL 18:5 LL field. Denotes the lexicographical level at which the program will run when the procedure
is entered.

DF 13:14 Denotes the stack history. This field is used to locate, in the stack, the preceding MSCW (.e.,

the previous “F” register setting).

Figure 2-3-8. Mark Stack Control Word

Step Index Word

The Step Index Word (SIW) is used as a pa-
rameter to the Step and Branch operator, to
increase the efficiency of this operator in
iteration loops. When the Step and Branch op-
erator is invoked, the SIW addressed by the
IRW in the top of stack location is located. The
increment field is added to the current value
field. If the current value field is then greater
than the final value field, PIR and PSR are
set from the next two syllables in the program
code string and the branch is made. If the cur-
rent value field is not greater than the final
value field, PIR and PSR are advanced three
syllables, the SIW is replaced in memory, and
the iteration loop continues. The format of the
SIW is illustrated in figure 2-3-11.

Occurs Index Word

The Occurs Index Word (OIW) is used to in-
dex a field within an array. COBOL permits
arrays to be constructed of a series of fields of
a specified character size (through use of the
OCCURS clause). This series of fields may not

necessarily begin at a word boundary, because
the array may be one of several items subordi-
nated under a group item. The OCRX
operator, together with an OIW in the A loca-
tion and an index value in the B location, is
used to calculate a new index value which is
left in the top of the stack. The original index
value is an integer which indicates the
relative position of the desired field within the
array. The new index value is the displace-
ment (in characters) of the desired field from
the first character of the array. The character
size (specified in a descriptor) and the index
value (left in the top of stack) can then be
used to address the desired field. The format
of the OIW is shown in figure 2-3-12.

Time of Day Function Word

This word is used as a parameter to the
Scan In operator, to specify that the time of
day is to be interrogated by the MCP. The for-
mat of the Time of Day Function Word is
shown in figure 2-3-13.

239

Fleld
Tag
ES

TFOF
RR

PSR
PIR

LL

SD
Index

2-3-10

N
311 27| 231 19| 18 11| 7| 3§

LiL

30 26/ 22] 18 14 10 6| 2
IR O/1|SD |INDEX
29| "25| 21] 17] 713" 9| 5] 1

28| 24| 20| 16] 12 8 4| o0

50:3
47:1
46:1
45:1
44:1
43:1
40:1
39:1
35:3
32:13
19:1
18:5
13:14

Field
Tag

DSF

LL
DFF

Description

Tag field. Value of three.

External Sign flip-flop.

Overflow flip-flop.

True/False flip-flop.

Float flip-flop.

True/False flip-flop occupied flip-flop.

Special hardware bits. These bits are used for controlling an early segment descriptor fetch during
exit and return operations.

Program syllable of the operator to be executed after return from the subroutine.

PIR setting of the operator to be executed next in the calling routine.
Normal state (0) or control state (1) procedure.
Level of the calling procedure when the RCW was generated (at procedure entry).

Segment descriptor index. Bits 12 through 0 specify the value to be added to either D-register
0 or 1. When bit 13 = 0, D-register is selected; when bit 13 = 1, D register 1 is selected. The
sum of the contents of the selected display register and the index locates a segment
descriptor.

Figure 2-3-9. Return Control Word

35 31 27| 23 19] 15| 1 7 3
LiL

DéGF
34 30 26| 22| 18 14] 10 6 2

33 29l 25| 21] 17 13 9 5] 1

32 28| 24| 20 lﬁi 12 8l 4] 0

Bits Description

50:3 Tag field. Value equals three.

47:1 External sign flip-flop.

46:1 Overflow flip-flop.

45:1 True/False flip-flop.

44:1 Float flip-flop.

43:8 Not used.

35:16 Delta S-register field. The value of S-register displacement above BOSR.
19:1 Normal-control state flip-flop. 0 = normal; 1 = control state.

18:5 Lexicographic level.
13:14 Delta F-register field. The value of F-register displacement below the S-register.

Figure 2-3-10. Top of Stack Control Word

47| 43| 39) 35| 31} 27 23§ 19} 15[11| 7 3

[1 CRIE— FINAL CURRENT
50 46 38] 34 30 26| 22] 18] 14| 10 6 2
EN VALUE VALUE

49] 45| 41] 37] 33| 29| 25 211 17] 13} 9| 5 1

Ol Of O] O

48] 44| 40| 36] 32| 28] 24/ 20} 16] 12| 8] 4 0

Fleld Bits Description
Tag 50:3 Tag field. Value equals four.
Increment 47:12 Increment: value to be added to current value field.
girl\al 35:16 Final value: value used to terminate the iteration loop.
alue

19:4 Must be 0 for S1W.

Current 15:16 Current value or count. The branch is made if this field is greater than the final value field.
Value

Figure 2-3-11. Step Index Word

47| 43| 39 35| 31f 27| 23] 19] 15 1 7' 3|
| ENGTH SIZE OFI' SE

50] 46| 42| 38 3 300 26 22| 18] 14/ 10| 6 2

49] 45| 41| 37] 331 29 25| 21| 17} 13} 9| 5 1

0

48] 44| 40| 36| 321 28| 24| 20| 16 12 8| 4 0}

Field Bits Description
Tag 50:3 Tag field. Value equals zero.

Length 47:16 The length, in characters, of each field in the array.
Size 31:16 The size, in fields, of the array.

Offset 15:16 The number of characters preceding the first field of the array.
Figure 2-3-12. Occurs Index Word

O |0 [0 |0
15| 11 7 3
O |0 |1 |O
14| 10 6 2
0o O (0O |1t |O
13| . 9 5 1
O |0 |0 |0
48):::44 Q3 » 2 8 4 0
Field Bits Description

Tag 50:3 Tag field. Value equal zero.
47:28 Not used.
19:13 Must equal zero.
6:2 Must equal three.
4:5 Must equal zero.

Figure 2-3-13. Time-Of-Day Function Word
2-3-11

SECTION 4

INPUT/OUTPUT SUBSYSTEM
MAP STRUCTURE

INTRODUCTION

The B 7800 Input/Output Modules (I0M) op-
erate in parallel with the Central Processor
Modules (CPM). The purpose of the IOM is to
control all data transfers between main
memory and peripheral devices, or between
two peripheral devices, so that the CPM is re-
leased from I/O operations at the earliest pos-
sible moment. In brief, the IOM controls not
only the selection of I/O requests from lists of
such requests in main memory, but also path
selection to the desired devices, the initiation
of requests on the appropriate device, the
transfer of data as specified by the requests,
and the construction of a list of completed re-
quests in main memory. The CPM, on the
other hand, builds the I/O request, places it in
the appropriate list in main memory, notifies
the IOM of the presence of the request (if this
is the only request for the device), and then is
free to continue with other processing. Rou-
tinely, the CPM checks memory for the pres-
ence of completed I/O requests and processes
the completed requests.

Each IOM is, in effect, a separate computer
with its own local memory, logic, arithmetic,
and communication capabilities. This inde-
pendent processing capability permits the IOM
to perform routine input-output tasks without
interrupting the CPM. Thus the IOM can con-
trol transfers of data between peripheral stor-
age devices and main memory or other storage
devices without direct supervision of the CPM.
In fact, parallelism within the IOM permits it
to initiate, service, and terminate data trans-
fers for several users while the CPM is proc-
essing data for yet another user.

QUEUE-DRIVEN 1/0

To allow the IOMs to properly select paths
to the devices and to service I/O requests, cer-
tain structures are created by software when
the system is initialized. These structures,
which provide a mechanism to allow the CPMs
to queue I/O requests, allow each IOM to be
aware of the requests, of the devices it can
service, and of the order of priority of devices
served by an exchange. These structures are
referred to as the I/O Subsystem Map, and
hence this type of I/O is often reffered to as
“map” I/O or “queue-driven” I/0. Because the
use of the map allows the IOM to process

many I/O operations in parallel, independent
of CPM, I/O performed using the map is also
known as asynchronous I/0. The IOM may
also operate synchronously to process one I/O
request at a time; however, such synchronous
operation is used only for special applications
such as system initialization and is not fur-
ther discussed in this section.

The operation of asynchronous I/O is illus-
trated in simplified form in figure 2-4-1. When
the I/O subsystem map is initialized the CPM
places information about each peripheral de-
vice and the paths to it into a table in
memory. During operation, the I/0 subsystem
map is accessed by both the CPM and IOM as
I/O requests are built (by the CPM) and proc-
essed (by the IOM). In essence, the CPM builds
I/O requests and places them in queues of
such requests in main memory. Each request
specifies the desired I/O operation and the de-
vice on which the operation is to be performed.
The IOM extracts requests from these queues
on a first-in first-out basis, processes each re-
quest, and places the completed requests into
a queue in main memory.

Periodically, the CPM extracts the completed
requests from the queue in main memory and
takes the necessary action to check them.

r--. ——
| MEMORY I

INFORMAT1ON
CPM {ABOUT DEVICES
I AND PATHS

J

PERIPHERAL
DEVICES

10M

TO BE PROCESSED BY I10M

TO BE PROCESSED BY CPM

{-
!7 QUEUES OF 1/0 REQUESTS

QUEUE OF COMPLETED 1/0 REQUESTS .I

40998

Figure 2-4-1. Asynchronous I/O Operation,
Simplified Block Diagram

24-1

Once the IOM is notified (by the CPM) of the
presence of an I/O request in one of the input
queues, all requests in that queue will be proc-
essed by the IOM independent of CPM actions
until the queue becomes empty. The CPM may
place additional requests into a queue while
the IOM is processing a request from the
queue. Thus, once the IOM starts processing a
queue, the CPM may process other programs,
queue new I/O requests, and perform computa-
tions; effectively masking out the IOM trans-
fer times.

ERROR HANDLING

From time to time conditions may arise
which prevent I/O operations from being ac-
complished successfully. A printer may run
out of paper, a card punch may be out of
cards, or a device may for some reason not be
ready. The design of the I/O subsystem map
allows the IOMs to continue to process re-
quests for other devices even though an error
is detected on a particular device. When the
error is recognized by an IOM, processing of
further requests for the particular device is
suspenended, the I/O request is marked as
containing an error, and that marked request
is linked into the queue of completed requests.
The CPM is not interrupted to handle the er-
ror; however, when the CPM does process the
queue of completed requests it will recognize
and process the error. When the error has
been processed, the CPM can again cause the
IOM to process requests for the device on
which the error was detected.

If such a strategy were to be applied to the
handling of all input/output errors a
catastrophic situation might arise. If, say, the
IOM itself were the source of the error, it is
conceivable that it could then process all (or
many) I/O requests erroneously. However, in
such cases the B 7800 IOM stops all processing
of I/O requests (for all devices) and immediate-
ly interrupts the CPM. In short, I/O errors as-
sociated with a particular device cause proc-
essing of further requests for the device to be
halted but allow the processing of requests for
other devices by the IOM to continue. I/O er-
rors which can be associated only with an IOM
and not with a particular device cause the
IOM involved to stop all processing of requests
(other IOMs are not affected) and causes the
system to be interrupted so that the IOM er-
ror may be processed. Provision is also made
to allow the software to request that the sys-
tem be interrupted when a particular I/O re-
quest is completed.

24-2

DEFERMENT OF PATH BINDING

The I/O subsystem map allows the IOM to
select the transfer path for a device as the
path becomes available. This dynamic path se-
lection is logically similar to the call routing of
a long distance telephone network; that is, the
route of the call is selected based on the loca-
tions of the correspondents and the available
paths. The user need only be concerned about
the type of device to be used (card reader,
magnetic tape, disk file, etc.); the MCP will as-
sociate the logical file with a physical device
when the program is executed, and the IOM,
when it initiates each transfer of data, will se-
lect an available transfer path to the device.

Maximum I/O throughput can be realized
only if the binding of the data path between
an IOM and a device is delayed until the de-
vice is ready to initiate the job. As shown in
figure 2-4-2, if device 4 is to be initiated, the
path required to connect CPM 1 with device 4
involves selecting between two IOM’s and be-
tween two channels within each IOM. (The pe-
ripheral controls have been excluded from this
figure because they do not affect the concepts

DEVICE
#1

EXCHANGE
2}

1on \
21

DEVICE
#2

W

DEVICE
#3

0/

CPM ~
o EXCHANGE
7

#2
o2~ I~

\
/

™ DEVICE
#4

10M
#2

DEVICE
#5

avav.avare PATH(S) TO DEVICE #4 DE;é“
FROM CPM#1

40996

Figure 2-4-2. Data Transfer Path Selection

being described. For purposes of this discus-
sion the peripheral controls may be thought of
simply as extensions of the IOMs.) If the path
to device 4 were to be preselected program-
matically, a situation could develop in which
the device is free but the preselected path is
not. Thus, execution of the request would be
unnecessarily delayed if in fact an alternate
path to the device was available.

To delay binding the path programmatically
generally would require that the CPM which
initiated the job be involved in the operation
until the request is actually initiated on the
specified device. The I/O subsystem map, how-
ever, allows the IOM’s to manage selection
and binding of paths, allowing the CPM’s to be
free to do other processing. Thus, because the
IOM processes I/O requests without CPM in-
tervention, and because the IOM selects data
paths at the time of execution, the total sys-
tem time required to accomplish an IJO
operation is limited to the amount of time re-
quired for a CPM to build an I/O request and
place it in memory.

IO SUBSYSTEM MAP

As shown in figure 2-4-3, the I/O subsystem
map is made up of four major software struc-
tures in main memory. These four software
structures are addressed by registers within
the IOM: the Home Address words are ad-
dressed by the HA register; the Unit Table is
addressed by the UT register; the Queue Head
and Queue Tail words table is addressed by
the QH register; and the Status Queue Header
is addressed by the SQ register. The IOM uses
the Queue Head word for the appropriate de-
vice to locate the I/O request. Thus, the IOM
can locate any element of the map as neces-
sary. Of course, since the map is constructed
by the MCP, it too is aware of the location of
each element of the map.

Commands and Requests

Before further discussion of the I/O subsys-
tem map can take place, the difference be-
tween an I/O command and an I/O request
must be made clear. An I/O command is an or-

10M MEMORY

sQ

QH

uT

HA

UNIT
TABLE

(ONE WORD
FOR EACH
DEVICE)

HOME
ADDRESS
WORDS

(ONE GROUP
FOR EACH
10M)

—d)-
W

STATUS
QUEUE
HEADERS

(ONE WORD
FOR EACH
10M)

QUEUE HEAD
WORDS

(ONE WORD
FOR EACH s ©
DEVICE)

] —
% ! !

v . +

WORD n TO FIRST 10CB IN TO LAST 10CB IN

QUEUE OF COMPLETED QUEUE OF COMPLETED

1 1/0 REQUESTS FOR 1/0 REQUESTS FOR
z THIS 10M THIS 10M
QUEUE TAIL
WORDS TO FIRST 1OCB IN
QUEUE OF 1/0
(OKE WORD REQUESTS FOR
FOR EACH DEVICE n
DEVICE)
*
WORD n+256 f———y TO LAST 10CB
IN QUEUE OF

1/0 REQUESTS
'P FOR DEVICE n

40997

Figure 2-4-3. I/O Subsystem Map, Simplified Block Diagram

243

der to an IOM which can cause one operation
or many operations for one device to be initi-
ated by the IOM. Although there are special I/
O commands which control but a single I/O op-
eration, the I/0 command most often associ-
ated with asynchronous I/O is the Start IO
command, which causes the IOM to process I/
O requests from a queue of such requests until
the queue is empty. Each I/O request contains
information describing a single input or out-
put operation that is used not only by the IOM
but also by the peripheral control and even
the device itself. Each I/O request is made up
of several words and is known as an I/O Con-
trol Block (IOCB). The IOCB is discussed in de-
tail later in this section; I/O commands are de-
scribed in chapter 4.

Map Integrity

Because the I/O subsystem may be accessed
and modified by all CPM’s and IOM’s in the I/
O subsystem, the integrity of the map is pro-
tected by special lock bits and lock words. This
system of locks prevents conflicts between the
IOM’s and CPM’s which use and modify the
map. As shown in figure 2-44, the system
consists of three types of locks; a lock bit and
a lock word for each group of Home Address
words, and a lock bit for each Unit Table word.

The software lock word prevents two or
more CPM’s from attempting to build I/O com-
mands in the Home Address words simultane-

CPH cPm

!

UNIT TABLE
WORD LOCK
BIT (ONE PER
~DEVICE)

HOME ADDRESS
SOFTWARE
LOCK WORD

PROTECTS PROTECTS
HOME ADDRESS HOME ADDRESS -
WORDS WHILE WORDS AFTER PROTECTS 1/0
THE CPM COMMAND IS QUEUE
BUILDS A BUILT
COMMAND

HOME ADDRESS
LOCK B,

10M 10M

Figure 2-4-4. /O Subsystem Map Protecﬂon

244

ously. This word must be unlocked before a

-CPM can access the Home Address words; the

CPM will immediately lock this word when it
gains access.

The Home Address lock bit prevents a com-
mand from being altered once it has been
placed in the Home Address words for execu-
tion. The CPM locks this bit when a command
is placed in the Home Address words.

In response to a channel interrupt, the IOM
exchanges the contents of HA word with zero,
decodes the home command, and executes the
operation. When a CPM gains access to an HA
block via the software lock-word, the CPM
does not insert a HA command into the Home
Address word until the HA lock bit is un-
locked.

The lock bit in each Unit Table word pro-
tects the IO queues so that access to an I/O
queue is not granted to more than one IOM or
CPM at a time. The I/O queue can only be ac-
cessed when the lock bit is unlocked. Each
IOM or CPM locks the bit when it is using the
I/g queue and unlocks the bit when it is fin-
ished.

Home Address Words

For each IOM there exists a unique set of
Home Address words in memory. The basic
purpose of the Home Address words is to pro-
vide a location into which CPM’s can store an
1/0 command until an IOM is ready to execute
the command. The most generally used com-
mand is Start IO, which is used to initiate the
processing of a queue of I/O requests for a de-
vice by an IOM. Other commands allow the
IOM to perform special functions, such as
loading into the IOM the addresses of the
structures in the I/O map or performing syn-
chronous I/O operations. Other words in the
Home Address words are used as software lock
words and, in certain cases, to store result de-
scriptors for completed I/O operations.

Unit Table

For each device in the I/O subsystem there
is one word in the Unit Table. This word is
used both by the MCP and the IOM, and con-
tains a lock bit which prevents conflicts of
interest. This word indicates the path or paths
to the unit, and provides other information
needed by the IOM.

/10 Queue Head and Tail Words

For each device in the I/O subsystem there
is one Queue Head word and one Queue Tail
word. These words contain the address of the
first IOCB and the last IOCB, respectively, in
the queue of I/O requests for the unit. If there

are no IOCB’s to be processed for the unit,
these words will be empty.

Status Queue Headers

For each IOM there is a Status Queue
Header. Fields in the Status Queue Header
contain the addresses of the first and last
IOCB in a queue of completed IOCB’s. Thus,
the Status Queue Header allows each IOM to
maintain a single queue of completed I/O re-
quests. Periodically, the MCP checks these
completed requests.

Input/Output Control Block

An Input/Output Control Block (IOCB) con-
tains the information needed by the IOM to
perform one I/O operation on a device. I/O
Control Blocks (see figure 2-4-5) contain infor-
mation needed to link queues of IOCB’s to-
gether, to describe the I/O operation to be per-
formed, to locate the data buffer to be used
for the operation, and in the case of completed
IOCB’s, to store the result descriptor describ-
ing the completed operation. A generalized il-
lustration of an IOCB is shown in figure 2-4-
5.

FORWARD LINK

SIDE LINK

AREA DESCRIPTOR

10Cw

coL

RESULT DESCRIPTOR

-

WORDS
FOR
SOFTWARE
USE

?

;

——— TO NEXT 10CB IN QUEUE

—® T0 SIDE LINKED 10CB (IF ANY)

p———= TO FIRST DATA WORD OF BUFFER

THESE TWO WORDS DESCRIBE THE
OPERATION TO BE PERFORMED.

DESCRIBES THE COMPLETED OPERATION.
(ERROR-FREE OR TYPE OF ERROR)

Figure 2-4-5. IOCB Format, Simplified

2-4-5

CHAPTER 3
CENTRAL PROCESSOR MODULE

SECTION 1
GENERAL DESCRIPTION

GENERAL

The B 7800 Central Processor Module (CPM) pro-
vides high performance through extended asynchro-
nous operations of independent functional units
within the CPM. Communications between these
units are carried out by means of high-speed local
storage and operation queues. These operation
queues and local storage areas allow execution of
operators and data exchange between operators to
occur simultaneously. The operators can be deferred
or restored within the pipeline flows of the CPM and
can be completed out-of-sequence from the queues.
The final completion of operators, with respect to
code order, is ensured because different units within
the CPM complete operators independent of any
queue order sequence. These units are the program
control unit, the data reference unit, the execution
unit, and the EU store sub-unit.

Figure 3-1-1 is a simplified block diagram of the
CPM showing the general interconnections and data
flow between the local storage areas and the major
units. The basic functions of these units of the CPM
are described in the following paragraphs.

PROGRAM CONTROL UNIT

The Program Control Unit (PCU) is responsible
for extracting an operator or a group of operators
from the code string and initiating the processing of
instructions. These instructions are placed in the ap-
propriate queues in either the data reference unit or
the execution unit.

The primary responsibility of the PCU is to allow
operators to be executed when ready rather than be
executed in a serial order from the code string. To
accomplish this method of executing operators, the
PCU is structured to be the stack machine of the
CPM. This allows the PCU to change an operator or
operators to a three-address operation (A, B, and R
addresses) for the DRU and EU. These addresses
are pointers to actual data register locations in the
CDB. For example, the A and B addresses can be
locations for operands to be fetched by the DRU.
These same A and B locations are then read by the

5010796001

EU for an arithmetic operation in which the result is
returned to R location in the CDB. Along with these
addresses, the PCU passes a job number and other
information necessary to complete the operation.
The job number is used to maintain orderly process-
ing of an operation in the pipeline levels of the DRU
and EU and in deallocating CDB locations at the end
of operations.

Other major responsibilities of the PCU are as fol-
lows:

1. Processes conditional branch operators (BRFL,
BRTR. and STBR) independent of other units by ex-
amining the boolean when it is generated by the EU.

2. Transfers literal data directly into the CDB for
use by the EU or DRU; in the case of non-
concatenated NAMC, transfers the NAMC (an IRW)
into the CDB for use by the DRU.

3. Provides AC (address couple) from a VALC or
concatenated NAMC (for example, NAMC followed
by INDX) to the DRU for obtaining an absolute ad-
dress from which data is fetched and placed in the
CDB for EU or DRU use.

4. Provides TOS (top-of-stack) instructions to the
DRU allowing descriptor evaluation to be accom-
plished before an EU operator requires the refer-
enced data. ’

5. Provides certain store instructions (STOD and
STON) to the EU store sub-unit. This unit expedites
stores as soon as possible so that time is not taken
away from EU processing of other operators.

6. Processes stack operators, such as exchange
and rotate stack down, by interchanging the CDB lo-
cations according to the type of stack operator being
executed. :

7. Contains a separate branch storage area so that
any branch loop can be captured locally for fast pro-
cessing.

DATA REFERENCE UNIT

The Data Reference Unit (DRU): 1) receives all
data reference operations from the PCU; 2) calcu-
lates the absolute address of data; and 3) fetches the
data- from either the associative memory or main
memory. Extensive use of pipelining allows one-

3-1-1

CODE ADDRESS

PROGRAM CODE

AC Q (INCL.R LOC, JOB # ETC.)

!

PROGRAM CONTROL
UNIT

TOS Q (INCL. A,B,R LOC, JOB # ETC.) Q (INCL. B LOC. JOB #)

J EU Q (INCL. A,B, R LOC, JOB # ETC.)

READ/WRITE ADDRESS

1

EU STORE
LITERAL SUB-UNIT
DATA

FETCHES DATA TO OPERATOR
—

READ/WRITE ADDRESS I

CENTRAL DATA TO OPERATOR

RESULT DATA

DATA BUFFER

ATI
(64 LOCATIONS) RESULT DATA EXEUC':II‘I'TION

TO/FROM
MEMORY

<OTMZT
omoo»
-“=-zc

DATA
REFERENCE
STORES UNIT
—d

DATA

MEMORY
ADDRESS

DATA REF. |
I uNIT

DATA ASSOC.

DATA INPUT

MEMORY
(2K WORDS)

| |
f |
(I I R

OUTPUT DATA

DATA ADDRESS

STORE Q
(32 WORDS)

OUTPUT DATA

J

ET1262

Figure 3-1-1. CPM

clock references to associative memory. Some other
functions of the DRU are as follows:

1. Calculates start bit and field length information
and places this information into the CDB for use by
EU string operators.

2. Calculates and saves all write addresses for lat-
er use by the EU. During the EU portion of the
write operation, the address is obtained from the
DRU and is used for addressing the EU output data
into both the associative memory and the store
queue.

3. Compares saved write addresses against any
subsequent fetch address to determine if these ad-
dresses are equal. If these addresses are not equal,
the fetch is allowed to proceed if it does not address
a location to be changed by a previous incomplete
write. If these addresses are equal, the operation for
that fetch is deferred until the EU has completed the
write operation (for example, a NAMC STOR fol-
lowed by a VALC with same address couple).

4, Performs all the procedure entry and exit in-
structions, except for assembling MSCW and RCW.
(MSCW and RCW are assembled by the barrel
mechanism in the EU.)

3-1-2

Block Diagram

EXECUTION UNIT

The Execution Unit (EU) performs all arithmetic
and logical operations on data from the CDB. Data
derived by the EU may either be stored in the CDB
or may be sent to associative memory and the store
queue.

Extensive parallelism is provided by independent
operating EU sections, which allow execution of
newer operators (for example, index computation or
loop control) in parallel with older operators. The
EU has three processing sections: 1) arithmetic logic
unit (ALU); 2) short arithmetic unit (SAU); and 3)
EU central data buffer (EUCDB) logic. The basic
functions of these sections are as follows:

1. SAU performs integer arithmetic operations,
basically COMP, ADD, and MULT. It can operate
on a maximum of 20 bits in the case of ADD and
COMP operations. For MULT, an eight-bit multiply
operation can be performed in three clocks to pro-
duce a 16-bit result. SAU is also used for exponent
calculations and double precision. During double

precision operations, the SAU exponent calculations
are controlled by macro operators from the macro
code routines in the EU.

2. ALU performs most types of arithmetic and
logical computations in the EU. It operates on non
integer data or integer data that is greater than 20
bits.

3. EUCDB accesses the operands from the CDB
for use by the ALU and SAU. It also directly con-
trols the barrel to execute field operators and the
data manipulation portion of string operators.

STORE QUEUE

The store queue is responsible for buffering data
before it is sent to main memory to eliminate re-
peated stores to the same main memory location and
to group multiword writes of adjacent words into a
single main memory operation. For example, a
NAMC STOR is part of a loop control in which a

loop variable is updated by repeated entries into the
store queue with the same memory address. There-
fore, all but the newest entries (or writes) are dis-
carded and unnecessary memory operations are not
performed.

MEMORY ACCESS UNIT

The Memory Access Unit (MAU) provides the in-
terface between the CPM and up to eight memory
control modules MCMs in the main memory. Re-
quest for memory interface operations are made to
MAU by the PCU, DRU, and store queue. Data
fetches from memory by the MAU are forwarded to
the associative memory. Program fetches are for-
warded to the program buffer in the PCU. Data
stores received (from store queue by the MAU) are
forwarded to main memory. The MAU can perform
simultaneous fetch and store operations with main
memory, provided that these operations are not with
same MCM.

313

SECTION 2

FUNCTIONAL OPERATION OF
CENTRAL PROCESSOR MODULE SUBSECTIONS

GENERAL

This section contains a brief description of the op-
eration of each of the CPM subsections described in
section 1 of this chapter.

PROGRAM CONTROL UNIT

The program control unit (PCU), as shown in fig-
ure 3-1-1, consists of the instruction decode (PID)
level, the instruction execute (PIE) level, along with
the write level. Basically, the PID level is responsi-
ble for extracting code from the code buffer and
presenting this code to the PIE level. Then, the PIE
level issues the required micro operators to the write
level for final distribution to the DRU and EU
queues. At the PIE level, the allocation of registers
in the control data buffer (CDB) and information,
such as address couples, variant information, and
job numbers are passed to the appropriate queues.
Also, the initial stack environment for the micro op-
erator and the top-of-stack configuration at the con-
clusion of that operator is controlled by the PIE lev-
el.

Because the PIE level or the write level can re-
quire resources (such as Q entries or CDB locations)
which are not available, it becomes necessary to
hold these levels when such conflicts occur. To ac-
complish this, the hold logic signals are applied as
hold inputs to the clock buffers, whose outputs are
routed to the control flip-flops in these levels. The
PID level operates independently and does not re-
quire hold logic, but rather it has valid flip-flops to
indicate that information is available for use in cer-
tain registers.

Generally, as shown in figure 3-2-1, a change of
direction causes the program index registers (PIRs)
to be loaded with either the branch PIR from PID or
EU, the enter and exit PIR from the DRU, or the
enter edit PIR from DRU. The PIR output is then
added to the program base register (PBR) to form an
absolute address of the next program word. This ad-
dress is compared with stored addresses in an asso-
ciative memory to determine whether the code re-
sides in the program buffer. If the address compares
with a stored address, the corresponding code is se-
lected from the code buffer. Otherwise, the address
is sent to the MAU for a memory fetch operation.
The code is then removed from the code buffer, iso-
lated by the barrel, and forwarded to the PID, a six-

5010796001

syllable register. The far left syllable in PID corre-

sponds to current PIR in the PIN registers. As the

first major register in the PCU operator pipeline, the
PID is used to decode the program operator and to
set up conditions for PCU registers in the PIE level.

PIR Circuits

Figure 3-2-2 shows the PIR circuits. These circuits
include the PRI, PIN, PIC, PNB, PPR, and PPC reg-
isters, the 16-word branch and interrupt storages,
and three PCB registers. These registers and stor-
ages contain the PIR and PSR values associated with
the operators in the decode and execute levels of the
PCU and in the change of processing direction. (The
PIR and PSR, together with the program base regis-
ter, identify the absolute address and starting sylla-
ble position of the associated program operator.)

The PRI (prime) register receives the PIR and PSR
values from the following:

1. The interrupt storage.

2. The PCB register for conditional branch
operators (BRFL, BRTR. and STBR).

3. The EU for dynamic branch unconditional
(DBUN). and table enter edit, (TEED and TEEU)
operators.

4. The PPC register for enter and exit operators.

5. The PPR for table enter edit operators so that
branching back to normal code can be performed af-
ter completing edit mode.

6. The PID register for special handling of branch
unconditional (BRUN) operator.

When PRI is loaded. it is declared valid and the
contents in the branch storages are selected by a
pointer (i.e., four LSBs of PRI) and transferred to
the program read registers (PER and POR), the PID
register, and the PIN register. These transfers are
automatically made in anticipation that code in the
branch storages is available from a previous change
of processing direction. Hence, a time saving is rea-
lized. if a local check operation for code in the pro-
gram buffer is not required at this time.

If code is available in the branch storages (PIN
and PRI contents being equal), the address from the
branch address storage is transferred to the address
registers for inmediate word selection from the pro-
gram buffer. (This address represents the next.word
of code to be read from the program buffer.)

If code is not available in the branch storages
(PIN and PRI not equal), the contents of PID are not

3-2-1

MAU mMaU
®
£
N ADDRESS REGISTERS o
PROGRAM
ADDRESS STORAGE | vono SELECTION BUFFER
ADDRESS ASM (2K WORDS)
BRANCH BRANCH
STORAGE STORAGE
(18 WORDS) (16 WORDS)
DECODE I I
LE EL
[renon |
LABLE
SELECTION I
ADDER —— BARREL
| BRANCH
STORAGE
| hid ° (16 WORDS)
l PID l
l SHIFT l
— —
PBR "nsas BRANCH PIR PID SYL 0,1;1,2;2,3;3,4 PATHS
DRU DRU £V I - DEALLOCATION
(BASE) (PIR) (DBUN,TIR) . LITERAL QUEUES
LIT VALC DATA ADDR. ADDR. (16 WORDS)
NAMC RPRR 16 COUPLE COUPLE 1
GROUPING I
PLA r PLT J I PNC 1 PVC TOP OF STACK
I LOCATION DEALLOCATION
7 o 15 o 13 ° REGISTERS REGISTERS
rso PCU RESTART NEXT PROM ADDR. b
1 I LT8 RPRR 1 l
EXECUTE
LIT PROM ALLOCATION DECODE
LEVEL TO PCU STACK PIE PNR CIRCUITS Pax LoGic
REGISTERS l
7 0 SET
ADDR. 1_0 SHIFT RESET
—_— BUS I
PROMS
come ALLOCATION
l____ REGISTERS
‘% PCU CONTROLS PBL
DETECT
VALC l'_ PWA
FOR ACQ
micRO | oP. EU ENCODE
WRITE ® SCALES LOGIC
LEVEL 1 I I l 1
WRITE LEVEL
ENREAR RN] [] [mms
o : ° h ° DECODE
LOGIC
CODE 0G
9 [Y y
TO DRU TO DRU TOEUOPQ TOEUOPQ TOEUOPQ TO CDB TO DRU TO DRU |
ACQ T08Q FOR ECDB FOR ALU EUOPQ Aca AND EU
OPERATIONS OR SAU QUEUES
ET1263 OPERATIONS

Fioure 3-2-1. Program Control Unit, Block Diagram

FROM FROM FROM
l EU PID DRU
PIC
INTERRUPT PCB1
BRANCH PIR RAM
STORAGE PPR (16 WORDS) PCB2
(16 WORDS) PCB3 pPC
PRI Iﬁ — 1
COUNT L
PIN PNB
PRI
g ()
I l * PIN AND ADDER
COMPARE= COMPARE=
DETECT DETECT BRANCH
ET1264 BRUN NEXT STORAGE HIT

Figure 3-2-2. PIR Circuits

passed onto the PIE level. Instead. the address of
the adder output (PRI + PBR) is transferred to the
address registers while a local check is performed to
determine if this address is pointing to code in the
program buffer. When the required code is in the
PID. a copy of the code in the program buffer read
registers and PID register. the PIR in the PIN regis-
ter. and the adder output address is written into the
respective branch storages for later use.

The PIC (PIR current) register is used to maintain
PIR of the first operator at the PIE level of the
PCU. The most important function of PIC is to load
PIR into the interrupt storage so that the PIR of that
operator is available for interrupt processing.

The PIN (PIR next) register contains PIR of oper-
ator in the PID register. PIN is automatically up-
dated by shift codes as part of the processing of
each operator in the PID level. It is also the write
input register for the branch storage and the syllable
shift input for the barrel mechanism in the decode
level.

The PNB (Next BRUN) register is used to main-
tain PIR of operator prior to the BRUN operator.
This mechanism eliminates local check for program
buffer code when BRUN loop is executed. For ex-
ample, in a BRUN loop of VALC, LIT, LIT,
COMP, BRTR, and BRUN, the PIR of BRTR is
saved in PNB.

5010796001

During the initial loop, the PIR of BRUN’s target [l

(in this example. the PIR of the VALC operator) is
transferred from PID to PRI and then into the adder
for normal branch operation. A copy of the code in
the PID register and program buffer read registers,
the PIR in the PIR register, and the address in the
PAR register, is written into the respective branch
storages for later use in processing the BRUN loop
code.

The PIR value in the PIN register is then adjusted
as each operator in the BRUN loop is preprocessed
by the PCU. When adjusted, PIR compares with PIR
in PNB. A BRUN next operation is set up to trans-
fer branch storage information. The PIR value in
PIN is compared with PIR value of BRTR in PNB.
When PIN equals PNB. a flip-flop is set to denote
a BRUN loop. BRUN loop is repeated again by
comparing PIN with PRI. (PIN is read from the
branch storage.) If equal, PRI branch is completed,
branch storage code is used and operator processing
is started.

In the example, the BRUN is exited when PCU
has examined a boolean true (all 1 bits) for BRTR
operator. This condition allows PCU to take a condi-
tional branch instead of repeating BRUN loop again,
as explained in ‘‘Preprocessing Conditional Branch
Operator’’.

Preprocessing Conditional Branch
Operator

The conditional branch boolean test logic, as
shown in figure 3-2-3, is provided to allow condition-
al branches to be recognized by the PCU.

323

LSB OF BOOLEAN
OPERAND FROM

DECODE
OF aaor | TEST FOR TRUE o
OP.
CDBW
ADDRESS
FOR
BOOLEAN I I 1
OPERAND
/ T
PBB1 PBB2 R PBB3
FROM
CEW
REGISTER | I l
v v
COMP COMP COMP

!

PCU BOOLEAN SELECTION

EU

ET1265

324

|

DECODER

;o
TAKE DISCARD
BRANCH BRANCH

Figure 3-2-3. Conditional Branch Boolean Test Logic

When a conditional branch operator is first detect-
ed at PIE level of the PCU, the CDB address for the
boolean operand is saved in a PBB register for later
comparison with a value in the CDB EU write regis-
ter (CEW). This register is loaded with a CDB ad-
dress by the EU which processed the boolean oper-
and.

The PBB registers are assigned to receive CDB
addresses for boolean operands in the same order
the PCB registers (figure 3-2-2) are assigned to re-
ceive PIR of corresponding branch operator. Con-
trols for these assignments are derived from decodes
of special valid and allocation bits in the PBB regis-
ters. The purpose for having three registers is to be
able to accommodate more than one branch
operation at a time.

When boolean operand is written back into the
CDB by the EU, the LSB of that operand is
monitored by the PCU. By comparing CEW value
with PBB values, the proper TR bit value is selected
for comparison with the LSB of the operand.

If TR bit value and LSB of the operand are equal,
the branch is performed to obtain address of the new
code string.

If these values are not equal, the branch is dis-
carded and the PBB and PCB registers are invali-
dated and deallocated, respectively. (These registers
can be assigned new values again.)

Address Registers

The address registers, shown in figure 3-2-4, are
used for selecting program buffer locations during
read and write operations. The address register con-
tents are gated with other information from address
associative memory (ASM) to develop address sig-
nals for the RAM chips of the program buffer. A de-
scription of each of the address registers is as fol-
lows:

1. PAR (program address register) contains abso-
lute memory address of the next four to eight word
group of code to be read from program buffer. The
address in PAR is compared with associative

PBR
PRI(15-00)
ADDER

PAR

PRN PMA
TO MAU
FOR
MEMORY

BITS 7-1
¢ : FETCH
WRITE DECODES ’ BITS 7-1
READ DECODES
BRANCH '
STORAGE 10 8 7 1 10 8 7 —1
(16 WORDS) — - = ¥ d
TO EVEN 1024 TO ODD 1024
l WORD PROGRAM WORD PROGRAM
BUFFER BUFFER
ET1266
Figure 3-2-4. Address Registers
5010796001 325

memory address to determine whether the next four
words of code are local in the program buffer.

2. PRN (program read next) register contains ab-
solute memory address of the next word of code to
be read from the program buffer.

3. PMA (program memory address) register con-
tains absolute memory address of the next word of
code to be written into the program buffer.

Whenever a change of processing direction is
executed, the absolute memory address for code is
transferred from adder to PAR and then loaded into
PRN. The adder is used to calculate absolute
memory address by adding program base register
(PBR) with PIR from PRI register.

For read address selection, the PRN contents (bits
7 through 1) are gated with the read decodes to de-
velop address signals for the even and odd program
buffers. each of which has 1024 word locations. The
least significant bit (bit 0) of PRN defines which
word from even or odd word buffer is the most sig-
nificant word by setting a valid bit in the appropriate
program read register. If PRN contains an even ad-
dress (PRN bit 0 is low) after change of direction,
both even and odd address locations are loaded si-
multaneously into their respective program read reg-
isters. As each word of code is loaded into the pro-
gram read registers, the PRN count is increased by
1 so that successive locations can be read from the
program buffer.

For write address selection, the PMA contents
(bits 7 through 1) are gated with the write decodes
to develop address signals for the even and odd pro-
gram buffers. An address path from PAR to PMA
exists to set up write address selection. The least
significant bit (bit 0) of PMA defines which buffer is
to receive the address signals. As each new word of
code is written into the program buffer, the PMA
count is increased by 1 to select the next address lo-
cation in the program buffer. Controls for adjusting
PMA count are derived from the MAU.

The decoding logic also provides the capability to
read from one buffer and write into another buffer at
the same time.

Address Associative Memory

The address associative memory (ASM) is the
storage area for program code addresses. As shown
in figure 3-2-5, RAM chips are used for this purpose.
The ASM consists of eight groups of 4-by-4 array of
16-by-4 RAM chips. The implementation of these
chips provides locations for 512 addresses, each of

which represents four words of code in the program
buffer.

3-2-6

The ASM also includes a 64-by-3-bit code priority
list (PL) memory. These priority codes identify the
program buffer location to be written to next.

When PRGI or PRG2 needs to be loaded, the
ASM and PL memory location to be read is selected
by PAR bits 2 through 7. The eight selected ASM
addresses are then compared with PAR bits 8
through 19 to determine if that address in PAR is lo-
cal in the ASM.

If address is local, one of the eight comparator
outputs is enabled and encoded into a three-bit code.
This code, which identifies the group address (GO,
Gl1, G2, etc.) is loaded into the program read group
(PRG) register. PRG contents (bits 2 through 0) are
then combined with PRN bits 7 through 1 to select
proper program buffer location to be read.

If address is not local, the comparator outputs are
low. A request for a new code fetch is sent to the
MAU and the valid bit of program write group
(PWG2) register is set. PWG2 contents are then
passed onto PWGI register, where output is com-
bined with PMA bits 7 through 1 to select program
buffer location to be written into by the MAU. A
check is made to determine if the next four-word ad-
dress is local in the ASM. To do this, the hardware
increases PAR contents by 4 and compares new
PAR contents with stored ASM addresses. If this ad-
dress is not local, an eight-word code fetch is re-
quested instead of four words from the MAU. An
address path from PMA to PAR exists to restore
PAR contents if address is not local.

After MAU transfers four words to the program
buffer, the PL is updated by placing result of PWG
plus 1 back into proper PL location. Also, the ad-
dress of the four words is written into the proper
ASM location for later comparison checks.

Program Buffer and Branch
Storages

The program buffer provides local storage for up
to 2000 words of the executing program’s object
code. Each word of code consists of six eight-bit syl-
lables, and an odd parity bit. To ensure operator in-
tegrity, separate parity bits are generated on each
syllable of code prior to entry into the buffer. The
parity is checked as the syllables are used.

The program buffer is arranged in even and odd
_storage sections, each of which consists of 48 1024-
by-1 RAM chips. Separate RAM chips are provided
for storing parity and error information. The error
information is encoded to set ER (error) and EV (er-
ror variant) bits as follows:

100-96L010:

LTe

ADDER
PMA
PAR COUNT BY 4
PWG1=0 2 a 7 R1.R0.19 —— 8|7
(WRITE
ENABLE) PWG1+1
64X14 64X14 64X3
PAR BITS
2-5 SELECT
1 0F 64
LOCATIONS
l PAR BITS
19-8, RES
I - —A ~ GO G1 G2 G3 G4 Gs G6 G7 PL
| RAM
(16X4)
L3
PWG
compP comp 2—0
~— —~ —
(CHIP v
SELECT) TO PROGRAM
SELECTION LOGIC BUFFER
ADDRESS
g‘;’;g';s l SELECTION
LOGI
SELECT 1 PRG oaic
OF 4 RAM -0
CHIPS l
TO PROGRAM
. BUFFER ADDRESS
ET1267 SELECTION LOGIC

Figure 3-2-5. Address Associative Memory

ER EV Description
0 1 0 tag error if not in EDIT table
mode
1 0 Tags other than 0 and 3

Error word from MAU

In addition to the program buffer, there are three
branch storages, each of which provides local stor-
age for up to 16 words of code, related errors, if
any, and parity. These storages are used to save the
code in PER, POR, and PID so that code is immedi-
ately accessible if branching back occurs. As a re-
sult, all three registers are replenished with code in
one clock cycle. The manner in which these storages
are accessed is controlled by the PIR circuitry.

Program Barrel

The program barrel is a shifting mechanism used
for aligning and extracting the program operators
from the two words of code read from the program
read registers.

The program barrel has two stages. as shown in
figure 3-2-6. The purpose of the first stage is to set
up the next 48 bits in the PID. Both barrel stages are
implemented with MFAN chips so that barrel can be

used repeatedly during each clock cycle. No input
selection gating is required. The output of the sec-
ond barrel stage is routed directly to the PID regis-
ter.

The first barrel stage shifts the outputs of POR
and PER register to the left. It is capable of shifting
these outputs in parallel in order to accommodate
operators that overlap word boundaries. The shift
amounts used by this stage are derived from PIN
syllable bits. These bits are then encoded as ad-
dresses to the MFAN chips, to define the selected
syllable shift for the barrel.

As shown in figure 3-2-6, the PER or POR selec-
tion decodes determine which 48 bits of the 96 bits
are to be combined in the second barrel stage with
PID bits. These decodes are derived from bit 0 of
PRN and valid bits of PER and POR.

The second barrel stage shifts (left-justified) the
next six syllables to be loaded into the PID register,
as the current syllable or syllables are being sent to
PIE level for execution. To load PID, both POR and
PER must contain valid code. The shift amounts are
derived by recognizing the type of instruction to be
executed, such as one-syllable and two-syllable in-
structions. Like the first barrel stage, the shift sig-
nals are applied as addresses to the MFAN chips to
define the selected six syllable shift for the barrel.

PER

POR

PIN SYLLABLE

48 BITS
(6 SYLLABLES
OF CODE)

48 BITS
(6 SYLLABLES
OF CODE)

PER OR POR

DECODES

BARREL 1ST STAGE

SELECTION DECODES

PID SYLLABLE

48 BITS
OUTPUT

[]

DECODES

BARREL
2ND STAGE

48 BITS
OUTPUT

}_.J

TO PID

DECODE

ET1268

LOGIC

Figure 3-2-6. Program Barrel

32-8

PIE Level Registers

All operators loaded from PID level to PIE level
are routed to one of four operator registers. These
registers and their functions are as follows:

1. PCU stack only (PSO) register allows PCU to
independently handle the operators used for ad-
justing items in the top of stack and to copy or de-
lete the top of stack items within the CDB. These
operators are the LIT48, MPCW, DUPL, EXCH,
RSDN, RSUP, LITS, and some special pseudo lits,
such as FET PSX for moving P2 parameter informa-
tion within the CDB.

2. Program instruction execute (PIE) register re-
ceives all operator decodes from PID. excluding
NAMC. VALC, and stack operators, and forwards

them as nine-bit addresses to a network of high- Il

speed 256-by-4-bit PROMS. The PROMS issue the
required micro operator sequences and any addi-
tional information to the appropriate write registers
in the PCU. Other inputs to PIE register are:

a. LIT, VALC, and NAMC grouping logic used
to facilitate preprocessing of specific groups of
program operators.

b. Next PROM address used, if more than one
state of a PROM is required for passing micro
operators to the write level. '

c. PCU restart used to process interrupts. B

3. PCU name call (PNC) register temporarily
holds the 14-bit address couple associated with the
NAMC operator.

4. PCU value call (PVC) register temporarily
holds the 14-bit address couple associated with the
VALC operator.

The purpose of the execute level is to process as
many operators in parallel as possible for PCU,
DRU, and EU. At any one time, as many as three
of the four operator registers can contain valid infor-
mation. The combinations of the operator registers
which can be loaded simultaneously are as follows:
. PVC, PSO (only LIT).

PVC, PSO (only LIT), PIE.
PVC, PNC.

PVC, PNC, PIE.

PVC, PIE.

PSO (only LIT), PVC.
PSO (only LIT), PVC, PIE.
PSO (only LIT), PNC.

. PSO (only LIT), PNC, PIE.
10. PSO, PIE.

11. PNC, PIE.

R

In addition to these four operator registers in the
execute level, a PCU lit (PLT) register is provided

5010796001

to buffer certain information prior to distribution to
the write level. This information includes the LTS8
and LT16 data, the start and length values of bit and
field operators, the scale values of scale operators,
and the length and insert character parameters of ed-
it operators.

The PID syllable’s paths to the PLT, PNC, and
PVC registers are arranged so that any one of the
four sets of PID syllables can be loaded in the ap-
propriate registers. For example: a LIT VALC se-
quence in which LIT transfers to PLT through sylla-
ble paths 1 and 2, and VALC transfers to PVC
through syllable paths 3 and 4. Controls for loading
these registers are derived from decode logic in PID.

To facilitate preprocessing of VALC and NAMC
operators, the PCU must predict how DRU will han-
dle address couple information.

For NAMC STOR, the address couple of the most
recent STON or STOD is saved in PNR for
comparison with subsequent VALC.

If a compare is made, the VALC address couple
is not issued to the DRU; instead, the PCU performs
the VALC. PCU obtains the CDB location of the
data input to that store whose address couple was
saved and places it in the PCU top of stack
mechanism.

For VALC not associated with a NAMC STOR or
concatenated NAMCs, the address couples are
queued in the DRU for evaluation. NAMC is concat-
enated when the next operator in the code string is
any of the following: INDX, NXLN, NXLV, STOD,
STON. OVRD. OVRN. DBUN, LOAD, and PLDT.

In the case of concatenated index operators, the
PCU passes additional code along with the address
couple to the DRU. This code is sent with a second
input to the index operator. The first input is the ad-
dress couple result location. The second input allows
the DRU to read the index from an assigned CDB
location, when descriptor indexing is performed in
the DRU.

When a non-concatenated NAMC is detected, the
address couple in the NAMC is placed in the central
data buffer (CDB) as an IRW for DRU use. To iden-
tify address couple as an IRW in a CDB location, a
flag bit (bit 48) in that location is set.

For MKST NAMC and NAMC DBUN operator
cases, the address couple is not queued in the DRU;
it is immediately processed by DRU to speed-up ref-
erences to PCWs.

3-29

As shown in figure 3-2-1, two special paths from
the LIT PROM in the PIE level to the variant regis-
ters (PQEV) and write PLW registers exist to pro-
cess processor register operations (SPRR and RPRR)
for the EU and DRU. The input register for the LIT
PROM is the LIT PROM address register (PLA).
The purpose of PLA is to buffer read and set proces-
sor register address obtained from the EU via the
CDB and read processor register address received
from the PLT register. The read processor register is
handled as a lit where the address for the selected
processor register to be read is contained in the pre-
vious LIT operator:

By use of the LIT PROM, the processor register
address is converted directly to an internal hardware
address if processor register is accessed by the DRU
or to a variant code if processor register is accessed
by the EU.

The PQEV register receives the variant code from
the LIT PROM and passes it to the EU operator
queue. The variant code is then decoded in the EU
to provide information for selection of a desired pro-
cessor register. Registers selected by the variant
codes are as follows:
Variant Codes Register Usage
Program Base Register (PBR)
Processor Fail Register (IPF)

Control Mode Register (XCM)

Egg Timer (EGG)

Interrupt Identifier (ID)

Maintenance Processor Register (MDP)
Interrupt Fault Mask Register (IFM)
Interrupt Fault Register IFR)
Interval Timer (INT)

Time of Day (ITD)

Lo T < I @ T V- I - RV R Ny}

The PLW register receives the internal hardware
address from the LIT PROM and passes it to the
CDB for DRU use. Registers selected by the internal
hardware address are as follows:

Internal

Hardware

Addresses Register Usage

00-1F Display Registers D[X]

20 Base of Stack (BOS)

21 Last D[1] used as SDI Base (LD1)
22 Scratch (S1L)

24 Source Index (SIR)

25 Destination Index (DIR)
26 Table Index (TIR)

28 Source Base Register (SBR)

3-2-10

29 Destination Base Register (DBR)

2A Table Base Register (TBR)

2B Scratch (S2L)

2C Alternate D[0] Register (ADZ)

2D Alternate Program Index Register (APIR)
41 S register (top of stack address)

42 F register (most recent MSCW address)
44 Limit of Stack (LOS)

48 Segment Descriptor Index (SDI)

50 Program Base Register (PBR)

60 Current Stack Vector Index (SNR)

Write Level Register

All micro operators issued are placed in the PCU
output registers PQA, PQT, PQE and PQO. The
contents of these registers are then written into the
address couple queue (ACQ) and top of stack queue
(TOSQ) in the DRU and the operator queue (OPQ)
in the EU. The PCU output registers are loaded di-
rectly from the PROM network, as shown in figure
3-2-1, but some special input codes are also ORed
with the output of these registers, when a deviation
in the normal code flow is required.

Description of other input codes and their descrip-
tion is provided in table 3-2-1.

Table 3-2-1. Special Input Codes to DRU and EU

Code Destination Description

VALC ACQ Instructs DRU to mask LL field of
address couple and to pass remaining
index field as one of the inputs to an
adder. The other input is the base
address contained in the display
register. The adder output is the
absolute memory address
described by the address couple.
Instructs DRU to fetch a value
from ASM location pointed to by
S register and place it in an
allocated location in the CDB.
This code is issued if PIE level
operator DUPL, EXCH, RSDN,

or RSUP or fetch stack adjustment
does not have sufficient input

for execution.

FETSTK ACQ

STST EUOP Q

(for EUCDB)

Instructs EU to read B item from
the CDB to the storage queue.
Addressing of storage queue is
controlled by the DRU and is
accomplished by use of S + 1
register. Update of S + 1 register
and storage queue pointer is
performed by-the DRU.

Instructs EU to move B, if B is
not a reference word in a DRU
CDB location. Also used to move|
boolean A for BRTR/BRFL.

(See note below.)

MOVE EUOP Q

(for EUCDB)

MOVB TOS Q Instructs DRU to move B, if B
is a reference word in a DRU CDB

location. (See note below.)

NOTE
Because of deallocation mechanism
in the PCU, if DUPL is not
paired with a PIE operator, a
pseudo PIE operator, called
MOVE or MOVE-B is forced,

which replaces B output of DUPL

with a new copy of the duplicated
data.

Operands and EU results are

moved by the EU, but DRU created
references are moved by the DRU
to avoid having the DRU wait for
the EU.

CRLE EUOPQ

(for SAU)

Instructs EU to create a length
count of all ones. This code is
issued if PIE operators Transfer
While True or False, Transfer
While Compare, Scan While True
or False, and Scan While Com-
pare have a descriptor input
instead of length count in the
second word of stack.

The ACQ is bypassed if a quick fetch condition is
recognized by the PCU. In such cases, PQA directly
loads the address couple (RAC) register in the DRU
for quick fetches. A quick fetch comes from the de-
coding of special operator cases. The operator cases
are given in table 3-2-2.

Table 3-2-2. Operator Cases for Loading Code Into
RAC Register

Operator Cases DRU Action

Fetch PCW to obtain a new code
segment.

MKNAMC (mark stack name)

RETNCVC (return continue

VALC) by DLL + 1.

EXIT and RETN Fetch current RCW referenced

by DLL+1. .

5010796001

Fetch current RCW referenced l

Issued along with each micro operator are CDB
addresses, job number, and if necessary, variant and
type bit information. In the case of literals, data is
issued. Variant information provided by the PCU is
loaded into the EU OP queue.

In special cases, literal data supplied to the CDB
is also loaded into EU OP queue. For example, in
the execution of VALC, LIT, ADD or LIT, VALC,
or ADD, VALC results will be from the CDB and
literal data will be received from the EU OP queue
provided parallel inputs for the ADD operation in
the EU.

As stated previously, the job number remains with
the micro operator throughout the execution of the
micro operator. To accomplish this, the job number
is transferred to the respective unit (DRU, EU, or
EU store sub unit) at the same time as the associ-
ated micro operator is transferred from the PCU
write to the respective unit. This job number passes
through each level of the respective unit until com-
pletion at the write level. At this time, the job com-
plete bit for that job is set.

If an interrupt or restart occurs while the job is in
process, the job number is loaded into a job inter-
rupt register. When that job is declared the oldest
job in process, the interrupt operation is executed.

Top of Stack Location Registers

The top of stack location registers contain CDB
location addresses and transfer inputs by way of a
bus to write level registers, as shown in figure 3-2-
1. The purpose of these top of stack registers and as-
sociated controls is to maintain the top of stack loca-
tions and adjust them when operators are executed.
The write level registers are used to write the proper
CDB locations into the DRU and EU queues for the
A, B, and D inputs of the operator being written to
the queues. A write level register also contains the
CDB location into which the result of the operation
is to be placed.

The top-of-stack registers are controlled by the
register-to-bus and bus-to-register transfer signals.
The register-to-bus transfers are produced by the
types of operators at the PIE level: NAMC, VALC,
or stack only operator. The bus-to-register transfers
are developed by the stack count and PIE delete, in-
put, and type registers.

The major inputs to the bus are the outputs of the
top of stack registers A through D. Two inputs ori-
ginate in the allocation logic (described later in this
section): 1) the PPA input from the PCU allocation
circuits; and 2) the PRA input from the DRU alloca-
tion circuits. The PSX input is present when a com-

3-2-11

parison is made between PNR and PVC (explained
in ““PIE Level Registers’’). The location of the
NAMC STOR data that was stored in PSX is loaded
into the top of stack registers via the bus so that
VALC is not executed by the DRU. The outputs of
the bus are sent to the top of stack registers at both
the PIE and write levels.

PCU Allocation and Deallocation
of CDB Locations

Three main allocation registers and deallocation
queues are used, one each for the PCU, DRU, and
EU. Allocation is accomplished by the setting of a
bit in any of the allocation registers. The decode that
sets an allocation flip-flop is also used to generate a
six-bit hexadecimal number that can be used as a
CDB address, if specified. The CDB address is
maintained in one of the top of stack registers (A, B,
C, or D), which were described previously. This ad-
dress is used to address the top of stack data.

After locations have been allocated, they must be
deallocated when the data contained in those loca-
tions are used. The deallocation process is accom-
plished by use of deallocation queues and their asso-
ciated control registers, as shown in figure 3-2-1.

Allocation Paths

The allocation registers are used in the allocation
of CDB locations for the PCU, DRU. and EU. The
highest priority within the PCU and EU allocation
registers is assigned to bit 11. The highest priority
within the DRU allocation register is assigned to bit
15 because of the 16 locations in the DRU portion
of the CDB. The encode of the next register bit to
be used is decoded by a DFAN chip to set the se-
lected register bit. (Note that if, for example, bits 8
through 10 of the register are set but bit 11 is reset.
the next bit used is bit 11.) The encode is also sent
to the top of stack location registers and sets a CDB
address that is equal to the hexadecimal value of the
bits set in the allocation register.

There are two special allocation paths within the
PCU: the PBL and the PWA path. The PBL input
to the encode logic is used to allocate one of four big
lit locations in the CDB. The PBL register is a two-
bit up counter that counts to binary three and then
returns to zero. The encode output is sent to the
write pointer for the PCU locations of the CDB. The
PWA input to the PCU encode logic is used primari-
ly for the reallocation of CDB locations following a
PCU restart operation.

3-2-12

Deallocation Paths

As shown in figure 3-2-1, the deallocation paths
for the PCU, DRU. and EU consist of similar logic

B circuits that contain deallocation queues, dealloca-

tion registers, and decoders.

The purpose of each of the three deallocation
queues is to store the CDB addresses that have been
allocated and to also store a valid bit, which is used
to indicate that the corresponding location is to be
deallocated. When a job is completed, the location
that was used to supply input must be deleted from
the allocation registers. By reading the queue, the
PCU resets the allocation flip-flops of obselete CDB
locations.

A reagi pointer (JQR) and a write pointer (JQW)
are applied to each queue. and the data inputs are

B PIE write level registers (PWA, PWB. and PWD)

with their associated valid bits. In addition, the job
end bit is written into the queue. This bit is used to
set a flip-flop. allowing the deallocation job (JDJ)
counter to count. The outputs of the queues are sent
to deallocation registers.

A-deallocation (A input). B-deallocation (B input),
and D-deallocation (C input or PSX) are the three
registers used in the deallocation process. These reg-
isters each contain seven bits, composed of a valid
bit and six bits of CDB address. These registers are
loaded when the associated deallocation queue is
read, provided three conditions are met: 1) the
queue is not empty; 2) the oldest job is not equal to
the deallocation job; and 3) a restart has not just
been performed.

PCU Job Number Registers

The PCU job number registers (shown in figure 3-
2-7) contain the job numbers of the operators or
groups of operators issued by the PCU. Up to 16 job
numbers can be active simultaneously, although the
job registers can handle hexadecimal values 00
through 1F. The extra bit in these registers is used
to indicate empty and full conditions. When the PCU
execute level job number register (PEJ) contains
hexadecimal 10 and the oldest job register (JOJ) con-
tains hexadecimal 00, there are 16 jobs in process
(full condition). When both of these registers contain
hexadecimal 00, no jobs are in process (empty condi-
tion). The JCJ register is used to identify, by num-
ber, those jobs that have been completed. If, for ex-
ample, job number 12 were completed, JCJ bit 12
would be set by a hexadecimal value of either 0C or
1C; however, both of these numbers would not be
active simultaneously, because they are 16 numbers
apart. In the job number registers, numbers are as-
signed from 00 through OF hex; the fifth bit is then
set, and job numbers are then assigned from 10

JiJ PWJ

||

PEJ (5 BITS)
ADDRESS FOR _
INTERRUPT RAM * I
PWJ (5 BITS) psy(seirs) |V PRI BITS) |V
TO PWJ 1 l
TOACQ TO DRU
() 4
AC
[1@ 1 B5
r b ——— 7
| | | EusTOREQ | | e |
I DRU I L__ _____ — l l
EDJ
L J | L1
]_ REN
RWIJ
RWJ EWJ
El
JCJ (16 BITS)
JIJ (5 BITS)
BARREL w TO PEJ
COUNT
1,2,3
JU < JoJ
JOJ (5 BITS) 1
COMPARISON Py PROCESS
Logic INTERRUPT
ET1273
Figure 3-2-7. PCU Job Number Registers and Logic Paths
010796001

3-2-13

through 1F hex. Following this sequence of number
assignments, the register sequence begins again with
the value 00. The job number registers are as fol-
lows:

1. PCU execute level job number register (PEJ)
contains the job number of the job at the execute
level of the PCU. PEJ register can also receive in-
puts from the JIJ and PWJ registers for addressing
the interrupt RAM, which contains the state of the
stack for each job number. This stack information is
used during a restart or for interrupt cases.

2. PCU write level job number register (PWJ) con-
tains the job number at the write level of the PCU.
This register is loaded from the PEJ register on the
occurrence of each clock, unless an error occurs in
the PIE level of the PCU. or it is in a holding condi-
tion.

3. PCU stack job number register (PSJ) contains
the job number of the last store to stack (STST) or
fetch to stack (FEST) micro operator performed by
the PCU. The PSJ register is loaded from the PEJ
register when the PIE level of the PCU issues an
STST or FEST, at which time the valid flip-flop is
set. For FEST the previous content of PSJ is written
into the address couple queue (AC Q). along with
the valid bit. This information is used by the DRU
to ensure that any older STST or FEST operation is
complete before the current FEST is executed. The
valid (VL) flip-flop of the PSJ is reset when the
number of the oldest job (in JOJ) is greater than the
job number in the PSJ register.

4. PCU protected job number register (PRJ) con-
tains a five-bit job number and a valid bit. When a
valid bit is set, the register contains the number of
the last job to perform either a fetch to stack (pop)
or an overwrite operation. Under these conditions
(with the valid bit set), the DRU is inhibited from
performing a quick fetch of a program control word
(PCW) or a return control word (RCW). The valid
flip-flop of the PRJ is reset whenever the number of
the oldest job (in JOJ) is greater than the job number
in the PRJ register.

5. PCU job complete register (JCJ) contains 16
bits, which correspond to the job numbers of com-
pleted jobs. A job complete bit within the register is
set by a decode of write level registers PWJ, RWJ,
and EWJ of the PCU, DRU, and EU, respectively.
The decoding logic is enabled when the job end bit
and the job number reach the write level of the par-
ticular unit. The JCJ bits are reset from a decode of
the JDJ (deallocate job) register, which is discussed
in the description of PCU allocation of CDB loca-
tions, presented earlier in this section.

6. PCU oldest job register (JOJ) contains five bits
that represent the job number of the oldest job in
process. This register functions as a counter; it is in-
cremented by the configuration of job complete bits

3214

in the JCJ register. The job complete bits are applied
to a four-stage barrel and the barrel output is multip-
lexed to determine whether the JOJ is to be incre-
mented by 1, 2, or 3. The increment used depends
on which bit positions of the JCJ register are set.
Within the JCJ register, set bits represent jobs that

l have been completed but not yet deallocated.

7. PCU interrupt job register (JIJ) contains five
bits and an associated valid bit. The content of this
register represents the number of the job that has
been restarted or interrupted; the job number is
loaded from one of registers REIJ, RWIJ, EDJ,
EWIJ. ElJ, or JOJ. When the job number is loaded.
the valid bit is set but the interrupt is not processed
until the value in the J1J register is less than or equal
to the value in the JOJ register. This comparison is
performed to ensure that the job that was interrupted
or being restarted is the oldest job; there are no
older jobs still in process. If an interrupt or restart
is issued by two units simultaneously, a priority
scheme determines order of JIJ load. Any value in
JIJ can be replaced by an older number.

Each micro operator generated by the PCU is as-
signed a job number, which is produced in the PEJ
register. This register functions as a five-bit counter,
and the value of its contents is normally displaced
less than 16 from the content of the oldest job regis-
ter (JOJ). If the displacement becomes 16, the PIE
level is placed in a holding condition.

When a micro operator is generated at the PIE
level and sent to the write level, the job number is
sent from the PEJ register to the write level of the
PCU. A job end bit is used to indicate to the receiv-
ing unit that when the micro operator is passed to
the write level of that unit, a job complete bit is to
be set for the associated job number. (For multi-
state PIE operators, only the last micro operator is
assigned a job end bit.) From the write level of the
PCU, the job number and its corresponding job end
bit are written to one of four queues: 1) the EU
queue; 2) EU store queue; 3) top of stack queue; or
4) the address couple queue. The job number then
passes through each level of the unit to which it is
written until it reaches the write level, where the re-
spective job complete bit is set in the JCJ register.
If the job was the oldest job in process, the oldest
job register (JOJ) is incremented as necessary to re-
flect the current oldest job.

If an interrupt or restart occurs while a job is in
process, the associated job number is placed into the
interrupt job register (JIJ). When that job became
the oldest job, the interrupt would then be pro
cessed.

DATA REFERENCE UNIT

The data reference unit (DRU) is queue-driven.
The program control unit places all operations into
the queues of the DRU, excluding some queue by-
passed operations and operator associated informa-
tion. These queues are identified as address couple
queue (ACQ) and top of stack queue (TSQ). (See fig-
ure 3-2-8.) The DRU contains five distinct pipeline
levels:

1. An operator level.

2. A routine level.

3. An evaluate level.

4. A compare level.

5. A write level.

The purpose of DRU input queues and pipeline lev-
els is described in the following paragraphs.

Address Couple Queue

The address couple queue (ACQ) is the storage
area for address couple operators pending evaluate
level processing. The ACQ contains eight locations.
The following types of information can be loaded
into the queue and then read into the address couple
(RAC) register:

1. JE (bit 51) indicates that the micro operator is
the last in a program sequence. .

2. JP (bit 50) identifies parity for job number bits
in RAC.

3. JOB # (bits 49:5) allows DRU to keep track of
an operation through various pipeline levels so that
the operation can be recovered if an interrupt oc-
curs. It also informs the PCU when the operation is
completed.

4. RP (bit 44) identifies parity for result location
bits in RAC.

5. RESULT LOC (bits 42:4) identifies CDB loca-
tion address for DRU fetched data.

6. P (bit 22) identifies parity for address couple
bits in RAC.

7. Type bits (bits 17:4) define special hold condi-
tions and display buffer read operations. These type
bits are defined in table 3-2-3.

8. SY (bit 13) allows address couple and read dis-
play buffer information to appear simultaneously at
the DRU evaluate level.

9. MR (bit 12) indicates that the operation is pre-
ceded by a force main memory (FMMR) job; conse-
quently, local storage is not checked or modified by
the DRU. Instead, the operation is passed immedi-
ately to MAU for memory transfer.

10. OP (bit 8) identifies parity for operator bits in
RAC.

11. OPERATOR (bits 7:8) identifies operator
code.

12. Address couple (bits 13:14), when evaluated,
provides an absolute address from which data infor-

5010796-001

mation is fetched and placed in CDB result location
for EU use.

The input of operator related information to the
RAC register is through the ACQ, unless the queue
is empty and the DRU is waiting for work, or a PCU
quick fetch operation exists, in which case, the
queue is bypassed.

Table 3-2-3. Type Bit Codes in RAC Register

RAC Code Description

Hold for last push or pop.

Hold for a valid mark stack control word.
Read BOSR.

Read display buffer addressed by RAC bits
13:5.

Read display buffer addressed by XLL.
Read D1.

If IRW-LL is less than XLL read XLC;
else read BOSR.

If RM47, read SILS(22); else read BOSR.

- 00 O\ N

NbHhWw

v

The contents of the write pointer (RAWP) provide
the write address. To access the next location in the
queue, the write pointer is increased by 1, provided
that the write signal is received from the PCU and
there is no PCU hold.

The queue is read by the DRU. The contents of
the read pointer (RAPP) provide the read address.

Top of Stack Queue

The top of stack queue (TOS Q) is the storage
area for top of stack operators pending operator lev-
el processing. Like the AC Q, the TOS Q contains
eight locations. The types of information which can
be loaded into the queue and then read into the op-
erator (RO) register is similar to the AC Q. This in-
formation includes job number, A, B, and R-location
addresses, type bits, memory reference bit, and op-
erator code.

Writing into the TOS Q is performed by the PCU.
Reading from the queue is accomplished by use of
the TOS Q read pointer RTR in the DRU. The oper-
ator read from the queue is the instruction for the
operator level. The address of TOS Q location from
which the operator is read is also provided with each
operator sent to the operator and routine levels. Us-
ually the address is not used. However, when the

3-2-15

3-2-16

FROM

Plzu f—l
INC
TsQ RIO
(8L0C) (a°f<?c,
| INCOMPLETE
OPERATOR
ROUTINE LEVEL (RR)
RESTART NEXT STATE
RO OP LEVEL
FROM
PCU
Aca :
(8 LOC) PRIOP PRIOP
PROM PROM
RAC RROP RR 52,:’;{"‘ l
TAG & DESC. RRR
INFOR.
ACOPS RSTAG & PRIOP PRIOP ROU &
RSDES ROUSP
PROM PROMS PROM PROM PROMS
L l I CONTROLS
e FOR EVAL
LEVEL
DATA PATHS
EVALUATE
RE LEVEL
INTERRUPT
LOGIC
MEMORY MECHANISM EU MOVE REQUEST
DROPQ STACK REQUEST
REIC PRIOP
l PROM
COMPARE
RC LEVEL
RCC
CONTROLS
FOR COMP
LEVEL
t DATA PATHS
DR WRITE 1
| orQ RM RW LEVEL PRIOP
(8 LOC) PROM
INTERRUPT May
LOGIC
l RWIO
TAG & DESC
RWIC INFOR
v 1 I0TAG &
o I0DES
TO PCU
INTERRUPT PROMS
Loaic INCOMPLETE
OPERATOR

ET1274

Figure 3-2-8. DRU Control Pipeline

DRU restarts an operator level operator or a routine
level operator, the current RTR value is temporarily
saved in TOS Q save pointer RTS. The address from
the operator or routine level is loaded into RTR to
provide the TOS Q location associated with the op-
erator being re-executed. When queue is read, the
contents of RTS are loaded back into RTR so that
DRU may continue normal processing.

DRU Control Pipeline

As shown in figure 3-2-8, the DRU control pipe-
line contains: 1) five operator registers (RO. RR,
RE, RC, and RW); 2) incomplete operator queue

(INC OP Q); 3) deferred reference queue (DR OP [}

Q); 49 RM mechanism control; and 5) a network of
256-by-4 PROMs.

The operator registers are the primary control reg-
isters of DRU. These registers provide the input for
the DRU pipeline levels. The inputs include variant
information, type bits, and an eight-bit code for ad-
dressing PROMS.

The 256-by-4 PROMs that comprise the network
contained in the address couple path provide con-
trols for passing address couple data to proper data
paths in the evaluate level and to issue evaluate level
operators, as eight-bit codes, to the RE register.
These operators are used to inform evaluate level
what to do with the address couple data.

In the pipeline, the PROM network provides oper-
ating sequences to control processing in the data and
address circuits of the evaluate, compare, and write
levels of the DRU. Two major PROM networks are
associated with the pipeline: the primary operator
PROMs (PRIOP) and routine PROMs (ROU).

The primary operator PROMs are addressed by
RO, RR, RE, and RC registers, which receive inputs
from various areas of the DRU. Consequently, these
PROMs are identified as operator level PROMs, rou-
tine level PROMs, evaluate PROMs, and compare
level PROMs. As described previously, the DRU
does not operate on basic program operators, but
rather it processes micro operators forwarded to it
by the PCU. When a micro operator is read from the
TOS Q, it is entered into the RO register. The micro
operator forms an eight-bit address that is applied to
the operator level PROMs and the first of a se-
quence of operations is generated (in some cases,
the OP level PROM output sequence). If PROM out-
put is not fed back, the OP level is available for a
new operator from the TOS Q or an operator from
the INC OP Q. Excluding a WAITIO operator, the
OP level PROM output for a new operator always is-
sues a routine level operator to the RRR register.

5010796001

These operators form eight-bit addresses that are
applied to the routine (ROU) PROMSs. In turn, these
PROMs produce operating sequences, such as se-
lecting data onto the P (primary) and X buses, load-
ing RBA and RIA registers to obtain address for
DRU fetch, and setting up string and parameter in-
formation for EU processing.

Execution of a particular ROU level operator may
be accomplished entirely by the ROU PROMs, but
in some cases, an evaluate operator is issued to the
RE register for further pipeline processing. For cer-
tain string operations, such as source and destination
word fetches, the ROU PROMs make use of the rou-
tine special (ROUSP) PROM:s to fill the ASM if the
data is not local.

Various special paths into the RO register exist to
process restart, incomplete, and routine level
operator cases.

When original input for non concatenated index-
type operators (INDX, NXLN, and NXLV
operators not preceded by NAMC) is received, the
input is decoded by use of restart tag (RSTAG)
PROMs. Any unexpected input, such as 0, 2, 3, 4,
6, or 7, results in an invalid operand (INV OP) inter-
rupt being sent to the RO register. This interrupt is
eventually transferred to PCU interrupt logic via
evaluate interrupt code (REIC) register. The remain-
ing valid case is an IRW for a descriptor being
fetched, where an appropriate code is fed back to
the RO register as a restart operator. For example,
in the INDX case. a hex code of 31 is loaded into
RO register as the address for a new PRIOP PROM
sequence. The sequence is used to evaluate an IRW
which eventually finds a descriptor. The processing
of initial inputs for other program operators is the
same as in index-type operators. These program op-
erators are as follows:

. DBUN (dynamic branch).
EVAL (evaluate descriptor).
LOAD.

LODT (load transparent).
OVRD (overwrite destructive).
OVRN (overwrite non-destructive).
RDLK (read with lock).
SNGT (set to single).

. STBR (step and branch).

10. STOR (store).

11. VALC (value call).

VONAUNA W=

There is one other set of PROMs in the restart
path called the restart descriptor (RSDES) PROMs.
The RSDES PROMs are used in the same manner as
RSTAG PROMs. If any unexpected descriptor input
is received for an operator, the INV OP is sent back
to the RO register for PCU interrupt processing.

3-2-17

Otherwise, an appropriate code is returned to RO for
restart operation. The program operators that can be
handled by RSDES PROMs are as follows:
1. EVAL.

2. INDX.

3. LOAD.
4. NXLN.
5. NXLV.
6. OVRD.
7. OVRN.
8. STBR.

9. STOR.

10. VALC.

The incomplete operator path supplies incomplete
operators in which the operator input requires fur-
ther evaluation (or chaining) until a target is found.
These operators are temporarily stored in the INC
OP Q by I0 PROM decodes (described later in the
pipeline discussion).

The RR register receives the OP level code from
RO register. For some operators. code is decoded by
use of a PRIOP PROM and fed back to RO for re-
start operations. For example. a restart code for
translate (TRNS) is always developed by the PROM,
but is only validated if the third input for TRNS is
a source descriptor instead of an operand which is
the source string. In this case. restart code sets up
the routine level to handle source descriptor
evaluation. During interrupt processing. RR code is
provided by PRIOP PROMs and then routed as in-
terrupt code through RE and REIC registers to PCU
interrupt logic.

When the RE register contains an operator from
the various pipeline inputs, the operator forms an
eight-bit address that is applied to the evaluate level
PROMs. The PROM output consists of a five-bit
code and is loaded into the compare command
(RCC) register. The information in RCC is decoded
to provide commands for data and address circuitry
in the compare level. RE also serves as an input to
the RC register.

In addition to receiving code from RE, the RC
register receives code as the result of requests for
use of the compare level by operations, such as
memory mechanism (RM), deferred operator queue,
or for move and stack operators from the EU.

If an MAU job is started by the DRU, the job re-
mains in RM and waits for data from the MAU.
When MAU receives data from memory, the MAU
interrupts the DRU, obtains control of the compare
level, and sends all data to RMD for input to ASM.
At the same time, the three LSBs of address from
the MAU are compared with the three LSBs of ad-
dress in the RM. When a compare occurs, the next

3-2-18

word coming from the MAU is the word required by
the DRU for evaluation. The job in the RM is then
activated again and returned to the compare level.
The difference between this job and the original job
sent down the pipeline is in the compare level com-
mand. The command for the original job is to fetch
data, whereas the command for the activated job is
to transfer the next word in the RMD register to the
RWD register for input to CDB and to activate the
incomplete operator tag (IOTAG) and the incomplete
operator descriptor (IODES) PROMs for possible
chaining action. The functional operation of these
PROMs is identical to the restart PROMs. If chain-
ing is required, the activated job is placed in the
INC OP Q as an incomplete operator.

A second MAU job can be queued in RM as long
as its address does not agree with the address of a
previous MAU job. If the addresses are the same,
the second MAU job is placed in the deferred
operator queue (DROPQ). When the job is read into
compare level, the job is local in the ASM.

Requests for use of the compare level by the EU
occurs when EU is required to write data from one
location to another location within the CDB (called
by MOVE micro operator from PCU) and to read B
item from the CDB to the store queue (called by
STST micro operator from PCU).

In all cases, an evaluate level hold is .temporarily
enabled when a compare level request is granted.

DRU Data and Address Paths

Most of the data paths into and from the evaluate
level are controlled by the routine PROMs (RROU).
Other inputs into this level can be controlled by the
address couple operators (RACOPS).

The evaluation of an operator begins with reading
in the input for the operator (figure 3-2-9). This con-
sists of gating an appropriate source onto the pri-
mary (P) and auxiliary (X) buses and then routing
them to evaluate level registers. P bus inputs are
usually the contents of some CDB location. P bus in-
puts can also be the address adder output, various
state registers. evaluate or write level data. or literal
values. X bus inputs include contents of CDB loca-
tions. address adder output., computed index values,
stack number. saved string lengths. write level data,
and EU information for table word operators.

These P and X buses provide inputs to RED and
REA (normal destination for CDE outputs). RBA
and RIA (address adder base and index inputs), and
REL (used for keeping track of lengths in string op-
erators). The main function of RBA and RIA is to

hold values to be added in the address adder. Nor-
mally, an address is being calculated to be used as
a fetch address. A selected field of the adder output
reads out a portion of the address array into the
compare level. The address array holds addresses
for which the data is stored in the data array. The
full adder output goes to RCA, which is compared
to ROC-R3C for equality. If there is a match, the
data is local and can be loaded into RWD from the
data array. If not, RCA is loaded into RMA and the
MAU fetches the data at this address. The MAU
loads the data into RMD which is then loaded into
the data array and also into RWD. RMD is also used
to accept data from the EU for stores and moving-
type operations. RMD is then loaded into RWD. The
only input to RED is P bus. Descriptors can be
moved from RED through RCD into RWD or they
can be constructed in RCD by use of the RROU
PROM table controls, and then moved into RWD.

Associative Memory

The associative memory (ASM) serves as a local
data buffer that provides fast access to frequently
used variables and descriptors to increase the speed
of memory fetching. Therefore, references are first
made to the ASM; if the data is not local. main
memory is then accessed. The ASM consists of the
following major functional elements:

1. Address Array, which is comprised of 64
blocks, each of which contains four 13-bit address
groups (0 through 3). Each 13-bit address group con-
sists of an 11-bit address and two special residue bits
(S0 and S1).

2. Data Array. which contains 2,048 words. each
of which consists of a parity bit, three tag bits. 48
data bits, two residue bits (R0 and R1). and an error
bit. The data array is also comprised of 64 blocks.
with each block containing four groups (0 through 3).
and each group consisting of eight words.

3. Priority List Array, which is a 4 x 4 register file
that contains 64 eight-bit locations which are config-
ured as four blocks, each of which has 16 locations.
(Of the eight bits available in each word. only five
are used for the priority function.)

5010796001

The data input to the address array is taken from
DRU address bus RAB (19-09, S0, St1), which pro-
vides 11 bits of address and two special residue bits.
The array (which is composed of RAM1 chips) is ad-
dressed by bits 08 through 03 of RAB; the address
and chip select inputs can originate from a store-to-
stack (push). the DRU write data register. adder out-
put. memory address register, or deferred reference
queue address. Each block in the address array con-
sists of four 13-bit fields; each field is comprised of
an 11-bit address and two special residue bits.

Seventeen bits (19 through 03) of a memory address
or stack plus | (XSP) are applied to the address ar-
ray; bits 19 through 09 are the address written into
the array. and bits 08 through 03 identify the block
to which the address is written.

The data array is used to store memory data from
either MFD (for memory fetching operations) or
CEDE (for memory stores). The 11 bits of address
required to address the 2.048 words of the data array
are supplied by RCA and compare level signals RCL
Gl and GO. Bits 08 through 03 of RCA identify the
block. bits 02 through 00 identify the word within a
group. and RCL GI and GO identify the group.

The priority list array is used to provide a history
of the groups contained in the address array. Since
there is a fixed amount of storage (four locations, or
groups) for addresses with the same block value (bits
8 through 3). one of the existing addresses must be
overwritten if a fifth address is to be loaded. Which
of the addresses is overwritten is determined by the
priority list entries for that block. The array contains
64 locations. one for each block of the address ar-
ray. Five of the eight bits available in each priority
list word are used; two bits indicate the address that
has not been referenced for the longest time. known
as the oldest group. Two bits indicate the second
oldest group. and the last bit indicates whether the
newest (fifth) entry has a greater value than the new-
est existing group entry for that block in the priority
list array. Therefore, when a fifth address is applied
to the address array. the new address and data are
written into the oldest existing group and the group
ordering (from newest to oldest) is then adjusted by
the priority list array to reflect the current priority.

3-2-19

Stack Address Registers

The stack address registers (shown in figure 3-2-
10) are used during ENTR. EXIT. MVST. and
MKST. and are maintained automatically by the
DRU as part of the stack address adjustment pro-
cess. Figure 3-2-10 shows that stack addresses are
transferred from the adder output (RAO) to certain
stack address registers and from one stack address
register to another by use of input selection gates.

The registers and the general use of each are as
follows:

1. S register contains the address of the top item
in the stack. This address is passed to the DRU
compare level for fetch stack operations and to the
Store Q for stack-cut back operations.

