
Burroughs~

PRICED ITEM

Printed in U.S.A. August 1979 5010796

Printed in U.S.A.

Burroughs~

B 7800
Information
Processing
Systems

REFERENCE MANUAL

Copyright C 1979, Burroughs Corporation, Detroit, Michigan 48232

PRICED ITEM

August 1979

PCN 5010796-001

5010796

ii

Burroughs believes that the information described in this
manual is accurate and reliable, and much care has been
taken in its preparation. However, no responsibility, financial
or otherwise, is accepted for any consequences arising out of
the use of this material. The information contained herein is ·
subject to change. Revisions may be issued to advise of such
changes and/or additions.

Warning: This equipment generates, uses, and can radiate radio frequency energy
and if not installed and used in accordance with the instructions manual, may cause
interference to radio communications. As temporarily permitted by regulation it
has not been tested for compliance with the limits for Class A computing devices
pursuant to Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable
protection against such interference. Operation of this equipment in a residential
area is likely to cause interference, in which case the user at his own expense will be
required to take whatever measures may be required to correct the interference.

Correspondence regarding this document should be addressed directly
to Burroughs Corporation, Box CB?, Malvern, PA. 19355, Attn:
Systems Documentation Dept., TIO East.

•

TABLE OF CONTENTS
Chapter Title Page Chapter Title Page

1-1 Introduction Compilation Using Polish 2-2-3
DESCRIPTION OF B 7800 Notation 2-2-3
SYSTEM 1-1-1 Program Code String 2-2-3
The B 7800 System 1-1-1 Stack Concepts 2-2-4
Distinguishing Features 1-1-1 General 2-2-4
System Configuration 1•1-3 Base and Limit of Stack 2-2-4

Maximum Configuration 1-1-3 Bi-Directional Data Flow in
Minimum Configuration 1-1-4 the Stack 2-2-5

2-1 SYSTEM ARCHITECTURE 2-1-1 Double Precision Stack
DATA REPRESENTATION 2-1-1 Operation 2-2-5
General 2-l-1 Addressing History 2-2-5
Internal Character Codes and Direct Addressing 2-2-5
Collating Sequences 2-1-1 Relative-Addressing 2-2-6
Numbers and Numbering Display Registers 2-2-7
Systems 2-1-1 Absolute Address Conversion 2-2-7

Binary Notation 2-1-1 Addressing Environment 2-2-7
Hexadecimal and Octal Addressing Environment List 2-2-8
Notation 2-1-2 Stack History 2-2-8

Number Conversion 2-1-2 Simple Stack Operation 2-2-8
Binary to Decimal Conversion 2-1-2 Interrupt Handling 2-2-9

Integral 2-1-2 Multiple Stacks and Re-Entrant
Fractional 2-1-4 Code 2-2-11

Decimal to Binary Conversion 2-1-4 Level Definition 2-2-11
Integral 2-1-4 Re-Entrance 2-2-11
Fractional 2-1-4 Job-Splitting 2-2-11

Decimal to Octal Conversion 2-1-5 Stack Descriptor 2-2-11
Integral 2-1-5 Stack Vector Descriptor 2-2-12
Fractional 2-1-5 Presence Bit Interrupt 2-2-12

Octal to Decimal Conversion 2-1-6 2-3 PROCESSOR WORD FORMATS 2-3-1
Octade 2-1-6 General 2-3-1
Integral 2-1-6 Words for Addressing Outside
Fractional 2-1-6 of the Stack 2-3-3

Decimal to Hexadecimal Presence Bit 2-3-3
Conversion 2-1-7 Index Bit 2-3-3
Hexadecimal to Decimal Invalid Index 2-3-3
Conversion 2-1-7 Valid Index 2-3-3

Operand Formats 2-1-7 Read-Only Bit 2-3-3
Numeric Operands 2-1-7 Copy Bit 2-3-3

Single Precision Operands 2-1-7 Data Descriptor 2-3-3
Exponent Field 2-1-7 String Descriptor 2-3-3
Mantissa Field 2-1-8 Segment Descriptors 2-3-4
Double Precision Operands 2-1-8 Words for Addressing Within
Number Ranges and Stacks 2-3-4
Normalization 2-1-10 Program Control Word 2-3-4

Logical Operands 2-1-11 Indirect Reference Word 2-3-5
String Operands 2-1-11 Stuffed Indirect Reference

2-2 POLISH NOTATION AND Word 2-~-5

STACK 2-2-1 Words for Storing Stack History 2-3-8
General 2-2-1 Mark Stack Control Word 2-3-8
Polish Notation 2-2-1 Return Control Word. 2-3-8

General Rules for Generation Top-of-Stack Control Word 2-3-8
of Polish String 2-2-1 Words Used as Special
Evaluating Polish String 2-2-3 Parameters 2-3-8

5010796-001 iii

•

TABLE OF CONTENTS (CONT.)
Chapter Title Page Chapter Title Page

Step Index Word 2-3-9 Associative Memory 3-2-19
Occurs Index Word 2-3-9 Stack Address Registers 3-2-20
Time of Day Function Word 2-3-9 LL Data Paths 3-2-20

24 INPUT/OUTPUT SUBSYSTEM Execution Unit 3-2-22
MAP STRUCTURE 24-1 EU Operator Queue 3-2-23
Introduction 24-1 Parameter Queue 3-2-23
Queue-Driven 1/0 24-1 EU Control Pipeline 3-2-24
Error Handling 24-2 EU Code Paths 3-2-26
Deferment of Path Binding 24-2 ECDB PROM Network 3-2-26
1/0 Subsystem Map 24-3 ALU PROM Network 3-2-26
Commands and Requests 24-3 SAU PROM Network 3-2-28
Map Integrity 244 EUMC PROM Network 3-2-28
Home Address Words 2-4-4 CDB EU Read Pointer Register 3-2-28
Unit Table 24-4 A and B Selection Path 3-2-28
1/0 Queue Head and Tail Store Data Read Address Path 3-2-28
Words 244 Source and Destination Pointer
Status Queue Headers 24-5 Path 3-2-30
Input/Output Control Blocks 24-5 EU Barrel 3-2-30

3-1 CENTRAL PROCESSOR Short Arithmetic Unit (SAU) 3-2-30
MODULE Arithmetic Logic Unit (ALU) 3-2-33
GENERAL DESCRIPTION 3-1-1 EU Result Address Registers 3-2-36
General 3-1-1 EU Result CDB Address
Program Control Unit 3-1-1 Register (EPR) 3-2-36
Data Reference Unit 3-1-1 CDB Level Result CDB
Execution Unit 3-1-2 Address Register (ECR) 3-2-36
Store Queue 3-1-3 Barrel Level Result CDB
Memory Access Unit 3-1-3 Address Register (ERB) 3-2-36

3-2 FUNCTIONAL OPERATION ALU Result CDB Address
OF SUBSECTIONS 3-2-1 Register (EAR) 3-2-36
General 3-2-1 SAU Result CDB Address
Program Control Unit 3-2-1 Register (ESR) 3-2-36
PIR Circuits 3-2-1 CDB EU Write Pointer
Preprocessing Conditional Register (CEW) 3-2-36
Branch Operator 3-2-3 Iriterrupt Read Register (EIR) 3-2-38
Address Registers 3-2-5 EU Job Number Register 3-2-38
Address Associative Memory 3-2-6 EU Store Subunit 3-2-38
Program Buffer and Branch Central Data Buffer 3-240

I
Storages 3-2-6 DRU Data Storage 3-240
Program Barrel 3-2-8 Data Files 3-240
PIE Level Registers 3-2-9 Address Files 3-241
Write Level Register 3-2-10 Bypass Functions 3-242
Top of Stack Location Early Read Function 3-242
Registers 3-2-11 EU Data Storage 3-242
PCU Allocation and Deal· Flags 3-242
location of CDB Locations 3-2-12 DRU Data File 3-242
Allocation Paths 3-2-12 DRU String Data File 3-242
Deallocation Paths 3-2-12 PCU Big Lit File 3-242

PCU Job Number Registers 3-2-12 EU Data File 3-244
Data Reference Unit 3-2-15 Working Storage 3-244
Address Couple Queue 3-2-15 PCU Small Lit File 3-244
Top of Stack Queue 3-2-15 X Storage 3-244

I
DRU Control Pipeline 3-2-17 Data File RAMs 3-244
DRU Data and Address Paths 3-2-18 DRU Data Address RAM 3-244

iv

TABLE OF CONTENTS (CONT.)
01.apter Title Page Chapter Title Page

Bypass Functions 3-244 Pack Operators 34-12
I Bus 3-244 Relational Operators 34-13

Store Queue 3-244 Scale Operators 34-13
Invalidation Check 3-244 Stack Operators 34-14
Stack Cut Back 3-246 String Operators 34-16
Make MAU Job 3-246 String Transfer Operators 34-16
Fill Check 3-246 Subroutine Operators 34-19

Memory Access Unit 3-246 Transfer Operators 34-20

3-3 INTERRUPTS 3-3-1 Type-Transfer Operators 34-21
Introduction 3-3-1 Miscellaneous Primary Mode
Hardware Interrupt System 3-3-1 Operators 34-21
CPM States and Modes 3-3-1 Universal Operators 34-22

Control State 3-3-1 Variant Mode Operators 34-22
Normal State 3-3-2 String Operators 34-22

Fault Control Logic 3-3-2 Scan Operators 34-23
Fault Register 3-3-2 Scan While Operators 34-23
Fault Mask Register 3-3-2 Tab Field Operators 34-24
Interrupt Identification 3-3-2 Set State Operators 34-25
Processor Fail Register 3-34 Unpack Operators 34-25
Control Mode Register 3-3-5 Searching Operators 34-26

Interrupt Processing 3-3-5 Subroutine Operator 34-27
Interrupt Processing in Special Interpretation Operator 34-27
Normal Mode 3-3-5 Operators Exdusive to the B 7800 34-28
Interrupt Processing in CMl 3-3-7 Edit Mode Operators 34-28
Interrupt Processing in CM2 3-3-7 Insert Operators 34-29
Interrupt Processing in CM3 3-3-7 Move Operators 34-29
Control Mode Advancement 3-3-7 Skip Operators 34-30

Alarm Interrupts (First 4-1 INPUT/OUTPUT SUBSYSTEM 4-1-1
Priority) 3-3-9 GENERAL DESCRIPTION OF
Syllable Dependent Interrupts INPUT/OUTPUT MODULE 4-1-1
(Second Priority) 3-3-9 Introduction 4-1-1
Special Interrupts 3-3-9 Basic IOM Configuration 4-1-1
External Interrupts (Fourth Control Word Flow 4-1-1
Priority) 3-3-9 Data Flow 4-1-1

Memory Related Interrupts 3-3-9 Functional System lnferface 4-1-2
Interrupt Descriptions 3-3-11 Mainframe Interface
Alarm Interrupts 3-3-12 Configuration 4-1-2

Syllable Dependent IOM/MCM Interface 4-1-2

Interrupts 3-3-14 IOM/CPM Interface 4-1-2

Special Interrupts 3-3-21 IOM/Peripheral Interface

34 OPERATORS 34-1 Configuration 4-1-2

Introduction 34-1 Peripheral Control

Grouping of Operators 34-3 Interface (PCI) 4-1-2

Primary Mode Operators 34-5 Disk File Interface (DFI) 4-1-5

Arithmetic Operators 34-5 Scan Interface (SCI) 4-1-5

Bit Operators 34-6 Data Communications

Branch Operators 34-7 Processor Interface (DCI) 4-1-5
Compare Operators 34-8
Enter Edit Mode Operators 34-9 IOM Operational
Index and Load Operators 34-10 Characteristics 4-1-5
Input Convert Operators 3-4-11 IOM Job Map 4-1-7
Literal Call Operators 34-11 Home Address Word 4-1-7
Logical Operators 34-12 Unit Table Word 4-1-7

5010796-001 v

TABLE OF CONTENTS (CONT.)
Chapter Title Page Chapter Title Page

IOQ Head (IOQH) and Channel Termination
IOQ Tail (IOQT) Tables and Operations 4-2-15
Words 4-1-9 Scan Bus-Interface 4-2-15
1/0 Control Blocks 4-1-9 4-3 PERIPHERAL AND CONTROL
Fail 1/0 Control Blocks 4-1-10 WORD FORMATS 4-3"1
Status Queue 4-1-10 Standard Result Descriptor 4-3-2

IOM Home (HA) Commands 4-1-11 Unit Related Errors 4-3-3
Start 1/0 (Home Code 0001) 4-1-11 Result Descriptors Common
Set Channel Busy/Set to All Peripheral Devices 4-3-4
Channel Reserved (Home Internal DSU Error Result
Code 0010) 4-1-11 Descriptors 4-3-4
Reset Channel Busy/Reset IOM Peripheral Result
Channel Reserved (Home Descriptor 4-3-5
Code 0011) 4-1-11 Result Descriptor Locations 4-3-5
~oad Address Commands 4-1-11 Card Reader 4-3-5
DCP Scan-Out Commands CDL Word Format 4-3-5
(Home Code 1000) 4-1-13 Field 4-3-6
Synchronous I/O Command IOCW Information 4-3-6
(Home Code 1010) 4-1-13 Result Descriptor-Unit Error
Interrogate Peripheral Status Field 4-3-6
Command (Home Code 4-1-13 Operations 4-3-6
1011) Inhibit IOM Command BCL(OP20) 4-3-6
(Home Code 1100) 4-1-13 Binary (OP21) 4-3-6
Activate IOM Command EBCDIC (OP22) 4-3-7
(Home Code 1101) 4-1-13 Test (OP99) 4-3-7

Automatic Disk-Pack Card Punch 4-3-7
Operation 4-1-13 CDL Word Format 4-3-7
Data Translation 4-1-14 Field 4-3-7

EBCDIC-BCL Exceptions 4-1-14 IOCW Information 4-3-7
IOM-Generated Interrupts 4-1-16 Result Descriptor-Unit

IOM Fail Word 4-1-16 Error Field 4-3-8
Operations 4-3-8

4-2 FUNCTIONAL OPERATION BCL(OP23) 4-3-8
OF INPUT/OUTPUT MODULE Binary (OP24) 4-3-8
SUBSYSTEMS 4-2-1 Card Punch EBCDIC (OP25) 4-3-8
General 4-2-1 Test (OP99) 4-3-8
Translator 4-2-1 Punch Check Error 4-3-8

Job Service Initiation 4-2-1 Train Printers 4-3-9
PCI/DSB Control 4-2-9 CDL Word Format 4-3-9
DFl/DSB Control 4-2-9 Field 4-3-9
Central Control 4-2-9 IOCW Information 4-3-9
MIU/DSB Control 4-2-9 Result Descriptor-Unit

Peripheral Control Interface 4-2-9 Error Field 4-3-10
Translator Service 4-2-11 Operation 4-3-10
Channel Designate 4-2-11 Print (OPlO) 4-3-10
Channel Data Service 4-2-11 Space (OPll) 4-3-10
Memory Operations 4-2-11 Skip (OPl 1) 4-3-10
Result Descriptor Read 4-2-12 Load Train Image Buffer
Disk File Interface Unit 4-2-12 (OP29) 4-3-10
Channel and DSB Initiation Test (OP99) 4-3-10
Operation 4-2-14 Magnetic Tape Subsystem 4,2-12
Channel Desi,gnate Operation 4-2-14 CDL Word Format 4-3-12
Data Service Operation 4-2-1 s IOCW Information 4-3-13

vi

TABLE OF CONTENTS (CONT.)
Chapter Title Page Chapter Title Page

Result Descriptor-Unit Operation Complete 4-3-20
Field Error 4-3-13 Seek Error 4-3-20

Operations 4-3-14 Seek Time-Out 4-3-21
Rewind (OPOl) 4-3-14 Data Error Retry 4-3-21
Read OP02 (Forward) or Unit Busy 4-3-21
OP03 (Reverse) 4-3-14 Data Error Correction 4-3-21
Erase (OP04) 4-3-14 Unit Seeking 4-3-21
Write (OP06) 4-3-14 Seek Initiated 4-3-22
Write Tape Mark (OP06) 4-3-14 Address EPC Error 4-3-22
Space OP08 (Forward): Address Position Error 4-3-22
OP09 (Reverse) 4-3-14 Address Time-Out 4-3-22
Test (OP99) 4-3-14 Write Lockout 4-3-22
BCL Alpha Operation First Action with Unit 4-3-22
(7-Track With Even Parity) 4-3-14 Memory Access Error 4-3-22

Exception Conditions 4-3-15 Host Parity Error 4-3-22
CRC Correction (9-Track, Speed Error 4-3-22
800BPI Only) 4-3-15 Link Parity Error 4-3-22

Disk Pack Drive Subsystem 4-3-15 Data Error 4-3-22
CDL Word General Format 4-3-15 Not Ready 4-3-23
CDL Word Format, Write HTC Time-Out 4-3-23
(OP50) 4-3-16 Local 4-3-23
Write 4-3-16 Controller Locked 4-3-23
Load Host 4-3-16 Controller Failure 4-3-23

CDL Word Format, Read Result Descriptor (R/D) Tags 4-3-23
(OPSl) 4-3-16 Disk File Subsystem (Type
Read 4-3-16 SN) 4-3-24
Read Absolute 4-3-17 Segment Organization 4-3-24
Read Unit ID 4-3-17 Interlace Options 4-3-24
Subsystem Poll 4-3-17 CDL Word Format 4-3-25
Read Memory 4-3-18 IOCW Information 4-3-25

CDL Word Format, Subsystem Commands 4-3-2S
Initialize (OPS6) 4-3-18 Read Normal 4-3-26
Initialize 4-3-18 Read Maintenance 4-3-26
Initialize Data Only 4-3-19 Read Status 4-3-26

CDL Word Format, Verify Write Normal 4-3-26
(OPS?) 4-3-19 Write Maintenance 4-~-26

Verify 4-3-19 Test Command 4-3-26
CDL Word Format, Relocate Initialize 4-3-26
(OPS8) 4-3-19 Verify 4-3-27

Relocate 4-3-19 Extended Status Message
CDL Word Format, Test (ESM) 4-3-27
Commands (OP99) 4-3-19 Supervisory Display Control

Controller Lock Disable 4-3-19 II 4-3-29
Controller Lock Enable 4-3-20 CDL Word Format 4-3-30
Power Unit Down 4-3-20 IOCW Information 4-3-31
Power Unit Up 4-3-20 Result Descriptor-Unit
Place Unit Into Maintenance Error Field 4-3-31
Mode 4-3-20 Operation 4-3-31
Release Unit from Read(OP32) 4-3-31
Maintenance Mode 4-3-20
Test Operation 4-3-20 S-1 GENERAL DESCRIPTION

File Addressing 4-3-20 OF MEMORY SUBSYSTEM S-1-1
Result Descriptors 4-3-20 Introduction S-1-1

S010796-001 vii

TABLE OF CONTENTS (CONT.}
Chapter Title Page Chapter Title Page

Memory Capacity 5-1-2 MDP Operations 6-1-1

Minimum Memory Size 5-1-2 Bus Operations 6-1-3

Maximum Memory Size 5-1-3 Bus Request Operation 6-1-3

MSU Reconfiguration 5-1-3 Bus Release Operation 6-1-3

Address Allocation 5-1-3 Data Type Operations 6-1-3

Subsystem Allocation 5-1-3 Fetch Operation 6-1-3

Clock Rate and Read Access Store Operation 6-14

Times 5-1-3 XMIT Data Operation 6-1-4

Multiple Word Transfer Control Type Operations 6-1-4

(Phasing) 5-1-3 Clear Module Operation 6-1-4

Word Formats 5-1-3 Clear Row Operation 6-1-4

MCM Control Word 5-1-4 Issue Clock(s) Operation 6-1-5
Box ID Word (For Model 5-1-5 Maintenance Processor 6-1-5

IIIMCM) 5-1-5 MP Operating Modes 6-1-5

MCM Fail Word 5-1-6 Supervisor Commands 6-1-6

Memory Address Limits Card Tester 6-1-6

Word 5-1-8 Functional Interface 6-1-6

Memory Requestor Inhibits General Operation 6-1-6

Word 5-1-8 PROM Programmer 6-1-7

Signal Interface Between Functional Interface 6-1-8

Requestor, MCM, and MSU 5-1-9 General Operation 6-1-8

Signal Interface Between MDP/PROM Programmer

MCM and Regulator 5-1-9 Operations 6-1-10

Signal Interface Between Control Word in Sequence 6-1-10

MCMandMSU 5-1-11 Data Word in Sequence

Definition of MCM Operations 5-1-11 (DWI) 6-1-10

MCM Logic Functions 5-1-12 Read Status Operation 6-1-11

Priority Resolution Logic 5-1-12 Data Out Operation 6-1-11

Data Transfer and Control Module Interrogation and·
Logic 5-1-12 Command Interpreter Program 6-1-11
Error Detection Logic 5-1-12 Module Interrogation Group 6-1-12

4K and 16K MSU Operations 5-1-12 Display Command 6-1-12
4K MSU Logic Functions 5-1-12 Dump Command 6-1-12

Data Transfer and Control Module Command Group 6-1-12
Logic 5-1-13 Clear Command 6-1-12
Data Register/Multiplex Load Command 6-1-12
Logic 5-1-15 Pulse Command 6-1-12
Timing and Address Logic 5-1-15 Set Command 6-1-12
Storage Area 5-1-15 Reset Command 6-1-13
Refresh Logic 5-1-15 Test Command 6-1-13

16K MSU Logic Functions 5-1-15
Interpreter Directive

Data Transfer and Control
Logic 5-1-15

Group 6-1-13

Timing Logic 5-1-15
Address and Refresh Logic 5-1-15 A COLLATING INFORMATION A-1

Storage Logic 5-1-15 B DATA REPRESENTATION 8-1
c PROCESSOR OPERATORS,

6-1 MAINTENANCE DIAGNOSTIC BY HEXADECIMAL CODE C-1
PROCESSING 6-1-1 D· PROCESSOR OPERATORS
Introduction 6-1-1 BY MNEMONICS D-1
MDP Configuration 6-1-1 E IOM WORD FORMATS F.-1

viii

LIST OF ILLUSTRATIONS
Figure Title Page Figure Title Page

1-1-1 Example of B 7800 Exchange 1-1-2 I 2-3-13 Time-of-Day Function Word 2-3-11
1-1-2 Maximum Configuration of 2-4-1 Asynchronous 1/0 Operation,

the B 7800 System 1-1-5 Simplified Block Diagram 2-4-1
2-1-1 Word Structure 2-1-1 2-4-2 Data Transfer Path Selection 2-4-2
2-1-2 Number Base Graphic 2-4-3 I/O Subsystem Map, Simplified

Characters 2-1-1 Block Diagram 2-4-3
2-1-3 Binary Integers 2-1-2 2-4-4 I/O Subsystem Map, Protection 2-4-4
2-1-5 Relationship of Octal, Deciml!l, 2-4-5 IOCB Format, Simplified 2-4-5

and Hexidecimal Numbers 2-1-2
2-1-4 Binary to Hexadecimal and 3-1-1 CPM Block Diagram 3-1-2 • Octal Conversion 2-1-3 3-2-1 Program Control Unit, Block
2-1-6 Binary to Decimal Conversion 2-1-4 Diagram 3-2-2
2-1-7 Decimal to Binary Conversion 2-1-5 3-2-2 PIR Circuits 3-2-3 • 2-1-8 Decimal to Octal Conversion 2-1-5 3-2-3 Conditional Branch Boolean
2-1-9 Powers of 8 2-1-6 Test Logic 3-2-4
2-1-10 Octal to Decimal Conversion 2-1-6 3-2-4 Address Registers 3-2-5
2-1-11 Single Precision Operand 2-1-7 3-2-5 Address Associative Memory 3-2-7
2-1-12 Order of Magnitude Chart 2-1-8 3-2-6 Program Barrel 3-2-8
2-1-13 Double-Precision Operand 2-1-9 3-2-7 PCU Job Number Registers and
2-1-14 Logical Operand 2-1-9 Logic Paths 3.2-13
2-1-15 String Operands 2-1-11 3-2-8 DRU Control Pipeline 3-2-16
2-1-16 Use of String Operand to 3-2-9 DRU Data and Address Paths 3-2-21

Store Signal Operands 2-1-12 3-2-10 Stack Address Registers 3-2-22
2-2-1 Polish Notation Flow Chart 2-2-2 3-2-11 LL Data Paths 3-2-23
2-2-2 Evaluation of Polish String 3-2-12 Execution Unit Block Diagram 3-2-24

A7BC+*= 2-2-3 3-2-13 EU Control Pipeline 3-2-25
2-2-3 Program Word 2-2-4 3-2-14 EU Code Paths 3-2-27
2-2-4 Top of Stack and Stack 3-2-15 EU CDB Read Address Paths 3-2-29

Bounds Register 2-2-4 3-2-16 Barrel Data Paths 3-2-31
2-2-5 ALGOL Program with Lexico- 3-2-17 SAU Data Paths 3 -2-32

graphical Structure and Realted 3-2-18 ALU Data Paths 3-2-34
Stack Structure 2-2-6 3-2-19 EU Result Address Registers 3-2-37

2-2-6 More Advanced ALGOL 3-2-20 EU Job Number Registers 3-2-39
Program 2-2-7 3-2-21 EU Store Subunit 3-2-40

2-2-7 Addressing Environment Tree 3-2-22 Central Data Buffer DRU
of ALGOL Program 2-2-8 Data Storage 3-2-41

2-2-8 Stack History List 2-2-8 3-2-23 Central Data Buffer, EU
2-2-9 Stack Cut Back on Procedure Data Storage 3-2-43

Exit 2-2-9 3-2-24 Store Queue, Block Diagram 3-2-45
2-2-10 Stack Operation 2-2-10 3-2-25 Memory Access Unit, Block
2-2-11 Multiple Linked Stacks 2-2-12 Diagram 3-2-48
2-3-1 Basic Word Format 2-3-2 3-2-26 Control Word Format 3-2-48
2-3-2 Data Descriptor 2-~-4 3-2-27 Error Word Format 3-2-50
2-3-3 String Descriptor 2-3-5
2-3-4 Segment Descriptor 2-3-6 3-3-1 Stack Format 3-3-6
2-3-5 Program Control Word 2-3-6 3-3-2 Stack Format Prior to Calling
2-3-6 Indirect Reference Word 2-3-7 Interrupt Procedure While in
2-3-7 Stuffed Indirect Reference Word 2-3-8 CMl (Move Stack Operation) 3-3-7
2-3-8 Mark Stack Control Word 2-3-9 3-3-3 Interrupt Reporting 3-3-8
2-3-9 Return Control Word 2-3-10 3-3-4 Stack Format Before Re-entering
2-3-10 Top of Stack Control Word 2-3-10 Interrupt Procedure to Report
2-3-11 Step Index Word 2-3-11 Stack Overflow 3-3-10
2-3-12 Occurs Index Word 2-3-H 3.3.5 Stack Format After Re-entering

5010796-001 ix

LIST OF ILLUSTRATIONS (CO'NT.)
Figure Title Page Figure Title Page

Interrupt Procedure and 4-3-1 SDC II -in B 7800 Systems 4-3-30
Reporting Stack Overflow 3-3-11 4-3-2 IOM/SDC 11.Ft:>rmat 4-3-32

3-3-6 Presence Bit Interrupt Chart 3-3-19 4-3-3 Message from Terminal (Read) 4-3-:H
3-4-1 Program Buffer Word Format 3-4-2
3-4-2 Address Couple Bit Assignment 3-4-2 5-1-1 B 7800 Memory Subsystem
3-4-3 B 7800 CPM Program Operator with Model II Memory

Hexadecimal Code Assignments 3-4-4 Control Modules Diagram 5-1-1
4-1-1 IOM Basic Block Diagram 4-1-1 5-1-2 B 7800 Memory Subsystem
4-1-2 Typical IOM/Main Memory with Model III Memory

and IOM/CPM Interface Control Modules Diagram 5-1-2
Configurations 4-1-3 5-1-3 Requestor-MCM-MSU

4-1-3 Typical Data-Transfer Interface 5-1-10
Classifi.:ations and Related 5-1-4 Memory Control Module
IOM Subsections 4-1-4 Block Diagram 5-1-13

4-1-4 Example of IOM Configuration 4-1-6 5-1-5 4K Memory Storage Unit
4-1-5 IOM Job Map 4-1-8 Block Diagram 5-1-14
4-1-6 Home Address Commands 4-1-12 5-1-6 l 6K Memory Storage Unit
4-1-7 IOM Fail Word 4-1-17 Block Diagram 5-1-16
4-2-1 Translator Component

Interface 4-2-2
4-2-2 Memory Interface Unit 4-2-5 6-1-1 Typical MDP Configuration 6-1-2
4-2-3 Data Service Buffer 4-2-8 6-1-2 Maintenance Processor
4-2-4 Peripheral Control Interface 4-2-10 Configuration 6-1-5
4-2-5 Disk File Interface 4-2-13 6-1-3 Card Tester Data Flow,
4-2-6 Scan Bus Interface 4-2-16 Simplified Diagram 6-1-7
4-2-7 Data Communications Inter- 6-1-4 PROM Programmer Block

face Unit 4-2-17 Diagram 6-1-9

x

LIST OF TABLES

Table Title Page Table Title Page

1-1-1 Central Components of the 4-1-1 IOM HA Operations and

B 7800 System 1-1-4 Corresponding Home Codes 4-1-11

2-1-1 Sign Configurations of 4-1-2 General Translation

String Operands 2-1-12 Specification Codes 4-1-14

2-2-1 Description of Stack Operation 2-2-11 4-1-3 Translation Codes by Device 4-1-15

3-2-1 Special Input Codes of DRU 4-3-1 MOD II IOM Data Service

and EU 3-2-10 Buffer Errors 4-3-3

3-2-2 Operator Cases for Loading 4-3-2 Train ID Numbers 4-3-10

Code into RAC Register 3-2-11 4-3-3 Controller and Host Transfer

3-2-3 Type Bit Codes in RAC Result Descriptor Information 4-3-21

Register 3-2-15 5-1-1 B 7800 Memory Subsystem

3-3-1 B 7800 Interrupt Bit I Configurations 5-1-3

Assignments 3-3-3 5-1-2 Operation Codes for I 3-3-2 Processor Fail Register 3-3-4A the MCM 5-1-4
3-4-1 Instruction Decode Table 3-4-1 6-1-1 PROM Programmer Components 6-1-8

3-4-2 Register Address Assignment 3-4-26 • E-1 Status Vector Cross Reference E-5

5010796-001 xi

INTRODUCTION

This system reference manual presents the techni­
cal details about the general architecture, the compo­
nents, and the subsystems of the Burroughs B 7800
Information Processing System, which is the most
advanced, the largest, and the most powerful mem­
ber of the Burroughs family of 700 systems.

The chapters of this reference manual are as fol­
lows:

Chapter I, Description of the B 7800 System, in­
troduces the idea of the interaction of independently
operating computing, input/output, and memory
modules through an exchange and a presentation of
the range of configurations of the system.

Chapter 2, System Architecture, discusses data
representation, Polish notation and stack concepts,
processor control words, and the concepts of the in­
put/output subsystem map.

Chapter 3, Central Processor Module, contains a
functional description of the operation of the central
processor module, an explanation of hardware inter­
rupts, and a brief description of each program
operator.

xii

Chapter 4, Input/Output Subsystem, contains a
general description of the operation of the input/out­
put module, functional descriptions of the subsec­
tions of the input/output module, and detailed de­
scriptions of the control words and descriptors asso­
ciated with each type of peripheral device that may
be included in the system.

Chapter 5, Memory Subsystem, contains a general
description of the memory subsystem and details
about both the memory control module and the
memory storage unit.

Chapter 6, Maintenance Diagnostic Processing,
contains a general description of the maintenance di­
agnostic processing, a functional description of both
the programmer and card tester, and a general de­
scription of the control words associated with main­
tenance diagnostic processing.

The term software, as used in this manual, applies
to that category of Burroughs Program Products de­
fined as Systems Software.

Other categories of Burroughs Program Products
are:

Application Program Products
Program Product Conversion Aids

CHAPTER 1
DESCRIPTION OF
B 7800 SYSTEM

THE B 7800 SYSTEM

The Burroughs B 7800 Information Processing
System is a large-scale, general-purpose, balanced,
flexible, multiprogramming, and multiprocessing
computing system suitable for such diverse applica­
tions as time sharing, scientific problem solving, and
business data processing. The B 7800 is completely
object code compatible with B 7700, B 6700, and
B 6800 systems and affords Burroughs users the op­
portunity for growth without reprogramming or re­
compiling. Object code users' programs that can be
executed successfully on the B 7700, B 6700, and
B 6800 can be executed without modification on the
B 7800.

The system is able to: 1) handle complex data
structures and sophisticated program structures dic­
tated both by higher-level languages now in use and
by the requirements of advanced problems; 2) effi­
ciently manage the massive on-line and archival stor­
age requirements of large data bases; and 3) accom­
modate vast networks of data communications de­
vices.

The B 7800 is a very fast, modular parallel proces­
sing system with versatility in configuration. The
B 7800 can be tailored to the processing needs of a
user by arranging central processor modules, input/
output processors, and memory modules on an ex­
change (figure 1-1). If the high performance and
adaptability of the B 7800 could be attributed to a
single factor, it would be to the balance attained by
the controlled interaction of independently operating
computing, input/output, and memory modules
through the exchange. Thus, the throughput of the
system as a whole is maximized, and the perform­
ance of no single element of the system is
maximized to the neglect or detriment of others.

The key to the efficient balanced use of the sys­
tem is the Burroughs master control program (MCP),
a unique executive software operating system that
automatically makes optimum use of all system re­
sources. It is this operating system that makes multi­
programming and multiprocessing both functional
and practical by controlling system resources and by
scheduling jobs in the multiprogramming mix. In
use, the master control program allocates system re­
sources to meet the needs of the programs intro­
duced into the computer. It continually and automat­
ically reassigns resources, starts jobs, and monitors
their performance.

5010796-001

Further implications of the modularity and flexibil­
ity of the system are its expandability (a capacity to
add hardware modules without reprogramming) and
its increased reliability (thus increasing availability to
the user). The reliability is achieved by the use of
continuous processing techniques that (in addition to
providing for error detection, error correction, inde­
pendence, and redundancy of power supplies) ex­
clude faulty modules from the system and permit
processing to continue (without reprogramming)
even with a temporarily reduced configuration.

Although it is very large and immensely compli­
cated, the B 7800 is comprehensible to the user. Pro­
gramming is done only in higher-level, problem-ori­
ented languages (COBOL, ALGOL, FORTRAN,
PL/I, and ESPOL). The control language used in en­
tering jobs into the system is a simple, free-form,
English-like language, and the messages that pass
between the system and the operator are brief, clear,
and easy to learn.

DISTINGUISHING FEATURES

Although the balanced use of the principal compo­
nents of the system (as a whole under the control
and coordination of the master control program) is
the key to the high throughput of the B 7800, the
high performance of the system is in large part
achieved by:

I. Improving the speed of execution of instruc­
tions.

2. Reducing or masking the overhead associated
with references to memory.

3. Freeing the central processor from concern
with input/output operations.

4. Employing continuous processing measures that
minimize system degradation.

The three goals of the continuous processing fea­
tures of the B 7800 are to: 1) keep the system run­
ning 100% of the time; 2) minimize system degrada­
tion; and 3) provide the user with tools for perform­
ing one's own data recovery. These goals are
achieved by the combination of hardware and soft­
ware throughout the system.

The first goal, to keep running, is achieved as fol­
lows:

1. By the high reliability of system hardware.
2. By the incorporation of error detection circuits

throughout the system.

1-1-1

786KB 786KB 7B6KB 786KB
MEMORY MEMORY MEMORY MEMORY
STORAGE STORAGE STORAGE STORAGE

UNIT UNIT UNIT UNIT

DUAL MEMORY CONTROL

l

r---,- - -,- - -,---,
I 786KB I 786KB I 7B6KB I 786KB I
I MEMORY I MEMORY I MEMORY I MEMORY :
I STORAGE :STORAGE 1sTORAGE I STORAGE I I UNIT I UNIT l UNIT I UNIT I
i,... ___ L ___ . ___ J_ ___ _J

I I I

L __ -D~A~M::Y~O=~~---J
I I
I I
I :

1- -;.-: :. : ~ --=- : ~ : : : : : : : : : : : = - -- - -- - -_J
I I

' p ' ~ -----
...
~

....... ... _...
---....
....
---...

......

(
-

......
MAINTE-
NANCE

PROGESSOR

'---1

....__

• Figure 1-1. Example of B 7800 Exchange

1-1-2

CENTRAL

PROCESSOR

INPUT"

OUTPUT

PROCESSOR

DATA
REFERENCE

UNIT

PROGRAM
UNIT

EXECUTION
UNIT

MEMORY
ACCESS UNIT

20 PERIPHERAL 1--- ODT
CHANNELS

4 DISK
CHANNELS

4 DISK
CHANNELS

4 DCP PORTS

DATA
CENTRAL REFERENCE

PROCESSOR
UNIT

PROGRAM
UNIT

EXECUTION
UNIT

MEMORY
ACCESS UNIT

20 PERIPHERAL
~ ODT INPUT/ CHANNELS

OUTPUT

PROCESSOR 4 DISK
CHANNELS

4 DISK
CHANNELS

4 DCP PORTS

OPERATOR
DISPLAY

TERMINAL
~

~

OPERATOR
DISPLAY

TERMINAL

r{ OPERATOR
DISPLAY

TERMINAL

~

OPERATOR
DISPLAY

TERMINAL

3. By single-bit error correction of errors in mem­
ory.

4. By recording errors for software analysis.
5. By modular design. (The use of separate power

supplies and redundant regulators for each
module, and the use of redundant buses).

6. By the ability of the master control program to
reconfigure the modules of the system to ex­
clude (temporarily) a faulty module.

7. By automatic instruction retry. If a hardware
malfunction occurs during the performance of
an instruction, the· master control program
analyzes the error and writes the appropriate
entry in the on-line maintenance log. The pro­
cessor is reset to its state prior to the error and
the instruction is performed again.

The detection and reporting of errors is done by
hardware; analysis of errors is done by software;
and the reconfiguration of the system is done by
software. Because of the modularity of power sup­
plies and the use of redundant regulated supplies for
critical voltages, the impact of a malfunctioning de
supply is minimized and does not result in a cata­
strophic failure.

The second goal, to minimize system degradation,
is achieved by providing diagnostic programs, and
equipment for rapidly identifying and repairing faults
and for re-establishing confidence in a repaired mod­
ule before it is returned to the user's system. The di­
agnostic programs of the B 7800 system identify a
faulty module.

By use of the maintenance diagnostic processing
programs, a fault in any mainframe module is nar­
rowed to a single clock period and to a flip-flop and
associated logic circuitry. Once the maintenance di­
agnostic program has been used to isolate a fault to
within one or more suspect circuit cards in a mod­
ule, the card test facility can be used to test the
card.

In addition to diagnostic programs, an interpreter
program, MICI (module interrogation and command
interpreter), allows the manipulation, control, inter­
rogation, and display of B 7800 mainframe modules
from a standard system SPO. The strategy of con­
trolling modules, by use of MICI, is to exercise a
suspected logic circuit for fault isolation.

The third goal, to provide the user with tools for
performing their own data recovery, is achieved by
the use of such features as installation allocated
disk, protected disk files duplicated disk files, and
fault statements in the higher-level programming lan­
guages used on the system.

Installation allocated disk allows the user to
specify the physical allocation of critical disk files to
facilitate the maintenance and reconstruction of
these files. Protected disk files allow a user to gain
access to the last portion of valid data written in a
file before an unexpected system halt. The use of
duplicated disk files is to avoid the problem of fatal
disk file errors. The master control program main­
tains more than one copy of each disk file row, and,
if access cannot be gained to a record, an attempt is
made to gain access to a copy of the record. By use
of fault statements, the user can stipulate actions to
be taken by one's own programs in the event errors
occur.

SYSTEM CONFIGURATION

Physically, the components of theB 7800 system
fall into the following categories:

1. Central components of the B 7800 system: the
central processor module; input/output proces­
sor; the memory module; the maintenance pro­
cessor; and the operator's console (refer to ta­
ble 1-1).

2. Standard Burroughs cabinets that contain pe­
ripheral controls and exchanges: the data com­
munications processor; and ac power supplies.

3. Standard peripheral devices that are joined to
the central system by sta_ndard Burroughs pe­
ripheral controls: adapters and exchanges;
standard remote devices that are joined to the
central system by line adapters; and data com­
munications processor.

The arrangement of these components into a sys­
tem and the size of the system depend on the appli­
cation and workload of the user. In the following
paragraphs, the range of configurations of the
B 7800, the maximum configuration, and the
minimum configuration is described.

Maximum Configuration

Figure I -2 illustrates the theoretical maximum con­
figuration of the B 7800 system.

As many as eight memory modules may be ar­
ranged on the exchange with a combined total of up
to eight requestors of memory-central processor
modules and input/output modules. Any single re­
questor of memory may address and gain access to
the entire contents of high-speed main memory
(1,048,576 words, or 6,291,456 eight-bit bytes). On
the maintenance bus (which services the memory
control modules, central processor modules, and
input/output modules) a maintenance proc.essor is
placed.

1-1-3

Table 1-1. Central Components of the B. 7800 System

B 7811

B 7821

B 9955

System includes: one central processor (8 MHz),

one input/output processor with 24 data

switching channels,* one maintenance processor,

one operator console with dual displays and

control.

System includ.es: two central processor (8 MHz),

two input/output processors with 24 data
switching channels each,* one maintenance p:ocessor,

one operator console with dual displays and

control.

Additional operator console and control with

dual operator uisplays.

B 7801

B 7882

B 7007

B 7008

Additional central processor.

Add;tional input/output processor.

Dual Access Memory Control Module and four

Memorr Storage Units - 3,145,728 bites of

storage, error correcting memory, 8-way

interleaving that permits 8-word transfer to
and from memory.

Dual Access Memory Control Module and two

Memory Storage Units -1,5 72,864 bites of

storage, err :>r correcting memory, 8-way
interleaving that permits 8-word transfer to

and from memory.

* Throughout this manual the 1/0 Processor is referred to as the 1/0 Module.

At rates of up to 6.75 million bytes per second, a
single input/output module is capable of transferring
data simultaneously between main memory and 28
peripheral controls (including eight high-speed con­
trols) and between main memory and as many as
four data communications processors. At present,
the maximum number of high-speed, medium-speed,
and low-speed peripheral devices that may be at­
tached through controls and exchanges to a single
input/output module or that may be included in the
input/output subsystem of the B 7800 is 255.

By suitable cross-connection through exchanges, it
is possible to establish pathways between disk files,
disk packs or magnetic tape units, and more than
one input/output module; hence, these peripheral de­
vices can be shared by all of the input/output mod­
ules in the system.

Among the peripheral devices available are disk
file and disk pack memory modules that constitute a
virtual memory that, in effect, greatly expand the
storage capacity of the main memory of the system.
These modules are interfaced with the input/output
module.

In addition to the 255 peripheral devices that may
be included in the input/output subsystem, there is a
vast network of remote terminals, remote controller,
and remote computers that can be accommodated by
as many as 1024 remote lines. These are served by

1-1-4

the four programmable data communications proces­
sors which can be controlled by a single input/output
module. Normally, each line handles a number of re­
mote devices; systems that have more than one
input/output module can have more than one data
communications network. Theoretically, the
maximum number of data communications proces­
sors that could be included in a B 7800 system is 28.
(Currently, the software can only handle a maximum
of eight.)

Minimum Configuration

The smallest possible B 7800 system is composed
of the central components listed below.

Central Components Qty

Central processor module (CPM)

Input/output module (IOM)

Memory control module (MCM)

Memory storage cabinet (MSC)

Memory storage unit (MSU)

Maintenance Processor

Operator's consob

2

In addition, the minimum configuration must con­
tain a disk file memory subsystem large enough to
hold the master control program, a card reader, a
line printer, a magnetic tape unit, peripheral con­
trols, and ac power cabinets. In practice, other pe­
ripheral devices and their controls are used with this
minimum configuration.

' -v.

MSC
UPT02MSU'S I llSU-<I I llSU-1 I ~PERllCll

If If TIIT_J
r -: 11 II H

1

rl
1

UPT04MCM'S
PER SYSTEM

110
MODULE

INTERRUPT
BUS

CENTRAL
PROCESSOR

CENTRAL
PROCESSOR

b

~

i---,

ED1272

• •
• ,-----,

t t t=S •g: I
CPll I

L_ ___ __J

7 .------,
I !t=tj •g: I

~ CPll I
MAINTENANCE L -_ _J

BUS -

[]

T
_....

1
DATA DATA DATA DATA

COMMUNICATIONS COMMUNICATIONS COMMUNICATIONS COMMUNICATIONS
PROCESSOR PROCESSOR PROCESSOR PROCESSOR

SCAN BUS

SPC

I~
5PC d b 5PC

I~
5PC d

5PC 5 PC =1 ~ 5 PC 5PC =1
PCC PCC

-11----------<p---------....--SCANIUS

DATA
COMMUNICATIONS

PROCESSOR

LEGEND

llSU
llCll
PC
PCC
DFC
OF PCC

EU
EX
MP

Figure 1-2. Maximum Configuration of the B 78CM) System

OfC

MEMORY STORAGE UNIT
MEMORY CONTROL MODULE
PERIPHERAL CONTROL
PERIPHERAL CONTROL CAllNET
DISK FILE CONTROL
DISK FILE PERIPHERAL CONTROL

CABINET
= ELECTRONICS UNIT
= EXCHANGE
= MAINTENANCE PROCESSOR

CHAPTER 2
SYSTEM

ARCHITECTURE
SECTION 1

DATA REPRESENTATION

GENERAL

The basic information structure used in the
B 7800 Information Processing System is the
word. Each word contains 48 information bits,
three tag bits, and one parity bit. (See figure
2-1-1.) The information bits may be used to
store character values, logical values, or nu­
meric values. The tag bits are control bits
which identify the type of information con­
tained in the information field. The tag bits
are inaccessible to normal state (user) pro­
grams. The parity bit is used to check for cor­
rect information transfer between the CPM or
IOM and main memory.

:~R1Tr 1
' 51' 47 43 39 35 31 27 ~ 19 15 II 7 '

50 46 42 38 34 30 26 22 18 14 JO 6

49 45 41 37 33 29 25 21 17 13 9 5

48 44 40 36 32 28 24 20 16 12 8 4

TAG{ FIELD

INFORMATION FIELD

Figure 2-1-1. Word Structure

INTERNAL CHARACTER CODES
AND COLLATING SEQUENCES

3

2

I

0

Extended Binary Coded Decimal Inter­
change Code (EBCDIC) is the primary internal
character code of the B 7800. EBCDIC is an
eight-bit alphanumeric code containing four
zone bits and four numeric bits. Other internal
codes which may be used include the American
Standard Code for Information Interchange
(ASCII), and the Burroughs Common Lan­
guage Code (BCL). ASCII is the primary data
communication code; BCL is used to interface
with peripheral units. Numeric EBCDIC and
BCL codes may be packed into four-bit digits
by internal commands which delete the zones
and compress the numeric portion of the char­
acters. In general, characters are collated ac­
cording to their internal binary value. Charac­
ter codes and collating sequences are provided
in the appendices.

NUMBERS AND NUMBERING
SYSTEMS

The B 7800 is a digital computer; that is, val­
ues are stored internally in binary digits (bits).
Data displayed in registers and printed forms
may be in octal or hexadecimal format. Gener­
ally, we think in terms of, and manually per­
form arithmetic with, decimal numbers. Thus,
an understanding of all of these numbering
systems is desirable.

The decimal system is based on the ten dig­
its 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, and upon the
powers of ten. The binary system is based up­
on the two digits 0 and 1, and the powers of
two. Two raised to the third power (23) is 8, the
base of the octal system. Two raised to the
fourth power (24) is 16, the base of the
hexadecimal system. The set of digits for each
number system is shown in figure 2-1-2.

The digits 0 through 9 and the alphabetic
characters A through F comprise the 16-char­
acter requirement for the hexadecimal num­
bering system. The letter A is assigned a value
of 10. B equals 11, etc., to F, which equals 15.

DECIMAL 0 I 2 3 4 5 6 7 8 9 10 11 12 13 Jl1 15

BINARY 0 I

OCTAL o l 2 3 4 5 G 7

DECIMAL 012345671)9

HEXADECIMAL 0 I 2 3 4 5 6 7 8 9 A B C D E F

40951

Figure 2-1-2. Number Base Graphic Characters

Binary Notation
Because a binary digit may have only one of

two values, it can be represented by a flip-flop
or a bit. A number in internal binary represen­
tation is then a series of bits which are either
on or off. When a bit is on (1), its position de­
termines the value. Consider an example of
five bits.

The least significant bit, if on (1), has a val­
ue of 2°, or 1; the next most significant bit to

2-1-1

O =off bit

1 =on bit

value of position =

•.. 0 O O O 1 = O +O +O +O + 1 •decimal 1

... 0 0 0 1 0 = 0 +0 +O +2 + 0 =decimal 2

... 0 0 0 1 1 = 0 +O +O +2 + 1 =decimal 3

... 1 1 1 1 1 = 24+23+22+21+ 1 = 1 = 16 + 8 + 4 + 2 + 1 •decimal 31

40952

Figure 2-1-3. Binary Integers

the left of the binary point has the value of 21,
or 2; the third bit (count from right to left) has
the value of 22, or 4; etc. In this way, any inte­
ger can be represented in binary form. Figure
2-1-3 illustrates some integers. Fractions in
binary are much the same as integers. Here,
though, the powers are negative powers with
the first power to the right of the binary point
having the value of 2-1, or 1/2; the second bit
has the value of 2-2, or 1/4; the third bit 2-3,

or 1/8; the fourth bit, 2-4, or 1/16; etc. It is ap­
parent that while some fractions are repre­
sented correctly, others can only be
approximated. However, the degree of error is
very small when a sufficient number of bits
are used.

Hexadecimal and Octal Notation
Since binary words are cumbersome to dis­

play, the more efficient methods of
hexadecimal and octal notation are used. The
hexadecimal representation of a binary word
is obtained by dividing the bits into groups of
four with each group assigned a successive
power of 16. A binary-to-octal conversion is ob­
tained by dividing the bits into groups of three
and assigning successive powers of 8 to each
group (figure 2-1-4).

The relationship between octal, decimal and
hexadecimal is shown in figure 2-1-5 using
the decimal number tonto (equivalent to 17fi5e

and Jrst& where the subscript 8, 10, of 16 in­
dicates the base).

2-1-2

17655 = t x 83 + 7 x 52 + 6 x et + 5 x s 0 =
t x 5t2 + 7 x 64 + 6 x 8 + 5 x 1

512 + 448 + 48 + 5 • 101310

t013to = 1 x 103 + 0 x 102 + I x 101 + 3 x 10 .
t x tOOO + 0 x tOO + t x to + 3 x t

tOOO + 0 + to + 3 • l013to

3F516 • 0 x 163 + 3 x 162 + F x t61 + 5 x t60 •
0 x 4096 + 3 x 256 + F x 16 + 5 x I

. 0 + 768 + 240 + 5 • 10t310

409~4

Figure 2-1-5. Relatlonsblp ot Octal,

Dedmal, and Hexadecimal Nulllbers

NUMBER CONVERSION

Binary to Decimal Conversion
Integral

This conversion is effeCted by adding togeth­
er the value of each bit that is on. In this way,
the binary number 11010011 would be equal to:

lx21+1x26+ox2S+1x24+ox23+ox22+1x2l+1x20.

lx21+1x26+ 0 +lx24+ o•0+1x2l+1x20.

128 + 64 + 16 + 2 + 1 21110

':-' -w

HEXADECIMAL

BINARY

OCTAL

BINARY

40951

324
288

262
144

131
072

N:al6•

Na.8'

32
768

16
384

Nxt6 3 N:a 16'1 Na161 ,.. •• &0

8192(409612048(1024 512 128 64 32 8 4 2 1/2 1/4

Mx8' Nx8 3 Nx8 2 Na8 1 • N:a8° ... a·

4

256 I 128 I 64

Figure 2-1-4. Binary to Hexadecimal and Octal Conversion

1/8

_,
N:al6

1/16 1/32

.... -1

4

1/16 I 1/32 I 1/64

N116-z

8

4

1 /64 I 1 /28 I 1/256

A second method of effecting a binary-to­
decimal conversion is the "double dabble"
method. In this procedure, the high-order bit
is doubled (multiplied by 2) and then added to
the next lower-order bit. This sum is then dou­
bled and again added to the next lower bit.
This process is continued until the entire bina­
ry number has been expended (figure II-1-6A).
The correct result is obtained after the low-or­
der bit (units) has been added.

Fractional
The above process will work for integral

numbers and for the integral part of frac­
tional numbers, but it will not work for the
fractional part of fractional numbers. To con­
vert binary fractions to decimal fractions, divi­
sion is used. As was previously stated, the bits
to the right of the binary point have the de­
creasing vaiues of 2-1, 2-2, 2-3, 2-4, etc., or, as
fractions 1/2, 1/4, 1/8, 1/16_, etc., respectively.

To find the decimal equivalent of a binary
fraction, the lowest order significant bit is tak­
en as the integer 1 and divided by 2. The next
higher-order bit is then added into the units
position of the resulting quotient, and the divi­
sion is repeated. This is repeated until the bi­
nary point is reached. The result is complete
when the bit to the immediate right of the bi­
nary point has been added into the units posi­
tion and the result divided by 2. This process
is shown in 1figure 2-1-6B.

BINARY I 0 I I ·I = DECIMAL 23

40811

.i ~
2+0=2

•2

4+ I= 5
•2

10+ I: II

.!!.
22+ I : 23 =

@

Decimal To Binary Conversion
Integral

Decimal to binary conversion may be ef­
fected in several ways. If the powers of 2 are
known, then the binary equivalent can be
found by subtracting from the number the
largest power of 2, which is smaller than the
decimal number, and then recording a bit for
that power of two. The largest power of 2,
which is smaller than the result of the preced­
ing subtraction, is then found, subtracted, and
the corresponding binary bit recorded. In ef­
fect, this is the reverse of the first method of
converting from binary to decimal.

A second method of conversion is done by
successive division. The decimal number to be
converted is divided by 2 and the quotient and
remainder are noted. The remainder will al­
ways be either 0 or 1. Then the quotient is di­
vided by 2, resulting in another quotient and
remainder. This is repeated until the quotient
is 0. The remainder, resulting from the first
division, is the low order bit; the last remain­
der is the high. order bit. This process is valid
for the integral part of a number (figure 2-1-
7A).

Fractional
The fractional part of a number may be con­

verted in a method similar to the preceding
method of division. The fraction is multiplied

.8125
2/1.625

-----J ttf
.625

2/ITs'"
tt

.25 2ro:s-

Ll:~
t

I
BINARY .I I 0 I : DECIMAL .8 I 2 5

®

Flpre 2-1-6. Binary to Decimal Conversion

2·14

36 WITH REMAINDER OF 1-------.
2fi'J DECIMAL

18 WITH REMAINDER OF 0 -----
2/36

9 WITH REMAINDER OF 0----
2fi8

4 WITH REMAINDER OF l---
2f9

2 WITH REMAINDER OF 0
2f4

I
2'2

0
2fT

WITH REMAINDER OF O~

WITH REMAINDER OF 1--i l
DECIMAL 73 •BINARY 1 0 0 1 0 0 I

0
40956

.8125
x2

----1.6250

.6250
x2

---1.2500

.2500

'::::
x2

,1.0000

DECIMAL .8125 =BINARY .I I 0 1

Figure 2-1-7. Dedmal to Binary Convenlon

by 2 and, if the result is greater than 1, the 1
is recorded in the binary string as a 1 bit. If
the product remains less than 1, the binary bit
is 0. The fractional part of the product is car­
ried down and again multiplied by 2. This is
repeated until the fractional part is equal to 0,
or the required degree of accuracy is attained.
This process is shown in figure 2-1-78.

Decimal To Octal Conversion
Integral

To convert a decimal number to its octal
form, the powers of eight may be used. An­
other method is.to divide the number by eight.

66 WITH REMAINDER OF 3----
8/ill

8 WITH REMAINDER OF 2 ---
8/66

1 an
0

Bfl

40957

WITH REMAINDER OF 0 I
WITH REMAINDER OF 1----i l
DECIMAL 531 •OCTAL 1 0 2 3

0

The remainder is the low-order octal digit. The
quotient is then again divided by eight, and
the remainder resulting is the next higher-or­
der octal digit. This process is repeated until
the quotient is zero. This method is used for
the integral part of numbers (figure 2-1-8A).
Fractional

When a fractional part of the number is .to
be converted, multiplication is used. Here, the
fraction is multiplied by eight and the integral
portion formed is the first octal digit to the
right of the octal point. This process is re­
peated until either the fraction is zero, or the
desired degree of accuracy is attained. This
conversion is shown in figure 2-1-88.

.439453125
x8

----3 .515625000

.515625
x8

Figure 2-1-8. Decimal to Octal Convenion

2-1-5

8" n 8-n

0 1.0

8 0.125

64 2 0.015625

512 3 0.001953125

4096 4 0.000244140625

32768 5 0.000030517578125

262144 6 0.000003814697265625

2097152 7 0.000000476837158203125

16777216 8 0.000000059604644775390625

134217728 9 0.000000007450580596923828125

1073741824 10 0.000000000931322574615478515625

8589934592 11 0.000000000116415321826934814453125

68719476736 12 0.000000000014551915228366851806640625

549755813888 13 0.000000000001818989493545856475830078125

40951

Figure 2-1-9. Powers of 8

Octal To Decimal Conversion
Octa de

In octal to decimal or decimal to octal con­
versions, if the powers of 8 are known, theh
the procedure is much the same as the corre­
sponding subtraction method of binary. The
difference is the digital multiplier which will
have a value of from 0 through 7 in octal.
Each octal digit will be ref erred to as an oc­
tade. The values of the octades are shown in
figure 2~1-9.

Integral
On the conversion from octal to decimal, a

method very similar to "double dabble" may
be used .. Here, the higher-order octade is mul­
tiplied by 8 and then added to the next lower
octade. This sum is then multiplied by 8 and
again added to the next lower octade. This is
c<>ntinued until the first octade to the left of
the octal point is reached. After the units oc­
tade has been added, the result should be com­
plete (figure 2-1-lOA).

Fractional
The above method is valid for the integral

part of a number, but for the fractional part
of a number, the following must be used. The
lowest order octade is considered to be an inte­
ger. As such, it is divided by 8. The next high­
er octade is then added to this quotient in the

2-1-6

OCTAL 2 6 7 2 = DECIMAL 1466

.:_J~
16 + 6 = 22

x8

176+7 = 183
x8

1464+ 2 = 1466

@

,439453125
e/3.515625

_ ___. Htttt

I

.515625
8/4.125

t tt
.125

I .ooo
+

OCTAL .341: DECIMAL .439453125

@
Flpre 2-1-10. Octal to Dedm8I Convenlon

units position and the sum is again divided by
8. This continues until the first octade to the
right of the octal point has been added and the
result divided by 8. (See figure 2-1-lOB.)

Decimal To Hexadecimal
Conversion

To convert an integral or a fractional
decimal number to its hexadecimal form, the
powers of 16 may be used. Methods similar to
those used for conversion to octal representa­
tion may also be used, with the multiplication
or division being by 16 rather than eight; how­
ever, such methods are very cumbersome. The
simplest method is to convert the decimal
number to a binary number as described ear­
lier, and then convert the binary number to its
hexadecimal representation (each four binary
digits are used to form one hexadecimal digit).

Hexadecimal To Decimal
Conversion

The simplest method for converting integral·
or fractional hexadecimal numbers to their
decimal equivalent is to first convert the
hexadecimal number to its binary equivalent
(each hexadecimal digit is used to from four
binary digits) and then convert the resulting
binary number to its decimal representation
as described earlier.

OPERAND FORMATS
Operands are· the words of information that

are worked with when processing. An operand
may be used to store numeric values (a numer­
ic operand), logical values (a logical operand),
or character values (a string operand). Most
operands are one word in length, and are iden­
tified by a tag field of zero. Double precision
operands, which are used to store numbers in
which many significant digits of accuracy are
needed, are two words in length and are iden­
tified by a tag field of two. Thus, the iag field
of an operand indicates the size of the operand
(one or two words).

Numeric Operands
Numeric operands are used to store numeric

values (numbers) in floating point format. A
numeric operand may be single or double pre­
cision.

When the tag bits of a memory word (bits 50,
49, 48) are 0 (000), they denote a single-preci­
sion operand. When the tag bits are 2 (010),
i.e., bit 49 set, they denote a double precision
operand.
Single Precision Operands

All numeric operands are expressed in float­
ing point form, where each numeric operand
has both a mantissa and an exponent. This

form may be related to power of ten notation
where 13297. is the mantissa and -3, the expo­
nent in a representation of the number 13.297
(13297. x 10-3). The mantissa of a single preci­
sion operand is comprised of 39 bits which
make up 13 octades. The mantissa of a single
precision numeric operand is considered to bi!
an integer and is treated as such; i.e., the bi­
nary point is considered to be to the right of
the least significant octade. The exponent of
the number is represented by 6 bits (bits 44
through 39) which form two octades. Bit num­
ber 45 is the sign of the exponent. When 45 is
off, the exponent is positive; when on,
negative. Bit 46 is the sign of the mantissa,
which is the overall sign of the operand.

The structure of a single precision operand
is shown in figure 2-1-11. Because the expo­
nent is an octal scale factor, the single preci­
sion operand is shown in both he~adecimal
and octal representation.

Exponent Field

The exponent is a binary number which,
with its sign, is an octal scale factor for the
mantissa. That is, the binary point in the man­
tissa must be shifted left three binary places
(the mantissa must be shifted right three bi­
nary places) for each increase by one in the
value of the exponent. The exponent is used
for automatic scaling of operands when arith­
metic, comparison and integer operations are
being performed. The range of the exponent is
from +63 to -63 for single-precision operands.

SINGLE PRECISION OPERAND (OCTAL REPRESENTATION)

• 5

Binary
SINGLE PRECISION OPERAND (HEXADECIMAL REPRESENTATION) Point

0 50
0

49
0

48

·······~
E

Li._43

M46 1~2
E45 N

l.£.41

44 io

TAG

M

E

EXPONENT
MANTISSA

39

38

37

36

35 31 27 23 19 15

M~ NTI s~e 34 30 22 14

·33 29 25 21 17 13

32 28 24 20 16 12

50:3 000
47:1 Not used
46:1 Sign of Mantissa.

11 7

10 6

9 5

8 4

3

2

1

0
• Binary

Point

1 = Negative, 0 = Positive.
45:1 Sign of exponent.

1 = Negative, 0 = Positive.
44:6 Exponent.

38:39 Mantissa.

Figure 2-1-11. Single Precision Operand

2-1-7

Mantiua Field Double Precision Operands
The mantissa is the significant part of the

operand. The magnitude of the operand is ob­
tained by multiplying the value contained in
the mantissa by eight raised to the value of
the exponent sign and exponent as follows:

Double precision operands are identified by a
tag field of two, indicating that the operand is
one of a pair of two words (figure 2-1-13).

The first word of the double precision oper­
and is identical to the single precision oper­
and. V =± M x 8± E

where:
V = Value of number

The integral part of the mantissa is con­
tained in the mantissa field of the first word.
The fractional part of the mantissa is con­
tained in the mantissa extension field of the
second word.

± M = Mantissa with sign
± E = Exponent with sign

The order of number magnitude in the 39 bit
mantissa, as decimal numbers and powers of
base 16, 8, and 2 is shown in figure 2-1-12.

The 15-bit exponent of a double precision op­
erand is formed by the concatenation of the

2-1-8

REGISTER
BIT SET

DECIMAL
DECIMAL RECIPROCAL

O I 1.0
I 2 O,_i

HEX. OCTAL BINARY

1--~~~+-~~~-x~+-=~~:~~~~5~~~~~~-----~-t-~r-o8 1~3~
~ 1.i 0.06~ 161

7 '~ 0.0078125

10 1024 0.0009765625

13 ::[192 0.000122070Jli5

22 4194304 0.0000002_3_841851.2_1015625

25 335~32 0;00000002§[02322~76953125

20 5'>6870°12 0.0000000018626~1'!2_2_3_09570_11~ ,_ l--~:.Z.?--+-~~~:+::4'2~+;~~~~""'~~~~~476~4~0~~6~.-~--r----t-aalO---t--;;-2 30--30 1073741824 O.OOOOOOOOO::i·.,132257 15 7'0515 25 ~

35 3435973!~1 o. 00000000002910ID0!~7337032_13~125 6 1--..:t.~?6 -~468;;...IT;:;:.1~94r,:;7;..:67;:~..;+-=-0.:....:. o~o-=-:oo=-=o-=-oo=-=o:-=o=.::o 1:-t4-=:5 5;-::1~9 :-::1 5::::-2~2 l3;;;~-r.66n;~~5 nl!!;;:;-o7166 4;;;06;-;;2-;:-5-""t1'21.i9;--,o 12 ~ 3 ;-
37 137'±3195~72 o. 00000000000727595z§1_i1~~259033203125
3_! 27~779~.E!, 0.000000000003]:379~0709171295~01~25
* 549~~1 ~7 13 30-1--....,..39:;,__--1-~~~9~75~$!;..:J~38n;..~+:-o-::. o=oo=o=oo=o=oo=o'::;";o f8'"'1r.'11~ ... 9--S:n.9lfi;ro;:;-:;3;;:;-511r.:sa-~5"';6T."47:;;::50.83"'0~077!r1:812"'"5-r--"""t"-11 1--t---z"'

*FIRST 39 BITS SET. (MAXIMUM INTEGER VALUE ALLOWED).
40961

l'lpre 2-1-12. Order of ~ Cart

FIRST WORD

FIRST WORD

E
3_5 nli43 39

0 Mi!! bl 50 38 34 ,
~45 NP

49 E41 37 33

0 N
48 441T40 36 32

First Word

Field !U!
TAG 50: 3

47: I

46: I

45: I

EXPONENT LSP 44: 6

HANT I SSA MSP 38: 39
40962

DOUBLE PRECISION OPERAND (OCTAL REPRESENTATION)

1 •

Bi nary
Point

DOUBLE PRECISION OPERAND (HEXADEC 111AL REPRESENTATION)

31 27 23 19 15

~ AN I~§ A
30 22 18 14

29 25 (~ P)17 13

28 24 20 16 12

Description

01 D

Not used

I =negative, 0"" positive.

SI gn of exponent.

I"" negative, 0 =positive.

11 7

10 6

9 5

8 4

3

2

1

j)
. .

B 1 nary
Point

least significant portion of exponent.

Most significant portion of mantissa.

SECOND WORD

E
IX47 43 39 35

0 50 ~6 1'!!fo 38 34

I ~45 ~ 49 p 41 37 33

048 ~4 40 36 32

Second Word

Dtl!!. !!!!.
TAG 50: 3

EXPONENT HSP 47:9

HANT ISSA LSP 38:39

31 27 23 19 15 11 7

30 M~~1 IS~ ~ 14 10 6

29 25 <~1 P)17 13 9 5

28 24 20 16 12 8 4

Description

010

Host significant portion of exponent.

Least significant portion of mantissa.

Figure 2-1-13. Double-Precision Operand

0 0 0 0 0 0 27
0 019 0 15 0 11 07 03 47 43 39 35 31 23

0 0 0 0 0 34 0 30 0 26
0 0 18 0 14 0 10 06 0

50 46 42 38 22 2

0 0 0 0 0 0 0 0 011 0 13 09 05 01 49 45 41 37 ·33 29 25 21

0 48 044 0 40 0 36 0 a2
0 0 0 20 0 16 0 12 08 04 ~ 28 24

Field Bits Description

TAG 50:3 000

47:47 A 11 zeroes.

T/F 0: 1 True/false bit.

1 = True, 0 = False
40963

Figure 2-1-14. Logical Operand

3

2

1

0

2-1-9

exponent extension with the exponent. The ex­
ponent extension is more significant than the
exponent.

Number Ranges and Normalization
To add and subtract two numeric operands

on the B 7800, the exponents of the two oper­
ands must be equal. The B 7800 equalizes the
exponents of the two operands automatically;
this equalization may require that one of the
operands be "normalized." Normalization oc­
curs if the exponent difference of the two op­
erands is greater than the number of leading
zero (octal) digits in the mantissa of the oper­
and with the larger exponent. In such cases,
the larger operand is normalized, and the
mantissa of the smaller operand is then
shifted right until the exponents are equal.

A normalized number is a number which has
the smallest exponent. with which the number
can be expressed without losing the most sig­
nificant digit of the number. A number is nor­
malized by shifting the mantissa to the left,
(moving the binary point right) in three-bit in­
crements until the number of leading zeroes in
the mantissa is less than three. For each
three-bit shift to the left (of the mantissa), the
exponent is decreased by one.

Because of automatic normalization by the
CPM, the range of numbers which are useable
on the B 7800 includes both normalized and
unnormalized numbers. In general, normalized
numbers are those which the system may use
for arithmetic, and unnormalized numbers are
those which the system may store.

The largest and smallest numbers representable as normalized and unnormalized operands
are:
The largest single precision integer

The largest single precision number

The largest double precision integer

or

or

or

54975581388710

8 13-1
00-07777777777777
4.31359146673x10es

(813-l)x883

0777777777777777
302231454903657293676543

828_1

(first word) 0157777777777777

(second word) 0007777777777777
The largest double precision number 1.948828382050280791124469xl028603

or
(1-8-28) x 892?80

(first word) 0777777777777777

(second word)
The smallest positive unnormalized single
precision number

The smallest positive normalized single
precision number

The smallest positive normalized double
precision number

or

or

or
(first word)

7777777777777777
1.2744735289lx10-57

8-83

1770000000000001
8.7581154020x10-47

8-51
1771000000000000
1.93854585713758583355640x10-IH81

1771000000000000

(second word) 7770000000000000

}
decimal

octal

}
decimal

octal

decimal

} octal

i decimal

~ octal

}
decimal

octal

}
decimal

octal

}
decimal

octal

The number sets are symmetrical with respect tq zero. The negative number corresponding
to any valid positive number may also be expressed. From the ranges above, one can see that
a single precision integer must always have an exponent of zero.

2-1-10

Logical Operands
Logical operands (figure 2-1-14) have one of

two values: true (on) or false (ofO. Logical val­
ues are the result of Boolean operations or re­
lational operations. Relational operators gen­
erate a logical value as the result of an alge­
braic comparison of two arithmetic expres­
sions. Bit 0 contains the logical value. Rela­
tional operators set bit 0, where conditional
operators use bit 0 for the decision.

NOTE
Logical operators (LAND, LOR,
LNOT, and LEQV) cause a logical
operation to be performed on each
bit of the two operands and the re­
sults of these operations (48 single
precision values or 96 double preci­
sion values) are left in the top-of­
s tack operand. Logical operators
may operate on logical, string, or
numeric operands.

String Operands
A string operand is a single word operand

(identified by a tag of zero) which is used to
store characters. Character representation
may be 8-bit (EBCDIC), 7-bit (USASCII), 6-bit
(BCL), or 4-bit (packed BCD) characters. Gen­
erally, a string of characters is stored in one
or more string operands in memory as an ar­
ray or table. Such arrays or tables are ad­
dressed by means of string descriptors. The
format of string operands for storage of 8-bit,
7-bit, 6-bit, and 4-bit characters is shown in
figure 2-1-15.

String operands may also be used to store
signed numeric characters in 8-bit, 6-bit, and
4-bit formats. Each string operand can store
one signed numeric number consisting of six 8-
bit characters, eight 6-bit characters, or 11 4-
bit characters. Eight-bit and 6-bit characters
are divided into a zone portion and a number
portion. The number portion consists of the
four least significant bits of each character;
the remaining bits form the zone. When 8-bit
or 6-bit signed numeric characters are stored
in a string op~rand, the sign of the characters
is stored in the zone bits of the least
significant character. When 4-bit signed nu­
meric characters are stored in a string oper­
and, the sign of the characters is stored as the
most significant character of the operand. Ta­
ble 2-1-1 shows the bit configurations for neg­
ative and positive signs in 8-bit, 6-bit, and 4-bit
formats. Figure 2-1-16 illustrates the manner
in which a signed number (-4259) is stored in
8-bit, 6-bit, and 4-bit code.

8-BIT BYTES (EBCDIC CODE)
1 2 3 4 5

,--A---..~.L""'"""""_ ~r-

47 43 39

ro-50 46 42 38

0
49 45 41 37

0 48 44 40 36

" MOST SIGNIFICANT
CHARACTER

35 31

34 30

33 29

32 28

7-BIT CHARACTERS (USASC11 CODE)

0
50 46 42 38

0
49 45 41 37

0
48 44 40 36

'---v----"
MOST SIGNIFICANT

CHARACTER

3 29

3 28

27 23 19 15

26 22 18 14

25 21 17 13

24 20 16 12

25 21

24 20

(BITS 47,39,31,23, 15,AND 7 ARE NOT USED)

6-BIT ChARACTERS (BCL CODE)
MOST SIGNIFICANT

CHARACTER

6
~

11 7 3

10 6 2

9 5 1

8 4 0

'----v--"
LEAST SIGNIFICANT

CHARACTER

3

2

LEAST SIGNIFICANT
CHARACTER

~ 5 ~ r---''---- ,----' '-------..

47 43 3~ 35 3~ 27 23 19 1!l

0
50 46 42 38 34 3Q 26 22 18 !.1

0 49 45 41 37 3J 29 25 21 17 lJ

0 48 44 _AO 3f 32 28 24 20 16 ~
'----V==' ~ ~

2 4 6

0
50

0
49 45 41 37 33 29 25 21 17 13

048 44 40 36 32 28 24 20 12

MOST SIGNIFICANT
CHARACTER

40964

Figure 2·1·15. String Operands

11 7 ~

10 6 2

9 5 1

8 4 J;
'-=V-

8
LEAST SIGNIFICANT

CHARACTER

9 5

8 4

LEAST SIGNIFICANT
CHARACTER

2-1-11

Size
8-bit

6-bit

4-bit

2-1-12

8-BIT BYTES (EBCDIC CODE)
1

,,......-

1 o~ 1 03~ 47 39

0 1 0 1 03~ 50 46 42 38
0 t 0 1 o~ 49 45 41 37
0 1 0 40

t 03_2 48 44 3.6

0 0

6-BIT CHARACTERS (BCL CODE)
3

0 0 0

4-BIT DIGITS (PACKED BCD)
4

47 43 39 35

t 0
31 27

1 !!Q 1
26

t 0
29 25

t 0 24 28

4

0

0 0
31 2

---t 01~ t OU t t
23 15 7 3

1 o~ 1 11...Q 1 0
22 14 6 2

1 21 1~ 113 o~ 05 0
1

1 20 01.!l 112 1 8 1 1
4 0

2 5 9

8

4 2 5 -9

0 0 46 0 42 0 38 0 34 0 30
0

50 2
0 0 0 0 0 0

49 45 41 37 33
0 0 0 0 0 1

48 44 40 36 32 0

0 0 0 0 0 9
40965

Flpre 2-1·16. Use of Strtna Opennd to Store Siped Number (-4259)

Table 2-1·1. Sip Conftpratlom of Strlna Opennds

Sign Location Neptlve Po9ltlve
Zone, least significant 1101 Any bit configuration other than the negative bit
character configurations

Zone, least significant 10 Any bit configuration other than the negative bit
character configurations

Moat significant digit 1101 Any bit configuration other than the negative bit
configurations

SECTION 2

POLISH NOTATION AND STACK

GENERAL
To facilitate the understanding of the

B 7 800 stack concept, a method of
mathematical notation known as Polish nota­
tion must be understood. A problem that ex­
ists with most forms of mathematical notation
is clarifying the boundaries of specific terms.
This has been eliminated with the use of pa­
rentheses, brackets, and braces. However, with
3 complex equation, it becomes necessary to
duplicate the use of the few types of delimit­
ers that exist. It might be noted that it is com­
mon to encounter mathematical equations
such as Y = 5Z + 7 /2Z and Y = (5Z + 7)2Z.
Two equations express different functions of
Z, but one could easily be used when the other
was intended. From this it can be seen that an
error in notation can change the whole prob­
lem, because the parentheses have definite
meaning.

Polish notation is an arithmetical or logical
notational system using only operands and op­
erators arranged in a sequence or string which
eliminates the necessity of factor boundaries.
The B 7800 compilers translate source state­
ments to Polish strings, and convert these Po-

A Variable

An Operator
-Separator

Name

-Arithmetic or Boolean operator and last entered
delimiter list symbol was:

a. an operator of lower priority.
b. a left bracket " [" or paren "(".
c. a separator.
d. nothing (delimiter list empty).

-An Arithmetic or Boolean operator and last entered
delimiter list symbol was: an operator of priority equal
to or greater than the symbol in the source.

-A right bracket " l " or parenthesis ")"

lish strings to a series of machine instructions
(program operators).

POLISH NOTATION
The essential difference between Polish no­

tation and conventional notation is that
operators are written to the right of operands
instead of between them. For example, the
conventional B + C would be written B C + in
Polish notation. Looking at the example, A =
7 (B + C), it would be written in Polish nota­
tion as follows:

A7BC+*=

Any expression written in Polish notation is
called a Polish string. In order to fully under­
stand this concept, the rule for evaluating a
Polish string should be known.

General Rules For Generation of
Polish String

Figure 2-2-1 is a flow chart for generation
of a Polish string. In general, the rules for
generation of a Polish string may be stated as
follows. If the source of expression is:

Action

Place variable in string being built and examine next
symbol.

Place in delimiter list and examine next symbol.

Place operator in the delimiter list and examine next
source symbol.

Remove the operator from the delimiter list and place
in the string being built. Then compare the next symbol
in the delimiter list against the source expression
symbol.

Pull out from delimiter list or until corresponding left
bracket or parenthesis.

2-2-1

':"
N
~ EXPRESSION

PLACE SYMBOL
IN THE POLI.SH

NOTATION STRING
AND

PROCEED

NO

DELETE
SYMBOL

POLISH NOTATION STRING

YES

l!O

YES

YES YES

PLACE
SYMBOL IN

DELIMITER LIST
AND

PROCEED

I
I
I
I

YES

REHOVE
LAST ENTERED

DELIMITER LI ST
SYMBOL

LAST ENTERED DELIMITER
LI ST SYMBOL IS
I. LOWER PRIORITY·
2. LEFT BRACKET
J. SEPARATOR
lt. LIST EMPTY

NO

LAST ENTERED
DELIMITER LIST
SYHBOL IS:
I. = PRIORITY
2. > PRIORITY

I : I LIST IS EMPTY

l ' I I

RE HOVE
LAST ENTERED

DELIMITER LI ST
SYMBOL

REMOVE LAST ENTERED
DELIMITER LIST SYMBOLS
AND PLACE INTO POLISH
NOTATION STRING UNTIL

[DELIMITER LIST]

40966 L.- -- ---- -- --- --- -- -- --- --- --- --- --- -- -- -- -- -- --- -- -- ---- --

Figure 2-2-1. Polish Notation Flow Chart

1
I
I
I
I

_J

Evaluating Polish String
The following procedure may be used to

evaluate a Polish string.
a. Scan the string from left to right.
b. Remember the operands and the order in

which they occur.
c. When an operator is encountered do the

following:
1) Take the two operands which were last

encountered.
2) Operate upon them according to the

type of operator encountered.
3) Eliminate these two operands from fur­

ther consideration.
4) Remember the result of (2) and consider

it as the last operand encountered.
Following this procedure through the Polish

string A 7BC+* = would evaluate to A as­
suming the value 7 (B + C) (figure 2-2-2).

NOTE
Because replacement operators
vary depending upon the language
used,._, =, and:= may be used
interchangeably in discussing Po­
lish strings.

Program Code String
When a program is compiled, the source lan­

guage statements are converted into a string
of machine language operators. These
operators are assembled into a Polish notation
string and are ref erred to as the program code
string. Each machine instruction in the string
normally consists of one to three 8-bit sylla­
bles. The instructions are packed consecutively
into program words. (See figure 2-2-3.) An ar­
ray of program words, which can be any
length, is called a program code segment. The
compiler usually divides the generated code·
string into two or more program segments.
The number of segments depend on the struc­
ture of the source program. Program segments
are normally stored on disk files. When a pro­
gram is executed, program segments are made
present in memory as needed. Because · pro­
gram segments are not modified during execu­
tion} a single copy of a program segment in
memory may be used for several concurrent
executions of the same program; thus, the pro­
gram code string is often described as "re-en­
trant".

Step Symbol Symbol Operands Being Remembered and Their Order of Operation Results

Being Type Occurrence (1 or 2) Before Operation Taking Place Operation
Examined

a B Operand

b c Operand 1 B

c + Add 2 c B+C (B + C)
Operator 1 B

d 7 Operand 1 (B + C)

e x 2 7 7 x (B + C) 7 x (B + C) Multiply
Operator 1 (B + C)

f A Operand 1 7(B + C)

2A A= 7(B + C) g Replace A ~7(B + C)
Operator 1 7(B + C)

Figure 2-2-2. Evaluation of Polish String A 7BC + * =

Compilation Using Polist.
Notation

Polish notation is used as the base for the
B 7800 ALGOL compilation algorithm. An
ALGOL arithmetic or Boolean expression or
assignment statement may be translated to
Polish notation in much the same way as the
arithmetic (or algebraic) expression that al­
ready has been considered. In compiler trans­
lation, the source expression is examined one
symbol at a time with a left to right scan and
is combined into logical entities. As each
logical entity is examined, a specific procedure
is followed so that the Polish notation expres­
sion is constructed in its finalized form with
one scan of the source expression.

5010796-001

For each program segment, there is a single
segment descriptor, which defines the length
and location of the program segment. The seg­
ment descriptors are stored in a special stack
known as the segment dictionary.

Each job is associated with an unique job
stack and with a segmented dictionary stack
which may be shared by several jobs. (In addi­
tion, the MCP has its own stack and segment
dictionary.) Within the job stack, a Program
Control Word is provided for each point of en­
try into a segment of code. The PCW provides
an index, not only into the segment dictionary
to locate the proper segment descriptor, but
also into the program segment itself to locate

2-2-3

SYLLABLE SYLLABLE SYLLABLE tains the memory address of the last word placed in
SYLLABLE I SYLLABLE 3 SYLLABLE 5 • the stack. The four top-of-stack locations extend the

o 2 4 stack to provide quick access for data manipulation.
,,...--~

;;<, A. A. :y
A

47
0

50 46

149 45

I
48 44

Field

Tag

43

42

41

40

39 35 31 27 23 19 15 11 7

38 34 30 ~6 22 18 14 10 6

37 33 29 25 21 17 13 9 5

36 32 28 24 20 16 12 8 4

Bits Description

50:3 Tag field. Value of three indicates
that this word is non-modifiable
(except by Overwrite operators).

47:8 Syllable 0
39:8 Syllable 1
31:8 Syllable 2
23:8 Syllable 3
15:8 Syllable 4
7:8 Syllable 5

Figure 2-2-3. Program Word

3

2

1

0

the proper program word and syllable. The for­
mats of the segment descriptor and the PCW
are described in detail in section 3 of this
chapter.

STACK CONCEPTS
The constants and variables of a program

are assigned locations within the "stack" of
the program when it is compiled. The stack
can be thought of as analogous to a physical
stack where the last item placed on the stack
is the top of the stack. When items are re­
moved (one at a time) from the stack, the item
on the top of the stack is the first item to be
removed. The item at the bottom of the stack
remains at the bottom of the stack until all
other items have been removed from the
stack. The stack not only provides an easily
manageable means for keeping a dynamic hi­
story of the program as it is being processed,
but also lends itself to the use of program code
strings based on Polish notation.

General
A job is activated by having a processor assign to

I the job stack. Four top-of-stack locations are linked
to the job's stack (figure 2-2-4). This linkage is estab­
lished by the stack-pointer register (S). which con-

2-2-4

Data are brought into the stack through the top-of-
stack locations in such a manner that the last oper-

1 and placed into the stack is the first to be extracted.
The stack-pointer register (S) is incremented by I
before a word is placed into the stack and is decre-
mented by I after a word is withdrawn from the
stack and placed in the top-of-stack locations. As a
result. the S register continually points to the last
word placed into the job's stack.

Base and Limit of Stack
A job's stack is bounded, for memory protec­

tion, by two registers: the Base-of-Stack regis­
ter (BOSR) and the Limit-of-Stack register
(LOSR). The contents of BOSR define the base
of the stack, and the contents of LOSR define
the upper limit of the stack. The job is inter­
rupted if the S register is set to the value, con­
tained in either LOSR or BOSR.

o:T1-

I ~~NTllAL-;A-;;;.-. -1
I T0POfl8TACll I
1

LOCAno~
1

I I -::J I
I I I ::J I

I I ..., _j L: _ _:::_-=:_...J_

ITACllAaU.
CUR .. NTLY ,.,_

WORD•

STACK

MEMORY
AREA

Figure 2-2-4. Top of Stack and Stack Bounds Register

Bi-directional Data Flow in the Stack
The contents of the top-of-stack locations are

maintained automatically by the processor to
meet the requirements of the current
operator. If the current operator requires data
transfer into the stack, the top-of-stack loca­
tions receive the incoming data, and the sur­
plus contents, if any, of the top-of-stack loca­
tions, are pushed into the stack. Words are
brought out of the stack into the top-of-stack
locations. These words are used by operators
which require the presence of data in the top­
of-stack locations. These operators, however,
do not explicitly move data into the stack.

Double Precision Stack Operation

Each top-of-stack location (A and B) can ac­
commodate two memory words. For single pre­
cision operations, location A will contain one
single precision operand and location B will
contain the other single precision operand.
However, calling a double precision operand
into either top-of-stack location (A or B) will
cause both halves of the double precision oper­
and to be loaded into the A or B location. The
first word is loaded into the top-of-stack loca­
tion and its tag bits are checked. If the value

5010796-001

of the tag bits indicates double precision, the
second half of the operand is loaded into the
second half of the top-of-stack location.

Addressing History
The B 7800 CPM provides two methods for

addressing data. Direct addressing is provided
by descriptors, which contain the address (core
or disk) of the data. Descriptors are used to
address data which are located outside of the
stack area of the job. Relative addressing is
provided by the Indirect Reference Word
(IRW) and the Stuffed Indirect Reference
Word (SIRW). The IRW and SIRW address
components are both relative address compo­
nents. The IRW addresses within the immedi­
ate environment of the job relative to one of
32 CPM display registers. The SIRW addresses
beyond the immediate environment of the cur­
rent procedure, the addressing being relative
to the base of some job stack. Addressing
across stacks is accomplished with an SIRW.

Direct Addressing
In general, the descriptor describes and lo­

cates data associated with a given job. String
descriptors and data descriptors are used to
fetch data to the stack or to store data from
the stack into an array located outside the

2-2-5

I

stack area of the job. The address contained in
one of these descriptors is the absolute ad­
dress of an array in either system main
memory or in the backup disk file, as indicated
by the setting of a single bit called the presence bit.
Another bit, called the double-precision bit, is used
to identify the referenced data as single precision or
double precision. The formats of string and data de­
scriptors, and detailed discussions of each, are pres­
ented in section 3 of this chapter.

Relative-Addressing
Analyzing the structure of an ALGOL pro­

gram results in a better understanding of the
relative-addressing procedures used in the
B 7800 stack. The addressing environment of
an ALGOL procedure is established
automatically as the program is structured by
the programmer and is ref erred to as the lexi­
cographical ordering of the procedural blocks.
At compile time, the lexicographical ordering
is used to form address couples. An address
counle consists of two items:

1. The lexicographical addressing level (LL)
of the variable,

2. An index value (I) used to locate the spe­
cific variable within its addressing level.

BEGIN -------LEXICOGRAPHICAL LEVEL 2

REAL VI; LL • 2, I • 2
REAL· V2; LL • 2, I • 5

The lexicographical ordering of the program
remains static as the program is executed,
thereby allowing variables to be referenced
via address couples as the program is
executed.

The lexicographical structure of a very sim­
ple ALGOL program is illustrated in figure 2-
2-5. When executed, this program would call
procedure C (LL=3) from the outer block of
the program (LL=2), and, in turn, procedure C
would call procedure D (LL=4). The stack
structure is illustrated as it would exist as
procedure D was being executed. It can be
seen that, as the outer block of the program
was entered, and again as each procedure was
entered, a Mark Stack Control Word (MSCW)
was placed in the stack. The MSCW (described
in detail in section 3 of this chapter) denotes
the base of each lexicographical addressing
level.

Display Registers

Each MSCW provides a point in the stack
relative to which the variables for the associ­
ated addressing level may be referenced. The
B 7800 CPM unit contains 32 display registers
(D [0] through D for [31]).As shown, the
base of each addressing level is addressed by

s

F
PROCEOURE C; LL • 2, I • 4

----- LEXICOGRAPHICAL LEVEL 3 BEGIN

2-2-6

C;
END;

40971

REAL V4;
PROCEDURE D;

LL • 3, I • 2
LL• 5, I • 3

BEGIN -- LEXICOGRAPHICAL LEVEL 4

D• .
END;

REAL V5;
V4 :• 4;
V5 : • 5;
VZ :a V4;

END;

LL • 4, I • Z
D REGISTERS I D[31] I
~ t'V

V5

MSCW

PCW-D
V4

PROCEDURE C

Fipre 2-2-5. ALGOL Program With Lexicographical Structure and Related Stack Structure

one of these registers. The local variables of
the outer block or of the procedures are ad­
dressed relative to the D registers. The D reg­
isters are updated at each procedure entry or
exit.

Absolute Address Conversion
Each variable is indirectly addressed by an

address couple containing a lexicographical
level and an index value. The address couple is
converted into an absolute memory address
when the variable is referenced. The lexicogra­
phical level portion of the address couple se­
lects the D register which contains the abso­
lute memory address of the MSCW for the en­
vironment (lexicographical level) in which the
variable is located. The index value of the ad­
dress couple is added to the contents of the D
register to generate the absolute memory ad­
dress of the desired variable.

Addressing Environment
Thus far we have considered a very simple

program in which each procedure has a differ­
ent lexico~aphical addressing level. General-

BEGIN --------LEXICOGRAPHICAL LEVEL 2

REALVI; LL• 2, I•2
REAL VI\ LL• 2, I• S
PROCEDURE A; LL • 2, I• 4

IEGIN ------LEXICOGRAPHICAL LEVEL S
REALV:S; LL• :S, I•2
PROCEDURE B; LL• :S, I• :S

[

BEGIN LEXICOGRAPHICAL LEVEL 4

VS :s S;
VI : • V:S;

END;

I
END;

PROCEDURE Ct LL• 2, I • 5

C;
END;

BEGIN------ LEXICOGRAPHICAL LEVEL S

REAL V4; LL• S,1•2
PROCEDURE D; LL• S, I • S

D\
END;

BEGIN --- LEXICOGRAPHICAL LEVEL 4

REAL Y5 i LL • 4, I • 2
V4 : • 4;
VI:• I;
A\
V2 : • Y4;

END;

ly, however, many procedures of a program
may have the same lexfoographical addressing
level; however, no two procedures of a pro­
gram may have the same addressing environ­
ment. Consider the more advanced exemplary
program shown in figure 2-2-6.

This program consists of an outer block
(LL=2), two procedures which have a lexico­
graphical addressing level of three (procedures
A and C), and two procedures which have a le­
xicographical level of four (procedures B and
D). The addressing environment of the pro­
gram is maintained automatically by linking
the MSCWs together in accordance with the le­
xicographical structure of the program. This
linkage is composed of the stack number
(STACK NO.) and displacement (DISP) fields
of the MSCW, and is inserted into the MSCW
when the procedure is entered. A tree-struc­
tured addressing environment list is formed
by linking the MSCW to the MSCW at the pre­
ceding lexicographical level to the procedure
being entered. This tree-structured list indi­
cates the addressing environment of the proce­
dures.

ADDRESS
STACK ENVIRONMENT

MEMORY LIST

....... ~s-.. r-'.f .,:~ I= ===I=
- - = '=f"

... - .T.
- ·~~u

PROCEDURE C

=t

F
L

MSCW ,.,,, ::3-
PCW-8

vs

t-1 lllSCW

D REGISTERS ,.,, ,.,,
I !J:l1~.1

~
,...,

D[I]
D !i_I ,...,
D 4J: PCW-D
D SJ I-' V4
D 2J
D IJ lllSCW
D(OJ ,.., ,...,

PCW-C
PCW-A

i.....:;:,;;;..._,...,=-~J:~'
V2
VI

MSCW

Flpre 2-2-6. More Advanced ALGOL Program

2-2-7

Comparing the addressing tree in figure 2-
2-7 with the exemplary program, one can see
that when procedure B is being executed, the
addressing environment includes only the var­
iables in procedures B and A and the outer
block; variables declared in procedure C and D
are not addressable by procedure B. Thus, one
can see that the address couples assigned to
the variables in a program need not be unique.
This is true because if there is no procedure
which can address both of any two variables,
then the two variables may have identical ad­
dress couples. This addressing scheme is prac­
tical because two variables which have the
same address couples will be contained within
two different addressing environments.

PROCEDURE B

-LEXICOGRAPHICAL LEVEL~

PROCEDURE A

--LEXICOGRAPHICAi. LEVEL 3

OUTER PROGRAM BLOCK
- - - LEXICOGRAPHICAL LEVEL 2

40973

Figure 2-2-7. Addressing Environment
Tree of ALGOL Program

Addressing Environment List

There is a unique set of MSCWs which the D
registers must address during the execution of
any particular procedure. The D registers
must be changed, upon procedure entry or ex­
it, to address the correct MSCWs. The process
of changing the D registers is ref erred to as
display update. The list of MSCWs which the D
registers address is is the addressing environ­
ment list, and the areas of the stack which can
be addressed relative to the settings of the D
registers are the addressing environment.