2. XSP register contains S register contents plus
one. This register provides a quick method of ad-
Jjusting S register during POP and PUSH operations.
For POP operations. both S and XSP values are de-
creased by 1 (that is.transferring S into XSP and
decrementing S). For PUSH operations. both S and
XSP values are increased by | (that is. transferring
XSP into S and incrementing XSP).

3. XLOS (Limit of Stack) register contains the ad-
dress of the highest usable location in the active
stack. During Move to Stack operations. the XLOS
is loaded with the base address plus length (minus 1)
from the fetched descriptor for the requested stack.

4. XLSP register contains LOS register contents
plus 32. This register extends the range for above S
conditions because certain operations in the DRU
pipeline can reference items above the upper limit of
the stack when the CPM is ready to report a stack
overflow condition. If above S condition occurs
(RCA <—XLSP). the PCU issues store to stack
(PUSH) operators to clear the top of stack.

S. F register identifies the top-most MSCW in the
stack. During EXIT. the DF field of the MSCW be-
ing cut back is subtracted from D[LL] and the result

3220

is loaded into XF. The new F is used to fetch the
previous MSCW. During MVST, a new value for XF
(DSF of the TOSCW from the stack being entered +
BOSR) is loaded into XF. This new F value is later
used in calculation of MSCW. During ENTR. the
XF is read onto the stack bus (XSB) to fetch IRW
at F + 1 for evaluation. to fetch inactive MSCW and
load store address list (SAL) with mark address (XF,
so that the EU can activate the MSCW. and to write
RCW into the stack at F + 1.

6. XSR (Save Register) holds S value so that the
S register can be returned to the previous value if
DRU is doing an EXIT and EU is reporting a condi-
tional branch or restart condition. To accomplish the
returning of S. along with F. to the previous value.
the XSR and XSP are loaded into XS and XF, re-
spectively. and the XSP increment flip-flop is set.
Then on the next cycle. the XSP is incremented by
1(S+ D

LL Data Paths

As shown in figure 3-2-11, the major elements in
the LL data paths include the current lex level
(XLL) register, lex level save (XLS) register, lex
level counter (XLC), LL decode logic, and PROMS.

The XLS and XLC registers are used as alternate
registers during execution of dynamic branch uncon-
ditional (DBUN), enter (ENTR), and exit (EXIT) op-
erators when contents of PCW (for DBUN and
ENTR) or RCW (for exit) are distributed. Because
addressing environment of CPM is not ready to be
changed at this time, the LL field in the PCW or
RCW cannot to loaded in XLL register. Therefore,
the LL field is saved in XLS register until ad-
dressing environment is to be changed. At this time,
XLL is exchanged with XLS to provide a copy of
previous LL. when DRU enters into new address en-
vironment. This copy of LL is saved because other
sections of the CPM have not changed over to the
new address environment. Then, if recovery is re-
quired, a return to old address environment can be
made.

— -——
— jo——
— P BUS X BUS r.-——
— ——
— g
—— ——
RED REA RBA RIA REL
EVALUATE ADDER DIsP
LEVEL BUF
RAO
RMA RDB
XSP
——-J ’.
RAB
ADDRESS
ARRAY
RWA
— RMA_
EU MAU R
' { | ' { i
RMD RMA RCD RCA L RoC] l RIC l r R2C I I R3C
MAU COMPARES
COMPARE
LEVEL
DATA ARRAY
WRITE
LEVEL RWD RWA
cDB CDB
ET1678
Figure 3-2.9. DRU Data and Address Paths
5010796-001 3221

ADDER
OUTPUT
(RAO)

A A

INPUT SELECTOR GATES

i

'

! !]

Xsp XLSP
(S+1) XF XLos X§ (LOS+32)
l ?]
RCA>S* $=L0S S<F
RCA<=XLSP *PUSH *POP 1
STACK STACK
“BgVE OVER UNDER XSR
FLOW FLOW
comp comp comp I
Yy v Vv l l l
S QUEUE RAS SKOF SKUF
STACKBUS IN TO PCU (REPORTED (REPORTED
(XSB) STORE RESTART AS ASPECIAL AS AN ALARM
Q LOGIC INTERRUPT INTERRUPT
ET1283 IN P1) IN P1)

Figure 3-2-10. Stack Address Registers

The XLC register is primarily used for updating
display registers. When XLL and XLS are ex-
changed, the XLC is initialized to LL being run at.
When update display is performed, the XLC is used
as a marker for counting down through the LLs.
Also, at the beginning of ENTR, the LL of IRW,
which found the PCW, is saved in XLC. Therefore,
anytime an IRW evaluation is performed for ENTR,
the LL of IRW is loaded into XLC. This is a new
method of handling stack number displacement
where a decision is based on whether the LL of
IRW, which points to the PCW, is equal or less than
current LL.

If LL of IRW is less than the current LL (XLL
value), a mark can be fetched and its stack number
displacement field can be extracted for a new mark
being built (LL + 1).

If LL of IRW is equal to current LL, the LL of
IRW is at the top-most environment of the stack (i.e,
LL is in current stack). Thus, calculation of DLL -
BOSR provides displacement for the mark which is
in the current environment.

3222

The LL bus forwards outputs from XLL or XLS
to EU barrel for building a MSCW being entered or
a RCW, respectively.

- EXECUTION UNIT

The execution unit (EU) is the only unit in the
CPM which operates on value data. It also has re-
sponsibility in assembling some control words.

A simplified block diagram of the EU is shown in
figure 3-2-12. As shown in this figure, the EU con-
tains three major processing sections (EUCDB.
ALU. and SAU). Each is explained in section 1 of
this chapter. Other major sections of the EU include
the barrel, the macrocode routine. the execution
write register (EWR). and the input queues. Barrel
is controlled by EUCDB and ALU. These controls
allow either a right or left-justified field of any length
(from 0 through 48) to be selected as the barrel out-
put. Macrocode routines are issued by the EU when
complex operators require a sequence of simple op-
erations for processing. EWR, an autonomous sec-
tion of the EU. contains independent controls and
grants priority to inputs from ALU. SAU. and bar-
rel.

LL FIELD
OF PCW OR
RCW
XLL XLS
4—o0 4——0

LL FIELD
OF IRW

il

PROM

PROM OUTPUT
(1) LL OF IRW IF LL OF IRW = XLL
(2) LL+1 IF LL OF IRW <XLL

XLC-1

1

LL DECODE
LL BUS LOGIC
TO EU TO DRU
CONTROL LOGIC
ET1289

——

Figure 3-2-11. LL Data Paths

The EU, like the DRU, is queue-driven. All
operators and operator information are placed into
the operator queue by the PCU. The string informa-
tion input, such as source and destination pointer
values to the EU, is placed into the parameter queue
when it is forwarded to the EU by the DRU. EU is
responsible for performing operations on the string
data which includes comparing, translating, modify-
ing, and moving the data.

EU Operator Queue

The EU operator queue (EU OP Q) is the storage
area for micro-operators and related information
pending EU processing. The use of the queue allows
the PCU and EU to operate independently. The in-
formation to be written into the EU OP Q is placed
in the PCU operator input registers (PQO and PQE);
PCU write address registers (PWA, PWB, and
PWR); IPCU data write register (PLW), and PCU
write job number register (PWJ). The PCU loads
these registers, then initiates the write cycle. EU OP
Q is read by the EU and the operators read from the
EU OP Q are the addresses for the EU PROM net-
works.

5010796-001

Parameter Queue

The purpose of the parameter queue is to buffer
parameter information (source pointer, destination
pointer, segment length, and certain controls) for use
in building destination words in the EU. The DRU
provides new parameter information for each desti-
nation word produced. In most string operations, if
the operation is to produce five destination words
and each of these five words is written into
consecutive addresses in memory destination array.
then five parameters must be passed from DRU to
EU.

The exception is in table edit operators which re-
quire separate parameters for each micro-operator.
Therefore. several parameters may be required to
build one destination word.

The source. destination, and segment length infor-
mation is received into the parameter queue as bi-
nary values. These binary values represent the ac-
tual starting bit and the number of bits to be moved
from source word to destination word. The conver-
sion from character representation to binary values
is performed by PROMs during DRU to EU trans-
fers.

3223

FROM

FROM

MACRO l !—- T —l
S | | wae] e |
I
[
v | s]
EUCDB | ALV _$ SAU
——
I I)|
4
ET1278 Aszggl:??;oscgns

Figure 3-2-12. Execution Unit Block Diagram

The source. destination, and segment length infor-
mation is used to set up the shift and allow registers
in the EU barrel.

EU Control Pipeline

Like the DRU. the pipeline processing technique
is implemented in the EU. There exists within the
EU four distinct processing levels: a look ahead lev-
el, a read level, an ECDB level, and a terminate op-
erator level.

As shown in figure 3-2-13., each processing level
has a pointer register. Basically. the pointer registers
(ELO, EQO, ECO0. and ERO0) are used to remember a
particular EU OP Q location from which an operator
was read if a restart is required at the ECDB level.
Functionally, the EU OP Q is divided into two parts:
the operator queue for the ALU and SAU and the
EUCDB queue.

3224

The ETO pointer register serves to define EU OP
Q full for PCU. When ETO equals OP Q write point-
er PQEW. the PIE hold logic in the PCU is
temporarily enabled until OP Q can accept the oper-
ator from the PCU.

In order that EU may know when a pointer regis-
ter has been loaded. there is a separate valid bit as-
sociated with each pointer register. In addition to the
valid bit. the ELO contains a last load (LL) bit,
which indicates that PCU has loaded EU OP Q since
the last EU pipeline advance or that ELO received
a restart operation from ERQ. The LL bit simply al-
lows EU to remember that an operation exists in the
EU OP Q even though EU OP Q read and write
pointers are made equal by the last pipeline advance.
For restart case. the ERO valid bit allows transfer of
ERO to ELO before the next EU OP Q read occurs.

ERO
VL 2-0
=1 T
ELO
ook | S| |20 \
AHEAD
LEVEL — [aoomess coe | roce
| —_
i
Q0
e z;—o_l - ECL
READ ‘ 1 [
LEVEL
IADDRESS PQEW ECL
e ~m — PROM
=) T
—_— —_— —— — —% —
I vfbg_o] I A B.RJ] [EAU] I ESUJ ECB BT, LN.-RD
ECDB Y '] Y
LEVEL ALU/SAU ALU SAU ECDB | BARREL/READ
PIPELINE PROM PROM | |.PROM PIPELINE
TERMINATE[E70
OP. LEVEL | VL 2.0
\i

PCU

EU PIPELINE POINTERS
ELO : OPQ LOOK AHEAD PTR.
EQO : OPQ READ PTR.
ECO : ECDB OP Q REMEMBER PTR.
ETO : ECDB OP Q TERMINATION PTR.
ERO : OP Q RESTART PTR.

€7 1518

Figure 3-2-13. EU Control Pipeline

When a look-ahead read is performed by ELO
(pointers ELO and POEW =), the EQO is loaded
with ELO pointer value, and. if present, an eight-bit
microcode from the OP Q is read into ECL. Also.
the contents of ELO pointer are updated by use of
a separate adder and the updated content is loaded
back into the pointer for use on the next cycle. The
eight-bit microcode in ECL is used to address the
EUCDB look-ahead PROM (ECL). The EQO pointer
reads the ALU and SAU OP Q location that is asso-
ciated with the ECDB OP Q location read on the
previous cycle.

On the next cycle, as the EQO pointer value is
loaded into ECO, the ECB register is loaded from
ECL and the microcode from OP Q is loaded into

5010796001

EAU. ESU, or both, and the first of a sequence of
ALU and SAU operations is generated through ALU
and SAU PROMs, provided that the unit is not wait-
ing for ECDB to supply data. Also at this time, if
the ECL PROM is addressed, the EU CDB read ad-
dress from the OP Q or, for special cases, EU gener-
ated address is loaded into CER by ECL PROM.
Using these addresses allows CDB data to be read
onto the ALU and SAU input buses of the EU. The
ECL PROM is also used to set up shift, right allow,
and left allow amounts used by the EU barrel. Al-
though ECL PROM provides shift and allow infor-
mation, the barrel controls are implemented by the
ECDB PROM. The controls include barrel input
load; barrel shift, right allow, and left allow register
loads; and barrel output destination.

3225

It should be noted that initial functions of the ECL
and ECDB PROMs are identical because the EU
store subunit can obtain control of CER as the trans-
fer of ECL to ECB occurs. If this should occur, then
the ECDB PROM functions provide the necessary
controls; otherwise, the ECDB PROM functions are
ignored.

At this point in the pipeline operation. the ECDB
can iterate, and, if it does, the ECO pointer holds.
This hold is removed when ECDB provides neces-
sary data to the barrel, ALU, or SAU. or when an
EU restart is required.

If ECDB releases hold, the pointer information is
not needed anymore so ECO pointer value is loaded
into ET0 which indicates ECDB has terminated the
operator.

For restart case, the OP Q pointer value in ECO
is loaded into ERO and then back into ELO to start
an operator through the pipeline again. For example,
the ECDB calls macrocode for copy action or to in-
tegerize the input to the ALU. After copy action or
integerizing is completed, a Return To Pipeline is
performed where the ECDB operator is started with
new data. Instead of reading from A or B locations.
the selected location for a read is W. (The selection
of W is controlled by Remember W flip-flop ERW.)
The W location contains new data for the operator.
(In this example., a descriptor with copy bit ON or
integerized data is being processed.)

When the ECDB operation ends, the ALU can be
operating on data. For example, after ECDB sends
two inputs to the ALU for a divide and then ends.
the ALU performs the divide operation. The pipeline
can again activate ECDB which can supply data for
an SAU operation.

EU Code Paths

The EU code paths (shown in figure 3-2-14) con-
sist of four major functional areas: 1) the operator
queue; 2) the ECDB, ALU, and SAU PROMs; 3)
the EU macrocode (EUMC) PROM; and 4) the
pointer registers associated with these PROMs. The
operator queue consists of 4-by-4 register files that
can be simultaneously read and written. Functional-
ly, the operator queue is divided into two parts: the
ECDB queue, and the operator queue for ALU and
SAU processing. Micro operators written to the
queue originate in the PCU and are applied to the
_queue via registers PQE and PQO.

The ECDB operators are read from the queue by
look-ahead pointer ELO (described later under
‘‘Pipeline’’) and the eight-bit microcode read from
the queue is applied to CDB look-ahead register
" ECL. These operators form eight-bit addresses that

3226

are applied to the ECDB PROM network via CDB
operator register ECB. The ALU and SAU portion
of the operator queue is read by queue operator
pointer EQO, which is also described in the discus-
sion of the operator queue pipeline. These operators
also form eight-bit addresses that are applied to the
ALU and SAU PROM networks. The PCU micro
operator specifically addresses the ALU, the SAU,
or both.

ECDB PROM Network

The 256-by-4 PROMs that comprise the networks
contained in the EU code paths produce operating
sequences to control processing in the EU. Some of
the functions of these operating sequences are as fol-
lows:

1. To select read address paths to CDB EU regis-
ters.

2. To transfer the CDB bus to ALU and SAU in-
put buses.

3. For store-to-stack operations, to transfer EW to
the RMD register (write into store queue and asso-
ciative memory.)

The ECDB PROMs are addressed by the eight-bit
register ECB. These PROMs provide three major
outputs. One output is fed back to the ECB register
to indicate the next state (or address) in the PROM
output sequence. A second major output is used to
select the ALU or SAU PROMSs (via arithmetic se-
lection circuits) if the PCU micro operator requires
use of the barrel prior to being processed by the
ALU or SAU. For example. if scan while compare
(SCWC) micro operator is issued to EUCDB by the
PCU. a delimiter is read from the CDB and is shifted
by the barrel to update required character in
preparation for comparison with the source character
by the ALU.

The third major output of the ECDB is applied to
macrocode register EMC. This output is used if a
copy action operation is to be sent to the ALU, or
if it is necessary to integerize the input to the ALU.
This function is performed if input for a DBUN or
LLLU operator or certain types of scale right and
bit operators require integerizing.

ALU PROM Network

Four major functional areas are associated with
the ALU PROM network: 1) arithmetic selection cir-
cuits; 2) operator save register EOS; 3) arithmetic
unit operator register EAU; and 4) macrocode regis-
ter EMC. The arithmetic selection circuits handle in-
puts from the operator queue or macrocode (through
the micro operator selection circuits), the ECDB
PROMs. and the EOS register. This register is used

PCU

PQE PQO l I
EMC
' |
ELO : | EQO EUMC
———» ECDB orQ |je— PROM
oPQ |
I | L
ECL MICRO-OP SELECTION
EUMC CODE
vl 1A
ECB ARITH. SEL.
+ t
EOS
EAU ESU
ECDB ALU SAU
pROM [PROM il PROM
ET1284

Figure 3-2-14. EU Code Paths

5010796-001 3227

to temporarily save an operator destined for the
ALU if the ALU is currently processing the previ-
ous operator.

When the ALU is finished processing, the
operator saved in EOS is then selected into the EAU
register. This register is loaded with eight-bit
operators that are used to address the ALU PROM
and produce the PROM sequences needed to process
the data in the ALU. For double-precision operators
and difficult operators, such as scale operators, the
ALU makes use of the macrocode register (EMC) to
obtain additional micro operators via the EUMC
PROMs. Some of the functions of operating se-
quences provided by the ALU PROMs are as fol-
lows:

1. To direct the AI bus to one of the four ALU
input registers.

2. To set the end-around-carry mode of the ALU
adder.

3. To complement the AL or AM to AB registers.

4. To direct barrel data to BS (save) register, EW
register, or back to ALU via the Al bus.

SAU PROM Network

The SAU PROM network is addressed by the
short arithmetic unit register ESU, which receives
input from the arithmetic selection circuits. For PCU
micro operators, the SAU has priority over the ALU
if the integer length for ADD and COMP operators
is less than or equal to 20 bits and for multiply oper-
ators, if less than or equal to eight bits. Whenever
these conditions are satisfied, the ALU is inhibited
from requesting the EW register and from loading
the barrel. If the integer length requirements are not
met, the SAU aborts the job; it is then inhibited
from requesting the EW register, and the job is pro-
cessed by the ALU. Some of the functions of oper-
ating sequences provided by the SAU PROMS are
as follows:

1. To control carries into and out of the SAU add-
er.
2. To load the SAU adder output to the SY regis-
ter.

EUMC PROM Network

The function of the EUMC PROM network is to
provide micro operators required for processing but
not issued by the PCU. If a condition arises during
the execution of an ALU or ECDB micro operator
that requires a micro operator not issued by the
PCU, the required code is then supplied by the
EUMC PROM network. The code is passed through
the appropriate selection circuits and is applied to
the specific PROM address register involved. For
data associated with new EUMC microcode sent to
one of the three PROM address registers, the EUMC
PROMs re-issue CDB read addresses to the CER.

3228

The EUMC PROMs also issue CDB write addresses
to the CEW for resultant data to be temporarily
stored in the EU data file, the EU local file, or the
exponent file in the CDB.

CDB EU READ POINTER
REGISTER

The CDB EU read pointer register (CER) is used
to select an EU CDB location for reading. The loca-
tion to be read is determined by the ECDB and
EUMC operator being performed or by the store
data address from the EDB register. The CER is
loaded. if there is no barrel. SAU. or ALU hold
(ECDB.HDL): or if an address input from the Store
Data OP Queue exists and RMD is ready to accept
data from the CDB.

Figure 3-2-15 shows the inputs to the CER. The
signals. which transfer the inputs to the CER. are
developed by decode logic. This logic receives
various commands from EUCDB PROMs. ECL and
EUMC PROMs. or from EUMC PROMs through
special registers. These registers are loaded by ma-
crocode but are selected by EUCDB code to deter-
mine which CDB address is read. These CDB ad-
dresses are:

. Read A (address in EPA).
. Read B (address in EPB).
. Read R (address in EPR).
. Read W2 and W3.

. Read X0. X1. and X2.

A and B Selection Path

The A and B selection paths are the source for
loading:

NN W9 —

The A and B address from the EU OP Q.
The W2 (Hex 2E) and W3 (Hex 2F) address.
. The EPA and EPB registers.

For A selection only. the result address (EPR)
into the CER.

Store Data Read Address Path

The store data read. address is loaded into EDB as
part of the EU store subunit processing. EDB is
transferred into CER when the store counter register
indicates a store exists. the older EU operators are
processed. and the SAL address is declared valid by
DRU. Transferring the store address to CER also
prevents other transfers to CER from occurring at
the same time. The store address can only be loaded
into CER when the transfer of the next operator
from ECL to ECB takes place. (Refer to
subparagraph headed EU Control Pipeline.)

-bb-if\)'—'

ET 1679

5010796-001

PCU

r

o

uy

Figure 3-2-15. EU

CDB Read Address Paths

N
A LOC Loc
STORE ECL
DATA AND ECDB OPQ
OPQ EUMC PROMS
PROMS
W2 EPR l W3
EDB NEXT ECDB A SELECT B SELECT
X W { |
+ ‘“ EPA EPB
ESW EDW L____ ‘__
COUNTER COUNTER
LOGIC LOGIC

3229

Source and Destination Pointer
Path

The source and destination pointer path is used for
reading string data into the barrel for processing.
The source word register ESW and destination word

" register EDW pointers are used to locate the data to
be read from DRU string data file in the CDB. ESW
and EDW select locations 10 through 17 and 18
through 1B, respectively, in the DRU string data file
of the CDB.

The pointer that is to be loaded into CER is se-
lected by a transfer signal that is derived from
EUCDB CDB read category PROM when string op-
erators are processed. Pointers are also updated to
show the location in the CDB when transfer is end-
ed. Parity is maintained on the contents of the point-
ers and is updated each time the pointer value is up-
dated.

The pointers are reset whenever clear queue oc-
curs or EU has aborted a string operator. This reset
provides the start locations (location 10 for source
words and location 18 for destination words) to al-
low counting the pointers to address the next string
location. (The reset of these pointers provides com-
patibility between locations assigned by the DRU
and locations read by the EU.)

EU BARREL

The data paths of the barrel consist of the barrel
input (BN) register, selection logic for pack and un-
pack data, coarse and fine shift logic, and the barrel
output logic. (See figure 3-2-16.) The coarse and fine
shift logic is implemented with MFAN chips so the
barrel may be used repeatedly during each clock cy-
cle. The coarse part of the barrel shifts the input
data by multiples of 1.

Because of the barrel inputs from the EU read
register (ER)., CDB bus. ALU output, and barrel
output, the BN register has input selection gating.
The desired input selection is controlled by ALU
PROM commands.

The ER register loads the BN register and is the
buffer register for checking parity on data transfers
from the CDB bus to the EU barrel and for decoding
the number of leading zero digits of mantissa data.
The ER register is loaded any time a CDB transfer
to BN takes place or a CDB bus and an Al bus to
ALU condition exists.

The output of the barrel is selected to BN register
for additional barrel operations, to EU write (EW)
register for transfer to CDB, to the Al bus for trans-
fer to ALU. to the SI bus for transfer to SAU. or
the barrel save (BS) register. The BS register holds
data that is to be ORed with new barrel ‘data. -

3230

Contents of the left and right allow registers (ELA
and ERA) determine the lowest and highest bit num-
ber. respectively. to be transferred at the barrel out-
put.

A special flip-flop is used to correct barrel output
parity when the barrel is in a hold condition (for
ALU to BN transfers only). The purpose of this bar-
rel output parity correction is to use the accumulated
parity of the EBR and EW registers before the infor-
mation becomes invalid on the next clock cycle.

SHORT ARITHMETIC UNIT (SAU)

The SAU performs SP integer arithmetic
operations of 20 bits or less, eight-bit multiply
operations to produce 16-bit result, and double-preci-
sion exponent calculations. The loading sequence for
the SAU consists of one-cycle operand load and
two-cycle operand load.

In the one-cycle load. both operands are received
simultaneously by the SAU (the VALC from the
CDB and either a LIT from the PCU or the SAU
output from a previous operator). Excluding the mul-
tiply operator, the next cycle allows the PROM ad-
dress to be accessed again. The multiply operator re-
quires another cycle to complete the operation.

For a two-cycle operand load, the SAU receives
the A operand on the first cycle and the B operand
during the second cycle to complete the operation.

The basic functions of the SAU sections (figure 3-

- 2-17) are:

1. ESX register provides input for the parity
check and residue generator logic, temporary storage
for the result exponent during double-precision, and
temporary storage for the carry save carries during
multiply operations.

2. ESY register provides one of the operands for
arithmetic operations. the complemented operand for
a subtract operation, and temporary storage for par-
tial products and carry sums during multiply.

3. Adder logic is a standard two-input adder
which propagates all carries on each adder pass.
AFANSs are used as adders. Subtraction is performed
by adding the B complement to A.

ALU BARREL

CbB ER OUTPUT OUTPUT
Y Y l l l
ER REG BN REG
‘ l
v] P
TO LEADING TO PARITY ACK UNPACK
'ZERO DETEC- CHECKER LOGIC

i

COARSE BARREL SHIFT X8
‘—
SHIFT LOGIC

FINE BARREL . SHIFT X1
SHIFT LOGIC

ALLOW l ALLOW l —
BARREL REJECT
ARREL REJEC BARREL OUTPUT BS REG
EBR REG v
TO EW, ALU (VIA
Al BUS), AND
SAU (VIA SI BUS)
TO PARITY
CHECKER

ET 1680

Figure 3-2-16. Barrel Data Paths
5010796-001 3-2-31

ur FORCED

csw;v INPUT VALUES
ADDER CARRY
Abper | SAVE
ADDER OuUTPUT| ADDER
sI BUS OUTIUT l l
ESX REG ESY REG
I I))
EXPONENT MULTIPLY
SELECTION ADDER PROMS
GATES r
PARITY l l
CHECK
RESIDUE T0 EW T0 ESX, ESY CARRY SAVE
GEN AND EW ADDER
ET 1681 l
10 ESX
AND ESY

Figure 3-2-17. SAU Data Paths

4. Multiply PROMs multiply the entire eight-bit
multiplicand by eight bits of multiplier. Then, on the
adder pass. the accumulated partial product is added
to the carry number. The ESY register enters the ac-
cumulated partial product while the ESX register
provides the carry number.

5. Carry save adder generates sum and carry for
each of the partial product inputs.

6. Exponent selection gates allow exponent inser-
tion into the EW.

The SAU parity logic netword checks the parity of
information passed to the ESX register from the SI
bus.

The residue logic maintains residue on SAU adder
output. The residue check is performed at the EW
level of the EU.

3232

ESX and ESY registers have the residue loaded at
the same time the information is loaded. The residue
comes from the following sources:

For ESX Register:

1. The S + 1 address is sent from the I bus
through the SI bus with residue. (For mark
stack operator case.)

2. Information from the SAU adder (ESA) has
residue.

3. The residue in ESX is saved (residue is loaded
back into ESX) and is multiplied by the ESY
residue to obtain the residue of multiplication
result.

4. Most inputs have no initial residue. In these
cases, residue is generated with the data.

For ESY Register:
I. Information from the SAU adder has residue.

2. Value for LIT is sent from the PLW through
the PCU pointer queue with residue. (PLW has
a residue generator.)

3. EU I and J word and digit information are sent
from the pointer select logic with residue.

4. Forced values are loaded with forced residue.

5. The residue in ESY is saved and is multiplied
by ESX residue to obtain residue of multiplica-
tion result.

ARITHMETIC LOGIC UNIT (ALU)

The ALU is used to perform most types of arith-
metic and logical computations in the EU. The ALU
operates on non-integer or integer data that is great-
er than 20 bits. Error detection includes residue and
parity checks. Residue is used to detect errors in the
exponent and mantissa data paths and associated
data registers and in the repetition counter circuitry.
Parity is used to detect errors in data that is adjusted
for specific ALU operations.

Figure 3-2-18 is a block diagram of the ALU data
paths. The basic functions of the ALU sections are:

I. AS (egister is primarily used as a shift register
in arithmetic and count operations and an input
to the parity and residue generator logic.

2. AA register is used as an accumulator register
and an input register for the main adder.

3. AB register is used to supply data in comple-
ment or true form to the main adder and the
logic unit.

4. AX register is the primary input to the expo-
nent adder.

5. BX register is the secondary input to the expo-
nent adder.

6. Exponent adder is used for adding or subtract-
Ing exponents during single-precision floating-
point arithmetic operations.

5010796-001

9.

Exponent difference (XD) register contains the
exponent value that is used to determine shift
and allow inputs for the barrel operation.

. Conversion PROMs perform the following oper-

ations:

a. BCD to binarv conversion for the input con-
vert destructive ICVD and input convert up-
date ICVU operators.

b. Binary to decimal conversion for the scale
right final SCRF operator with an input equal
to. or greater than. 32 bits.

¢. Count the number of 1 bits in the A operand
for the count binary I's CBON operator.

Multiply (MUL) register is the input to the
MULT PROM for loading one or two octal
digits of the multiplier from the AS register. It
is also the input to MULT PROM for loading
the scale right PROM output for double-preci-
sion scale right operators or for a single-preci-
sion scale right operator with an input less than
32 bits.

10. Multiply (MULT) PROMSs select proper multi-

ple into the AB register. The selected multiple
is entered in true form to add that multiple to
the partial product or in complement form to
subtract that multiple from the partial product.

. Scale right PROM provides a binary value that
is a representation of the number 10 to the
minus scale factor (not greater than 12). Selec-
tion of the binary value is done by the ALU
variant register. which contains scale factor
provided by the PCU and the repetition coun-
ter. The RC counter is first loaded with a
count (16-LX) that represents the number of
octal digits in the number (A operand) to be
scaled. RC count is then decreased by | or 2
on each multiplication cycle until RC equals 0.
The multiples for each multiply cycle are se-
lected by the MULT PROMSs in accordance
with the binary value supplied to the MUL
from the scale right PROM.

3233

AB
Lz :
R

MAIN ADDER

OUTPUT

MAIN
ADDER
EXP MAIN
outpuT OUTPUT PPR ADDER PT
ADDER oM OUTPUT TRUE OR COMP.
EQUO | OVERFLOW ER XD SELECT LOGIC
ALU BUS (A1) | r |
_ . q MAIN
et o b b L bbbt bbed g
’ OUTPUT
R R SCALE y y
RIGHT
AS REG PROM AX REG AA REG BX REG AB REG
¥]] ; !
EXPONENT
MAIN ADDER pL1
| | MuLT ADDER LOGIC UNIT
PROMS
CONVER-
SION
PROMS
l TO AB AND AS | AM
T OR C SELECT
T0 AA LoGIC Y v ¥ l Y l Y
AND AB EXPONENT ADDERT
OUTPUT OUTPUT | exp
‘ OUTPUT
A -TO EW, AA, L E QUOTIENT
! Y v v AB AND AM 0 »| EXPONENT — REP |5
PARITY TO EW Al X PROMS CTR | ALU
XD CONTROLS
CHECK - 1 ¢
RESIDUE
) RM REG
_GEN pTR INPUT
l CONTROLS
v 4
XD — PTR DIVIDE E
SUBTRACTOR TABLE > 3 > TOAS
PROMS
L_ (0]
ET-1682 TO EU TOTORC
S
BARREL SELECT LOGIC

32-34

Figure 3-2-18. ALU Data Paths

12.

15.

18.

Main adder is a standard two-input adder
which propagates all carries on each adder
pass. AFANs are used as adders. Subtraction
is accomplished by adding B complement to
A. In order to accommodate multiply and di-
vide operations, an extension of the adder out-
put is provided to pass the final result into an
accumulating register. The extension is identi-
fied as guard bits in the ALU logic. The PLI
adds an additional 1 into the adder for certain
multiply and divide operations.

. Logic unit is a portion of the main adder

AFAN chips. It provides an efficient means
for executing logical operations. The generate
and propagate outputs. which are developed
for each bit position by the AFANs. are selec-
tively gated to derive the logical AND, OR,
and exclusive OR functions.

. AL and AM registers are used as temporary

storage locations to form new operands for
certain arithmetic operations.

XD-PTR subtractor is used in ADD operations
in which the mantissa with the smallest expo-
nent is shifted right to equalize the exponents.
The number of LZ of the mantissa with the
greatest exponent is subtracted from the expo-
nent difference to determine the right shift
value for the mantissa with the smallest expo-
nent value. This value is loaded back into XD
and then applied to digit conversion. PROMs.
where the proper shift and allow barrel con-
trols are selected for right shifting the man-
tissa.

. RM register contains six MS bits of the re-

mainder for use by the divide table PROMs.
These PROMs are programmed to predict the
trial quotient for the next cycle and also to se-
lect proper multiples into AB register. Trial
quotients from the divide table PROMs are
loaded into EQUO and then routed to the two
LS bits of the AS register on each cycle.

. Quotient (EQX) register is the input to the

quotient exponent PROMs. These PROMs de-
termine the number of iterations needed to de-
velop the integer portion of the quotient.

Repetition counter holds and releases ALU
PROM sequences and controls certain data de-
codes within the ALU PROM sequences.

5010796001

The ALU parity logic is composed of an AS parity
generator, parity update logic, and the logic to select
the type of parity checking required. The parity gen-
erator provides parity on information shifted into the
AS register and parity on certain operator inputs to
AA and AB registers.

Parity update occurs because right shifting of data
into the adder output causes loss of bits with un-
known parity. In such cases. an ALU PROM com-
mand ensures that adder output parity data is cor-
rected to accommodate the loss bits.

The residue generator is used to generate residue
for the exponent and mantissa data.

Inputs to AX from the barrel (through the ALU
bus) and from the ER register are not transferred
with residue. so residue must be generated. During
ALU bus transfers. residue is provided by the
residue generator. For ER transfers. the residue is
generated by a PROM (on card EFO0). Inputs to BX
from either [digit or J digit pointer, or leading 0's
logic. have residue already available.

The residue of the exponent adder output is auto-
matically checked at EW level to make sure that the
residue is correct. If residue is incorrect. then an
EW residue error is reported as an alarm interrupt
in EU interrupt error register EIE. Also. connected
to the exponent adder output residue are the EQX
Residue flip-flops. which, along with EQX PROM.,
report residue errors that only occur during IDIV
operator processing. If this residue is incorrect. then
an EQX register residue error is reported as an
alarm interrupt in the EAE register.

All residue for AA. AB. and main adder output is
controlled by their respective ALU PROMs. The
residue is adjusted. along with the data with which
it is associated. First. the basic adder residue is de-
termined. then the basic residue is corrected by the
PROMs to provide the proper output residue. Sign
bits are never included in residue generation. How-
ever. because the residue is adjusted for sign when
it is used. the signs are included in the residue
check.

Inputs to AA from the CDB Memory Address bus
(CMA). procedure return register (PPR). and for DP
divide operations from ALU bus (through EW) have
residue already available. Also. inputs to AB from
the conversion PROMs have residue already avail-
able.

In many cases it is necessary to catch up on
residue. This catch-up residue occurs when an oper-
ator has two inputs to process. In such cases, the
residue generator output is added to. or subtracted

3235

from, the adder output residue according to the type
of operator being processed. For example, at the
start of a DP ADD operator, the A input is loaded
into AA and its residue is generated by the residue
generator. Then, on the next cycle, the B input is
loaded into AB, the residue generator output is
loaded into AA residue bits, and the residue for B
input is generated. This residue (or catch-up residue)
is added to the main adder output residue to develop
the final residue of the adder inputs. All residue for
adder output is controlled by the ALU PROMs.

The residue check for AA, AB. and main adder
output is performed at the EW level. If incorrect res-
idue occurs, then an EW residue error is reported as
an alarm interrupt in the EIE register.

EU RESULT ADDRESS
REGISTERS

The EU result address registers (shown in figure
3-2-19) are used to maintain the CDB location into
which the result or temporary result of the operator
is to be placed. The CDB location of the operator re-
sult is derived from the PCU. which uses PWR to
write the proper CDB location into the EU OP
queue for the operator being written into the queue.
The CDB location of the temporary operator result
is supplied by EUMC PROMs during the execution
of EU microcode. As the operator is processed
through the EU pipeline, the CDB location is passed
down the pipeline to the EU level that is executing
the operator at that time.

The EU result address registers are identified as
follows:

EU result CDB address register (EPR).

CDB level result CDB address register (ECR).
Barrel level result CDB address register (ERB).
AIU result CDB address register (EAR).
SAU result CDB address register (ESR).
CDB EU write pointer register (CEW).
Interrupt read register (EIR).

No AW —

EU Result CDB Address Register
(EPR)

As each CDB address is read from the EU OP
queue, it is saved in the EPR register. The saved ad-
dress is only entered into the pipeline if microcode
was required to complete an EUCDB or ALU
operation. A new CDB address is loaded into EPR
each time the conditions for the next operator trans-
fer into EUCDB level are satisfied. EUCDB is not
in hold, and microcode is not being issued to
EUCDB, SAU. or ALU.

3-2-36

CDB Level Result CDB Address
Register (ECR)

This register is the first EU result address register
in the EU pipeline. Inputs to ECR are received from
the EU OP queue, EUMC PROMs, and the EPR
register.

Transferring into ECR from EU OP queue is en-
abled whenever EMCYV flip-flop is reset to indicate
that EU microcode is not being generated. When EU
microcode is generated, the CDB location (W or X)
is explicitly selected by EUMC PROM:s.

Barrel Level Result CDB Address
Register (ERB)

The ERB register receives the result address from
the ECR register. The ECR contents are loaded into
ERB in accordance with pipeline controls and EU
barrel destination level End Of Current Operator
flip-flop EBDE. (Loading ERB is inhibited if flip-flop
EBDE is reset.)

ALU Result CDB Address Register
(EAR)

The EAR register receives the result address from
the ECR register if the transfer of CDB to ALU in-
put bus (AI) is in progress; or from the ERB regis-
ter. if the transfer of barrel output to the Al bus oc-
curs. EAR is loaded with Al bus contents when both
the Al bus to the ALU flip-flop EAIA and the ALU
destination level End of the Current Operator flip-
flop EADE are set.

SAU Result CDB Address
Register (ESR)

As the EAR register does, the ESR register re-
ceives the result address from the ECR register if
the transfer of CDB to SAU input bus (SI) is in
progress. Or, it is received from the ERB register if
transferring barrel output to the SI bus occurs. ESR
is loaded with SI bus contents when the SI bus to
the SAU flip-flop is set.

CDB EU Write Pointer Register
(CEW)

When writing into the CDB location (EU data file,
working storage, or X storage). the area is selected
by the contents of CEW. The contents of CEW are
decoded to set valid bits for EU data file locations
20 through 2B. There are 12 valid bit flip-flops JEV.,
one for each of the EU locations. The JEV flip-flop
associated with the EU data file location just filled

. PWR
EUMC v
PROM oPQ
EPR
W, X R |
Y
ECR
XFER CDB TO Al OR Sl
Y
ERB
XFER BO TO Al OR S
EAR ESR
FORCE C = WO |
FORCE D = W1 l l
Y
CEW
PROM To
GEN

{

EIR

v

TO JIR TO CDB, PCU, STORE
IN PCU DATA OP Q, AND EU
SIGN STORAGE

ET 1683

Figure 3-2-19. EU Result Address Registers
5010796-001 3-2-37

is set to record that the location has valid data. This
location is now ready to be read by the EU as an
input for the next EU operator or by the DRU as
and input for indexing descriptors.

The order of priority for transfer into CEW is
EAR. ESR, and ERB. These transfers are based up-
on the EW load priority for the corresponding units
(ALU. SAU. and barrel).

As shown in figure 3-2-19, a Hex C or Hex D (for
addressing W0. or WI local storage locations, re-
spectively) is forced on the input of CEW.

In the WO address case, the decimal overflow
digits that could have resulted from any adder pass
are saved in W0 during scale left operations. Also.
the remainder. which could result from executing the
first DP divide cycle, is saved in WOLS (an EU data
file RAM location) and WO for use when the second
DP divide cycle is started.

For W1 address case, the intermediate result of an
operator is temporarily saved in W1 for interrupt in-
formation. However, in most cases, the data in W1

is replaced by new data before an interrupt is re-
ported in the EU.

The PROM parity generator is used to check
parity on the addresses when they are loaded (or
forced) into CEW. The CEW parity is checked any
time the CEW valid bit is set and write inhibit is not
set.

Interrupt Read Register (EIR)

The EIR register is loaded with the result address
from CEW as long as an interrupt job is not re-
quested by the EU. The transfer of EIR to job inter-
rupt register JIR only occurs when the associated
Jjob number of the result address is accepted into the
JIJ register.

EU JOB NUMBER REGISTER

The EU job number registers (figure 3-2-20) con-
tain the job number of the operator in process. As
the operator is processed through the EU pipeline
levels, the job number is transferred to the job num-
ber register at that level. The job number registers
are:

CDB Level Job Number register (ECJ).
Barrel Level Job Number register (EBJ).
ALU Level Job Number register (EAJ).
SAU Level Job Number register (EWJ).
EW Job Number register (ESJ).

. Interrupt Level Job Number register (EIJ).

Qs

3-2-38

The EU pipeline conditions for loading and trans-
ferring these registers are identical to those EU pipe-
line conditions described for the EU result address
registers (ECR, ERB, EAR, ESR, CEW, and EIR).

The PROM parity generator is used to check
parity on the job numbers when they are loaded into
EWIJ. If bad parity exists, signal EWJP.ERH is gen-
erated and sets the alarm bit in the EU interrupt er-
ror register EIE.

EU STORE SUBUNIT

The purpose of the EU store subunit is to execute
transfers from the CDB to memory data register
RMD, as require by the STOD and STON operators.
The EU is therefore relieved of handling these trans-
fers and a significant time gain is realized. The EU
store subunit provides a queue that is completely
separate from the PCU, with a separate EU store
job number register and CDB address register.
Therefore, the STOD and STON operators do not
affect the timely execution of subsequent operators.
This feature is especially important for the smooth
functioning of loop control and index computation in
the SAU.

The transfer from execution write register EW to
RMD is attempted when the STOD .or STON
operator immediately follows the operator that calcu-
lates the data to be stored. The transfer occurs if all
older operators are finished and RMD is ready when
the final single-precision result is in the EW register.
This advances the job number more rapidly to the
next store or branch operation, and requires no EU
time. If the store data must be read from the CDB
(through the EU bus), the EU store subunit does not
capture EU read register CER until the store is the
oldest operator and the store address list (SAL) is
ready. The EU is unaffected unless it simultaneously
attempts to read data from the CDB.

As shown in figure 3-2-21, the EU store subunit
has a queue that is completely separate from the
PCU. with a separate EU store job number register
EDJ and CDB address register EDB, and a store
counter register ESCT. The ESCT register is used to
provide commands for controlling EU store
operations.

Addressing of the EU store queue for both write
and read operations is accomplished by PSQ and
ESQ pointers. To write into the queue, one of the
PSQ signals is generated to select the location and
effect the write operation. The count in the PSQ is
increased by 1, whenever a STON or STOD is at the
execute level of the PCU, provided that PCU PROC
internal or PCU restart is not in process and no PIE
hold exists. The ESQ pointer is counted so that the

PWJ

OoPQ

!

ECJ

*xrsn CDB TO AI OR SI

EBJ
XFER BO TO Al OR S|
Y Y
EAJ ESJ
Yvy
EWJ
PROM
o PARITY |__o, TO
I GEN EIE

EJ

v

TO JCJ TO JU
IN PCU IN PCU

ET 1684

Figure 3-2-20. EU Job Number Registers
5010796-001 3-2-39

PWJ

l

PWB

B!

PSQ ESQ
WRITE EU STORE QUEUE READ
POINTER [(4 LOC) 1 POINTER
2 BITS 2 BITS
EDJ EDB ESTC

T0 JCJ TO INPUT EU STORE
INPCU SELECTION GATES CONTROLS
(AJ4) OF CER

ET 1685

Figure 3-2-21. EU Store Subunit

job number and CDB address are available at the
output of the queue when the EU store unit is idle
and the queue has information (not empty) or when
EU store job just read is in process and the queue
has another job.

CENTRAL DATA BUFFER

The central data buffer (CDB) consists of two 64-
location memories that are used for passing data be-
tween units of the CPM and for storing results of op-
erators. The CDB holds the first four top-of-stack lo-
cations for each of up to four operators in the pipe-
line; although this capability is generally not fully
utilized, there are usually less than four operators
active at a given time. Two copies of the CDB are
used. One handles data read by the DRU, and the
other provides storage for data read by the EU. In
this way, both the DRU and EU can read data while
the CDB is being written. The write data is supplied

3240

by the DRU, the EU, and the PCU. The two copies
of the CDB (for handling DRU storage and EU stor-
age) are described in the following paragraphs.

DRU Data Storage

The storage of DRU data in the CDB is shown in
figure 3-2-22. As indicated. the DRU copy of the
CDB can be functionally divided into two major
areas. One area consists of data files written by the
DRU, EU, and PCU; the second area consists of ad-
dress files for DRU data and string information. The
data and address files in this copy of the CDB can
be read only by the DRU, but can be written to by
the DRU, EU, and PCU. The files are addressed by
four groups of address lines: DRU write (CRW),
DRU read (CRR), EU write (CEW), and PCU write
(CPW). The data and address files are described in
the following paragraphs.

W DRU WRITE ADDRESS

CR
o DRU READ ADDRESS
EU WRITE ADDRESS
CEW
PCU WRITE
CPW ———————
ADDRESS
00 00
) DRU
ARWD —— | DRU RWD 1 9-33 DATA
: DATAFILE ADDRESS
RWA
FILE
OoF OF
20 10
Eu DRU
EWR—— STRING ®
DATAFILE ADDRESS
28 1B FILE
30
—p] PCU —
PLW DATAFILE
3B
EWR RWD RWA
BYPASS BYPASS BYPASS
CRDE CRDR CRAD
T0
ET1275 TO DRU DRU

Figure 3-2-22. Central Data Buffer DRU Data Storage

Data Files

The DRU data file contains 16 locations, which
are accessed by addresses 00 through OF. This file
is written to by DRU write level data register RWD;
each location of the file can contain a 52-bit data
word and two information bits. The portion of the
52-bit word is contained in bits 38 through 0; bits 50
through 39 on which an early read is performed (as
described in later paragraphs). The remaining two
bits are used for residue checking.

The information bits (L2 and L9) are used to de-
fine operand length fields. L2 signifies that the
length is less than or equal to 20 bits, and L9 indi-
cates that the length is less than or equal to 9 bits.
An early read is also performed on these bits.

The EU data file contains 12 locations, accessed
by addresses 20 through 2B. This file is written to
by EU write level register EWR; each location of

5010796001

the file can contain a 20-bit operand. a parity bit,
and two information bits (L2 and L9). on which an
early read is performed. These bits are used to indi-
cate that the operand length is either less than 20
bits (L2) or less than 9 bits (L9).

The PCU data file is a small lit file that contains
12 locations and is accessed by addresses 30 through
3B. The file is written to by PCU literal write regis-
ter PLW; each location of the file can contain 20
bits: a 16-bit literal or address couple, a parity bit,
a bit to indicate an IRW, and two information bits.
An IRW is flagged by bit 48. When this bit is set.
the address couple written to the PCU data file is
identified as an IRW. This is done when a non-con-
catenated NAMC is detected by the PCU. The ad-
dress couple in the NAMC is then placed in the
PCU data file as an IRW. The information bits (L2
and L9) define the length of the literal as either less
than 20 bits or less than 9 bits, respectively. Bits 48,
L2, and L9 are subject to early read operations.

3241

Address Files

The DRU address file contains the addresses of

the words written to the DRU data file and the ad-
dresses for fetching the least significant word of dou-
ble-precision operands. The addresses are written by
DRU write address register RWA or the least
significant 20 bits of write data register RWD into lo-
cations 00 through OF, as addressed by the DRU
write address line. Each location of the address file
can contain a 20-bit address, two residue bits, a
copy bit (CB), and a mom bit (MB). The copy bit is
set to signify that copy action is to be taken for a
present bit interrupt. References to non-present copy
descriptors cause the mom descriptor to be fetched.
using the base field of the copy descriptor. If the
mom descriptor is present, its base field overwrites
the non-present copy descriptor address saved in the
DRU data address file and the mom bit is set. The
base field of the mom descriptor is input via the 20
least significant bits of the RWD register.

The DRU string address file enables the DRU to
construct descriptors that point to its associated data
in the DRU string data file, which is located in the
EU portion of the CDB. The string address file is
also written to by DRU write address register RWA.
The file consists of 12 locations (addresses 10
through 1B), each of which can contain a 20-bit ad-
dress and two residue bits.

Bypass Functions

If any of the DRU data or address files is being
written to while that address is being read, the infor-
mation is written but is also supplied directly to the
read bus from the associated write register. There-
fore, if the address being written to by the RWD,
RWA, or EWR register is equal to the address
specified on DRU read address line CRR, the bypass
function is invoked, and the information being writ-
ten is read onto the CRDE, CRDR, or CRAD bus,
as applicable.

Early R‘ead Function

Before information is read from the data files, an
early read operation is performed on certain bits
and/or fields of the data word. The early read per-
mits an evaluation of these flags to determine the ac-
tion that should be taken to process the micro
operators in the DRU. The early read function is
performed on the L2 and L9 flags (discussed in pre-
vious paragraphs), bit 48 of the words contained in
the PCU data file, and on bits 50 through 39 of DRU
data words. These bits of the DRU data represent
the tag field, descriptor control bits (such as present
bit, copy bit, and index bit), and the descriptor size
field.

3242

EU Data Storage

The storage of EU data in the CDB is illustrated
in figure 3-2-23. As indicated, this copy of the CDB
can be functionally divided into three parts; each can
be read by the EU only. The storages are addressed
by the EU read (CER), DRU write (CRW), EU
write (CEW), and PCU write (CPW) address lines;
each carries six bits. The data and address files and
storages of this portion of the CDB and their associ-
ated flags are discussed in the following paragraphs.

Flags

When information is written to the EU copy of the
CDB, four-bit flags are generated for each location
written to; these flags are examined when the loca-
tions are read. They are not stored in the CDB mem-
ories, but are placed in LFAN circuits. The flags in-
dicate whether the information being read is an inte-
ger, a double-precision operand, or a floating point
number; they also indicate integer length. They are
provided by the DRU to enable the EU to properly

process the data. The decodes of these flags are as
follows:

Bit 3 1 0 Meaning
0 0 0 Floating point number
0 0 1 More than 20-bit integer
0 1 1 Less than 9 bits
0 1 0 Less than or equal to
20 bits, more than 8
1 0 0 Non tag zero
1 0 1 Double precision
1 1 0 Set copy bit
1 1 1 Copy action

Bit 2 = bit 46 of operand (sign bit).

DRU Data File

The DRU data file contains 16 locations; each are
accessed by addresses 00 through OF. The file is
written to by DRU write data register RWD and
each location of the file can contain a 52-bit data
word. This file is used with the DRU data file RAMs
for storage of the most significant words of double-
precision operands. Words read from this file (and
all other data files and storages of the EU copy of
the CDB) are placed on the EU data bus, CED.

DRU String Data File

The DRU string data file contains 12 locations:
each are accessed by addresses 10 through 1B. The
file is also written to by DRU write data register
RWD and it contains source and destination words
to be used by the EU. As described previously, this
storage is used with the DRU string address file lo-
cated in the DRU data storage portion of the CDB.

EU READ ADDRESS
CER 2 \ 4
W DRU WRITE ADDRESS

EU WRITE ADDRESS

CEW
PCU WRITE
ADDRESS
A A A A
00 00 00
DRU DRU ¢—— RWD DRU
FILE RAMS RWA — ADDRESS
OF OF OF
10 20
DRU EU
STRING L 4 DATA FILE [¢&——EWR
DATA FILE RAMS
1B 2B CMA
TO
1C ALU
PCU
PID ——————pf BIG LIT —
FILE
1F
20
EU
EWR ——@—¥| DATA —e
FILE
2B
2C
*—» WORKING Py
STORAGE
2F
30
PCU
PLW > SMALLLIT |—@
FILE
3B
3c
> X —9
STORAGE
3F
@——— RWD BYPASS
@——EWR BYPASS
I—— | BUS
CED
TO
ET1276 EU

Figure 3-2-23. Central Data Buffer, EU Data Storage

5010796001 3243

PCU Big Lit File

The PCU big lit file contains four locations (1C
through 1F); each are addressed by PCU write ad-
dress line CPW. This file contains LIT48 and makes
program control word (MPCW) operators transferred
from PCU instruction decode register PID. The CDB
locations are, effectively, a queue that is pointed to
by the PCU for writing the operators. The locations
read are determined by the locations that are allo-
cated by the PCU; the information is then passed to
the EU via the CED bus. For LIT48 operators, the
EU passes the data from the CDB to a general loca-
tion that is readable by the EU so that the LIT48 is
available to any subsequent operator. When the EU
reads out an MPCW operator, a seven tag is added
and the stack number is inserted by the EU.

EU Data File

The EU data file consists of 12 locations; each are
accessed by addresses 20 through 2B and contain 48-
" bit words. The file is written to by EU write level
register EWR and contains result data of EU
operators. The EU data file may contain the most
significant half of double-precision operands.

Working Storage

The working storage area contains four locations
(addresses 2C through 2F); each are written to by
EU write level register EWR. These locations are
used as a general work area for items such as source
data and partial products, and provide temporary
storage for interrupt parameters P1 and P2. Each lo-
cation contains 48 bits.

PCU Small Lit File

The PCU small bit file consists of 12 locations (30
through 3B); each are written to by PCU literal write
register PLW. Operators LITO through LITI16 and
non-concatenated NAMC are executed entirely by
the PCU. and the literal data is written to the CDB
for use by the EU. The small lit file is 20 bits wide.

X Storage

The X storage area contains four locations (3C
through 3F); each are written to by EU write level
register EWR. These locations are used as a general
work area for items such as delimiter characters for
compare operators. 3F is reserved as EU copy of
SNR. Each location contains 20 bits.

Data File RAMs

The data file RAMs are associated with the DRU
and EU data files. They contain the same number of

3244

locations and have the same addresses as the corre-
sponding data files, and are written to by the RWD
and EWR registers. The purpose of the data file
RAMs is to store the least significant words of dou-
ble-precision operands.

DRU Data Address RAM

The DRU data address RAM consists of 16 loca-
tions (addresses 00 through OF) that are written to
by DRU write address register DWA. These loca-
tions contain the absolute addresses of data stored in
the DRU data file. The data addresses are read out
by EU read address line CER and are placed on the
CDB memory address bus (CMA) for copy action by
the ALU.

Bypass Functions

If any of the files and storages input by the RWD
or EWR registers is being written to while the same
address is being read, the information is written but
is also applied directly to EU data bus CED. There-
fore. if the address being written to by either the
RWD or EWR register is equal to the address
specified on EU read address line CER. the bypass
function is performed.

| Bus

The I bus is used to enter information from hard
registers (such as the processor fail register. control
mode register. and time of day register) onto the
CED bus. These registers are enabled onto the CED
bus by decoding the contents of the EU variant reg-
ister. (This register is loaded by the PCU with coded
information that specifies the appropriate hard regis-
ters.)

STORE QUEUE

The major data paths within the store queue are
queue are shown in figure 3-2-24. The purpose of the
queue is to reduce the number of store operations to
memory that must be made by the processor. Store
operations are queued because of the possibility that
there will be a subsequent store to the same address;
if this condition arises. the earlier store is not per-
formed. As indicated in figure 3-2-24. the store
queue is a 32-deep buffer for store operations con-
sisting of an address (RCA 19-0 from the DRU) and
its associated data (RMD 51-0, also from the DRU).
Addresses in the queue are compared to a new ad-
dress eight at a time. If a match is found. the old ad-
dress is removed from the queue. This operation is
known as an invalidation check, which is described.
along with other store queue operations. later in this
section.

FROM DRU

RCA S REG RMA RMD
S QUEUE SLe
(4X22 SAC
) ®
sLC
SOD——— 3 SARL SoD
ADDRESS .
(5) a SCO-SC7 COMP. —¢—% siC
T sve
SW1,2 swp (32X24)
)
SWP SOE
I (32) —
9
scL
sac swp
LOCATION
SM1,2 sL1,2 Q
(16X8) |
DATA
SDL Q
(32X52)
SLR
saDp
v v l
- -)
Y
ET1277 TO MAU

Figure 3-2-24. Store Queue, Block Diagram

When a procedure is exited. the stack (S) register
is changed to a lower address. The temporary loca-
tions containing the variables required for the exited
procedure can then be discarded. The stack cut back
routine compares entries in the queue against the old
and new S values. and deletes those that are less
than or equal to the old S value and greater than the
new S value.

The store queue also can create two eight-word
jobs simultaneously for the MAU. Since all stores
must be performed in the same order as in the
original code stream. the make MAU job routine
starts with the oldest entry in the queue and then ex-
amines subsequent store addresses. If the addresses
are contiguous. they are grouped as a single n-word
Job and the store queue sends the starting address
and length to the MAU.

5010796001

When fetching operations are performed in the
DRU. data is loaded into a particular block and
group in the ASM. The store queue fill check routine
determines whether a block and group just loaded
had destroyed a location to be stored to. If so. the
store queue begins storing unti! the location involved
receives the new data. If this were not done. fetches
for that location (which would go to main memory,
since the location is no longer local) would return
the old information.

A store to main memory is also initiated when the
store queue is purged. which causes all store queue
words. starting with the oldest entry in the queue. to
be stored to memory. A store queue purge occurs
whenever any of DRU operators SPRR62. SPRR63.
FMMR. MVST. RDLK. SLMT, or SINH is
executed. Note that if RDLK is preceded by
FMMR. the store queue is not purged.

3245

The store queue contains four individual queues.
as follows:

1. Address queue. Composed of R44N chips; con-
tains thirty-two 24-bit words organized as four eight-
word blocks. Holds the store addresses input on the
RCA lines from the DRU.

2. Location queue. Composed of R44N chips;
contains 16 six-bit words organized as two eight-
word jobs for the MAU. Holds the pointers to data
to be stored.

3. S queue. Composed of R44N chips; contains
four 22-bit words organized as two two-word groups.
Holds old and new S values for each of two stack
cut back jobs.

4. Data queue. Composed of RAMI chips; con-
tains thirty-two 52-bit words. Holds data associated
with addresses contained in the address queue.

The queue performs four major jobs. as described
in the following paragraphs.

Invalidation Check

The invalidation check is performed to possibly re-
move a previous store to the same address. Two
pointers are used. The write pointer (SWP) points to
the newest entry in the queue. and the oldest entry
pointer (SOE) points to the oldest entry in the
queue. When an address (RCA) and its associated
data (RMD) are received by the queue. the write
pointer is incremented. the address is written into
the address queue. and the read pointer (SRL) value
is made equal to that of the last checked pointer
(SLC) plus 1. Successive blocks of eight words are
read out of the address queue and into a comparison
network. The newest entry is compared to the older
entries. When a comparison is found between the
newest entry and an entry in the block read from the
address queue, the corresponding bit in the SVB reg-
ister is reset to invalidate the older entry.

Stack Cut Back

The stack cut back function compares entries in
the address queue to the old and new S values, and
deletes those that are less than or equal to the old
S value and greater than the new value. The old and
new S values are stored in the S queue, which can
contain the values for two stack jobs. The value in
SWP (at the time when the exit had been stored in
either SW1 or SW2) is used as thé start focation in
the address queue for this job (similar to SWP in in-
validation check).

Two comparisons are made for each block of eight
addresses. The first comparison is against the old S

3246

value. Addresses less than or equal to the old S, set
corresponding bits in SLE. The second comparison
is against the new S value. If an address is greater
then the new S and its corresponding SLE bit is set,
that address is effectively removed from the queue
by resetting its valid bit.

Make MAU Job

The store queue can create two jobs for the MAU.
Since all of the stores must be accomplished in the
same order as the original code stream, the make
MAU job function starts with the oldest entry in the
queue and examines subsequent store addresses. If
these addresses are continuous, they are grouped as
a single job, and the store queue sends the storage
address and length to the MAU.

When a make MAU job is requested, read level
location pointer SRL is loaded with the oldest entry
decode (SOD), and an eight-word block of address is
loaded into output registers SCO through SC7. The
specific address pointed to by the three least
significant bits of SRL is then compared to the con-
tents of address compare register SAC. At the same
time. the compare level location pointer (SCL) con-
tains the identical address, which is passed to the lo-
cation queue. An equal compare increments either of
length registers SL1 or SL2, which doubles as the
write pointer to the location queue. In addition, one
of the memory address registers (SM1 or SM2) is
loaded with the first (starting) address. Then, SAC is
incremented, and compared against the valid loca-
tion in the address queue. Each time an equal com-
parison occurs, the location queue is loaded by the
SCL register, and SLI1 or SL2 is incremented. This
process continues until either an unequal compare
occurs, the queue becomes empty, or the maximum
number (8) of contiguous addresses have been
found. The location queue is read into data location
pointer SDL by read pointer SLR, and the associ-
ated data is then taken by the MAU via the SQD
output. Each time the MAU takes data, it incre-
ments the SLR to obtain new data.

Fill Check

The address array of the ASM can contain four
addresses with the same block assignment. (A block
is defined as 1 of 64 (0 through 63) blocks, each
block contains four addresses.) When the DRU
fetches data from main memory, the data is loaded
into one of four eight-word groups in the data array
of the ASM. (A group is defined as one of four loca-
tions in a particular block (0 through 63) of the data
array.)

If four addresses with the same block assignment
are loaded in the address array and a fifth address
is to be loaded. the latter address must push out the

oldest address in that block. If the push-out address
was loaded because of a store prefetch. the push-out
address will be in the store queue. After this address
is invalidated in the ASM, the only place it will be
is in the store queue. Therefore, any subsequent
fetches to that address are declared non-local in the
ASM and a main memory fetch is required. where
the old data resides. not the new data that is in the
store queue. To prevent this condition from occur-
ring. a fill check is performed in the store queue.
The fill check compares the push-out block and
group against entries in the address queue. When a
comparison is made. the store queue is emptied up
to and including the block where the equal was
found by causing MAU jobs to be made. This action
occurs before any load of the ASM takes place.

MEMORY ACCESS UNIT

The Memory Access Unit (MAU) consists of thir-
teen functional sections interfaced as shown in figure
3-2-25. A description of each of the functional sec-
tions is given below:

1. The priority resolver logic is responsible for
granting the services of the MAU to the highest pri-
ority requesting unit. The order of priority for serv-
ice is: a) data reference unit (DRU); b) program con-
trol unit (PCU); and c) storage queue (SQ). How-
ever. a fetch interrupt request or store re-request has
priority over an initial fetch for DRU or PCU.

2. The fetch address register is used to buffer all
memory address transfers from the requesting units
(DRU and PCU) and to buffer the memory address
update for each word fetched from memory. The
contents of this register are routed to CW register
for constructing the memory control word and to
limit comparator for selecting the MCM. Also, the
three least significant address bits of the fetch ad-
dress register are routed to the DRU for identifying
word location in the ASSM that is to receive the
memory word.

3. The store address register is used to buffer all
memory address transfers from the storage queue
and to buffer the memory address update for each
word stored to memory. The use of the contents of
this register is the same as the fetch address register.

4. The length fetch register is used to buffer all
word length transfers from the requesting units
(DRU and PCU) and to buffer the word fetched from
memory. The contents of this register are routed to
CW register to construct the memory control word
and to control logic for executing the update of the
fetch address and fetch length registers and for de-
termining job termination.

5. The length store register is used to buffer all
word length transfers from the storage queue and to
buffer the word length update for each word stored
to memory. The use of the contents of this register
is the same as the length fetch register.

5010796001

6. The limit comparator and decode logic is re-
sponsible for comparing the six most significant bits
of address in the fetch address or store address reg-
ister with address limits supplied by each MCM in
the memory system. The output of the comparator is
decoded to select one of eight memory buses.

7. The bus address fetch and bus address store
registers are used to buffer one to eight possible
memory bus signals from the limit comparator and
decode logic.

8. The control word register is used to assemble
memory control word for transfer to selected MCM.
It is also used to assemble an error word for transfer
to requesting unit if a memory related error is de-
tected by the MAU during a fetch or flashback oper-
ation.

9. The output register is used to buffer data trans-
fers from requesting unit of CPM to memory.

10. The input register is used to buffer data trans-
fers from memory to requesting unit.

11. The parity check and generate logic is re-
quired to generate odd parity for all words being
transferred to memory and to check for odd parity .
of all words being fetched from memory. Also, this
section is required to generate odd parity for each of
the six syllables of the program word being trans-
ferred to PCU.

12. The residue check logic is responsible for
checking and verifying the residue bits of the mem-
ory addresses transferred from the requesting units.

When a requesting unit of the CPM requires the
services of the MAU. it is required to raise its re-
quest line to the MAU and place a 20-bit address
(plus residue). length information, and control infor-
mation on its interface lines to the MAU.

When the requesting unit has priority. the MAU
loads the above information into its respective regis-
ters and control flip-flops and performs one of the
following operations:

1. Single data word fetch.
2. N-length data word fetch.
3. N-length overwrite.

4. Single-word overwrite.

Upon determining the type of operation requested,
the MAU constructs a memory control word (MCW)
and transfers it to memory. (See figure 3-2-26 for the
format of the MCW.) Upon transferring the MCM to
memory, the MAU is required to perform one of the
operations listed below:

1. If a single word store operation was specified,
the MAU raises its request line to the specific
MCM. In order to alternately transmit the MCW and
the data word to be stored. the MAU continues to
transmit the MCW, followed by the data word to be
stored, until an acknowledge signal is received from
the MCW.

3247

UPPER LIMITS rerenn
PCU(FOR | PARITY INPUT W — .
SYL PARITY) GEN/CK REG LOWER LIMITS ADDRESS 10
*! COMPARATOR MEMORY
REC/DR MEMORY ADOR.LIMITS]
e
ERROR % ° L »
WORD T
CONTROL ouTPUT
WORD
REGISTER REGISTER
FROM
CONTROL
LOGIC. ADDR. —————T T
REG, AND STORAGE
LEN. REG. QUEUE
LENGTH 10
renon— | FEIGE -
ADDER
LENGTH
STORAGE ol 'STONE
FETCH QUEUE REGISTER
ADDRESS
PCU.DRU ———p! REGISTER TIMING To
AND [—— DL
CONTROL sou
T0
&—» FAIL REG
P, PRIORITY
ADDER &%%’:t. u."f.';s; CONTROL REC/DR
STORAGE Ag.lg??zgs DRU PCU sQ MEMORY
GUEUE REGISTER REQUEST REQUEST REQUEST CONTROLS
ET1281 Figure 3-2-25. Memory Access Unit, Block Diagram
50 49 48 47 46 45 43 42 41 36 -17 16 15 5 0
1] l
| B | I
P T|s FIR[M[[Mm] L] s m! worp |L
A R|IY|P Bl | S |, ADDRESS , S 1 S I LENGTH | S
Rlolofo|/]|r|E Ll |el |8 b B le
' wle|c I o
£ |
Y | | |
OP CODES
47 46 45 43 42 41 OPERATION
0O 01 0 0O SINGLE DATA WORD FETCH
O 0 0 0 0 O N-LENGTH DATA WORD FETCH
o 11 0 0O FAIL REGISTER FETCH
1 01 1 0O SINGLE-WORD OVERWRITE WITH FLASHBACK (READ WITH LOCK ONLY)
1 000 0O N-LENGTH OVERWRITE
1 01 0 0 O SINGLE-WORD OVERWRITE
1 01 01 0 LOAD REQUESTOR INHIBITS
1 01 0 0 1 LOAD MEMORY LIMITS
ET1285

3248

Figure 3-2-26. Control Word Format

2. If a multiple word store operation is specified.
the MAU raises its request line to the applicable
MCM, and then sends the MCW to the MCM. When
the MCM acknowledges receipt of the MCW. the
MAU begins the data transfer under the control of
the send data signal.

3. If a fetch operation is specified. the MAU
raises its required line and sends the MCW to the
applicable MCM. When the MCM acknowledges re-
ceipt of the MCW, the MAU enables its memory re-
ceiver circuits. Information from the MCM can now
be accepted by the MAU. However. the MCM is re-
quired to transmit a data present strobe to the MAU.
causing the information present on the memory bus
to be transferred to and detected by the MAU. The
data present strobe is required for each word trans-
ferred from memory to the MAU.

While performing a data transfer the MAU is re-
quired to detect and/or report the following memory
error conditions:

1. Invalid address (IVE) is declared if the address
in the store address register compares with the ad-
dress limits of more than one or no MCM. (This er-
ror condition causes termination of the memory ac-
cess operation.)

2. Residue address error (RAE) is declared if the
MAU receives a requesting unit address whose
residue bits do not agree with its address configura-
tion.

5010796001

3. Parity error fetch (PEF) is declared if a fetch of
data from MCM is received by the MAU with incor-
rect parity.

4. Parity error store (PES) is declared if a data
transfer from the storage queue is received by the
MAU with incorrect parity. The data with incorrect
parity is transferred to the MCM.

S. Time out error fetch (TOF) and time out error
store (TOS) are declared if the MAU receives no ac-
knowledged signal (ACK) from the MCM during a
writing period not to exceed two milliseconds.
(These error conditions cause termination of the
memory access operation.)

6. Fail | fetch (FIF) and fail 1 store (FIS) are de-
clared when the selected MCM responds with a fail
1 (uncorrectable error) indication to the CPM.

If a memory related error is detected by the MAU
during a fetch or flashback operation. the word.
which is involved at the time the failure. is replaced
by an error word. This error word. which is a copy
of the control word. is contained in the control word
register. then transferred with other related informa-
tion to the unit (PCU and DRU) that is to receive
the expected memory word. (See figure 3-2-27 for
format of the error word.)

3249

52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 1716 15 14 11 10 5 0
p [T T N i F1n P] [
A T 0o | E A | |
R R|Y|S|T|F|R|M|TI|PI|F|R MI ' R MI WORD | L
I 1PIe BT L] OlAlL|AIS ApDRESS I s LENGTH s
T wlElEe L|L|e|r|1]E|B | T gl Is
Y c|S | | 1] Y | |
E E
L1 D I | |]
l |\ - J ~ J ——
SET TO OPCODES ERROR CODES PARITY
IDENTIFY (SEE NOTE BELOW) CORRECTION
AN ERROR BITS
WORD
OP CODES

47 46 45 43 42 41

o o0 1
0O 0O

-
o O ©o o o
-t

O O O O =
- O O o o o
0O O O o o o o

o
-

ERROR CODES

40 39
1 00

o1 o0

ET1288

32-50

38 37

FAIL REGISTER FETCH

N-LENGTH OVERWRITE

LOAD MEMORY LIMITS

(o] TIMEOUT ERROR

(o] WRONG PARITY ON A
FETCH FROM MEMORY

(o) FAIL 1 INTERRUPT

1 ADDRESS RESIDUE ERROR

SINGLE DATA WORD FETCH
N-LENGTH DATA WORD FETCH

SINGLE-WORD OVERWRITE
LOAD REQUESTOR INHIBITS

PARITY
CORRECTION BITS

14 13 12 11

1 00O

o 1

o ©O

o 1
o 0

o0

(o}
1

SINGLE-WORD WITH FLASHBACK (READ WITH LOCK ONLY)

NOTE: THE ERROR CODES AND CORRESPONDING PARITY
CORRECTION BITS ARE APPLIED DIRECTLY TO
CW REGISTER.

Figure 3-2-27. Error Word Format

SECTION 3
INTERRUPTS

INTRODUCTION

An interrupt is a means of diverting a processor
temporarily from the job which it is doing if certain
predetermined conditions occur, so that some higher
priority job may be done immediately. Interrupts are
processed by the interrupt handling mechanism of
the MCP. When the interrupt has been processed,
the MCP will (if conditions permit) reactivate the in-
terrupted process.

The interrupt handling mechanism of the MCP
deals with two classes of interrupts: hardware inter-
rupts and software interrupts. Hardware interrupts
are generated automatically by the B 7800 system
(when interrupt conditions occur) and are processed
by the MCP interrupt procedure. Software interrupts
are programmatically defined, and are used both by
the MCP and by object programs for communication
between processes. This discussion deals only with
hardware interrupts.

HARDWARE INTERRUPT SYSTEM

The B 7800 hardware interrupt system is a primary
interface between the MCP and the hardware. Inter-
rupt conditions may be detected by the Central Pro-
cessor Module (CPM), the Input/Output Module
(IOM), or the Memory Control Module (MCM).
When detected, interrupt conditions are processed
by the Fault Control Logic of the CPM. Normally,
the CPM prepares the stack for procedure entry,
places the necessary parameters in the stack, and
causes an entry into the MCP interrupt procedure.

CPM STATES AND MODES

The CPM operates in either of two states: control
state, used only by the MCP; or normal state, used
both by user programs and by the MCP. Normal
state is always used when executing user programs.
Control state is used when executing certain portions
of the MCP, including the MCP interrupt handling
procedure. In the control state, External interrupts
and Interval Timer interrupts are inhibited (except
during an IDLE or PAUS instruction) and the CPM
may execute privileged instructions which it may not
execute in normal state.

In addition to the two states, the CPM can be in
any one of four interrupt handling modes: Normal
Mode (Control Mode 0), Control Mode 1 (CM1),
Control Mode 2 (CM2), and Control Mode 3 (CM3).

5010796-001

The CPM operates in normal mode until an interrupt
condition is detected. Control modes 1 through 3 al-
low for recursive attempts to enter MCP interrupt
handling procedures by the fault control logic of the
CPM. The CPM halts if these attempts not success-
ful. The CPM will return to Normal Mode if an in-
terrupt condition is handled successfully in CMI,
CM2, or CM3.

There is no direct connection between the states
of operation and the modes of operation of the CPM.
The CPM may be in control or in normal state while
in any control mode. In a system which contains
more than one CPM, any or all of the CPMs may
operates in control state or normal state, as well as
in any of the interrupt modes. The CPM states are
described below; the interrupt modes are further de-
scribed in the discussion of interrupt processing.

Control State

Entry into control state (from normal state) occurs
when the MCP enters or returns to a control state
procedure (an MCP SAVE procedure), or when the
CPM executes a Disable External Interrupts
operator (DEXI). (Control state procedures have bit
19, the N bit, of the PCW set.) While the CPM is
operating in control state the reporting of external
interrupts to the MCP interrupt handling routine is
disabled. Additionally, the CPM may execute certain
privileged operators while in control state which may
not be executed in normal state. When the CPM is
operating in control state the control state flip-flop
(XPST) is set and an inhibit interrupt condition is en-
abled (except during an IDLE instruction).

The interrupts which are inhibited while in control
state include the Channel interrupts, the IOM Error
interrupts, and the Interval Timer interrupt. Al-
though the processing of these interrupts is inhibited,
the appropriate bit in the CPM Interrupt (Fault) reg-
ister will be set if one of these interrupts is detected,
and the interrupt will be processed when the CPM
enables External interrupts either by returning to
normal state or by executing an IDLE or PAUS op-
erator.

The Egg Timer interrupt and PROC to PROC
alarm bits, although External interrupts in priority. is
not inhibited in control state.

The operators which are enabled only when the
CPM is in control state include Set Interval Timer
(SINT), Inhibit Parity (IGPR), Set Memory Inhibits
(SINH). and Set Memory Limits (SMLT). Also.
B 7800 operators TCOD, SMMD, and ACDB are en-
abled when CPM is in control state.

3-3-1

Normal State

Return to normal state (from control state) occurs
whenever the MCP initiates or returns to a normal
state procedure (non-SAVE procedure), or when the
CPM executes an Enable External Interrupt operator
(EEXI). (Normal state procedures have bit 19, the N
bit. of the PCW reset.) When the CPM is operating
in normal state, the processor state flip-flop (XPST)
is reset. When a CPM returns to normal state after
servicing an interrupt, it does not necessarily return
to the program which was executing when the inter-
rupt was detected. The selection of the job to be run
is a function of the MCP.

FAULT CONTROL LOGIC

The fault control logic of the CPM contains four
registers which are used to record and process hard-
ware interrupts: the Fault register, Fault Mask regis-
ter, Processor Fail register and Control Mode regis-
ter. The Fault register is used to indicate the detec-
tion of one or more interrupt conditions (one bit for
each condition). The Fault Mask register is used to
inhibit (mask out) the processing of one or more in-
terrupt conditions. (The Fault register may be read
in such a way as to obtain only interrupt conditions
which are not masked out; thus indicating an inter-
rupt condition which must be processed by the
MCP.) The Processor Fail register further identifies
errors which are internal to the CPM and CPM-
MCM interface errors. The Control Mode register is
used to identify the interrupt mode (Normal, Control
Mode 1, Control Mode 2, and Control Mode 3) in
which the CPM is operating.

In addition to the CPM registers, a Memory Fail
Register in each Memory Control Module (MCM) is
used to give detailed information about memory-re-
lated failures concerning that MCM. (Discussion of
the MCM fail register is given in Chapter 5 of this
manual.) For IOM error interrupts, detailed informa-
tion about the IOM failure is given in Chapter 4 of
this manual.

Fault Register

The Fault register contains one bit each of the
possible interrupt conditions. (See table 3-3-1.) The
low order bits of the register are associated with in-
terrupts which have the highest priority for process-
ing by the CPM; the high order bits are associated
with interrupts which have the lowest priority. When
interrupt conditions are detected, the bits associated
with those conditions are set in the Fault register.

Normally, the Fault register is set by the interrupt
condition. As each interrupt condition is processed,

3-3-2

the bits in the register are selectively reset. Program-
matic control of the Fault register is accomplished
by use of the Set Processor Register (SPRR) and
Read Processor Register (RPRR) operators. The
RPRR operator causes the contents of the register to
be placed in the stack, and the register itself to be
reset. The SPRR operator causes an inclusive OR
setting of the register; that is, bits are set, but bits
which already are set are not reset.

Fault Mask Register

The Fault Mask register allows the processing of
certain interrupts to be inhibited or deferred. Alarm
interrupts, Syllable interrupts, and the Egg Timer in-
terrupt may not be masked. The Special interrupts
and the other External Interrupts have a correspond-
ing bit in the Fault and Fault Mask registers (table
3-3-1). An interrupt condition will only be recognized
by the CPM if the Fault Mask register bit for that
condition is set (logical one). If the Fault Mask bit
is reset for an interrupt condition, that interrupt bit
will still be recorded in the Fault register but will go
unnoticed by the fault control logic. If the mask con-
figuration is later changed, then interrupts (including
those resident in the Fault register when the mask is
changed) which are now unmasked will be recog-
nized and processed. In this way, processing of se-
lected interrupts can be deferred.

The Fault Mask register may only be set program-
matically. The Read Processor Register operator
causes a simple read of the register (without reset);
the Set Processor Register operator causes a simple
set of the register (each bit is set either to logical
one or to logical zero).

Interrupt Ildentification

Each interrupt condition reported to the MCP is
identified by a unique literal value, known as inter-
rupt parameter P1l. (See table 3-3-1.) This parameter
is passed to the MCP interrupt procedure by the
fault control logic to identify the condition which is
to be processed. The P1 parameter is derived from
the contents of the Fault and Fault Mask registers
through a series of gates. Interrupt conditions re-
ported in the Fault register which are not masked
out by the Fault Mask register are used to make up
the P1 parameter.

Normally, this parameter is read and placed into
the stack by the fault control logic, although it may
be read into the stack programmatically. In either
case, the resultant action is as follows. The value of
P1 is read into the stack and the bits which were set
in P1 are reset in the Fail register. In a particular Pl
parameter, all interrupts of a particular priority level

Table 3-3-1. B 7800 Interrupt Bit Assignments

Interrupt

Alarm (First Priority)
Loop (LOP)
Memory Parity (MPA)
Memory Fail 1 (FL1)
Invalid Address (No Access) (NAM)
Stack Underflow (SKU)
Invalid Program Word (IPW)
Processor Internal (PI)

Syllable (Second Priority)
Memory Protect (MPR)
Invalid Operand (NVO)
Divide By Zero (DBO)
Exponent Overflow (XOV)
Exponent Underflow (XUN)

Invalid Index (NVX)
Integer Overflow (NTO)
Bottom of Stack (BSK)
Presence Bit (PB)
Sequence Error (SEQ)
Segmented Array (SEG)
Programmed Operator (PGO)
Privileged Instruction (PVO)
Special
Stack Overflow (Third Priority) (SKO)
Interval Timer (Fifth Priority) (INT)

External (Fourth Priority)
Channel 0 (CO)
Channel 1 (C1)
Channel 2 (C2)
Channel 3 (C3)
Channel 4 (C4)
Channel 5 (C5)
Channel 6 (C6)
Channel 7 (C7)
IOM Error 0 (E0)
IOM Error 1 (E1)
IOM Error 2 (E2)
IOM Error 3 (E3)
CPM Error 4 (E4)
CPM Error S (ES)
CPM Error 6 (E6)
CPM Error 7 (E7)
Egg Timer

On syllable interrupts ID Bit 24 indicates class 1 interrupt (PIR, PSR, PSDI, PBR have not been modified,
ID Bit 23 indicates class 2 (PIR, PSR, PSDI,-and PBR are undefined).

5010796001

Fault
Register
(Bit)

A N AW N = O

10
11
12
13

14
15
16
17
18
19

21

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
None

Fault Mask
Register
(Bit)

Mz oz

mz o z

24
23

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
None

NOTE

Interrupt Ident. (P1)

W = O AN AW = O

O 00 3 O\ »n

10
None
11

[== T

O 00 9 N 1 AW -=O

[T
“hn B W= O

None

(Bit)

Plus Bit 25

Plus Bit 24 or
Bit 23 (See Note)

Plus Bit 22

Plus Bit 21

Also responded to in control state.

333

which are not masked out are reported, but only one
priority level is reported on each read. The priority
level reported will be the highest priority level for
which there is at least one bit set in the Fault regis-
ter which is not masked out. If the value of the P1
parameter is read programmatically (using the Read
Processor Register operator), and if there are no un-
masked interrupts to report, a word of all 0’s is read
into the stack. (The fault control logic will read P1
only when there is an unmasked interrupt to report.)

Processor Fail Register

The Processor Fail register (table 3-3-2) provides
specific information about processor internal inter-
rupts. The type of processor internal interrupts is
identified by one of twelve bits in the Processor Fail
register. These bits are Store Queue Error (SQ),
DRU Write Level Interrupt (RWI), DRU Evaluate

3-34

Interrupt (REI), EU Subunit Error (EU1, EU0), EU
CDB Parity (ETO), General EU parity Error (ET1),
PCU PROC. INT (PCU), PIR Residue Error (PIR),
Job Number (JOB), MAU Residue Error (MAR),
and MAU Store Parity Error (MSP). Usually only
one of these bits is set for a given internal error.
However, it is conceivable to have a MAR error oc-
cur during a memory fetch operation and then to
have it replaced in the Processor Fail register by an-
other failure in a subsequent processor operation. It
can be determined that a MAR error occurred during
a fetch and was the cause of the processor interrupt
by observing that P2 interrupt parameter contains a
MAU error word in which bit 37 is on. (See figure
3-2-28.)

The Processor Fail register contains several bits
which are useful in analyzing MAU detected errors.

Whenever the MAU detects an error, the MAU
loads the Box number, the most significant six bits

Table 3-3-2.

Processor Fail

Register
(Bit) Description

3:4 Box Number (BN)

9:4 Memory Address (MA)

11:2 MAU Requestor:
MU1 MUO
0 1 = STORE QUEUE
1 0 = DRU
1 1 = PCU

12 MAU Residue Error (MAR)

13 MAU Store Parity Error (MSP)

14 MAU Single Error (MSE)

15 MAU Wrong Channel

16 Spare

17 Store Queue Error (SQ)

18 & 21:2 DRU Write Level Interrupt (RWI) and

Error Type (RT1, RTO):

RT1 RTO

0 0 Parity error from compare
level categories, or parity
error from RWJ, RWR,
or RWQ, or residue error
from RCD (39:20) or
RCD (35:16) or MAU
reports processor

internal (from control
word).

Residue error from RWA.
Parity error from RWD.

Parity error from compare

level command or variants,

or more than one copy of
an address in the address
array (loaded into ROC,
R1C, R2C, and R3C).

5010796001

Processor Fail Register

Processor Fail
Register

(Bit) Description

19 & 21:2 DRU Evaluate Interrupt (REI) and Error
Type (RT1, RTO):
RT1 RTO
0 0 Parity error from RDB,
RSB, or routine table
categories.
Residue error from RED,
REA, or REL.
Parity error from RED or
REL.
Parity error from operator
or routine level categories,
or parity error from
routine level operator, or
parity error from CRRR or
CRRE, or parity error from
RRR (routine), or parity
error from routine hold
and end categories, or
parity error from AC
operator (RACQ), or
parity error from address

couple categories.

EU Subunit Error (EU1, EUO):

EU1 EUO

0 1

1 0 ALU

1 1 Barrel
EU Parity Error (ET1, ET0)
ET1 ETO
0 1

23:2

= SAU

25:2
ESX or
ER parity
error

EAS or
EW parity
error

CER or
ESX parity
error

26 PCU PROC. INT. (PCU)

217 PIR Residue Error (PIR)
28 Job Number Parity Error (JOB)

29 Non-Recoverable State (MES)

3-34A

of memory address, and the MAU related informa-
tion into the Processor Fail register. When the Pro-
cessor Fail register is read by using the Read Proces-
sor Register operator, the Processor Fail register is
cleared.

When an alarm interrupt occurs during a store
type operation in the MAU, the processor interrupts
immediately. However, the MAU may detect more
than one error on fetch operations before the Proces-
sor Fail register is read because the MAU errors do
not necessarily result in interrupts until an attempt is
made to process the memory word involved at the
time of failure. In some cases, the memory word is
never used because a conditional branch is taken or
because it is an unused portion of an eight-word
fetch.

When information regarding a MAU-detected error
is loaded into an empty Processor Fail register, the
MAU Single Error (MSE) bit is set. If a subsequent
MAU error occurs before the Fail register is cleared,
the MAU will overwrite the previous information in
the Fail register and reset MSE. Thus, MSE reset in
the Fail register indicates that the MAU and memory
information may not correspond to the failure that
caused the interrupt.

The MSE bit in the Processor Fail register indi-
cates whether all information necessary to retry an
operation has been preserved by the EU when an
alarm interrupt occurs. If an alarm interrupt occurs,
such as Processor Internal, and the MCP finds MES
reset, instruction retry will be attempted.

Control Mode Register

The Control Mode register indicates the interrupt
mode in which the CPM is operating. The use of in-
terrupt modes provides for recursive entries into the
fault control logic. The progression to higher inter-
rupt modes is controlled automatically by the hard-
ware. In addition, programmatic control of the Con-
trol Mode register may -be accomplished by use of
the Read Processor Register and Set Processor Reg-
ister operators.

The Control Mode register contains two bits which
display the interrupt modes of the CPM as follows:

XCMO01 XCMO00
0 0 = Normal Mode
0 1 = Control Mode 1 (CM1)
1 0 = Control Mode 2 (CM2)
1 1 = Control Mode 3 (CM3)

The CPM will be halted with the last interrupt dis-
played in the Fault register if an interrupt is detected
in CM3.

The CPM operates in Normal Mode while not at-

tempting to process an interrupt. When an interrupt
condition is detected, the CPM advances to CMI1
and attempts to call the procedure pointed to by D
[0] +3 (the MCP interrupt procedure) from the stack
of the user program. If an interrupt is detected while
in CM1, the CPM advances to CM2, changes the
stack environment by moving to an alternate stack
(determined by indexing the stack vector by the
CPM number), and attempts to call the MCP inter-
rupt procedure again. If an interrupt condition is de-
tected in CM2, the CPM advances to CM3, changes
the entire environment by setting D [0] to the value
in the ADZ register, moves to the proper alternate
stack in the new environment and attempts to enter
the interrupt handler at the new D [0] +3.

If still another interrupt is detected while in CM3,
it is obvious that a recursive interrupt processing sit-
uation exists, and the CPM halts. If the CPM suc-
ceeds in entering the MCP interrupt procedure, the
Control Mode register is reset to Normal Mode pro-
grammatically.

INTERRUPT PROCESSING

All interrupt conditions which are reported in the
Fault Register and which are not masked out by the
Fault Mask register are accumulated into a general
signal to alert the fault control logic of the CPM to
the fact that one or more interrupts require process-
ing. When an interrupt requires processing the CPM
will advance the Control Mode register (in most
cases from Normal Mode to CM1) and will attempt
to enter the MCP interrupt procedure.

Interrupt Processing in Normal
Mode

After advancing the Control Mode register from
Normal Mode to CM1, the CPM will attempt to per-
form the following sequence of operations:

1. Read and save the P1 parameter.

2. Place a Mark Stack Control Word (MSCW) into

the stack.

3. Place an Indirect Reference Word (IRW) into
the stack. The IRW references a reserved loca-
tion (D [0] +3) in the MCP stack. (When in
Control Mode 3, the IRW references a reserved
location (D [0] +3) in the Alternate D [0]
stack.)

4. Place the P1 parameter into the stack.

5. Place a second parameter into the stack (the P2
parameter), giving further information about the
interrupt.

6. Execute an Enter operator. The fault control
logic expects to find a Program Control Word
(PCW) at D [0] +3; however, an SIRW, an
IRW or an IRW chain which points to a PCW
are possible conditions.

335

P2

Pi

OBJECT

IRW D[0}+3

PROGRAM
STACK

MSCW

.

OBJECT
PROGRAM
DATA

| sosk |—»

PROCESSOR ID

e

OBJECT PROGRAM CODE

—J

N

PBR

Hllll*ll

PIR PSR

INTERRUPT HANDLING PROCEDURE CODE

~

e SEG DESC. .r..[)
LS
MCP <
STACK
PCW
~ RCW
o[o]]——ﬂ MSCW

STACK FORMAT PRIOR TO CALLING THE INTERRUPT PROCEDURE.

1!
" P2
P INTERRUPTED OBJECT PROGRAM CODE .
OBJECT R
PROGRAM < RCW ——cr .
STACK —ow R
.
PROCESSOR ID
INTERRUPT HANDLING PROCEDURE CODE .
A 3
. ‘ l L,
MCP PBR
STACK PR
PSR
o[o]]-——o MSCW

3-3-6

STACK FORMAT AFTER ENTERING THE INTERRUPT PROCEDURE

Figure 3-3-1. Stack Format

The two interrupt parameters (P1 and P2) that are
inserted into the stack supply information describing
the interrupt condition. The P1 parameter provides
information concerning the type of interrupt, the in-
terrupt priority level, and the interrupt class. The P2
parameter supplies supplementary information about
the interrupt condition, such as a memory address
(memory related interrupts) or a copy of the non-
present descriptor (presence bit interrupts). If P2 is
not used by the interrupt condition being reported,
P2 will be set to zero.

When the interrupt procedure of the MCP is en-
tered, the IRW in the stack (step 3 above) is over-
written with a Return Control Word (RCW) by the
ENTER operator. As with any procedure entry, this
RCW points to the point in the code string to which
control is to be returned following execution of the
procedure.

Figure 3-3-1 depicts the stack format just prior to
and just after entering the interrupt procedure.

Interrupt Processing in CMI

When an interrupt is detected while in CM1, the
CPM advances to CM2 and attempts to enter the
MCP interrupt procedure from its alternate stack.
The new stack is found by using the processor num-
ber as an index into the Stack Vector Array. (This
array is pointed to by the Stack Vector Descriptor,
located at D [0] +2.) The index into the Stack Vec-
tor Array results in a data descriptor, which points
to the base of the stack for the new stack. Alternate
stacks are established by the MCP at the time of
system initialization.

The Bottom Of Stack Register (BOSR) is set to
the base address of the new stack, which contains
the Top Of Stack Control Word (TOSCW) for the
new stack. A modified move-to-stack operation then
causes the TOSCW for the old stack, the old BOSR
setting, and the old SNR register (stack number) set-
ting to be placed in the top of the new stack. After
these parameters have been placed, the stack is
marked, the IRW and the P1 and P2 parameters are
placed in the stack, and the MCP interrupt proce-
dure is entered. The stack structure just prior to en-
tering the MCP interrupt procedure is shown in fig-
ure 3-3-2.

Interrupt Processing in CM2

At system initialization time, the MCP establishes
a special CM3 operating environment at the top of
memory. This environment includes an abbreviated
D [0] stack with its own stack vector and an inter-
rupt handler. The main memory address of this al-
ternate D [0] stack is loaded into the ADZ register

h(,r
P2]
oLD Pl OBJECT PROGRAM CODE ,
STACK
RCwW — TTTTTITITTIT,
MSCW | f [
PBR PIR PSR
5 A
BOSR PROCESSOR 1D
v A
P2
P
IRW
MSCW
NEW OLD SNR
STACK
OLD BOSR
OLD TOSCW
] £
PROCESSOR 1D
~
I T | INTERRUPT HANDLING PROCEDURE CODE
SEGMENT DESCRIPTOR -{ TTTT [T I J T ,W’
! |
MCP [E T
STACK| A% ~

Pcw (D[0]+3) o
STACK VECTOR(D[0] +2)
RCW

o[0) MSCW

Figure 3-3-2. Stack Format Prior to Calling
Interrupt Procedure While in CM1
(Move Stack Operation)

of all CPMs. When a CPM detects an interrupt while
in CM2, the CPM advances to CM3, and changes to
the CM3 environment by setting the D [0] register to
the value in ADZ. The CPM then attempts to move
to its alternate stack in the new stack vector (at
ADZ+2) and enter the new interrupt handler at
ADZ+3, as described in the previous paragraphs.

Interrupt Processing in CM3

If an interrupt is detected while in CM3, it is obvi-
ous that a recursive interrupt condition exists. In
such cases the CPM is halted, the most recent inter-
rupt is identified in the Fault register, and the XCM
register equals 3.

Control Mode Advancement

Figure 3-3-3 illustrates the priority scheme for re-
porting interrupts, the conditions for advancing the
Control Mode register, and the interrupt conditions
which may be left in the Fault register for later serv-
icing. In case one, the Fault register contains an
Alarm Interrupt (first priority) a Stack Overflow in-
terrupt (third priority), and may also contain Syllable
interrupts (second priority), Interval Timer interrupts
(fifth priority), and External interrupts (fourth

3-3-7

8-€€

FAULT REGISTER CONTROL MODE REPORTED FAULT REGISTER

(BEFORE REPORTING INTERRUPT) REGISTER IN (AFTER REPORTING INTERRUPT)

T E S S A N C [c PARAMETER E 1 S S A

N X T Y L o L] M L] Pt X N T A L

T T A L A R 1 2 3 T T A L A

€ E c L R L € E Cc L R

R R [4 A L A R R K A L]

v N 8 L N v -]

A A] L A A o L

L L v [3 L L v E

E E

T R T R

J F I F

L] L L L

€ o] E o

R w R w

o | 0 0
o | ¢ | ¢ I |cmt[cmz | cma | ALARM ¢ CASE ONE
o | ¢ I I o |cm [cmz2 | em3 | SYLLABLE ¢ | ¢ ! o 1o | e Two
cM2 | CM3 »* - STACK OVERFLOW ¢ 0 0o o) 0

¢ ¢ 0 1 0 CM1 | cM2 | cM3 | SYLLABLE ¢ ¢ 0 o) 0 | CASE THREE
¢ ¢] o 0 CM1 | CM2 | cM3 | % STACK OVERFLOW) o o o o CASE FOUR
¢] 0 0 o jcom§ - - - EXTERNAL ¢ o 0 o 0 | cAse FIVE
]) 0 o 0 cm | - - - INTERVAL TIMER o o o o o | cAse six

% PROCESSOR HALTS
¢ MAY BE A ONE OR A ZERO

40384

Figure 3-3-3. Interrupt Reporting

priority). The Alarm interrupt causes the Control
Mode register to be advanced (from Normal to CM1,
CM1 to CM2, or CM2 to CM3), the P1 parameter re-
ports the Alarm interrupt, and the External inter-
rupts are still contained in the Fault register (all
other interrupts are cleared from the register).

Case two shows all priorities of interrupts except
Alarm interrupts present in the Fault register. The
resultant action is similar to case one, in that the
highest priority interrupt (Syllable) is serviced first.
P1 reports the Syllable interrupt, the Control Mode
register is advanced, and the Stack Overflow and
External interrupts are still contained in the Fault
register (in this case the Interval Timer interrupt is
also left in the Fault register).

Following entry into the software interrupt proce-
dure, the Stack Overflow interrupt is reported by an-
other P1, the Control Mode register is advanced, the
Interval Timer interrupt is cleared from the Fault
register, and the External interrupts are left for later
servicing. The stack structure for either case one or
case two is shown in figures 3-3-4 and 3-3-5.

Case three of figure 3-3-3 shows a Syllable inter-
rupt (second priority), an Interval Timer interrupt
(fifth priority), and an External interrupt (fourth pri-
ority) all present in the Fault register. In this case,
the highest priority interrupt present (Syllable) is re-
ported in P1, the Control Mode register is advanced,
and the Interval Timer and External interrupts are
left for later servicing. (The External interrupt is
serviced first.)

Case four shows a Stack Overflow interrupt, an
Interval Timer interrupt, and an External interrupt
present in the Fault register. The Stack Overflow in-
terrupt is reported in P1, the Interval Timer interrupt
is cleared from the register, and the External inter-
rupt is left for later servicing.

Case five shows servicing of an External interrupt,
leaving an Interval Timer interrupt for later servic-
ing. Case six shows servicing of an Interval Timer
interrupt. Notice that these two cases can only occur
when the CPM is in Normal State. (When the CPM
advances to CM1 and the MCP interrupt procedure
is entered, the CPM operates in Control State and
the recognition of Interval Timer and External inter-
rupts is inhibited.)

Alarm Interrupts (First Priority)

Detection of an Alarm interrupt causes an immedi-
ate entry (or re-entry) into the fault control logic.
The Control Mode register is advanced and a P1 pa-
rameter is formed which identifies all Alarm inter-
rupts which are present in the Fault register. Sylla-

ble Dependent interrupts, Stack Overflow interrupts,
and Interval Timer interrupts (if present) are cleared
from the Fault register and the interval timer is di-
sarmed. The MCP interrupt procedure is entered.

Syllable Dependent Interrupts (Second
Priority)

Detection of a Syllable Dependent interrupt (if no
Alarm interrupts are present) causes an immediate
entry (or reentry) into the fault control logic. The
Control Mode register is advanced and a Pl
parameter is formed which identifies all Syllable De-
pendent interrupts which are present. The MCP in-
terrupt procedure is entered.

Special Interrupts .

Stack Overflow (Third Priority)

All Stack Overflow interrupts are processed by the
fault control logic and cause advance of the Control
Mode register. All Stack Overflow interrupts cause
the P1 parameter reporting the interrupt to be
formed. Interval Timer interrupts (if unmasked) are
cleared from the Fault register and the Interval Tim-
er is disarmed. The MCP interrupt procedure is en-
tered.

Interval Timer (Fifth Priority)

Interval Timer interrupts are cleared (and the in-
terval timer is disarmed) when an Alarm or Stack
Overflow interrupt is reported. All uncleared Inter-
val Timer interrupts cause entry into the fault con-
trol logic if the mask is set, either in normal state or
if executing an IDLE, in Control state. The Control
Mode register is advanced to CM1 (from Normal).
(Interval Timer interrupts are inhibited when the
CPM is in Control State.) The MCP interrupt proce-
dure is entered.

External Interrupts (Fourth Priority)

Although External interrupts can occur at any
time, these interrupts (with the exception of the Egg
Timer interrupts) are inhibited when the CPM is in
Control State. If an External interrupt occurs when
the CPM is in Normal State, the Control Mode regis-
ter is advanced to CM1 and a P1 parameter describ-
ing the External interrupt is formed. Then, the Inter-
val Timer is disarmed and the MCP interrupt proce-
dure is entered.

Memory Related Interrupts

Memory related interrupts include Memory Parity
errors (MPA) which are discovered by the MAU;
Memory Fail 1 (FL1) errors which are discovered by

3-39

FIRST INTERRUPT REPORTED (ALARM OR SYLLABLE DEPENDENT)

P2
SECOND INTERRUPT REPORTED (STACK OVERFLOW)
Pl
IRW
MSCW
P2
P1
INTERRUPTED OBUECT
R e
OBUECT cw - PROGRAM CODE
PROGRAM MSCW
STACK *
LOSR
OBJECT
PROGRAM
DATA
~ ~
llp ~N
PROC. ID
~ ~n
: N INTERRUPT HANDLING
SEGMENT DESCRIPTOR —— I URE CODE
MCP A A
STACK 7T PIR, PBR, PSR POINT TO FIRST
SYLLABLE OF INTERRUPT
HANDLING CODE
PCW fo—
RCW
p[o]—> MSCW

Figure 3-3-4. Stack Format Before Re-entering Interrupt Procedure to Report Stack Overflow

3-3-10

-~ -~

P2
P

RCW

MsSCw

P2
Pl

OBJECT

RCW - ——

PROGRAM
STACK . MSCW
0BJECT
PROGRAM
DATA
4 4
> T
PROC ID.
r L
SEGMENT DESCRIPTOR }p— == e e—
A A
MCP -~ .r
STACK
PCW
RCW
o[o}— MSCW
0300

’-—FIQSY INTERRUPT REPORTED (ALARM OR SYLLABLE DEPENDENT)

} SECOND INTERRUPT REPORTED (STACK OVERFLOW)

~ —®THIS RCW POINTS TO FIRST SYLLABLE

OF INTERRUPT HANDLING CODE

INTERRUPTED CBJCCT
- PROGRAM COJE

INTERRUPT HANDLING J

= ¥ PROCEDURE CODE

PIR, PBR, PSR

Figure 3-3-5. Stack Format After Re-entering Interrupt Procedure and Reporting Stack Overflow

the MCM and reported to the requestor; invalid ad-
dress errors which are detected by the MAU in its
interface with the MCMs as an NAM; and Processor
Internal errors (PI) which are discovered by the
MAU in its interface with the other units of the
CPM. It should be noted that PI interrupt can also
be set by other units in the CPM. These four types
of errors are differentiated in the P1 interrupt param-
eter. Memory Fail 1 interrupts from all MCMs are
combined into a single alarm interrupt, represented
by bit 2 in the Fault register and the Interrupt ID.
The identification of which MCM as involved is giv-
en in the P2 parameter or in the Processor Fail regis-
ter, depending on the type of MAU operation being
performed. Wrong Channel Number and Memory
Time Out error indications in the Processor Fail reg-
ister are combined into a single alarm interrupt, rep-
resented by bit 3 (Invalid Address) in the Fault regis-
ter and the Interrupt ID. Likewise, MAU residue
(address residue error) and Bad Parity to MAU error

indications in the Processor Fail register are com-
bined into a single alarm interrupt, represented by
bit 6 (Processor Internal) in the Fault register and
the Interrupt ID.

Explanatory information about these errors may
be found either in P2 parameter or in the Processor
Fail register. If P2 is not used, it will be set to zero.
(See table 3-3-3.)

Interrupt Descriptions

Interrupts which can occur in the CPM are de-
scribed in the following paragraphs. The interrupts
are described in order of their priority. Alarm inter-
rupts are described first, Syllable dependent inter-
rupts second, Special interrupts third, and External
interrupts last.

3-3-11

Table 3-3-3. CPM Handling of Memory Related
Errors

Source of Request
for Memory Access

Alarm Interrupts
(MPA, FL1, NAM, & PI)

Data Reference Unit Fetch
(includes flashback)

The error word is queued in the
associative memory or reported
immediately with one exception

by the DRU if the error word is
sent to the Central Data Buffer.

In the latter case, the alarm
interrupt occurs immediately. The
Program Control Unit receives

CDB address of error word

through the interrupt mechanism.
In turn PCU issues to the Execution
Unit, the address of the CDB
location from which error word

is to be read, the address of the
CDB location (W storage portion
of CDB) into which error word is
to be written as the P2 parameter,
and a micro operator for exchanging
these CDB locations. The
exception is an invalid address
error during a string data fetch. In
this case, the error word is

queued in the DRU string data file
of CDB and not reported until
Execution Unit attempts to process
the string data involved. The error
word is placed into W storage
portion of CDB in the same manner
as explained above.

Store Queue Write or Purge The alarm interrupt occurs
immediately. There is no P2
parameter; rather the evxplanatory
information (including the identity
of the involved MCM) is contained
in the Processor Fail register.
Program Control Unit Fetch The error word is queued in the
program buffer and not reported
until the Program Control Unit
attempts to process the code string
involved. The error word is then
passed from PID to a LT48 location
in the CDB and then into W
storage portion of CDB as the

P2 parameter.

3-3-12

Alarm Interrupts

Alarm interrupts are caused by conditions which
are unexpected by the CPM. They inform the system
of some detrimental change in environment. In most
cases, Alarm interrupts result from hardware fail-
ures. The Alarm interrupts cannot be inhibited, and
always cause entry into the fault control logic. The
fault control logic terminates the current operator,
clears the top of stack registers, prepares the stack
(MSCW, IRW, P1, P2), and causes the MCP inter-
rupt procedure to be entered. When an Alarm inter-
rupt is cleared from the Fault register, all Syllable
Dependent interrupts present in the register are
cleared. The Alarm interrupts are:

Loop

Memory Parity

Memory Fail 1

Invalid Address (no access)

Stack Underflow

Invalid Program Word

Processor Internal

Alarm interrupts generally result in termination of
the process involved. Exceptions are (1) during a
halt load when the MCP uses an alarm interrupt (in-
valid address) to determine the amount of memory
available, and (2) when instruction retry by the MCP
is successful after a Processor Internal interrupt.

Loop

This interrupt occurs when the CPM has expended
up to two seconds in the execution of one operator.
This interrupt can be causes either by a hardware
failure or by bad data. Should this interrupt occur,
PIR may not be accurate.

PARAMETER P2

ZERO

PARAMETER Pl ,¢ 0 BIT

Loop Interrupt Parameters

Memory Parity

This interrupt occurs if the CPM receives a
memory word with a even number of 1’s. Should
this interrupt occur, PIR points to the word contain-
ing the operator which initiated the interrupt. Suppl-
ementary information describing the error will be
contained in the Processor Fail register. (See ‘‘Mem-
ory Related Interrupts’’.)

PARAMETER P2

MCM CONTROL WORD-IF ZERO
SEE PROCESSOR FAIL REGISTER

RAM R
PA ETER PI 25 | 8IT

Memory Parity Interrupt Parameters
Memory Fail 1

This interrupt occurs if any of the following errors
occur:

1. Data word parity error

2. Illegal operation code

3. Address is for a different Memory Module than

requested

4. Data strobe error

5. Internal control error

6. Multiple bit data error

In all of the above cases, supplementary informa-
tion describing the error will be contained in the
MCM Fail register. (See ‘‘Memory Related Inter-
rupts’’.)

PARAMETER P2

MCM CONTROL WORD -IF ZERO
SEE PROCESSOR FAIL REGISTER

PARAMETER PI 25 2 BIT

Memory Fail 1 Interrupt Parameters

5010796001

Invalid Address

This interrupt occurs when the CPM attempts to
access a memory address which is not available to
the system. The Memory Module may not exist or
it may be inoperative. Supplementary information is
placed in the Processor Fail register. (See ‘‘Memory
Related Interrupts’’.)

PARAMETER P2

MCM CONTROL WORD-IF ZERO
SEE PROCESSOR FAIL REGISTER

PARAMETER P! 25 3 BIT

Invalid Address Interrupt Parameters

Stack Underflow

This interrupt occurs if the CPM attempts to move
the top of stack (S register setting) to an address less
than the address of the most recent MSCW (F regis-
ter setting) during a stack adjustment. This could oc-
cur as a result either of a compiler error or a hard-
ware control failure in executing MKST, EXIT, or
MVST (all of which change F setting and could cal-
culate an incorrect address).

PARAMETER P2

ZERO

PARAMETER Pl 25 4 BIT

Stack Underflow Interrupt Parameters
Invalid Program Word

This interrupt occurs under any of the following
conditions:
1. An attempt is made to execute a program word
which does not have a tag of 3 (or tag of 0 if
in Edit mode).

3-3-13

2. The Variant code (Escape to 16-bit Instruction,
VARI) is detected as the second syllable of a
Variant operator.

3. An attempt is made to execute an operator
which is considered illegal in Edit mode or
Vector mode.

PARAMETER P2

ZERO

PARAMETER PI 25 5 BIT

|

Invalid Program Word Interrupt Parameters

Processor Internal

This interrupt occurs whenever an internal logic
failure is detected within the CPM. The Processor
Fail register provides information regarding the fail-
ure. For further information regarding memory re-
lated Processor Internal interrupts, see ‘‘Memory
Related Interrupts’’.

PARAMETER P2

MCM CONTROL WORD — IF ZERO
SEE PROCESSOR FAIL REGISTER
OR ERROR WORD FROM DRU OR EU

PARAMETER P1 25 6 BIT

PROCESSOR INTERNAL INTERRUPT PARAMETERS
ET 1688a

Syllable Dependent Interrupts

Syllable Dependent interrupts generally result
from programming errors. These interrupts cannot
be inhibited, and always cause entry into the fault
control logic. The fault control logic terminates the
current operator, prepares the stack (MSCW, IRW,
P1, P2), and causes the MCP interrupt procedure to
be entered. The contents of the top of stack registers
may or may not be saved, depending upon the type
of interrupt.

3-3-14

. Syllable Dependent interrupts are divided into two
classes. Class 1 interrupts (identified by the setting
of bit 24 of parameter P1) are those interrupts in
which the values of PIR, PSR, PBR, and PDR have
not been modified by the operator. Class 2 interrupts
(identified by the setting of bit 23 of of parameter
P1) are those interrupts in which the value of PIR,
PSR, PBR, and PDR have been changed. Thus, class
1 interrupts permit the operator to be re-executed;
class 2 interrupts prohibit the operator from being
re-executed.

Most Syllable Dependent interrupts occur as class
1 interrupts. The only Syllable Dependent interrupts
which can occur as class 2 interrupts are the Invalid
Index, Bottom of Stack, and Sequence Error inter-
rupts. The Syllable Dependent interrupts are:

Memory Protect Integer Overflow

Invalid Operand Bottom Of Stack
Divide By Zero Presence Bit

Exponent Overflow Sequence Error

Exponent Underflow Segmented Array

Invalid Index Programmed Operator
Privileged Instruction

Memory Protect

This interrupt occurs when one of the following

occurs:

1. A store, overwrite, read/clock, or string trans-
fer operation is attempted using a data descrip-
tor that has the read only bit (bit 43) set. The
operation is terminated before the memory ac-
cess. The data descriptor is used as the P2 pa-
rameter, except for string transfer.

2. A store operation is attempted into a word in
memory that has a tag field representing a
PCW, RCW, MSCW, or segment descriptor
(tag = 3, 7). The memory write is discontinued
when bit 48 is detected in the code word being
referenced. The flashback is used as the P2 pa-
rameter.

PARAMETER P2

DATA DESCRIPTOR WITH BIT 43 SET, OR MEMORY |
WORD WITH THREE TAGS, OR NUMBER OF ITEMS
BELOW THE MSCW NEEDED TO GET THE DATA
DESCRIPTOR

PARAMETER Pl 24 0 BIT

i

Memory Protect Interrupt‘ Parameters

INFORMATION ON THIS PAGE DELETED

5010796001 3-3-15

Invalid Operand

This interrupt occurs when the CPM attempts to
execute a valid operator on data which is invalid for
that operator or attempts to execute the invalid oper-
ator NVLD. Each operator executes checks to en-
sure that control words and data meet the necessary
requirements of the operator. Should this interrupt
occur PIR and PSR are left pointing to the current
syllable.

PARAMETER P2

INVALID DATA, OR ZERO

A
PARAMETER PI 24 | 8IT

Invalid Operand Interrupt Parameters

Divide By Zero

This interrupt occurs when a division operation is
attempted with the divisor (contained in the top of
stack) equal to 0. Should this interrupt occur, PIR
and PSR point to the initiating operator, and the di-
visor and dividend will be left on the top of the stack
(below the MSCW, RCW, PI1, and P2).

PARAMETER P2

ZERO

PARAMETER PI 24 2 BIT

Divide By Zero Interrupt Parameters

Exponent Overflow

This interrupt occurs when the capacity of a
positive sign exponent field is exceeded for either
single or double precision arithmetic results. Should
this interrupt occur, PIR and PSR point to the initi-
ating operator.

3-3-16

PARAMETER P2

ZERO

PARAMETER Pl ,, 3 BIT

Exponent Underflow

Thi.s interrupt occurs when the capacity of a
negative sign exponent field is exceeded for either
single or double precision arithmetic results. Should
this interrupt occur, PIR and PSR point to the initi-
ating operator.

PARAMETER P2

ZERO

PARAMETER PI
ETE 24 4 BIT

Exponent Underflow Interrupt Parameters

Invalid Index

This interrupt occurs if an attempt is made to in-
dex a descriptor by an amount which is less than 0
or which is greater than or equal to the upper bound
(length) in any of the following operations:

Occurs Index

Linked List Lookup

Index

Move Stack

Display Update

VALC

Stuffed IRW (pseudo operator)

Index and Load Name

Index and Load Value

If this interrupt occurs, the operation is terminated
prematurely. The input operands will be left on the
top of the stack (below the MSCW, RCW, P1, and
P2). Except for Display Update, all operations in the
list above will cause PIR and PSR to point to the
initiating operator. The interrupt occurs as a class 2
interrupt (bit 23 = 1) if an attempt is made to index
the Stack Vector Array descriptor (D [0] +2) during
a display update operation using a stack number
which is greater than or equal to the length field of
the Stack Vector Array descriptor.

NOTE
Bit 23 and bit 24 may not be set simul-
taneously.

PARAMETER P2

DATA DESCRIPTOR, MSCW, OR SIRW

PARAMETER Pl 5403 5 8IT

il

Invalid Index Interrupt Parameters

Integer Overflow

This interrupt occurs upon detection of the at-
tempted use of an operand which exceeds the
maximum integer value (2% -1) by an operator which
requires an integer. The following is a partial list of
operators which may cause this interrupt to occur:

Integer Divide
Integerize Truncate
Integerize Rounded
Occurs Index

PARAMETER P2

ZERO

PARAMETER PI 24 6 8IT

]

Integer Overflow Interrupt Parameters

Bottom of Stack

This interrupt occurs if a Return operator or an
Exit operator causes the program stack to be cut
back to its base. (The F register points to the
MSCW located at the BOSR setting plus 1.) The P2
garameter will be a copy of the MSCW being cut

ack.

This interrupt occurs as a class 2 interrupt (bit 23
= 1).

PARAMETER P2

MSCW BEING CUT BACK

PARAMETER PI 23 7 8IT

¢

Bottom Of Stack Interrupt Parameters

Presence Bit

This interrupt occurs when an attempt is made to
access a word or group of words which are not pres-
ent in main memory. All operators that access mem-
ory with descriptors may be interrupted with this in-
terrupt. The interrupt occurs if an attempt is made
to reference memory through a descriptor which has
the presence bit (bit 47) reset, indicating that the de-
scriptor points to words which are not present in
main memory. There are two classes of presence bit
interrupt conditions; data dependent and procedure
dependent.

DATA DEPENDENT

Data dependent presence bit interrupt conditions
occur when the CPM is seeking data from within its
current addressing environment. In all cases except
Value Call, recovery is achieved by re-executing the
operator upon return from the MCP interrupt proce-
dure. The MCP interrupt procedure makes the ab-
sent words present before return is made to the in-
terrupted program. To permit this re-execution, the
PIR and PSR settings for the current operator are
saved in the RCW. Value Call always sets this RT
bit for data dependent interrupts; however, Value
Call never sets this RT bit for procedure dependent

3-3-17

interrupts. Value Call or pseudo value call will al-
ways turn on the VS bit (bit 39) and cause the V bit
in the MSCW to be turned on. Figure 3-3-6 illus-
trates the PIR, PSR, Exit/Return, RT, VS, and RE
bit relationships in the various presence bit interrupt
conditions.

Accidental Entry

Procedures which have been entered accidentally
during the VALC operator also require special con-
sideration for the manipulation of PIR and PSR set-
tings for the RCW. The VALC operator is com-
pleted after the return operator mechanism when re-
turning from an accidentally entered procedure. A
pseudo value call operator provides the ability to
continue searching an IRW or data descriptor chain
until an operand is located. The pseudo value call
operator is activated at the end of a normal return
operator if the V bit of the MSCW has been set. The
V bit is set when either a VALC or pseudo value
call operator enters a procedure accidentally. If a
not present segment descriptor causes an interrupt
during a return from an accidental entry of value
call, a pseudo RT bit (Bit 45) is turned on in P1 so
the presence bit procedure will finish with a return
instead of an exit if the VS (Bit 39) is also on. The
RT bit and pseudo RT bit are used by the software
to execute the proper code. The V bit is used by the
hardware to change the return into a pseudo value
call so that IRW or data descriptor chain may be
chased.

PIR and PSR values, pointing to the next operator
syllable, are inserted into the RCW for VALC while
the PIR and PSR values from the old RCW are in-
serted into the RCW for a value call pseudo
operator.

All other operators which may incur accidental en-
tries are restarted; therefore, the PIR and PSR set-
tings which point to the current operator syllable are
saved in the RCW. The V bit is set to zero.

Procedure Dependent

Procedure dependent interrupts occur when the
CPM is attempting to enter a new addressing envi-
ronment, or attempting to return to an old ad-
dressing environment. These interrupts occur during
display update, and also when trying to process a
non-present segment descriptor. Recovery is
achieved by the Exit operator or the Return operator
after the MCP interrupt procedure has made the ref-
erenced environment present. Because the CPM has
not yet fetched the first operator of the new proce-
dure when this interrupt occurs, the PIR and PSR
settings from the PCW (for entry) or the RCW (for
return) are stored in the RCW which is made when

3-3-18

the MCP interrupt procedure is entered. Thus, when
the referenced environment is made present, the en-
try or return is to the referenced environment.

Program Restart

Following a Presence Bit interrupt, a program may -
be restarted either by executing a Return operator or
an Exit operator. The Return operator must return
either an IRW or a Data Descriptor. The RT bit of
the P1 parameter (bit 46) indicates to the MCP inter-
rupt procedure whether to perform an Exit operator
(bit 46 is reset) or a Return operator (bit 46 is set)
when returning to the interrupted procedure.

Parameter P2

During the execution of certain string operators, if
a Presence Bit interrupt occurs the P2 parameter
may contain a number which indicates the number of
items below the MSCW which are needed by the
string operator.

PARAMETER P2

SEGMENT DESCRIPTOR, OR DATA
DESCRIPTOR, OR IRW, OR NUMBER
OF ITEMS BELOW THE MSCW THAT

ARE NEEDED BY THE STRING OPERATOR

PARAMETER Pl 54 8 BIT

Presence Bit Interrupt Parameters

Sequence Error

This interrupt occurs if an indirect reference en-
counters an invalid condition or reference sequence.
Generally, this interrupt is caused either by a hard-
ware error or a systems software error, and the
MCP will terminate the program which generated the
interrupt. The interrupt can occur as a class 2 inter-
rupt (bit 23 = 1) only under the following conditions:

1. When a word other than a Segment Descriptor

is fetched relative to the PDR during the final
algorithm for the Enter, Exit, or Return
operators.

2. When the F register points to a word which is

not an MSCW at the beginning of execution of
the Exit or Return operators.

61-€-€

40994

PRESENCE BIT P) PRESENCE BIT ID RETURNING PIR, PSR
PZ OPERATOR NEW RCW SOFTWARE FUNCTION
INTERRUPT CONDITIONS RT (46) vs (39) RE (45)
Data Stack Vector DD DESC (k)* 0 0 0 EXIT Sy (8) | Locate Not Present D.D.
Dependent | or Stack D.D. By the IRW. |If neces-
During Reference IRW (1) 0 0 0 EXIT Sn (8) | sary, make the D.D.
Through Stuffed present and return an
1RW IRV (2) 1 1 0 RETURN Spt 2 (8) | 1RW where noted
1RW (3) 1 0 0 EXIT s, (8)
Data Descriptor DESC (2) i 1 0 RETURN Sp+ 2 (8) | Search Stack for copies
(copy) of Not Present D.D.
Make MOM and copies
DESC (7) 1 0 0 RETURN S, (8) | present, return present
(copy) D.D. where noted
Procedure | Stack Vector DD DESC (6) 0 0 0 EXIT From RCW | Search Stack for copies
Dependent | or Stack D.D. (copy) or PCW of Not Present D.D.
During Display Make MOM and copies
Update DESC (5) 0 0 1 EXIT present, Return D.D.
(copy) where noted
DESC (2) 0 1 0 EXIT
(copy)
Segment Desc DESC (2) 0 1 (] EXIT From RCW | Locate S.D. (MOM) via
(copy) or PCW copy in P, AD Field Of
Copy Points to MOM
DESC (6) 0 0] EXIT
(copy
DESC (5) 0 1 ** 1 RETURN
(copy)

.

.

ON OV 2 WN -

Enter or IRWL

VALC

All Operators Except VALC, ENTR, MVST, RETN, IRWL
MVST

RETN)

Al Operators Except RETN and VALC

All Operators Except ENTR, VALC, or IRWL

*Fetch new stack desc thru IRW only.
**IF RVLC (V-bit in the MSCW is on).

S, indicates that PIR and PSR point to current operator syllable.

Figure 3-3-6. Presence Bit Interrupt Chart

3. When tracing back through the DF links of an
MSCW chain (DF locates the preceding MSCW
in the stack) during an Exit, Return, or Move
Stack operation and a word which is not an
MSCW is fetched.

4. When a word which is not a Segment Descrip-
tor is fetched relating to the PDR during a Dy-
namic Branch operator execution.

PARAMETER P2

ZERO

PARAMETER PI 2423 9 BIT

)

Sequence Error Interrupt Parameters

Segmented Array

This interrupt occurs when a string operator at-
tempts to index beyond the end of the current seg-
ment of a segmented array. Arrays in main memory
may be segmented into groups of 256 words each,
bounded on both ends by memory links. The
memory link words are created by the MCP with the
memory protect bit (bit 48) set. During string
operations, each word read from memory is checked
to see if bit 48 is set. If such a word is referenced,
the Segmented Array interrupt will occur. The P2
parameter will indicate how many words (in the
stack below the MSCW, RCW, P1, and P2) are
needed to restart the operation after the new seg-
ment of the array has been made available in main
memory.

PARAMETER P2

NUMBER OF ITEMS BELOW THE
MSCW NEEDED TO RESTART OPERATION

PARAMETER PI24 10 BIT

Segmented Array Interrupt Parameters

3-3-20

Programmed Operator

This interrupt occurs if the CPM attempts to
execute an operator code which is not currently as-
signed. The Programmed Operator interrupt acts as
a communicate operator to the MCP, and allows the
MCP to simulate the action of the operator program-
matically, if desired. All unassigned operator codes
cause this interrupt. (None of the unassigned
operator codes cause Loop, Invalid Program, or In-
valid Operand interrupts. Scan In Time Of Day
Clock is an assigned operator: any other variation of
Scan In causes the Invalid Operand interrupt.)

PARAMETER Pz

ZERO

PARAMETER PI 24 BIT

Programmed Operator Interrupt Parameters

Privileged Instruction

This interrupt occurs if an attempt is made to
execute a Control State operator while the CPM is
in Normal State. The Control State operators are:

Inhibit Parity (GPR)
Set Memory Inhibits (SINH)
Set Memory Limits (SMLT)

PARAMETER P2

ZERO

PARAMETER PI 24 1 BIT

Privileged Instruction Interrupt Parameters

Special Interrupts

Special interrupts take third priority for process-
ing. There are just two Special interrupts: Stack
Overflow and Interval Timer.

Stack Overflow

This interrupt occurs when the Stack Controller
senses the use of the highest address allotted for the
stack of the program (the S register and the Limit of
Stack register (LOSR) point to the same address).
The MCP interrupt procedure may either allocate a
larger stack area, or it may terminate the program.
If the current operator has not been completely
executed, PIR and PSR are changed to point to the
operator.

PARAMETER P2

ZERO

PARAMETER PI 22 | 8IT

|

Stack Overflow Interrupt Parameters

Interval Timer

This interrupt occurs if the value in the hardware
interval timer is 0 and the interval timer is armed.
The timer is armed and an initial value is stored by
the Set Interval Timer operator (SINT). The count in
the timer is decreased every 512 microseconds until
the count reaches 0 or until the timer is reset. If the
timer is still armed when the count reaches 0, the in-
terrupt occurs. The maximum interval to which the
timer can be set is 1 second. This interrupt is used
by the MCP to ensure that no process can control
a CPM for more than 1 second without giving the
MCP a chance to regain control of the CPM.

PARAMETER P2

ZERO

PARAMETER Pl 22 0 BIT

Interval Timer Interrupt Parameters

External Interrupts

External interrupts are used to inform the MCP of
changes in external environment, and also to permit
communications between requestor modules (CPM
and IOM). Normally, these interrupts result in the
momentary interruption of a program while the inter-
rupt is handled or recorded by the MCP. Following
the handling of the interrupt, the program is contin-
ued. The External interrupts are:

Channel (0 through 7)

IOM Error (0 through 7)

Egg Timer

Channel Interrupt

This interrupt may be generated by any of the
eight possible requestor modules (CPM or IOM).
The interrupt identification (parameter P1) indicates
the source of the interrupt. This interrupt may be
generated to indicate an expected event (such as IO
Complete) or it may be generated by the Interrupt
Channel N operator (which allows any CPM to inter-
rupt any requestor module).

PARAMETER P2

ZERO

PARAMETER Pl 2l 765432 108IT

|
|

0000|0000

CHANNEL 7 1]
CHANNEL 6
CHANNEL 5
CHANNEL &
CHANNEL 3
CHANNEL 2
CHANNEL |
CHANNEL O

Channel Interrupt (0-7) Parameters

IOM Error Interrupt

This interrupt may be generated by any of the IO
modules in the system. The interrupt identification
(parameter P1) indicates the channel (0 through 7) to
which the IOM is connected. This interrupt is used
to report errors detected by an IOM which are not
device related. If possible, the IOM will link a
dummy IOCB into the status queue (RESULTQ).

3-3-21

The dummy IOCB will contain a Result Descriptor
which will further describe the error. Otherwise, the

Fail Result Descriptor will be placed at Home Ad-
dress (HA) + 5.

PARAMETER P2

ZERO

PARAMETER Pl 5| 1531211109 8 BIT
o[0|0|0,0[d|010

I0M ERROR 7 —J

I0M ERROR 6 —

IOM ERROR 5 —————

IOM ERROR ¢ —————

IOM ERROR 3 ———————

IOM ERROR 2

IOM ERROR |

10M ERROR O

3-3-22

Egg Timer Interrupt

This interrupt occurs if the Egg flip-flop in the
CPM is not reset every 8 to 16 seconds by the MCP.
This interrupt is used by the MCP to present the
CPM from looping while in the control state.

PARAMETER P2

ZERO

PARAMETER P1 21 BIT

Egg Timer Interrupt Parameters

SECTION 4
OPERATORS

INTRODUCTION

Operators are machine language code generated by
the compiler and stored by the master control pro-
gram in memory in the area allocated to program
segments. (Program segments contain no data and
are not modified by the processor as the program is
executed.) Program segments are sequences of in-
structions which are moved by the CPM as 52-bit
words from memory to the program buffer. Parity is
checked on all 52-bits of each program word as it is
brought to the program buffer.

Each program word consists of 48 bits, 3 tag bits,
and an overall parity bit. Since information will be
extracted from the program buffer in syllable form
there is no way to check overall parity. Therefore,
as the program word is parsed into six 8-bit syllables
while being loaded into the program buffer, parity is
also generated on each syllable of the word and
stored in the buffer with each word. The parity of
each syllable can thus be checked and the integrity
of the program word maintained. Tag bits are not
stored in the program buffer, instead a two-bit error
code is stored in the program buffer to identify tag
error conditions. Figure 3-4-1 illustrates the format
of the program buffer word.

An instruction may be either a Value Call, a Name
Call, or an operator. (Refer to table 3-4-1.) The two
high-order bits (bits 7 and 6 in figure 3-4-1) of each
instruction determine the type of instruction to be
executed.

Value Call (VALC) is a two-syllable instruction
that requires that the 14-bit address couple in the in-
struction be evaluated to provide an absolute ad-
dress from which data is fetched and placed in the
central data buffer (CDB) for EU use.

Name Call (NAMC) is a two-syllable instruction
that indicates the address couple in the instruction
may be used to form an IRW, which is then placed
in the CDB. However, if the NAMC operator is fol-
lowed by an operator which would require
evaluation of the address couple to derive an abso-
lute address, then the NAMC is concatenated with

the following operator and the address couple is
evaluated immediately. NAMC is concatenated when
the next operator in the program code string is any
of the following: INDX, NXLN, NXLV. STOD.
STON. OVRD, OVRN, DBUN, LOAD. and PLDT.
If a NAMC cannot be concatenated, an IRW con-
taining the address couple is placed in CDB for DRU
use.

The 14-bit address couple in the NAMC and
VALC instructions consists of a lexicographic-level
field (LL) and an index field (I). As shown in figure
3-4-2, the length of each of these fields varies with
the current lexic level of the active program. The LL
field ranges from one to five bits in length and con-
tains only as many bits as are required to define the
current lexic level. The remaining bits are the index
field. (The bits of the LL field are in inverse order
so that the least-significant bit of the field is located
in the most significant bit position of the address
couple.)

Value Call is a two-syllable instruction that brings
an operand from memory into the top of stack. A
concatenation of the two Value Call syllables gives
a 14-bit address couple. If the referenced memory lo-
cation is an indirect reference word or a data de-
scriptor, additional memory accesses are made until
the operand is located. The operand is then placed
in the top of stack in the CDB. The operand may be
either single-precision or double-precision, causing
either one or two words to be loaded into the stack.

Name Call builds an indirect reference word in the
CDB. The six low-order bits of the first syllable for
this operator are concatenated with the eight bits of
the following syllable to form a 14-bit address cou-
ple.

Operators vary from 1 to 12 syllables in length.
The first syllable of each operator indicates the num-
ber of additional syllables forming the operator.

Operators work on data as either full word (48
data bits plus 3 tag bits) or as strings of data charac-
ters. Word operators work with operands (single-or
double-precision) in the top of the stack.

Table 3-4-1. Instruction Decode Table

Instruction Identification (Bits 7 No. of Function
Type & 6) Syllables
Value Call 00 2 Brings an operand into the stack
Name Call 01 2 Brings an IRW into the stack
Operator 1x 1 to 12 Performs the specified operation

5010796001

34-1

SYLLABLE SYLLABLE SYLLABLE SYLLABLE SYLLABLE SYLLABLE
o 1 2 3 4 5
2 BIT
ERROR TAG |OA P S P |47 43 S P |39 35 S P |31 27 S P |23 19 S P |15 11 SP |7 3
CODE
46 42 38 34 30 26 22 18 14 10 6 2
45 a1 37 33 29 25 21 17 13 9 5 1
44 40 36 32 28 24 20 16 12 8 4 o
ER EV
(o] 1 = O TAG AND NOT IN EDIT
1 0 = TAGS OTHERTHANO AND3
1 1 = ERROR WORD (FOR ERROR WORD INFORMATION,
REFER TO FIGURE 3-2-27)
ET1279
Figure 3-4-1. Program Buffer Word Format
OPERATOR FORMAT
vV AL C N AMC
15] 11 7 3 158 11} 7 3
14] 10, 6] 2 1 10 6 2
ADDRESS ADDRES$
13 9 5 1 13 9 5 1
COUPL COUPLE
12 8l 4 0 12 8] 4 0
BIT ASSIGNMENT
CURRENT CURRENT CURRENT CURRENT CURRENT
LEXICOGRAPHIC LEX1COGRAPHIC LEXICOGRAPHIC LEX1COGRAPHIC LEXICOGRAPHIC
LEVEL LEVEL LEVEL LEVEL LEVEL
0-1 2-3 h-7 8-15 16-31
e L
T T
I “
L&l INDEX LL] INDEX L, INDEX LL|LL| INDEX
FIELD i FIELD] FIELD T FIELD
12-0 Ll -0 Ll 9-0 LI 8-0
41104

342

NOTE: LL indicates bit is part of lexic level field.

Figure 3-4-2. Address Couple Bit Assignment.

String operators are used for transferring, compar-
ing, scanning, and translating strings of digits, char-
acters, or bytes. In addition, a set of micro-operators

(edit mode operators) provides a means of formatting

data for input/output. String operators and edit mode
operators use source and destination pointers located
in the stack to set hardware registers.

In some of the string operators the source pointer
may not be used. In this case, an operand may be
in the stack; its characters are circulated as it is be-
ing used. String operators have an optional update
function, producing updated source and destination
pointers and counts.

If both the source and destination descriptors have
size fields equal to 0, the size registers indicate
eight-bit character size. When both a source and
destination are required and only the size field of
one is equal to 0, then the size field of the non-zero
descriptor is used.

When neither size field is equal to 0, or the size
fields are not equal, or the operator is not Translate
or Transfer Words, the invalid-operand interrupt is
set and the operator is terminated. The size field is
considered equal to 0, when the source is an oper-

and. .

Logical operands may be either true (ON) or false
(OFF). Logical values are the result of Boolean op-
erations or relational operations. Relation operators
generate a logical value as the result of an algebraic
comparison of two arithmetic expressions. Bit 0 con-
tains the logical value. Relational operators set bit 0,
and conditional operators use bit 0 for the decision.
Logical (Boolean) operators consider each bit from
47 to 0 as an individual logic value and operate on
the whole operand.

GROUPING OF OPERATORS

Operators may be identified by name, mnemonic,
or hexadecimal code. In this document to facilitate
reference to the description of the operators, the op-
erators are listed in the appendix in two ways: alpha-
betically by mnemonic, and sequentially by hexadec-
imal code. In each case the page number of the op-
erator description is given.

5010796-001

When describing operators, considerable redun-
dancy is eliminated by grouping operators with
similar functions and only describing their differ-
ences. Also, for convenience of the user, operators
used for related manipulations (such as arithmetic
operators ADD, SUBT, MULT, DIVD) are de-
scribed sequentially.

As shown in figure 3-4-3 all central processor pro-
gram operators are grouped into one of four modes:
primary (P), variant (V), edit (E). Sev-
eral operators are classed as universal (U) because
they can operate in any mode. (The letters in the
above parentheses are used in this document as a
mode-identifier prefix before the hexadecimal code
associated with each operator. For example, (P) 80
indicates a primary mode operator and 80 is the hex-
adecimal code for the ADD operator.) In this
document, the operator descriptions are grouped by
mode. Preceding each group of descriptions for each
mode is a list giving the order of specific operator
descriptions.

The most frequently used operators are called pri-
mary mode operators. Each of the other modes is
entered by first executing certain operators in prima-
ry mode. The ‘‘operator’’ portion of the primary
mode operators begins with the first syllable and
may extend for several syllables.

Primary mode operators are described in this doc-
ument in the following groups: arithmetic, bit,
branch, compare, enter edit mode, enter vector
mode, index and load, input convert, literal call, log-
ical, pack relational, scale, stack, store, string, string
transfer, subroutine, transfer, type-transfer, miscella-
neous, and universal. (In several cases a variant
mode operator is conveniently described with a
group of primary mode operators.)

Variant mode operators are less frequently used
than primary mode operators and extend the number
of hexadecimal codes available to identify the
operators. Variant mode operators require two sylla-
bles. The first syllable of a variant mode operator
has the hexadecimal code 95 which is the primary
mode operator called Escape to 16-Bit Instruction
(the mnemonic for this operator is VARI). The sec-
ond syllable then gives the actual variant mode oper-
ation to be performed. The variant mode operators
are described in this document in the following
groups: scan, scan while, tag field, unpack, miscella-
neous operators exclusive to the B 7800, and univer-
sal operators.

34-3

Edit mode operators perform edit functions (such
as insert, move, and skip) on strings of data being
prepared for output. The edit mode is entered from
the primary mode via one of the enter edit operators
(EXSD, EXSU, EXPU, TEED, or TEEU). Subse-
quent edit operators follow as either single micro-op-

erators in the program string or as edit operators in
a separate table which is executed as a program
string. In edit mode the program buffer memory is
reduced to 16 words (total available area) for pro-
cessing the edit operators; the other 16 words con-
tain the primary program syllables.

2nd —> PRIMARY MODE (P) xx

0 1 2 3 4 5 6 7

8 9 A B c D E F

1st 03 | VALC | VALC | VALC | VALC | VALC | VALC | VALC | VALC

VALC | VALC | VALC | VALC | VALC | VALC | VALC | VALC | 03

l 47 [NAMC | NAMC | NAMC | NAMC | NAMC | NAMC [NAMC | NAMC

NAMC | NAMC | NAMC | NAMC | NAMC | NAMC | NAMC | NAMC | 4.7

8 | ADD SUBT | MULT | DIivD | IDIV RDIV | NTIA | NTGR

LESS | GREQ | GRTR | LSEQ | EQUL | NEQL | CHSN | MULX | 8

9 | LAND | LOR LNOT | LEQV | SAME | VARI | BSET | DBST

FLTR | DFTR | ISOL | DISO | INSR | DINS | BRST | DBRS | 9

‘A | BRFL | BRTR | BRUN | EXIT | STBR | NXLN | INDX | RETN | DBFL | DBTR | DBUN | ENTR | EVAL | NXLV | MKST | STFF | A
B | ZERO | ONE LT8 LT16 | PUSH | DLET | EXCH | DUPL |STOD | STON | OVRD | OVARN | PLDT | LOAD | LT48 | MPCW | B
C | SCLF | DSLF | SCRT | DSRT | SCRS | DSRS | SCRF | DSRF | SCRR | DSRR | ICVD | ICVU | SNGT | SNGL | XTND | IMKS | C
D | TEED | PACD | EXSD | TWSD | TWOD | SISO | SXSN | ROFF | TEEU | PACU | EXSU | TWSU | TWOU | EXPU | RTFF | HALT | D
E | TLSD | TGED | TGTD | TLED | TEQD { TNED | TUND TLSU | TGEU | TGTU | TLEU | TEQU | TNEU | TUNU E

F | CLSD | CGED | CGTD | CLED | CEQD | CNED FMMR

CLSU | CGEU | CGTU | CLEU | CEQU | CNEU | NOOP ; NVLD | F

VARIANT MODE (V)xx

0 1 2 3 4 5 6 7 8 9 A 8 c 1] E F
4 JOIN | SPLT | IDLE | SINT | EEX! | DEXI | IGPR SCNI PTPA | WHOI 4
8 PAUS | OCRX NTGD | MIN MAX L0G2 INCN | 8
A RODI SMMD* SINH SLMT FMFR ACDB* MVST | A
RPRR | SPRR | RDLK | CBON | LODT | LLLU | SRCH | STOP | B

B STAG | RTAG | RSUP | RSDN

D | USND | UABD | TWFD [TWTD | SWFD | SWTD TCOD™* TRNS

USNU | UABU | TWFU | TWTU | SWFU | SWTU | RDEF | HALT

m | o

F | SLSD | SGED | SGTD | SLED | SEQD | SNED

SLSU | SGEU | SGTU | SLEU | SEQU | SNEU | NOOP |NVLD| F

EDIT MODE (E) xx

0 1 2 3 4 5 6 1

* Operator used for maintenance only.

8 9 A B c D N F

D [MINS | MFLT | SFSC | SRSC | RSTF | ENDF | MVNU | MCHR

INOP | INSG | SFDC | SRDC | INSU | INSC ENDE | HALT | D

NOOP [NVLD]| F

Figure 3-4-3. B 7800 CPM Program Operator Hexadecimal Code Assignments

344

Detection of an invalid operator condition termin-
ates the operator, and an invalid operator interrupt
is set in the fault register. The processor
will proceed to process the interrupt whether it is in
normal state or control state.

Invalid instructions are detected by the following
methods:

1. Testing for unassigned operator codes. In the
B 7800 all unassigned operators cause a pro-
grammed operator interrupt.

2. Testing for any value other than 011 in bit posi-
tions 50, 49, and 48 of any program word (an
attempt to execute something which is not
code). This results in an invalid program word
interrupt except when in table mode which al-
lows a tag 0 or a tag 3.

3. Testing for an invalid operator function; for ex-
ample, an attempt to dial to a non-existent bit.
This results in an invalid operand interrupt.

Bit 48 of each word in main memory is a memory
protect bit. This bit is ON in all program words, in-
direct reference words, data descriptors, program
descriptors, main memory storage links, and proces-
sor-generated control words.

PRIMARY MODE OPERATORS
Arithmetic Operators

Dyadic arithmetic operators require two operands
in the top-of-stack storage. These operands are com-

bined by the arithmetic process specified and are re-
placed with the resulting operand. These operands
may be either single-precision, or double-precision,
or intermixed types. The specified arithmetic process
adapts automatically to the environment: a single-
precision process is invoked if both operands are of
the single-precision type and a double-precision pro-
cess is invoked if either operand is of the double-
precision type. Each double-precision operand occu-
pies two words. The second word of the operand is
an extension of the first word of the operand to form
a 78-bit mantissa. Neither word is guaranteed to be
an integer or a fraction. (For example, if an expo-
nent is greater than +13, then every digit in both
words is an integer.)

Add, subtract, multiply, and remainder divide op-
erations with two integer single-precision operands
yield an integer single-precision result if no overflow
occurs in the case of add and multiply. If either or
both operands are non-integer or if the result overf-
lows, the result is non-integer.

ADD (ADD) (P)80

The add operator causes the two top-of-stack op-
erands to be added algebraically and the sum to be
left in the top of stack.

SUBTRACT (SUBT) (P)81

The Subtract operator causes the top-of-stack op-
erand to be algebraically subtracted from the second
operand in the stack and the result to be left in the
top of stack.

34-5

MULTIPLY (MULT) (P)82

The Multiply operator causes the two top-of-stack
operands to be algebraically multiplied and the prod-
uct to be left in the top of stack. The result (or prod-
uct) is right justified if there are 13 or less significant
digits of result. If there are more than 13, the result
is normalized and rounded.

EXTENDED MULTIPLY (MULX) (P)8F

The Extended Multiply operator causes the two
top-of-stack operands to be algebraically multiplied
and a double-precision product to be left in the top
of stack. MULX with two single-precision inputs
saves all 26 digits of the result without truncating.

DIVIDE (DIVD) (P)83

The Divide operator causes the second operand in
the stack to be algebraically divided by the top-of-
stack operand the quotient to be left in the top of
stack.

If the mantissa of the second operand in the stack
is 0, the exponent and quotient are set to 0. If the
top-of-stack mantissa is 0, the divide-by-zero inter-
rupt is set. In either case the operation is termi-
nated.

INTEGER DIVIDE (IDIV) (P)84

The Integer Divide operator causes the second op-
erand in the stack to be algebraically divided by the
top-of-stack operand and the integer part of the quo-
tient to be left in top of stack in integer form. If the
mantissa of the second operand in the stack is 0, the
exponent and quotient are set to 0. If the top-of-
stack mantissa is 0, the divide-by-zero interrupt is
set. In either case the operation is terminated.

REMAINDER DIVIDE (RDIV) (P)85

The Remainder Divide operator causes the second
operand in the stack to be algebraically divided by
the top-of-stack operand to develop an integer quo-
tient. The reminder of this division is left in the top
of stack. If both inputs to RDIV are single-precision
integers, the remainder is also an integer and is left
in the form of integer. If the mantissa of the second
operand in the stack is 0, the exponent and quotient
are set to 0. If the top-of-stack mantissa is 0, the di-
vide-by-zero interrupt is set. In either case the oper-
ation is terminated.

INTEGERIZE, TRUNCATED (NTIA) (P)86

The Integerize (Truncated) operator converts .the
top-of-stack operand to an integer without rounding.
The top-of-stack operand is always single-precision

34-6

regardless of the inputs to NTIA. If the operand can-
not be intergerized, that is, the exponent is greater
than the number of leading 0’s in the operand, the
integer-overflow interrupt is set and the operation is
terminated.

INTEGERIZE, ROUNDED (NTGR) (P)87

The Intergerize (Rounded) operator converts the
top-of-stack operand to an integer with rounding.
The top-of-stack operand is always single-precision
regardless of the inputs to NTGR. Rounding takes
place if the absolute value of the fraction is greater
than or equal to 1/2. The sign of the input is also
taken in consideration when 1 is added to the inte-
ger. If the sign is positive, then rounding occurs and
the fraction is =1/2. If the sign is negative, then 1
is added to the integer only if the fraction is greater
than 1/2. If fraction is equal to a 1/2, then the integer
part is not changed. If the operand cannot be inte-
gerized, that is, the exponent is greater than the
number of leading 0’s in the operand or a non-inte-
ger results from the rounding operation, the integer-
overflow interrupt is set and the operation is termi-
nated.

INTEGERIZE, ROUNDED, DOUBLE PRECISION
(NTGD) (V)87

The Integerize (Rounded, Double Precision)
operator converts the top-of-stack operand to a dou-
ble-precision integer (exponent +13) with rounding.

Bit Operators

Bit operators set or reset bits in the top of stack
or in the second item in the stack.

BIT SET (BSET) (P)96

The Bit Set operator sets a bit in the top of stack.
The bit set corresponds to the value of the bit
specified by the second syllable of the operator. If
the program syllable defining the bit to be set has a
value greater than 47, the invalid-operand interrupt
is set and the operation is terminated. BSET can
have an input of any kind of tag. Tag is preserved.

DYNAMIC BIT SET (DBST) (P)97

The Dynamic Bit set operator sets a bit in the sec-
ond item in the stack. The bit set corresponds to the
value of the bit specified by the top-of-stack oper-
and. If the word in the top of stack is not an oper-
and an invalid-operand interrupt is set and the
operation is terminated. The word is integerized be-
fore it is used as a bit number. If after being integer-
ized the operand is less than 0 or greater than 47, an
invalid-operand interrupt is set and the operation is
terminated.

BIT RESET (BRST) (P)9E

The Bit Reset operator resets a bit in the top of
stack. The bit reset corresponds to the bit specified
by the second syllable of the program operator. If
the program syllable defining the bit to be reset has
a value greater than 47, an invalid-operand interrupt
is set and the operation is terminated. BRST can
have an input of any kind of tag. Tag is preserved.

DYNAMIC BIT RESET (DBRS) (P)9F

The Dynamic Bit Reset operator resets a bit in the
second item in the stack. The reset bit corresponds
to the value of the bit specified by the top-of-stack
operand. If the word in the top of stack is not an op-
erand, an invalid-operand interrupt is set and the op-
eration is terminated. The word is integerized before
it is used as a bit number. If, after being integerized,
the operand is less than 0 or greater than 47, an in-
valid-operand interrupt is set and the operation is
terminated.

CHANGE SIGN BIT (CHSN) (P)8E

The Change Sign Bit operator complements
(changes from 1 to 0 or from 0 to 1) the sign bit (bit
46) of the top-of-stack operand. CHSN must have an
operand input (tag 0 or 2), otherwise an invalid-oper-
and interrupt is set and the operation is terminated.

COUNT BINARY ONES (CBON) (V)BB

The Count Binary Ones operator counts the num-
ber of binary ones in the information part of the
word in the top of stack and places this count in the
top of stack. CBON must have an operand input (tag
0 or 2), otherwise an invalid-operand interrupt is set
and the operation is terminated.

LEADING ONE TEST (LOG2) (V)8B

The Leading One Test operator locates the most
significant information bit of the word in the top of
stack. The number of that bit plus 1 is placed in the
top of stack. If a one bit is not located, a 0 is placed
in the top of stack. LOG2 can have an input of any
kind of tag. Tag is preserved.

Branch Operators

Branch instructions function to break the normal
sequence of serial instruction fetches. Branching
may be either relative to the base address of the cur-
rent program segment or to a location in some other
program segment. Branch operators may be condi-
tional or unconditional. Branch addresses are always
checked for possible residency in the address asso-
ciative memory.

BRANCH UNCONDITIONAL (BRUN) (P) A2

The Branch Unconditional operator replaces the
contents of the program index register (PIR) and the
program syllable register (PSR) with the next two
syllables from the program string. The two syllables
following the actual operator syllable provide the
new PIR and PSR settings: the three high-order bits
are placed in the PSR and the next 13 low-order bits
are placed in the PIR.

BRANCH ON TRUE (BRTR) (P) A1
BRANCH ON FALSE (BRFL) (P)AO

In the B 7800, the conditional branch information
(branch true, branch false, where branch is to, and
what CDB location will be the Boolean location) is
saved in the PCU to obtain a new code, if branch
is required. When Boolean is being written into a
CDB location by the EU, the LSB of that Boolean
is monitored by the PCU. By comparing this CDB
location with saved CDB location, the proper
true/false bit is selected for comparison with LSB of
Boolean.

If true/false bit and LSB of Boolean are equal, the
branch is performed to obtain address of new code
string.

If these values are not equal, the branch is dis-
carded and the program string is continued in se-
quence.

I(DY)NAMIC BRANCH UNCONDITIONAL (DBUN)
P)AA

If the top-of-stack word is either a program con-
trol word or an indirect reference to a PCW, the Dy-
namic Branch Unconditional operator branches to
the specified syllable of the program segment. PCW
can be found after chaining through normal IRWs. -
Note that a stuffed IRW cannot be used to find a
PCW for the DBUN. If a stuffed IRW is encoun-
tered (bit 46 ON), a sequence-error interrupt occurs.

If the top-of-stack word is an operand, the pro-
gram index register and program syllable register are
set according to the contents of this operand as fol-
lows: The operand is made into an integer. If bit
zero of the operand is 0, PSR is set to 0; otherwise,
if bit zero of the operand is 1, PSR is set to 3. The
next higher-order 16 bits are placed in the PIR.

DYNAMIC BRANCH TRUE (DBTR) (P)A9
If the low-order bit of the second word in the

stack is a 1 and the top-of-stack word is a program
control word (PCW) or an indirect reference to a

34-7

PCW, the Dynamic Branch True operator will cause
a branch to the specified syllable in the program seg-
ment. Otherwise, a 1 is added to the PIR and PSR
and the program continues in sequence.

If the low-order bit of the second word in the
stack is a 1 and the top-of-stack word is an operand,
PIR/PSR are replaced from this operand as in the
DBUN operator. Otherwise, PIR and PSR are ad-
vanced and the program string continues in se-
quence.

DYNAMIC BRANCH FALSE (DBFL) (P)A8

If the low-order bit of the second word in the
stack is a 0, and the top-of-stack word is a program
control word or an indirect reference to a PCW, the
Dynamic Branch False operator causes a branch to
the specified syllable of the program segment. Other-
wise, the PIR/PSR are continued in sequence.

If the low-order bit of the second word in the
stack is a 0 and the top-of-stack word is an operand,
PIR/PSR are replaced from this operand as in the
DBUN operator. Otherwise, PIR and PSR are ad-
vanced and the program string is continued in se-
quence.

Compare Operators

The compare operators perform the specified com-
pare of two strings of data. The true/false flip-flop is
conditioned by the results of the compare.

In the B 7800, the 48-bit words are assembled and
shifted for direct comparison. The boundaries of
these words are determined by the destination
words. The destination words end being unshifted,
and the characters which are not part of the string
(as defined by the original descriptor plus the length)
are zeroed out.

The destructive operators are completed as soon
as the results are known. Although the results are
known, the Compare Update operators continue un-
til the lengths are exhausted. If a segmented array
interrupt occurs, the result is saved in the RCW.

COMPARE CHARACTERS GREATER,
DESTRUCTIVE (CGTD) (P)F2

The Compare Characters Greater, Destructive op-
erator makes a character-by-character comparison of
two strings of data until it finds an unequal pair. (All
comparisons are by the binary character position in
the collating sequence.) If the characters in the B
string (destination) are greater than the characters in
the A string (source), the true/false flip-flop is set to
one; otherwise, the true/false flip-flop is set to zero.

34-8

If the repeat count is less than or equal to 0, the
true/false flip-flop is reset.

The top of stack is an operand which specifies the
number of characters to be compared. The second
item in the stack is an operand or descriptor pointing
at the source character string against which
comparisons are to be made. The third item in the
stack is a descriptor pointing to the character string
to be compared. If either of the data strings has the
memory protect bit ON (bit 48=1), the segmented
array interrupt is set, and the operation is termi-
nated.

COMPARE CHARACTERS GREATER, UPDATE
(CGTU) (P)FA

The Compare Characters Greater, Update
operator performs a compare characters greater, de-
struction operation except that the accesses to mem-
ory continue until the repeat count is exhausted. At
the completion of the operation, the source and des-
tination pointers are updated.

COMPARE CHARACTERS GREATER OR EQUAL,
DESTRUCTIVE (CGED) (P)F1

The Compare Characters Greater or Equal, De-
structive operator performs a compare characters
greater, destructive operation except that the
true/false flip-flop is set to true if the destination is
greater than or equal to the source.

COMPARE CHARACTERS GREATER OR EQUAL,
UPDATE (CGEU) (P)F9

The Compare Characters Greater or Equal, Up-
date operator performs a compare characters greater
or equal, destructive operation except that memory
accesses continue until the repeat count is exhaust-
ed. At the completion of the operation, the source
and destination pointers are updated.

COMPARE CHARACTERS EQUAL, DESTRUCTIVE
(CEQD) (P)F4

The Compare Characters Equal, Destructive oper-
ator performs a compare characters greater, destruc-
tive operation except that the true/false flip-flop is
set to true if the source is equal to the destination.

COMPARE CHARACTERS EQUAL, UPDATE
(CEQU) (P)FC

The Compare Characters Equal, Update operator
performs a compare characters equal, destructive
operation except that memory accesses continue un-
til the repeat count is exhausted. At the completion
of the operation, the source and destination pointers
are updated.

COMPARE CHARACTERS LESS OR EQUAL,
DESTRUCTIVE (CLED) (P)F3

The Compare Characters Less or Equal, Destruc-
tive operator performs a compare characters greater,
destructive operation except that the true/false flip-
flop is set to true if the destination is less than or
equal to the source.

COMPARE CHARACTERS LESS OR EQUAL,
UPDATE (CLEU) (P)FB

The Compare Characters Less or Equal, Update
operator performs a compare less or equal, destruc-
tive operation except that memory accesses continue
until the repeat count is exhausted. At the comple-
tion of the operation, the source and destination
pointers are updated.

COMPARE CHARACTERS LESS, DESTRUCTIVE
(CLSD) (P)FO

The Compare Characters Less, Destructive
operator performs a compare characters greater, de-
structive operation except that the true/false flip-flop
is set to true if the destination is less than the
source.

COMPARE CHARACTERS LESS, UPDATE
(CLSU) (P)F8

The Compare Characters Less, Update operator
performs a compare characters less, destructive op-
eration except that memory accesses continue until
the repeat count is exhausted. At the completion of
the operation, the source and destination pointers
are updated.

COMPARE CHARACTERS NOT EQUAL,
DESTRUCTIVE (CNED) (P)F5

The Compare Characters Not Equal, Destructive
operator performs a compare characters greater, de-
structive operation except that the true/false flip-flop
is set to true if the source is not equal to the destina-
tion.

COMPARE CHARACTERS NOT EQUAL, UPDATE
(CNEU) (P)FD

The Compare Characters Not Equal, Update oper-
ator performs a compare characters not equal, de-
structive operation except that memory accesses
continue until the repeat count is exhausted. At the
completion of the operation, the source and destina-
tion pointers are updated.

5010796-001

Enter Edit Mode Operators

Enter edit mode operators provide the means for
transition from primary mode operation to edit mode
operation. The edit mode operators in a program
string are entered via the Execute Single Micro or
Single Pointer. Edit mode operators may also be in
a table in which case they are entered by the Table
Enter Edit operator. (See also the descriptions under
‘“‘Edit Mode Operators.’’)

;I'/}BLE ENTER EDIT, DESTRUCTIVE (TEED)
P)DO

The Table Enter Edit, Destructive operator is used
to control edit micro-instructions which are con-
tained in memory as a table rather than as part of
the normal program string. This operator causes
characters to be transferred from the source string to
the destination string. The transfer is under control
of the string of edit micro-operators which are lo-
cated by the table pointer.

In normal cases, the top-of-stack word (a descrip-
tor) is the table pointer, the second word (a single-
precision operand or descriptor) in the stack is the
source pointer, and the third word in the stack (a de-
scriptor) is the destination pointer. However, if seg-
mented bit (bit 44) is ON, then the second word in
the stack, instead of being the source pointer, is the
length to be used by the edit operator. The TIR in
the CPM points to that edit operator.

If the first word in the stack is not a descriptor,
the invalid-operand interrupt is set and the operation
is terminated. If the second item in the stack is a
single-precision operand, it is a source string. If the
third item in the stack is not a descriptor, the inva-
lid-operand interrupt is set and the operation is ter-
minated. In table mode, the micro-operator words
can be tagged as single-word operands (tag 0).

TABLE ENTER EDIT, UPDATE (TEEU) (P)D8

The Table Enter Edit, Update operator performs a
table enter edit destructive operation. At the comple-
tion of the operation, the source pointer and destina-
tion pointer are updated.

EXECUTE SINGLE MICRO, DESTRUCTIVE
(EXSD) (P)D2

The Execute Single Micro, Destructive operator
transfers characters from the source string to the
destination string under the control of the single mi-
cro-operator which follows this operator syllable.

3-4-9

The first item in the stack is a single-precision oper-
and that defines the field length and is used as a mi-
cro-operator repeat field. The second item in the
stack is the source pointer, and the third item in the
stack is the destination pointer.

EXECUTE SINGLE MICRO, UPDATE (EXSU)
(P)DA

The Execute Single Micro, Update operator per-
forms an execute single micro, destructive operation.
At the completion of the operation, the source point-
er and destination pointer are updated.

EXECUTE SINGLE MICRO, SINGLE POINTER
UPDATE (EXPU) (P)DD

The Execute Single Micro, Single Pointer Update
operator performs an execute single micro, destruc-
tive operation. At the completion of the operation,
the pointer is updated.

The top-of-stack operand is used as a micro-
operator repeat field. The second item in the stack
is used to set both the source and destination point-
ers. Only the destination pointer is updated.

Index and Load Operators

The index and load operators provide the means
to index the top-of-stack word and the means to load
an operand or descriptor into the top of stack.

INDEX (INDX) (P)A6

The two top-of-stack items are a descriptor (or in-
direct reference to a descriptor) and an operand. The
operand is used to index the descriptor. The Index
operator places the integerized value of the second
item in the stack into the 20-bit length/index field of
the descriptor in the top-of-stack. The descriptor is
marked indexed (bit 45 is set to 1).

If the word in the top of stack is an operand, the
top-of-stack operand is exchanged with the second-
item operand. If the word in the top of stack is nei-
ther a descriptor nor an indirect reference word
pointing to a descriptor, the invalid-operand inter-
rupt is set and the operation is terminated.

If the indexing value is negative or greater than or
equal to the length field of the descriptor, the inva-
lid-index interrupt is set and the operation is termi-
nated.

34-10

If the descriptor represents an array which is seg-
mented, the index is partitioned into two portions by
dividing it by the proper divisor determined by the
type of data referenced by the descriptor (D.P.
word-128 S.P. word-256, four-bit digit-3072, six-bit
character-2048, or eight-bit byte-1536). The quotient
is used as an index to the given descriptor to fetch
the array-row descriptor. The remainder is used to
index the row descriptor.

Copy action can be performed in the Index
operator because an IRW can be pointing to a non-
present MOM descriptor.

If the double-precision bit (bit 40) in the descriptor
is 1, the index value in the second item is doubled.
The balance of the operation is as described in the
first paragraph of this operator.

If the presence bit (bit 47) and copy bit (bit 46) are
OFF, the address of the original descriptor is placed
in the address field of the stack copy. If the word
accessed by the indexed word in the top of stack is
not a data descriptor, the invalid-operand interrupt is
set and the operation is terminated. If the data de-
scriptor accessed by the indexed word in the top of
stack has the index bit (bit 45) set to 1, the invalid-
operand interrupt is set and the operation is termi-
nated.

INDEX AND LOAD NAME (NXLN) (P)A5

The Index and Load Name operator performs an
Index operation. After the word in the top-of-stack
is indexed, the data descriptor pointed to by this
word is brought to the top-of-stack, the copy bit (bit
46) of the data descriptor is set to one.

If the presence bit (bit 47) and copy bit (bit 46) are
OFF, the address of the original descriptor is placed
in the address field of the stack copy. If the word
accessed by the indexed word in the top-of-stack is
not a data descriptor, the invalid operand interrupt
is set and the -operation is terminated. If the data de-
scriptor accessed by the indexed word in the top-of-
stack has the index bit (bit 45) set to one, the inva-
lid-operand interrupt is set and the operation is ter-
minated.

INDEX AND LOAD VALUE (NXLV) (P)AD

The Index and Load Value operator performs an
Index operation. After the word in the top-of-stack
is indexed, the operand pointed to by this descriptor
is brought to the top-of-stack.

If the presence bit (bit 47) and copy bit (bit 46) are
OFF, the address of the original descriptor is placed
in the address field of the stack copy. If the word
accessed by the indexed word in the top-of-stack is
not a data descriptor, the invalid-operand interrupt is
set and the operation is terminated. If the data de-
scriptor accessed by the indexed word in the top-of-
stack has the index bit (bit 45) set to one. the inva-
lid-operand interrupt is set and the operation is ter-
minated.

LOAD (LOAD) (P)BD

The Load operator places the word addressed by
the indirect reference word or by the indexed data
descriptor in the top of stack.

If input to Load operator is neither a data descrip-
tor nor an IRW, the invalid-operand interrupt is set.

If the target is a descriptor, the copy bit is set.

If the descriptor is both non-present (bit 47=0)
and non-copy (bit 46=0) when fetched, copy action
occurs. The address from which the descriptor was
fetched is placed in the address field of the copy of
the descriptor left on the top of the stack.

LOAD TRANSPARENT (LODT) (V)BC

The Load Transparent operator saves the target
data unchanged as the result in the top of stack. If
target data is neither an IRW nor an indexed de-
scriptor, the LS 20 bits of the target data are extrac-
ted and used as an address. Whatever is referenced
by this address is then fetched.

Input Convert Operators

The input convert operators convert the various
character sets (digits BLC, EBCDIC, or ASCII) to
operands for arithmetic operations.

INPUT CONVERT, DESTRUCTIVE (ICVD) (P)CA

The Input Convert, Destructive operator converts
four-bit digit, or six-bit BCL, or eight-bit EBCDIC
(or ASCII) to an operand for internal arithmetic op-
erations.

The first items in the stack is an operand that is
integerized to form the repeat field. The second item
in the stack is a descriptor used as a source pointer.

The specified number of characters are transferred

from the source string to the top of stack. Only the
numeric portion of the character is transferred. The

5010796-001

transferred string is converted to a double-precision
operand if the length is =12. If a double-precision
operand is produced, the true/false flip-flop is set to
false; otherwise, it is set to true. The sign bit of the
operand is set negative if the zone of the last charac-
ter transferred is 102 (for six-bit characters) or 11012
(for eight-bit characters). The tag field is set to indi-
cate a single-or double-precision operand.

INPUT, CONVERT, UPDATE (ICVU) (P)CB

The Input Convert, Update operator performs an
Input Convert, Destructive operation.

If the source is an operand, the source is rotated
so that the next character to be used is left justified.
At the completion of the operation, the source point-
er is updated.

Literal Call Operators

The literal call operators place defined-value oper-
ands in the top of stack.

LIT CALL ZERO (ZERO) (P)BO

The Lit Call Zero operator places in the top of
stack a single-precision operand with a value of 0.

LIT CALL ONE (ONE) (P)B1

The Lit Call One operator places in the top of
stack a single-precision operand with a value of 1.

LIT CALL 8 BITS (LT8) (P)B2

The Lit Call 8 Bits operator places in the top of
stack a single-precision operand equal in value to the
second syllable of this operator.

LIT CALL 16 BITS (LT16) (P)B3

The Lit Call 16 Bits operator places in the top of
stack a single-precision operand equal in value to the
second and third syllables of this operator.

LIT CALL 48 BITS (LT48) (P)BE

The Lit Call 48 Bits operator places in the top of
stack a single-precision operand equal in value to the
next program word.

NOTE
Since the literal is synchronized by
word, this operator can be 7 to 12 syl-
lables long. Any unused syllables are
filled in with the invalid operator code.

34-11

?'/ID;ABI?:E PROGRAM CONTROL WORD (MPCW)

The Make Program Control Word operator per-
forms a Lit Call 48 Bits operation except that the tag
field is set to 111 to indicate a program control word
and the stack number field of the PCW is inserted
from the stack number register.

Logical Operators

Logical operators operate on the two top-of-stack
operands bit for bit from bit 47 through bit 0 to ob-
tain logical values (48 logical values for single-preci-
sion operands and 96 for double-precision operands)
which are left as the top-of-stack operand. If only
one of the operands associated with LAND, LOR,
LNOT, or LEQV is a double-precision operand,
then the other operand will be extended with 0’s.
Logical operators may be used to operate on logical,
string, or numeric operands.

LOGICAL AND (LAND) (P)90

The Logical AND operator logically ANDs each
bit (except tag bits) of the two top-of-stack operands
leaving the result in the top of stack. Each bit of the
top-of-stack operand is set to 1 where a 1 appears in
the corresponding bit positions of the two top-of-
stack operands; the other information bits in the top-
of-stack operand are set to 0. The tag of the second
operand is undisturbed except for a double-precision
operand in the top of stack, in which case the sec-
ond operand is made double precision and the tag
field is changed accordingly. AND is defined as fol-
lows:

Operand A Operand B A AND B
0 0 0
0 1 0
1 0 0
1 1 1
NOTE

The tag field is set equal to the second
item in the stack.

LOGICAL OR (LOR) (P)91

The Logical OR operator logically ORs each bit
(except tag bits) of the two top-of-stack operands
leaving the result in the top of stack. OR is defined
as follows:

Operand A Operand B AORB
0 0 0
0 1 1
1 0 1
1 1 1

34-12

NOTE
The tag field is set equal to the second
item in the stack.

LOGICAL NEGATE (LNOT) (P)92

The Logical Negate operator complements each
bit position (except tag bits) of the top-of-stack oper-
and.

LOGICAL EQUIVALENCE (LEQV) (P)93

The Logical Equivalence operator compares the
corresponding bits of the two items in the top of
stack (except the tag bits). The two items are re-
placed both by a single item with a tag field equal
to the tag field of the second item in the stack and
by a 1 in each bit position where the corresponding
bits of the two top-of-stack items were equal.

Pack Operators

PACK, DESTRUCTIVE (PACD) (P)D1

The Pack. Destructive operator packs data (as ad-
dressed by the source pointer) right justified into the
top of stack in four-bit (digit) format.

The top-of-stack operand defines the length/repeat
field (in digits) to be packed. The source pointer is
the second item in the stack. The specified number
of digits are transferred from the source to the top
of stack (dropping the zones when required). If the
digit length transferred is less than 13, the tag field
in the top of stack is set to a single-precision oper-
and; otherwise, the tag field is set to a double-preci-
sion operand.