Stack History
The B 7800 stack provides an easily manage­

able means for keeping line control inf orma­
tion (program history) necessary for procedure
entry and exit. The stack history list is a list
of Mark Stack Control Words, linked together
by their DF fields (figure 2-2-8).

An MSCW is inserted into the stack as a pro­
cedure is entered and is removed as that pro­
cedure is exited. The ref ore, the stack history
list grows and contracts with the procedural
depth of the program. Mark Stack Control
Words identify the portion of the stack related
to each procedure. When the procedure is en-

2-2-8

tered, its parameters and local variables are
entered in the stack· following the MSCW.
When the procedure is executed its
parameters and local variables are referenced
by addressing relative to the MSCW.

,... ,...

[::I:J ·I TOS WORD I
PROCEDURE I STACK

,... ,... HISTORY l LIST

PROCEDU~ MSCW I:: i.......::D:..F --.

PROCEDURL D~-
~--CJD~F::::::

PROCEDUR~-

11 MSCW r· L......!D::;.F~__,
~ - ·~ •ow I::. ··~ ·--

4ot74

Figure 2-2-8. Stack History List

Each MSCW is linked to the prior MSCW
through the contents of its DF field in order to
identify the point in the stack where the prior
procedure began. When a procedure is exited,
its portion of the stack is discarded. This ac­
tion is achieved by setting the stack-pointer
register (S) to address the memory location
preceding the most recent MSCW (figure 2-2-
9). This topmost MSCW, addressed by another
register (F), is deleted from the stack-history
list by changing F to address the prior MSCW,
placing this MSCW at the head of the stack hi­
story.

SIMPLE STACK OPERATION
All program information must be in the sys­

tem before it can be used. Input areas are allo­
cated for information entering the system and
output areas are set aside for information
exiting the system; array and table areas are
also allocated to store certain types of data.
Thus data is stored in several different areas:
the input/output areas, data tables (arrays),
and the stack. Since all word is done in the
top-of-stack locations, all information or data
is transferred to the top-of-stack locations and
the stack itself.

At this point, an ALGOL assignment state­
ment and . the Polish notation equivalent will
be related to the stack concept of operation.
The example is Z:=Y + 2x(W+V), where :=

~ DISCARDED STACK
PORTION HISTORY

s

'°' W~O J~"" =r-l""'IST~=
F

~ PROCEDURE "A"

M

OF

OF

OUTEll llOCk

40915

Figure 2-2-9. Stack Cut Back on Procedure Exit

means "is replaced by." In terms of a comput­
er program, this assignment statement indi­
cates that the value resulting from the
evaluation of the arithmetic expression is to
be stored in the location representing the
variable Z.

When Z: = Y + 2x(W + V) is translated to Po­
lish notation, the result is ZY2WV+ x +:=.
Each element of the example expression
causes a certain type of syllable to be included
in the machine language program when the
source problem is compiled. The following is a
detailed description of each element of the ex­
ample, the type of syllable compiled, and the
resulting operation (see figure 2-2-10 and table
2-2-1).

In the example statement, Z is to be the re­
cipient of a value, so the address of Z must be
placed in the stack. This is accomplished by a
Name Call (NAMC) syllable which places an
Indirect Reference Word (IRW) in the stack.
The IRW contains the address of Zin the form
of an "address couple" that references the
memory location reserved in the stack for the
variable Z.

Since Y is to be added to a quantity, Y is
brought into the top of the stack as an oper­
and. This is accomplished with a Value Call
(V ALC) syllable that references Y. The value 2
is then brought to the stack, with an eight-bit
literal syllable (LT8). Since W and V are to be
added, the respective variables are brought to
the stack with Value Call syllables. The ADD

operator adds the two top operands and places
the sum in the top of stack. This ex11.mple as­
sumes, for simplicity, single-precision operands
not requiring use of additional top-of-stack lo­
cations which are used in double-precision op­
erations.

The multiply operator (MULT) is the next
symbol encountered in the Polish string; when
executed, it places the product "2x(W + V)" in
the top of the stack. The next symbol, ADD,
when executed, leaves the final result
"Y +2x(W + V)" in the top of the stack.

The store syllable (STOD) completes the
execution of the statement Z:=Y + 2x(W+V).
The store operation examines the two top-of­
stack operands looking for an IRW or Data De­
scriptor. In this example, the IRW addresses
the location where the computed value of Z is
to be stored. The stack is empty at the comple­
tion of this statement.

Thus, the Polish string ZY2WV + x+:= is
used to produce the following code string:

NAMC (Z)
VALC (Y)
LT8 2
VALC (W)
VALC (V)
ADD
MULT
ADD
STOD

When this code string is executed on the
B 7800, the value of the expression
Y +2x(W + V) is stored in the stack location re­
served for the variable Z.

INTERRUPT HANDLING
In the B 7800, hardware interrupts are

treated as hardware-originated procedure
calls. When the hardware detects an interrupt
condition, the CPM causes a MSCW to be
placed in the stack, then places in the stack an
IRW addressing the interrupt handling proce­
dure, places two parameters in the stack to
identify and describe the interrupt condition,
and then causes the interrupt handling proce­
dure to be entered. When the interrupt han­
dling procedure is entered, the D registers are
updated to make all legitimate variables ad­
dressable. Similarly, upon return from the in­
terrupt handling procedure, the D registers
are again updated to make all of the variables
of the former procedure addressable again. A
detailed description of interrupt handling is
provided in chapter 3.

2-2-9

~
~ -0

TOP OF STACK{r.;;-i
LOCATIONS ~

STACK
AREA

i!

y

w
v

s

t t
I I

4097•

I

ALGOL STATEMENT Z
POLISH STRING NOTATION Z

NAMC
ii!

YALC
y

IRwi! h ~ INV il

I~
i! l-'s4' ii!!

y y t-

w w
y v

LT8
2

IRW ii!!

ii!!

y

w
v

y
y

2

VALC
w

+
w

E8

• y

IRW i!

i!

y

w
v

2
v

x
+

VALC
y

E8
• 2

y

IRW ii!

ii!!

y

w

IW+Y)
x +

ADD

~
~

• 2

y

IRWi!

ii!!

y

w
y t- v

~

MULT

2xlWtV)

INV

2

y

IRW i!

ii!!

y

w
v

•

ADD

Yt2a(WtV)

INV

2

y

IRW i!

ii!!

y

w

v

STOD

~
~

2

y

PS~
IRW ii!!

Yt2(W-t-Y)

y

w

v

l l l l
T T T f t + + t t t L +1 11 11 l

T T TT rr T
I I I I I I I I I I I I I I I I I I

SYLLABLE TYPES

VALC VALUE CALL STOD STORE DESTRUCTIVE

NAMC NAME CALL ADD ADD

LT8 LITERAL (8 BIT) MULT MULTIPLY

Figure 2-2-10. Stack Operation

Table 2-2-1. Delcrlptlon of Stack Operation

Execution Poll eh Sylleble Type Function of Sylleble During Running of the Progrem
Sequence Notation Complled

Element
0 Stack location of program variables illustrated.
1 z Name call for Z; Build an indirect reference word that contains the address of Z

and place it in the top of the stack.
2 y

3 2

Value call for Y.

Literal 2.
Place the value of Y in the top of the stack.

Place a 2 in the top of the stack.
4 w
5 v

Value call for W.

Value call for V.
Place the value of W in the top of the stack.

Place the value of V in the top of the stack.
6 + Operator add. Add the two top words in the stack and place the result in the

A location as the top of the stack operand.
7 x Operator multiply. Multiply the two top-of-stack operands. The pr9duct is left in

the A location as the top of the stack operand.
8 + Operator add. Add the two top words in the stack and leave the result in the

A location as the top of the stack operand.
9 := Operator store

destructive.
Store an item into memory. The address in which to store is
indicated by an indirect reference word or a data descriptor.
The address can be above or below the item stored.

MULTIPLE STACKS AND RE­
ENTRANT CODE

The B 7800 stack mechanism provides a fa­
cility for handling several active stacks, which
are organized in a tree structure. The trunk of
this tree structure is a stack containing MCP
global quantities.

Level Definition
As the MCP is requested to run an execution

·of a program, a level-1 branch of the stack is
created. This level-1 branch is a separate stack
which contains only the descriptors pointing to
the executable code and the read-only data
segments for the program. Emerging from this
level-1 branch is a level-2 branch, containing
the variables and data for this job. Starting
from the job's stack and tracing downward
through the tree structure, one finds first the
stack containing the variables and data for
the job (at level 2), the segment descriptor to
be executed (at level 1), and the MCP's stack
at the trunk (level 0).

Re-entrance
A subsequent request to run another execu­

tion of an already-running program. Thus two
jobs which are different executions of the
same program have a common node, at level-
1, describing the executable code. It is in this
way that program code is re-entrant and
shared. This results simply from the proper
treepstructured organization of the various
stacks within the machine. All programs

within the system are re-entrant, including all
user programs as well as the compilers and
the MCP.

Job-Splitting

The B 7800 stack mechanism also provides
the facility for a single job to split itself into
two independent jobs. A common use of this
facility occurs when there is a point in a job
where two relatively large independent proc­
esses must be performed. This splitting can be
used to make full use of a multiprocessor con­
figuration, or to reduce elapsed time by multi­
programing the independent processes.

A split of this type establishes a new limb of
the tree-structured stack, with the two inde­
pendent jobs sharing that part of the stack
which was created before the split was re­
quested. The process is recursively defined
and can happen repeatedly at any level.

Stack Descriptor
Stack branches are located by an array of

descriptors, the stack vector array (figure 2-2-
11). There is a data descriptor in this array for
every stack branch. This data descriptor, the
stack descriptor, describes the length of the
memory area assigned to a stack branch and
its location in either main memory or disk.

A stack number is assigned to each stack
branch. The stack number is the index value
of the stack descriptor in the stack vector ar­
ray.

2-2-11

Stack Vector Descriptor
The array size of the stack vector and its lo­

cation in memory is described by the stack
vector descriptor, located in a reserved posi­
tion of the trunk of the stack (figure 2-2-11).
All references to stack branches are made
through the stack vector descriptor, indexed
by the stack number.

Presence Bit Interrupt

A Presence Bit Interrupt results when an
addressed stack is not present in memory. This
Presence Bit Interrupt facility permits stack
overlays and recalls under dynamic conditions.
Idle or inactive stacks may be moved from
main memory to disk as the need arises and,
when a stack is subsequently referenced, a
Presence Bit Interrupt is generated to cause
the MCP to recall the nonpresent stack from
disk.

2-2-12

STACK
VECTOR

DDn-1

STACK
NO. n

STACK
N0.4

STACK
NO. S

STACK
N0.2

DISPLAY
REGISTERS

D:SI

D!I

DZ
DI

40111 DO

Flpre 2-2-11. Multiple Linked Stacks

SECTION 3

PROCESSOR WORD FORMATS

GENERAL

The basic information structure of the
B 7800 is the word. As tr an sf erred between
CPMs or IOMs and main memory, a word con­
sists of 52 bits (see figure 2 -3-1), and is consid­
ered in three parts: a parity bit, which is used
to maintain overall parity for the word being
transferred; a 3-bit tag field, which indicates
the type of information contained within the
word, and a 48-bit information field, which
contains the actual information.

The tag field not only serves to identify the type
of information contained in the word but also can be
thought of as an extension of the operator being
executed against the word. For example, because
the tag field indicates to the CPM whether the
operation involves single precision or double preci­
sion operands, a single instruction (ADD) serves
both types of operations. In similar fashion, if the
sum obtained was a double precision number (requir­
ing two memory words of storage), and the receiving
memory word indicates that a single precision oper­
and was resident there, the CPM will round the sum
to single precision and then store it.

The tag field also prevents the user from
writing over program code or read-only data
areas, and prevents him from reading (as
data) program code, processor control words,
and uninitialized operands.

Consider the bit assignments for the tag
field, as illustrated. One can see that words
which have bit 48 set, such as IRW's, SIRW's,
Segment Descriptors, MSCW's, RCW's, Data
Descriptors, and Program Control Words,
should not be alterable by the user. The CPM
will not allow such words to be modified except
by use of the overwrite operators. Words that
are used for stack control, MSCW's, RCW's,
and PCW's, have bits 49 and 48 of the tag field
set. The CPM will not allow such words to be
interpreted as operands.

The information field may be used to store
data (logical operands, string operands, nu­
meric operands), to store program code (pro­
gram word), to address data or code outside of
the stack (data descriptor, string descriptor,
segment descriptor), to address within stacks
(indirect reference word, stuffed indirect ref­
erence word, stuffed indirect reference word,
program control word), to store information re-

2-3-1

fP,\RiTv
I 51 47 43 39 35 31 27 23 19 15 11 7 :I I

IT50 46 42 38 34
INf]

30 0~1 ~AT 'ON
22 18 14 10 6 2

A
49 45 41 37 33 29 25 21 17 13 9 5 1

IG 48 44 40 36 32 28 24 20 16 12 8 4 0

Field Bits Descrlpt Ion

Part ty 51 : 1 Parity bit. Odd parity for the 52 bit word.

Tag 50:3 Value of this field Indicates the usage of the
Information field, as described below.

Tag Value Information Field Usage

0 Single Precision Operand, Logical
Operand, String Operand, Occurs
Index Word, Time of Day Function Word

Indirect Reference Word, Stuffed
Indirect Reference Word

2 Double Precision Operand

3 Mark Stack Control Word, Return
Control Word, Top of Stack Control
Word, Program Word, Segment
Descriptor

4 Step Index Word

5 Data Descriptor, String Descriptor

6 Uninitialized Operand

7 Program Control Word

INFORMATION 47:48 Use of this field depends on the value of the
tag field.

40978

l'lpre 2-3-1. Ba* Word Format

2-3·2

garding stack history (mark stack control
word, return control word, top of stack control
word), or to provide a parameter for use with
certain operators (step index word, and occurs
index word. Data words (operands) and pro­
gram words were described in the previous
sections of this chapter. The other various
processor words are described in this section.

WORDS FOR ADDRESSING
OUTSIDE OF THE STACK

There are three types of descriptors which
are used for addressing data or code which is
not resident in the stack. The type of descrip­
tor is directly related to the data or code being
referenced. Thus, a segment descriptor will al­
ways address a segment of program code (con­
tained in program words), a string descriptor
will always address a string operands), and a
data descriptor will address an array of word
operands.

The ADDRESS field in each of these de­
scriptors is 20 bits in length; this field con­
tains the absolute address of an array in ei­
ther system main memory or in the backup
disk file, as indicated by setting of the Pres­
ence bit (P). The referenced data is in main
memory when the presence bit is set.

Presence Bit
A Presence Bit Interrupt occurs when the

job references data by means of a descriptor
in which the P-bit is equal to O; i.e., the data
is located in a disk file, rather than in main
memory. The Master Control Program (MCP)
recognizes the Presence Bit Interrupt and
transfers data from disk file storage to main
memory. After the data transfer to main mem­
ory is completed, the MCP marks the descrip­
tor present by setting the P-bit to 1, and
places the new main memory address into the
address field of the descriptor. The inter­
rupted job is then reactivated.

Index Bit
A Data Descriptor describes either an entire

array of data words, or a particular element
within an array of data words. If the descrip­
tor describes the entire array, the Index bit (I­
bit) in the descriptor is 0, indicating that the
descriptor has not yet been indexed. The
length field of the descriptor defines the
length of the data array.

Invalid Index
A particular element of an array is de­

indexing an array descriptor. Mem-
ory is ensured during indexing op-

erations by performing a comparison between
the length field of the descriptor and the index
value. An Invalid Index Interrupt results if
the index value exceeds the length of the
memory area defined by the descriptor, or if
the index is less than 0.

Valid Index
If the index value is valid, the length field of

the descriptor is replaced by the index value,
and the I-bit in the descriptor is set to 1 to in­
dicate that indexing has taken place. The ad­
dress and index fields are added together to
generate the absolute machine address when­
ever an indexed Data Descriptor in which the
P-bit is set is used to fetch or store data.

The Double-Precision bit (D) is used to iden­
tify the referenced data as single-or double­
precision and directly affects the indexing op­
eration. The D-bit equal to 1 signifies double­
precision and causes the index value to be dou­
bled before indexing.

Read-Only Bit
The Read-Only bit (R) specifies that the

memory area described by the Data Descriptor
is read-only area. If the R-bit of a descriptor
is set to 1, and the area referenced by that de­
scriptor is used for storage purposes, an inter­
rupt results.

Copy Bit
The Copy bit (C) identifies a descriptor as a

copy of a master descriptor and is related to
the presence-bit action. The copy bit links mul­
tiple copies of an absent descriptor (i.e., the
presence bit is off) to the one master descrip­
tor. The copy bit mechanism is invoked when
a copy is made in the stack. If it is a copy of
the original, absent descriptor, the processor
sets the copy bit to 1 and inserts the address
of the master descriptor into the address field.
Thus, multiple copies of absent data descrip­
tors all point back to the master descriptor.

Data Descriptor
Data descriptors ref er to data areas, includ­

ing input/output buff er areas. The data de­
scriptor defines an area of memory starting at
the base address contained in the descriptor.
The size of the memory area in operands is
contained in the length field of the descriptor.
Data descriptors may directly reference any
memory word address from 0 through
1,048,576. The structure of the data descriptor
is illustrated in figure 2-3-2.

String Descriptor
String descriptors refer to strings of 4-bit

digits, 6-bit or 7-bit characters, or 8-bit bytes.

2-3-3

Fie Id
Tag

p

c

I

s

R

D

Length
or Index

Address
(Memory
or Disk)

Bits

50:3

47:1

46:1

45:1

44:1

43:1

42:2

40:1

39:20

p R
47 43 39 35 31 27 23 19 15 11 7 3

I 50 C46 042 38l 19 EN G1;~ op AD p~~ SS
34 26 22 18 14 6 2

049 145 041 31} lDE (~~ •EM OR~ ~ 0 R
37 29 25 21 13 9 5 1

I 40 S44 D40 11 ~IS~
)

36 32 28 24 20 16 8 4 0

Description

Tag field. Value of five.

Presence bit. Indicates the presence or absence of data in main memory. A 0 causes a
presence bit interrupt whenever the descriptor is used by a processor to obtain non-present
data. A 1 indicates that the data described is in main memory.

Copy bit. A 0 indicates that this is the original descriptor for the particular data area. A 1
indicates that this descriptor is a copy of the original descriptor.

Indexed bit. A 0 indicates that an indexing operation is required before the descriptor may be
used to obtain data. A 1 indicates that indexing has already taken place and the index value
is stored in bit positions 39:20 (Length or Index).

Segmented bit. A 0 indicates that the data is not segmented. A 1 indicates that the data is
divided into segments.

Read-only bit. A 0 indicates that the data may be referenced for reading or writing. A 1
indicates that the data can only be referenced for reading.

Size field, must be 0 to indicate a data descriptor.

Double-precision bit. A 0 indicates single-precision operands, a 1 indicates double-precision
operands.

This field contains either the length (in operands) of the memory area (if bit 45 = 0) or an
index value (if bit 45 = 1). If bit 45 equals 0, the descriptor has not been indexed. This field
is used for size checking during the indexing operation. If bit 45 equals 1, the descriptor has
been indexed. For a double-precision operation, the index is doubled after index size checking,
and the result is stored in the index field.

19:20 This field contains either a main memory or disk address. If the presence bit (bit 47) equals 1,
this field contains the memory address of data. If the presence bit equals 0 and the copy bit
(bit 46) equals 0, this field contains the disk address of the data. If the presence bit equals 0
and the copy bit equal 1, this field contains the memory address of the original descriptor.

Figure 2-J..2. Data Descriptor

The string descriptor defines an area of
memory starting at the base address con­
tained in the descriptor. The size of the
memory area in characters is contained in the
length field of the descriptor. The structure of
the String Descriptor is illustrated in figure
2-3-3.

WORDS FOR ADDRESSING
WITHIN STACKS

There are three types of words which are
used for addressing data or descriptors which
are resident within a stack. A Program Con­
trol Word is used, at the time of procedure en­
try, to locate a segment descriptor (and the
proper word and syllable of code) for the pro­
cedure. An Indirect Reference Word is used to
address within the current addressing envi­
ronment of a procedure. A Stuffed Indirect
Reference Word is used to address outside the
current addressing environment of a proce­
dure.

Segment Descriptors
Segment descriptors ref er to areas of pro­

gram code. The descriptor defines an area of
memory starting at the base address con­
tained in the descriptor. The size of the
memory area in program words is contained in
the length field of the descriptor. The struc­
ture of the segment descriptor is illustrated in
figure 2-3-4.

2-3-4

Program Control Word
The Program Control Word (PCW), and the

MSCW are used during entry into a procedure.
The organization of the PCW is illustrated in
figure 2-3-5 and contains the following:

Fie Id

Tag
p

c

I

s

R

sz

Length

Byte
Index

Word
Index

Address
(Memory
or Disk)

Bits

50:3

47:1

46:1

45:1

44:1

43:1

42:3

39:20

STRING DESCRIPTOR (NON-INDEXED)

p R
47 43 39 35 31 27 23

1 so c46 !~ NG H2~ ~42 38 30 22

0 I rv
49 45 1.,41 37 33 29 25 21

I s 1-

48 44 40 36 32 28 24 20

STRING DESCRIPTOR (INDEXED)

P R I
47 43 BaQ

I C yn
50 46..1:!..42 ~

I S ~ E
48 44 40 ~

3j 31 27 23

WORD
3j @ 26 22

IN_~ EX
33 29 25 21

32 28 24 20

19 1 15 11 7 3

AO P-~l SS
18 14 6 2

J1 ~Efj OR f O R
9 5 1

16 12
p-tSJ ~)

8 4 0

19 15 11 7 3

ADDR.e:ss
18 14 10 6 2

Description

Tag field. Value of five.

Presence bit. A 0 causes a presence bit interrupt if the descriptor is used to access data. A 1
indicates the data is present in main memory.

Copy bit. A 0 indicates that this is the original descriptor for the particular data area. A 1
indicates that this descriptor is a copy of the original descriptor.

Indexed bit. A 0 indicates indexing is required. A 1 indicates that indexing has taken place
and the word and character index are in the WORD INDEX and BYTE INDEX fields.

Segmented bit. A 0 indicates that the data area is not segmented. A 1 indicates that the data
is segmented.

Read only bit. A 0 indicates that the data may be referenced for reading or writing. A 1
indicates that the data can be read only.

Size field. 100 indicates character size of 8-bit bytes, 101 indicates 7-bit ASCII characters, 011
indicates 6-bit characters, and 010 indicates 4-bit digits.

Bits 39:20, contain either the length of the memory area (bit 45=0) or an index value (bit
45=1). When bit 45 equals 0, this field contains the length of the area in digits, characters or
bytes.

39:4 Byte index (Bit 45=1).

35:16 Word Index (Bit 45=1).

19:20 This field contains either a main memory or a disk address. If the presence bit (bit 47) is 1,
the field contains a memory address of the data. If both the presence bit and the copy bit (bit
46) are equal to 0, the field contains the disk address of the non-present data. If the presence
bit is O and the copy bit is 1, the field contains the memory address of the original descriptor.

Figure 2-3-3. String "lescriptor

Indirect Reference Word Stuffed Indirect Reference Word
Referencing a variable within the current

addressing environment of a procedure is ac­
complished through the address couple in the
Indirect Reference Word (IRW). References
are relative to the D register specified by the
address couple. The format of the IRW is
shown in figure 2-3-6.

Reference to variables outside the current
environment is accomplished by a Stuffed In­
direct Reference Word. This addressing is
relative to the base of the stack in which the
variable is located.

The SIRW contains the stack number, the lo­
cation (DISP) of the MSCW, and the index to

2-3-5

Fleld
Tag

p

c

Length

Address
(Memory
or Disk)

0

I

I

Bits

50:3

47:1

46:1

45:4

39:20

19:20

p ',',',',',",'.'.

::::.::::~~ 47 39 35 31 27 23 19 15 11 7 3

c ::::::::::::::::: LE NG. .,H AD bRE SS
50 4€ x:u~ 38 34 30 26 22 18 14 10 6 2

::;::::::::::::· u ~EFa OR r 0 R
49 ?:4:$::tA:~ 37 33 29 25 21 9 5 1

• <<•o 11
~IS~)

48 35· 32 28 24 20 16 8 4 0

Description

Tag field. Value equals three.

Presence bit. A 0 indicates that the segment is absent from main memory.

Copy bit. A 0 indicates that this is the original segment descriptor. A 1 indicates that this is
a copy of the original segment descriptor.

Not used. Unused bits may be either 0 or 1.

The length of the program segment in words.

This field contains either the main memory address or the disk file address. If the presence
bit (bit 47 equals 1, the field contains the main memory address of the program segment. If
both the presence bit and the copy bit (bit 46) equal 0, the field contains the disk address of
the non-present program segment. If the presence bit equals 0 and the copy bit equals 1, the
field contains the absolute memory address of the original program segment descriptor.

Figure 2-3-4. Segment Descriptor

p
43 39 35 31 27 23 N19 15 11 7 3

I
50 :/A~ 42 38

s
34 30 26 22

LL SD
18 14 10 6 2

I
49

srrAOK
45 41 37

R
33

32

1~IR
29 25

28 24

21

20

0/1 INl~EX
17 13 9 5 1

16 12 8 4 0

Fleld Bits Description
Tag 50:3 Tag field. Value equals seven.

47:2 Not used,

Stack 45:10 The number of the stack which contains the PCW.
Number

PSR 35:3 The program syllable (0-5) within the word located by PIR.

PIR 32:13 Index to the Program Base Register. Locates a word within the code segment.

N 19:1 Normal state (0) or control state (1).

LL 18:5 The level of the procedure being entered.

SD 13:14 The segment descriptor index. Bits 12 through 0 specify the value to be added to either D-
Index register 0 or 1. When bit 13 equals 0, D-register 0 is selected; when bit 13 equals 1, D-register

1 is selected. The sum of the contents of the display register and the index locates a segment
descriptor.

Flpre 2-3-5. Proinm Control Word

2-3-6

Field Bits Description
Tag 50:3 Tag field. Value equals one.

47:1 Not used

46:1 Environment bit. Must equal zero for an IRW. (1 = SIRW).

45:32 Not used.

Address 13:14 Selects D Register (According to current program level as indicated by rLL) and provides index
Couple value (see below).

PROGRAM LEVEL
0-1

11 7 3

PROGRAM LEVEL
0-3

11 7

INDEX

3

PROGRAM LEVEL
0-7

4
11 7

10 INDEX

3

2 1(INDEX 2
FIELD- 1C FI ELD ___1 FIELD-

1
13 9

12 8

40983

12-0
0

4

1

2

1 1 13

2
0 lJ

PROGRAM LEVEL
0-15

4
11 7 3

8
10 INDEX

Fl ELD__!
9-0

13 9 5 1

12 8 4 0

9

8

11-0
0

4

1

2

1
1 1~

2
0 1~

PROGRAM LEVEL
0-31

4
11 7 3

8
1~ INDEX 2

FIELD--1
16 8-o

13] 5 1

12 8 4 0

NOTE: THE BIT ORDER OF THE LL FIELD IS INVERTED.

Figure 2-3-6. Indirect Reference Word

10-0
9 5 1

8 4 0

2-3-7

the variable relative to the MSCW. The abso­
lute memory location of the variable is formed
by adding the contents of DISP and inde:x to
the base address of the referenced stack from
the stack descriptor. The contents of the SIRW
(with the exception of index) are dynamic and
are accumulated as the program is executed.
The stack number and DISP fields are entered
into the SIRW by the Stuff Environment
(STFF) operator. The bit format of the SIRW
is shown in figure 2-3-7.

WORDS FOR STORING STACK
HISTORY

Certain words can be thought of as words
used for storing stack history. These words,
used for procedure entry and e:xit, as well as
for storing the stack state for inactive stacks,
include the Mark Stack Control Word, the Re­
turn Control Word, and the Top Of Stack Con;..
trol Word.

Mark Stack Control Word
The Mark Stack Control Word (MSCW), to­

gether with the Return Control Word (RCW),
provides a linking mechanism for the history
of previous control-register settings through
the stack.

The MSCW is placed in the stack by the
Mark Stack operator. The MSCW is organized
as illustrated in figure 2-3-8.

...... ·.-'.-'.<·

Yl~ 43 39

Return Control Word
The Return Control Word (RCW) and the

MSCW are used for subroutine handling. The
Return Control Word stores the environment
to which the subroutine will return. The or­
ganization of the RCW is illustrated in figure
2-3-9.

Top of Stack Control Word
The Top Of Stack Control Word (TOSCW)

contains all information needed to restore the
operating environment when a stack (or proc­
ess) is activated. When a stack is active, the
first word of the stack is a single precision op­
erand containing the processor ID (,.. number,
0 through 7). When the stack is made inactive,
the processor ID is changed to a TOSCW, con­
taining the status of various processor flip­
flops necessary to restore the stack's environ­
ment when it. is again activated. The TOSCW
is created by the Move Stack (MVST) operator.
The TOSCW is illustrated in figure 2-3-10.
WORDS USED AS SPECIAL
PARAMETERS

Certain control words .are used only as a pa­
rameter to a single operator. Among these are
the Step lnde:x Word, used with the Step and
Branch operator; the Occurs Index Word, used
with the Occurs Index operator; and the Read
Time Of Day Function Word, used with the
Scan In operator .

11 7 3

0 I
50 46 42 38

D SPl.,.ACE- :ttJ:\/?
34 3Q 26 22 {\lJ >>:t4

INDEIX
10 6 2

2-3-8

Mc' NT ·••:::::: 0
33 ~'ii 25 21)/j:j 13

0 STJ~CK NO
49 45 41 37

I
48 44 40 36

Field Bits Description
Tag 50:3 Tag field. Value equals one.

47:1 Not used.

46:1 Environment bit. Must be a one (0=1RW).
Stack No. 45:10 The number of the stack containing the referenced word.

AIELD
9 5 1

8 4 0

Displace- 35:16 This number, added to the stack base address, addresses an MSCW.
ment

19:6 Not used.

14:1 Must be 0.

Index 12:13 This number, added to the address of the MSCW, addresses the referenced word.
Field

Flpre 2-3-7. Stuffed Indirect Reference Word

l>S
N39

v
47 Lc!_43 35 31 27 23 19 1~ 11 7 3

0 E fW" u 3~ ISPJ 1-AC ~-
1l tL 1~ 50 46 T42 M38 30 26 ~ 22 10 ~6 2

..a.

I A

-~37 ME NT 11.11

49 45 C41 33 29 25 21 17 13 9 5 1
I K 1 I:.

48 44 40 R36 32 28 24 20 16 12 8 4 0

Field Bits Description

Tag 50:3 Tag field. Value equals three.

DS 47:1 Different-stack bit. A 0 indicates that the stack-number field refers to the current stack. A 1
indicates that the stack-number field refers to a different stack.

E 46:1 Environment bit. A 0 indicates an inactive MSCW, generated directly by the Mark Stack
operator. The procedure entry has not been performed. A 1 denotes an active MSCW generated
upon entry into a procedure, at which time the environment fields (stack number, displacement,
value, and LL fields) are stored into the MSCW.

Stack
Number

45:10 Stack-number field. Contains the number of the stack from which the PCW was obtained at
procedure-entry.

Displace-
ment

35:16 Displacement field. When added to the stack base address, locates the MSCW of the prior
lexicographic level.

v 19:1 Value bit. A O indicates that the MSCW was generated during any oper~tion that will be.
restarted from the beginning. A 1 indicates that the operator must contmue after the Exit or
Return which refers to this MSCW (e.g., an accidental entry by a Value Call).

LL 18:5 LL field. Denotes the lexicographical level at which the program will run when the procedure
is entered.

DF 13:14 Denotes the stack history. This field is used to locate, in the stack, the preceding MSCW (i.e.,
the previous "F" register setting).

Figure 2-3-8. Mark Stack Control Word

Step Index Word
The Step Index Word (SIW) is used as a pa­

rameter to the Step and Branch operator, to
increase the efficiency of this operator in
iteration loops. When the Step and Branch op­
erator is invoked, the SIW addressed by the
IRW in the top of stack location is located. The
increment field is added to the current value
field. If the current value field is then greater
than the final value field, PIR and PSR are
set from the next two syllables in the program
code string and the branch is made. If the cur­
rent value field is not greater than the final
value field, PIR and PSR are advanced three
syllables, the SIW is replaced in memory, and
the iteration loop continues. The format of the
SIW is illustrated in figure 2-3-11.

Occurs Index Word
The Occurs Index Word (OIW) is used to in­

dex a field within an array. COBOL permits
arrays to be constructed of a series of fields of
a specified character size (through use of the
OCCURS clause). This series of fields may not

necessarily begin at a word boundary, because
the array may be one of several items subordi­
nated under a group item. The OCRX
operator, together with an OIW in the A loca­
tion and an index value in the B location, is
used to calculate a new index value which is
left in the top of the stack. The original index
value is an integer which indicates the
relative position of the desired field within the
array. The new index value is the displace­
ment (in characters) of the desired field from
the first character of the array. The character
size (specified in a descriptor) and the index
value (left in the top of stack) can then be
used to address the desired field. The format
of the OIW is shown in figure 2-3-12.

Time of Day Function Word
This word is used as a parameter to the

Scan In operator, to specify that the time of
day is to be interrogated by the MCP. The for­
mat of the Time of Day Function Word is
shown in figure 2-3-13.

2-3-9

Fleld Bits
Tag 50:8

ES 47:1

0 46:1

T 45:1

F 44:1

TFOF 48:1

RR 40:1
39:1

PSR 85:8

PIR 82:18

N 19:1

LL 18:5

SD 18:14
Index

Fie Id
Tag

ES

OF

T

F

DSF

N

LL

DFF

2-3-10

ES lf RR P
47 vF 39 3a

N
31 27 23 19 16 11 7 3

1~ L
30 26 22 1j 10 6 2

2J
~lR o~~ SD IN_[>EX

Tag field. Value of three.

External Sign flip-flop.

Overflow flip.flop.

True/False flip-flop.

Float flip-flop.

28

True/False flip-flop occupied flip-flop.

25

24

21 17

20 16
D••crlptlon

9 5 1

12 8 4 0

Special hardware bits. These bits are used for controlling an early segment descriptor fetch during
exit and return operations.
Program syllable of the operator to be executed after return from the subroutine.

PIR setting of the operator to be executed next in the calling routine.

Normal state (0) or control state (1) procedure.

Level of the calling procedure when the RCW was generated (at procedure entry).

Segment descriptor index. Bits 12 through 0 specify the value to be added to either D-register
0 or 1. When bit 18 = 0, D-register is selected; when bit 13 = 1, D register 1 is selected. The
sum of the contents of the selected display register and the index locates a segment
descriptor.

0
50

49
I

48

Bits
50:3

47:1

46:1

45:1

44:1

48:8

. 35:16

19:1

18:5

13:14

Figure 2-3-9. Return Control Word

36 31

3~
D~
~

33 29

32 28

Tag field. Value equals three.

External sign flip-flop.

Overflow flip-flop.

True/False flip-flop.

Float flip-flop.

Not used.

27

•F
26

25

24

N
23 lj 15

L L~ 22 18

21 17 13

20 16 12

De.crlptlon

11 7

10
PFF

6

9 5

8 4

Delta S-register field. The value of S-register displacement above BOSR.

Normal-control state flip-flop. 0 = normal; 1 = control state.

Lexicographic level.

3

2

1

0

Delta F-register field. The value of F-register displacement below the S-register.

Flpre 2-3-10. Top of Stack Control Word

Fie Id
Tag

47 43 39 35
I 11. JCR f-

50 42 "" 38 34

0
4}
~EN Ir 37 49 41 33

0
48 44 40 36 32

Bits
60:3 Tag field. Value equals four.

0
31 27 23 19

Fil ~AL 0
30 26 22 18

VA] ~UE 0
29 25 21 17

0
28 24 20 16

DHcrlptlon

Increment 47:12 Increment: value to be added to current value field.

Final 36:16 Final value: value used to terminate the iteration loop.
Value

19:4 Must be 0 for SlW.

15 11 7 3

~ UR] ~EN r
10 6 2

13
VAi

9
._UE

5 1

12 8 4 0

Current 16:16 Current value or count. The branch is made if this field is greater than the final value field.
Value

47
0

50 46

0
49 45

0 48 44

Fie Id
Tag

Length

Size

Offset

Fleld

Tag

43
-.EN

42

41

40

Bits

60:3

47:16

31:16

Figure 2-3-11. Step Index Word

39 36 31 27 23 19 15 11 7
GT] ~ 3~ SI ~~2 D~? SE~ 38 30 26 18 14

37 33 29 25 21 17 13 9

36 32 28 24 20 1~ 12 8

Description

Tag field. Value equals zero.

The length, in characters, of each field in the array.

The size, in fields, of the array.

6

5

4

3

2

1

0

15:16 The number of characters preceding the first field of the array.

Figure 2-3-12. Occurs Index Word

Bits Description

60:3 Tag field. Value equal zero.

47:28 Not used.

19:13 Must equal zero.

6:2 Must equal three.

4:6 Must equal zero.
Figure 2-3-13. Time-Of-Day Function Word

0
7 3

0
6 2

0
5 1

0
4 0

2-3-11

SECTION 4

INPUT/OUTPUT SUBSYSTEM
MAP STRUCTURE

INTRODUCTION
The B 7800 Input/Output Modules (IOM) op­

erate in parallel with the Central Processor
Modules (CPM). The purpose of the IOM is to
control all data transfers between main
memory and peripheral devices, or between
two peripheral devices, so that the CPM is re­
leased from 1/0 operations at the earliest pos­
sible moment. In brief, the IOM controls not
only the selection of 1/0 requests from lists of
such requests in main memory, but also path
selection to the desired devices, the initiation
of requests on the appropriate device, the
tr an sf er of data as specified by the requests,
and the construction of a list of completed re­
quests in main memory. The CPM, on the
other hand, builds the 1/0 request, places it in
the appropriate list in main memory, notifies
the IOM of the presence of the request (if this
is the only request for the device), and then is
free to continue with other processing. Rou­
tinely, the CPM checks memory for the pres­
ence of completed 1/0 requests and processes
the completed requests.

Each IOM is, in effect, a separate computer
with its own local memory, logic, arithmetic,
and communication capabilities. This inde­
pendent processing capability permits the IOM
to perform routine input-output tasks without
interrupting the CPM. Thus the IOM can con­
trol transfers of data between peripheral stor­
age devices and main memory or other storage
devices without direct supervision of the CPM.
In fact, parallelism within the IOM permits it
to initiate, service, and terminate data trans­
fers for several users while the CPM is proc­
essing data for yet another user.

QUEUE-DRIVEN 1/0
To allow the IOMs to properly select paths

to the devices and to service 1/0 requests, cer­
tain structures are created by software when
the system is initialized. These structures,
which provide a mechanism to allow the CPMs
to queue 1/0 requests, allow each IOM to be
aware of the requests, of the devices it can
service, and of the order of priority of devices
served by an exchange. These structures are
referred to as the 1/0 Subsystem Map, and
hence this type of 1/0 is often reff ered to as
"map" 1/0 or "queue-driven" 1/0. Because the
use of the map allows the IOM to proces~

many 1/0 operations in parallel, independent
of CPM, 1/0 performed using the map is also
known as asynchronous 1/0. The IOM may
also operate synchronously to process one 1/0
request at a time; however, such synchronous
operation is used only for special applications
such as system initialization and is not fur­
ther discussed in this section.

The operation of asynchronous 1/0 is illus­
trated in simplified form in figure 2-4-1. When
the 1/0 subsystem map is· initialized the CPM
places information about each peripheral de­
vice and the paths to it into a table in
memory. During operation, the 1/0 subsystem
map is accessed by both the CPM and IOM as
1/0 requests are built (by the CPM) and proc­
essed (by the IOM). In essence, the CPM builds
1/0 requests and places them in queues of
such requests in main memory. Each request
specifies the desired 1/0 operation and the de­
vice on which the operation is to be performed.
The IOM extracts requests from these queues
on a first-in first-out basis, processes each re­
quest, and places the completed requests into
a queue in main memory.

Periodically, the CPM extracts the completed
requests from the queue in main memory and
takes the necessary action to check them.

r-----,
I MEMORY I
I I

I NFORHAT I ON
-~.iABOUT DEVICES.._._ ..

ANO PATHS I
L

'-1--.iQUEUES OF 1 /0 REQUESTS

I
I
I

TO BE PROCESSED BY IOM

I ~Q-UE-UE_O_F-CO-HP-LE-TE_D_l/-0-RE-~-ES~TS
I TO BE PROCESSED BY CPM I
L _____ _J

40915

Figure 2-4-1. Asynchronous 1/0 Operation,

Simplifted Block Diagram

2-4-1

Once the IOM is notified (by the CPM) of the
presence of an 1/0 request in one of the input
queues, all requests in that queue will be proc­
essed by the IOM independent of CPM actions
until the queue becomes empty. The CPM may
place additional requests into a queue while
the IOM is processing a request from the
queue. Thus, once the IOM starts processing a
queue, the CPM may process other programs,
queue new 1/0 requests, and perform computa­
tions; effectively masking out the IOM trans­
fer times.

ERROR HANDLING
From time to time conditions may arise

which prevent I/0 operations from being ac­
complished successfully. A printer may run
out of paper, a card punch may be out of
cards, or a device may for some reason not be
ready. The design of the I/0 subsystem map
allows the IOMs to continue to process re­
quests for other devices even though an error
is detected on a particular device. When the
error is recognized by an IOM, processing of
further requests for the particular device is
suspenended, the I/0 request is marked as
containing an error, and that marked request
is linked into the queue of completed requests.
The CPM is not interrupted to handle the er­
ror; however, when the CPM does process the
queue of completed requests it will recognize
and process the error. When the error has
been processed, the CPM can again cause the
IOM to process requests for the device on
which the error was detected.

If such a strategy were to be applied to the
handling of all input/output errors a
catastrophic situation might arise. If, say, the
IOM itself were the source of the error, it is
conceivable that it could then process all (or
many) I/0 requests erroneously. However, in
such cases the B 7800 IOM stops all processing
of I/0 requests (for all devices) and immediate­
ly interrupts the CPM. In short, I/0 errors as­
sociated with a particular device cause proc­
essing of further requests for the device to be
halted but allow the processing of requests for
other devices by the IOM to continue. I/0 er­
rors which can be associated only with an IOM
and not with a particular device cause the
IOM involved to stop all processing of requests
(other IOMs are not affected) and causes the
system to be interrupted so that the IOM er­
ror may be processed. Provision is also made
to allow the software to request that the sys­
tem be interrupted when a particular I/0 re­
quest is completed.

2-4-2

DEFERMENT OF PATH BINDING
The I/0 subsystem map allows the IOM to

select the transfer path for a device as the
path becomes available. This dynamic path se­
lection is logically similar to the call routing of
a long distance telephone network; that is, the
route of the call is selected based on the loca­
tions of the correspondents and the available
paths. The user need only be concerned about
the type of device to be used (card reader,
magnetic tape, disk file, etc.); the MCP will as­
sociate the logical file with a physical device
when the program is executed, and the IOM,
when it initiates each transfer of data, will se­
lect an available transfer path to the device.

Maximum I/0 throughput can be realized
only if the binding of the data path between
an IOM and a device is delayed until the de­
vice is ready to initiate the job. As shown in
figure 2-4-2, if device 4 is to be initiated, the
path required to connect CPM 1 with device 4
involves selecting between two IOM's and be­
tween two channels within each IOM. (The pe­
ripheral controls have been excluded from this
figure because they do not affect the concepts

EXCHANGE 5:J 'I
2

ION
•I

1--

CPM
#I EXCHANGE

#2

~- -B ·~ IOM
#2

CT'.] 5

-----PATH(S) TO DEVICE I~
FROM CPMll

409H

Flame 2-4-2. Data Transfer Path Selection

being described. For purposes of this discus­
sion the peripheral controls may be thought of
simply as extensions of the IOMs.) If the path
to device 4 were to be preselected program­
matically, a situation could develop in which
the device is free but the preselected path is
not. Thus, execution of the request would be
unnecessarily delayed if in fact an alternate
path to the device was available.

To delay binding the path programmatically
generally would require that the CPM which
initiated the job be involved in the operation
until the request is actually initiated on the
specified device. The 1/0 subsystem map, how­
ever, allows the IOM's to manage selection
and binding of paths, allowing the CPM's to be
free to do other processing. Thus, because the
IOM processes 1/0 requests without CPM in­
tervention, and because the IOM selects data
paths at the time of execution, the total sys­
tem time required to accomplish an 1/0
operation is limited to the amount of time re­
quired for a CPM to build an 1/0 request and
place it in memory.

IOM MEMORY
,-----,

SQ
f---l

QH

~
UT

f---l
HA ._....,

"---I

UNIT
TABLE

(ONE WORD
FOR EACH
DEV I CE)

...
HOME
ADDRESS
WORDS

(ONE GROUP
FOR EACH
IOM)

40997

I

~

•

1/0 SUBSYSTEM MAP
As shown in figure 2-4-3, the 1/0 subsystem

map is made up of four major software struc­
tures in main memory. These four software
structures are addressed by registers within
the IOM: the Home Address words are ad­
dressed by the HA register; the Unit Table is
addressed by the UT register; the Queue Head
and Queue Tail words table is addressed by
the QH register; and the Status Queue Header
is addressed by the SQ register. The IOM uses
the Queue Head word for the appropriate de­
vice to locate the 1/0 request. Thus, the IOM
can locate any element of the map as neces­
sary. Of course, since the map is constructed
by the MCP, it too is aware of the location of
each element of the map.

Commands and Requests
Before further discussion of the 1/0 subsys­

tem map can take place, the difference be­
tween an 1/0 command and an. 1/0 request
must be made clear. An 1/0 command is an or-

STATUS
QUEUE
HEADERS

QUEUE HEAD (ONE WORD

WORDS FOR EACH
IOM)

(ONE WORD
FOR EACH ~ p
DEVICE)

I r.!l r--,
I I I

+ +
WORD n_

TO FIRST IOCB IN TO LAST IOCB IN
QUEUE OF COMPLETED QUEUE OF COMPLETED
I /0 REQUESTS FOR I /0 REQUESTS FOR

: THIS IOM THIS IOM

QUEUE TAIL
WORDS L_+ TO FIRST IOCB IN

(ONE WORD
QUEUE OF 1/0
REQUESTS FOR

FOR EACH DEVICE n
DEV I CE)

+
WORD n+256 -. TO LAST I OCB

IN QUEUE OF
I /0 REQUESTS

• FOR DEVICE n

Figure 2-4-3. 1/0 Subsystem Map, Simplified Block Diagram

2-4-3

der to an IOM which can cause one operation
or many operations for one device to be initi­
ated by the IOM. Although there are special I/
0 commands which control but a single I/0 op­
eration, the I/0 command most often associ­
ated with asynchronous I/0 is the Start IO
command, which causes the IOM to process I/
0 requests from a queue of such requests until
the queue is empty. Each I/0 request contains
information describing a single input or out­
put operation that is used not only by the IOM
but also by the peripheral control and even
the device itself. Each · I/0 request is made up
of several words and is known as an I/0 Con­
trol Block (IOCB). The IOCB is discussed in de­
tail later in this section; I/0 commands are de­
scribed in chapter 4.

Map Integrity
Because the I/0 subsystem may be accessed

and modified by all CPM's and IOM's in the I/
0 subsystem, the integrity of the map is pro­
tected by special lock bits and lock words. This
system of locks prevents conflicts between the
IOM's and CPM's which use and modify the
map. As shown in figure 2-4-4, the system
consists of three types of locks; a lock bit and
a lock word for each group of Home Address
words, and a lock bit for each Unit Table word.

The software lock word prevents two or
more CPM's from attempting to build I/0 com­
mands in the Home Address words simultane-

CPI' CP•

J J
' ~ j_

HOME ADDRESS
SOFTWARE HOME ADDRESS UN IT TABLE
LOCK WORD LOCK Bl, WORD LOCK

- - BIT (ONE PER
--t>EVICE)

PROTECTS PROTECTS
HOME ADDRESS HOME ADDRESS -
WORDS WHILE WORDS AFTER PROTECTS I /0
THE ·CPM COMMAND IS QUEUE
BUILDS A BUILT
COMMAND

j
l

IOH IOH

Flpn 2-4-4. VO Subsystem Map Protection

244

ously. This word must be unlocked before a
· CPM can access the Home Address words; the
CPM will immediately lock this word when it
gains access.

The Home Address lock bit prevents a com­
mand from being altered once it has been
placed in the Home Address words for execu­
tion. The CPM locks this bit when a command
is placed in the Home Address words.

In response to a channel interrupt, the IOM
exchanges the contents of HA word with zero,
decodes the home command, and executes the
operation. When a CPM gains access to an HA
block via the software lock-word, the CPM
does not insert a HA command into the Home
Address word until the HA lock bit is un­
locked.

The lock bit in each Unit Table word pro­
tects the IO queues so that access to an I/O
queue is not granted to more than one IOM or
CPM at a time. The I/0 queue can only be ac­
cessed when the lock bit is unlocked. Each
IOM or CPM locks the bit when it is using the
I/0 queue and unlocks the bit when it is fin­
ished.

Home Address Words
For each IOM there exists a unique set of

Home Address words in memory. The basic
purpose of the Home Address words is to pro­
vide a location into which CPM's can store an
I/0 command until an IOM is ready to execute
the command. The most generally used com­
mand is Start IO, which is used to initiate the
processing of a queue of I/0 requests for a de­
vice by an IOM. Other commands allow the
IOM to perform special functions, such as
loading into the IOM the addresses of the
structures in the I/0 map or performing syn­
chronous I/0 operations. Other words in the
Home Address words are used as software lock
words and, in certain cases, to store result de­
scriptors for completed I/0 operations.

Unit Table
For each device in the I/0 subsystem there

is one word in the Unit Table. This word is
used both by the MCP and the IOM, and con­
tains a lock bit which prevents conflicts of
interest. This word indicates the path or paths
to the unit, and provides other information
needed by the IOM.

1/0 Queue Head and Tail Words
For each device in the I/0 subsystem there

is one Queue Head word and one Queue Tail
word. These words contain the address of the
first IOCB and the last IOCB, respectively, in
the queue of 1/0 requests for the unit. If there

are no IOCB's to be processed for the unit,
these words will be empty.

Status Queue Headers
For each IOM there is a Status Queue

Header. Fields in the Status Queue Header
contain the addresses of the first and last
IOCB in a queue of completed IOCB's. Thus,
the Status Queue Header allows each IOM to
maintain a single queue of completed l/0 re­
quests. Periodically, the MCP checks these
completed requests.

Input/Output Control Block
An Input/Output Control Block (IOCB) con­

tains the information needed by the IOM to
perform one l/0 operation on a device. 1/0
Control Blocks (see figure 2-4-5) contain inf or­
mation needed to link queues of IOCB's to­
gether, to describe the I/0 operation to be per­
formed, to locate the data buff er to be used
for the operation, and in the case of completed
IOCB's, to store the result descriptor describ­
ing the completed operation. A generalized il­
lustration of an IOCB is shown in figure 2-4-
5.

FORWARD LINK

SI DE LINK

AREA DESCRIPTOR

IOCW

COL

RESULT DESCRIPTOR

WORDS
FOR
SOFTWARE
USE

TO NEXT I OCB IN QUEUE

TO SIDE LINKED IOCB (IF ANY)

TO FIRST DATA WORD OF BUFFER

}
THESE TWO WORDS DESCRIBE THE
OPE RAT I ON TO BE PERFORMED.

)
DESCRIBES THE COMPLETED OPE RAT I ON.
(ERROR-FREE OR TYPE OF ERROR)

Figure 2-4-5. IOCB Format, Simplified

2-4-5

CHAPTER 3

CENTRAL PROCESSOR MODULE

SECTION 1

GENERAL DESCRIPTION

GENERAL

The B 7800 Central Processor Module (CPM) pro­
vides high performance through extended asynchro­
nous operations of independent functional units
within the CPM. Communications between these
units are carried out by means of high-speed local
storage and operation queues. These operation
queues and local storage areas allow execution of
operators and data exchange between operators to
occur simultaneously. The operators can be deferred
or restored within the pipeline flows of the CPM and
can be completed out-of-sequence from the queues.
The final completion of operators, with respect to
code order, is ensured because different units within
the CPM complete operators independent of any
queue order sequence. These units are the program
control unit, the data reference unit, the execution
unit, and the EU store sub-unit.

Figure 3-1-1 is a simplified block diagram of the
CPM showing the general interconnections and data
flow between the local storage areas and the major
units. The basic functions of these units of the CPM
are described in the following paragraphs.

PROGRAM CONTROL UNIT

The Program Control Unit (PCU) is responsible
for extracting an operator or a group of operators
from the code string and initiating the processing of
instructions. These instructions are placed in the ap­
propriate queues in either the data reference unit or
the execution unit.

The primary responsibility of the PCU is to allow
operators to be executed when ready rather than be
executed in a serial order from the code string. To
accomplish this method of executing operators, the
PCU is structured to be the stack machine of the
CPM. This allows the PCU to change an operator or
operators to a three-address operation (A, B, and R
addresses) for the DRU and EU. These addresses
are pointers to actual data register locations in the
CDB. For example, the A and B addresses can be
locations for operands to be fetched by the DRU.
These same A and B locations are then read by the

5010796-001

EU for an arithmetic operation in which the result is
returned to R location in the CDB. Along with these
addresses, the PCU passes a job number and other
information necessary to complete the operation.
The job number is used to maintain orderly process­
ing of an operation in the pipeline levels of the DRU
and EU and in deallocating CDB locations at the end
of operations.

Other major responsibilities of the PCU are as fol­
lows:

J. Processes conditional branch operators (BRFL.
BRTR. and STBR) independent of other units by ex- I
amining the boolean when it is generated by the EU.

2. Transfers literal data directly into the CDB for
use by the EU or DRU; in the case of non­
concatenated NAMC, transfers the NAMC (an IRW)
into the COB for use by the DRU.

3. Provides AC (address couple) from a VALC or
concatenated NAMC (for example, NAMC followed
by INDX) to the DRU for obtaining an absolute ad­
dress from which data is fetched and placed in the
COB for EU or DRU use.

4. Provides TOS (top-of-stack) instructions to the
DRU allowing descriptor evaluation to be accom­
plished before an EU operator requires the refer­
enced data.

5. Provides certain store instructions (STOD and
STON) to the EU store sub-unit. This unit expedites
stores as soon as possible so· that time is not taken
away from EU processing of other operators.

6. Processes stack operators, such as exchange
and rotate stack down, by interchanging the COB lo­
cations according to the type of stack operator being
executed.

7. Contains a separate branch storage area so that
any branch loop can be captured locally for fast pro­
cessing.

DATA REFERENCE UNIT

The Data Reference Unit (DRU): 1) receives all
data reference operations from the PCU; 2) calcu­
lates the absolute address of data; and 3) fetches the
data from either the associative me·mory or main
memory. Extensive use of pipelining allows one-

3-1-1

CODE ADDRESS

PROGRAM CODE J
AC Q (INCL.A LOC, JOB# ETC.)

1
l f'llOGRAM CONTROL l

UNIT

l l EU Q (INCL. A,B, R LOC, JOB# ETC.)

~TO-'S~Q~(l_NC~L~.A~,B~,R~~~c~,J~O~B~•~ET~C~.J __ ___. ,__ __ o-'(IN_C_L_B_~~C-.J~O~B~#)

1

FETCHES

TO/FROM
MEMORY

STORES

MA
E CU
MCN
0 EI
RS T
y

DATA
REFERENCE

UNIT

READ/WRITE ADDRESS

DATA TO OPERATOR

RESULT DATA

DATA

MEMORY

LITERAL
DATA

[EU STORE l
SUB-UNIT

READ/WRITE ADDRESS 1
DA~~N;i:i:FLER f--DA_T_A ...;T0-'0-PE_R_AT;.c;O.;_R ----~.J

(84 LOCATIONS)
RESULT DATA

-t_---. _ __j't----------t
DATA

_r - - -;,:R;;;; I
T 1 DATA REF. I

EXECUTION
UNIT

I UNIT I
ADDRESS DATA ASSOC. I ..,._ ______ T-1---al MEMORY ____ ... 1 (2K WORDS) I

L,_ ___ DA_TA_1_NP~U~T----.,------L_~t-I---~~ -,._ __ _J _ _._ ___ o_uT_P_uT_D_~_A __ __J

DATA ADDRESS

OUTPUT DATA

ET1262

STORE Q
(32 WORDS)

.__....,J~_,

Figure 3-1-1. CPM Block Diagram

clock references to associative memory. Some other
functions of the DRU are as follows:

1. Calculates start bit and field length information
and places this information into the CDB for use by
EU string operators.

2. Calculates and saves all write addresses for lat­
er use by the EU. During the EU portion of the
write operation, the address is obtained from the
DRU and is used for addressing the EU output data
into both the associative memory and the store
queue.

3. Compares saved write addresses against any
subsequent fetch address to determine if these ad­
dresses are equal. If these addresses are not equal,
the fetch is allowed to proceed if it does not address
a location to be changed by a previous incomplete
write. If these addresses are equal, the operation for
that fetch is deferred until the EU has completed the
write operation (for example, a NAMC STOR fol­
lowed by a VALC with same address couple).

4. Performs all the procedure entry and exit in­
structions, except for assembling MSCW and RCW.
(MSCW and RCW are assembled by the barrel
mechanism in the EU.)

3-1-2

EXECUTION UNIT

The Execution Unit (EU) performs all arithmetic
and logical operations on data from the CDB. Data
derived by the EU may either be stored in the CDB
or may be sent to associative memory and the store
queue.

Extensive parallelism is provided by independent
operating EU sections, which allow execution of
newer operators (for example, index computation or
loop control) in parallel with older operators. The
EU has three processing sections: 1) arithmetic logic
unit (ALU); 2) short arithmetic unit (SAU); and 3)
EU central data buffer (EUCDB) logic. The basic
functions of these sections are as follows:

1. SAU performs integer arithmetic operations,
basically COMP, ADD, and MULT. It can operate
on a maximum of 20 bits in the case of ADD and
COMP operations. For MULT, an eight-bit multiply
operation can be performed in three clocks to pro­
duce a 16-bit result. SAU is also used for exponent
calculations and double precision. During double

precision operations, the SAU exponent calculations
are controlled by macro operators from the macro
code routines in the EU.

2. ALU performs most types of arithmetic and
logical computations in the EU. It operates on non
integer data or integer data that is greater than 20
bits.

3. EUCDB accesses the operands from the CDB
for use by the ALU and SAU. It also directly con­
trols the barrel to execute field operators and the
data manipulation portion of string operators.

STORE QUEUE

The store queue is responsible for buffering data
before it is sent to main memory to eliminate re­
peated stores to the same main memory location and
to group multiword writes of adjacent words into a
single main memory operation. For example, a
NAMC STOR is part of a loop control in which a

loop variable is updated by repeated entries into the
store queue with the same memory address. There­
fore, all but the newest entries (or writes) are dis­
carded and unnecessary memory operations are not
performed.

MEMORY ACCESS UNIT

The Memory Access Unit (MAU) provides the in­
terface between the CPM and up to eight memory
control modules MCMs in the main memory. Re­
quest for memory interface operations are made to
MAU by the PCU, DRU, and store queue. Data
fetches from memory hy the MAU are forwarded to
the associative memory. Program fetches are for­
warded to the program buffer in the PCU. Data
stores received (from store queue by the MAU) are
forwarded to main memory. The MAU can perform
simultaneous fetch and store operations with main
memory, provided that these operations are not with
same MCM.

3-1-3

SECTION 2

FUNCTIONAL OPERATION OF
CENTRAL PROCESSOR MODULE SUBSECTIONS

GENERAL

This section contains a brief description of the op­
eration of each of the CPM subsections described in
section 1 of this chapter.

PROGRAM CONTROL UNIT

The program control unit (PCU), as shown in fig­
ure 3-1-1, consists of the instruction decode (PID)
level, the instruction execute (PIE) level, along with
the write level. Basically, the PID level is responsi­
ble for extracting code from the code buffer and
presenting this code to the PIE level. Then, the PIE
level issues the required micro operators to the write
level for final distribution to the DRU and EU
queues. At the PIE level, the allocation of registers
in the control data buffer (CDB) and information,
such as address. couples, variant information, and
job numbers are passed to the appropriate queues.
Also, the initial stack environment for the micro op­
erator and the top-of-stack configuration at the con­
clusion of that operator is controlled by the PIE lev­
el.

Because the PIE level or the write level can re-1
quire resources (such as Q entries or COB locations)
which are not available. it becomes necessary to
hold these levels when such conflicts occur. To ac­
complish this, the hold logic signals are applied as
hold inputs to the clock buffers, whose outputs are
routed to the control flip-flops in these levels. The
PIO level operates independently and does not re­
quire hold logic. but rather it has valid flip-flops to
indicate that information is available for use in cer­
tain registers.

Generally. as shown in figure 3-2-1, a change of
direction causes the program index registers (PIRs)
to be loaded with either the branch PIR from PIO or
EU, the enter and exit PIR from the DRU, or the
enter edit PIR from DRU. The PIR output is then
added to the program base register (PBR) to form an
absolute address of the next program word. This ad­
dress is compared with stored addresses in an asso­
ciative memory to determine whether the code re­
sides in the program buff er. If the address compares
with a stored address, the corresponding code is se­
lected from the code buffer. Otherwise, the address
is sent to the MAU for a memory fetch operation.
The code is then removed from the code buffer, iso­
lated by the barrel, and forwarded to the PID, a six-

5010796-001

syllable register. The far left syllable in PIO corre­
sponds to current PIR in the PIN registers. As the · •
first major register in the PCU operator pipeline, the
PIO is used to decode the program operator and to
set up conditions for PCU registers in the PIE level.

PIR Circuits
Figure 3-2-2 shows the PIR circuits. These circuits

include the PRI, PIN, PIC, PNB, PPR, and PPC reg­
isters, the 16-word branch and interrupt storages,
and three PCB registers. These registers and stor­
ages contain the PIR and PSR values associated with
the operators in the decode and execute levels of the
PCU and in the change of processing direction. (The
PIR and PSR, together with the program base regis­
ter, identify the absolute address and starting sylla­
ble position of the associated program operator.)

The PRI (prime) register receives the PIR and PSR
values from the following:

1. The interrupt storage.
2. The PCB register for conditional branch

operators (BRFL. BRTR. and STBR). •
3. The EU for dynamic branch unconditional

(DBUN). and table enter edit, (TEED and TEEU) •
operators.

4. The PPC register for enter and exit operators.
5. The PPR for table enter edit operators so that

branching back to normal code can be performed af­
ter completing edit mode.

6. The PID register for special handling of branch
unconditional (BRUN) operator.

When PRI is loaded, it is declared valid and the
contents in the branch storages are selected by a
pointer (i.e .. four LSBs of PRI) and transferred to
the program read registers (PER and POR). the PID •
register, and the PIN register. These transfers are
automatically made in anticipation that code in the
branch storages is available from a previous change
of processing direction. Hence, a time saving is rea­
lized. if a local check operation for code in the pro­
gram buffer is not required at this time.

If code is available in the branch storages (PIN
and PRI contents being equal), the· address from the
branch address storage is transferred to the address
registers for immediate word selection from the pro­
gram buffer. (Thi~ address represents the next .word
of code to be read from the program buffer.)

If code is not available in the branch storages
(PIN and PRI not equal), the contents of PID are not

3-2-1

w
N
N

MAU MAU

::.R~':' I WORD SELECTION

AODllE88A8M

PROGRAM
BUFFER

lltKWORD&)

fl9.?._DE

DRU
(llAllE)

EXECUTE
LEVEL

WRITE
LEVEL

ET1213

-R 8YUA8LI!
SELECTION

SHIFT

41

~..J

DRU
IPIR)

EU
(OBUN,TIR)

TOPCUSTACK
REGISTERS

PER POR

llAllllEL

PIO

-CH
STORAGE

lllWORDS)

'----.. PCU CONTROLS

~::;.:AL}~---~------41~-----e------...
CODE

TO DRU TO DRU TOEUOPQ TOEUOPQ
AC Q TOS Q FOR ECDB FOR AW

OPERATIONS OR SAU
OPERATION&

• -

PID SYL0,1;t,2;2,3;8,4 PATHS

----- -----1,-- ----·--- ---

EU

Pl.A

0

UT PROM

EU

PQEV

TOEUOPQ

UTI!llAL
DATA

s1•
PLT

15 I o

LTBRPRR

SCALES

AOOR.
COUPLE

PNC

13 I o

PLW

3 I o

TOCDB
EUOPQ

AOOR.
COUPLE

PVC TOP OF STACK
LOCATION

REGISTERS

ALLOCATION
CIRCUITS

PSX

DETECT
VALC

FORACO

PAC

15 I o

TOORU
ACQ

BUS

WRITE LEVEL
REGISTERS

TO DRU
AND EU
OUEUES

Fit111re 3-2-1. Pros!ram Control Unit. Block Diaeram

•

SET

-

RESET

PBL
PWA

PRI

COUNT

ET1264

BRANCH PIR
STORAGE

(16WORDS)

PIN

PIC

PNB

DETECT
BRUN NEXT

PPR

INTERRUPT
RAM

(16WORDS)

FROM
EU

FROM
PID

PCB1

PCB2

PCB3

____ _,.TO

PIN AND ADDER

COMPARE=

DETECT BRANCH
STORAGE HIT

FROM
DRU

PPC

Figure 3-2-2. PIR Circuits

passed onto the PIE level. Instead. the address of
the adder output (PRI + PBR) is transferred to the
address registers while a local check is performed to
determine if this address is pointing to code in the
program buffer. When the required code is in the I
PID. a copy of the code in the program buffer read
registers and PID register. the PIR in the PIN regis­
ter. and the adder output address is written into the
respective branch storages for later use.

The PIC (PIR current) register is used to maintain
PIR of the first operator at the PIE level of the
PCU. The most important function of PIC is to load
PIR into the interrupt storage so that the PIR of that
operator is available for interrupt processing.

The PIN (PIR next) register contains PIR of oper­
ator in the PID register. PIN is automatically up­
dated by shift codes as part of the processing of
each operator in the PID level. It .is also the write
input register for the branch storage and the syllable
shift input for the barrel mechanism in the decode
level.

The PNB (Next BRUN) register is used to main­
tain PIR of operator prior to the BRUN operator.
This mechanism eliminates local check for program •
buffer code when BRUN loop is executed. For ex­
ample, in a BRUN loop of VALC, LIT, LIT,
COMP. BRTR. and BRUN, the PIR of BRTR is
saved in PNB.

5010796-001

During the initial loop, the PIR of BRUN's target •
(in this example. the PIR of the VALC operator) is
transferred from PID to PRI and then into the adder
for normal branch operation. A copy of the code in
the PID register and program buffer read registers.
the PIR in the PIR register. and the address in the
PAR register. is written into the respective branch
storages for later use in processing the BRUN loop
code.

The PIR value in the PIN register is then adjusted
as each operator in the BRUN loop is preprocessed
by the PCU. When adjusted. PIR compares with PIR
in PNB. A BRUN next operation is set up to trans­
fer branch storage information. The PIR value in
PIN is compared with PIR value of BRTR in PNB.
When PIN equals PNB. a flip-flop is set to denote
a BRUN loop. BRUN loop is repeated again by
comparing PIN with PRI. (PIN is read from the
branch storage.) If equal, PRI branch is completed,
branch storage code is used and operator processing
is started.

In the example, the BRUN is exited when PCU
has examined a boolean true (all 1 bits) for BRTR
operator. This condition allows PCU to take a condi­
tional branch instead of repeating BRUN loop again,
as explained in 'tPreprocessing Conditional Branch
Operator''.

Preprocessing Conditional Branch
Operator

The conditional branch boolean test logic, as
shown in figure 3-2-3, is provided to allow condition­
al branches to be recognized by the PCU.

3-2-3

DECODE TEST FOR TRUE
OFBRTR).--~~~~~~~--~~~~~~~~~--~~~--'-~~~~----.

OP.

COB
ADDRESS

FOR
BOOLEAN
OPERAND

PBB1 T PBB2 T
R R

FROM
CEW

REGISTER

COMP COMP

PCU BOOLEAN SELECTION

LSB OF BOOLEAN
OPERAND FROM~~~~~~~~~~~~~~--.

EU

ET1265

3-24

DECODER

TAKE DISCARD
BRANCH BRANCH

Figure 3-2-3. Conditional Branch Boolean Test Logic

PBB3 T
R

COMP

When a conditional branch operator is first detect­
ed at PIE level of the PCU, the COB address for the
boolean operand is saved in a PBB register for later
comparison with a value in the COB EU write regis­
ter (CEW). This register is loaded with a COB ad­
dress by the EU which processed the boolean oper­
and.

The PBB registers are assigned to receive COB
addresses for boolean operands in the same order
the PCB registers (figure 3-2-2) are assigned to re­
ceive PIR of corresponding branch operator. Con­
trols for these assignments are derived from decodes
of special valid and allocation bits in the PBB regis­
ters. The purpose for having three registers is to be
able to accommodate more than one branch
operation at a time.

When boolean operand is written back into the
COB by the EU, the LSB of that operand is
monitored by the PCU. By comparing CEW value
with PBB values, the proper TR bit value is selected
for comparison with the LSB of the operand.

PBR

PRl(1~)

PAR

PRN

BITS 7-1

WRITE DECODES

READ DECODES

If TR bit value and LSB of the operand are equal,
the branch is performed to obtain address of the new
code string.

If these values are not equal, the branch is dis­
carded and the PBB and PCB registers are invali­
dated and deallocated, respectively. (These registers
can be assigned new values again.)

Address Registers

The address registers, shown in figure 3-2-4, are
used for selecting program buffer locations during
read and write operations. The address register con­
tents are gated with other information from address
associative memory (ASM) to develop address sig­
nals for the RAM chips of the program buffer. A de­
scription of each of the address registers is as fol­
lows:

1. PAR (program address register) contains abso­
lute memory address of the next four to eight word
group of code to be read from program buffer. The
address in PAR is compared with associative

PMA

TO MAU .,_ ____________ ..._ _ _.FOR

MEMORY
FETCH

BITS 7-1

BRANCH
STORAGE

(16 WORDS)

10--8 7-----

ET1266

5010796-001

TO EVEN 1024
WORD PROGRAM

BUFFER

Figure 3-2-4. Address Registers

TO ODD 1024
WORD PROGRAM

BUFFER

3-2-5

memory address to determine whether the next four
words of code are local in the program buffer.

2. PRN (program read next) register contains ab­
solute memory address of the next word of code to
be read from the program buff er.

3. PMA (program memory address) register con­
tains absolute memory address of the next word of
code to be written into the program buffer.

Whenever a change of processing direction is
executed, the absolute memory address for code is
transferred from adder to PAR and then loaded into
PRN. The adder is used to calculate absolute
memory address by adding program base register
(PBR) with PIR from PRI register.

For read address selection. the PRN contents (bits
7 through I) are gated with the read decodes to de­
velop address signals for the even and odd program
buffers. each of which has 1024 word locations. The
least significant bit (bit 0) of PRN defines which
word from even or odd word buffer is the most sig­
nificant word by setting a valid bit in the appropriate
program read register. If PRN contains an even ad-1 dress (PRN bit 0 is low) after change of direction.
both even and odd address locations are loaded si­
multaneously into their respective program read reg­
isters. As each word of code is loaded into the pro­
gram read registers. the PRN count is increas'ed by
I so that successive locations can be read from the
program buffer.

For write address selection, the PMA contents
(bits 7 through 1) are gated with the write decodes
to develop address signals for the even and odd pro­
gram buffers. An address path from PAR to PMA
exists to set up write address selection. The least
significant bit (bit 0) of PMA defines which buffer is
to receive the address signals. As each new word of
code is written into the program buffer, the PMA
count is increased by 1 to select the next address lo­
cation in the program buffer. Controls for adjusting
PMA count are derived from the MAU.

The decoding logic also provides the capability to
read from one buffer and write into another buffer at
the same time.

Address Associative Memory

The address associative memory (ASM) is the
storage area for program code addresses. As shown
in figure 3-2-5, RAM chips are used for this purpose.
The ASM consists of eight groups of 4-by-4 array of
16-by-4 RAM chips. The implementation of these
chips provides locations for 512 addresses, each of
which represents four words of code in the program
buffer.

3-2-6

The ASM also includes a 64-by-3-bit code priority
list (PL) ·memory. These priority codes identify the
program buffer location to be written to next. I When PRG 1 or PRG2 needs to be loaded. the
ASM and PL memory location to be read is selected
by PAR bits 2 through 7. The eight selected ASM
addresses are then compared with PAR bits 8
through 19 to determine if that address in PAR is lo-
cal in the ASM.

If address is local, one of the eight comparator
outputs is enabled and encoded into a three-bit code.
This code, which identifies the group address (GO,
Gl, G2, etc.) is loaded into the program read group
(PRG) register. PRG contents (bits 2 through 0) are
then combined with PRN bits 7 through 1 to select
proper program buffer location to be read. I If address is not local. the comparator outputs are
low. A request for a new code fetch is sent to the
MAU and the valid bit of program write group
(PWG2) register is set. PWG2 contents are then
passed onto PWG I register. where output is com­
bined with PMA bits 7 through I to select program
buffer location to be written into by the MAU. A
check is made to determine if the next four-word ad­
dress is local in the ASM. To do this. the hardware
increases PAR contents by 4 and compares new
PAR contents with stored ASM addresses. If this ad­
dress is not local. an eight-word code fetch is re­
quested instead of four words from the MAU. An
address path from PMA to PAR exists to restore
PAR contents if address is not local.

After MAU transfers four words to the program
buffer, the PL is updated by placing result of PWG
plus 1 back into proper PL location. Also, the ad­
dress of the four words is written into the proper
ASM location for later comparison checks.

Program Buffer and Branch
Storages

The program buffer provides local storage for up
to 2000 words of the executing program's object
code. Each word of code consists of six eight-bit syl­
lables. and an odd parity bit. To ensure operator in­
tegrity. separate parity bits are generated on each
syllable of code prior to entry into the buffer. The
parity is checked as the syllables are used.

The program buffer is arranged in even and odd
storage sections, each of which consists of 48 1024-
by-l RAM chips. Separate RAM chips are provided
for storing parity and error information. The error
information is encoded to set ER (error) and EV (er­
ror variant) bits as follows:

0 -0
-...J
\()

°' 8

w
N
.'...i

PAR BITS
2-5 SELECT
1 OF64
LOCATIONS

I
I
I
I
L rl t-~

(CHIP
SELEC

.......
,___.

~

PAR BITS
6 AND7
SELECT 1
OF4 RAM
CHIPS

ET1267

RAM
(16X4)

PAR BITS
19-8, RES

PWG1=0
(WRITE
ENABLE)

64X14

f
GO G1

3

G2

4

G3 G4

SELECTION LOGIC

TO PROGRAM
BUFFER ADDRESS
SELECTION LOGIC

5

GS

Figure 3-2-5. Address Associative Memory

6

G6

ADDER

PMA

PAR

R1.R0.19 -- 817

64X14

G7

COMP

COUNT BY 4

PWG1+1

64XJ

PL

PWG
2-0

TO PROGRAM
BUFFER

ADDRESS
SELECTION

LOGIC

I
ER EV Description

0 0 tag error if not in EDIT table
mode

0 Tags other than 0 and 3
I Error word from MAU

In addition to the program buffer, there are three
branch storages, each of which provides local stor­
age for up to 16 words of code, related errors, if
any, and parity. These storages are used to save the
code in PER, POR, and PIO so that code is immedi­
ately accessible if branching back occurs. As a re­
sult, all three registers are replenished with code in
one clock cycle. The manner in which these storages
are accessed is controlled by the PIR circuitry.

Program Barrel

The program barrel is a shifting mechanism used
for aligning and extracting the program operators
from the. two words of code read from the program
read registers.

The program barrel has two stages. as shown in

used repeatedly during each clock cycle. No input
selection gating is required. The output of the sec­
ond barrel stage is routed directly to the PIO regis­
ter.

The first barrel stage shifts the outputs of POR
and PER register to the left. It is capable of shifting
these outputs in parallel in order to accommodate
operators that overlap word boundaries. The shift
amounts used by this stage are derived from PIN
syllable bits. These bits are then encoded as ad­
dresses to the MF AN chips, to define the selected
syllable shift for the barrel.

As shown in figure 3-2-6, the PER or POR selec­
tion decodes determine which 48 bits of the 96 bits
are to be combined in the second barrel stage with
PIO bits. These decodes are derived from bit O of
PRN and valid bits of PER and POR.

I figure 3-2-6. The purpose of the first stage is to set
up the next 48 bits in the PIO. Both barrel stages are
implemented with MF AN chips so that barrel can be

The second barrel stage shifts (left-justified) the
next six syllables to be loaded into the PIO register,
as the current syllable or syllables are being sent to
PIE level for execution. To load PIO, both POR and
PER must contain valid code. The shift amounts are
derived by recognizing the type of instruction to be
execu~ed, su~h as one-syllable and two-syllable in­
structions. Like the first barrel stage, the shift sig­
nals are applied as addresses to the MF AN chips to
define the selected six syllable shift for the barrel.

3-2-8

PIN SYLLABLE
DECODES

PIO SYLLABLE
DECODES

ET1268

PER POR

48 BITS
(6 SYLLABLES
OF CODE)

48 BITS
OUTPUT

BARREL
2NDSTAGE

48 BITS
OUTPUT

PIO

TOPID
DECODE
LOGIC

48 BITS
(6 SYLLABLES
OF CODE)

PER OR POR
SELECTION DECODES

Figure 3-2-6. Program Barrel

PIE Level Registers

All operators loaded from PID level to PIE level
are routed to one of four operator registers. These
registers and their functions are as follows:

1. PCU stack only (PSO) register allows PCU to
independently handle the operators used for ad­
justing items in the top of stack and to copy or de­
lete the top of stack items within the CDB. These
operators are the LIT48, MPCW, DUPL, EXCH,
RSDN, RSUP, LITS, and some special pseudo lits,
such as FET PSX for moving P2 parameter informa­
tion within the CDB.

2. Program instruction execute (PIE) register re­
ceives all operator decodes from PIO. excluding
NAMC. VALC. and stack operators. and forwards
them as nine-bit addresses to a network of high-•
speed 256-by-4-bit PROMS. The PROMS issue the
required micro operator sequences and any addi­
tional information to the appropriate write registers
in the PCU. Other inputs to PIE register are:

a. LIT, VALC, and NAMC grouping logic used
to facilitate preprocessing of specific groups ofl
program operators.
b. Next PROM address used. if more than one
state of a PROM is required for passing micro
operators to the write level.
c. PCU restart used to process interrupts. I

3. PCU name call (PNC) register temporarily
holds the 14-bit address couple associated with the
NAMC operator.

4. PCU value call (PVC) register temporarily
holds the 14-bit address couple associated with the
V ALC operator.

The purpose of the execute level is to process as
many operators in parallel as possible for PCU,
DRU, and EU. At any one time, as many as three
of the four operator registers can contain valid infor­
mation. The combinations of the operator registers
which can be loaded simultaneously are as follows:

1. PVC, PSO (only LIT).
2. PVC, PSO (only LIT), PIE.
3. PVC, PNC.
4. PVC, PNC, PIE.
5. PVC, PIE.
6. PSO (only LIT), PVC.
7. PSO (only LIT), PVC, PIE.
8. PSO (only LIT), PNC.
9. PSO (only LIT), PNC, PIE.
10. PSO, PIE.
11. PNC, PIE.

In addition to these four operator registers in the
execute level, a PCU lit (PLT) register is provided

5010796-001

to buffer certain information prior to distribution to
the write level. This information includes the LT8
and LT16 data, the start and length values of bit and
field operators, the scale values of scale operators,
and the length and insert character parameters of ed­
it operators.

The PID syllable's paths to the PLT, PNC, and
PVC registers are arranged so that any one of the
four sets of PID syllables can be loaded in the ap­
propriate registers. For example: a LIT VALC se­
quence in which LIT transfers to PL T through sylla­
ble paths 1 and 2, and VALC transfers to PVC
through syllable paths 3 and 4. Controls for loading
these registers are derived from decode logic in PID.

To facilitate preprocessing of VALC and NAMC
operators, the PCU must predict how DRU will han­
dle address couple information.

For NAMC STOR, the address couple of the most
recent STON or STOD is saved in PNR for I
comparison with subsequent V ALC.

If a compare is made, the VALC address couple
is not issued to the DRU; instead, the PCU performs
the V ALC. PCU obtains the COB location of the
data input to that store whose address couple was
saved and places it in the PCU top of stack I
mechanism.

For VALC not associated with a NAMC STOR or
concatenated NAMCs, the address couples are
queued in the DRU for evaluation. NAMC is concat­
enated when the next operator in the code string is
any of the following: INDX, NXLN, NXLV, STOD,
STON, OVRD. OVRN. DBUN, LOAD, and PLOT .•

In the case of concatenated index operators, the
PCU passes additional code along with the address
couple to the DRU. This code is sent with a second I
input to the index operator. The first input is the ad­
dress couple result location. The second input allows
the DRU to read the index from an assigned CDB
location, when descriptor indexing is performed in
the DRU.

When a non-concatenated NAMC is detected, the
address couple in the NAMC is placed in the central
data buffer (CDB) as an IRW for DRU use. To iden­
tify address couple as an IRW in a CDB location., a
flag bit (bit 48) in that location is set.

For MKST NAMC and NAMC DBUN operator
cases, the address couple is not queued in the DRU;
it is immediately processed by DRU to speed-up ref­
erences to PCWs.

3-2-9

As shown in figure 3-2-1, two special paths from
the LIT PROM in the PIE level to the variant regis­
ters (PQEV) and write PL W registers exist to pro­
cess processor register operations (SPRR and RPRR)
for the EU and DRU. The input register for the LIT
PROM is the LIT PROM address register (PLA).

• The purpose of PLA is to buffer read and set proces­
sor register address obtained from the EU via the
CDB and read processor register address received
from the PLT register. The read processor register is
handled as a lit where the address for the selected
processor register to be read is contained in the pre­
vious LIT operator:

I

By use of the LIT PROM, the processor register
address is converted directly to an internal hardware
address if processor register is accessed by the DRU
or to a variant code if processor register is accessed
by the EU.

The PQEV register receives the variant code from
the LIT PROM and passes it to the EU operator
queue. The variant code is then decoded in the EU
to provide information for selection of a desired pro­
cessor register. Registers selected by the variant
codes are as follows:

Variant Codes Register Usage

0 Program Base Register (PBR)

4 Processor Fail Register (IPF)

5 Control Mode Register (XCM)

6 Egg Timer (EGG)

8 Interrupt ldf-ntifier (ID)

9 Maintenance Processor Register (MDP)
A Interrupt Fault Mask Register (IFM)

c Interrupt Fault Register (IFR)

E Interval Timer (INT)

F Time of Day (ITD)

The PL W register receives the internal hardware
address from the LIT PROM and passes it to the
CDB for DRU use. Registers selected by the internal
hardware address are as follows:

Internal

Hardware

Addresses

00-lF

20
21
22

24

25

26
28

3-2-10

Register Usage

Display Registers D[X)

Base of Stack (BOS)

Last D[l) used as SDI Base (LDl)

Scratch (SlL)

Source Index (SIR)

Destination Index (DIR)

Table Index (TIR)

Source Base Register (SBR)

29 Destination Base Register (DBR)
2A Table Base Register (TBR)
2B Scratch (S2L)
2C Alternate D[O) Register (ADZ)
2D Alternate Program Index Register (APIR)
41 S register (top of stack address)
42 F register (most .recent MSCW address)
44 Limit of Stack (LOS)
48 Segment Descriptor Index (SDI)
50 Program Base Register (PBR)
60 Current Stack Vector Index (SNR)

Write Level Register
All micro operators issued are placed in the PCU

output registers PQA, PQT, PQE and PQO. The
contents of these registers are then written into the
address couple queue (ACQ) and top of stack queue
(TOSQ) in the DRU and the operator queue (OPQ)
in the EU. The PCU output registers are loaded di­
rectly from the PROM network, as shown in figure
3-2-1, but some special input codes are also ORed
with the output of these registers, when a deviation I in the normal code flow is required.

Description of other input codes and their descrip­
tion is provided in table 3-2- t.

Table 3-2-1. Special Input Codes to DRU and EU

Code

VALC

I FETSTK

STST

Destina ti on

ACQ

ACQ

EUOPQ

(for EUCDB)

Description

Instructs DRU to mask LL field of

address couple and to pass remaining

index field as one of the inputs to an

adder. The other input is the base

address contained in the display

register. The adder output is the

absolute memory address

described by the address couple.

Instructs DRU to fetch a value

from ASM location pointed to by

S register and place it in an

allocated location in the CDB.

This code is issued if PIE level

operator IDUPL, EXCH, RSDN,

or RSUP or fetch stack adjustment

does not have sufficient input

for execution.

Instructs EU to read B item from

the CDB to the storage queue.

Addressing of storage queue is

controlled by the DRU and is

accomplished by use of S + 1

register. Update of S + 1 register

and storage queue pointer is

performed by the DRU.

MOVE

MOVB

EUOPQ

(for EUCDB)

TOSQ

CRLE EUOPQ

(for SAU)

Instructs EU to move B, if B is I
not a reference word in a DRU

COB location. Also used to move

boolean A for BRTR/BRFL.

(See note below.)

Instructs DRU to move B, if B
is a reference word in a DRU COB

location. (See note below.)

NOTE
Because of deallocation mechanism

in the PCU, if DUPL is not

paired with a PIE operator, a

pseudo PIE operator, called

MOVE or MOVE-B is forcep,

which replaces B output of DUPL
with a new copy of the duplicated

data.

Operands and EU results are

moved by the EU, but DRU created

references are moved by the DRU

to avoid having the DRU wait for

the EU.

Instructs EU to create a length

count of all ones. This code is

issued if PIE operators Transfer

While True or False, Transfer

While Compare, Scan While True

or False, and Scan While Com­

pare have a descriptor input

instead of length count in the

second word of stack.

The ACQ is bypassed if a quick fetch condition is
recognized by the PCU. In such cases, PQA directly
loads the address couple (RAC) register in the DRU
for quick fetches. A quick fetch comes from the de­
coding of special operator cases. The operator cases
are given in table 3-2-2.

Table 3-2-2. Operator Cases for Loading Code Into
RAC Register

Operator Cases DRU Action

Issued along with each micro operator are CDB
addresses, job number, and if necessary, variant and
type bit information. In the case of literals, data is
issued. Variant information provided by the PCU is
loaded into the EU OP queue.

In special cases, literal data supplied to the CDB
is also loaded into EU OP queue. For example, in
the execution of VALC, LIT, ADD or LIT, VALC,
or ADD, VALC results will be from the CDB and
literal data will be received from the EU OP queue
provided parallel inputs for the ADD operation in
the EU.

As stated previously, the job number remains with
the micro operator throughout the execution of the
micro operator. To accomplish this, the job number
is transferred to the respective unit (DRU, EU, or
EU store sub unit) at the same time as the associ­
ated mforo operator is transferred from the PCU
write to the respective unit. This job number passes
through each level of the respective unit until com­
pletion at the write level. At this time, the job com­
plete bit for that job is set.

If an interrupt or restart occurs while the job is in
process, the job number is loaded into a job inter­
rupt register. When that job is declared the oldest
job in process, the interrupt operation is executed.

Top of Stack Location Registers

The top of stack location registers contain CDB
location addresses and transfer inputs by way of a
bus to write level registers, as shown in figure 3-2-
1. The purpose of these top of stack registers and as­
sociated controls is to maintain the top of stack loca­
tions and adjust them when operators are executed.
The write level registers are used to write the proper
CDB locations into the DRU and EU queues for the
A, B, and D inputs of the operator being written to
the queues. A write level register also contains the
CDB location into which the result of the operation
is to be placed.

The top-of-stack registers are controlled by the
register-to-bus and bus-to-register transfer signals.
The register-to-bus transfers are produced by the
types of operators at the PIE level: NAMC, V ALC.
or stack only operator. The bus-to-register transfers
are developed by the stack count and PIE delete. in-

MKNAMC (mark stack name) Fetch PCW to obtain a new code

segment.

RETNCVC (return continue
VALC)

Fetch current RCW referenced

by DLL+ 1.
1 put, and type registers.

The major inputs to the bus are the outputs of the
top of stack registers A through D. Two inputs ori- •
ginate in the allocation logic (described later in this

EXIT and RETN

5010796-001

Fetch current RCW referenced

by DLL+l.

section): I) the PPA input from the PCU allocation
circuits; and 2) the PRA input from the DRU alloca- I

I tion circuits. The PSX input is present when a com-

3-2-11

parison is made between PNR and PVC (explained
in "PIE Level Registers"). The location of the
NAMC STOR data that was stored in PSX is loaded
into the top of stack registers via the bus so that

• V ALC is not executed by the DRU. The outputs of
the bus are sent to the top of stack registers at both
the PIE and write levels.

PCU Allocation and Deallocation
of COB Locations

Three main allocation registers and deallocation
queues are used, one each for the PCU, DRU, and
EU. Allocation is accomplished by the setting of a
bit in any of the allocation registers. The decode that
sets an allocation flip-flop is also used to generate a
six-bit hexadecimal number that can be used as a
CDB address, if specified. The CDB address is
maintained in one of the top of stack registers (A, B,
C, or D), which were described previously. This ad­
dress is used to address the top of stack data.

After locations have been allocated, they must be
deallocated when the data contained in those loca­
tions are used. The deallocation process is accom­
plished by use of deallocation queues and their asso­
ciated co.ntrol registers, as shown in figure 3-2-1.

Allocation Paths

The allocation registers are used in the allocation
of COB locations for the PCU. DRU. and EU. The
highest priority within the PCU and EU allocation
registers is assigned to bit 11. The highest priority
within the DRU allocation register is assigned to bit

• 15 because of the 16 locations in the DRU portion
of the COB. The encode of the next register bit to
be used is decoded by a DFAN chip to set the se­
lected register bit. (Note that if. for example. bits 8
through to of the register are set but bit I I is reset.
the next bit used is bit I I.) The encode is also sent
to the top of stack location registers and sets a COB
address that is equal to the hexadecimal value of the
bits set in the allocation register.

There are two special allocation paths within the
PCU: the PBL and the PWA path. The PBL input
to the encode logic is used to allocate one of four big
lit locations in the CDB. The PBL register is a two­
bit up counter that counts to binary three and then
returns to zero. The encode output is sent to the
write pointer for the PCU locations of the COB. The
PW A input to the PCU encode logic is used primari­
ly for the reallocation of CDB locations following a
PCU restart operation.

3-2-12

Deallocation Paths

As shown in figure 3-2-1 , the deallocation paths
for the PCU. DRU. and EU consist of similar logic

•circuits that contain deallocation queues, dealloca­
tion registers. and decoders.

The purpose of each of the three deallocation
queues is to store the COB addresses that have been
allocated and to also store a valid bit, which is used
to indicate that the corresponding location is to be
deallocated. When a job is completed, the location
that was used to supply input must be deleted from
the allocation registers. By reading the queue, the
PCU resets the allocation flip-flops of obsolete COB
locations.

A read pointer (JQR) and a write pointer (JQW)
are applied to each queue, and the data inputs are

.PIE write level registers (PWA, PWB. and PWD)
with their associated valid bits. In addition, the job
end bit is written into the queue. This bit is used to
set a flip-flop. allowing the deallocation job (JDJ)
counter to count. The outputs of the queues are sent
to deallocation registers.

I A-deallocation (A input). B-deallocation (B input).
and D-deallocation (C input or PSX) are the three
registers used in the deallocation process. These reg-
isters each contain seven bits. composed of a valid
bit and six bits of COB address. These registers are
loaded when the associated deallocation queue is
read, provided three conditions are met: I) the
queue is not empty; 2) the oldest job is not equal to
the deallocation job; and 3) a restart has not just
been performed.

PCU Job Number Registers
The PCU job number registers (shown in figure 3-

2-7) contain the job numbers of the operators or
groups of operators issued by the PCU. Up to 16 job
numbers can be active simultaneously, although the
job registers can handle hexadecimal values 00
through 1 F. The extra bit in these registers is used
to indicate empty and full conditions. When the PCU
execute level job number register (PEJ) contains
hexadecimal 10 and the oldest job register (JOJ) con­
tains hexadecimal 00, there are 16 jobs in process
(full condition). When both of these registers contain
hexadecimal 00, no jobs are in process (empty condi­
tion). The JCJ register is used to identify, by num­
ber, those jobs that have been completed. If, for ex­
ample, job number 12 were completed, JCJ bit 12
would be ,i;et by a hexadecimal value of either OC or
IC; however, both of these numbers would not be
active simultaneously, because they are 16 numbers
apart. In the job number registers, numbers are as­
signed from 00 through OF hex; the fifth bit is then
set, and job numbers are then assigned from 10

JIJ PWJ

PEJ (5 BITS)

ADDRESS FOR
INTERRUPT RAM-----------------------.

r
I
I
L

PWJ(5 BITS)

TOPWJ----•

DRU

TOS
Q

1
I
I
J

r-- --,
I EU STOREQ I
L_ __J

EDJ

REIJ

RWIJ

RWJ

JCJ (18 BITS)

BARREL

COUNT
1,2,3

JOJ (5 BITS)

COMPARISON 4------------'
LOGIC

ET1273

PSJ (5 BITS)

TOACQ

v
L

JIJ (5 BITS)

PRJ(5 BITS) v
L

r
I
I
L

EWJ

EIJ

TO DRU

-1
EU I

I
J

----TOPEJ

JIJ $ JOJ

PROCESS
INTERRUPT

Figure 3-2-7. PCU Job Number Registers and Logic Paths

010796-001 3-2-13

through lF hex. Following this sequence of number
assignments, the register sequence begins again with
the value 00. The job number registers are as fol­
lows:

1. PCU execute level job number register (PEJ)
contains the job number of the job at the execute
level of the PCU. PEJ register can also receive in­
puts from the JU and PWJ registers for addressing
the interrupt RAM, which contains the state of the
stack for each job number. This stack information is
used during a restart or for interrupt cases.

2. PCU write level job number register (PWJ) con­
tains the job number at the write level of the PCU.
This register is loaded from the PEJ register on the
occurrence of each clock, unless an error occurs in
the PIE level of the PCU. or it is in a holding condi-

• tion.
3. PCU stack job number register (PSJ) contains

the job number of the last store to stack (STST) or
fetch to stack (FEST) micro operator performed by
the PCU. The PSJ register is loaded from the PEJ
register when the PIE level of the PCU issues an
STST or FEST, at which time the valid flip-flop is
set. For FEST the previous content of PSJ is written
into the address couple queue (AC Q). along with
the valid bit. This information is used by the DRU
to ensure that any older STST or FEST operation is
complete before the current FEST is executed. The
valid (VL) flip-flop of the PSJ is reset when the
number of the oldest job (in JOJ) is greater than the
job number in the PSJ register.

4. PCU protected job number register (PRJ) con­
tains a five-bit job number and a valid bit. When a
valid bit is set, the register contains the number of
the last job to perform either a fetch to stack (pop)
or an overwrite operation. Under these conditions
(with the valid bit set), the DRU is inhibited from
performing a quick fetch of a program control word
(PCW) or a return control word (RCW). The valid
flip-flop of the PRJ is reset whenever the number of
the oldest job (in JOJ) is greater than the job number
in the PRJ register.

5. PCU job complete register (JCJ) contains 16
bits, which correspond to the job numbers of com­
pleted jobs. A job complete bit within the register is
set by a decode of write level registers PWJ, RWJ,
and EWJ of the PCU, DRU, and EU, respectively.
The decoding logic is enabled when the job end bit
and the job number reach the write level of the par­
ticular unit. The JCJ bits are reset from a decode of
the JDJ (deallocate job) register, which is discussed
in the description of PCU allocation of CDB loca­
tions, presented earlier in this section.

6. PCU oldest job register (JOJ) contains five bits
that represent the job number of the oldest job in
process. This register functions as a counter; it is in­
cremented by the configuration of job complete bits

3-2-14

in the JCJ register. The job complete bits are applied
to a four-stage barrel and the barrel output is multip­
lexed to determine whether the JOJ is to be incre­
mented by l, 2, or 3. The increment used depends
on which bit positions of the JCJ register are set.
Witbin the JCJ register, set bits represent jobs that

I have been completed but not yet deallocated.

7. PCU interrupt job register (JIJ) contains five
bits and an associated valid bit. The content of this
register represents the number of the job that has
been restarted or interrupted; the job number is
loaded from one of registers REIJ, RWIJ, EDJ,
EWJ, EIJ, or JOJ. When the job number is loaded.
the valid bit is set but the interrupt is not processed
until the value in the JIJ register is less than or equal
to the value in the JOJ register. This comparison is
performed to ensure that the job that was interrupted
or being restarted is the oldest job; there are no
older jobs still in process. If an interrupt or restart I is issued by two units simultaneously, a priority
scheme determines order of Jl.J load. Any value in
JIJ can be replaced by an older number.

Each micro operator generated by the PCU is as­
signed a job number, which is produced in the PEJ
register. This register functions as a five-bit counter,
and the value of its contents is normally displaced
less than 16 from the content of the oldest job regis­
ter (JOJ). If the displacement becomes 16, the PIE
level is placed in a holding condition.

When a micro operator is generated at the PIE
level and sent to the write level, the job number is
sent from the PEJ register to the write level of the
PCU. A job end bit is used to indicate to the receiv­
ing unit that when the micro operator is passed to
the write level of that unit, a job complete bit is to
be set for the associated job number. (For multi­
state PIE operators, only the last micro operator is
assigned a job end bit.) From the write level of the
PCU, the job number and its corresponding job end
bit are written to one of four queues: 1) the EU
queue; 2) EU store queue; 3) top of stack queue; or
4) the address couple queue. The job number then
passes through each level of the unit to which it is
written until it reaches· the write level, where the re­
spective job complete bit is set in the JCJ register.
If the job was the oldest job in process, the oldest
job register (JOJ) is incremented as necessary to re­
flect the current oldest job.

If an· interrupt or restart occurs while a job is i11
process, the associated job number is placed into th.:
interrupt job register (JU). When that job becam~
the oldest job, the interrupt would then be pro·
cessed.

DATA REFERENCE UNIT

The data reference unit (DRU) is queue-driven.
The program control unit places all operations into
the queues of the DRU, excluding some queue by­
passed operations and operator associated informa­
tion. These queues are identified as address couple
queue (ACQ) and top of stack queue (TSQ). (See fig­
ure 3-2-8.) The DRU contains five distinct pipeline
levels:

1. An operator level.
2. A routine level.
3. An evaluate level.
4. A compare level.
5. A write level.

The purpose of DRU input queues and pipeline lev­
els is described in the following paragraphs.

Address Couple Queue

The address couple queue (ACQ) is the storage
area for address couple operators pending evaluate
level processing. The ACQ contains eight locations.
The following types of information can be loaded
into the queue and then read into the address couple
(RAC) register:

I. JE (bit 51) indicates that the micro operator is
the last in a program sequence.

2. JP (bit 50) identifies parity for job number bits
in RAC.

3. JOB # (bits 49:5) allows DRU to keep track of
an operation through various pipeline levels so that
the operation can be recovered if an interrupt oc­
curs. It also informs the PCU when the operation is
completed.

4. RP (bit 44) identifies parity for result location
bits in RAC.

5. RESULT LOC (bits 42:4) identifies CDB loca­
tion address for DRU fetched data.

6. P (bit 22) identifies parity for address couple
bits in RAC.

7. Type bits (bits 17:4) define special hold condi­
tions and display buffer read operations. These type
bits are defined in table 3-2-3.

8. SY (bit 13) allows address couple and read dis­
play buffer information to appear simultaneously at
the DRU evaluate level.

9. MR (bit 12) indicates that the operation is pre­
ceded by a force main memory (FMMR) job; conse­
quently, local storage is not checked or modified by
the DRU. Instead, the operation is passed immedi­
ately to MAU for memory transfer.

10. OP (bit 8) identifies parity for operator bits in
RAC.

11. OPERATOR (bits 7:8) identifies operator
code.

12. Address couple (bits 13:14), when evaluated,
provides an absolute address from which data infor-

5010796-001

mation is fetched and placed in CDB result location
for EU use.

The input of operator related information to the
RAC register is through the ACQ, unless the queue
is empty and the DRU is waiting for work, or a PCU
quick fetch operation exists, in which case, the
queue is bypassed. I

Table 3-2-3. Type Bit Codes in RAC Register
RAC Code

2
6
8
I

3
4
7

5

Description

Hold for last push or pop.
Hold for a valid mark stack control word.
Read BOSR.
Read display buffer addressed by RAC bits
13:5.
Read display buffer addressed by XLL.
Read DI.
If IRW-LL is less than XLL read XLC;
else read BOSR.
If RM47, read SILS(22); else read BOSR.

The contents of the write pointer (RA WP) provide
the write address. To access the next location in the
queue, the write pointer is increased by l, provided
that the write signal is received from the PCU and
there is no PCU hold.

The queue is read by the DRU. The contents of
the read pointer (RAPP) provide the read address.

Top of Stack Queue

The top of stack queue (TOS Q) is the storage
area for top of stack operators pending operator lev­
el processing. Like the AC Q, the TOS Q contains
eight locations. The types of information which can
be loaded into the queue and then read into the op­
erator (RO) register is similar to the AC Q. This in­
formation includes job number, A, B, and R-location
addresses, type bits, memory reference bit, and op­
erator code.

Writing into the TOS Q is performed by the PCU.
Reading from the queue is accomplished by use of
the TOS Q read pointer RTR in the DRU. The oper­
ator read from the queue is the instruction for the
operator level. The address of TOS Q location from
which the operator is read is also provided with each
operator sent to the operator and routine levels. Us­
ually the address is not used. However, when the

3-2-15

I

IT1274

3-2-16

FROM
PCU

REIC

INTERRUPT
LOGIC

•
TOPCU

INTERRUPT
LOGIC

DR
OPQ

(8 LOC)

FllOlll
PCU

TAGI DESC.
INFOR.

MEMORY MECHANISM

DROPQ

RM

RO

RR

RC

RW

ROUTINE LEVEL (RR)

NEXT STATE

OP LEVEL

ROUTINE
LEVEL

EVALUATE
LEVEL

EU MOVE REQUEST

STACK REQUEST

COMPARE
LEVEL

WRITE
LEVEL

Figure 3-2-8. DRU Control PipeUne

INCOMPLETE
OPERATOR

CONTROLS
FOR EVAL
LEVEL
DATA PATHS

CONTROLS

..__--4.~E~OMP
DATA PATHS

INCOMPLETE
OPERATOR

DRU restarts an operator level operator or a routine
level operator, the current RTR value is temporarily
saved in TOS Q save pointer RTS. The address from
the operator or routine level is loaded into RTR to
provide the TOS Q location associated with the op­
erator being re-executed. When queue is read, the
contents of RTS are loaded back into RTR so that
DRU may continue normal processing.

DRU Control Pipeline

As shown in figure 3-2-8, the DRU control pipe­
line contains: I) five operator registers (RO. RR,
RE, RC, and RW); 2) incomplete operator queue
(INC OP Q); 3) deferred reference queue (DR OP.
Q); 4) RM mechanism control; and 5) a network of
256-by-4 PROMs.

The operator registers are the primary control reg­
isters of DRU. These registers provide the input for
the DRU pipeline levels. The inputs include variant
information, type bits, and an eight-bit code for ad­
dressing PROMS.

The 256-by-4 PROMs that comprise the network
contained in the address couple path provide con­
trols for passing address couple data to proper data
paths in the evaluate level and to issue· evaluate level
operators, as eight-bit codes, to the RE register.
These operators are used to inform evaluate level
what to do with the address couple data.

In the pipeline, the PROM network provides oper­
ating sequences to control processing in the data and
address circuits of the evaluate, compare, and write
levels of the DRU. Two major PROM networks are
associated with the pipeline: the primary operator
PROMs (PRIOP) and routine PROMs (ROU).

The primary operator PROMs are addressed by
RO, RR, RE, and RC registers, which receive inputs
from various areas of the DRU. Consequently, these
PROMs are identified as operator level PROMs, rou­
tine level PROMs, evaluate PROMs, and compare
level PROMs. As described previously, the DRU
does not operate on basic program operators, but
rather it processes micro operators forwarded to it
by the PCU. When a micro operator is read from the
TOS Q, it is entered into the RO register. The micro
operator forms an eight-bit address that is applied to
the operator level PROMs and the first of a se­
quence of operations is generated (in some cases,
the OP level PROM output sequence). If PROM out­
put is not fed back, the OP level is available for a
new operator from the TOS Q or an operator from
the INC OP Q. Excluding a W AITIO operator, the
OP level PROM output for a new operator always is­
sues a routine level operator to the RRR register.

5010796-001

These operators form eight-bit addresses that are
applied to the routine (ROU) PROMs. In tum, these
PROMs produce operating sequences, such as se­
lecting data onto the P (primary) and X buses, load­
ing RBA and RIA registers to obtain address for
DRU fetch, and setting up string and parameter in­
formation for EU processing.

Execution of a particular ROU level operator may
be accomplished entirely by the ROU PROMs, but
in some cases, an evaluate operator is issued to the
RE register for further pipeline processing. For cer­
tain string operations, such as source and destination
word fetches, the ROU PRO Ms make use of the rou­
tine special (ROUSP) PROMs to fill the ASM if the
data is not local.

Various special paths into the RO register exist to
process restart, incomplete, and routine level
operator cases.

When original input for non concatenated index-
t y p e operators (INDX. NXLN. and NXLV
operators not preceded by NAMC) is received, the
input is decoded by use of restart tag (RST AG)
PROMs. Any unexpected input, such as 0, 2. 3, 4.
6, or 7, results in an invalid operand (INV OP) inter­
rupt being sent to the RO register. This interrupt is
eventually transferred to PCU interrupt logic via
evaluate interrupt code (REIC) register. The remain- I
ing valid case is an IRW for a descriptor being
fetched, where an appropriate code is fed back to
the RO register as a restart operator. For example,
in the INDX case. a hex code of 31 is loaded into
RO register as the address for a new PRIOP PROM
sequence. The sequence is used to evaluate an IRW
which eventually finds a descriptor. The processing
of initial inputs for other program operators is the
same as in index-type operators. These program op­
erators are as follows:

1. DBUN (dynamic branch).
2. EV AL (evaluate descriptor).
3. LOAD.
4. LODT (load transparent).
5. OVRD (overwrite destructive).
6. OVRN (overwrite non-destructive).
7. RDLK (read with lock).
8. SNGT (set to single).
9. STBR (step and branch).
10. STOR (store).
11. V ALC (value call).

There is one other set of PROMs in the restart
path called the restart descriptor (RSDES) PROMs.
The RSDES PROMs are used in the same manner as
RSTAG PROMs. If any unexpected descriptor input
is received for an operator, the INV OP is sent back
to the RO register for PCU interrupt processing.

3-2-17

Otherwise, an appropriate code is returned to RO for
restart operation. The program operators that can be
handled by RSDES PROMs are as follows:

1. EVAL.
2. INDX.
3. LOAD.
4. NXLN.
5. NXLV.
6. OVRD.
7. OVRN.
8. STBR.
9. STOR.
10. VALC.

The incomplete operator path supplies incomplete
operators in which the operator input requires fur­
ther evaluation (or chaining) until a target is found.
These operators are temporarily stored in the INC
OP Q by IO PROM decodes (described later in the
pipeline discussion).

The RR register receives the OP level code from
RO register. For some operators. code is decoded by
use of a PRIOP PROM and fed back to RO for re­
start operations. For example. a restart code for
translate (TRNS) is always developed by the PROM.
but is only validated if the third input for TRNS is
a source descriptor instead of an operand which is
the source string. In this case. restart code sets up
the routine level to handle source descriptor
evaluation. During interrupt processing. RR code is
provided by PRIOP PROMs and then routed as in-

• terrupt code through RE and REIC registers to PCU
interrupt logic.

When the RE register contains an operator from
the various pipeline inputs, the operator forms an
eight-bit address that is applied to the evaluate level
PROMs. The PROM output consists of a five-bit
code and is loaded into the compare command
(RCC) register. The information in RCC is decoded
to provide commands for data and address circuitry
in the compare level. RE also serves as an input to
the RC register.

In addition to receiving code from RE, the RC
register receives code as the result of requests for
use of the compare level by operations, such as
memory mechanism (RM), deferred operator queue,
or for move and stack operators from the EU.

If an MAU job is started by the DRU, the job re­
mains in RM and waits for data from the MAU.
When MAU receives data from memory, the MAU
interrupts the DRU, obtains control of the compare
level, and sends all data to RMD for input to ASM.
At the same time, the three LSBs of address from
the MAU are compared with the three LSBs of ad­
dress in the RM. When a compare occurs, the next

3-2-18

word coming from the MAU is the word required by
the DRU for evaluation. The job in the RM is then
activated again and returned to the compare level.
The difference between this job and the original job
sent down the pipeline is in the compare level com­
mand. The command for the original job is to fetch
data, whereas the command for the activated job is
to transfer the next word in the RMD register to the
RWD register for input to CDB and to activate the
incomplete operator tag (IOT AG) and the incomplete
operator descriptor (!ODES) PROMs for possible
chaining action. The functional operation of these
PROMs is identical to the restart PROMs. If chain­
ing is required, the activated job is placed in the
INC OP Q as an incomplete operator.

A second MAU job can be queued in RM as long
as its address does not agree with the address of a
previous MAU job. If the addresses are the same,
the second MAU job is placed in the deferred
operator queue (DROPQ). When the job is read into
compare level, the job is local in the ASM.

Requests for use of the compare level by the EU
occurs when EU is required to write data from one
location to another location within the CDB (called
by MOVE micro operator from PCU) and to read B
item from the CDB to the store queue (called by
STST micro operator from PCU).

In all cases, an evaluate level hold is temporarily
enabled when a compare level request is granted.

DRU Data and Address Paths
Most of the data paths into and from the evaluate

level are controlled by the routine PROMs (RROU).
Other inputs into this level can be controlled by the
address couple operators (RACOPS).

The evaluation of an operator begins with reading
in the input for the operator (figure 3-2-9). This con­
sists of gating an appropriate source onto the pri­
mary (P) and auxiliary (X) buses and then routing
them to evaluate level registers. P bus inputs are
usually the contents of some COB location. P bus in­
puts can also be the address adder output. various
state registers. evaluate or write level data. or literal
values. X bus inputs include contents of COB loca­
tions. address adder output. computed index values.
stack number. saved string lengths. write level data.
and EU information for table word operators.

These P and X buses provide inputs to RED and
REA (normal destination for COE outputs). RBA
and RIA (address adder base and index inputs). and
REL (used for keeping track of lengths in string op­
erators). The main function of RBA and RIA is to

hold values to be added in the address adder. Nor­
mally, an address is being calculated to be used as
a fetch address. A selected field of the adder output
reads out a portion of the address array into the
compare level. The address array holds addresses
for which the data is stored in the data array. The
full adder output goes to RCA, which is compared
to ROC-R3C for equality. If there is a match, the
data is local and can be loaded into R WO from the
data array. If not, RCA is loaded into RMA and the
MAU fetches the data at this address. The MAU
loads the data into RMD which is then loaded into
the data array and also into RWD. RMD is also used
to accept data from the EU for stores and moving­
type operations. RMD is then loaded into RWD. The
only input to RED is P bus. Descriptors can be
moved from RED through RCD into RWD or they
can be constructed in RCD by use of the RROU
PROM table controls, and then moved into RWD.

Associative Memory

The associative memory (ASM) serves as a local
data buffer that provides fast access to frequently
used variables and descriptors to increase the speed
of memory fetching. Therefore, references are first
made to the ASM; if the data is not local. main
memory is then accessed. The ASM consists of the
following major functional elements:

I. Address Array, which is comprised of 64
blocks, each of which contains four 13-bit address
groups (0 through 3). Each 13-bit address group con­
sists of an I I-bit address and two special residue bits
(SO and SI).

2. Data Array. which contains 2,048 words, each
of which consists of a parity bit, three tag bits. 48
data bits. two residue bits (RO and RI). and an error
bit. The data array is also comprised of 64 blocks,
with each block containing four groups (0 through 3).
and each group consisting of eight words.

3. Priority List Array. which is a 4 x 4 register file
that contains 64 eight-bit locations which are config­
ured as four blocks. each of which has 16 locations.
(Of the eight bits available in each word. only five
are used for the priority function.)

5010796-001

The data input to the address array is taken from
DRU address bus RAB (19-09, SO. SI), which pro­
vides 11 bits of address and two special residue bits.
The array (which is composed of RAM I chips) is ad­
dressed by bits 08 through 03 of RAB; the address
and chip select inputs can originate from a store-to­
stack (push), the DRU write data register, adder out­
put, memory address register. or deferred reference
queue address. Each block in the address array con­
sists of four 13-bit fields; each field is comprised of
an I I-bit address and two special residue bits.

Seventeen bits (19 through 03) of a memory address
or stack plus I (XSP) are applied to the address ar­
ray; bits 19 through 09 are the address written into
the array. and bits 08 through 03 identify the block
to which the address is written.

The data array is used to store memory data from
either MFD (for memory fetching operations) or
CEDE (for memory stores). The 11 bits of address
required to address the 2.048 words of the data array
are supplied by RCA and compare level signals RCL
GI and GO. Bits 08 through 03 of RCA identify the
block. bits 02 through 00 identify the word within a
group. and RCL GI and GO identify the group.

The priority list array is used to provide a history
of the groups contained in the address array. Since
there is a fixed amount of storage (four locations. or
groups) for addresses with the same block value (bits
8 through 3). one of the existing addresses must be
overwritten if a fifth address is to be loaded. Which
of the addresses is overwritten is determined by the
priority list entries for that block. The array contains
64 locations. one for each block of the address ar­
ray. Five of the eight bits available in each priority
list word are used; two bits indicate the address that
has not been referenced for the longest time. known
as the oldest group. Two bits indicate the second
oldest group. and the last bit indicates whether the
newest (fifth) entry has a greater value than the new­
est existing group entry for that block in the priority
list array. Therefore. when a fifth address is applied
to the address array. the new address and data are
written into the oldest existing group and the group
ordering (from newest to oldest) is then adjusted by
the priority list array to reflect the current priority.

3-2-19

Stack Address Registers

The stack address registers (shown in figure 3-2-
10) are used during ENTR. EXIT. MYST. and
MKST. and are maintained automatically by the
DRU as part of the stack address adjustment pro­
cess. Figure 3-2-10 shows that stack addresses are
transferred from the adder output (RAO) to certain
stack address registers and from one stack address
register to another by use of input selection gates.

The registers and the general use of each are as
follows:

I. S register contains the address of the top item
in the stack. This address is passed to the DRU
compare level for fetch stack operations and to the
Store Q for stack-cut back operations.

2. XSP register contains S register contents plus
one. This register provides a quick method of ad­
justing S register during POP and PUSH operations.
For POP operations. both S and XSP values are de­
creased by I (that is. transferring S into XSP and
decrementing S). For PUSH operations. both S and
XSP values are increased by I (that is. transferring
XSP into S and incrementing XSP).

3. XLOS (Limit of Stack) register contains the ad­
dress of the highest usable location in the active
stack. During Move to Stack operations. the XLOS
is loaded with the base address plus length (minus I)
from the fetched descriptor for the requested stack.

4. XLSP register contains LOS register contents
plus 32. This register extends the range for above S
conditions because certain operations in the DRU
pipeline can reference items above the upper limit of
the stack when the CPM is ready to report a stack
overflow condition. If above S condition occurs
(RCA <-XLSP). the PCU issues store to stack
(PUSH) operators to clear the top of stack.

.5. F register identifies the top-most MSCW in the
stack. During EXIT. the DF field of the MSCW be­
ing cut back is subtracted from D[LL] and the result

3-2-20

is loaded into XF. The new F is used to fetch the
previous MSCW. During MYST. a new value for XF
(DSF of the TOSCW from the stack being entered +
BOSR) is loaded into XF. This new F value is later
used in calculation of MSCW. During ENTR. the
XF is read onto the stack bus (XSB) to fetch IR W
at F + I for evaluation. to fetch inactive MSCW and
load store address list (SAL) with mark address (XF;
so that the EU can activate the MSCW. and to write:
RCW into the stack at F + I.

6. XSR (Save Register) holds S value so that the
S register can be returned to the previous value if
DRU is doing an EXIT and EU is reporting a condi­
tional branch or restart condition. To accomplish the
returning of S. along with F. to the previous value.
the XSR and XSP are loaded into XS and XF. re­
spectively. and the XSP increment flip-flop is set.
Then on the next cycle. the XSP is incremented by
I (S + I).

LL Data Paths

As shown in figure 3-2-11, the major elements i11
the LL data paths include the current lex level
(XLL) register, lex level save (XLS) register, lex
level counter (XLC), LL decode logic, and PROMS.

The XLS and XLC registers are used as alternate
registers during execution of dynamic branch uncon­
ditional (DBUN), enter (ENTR), and exit (EXIT) op­
erators when contents of PCW (for DBUN and
ENTR) or RCW (for exit) are distributed. Because
addressing environment of CPM is not ready to be
changed at this time, the LL field in the PCW or
RCW cannot to loaded in XLL register. Therefore,
the LL field is saved in XLS register until ad­
dressing environment is to be changed. At this time,
XLL is exchanged with XLS to provide a copy of
previous LL when DRU enters into new address en­
vironment. This copy of LL is saved because other
sections of the CPM have not changed over to the
new address environment. Then, if recovery is re­
quired, a return to old address environment can be
made.

EVALUATE
LEVEL

EU MAU

COMPARE
LEVEL

WRITE
LEVEL

ET1678

5010796-001

RMD

MAC

PBUS

RED REA RBA

RCD

COB COB

Figure 3-2-9. DRU Data and Address Paths

ADDER

RAO

RMA

XSP

XBUS

RIA

ADDRESS
ARRAY

R2C

COMPARES

DATA ARRAY

DISP

BUF

RDB

REL

3-2-21

ET1283

XSP
(S+1) XF

ADDER
OUTPUT

(RAO)

INPUT SELECTOR GATES

• 'souEUE
STACK BUS IN

(XSB) STORE
.Q

RCA>S•
RCA<=XLSP

ABOVE
s

COMP

RAS
TOPCU

RESTART
LOGIC

S=LOS
*PUSH

STACK
OVER
FLOW
COMP

XS

SKOF
(REPORTED

ASA SPECIAL
INTERRUPT

IN P1)

S<F
•POP

STACK
UNDER
FLOW
COMP

SKUF
(REPORTED

AS AN ALARM
INTERRUPT

IN P1)

XSR

Figure 3-2-10. Stack Address Registers

The XLC register is primarily used for updating
display registers. When XLL and XLS are ex­
changed, the XLC is initialized to LL being run at.
When update display is performed, the XLC is used
as a marker for counting down through the LLs.
Also, at the beginning of ENTR, the LL of IRW,
which found the PCW, is saved in XLC. Therefore,
anytime an IRW evaluation is performed for ENTR,
the LL of IRW is loaded into XLC. This is a new
method of handling stack number displacement
where a decision is based on whether the LL of
IRW, which points to the PCW, is equal or less than
current LL.

If LL of IRW is less than the current LL (XLL
value), a mark can be fetched and its stack number
displacement field can be extracted for a new mark
being built (LL + 1).

If LL of IRW is equal to current LL, the LL of
IRW is at the top-most environment of the stack (i.e,
LL is in current stack). Thus, calculation of DLL -
BOSR provides displacement for the mark which is
in the current environment.

3-2-22

The LL bus forwards outputs from XLL or XLS
to EU barrel for building a MSCW being entered or
a RCW, respectively.

EXECUTION UNIT

The execution unit (EU) is the only unit in the
CPM which operates on value data. It also has re­
sponsibility in assembling some control words.

A simplified block diagram of the EU is shown in
figure 3-2-12. As shown in this figure, the EU con­
tains three major processing sections (EUCDB.
ALU. and SAU). Each is explained in section I of
this chapter. Other major sections of the EU include
the barrel. the macrocode routine. the execution
write register (EWR). and the input queues. Barrel
is controlled by EUCDB and ALU. These controls
allow either a right or left-justified field of any length
(from 0 through 48) to be selected as the barrel out­
put. Macrocode routines are issued by the EU when
complex operators require a sequence of simple op­
erations for processing. EWR. an autonomous sec­
tion of the EU. contains independent controls and
grants priority to inputs from ALU. SAU. and bar­
rel.

ET1289

XLL
4--o

TOEU

LL FIELD
OFPCWOR

RCW

XLS
4--0

TO DRU
CONTROL LOGIC

XLL

LL FIELD
OFIRW

PROM

PROM OUTPUT
(1) LL OF IRW IF LL OF IRW = XLL
(2) LL+1 IF LL OF IRW <XLL

XLC-1

Figure 3-2-11. LL Data Paths

The EU, like the DRU, is queue-driven. All
operators and operator information are placed into
the operator queue by the PCU. The string informa­
tion input, such as source and destination pointer
values to the EU, is placed into the parameter queue
when it is forwarded to the EU by the DRU. EU is
responsible for performing operations on the string
~ata which includes comparing, translating, modify­
mg, and moving the data.

EU Operator Queue
The EU operator queue (EU OP Q) is the storage

area for micro-operators and related information
pending EU processing. The use of the queue allows
the PCU and EU to operate independently. The in­
formation to be written into the EU OP Q is placed
in the PCU operator input registers (PQO and PQE);
PCU write address registers (PWA. PWB. and
PWR); JPCU data write register (PL W). and PCU
write job number register (PWJ). The PCU loads
these registers. then initiates the write cycle. EU OP
Q is read by the EU and the operators read from the
EU OP Qare the addresses for the EU PROM net­
works.

5010796-001

Parameter Queue
The purpose of the parameter queue is to buffer

parameter information (source pointer. destination
pointer. segment length. and certain controls) for use
in building destination words in the EU. The DRU
provides new parameter information for each desti­
nation word produced. In most string operations. if
the operation is to produce five destination words
and each of these five words is written into
consecutive addresses in memory destination array.
then five parameters must be passed from DRU to
EU.

The exception is in table edit operators which re­
quire separate parameters for each micro-operator.
Therefore. several parameters may be required to
build .one destination word.

The source. destination. and segment length infor­
mation is received into the parameter queue as bi­
nary values. These binary values represent the ac­
tual starting bit and the number of bits to be moved
from source word to destination word. The conver­
sion from character representation to binary values
is performed by PROMs during DRU to EU trans­
fers.

3-2-23

MACAO
CODE

ROUTINES

FROM
PCU

l
OPERATOR

QUEUE

FROM
DAU

i
PARAMETER

QUEUE

I
I
l

,---1
I COB I
L_ _J

~ h
l

l l
l l

~
I- LI\

llvl 1-1 t..~
v

EUCDB BARREL

·--..,,.-

ET1278

ALU

J

1
EWA

~
TORMllFOA
STORQAND

ASM AND TO COB

~ SAU

J

Figure 3-2-12. Execution Unit Block Diagram

The source. destination. and segment length infor­
mation is used to set up the shift and allow registers
in the EU barrel.

EU Control Pipeline

Like the DRU. the pipeline processing technique
is implemented in the EU. There exists within the
EU four distinct processing levels: a look ahead lev­
el, a read level. an ECDB level. and a terminate op­
erator level.

As shown in figure 3-2-13, each processing level
has a pointer register. Basically. the pointer registers
(ELO, EQO, ECO, and ERO) are used to remember a
particular EU OP Q location from which an operator
was read if a restart is required at the ECDB level.
Functionally, the EU OP Q is divided into two parts:
the operator queue for the ALU and SAU and the
EUCDB queue.

3-2-24

The ETO pointer register serves to define EU OP
Q full for PCU. When ETO equals OP Q write point­
er PQEW. the PIE hold logic in the PCU is
temporarily enabled until OP Q can accept the oper­
ator from the PCU.

In order that EU may know when a pointer regis­
ter has been loaded. there is a separate valid bit as­
sociated with each pointer register. In addition to the
valid bit. the ELO contains a last load (LL) bit.
which indicates that PCU has loaded EU OP Q since
the last EU pipeltne advance or that ELO received
a restart operation from ERO. The LL bit simply al­
lows EU to remember that an operation exists in the
EU OP Q even though EU OP Q read and write
pointers are made equal by the last pipeline advance.
For restart case. the ERO valid bit allows transfer of
ERO to ELO before the next EU OP Q read occurs.

LOOK
AHEAD
LEVEL

READ
LEVEL

n1si1

PCU

PCU

EU PIPELINE POINTERS
ELD : OPQ LOOK AHEAD PTR.
EQO : OPQ READ PTR.
ECO : ECDB OP Q REMEMBER PTR.
ETD : ECDB OP Q TERMINATION PTR.
ERO : OP Q RESTART PTR.

Figure 3-2-13. EU Control Pipeline

When a look-ahead read is performed by ELO
(pointers ELO and POEW ?"'), the EQO is loaded
with ELO pointer value, and, if present, an eight-bit
microcode from the OP Q is read into ECL. Also,
the contents of ELO pointer are updated by use of
a separate adder and the updated content is loaded
back into the pointer for use on the next cycle. The
eight-bit microcode in ECL is used to address the
EUCDB look-ahead PROM (ECL). The EQO pointer
reads the ALU and SAU OP Q location that is asso­
ciated with the ECDB OP Q location read on the
previous cycle.

On the next cycle, as the EQO pointer value is
loaded into ECO, the ECB register is loaded from
ECL and the microcode from OP Q is loaded into

5010796-001

EAU. ES U, or both, and the first of a sequence of
ALU and SAU operations is generated through ALU
and SAU PROMs, provided that the unit is not wait­
ing for ECDB to supply data. Also at this time, if
the ECL PROM is addressed, the EU CDB read ad­
dress from the OP Q or, for special cases, EU gener­
ated address is loaded into CER by ECL PROM.
Using these addresses allows CDB data to be read
onto the ALU and SAU input buses of the EU. The
ECL PROM is also used to set up shift, right allow,
and left allow amounts used ·by the EU barrel. Al­
though ECL PROM provides shift and allow infor­
mation, the barrel controls are implemented by the
ECDB PROM. The controls include barrel input
load; barrel shift, right allow, and left allow register
loads; and barrel output destination.

3-2-25

It should be noted that initial functions of the ECL
and ECDB PROMs are identical because the EU
store subunit can obtain control of CER as the trans­
fer of ECL to ECB occurs. If this should occur, then
the ECDB PROM functions provide the necessary
controls: otherwise, the ECDB PROM functions are
ignored.

At this point in the pipeline operation. the ECDB
can iterate, and, if it does. the ECO pointer holds.
This hold is removed when ECDB provides neces­
sary data to the barrel, ALU. or SAU. or when an
EU restart is required.

If ECDB releases hold. the pointer information is
not needed anymore so ECO pointer value is loaded
into ETO which indicates ECDB has terminated the
operator.

For restart case. the OP Q pointer value in ECO
is loaded into ERO and then back into ELO to start
an operator through the pipeline again. For example.
the ECDB calls macrocode for copy action or to in­
tegerize the input to the ALU. After copy action or
integerizing is completed. a Return To Pipeline is
performed where the ECDB operator is started with
new data. Instead of reading from A or B locations.
the selected location for a read is W. (The selection
of W is controlled by Remember W flip-flop ERW.)
The W location contains new data for the operator.
(In this example. a descriptor with copy bit ON or
integerized data is being processed.)

When the ECDB operation ends. the ALU can be
operating on data. For example. after ECDB sends
two inputs to the ALU for a divide and then ends.
the ALU performs the divide operation. The pipeline
can again activate ECDB which can supply data for
an SAU operation.

EU Code Paths

The EU code paths (shown in figure 3-2-14) con­
sist of four major functional areas: 1) the operator
queue; 2) the ECDB, ALU, and SAU PROMs; 3)
the EU macrocode (EUMC) PROM; and 4) the
pointer registers associated with these PROMs. The
operator queue consists of 4-by-4 register files that
can be simultaneously read and written. Functional­
ly, the operator queue is divided into two parts: the
ECDB queue, and the operator queue for ALU and
SAU processing. Micro operators written to the
queue originate in the PCU and are applied to the
queue via registers PQE and PQO.

The ECDB operators are read from the queue by
look-ahead pointer ELO (described later under
"Pipeline") and the eight-bit microcode read from
the queue is applied to CDB look-ahead register
ECL. These operators form eight-bit addresses that
3-2-26

are applied to the ECDB PROM network via COB
operator register ECB. The ALU and SAU portion
of the operator queue is read by queue operator
pointer EQO, which is also described in the discus­
sion of the operator queue pipeline. These operators
also form eight-bit addresses that are applied to the
ALU and SAU PROM networks. The PCU micro
operator specifically addresses the ALU, the SAU,
or both.

ECDB PROM Network

The 256-by-4 PROMs that comprise the networks
contained in the EU code paths produce operating
sequences to control processing in the EU. Some of
the functions of these operating sequences are as fol­
lows:

I. To select read address paths to CDB EU regis­
ters.

2. To transfer the CDB bus to ALU and SAU in­
put buses~

3. For store-to-stack operations, to transfer EW to
the RMD register (write into store queue and asso­
ciative memory.)

The ECDB PROMs are addressed by the eight-bit
register ECB. These PROMs provide three major
outputs. One output is fed back to the ECB register
to indicate the next state (or address) in the PROM
output sequence. A second major output is used to
select the ALU or SAU PROMs (via arithmetic se­
lection circuits) if the PCU micro operator requires
use of the barrel prior to being processed by the
ALU or SAU. For example. if scan while compare
(SCWC) micro operator is issued to EUCDB by the
PCU. a delimiter is read from the COB and is shifted
by the barrel to update required character in
preparation for comparison with the source character
by the ALU.

The third major output of the ECDB is applied to
macrocode register EMC. This output is used if a
copy action operation is to be sent to the ALU, or
if it is necessary to integerize the input to the ALU.
This function is performed if input for a DBUN or
LLLU operator or certain types of scale right and
bit operators require integerizing.

ALU PROM Network

Four major functional areas are associated with
the ALU PROM network: I) arithmetic selection cir­
cuits; 2) operator save register. EOS; 3) arithmetic
unit operator register EAU; and 4) macrocode regis­
ter EMC. The arithmetic selection circuits handle in­
puts from the operator queue or macrocode (through
the micro operator selection circuits). the ECDB
PROMs. and the EOS register. This register is used

PCU

.

r l [POE PQO l l

EMC J
T

EQO EUMC I.. J ELO I _. ECDB OPQ I.._ PROM
-...

OPQ l
J 1 , • 1

ECL [MICRO·OP SELECTION l
EUMC CODE

._ . l r L

[ECB l ARITH. SEL.

EOS

• r 1 ,
EAU l r ESU]

ECDB lot-- ALU i.- 4 SAU
PROM PROM PROM

1 1 J

ET1284

Figure 3-2-14. EU Code Paths

5010796-001 3-2-27

to temporarily save an operator destined for the
ALU if the ALU is currently processing the previ­
ous operator.

When the ALU is finished processing, the
operator saved in EOS is then selected into the EAU
register. This register is loaded with eight-bit
operators that are used to address the ALU PROM
and produce the PROM sequences needed to process
the data in the ALU. For double-precision operators
and difficult operators, such as scale operators, the
ALU makes use of the macrocode register (EMC) to
obtain additional micro operators via the EUMC
PROMs. Some of the functions of operating se­
quences provided by the ALU PROMs are as fol­
lows:

1. .To direct the AI bus to one of the four ALU
input registers.

2. To set the end-around-carry mode of the ALU
adder.

3. To complement the AL or AM to AB registers.
4. To direct barrel data to BS (save) register, EW

register, or back to ALU via the AI bus.

SAU PROM Network
The SAU PROM network is addressed by the

short arithmetic unit register ESU, which receives
input from the arithmetic selection circuits. For PCU
micro operators, the SAU has priority over the ALU
if the integer length for ADD and COMP operators
is less than or equal to 20 bits and for multiply oper­
ators, if less than or equal to eight bits. Whenever
these conditions are satisfied, the ALU is inhibited
from requesting the EW register and from loading
the barrel. If the integer length requirements are not
met, the SAU aborts the job; it is then inhibited
from requesting the EW register, and the job is pro­
cessed by the ALU. Some of the functions of oper­
ating sequences provided by the SAU PROMS are
as follows:

1. To control carries into and out of the SAU add­
er.

2. To load the SAU adder output to the SY regis­
ter.

EUMC PROM Network

The function of the EUMC PROM network is to
provide micro operators required for processing but
not issued by the PCU. If a condition arises during
the execution of an ALU or ECDB micro operator
that requires a micro operator not issued by the
PCU, the required code is then supplied by the
EUMC PROM network. The code is passed through
the appropriate selection circuits and is applied to
the specific PROM address register involved. For
data associated with new EUMC microcode sent to
one of the three PROM address registers, the EUMC
PROMs re-issue COB read addresses to the CER.

3-2-28

The EUMC PROMs also issue COB write addresses
to the CEW for resultant data to be temporarily
stored in the EU data file, the EU local file, or the
exponent file in the COB.

COB EU READ POINTER
REGISTER

The COB EU read pointer register (CER) is used
to select an EU COB location for reading. The loca­
tion to be read is determined by the ECDB and
EUMC operator being performed or by the store
data address from the EDB register. The CER is
loaded. if there is no barrel. SAU. or ALU hold
(ECDB.HDL); or if an address input from the Store
Data OP Queue exists and RMD is ready to accept
data from the COB.

Figure 3-2-15 shows the inputs to the C ER. The
signals. which transfer the inputs to the CER. are
developed by decode logic. This logic receives
various commands from EUCDB PROMs. ECL and
EUMC PROMs. or from EUMC PROMs through
special registers. These registers are loaded by ma­
crocode but are selected by EUCDB code to deter­
mine which COB address is read. These COB ad­
dresses are:

I. Read A (address in EPA).
2. Read B (address in EPB).
3. Read R (address in EPR).
4. Read W2 and W3.
5. Read XO. XI. and X2.

A and B Selection Path

The A and 8 selection paths are the source for
loading:

I. The A and 8 address from the EU OP Q.
2. The W2 (Hex 2E) and W3 (Hex 2F) address.
3. The EPA and EPB registers.
4. For A selection only. the result address (EPR)

into the CER.

Store Data Read Address Path

The store data read address is loaded into EDB as
part of the EU store subunit processing. EDB is
transferred into CER when the store counter register
indicates a store exists. the older EU operators are
processed. and the SAL address is declared valid by
DRU. Transferring the store address to CER also
prevents other transfers to CER from occurring at
the same time. The store address can only be loaded
into CER when the transfer of the next operator
from ECL to ECB takes place. (Refer to
subparagraph headed EU Control Pipeline.)

ET 1679

5010796-001

STORE
DATA
OPQ

ESW

COUNTER
LOGIC

ECL
AND ECDB

EUMC PROMS
PROMS

x.w

EDW

COUNTER
LOGIC

PCU

A LOC BLOC

OPQ

W2 EPR

EPA

TOCDB

Figure 3-2-15. EU CDB Read Address Paths

W3

EPB

3-2-29

Source and Destination Pointer
Path

The source and destination pointer path is used for
reading string data into the barrel for processing.
The source word register ESW and destination word
register EDW pointers are used to locate the data to
be read from DRU string data file in the COB. ESW
and EDW select locations 10 through 17 and 18
through IB, respectively, in the DRU string data file
of the COB.

The pointer that is to be loaded into CER is se­
lected by a transfer signal that is derived from
EUCDB COB read category PROM when string op­
erators are processed. Pointers are also updated to
show the location in the COB when transfer is end­
ed. Parity is maintained on the contents of the point­
ers and is updated each time the pointer value is up­
dated.

The pointers are reset whenever clear queue oc­
curs or EU has aborted a string operator. This reset
provides the start locations (location 10 for source
words and location 18 for destination words) to al­
low counting the pointers to address the next string
location. (The reset of these pointers provides com­
patibility between locations assigned by the DRU
and locations read by the EU.)

EU BARREL
The data paths of the barrel consist of the barrel

input (BN) register, selection logic for pack and un­
pack data, coarse and fine shift logic. and the barrel
output logic. (See figure 3-2-16.) The coarse and fine
shift logic is implemented with MFAN chips so the
barrel may be used repeatedly during each clock cy­
cle. The coarse part of the barrel shifts the input
data by multiples of I.

Because of the barrel inputs from the EU read
register (ER), COB bus. ALU output, and barrel
output, the BN register has input selection gating.
The desired input selection is controlled by ALU
PROM commands.

The ER register loads the BN register and is the
buffer register for checking parity on data transfers
from the COB bus to the EU barrel and for decoding
the number of leading zero digits of mantissa dafa.
The ER register is loaded any time a COB transfer
to BN takes place or a COB bus and an AI bus to
ALU condition exists.

The output of the barrel is selected to BN register
for additional barrel operations, to EU write (EW)
register for transfer to COB, to the AI bus for trans­
fer to ALU, to the SI bus for transfer to SAU. or
the barrel save (BS) register. The BS register holds
data that is to be ORed with new barrel data.

3-2-30

Contents of the left and right allow registers (ELA
and ERA) determine the lowest and highest bit num­
ber, respectively, to be transferred at the barrel out­
put.

A special flip-flop is used to correct barrel output
parity when the barrel is in a hold condition (for
ALU to BN transfers only). The purpose of this bar­
rel output parity correction is to use the accumulated
parity of the EBR and EW registers before the infor­
mation becomes invalid on the next clock cycle.

SHORT ARITHMETIC UNIT (SAU)

The SAU performs SP integer arithmetic
operations of 20 bits or less, eight-bit multiply
operations to produce 16-bit result. and double-preci­
sion exponent calculations. The loading sequence for
the SAU consists of one-cycle operand load and
two-cycle operand load.

In the one-cycle load. both operands are received
simultaneously by the SAU (the VALC from the
COB and either a LIT from the PCU or the SAU
output from a previous operator). Excluding the mul­
tiply operator. the next cycle allows the PROM ad­
dress to be accessed again. The multiply operator re­
quires another cycle to complete the operation.

For a two-cycle operand load, the SAU receives
the A operand on the first cycle and the B operand
during the second cycle to complete the operation.

The basic functions of the SAU sections (figure 3-
2-17) are:

I. ESX register provides input for the parity
check and residue generator logic, temporary storage
for the result exponent during double-precision, and
temporary storage for the carry save carries during
multiply operations.

2. ESY register provides one of the operands for
arithmetic operations. the complemented operand for
a subtract operation, and temporary storage for par­
tial products and carry sums during multiply.

3. Adder logic is a standard two-input adder
which propagates all carries on each adder pass.
AFANs are used as adders. Subtraction is performed
by adding the B complement to A.

5010796-001

ALLOW

CDB

ER REG

TO LEADING TO PARITY
ZERO DETEC· CHECKER

TION

BARREL REJECT
ALLOW LOGIC

EBR REG

TO PARITY
CHECKER

ET 1680

ALLOW

ALU BARREL
ER OUTPUT OUTPUT

PACK UNPACK
LOGIC

COARSE BARREL
SHIFT LOGIC

FINE BARREL
SHIFT LOGIC

BARREL OUTPUT

TO EW, ALU (VIA
Al BUS), AND

SAU (VIA SI BUS)

SHIFT XS

SHIFT Xl

Figure 3-2-16. Barrel Data Paths

BS REG

3-2-31

PARITY
CHECK

SIBUS

EXPONENT
SELECTION

GATES

ADDER
OUTPUT

ESX REG

CARRY
SAVE

ADDER

ADDER

LIT FORCED
INPUT VALUES

CARRY
ADDER SAVE

OUTPUT ADDER

MULTIPLY
PROMS

RESIDUE TOEW TO ESX, ESY CARRY SAVE
GEN AND EW

ET 1681

ADDER

TO ESX
AND ESY

Figure 3-2-17. SAU Data Paths

4. Multiply PROMs multiply the entire eight-bit
multiplicand by eight bits of multiplier. Then. on the
adder pass. the accumulated partial product is added
to the carry number. The ESY register enters the ac­
cumulated partial product while the ESX register
provides the carry number.

5. Carry save adder generates sum and carry for
each of the partial product inputs.

6. Exponent selection gates allow exponent inser­
tion into the EW.

The SAU parity logic netword checks the parity of
information passed to the ESX register from the SI
bus.

The residue logic maintains residue on SAU adder
output. The residue check is performed at the EW
level of the EU.

3-2-32

ESX and ESY registers have the residue loaded at
the same time the information is loaded. The residue
comes from the following sources:

For ESX Register:

I. The S + I address is sent from the I bus
through the SI bus with residue. (For mark
stack operator case.)

2. Information from the SAU adder (ESA) has
residue.

3. The residue in ESX is saved (residue is loaded
back into ESX) and is multiplied by the ESY
residue to obtain the residue of multiplication
result.

4. Most inputs have no initial residue. In these
cases, residue is generated with the data.

For ES Y Register:

I. Information from the SAU adder has residue.

2. Value for LIT is sent from the PL W through
the PCU pointer queue with residue. (PLW has
a residue generator.)

3. EU I and J word and digit information are sent
from the pointer select logic with residue.

4. Forced values are loaded with forced residue.

5. The residue in ESY is saved and is multiplied
by ESX residue to obtain residue of multiplica­
tion result.

ARITHMETIC LOGIC UNIT (ALU)

The ALU is used to perform most types of arith­
metic and logical computations in the EU. The ALU
operates on non-integer or integer data that is great­
er than 20 bits. Error detection includes residue and
parity checks. Residue is used to detect errors in the
exponent and mantissa data paths and associated
data registers and in the repetition counter circuitry.
Parity is used to detect errors in data that is adjusted
for specific ALU operations.

Figure 3-2-18 is a block diagram of the ALU data
paths. The basic functions of the ALU sections are:

I. AS register is primarily used as a shift register
in arithmetic and count operations and an input
to the parity and residue generator logie.

2. AA register is used as an accumulator register
and an input register for the main adder.

3. AB register is used to supply data in comple­
ment or true form to the main adder and the
logic unit.

4. AX register is the primary input to the expo­
nent adder.

5: BX register is the secondary input to the expo­
nent adder.

6. Exponent adder is used for adding or subtract­
ing exponents during single-precision tloating­
point arithmetic operations.

5010796-001

7. Exponent difference (XD) register contains the
exponent value that is used to determine shift
and allow inputs for the barrel operation.

8. Conversion PROMs perform the following oper­
ations:

a. BCD to binarv conversion for the input con­
vert destructive ICVD and input convert up­
date ICVU operators.

b. Binary to decimal conversion for the scale
right final SCRF operator with an input equal
to. or greater than. 32 bits.

c. Count the number of I bits in the A operand
for the count binary I's CBON operator.

9. Multiply (MU L) register is the input to the
MULT PROM for loading one or two octal
digits of the multiplier from the AS register. It
is also the input to MULT PROM for loading
the scale right PROM output for double-preci­
sion scale right operators or for a single-preci­
sion scale right operator with an input less than
32 bits.

10. Multiply (MULT) PROMs select proper multi­
ple into the AB register. The selected multiple
is entered in true form to add that multiple to
the partial product or in complement form to
subtract that multiple from the partial product.

11. Scale right PROM provides a binary value that
is a representation of the number I 0 to the
minus scale factor (not greater than 12). Selec­
tion of the binary value is done by the ALU
variant register. which contains scale factor
provided by the PCU and the repetition coun­
ter. The RC counter is first loaded with a
count (16-LX) that represents the number of
octal digits in the number (A operand) to be
scaled. RC count is then decreased by I or 2
on each multiplication cycle until RC equals 0.
The multiples for each multiply cycle are se­
lected by the MULT PROMs in accordance
with the binary value supplied to the MUL
from the scale right PROM.

3-2-33

ALU BUS (Al)

CONVER·
SION

PROMS

TOAA
ANDAB

ET0 1682

3-2-34

MAIN
ADDER

OUTPUT
ADDER

EQUO OVERFLOW

TO ABAND
TOR C SELECT

LOGIC

PARITY
CHECK

RESIDUE
GEN.

TOEW

TOEU
BARREL

EXP
OUTPUT

ER

PTR

XD- PTR
SUBTRACTOR

MAIN
PPR ADDER

CMA OUTPUT

PU

AS AM

,__--r---' EXP
OUTPUT

.TO EW, AA,
AB AND AM

DIVIDE
TABLE
PROMS

Figure 3-2-18. ALU Data Paths

PTR

XD

u

MAIN ADDER
OUTPUT

MAIN
ADDER
OUTPUT

LOGIC UNIT

QUOTIENT
EXPONENT

PROMS

INPUT
CONTROLS

TOAS

TOTORC
SELECT LOGIC

12. Main adder is a standard two-input adder
which propagates all carries on each adder
pass. AFANs are used as adders. Subtraction
is accomplished by adding B complement to
A. In order to accommodate multiply and di­
vide operations. an extension of the adder out­
put is provided to pass the final result into an
accumulating register. The extension is identi­
fied as guard bits in the ALU logic. The PLI
adds an additional I into the adder for certain
multiply and divide operations.

13. Logic unit is a portion of the mam adder
AFAN chips. It provides an efficient means
for executing logical operations. The generate
and propagate outputs. which are developed
for each bit position by the AFANs. are selec­
tively gated to derive the logical AND. OR.
and exclusive OR functions.

14. AL and AM registers are used as temporary
storage locations to form new operands for
certain arithmetic operations.

15. XD-PTR subtractor is used in ADD operations
in which the mantissa with the smallest expo­
nent is shifted right to equalize the exponents.
The number of LZ of the mantissa with the
greatest exponent is subtracted from the expo­
nent difference to determine the right shift
value for the mantissa with the smallest expo­
nent value. This value is loaded back into XD
and then applied to digit conversion. PROMs.
where the proper shift and allow barrel con­
trols are selected for right shifting the man­
tissa.

16. RM register contains six MS bits of the re­
mainder for use by the divide table PROMs.
These PROMs are programmed to predict the
trial quotient for the next cycle and also to se­
lect proper multiples into AB register. Trial
quotients from the divide table PROMs are
loaded into EQUO and then routed to the two
LS bits of the AS register on each cycle.

17. Quotient (EQX) register is the input to the
quotient exponent PROMs. These PROMs de­
termine the number of iterations needed to de­
velop the integer portion of the quotient.

18. Repetition counter holds and releases ALU
PROM sequences and controls certain data de­
codes within the ALU PROM sequences.

5010796-001

The ALU parity logic is composed of an AS parity
generator. parity update logic, and the logic to select
the type of parity checking required. The parity gen­
erator provides parity on information shifted into the
AS register and parity on certain operator inputs to
AA and AB registers.

Parity update occurs because right shifting of data
into the adder output causes loss of bits with un­
known parity. In such cases. an ALU PROM com­
mand ensures that adder output parity data is cor­
rected to accommodate the loss bits.

The residue generator is used to generate residue
for the exponent and mantissa data.

Inputs to AX from the barrel (through the ALU
bus) and from the ER register are not transferred
with residue. so residue must be generated. During
ALU bus transfers. residue is provided by the
residue generator. For ER transfers. the residue is
generated by a PROM (on card EFO). Inputs to BX
from either I digit or J digit pointer. or leading O's
logic. have residue already available.

The residue of the exponent adder output is auto­
matically checked at EW level to make sure that the
residue is correct. If residue is incorrect. then an
EW residue error is reported as an alarm interrupt
in EU interrupt error register EIE. Also. connected
to the exponent adder output residue are the EQX
Residue flip-flops. which. along with EQX PROM.
report residue errors that only occur during I DIV
operator processing. If this residue is incorrect. then
an EQX register residue error is reported as an
alarm interrupt in the EAE register.

All residue for AA. AB. and main adder output is
controlled by their respective ALU PROMs. The
residue is adjusted. along with the data with which
it is associated. First. the basic adder residue is de­
termined. then the basic residue is corrected by the
PROMs to provide the proper output residue. Sign
bits arc never included in residue generation. How­
ever. because the residue is adjusted for sign when
it is used. the signs are included in the residue
check.

Inputs to AA from the COB Memory Address bus
(CMA). procedure return register (PPR). and for DP
divide operations from ALU bus (through EW) have
residue already available. Also. inputs to AB from
the conversion PRO Ms have residue already avail­
able.

In many cases it is necessary to catch up on
residue. This catch-up residue occurs when an oper­
ator has two inputs to process. In such cases, the
residue generator output is added to, or subtracted

3-2-35

from, the adder output residue according to the type
of operator being processed. For example, at the
start of a DP ADD operator, the A input is loaded
into AA and its residue is generated by the residue
generator. Then, on the next cycle, the B input is
loaded into AB. the residue generator output is
loaded into AA residue bits. and the residue for B
input is generated. This residue (or catch-up residue)
is added to the main adder output residue to develop
the final residue of the adder inputs. All residue for
adder output is controlled by the ALU PROMs.

The residue check for AA. AB. and main adder
output is performed at the EW level. If incorrect res­
idue occurs, then an EW residue error is reported as
an alarm interrupt in the EIE register.

EU RESULT ADDRESS
REGISTERS

The EU result address registers (shown in figure
3-2-19) are used to maintain the COB location into
which the result or temporary result of the operator
is to be placed. The COB location of the operator re­
sult is derived from the PCU, which uses PWR to
write the proper COB location into the EU OP
queue for the operator being written into the queue.
The COB location of the temporary operator result
is supplied by EUMC PROMs during the execution
of EU microcode. As the operator is processed
through the EU pipeline. the COB location is passed
down the pipeline to the EU level that is executing
the operator at that time.

The EU result address registers are identified as
follows: ·

I. EU result CDB address register (EPR).
2. COB level result COB address register (ECR).
3. Barrel level result COB address register (ERB).
4. AIU result COB address register (EAR).
5. SAU result CDB address register (ESR).
6. COB EU write pointer register (CEW).
7. Interrupt read register (EIR).

EU Result CDB Address Register
(EPA)

As each CDB address is read from the EU OP
queue, it is saved in the EPR register. The saved ad­
dress is only entered into the pipeline if microcode
was required to complete an EUCDB or ALU
operation. A new CDB address is loaded into EPR
each time the conditions for the next operator trans­
fer into EUCDB level are satisfied. EUCDB is not
in hold, and microcode is not being issued to
EUCDB. SAU. or ALU.

3-2-36

CDB Level Result CDB Address
Register (ECR)

This register is the first EU result address register
in the EU pipeline. Inputs to ECR are received from
the EU OP queue. EUMC PROMs, and the EPR
register.

Transferring into ECR from EU OP queue is en­
abled whenever EMCV flip-flop is reset to indicate
that EU microcode is not being generated. When EU
microcode is generated. the COB location (W or X)
is explicitly selected by EUMC PROMs.

Barrel Level Result CDB Address
Register (ERB)

The ERB register receives the result address from
the ECR register. The ECR contents are loaded into
ERB in accordance with pipeline controls and EU
barrel destination level End Of Current Operator
flip-flop EBDE. (Loading ERB is inhibited if flip-flop
EBDE is reset.)

ALU Result CDB Address Register
(EAR)

The EAR register receives the result address from
the ECR register if the transfer of CDB to ALU in­
put bus (Al) is in progress; or from the ERB regis­
ter. if the transfer of barrel output to the Al bus oc­
curs. EAR is loaded with Al bus contents when both
the AI bus to the ALU flip-flop EAIA and the ALU
destination level End of the Current Operator flip­
flop EADE are set.

SAU Result CDB Address
Register (ESR)

As the EAR register does. the ESR register re­
ceives the result address from the ECR register if
the transfer of CDB to SAU input bus (SI) is in
progress. Or. it is received from the ERB register if
transferring barrel output to the SI bus occurs. ESR
is loaded with SI bus contents when the SI bus to
the SAU flip-flop is set.

CDB EU Write Pointer Register
(CEW)

When writing into the CDB location (EU data file,
working storage, or X storage). the area is selected
by the contents of CEW. The contents of CEW are
decoded to set valid bits for EU data file locations
20 through 2B. There are 12 valid bit flip-flops JEV.
one for each of the EU locations. The JEV flip-flop
associated with the EU data file location just filled

5010796-001

EUMC
PROM

. PWR

W,X R

FORCE C =WO

FORCED= Wl

ET 1683

ECR

XFER COB TO Al OR SI

ERB

XFER BO TO Al OR SI

EAR

CEW

PROM
.,._ __ _..PARITY TO

EIE

TOJIR
IN PCU

GEN

TO COB, PCU, STORE
DATA OP Q, AND EU

SIGN STORAGE

Figure 3-2-19. EU Result Address Registers

3-2-37

is set to record that the location has valid data. This
location is now ready to be read by the EU as an
input for the next EU operator or by the DRU as
and input for indexing descriptors.

The order of priority for transfer into CEW is
EAR. ESR. and ERB. These transfers are based up­
on the EW load priority for the corresponding units
(ALU. SAU. and barrel).

As shown in figure 3-2-19, a Hex C or Hex D (for
addressing WO. or WI local storage locations. re­
spectively) is forced on the input of CEW.

In the WO address case. the decimal overflow
digits that could have resulted from any adder pass
are saved in WO during scale left operations. Also.
the remainder, which could result from executing the
first DP divide cycle, is saved in WOLS (an EU data
file RAM location) and WO for use when the second
DP divide cycle is started.

For WI address case, the intermediate result of an
operator is temporarily saved in WI for interrupt in­
formation. However. in most cases, the data in WI
is replaced by new data before an interrupt is re­
ported in the EU.

The PROM parity generator is used to check
parity on the addresses when they are loaded (or
forced) into CEW. The CEW parity is checked any
time the CEW valid bit is set and write inhibit is not
set.

Interrupt Read Register (EIR)

The EIR register is loaded with the result address
from CEW as long as an interrupt job is not re­
quested by the EU. The transfer of EIR to job inter­
rupt register JIR only occurs when the associated
job number of the result address is accepted into the
JIJ register.

EU JOB NUMBER REGISTER

The EU job number registers (figure 3-2-20) con­
tain the job number of the operator in process. As
the operator is processed through the EU pipeline
levels, the job number is transferred to the job num­
ber register at that level. The job number registers
are:

I. CDB Level Job Number register (ECJ).
2. Barrel Level Job Number register (EBJ).
3. ALU Level Job Number register (EAJ).
4. SAU Level Job Number register (EWJ).
5. EW Job Number register (ESJ).
6. Interrupt Level Job Number register (EIJ).

3-2-38

The EU pipeline conditions for loading and trans­
ferring these registers are identical to those EU pipe­
line conditions described for the EU result address
registers (ECR, ERB, EAR, ESR, CEW, and EIR).

The PROM parity generator is used to check
parity on the job numbers when they are loaded into
EWJ. If bad parity exists, signal EWJP.ERH is gen­
erated and sets the alarm bit in the EU interrupt er­
ror register EIE.

EU STORE SUBUNIT

The purpose of the EU store subunit is to execute
transfers from the CDB to memory data register
RMD, as require by the STOD and STON operators.
The EU is therefore relieved of handling these trans­
fers and a significant time gain is realized. The EU
store subunit provides a queue that is completely
separate from the PCU, with a separate EU store
job number register and CDB address register.
Therefore. the STOD and STON operators do not
affect the timely execution of subsequent operators.
This feature is especially important for the smooth
functioning of loop control and index computation in
the SAU.

The transfer from execution write register EW to
RMD is attempted when the STOD •or STON
operator immediately follows the operator that calcu­
lates the data to be stored. The transfer occurs if all
older operators are finished and RMD is ready when
the final single-precision result is in the EW register.
This advances the job number more rapidly to the
next store or branch operation, and requires no EU
time. If the store data must be read from the CDB
(through the EU bus). the EU store subunit does not
capture EU read register CER until the store is the
oldest operator and the store address list (SAL) is
ready. The EU is unaffected unless it simultaneously
attempts to read data from the CDB.

As shown in figure 3-2-21, the EU store subunit
has a queue that is completely separate from the
PCU. with a separate EU store job number register
EDJ and CDB address register EDB, and a store
counter register ESCT. The ESCT register is used to
provide commands for controlling EU store
operations.

Addressing of the EU store queue for both write
and read operations is accomplished by PSQ and
ESQ pointers. To write into the queue, one of the
PSQ signals is generated to select the location and
effect the write operation. The count in the PSQ is
increased by I. whenever a STON or STOD is at the
execute level of the PCU, provided that PCU PROC
internal or PCU restart is not in process and no PIE
hold exists. The ESQ pointer is counted so that the

5010796-001

PWJ

XFER COB TO Al OR SI

EBJ

XFER BO TO Al OR SI

PROM
.------11~---1~ PARITY TO

GEN EIE

ET 1684

TO JCJ
IN PCU

EIJ

TO JIJ
IN PCU

Figure 3-2-20. EU Job Number Registers

3-2-39

PWJ PWB

,~ •
PSQ I ESQ

WRITE
1---1- EU STORE QUEUE - READ

POINTER (4 L~t POINTER
2 BITS 2 BITS

ET lli85

••
EDJ

1•
TOJCJ
IN PCU
(AJ4)

,
EDB

Ir

TO INPUT
SELECTION GATES

OFCER

ES TC

EU STORE
CONTROLS

Figure 3-2-21. EU Store Subunit

job number and COB address are available at the
output of the queue when the EU store unit is idle
and the queue has information (not empty) or when
EU store job just read is in process and the queue
has another job.

CENTRAL DATA BUFFER

The central data buffer (COB) consists of two 64-
location memories that are used for passing data be­
tween units of the CPM and for storing results of op­
erators. The COB holds the first four top-of-stack lo­
cations for each of up to four operators in the pipe­
line; although this capability is generally not fully
utilized, there are usually less than four operators
active at a given time. Two copies of the COB are
used. One handles data read by the DRU, and the
other provides storage for data read by the EU. In
this way, both the DRU and EU can read data while
the COB is being written. The write data is supplied

3-240

by the DRU, the EU. and the PCU. The two copies
of the COB (for handling DRU storage and EU stor­
age) are described in the following paragraphs.

DRU Data Storage

The storage of DRU data in the COB is shown in
figure 3-2-22. As indicated, the DRU copy of the
COB can be functionally divided into two major
areas. One area consists of data files written by the
DRU, EU, and PCU; the second area consists of ad­
dress files for DRU data and string information. The
data and address files in this copy of the COB can
be read only by the DRU, but can be written to by
the DRU, EU, and PCU. The files are addressed by
four groups of address lines: DRU write (CRW),
DRU read (CRR), EU write (CEW), and PCU write
(CPW). The data and address files are described in
the following paragraphs.

C DRU WRITE ADDRESS
RW

DRU READ ADDRESS
CRR

CEW
EU WRITE ADDRESS

PCU WRITE
CPW

ADDRESS

_; _j _j • • ..
00 00

RWD 19:20 DRU
__. DRU OR

__.. DATA --..
DATAFILE ADDRESS

t---
RWA

FILE
OF OF

RWD

20 10
DRU .. EU ..___ L-.+ STRING

DATAFILE ADDRESS
EWR

2B 1B
FILE

30

.. PCU .
DATAFILE

PLW

3B

EWR RWD RWA
BYPASS BYPASS BYPASS

~ • ,
, CADE CRDR / ., CRAD

TO
DRU ET1275 TO DRU

Figure 3-2-22. Central Data Buffer DRU Data Storage

Data Files

The DRU data file contains 16 locations. which
are accessed by addresses 00 through OF. This file
is written to by DRU write level data register RWD;
each location of the file can contain a 52-bit data
word and two information bits. The portion of the
52-bit word is contained in bits 38 through O; bits 50
through 39 on which an early read is performed (as
described in later paragraphs). The remaining two
bits are used for residue checking.

The information bits (L2 and L9) are used to de­
fine operand length fields. L2 signifies that the
length is less than or equal to 20 bits, and L9 indi­
cates that the length is less than or equal to 9 bits.
An early read is also performed on these bits.

The EU data file contains 12 locations, accessed
by addresses 20 through 2B. This file is written to
by EU write level register EWR; each location of

5010796-001

the file can contain a 20-bit operand. a parity bit.
and two information bits (L2 and L9), on which an
early read is performed. These bits are used to indi­
cate that the operand length is either less than 20
bits (L2) or less than 9 bits (L9).

The PCU data file is a small lit file that contains
12 locations and is accessed by addresses 30 through
3B. The file is written to by PCU literal write regis­
ter PL W; each location of the file can contain 20
bits: a 16-bit literal or address couple. a parity bit.
a bit to indicate an IRW. and two information bits.
An IRW is flagged by bit 48. When this bit is set.
the address couple written to the PCU data file is
identified as an IRW. This is done when a non-con­
catenated NAMC is detected by the PCU. The ad­
dress couple in the NAMC is then placed in the
PCU data file as an IRW. The information bits (L2
and L9) define the length of the literal as either less
than 20 bits or less than 9 bits. respectively. Bits 48,
L2, and L9 are subject to early read operations.

3-241

Address Files

The DRU address file contains the addresses of .
the words written to the DRU data file and the ad­
dresses for fetching the least significant word of dou­
ble-precision operands. The addresses are written by
DRU write address register RWA or the least
significant 20 bits of write data register RWD into lo­
cations 00 through OF, as addressed by the DRU
write address line. Each location of the address file
can contain a 20-bit address, two residue bits, a
copy bit (CB), and a mom bit (MB). The copy bit is
set to signify that copy action is to be taken for a
present bit interrupt. References to non-present copy
descriptors cause· the mom descriptor to be fetched.
using the base field of the copy descriptor. If the
mom descriptor is present, its base field overwrites
the non-present copy descriptor address saved in the
DRU data address file and the mom bit is set. The
base field of the mom descriptor is input via the 20
least significant bits of the RWD register.

The DRU string address file enables the DRU to
construct descriptors that point to its associated data
in the DRU string data file. which is located in the
EU portion of the COB. The string address file is
also written to by DRU write address register RWA.
The file consists of 12 locations (addresses I 0
through IB), each of which can contain a 20-bit ad­
dress and two residue bits.

Bypass Functions

If any of the DRU data or address files is being
written to while that address is being read, the infor­
mation is written but is also supplied directly to the
read bus from the associated write register. There­
fore, if the address being written to by the RWD,
RWA, or EWR register is equal to the address
specified on DRU read address line CRR, the bypass
function is invoked, and the information being writ­
ten is read onto the CRDE, CRDR, or CRAD bus,
as applicable.

Early Read Function

Before information is read from the data files, an
early read operation is performed on certain bits
and/or fields of the data word. The early read per­
mits an evaluation of these flags to determine the ac­
tion that should be taken to process the micro
operators in the DRU. The early read function is
performed on the L2 and L9 flags (discussed in pre­
vious paragraphs), bit 48 of the words contained in
the PCU data file, and on bits 50 through 39 of DRU
data words. These bits of the DRU data represent
the tag field, descriptor control bits (such as present
bit, copy bit, and index bit), and the descriptor size
field.

3-2-42

EU Data Storage

The storage of EU data in the COB is illustrated
in figure 3-2-23. As indicated, this copy of the CDB
can be functionally divided into three parts; each can
be read by the EU only. The storages are addressed
by the EU read (CER), DRU write (CRW), EU
write (CEW), and PCU write (CPW) address lines;
each carries six bits. The data and address files and
storages of this portion of the COB and their associ­
ated flags are discussed in the following paragraphs.

Flags

When information is written to the EU copy of the
COB, four-bit flags are generated for each location
written to; these flags are examined when the loca­
tions are read. They are not stored in the COB mem­
ories. but are placed in LF AN circuits. The flags in­
dicate whether the information being read is an inte­
ger, a double-precision operand, or a floating point
number; they also indicate integer length. They are
provided by the DRU to enable the EU to properly
process the data. The decodes of these flags are as
follows:

Bit 3 1 0 Meaning
0 0 0 Floating point number

0 0 1 More than 20-bit integer

0 1 1 Less than 9 bits
0 1 0 Less than or equal to

20 bits, more than 8
1 0 0 Non tag zero

1 0 1 Double precision
1 1 0 Set copy bit
1 1 1 Copy action

Bit 2 = bit 46 of operand (sign bit).

DRU Data File

The DRU data file contains 16 locations; each are
accessed by addresses 00 through OF. The file is
written to by DRU write data register RWD and
each location of the file can contain a 52-bit data
word. This file is used with the DRU data file RAMs
for storage of the most significant words of double­
precision operands. Words read from this file (and
all other data files and storages of the EU copy of
the COB) are placed on the EU data bus, CED.

DRU String Data File

The DRU string data file contains 12 locations;
each are accessed by addresses IO through IB. The
file is also written to by DRU write data register
RWD and it contains source and destination words
to be used by the EU. As described previously, this
storage is used with the DRU string address file lo­
cated in the DRU data storage portion of the COB.

CER

CRW

CEW

CPW

RWD

PIO

EWR

PLW

EU READ ADDRESS

DRU WRITE ADDRESS

EU WRITE ADDRESS

PCUWRITE

ADDRESS

00

__.

OF

10

~ I
1B

1C

I __.

1F

20

...... I
2B

2C

--......

2F

30

__.

3B

3C

3F

-.ii

• .J t

DRU
DATA
FILE

DRU
STRING

DATA FILE

PCU
BIGLIT

FILE

EU
DATA
FILE

WORKING
STORAGE

PCU
SMALL LIT

FILE

x
STORAGE

ET1276

• Ir t
00

DRU
DATA FILE

RAMS

OF

20

I
EU

DATA FILE
RAMS

2B

~

i---.

1---e

i---.

.___ RWD BYPASS

.,___ EWR BYPASS

.__IBUS

• CED
TO
EU

!+--RWD

RWA__.

i+--EWR

Figure 3-2-23. Central Data Buffer, EU Data Storage

5010796-001

00

I
OF

DRU
DATA

ADDRESS
RAM

.~

CMA
TO

ALU

3-243

PCU Big Lit File

The PCU big lit file contains four locations (IC
through IF); each are addressed by PCU write ad­
dress line CPW. This file contains LIT48 and makes
program control word (MPCW) operators transferred
from PCU instruction decode register PID. The CDB
locations are. effectively, a queue that is pointed to
by the PCU for writing the operators. The locations
read are determined by the locations that are allo­
cated by the PCU; the information is then passed to
the EU via the CED bus. For LIT48 operators. the
EU passes the data from the CDB to a general loca­
tion that is readable by the EU so that the LIT48 is
available to any subsequent operator. When the EU
reads out an MPCW operator. a seven tag is added
and the stack number is inserted by the EU.

EU Data File

The EU data file consists of 12 locations; each are
accessed by addresses 20 through 2B and contain 48-

. bit words. The file is written to by EU write level
register EWR and contains result data of EU
operators. The EU data file may contain the most
significant half of double-precision operands.

Working Storage

The working storage area contains four locations
(addresses 2C through 2F); each are written to by
EU write level register EWR. These locations are
used as a general work area for items such as source
data and partial products. and provide temporary
storage for interrupt parameters Pl and P2. Each lo­
cation contains 48 bits.

PCU Small Lit File

The PCU small bit file consists of 12 locations (30
through 3B); each are written to by PCU literal write
register PLW. Operators LITO through LITl6 and
non-concatenated NAMC are executed entirely by
the PCU. and the literal data is written to the CDB
for use by the EU. The small lit file is 20 bits wide.

X Storage

The X storage area contains four locations (3C
through 3F); each are written to by EU write level
register EWR. These locations are used as a general
work area for items such as delimiter characters for
compare operators. 3F is reserved as EU copy of
SNR. Each location contains 20 bits.

Data File RAMs

The data file RAMs are associated with the DRU
and EU data files. They contain the same number of

3-244

locations and have the same addresses as the corre­
sponding data files, and are written to by the RWD
and EWR registers. The purpose of the data file
RAMs is to store the least significant words of dou­
ble-precision operands.

DRU Data Address RAM

The DRU data address RAM consists of 16 loca­
tions (addresses 00 through OF) that are written to
by DRU write address register DW A. These loca­
tions contain the absolute addresses of data stored in
the DRU data file. The data addresses are read out
by EU read address line CER and are placed on the
CDB memory address bus (CMA) for copy action by
the ALU.

Bypass Functions

If any of the files and storages input by the RWD
or EWR registers is being written to while the same
address is being read. the information is written but
is also applied directly to EU data bus CED. There­
fore. if the address being written to by either the
RWD or EWR register is equal to the address
specified on EU read address line CER. the bypass
function is performed.

Bus

The I bus is used to enter information from hard
registers (such as the processor fail register. control
mode register. and time of day register) onto the
CED bus. These registers are enabled onto the CED
bus by decoding the contents of the EU variant reg­
ister. (This register is loaded by the PCU with coded
information that specifies the appropriate hard regis­
ters.)

STORE QUEUE

The major data paths within the store queue are
queue are shown in figure 3-2-24. The purpose of the
queue is to reduce the number of store operations to
memory that must be made by the processor. Store
operations are queued because of the possibility that
there will be a subsequent store to the same address;
if this condition arises. the earlier store is not per­
formed. As indicated in figure 3-2-24. the store
queue is a 32-deep buffer for store operations con­
sisting of an address (RCA 19-0 from the DRU) and
its associated data (RMD 51-0. also from the DRU).
Addresses in the queue are compared to a new ad­
dress eight at a time. If a match is found, the old ad­
dress is removed from the queue. This operation is
known as an invalidation check, which is described.
along with other store queue operations. later in this
section.

SLC

SOD

RCA

L..,.

SRL

S REG

i
S QUEUE

(4X22)
r--+

FROM DRU

RMA RMD

l
SAC SLE

{8)

SOD
(5) ADDRESS

SCO-SC7 I-- COMP. - SLC a

r i
SVB

r SW1,2 SWP (32X24)

SWP
y

SOE
(32) rl

SCL b
1c SWP

SM1,2 l [}- LOCATION
SL1,2 a -*-(16X6)

[l DATA
SOL a

{32X52)

SLR

l SQD

, r
ET1277 TO MAU

Figure 3-2-24. Store Queue, Block Diagram

When a procedure is exited. the stack (S) register
is changed to a lower address. The temporary loca­
tions containing the variables required for the exited
procedure can then be discarded. The stack cut back
routine compares entries in the queue against the old
and new S values. and deletes those that are less
than or equal to the old S value and greater than the
new S value.

The store queue also can create two eight-word
jobs simultaneously for the MAU. Since all stores
must be performed in the same order as in the
original code stream. the make MAU job routine
starts with the oldest entry in the queue and then ex­
amines subsequent store addresses. If the addresses
are contiguous. they are grouped as a single n-word
job and the store queue sends the starting address
and length to the MAU.

5010796-001

When fetching operations are performed in the
DRU. data is loaded into a particular block and
group in the AS M. The store queue fill check routine
determines whether a block and group just loaded
had destroyed a location to be stored to. If so. the
store queue begins storing unti! the location involved
receives the new data. If this were not done. fetches
for that location (which would go to main memory.
since the location is no longer local) would return
the old information.

A store to main memory is also initiated when the
store queue is purged. which causes all store queue
words. starting with the oldest entry in the queue. to
be stored to memory. A store queue purge occurs
whenever any of DRU operators SPRR62. SPRR63.
FMMR. MVST. RDLK. SLMT. or SINH is
executed. Note that if RDLK is preceded by
FMMR. the store queue is not purged.

3-245

The store queue contains four individual queues.
as follows:

I. Address queue. Composed of R44N chips; con­
tains thirty-two 24-bit words organized as four eight­
word blocks. Holds the store addresses input on the
RCA lines from the DRU.

2. Location queue. Composed of R44N chips;
contains 16 six-bit words organized as two eight­
word jobs for the MAU. Holds the pointers to data
to be stored.

3. S queue. Composed of R44N chips; contains
four 22-bit words organized as two two-word groups.
Holds old and new S values for each of two stack
cut back jobs.

4. Data queue. Composed of RAM I chips; con­
tains thirty-two 52-bit words. Holds data associated
with addresses contained in the address queue.

The queue performs four major jobs. as described
in the following paragraphs.

Invalidation Check

The invalidation check is performed to possibly re­
move a previous store to the same address. Two
pointers are used. The write pointer (SWP) points to
the newest entry in the queue. and the oldest entry
pointer (SOE) points to the oldest entry in the
queue. When an address (RCA) and its associated
data (RMD) are received by the queue. the write
pointer is incremented. the address is written into
the address queue. and the read pointer (SRL) value
is made equal to that of the last checked pointer
(SLC) plus I. Successive blocks of eight words are
read out of the address queue and into a comparison
network. The newest entry is compared to the older
entries. When a comparison is found between the
newest entry and an entry in the block read from the
address queue. the corresponding bit in the SVB reg­
ister is reset to invalidate the older entry.

Stack Cut Back

The stack cut back function compares entries in
the address queue to the old and new S values. and
deletes those that are less than or equal to the old
S value and greater than the new value. The old and
new S values are stored in the S queue, which can
contain the values for two stack jobs. The value in
SWP (at the time when the exit had been stored in
either SW! or SW2) is used a-s flie -start tocation in
the address queue for this job (similar to SWP in in­
validation check).

Two comparisons are made for each block of eight
addresses. The first comparison is against the old S

3-246

value. Addresses less than or equal to the old S, set
corresponding bits in SLE. The second comparison
is against the new S value. If an address is greater
then the new S and its corresponding SLE bit is set,
that address is effectively removed from the queue
by resetting its valid bit.

Make MAU Job

The store queue can create two jobs for the MAU.
Since all of the stores must be accomplished in the
same order as the original code stream, the make
MAU job function starts with the oldest entry in the
queue and examines subsequent store addresses. If
these addresses are continuous. they are grouped as
a single job, and the store queue sends the storage
address and length to the MAU.

When a make MAU job is requested, read level
location pointer SRL is loaded with the oldest entry
decode (SOD), and an eight-word block of address is
loaded into output registers SCO through SC7. The
specific address pointed to by the three least
significant bits of SRL is then compared to the con­
tents of address compare register SAC. At the same
time. the compare level location pointer (SCL) con­
tains the identical address. which is passed to the lo­
cation queue. An equal compare increments either of
length registers SL I or SL2, which doubles as the
write pointer to the location queue. In addition, one
of the memory address registers (SM I or SM2) is
loaded with the first (starting) address. Then, SAC is
incremented, and compared against the valid loca­
tion in the address queue. Each time an equal com­
parison occurs, the location queue is loaded by the
SCL register, and SLI or SL2 is incremented. This
process continues until either an unequal compare
occurs, the queue becomes empty, or the maximum
number (8) of contiguous addresses have been
found. The location queue is read into data location
pointer SDL by read pointer SLR. and the associ­
ated data is then taken by the MAU via the SQD
output. Each time the MAU takes data, it incre­
ments the SLR to obtain new data.

Fill Check

The address array of the ASM can contain four
addresses with the same block assignment. (A block
is defined as I of 64 (0 through 63) blocks, each
block contains four addresses.) When the DRU
fetches data from main memory, the data is loaded
into one of four eight-word groups in the data array
of the ASM. (A group is defined as one of four loca­
tions in a particular block (0 through 63) of the data
array.)

If four addresses with the same block assignment
are loaded in the address array and a fifth address
is to be loaded, the latter address must push out the

oldest address in that block. If the push-out address
was loaded because of a store prefetch. the push-out
address will be in the store queue. After this address
is invalidated in the ASM. the only place it will be
is in the store queue. Therefore. any subsequent
fetches to that address are declared non-local in the
ASM and a main memory fetch is required. where
the old data resides. not the new data that is in the
store queue. To prevent this condition from occur­
ring. a fill check is performed in the store queue.
The fill check compares the push-out block and
group against entries in the address queue. When a
comparison is made. the store queue is emptied up
to and including the block where the equal was
found by causing MAU jobs to be made. This action
occurs before any load of the ASM takes place.

MEMORY ACCESS UNIT

The Memory Access Unit (MAU) consists of thir­
teen functional sections interfaced as shown in figure
3-2-25. A description of each of the functional sec­
tions is given below:

I. The priority resolver logic is responsible for
granting the services of the MAU to the highest pri­
ority requesting unit. The order of priority for serv­
ice is: a) data reference unit (DRU); b) program con­
trol unit (PCU): and c) storage queue (SQ). How­
ever. a fetch interrupt request or store re-request has
priority over an initial fetch for DRU or PCU.

2. The fetch address register is used to buffer all
memory address transfers from the requesting units
(DRU and PCU) and to buffer the memory address
update for each word fetched from memory. The
contents of this register are routed to CW register
for constructing the memory control word and to
limit comparator for selecting the MCM. Also. the
three least significant address bits of the fetch ad­
dress register are routed to the DRU for identifying
word location in the ASSM that is to receive the
memory word.

3. The store address register is used to buffer all
memory address transfers from the storage queue
and to buffer the memory address update for each
word stored to memory. The use of the contents of
this register is the same as the fetch address register.

4. The length fetch register is used to buffer all
word length transfers from the requesting units
(DRU and PCU) and to buffer the word fetched from
memory. The contents of this register are routed to
CW register to construct the memory control word
and to control logic for executing the update of the
fetch address and fetch length registers and for de­
termining job termination.

5. The length store register is used to buffer all
word length transfers from the storage queue and to
buffer the word length update for each word stored
to memory. The use of the contents of this register
is the same as the length fetch register.

5010796-001

6. The limit comparator and decode logic is re­
sponsible for comparing the six most significant bits
of address in the fetch address or store address reg­
ister with address limits supplied by each MCM in
the memory system. The output of the comparator is
decoded to select one of eight memory buses.

7. The bus address fetch and bus address store
registers are used to buffer one to eight possible
memory bus signals from the limit comparator and
decode logic.

8. The control word register is used to assemble
memory control word for transfer to selected MCM.
It is also used to assemble an error word for transfer
to requesting unit if a memory related error is de­
tected by the MAU during a fetch or flashback oper­
ation.

9. The output register is used to buffer data trans­
fers from requesting unit of CPM to memory.

I 0. The input register is used to buffer data trans­
fers from memory to requesting unit.

11. The parity check and generate logic is re­
quired to generate odd parity for all words being
transferred to memory and to check for odd parity
of all words being fetched from memory. Also. this
section is required to generate odd parity for each of
the six syllables of the program word being trans­
ferred to PCU.

12. The residue check logic is responsible for
checking and verifying the residue bits of the mem­
ory addresses transferred from the requesting units.

When a requesting unit of the CPM requires the
services of the MAU. it is required to raise its re­
quest line to the MAU and place a 20-bit address
(plus residue). length information. and control infor­
mation on its interface lines to the MAU.

When the requesting unit has priority. the MAU
loads the above information into its respective regis­
ters and control flip-flops and performs one of the
following operations:

I. Single data word fetch.
2. N-length data word fetch.
3. N-length overwrite.
4. Single-word overwrite.

Upon determining the type of operation requested.
the MAU constructs a memory control word (MCW)
and transfers it to memory. (See figure 3-2-26 for the
format of the MCW.) Upon transferring the MCM to
memory. the MAU is required to perform one of the
operations listed below:

I. If a single word store operation was specified.
the MAU raises its request line to the specific
MCM. In order to alternately transmit the MCW and
the data word to be stored. the MAU continues to
transmit the MCW. followed by the data word to be
stored. until an acknowledge signal is received from
the MCW.

3-247

PCU (FOR
SYL PARITY)

FROM
CONTROL

LOGIC. ADDA. ---~
REG. AND

LEN. REG.

PCU.DRU

STORAGE
QUEUE

ET1281

FETCH
ADDRESS
REGISTER

STORE
ADDRESS
REGISTER

STORAGE
QUEUE

UPPER LIMITS

LOWER LIMITS

ADDR. LIMITS

ADDRESS
COMPARATOR

BUSADDR.
FETCH REG.

BUS ADDR.
STORE REG.

PCU,DRU
LENGTH
FETCH

REGISTER I------~~ REG

TO
CW REG.
FAIL REG.
ADDA. COMP.
(ADDA. LIMITS)

STORAGE
QUEUE

LENGTH
STORE

REGISTER

PRIORITY
CONTROL

DRU PCU SQ
REQUEST REQUEST REQUEST

Figure 3-2-25. Memory Access Unit, Block Diagram

TIMING
AND

CONTROL

MEMORY
CONTROLS

TO
MEMORY

TO
DRU,
PCU,
SQ

50 49 48 47 46 45 43 42 41 36 17 16 15 5 0
T T R T T I

MI IL
E Ml WORD IL p T s F R M s

A R y p B I I ~ I ADDRESS I ~ I s I LENGTH Is
R 0 0 0 I p E L L D Bl B I w E c I I u
T

l l y 1 1 E

OPCODES

47 46 45 43 42 41 OPERATION

0 0 0 0 0 SINGLE DATA WORD FETCH

0 0 0 0 0 0 N·LENGTH DATA WORD FETCH

0 0 0 0 FAIL REGISTER FETCH

0 1 0 0 SINGLE·WORD OVERWRITE WITH FLASHBACK (READ WITH LOCK ONLY)

0 0 0 0 0 N·LENGTH OVERWRITE

0 0 0 0 SINGLE·WORD OVERWRITE

0 0 1 0 LOAD REQUESTOR INHIBITS

0 0 0 LOAD MEMORY LIMITS

ET1285

Figure 3-2-26. Control Word Format

3-248

2. If a multiple word store operation is specified.
the MAU raises its request line to the applicable
MCM. and then sends the MCW to the MCM. When
the MCM acknowledges receipt of the MCW. the
MAU begins the data transfer under the control of
the send data signal.

3. If a fetch operation is specified. the MAU
raises its required line and sends the MCW to the
applicable MCM. When the MCM acknowledges re­
ceipt of the MCW. the MAU enables its memory re­
ceiver circuits. Information from the MCM can now
be accepted by the MAU. However. the MCM is re­
quired to transmit a data present strobe to the MAU.
causing the information present on the memory bus
to be transferred to and detected by the MAU. The
data present strobe is required for each word trans­
ferred from memory to the MAU.

While performing a data transfer the MAU is re­
quired to detect and/or report the following memory
error conditions:

I. Invalid address (IVE) is declared if the address
in the store address register compares with the ad­
dress limits of more than one or no MCM. (This er­
ror condition causes termination of the memory ac­
cess operation.)

2. Residue address error (RAE) is declared if the
MAU receives a requesting unit address whose
residue bits do not agree with its address configura­
tion.

5010796-001

3. Parity error fetch (PEF) is decl11red if a fetch of
data from MCM is received by the MAU with incor­
rect parity.

4. Parity error store (PES) is declared if a data
transfer from the storage queue is received by the
MAU with incorrect parity. The data with incorrect
parity is transferred to the MCM.

5. Time out error fetch (TOF) and time out error
store (TOS) are declared if the MAU receives no ac­
knowledged signal (ACK) from the MCM during a
writing period not to exceed two milliseconds.
(These error conditions cause termination of the
memory access operation.)

6. Fail I fetch (FI F) and fail I store (FIS) are de­
clared when the selected MCM responds with a fail
I (uncorrectable error) indication to the CPM.

If a memory related error is detected by the MAU
during a fetch or flashback operation. the word.
which is involved at the time the failure. is replaced
by an error word. This error word. which is a copy
of the control word. is contained in the control word
register. then transferred with other related informa­
tion to the unit (PCU and DRU) that is to receive
the expected memory word. (See figure 3-2-27 for
format of the error word.)

3-249

52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 17 16
p T T N T I
A T 0 I
R R y s T F R M T p F R Ml I I I p p B I L 0 A L A : I ADDRESS I T w E E u L L E R 1 E s y

T
SET TO

IDENTIFY
AN ERROR

WORD

OPCODES

l J

47 46 45 43 42 41

\.

c
E
D

OPCODES
'------v----'
ERROR CODES

(SEE NOTE BELOW)

0 0 1 0 0 0 SINGLE DATA WORD FETCH

0 0 0 0 0 0 N·LENGTH DATA WORD FETCH

0 1 1 0 0 0 FAIL REGISTER FETCH

I I
l l

R

1 0 1 1 0 0 SINGLE-WORD WITH FLASHBACK (READ WITH LOCK ONLY)

1 0 0 0 0 0 N·LENGTH OVERWRITE

0 1 0 0 0 SINGLE·WORD OVERWRITE

1 0 0 1 0 LOAD REQUESTOR INHIBITS

1 0 1 0 .0 1 LOAD MEMORY LIMITS

ERROR CODES

40 39 38 37

1 0 0 0 TIMEOUT ERROR

0 0 0 WRONG PARITY ON A
FETCH FROM MEMORY

0 0 1 0 FAIL 1 INTERRUPT

0 0 0 ADDRESS RESIDUE ERROR

PARITY
CORRECTION BITS

14131211

0 0 0

0 1 0 0

0 0 1 0

0 0 0

E

NOTE: THE ERROR CODES AND CORRESPONDING PARITY
CORRECTION BITS ARE APPLIED DIRECTLY TO
CW REGISTER.

ET1288

Figure 3-2-27. Error Word Format

3-2-50

s
I
D

15 14 11 10

u

p
A

R
I
T

y
E

~
PARITY

CORRECTION
BITS

5 0
T 1 I

Ml WORD IL
s I LENGTH Is
Bl IB
l 1

SECTION 3

INTERRUPTS

IN'TRODUCTION

An interrupt is a means of diverting a processor
temporarily from the job which it is doing if ce.rtain
predetermined conditions occur, so that some higher
priority job may be done immediat~ly. Interrupts are
processed by the interrupt handhng mechamsm of
the MCP. When the interrupt has been processed,
the MCP will (if conditions permit) reactivate the in­
terrupted process.

The interrupt handling mechanism of the MCP
deals with two classes of interrupts: hardware inter­
rupts and software interrupts. Hardware interrupts
are generated automatically by the B 7800 system
(when interrupt conditions occur) and are processed
by the MCP interrupt procedure. Software interrupts
are programmatically defined, and are used b?th .by
the MCP and by object programs for commumcatl~n
between processes. This discussion deals only with
hardware interrupts.

HARDWARE INTERRUPT SYSTEM

The B 7800 hardware interrupt system is a primary
interface between the MCP and the hardware. Inter­
rupt conditions may be detected by the Central Pro­
cessor Module (CPM), the Input/Output Module
(IOM), or the Memory Control Module (MCM).
When detected, interrupt conditions are processed
by the Fault Control Logic of the CPM. Normally,
the CPM prepares the stack for procedure entry,
places the necessary parameters in the stack, and
causes an entry into the MCP interrupt procedure.

CPM STATES AND MODES

The CPM operates in either of two states: control
state, used only by the MCP; or normal state, used
both by user programs and by the MCP. Normal
state is always used when executing user programs.
Control state is used when executing certain portions
of the MCP, including the MCP interrupt. handling
procedure. In the control state, External interrupts
and Interval Timer interrupts are inhibited (except
during an IDLE or PAUS instruction) and the CPM
may execute privileged instructions which it may not
execute in normal state.

In addition to the two states, the CPM can be in
any one of four interrupt handling modes: Normal
Mode (Control Mode 0), Control Mode 1 (CM 1),
Control Mode 2 (CM2), and Control Mode 3 (CM3).

5010796-001

The CPM operates in normal mode until an interrupt
condition is detected. Control modes 1 through 3 al­
low for recursive attempts to enter MCP interrupt
handling procedures by the fault control logic of the
CPM. The CPM halts if these attempts not success­
ful. The CPM will return to Normal Mode if an in­
terrupt condition is handled successfully in CM 1,
CM2, or CM3.