If the length is not less than 25, an invalid-operand
interrupt is set and the operation is terminated. If
the source data has the memory protect bit (bit 48)
set to 1, the segmented-array interrupt is set and the
operation is terminated.

if the sign of the source data is negative, the
true/false flip-flop is set to 1; otherwise, the flip-flop
is reset. Sign conventions are as follows:

Data Bit Sign Location Neg. Sign
Format Zone Bit
Contfig.

4-bit Most significant digit 1101

6-bit Least significant character 10

8-bit Least significant byte 1101

(EBCDIC)
8-bit Least significant byte 1111 (ASCII)

PACK, UPDATE (PACU) (P)D9

The Pack, Update operator performs a Pack, De-
structive operation. At the completion of the
operation, the source pointer is updated.

Relational Operators

The relational operators perform algebraic compar-
isons on the two top-of-stack operands. The oper-
ands are removed from the stack and the result of
the comparison is a logical operand which is placed
in the top of stack. The result is a single-precision
operand with the least significant bit set to 1 if the
relation is true or a single-precision operand with all
information bits set to 0 if the relation is false.

GREATER THAN (GRTR) (P)8A

If the second operand in the stack is greater than
the top of stack operand, the Greater Than operator
replaces the two operands with a single-precision op-
erand which has the least significant bit set to 1.

If the second operand in the stack is not greater
than the top-of-stack operand, the two operands are
replaced with a single-precision operand which has
all information bits set to 0.

GREATER THAN OR EQUAL (GREQ) (P)8S

If the second operand in the stack is greater than
or equal to the top-of-stack operand, the Greater
Than or Equal operator replaces the two operands
with a single-precision operand which has the least-
significant bit set to 1.

If the second operand in the stack is not greater
than or equal to the top-of-stack operand, the two
operands are replaced with a single-precision oper-
and which has all information bits set to 0.

EQUAL (EQUL) (P)8C

If the second operand in the stack is algebraically
equal to the top-of-stack operand, the Equal
operator replaces the two operands with a single-pre-
cision operand which has the least significant bit set
to 1. If the second operand in the stack is not equal
to the top-of-stack operand, the two operands are re-
placed with a single-precision operand which has all
information bits set to 0.

LESS THAN OR EQUAL (LSEQ) (P)8B

If the second operand in the stack is less than or
equal to the top-of-stack operand, the Less Than or
Equal operator replaces the two operands with a sin-

gle-precision operand which has the least significant
bit set the 1. If the second operand in the stack is
not less than or equal to the top-of-stack operand,
the two operands are replaced with a single-precision
operand which has all information bits set to 0.

LESS THAN (LESS) (P)88

If the second operand in the stack is less than the
top-of-stack operand, the Less Than operator re-
places the two operands with a single-precision oper-
and which has the least significant bit set to 1. If the
second operand in the stack is not less than the top-
of-stack operand, the two operands are replaced
with a single-precision operand which has all infor-
mation bits set to 0.

NOT EQUAL (NEQL) (P)8D

If the second operand in the stack is not equal to
the top-of-stack operand, the Not Equal operator re-
places the two operands with a single-precision oper-
and with the least significant bit set to 1. If the sec-
ond operand in the stack is equal to the top-of-stack
operand, the two operands are replaced with a sin-
gle-precision operand which has all information bits
set to 0.

LOGICAL EQUAL (SAME) (P)94

The Logical Equal operator compares all bits (in-
cluding tag bits) of the two items (operands, controls
words, descriptors) in the top of stack. If all bits are
equal, a single-precision operand (with the least sig-
nificant bit set to 1 and all other information bits set
to 0) is stored in the top of stack; otherwise, a sin-
gle-precision operand with all information bits set to
0 is stored in the top of stack.

Scale Operators

The scale-left operators provide a means of align-
ing the decimal points prior to performing arithmetic
operations. The scale-right operators provide a
means of converting binary arithmetic to decimal
arithmetic. Most important operator in this group is
Scale-Right Final. In most cases, the other scale op-
erators are not used, except Scale Right Save.

SCALE LEFT (SCLF) (P)CO

The Scale Left operator shifts the operand in the
top of stack for decimal point alignment. The oper-
and in the top of stack is first converted to an inte-
ger and then multiplied by 10 raised to the power
specified by the scale factor. The scale factor is ob-
tained from the second syllable (the program syllable
following the operator syllable).

34-13

If scaling of a single-precision operand would re-
sult in overflow, the single-precision operand is con-
verted to a double-precision operand integer. For the
scale operators, a double-precision integer is defined
as a double-precision operand with an exponent
equal to 13 (octal). If scaling of the operand resuits
in an exponent greater than 13 (double-precision op-
erand), the overflow flip-flop is set to 1.

DYNAMIC SCALE LEFT (DSLF) (P)C1

The Dynamic Scale Left operator performs a Scale
Left operation except that the scale factor is ob-
tained from the top-of-stack operand and the oper-
and to be scaled is the second operand in the stack.
The operand in the top-of-stack is converted to an
integer before scaling takes place.

SCALE RIGHT SAVE (SCRS) (P)C4

The Scale Right Save operator shifts the top-of-
stack operand to the right for conversion from a bi-
nary to a decimal numbering system. The operand in
the top of stack is converted to an integer and di-
vided by 10 raised to the power specified by the
scale factor. The scale factor is obtained from the
second syllable. If the scale factor is greater than 12,
the invalid-operand interrupt is set and the operation
is terminated.

The binary quotient resulting from the division is
left in the top of stack. The second operand in the
stack is the remainder which is converted to decimal
(four-bit digits) and left justified.

DYNAMIC SCALE RIGHT SAVE (DSRS) (P)C5

The Dynamic Scale Right Save operator performs
a Scale Right Save operation except that the scale
factor is obtained from the top-of-stack operand and
the operand to be scaled is the second item in the
stack. The top-of-stack operand is converted to an
integer before scaling takes place.

SCALE RIGHT TRUNCATE (SCRT) (P)C2

The Scale Right Truncate operator performs a
Scale Right Save operation except that the remain-
der resulting from the division is deleted from the
stack.

(DPY)CN;«MIC SCALE RIGHT TRUNCATE (DSRT)

The Dynamic Scale Right Truncate operator per-
forms a Scale Right Truncate operation except that
the scale factor is obtained from the top-of-stack op-
erand and the operand to be scaled is the second op-
erand in the stack.

34-14

SCALE RIGHT ROUNDED (SCRR) (P)C8

The Scale Right Rounded operator performs a
Scale Right Save operation except that the remain-
der resulting from the division is deleted from the
stack. If the most significant digit of the remainder
is greater than or equal to 5 the quotient from the
division is rounded by adding 1 to it.

:‘.:)Y)NAMIC SCALE RIGHT ROUNDED (DSRR)
C9

The Dynamic Scale Right rounded operator per-
forms a Scale Right Rounded operation except that
the scale factor is obtained from the top-of-stack op-
erand and the operand to be scaled is the second op-
erand in the stack.

SCALE RIGHT FINAL (SCRF) (P)C6

The Scale Right Final operator performs a Scale
Right Save operation except that the quotient is de-
leted from the stack and the sign of the quotient is
copied into the external sign flip-flop. If the quotient
was not equal to 0 at the conclusion of the
operation, the overflow flip-flop is set.

DYNAMIC SCALE RIGHT FINAL (DSRF) (P)C7

The Dynamic Scale Right Final operator performs
a Scale Right Final operation except that the scale
factor is obtained from the top-of-stack operand and
the operand to be scaled is the second item in the
stack.

Stack Operators

The stack operators are used to adjust the relative
positions of the top items in the stack and to copy
or delete the top-of-stack item.

EXCHANGE (EXCH) (P)B6

The Exchange operator causes the two top-of-
stack items to be exchanged.

ROTATE STACK DOWN (RSDN) (V)B7

The Rotate Stack Down operator rotates the three
top-of-stack words as follows:

Before Rotation After Rotation
Word 1 Word 2
Word 2 Word 3
Word 3 Word 1

ROTATE STACK UP (RSUP) (V)B6

The Rotate Stack Up operator rotates the three
top-of-stack words as follows:

Before Rotation After Rotation

Word 1 Word 3
Word 2 Word 1
Word 3 Word 2

DUPLICATE TOP-OF-STACK (DUPL) (P)B7

The Duplicate Top-of-Stack operator duplicates
the item in the top of stack.

DELETE TOP-OF-STACK (DLET) (P)B5

The Delete Top-of-Stack operator deletes the top-
of-stack item.

PUSH DOWN STACK REGISTERS (PUSH) (P)B4

The Push Down Stack Registers operator pushes
down the top-of-stack items and stack buffer con-
tents into memory.

STORE DESTRUCTIVE (STOD) (P)B8

The Store Destructive operator stores the second
item in the stack into memory. The address into
which the item is to be stored is indicated by an in-
direct reference word or indexed data descriptor in
the top of stack. If the top-of-stack item is an oper-
and, the two top-of-stack items are exchanged so
that the address item is in the top of stack and the
item to be stored is in the second position. After the
item is stored, both the item and its address are de-
leted from the stack.

If the word addressed by the indirect reference
word is another indirect reference word or indexed
data descriptor, or if the word addressed by the data
descriptor is another indexed data descriptor, the
store operation will not occur at that location, but
will be retried using the address indicated by that
word. This chaining of address items will continue
until a ‘‘target’’ location is reached; however, once
a data descriptor has been encountered, an indirect
reference word or PCW is not allowed, and once a
stuffed indirect reference word has been encoun-
tered, a normal IRW is not allowed. Either of these
conditions will cause an invalid-operand interrupt.

If the word addressed by the indirect reference
word is a program control word, accidental proce-
dure entry occurs. The spontaneously generated

RCW causes STOD to be re-executed upon return

from the procedure.

5010796001

If a data descriptor used as an address item has
the read-only bit (bit 43) ON, or if the addressed
word has the memory protect bit (bit 48) ON and is
not a data descriptor, IRW, or PCW, the memory-
protect interrupt is set and the operation is termi-
nated.

If the presence bit in the data descriptor is 0, the
presence-bit interrupt is set. After the data has been
made present, the operation is restarted.

If the flashback had a tag of 2 (for an IRW ad-
dress) and data for storage is single precision, then
the XTND micro operator is called to convert the
single-precision data to double-precision data.

If double-precision bit (bit 40) is OFF (for a de-
scriptor address), the data for storage should be sin-
gle precision. However, if the data is double preci-
sion, the SNGL micro operator is called to convert
the double-precision data to single-precision data.

In either case, a PCU restart is required. The PCU
restart PROM table is used to issue a PIE level
XTND or SNGL micro operator, along with an ex-
change, before store is reissued.

STORE NON-DESTRUCTIVE (STON) (P)B9

The Store Non-Destructive operator performs a
Store Destructive operation, except that only the ad-
dress item is deleted from the stack. The item which
was stored is left in the top of stack.

OVERWRITE DESTRUCTIVE (OVRD) (P)BA

The Overwrite Destructive operator performs a
Store Destructive operation, except that the ad-
dressed location will be overwritten regardless of its
contents. Chaining of address items, memory protec-
tion checks, or accidental procedure entry do not oc-
cur.

OVERWRITE NON-DESTRUCTIVE (OVRN) (P)BB

The Overwrite Non-Destructive operator performs
a Store Non-Destructive operation, except that the
addressed location will be overwritten regardless of
its contents. Chaining of address items, memory pro-
tection checks, or accidental procedure entry do not
occur.

READ WITH LOCK (RDLK) (V)BA

The Read With Lock operator is a variant of the
Overwrite Non-Destructive operator. The word in
the top of stack and the specified word in memory
are interchanged after all local data is purged.

34-15

String Operators

The string operators are used for transferring,
comparing, scanning, and translating strings of data.
In addition, a set of micro-operators provides a
means of formatting data for input/output.

The string operators use a repeat value and source
and destination pointers which are located in the
stack. For most string operators, the repeat value
range is from 0 to 220-1. If the repeat value is =0,
the string operator checks for valid inputs and ter-
minates. If the string operator is an update type op-
erator, the normal updated descriptors are produced.

The source for the string operator can either be a
pointer into an array or a single or double precision
operand. If the source is an operand, the source
character size is determined by either the string op-
erator or the destination character size. The first
source character to be used by the string operator is
the left-most character in the most significant word
of the operand.

As the string operator acts upon each character in
the operand, the operand is rotated left by one char-
acter so that the next character to be used is always
the left-most character in the rotated source oper-
and. For update type string operators. the operand
is placed back into the stack in its rotated form. The
source and destination pointers can be:

An unindexed data descriptor.
An indexed data descriptor.
An unindexed string descriptor.
An indexed string descriptor.

W —-

When one descriptor (source or destination) is a
data descriptor and the other is a string descriptor,
the data descriptor is converted to a string descriptor
of the same type.

If both descriptors are data descriptors or there is
only one descriptor and it is a data descriptor, then
the conversion is made to 8-bit character string de-
scriptors. Note that the index field inserted into con-
verted string descriptors is the same as that found in
the original descriptors.

If string descriptors, except for the translate and
transfer word operators, contain different character
sizes, the invalid-operand interrupt is caused.

If string operators contain an update variant, the
indexed string descriptors pointing to the next char-
acter in the array to be used are left in the stack.

34-16

STRING ISOLATE (SISO) (P)D5

The String Isolate operator transfers from the
source string to the top-of-stack the number of bytes
specified by the repeat field. This string is right-justi-
fied and filled with leading zeros.

At the start of the operation, the top-of-stack op-
erand specifies the length of the byte string and the
second item in the stack is an operand or a descrip-
tor used as the source pointer. If the number of
bytes exceeds one word (6 bytes or 48 bits), the tag
of the result is set to double precision. if the number
of bits is greater than 96, an invalid operand inter-
rupt is set and the operation is terminated. If the
source data has the memory-protect bit (bit 48) set
to one, the segmented-array interrupt is set and the
operation is terminated.

String Transfer Operators

String transfer operators give the system the abil-
ity to transfer characters or words from one location
in memory to another location in memory.

ER)S?SFER WORDS, DESTRUCTIVE (TWSD)

The Transfer Words, Destructive operator trans-
fers the number of words specified by the top-of-
stack operand from the source string to the destina-
tion string. The first operand is integerized and is
used as the count or repeat field. The second item
in the stack (a string descriptor or operand) is the
source pointer; i.e., it points at the source string.
The third item in the stack (a string descriptor) is the
destination pointer which is used to provide the ad-
dress of the destination string. The number of words
specified by the repeat field are transferred from the
source to the destination. If an odd-tagged word is
encountered in the source during distribution, a seg-
mented array interrupt is generated.

TRANSFER WORDS, UPDATE (TWSU) (P)DB

The Transfer Words, Update operator performs a
Transfer Words. Destructive operation. At the com-
pletion of the operation the source and destination
pointers are updated to point to the next memory lo-
cation which would have been processed if the
length had not been exhausted. If either pointer was
a data descriptor, then an indexed data descriptor is
updated.

TRANSFER WORDS, OVERWRITE DESTRUCTIVE
(TWOD) (P)D4

The Transfer Words, Overwrite Destructive
operator performs a Transfer Words, Destructive op-
eration bypassing the memory-protection checks.

TRANSFER WORDS, OVERWRITE UPDATE
(TWOU) (P)DC

The Transfer Words. Overwrite Update operator
performs a Transfer Words., Update operation by-
passing the memory-protection checks.

TRANSFER WHILE GREATER, DESTRUCTIVE
(TGTD) (P)E2

The Transfer While Greater, Destructive operator
transfers the number of characters specified by the
second operand (bits 19:20) in the stack or while the
source character is greater than a delimiter. The top-
of-stack operand is the delimiter. The third item in
the stack is the source pointer. and the fourth item
is the destination pointer.

If the second item in the stack is a descriptor. it
is used as a source pointer. This means that no re-
peat field was given and the default field length is
1.048.575.

If either the source or destination word has the
memory protect bit ON (bit 48 = 1). the segmented-
array interrupt is set and the operation is terminated.

All comparisons are binary (EBCDIC collating se-
quence). The source character is compared with the
delimiter. If the comparison is true. the true/false
flip-flop is set to one: if the comparison fails. the
true/false flip-flop is set fo zero.

TRANSFER WHILE GREATER, UPDATE (TGTU)
(P)EA

The Transfer While Greater. Update operator per-
forms a Transfer While Greater. Destructive
operation. At the completion of the operation. the
source and destination pointers are updated to point
at the next character in the source and destination
strings. respectively. At the completion of the
operation. a count of the number of characters not
transferred is placed on the top-of-stack. If all the
characters specified by the length field are trans-
ferred. the true/false flip-flop is set to true; other-
wise. the true/false flip-flop is set to false.

If the operation is terminated because the relation-
ship is not met, the source pointer points to the
character which stopped the transfer.

TRANSFER WHILE GREATER OR EQUAL,
DESTRUCTIVE (TGED) (P)E1

The Transfer While Greater or Equal operator per-
forms a Transfer While Greater. Destructive
operation while the source character is greater than
or equal to the delimiter.

5010796001

TRANSFER WHILE GREATER OR EQUAL,
UPDATE (TGEU) (P)E9

The Transfer While Greater or Equal. Update op-
erator performs a Transfer While Greater Than or
Equal operation. At the completion of the operation,
the source and destination pointers and the count are
updated.

TRANSFER WHILE EQUAL, DESTRUCTIVE
(TEQD) (P)E4

The Transfer While Equal, Destructive operator
performs a Transfer While Greater or Equal, De-
structive operation while the source character is
equal to the delimiter.

TRANSFER WHILE EQUAL, UPDATE (TEQU)
(P)EC

The Transfer While Equal, Update operator per-
forms a Transfer While Equal, Destructive
operation. At the completion of the operation, the
source and destination pointers and the count are
updated.

TRANSFER WHILE LESS OR EQUAL,
DESTRUCTIVE (TLED) (P)E3

The Transfer While less or Equal, Destructive op-
erator performs a Transfer While Greater or Equal,
Destructive operation while the source character is
less than or equal to the delimiter.

TRANSFER WHILE LESS OR EQUAL, UPDATE
(TLEU) (P)EB

The Transfer While Less or Equal. Update
operator performs a Transfer While Less or Equal.
Destructive operation. At the completion of the op-
eration. the source and destination pointers and the
count are updated.

TRANSFER WHILE LESS, DESTRUCTIVE (TLSD)
(P)EO

The Transfer While Less. Destructive operator
performs a Transfer While Less or Equal, Destruc-
tive operation while the source character is less than
the delimiter.

TRANSFER WHILE LESS, UPDATE (TLSU) (P)E8

The Transfer While Less, Update operator per-
forms a Transfer While Less, Destructive operation.
At the completion of the operation, the source and
destination pointers and the count are updated.

34-17

TRANSFER WHILE NOT EQUAL, DESTRUCTIVE
(TNED) (P)E5

The Transfer While Not Equal. Destructive
operator performs a Transfer While Greater or
Equal. Destructive operation while the source char-
acter is not equal to the delimiter.

TRANSFER WHILE NOT EQUAL, UPDATE
(TNEU) (P)ED

The Transfer While Not Equal. Update operator
performs a Transfer While Not Equal Destructive
operation. At the completion of the operation. the
source and destination pointers and the count are
updated.

TRANSFER WHILE TRUE, DESTRUCTIVE
(TWTD) (V)D3

The Transfer While True, Destructive operator
transfers characters from the source string to the
destination string for the number of characters
specified by the length operand while the stated rela-
tionship is met. If the relationship is not met the
transfer is terminated at that point. The relationship
is determined by using the source character to index
a bit in the table. If the bit indexed is a one, the re-
lationship is true. An all zero’s character indexes to
the most significant bit of the table.

The operator uses the top four words in the stack
as follows: The top-of-stack word is a table pointer
to specific addresses in the table; the second word
in the stack provides the length of the string to be
transferred or, it is is a descriptor. it is used as a
source pointer since no repeat field was given and
the default field length is set at 1,048,575; the third
word in the stack is an operand or a descriptor
which gives the address of the source string or is a
single-precision operand which is the source string;
the fourth word in the stack is a descriptor pointing
at the destination string.

The table is indexed as follows to obtain the deci-
sion bit: The source character is expanded to eight
bits, if necessary, by appending two or four leading-
zero bits. The three high-order bits of the source
character select a word from the table, indexing the
table pointer. The remaining five bits of the expand-
ed source character select (by their value) a bit from
this word.

At the completion of the operation, a count of the
number of characters not transferred is placed on the
top of stack.

If all the characters specified by the length field
are transferred, the true/false flip-flop is set to true;
otherwise, the true/ffalse flip-flop is set to false.

34-18

The table format is as follows:
Bits Used In

Source Size Table Length Table Word
4 1 word (31:16)
6 2 words (31:32)
8 8 words (31:32)

'(I'RANSFER WHILE TRUE, UPDATE (TWTU)
V)DB

The Transfer While True, Update operator per-
forms a Transfer While True, Destructive operation.
At the completion of the operation, the source desti-
nation pointers and the count are updated. If all the
characters specified by the length field are trans-
ferred, the true/false flip-flop is set to one (true);
otherwise it is set to zero.

TRANSFER WHILE FALSE, DESTRUCTIVE
(TWFD) (V)D2

The Transfer While False, Destructive operator
performs the Transfer While True Destructive
operation except that the relationship is true if the
bit found by indexing into the table is a zero.

TRANSFER WHILE FALSE, UPDATE (TWFU)
(VIDA

The Transfer While False, Update operator per-
forms a Transfer While False, Destructive operation.
At the completion of the operation, the source and
destination pointers and the count are updated.

TRANSFER UNCONDITIONAL, DESTRUCTIVE
(TUND) (P)E6

The Transfer Unconditional, Destructive operator
transfers from the source to the destination the num-
ber of characters specified by the top-of-stack oper-
and. If the top-of-stack item is a descriptor, it is
used as a source pointer. Since no repeat field was
given. the field length is set by default at 1,048,575.
The second item in the stack is the destination point-
er. If all characters specified by the length field are
transferred, the true/false flip-flop is set to one (true)
by this operand; otherwise, the flip-flop is set to
zero (false).

TRANSFER UNCONDITIONAL, UPDATE (TUNU)
(P)EE

The Transfer Unconditional, Update operator per-
forms a Transfer Unconditional. Destructive
operation. At the completion of the operation, the
source and destination pointers are updated.

Subroutine Operators

Subroutine operators are those operators which
can move the program operation across machine ar-
chitecture such as from stack to stack, or from sub-
routine to subroutine, and so on.

Any subroutine operator which can ‘‘chain’ indi-
rect reference words (IRW’s) or stuffed indirect ref-
erence words (SIRW’s) can obtain accidental proce-
dure entry if a program control word (PCW) is
pointed to by the IRW or SIRW last in the chain.

MARK STACK (MKST) (P)AE

The Mark Stack operator builds an inactive
MSCW on top of the stack which is to be subse-
quently used by an Enter operator. The F register is
set to the location of the MSCW.

The Mark Stack operator is normally used when
an entry to a procedure is anticipated. The normal
sequence of events to enter a procedure is (l) mark
the stack; (2) insert an indirect reference to a pro-
gram control word; (3) insert parameters. if any are
to be passed to the procedure; and then (4) execute
an Enter operator, which will in turn, cause an entry
into the program segment located by the program
control word.

INSERT MARK STACK (IMKS) (P)CF

The Insert Mark Stack operator inserts a mark
stack control word in the current stack below the
two top-of-stack items.

NAME CALL (NAMC) (P) 40 THRU (P)7F

Name Call builds an indirect reference word in the
top of stack. The six low-order bits of the first sylla-
ble and the eight bits of the second syllable form a
14-bit address couple. This address couple is placed
in the top-of-stack location of the CDB with the tag
field set to 001.

In the B 7800, if the Name Call is followed by
INDX, NXLN, NXLV. STOD, STON, OVRD,
OVRN, DBUN, LOAD. or LODT operator, the
IRW is not placed in the CDB. Instead the address
couple is sent to the DRU for evaluation and, if ap-
propriate, a memory request is initiated by the DRU.
Except for write operators, the operator following
NAMC is processed in the DRU. In the case of con-
catenated index operator, a second input is sent as
a CDB address location to the DRU. The operand in
the CDB location is pointing to a descriptor, the in-
valid-operand interrupt used by the DRU to index
the fetched descriptor. Since the address computa-
tion is completed by the time the index operator is
processed by the DRU, a considerable time saving is
realized for concatenated index operations.

5010796001

VALUE CALL (VALC) (P)00 THRU (P)3F

Value Call is a two-syllable instruction that brings
an operand from memory into the top-of-stack. A
concatenation of the two Value Call syllables gives
a 14-bit address couple. If the referenced memory lo-
cation contains an indirect reference word or a data
descriptor, additional memory accesses are made un-
til the ‘‘target’’ operand is located. The operand is
then placed in the top-of-stack. The operand may be
either single-precision or double-precision, causing
either one or two words to be loaded into the top-
of-stack.

If the word accessed is an indexed data descriptor,
the word addressed by the data descriptor is brought
to the top-of-stack. If the word accessed is a non-in-
dexed word data descriptor, the descriptor is in-
dexed using the second word in the stack as the in-
dex value, and the word addressed by the indexed
data descriptor is brought to the top-of-stack. If the
double-precision bit (bit 40) in the data descriptor is
set, the second half of the double-precision operand
is placed in the second half of the top-of-stack loca-
tion.

If the presence bit in the data descriptor is zero.
the presence-bit interrupt is set. After the data has
been made present, the operation is restarted.

If a data descriptor does not address an operand,
step index word. or a word descriptor, an invalid-op-
erand interrupt is set and the operation is termi-
nated.

If the word accessed by the Value Call is an indi-
rect reference word (IRW), the word addressed by
the IRW is brought to the top-of-stack.

If the word accessed is a program control word
(PCW), an accidental entry into the subroutine ad-
dressed by the PCW is initiated. A mark stack con-
trol word and return control word are placed in the
stack and an entry is made into the subprogram. Up-
on completion of the subprogram, a return operation
will re-enter the Value Call operator flow.

If the target operand is a step index word (tag =
4) instead of an operand, the current-value field (bits
15:16) of the SIW will be placed in the top-of-stack
with the tag set to zero.

The ‘‘chaining”’ of memory accesses continues un-
til a target operand is reached; however, once a data
descriptor has been encountered, an indirect refer-
ence word or PCW is not allowed, and once a
stuffed indirect reference word has been encoun-
tered, a normal IRW is not allowed. Either of these
conditions will cause an invalid-operand interrupt.

34-19

EVALUATE (EVAL) (P)AC

If the word in the top of stack is an IRW at the
start of the evaluate operator, the IRW is evaluated
and chained until a target operand or descriptor is
obtained.

If the IRW chaining encounters an operand or
step-index word, the last IRW is left in the top of
stack as the result of the evaluate operator.

If the IRW chaining encounters a descriptor, the
last IRW is saved unless the descriptor is an index
word descriptor. If IRW chaining encounters an in-
dex word descriptor, the index word descriptor is
brought to the top of stack.

If a non-index descriptor or string descriptor is an
input to the evaluate operator, it is left in the top of
stack as the result of the evaluate operator.

ENTER (ENTR) (P)AB

The Enter operator causes an entry into a proce-
dure from a calling procedure. (The sequence of
events to enter a procedure is: (1) mark the stack;
(2) insert an indirect reference to a program control
word; (3) insert parameter(s), if any are to be passed
to the procedure; and, (4) execute an Enter
operator.)

The Enter operator completes the MSCW and
stores it at F,builds an RCW and stores it at F+1.
and initializes processor state for procedure being
entered.

EXIT (EXIT) (P)A3

The EXIT operator causes a called procedure to
return to a calling procedure and is used when the
called procedure is not required to return a result.
The Exit operator returns all control registers to the
position they were in prior to the calling procedure
and cuts back the stack.

RETURN (RETN) (P)A7

The Return operator causes a called procedure to
return to a calling procedure (as in EXIT) but is
used when the called procedure is required to return
a result. An operand or name in the top-of-stack is
returned to the calling procedure. If a name is re-
turned and the V bit (bit 19) in the MSCW is ON,
the name is evaluated to yield an operand as in
VALC (since the V-bit indicates that the RETN is to
VALC which caused accidental entry).

3420

Transfer Operators

The transfer operators transfer any field of bits
from one word in the stack to any field of another
word in the stack.

NOTE
For all transfer operators the values
specified in the stack must be non-neg-
ative.

FIELD TRANSFER (FLTR) (P)98

The Field Transfer operator uses the three sylla-
bles following it to establish the pointers used in the
field transfer. Stack adjustment takes place so that
the two top-of-stack locations are full. The contents
of the field in the top-of-stack, starting at the bit po-
sition addressed by the third syllable of FLTR, is
transferred into a field of corresponding length in the
second location in the stack. The field in the second
location in the stack starts at the bit position indi-
cated by the second syllable of FLTR and proceeds
toward the low-order-bit positions. When the num-
ber of bits specified by the fourth syllable of FLTR
has been transferred the top-of-stack word and the
operation is complete.

If the second or third syllables of the operator are
found to be greater than 47 or the fourth syllable is
greater than 48, the invalid operand interrupt is set
and the operation is terminated.

DYNAMIC FIELD TRANSFER (DFTR) (P)99

The Dynamic Field Transfer operator causes a
Field Transfer operation using the top-of-stack oper-
and to specify the field length, using the second op-
erand in the stack to specify the starting-bit position
of the field from which the transfer will be made,
and using the third operand in the stack to indicate
the starting bit of the field to which the transfer will
be made.

As each of these operands is used to establish a
pointer for the transfer, it is first integerized and
checked for being greater than 47 or 48, as above,
then is deleted from the stack. The fourth and fifth
stack operands become the two top-of-stack oper-
ands, and the transfer takes place as in the FLTR
operator.

FIELD ISOLATE (ISOL) (P)9A

The Field Isolate operator isolates a field in the
top-of-stack word. The second syllable of the
operator specifies the starting bit. The third syllable
specifies the length of the field in bits. The isolated
field is right-justified with all other information bits
set to zero. The tag bits are set to zero.

DYNAMIC FIELD ISOLATE (DISO) (P)9B

The Dynamic Field Isolate operator performs a
Field Isolate operation using the top-of-stack oper-
and to specify the length of the field to be isolated
and using the second operand in the stack to specify
the starting bit. These operands are then deleted
from the stack and the Field Isolate operation is per-
formed on the next operand.

FIELD INSERT (INSR) (P)9C

The Field Insert operator inserts a field from the
top-of-stack into the second word. Stack adjustment
assures that the top two positions are occupied. The
right-justified field in the top-of-stack is inserted into
the second word starting at the position specified by
the second syllable of the Field Insert operator. The
third syllable specifies the length of the field to be
inserted. The top-of-stack word is deleted after the
field is inserted in the second word.

DYNAMIC FIELD INSERT (DINS) (P)9D

The Dynamic Field Insert operator performs a
Field Insert operation, transferring a field from the
top operand in the stack into the fourth operand in
the stack. The second operand in the stack specifies
the length of the field to be inserted. and the third
operand in the stack specifies the starting bit of the
field.

Type-Transfer Operators

Type-transfer operators are used to manipulate op-
erand relative to single-precision or double-precision
operands.

SET TO SINGLE-PRECISION, TRUNCATED
(SNGT) (P)CC

The Set to Single-Precision. Truncated operator
sets the top-of-stack operand to a single-precision
operand without rounding. It functions as an arith-
metic operator with operand inputs. The result of
this operator is expressed in normalized floating-
point form.

If descriptor is received as an input, the SNGT
operator resets the double-precision bit (bit 40) in
the descriptor; thereby making the data referenced
by the descriptor single-precision.

If descriptor is not indexed. the SNGT operator
doubles the length field (bit 39:20) of the descriptor
(length field represents the number of items in the
array).

If descriptor is already indexed. the index field
(bits 39:12) of the descriptor is not modified.

5010796001

(SPETDTO SINGLE-PRECISION ROUNDED (SNGL)
C

The Set to Single-Precision, Rounded operator
sets the top-of-stack operand to a single-precision
operand with rounding. It functions as an arithmetic
operator with operand inputs. The result of this op-
erator is expressed in normalized floating-point form.

If at the start of this operator, a descriptor is re-
ceived as an input; the invalid-operand interrupt
pointing to a descriptor, the invalid-operand inter-
rupt is set and the operation is terminated.

SET TO DOUBLE-PRECISION (XTND) (P)CE

The Set Double-Precision operator sets the top-of-
stack operand to a double-precision operand.

If single-precision operand is received as an input.
the operand is extended with a word of 0's (LS word
will contain all 0's) and the tags are set to 2.

If descriptor is received as an input. the XTND
operator sets the double-precision bit (bit 40) in the
descriptor; thereby. making the data referenced by
the descriptor double-precision.

If descriptor is not indexed. the XTND operator
divides the length field (bit 32:20) of the descriptor
by 2 (length field represents the number of items in
the array).

SET DOUBLE TO TWO SINGLES (SPLT) (V)43

The Set Double to Two Singles operator splits a
double-precision operand into two single-precision
results. (A becomes LS part and B becomes MS part
of the result.) The SPLT operator can receive two
single-precision operands as inputs. In this case. the
LS word is pointing to a descriptor, the invalid-oper-
and interrupt considered to be all 0’s.

SET TWO SINGLES TO A DOUBLE (JOIN) (V)
42

The Set Two Singles to a Double operator joins
two single-precision operands ‘to form one double-
precision result. (A becomes LS part and B becomes
MS part of the result.) The JOIN operator can re-
ceive a double-precision operand as an input. In this
case. the LS word is ignored and only the MS part
of the result is used.

Miscellaneous Primary Mode
Operators

Miscellaneous primary mode operators are those
operators which cannot be readily described or
grouped with other operators.

3421

ESCAPE TO 16-BIT INSTRUCTION (VARI) (P) 95

The Escape to 16-Bit Instruction operator provides
transition from the primary mode operators to the
variant mode operators. The first syllable (VARI) in-
dicates that the actual operator is in the second syl-
lable. (Interrupts are not allowed between the VARI
syllable and the following syllable.)

READ AND CLEAR OVERFLOW FLIP-FLOP
(ROFF) (P)D7

The Read and Clear Overflow Flip-Flop operator
places a single-precision operand in the top-of-stack
with the least significant pointing to a descriptor, the
invalid-operand interrupt bit set equal to the over-
flow flip-flop. The overflow flip-flop is reset.

READ TRUE FALSE FLIP-FLOP (TRFF) (P)DE

The Read True False Flip-Flop operator places a
single-precision operand in the top of stack with the
least significant bit set equal to the true/false flip-
flop.

SET EXTERNAL SIGN (SXSN) (P)D6

The Set External Sign operator places the operand
sign bit of the top-of-stack word into the external
sign flip-flop.

STUFF ENVIRONMENT (STFF)(P)AF

The Stuff Environment operator places the current
stack number and displacement into the stack num-
ber field and displacement field of the top-of-stack
IRW. The index field of the SIRW is obtained di-
rectly from the IRW. Bit 46 is set to indicate that it
is now a stuffed indirect reference word.

The stack number identifies the stack in which the
LL field of the IRW points to a display. This display
may not be in the stack being executed by the pro-
cessor. Whatever stack is pointed to by the display
is, the stack number that is placed in the SIRW.

If normal IRW’s LL field is less than current LL,
pointing to a descriptor, the invalid-operand inter-
rupt the IRW’s LL + 1 is used to reference a dis-
play. This display is then used to fetch the MSCW.,
The display pointed to by the original IRW points to
the stack number in the MSCW. Therefore. the
stack number and displacement fields from the
MSCW are used in building the SIRW.

If LL of the normal IRW equals the current LL.
the current stack number is placed into the SIRW
and the display to which the normal IRWs LL points
minus the current bottom of stack is calculated to
obtained displacement field for the SIRW.

3422

Universal Operators

The operators HALT, NVLD, and NOOP are uni-
versal except that they cannot follow operators
EXSU, EXSD, EXPU, and EXPD; in these cases a
Loop Timecout will occur.

CONDITIONAL HALT (HALT) (U) DF

The Conditional Halt operator halts the processor
if the conditional halt switch is in the ON position;
if the conditional halt switch is OFF. the operator is
treated as a NOOP.

INVALID OPERATOR (NVLD) (U)FF

The Invalid Operator sets the invalid-operator in-
terrupt. pointing to a descriptor, the invalid-operand
interrupt

NO OPERATION (NOOP) (U)FE

No operation occurs when the No Operation oper-
ator is encountered except that the PSR and PIR are
advanced to point at the next operator.

VARIANT MODE OPERATORS

Variant mode operators is the name used to de-
scribe those primary mode operators which are less
frequently used. There is no functional significance
to the category "‘variant mode.’’ Variant mode oper-
ation extends the number of operation codes. Vari-
ant mode operators require two syllables: the first
syllable is the Escape to 16 Bit Instruction (VARI)
operator. The syllable following VARI is the actual
operation and the syllable pointer is positioned be-
yond the two syllables.

Any unusual variant mode codes are detected and
cause a programmed operator interrupt.

Variant mode operations are both word-and string-
oriented operators.

String Operators
TRANSLATE (TRNS) (V)D7

The Translate operator transfers from the source
to the destination the number of characters specified
by the second item in the stack while performing the
following translation.

The translation uses a table containing the trans-
lated characters. The word in the top-of-stack is a
descriptor that addresses the translation table. The
second operand in the stack specifies the length of
the string. The third word in the stack is a descriptor
addressing the source string (or an operand which is

the source string). The fourth word in the stack is a
descriptor addressing the destination string. Source
and destination are updated at the end of the
operation.

Translation occurs as follows: Each source charac-
ter is used as index into the table to locate a charac-
ter. An all zeroes character locates the most
significant character in the table. The located charac-
ter is transferred to the destination string.

The least significant 32 bits of each table word
provide four 8-bit characters. Table sizes are as fol-
lows:

1. 4-bit source digits use a 4-word table.
2. 6-bit source characters use a 16-word table.
3. 8-bit source bytes use a 64-word table.

Scan Operators
SCAN IN (SCNI) (V)4A

The Scan-In operator uses the 20 low-order bits of
the top-of-stack word as the address of the Time of
Day (TOD) register and reads the TOD contents to
the top-of-stack. Other variants, which are valid in
the B 6000 Systems, produce an invalid operand in-
terrupt in the B 7800. The B 7800 MCP causes the
correct B 7800 code to be executed to handle the in-
terrupt.

Scan While Operators

(S\/C)éN WHILE GREATER, DESTRUCTIVE (SGTD)
2

The Scan While Greater, Destructive operator
scans the number of characters specified by the sec-
ond operand in the stack or while the source charac-
ter is greater than a delimiter. The top-of-stack oper-
and is the delimiter. The third item in the stack is
the source pointer. If the second item in the stack
is a descriptor, it is used as a source pointer and the
length of the character string is set to 1,048.575. All
comparisons are binary. When the source is an oper-
and, it must be a single-precision operand.

At the completion of this operator if all the char-
acters have been scanned, the true/false flip-flop is
set to one. (SGTD operator leaves no result on the
stack.) If the scan was stopped by the delimiter test
before the end of the string the true/false flip-flop is
set to zero.

SCAN WHILE GREATER, UPDATE (SGTU) (V)FA

The Scan While Greater, Update operator per-
forms a Scan While Greater, Destructive operation.
At the completion of the operation, the source point-

5010796001

er and count are updated. The SGTU operator
leaves the updated length on top of the stack and the
updated source second from top of the stack. If all
the characters specified by the length field are
scanned, the true/false flip-flop is set to true; other-
wise, the true/false flip-flop is set to false. The
source pointer locates the character which stopped
the scan.

SCAN WHILE GREATER OR EQUAL,
DESTRUCTIVE (SGED) (V)FL

The Scan While Greater or Equal, Destructive op-
erator performs a Scan While Greater, Destructive
operation while the source character is greater than
or equal to the delimiter. This operator leaves no re-
sult on the stack.

SCAN WHILE GREATER OR EQUAL, UPDATE
(SGEU) (V)F9

The Scan While Greater or Equal, Update
operator performs a Scan While Greater Than or
Equal. Destructive operation. At the completion of
the operation, the source pointer and count are up-
dated. This operator leaves the updated length on
top of the stack and the updated source second from
top of the stack.

(SV(;éN WHILE EQUAL, DESTRUCTIVE (SEQD)
4

The Scan While Equal, Destructive operator per-
forms a Scan While Greater, Destructive operation
while the source character is equal to the delimiter.
This operator leaves no result on the stack.

SCAN WHILE EQUAL, UPDATE (SEQU) (V)FC

The Scan While Equal, Update operator performs
a Scan While Equal. Destructive operation. At the
completion of the operation, the source pointer and
count are updated. This operator leaves the updated
length on top of the stack and the updated source
second from top of the stack.

SCAN WHILE LESS OR EQUAL, DESTRUCTIVE
(SLED) (V)F3

The Scan While Less or Equal, Destructive
operator performs a Scan While Greater, Destructive
operation while the source character is less than or
equal to the delimiter. This operator leaves no result
on the stack.

SCAN WHILE LESS OR EQUAL, UPDATE
(SLEU) (V)FB

The Scan While Less or Equal, Update operator
performs a Scan While Less or Equal, Destructive
operation. At the completion of the operation. the

34-23

source pointer and count are updated. This operator
leaves the updated length on top of the stack and the
updated source second from top of the stack.

ﬁ/C)é(;\l WHILE LESS, DESTRUCTIVE (SLSD)

The Scan While Less, Destructive operation per-
forms a Scan While Greater, Destructive operation
while the source character is less than the delimiter.
This operator leaves no result on the stack.

SCAN WHILE LESS, UPDATE (SLSU) (V)F8

The Scan While Less., Update operator performs a
Scan While Less, Destructive operation. At the com-
pletion of the operation, the source pointer and
count are updated. This operator leaves the updated
length on the top of the stack and the updated
source second from top of the stack.

SCAN WHILE NOT EQUAL, DESTRUCTIVE
(SNED) (V)F5

The Scan While Not Equal, Destructive operator
performs a Scan While Greater, Destructive
operation ‘while the source character is not equal to
the delimiter. This operator leaves no result on the
stack.

‘(Sv(ié[l)\l WHILE NOT EQUAL, UPDATE (SNEU)

The Scan While Not Equal, Update operator per-
forms a Scan While not Equal, Destructive
operation. At the completion, the source pointer and
count are updated. This operator leaves the updated
length on the top of the stack and the updated
source second from top of the stack.

(SV(;SN WHILE TRUE, DESTRUCTIVE (SWTD)
5

The Scan While True, Destructive operator uses
each source character as an index into a table to lo-
cate a bit in the table. In order to index the table the
source character is expanded to eight bits (if neces-
sary) by appending two or four leading-zero bits.
The three high-order bits of these eight select a word
from the table, indexing the table pointer. The re-
maining five bits of the expanded source character
select a bit from this word by their value. If the bit
located is a one, the relationship is true and the scan
continues. An all zero’s character indexes to the
most significant bit of the table.

The top-of-stack word is a table pointer. The sec-
ond item in the stack specifies the number of charac-
ters to be scanned or, if it is a descriptor, it is used
as a source pointer and the length of the character
string is set at 1,048,575. The third item in the stack

3424

is the source pointer. If all the characters specified
by the length field are scanned, the true/false flip-
flop is set to true; otherwise, the true/false flip-flop
is set to false. This operator leaves no results on the
stack. The table format is as follows:

Source Size Table Length Bits/Word
4 1 word (31:16)
6 2 words (31:32)
8 8 words (31:32)

SCAN WHILE TRUE, UPDATE (SWTU) (V)DD

The Scan While true, Update operator performs a
Scan While True, Destructive operation. At the com-
pletion of the operation, the source pointer and
count are updated. This operator leaves the updated
length on top of the stack and the updated source
second from top of the stack.

SCAN WHILE FALSE, DESTRUCTIVE (SWFD)
(VD4

The Scan While False, Destructive operator per-
forms a Scan While True, Destructive operation ex-
cept that the relationship is true if the bit found by
indexing into the table is a zero. This operator
leaves no results on the stack.

SCAN WHILE FALSE, UPDATE (SWFU) (V)DC

The Scan While False, Update operator performs
a Scan While False, Destructive operation. At the
completion of the operation, the source pointer and
count are updated. This operator leaves the updated
length on top of the stack and the updated source
second from top of the stack.

Tab Field Operators
SET TAG FIELD (STAG) (V)B4

The Set Tag Field operator sets the tag field (bits
50:3) of the second word in the stack to the contents
of bits 2:3 of the top-of-stack word.

READ TAG FIELD (RTAG) (V)B5

The Read Tag Field operator replaces the top-of-
stack word with a single-precision operand with bits
2:3 equal to the tag field of the original top-of-stack
word.

Set State Operators

SET INTERVAL TIMER (SINT) (V)45 (CONTROL
STATE OPERATOR)

The Set Interval Timer operator integerizes the
top-of-stack operand. If the operand cannot be inte-
gerized. an integer-overflow interrupt is set and the
operation is terminated. The value of the 11 low-or-
der bits of the top-of-stack operand is used to set the
interval timer associated with the processor which is
executing this operator. Once set, the interval timer
will start to decrement once each 512 microseconds.
The associated processor is interrupted when the
value has been counted to zero if the timer is still
armed.

The interval timer is disarmed whenever the asso-
ciated processor is interrupted by an external inter-
rupt.

?\/E)ﬁED PROCESSOR IDENTIFICATION (WHOI)

The Read Processor Identification operator places
a single-precision operand with a value equal to the
processor’s number on the top-of-stack.

ENABLE EXTERNAL INTERRUPTS (EEXI) (V)46

The Enable External Interrupts operator prohibits
this processor to respond to external interrupts.

DISABLE EXTERNAL INTERRUPTS (DEXI) (V)47

The Disable External Interrupts operator prohibits
this processor from responding to external inter-
rupts.

IDLE UNTIL INTERRUPT (IDLE) (V)44

The Idle Until Interrupt operator suspends pro-
gram execution by this processor. External inter-
rupts are allowed. and the processor will enter its in-
terrupt-handling routine upon receipt of an interrupt.

READ PROCESSOR REGISTER (RPRR) (V)B8

The Read Processor Register operator reads into
the top-of-stack the contents of one of the eight base
registers, or one of the eight index registers, or one
of the 32 D registers. Register address assignments
are shown in table 34-2.

An invalid-operator interrupt is set and the
operation is terminated if the top-of-stack word is
not a descriptor or an indirect reference word at the
start of the Evaluate operator.

5010796-001

SET PROCESSOR REGISTER (SPRR) (V)B9

The Set Processor Register operator sets the pro-
cessor register addressed by the second word in the
stack to the value contained in the top-of-stack
word.

Unpack Operators

UNPACK ABSOLUTE, DESTRUCTIVE (UABD)
(V)D1

The Unpack Absolute. Destructive operator un-
packs a string of left-justified digits from the second
operand in the stack. the top-of-stack operand de-
fines the string length (in 4-bit digits) of the second
operand in the stack. The specified number of digits
are transferred from the second operand to the desti-
nation. The third item in the stack is a string .de-
scriptor destination pointer. Zone fill in the destina-
tion is as follows:

1. If the destination bit format is 8-bit ASCII, t'he
digits are transferred to the destination string
with the leading-zone bits set to 0011.

2. If the destination bit format is 6-bit BCL, the
digits are transferred to the destination with the
two leading-zone bits set to zero.

3. If the destination bit format is 8-bit EBCDIC,
the digits are transferred to the destination
string with the four leading-zone bits set to all
ones (F).

UNPACK ABSOLUTE, UPDATE (UABU) (V)D9

The Unpack Absolute, Update operator performs
an Unpack Absolute. Destructive operation. At the
completion of the operation the destination pointer is
updated.

UNPACK SIGNED, DESTRUCTIVE (USND) (V)DO

The Unpack Signed, Destructive operator per-
forms an Unpack Absolute, Destruction operation
except that the external sign is considered.

If the external sign flip-flop is ON (indicating neg-
ative data) then a zone of 10 is inserted in the last
6-bit character or a zone of 1101 is inserted in the
last 8-bit byte. For 8-bit ASCII formatted data the
negative sign is indicated in the least-significant byte
by a zone of 1111. If the data format of the destina-
tion is 4 bits, the first digit position of the destina-
tion string is set to 1101 if the external sign flip-flop
is ON; if the external sign flip-flop is OFF the first
digit of the destination string is set to 1100.

3425

Table 3-4-2. Register Address Assignments

Add. Add. Int. Addr. Reg.

(dec.) (hex) hex Name Register Usage

0-31 0-1F D[x]* Display Registers

32 20 PIC Program Index

33 21 24 SIR* Source Index

34 22 25 DIR* Destination Index

35 23 26 TIR* Table Index

36 24 XLOS Limit of Stack

37 25 20 BOSR* Base of Stack

38 26 XF Most Recent MSCW Address
39 27 22 S1LS* Scratch (Spare Local Storage)
40 28 ID (CID**) Interrupt Identifier

4] 29 SCAN MDP Control Register

42 2A IFM (CMR**) Fault Mask Register

43 2B Spare

44 2C IFR (CFR**) Interrupt Fault Register

45 2D ‘ Spare

46 2E INT Interval Timer

47 2F ITD Time of Day

48 30 PBR Program Base Register

49 31 28 SBR* Source Base Register

50 32 29 DBR* Destination Base Register

51 33 2A TBR* Table Base Register

52 34 XS Top of Stack Address

53 35 XSN Current Stack Vector Index
54 36 PSDI Current Segment Descriptor Index
55 37 2B S2LS* Scratch (Spare Local Storage)
56 38 2C ADZ* Alternate [DO] Register

57 39 2D APIR* Alternate Program Index

58 3A ALL1 (Return zero on Read)

59 3B 21 LD1* Last D [1] used as SD1 base.
60 3C IPF Processor Fail Register

61 3D XCM Processor Mode Register

62 3E PGAM Purge Store Q and associative Memories
63 3F PGKA Purge Store Q and associative Memories

* Soft storage in DRU of CPM (no panel indicators)
** Mnemonic used in MCP.
*** RPRR 3E resets egg timer.

in bits 47:28 and a link in bits 19:20. The link is an
index from the base of the array to the next element
in the list.

UNPACK SIGNED, UPDATE (USNU) (V)D8

The Unpack Signed, Update operator performs an
Unpack Signed, Destructive operation. At the com-
pletion of the operation, the destination pointer is
updated.

This operator expects the third stack entry (bits
27:28) to contain an argument, the second stack en-
try to contain a non-indexed data descriptor, and the

Searching Operators
LINKED LIST LOOKUP (LLLU) (V)BD

The Linked List Lookup operator searches a
linked list of words. Each word consists of a value

34-26

top-of-stack to contain an index value pointing into
a linked-list of words. The argument is not required
to be an integer, but only the right-most 28 bits are
significant after the argument has been integerized as
required. The base address, size field, and argument
are saved throughout the operator.

|

Bits 47:28 of the word addressed by the base plus
the index value are compared to the argument value.
If this field is less than the argument value, the pro-
cess is repeated using the link as the new index. If
the field is greater than or equal to the argument
value. the operation is complete. At completion, the
top-of-stack contains the index of the word that con-
tains the link that points to the satisfying argument.

If the value of the link portion of the linked-list
word is equal to zero, the top-of-stack is set to
minus one (-1) and the operation is completed.

If the index value in the linked-list word is greater
than the length value from the descriptor, an invalid-
index interrupt is set and the operation is termi-
nated.

When the first word in the stack at the start of this
operator is not an operand an invalid-operand inter-
rupt is set and the operation is terminated.

If the data descriptor has been indexed, the inva-
lid-operand interrupt is set and the operation is ter-
minated.

If the value in the first word is greater than or
equal to the argument value, the index of the first
word itself is left on top of the stack.

MASKED SEARCH FOR EQUAL (SRCH) (V)BE

The Masked Search for Equal operator searches a
data word list for a word identical to the third word
in the stack. At the beginning of this operator, the
top word in the stack contains a data descriptor, the
second word in the stack contains a S1-bit mask. and
the third word in the stack contains a 51-bit argu-
ment value. If the descriptor is not present. the pres-
ence-bit interrupt is set and the operator is exited.
Otherwise, if the descriptor is unindexed, the in-
dexed bit (bit 45) is turned ON and the index field
value is set to length —1I.

The descriptor points to a word which is then
fetched into the processor. This word is ANDed
with the mask and a test is made to determine
whether the result is identical to the argument.

When an equal compare is made, the index of the
equal word is left on top of the stack.

When a not-equal compare is made, the index
value is decreased by one and the operation is re-
peated (except when the index value is zero). When
the index value is zero, a -1 is left on top of the
stack and the operator is exited.

5010796-001

Subroutine Operator
MOVE TO STACK (MVST) (V)AF

The move to Stack operator causes the proces-
sor’s environment (or addressing space) to terminate
and to be moved from the current stack to the pro-
gram stack specified by the operand in the top of
stack.

The operator builds a top-of-stack control word
and places it at the base of the current stack, there-
by inactivating the stack.

The top of stack item is integerized and checked
for invalid index against the stack vector descriptor
at D[0]+2.

The stack descriptor for the requested stack is
then fetched and made present. The address field is
placed into the base-of-stack register. LOSR is
loaded with the address field plus length —1. The top-
of-stack control word is then fetched and the stack
is marked ‘‘active’” by storing the processor ID at
the base of the stack. The TSCW is distributed and
the D registers are updated.

If during the integerization the top of stack item is
too large, the integer-overflow interrupt is set and
the operation is terminated.

If the index value is less than zero or greater than
the length field of the data descriptor for the stack
vector array, an invalid index interrupt is set and the
operation is terminated.

Special Interpretation Operator

OCCURS INDEX (OCRX) (V)85

The Occurs Index operator is used to index a field
in an array. This operator requires an Occurs Index
Word (OIW) in the top-of-stack and an index value
(operand) in the second stack position. The format

of the IOW follows:

47 431 39| 3sf 381 27| 23 19] 18 1] 7 3I

o] [ENGTH SIZE l DFFISE
so| 6] 42| 38 34 30| 26 22| 18] 14 10 6| 2

49] 45| 410 37 33 29 25{ 21 17} 13 9| S 1

0484440363 28] 24| 20| 14 12 8 4] o

41062

The operator creates a new index value from the
OIW and the operand in the following manner:

The operand is integerized. If the resulting index
is greater than the maximum integer value

34-27

(549.755.813.887), the integer overflow interrupt is
set and the operation is terminated. If the index has
a value of zero or if the index is less than zero or
greater than the SIZE field of the OIW, the invalid
index interrupt is set and the operation is termi-
nated.

The LENGTH field of the OIW is multiplied by
the index value 15:16 minus I, and that value is
added to the OFFSET field of the OIW. resulting in
the new index value. The two original top-of-stack
items are deleted and the new index value is left in
the top-of-stack.

In the OIW the ‘‘length” field gives the number of
characters in a field; the *‘size’’ field gives the num-
ber of fields in the array; the ‘‘offset’’ field indicates
the beginning of the first character position in the
first field of the first word.

Operators Exclusive to the B 7800

SET MEMORY INHIBITS (SINH) (V)A8
(CONTROL STATE OP)

The Set Memory Inhibits operator transfers the in-
hibit settings in the second stack register to the
memory module specified in the top stack register.
The two top-of-stack items are deleted. (All tags are
legal.) The memory module number is given in the
top-of-stack (bits 3:4). The inhibit field setting is giv-
en in the second item in the stack (bits 7:8).

SET MEMORY LIMITS (SLMT) (V)AA (CONTROL
STATE OP)

The Set Memory Limits operator transfers the lim-
its and availability settings in the second stack regis-
ter to the memory module specified in the top-of-
stack register. The two top-of-stack items are de-
leted. (All tags are legal.) The limits specify the
range of addresses (in 16K increments) behind the
module and the availability setting specifies which
stack(s) (of a possible four) are to be used. (All tags
are legal.) The top-of-stack gives the memory mod-
ule number (bits 3:4). The second item in the stack
gives module availability (bits 3:4) and memory ad-
dressing limits: upper limit (bits 15:6) and lower limit
(bits 9:6).

FETCH MEMORY FAIL REGISTER (FMFR) (V)AC
(CONTROL STATE OP)

The Fetch Memory Fail Register operator fetches
the contents of the fail register from the memory
module specified in the top-of-stack (bits 3:4). The
contents of the fail register are placed in the top-of-
stack.

3-428

IGNORE PARITY (IGPR) (V)48 (CONTROL
STATE OP)

The Ignore Parity operator is used for confidence
checking and requires the processor to be in the con-
trol state. In control mode 0, words entering the
CPM are checked for correct parity but the IGPR
operator sets the IGP flip-flop which inhibits trans-
mission of parity error messages for those words
with incorrect parity. Likewise, IGPR inhibits cor-
rect parity generation before storage for those words
detected in the CPM with incorrect parity.

Parity error interrupts and new parity generation
will be inhibited with the CPM in control mode 0 by
IGPR until any one of the following occurs:

1. Some other interrupt causes the CPM to move
to control mode 1.

2. Another IGPR is decoded while the CPM is in
a control mode greater than zero.

3. Or the CPM returns to normal state.

Any one of the previous conditions cause the
MIGP flip-flop to be reset and the CPM to resume
parity error interrupts and generation of new parity.

PAUSE UNTIL INTERRUPT (PAUS) (V)84

The Pause Until Interrupt operator suspends pro-
gram execution until an external interrupt or an in-
terval timer interrupt occurs. If the processor is op-
erating in control state, the operation continues in
sequence; to clear the interrupt the INT. [.D. must
be read. If the processor is operating in normal
state. the interrupt is handled as in IDLE.

INTERRUPT CHANNEL N (INCN) (V)8F

The Interrupt Channel N operator sends signals to
the channel or channels specified by the top-of-
stack. The top-of-stack item is deleted. Bit 0 inter-
rupts channel 0; bit 1 interrupts channel 1, and so
on.

STOP (STOP) (V)BF

The STOP operator causes an unconditional halt
of the central processor. The STOP operator is pri-
marily used for diagnostic purposes. The processor
may be restarted by pressing and releasing the
START button on the processor control panel.

Edit Mode Operators

Edit Mode operators perform editing functions on
strings of data. Edit functions are normally involved
in preparing information for output. These operators
include Insert, Move, and Skip, in the form of mi-
cro-operators in either the program string or in a

separate table. In the program string, they are single
micro-operators and are entered by use of the
Execute Single Micro or Single Pointer operators.
(See the ‘*Enter Edit Mode Operator’ descriptions.)
If the micro-operators are in a table, the table be-
comes the program string that is to be executed.
This table is entered by means of the Table Enter
Edit operators. and is exited through the End Edit
micro-operator.

If the source or destination data has the memory
protect bit (bit 48) equal to one. the segmented-array
interrupt is set and the current micro-operator is ter-
minated.

Insert Operators
INSERT UNCONDITIONAL (INSU) (E)DC

The Insert Unconditional micro-operator places an
insert character into the destination string for the
number of times specified by the repeat value. When
this operator is entered by a Table Enter Edit
operator, the repeat is in the syllable following the
micro-operator syllable, and the insert character is in
the next syllable (the third syllable).

When this operator is entered through an Execute
Single Micro Instruction operator. the repeat field is
in the top-of-stack operand and the insert character
is the second syllable. The operator length is then
two syllables.

INSERT CONDITIONAL (INSC) (E)DD

The Insert Conditional operator inserts the charac-
ter defined by the third syllable into the destination
string if the float toggle is OFF. If the float toggle
is ON. the character defined by the fourth syllable
is inserted into the destination string. The insertion
is repeated the number of times specified by the sec-
ond syllable when this operator is entered by the Ta-
ble Enter Edit operation.

When this operator is entered through an Execute
Single Micro instruction operator. the repeat field is
the top-of-stack operand. The operator length is then
three syllables.

INSERT DISPLAY SIGN (INSG) (E)D9

The Insert Display Sign operator inserts the char-
acter defined by the second syllable into the destina-
tion string if the external sign flip-flop is set; other-
wise, the character defined by the third syllable is
inserted.

5010796-001

INSERT OVERPUNCH (INOP) (E)D8

The Insert Overpunch micro-operator places a sign
overpunch in the destination string character. If the
external sign flip-flop is reset, the operator skips one
destination string character. If the external sign flip-
flop is set, the zone bits of the destination character
are set to 10 for 6-bit data and to 1101 for 8-bit
EBCDIC data; the destination pointer is then ad-
vanced one character. The zone bits for 8-bit ASCII
data are set to 1111,

Move Operators
MOVE CHARACTERS (MCHR) (E)D7

The Move Characters operator transfers the num-
ber of characters specified by the second syllable
from the source string to the destination string. if
this operator is entered by a Table Enter Edit
operator.

When this operator is entered through an Execute
Single Micro Destructive instruction. the number of
characters transferred is specified by the top-of-stack
operand. The operator length is then one syllable.

MOVE NUMERIC (MVNU) (E)D6

The Move Numeric operator transfers from the
source string to the destination string the number of
characters specified by the second syllable, if en-
tered by a Table Enter Edit operator. The zones are
not transferred but are set to 00 for 6-bit data. to
1111 for 8-bit EBCDIC data. and to 0011 or 8-bit
ASCII data.

When this operator is entered through an Execute
Single Micro instruction. the number of characters
transferred is specified by the top-of-stack operand.
The operator length is then one syllable.

MOVE WITH INSERT (MINS) (E)DO

The Move With Insert micro-operator performs
leading zero suppression from the source to the des-
tination.

If the float flip-flop is set. a Move Numeric
operation is performed. If the float flip-flop is reset
and the source character numeric is zero. the char-
acter defined by the third syllable is transferred to
the destination string. If the float flip-flop is reset
and the source character numeric is not zero. then
the float flip-flop is set and a Move Numeric is per-
formed.

The number of characters transferred from the
source string to the destination string is defined by

34-29

the repeat value. In Table Edit mode the second syl-
lable is the repeat value and the third syllable is the
character to be inserted under control of the float
flip-flop. In Execute Single Micro mode the repeat
field value is in the word in the top-of-stack and the
insert character is in the syllable following the mi-
cro-operator syllable.

MOVE WITH FLOAT (MFLT) (E)D1

If the float flip-flop is reset and the source charac-
ter numeric is zero. then the character defined by
the third syllable is transferred to the destination
string.

If the float flip-flop is reset and the source charac-
ter numeric is not zero, then the float flip-flop is set.
If the external sign flip-flop is set, the character de-
fined by the fourth syllable (the second insert char-
acter) is transferred to the destination string; other-
wise, the character defined by the fifth syllable (the
third character) is transferred. Then a Move Nu-
meric operator is performed.

In Table Edit mode. the previous operation is re-
peated for the number of characters specified by the
second syllable; the third. fourth. and fifth syllables
are the insert characters.

When this operand is entered through an Execute
Single Micro instruction, the repeat field is the top-
of-stack operand. The operand length is then four
syllables, three of which contain insert characters.

Skip Operators

(SEI§II§2 FORWARD SOURCE CHARACTERS (SFSC)

The Skip Forward Source Characters operator
causes a skip forward for the number of source char-
acters. This is done by incrementing the source
pointer. The skip amount is specified by the syllable
following the micro-operator’s syllable. if the entry
to this operator is by the execution of the Table En-
ter Edit Operator. When this operator is entered
through an Execute Single Micro, Destructive in-
struction, the number of characters skipped is
specified by the top-of-stack operand. The operator
length is then one syllable.

3430

(S|§IIDP REVERSE SOURCE CHARACTERS (SRSC)
E)D3

The Skip Reverse Source Characters operator de-
crements the source pointer by the number of source
characters specified by the second syllable. or top-
of-stack operand if single micro.

SKIP FORWARD DESTINATION CHARACTERS
(SFDC) (E)DA

The Skip Forward Destination Characters operator
causes a skip forward for the number of destination
characters specified by the second syllable. or top-
of-stack operand if single micro.

SKIP REVERSE DESTINATION CHARACTERS
(SRDC) (E)DB

The Skip Reverse Destination Characters operator
causes a skip in reverse for the number of destina-
tion characters specified by the second syllable, or
top-of-stack operand is single micro.

RESET FLOAT (RSTF) (E)D4

The Reset Float micro-operator sets the float flip-
flop to zero.

END FLOAT (ENDF) (E)D5

The End Float operator transfers to the destina-
tion string the character defined by the second sylla-
ble if the float flip-flop is reset and the external sign
flip-flop is set.

If the float flip-flop is reset and the external sign
flip-flop is reset. the character defined by the third
syllable is transferred to the destination string.

If the float flip-flop is set. the End Float operator
is treated as a NO-OP and the float flip-flop is reset.

END EDIT (ENDE) (E)DE

The End Edit operator terminates the execution of
this string of edit micro-operators in Table Enter
Edit mode. The micro program string must end with
the End Edit operator. ’

CHAPTER 4
INPUT/OUTPUT SUBSYSTEM

SECTION 1
GENERAL DESCRIPTION OF

INPUT/OUTPUT MODULE

INTRODUCTION

The B 7800 Input/Output Module is designed to
serve as a buffer and control unit for all B 7800-sys-
tem input and output data transfers. The IOM serv-
ices requestors from a queue of requests constructed
by the Central Processing Module (CPM) and stored
in the Memory Storage Unit (MSU).

The IOM is informed, via an interrupt from the
CPM, of the presence of a service request in the
MSU. Once informed, the IOM controls the desired
input/output operation in its entirety; thus, the CPM
time required to initiate an I/O operation is only that
needed to construct a request, queue it in the MSU,
and interrupt the IOM.

BASIC IOM CONFIGURATION

As illustrated in figure 4-1-1, the IOM consists of
seven major subsections. Each subsection is totally
independent of the other subsections, and operates
asynchronously with them.

Control Word Flow

All control word flow (between main memory and
up to 255 system peripherals) is by means of: 1) an
IOM subsection, the Memory Interface Unit (MIU);
2) an IOM control subsection, the Translator (XLA-
TOR); and 3) one of four IOM subsections, each of
which is uniquely buffered to match the class of data
transfer assigned to it. The XLATOR subsection
routes control of a given job request to one of these
subsections, depending on data class (batch, high
speed, data communications, or real-time interac-
tive).

Data Flow

All data flow between main memory and the peri-
pherals is by means of the appropriate data-transfer
subsection and/or the MIU and DSB; the XLATOR
is not involved and is free for control of additional
job requests. When a data transfer is complete, how-
ever, the XLATOR is given control over job termi-

DATA AND DATA AND N
TO/FROM DATA AND MEMORY CONTROL < CONTROL PERIPHERAL | 10
SYSTEM CONTROL INTERFACE CONTROL |CH [~
MEMORY SECTION DATA DATA INTERFACE
(LEVEL 1 MEMORY) (MIU) SERVICE (PCl) ég | DATA AND
BUFFER DATA CONTROL
(DSB) AND » TO/FROM UP TO
CONTROL CONT 255 PERIPHERALS
: DISK a |, (LEVEL-3 MEMORY)
TO/FROM FILE —‘-*CH
INTERRUPTS CONTROL INTERFACE
CENTRAL +—— % TRANSLATOR |= (DF1) C4H
PROCESSOR J
T DATA
SCAN INTERFACE
(scn
DATA l_.
COMMUNICATION pleg
INTERFACE
(DCI)
Figure 4-1-1. IOM Basic Block Diagram
5010796001 4-1-1

nation, and control flow to main memory is accom-
plished by the appropriate data-transfer subsection,
the XLATOR, and the MIU.

FUNCTIONAL SYSTEM
INTERFACE

The functional interface between the IOM and the
system is divided into the mainframe interface and
the peripheral interface. These two interface areas
are described in the following subparagraphs.

Mainframe Interface Configuration

As shown in figure 4-1-1, control words and data
words are transferred between the IOM and the sys-
tem memory (MCM/MSU). These interface signals
are transferred via the MIU subsection of the IOM.
Interrupt signals are transferred between the 10M
translator subsection and the CPM.

IOM/MCM Interface

As illustrated in figure 4-1-2, the MIU contains
eight interface areas. Each interface area is
dedicated to a distinct Memory Control Module
(MCM), and is connected to it by a unique memory
bus. The bussed IOM/MCM interface is referred to
as a memory/user pair.

A similar capability exists within the CPM which
also contains eight MCM interface areas. Each CPM
interface area is dedicated to a distinct MCM and is
connected to it by a unique memory bus. The bussed
CPM/MCM interface is also referred to as a
memory/user pair.

The interface capability of an MCM is eight mem-
ory busses, each of which is connected to one and
only one IOM or CPM. Therefore, the maximum
combined number of CPM’s and IOM’s which may
be bussed to an MCM is limited to eight.

The maximum number of MCMs which may be
contained in a B 7800 system is four.

The typical memory-bus-configuration (figure 4-1-
2) indicates the use of two IOM’s, two CPM’s, and
two MCM’s. The maximum number of MSUs with
which an MCM can communicate (two) is also illus-
trated. Each of these MCM’s can access 262K words
of memory (two MSU’s of 131K words each). Each
IOM or CPM, when connected, can access 524K
words of memory.

4-12

IOM/CPM Interface

The interface between the IOM’s and CPM’s of a
B 7800 system consists of an interrupt bus only. The
CPM informs the XLATOR section (of an IOM)
about job requests via the bus, and the XLATOR in-
forms the CPM of non-channel-related IOM errors
via the bus. In addition, the XLATOR uses the bus
to inform the CPM of I/O job completions (when re-
quested by software, a SPO, or a DCP) and status
changes. The interrupt bus is common to all IOM’s
and CPM’s in a system.

IOM/Peripheral Interface
Configuration

Figure 4-1-3 illustrates typical peripheral devices
which may be assigned to each data-transfer class;
also illustrated are the data-transfer subsection
names which are henceforth referred to. The fol-
lowing is a brief description of the interface
capability of each subsection and its physical rela-
tionship to typical peripheral equipment. The de-
scriptions presented in figure 4-1-4 illustrate the in-
terface capability provided when two maximum-con-
figuration input/output modules and appropriate ex-
changes are used. A maximum of 28 peripheral con-
trollers (excluding DCP’s) may be connected to a
single IOM.

Peripheral Control Interface (PCl)

The PCI of a single IOM consists of either one or
two interface sections, depending on user require-
ments. Each section has 10-channel interface capa-
bility, for a total maximum capacity of 20 channels
per 10OM.

The controls serviced by a PCI are housed in one
or two peripheral control cabinets (PCC’s). Each
PCI/PCC cabinet services one IOM and has a 10-
channel interface capability. Up to five of these
channels can be assigned to large controllers, but the
remaining channels must be assigned to small con-
trollers.

Any combination of small controls may be housed
in the PCI/PCC cabinet. The large controls (SLC and
MTC) may be connected to the peripheral units di-
rectly, or, in the case of the MTC only, via ex-
changes. Any unused channels in the PCC cabinet
are left empty.

The PCI enables the IOM to interface with one to
20 peripheral controls and coordinates data transfers
between the peripheral controls and the DSB as di-

USER
NUMBER

MEM BUS

USER 1,

104 1 (PARTIAL)

MEM BUS

MEM BUS

LI1Y)

XLATOR

MEM BUS

MSU

Msu

mMsu

MSsu

(MCM 0}

DUAL MEMORY CONTROL

(MCM 1)

MEM BUS

USER 7,

CPM

MEM BUS

T LI

000000k

MEM BUS

USER 6,
CPM

INTERRUPT BUS

USER 0,

10M 2 (PARTIAL)

MEM. 8US

MU

XLATOR

Figure 4-1-2. Typical IOM/Main Memory and IOM/CPM Interface Configurations

4-13

BATCH
LINE PRINTER LINE PRINTER
(CONTROL (LPC) (LP)
CARD PUNCH CARD PUNCH
UNIT CONTROL
s (PUC) UNIT (PU)
CARD READER
- CONTROL CARD R:ADER
(CRC) (CR)
SUPERVISORY OPERATOR
DISPLAY DISPLAY
a CONTROL Il TERMINAL
(SDC) (0DT)
MAGNETIC MAGNETIC
—~ TAPE CONTROL TAPEUNIT
(MTC) (MTU)
-
PERIPHERAL
CONTROL .
INTERFACE (20 MAX)
(PCI)
: HIGH SPEED
DISK FILE . DISK PACK DRIVE DISK PACK
INTERFACE CONTROLLER DRIVE
oM (DFI) (8 MAX) (DPDC) (DPD)
DATA TRANSFER <
SUBSECTIONS
SCAN .
INTERFACE -
s [awa o
(DFC)
DATA
COMMUNICATIONS *
INTERFACE (4 MAX)
(DCl)
L DISK FILE DISK FILE
ELECTRONICS STORAGE UNIT
UNIT (DFEU) (DFSU)
* PERIPHERAL CONTROL (PC) BUS
** SCAN BUS
\
\
DATA COMMUNICATIONS
L DATA COMM.
PROCESSOR
(DCP)
ET1269

Figure 4-1-3. Typical Data-Transfer Classifications and Related IOM Subsections

rected by the translator subsection of the IOM. Up-
on command from the translator, the PCI initiates
requests with its associated peripheral devices. The
PCI controls the data transfers with the peripheral
devices and notifies the translator of termination sta-
tus. During data transfer operations, the PCI com-
municates with the DSB to obtain memory access.
The order of priority for memory access is on a first-
in and first-out basis.

The PCI multiplexes all 20 channels by generating
overlapping one-micro-second data-service cycles
and by use of windows in a self-contained local
memory. In the typical configuration (figure 4-1-4)
the use of two IOMs and appropriate exchanges
(2x16) allows access by either IOM of 32 magnetic
tape units. Both IOMs are illustrated as having ac-
cess to an additional non-exchange magnetic tape
unit, as well as having access to disk pack drives
(via DPDC) and to ODT units (via supervisory dis-
play controls).

Disk File Interface (DFl)

The DFI of a single IOM consists of either one or
two interface sections, depending on user require-
ments. Each section has an interface capability of
four channels, for a total disk-file-channel capability
of eight channels per IOM.

Each DFI four-channel area can service a single
DFI/PCC cabinet. This cabinet can contain only four
channels, which are dedicated to disk packs. The
channels may be connected to the peripherals either
directly or by exchanges. As illustrated in figure 4-
1-4, the use of two maximum DFI configurations
IOMs (eight channels per IOM, four each disk file
and disk pack) and appropriate exchanges (2x10 for
disk file, 2x8 and 2x16 for disk pack) allows access
by either IOM of 20 disk file electronics units (100
disk file storage units) and 72 disk packs.

Upon command from the translator, the DFI initi-
ates requests with its associated disk pack controls.
Upon request completion, the DFI notifies the trans-
lator of the termination status and awaits re-initia-
tion. During data transfer operations, the DFI com-
municates with the DSB to obtain memory access.
Like the PCI, the order of priority for memory ac-
cess is on a first-in and first-out basis.

Scan Interface (SCI)

The SCI subsection consists of a DCP scan inter-
face, which provides scan-out control only, and may
communicate with up to four DCP’s via a scan bus.
(See figure 4-1-4.) The SCI is not used for DCP
scan-in functions, which are initiated by the DCP.

For these functions, the DCP communicates with
memory directly via an interface in the DCI and the
MIU. The DCP scan bus is not shared by a second
IOM.

Data Communications Processor
Interface (DCI)

The DCI subsection provides the data and control
interface for IOM initiated scan-out operations, and
the data interface only for DCP-initiated scan-in op-
erations. Interface is provided for up to four DCP’s.
As illustrated in figure 4-1-4, an IOM is interfaced
with two DCP’s.

IOM OPERATIONAL
CHARACTERISTICS

The IOM is designed to operate asynchronously
with the CPM in the initiation, service, ana termina-
tion of input/output transfers by use of a job map
stored in level-1 memory. Basically, the job map
consists of five software-constructed elements which
define the job request, the peripheral device, and the
IOM channel.

Generally, the map elements inform the CPM of
its IOM/pripheral resources and their status. When
necessary, the CPM alters the queued job requests
of the job map to the extent of its interest and inter-
rupts the IOM to request service. The IOM then ac-
cesses the job map to determine the input/output job
and initiate it. Since the job map is a shared re-
source of the IOM and CPM, the IOM transfer times
are masked by the continual processing and queue-
ing of new requests by the CPM; thus, maximum
system throughput is attained with a minimum of
CPM time.

The IOM also manages path selection to the re-
quested device (instead of the programmatic prese-
lection of the path which is generally used). This
path management eliminates the occurrence of
situations whereby: 1) the requested device is free;
2) the preselected path is not free; and 3) an al-
ternate path exists but cannot be used due to the
programmatic preselection. These situations general-
ly require involvement of the CPM until the prese-
lected path is free and the job is initiated, which ef-
fectively reduces the parallelism of the CPM and
IOM. Since the IOM manages the path selection in
the B 7800 system, CPM involvement regarding job
initiation ends when an interrupt is sent to the IOM.
The IOM then initiates the job request when the re-
quested device and any path to that device is avail-
able.

4-1-5

o1¥

My
1

L)
16

-1

1OM 1 (PARTIAL)
an |a 10cH
p 1A
«n |8 scr c
1
RC
0 1 Tz l 3 l 4| ocp <
o LPC
DFEU) MTC
1 2x10 w
oce DFC
EXCH SCAN —
DFEU 8US
| e l DPDC ___.. / PTR
DPOC
[d [
DPDC —oc ’_——{IMD I DPDC
ore DPOC) o
I DFEU |_ DFC E
1 2x10 ocP ce
£y
EXCH. o
M D ocp 232
DFEU DPDC 3
10 DPDC
DPOC H oce
oPDC : 57
DFC Oro DCP
oro | DFC DFoc SCAN
4 L__DF 8US
2x8
EXCH. ‘
oPD > 10M 2 (PARTIAL)
(3
, | [FLLI
- 2| 3]a] ocp]
i oce A | 10cH
MTC
o | c
acH |8 '
F 8 | 10CcH
acH Al
LEGEND
TPC TAPE CONTROL
DFEU DISK FILE ELECTRONIC UNIT CRC CARD READER CONTROL
opD DISK PACK DRIVE LpC LINE PRINTER CONTROL
ene DISK PACK DRIVE CONTROL mMTC MAGNETIC TAPE CONTROL
bcr DATA COMM PROCESSOR soc it SUPERVISORY DISPLAY CONTROL It
LA LINE ADAPTER mMTU MAGNETIC TAPE UNIT
oot OPERATOR DISPLAY TERMINAL

Figure 4-1-4. Example of IOM Configuration

EXCH.

MTU

MTU
16

T

The design of the IOM incorporates extensive er-
ror-detection logic which monitors the flow of con-
trol words and data between the IOM and other
mainframe modules, within the IOM module itself,
and between the IOM module and peripheral de-
vices. Particular emphasis is placed upon preserving
the integrity of all memory operations. Generally,
the error-detection hardware consists of: parity
check and generate circuitry; residue check circuit-
ry; circuitry to detect illegal commands, conditions,
and control states; and timeout circuitry for memory
transfers, scan bus operations, and internal IOM
transfers.

IOM Job Map

The job map, which an IOM accesses from main
memory, consists of the following five software-con-
structed elements:

1. Home Address Words (HA)

2. Unit Table Word (UT)

3. I/O Queue (I0Q)

4. 1/0 Control Block (IOCB)

5. Status Queue (SQ)

The following four level-1 addresses, which are
loaded into the IOM XLATOR at initialize time, en-
able the IOM to service the job map:

1. Home Address

2. UT Base Address

3. 10Q Header (IOQH) Address

4. SQ Header (SQH) Address

By use of these stored addresses and the contents
of previously-fetched map elements, job requests
(originally constructed by the CPM) are recon-
structed in the IOM and are serviced.

The following basic description of each map
element and the sequence in which the job map is
serviced is presented in reference to figure 4-1-5. For
detailed formats of all words discussed, refer to the
appendix of IOM word.

Home Address Word

The 51-bit home address word (HA word) is the
first map element fetched by the IOM when inter-
rupted by the CPM. It is fetched by use of the pre-
loaded home address stored in the IOM XLATOR,
and contains information which describes the basic
command and, as applicable, information which de-
scribes the device or channel to be used.

The command to be performed is defined by a
code within the HA word, called the home code. In
some instances, further definition of the command is
provided by additional bits of the HA word. Based

on the command decoded, the logic of the IOM is
conditioned to perform one of 20 possible control
operations. The commands are described under the
heading IOM COMMANDS later in this section.

Only one of the 20 commands, the start /O com-
mand, requires immediate further access of other
map elements; however, some scan-out commands
require access of a second 51-bit HA word. The start
I/0 command is the basic command used to initiate
service of new job requests, whereas the remaining
commands are provided for either coldstart/halt load,
scan-out control, configuration determination, or di-
agnostic purposes.

A HA word which contains a start I/O home code
also contains a unit designate (UD) number. This
number specifies the device to be used for the
operation, and is part of the information needed to
access the remaining map elements.

Unit Table Word

The unit table (UT) word is the next map element
fetched by the IOM in response to a start I/O com-
mand. The fetch is performed by use of the UT ad-
dress preloaded in the IOM XLATOR and the UD
number derived from the HA word. The preloaded
address serves as a locator for the unit table, and the
UD number serves as an index to a particular word
of the unit table.

The unit table consists of 256 words, numbered 0
- 255. Word 0 is reserved for use as a fail UT word,
and is accessed when an error occurs which cannot
be associated with a specific job request. In this- in-
stance, a special UD number (000), called a fail UD
number, serves as an index to UT word 0. Each of
the remaining 255 UT words is assigned to a unique
device, and contains information which defines the
device and its assignment within the system.

The device-type and assignment information spe-
cifically indicates: 1) whether the device is a disk-
pack or a magnetic tape unit; 2) if the device is a
disk file; 3) whether the device is connected to an
exchange; 4) the lowest IOM channel to which the
device is connected; and 5) whether this is a high
speed device.

For a device connected to an exchange, the UT
word contains additional information for use in IOM
device/path management. The devices connected to
an exchange are described by a linked list of UD
numbers in the next unit on exchange (NUD) fields
of their UT words. The number (modulo 4) of the
last (highest) IOM channel on the exchange (LCEX)
is also indicated. The description of the exchange is

4.1.7

81y

IOM(n) LEVEL-1 MEMORY

QUEUE OF
FAIL 10CB'S

FAIL
———{ NL l NOT USED I RD —I

| o
—»{__ HOME ADDRESS WORD) -~ NOTES :
I NL I NOT USED IE
T 1. DERIVED FROM HA WORD
2. BD, 10CW, AND COL WORDS NOT SHOWN
| SELECT UT WD O UNIT TABLE 3. NULL(0) PRIOR TO SIDELINK; SIDELINK
[stoeo nome avoress | UD NUMBER FAIL UT WD NL] NOT USED l FAIL] ADDRESS AFTER SIDELINK
o | UT WD, DEVICE 1 RO 4. DASHED LINES INDICATE POINTERS AFTER
: SIDELINK
| seeer ur o s P\——————
™ FAIL
[sTomeo uniT TABLE ADDRESS I {IUT W, oEvice 253) (wuyy| Mo used l o]
1/0 QUEUE HEAD TABLE
ADD FINAL I SELECT 10QH WD 0
[[sToreo 10an TABLE ADDRESS U NuneER | FAIL 10QH WD
Loo0)] T0QH WORD,
DEVICE | ‘ 1/0 QUEE 1/0 QUEVE
3 |smc1 10QH WORD n (DEVICE 25k 10CB'S) (DEVICE 1 10CB'S)
STORED SQ HEADER ADDRESS <
[' bEvace 254 ;]l N l o | wore 2 ‘ RD I " l s l NOTE 2 I RD]
10QH WORD,
‘ (| DEVICE 255
—— WL L U
| 1/0 QUEUE TAIL TABLE (NOTE 3)| (0) l"WE 2 [RD l NL I (0) | NOTE 2 [RD]
ADD SELECT 10QT WD 0
256 FAIL 10QT WD o
. I (| 1T womo, wore) Y &
DEVICE -
r (0)] (0)1'““11 un] NL l st]uorszl unl
SELECT 10QT WD n_ | '
>4 10QT WORD, _:
l DEVICE 25k |=====p ===
10QT WORD, Y
o ST
| \L_DEVICE 255 ©) 1 ©) luorz 2] RO]
STATUS QUEUE,
10M(n)
| :ILuL l ?;) luor:zl RD]
10M(n) STATUS
QUEUE HEADER
TERMINATED
L o WEAD | TAIL S
| " l I I I l FIELD | FIELD " (0) | MOTE 2 | RO "’:5";:; ALt
.
| ;
W St
©) 1 ©]mz :] R0 l
40808

Figure 4-1-5. IOM Job Map

complete because: 1) all IOM’s on an exchange must
use the same channels; 2) channels on an exchange
must be consecutive; and 3) the largest exchanges
serve a maximum of four channels. A bit (job bit or
JB) is set if a job request for an exchange device
must be delayed because a path is not currently
available.