There is no direct connection between the states
of operation and the modes of operation of the CPM.
The CPM may be in control or in normal state while
in any control mode. In a system which contains
more than one CPM, any or all of the CPMs may
operates in control state or normal state, as well as
in any of the interrupt modes. The CPM states are
described below; the interrupt modes are further de­
scribed in the discussion of interrupt processing.

Control State
Entry into control state (from normal state) occurs

when the MCP enters or returns to a control state
procedure (an MCP SA VE procedure), or when the
CPM executes a Disable External Interrupts
operator (DEXI). (Control state procedures have bit
19, the N bit, of the PCW set.) While the CPM is
operating in control state the reporting of external
interrupts to the MCP interrupt handling routine is
disabled. Additionally, the CPM may execute certain
privileged operators while in control state which may
not be executed in normal state. When the CPM is
operating in control state the control state flip-flop
(XPST) is set and an inhibit interrupt condition is en­
abled (except during an IDLE instruction).

The interrupts which are inhibited while in control
state include the Channel interrupts, the IOM Error
interrupts, and the Interval !imer int~r1:11P!· . Al­
though the processing of these interrupts is inh1b1ted,
the appropriate bit in the CPM Interrupt (Fault) reg­
ister will be set if one of these interrupts is detected,
and the interrupt will be processed when the CPM
enables External interrupts either by returning to
normal state or by executing an IDLE or PAUS op­
erator.

The Egg Timer interrupt and PROC to PROC I
alarm bits. although External interrupts in priority. is
not inhibited in control state.

The operators which are enabled only when the
CPM is in control state include Set Interval Timer
(SINT), Inhibit Parity (IGPR). Set Memory Inhibits I
(SINH). and Set Memory Limits (SML T). Also,
B 7800 operators TCOD, SMMD, and ACDB are en­
abled when CPM is in control state.

3-3-1

Normal State

Return to normal state (from control state) occurs
whenever the MCP initiates or returns to a normal
state procedure (non-SA VE procedure), or when the
CPM executes an Enable External Interrupt operator
(EEXI). (Normal state procedures have bit 19, the N
bit. of the PCW reset.) When the CPM is operating

I in normal state, the processor state flip-flop (XPST)
is reset. When a CPM returns to normal state after
servicing an interrupt, it does not necessarily return
to the program which was executing when the inter-
rupt was detected. The selection of the job to be run
is a function of the MCP.

FAULT CONTROL LOGIC

The fault control logic of the CPM contains four
registers which are used to record and process hard­
ware interrupts: the Fault register, Fault Mask regis­
ter, Processor Fail register and Control Mode regis­
ter. The Fault register is used to indicate the detec­
tion of one or more interrupt conditions (one bit for
each condition). The Fault Mask register is used to
inhibit (mask out) the processing of one or more in­
terrupt conditions. (The Fault register may be read
in such a way as to obtain only interrupt conditions
which are not masked out; thus indicating an inter­
rupt condition which must be processed by the
MCP.) The Processor Fail register further identifies
errors which are internal to the CPM and CPM­
MCM interface errors. The Control Mode register is
used to identify the interrupt mode (Normal, Control
Mode 1, Control Mode 2, and Control Mode 3) in
which the CPM is operating.

In addition to the CPM registers, a Memory Fail
Register in each Memory Control Module (MCM) is
used to give detailed information about memory-re­
lated failures concerning that MCM. (Discussion of
the MCM fail register is given in Chapter 5 of this
manual.) For IOM error interrupts, detailed informa­
tion about the IO M failure is given in Chapter 4 of
this manual.

Fault Register

The Fault register contains one bit each of the
possible interrupt conditions. (See table 3-3-1.) The
low order bits of the register are associated with in­
terrupts which have the highest priority for process­
ing by the CPM; the high order bits are associated
with interrupts which have the lowest priority. When
interrupt conditions are detected, the bits associated
with those conditions are set in the Fault register.

Normally, the Fault register is set by the interrupt
condition. As each interrupt condition is processed,

3-3-2

the bits in the register are selectively reset. Program­
matic control of the Fault register is accomplished
by use of the Set Processor Register (SPRR) and
Read Processor Register (RPRR) operators. The
RPRR operator causes the contents of the register to
be placed in the stack, and the register itself to be
reset. The SPRR operator causes an inclusive OR
setting of the register; that is, bits are set, but bits
which already are set are not reset.

Fault Mask Register

The Fault Mask register allows the processing of
certain interrupts to be inhibited or deferred. Alarm
interrupts, Syllable interrupts, and the Egg Timer in­
terrupt may not be masked. The Special interrupts
and the other External Interrupts have a correspond­
ing bit in the Fault and Fault Mask registers (table
3-3-1). An interrupt condition will only be recognized
by the CPM if the Fault Mask register bit for that
condition is set (logical one). If the Fault Mask bit
is reset for an interrupt condition, that interrupt bit
will still be recorded in the Fault register but will go
unnoticed by the fault control logic. If the mask con­
figuration is later changed, then interrupts (including
those resident in the Fault register when the mask is
changed) which are now unmasked will be recog­
nized and processed. In this way, processing of se­
lected interrupts can be deferred.

The Fault Mask register may only be set program­
matically. The Read Processor Register operator
causes a simple read of the register (without reset);
the Set Processor Register operator causes a simple
set of the register (each bit is set either to logical
one or to logical zero).

Interrupt Identification

Each interrupt condition reported to the MCP is
identified by a unique literal value, known as inter­
rupt parameter Pl. (See table 3-3-1.) This parameter
is passed to the MCP interrupt procedure by the
fault control logic to identify the condition which is
to be processed. The Pl parameter is derived from
the contents of the Fault and Fault Mask registers
through a series of gates. Interrupt conditions re­
ported in the Fault register which are not masked
out by the Fault Mask register are used to make up
the Pl parameter.

Normally, this parameter is read and placed into
the stack by the fault control logic, although it may
be read into the stack programmatically. In either
case, the resultant action is as follows. The value of
Pl is read into the stack and the bits which were set
in Pl are reset in the Fail register. In a particular Pl
parameter, all interrupts of a particular priority level

Table 3-3-1. B 7800 Interrupt Bit Assignments

Fault Fault Mask Interrupt Ident. (Pl)
Register Register (Bit)

Interrupt (Bit) (Bit)

Alarm (First Priority)

Loop (LOP) 0 N 0

Memory Parity (MP A) 0 1

Memory Fail 1 (FLl) 2 N 2

Invalid Address (No Access) (NAM) 3 E 3 Plus Bit 2S

Stack Underflow (SKU) 4 4

Invalid Program Word (!PW) s 5

Processor Internal (PI) 6 6

Syllable (Second Priority)

Memory Protect (MPR) 9 0

Invalid Operand (NVOJ 10

Divide By Zero (DBO) 11 2

Exponent Overflow (XOV) 12 N 3 • Exponent Underflow (XUN) 13 0 4 Plus Bit 24 or

N Bit 23 (See Note)

E

Invalid Index (NVX) 14 s • Integer Overflow (NTO) lS 6

Bottom of Stack (BSK) 16 7

Presence Bit (PB) 17 8

Sequence Error (SEQ) 18 9

Segmented Array (SEG) 19 10

Programmed Operator (PGO) 20 None

Privileged Instruction (PYO) 21 11

Special

Stack Overflow (Third Priority) (SKO) 24 24 1

Interval Timer (Fifth Priority) (INT) 23 23 0 Plus Bit 22

External (Fourth Priority)

Channel 0 (CO) 26 26 0

Channel 1 (C 1) 27 27 1

Channel 2 (C2) 28 28 2

Channel 3 (C3) 29 29 3

Channel 4 (C4) 30 30 4

Channel S (CS) 31 31 s
Channel 6 (C6) 32 32 6

Channel 7 (C7) 33 33 7 Plus Bit 21

!OM Error 0 (EO) 34 34 8

IOM Error 1 (El) 3S 3S 9

IOM Error 2 (E2) 36 36 10

IOM Error 3 (E3) 37 37 11

CPM Error 4 (E4) 38 38 12

~ I CPM Error S (ES) 39 39 13
CPM Error 6 (E6) 40 40 14 Also responded to in control state.

CPM Error 7 (E7) 41 41 lS

Egg Timer None None None

NOTE

On syllable interrupts ID Bit 24 indicates class l interrupt (PIR, PSR, PSDI, PBR have not been modified,

ID Bit 23 indicates class 2 (PIR, PSR, PSDI, ·and PBR are undefined).

5010796-001 3-3~3

which are not masked out are reported, but only one
priority level is reported on each read. The priority
level reported will be the highest priority level for
which there is at least one bit set in the Fault regis­
ter which is not masked out. If the value of the Pl
parameter is read programmatically (using the Read
Processor Register operator), and if there are no un­
masked interrupts to report, a word of all O's is read
into the stack. (The fault control logic will read Pl
only when there is an unmasked interrupt to report.)

Processor Fail Register

The Processor Fail register (table 3-3-2) provides
specific information about processor internal inter­
rupts. The type of processor internal interrupts is
identified by one of twelve bits in the Processor Fail
register. These bits are Store Queue Error (SQ),
DRU Write Level Interrupt (RWI), DRU Evaluate

3-34

Interrupt (REI), EU Subunit Error (EUl, EUO), EU
CDB Parity (ETO), General EU parity Error (ETl),
PCU PROC. INT (PCU), PIR Residue Error (PIR),
Job Number (JOB), MAU Residue Error (MAR),
and MAU Store Parity Error (MSP). Usually only
one of these bits is set for a given internal error.
However, it is conceivable to have a MAR error oc­
cur during a memory fetch operation and then to
have it replaced in the Processor Fail register by an­
other failure in a subsequent processor operation. It
can be determined that a MAR error occurred during
a fetch and was the cause of the processor interrupt
by observing that P2 interrupt parameter contains a
MAU error word in which bit 37 is on. (See figure
3-2-28.)

The Processor Fail register contains several bits
which are useful in analyzing MAU detected errors.
Whenever the MAU detects an error, the MAU
loads the Box number, the most significant six bits

Table 3-3-2. Processor Fail Register

Processor Fail
Register

(Bit)

3:4

9:4

11:2

12

13

14

15

16

17

18&21:2

Description

Box Number (BN)

Memory Address (MA)

MAU Requester:

MUI MUO

0 1 STORE QUEUE

0 DRU

PCU

MAU Residue Error (MAR)

MAU Store Parity Error (MSP)

MAU Single Error (MSE)

MAU Wrong Channel

Spare

Store Queue Error (SQ)

DRU Write Level Interrupt (RWI) and

Error Type (RTl, RTO):

RTl RTO

0

0

5010796-001

0 =

1

0

Parity error from compare

level categories, or parity

error from RWJ, RWR,

or RWQ, or residue error

from RCD (39:20) or

RCD (35: 16) or MAU

reports processor

internal (from control

word).

Residue error from RWA.

Parity error from RWD.

Parity error from compare

level command or variants,

or more than one copy of

an address in the address

array (loaded into ROC,

RlC, R2C, and R3C).

Processor Fail
Register

(Bit)

19 & 21:2

23:2

25:2

26

27

28

29

Description

DRU Evaluate Interrupt (REI) and Error

Type (RTl, RTO):

RTl

0

0

1

RTO

0

0

Parity error from RDB,

RSB, or routine table

categories.

Residue error from RED,

REA, or REL.

Parity error from RED or

REL.

Parity error from operator

or routine level categories,

or parity error from

routine level operator, or

parity error from CRRR or

CRRE, or parity error from

RRR (routine), or parity

error from routine hold

and end categories, or

parity error from AC

operator (RACQ), or

parity error from address

couple categories.

EU Subunit Error (EUl, EUO):

EUl EUO

0 1

0

SAU

ALU

Barrel

EU Parity Error (ETl, ETO)

ETl ETO

0 ESXor

ER parity

error

0 EASor

EW parity

error

CERor

ESX parity

error

PCU PROC. INT. (PCU)

PIR Residue Error (PIR)

Job Number Parity Error (JOB)

Non-Recoverable State (MES)

3-34A

of memory address, and the MAU related informa­
tion into the Processor Fail register. When the Pro­
cessor Fail register is read by using the Read Proces­
sor Register operator, the Processor Fail register is
cleared.

When an alarm interrupt occurs during a store
type operation in the MAU, the processor interrupts
immediately. However, the MAU may detect more
than one error on fetch operations before the Proces­
sor Fail register is read because the MAU errors do
not necessarily result in interrupts until an attempt is
made to process the memory word involved at the
time of failure. In some cases, the memory word is
never used because a conditional branch is taken or
because it is an unused portion of an eight-word
fetch.

When information regarding a MAU-detected error
is loaded into an empty Processor Fail register, the
MAU Single Error (MSE) bit is set. If a subsequent
MAU error occurs before the Fail register is cleared,
the MAU will overwrite the previous information in
the Fail register and reset MSE. Thus, MSE reset in
the Fail register indicates that the MAU and memory
information may not correspond to the failure that
caused the interrupt.

The MSE bit in the Processor Fail register indi­
cates whether all information necessary to retry an
operation has been preserved by the EU when an
alarm interrupt occurs. If an alarm interrupt occurs,
such as Processor Internal, and the MCP finds MES
reset, instruction retry will be attempted.

Control Mode Register

The Control Mode register indicates the interrupt
mode in which the CPM is operating. The use of in­
terrupt modes provides for recursive entries into the
fault control logic. The progression to higher inter­
rupt modes is controlled automatically by the hard­
ware. In addition, programmatic control of the Con­
trol Mode register may ·be accomplished by use of
the Read Processor Register and Set Processor Reg­
ister operators.

The Control Mode register contains two bits which
display the interrupt modes of the CPM as follows:

XCMOl XCMOO

0

0
0

I

0

Normal Mode
Control Mode 1 (CMl)

Control Mode 2 (CM2)
1 1 Control Mode 3 (CM3)

The CPM will be halted with the last interrupt dis­
played in the Fault register if an interrupt is detected
in CM3.

The CPM operates in Normal Mode while not at-

tempting to process an interrupt. When an interrupt
condition is detected, the CPM advances to CMl
and attempts to call the procedure pointed to by D
[0] +3 (the MCP interrupt procedure) from the stack
of the user program. If an interrupt is detected while
in CMl, the CPM advances to CM2, changes the
stack environment by moving to an alternate stack
(determined by indexing the stack vector by the
CPM number), and attempts to call the MCP inter­
rupt procedure again. If an interrupt condition is de­
tected in CM2, the CPM advances to CM3, changes
the entire environment by setting D [0] to the value
in the ADZ register, moves to the proper alternate
stack in the new environment and attempts to enter
the interrupt handler at the new D [0] + 3.

If still another interrupt is detected while in CM3,
it is obvious that a recursive interrupt processing sit­
uation exists, and the CPM halts. If the CPM suc­
ceeds in entering the MCP interrupt procedure, the
Control Mode register is reset to Normal Mode pro­
grammatically.

INTERRUPT PROCESSING
All interrupt conditions which are reported in the

Fault Register and which are not masked out by the
Fault Mask register are accumulated into a general
signal to alert the fault control logic of the CPM to
the fact that one or more interrupts require process­
ing. When an interrupt requires processing the CPM
will advance the Control Mode register (in most
cases frotn Normal Mode to CMl) and will attempt
to enter the MCP interrupt procedure.

Interrupt Processing in Normal
Mode

After advancing the Control Mode register from
Normal Mode to CMl, the CPM will attempt to per­
form the following sequence of operations:

1. Read and save the Pl parameter.
2. Place a Mark Stack Control Word (MSCW) into

the stack.
3. Place an Indirect Reference Word (IRW) into

the stack. The IRW references a reserved loca­
tion (D [0] + 3) in the MCP stack. (When in
Control Mode 3, the IRW references a reserved
location (D [O] + 3) in the Alternate D [0]
stack.)

4. Place the Pl parameter into the stack.
5. Place a second parameter into the stack (the P2

parameter), giving further information about the
interrupt.

6. Execute an Enter operator. The fault control
logic expects to find a Program Control Word
(PCW) at D [0] +3; however, an SIRW, an
IRW or an IRW chain which points to a PCW
are possible conditions.

3-3-5

ECT OBJ
PROG

STA
RAM (
CK

.,..

r

'-

[BOSR H
""

~ ..

P2

P1

IRW D[o)+3

MSCW

OBJECT PROGRAM CODE

J ~ I I
PBR PIR PSR

OBJECT
PROGRAM

DATA

PROCESSOR ID

.,..

INTERRUPT HANDLING PROCEDURE CODE

r~ SEG DESC. I-~ ~ I I I I I I I I I I I I I I I:
M

ST
CP
ACK (...._

'-

o[oJJ-.

OBJECT
PROGRAM

STACK

.,.

PCW j.-J

RCW

MSCW

STACK FORMAT PRIOR TO CALLING THE INTERRUPT PROCEDURE .

.,..
P2

P1 INTERRUPTED OBJECT PROGRAM CODE _,.

H I T ~

RCW
~

MSCW

PROCESSOR ID

{.,..

S~~~K

INTERRUPT HANDLING PROCEDURE CODE .. ~1----..--&-' -----t:

3-3-6

~~~~~~~~.......i 

D[o] ~ MSCW 
1--~~~~~~~-' 

PBR 
PIR 
PSR 

STACK FORMAT AFTER ENTERING THE INTERRUPT PROCEDURE 

l'lpre 3-3-1. Stack Format 



The two interrupt parameters (Pl and P2) that are 
inserted into the stack supply information describing 
the interrupt condition. The Pl parameter provides 
information concerning the type of interrupt, the in­
terrupt priority level, and the interrupt class. The P2 
parameter supplies supplementary information about 
the interrupt condition, such as a memory address 
(memory related interrupts) or a copy of the non­
present descriptor (presence bit interrupts). If P2 is 
not used by the interrupt condition being reported, 
P2 will be set to zero. 

When the interrupt procedure of the MCP is en­
tered, the IRW in the stack (step 3 above) is over­
written with a Return Control Word (RCW) by the 
ENTER operator. As with any procedure entry, this 
RCW points to the point in the code string to which 
control is to be returned following execution of the 
procedure. 

Figure 3-3-1 depicts the stack format just prior to 
and just after entering the interrupt procedure. 

Interrupt Processing in CMI 

When an interrupt is detected while in CM I, the 
CPM advances to CM2 and attempts to enter the 
MCP interrupt procedure from its alternate stack. 
The new stack is found by using the processor num­
ber as an index into the Stack Vector Array. (This 
array is pointed to by the Stack Vector Descriptor, 
located at D [OJ +2.) The index into the Stack Vec­
tor Array results in a data descriptor, which points 
to the base of the stack for the new stack. Alternate 
stacks are established by the MCP at the time of 
system initialization. 

The Bottom Of Stack Register (BOSR) is set to 
the base address of the new stack, which contains 
the Top Of Stack ConiroI Word (TOSCW) for the 
new stack. A modified move-to-stack operation then 
causes the TOSCW for the old stack, the old BOSR 
setting, and the old SNR register (stack number) set­
ting to be placed in the top of the new stack. After 
these parameters have been placed, the stack is 
marked, the IRW and the Pl and P2 parameters are 
placed in the stack, and the MCP interrupt proce­
dure is entered. The stack structure just prior to en­
tering the MCP interrupt procedure is shown in fig­
ure 3-3-2. 

Interrupt Processing in CM2 

At system initialization time, the MCP establishes 
a special CM3 operating environment at the top of 
memory. This environment includes an abbreviated 
D [OJ stack with its own stack vector and an inter­
rupt handler. The main memory address of this al­
ternate D [0] stack is loaded into the ADZ register 

-----
PZ 

OLD 
STACK 1----.-c-w----j 

MSCW 

NEW 
STACk 

pz 

Pl 

IRW 

MSCW 

OLD TOSCW 

T PROCESSOR ID:-=-1 

MCP 
STACk 

SEGMENT OESCRIPTOR 

PCW ID(0)•3) 

STACk VECTORID[O •2) 

RCW 

o[o) MSCW 

Figure 3-3-2. Stack Format Prior to Calling 

Interrupt Procedure While in CMl 
(Move Stack Operation) 

of all CPMs. When a CPM detects an interrupt while 
in CM2, the CPM advances to CM3, and changes to 
the CM3 environment by setting the D [OJ register to 
the value in ADZ. The CPM then attempts to move 
to its alternate stack in the new stack vector (at 
ADZ+2) and enter the new interrupt handler at 
ADZ+3, as described in the previous paragraphs. 

Interrupt Processing in CM3 

If an interrupt is detected while in CM3, it is obvi­
ous that a recursive interrupt condition exists. In 
such cases the CPM is halted, the most recent inter­
rupt is identified in the Fault register, and the XCM 
register equals 3. 

Control Mode Advancement 

Figure 3-3-3 illustrates the priority scheme for re­
porting interrupts, the conditions for advancing the 
Control Mode register, and the interrupt conditions 
which may be left in the Fault register for later serv­
icing. In case one, the Fault register contains an 
Alarm Interrupt (first priority) a Stack Overflow in­
terrupt (third priority), and may also contain Syllable 
interrupts (second priority), Interval Timer interrupts 
(fifth priority), and External interrupts (fourth 

3.3.7 



w w 
do 

FAULT REGISTER 
(BEFORE REPORTING INTERRUPT) 

r E s s A 
Ill IC T y L 
T T A L A 
E E c L R 
II II K A .. 
v N • IA A 0 L 
L L v E 

E 
T R 
I F 

M L 
E 0 
II w 

• • I • I 

• • I I 0 

• • 0 I 0 

• • I 0 0 

• I 0 0 0 

I 0 0 0 0 

* PROCESSOR HALTS 
• MAY BE A ONE OR A ZERO 

40H4 

CONTROL MODE 
REGISTER 

"' c c 
0 .. .. 
R I ·2 .. 
A 
L 

CMt CM2 CM3 

CM1 CM2 CM3 
CM2 CM3 * 
CM1 CM2 CM3 

CMt CM2 CM3 

CM1 - -

CM1 - -

REPORTED FAULT REGISTER 
IN (AFTER REPORTING INTERRUPT) 

c PARAMETER E r s s A .. Pl IC "' T y L 
3 T T A L A 

E E c L R 
R R K A .. 
"' v • A A 0 L 
L L v E 

E 
T R 
I F .. L 
E 0 
R w 

* ALARM • 0 I 0 0 
CASE ONE 

* SYLLABLE • • I 0 0 
CASE TWO - STACK OVERFLOW • 0 0 0 0 

* SYLLABLE • • 0 0 0 CASE THREE 

'* STACK OVERFLOW • 0 0 0 0 CASE FOUR 

- EXTERNAL • 0 0 0 0 CASE FIVE 

- INTERVAL TIMER 0 0 0 0 0 CASE SIX 

F1gure 3-3-3. Interrupt Reporting 



priority). The Alarm interrupt causes the Control 
Mode register to be advanced (from Normal to CMl, 
CMl to CM2, or CM2 to CM3), the Pl parameter re­
ports the Alarm interrupt, and the External inter­
rupts are still contained in the Fault register (all 
other interrupts are cleared from the register). 

Case two shows all priorities of interrupts except 
Alarm interrupts present in the Fault register. The 
resultant action is similar to case one, in that the 
highest priority interrupt (Syllable) is serviced first. 
Pl reports the Syllable interrupt, the Control Mode 
register is advanced, and the Stack Overflow and 
External interrupts are still contained in the Fault 
register (in this case the Interval Timer interrupt is 
also left in the Fault register). 

Following entry into the software interrupt proce­
dure, the Stack Overflow interrupt is reported by an­
other Pl, the Control Mode register is advanced, the 
Interval Timer interrupt is cleared from the Fault 
register, and the External interrupts are left for later 
servicing. The stack structure for either case one or 
case two is shown in figures 3-3-4 and 3-3-5. 

Case three of figure 3-3-3 shows a Syllable inter­
rupt (second priority), an Interval Timer interrupt 
(fifth priority), and an External interrupt (fourth pri­
ority) all present in the Fault register. In this case, 
the highest priority interrupt present (Syllable) is re­
ported in Pl, the Control Mode register is advanced, 
and the Interval Timer and External interrupts are 
left for later servicing. (The External interrupt is 
serviced first.) 

Case four shows a Stack Overflow interrupt, an 
Interval Timer interrupt, and an External interrupt 
present in the Fault register. The Stack Overflow in­
terrupt is reported in Pl, the Interval Timer interrupt 
is cleared from the register, and the External inter­
rupt is left for later servicing. 

Case five shows servicing of an External interrupt, 
leaving an Interval Timer interrupt for later servic­
ing. Case six shows servicing of an Interval Timer 
interrupt. Notice that these two cases can only occur 
when the CPM is in Normal State. (When the CPM 
advances to CM 1 and the MCP interrupt procedure 
is entered, the CPM operates in Control State and 
the recognition of Interval Timer and External inter­
rupts is inhibited.) 

Alarm Interrupts (First Priority) 

Detection of an Alarm interrupt causes an immedi­
ate entry (or re-entry) into the fault control logic. 
The Control Mode register is advanced and a Pl pa­
rameter is formed which identifies all Alarm inter­
rupts which are present in the Fault register. Sylla-

ble Dependent interrupts, Stack Overflow interrupts, 
and Interval Timer interrupts (if present) are cleared 
from the Fault register and the interval timer is di­
sarmed. The MCP interrupt procedure is entered. 

Syllable Dependent Interrupts (Second 
Priority) 

Detection of a Syllable Dependent interrupt (if no 
Alarm interrupts are present) causes an immediate 
entry (or reentry) into the fault control logic. The 
Control Mode register is advanced and a Pl 
parameter is formed which identifies all Syllable De­
pendent interrupts which are present. The MCP in­
terrupt procedure is entered. 

Special Interrupts 

Stack Overflow (Third Priority) 

All Stack Overflow interrupts are processed by the 
fault control logic and cause advance of the Control 
Mode register. All Stack Overflow interrupts cause 
the Pl parameter reporting the interrupt to be 
formed. Interval Timer interrupts (if unmasked) are 
cleared from the Fault register and the Interval Tim­
er is disarmed. The MCP interrupt procedure is en­
tered. 

Interval Timer (Fifth Priority) 

Interval Timer interrupts are cleared (and the in­
terval timer is disarmed) when an Alarm or Stack 
Overflow interrupt is reported. All uncleared Inter­
val Timer interrupts cause entry into the fault con­
trol logic if the mask is set, either in normal state or 
if executing an IDLE, in Control state. The Control 
Mode register is advanced to CMl (from Normal). 
(Interval Timer interrupts are inhibited when the 
CPM is in Control State.) The MCP interrupt proce­
dure is entered. 

External Interrupts (Fourth Priority) 

Although External interrupts can occur at any 
time, these interrupts (with the exception of the Egg 
Timer interrupts) are inhibited when the CPM is in 
Control State. If an External interrupt occurs when 
the CPM is in Normal State, the Control Mode regis­
ter is advanced to CMl and a Pl parameter describ­
ing the External interrupt is formed. Then, the Inter­
val Timer is disarmed and the MCP interrupt proce­
dure is entered. 

Memory Related Interrupts 

Memory related interrupts include Memory Parity 
errors (MPA) which are discovered by the MAU; 
Memory Fail 1 (FL 1) errors which are discovered by 

3.3.9 



3-3-10 

....--- FIRST INTERRUPT REPORTED (ALARM OR SYLLABLE DEPENDENT) 

.,.. 

------------1) SECOND INTERRUPT REPORTED (STACK OVERFLOW} 
P2 

Pl 

IRW 

MSCW 

L{. P2 

Pl 

RCW 
OBJECT 

PROGRAM MSCW 

STACK 

OBJECT 
PROGRAM 

DATA 

PROC. ID 

.,.. 

__. 
SEGMENT DESCRIPTOR --. 

MCP 
~ STACK 

PCW 

RCW 

D[oJ~ MSCW 

--- ---- INTERRUPTED OBJECT 
PROGRAM CODE 

.,.. 

1---

; 

Lo ,.. 

--

·~....___~{ LOSR l 

__ .... J INTERRUPT HANDLING I PROCEDURE CODE 

i 
PlR, PBR, PSR POINT TO FIRST 
SYLLABLE OF INTERRUPT 
HANDLING CODE 

Figure 3-3-4. Stack Format Before Re-entering Interrupt Procedure to Report Stack Overftow 



FIRST INTERRUPT REPORTED (ALARM OR S~LLABLE DEPENDENT> 

--------1 SECOND INTERRUPT REPORTED (STACK OVERFLOW) P2 } 

P1 

RCW - -THIS RCW POINTS TO FIRST SYLLABLE 

OIJECT 
PROGRAM 

STACK 

MCP 
STACK 

I 

o[o}----t 

MSCW 

P2 

Pl 

RCW 

MSCW 

OBJECT 
PROGRAM 

DATA 

PROC ID. I 

. 
SEGMENT DESCRIPTOR f-

. 
PCW 

RCW 

Mscw· 

OF tNTER~UPT HA NOL ING CODE 

l 

XNTERRUPTEO OBJECT 
PROGR .. M CO'E 

fNTERRUPT HANDLING 
PROCEDURE CODE 

PIR, PBR, PSR 

Figure 3-3-5. Stack Format After Re-entering Interrupt Procedure and Reporting Stack Overflow 

the MCM and reported to the requestor; invalid ad­
dress errors which are detected by the MAU in its 
interface with the MCMs as an NAM; and Processor 
Internal errors (Pl) which are discovered by the 
MAU in its interface with the other units of the 
CPM. It should be· noted that PI interrupt can also 
be set by other units in the CPM. These four types 
of errors are differentiated in the Pl interrupt param­
eter. Memory Fail 1 interrupts from all MCMs are 
combined into a single alarm interrupt, represented 
by bit 2 in the Fault register and the Interrupt ID. 
The identification of which MCM as involved is giv­
en in the P2 parameter or in the Processor Fail regis­
ter, depending on the type of MAU operation being 
performed. Wrong Channel Number and Memory 
Time Out error indications in the Processor Fail reg­
ister are combined into a single alarm interrupt, rep­
resented by bit. 3 (Invalid Address) in the Fault regis­
ter and the Interrupt ID. Likewise, MAU residue 
(address residue error) and Bad Parity to MAU error 

indications in the Processor Fail register are com­
bined into a single alarm interrupt, represented by 
bit 6 (Processor Internal) in the Fault register and 
the Interrupt ID. 

Explanatory information about these errors may 
be found either in P2 parameter or in the Processor 
Fail register. If P2 is not used, it will be set to zero. 

(See table 3-3-3.) 

Interrupt Descriptions 

Interrupts which can occur in the CPM are de­
scribed in the following paragraphs. The interrupts 
are described in order of their priority. Alarm inter­
rupts are described first; Syllable dependent inter­
rupts second, Special interrupts third, and External 
interrupts last. 

3-3-11 



Table 3-3-3. CPM Handling of Memory Related 
Errors 

Source of Request 
for Memory Access 

Data Reference Unit Fetch 

(includes flashback) 

Store Queue Write or Purge 

Program Control Unit Fetch 

3-3-12 

Alarm Interrupts 
(MPA, FLl, NAM, & PI) 

The error word is queued in the 

associative memory or reported 

immediately with one exception 

by the DRU if the error word is 

sent to the Central Data Buffer. 

In the latter case, the alarm 

interrupt occurs immediately. The 

Program Control Unit receives 

COB address of error word 

through the interrupt mechanism. 

In turn PCU issues to the Execution 

Unit, the address of the CDB 

location from which error word 

is to be read, the address of the 

COB location (W storage portion 

of COB) into which error word is 

to be written as the P2 parameter, 

and a micro operator for exchanging 

these COB locations. The 
exception is an invalid address 

error during a string data fetch. In 

this case, the error word is 

queued in the DRU string data file 

of COB and not reported until 
Execution Unit attempts to process 

the string data involved. The error 

word is placed into W storage 

portion of CDB in the same manner 

as explained above. 

The alarm interrupt occurs 

immediately. There is no P2 

;>arameter; rather the explanatory 

information (including the identity 

of the involved MCM) is contained 

in the Processor Fail register. 

The error word is queued in the 

program buffer and not reported 

until the Program Control Unit 

attempts to process the code string 

involved. The error word is then 

passed from PIO to a LT48 location 

in the COB and then into W 

storage portion of COB as the 

P2 parameter. 

Alarm Interrupts 

Alarm interrupts are caused by conditions which 
are unexpected by the CPM. They inform the system 
of some detrimental change in environment. In most 
cases, Alarm interrupts result from hardware fail­
ures. The Alarm interrupts cannot be inhibited, and 
always cause entry into the fault control logic. The 
fault control logic terminates the current operator, 
clears the top of stack registers, prepares the stack 
(MSCW, IRW, Pl, P2), and causes the MCP inter­
rupt procedure to be entered. When an Alarm inter­
rupt is cleared from the Fault register, all Syllable 
Dependent interrupts present in the register are 
cleared. The Alarm interrupts are: 

Loop 
Memory Parity 
Memory Fail 1 
Invalid Address (no access) 
Stack Underflow 
Invalid Program Word 
Processor Internal 

Alarm interrupts generally result in termination of 
the process involved. Exceptions are (1) during a 
halt load when the MCP uses an alarm interrupt (in­
valid address) to determine the amount of memory 
available, and (2) when instruction retry by the MCP 
is successful after a Processor Internal interrupt. 

Loop 

This interrupt occurs when the CPM has expended 
up to two seconds in the execution of one operator. 
This interrupt can be causes either by a hardware 
failure or by bad data. Should this interrupt occur, 
PIR may not be accurate. 

PARAMETER P2 

ZERO 

PARAMETER Pl 

Loop Interrupt Parameters 



Memory Parity 

This interrupt occurs if the CPM receives a 
memory word with a even number of I's. Should 
this interrupt occur, PIR points to the word contain­
ing the operator which initiated the interrupt. Suppl­
ementary information describing the error will be 
contained in the Processor Fail register. (See "Mem­
ory Related Interrupts".) 

PARAMETER P2 

MCM CONTROL WORD- IF ZERO 

SEE PROCESSOR FAIL REGISTER 

PARAMETER Pl 

L 
Memory Parity Interrupt Parameters 

Memory Fail 1 

This interrupt occurs if any of the following errors 
occur: 

1. Data word parity error 
2. Illegal operation code 
3. Address is for a different Memory Module than 

requested 
4. Data strobe error 
5. Internal control error 
6. Multiple bit data error 

In all of the above cases, supplementary informa­
tion describing the error will be contained in the 
MCM Fail register. (See "Memory Related Inter­
rupts".) 

PARAMETER P2 

MCM CONTROL WORD - IF ZERO 

SEE PROCESSOR FAIL REGISTER 

PARAMETER Pl 25 2 BIT 

M H _____ ___._.____.M I 
Memory Fail 1 Interrupt Parameters 

5010796-001 

Invalid Address 

This interrupt occurs when the CPM attempts to 
access a memory address which is not available to 
the system. The Memory Module may not exist or 
it may be inoperative. Supplementary information is 
placed in the Processor Fail register. (See "Memory 
Related Interrupts".) 

PARAMETER P2 

MCM CONTROL WORD- IF ZERO 

SEE PROCESSOR FAIL REGISTER 

PARAMETER Pl 

Invalid Address Interrupt Parameters 

Stack Underflow 

This interrupt occurs if the CPM attempts to move 
the top of stack (S register setting) to an address le.ss 
than the address of the most recent MSCW (F regis­
ter setting) during a stack adjustment. This could oc­
cur as a result either of a compiler error or a hard­
ware control failure in executing MKST, EXIT, or 
MYST (all of which change F setting and could cal­
culate an incorrect address). 

PARAMETER P2 

ZERO 

PARAMETER Pl 25 4 BIT 

N \1.____.,.------,.~=I 
Stack Underflow Interrupt Parameters 

Invalid Program Word 

This interrupt occurs under any of the following 
conditions: 

1. An attempt is made to execute a program word 
which does not have a tag of 3 (or tag of 0 if 
in Edit mode). 

3-3-13 



2. The Variant code (Escape to 16-bit Instruction, 
VARI) is detected as the second syllable of a 
Variant operator. 

3. An attempt is made to execute an operator 
which is considered illegal in Edit mode or 
Vector mode. 

PARAMETER P2 

ZERO 

PARAMETER Pl 

Invalid Program Word Interrupt Parameters 

Processor Internal 

This interrupt occurs whenever an internal logic 
failure is detected within the CPM. The Processor 

I Fail register provides information regarding the fail­
ure. For further information regarding memory re­
lated Processor Internal interrupts, see "Memory 
Related Interrupts''. 

PARAMETER P2 

MCM CONTROL WORD - IF ZERO 
SEE PROCESSOR FAIL REGISTER 

I OR ERROR WORD FROM DRU OR EU 

PARAMETER Pl 25 6 BIT 

..____.___M ~_...____,, 
PROCESSOR INTERNAL INTERRUPT PARAMETERS 

ET168S. 

Syllable Dependent Interrupts 

Syllable Dependent interrupts generally result 
from programming errors. These interrupts cannot 
be inhibited, and always cause entry into the fault 
control logic. The fault control logic terminates the 
current operator, prepares the stack (MSCW, IRW, 
Pl, P2), and causes the MCP interrupt procedure to 
be entered. The contents of the top of stack registers 
may or may not be saved, depending upon the type 
of interrupt. 

3-3-14 

, Syllable Dependent interrupts are divided into two 
cl~sses. Class 1 interrupts (identified by the setting 
of pit 24 of parameter Pl) are those interrupts in 
which the values of PIR, PSR, PBR, and PDR have 
not been modified by the operator. Class 2 interrupts 
(identified by the setting of bit 23 of of parameter 
Pl) are those interrupts in which the value of PIR, 
PSR, PBR, and PDR have been changed. Thus, class 
1 interrupts permit the operator to be re-executed; 
class 2 interrupts prohibit the operator from being 
re-executed. 

Most Syllable Dependent interrupts occur as class 
1 interrupts. The only Syllable Dependent interrupts 
which can occur as class 2 interrupts are the Invalid 
Index, Bottom of Stack, and Sequence Error inter­
rupts. The Syllable Dependent interrupts are: 

Memory Protect Integer Overflow 
Invalid Operand Bottom Of Stack 
Divide By Zero Presence Bit 
Exponent Overflow Sequence Error 
Exponent Underflow Segmented Array 
Invalid Index Programmed Operator 

Privileged Instruction 

Memory Protect 

This interrupt occurs when one of the following 
occurs: 

1. A store, overwrite, read/clock, or string trans­
fer operation is attempted using a data descrip­
tor that has the read only bit (bit 43) set. The 
operation is terminated before the memory ac­
cess. The data descriptor is used as the P2 pa­
rameter, except for string transfer. 

2. A store operation is attempted into a word iil 
memory that has a tag field representing a 
PCW, RCW, MSCW, or segment descriptor 
(tag = 3, 7). The memory write is discontinued 
when bit 48 is detected in the code word being 
referenced. The flashback is used as the P2 pa­
rameter. 

PARAMETER P2 

DATA DESCRIPTOR WITH BIT 43 SET, OR MEMORY 
WORD WITH THREE TAGS, OR NUMBER OF ITEMS 

BELOW THE MSCW NEEDED TO GET THE DATA 
DESCRIPTOR 

PARAMETER Pl 24 0 BIT 

~ }{ ____ ] 
Memory Protect Interrupt Parameters 



INFORMATION ON THIS PAGE DELETED 

5010796-001 3-3-15 



Invalid Operand 

This interrupt occurs when the CPM attempts to 
execute a valid operator on data which is invalid for 
that operator or attempts to execute the invalid oper-
ator NVLD. Each operator executes checks to en-
sure that control words and data meet the necessary 
requirements of the operator. Should this interrupt 
occur PIR and PSR are left pointing to the current 
syllable. 

PARAMETER P2 

INVALID DATA, OR ZERO 

PARAMETER Pl 
24 

M !{ 
Invalid Operand Interrupt Parameters 

Divide By Zero 

This interrupt occurs when a division operation is 
attempted with the divisor (contained in the top of 
stack) equal to 0. Should this interrupt occur, PIR 
and PSR point to the initiating operator, and the di­
visor and dividend will be left on the top of the stack 
(below the MSCW, RCW, Pl, and P2). 

PARAMETER P2 

ZERO 

PARAMETER Pl 24 2 BIT 

M I 
Divide By Zero Interrupt Parameters 

Exponent Overflow 

This interrupt occurs when the capacity of a 
positive sign exponent field is exceeded for either 
single or double precision arithmetic results. Should 
this interrupt occur, PIR and PSR point to the initi­
ating operator. 

3-3-16 

PARAMETER P2 

ZERO 

PARAMETER Pl 24 3 BIT 

L M }f MJ 
Exponent Underflow 

Thi.s in~errupt occurs when the capacity of a 
n~gattve sign exponent field is exceeded for either 
s1~gl~ or double precision arithmetic results. Should 
th~s mterrupt occur, PIR and PSR point to the initi­
atmg operator. 

PARAMETER P2 

L ZERO 
__ __J 

PARAMETER Pl 
24 

------~] 
Exponent Underflow Interrupt Parameters 

Invalid Index 

This interrupt occurs if an attempt is made to in­
dex a descriptor by an amount which is less than O 
or which is greater than or equal to the upper bound 
(length) in any of the following operations: 

Occurs Index 
Linked List Lookup 
Index 
Move Stack 
Display Update 
VALC 
Stuffed IRW (pseudo operator) 
Index and Load Name 
Index and Load Value 



If this interrupt occurs, the operation is terminated 
prematurely. The input operands will be left on the 
top of the stack (below the MSCW, RCW, Pl, and 
P2). Except for Display Update, all operations in the 
list above will cause PIR and PSR to point to the 
initiating operator. The interrupt occurs as a class 2 
interrupt (bit 23 = 1) if an attempt is made to index 
the Stack Vector Array descriptor (D [0] + 2) during 
a . display update operation using a stack number 
which is greater than or equal to the length field of 
the Stack Vector Array descriptor. 

NOTE 
Bit 23 and bit 24 may not be set simul­
taneously. 

PARAMETER P2 

DATA DESCRIPTOR, MSCW, OR SIRW 

PARAMETER Pl 2423 5 

--l+IK M 

Invalid Index Interrupt Parameters 

Integer Overflow 

BIT 

I 

This interrupt occurs upon detection of the at­
tempted use of an operand which exceeds the 
maximum integer value (2 88 -1) by an operator which 
requires an integer. The following is a partial list of 
operators which may cause this interrupt to occur: 

Integer Divide 
Integerize Truncate 
Integerize Rounded 
Occurs Index 

PARAMETER P2 

ZERO 

PARAMETER Pl 
------... 2~4-- ,..---r6..------.BIT 

Lo----~~ ~ M I 
Integer Overflow Interrupt Parameters 

Bottom of Stack 

This interrupt occurs if a Return operator or an 
Exit operator causes the program stack to be cut 
back to its base. (The F register points to the 
MSCW located at the BOSR setting plus 1.) The P2 
parameter will be a copy of the MSCW being cut 
back. 

This interrupt occurs as a class 2 interrupt (bit 23 
1). 

PARAMETER P2 

MSCW BEING CUT BACK 

PARAMETER Pl 

Bottom Of Stack Interrupt Parameters 

Presence Bit 

This interrupt occurs when an attempt is made to 
access a word or group of words which are not pres­
ent in main memory. All operators that access mem­
ory with descriptors may be interrupted with this in­
terrupt. The interrupt occurs if an attempt is made 
to reference memory through a descriptor which has 
the presence bit (bit 47) reset, indicating that the de­
scriptor points to words which are not present in 
main memory. There are two classes of presence bit 
interrupt conditions; data dependent and procedure 
dependent. 

DATA DEPENDENT 

Data dependent presence bit interrupt conditions 
occur when the CPM is seeking data from within its 
current addressing environment. In all cases except 
Value Call, recovery is achieved by re-executing the 
operator upon return from the MCP interrupt proce­
dure. The MCP interrupt procedure makes the ab­
sent words present before return is made to the in­
terrupted program. To permit this re-execution, the 
PIR and PSR settings for the current operator are 
saved in the RCW. Value Call always sets this RT 
bit for data dependent interrupts; however, Value 
Call never sets this RT bit for procedure dependent 

3-3-17 



. interrupts. Value Call or pseudo value call will al­
ways tum on the VS bit (bit 39) and cause the V bit 
in the MSCW to be turned on. Figure 3- 3-6 illus­
trates the PIR, PSR, Exit/Return, RT, VS, and RE 
bit relationships in the various presence bit interrupt 
conditions. 

Accidental Entry 

Procedures which have been entered accidentally 
during the V ALC operator also require special con­
sideration for the manipulation of PIR and PSR set­
tings for the RCW. The V ALC operator is com­
pleted after the return operator mechanism when re­
turning from an accidentally entered procedure. A 
pseudo value call operator provides the ability to 
continue searching an IRW or data descriptor chain 
until an operand is located. The pseudo value call 
operator is activated at the end of a normal return 
operator if the V bit of the MSCW has been set. The 
V bit is set when either a V ALC or pseudo value 
call operator enters a procedure accidentally. If a 
not present segment descriptor causes an interrupt 
during a return from an accidental entry of value 
call, a pseudo RT bit (Bit 45) is turned on in Pl so 
the presence bit procedure will finish with a return 
instead of an exit if the VS (Bit 39) is also on. The 
RT bit and pseudo RT bit are used by the software 
to execute the proper code. The V bit is used by the 
hardware to change the return into a pseudo value 
call so that IRW or data descriptor chain may be 
chased. 

PIR and PSR values, pointing to the next operator 
syllable, are inserted into the RCW for V ALC while 
the PIR and PSR values from the old RCW are in­
serted into the RCW for a value call pseudo 
operator. 

All other operators which may incur accidental en­
tries are restarted; therefore, the PIR and PSR set­
tings which point to the current operator syllable are 
saved in the RCW. The V bit is set to zero. 

Procedure Dependent 

Procedure dependent interrupts occur when the 
CPM is attempting to enter a new addressing envi­
ronment, or attempting to return to an old ad­
dressing environment. These interrupts occur during 
display update, and also when trying to process a 
non-present segment descriptor. Recovery is 
achieved by the Exit operator or the Return operator 
after the MCP interrupt procedure has made the ref­
erenced environment present. Because the CPM has 
not yet fetched the first operator of the new proce­
dure when this interrupt occurs, the PIR and PSR 
settings from the PCW (for entry) or the RCW (for 
return) are stored in the RCW which is made when 

3-3-18 

the MCP interrupt procedure is entered. Thus, when 
the referenced environment is made present, the en­
try or return is to the referenced environment. 

Program Restart 

Following a Presence Bit interrupt, a program may 
be restarted either by executing a Return operator or 
an Exit operator .. The Return operator must return 
either an IRW or a Data Descriptor. The RT bit of 
the Pl parameter (bit 46) indicates to the MCP inter­
rupt procedure whether to perform an Exit operator 
(bit 46 is reset) or a Return operator (bit 46 is set) 
when returning to the interrupted procedure. 

Parµmeter P2 

During the execution of certain string operators, if 
a Presence Bit interrupt occurs the P2 parameter 
may contain a number which indicates the number of 
items below the MSCW which are needed by the 
string operator. 

PARAMETER P2 

SEGMENT DESCRIPTOR, OR DATA 
DESCRIPTOR, OR IRW, OR NUMBER 
OF ITEMS BELOW THE MSCW THAT 

ARE NEEDED BY THE STRING OPERATOR 

PARAMETER Pl 24 8 

~ }lM 
Presence Bit Interrupt Parameters 

Sequence Error 

BIT 

I 

This interrupt occurs if an indirect reference en­
counters an invalid condition or reference sequence. 
Generally, this interrupt is caused either by a hard­
ware error or a systems software error, and the 
MCP will terminate the program which generated the 
interrupt. The interrupt can occur as a class 2 inter­
rupt (bit 23 = 1) only under the following conditions: 

1. When a word other than a Segment Descriptor 
is fetched relative to the PDR during the final 
algorithm for the Enter, Exit, or Return 
operators. 

2. When the F register points to a word which is 
not an MSCW at the beginning of execution of 
the Exit or Return operators. 



PRESENCE BIT P1 PRESENCE BIT ID RETURNING PIR, PSR 
P2 OPERATOR NEW RCW SOFTWARE FUNCTION 

INTERRUPT CONDITIONS RT (46) vs (39) RE (45) 

Data Stack Vector DD DESC (4)* 0 0 0 EXIT Sn (8) Locate Not Present D.D. 
Dependent or Stack D. D. By the IRW. If neces-

During Reference I RW (I) 0 0 0 EXIT Sn (8) sary, make the D.D. 
Through Stuffed present and return an 
IRW I RW (2) I 1 0 RETURN Sn+ 2 (8) IRW where noted 

IRW (3) I 0 0 EJllT Sn (8) 

Data Descriptor DESC (2) 1 I 0 RETURN Sn+ 2 (8) Search Stack for copies 
(copy) of Not Present D.D. 

Hake HOH and copies 
DESC (7) I 0 0 RETURN Sn (8) present, return present 
(copy) D.D. where noted 

Procedure Stack Vector DD DESC (6) 0 0 0 EXIT From RCW Search Stack for copies 
Dependent or Stack D. D. (copy) or PCW of Not Present D.D. 

During Display Hake HOM and copies 
Update DESC (5) 0 0 I EXIT present, Return D.D. 

(copy) where noted 

DESC (2) 0 I 0 EXIT 
(copy) 

Segment Desc DESC (2) 0 I 0 EXIT From RCW Locate S.D. (HOM) via 
(copy) or PCW copy in P2 AD Field Of 

Copy Points to MOM 
DESC (6) 0 0 0 EXIT 
(copy 

DESC (5) 0 I** I RETURN 
(copy) 

I. Enter or I RWL 
2. VALC 
3. All Operators Except VALC, ENTR, MVST, RETN, IRWL *Fetch new stack desc thru· IRW only. "· MVST 
5. RETN **IF RVLC (V-bit in the MSCW.is on). 
6. Al I Operators Except RETN and VALC 

40994 1. All Operators Except ENTR, VALC, or IRWL 
8. Sn indicates that PIR and PSR point to current operator syllable. 

w 
\u -\0 Figure 3-3-6. Presence. Bit Interrupt Cllart 



3. When tracing back through the DF links of an 
MSCW chain (DF locates the preceding MSCW 
in the stack) during an Exit, Return, or Move 
Stack operation and a word which is not an 
MSCW is fetched. 

4. When a word which is not a Segment Descrip­
tor is fetched relating to the PDR during a Dy­
namic Branch operator execution. 

PARAMETER P2 

ZERO 

PARAMETER Pl 

Sequence Error Interrupt Parameters 

Segmented Array 

This interrupt occurs when a string operator at­
tempts to index beyond the end of the current seg­
ment of a segmented array. Arrays in main memory 
may be segmented into groups of 256 words each, 
bounded on both ends by memory links. The 
memory link words are created by the MCP with the 
memory protect bit (bit 48) set. During string 
operations, each word read from memory is checked 
to see if bit 48 is set. If such a word is referenced, 
the Segmented Array interrupt will occur. The P2 
parameter will indicate how many words (in the 
stack below the MSCW, RCW, Pl, and P2) are 
needed to restart the operation after the new seg­
ment of the array has been made available in main 
memory. 

PARAMETER P2 

NUMBER OF ITEMS BELOW THE 
MSCW NEEDED TO RESTART OPERATION 

PARAMETER Pl24 10 

mM 
BIT 

I 
Segmented Array Interrupt Parameters 

3-3-20 

Programmed Operator 

This interrupt occurs if the CPM attempts to 
execute an operator code which is not currently as­
signed. The Programmed Operator interrupt acts as 
a communicate operator to the MCP, and allows the 
MCP to simulate the action of the operator program­
matically, if desired. All unassigned operator codes 
cause this interrupt. (None of the unassigned 
operator codes cause Loop, Invalid Program, or In­
valid Operand interrupts. Scan In Time Of Day 
Clock is an assigned operator: any other variation of 
Scan In causes the Invalid Operand interrupt.) 

PARAMETER PC. 

ZERO 

PARAMETER Pl 24 BIT 

------.--.--~ ------.! 
Programmed Operator Interrupt Parameters 

Privileged Instruction 

This interrupt occurs if an attempt is made to 
execute a Control State operator while the CPM is 
in Normal State. The Control State operators are: 

Inhibit Parity (GPR) 
Set Memory Inhibits (SINH) 
Set Memory Limits (SML T) 

PARAMETER P2 

ZERO 

PARAMET~R Pl 24 II 

~~ 
BIT 

I 
Privileged Instruction Interrupt Parameters 



Special Interrupts 

Special interrupts take third priority for process­
ing. There are just two Special interrupts: Stack 
Overflow and Interval Timer. 

Stack Overflow 

This interrupt occurs when the Stack Controller 
senses the use of the highest address allotted for the 
stack of the program (the S register and the Limit of 
Stack register (LOSR) point to the same address). 
The MCP interrupt procedure may either allocate a 
larger stack area, or it may terminate the program. 
If the current operator has not been completely 
executed, PIR and PSR are changed to point to the 
operator. 

PARAMETER P2 

ZERO J 
PARAMETER Pl 

22 I BIT 

c ~{ ~I 
Stack Overflow Interrupt Parameters 

Interval Timer 

This interrupt occurs if the value in the hardware 
interval timer is 0 and the interval timer is armed. 
The timer is armed and an initial value is stored by 
the Set Interval Timer operator (SINT). The count in 
the timer is decreased every 512 microseconds until 
the count reaches 0 or until the timer is reset. If the 
timer is still armed when the count reaches 0, the in­
terrupt occurs. The maximum in~er~al to wh~ch the 
timer can be set is 1 second. This mterrupt is used 
by the MCP to ensure that no process can control 
a CPM for more than 1 second without giving the 
MCP a chance to regain control of the CPM. 

PARAMETER P2 

ZERO 

PARAMETER Pl 22 0 BIT 

......--------.-n~I------r-iM 
Interval Timer Interrupt Parameters 

External Interrupts 

External interrupts are used to inform the MCP of 
changes in external environment, and also to permit 
communications between requestor modules (CPM 
and IOM). Normally, these interrupts result in the 
momentary interruption of a program while the inter­
rupt is handled or recorded by the MCP. Following 
the handling of the interrupt, the program is contin­
ued. The External interrupts are: 

Channel (0 through 7) 
IOM Error (0 through 7) 
Egg Timer 

Channel Interrupt 

This interrupt may be generated by any of the 
eight possible requestor modules (CPM or IOM). 
The interrupt identification (parameter Pl) indicates 
the source of the interrupt. This interrupt may be 
generated to indicate an expected event (such as IO 
Complete) or it may be generated by the Interrupt 
Channel N operator (which allows any CPM to inter­
rupt any requestor module). 

PARAMETER P2 

PARAMETER Pl 

CHANNEL 7 
CHANNEL 6 
CHANNEL 5 
CHANNEL 4 
CHANNEL 3 
CHANNEL 2 
CHANNEL I 
CHANNEL 0 

ZERO 

21 7 6 5 4 3 2 I 0 BIT ]¢¢$¢ + ()) (j) 

IJ} 

Channel Interrupt (0-7) Parameters 

IOM Error Interrupt 

This interrupt may be generated by any of the IO 
modules in the system. The interrupt identification 
(parameter Pl) indicates the channel (0 through 7) to 
which the IOM is connected. This interrupt is used 
to report errors detected by an IOM which are not 
device related. If possible, the IOM will link a 
dummy IOCB into the status queue (RESULTQ). 

3-3-21 



The dummy IOCB will contain a Result Descriptor 
which will further describe the error. Otherwise, the 
Fail Result Descriptor will be placed at Home Ad­
dress (HA) + 5. 

PARAMETER P2 

f ARAMETER Pl 21 

IOM ERROR 7 
~ 

IOM ERROR 6 
IOM ERROR 5 
IOM ERROR 4 
IOM ERROR 3 
IOM ERROR 2 
IOM ERROR. I 
IOM ERROR 0 

3.3.22 

ZERO 

15 1413121110 9 8 BIT 

$Q $ + ~~~ 
l _I 

Egg Timer Interrupt 

This interrupt occurs if the Egg flip-flop in the 
CPM is not reset every 8 to 16 seconds by the MCP. 
This interrupt is used by the MCP to present the 
CPM from looping while in the control state. 

PARAMETER P2 

ZERO I 

EJl,'g Timer Interrupt Parameters 



SECTION 4 

OPERATORS 

INTRODUCTION 

Operators are machine language code generated by 
the compiler and stored by the master control pro­
gram in memory in the area allocated to program 
segments. (Program segments contain no data and 
are not modified by the processor as the program is 
executed.) Program segments are sequences of in­
structions which are moved by the CPM as 52-bit 
words from memory to the program buffer. Parity is 
checked on all 52-bits of each program word as it is 
brought to the program buffer. 

Each program word consists of 48 bits, 3 tag bits, 
and an overall parity bit. Since information will be 
extracted from the program buffer in syllable form 
there is no way to check overall parity. Therefore, 
as the program word is parsed into six 8-bit syllables 
while being loaded into the program buffer, parity is 
also generated on each syllable of the word and 
stored in the buffer with each word. The parity of 
each syllable can thus be checked and the integrity 
of the program word maintained. Tag bits are not 
stored in the program buffer, instead a two-bit error 
code is stored in the program buffer to identify tag 
error conditions. Figure 3-4-1 illustrates the format 
of the program buffer word. 

An instruction may be either a Value Call, a Name 
Call, or an operator. (Refer to table 3-4- I.) The two 
high-order bits (bits 7 and 6 in figure 3-4-1) of each 
instruction determine the type of instruction to be 
executed. 

Value Call (V ALC) is a two-syllable instruction 
that requires that the 14-bit address couple in the in­
struction be evaluated to provide an absolute ad­
dress from which data is fetched and placed in the 
central data buffer (COB) for EU use. 

Name Call (NAMC) is a two-syllable instruction 
that indicates the address couple in the instruction 
may be used to form an IRW, which is then placed 
in the COB. However, if the NAMC operator is fol­
lowed by an operator which would require 
evaluation of the address couple to derive an abso­
lute address, then the NAMC is concatenated with 

the following orerator and the address courle is 
evaluated immediately. NAMC is concatenated when 
the next operator in the program code string is any 
of the following: INDX. NXLN. NXLV. STOD. 
STON. OVRD. OVRN. OBUN. LOAD. and PLOT. 
If a NAMC cannot be concatenated. an IRW con­
taining the address couple is placed in CDB for DRU 
use. 

The 14-bit address couple in the NAMC and 
V ALC instructions consists of a lexicographic-level 
field (LL) and an index field (I). As shown in figure 
3-4-2, the length of each of these fields varies with 
the current lexic level of the active program. The LL 
field ranges from one to five bits in length and con­
tains only as many bits as are required to define the 
current lexic level. The remaining bits are the index 
field. (The bits of the LL field are in inverse order 
so that the least-significant bit of the field is located 
in the most significant bit position of the address 
couple.) 

Value Call is a two-syllable instruction that brings 
an operand from memory into the top of stack. A 
concatenation of the two Value Call syllables gives 
a 14-bit address couple. If the referenced memory lo­
cation is an indirect reference word or a data de­
scriptor, additional memory accesses are made until 
the operand is located. The operand is then placed 
in the top of stack in the COB. The operand may be 
either single-precision or double-precision, causing 
either one or two words to be loaded into the stack. 

Name Call builds an indirect reference word in the 
COB. The six low-order bits of the first syllable for 
this operator are concatenated with the eight bits of 
the following syllable to form a 14-bit address cou­
ple. 

Operators vary from 1 to 12 syllables in length. 
The first syllable of each operator indicates the num­
ber of additional syllables forming the operator. 

Operators work on data as either full word (48 
data bits plus 3 tag bits) or as strings of data charac­
ters. Word operators work with operands (single-or 
double-precision) in the top of the stack. 

Table 3-4-1. Instruction Decode Table 

5010796-001 

Instruction 

Type 

Value Call 
Name Call 
Operator 

Identification (Bits 7 

& 6) 

00 
01 
lx 

No. of 

Syllables 

2 
2 

1 to 12 

Function 

Brings an operand into the stack 
Brings an IRW into the stack 
Performs the specified operation 

34-1 



ET1279 

0 

SYLLABLE SYLLABLE 

0 

TAG OA P 47 39 

46 42 38 

45 41 37 

44 40 36 

0 TAG AND NOT IN EDIT 

TAGS OTHER THAN 0 AND 3 

ERROR WORD (FOR ERROR WORD INFORMATION, 
REFER TO FIGURE 3-2-27) 

35 

34 

33 

32 

SYLLABLE SYLLABLE 

2 3 

27 23 19 

30 26 22 18 

29 25 21 17 

28 24 20 16 

Figure 3-4-1. Program Buffer Word Format 

CURREtlT 
LEXICOGRAPlllC 
LEVEL 
0-1 

41104 

INDEX 
FIELD 
12-0 

v A L c 
0 

15 11 7 

0 
14 

A 
13 

12 

CURRHIT 
LEXICOGRAPHIC 
LEVEL 

2-3 

INDEX 
FIELD 
11-0 

3 

2 

1 

0 

OPERATOP. FORllAT 

BIT ASSIGNMEllT 

CURRENT 
LEXICOGRAPHIC 
LEVEL 

11-7 

LL 
II 

INDEX 
FIELD 
10-0 

12 

tlOTE: LL indicates bit is part of lexic 

A M c 

CURRENT 
LEXICOr.RAPHIC 
LEVEL 

8-15 

INDEX 
FIELD 
9-0 

field, 

Figure 3-4-2. Address Couple Bit Assignment. 

3-4-2 

3 

2 

1 

0 

SYLLABLE SYLLABLE 

4 

15 

14 

13 

12 

5 

11 

10 6 

9 5 

6 4 

CURRENT 
LEXICOGRAPHIC 
LEVEL 

16-31 

3 

2 

0 



String operators are used for transferring, compar­
ing, scanning, and translating strings of digits, char­
acters, or bytes. In addition, a set of micro-operators 
(edit mode operators) provides a means of formatting 
data for input/output. String operators and edit mode 
operators use source and destination pointers located 
in the stack to set hardware registers. 

In some of the string operators the source pointer 
may not be used. In this case, an operand may be 
in the stack; its characters are circulated as it is be­
ing used. String operators have an optional update 
function, producing updated source and destination 
pointers and counts. 

If both the source and destination descriptors have 
size fields equal to 0, the size registers indicate 
eight-bit character size. When both a source and 
destination are required and only the size field of 
one is equal to 0, then the size field of the non-zero 
descriptor is used. 

When neither size field is equal to 0, or the size 
fields are not equal, or the operator is not Translate 
or Transfer Words, the invalid-operand interrupt is 
set and the operator is terminated. The size field is 
considered equal to 0, when the source is an aper-
~. I 

Logical operands may be either true (ON) or false 
(OFF). Logical values are the result of Boolean op­
erations or relational operations. Relation operators 
generate a logical value as the result of an algebraic 
comparison of two arithmetic expressions. Bit 0 con­
tains the logical value. Relational operators set bit 0, 
and conditional operators use bit 0 for the decision. 
Logical (Boolean) operators consider each bit from 
47 to 0 as an individual logic value and operate on 
the whole operand. 

GROUPING OF OPERATORS 

Operators may be identified by name, mnemonic, 
or hexadecimal code. In this document to facilitate 
reference to the description of the operators, the op­
erators are listed in the appendix in two ways: alpha­
betically by mnemonic, and sequentially by hexadec­
imal code. In each case the page number of the op­
erator description is given. 

5010796-001 

When describing operators, considerable redun­
dancy is eliminated by grouping operators with 
similar functions and only describing their differ­
ences. Also, for convenience of the user, operators 
used for related manipulations (such as arithmetic 
operators ADD, SUBT, MULT, DIVD) are de­
scribed sequentially. 

As shown in figure 3-4-3 all central processor pro­
gram operators are grouped into one of four modes: 
primary (P), variant (V), edit (E). Sev­
eral operators are classed as universal (U) because 
they can operate in any mode. (The letters in the 
above parentheses are used in this document as a 
mode-identifier prefix before the hexadecimal code 
associated with each operator. For example, (P) 80 
indicates a primary mode operator and 80 is the hex­
adecimal code for the ADD operator.) In this 
document, the operator descriptions are grouped by 
mode. Preceding each group of descriptions for each 
mode is a list giving the order of specific operator 
descriptions. 

The most frequently used operators are called pri­
mary mode operators. Each of the other modes is 
entered by first executing certain operators in prima­
ry mode. The "operator" portion of the primary 
mode operators begins with the first syllable and 
may extend for several syllables. 

Primary mode operators are described in this doc­
ument in the following groups: arithmetic, bit, 
branch, compare, enter edit mode, enter vector 
mode, index and load, input convert, literal call, log­
ical, pack relational, scale, stack, store, string, string 
transfer, subroutine, transfer, type-transfer, miscella­
neous, and universal. (In several cases a variant 
mode operator is conveniently described with a 
group of primary mode operators.) 

Variant mode operators are less frequently used 
than primary mode operators and extend the number 
of hexadecimal codes available to identify the 
operators. Variant mode operators require two sylla­
bles. The first syllable of a variant mode operator 
has the hexadecimal code 95 which is the primary 
mode operator called Escape to 16-Bit Instruction 
(the mnemonic for this operator is VARI). The sec­
ond syllable then gives the actual variant mode oper­
ation to be performed. The variant mode operators 
are described in this document in the following 
groups: scan, scan while, tag field, unpack, miscella­
neous operators exclusive to the B 7800, and univer­
sal operators. 

34-3 



I 

I 

I 

Edit mode operators perform edit functions (such 
as insert, move, and skip) on strings of data being 
prepared for output. The edit mode is entered from 
the primary mode via one of the enter edit operators 
(EXSD, EXSU, EXPU, TEED, or TEEU). Subse­
quent edit operators follow as either single micro-op-

erators in the program string or as edit operators in 
a separate table which is executed as a program 
string. In edit mode the program buffer memory is 
reduced to 16 words (total available area) for pro­
cessing the edit operators; the other 16 words con­
tain the primary program syllables. 

1st 

i 

3-4-4 

0-3 

4-7 

8 

9 

'A 

B 

c 
0 

E 

F 

4 

8 

A 

B 

0 

E 

F 

2nd­

O 

VALC VALC 

NAMC NAMC 

ADO SUBT 

LAND LOR 

BRFL BRTR 

ZERO ONE 

SCLF OSLF 

TEED PACO 

TLSO TGEO 

CLSO CGED 

0 

USNO UABO 

SLSO SGEO 

0 

4 

VALC VALC VALC 

NAMC NAMC NAMC 

MULT OIVO IOIV 

LNOT LEQV SAME 

BRUN EXIT STBR 

LT8 LT16 PUSH 

SCRT OSRT SCRS 

EXSO TWSO TWOD 

TGTD TLEO TEDD 

CGTD CLEO CEQO 

4 

JOIN SPLT IDLE 

PALIS 

STAG 

TWFO TWTO SWFD 

SGTD SLED SEOD 

2 4 

PRIMARY MODE (P) xx 

6 8 9 

VALC VALC VALC VALC VALC 

NAMC NAMC NAMC NAMC NAMC 

RDIV NTIA NTGR LESS GREG 

VARI BSET OBST FLTR OFTR 

NXLN INOX RETN OBFL OBTR 

DLET EXCH DUPL STOO STON 

OSRS SCRF DSRF SCRR OSRR 

SISO SXSN ROFF TEEU PACU 

TNED TUND TLSU TGEU 

CNEO FMMR CLSU CGEU 

VARIANT MOOE (V)xx 

8 

SINT EEXI OEXI IGPR 

OCRX NTGO MIN 
··-

RODI SMMD~ SINH 

RTAG RSUP 1 RSON RPRR SPRR 

SWTO TCOD~ TRNS USNU UABU 
-----

SNED SLSU SGEU 

EDIT MODE (E) xx 

5 6 

A B c D E 

VALC VALC VALC VALC VALC VALC 0-3 

NAMC NAMC NAMC NAMC NAMC NAMC 4-7 

GRTR LSEO EOUL NEQL CHSN MULX 8 

ISOL OISO INSR DINS BRST DBRS 9 

DBUN ENTR EVAL NXLV MKST STFF A 

OVRD OVRN PLOT LOAD LT48 MPCW B 

ICVO ICVU SNGT SNGL XTNO IMKS c 

EXSU TWSU TWOU EXPU RTFF HALT 0 

TGTU TLEU TEOU TNEU TUNU E 

CGTU CLEU CEQU CNEU NOOP NVLO F 

A B c 0 E 

SCNI PTPA WHOI 4 

MAX LOG2 INCN 8 

SLMT FMFR ACDB*' MVST A 

RDLK CBON LOOT LLLU SRCH STOP B 

TWFU TWTU SWFU SWTU ROEF HALT 0 

E 

SGTU SLEU SEQU SNEU NOOP NVLD F 

*Operator used for maintenance only. 

A B c 0 - E F 

0 MINS MFLT SFSC SRSC RSTF ENOF MVNU MCHR INOP INSG SFDC SROC INSU INSC ENDE HALT 0 

NODP NVLD F 

Figure 3-4-3. B 7800 CPM Program Operator Hexadecimal Code Assignments 



Detection of an invalid operator condition termin­
ates the operator, and an invalid operator interrupt 
is set in the fault register. Th~ processor 
will proceed to process the interrupt whether it is in 
normal state or control state. 

Invalid instructions are detected by the following 
methods: 

I. Testing for unassigned operator codes. In the 
B 7800 all unassigned operators cause a pro­
grammed operator interrupt. 

2. Testing for any value other than 011 in bit posi­
tions 50, 49, and 48 of any program word (an 
attempt to execute something which is not 
code). This results in an invalid program word 
interrupt except when in table mode which al­
lows a tag 0 or a tag 3. 

3. Testing for an invalid operator function; for ex­
ample,· an attempt to dial to a non-existent bit. 
This results in an invalid operand interrupt. 

Bit 48 of each word in main memory is a memory 
protect bit. This bit is ON in all program words, in­
direct reference words, data descriptors, program 
descriptors, main memory storage links, and proces­
sor-generated control words. 

PRIMARY MODE OPERATORS 

Arithmetic Operators 

Dyadic arithmetic operators require two operands 
in the top-of-stack storage. These operands are com-

bined by the arithmetic process specified and are re­
placed with the resulting operand. These operands 
may be either single-precision, or double-precision, 
or intermixed types. The specified arithmetic process 
adapts automatically to the environment: a single­
precision process is invoked if both operands are of 
the single-precision type and a double-precision pro­
cess is invoked if either operand is of the double­
precision type. Each double-precision operand occu­
pies two words. The second word of the operand is 
an extension of the first word of the operand to form 
a 78-bit mantissa. Neither word is guaranteed to be 
an integer or a fraction. (For example, if an expo­
nent is greater than + 13, then every digit in both 
words is an integer.) 

Add, subtract, multiply, and remainder divide op­
erations with two integer single-precision operands 
yield an integer single-precision result if no overflow 
occurs in the case of add and multiply. If either or 
both operands are non-integer or if the result overf­
lows, the result is non-integer. 

ADD (ADD) (P)SO 

The add operator causes the two top-of-stack op­
erands to be added algebraically and the sum to be 
left in the top of stack. 

SUBTRACT (SUBT) (P)81 

The Subtract operator causes the top-of-stack op­
erand to be algebraically subtracted from the second 
operand in the stack and the result to be left in the 
top of stack. 

34-5 



MULTIPLY (MUL T) (P)82 

The Multiply operator causes the two top-of-stack 
operands to be algebraically multiplied and the prod­
uct to be left in the top of stack. The result (or prod­
uct) is right justified if there are 13 or less significant 
digits of result. If there are more than 13, the result 
is normalized and rounded. 

EXTENDED MULTIPLY (MULX) (P)BF 

The Extended Multiply operator causes the two 
top-of-stack operands to be algebraically multiplied 
and a double-precision product to be left in the top 
of stack. MULX with two single-precision inputs 
saves all 26 digits of the result without truncating. 

DIVIDE (DIVD) (P)83 

The Divide operator causes the second operand in 
the stack to be algebraically divided by the top-of­
stack operand the quotient to be left in the top of 
stack. 

If the mantissa of the second operand in the stack 
is 0, the exponent and quotient are set to 0. If the 
top-of-stack mantissa is 0, the divide-by-zero inter­
rupt is set. In either case the operation is termi­
nated. 

INTEGER DIVIDE (IDIV) (P)84 

The Integer Divide operator causes the second op­
erand in the stack to be algebraically divided by the 
top-of-stack operand and the integer part of the quo­
tient to be left in top of stack in integer form. If the 
mantissa of the second operand in the stack is 0, the 
exponent and quotient are set to 0. If the top-of­
stack mantissa is 0, the divide-by-zero interrupt is 
set. In either case the operation is terminated. 

REMAINDER DIVIDE (RDIV) (P)85 

The Remainder Divide operator causes the second 
operand in the stack to be algebraically divided by 
the top-of-stack operand to develop an integer quo­
tient. The reminder of this division is left in the top 
of stack. If both inputs to RDIV are single-precision 
integers, the remainder is also an integer and is left 
in the form of integer. If the mantissa of the second 
operand in the stack is 0, the exponent and quotient 
are set to 0. If the top-of-stack mantissa is 0, the di­
vide-by-zero interrupt is set. In either case the oper­
ation is terminated. 

INTEGERIZE, TRUNCATED (NTIA) (P)86 

The Integerize (Truncated) operator converts the 
top-of-stack operand to an integer without rounding. 
The top-of-stack operand is always single-precision 

34-6 

regardless of the inputs to NTIA. If the operand can­
not be intergerized, that is, the exponent is greater 
than the number of leading O's in the operand, the 
integer-overflow interrupt is set and the operation is 
terminated. 

INTEGERIZE, ROUNDED (NTGR) (P)87 

The Intergerize (Rounded) operator converts the 
top-of-stack operand to an integer with rounding. 
The top-of-stack operand is always single-precision 
regardless of the inputs to NTGR. Rounding takes 
place if the absolute value of the fraction is greater 
than or equal to 112. The sign of the input is also 
taken in consideration when 1 is added to the inte­
ger. If the sign is positive, then rounding occurs and 
the fraction is ~ 1/2. If the sign is negative, then I 
is added to the integer only if the fraction is greater 
than 112. If fraction is equal to a 112, then the integer 
part is not changed. If the operand cannot be inte­
gerized, that is, the exponent is greater than the 
number of leading O's in the operand or a non-inte­
ger results from the rounding operation, the integer­
overflow interrupt is set and the operation is termi­
nated. 

INTEGERIZE, ROUNDED, DOUBLE PRECISION 
(NTGD) (V)87 

The Integerize (Rounded, Double Precision) 
operator converts the top-of-stack operand to a dou­
ble-precision integer (exponent + 13) with rounding. 

Bit Operators 

Bit operators set or reset bits in the top of stack 
or in the second item in the stack. 

BIT SET (BSET) (P)96 

The Bit Set operator sets a bit in the top of stack. 
The bit set corresponds to the value of the bit 
specified by the second syllable of the operator. If 
the program syllable defining the bit to be set· has a 
value greater than 47, the invalid-operand interrupt 
is set and the operation is terminated. BSET can 
have an input of any kind of tag. Tag is preserved. 

DYNAMIC BIT SET (OBST) (P)97 

The Dynamic Bit set operator sets a bit in the sec­
ond item in the stack. The bit set corresponds to the 
value of the bit specified by the top-of-stack oper­
and. If the word in the top of stack is not an oper­
and an invalid-operand interrupt is set and the 
operation is terminated. The word is integerized be­
fore it is used as a bit number. If after being integer­
ized the operand is less than 0 or greater than 47, an 
invalid-operand interrupt is set and the operation is 
terminated. 



BIT RESET (BRST) (P)9E 

The Bit Reset operator resets a bit in the top of 
stack. The bit reset corresponds to the bit specified 
by the second syllable of the program operator. If 
the program syllable defining the bit to be reset has 
a value greater than 47, an invalid-operand interrupt 
is set and the operation is terminated. BRST can 
have an input of any kind of tag. Tag is preserved. 

DYNAMIC BIT RESET (DBRS) (P)9F 

The Dynamic Bit Reset operator resets a bit in the 
second item in the stack. The reset bit corresponds 
to the value of the bit specified by the top-of-stack 
operand. If the word in the top of stack is not an op­
erand, an invalid-operand interrupt is set and the op­
eration is terminated. The word is integerized before 
it is used as a bit number. If, after being integerized, 
the operand is less than 0 or greater than 47, an in­
valid-operand interrupt is set and the operation is 
terminated. 

CHANGE SIGN BIT (CHSN) (P)8E 

The Change Sign Bit operator complements 
(changes from 1 to 0 or from 0 to 1) the sign bit (bit 
46) of the top-of-stack operand. CHSN must have an 
operand input (tag 0 or 2), otherwise an invalid-oper­
and interrupt is set and the operation is terminated. 

COUNT BINARY ONES (CBON) (V)BB 

The Count Binary Ones operator counts the num­
ber of binary ones in the information part of the 
word in the top of stack and places this count in the 
top of stack. CBON must have an operand input (tag 
0 or 2), otherwise an invalid-operand interrupt is set 
and the operation is terminated. 

LEADING ONE TEST (LOG2) (V)8B 

The Leading One Test operator locates the most 
significant information bit of the word in the top of 
stack. The number of that bit plus 1 is placed in the 
top of stack. If a one bit is not located, a 0 is placed 
in the top of stack. LOG2 can have an input of any 
kind of tag. Tag is preserved. 

Branch Operators 

Branch instructions function to break the normal 
sequence of serial instruction fetches. Branching 
may be either relative to the base address of the cur­
rent program segment or to a location in some other 
program segment. Branch operators may be condi­
tional or unconditional. Branch addresses are always 
checked for possible residency in the address asso­
ciative memory. 

BRANCH UNCONDITIONAL (BRUN) (P) A2 

The Branch Unconditional operator replaces the 
contents of the program index register (PIR) and the 
program syllable register (PSR) with the next two 
syllables from the program string. The two syllables 
following the actual operator syllable provide the 
new PIR and PSR settings: the three high-order bits 
are placed in the PSR and the next 13 low-order bits 
are pl~ced in the PIR. 

BRANCH ON TRUE (BRTR) (P) A 1 

BRANCH ON FALSE (BRFL) (P)AO 

In the B 7800, the conditional branch information 
(branch true, branch false, where branch is to, and 
what CDB location will be the Boolean location) is 
saved in the PCU to obtain a new code, if branch 
is required. When Boolean is being written into a 
CDB location by the EU, the LSB of that Boolean 
is monitored by the PCU. By comparing this CDB 
location with saved CDB location, the proper 
true/false bit is selected for comparison with LSB of 
Boolean. 

If true/false bit and LSB of Boolean are equal, the 
branch is performed to obtain address of new code 
string. 

If these values are not equal, the branch is dis­
carded and the program string is continued in se­
quence. 

DYNAMIC BRANCH UNCONDITIONAL .(DBUN) 
(P)AA 

If the top-of-stack word is either a program con­
trol word or an indirect reference to a PCW, the Dy­
namic Branch Unconditional operator branches to 
the specified syllable of the program segment. PCW 
can be found after chaining through normal IRWs. 
Note that a stuffed IRW cannot be used to find a 
PCW for the DBUN. If a stuffed IRW is encoun­
tered (bit 46 ON), a sequence-error interrupt occurs. 

If the top-of-stack word is an operand, the pro­
gram index register and program syllable register are 
set according to the contents of this operand as fol­
lows: The operand is made into an integer. If bit 
zero of the operand is 0, PSR is set to O; otherwise, 
if bit zero of the operand is 1, PSR is set to 3. The 
next higher-order 16 bits are placed in the PIR. 

DYNAMIC BRANCH TRUE (DBTR) (P)A9 

If the low-order bit of the second word in the 
stack is a 1 and the top-of-stack word is a program 
control word (PCW) or an indirect reference to a 

34-7 



PCW, the Dynamic Branch True operator will cause 
a branch fo the specified syllable in the program seg­
ment. Otherwise, a 1 is added to the PIR and PSR 
and the program continues in sequence. 

' 

If the low-order bit of the second word in the 
stack is a 1 and the top-of-stack word is an operand, 
PIR/PSR are replaced from this operand as in the 
DBUN operator. Otherwise, PIR and PSR are ad­
vanced and the program string continues in se­
quence. 

DYNAMIC BRANCH FALSE (DBFL) (P)A8 

If the low-order bit of the second word in the 
stack is a 0, and the top-of-stack word is a program 
control word or an indirect reference to a PCW, the 
Dynamic Branch False operator causes a branch to 
the specified syllable ofthe program segment. Other­
wise, the PIR/PSR are continued in sequence. 

If the low-order bit of the second word in the 
stack is a 0 and the top-of-stack word is an operand, 
PIR/PSR are replaced from this operand as in the 
DBUN operator. Otherwise, PIR and PSR are ad­
vanced and the program string is continued in se­
quence. 

Compare Operators 

The compare operators perform the specified com­
pare of two strings of data. The true/false flip-flop is 
conditioned by the results of the compare. · 

In the B 7800, the 48-bit words are assembled and 
shifted for direct comparison. The boundaries of 
these words are determined by the destination 
words. The destination words end being unshifted, 
and the characters which are not part of the string 
(as defined by the original descriptor plus the length) 
are zeroed out. 

The destructive operators are completed as soon 
as the results are known. Although the results are 
known, the Compare Update operators continue un­
til the lengths are exhausted. If a segmented array 
interrupt occurs, the result is saved in the RCW. 

COMPARE CHARACTERS GREATER, 
DESTRUCTIVE (CGTD) (P)F2 

The Compare Characters Greater, Destructive op­
erator makes a character-by-character comparison of 
two strings of data until it finds an unequal pair. (All 
comparisons are by the binary character position in 
the collating sequence.) If the characters in the B 
string (destination) are greater than the characters in 
the A string (source), the true/false flip-flop is set to 
one; otherwise, the true/false flip-flop is set to zero. 

3-4-8 

If the repeat count is less than or equal to 0, the 
true/false flip-flop is reset. 

The top of stack is an operand which specifies the 
number of characters to be compared. The second 
item in the stack is an operand or descriptor pointing 
at the source character string against which 
comparisons are to be made. The third item in the 
stack is a descriptor pointing to the character string 
to be compared. If either of the data strings has the 
memory protect bit ON (bit 48= I), the segmented 
array interrupt is set, and the operation is termi­
nated. 

COMPARE CHARACTERS GREATER, UPDATE 
(CGTU) (P)FA . 

The Compare Characters Greater, Update 
operator performs a compare characters greater, de­
struction operation except that the accesses to mem­
ory continue until the repeat count is exhausted. At 
the completion of the operation, the source and des­
tination pointers are updated. 

COMPARE CHARACTERS GREATER OR EQUAL, 
DESTRUCTIVE (CGED) (P)F1 

The Compare Characters Greater or Equal, De­
structive operator performs a compare characters 
greater, destructive operation except that the 
true/false flip-flop is set to true if the destination is 
greater than or equal to the source. 

COMPARE CHARACTERS GREATER OR EQUAL, 
UPDATE (CGEU) (P)F9 

The Compare Characters Greater or Equal, Up­
date operator performs a compare characters greater 
or equal, destructive operation except that memory 
accesses continue until the repeat count is exhaust­
ed. At the completion of the operation, the source 
and destination pointers are updated. 

COMPARE CHARACTERS EQUAL, DESTRUCTIVE 
(CEQD) (P)F4 

The Compare Characters Equal, Destructive oper­
ator performs a compare characters greater, destruc­
tive operation except that the true/false flip-flop is 
set to true if the source is equal to the destination. 

COMPARE CHARACTERS EQUAL, UPDATE 
(CEQU) (P)FC 

The Compare Characters Equal. Update operator 
performs a compare characters equal, destructive 
operation except that memory accesses continue un­
til the repeat count is exhausted. At the completion 
of the operation, the source and destination pointers 
are updated. 



COMPARE CHARACTERS LESS OR EQUAL, 
DESTRUCTIVE (CLED) (P)F3 

The Compare Characters Less or Equal, Destruc­
tive operator performs a compare characters great~r, 
destructive operation except that the true/false flip­
flop is set to true if the destination is less than or 
equal to the source. 

COMPARE CHARACTERS LESS OR EQUAL, 
UPDATE (CLEU) (P)FB 

The Compare Characters Less or Equal, Update 
operator performs a compare less or equal, destruc­
tive operation except that memory accesses continue 
until the repeat count is exhausted. At the comple­
tion of the operation, the source and destination 
pointers are updated. 

COMPARE CHARACTERS LESS, DESTRUCTIVE 
(CLSD) (P)FO 

The Compare Characters Less, Destructive 
operator performs a compare characters greater, de­
structive operation except that the true/false flip-flop 
is set to true if the destination is less than the 
source. 

COMPARE CHARACTERS LESS, UPDATE 
(CLSU) (P)F8 

The Compare Characters Less, Update operator 
performs a compare characters less, destructive op­
eration except that memory accesses continue until 
the repeat count is exhausted. At the completion of 
the operation, the source and destination pointers 
are updated. 

COMPARE CHARACTERS NOT EQUAL, 
DESTRUCTIVE (CNED) (P)F5 

The Compare Characters Not Equal, Destructive 
operator performs a compare characters greater, de­
structive operation except that the true/false flip-flop 
is set to true if the source is not equal to the destina­
tion. 

COMPARE CHARACTERS NOT EQUAL, UPDATE 
(CNEU) (P)FD 

The Compare Characters Not Equal, Update oper­
ator performs a compare characters not equal, de­
structive operation except that memory accesses 
continue until the repeat count is exhausted. At the 
completion of the operation, the source and destina­
tion pointers are updated. 

5010796-001 

Enter Edit Mode Operators 

Enter edit mode operators provide the means for 
transition from primary mode operation to edit mode 
operation. The edit mode operators in a program 
string are entered via the Execute Single Micro '?r 
Single Pointer. Edit mode operators may also be m 
a table in which case they are entered by the Table 
Enter Edit operator. (See also the descriptions under 
"Edit Mode Operators.") 

TABLE ENTER EDIT, DESTRUCTIVE (TEED) 
(P)DO 

The Table Enter Edit, Destructive operator is used 
to control edit micro-instructions which are con­
tained in memory as a table rather than as part of 
the normal program string. This operator causes 
characters to be transferred from the source string to 
the destination string. The transfer is under control 
of the string of edit micro-operators which are lo­
cated by the table pointer. 

In normal cases, the top-of-stack word (a descrip­
tor) is the table pointer, the second word (a single­
precision operand or descriptor) in the stack is the 
source pointer, and the third word in the stack (a de­
scriptor) is the destination pointer. However, if seg­
mented bit (bit 44) is ON, then the second word in 
the stack, instead of being the source pointer, is the 
length to be used by the edit operator. The TIR in 
the CPM points to that edit operator. 

If the first word in the stack is not a descriptor, 
the invalid-operand interrupt is set and the operation 
is terminated. If the second item in the stack is a 
single-precision operand, it is a source string. If the 
third item in the stack is not a descriptor, the inva­
lid-operand interrupt is set and the operation is ter­
minated. In table mode, the micro-operator words 
can be tagged as single-word operands (tag 0). 

TABLE ENTER EDIT, UPDATE (TEEU) (P)D8 

The Table Enter Edit, Update operator performs a 
table enter edit destructive operation. At the comple­
tion of the operation, the source pointer and destina­
tion pointer are updated. 

EXECUTE SINGLE MICRO, DESTRUCTIVE 
(EXSD) (P)D2 

The Execute Single Micro, Destructive operator 
transfers characters from the source string to the 
destination string under the control of the single mi­
cro-operator which follows this operator syllable. 

3-4-9 



The first item in the stack is a single-precision oper­
and that defines the field length and is used as a mi­
cro-operator repeat field. The second item in the 
stack is the source pointer, and the third item in the 
stack is the destination pointer. 

EXECUTE SINGLE MICRO, UPDATE (EXSU) 
(P)DA 

The Execute Single Micro, Update operator per­
forms an execute single micro, destructive operation. 
At the completion of the operation, the source point­
er and destination pointer are updated. 

EXECUTE SINGLE MICRO, SINGLE POINTER 
UPDATE (EXPU) (P)DD 

The Execute Single Micro, Single Pointer Update 
operator performs an execute single micro, destruc­
tive operation. At the completion of the operation, 
the pointer is updated. 

The top-of-stack operand is used as a micro­
operator repeat field. The second item in the stack 
is used to set both the source and destination point­
ers. Only the destination pointer is updated. 

Index and Load Operators 

The index and load operators provide the means 
to index the top-of-stack word and the means to load 
an operand or descriptor into the top of stack. 

INDEX (INDX) (P)A6 

The two top-of-stack items are a descriptor (or in­
direct reference to a descriptor) and an operand. The 
operand is used to index the descriptor. The Index 
operator places the integerized value of the second 
item in the stack into the 20-bit length/index field of 
the descriptor in the top-of-stack. The descriptor is 
marked indexed (bit 45 is set to 1). 

If the word in the top of stack is an operand, the 
top-of-stack operand is exchanged with the second­
item operand. If the word in the top of stack is nei­
ther a descriptor nor an indirect reference word 
pointing to a descriptor, the invalid-operand inter­
rupt is set and the operation is terminated. 

If the indexing value is negative or greater than or 
equal to the length field of the descriptor, the inva­
lid-index interrupt is set and the operation is termi­
nated. 

34-10 

If the descriptor represents an array which is seg­
mented, the index is partitioned into two portions by 
dividing it by the proper divisor determined by the 
type of data referenced by the descriptor (D.P. 
word-128 S.P. word-256, four-bit digit-3072, six-bit 
character-2048, or eight-bit byte-1536). The quotient 
is used as an index to the given descriptor to fetch 
the array-row descriptor. The remainder is used to 
index the row descriptor. 

Copy action can be performed in the Index 
operator because an IRW can be pointing to a non­
present MOM descriptor. 

If the double-precision bit (bit 40) in the descriptor 
is I, the index value in the second item is doubled. 
The balance of the operation is as described in the 
first paragraph of this operator. 

If the presence bit (bit 47) and copy bit (bit 46) are 
OFF, the address of the original descriptor is placed 
in the address field of the stack copy. If the word 
accessed by the indexed word in the top of stack is 
not a data descriptor, the invalid-operand interrupt is 
set and the operation is terminated. If the data de­
scriptor accessed by the indexed word in the top of 
stack has the index bit (bit 45) set to 1, the invalid­
operand interrupt is set and the operation is termi­
nated. 

INDEX AND LOAD NAME (NXLN) (P)A5 

The Index and Load Name operator performs an 
Index operation. After the word in the top-of-stack 
is indexed, the data descriptor pointed to by this 
word is brought to the top-of-stack, the copy bit (bit 
46) of the data descriptor is set to one. 

If the presence bit (bit 47) and copy bit (bit 46) are 
OFF, the address of the original descriptor is placed 
in the address field of the stack copy. If the word 
accessed by the indexed word in the top-of-stack is 
not a data descriptor, the invalid operand interrupt 
is set and the ·operation is terminated. If the data de­
scriptor accessed by the indexed word in the top-of­
stack has the index bit (bit 45) set to one, the inva­
lid-operand interrupt is set and the operation is ter­
minated. 

INDEX AND LOAD VALUE (NXLV) (P)AD 

The Index and Load Value operator performs an 
Index operation. After the word in the top-of-stack 
is indexed, the operand pointed to by this descriptor 
is brought to the top-of-stack. 



If the presence bit (bit 47) and copy bit (bit 46) are 
OFF, the address of the original descriptor is placed 
in the address field of the stack copy. If the word 
accessed by the indexed word in the top-of-stack is 
not a data descriptor, the invalid-operand interrupt is 
set and the operation is terminated. If the data de­
scriptor accessed by the indexed word in the top-of­
stack has the index bit (bit 45) set to one. the inva­
lid-operand interrupt is set and the operation is ter­
minated. 

LOAD (LOAD) (P)BD 

The Load operator places the word addressed by 
the indirect reference word or by the indexed data 
descriptor in the top of stack. 

If input to Load operator is neither a data descrip­
tor nor an IRW, the invalid-operand interrupt is set. 

If the target is a descriptor, the copy bit is set. 

If the descriptor is both non-present (bit 47=0) 
and non-copy (bit 46=0) when fetched, copy action 
occurs. The address from which the descriptor was 
fetched is placed in the address field of the copy of 
the descriptor left on the top of the stack. 

LOAD TRANSPARENT (LOOT) (V)BC 

The Load Transparent operator saves the target 
data unchanged as the result in the top of stack. If 
target data is neither an IR W nor an indexed de­
scriptor, the LS 20 bits of the target data are extrac­
ted and used as an address. Whatever is referenced 
by this address is then fetched. 

Input Convert Operators 

The input convert operators convert the various 
character sets (digits BLC, EBCDIC, or ASCII) to 
operands for arithmetic operations. 

INPUT CONVERT, DESTRUCTIVE (ICVD) (P)CA 

The Input Convert, Destructive operator converts 
four-bit digit, or six-bit BCL, or eight-bit EBCDIC 
(or ASCII) to an operand for internal arithmetic op­
erations. 

The first items in the stack is an operand that is 
integerized to form the repeat field. The second item 
in the stack is a descriptor used as a source pointer. 

The specified number of characters are transferred 
from the source string to the top of stack. Only the 
numeric portion of the character is transferred. The 

5010796-001 

transferred string is converted to a double-precision 
operand if the length is ~ 12. If a double-precision 
operand is produced, the true/false flip-flop is set to 
false; otherwise, it is set to true. The sign bit of the 
operand is set negative if the zone of the last charac­
ter transferred is 102 (for six-bit characters) or 11012 
(for eight-bit characters). The tag field is set to indi­
cate a single-or double-precision operand. 

INPUT, CONVERT, UPDATE (ICVU) (P)CB 

The Input Convert, Update operator performs an 
Input Convert, Destructive operation. 

If the source is an operand, the source is rotated 
so that the next character to be used is left justified. 
At the completion of the operation, the source point­
er is updated. 

Literal Call Operators 

The literal call operators place defined-value oper­
ands in the top of stack. 

LIT CALL ZERO (ZERO) (P)BO 

The Lit Call Zero operator places in the top of 
stack a single-precision operand with a value of 0. 

LIT CALL ONE (ONE) (P)B1 

The Lit Call One operator places in the top of 
stack a single-precision operand with a value of I. 

LIT CALL 8 BITS (L TS) (P)B2 

The Lit Call 8 Bits operator places in the top of 
stack a single-precision operand equal in value to the 
second syllable of this operator. 

LIT CALL 16 BITS (L T16) (P)B3 

The Lit Call 16 Bits operator places in the top of 
stack a single-precision operand equal in value to the 
second and third syllables of this operator. 

LIT CALL 48 BITS (L T48) (P)BE 

The Lit Call 48 Bits operator places in the top of 
stack a single-precision operand equal in value to the 
next program word. 

NOTE 
Since the literal is synchronized by 
word, this operator can be 7 to 12 syl­
lables long. Any unused syllables are 
filled in with the invalid operator code. 

34-11 



MAKE PROGRAM CONTROL WORD (MPCW) 
(P)BF 

The Make Program Control Word operator per­
forms a Lit Call 48 Bits operation except that the tag 
field is set to 111 to indicate a program control word 
and the stack number field of the PCW is inserted 
from the stack number register. 

Logical Operators 

Logical operators operate on the two top-of-stack 
operands bit for bit from bit 47 through bit 0 to ob­
tain logical values (48 logical values for single-preci­
sion operands and 96 for double-precision operands) 
which are left as the top-of-stack operand. If only 
one of the operands associated with LAND, LOR, 
LNOT, or LEQV is a double-precision operand, 
then the other operand will be extended with O's. 
Logical operators may be used to operate on logical, 
string, or numeric operands. 

LOGICAL AND (LAND) (P)90 

The Logical AND operator logically ANDs each 
bit (except tag bits) of the two top-of-stack operands 
leaving the result in the top of stack. Each bit of the 
top-of-stack operand is set to 1 where a 1 appears in 
the corresponding bit positions of the two top-of­
stack operands; the other information bits in the top­
of-stack operand are set to 0. The tag of the second 
operand is undisturbed except for a double-precision 
operand in the top of stack, in which case the sec­
ond operand is made double precision and the tag 
field is changed accordingly. AND is defined as fol­
lows: 

Operand A 

0 
0 
1 
1 

Operand B 

0 
1 
0 
1 

NOTE 

A AND B 

0 
0 
0 
1 

The tag field is set equal to the second 
item in the stack. 

LOGICAL OR (LOR) (P)91 

The Logical OR operator logically ORs each bit 
(except tag bits) of the two top-of-stack operands 
leaving the result in the top of stack. OR is defined 
as follows: 

Operand A 

0 
0 
1 
1 

3-4-12 

Operand B 

0 
1 
0 
1 

A ORB 

0 
1 
1 
1 

NOTE 
The tag field is set equal to the second 
item in the stack. 

LOGICAL NEGATE (LNOT) (P)92 

The Logical Negate operator complements each 
bit position (except tag bits) of the top-of-stack oper­
and. 

LOGICAL EQUIVALENCE (LEOV) (P)93 

The Logical Equivalence operator compares the 
corresponding bits of the two items in the top of 
stack (except the tag bits). The two items are re­
placed both by a single item with a tag field equal 
to the tag field of the second item in the stack and 
by a I in each bit position where the corresponding 
bits of the two top-of-stack items were equal. 

Pack Operators 

PACK, DESTRUCTIVE (PACO) (P)D1 

The Pack. Destructive operator packs data. (as ad­
dressed by the source poinler) riglit justified into the 
top of stack in four-bit (digit) format. 

The top-of-stack operand defines the length/repeat 
field (in digits) to be packed. The source pointer is 
the second item in the stack. The specified number 
of digits are transferred from the source to the top 
of stack (dropping the zones when required). If the 
digit length transferred is less than 13, the tag field 
in the top of stack is set to a single-precision oper­
and; otherwise, the tag field is set to a double-preci­
sion operand. 

If the length is not less than 25, an invalid-operand 
interrupt is set and the operation is terminated. If 
the source data has the memory protect bit (bit 48) 
set to 1, the segmented-array interrupt is set and the 
operation is terminated. 

if the sign of the source data is negative, the 
true/false flip-flop is set to 1; otherwise, the flip-flop 
is reset. Sign conventions are as follows: 

Datll Bit Sign Location Neg. Sign 
Format Zone Bit 

Contlg. 
4-bit Most significant digit 1101 
6-bit Least significant character 10 
8-bit Least significant byte 1101 

(EBCDIC) 
8-bit Least significant byte 1111 (ASCII) 



PACK, UPDATE (PACU) (P)D9 

The Pack, Update operator performs a Pack, De­
structive operation. At the completion of the 
operation, the source pointer is updated. 

Relational Operators 

The relational operators perform' algebraic compar­
isons on the two top-of-stack operands. The oper­
ands are removed from the stack and the result of 
~he comparison is a logical operand which is placed 
m the top of stack. The result is a single-precision 
operand with the least significant bit set to 1 if the 
relation is true or a single-precision operand with all 
information bits set to 0 if the relation is false. 

GREATER THAN (GRTR) (P)8A 

If the second operand in the stack is greater than 
the top of stack operand, the Greater Than operator 
replaces the two operands with a single-precision op­
erand which has the least significant bit set to 1. 

If the second operand in the stack is not greater 
than the top-of-stack operand, the two operands are 
replaced with a single-precision operand which has 
all information bits set to 0. 

GREATER THAN OR EQUAL (GREQ) (P)89 

If the second operand in the stack is greater than 
or equal to the top-of-stack operand, the Greater 
Than or Equal operator replaces the two operands 
with a single-precision operand which has the least­
significant bit set to 1. 

If the second operand in the stack is not greater 
than or equal to the top-of-stack operand, the two 
operands are replaced with a single-precision oper­
and which has all information bits set to 0. 

EQUAL (EQUL) (P)8C 

If the second operand in the stack is algebraically 
equal to the top-of-stack operand, the Equal 
op~rator replaces t.he two operands with a single-pre­
c1s10n operand which has the least significant bit set 
to I . If the second operand in the stack is not equal 
to the top-of-stack operand, the two operands are re­
placed with a single-precision operand which has all 
information bits set to 0. 

LESS THAN OR EQUAL (LSEQ) (P)8B 

If the second operand in the stack is less than or 
equal to the top-of-stack operand, the Less Than or 
Equal operator replaces the two operands with a sin-

g~e-precision operand which has the least significant 
bit set the l. If the second operand in the stack is 
not less than or equal to the top-of-stack operand, 
the two operands are replaced with a single-precision 
operand which has all information bits set to 0. 

LESS THAN (LESS) (P)88 

If the second operand in the stack is less than the 
top-of-stack operand, the Less Than operator re­
places the two operands with a single-precision oper­
and which has the least significant bit set to I. If the 
second operand in the stack is not less than the top­
of-stack operand, the two operands are replaced 
with a single-precision operand which has all infor­
mation bits set to 0. 

NOT EQUAL (NEQL) (P)8D 

If the second operand in the stack is not equal to 
the top-of-stack operand, the Not Equal operator re­
places the two operands with a single-precision oper­
and with the least significant bit set to 1. If the sec­
ond operand in the stack is equal to the top-of-stack 
operand, the two operands are replaced with a sin­
gle-precision operand which has all information bits 
set to 0. 

LOGICAL EQUAL (SAME) (P)94 

The Logical Equal operator compares all bits (in­
cluding tag bits) of the two items (operands, controls 
words, descriptors) in the top of stack. If all bits are 
equal, a single-precision operand (with the least sig­
nificant bit set to I and all other information bits set 
to 0) is stored in the top of stack; otherwise, a sin­
gle-precision operand with all information bits set to 
0 is stored in the top of stack. 

Scale Operators 

The scale-left operators provide a means of align­
ing the decimal points prior to performing arithmetic 
operations. The scale-right operators provide a 
means of converting binary arithmetic to decimal 
arithmetic. Most important operator in this group is 
Scale-Right Final. In most cases, the other scale op­
erators are not used, except Scale Right Save. 

SCALE LEFT (SCLF) (P)CO 

The Scale Left operator shifts the operand in the 
top of stack for decimal point alignment. The oper­
and in the top of stack is first converted to an inte­
ger and then multiplied by IO raised to the power 
specified by the scale factor. The scale factor is ob­
tained from the second syllable (the program syllable 
following the operator syllable). 

34-13 



If scaling of a single-precision operand would re· 
sult in overflow, the single-precision operand is con­
verted to a double-precision operand integer. For the 
scale operators, a double-precision integer is defined 
as a double-precision operand with an exponent 
equal to 13 (octal). If scaling of the operand results 
in an exponent greater than 13 (double-precision op­
erand), the overflow flip-flop is set to 1. 

DYNAMIC SCALE LEFT (DSLF) (P)C1 

The Dynamic Scale Left operator performs a Scale 
Left operation except that the scale factor is ob­
tained from the top-of-stack operand and the oper­
and to be scaled is the second operand in the stack. 
The operand in the top-of-stack is converted to an 
integer before scaling takes place. 

SCALE RIGHT SAVE (SCRS) (P)C4 

The Scale Right Save operator shifts the top-of­
stack operand to the right for conversion from a bi­
nary to a decimal numbering system. The operand in 
the top of stack is converted to an integer and di­
vided by I 0 raised to the power specified by the 
scale factor. The scale factor is obtained from the 
second syllable. If the scale factor is greater than 12, 
the invalid-operand interrupt is set and the operation 
is terminated. 

The binary quotient resulting from the division is 
left in the top of stack. The second operand in the 
stack is the remainder which is converted to decimal 
(four-bit digits) and left justified. 

DYNAMIC SCALE RIGHT SAVE (DSRS) (P)C5 

The Dynamic Scale Right Save operator performs 
a Scale Right Save operation except that the scale 
factor is obtained from the top-of-stack operand and 
the operand to be scaled is the second item in the 
stack. The top-of-stack operand is converted to an 
integer before scaling takrs place. 

SCALE RIGHT TRUNCATE (SCAT) (P)C2 

The Scale Right Truncate operator performs a 
Scale Right Save operation except that the remain­
der resulting from the division is deleted from the 
stack. 

DYNAMIC SCALE RIGHT TRUNCATE (DSRT) 
(P)C3 

The Dynamic Scale Right Truncate operator per­
forms a Scale Right Truncate operation except that 
the scale factor is obtained from the top-of-stack op­
erand and the operand to be scaled is the second op­
erand in the stack. 

34-14 

SCALE RIGHT ROUNDED (SCRR) (P)CS 

The Scale Right Rounded operator performs a 
Scale Right Save operation except that the remain­
der resulting from the division is deleted from the 
stack. If the most significant digit of the remainder 
is 'greater than or equal to 5 the quotient from the 
division is rounded by adding 1 to it. 

DYNAMIC SCALE RIGHT ROUNDED (DSRR) 
(P)C9 

The Dynamic Scale Right rounded operator per­
forms a Scale Right Rounded operation except that 
the scale factor is obtained from the top-of-stack op­
erand and the operand to be scaled is the second op­
erand in the stack. 

SCALE RIGHT FINAL (SCRF) (P)C6 

The Scale Right Final operator performs a Scale 
Right Save operation except that the quotient is de­
leted from the stack and the sign of the quotient is 
copied into the external sign flip-flop. If the quotient 
was not equal to 0 at the conclusion of the 
operation, the overflow flip-flop is set. 

DYNAMIC SCALE RIGHT FINAL (DSRF) (P)C7 

The Dynamic Scale Right Final operator performs 
a Scale Right Final operation except that the scale 
factor is obtained from the top-of-stack operand and 
the operand to be scaled is the second item in the 
stack. 

Stack Operators 

The stack operators are used to adjust the relative 
positions of the top items in the stack and to copy 
or delete the top-of-stack item. 

EXCHANGE (EXCH) (P)B6 

The Exchange operator causes the two top-of· 
stack items to be exchanged. 

ROTATE STACK DOWN (RSDN) (V)B7 

The Rotate Stack Down operator rotates the three 
top-of-stack words as follows: 

Before Aotlitlon 

Word 1 
Word 2 
Word 3 

After Aotlitlon 
Word 2 
Word 3 
Word 1 



ROTATE STACK UP (RSUP) (V)B6 

The Rotate Stack Up operator rotates the three 
top-of-stack words as follows: 

Before Rotation 

Word 1 
Word 2 
Word 3 

After Rotation 

Word 3 
Word 1 
Word 2 

DUPLICATE TOP-OF-STACK (DUPL) (P}B7 

The Duplicate Top-of-Stack operator duplicates 
the item in the top of stack. 

DELETE TOP-OF-STACK (DLET) (P)B5 

The Delete Top-of-Stack operator deletes the top­
of-stack item. 

PUSH DOWN STACK REGISTERS (PUSH) (P)B4 

The Push Down Stack Registers operator pushes 
down the top-of-stack items and stack buffer con­
tents into memory. 

STORE DESTRUCTIVE (STOD) (P)B8 

The Store Destructive operator stores the second 
item in the stack into memory. The address into 
which the item is to be stored is indicated by an in­
direct reference word or indexed data descriptor in 
the top of stack. If the top-of-stack item is an oper­
and, the two top-of-stack items are exchanged so 
that the address item is in the top of stack and the 
item to be stored is in the second position. After the 
item is stored, both the item and its address are de­
leted from the stack. 

If the word addressed by the indirect reference 
word is another indirect reference word or indexed 
data descriptor, or if the word addressed by the data 
descriptor is another indexed data descriptor, the 
store operation will not occur at that location, but 
will be retried using the address indicated by that 
word. This chaining of address items will continue 
until a "target" location is reached; however, once 
a data descriptor has been encountered, an indirect 
reference word or PCW is not allowed, and once a 
stuffed indirect reference word has been encoun­
tered, a normal IRW is not allowed. Either of these 
conditions will cause an invalid-operand interrupt. 

If the word addressed by the indirect reference 
word is a program control word, accidental proce­
dure entry occurs. The spontaneously generated 
RCW causes STOD to be re-executed upon return 
from the procedure. 

5010796-001 

If a data descriptor used as an address item has 
the read-only bit (bit 43) ON, or if the addressed 
word has the memory protect bit (bit 48) ON and is 
not a data descriptor, IRW, or PCW, the memory­
protect interrupt is set and the operation is termi­
nated. 

If the presence bit in the data descriptor is 0, the 
presence-bit interrupt is set. After the data has been 
made present, the operation is restarted. 

If the flashback had a tag of 2 (for an IRW ad­
dress) and data for storage is single precision, then 
the XTND micro operator is called to convert the 
single-precision data to double-precision data. 

If double-precision bit (bit 40) is OFF (for a de­
scriptor address), the data for storage should be sin­
gle precision. However, if the data is double preci­
sion, the SNGL micro operator is called to convert 
the double-precision data to single-precision data. 

In either case, a PCU restart is required. The PCU 
restart PROM table is used to issue a PIE level 
XTND or SNGL micro operator, along with an ex­
change, before store is reissued. 

STORE NON-DESTRUCTIVE (STON) (P)B9 

The Store Non-Destructive operator performs a 
Store Destructive operation, except that only the ad­
dress item is deleted from the stack. The item which 
was stored is left in the top of stack. 

OVERWRITE DESTRUCTIVE (OVRD) (P)BA 

The Overwrite Destructive operator performs a 
Store Destructive operation, except that the ad­
dressed location will be overwritten regardless of its 
contents. Chaining of address items, memory protec­
tion checks, or accidental procedure entry do not oc­
cur. 

OVERWRITE NON-DESTRUCTIVE (OVRN) (P)BB 

The Overwrite Non-Destructive operator performs 
a Store Non-Destructive operation, except that the 
addressed location will be overwritten regardless of 
its contents. Chaining of address items, memory pro­
tection checks, or accidental procedure entry do not 
occur. 

READ WITH LOCK (RDLK) (V)BA 

The Read With Lock operator is a variant of the 
Overwrite Non-Destructive operator. The word in 
the top of stack and the specified word in memory 
are interchanged after all local data is purged. 

34-15 



String Operators 

The string operators are used for transferring, 
comparing, scanning, and translating strings of data. 
In addition, a set of micro-operators provides a 
means of formatting data for input/output. 

The string operators use a repeat value and source 
and destination pointers which are located in the 
stack. For most string operators, the repeat value 
range is from 0 to 220-1. If the repeat value is :=;Q, 

the string operator checks for valid inputs and ter­
minates. If the string operator is an update type op­
erator. the normal updated descriptors are produced. 

The source for the string operator can either be a 
pointer into an array or a single or double precision 
operand. If the source is an operand, the source 
character size is determined by either the string op­
erator or the destination character size. The first 
source character to be used by the string operator is 
the left-most character in the most significant word 
of the operand. 

As the string operator acts upon each character in 
the operand, the operand is rotated left by one char­
acter so that the next character to be used is always 
the left-most character in the rotated source oper­
and. For update type string operators. the operand 
is placed back into the stack in its rotated form. The 
source and destination pointers can be: 

1. An unindexed data descriptor. 
2. An indexed data descriptor. 
3. An unindexed string descriptor. 
4. An indexed string descriptor. 

When one descriptor (source or destination) is a 
data descriptor and the other is a string descriptor. 
the data descriptor is converted to a string descriptor 
of the same type. 

If both descriptors are data descriptors or there is 
only one descriptor and it is a data descriptor. then 
the conversion is made to 8-bit character string de­
scriptors. Note that the index field inserted into con­
verted string descriptors is the same as that found in 
the original descriptors. 

If string descriptors, except for the translate and 
transfer word operators. contain different character 
sizes, the invalid-operand interrupt is caused. 

If string operators contain an update variant, the 
indexed string descriptors pointing to the next char­
acter in the array to be used are left in the stack. 

3-4-16 

STRING ISOLATE (SISO) (P)D5 

The String Isolate operator transfers from the 
sour~e string to the top-of-stack the number of bytes 
specified by the repeat field. This string is right-justi­
fied and filled with leading zeros. 

At the start of the operation, the top-of-stack op­
erand specifies the length of the byte string and the 
second item in the stack is an operand or a descrip­
tor used as the source pointer. If the number of 
bytes exceed~ one word (6 bytes or 48 bits), the tag 
of the result 1s set to double precision. if the number 
of bits is greater than 96, an invalid operand inter­
rupt is set and the operation is terminated. If the 
source data has the memory-protect bit (bit 48) set 
to one, the segmented-array interrupt is set and the 
operation is terminated. 

String Transfer Operators 

String transfer operators give the system the abil­
ity to transfer characters or words from one location 
in memory to another location in memory. 

TRANSFER WORDS, DESTRUCTIVE (TWSD) 
(P)D3 

The Transfer Words, Destructive operator trans­
fers the number of words specified by the top-of­
stack operand from the source string to the destina­
tion string. The first operand is integerized and is 
used as the count or repeat field. The second item 
in the stack (a string descriptor or operand) is the 
source. pojnter;. i.e., it points at the source string. 
The thtrd item m the stack (a string descriptor) is the 
destination pointer which is used to provide the ad­
dress of the destination string. The number of words 
specified by the repeat field are transferred from the 
source to the destination. If an odd-tagged word is 
encountered in the source during distribution, a seg­
mented array interrupt is generated. 

TRANSFER WORDS, UPDATE (TWSU) (P)DB 

The Transfer Words, Update operator performs a 
Transfer Words, Destructive operation. At the com­
pletion of the operation the source and destination 
poi~ters ar~ updated to point to the next memory lo­
cation which would have been processed if the 
length had not been exhausted. If either pointer was 
a data descriptor. then an indexed data descriptor is 
updated. 

TRANSFER WORDS, OVERWRITE DESTRUCTIVE 
(TWOD) (P)D4 

The Transfer Words, Overwrite Destructive 
operator performs a Transfer Words, Destructive op­
eration bypassing the memory-protection checks. 



TRANSFER WORDS, OVERWRITE UPDATE 
(TWOU) (P)DC 

The Transfer Words. Overwrite Update operator 
performs a Transfer Words. Update operation by­
passing the memory-protection checks. 

TRANSFER WHILE GREATER, DESTRUCTIVE 
(TGTD) (P)E2 

The Transfer While Greater. Destructive operator 
transfers the number of characters specified by the 
second operand (bits 19:20) in the stack or while the 
source character is greater than a delimiter. The top­
of-stack operand is the delimiter. The third item in 
the stack is the source pointer. and the fourth item 
is the destination pointer. 

If the second item in the stack is a descriptor. it 
is used as a source pointer. This means that no re­
peat field was given and the default field length is 
1.048.57.'i. 

If either the source or destination word has the 
memory protect bit ON (bit 48 = I). the segmented­
array interrupt is set and the operation is terminated. 

All comparisons are binary (EBCDIC collating se­
quence). The source character is compared with the 
delimiter. If the comparison is true. the true/false 
flip-flop is set to one: if the comparison fails. the 
true/false flip-flop is set lo 'zero. 

TRANSFER WHILE GREATER, UPDATE (TGTU) 
(P)EA 

The Transfer While Greater. Update operator per­
forms a Transfer While Greater. Destructive 
operation. At the completion of the operation. the 
source and destination pointers are updated to point 
at the next character in the source and destination 
strings. respectively. At the completion of the 
operation. a count of the number of characters not 
transferred is placed on the top-of-stack. If all the 
characters specified by the length field are trans­
ferred. the true/false flip-flop is set to true; other­
wise. the true/false flip-flop is set to false. 

If the operation is terminated because the relation­
ship is not met. the source pointer points to the 
character which stopped the transfer. 

TRANSFER WHILE GREATER OR EQUAL, 
DESTRUCTIVE (TGED) (P)E1 

The Transfer While Greater or Equal operator per­
forms a Transfer While Greater. Destructive 
operation while the source character is greater than 
or equal to the delimiter. 

5010796-001 

TRANSFER WHILE GREATER OR EQUAL, 
UPDATE (TGEU) (P)E9 

The Transfer While Greater or Equal. Update op­
erator performs a Transfer While Greater Than or 
Equal operation. At the completion of the operation, 
the source and destination pointers and the count are 
updated. 

TRANSFER WHILE EQUAL, DESTRUCTIVE 
(TEQD) (P)E4 

The Transfer While Equal. Destructive operator 
performs a Transfer While Greater or Equal, De­
structive operation while the source character is 
equal to the delimiter. 

TRANSFER WHILE EQUAL, UPDATE (TEQU) 
(P)EC 

The Transfer While Equal. Update operator per­
forms a Transfer While Equal, Destructive 
operation. At the completion of the operation, the 
source and destination pointers and the count are 
updated. 

TRANSFER WHILE LESS OR EQUAL, 
DESTRUCTIVE (TLED) (P)E3 

The Transfer While less or Equal, Destructive op­
erator performs a Transfer While Greater or Equal. 
Destructive operation while the source character is 
less than or equal to the delimiter. 

TRANSFER WHILE LESS OR EQUAL, UPDATE 
(TLEU) (P)EB 

The Transfer While Less or Equal. Update 
operator performs a Transfer While Less or Equal. 
Destructive operation. At the completion of the op­
eration. the source and destination pointers and the 
count are updated. 

TRANSFER WHILE LESS, DESTRUCTIVE (TLSD) 
(P)EO 

The Transfer While Less. Destructive operator 
performs a Transfer While Less or Equal, Destruc­
tive operation while the source character is less than 
the delimiter. 

TRANSFER WHILE LESS, UPDATE (TLSU) (P)E8 

The Transfer While Less, Update operator per­
forms a Transfer While Less. Destructive operation. 
At the completion of the operation, the source and 
destination pointers and the count are updated. 

34-17 



TRANSFER WHILE NOT EQUAL, DESTRUCTIVE 
(TNED) (P)E5 

The Transfer While Not Equal, Destructive 
operator performs a Transfer While Greater or 
Equal. Destructive operation while the source char­
acter is not equal to the delimiter. 

TRANSFER WHILE NOT EQUAL, UPDATE 
(TNEU) (P)ED 

The Transfer While Not Equal. Update operator 
performs a Transfer While Not Equal Destructive 
operation. At the completion of the operation. the 
source and destination pointers and the count are 
updated. 

TRANSFER WHILE TRUE, DESTRUCTIVE 
(TWTD) (V)D3 

The Transfer While True. Destructive operator 
transfers characters from the source string to the 
destination string for the number of characters 
specified by the length operand while the stated rela­
tionship is met. If the relationship is not met the 
transfer is terminated at that point. The relationship 
is determined by using the source character to index 
a bit in the table. If the bit indexed is a one, the re­
lationshi!'l is true. An all zero's character indexes to 
the most significant bit of the table. 

The operator uses the top four words in the stack 
as follows: The top-of-stack word is a table pointer 
to specific addresses in the table; the second word 
in the stack provides the length of the string to be 
transferred or, it is is a descriptor. it is used as a 
source pointer since no repeat field was given and 
the default field length is set at 1,048,575; the third 
word in the stack is an operand or a descriptor 
which gives the address of the source string or is a 
single-precision operand which is the source string; 
the fourth word in the stack is a descriptor pointing 
at the destination string. 

The table is indexed as follows to obtain the deci­
sion bit: The source character is expanded to eight 
bits, if necessary, by appending two or four leading­
zero bits. The three high-order bits of the source 
character select a word from the table, indexing the 
table pointer. The remaining five bits of the expand­
ed source character select (by their value) ~ bit from 
this word. 

At the completion of the operation, a count of the 
number of characters not transferred is placed on the 
top of stack. 

If all the characters specified by the length field 
are transferred, the true/false flip-flop is set to true; 
otherwise, the true/false flip-flop is set to false. 

34-18 

The table format is as follows: 

Source Size 

4 

6 

8 

Table Length 

1 word 

2 words 

8 words 

Bits Used In 
Table Word 

(31: 16) 

(31 :32) 

(31 :32) 

TRANSFER WHILE TRUE, UPDATE (TWTU) 
(V)DB 

The Transfer While True, Update operator per­
forms a Transfer While True, Destructive operation. 
At the completion of the operation, the source desti­
nation pointers and the count are updated. If all the 
characters specified by the length field are trans­
ferred. the true/false flip-flop is set to one (true); 
otherwise it is set to zero. 

TRANSFER WHILE FALSE, DESTRUCTIVE 
(TWFD) (V)D2 

The Transfer While False, Destructive operator 
performs the Transfer While True Destructive 
operation except that the relationship is true if the 
bit found by indexing into the table is a zero. 

TRANSFER WHILE FALSE, UPDATE (TWFU) 
(V)DA 

The Transfer While False, Update operator per­
forms a Transfer While False, Destructive operation. 
At the completion of the operation, the source and 
destination pointers and the count are updated. 

TRANSFER UNCONDITIONAL, DESTRUCTIVE 
(TUND) (P)E6 

The Transfer Unconditional, Destructive operator 
transfers from the source to the destination the num­
ber of characters specified by the top-of-stack oper­
and. If the top-of-stack item is a descriptor, it is 
used as a source pointer. Since no repeat field was 
given. the field length is set by default at 1,048,575. 
The second item in the stack is the destination point­
er. If all characters specified by the length field are 
transferred, the true/false flip-flop is set to one (true) 
by this operand; otherwise, the flip-flop is set to 
zero (false). 

TRANSFER UNCONDITIONAL, UPDATE (TUNU) 
(P)EE 

The Transfer Unconditional, Update operator per­
forms a Transfer Unconditional, Destructive 
operation. At the completion of the operation, the 
source and destination pointers are updated. 



Subroutine Operators 

Subroutine operators are those operators which 
can move the program operation across machine ar­
chitecture such as from stack to stack, or from sub­
routine to subroutine, and so on. 

Any subroutine operator which can "chain" indi­
rect reference words (IRW's) or stuffed indirect ref­
erence words (SIRW's) can obtain accidental proce­
dure entry if a program control word (PCW) is 
pointed to by the IRW or SIRW last in the chain. 

MARK STACK (MKST) (P)AE 

The Mark Stack operator builds an inactive 
MSCW on top of the stack which is to be subse­
quently used by an Enter operator. The F register is 
set to the location of the MSCW. 

The Mark Stack operator is normally used when 
an entry to a procedure is anticipated. The normal 
sequence of events to enter a procedure is (I) mark 
the stack; (2) insert an indirect reference to a pro~ 
gram control word; (3) insert parameters. if any are 
to be passed to the procedure; and then (4) execute 
an Enter operator, which will in turn. cause an entry 
into the program segment located by the program 
control word. 

INSERT MARK STACK (IMKS) (P)CF 
The Insert Mark Stack operator inserts a mark 

stack control word in the current stack below the 
two top-of-stack items. 

NAME CALL (NAMC) (P) 40 THAU (P)7F 

Name Call builds an indirect reference word in the 
top of stack. The six low-order bits of the first sylla­
ble and the eight bits of the second syllable form a 
14-bit address couple. This address couple is placed 
in the top-of-stack location of the COB with the tag 
field set to 00 I. 

In the B 7800, if the Name Call is followed by 
INDX. NXLN, NXLV. STOD, STON, OVRD, 
OVRN, DBUN, LOAD. or LOOT operator, the 
IRW is not placed in the COB. Instead the address 
couple is sent to the DRU for evaluation and, if ap­
propriate, a memory request is initiated by the DRU. 
Except for write operators, the operator following 
NAMC is processed in the DRU. In the case of con­
catenated index operator, a second input is sent as 
a COB address location to the DRU. The operand in 
the COB location is pointing to a descriptor, the in­
valid-operand interrupt used by the DRU to index 
the fetched descriptor. Since the address computa­
tion is completed by the time the index operator is 
processed by the DRU, a considerable time saving is 
realized for concatenated index operations. 

5010796-001 