10Q Head (I0QH) and 10Q Tail (10QT)
Tables and Words

The I/O queue (I0Q), which is constructed by the
CPM in main memory, contains linked job requests
(I/O control blocks) for each device of the system.
The extent of the linked job requests for each device
is defined by words which indicate the main memory
addresses of the first and last of the requests. These
words are called the I/O queue head (IOQH) word
and the I/O queue tail (IOQT) word, respectively.

The IOQH words for all devices (255 words) are
stored in a table called the I/O queue head table;
similarly, the IOQT words for the devices (also of
256 words) are stored in a table called the IOQT ta-
ble, which immediately follows the IOQH table in
memory.

The IOQH and IOQT tables contain one special
word each (word 0) which is reserved for use by the
IOM to report errors that cannot be associated with
a specific job request. These words are pointers to
a list of the fail I/O control blocks (fail IOCB’s) re-
served for failure-reporting by the IOM’s of the sys-
tem.

The IOQT table is the element accessed by the
CPM to queue additional requests for a device. The
IOM also accesses this element when a sidelink op-
eration to another device is specified. This access is
required so that the sidelink operation indicated in
the job-request queue of one device may be linked
to the queue of job requests for the device desig-
nated for the sidelink operation. The IOQT word for
the sidelink device is altered to reflect the main
memory address of the sidelink job, which becomes
the last job queued.

The IOQH table is the element accessed by the
IOM in order to service job requests. The IOQH
word for a device indicates the main memory ad-
dress of the first job request for that device.
Memory addresses of additional jobs for the device
are indicated by the next link (NL) word in each job
request, thus linking all job requests for a given de-
vice.

As is indicated in figure 4-1-5, the last job request
for a device is recognized by the IOM when the next
link field of a request is found to contain zeroes
(null).

The IOQH word is fetched by use of: 1) the IOQH
table base address (stored in the XLATOR); and (2)
the UD number (derived from the previously-fetched
HA word). The UD number indicates which device
is to be initiated, and which IOQH word of the
IOQH table should be fetched. The UD number is
an index to the IOQH table.

When a non-request-related error is detected by
the IOM and access to the fail IOQH word (word 0)
is required, the word is fetched by use of the fail UD
number (000) and the IOQH base address. The mem-
ory address of the first available fail IOCB, which is
contained in the fail IOQH word, is used to fetch the
fail IOCB. The NL field contained in the fetched fail
IOCB is then used to update the memory address of
the fail IOQH word, so that if a second failure is de-
tected, the next fail IOCB of the queue of fail
IOCB’s can be accessed. The fail IOQT word, which
defines the last IOCB in the queue of ten fail
IOCB’s, is used only by software; it is not accessed
by the IOM.

When a sidelink operation requires a fetch of the
I0QT word for a device, 256 is added to the IOQH
word address. (The IOQT-word address for a device
designated for a sidelink operation equals the IOQH
table base address>plus the UD number of the device
plus 256.)

/10 Control Blocks

The job requests for each device are stored in map
elements called I/O control blocks. Each I/O control
block (IOCB) contains words which are fetched se-
quentially starting with the memory address obtained
from either: 1) the IOQH word, if the job request is
the first for the device; 2) the next link (NL) field
of the job request (IOCB) in process, if the job is
other than the first for that device; or 3) the side link
field of the job request (IOCB) in process, if a side-
link (SL) to another device is indicated. The six
IOCB words fetched by the IOM are as follows:
Next Link (NL) Word
Side Link (SL) Word
Buffer Descriptor (BD) Word
/O Control Word (IOCW)

Channel Designate Level (CDL) Word
Result Descriptor (RD) Word

QA W~

As previously indicated, the NL word contains the
address of the next IOCB for a device, and is the
means whereby job requests for a device are linked
within the 10Q. When this word contains all zeroes
(null), it indicates the request being serviced is the
last currently enqueued for the device.

The SL word is used to indicate that a sidelink op-
eration (the service of a job request by a device

4-1-9

other than that presently being serviced, without in-
tervention by the CPM) is required. The SL word
contains the memory address of the sidelink job
(IOCB), which is started immediately if no other
jobs are queued for the designated sidelink device. If
queued, the sidelink job is linked to the queue of job
requests by insertion of the sidelink memory address
in both the IOQT word for the sidelink device and
the NL field of the last IOCB previously queued for
that device.

The BD word contains the address of the first data
location in memory, and the length of the memory
area in words.

The IOCW contains the control information neces-
sary to perform the input/output operation, such as:
read or write; whether code translation is necessary;
backward/forward (tape); frame length (six-bit or
eight-bit); etc. The contents of the IOCW and the
BD word are used to format the first job word sent
to the selected IOM channel.

The CDL word is used to format the second job
word sent to the selected IOM channel. This word
generally contains information such as: the OP code;
the device number; the device variant; and for disk,
the segment address.

The RD word is used for storage of the termina-
tion status of each request. The RD word is built by
the IOM, which then links the terminated request
(terminated IOCB) into the status queue.

Fail /O Control Blocks

A queue of special IOCB’s, which are not related
to job requests, is also built in memory. These
IOCB’s, which are called fail IOCB’s, are used by
the IOM’s of the system for reporting errors which
cannot be associated with a specific request. The fail
IOCB’s contain the same six words as job-request
IOCB’s; however, only the next link word and the
result descriptor word have significance.

The result descriptor word is used for storage of
a fail result descriptor. The IOM builds the fail result
descriptor, inserts it in the fail IOCB RD word, and
links the fail IOCB into the status queue.

Status Quaue

The status queue (SQ) is a queue of: 1) all job-re-
quest related IOCB’s which have been serviced and
terminated; and 2) any fail IOCB’s which have been
generated by the IOM. When job-request IOCB’s are
terminated (or fail IOCB’s are generated) and the
necessary result descriptor information has been
stored in the RD word of the IOCB, the IOCB is un-

4-1-10

linked from the job IOQ (or fail IOQ) and is linked
into the status queue. The linked IOCB’s in the sta-
tus queue represent a mix of terminated IOCB’s for
all devices and any fail IOCB’s.

The SQ for the system consists of queues of
linked IOCB’s - one queue for each IOM on the sys-
tem. The number of queues is dependent on the
number of IOM’s in the system.

The mechanism by which the status queue is ac-
cessed is the SQH address; this is stored in the IOM
XLATOR at initialize time. This address is unique
for each IOM used, and serves as a pointer to a
word in memory which defines the queue of linked
IOCB’s associated with a particular IOM. This word
is called the status queue header (SQH) word.

When a request is terminated, the SQ address of
an IOM is used to fetch the SQH word, which con-
tains the following basic information:

1. Null (empty) state of SQ

2. Head field

3. Tail field

4. Status-Change-Vector bit

5. CPM-Interrupt bit

6. CPM Number

The null state of the SQ is checked to determine
whether it contains any terminated IOCB’s. If the
SQ is null (empty), no linkage of the current termi-
nated IOCB to previously terminated IOCB’s in the
SQ is required. Conversely, if the SQ is not null
(contains one or more IOCB’s or fail IOCB’s), the
current terminated IOCB must be linked to the
queue of terminated IOCB’s in the SQ.

The head field of the SQH word contains the base
address of the first terminated IOCB of the SQ. The
tail field of the SQH contains the base address of the
last terminated IOCB of the SQ, except when the
SQ is null or contains only one terminated IOCB. If
the SQ is null, the tail field is not used; if the SQ
contains only one IOCB, the tail field contains the
same address as the head field.

A terminated IOCB is linked to previously termi-
nated IOCB'’s stored in the SQ by inserting its base
address in the next link (NL) word of the terminated
IOCB indicated by the SQH tail field. The address
in the tail field of the SQH is then replaced with the
base address of the currently-terminated IOCB, so
that link capability is present when another request
is terminated.

If the CPM interrupt bit is on in the SQH word,
or the interrupt bit is on in the NL word of a termi-
nated IOCB, a channel interrupt is sent to the CPM
specified in SQH when the terminated IOCB is

linked into SQ. An IOM error interrupt is always
sent to the designated CPM when a fail IOCB is
linked into the SQ.

When the SPO or a DCP requests an input
operation, the status-change vector bit in SQH is

set, and a channel interrupt is always sent to desig-
nated CPM.

IOM Home (HA) Commands

The IOM can be directed to perform 20 home
commands. When the IOM receives an interrupt
from the CPM, it indicates that a home command
has been constructed by the CPM and placed in
memory. The home address stored in the IOM is
then used to fetch the HA word. A code within HA
word 1, home code, is then decoded to determine
which command or command group is to be per-
formed.

Table 4-1-1 lists the valid home codes, and the
commands and/or command groups defined by them.
As indicated, scan commands are defined by: 1) the
home code as only scan-in or scan-out groups; 2) de-
termination of type of scan-in or scan-out; and 3)
whether DCP is defined by other portions of HA
word 1. Similarly, channel busy/channel reserved
commands are resolved by other portions of HA
word 1. HA word 2 is not used for all commands;
when used, it contains information to further define
the command.

Table 4-1-1. IOM HA Operations and
Corresponding Home Codes

Home
Code IOM Operation
0000 Illegal
0001 Start I/O
0010 Set Channel Busy/Set Channel Reserved
0011 Reset Channel Busy /Reset Channel Reserved
0100 Load Home Address
0101 Load Unit Table Address
0110 Load 10Q Head Table Address
0111 Load SQ Header Address
1000 DCP Scan-out Commands:
Initialize
Halt
Set Attention
1010 Synchronous 1/O
1011 Interrogate Peripheral Status
1100 Inhibit IOM
1101 Activate IOM
1111 Illegal

The following brief command descriptions are
presented in reference to figure 4-1-6, which depicts
the basic contents of the HA words for each com-
mand. Detailed formats of the HA word for each
command are given in the appendix of IOM word
formats.

Start /O (Home Code 0001)

The start I/O command is the basic command used
to initiate input/output servicing of a new job request
for a device. The device is defined by a unit desig-
nate number contained in bits 28 - 35 of HA word
1; HA word 2 is not used. This command need only
be given once in order to service all queued requests
for the designated device.

Set Channel Busy/Set Channel
Reserved (Home Code 0010)

Home code 0010 may represent one of two com-
mands, depending on the state of bit 39 of HA word
1. If bit 39 is a 0, the set channel busy command has
been received; if bit 39 is a 1, the set channel re-
served command has been received. Both commands
are for exchange channels; the channel number is
defined by bits 23 - 27 of HA word 1. HA word 2
is not used.

The set channel busy and set channel reserved
commands are used primarily for diagnostic pur-
poses. A start I/O command for an UD, which has
the reserved channel bit (RC) set in its UT word,
must use a channel that has been set to reserved;
otherwise, a reserved channel will not be used. An
I/0O operation cannot use a channel that has been set
to busy. Once either command has been received,
the specified channel remains busy (or reserved) un-
til a counter command is received.

Reset Channel Busy/Reset Channel
Reserved (Home Code 0011)

Home code 0011 may also represent one of two
commands, depending on the state of bit 39 of the
HA word (0 defines the reset channel busy com-
mand; 1 defines the reset channel reserved com-
mand). These commands are the counter commands
to the set channel busy/set channel reserved com-
mand.

Load Address Commands

1. Load home address (home code 0100)

2. Load unit table address (home code 0101)

3. Load IOQ head table address (home code 0110)
4. Load SQ header address (0111)

4-1-11

(45 & 4

WORD 1 FORMAT

WORD 2 FORMAT

P 3 P
al|rac)? HOME A[rac
R K CODE n
5160 4847 43 4039 35 2827 23 19 2 51 47
ILLEGAL o000
START I/O 0001 UNIT DESIG
SET CHANNEL BUSY oo10|0 CH. NO.
RELEASE CHANNEL 00101 CH. NO.
RESET CHANNEL BUSY oo11{0 CH. NO.
RESERVE CHANNEL 0011 |1 CH. NO.
LOAD H. A, 0100 HOME ADDRESS
LOADUL. T, 0101 UNIT TABLE ADDRESS
LOAD Q. H. 0110 QUEUE HEAD TABLE ADDRESS
LOADS. Q. 0111 STATUS QUEUE HEADER ADDRESS
43 40 19 1615 876543 1
a7 28 ,_.FL 0
10CB ADDRESS DISK ADDRESS
SCAN OUT DCP-INITIALIZE 1000 1100 ooo jocp I INSTRUCTION BASE ADDRESS
d 0
SCAN OUT DCP-HALT 1100 010 gq%ﬁ 19
C
SCAN OUT DCP-SET ATTENTION 1100; 100 | NO- 47 40 26 7 °
STAIRS 10CB ADDRESS
STATUS 10C8 ADDRESS
v‘ PR 1 iv] PR 2 Ivl SEC 1klsec 2Io STK CAPI
47 42 37 32 27 22
43 4039 36 27 23 19 o
SYNCHRONOUS 1/0 1010] CH. NO.I 10CB ADDRESS 32 0
INTERROGATE PERIPHERAL STATUS }101 1 l N l l I STATUS BITS Iﬂ
INHIBIT IOM 1100 12 s 51 a7 TTol <
ocP N B SPO
ACTIVATE |1OM 1101 47 = No Access to Exchange INT. MM INTERRUPTS
WLLEGAL Y111 46 = SU Not Awailable
45 = Parity Error 3 2 2 2 2 2 2 1 1
+ BITO = 0: DCP address not significant, all DCP's respond 44 - Disk Address Error 2 9 8 5 4 3 2 6
1: Only addressed DCP responds < - Queued Control Word
* Leftmost 4 bits of EU number 42 = Top of Stack Control Word
41 = Stack Empty
40 = Control Word Not Available

Figure 4-1-6. Home Address Commands

SENT TO IOM

RECEIVED FROM IOM

The commands are normally used to load fixed ad-
dresses into the IOM XLATOR at initialize time;
however, they may also be used to establish new
base addresses at any time after initialization. The
address to be loaded by each command is contained
in bits 0 - 19 of HA word 1; HA word 2 is not used.

DCP Scan-Out Commands (Home Code
1000)

Home code 1000 specifies a scan-out command for
a DCP; the specific device for which the scan-out
command is intended, as well as the specific type of
scan-out command, is defined by other bits of HA
word 1.

There are three specific scan-out commands for
the DCP; the command type is determined by bits 5,
6, and 7 of HA word 1 as follows:

1. Bits 5, 6, and 7 = 0: In tlallze
2. Bit 5 = 0, bit 6 = 1, bit 7 = 0: Halt
3. Bits 5 and 6 = 0, b 7 = 1: Set Attention

The DCP for which the command is intended is in-
dicated by a DCP number contained in bits 1 - 3 of
HA word 1; however, bit 0 is a controlling bit for
the DCP address. When it is a 0, the DCP address
is not significant, and all DCP’s respond. When it is
a |, the addressed DCP is the only DCP to respond.

The initialize command requires access by the
IOM of HA word 2, which contains an instruction
base address (bits 0 - 19). HA word 2 is not used for
the halt and set attention commands.

The initialize and halt commands cause psuedo
fault interrupts to occur within the DCP. In the case
of the initialize command, the interrupt causes the
20-bit instruction base address to be loaded into the
DCP scratch-pad memory. The interrupt generated
by the halt command stops DCP operations. In ei-
ther case, stop actions which would normally occur
within the DCP due to fault interrupt occurrence are
inhibited.

The set attention command is used to notify the
DCP that attention to the B 7800 system is required.

Synchronous /0 Command (Home
Code 1010)

The synchronous I/O command provides a means
of servicing a single job request during initialization.
Only HA word 1 of the job map, which contains the
IOCB base address (bits 0 - 19), is accessed; no
queue mechanisms are used. When the single job re-

quest is terminated, the result descriptor information
is stored in HA word 5, and a channel interrupt is
sent to the CPM.

Interrogate Peripheral Status Command
(Home Code 1011)

The interrogate peripheral status command is used
to determine the ready status of all devices assigned
to a particular status vector. The status vector to be
interrogated is indicated by bits 9 - 12 of HA word
1.

HA word 2 is not accessed for command deter-
mination, but is later used for storage of the returned
status information. The status information, which is
returned in bits 1 - 32 of HA word 2, provides indi-
cation of the ready status of up to 32 devices on a
vector. Bit 0 of HA word 2 (ATTN) notifies the
CPM that the status word has been returned.

Inhibit IOM Command (Home Code
1100)

The inhibit IOM command is used to inhibit all au-
tomatic IOM functions, such as data-path manage-
ment, chaining of linked and side-linked job re-
quests, and ringwalk. If linked job requests for ring-
walk devices are being serviced when the command
is received, chaining stops after the IOCBs (in prog-
ress on each channel) are completed.

The content of HA word 1 consists only of the
home code; HA word 2 is not accessed.

Activate IOM Command (Home Code
1101)

The activated IOM command is used to restore
automatic functions of the IOM after the inhibit IOM
command has been given. The command consists
only of the home code in HA word 1; HA word 2
is not used.

AUTOMATIC DISK-PACK
OPERATION

The IOM has provisions to automatically
re-initiate a disk pack unit after the unit has com-
pleted a seek operation. This unit, when issued a
conditional I/O command requiring head positioning
(seek), must be issued the same command after the
seek has been completed in order to accomplish data
transfer. The IOM performs this function by examin-
ing all device result descriptors received from disk
pack units.

4.1-13

DATA TRANSLATION

The PCI section of the IOM has the capability of
translating data from one representation code to an-
other during an I/O operation. The data types actual-
ly encountered are device dependent, and the trans-
lation to be performed (if any) is determined for each
individual job request by standard control bits in the
IOCW. The IOCW bits used to specify code transla-
tions are:

Bit 46. ASCII on for any translation having ASCII
input or output.

Bit 4. READ -(READ = 1, WRITE = 0)
Bit 42. TRANSLATE

Bit 41. FRAME LENGTH (eight-bit characters =
1; six-bit characters = 0.)

All possible combinations of these code bits are
listed in detail in table 4-1-2 and the specific transla-
tion codes used by software for each peripheral de-
vices are given in table 4-1-3.

EBCDIC-BCL Exceptions

Bi-directional translation of corresponding
EBCDIC graphics to/from corresponding BCL gra-
phics are provided with the following exceptions:

1. EBCDIC to BCL (output translator)

EBCDIC BCL
PZ +
MZ X (times)
Corresponding Corresponding graphic
graphics
Non-corresponding (See Note)
graphics

NOTE
The following graphics are printed de-
pendent upon whether the printer is
equipped for EBCDIC or BCL:

EBCDIC BCL
' (Apostrophe) >
¥ (Logical not) >
= (Underscore) e
I (Vertical bar) >
2. BCL to EBCDIC translator (input translator)
BCL EBCDIC
X (times) MZ
Corresponding Corresponding
graphics graphics

Table 4-1-2. General Translation Specification Codes

R T FL A
4 42 41 46
0 0 0 0
J 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

4-1-14

Write 6-bit bytes with no translation
(Illegal Code)

Write 8-bit bytes with no translation
Write EBCDIC from ASCII

Write BCL External from BCL Internal
Write BCL External from ASCII

Write BCL External from EBCDIC
Write ASCII from EBCDIC

Read 6-bit bytes with no translation
(Illegal Code)

Read 8-bit bytes with no translation
Read EBCDIC into ASCII

Read BCL External into BCL Internal
Read BCL External into ASCII (See Note 1)
Read BCL External into EBCDIC
Read ASCII into EBCDIC

CODE SPECIFIER

Device

Card Reader

Card Punch

Line Printer

Train Printer

P.T. Reader

P.T. Punch

7 TR. TAPE

Table 4-1-3. Translation Codes by Device

44

bt

[— =T =~ I~ N -

oo o000 [T = =)

bt et

- -0 000000 0O0O0C OO

— e - O O = = OO — O O O

—_ e - O OO

—_e— - O O O

—_O e et e OO e e e = OO

FL
41

-0 O O -0 O = O -0 O = O

_—_0 O MmO

— e OO = = O

OO OO0 OO O

o = O O -0 - O O O O - O = O O

—_O = O = O O

-0 e O = O O

O OO = OO~ = 0O~ OO0

Description

Read binary data (6-bit to 6-bit)
Read EBCDIC data (8-bit to 8-bit)
Read EBCDIC into ASCII

Read BCL External into BCL Internal
Read BCL External into ASCII

Read BCL External into EBCDIC

Punch binary (6-bit to 6-bit)

Punch EBCDIC (8-bit to 8-bit)

Punch BCL External from BCL Internal
Punch BCL External from ASCII
Punch BCL External from EBCDIC
Punch EBCDIC from ASCII

Write BCL External (6-bit to 6-bit)
Write BCL External from BCL Internal
Write BCL External from ASCII

Write BCL External from EBCDIC

Write with no translation (6-bit to 6-bit)
Write with no translation (8-bit to 8-bit)
Write EBCDIC from ASCII

Write BCL External from BCL Internal
Write BCL External from ASCII

Write BCL External from EBCDIC
Write ASCII from EBCDIC

Read binary (6-bit to 6-bit)

Read EBCDIC or Read ASCM (8-bit to 8-bit)
Read EBCDIC into ASCII

Read BCL External into BCL Internal

Read BCL External into ASCII

Read BCL External into EBCDIC

Read ASCII into EBCDIC

Punch binary (6-bit to 6-bit)

Punch EBCDIC or Punch ASCII (8-bit to 8-bit)
Punch BCL External from BCL Internal
Punch BCL External from ASCII

Punch BCL External from EBCDIC
Punch ASCII from EBCDIC

Punch EBCDIC from ASCII

Write with no translation (6-bit to 6-bit)
Write BCL External from BCL Internal
Write BCL External from ASCII

Write BCL External from EBCDIC

Read with no translation (6-bit to 6-bit)
Read BCL External into BCL Internal

4-1-15

CODE SPECIFIER

Device R T FL

44 42 41
9 Tr. Tape 0 0 1

0 1 1

0 0 1

1 0 1

1 1 1

1 0 1
Disk Pack 0 0 1
(See Note 1)

1 0 1

Note 1:

Description

Write with no translation (8-bit to 8-bit)
Write ASCII from EBCDIC

Write EBCDIC from ASCII

Read with no translation (8-bit to 8-bit)
Read EBCDIC into ASCII

Read ASCII into EBCDIC

Write with no translation (8-bit to 8-bit)

Read with no translation (8-bit to 8-bit)

The DFI section of the IOM has no hardware translation capabilities.

IOM-GENERATED INTERRUPTS

The IOM generates the following two interrupts
and sends them over individual lines to each central
processor:

1. Channel Interrupt

2. IOM Error Interrupt

An IOM interrupts exactly one processor; the
CPM to be interrupted is determined by the CPM
field (bits 44-42) of SQH.

There are three conditions under which the IOM
generates an interrupt to a CPM:
1. I0 Complete -On job request termination, a
channel interrupt is generated when bit 40 of
the IOCB NL word is set or when bit 40 of the
status queue header is set. These bits are set by
software; bit 40 in SQH is reset by the IOM af-
ter an interrupt is generated. Unless requested
by software, an interrupt is not set for excep-
tion conditions (peripheral parity error, end of
tape, etc.). The only action taken for an excep-
tion condition is that the next request job, if
there is more than one request job queued, is
not started and bit 0 of the UT word is set.
. Status Changes -When the inquiry request line
for a single line control device changes from off
to on state, or when a DCP requests CPM at-

4-1-16

tention, the IOM sets the proper bit in its status
change vector (status vector 8). If this is the
first such change since the vector was last in-
terrogated by software, the IOM sets bit 45 in
SQH to request software to read the status
change vector and generates a channel inter-
rupt. (Bit 45 in SQH is reset by software.)

3. IOM Errors -An IOM error interrupt is generat-
ed for any error not related to a specific job re-
quest (e.g., a memory parity error on the home
address word). The generated fail result de-
scriptor is placed in a dummy IOCB from unit
0

IOM Fail Word

The IOM fail word (figure 4-1-7) is a 48-bit word
which contains information regarding errors which
cannot be associated with a particular channel or de-
vice. (Such errors cause an IOM error interrupt.)
When an IOM error interrupt occurs, an IOM fail
word is built by the fail mode logic within the IOM
translator and placed in the result descriptor word of
the ‘‘fail IOCB”. The fail IOCB is associated with
unit designate number 0. The fail IOCB is delinked
from the queue of fail IOCB’s and linked into the
queue of completed IOCB’s (defined by the status
queue header) in the same manner as a normal /O
termination.

E3 IACE | DAE |SNE| SM
a7| 43| 39| 3s] 3] 27] 23] o] 5(1BE| 7] 3
M(EM C Me2| up TOE ISNM{ HM
s0] 46| 42| 38| 34]H30] 26] 22| (8]RSE|TOE| 6| 2
AI|DDR| ME|] (=]|0) |SUN|SBE RW|
a9] as| 4| 37] 33] 29f 251 21l 7] BE 9 5 |
N I ME T™M[EXC
48] 44| 40| 36] 32|/028] 24] 20] 16/ HEA 8] 4 O
Field Bits Error
EXC 0 Exception Bit
MODLE WHEN ERROR (See bits 2 t> €)
OCCURRED
HM 2 Home Address Mode
SM 3 Start Mode
™ 4 Terminate Mode
RWM S Ring Walk Mode
SNM 6 Scan Mode
SNE 7 (See bits 9 to 14 or bits 10 to 14)
SCAN ERRORS (If SNE bit 7=1)
SBE 9 Scan Bus Parity Error
TOL 10 Time Out Error (Scan Bus)
DAL 11 Disk Address Error
SUN 13 Storage Unit Not Available
NON-SCAN ERRORS (If SNE bit 7=0)
TOLE 10 Time Out Error (Data Service)
IBL: 11 Initiate Busy Channel
HAE 12 Home Address Illegal Command
BE 13 Buffer Register Parity Error
RSE 14 Resid e Error (Memory Address)
MEM ADDR 47:20 Memroy Address of 10CB
ME 16 Memory Error (see bits 25 to 27)
ME1, ME2, ME3 27:3 Memory Error Code (If ME bit 16=1)
UD 24:8 Unit Designate (=0)

* IBE is set if:

1. Start Mode. The unit table is either busy (bit
36) or the job bit is set (bit 37) for non-ex-
change devices. The active channel stack of the
IOM has a non-exchange channel marked busy

or is in the process of terminating a job, or is
reserved.

2. Unit table is not busy (bit 36 = 0) when the
IOM job begins to terminate (terminate mode).

Figure 4-1-7. IOM Fail Word

4.1-17

SECTION 2
FUNCTIONAL OPERATION OF
INPUT/OUTPUT MODULE SUBSYSTEMS

GENERAL

This section contains a brief description of the op-
eration of each of the IOM subsections described in
Section 1 of this chapter. For the formats of the
words discussed, refer to the appendix of IOM word
formats in this manual.

TRANSLATOR

The translator (figure 4-2-1) is a special-purpose
processor capable of performing specific hardwired
microsequences. It is the mechanism of the IOM
that services I/O requests, generates the request de-
scriptors required to initiate peripheral devices, and
reports job termination and failure status conditions
to the central processor. The translator is keyed to
respond to certain declared flag conditions.

Job Service Initiation

In response to an interrupt from the central pro-
cessor, the IOM unlocks-fetches the word in
memory named by the 20-bit home address (HA)
stored in the lower stack. The HA word control
fields define the control codes and function details
for the request as described in Section 1 of this
chapter. When the start /O command is decoded,
the unit designate (UD) field of the HA word is
loaded into the UD register (see figure 4-2-1).

The UD field is added to the 20-bit unit table (UT)
base address (stored in the UT location of the lower
stack) in order to address and lock fetch, from mem-
ory, (write with flashback) the unit table word for
the device to be started. For devices other than a

O, the contents of the channel number identifica-
tion field of the UT word are used to access the ac-
tive channel stack (ACS). If the device is not con-
nected to an exchange, and if the ACS and UT word
busy bits are reset, the [/O queue head word (I0Q
base address + UD) is fetched from memory to ob-
tain the base address of the I/O control block
(I0CB).

Successive fetches are made of:

1. The IOC base address plus 2 - to obtain the
buffer descriptor.

2. The IOCB base address plus 3 - to obtain the
I/O control word (IOCW).

3. The IOCB base address plus 4 - to obtain the
channel designate level (CDL) field.

The buffer descriptor is comprised of two fields:
base address information and buffer-length informa-
tion. The 20-bit base address field is used to locate
the buffer in memory.

The IOCW standard control field (SCF) has infor-
mation useful to the data service sections such as
read/write, translate, and format bits. Information
contained in the buffer descriptor, SCF and the
IOCW, and CDL word of the IOCB is sent to the
data service section to start the selected device. The
unit designate number is stored in the ACS and the
ACS busy bit is set. The unit table word busy bit is
set, and the UT word stored in memory is unlocked.
The HA word is unlocked and set to all zeros. Con-
trol is transferred to the initial state.

If the device to be started is connected to an ex-
change and the busy bit of the base channel location
in the ACS is set, the translator logic selects the
next channel of the exchange and checks its busy
bit. If a channel is available, information is fetched
from memory and goes to the data service section to
start the selected device. If all channels of the ex-
change are busy, the job bit (JB) in the unit table
word is set, and the word is stored unlocked in
memory. Control is transferred to the initial state.
These conditions are summarized in table 4-2-1.

Job Service Termination

When a device either completes a service or is ter-
minated as a result of an error condition, the data
service unit causes the terminate bit to be set for
that channel. Terminate bits are located in the active
channel stack (ACS) of the translator; one bit for
each of the possible 28 channels available. In re-
sponse to a terminate bit being set, the translator
reads the corresponding unit designate information
from the ACS. This information is used along with
the unit table base address to index and lock-fetch
from level-1 memory the UT word for the terminat-
ing device. The I/O queue head is then fetched to
obtain the base address of the I/O control block
(IOCB). The result descriptor (RD) information re-
ceived from the data service unit is then stored in
the sixth word of the IOCB, and the IOCB is linked
to the status queue (SQ).

If this is the last request for this unit, the /O
queue head (IOQH) and I/O queue tail (IOQT) are
nulled, and the UT word is stored unlocked, to com-
plete the termination. If there are more requests, the

4.2-1

4-2-2

-

2 TERM CN
oloFr
AA
UPPER STACK [ieary
aalp|Tac | | uwiT TaBLE worD |Res 2[orr|TERM CN
88 QUEUE HEAD 2
cc scF Jcc| FIN ADDR | START ADD) pei[TERM SN
——
Do STATUS QUEUE /CDL WORD l ; 0
51 50 47 G 10 N o 1
FROM grs. DESC, LOWER HA RES 32 0 — 3%
P - (0-a7) STACK uT ACS ¥
DF{ an tla l;a g A UNIT
DES
SG . R
, DEC.
T
FAIL CTLS ctrR | ¥
4__0 —
ADDER T 1e g vTq b
) | MIE olP
B REG RES “L" REG |Res 13h2|nliofe|sf? 0
PITAG|47 ol1 o 9 0110 # I
) .
RESIDUE CHANNEL NO CN 0-4 _
3 |12 CHECK p g pCl
o |e JOB WORD BUS B (00-SI) —T0
= =] ~ 1 e
N 1 ° [| |
o |7 z - B(0O-SI) _ TO SCAN DATA REG
z 2 c SC NC S REGISTER MIU DATA REG
5 |e . 3ol 0
> " 'r?' l_'
o [~] 4 {
° n w
[- (2
o m >
= 2 :z ENCODE
(235
40i160 ‘
DISK PACK WAIT QUEUE
SEEK STACK (SCHEDULER)
DECODE

Figure 4-2-1. Translator Component Interface

Table 4-2-1.

Unit Table Word A.C. Stack
B20 B38 B37 B36 CBF CTF
RC EX JB BZ
M X 0 0 0 0
X 0 1 X X X
X 0 X 1 X X
X 0 X X 1 X
X 0 X X X 1
U 0 X X X X
X *1 1 0 X 1
X *1 1 0 1 X
X 1 0 0 X 1
X 1 0 0 1 X
M 1 1 0 0 0
U 1 X 0 X X

X = State irrelevant
M = States match
U = States do not match

EX = Exchange Bit
JB = Job to be done
BZ = Job Busy

address of the next IOCB is inserted in the 20-bit ad-
dress field of the IOQH. Control is passed to the
start section to initiate the request. If the terminating
IOCB is the last request for this unit, and the unit
is connected to an exchange, then control is passed
to the ring-walk section and a search is made to find
a request that is waiting to be initiated.

Exchange Ring-Walk

The following action is taken when an exchange
unit terminates and there are no more requests
queued for that particular unit.

The present unit designate (PUD) field from UT is
saved in the S register. The next unit designate
(NUD) field in the UT word of the terminating de-
vice points to the next unit (device) of the exchange.
The UT word for this unit is fetched from level-1
memory and status of the busy and job bits is
checked. If the unit is busy, or no jobs are awaiting
service, the information in the NUD field in the UT
word points to the next unit of the exchange. This
process of looking for a request continues until one
is found or the entire exchange has been walked
(NUD = saved PUD). When a unit is found with a
serviceable request waiting, the IOQH word for that
unit is fetched from memory and the job is started.

Disk Pack Control

The following actions are taken upon the receipt
and examination of result descriptors from disk
pack.

Unit Table and Active Channel Coded Decisions

CRF Decisions

M Start job; unlock UT; Set BZ (UT)

X Error; Set Initiate Busy Channel Error (IBE) in
Fail Word

X Error; Set Initiate Busy Channel Error (IBE)
in Fail Word

X Error; Set Initiate Busy Channel Error (IBE) in
Fail Word

X Error; Set Initiate Busy Channel Error (IBE) in
Fail Word

U Error; Set Initiate Busy Channel Error (IBE) in
Fail Word

X Unlock UT; Go to initial state

X Unlock UT; Go to initial state

X Unlock UT; Set JB; Go to initial state

X Unlock UT; Set JB; Go to initial state

M Start job; Unlock UT; Set BZ, Res JB

U Unlock UT; Set JB, go to initial state

CRF = Chan Reserved FF

* - Applicable only when
second IOM has set JB

RC = Use reserved channel only
CBF = Chan Busy FF
CTF = Chan Term FF

When a result descriptor indicating ‘‘seek initi-
ated”’ is received, the IOM does not de-link the
IOCB or store the result descriptor as in normal ter-
minate operations. Instead, the unit number of the
disk pack which began a seek operation is stored in
a local stack. Contents of this stack are then used to
monitor the ready lines of all disk pack units which
are currently seeking.

A ‘“‘seek complete’’ is detected when the ready
line of a seeking disk pack returns to the TRUE
state. At this time, the translator performs a start.
I/O for that unit. Since the original job was not de-
linked from the job queue when the disk pack initi-
ated its seek, the same job is issued a second time,
and the data transfer occurs. After this point, all
IOM operations proceed the same as for normal pe-
ripheral units. If the disk pack is issued a conditional
I/0 command which does not require head position-
ing, data transfer occurs directly, and the automatic
disk pack functions of the IOM are not used.

Fail Mode Of Operation

The fail mode lets the IOM report errors that can-
not be associated with a specific request. When an
error occurs, such as a scan bus error, memory er-
ror, home address error, illegal command, etc., con-
trol goes to the fail mode (FM) with appropriate er-
ror flags.

A fail result descriptor is built in the fail register.
This RD indicates:

4.2.3

1. The operational mode when the error occurred.

2. A possible channel number (or memory ad-
dress, depending on the type of failure).

3. Error flags describing the type of error.

A fail unit designate number (fail UD = zero) is
used with the UT word to access a fail UT word.
Then the QH and fail UD are used to access the fail
I/O queue head. The fail result descriptor is placed
in the result descriptor word of the I/O control block
(I0CB). The fail IOCB is then delinked from the
queue of fail CBs and linked to the status queue as
in normal termination. An IOM error interrupt is
then sent by the IOM to the central processor desig-
nated in the status queue header.

Scheduler

The scheduler stores UDs for certain high speed
devices when throughput capacity of the PCI periph-
eral bus (or the IOM) exceeds a self-limiting range.
The PCI peripheral bus throughput is limited to two
_megabytes; whereas the self-limiting range of the
IOM is dynamic, up to six megabytes, because it
varies with memory and peripheral bus access time.

When the translator is in idle mode and no higher
priority jobs are awaiting service, processing of the
stored UDs can begin. Scheduler logic contains two
first-in/first-out wait queues for storing UDs, a job
counter to record the number of high speed jobs on
PCI channels, and limit circuits for monitoring
throughput operations.

The translator identifies high speed devices via bit
40 in the UT word (set by software). Then, during
start, the job counter is increased by one to record
that a job is in progress for that device. Each time
a high speed device is to be serviced, the job coun-
ter upcounts by one. Similarly, as each device ter-
minates, the job counter is decremented by one.

Whenever the job counter equals a count exceding
the two megabyte throughput, a flag is enabled, indi-
cating PCI limit met. Further high speed operations
to be started in the PCI section are written to the
PCI wait queue. When the job count decrements be-
low the two megabyte limit due to a high speed de-
vice terminating, the wait queue is read, if required.

The self-limiting throughput portion of the sched-
uler monitors valid array and DSB pointer informa-
tion to determine if limited I/O throughput occurred.
Both store and fetch memory operations are
monitored to detect this condition. If this has oc-
curred, the next high speed device UD is written to
the proper wait queue in order to perform this job
during a future start /O cycle, as described previ-
ously.

4-24

Time Logger Logic

The time logger logic calculates the time an IOM
had taken to service a channel operation. This calcu-
lated time, which is in units of 503 microseconds,
and the associated channel number are assembled in
the B register, as the IOMTIMECELL word. This
word is then stored in memory at the IOCB base ad-
dress plus six.

The counters in this logic are continuously
counting and are only interrupted momentarily at the
start and termination of an I/O. When a new channel
operation is started, the current time (counter) is
written into the storage location of this logic, ad-
dressed by channel number. When the operation ter-
minates, the stored time (count) is subtracted from
the present time and the resultant figure (elapsed
time) is stored as the IOMTIMECELL.

Data Service Quiet Logic

Data service quiet logic is used to inform the MCP
that an IOM is not servicing any channels and the
UD wait queue is empty. Data service quiet logic is
a five-bit counter, which is increased by one for
each channel operation started and decreased by one
as operations terminate. Thus, if the counter equals
zero and the UD wait queue is empty, bits 23 (DSQ
- data service quiet) and 22 (ENH - enhanced, which
serves as a validity bit for 23) are set in the status
change vector 8 field of home address word 2.

Zero Length Detection

Zero length detection logic is used to process jobs
in which the length of the memory in words for that
job equals zero, as indicated by a zero-length field
in the buffer descriptor. This is detected during start
and the final address field of job word 1 (JW1) is set
to zero. JW1 is sent to either the DFI or the PCI
subsection. In the DFI, a zero length detection sets
the RDL (result descriptor load) flag and terminates
the operation. For the PCI, zero length sets the RDP
(result descriptor present) flag. No other action is
taken by the PCI, except to recognize that no data
is to be transferred and to place the job in the queue
as a terminate job.

MEMORY INTERFACE UNIT

The memory interface unit (MIU), shown in figure
4-2-2, performs all data and map-word transfers be-
tween the IOM and a maximum of four system mem-
ory control modules. It detects and reports memory
error conditions to the requesting functional unit of
the IOM (and to the translator when applicable).

DSB REQUEST

DCL REQUEST

TRANSLATOR REQUEST

TRANSLATOR ADDRESS

DSB ADDRESS

DCI ADDRESS

UPPER & LOWER
ADDRESS LIMIT

UPPER & LOWER
ADDRESS LIMIT

N-=-0

TRANSLATOR DATA

wIMCcHMOMD ©OZ» VWIM<HIO

REQUEST

REQUEST STROBE

Y

DATA STROBE

y

ACKNOWLEDGE

52 INFORMATION

SEND DATA

DATA PRESENT

MCM ENABLE

REQ. ENABLE ADDRESS

PPER LIMIT ADDRESS

LOWER LIMIT ADDRESS

DSB DATA

DCI DATA

40167

PRIORITY MASTER
. CONTROL
Locic LOGIC
wemory | R RESIDUE
P | controL | E CHECK
WORD s LOGIC
19 4, ©
LEVEL 1
ADDRESS
COMPARE " - se;.>
T 0 N BUS g |O
LMl : g ADDRESS c |
COMPARISON o REGISTER g 3
E £ -
COMPARE SEBLll;:gT
Yy
DATA PARITY MEMORY |
P REG,;‘TER ™1 CHECK & B P | BUFFER [—
GENERATION REGISTER

REQ. OPER. COMPLETE

FAIL INTRPT |

FAIL INTRPT 2

SOFTWARE INTRPT

!

51 * [0

DATA TO REQUESTING UNIT

Figure 4-2-2. Memory Interface Unit

oxmzx

N

MrCOOT roI4Z00 <2

4.2-5

The MIU consists of nine functional components
as illustrated in figure 4-2-2. These functional com-
ponents are:

1. Priority Logic. This section is responsible for
granting the services of the MIU to the highest prior-
ity requesting unit. The order of priority for services
is:

a. Data communications scan interface (DSI)
b. Data service buffer (DSB)
c. Translator.

2. Control Logic. This section contains the control
logic necessary to execute all. MIU operations, in-
cluding the controls required to complete receiver
and driver paths.

3. Residue Check Logic. This section is responsi-
ble for checking and verifying the residue bits of the
memory addresses transferred from the translator
and data service unity.

4. Parity Check and Generate Logic. This section
is required to generate odd parity for all words being
transferred to memory, and to check for odd parity
of all words being fetched from memory.

5. Data Register. This is a 52-bit register and is
used to buffer all data transfers between the request-
ing unit of the IOM and the MIU.

6. Memory Register. This is a 52-bit register and
is used to buffer all input data to memory.

7. Control Word Register. This is a 25-bit register
and is used to temporarily hold the 24-bit unit con-
trol word (UCW) and length transfers from the re-
questing unit. UCW is comprised of 20 bits of ad-
dress, two residue bits, a write bit, and memory pro-
tect.

8. Receivers and Drivers. There are eight discrete
groups of receiver and driver circuits in the MIU -
one group per memory control module interface. The
state of these groups is determined by the control
logic; only one group is active at any one time.

9. Limit Comparison Logic. This section is re-
sponsible for comparing the six most significant bits
of address in the CWR with the address limits sup-
plied by each MCM in the memory system.

10. Bus Address Register. This register is used to
buffer encoded output of the limit comparison logic.
The output is decoded to select one of seven
memory buses. '

When a requesting unit of the IOM needs the MIU
for a data transfer, it is required to raise its request
lines to the MIU and place a 24-bit UCW and the
length information on its interface lines to the MIU.

The MIU manages level-1 memory access requests
by the functional units of the IOM on a preassigned
priority basis. The access priority scheme for the
functional units of the IOM is:

1. First priority: data communications processor
interface requests.

4-2-6

2. Second priority: data service buffer requests.
3. Third priority: translator requests.

When a functional unit of the IOM requires the
services of the MIU for the purpose of performing
a data transfer, it must raise its access request line
to the MIU and place a 26-bit unit control word
(UCW) on its UCW lines to the MIU. When the re-
questing unit has priority, the MIU loads the UCW
into its control word register and performs one of
the following operations:

Single data word fetch

N-length data word fetch

Single-word overwrite with flashback
Single-word protected write

Single-word protected write with flashback
N-length overwrite

Single-word overwrite

N-word protected write

PXNANR DN -

Upon determining the type of operation requested,
the MIU constructs a memory control word (MCW)
and transfers it to memory. Upon transferring the
MCW to memory, the MIU is required to perform
one of the following operations:

1. If a single-word store operation is specified:
The MIU raises its request lines to the specified
memory control module in order to alternately trans-
mit the MCW and the data word to be stored to the
addressed MCM. The MIU continues to transmit the
MCW, followed by the data word to be stored, until
an acknowledge signal is received from the MCM.

2. If a multiple-word store operation is specified:
The MIU raises its request lines to the applicable
MCM, and then sends the MCW to the MCM. When
the MCM acknowledges receipt of the MCW, the
MIU commences the data transfer under the control
of the data request signal.

3. If a fetch operation is specified: The MIU
raises its request lines and sends the MCW to the
applicable MCM. When the MCM acknowledges re-
ceipt of the MCW, the MIU enables its memory-bus
receiver circuits. Information from the MCM is now
accepted by the MIU. However, the MCM is re-
quired to transmit a data present strobe pulse to the
MIU to cause the information present on the
memory bus to be transferred to, and detected by,
the requesting IOM. The data present strobe pulse is
required for each word transferred from memory to
a requesting IOM.

While performing a data transfer, the MIU is re-
quired to detect and/or report memory error condi-
tions. Memory errors are divided into two categories
by the IOM: MIU-detected errors, and memory-de-
tected errors. Memory errors cause termination of
the memory request being processed, and the MIU
sends a three-bit error code to the requesting sec-
tion. The translator reports these errors through the

fail register. Data service section units return them
in the result descriptor. A decode of these three bits
specifies whether the error is MIU or memory-de-
tected.

Errors detected and/or reported by the MIU and
the associated three-bit reporting codes are listed in
descending exclusive order as follows:

1. Store Disparity (011). This error condition is
declared if a data transfer from an internal unit is re-
ceived with incorrect parity by the MIU. The data
with incorrect parity is transferred to the memory.

2. L1A Address Residue Error (010). This error
condition is declared if the MIU receives a UCW
with residue bits not agreeing with its memory ad-
dress field configuration (DCP words are not residue
checked).

3. Memory Detected Error (111). This error condi-
tion is declared when the addressed memory module
responds with a fail 1 (uncorrectable error) indica-
tion to a requestor unit.

4. No Access to Memory (101). This error condi-
tion is declared if the MIU receives no response
from the requestor memory module during a waiting
period less than a 25-microsecond writing period. No
response is defined as:

a. Failure to receive, at the MIU, an acknow-
ledged signal from an addressed memory mod-
ule; or

b. Incomplete data transfer by an addressed
memory module.

5. Fetch Disparity (110). This error condition is
declared if a fetch of data from memory is received
by the MIU with incorrect parity.

6. Memory Protect Error (100). This error condi-
tion is declared when the addressed memory module
responds with a protect error signal during a
memory protect store operation.

7. Memory Detected Error (001). This error condi-
tion is declared when the addressed memory module
responds with a fail 2 (one-bit corrected error) indi-
cation to a requestor unit. (This error condition does
not cause termination of the memory access
operation.)

DATA SERVICE BUFFER

The data service buffer (DSB), figure 4-2-3, is a
unit within the IOM which allows a continuous pe-
ripheral I/O transfer to and from memory by provid-
ing a 256 x 52 word buffer. This buffer is divided
into eight word buffers for each of the 28 data serv-
ice unit (DSU) channels.

The DSB has five components, as illustrated in
figure 4-2-3. These functional components are de-
scribed as follows:

1. The request queue (RQ) consists of: a PCI and
a DFI input register; read and write pointers; a 32

x 10-bit first-in/first-out request queue; M1 and M2
output registers (not shown); a parity generator/
checker (not shown); and a valid request check cir-
cuit (not shown). The RQ is used to store, and initi-
ate sequentially, memory requests from either the
PCI or DFI, under control of central control.

2. The PCI and DFI arrays consist of the control,
status, and valid arrays which contain information
necessary to perform various PCI/DSB, DFI/DSB,
and central control operations.

a. The PCI control array consists of 20 x 8 bit
locations and the DFI control array consists of
8 x 8 bit locations, one location for each of the
28 DSU channels.

b. The PCI status array contains 20 x 5 bit loca-
tions and the DFI status array has 8 x § bit loca-
tions.

c. The PCI valid array uses a 20 x 2 bit location
array and the DFI valid array is formed by a 8
x 2 bit array. These determine if an invalid buf-
fer is accessed.

3. The address array has eight functional units:
a. PCI and DFI UCW Registers. These are
24-bit registers used to buffer unit control words
(UCW) from the PCI and DFI into the address
array. |
b. Residue Check Logic. This section check and
verifies residue of the UCW address.

c. Address Array. This array consists of 32 x 24
bit word locations, one for each channel of the
PCI and DFI, with four locations not used. The
address array is used to store the next UCW for
the MIU from each channel, while waiting for
the RQ to honor the request.

d. Address Buffer. This is a 24-bit register (not
shown) used to temporarily hold the data being
read out of the address array and transferred to
the UCW register.

e. 20-Bit Adder/Subtractor. This section (not
shown) updates the current address in the unit
control word for the next fetch or store
operation.

f. Residue Adder/Subtractor. This logic (not
shown) is responsible for generating new residue
for all updated addresses being sent to either the
UCW register or the address update register.
g. Unit Control Register. This register is a
24-bit register and is used to buffer the UCW to
the MIU.

h. Address Update Register. This is a 24-bit
register and is used to buffer the updated UCW
address and residue to the address array.

4. Address logic for DSB main buffer is comprised
of eight address lines. These address lines are enable
by decoding of three address input gates selecting a
particular DSB location.

5. Address logic for the four-word buffers M1 and
M2 consists of a three-bit M1 and M2 length counter
and associated gate logic. The two least significant
bits select which of the four words is addressed.

427

4

FROM FROM
pCI DFI pCI DFI
PCIINTERFACE DFIINTERFACE
UCW REG. UCW REG. LOGIC LOGIC
NO.
- " PCI CH.N » ; ¥
UEUE
ADDRESS ADDRESS A PCI ARRAYS DFI ARRAYS QuEvE QuEvE
UPDATE ARRAY T (CONTROL VALID (CONTROL, VALID REG. REG
REG. (32X20) E | orcHno ANDSTATUS) ANDSTATUS) .
£ NO.
0 1)
3
REQUEST
WRITE PT
UCW REG. CENTRAL CONTROL QUEUE
WORD REG. READ PT FOR
o] MeEmoRY
T0 MIU l
- CONTROLS
CENTRAL DATA
BUFFE
- R R CONTROLS
LENGTH |—
REG'S
CENTRAL
DATA
) BUFFER
prrwr— CONTROLS FROM FC1
FROM MU CONTROLS 1
AND ’
TATUS
S M‘(E;’:;ER PD REGISTER
MEMORY
l l CH.NO.
fggl'::' PCI CH.NO.
DATA FROM MIU FROM DFI osic fem————
DSB DFI CH.NO.
AND
ARRAYS LENGTH REG
M2BUFFER :
privid MD REGISTER
FROM
M14WD 10
LEN.REG. BUFFER a1 l-————q 1)——]
ADDR. £F
ADDR. BUFFERS)
256
ps8
MAIN BUFFER
(256X52)
FROM
LEN.REG. M2awD To °
BUFFER - M2
ADDA. BUFFERS
LOGIC I l
M2BUFFER
frovi ML REGISTER
DATA TO MIU

]

ET1251

'

M1 BUFFER
(4X52)

]

| TO PCI
!

DD REGISTER

I TO DFI

Figure 4-2-3. Data Service Buffer

To control the peripheral I/O transfers, the DSB
contains four independently operated controls which
are initiated when a request for a particular
operation is received. The following subparagraphs
describe each DSB control.

PCI/IDSB Control

PCSI/DSB control is initiated when a PCI request
for PCI control, valid, and status arrays is set in re-
sponse to a request from the PCI. It is used to con-
trol one-word transfers between the PCI and the
DSB main buffer.

DFI/DSB Control

DFI/DSB control is initiated when a DFI request
for the DFI control, valid, and status arrays is set in
response to a unit control word inhibit signal from
the DFI. This section controls one or two-word
transfers between the DFI and the DSB main buffer.

Because PCI timing and PCI/DSB timing control
are one clock cycle ahead of the DFI timing se-
quence, the PCI request for PCI control, valid, and
status arrays always occurs before the DFI request
and thus eliminates any request conflicts between
the PCI and the DFI.

However, only DFI-A or DFI-B can request the
use of the DFI arrays at the same time, by a re-
questing DFI generating an inhibit signal to inhibit
the other DFI section.

Central Control

Central control is initiated when a request for a
memory operation is available in the request queue.
This request is made as soon as the count in the
read and write pointers of the RQ is not equal and
the queue is not being written into, thus enabling a
memory request. The central control is used to con-
trol data transfers between the DSB main buffer and
the M1 and M2 four-word buffers.

When the PCI or a DFI is requesting the use of
its control array or the address array, central control
can not request these arrays for one clock cycle
while the PCI or DFI request is acknowledged. Also,
if the PCI or DFI requests the use of the DSB main
buffer and central control has access to the buffer,
the central control loses access for one clock cycle
while the data transfer occurs.

MIU/DSB Control

MIU/DSB control begins when central control re-
quests an MIU interface operation. THE MIU/DSB

control then responds by sending a data request,
along with the UCW and length, to the MIU. The
MIU/DSB control regulates data transfers between
the M1 and M2 four-word buffers and the MIU.

PERIPHERAL CONTROL
INTERFACE

The peripheral control interface (PCI) (figure
4-2-4) lets the IOM interface with from one to 20 pe-
ripheral controllers (PCs) and coordinates data trans-
fers between the PCs and the DSB as directed by
the translator section of the IOM. The PCI interfaces
with memory by one-word transfers via the MIU
through the DSB.

The PCI consists of nine functional components
(see figure 4-2-4). These functional components are
described as follows:

1. PCI Local Memory (PCLM). Comprised of
TTL RAM and CTL MULN-type memory chips.
PCLM stores the channel descriptors, result descrip-
tors, and data for 20 channels.

2. Descriptor Register (DR). A 79-bit register used
to temporarily store the channel descriptor for a job
being initiated and the result descriptor while it is
being assembled.

3. Shift Logic and Data Buffer Register. The shift
logic consists of left and right shift logic to properly
position data within the data buffer (DB) register.
The DB register can be considered as part of the de-
scriptor register because it holds the CDL and data
words for the channel descriptor being processed.

4. Byte Buffer. A 16-bit register used to
temporarily store the data byte being transferred be-
tween the peripheral control and the PCI, as well as
the device result descriptor being transferred from
the peripheral control.

5. Code Translator. Consists of the logic circuits
necessary to perform various code translations re-
quired by some B 7800 peripheral devices. ROM
chips are used to perform this function.

6. Stack Section. Contains 20 three-bit stack regis-
ters, one for each of the peripheral controls. The
three-bit codes are used to address the PCLM in or-
de. to perform specific PCI operations, such as writ-
ing an updated channel descriptor back into the
PCLM for the next service cycle.

7. Queue Section. Contains 20 two-bit queue reg-
isters, one per PC. The queue register contains any
of three two-bit job codes: initiate, memory, and ter-
minate.

8. Driver and Receiver Section. Has the drivers
and receivers necessary to transmit and receive data
and control signals between peripheral controls con-
nected to the 20 operational channels.

9. Timing Generator and Control Section. Has the
logic used to generate and control timing signals
used throughout the logic circuits of the PCI.

4-2:9

DATA

SERVICE
PCC BUSS BUFFER
MEMORY DATA
DRIVER/RECE I VERS uew BUrFER
INTERFACE CODE TRANSLATE
CONTROL | BYTE BUFFER h——8 Reap-ONLY MEM.
DATA SHIFTER .—f
DATA BUFFER REGISTER g — ot
LOCAL
MEMORY K:{>
PCLM
(pCLM) TRANSLATOR
DESCRIPTOR REGISTER s . (DATA)
2 " R/W DRIVE
q CONTROL T
LOCAL
QUEUES PRIORITY NET g————— | STACK MEM.
A I TEST
CHANNEL
EN/DEC TIMING
GEN, & CONTROLS
TRANSLATOR TRANSLATOR 3 MHZ 2 MHZ
(CHANNEL NUMBER) (CONTROL) MASTER PERIPH
41150

Figure 4-2-4.

Peripheral Control Interface

Each PC needs a one-microsecond service cycle to
transfer data. By means of overlapping service cy-
cles, and by use of local memory windows (a one-
clock period when a particular operation may be per-
formed if no higher priority job exists) all 20 chan-
nels are multiplexed.

There are five operational phases of the PCI:

Translator Service.
Channel designate.
Channel data service.
Memory operations.
Result descriptor read.

Each of these phases is described as follows.

Translator Service

This phase of PCI operation is controlled by chan-
nel designate level (CDL) control (referred to as
CC), and includes all functions required between the
PCI and the translator during the initiation phase of
an I/O operation. The translator service phase com-
mences when the translator control logic places the
first job descriptor word (DSU word) on the transla-
tor bus and raises the request line to the PCI. When
a local memory window becomes available, the CC
strobes the DSU word into the local memory chan-
nel allocated to the device to be started, and lowers
the PCl-available line to the translator. The transla-
tor control logic then lowers the request line and
places the second job descriptor word (CDL word)
onto the translator bus.

When the next available local memory window oc-
curs, the CC strobes the CDL word into the appro-
priate location in local memory, strobes the channel
number of the new request into the initiate queue
stack (INQ), and raises the PCl-available line. This
informs the translator that the entire request descrip-
tor has been received and stored in local memory.

Channel Designate

If no channel is currently being initiated, the CC
selects the highest priority channel in the INQ,
sends this channel number to the CDL stack (CDS)
which contains the request descriptor currently being
initiated, and resets the INS bit for the selected
channel. If no channel requires channel service, the
CC checks the busy line of the channel.

If a not busy condition is detected, the CC com-
mences transfer of CDL characters to the appropri-
ate PC at the rate of one character per available
service cycle. If the selected channel is busy at ini-
tiation, or if the selected channel becomes not busy
during transmittal of CDL characters, the request is

terminated and appropriate result descriptor informa-
tion is generated and transferred to the translator
(see channel termination). After sending the correct
number of CDL characters (four for standard de-
vices and eight for disk file devices), the CC raises
the start channel bus line to the PC and resets the
CDS, and the initiation operations are completed.

Channel Data Service

After completion of the initiation phase, a channel
is serviced upon demand at a rate dependent upon
the type of peripheral device involved. The PC re-
quests service by raising the access-request line
(ARL) to the PCI. The PCI selects the highest
priority channel requesting service and generates the
appropriate access granted level (AGL). The pres-
ence of this signal grants the next service cycle to
the accessed peripheral. The service cycle consists
of two T-time periods (T1 and T2) of 500 nano-
seconds each; T1 is used for output to the PC. The
AGL signal for the next service cycle is generated
during the previous service cycle’s T2 time period.

Each data transfer is controlled by a channel de-
scriptor which has been generated from information
contained in the DSU word of the job descriptor.

If an error is detected at any time during channel
service, the PCI generates the appropriate result de-
scriptor information for the translator (see channel
termination) and terminates all operations on that
channel.

Memory Operations

When the PCI determines that one 52-bit data
word is needed from, or is ready to go to memory
the channel number for the transfer goes in the
memory queue (MQ). The MQ is a stack which con-
tains the channel numbers of all channels requiring
memory access. If no memory operation is currently
in progress, the PCI selects the highest priority job
in the MQ, and transfers this number to the memory
operation stack (MOS). The PCI then resets the MQ
bit for the selected channel, transfers the unit con-
trol word to the unit control register (UCWR), raises
the PCI-memory-request line to the DSB, and, if
necessary, transfers data into the memory transfer
area (MTA).

Once access to the DSB is granted, the PCI
strobe: 1) fetches data from the MTA; 2) strobes the
data to the appropriate data buffer in local memory;
3) awaits the release signal which indicates that this
memory requests is completed; and 4) resets the
MOS bit. The memory operation is thus completed.

4-2-11

If the DSB detects an error at any time during this
sequence, the error information is transferred to the
PCI. The PCI then causes the request to be termi-
nated, and an appropriate result descriptor is gener-
ated.

Result Descriptor Read

After completing the required data transfer, the
PCI sends an I/O complete level to the PC. The PC
then returns the result descriptor available level and
returns a result descriptor. This result descriptor in-
formation, plus the channel descriptor information,
is used by the PCI to create the result descriptor
word to bring about a normal termination.

Abnormal termination result descriptors can oc-
cur:

1. During initiation, channel service, or channel
memory operations (when errors are detected by the
PCI).

2. During channel memory operation (when errors
are detected by either the MIU or the MCM).

3. During channel initiation or channel service
(when errors are detected by the PC).

No matter what the source, all result descriptors
are treated identically.

Once the result descriptor has been generated, it

is stored in the local memory location of the channel
to be terminated. The channel number of this re-
quest is strobed to the translator. Should the transla-
tor be unable to accept the channel number, the PCI
stores this channel information in the termination
queue (TMQ), which contains all the requests to be
terminated. Whenever possible, the PCI selects the
highest priority request from this stack, transmits the
channel number to the translator, and resets the
TMQ bit for the selected channel.

The translator replies to the PCI termination with
a read-result-descriptor request, which causes the re-
sult word to be placed on the translator bus. This
completes the termination operation.

DISK FILE INTERFACE UNIT

The disk file interface unit (DFI) in figure 4-2-5
lets the IOM interface up to eight disk file controls
(DFCs). It consists of two independent modular sec-
tions, each of which is capable of handling four data
channels. Each data channel is interfaced to one
DFC.

Each DFI section controls data transfers with the
DFCs via a 16-bit data bus, at a transfer rate of two

4-2-12

eight-bit characters per transfer time. The transfer
rate to the DSB is two words (2 x 48 bits) per trans-
fer time.

Each data channel utilizes a four-word data buffer
area, the data local memory (LMD), and a 67-bit
channel descriptor local memory (LMC). Upon com-
mand from the translator, the DFI initiates requests
with its associated DFCs. On receipt from memory
of a disk file job, the translator requests that a pair
of job words be sent to the DFI section assigned to
handle that job. The selected DFI section loads the
first of the new requests words into the proper chan-
nel descriptor location in the LMC. It loads the sec-
ond job request word into its data buffer area
(LMD), from which this word is subsequently sent
to the DFC. The DFI then releases the translator.

During data transfer operations, the DFI commu-
nicates with the data service buffer (DSB) to get
memory accesses. All data transferred by the DFI
between the DFCs and memory is temporarily stored
in the LMD. Here individual 16-bit bytes are packed
or unpacked as they are exchanged with the DFCs.

Figure 4-2-5 illustrates the two DFI sections and
their respective interfaces with the translator, DSB,
and peripheral control cabinets (PCC). The two sec-
tions are identical and contain the following compo-
nents:

1. Channel Descriptor Local Memory (LMC).
Stores four 69-bit channel descriptors, one for each
DFC data channel.

2. Descriptor Register (DR). Holds the descriptor
of an active channel. The DR contents are used in
conjunction with update logic to update the current
memory address of the active job and other various
control bits.

3. Update Logic. Increases the CA by two words
each time a memory access is requested for fetching
or storing a pair of data words. It is also used to up-
date the word byte position field (WBP), the residue
and phase (FAZ) fields, and various other control
bits.

4. Parity Check and Generate Logic. Generates
and stores odd parity for each descriptor stored in
the LMC, and checks for odd parity on all descrip-
tors read from the LMC.

5. Data Local Memory (LMD). Stores 16 48-bit
data words (two double-word locations for each of
the four DFC channels). The LMD buffers for data
read from, or written onto, disk files. Also, during
request initiation, the LMD contains six CDL char-
acters (48 bits total) which are sent to the DFC.

6. Two-Word Buffer (2WB). Acts as a buffer for
data being transferred between the LMD and the
DSB; can store two 48-bit words.

190 e 4

RESULT DESC. LOAD

 RESULT DESC
] _ RESULT DESC.
< CHANNEL
DESC. LOC. MEM DATA LOC. MEM
e TIMING 69 o[ep -0 a7 olar o] [P
= X (=TT
| CONTROL - _ |{ — |
-3 - l
DBE & ME BITS §
T [S PARITY -—2{——— 4 ——| |8
’: 3| CHECK 8 GEN !
OR Y \ U R
N J.W. > 3{ 5
S - 4> g TR REG
L 5 0 0
$ U.CW. 2WDY BUFFER ; y
0 - UPDATE a7 0 R
R a7 0 PARITY
Jw2 T CHECK 8 GEN
T0
‘ PCCA
DATA ¢
PAR ACCUM
PARITY 8 STORE
NW. RESULT DESC. LOAD
CHANNEL ,——<
DESC. LOC. MEM L | pata Loc Mem
€69 Ol P |-0 { a7 0la7 © P
o =0{ |— —"1— —=| |a
D > R
A TIMING '§ ->|{ _— 4 — = T
T & :> - Y
A CONTROL] PARITY
N > 3| CHECK 8 GEN ’2{ —— T~ |8
E DR T
R J.W. ' 1 -—3{ _———t — — S
v]—‘—J
'C < DBE & ME BITS A JW2 T REG
E L 2WDY BUFFER TR REG
U.CW. 5 0
5 e L m{ uPDATE amv _ _ _ O D
U 7 ‘ /
. }
F PARITY
= CHECK 8 GEN
R DATA * TO
d { PCCB
—® pAR ACCUM
PARITY 8 STORE
| -
40'69

Figure 4-2-5. Disk File Interface

7. Transfer Register (TR). A 16-bit register, used
to buffer all data transfers to or from the DFC.
8. Parity Check, Generate, Accumulate, and

Store. Checks and generates parity on data trans-.

ferred from or to the DFC. When data is sent to the
DFC, a parity bit (from the MIU, via the DSB) is re-
ceived with each data word and is stored in the ac-
cumulator. The parity bit setting of the accumulator
is updated with each 16-bit transfer to the DFC, and
is checked against the priority of the last such trans-
fer. When data is received from the DFC, a parity
bit is received with each data transfer and is stored
in the accumulator. The parity bit setting is updated
for each new i6-dit transier, and a iinai sciilug 1»
sent to the MIU, via the DSB, for each new data
word. The MIU then checks parity on the full 48-bit
word (three 16-bit transfers per 48-bit word).

During normal operation, the DFI section, accord-
ing to priority, reads the descriptors of its assigned
channels in search of an active job to perform. A
channel may be in any one of four basic phases of
operation. The exact phase is determined by the
FAZ field in the channel descriptor. The four basic
operations are:

Channel Initiate.
Channel Designate.
Data Service.
Channel Termination.

Upon completion of an operation, the DFI notifies
the translator of the termination status and then
awaits reinitiation.

Channel and DSB Initiation
Operation

The DFI channel initiation operation begins with
the receipt of a translator request. When the DFI is
ready to service the request for a specified channel,
the DFI acknowledges the request. The two job
words are now received from the translator.

The portions of the channel descriptor not in the
descriptor register (DR) are written directly into the
LMC from the job word data lines. The other por-
tions of job word 1 are loaded into the descriptor
register. Also. the DFI Busy is enabled.

Next, the first half of job word 2 is loaded into
word 3 of the LMD to form the first three CDL
characters. Then digits D7-D12 of job word 2 are
written into word 4 of the LMD. The JW2 digits are
distributed over two LMD words to place the CDL
characters in separate bytes. This facilitates the sub-
sequent transfers of these characters to the DFC
during the CDL cycle.

4.2.14

Following the above, the DFI is marked not busy,
and the channel descriptor is read from LMC into
the DR. If errors are detected, a result descriptor
load request occurs, the proper code is loaded to the
RD, and the channel terminates.

Otherwise, the DFI sends a unit control word
(UCW) to the DSB, if the channel job is memory op-
eration, the channel is not already waiting for com-
pletion of DSB initialization, and the DSB is not
busy with the other DFI. If the DSB is busy, the
next time this initiating channel is serviced, the DSB
request is attempted again. When the mmatmg chan-

s TTAMY) o nmnien A~ tha
llCl i3 asalu acwvu.u, LIL UL VY 1D agaill a\Au l.v (201

DSB. If the UCW is received by the DSB and if the
memory operation is a read from disk (store to mem-
ory), the phase count is updated to allow the release
for the memory operation which is expected from
the DSB.

If the memory operation is a write to disk (fetch
from memory), the channel job waits until four
words from memory are loaded into the DSB main
memory. Because delays vary in length in accor-
dance with MIU/MCM access times, the channel
must wait so that the data is present for transfer to
the device. Meanwhile, the DFI is informed of the
DSB release of the channel, allowing other channels
to send data to the DSB, while this channel is wait-
ing. Once the four words for this channel are stored
in the DSB main storage, the DSB signals the DFI
which allows this channel to proceed to the next
phase.

Channel Designate Operation

In the channel designate operation (CDL cycle), a
control word of 48 bits of information is sent to the
addressed DFC channel. The overall channel desig-
nate sequence requires eight channel services, con-
sisting of six transfers of eight bits each, and two
dummy CDL cycles (service cycles four and five).
These 48 information bits are contained in the sec-
ond request word (job word 2) stored in the LMD.

The word byte pointer (WBP) field of the channel
descriptor points to the location in the LMD of the
information to be transferred to the DFC. A 16-bit
byte. of which only the eight most significant bits
are valid, is loaded into the transfer (TR) and is then
sent to the DFC. After six such transfers. and two
dummy CDL cycles in the middle of the six trans-
fers. a start channel bus signal is sent to the DFC
to indicate the end of initiation phase. and the phase
field of the channel descriptor is then updated to re-
flect this.

If the job word indicates an output operation
(Memory Read). two fetches of two words each are

requested from memory via the DSB during channel
designate operation. The first of these two word
fetches is stored in position 00 and 01 of the LMD.
The second two word fetch is stored in locations 10
and 11 of the LMD.

Data Service Operation

The data service consists of transferring a 16-bit
byte of information to or from the DFC. If the DFC
corresponding to the active channel has raised its ac-
cess request level (ARL), the DFI responds by rais-
ing its access granted level (AGL). The DFI will
now follow this AGL by granting a one microsecond
service cycle. A single 16-bit data byte is transferred
for each data service operation.

If the disk file operation is an input operation, the
data byte is accepted from the DFC into the transfer
register (LMD). If the disk file transfer is an output
operation, the data byte is read from the LMD,
placed in the transfer register (TR), and applied to
the data bus to the DFC.

The LMD location of the 16-bit data byte to be
transferred is determined by the word byte pointer
(WBP) field of the channel descriptor. With each
data byte transfer, WBP is upcounted by one.

After two words are transferred, a memory re-
quest is again made via the DSB. The current ad-
dress (CA) is sent, along with certain control bits, to
the DSB. If the request is for a disk read, two words
are loaded into the two-word buffer QWB) from the
LMD. If the job request is for a disk write, two
words from the DSB are loaded into the 2WB and
then into the LMD.

With each DSB request, the current memory ad-
dress (CA) is counted up and compared to the final
memory address (FA). If they are equal, the data
service phase is completed and the phase field is in-
cremented by one to advance the channel operation
for normal termination. The channel descriptor is
then restored into the LMC and the next channel is
serviced.

Channel Termination Operations

The channel termination operation consists of two
parts: the end of data service and the channel termi-
nation interface with the translator.

After data service has been terminated, the DFI
sends the terminating channel number to the transla-
tor and then awaits the receipt of a read-result-word-
request (RDR) from the translator. When this re-

quest is received at the DFI, the result descriptor is
sent to the translator and the channel termination
phase is completed.

The data service operation ends when a normal
completion of a data transfer has occurred, or by the
detection of an error by either the DFI or the DFC.
If the DFI detects the end of data (by CA = FA) or
an error, it sends an IOC signal to the DFC. When
the DFC detects either an IOC or an error, it sends
a result descriptor to the DFI. This result in stored
in the FA field of the channel descriptor.

SCAN BUS INTERFACE

The SCI (figure 4-2-6) contains the storage and
controls required to provide a scan bus for commu-
nication with four DCPs.

The translator initiates scan operations by trans-
mitting a scan control word to the SCI. If a scan-out
is required, the translator also transmits the scan-out
information to the SCI. Upon completion of the scan
operation by the SCI, the translator is notified.. In
the case of a scan-in operation, the scan-in informa-
tion is loaded into the translator B register. If an er-
ror has been detected by the SCI, error information
is loaded into the translator F register.

There are two error conditions which can be re-
ported to the translator by the SCI:

1. Not Ready. If the DCP addressed by the scan
bus does not respond with a ready signal within 3
usec, a not ready error is reported.

2. Module Error. If the DCP addressed by the
scan bus detects an error on a scan-out or scan-in
operation, an error signal is transmitted to the SCI.
The SCI then reports a scan error to the translator.

During scan-out operations (only scan-out orders
are accepted by a DCP), the scan information lines
constitute the scan-out word. The SCI provides a
maximum of four DCP memory interfaces (see figure
4-2-7) in a DCI unit. '

The DCI unit contains all storage capability and
controls required to interface with the DCP memory
buses. Memory transfer operations performed are:

1. Fetch (one word)
2. Store with flashback (one word)
3. Protected store with flashback (one word).

If an interface is not used by a DCP, it may be
used to accommodate a suitable device.

All errors detected by the DCI or MIU for a DCI

memory request go to the DCP which initiated the
memory request.

4215

DATA FROM TRANSLATOR

DATA BUFFER

511 47 00

_ DATA TO TRANSLATOR l

ADDRESS FROM TRANSLATOR

ADDRESS BUFFER

19 00

DR/RX

INFORMATION BUS

ADDRESS

SCAN REQUEST (SREQ)

v

SCAN WRITE (SWRC)

v

PARITY/ERROR (SAPL/STEX)

v

UNIT READY (SRDY)

v

ACCESS OBTAINED (SAOX)

SCAN
> T0
DCP

— o TIMING
TRANS CONTROL,
CONTROLS PARITY

| GENERATION

ET1252

" Figure 4-2-6. Scan Bus Interface

4-2-16

DATA FROM MIU FD(00-51)-IGN

DATA BUFFER
51 @— 00
MD(00-51) * IBN
—
DATA TO MIU DP(00-51)+IGN
ADDRESS TO MIU MA(00-19)-IGN
CONTROLS
T WITH
CONTROLS IMING AND bce
—_—
CONTROL AND
WITH
ADDRESS PARITY
["—.—
MIU CHECK
41151

oZ > woxM<C—mom>o

»nwoxM<— 200

INFORMATION BUS

bCcP
5ME MORY

INTERFACE

4 MAX,

Figure 4-2-7. Data Communications Interface Unit

e AN
ADDRESS
gt
REQUEST MREQ
gt
WRITE MWRC
et
WRITE PROTECT MPRC
bt
PARITY/ERROR MAPL/MTEX
- —-
READY MRDY
ACCESS BEGUN M@B X
—
ACCESS OBTAINED M@AX -
/

SECTION 3

PERIPHERAL AND CONTROL WORD FORMATS

INPUT/OUTPUT CONTROL WORD (IOCW)

LINK [MINH | B/F |
47 43 39|
O |ascO| TRA | TEST
50 4GJ 42| 38
o |sa |em|T
a9 45| 41|C =
O |I/O|MP|T '}
8] 44| 40|l 36] 3 8 i 0
JOB WORD | (JBWI) TO DSU
C
LINK | MINH
47 43T 3 35 3l 27 23 19 15 Il 7 3
B/ F | asco| TRA | E FI I N AL S T|AR|T
sof 46| 42 o 38 34| 30 26| 22| 18 14 10 e 2
T |sa|mm|; |aD|D RE|s S| AIDD|RE|SS
C aol a5] 41| 370 33 29| 25/ 2 7l 13 9 5 |
T
/0 |MP
L 48] 44 49q 36| 32| 28] 24| 20| 18] 12 8 4| o
FIELD 10CW JBW1 DESCRIPTION
BIT S BIT S
LINK 47:1 47:1 SIDELINK. When set, indicates a sidelinked I/O is to be performed. Info
about sidelink operation is in second word of IOCB.
ASCII 46:1 46:1 ASCII.
SA 45:1 45:1 SOFTWARE ATTENTION. When set, causes ATT bit in result descriptor to
be set.
1/0 44:1 44:1 INPUT/OUTPUT. 1 = READ; 0 = WRITE
MINH 43:1 43:1 MEMORY INHIBIT.
TRA 42:1 42:1 TRANSLATE. Settings of ASCII, I/0, TRA and FML bits, taken together,
determine what data translation, if any, is to be done.
FML 41:1 41:1 FRAME LENGTH. 1 = 8 bits; 0 = 6 bits.
MP 40:1 40:1 MEMORY PROTECT.
B/F 39:1 50:1 BACKWARD/FORWARD. 1 = BKWD; 0 = FWD.
TEST 38:1 - TEST.
TCTL 37:2 49:2 TAG CONTROL.
0 = Store SP tags (0); 1 = Store program tags (3);
2 = Tag field transfer; 3 = Store DP tags (2).
CT EXT - 39:3 COUNT EXTENSION. Number of characters in fractional word part of data
buffer.
FINAL - 36:17 Memory address of last full word of buffer to be accessed by IOM, low 17 bits
ADDRESS only.
START - 19:20 Memory address of first full word of buffer to be referenced; for a backward
ADDRESS tape operation, this is not the buffer base address.

4.3-1

Job word 1 is built in the IOM and can be read from the B register (Panel 1, Row 3) in T-time 25 of start
mode. Job word 2 (JBW2) passed to the data service unit is (in all cases) the channel designate level (CDL)
word from the IOCB. The following are CDL word formats for the various peripheral types:

STANDARD RESULT DESCRIPTOR

CC DVE|CTE|DPENTR

471 43] 39| 35 31101 23 19 15 11 T 3
MEMORY N ' IN 2

Tso] 46 EMRRY, 30‘%‘,‘\’. UNITVBE R MEZBSY

A ADWSS Tl NO. BSE [ME1|ATT

49] 45 41| 37| 33 29] 25 21} 17 13 9 5 1

ME 3|CME|CPE |DSE [EXC

48] 44| 40| 36| 32 28] 24| 20} 16 12 8 4 0

Field BITS DESCRIPTION
TAG 50:3 0 = Normal; 4 = IOM unable to do sidelinked job.
MEMORY 47:20 Final level 1 memory address (L1A). Hard load RD contains channel used in [32:5).
ADDRESS
CHAR 27:3 No. of last memory word characters validly executed by IOM.
COUNT
UNIT 24:8 Unit No. of device on which job was executed. (Set only for mapped I/O).
NO
ME3.ME2, 16:1 MEMORY RELATED ERRORS. Listed in order of decreasing priority.
ME1 6:1

5:1 ME3 ME2 ME1l I0M*

PER STORE DISPARITY.

RAE L1A ADDRESS-RESIDUE ERROR.

F1IR MCM-DETECTED ERROR, FAIL 1 (UNCORRECTABLE).
NOA NO ACCESS TO MEMORY.

PER FETCH DISPARITY.

RS1 MEMORY-PROTECT ERROR.

F2R MCM-DETECTED ERROR, FAIL 2 (CORRECTABLE).

Ot =~ OO
OO O
0O O M O

*Panel Light indication in Error Control Register (Panel 2, Row 7).

Unit or 15:9 Depends on value of bi
Dt o p of bit 4 (DSE).
bits
0
1

unit related errors (in bits 15:9); see below.
DSU error (in bits 15:9), as follows:

DVE 15:1 DEVICE-DETECTED ERROR.

NBE 14:1 NOT BUSY ERROR.

CME 12:1 COMBINATION ERROR.

CTE 11:1 COUNTER ERROR.

IFE 10:1 INTERFACE ERROR.

BSE 9:1 BUS PARITY ERROR.

CPE 8:1 CONTROL PARITY ERROR.

DPE 7:1 DATA PARITY ERROR (Always set if BSE=1).

DSE 4:1 DATA SERVICE ERROR.
1 = DSU error (in bits 15:9);
0 = Unit related error (in bits 15:9).

NTR 3:1 NOT READY.
BSY 2:1 CHANNEL BUSY ON INITIATE.
ATT 1:1 SOFTWARE ATTENTION.

EXC 0:1 EXCEPTION,

4.3-2

Table 4-3-1. MOD II IOM Data Service Buffer Errors

DSE DBE ME3 ME2 ME1

1 1 0 0 0 Illegal data buffer

1 1 0 0 1 No access to data buffer
1 1 0 1 1 Control array Parity

1 1 1 0 0 Address residue error

1 1 1 0 1 Request queue parity

1 1 1 1 0 No response by DSB

Unit Related Errors

The device RD for any type of unit is returned to the IOM as three hexadecimal digits from the control.
For a PCI operation, the device RD is in the PCI byte buffer (Panel 1, Row 14), as shown below, when the
operation completes. '

NINININ/N/N/N|NININ|N|N
ujujuiu

AlAlA|lA|B|B|B|B|C|C|C|C

8|4|12|1]|8|4|2|I |8]4]|2]]

15 0

U= UNIT NO. FOR AN EXCHANGE DEVICE, ELSE UNUSED

The INAS bit should always be on, signifying operation complete. A unit error is signified by INA4=1, and
the remaining bits in the device RD are used to make up the RD error field reported to the MCP as shown:

REREREE D[1]B
MININ NN N NN NN MM |5 A E
E | E|E T|X
s|clclc|c(B|B|B|B[A| | |=|A|=|7]c
| |[2]4]8|1]2]|4]8]]I 0oj2]0
16 0

For each PCI channel, the last RD returned to the MCP may be displayed in the RD register (Panel 1, Row
34) of the IOM via local memory operations. Similarly, the last RD from each DFI channel may be displayed
(in slightly modified form) in the DFI RD register (Panel 1, Row 10).

4.3.3.

Result Descriptors Common To All Peripheral Devices

0003 ATT (Software Attention)

0005 BSY

0009 NOT READY

000D WRONG LENGTH DATA TRANSFER
(Generated by MCP)

0015 BUS PARITY (Reported by MCP for
hardware RD=0291)

0021 MEMORY FAIL 2 (Correctable)

0041 RESIDUE ERROR

0061 STORE DISPARITY

0291 BUS PARITY (Changed to 00156 by MCP)

10000 MEMORY PROTECT ERROR

10021 NO ACCESS TO MEMORY

10041 FETCH DISPARITY
10061 MEMORY FAIL 1 (Uncorrectable)

Any result descriptor may also have ATT (bit 1) set.