VALUE CALL (VALC) (P)OO THAU (P)3F 

Value Call is a two-syllable instruction that brings 
an operand from memory into the top-of-stack. A 
concatenation of the two Value Call syllables gives 
a 14-bit address couple. If the referenced memory lo­
cation contains an indirect reference word or a data 
descriptor. additional memory accesses are made un­
til the "target" operand is located. The operand is 
then placed in the top-of-stack. The operand may be 
either single-precision or double-precision. causing 
either one or two words to be loaded into the top­
of-stack. 

If the word accessed is an indexed data descriptor. 
the word addressed by the data descriptor is brought 
to the top-of-stack. If the word accessed is a non-in­
dexed word data descriptor, the descriptor is in­
dexed using the second word in the stack as the in­
dex value. and the word addressed by the indexed 
data descriptor is brought to the top-of-stack. If the 
double-precision bit (bit 40) in the data descriptor is 
set, the second half of the double-precision operand 
is placed in the second half of the top-of-stack loca­
tion. 

If the presence bit in the data descriptor is zero. 
the presence-bit interrupt is set. After the data has 
been made present. the operation is restarted. 

If a data descriptor does not address an operand, 
step index word. or a word descriptor. an invalid-op­
erand interrupt is set and the operation is termi­
nated. 

If the word accessed by the Value Call is an indi­
rect reference word (IRW). the word addressed by 
the IRW is brought to the top-of-stack. 

If the word accessed is a program control word 
(PCW), an accidental entry into the subroutine ad­
dressed by the PCW is initiated. A mark stack con­
trol word and return control word are placed in the 
stack and an entry is made into the subprogram. Up­
on completion of the subprogram, a return operation 
will re-enter the Value Call operator flow. 

If the target operand is a step index word (tag 
4) instead of an operand, the current-value field (bits 
15: 16) of the SIW will be placed in the top-of-stack 
with the tag set to zero. 

The "chaining" of memory accesses continues un­
til a target operand is reached; however, once a data 
descriptor has been encountered, an indirect refer­
ence word or PCW is not allowed, and once a 
stuffed indirect reference word has been encoun­
tered, a normal IRW is not allowed. Either of these 
conditions will cause an invalid-operand interrupt. 

34-19 



EVALUATE (EVAL) (P)AC 

If the word in the top of stack is an IRW at the 
start of the evaluate operator, the IRW is evaluated 
and chained until a target operand or descriptor is 
obtained. 

If the IRW chaining encounters an operand or 
step-index word, the last IRW is left in the top of 
stack as the result of the evaluate operator. 

If the IRW chaining encounters a descriptor, the 
last IRW is saved unless the descriptor is an index 
word descriptor. If IRW chaining encounters an in­
dex word descriptor, the index word descriptor is 
brought to the top of stack. 

If a non-index descriptor or string descriptor is an 
input to the evaluate operator, it is left in the top of 
stack as the result of the evaluate operator. 

ENTER (ENTR) (P)AB 

The Enter operator causes an entry into a proce­
dure from a calling procedure. (The sequence of 
events to enter a procedure is: (I) mark the stack; 
(2) insert an indirect reference to a program control 
word; (3) insert parameter(s), if any are to be passed 
to the procedure; and, (4) execute an Enter 
operator.) 

The Enter operator completes the MSCW and 
stores it at F, builds an RCW and stores it at F+ 1. 
and initializes processor state for procedure being 
entered. 

EXIT (EXIT) (P)A3 

The EXIT operator causes a called procedure to 
return to a calling procedure and is used when the 
called procedure is not required to return a result. 
The Exit operator returns all control registers to the 
position they were in prior to the calling procedure 
and cuts back the stack. 

RETURN (RETN) (P)A7 

The Return operator causes a called procedure to 
return to a calling procedure (as in EXIT) but is 
used when the called procedure is required to return 
a result. An operand or name in the top-of-stack is 
returned to the calling procedure. If a name is re­
turned and the V bit (bit 19) in the MSCW is ON, 
the name is evaluated to yield an operand as in 
V ALC (since the V-bit indicates that the RETN is to 
V ALC which caused accidental entry). 

34-20 

Transfer Operators 
The transfer operators transfer any field of bits 

from one word in the stack to any field of another 
word in the stack. 

NOTE 
For all transfer operators the values 
specified in the stack must be non-neg­
ative. 

FIELD TRANSFER (FL TR) (P)98 

The Field Transfer operator uses the three sylla­
bles following it to establish the pointers used in the 
field transfer. Stack adjustment takes place so that 
the two top-of-stack locations are full. The contents 
of the field in the top-of-stack. starting at the bit po­
sition addressed by the third syllable of FLTR, is 
transferred into a field of corresponding length in the 
second location in the stack. The field in the second 
location in the stack starts at the bit position indi­
cated by the second syllable of FL TR and proceeds 
toward the low-order-bit positions. When the num­
ber of bits specified by the fourth syllable of FLTR 
has been transferred the top-of-stack word and the 
operation is complete. 

If the second or third syllables of the operator are 
found to be greater than 47 or the fourth syllable is 
greater than 48. the invalid operand interrupt is set 
and the operation is terminated. 

DYNAMIC FIELD TRANSFER (DFTR) (P)99 

The Dynamic Field Transfer operator causes a 
Field Transfer operation using the top-of-stack oper­
and to specify the field length, using the second op­
erand in the stack to specify the starting-bit position 
of the field from which the transfer will be made, 
and using the third operand in the stack to indicate 
the starting bit of the field to which the transfer will 
be made. 

As each of these operands is used to establish a 
pointer for the transfer, it is first integerized and 
checked for being greater than 47 or 48, as above, 
then is deleted from the stack. The fourth and fifth 
stack operands become the two top-of-stack oper­
ands, and the transfer takes place as in the FLTR 
operator. 

FIELD ISOLATE (ISOL) (P)9A 

The Field Isolate operator isolates a field in the 
top-of-stack word. The second syllable of the 
operator specifies the starting bit. The third syllable 
specifies the length of the field in bits. The isolated 
field is right-justified with all other information bits 
set to zero. The tag bits are set to zero. 



DYNAMIC FIELD ISOLATE (DISO) (P)9B 

The Dynamic Field Isolate operator performs a 
Field Isolate operation using the top-of-stack oper­
and to specify the length of the field to be isolated 
and using the second operand in the stack to specify 
the starting bit. These operands are then deleted 
from the stack and the Field Isolate operation is per­
formed on the next operand. 

FIELD INSERT (INSR) (P)9C 

The Field Insert operator inserts a field from the 
top-of-stack into the second word. Stack adjustment 
assures that the top two positions are occupied. The 
right-justified field in the top-of-stack is inserted into 
the second word starting at the position specified by 
the second syllable of the Field Insert operator. The 
third syllable specifies the length of the field to be 
inserted. The top-of-stack word is deleted after the 
field is inserted in the second word. 

DYNAMIC FIELD INSERT (DINS) (P)9D 

The Dynamic Field Insert operator performs a 
Field Insert operation, transferring a field from the 
top operand in the stack into the fourth operand in 
the stack. The second operand in the stack specifies 
the length of the field to be inserted. and the third 
operand in the stack specifies the starting bit of the 
field. 

Type-Transfer Operators 

Type-transfer operators are used to manipulate op­
erand relative to single-precision or double-precision 
operands. 

SET TO SINGLE-PRECISION, TRUNCATED 
(SNGT) (P)CC 

The Set to Single-Precision, Truncated operator 
sets the top-of-stack operand to a single-precision 
operand without rounding. It functions as an arith­
metic operator with operand inputs. The result of 
this operator is expressed in normalized tloating­
point form. 

If descriptor is received as an input. the SNGT 
operator resets the double-precision bit (bit 40) ·in 
the descriptor; thereby making the data referenced 
by the descriptor single-precision. 

If descriptor is not indexed. the SNGT operator 
doubles the length field (bit 39:20) of the descriptor 
(length field represents the number of items in the 
array). 

If descriptor is already indexed. the index field 
(bits 39: 12) of the descriptor is not modified. 

5010796-001 

SET TO SINGLE-PRECISION ROUNDED (SNGL) 
(P)CD 

The Set to Single-Precision, Rounded operator 
sets the top-of-stack operand to a single-precision 
operand with rounding. It functions as an arithmetic 
operator with operand inputs. The result of this op­
erator is expressed in normalized floating-point form. 

If at the start of this operator. a descriptor is re­
ceived as an input: the invalid-operand interrupt 
pointing to a descriptor, the invalid-operand inter­
rupt is set and the operation is terminated. 

SET TO DOUBLE-PRECISION (XTND) (P)CE 

The Set Double-Precision operator sets the top-of­
stack operand to a double-precision operand. 

If single-precision operand is received as an input. 
the operand is extended with a word of O's (LS word 
will contain all O's) and the tags are set to 2. 

If descriptor is received as an input. the XTND 
operator sets the double-precision bit (bit 40) in the 
descriptor: thereby. making the data referenced by 
the descriptor double-precision. 

If descriptor is not indexed. the XTND operator 
divides the length field (bit 32:20) of the descriptor 
by 2 (length field represents the number of items in 
the array). 

SET DOUBLE TO TWO SINGLES (SPL T) (V)43 

The Set Double to Two Singles operator splits a 
double-precision operand into two single-precision 
results. (A becomes LS part and 8 becomes MS part 
of the result.) The SPLT operator can receive two 
single-precision operands as inputs. In this case. the 
LS word is pointing to a descriptor. the invalid-oper­
and interrupt considered to be all O's. 

SET TWO SINGLES TO A DOUBLE (JOIN) (V) 
42 

The Set Two Singles to a Double operator joins 
two single-precision operands to form one double­
precision result. (A becomes LS part and B becomes 
MS part of the result.) The JOIN operator can re­
ceive a double-precision operand as an input. In this 
case. the LS word is ignored and only the MS part 
of the result is used. 

Miscellaneous Primary Mode 
Operators 

Miscellaneous primary mode operators are those 
operators which cannot be readily described or 
grouped with other operators. 

34-21 



ESCAPE TO 16-BIT INSTRUCTION (VARI) (P) 95 

The Escape to 16-Bit InstructiQn operator provides 
transition from the primary mode operators to the 
variant mode operators. The first syllable (VARI) in­
dicates that the actual operator is in the second syl­
lable. (Interrupts are not allowed between the VARI 
syllable and the following syllable.) 

READ AND CLEAR OVERFLOW FLIP-FLOP 
(ROFF) (P)D7 

The Read and Clear Overflow Flip-Flop operator 
places a single-precision operand in the top-of-stack 
with the least significant pointing to a descriptor. the 
invalid-operand interrupt bit set equal to the over­
flow flip-flop. The overflow flip-flop is reset. 

READ TRUE FALSE FLIP-FLOP (TRFF) (P)DE 

The Read True False Flip-Flop operator places a 
single-precision operand in the top of stack with the 
least significant bit set equal to the true/false flip­
flop. 

SET EXTERNAL SIGN (SXSN) (P)D6 

The Set External Sign operator places the operand 
sign bit of the top-of-stack word into the external 
sign flip-flop. 

STUFF ENVIRONMENT (STFF)(P)AF 

The Stuff Environment operator places the current 
stack number and displacement into the stack num­
ber field and displacement field of the top-of-stack 
IRW. The index field of the SIRW is obtained di­
rectly from the IRW. Bit 46 is set to indicate that it 
is now a stuffed indirect reference word. 

The stack number identifies the stack in which the 
LL field of the IRW points to a display. This display 
may not be in the stack being executed by the pro­
cessor. Whatever stack is pointed to by the display 
is. the stack number that is placed in the SIRW. 

If normal IRW's LL field is less than current LL. 
pointing to a descriptor. the invalid-operand inter­
rupt the IRW's LL + I is l!sed to reference a dis­
play. This display is then used to fetch the MSCW. 
The display pointed to by the original IRW points to 
the stack number in the MSCW. Therefore. the 
stack number and displacement fields from the 
MSCW are used in building the SIRW. 

If LL of the normal IRW equals the current LL. 
the current stack number is placed into the SIRW 
and the display to which the normal IRWs LL points 
minus the current bottom of stack is calculated to 
obtained displacement field for the SIRW. 

34-22 

Universal Operators 

The operators HALT, NVLD, and NOOP are uni­
versal except that they cannot follow operators 
EXSU. EXSD, EXPU, and EXPO; in these cases a 
Loop Timeout will occur. 

CONDITIONAL HALT (HALT) (U) DF 

The Conditional Halt operator halts the processor 
if the conditional halt switch is in the ON position; 
if the conditional halt switch is OFF. the operator is 
treated as a NOOP. 

INVALID OPERATOR (NVLD) (U)FF 

The Invalid Operator sets the invalid-operator in­
terrupt. pointing to a descriptor, the invalid-operand 
interrupt 

NO OPERATION (NOOP) (U)FE 

No operation occurs when the No Operation oper­
ator is encountered except that the PSR and PIR are 
advanced to point at the next operator. 

VARIANT MODE OPERATORS 

Variant mode operators is the name used to de­
scribe those primary mode operators which are less 
frequently used. There is no functional significance 
to the category "'variant mode." Variant mode oper­
ation extends the number of operation codes. Vari­
ant mode operators require two syllables: the first 
syllable is the Escape to 16 Bit Instruction (VARI) 
operator. The syllable following VARI is the actual 
operation and the syllable pointer is positioned be­
yond the two syllables. 

Any unusual variant mode codes are detected and 
cause a programmed operator interrupt. 

Variant mode operations are both word-and string­
oriented operators. 

String Operators 

TRANSLATE (TRNS) (V)D7 

The Translate operator transfers from the source 
to the destination the number of characters specified 
by the second item in the stack while performing the 
following translation. 

The translation uses a table containing the trans­
lated characters. The word in the top-of-stack is a 
descriptor that addresses the translation table. The 
second operand in the stack specifies the length of 
the string. The third word in the stack is a descriptor 
addressing the source string (or an operand which is 



the source string). The fourth word in the stack is a 
descriptor addressing the destination string. Source 
and destination are updated at the end of the 
operation. 

Translation occurs as follows: Each source charac­
ter is used as index into the table to locate a charac­
ter. An all zeroes character locates the mo-st 
significant character in the table. The located charac­
ter is transferred to the destination string. 

The least significant 32 bits of each table word 
provide four 8-bit characters. Table sizes are as fol­
lows: 

I. 4-bit source digits use a 4-word table. 
2. 6-bit source characters use a 16-word table. 
3. 8-bit source bytes use a 64-word table. 

Scan Operators 

SCAN IN (SCNI) (V)4A 

The Scan-In operator uses the 20 low-order bits of 
the top-of-stack word as the address of the Time of 
Day (TOD) register and reads the TOD contents to 
the top-of-stack. Other variants. which are valid in 
the B 6000 Systems, produce an invalid operand in­
terrupt in the B 7800. The B 7800 MCP causes the 
correct B 7800 code to be executed to handle the in­
terrupt. 

Scan While Operators 

SCAN WHILE GREATER, DESTRUCTIVE (SGTD) 
(V)F2 

The Scan While Greater, Destructive operator 
scans the number of characters specified by the sec­
ond operand in the stack or while the source charac­
ter is greater than a delimiter. The top-of-stack oper­
and is the delimiter. The third item in the stack is 
the source pointer. If the second item in the stack 
is a descriptor, it is used as a source pointer and the 
length of the character string is set to 1,048 .575. All 
comparisons are binary. When the source is an oper­
and. it must be a single-precision operand. 

At the completion of this operator if all the char­
acters have been scanned, the true/false flip-flop is 
set to one. (SGTD operator leaves no result on the 
stack.) If the scan was stopped by the delimiter test 
before the end of the string the true/false flip-flop is 
set to zero. 

SCAN WHILE GREATER, UPDATE (SGTU) (V)FA 

The Scan While Greater, Update operator per­
forms a Scan While Greater, Destructive operation. 
At the completion of the operation, the source point-

5010796-001 

er and count are updated. The SGTU operator 
leaves the updated length on top of the stack and the 
updated source second from top of the stack. If all 
the characters specified by the length field are 
scanned. the true/false flip-flop is set to true; other­
wise, the true/false flip-flop is set to false. The 
source pointer locates the character which stopped 
the scan. 

SCAN WHILE GREATER OR EQUAL, 
DESTRUCTIVE (SGED) (V)FL 

The Scan While Greater or Equal, Destructive op­
erator performs a Scan While Greater. Destructive 
operation while the source character is greater than 
or equal to the delimiter. This operator leaves no re­
sult on the stack. 

SCAN WHILE GREATER OR EQUAL, UPDATE 
(SGEU) (V)F9 

The Scan While Greater or Equal, Update 
operator performs a Scan While Greater Than or 
Equal. Destructive operation. At the completion of 
the operation. the source pointer and count are up­
dated. This operator leaves the updated length on 
top of the stack and the updated source second from 
top of the stack. 

SCAN WHILE EQUAL, DESTRUCTIVE (SEQD) 
(V)F4 

The Scan While Equal, Destructive operator per­
forms a Scan While Greater, Destructive operation 
while the source character is equal to the delimiter. 
This operator leaves no result on the stack. 

SCAN WHILE EQUAL, UPDATE (SEQU) (V)FC 

The Scan While Equal. Update operator performs 
a Scan While Equal. Destructive operation. At the 
completion of the operation, the source pointer and 
count are updated. This operator leaves the updated 
length on top of the stack and the updated source 
second from top of the stack. 

SCAN WHILE LESS OR EQUAL, DESTRUCTIVE 
(SLED) (V)F3 -

The Scan While Less or Equal, Destructive 
operator performs a Scan While Greater, Destructive 
operation while the source character is less than or 
equal to the delimiter. This operator leaves no result 
on the stack. 

SCAN WHILE LESS OR EQUAL, UPDATE 
(SLEU) (V)FB 

The Scan While Less or Equal, Update operator 
performs a Scan While Less or Equal, Destructive 
operation. At the completion of the operation. the 

34-23 



source pointer and count are updated. This operator 
leaves the updated length on top of the stack and the 
updated source second from top of the stack. 

SCAN WHILE LESS, DESTRUCTIVE (SLSD) 
(V)FO 

The Scan While Less, Destructive operation per­
forms a Scan While Greater, Destructive operation 
while the source character is less than the delimiter. 
This operator leaves no result on the stack. 

SCAN WHILE LESS, UPDATE (SLSU) (V)F8 

The Scan While Less, Update operator performs a 
Scan While Less, Destructive operation. At the com­
pletion of the operation, the source pointer and 
count are updated. This operator leaves the updated 
length on the top of the stack and the updated 
source second from top of the stack. 

SCAN WHILE NOT EQUAL, DESTRUCTIVE 
(SNED) (V)F5 

The Scan While Not Equal, Destructive operator 
performs a Scan While Greater, Destructive 
operation while the source character is not equal to 
the delimiter. This operator leaves no result on the 
stack. 

SCAN WHILE NOT EQUAL, UPDATE (SNEU) 
(V)FD 

The Scan While Not Equal. Update operator per­
forms a Scan While not Equal. Destructive 
operation. At the completion, the source pointer and 
count are updated. This operator leaves the updated 
length on the top of the stack and the updated 
source second from top of the stack. 

SCAN WHILE TRUE, DESTRUCTIVE (SWTD) 
(V)D5 

The Scan While True, Destructive operator uses 
each source character as an index into a table to lo­
cate a bit in the table. In order to index the table the 
source character is expanded to eight bits (if neces­
sary) by appending two or four leading-zero bits. 
The three high-order bits of these eight select a word 
from .the table, indexing the table pointer. The re­
maining five bits of the expanded source character 
select a bit from this word by their value. If the bit 
located is a one, the relationship is true and the scan 
continues. An all zero's character indexes to the 
most significant bit of the table. 

The top-of-stack word is a table pointer. The sec­
ond item in the stack specifies the number of charac­
ters to be scanned or, if it is a descriptor, it is used 
as a source pointer and the length of the character 
string is set at 1,048,575. The third it~m in the stack 

34-24 

is the source pointer. If all the characters specified 
by the length field are scanned, the true/false flip­
flop is set to true; otherwise, the true/false flip-flop 
is set to false~ This operator leaves no results on the 
stack. The table format is as follows: 

Source Size 

4 

6 

8 

Table Length 

1 word 

2 words 

8 words 

Bits/Word 

(31 :16) 

(31 :32) 

(31 :32) 

SCAN WHILE TRUE, UPDATE (SWTU) (V)DD 

The Scan While true, Update operator performs a 
Scan While True, Destructive operation. At the com­
pletion of the operation, the source pointer and 
count are updated. This operator leaves the updated 
length on top of the stack and the updated source 
second from top of the stack. 

SCAN WHILE FALSE, DESTRUCTIVE (SWFD) 
(V)D4 

The Scan While False, Destructive operator per­
forms a Scan While True, Destructive operation ex­
cept that the relationship is true if the bit found by 
indexing into the table is a zero. This operator 
leaves no results on the stack. 

SCAN WHILE FALSE, UPDATE (SWFU) (V)DC 

The Scan While False, Update operator performs 
a Scan While False, Destructive operation. At the 
completion of the operation, the source pointer and 
count are updated. This operator leaves the updated 
length on top of the stack and the updated source 
second from top of the stack. 

Tab Field Operato~s 
\ 

SET TAG FIE.LO (STAG) (V)B4 

The Set Tag Field operator sets the tag field (bits 
50:3) of the second word in the stack to the contents 
of bits 2:3 of the top-of-stack word. 

READ TAG FIELD (RTAG) (V)B5 

The Read Tag Field operator replaces the top-of­
stack word with a single-precision operand with bits 
2:3 equal to the tag field of the original top-of-stack 
word. 



Set State Operators 

SET INTERVAL TIMER (SINT) (V)45 (CONTROL 
STATE OPERATOR) 

The Set Interval Timer operator integerizes the 
top-of-stack operand. If the operand cannot be inte­
gerized. an integer-overflow interrupt is set and the 
operation is terminated. The value of the I I low-or­
der bits of the top-of-stack operand is used to set the 
interval timer associated with the processor which is 
executing this operator. Once set. the interval timer 
will start to decrement once each 512 microseconds. 
The associated processor is interrupted when the 
value has been counted to zero if the timer is still 
armed. 

The interval timer is disarmed whenever the asso­
ciated processor is interrupted by an external inter­
rupt. 

READ PROCESSOR IDENTIFICATION (WHOI) 
(V)4E 

The Read Processor Identification operator places 
a single-precision operand with a value equal to the 
processor's number on the top-of-stack. 

ENABLE EXTERNAL INTERRUPTS (EEXI) (V)46 

The Enable External Interrupts operator prohibits 
this processor to respond to external interrupts. 

DISABLE EXTERNAL INTERRUPTS (DEXI) (V)47 

The Disable External Interrupts operator prohibits 
this processor from responding to external inter­
rupts. 

IDLE UNTIL INTERRUPT (IDLE) (V)44 

The Idle Until Interrupt operator suspends pro­
gram execution by this processor. External inter­
rupts are allowed. and the processor will enter its in­
terrupt-handling routine upon receipt of an interrupt. 

READ PROCESSOR REGISTER (RPRR) (V)88 

The Read Processor Register operator reads into 
the top-of-stack the contents of one of the eight base 
registers. or one of the eight index registers. or one 
of the 32 D registers. Register address assignments 
are shown in table 34-2. 

An invalid-operator interrupt is set and the 
operation is terminated if the top-of-stack word is 
not a descriptor or an indirect reference word at the 
start of the Evaluate operator. 

5010796-001 

SET PROCESSOR REGISTER (SPRR) (V)B9 

The Set Processor Register operator sets the pro­
cessor register addressed by the second word in the 
stack to the value contained in the top-of-stack 
word. 

Unpack Operators 

UNPACK ABSOLUTE, DESTRUCTIVE (UABD) 
(V)D1 

The Unpack Absolute, Destructive operator un­
packs a string of left-justified digits from the second 
operand in the stack. the top-of-stack operand de­
fines the string length (in 4-bit digits) of the second 
operand in the stack. The specified number of digits 
are transferred from the second operand to the desti­
nation. The third item in the stack is a string de­
scriptor destination pointer. Zone fill in the destina­
tion is as follows: 

I. If the destination bit format is 8-bit ASCII. the 
digits are transferred to the destinat.ion string 
with the leading-zone bits set to 0011. 

2. If the destination bit format is 6-bit BCL. the 
digits are transferred to the destination with the 
two leading-zone bits set to zero. 

3. If the destination bit format is 8-bit EBCDIC. 
the digits are transferred to the destination 
string with the four leading-zone bits set to all 
ones (F). 

UNPACK ABSOLUTE, UPDATE (UABU) (V)D9 

The Unpack Absolute. Update operator performs 
an Unpack Absolute. Destructive operation. At the 
completion of the operation the destination pointer is 
updated. 

UNPACK SIGNED, DESTRUCTIVE (USND) (V)DO 

The Unpack Signed, Destructive operator per­
forms an Unpack Absolute. Destruction operation 
except that the external sign is considered. 

If the external sign flip-flop is ON (indicating neg­
ative data) then a zone of 10 is inserted in the last 
6-bit character or a zone of 1101 is inserted in the 
last 8-bit byte. For 8-bit ASCII formatted data the 
negative sign is indicated in the least-significant byte 
by a zone of I I I I. If the data format of the destina­
tion is 4 bits, the first digit position of the destina­
tion string is set to 110 I if the external sign flip-flop 
is ON; if the external sign flip-flop is OFF the first 
digit of the destination string is set to 1100. 

34-25 



Table 3-4-2. Register Ad~ Assignments 

Add. Add. Int. Addr. Reg. 
(dee.) (hex) hex Name Register Usage 

0-31 0-lF D(x]* Display Registers 

32 20 PIC Program Index 

33 21 24 SIR* Source Index 

34 22 25 DIR* Destination Index 

35 23 26 TIR* Table Index 

36 24 XLOS Limit of Stack 

37 25 20 BOSR* Base of Stack 

38 26 XF Most Recent MSCW Address 

39 27 22 SlLS* Scratch (Spare Local Storage) 

40 28 ID (CID**) Interrupt Identifier 

41 29 SCAN MDP Control Register 

42 2A IFM (CMR**) Fault Mask Register 

43 2B Spare 

44 2C IFR (CFR**) Interrupt Fault Register 

45 2D Spare 

46 2E INT Interval Timer 

47 2F ITD Time of Day 

48 30 PBR Program Base Register 

49 31 28 SBR* Source Base Register 

50 32 29 DBR* Destination Base Register 

51 33 2A TBR* Table Base Register 

52 34 XS Top of Stack Address 

53 35 XSN Current Stack Vector Index 

54 36 PSDI Current Segment Descriptor Index 

55 37 2B S2LS* Scratch (Spare Local Storage) 

56 38 2C ADZ* Alternate [DO) Register 

57 39 2D APIR* Alternate Program Index 

58 3A ALLl (Return zero on Read) 

59 3B 21 LDl* Last D (l) used as SDl base. 

60 3C IPF Processor Fail Register 

61 3D XCM Processor Mode Register 

62 3E PGAM Purge Store Q and associative Memories 

63 3F PGKA Purge Store Q and associative Memories 

• 
** 

Soft storage in DRU of CPM (no panel indicators) 

Mnemonic used in MCP. 

••• RPRR 3E resets egg timer . 

UNPACK SIGNED, UPDATE (USNU) (V)D8 

The Unpack Signed, Update operator performs an 
Unpack Signed, Destructive operation. At the com­
pletion of the operation, the destination pointer is 
updated. 

Searching Operators 

LINKED LIST LOOKUP (LLLU) (V)BD 

The Linked List Lookup operator searches a 
linked list of words. Each word consists of a value 

3-4-26 

in bits 47:28 and a link in bits 19:20. The link is an 
index from the base of the array to the next element 
in the list. 

This operator expects the third stack entry (bits 
27:28) to contain an argument, the second stack en­
try to contain a non-indexed data descriptor, and the 
top-of-stack to contain an index value pointing into 
a linked-list of words. The argument is not required 
to be an integer, but only the right-most 28 bits are 
significant after the argument has been integerized as 
required. The base address, size field, and argument 
are saved throughout the operator. 



Bits 47:28 of the word addressed by the base plus 
the index value are compared to the argument value. 
If this field is less than the argument value, the pro­
cess is repeated using the link as the new index. If 
the field is greater than or equal to the argument 
value. the operation is complete. At completion, the 
top-of-stack contains the index of the word that con­
tains the link that points to the satisfying argument. 

If the value of the link portion of the linked-list 
word is equal to zero, the top-of-stack is set to 
minus one (-1) and the operation is completed. 

If the index value in the linked-list word is greater 
than the length value from the descriptor, an invalid­
index interrupt is set and the operation is termi­
nated. 

When the first word in the stack at the start of this 
operator is not an operand an invalid-operand inter­
rupt is set and the operation is terminated. 

If the data descriptor has been indexed, the inva­
lid-operand interrupt is set and the operation is ter­
minated. 

If the value in the first word is greater than or 
equal to the argument value, the index of the first 
word itself is left on top of the stack. 

MASKED SEARCH FOR EQUAL (SRCH) (V)BE 

The Masked Search for Equal operator searches a 
data word list for a word identical to the third word 
in the stack. At the beginning of this operator, the 
top word in the stack contains a data desc,:riptor, the 
second word in the stack contains a 51-bit mask, and 
the third word in the stack contains a 51-bit argu­
ment value. If the descriptor is not present, the pres­
ence-bit interrupt is set and the operator is exited. 
Otherwise, if the descriptor is unindexed, the in­
dexed bit (bit 45) is turned ON and the index field 
value is set to length -1. 

The descriptor points to a word which is then 
fetched into the processor. This word is ANDed 
with the mask and a test is made to determine 
whether the result is identical to the argument. 

When an equal compare is made, the index of the 
equal word is left on top of the stack. 

When a not-equal compare is made, the index 
value is decreased by one and the operation is re­
peated (except when the index value is zero). When 
the index value is zero, a -I is left on top of the 
stack and the operator is exited. 

5010796-001 

Subroutine Operator 

MOVE TO STACK (MVST) (V)AF 

The move to Stack operator causes the proces­
sor's environment (or addressing space) to terminate 
and to be moved from the current stack to the pro­
gram stack specified by the operand in the top of 
stack. 

The operator builds a top-of-stack control word 
and places it at the base of the current stack, there­
by inactivating the stack. 

The top of stack item is integerized and checked 
for invalid index against the stack vector descriptor 
at 0[0]+2. 

The stack descriptor for the requested stack is 
then fetched and made present. The address field is 
placed into the base-of-stack register. LOSR is 
loaded with the address field plus length -1. The top­
of-stack control word is then fetched and the stack 
is marked "active" by storing the processor ID at 
the base of the stack. The TSCW is distributed and 
the D registers are updated. 

If during the integerization the top of stack item is 
too large, the integer-overflow interrupt is set and 
the operation is terminated. 

If the index value is less than zero or greater than 
the length field of the data descriptor for the stack 
vector array, an invalid index interrupt is set and the 
operation is terminated. 

Special Interpretation Operator 

OCCURS INDEX (OCRX) (V)85 

The Occurs Index operator is used to index a field 
in an array. This operator requires an Occurs Index 
Word (OIW) in the top-of-stack and an index value 
(operand) in the second stack position. The format 
of the IOW follows: 

47 43 39 ~ 31 27 23 19 ~ II 7 

roso LEN~P 
46 42 1- 3e 

0 
(9 45 41 37 ~ 29 25 21 17 13 

0 48 44 40 28 24 20 u 12 

9 5 

8 4 0 

The operator creates a new index value from the 
OIW and the operand in the following manner: 

The operand is integerized. If the resulting index 
is greater than the maximum integer value 

3-4-27 



(549,755.813,887), the integer overflow interrupt is 
set and the operation is terminated. If the index has 
a value of zero or if the index is less than zero or 
greater than the SIZE field of the OIW, the invalid 
index interrupt is set and the operation is termi­
nated. 

The LENGTH field of the OIW is multiplied by 
the index value 15: 16 minus I, and that value is 
added to the OFFSET field of the OIW, resulting in 
the new index value. The two original top-of-stack 
items are deleted and the new index value is left in 
the top-of-stack. 

In the OIW the "length" field gives the number of 
characters in a field; the "size" field gives the num­
ber of fields in the array; the "offset" field indicates 
the beginning of the first character position in the 
first field of the first word. 

Operators Exclusive to the B 7800 

SET MEMORY INHIBITS (SINH) (V)A8 
(CONTROL STATE OP) 

The Set Memory Inhibits operator transfers the in­
hibit settings in the second stack register to the 
memory module specified in the top stack register. 
The two top-of-stack items are deleted. (All tags are 
legal.) The memory module number is given in the 
top-of-stack (bits 3:4). The inhibit field setting is giv­
en in the second item in the stack (bits 7 :8). 

SET MEMORY LIMITS (SLMT) (V)AA (CONTROL 
STATE OP) 

The Set Memory Limits operator transfers the lim­
its and availability settings in the second stack regis­
ter to the memory module specified in the top-of­
stack register. The two top-of-stack items are de­
leted. (All tags are legal.) The limits specify the 
range of addresses (in 16K increments) behind the 
module and the availability setting specifies which 
stack(s) (of a possible four) are to be used. (All tags 
are legal.) The top-of-stack gives the memory mod­
ule number (bits 3:4). The second item in the stack 
gives module availability (bits 3 :4) and memory ad­
dressing limits: upper limit (bits 15:6) and lower limit 
(bits 9:6). 

FETCH MEMORY FAIL REGISTER (FMFR) (V)AC 
(CONTROL STATE OP) 

The Fetch Memory Fail Register operator fetches 
the contents of the fail register from the memory 
module specified in the top-of-stack (bits 3:4). The 
contents of the fail register are placed in the top-of­
stack. 

34-28 

IGNORE PARITY (IGPR) (V)48 (CONTROL 
STATE OP) 

The Ignore Parity operator is used for confidence 
checking and requires the processor to be in the con­
trol state. In control mode 0, words entering the 
CPM are checked for correct parity but the IGPR 
operator sets the IGP flip-flop which inhibits trans­
mission of parity error messages for those words 
with incorrect parity. Likewise, IGPR inhibits cor­
rect parity generation before storage for those words 
detected in the CPM with incorrect parity. 

Parity error interrupts and new parity generation 
will be inhibited with the CPM in control mode 0 by 
IGPR until any one of the following occurs: 

I. Some other interrupt causes the CPM to move 
to control mode I. 

2. Another IGPR is decoded while the CPM is in 
a control mode greater than zero. 

3. Or the CPM returns to normal state. 

Any one of the previous conditions cause the 
MIGP flip-flop to be reset and the CPM to resume 
parity error interrupts and generation of new parity. 

PAUSE UNTIL INTERRUPT (PAUS) (V)84 

The Pause Until Interrupt operator suspends pro­
gram execution until an external interrupt or an in­
terval timer interrupt occurs. If the processor is op­
erating in control state, the operation continues in 
sequence; to clear the interrupt the INT. I.D. must 
be read. If the processor is operating in normal 
state, the interrupt is handled as in IDLE. 

INTERRUPT CHANNEL N (INCN) (V)8F 

The Interrupt Channel N operator sends signals to 
the channel or channels specified by the top-of­
stack. The top-of-stack item is deleted. Bit 0 inter­
rupts channel O; bit I interrupts channel I, and so 
on. 

STOP (STOP) (V)BF 

The STOP operator causes an unconditional halt 
of the central processor. The STOP operator is pri­
marily used for diagnostic purposes. The processor 
may be restarted by pressing and releasing the 
ST ART button on the processor control panel. 

Edit Mode Operators 

Edit Mode operators perform editing functions on 
strings of data. Edit functions are normally involved 
in preparing information for output. These operators 
include Insert, Move, and Skip, in the form of mi­
cro-operators in either the program string or in a 



separate table. In the program string, they are single 
micro-operators and are entered by use of the 
Execute Single Micro or Single Pointer operators. 
(See the "Enter Edit Mode Operator" descriptions.) 
If the micro-operators are in a table. the table be­
comes the program string that is to be executed. 
This table is entered by means of the Table Enter 
Edit operators. and is exited through the End Edit 
micro-operator. 

If the source or destination data has the memory 
protect bit (bit 48) equal to one. the segmented-array 
interrupt is set and the current micro-operator is ter­
minated. 

Insert Operators 

INSERT UNCONDITIONAL (INSU) (E)DC 

The Insert Unconditional micro-operator places an 
insert character into the destination string for the 
number of times specified by the repeat value. When 
this operator is entered by a Table Enter Edit 
operator. the repeat is in the syllable following the 
micro-operator syllable. and the insert character is in 
the next syllable (the third syllable). 

When this operator is entered through an Execute 
Single Micro Instruction operator. the repeat field is 
in the top-of-stack operand and the insert character 
is the second syllable. The operator length is then 
two syllables. 

INSERT CONDITIONAL (INSC) (E)DD 

The Insert Conditional operator inserts the charac­
ter defined by the third syllable into the destination 
string if the float toggle is OFF. If the float toggle 
is ON. the character defined by the fourth syllable 
is inserted into the destination string. The insertion 
is repeated the number of times specified by the sec­
ond syllable when this operator is entered by the Ta­
ble Enter Edit operation. 

When this operator is entered through an Execute 
Single Micro instruction operator. the repeat field is 
the top-of-stack operand. The operator length is then 
three syllables. 

INSERT DISPLAY SIGN (INSG) (E)D9 

The Insert Display Sign operator inserts the char­
acter defined by the second syllable into the destina­
tion string if the external sign flip-flop is set: other­
wise, the character defined by the third syllable is 
inserted. 

5010796-001 

INSERT OVERPUNCH (INOP) (E)D8 

The Insert Overpunch micro-operator places a sign 
overpunch in the destination string character. If the 
external sign flip-flop is reset. the operator skips one 
destination string character. If the external sign flip­
flop is set. the zone bits of the destination character 
are set to 10 for 6-bit data and to 1101 for 8-bit 
EBCDIC data: the destination pointer is then ad­
vanced one character. The zone bits for 8-bit ASCII 
data are set to I 111. 

Move Operators 

MOVE CHARACTERS (MCHR) (E)D7 

The Move Characters operator transfers the num­
ber of characters specified by the second syllable 
from the source string to the destination string. if 
this operator is entered by a Table Enter Edit 
operator. 

When this operator is entered through an Execute 
Single Micro Destructive instruction. the number of 
characters transferred is specified by the top-of-stack 
operand. The operator length is then one syllable. 

MOVE NUMERIC (MVNU) (E)D6 

The Move Numeric operator transfers from the 
source string to the destination string the number of 
characters specified by the second syllable, if en­
tered by a Table Enter Edit operator. The zones are 
not transferred but are set to 00 for 6-bit data. to 
1111 for 8-bit EBCDIC data. and to 0011 or 8-bit 
ASCII data. 

When this operator is entered through an Execute · 
Single Micro instruction. the number of characters 
transferred is specified by the top-of-stack operand. 
The operator length is then one syllable. 

MOVE WITH INSERT (MINS) (E)DO 

The Move With Insert micro-operator performs 
leading zero suppression from the source to the des­
tination. 

If the float flip-flop is set. a Move Numeric 
operation is performed. If the float flip-flop is reset 
and the source character numeric is zero. the char­
acter defined by the third syllable is transferred to 
the destination string. If the float flip-flop is reset 
and the source character numeric is not zero. then 
the float flip-flop is set and a Move Numeric is per­
formed. 

The number of characters transferred from the 
source string to the destination string is defined by 

3-4-29 



the repeat value. In Table Edit mode the second syl­
lable is the repeat value and the third syllable is the 
character to be inserted under control of the float 
flip-flop. In Execute Single Micro mode the repeat 
field value is in the word in the top-of-stack and the 
insert character is in the syllable following the mi­
cro-operator syllable. 

MOVE WITH FLOAT (MFLT) (E)D1 

If the float flip-flop is reset and the source charac­
ter numeric is zero. then the character defined by 
the third syllable is transferred to the destination 
string. 

If the float flip-flop is reset and the source charac­
ter numeric is not zero, then the float flip-flop is set. 
If the external sign flip-flop is set, the character de­
fined by the fourth syllable (the second insert char­
acter) is transferred to the destination string: other­
wise. the character defined by the fifth syllable (the 
third character) is transferred. Then a Move Nu­
meric operator is pe1formed. 

In Table Edit mode. the previous operation is re­
peated for the number of characters specified by the 
second syllable: the third. fourth. and fifth syllables 
are the insert characters. 

When this operand is entered through an Execute 
Single Micro instruction. the repeat field is the top­
of-stack operand. The operand length is then four 
syllables. three of which contain insert characters. 

Skip Operators 

SKIP FORWARD SOURCE CHARACTERS (SFSC) 
(E)D2 

The Skip Forward Source Characters operator 
causes a skip forward for the number of source char­
acters. This is done by incrementing the source 
pointer. The skip amount is specified by the syllable 
following the micro-operator's syllable. if the entry 
to this operator is by the execution of the Table En­
ter Edit Operator. When this operator is entered 
through an Execute Single Micro. Destructive in­
struction, the number of characters skipped is 
specified by the top-of-stack operand. The operator 
length is then one syllable. 

3-4-30 

SKIP REVERSE SOURCE CHARACTERS (SRSC) 
(E)D3 

The Skip Reverse Source Characters operator de­
crements the source pointer by the number of source 
characters specified by the second syllable. or top­
of-stack operand if single micro. 

SKIP FORWARD DESTINATION CHARACTERS 
(SFDC) (E)DA 

The Skip Forward Destination Characters operator 
causes a skip forward for the number of destination 
characters specified by the second syllable. or top­
of-stack operand if single micro. 

SKIP REVERSE DESTINATION CHARACTERS 
(SRDC) (E)DB 

The Skip Reverse Destination Characters operator 
causes a skip in reverse for the number of destina­
tion characters specified by the second syllable. or 
top-of-stack operand is single micro. 

RESET FLOAT (RSTF) (E)D4 

The Reset Float micro-operator sets the float flip­
flop to zero. 

END FLOAT (ENDF) (E)D5 

The End Float operator transfers to the destina­
tion string the character defined by the second sylla­
ble if the float flip-flop is reset and the external sign 
flip-flop is set. 

If the float flip-flop is reset and the external sign 
flip-flop is reset. the character defined by the third 
syllable is transferred to the destination string. 

If the float flip-flop is set. the End Float operator 
is treated as a NO-OP and the float flip-flop is reset. 

END EDIT (ENDE) (E)DE 

The End Edit operator terminates the execution of 
this string of edit micro-operators in Table Enter 
Edit mode. The micro program string must end with 
the End Edit operator. 



CHAPTER 4 

INPUT/OUTPUT SUBSYSTEM 
SECTION 1 

GENERAL DESCRIPTION OF 

INPUT/OUTPUT MODULE 

INTRODUCTION 

The B 7800 Input/Output Module is designed to 
serve as a buffer and control unit for all B 7800-sys­
tem input and output data transfers. The IOM serv­
ices requestors from a queue of requests constructed 
by the Central Processing Module (CPM) and stored 
in the Memory Storage Unit (MSU). 

The IOM is informed, via an interrupt from the 
CPM, of the presence of a service request in the 
MSU. Once informed, the IOM controls the desired 
input/output operation in its entirety; thus, the CPM 
time required to initiate an 1/0 operation is only that 
needed to construct a request, queue it in the MSU, 
and interrupt the IOM. 

BASIC IOM CONFIGURATION 

As illustrated in figure 4-1-1, the IOM consists of 
seven major subsections. Each subsection is totally 
independent of the other subsections, and operates 
asynchronously with them. 

.-------~DATA AND 

TOIFROM DATA AND 
CONTROL 

SYSTEM CONTROL 

Control Word Flow 

All control word flow (between main memory and 
up to 255 system peripherals) is by means of: 1) an 
IOM subsection, the Memory Interface Unit (MIU); 
2) an IOM control subsection, the Translator (XLA­
TOR); and 3) one of four IOM subsections, each of 
which is uniquely buffered to match the class of data 
transfer assigned to it. The XLATOR subsection 
routes control of a given job request to one of these 
subsections, depending on data class (batch, high 
speed, data communications, or real-time interac­
tive). 

Data Flow 

All data flow between main memory and the peri­
pherals is by means of the appropriate data-transfer 
subsection and/or the MIU and DSB; the XLATOR 
is not involved and is free for control of additional 
job requests. When a data transfer is complete, how­
ever, the XLATOR is given control over job termi-

MEMORY 
(LEVEL 1 MEMORY) 

MEMORY 
INTERFACE 

SECTION 
IMIU) 

DATA DATA 
SERVICE 
BUFFER 

IDSB) 

DATA AND 

,_c_o_N_T_R_O_L_ p ER I PH ERA L 

CONTROL 
INTERFACE 

IPCI) DATA AND 
l+---<~I CONTROL 

DATA 
AND 

CONT. 

~---~~ TO/FROM UP TO 

TO/FROM INTERRUPTS 
CENTRAL 
PROCESSOR 

5010796-001 

CONTROL 255 PERIPHERALS 

DISK 
FILE 

21 ,...__ .. , (LEVEL 3 MEMORY) 

TRANSLATOR 

CH 

CONTROL INTERFACE 
1--+---------+--- IDFI) 

4 
CH 

DATA 

SCAN INTERFACE 
(SCI) 

DATA 
COMMUNICATION DCP 

INTERFACE 
IDCI) 

Figure 4-1-1. IOM Basic Block Diagram 

4-1-1 



nation, and control flow to main memory is accom­
plished by the appropriate data-transfer subsection, 
the XLATOR, and the MIU. 

FUNCTIONAL SYSTEM 
INTERFACE 

The functional interface between the IOM and the 
system is divided into the mainframe interface and 
the peripheral interface. These two interface areas 
are described in the following subparagraphs. 

Mainframe Interface Configuration 

As shown in figure 4-1-1, control words and data 
words are transferred between the IOM and the sys­
tem memory (MCM/MSU). These interface signals 
are transferred via the MIU subsection of the IOM. 
Interrupt signals are transferred between the IOM 
translator subsection and the CPM. 

IOM/MCM Interface 

As illustrated in figure 4-1-2, the MIU contains 
eight interface areas. Each interface area is 
dedicated to a distinct Memory Control Module 
(MCM), and is connected to it by a unique memory 
bus. The bussed IOM/MCM interface is referred to 
as a memory/user pair. 

A similar capability exists within the CPM which 
also contains eight MCM interface areas. Each CPM 
interface area is dedicated to a distinct MCM and is 
connected to it by a unique memory bus. The bussed 
CPM/MCM interface is also referred to as a 
memory/user pair. 

The interface capability of an MCM is eight mem­
ory busses, each of which is connected to one and 
only one IOM or CPM. Therefore, the maximum 
combined number of CPM's and IOM's which may 
be bussed to an MCM is limited to eight. 

The maximum number of MCMs which may be 
contained in a B 7800 system is four. 

The typical memory-bus-configuration (figure 4-1-
2) indicates the use of two IOM's, two CPM's, and 
two MCM's. The maximum number of MSUs with 
which an MCM can communicate (two) is also illus­
trated. Each of these MCM's can access 262K words 
of memory (two MSU's of 131K words each). Each 
IOM or CPM, when connected, can access 524K 
words of memory. 

4-1-2 

IOM/CPM Interface 

The interface between the IOM's and CPM's of a 
B 7800 system consists of an interrupt bus only. The 
CPM informs the XLATOR section (of an IOM) 
about job requests via the bus, and the XLATOR in­
forms the CPM of non-channel-related IOM errors 
via the bus. In addition, the XLATOR uses the bus 
to inform the CPM of 1/0 job completions (when re­
quested by software, a SPO, or a DCP) and status 
changes. The interrupt bus is common to all IOM's 
and CPM's in a system. 

!OM/Peripheral Interface 
Configuration 

Figure 4-1-3 illustrates typical peripheral devices 
which may be assigned to each data-transfer class; 
also illustrated are the data-transfer subsection 
names which are henceforth referred to. The fol­
lowing is a brief description of the interface 
capability of each subsection and its physical rela­
tionship to typical peripheral equipment. The de­
scriptions presented in figure 4-1-4 illustrate the in­
terface capability provided when two maximum-con­
figuration input/output modules and appropriate ex­
changes are used. A maximum of 28 peripheral con­
trollers (excluding DCP's) may be connected to a 
single IOM. 

Peripheral Control Interface (PCI) 

The PCI of a single IOM consists of either one or 
two interface sections, depending on user require­
ments. Each section has IO-channel interface capa­
bility, for a total maximum capacity of 20 channels 
per IOM. 

The controls serviced by a PCI are housed in one 
or two peripheral control cabinets (PCC's). Each 
PCI/PCC cabinet services one IOM and has a 10-
channel interface capability. Up to five of these 
channels can be assigned to large controllers, but the 
remaining channels must be assigned to small con­
trollers. 

Any combination of small controls may be housed 
in the PCI/PCC cabinet. The large controls (SLC and · 
MTC) may be connected to the peripheral units di­
rectly, or, in the case of the MTC only, via ex­
changes. Any unused channels in the PCC cabinet 
are left empty. 

The PCI enables the IOM to interface with one to 
20 peripheral controls and coordinates data transfers 
between the peripheral controls and the DSB as di-



USER 
NUMBER 

HCH USER 1, 

HEH BUS 
NO IOH I (PAATIAL) 

HEH BUS ~ 
~ 
._2-
~ HIU XLATOR 

~ 
~ 
i-!-

7 

HCH 
NO. 

HEH BUS 

HEH BUS i-2-
~ 
~ 
i-L USER 7, 

CPH 

~ I 

MSU MSU MSU MSU 
~ 
~ "' 7 i .. 

HCH ... 
DUAL MEMORY CONTROL NO. 

= HEH BUS ... 
IMCMOI IMCM11 HEH BUS ~ !ii 

~ 
oJiJ2I3 4IsJsJ1 0J1J2} 4Js1sT1 ~ USER 6, 

l l ~ CPH 
2 

~ 
~ 
~ 

7 

HCH USERO. 

HEH BUS 
NO. IOH 2 (PARTIAL) 

HEH. BUS i-2-
i-L 
i2-
~ HIU XLATOR 

~ 
i-l-
~ 

7 

Figure 4-1-2. Typical IOM/Main Memory and IOM/CPM Interface Confiaurations 

! 

.4-1-3 



IOM 
DATA TRANSFER 
SUBSECTIONS 

• p 

•• s 

ET1269 

..... 

_.. 

_.. 

_.. 

_.. 

PERIPHERAL 
CONTROL .... . 

INTERFACE 
(20 MAX) (PCI) 

DISK FILE . 
INTERFACE I""" 

(OFI) (8 MAX) 

SCAN .. 
INTERFACE 

I'"" (4 MAX) (SCI) 

DATA 
COMMUNICATIONS 

. 
INTERFACE 

(DCI) 
I'"" (4 MAX) 

ERIPHERAL CONTROL (PC) BUS 

CAN BUS 

__... 

BATCH 

LINE PRINTER i---. LINE PRINTER 
CONTROL(LPC) (LP) 

CARD PUNCH 
UNIT CONTROL ~ CARD PUNCH 

(PUC) UNIT(PU) 

CARD READER 
CARO READER CONTROL I+--

(CRC) (CR) 

SUPERVISORY OPERATOR 
DISPLAY i.--+ DISPLAY 

CONTROL II TERMINAL 
(SOC) (ODn 

MAGNETIC MAGNETIC 
TAPE CONTROL f---_. TAPE UNIT 

(MTC) (MTU) 

HIGH SPEED 

DISK PACK DRIVE DISK PACK 
CONTROLLER ~ DRIVE 

(OPDC) (OPD) 

DISK FILE 
CONTROL 

(DFC) 

DISK FILE DISK FILE 
ELECTRONICS i.--. STORAGE UNIT 

UNIT(DFEU) (DFSU) 

DATA COMMUNICATIONS 

DATA COMM. 
PROCESSOR 

(DCP) 

Figure 4-1-3. Typical Data-Transfer Classifications and Related IOM Subsections 

4-1-4 



rected by the translator subsection of the IOM. Up­
on command from the translator, the PCI initiates 
requests with its associated peripheral devices. The 
PCI controls the data transfers with the peripheral 
devices and notifies the translator of termination sta­
tus. During data transfer operations, the .PCI com­
municates with the DSB to obtain memory access. 
The order of priority for memory access is on a first­
in and first-out basis. 

The PCI multiplexes all 20 channels by generating 
overlapping one-micro-second data-service cycles 
and by use of windows in a self-contained local 
memory. In the typical configuration (figure 4-1-4) 
the use of two IOMs and appropriate exchanges 
(2xl6) allows access by either IOM of 32 magnetic 
tape units. Both IOMs are illustrated as having ac­
cess to an additional non-exchange magnetic tape 
unit, as well as having access to disk pack drives 
(via DPDC) and to ODT units (via supervisory dis­
play controls). 

Disk File Interface (DFI) 

The DFI of a single IOM consists of either one or 
two interface sections, depending on user require­
ments. Each section has an interface capability of 
four channels, for a total disk-file-channel capability 
of eight channels per IOM. 

Each DFI four-channel area can service a single 
DFI/PCC cabinet. This cabinet can contain only four 
channels, which are dedicated to disk packs. The 
channels may be connected to the peripherals either 
directly or by exchanges. As illustrated in figure 4-
1-4, the use of two maximum DFI configurations 
IOMs (eight channels per IOM, four each disk file 
and disk pack) and appropriate exchanges (2xl0 for 
disk file, 2x8 and 2xl6 for disk pack) allows access 
by either IOM of 20 disk file electronics units (100 
disk file storage units) and 72 disk packs. 

Upon command from the translator, the DFI initi­
ates requests with its associated disk pack controls. 
Upon request completion, the DFI notifies the trans­
lator of the termination status and awaits re-initia­
tion. During data transfer operations, the DFI com­
municates with the DSB to obtain memory access. 
Like the PCI, the order of priority for memory ac­
cess is on a first-in and first-out basis. 

Scan Interface (SCI) 

The SCI subsection consists of a DCP scan inter­
face, which provides scan-out control only, and may 
communicate with up to four DCP's via a scan bus. 
(See figure 4-F4.) The SCI is not used for DCP 
scan-in functions, which are initiated by the DCP. 

For these functions, the DCP communicates with 
memory directly via an interface in the DCI and the 
MIU. The DCP scan bus is not shared by a second 
IOM. 

Data Communications Processor 
Interface (DCI) 

The DCI subsection provides the data and control 
interface for IOM initiated scan-out operations, and 
the data interface only for DCP-initiated scan-in op­
erations. Interface is provided for up to four DCP's. 
As illustrated in figure 4-1-4, an IOM is interfaced 
with two DCP' s. 

IOM OPERATIONAL 
CHARACTERISTICS 

The IOM is designed to operate asynchronously 
with the CPM in the initiation, service, ano termina­
tion of input/output transfers by use of a job map 
stored in level-1 memory. Basically, the job map 
consists of five software-constructed elements which 
define the job request, the peripheral device, and the 
IOM channel. 

Generally, the map elements inform the CPM of 
its IOM/pripheral resources and their status. When 
necessary, the CPM alters the queued job requests 
of the job map to the extent of its interest and inter­
rupts the IOM to request service. The IOM then ac­
cesses the job map to determine the input/output job 
and initiate it. Since the job map is a shared re­
source of the IOM and CPM, the IOM transfer times 
are masked by the continual processing and queue­
ing of new requests by the CPM; thus, maximum 
system throughput is attained with a minimum of 
CPM time. 

The IOM also manages path selection to the re­
quested device (instead of the programmatic prese­
lection of the path which is generally used). This 
path management eliminates the occurrence of 
situations whereby: I) the requested device is free; 
2) the preselected path is not free; and 3) an al­
ternate path exists but cannot be used due to the 
programmatic preselection. These situations general­
ly require involvement of the CPM until the prese­
lected path is free and the job is initiated, which ef­
fectively reduces the parallelism of the CPM and 
IOM. Since the IOM manages the path selection in 
the B 7800 system, CPM involvement regarding job 
initiation ends when an interrupt is sent to the IOM. 
The IOM then initiates the job request when the re­
quested device and any path to that device is avail­
able. 

4-1-5 



~ -°' 

~ 

OFEU 

•>PD 
00-'lC 

DCP 
LA 
OOT 

DISK FILE ELECTRONIC UNIT 

DISK PACK DRIVE 

DISK PACK DRIVE CONTROL 
DATA COMM PROCESSOR 
LINE ADAPTER 
OPERATOR DISPLAY TERMINAL 

TPC • TAP£ CONTROL 
CRC 
LPC 
MTC 
SDCll 

MTU 

CARD READER CONTROL 

LINE PRINTER CONTROL 
MAGNETIC TAPE CONTROL 
SUPERVISORY DISPLAY CONTROL 11 

MAGNETIC TAP£ UNIT 

IOM 1 fPARTIAU 

4CH p ~H 
4CH c 

DCP I lal IOCH h ~ 
LPC p----17TRK 
l 
!!!!. 
l!!'.!!!: 
!!.<:. 
!!.<:. 
soc 

TPC 

J_/:=:N ~~~ 
;"J/ BUS TC DFC 

IOM 2 (PARTIAll 

DCP' PAtOCH ~ 
::B D SCI ~ : 

F SOC 

4C A 8 IOCH 

Figure 4-1-4. Example of IOM Conllpration 



The design of the IOM incorporates extensive er­
ror-detection logic which monitors the flow of con­
trol words and data between the IOM and other 
mainframe modules, within the IOM module itself, 
and between the IOM module and peripheral de­
vices. Particular emphasis is placed upon preserving 
the integrity of all memory operations. Generally, 
the error-detection hardware consists of: parity 
check and generate circuitry; residue check circuit­
ry; circuitry to detect illegal commands, conditions, 
and control states; and timeout circuitry for memory 
transfers, scan bus operations, and internal IOM 
transfers. 

IOM Job Map 

The job map, which an IOM accesses from main 
memory, consists of the following five software-con­
structed elements: 

1. Home Address Words (HA) 
2. Unit Table Word (UT) 
3. 1/0 Queue (IOQ) 
4. 1/0 Control Block (IOCB) 
5. Status Queue (SQ) 

The following four level-1 addresses, which are 
loaded into the IOM XLATOR at initialize time, en­
able the IOM to service the job map: 

1. Home Address 
2. UT Base Address 
3. IOQ Header (IOQH) Address 
4. SQ Header (SQH) Address 

By use of these stored addresses and the contents 
of previously-fetched map elements, job requests 
(originally constructed by the CPM) are recon­
structed in the IOM and are serviced. 

The following basic description of each map 
element and the sequence in which the job map is 
serviced is presented in reference to figure 4-1-5. For 
detailed formats of all words discussed, refer to the 
appendix of IOM word. 

Home Address Word 
The 51-bit home address word (HA word) is the 

first map element fetched by the IOM when inter­
rupted by the CPM. It is fetched by ·use of the pre­
loaded home address stored in the IOM XLATOR, 
and contains information which describes the basic 
command and, as applicable, information which de­
scribes the device or channel to be used. 

The command to be performed is defined by a 
code within the HA word, called the home code. In 
some instances, further definition of the command is 
provided by additional bits of the HA word. Based 

on the command decoded, the logic of the IOM is 
conditioned to perform one of 20 possible control 
operations. The commands are described under the 
heading IOM COMMANDS later in this section. 

Only one of the 20 commands, the start I/O com­
mand, requires immediate further access of other 
map elements; however, some scan-out commands 
require access of a second 51-bit HA word. The start 
1/0 command is the basic command used to initiate 
service of new job requests, whereas the remaining 
commands are provided for either coldstart/halt load, 
scan-out control, configuration determination, or di­
agnostic purposes. 

A HA word which contains a start I/O home code 
also contains a unit designate (UD) number. This 
number specifies the device to be used for the 
operation, and is part of the information needed to 
acc~ss the remaining map elements. 

Unit Table Word 
The unit table (UT) word is the next map element 

fetched by the IO M in response to a start I/O com­
mand. The fetch is performed by use of the UT ad­
dress preloaded in the IOM XLATOR and the UD 
number derived from the HA word. The preloaded 
address serves as a locator for the unit table, and the 
UD number serves as an index to a particular word 
of the unit table. 

The unit table consists of 256 words, numbered 0 
- 255. Word 0 is reserved for use as a fail UT word, 
and is accessed when an error occurs which cannot 
be associated with a specific job request. In this in-. 
stance, a special UD number (000), called a fail UD 
number, serves as an index to UT word 0. Each of 
the remaining 255 UT words is assigned to a unique 
device, and contains information which defines the 
device and its assignment within the system. 

The device-type and assignment information spe­
cifically indicates: 1) whether the device is a disk­
pack or a magnetic tape unit; 2) if the device is a 
disk file; 3) whether the device is connected to an 
exchange; 4) the lowest IOM channel to which the 
device is connected; and 5) whether this is a high 
speed device. 

For a device connected to an exchange, the UT 
word contains additional information for use in IOM 
device/path management. The devices connected to 
an exchange are described by a linked list of UD 
numbers in the next unit on exchange (NUD) fields 
of their UT words. The number (modulo 4) of the 
last (highest) IOM channel on the exchange (LCEX) 
is also indicated. The description of the exchange is 

4·1-7 



f' -Oo 

IOM(n) LEVEL - I MEMORY 

I 
·-------------..,~II! HOHE ADDRESS l.llRO =i 

I 
I SELECT UT WD 0 

STORED HOKE ADDRESS 

SELECT UT WO -n 
STORED UNIT TABLE ADDkESS 

I SELECT IOQH WO 0 
STORfO IOQH TABLE ADDRESS 

STORED SQ HEADER ADDRESS 

SELECT I OQT WO 0 

SELECT I OQT WO n 

·-

UNIT TABLE 

FAIL UT WO 

{~ 
~~ 
lfO QUEUE HEAD TABLE 

FAIL IOQH WO 

IOQH llORO, 
DEVICE I 

IOQH llORO, 
DEVICE 254 
IOQH WRD, 
DEVICE 255 

1/0 QUEUE TAIL TABLE 

FAIL IOQT WO 

IOQT WRD, 
DEVICE I 

IOQT WORD, 
DEVICE 254 
IOqT WORD, 
DEVICE 255 

IOH(n) STATUS 
QUEUE HEADER 

HEAD I TAIL 
FIELD FIELD 

0.UEUE OF 
FAIL IOCB' s 

NOT USEO I FAIL 
~ 

NOT USED I FAIL 
'!L 

NOT USED I FAIL 
RO 

NOT USED I FAIL 
RD 

1/0 QUEUE 
(DEVICE 254 IOCB' S) 

SL 
INOTE21 (0) 

I I 

SL 
INOTE21 (0) 

~-l 
(NOTE 4) NL I ~~) I NOTE 2 I r-- co> 

I 
I 

----' 

STATUS QUEUE, 
IOH(n) 

SL 
J•oTEzl (0) 

~l I NOTE z I 
SL 

INOTE21 (0) 

Figure 4-1-5. IOM Job Map 

RD 

RD 

RD 

RD 

RD 

RD 

I 
I 
I 

NOTES; 

I. DERIVED FROH HA WORD 
2. BO, IOCW, AND COL WORDS NOT SHOWN 
3. NULL(O) PRIOR TO SIDELINK; SIOELINK 

ADDRESS AFTER SIOELINK 
lt. DASHED LINES INDICATE POINTERS AFTER 

SIDELINK 

I /O QUEUE 
(DEVICE l IOCB'S) 

SL NOTE 2 J (0) RO 

SL 
(0) I NOTE 2 I RD 

SL !NOTE21 RO 

+ SL I NOTE 2 I _____ (O) RO 

: f nMOMilO IOCl 1 S, ALL 
DEVI CU 

I 



complete because: I) all IOM's on an exchange must 
use the same channels; 2) channels on an exchange 
must be consecutive; and 3) the largest exchanges 
serve a maximum of four channels. A bit (job bit or 
JB) is set if a job request for an exchange device 
must be delayed because a path is not currently 
available. 

100 Head (IOOH) and 100 Tail (IOOT) 
Tables and Words 

The 1/0 queue (IOQ), which is constructed by the 
CPM in main memory, contains linked job requests 
(1/0 control blocks) for each device of the system. 
The extent of the linked job requests for each device 
is defined by words which indicate the main memory 
addresses of the first and last of the requests. These 
words are called the 1/0 queue head (IOQH) word 
and the 1/0 queue tail (IOQT) word, respectively. 

The IOQH words for all devices (255 words) are 
stored in a table called the 1/0 queue head table; 
similarly, the IOQT words for the devices (also of 
256 words) are stored in a table called the IOQT ta­
ble, which immediately follows the IOQH table in 
memory. 

The IOQH and IOQT tables contain one special 
word each (word 0) which is reserved for use by the 
IOM to report errors that cannot be associated with 
a specific job request. These words are pointers to 
a list of the fail 1/0 control blocks (fail IOCB's) re­
served for failure-reporting by the IOM's of the sys­
tem. 

The IOQT table is the element accessed by the 
CPM to queue additional requests for a device. The 
IOM also accesses this element when a sidelink op­
eration to another device is specified. This access is 
required so that the sidelink operation indicated in 
the job-request queue of one device may be linked 
to the queue of job requests for the device desig­
nated for the sidelink operation. The IOQT word for 
the sidelink device is altered to reflect the main 
memory address of the sidelink job, which becomes 
the last job queued. 

The IOQH table is the element accessed by the 
IOM in order to service job requests. The IOQH 
word for a device indicates the main memory ad­
dress of the first job request for that device. 
Memory addresses of additional jobs for the device 
are indicated by the next link (NL) word in each job 
request, thus linking all job requests for a given de­
vice. 

As is indicated in figure 4-1-5, the last job request 
for a device is recognized by the IOM when the next 
link field of a request is found to contain zeroes 
(null). 

The IOQH word is fetched by use of: I) the IOQH 
table base address (stored in the XLATOR); and (2) 
the UD number (derived from the previously-fetched 
HA word). The UD number indicates which device 
is to be initiated, and which IOQH word of the 
IOQH table should be fetched. The UD number is 
an index to the IOQH table. 

When a non-request-related error is detected by 
the IOM and access to the fail IOQH word (word 0) 
is required, the word is fetched by use of the fail UD 
number (000) and the IOQH base address. The mem­
ory address of the first available fail IOCB, which is 
contained in the fail IOQH word, is used to fetch the 
fail IOCB. The NL field contained in the fetched fail 
IOCB is then used to update the memory address of 
the fail IOQH word, so that if a second failure is de­
tected, the next fail IOCB of the queue of fail 
IOCB's can be accessed. The fail IOQT word, which 
defines the last IOCB in the queue of ten fail 
IOCB's, is used only by software; it is not accessed 
by the IOM. 

When a sidelink operation requires a fetch of the 
IOQT word for a device, 256 is added to the IOQH 
word address. (The IOQT-word address for a device 
designated for a sidelink operation equals the IOQH 
table base address1plus the UD number of the device 
plus 256.) 

1/0 Control Blocks 
The job requests for each device are stored in map 

elements called 1/0 control blocks. Each 1/0 control 
block (IOCB) contains words which are fetched se­
quentially starting with the memory address obtained 
from either: I) the IOQH word, if the job request is 
the first for the device; 2) the next link (NL) field 
of the job request (IOCB) in process, if the job is 
other than the first for that device; or 3) the side link 
field of the job request (IOCB) in process, if a side­
link (SL) to another device is indicated. The six 
IOCB words fetched by the IOM are as follows: 

1. Next Link (NL) Word 
2. Side Link (SL) Word 
3. Buffer Descriptor (BD) Word 
4. 1/0 Control Word (IOCW) 
5. Channel Designate Level (CDL) Word 
6. Result Descriptor (RD) Word 

As previously indicated, the NL word contains the 
address of the next IOCB for a device, and is the 
means whereby job requests for a device are linked 
within the IOQ. When this word contains all zeroes 
(null), it indicates the request being serviced is the 
last currently enqueued for the device. 

The SL word is used to indicate that a sidelink op­
eration (the service of a job request by a device 

4-1-9 



other than that presently being serviced, without in­
tervention by the CPM) is required. The SL word 
contains the memory address of the sidelink job 
(IOCB), which is started immediately if no other 
jobs are queued for the designated sidelink device. If 
queued, the sidelink job is linked to the queue of job 
requests by insertion of the sidelink memory address 
in both the IOQT word for the sidelink device and 
the NL field of the last IOCB previously queued for 
that device. 

The BD word contains the address of the first data 
location in memory, and the length of the memory 
area in words. 

The IOCW contains the control information neces­
sary to perform the input/output operation, such as: 
read or write; whether code translation is necessary; 
backward/forward (tape); frame length (six-bit or 
eight-bit); etc. The contents of the IOCW and the 
BD word are used to format the first job word sent 
to the selected IOM channel. 

The COL word is used to format the second job 
word sent to the selected IOM channel. This word 
generally contains information such as: the OP code; 
the device number; the device variant; and for disk, 
the segment address. 

The RD word is used for storage of the termina­
tion status of each request. The RD word is built by 
the IOM, which then links the terminated request 
(terminated IOCB) into the status queue. 

Fail 1/0 Control Blocks 

A queue of special IOCB's, which are not related 
to job requests, is also built in memory. These 
IOCB's, which are called fail IOCB's, are used by 
the IOM's of the system for reporting errors which 
cannot be associated with a specific request. The fail 
IOCB' s contain the same six words as job-request 
IOCB's; however, only the next link word and the 
result descriptor word have significance. 

The result descriptor word is used for storage of 
a fail result descriptor. The IOM builds the fail result 
descriptor, inserts it in the fail IOCB RD word, and 
links the fail IOCB into the status queue. 

Status Quq111e 

The status queue (SQ) is a queue of: 1) all job-re­
quest rela.ted IOCB's which have been serviced and 
terminated; and 2) any fail IOCB's which have been 
generated by the IOM. When job-request IOCB's are 
terminated (or fail IOCB's are generated) and the 
necessary result descriptor information has been 
stored in the RD word of the IOCB, the IOCB is un-

4-1-10 

linked from the job IOQ (or fail IOQ) and is linked 
into the status queue. The linked IOCB's in the sta­
tus queue represent a mix of terminated IOCB's for 
all devices and any fail IOCB's. 

The SQ for the system consists of queues of 
linked IOCB's • one queue for each IOM on the sys­
tem. The number of queues is dependent on the 
number of IOM's in the system. 

The mechanism by which the status queue is ac­
cessed is the SQH address; this is stored in the IOM 
XLATOR at initialize time. This address is unique 
for each IOM used, and serves as a pointer to a 
word in memory which defines the queue of linked 
IOCB's associated with a particular IOM. This word 
is called the status queue header (SQH) word. 

When a request is terminated, the SQ address of 
an IOM is used to fetch the SQH word, which con­
tains the following basic information: 

1. Null (empty) state of SQ 
2. Head field 
3. Tail field 
4. Status-Change-Vector bit 
5. CPM-Interrupt bit 
6. CPM Number 

The null state of the SQ is checked to determine 
whether it contains any terminated IOCB's. If the 
SQ is null (empty), no linkage of the current termi­
nated IOCB to previously terminated IOCB' s in the 
SQ is required. Conversely, if the SQ is not null 
(contains one or more IOCB's or fail IOCB's), the 
current terminated IOCB must be linked to the 
queue of terminated IOCB's in the SQ. 

The head field of the SQH word contains the base 
address of the first terminated IOCB of the SQ. The 
tail field of the SQH contains the base address of the 
last terminated IOCB of the SQ, except when the 
SQ is null or contains only/one terminated IOCB. If 
the SQ is null, the tail field is not used; if the SQ 
contains only one IOCB, the tail field contains the 
same address as the head field. 

A terminated IOCB is linked to previously termi­
nated IOCB's stored in the SQ by inserting its base 
address in the next link (NL) word of the terminated 
IOCB indicated by the SQH tail field. The address 
in the tail field of the SQH is then replaced with the 
base address of the currently-terminated IOCB, so 
that link capability is present when another request 
is terminated. 

If the CPM interrupt bit is on in the SQH word, 
or the interrupt bit is on in the NL word of a termi­
nated IOCB, a channel interrupt is sent to the CPM 
specified in SQH when the terminated IOCB is 



linked into SQ. An IOM error interrupt is always 
sent to the designated CPM when a fail IOCB is 
linked into the SQ. 

When the SPO or a DCP requests an input 
operation, the status-change vector bit in SQH is 
set, and a channel interrupt is always sent to desig­
nated CPM. 

IOM Home (HA) Commands 
The IOM can be directed to perform 20 home 

commands. When the IOM receives an interrupt 
from the CPM, it indicates that a home command 
has been constructed by the CPM and placed in 
memory. The home address stored in the IOM is 
then used to fetch the HA word. A code within HA 
word 1, home code, is then decoded to determine 
which command or command group is to be per­
formed. 

Table 4-1-1 lists the valid home codes, and the 
commands and/or command groups defined by them. 
As indicated, scan commands are defined by: 1) the 
home code as only scan-in or scan-out groups; 2) de­
termination of type of scan-in or scan-out; and 3) 
whether DCP is defined by other portions of HA 
word 1. Similarly, channel busy/channel reserved 
commands are resolved by other portions of HA 
word 1. HA word 2 is not used for all commands; 
when used, it contains information to further define 
the command. 

Home 
Code 

0000 

0001 

0010 

OOll 

0100 

0101 

OllO 
Olll 

1000 

1010 

lOll 
llOO 

llOl 
llll 

Table 4-1-1. IOM HA Operations and 
Corresponding Home Codes 

Illegal 

Start 1/0 

IOM Operation 

Set Channel Busy/Set Channel Reserved 

Reset Channel Busy /Reset Channel Reserved 

Load Home Address 

Load Unit Table Address 

Load IOQ Head Table Address 

Load SQ Header Address 

DCP Scan-out Commands: 

Initialize 

Halt 

Set Attention 

Synchronous 1/0 
Interrogate Peripheral 
Inhibit IOM 

Activate IOM 

Illegal 

Status 

The following brief command descriptions are 
presented in reference to figure 4-1-6, which depicts 
the basic contents of the HA words for each com­
mand. Detailed formats of the HA word for each 
command are given in the appendix of IOM word 
formats. 

Start 1/0 (Home Code 0001) 

The start 1/0 command is the basic command used 
to initiate input/output servicing of a new job request 
for a device. The device is defined by a unit desig­
nate number contained in bits 28 - 35 of HA word 
1; HA word 2 is not used. This command need only 
be given once in order to service all queued requests 
for the designated device. 

Set Channel Busy/Set Channel 
Reserved (Home Code 0010) 

Home code 0010 may represent one of two com­
mands, depending on the state of hit 39 of HA word 
l. If bit 39 is a 0, the set channel busy command has 
been received; if bit 39 is a l, the set channel re­
served command has been received. Both commands 
are for exchange channels; the channel number is 
defined by bits 23 - 27 of HA word I. HA word 2 
is not used. 

The set channel busy and set channel reserved 
commands are used primarily for diagnostic pur­
poses. A start 1/0 command for an UD, which has 
the reserved channel bit (RC) set in its UT word, 
must use a channel that has been set to reserved; 
otherwise, a reserved channel will not be used. An 
1/0 operation cannot use a channel that has been set 
to busy. Once either command has been received, 
the specified channel remains busy (or reserved) un­
til a counter command is received. 

Reset Channel Busy/Reset Channel 
Reserved (Home Code 0011) 

Home code 0011 may also represent one of two 
commands, depending on the state of bit 39 of the 
HA word (0 defines the reset channel busy com­
mand; l defines the reset channel reserved com­
mand). These commands are the counter commands 
to the set channel busy/set channel reserved com­
mand. 

Load Address Commands 

I. Load home address (home code 0 l 00) 
2. Load unit table address (home code 0101) 
3. Load IOQ head table address (home code 0110) 
4. Load SQ header address (0111) 

4-1-11 



f" -. -N 

WORD 1 FORMAT WORD 2 FORMAT 

l~ITAGl~I I~~~: 11 I I I I ~tAG I I 
51 50 '847 •3 4039 35 2827 23 19 J 51 47 0 

ILLEGAL 0000 

STARTl/0 0001 

SET CHANNEL BUSY 001 0 0 

RELEASE CHANNEL 001 0 1 

RESET CHANNEL BUSV 00-11 0 

RESERVE CHANNEL 001 1 1 

LOAD H. A. 0100 

LOADU. T. 0101 

LOAD 0. H. 011 0 

LOADS. 0. D 1 1 1 

43 40 

SCAN OUT DCP·INITIALIZE 1 000 

SCAN OUT DCP·HAL T 

SCAN OUT DCP-SET ATTENTION 

43 4039 36 

SYNCHRONOUS 1/0 1 01 0 

INTERROGATE PERIPHERAL STATI.6 1 01 1 

INHIBIT IOM 11 00 

~TIVATEIOM 11....l!..1 

ILLEG~L 1111 

• BIT O .. 0: OCP address not significant, all DCP's respond 
1 : Only addressed DCP responds 

• Leftrriost 4 blh of EU numbtlr 

UNIT OESIG 

CH.NO. 

CH.NO. 

CH.NO. 

CH.NO. 

27 23 

I CH.N01 

HOME ADDRESS 

UNIT TABLE ADDRESS 

QUEUE HEAD TABLE ADDRESS 

STATUS QUEUE HEADER ADDRESS 

19 16 15 876543 1 

1 1 00 000 DCP 
NO. 

11 00 01 0 
DCP 
NO. 

OCP 
11 00 1 00 NO. 

19 0 

I IOCB ADDRESS 

~ 
12 9 

47 _18 25 

IOCB ADDRESS 11 DISK ADDRESS 

II l 1NSTAUCTION BASE ADDRESS 
19 

47 40 26 7 

~u·m l 1 IOCB ADDRESS 1 
~i~x~~ l l IOCB ADDRESS ] 

;;r PR JvJPR illsEc • lv1sEc 2JasTK cA;:{ 
47 42 37 32 27 22 

32 

I l l STATUS BITS 

51 47 

47 = No Access to Exchange 
46 = SU Not Available 

44 Disk Address Error 
43 = Queued Control Word 
42 Top of Steck Control Word 
41 = Steck Empty 
40 = Control Word Not Av•ilable 

I ::.c:. I I ~lrl ~I 
222221 

9854326 

SPO 
INTERRUPTS 

Figure 4-1-6. Home Address Commands 

n 

0 

0 

0 

];] 

I 

I SENT TO IOM 

RECEIVED FROM IOM 



The commands are normally used to load fixed ad­
dresses into the IOM XLATOR at initialize time; 
however, they may also be used to establish new 
base addresses at any time after initialization. The 
address to be loaded by each command is contained 
in bits 0 - 19 of HA word I; HA word 2 is not used. 

DCP Scan-Out Commands (Home Code 
1000) 

Home code I 000 specifies a scan-out command for 
a DCP; the specific device for which the scan-out 
command is intended, as well as the specific type of 
scan-out command, is defined by other bits of HA 
word 1. 

There are three specific scan-out commands for 
the DCP; the command type is determined by bits 5, 
6, and 7 of HA word 1 as follows: 

I. Bits 5, 6, and 7 = 0: Initialize 
2. Bit 5 = 0, bit 6 = 1, bit 7 = 0: Halt 
3. Bits 5 and 6 = 0, bit 7 = 1: Set Attention 

The DCP for which the command is intended is in­
dicated by a DCP number contained in bits I - 3 of 
HA word I; however, bit 0 is a controlling bit for 
the DCP address. When it is a 0, the DCP address 
is not significant, and all DCP's respond. When it is 
a I , the addressed DCP is the only DCP to respond. 

The initialize command requires access by the 
IOM of HA word 2, which contains an instruction 
base address (bits 0 - 19). HA word 2 is not used for 
the halt and set attention commands. 

The initialize and halt commands cause psuedo 
fault interrupts to occur within the DCP. In the case 
of the initialize command, the interrupt causes the 
20-bit instruction base address to be loaded into the 
DCP scratch-pad memory. The interrupt generated 
by the halt command stops DCP operations. In ei­
ther case, stop actions which would normally occur 
within the DCP due to fault interrupt occurrence are 
inhibited. 

The set attention command is used to notify the 
DCP that attention to the B 7800 system is required. 

Synchronous 1/0 Command (Home 
Code 1010.) 

The synchronous I/O command provides a means 
of servicing a single job request during initialization. 
Only HA word i of the job map, which contains the 
IOCB base address (bits 0 - 19), is accessed; no 
queue mechanisms are used. When the single job re-

quest is terminated, the result descriptor information 
is stored in HA word 5, and a channel interrupt is 
sent to the CPM. 

Interrogate Peripheral Status Command 
(Home Code 1011) 

The interrogate peripheral status command is used 
to determine the ready status of all devices assigned 
to a particular status vector. The status vector to be 
interrogated is indicated by bits 9 - 12 of HA word 
I. 

HA word 2 is not accessed for command deter­
mination, but is later used for storage of the returned 
status information. The status information, which is 
returned in bits I - 32 of HA word 2, provides indi­
cation of the ready status of up to 32 devices on a 
vector. Bit 0 of HA word 2 (ATIN) notifies the 
CPM that the status word has been returned. 

Inhibit IOM Command (Home Code 
1100) 

The inhibit IOM command is used to inhibit all au­
tomatic IOM functions, such as data-path manage­
ment, chaining of linked and side-linked job re­
quests, and ringwalk. If linked job requests for ring­
walk devices are being serviced when the command 
is received, chaining stops after the IOCBs (in prog­
ress on each channel) are completed. 

The content of HA word I consists only of the 
home code; HA word 2 is not accessed. 

Activate IOM Command (Home Code 
1101) 

The activated IOM command is used to restore 
automatic functions of the IOM after the inhibit IOM 
command has been given. The command consists 
only of the home code in HA word I; HA word 2 
is not used. 

AUTOMATIC DISK-PACK 
OPERATION 

The IOM has prov1s1ons to automatically 
re-initiate a disk pack unit after the unit has com­
pleted a seek operation. This unit, when issued a 
conditional 1/0 command requiring head positioning 
(seek), must be issued the same command after the 
seek has been completed in order to accomplish data 
transfer. The IOM performs this function by examin­
ing all device result descriptors received from disk 
pack units. 

4-1-13 



DATA TRANSLATION 

The PCI section of the IO M has the capability of 
translating data from one representation code to an­
other during an 1/0 operation. The data types actual­
ly encountered are device dependent, and the trans­
lation to be performed (if any) is determined for each 
individual job request by standard control bits in the 
IOCW. The IOCW bits used to specify code transla­
tions are: 

Bit 46. ASCII on for any translation having ASCII 
input or output. 

Bit 44. READ -(READ 

Bit 42. TRANSLATE 

l, WRITE = 0) 

Bit 41. FRAME LENGTH (eight-bit characters = 
1; six-bit characters = 0.) 

All possible combinations of these code bits are 
listed in detail in table 4-1-2 and the specific transla­
tion codes used by software for each peripheral de­
vices are given in table 4-1-3. 

EBCDIC-BCL Exceptions 

Bi-directional translation of corresponding 
EBCDIC graphics to/from corresponding BCL gra­
phics are provided with the following exceptions: 

1. EBCDIC to BCL (output translator) 

EBCDIC 

PZ 

MZ 
Corresponding 

graphics 

Non-corresponding 

graphics 

NOTE 

BCL 

+ 
X (times) 

Corresponding graphic 

(See Note) 

The following graphics are printed de­
pendent upon whether the printer is 
equipped for EBCDIC or BCL: 

EBCDIC BCL 

(Apostrophe) ~ 

--, (Logical not) ~ 

(Underscore) ~ 

(Vertical bar) -t 

2. BCL to EBCDIC translator (input translator) 
BCL EBCDIC 

X (times) 

Corresponding 
graphics 

MZ 

Corresponding 

graphics 

Table 4-1-2. General Translation Specification Codes 

R T FL A 
44 42 41 46 

0 0 0 0 Write 6-bit bytes with no translation 

J 0 0 (illegal Code) 

0 0 0 Write 8-bit bytes with no translation 

0 0 Write EBCDIC from ASCII 

0 1 0 0 Write BCL External from BCL Internal 

0 0 1 Write BCL External from ASCII 

0 0 Write BCL External from EBCDIC 

0 1 Write ASCII from EBCDIC 

0 0 0 Read 6-bit bytes with no translation 

0 0 1 (Illegal Code) 

0 0 Read 8-bit bytes with no translation 

0 1 1 Read EBCDIC into ASCII 

0 0 Read BCL External into BCL Internal 

0 Read BCL External into ASCII (See Note 1) 

0 Read BCL External into EBCDIC 

Read ASCII into EBCDIC 

4-1-14 



Table 4-1-3. Translation Codes by Device 

CODE SPECIFIER 

Device R T FL A Description 

44 42 41 46 

Card Reader 0 0 0 Read binary data (6-bit to 6-bit) 

0 0 Read EBCDIC data (8-bit to 8-bit) 

0 Read EBCDIC into ASCII 

0 0 Read BCL External into BCL Internal 

0 1 Read BCL External into ASCII 

1 0 Read BCL External into EBCDIC 

Card Punch 0 0 0 0 Punch binary (6-bit to 6-bit) 

0 0 0 Punch EBCDIC (8-bit to 8-bit) 

0 0 0 Punch BCL External from BCL Internal 

0 0 1 Punch BCL External from ASCII 
0 0 Punch BCL External from EBCDIC 

0 0 Punch EBCDIC from ASCII 

Line Printer 0 0 0 0 Write BCL External (6-bit to 6-bit) 

0 0 0 Write BCL External from BCL Internal 

0 0 1 Write BCL External from ASCII 

0 0 Write BCL External from EBCDIC 

Train Printer 0 0 0 0 Write with no translation (6-bit to 6-bit) 

0 0 0 Write with no translation (8-bit to 8-bit) 

0 0 Write EBCDIC from ASCII 

0 0 0 Write BCL External from BCL Internal 

0 0 1 Write BCL External from ASCII 

0 0 Write BCL External from EBCDIC 

0 Write ASCII from EBCDIC 

P.T. Reader 0 0 0 Read binary (6-bit to 6-bit) 

0 0 Read EBCDIC or Read ASCM (8-bit to 8-bit) 

0 Read EBCDIC into ASCII 

0 0 Read BCL External into BCL Internal 

0 l Read BCL External into ASCII 

1 0 Read BCL External into EBCDIC 

1 1 Read ASCII into EBCDIC 

P.T. Punch 0 0 0 0 Punch binary (6-bit to 6-bit) 

0 0 1 0 Punch EBCDIC or Punch ASCII (8-bit to 8-bit) 

0 1 0 0 Punch BCL External from BCL Internal 

0 0 Punch BCL External from ASCII 

0 0 Punch BCL External from EBCDIC 

0 1 Punch ASCII from EBCDIC 

0 0 Punch EBCDIC from ASCII 

?TR. TAPE 0 0 0 0 Write with no translation (6-bit to 6-bit) 

0 1 0 0 Write BCL External from BCL Internal 

0 0 1 Write BCL External from ASCII 

0 1 0 Write BCL External from EBCDIC 

1 0 0 0 Read with no translation (6-bit to 6-bit) 

1 0 0 Read BCL External into BCL Internal 

4-1-15 



CODE SPECIFIER 

Device R T FL A Description 
44 42 41 46 

9 Tr. Tape 0 0 1 0 Write with no translation (8-bit to 8-bit) 
0 1 1 Write ASCII from EBCDIC 
0 0 1 1 Write EBCDIC from ASCII 

0 0. Read with no translation (8-bit to 8-bit) 
1 Read EBCDIC into ASCII 
0 Read ASCII into EBCDIC 

Disk Pack 0 0 0 Write with no translation (8-bit to 8-bit) 
(See Note 1) 

0 1 0 Read with no translation (8-bit to 8-bit) 

Note 1: 

The DFI section of the IOM has no hardware translation capabilities. 

IOM-GENERATED INTERRUPTS 

The IOM generates the following two interrupts 
and sends them over individual lines to each central 
processor: 

1. Channel Interrupt 
2. IOM Error Interrupt 

An IOM interrupts exactly one processor; the 
CPM to be interrupted is determined by the CPM 
field (bits 44-42) of SQH. 

There are three conditions under which the IOM 
generates an interrupt to a CPM: 

1. IO Complete -On job request termination, a 
channel interrupt is generated when bit 40 of 
the IOCB NL word is set or when bit 40 Qf the 
status queue header is set. These bits are set by 
software; bit 40 in SQH is reset by the IOM af­
ter an interrupt is generated. Unless requested 
by software, an interrupt is not set for excep­
tion conditions (peripheral parity error, end of 
tape, etc.). The only action taken for an excep­
tion condition is that the next request job, if 
there is more than one request job queued, is 
not started and bit 0 of the UT word is set. 

2. Status Changes -When the inquiry request line 
for a single line control device chanaes from off 
to on state, or when a DCP requests CPM at-

4-1-16 

tention, the IOM sets the proper bit in its status 
change vector (status vector 8). If this is the 
first such change since the vector was last in­
terrogated by software, the IOM sets bit 45 in 
SQH to request software to read the status 
change vector and generates a channel inter­
rupt. (Bit 45 in SQH is reset by software.) 

3. IOM Errors -An IOM error interrupt is generat­
ed for any error not related to a specific job re­
quest (e.g., a memory parity error on the home 
address word). The generated fail result de­
scriptor is placed in a dummy IOCB from unit 
0. 

IOM Fail Word 

The IOM fail word (figure 4-1-7) is a 48-bit word 
which contains information regarding errors which 
cannot be associated with a particular channel or de­
vice. (Such errors cause an IOM error interrupt.) 
When an IOM error interrupt occurs, an IOM fail 
word is built by the fail mode logic within the IOM 
translator and placed in the result descriptor word of 
the "fail IOCB". The fail IOCB is associated with 
unit designate number 0. The fail IOCB is delinked 
from the queue of fail IOCB's and linked into the 
queue of completed IOCB's (defined by the status 
queue header) in the same manner as a normal 1/0 
termination. 



47 43 

M 
50 46 42 

A DOR 
49 45 

48 44 

Field 

EXC 

\101>1 \l'lll·N FRROR 

OCCURRED 

HM 

SM 

TM 
RWM 

SNM 

SNE 

SCAN ERRORS 

SBE 

TOE 

DAE 

SUN 

NON-SCAN ERRORS 

TOE 
!BE 

HAE 

BE 

RSE 

41 

40 

39 35 

EM 
38 34 

37 33] 

36 32 

~E3 
31 27 

c ~E2 
H:5Q 26 

jMEI 
29 25 

N 
028 24 

Bits 

0 

2 

3 
4 

5 
6 

7 

9 

10 

11 

13 

10 

11 

12 

13 

14 

191AC~ p~~ SNE SM 
23 IBE 7 3 

UD TOE ~~ HM 
22 18 RSE 'ToE 2 

(= 0) .§l:!t!. §!:!.E;_ RW~ 
21 17 BE 9 5 I 

ME TM EXC 
20 16 HEA 8 4 0 

Error 

Exception Bit 

(See bits 2 t J 6) 

Home Address Mode 

Start Mode 

Terminate Mode 

Ring Walk Mode 

Scan Mode 

(See bits 9 to 14 or bits 10 to 14) 

(If SNE bit 7=1) 

Scan Bus Parity Error 

Time Out Error (Scan Bus) 

Disk Address Error 

Storage Unit Not Available 

(If SNE bit 7=0) 

Time Out Error (Data Service) 

Initiate Busy Channel 

Home Address Illegal Command 

Buffer Register Parity Error 

Resid·,e Error (Memory Address) 

MEM ADDR 47:20 Memroy Address of lOCB 

ME 

MEI, ME2, ME3 

UD 

* IBE is set if: 
I. Start Mode. The unit table is either busy (bit 

36) or the job bit is set (bit 37) for non-ex­
change devices. The active channel stack of the 
IOM has a non-exchange channel marked busy 

16 

27:3 

24:8 

Memory Error (see bits 25 to 27) 

Memory Error Code (If ME bit 16=1) 

Unit Designate (=0) 

or is in the process of terminating a job, or is 
reserved. 

2. Unit table is not busy (bit 36 = 0) when the 
IOM job begins to terminate (terminate mode). 

Figure 4-1-7. IOM Fail Word 

4-1-17 





SECTION 2 

FUNCTIONAL OPERATION OF 

INPUT/OUTPUT MODULE SUBSYSTEMS 

GENERAL 

This section contains a brief description of the op­
eration of each of the IOM subsections described in 
Section I of this chapter. For the formats of the 
words discussed, refer to the appendix of IOM word 
formats in this manual. 

TRANSLATOR 

The translator (figure 4-2-1) is a special-purpose 
processor capable of performing specific hardwired 
microsequences. It is the mechanism of the IOM 
that services 1/0 requests, generates the request de­
scriptors required to initiate peripheral devices, and 
reports job termination and failure status conditions 
to the central processor. The translator is keyed to 
respond to certain declared flag conditions. 

Job Service Initiation 

In response to an interrupt from the central pro­
cessor, the IOM unlocks-fetches the word in 
memory named by the 20-bit home address (HA) 
stored in the lower stack. The HA word control 
fields define the control codes and function details 
for the request as described in Section 1 of this 
chapter. When the start 1/0 command is decoded, 
the unit designate (UD) field of the HA word is 
loaded into the UD register (see figure 4-2-1). 

The UD field is added to the 20-bit unit table (UT) 
base address (stored in the UT location of the lower 
stack) in order to address and lock fetch, from mem­
ory, (write with flashback) the unit table word for 
the device to be started. For devices other than a 
fWO, the contents of the channel number identifica­
tion field of the UT word are used to access the ac­
tive channel stack (ACS). If the device is not con­
nected to an exchange, and if the ACS and UT word 
busy bits are reset, the 1/0 queue head word (IOQ 
base address + UD) is fetched from memory to ob­
tain the base address of the 1/0 control block 
(IOCB). 

Successive fetches are made of: 

I. The IOC base address plus 2 - to obtain the 
buffer descriptor. 

2. The IOCB base address plus 3 - to obtain the 
1/0 control word (IOCW). 

3. The IOCB base address plus 4 - to obtain the 
channel designate level (CDL) field. 

The buffer descriptor is comprised of two fields: 
base address information and buffer-length informa­
tion. The 20-bit base address field is used to locate 
the buffer in memory. 

The IOCW standard control field (SCF) has infor­
mation useful to the data service sections such as 
read/write, translate, and format bits. Information 
contained in the buffer descriptor, SCF and the 
IOCW, and CDL word of the IOCB is sent to the 
data service section to start the selected device. The 
unit designate number is stored in the ACS and the 
ACS busy bit is set. The unit table word busy bit is 
set, and the UT word stored in memory is unlocked. 
The HA word is unlocked and set to all zeros. Con­
trol is transferred to the initial state. 

If the device to be started is connected to an ex­
change and the busy bit of the base channel location 
in the ACS is set, the translator logic selects the 
next channel of the exchange and checks its busy 
bit. If a channel is available, information is fetched 
from memory and goes to the data service section to 
start the selected device. If all channels of the ex­
change are busy, the job bit (JB) in the unit table 
word is set, and the word is stored unlocked in 
memory. Control is transferred to the initial state. 
These conditions are summarized in table 4-2-1. 

Job Service Termination 

When a device either completes a service or is ter­
minated as a result of an error condition, the data 
service unit causes the terminate bit to be set for 
that channel. Terminate bits are located in the active 
channel stack (ACS) of the translator; one bit for 
each of the possible 28 channels available. In re­
sponse to a terminate bit being set, the translator 
reads the corresponding unit designate information 
from the ACS. This information is used along with 
the unit table base address to index and lock-fetch 
from level- I memory the UT word for the terminat­
ing device. The 1/0 queue head is then fetched to 
obtain the base address of the 1/0 control block 
(IOCB). The result descriptor (RD) information re­
ceived from the data service unit is then stored in 
the sixth word of the IOCB, and the IOCB is linked 
to the status queue (SQ). 

If this is the last request for this unit, the 1/0 
queue head (IOQH) and 1/0 queue tail (IOQT) are 
nulled, and the UT word is stored unlocked, to com­
plete the termination. If there are more requests, the 

4-2-1 



UPPER STACK 

AA P TAG UNIT TABLE WORD RES 

BB 
cct-;r-"""t'-S-C_F_r-"T"F_l_N_A_D_DR.....,_S_T_A-RT-A--tr---1 

DO STATUS QUEUE/CDL WORD 
51 50 47 0 10 

FROM RES. OESC, Per----..,.-.., 
OFI RO (0·471 

FAIL CTLS 

LOWER 
STACK 

HA RES 
UT 
QH 
SQ 

UD 

8 REG 
13 12 II 10 g 8 7 0 

... I: 
:Ill 
0 c 
I: c 
"' ~ n 
I> I> 
z :Ill 
c I'll 
I> 1' 
;! ,, 

c 
0 . 
~ 

40118 

4-2-2 

CHANNEL NO CN 0-4 

SC NC 

3 0 3 0 19 

Figure 4-2-1. Tl'aDllMor Component lnterfaee 

8(00- SI) TO SCAN DATA REG 
MIU DATA REG 

WAIT QUEUE 
(SCHEDULER) 



Table 4-2-1. Unit Table and Active Channel Coded Decisions 

A.C. Stack Unit Table Word 
B20 B38 B37 B36 CBF CTF CRF Decisions 
RC EX JB BZ 

M 

x 

x 

x 

x 

u 

x 
x 
x 
x 
M 

u 

x 
0 

0 

0 

0 

0 

*1 
*1 
1 

X = State irrelevant 

M = States match 

0 

x 

x 

x 

x 

1 

0 
0 

x 

U = States do not match 

0 
x 

1 

x 

x 

x 

0 
0 
0 
0 
0 
0 

address of the next IOCB is inserted in the 20-bit ad­
dress field of the IOQH. Control is passed to the 
start section to initiate the request. If the terminating 
IOCB is the last request for this unit, and the unit 
is connected to an exchange, then control is passed 
to the ring-walk section and a search is made to find 
a request that is waiting to be initiated. 

Exchange Ring-Walk 

The following action is taken when an exchange 
unit terminates and there are no more requests 
queued for that particular unit. 

The present unit designate (PUD) field from UT is 
saved in the S register. The next unit designate 
(NUD) field in the UT word of the terminating de­
vice points to the next unit (device) of the exchange. 
The UT word for this unit is fetched from level-1 
memory and status of the busy and job bits is 
checked. If the unit is busy, or no jobs are awaiting 
service, the information in the NUD field in the UT 
word points to the next unit of the exchange. This 
process of looking for a request continues until one 
is found or the entire exchange has been walked 
(NUD = saved PUD). When a unit is found with a 
serviceable request waiting, the IOQH word for that 
unit is fetched from memory and the job is started. 

Disk Pack Control 

The following actions are taken upon the receipt 
and examination of result descriptors from disk 
pack. 

M 

x 

x 

x 

x 

u 

x 
x 
x 
x 
M 

u 

Start job; unlock UT; Set BZ (UT) 

Error; Set Initiate Busy Channel Error (IBE) in 

Fail Word 

Error; Set Initiate Busy Channel Error (IBE) 

in Fail Word 

Error; Set Initiate Busy Channel Error (IBE) in 

Fail Word 

Error; Set Initiate Busy Channel Error (IBE) in 

Fail Word 

Error; Set Initiate Busy Channel Error UBE) in 

Fail Word 

Unlock UT; Go to initial state 

Unlock UT; Go to initial state 

Unlock UT; Set JB; Go to initial state 

Unlock UT; Set JB; Go to initial state 

Start job; Unlock UT; Set BZ, Res JB 

Unlock UT; Set JB, go to initial state 

RC = Use reserved channel only CRF = Chan Reserved FF 

CBF = Chan Busy FF * · Applicable only when 
CTF = Chan Term FF second IOM has set JB 

When a result descriptor indicating "seek initi­
ated" is received, the IOM does not de-link the 
IOCB or store the result descriptor as in normal ter­
minate operations. Instead, the unit number of the 
disk pack which began a seek operation is stored in 
a local stack. Contents of this stack are then used to 
monitor the ready lines of all disk pack units which 
are currently seeking. 

A "seek complete" is detected when the ready 
line of a seeking disk pack returns to the TRUE 
state. At this time, the translator performs a start 
1/0 for that unit. Since the original job was not de­
linked from the job queue when the disk pack initi­
ated its seek, the same job is issued a second time, 
and the data transfer occurs. After this point, all 
IOM operations proceed the same as for normal pe­
ripheral units. If the disk pack is issued a conditional 
1/0 command which does not require head position­
ing, data transfer occurs directly, and the automatic 
disk pack functions of the IOM are not used. 

Fail Mode Of Operation 

The fail mode lets the IOM report errors that can­
not be associated with a specific request. When an 
error occurs, such as a scan bus error, memory er­
ror, home address error, illegal command, etc., con­
trol goes to the fail mode (FM) with appropriate er­
ror flags. 

A fail result descriptor is built in the fail register. 
This RD indicates: 

4-2-3 



1. The operational mode when the error occurred. 
2. A possible channel number (or memory ad­

dress, depending on the type of failure). 
3. Error flags describing the type of error. 

A fail unit designate number (fail UD = zero) is 
used with the UT word to access a fail UT word. 
Then the QH and fail UD are used to access the fail 
1/0 queue head. The fail result descriptor is placed 
in the result descriptor word of the 1/0 control block 
(IOCB). The fail IOCB is then delinked from the 
queue of fail CBs and linked to the status queue as 
in normal termination. An IOM error interrupt is 
then sent by the IOM to the central processor desig­
nated in the status queue header. 

Scheduler 

The scheduler stores UDs for certain high speed 
devices when throughput capacity of the PCI periph­
eral bus (or the IOM) exceeds a self-limiting range. 
The PCI peripheral bus throughput is limited to two 

. megabytes; whereas the self-limiting range of th~ 
IOM is dynamic, up to six megabytes, becau~e 1t 
varies with memory and peripheral bus access time. 

When the translator is in idle mode and no higher 
priority jobs are awaiting service, processing of the 
stored UDs can begin. Scheduler logic contains two 
first-in/first-out wait queues for storing UDs, a job 
counter to record the number of high speed jobs on 
PCI channels, and limit circuits for monitoring 
throughput operations. 

The translator identifies high speed devices via bit 
40 in the UT word (set by software). Then, during 
start, the job counter is increased by one to record 
that a job is in progress for that device. Each time 
a high speed device is to be serviced, the job coun­
ter upcounts by one. Similarly, as each device ter­
minates, the job counter is decremented by one. 

Whenever the job counter equals a count exceding 
the two megabyte throughput, a flag is enabled, indi­
cating PCI limit met. Further high speed operations 
to be started in the PCI section are written to the 
PCI wait queue. When the job count decrements be­
low the two megabyte limit due to a high speed de­
vice terminating, the wait queue is read, if required. 

The self-limiting throughput portion of the sched­
uler monitors valid array and DSB pointer informa­
tion to determine if limited 1/0 throughput occurred. 
Both store and fetch memory operations are 
monitored to detect this condition. If this has oc­
curred, the next high speed device UD is written to 
the proper wait queue in order to perform this job 
during a future start 1/0 cycle, as described previ­
ously. 

4-2-4 

Time Logger Log'ic 

The time logger logic calculates the time an IOM 
had taken to service a channel operation. This calcu­
lated time, which is in units of 503 microseconds, 
and the associated channel number are assembled in 
the B register, as the IOMTIMECELL word. This 
word is then stored in memory at the IOCB base ad­
dress plus six. 

The counters in this logic are continuously 
counting and are only interrupted momentarily at the 
start and termination of an 1/0. When a new channel 
operation is started, the current time (counter) is 
written into the storage location of this logic, ad­
dressed by channel number. When the operation ter­
minates, the stored time (count) is subtracted from 
the present time and the resultant figure (elapsed 
time) is stored as the IOMTIMECELL. 

Data Service Quiet Logic 

Data service quiet logic is used to inform the MCP 
that an IOM is not servicing any channels and the 
UD wait queue is empty. Data service quiet logic is 
a five-bit counter, which is increased by one for 
each channel operation started and decreased by one 
as operations terminate. Thus, if the counter equals 
zero and the UD wait queue is empty, bits 23 (DSQ 
- data service quiet) and 22 (ENH - enhanced, which 
serves as a validity bit for 23) are set in the status 
change vector 8 field of home address word 2. 

Zero Length Detection 

Zero length detection logic is used to process jobs 
in which the length of the memory in words for that 
job equals zero, as indicated by a zero-length field 
in the buffer descriptor. This is detected during start 
and the final address field of job word 1 (JWl) is set 
to zero. JWl is sent to either the DFI or the PCI 
subsection. In the DFI, a zero length detection sets 
the RDL (result descriptor load) flag and terminates 
the operation. For the PCI, zero length sets th~ RD~ 
(result descriptor present) flag. No other action is 
taken by the PCI, except to recognize that no data 
is to be transferred and to place the job in the queue 
as a terminate job. 

MEMORY INTERFACE UNIT 
The memory interface unit (MIU), shown in figure 

4-2-2, performs all data and map-word transfers be­
tween the IOM and a maximum of four system mem­
ory control modules. It detects and reports memory 
error conditions to the requesting functional unit of 
the IOM (and to the translator when applicable). 



DSB REQUEST 
PRIORITY 

DCl REQUEST LOGIC 

TRANSLATOR REQUEST 

TRANSLATOR ADDRESS l 
DSB ADDRESS MEt40RY p CON ROL 

DCI ADDRESS 
WORD 

~ 1 
SS 

UPPER 6 LOWER 
ADDRESS LIMIT 

LIMIT 

UPPER 6 LOWER COMPARISON 
ADDRESS LIMIT 

TRANSLATOR DATA 111 
DSB DATA 

p DA[.A 
REGI TER 

DC! DATA 

l -[ 

40157 

MASTER -...... 
CONTROL 

LOGIC 

-
r-

1 
R RESIDUE 

E CHECK I-s LOGIC 

0 l 
COMPAR~r--

E 
0 N BUS 

c I-t-- ADDRESS 0 
D REGISTER 7 - E 

COMPARE.__ 

PARITY 
r- CHECK 6 I----- p 

GENERATION 

1 51 

,-- REQUEST ~ 

REQUEST STROBE 

DATA STROBE -
ACKNOWLEDGE 

D ~ 

R 
l 
v 
E - 52 INFORMATION 
R 
s SEND DATA 

A 
N DATA PRESENT 
D r 
R MCM ENABLE 
E 
c 

REQ. ENABLE ADDRESS ~ SELECT E 
D BUS I 
E 0 v .J!PPER LIMIT ADDRESS c E 
0 R 
D 7 s _LOWER LIMIT ADDRESS 
E ..._____. SELECT 

BUS REQ. OPER. COMPLETE 

.-_ FAIL INTRPT I 

_ FAIL INTRPT 2 

MEMORY 
BUFFER I-+- SOFTWARE INTRPT 

REGISTER 7 
10 

.....__ 

j 
DATA TO REQUESTING UNIT -

M 
E 
M 
0 
R 
y 

c 
0 
N 
T 
R 
0 
L 

) 

M 
0 
D 
u 
L 
E 

Figure 4-2-2. Memory Interface Unit 

4-2-5 



The MIU consists of nine functional components 
as illustrated in figure 4-2-2. These functional com­
ponents are: 

1. Priority Logic. This section is responsible for 
granting the services of the MIU to the highest prior­
ity requesting unit. The order of priority for services 
is: 

a. Data communications scan interface (OSI) 
b. Data service buffer (DSB) 
c. Translator. 

2. Control Logic. This section contains the control 
logic necessary to execute all MIU operations, in­
cluding the. controls required to complete receiver 
and driver paths. 

3. Residue Check Logic. This section is responsi­
ble for checking and verifying the residue bits of the 
memory addresses transferred from the translator 
and data service unity. 

4. Parity Check and Generate Logic. This section 
is required to generate odd parity for all words being 
transferred to memory, and to check for odd parity 
of all words being fetched from memory. 

S. Data Register. This is a 52-bit register and is 
used to buffer all data transfers between the request­
ing unit of the IOM and the MIU. 

6. Memory Register. This is a 52-bit register and 
is used to buffer all input data to memory. 

7. Control Word Register. This is a 25-bit register 
and is used to temporarily hold the 24-bit unit con­
trol word (UCW) and length transfers from the re­
questing unit. UCW is comprised of 20 bits of ad­
dress, two residue bits, a write bit, and memory pro­
tect. 

8. Receivers and Drivers. There are eight discrete 
groups of receiver and driver circuits in the MIU -
one group per memory control module interface. The 
state of these groups is determined by the control 
logic; only one group is active at any one time. 

9. Limit Comparison Logic. This section is re­
sponsible for comparing the six most significant bits 
of address in the CWR with 'the address limits sup­
plied by each MCM in the memory system. 

10. Bus Address Register. This register is used to 
buffer encoded output of the limit comparison logic. 
The output is decoded to select one of seven 
memory buses. 

When a requesting unit of the IOM needs the MIU 
for a data transfer, it is required to raise its request 
lines to the MIU and place a 24-bit UCW and the 
length information on its interface lines to the MIU. 

The MIU manages level- I memory access requests 
by the functional units of the IOM on a preassigned 
priority basis. The access priority scheme for the 
functional units of the IOM is: 

1. First priority: data communications processor 
interface requests. 

4-2-6 

2. Second priority: data service buffer requests. 
3. Third priority: translator requests. 

When a functional unit of the IOM requires the 
services of the MIU for the purpose of performing 
a data transfer, it must raise its access request line 
to the MIU and place a 26-bit unit control word 
(UCW) on its UCW lines to the MIU. When the re­
questing unit has priority, the MIU loads the UCW 
into its control word register and performs one of 
the following operations: 

I. Single data word fetch 
2. N-length data word fetch 
3. Single-word overwrite with flashback 
4. Single-word protected write 
5. Single-word protected write with flashback 
6. N-Iength overwrite 
7. Single-word overwrite 
8. N-word protected write 

Upon determining the type of operation requested, 
the MIU constructs a memory control word (MCW) 
and transfers it to memory. Upon transferring the 
MCW to memory, the MIU is required to perform 
one of the following operations: 

I. If a single-word store operation is specified: 
The MIU raises its request lines to the specified 
memory control module in order to alternately trans­
mit the MCW and the data word to be stored to the 
addressed MCM. The MIU continues to transmit the 
MCW, followed by the data word to be stored, until 
an acknowledge signal is received from the MCM. 

2. If a multiple-word store operation is specified: 
The MIU . raises its request lines to the applicable 
MCM, and then sends the MCW to the MCM. When 
the MCM acknowledges receipt of the MCW, the 
MIU commences the data transfer under the control 
of the data request signal. 

3. If a fetch operation is specified: The MIU 
raises its request lines and sends the MCW to the 
applicable MCM. When the MCM acknowledges re­
ceipt of the MCW, the MIU enables its memory-bus 
receiver circuits. Information from the MCM is now 
accepted by the MIU. However, the MCM is re­
quired to transmit a data present strobe pulse to the 
MIU to cause the information present on the 
memory bus to be transferred to, and detected by, 
the requesting IOM. The data present strobe pulse is 
required for each word transferred from memory to 
a requesting IOM. 

While performing a data transfer, the MIU is re­
quired to detect and/or report memory error condi­
tions. Memory errors are divided into two categories 
by the IOM: MIU-detected errors, and memory-de­
tected errors. Memory erro.rs cause termination of 
the memory request being processed, and the MIU 
sends a three-bit error code to the requesting sec­
tion. The translator reports these errors through the 



fail register. Data service section units return them 
in the result descriptor. A decode of these three bits 
specifies whether the error is MIU or memory-de­
tected. 

Errors detected and/or reported by the MIU and 
the associated three-bit reporting codes are listed in 
descending exclusive order as follows: 

l. Store Disparity (011). This error condition is 
declared if a data transfer from an internal unit is re­
ceived with incorrect parity by the MIU. The data 
with incorrect parity is transferred to the memory. 

2. LlA Address Residue Error (010). This error 
condition is declared if the MIU receives a UCW 
with residue bits not agreeing with its memory ad­
dress field configuration (DCP words are not residue 
checked). 

3. Memory Detected Error (111). This error condi­
tion is declared when the addressed memory module 
responds with ·a fail 1 (uncorrectable error) indica­
tion to a requestor unit. 

4. No Access to Memory (101). This error condi­
tion is declared if the MIU receives no response 
from the requestor memory module during a waiting 
period less than a 25-microsecond writing period. No 
response is defined as: 

a. Failure to receive, at the MIU, an acknow­
ledged signal from an addressed memory mod­
ule; or 
b. Incomplete data transfer by an addressed 
memory module. 

5. Fetch Disparity (110). This error condition is 
declared if a fetch of data from memory is received 
by the MIU with incorrect parity. 

6. Memory Protect Error (100). This error condi­
tion is declared when the addressed ·memory module 
responds with a protect error signal during a 
memory protect store operation. 

7. Memory Detected Error (001). This error condi­
tion is declared when the addressed memory module 
responds with a fail 2 (one-bit corrected error) indi­
cation to a requestor unit. (This error condition does 
not cause termination of the memory access 
operation.) 

DATA SERVICE BUFFER 

The data service buffer (DSB), figure 4-2-3, is a 
unit within the IOM which allows a continuous pe­
ripheral 1/0 transfer to and from memory by provid­
ing a 256 x 52 word buffer. This buffer is divided 
into eight word buffers for each of the 28 data serv­
ice unit (DSU) channels. 

The DSB has five components, as illustrated in 
figure 4-2-3. These functional components are de­
scribed as follows: 

1. The request queue (RQ) consists of: a PCI and 
a DFI input register; read and write pointers; a 32 

x 10-bit first-in/first-out request queue; Ml and M2 
output registers (not shown); a parity generator/ 
checker (not shown); and a valid request check cir­
cuit (not shown). The RQ is used to store, and initi­
ate sequentially, memory requests from either the 
PCI or DFI, under control of central control. 

2. The PCI and DFI arrays consist of the control, 
status, and valid arrays which contain information 
necessary to perform various PCI/DSB, DFI/DSB, 
and central control operations. 

a. The PCI control array consists of 20 x 8 bit 
locations and the DFI control array consists of 
8 x 8 bit locations, one location for each of the 
28 DSU channels. 
b. The PCI status array contains 20 x 5 bit loca­
tions and the DFI status array has 8 x 5 bit loca­
tions. 
c. The PCI valid array uses a 20 x 2 bit location 
array and the DFI valid array is formed by a 8 
x 2 bit array. These determine if an invalid buf­
fer is accessed. 

3. The address array has eight functional units: 
a. PCI and DFI UCW Registers. These are 
24-bit registers used to buffer unit control words 
(UCW) from the PCI and DFI into the address 
array. 
b. Residue Check Logic. This section check and 
verifies residue of the UCW address. 
c. Address Array. This array consists of 32 x 24 
bit word locations, one for each channel of the 
PCI and DFI, with four locations not used. The 
address array is used to store the next UCW for 
the MIU from each channel, while waiting for 
the RQ to honor the request. 
d. Address Buffer. This is a 24-bit register (not 
shown) used to temporarily hold the data being 
read out of the address array and transferred to 
the UCW register. 
e. 20-Bit Adder/Subtractor. This section (not 
shown) updates the current address in the unit 
control word for the next fetch or store 
operation. 
f. Residue Adder/Subtractor. This logic (not 
shown) is responsible for generating new residue 
for all updated addresses being sent to either the 
UCW register or the address update register. 
g. Unit Control Register. This register is a 
24-bit register and is used to buffer the UCW to 
the MIU. 
h. Address Update Register. This is a 24-bit 
register and is used to buffer the updated UCW 
address and residue to the address array. 

4. Address logic for DSB main buffer is comprised 
of eight address lines. These address lines are enable 
by decoding of three address input gates selecting a 
particular DSB location. 

5. Address logic for the four-word buffers Ml and 
M2 consists of a three-bit Ml and M2 length counter 
and associated gate logic. The two least significant 
bits select which of the four words is addressed. 

4-2-7 



~ 

N 
cio 

FROM 
PCI 

TO MIU 

TO MIU 

FROM MIU 

DATA FROM MIU 

FROM 
LEN.REG. 

FROM 
LEN.REG. 

DATA TO MIU 

ET1251 

31 

FROM 
DFI 

ADDRESS 
ARRAY 
i32X24) 

M1ANDM2 
LENGTH 
REG'S 

MEMORY 
CONTROLS 

AND 
STATUS 

M14WD 
BUFFER 
ADDA. 
LOGIC 

M24WD 
BUFFER 
ADDA. 
LOGIC 

PCI CH.NO. 

~ 
G 
A 
T 
E 
s 

TO 
M1 
BUFFERS 

TO 
M2 
BUFFERS 

PCI DFI 

20 r--1 PCIARRAYS I 
(CONTROL VALID 

I DFIARRAYS 
(CONTROL, VALID 

AND STATUS) AND STATUS) 

CENTRAL CONTROL 
WORD REG. 

CENTRAL DAT A 
BUFFER CONTROLS 

M2BUFFER 
i4X52) 

2561 .,. I I 

DSB 
MAIN BUFFER 

(256X52) 

FROM PCI 

FROM DFI 

MD REGISTER 

TO PCI 

TO DFI 

Fipft 4-2-3. Da&a Service B11frer 

WRITE PT 

READ PT 

ADDA. 
LOGIC 
FOR 
DSB 
AND 

ARRAYS 

31~--~--~ 

CONTROLS 

MEMORY 
CH.NO. 

REQUEST 
QUEUE 

FOR 
MEMORY 

PCI CH.NO. 

DFI CH.NO. 

LENGTH REG. 



To control the peripheral 1/0 transfers, the DSB 
contains four independently operated controls which 
are initiated when a request for a particular 
operation is received. The following subparagraphs 
describe each DSB control. 

PCl/DSB Control 

PCSI/DSB control is initiated when a PCI request 
for PCI control, valid, and status arrays is set in re­
sponse to a request from the PCI. It is used to con­
trol one-word transfers between the PCI and the 
DSB main buffer. 

DFl/DSB Control 

DFI/DSB control is initiated when a DFI request 
for the .DFI control, valid, and status arrays is set in 
response to a unit control word inhibit signal from 
the DFI. This section controls one or two-word 
transfers between the DFI and the DSB main buffer. 

Because PCI timing and PCl/DSB timing control 
are one clock cycle ahead of the DFI timing se­
quence, the PCI request for PCI control, valid, and 
status arrays always occurs before the DFI request 
and thus eliminates any request conflicts between 
the PCI and the DFI. 

However, only DFI-A or DFI-B can request the 
use of the DFI arrays at the same time, by a re­
questing DFI generating an inhibit signal to inhibit 
the other DFI section. 

Central Control 

Central control is initiated when a request for a 
memory operation is available in the request queue. 
This request is made as soon as the count in the 
read and write pointers of the RQ is not equal and 
the queue is not being written into, thus enabling a 
memory request. The central control is used to con­
trol data transfers between the DSB main buffer and 
the Ml and M2 four-word buffers. 

When the PCI or a DFI is requesting the use of 
its control arrar or the address array, central control 
can not request these arrays for one clock cycle 
while the PCI or DFI request is acknowledged. Also, 
if the PCI or DFI requests the use of the DSB main 
buffer and central control has access to the buffer, 
the central control loses access for one clock cycle 
while the data transfer occurs. 

MIU/DSB Control 

MIU/DSB control begins when central control re­
quests an MIU interface operation. THE MIU/DSB 

control then responds by sending a data request, 
along with the UCW and length, to the MIU. The 
MIU/DSB control regulates data transfers between 
the MI and M2 four-word buffers and the MIU. 

PERIPHERAL CONTROL 
INTERFACE 

The peripheral control interface (PCI) (figure 
4-2-4) lets the IOM interface with from one to 20 pe­
ripheral controllers (PCs) and coordinates data trans­
fers between the PCs and the DSB as directed by 
the translator section of the IOM. The PCI interfaces 
with memory by one-word transfers via the MIU 
through the DSB. 

The PCI consists of nine functional components 
(see figure 4-2-4). These functional components are 
described as follows: 

I. PCI Local Memory (PCLM). Comprised of 
TTL RAM and CTL MULN-type memory chips. 
PCLM stores the channel descriptors, result descrip­
tors, and data for 20 channels. 

2. Descriptor Register (DR). A 79-bit register used 
to temporarily store the channel des~riptor fC?r a. j~b 
being initiated and the result descnptor while 1t 1s 
being assembled. . . 

3. Shift Logic and Data Buffer Register. The shift 
logic consists of left and right shift logic to properly 
position data within the data buffer (DB) register. 
The DB register can be considered as part of the de­
scriptor register because it holds the CDL and data 
words for the channel descriptor being processed. 

4. Byte Buffer. A 16-bit register used to 
temporarily store the data byte being transferred be­
tween the peripheral control and the PCI, as well as 
the device result descriptor being transferred from 
the peripheral control. 

5. Code Translator. Consists of the logic circuits 
necessary to perform various code translations re­
quired by some B 7800 peripheral devices. ROM 
chips are used to perform this function. 

6. Stack Section. Contains 20 three-bit stack regis­
ters, one for each of the peripheral controls. The 
three-bit codes are used to address the PCLM in or­
de. to perform specific PCI operations, such as writ­
ing an updated channel descriptor back into the 
PCLM for the next service cycle. 

7. Queue Section. Contains 20 two-bit queue reg­
isters, one per PC. The queue register contains any 
of three two-bit job codes: initiate, memory, and ter­
minate. 

8. Driver and Receiver Section. Has the drivers 
and receivers necessary to transmit and receive data 
and control signals between peripheral controls con­
nected to the 20 operational channels. 

9. Timing Generator and Control Section. Has the 
logic used to generate and control timing signals 
used throughout the logic circuits of the PCI. 

4-2-9 



4-2-10 

TRANSLATOR 
(CHANNEL NUMBER\ 

CODE TRANSLATE 
READ-ONLY HEM. 

DATA SHIFTER 

DATA BUFFER REGISTER 

DESCRIPTOR REGISTER 

CONTROL 

TRANSLATOR 
(CONTROL\ 

ucw 

STACK 

Tl Ml NG 
GEN, & CONTROLS 

3 MHZ 

MASTER 
2 MHZ 
PER I PH 

Figure 4-2-4. Peripheral Control Interface 

DATA 
SERVICE 
BUFFER 

PCI 
LOCAL 

MEMORY 
IPCLMI 

TRANSLATOR 
(DATA) 



Each PC needs a one-microsecond service cycle to 
transfer data. By means of overlapping service cy­
cles, and by use of local memory windows (a one­
clock period when a particular operation may be per­
formed if no higher priority job exists) all 20 chan­
nels are multiplexed. 

There are five operational' phases of the PCI: 
Translator Service. 
Channel designate. 
Channel data service. 
Memory operations. 
Result descriptor read. 

Each of these phases is described as follows. 

Translator Service 

This phase of PCI operation is controlled by chan­
nel designate level (CDL) control (referred to as 
CC), and includes all functions required between the 
PCI and the translator during the initiation phase of 
an 1/0 operation. The translator service phase com­
mences when the translator control logic places the 
first job descriptor word (DSU word) on the transla­
tor bus and raises the request line to the PCI. When 
a local memory window becomes available, the CC 
strobes the DSU word into the local memory chan­
nel allocated to the device to be started, and lowers 
the Pel-available line to the translator. The transla­
tor control logic then lowers the request line and 
places the second job descriptor word (CDL word) 
onto the translator bus. 

When the next available local memory window oc­
curs, the CC strobes the CDL word into the appro­
priate location in local memory, strobes the channel 
number of the new request into the initiate queue 
stack (INQ), and raises the PCI-available line. This 
inform!i the translator that the entire request descrip­
tor has been received and stored in local memory. 

Channel Designate 

If no channel is currently being initiated, the CC 
selects the highest priority channel in the INQ, 
sends this channel number to the CDL stack (CDS) 
which contains the request descriptor currently being 
initiated, and resets the INS bit for the selected 
channel. If no channel requires channel service, the 
CC checks the busy line of the channel. 

If a not busy condition is detected, the CC com­
mences transfer of CDL characters to the appropri­
ate PC at the rate of one character per available 
service cycle. If the selected channel is busy at ini­
tiation, or if the selected channel becomes not busy 
during transmittal of CDL characters, the request is 

terminated and appropriate result descriptor informa­
tion is generated and transferred to the translator 
(see channel termination). After sending the correct 
number of CDL characters (four for standard de­
vices and eight for disk file devices), the CC raises 
the start channel bus line to the PC and resets the 
CDS, and the initiation operations are completed. 

Channel Data Service 

After completion of the initiation phase, a channel 
is serviced upon demand at a rate dependent upon 
the type of peripheral device involved. The PC re­
quests service by raising the access-request line 
(ARL) to the PCI. The PCI selects the highest 
priority channel requesting service and generates the 
appropriate access granted level (AGL). The pres­
ence of this signal grants the next service cycle to 
the accessed peripheral. The service cycle consists 
of two T-time periods (Tl and T2) of 500 nano­
seconds each; Tl is used for output to the PC. The 
AGL signal for the next service cycle is generated 
during the previous service cycle's T2 time period. 

Each data transfer is controlled by a channel de­
scriptor which has been generated from information 
contained in the DSU word of the job descriptor. 

If an error is detected at any time during channel 
service, the PCI generates the appropriate result de­
scriptor information for the translator (see channel 
termination) and terminates all operations on that 
channel. 

Memory Operations 

When the PCI determines that one 52-bit data 
word is needed from, or is ready to go to memory 
the channel number for the transfer goes in the 
memory queue (MQ). The MQ is a stack which con­
tains the channel numbers of all channels requiring 
memory access. If no memory operation is currently 
in progress, the PCI selects the highest priority job 
in the MQ, and transfers this number to the memory 
operation stack (MOS). The PCI then resets the MQ 
bit for the selected channel, transfers the unit con­
trol word to the unit control register (UCWR), raises 
the PCI-memory-request line to the DSB, and, if · 
necessary, transfers data into the memory transfer 
area (MTA). 

Once access to the DSB .is granted, the PCI 
strobe: 1) fetches data from the MT A; 2) strobes the 
data to the appropriate data buffer in local memory; 
3) awaits the release signal which indicates that this 
memory requests is completed; and 4) resets the 
MOS bit. The memory operation is thus completed. 

4-2-11 



If the DSB detects an error at any time during this 
sequence, the error information is transferred to the 
PCI. The PCI then causes the request to be termi­
nated, and an appropriate result descriptor is gener­
ated. 

Result Descriptor Read 

After completing the required data transfer, the 
PCI sends an 1/0 complete level to the PC. The PC 
then returns the result descriptor available level and 
returns a result descriptor. This result descriptor in­
formation, plus the channel descriptor information, 
is used by the PCI to create the result descriptor 
word to bring about a normal termination. 

Abnormal termination result descriptors can oc­
cur: 

1. During initiation, channel service, or channel 
memory operations (when errors al'e detected by the 
PCI). 

2. During channel memory operation (when errors 
are detected by either the MIU or the MCM). 

3. During channel initiation or channel service 
(when errors are detected by the PC). 

No matter what the source, all result descriptors 
are treated identically. 

Once the result descriptor has been generated, it ' 
is stored in the local memory location of the channel 
to be terminated .. The channel number of this re­
quest is strobed to the translator. Should the transla­
tor be unable to accept the channel number, the PCI 
stores this channel information in the termination 
queue (TMQ), which contains all the requests to be 
terminated. Whenever possible, the PCI selects the 
highest priority request from this stack, transmits the 
channel number to the translator, and resets the 
TMQ bit for the selected channel. 

The translator replies to the PCI termination with 
a read-result-descriptor request, which causes the re­
sult word to be placed on the translator bus. This 
completes the termination operation. 

DISK FILE INTERFACE UNIT 

The disk file interface unit (DFI) in figure 4-2-5 
lets the IOM interface up to eight disk file controls 
(DFCs). It consists of two independent modular sec­
tions, each of which is capable of handling four data 
channels. Each data channel is interfaced to one 
DFC. 

Each DFI section controls data transfers with the 
DFCs via a 16-bit data bus, at a transfer rate of two 

4-2-12 

eight-bit characters per transfer time. The transfer 
rate to the DSB is two words (2 x 48 bits) per trans­
fer time. 

Each data channel utilizes a four-word data buffer 
area, the .data local memory (LMD), and a 67-bit 
channel descriptor local memory (LMC). Upon com­
mand from the translator, the DFI initiates requests 
with its associated DFCs. On receipt from memory 
of a disk file job, the translator requests that a pair 
of job words be sent to the DFI section assigned to 
handle that job. The selected DFI section loads the 
first of the new requests words into the proper chan­
nel descriptor location in the LMC. Jt loads the sec­
ond job request word into its data buffer area 
(LMD), from which this word is subsequently sent 
to the DFC. The DFI then releases the translator. 

During data transfer operations, the DFI commu­
nicates with the data service buffer (DSB) to get 
memory accesses. All data transferred by the DFI 
between the DFCs and memory is temporarily stored 
in the LMD. Here individual 16-bit bytes are packed 
or unpacked as they are exchanged with the DFCs. 

Figure 4-2-5 illustrates the two DFI sections and 
their respective interfaces with the translator, DSB, 
and peripheral control cabinets (PCC). The two sec­
tions are identical and contain the following compo­
nents: 

1. Channel Descriptor Local Memory (LMC). 
Stores four 69-bit channel descriptors, one for each 
DFC data channel. 

2. Descriptor Register (DR). Holds the descriptor 
of an active channel. The DR contents are used in 
conjunction with update logic to update the current 
memory address of the active job and other various 
control bits. 

3. Update Logic. Increases the CA by two words 
each time a memory access is requested for fetching 
or storing a pair of data words. It is also used to up­
date the word byte position field (WBP), the residue 
and phase (FAZ) fields, and various other control 
bits. 

4. Parity Check and Generate Logic. Generates 
and stores odd parity for each descriptor stored in 
the LMC, and checks for odd parity on all descrip­
tors read from the LMC. 

5. Data Local Memory (LMD). Stores 16 48-bit 
data words (two double-word locations for each of 
the four DFC channels). The LMD buffers for data 
read from, or written onto, disk files. Also, during 
request initiation, the LMD contains six COL char­
acters (48 bits total) which are sent to the DFC. 

6. Two-Word Buffer (2WB). Acts as a buffer for 
data being transferred between the LMD and the 
DSB; can store two 48-bit words. 



.--- - RESULT DESC. 

-

T 
R 
A 
N 
s 
L 
A 
T 
0 
R 

f--1 

D 
A 
T 
A 

s 
E 
R 
v 
I 
c 
E 

B -u 
F 
F 
Er--
R 

'----

40•69 

~ 

~ ,_. 
w 

RESULT DESC. LOAD 

[ 
CHANNEL 

DESC. LOC. MEM DATA LOC MEM 

TIMING 

h> 
69 0 p -0 r-o{ ~- _2_ 47 0 p 

6 A - I R 
--"' 

CONTROL 
- 2 

t- I { 
I - --- -- T -3 

y i-DBE 8 ME BITS J 
• ··~ PARITY J t-2{ -- - -- B 

-"--i_ CHECK S GEN --1 I 
DR • t- 3{ ~ , .-,l j ---J.W. . I! TR"" r , .. 

2WD: BUFFER 
15 0 D 

u.c.w __J 
J I UPDATE -l 47 0 R -----

47 0 l PARITY ~ JW2 
CHECK 8 GEN ~ 

1 f r DATA - - J PAR ACCUM J --
PARITY :J 8 STORE 
N.W. RESULT DESC. LOAD 

CHANNEL 
DESC. LOC. MEM j DATA LOC. MEM 

69 0 p -0 .-o{ 47 0 ~ _ _2 p 
-I A 

R 
-2 ~1{ I - TIMING h> --- -- T 

CON~ROL I !J -3 
y i-• w PARITY 

t-2{ CHECK 8 GEN --- -- B - I 
DR 1 Ir j t-3{ 

T 
J.W. ·- --- -- s 

1 j TREG DBE S ME BITS ~ JW2 

2WDiBUFFER l TR REG rr--
u.c.w .. J 

J UPDATE 47 0 15 0 
'l ----- D 

I 

! f ~ PARITY r R 
CHECK S GEN '--' 

DATA * ---
PARITY .-J PAR ACCUM J 

6 STORE 

Figure 4-2-5. Disk File Interface 

0 
B 



7. Transfer Register (TR). A 16-bit register, used 
to buffer all data transfers to or from the DFC. 

8. Parity Check, Generate, Accumulate, and 
Store. Checks and generates parity on data trans-. 
ferred from or to the DFC. When data is sent to the 
DFC, a parity bit (from the MIU, via the DSB) is re­
ceived with each data word and is stored in the ac­
cumulator. The parity bit setting of the accumulator 
is updated with each 16-bit transfer to the DFC, and 
is checked against the priority of the last such trans­
fer. When data is received from the DFC, a parity 
bit is received with each data transfer and is stored 
in the accumulator. The parity bit setting is updated 
for each new i6-bit iransfer, and a iinai st:iiiug is 
sent to the MIU. via the DSB, for each new data 
word. The MIU then checks parity on the full 48-bit 
word (three 16-bit transfers per 48-bit word). 

During normal operation. the DFI section, accord­
ing to priority. reads the descriptors of its assigned 
channels in search of an active job to perform. A 
channel may be in any one of four basic phases of 
operation. The exact phase is determined by the 
FAZ field in the channel descriptor. The four basic 
operations are: 

Channel Initiate. 
Channel Designate. 
Data Service. 
Channel Termination. 

Upon completion of an operation. the DFI notifies 
the translator of the termination status and then 
awaits reinitiation. 

Channel and DSB Initiation 
Operation 

The DFI channel initiation operation begins with 
the receipt of a translator request: When the DFI is 
ready to service the request for a specified channel. 
the DFI acknowledges the request. The two job 
words are now received from the translatpr. 

The portions of the channel descriptor not in the 
descriptor register (DR) are written directly into the 
LMC from the job word data lines. The other por­
tions of job word I are loaded into the descriptor 
register. Also. the DFI Busy is enabled. 

Next. the first half of job word :? is loaded into 
word 3 of the LMD to form the first three COL 
characters. Then digits 07-Dl:? of job word :? are 
written into word 4 of the LMD. The JW:? digits are 
distributed over two LMD words to place the COL 
characters in separate bytes. This facilitates the sub­
sequent transfers of these characters to the DFC 
during the COL cycle. 

4-2-14 

Following the above, the DFI is marked not busy, 
and the channel descriptor is read from LMC into 
the DR. If errors are detected, a result descriptor 
load request occurs, the proper code is loaded to the 
RD, and the channel terminates. 

Otherwise, the DFI sends a unit control word 
(UCW) to the DSB, if the channel job is memory op­
eration, the channel is not already waiting for com­
pletion of DSB initialization, and the DSB is not 
busy with the other DFI. If the DSB is busy, the 
next time this initiating channel is serviced, the DSB 
request is attempted again. When the initiating chan-
__ , !_ ---!- --1--•"'."'..l •L.- TTr",17 !,.. ........... :- ...,.....,_._ ....... •\......, 
11~1 I:) 4l!;C1Ul ::~n;:U;\,...U,;.,u, LU\,.. \.I\,_, YY 1_, Q.l§Q.IU .:>"'lU. ILV LU'°" 

DSB. If the UCW is received by the DSB and if the 
memory operation is a read from disk (store to mem­
ory), the phase count is updated to allow the release 
for the memory operation which is expected from 
the DSB. 

If the memory operation is a write to disk (fetch 
from memory), the channel job waits until four 
words from memory are loaded into the DSB main 
memory. Because delays vary in length in accor­
dance with MIU/MCM access times, the channel 
must wait so that the data is present for transfer to 
the device. Meanwhile, the DFI is informed of the 
DSB release of the channel, allowing other channels 
to send data to the DSB, while this channel is wait­
ing. Once the four words for this channel are stored 
in the DSB main storage, the DSB signals the DFI 
which allows this channel to proceed to the next 
phase. 

Channel Designate Operation 

In the channel designate operation (COL cycle), a 
control word of 48 bits of information is sent to the 
addressed DFC channel. The overall channel desig­
nate sequence requires eight channel services, con­
sisting of six transfers of eight bits each, and two 
dummy COL cycles (service cycles four and five). 
These 48 information bits are contained in the sec­
ond request word (job word 2) stored in the LMD. 

The word byte pointer (WBP) field of the channel 
descriptor points to the location in the LMD of the 
information to be transferred to the DFC. A 16-:bit 
byte. of which only the eight most significant bits 
are valid, is loaded into the transfer (TR) and is then 
sent to the DFC. After six such transfers. and two 
dummy COL cycles in the middle of the six trans­
fers. a start channel bus signal is sent to the DFC 
to indicate the end of initiation phase. and the phase 
field of the channel descriptor is then updated to re­
flect this. 

If the job word indicates an output operation 
(Memory Read). two fetches of two words each are 



requested from memory via the DSB during channel 
designate operation. The first of these two word 
fetches is stored in position 00 and 01 of the LMD. 
The second two word fetch is stored in locations IO 
and 11 of the LMD. 

Data Service Operation 

The data service consists of transferring a 16-bit 
byte of information to or from the DFC. If the DFC 
corresponding to the active channel has raised its ac­
cess request level (ARL), the DFI responds by rais­
ing its access granted level (AGL). The DFI will 
now follow this AGL by granting a one microsecond 
service cycle. A single 16-bit data byte is transferred 
for each data service operation. 

If the disk file operation is an input operation, the 
data byte is accepted from the DFC into the transfer 
register (LMD). If the disk file transfer is an output 
operation, the data byte is read from the LMD, 
placed in the transfer register (TR), and applied to 
the data bus to the DFC. 

The LMD location of the 16-bit data byte to be 
transferred is determined by the word byte pointer 
(WBP) field of the channel descriptor. With each 
data byte transfer, WBP is upcounted by one. 

After two words are transferred, a memory re­
quest is again made via the DSB. The current ad­
dress (CA) is sent, along with certain control bits, to 
the DSB. If the request is for a disk read, two words 
are loaded into the two-word buffer (2WB) from the 
LMD. If the job request is for a disk write, two 
words from the DSB are loaded into the 2WB and 
then into the LMD. 

With each DSB request, the current memory ad­
dress (CA) is counted up and compared to the final 
memory address (FA). If they are equal, the data 
service phase is completed and the phase field is in­
cremented by one to advance the channel operation 
for normal termination. The channel descriptor is 
then restored into the LMC and the next channel is 
serviced. 

Channel Termination Operations 

The channel termination operation consists of two 
parts: the end of data service and the channel termi­
nation interface with the translator. 

After data service has been terminated, the DFI 
sends the terminating channel number to the transla­
tor and then awaits the receipt of a read-result-word­
request (RDR) from the translator. When this re-

quest is received at the DFI, the result descriptor is 
sent to the translator and the channel termination 
phase is completed. 

The data service operation ends when a normal 
completion of a data transfer has occurred, or by the 
detection of an error by either the DFI or the DFC. 
If the DFI detects the end of data (by CA = FA) or 
an error, it sends an IOC signal to the DFC. When 
the DFC detects either an IOC or an error, it sends 
a result descriptor to the DFI. This result in stored 
in the FA field of the channel descriptor. 

SCAN BUS INTERFACE 

The SCI (figure 4-2-6) contains the storage and 
controls required to provide a scan bus for commu­
nication with four DCPs. 

The translator initiates scan operations by trans­
mitting a scan control word to the SCI. If a scan-out 
is required, the translator also transmits the scan-out 
information to the SCI. Upon completion of the scan 
operation by the SCI, the translator is notified. In 
the case of a scan-in operation, the scan-in informa­
tion is loaded into the translator B register. If an er­
ror has been detected by the SCI, error information 
is loaded into the translator F register. 

There are two error conditions which can be re­
ported to the translator by the SCI: 

1. Not Ready. If the DCP addressed by the scan 
bus does not respond with a ready signal within 3 
usec, a not ready error is reported. 

2. Module Error. If the DCP addressed by the 
scan bus detects an error on a scan-out or scan-in 
operation, an error signal is transmitted to the SCI. 
The SCI then reports a scan error to the translator. 

During scan-out operations (only scan-out orders 
are accepted by a DCP), the scan information lines 
constitute the scan-out word. The SCI provides a 
maximum of four DCP memory interfaces (see figure 
4-2-7) in a DCI unit. 

The DCI unit contains all storage capability and 
controls required to interface with the DCP memory 
buses. Memory transfer operations performed are: 

I. Fetch (one word) 
2. Store with flashback (one word) 
3. Protected store with flashback (one word). 

If an interface is not used by a DCP, it may be 
used to accommodate a suitable device. 

All errors detected by the DCI or MIU for a DCI 
memory request go to the DCP which initiated the 
memory request. 

4-2-15 



DATA FROM TRANSLATOR 

1 l 
DATA BUFFER 

L J l 51147 00 

...._DATA TO TRANSLATOR -- ---

ADDRESS FROM TRANSLATOR 

INFORMATION BUS 

~ ~ 

ADDRESS 
ADDRESS BUFFER 

-... SCAN REQUEST (SREQ) 
19 00 

__.. 
DR/RX 

SCAN WRITE (SWRC) 

PARITY/ERROR (SAPL/STEX) 
__.. --..., 

....._ UNIT READY (SRDY) 

~ ACCESS OBTAINED (SAOX) 

i--

TRANS{~ 
TIMING 

CONTROL, 
ONTROLS .+--- PARITY .._ 

GENERATION r--
c 

ET1252 

Figure 4-2-6. Scan Bus Interface 

4-2-16 

__.. --
_. 

__.. --
.... 

--
SCAN 
TO 
DCP 



DATA FROM Ml U FD(00-51) • I GN .--

1 R INFORMATION BUS ' E 

DATA BUFFER c _ ADD RE SS 
E --

51. • 00 I REQUEST MREQ v 

1 MD(00-51) ·IBN E 
WRITE MWRC R -

DCP 

s 
-- DATA TO Ml U DP(00-51); IGN WRITE PROTECT MPRC 

MEMORY 

A 
-- ADDRESS TO Ml U MA(00-19) ·I GN 

~ 
N ~ARI TY /ERROR MAPL/MTE X 

' --- T D .... 
CONTROLS READY MRDY 
WITH D -. 

CONTROLS { 
Tl Ml NG AND DCP R 

MlilBX I ACCESS BEGUN 
CONTROL AND v WITH 
ADDRESS PARITY E ACCESS OBTAINED MlilAX -R .... 

MIU -- CHECK s 

I NTE RF ACE 

4 MAX. 

L--

41151 

Figure 4-2· 7. Data Communications Interface Unit 

4-2- l 7 





SECTION 3 

PERIPHERAL AND CONTROL WORD FORMATS 

INPUT/OUTPUT CONTROL WORD (IOCW) 

LINK MINH 

47 43 

0 ASCJI TRA 

0 
49 

42 

SA FML T 
45 41 c 

0 1/0 MP 
48 44 4 

JOB WORD I (JBW I) TO DSU 

LINK MINH 
c 

47 ~ T ~ 35 31 27 23 19 l_5_ II 7 3 

B/ F Asen TRA E F I ~ A L s T A R T 
~ 46 42 ..),L 3(3 

" T SA FML T c 49 ~ 41 37 

T 1/0 MP 
L 48 4_1 ~ 36 

FIELD IOCW JBW1 

BITS BITS 

LINK 47:1 47:1 

ASCII 46:1 46:1 

SA 45:1 45:1 

1/0 44:1 44:1 

MINH 43:1 43:1 

TRA 42:1 42:1 

FML 41:1 41:1 

MP 40:1 40:1 

B/F 39:1 50:1 

TEST 38:1 

TCTL 37:2 49:2 

CT EXT 39:3 

FINAL 36:17 
ADDRESS 

START 19:20 
ADDRESS 

34 30 26 22 18 14 10 6 2 

A D D f ~ E s s A D D R E s s 
33 29 25 21 17 13 9 5 I 

32 28 24 20 16 12 8 4 0 

DESCRIPTION 

SIDELINK. When set, indicates a sidelinked 1/0 is to be performed. Info 
about sidelink operation is in second word of IOCB. 

ASCII. 

SOFTWARE ATTENTION. When set, causes ATT bit in result descriptor to 
be set. 

INPUT/OUTPUT. 1 = READ; 0 = WRITE 

MEMORY INHIBIT. 

TRANSLATE. Settings of ASCII, 1/0, TRA and FML bits, taken together, 
determine what data translation, if any, is to be done. 

FRAME LENGTH. 1 = 8 bits; 0 = 6 bits. 

MEMORY PROTECT. 

BACKWARD/FORWARD. 1 = BKWD; 0 =FWD. 

TEST. 

TAG CONTROL. 
0 = Store SP tags (O); 1 = Store program tags (3); 
2 = Tag field transfer; 3 = Store DP tags (2). 

COUNT EXTENSION. Number of characters in fractional word part of data 
buffer. 

Memory address of last full word of buffer to be accessed by IOM, low 17 bits 
only. 

Memory address of first full word of buffer to be referenced; for a backward 
tape operation, this is not the buffer base address. 

4-3-1 



Job word I is built in the IOM and can be read from the B register (Panel l, Row 3) in T-time 25 of start 
mode. Job word 2 (JBW2) passed to the data service unit is (in all cases) the channel designate level (COL) 
word from the IOCB. The following are COL word formats for the various peripheral types: 

STANDARD RESULT DESCRIPTOR 

4-3-2 

T5o 
A 
iG49 

48 

Field BITS 
TAG 50:3 

'.\I EMORY 47:20 
ADDRESS 

CHAR 27:3 
COUNT 

UNIT 24:8 
NO 

'.\fE3,ME2, 16:1 

MEl 6:1 
5:1 

cC DVE CTE 
47 43 39 35 31 u..O 23 19 15 11 

~~ MO R~4 Au UN IT NBE IFE 
46 38 30 ~ 22 18 14 10 

AD DR] SS ~T N o. BSE 
45 41 37 33 29 2'5 21 17 13 9 

ME3 CME CPE 
44 40 36 32 28 24 20 16 12 8 

DESCRIPTION 
0 = Normal; 4 = IOM unable to do sidelinked job. 

OPE NTR 
7 3 

ME2 BSY 
6 2 

ME1 ATT 
5 1 

OSE EXC 
4 0 

Final level 1 memory address (LlA). Hard load RD contains channel used in (32:5). 

No. of last memory word characters validly executed by IOM. 

Unit No. of device on which job was executed. (Set only for mapped I/0). 

MEMORY RELATED ERRORS. Listed in order of decreasing priority. 

ME3 ME2 MEl IOM• 

0 1 1 PER STORE DISPARITY. 
0 1 0 RAE LlA ADDRESS-RESIDUE ERROR. 
1 1 1 FlR MCM-DETECTED ERROR, FAIL 1 (UNCORRECTABLE). 
1 0 1 NOA NO ACCESS TO MEMORY. 
1 1 0 PER FETCH DISPARITY. 
1 0 0 RSl :\IEMORY-PROTECT ERROR. 
0 0 1 F2R MCM-DETECTED ERROR, FAIL 2 (CORRECTABLE). 

*Panel Light indication in Error Control Register (Panel 2, Row 7). 
\;nit or 15:9 Depends on value of bit 4 (DSE). 
DSU error 
bits 

DSE 4:1 

NTR 3:1 

BSY 2:1 

ATl' 1:1 

EXC 0:1 

0 = unit related errors (in bits 15:9); see below. 
1 = DSt: error (in bits 15:9), as follows: 

DYE 15:1 DE\"ICE-DETECTED ERROR. 
NBE 14:1 NOT Bt:SY ERROR. 
CME 12:1 COMBINATION ERROR. 
CTE 11:1 COCNTER ERROR. 
IFE 10:1 INTERFACE ERROR. 
BSE 9:1 BUS PARITY ERROR. 
CPE 8:1 CONTROL PARITY ERROR. 
DPE 7:1 DATA PARITY ERROR (Always set if BSE=l). 

DATA SERVICE ERROR. 
1 = DSt: error (in bits 15:9); 
0 = t:nit related error (in bits 15:9). 

NOT READY. 
CHANNEL BUSY ON INITIATE. 

SOFTWARE ATl'ENTION. 

EXCEPTION. 



Table 4-3-1. MOD U IOM Data Service Butfer Errors 

DSE DBE ME3 ME2 MEI 

0 0 0 Illegal data buffer 
0 0 No access to data buffer 

0 Control array Parity 

0 0 Address residue error 

l 0 l Request queue parity 

1 0 No response by DSB 

Unit Related Errors 

The device RD for any type of unit is returned to the IOM as three hexadecimal digits from the control. 
For a PCI operation, the device RD is in the PCI byte buffer (Panel I, Row 14), as shown below, when the 
operation completes. 

I I I I I I I I I I I I 

N N N N N N N N N N N N 
u u u u 

A A A A B B B B c c c c 
8 4 2 I 8 4 2 I 8 4 2 I 

15 0 
U =UNIT NO. FOR AN EXCHANGE DEVICE, ELSE UNUSED 

The IN AS bit should always be on, signifying operation complete. A unit error is signified by IN A4= I, and 
the remaining bits in the device RD are used to make up the RD error field reported to the MCP as shown: 

I I I I I I I I I D I B 
M 

N N N N N N N N N 
M M s 

N 
s A E 

E E E E y 
T x 

3 c c c c B B B B A 2 I = A = T c 
I 2 4 8 I 2 4 8 I 0 2 0 

16 0 

For each PCI channel, the last RD returned to the MCP may be displayed in the RD register (Panel I, Row 
34) of the IOM via local memory operations. Similarly, the last RD from each DFI channel may be displayed 
(in slightly modified form) in the DFI RD register (Panel I, Row IO). 

4-3-3. 



Result Descriptors Common To All Peripheral Devices 

Internal DSU 

0091 

0111 

0191 

0291 

0391 

0411 

0491 

0511 

0591 

0691 

0791 

0811 

0891 

0911 

0991 

0A91 

OB91 

OCll 

OC91 

0011 

OE91 

OF91 

1011 

1091 

1111 

1191 

1291 

1391 

1411 

1491 

1511 

0003 ATT (Software Attention) 
0005 BSY 
0009 NOT READY 
OOOD WRONG LENGTH DATA TRANSFER 

(Generated by MCP) 
0015 BUS PARITY (Reported by MCP for 

hardware RD=0291) 
0021 MEMORY FAIL 2 (Correctable) 
0041 RESIDUE ERROR 
0061 STORE DISPARITY 
0291 BUS PARITY (Changed to 0015 by MCP) 
10001 MEMORY PROTECT ERROR 
!!!!!2! NO ACCESS '!'O .ME.MORY 
10041 FETCH DISPARITY 
10061 MEMORY FAIL 1 (Uncorrectable) 

Any result descriptor may also have ATT (bit 1) set. 

Error Result Descriptors* 

OPE 1591 CME, IFE, CPE, OPE 

CPE 1691 CME, IFE, BSE 

CPE,OPE 1791 CME, IFE, BSE, CPE 

BSE 1811 CME,CTE 

BSE,CPE 1891 CME, CTE, OPE 

IFE 1911 CME, CTE, CPE 

IFE,OPE 1991 CME, CTE, CPE, DPE 

IFE,CPE 1A91 CME, CTE, BSE 

IFE, CPE, OPE 1B91 CME, CTE, BSE, CPE 

IFE, BSE lCll CME, CTE, IFE 

IFE, BSE, CPE 1C91 CME, CTE, IFE, OPE 

CTE 1011 CME, CTE, IFE, CPE 

CTE,OPE 1091 CME, CTE, IFE, CPE, OPE 

CTE,CPE 1E91 CME, CTE, IFE, BSE 

CTE,CPE,OPE 1F91 CME, CTE, IFE, BSE, CPE 

CTE, BSE 4011 NBE 

CTE, BSE, CPE 4091 NBE,OPE 

CTE, lFE 4111 NBE,CPE 

CTE, IFE, OPE 4191 NBE,CPE,OPE 

CTE, IFE, CPE 4811 NBE,CTE 

CTE, IFE, BSE 4891 NBE,CTE,OPE 

CTE, IFE, BSE, CPE 4911 NBE,CTE,CPE 

CME 4991 NBE, CTE, CPE, OPE 

CME, OPE 5011 NBE, CME 

CME, CPE 5091 NBE, CME, OPE 

CME, CPE, OPE 5111 NBE. CME, CPE 

CME, BSE 5191 NBE, CME, CPE, OPE 

CME, BSE, CPE 5811 NBE, CME, CTE 

CME, JFE 5891 NBE, CME, CTE, OPE 

CME, IF L, OPE 5911 NH, CME, CTE, CPE 

CME, IFE, CPE 5991 NBE, CME, en:, CPE, OPE 

• These DSU error result descriptors may end in 3 , indicating software attention. Result descriptors in 
the form Oxxx may also be 8xxx and those in the form lxxx may also be 9xxx , indicating DVE. 

4.34 



IOM PERIPHERAL RESULT DESCRIPTOR 

p 
A TAGS CLIA 
R 

5 5 4 4 4 -
1 0 9 8 7 

ET1268 

MIN TERM GROUPING 

c c c M 
E E E UNIT UNIT 

DESIGNATE E ERROR 
2 1 0 1 3 FIELD 

2 2 2 2 2 2 2 212 1 1 1 1 1 1 1 1 1 1 
8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 

I I I I I I I I I I 
N N N N N N N N N N 
D D D D c c c c B B 
8 4 2 1 1 2 4 8 1 2 

1 1 1 1 1 1 0 0 0 
3 4 5 6 2 0 9 8 7 

RESULT DESCRIPTOR LOCATIONS 
SCAN RID@ HA+l (BIT 42: l=PAR ERR; BIT 43: l=NOT ROY) 

COLD START or FAIL in FM RD@ HA+4 

SYNC 1/0 R/D @ HA+5 

START 1/0@ IOCB+5 

RESULT DESCRIPTOR LOCATIONS 

0 0 
9 8 

I I 
N N 
B B 
4 8 

0 0 
6 5 

SCAN RID@ HA+l (BIT 42:l=PAR ERR; BIT 43:l=NOT RDY) 
COLD START or FAIL in FM-RD@ HA+4 
SYNC 1/0 RID @ HA+5 
START 1/0 @ IOCB+5 

CARD READER 

STANDARD ERROR FIELD 

" 
M M D N B A E 
E E s A z T x 
2 1 E T y T 87800-IOM-R/D 

0 0 0 0 0 0 0 0 
7 6 5 4 3 2 1 0 

L= 0 

I 
N 

I I I 
PCI :0~~ER 87800 N N N 

A A A A 
1 

0 

2 4 8 PC PERIPHERAL 
CONTROL 

0 0 0 CABINET 1/0 
4 3 - 2 1 CONTROLLER 

DISK PACK 

The B 7110 card reader control can be used with either B 9111 (800 cpm) or B 9112 (1400 cpm) card readers. 
The input hopper and the output stacker have a capacity of 2400 cards each. The card readers accept alpha, 
binary, or EBCDIC card codes. The card reader converts alpha card code to BCL, which is then converted 
into internal BCL or EBCDIC by translators in the 1/0 processor. EBCDIC card code is converted to internal 
EBCDIC by the B 7110 card reader control. When binary punched cards are read, no translation is made. 

The card readers can read 51-, 60-, or 80-column punched cards. Optional features include the ability to 
read 40-column treasury checks and round holes in postal money orders. Cards of varying thickness are ac­
ceptable; however, card thickness and length must be consistent during any one run. 

The B 7110-5 card reader control can be used with B 9115 (300 cpm), B 9116 (600 cpm), or B 9117 (800 cpm) 
card readers. The input hopper has a capacity of 1000 cards. This' series of card readers do no internal code 
manipulation; instead, all 12 rows are sent to the B 7110-5 control. The control then converts alpha code to 
BCL; EBCDIC is converted to internal EBCDIC; and binary cards are read without translation. 

Unlike the B 9111/12 units, the B 9115/16/17 card readers can only read rectangular holes. These card read­
ers may optionally be set up to read 51-column cards with the installation of a B 9915 kit. These series are 
desk top card readers, but have a stand optionally available (B 9991-2) on which to set the card reader. 

COL Word Format 

47 43 3~ ~ 31 2'7 23. l~F l5 ! \ ~ ti 3: 
0 OP 

~ ~ _ie _p UI 
: 

50 46 42 38 18 14 . _j a 
0 co PE41 3j 49 45 37 29 25 2l 17' 13 9 a 1 
0 

48 44 40 36 32 28 _M 20 16 12 _I: 4 _Q_ 
41017 

4.3.5 



Field 

OP 

20 

21 

22 

99 

I= ignored 

IOCW Information 
Operation 

BCL to Int. BCL 

BCL to ASCII 

BCL to EBCDIC 

Binary (60 bit to 6-bit) 

EBCDIC to EBCDIC 
EBCDIC to ASCH 

VAil 

1111 
1111 
1111 
1111 

Result Descriptor - Unit Error Field 

Operations 

BCL (OP 20) 

ToMCP 

0081 

0101 

0281 

0381 

0401 

0881 

0889 

* JA Control Only 

From Device 

DOO 

C80 

D40 

C80 

D40 

DlO 

FlO 

46 

0 

1 

0 

0 

0 

Operation 

ReadBCL 

Read Binary 

Read EBCDIC 

Test 

IOCW Bits CDL OP Code 
44 42 41 

0 
0 

1 

0 0 

0 1 
0 

Error Type 

Memory-Access Error 

Read Check 

Validity Check 

20 
20 

20 

21 

22 

22 

Read Check and Validity Check 

Control Card (generated by IOM) 

Bus Parity Error 

Bus Parity Error in Initiate 
Phase• 

Read one card from the card reader. The operation is terminated by reading the specified number of words, 
or by receiving 80 characters from the reader. The card reader or its control converts BCL card code to BCL 
code. BCL code is converted to BCL internal control code. ASCII. or EBCDIC by translators in the IOM. 

Binary (OP 21) 

Read one card from the card reader. The operation is terminated by reading the specified number of words, 
or by receiving 80 columns of information from the reader. The contents of each card column are divided into 
two six~bit fields. The upper six bits are stored in memory followed by the lower six bits. There is no code 
translation or invalid code detection. Tag field transfers are not compatible with this operator and must not 
be specified. 

4-3-6 



EBCDIC (OP 22) 

Read one card from the card reader. The operation is terminated by reading the specified number of words, 
or by receiving 80 characters from the reader. The card reader control converts EBCDIC card code to 
EBCDIC. EBCDIC is stored as received, or is translated to ASCII by the IOM. 

Test (OP 99) 

Test the status of the unit and return a result descriptor. 

CARD PUNCH 

The B 7212 card punch control is used with the B 9213 "300 CPM Punch" which can punch either binary, 
alpha, or EBCDIC code at a rate of 300 cards per minute. Pre-punched cards may be used, but previously 
punched columns cannot be repunched. The card punch has a 1000-card capacity input hopper, and three out­
put slackers (primary, auxiliary, and error) which have a capacity of 1200 cards each. Stacker selection is ac­
complished programmatically. 

COL Word Format 

47 43 ii3J ~ 31 27 23 19 15 11 7 3 

0 OP t~ !tj !Q 50 46 42 ~ 26 22 18 14 6 2 
0 CR DE K 

49 41 .E_37 ~ 29 25 21 1.7 13 9 5 1 
0 

~ 
R 

~ 48 44 36 28 24 20 16 12 8 4 ""- 0 
41014 

Field 
OP VAR ADDR Operation 

23 Siii Punch BCL 

24 Siil Punch 

Binary 

25 Siii Punch 

EBCDIC 

99 IIII Test 

S = stacker; 0 = normal, 1 = auxiliary, I = ignored 

IOCW Information 

Operation IOCW Bits CDLOP 
46 42 41 Code 

BCL from Int. BCL 0 0 23 
BCL from ASCII 1 0 23 
BCL from EBCDIC 0 1 1 23 
Binary (6-bit from 6-bit) 0 0 0 24 

EBCDIC from EBCDIC 0 0 25 
EBCDIC from ASCII 0 25 

4-3-7 



Result Descriptor - Unit Error Field 

To MCP From Device 

0081 

0281 
0881 

DOO 

D40 

DlO 

Error Type 

Punch Check or Memory Access 

Error 
Parity Error 

Bus Parity Error 

A test-op returns the punch type in bit 10 of the software RD: 1 = Model II & IV 

Operations 

BCL (OP 23) 

Punch one card on the card punch. The operation is terminated by punching the specified number of words 
or punching 80 columns. The descriptor word count cannot exceed IO words for punch BCL. BCL internal 
code, ASCII, or EBCDIC is converted to BCL code by translators in the IOM. The control can include one 
and only one of the following translators which are used to convert BCL code to BCL card c~de, ICT card 
code, or BULL card code: 

1. BCL-BCL Card Code Translator. 
2. BCL-ICT Card Code Translator. 
3. BCL-BULL Card Code Translator. 

Binary (OP 24) 

Punch one card on the card punch. The operation is terminated by punching the specified number of words 
or by punching 80 columns. The descriptor word count cannot exceed 20 words for punch binary. A total 
of 160 six-bit characters of memory are required to punch 80 columns. The contents of each card column are 
divided into two six-bit characters. The upper six bits are punched from the first six-bit character received 
and the lower six bits from the next six-bit character. Tag field transfers are compatible with this operator 
and must not be specified. 

Card Punch EBCDIC (OP 25) 

Punch one card on the card punch. The operation is terminated by punching the specified number of words 
or by punching 80 columns. The descriptor word count cannot exceed 13 words for punch EBCDIC. ASCII 
is translated to EBCDIC by translators in the IOM. The card punch control converts EBCDIC eight-bit code 
to EBCDIC card code. 

Test (OP 99) 

Test the status of the unit and return a result descriptor. 

Punch Check Error 

When punch check is detected by card punch control, the punching of that card is completed and is sent 
to the error stacker. The punch check bit in the result descriptor is set. 

The punch check bit may be present in the result descriptor when addi;essing a non-present punch, or one 
that is powered down. ' ·. 

4-3-8 



TRAIN PRINTERS 

The B 9247 train printers are train-type printers which operate with a buffered 1/0 control device. The char­
acter train module is operator changeable and can be exchanged with a module of a different character set. 
In the following information there is a list of the character sets available as defined by software on the system. 
Identification of the character set is performed automatically by the printer; no operator selection is required. 

When the printer is in an idle status exceeding one minute, the character train module is automatically shut 
down, extending the life of the module. Upon receipt of a print instruction the module is automatically re­
started. 

To assure reliability of the printed output, a positive column dropout detection feature is provided. If a print 
position fails to print, the printer stops and signals for operator inspection. An override function switch on 
the operator control panel allows the operator to disable the feature. 

The B 7243-1 train printer control is used only for the B 9247-13 (750 LPM) train printer; the B 7247-4 train 
printer control is for the B 9247-14 (1100 LPM) train printer; and the B 7247-5 train printer control is interfaced 
to a B 9247-15 (1500 LPM) train printer. The speeds listed are rated with a 48 character set and with the printer 
operating at six lines per inch, single spacing. The B 9247 printers are all 132 print positions. 

COL Word Format 

Field 

IOCW Information 

Operation 

PRINT 

Space or Skip 

Load TIB 

47 43 S39 U3~ s 31 C21 23 

050 
OP p 

N3j 
K H 

46 42 A38 I 3_Q A26 22 

049 
co DE c 

I 3j 
p N 

45 41 l.E;i7 29 N.25 21 

048 T 32 
T ~ 

44 40 36 028 L24 20 

41032 

OP VAR ADDR 

10 SUNN 

11 SUNN 

29 QQCC 

99 iuii 

NN = Skip to channel ( 00-11); two decimal digits. 

S = Space (, 1, 2); ignored if NN =f 0. 

19 

18 

17 

16 

15 11 

14 !.QJ 

13 9 

12 8 

Operation 

WRITE 

SKIP 

7 3 

6 2 

5 1 

4 0 

Load Train Image Buffer 

Test 

QQ = ID of train buffer being loaded in low 6 bits; high 2 bits must be zero. 

(See table 4.3.2 for list of train ID No's.) 

CC= 8 bit buffer image designated to be printed for any invalid character. 

U = Unit Designate (0 or 1) 

i =ignored 

IOCW Bits CDL 
46 43 42 41 39 OP Code 

A 0 A A 0 10 
x x x 0 11 
A 0 A A 29 

A= Any IOM-allowed output translation; if 6 bit characters result, the !OM pads to 8 bits with leading zeroes. Train 
printer operations always use all 8 bits. 

4-3-9 



Result Descriptor - Unit Error Field 

To MCP From Device 

0181 D80 

0281 D40 

0481 D20 

0881 DlO 

0889 FlO 

1001 cos 
4001 C02 

8001 COi 

Error Type 

Print Check Internal Control 

Memory Parity Check 

Print Check - Synchronization 

Bus Parity Error during Data Transfer 

Bus Parity Error in Initiate Phase 

End-of-Page 

Train Image Buffer not leaded. 

Incorrect Train on Printer 

A Test OP returns the following information in the RD to the MCP: 

Operation 

Print (OP 10) 

bit 8 on "'Train Image Buffer Not Loaded. 

Bit 9 on = 1000 LPM adapter installed. 

bits 10-15 =Train ID (15 i.s LSB) 

Print one line on the printer. The length of the line is determined by the number of printer columns (132) 
or by printing the specified number of words. Spacing or skipping takes place after the printing. 

Space (OP 11) 

Space. as specified by COL word bits 37:2 (bits 31:8 must equal zero), moves paper either 00 (zero), 01 
(one). or 10 (two) lines per operation without any printing occurring. 

Skip (OP 11) 

Skip. as specified by COL word bits 31 :8. slews paper to channel 01 to 12 on the format tape (channel 12 
is reserved for end-of-page. but may be skipped to) without any printing occurring. 

Load Train Image Buffer (OP 29) 

This command is used to load the train image buffer (TIB) with the character set that must be on the train 
module. If they are not alike. an error occurs and the printer is declared not ready. In addition to loading 
the TIB. this command also loads bits 39:8 (QQ) of the COL word into the train identification register, and 
bits 31 :8 of the COL word into the invalid character code register which is the character used whenever an 
invalid character is encountered in the print field data. 

Test (OP 99) 

This 1/0 command instructs the control to interrogate the printer and control status and return the following 
information: 

I. Readiness status of both control and printer. 
2. Type of printer connected (4001750 LPM or 1000/1500 LPM). 
3. Load status of the train image buffer. 
4. Identification of train module mounted on the printer. 

4-3-10 



Table 4-3-2. Train ID Numbers 

IDNO Train Table Names 

0 NOT SPECIFIED 

EBCDIC18 

2 FORTRAN48 

3 B300B500 

4 EBCDIC48 

5 EBCDIC72 

6 UK3500 

7 UK6500 

8 LATINPORTUGAL 

9 LATINSPAIN3 

10 SWEDENFINLAND3 

11 DENMARK 

12 BCL64 

13 TIJRKEY 

14 EBCDIC16 

15 ANSCII72 

16 EBCDIC96 

17 KATAKANA 

18 ALPHAEBCDIC 

19 NUMERICEBCDIC 

20 RPG48 

21 OCRANUMERIC 

22 OCRBNUMERIC 

23 FRANCEBELGIUM 

24 UK 

25 GERMANY AUSTRIA 

26 ITALY 

27 SWEDENFINLAND2 

28 LA TINSPAIN2 

29 ANSCII64A 

30 BRAZIL 

31 DENMARKNORWAY 

32 YUGOSLAVIA 

33 EBCDIC64A 

34 ANSCil96A 

35 EBCDIC64B 

36 ANSCII64B 

37 ANSCII96B 

4-3-11 



MAGNETIC TAPE SUBSYSTEM 

The B 9495 magnetic tape subsystem consists of a Master Electronics Control Unit (MEC) and from one 
to sixteen tape drive units. The MEC consists of a main cabinet and, if required, an auxiliary cabinet. The 
MEC contains from one to four input/output channels and from one to eight exchanges (each exchange capable 
of operating two magnetic tape drive units). The subsystem is capable of operating in the NRZ or phase en­
coded mode of recording or a combination of both depending upon the options installed in the MEC and tape 
units. 

The tape units feature automatic loading of tape when using a 10.5 inch reel of tape with or without a car­
tridge band. Semi-automatic loading is provided by the tape unit when using incomplete reels or smaller reels 
of tape. Semi-automatic loading requires the operator to set a switch in the tape unit and place the leading 
edge of tape in an area beyond the first air threading guide prior to pressing the load button. 

The subsystem can be from one to four controls, and from one to sixteen tape units, depending upon cus­
tomer requirements. Four controls give the system the ability to do tape operations on four drives at the same 
time. The ·recording mode is phase encoded (PE) or a combination of PE and NRZ. The NRZ capabilities 
are options installed in the MEC and tape units as required by the customer. 

COL Word Format 

47 43 F39 u~ 31 27 23 ~ 15 11 '7 3 

050 
0 p 42 

0 
N~ M~ SC 

~ 46 IR3a 26 22 14 10 6 2 

0 49 
co DE M 

I~ ~ 45 41 11137 25 21 17 13 9 5 I 

048 44 ~ T36 T~ ~ 24 20 ~ 12 8 4 0 
41035 

OP VAR ADDR Operation 

01 iUVi Rewind 

02 DUVC Read Forward 

03 DUVC Read Backward 

04 DU Vi Erase 

06 DUVi Write 

08 DUNN Space Forward 

09 DUNN Space Backward 
99 iUii Test 

i =Ignored 

U = Unit Designate (LSD) 

NN =No. of Records (2 decimal digits; 00 spaces 100 records) 

C = CRC Correction, if bit 27 is on (9 track NRZ only); track in error is in [26:3). 

V4 =(Read/Write)= Special BCL translation in PC if bit 30 is on (1 track EVEN parity only). 

V2, Vl (Read)= Maintenance variants if [29:2) + 0 (ignored for PE tape). 

4-3-12 

V2 (Write)= Write tapemark if bit 29 is on. 

VS (Read) = Do not store information if bit 31 is on. 

Vl (Rewind) = t:nload tape if bit 2S is on C6A control only). 

VS (Erase)= Backward pseudo-erase if bit 31 is on. 

D= Density and Parity 

densitr • soo 556~ -paritr {EVES@ 0 2 

ODD 3 

200 !!Q.Q! 1.. 
4 6 s 
5 7 9 

~ = 7 track only 

* = 9 track PE only 

~ = Unit selected density 



IOCW Information 

Operation 

Read Binary (6-bit to 6-bit) 

Read BCL into Int. BCL 

Read BCL into EBCDIC 

Read BCL into ASCII 
7 track Write Binary (6-bit to 6-bit) 

Write BCL from Int. BCL 

Write BCL from EBCDIC 

Write BCL from ASCII 

Erase 

IOCW Information 

9 track 

Operation 

Read Binary (8-bit to 8-bit) 

Read EBCDIC into ASCII 

Read ASCII into EBCDIC 

Write Binary {8-bit to 8-bit) 

Write EBCDIC from ASCII 

Write ASCII from EBCDIC 

Erase 

{
Rewind 

Both Space 

Write tapemark 

x =not used 

Result Descriptor - Unit Error Field 

ToMCP From Device 

0000 800 

C20 
0801 

0401 
0081 DOO 

0101 C80 

0109 E80 

0201 C40 

0481 D20 

0481 D20 

0489 F20 

0881 DlO 

0889 FlO 

OCOl 

OC81 D30 

IOCW Bits 

46 44 43 42 41 39 

0 0 0 0 0/1 
0 0 0 0/1 

0 0 1 0/1 
1 0 0 0/1 

0 0 0 0 0 x 
0 0 0 0 x 
0 0 0 1 x 

0 0 0 x 
x 0 x 0 0 

IOCW Bits 

46 44 43 42 41 39 

0 

0 

x 

x 
x 
x 

Error Type 

1 
1 

0 
0 
0 
0 

0 

0 

0 
0 
0 
0 
0 
0 

x 

0 
0 

0 
0 

x 

x 
x 
x 

1 
1 

x 
x 
x 

0/1 

0/1 

0/1 
x 
x 
x 
0 

1 
0/1 
x 

CDL 

Op Code 

02/03 

02/03 

02/03 

02/03 

06 

06 

06 

06 
04 

CDL 

OP Code 

02/03 

02/03 

02/03 
06 

06 

06 

04 

01 

08/09 

06 

Normal Termination by PC on Non-Read Operation 

Normal Termination by PC on Read Operation 
Long Block } may be subsequently generated' by lOM from final 

Short Block LlA address comparison with buffer length 

Memory-Access Error 

Beginning-of·Tape or End·of·Tape 

Not Ready During Operation"' 

Write Lockout or End·of·File 

Peripheral Interface Parity During Data Transfer* 

Read Memory Access Error"'"' 

Peripher!ll Interface Parity in Initiate Phase"' 

Bus Parity Error (System Interface Parity during Data Transfer"') 

System Interface Parity in Initiate Phase"' 

Tape Positioning uncertain during Retry"'"'"' 
Parity Error 

4.3.13 



ToMCP From Device 

OD81 D80 

OE81 D70 

2001 C04 

4009 E02 

8001 COi 

8101 C81 

YOO! (Y odd) COZ (Z~8) 

* Model 6A Control only 

** Model SA Control only 

Error Type 

.Parity Error and End-of-Tape 

Parity Error and End-of-File 

Non-Present Option (Incorrect Density) 

Not Ready, Rewinding 

Blank Tape Timeout 
Blank Tape Timeout and Beginning-of-Tape 

CRC Correction Requested (9 track NRZ only); track in error is 

in Z4, Z2 and Zl (LSB); in Y2, Y4 and Y8 (LSB) 

A test op returns the unit density in [ 11: 2) of the RD to the MCP as follows: 

0 = 800 BPI, 1 = 556 BPI, 2 = 200 BPI, 3 = 1600 BPI. 

Operations 

Rewind (OP 01) 

Rewind the designated tape unit. The control is released and a result descriptor returned after rewind is 
initiated. 

Read OP 02 (Forward) or OP 03 (Reverse) 

Read a record from the designated tape unit. The operation is terminated by detection of an interrecord gap. 
Information transfer is terminated after reading the specified number of words or by sensing an internal DSU 
error. 

Erase (OP 04) 

Erase in the forward direction on the designated tape unit. The operation is terminated by erasing the num­
ber of words specified. No memory cycles are used. 

Write (OP 06) 

Write a record on the designated tape unit. The operation is terminated by writing the specified number 
of words or a delimiter in the data stream. 

Write Tape Mark (OP 06) 

Write a tape mark record on the unit designated, when V 2. 

Space OP 08 (Forward): OP 09 (Reverse) 

Space l to 100 records as specified by the BCD value of NN of the COL word. If bits NN are all O's, 
space 100 records. 

Test (OP 99) 

Test the status of the designated unit and return a result descriptor. 

BCL Alpha Operation (7-Track Tape with Even Parity) 

When the six-bit frame size and even parity are selected. BCL internal code is converted to BCL code on 
write. and BCL code is converted to BCL internal code on read. The BCL .. ., .. code is written (OOll l l). 

4-3-14 



Exception Conditions 

End-of-tape does not terminate an operation. The end-of-tape bit is set in the result descriptor after the oper­
ation is completed. 

On read operations, when a vertical parity error is detected and the six-bit frame size is selected, a BCL 
"?" code is stored by the control in memory in place of the code in error. 

CRC Correction (9-Track, 800 BPI Only) 

COL bits V enables CRC correction. The three LSB's define the track to be corrected (0-7). The parity 
track cannot be corrected. 

DISK PACK DRIVE SUBSYSTEM 

The disk pack drive subsystems are high speed, modular, random information storage systems. A basic disk 
pack drive subsystem includes the disk pack drive controller, dual disk pack drive, and the interconnecting 
cables. The subsystem is interfaced to the system via a host transfer control. 

The controller acts upon 1/0 instructions from the IOM, powers the pack drives, and transfers information 
between the drives and the IOM. The controller performs the operation specified by the OP code (and variants) 
of the COL word, and, at the completion of the operation, generates a result descriptor which contains 
operation and/or error status information. 

The disk pack drive controller without an exchange allows one controller to be used with up to eight disk 
pack spindles (four dual drives) in a "one-by" configuration. The disk pack drive controller with an exchange 
configuration allows two controllers access to up to 16 disk pack spindles (eight dual drives) in a "two-by" 
configuration. This allows the 1/0 module to execute two simultaneous operations (two reads, two writes, or 
a read and a write). The above configurations are applicable to the B 7385 pack controller and to the B 7387 
disk pack controller/exchange. 

In addition, the B 7385 and the B 7387 pack controllers allow an option of dual access to the same controller 
for redundancy purposes in a "continuous processing" environment. 

COL Word General Format 

u SS FS vs ,J 151 47 43 39 3:5 31 27 23 II 7 3 
0 0 p N S4 F4 V4 DISJ< ~CK 

50 46 42 38 34 30 26 22 18 14 10 6 2 

0 COsfE I S2 F2 V2 ADDRESS 
49 45 41 37 33 29 25 21 17.J. I~ 9 5 I 

0 T SI Fl VI 
1J 12I 48 44 40 36 32 28 24 20 8 4 0 

ETl253 

Op Var Addr Operation 

50 USFV CCC CCC Write 
51 USFV cccccc Read 

56 USFV CCC CCC Initialize 
57 USFV CCC CCC Verify 
58 USFV cccccc Relocate 
99 USFV N/N Test 

4-3-15 



Some variables are common to all commands. Their functions are as follows: 

US - Ul. The hexadecimal value of the unit desired. 

Sl. A ONE state indicates an unconditional operation; that is, for any operation, the controller will do what­
ever head positioning is required to locate the sector desired, and then perform the operation requested, during 
which time the 1/0 channel waits. For a ZERO state, a conditional operation is indicated; that is, the controller 
checks the unit and, if the unit is presently seeking, sends back a unit seeking RID. If a seek is required, 
the controller issues a seek to the selected drive and returns a seek initiated RID. If a seek is not required, 
the command is done and, when completed, returns an appropriate RID. 

Fl. A ONE state is used to access a drive which had been previously placed in maintenance mode. Note 
that this variable applies only to the 206/207 drives interfaced with a B 93S7/Bx 3S7 controller. 

COL Word Format, Write (OP 50) 

Variables that apply to this command: 

SS. In a ZERO state, indicates a normal write; in a ONE state, indicates a controller controlware load. 

Write 

Data sent from the host system is written onto the disk pack starting at the designated "C"-Address. Partial­
sector writes result in a fill of nulls (null is equivalent to hex 00) in the remainder of the sector. Upon detection 
of any error, the operation is immediately terminated and the appropriate RID is returned to the host system. 

Load Host 

The load host operation is used to load operational and diagnostic controlware from the host system into 
the disk pack drive controller. 

COL Word Format, Read (OP 51) 

Variables that apply to this command are as follows: 

No variable. Read with retry and error correction enable. 

SS. Read with retry and error correction disabled. 

S4. Read absolute (refer to V4, V2, VI). 

S2. Read unit ID. 

F4. Subsystem poll (online only). 

VS. Read memory. 

V4 -VI. With S4 set, V4 -VI is the "C-Address" increment. 

Read 

Information is sent to the host system from the selected "C"-Address. A partial sector read results in the 
termination of data transfer, but controller release waits for completion of the total sector read. Error checking 
is performed on the total sector. , 

Upon detection of any read data error not related to erroneous data received from the disk pack, the 
operation is immediately terminated and the appropriate RID is returned to the host system. 

4-3-16 



If erroneous data is detected from the disk pack and retry/correction is enabled, the controller invokes the 
appropriate retry procedure using track offset and PLO earlynate, where applicable. If the error persists after 
retry, the controller: 1) corrects the data (if possible) using the sector data read from disk having the smallest 
magnitude data error; 2) logs the event; and 3) continues the read operation. If a data error is corrected by 
retry, then a data error retry RID is returned to the host, if no other errors occurred. If control ware correction 
is attempted on a data error, the data error correction RID is returned to the host, if correction is successful. 
If correction is unsuccessful, the data error RID is returned to the host when an HTClA interface is in use, 
and the data error correction RID (without successful recovery bit) is returned to the host when an HT-LCP 
interface is in use. If retry/correction is disabled, the data error RID is returned to the host. 

In the event of multiple data errors per read operation, the data error RID takes precedence over the data 
error correction RID, which takes place over data error retry RID. 

Error log data accumulated for one read operation is destroyed by the next operation .. The log information 
may be retrieved through the read memory command. 

Read Absolute 

The address field (two words), data field (50 or 90 words), and the error protection code syndrome (two 
words) of the specified sector are returned to the host. The sector is located by its actual expected position 
relative to the index mark. 

Read Unit ID 

A three-word (16-bit word) data field which indicates the controlware loaded and the type of drive selected, 
is returned to the host followed by an appropriate result descriptor indicating the condition of the selected 
unit. 

The format for the three words returned is as follows: 
1. Digits 0, 1, 2, and 3 are used to indicate the controlware release code. 
2. Digits 4 and 5 are reserved. 
3. Digits 6 and 7 are used to indicate the unit ID. The following is a list of applicable values for large sys-

tems applications: 
a. 30 = 225 Disk Pack Drive. 
b. 40 = 235 Disk Pack Drive. 
c. 6S = 206 (Sequential) Disk Pack Drive. 
d. 7S = 206 (Interlaced) Disk Pack Drive. 
e. AS = 207 (Sequential) Disk Pack Drive. 
f. BS = 207 (Interlaced) Disk Pack Drive. 

4. Digits S through 11 are reserved. 

Subsystem Poll 

When this CID is received the least four digits of the "C"-Address represent a 16-bit field designating what 
units are to be polled. Each bit set in this field represents a different unit, the most significant bit being unit 
15 and the least significant bit being unit 0. 

All units represented in the 16-bit field are checked to see if there are any in seek-ready or in an error state. 
If all the designated units -are busy or on-line and seeking, they are all checked again. This process continues 
until at least one of the designated units becomes seek-ready or goes into an error state. As soon as this hap­
pens, 4S bits of data are returned to the host; the first 16 represent the designated units that are seek-ready 
or are in an error state. The most significant bit of data represents unit 15 and the least significant bit (of 
the first 16) represents unit 0. After the data is returned to the host, the operation is terminated with an 
operation complete RID. 

NOTE 
A conditional cancel from the host is accepted by the controller until it is ready 
to send back the results of the checking. 

( 
.. ,'' 

4-3-17 



Read Memory 

The read memory command transfers the contents of the controller's buffer memory .to the host system. 
The 256 word buffer memory is divided into two logical areas: control memory (first 76 words) and data 
memory (next 180 words). The controlware listing for each set of controlware details the contents of all 256 
locations. Execution of this command releases the controller from the controller lock state. 

The significance of the first 23 words made available by the command are as follows: 

Bit Word Location Description 

0 f'./W Release Code 

1 Result descriptor tag from last operation 

2 Micro-program memory address if DPDC 

installation timeout or buffer memory parity 

error (Bx J8J/J84/J85). Processor, or 

J 

4 

s 
6 
7 

8 
9 

JO 

11 
12 
JJ 
14 

IS 

16 
17 
18 

19 
w 
21 
22 

DMC channel, buffer memory address 

for buffer memory parity error (B9387). 

Disk DDP Status 

Reserved for disk DDP diagnostic information 

Reserved for disk DDP diagnostic information 

Disk drive status 

Reserved for extended drive status 

Host DDP status 
Reserved 

Reserved 

Disk address 0 0 01 02 
Disk address CJ C4 CS C6 

Number of retries on above address 

Total number of retries on last command 

description 

Op code (HTC 1 A) 

US variants (HTClA) 

FV variants (HTCJA) 

Command descriptor 0 0 Cl C2 

Command descriptor CJ C4 CS C6 

Result descriptor (word 1) 

COL Word Format, Initialize (OP 56) 

Variables that apply to this command are as follows: 

V4. In a ZERO state. causes a full initialize: in a ONE state, causes a data only initialize. 

Initialize 

The controller writes sector addresses and gaps in all tracks of the cylinder specified by the "C"-Address. 
The controller also writes a predefined data pattern in the data field of each sector. The "C"-Address must 
point to the first sector of a cylinder. 

4-3-18 



Initialize Data Only 

The controller receives a one word pattern from the host and writes it to the data field of each addressable 
sector on the cylinder specified by the "C"-Address. The "C"-Address must point to the first sector of a 
cylinder. ' 

COL Word Format, Verify (OP 57) 

Variables that apply to this command are as follows: 

V8. In a ZERO state, enables EPC checking only; in a ONE state, enables data checking also. 

Verify 

The controller reads and checks for address errors and data field error protection code errors in all address­
able sectors on the designated cylinder. If the data compare variant bit is set (V8), the data field is also com­
pared against a predetermined pattern. The position of each sector is checked relative to the index mark. Dur­
ing verification, a relocated sector is verified in the same apparent manner as any other se.ctor. The "C" -
Address must point to the first sector of a cylinder. 

The "C"-Address of a sector in error is returned as the first two words of a three word data transfer when 
an HTCIA interface is in use. 

COL Word Format, Relocate (OP 58) 

No variable, other than the common variables covered previously. 

Relocate 

The controller flags the address area of the sector specified in the "C"-Address with an error configuration, 
selects an unused spare and writes the original sector's address into the address area, and fills the spare sec­
tor's data field with a predefined pattern. 

COL Word Format, Test Commands (OP 99) 

The following variables are shown as applicable: 

S4. In a ONE state, this variable generates a controller lock disable (online only). 

S2. In a ONE state, this variable generates a controller lock enable. 

SI. Set to a I, causes a non-busy drive to be powered off. 

V8. Provides a POWER UP signal to a powered-down drive, when set to 1 (available on the B 9387/Bx 387 
-206/207 drives only). 0 

V2. Take selected drive out of maintenance mode if this bit is set (available on the B 9387/Bx 387 -206/207 
drives only). 

Vl. Place the selected unit in maintenance mode (available on the B 9387/Bx 387 -206/207 drives only). 

No variables. Normal test operation to be performed. 

Controller Lock Disable 

The controller lock disable option places the DPDC into an unlockable state such that a lockable RID causes 
the controller not to lock. For dual host configuration, each host can disable controller lock independent of 
the other host. 

4-3-19 



Controller Lock Enable 
The controller lock enable option places the DPDC into a lockable state such that a ·lockable RJD causes 

the controller to lock, thereby preventing the loss of pertinent error information stored in its memory. For 
dual host configuration, each host can enable controller lock independent of the· other host. When in the locked 
state, the disk pack drive controller returns a controller locked RID to the locking host for all commands re­
quiring a drive access until: 

1. A read memory command is received from the locking host. 
2. A controller lock disable command is received from the locking host. 
3. A predetermined time interval has expired (no greater than two seconds). 

Power Unit Down 

Upon selecting a non-busy spindle, a power down command is issued to the spindle and an operation com­
plete RJD is immediately sent to the host. 

Power Unit Up 

Upon selecting a powered down spindle, a power up command is issued to the spindle and an operation 
complete RJD is immediately sent to the host. 

Place Unit Into Maintenance Mode 

The controller attempts to place the designated spindle into maintenance mode. Once in maintenance mode, 
the spindle can only be accessed by descriptors with the variable Fl set to a ONE state. 

Release Unit From Maintenance Mode 

The controller attempts to take the designated spindle out of maintenance mode. 

Test Operation 

The controller checks the status of the designated spindle, and returns an appropriate result descriptor indi­
cating the condition of the unit. 

File Addressing 

The "C"-Address designates a particular track and sector on a disk pack and is the starting point for all 
operations having that file address. Addresses are numbered sequentially, starting with sector 0 (first sector 
on a track), on surface 0 (head 0), track 0 (cylinder 0), and continuing through all sectors; heads, and cylinders 
(including the maintenance cylinder) respectively. 

Result Descriptors 

Result information is generated by the controller and the host transfer control in the form of a result descrip­
tor (RJD). One RJD is returned to the host per 1/0 initiate. Conditions reported in the result descriptor are 
listed in table 4-3-3 and are described in the following paragraphs, along with corresponding action taken by 
the controller. 

Operation Complete 

When the specified operation has been successfully performed with no exceptions, this RJD is returned to 
the host. 

Seek Error 

If. during a read, write, verify, or relocate operation, a seek has been initiated (which results in the heads 
being positioned over the wrong cylinder or the proper head is not selected by the drive, both as verified by 
the controller reading the address field from a track on the cylinder in question), the operation is terminated. 

I 

4-3-20 



Table 4-3-3. Controller and Host Transfer Result Deacriptor Information 

MCP Device Description Lock Controller 

0000 8000 Op Complete, No Exception No 

0801 ClOO Seek Error Yes 

8801 CllO Seek Timeout Yes 

C801 Cl30 Data Error Retry Yes 

0401 C200 Unit Busy No 

OCOl C300 Data Error Correction Yes 

0201 C400 Unit Seeking No 

OAOl C500 Seek Initiated No 

0101 C800 Address EPC Error Yes 

4101 C820 Address Position Error Yes 

0901 C900 Address Timeout Yes 

0501 CAOO Write Lockout No 

0301 ccoo First Action With Unit No 

0081 DOOO Memory Access Error Yes 

8881 DllO Host Parity Error Yes 

0481 D200 Speed Error Yes 

0981 0900 Link Parity Error** NIA 
0581 DAOO Data Error Yes 

0009 EOOO Not Ready Yes 

0809 ElOO HTC Timeout ** NIA 
0109 E800 Controller In Local *"' NIA 
0509 EAOO Controller Locked No* 

0889 FlOO Controller Failure Yes 

*Controller Already Locked 

** Generated by the HTC 

Seek Time-Out 

If a disk pack drive fails to complete an initiated seek within one second, it goes into a seek time-out state. 
The controller, upon detecting a disk pack drive which is accessed in this state, or upon recognizing that a 
similar time period has elapsed for an initiated seek, terminates the operation. 

Data Error Retry 

If, during a read operation all data errors were successfully corrected by retry, the appropriate bits are set 
( 1) in the result descriptor upon the completion of the operation. 

Unit Busy 

At the initiation of any operation, if the unit accessed is being used by another controller, and does not 
become available within a preselected period (one second nominal), the operation is terminated. 

Data Error Correction 

If, during a read operation with no uncorrectable data errors, a data error was detected and corrected by 
the controlware after the specified number of retries had been unsuccessful, the designated bits are set (I). 

Unit Seeking 

At the initiation of any operation without the unconditional variant set (1), if the drive is found to be seeking, 
the operation is terminated. 

4-3-21 



Seek Initiated 

At the initiation of any operation without the unconditional variant set (1), if the drive is caused to begin 
seeking, the operation is terminated. 

Address EPC Error 

If a sector address after the initial sector of an operation is found to have its error protection code (EPC) 
in error and the sector is not found in the spares, the operation is terminated. 

Address Position Error 

If a sector address after the initial sector of an operation is not in sequence and is not found in the spares, 
the operation is terminated. 

Address Time-Out 

If there is a failure to find a specified sector address (first sector of operation) or to find a spare sector 
into which that address has been relocated, the operation is terminated. 

Write Lockout 

At the beginning of a write, initialize, or relocate operation, if it is detected that the unit to be accessed 
is in a write lockout state, the operation is riot initiated. For a read unit ID or test operation, if the unit is 
detected to be in a write lockout state and no other exceptions are detected, then this RID is returned to the 
host at the end of the operation. 

First Action with Unit 

At the initiation of any operation, if the controller detects that this is the first action to be performed with 
the designated unit since it was last powered up, the operation is terminated. The determination of the first 
action status is performed by hardware as a large system option for the subsystem. 

Memory Access Error 

If a memory access is requested by the DPDC but not used (memory request error), or if a memory request 
is not honored by the host in time. the operation is terminated at the end of the sector being processed. 

Host Parity Error 

During any operation, if a parity error occurs (as determined in host DDP status) between the host system 
and the disk pack drive controller. the operation is terminated. All operations are terminated immediately if 
the error occurs in the transmission of the command descriptor information. All operations are terminated at 
the end of the sector being read from or written to disk if the error occurred in the transmission of data. 

Speed Error 

During an initialize operation. if a failure to write a full track of information between index pulses is detect­
ed. the operation is terminated. 

Link Parity Error 

Parity error on HTC to remote device interface. 

Data Error 

During a read operation. if an uncorrectable disk pack data error is detected. the operation is terminated 
at the end of the word count. 
4-3-22 



If an error protection code error or data non-compare error is detected during a verify operation, the 
operation ,is terminated at the end of the sector being processed at the time of error detection. 

Not Ready 

The controller will terminate the operation in progress under any one of the following conditions: 
1. A disk pack drive is not ready, or reports abnormal status. 
2. The maximum file address of the drive is exceeded. 
3. A non-existent unit is addressed. 
4. An undigit is found in the "C"-Address. 
S. An invalid command descriptor is received. 
6. No unused spares were available for a relocate command. 

HTC Time-Out 

Indicates no host activity with the HTC for a predetermined time. The operation is terminated. 

Local 

Indicates that the remote device is off-line. 

Controller Locked 

This indicates that the controller is locked, and the command descriptor (C/D) is not: 
1. Read Memory. 
2. Controller Lock Disable. 

Controller Failure 

During any operation, if a disk pack controller detects any one of several serious errors (various internal 
parity or timeout conditions), the operation in progress is terminated. If the controller was writing to the disk 
at the time the error occurred, it could destroy the information on the track. 

Result Descriptor (R/D) Tags 

In order to facilitate maintenance and increase the ease of debugging the controller, a method of generating 
result information (similar to what the RID is to the host system) is incorporated in the controlware. Associated 
with each unique place in the controlware that an RID may be generated is a label called an RID TAG. Since 
there may be several places in the controlware which generate the same RID, the RID TAG provides a high 
degree of visibility as to the exact state of the controller when the RID was generated. Therefore, the RID 
TAG number is stored in buffer memory where it can be obtained by the host system. Each RID TAG is of 
the form: RID TA- -XXX, where XXX is: 000 -999. 

RID TAGS as displayed. 

OXXX - lockable RID TAG. 

lXXX - unlockable RID TAG. 

2XXX - MPM address for instruction time-out. 

4XXX - MPM address for buffer memory parity error. 

Any given RID TAG may appear in more than one set of controlware, but always maintains its unique mean­
ing. 

4-3-23 



DISK FILE SUBSYSTEM (TYPE 5N) 

The 5N disk file peripheral subsystem (referred to as the 5N disk file or the 5N subsystem) is a major periph­
eral unit designed to operate with all computer systems that require very fast information access and transfer. 
The 5N subsystem uses a head-per-track unit that has been designed for complete field maintainability, includ­
ing replacement of heads, disk, and spindle assemblies under normal field conditions. The minimum subsystem 
configuration is one cabinet containing one disk electronics (DE) module and one disk storage (DS) module. 
A maximum subsystem configuration is four cabinets containing one disk electronics (DE) and four disk stor­
age (DS) modules. 

The dual needs of multiple storage capacities and expandability are provided by the modular cabinet design. 
Two types of cabinets are used. A primary cabinet contains a power supply and a disk storage module (DS), 
and is wide enough to accommodate a disk electronics (DE) module. An add-on cabinet contains only a DS 
and must be configured with a primary cabinet. A primary cabinet with a DE installed constitutes a minimum 
subsystem. A maximum subsystem has two primaries, each with a power supply, one with the DE, and two 
add-ons. Only one add-on unit can be supported by a primary. 

The DS contains a 14 inch disk which rotates at 6,000 rpm, providing an average access time of five millisec­
onds and a maximum transfer rate of 1.25 megabytes. The data is organized into fixed format segments of 
100 or 180 byte lengths, giving the disk a storage capacity of approximately six million bytes. The primary 
function of the DS is to write and read the information passed to and from the DE. Two segment interlace 
options are provided which affect the average transfer rate. A 1 by 2 interlace option gives a 656 kB average 
transfer rate; an alternate 1 by 4 interlace option gives a 328 kB transfer rate. 

The DE is the interface controller linking the DS(s) to the 1/0 portion of the host system. The DE contains 
the control logic and necessary buffering to provide precise synchronous command, status, and data manage­
ment between the selected DS and the 1/0 of the host system. Two ports are available in the DE for system 
interconnection. This allows the failsoft mode of operation, if desired. The DE receives information from the 
host system command which includes segment address, and then initiates a search for the selected segment. 
After address coincidence, the DE then controls the active data transfer and terminates the operation upon 
command. Odd parity is assigned and checked on all status, data, and address transmissions within the disk 
file subsystem. Result status is available in the DE following every operation completed. Data and control sig­
nals are managed internally by the DE and DS in a bit serial mode. 

Segment Organization 

A DS contains one 14.5 inch diameter disk. The read/write head assemblies, called head modules, are posi­
tioned along the radius of the disk surface, eight on each side. Each head module has 32 active tracks (actual 
individual heads) and three possible (one guaranteed) spares. The eight head modules with 32 tracks give a 
total of 256 active addressable data tracks for each side of the disk. Activating a spare track to replace an 
active track which has failed can be accomplished in approximately IO minutes without opening the enclosure. 

The data tracks are formatted into fixed segment lengths of either 100 or 180 bytes. Each segment contains 
100 or 180 bytes of data plus four bytes of error checking and correction (ECC) code. Segment format is a 
function of the DE and is established by a local operation called an initialize. Initialize causes a write operation 
to be performed on the selected DS in which the segment addresses are written in the data tracks. 

Interlace Options 

A segment interlace feature is used on the 5N subsystem to minimize the possible band-pass saturation of 
the host system caused by the very high transfer rate of the data. Two interleave ratios are available: a l­
to-2 segment interleaving or a 1-to-4 segment interleaving, which means that the consecutively addressed seg­
ments are located every second or every fourth segment position along a data track. Selection of the interleave 
ratio permits adjustment of the total system 1/0 channel through-put loading. The bit rate between the DE 
and 1/0 control during data segment transfers is at the full OS disk rate of 10 megabits per second; however, 
during multi-segment transfers the average transfer rate is reduced by the segment interlacing. 

4-3-24 



Selection of the active interlace option is a function of the DE. It is controlled by a PROM chip in a manner 
similar to the segment option. A local initialize function writes the segment addresses to conform to the inter­
lace parameter installed in the DE. 

COL Word Format 

IOCW Information 

Operation 

WRITE 

REAil 

CHECK 

U E 
47 43 39 x 3!1 

T 0 P N C 

V8W/.l 
31~~ 

DISK 
!10 46 4z 38 H 34 22 18_1_ 14 10 

A CO DE I A E 
49 45 41 37 D 33 

G T D 11 
V2V//l 
291::L:llJ 

ADDRESS 
ZI rr_i 1it 9 

48 44 40 36 R 32 

ETl270 

OP 

50 
51 
52 

99 

VAR 

UFVM 

UFVM 

UFVM 

UFii 

U = Unit Designate (LSD) 

VIM 
28 24 

ADDR 

AAAAAA 

AAAAAA 

AAAAAA 

F : (35: 2) = MSB of position on exchange 

(33:2) =reserved for disk address extension 

VS : 1 = Read extender status 

V4: 1 =Enable extra revolution result descriptor 

Vl : 1 =Maintenance segment 

A= Disk segment address (6 BCD digits) 

i =Ignored 

IOCW Bits 
46 44 43 42 41 

0 

0 

0 

0 0 

0 

0 

0 
0 

Subsystem Commands 

7 3 

6 z 

5 

4 0 

Operation 

Write 

Read 

Check 

Test 

CDL 
OP Code 

50 

51 
52 

The basic command set executed by the 5N subsystem is described below. The commands are READ NOR­
MAL, READ MAINTENANCE, READ STATUS, WRITE, WRITE MAINTENANCE, TERMINATE, SEG­
MENT REPEAT, SEGMENT WAIT, and TEST. Channel parity is also received and checked by the DE with 
every command byte. If a parity error is detected, the command is not executed, and a result status byte is 
returned to the 1/0. 

4-3-25 



Two commands are executed by the DE which can be used only whe.n the DE is in local. They are the 
INITIALIZE and the VERIFY commands. The OP byte is loaded with the DE maintenance panel switches, 
and the operation takes place under the control of the DE local logic. 

Read Normal 

The READ NORMAL command is received over the CSO line as a one byte operation code followed by 
three bytes of file address. The DE decodes the file address bytes for disk, track, and segment corresponding 
to the address received. The DE then initiates a search for the addressed segment. Upon segment coincidence 
the segment data is transmitted from the DE to the 1/0 over the DI line at the disk bit rate. The data transfer 
operation continues through consecutive segments in a track and through consecutive tracks and disks until 
the operation is terminated by the 1/0. A time delay of up to one disk revolution can occur when the operation 
continues from disk to disk. 

During READ NORMAL, if any errors or warning conditions are detected in the subsystem, the result status 
is transmitted over the CSI line by the DE. However, the read operation continues until terminated by the 
110. 

Read Maintenance 

The READ MAINTENANCE command is identical to the READ NORMAL command except that only the 
maintenance segment of each track is read. 

Read Status 

The READ STATUS command is received from the 1/0 over the CSO line as a one byte operation code 
followed by three address bytes. The command causes the DE to transfer 64 bits of extended status message 
over the DI line. The operation is terminated by the DE upon completion of the message transfer. 

Write Normal 

The WRITE command is received over the CSO line as a one byte operation code followed by three bytes 
of file address. The DE decodes the file address bytes, selects the disk and track, and searches for the segment 
corresponding to the file address received. Upon segment coincidence, the segment data is transferred to the 
DE over the DO line at the disk bit rate until the operation is terminated by the 1/0. The data rate is regulated 
in the 1/0 by the DE clock it receives on the DI line. The writing operation continues through consecutive 
segments in a track. through consecutive tracks. and then consecutively from disk to disk. A time delay of 
up to one disk revolution can occur when a write operation crosses over from disk to disk. The write operation 
is terminated when the 1/0 issues a TERMINATE command over the CSO line. Should the 1/0 prematurely 
terminate the operation. the DE completes recording the current segment. The DE stops the transmission of 
clock pulses over the DI line between segments. When the last addressable segment is written, the DE inde­
pendently terminates the operation. 

Write Maintenance 

The WRITE MAINTENANCE command is identical to the WRITE command in format and operation ex­
cept that only the maintenance segments are written. 

Test Command 

A TEST command is received over the CSO line as a one byte operation code followed by three bytes of 
file address. The DE decodes the command to select the disk and responds with result status on the CSI line. 
The TEST command permits the 1/0 to check the status of the selected disk. 

Initialize 

The INITIALIZE command is executed by the DE in local as a maintenance operation. It is a one byt~ 
command loaded into the command control via the DE maintenance panel switches. This command is a write 

4-3-~6 



function which writes the addresses in the tracks of the OS units associated with that DE. The command must 
be used following installation or when the segment or interlace option is changed. 

Verify 

The VERIFY command is executed by the DE in local as a maintenance operation. It is a one byte com­
mand loaded into the command control via the DE maintenance panel switches. This command is a read func­
tion which reads the addresses written in the tracks of the OS, checking the sequence and validity of the ad­
dresses. Use of this command is a good local test of the read function. 

Result Descriptors 

To MCP From Device Error Type 

0009 EOO Not Ready 
0101 C80 DE Busy (Timeout) 
0109 E80 Warning 
0181 D80 Address Error from DE 
0201 C40 Write Lockout 
0281 D40 Command Parity Error 

(System to DFC) 

0481 D20 Transmission Error between 

DFC and DE 
0801 CIO Extra Revolution 
4081 D02 Controller (Data Buffer) Parity Error 
8081 DOl Data Parity Error (System to DFC) on Write 

Data Error Correction Not Done on Read 

A test operation returns a different type of 2 in [11:2] of the RD to software. 

Extended Status Message (ESM) 

The normal result status returned to the system indicates only a few specific errors and general classes of 
errors. This generality is desirable for normal operational software; however, the SN subsystem has an addi­
tional feature called an extended status message (ESM) which is available on request from the DE following 
any operation. Information contained in the ESM may be used to: 

1. Initiate break-out or precautionary routines. 
2. Build an audit trail for failure analysis. 
3. Construct a unit performance profile. 
4. Reduce unscheduled maintenance by detailing the extent of a reported failure. 
5. Provide diagnostic capability without interrupting customer operation. 

The extended status information is stored in the DE registers after each operation and is transferred to the 
system as data in response to the read status command. If the next command is not a read status command, 
the information is replaced by new result status from that command. The 64-bit extended status message has 
its own special format and is transmitted to the 1/0. 

The internal operating conditions and performance parameters of the subsystem are monitored automatically 
and continually. The DE identifies detected errors and reports the identification in the 64 bit extended status 
message (ESM). Disk subsystem detected errors, with their fault locations identified where possible, are re­
ported more specifically in the ESM than was transmitted in the eight-bit RSB. The performance parameters 
monitored denote subsystem performance deterioration and show possible failure conditions. The ESM is in­
tended as system input for logging and analysis. 

4-3-27 



The data in the extended result descriptor is arranged in 20 words of 12 hexadecimal digits. The first 64 
bits are used on the 5N subsystem. Bit 63 is the first bit of word zero; bit 0 is least significant bit of digit 
nine in word one. The following describe the significance of each bit: 

Bit 63 

Bit 62 

Bit 61 

Bit 60 

Bit 59 

Bit 58 

Bits 53-50 

Bit 49 

Bit 46 

Bit 45 

Bit 44 

Bit 42 

4-3-28 

EXCESSIVE TEMPERATURE. Indicates excessive temperature in a disk enclosure of the 
subsystem. This causes that OS to retract the heads. If an affected DS is selected, "not ready" 
is indicated in the RSB. 

HEAD LOAD PRESSURE. Indicates that the primary air pressure has dropped below 45 psi 
and the DS heads have been retracted. If an affected DS is selected, "not ready" is indicated 
in the RSB. 

HEAD TOUCH. Indicates a DS with an uncleared head touch condition. Selection of the DS 
causes "not ready" to be reported in the RSB. 

DISK SPEED LOW. Indicates that the disk is rotating at less than 5700 rpm and the heads have 

been retracted. Selection of the DS causes "not ready" to be reported in the RSB. 

WRITE DRIVER OVERHEAT. Indicates that a write driver overheat condition exists in the DS 
head module. The heads are retracted because this is an unsafe condition. Selection of the DS 
causes "not ready" to be reported in the RSB. 

NEGATIVE HOUSING PRESSURE. Indicates that the air pressure inside the OS enclosure has 

fallen below a safe operating level. The heads are retracted because this is an unsafe condition. 
Selection of the DS causes "not ready" to be reported in the RSB. 

HIGH TEMPERATURE. Indicates a DS enclosure temperature above the acceptable limit in 

any of the DS's on the subsystem. Normal operation can continue. A "Warning" bit is set in 

the RSB. Each DS is assigned an identification bit in the ESM as follows: 

Bit 50 = DS 0 

Bit51=DS1 
Bit 52 = DS 2 
Bit 53 = DS 3 

AC POWER LOW. Indicates that the input ac line voltage has been sensed at 90 percent of nominal. 
The subsystem will go "not ready" if the condition continues for over 0.5 second. If the input 

line voltage drops, below 70 percent of nominal, the subsystem will shut down. 

ADDRESS REDUNDANCY CHECK ERROR. Indicates comparison failure of the selected segment 

address held in the DE and the repeated address read from the selected track. The address error 

bit is in the RSB. 

PHI BIT TIMEOUT. Indicates a data read failure. The DE was unable to locate data on the selected 

track within 15 ms. The address error bit is set in the RSB. 

ADDRESS SEARCH TIMEOUT. Indicates an address search failure. The DE was unable to locate 
the segment address requested by the system within 15 ms. The address error bit is set in the RSB. 

INTERNAL ADDRESS PARITY ERROR. Indicates that a parity error was detected on the address 

byte transfer from the DE to the DS. The command transmission error bit is set in the RSB. 



Bit 41 

Bit 40 

Bit 35 

Bit 34 

Bit 33 

Bit 32 

Bits 22-00 

CONTROL CHANNEL PARITY ERROR. Indicates that a parity error was detected on the OP and 

address byte transfer from the 1/0 control to the DE. The command transmission error bit is set 

in the RSB. In the case of segment repeat, segment wait, or terminate commands, the DE continues 

through its current segment before returning the RSB. 

INVALID REQUEST. Indicates that the bit pattern of the OP code received by the DE is not 

valid. The command transmission error bit is set in the RSB. If the invalid command is received 

during a read or write, the DE continues through its current segment before returning the RSB. 

DAT A READ ERROR, ECC. Indicates a comparison failure between the accumµlated ECC in the 

DE and the ECC read from the track. This comparison is made following the read of each segment. 

The operation will continue to completion regardless of when the comparison failed. The data 

transmission error bit is set in the RSB. 

DATA WRITE ERROR, ECC. Indicates a comparison failure between the accumulated ECC in the 

DE and the ECC received from the 1/0. This comparison is made as the ECC is being written for 

each segment. The operation will continue to completion regardless of when the comparison 

failed. The data transmission error bit is set in the RSB. 

CLOCK SYNC ERROR. Indicates a clock pulse count failure. During a write operation the DE counts 

the number of clocks received from the 1/0. If the number of clocks received is not equal to the 

number of clocks required for a full segment at the end of the segment, an error is indicated. The 

data transmission error bit is set in the RSB and the operation continues to completion. 

WRITE FAIL URE. Indicates that an open circuit in the DS head module was detected during a 

write operation. The data transmission error bit is set in the RSB and the operation continues to 

completion. 

DISK ADDRESS. Indicates the address of the last segment accessed, divided into four fields. The 

bits are identified below (some bits are reserved for expansion). 

Bits 22-21 = DS Number, 0 to 3 binary, lsb. 

Bits 17-14 =Head Number, 0 to 15 binary, lsb. 

Bits 13-09 =Track Number, 0 to 31 binary, lsb. 
Bits 06-00 =Segment Number, 0 to 107 binary, lsb. 

SUPERVISORY DISPLAY CONTROL II 

The Supervisory Display Control II (SDC II) is a type A control used to interface the system to up to two 
operator display terminals. The SDC figure 4-3-1 performs the following functions: 

1. Message heading insertion for messages transmitted to the terminals. 
2. Message heading deletion for messages received from the terminals. 
3. Generation of vertical and longitudinal parity (even). 
4. Checking of vertical and longitudinal parity. 
5. Internal code conversion between EBCDIC to/from the system and ASCII (7 bit) from/to the terminals. 
6. Generation of input request interrupts. 

4-3-29 



INPUT/ 
OUTPUT 
MODULE 

PERIPHERAL CONTROL CABINET 

INFO AND CONTROL 

PERIPHERAL 
(CENTRAL 
CONTROL) 

INTERFRAME JUMPERS 
TERMINAL 

N0.1 

ET1254 

STATUS CHANGE 
(ONE FOR EACH 
TERMINAL) 

SDCll 
1 x 36 

TERMINAL 
N0.2 

FIRST TERMINAL-TOP 
SECOND TERMINAL-BOTTOM 

Figure 4-3-1. SDC II in B 7800 Systems 

COL Word Format 

47 43 u39 

0 0 P N 
50 46 42 38 . 

0 CO DE I 
49 45 41 37 

O 48 44 40 T 36 ... 32 \as >24 ,. 2o 

OP VAR ADDR 

32 t:iii 
34 l'iii 

99 l'iii 

i ·ignored 

U = Unit Designate 

4-3-30 

Operation 

Read 

Write 

Test 



IOCM Information 

Operation 

Read EBCDIC 

Write EBCDIC 

IOCW Bits 

46 44 42 41 

0 

0 0 

0 
0 

Result Descriptor - Unit Error Field 

TOMCP 

0009 

OA81 

0281 

0201 

0401 

0801 
8001 

0301 

Test Op R/D to MCP 

2000 

4000 

6000 

From Device 

EOOO 
DSOO 

D400 

C400 

C200 

ClOO 

COlO 

ccoo 

Unit is 89348 (TD804) 

Unit is 89352 

Unit is 89348-34 (TD830-1) 

CDL 

OP Code 

Error Type 

Not Ready 

32 

34 

1/0 Parity Error* 

Memory Access Error* 

Data Parity Error* 

Control Character 

Read Overflow 

Time Out/Invalid Character 

Internal Parity Error* 

IOM/SDC II interface format is shown in figure 4-3-2. Read and write message formats are defined in figure 
4-3-3 and 4-3-4. 

The SDC is designed to interface with the following operator display terminals (ODT): 
1. B 9348: Supervisory Input and Display. 
2. B 9352: Input and Display Terminal. 
3. B 9348-34: Operator Display Terminal. 

A jumper wire on the backplane in the control is used to identify the type device installed to the test 
operation command by way of the test operation's result descriptor. Baud rate may be set to one of three 
values via strapping on printed circuit board. These values are 2.4K, 9.6K, and 19.2K baud. 

The interface to the terminals is in accord with BIA RS232-C standard asynchronous (with a modification 
of the data terminal ready line redefined to be true when the terminal is in receive mode and false at all other 
times). 

Operation 

Read (OP 32) 

Read an input message from the designated terminal unit until an end of text character is detected or until 
the area descriptor word count is exhausted, whichever comes first. The IOM stores this data after having 
received it in EBCDIC due to the translator in the control. 

4-3-31 



ETl256 

4-3-32 

1/0 PROCESSOR SDCll 

CDL 

j~--------+-----------~•~ ~~Jt;~~:.~:u~ 
CDL 

!!---------+-----------~ ..... ::crM~u.;i~~tW.,LDl'SI 
CDL 

JI--------+----------~· .. ILDAD UNIT DHIGNAT£ REGI 

STCI 

1..' -------+--------iT-"--.... ::~i1NO OF INITIATE CYCLE I 

ARL 

I 
+ AGL I !CHARACTER lCFERI 

t 
ARL (IF MORE CHARACTERS) 

t 
IOCI 

l'--------+-------..,..,---1• .. CFORM RESULT DESCR.,TOl'll 

AllL 

AGJ 
I 

C"EAO "IOI 

Figure 4-3-2. IOMISDC D Format 



Write (OP 34) 

Send a message to the designated terminal until an end of text character is detected or until the area de­
scriptor word count is exhausted, whichever comes first. The IOM only sends EBCDIC to the control and 
the control translates it to ASCII (7 bit) for use by the terminal. 

Test (OP 99) 

Return a result descriptor indicating the type of both terminal units connected to the control. If there are 
no type bits in the result descriptor returned, it means there is no terminal unit connected to the supervisory 
display control with that unit designate. 

ENABLE CTS 
ICLEAR TO SENDI 

I 

+ EOT 
TIME OUTR/D 

EOT 
NOT READY R/D 

ACK NAK 

SDC 11 

CDISABLE CTSI 
DAl'APARITY 
ERROR R/D 

EOT + 
TIME DUTR/D 
IDISAILE CTSI 

EOT 
110 FINISH R/D 
IDCIAILI CTSI 

I 
I 
I 

+ NO COR INVALIDI RESPONSE 

I 

NO COR INVALIDI RESPONSE 

I 

TERMINAL 

+ 
EOT 

EQT 

Figure 4-3-3. Message from Terminal (Read) 

ETX 
ace 

4-3-33 



EOT 
ENO 
ENABLE CTS 
!CLEAR TO SEND) 

+ EOT 
TIME OUT R/D 
!DISABLE CTSI 

t 
EOT 
NOT READY R/D 
!DISABLE CTSI 

STX 

+ TEXT 

+ ETX 
BCC 

I 

+ EOT 
TIME OUT R/D 
!DISABLE CTSI 

DATA PARITY 
ERROR R/O 
(DISABLE CTSI 

EOT 
1/0 FINISH RIO 

4-3-34 

SOC II TERMINAL 

+ + + NO IOR INVALID) RESPONSE NAK ACK 

I 
I 
I 
I 
I + + t 
I 

NO IOR INVALID) RESPONSE NAK ACK 

I 

I 
I 

I 
Figure 4-3-4. Message to Terminal (Write) 



CHAPTER 5 

GENERAL DESCRIPTION 
OF MEMORY SUBSYSTEM 

• 

INTRODUCTION 

The B 7800 Memory Subsystem provides the main 
storage for the B 7800 Data Processing System. The 
memory subsystem stores or supplies words of infor­
mation as directed by either of two types of reques­
tor: a central processor or an input/output module. 

A B 7800 Memory Subsystem consists of one to 
four model II memory control modules (or one to I 
two model III memory control modules) coupled 
through a memory requestor switch-interlock net­
work to a maximum of eight memory requestors. 
(See figu~es 5-1-1 and 5-1-2.) The memory subsystem • 
can service each requestor in the same manner so 
that any operation performed for one requestor may 
be performed for any other requestor . 

.-------- -- -- -- - I UP TO TWO MSU'S ' MSC 

I ~PERMCM 

MSU-0 MSU-1 MSU-2 MSU-3 I 
I 
L _._-t--

'--....-----__._ ___ j_...J • j I 
---- -- --+- - -t--+--J 

+ 
MCM-0 MCM-1 

UP TO 4 MCM'S 
PER SYSTEM 

PERIPHERAL REMOTE DISK 
DEVICES DEVICES SUBSYSTEM 

7 
7 z 

7 z 

..----MA_·~~\ VL 
MP 

ET1101 

SWITCH 
INTERLOCK 

IOM 

.___ ___ _.h 

• 
• 
• 
• 
• 
• 

CPM 

OPERATOR'S 
CONSOLE 

_.._ ... 
I ' 

PC DCP 
(20} (4} 

UP TO EIGHT REQUESTING 
DEVICES 

I 

Figure 5-1-1. B 7800 Memory Subsystem with Model II Memory Control Modules Diagram 

5010796-001 

... 
\ 

DFO 
(2) 

5-1-1 
• 



A model II MCM can control either one or two 
MSUs. The model III MCM can control up to eight 
MSUs: however. one MCM will normally be config­
ured to access either two or. as shown in figure 5-
1-2. four MSUs. 

MEMORY CAPACITY 
A B 7800 Memory System may be built with 

various combinations of the two configurations of 
memory modules to achieve the desired total mem­
ory capacity. Table 5-1-1 lists the possible combina­
tion of memory sizes. Each MSU has the storage capacity of 131.072 

words. Minimum Memory Size 

NOTE 
16K IC MSUs and 4K IC MSUs cannot 
by mixed on any MCM. All stacks 
must be the same type. 

The minimum memory size is one MSU memory 
module of 131.072 words (786.432 bytes). This would 
be one MCM controlling one MSC containing one 
MSU. For optimum system performance the 
minimum B 7800 Memory Subsystem recommended 
is four MSU memory modules. 

f"Msc - -- -- -- -- -- -- - - - 1 fMsc __ _ --------, 
I 
I 
L 

5-1-2 

ET 1686 

11 
11 

___ JL 

I 
I 

_J 

MCM·O MCM·l 

MAINTENANCE 
BUS 

MP 

IOM 

!---------~-+--- • !---------+---+--- • 