Internal DSU Error Result Descriptors*

0091 DPE 1591 CME, IFE, CPE, DPT
0111 CPE 1691 CME, IFE, BSE

0191 CPE, DPE 1791 CME, IFE, BSE, CPE
0291 BSE 1811 CME, CTE

0391 BSE, CPE 1891 CME, CTE, DPE

0411 IFE 1911 CME, CTE, CPE

0491 IFE, DPE 1991 CME, CTE, CPE, DPE
0511 IFE, CPE 1A91 CME, CTE, BSE

0591 IFE, CPE, DPE 1B91 CME, CTE, BSE, CPE
0691 IFE, BSE 1C11 CME, CTE, IFE

0791 IFE, BSE, CPE 1C91 CME, CTE, IFE, DPE
0811 CTE D11 CME, CTE, IFE, CPE
0891 CTE, DPE 1D91 CME, CTE, IFE, CPE, DPE
0911 CTE, CPE 1E91 CME, CTE, IFE, BSE
0991 CTE, CPE, DPE 1F91 CME, CTE, IFE, BSE, CPE
0A91 CTE, BSE 4011 NBE

0B91 CTE, BSE, CPE 4091 NBE, DPE

0C11 CTE, IFE 4111 NBE, CPE

0C91 CTE, IFE, DPE 4191 NBE, CPE, DPE

oD11 CTE, IFE, CPE 4811 NBE, CTE

0E91 CTE, IFE, BSE 4891 NBE, CTE, DPE

0F91 CTE, IFE, BSE, CPE 4911 NBE, CTE, CPE

1011 CME 4991 'NBE, CTE, CPE, DPE
1091 CME, DPE 5011 NBE, CME

1111 CME, CPE 5091 NBE, CME, DPE

1191 CME, CPE, DPE 5111 NBE, CME, CPE

1291 CME, BSE 5191 NBE, CME, CPE, DPE
1391 CME, BSE, CPE 5811 NBE, CME, CTE

1411 CME, IFE 5891 NBE, CME, CTE, DPE
1491 CME, IFL, DPE 5911 NBE, CME, CTE, CPE
1511 CME, IFE, CPE 5991 NBE, CME, CTE, CPE, DPE

* These DSU error result descriptors may end in 3, indicating software attention. Result descriptors in
the form Oxxx may also be 8xxx and those in the form Ixxx may also be 9xxx, indicating DVE.

4-34

IOM PERIPHERAL RESULT DESCRIPTOR

MIN TERM GROUPING STANDARD ERROR FIELD
A A -~
P cicic M M
UNIT UNIT MIDIN|BIAE
Al TAGs| cLia |E|E|E DESIGNATE E ERROR ElE|s|A|lz|T|X
R 2(1]0 3 FIELD 2|1|E|T|Y|T| |B7800—IOM—R/D
5/5 4 4|4 _ 2|2i2/2|2 2 2 2|2 11 1/1|1 1111100 o0|ofofofofo|o]o
110 9 8/7 8|{7|6|5,4 3 2 1]/0 9 8 7|66 432109 8 7|6|5|/a|3/2]|1]0
L:o
[T e I N N N R R TR I BYTE
NNNN NNNNRNNNRNN N non PClayrren B7800
DDDD CCCCBBEBEBA A A A
8 4 2 1 124812481 2 a8 PERIPHERAL
P‘ CONTROL
1111 1171000000 0 00 CABINET 1/0
6 09 6 3 - 2 CONTROLLER
DISK PACK
RESULT DESCRIPTOR LOCATIONS
SCAN R/D @ HA+1 (BIT 42:1=PAR ERR; BIT 43:1=NOT RDY)
COLD START or FAILin FM RD @ HA+4
SYNC 1/0 R/D @ HA+5
START 1/0 @ I0CB+5
ET1268

RESULT DESCRIPTOR LOCATIONS

'SCAN R/D @ HA+1 (BIT 42:1=PAR ERR; BIT 43:1=NOT RDY)
COLD START or FAIL in FM-RD @ HA+4

SYNC I/O R/D @ HA+5

START I/O @ 1I0CB+5

CARD READER

The B 7110 card reader control can be used with either B 9111 (800 cpm) or B 9112 (1400 cpm) card readers.
The input hopper and the output stacker have a capacity of 2400 cards each. The card readers accept alpha,
binary, or EBCDIC card codes. The card reader converts alpha card code to BCL, which is then converted
into internal BCL or EBCDIC by translators in the I/O processor. EBCDIC card code is converted to internal
EBCDIC by the B 7110 card reader control. When binary punched cards are read, no translation is made.

The card readers can read 51-, 60-, or 80-column punched cards. Optional features include the ability to
read 40-column treasury checks and round holes in postal money orders. Cards of varying thickness are ac-
ceptable; however, card thickness and length must be consistent during any one run.

The B 7110-5 card reader control can be used with B 9115 (300 cpm), B 9116 (600 cpm), or B 9117 (800 cpm)
card readers. The input hopper has a capacity of 1000 cards. This series of card readers do no internal code
manipulation; instead, all 12 rows are sent to the B 7110-5 control. The control then converts alpha code to
BCL; EBCDIC is converted to internal EBCDIC; and binary cards are read without translation.

Unlike the B 9111/12 units, the B 9115/16/17 card readers can only read rectangular holes. These card read-

ers may optionally be set up to read 51-column cards with the installation of a B 9915 kit. These series are
desk top card readers, but have a stand optionally available (B 9991-2) on which to set the card reader.

CDL Word Format

47 43' 39 35} a1 29l 23 ml’mf!:s!‘ it 3]
OoP : ‘
50| 48 42} 38| 34 30 26| 22| 18 6 2
0 | CODE |
a9| 45| 41} 37| 33 29 250 21 17 8l 1
s8] a4 40l 36 s2 zs’ 241 20l 16 4l o

41017

4-3-5

Field

IOCW Information

Operation

BCL to Int. BCL
BCL to ASCII
BCL to EBCDIC

or

20
21
22
99

I = ignored

Binary (60 bit to 6-bit)

EBCDIC to EBCDIC
EBCDIC to ASClI

VAR

I
I
L
1118

Result Descriptor - Unit Error Field

To MCP

0081
o101
0281
0381

0401

0881
0889

*3A Control Only

Operations
BCL (OP 20)

Read one card from the card reader. The operation is terminated by reading the specified number of words,
or by receiving 80 characters from the reader. The card reader or its control converts BCL card code to BCL
code. BCL code is converted to BCL internal control code, ASCII, or EBCDIC by translators in the IOM.

Binary (OP 21)

Read one card from the card reader. The operation is terminated by reading the specified number of words,
or by receiving 80 columns of information from the reader. The contents of each card column are divided into
two six-bit fields. The upper six bits are stored in memory followed by the lower six bits. There is no code
translation or invalid code detection. Tag field transfers are not compatible with this operator and must not

be specified.
4-3-6

From Device

D00
C80
D40
C80
D40
D10
F10

46

-0 O O = O

Operation

Read BCL
Read Binary
Read EBCDIC
Test

I0CW Bits CDL OP Code
44 42 41

1 1 0 20
1 1 0 20
1 1 1 20
1 0 0 21
1 0 1 22
1 0 1 22
Error Type

Memory-Access Error

Read Check

Validity Check

Read Check and Validity Check
Control Card (generated by IOM)
Bus Parity Error

Bus Parity Error in Initiate
Phase*

EBCDIC (OP 22)

Read one card from the card reader. The operation is terminated by reading the specified number of words,
or by receiving 80 characters from the reader. The card reader control converts EBCDIC card code to
EBCDIC. EBCDIC is stored as received, or is translated to ASCII by the IOM.

Test (OP 99)

Test the status of the unit and return a result descriptor.

CARD PUNCH

The B 7212 card punch control is used with the B 9213 ‘300 CPM Punch’’ which can punch either binary,
alpha, or EBCDIC code at a rate of 300 cards per minute. Pre-punched cards may be used, but previously
punched columns cannot be repunched. The card punch has a 1000-card capacity input hopper, and three out-
put stackers (primary, auxiliary, and error) which have a capacity of 1200 cards each. Stacker selection is ac-
complished programmatically.

CDL Word Format

47 43]?39 35(3y 27 23I 19‘ 16 14 71 8

oP I
50] 46, 42]C3 34 30 2§’r 22f 18| 141 10 8 2
CODE [K
49] 45| 41F 37 33 291 25{ 21} 17 13 il

° R | Ll o .
48] 44| 40f 3 321 28} 24] 20f 18 12 8 4f. 0

41014

[on
~

Field

opP VAR ADDR Operation

23 SII Punch BCL

24 SIII Punch
Binary

25 SIII Punch
EBCDIC

99 I Test

S = stacker; 0 = normal, 1 = auxiliary, I = ignored

IOCW Information

Operation IOCW Bits CDL OP
46 42 41 Code
BCL from Int. BCL 0 1 0 23
BCL from ASCII 1 1 0 23
BCL from EBCDIC 0 1 1 23
Binary (6-bit from 6-bit) 0 0 0 24
EBCDIC from EBCDIC 0 0 1 25
EBCDIC from ASCII 1 0 1 25

4.3.7

Result Descriptor - Unit Error Field

To MCP From Device Error Type

0081 D00 Punch Check or Memory Access
Error

0281 D40 Parity Error

0881 D10 Bus Parity Error

A test-op returns the punch type in bit 10 of the software RD: 1 = Model I & IV

Operations
BCL (OP 23)

Punch one card on the card punch. The operation is terminated by punching the specified number of words
or punching 80 columns. The descriptor word count cannot exceed 10 words for punch BCL. BCL internal
code, ASCII, or EBCDIC is converted to BCL code by translators in the IOM. The control can include one
and only one of the following translators which are used to convert BCL code to BCL card code, ICT card
code, or BULL card code:

1. BCL-BCL Card Code Translator.

2. BCL-ICT Card Code Translator.

3. BCL-BULL Card Code Translator.

Binary (OP 24)

Punch one card on the card punch. The operation is terminated by punching the specified number of words
or by punching 80 columns. The descriptor word count cannot exceed 20 words for punch binary. A total
of 160 six-bit characters of memory are required to punch 80 columns. The contents of each card column are
divided into two six-bit characters. The upper six bits are punched from the first six-bit character received
and the lower six bits from the next six-bit character. Tag field transfers are compatible with this operator
and must not be specified.

Card Punch EBCDIC (OP 25)

Punch one card on the card punch. The operation is terminated by punching the specified number of words
or by punching 80 columns. The descriptor word count cannot exceed 13 words for punch EBCDIC. ASCII
is translated to EBCDIC by translators in the IOM. The card punch control converts EBCDIC eight-bit code
to EBCDIC card code.

Test (OP 99)
Test the status of the unit and return a result descriptor.

Punch Check Error

When punch check is detected by card punch control, the punching of that card is completed and is sent
to the error stacker. The punch check bit in the result descriptor is set.

The punch check bit may be present in the result descriptor when addressing a non-present punch, or one
that is powered down. o

4.3.8

TRAIN PRINTERS

The B 9247 train printers are train-type printers which operate with a buffered /O control device. The char-
acter train module is operator changeable and can be exchanged with a module of a different character set.
In the following information there is a list of the character sets available as defined by software on the system.
Identification of the character set is performed automatically by the printer; no operator selection is required.

When the printer is in an idle status exceeding one minute, the character train module is automatically shut
down, extending the life of the module. Upon receipt of a print instruction the module is automatically re-
started.

To assure reliability of the printed output, a positive column dropout detection feature is provided. If a print
position fails to print, the printer stops and signals for operator inspection. An override function switch on
the operator control panel allows the operator to disable the feature.

The B 7243-1 train printer control is used only for the B 9247-13 (750 LPM) train printer; the B 7247-4 train
printer control is for the B 9247-14 (1100 LPM) train printer; and the B 7247-5 train printer control is interfaced
to a B 9247-15 (1500 LPM) train printer. The speeds listed are rated with a 48 character set and with the printer
operating at six lines per inch, single spacing. The B 9247 printers are all 132 print positions.

CDL Word Format

a1 43S39lYsd Sa1Car] 23 19’ 150 1 1 3
opP |P K [H
050 46/ 42|A38 Na | 30/ A26f 22 uj 14 100 6 2

o |COPEIC [T [P IN
49) 45| 41)E37] " 33 29/N25f 21} 17/ 13 9 5 1

T
048 44| 40 36T32028L24 20{ 1s] 12} 8 4/ o

41032

Field
oP VAR ADDR Operation
10 SUNN WRITE
11 SUNN SKIP
29 QQCC Load Train Image Buffer
99 iuii) Test

NN = Skip to channel (00-11); two decimal digits.
S = Space (, 1, 2); ignored if NN #0.
QQ = 1D of train buffer being loaded in low 6 bits; high 2 bits must be zero.
(See table 4.3.2 for list of train ID No’s.)
CC = 8 bit buffer image designated to be printed for any invalid character.
U = Unit Designate (0 or 1)

i = ignored
IOCW Information
IOCW Bits CDL
Operation 46 43 42 41 39 OP Code
PRINT A 0 A A 0 10
Space or Skip X 1 X X 0 11
Load TIB A 0 A A 1 29

A = Any IOM-allowed output translation; if 6 bit characters result, the IOM pads to 8 bits with leading zeroes. Train
printer operations always use all 8 bits.

4.3-9

Result Descriptor - Unit Error Field

To MCP From Device Error Type

0181 D80 Print Check Internal Control

0281 D40 Memory Parity Check

0481 D20 Print Check - Synchronization

0881 D10 Bus Parity Error during Data Transfer
0889 F10 Bus Parity Error in Initiate Phase
1001 Cco8 End-of-Page

4001 C02 Train Image Buffer not lcaded.

8001 Cco1 Incorrect 1Tain on Printer

A Test OP returns the following information in the RD to the MCP:

bit 8 on =Train Image Buffer Not Loaded.
Bit 9 on = 1000 LPM adapter installed.
bits 10-15 = Train ID (15 is LSB)

Operation

Print (OP 10)

Print one line on the printer. The length of the line is determined by the number of printer columns (132)
or by printing the specified number of words. Spacing or skipping takes place after the printing.

Space (OP 11)

Space. as specified by CDL word bits 37:2 (bits 31:8 must equal zero), moves paper either 00 (zero), 01
(one). or 10 (two) lines per operation without any printing occurring.

Skip (OP 11)

Skip. as specified by CDL word bits 31:8. slews paper to channel 01 to 12 on the format tape (channel 12
is reserved for end-of-page. but may be skipped to) without any printing occurring.

Load Train Image Buffer (OP 29)

This command is used to load the train image buffer (TIB) with the character set that must be on the train
module. If they are not alike. an error occurs and the printer is declared not ready. In addition to loading
the TIB. this command also loads bits 39:8 (QQ) of the CDL word into the train identification register, and
bits 31:8 of the CDL word into the invalid character code register which is the character used whenever an
invalid character is encountered in the print field data.

Test (OP 99)

This /O command instructs the control to interrogate the printer and control status and return the following
information: '

1. Readiness status of both control and printer.

2. Type of printer connected (400/750 LPM or 1000/1500 LPM).

3. Load status of the train image buffer.

4. Identification of train module mounted on the printer.

4-3-10

ID NO

O 00 N A U & W =—= O

W W W W W W WWRNNNEENDNDNNDNDWN = e e e e e e =
L NN D WO WOV BE W= O NV AW~ O

Table 4-3-2. Train ID Numbers

Train Table Names

NOT SPECIFIED
EBCDIC18
FORTRAN48
B300B500
EBCDIC48
EBCDIC72

UK3500

UK6500
LATINPORTUGAL
LATINSPAIN3
SWEDENFINLAND3
DENMARK

BCL64

TURKEY

EBCDIC16
ANSCII72
EBCDIC96
KATAKANA
ALPHAEBCDIC
NUMERICEBCDIC
RPG48
OCRANUMERIC
OCRBNUMERIC
FRANCEBELGIUM
UK
GERMANYAUSTRIA
ITALY
SWEDENFINLAND2
LATINSPAIN2
ANSCII64A

BRAZIL
DENMARKNORWAY
YUGOSLAVIA
EBCDIC64A
ANSCII96A
EBCDIC64B
ANSCII64B
ANSCII96B

43.11

MAGNETIC TAPE SUBSYSTEM

The B 9495 magnetic tape subsystem consists of a Master Electronics Control Unit (MEC) and from one
to sixteen tape drive units. The MEC consists of a main cabinet and, if required, an auxiliary cabinet. The
MEC contains from one to four input/output channels and from one to eight exchanges (each exchange capable
of operating two magnetic tape drive units). The subsystem is capable of operating in the NRZ or phase en-
coded mode of recording or a combination of both depending upon the options installed in the MEC and tape
units.

The tape units feature automatic loading of tape when using a 10.5 inch reel of tape with or without a car-
tridge band. Semi-automatic loading is provided by the tape unit when using incomplete reels or smaller reels
of tape. Semi-automatic loading requires the operator to set a switch in the tape unit and place the leading
edge of tape in an area beyond the first air threading guide prior to pressing the load button.

The subsystem can be from one to four controls, and from one to sixteen tape units, depending upon cus-
tomer requirements. Four controls give the system the ability to do tape operations on four drives at the same
time. The recording mode is phase encoded (PE) or a combination of PE and NRZ. The NRZ capabilities
are options installed in the MEC and tape units as required by the customer.

CDL Word Format

47 43[F39U35 31 271 23 19{ 15, 11 1 3
0 I

05, 406 P 42|R38{N34 Msoscz:e

0, |CODE M. 1,

49] “45{ a1fp37] '3 29| 25| 21 17 13 o 5| 1

043 44 4 Tae Tsz] 28] 24 20 16 12 al

41035

22{ 18] 14| 10, 6} 2

opP VAR ADDR Operation

01 iUVi Rewind

02 DUVC Read Forward
03 DUVC Read Backward
04 DUVi Erase

06 DUVi Write

08 DUNN Space Forward
09 DUNN Space Backward
99 iVii Test

i = Ignored

U = Unit Designate (LSD)

NN = No. of Records (2 decimal digits; 00 spaces 100 records)

C = CRC Correction, if bit 27 is on (9 track NRZ only); track in error is in [26:3].

V4 = (Read/Write) = Special BCL translation in PC if bit 30 is on (7 track EVEN parity only).
V2, V1 (Read) = Maintenance variants if [29:2] # 0 (ignored for PE tape).

V2 (Write) = Write tapemark if bit 29 is on.

V8 (Read) = Do not store information if bit 31 is on.

V1 (Rewind) = Unload tape if bit 28 is on (6A control only).

V8 (Erase) = Backward pseudo-erase if bit 31 is on.

D= Density and Parity

density - 800 556% 200 1600* * @ = 7 track only
parity JEVEN@ 0 2 4 6 8 * = 9 track PE only
ODD 1 3 5 7 9 # = Unit selected density

4.3-12

IOCW Information

Operation

(Read Binary (6-bit to 6-bit)
Read BCL into Int. BCL
Read BCL into EBCDIC
Read BCL into ASCII
Ttrack € Write Binary (6-bit to 6-bit)
Write BCL from Int. BCL
Write BCL from EBCDIC
Write BCL from ASCII

. Erase

IOCW Information

Operation

Read Binary (8-bit to 8-bit)
Read EBCDIC into ASCII
Read ASCII into EBCDIC

9 track Write Binary (8-bit to 8-bit)
Write EBCDIC from ASCII
Write ASCII from EBCDIC
Erase

Rewind
Both Space
Write tapemark

X = not used

Result Descriptor - Unit Error Field

To MCP From Device
0000 . 800
C20
0801
0401
0081 D00
o101 C80
0109 E80
0201 C40
0481 D20
0481 D20
0489 F20
0881 D10
0889 F10
0C01 -
0C81 D30

IOCW Bits
46 44 43 42 41 39
0 1 0 0 0 0/1
0 1 0 1 0 0/1
0 1 0 1 1 0/1
1 1 0 1 0 0/1
0 0 0 0 0 b3
0 0 0 1 0 X
0 0 0 1 1 X
1 0 0 1 0 X
X 0 1 X 0 0
IOCW Bits

46 44 43 42 41 39

0 1 0 0 1 0/1
1 1 0 0 1 0/1
1 1 0 1 1 0/1
0 0 0 0 1 X
1 0 0 0 1 X
1 0 0 1 1 X
X 0 1 X 1 0

>

-
-
»
»
-

0/1

Error Type

CDL
Op Code

02/03
02/03
02/03
02/03
06
06
06
06
04

CDL
OP Code

02/03
02/03
02/03
06
06
06

01
08/09
06

Normal Termination by PC on Non-Read Operation

Normal Termination by PC on Read Operation

Short Block
Memory-Access Error
Beginning-of-Tape or End-of-Tape
Not Ready During Operation*
Write Lockout or End-of-File

Long Block may be subsequently generated by 10M from final
L1A address comparison with buffer length

Peripheral Interface Parity During Data Transfer*

Read Memory Access Error**
Peripheral Interface Parity in Initiate Phase™

Bus Parity Error (System Interface Parity during Data Transfer*)

System Interface Parity in Initiate Phase*
Tape Positioning uncertain during Retry***
Parity Error

4-3-13

To MCP From Device Error Type

0D81 D80 Parity Error and End-of-Tape

0E81 D70 Parity Error and End-of-File

2001 C04 Non-Present Option (Incorrect Density)

4009 E02 Not Ready, Rewinding

8001 Cco1 Blank Tape Timeout

8101 C81 Blank Tape Timeout and Beginning-of-Tape

Y001 (Y odd) COZ (Z=28) CRC Correction Requested (9 track NRZ only); track in error is

in Z4, Z2 and Z1 (LSB); in Y2, Y4 and Y8 (LSB)

* Model 6A Control only
** Model SA Control only

*k% MCamaratnd b CAféivrnea
LInTrawls Oy STiuwarT

A test op returns the unit density in [11:2] of the RD to the MCP as follows:
0 =800 BPI, 1 = 556 BPI, 2 = 200 BPI, 3 = 1600 BPI.

Operations
Rewind (OP 01)

Rewind the designated tape unit. The control is released and a result descriptor returned after rewind is
initiated.

Read OP 02 (Forward) or OP 03 (Reverse)
Read a record from the designated tape unit. The operation is terminated by detection of an interrecord gap.

Information transfer is terminated after reading the specified number of words or by sensing an internal DSU
error.

Erase (OP 04)

Erase in the forward direction on the designated tape unit. The operation is terminated by erasing the num-
ber of words specified. No memory cycles are used.

Write (OP 06)

Write a record on the designated tape unit. The operation is terminated by writing the specified number
of words or a delimiter in the data stream.

Write Tape Mark (OP 06)
Write a tapg mark record on the unit designated, when V = 2.
Space OP 08 (Forward): OP 09 (Reverse)

Space 1 to 100 records as specified by the BCD value of NN of the CDL word. If bits NN are all 0’s,
space 100 records.

Test (OP 99)
Test the status of the designated unit and return a result descriptor.
BCL Alpha Operation (7-Track Tape with Even Parity)

When the six-bit frame size and even parity are selected. BCL internal code is converted to BCL code on
write. and BCL code is converted to BCL internal code on read. The BCL *'?"’ code is written (001111).

4.3-14

Exception Conditions

End-of-tape does not terminate an operation. The end-of-tape bit is set in the result descriptor after the oper-
ation is completed.

On read operations, when a vertical parity error is detected and the six-bit frame size is selected, a BCL
*“?” code is stored by the control in memory in place of the code in error.

CRC Correction (9-Track, 800 BPI Only)

CDL bits V enables CRC correction. The three LSB’s define the track to be corrected (0-7). The parity
track cannot be corrected.

DISK PACK DRIVE SUBSYSTEM

The disk pack drive subsystems are high speed, modular, random information storage systems. A basic disk
pack drive subsystem includes the disk pack drive controller, dual disk pack drive, and the interconnecting
cables. The subsystem is interfaced to the system via a host transfer control.

The controller acts upon I/O instructions from the IOM, powers the pack drives, and transfers information
between the drives and the IOM. The controller performs the operation specified by the OP code (and variants)
of the CDL word, and, at the completion of the operation, generates a result descriptor which contains
operation and/or error status information.

The disk pack drive controller without an exchange allows one controller to be used with up to eight disk
pack spindles (four dual drives) in a ‘‘one-by’’ configuration. The disk pack drive controller with an exchange
configuration allows two controllers access to up to 16 disk pack spindles (eight dual drives) in a ‘‘two-by”’
configuration. This allows the /O module to execute two simultaneous operations (two reads, two writes, or
a read and a write). The above configurations are applicable to the B 7385 pack controller and to the B 7387
disk pack controller/exchange.

In addition, the B 7385 and the B 7387 pack controllers allow an option of dual access to the same controller
for redundancy purposes in a ‘‘continuous processing’’ environment.

CDL Word General Format

47] 43| 39] 3S5] 31) 27] 23] 9] 15 il 7 3

OfP [N [S4 |F4|V4 DISK PACK
50] a6} 42] 38] 34] 30] 26] 22{ 18] 14] 10 6 2

CODE || |S2 |F2]|Vv2 ADDRESS
49] 45| 41] 37] 33] 29] 25 211 17 13 9 5 |
T |SI |FI }VI
48] 44| ao] 36] 32] 28] 24] 20/ 6] 12/ 8 4{ o
ETI1253

Op Var Addr Operation
50 USFV ccceee Write
51 USFV cceece Read
56 USFV cceeee Initialize
57 USFV cccece Verify
58 USFV ccceee Relocate
99 USFV N/N Test

4.3-15

Some variables are common to all commands. Their functions are as follows:

U8 - Ul. The hexadecimal value of the unit desired.

S1. A ONE state indicates an unconditional operation; that is, for any operation, the controller will do what-
ever head positioning is required to locate the sector desired, and then perform the operation requested, during
which time the I/O channel waits. For a ZERO state, a conditional operation is indicated; that is, the contrpller
checks the unit and, if the unit is presently seeking, sends back a unit seeking R/D. If a seek is required,
the controller issues a seek to the selected drive and returns a seek initiated R/D. If a seek is not required,
the command is done and, when completed, returns an appropriate R/D.

F1. A ONE state is used to access a drive which had been previously placed in maintenance mode. Note
that this variable applies only to the 206/207 drives interfaced with a B 9387/Bx 387 controller.

CDL Word Format, Write (OP 50)

Variables that apply to this command:

S8. In a ZERO state, indicates a normal write; in a ONE state, indicates a controller controlware load.
Write

Data sent from the host system is written onto the disk pack starting at the designated ‘‘C’’-Address. Partial-

sector writes result in a fill of nulls (null is equivalent to hex 00) in the remainder of the sector. Upon detection
of any error, the operation is immediately terminated and the appropriate R/D is returned to the host system.

Load Host

The load host operation is used to load operational and diagnostic controlware from the host system into
the disk pack drive controller.

CDL Word Format, Read (OP 51)

Variables that apply to this command are as follows:

No variable. Read with retry and error correction enable.

S8. Read with retry and error correction disabled.

S4. Rea& absolute (refer to V4, V2, V1),

S2. Read unit ID.

F4. Subsystem poll (online only).

V8. Read memory.

V4 -V1. With S4 set, V4 -V1 is the ‘‘C-Address’’ increment.
Read

Information is sent to the host system from the selected ‘‘C’’-Address. A partial sector read results in the

termination of data transfer, but controller release waits for completion of the total sector read. Error checking
is performed on the total sector.

Upon detection of any read data error not related to erroneous data received from the disk pack, the
operation is immediately terminated and the appropriate R/D is returned to the host system.

4-3-16

If erroneous data is detected from the disk pack and retry/correction is enabled, the controller invokes the
appropriate retry procedure using track offset and PLO early/late, where applicable. If the error persists after
retry, the controller: 1) corrects the data (if possible) using the sector data read from disk having the smallest
magnitude data error; 2) logs the event; and 3) continues the read operation. If a data error is corrected by
retry, then a data error retry R/D is returned to the host, if no other errors occurred. If controlware correction
is attempted on a data error, the data error correction R/D is returned to the host, if correction is successful.
If correction is unsuccessful, the data error R/D is returned to the host when an HTC1A interface is in use,
gmd the data error correction R/D (without successful recovery bit) is returned to the host when an HT-LCP
interface is in use. If retry/correction is disabled, the data error R/D is returned to the host.

In the event of multiple data errors per read operation, the data error R/D takes precedence over the data
error correction R/D, which takes place over data error retry R/D.

Error log fiata accumulated for one read operation is destroyed by the next operation.. The log information
may be retrieved through the read memory command.

Read Absolute

The address field (two words), data field (50 or 90 words), and the error protection code syndrome (two

words) of the specified sector are returned to the host. The sector is located by its actual expected position
relative to the index mark.

Read Unit ID

A three-word (16-bit word) data field which indicates the controlware loaded and the type of drive selected,
is returned to the host followed by an appropriate result descriptor indicating the condition of the selected
unit.

The format for the three words returned is as follows:

1. Digits 0, 1, 2, and 3 are used to indicate the controlware release code.

2. Digits 4 and 5 are reserved.

3. Digits 6 and 7 are used to indicate the unit ID. The following is a list of applicable values for large sys-
tems applications:

a. 30 = 225 Disk Pack Drive.

b. 40 = 235 Disk Pack Drive.

c. 68 = 206 (Sequential) Disk Pack Drive.

d. 78 = 206 (Interlaced) Disk Pack Drive.
. A8 = 207 (Sequential) Disk Pack Drive.

e
f. B8 = 207 (Interlaced) Disk Pack Drive.
4. Digits 8 through 11 are reserved.

Subsystem Poll

When this C/D is received the least four digits of the ‘‘C’’-Address represent a 16-bit field designating what
units are to be polled. Each bit set in this field represents a different unit, the most significant bit being unit
15 and the least significant bit being unit 0.

All units represented in the 16-bit field are checked to see if there are any in seek-ready or in an error state.
If all the designated units ‘are busy or on-line and seeking, they are all checked again. This process continues
until at least one of the designated units becomes seek-ready or goes into an error state. As soon as this hap-
pens, 48 bits of data are returned to the host; the first 16 represent the designated units that are seek-ready
or are in an error state. The most significant bit of data represents unit 15 and the least significant bit (of
the first 16) represents unit 0. After the data is returned to the host, the operation is terminated with an
operation complete R/D.

NOTE
A conditional cancel from the host is accepted by the controller until it is ready
to send back the results of the checking.

4.3.17

Read Memory

The read memory command transfers the contents of the controller’s buffer memory to the host system.
The 256 word buffer memory is divided into two logical areas: control memory (first 76 words) and data
memory (next 180 words). The controlware listing for each set of controlware details the contents of all 256
locations. Execution of this command releases the controller from the controller lock state.

The significance of the first 23 words made available by the command are as follows:

Bit Word Location Description
0 C/W Release Code

Result descriptor tag from last operation
2 Micro-program memory address if DPDC

installation timeout or buffer memory parity
error (Bx 383/384/385). Processor, or

DMC channel, buffer memory address

for buffer memory parity error (B9387).

3 Disk DDP Status

4 ‘Reserved for disk DDP diagnostic information

5 Reserved for disk DDP diagnostic information

6 Disk drive status

7 Reserved for extended drive status

8 Host DDP status

9 Reserved

10 Reserved

11 Disk address 0 0 01 02

12 Disk address C3 C4 C5 C6

13 Number of retries on above address

14 Total number of retries on last command
description

15 Op code (HTC1A)

16 US variants (HTC1A)

17 FV variants (HTC1A)

18 Command descriptor 0 0 C1 C2

19 Command descriptor C3 C4 C5 C6

20 Result descriptor (word 1)

21
19

CDL Word Format, Initialize (OP 56)

Variables that apply to this command are as follows:

V4. In a ZERO state. causes a full initialize: in a ONE state, causes a data only initialize.
Initialize

The controller writes sector addresses and gaps in all tracks of the cylinder specified by the "*C'’-Address.
The controller also writes a predefined data pattern in the data field of each sector. The **C"’-Address must

point to the first sector of a cylinder.

4-3-18

Initialize Data Only

The controller receives a one word pattern from the host and writes it to the data field of each addressable

sector on the cylinder specified by the ‘‘C’’-Address. The ‘‘C’’-Address must point to the first sector of a
cylinder. ‘

CDL Word Format, Verify (OP 57)

Variables that apply to this command are as follows:
V8. In a ZERO state, enables EPC checking only; in a ONE state, enables data checking also.
Verify

The controller reads and checks for address errors and data field error protection code errors in all address-
able sectors on the designated cylinder. If the data compare variant bit is set (V8), the data field is also com-
pared against a predetermined pattern. The position of each sector is checked relative to the index mark. Dur-
ing verification, a relocated sector is verified in the same apparent manner as any other sector. The *‘C’’-
Address must point to the first sector of a cylinder.

The *‘C’’-Address of a sector in error is returned as the first two words of a three word data transfer when
an HTC1A interface is in use.

CDL Word Format, Relocate (OP 58)

No variable, other than the common variables covered previously.
Relocate

The controller flags the address area of the sector specified in the ‘‘C’’-Address with an error configuration,
selects an unused spare and writes the original sector’s address into the address area, and fills the spare sec-
tor’s data field with a predefined pattern.

CDL Word Format, Test Commands (OP 99)

The following variables are shown as applicable:

S4. In a ONE state, this variable generates a controller lock disable (online only).
S2. In a ONE state, this variable generates a controller lock enable.

S1. Set to a 1, causes a non-busy drive to be powered off.

V8. Provides a POWER UP signal to a powered-down drive, when set to 1 (available on the B 9387/Bx 387
-206/207 drives only). ’

V2. Take selected drive out of maintenance mode if this bit is set (available on the B 9387/Bx 387 -206/207
drives only).

V1. Place the selected unit in maintenance mode (available on the B 9387/Bx 387 -206/207 drives only).
No variables. Normal test operation to be performed.

Controller Lock Disable
The controller lock disable option places the DPDC into an unlockable state such that a lockable R/D causes

the controller not to lock. For dual host configuration, each host can disable controller lock independent of
the other host.

4-3-19

Controller Lock Enable

The controller lock enable option places the DPDC into a lockable state such that a lockable R/D causes
the controller to lock, thereby preventing the loss of pertinent error information stored in its memory. For
dual host configuration, each host can enable controller lock independent of the other host. When in the locked
state, the disk pack drive controller returns a controller locked R/D to the locking host for all commands re-
quiring a drive access until:

1. A read memory command is received from the locking host.
2. A controller lock disable command is received from the locking host.
3. A predetermined time interval has expired (no greater than two seconds).

Power Unit Down

Upon selecting a non-busy spindle, a power down command is issued to the spindle and an operation com-
plete R/D is immediately sent to the host.

Power Unit Up

Upon selecting a powered down spindle, a power up command is issued to the spindle and an operation
complete R/D is immediately sent to the host.

Place Unit Into Maintenance Mode

The controller attempts to place the designated spindle into maintenance mode. Once in maintenance mode,
the spindle can only be accessed by descriptors with the variable F1 set to a ONE state.

Release Unit From Maintenance Mode
The controller attempts to take the designated spindle out of maintenance mode.
Test Operation

The controller checks the status of the designated spindle, and returns an appropriate result descriptor indi-
cating the condition of the unit.

File Addressing

The **C’’-Address designates a particular track and sector on a disk pack and is the starting point for all
operations having that file address. Addresses are numbered sequentially, starting with sector 0 (first sector
on a track), on surface 0 (head 0), track 0 (cylinder 0), and continuing through all sectors, heads, and cylinders
(including the maintenance cylinder) respectively.

Result Descriptors

Result information is generated by the controller and the host transfer control in the form of a result descrip-
tor (R/D). One R/D is returned to the host per I/O initiate. Conditions reported in the result descriptor are

listed in table 4-3-3 and are described in the following paragraphs, along with corresponding action taken by
the controller.

Operation Complete

When the specified operation has been successfully performed with no exceptions, this R/D is returned to
the host. .

Seek Error

!f, during a read, write, verify, or relocate operation, a seek has been initiated (which results in the heads
being positioned over the wrong cylinder or the proper head is not selected by the drive, both as verified by
the controller reading the address field from a track on the cylinder in question), the operation is terminated.

4-3-20

Table 4-3-3. Controller and Host Transfer Result Descriptor Information

MCP Device Description Lock Controller
0000 8000 Op Complete, No Exception No
0801 C100 Seek Error Yes
8801 C110 Seek Timeout Yes
C801 C130 Data Error Retry Yes
0401 C200 Unit Busy No
0Co01 C300 Data Error Correction Yes
0201 C400 Unit Seeking No
0A01 C500 Seek Initiated No
0101 C800 Address EPC Error Yes
4101 C820 Address Position Error Yes
0901 C900 Address Timeout Yes
0501 CA00 Write Lockout No
0301 CC00 First Action With Unit No
0081 D000 Memory Access Error Yes
8881 D110 Host Parity Error Yes
0481 D200 Speed Error Yes
0981 D900 Link Parity Error ** N/A
0581 DAOO Data Error Yes
0009 E000 Not Ready Yes
0809 E100 HTC Timeout ** N/A
0109 E800 Controller In Local ** N/A
0509 EA00 Controller Locked No *
0889 F100 Controller Failure Yes

* Controller Already Locked
** Generated by the HTC

Seek Time-Out

If a disk pack drive fails to complete an initiated seek within one second, it goes into a seek time-out state.
The controller, upon detecting a disk pack drive which is accessed in this state, or upon recognizing that a
similar time period has elapsed for an initiated seek, terminates the operation.

Data Error Retry

If, during a read operation all data errors were successfully corrected by retry, the appropriate bits are set
(1) in the result descriptor upon the completion of the operation.

Unit Busy

At the initiation of any operation, if the unit accessed is being used by another controller, and does not
become available within a preselected period (one second nominal), the operation is terminated.

Data Error Correction

If, during a read operation with no uncorrectable data errors, a data error was detected and corrected by
the controlware after the specified number of retries had been unsuccessful, the designated bits are set (1).

Unit Seeking

At the initiation of any operation without the unconditional variant set (1), if the drive is found to be seeking,
the operation is terminated.

4-3-21

Seek Initiated

At the initiation of any operation without the unconditional variant set (1), if the drive is caused to begin
seeking, the operation is terminated.

Address EPC Error

If a sector address after the initial sector of an operation is found to have its error protection code (EPC)
in error and the sector is not found in the spares, the operation is terminated.

Address Position Error

If a sector address after the initial sector of an operation is not in sequence and is not found in the spares,
the operation is terminated.

Address Time-Out

If there is a failure to find a specified sector address (first sector of operation) or to find a spare sector
into which that address has been relocated, the operation is terminated.

Write Lockout

At the beginning of a write, initialize, or relocate operation, if it is detected that the unit to be accessed
is in a write lockout state, the operation is not initiated. For a read unit ID or test operation, if the unit is
detected to be in a write lockout state and no other exceptions are detected, then this R/D is returned to the
host at the end of the operation.

First Action with Unit

At the initiation of any operation, if the controller detects that this is the first action to be performed with
the designated unit since it was last powered up, the operation is terminated. The determination of the first
action status is performed by hardware as a large system option for the subsystem.

Memory Access Error

If a memory access is requested by the DPDC but not used (memory request error), or if a memory request
is not honored by the host in time, the operation is terminated at the end of the sector being processed.

Host Parity Error

During any operation, if a parity error occurs (as determined in host DDP status) between the host system
and the disk pack drive controller, the operation is terminated. All operations are terminated immediately if
the error occurs in the transmission of the command descriptor information. All operations are terminated at
the end of the sector being read from or written to disk if the error occurred in the transmission of data.

Speed Error

During an initialize operation, if a failure to write a full track of information between index pulses is detect-
ed. the operation is terminated.

Link Parity Error
Parity error on HTC to remote device interface.
Data Error
During a read operation, if an uncorrectable disk pack data error is detected, the operation is terminated

at the end of the word count.

4.3.02

If an error protection code error or data non-compare error is detected during a verify operation, the
operation is terminated at the end of the sector being processed at the time of error detection.

Not Ready

The controller will terminate the operation in progress under any one of the following conditions:
. A disk pack drive is not ready, or reports abnormal status.

. The maximum file address of the drive is exceeded.

. A non-existent unit is addressed.

. An undigit is found in the ‘“C’’-Address.

. An invalid command descriptor is received.

. No unused spares were available for a relocate command.

HTC Time-Out

AN L WN—

Indicates no host activity with the HTC for a predetermined time. The operation is terminated.
Local

Indicates that the remote device is off-line.

Controller Locked

This indicates that the controller is locked, and the command descriptor (C/D) is not:
1. Read Memory.
2. Controller Lock Disable.

Controller Failure
During any operation, if a disk pack controller detects any one of several serious errors (various internal
parity or timeout conditions), the operation in progress is terminated. If the controller was writing to the disk

at the time the error occurred, it could destroy the information on the track.

Result Descriptor (R/D) Tags

In order to facilitate maintenance and increase the ease of debugging the controller, a method of generating
result information (similar to what the R/D is to the host system) is incorporated in the controlware. Associated
with each unique place in the controlware that an R/D may be generated is a label called an R/D TAG. Since
there may be several places in the controlware which generate the same R/D, the R/D TAG provides a high
degree of visibility as to the exact state of the controller when the R/D was generated. Therefore, the R/D
TAG number is stored in buffer memory where it can be obtained by the host system. Each R/D TAG is of
the form: R/D TA- -XXX, where XXX is: 000 -999.

R/D TAGS as displayed.

0XXX - lockable R/D TAG.

I1XXX - unlockable R/D TAG.

2XXX - MPM address for instruction time-out.

4XXX - MPM address for buffer memory parity error.

_ Any given R/D TAG may appear in more than one set of controlware, but always maintains its unique mean-
ing.

4-3-23

DISK FILE SUBSYSTEM (TYPE 5N)

The 5N disk file peripheral subsystem (referred to as the 5N disk file or the 5N subsystem) is a major periph-
eral unit designed to operate with all computer systems that require very fast information access and transfer.
The 5N subsystem uses a head-per-track unit that has been designed for complete field maintainability, includ-
- ing replacement of heads, disk, and spindle assemblies under normal field conditions. The minimum subsystem
configuration is one cabinet containing one disk electronics (DE) module and one disk storage (DS) module.
A maximum subsystem configuration is four cabinets containing one disk electronics (DE) and four disk stor- -
age (DS) modules.

The dual needs of multiple storage capacities and expandability are provided by the modular cabinet design.
Two types of cabinets are used. A primary cabinet contains a power supply and a disk storage module (DS),
and is wide enough to accommodate a disk electronics (DE) module. An add-on cabinet contains only a DS
and must be configured with a primary cabinet. A primary cabinet with a DE installed constitutes a minimum
subsystem. A maximum subsystem has two primaries, each with a power supply, one with the DE, and two
add-ons. Only one add-on unit can be supported by a primary.

The DS contains a 14 inch disk which rotates at 6,000 rpm, providing an average access time of five millisec-
onds and a maximum transfer rate of 1.25 megabytes. The data is organized into fixed format segments of
100 or 180 byte lengths, giving the disk a storage capacity of approximately six million bytes. The primary
function of the DS is to write and read the information passed to and from the DE. Two segment interlace
options are provided which affect the average transfer rate. A 1 by 2 interlace option gives a 656 kB average
transfer rate; an alternate 1 by 4 interlace option gives a 328 kB transfer rate.

The DE is the interface controller linking the DS(s) to the I/O portion of the host system. The DE contains
the control logic and necessary buffering to provide precise synchronous command, status, and data manage-
ment between the selected DS and the 1/0 of the host system. Two ports are available in the DE for system
interconnection. This allows the failsoft mode of operation, if desired. The DE receives information from the
host system command which includes segment address, and then initiates a search for the selected segment.
After address coincidence, the DE then controls the active data transfer and terminates the operation upon
command. Odd parity is assigned and checked on all status, data, and address transmissions within the disk
file subsystem. Result status is available in the DE following every operation completed. Data and control sig-
nals are managed internally by the DE and DS in a bit serial mode.

-Segment Organization

A DS contains one 14.5 inch diameter disk. The read/write head assemblies, called head modules, are posi-
tioned along the radius of the disk surface, eight on each side. Each head module has 32 active tracks (actual
individual heads) and three possible (one guaranteed) spares. The eight head modules with 32 tracks give a
total of 256 active addressable data tracks for each side of the disk. Activating a spare track to replace an
active track which has failed can be accomplished in approximately 10 minutes without opening the enclosure.

The data tracks are formatted into fixed segment lengths of either 100 or 180 bytes. Each segment contains
100 or 180 bytes of data plus four bytes of error checking and correction (ECC) code. Segment format is a
function of the DE and is established by a local operation called an initialize. Initialize causes a write operation
to be performed on the selected DS in which the segment addresses are written in the data tracks.

Interlace Options

A segment interlace feature is used on the 5N subsystem to minimize the possible band-pass saturation of
the host system caused by the very high transfer rate of the data. Two interleave ratios are available: a 1-
to-2 segment interleaving or a 1-to-4 segment interleaving, which means that the consecutively addressed seg-
ments are located every second or every fourth segment position along a data track. Selection of the interleave
ratio permits adjustment of the total system I/O channel through-put loading. The bit rate between the DE
and /O control during data segment transfers is at the full DS disk rate of 10 megabits per second; however,
during multi-segment transfers the average transfer rate is reduced by the segment interlacing.

4-3-24

Selection of the active interlace option is a function of the DE. It is controlled by a PROM chip in a manner
similar to the segment option. A local initialize function writes the segment addresses to conform to the inter-

lace parameter installed in the DE.

CDL Word Format

47

U
43 39

o
(‘]

50| 46

42| 38

co
49| 4s

DE |i
41| 37

G

48| 44

OO TOIXM

40| 36

R4S mQ

ETI270

oP

50
51
52
99

U = Unit Designate (LSD)
F : (35:2) = MSB of position on exchange
(33:2) = reserved for disk address extension

VAR

UFVM
UFVM
UFVM
UFii

ADDR

AAAAAA
AAAAAA
AAAAAA

V8 : 1 = Read extender status

V4: 1 = Enable extra revolution result descriptor

V1 : 1= Maintenance segment

A = Disk segment address (6 BCD digits)

i=Ignored

IOCW Information

Operation

WRITE
READ
CHECK

Subsystem Commands

46

IOCW Bits

44

43

41

Operation

Write
Read
Check
Test

CDL
OP Code

50
51
52

The basic command set executed by the SN subsystem is described below. The commands are READ NOR-
MAL, READ MAINTENANCE, READ STATUS, WRITE, WRITE MAINTENANCE, TERMINATE, SEG-
MENT REPEAT, SEGMENT WAIT, and TEST. Channel parity is also received and checked by the DE with
every command byte. If a parity error is detected, the command is not executed, and a result status byte is

returned to the I/O.

4-3-25

Two commands are executed by the DE which can be used only when the DE is in local. They are the
INITIALIZE and the VERIFY commands. The OP byte is loaded with the DE maintenance panel switches,
and the operation takes place under the control of the DE local logic.

Read Normal

The READ NORMAL command is received over the CSO line as a one byte operation code followed by
three bytes of file address. The DE decodes the file address bytes for disk, track, and segment corresponding
to the address received. The DE then initiates a search for the addressed segment. Upon segment coincidence
the segment data is transmitted from the DE to the I/O over the DI line at the disk bit rate. The data transfer
operation continues through consecutive segments in a track and through consecutive tracks and disks until
the operation is terminated by the I/O. A time delay of up to one disk revolution can occur when the operation
continues from disk to disk.

During READ NORMAL, if any errors or warning conditions are detected in the subsystem, the result status
is transmitted over the CSI line by the DE. However, the read operation continues until terminated by the
1/0.

Read Maintenance

The READ MAINTENANCE command is identical to the READ NORMAL command except that only the
maintenance segment of each track is read.

Read Status

The READ STATUS command is received from the I/O over the CSO line as a one byte operation code
followed by three address bytes. The command causes the DE to transfer 64 bits of extended status message
over the DI line. The operation is terminated by the DE upon completion of the message transfer.

Write Normal

The WRITE command is received over the CSO line as a one byte operation code followed by three bytes
of file address. The DE decodes the file address bytes, selects the disk and track, and searches for the segment
corresponding to the file address received. Upon segment coincidence, the segment data is transferred to the
DE over the DO line at the disk bit rate until the operation is terminated by the I/O. The data rate is regulated
in the I/O by the DE clock it receives on the DI line. The writing operation continues through consecutive
segments in a track, through consecutive tracks, and then consecutively from disk to disk. A time delay of
up to one disk revolution can occur when a write operation crosses over from disk to disk. The write operation
is terminated when the /O issues a TERMINATE command over the CSO line. Should the I/O prematurely
terminate the operation, the DE completes recording the current segment. The DE stops the transmission of
clock pulses over the DI line between segments. When the last addressable segment is written, the DE inde-
pendently terminates the operation.

Write Maintenance

The WRITE MAINTENANCE command is identical to the WRITE command in format and operation ex-
cept that only the maintenance segments are written.

Test Command

A TEST command is received over the CSO line as a one byte operation code followed by three bytes of
file address. The DE decodes the command to select the disk and responds with result status on the CSI line.
The TEST command permits the I/O to check the status of the selected disk.
Initialize

The INITIALIZE command is executed by the DE in local as a maintenance operation. It is a one byte
command loaded into the command control via the DE maintenance panel switches. This command is a write

4.3-26

function which writes the addresses in the tracks of the DS units associated with that DE. The command must
be used following installation or when the segment or interlace option is changed.

Verify

The VERIFY command is executed by the DE in local as a maintenance operation. It is a one byte com-
mand loaded into the command control via the DE maintenance panel switches. This command is a read func-
tion which reads the addresses written in the tracks of the DS, checking the sequence and validity of the ad-
dresses. Use of this command is a good local test of the read function.

Result Descriptors

To MCP From Device Error Type
0009 E00 Not Ready
0101 C80 DE Busy (Timeout)
0109 E80 Warning
0181 D80 Address Error from DE
0201 C40 Write Lockout
0281 D40 Command Parity Error
(System to DFC)
0481 D20 Transmission Error between
DFC and DE
0801 C10 Extra Revolution
4081 D02 Controller (Data Buffer) Parity Error
8081 D01 Data Parity Error (System to DFC) on Write

Data Error Correction Not Done on Read

A test operation returns a different type of 2 in [11:2] of the RD to software.

Extended Status Message (ESM)

The normal result status returned to the system indicates only a few specific errors and general classes of
errors. This generality is desirable for normal operational software; however, the SN subsystem has an addi-
tional feature called an extended status message (ESM) which is available on request from the DE following
any operation. Information contained in the ESM may be used to:

1. Initiate break-out or precautionary routines.

2. Build an audit trail for failure analysis.

3. Construct a unit performance profile.

4. Reduce unscheduled maintenance by detailing the extent of a reported failure.

S. Provide diagnostic capability without interrupting customer operation.

The extended status information is stored in the DE registers after each operation and is transferred to the
system as data in response to the read status command. If the next command is not a read status command,
the information is replaced by new result status from that command. The 64-bit extended status message has
its own special format and is transmitted to the I/O.

The internal operating conditions and performance parameters of the subsystem are monitored automatically
and continually. The DE identifies detected errors and reports the identification in the 64 bit extended status
message (ESM). Disk subsystem detected errors, with their fault locations identified where possible, are re-
ported more specifically in the ESM than was transmitted in the eight-bit RSB. The performance parameters
monitored denote subsystem performance deterioration and show possible failure conditions. The ESM is in-
tended as system input for logging and analysis.

4.327

The data in the extended result descriptor is arranged in 20 words of 12 hexadecimal digits. The first 64
bits are used on the 5N subsystem. Bit 63 is the first bit of word zero; bit 0 is least significant bit of digit
nine in word one. The following describe the significance of each bit:

Bit 63 EXCESSIVE TEMPERATURE. Indicates excessive temperature in a disk enclosure of the
subsystem. This causes that DS to retract the heads. If an affected DS is selected, “not ready”
is indicated in the RSB.

Bit 62 HEAD LOAD PRESSURE. Indicates that the primary air pressure has dropped below 45 psi
and the DS heads have been retracted. If an affected DS is selected, “not ready” is indicated
in the RSB.

Bit 61 HEAD TOUCH. Indicates a DS with an uncleared head touch condition. Selection of the DS

causes “not ready” to be reported in the RSB.

Bit 60 DISK SPEED LOW. Indicates that the disk is rotating at less than 5700 rpm and the heads have
been retracted. Selection of the DS causes “not ready” to be reported in the RSB.

Bit 59 WRITE DRIVER OVERHEAT. Indicates that a write driver overheat condition exists in the DS
head module. The heads are retracted because this is an unsafe condition. Selection of the DS
causes “not ready” to be reported in the RSB.

Bit 58 NEGATIVE HOUSING PRESSURE. Indicates that the air pressure inside the DS enclosure has
fallen below a safe operating level. The heads are retracted because this is an unsafe condition.
Selection of the DS causes “not ready” to be reported in the RSB.

Bits 53-50 HIGH TEMPERATURE. Indicates a DS enclosure temperature above the acceptable limit in
any of the DS’s on the subsystem. Normal operation can continue. A “Warning” bit is set in
the RSB. Each DS is assigned an identification bit in the ESM as follows:

Bit 50=DS 0
Bit 51=DS 1
Bit 52=DS 2
Bit 53=DS 3
Bit 49 AC POWER LOW. Indicates that the input ac line voltage has been sensed at 90 percent of nominal.

The subsystem will go “not ready” if the condition continues for over 0.5 second. If the input
line voltage drops below 70 percent of nominal, the subsystem will shut down.

Bit 46 ADDRESS REDUNDANCY CHECK ERROR. Indicates comparison failure of the selected segment
address held in the DE and the repeated address read from the selected track. The address error
bit is in the RSB.

Bit 45 PHI BIT TIMEOUT. Indicates a data read failure. The DE was unable to locate data on the selected
track within 15 ms. The address error bit is eet in the RSB.

Bit 44 ADDRESS SEARCH TIMEOUT. Indicates an address search failure. The DE was unable to locate
the segment address requested by the system within 15 ms. The address error bit is set in the RSB.

Bit 42 INTERNAL ADDRESS PARITY ERROR. Indicates that a parity error was detected on the address
byte transfer from the DE to the DS. The command transmission error bit is set in the RSB.

Bit 41 CONTROL CHANNEL PARITY ERROR. Indicates that a parity error was detected on the OP and
address byte transfer from the I/O control to the DE. The command transmission error bit is set
in the RSB. In the case of segment repeat, segment wait, or terminate commands, the DE continues
through its current segment before returning the RSB.

Bit 40 INVALID REQUEST. Indicates that the bit pattern of the OP code received by the DE is not
valid. The command transmission error bit is set in the RSB. If the invalid command is received
during a read or write, the DE continues through its current segment before returning the RSB.

Bit 35 DATA READ ERROR, ECC. Indicates a comparison failure between the accumplated ECC in the
DE and the ECC read from the track. This comparison is made following the read of each segment.
The operation will continue to completion regardless of when the comparison failed. The data
transmission error bit is set in the RSB.

Bit 34 DATA WRITE ERROR, ECC. Indicates a comparison failure between the accumulated ECC in the
DE and the ECC received from the I/O. This comparison is made as the ECC is being written for
each segment. The operation will continue to completion regardless of when the comparison
failed. The data transmission error bit is set in the RSB.

Bit 33 CLOCK SYNC ERROR. Indicates a clock pulse count failure. During a write operation the DE counts
the number of clocks received from the I/O. If the number of clocks received is not equal to the
number of clocks required for a full segment at the end of the segment, an error is indicated. The
data transmission error bit is set in the RSB and the operation continues to completion.

Bit 32 WRITE FAILURE. Indicates that an open circuit in the DS head module was detected during a
write operation. The data transmission error bit is set in the RSB and the operation continues to
completion.

Bits 22-00 DISK ADDRESS. Indicates the address of the last segment accessed, divided into four fields. The

bits are identified below (some bits are reserved for expansion).

Bits 22-21 = DS Number, 0 to 3 binary, Isb.

Bits 17-14 = Head Number, 0 to 15 binary, Isb.

Bits 13-09 = Track Number, 0 to 31 binary, Isb.
Bits 06-00 = Segment Number, 0 to 107 binary, Isb.

SUPERVISORY DISPLAY CONTROL Ii

The Supervisory Display Control II (SDC II) is a type A control used to interface the system to up to two
operator display terminals. The SDC figure 4-3-1 performs the following functions:
Message heading insertion for messages transmitted to the terminals.
Message heading deletion for messages received from the terminals.
Generation of vertical and longitudinal parity (even).
Checking of vertical and longitudinal parity.
Internal code conversion between EBCDIC to/from the system and ASCII (7 bit) from/to the terminals.
Generation of input request interrupts.

Aol S

4-3-29

INPUT/
OUTPUT
MODULE

\Pv

PERIPHERAL CONTROL CABINET

INFO AND CONTROL

[

TERMINAL)

STATUS CHANGE
(ONE FOR EACH

PERIPHERAL
(CENTRAL
CONTROL)

INTERFRAME JUMPERS

S

G2

SDCII
1X36

T

ET1254

Figure 4-3-1. SDC 1II in B 7800 Systems

CDL Word Format

4-3-30

or VAR
32 Uiii
K Uliii
99 Uliii

i-ignored
U = Unit Designate

ADDR Operation

Read
Write
Test

RS 232-C

RS232-C

TERMINAL
NO.1

TERMINAL
NO.2

FIRST TERMINAL-TOP
SECOND TERMINAL-BOTTOM

IOCM Information

IOCW Bits CDL
Operation 46 44 42 41 OP Code
Read EBCDIC 0 1 0 1 32
Write EBCDIC 0 0 0 1 34

Result Descriptor - Unit Error Field

TO MCP From Device Error Type
0009 E000 Not Ready
0AS81 D500 1/O Parity Error*
0281 D400 Memory Access Error*
0201 : C400 Data Parity Error*
0401 C200 Control Character
0801 C100 Read Overflow
8001 Co10 Time Out/Invalid Character
0301 CC00 Internal Parity Error*
Test Op R/D to MCP
2000 Unit is B9348 (TD804)
4000 Unit is B9352
6000 Unit is B9348-34 (TD830-1)

IOM/SDC II interface format is shown in figure 4-3-2. Read and write message formats are defined in figure
4-3-3 and 4-3-4.

The SDC is designed to interface with the following operator display terminals (ODT):
1. B 9348: Supervisory Input and Display.

2. B 9352: Input and Display Terminal.

3. B 9348-34: Operator Display Terminal.

A jumper wire on the backplane in the control is used to identify the type device installed to the test
operation command by way of the test operation’s result descriptor. Baud rate may be set to one of three
values via strapping on printed circuit board. These values are 2.4K, 9.6K, and 19.2K baud.

The interface to the terminals is in accord with EIA RS232-C standard asynchronous (with a modification
of the data terminal ready line redefined to be true when the terminal is in receive mode and false at all other
times).

Operation
Read (OP 32)

Read an input message from the designated terminal unit until an end of text character is detected or until
the area descriptor word count is exhausted, whichever comes first. The IOM stores this data after having
received it in EBCDIC due to the translator in the control.

4-331

4-3-32

1/0 PRGCESSOR

coL

soch

(SET AGF XFER OP

® CODE TO "A” BUS)

= (SET AGF ENABLE OP
PROM LOAD OF FLIPFLOPS)

sTC8

- (LOAD UNIT DESIGNATE REG)

o (8SVC)
l (SET END OF INITIATE CYCLE)

(CHARACTER XFER)

ARL (IF MORE CHARACTERS)

ET1256

{ > (FORM RESULT DESCRIPTOR)

'

AGL
(READ R/D)

I S G G—— Ce— —— Y — —— S — C—— E— C— SE—— D G— — . C— —— C— G i C—— C— —

Figure 4-3-2. IOM/SDC 11 Format

Write (OP 34)

Send a message to the designated terminal until an end of text character is detected or until the area de-
scriptor word count is exhausted, whichever comes first. The IOM only sends EBCDIC to the control and
the control translates it to ASCII (7 bit) for use by the terminal.

Test (OP 99)

Return a result descriptor indicating the type of both terminal units connected to the control. If there are
no type bits in the result descriptor returned, it means there is no terminal unit connected to the supervisory
display control with that unit designate.

soc i TERMINAL

ENABLE CTS
(CLEAR TO SEND)

Y '

NO (OR INVALIO) RESPONSE EOT STX

TEXT
EOT
TIME OUT R/D
ETX
8ccC

'

EOT
NOT READY R/D

ACK NAK
(DISABLE CTS)
DATA PARITY
ERROR R/D

' l

NO (OR INVALID) RESPONSE EOT

!

TIME OQUT R/D
(DISABLE CTS)

EOT
1/0 FINISH R/D
(DISABLE CTS)

D c— c— e — ——— —— —— C— — — C— C— S— —— ——— —— S— —— — — — — C— — — —

Figure 4-3-3, Message from Terminal (Read)
4.3-33

sDC 1l TERMINAL

EOT

ENQ

ENABLE CTS
(CLEAR TO SEND)

Y v v

NO (OR INVALID) RESPONSE NAK ACK

]

Y

EOT
TIME OUT R/D
(DISABLE CTS)

' |

EOT
NOT READY R/D
(DISABLE CTS)

STX

TEXT

ETX
8CC

' ' \

NO (OR INVALID) RESPONSE NAK ACK

J '

v

EOT
TIME OUT R/D
(DISABLE CTS)

J

DATA PARITY
ERROR R/D
(DISABLE CTS)

Y |

EOT
1/0O FINISH R/D

Figure 4-3-4. Message to Terminal (Write)

4-3-34

CHAPTER 5

GENERAL DESCRIPTION
OF MEMORY SUBSYSTEM

INTRODUCTION

The B 7800 Memory Subsystem provides the main
storage for the B 7800 Data Processing System. The
memory subsystem stores or supplies words of infor-
mation as directed by either of two types of reques-
tor: a central processor or an input/output module.

MSC m———-——_—_l

A B 7800 Memory Subsystem consists of one to
four model I memory control modules (or one to
two model III memory control modules) coupled
through a memory requestor switch-interlock net-
work to a maximum of eight memory requestors.
(See figures 5-1-1 and 5-1-2.) The memory subsystem
can service each requestor in the same manner so
that any operation performed for one requestor may
be performed for any other requestor.

UP TO TWO MSU'S

/ PER MCM
|

l
|
: MSU-0 MSU-1 MSU-2

MSU-3
_______.__.__...______._J UP TO 4 MCM'S
PER SYSTEM
A A A
MCM-0 MCM-1
PERIPHERAL REMOTE DISK
DEVICES DEVICES SUBSYSTEM
A A A
r — r ™ r N
PC pCP DFO
(20)) 2)
1oM
/ *
/ .
7 b UP TO EIGHT REQUESTING
° ([DEVICES
/ - .
.
MAINTENANCE
BUS SWITCH)
INTERLOCK
cPM
mMP
OPERATOR'S
ET1101 CONSOLE

Figure 5-1-1. B 7800 Memory Subsystem with Model II Memory Control Modules Diagram

5010796001

A model II MCM can control either one or two
MSUs. The model III MCM can control up to eight
MSUs: however, one MCM will normally be config-
ured to access either two or, as shown in figure 5-
1-2. four MSUs.

Each MSU has the storage capacity of 131.072
words.

NOTE
16K IC MSUs and 4K IC MSUs cannot
by mixed on any MCM. All stacks
must be the same type.

MEMORY CAPACITY

A B 7800 Memory System may be built with
various combinations of the two configurations of
memory modules to achieve the desired total mem-
ory capacity. Table 5-1-1 lists the possible combina-
tion of memory sizes.

Minimum Memory Size

The minimum memory size is one MSU memory
module of 131.072 words (786.432 bytes). This would
be one MCM controlling one MSC containing one
MSU. For optimum system performance the
minimum B 7800 Memory Subsystem recommended
is four MSU memory modules.

i—iasc A fmsc — — — — — T T T/
| | Msu0 | msu1 MSU-2 | Msu-3 I MSU-0 | MSU-1 MSU-2 | Msu-3 |
a
L— —‘—{—————‘»——‘—JL——-——’——————_-— ———4‘-—-—
1 ¢
* =
9 ¢
I Y Y | f
MCM-0 MCM-1
PERIPHERAL REMOTE
DEVICES DEVICES
PC DCP
(20) C))
IOM
\
[]
// °
4 b ? UP TO EIGHT REQUESTING
// ° DEVICES
MAINTENANCE SWiTCH °
BUS /
\ / INTERLOCK ——
MP
OPERATOR'S
CONSOLE
ET 1686

Figure 5-1-2. B 7800 Memory Subsystem with Model III Memory Control Modules Diagram

Table 5-1-1. B 7800 Memory Subsystem Configurations

Memory Size

Words Bytes
131,072 , 786,432 1
262,144 1,572,864 2
393,216 2,359,296 3
524,288 3,145,728 4
655,360 3,932,160 5
786,432 4,718,592 6
917,504 5,505,024 7

1,048,576 6,291,456 8

Maximum Memory Size

The maximum memory size is 1,048,576 words
(6.291,456 bytes), packaged as follows:

1. Eight MSU modules

2. Two MSC cabinets

3. Four model II MCM modules (or two model
IIT MCM modules).

MSU Reconfiguration

The B 7800 Memory Subsystem is designed with
high reliability to minimize the occurrence of failure.
Extensive error detection and reporting logic permits
early detection and definition of failures. Automatic
correction of single-bit parity errors minimizes inter-
ruption to the system. The modular design, separate
power supplies, and independent interface concept
permit soft reconfiguration. In case of an MSU fail-
ure, the system can be manually or programmatically
configured to operate with only one MSU available
to the MCM.

Address Allocation

There is no specific assignment order within the
system for particular MCM configurations. Memory
module address range assignments are based on sys-
tem requirements and are assigned through use of
the memory limits word. For example, any MCM in
the system can be assigned the lower (memory zero)
address range by setting the memory limits register.

Subsystem Allocation

The memory capacity can be manually or pro-
grammatically allocated into subsystems with respect
to designated requestors. For example, in a model
IIT MCM subsystem, MCM 0 can be dedicated to re-
questors 0 and 7 while MCM 1 can be dedicated to
requestors 1 and 6.

5010796001

Number of MSUs

Number of MSCs Number of MCMs

Model II Model III
1 1 1
1 1 1
1 2 1
1 2 1
2 3 2
2 3 2
2 4 2
2 4 2

CLOCK RATE AND READ ACCESS
TIMES

The B 7800 Memory Subsystem operates at a
clock rate of 8.13874 megahertz. Effective read ac-
cess time for the MCM is as follows:

1. Single-word access is 1.500 us or 0.250 us per
byte.

2. Two-word access is 1.625 us, or 0.813 us per
word, or 0.136 us per byte.

3. Four-word access is 1.875 us, or 0.469 us per
word, or 0.078 us per byte.

4. Eight-word access is 2.375 us, or 0.296 us per
word, or 0.050 us per byte.

Multiple Word Transfer (Phasing)

In a multiple word transfer (called phasing) words
are transferred in bursts of up to eight; one word is
transferred at each clock cycle.

If the requested address is less than eight words
from the upper address limit of the MCM, the mem-
ory operation is limited to a single-word transfer.

These phasing limits do not have to be taken into
consideration when a requestor sends a memory re-
quest. The requestor simply requests the desired
number of words to be transferred, and then de-
creases the number of words each time a memory
transfer is completed. If at the end of the operation
the word count is not equal to zero, then another re-
quest is made until all the words are transferred.

WORD FORMATS

All words used by the B 7800 Mainframe System
are 52 bits in length. The 52-bit word consists of 48
bits of information, three tag bits, and an overall
parity bit.

5-1-3

When information is passed from a requestor to an
MCM, the requestor adds a parity bit which pro-
duces odd parity on the resultant 52-bit word being
transferred. The MCM checks the word it receives
for odd parity to verify that an error was not made
during transmission.

When an MCM receives a 52-bit word from a re-
questor, the MCM adds seven bits of error correc-
tion code and adds another bit for maintaining odd
parity on the overall 60-bit word to the MSU. If a
word should be accidentally altered while residing in
an MSU, the seven check bits in conjunction with
the overall parity bit allows for the detection of the
error and provide a means for the automatic correc-
tion of errors in which a single bit has been altered.
The MCM then sends the original 52-bit word to the
requestor.

MCM Control Word

At the start of every memory operation, an MCM
control word is transmitted from the requestor to the
memory control module. The control word format,
bits and fields as received at the memory control
module are described below. Table 5-1-2 lists the op-
eration codes for the MCM.

Field

TAG

R/W

TYPE

SPEC

PROTECT

Bits

50:3

47:1

46:1

44:1

Table S-1-2. Operation Codes for the MCM

:;’&?I?Y Bl sl
. 51) 47 43} 35 31 27
YPEIRIL } ADDRE
Tso| a6l 42} 34 30 26
MLL] I
41} 33 29{ 25
32| 28| 24
Field Bits Description
PARITY 51:1 The requestor generates odd parity for
the 52-bit control word.
Operation

Fetch, Single word

Fetch, Multiple word

Box ID Word Fetch (Bit 36=0)

Fetch, Fail register (Bit 36=1)

Write, Single word overwrite

Write, Multiple word overwrite

Write, Single word overwrite with flashback
Write, Single Word Protected Write

Write, Single word protected write flashback
Write, Multiple word protected write

Load, Requestor inhibits

Load, Memory limits

5-1-4

R/W
47

= e e e e e e O O O O

[<5]

SPEC
45

e D e e et O pm ke = O

Description

The tag bits are not used in the
control word.

R/W bit: 0 = read (fetch) operation;
1 = write operation.

The type bit is set for fail word fetch
(if bit 36=1), box ID word fetch

(if bit 36=0) and N-word protected
write operations.

NOTE
Box ID word fetch and use of bit
36 are only used in the control
word for model III MCM.

The SPEC (specifier) bit indicates
either a single word or multi-

word operation: 0 = multi-word
operation; 1 = single word operation
or a box ID word fetch if bit 46

=1 and bit 36 = 0.

The protect bit, when “1” indicates
that a protected-write operation is
to be performed. Protected write
only allows the write operation to
be performed when bit 48 of the
original memory word is off. When
bit 48 is on, the write operation is
terminated and the contents of the
original memory word are not
changed.

PROT FB FIL

O O = = =000 00 oo
O OO = O =000 o o O
[=R e =R i = P BN = X — I - = = B =}
-0 0O 00000 o0 oo oo

Field

FB

RIL

MLL

ADDRESS

RESIDUE

WORD
LENGTH

MCM)

Bits

40:4

36:20

16:2 The address residue bits indicate the residue

Description

The FB (flashback) bit, when a

“1” indicates that the original
contents of the memory location

are to be transferred to the requestor.

The RIL (requestor inhibits load)
bit is used to specify that a load
requestor-inhibit operation is to
be performed.

The MLL (memory limits load)
bit is used to specify that the
upper and lower address registers
and the MSU available register
are to be loaded.

Unused.
The address bits specify the

starting-memory address of the
memory operation.

value of the 20-bit memory address

within the control word.

5:6 The word-length bits indicate the
number of words to be transferred

during multi-word operations.

Box ID Word (For Model Il

The box ID word is locked in a 52-bit fail register
until a box ID word fetch request (OP code 30 and
bit 36 reset in the MCM control word) is made by
the requestor or a manual clear operation is per-

formed. The format, bits, and fields of the box ID
word are described below.

-—-
| PAR

51

T s

o»l

Field

Tag

5010796-001

Bits

50:3

Description

The tag bits are always 0.

Field

Requestor
Inhibits

Lower Limits

Upper Limits

MSU
Availability

MSU

Configuration

MCM Type
(MS)

ERR
(Error)

MCM Type
Flag

MCM Type
(LS)

Bits

29:6

23:8

7:2

5:1

4:1

34

MCM Fail Word

The MCM fail word contains all pertinent informa-
tion necessary to identify a hardware failure. The fail
word information is locked in a 52-bit fail register
until a fetch-the-fail register operation request (OP
code 30 and. if model III MCM bit 36 set in the
MCM control word) is made by the requestor or a
manual clear operation is performed. The MCM
sends a fail | interrupt signal to the requestor when
an irrecoverable error has occurred. If one of the
bits in a memory word was incorrect, the specific bit
is corrected by the MCM. The correct memory word
is then sent to the requestor which allows the re-
questor to continue processing with correct data.

Description

This field indicates which requestors
currently have

This field defines the lowest address
that can be handled by the MCM
within the total memory subsystem.

This field defines the highest address
that can be handled by the MCM
within the total memory subsystem.

These bits indicate which of the
MSUs are powered up.

This field indicates the number of
128K MSUs that functionally
connected with the MCM.

These bits are not used in current
configuration of the memory sub-
system; they are reserved for future
expansion.

When set, this bit indicates that an
error has been reported and a second
fetch of the fail register is necessary
to obtain the MCM fail word (OP
code 30 and bit 36 set in the MCM
control word).

This bit is always 0 in the box ID
word.

These bits identify the MCM as a

model III; they are configured
as 0011.

5-1-5

The format, bits, and fields of the MCM fail word
are described below.

IW@E& lusa CWPSTE Er;
a7] 43 3s] 3| 27| 23] 9] sl ul 7
1D.|MSU NO. ERROR ADDRESS |IOP]| 2B |TYPI
s0] a6l 42| 38] 34] 30| 26| 22 18] 4] o] e} 2
AV ERROR WRA{ 18
a9] asl all 37| 33] 29| 25| 2y 17| 131 9] s [
D.I. [BIT [NO. LSB DWP|INT
a8l a4] 40] 36| 32| 28] 24] 20 6] 12] 8 4] o
ETI271
Field Bits Description
LD. 50:2 These bits are always configured
as 110 for the fail word.
D.L. 48:1 The delayed interrupt (D.1.)
(Model 11 bit, when set, indicates that an
MCM only) internal error was detected during
the previous memory cycle and
had occurred after the requestor
operation complete (ROC)
signal was sent to the requestor.
This interrupt does not occur
until the next memory operation
is performed.
R/W 47:1 The R/W bit indicates that either
a read or write operation was being
executed when the error was
detected. (Read = 0; write = 1.)
MSU AV 46:2 The MSU AV (MSU available)
(Model 11 field in.dicates the number of
MCM only) MSUs in use by the MCM when
the error was detected. The
field indication is as follows:
Bit Bit
45 45
0 0 No MSU is available
0 1 One MSU is available
1 0 Two MSUs are available
1 1 Four MSUs are available
MSU STATUS 44:4 The MSU STATUS bits are loaded
(Model I1 from the MSU status register to
MCM only) indicate stack availability as

follows:
1. 1 AV - sectors 0-3 in MSU-1
are available
2. 2AV -sectors 4-7 in MSU-1
are available
3. 3AV -sectors 0-3 in MSU-2
are available

Field Bits
REQ 40:3
CHNL
NO.

ERROR 37:6
BIT NO.

ER ADDRS 31:20
CWP* 11:1
IOP* 10:1

* Fail 1 interrupt condition

Description

4. 4AV - sectors 4-7 in MSU-2
are available.

The REQ CHNL NO. (requestor-
channel-number field) contains
the number of the requestor

who was using the MCM when the
failure occurred. This field is not
locked in the fail register if
detection of a one-bit error occurs.

The error bit number field is only
valid when bit 5 (1-bit error) is

set. This field is the binary number of
the bit that failed in memory.

The error-address field contains the
address of the location that was being
accessed if a one-bit or two-bit

error occurred. The address is
related to one-bit or two-bit errors

as follows:

Error Indication Error Address

2-Bit 1-Bit Belongs to:
0 1 1-Bit Error
1 0 2-Bit Error
1 1 1-Bit Error

The CWP (control word parity) bit
when set, indicates that the MCM has
detected incorrect parity on the control
word received from the requestor.

The IOP (illegal operation) bit, when

set, indicates that the MCM has

detected an illegal operation in the

operations are as follows:

(1) Word length=0

(2) Single-word operation word length
greater than 1

(3) Special-request strobe is not sent
by the requestor when either
memory-limits load or requestor-
inhibit load is to be performed.

(4) Illegal-operation code (refer to
table 5-1-2).

Field
WRA*

DWP*

STB*

2B*

INT*

INT ERR
TYPE

5010796001

Bits
9:1

8:1

7:1

6:1

5:1

4:1

3:4

Fail Word Bit
3210

Description

The WRA (wrong address) bit, when
set, indicates that the address in the 0001
control word did not fall within the

upper and lower address limits

assigned to the MCM.

The DWP (data-word parity) bit, when

set, indicates that a data word containing

even parity was received from the

requestor. 0010

The STB (data-strobe) error bit when
set, indicates that the MCM has
detected an error in the number of words
sent by a requestor during a multiple
word transfer.
A 2B (2-bit) error, when set,
indicates that the MCM detected a
(non-correctable) multiple bit error 0011
from the MSU. If this error occurs,
the data transfer to the requestor is
completed.

A 1B (1-bit) error, when set,
indicates that the MCM detected a
(correctable) 1 bit error from the
MSU.

The INT (internal) error bit,

when set, indicates an error

occurred within the MCM or MSU.
This error is further defined by bits 3:4.

0100

The internal error type bits

define the type of internal error

identified by bit 4. The internal 0101
error bits are defined as follows:

Fail Word Bit Error Type
3210
0000 Sector Busy - indicates
that the selected sector 0110

for this vperation
remained unavailable
past a preset time
limit.

Error Type

Read Available-indi-
cates that the MSU
has failed to respond
with a Read Auvail-
able signal during a
read operation.

Checker/Generator-
indicates that an
error had occurred
in the MCM Parity
Checker/Generator
(data) circuits.

Address Residue-
indicates that either

a bad address residue
was detected in the
Control Word

received from a
requestor, or was
generated by the MCM
Address Counter
during a multiple word

transfer operation.

Configuration Error-
indicates that the MSU
status register contains
either 0 or 3 MSUs
available, which is
illegal.

MSU Availability-
indicates that MSUs
actually available does
not agree with the MSU
status register.

Data transfer control
(DTC) Failure-
indicates that a fail-
ure occurred in the
DTC circuit.

5-1-7

Memory Address Limits Word

The memory address limits word changes the
MCM and MSU configuration to reflect the number
of MSUs available to the MCM as well as the upper
and lower address limits. This word follows the spe-
cial request signal and the memory address limits
load word during memory control operations be-
tween the MCM and requestor. The format, bits,
and fields of the memory address limits are de-
scribed below.

For model II MCM:

[Pt B (Vi)
A JADORESS] [Av
o - R

R e § 14{Ls810] 6 2|

L 3 AV2
2] 1 14 aaeSs™ Y
1 LIM[T Av1g|
20] 1 1 8|LsB4

Field Bits Description

PARITY 51:1 The MCM examines the memory

address limits word for odd parity.

50:35 Unused.

ALL 15:6 The address lower limit is the

most significant 6 bits of

the lowest 20-bit memory

address available to this MCM.
AUL 9:6 The address upper limit is the
most significant 6 bits of the
highest 20-bit memory address
available to this MCM.
AV4 3:1 When AV4 isa “1”, MSU-2,
sectors 4-7 are available to this
MCM.
AV3 2:1 When AV3isa “1”, MSU-2,
sectors 0-3 are available to this
MCM.

When AV2isa “1”, MSU-1,
sectors 4-7 are available to this
MCM.

AV2 1:1

5-1-8

Field Bits Description
AV1 0:1 When AV1isa “1”, MSU-1,
sectors 0-3 are available to this
MCM.
For model III MCM:
AR ! u1wsn ave | ave
- 51 47 43 39 35 31 27 23 19 18 11 7 3
ujwir AV7 | AV3
50 46 42 38 34 30 26 22 18 14 10 6 H
uPPER | AV6 |Av2
49 43 41 37 33 29 23 21 17 13 9 5
umr | avs | ava
48 “ 40 36 32 28 24 20 | 16 12 3 4
ET 1688
Field Bits Description
Parity S51:1 The MCM examines the memory
address limits word for odd memory.
Address 19:6 The address lower limit is the most

significant 6 bits of the lowest 20-bit
memory address available to this
MCM.

Lower Limit

Address Upper 13:6 The address upper limit is the most
Limit significant 6 bits of the highest
20-bit memory address available
to this MCM.

AV8 thru AV1 7:8 Eight bits for MSU availability.

Memory Requestor Inhibits Word

The memory requestor inhibits word loads the re-
questor inhibit register with new data to indicate
which requestors now have access to the MCM.
This word follows the special request signal and the
memory requestor inhibits load control word during
memory control operations between the MCM and
requestor. The format, bits and fields of the memory
requestor inhibits word are described below.

ATy

43

" 309] 35

“gg| 99} 23] 1e] 18l 11

SARLTIRLS
71 3

' 51] 47

42

38| 84"

T T ARIGRI2
30f 26| 22|18 14}:101 6 2

31 33

o IRISIRIA
3 5 1

41

36] 32

a0l 25| =1l 1n] 1

28) 24 20| 6] vy o 4] "0

Field

PARITY

R17

R16

R16

R14

R13

R12

R11

R10

5010796-001

Bits

51:1

50:44

7:1

6:1

5:1

4:1

3:1

2:1

1:1

0:1

Description

The MCM examines the requestor
inhibit word for odd parity.

Unused

When bit R17 is a “1”, the
requestor who is designated
requestor 7 is inhibited from access
to the MCM.

When bit R16 is a “1”, the
requestor who is designated
requestor 6 is inhibited from access
to the MCM.

When bit R15isa “1”, the
requestor who is designated
requestor 5 is inhibited from access
to the MCM.

When bit R14 isa “1”, the
requestor who is designated
requestor 4 is inhibited from access
to the MCM.

When bit R13 isa “1”, the
requestor who is designated
requestor 3 is inhibited from access
to the MCM.

When bit R12 is a “1”, the
requestor who is designated
requestor 2 is inhibited from access
to the MCM.

When bit R11isa “1”, the
requestor who is designated
requestor 1 is inhibited from access
to the MCM.

When bit R10isa “1”, the
requestor who is designated
requestor 0 is inhibited from access
to the MCM.

SIGNAL INTERFACE BETWEEN
REQUESTOR, MCM, AND MSU

The control and information flow between the re-
questor, MCM. and MSU is described in the fol-
lowing paragraphs and shown in figure 5-1-3.

Signal Interface Between MCM
and Requestor

1. Data and Parity. Data and parity are transferred
between a requestor and an MCM via a unique set
of 52-bidirectional data lines. These lines are also
used for the transmission of the control word.

2. Special Request Signal (RQSN). A special re-
quest signal (RQSN) is used by a CPM to gain ac-
cess to a memory control module (regardless of the
state of the requestor inhibits register). The RQSN
signal goes true in coincidence with the request sig-
nal (REQ) whenever a memory address limit load or
requestor inhibits load operation is performed.

3. Request Signal (REQN). A request signal
(REQN) is sent by a requestor to select a specific
MCM. REQ goes true one clock period prior to the
request strobe (RSTB) and remains true until the re-
ceipt of an acknowledge signal (ACK) from the
MCM.

4. Data Strobe Signal (DSTB). A data strobe sig-
nal (DSTB) is sent to inform the MCM that data is
to be transmitted over the data lines. The signal is
used only in the N-length overwrite and the N-word
protected write operations. The data strobe precedes
the data word by one clock and its width indicates
the number of data words following it.

5. Request Strobe Signal (RSTB). A request
strobe signal (RSTB) is sent to inform the MCM that
a control word is being transferred over the data
lines. It is true initially one clock period following
the start of the request signal (REQ). The control
word is transmitted in coincidence with the request
strobe.

a. For single word protected write and single
word overwrite: the request strobe (RSTB)
will cycle true and false during successive
clock periods. During the false period, the
data word to be stored is placed on the data
lines.

b. For all other operations: the request strobe
(RSTB) is true one clock period following
the request signal (REQN) and remains true
until the acknowledge signal (ACK) is re-
ceived.

6. Data Available Signal (DAV). A data available
signal (DAV) is transmitted to the requestor to indi-
cate that data is available and will be transmitted in
the following clock period.

7. Acknowledge Signal (ACK). An acknowledge
signal (ACK) of one clock period duration is sent to

5-1-9

8. Send Data Signal (SND). A send data signal
(SND) is sent to the requestor during an N-length
overwrite and may be sent during an N-word pro-

the requestor to signify that the MCM has accepted
the control word and is processing the request.

10. Requestor Operation Complete Signal

(RQOC). The MCM sends a one clock period re-

tected write. The send data signal indicates the num-

ber of data words that must be transmitted to the
MCM. The number of words to be transmitted is

equal to the number of clock periods the send data

signal is true.

NOTE

The send data signal will not be trans-
mitted if an attempt is made to write
into a protected area during an N-word
protected write. Also, the number of
data words requested by the MCM
must be transferred before a requestor
ends operation.

9. Data Present Signal (DAPB). Signal DAPB is
sent to the requestor to indicate that a valid data
word (or words) is being transmitted from the MCM.

The DAPB is transmitted in coincidence with the
data word. A word is transmitted each clock period
that the DAPB is true.

WRITE DATA

questor operation complete signal (RQOC) to signify
the end of the requestor’s part of the memory
operation. The following variations apply:

a. Single or N-length fetches; single word

overwrite with flashback: the RQOC is sent
coincident with the final clock period of the
data present signal (DAPB).

. Single word overwrite; N-length overwrite

or N-word protected write: the RQOC sig-
nal is sent following the check of parity on
the final data word received by the MCM.

. Single or N-word protected write: The

RQOC signal is sent with or following
FALS signal if word(s) are protected in N-
word protected write.

. Single word overwrite without flashback: an

RQOC is generated following the check of
parity on the data word received by the
MCM.

11. Address Upper Limit. The address upper limit
is the most significant six bits of the highest 20-bit
memory access available to this MCM (the least sig-

nificant 14 bits are assumed to be ‘‘1’s”).

®

READ DATA

®

ADDRESS

INITIATE SECTOR

READ SECTOR START LOAD

060

READ SECTOR START

&

READ AVAILABLE

©

MEMORY BusY

©

STORAGE

UNIT READ WRITE MODE

WRITE STROBE

60

REFRESH REQUEST

;i

REFRESH ALLOW

0

MSU AVAILABLE

T

MODE

©

READ SECTOR COUNT

COUNT MOST SIGNIFICANT

00

ET1261

MEMORY
CONTROL
MODULE

OOOOOOOOOOO0E

¥

DATA AND PARITY

SPECIAL REQUEST

REQUEST

DATA STROBE

REQUEST STROBE

DATA AVAILABLE

ACKNOWLEDGE

SEND DATA

DATA PRESENT

REQUESTOR
REQ. OPER. COMPL.

ADDRESS UPPER LIMIT

ADDRESS LOWER LIMIT

REQUESTOR ENABLE

MCM ENABLE

FAIL 1

Figure 5-1-3. Requestor-MCM-MSU Interface

5-1-10

12. Address Lower Limit. The address lower limit
is the most significant six bits of the lowest 20-bit
memory address available to this MCM (the least
significant 14 bits are assumed to be‘‘0’s”’).

13. Requestor Enable Signal. The MCM sends to
the requestor an enable signal which is used under
the following conditions to enable or disable commu-
nications between the MCM and the requestor:

a. Whenever the MCM is power cycling up or
down.

b. Whenever the appropriate requestor inhibit
FF is set.

14. MCM Enable Signal. The requestor sends to
the MCM an enable signal which is used to enable
or disable communications between the requestor
and the MCM. This signal is a steady state signal
which disables communications whenever the re-
questor is power cycling up or down.

15. Failure Interrupt 1 Signal (FAL1). The MCM
transmits a one-clock period FAIL 1 interrupt signal
to the requestor if any of the following errors occur:

a. Control word parity
b. Illegal operation code
Wrong MCM
. Data strobe error
Two-bit error
Internal error
The MCM fail register will then be loaded
with information to facilitate error analysis.

-0 Qo

Signal Interface Between MCM
and MSU

1. Write Data and Read Data Lines. The data
lines are comprised of one overall parity bit, seven
check bits used in single bit error correction, a
parity bit on just the data word, and a 51-bit data
word passed to and from the requestor.

2. Address Lines. These lines are used to transfer
a 14-bit address to the MSU to specify the RAM
(random access memory) chip locations to be access-
ed.

3. Initiate Sector. This group of control signals is
sent to the MSU to start either a read or write oper-
ation.

4. Read Sector Start Load. This control signal
loads the starting sector number into the read sector
address register within the MSU.

5. Read Sector Start. These signals are the three
bit binary sector starting address of the operation.

6. Read Available. The read available informs the
MCM of the availability of the data from the se-
lected address.

5010796-001

7. Busy. The MSUs signal to the MCM whether
the sectors are busy or idle.

8. Read Write Mode. When high indicates to the
MSU that a write operation is to be performed, and
when low indicates that a read is desired.

9. Write Strobe. These signals strobe the data
from the MCM into the write register of the desig-
nated sector.

10. Refresh Request. A signal to the MCM to indi-
cate that a refresh cycle is required.

11. Refresh Allow. A control signal that informs
the MSU(s) that a refresh cycle can be performed.

12. MSU Auvailable. This signal indicates to the
MCM that power is up in the MSU.

13. Count Most Significant. This signal allows the
most significant bit of the sector address to be
counted, which allows eight-word phasing.

14. Mode, Read Sector Count (RSC). These con-
trol signals are sent to the MSU to enable an eight-
megahertz operation in the MSU.

DEFINITION OF MCM
OPERATIONS

The various MCM operations are briefly described
in the following paragraphs.

1. Data Word Fetch (Single or Multiple Word).
This operation is a standard fetch of data. If a multi-
ple word fetch is initiated, the data words are trans-
ferred to the requestor at the clock rate and within
the limits discussed previously.

2. Fail Word Fetch. This operation is a fetch of
the fail register within the MCM. The fail register is
cleared as a result of this operation.

3. Smgle Word Overwrite with Flashback. ThlS
operation is a standard write/read operation. The
data from the requestor is written into the addressed
location. The original data read out of the address
location is transferred back (or flashed back) to the
requestor.

4. Single Word Protected Write (with/without
flashback). This operation is a conditional write of
data into memory. The data word transferred by the
requestor is written into memory only if the address
is not protected (i.e., bit 48 of the original word is
*‘0’). The requestor may -indicate whether he re-
quires flashback; however, the MCM will uncondi-
tionally flash back data to the requestor.

5. Overwrite (Single or Multiple Word). This oper-
ation is a standard write of data into memory. If the
operation is an overwrite, the rate of data transfer to
the MCM will be controlled by the MCM.

6. Multiple Word Protected Write (1>N>4). This

operation is a conditional write of data into memory.
The data is written into memory as long as none of

5-1-11

the addresses are protected (i.e., bit 48 0 for
each address). The requestor will transmit the data
only upon request of the MCM. The MCM will
transmit a Fail S signal to the requestor if any of the
addresses were protected, and it will unconditionally
flashback data to the requestor.

7. Load Requestor Inhibit Register. This operation
is similar to a single word overwrite with the excep-
tion that the data word is transferred to the reques-
tor inhibit register instead of to the MSU. The state
of the requestor inhibit register determines which re-
questors may communicate with the MCM.

8. Load Memory Limit. This operation is similar
to a single word overwrite with the exception that
the limits field within the data word is transferred to
the memory limit register instead of to the MSU.
The memory limits consist of the lower and upper
MCM memory addresses and the MSUs available for
use by the MCM.

MCM LOGIC FUNCTIONS

The basic logic functions of the MCM are priority
resolution, data transfer and control, and error pro-

B tection. (See the block diagram in figure 5-14.)

Priority Resolution Logic

Priority resolution logic controls communications
between each requestor and the MCM. Lower num-
bered requestors are given the highest-priority ac-
cess into memory. Only those requestors selected by
the state of the requestor inhibit register are allowed
to be serviced by the MCM. The exception to this
rule is that through the use of the special request sig-
nal, CPMs are able to override the state of the re-
questor inhibit register. A requestor is not serviced
if the requestor interface has failed so that other re-
questors are not locked out. The highest priority re-
questor is prevented from obtaining consecutive
service if a lower priority requestor is waiting to be
serviced.

Data Transfer And Control Logic

The data transfer and control logic provides the
sequential control signals required to route the data
through the four main data registers (input, output,

control word, and memory buffer registers). A brief

description of these registers is provided below:

1. Input Register. A 52-bit register used as a tem-
porary buffer register for control words and data
words received from memory.

2. Memory Buffer Register. A 60-bit register used
as a temporary buffer register for data words trans-
ferred to or from MSUs. During a fetch, the fail reg-
ister information, except bit FR51, is transferred to
the memory buffer register before being placed in
the output register.

5-1-12

3. Control Word Register. A 52-bit register used
to contain the control word transmitted by the re-
questor.

4. Output Register. A 52-bit register used to buffer
data words that are being transmitted to a requestor
during a fetch operation. The output register also
contains the bit correction logic required to correct
one-bit errors detected by the error correction logic.

Error Detection Logic

The error detection logic detects errors in reques-
tor and MSU data and control interface; detects mul-
tiple bit errors; corrects one-bit errors that occur in
the MSU during a fetch operation; and detects an in-
ternal error if a failure occurs in the check/generator
logic.

4K and 16K MSU OPERATIONS

The 4K and 16k MSU performs the following op-
erations:

1. Read Cycle. The MSU reads out data (nonde-
structively) from the memory address defined by the
MCM and places the data on the bus to the MCM.

2. Write Cycle. The MSU accepts information
from the MCM and stores it into the addressed loca-
tion.

3. Refresh Cycle. The MSU refreshes all eight
sectors simultaneously on receipt of a refresh allow
signal from the MCM.

Each MSU contains 128K words of 64 bits each
arranged into eight separately controlled. independ-
ently operated storage sectors of 16K words.

Each of these sectors is multiplexed in sequence
(starting at any one of eight sectors) to perform ei-
ther a read or write operation. Read data from the
sectors is sequentially transmitted from a starting
sector over the read data bus via a read data output
register. Write data is sent over a write data bus to
the sectors within the MSU. The sectors share the
following:

Address bus -14 bits

Write data bus -64 bits

Read data bus -64 bits

Read data output register -64 bits
Read data multiplexer -64 bits
Read sector counter -three bits
Refresh mechanism.

Nanpwh=

4K MSU LOGIC FUNCTIONS

The basic logic functions of the 4K MSU are: data
transfer and control, data register/multiplex, timing
and address, refresh, and storage area. (See block

B diagram in figure 5-1-5.)

MSU INTERFACE MSU INTERFACE MSUINTERFACE

RECEIVERS/DRIVERS RECEIVER/DRIVER RECEIVERS/DRIVERS
(CONTROL) (ADDRESS & REFRESH) (DATA)
REFRESH ALLOW J
REFRESH REQUEST
C?)E;'I"‘:grs CO&"I’SRUOLS MEMORY BUFFER REGISTER
GENERATED CHECK BITS
REFRESH REFRESH
REQUEST ENABLE INTERNAL ERROR
FAIL REGISTER —*
ERROR ONE-BIT ERROR .
DETECTION M
OPERATION/ADDRESS AND TWO-BIT ERROR g
CORRECTION INPUT-PARITY ERROR ‘:
REQUESTOR MEMORY
INHIBIT LiMITS CORRECT BIT (XX)
REGISTER REGISTER PARITY BIT
l————o
) CONTROL
oy o | e | oume
|
SWITCHING INTERLOCK
RECEIVERS/DRIVERS
€T1102
Figure 5-1-4. Memory Control Module Block Diagram
Data Transfer and Control Logic 2. 1/O Control logic. This logic latches the inter-
face controls necessary to enable write data to the
The data transfer and control logic provides the requested sector in storage, to enable read data from
buffers and latches required to interface the data and the gating. row decoding and address multiplexing
control signals between the 4K MSU and MCM. A circuits. The write or refresh operation.
brief description of these logic areas is given below:
1. Data I/O logic. This logic contains write data
buffers. final read c_iata latches and read data cable 3. Address Input logic. This logic is used to buffer
drivers for transferring data words to or from MCM. a 14-bit address word from the MCM.

5010796001 5-1-13

vIi-1-§

MCM
INTERFACE

CONTROLS

CONTROLS

ooy

EP1226

__ | WRITE DATA .

. . READ DATA

. 64 STORAGE BOARDS, EACH OF

~N

vo
REFRESH
CONTROL CONTROL SECTORO
ADDRESS \
STORAGE | STORAGE | STORAGE | STORAGE | STORAGE | STORAGE | STORAGE | STORAGE
TARO CONTROLS BD BD BD BD 8D BD BD BD
____®__ 63— 56 | 55——48 | 47— 40 | 39 ——32 | 31 24| 23 16 | 15— 08 | 07— 00
4 I b b 4 L3 3 ' Y
TAR1 SECTOR 1 1 1
ADDRESS
INPUT
TAR2 SECTOR 2
TAR3 SECTOR 3
TAR4 SECTOR 4
TARS SECTOR 5
)
CONTROL
TARS SECTOR 6
v v v Y v v v
ADDRESS
> STORAGE | STORAGE | STORAGE | STORAGE | STORAGE | STORAGE | STORAGE | STORAGE
TAR? BD 8D 80 BD BD 8D BD BD
CONTROLS o 63——56 | 55——48 | 47— 40 | 39 32 | 31 24 | 23——16 | 15——08 | 07——00
WRITE STROBES READ DATA
READ CTR SIGNALS CONTROL SECTORT
SIGNALS
64 BITS (WRITE), 8 SECTORS (512 LINES)
DATA DR/MPX
o
64 BITS (READ), 8 SECTORS (512 LINES)
NOTES

WHICH IS 16K X 8 BITS.

. 16 DR/MPX BOARDS, EACH OF WHICH

LATCHES 4 BITS, 8 SECTORS OF
READ AND WRITE DATA.

. FOR B7800/87700 CONFIGURATIONS,

ONLY A 60 BIT WORD IS STORED IN
THE MSU. AS A RESULT, STORAGE
BOARD BITS 60 THRU 63 ARE NOT
USED.

3 DATA 1/0 BOARDS.
11/0 CONTROL BOARD.

Figure 5-1-5. 4K Memory Storage Unit Block Diagram

Data Register/Multiplex Logic

Sixteen data register/multiplex (DR/MPX) logic
boards are contained in the 4K MSU. Each board
latches four bits of write data for each of the eight
sectors and then multiplexes data of selected sector
to the data latches in the data 1/O logic.

Timing and Address Logic

Timing and address (TAR) logic is provided for
each sector. The logic is used to generate timing and
to latch a 14-bit address word for its sector. The tim-
ing section generates various control signals required
to perform a read. write or refresh cycle for the se-
lected sector. The address word is routed to chip ad-
dress and row select circuitry on the eight associated
IC storage boards.

Storage Area

The storage area is composed of 64 storage
boards. Each storage board contains a four by eight
array of 4KxlI RAM (random access memory) chips.
In addition to these RAM chips, each board contains
write data buffers, read data gating, row decoding
and address multiplexing circuits. The address from
TAR is separated into two addresses:

1. Address bits 0 through 11 are used as chip ad-
dresses to select one of 4K bit locations in each of
the chips.

2. Address bits 11 and 12 are used as a row ad-
dress to select one of the four rows of chips.
Each row contains eight RAM chips. Each RAM
chip is organized as a 64 row by 64 column array
and is addressed by a chip row address (6 bits) and
a chip column address (6 bits) respectively.

Refresh Logic

The refresh logic is enabled by refresh allow from
the MCM. If sectors 0 through 7 are not cycling, a
refresh address is accepted by the eight TAR circuits
to initiate a refresh cycle. During a refresh cycle, all
four chip rows are enabled by a refresh signal. This
refresh signal enables all 32 RAM chips to do a re-
fresh in the locations specified by the chip row ad-
dress. When the RAM chip is in refresh cycle, the
entire 64 column (or bits) of the selected row is re-
freshed. Because the RAM chip has 64 rows, 64 re-
fresh cycles are required to refresh the entire storage
board or the entire memory, as all sectors (0 through
7) are enabled during a refresh cycle.

5010796-001

16K MSU LOGIC FUNCTIONS

The basic logic functions of the 16K MSU are:
data transfer and control, timing, address and re-
fresh, and storage. (See block diagram, figure 5-1-6.)

DATA TRANSFER AND CONTROL
LOGIC

The data transfer and control logic provides the
buffers and latches required to interface the data and
control signals between the 16K MSU and MCM. A
brief description of these logic areas follows:

1. Data /0 logic. This logic contains write data
buffers, final read data latches and read data cable
drivers for transferring data words to or from the
MCM.

2. Control 1/O logic. This logic latches the inter-
face controls necessary to enable write data to the
requested sector in storage, to enable read data from
the selected sector onto the read data bus, and to in-
itiate a read, write, or refresh operation.

TIMING LOGIC

Timing logic is provided for both the odd and even
storage boards: it is used to generate address strobes
and latching and enabling signals required to perform
a read, write, or refresh cycle for the selected sec-
tor. The timing logic also controls the sector counter
in the control 1/O logic, and provides clocks to the
address register board.

ADDRESS AND REFRESH LOGIC

The address logic accepts a 14-bit address word
from the MCM. latches the address. and routes it to
the even or odd storage boards, as determined by
the timing logic. The refresh logic is enabled by a re-
fresh allow signal from the MCM. The column and
row addresses are multiplexed by the address regis-
ter board for application to the RAM chips on the
storage boards.

STORAGE LOGIC

The storage logic consists of 16 storage boards,
each of which contains a four-by-eight array of 16K
x 1 RAM (random access memory) chips. In addition
to these RAM chips. each board contains read and
write data latches and read data output multiplexers.
The 14-bit address from the address register is ap-
plied in two seven-bit segments to the selected stor-
age boards (row address first, followed by column
address). When a refresh cycle is performed, the
row address strobes are sent to all eight sectors of
the memory and the column addresses are not used.

5-1-15

91-1-S

MCM

INTERFACE

CONTROL

CONTROLS
"o

WRITE STROBES, READ CTA SIGNALS (EVEN)

1 1

CONTROLS O

STORAGE BOARDS (EVEN)

TIMING
l EVEN
I 1} 65 a8 47 YN 2| ujn 16]t5— 0807 00
REFRESH
(CONTAOL
ADDRESS (EVEN)
l ADDRESS
REQ.
ADDRESS ADDRESS (ODD)
| ()
l o/ 1
| \
TiMING CONTROLS o
o000 .
- STORAGE BOARDS (ODD)
I WRITE STROBES, READ CTR SIGNALS (ODD)
I (Y] 68— 48| 47 ———40 | 39 32|31 u|n 1] 08 | 07 ——— 00
L READ DATA (0DD) /“\ J J J) J
O
| WAITE DATA DATA READ DATA (EVEN) /~
80 64
‘1 o A\
| READ DATA /w\ WRITE DATA /;‘\
] O ANy
NOTE:
FOR B 7800/8 7700 CONFIOURA-
TIONS, A 80-BIT WORD IS STORED

BTORAQE BOARD BITS 60

IN THE MSU. THEREFORE,
‘ THAU 8) ARE NOT USED.

ETVoN

Figure 5-1-6. 16K Memory Storage Unit Block Diagram

CHAPTER 6

MAINTENANCE
DIAGNOSTIC PROCESSING

INTRODUCTION

Maintenance diagnostic processing (MDP) is a pro-
grammatically controlled maintenance system which
is part of the B 7800 Master Control Program. The
programs provided by MDP perform the following
operations:

1. Real-time static and dynamic testing of the
B 7800 mainframe modules (CPM, IOM, and
MCM.)

2. Verification and diagnostic testing of the B 7800
logic cards.

3. PROM programming and verification
operations.

These programs can be run in the mix along with
user programs.

The hardware portion of the MDP is structured to
allow any CPM to interface with any other module
(CPM, IOM, or MCM) or the PROM programmer
and card test facility in order that the module and
PROM programmer and card test facility can
execute the MDP operations.

In addition to system MDP, a maintenance pro-
cessor (MP) is provided to perform the same
maintenance operations as the system MDP.
Whereas, the system MDP makes use of an on-line
CPM to test an off-line module, the MP is used off
line to test a module and operate the PROM pro-
grammer and card test facility.

The MP is completely independent of the B 7800
operating system. The source of the master control
program, MDP data base, and MDP test programs
for the MP consists of dedicated disks and magnetic
tape systems. The MP forms a central testing facility
which is permanently connected by use of a mainte-
nance bus to the MDP hardware of a CPM.

An important capability of the MDP allows the
field engineer to perform any module panel operation
from the supervisory display console or to develop
special test operations for use in testing of module
functions. This type of testing is established by use
of the module interrogation and command interpreter
(MICI) program, thus providing the field engineer
with an additional aid in isolating the failed logic.

5010796001

The MICI program uses the MDP hardware circuitry
of the B 7800 system as the MDP software, but is
run independently of the MDP software controls.

In addition to the module testing capabilities, the
MDP provides the facility for producing a formatted
printout of the CPM and IOM operations. This print-
out, commonly known as a panel dump, is useful in
analyzing module operation at time of failure.

MDP CONFIGURATION

As shown in figure 6-1-1, the CPMs and MP are
interconnected via a maintenance bus. The IOMs
and MCMs are interfaced with the CPMs via parallel
buses through distribution cards to a common daisy-
chain bus. Each CPM contains up to four distribu-
tion cards, each of which can drive two modules.

The maintenance test logic (MTL) of the CPM is
connected with the MDP via a foreplane cable from
a master distribution card (MDC) to the MTL con-
trol interface card (MTLCIN), as shown in figure 6-
1-1. The MDC card is interfaced with maintenance

bus through an interface control card (MCIC). This [l

same card is interfaced with IOMs and MCMs by
means of distribution cards. It is over these paths
that MDP sends data and instructions between
various combination of modules.

The card tester and PROM programmer are
housed in a maintenance console. Included in the
maintenance console is a supervisory console display
for use in the operation of the MP system. The
maintenance console is interfaced with a CPM in the
same manner as an IOM and MCM.

MDP OPERATIONS

All MDP operations are performed by use of the
B 7800 operators SPRR 29 and RPRR 29 and are de-
fined by a software-constructed control word. This
control word is transferred as literal data to the
MDC card of a CPM.

Any operation in which data information is re-
turned from the module under test requires a RPRR
29 operator to transfer the data from the MDC card
to the top-of-the-stack.

6-1-1

19

CARD
TESTER

PROM
PROGRAMMER

MAINTENANCE
PROCESSOR CONSOLE

Z-0r-s

CPM CPM
MAINTENANCE
PROCESSOR
M m|o[o[p]po|m M Mm|[o[o[o[o]wm
T pli|ili]i]c T ot i]i]ilc
L cls|s]|s]|s]|i L cls|s|s|s]|i mMDP
¢ T[T T|c ¢ T(T|T|T]|c DDP
N N
MAINTENANCE BUS
M M M
T T T
L L L
¢ c c
] 1 1
1oM N 1oM N MCM N MCM
ET1269

Figure 6-1-1. Typical MDP Configuration

The format of the control word is shown below.

1 111
5 2 1009 7 6 0
orp RFE | GROUP ROW ADDRESS
(4) (2) (3) (7)
OP: Specifies the operation that is to be performed.
RFE: Reserved for expansion.
GROUP: Indicates a particular group within a row.
0 = bits 00-09
1 = bits 10-19
2 = bits 20-29
3 = bits 30-39
4 = bits 40-49
5 = bits 50-51
ROW ADDRESS: Specifies a panel row address.
Other fields used with various operations are defined as follows:
MID: When a module ID needs to be specified (bits 4:5).
COUNT: When a value has to be given with the operation (bits 6:7).

The following three MDP operations, which are
transferred as a control word to an MDC card in a
CPM, enable the module under test to execute the
operation.

1. Bus operations.

2. Data type operations.

3. Control type operations.

The following paragraphs describe each MDP
operation.

Bus Operations

Because modules are connected to a common
MDP bus and can be configured as a split system,
the software performs a special bus request
operation, prior to initializing normal MDP func-
tions. This bus request operation eventually results
in capturing the bus for use in testing a module or
in operating the PROM programmer and card test fa-
cility. The bus remains captured until explicitly re-
leased by the MDP program.

While an MDP program is testing a module, the
bus is available for other maintenance operations,
such as card testing. To accomplish this, each MDP
program is periodically time-sharing the bus while it
is executing an operation.

Bus Request Operation

To capture a specific module onto the bus, a
SPRR 29 followed by a request control word is per-
formed by the MDP. The control word format for a
bus request is shown below.

- -

oP MID

OP=7
MID = module ID
0-7 = Requestors (CMP/IOM)

8-15 =MCM
16 =PROM programmer
17 = card test

Next an RPRR 29 is executed to determine if the
bus has been captured. A Boolean 1 returned indi-
cates that the bus has been captured. A Boolean 0
means that the bus has not been captured and the
software must loop back to the SPRR 29 until the
capture has been accomplished. Failure to perform
this read will cause an error to be generated.

Bus Release Operation

To release the bus, a SPRR 29 followed by a re-
lease control word is performed by the MDP. The
control word format for a bus release is shown be-
low:

-

OoP

OP=15
Data Type Operations

All data type operations (fetch, store, and transmit
data) are performed or initialized by transferring an
MDP control word to the MDC card of the CPM.
This transfer is accomplished by executing a SPRR
29 followed by a control word as the argument. Any
operation, which results in a return of data from the
module under test, requires a RPRR 29 to transfer a
ten bit data word from the MDC card to the top-of-
the-stack. :

Fetch Operation

The fetch operation is used to fetch a range of flip-
flops in a module. The fetch occurs in ten-bit groups
in sequential group order.

The instruction sequence requires the operation to
be initialized with a single SPRR 29 to transfer the
control word, followed by an RPRR 29 for each
group to be fetched. The control word address fields

6-1-3

can have any start address, but would normally be
initialized to 0. Software must keep count of the
groups transferred in order to identify the groups as
they are fetched, but can terminate the operation at
any time by initiating a new operation. All fetched
data is returned to the top-of-stack as a ten-bit right-
justified operand. Sequencing of addresses proceeds
by counting the group address until group 5 is ob-
tained at which time the group address resets to 0
and the row address is incremented.

The control word format for a fetch operation is
shown below:

1 111
5 2 1 .09 7 6 0

opP GROUP ROW ADDRESS

OoP=1
GROUP = starting group (binary)
ROW ADDRESS = starting row (binary)

Store Operation

The store operation is used to store a range of ten-
bit data words to a group of ten contiguous panel
flip-flops within a module under test. Only binary 1’s
can be stored; therefore, flip-flops can only be
cleared to 0's with a module clear or a row clear op-
eration.

Store is similar to fetch with respect to address se-
quencing. The control word contains the address of
the first group to be stored. All following SPRR
words contain a ten-bit data word. Software must
record the number of groups stored to determine the
termination point of the operation. All data is stored
as a ten-bit right-justified operand. The data is not
transferred to the module under test when the SPRR
29 of a store op code is executed. Data is transferred
to the MDC logic and subsequently to the module
under test when the SPRR.29 followed by XMIT
data control word is executed.

The control word format for a store operation is
shown below:

1
5

N =
- -
o -
©o
~
(o2}
o

opP ® GROUP ROW ADDREES

OP=6
GROLUP = starting group (0 - 5) (binary)
ROW ADDRESS = starting row (binary)

6-14

XMIT Data Operation

When the MDC card receives an operation code of
6 (STORE OP), the subsequent XMIT DATA
operations cause the least significant ten bits of the
top-of-stack to be loaded into the MDC card and
transmitted to the module under test. If the MDC
card does not receive a STORE OP when the XMIT
DATA op code is issued, then a fail interrupt will be
generated. The store address is incremented on each
XMIT DATA operation.

The control word format for a XMIT DATA oper-
ation is shown below:

opP DATA

OP=0

Control Type Operations

The control type operations are used to perform
specific module operations. These operations are
clear module, clear row, and issue clocks. To
execute one of these operations, a SPRR 29 is issued
with the control word for that operation.

Clear Module Operation

The clear module operation is used to initialize a
module under test by clearing all flip-flops within
that module.

The control word format is shown below:

op

OP=3

Clear Row Operation

The clear row operation is used to initialize an ad-

dressed row of flip-flops by clearing all flip-flops
within the row.

The control word format is shown below:

1 11
5 21 7 6 0

opP ROW ADDRESS

OP=5§
ROW ADDRESS = address of row to be cleared (binary).

Issue Clock(s) Operation

The issue clock(s) operation is used to single pulse
a module under test by enabling a variable number
of system 8mHz clocks to be generated. This
operation requires that the module under test is in
single pulse mode.

1 11
5 21 7 6 0

op COUNT

OoP=4
COUNT = number of clocks to be generated.

MAINTENANCE PROCESSOR

The maintenance processor (MP) is an independ-
ent maintenance system which is added to the
B 7800 system to augment the system MDP
operation capability. The MP performs MDP
operations in the same manner as the CPM.

The MP is a modular CPU in terms of subsystems
and is configured as shown in figure 6-1-2. The es-
sential components of the MP are the firmware store
section used for storing microprogram instructions, a
memory used for temporarily storing test data, a
processor used for performing operations defined by
instructions stored in the firmware, and four I/O
control ports (device dependent ports, DDPs) used
for interfacing external systems with the processor.

Following is a brief description of the interface of
each DDP.

1. Maintenance diagnostic control (MDC-DDP)
provides the data and instruction interface for main-
tenance processing operation.

2. Magnetic tape control (MTC-DDP) provides the
tape control interface for MDP data base.

3. Fixed control disk (FCD-DDP) provides the
Burroughs Super Mini Disk (BSMD) interface for
master control program (MCP) of the MP, MDP test
programs, and panel dump programs.

5010796001

BURROUGHS
SUPER MINI DISK
(BSMD)

SUPERVISORY
DISPLAY
CONSOLE

FCD-DDP SLC-DDP

B7800 MP CPU
(64KB MEMORY)

MDC-DDP MTC-DDP

‘ MAINTENANCE) () | TAPE
BUS TAPE CONTROL DRIVES

ET1270

Figure 6-1-2. Maintenance Processor Configuration

4. Single line control (SLC-DDP) provides the su-
pervisory console display interface for operation of
the maintenance processing system.

By use of the supervisor display console, the field
engineer can request the system supervisor to
execute the appropriate MP operating mode. Once
an MP operation mode is executed, that mode has
control of the system until it is completed. Only cer-
tain specified supervisor commands can supersede
an MP operating mode.

MP Operating Modes

The MP may be operated in one of 11 modes as

follows:

I. Test mode. This causes the MP to capture the
specified module and execute the indicated test
on the designated device. If tape is used, the
system unit number must be supplied. If the file
is on disk, the file name is supplied. If the test
function fails to capture the specified module,
the field engineer will be notified and control
will return to the system supervisor. The MP is
not capable of removing a module from a run-
ning system. The responsibility is upon the field
engineer to configure the module out of the sys-
tem and place it in test status.

6-1-5

2. Module panel dump mode. This causes a panel
dump to be taken from the designated module
and stored on MP disk. The name of the file
must be enclosed in quotes. It is necessary to
copy this file onto a tape to be analyzed on a
B 7800. If a file already exists with the
specified file name, the user is notified and the
request is ignored.

3. Copy mode. This transfers the files between
MP disk and B 7800 tape. The ‘““FROM’’ option
loads files to disk from tape and the ‘‘TO” op-
tion dumps files from disk onto tape.

4. PROM programmer mode. This implements the
system PROM support capabilities.

5. Remove mode. This allows the field engineer to
remove the specified files from MP disk.

6. Print directory mode. This allows the field engi-
neer to request a display of the files currently
stored on MP disk.

7. Change mode. This allows the field engineer to
change the name of a specified file on MP disk.

8. Dump mode. This modifies the MP restart pro-
cedures so that a memory dump may be taken.
Invoking this mode causes a DMPFL file to be
created on disk.

9. Data Reset mode. This causes the MP date
word to be adjusted. The new date is given in
the form MM/DD/YY.

10. Diskmap Update mode. This updates the sys-
tem disk map, and displays both the number
of available sectors and the size of the largest
available segment.

I1. Time Reset mode. This causes the MP time
word to be set to a new value. The new time
is represented on input as military time (24-
hour clock).

Supervisor Commands

The following supervisor commands can be used
during execution of the various MP operating modes.

1.Discontinue command unconditionally termin-
ates the function that is being executed and returns
control to the system supervisor.

2. Test Option command allows the field engineer
to display or modify test options at any time.
The “DO’’ form will display the condition of
each option. The “‘DO+’’ form will set the
specified options and the ‘“DO-"" form will re-
set the specified options.

3. What Date command causes the value of the
MP date word to be displayed.

4. What Time command, which causes the value
of the MP time word to be displayed.

5. What MCP command causes the version num-
ber of the system executive and of the system
interpreter to be displayed.

6. Why command displays the current operating
status of the MP.

6-1-6

CARD TESTER

The card tester is housed in the maintenance con-
sole along with the promburner and is connected to
the B 7800 MDP system though the card test/PROM
programmer distribution card in the CPM. Once the
field engineer has located the suspected circuit card
by use of the MDP module testing, the card tester
can be used to diagnose and/or verify a faulty com-
ponent on the card. The essential components of the
card tester are three card test logic boards, a card
test fixture, and a set of test points used for testing
logic which is inaccessible via the card connector
pins.

Functional Interface

A simplified diagram of the card test data flow is
presented in figure 6-1-3.

The card tester is interfaced with a CPM distribu-
tion card via a 40 conductor cable. This interface
consists of the following:

1. Ten test data lines used for writing into the
card test (CT) register during MDP store operation.

2. Ten scan return lines used for returning output
of the card under test to the MDP system during
MDP fetch operation.

3. Two row address lines used for selecting 50 bits
of the 150-bit CT register.

4. Three group address lines used for selecting a
group of 10 bits within the addressed 50 bits of the
150-bit CT register.

5. Card test active line used for enabling card
test interface logic. This line is made active by de-
coding of OP code 17 in the bus request control
word. (Refer to paragraph headed Bus Operations
for discussion of bus request control word.)

6. CT register enable line used for enabling CT
register output to the connector pins of the card un-
der test.

7. Strobe line used for strobing MDP data into the
selected bits of the CT register.

8. Four clock mask lines used for selecting the
card pin numbers to which clocks are to be applied.

9. Single pulse line used for routing clocks to card
tester.

General Operation

The MDP card test contains various test data pat-
terns and special instructions which are processed
by the CPM and passed to the card tester.

To capture card tester onto the maintenance bus,
‘the MDP issues a bus request control word with an
OP code of 17 to the CPM. When the card tester is
captured onto the bus, the row and group address

8-BIT DATA TO BDS
INTERFACE CIRCUITRY
OF PROM PROGRAMMER

-
TDO
-1—-. T
E
| . s
TEST DATA | INPUT 1 gg':o" T CARD
LINES FROM DATA Test) UNDER
MDP. SYSTEM | SEL. = H TEST
| ' X
T
TD9 U
— R
J T E
ADDRESS l
AND CONTROL CONTROL G
LINESFROM —® LoGIC REG)
MDP SYSTEM -
TO BDS INTERFACE i 1
CIRCUITRY OF PROM SRO
PROGRAMMER 4————|
scawmerumn | || sean
LINES TO 1 | MULT- <r_'_:__
MDP SYSTEM | PLEXOR
| 8-BIT SCAN RETURN
SRO-SR?
SRo FROM BDS
- INTERFACE CIRCUITRY
§ OF PROM PROGRAMMER

ET1272

Figure 6-1-3. Card Tester Data Flow, Simplified Diagram

field of a store control word is extracted by the CPM] recognizes the bit value contained in the transmit

and used to enable desired address lines to the card
tester. Then, the test data contained in the transmit
data control word is enabled onto the test data lines.
This data is loaded into the addressed portion of the
CT register by the strobe interface signal. The CPM
continues to process MDP control words until de-
sired test data is loaded into the CT register. After
CT register has been set up, the register contents are
applied to the card under test.

To sample card output pins, the row and group ad-
dress field of MDP fetch control words is extracted
by the CPM and passed to the card tester as an ad-
dress to the multiplexer. The selected card pin out-
puts are then routed through the multiplexer to the
MDP system where pin verification process begins.

In addition to the test data pattern capabilities, the
MDP can supply up to 127 clocks to specific clock
pins on the card under test. These pins can be en-
abled to receive clocks by setting a clock mask bit
in the clock mask register. The clock mask bits are
set by processing an MDP store and transmit data
control word in the CPM. Subsequently, the CPM

5010796001

data control word and activates the corresponding
clock mask interface line to the clock mask register.
Then, an issue clock control word is processed to
enable clocks to be applied to the selected clock pin
on the card under test.

PROM PROGRAMMER

Like the card tester, the PROM programmer is
housed in the maintenance console and is connected
to the B 7800 MDP system through the card
test/prom programmer distribution card in the CPM.
The PROM programmer portion of this card contains
the necessary logic to interface between the MDP
bus and the BDS (basic data system) backplane in-
terface of the PROM programmer. This is accom-
plished by synchronizing the MDP strobe to an inter-
nal free-running clock, performing a translation be-
tween MDP operations and BDS operations, and
generating one cycle of a two-phase clock for each
operation to be executed by the PROM programmer.

Basically, the PROM programmer is divided into
digital and analog circuitry. The digital circuitry

6-1-7

functions as a programmable controller for analog
circuitry. The analog circuitry consists of two power
supplies, each capable of being switched on and off
to its own programmable voltage level. One voltage
supply provides chip supply voltage for both pro-
gramming and verification. The other supplies the
voltage to be applied to the PROM output pin during
programming.

Figure 6-1-4 is a simplified block diagram of the
PROM programmer showing the general interconnec-
tions between the major components. Table 6-1-1
contains a listing of these components and also pro-
vides the function of each component.

Functional Interface

There are 21 signals which interface between the
distributor card in the CPM and the PROM program-
mer. These signals are routed through the card tester
cards where a CTL to TTL level conversion is per-
formed, as shown in figure 6-1-3. Sixteen of these
are data lines: eight lines each for input and output
data. Other lines are for control purposes, as shown

Btem. Two more lines (CONT4C-1

in figure 6-1-4. Two of these lines (PH-14C-1 and
PH-24C-1) are dedicated to the two-phase clock sys-
and DIR-4C-1)
are enabled by decoding 2 LSBs in the MDP store
control word for PROM programmer and are used to
encode the four basic control operations described
under paragraph headed MDP/PROM Programming
Operations. One line (APRM4BRN) enables the
PROM programmer internal logic when it is being
addressed by MDP bus request control word with a
module ID of 16.

General Operation

The hardware of the PROM programmer has two
functions: (1) PROM programming and (2) PROM
verification.

To program a PROM, the software executes a se-
quence of basic PROM programmer operations.
Each basic operation consists of a series of BDS op-
erations, each generated by executing a strictly de-
fined set of MDP instructions. (Refer to paragraph
headed MDP/PROM Programming Operations.)

Table 6-1-1. PROM Programmer Components

Component Function

To store and decode the OP code field
of a PROM programmer control word.

Command register
and decoder

To address a panel LED after execution
of CLEAR OP.

Address register 1.

2. To address parameter registers for
loading of digital programming values
prior to LDREG command.

3. To supply PROM address during pro-
gramming (PROM/NO@P) and read
operations.

Parameter Registers

‘Stores digital value of V¢ to be applied
to the PROM supply voltage pin during
programming or verification. This
digital value is an input to a D/A con-
verter to provide an analog voltage level.

1. ch. register

2. Vp register Stores digital value of Vp, to be applied

to the PROM output pin during pro-

gramming.

3. T register a. Stores digital value of pulse width
of the V¢ pulse to be applied to the

PROM during programming.

6-1-8

Component

Function

b. Stores digital value of multiplying
factor to be applied to both the T¢c
and Tp counts.

Stores digital value of pulse width of
Vp pulse to be applied to the PROM
output pin during programming.

4. Tp register

Bit select register To drive a group of eight relays which
connect Vp output to the PROM output

pin to be programmed.

Program register To store the values of four selectable
options during PROM bit programming,.

Data output register To store the PROM output data for
interface to data bus.

Clock divider and To divide the phase 2 clock by digitally

selector (part of BDS selectable values of 1, 8, 32, or 64 for

interface logic) use by the T¢c and Tp counters.

Read flip-flop To activate turn-on of the V¢ supply
voltage for continuous application of V¢¢

to the PROM for verification.

619

ET1271

FROM

CARD TESTER
INTERFACE
CIRCUITRY

DIR-4C-1
PH-14C-1
PH-24C-1

DIN (8)

J

1 APRM4BRN
APRM4BRN |

CONT4C-1

—

VICONT/

TR
CON-
TROL

DATA OUTPUT
REGISTER

(8)

Figure 6-1.4. PROM Programmer Block Diagram

§

DIN (8) (8))
Vi
> SUPPLY
(@) PARAMETER D/A CONVERTERS —
REGISTERS 8)
STATUS/ LDREG/ @ :!\1/ ::>
BDS
INTERFACE COMMAND/ COMAND PROG/ VIPW (8)
DIN/ REGISTER v
AND DECODER SuPPLY
DouT/ READ/ VPPW (C)
VP CONT/
TIMING &
READ CS/ CONTROL LM/
F/F 1
@)
PROG :
l)
PROGRAM G
REGISTER
cs/
®)
ADDRESS (8)
ADDRESS
. REGISTER
LDOS/ PROM vee
SOCKET
(8)
BIT SELECT © OuTPUTS B)
‘:> REGISTER :> RELAYS

The first operation in programming is to clear the
PROM Programmer and turn on the LED identifying
the proper front panel socket. At this point in the
operation, there is a pause in the software and the
user is requested to insert the PROM in the selected
socket and acknowledge this action by means of the
SPO. Then the parameter registers are loaded with
the values applicable to the particular PROM. (The
information in these registers remains valid
throughout the programming cycle.)

The next operation is to load the bit select regis-
ter. This register drives a bank of relays which con-
nect the Vp supply to the PROM output pin to be
programmed. Because of the mechanical nature of
these relays, the PROM is programmed by bit col-
umns (rather than by words of data) to minimize op-
eration of the relays.

Following the load of the bit select register, the
PROM address is loaded, and a PROG instruction
followed by a NO-OP is issued. These instructions
activate the timing and programming pulse
generation circuitry and burn the selected bit. A
STATUS READ is performed to detect when the
timing is complete and the programming of the next
bit may proceed. The sequence of load address,
PROG. NO-OP, and STATUS READ continues until
the bit column is complete. Then the bit select regis-
ter is loaded with the next column and the addresses
are cycled through again. This process continues for
all output bits of the PROM until the programming
is complete.

To verify a PROM, the PROM data is checked for
validity with the chip supply voltage at both its high
and low limits. The basic sequence consists of clear-
ing the unit, loading the desired value of Vcc into its
parameter register, issuing a READ command to ap-
ply Vcc continuously to the PROM, and finally, cy-
cling through the addresses to obtain the data from
the PROM.

MDP/PROM Programmer
Operations

There are four basic control operations performed
by the BDS interface of the PROM programmer.
These operations are set up by the processing of cer-
tain MDP control words in the CPM. The four con-
trol operations are listed below.

1. Control Word In sequence (CWI) causes a pre-
scribed control word to be loaded into the PROM
programmer.

2. Data Word In sequence (DWI) causes an eight-
bit data word to be transferred to the PROM pro-
grammer.

6-1-10

3. Read Status sequence returns the low order
data bit from the programmer to the MDP as a
READY status condition.

4. DATA OUT sequence returns the PROM data
to the MDP system for verification purposes.

The following paragraphs describe each operation
and the sequence in which the MDP control words
are executed.

Control Word In Sequence
To load a control word into the PROM program-

mer command register, the following two MDP con-
trol words are executed in sequence:

1.MDP STORE

1 1 11

5 2 1009 7.6 ‘ 2_10
0110 OPTION 00
(STORE OP)

The standard MDP store control word redefined,
as shown above, causes the proper PROM
programmer/MDP interface control signals to be gen-
erated to prepare for the loading of a control word
into the PROM programmer command register. The
actual loading of the control word is accomplished
with an MDP XMIT data control word. Option
Field: 000 or 101 - (Refer to note under paragraph
headed Data Word In Sequence.)

2. MDP XMIT DATA

-y

11
5 2 1 8 7 0

0o 0 0 0
{(XMIT DATA OP)

PROM Programmer
Control WORD

The MDP XMIT DATA control word following
the MDP STORE causes the PROM programmer
control word to be loaded into the PROM program-
mer command register. The PROM programmer con-
trol word utilizes the low order eight bits of the data
field of the MDP XMIT data control word.

Data Word In Sequence (DWI)

To load a data word into a PROM programmer
register, address register, or bit select register, the
following MDP commands are executed in order.
The destination register for the data is defined by the
preceding CWI sequence.

1. MDP STORE

1 U |
5 2 1.0 9 7 6 2 10

0110 0 00 01
(STORE OP)

The standard MDP STORE control word redefined
as shown above causes the proper PROM
programmer/MDP interface control signals to be gen-
erated to prepare for the loading of a data word into
a destination register (parameter register, address
register or bit select register) previously selected by
the last CWI operation. The actual loading of the
data word is accomplished with an MDP XMIT data
control word.

2. MDP XMIT DATA

1 2 1
5 2 1 817 0

0o 0 o0 O

(XMIT DATA OP) DATA

The MDP XMIT data control word following the
previously defined MDP STORE will accomplish the
desired data load. The data field in this case is the
low order eight bits of the standard MDP XMIT data
control word.

NOTE
Many PROM programmer operations
require a CWI followed by a DWI
which indicates the following sequence
of MDP commands:
STORE - XMIT
DATA - STORE - XMIT DATA.

If the option field is 101, the following
sequence of MDP commands will per-
form the same function: STORE -
XMIT DATA - XMIT DATA.

Read Status Operation

Execution of the following MDP command causes
a status read to be performed. This operation is per-
formed after every load program register/NO-OP se-
quence to determine when the internal PROM bit
burning cycle is complete so that programming of
the next bit may proceed.

MDP FETCH
1 11
5 2 10 9 7 6 2 10
0 001 000 10
(FETCH OP)
5010796-001

Execution of an MDP FETCH containing a con-
trol word formatted as shown above returns the state
of the PROM programmer ready bit into position 0
of the returned data word. All other bits in the re-
turned data (status) word are invalid. Only the low
order eight bits of the returned data word are used.

NOTE
No more than six RPRR 29 operators
are issued for a given fetch so that the
low order bits of the MDP FETCH
control word remain valid.

Data Out Operation

Execution of the following MDP command per-
forms an MDP read of PROM data output. This op-
eration is used to retrieve data for verify operations.

MDP FETCH

1 1 11

5 2 10 9 7 6 2 10
0 001 0 00 11
(FETCH OP)

MODULE INTERROGATION AND
COMMAND INTERPRETER
PROGRAM

The module interrogation and command interpre-
ter (MICI) program allows the manipulation, control,
interrogation, and display of B 7800 mainframe mod-
ules from a standard system ODT. MICI also has all
the capabilities provided by the front panel switches
of the B 7800 mainframe modules.

Where possible the reserved names used for flip-
flop and register identification have been derived
from the actual name of the element. MICI obtains
these names, along with other miscellaneous data,
from an information file titled MDP/CIF. This file
must be present for MICI to be able to run. Also
contained in this file are a series of displays for the
various modules.

The MICI commands are grouped into three
categories as follows:

1. Module interrogation group.

2. Module command group.

3. Interpreter directive group.

The following paragraphs describe each category
and the various commands from which the module
functions are executed.

6-1-11

Module Interrogation Group

The module interrogation group of commands
causes the state of a module to be displayed. Avail-
able displays range from the complete module panel
dump which goes to the printer to a simple request
to display only one item to the screen. The interro-
gation mode is a multi-item display set up to display
some functional portion of the subject module. This
display allows up to sixty (60) elements of the mod-
ule being interrogated to be displayed at a time. This
is accomplished by dividing the last twenty (20) lines
of the ODT screen into three equal columns, thereby
providing sixty ‘‘slots’’ in which a module element
may be displayed along with its identifier.

Display Command

The DISPLAY command causes the items listed
to be displayed. If module is not specified, the de-
fault will be used. If module cannot be determined,
a syntax error will occur.

Items to be displayed can be storages, flip-flops.
registers, switches, literal strings, blanks or prede-
fined displays. The displays can be created by using
the MAKEDISPLAY command. In addition, a pre-
defined display can be specified if it is contained in
MDP/CIF file.

The option of displaying data contained within lo-
cal storages of the various modules is provided. The
display of storage data mixed with other elements is
specifically not allowed. The syntax for displaying
storage data is structured such that a single index
within a storage array may be specified, or a series
of storage arrays all using the same storage index
may be used, or both types may be mixed. An ex-
ample of a storage array is the IOM active channel
stack or the CPM display registers. The storage in-
dex is a hex number for the CPM and MCM and a
decimal number for the IOM. The capability also ex-
ists to display a portion (field) of a storage element.

Dump Command

The DUMP command causes the state of the mod-

‘ule under test to be dumped, analyzed and printed.

This command is mechanized so that the printout
is actually created by SYSTEM/MDUTILITY. The
default MDUTILITY printout will be provided, or
the ““KWIK”’ form may be requested.

Module Command Group

The module command group of commands causes
the state of the subject module to be altered.

6-1-12

When a command is directed to a module, no spe-
cial steps of preparation are performed upon that
module. Therefore, the responsibility is upon the
user to properly condition the module to achieve the
desired results (it is meaningless to issue 15 clocks
to a module which is not in single pulse). It also
should be noted that when the interpreter ceases op-
eration, no special shutdown is performed upon the
module.

Clear Command

The CLEAR command resets all flip-flops, which
are capable of being reset, in the module under test.
This command provides the same function as the
CONTROL CLEAR button on the module panel.
The SWITCH form of the command turns off all
switches which are capable of being turned-off in the
module under test. Because the SWITCH form of
the command turns off (disables) the switch register
(SWRGE) (for the IOM and MCM only), any future
display of switches is of the panel switches. SWRGE
can be set to display the soft switches.

Load Command

The LOAD command causes the indicated file to
be loaded to the module specified (for MCM only).
The file to be loaded may be specially formatted
code file or a SYSTEST Confidence file.

Pulse Command

The PULSE command causes one or more clocks
to be sent to the module under test. This command
provides the same function as the SINGLE PULSE
pushbutton on the module panel.

It should be noted that if the module being

“‘pulsed”’ is not in a single pulse state (its clock has
stopped) this command is essentially a NO-OP.

A decimal value may bé specified as a parameter
to the PULSE command. This number should be in
the range of 1 through 127, and is interpreted as the
quantity of clocks to be issued. The absence of a
value implies a quantity of one.

Set Command

The SET command causes the indicated elements
to b‘e set; that is, a flip-flop is set to TRUE, a regis-
telr\I is set to a specified value, and a switch is set to

In the case of a register, it is possible that an im-
plied RESET will be performed, because of the man-
ner in which the Maintenance Test Logic (MTL)
functions. For example, if a register, which has the
value ‘99, is to be set to ‘‘0’’, the operation would
be performed as follows:)

1. Read the MTL row(s) to obtain the existing
state.

2. Clear the MTL row.

3. Modify the local copy.

4. Set the MTL row to the modified local copy.

Because of the manner in which the MTL is im-
plemented on the various modules, the SET com-
mand cannot always perform the requested
operation. Any such restriction is treated as a syntax
error. Thus, the processing of the SET command is
terminated. A group of items can be processed as if
each item is contained in its own command.

For example, the command:

SET PINT, EUP, CM1
is processed as:

SET PINT SET EUP SET CM1

When a register is set to a value, that value is in-
terpreted as a string of hex characters. If the hex
string is less than the capacity of the register, the
string is applied right-justified with leading zeroes in-
serted into the unspecified portion of the register.
Thus, a 20-bit register containing 3FFFF is set to
00321 upon receipt of a SET command with a pa-
rameter of 321.

A special variation of the SET command allows
data to be written to memory. It should be noted
that no adjustments are made for address limit regis-
ters, so the address given must be consistent with
the module limits. There is no requirement to have
the MCM inhibit any special condition. The data for-
mat is represented as a thirteen-digit hex word, with
the most significant digit the tag. If fewer than thir-
teen digits are given, the data is entered right-justi-
fied and a tag of zero is provided.

Reset Command

The RESET command causes the indicated stor-
age elements to be reset; that is, a flip-flop is set to

false, a register is set to zero, and a switch is set to
OFF.

Because of the manner in which the MTL is im-
plemented, a register or flip-flop RESET could in-
volve the following sequence of operations:

1. Read the entire MTL row.

2. Clear the MTL row.

3. Reset the indicated terms in the local copy.
4. Set the MTL row to the local modified copy.

5010796-001

In some cases, only step 2 is required. The hard-
ware restrictions, discussed ‘under the heading Set
Command, also apply to the RESET command. As
in the case of the SET command, the inability to
perform an operation results in a syntax error. Thus,
the processing of the RESET command is termi-
nated.

Test Command

The TEST command provides a means of making
a conditional transfer of control, based on the state
or value of an element. If the state or value is a true
condition. the MICI command specified is pro-
cessed; if not. the next input command is processed.

Interpreter Directive Group

The interpreter directive group of commands es-
tablishes the operating mode of the interpreter and
the various options available. These commands are
the following:

1. AUTODISPLAY command causes MICI to au-
tomatically initiate an input that has caused action to
be performed on a module.

2. CANCEL command is used to terminate a
command that has been partially processed.

3. DEFAULTBOX command causes MICI to
save the indicated module information. This informa-
tion can then be utilized for any module-oriented
command where the module information has been
omitted.

4. EXECUTE command causes execution of a se-
quenced data file of a series of MICI commands.

5. HELP command displays the available com-
mands. display identifiers, execute identifiers. stor-
age identifiers. and sub-module identifiers.

6. MAKEDISPLAY command specifies to MICI a
particular view of a module which is to be made
available for use. Up to fifty (50) views can be
specified. The created display is only valid for that
particular execution of MICI. The DISPLAY com-
mand is used to invoke the created display.

7. RECALL command displays a specified num-
ber of lines of input; up to 20 lines may be recalled.

8. RELEASE command causes any printer back-
up files created by the MICI to be printed.

9. REPEAT command causes a specified MICI
command(s) to be repeated a specified number of
times.

6-1-13

10. SHOW DISPLAY command allows for the in-
terrogation and possible subsequent modification of
a previously ‘‘made” or ‘‘loaded” display. Execu-
tion of this command causes MICI to present all the
items specified for that display.

11. STOP command causes the MICI interpreter
to terminate operation.

12. TERM command is used to control the format
of displays that appear on the supervisory console.

6-1-14

13. TRANSFER command provides a means of
transferring control to a specified software label in
order to bypass the execution of MICI commands.

14. VERSION command is used to display the
Maintenance Diagnostic Test (MDT) level, the CIF
file level, and MICI level on the input device.

15. WAIT command provides a means of waiting
a fixed number of seconds, or waiting for the
operator to provide a null input, before processing is
continued.

APPENDIX A
COLLATING INFORMATION

All characters are collated according to their internal binary value. Because the B 7800 has
the capability of representing characters internally in BCL, EBCDIC, or USASCII, and because
characters are collated according to their internal representation (not necessarily the same as
their external mode) a variety of collating sequences is possible. The following table may be
used to determine the applicable collating sequence.

Input Mode | Output Mode Internal Mode Collating Sequence

BCL BCL BCL BCL (BCL internal)

BCL EBCDIC EBCDIC BCL Translated to EBCDIC

BCL BCL EBCDIC BCL Translated to EBCDIC
EBCDIC EBCDIC EBCDIC EBCDIC

EBCDIC BCL EBCDIC BCL Translated to EBCDIC
EBCDIC USASCI | EBCDIC USASCII Translated to EBCDIC
USASCI | USASCI | USASCI | USASCI |

USASCI I EBCDIC EBCDIC USASCII Translated to EBCDIC
USASCI | BCL USASCI | BCL Translated to USASCI|
USASCI | EBCDIC USASCI | USASCI| Translated to EBCDIC

CHARACTER REPRESENTATION
The BCL, EBCDIC, and USASCII graphics are the same except as follows:

BCL EBCDIC USASCI I
5 ' (single quote) '

x (multiply, ! or | or MZ }

< = (not) i

_ (underscore) _

« | (or) !

+ PZ (+) {

¢ <

f >

< +

A-l

A BCL plus sign is never translated to an EBCDIC PZ (plus zero) sign, although the EBCDIC
PZ is translated to a BCL plus sign.

EBCDIC 1110 0000 is translated to BCL 00 0000 with an additional flag bit on the next to
most significant bit line (7th bit). As the print drums have 64 graphics and space this signal
can be used to print the 64th graphic. The 64th graphic is a “CR” for BCL drums and a “¢ "
for EBCDIC drums.

COLLATING SEQUENCES

EBCDIC USASCI | BCL

NULQQ hl nmqqr‘u oq -
SOH| | [s 2 SOH| (| o] v 1 Q S
STX| ¢ |t 3 STX|)| P w 2 R A
ETX|] |u 4 ETX | * | Q| x 3 $
HT S |v S EOT | + | R | vy L *
DEL | * |w 6 ENQ) , | S| 2 5 -
vT) Ix 7 ACK | - | T ¢ 6)
FF soly 8 BEL . (VI I 7 H
R |— |2 g BS /1 v]} 8 <
S0 - |pr2z HT o wv/| A q (Blank)
sl / |A LF 1 | x| DEL # /
DLE| ' |8 vT 2]y € S
ocr | 2 jc FF 3|12 ? T
oc2 { — | CR 4| :]
DC3 | > |E S0 51N\ > v
NL | 7 |F ! 6 1) > v
BS : G DLE 7 A + X
CAN | £ |H pct | 8 | - A Y
EM e | pc2. | 9 | \ B z
FS voMz(Y) pc3 | : | a c .
(13 = | och | ; | b D b3
RS vk NAK | < | ¢ £ ¢
us a |t SYN | = | d F. =
LF b |M ETB | > | e G]
ETB | ¢ [N CAN | 7 | f H "
Esc | d |o €M e|g |
EMQ | e |P SuB | A | h .
Ack | f lq ESC | B | i {
BEL | g |[R FS c|j €
SYN | h |\ GS D | k (
€EoT | i |s RS £E | <
Dch | j T us Film -
NAK | Kk fu SP 6 |n x
suB | 1 |V | Hlo J
SP m W " | p K
(no|x ’ J |q L Y
. o) Y $ K r M T
< p |2 2 L |s N §
(q 40 € Mot 0

JJa) J U d S

134

EBCDIC Hex Internal Card Code |
Character Code Code Zone Number
NUL 00 0000 0000 12-0-9- 8-1
SOH 0l 0000 0001 12-9-]
STX 02 0000 0010 12-¢- 2
ETX 03 0000 0011 12-9- 3
HT 05 0000 0101 12-9- 5
DEL 07 0000 0111 12-9- 7
vT 08 0000 1011 12-9- 8-3
FF oc 0000 1100 12-9- 8-4
CR 00 0000 1101 12-9- 8-5
S0 0E 0000 1110 12-9- 8-6
S| OF 0000 1111 12-9- 8-7
DLE 10 0001 0000 12-11-9- 8-}
nCl 1 0001 0001 11-9- |
DC2 12 0001 0010 11-9- 2
0C3 13 0001 0011 11-9- 3
NL 15 0001 0101 11-9 5
BS 16 0001 0110 11-9- 6
CAN 18 0001 1000 11-9- 8
EM 19 0001 1001 11-9- 8-1
FS 1c 0001 1100 11-9- 8-4
GS 10 0001 1101 11-9- 8-5
RS 1E 0001 1110 11-9- 8-6
us IF 0001 1111 11-9- 8-7
LF 25 0010 0101 0-9- 5
ETB 26 0010 0110 0-9- 6
ESC 27 0010 0110 0-9- 7
ENQ 20 0010 1101 0-9- 8-5
ACK 2E 0010 1110 0-9- 8-6
BEL 2F 0010 1111 0-9- 8-7
SYN 32 0011 0010 9- 2
€0T 37 0011 0111 9- 7
DCL 3C 0011 1100 9- 8-4
NAK 30 0011 1101 9- 8-5
sus 3F 0011 1111 9- 8-7
SP ko 0100 0000 (No Punches)
[LA 0100 1010 12- 8-2
. ;) 0100 1011 12- 8-3
< L 0100 1100 12- 8-4
(Lo 0100 1101 12- 8-5
+ Le 0100 1110 12- 8-6
| (+) LF 0100 1111 12- 8-7

- LOW

<
-4

HIGH

EBCDIC Hex. Internal Card Code
Character Code Code Zone Number
& 50 0101 0000 12- -
] SA 0101 1010 1- 8-2
$ 58 0101 1011 - 8-3
* 5C 0101 1100 - 8-4
) 50 0101 1101 - 8-5
; SE 0101 1110 - 8-6
— (g) SF 0101 1111 n- 8-7
- (pash) 60 0110 0000 1n- -
/ 61 0110 0001 0- !
» (Comma) 68 0110 1011 o- 8-3
% 6C 0110 1100 0- 8-4
- ® 6D 0110 1101 0- 8-5
> 6E o110 1110 o- 8-6
? 6F 0110 1111 0- 8-7
: 7A oll1 1010 - 8-2
78 o111 1011 - 8-3
] 7C 0111 1100 - 8-4
' (2) 70 o111 1101 - 8-5
= 7€ 0111 1110 - 8-6
" 7F o1l 1 - 8-7
a 81 1000 0001 12-0- 1
b 82 1000 0010 12-0- 2
c 83 1000 0011 12-0- 3
d 84 1000 0100 12-0- 4
e 85 1000 0101 12-0- 5
f 86 1000 0110 12-0- 6
g 87 1000 0111 12-0- 7
h 88 1000 1000 12-0- 8
i 89 1000 1001 12-0- 9
j 91 1001 0001 12-11-]
k 92 1001 0010 12-11- 2
! 93 1001 0011 12-11- 3
m 94 1001 0100 12-11- 4
n 95 1001 0101 12-11- 5
o 96 1001 0110 12-11- 6
P 97 1001 0111 12-11- 7
q 98 1001 1000 12-11- 8
r 99 1001 1001 12-11- 9

& L0V

<
-

HIGH

3J0N3ND3S ONILVTTI0D 210083

A4

EBCDIC COLLATING SEQUENCE (Cont)

EBCDIC Hex. Internal Card Code
Character Code Code’ Zone Number
s A2 1010 0010 11-0- 2
t A3 1010 0011 . 11-0- 3
u Al 1010 0100 11-0- 4
v AS 1010 ol01 11-0- 3
w A6 1010 0110 11-0- 6
x A7 1010 0111 11-0- 7
y AB 1010 1000 11-0- 8
2 A9 1010 1001 11-0- 9
PZ (+) co 1100 0000 12-0
A Cl 1100 0001 12- !
8 c2 1100 0010 12- 2
C Cc3 1100 0011 12- 3
D Cl 1100 0100 12- 4
E cs 1100 0101 12- 5
F cé 1100 0110 12- 6
G c7 1100 0111 12- 7
H c8 1100 1000 12- 8
| c9 1100 1001 12- 9
MZ (1) DO 1101 0000 - 0
J Dl 1101 0001 - 1
K D2 1101 0010 M- 2
L D3 1101 0011 - 3
M D4 1101 0100 1- 4
N DS 1101 0101 1- 5
0 Dé 1101 ollo M- 6
p 07 1101 0111 - 7
Q D8 1101 1000 - 8
R D9 1101 1001 1- 9
\ (CR) (¢) E0 1110 0000 0- 8-2
3 E2 1110 0010 0- 2
T £3 1110 0011 0- 3
1] E4 1110 0100 0- [
v ES 1110 0101 0- 5
W E6 1110 0110 0- 6
X E7 1110 0111 0- 7
Y E8 1110 1000 0- 8
z E9 1110 1001 0- 9
EBCDIC | Hex. Internal Card Code
Character ‘| Code Code Zone Number
0 FO 1111 0000 - 0

| Fl 1111 0001 - !

2 F2 1111 0010 - 2

3 F3 1111 0011 - 3

4 FL 1111 0100 - 4

5 F§ 1111 0101 - 5

[Fé 1111 0110 - 6

7 F7 il ol - 7

8 F8 1111 1000 - 8
[Fg 1111 1001 - 9

HIGH €————® LOW

> LOW

HIGH -

BCL COLLATING SEQUENCE (BCL INTERNAL)

BCL
BCL BCL BCL | BCL Internal] External| Card Code
Character | Octal | Hex| BA 8421 BA 8421 | Zone Number
0 00 00 | 00 0000 00 1010 | - 0 z
1 0l 01 | 00 0001 00 0001 - 1 =
2 02 02 | 00 0010 00 0010 | - 2 A
3 03 03 | 00 0011 00 0011 - 3
4 04 o4 00 0100 00 0100 - 4
5 0S 05 | 00 0101 00 0101 - 5
6 06 06 | 00 o110 00 0110 | - 6
7 07 07 00 01N 00 0111 - 7
8 10 08 | 00 1000 00 1000 | - 8
9 1 09 | 00 100) 00 1001 - 9
¥ 12 0A 00 1010 00 1011 - 8-3
e 13 08 |00 1011 00 1100 | - 8-
? 14 0C | 00 1100 00 0000 | All other
card codes
: 15 0D { 00 1101 00 1101 - 8-5
> 16 OE 00 1110 00 1110 - 8-6
> 17 OF | 00 1111 00 1111 - 8-7
+ 20 10 | 01 0000 111010 |12 0
A 21 11 | 01 0001 11 0001 12 1
B 22 12 01 0010 11 0010 12 2
C 23 13 01 0011 11 00N 12 3
D 24 14 0l 0100 11 0100 12 L
E 25 15 0l 0101 11 0101 12 5 v
F 26 16 01 0110 11 0110 12 6 5
G 27 17 o1 oI 11 01N 12 7 o

BCL COLLATING SEQUENCE (BCL INTERNAL) (Cont)

BCL
BCL BCL BCL | BCL Internal External Card Code
Character | Octal [Hex | BA 8421 BA 8421 Zone Number
H 30 18 | 01 1000 11 1000 |12 8 §
| 31 19 [01 1001 11001 |12 9)
. 32 1A | 01 1010 11011 |12 8-3
(33 18 |01 1011 111100 | 12 8-4
& 34 1c |01 1100 11 0000 | 12 -
(35 10 |01 nol 111101 |12 8-5
< 36 1€ {01 1110 11110 | 12 8-6
37 1F o1 1 Mmoo fi2 8-7
x(Mult.)ho 20 | 10 0000 101010 | 11 0O
J 4 21 |10 o001 10 0001 | 11 1
K 42 22 {10 o010 10 0010 | 11 2
L 43 23 |10 ool 10 0010 | 11 3
M Ly 24 110 0100 10 0100 | 11 &4
N 45 25 | 10 0101 10 o101 | 11§
0 46 26 |10 0110 100110 | 11 6
P 47 27 |10 o'l 1ol |17
Q 50 28 |10 1000 10 1000 | 11 8
R 51 29 |10 1001 10 1001 | 11 9
S 52 2A |10 1010 10 1011 | 11 8-3
* 53 28 |10 10N 10 1100 | 11 8-4
- Sk 2 |10 1100 10 0000 | 11 -
) 55 20 |10 1101 10 1101 | 11 8-5
; 56 26 {10 1110 101110 | 11 8-6
< 57 2F 110 N 10111y 11 8-7
Blank 60 30 |11 0000 01 0000 | - -
/ 61 31 11 000! 01 0001 {0]
S 62 32 |11 o010 0l 0010 |O 2
T 63 33 | 11ooon 01 0011 |0 3
u 64 34 |11 0100 01 0100 |0 4
v 65 35 (11 0101 ol 0101 |O 5
W 66 36 |11 0110 0l 0110 | O 6
X 67 37 1o o1 0111 |0 7
Y 70 38 |11 1000 01 1000 |O 8
2 71 39 (11 100! 01 1001 |O 9
) 72 3A |11 1010 ol 1011 |O 8-3
b4 73 38 |11 10n 0l 1100 |0O 8-4
74 3¢ |11 1100 0! 1010 | O 8-2
= 75 3 |11 101 ol 1101 |0 8-5 Y
] 76 3€ 111110 01 1110 |oO 8-6
" 77 3F (1 o1 111 |o 8-7 z
L T

COLLATING SEQUENCE - USASCII X3.4-1968

USASCI Hex Internal
Character | Code | Code

NUL 00 0000 0000
SOH (1] 0000 009!
STX 02 0000 0010
ETX 03 0000 0011
EOT 04 0000 0100
ENQ 05 0000 0101
ACK 06 0000 0110
BEL 07 0000 OIN
8S 08 0000 1000
HT 09 0000 1001
LF 0A 0000 1010
vT 0B 0000 1011
FF oc 0000 1100
CR 0D 0000 1101
SO Ot 0000 1110
S| OF 0000 1111
DLE 10 0001 0000
nCl 1 0001 000!
DC2 12 0001 0010
DC3 13 0001 0011
oC4 14 0001 0100
NAK 15 0001 0101
SYN 16 0001 0110
ETB 17 0001 0111
CAN 18 000! 1000
EM 19 0001 1001
sus 1A 0001 1010
ESC 18 0001 1011
FS 1C 0001 1100
GS 1D 0001 1101
RS 1E 0001 1110
us IF 0001 1111
P 20 0010 0000
| (or) |21 o010 00OV
" 22 0010 0010
f] 23 0010 0011
$ 24 0010 0100
2 25 0010 0101
§ 26 0010 0110
y; 27 0010 0111
(28 0010 1000
) 29 0010 100!
* 2A 0010 1010
+ 2B 0010 1011
2C 0010 1100

Low

o

py

HIGH

USASCIHI Hex Internal
Character | Code| Code
- 20 0010 1101
. 2E 0010 1110
/ 2F 0010 1111
0 30 0011 0000
1 31 0011 0001
2 32 0011 0010
3 33 0011 0011
4 34 0011 0100
S 35 0011 0101
6 36 0011 0110
7 37 0011 0111
8 38 0011 1000
9 39 0011 1001
: 3A 0011 1010 °
H 3B 0011 1511
< 3C 0011 1100
= 3D 0011 1101
> 3E 0011 1110
? 3F 0011 1111
e Lo 0100 0200
A 4 0100 0001
B 42 0100 0G10
C 43 0100 0011
D Ly 0100 0100
E 4s 0100 0101
F 46 0100 0110
G 47 0100 0111
H 48 0100 1000
| 49 0100 1701
J LA 0100 1910
K 48 0100 1011
L 4C 0100 1'00
M 4p 0100 1101
N LE 0100 1110
0 113 o100 1111
P 50 0101 0000
Q 51 0101 o001
R 52 0101 cOl0
S 53 0101 0011
T 54 0101 0100
U 55 0101 o101
v 56 0101 0110
W 57 0101 0111
X 58 010! 1000

LOW

o
-

<.

HIGH

A-7

A-8

COLLATING SEQUENCE

USASCI 1 Hex Internal
Character | Code | Code
Y 59 0101 1001
2 SA o101 1010
{ 58 olor 101
\ 5¢C 0101 1100
] 5D 0101 1101
a(—)|5E o101 1110
- S5F o101 1111
) 60 0110 0000
a 61 0110 0001
b 62 0110 0010
c 63 0110 0011
d 64 0110 0100
e 65 0110 ol01
f 66 0110 0110
g 67 0110 0111
h 68 0110 1060
i 69 0110 1001
J 6A 0110 1010
k 68 0110 10N
] 6C 0110 1100

- USASCII X3.4-1968 (Cont)

LOW

(-

HIGH =

USASCI I Hex | Internal
Character | Code | Code
m 60 0110 1101
n 6E 0110 1110
o 6F ol10 1111
[70 0111 0000
q n 0111 000
r 72 0111 o010
s 73 0111 0011
t 74 0111 0100
u 75 0l11 olol
v 76 0111 Oll0
w 77 o111 ol
x 78 0l11 1000
y 79 0111 1001
z 7A o011l 1010
{ 78 o111 101
H 7¢C o1l 1100
} 70 o111 1101
A Vi3 ol 111o
DEL 7F o1 1N

= LOV

)
%

HIGH

COLLATING SEQUENCE - BCL TRANSLATED TO EBCDIC

COLLATING SEQUENCE - BCL TRANSLATED TO EBCDIC

, BCL Translated

BCL External § BCL | BCL EBCDIC EBCDIC | Card Code
Character | BA 4321 | Hex. | Octal |Code Hex 2Zone Number
(Blank) 01 0000 | 10 20 0100 0000]| 40 - -

[11 1100 3C 74 0100 1010 4A 12 8-4
. 11 1011 |38 73 0100 1011 | 4B 12 8-3
< 11 1110 | 3€ 76 0100 1100| &cC 12 8-6
(1ol |30 |75 0100 1101 | 4p 12 8-5
+ 11 1010 | 3A 72 0100 1110| &4E 12 0
- o | 3F 77 0100 1111]| &F 12 8-7
3 11 0000 | 30 60 0101 0000| 50 12 -

] 01 1110 |1E 36 0101 1010 SA 0 8-6
$ 10 1011 | 28 53 0101 1011} S8 1 8-3
* 10 1100 | 2C sk 0101 1100 5C 1 8-4
) 10 1101 | 2D 55 0101 1101] 5D 1 8-5
H 10 1110 2€ 56 0101 1110 SE 1 8-6
< 10 1111 | 2F 57 0101 1111]| 5&F 11 8-7
- 10 0000 | 20 40 0110 0000| 60 n -

/ 01 0001 n 21 Q110 0001| 61 0 |

, 01 1011 1B 33 0110 1011]| 68 0 8-3
4 01 1100 | 1C 34 0110 1100]| 6C 0 8-4
01 1010 | 1A 32 o110 1101]| 60 0 8~2
> 00 1110 | OE 16 0110 1110]| 6E - 8-6
? 00 0000 | 00 00 0110 1111] 6F All other

card codes

: 00 1101 | OD 15 0111 1010} 7A - 8-5
00 1011 | oB 13 orl 1011} 78 - 8-3
(] 00 1100 | OC 14 0111 1100} 7¢ - 8-4
2 00 1111 | OF 17 o111 1101} 70 - 8-7
- 01 1101 1D 35 0111 1110} 7¢ 0 8-5
" o1 1N IF 37 ol nIN} 7F 0 8-7
A 11 0001 | 31} 6] 1100 0001| C1 12 1

B 11 0010 | 32 62 1100 0010] C2 12 2

¢ 11 0011 | 33 63 1100 0011 €3 12 3

D 11 0100 | 34 64 1100 0100 C&4 12 4

€ 11 o101 | 35 65 1100 0101 ¢5 12§

F 11 0110 | 36 66 1100 0110 ¢cé6 12 6

G 101 | 37 67 1100 o111} €7 12 7

H 11 1000 | 38 70 1100 1000| C8 12 8

| 11 1001 | 39 N 1100 1001] c9 12 9

& LOW

‘HIGH =

A9

COLLATING SEQUENCE - BCL TRANSLATED TO EBCDIC (Cont)

BCL Translated
BCL External | BCL BCL EBCDIC EBCDIC Card Code
Character | BA 4321 | Hex. | Octa!l |Code Hex. Zone Number
x(mult) 10 1010 2A 52 1101 0000 DO 1" 0 g
J 10 000‘1 21 13 1101 0001 D1 N 1 -
K 10 0010 |22 |42 1101 0010 D2 12 A
L 10 0011 23 43 1101 0011 D3 N 3
M 10 0100 | 24 | 44 1101 0100 oL n 4
N 10 0101 25 45 1101 0101 DS n S
0 10 0110 | 26 46 1101 0110 -D6 1. 6
P 100111 | 27 47 1101 ol11| o7 n o7
Q 10 1000 28 50 1101 1000 08] 8
R 10 1000 29 51 1101 1001 D9 n 9
S 01 0010 12 22 1110 0010 E2 0 2
T 01 0011 13 23 1110 0011 E3 0 3
V] 01 0100 14 24 1110 0100 Eb4 0 4
v 01 0101 1§ 25 1110 olol ES 0 S
W 01 ollo 16 26 1110 0110 E6 0 6
X 01 01N 17 27 1110 0111 E7 0 7
Y 01 1000 18 30 1110 1000 E8 0 8
2 01 1001 19 31 1110 1001 E9 0 9
0 00 1010 0A 12 1111 0000 FO - 0
1 00 0001 01 01 1111 0001 Fl - 1
2 00 0010 02 02 1111 0010 F2 - 2 /
3 00 00N 03 03 1111 0011 F3 - 3
4 00 0100 ob o4 1111 0100 Fh - 4
S 00 0101 05 05 1111 o101 FS - 5
6 00 0110 06 06 J1 oono Fé - 6
7 00 0111 07 07 11 o F7 - 7 \
8 00 1000 |08 10 1111 1000| F8 - 8]
9 00 100! 09 1R 1111 1001 F9 - 9 T

A-10

COLLATING SEQUENCE - BCL TRANSLATED TO USASCII

BCL Translated

BCL External | BCL BCL USASCI I USASCII | Card Code
Character | BA 8421 Hex. | Octal |Code Hex. Zone Numbers
Blank 01 0000 | 10 20 0010 0000 20 - -

+ 111 | 3F 77 0010 000! 21 12 8-7
" o1 111 | IF 37 0010 0010 22 0 8-7
! 0! 1011 | 0B 33 0010 0011 23 - 8-3
$ 10 1011 | 2B 53 0010 0100 24 11 8-3
2 01 1100 | 1C 34 0010 010! 25 0 8-4
3 11 0000 | 30 60 0010 0110 26 12 -
2 01 111 | oF 37 0010 0111 27 - 8-7
(11 1101 | 30 75 0010 1000 28 12 8-3
) 10 1101 | 20 55 0010 1001 29 11 8-5
* 10 1100 | 2C 54 0010 1010 2A 11 8-4
+ 11 1010 | 3A 72 0010 1011 2B 12 0

. 01 1ol | 18 33 0010 1100 2C 0 8-3
- 10 0000 | 20 4o 0010 1101 20 " -

. 10 1011 | 38 53 0010 1110 2E 12 8-3
/ 01 000l | N 21 0010 1111 2F 0 |

0 00 1010 | OA 12 0011 0000 30 - 0

| 00 0091 | 0Ol 0l 0011 000! 31 - I

2 00 0010 | 02 02 0011 0010 32 - 2

3 00 0011 | 03 03 0011 0011 33 - 3

4 00 0100 | O4 ol 0011 0100 34 - 4

[00 0101 | 05 05 0011 0101 35 - 5

6 00 0110 | 06 06 0011 0110 36 - 6

7 00 0111 | 07 07 0oll 0111 37 - 7

4 00 1000 | 08 08 0011 1000 38 - 8

< 00 1001 | 09 09 0011 1001 39 - 9

: 10 1101 | 0D 55 ooll 1oto 3A - 8-5
; 10 1110 | 2¢ 56 0011 1011 38 11 8-6
< 11 1110 | 3E 76 0011 1100 3C 12 8-6
= o1 1101 | 1D 35 0011 110} 3D 0 8-5
> 00 1110 | OE 16 0011 1110 3E - 8-6
? 00 0000 | 00 00 001l 1111 3F All other

card codes

) 00 1100 | OC 14 0100 0000 4o - 8-4
A 11 000l | 31 61 0100 0001 L4y 12 1

B 11 0010 | 32 62 0100 0010 L2 12 2

c 11 0011 | 33 63 0100 0011 43 12 3

0 11 0100 | 34 64 0100 0100 Ly 124

3 11 0101 | 35 65 0100 0101 Lg 12 5

F 11 0110 | 36 66 0100 0110 L6 12 6

G 11 o1l | 37 67 0100 0111 47 12 7

H 11 1000 | 38 70 0100 1060 48 12 8

| 11 1001 | 39 71 0106 1001 49 12 9

J 10 0001 | 21 4y 0100 1010 LA 1"

K 10 0010 | 22 42 0100 1011 Lg 12

L 10 0011 | 23 43 0100 1100 Lc 13

LOW

[y
\

<
g

HIGH

A-11

COLLATING SEQUENCE - BCL TRANSLATED TO USASCII (Cont)

A-12

BCL Translated

BCL Externa) | BCL | BCL |USASCII USASC!1 | Card Code
Character | BA 8421 Hex. | Octal |Code Hex. -| Zone Number
M 10 0100 | 24 Ly 0100 1101 4p | R

N 10 0101 | 25 4s 0100 1110 LE 15

0 10 0110 | 26 46 0100 1111 LF 16

P 10 0111 |27 47 0101 0000 50 "7

Q 10 1000 |28 50 0101 0001 51 18

R 10 1001 |29 51 0101 0010 52 1M 9

S 01 0010 |12 22 010} 0011 53 0 2

T 01 0011 |13 23 0101 0100 54 0 3

] 01 0100 | 14 24 0101 010! 55] 4

v 01 0101 |15 25 0101 0110 56 0 5
W 01 o110 |16 26 0101 011 57 0 6

X or ol |17 27 0101 1000 58 0 7

Y 01 1000 |18 30 0101 1001 59 0 8

2 01 1001 |19 3l 0101 1010 5A 0 9

[11 1100 | 3¢C 74 0101 1011 58 12 8-4
] ol 1110 |1E 36 0101 1101 5D 0 8-6
< 10 1111 | 2F 57 0101 1110 5E 11 8-7
¢ 01 1010 1A 32 0101 1111 5F 0 8-2
x(Mult) 10 1010 |2A 52 0111 1101 70 1o

» LOW

-l

HIGH

\

i

COLLATING SEQUENCE - USASCII X3.4-1968 TRANSLATED TO

EBCDIC
LOW
USASCII USASC! I Translated EBCDIC USASCII USASCI1 Translated EBCOIC
Character | Hex. Code| EBCDIC Code Hex. Code|lcharacter Hex. Code EBCDIC Code Hex. Code
NULL 00 0000 0000 00 s 26 0101 0000 50
SOH 01 0000 0001 01] sD 0101 1010 SA
STX 02 0000 0010 02 $ 24 0101 1011 S8
ETX 03 0000 0011 03 * 2A 0101 1100 5C
HT 09 0000 0101 05) 29 o101 1101 50
DEL 7F 0000 0111 07 ; 3B 0101 1110 SE
vt (o]] 0000 1011 0B A () SE o101 1111 SF
FF oc 0000 1100 oc
CR 0D 0000 1101 1] - 2D 0110 0000 60
SO 0E 0000 1110 0E / 2F 0110 0001 61
S| OF 0000 1111 OF ! 7¢ 0110 1010 6A
, 2C o110 10N 68
DLE 10 0001 0000 10 % 25 0110 1100 6C
pCl 11 0001 0001 N - SF 0110 1101 6D
bDC2 12 0001 0010 12 > 3E 0110 1110 6E
DC3 13 0001 cOIN 13 ? 3F 0110 1111 6F
8S 08 0001 Oll0 16 ;
» 60 0111 1001 79
: 3A 01tl 1010 7A
1 23 0111 1011 78
CAN 18 0001 1000 18 e 114 o111 1100 7C
EM 19 0001 1001 19 - 27 0111 1101 70
FS ic 0001 1100 1C - 3 o1y 1110 7€
GS 10 0001 1101 10 " 22 ol 1111 7F
RS 113 0001 1110 1E
us IF 0001 1111 IF a 61 1000 000! 81
b 62 1000 0010 82
LF 0A 0010 0101 25 c 63 1000 0011 83
ETB 17 0010 0110 26 d 64 1000 0100 84
ESC 18 0010 0111 27 e 65 1000 0101 85
ENQ 05 0010 1101 20 f 66 1000 0110 86
ACK 06 0010 1110 2E g 67 1000 0111 87
BEL 07 0010 1111 2F h 68 1000 1000 88
I 69 1000 1001 89
SYN 16 0011 0010 32
EOT oL 0011 0111 37 J 6A 1001 0001 91
DCY 14 0011 1100 3C k 68 1001 0010 92
NAK 15 0011 1101 30 1 6¢C 1001 001! 93
sus 1A ool 11N 3F m 60 1001 0100 94
n 6E 1001 0101 95
SP 20 0100 0000 Lo) 6F 1001 o110 96
{ 58 0100 1010 LA P 70 1001 0111 97
. 2€ 0100 1011 1} q N 1001 1000 98
< 3C 0100 1100 4c r 72 1001 1001 99
(28 0100 1101 bo
+ 28 0100 1110 LE ~ 70 1010 0001 Al
| (or) 21 0100 11N 4F s 73 1010 0010 A2
HIGH

A-13

COLLATING SEQUENCE - USASCII X3.4-1968 TRANSLATED TO
EBCDIC (Cont)

USASCI | USASCIHI Translated EBCDIC
Character Hex. Code EBCDIC Code Hex. Code
t 74 1010 0011 A3 3
u 75 1010 0100 Al S
v 76 ' 1010 0101 AS A
w 77 1010 0110 A6
x 78 1010 0111 A7
Y 79 1010 1000 A8
2 7A 1010 1001 A9
{ 78 1100 0000 co
A 4) 1100 0001 ¢l
B 42 1100 0010 2
c 43 1100 0011 3
D Ly 1100 0100 ch
E 4s 1100 0101 c5
F 46 1100 0110 cé
G 47 1100 0111 c7
H 48 1100 1000 c8
| 49 1100 1000 c9
} 70 1101 0000 Do
J LA 1101 0001 Dl
K 4B 1101 0010 D2
L 4 1101 0011 D3
M 4p 1101 0100 D4
N LE 1101 0101 D5
0 LF 1101 0110 D6
P 50 1101 0111 07
Q 51 1101 1000 D8
R 52 1101 1001 D9
\ 5¢C 1110 0000 £0
S 53 1110 0010 £2
T s 1110 0011 €3
U 55 1110 0100 E4
v 56 1110 0101 €S
W 57 1110 0110 £6
X 58 1110 0111 £7 \
Y 59 1110 1000 E8 S
z S5A 1110 1001 E9 P
0 30 1111 0000 FO >
1 13 1111 0001 Fl pr
2 32 1111 0010 F2
3 33 1111 0011 F2
4 34 1111 0100 Fh
5 35 1111 0101 FS
6 36 1111 0110 F6
7 37 1 onn F7
8 38 1111 1000 F8 S
9 39 1111 1001 F9 =

A-l4

XALGOL COLLATING SEQUENCE (B 5700 BCL)

BCL BCL
BCL BCL BCL Internal External Card Code
Character Octal Hex BA 8421 BA 8421 Zone Number
:*
Blank 60 30 11 0000 01 0000 - - 5
o
. 32 1A 01 1010 1noon 12 8-3 3
[33 18 o1 1on i 1100 12 8-4
(35 10 o1 1o 1" no 12 8-5
< 36 13 o1 1110 11110 12 8-6
- 37 IF or N 1N 12 8-7
& 34 [ol 1100 11 0000 12 -
$ 52 2A 10 1010 10 101 1n 8-3 !
* 53 28 10 1011 10 1100 11 8-4 g
) 55 20 10 1101 10 1101 11 8-5 w
; 56 2€ 10 1110 10 1110 1 8-6 &
< 57 2F 10 11 10 1 1N 8-7 w
- 54 2¢ 10 1100 10 0000 n - g
/ 61 31 110001 01 0001 0 1 %
’ 72 3A 11 1010 o1 10N 0 8-3 3
3 73 38 1o o1 1100 0 84 O
- 75 3D 1 N0 o1 110l 0 8-5
] 76 3E 1M 1o o1 1110 0 8-6
" 77 3F 1 m o1 1N 0o 8-7
12 0A 00 1010 00 1011 - 8-3
e 13 08 00 1011 00 1100 - 8-4
: 15 (\]) 00 110! 00 1101 - 8-5
> 16 OE 00 1110 00 1110 - 8-6
2 17 OF 00 1111 00 111 - 8-7
y
+ 20 10 01 0000 11 1010 12 0 x
A 21 n 01 000! 11 0001 12 1z
B 22 12 01 0010 11 0010 12 2
c 23 13 o1 ool 1 ool 12 3
D 2k 14 0l 0100 11 0100 12 4
E 25 15 01 olol 11 o101 12 5
F 26 16 01 o110 11 o1lo 12 6
[27 17 o1 oI 1 o 12 7
H 30 18 01 1000 11 1000 12 8
| 31 19 01 1001 11 1001 12 9
x 4o 20 10 0000 10 1010 1n o
J n 21 10 0001 10 0001 n o
K 42 22 10 0010 10 0010 "2
L 43 23 10 ool 10 0011 1" 3
M Ly 24 10 0100 10 0100 1" b
N 45 25 10 0101 10 0101 n s

A-15

A-16

XALGOL COLLATING SEQUENCE (B 5700 BCL) (Cont)

BCL BCL
BCL BCL BCL Internal External Card Code
Character Octal Hex BA 8421 BA 8421 Zone Number
0 46 26 10 0110 10 0110 1M 6
P Y] 27 10 011 10 01 n 7 3
Q 50 28 10 1000 10 1000 n 8 -
R 51 29 10 1001 10 1001 n 9 }
4 74 3C 11 1100 0l 1010 0 8-2
S 62 32 11 0010 ol o010 0 2
T 63 33 1ooon o1 0011 0 3
] 64 34 11 0100 0l o100 0 &
v 65 35 11 0101 01 o101 0 5
W 66 36 11 0110 01 ollo 0 6
X 67 37 11 01N o1 oI o 7
Y 70 38 11 1000 01 1000 o 8
b4 71 39 111001 01 1001 0 9
0 00 00 00 0000 00 1010 - 0 .
1 01 01 00 0001 00 0001 - 1 s
2 02 02 00 0010 00 0010 - 2 T
3 03 03 00 0011 00 0011 - 3
4 04 o4 00 0100 00 0100 -]
5 05 05 00 o0101 00 o101 - 5
6 06 06 00 o0110 00 o110 - 6
7 07 07 00 oI 00 0111 - 7
8 10 08 00 1000 00 1000 - 8
9 1 09 00 1001 00 1001 -9
? 14 oc 00 1100 00 0000 ALL OTHER
CARD CODES

FORTRAN BCD COLLATING SEQUENCE

BCD Internal Representation]internal Translation|Card Code
Character Hex Binary Binary Hex Zone Number
. (period) 1A 01 tolo otoc 1011 4s 12 8-3 z
) 18 |o1 10N 0100 1100 4cC 12 84 |3
[
+ [+ 0! 1100 0101 0000 50 12
$ 2A 10 1010 o101 1011 58 1 8-3
* 28 10 1011 o101 1100 5C 1 8-4
; 2E 10 1110 0101 1110 SE 1 8-6
< 2F 10 1111 olo0tl 1111 SF 1 8-7
- (minus) 2C 10 1100 0110 0000 60 n
/ 31 11 000! 0110 oool 61 0 1
, (comma) 3A 1t 1010 0110 1011 68 0 8-3
(38 11 1011 0110 1100 6C 0 8-4
’ 30D 1 ot o110 110} 6D 0 8-5
> 3E 11 1110 otio 1tio 6E 0 8-6
? 3F 1111 o110 111N 6F 0 8-7
= 0A 00 1010 o111 1011 78 8-3
e 08 00 1011 o111 1100 7¢ 8-4
2 oD 00 1101 o111t 1101 70 8-5
- OE 00 1110 olltl 1110 7€ 8-6 .
" OF 00 1111 or 1 7€ 8-7
A 11 01 000! 1100 0001 cl 12 1
] 12 01 0010 1100 0010 c2 12 2
c 13 01 0011 1100 o011 c3 12 3
D 14 01 0100 1100 0100 ch 12 4
E 15 o1 olol 1100 0101 cs 12 5§
F 16 ol ollo 1100 0110 cé 12 6
8 17 o1 ol 1100 0111 c7 12 7
H 18 01 1000 1100 1000 c8 12 8
| 19 01 1001 1100 1001 c9 12 9
J 2] 10 000! 1101 0001 D! n 1
K 22 10 0010 1101 o010 D2 12
L 23 10 0011 1101 0011 D3 13
M 24 10 0100 1101 0100 D4 14
N 25 10 o101l 1100 oi0l D5 n s
0 26 10 0110 1101 o110 06 1 6
P 27 10 o111 1101 o1l 07 "7
Q 28 10 1000 1101 1000 D8 1n 8
R 29 10 1001 1101 1001 D9 19
S 31 11 o010 1110 0010 E2 0 2
T 33 11 ool 1110 0011 E3 0 3
v 34 11 0100 1110 0100 Eh4 0 4
v 35 11 olol 1110 0101 ES 0 5
W 36 11 o110 1110 0110 E6 0 6
X 37 11 o 1110 o111 E7 0 7
Y 38 11 1000 1110 1000 E8 0 8
4 39 11 1001 1110 1001 €9 0 9
0 00 00 0000 1111 0000 FO 0
1 0l 00 0001 1111 0001 Fl 1
2 02 00 0010 1111 0010 F2 2
3 03 |00 ooll 1111 o011 F3 3
4 04 00 0100 1111 o100 2] 4
5 05 |05 olol 1111 olol F5 5
6 06 {00 0110 1111 o110 Fé 6
7 07 |00 olll 1111 ot F7 7
8 08 |00 1000 1111 1000 F8 8
9 09 |00 1001 1111 1001 F9 9 !
)
T

EXTENDED BINARY CODED DECIMAL INTERCHANGE CODES

(EBCDIC)

r06 21| 4-0-6-0-11] 2-0-6-11-21| s-9-6-0-21[L-8-0-1-Tt| L-@-0-u| 4-w-u-21] 2-8-0-21 4-0 8.1 L-e-2 4-9-6-1
W3i3MN20 - e (S8 -
-84 2t] 9-9-6-0-11] 9-9-641-21] 9-0-6-0-21]9-8-0-1-21] 9-8-0-11] 9-8-1-21| 9-0-0-2¢ -8 9-8-0 *-0-11 v-e-T:]
- < ‘< -
8601121 5-8-¢-0-1| S-0-6-11-21]| $-8-6-0-21] 0121 ¢-8-0-u] S-9-u-21| 6-9-0-24 s $-9-0 s-s-ul s-0- $-9-6-11
), t215M ¢) $2
96-04121| »9-6-0-11| »-8-64+21] »-0-6-0-2i| -0-04121] v-8-0-u] v-9u1-21] v-s-0-T1 v-e v-8-0 v-8-11 v-e-2 e-6it| v-0-6-21{(3) o
® * - > $4 a4
£-0-6-01121] £-8-6-0-11] 1-0-6-1+21| 5-9-6-0-21| €-0-0-11-2:] €-v-0-n| g-0-11-21} g-v-0-2t £- £-8-0 £-8-1 £-9-21 £-e6| 060 C-0-6u] coetij(e)
L 4 s AN
2-6-6-041-21 2-9-6-11-Z1] 2-8-6-0-31 z-e-11-21] 2z-s-0-21 z- u-2 z-8-1 z-8-¢ zeen} z-eezi|(v)
: C
. 6-0 .- 6-21| e-0ur-2i &0-n e-41-21 6021 i-e 1-9-0 -8-n 1-6-6-24 .
2 L] 1 . '
[] 0 e-n e-Zi| so-n-21 -0-1t [T 1] 9-0-21} 8-6-041-21] ®60 11| @6 #6007 .-6 eso0 .-6-n .-e-2t .
A ° " . 0 o nvd
3 &o a-u i-2 4-040-21 4-0-11 &-n-u 4-0-21] 4-6-04+21 4-6-0-11 62| 4-6-0-21 i-e 4-6-0 4-8-0 -8
x e ° - o s : 103 252 30 ‘
L -0 -1 -U| S 9-0-11 9-11-21 90-21]9-6-011-21] 96011} -6t ¢ 02 *6 ’eo0 .62t
L o 4 . » [F%] *
L] §-0 s-n $-21] S-Ccu £-0-1 S-1i-¢t 6-0-21| s-e-041-21} §-6-0-u) o812 ©6-0-21 s-6 «$-0 s-6-11 s-6-2 ‘
A ~ 2 . . . FAl Rl ci
(4 »-0 v-u »-21 »c-u-n1 »o0-u (IR] »-0-21| »8-041-21| ¥-8-0-1s, 9-6-1:-21] ¥-6-0-T1 v-e v-e-0 v-6-11 v-6-2 .
n L (] - (4
€ *0 | 91 £-2 £-0-41-21 €-0-11 £1-31 £-0-21| £-6-0-11-21 £-6-0-11 £-€-11-21 £-6-0-2: s £-6-0 £-6-.1 €-6-21 ‘
1 b} E) l 3 ' t20 x13
£ 4 o T-n z- T-G-1--T- 2-0-1t -2 2-0-21 | T-6-0-11-21 2401 2-641-2:| T-8-0-21 Ze z-6-C 2-6-n e 2
s » [] L) L] . NAS 230 x18
0 -.0-1 L1} -3 »0~4-2: =0-i -2 1-8-041-21 -0 Y S 1 1-4-0-2 -6 1-6-0 ~e-it -4-2 .
r v r . Vi 136 119
o 2-e-0 o-u 0-21| 1-8-0~1 24 84121 18031 01+ " | wwvie |-eeou] -9-e-C
DN | i 2w | taze - . b
(¥1] (1) ({1} o [{}] n . . " » s » € 2
$1) [2 t o1
] ° '] [o ' ° ' o ' o ' c
'] o] [[] ' ' o c 0 '
' ! ' o o o t ' ' 1 o o
' [[[' [' ' [}] o o o 2

Sttty N Yt

®INTEANAL COLLATING SEQUENCE-00 0 0/0-0 0 0 TO I1Li/1i1

A-18

APPENDIX B
DATA REPRESENTATION

*All other codes

EBCDIC DECIMAL| EBCDIC HEX. EBCDIC 8CL BCL BCL
GRAPHIC | BCL | VALUE |INTERNAL |GRAPHIC |{CARD CODE [CARD CODE | OCTAL| INTERNAL |EXTERNAL
BLANK 64 0100 0000 40 No Punches | No Punches 60 11 0000 01 0000
(74 0100 1010 4A 1282 128 4 33 011011 11 1100
. 75 0100 1011 48 1283 1283 32 011010 11101
< 76 0100 1100 4C 128 4 1286 36 011110 111110
(77 0100 1101 40 1285 1285 35 011101 11 1101
+ 78 0100 1110 4E 1286 111010
[- 79 0100 1111 4F 1287 1287 37 o111 1mim
& 80 0101 0000 50 12 12 34 01 1100 11 0000
] 90 0101 1010 5A 1182 086 76 111110 011110
$ 91 0101 1011 58 1183 1183 52 10 1010 10101
. 92 0101 1100 5C 1184 1184 53 101011 10 1100
) 93 0101 1101 5D 1185 1185 55 10 1101 10 1101
: 94 0101 1110 5E 1186 1186 56 101110 10 1110
- < 95 0101 1111 5F 1187 1187 57 101N 101
- 96 0110 0000 60 1 n 54 10 1100 10 0000
/ 97 0110 0001 61 01 01 61 11 0001 01 0001
, 107 0110 1011 68 083 083 72 111010 01101
% 108 0110 1100 6C 084 084 73 1mion 011100
- # 109 0110 1101 6D 085 082 74 111100 011010
> 110 01101110 6E 086 86 16 001110 001110
? " 0110 1111 6F 087 * 14 00 1100 00 0000
: 122 01111010 7A 82 85 15 001101 00 1101
¥ 123 01111011 78 83 83 12 00 1010 00 1011
@ 124 01111100 7C 84 8 4 13 00 1011 00 1100
! 2 125 0111 1101 70 865 87 17 001111 00 1111
= 126 01111110 7€ 86 085 75 111101 011101
" 127 011111 7F 87 087 77 mim o011
(+)PZ + 192 1100 0000 co 120 120 20 01 0000 11 1010
A 193 1100 0001 C1 121 121 21 01 0001 11 0001
B 194 1100 0010 c2 122 12 2 22 010010 110010
o] 195 1100 0011 c3 12 3 123 23 010011 110011
D 196 1100 0100 c4 12 4 12 4 24 010100 110100
E 197 1100 0101 C5 125 125 25 010101 110101
F 198 11000110 Cé 12 6 12 6 26 010110 110110
G 199 11000111 C7 17 127 27 010111 110
H 200 1100 1000- cs 12 8 128 30 01 1000 11 1000
[MULT 201 1100 1001 c9 129 129 31 011001 111001
(hmz xL 208 1101 0000 DO 10 10 40 10 0000 10 1010
J 209 1101 0001 D1 11 11 41 10 0001 10 0001
K 210 11010010 D2 12 12 42 100010 100010
L 211 1101 0011 D3 13 13 43 100011 100011
M 212 1101 0100 D4 14 14 44 100100 10 0100
N 213 1101 0101 D5 115 115 45 100101 100101
(0] 214 11010110 D6 16 116 46 100110 100110
P 215 110101 D7 17 17 47 100111 100111

DATA REPRESENTATION

1. EBCDIC 0100 1110 also translates to BCL 11 1010.

2. EBCDIC 1100 1111 is translated to BCL 00 0000 with an additional flag bit on the most
significant bit line (8th bit). This function is used by the unbuffered printer to stop scanning.
3. EBCDIC 1110 0000 is translated to BCL 00 0000 with an additional flag bit on the next
to most significant bit line (7th bit). As the print drums have 64 graphics and space this signal
can be used to print the 64th graphic. The 64th graphic is a “CR” for BCL drums and a “¢ ”

for EBCDIC drums.
4. The remaining 189 EBCDIC codes are translated to BCL 00 0000 (? code).
5. The EBCDIC graphics and BCL graphics are the same except as follows:

t ™ AXx N

BCL

’

(multiply) !

-/

EBCDIC

(single quote)

(not)
(underscore)

EBCDIC DECIMAL| EBCDIC HEX. EBCDIC BCL BCL BCL
GRAPHIC | BCL | VALUE |INTERNAL [GRAPHIC |CARD CODE | CARD CODE | OCTAL | INTERNAL| EXTERNAL
Q 216 | 11011000 | D8 18 18 50 | 101000 | 101000
R 217 | 11011001 | D9 19 19 51 | 101001 | 101001
¢ 224 | 11100000 | EO 082 00 0000
s 226 | 11100010 | E2 02 02 62 | 110010 | 010010
T 227 | 11100011 | E3 03 03 63 | 110011 | 01001
u 228 | 11100100 | E4 04 04 64 | 110100 | 010100
v 220 | 11100101 | ES 05§ 05 65 | 110101 | 010101
w 230 | 11100110 | E6 06 06 66 | 110110 | 010110
X 231 [11100111 | €7 07 07 67 | 1101 | o101
2 232 | 11101000 | E8 08 08 70 | 111000 | 011000
¢ 233 | 11101001 | E9 09 09 71 | 111001 | 011001
0 240 | 11110000 | FO 0 0 00 | 000000 | 001010
1 241 | 11110001 | F1 1 1 01 | ooooor | 000001
2 242 [11moo0| F2 2 2 02 | 000010 | 000010
3 243 | 11110011 | F3 3 3 03 | oooo11 | o0ooon
4 244 | 11110100| F4 4 4 04 | 000100 | 000100
5 245 | 11110101 | FS 5 5 05 | 000101 | 000101
6 246 | 11110110 | F6 6 6 06 | oootio | ooo110
7 247 | 1o | F7 7 7 07 | ooo11 | ooo1n
8 248 [11111000| F8 8 8 10 | 001000 | 001000
9 249 | 11111001 | F9 9 9 11 | 001001 | 001001
NOTES

MODE D&
HEX CODE

(PYo0O—¥ 3F
(P)40~¥ 7F
W42
(V)43
(V)44

(V)45
(V)46
(V)47
(V)48
(V4A
(V4E
(P)80

(P)81
(P)82

(P)83
(P)84
(V)84

(P)85

W85
(P)86

P)87
(V)87

(P)88
(P)89

(P)8A
(P)8B

(V)8B

(P)8D
(P)SE

(P)8F
(V)8F

(P)90
(P91
(P)92
(P)93

(P)94
P)95

APPENDIX C
PROCESSOR OPERATORS, BY

HEXADECIMAL CODE

OPERATOR NAME

VALUE CALL
NAME CALL

SET TWO SINGLES TO
DOUBLE

SET DOUBLE TO TWO
SINGLES

IDLE UNTIL
INTERRUPT

SET INTERVAL
TIMER

ENABLE EXTERNAL
INTERRUPTS
DISABLE EXTERNAL
INTERRUPTS
IGNORE PARITY
SCAN IN

READ PROCESSOR
IDENTIFICATION
ADD

SUBTRACT
MULTIPLY

DIVIDE

INTEGER DIVIDE
PAUSE UNTIL
INTERRUPT
REMAINDER DIVIDE
OCCURS INDEX
INTEGERIZE,
TRUNCATED

INTEGERIZE,
ROUNDED
INTEGERIZE,
ROUNDED, DOUBLE
PRECISION

LESS THAN
GREATER THAN OR
EQUAL

GREATER THAN
LESS THAN OR
EQUAL

LEADING ONE TEST
EQUAL

NOT EQUAL
CHANGE SIGN BIT

EXTENDED
MULTIPLE
INTERRUPT
CHANNEL N
LOGICAL AND
LOGICAL OR
LOGICAL NEGATE
LOGICAL
EQUIVALENCE

LOGICAL EQUAL
ESCAPE TO 16-BIT
INSTRUCTION

MNEMONIC

VALC
NAMC
JOIN
SPLT
IDLE

SINT
EEXI
DEXI
IGPR
SCNI
WHOI
ADD

SUBT
MULT

DIVD
IDV
PAUS

RDIV
OCRX
NTIA

NTGR
NTGD

LESS
GREQ

GRTR
LSEQ

LOG2
EQUL
NEQL
CHSN

MULX
INCN

LAND
LOR
LNOT
LEQV

SAME
VARI

MODE ID &
HEX CODE

(P)96
(P)97
(P)98

(P)99

(P)9A
(P)9B

P)9C
(P)D

(P)9E
(P9F
(P)AO
(P)Al
(P)A2

(P)A3
(P)A4
(P)AS

(P)A6
(P)AT
(P)A8

(VA8
(P)A9
(PAA

(NAA
(P)AB
(P)AC

WAC
(PAD

(PAE
(P)AF

WMAF
(P)BO
(P)B1
(P)B2
(P)B3

(P)B4

(V)B4
(P)Bb

(NB6
(P)B6

(V)B6
(P)B7

OPERATOR NAME

BIT SET
DYNAMIC BIT SET
FIELD TRANSFER

DYNAMIC FIELD
TRANSFER
FIELD ISOLATE
DYNAMIC FIELD
ISOLATE

FIELD INSERT
DYNAMIC FIELD
INSERT

BIT RESET
DYNAMIC BIT RESET
BRANCH FALSE
BRANCH TRUE
BRANCH
UNCONDITIONAL

EXIT

STEP AND BRANCH
INDEX AND LOAD
NAME

INDEX

RETURN

DYNAMIC BRANCH
FALSE

SET MEMORY
INHIBITS
DYNAMIC BRANCH
TRUE

DYNAMIC BRANCH
UNCONDITIONAL
SET MEMORY LIMITS
ENTER

EVALUATE
DESCRIPTOR

FETCH MEMORY FAIL

INDEX AND LOAD
VALUE

MARK STACK
STUFF
ENVIRONMENT

MOVE TO STACK
LIT CALL ZERO
LIT CALL ONE
LIT CALL 8 BITS
LIT CALL 16 BITS

PUSH DOWN STACK
REGISTERS

SET TAG FIELD
DELETE TOP OF
STACK

READ TAG FIELD
EXCHANGE

ROTATE STACK UP
DUPLICATE TOP OF
STACK

MNEMONIC

BSET
DBST
FLTR

DFTR

ISOL
DISO

INSR
DINS

BRST
DBRS
BRFL
BRTR
BRUN

EXIT
STBR
NXLN

INDX
RETN
DBFL

SINH
DBTR
DBUN

SLMT
ENTR
EVAL

FMFR
NXLV

MKST
STFF

MVST
ZERO
ONE
LTS8
LT16

PUSH

STAG
DLET

RTAG
EXCH

RSUP
DUPL

C-1

MODE ID &
HEX CODE

WB7
(P)B8
(V)B8

(P)B9
(V)B9
(P)BA

(VM)BA
(P)BB

(V)BB
(MBC
(P)BD
(WV)BD
(P)BE

(V)BE
(P)BF
(V)BF
(P)Co
(P)XC1

(P)YC2

(P)XC3

(P)YC4
(P)XCB

(P)C6
(PYC7

(P)YC8
(P)XC9

(P)CA
(PYCB
(P)CC

(PXCD
(P)CE
(PYCF

(E)DO
(P)DO

MWDo
(E)D1
(P)D1
WD1

(E)D2

OPERATOR NAME

ROTATE STACK DOWN
STORE DESTRUCTIVE
READ PROCESSOR
REGISTER

STORE NON-
DESTRUCTIVE
SET PROCESSOR
REGISTER
OVERWRITE
DESTRUCTIVE
READ WITH LOCK
OVERWRITE NON-
DESTRUCTIVE

COUNT BINARY ONES
LOAD TRANSPARENT

LOAD

LINKED LIST LOOKUP
LIT CALL 48 BITS

MASKED SEARCH FOR
EQUAL

MAKE PROGRAM
CONTROL WORD

STOP

SCALE LEFT
DYNAMIC SCALE
LEFT

SCALE RIGHT
TRUNCATE

DYNAMIC SCALE
RIGHT TRUNCATE
SCALE RIGHT SAVE
DYNAMIC SCALE
RIGHT SAVE

SCALE RIGHT FINAL
DYNAMIC SCALE
RIGHT FINAL

SCALE RIGHT ROUND
DYNAMIC SCALE
RIGHT ROUND

INPUT CONVERT,
DESTRUCTIVE

INPUT CONVERT,
UPDATE

SET TO SINGLE

PRECISION
TRUNCATE

SET TO SINGLE
PRECISION, ROUNDED
SET TO DOUBLE
PRECISION

INSERT MARK STACK
MOVE WITH INSERT
TABLE ENTER EDIT,
DESTRUCTIVE

UNPACK SIGNED,
DESTRUCTIVE

MOVE WITH FLOAT
PACK DESTRUCTIVE
UNPACK ABSOLUTE,
DESTRUCTIVE

SKIP FORWARD
SOURCE CHARACTERS

MNEMONIC

RSDN
STOD
RPRR

STON
SPRR
OVRD

RDLK
OVRN

CBON
LODT
LOAD
LLLU
LT48

SRCH
MPCW
STOP
SCLF
DSLF

SCRT

DSRT

SCRS
DSRS

SCRF
DSRF

SCRR
DSRR

ICVD
ICVU

SNGT

SNGL
XTND
IMKS

MINS
TEED

USND
MFLT
PACD
UABD

SFSC

MODE ID &
HEX CODE

(P)D2
(VD2
(E)D3
(P)D3
(VD3

(E)D4
(P)D4
(VD4

(E)D6
(P)D6

(V)D5

(P)D6
(E)D7
(P)D7

WD7
(E)D8
(P)D8
(V)D8

(E)D9

(P)D9
(W)D9

(E)DA

(P)DA
(V)DA

(E)DB

(P)DB
(VDB
(E)DC
(P)DC

W)DC
(E)DD
(P)DD
WDD
(E)DE

OPERATOR NAME

EXECUTE SINGLE
MICRO, DESTRUCTIVE
TRANSFER WHILE
FALSE, DESTRUCTIVE
SKIP REVERSE
SOURCE CHARACTERS
TRANSFER WORDS,
DESTRUCTIVE
TRANSFER WHILE
TRUE, DESTRUCTIVE

RESET FLOAT
TRANSFER WORDS,
OVERWRITE
DESTRUCTIVE

SCAN WHILE FALSE,
DESTRUCTIVE

END FLOAT

STRING ISOLATE

SCAN WHILE TRUE,
DESTRUCTIVE

(E)YD6 MOVE NUMERIC
UNCONDITIONAL

SET EXTERNAL SIGN
MOVE CHARACTERS
READ AND CLEAR
OVERFLOW FLIP-FLOP

TRANSLATE

INSERT OVERPUNCH
TABLE ENTER EDIT,
UPDATE

UNPACK SIGNED
UPDATE

INSERT DISPLAY
SIGN

PACK UPDATE
UNPACK ABSOLUTE,
UPDATE

SKIP FORWARD
DESTINATION
CHARACTERS
EXECUTE SINGLE
MICRO, UPDATE
TRANSFER WHILE
FALSE, UPDATE

SKIP REVERSE
DESTINATION
CHARACTERS
TRANSFER WORDS,
UPDATE
TRANSFER WHILE
TRUE, UPDATE
INSERT
UNCONDITIONAL
TRANSFER WORDS
OVERWRITE UPDATE

SCAN WHILE FALSE,
UPDATE

INSERT CONDITIONAL
EXECUTE SINGLE
MICRO, SINGLE
POINTER UPDATE
SCAN WHILE TRUE,
UPDATE

END EDIT

MNEMONIC

EXSD
TWFD
SRSC
TWSD
TWTD

RSTF
TWOD
SWFD

ENDF
SISO

SWTD
MVNU
SXSN

MCHR
ROFF

TRNS

INOP
TEEU
USNU

INSG

PACU
UABU

SFDC

EXSU

TWFU

SRDC

TWSU
TWTU
INSU
TWOU

SWFU

INSC
EXPU
SWTU
ENDE

MODE D &
HEX CODE

(P)DE

(E)DF
(P)DF
(V)DF
(P)EO

(P)E1

(Z)E1
(P)E2

(P)E3

(P)E4

(P)E5

(P)E6

(P)E7

(P)ES

(P)E9

(P)EA

(PEB

(P)EC
(P)ED

(P)EE

(PEF

(P)FO

OPERATOR NAME

READ TRUE/FALSE
FLIP-FLOP
CONDITIONAL HALT
CONDITIONAL HALT
CONDITIONAL HALT
TRANSFER WHILE
LESS, DESTRUCTIVE

TRANSFER WHILE
GREATER OR EQUAL,
DESTRUCTIVE

TRANSFER WHILE
GREATER,
DESTRUCTIVE

TRANSFER WHILE
LESS OR EQUAL,
DESTRUCTIVE

TRANSFER WHILE
EQUAL, DESTRUCTIVE

TRANSFER WHILE
NOT EQUAL,
DESTRUCTIVE

TRANSFER
UNCONDITIONAL,
DESTRUCTIVE

MULTIPLE-WORD
VECTOR MODE

TRANSFER WHILE
LESS, UPDATE

TRANSFER WHILE
GREATER OR EQUAL,
UPDATE

INCREMENT
TRANSFER WHILE
GREATER, UPDATE

TRANSFER WHILE
LESS OR EQUAL,
UPDATE

INCREMENT
TRANSFER WHILE
EQUAL, UPDATE
TRANSFER WHILE
NOT EQUAL, UPDATE

TRANSFER
UNCONDITIONAL,
UPDATE

SINGLE-WORD
VECTOR MODE

COMPARE
CHARACTERS LESS,
DESTRUCTIVE

MNEMONIC

RTFF

HALT
HALT
HALT
TLSD
TGED

TGTD

TLED

TEQD

TNED

TUND

VMOM

TLSU

TGEU

TGTU

TLEU

TEQU
TNEU

TUNU

VMOS

CLSD

MODE ID &
HEX CODE

WFo

(P)F1

VF1

(P)F2

WNF2

(P)F3

(VF3

(P)F4

(V)F4

(P)Fb

WF5

(P)F8

(VF8

(P)F9

WF9

(P)FA

(VFA

(P)FB

(VWFB

OPERATOR NAME

SCAN WHILE LESS,
DESTRUCTIVE

COMPARE
CHARACTERS
GREATER OR EQUAL,
DESTRUCTIVE

SCAN WHILE
GREATER OR EQUAL,
DESTRUCTIVE

COMPARE
CHARACTERS
GREATER,
DESTRUCTIVE
SCAN WHILE
GREATER,
DESTRUCTIVE

COMPARE
CHARACTERS LESS
OR EQUAL,
DESTRUCTIVE

SCAN WHILE LESS OR
EQUAL, DESTRUCTIVE

COMPARE
CHARACTERS EQUAL,
DESTRUCTIVE

SCAN WHILE EQUAL,
DESTRUCTIVE

COMPARE
CHARACTERS NOT
EQUAL, DESTRUCTIVE
SCAN WHILE NOT
EQUAL, DESTRUCTIVE

COMPARE
CHARACTERS LESS,
UPDATE

SCAN WHILE LESS,
UPDATE

COMPARE
CHARACTERS .
GREATER OR EQUAL,
UPDATE

SCAN WHILE
GREATER OR EQUAL,
UPDATE

INCREMENT

COMPARE
CHARACTERS
GREATER, UPDATE
SCAN WHILE
GREATER, UPDATE

COMPARE
CHARACTERS LESS
OR EQUAL, UPDATE
SCAN WHILE LESS OR
EQUAL, UPDATE

MNEMONIC

SLSD

CGED

SGED

CGTD

SGTD

CLED

SLED

CEQD

SEQD

CNED

SNED

CLSU

SLSU

CGEU

SGEU

CGTU

SGTU

CLEU

SLEU

C3

MODE ID &
HEX CODE

(P)FC

VFC

(P)FD

WVFD

C4

OPERATOR NAME

COMPARE
CHARACTERS EQUAL,
UPDATE

SCAN WHILE EQUAL,
UPDATE

COMPARE
CHARACTERS NOT
EQUAL, UPDATE

SCAN WHILE NOT
EQUAL, UPDATE

MNEMONIC

CEQU

SEQU

CNEU

SNEU

MODE ID &
HEX CODE

(E)FE
(P)FE
WFE

(E)FF
(P)FF
(WFF

OPERATOR NAME

NO OPERATION
NO OPERATION
NO OPERATION

INVALID OPERATION
INVALID OPERATION
INVALID OPERATION

MNﬁﬂONIc

NOOP
NOOP
NOOP

NVLD
NVLD
NVLD

APPENDIX D

PROCESSOR OPERATORS BY MNEMONICS

Mode ID &
Hex Code

Mode ID & Operator
Mnemonic Hex Code Name

A
ADD (P)8O ADD

BRFL (P)AO BRANCH ON
FALSE

BRST (P)9E BIT RESET

BRTR (P)Al BRANCH ON
TRUE

BRUN (P)A2 BRANCH
UNCONDITIONAL

BSET (P)96 BIT SET

CBON (V)BB COUNT
BINARY ONES
CEQD (P)F4 COMPARE
CHARACTERS
EQUAL
DESTRUCTIVE
CEQU (P)FC COMPARE
CHARACTERS
EQUAL
UPDATE
CGED (P)F1 COMPARE
CHARACTERS
GREATER OR
EQUAL
DESTRUCTIVE
CGEU (P)F9 COMPARE
CHARACTERS
GREATER OR
EQUAL
UPDATE
CGTD (P)F2 COMPARE
CHARACTERS
GREATER
DESTRUCTIVE
CGTU (P)FA COMPARE
CHARACTERS
GREATER
UPDATE
CHSN (P)SE CHANGE SIGN
BIT
CLED (P)F3 COMPARE
CHARACTERS
LESS OR
EQUAL
DESTRUCTIVE
CLEU (P)FB COMPARE
CHARACTERS
LESS OR

5010796-001

Page

345

34-7

34-8

348

34.8

34-

34-8

Mnemonic

(P)FO

(P)F8

(P)F5

(P)FD

(P)A8

(PYOF
@97
(P)A9
(P)AA

(V7

®)99

(@YD
(P)B

(@83
(B)BS
@l
®)X7

®)Co

Operator
Name

EQUAL
UPDATE
COMPARE
CHARACTERS
LESS
DESTRUCTIVE
COMPARE
CHARACTERS
LESS UPDATE
COMPARE
CHARACTERS
NOT EQUAL
DESTRUCTIVE
COMPARE
CHARACTERS
NOT EQUAL
UPDATE

DYNAMIC
BRANCH
FALSE
DYNAMIC BIT
RESET
DYNAMIC BIT
SET
DYNAMIC
BRANCH TRUE
DYNAMIC
BRANCH
UNCONDITIONAL
DISABLE
EXTERNAL
INTERRUPTS
DYNAMIC
FIELD
TRANSFER
DYNAMIC
FIELD INSERT
DYNAMIC
FIELD
ISOLATE
DIVIDE
DELETE TOP
OF STACK
DYNAMIC
SCALE LEFT
FINAL
DYNAMIC
SCALE RIGHT
FINAL
DYNAMIC

Page

349

349

349

349

349

34-8
34-7
34-6

347

34.7

34-25

3420
34-21
3421

34-6

34-15

34.14

34-14

Mode ID & Operator Mode ID & Operator
Mnemonic Hex Code Name Page Mnemonic Hex Code Name Page
SCALE RIGHT
ROUNDED HALT (P)DF CONDITIONAL
DSRS (P)C5 DYNAMIC HALT 3422
SCALE RIGHT HALT (V)DF CONDITIONAL 3422
SAVE HALT
DSRT (P)C3 DYNAMIC HALT (E)DF CONDITIONAL
SCALE RIGHT HALT 3422
TRUNCATE
DUPL (P)B7 DUPLICATE
TOP OF STACK ICVD (P)CA INPUT
CONVERT,
DESTRUCTIVE 34-11
EEXI (VM6 ENABLE ICVU (P)XCB INPUT
EXTERNAL CONVERT,
INTERRUPTS UPDATE 34-11
ENDE (E)DE END EDIT IDIV ()84 INTEGER
ENDF (E)D5 END FLOAT DIVIDE 34-6
ENTR (P)AB ENTER IDLE (V)44 IDLE UNTIL
EQUL (P)8C EQUAL INTERRUPT 3425
EVAL (P)AC EVALUATE IGPR (V)48 IGNORE
DESCRIPTOR PARITY 3428
EXCH (P)B6 EXCHANGE IMKS (P)CF INSERT MARK
EXIT (P)A3 EXIT STACK 34-19
EXPU (P)DD EXECUTE INCN (V)SF INTERRUPT
SINGLE CHANNEL N 3428
MICRO, INDX (P)A6 INDEX 34-10
SINGLE INOP (E)D8 INSERT
POINTER OVERPUNCH 3429
UPDATE INSC (E)DD INSERT
EXSD (P)D2 EXECUTE CONDITIONAL 3429
SINGLE INSG (E)D9 INSERT 3429
MICRO DISPLAY SIGN 3429
DESTRUCTIVE INSR (P)9C FIELD INSERT 34-21
EXSU (P)DA EXECUTE INSU (E)DC INSERT
SINGLE UNCONDITIONAL ~ 34-29
MICRO, ISOL (PPA FIELD
UPDATE ISOLATE 3420
FLTR (P)98 FIELD JOIN (V)2 SET TWO
TRANSFER SINGLES TO
FMFR (V)AC FETCH DOUBLE 3421
MEMORY FAIL
REGISTER
LAND (P90 LOGICAL AND 34-12
LEQV (P93 LOGICAL
GREQ (P)89 GREATER EQUIVALENCE 34-12
THAN OR LESS (P)88 LESS THAN 34-13
EQUAL LLLU (V)BD LINKED LIST
GRTR (P)SA GREATER LOOKUP 3426
THAN LNOT P92 LOGICAL
NEGATE 34-12

Mnemonic

LOAD
LODT

LOG2

LOR
LSEQ

LT16
LT48

LT8

MCHR
MFLT
MINS

MKST
MPCW

MULT
MULX

MVST

NAMC
NEQL
NOOP
Noop

NOOP
NTGD

NTGR
NTIA

NVLD

5010796-001

Mode ID &
Hex Code

(P)BD
(V)BC

(V)8B

(P91
(P)3B

(®)B3
(P)BE

(P)B2

(E)D7
(E)D1
(E)DO

(P)AE
(P)BF

(P)32
(P)SF

(E)D6

(VAF

(P40

—»7F

(P)3D
(P)FE
(V)FE
(E)FE
(V)87

(®)87
(P)86
(P)FF

Operator
Name

LOAD

LOAD
TRANSPARENT
LEADING ONE
TEST

LOGICAL OR
LESS THAN OR
EQUAL

LIT CALL 16
BITS

LIT CALL 48
BITS

LIT CALL8
BITS

MOVE
CHARACTERS
MOVE WITH
FLOAT
MOVE WITH
INSERT
MARK STACK
MAKE
PROGRAM
CONTROL
WORD
MULTIPLY
EXTENDED
MULTIPLY
MOVE
NUMERIC
MOVE TO
STACK

NAME CALL

NOT EQUAL
NO OPERATION
NO OPERATION
NO OPERATION
INTEGERIZE,
ROUNDED,
DOUBLE
PRECISION
INTEGERIZE,
ROUNDED
INTEGERIZE,
TRUNCATED
INVALID
OPERATOR

Mnemonic

Mode ID &
Hex Code

(V)FF
(E)FF
(P)AS
(P)AD

(V)85
(P)B1
(P)BA

(P)BB

(P)D1

(P)D9
(V)84

(P)B4

(P)85

(V)BA
(P)A7
(P)D7

(V)B8

(V)B7

(E)D4
(V)B6

(V)BS
(P)DE

(P94
®)Co

Operator
Name

INVALID
OPERATOR
INVALID
OPERATOR
INDEX AND
LOAD NAME
INDEX AND
LOAD VALUE

OCCURS INDEX
LIT CALL ONE
OVERWRITE
DESTRUCTIVE
OVERWRITE
NON-
DESTRUCTIVE

PACK
DESTRUCTIVE
PACK UPDATE
PAUSE UNTIL
INTERRUPT
PUSH DOWN
STACK
REGISTERS

REMAINDER
DIVIDE

READ WITH LOCK

RETURN
READ AND
CLEAR

OVERFLOW FLIP-

FLOP

READ
PROCESSOR
REGISTER
ROTATE STACK
DOWN

RESET FLOAT

ROTATE STACK UP
READ TAG FIELD

READ TRUE/
FALSE FLIP-
FLOP

LOGICAL EQUAL

SCALE LEFT

Page

34-22
3422
34-10
34-10
3427
34-11

34-15

34-15

34-12
34-13

34-28

34-15

346
34.15
3420

3422

3425
34-14

3430
34.15
3424

3422

34-13
34-13

D-3

Mnemonic
SCNI
SCRF
SCRR
SCRS
SCRT

SEQD

SEQU

SFDC

SFSC

SGED

SGEU

SGTD

SGTU

SINH
SINT
SISO

SLED

SLEU

SLMT
D4

Mode ID &
Hex Code

(VMA
(®)C6
(®)C8
(P)C4
(P)C2
(V)F4

(V)FC

(E)DA

(E)D2

(V)F1

(V)FA

(V)A8
(VA5
(P)D5
(V)F3

(V)FB

Operator
Name

SCAN IN (TOD
ONLY)

SCALE RIGHT
FINAL

SCALE RIGHT
ROUNDED
SCALE RIGHT
SAVE

SCALE RIGHT
TRUNCATE
SCAN WHILE
EQUAL
DESTRUCTIVE
SCAN WHILE

EQUAL, UPDATE

SKIP
FORWARD
DESTINATION
CHARACTERS
SKIP
FORWARD
SOURCE
CHARACTERS
SCAN WHILE
GREATER OR
EQUAL,
DESTRUCTIVE
SCAN WHILE
GREATER OR
EQUAL,
UPDATE
SCAN WHILE
GREATER,
DESTRUCTIVE
SCAN WHILE
GREATER,
UPDATE

SET MEMORY
INHIBITS

SET INTERVAL
TIMER
STRING
ISOLATE
SCAN WHILE
LESS OR
EQUAL,
DESTRUCTIVE
SCAN WHILE
LESS OR
EQUAL,
UPDATE

SET MEMORY

Page

3423
3414
34-14
34-14

34.14

3423

3423

34-30

34-30

34-23

3423

3423

3423

3428

3425

34-16

34-23

3423

Mnemonic

SLSD

SLSU

SNED

SNEU

SNGL

SNGT

SPLT

SPRR

SRCH

SRDC

SRSC

STAG
STFF
STOD
STON
STOP

SUBT
SWFD

SWFU

SWID

Mode ID &
Hex Code

(V)FO

(V)F8
(V)Fs

(V)FD
(P)CD
®cc

(VM3
(\):]
(V)BE
(E)DB
(E)D3

(V)B4
(P)AF
(P)B8
(P)B9
(V)BF

(P)81
(V)D4

(V)Ds

Operator
Name

LIMITS

SCAN WHILE
LESS,
DESTRUCTIVE
SCAN WHILE
LESS, UPDATE
SCAN WHILE
NOT EQUAL,
DESTRUCTIVE
SCAN WHILE
NOT EQUAL,
UPDATE

SET TO
SINGLE
PRECISION,
ROUNDED
SET TO
SINGLE
PRECISION,
TRUNCATED
SET DOUBLE
TO TWO
SINGLES

SET
PROCESSOR
REGISTER
MASKED
SEARCH FOR
EQUAL

SKIP REVERSE
DESTINATION
CHARACTERS
SKIP REVERSE
SOURCE
CHARACTER
SET TAG
FIELD

STUFF
ENVIRONMENT
STORE
DESTRUCTIVE
STORE NON-
DESTRUCTIVE
STOP
SUBTRACT
SCAN WHILE
FALSE,
DESTRUCTIVE
SCAN WHILE
FALSE,
UPDATE

SCAN WHILE

Page
3428

3424

3424

3424

3424

3421

3421

3421

3425

34-27

34-30

34-30
3424
3422
34-15
34-15

3428
345

3424

3424

Mnemonic

SWTU

SXSN

TEED

TEEU

TEQD
TEQU

TGED

TGEU

TGTD

TGTU

TLED

TLEU

TLSD

TLSU

5010796-001

Mode ID &
Hex Code

(V)DD

(P)D6

(P)DO

(P)D8

(P)E4

(P)EC

(P)E1

(P)E9

(P)E2

(P)EA

(P)E3

(P)EB

(P)EO

(P)E8

Operator
Name

TRUE,
DESTRUCTIVE
SCAN WHILE
TRUE, UPDATE
SET
EXTERNAL
SIGN

TABLE ENTER
EDIT,
DESTRUCTIVE
TABLE ENTER
EDIT, UPDATE
TRANSFER
WHILE EQUAL,
DESTRUCTIVE
TRANSFER
WHILE EQUAL,
UPDATE
TRANSFER
WHILE
GREATER OR
EQUAL,
DESTRUCTIVE
TRANSFER
WHILE
GREATER OR
EQUAL,
UPDATE
TRANSFER
WHILE
GREATER,
DESTRUCTIVE
TRANSFER
WHILE
GREATER,
UPDATE
TRANSFER
WHILE LESS
OR EQUAL,
DESTRUCTIVE
TRANSFER
WHILE LESS
OR EQUAL,
UPDATE
TRANSFER
WHILE LESS,
DESTRUCTIVE
TRANSFER
WHILE LESS,
UPDATE

Page

3424

3424

3422

34-17

34-17

34-17

34-17

34-17

34-17

34-17

34-17

Mnemonic

TNED

TNEU

TWOU

TWSD

TWSU

TWTD

TWTU

UABD

UABU

USND

Mode ID &
Hex Code

(P)ES

(P)ED

(V)D7
(P)ES

(P)EE

(V)b2

(V)DA

(P)D41

(®)DC

(P)D3

(P)DB

(V)D3

(V)DB

(V)b1

(V)D9

(V)DO

Operator
Name

TRANSFER
WHILE NOT
EQUAL,
DESTRUCTIVE
TRANSFER
WHILE NOT
EQUAL,
UPDATE
TRANSLATE
TRANSFER
UNCONDITIONAL
DESTRUCTIVE
TRANSFER
UNCONDITIONAL
UPDATE
TRANSFER
WHILE FALSE,
DESTRUCTIVE
TRANSFER
WHILE FALSE,
UPDATE
TRANSFER
WORDS
OVERWRITE,
DESTRUCTIVE
TRANSFER
WORDS
OVERWRITE,
UPDATE
TRANSFER
WORDS,
DESTRUCTIVE
TRANSFER
WORDS,
UPDATE
TRANSFER
WHILE TRUE,
DESTRUCTIVE
TRANSFER
WHILE TRUE,
UPDATE

UNPACK
ABSOLUTE,
DESTRUCTIVE
UNPACK
ABSOLUTE,
UPDATE
UNPACK
SIGNED,
DESTRUCTIVE

Page

34-18

34-18
34-22

34-18

34-18

34-18

34-18

34-16

34-17

34-16

34-16

34-18

34-18

34-25

34-25

3425
D-5

Mnemonic

USNU

VALC
VARI

WHOI

Mode ID & Operator
Hex Code Name
(V)D8 UNPACK

SIGNED,
UPDATE
\%
(P)00—»3F VALUE CALL
(P)95 ESCAPE TO 16-
BIT
INSTRUCTION
w
(VME READ

Mode ID &
Page Mnemonic Hex Code
342
XTND (P)CE
34-19
3422
ZERO (P)BO

Operator

Name

PROCESSOR
IDENTIFICATION

X
SET TO
DOUBLE
PRECISION

LIT CALL
ZERO

Page

3425

34-21

34-11

APPENDIX E
IOM WORD FORMATS

HA WORD 1, START /0 COMMAND

LK|H 91 J
47]043} 3of 35 31f 271 23 1ef 15 13 7} 8
E UNIT S
TSO 45%42 38 Sr‘i#l 30] 26| 22§ 1Bf 14 10 € 3]
A ' C DE.MC'
49 45841 3 33 20| 250 2 17 13 9l & 1
NA : o
G 45| 44 E40f a6 32| 28| 24| 20{ 18 12 8 4f
FIELD BITS DESCRIPTION

TAG 50:3 Denotes word is single precision
(000).

LK 47:1 When set by software indicates the
HA words are available for IOM
use. Resets when IOM services HA
words.

- 46:3 Not used.

HOME 43:4 Defines Start I/O command (0001).

CODE

- 39:4 Not used.

UNIT 35:8 A unique 8-bit code-used with the

DESIG- UT base address to index and lock

NATE fetch from memory the UT word for
the device to be started, and used
with the QH base address to unlock
fetch from memory the QH word,
which points to the IOCB base
address.

- 27:28 Not used.

HA WORD 1, SET CHANNEL BUSY/RESERVED

FIELD
TAG

LK

HOME
CODE

B/R

LK{H I l J i
470438@ 35| 3yCe1[23f 19l 15 11| 7| 3

T M H. .
5o} a6lE a2t 38| 34 3o 26} 22| 18 14 30} 6| 2
A49 45)0 41} 31 33 29iN25 21y 170 13 9| s} 1
AFFNIEFEEEN
648 44|E 40f 3 32 2 24F 20f{ 16 12 8 4 D

BITS
50:3

47:1

46:3
43:4

39:1

DESCRIPTION

Denotes word is single precision
(000).

When set by software indicates the
HA words are available for IOM
use. Resets when IOM services HA
words.

Not used.

Defines Set CH Busy/Set CH
Reserved Commands (0010).

When reset, further defines
command as Set CH Busy; when
set, further defines command as Set
CH Reserved.

HA WORD 1, SET CHANNEL BUSY/RESERVED

CH.

NO.

38:11
27:5

22:23

Not used.

Identifies one of the 28 possible
IOM channels.

Not used.

HA WORD 1, RESET CHANNEL

RESERVED
LK[H [B/R
4710 43 39f 3 31C27 23| 19l 15| 11 1 3

T H.

50] 46lE 42| 38 34 301 26f 22f 18 14| 10 6 2

49 45[841 37 33 2o|Nas| 21f 17 13 9] 5| 1
G D 0.

48| 44|E40] 36f 35 28] 24| 20{ 16 12| 8 4] o

FIELD BITS DESCRIPTION

TAG 50:3 Denotes word is single precision
(000).

LK 47:1 When set by software indicates the
HA words are available for IOM
use. Resets when IOM services HA
words.

— 46:3 Not used.

HOME 43:4 Defines Reset CH Busy/Reset CH

CODE Reserved Commands (0011).

B/R 39:1 When reset, further defines
command as Reset CH Busy; when
set, further defines command as
Reset CH Reserved.

— 38:11 Not used.

CH. NO. 27:5 Identifies one of the 28 possible
IOM channels.

— 22:23 Not used.

HA WORD 1, LOAD BASE ADDRESS (HA, UT,
UOQH, SQ) COMMANDS

LK|H
47|Q43] "39] 35| sy 2% 28] 19| 15 11| 7/ 3
M MEMORY
Tsol as{E42| 38| 34| 30| 28 22| 18 AMORY|
: RESS
A49 45{0Q41] 37| 88§ 29 25] 21 17“?3) 9 SS 1
Gyg| s4|E 10} 36| 32| 28] 24| 20| 16| 12| 8| 4| 0
FIELD BITS DESCRIPTION
TAG 50:3 Denotes word is single precision
(000).
LK 47:1 When set by software indicates the

HA words are available for IOM
use. Resets when IOM services HA
words.

E-1

HA WORD 1, LOAD BASE ADDRESS (HA, UT,
UOQH, SQ) COMMANDS

HOME
CODE

MEMORY
ADDRESS

46:3
43:4

39:20
19:20

Not used.
Defines:

(1) Load Home Address Command
(0100)

(2) Load Unit Table Address
Command (0101)

(3) Load I/O Queue Head Address
Command (0110)

(4) Load Status Queue Address
(0111).

Not used.

The memory address to be stored in
the Translator of the IOM to enable

access of the IOM Job Map.

HA WORD 1, DFO SCAN-OUT COMMANDS
(CLEAR STACK AND STORE CW REQUEST)

LK[H D ID ES

47]043] sof 35| 31 27 2s]Ero|lFsiN11] 7} 3
T ™ 1 JE U

so| «o|Eaz| 38| 34| 30 26 22|c18lUr4|pmiof 6] 2

A49 4,5841 37{ 33| 29 251 21 1E'I7Ul3 M
T F olys] 1t

D | P
48] 44|E 40| 38| 32| 28] 24 20 ém]xz s]E4] o

FIELD
TAG

LK

HOME
CODE

DEVICE
TYPE
DFEU
UNIT
NMBR
and ES
(EXCH
SELECT)

TYPE

BITS
50:3

47:1

46:3
43:4

39:20
19:4

,.
~len
-

6:1
65:2

3:4

DESCRIPTION

Denotes the word is single precision
(000).

When set by software indicates the
HA words are available for 10M
use. Resets when IOM services HA
words.

Not used.

Defines the command as Scan Out
(DFO or DCP) when 1000.

Not used.

Defines the Scan Out command is
for a DFO (1001).

Together define the DFO by
specifying a DFEU unit number
and whether it is directly (bit 7=0)
or indirectly (bit 7=1) connected to
the DFO.

Not used.

Defines the DFO Scan-Out command

as Clear the Stack (10) or Store
Control Word Request (01).

Not used.

HA WORD 2, DFO SCAN OUT/STORE
CONTROL WORD REQUEST COMMAND

47 43| 39| 35 31] 271 23] 19 15 11 7 3
JOCB DIBK
50] 46/ 42| 38 34 304 26] 22/ 18 14/ 10 6 2
ADDRESS ADDRESS
49} 45 41y 37f 331 29] 25{ 21} 17 13 9 5 1
48] 44| 40| 36{ 32} 28] 24[20| 16 12 8 4 0
FIELD BITS DESCRIPTION
—_— 60:3 Not used.
I0CB 47:20 The base address of the job in
ADDRESS memory.
—_ 27:2 Not used.
DISK 25:26 The disk address to be used for the
ADDRESS job.

NOTE

This format also represents the format of
the Scan Information word sent to the

DFO.

HA WORD 1, DCP SCAN-OUT COMMANDS

(INITIATE, HALT, SET ATTENTION)

LK|H P D
47]043] se] 35} s1 23{€19] 18l 11 I'z C3
™ J P P

Tso| 4s|E42] 38] 34| 30| 26 22lc18] 14 10]P 6] »

A E N

Gag] 45 Q,n 37| 33} 20| 2s{ 2dT17] 13 of 5|01

4
48] 44]E 40] 36] 32| 28| 24 20}p16} 12 8 4 0
FIELD BITS DESCRIPTION

TAG 50:3 Denotes the word is single precision
(000).

LK 47:1 When set by software indicates the
HA words are available for IOM
use. Resets when IOM services HA
words.

— ‘ 46:3 Not used.

HOME 43:4 Defines the command as Scan QOut

CODE (DFO or DCP) when 1000.

- 39:20 Not used.

DEVICE 19:4 Defines the Scan Out command is

TYPE for a DCP (110).

—_ 15:8 Not used.

TYPE 7:3 Defines the DCP Scan-Out command
as Initiate (000), Halt (010), or Set
Attention (100).

— 4:1 Not used.

DCP NO. 3:3 Defines the DCP for which the
command is intended.

— 0:1 Not used.

HA WORD 2, DCP SCAN-OUT/INITIATE

HA WORD 2 (SCAN-IN WORD), SCAN-IN DFO

COMMAND QUEUED CONTROL WORD AND TOP OF
STACK COMMANDS
INSTRUGTION 9] J
47| 43} 39| 35 31 27} 23F 19| 15 11 l'l 3 13,47543] 3 3 31 a7 23| 19| 15/ 11 7 3
ASE - =
50| 46/ 42| 38 34| 30{ 26{ 22| 18 1% 0] 6 2 50lA46|P a2t ssl sd 30l 26 2250&31.4 0] 6 2
ADDRESS T |0 ADDRESS
49| 45{ 41] 371 33 29/ 25{ 211 17} 13 9 5 1 49]1145(R 41 37 33 28 25 21 17] 13 9 5 1
48 44 40| 36] 32| 28| 24] 20| 16| 12 8 4] O oS4 T ol 2 32 zal 24) 20 16| 12| 8} 4 A,
FIELD BITS DESCRIPTION FIELD BITS DESCRIPTION
— 50:31 Not used. - 50:3 Not used.
. STATUS 47:8 Describes the nature of the DFO by
INSTRUCTION 19:20 Define the memory base addre: . .
BASE the DCP code. REPORT bits set as follows:
ADDRESS (1) 47 set = No Access to Exchange
(2) 46 set = SU Not Available
(8) 45 set = Parity Error
NOTE (4) 44 set = Disk Address Error
this format also represents the format of (5) 43 set = Queded Control Word
the Scan Information word sent to the (6) 42 set = Top of Stack Control
DCP. Word
(7) 41 set = Stack Empty
HA WORD 1, DFO SCAN-IN COMMANDS ®) 40 set = Control Word Not
(QUEUED CONTROL WORD, TOP OF STACK, 3913 Not used
REPORT) - ’ ot used.
I0CB 26:20 Defines the memory address of the
: ADDR I0CB.
[CKTF . 51D ES|]
47 313 39f 35| 31 27 23|E19]F 15N 11} "7} 3 — 6:6 Not used.
Y—E)
E I 1 du u A 0:1 When set, alerts the IOM to
T 50| 461" 42 39‘ 34 301 26 22{c18) " 14M10f 8f 2 (ATTEN) examine the STATUS REPORT
A c : ’ E Ju B |T FIELD.
40} 45}041} 37 33 25{ 217 17N 13E 9]y 50 1
G D [’ Y It |R |P .
ag} aslc 40| 36| 32| 28 24] 20{P 1|7 12 8| 4 o{ NOTE:
28 2 3 GiT 3 This format also represents the format of
the Scan Information word received from
FIELD BITS DESCRIPTION the DFO.

TAG 50:3

LK 47:1

— 46:3

HOME 43:4

CODE

- 39:20

DEVICE 19:4
TYPE

DFEU 15:8,
UNIT 7:1
NMBR

and ES

(EXCH

SEL)

—_ 6:1
TYPE 5:2
—_ 3:4

Denotes the word is single precision
(000).

When set by software indicates the
HA words are available for IOM
use. Resets when IOM services HA
words.

Not used.

Defines the command as Scan in
(1001).

Not used.

Defines the command as for a DFO
(1001).

Together define the DFO by
specifying a DFEU unit number

and whether it is directly or
indirectly connected to the DFO (via
an exchange). These fields are not
used for the Scan-In DFO Report
Command.

Not used.

Defines the DFO Scan-Out command
as either Queued Control Word (01),
Top of Stack (10), or Report (11).

Not used.

HA WORD 2 SCAN-IN DFO REPORT

COMMAND
v | 1o ‘l
47 43| 393531 27) 23] 19 15t i % 3
~7
QAR J
v42 38 C34§3d 26f 22] 1 14f 104 B’ 2
P Iv.]1 I¥ ol
R41f '3 33~29] 250 2% 17 13 9 B 1
P V [l - .
240] 36| 32 28 24} 20 18 13} o 4 o
FIELD BITS DESCRIPTION
- 50:3 Not used.
\% 47:1 When true indicates connection of
an EU/DFO bus at port 1 and the
EUs connected to this bus are
referenced by the EUD code present
on lines 43-46 of the Scan
Information Lines.
PRI 1 46:4 EUD code for port 1 bus (bit

46=MSB).

E-3

v 42:1 When true indicates connection of
an EU/DFO bus at port 2 and the
EUs connected to this bus are
referenced by the EUD code present

on lines 38-41.

EUD code for port 2 bus (bit
41=MSB).

When true indicates connection of
an EU/DFO bus at port 3, and the
EUs connected to this bus are
referenced by the EUD code present
on lines 33-36.

EUD code for port 3 bus (bit

an M

PRI 2 41:4

\' 37:1

SEC1 36:4

\" 32:1 When true indicates connection of
an EU/DFO bus at port 4, and the
EUs connected to this bus are
referenced by the EUD code present

on lines 28-31.

EUD code for port 4 bus (bit
31=MSB).

SEC 2 31:4

NOTE
If a given EUD code appears on Scan Infor-
mation lines 38-41 or 43-46, then the EUs
referenced by the code are connected to the
responding DFO in a direct manner, but if
the EUD code appears on lines 28-31 or 33-
36, then the EUs referenced by the EUD
code are connected to the responding DFO
indirectly (that is, via the other DFO of the

DFO-pair).
QAR 27:6 Indicates capacity of memory stack
(bit 27=MSB).
- 21:22 Not used.
NOTE

This format also represents the format of
the Scan Information word received from
the DFO.

HA WORD 1, SYNC /0 COMMAND

LKIH c
41)043f 39) 35| 3uMon asl 9] 15 11| 7] 3
L}
IpCB
Tsof 46|E 42| 38| 34| 30|} 26| 22| 18] 1a wE 6 o
E
Aol aslo 1] 37| 33| 29t 25| 2 nADxEREsSSs 1
G 0 N
48] a4]eq0] 36| 32| 28l024] 20 16| 12| 8| 4| o

FIELD BITS DESCRIPTION

TAG 50:3 Denotes the word is single precision
(000).

LK 47:1 When set by software indicates the
HA words are available for IOM
use. Resets when IOM services HA
words.

— - 46:3 Not used.

E4

HOME 43:4 Defines the command as Sync 1/0.
CODE

— 29:12 Not used.

CHANNEL 27:6 Identifies one of the 28 possible
NO. IOM channels.

—_ 22:3 Not used.

10CB 19:20 The address of the job request in
ADDRESS memory.

HA WORD 1, INTERROGATE PERIPHERAL
STATUS COMMAND

Lvan] 39 35! 3l 27 23 mi lil\ﬁllll LK
1

Tsol 4eE 42| 38] 34 sd 26] 22
A

9] 4si041] 37| 33 29f 250 21 17| 13{NOof sf 1
I D
48] 44]E 40] 36] 32 28 24/ 20{ 16] 12 8 4| o

811 10 8 2
R

FIELD BITS DESCRIPTION
TAG 50:3 Denotes the word is single precision
(000).
LK 47:1 When set by software indicates the

HA words are available for IOM
use. Resets when IOM services HA

words.
— 46:3 Not used.
HOME 43:4 Defines Interrogate Peripheral
CODE Status Command (1011).
VECTOR 12:4 Defines the number of the status
NO. vector to be interrogated.
— 8:9 Not used.

HA WORD 2 (STATUS WORD RETURNED),
INTERROGATE PERIPHERAL STATUS
COMMAND

47 43] 38 39 31 27| 23 19T 15 11 7 3

BTATUS
50 46| 42| 38/ 34 30/ 26| 22, 18 14 10 6 2
BITS
49| 45| 41 37 3 29/ 25| 21| 17| 13 9 5 1
48f 44| 40| 36/ 32| 28 24| 20| 16/ 12 8 4 T
FIELD BITS DESCRIPTION
—_ 50:18 Not used.
STATUS 32:32 Each bit of this field, when on,
BITS indicates the ready status of the
associated unit on the vector. (Refer
to table I-1 for referencing the
ready status vector, ready status
bit, and device number of any
peripheral device.)
ATT 0:1 When set, alerts the IOM to

examine the STATUS BITS field.

S-d

Table E-1. Status Vector Cross Reference

v

VECTOR E
BIT NO. 31 |30| 20| 28| 27| 26| 25| 2a | 23| 22| 21| 20| 19| 18 |17 | 16| 15| 14| 13|12 11|10 o c

iT

v 0

“B" REGISTER 32 |31 | 30| 20| 28| 27| 26| 25| 24| 23| 22| 21| 20| 19 |18 | 17|16 15| 1a{13]| 12| 11 |10 o |R
31- 0 Alo

i

63- 32 T

E b

95- 64 N

T —

UNIT 127- 96 13
O —

DEST. 159-128 N4
191-160 B |5

-

223-192 Tl

255 - 224 7

TO FIND THE STATUS VECTOR FOR A UD NUMBER, DIVIDE THE UD NUMBER BY 32.
THE STATUS VECTOR IS THE INTERGER QUOTIENT AND THE VECTOR BIT IS THE
REMAINDER PLUS ONE.

EXAMPLE: UD NUMBER =95
2 (STATUS VECTOR)

32/95
64

31 +1 =32 (VECTOR BIT NUMBER)

TO FIND THE UD NUMBER, MULTIPLY THE STATUS VECTOR NUMBER BY 32 AND
ADD TO THE RESULT THE VECTOR BIT NUMBER MINUS ONE.

EXAMPLE: STATUS VECTOR NUMBER = 2
2x32=64+(32-1) =95 (UD NUMBER)

HA WORD 1, INHIBIT IOM, ACTIVATE IOM,
AND LOAD DFO FLAGS COMMANDS

LKH D] J 5]
4710 43F 39f 3 34 27| 28] 19 1 11 7 3

XSO 4 E4ZER8 34 300 26| 22{ 18{ 14 10 8 2

49| 4 841;\37 33 200 25{ 211 17| 18 o 5| 1
¢

48f 4 g40§}ﬂ 32 281 24} 20 16| 120 8 4 0

FIELD BITS DESCRIPTION

TAG 60:3 Denotes word is single precision
(000).

LK 47:1 When set by software indicates the
HA words are available for IOM
services.

HOME 43:4 Defines the command as follows:

CODE
(1) 1100 = Inhibit IOM
(2) 1101 = Activate IOM
(3) 1110 = Load DFO Flags

39:4 DFO Flags (for LOAD DFO FLAGS
command only).
36:36 Not Used.

UNIT TABLE WORD

LK DFO| ﬁ 1 J C
47] 43] 39] 35 3ygH27] 23] 19 15 11fH.7] 3
| EX] FUD |N [L NUD

Tsol 46] 42| 38l 34 3qQz6]C22] 18] 14 10]Q. 6] 2

A ospl E

(49] 45] 43 37 33 2 25f%21) 17 13 9 5 1

SL BZ 45 IRC LST E |ET
48] 43l 40 32l 28B4l 20l 16l 12 8lD 4
FIELD BITS DESCRIPTION

TAG 50:3 Denotes word is single precision
(000).

LK 47:1 When set, indicates the UT word is
being operated on.

MGT 46:1 When set, indicates this job request
is for a magnetic tape. (Set by
software.)

DSPK 46:1 When set, indicates this job request
is for a disk pack. (Set by software.)

SL 44:1 When set, indicates the presence of
a side link in IOCB+1.

— 43:4 Not used.

DFO 39:1 When set, indicates unit is under
control of a DFO. A ring walk will
not be performed with this bit set.
(Set by software.)

EX 38:1 When set, indicates the unit is

E-6

connected to an exchange. A ring
walk will be performed (if the job
bit is set) with this bit set. (Set by
software.) Not used if bit 39 is set.

JB

BZ

FUD

CH. NO.
BASE

LCEX

RC

LST
NUD
CH. NO.
USED

ET

37:1

36:1

356:8

27:6

22:2

20:1

19:3
16:1

16:8

7:5

2:2
0:1

I0QH WORD

When set, indicates that all
channels associated with this
request were busy, and when a
channel becomes free and no
further request are queued for that
device, this job is to be done. (Set
by IOM.)

Used only with exch. devices (Bit
38=1). Not used with DFO (Bit 39).

When set, indicates that this unit is
busy. (Set by IOM.)

Points to the First Unit Designate
Number connected to the exchange.

For units not on an exchange, the
number of the channel to which
this unit is connected. For units on
an exchange, the lowest numbered
channel to which the exchange is
connected.

NOTE: CN 0 and 21 through 23 are
unassigned and will cause a fail.

Indicates the 2 least significant bits
of the last channel number of the
exchange, for the device to be used.

When set, permits this unit to use a
reserved channel.

Not used.

When set, indicates this is the last
Unit Designate on the exchange.

Points to the Next Unit Designate
number connecbed/to the exchange.

These bits specify the channel that
was used to service the device. (Set
by IOM.)

Not used.

When set, indicates that an error
condition has been reported in the
current Result Descriptor, and
therefore additional jobs should not
be initiated for the unit. This bit is
normally reset by software.

47

43 39

SJ 3y 27 23{ 19 AID.')DRII 1 3

42| 38

OF | FIRST
84 30 26| 22| 18 14| 10

Tso] 46

A
G49] 45

414 37

29{ IOCg!

33 25| 21 171 13

48] 44

40] 36

32 28124 20] 16 12| 8 4| o0

FIELD
TAG

BITS
50:3

47:28

ADDRESS 19:20

OF
FIRST
10CB

DESCRIPTION
Denotes word is single precision
(000).
Not used.
Address of 1st IOCB in the 10Q. If

bits 19-0 are null (zero), the UT
word is unlocked and restored to
memory.

10QT WORD

a7l 43| 3ol sl 31 27l 23 19] 15| 11| 71 3
ADD. OF ILAST
Tso} 46] 42| 38] a4l 30| 26) 22| 18] 14 10/ 6] 2
(0]
Al ast a1l 3} ss| 20| 25| 21| 17 1% C9B 5| 1
G4a 44} 40| 36 32{ 28| 24| 20| 16 12 8 4| o
FIELD BITS DESCRIPTION

TAG 50:3 Denotes word is single
precision (000).

— 47:28 Not used.

ADD 19:20 Address of last IOCB in the

OF 10Q.

LAST

I0CB

SQH WORD
"57843 so| 3s| 31| 27| 23] 19| 15 11 7| 3
M HEAD TIAIL

Tsol 4¢)V42] 38 34 30 26| 22| 18 14/ 10| 6] 2

Ay C4 NU:& 371 33 29| 25| 21| 17] 13 9| 5| 1

G4siN41OJIIN4E 36| 32| 28 24 20] 16 QL 8l 4 o0

FIELD BITS DESCRIPTION

TAG 50:3 Denotes word is single
precision (000).

LK 47:1 When set, indicates the SQH
word is being operated on.

— 46:1 Not used.

C 45:1 Notifies software, when set,
that a status change vector
has occurred.

CPM 44:3 Points to the CPM that will

NO. be interrupted by either
channel interrupt or error
interrupt.

NULL 41:1 When a 0, indicates that the
queue is empty; when a 1,
indicates terminated jobs are
under queue.

INT 40:1 When set, (set by software)
indicates that the CPM
number field shall be
interrupted upon job
termination. (Reset by IOM)

HEAD 39:20 A 20-bit address pointing to
the I0CB of the first device
terminated. (Not used if bit
41 = 0)

TAIL 19:20 A 20-bit address pointing to

the IOCB of the last device
terminated. (Not used if 41
= 0)

I0CB WORD O (I0CB 1/0. LINKAGE (N/L)

WORD)

47 43 39[35 31 270 23] 19 150 111 7| 3

i NEXT

Tso] 46 42| sS8f 34 30 28] 221 18 14/ 100 6 2
A LINK
49| 45{ 41] 371 83| 29f 25/ 21 17 13] 9 5 1
G INT
48] 44| 40} 36/ 37 28 24[20| 16/ 12| 8 4| o0

FIELD BITS
TAG 50:3
—_ 47:7
INT 40:1
— 39:20
NEXT 19:20
LINK

DESCRIPTION
Denotes word is single
precision (000).
Not used.

When set, notifies the IOM
to interrupt the CPM
specified in the SQ word
upon completion of this job.

Not used.

Memory address of the next
job (IOCB) queued for this
device.

I0CB WORD 1 (I0CB SIDELINK (SL) WORD)

D
47543 39| 35| 31] 27 23f-ief 15f 1y 7| 3
SIDE :
T50 346L42 38 34"”330' 26 22} 18] 14 10 I(S)Mz
I A4
Ay T45241 37 33L'”2\‘9"K 25 21} 17| 13 38 MSASKI
T
G4s 44|E 40| 36| 32| 28| 24 20| 16| 12f 8 4| o
FIELD BITS DESCRIPTION
TAG 50:3 Denotes the word is single
precision (000).
UNIT 47:8 Defines the device which is
DESIGNATE to perform this sidelinked
job.
SIDE 39:20 Memory address of the
LINK sidelinked job.
- 19:12 Not used.
IOM 7:8 Defines an IOM channel
MASK number and thus defines the

IOM (or IOM’s) which can
perform the sidelinked job.

E-7

BASE ADDRESS (BA)

1/0 CONTROL BLOCK (I0CB)

BA+1 BA+2 BA+3 BA+4 BA+5 BA+6
: TIME
VOLNLACE | sioEUNK | pegehisTor | tOCW coL IORD CELL
MOD I
a7 o a7 o 47 0 47 0o 47 o a7 0 47 0
WORD 0 WORD 1 WORD 2 WORD3 WORD4 WORDS WORD 6
* WORDS 7 THRU N ARE RESERVED FOR SOFTWARE USE ONLY
ET1286
10CB WORD 2 (I0CB BUFFER DESCRIPTOR
(BD) WORD) FIELD BITS DESCRIPTION
C 5‘ TAG 50:3 Denotes the word is single
47 43[]'39 35| 31 27/ 23] 19 15 11} 7 3] precision (000).
Tsol 4 4 gsd 34L-E3061;g 2l 18 IEAISOI'- 6 4 ASC 47:1 When set, indicates that
A T ADDRESS ASCII translation is
G49] 45| 43f 'a7 33 29| 25| 21] 17] U3 9 5| 1 required.
agl 441 400 36| 321 28] 24| 20] 16 ng 8l 4 0! SL 46:1 When set, indicates that a
sidelink to another IOCW is
TTE}LD an:g o DESCRIPTION required. (The address of the
50: enotes word is single new IOCW is stored in bits 0
precision (000). thru 19 of the IOCB SL
- 47:8 Not used. word.)
CT 39:3 If the length of the buffer SA 45:1 When set, will cause bit 1 of
EXT includes a fractional part of the result descriptor word
a word, this field describes (the Exception bit) to be set.
the number of characters in
that fractional part. 1/0 441 Wh t indicates that th
. : en set, indicates tha e
LENGTH 36:17 Describes the length of the transfer is to be an input
buffer in words. (Exgess operation. When reset,
characters are described by indicates that the transfer is
the CT EXT field.) to be an output operation.
BASE 19:20 Describes the memory MINH 43:1 When set, indicates that
ADDRESS address of the first data data will not be transferred
word of the buffer. to/from memory.
IOCW (10CB WORD 3) TRA 42:1 When set, indicates that
ee internal IOM translation is
47”%'8/3% 38 3y 27 23 m] 150 1} 9 s needed.
T SLTRA|T J FML 41:1 When set, indicates that the
A5° ‘4\6 42| 38 34 34 26/ 221 18 14 10 2 frame length is to be 8-bits.
ATMA™S] sd 29 25l 21 1 18 o 8| 1 When reset, indicates that

495
| cT
48 I/aongo 3% 32 2J

14 12 -

24, 20

E-8

the frame length is to be 6-
bits.

MP

B/F

TAG
CTL

40:1

39:1

38:1

37:2

When set, indicates that a
memory protect interrupt
will occur if an attempt is
made to store into a word in
memory which has bit 48 =
1. The store will not occur.

When set, indicates a
backward operation on a
tape unit. When reset,
indicates a forward operation
on a tape unit.

When set, indicates a test
operation.

Indicates the following:

37 36

0 0 Store single precision t:

1 1 Store double precision
tags
0 1 Store program tags

1 0 Tag field transfer

35:36 Not used.

UNIT CONTROL WORD (UCW)

FIELD
LGT

MP

L 23
o

19p 15f 11} 7 3

T

LIA
18| 14] 10

MP
21

17] 13 9 5 1

WRT

201 16| 12 8 4 0

BITS DESCRIPTION

23:2 Specify the total length of
the field being transferred
as follows:
23 22
0 1 = Transfer 1 word
1 0 = Transfer 2 words

21:1 On a one or two word store,

if bit 48 of the information
word already stored in that
memory location is a one

WRT

L1A

20:1

19:20

(protected word), memory
shall not perform the store
but shall send an error
signal to the requestor.

Shall identify the service
request as a Read (WRT=0)
or Write (WRT=1) operation.

Shall specify the absolute
starting memory address of
the transfer.

MEMORY CONTROL WORD

47| 43} 39] 35 31’ 27 23 1Al$ 11 7 3
YPE|
Ts50] 46 Rlaali 38| 34 Ala)o Rz%sszz 18] 14 10 6lW 2
A |SP|MLL L
49] “45] a1l sl 33| 29| 25| 21| 17| tal o |Gt
434»43632282420112[84(!
FIELD BITS DESCRIPTION
TAG 50:3 Not significant for control
purposes; examined only for
generation of parity.
w 47:1 When a 0 specifies that a
(Write) read/restore operation is to
be performed. When a 1,
specifies that one of the
write variations, as defined
by the TYPE field, is to be
performed.
TYPE 46:1 When the W field is a 1,

specifies which write
variation is to be performed
as follows: when 46=0, a
Clear/Write operation shall
be performed (the Overwrite
and Single-Word protected
Write operations use this
variation). When 46=1, a
Read/Modify/Restore
operation shall be performed
(the N-Word Protected Write
operation uses this
variation). When the field is
a 0 and 46=1, the contents
of the Fail Register are
fetched.

E-9

SP 45:1
(Specifier)
WP 44:1
(Write
Protect)
FB 43:1
(Flashback)
RIL 42:1
(Requestor
Inhibit
Load)
MLL 41:1
(Memory
Limits
Load)

When a 1, indicates that a
single-word operation is to
be performed. When a 0,
indicates that an N-word
operation is to be performed.

When a 1, indicates that a
Protected Write operation is
to be performed. It is a 0 if
any other type of operation
is specified.

When a 1, specifies that the
original contents of the
memory location are to be
sent to the requestor.

Used in a Single-Word
Overwrite operation to
specify that a Load
Requestor operation is to be
performed. When a 1,
specifies that the next data
word sent to the MCM be
loaded into the Requestor
Inhibit Register instead of
into memory.

When a 1, specifies that the
next data word sent to the
MCM be loaded into the
Memory Limit Registers and
the Available Register,
instead of into memory.

ADDRESS 36:20 Specify the starting address

AR 16:2
(Address
Residue)

— 14:12
WLG 2:3
(Word

Length)

E-10

for the memory operation.

Indicate the proper value
(00, 01, or 10) that result
from changes in the
ADDRESS field.

Not used.

Indicates the number of
words to be transferred
during memory operations (2
words maximum).

DFO SCAN ADD

RESS WORD (SCAN-IN AND

15

EL
14

N
13

12

SCAN-OUT)
19
Dis
17
16
FIELD BITS
DT 19:4
EUD 15:8,
NO. 7:1
AND
ES
(EXCHANGE
SELECT)
- 6:1
FC 5:2
3:4

DESCRIPTION

Identifies the information as
for a DFO (1001).

Together define the DFO by
specifying a DFEU unit
designate number and
whether it is directly or
indirectly connected to

DFO (via an exchange).
These fields are not used if
Scan-In DFO Report is the
job to be implemented.

Not used.
Function code which defines
the operation as follows:

(1) During Scan-Out:

5 4

0 1 = Store CW Request

1 0 = Clear-the-Stack
(2) During Scan-In:

5 4

0 1 = Queued CW
Request

1 0 = Top-of-Stack
Request

1 1 = Report Request
Not used.

NOTE

The format of the DFO Scan Ad-
dress word may be related directly

to bits 0

through 19 of HA word 1,

when HA word 1 contains a com-
mand for DFO scan-out or scan-in.

DCP SCAN ADDRESS WORD DCP 3:3 Defines the DCP for which
ADDR the command is intended.

— 0:1 Not used.

NOTE
The format of the DCP Scan Ad-
dress word may be related directly
to bits 0 through 19 of HA word 1,
when HA word 1 contains a DCP
scan-out command.

IOM TIMECELL WORD

FIELD BITS DESCRIPTION
DT 19:4 Defines the Scan-Out I N e
command is for a DCP CHANNEL
(1100). 22| 18] 4] 0] 6
BUSY
—_ 15:8 Not used. al 7| 3l ¢ s
FC 7:3 Defines the DCP Scan-Out ‘ 20| 1:‘2'1“5 o
command as Initiate (000), ET1287 NOTE
gg:)ti (010), or Set Attention The channel busy time is in units of 503
’ microseconds for a total of 527.72 sec-
—_ 4:1 Not used. onds.

. NOV 27 1882
- PUBLICATION
Burroughs Q CHANGE

NOTICE
PCN No.:__35010796-001 Date:_ February 26, 1981
Publication Title:__B 7800 Information Processing Systems Reference Manual
(August, 1979)
Other Affected Publications: _—
Supersedes: __—
Description

This PCN contains changes and additions to the B 7800 Information Processing Systems Reference
Manual, form 5010796, dated August 1979. Revisions to the text are indicated by black vertical
bars on the affected pages.

Replace these pages Add these pages

Title 3-3-1 44-1 3-245 thru 3-249
iii thru xi 3-3-3 5-1-1 thru 5-1-15 3-34A
1-1-1 3-3-13 6-1-1 3-4-19 thru 34-29
2-2-3 3-3-15 6-1-5 D-5
2-2-5 34-1 6-1-7
3-1-1 34-3 6-1-11
3-2-1 thru 3-243 349 6-1-13

34-11 D-1

34-15 D-3

34-17

Retain this PCN cover page as a record of changes made to the basic publication.

The above pages covering
PCN 5010796-001

COPYRIGHT ® 1979, 1981
BURROUGHS CORPORATION
Detroit, Michigan 48232

5010796-001

Printed in U.S. America

2" BINDER

1%'" BINDER
l‘— 1" BINDER —+

VANV JONFYI43Y
swiajsAg Buisserolqd uonpwiioju] 009/ g

5010796

Printed in U.S.A.

Printed in U.S.A.

i

August 1979

5010796