• 1------_,,.'-----t-- • 

SWITCH 
INTERLOCK 

• • 
CPM 

PERIPHERAL 
DEVICES 

~ 
PC 

(20) 

UP TO EIGHT REQUESTING 
DEVICES 

....__ ________ ......_ ..... OPERATOR'S 
CONSOLE 

Figure 5-1-2. B 7800 Memory Subsystem with Model III Memory Control Modules Diagram 



Table 5-1-1. B 7800 Memory Subsystem Configurations 

Memory Size 
Words Bytes 

131,072 ,786,432 

262,144 1,572,864 

393,216 2,359,296 

524,288 3,145,728 

655,360 3,932,160 

786,432 4,718,592 

917,504 5,505 ,024 

1,048,576 6,291,456 

Maximum Memory Size 

Number of MSUs 

2 

3 

4 

5 

6 

7 

8 

The maximum memory size is 1.048,576 words 
(6.291,456 bytes), packaged as follows: 

I. Eight MSU modules 
2. Two MSC cabinets 
3. Four model II MCM modules (or two model I 

III MCM modules). 

MSU Reconfiguration 

The B 7800 Memory Subsystem is designed with 
high reliability to minimize the occurrence of failure. 
Extensive error detection and reporting logic permits 
early detection and definition of failures. Automatic 
correction of single-bit parity errors minimizes inter­
ruption to the system. The modular design, separate 
power supplies, and independent interface concept 
permit soft reconfiguration. In case of an MSU fail­
ure, the system can be manually or programmatically 
configured to operate with only one MSU available 
to the MCM. 

Address Allocation 

There is no specific assignment order within the 
system for particular MCM configurations. Memory 
module address range assignments are based on sys­
tem requirements and are assigned through use of 
the memory limits word. For example, any MCM in 
the system can be assigned the lower (memory zero) 
address range by setting the memory limits register. 

Subsystem Allocation 

The memory capacity can be manually or pro­
grammatically allocated into subsy. stems with respect.I 
to designated requestors. For example, in a model 
III MCM subsystem, MCM 0 can be dedicated to re­
questors 0 and 7 while MCM I can be dedicated to 
requestors 1 and 6. 

5010796-001 

Number of MSCs 

2 

2 

2 

2 

Number of MCMs 

Model II Model III 

1 

2 

2 

3 2 

3 2 
4 2 

4 2 

CLOCK RA TE AND READ ACCESS 
TIMES 

The B 7800 Memory Subsystem operates at a 
clock rate of 8.13874 megahertz. Effective read ac­
cess time for the MCM is as follows: 

I. Single-word access is I.500 us or 0.250 us per 
byte. 

2. Two-word access is l.625 us, or 0.813 us per 
word, or 0.136 us per byte. 

3. Four-word access is l.875 us, or 0.469 us per 
word, or 0.078 us per byte. 

4. Eight-word access is 2.375 us, or 0.296 us per 
word, or 0.050 us per byte. 

Multiple Word Transfer (Phasing) 

In a multiple word transfer (called phasing) words 
are transferred in bursts of up to eight; one word is 
transferred at each clock cycle. 

If the requested address is less than eight words 
from the upper address limit of the MCM, the mem­
ory operation is limited to a single-word transfer. 

These phasing limits do not have to be taken into 
consideration when a requestor sends a memory re­
quest. The requestor simply requests the desired 
number of words to be transferred, and then de­
creases the number of words each time a memory 
transfer is completed. If at the end of the operation 
the word count is not equal to zero, then another re­
quest is made until all the words are transferred . 

WORD FORMATS 

All words used by the B 7800 Mainframe System 
are 52 bits in length. The 52-bit word consists of 48 
bits of information, three tag bits, and an overall 
parity bit. 

5-1-3 

• 



When information is passed from a requestor to an 
MCM, the requestor adds a parity bit which pro­
duces odd parity on the resultant 52-bit word being 
transferred. The MCM checks the word it receives 
for odd parity to verify that an error was not made 
during transmission. 

When an MCM receives a 52-bit word from a re­
questor, the MCM adds seven bits of error correc­
tion code and adds another bit for maintaining odd 
parity on the overall 60-bit word to the MSU. If a 
word should be accidentally altered while residing in 
an MSU, the seven check bits in conjunction with 
the overall parity bit allows for the detection of the 
error and provide a means for the automatic correc­
tion of errors in which a single bit has been altered. 
The MCM then sends the original 52-bit word to the 
requestor. 

MCM Control Word 

At the start of every memory operation. an MCM 
control word is transmitted from the requestor to the 
memory control module. The control word format, 
bits and fields as received at the memory control 
module are described below. Table 5-1-2 lists the op­
eration codes for the MCM. 

Field Bits 

PARITY 51:1 

Description 

The requestor generates odd parity for 

the 52-bit control word. 

Field Bits 

TAG 50:3 

R/W 47:1 

TYPE 46:1 

SPEC 45:1 

PROTECT 44:1 

Table 5-1-2. Operation Codes for the MCM 

R/W TYPE SPEC 
Operation 47 46 45 

Fetch, Single word 0 0 1 
Fetch, Multiple word 0 0 0 
Box ID Word Fetch (Bit 36=0) 0 1 1 
Fetch, Fail register (Bit 36=1) 0 1 1 
Write, Single word overwrite 0 1 
Write, Multiple word overwrite 1 0 0 
Write, Single word overwrite with flashback 1 0 1 
Write, Single Word Protected Write 1 0 1 
Write, Single word protected write flashback 1 0 1 
Write, Multiple word protected write 1 1 0 
Load, Requestor inhibits 1 0 1 
Load, Memory limits 1 0 1 

5-1-4 

Description 

The tag bits are not used in the 

control word. 

R/W bit: 0 =read (fetch) operation; 

1 = write operation. 

The type bit is set for fail word fetch 

(if bit 36=1), box ID word fetch 

(if bit 36=0) and N-word protected 

write operations. 

NOTE 

Box ID word fetch and use of bit 

36 are only used in the control 

word for model Ill MCM. 

The SPEC (specifier) bit indicates 

either a single word or multi-

word operation: 0 =multi-word 

operation; 1 = single word operation 

or a box ID word fetch ifbit 46 

= 1 and bit 36 = 0. 

The protect bit, when "1" indicates 

that a protected-write operation is 

to be performed. Protected write 
only allows the write operation to 

be performed when bit 48 of the 

original memory word is off. When 

bit 48 is on, the write operation is 

terminated and the contents of the 

original memory word are not 

changed. 

PRO'f FB FIL MLL 
44 43 42 41 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 1 0 0 
1 0 0 0 

1 1 0 0 

1 0 0 0 
0 0 1 0 

0 0 0 1 



Field 

FB 

RIL 

MLL 

ADDRESS 

RESIDUE 

WORD 

LENGTH 

16:2 

5:6 

Bits 

43:1 

42:2 

41 :1 

40:4 

Description 

The FB (flashback) bit, when a 

"1" indicates that the original 

contents of the memory location 

are to be transferred to the req uestor. 

The RIL (requestor inhibits load) 

bit is used to specify that a load 

requestor-inhibit operation is to 

be performed. 

The MLL (memory limits load) 

bit is used to specify that the 

upper and lower address registers 

and the MSU available register 

are to be loaded. 

Unused. 

36:20 The address bits specify the 

starting-memory address of the 

memory operation. 

The address residue bits indicate the residue 

value of the 20-bit memory address 

within the control word. 

The word-length bits indicate the 

number of words to be transferred 

during multi-word operations. 

Box ID Word (For Model Ill 
MCM) 

The box ID word is locked in a 52-bit fail register 
until a box ID word fetch request (OP code 30 and 
bit 36 reset in the MCM control word) is made by 
the requestor or a manual clear operation is per­
formed. The format, bits, and fields of the box ID 
word are described below. 

r-
I PAii RE· LO WEii MCM 

I -..!.l •7 .., 39 JS Jl 27 2J 19 19 11 J 

QUE STOR LI MIT MSU MSU TYPE MCM 

T 90 .. '2 3' JO a 22 11 14 10 
(MS) 

A IN· UP PER AVAIL CON FlG. ERR TYPE 
G (LS) .. •S 41 J7 JJ a ZS 21 17 IJ 

HIB ITS LI MIT FLAG .. .. .. J6 J2 21 2• II 12 

IT1117 

Field Bits Description 

Tag 50:3 The tag bits are always 0. 

5010796-001 

Field 

Requestor 

Inhibits 

Lower Limits 

Bits 

43:8 

35:6 

Description 

This field indicates which requestors 

currently have 

This field defines the lowest address 

that can be handled by the MCM 

within the total memory subsystem. 

Upper Limits 29:6 This field defines the highest address 
that can be handled by the MCM 

within the total memory subsystem. 

MSU 

Availability 

MSU 

Configuration 

MCM Type 

(MS) 

ERR 

(Error) 

MCMType 

Flag 

MCMType 

(LS) 

23:8 

15:8 

7:2 

5:1 

These bits indicate which of the 

MSUs are powered up. 

This field indicates the number of 

128K MSUs that functionally 

connected with the MCM. 

These bits are not used in current 

configuration of the memory sub­

system; they are reserved for future 

expansion. 

When set, this bit indicates that an 

error has been reported and a second 

fetch of the fail register is necessary 

to obtain the MCM fail word (OP 

code 30 and bit 36 set in the MCM 

control word). 

4: 1 This bit is always 0 in the box ID 

word. 

3:4 These bits identify the MCM as a 

model III; they are configured 

as 0011. 

MCM Fail Word 

The MCM fail word contains all pertinent informa­
tion necessary to identify a hardware failure. The fail 
word information is locked in a 52-bit fail register 
until a fetch-the-fail register operation request (OP 
code 30 and. if model III MCM bit 36 set in the 
MCM control word) is made by the requestor or a 
manual clear operation is performed. The MCM 
sends a fail I interrupt signal to the requestor when 
an irrecoverable error has occurred. If one of the 
bits in a memory word was incorrect, the specific bit 
is corrected by the MCM. The correct memory word 
is then sent to the requestor which allows the re­
questor to continue processing with correct data. 

5-1-5 



T he format, bits. and fields of the MCM fail word 
a re described below. 

Rl\\l MSU ~E~ ST41\.8 11-HN 47 43 35 

I.D. M SU NO. 
50 46 42 38 34 

AV ERROR 
49 45 41 37_[ 33 

D.I. 
48 44 

ETl271 

Field 

. D. 

D.I. 

(Model II 
MCMonly) 

R/W 

MSUAV 

(Model II 

MCM only) 

40 

MSU STATUS 

(Model II 

MCM only) 

5-1-6 

BIT NO. 
36 32 

Bits 

50:2 

48:1 

47:1 

46:2 

44:4 

MSB ~WP ISTB INT 
31 27 23 19 15 II 7 ERj 
ERROR ADDRESS IOP 28 ~YPE 
30 26 22 18 14 10 6 

WRAI 18 
29 25 21 17 13 9 5 

LSB PWP INT 
28 24 20 16 12 8 4 

Description 

These bits are always configured 

as 110 for the fail word. 

The delayed interrupt (D.I.) 

bit, when set, indicates that an 

internal error was detected during 

the previous memory cycle and 

had occurred after the requester 

operation complete (ROC) 

signal was sent to the requestor. 

This interrupt does not occur 

until the next memory operation 

is performed. 

The R/W bit indicates that either 

a read or write operation was being 
executed when the error was 

detected. (Read = 0; write= 1.) 

The MSU AV (MSU available) 

field indicates the number of 

MSUs in use by the MCM when 

the error was detected. The 

field indication is as follows: 

Bit Bit 

45 45 

0 0 No MSU is available 

0 1 One MSU is available 

1 0 Two MSUs are available 

1 1 Four MSUs are available 

The MSU STATUS bits are loaded 

from the MSU status register to 

indicate stack availability as 

follows: 

1. 1 AV - sectors 0-3 in MSU-1 

are available 

2. 2AV - sectors 4-7 in MSU-1 

are available 

3. 3A V - sectors 0-3 in MSU-2 

are available 

2 

I 

0 

Field Bits 

REQ 40:3 
CHNL 

NO. 

ERROR 37:6 
BIT NO . 

ER ADDRS 31:20 

CWP* 11: 1 

IOP* 10:1 

* Fail 1 interrupt condition 

Description 

4. 4AV - sectors 4-7 in MSU-2 

are available. 

The REQ CHNL NO. (requestor­

channel-number field) contains 

the number of the requestor 

who was using the MCM when the 

failure occurred. This field is not 

locked in the fail register if 

detection of a one-bit error occurs. 

The error bit number field is only 

valid when bit 5 (1-bit error) is 

set. This field is the binary number of 

the bit that failed in memory. 

The error-address field contains the 

address of the location that was being 

accessed if a one-bit or two-bit 

error occurred. The address is 

related to one-bit or two-bit errors 

as follows: 

Error Indication 
2-Bit 

0 

1-Bit 

1 

0 

Error Address 

Belongs to: 

1-Bit Error 

2-Bit Error 

1-Bit Error 

The CWP (control word parity) bit 

when set, indicates that the MCM has 

detected incorrect parity on the control 

word received from the requestor. 

The IOP (illegal operation) bit, when 

set, indicates that the MCM has 

detected an illegal operation in the 

operations are as follows: 
(1) Word length= 0 

(2) Single-word operation word length 

greater than 1 

(3) Special-request strobe is not sent 

by the requestor when either 

memory-limits load or requestor­

inhibit load is to be performed. 

(4) Illegal-operation code (refer to 

table 5-1-2). 



Field Bits Description Fail Word Bit Error Type 

WRA* 9: 1 The WRA (wrong address) bit, when 3210 

set, indicates that the address in the 
0001 Read Available-indi-

control word did not fall within the 
cates that the MSU 

upper and lower address limits 
has failed to respond 

assigned to the MCM. 
with a Read Allail-

DWP* 8: 1 The DWP (data-word parity) bit, when 
able signal during a 

set, indicates that a data word containing 
read operation. 

even parity was received from the 

requestor. 0010 Checker/Generator-

indicates that an 
STB* 7:1 The STB (data-strobe) error bit when error had occurred 

set, indicates that the MCM has in the MCM Parity 
detected an error in the number of words Checker /Generator 
sent by a requestor during a multiple (data) circuits. 
word transfer. 

2B* 6:1 A 2B (2-bit) error, when set, 

indicates that the MCM detected a 

(non-correctable) multiple bit error 0011 Address Residue-
from the MSU. If this error occurs, indicates that either 
the data transfer to the req uestor is a bad address residue 
completed. was detected in the 

Control Word 

received from a 

requestor, or was 

lB 5: 1 A 1B (I-bit) error, when set, generated by the MCM 

indicates that the MCM detected a Address Counter 

(correctable) 1 bit error from the during a multiple word 

MSU. transfer operation. 

INT* 4: 1 The INT (internal) error bit, 

when set, indicates an error 0100 Configuration Error-

occurred within the MCM or MSU. indicates that the MSU 

This error is further defined by bits 3:4. status register contains 

either 0 or 3 MSUs 

available, which is 

illegal. 

INT ERR 3:4 The internal error type bits 

TYPE define the type of internal error 

identified by bit 4. The internal 0101 MSU Availability-

error bits are defined as follows: indicates that MSUs 

actually available does 

not agree with the MSU 

Fail Word Bit Error Type status register. 

3210 

0000 Sector Busy - indicates 

that the selected sector 0110 Data transfer control 
for this -iperation (DTC) Failure-
remained unavailable indicates that a fail-

past a preset time ure occurred in the 
limit. DTC circuit. 

so 10796-001 5-1-7 



Memory Address Limits Word 

The memory address limits word changes the 
MCM and MSU configuration to reflect the number 
of MSUs available to the MCM as well as the upper 
and lower address limits. This word follows the spe­
cial request signal and the memory address limits 
load word during memory control operations be­
tween the MCM and requestor. The format, bits, 
and fields of the memory address limits are de­
scribed below. 

For model II MCM: 

Field Bits Description 

PARITY 51:1 The MCM examines the memory 

address limits word for odd parity. 

50:35 Unused. 

ALL 15:6 The address lower limit is the 

most significant 6 bits of 

the lowest 20-bit memory 

address available to this MCM. 

AUL 9:6 The address upper limit is the 

most significant 6 bits of the 

highest 20-bit memory address 

available to this MCM. 

AV4 3:1 When AV4 isa "l", MSU-2, 

sectors 4-7 are available to this 

MCM. 

AV3 2:1 When A V3 is a "l ", MSU-2, 
sectors 0-3 are available to this 

MCM. 

AV2 1:1 When AV2 is a "l", MSU-1, 

sectors 4-7 are available to this 

MCM. 

5-1-8 

Field 

AVl 

Bits 

0:1 

For model III MCM: 

r---

Description 

When AVl is a "l'', MSU-1, 

sectors 0-3 are available to this 

MCM. 

i PAR : ~ WER AVI AY4 

I _ .!!.J 47 43 39 JS 3l 27 23 19 15 11 7 l 

LI MIT AY7 AY3 
50 41 q 31 3' 30 ZI 22 11 14 ID • : 

UPPER AV& AY2 

49 45 41 37 31 ZI 25 21 17 13 I 5 l 

LI MIT AV5 AVl 
41 44 40 31 32 21 24 2D 11 12 • 4 ..... 

Field Bits Description 

Parity 51 :1 The MCM examines the memory 

address limits word for odd memory. 

Address 19:6 The address lower limit is the most 

Lower Limit significant 6 bits of the lowest 20-bit 

memory address available to this 

MCM. 

Address Upper 13:6 The address upper limit is the most 

Limit significant 6 bits of the highest 

20-bit memory address available 

to this MCM. 

AV8 thru AVl 7:8 Eight bits for MSU availability. 

Memory Requestor Inhibits Word 

The memory requestor inhibits word loads the re­
questor inhibit register with new data to indicate 
which requestors now have access to the MCM. 
This word follows the special request signal and the 
memory requestor inhibits load control word during 
memory control operations between the MCM and 
requestor. The format, bits and fields of the memory 
requestor inhibits word are described below. 



fPARiTY 
I 51 47 4.1 39 

($0 46 42 38 

Field Bits 

PARITY 51: 1 

50:44 

R17 7:1 

Rl6 6:1 

R16 5: 1 

Rl4 4:1 

Rl3 3:1 

Rl2 2:1 

Rll 1:1 

RIO 0:1 

5010796-001 

Description 

The MCM examines the requestor 

inhibit word for odd parity. 

Unused 

When bit Rl 7 is a "l ",the 

requestor who is designated 

requestor 7 is inhibited from access 

to the MCM. 

When bit R16 is a "l ",the 

requestor who is designated 

requestor 6 is inhibited from access 

to the MCM. 

When bit Rl5 is a "l '',the 

requestor who is designated 

requestor 5 is inhibited from access 

to the MCM. 

When bit R14 is a "l '',the 

requestor who is designated 

requestor 4 is inhibited from access 

to the MCM. 

When bit Rl 3 is a "1 '',the 

requestor who is designated 

req uestor 3 is inhibited from access 

to the MCM. 

When bit R12 is a "l ",the 

requestor who is designated 

requestor 2 is inhibited from access 

to the MCM. 

When bit Rll is a "l '',the 

requestor who is designated 

requestor 1 is inhibited from access 

to the MCM. 

When bit RIO is a "l '',the 

requestor who is designated 

req uestor 0 is inhibited from access 

to the MCM. 

SIGNAL INTERFACE BETWEEN 
REQUESTOR, MCM, AND MSU 

The control and information flow between the re­
questor. MCM. and MSU is described in the fol-
lowing paragraphs and shown in figure 5-1-3. • 

Signal Interface Between MCM 
and Requestor 

1. Data and Parity. Data and parity are transferred 
between a requestor and an MCM via a unique set 
of 52-bidirectional data lines. These lines are also 
used for the transmission of the control word. 

2. Special Request Signal (RQSN). A special re­
quest signal (RQSN) is used by a CPM to gain ac­
cess to a memory control module (regardless of the 
state of the requestor inhibits register). The RQSN 
signal goes true in coincidence with the request sig­
nal (REQ) whenever a memory address limit load or 
requestor inhibits load operation is performed. 

3. Request Signal (REQN). A request signal 
(REQN) is sent by a requestor to select a specific 
MCM. REQ goes true one clock period prior to the 
request strobe (RSTB) and remains true until the re­
ceipt of an acknowledge signal (ACK) from the 
MCM. 

4. Data Strobe Signal (DSTB). A data strobe sig­
nal (DSTB) is sent to inform the MCM that data is 
to be transmitted over the data lines. The signal is 
used only in the N-length overwrite and the N-word 
protected write operations. The data strobe precedes 
the data word by one clock and its width indicates 
the number of data words following it. 

5. Request Strobe Signal (RSTB). A request 
strobe signal (RSTB) is sent to inform the MCM that 
a control word is being transferred over the data 
lines. It is true initially one clock period following 
the start of the request signal (REQ). The control 
word is transmitted in coincidence with the request 
strobe. 

a. For single word protected write and single 
word overwrite: the request strobe (RSTB) 
will cycle true and false during successive 
clock periods. During the false period, the 
data word to be stored is placed on the data 
lines. 

b. For all other operations: the request strobe 
(RSTB) is true one clock period following 
the request signal (REQN) and remains true 
until the acknowledge signal (ACK) is re­
ceived. 

6. Data Available Signal (DAV). A data available 
signal (DAV) is transmitted to the requestor to indi­
cate that data is available and will be transmitted in 
the following clock period. 

7. Acknowledge Signal (ACK). An acknowledge 
signal (ACK) of one clock period duration is sent to 

5-1-9 



• 
• 

the requestor to signify that the MCM has accepted 
the control word and is processing the request. 

8. Send Data Signal (SND). A send data signal 
(SND) is sent to the requestor during an N-length 
overwrite and may be sent during an N-word pro­
tected write. The send data signal indicates the num­
ber of data words that must be transmitted to the 
MCM. The number of words to be transmitted is 
equal to the number of clock periods the send data 
signal is true. 

NOTE 
The send data signal will not be trans­
mitted if an attempt is made to write 
into a protected area during an N-word 
protected write. Also, the number of 
data words requested by the MCM 
must be transferred before a requestor 
ends operation. 

9. Data Present Signal (DAPB). Signal DAPB is 
sent to the requestor to indicate that a valid data 
word (or words) is being transmitted from the MCM. 
The DAPB is transmitted in coincidence with the 
data word. A word is transmitted each clock period 
that the DAPB is true. 

WRITE DATA 

READ DATA 

ADDRESS 

INITIATE SECTOR 

READ SECTOR START LOAD 

READ SECTOR START 

READ AVAILABLE 

10. Requestor Operation Complete Signal 
(RQOC). The MCM sends a one clock period re­
questor operation complete signal (RQOC) to signify 
the end of the requestor's part of the memory 
operation. The following variations apply: 

a. Single or N-length fetches; single word 
overwrite with flashback: the RQOC is sent 
coincident with the final clock period of the 
data present signal (DAPB). 

b. Single word overwrite; N-length overwrite 
or N-word protected write: the RQOC sig­
nal is sent following the check of parity on 
the final data word received by the MCM. 

c. Single or N-word protected write: The 
RQOC signal is sent with or following 
F ALS signal if word(s) are protected in N­
word protected write. 

d. Single word overwrite without flashback: an 
RQOC is generated following the check of 
parity on the data word received by the 
MCM. 

11. Address Upper Limit. The address upper limit 
is the most significant six bits of the highest 20-bit 
memory access available to this MCM (the least sig­
nificant 14 bits are assumed to be "l's"). 

DATA AND PARITY 

SPECIAL REQUEST 

REQUEST 

DATA STROBE 

REQUEST STROBE 

DATA AVAILABLE 

ACKNOWLEDGE 

SEND DATA 

MEMORY 
BUSY 

MEMORY DATA PRESENT 
STORAGE 

READ WRITE M'ODE 
CONTROL REQUESTOR 

UNIT MODULE 
REQ. OPER. COMPL. 

WRITE STROBE 
ADDRESS UPPER LIMIT 

REFRESH REQUEST 
ADDRESS LOWER LIMIT 

REFRESH ALLOW 
REQUESTOR ENABLE 

MSU AVAILABLE 
MCM ENABLE 

MODE 

READ SECTOR COUNT 
FAIL 1 

COUNT MOST SIGNIFICANT 

ET1261 

Figure 5-1-3. Requestor-MCM-MSU Interface 

5-1-10 



12. Address Lower Limit. The address lower limit 
is the most significant six bits of the lowest 20-bit 
memory address available to this MCM (the least 
significant 14 bits are assumed to be"O's"). 

13. Requestor Enable Signal. The MCM sends to 
the requestor an enable signal which is used under 
the following conditions to enable or disable commu­
nications between the MCM and the requestor: 

a. Whenever the MCM is ·power cycling up or 
down. 

b. Whenever the appropriate requestor inhibit 
FF is set. 

14. MCM Enable Signal. The requestor sends to 
the MCM an enable signal which is used to enable 
or disable communications between the requestor 
and the MCM. This signal is a steady state signal 
which disables communications whenever the re­
questor is power cycling up or down. 

15. Failure Interrupt 1 Signal (FALl). The MCM 
transmits a one-clock period FAIL 1 interrupt signal 
to the requestor if any of the following errors occur: 

a. Control word parity 
b. Illegal operation code 
c. Wrong MCM 
d. Data strobe error 
e. Two-bit error 
f. Internal error 

7. Busy. The MSUs signal to the MCM whether 
the sectors are busy or idle. 

8. Read Write Mode. When high indicates to the 
MSU that a write operation is to be performed, and 
when low indicates that a read is desired. 

9. Write Strobe. These signals strobe the data 
from the MCM into the write register of the desig­
nated sector. 

10. Refresh Request. A signal to. the MCM to indi­
cate that a refresh cycle is required. 

11. Refresh Allow. A control signal that informs 
the MSU(s) that a refresh cycle can be performed. 

12. MSU Available. This signal indicates to the 
MCM that power is up in the MSU. 

13. Count Most Significant. This signal allows the 
most significant bit of the sector address to be 
counted, which allows eight-word phasing. 

14. Mode, Read Sector Count (RSC). These con­
trol signals are sent to the MSU to enable an eight­
megahertz operation in the MSU. 

DEFINITION OF MCM 
OPERATIONS 

The various MCM operations are briefly described 
in the following paragraphs. 

1. Data Word Fetch (Single or Multiple Word). 
This operation is a standard fetch of data. If a multi­
ple word fetch is initiated, the data words are trans­
ferred to the requestor at the clock rate and within 
the limits discussed previously. The MCM fail register will then be loaded 

with information to facilitate error analysis. 

Signal Interface Between MCM 
and MSU 

2. Fail Word Fetch. This operation is a fetch of 
I the fail register within the MCM. The fail register is 

cleared as a result of this operation. 

1. Write Data and Read Data Lines. The data 
lines are comprised of one overall parity bit, seven 
check bits used in single bit error correction, a 
parity bit on just the data word, and a 51-bit data 
word passed to and from the requestor. 

2. Address Lines. These lines are used to transfer 
a 14-bit address to the MSU to specify the RAM 
(random access memory) chip locations to be access­
ed. 

3. Initiate Sector. This group of control signals is 
sent to the MSU to start either a read or write oper­
ation. 

4. Read Sector Start Load. This control signal 
loads the starting sector number into the read sector 
address register within the MSU. 

5. Read Sector Start. These signals are the three 
bit binary sector starting address of the operation. 

6. Read Available. The read available informs the 
MCM of the availability of the data from the se­
lected address. 

5010796-001 

3. Single Word Overwrite with Flashback. This 
operation is a standard write/read operation. The 
data from the requestor is written into the addressed 
location. The original data read out of the address 
location is transferred back (or flashed back) to the 
requestor. 

4. Single Word Protected Write (with/without 
flashback). This operation is a conditional write of 
data into memory. The data word transferred by the 
requestor is written into memory only if the address 
is not protected (i.e., bit 48 of the original word is 
"0"). The requestor may -indicate whether he re­
quires flashback; however, the MCM will uncondi­
tionally flash back data to the requestor. 

5. Overwrite (Single or Multiple Word). This oper­
ation is a standard write of data into memory. If the 
operation is an overwrite, the rate of data transfer to 
the MCM will be controlled by the MCM. 

6. Multiple Word Protected Write (l>N>4). This 
operation is a conditional write of data into memory. 
The data is written into memory as long as none of 

5-1-11 

• 



the addresses are protected (i.e., bit 48 = 0 for 
each address). The requestor will transmit the data 
only upon request of the MCM. The MCM will 
transmit a Fail S signal to the requestor if any of the 
addresses were protected, and it will unconditionally 
flashback data to the requestor. 

7. Load Requestor Inhibit Register. This operation 
is similar to a single word overwrite with the excep­
tion that the data word is transferred to the reques­
tor inhibit register instead of to the MSU. The state 
of the requestor inhibit register determines which re-

3. Control Word Register. A 52-bit register used 
to contain the control word transmitted by the re­
questor. 

4. Output Register. A 52-bit register used to buffer 
data words that are being transmitted to a requestor 
during a fetch operation. The output register also 
contains the bit correction logic required to correct 
one-bit errors detected by the error correction logic. 

Error Detection Logic 

questors may communicate with the MCM. The error detection logic detects errors in reques-
8. Load Memory Limit. This operation is similar tor and MSU data and control interface; detects mul-

to a single word overwrite with the exception that tiple bit errors; corrects one-bit errors that occur in 
the limits field within the data word is transferred to the MSU during a fetch operation; and detects an in-
the memory limit register instead of to the MSU · temal error if a failure occurs in the check/generator 
The memory limits consist of the lower a~d upper logic. 

~;~ymt~~o..Jc~~resses and the MSUs available for 14K and 16K MSU OPERATIONS 

MCM LOGIC FUNCTIONS The 4K and 16k MSU performs the following op-

The basic logic functions of the MCM are priority 
resolution, data transfer and control, and error pro-

• tection. (See the block diagram in figure 5-1-4.) 

Priority Resolution Logic 

Priority resolution logic controls communications 
between each requestor and the MCM. Lower num­
bered requestors are given the highest-priority ac­
cess into memory. Only those requestors selected by 
the state of the requestor inhibit register are allowed 
to be serviced by the MCM. The exception to this 
rule is that through the use of the special request sig­
nal, CPMs are able to override the state of the re­
questor inhibit register. A requestor is not serviced 
if the requestor interface has failed so that other re­
questors are not locked out. The highest priority re­
questor is prevented from obtaining consecutive 
service if a lower priority requestor is waiting to be 
serviced. 

Data Transfer And Control Logic 

The data transfer and control logic provides the 
sequential control signals required to route the data 
through the four main data registers (input, output, 
control word, and memo1y buffer registers). A brief 
description of these registers is provided below: 

1. Input Register. A 52-bit register used as a tem­
porary buffer register for control words and data 

erations: 
I. Read Cycle. The MSU reads out data (nonde­

structively) from the memory address defined by the 
MCM and places the data on the bus to the MCM . 

2. Write Cycle. The MSU accepts information 
from the MCM and stores it into the addressed loca­
tion. 

3. Refresh Cycle. The MSU refreshes all eight 
sectors simultaneously on receipt of a refresh allow 
signal from the MCM. 

Each MSU contains 128K words of 64 bits each 
arranged into ~ight separately controlled, independ­
ently operated storage sectors of 16K words. 

Each of these sectors is multiplexed in sequence 
(starting at any one of eight sectors) to perform ei­
ther a read or write operation. Read data from the 
sectors is sequentially transmitted from a starting 
sector over the read data bus via a read data output 
register. Write data is sent over a write data bus to 
the sectors within the MSU. The sectors share the 
following: 

1. Address bus -14 bits 
2. Write data bus -64 bits 
3. Read data bus -64 bits 
4. Read data output register -64 bits 
5. Read data multiplexer -64 bits 
6. Read sector counter -three bits 
7. Refresh mechanism. 

words received from memory. I 4K MSU LOGIC FUNCTIONS 
2. Memory Buffer Register. A 60-bit register used 

as a temporary buffer register for data words trans- . . . 
ferred to or from MSUs. During a fetch, the fail reg- The basic logic functions of ~he 4K M~U are:. d~ta 
ister information, except bit FR51, is transferred to transfer and control, data register/multiplex, t1m10g 
th bufti r r 'ster before being placed in a~d addr~ss, refresh, and storage area. (See block 
the metmotry . te egt • diagram 10 figure 5-1-5.) e ou pu reg1s er. 

5-1-12 



MSU INTERFACE 
RECEIVER/DRIVER 

MSU INTERFACE 
RECEIVERS/DRIVERS 

ICONTAOLI I ADDRESS & REFRESH I 

MSU INTERFACE 
RECEIVERS/DRIVERS 

!DATA) 

REFRESH 
REQUEST 

ET1102 

REFRESH ALLOW 

REFRESH REQUEST 

REFRESH 
ENABLE 

MSU 
CONTROLS 

GENERAL 
CONTROLS 

OPERATION/ADDRESS 

PRIORITY 
RESOLVER 

MEMORY 
LIMITS 

REGISTER 

FAIL REGISTER 

CONTROL 
WOAD 

REGISTER 

MEMORY BUFFER REGISTER 

INPUT 
REGISTER 

SWITCHING INTERLOCK 
RECEIVERS/DRIVERS 

GENERATED CHECK BITS 

ERROR 
DETECTION 

AND 
CORRECTION 

INTERNAL ERROR 

ONE-BIT ERROR 

TWO-BIT ERROR 

INPUT-PARITY ERROR 

CORRECT BIT IXXI 
PARITY BIT 

OUTPUT 
REGISTER 

Figure 5-1-4. Memory Control Module Block Diagram 

Data Transfer and Control Logic 

The data transfer and control logic provides the 
buffers and latches required to interface the data and 
control signals between the 4K MSU and MCM. A 
brief description of these logic areas is given below: 

I. Data 1/0 logic. This logic contains write data 
buffers, final read data latches and read data cable 
drivers for transferring data words to or from MCM. 

5010796.001 

2. 1/0 Control logic. This logic latches the inter­
face controls necessary to enable write data to the 
requested sector in storage. to enable read data from 
the gating. row decoding and address multiplexing 
circuits. The write or refresh operation. 

3. Address Input logic. This logic is used to buffer 
a 14-bit address word from the MCM. 

5-1-13 



'f' -' -~ MCM 
INTERFACE 

CONTROLS 110 
CONTROL REFRESH 

CONTROL SECTORO 

I .. 1 I ' I ADDRESS 
STORAGE 

BD 
SS--48 

STORAGE 
BD 

47--40 

STORAGE 
BD 

39--32 

STORAGE 
BD 

31--24 

ADDRESS 

CONTROLS 

WRITE DATA 

ADDRESS 
INPUT 

110 
CONTROL 

WRITE STROBES 

READ CTR SIGNALS 

DATA 
110 

READ DATA 

EP1228 

NOTES 

1. 64 STORAGE BOARDS; EACH OF 
WHICH IS 16K X 8 BITS. 

2. 16 DR/MPX BOARDS, EACH OF WHICH 
LATCHES4 BITS. 8 SECTORS OF 
READ AND WRITE DATA. 

3. FOR B7800/B7700 CONFIGURATIONS, 
ONLY A60BIT WORD IS STORED IN 
THE MSU. AS A RESULT, STORAGE 
BOARD BITS 60 THRU 63 ARE NOT 
USED. 

4. 3 DATA 1/0 BOARDS. 
5. 1 1/0 CONTROL BOARD. 

TARO 
CONTROLS 

TARl 

TAR2 

TAR3 

TAR4 

TARS 

TAR& 

ADDRESS 

TAR7 
CONTROLS 

READ DATA 
CONTROL 
SIGNALS 

DR/MPX 

+ 
SEC,OR 1 

SECTOR2 

I 
SE10R3 

SECTOR4 

I 
SECTORS 

I 
SECTOR& • 

SECTOR7 

STORAGE 
BO 

55--48 

STORAGE 
BO 

47--40 

STORAGE 
BO 

39--32 

STORAGE 
BO 

31--24 

64 BITS (WRITE), 8 SECTORS (512 LINES) 

64 BITS (READ), 8 SECTORS (512 LINES) 

Figure 5-1-5. 4K Memory Storage Unit Block Diagram 

STORAGE 
BD 

23--16 

STORAGE 
BO 

23--16 

STORAGE 
BD 

15--08 

STORAGE 
BO 

15--08 

STORAGE 
BD 

07--00 

STORAGE 
BO 

07--00 



Data Register/Multiplex Logic 

Sixteen data register/multiplex (DR/MPX) logic 
boards are contained in the 4K MSU. Each board 
latches four bits of write data for each of the eight 
sectors and then multiplexes data of selected sector 
to the data latches in the data 1/0 logic. 

Timing and Address Logic 

Timing and address (TAR) logic is provided for 
each sector. The logic is used to generate timing and 
to latch a 14-bit address word for its sector. The tim­
ing section generates various control signals required 
to perform a read, write or refresh cycle for the se­
lected sector. The address word is routed to chip ad­
dress and row select circuitry on the eight associated 
IC storage boards. 

Storage Area 

The storage area is composed of 64 storage 
boards. Each storage board contains a four by eight 
array of 4Kxl RAM (random access memory) chips. 
In addition to these RAM chips, each board contains 
write data buffers, read data gating, row decoding 
and address multiplexing circuits. The address from 
TAR is separated into two addresses: 

I. Address bits 0 through 11 are used as chip ad­
dresses to select one of 4K bit locations in each of 
the chips. 

2. Address bits 11 and 12 are used as a row ad­
dress to select one of the four rows of chips. 
Each row contains eight RAM chips. Each RAM 
chip is organized as a 64 row by 64 column array 
and is addressed by a chip row address (6 bits) and 
a chip column address (6 bits) respectively. 

Refresh Logic 

The refresh logic is enabled by refresh allow from 
the MCM. If sectors 0 through 7 are not cycling, a 
refresh address is accepted by the eight TAR circuits 
to initiate a refresh cycle. During a refresh cycle, all 
four chip rows are enabled by a refresh signal. This 
refresh signal enables all 32 RAM chips to do a re­
fresh in the locations specified by the chip row ad­
dress. When the RAM chip is in refresh cycle, the 
entire 64 column (or bits) of the selected row is re­
freshed. Because the RAM chip has 64 rows, 64 re­
fresh cycles are required to refresh the entire storage 
board or the entire memory. as all sectors (0 through 
7) are enabled during a refresh cycle. 

5010796-001 

16K MSU LOGIC FUNCTIONS 

The basic logic functions of the 16K MSU are: 
data transfer and control. timing, address and re­
fresh, and storage. (See block diagram, figure 5-1-6.) 

DATA TRANSFER AND CONTROL 
LOGIC 

The data transfer and control logic provides the 
buffers and latches required to interface the data and 
control signals between the 16K MSU and MCM. A 
brief description of these logic areas follows: 

I. Data 1/0 logic. This logic contains write data 
buffers. final read data latches and read data cable 
drivers for transferring data words to or from the 
MCM. 

2. Control 1/0 logic. This logic latches the inter­
face controls necessary to enable write data to the 
requested sector in storage, to enable read data from 
the selected sector onto the read data bus, and to in­
itiate a read, write, or refresh operation. 

TIMING LOGIC 

Timing logic is provided for both the odd and even 
storage boards; it is used to generate address strobes 
and latching and enabling signals required to perform 
a read, write, or refresh cycle for the selected sec­
tor. The timing logic also controls the sector counter 
in the control 1/0 logic, and provides clocks to the 
address register board. 

ADDRESS AND REFRESH LOGIC 

The address logic accepts a 14-bit address word 
from the MCM. latches the address, and routes it to 
the even or odd storage boards, as determined by 
the timing logic. The refresh logic is enabled by a re­
fresh allow signal from the MCM. The column and 
row addresses are multiplexed by the address regis­
ter board for application to the RAM chips on the 
storage boards. 

STORAGE LOGIC 

The storage logic consists of 16 storage boards, 
each of which contains a four-by-eight array of 16K 
x I RAM (random access memory) chips. In addition 
to these RAM chips, each board contains read and 
write data latches and read data output multiplexers. 
The 14-bit address from the address register is ap­
plied in two seven-bit segments to the selected stor­
age boards (row address first, followed by column 
address). When a refresh cycle is performed. the 
row address strobes are sent to all eight sectors of 
the memory and the column addresses are not used. 

5-1-15 



Y' -' -°' 
MCM 

INllA,ACl 

I 

I 
I 

I 
I 
I 
I 

CONlROLS CONlROL 
110 

WllllE STROBES. READ CTR SIONALS (EVEN) 

TIMINO 
EVEN 

REFRESH 
CONlROL 

CONTROLS 
SlORAOE BOARDS (EVEN) 

u---w111---.. 147---<01l1--12u1---u1n--111ts---oalor---oo 

I I I •I I ADDRESS I ( ,. ) I 

ADDRESS 
RlO. ADDRESS (000) 

£11111 

TIMING 
ODD 

CONTROLS 

lllORAOE BOARDS (000) 

WRllE STROBES. READ CTR SIGNALS (ODDI 
\ •lu--w1n--u1u--.001311--12131-2•1n--11111--oe101--oo 

I I I I I I I I 

WRlll DATA 

A£AO DATA 

HOT£: 
'OA I T.00/I noo CONFIOURA­
TIONS, A eo-an 'WORD IS STORED 
IN Tl<E MSU. THEREFORE, 
ITORAOIE IOARO ins 60 
THAU 13 ARE NOT USED. 

DATA 
110 

READ DAl A (ODO) 

READ DATA !EVEN) 

WRrTE DATA 

Figure 5-1-6. 16K Memory Storage Unit Block Diagram 



CHAPTER 6 
MAINTENANCE 

DIAGNOSTIC PROCESSING 

INTRODUCTION 

Maintenance diagnostic processing (MOP) is a pro­
grammatically controlled maintenance system which 
is part of the B 7800 Master Control Program. The 
programs provided by MOP perform the following 
operations: 

1. Real-time static and dynamic testing of the 
B 7800 mainframe modules (CPM, IOM, and 
MCM.) 

2. Verification and diagnostic testing of the B 7800 
logic cards. 

3. PROM programming and verification 
operations. 

These programs can be run in the mix along with 
user programs. 

The hardware portion of the MOP is structured to 
allow any CPM to interface with any other module 
(CPM, IOM, or MCM) or the PROM programmer 
and card test facility in order that the module and 
PROM programmer and card test facility can 
execute the MOP operations. 

In addition to system MOP, a maintenance pro­
cessor (MP) is provided to perform the same 
maintenance operations as the system MDP. 
Whereas, the system MOP makes use of an on-line 
CPM to test an off-line module, the MP is used off 
line to test a module and operate the PROM pro­
grammer and card test facility. 

The MP is completely independent of the B 7800 
operating system. The source of the master control 
program, MOP data base, and MOP test programs 
for the MP consists of dedicated disks and magnetic 
tape systems. The MP forms a central testing facility 
which is permanently connected by use of a mainte­
nance bus to the MDP hardware of a CPM. 

An important capability of the MOP, allows the 
field engineer to perform any module panel operation 
from the supervisory display console or to develop 
special test operations for use in testing of module 
functions. This type of testing is established by use 
of the module interrogation and command interpreter 
(MICI) program, thus providing the field engineer 
with an additional aid in isolating the failed logic. 

5010796-001 

The MICI program uses the MOP hardware circuitry 
of the B 7800 system as the MOP software, but is 
run independently of the MOP software controls. 

In addition to the module testing capabilities, the 
MOP provides the facility for producing a formatted 
printout of the CPM and IOM operations. This print­
out, commonly known as a panel dump, is useful in 
analyzing module operation at time of failure. 

MOP CONFIGURATION 

As shown in figure 6-1-1, the CPMs and MP are 
interconnected via a maintenance bus. The IOMs 
and MCMs are interfaced with the CPMs via parallel 
buses through distribution cards to a common daisy­
chain bus. Each CPM contains up to four distribu­
tion cards, each of which can drive two modules. 

The maintenance test logic (MTL) of the CPM is 
connected with the MOP via a foreplane cable from 
a master distribution card (MDC) to the MTL con­
trol interface card (MTLCIN), as shown in figure 6-
1-1. The MDC card is interfaced with maintenance 
bus through an interface control card (MCIC). This • 
same card is interfaced with IOMs and MCMs by 
means of distribution cards. It is over these paths 
that MOP sends data and instructions between 
various combination of modules. 

The card tester and PROM programmer are 
housed in a maintenance console. Included in the 
maintenance console is a supervisory console display 
for use in the operation of the MP system. The 
maintenance console is interfaced with a CPM in the 
same manner as an IOM and MCM. 

MOP OPERATIONS 

All MOP operations are performed by use of the 
B 7800 operators SPRR 29 and RPRR 29 and are de­
fined by a software-constructed control word. This 
control word is transferred as literal data to the I 
MDC card of a CPM. 

Any operation in which data information is re­
turned from the module under test requires a RPRR 
29 operator to transfer the data from the MDC card 
to the top-of-the-stack. 

6-1-1 



9' -N 

CPM CPM 
MAINTENANCE CARD PROM 

PROCESSOR TESTER PROGRAMMER 

Ll l I l l 1 L1 11 I I I 1 
M M D D D D M M M D D D D M 
T D I I I I c T D I I I I c 
L c s s s s I L c s s s s I MOP MAINTENANCE 
c T T T T c c T T T T c DDP PROCESSOR CONSOLE 
I I 
N N 

1 MAINTENANCE BUS J l J 

l 
M M M M 
T T T T 
L L L L c c c c 
I I I I 

IOM N IOM N MCM N MCM N 
I....- ............, ............, i...-...i 

ET1269 

Figure 6-1-1. Typical MOP Configuration 



The format of the control word is shown below. 

OP: 

1 
5 

RFE: 
GROUP: 

OP 
14) 

1 1 1 
2 1 0 9 7 6 0 

RFE GROUP ROW ADDRESS 
(2) (3) (7) 

Specifies the operation that is to be performed. 

Reserved for expansion. 

Indicates a particular group within a row. 

0 = bits 00 - 09 

I = bits 10 - 19 

2 =bits 20 -29 

3 = bits 30 - 39 

4 =bits 40-49 

5 = bits 50 - 51 

ROW ADDRESS: Specifies a panel row address. 

Other fields used with various operations are defined as follows: 

MID: When a module ID needs to be specified (bits 4 :5). 

1 1 

r OP t><l MID 1 
OP= 7 

MID = module ID 

0 - 7 = Requestors (CMP/IOM) 

8- 15 = MCM 

16 =PROM programmer 

17 = card test 

Next an RPRR 29 is executed to determine if the 
bus has been captured. A Boolean 1 returned indi­
cates that the bus has been captured. A Boolean 0 
means that the bus has not been captured and the 
software must loop back to the SPRR 29 until the 
capture has been accomplished. Failure to perform 
this read will cause an error to be generated. 

COUNT: When a value has to be given with the operation (bits 6:7). Bus Release Operation 

The following three MDP operations, which are 
transferred as a control word to an MDC card in a 
CPM, enable the module under test to execute the 
operation. 

1. Bus operations. 
2. Data type operations. 
3. Control type operations. 

The following paragraphs describe each MDP 
operation. 

Bus Operations 

Because modules are connected to a common 
MOP bus and can be configured as a split system, 
the software performs a special bus request 
operation, prior to initializing normal MDP func­
tions. This bus request operation eventually results 
in capturing the bus for use in testing a module or 
in operating the PROM programmer and c-ird test fa­
cility. The bus remains captured until explicitly re­
leased by the MDP program. 

While an MDP program is testing a module, the 
bus is available for other maintenance operations, 
such as card testing. To accomplish this, each MDP 
program is periodically time-sharing the bus while it 
is executing an operation. 

Bus Request Operation 

To capture a specific module onto the bus, a 
SPRR 29 followed by a request control word is per­
formed by the MDP. The control word format for a 
bus request is shown below. 

To release the bus, a SPRR 29 followed by a re­
lease control word is performed by the MDP. The 
control word format for a bus release is shown be­
low: 

1 1 1 
5 2 1 0 

I OP c><J 
OP= 15 

Data Type Operations 

All data type operations (fetch, store, and transmit 
data) are performed or initialized by transferring an 
MDP control word to the MDC card of the CPM. 
This transfer is accomplished by executing a SPRR 
29 followed by a control word as the argument. Any 
operation, which results in a return of data from the 
module under test, requires a RPRR 29 to transfer a 
ten bit data word from the MDC card to the top-of­
the-stack. 

Fetch Operation 

The fetch operation is used to fetch a range of flip­
flops in a module. The fetch occurs in ten-bit groups 
in sequential group order. 

The instruction sequence requires the operation to 
be initialized with a single SPRR 29 to transfer the 
control word, followed by an RPRR 29 for each 
group to be fetched. The control word address fields 

6-1-3 



can have any start address, but would normally be 
initialized to 0. Software must keep count of the 
groups transferred in order to identify the groups as 
they are fetched, but can terminate the operation at 
any time by initiating a new operation. All fetched 
data is returned to the top-of-stack as a ten-bit right­
justified operand. Sequencing of ad?resses pro_ceeds 
by counting the group address until group 5 is ob­
tained at which time the group address resets to 0 
and the row address is incremented. 

The control word format for a fetch operation 1s 
shown below: 

1 
5 

1 1 1 

OP 

OP= I 

GROUP= starting group (binary) 

ROW ADDRESS 

ROW ADDRESS= starting row (binary) 

Store Operation 

0 

The store operation is used to store a range of ten­
bit data words to a group of ten contiguous panel 
flip-flops within a module under test. Only binary l's 
can be stored; therefore, flip-flops can only be 
cleared to O's with a module clear or a row clear op­
eration. 

Store is similar to fetch with respect to address se­
quencing. The control word contains the address of 
the first group to be stored. All following SPRR 
words contain a ten-bit data word. Software must 
record the number of groups stored to determine the 
termination point of the operation. All data is stored 
as a ten-bit right-justified operand. The data is not 
transferred to the module under test when the SPRR 
29 of a store op code is executed. Data is transferred 
to the MDC logic and subsequently to the module 
under test when the SPRR, 29 followed by XMIT 
data control word is executed. 

The control word format for a store operation is 
shown below: 

r 

6-1-4 

1 1 1 

OP ROW ADDREES 

OP= 6 

GROCP =starting group (Q - 5) (binary) 

ROW ADDRESS= starting row (binary) 

0 

XMIT Data Operation 

When the MDC card receives an operation code of 
6 (STORE OP), the subsequent XMIT DATA 
operations cause the least significant ten bits of the 
top-of-stack to be loaded into the MDC card and 
transmitted to the module under test. If the MDC 
card does not receive a STORE OP when the XMIT 
DAT A op code is issued, then a fail interrupt will be 
generated. The store address is incremented on each 
XMIT DAT A operation. 

The control word format for a XMIT DAT A oper­
ation is shown below: 

1 1 
5 2 9 0 

I 
OP ~ DATA 

I 
OP= 0 

Control Type Operations 

The control type operations are used to perform 
specific module operations. These opetations are 
clear module, clear row, and issue clocks. To 
execute one of these operations, a SPRR 29 is issued 
with the control word for that operation. 

Clear Module Operation 

The clear module operation is used to initialize a 
module under test by clearing all flip-flops within 
that module. 

The control word format is shown below: 

1 1 1 

rOP
2t><:J 

OP= 3 

Clear Row Operation 

The clear row operation is used to initialize an ad­
dressed row of flip-flops by clearing all flip-flops 
within the row. 



The control word format is shown below: 

1 1 1 
5 2 1 7 6 0 

I 
OP [XJ ROW ADDRESS 

I 
OP= 5 

ROW ADDRESS = address of row to be cleared (binary). 

Issue Clock(s) Operation 

The issue clock(s) operation is used to single pulse 
a module under test by enabling a variable number 
of system 8mHz clocks to be generated. This 
operation requires that the module under test is in 
single pulse mode. 

1 
5 

OP=4 

1 1 

t~?<l COUNT I 
COUNT= number of clocks to be generated. 

MAINTENANCE PROCESSOR 

The maintenance processor (MP) is an independ­
ent maintenance system which is added to the 
B 7800 system to augment the system MDP 
operation capability. The MP performs MDP 
operations in the same manner as the CPM. 

The MP is a modular CPU in terms of subsystems 
and is configured as shown in figure 6-1-2. The es­
sential components of the MP are the firmware store 
section used for storing microprogram instructions, a 
memory used for temporarily storing test data, a 
processor used for performing operations defined by 
instructions stored in the firmware, and four 1/0 
control ports (device dependent ports, DDPs) used 
for interfacing external systems with the processor. 

Following is a brief description of the interface of 
each DDP. 

1. Maintenance diagnostic control (MDC-DDP) 
provides the data and instruction interface for main­
tenance processing operation. 

2. Magnetic tape control (MTC-DDP) provides the 
tape control interface for MDP data base. 

3. Fixed control disk (FCD-DDP) provides the 
Burroughs Super Mini Disk (BSMD) interface for 
master control program (MCP) of the MP, MDP test 
programs, and panel dump programs. 

5010796-001 

BURROUGHS 
SUPER MINI DISK 

(BSMD) 

FCD·DDP 

SUPERVISORY 
DISPLAY 

CONSOLE 

SLC·DDP 

B7800 MP CPU 
(64KB MEMORY) 

MDC·DDP 

MAINTENANCE 
BUS 

ET1270 

MTC·DDP 

TAPE CONTROL 
TAPE 

DRIVES 

Figure 6-1-2. Maintenance Processor Configuration 

4. Single line control (SLC-DDP) provides the su­
pervisory console display interface for operation of 
the maintenance processing system. 

By use of the supervisor display console, the field 
engineer can request the system supervisor to 
execute the appropriate MP operating mode. Once 
an MP operation mode is executed, that mode has 
control of the system until it is completed. Only cer­
tain specified supervisor commands can supersede 
an MP operating mode. 

MP Operating Modes 

The MP may be operated in one of 11 modes as • 
follows: 

I. Test mode. This causes the MP to capture the 
specified module and execute the indicated test 
on the designated device. If tape is used, the 
system unit number must be supplied. If the file 
is on disk, the file name is supplied. If the test 
function fails to capture the specified module, 
the field engineer will be notified and control 
will return to the system supervisor. The MP is 
not capable of removing a module from a run­
ning system. The responsibility is upon the field 
engineer to configure the module out of the sys­
tem and place it in test status. 

6-1-5 



• 

• 

2. Module panel dump mode. This causes a panel 
dump to be taken from the designated module 
and stored on MP disk. The name of the file 
must be enclosed in quotes. It is necessary to 
copy this file onto a tape to be analyzed on a 
B 7800. If a file already exists with the 
specified file name, the user is notified and the 
request is ignored. 

3. Copy mode. This transfers the files between 
MP disk and B 7800 tape. The "FROM" option 
loads files to disk from tape and the '"TO" op­
tion dumps files from disk onto tape. 

4. PROM programmer mode. This implements the 
system PROM support capabilities. 

5. Remove mode. This allows the field engineer to 
remove the specified files from MP disk. 

6. Print directory mode. This allows the field engi­
neer to request a display of the files currently 
stored on MP disk. 

7. Change mode. This allows the field engineer to 
change the name of a specified file on MP disk. 

8. Dump mode. This modifies the MP restart pro­
cedures so that a memory dump may be taken. 
Invoking this mode causes a DMPFL file to be 
created on disk. 

9. Data Reset mode. This causes the MP date 
word to be adjusted. The new date is given in 
the form MM/DD/YY. 

JO. Diskmap Update mode. This updates the sys­
tem disk map, and displays both the number 
of available sectors and the size of the largest 
available segment. 

l l. Time Reset mode. This causes the MP time 
word to be set to a new value. The new time 
is represented on input as military time (24-
hour clock). 

Supervisor Commands 

The following supervisor commands can be used 
during execution of the various MP operating modes. 

I .Discontinue command unconditionally termin­
ates the function that is being executed and returns 
control to the system supervisor. 

2. Test Option command allows the field engineer 
to display or modify test options at any time. 
The "DO" form will display the condition of 
each option. The "DO+" form will set the 
specified options and the "DO-" form will re­
set the specified options. 

3. What Date command causes the value of the 
MP date word to be displayed. 

4. What Time command, which causes the value 
of the MP time word to be displayed. 

5. What MCP command causes the version num­
ber of the system executive and of the system 
interpreter to be displayed. 

6. Why command displays the current operating 
status of the MP. 

6-1-6 

CARD TESTER 

The card tester is housed in the maintenance con­
sole along with the promburner and is connected to 
the B 7800 MOP system though the card test/PROM 
programmer distribution card in the CPM. Once the 
field engineer has located the suspected circuit card 
by use of the MOP module testing, the card tester 
can be used to diagnose and/or verify a faulty com­
ponent on the card. The essential components of the 
card tester are three card test logic boards, a card 
test fixture, and a set of test points used for testing 
logic which is inaccessible via the card connector 
pins. 

Functional Interface 

A simplified diagram of the card test data flow is 
presented in figure 6-1-3. 

The card tester is interfaced with a CPM distribu­
tion card via a 40 conductor cable. This interface 
consists of the following: 

1; Ten test data lines used for writing into the 
card test (CT) register during MDP store operation. 

2. Ten scan return lines used for returning output 
of the card under test to the MDP system during 
MDP fetch operation. 

3. Two row address lines used for selecting 50 bits 
of the 150-bit CT register. 

4. Three group address lines used for selecting a 
group of 10 bits within the addressed 50 bits of the 
150-bit CT register. 

5. Card test active line used for enabling ci.trd 
test interface logic. This line is made active by de~ 
coding of OP code 17 in the bus request control 
word. (Refer to paragraph headed Bus Operations 
for discussion of bus request control word.) 

6. CT register enable line used for enabling CT 
register output to the connector pins of the card un­
der test. 

7. Strobe line used for strobing MDP data into the 
selected bits of the CT register. 

8. Four clock mask lines used for selecting the 
card pin numbers to which clocks are to be applied. 

9. Single pulse line used for routing clocks to card 
tester. 

General Operation 

The MDP card test contains various test data pat­
terns and special instructions which are processed 
by the CPM and passed to the card tester. 

To capture card tester onto the maintenance bus, 
the MDP issues a bus request control word with an 
OP code of 17 to the CPM. When the card tester is 
captured onto the bus, the row and group address 



B·BIT DATA TO BOS 
INTERFACE CIRCUITRY 

OF PROM PROGRAMMER 

TEST DATA 
LINES FROM 
MOP. SYSTEM 

ADDRESS 
AND CONTROL 
LINES FROM 
MOP SYSTEM 

TOO 

T09 

INPUT 
DATA 
SEL. 

CONTROL 
LOGIC 

CLOCK 
MASK 
REG. 

150·BIT 
CARD 
TEST 
REG. 

T 
E 
s 
T 

F 
I 
x 
T 
u 
R 
E 

CARD 
UNDER 
TEST 

TO BOS INTERFACE 
CIRCUITRY OF PROM 
PROGRAMMER 

SRO 

SCAN RETURN 
LINES TO 
MOP SYSTEM 

I 
I 
I 
I 
I 

SCAN 
RETURN 

MULT· 
PL EXOR 

SR9 

ET1272 

Figure 6-1-3. Card Tester Data Flow, Simplified Diagram 

field of a store control word is extracted by the CPM • 
and used to enable desired address lines to the card 
tester. Then, the test data contained in the transmit 
data control word is enabled onto the test data lines. 
This data is loaded into the addressed portion of the 
CT register by the strobe interface signal. The CPM 
continues to process MDP control words until de­
sired test data is loaded into the CT register. After 
CT register has been set up, the register contents are 
applied to the card under test. 

To sample card output pins, the row and group ad­
dress field of MDP fetch control words is extracted 
by the CPM and passed to the card tester as an ad­
dress to the multiplexer. The selected card pin out­
puts are then routed through the multiplexer to the 
MDP system where pin verification process begins. 

In addition to the test data pattern capabilities, the 
MDP can supply up to 127 clocks to. specific clock 
pins on the card under test. These pins can be en­
abled to receive Clocks by setting a clock mask bit 
in the clock mask register. The clock mask bits are 
set by processing an MDP store and transmit data 
control word in the CPM. Subsequently, the CPM 

50I0796-001 

recognizes the bit value contained in the transmit 
data control word and activates the corresponding 
clock mask interface line to the clock mask register. 
Then, an issue clock control word is processed to 
enable clocks to be applied to the selected clock pin 
on the card under test. 

PROM PROGRAMMER 

Like the card tester, the PROM programmer is 
housed in the maintenance console and is connected 
to the B 7800 MDP system through the card 
test/prom programmer distribution card in the CPM. 
The PROM programmer portion of this card contains 
the necessary logic to interface between the MDP 
bus and the BDS (basic data system) backplane in­
terface of the PROM programmer, This is accom­
plished by synchronizing the MDP strobe to an inter­
nal free-running clock, performing a translation be­
tween MDP operations and BDS operations, and 
generating one cycle of a two-phase clock for each 
operation to be executed by the PROM programmer. 

Basically, the PROM programmer is divided into 
digital and analog circuitry. The digital circuitry 

6-1-7 



functions as a programmable controller for analog in figure 6-1-4. Two of these lines (PH-14C-1 and 
circuitry. The analog circuitry consists of two power PH-24C-1) are dedicated to the two-phase clock sys-
supplies, each capable of being switched on and off .tern. Two more lines (CONT4C-l and D1R-4C-1) 
to its own programmable voltage level. One voltage are enabled by decoding 2 LSBs in the MDP store 
supply provides chip supply voltage for both pro- control word for PROM programmer and are used to 
gramming and verification. The other supplies the encode the four basic control operations described 
voltage to be applied to the PROM output pin during under paragraph headed MDP/PROM Programming 
programming. Operations. One line (APRM4BRN) enables the 

Figure 6-1-4 is a simplified block diagram of the 
PROM programmer showing the general interconnec­
tions between the major components. Table 6-1-1 
contains a listing of these components and also pro­
vides the function of each component. 

Functional Interface 

There are 21 signals which interface between the 
distributor card in the CPM and the PROM program­
mer. These signals are routed through the card tester 
cards where a CTL to TTL level conversion is per­
formed, as shown in figure 6-1-3. Sixteen of these 
are data lines: eight lines each for input and output 
data. Other lines are for control purposes, as shown 

PROM programmer internal logic when it is being 
addressed by MDP bus request control word with a 
module ID of 16. 

General Operation 

The hardware of the PROM programmer has two 
functions: (1) PROM programming and (2) PROM 
verification. 

To program a PROM, the software executes a se­
quence of basic PROM programmer operations. 
Each basic operation consists of a series of BDS op­
erations, each generated by executing a strictly de­
fined set of MDP instructions. (Refer to paragraph 
headed MDP/PROM Programming Operations.) 

Table 6-1-1. PROM Programmer Components 

Component 

Command register 

and decoder 

Address register 

Parameter Registers 

1. V cc register 

2. V p register 

3. T cc register 

6-1-8 

Function 

To store and decode the OP code field 

of a PROM programmer control word. 

Component 

1. To address a panel LED after execution 
of CLEAR OP. 4. Tp register 

2. To address parameter registers for 

loading of digital programming values 

prior to LOREG command. Bit select register 

3. To supply PROM address during pro­

gramming (PROM/NOC:OP) and read 

operations. 

·Stores digital value of V cc to be applied 

to the PROM supply voltage pin during 

programming or verification. This 

digital value is in input to a D/ A con· 

verter to provide an analog voltage level. 

Stores digital value of V p to be applied 

to the PROM output pin during pro­

gramming. 

a. Stores digital value of pulse width 

of the V cc pulse to be applied to the 
PROM during programming. 

Program register 

Data output register 

Qock divider and 

selector (part of BDS 

interface logic) 

Read flip-flop 

Function 

b. Stores digital value of multiplying 

factor to be applied to both the T cc 

and T p counts. 

Stores digital value of pulse width of 

Vp pulse to be applied to the PROM 
output pin during programming. 

To drive a group of eight relays which 

connect Vp output to the PROM output 

pin to be programmed. 

To store the values of four selectable 

options during PROM bit programming. 

To store the PROM output data for 

interface to data bus. 

To divide the phase 2 clock by digitally 

selectable values of l, 8, 32, or 64 for 

use by the T cc and T p counters. 

To activate tum-on of the V cc supply 

voltage for continuous application of V cc 

to the PROM for verification. 



9' ...... 
\o Figure 6-1.4. PROM Programmer Block Diagram 



The first operation in programming is to clear the 
PROM Programmer and turn on the LED identifying 
the proper front panel socket. At this point in the 
operation, there is a pause in the software and the 
user is requested to insert the PROM in the selected 
socket and acknowledge this action by means of the 
SPO. Then the parameter registers are loaded with 
the values applicable to the particular PROM. (The 
information in these registers remains valid 
throughout the programming cycle.) 

The next operation is to load. the bit select regis­
ter. This register drives a bank of relays which con­
nect the Vp supply to the PROM output pin to be 
programmed. Because of the mechanical nature of 
these relays, the PROM is programmed by bit col­
umns (rather than by words of data) to minimize op­
eration of the relays. 

Following the load of the bit select register, the 
PROM address is loaded, and a PROG instruction 
followed by a NO-OP is issued. These instructions 
activate the timing and programming pulse 
.generation circuitry and burn the selected bit. A 
STATUS READ is performed to detect when the 
timing is complete and the programming of the next 
bit may proceed. The sequence of load address, 
PROG. NO-OP. and STATUS READ continues until 
the bit column is complete. Then the bit select regis­
ter is loaded with the next column and the addresses 
are cycled through again. This process continues for 
all output bits of the PROM until the programming 
is complete. 

To verify a PROM. the PROM data is checked for 
validity with the chip supply voltage at both its high 
and low limits. The basic sequence consists of clear­
ing the unit, loading the desired value of Vee into its 
parameter register. issuing a READ command to ap­
ply V cc continuously to the PROM. and finally. cy­
cling through the addresses to obtain the data from 
the PROM. 

MOP/PROM Programmer 
Operations 

There are four basic control operations performed 
by the BDS interface of the PROM programmer. 
These operations are set up by the processing of cer­
tain MDP control words in the CPM. The four con­
trol operations are listed below. 

I. Control Word In sequence (CWI) causes a pre­
scribed control word to be loaded into the PROM 
programmer. 

::?. Data Word In sequence (DWI) causes an eight· 
bit data word to be transferred to the PROM pro­
grammer. 

6-1-10 

3. Read Status sequence returns the low order 
data bit from the programmer to the MOP as a 
READY status condition. 

4. DATA OUT sequence returns the PROM data 
to ,the MOP system for verification purposes. 

The following paragraphs describe each operation 
and the sequence in which the MOP control words 
are executed. 

Control Word In Sequence 

To load a control word into the PROM program­
mer command register, the following two MOP con­
trol words are executed in sequence: 

I.MOP STORE 

1 1 1 1 
5 2 1 0 9 

OPTION 

7 t><J : : I I 0 1 1 0 
(STORE OP) 

The standard MDP store control word redefined, 
as shown above, causes the proper PROM 
programmer/MOP interface control signals to be gen­
erated to prepare for the loading of a control word 
into the PROM programmer command register. The 
actual loading of the control word is accomplished 
with an MDP XMIT data control word. Option 
Field: 000 or 101 - (Refer to note under paragraph 
headed Data Word In Sequence.) 

2. MDP XMIT DATA 

1 1 
5 2 

0 0 0 0 
(XMIT DATA OP) 

PROM Programmer 
Control WORD 

0 

The MOP XMIT DAT A control word following 
the MDP STORE causes the PROM programmer 
control word to be loaded into the PROM program­
mer command register. The PROM programmer con­
trol word utilizes the low order eight bits of the data 
field of the MDP XMIT data control word. 

Data Word In Sequence (DWI) 

To load a data word into a PROM programmer 
register. address register. or bit select register, the 
following MOP commands are executed in order. 
The destination register for the data is defined by the 
preceding CWI sequence. 



1. MOP STORE 

1 1 1 

The standard MOP STORE control word redefined 
as shown above causes the proper PROM 
programmer/MOP interface control signals to be gen­
erated to prepare for the loading of a data word into 
a destination register (parameter register, address 
register or bit select register) previously selected by 
the last CWI operation. The actual loading of the 
data word is accomplished with an MOP XMIT data 
control word. 

2. MOP XMIT DATA 

Execution of an MOP FETCH containing a con­
trol word formatted as shown above returns the state 
of the PROM programmer ready bit into position 0 
of the returned data word. All other bits in the re­
turned data (status) word are invalid. Only the low 
order eight bits of the returned data word are used. 

NOTE 
No more than six RPRR 29 operators 
are issued for a given fetch so that the 
low order bits of the MOP FETCH 
control word remain valid. 

Data Out Operation 

Execution of the following MOP command per­
forms an MOP read of PROM data output. This op­
eration is used to retrieve data for verify operations. 

~ ·~ ~ a 1 o MOP FETCH 

I 
0 0 ° 0 [><] DATA I 51 1 1 

. (XMIT DATA OP) - _ 2 0 g 7 6 2 1 0 

~1-0_0_0~1=---[XJ.--:--=--s-~o-o-=-o-r[><J=-----=-::r-1-1;..-,I 
The MOP XMIT data control w~rd followi!1g the (FETCH OP) 

previously defined MOP STORE will accomplish the L. ____ _._i::.__..i... __ __..JI£._ ___ ~ _ _, 

desired data load. The data field in this case is the 
low order eight bits of the standard MOP XMIT data 
control word. 

NOTE 
Many PROM programmer operations 
require a CWI followed by a DWI 
which indicates the following sequence 
of MOP commands: 
STORE - XMIT 
DATA - STORE - XMIT DATA. 

If the option field is 101, the following 
sequence of MOP commands will per­
form the same function: STORE -
XMIT DATA - XMIT DATA. 

Read Status Operation 

Execution of the following MOP command causes 
a status read to be performed. This operation is per­
formed after every load program register/NO-OP se­
quence to determine when the internal PROM bit 
burning cycle is complete so that programming of 
the next bit may proceed. 

MOP FETCH 

1 1 
5 2 

I ... , (FETCH OP) 

5010796-001 

1 1 
1 0 9 

MODULE INTERROGATION AND 
COMMAND INTERPRETER 
PROGRAM 

The module interrogation and command interpre­
ter (MICI) program allows the manipulation, control, 
interrogation, and display of B 7800 mainframe mod­
ules from a standard system ODT. MICI also has all 
the capabilities provided by the front panel switches 
of the B 7800 mainframe modules. 

Where possible the reserved names used for flip­
flop and register identification have been derived 
from the actual name of the element. MICI obtains 
these names. along with other miscellaneous data. 
from an information file titled MDP/CIF. This file • 
must be present for MICI to be able to run. Also 
contained in this file are a series of displays for the 
various modules. 

The MICI commands are grouped into three 
categories as follows: 

I. Module interrogation group. 
2. Module command group. 
3. Interpreter directive group. 

The following paragraphs describe each category 
and the various commands from which the module 
functions are executed. 

6-1-11 

• 



Module Interrogation Group 
The module interrogation group of commands 

causes the state of a module to be displayed. Avail­
able displays range from the complete module panel 

• dump which goes to the printer to a simple request 
to display only one item to the screen. The interro­
gation mode is a multi-item display set up to display 
some functional portion of the subject module. This 
display allows up to sixty (60) elements of the mod­
ule being interrogated to be displayed at a time. This 
is accomplished by dividing the last twenty (20) lines 
of the ODT screen into three equal columns, thereby 
providing sixty "slots" in which a module element 
may be displayed along with its identifier. 

Display Command 

The DISPLAY command causes the items listed 
to be displayed. If module is not specified, the de­
fault will be used. If module cannot be determined, 
a syntax error will occur. 

Items to be displayed can be storages, flip-flops, 
registers, switches, literal strings, blanks or prede­
fined displays. The displays can be created by using 

• the MAKEDISPLA Y command. In addition, a pre­
defined display can be specified if it is contained in 

• MDP/CIF file. 

The option of displaying data contained within lo­
cal storages of the various modules is provided. The 
display of storage data mixed with other elements .is 
specifically not allowed. The syntax for displaying 
storage data is structured such that a single index 
within a storage array may be specified, or a series 
of storage arrays all using the same storage index 
may be used, or both types may be mixed. An ex­
ample of a storage array is the IOM active channel 
stack or the CPM display registers. The storage in-

1 dex is a hex number for the CPM and MCM and a 
decimal number for the IOM. The capability also ex­
ists to display a portion (field) of a storage element. 

Dump Command 

The DUMP command causes the state of the mod­
• · ule under test to be dumped, analyzed and printed. 

This command is mechanized so that the printout 
is actually created by SYSTEM/MDUTILITY. The 
default MDUTILITY printout will be provided, or 
the "KWIK" form may be requested. 

I Module Command Group 

• The module command group of commands causes 
the state of the subject module to be altered. 

6-1-12 

When a command is directed to a module, no spe­
cial steps of preparation are performed upon that 
module. Therefore, the responsibility is upon the 
user to properly condition the module to achieve the 
desired results (it is meaningless to issue 15 clocks 
to a module which is not in single pulse). It also 
should be noted that when the interpreter ceases op­
eration, no special shutdown is performed upon the 
module. 

Clear Command 

The CLEAR command resets all flip-flops, which 
are capable of being reset, in the module under test. 
This command provides the same function as the 

I CONTROL CLEAR button on the module panel. 
The SWITCH form of the command turns off all 
switches which are capable of being turned-off in the 
module under test. Because the SWITCH form of 
the command turns off (disables) the switch register 
(SWRGE) (for the IOM and MCM only), any future 
display of switches is of the panel switches. SWRGE 
can be set to display the soft switches. 

Load Command 

The LOAD command causes the indicated file to 
be loaded to the module specified (for MCM only). 
The file to be loaded may be specially formatted 
code file or a SYSTEST Confidence file. 

Pulse Command 

The PULSE command causes one or more clocks 
to be sent to the module under test. This command 
provides the same function as the SINGLE PULSE 
pushbutton on the module panel. 

It should be noted that if the module being 
"pulsed" is not in a single pulse state (its clock has 
stopped) this command is essentially a NO-OP. 

A decimal value may bt! specified as a parameter 
to the PULSE command. This number should be in 
the range of 1 through 127, and is interpreted as the 
quantity of clocks to be issued. The absence of a 
value implies a quantity of one. 

Set Command 

The SET command causes the indicated elements 
to be set; that is, a flip-flop is set to TRUE, a regis­
ter is set to a specified value, and a switch is set to 
ON. 



In the case of a register, it is possible that an im­
plied RESET will be performed, because of the man­
ner in which the Maintenance Test Logic (MTL) 
functions. For example, if a register, which has the 
value "99", is to be set to "O", the operation would 
be performed as follows: 

1. Read the MTL row(s) to obtain the existing 
state. 

2. Clear the MTL row. 
3. Modify the local copy. 
4. Set the MTL row 'to the modified local copy. 

Because of the manner in which the MTL is im­
plemented on the various modules, the SET com­
mand cannot always perform the requested 
operation. Any such restriction is treated as a syntax 
error. Thus, the processing of the SET command is 
terminated. A group of items can be processed as if 
each item is contained in its own command. 

For example, the command: 
SET PINT, EUP, CMl 

is processed as: 
SET PINT SET EUP SET CMl 

When a register is set to a value, that value is in­
terpreted as a string of hex characters. If the hex 
string is less than the capacity of the register, the 
string is applied right-justified with leading zeroes in­
serted into the unspecified portion of the register. 
Thus, a 20-bit register containing 3FFFF is set to 
00321 upon receipt of a SET command with a pa­
rameter of 321. 

A special variation of the SET command allows 
data to be written to memory. It should be noted 
that no adjustments are made for address limit regis­
ters, so the address given must be consistent with 
the module limits. There is no requirement to have 
the MCM inhibit any special condition. The data for­
mat is represented as a thirteen-digit hex word, with 
the most significant digit the tag. If fewer than thir­
teen digits are given, the data is entered right-justi­
fied and a tag of zero is provided. 

Reset Command 

The RESET command causes the indicated stor­
age elements to be reset; that is, a flip-flop is set to 
false, a register is set to zero, and a switch is set to 
OFF. 

Because of the manner in which the MTL is im­
plemented, a register or flip-flop RESET could m­
volve the following sequence of operations: 

I. Read the entire MTL row. 
2. Clear the MTL row. 
3. Reset the indicated terms in the local copy. 
4. Set the MTL row to the local modified copy. 

5010796-001 

In some cases, only step 2 is required. The hard­
ware restrictions, discussed under the heading Set 
Command, also apply to the RESET command. As 
in the case of the SET command, the inability to 
perform an operation results in a syntax error. Thus, 
the processing of the RESET command is termi­
nated. 

Test Command 

The TEST command provides a means of making 
a conditional transfer of control, based on the state 
or value of an element. If the state or value is a true 
condition. the MICI command specified is pro­
cessed; if not. the next input command is processed. 

Interpreter Directive Group 

The interpreter directive group of commands es­
tablishes the operating mode of the interpreter and 
the various options available. These commands are 
the following: 

I. AUTODISPLA Y command causes MICI to au­
tomatically initiate an input that has caused action to 
be performed on a module. 

2. CANCEL command is used to terminate a I 
command that has been partially processed. 

3. DEFAULTBOX command causes MICI to 
save the indicated module information. This informa­
tion can then be utilized for any module-oriented 
command where the modult;, information has been 
omitted. · 

4. EXECUTE command causes execution of a se­
quenced data file of a series of MICI commands. 

5. HELP command displays the available com- I 
mands. display identifiers, execute identifiers. stor-
age identifiers. and sub-module identifiers. 

6. MAKEDISPLA Y command specifies to MICI a 
particular view of a module which is to be made 
available for use. Up to fifty (50) views can be 
specified. The created display is only valid for that 
particular execution of MICI. The DISPLAY com­
mand is used to invoke the created display. 

7. RECALL command displays a specified num­
ber of lines of input; up to 20 lines may be recalled. 

8. RELEASE command causes any printer back­
up files created by the MICI to be printed. 

9. REPEAT command causes a specified MICI 
command(s) to be repeated a specified number of 
times. 

6-1-13 



10. SHOW DISPLAY command allows for the in­
terrogation and possible subsequent modification of 
a previously "made" or "loaded" display. Execu­
tion of this command causes MICI to present all the 
items specified for that display. 

11. STOP command causes the MICI interpreter 
to terminate operation. 

12. TERM command is used to control the format 
of displays that appear on the supervisory console. 

6-1-14 

13. TRANSFER command provides a means of 
transferring control to a specified software label in 
order to bypass the execution of MICI commands. 

14. VERSION command is used to display the 
Maintenance Diagnostic Test (MDT) level, the CIF 
file level, and MICI level on the input device. 

15. WAIT command provides a means of waiting 
a fixed number of seconds. or waiting for the 
operator to provide a null input, before processing is 
continued. 



APPENDIX A 
COLLATING INFORMATION 

All characters are collated according to their internal binary value. Because the B 7800 has 
the capability of representing characters internally in BCL, EBCDIC, or USASCII, and because 
characters are collated according to their internal representation (not necessarily the same as 
their external mode) a variety of collating sequences is possible. The following table may be 
used to determine the applicable collating sequence. 

Input Mode Output Mode Internal Mode Collating Sequence 

BCL BCL BCL BCL (BCL internal) 

BCL EBCDIC EBCDIC BCL Translated to EBCDIC 

BCL BCL EBCDIC BCL Translated to EBCDIC 

EBCDIC EBCDIC EBCDIC EBCDIC 

EBCDIC BCL EBCDIC BCL Translated to EBCDIC 

EBCDIC USASC 11 EBCDIC USASCI I Translated to EBCDIC 

USASC 11 USASC 11 USASC 11 USASC 11 

USASC 11 EBCDIC EBCDIC USASCI I Translated to EBCDIC 

USASC 11 BCL USASC 11 BCL Translated to USASCll 

USASC 11 EBCDIC USASC 11 USASCI I Translated to EBCDIC 

CHARACTER REPRESENTATION 

The BCL, EBCDIC, and USASCII graphics are the same except as follows: 

BCL 

x (mu l t i ply, 
< 

+ 

< 

> 

EBCDIC 

1 (single quote) 
I or I or MZ 
.., (not) 

(underscore) 
I (or) 
PZ (+) 

< 

> 

+ 

USASC 11 

} 

{ 

A-1 



A BCL plus sign is never translated to an EBCDIC PZ (plus zero) sign, although the EBCDIC 
PZ is translated to a BCL plus sign. 

EBCDIC 1110 0000 is translated to BCL 00 0000 with an additional flag bit on the next to 
most significant bit line (7th bit). As the print drums have 64 graphics and space this signal 
can be used to print the 64th graphic. The 64th graphic is a "CR" for BCL drums and a "¢ " 
for EBCDIC drums. 

EBCDIC 

" (' ~ NUL + r 
SOH I s 2 
STX & t 3 
ETX l u 4 
HT $ v 5 
DEL * w 6 
VT ) x 7 
FF ; y 8 
CR --, z 9 
so - PZ 
SI I A 
OLE I B 
DCI i c 
DC2 - D 
DC3 > E 
NL ? F 
BS : G 
CAN I H 
EM e I 
FS I MZ ( ! ) 
GS = J 
RS II K 
us a L 
LF b M 
ETB c N 
ESC d 0 
rnQ e p 

ACK f Q 
BEL g R 
SYN h ' EOT i s 
OC4 j T 
NAK k u 
SUB I v 
SP m \.I 
[ n x . 0 y 

< p z 
(J 'Uo"-) 

A-2 

COLLATING SEQUENCES 

USASCI I 

~JUL (j~~ 
SOH ( 0 v 
STX ) p w 
ETX • Q x 
EOT + R y 
ENQ I s z 
ACK - T { 
BEL . u I 

I 
BS I v } 
HT 0 \I "' LF I x DEL 
VT 2 y 
FF 3 z 
CR 4 [ 
so 5 ' SI 6 ] 
OLE 7 " OCI 8 -
DC2. 9 ' DC3 : a 
DC4 ; b 
NAK < c 
SYN .. d 
ETB > e 
CAN 7 f 
EM @ g 
SUB A h 
ESC B i 
FS c j 
GS D k 
RS E ' us F m 
SP G n 

I ti 0 
II I p 
I J q 
$ K r 
i L s 

(,J J~ 

BCL 

o0 
I Q 
2 R 
3 $ 
4 
5 
6 
7 
8 
9 
# 
@ 
7 

> 

~ 
+ 
A 
B 
c 
D 
E 
f". 
G 
H 
I 

(, 

( 
< 
... 
x 
J 
K 
L 
M 
N 

tJ 

* 

< 
(Blank) 
I 
s 
T 
u 
v 
w 
x 
y 

z 

II 

:3: 
0 
...J 



> w 

EBCDIC 
Character 

NUL 
SOH 
STX 
ETX 
HT 
DEL 
VT 
FF 
CR 
so 
SI 

OLE 
DCI 
DC2 
DC3 
NL 
BS 
CAN 
EH 
FS 
GS 
RS 
us 

LF 
ETB 
ESC 
ENQ 
ACK 
BEL 

SYN 
EOT 
DC4 
NAK 
SUB 

SP 
[ 

< 

( 
+ 

I (~) 

Hex. Internal 
Code Code 

00 0000 0000 
01 0000 0001 
02 0000 0010 
03 0000 0011 
05 0000 0101 
07 0000 0111 
OB 0000 I 011 
OC 0000 1100 
OD 0000 1101 
OE 0000 1110 
OF 0000 1111 

10 0001 0000 
11 0001 0001 
12 0001 0010 
13 0001 0011 
IS 0001 0101 
16 0001 0110 
18 0001 1000 
19 0001 1001 
IC 0001 1100 
ID 0001 I IOI 
1 E 0001 1110 
IF 0001 1111 

2S 0010 0101 
26 0010 0110 
27 0010 0110 
20 0010 1101 
2E 0010 1110 
2F 0010 1111 

32 0011 0010 
37 0011 0111 
3C 0011 1100 
30 0011 1101 
3F 0011 1111 

40 0100 0000 
4A 0100 1010 
48 0100 1011 
4C 0100 1100 
40 0100 1101 
4E 0100 1110 
4F 0100 1111 

Card Code 
Zone Number 

12-0-9- 8-1 
12-9- I 
12-~- 2 
12-9- 3 
12-9- 5 
12-9- 7 
12-9- 8-3 
12-9- 8-4 
12-9- 8-S 
12-9- 8-6 
12-9- 8-7 

12-11-9- 8-1 
11-9- 1 
11-9- 2 
11-9- 3 
11-9 s 
11-9- 6 
11-9- 8 
11-9- 8-1 
11-9- 8-4 
11-9- 8-5 
11-9- 8-6 
11-9- 8-7 

0-9- s 
0-9- 6 
0-9- 7 
0-9- 8-S 
0-9- 8-6 
0-9- 8-7 

9- 2 
9- 7 
9- 8-4 
9- 8-S 
9- 8-7 

(No Punches) 
12- 8-2 
12- 8-3 
12- 8-4 
12- 8-S 
12- 8-6 
12- 8-7 

:J: 
0 _, 

:r 
<.!I -
:r 

EBCDIC 
Character 

& 

1 
s 
.c 

) 
; 

--, (s) 

- (Dash) 
I 
• (Conma) 
% 

(i') -

> 
7 

: 
# 
@ 
I (2) -II 
a 
b 
c 
d 

e 
f 
g 
h 
j 

j 
k 
1 
m 
n 
0 

p 
q 
r 

Hex. Internal 
Code Code 

50 0101 0000 
SA 0101 1010 
SB 0101 1011 
SC 0101 1100 
SD 0101 1101 
SE 0101 1110 
SF 0101 1111 

60 0110 0000 
61 0110 0001 
6B 0110 1011 
6C 0110 1100 
60 0110 1101 

6E 0110 1110 
6F 0110 1111 

7A 0111 1010 
78 0111 1011 
7C 0111 1100 
70 0111 1101 
7E 0111 1110 
7F 0111 1111 

81 1000 0001 
82 1000 0010 
83 1000 0011 
84 1000 0100 

85 1000 0101 
86 1000 0110 
87 1000 0111 
88 1000 1000 
89 1000 1001 

91 1001 0001 
92 1001 0010 
93 1001 0011 
94 1001 0100 
9S 1001 0101 
96 1001 0110 
97 1001 0111 
98 1001 1000 
99 1001 1001 

Card Code 
Zone Number 

12- -
I!- 8-2 
11- 8-3 
11- 8-4 
11- 8-S 
11- 8-6 
11- 8-7 

11- -
0- 1 
o- 8-3 
o- 8-4 
0- 8-S 

o- 8-6 
o- 8-7 

- 8-2 
- 8-3 
- 8-4 
- 8-S 
- 8-6 
- 8-7 

12-0- I 
12-0- 2 
12-0- 3 
12-0- 4 

12-0- s 
12-0- 6 
12-0- 7 
12-0- 8 
12-0- 9 

12-11- 1 
12-11- 2 
12-11- j 
12-11- 4 
12-11- s 
12-11- 6 
12-11- 7 
12-11- 8 
12-11- 9 

~ _, 

:r 
c.:; -
:r 

m 
m 
0 
c -0 

0 
0 
r­
r-
> 
-I -z 
C> 
(/) 
m 
0 
c: 
m 
z 
0 
m 



A4 

EBCDIC COLLATING SEQUENCE (Cont) 

EBCDIC Hex. Internal 
Charac.ter Code Code' 

s A2 1010 0010 

t A3 IOIO 0011 
u A4 1010 0100 
v AS 1010 oro1 

w A6 1010 0110 
x A7 1010 0111 
y A8 1010 1000 
z A9 1010 1001 

PZ (+) co 1100 0000 
A Cl 1100 0001 
B C2 1100 0010 
c CJ 1100 0011 
D C4 1100 0100 
E cs 1100 0101 
F C6 1100 0110 
G C7 II 00 0111 

H ca 1100 1000 
I C9 1100 1001 
l"IZ ( ! ) DO 1101 0000 

J DI I IOI 0001 
K D2 1101 0010 
L D3 I IOI 0011 
l"I D4 1101 0100 
N DS 1101 0101 
0 D6 1101 0110 
p D7 1101 0111 

Q D8 1101 1000 
R D9 1101 1001 

\ (CR) (() EO 1110 0000 
s E2 1110 0010 
T E3 1110 0011 

u E4 1110 0100 
v ES 1110 0101 
w E6 11100110 
x E7 1110 0111 
y ES 1110 1000 

z E9 1110 1001 

EBCDIC Hex. Internal 
Cha rac. ter · Code Code 

0 FO 1111 0000 
1 Fl 1111 0001 
2 F2 1111 0010 
3 F3 1111 0011 
4 F4 1111 0100 
5 F5 1111 0101 
6 F6 1111 0110 
7 F7 1-11 I 0111 
8 F8 1111 1000 
9 F9 1111 1001 

Card Code 
Zone Number 

11-0- 2 
11-0- 3 
11-0- 4 
11-0- 5 
11-0- 6 
11-0- 7 
11-0- 8 
11-0- 9 

12-0 
12- I 
12- 2 
12- 3 
12- 4 
12- 5 
12- 6 
12- 7 

12- 8 
12- 9 
11- 0 
11- I 
11- 2 
11- 3 
11- 4 
II - 5 
11- 6 
11,. 7 
11- 8 
11- 9 

o- 8-2 
0- 2 
0- 3 
o- 4 
0- 5 
o- 6 
o- 7 
0- 8 
o- 9 

Card Code 
Zone Number 

- 0 
- 1 
- 2 
- 3 
- 4 
- 5 
- 6 
- 7 
- 8 
- 9 

:s 
0 
-' 

:c 
C) -;c 

:c 
C) 

;c 



BCL COLLATING SEQUENCE (BCL INTERNAL) 

BCL BCL BCL BCL I nterna I 
Character Octal Hex BA 8421 

0 00 00 00 0000 
I 01 01 00 0001 
2 02 02 00 0010 
3 03 03 00 0011 
4 04 04 00 0100 
s OS OS 00 0101 
6 06 06 00 0110 
7 07 07 00 0111 
8 10 08 00 1000 
9 11 09 00 1001 
# 12 OA 00 1010 
@ 13 OB 00 1011 
7 14 oc 00 1100 

: IS OD DO 1101 
> 16 OE 00 1110 
~ 17 OF 00 1111 

+ 20 10 oi 0000 
A 21 II 01 0001 
B 22 12 01 0010 
c 23 13 01 0011 
D 24 14 01 0100 
E 2S IS 01 0101 
F 26 16 01 0110 
G 27 17 01 0111 

BCL 
External 
BA 8421 

00 1010 
00 0001 
00 0010 
00 0011 
00 0100 
00 0101 
00 0110 
00 Olli 
00 1000 
00 1001 
00 1011 
00 1100 
00 0000 

00 1101 
00 1110 
00 1111 

11 1010 
11 0001 
11 0010 
11 0011 
11 0100 
11 0101 
11 0110 
11 0111 

Card Code 
Zone Numher 

- 0 
- I 
- 2 - 3 - 4 
- s 
- 6 
- 7 
- 8 
- 9 
- 8-3 
- 8-4 
All other 
card codes - 8-S 
- 8-6 - 8-7 

12 0 
12 I 
12 2 
12 3 
12 4 
12 s 
12 6 
12 7 

:c 
Cl 

:c 

A-5 



A-6 

BCL COLLATING SEQUENCE (BCL INTERNAL) (Cont) 

BCL BCL BCL BCL Internal 
Character Octal Hex BA 8421 

H 30 18 01 1000 
I 31 19 01 1001 

32 IA 01 1010 
[ 33 I B 01 1011 
& 34 IC 01 1100 
( 35 ID 01 1101 
< 36 IE 01 1110 .. 37 1 F 01 1111 

x(Mult.)40 20 10 0000 
J 41 21 10 0001 
K 42 22 10 0010 
L 43 23 10 0011 
M 44 24 10 0100 
N 45 25 10 0101 
0 46 26 10 0110 
p 47 27 10 O! II 

Q 50 28 10 1000 
R 51 29 10 1001 
s 52 2A 10 1010 

* 53 28 10 1011 
- 54 2C 10 1100 
) 55 20 10 1101 
; 56 2E 10 1110 
'.O 57 2F 10 1111 

B 1 an!.. 60 30 11 0000 
I 61 31 II 0001 
s 62 32 11 0010 
T 63 33 11 0011 
u 64 34 11 0100 
v 65 35 11 0101 
w 66 36 11 0110 
x 67 37 11 0111 

y 70 38 11 1000 
z 71 39 11 1001 

' 72 3A 11 1010 
% 73 3B 11 1011 
~ 74 3C 11 1100 .. 75 30 11 1101 
) 76 3E 11 1110 
" 77 3F 11 1111 

BCL 
Externa I 
BA R421 

11 1000 
11 1001 
11 1011 
11 1100 
11 0000 
11 1101 
11 1110 
11 1111 

10 1010 
10 0001 
10 0010 
10 0011 
10 0100 
10 0101 
10 0110 
10 0111 

10 1000 
10 1001 
10 1011 
10 1100 
10 0000 
10 I IOI 
10 1110 
I 0 1111 

01 0000 
01 0001 
01 0010 
01 0011 
01 0100 
01 0101 
01 0110 
01 0111 

01 1000 
01 1001 
01 1011 
01 II 00 
01 1010 
01 1101 
01 1110 
01 1111 

Card Code 
Zone Number 

12 8 
12 9 
12 8-3 
12 8-4 
12 -
12 8-5 
12 8-6 
12 8-7 

11 0 
11 1 
11 2 
11 3 
11 4 
11 5 
11 6 
11 7 

11 8 
11 9 
11 8-3 
11 8-4 
11 -
11 8-5 
11 8-6 
11 8-7 

- -
0 1 
0 2 
0 3 
0 4 
0 5 
0 6 
0 7 

0 8 
0 9 
0 8-3 
0 8-4 
0 8-2 
0 8-5 
0 8-6 
0 8-7 

)I 
c 
-' ' 

-x 



COLLATING SEQUENCE - USASCll X3.4-1968 

USASCI I Hex Internal 
Character Code Code 

NUL 00 0000 0000 
SCH 01 0000 0001 
STX 02 0000 0010 
ETX 03 0000 0011 
EOT 04 0000 0100 
ENQ 05 0000 0101 
ACK 06 0009 0110 
BEL 07 0000 0111 
BS OB 0000 1000 
HT 09 0000 1001 
Lf OA 0000 1010 
VT OB 0000 1011 
Ff oc 0000 1100 
CR OD 0000 1101 
so OE 0000 1110 
SI OF 0000 1111 

DLE 10 0001 0000 
DCI 11 0001 0001 
DC2 12 0001 0010 
DC3 13 0001 0011 
DC4 14 0001 0100 
NAK 15 0001 0101 
SYN 16 0001 0110 
ETB 17 0001 0111 
CAN 18 0001 1000 
EH 19 0001 1001 
SUB IA 0001 1010 
ESC 1 B 0001 IOI I 
FS IC 0001 1100 
GS ID 0001 1101 
RS 1 E 0001 1110 
us IF 0001 1111 

SP 20 0010 0000 
I Corl 21 0010 0001 
II 22 0010 0010 
I 23 0010 0011 
$ 24 0010 0100 
t 25 0010 0101 

' 26 0010 0110 
I 27 0010 0111 
( 28 0010 1000 
) 29 0010 1001 

* 2A 0010 1010 
+ 20 0010 1011 

• 2C 0010 1100 

~ 
0 
...J 

x 
Cl -:c 

USASC 11 
Character 

-. 
I 

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 
: 
; 
< .. 
> 
1 

@ 
A 
B 
c 
D 
E 
F 
G 
H 
I 
J 
K 
L 
H 
N 
0 

p 

Q 
R 
s 
T 
u 
v 
w 
x 

Hex Internal 
Code Code 

20 0010 1101 
2E OOIO 1110 
2F 0010 1111 

30 0011 0000 
31 0011 0001 
32 0011 0010 
33 0011 0011 
34 0011 0100 
35 0011 0101 
36 0011 0110 
37 0011 0111 
38 0011 1000 
39 0011 1001 
3A 0011 1010 
38 0011 1011 
3C 0011 1100 
30 0011 1101 
3E 0011 1110 
3F 0011 l 1 l l 

40 0100 OJOO 
41 0100 0001 
42 0100 0010 
43 0100 0011 
44 0100 0100 
45 0100 0101 
46 0100 0110 
47 0100 0111 
48 0100 1000 
49 0100: 1101 
4A 0100 1010 
48 0100 lvl 1 
4'C 0100 llOO 
40 0100 1101 
4E 0100 1110 
4F 0100 1111 

so 0101 0000 
51 0101 <..001 
52 010.l COIO 
53 0101 0011 
54 0101 0100 
55 0101 0101 
56 0101 0110 
57 0101 0111 
58 0101 1000 

3 
0 
...J 

::c 
Cl -x 

A-7 



A-8 

COLLATING SEQUENCE - USASCll X3.4-1968 (Cont) 

USASCI I Hex Internal 
Character Code Code 

y 59 0101 1001 
2 SA 0101 1010 
[ 58 0101 1011 
\ SC 0101 1100 
] SD 0101 1101 
A (,) SE 0101 1110 
- SF 0101 1111 

' 60 0110 0000 
a 61 0110 0001 
b 62 0110 0010 
c 63 Oil 0 0011 
d 64 0110 0100 
e 65 0110 0101 
f 66 0110 0110 
g 67 0110 01 ll 
h 68 0110 1000 
I 69 0110 1001 
J 6A 0110 1010 
k 68 0110 1011 
I 6C 0110 1100 

:c 
c.: 
:c 

USASCI I 
Character 

m 
n 
0 

p 
q 
r 
s 
t 
u 
v 
w 
x 
y 
z 
{ 
I 
I 

} 

"" DEL 

Hex 
Code 

60 
6E 
6F 

70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
7A 
78 
7C 
70 
7E 
7F 

Internal 
Code 

0110 1101 
0110 1110 
0110 1111 

0111 0000 
0111 0001 
0111 0010 
0111 0011 
0111 0100 
0111 0101 
0111 0110 
0111 0111 
0111 1000 
0111 1001 
01 l I 1010 
0111 1011 
0111 1100 
0111 1101 
0111 1110 
0111 1111 

:c 
c.: -:c 



COLLATING SEQUENCE - BCL TRANSLATED TO EBCDIC 

COLLATING SEQUENCE - ICL TRANSLATED TO EBCDIC 

8CL Translated 
BCL External BCL BCL EBCDIC EBCDIC Card Code 
Character BA 4321 Hex. Octal Code Hex Zone Number 

(Blank) 01 0000 10 20 0100 0000 40 - -
[ 11 1100 3C 74 0100 1010 4A 12 8-lt . 11 1011 3B 73 0100 1011 4B 12 8-3 
< 11 1110 3E 76 0100 I 100 i.c 12 8-6 
( 11 1101 3D 7S 0100 1101 4D 12 8-S 
+ 11 1010 3A 72 0100 1110 4E 12 0 
+ 11 1111 3F 77 0100 1111 4F 12 8-7 

' 11 0000 30 60 0101 0000 so 12 -
] 01 1110 IE 36 0101 1010 SA 0 8-6 
$ 10 1011 28 S3 0101 1011 S8 11 8-3 
* 10 1100 2C S4 0101 1100 SC 11 8-4 
) 10 1101 2D SS 0101 1101 SD 11 8-S 
; 10 1110 2E S6 0101 1110 5E 11 8-6 
.s 10 1111 2F S7 0101 1111 5F 11 8-7 

- 10 0000 20 i.o 0110 0000 60 11 -
I 01 0001 11 21 0110 0001 61 0 1 

• 01 1011 18 33 0110 1011 6B 0 8-3 

' 01 I 100 IC 34 0110 1100 6c 0 8-4 
~ 01 1010 IA 32 0110 1101 6D 0 s.-2 
> 00 1110 OE 16 0110 1110 6E - 8-6 
7 00 0000 00 00 0110 1111 6F All other 

card codes 

: 00 1101 OD IS 0111 1010 7A - 8-S 
I 00 1011 08 13 0111 1011 78 - 8-3 
@ 00 1100 oc 14 011 i 1100 7C - 8-4 
i 00 11 ll OF 17 0111 1101 7D - 8-7 
• 01 1101 ID 3s 0111 1110 7E 0 8-S 
II 01 1111 IF 37 0111 1111 7F 0 8-7 

A 11 0001 31 6) 1100 0001 Cl 12 1 
B 11 0010 32 62 I 100 0010 C2 12 2 
~ 11 0011 3l 63 1100 0011 C3 12 3 
D 11 01 ()() 3lt ~4 1100 0100 C4 12 4 
E 11 OlOl 3S 65 1100 0101 cs 12 s 
F 11 0110 36 66 1100 0110 C6 12 6 
G 11 0111 37 67 1100 0111 C7 12 7 
H 11 1000 38 70 ltOO 1000 cs 12 8 
I 11 1 ()01 39 71 1100 1001 C9 12 9 

-;-

A-9 



COLLATING SEQUENCE - BCL TRANSLATED TO EBCDIC (Cont) 

BCL 
BCL External BCL BCL 
Character BA if321 Hex. Octal 

x (mu It) 10 1010 2A 52 
J 10 0001 21 lfl 
K 10 001'0 22 i.2 
L 10 0011 23 lf3 
H 10 0100 2lf . qq 
N 10 0101 25 lf5 
0 10 0110 26 lf6 
p 10 0111 27 lf7 
Q 10 1000 28 so 
R 10 1001 29 51 

s 01 0010 12 22 
T 01 0011 13 23 
u 01 0100 llf 2lf 
v 01 0101 IS 25 
w 01 0110 16 26 
x 01 0111 17 27 
y 01 1000 18 30 
z 01 1001 19 31 

0 00 1010 OA 12 
l 00 0001 01 01 
2 00 0010 02 02 
3 00 0011 03 03 
If 00 0100 oi. oi. 
5 00 0101 OS 05 
6 00 0110 06 06 
7 00 0111 07 07 
8 00 1000 08 10 
9 00 1001 09 11 

A-10 

Trans lated 
EBCDIC EBCDIC 
Code Hex. 

1101 0000 DO 
1101 0001 DI 
1101 0010 D2 
1101 0011 03 
1101 0100 Oif 
1101 0101 05 
1101 0110 . 06 
1101 0111 D7 
1101 1000 ()8 
1101 1001 D9 

1110 0010 E2 
1110 0011 E3 
1110 0100 Elf 
1110 0101 ES 
1110 0110 E6 
1110 0111 E7 
1110 1000 E8 
1110 1001 E9 

1111 0000 FO 
1111 0001 Fl 
1111 0010 F2 
1111 0011 F3 
1111 0100 Fif 
1111 0101 FS 
J 111 0110 F6 
1111 0111 F7 
1111 1000 F8 
1111 1001 F9 

Card Code 
Zone Number 

II 0 
11 l 
II 2 
II 3 
11 If 
11 s 
II 6 
II 7 
11 8 
11 9 

0 2 
0 3 
0 If 
0 5 
0 6 
0 7 
0 8 
0 9 

- 0 
- l - 2 ; 

- 3 - If 
- 5 - 6 - 7 - 8 
- 9 

> 
0 

- ..J 

:c 
Cl 

:c 



COLLATING SEQUENCE - BCL TRANSLATED TO USASCll 

BCL 
BCL External BCL BCL 
Character BA 8421 Hex. Octal 

Blank 01 0000 10 20 
+ 11 1111 3F 77 
II 01 1111 IF 37 
I 01 1 Oil OB 33 
$ 10 IOll 26 53 

' 01 1100 IC 34 

' 11 0000 30 60 
> 01 1111 OF 37 
1 11 1101 30 75 
) 10 1101 20 55 

* 10 1100 2C 54 
+ 11 1010 3A 72 

• 01 1011 I B 33 - 10 0000 20 40 . 10 1011 3B 53 
I 01 0001 11 21 

0 00 1010 QA 12 
I 00 00~1 01 01 
2 00 0010 02 02 
3 00 0011 03 03 
l+ 00 0100 04 04 
~ 00 0101 05 05 
6 00 0110 06 06 
7 00 0111 07 07 
(I ,, 00 1000 08 08 
e 00 1001 09 09 
" : 10 1101 OD 55 
; 10 1110 2£ 56 
< 11 1110 3£ 76 
• 01 ll 01 10 35 
> 00 1110 OE 16 
7 00 0000 00 00 

@ 00 1100 QC 14 
A 11 0001 31 61 
B 11 0010 32 62 
c 11 0011 33 63 
D 11 0100 34 64 
E 11 0101 35 65 
F 11 0110 36 66 
c 11 0111 37 67 
H 11 1000 38 70 
I 11 1001 39 71 
J 10 0001 21 41 
K 10 0010 22 42 
l 10 0011 23 43 

Translated 
USASC 11 USASC 11 
Code Hex. 

0010 0000 20 
0010 0001 21 
0010 0010 22 
0010 0011 23 
0010 0100 24 
0010 0101 25 
0010 0110 26 
0010 0111 27 
0010 1000 28 
0010 1001 29 
0010 1010 2A 
0010 1 Oil 28 
0010 1100 2C 
0010 1101 20 
0010 1110 2E 
0010 1111 2F 

0011 0000 30 
0011 0001 31 
0011 0010 32 
0011 0011 33 
0011 0100 34 
0011 0101 35 
0011 0110 36 
0011 0111 37 
0011 1000 38 
0011 1001 39 
0011 1010 3A 
0011 1011 3B 
0011 1100 3C 
0011 1101 30 
0011 1110 3£ 
0011 1111 3F 

0100 0000 40 
0100 0001 41 
0100 0010 42 
01000011 43 
0100 0100 44 
0100 0101 45 
0100 0110 46 
0100 0111 47 
0100 1000 48 
0100 1001 49 
0 I 00 1010 4A 
0100 101 l 4B 
0100 1100 4c 

Card Code 
Zone N"umbe rs 

- -
12 8-7 
0 8-7 
- 8-3 
11 8-3 
0 8-4 
12 -- 8-7 
12 8-3 
11 8-S 
11 8-4 
12 0 
0 8-3 
11 -
12 8-3 
0 1 

- 0 
- 1 
- 2 
- 3 
- 4 
- 5 
- 6 
- 7 
- 8 
- 9 - 8-S 
11 8-6 
12 8-6 
0 8-5 
- 8-6 
All other 
card codes 

- 8-4 
12 1 
12 2 
12 3 
12 4 
12 5 
1i 6 
12 7 
12 8 
12 9 
11 I 
ll 2 
ll 3 

> 
0 
...J 

A-11 



COLLATING SEQUENCE - BCL TRANSLATED TO USASCll (Cont) 

BCL 
BCL External &CL BCL 
Character BA 8ii2l Hex. Octal 

M 10 0100 24 44 
N 10 0101 2S 4S 
0 10 0110 26 46 

p 10 0111 27 47 
Q 10 1000 28 50 
R 10 1001 29 51 
s 01 0010 12 22 
T 01 0011 13 23 
u 01 0100 14 24 
v 01 0101 15 25 
w 01 0110 16 26 
x 01 0111 17 27 
y 01 I 000 18 30 
z 01 1001 19 31 
[ 11 1100 3C 74 
] 01 1110 IE 36 
< 10 1111 2F 57 
r 01 1010 IA 32 

x(Mult) 10 1010 2A 52 

A-12 

Translated 
l'SASCll USASC 11 
Code Hex. 

0100 1101 40 
0100 1110 4E 
0100 1111 4F 

0101 0000 so 
0101 0001 SI 
0101 0010 52 
0101 0011 53 
0101 0100 54 
0101 0101 55 
0101 0110 56 
0101 0111 57 
0101 1000 58 
0101 1001 59 
0101 1010 SA 
0101 I Oil 58 
0101 1101 SD 
0101 1110 SE 
0101 1111 SF 

011 l 1101 70 

Card Code 
Zone Number 

11 4 
11 5 
II 6 

II 7 
11 8 
11 9 
0 2 
0 3 
0 4 
0 5 
0 6 
0 7 
0 8 
Ci 9 
12 8-4 
0 8-6 
11 8-7 
0 8-2 

11 0 

::i: 
0 _, 

-;c 



COLLATING SEQUENCE - USASCll X3.4-1968 TRANSLATED TO 
EBCDIC 

LOW 

USASC 11 USASC 11 Translated EBCDIC USASCI I USASCll Translated EBCDIC 
Charac:ter Hex. Code EBCDIC Code Hex. Code Charac:ter Hex. Code EBCDIC Code Hex. Code 

NULL 00 0000 0000 00 ' 26 0101 0000 so 
SOH 01 0000 0001 01 ] SD 0101 1010 SA 
STX 02 0000 0010 02 $ 24 0101 1011 SB 
ETX 03 0000 0011 03 * 2A 0101 1100 SC 
HT 09 0000 0101 OS ) 29 0101 I IOI SD 
DEL 7F 0000 0111 07 ; 3B 0101 1110 SE 
VT OB 0000 1011 OB A (--Y) SE 0101 1111 SF 
FF oc 0000 1100 oc 
CR OD 0000 1101 OD - 2D 0110 0000 60 
so OE 0000 1110 OE I 2F 0110 0001 61 
SI OF 0000 1111 OF I 7C 0110 .1010 6A 

I 

I 2C 0110 1011 6B 
DLE 10 0001 0000 10 ' 25 0110 1100 6C 
DCl 11 0001 0001 11 - SF 0110 1101 6D 
DC2 12 0001 0010 12 > 3E 0110 1110 6E 
DC3 13 0001 0011 13 'I 3F 0110 1111 6F 
BS 08 0001 0110 16 

\ 60 0111 1001 79 . 3A Oltl 1010 7A . 
I 23 0111 1011 7B 

CAN 18 0001 1000 18 @ 4t 0111 1100 7C 
EH 19 0001 1001 19 , 27 Oil I 1101 7D 
FS IC 0001 1100 IC • 30 0111 1110 7E 
GS ID 0001 1101 ID II 22 0111 1111 7F 
RS IE 0001 1110 IE 
us IF 0001 1111 IF a 61 1000 0001 81 

b 62 1000 0010 82 
LF' OA 0010 0101 25 c 63 1000 0011 83 
ETB 17 0010 0110 26 d 6.\ 1000 0100 84 
ESC IB 0010 0111 27 e 6S 1000 0101 8S 
ENQ. 05 0010 MO! 2D f 66 1000 0110 86 
ACK 06 0010 1110 2E 9 67 1000 Olli 87 
BEL 07 0010 1111 2F h 66 1000 1000 88 

I 6, 1000 1.001 89 
SYN 16 0011 0010 32 
EOT 04 0011 0111 37 J 6A 1001 0001 91 
DC4 14 0011 1100 3C k 6B 1001 0010 92 
NAK 15 0011 1101 30 1 6t 1001 0011 93 
SUB lA 0011 1111 3F m 6U 1001 0100 94 

n 6E 1001 0101 9S 
SP 20 0100 0000 40 0 6F 1001 0110 96 
[ SB 0100 1010 4A p 70 1001 0111 97 . 2E 0100 IOI I 4B q 71 1001 1000 98 
< 3C 0100 1100 4C r 72 1001 1001 99 
( 28 0100 1101 40 
+ 2B 0100 1110 4E "' 7D 1010 0001 Al 
I (or) 21 0100 1111 4F s 73 1010 0010 A2 

HIGH 

A-13 



COLLATING SEQUENCE - USASCll X3.4-1968 TRANSLATED TO 
EBCDIC (Cont) 

USASC 11 USASC 11 
Character Hex. Code 

t 74 
u 75 
y 76 
w 77 
x 78 
y 79 
z 7A 

{ 78 
A 41 
B 42 
c 43 
D 44 
E 45 
F 46 
G 47 
H 48 
I 49 

} 70 
J 4A 
K 48 
l lie 
H ltD 
N l+E 
0 l+F 
p so 
Q 51 
R 52 

\ SC 
s 53 
T 54 
u 55 
v 56 
\J 57 
x 58 
y 59 
z SA 

0 30 
1 13 
2 32 
3 33 
4 3lt 
5 35 
6 36 
7 37 
8 38 
9 39 

A-14 

Translated 
E!ICDIC Code 

1010 0011 
1010 0100 
1010 0101 
1010 0110 
1010 0111 
1010 1000 
1010 1001 

1100 0000 
1100 0001 
1100 0010 
1100 0011 
1100 0100 
1100 0101 
1100 0110 
1100 0111 
1100 I 000 
1100 I 000 

1101 0000 
1101 0001 
I IOI 0010 
I IOI 0011 
1101 0100 
1101 0101 
I IOI 0110 
1101 0111 
1101 1000 
1101 1001 

1110 0000 
1110 0010 
1110 0011 
1110 0100 
1110 0101 
1110 0110 
1110 0111 
1110 1000 
1110 1001 

1111 0000 
1111 0001 
1111 0010 
1111 0011 
1111 0100 
1111 0101 
1111 0110 
1111 0111 
1111 1000 
1111 1001 

EBCDIC 
Hex. Code 

A3 
A4 
AS 
A6 
A7 
A8 
A9 

co 
Cl 
C2 
C3 
C4 
cs 
C6 
C7 
cs 
C9 

DO 
DI 
D2 
DJ 
D4 
05 
06 
07 
08 
D9 

EC 
E2 
E3 
E4 
ES 
E6 
E7 
EB 
E9 

FO 
Fl 
F2 
F2 
Flt 
F5 
F6 
F7 
F8 
F9 

':I 
0 

I 
-.x. 



XALGOL COLLATING SEQUENCE (B 5700 BCL) 

BCL BCL 
BCL BCL BCL Internal External Card Code 

Character Octal Hex BA 81t21 BA 81t21 Zone Number 

Blank 60 30 11 0000 01 0000 - -
~ 

32 01 11 1011 12 8-3 
..J . IA 1010 

[ 33 IB 01 1011 i 1 1100 12 8-lt 
( 35 ID 01 1101 11 1101 12 8-5 
< 36 IE 01 1110 11 1110 12 8-6 
+ 37 IF 01 1111 11 1111 12 8-7 
lie 31t IC 01 1100 11 0000 12 -
$ 52 2A 10 1010 10 1011 11 8-3 
" 53 2B 10 1011 10 1100 11 8-lt w 

u 
) 55 2D 10 1101 10 1101 11 8-5 

z 
w 

; 56 2E 10 1110 10 1110 11 8-6 a 
57 2F 10 1111 10 1111 11 8-7 

w s .,, 
- Sit 2C 10 1100 10 0000 11 - UI z 

I 61 31 11 0001 01 0001 0 1 ~ 
72 3A 11 1010 01 1011 0 8-3 

..J 

' ..J 

' 73 3B 11 1011 01 1100 0 8-lt 0 
u 

• 75 3D 11 1101 01 1101 0 8-5 
] 76 3E 11 1110 01 1110 0 8-6 
II 77 3F 11 1111 01 1111 0 8-7 

I 12 OA 00 1010 00 1011 - 8-3 
@ 13 OB 00 1011 00 1100 - 8-lt 
: 15 OD 00 1101 00 1101 - 8-5 
> 16 OE 00 1110 00 1110 - 8-6 
?. 17 OF 00 1111 00 1111 - 8-7 

+ 20 10 01 0000 11 1010 12 0 :c 
A 21 11 01 0001 11 0001 12 1 UI 

B 22 12 01 0010 11 0010 12 2 
:c 

c 23 13 01 0011 11 0011 12 3 
D 21t lit 01 0100 11 0100 12 " E 25 15 01 0101 11 0101 12 5 
F 26 16 01 0110 11 0110 12 6 
G 27 17 01 0111 11 0111 12 7 
H 30 18 01 1000 11 1000 12 8 
I 31 19 01 1001 11 1001 12 9 
x Ito 20 10 0000 10 1010 11 0 
J "1 21 10 0001 10 0001 11 1 
K i.2 22 10 0010 10 0010 11 2 
L 1t3 23 10 0011 10 0011 11 3 
H "" 21t 10 0100 10 0100 11 " N lt5 25 10 0101 10 0101 11 5 

A-15 



XALGOL COLLATING SEQUENCE (B 5700 BCL) (Cont) 

BCL BCL 
BCL BCL BCL Internal External Card Code 

Character Octal Hex BA 81+21 BA 81+21 Zone Number 

0 1+6 26 10 0110 10 0110 11 6 
p 47 27 10 0111 I\> 0111 11 7 ~ 
Q so 28 10 1000 10 1000 11 8 

_, 
R SI 29 10 1001 10 1001 11 9 

~ 74 3C 11 1100 01 1010 0 8-2 
s 62 32 11 0010 01 0010 0 2 
T 63 33 II 0011 01 0011 0 3 
u 64 31+ 11 0100 01 0100 0 I+ 
v 6S 3S II 0101 01 0101 0 s 
w 66 36 11 0110 01 0110 0 6 
x 67 37 11 0111 01 0111 0 7 
y 70 38 11 1000 Ol 1000 0 8 
z 71 39 11 1001 01 1001 0 9· 

0 00 00 00 0000 00 1010 - 0 
I 01 01 00 0001 00 0001 - 1 :::c 

Cl 
2 02 02 00 0010 00 0010 - 2 :::c 
3 03 03 00 0011 00 0011 - 3 
I+ 01+ 04 00 0100 00 0100 - 4 
s OS OS 00 0101 00 0101 - s 
6 06 06 00 0110 00 0110 - 6 
7 07 07 00 0111 00 Oil I - 7 
8 10 08 00 1000 00 1000 - 8 
9 11 09 00 1001 00 1001 - 9 

? II+ oc 00 1100 00 0000 All OTHER 
CARO CODES 

A-16 



FORTRAN BCD COLLATING SEQUENCE 

BCD Internal R~resentat Ion Internal Translation Card Code 
Character Hex Bl nary Bf nary Hex Zone Number 

(period) IA 01 1010 0100 1011 48 12 8-3 
) IB 01 1011 0100 1100 ltc 12 8-4 

+ IC 01 1100 0101 0000 50 12 
$ 2A 10 1010 0101 IOI I 58 11 8-3 

* 28 10 1011 0101 1100 5C 11 8-4 
; 2E 10 1110 0101 1110 5E 11 8-6 
~ 2F 10 1111 0101 1111 5F 11 8-7 
- (minus) 2C 10 1100 0110 0000 60 11 
I 31 11 0001 0110 0001 61 0 I 

• (cOl!llla) 3A )t 1010 0110 1011 68 0 8-3 
( 3B 11 IOI I 0110 1100 6C 0 8-4 
~ 3D 11 1101 0110 I IOI 6D 0 8-S 
> 3E 11 1110 0110 1110 6E 0 8-6 
7 3F 11 1111 0110 1111 6F 0 8-7 
• OA 00 1010 0111 1011 78 8-3 
@ OB 00 IOI I 0111 1100 7C 8-4 
;e OD 00 1101 0111 1101 7D 8-S 

• OE 00 1110 0111 1110 7E 8-6 
II OF 00 1111 0111 1111 7F 8-7 
A 11 01 0001 1100 0001 Cl 12 I 
B 12 01 0010 1100 0010 C2 12 2 
c 13 01 0011 1100 0011 C3 12 3 
D 14 01 0100 1100 0100 Cit 12 It 
E 15 01 0101 1100 0101 cs 12 5 
F 16 01 0110 1100 0110 C6 12 6 
8 17 01 0111 HOO 0111 C7 12 7 
H 18 01 1000 1100 1000 CB 12 8 
I 19 01 1001 1100 1001 C9 12 9 
J 21 10 0001 1101 0001 DI 11 I 
K 22 10 0010 1101 0010 D2 11 2 
L 23 10 0011 1101 0011 D3 11 3 
H 24 10 0100 1101 0100 DI+ 11 It 
N 25 10 0101 1100 0101 D5 11 s 
0 26 10 0110 1101 0110 D6 11 6 
p 27 10 0111 1101 0111 D7 11 7 
Q. 28 10 1000 1101 I 000 08 11 8 
R 29 10 1001 1101 1001 D9 11 9 
s 31 11 0010 1110 0010 E2 0 2 
T 33 11 0011 1110 0011 E3 0 3 
u 34 11 0100 1110 0100 El+ 0 It 
v 35 11 0101 1110 0101 E5 0 s 
w 36 11 0110 1110 0110 E6 0 6 
x 37 II 0111 11100111 E7 0 7 
y 38 II 1000 1110 1000 ES 0 8 
z 39 II 1001 1110 1001 E9 0 9 
0 00 00 0000 1111 0000 FO 0 
I 01 00 0001 1111 0001 Fl I 
2 02 00 0010 1111 0010 F2 2 

3 03 00 0011 1111 0011 F3 3 
It 04 00 0100 1111 0100 Flt It 
5 05 05 0101 I 111 0101 FS 5 
6 06 00 0110 1111 0110 F6 6 

7 07 00 0111 1111 0111 F7 7 
8 08 00 1000 1111 I 000 F8 8 

9 09 00 1001 111 I 1001 F9 9 

A-17 



A-18 

EXTENDED BINARY CODED DECIMAL INTERCHANGE CODES 
(EBCDIC) 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 

0 

0 

0 

0 

0 

0 

.. 
.. • 

+ 0 

= 

,•NU•O•'!, 
N N * 

T • " 
0 ~ 

.. . ' 
0 

.. 
~ .. 

. . :, .. 
+ y 
N 

• .. • 

, . 
0 

.. 

.. 

... 
0 

. ':' .. 

.. 
• ! .. 

.. 
• 0 .. 

• • 
• • 

. 
0 

• 
0 

z ..... 
~ .. 

. . " 

. 
• 0 

,;, 

. ' 
~ 

• .... .. 

' 0 

:! 

':' • + 0 

~ 

.. 
• 
~ .. 

.... . 

.. 
~ .. 
.. 
' ~ ' ' 0 

~ 

" .. 
% 

"' . 
' 

~ . 
.. 
0 .. 

t 

. 
.. 
.. 
• 
0 .. 

~ ';' . . 
+ z I ! ? ~ .. I ... #! 5., 

o o' ? ~ ! ~ ~ 0 0 'r .-. •o, ~ ~I ~ ,. Z ~ ; 
t----+---+--if--1-·--~ ---+--+-:.+-"'-l--f--o-+ _ __,,_..;;...1--0-+---o_..-'o+-o-l' 

0 • 
0 

0 

.. 
± 
N 

.. ' • 
. . . . 

~ ,. ~ : : ; : N ... • -' • ,,. 

~ : ~ ± ± ~ ';> 0 • u + ± v~ _ ~ • • : ~ 
....:-- -·--+-···--t·--'!-+---+--i>---1--+---'!-+-_...;'!+._• -"--+--'!!+-"-+--+--'!+-"-+--"+--:!-1 

0 

0 

0 

0 

" " 

0 

0 

0 0 

;, 
~ 

~ 
'! 

e .. .. .. " .. 
. 
0 ., .... .. . .. 

.. 
;, .. 

... ~ ~ 
• 0 • 

" .. 
. .. 

.: .. 
• • .. 

. ... 
' :>' . .. ~ .. . .. ' . ... 

'°o· •' .. •' • •. :;'~-~': • ~ + Z .o.az~~ ;. •wi. .. •., • • • ;.:t.c;.•a 
__ :-+_o_·+--n-+-_o_·+--o+-o-i--o:.+-~04--0_.._o~·+--"o-+--o-+-o~·._-'o-+--'o,,.__o .... · 

• ~ . .:; 
o T 

.. . 
u .. u .. .. . .. .. .. .. 

-~ .~ . ':' 
• 

.. .. . 
0 .. ~ 0 t 0 ! 

. .. 
~ ; 

! 

. • .. 

0 ~ 

.. 
a • u ;, 

~ 

~ ..- . ; 
I 1 ~~e-~-:-!+---+-~-+_.-.--:-_-+·-=-----1~.-~~-.-+t--o-+~-~--i.f--+-;-+--:__,t-!-;-+-=·-+-:-u-+--:--o-+-o .. -+-!-~~ 

.... ~ 0 0 0 0 • -· Cl 0 0 0 

•"'·~ ~-;~~__."-"•-•,;...-"'--1-;;....._~~=--~o o o 
L!-=-- '• •. '• •, '• '1 'z '1 

• 1JtT(l•AL CO\.L.ATING s1our: .. c1: - 0 0 0 01 o·o 0 0 

" 0 

TO 11II/11 11 



APPENDIX B 

DATA REPRESENTATION 

EBCDIC DECIMAL EBCDIC HEX. EBCDIC BCL BCL BCL 
GRAPHIC BCL VALUE INTERNAL GRAPHIC CARD CODE CARD CODE OCTAL INTERNAL EXTERNAL 

BLANK 64 01000000 40 No Punches No Punches 60 11 0000 01 0000 

[ 74 0100 1010 4A 12 8 2 12 8 4 33 01 1011 11 1100 

7S 0100 1011 48 12 8 3 12 8 3 32 01 1010 11 1011 

< 76 0100 1100 4C 12 8 4 12 8 6 36 01 1110 11 1110 

I 77 0100 1101 40 12 8 s 12 8 s 3S 01 1101 11 1101 

+ 78 0100 1110 4E 12 8 s 11 1010 

I ... 79 01001111 4F 12 8 7 12 8 7 37 01 1111 111111 

& 80 0101 0000 so 12 12 34 011100 11 0000 

I 90 0101 1010 SA 11 8 2 0 8 s 76 11 1110 01 1110 

$ 91 0101 1011 SB 11 8 3 11 8 3 S2 10 1010 10 1011 

• 92 0101 1100 SC 11 8 4 11 8 4 SJ 10 1011 10 1100 

I 93 0101 1101 SD 11 8 s 11 8 s SS 10 1101 10 1101 

94 01011110 SE 11 8 s 11 8 6 SS 10 1110 10 1110 
...... < 9S 01011111 SF 11 8 7 11 8 7 S7 10 1111 10 1111 

9S 0110 0000 so 11 11 S4 10 1100 10 0000 

I 97 0110 0001 SI 0 1 0 1 SI 11 0001 01 0001 

107 01101011 SB 0 8 3 0 8 3 72 11 1010 01 1011 

% 108 01101100 6C 0 8 4 0 8 4 73 11 1011 01 1100 

- 'I 109 0110 1101 SD 0 8 s 0 8 2 74 11 1100 01 1010 

> 110 01101110 SE 0 8 s 8 s IS 00 1110 00 1110 

? 111 01101111 SF 0 8 7 . 14 00 1100 00 0000 

: 122 01111010 7A 8 2 8 s IS 00 1101 00 1101 
(/ 123 01111011 78 8 3 8 3 12 00 1010 00 1011 
@ 124 01111100 7C 8 4 8 4 13 00 1011 00 1100 . > 12S 01111101 70 8 s 8 7 17 00 1111 001111 -
= 12S 01111110 7E 8 s 0 8 s 7S 11 1101 011101 .. 127 0111 1111 7F 8 7 0 8 7 77 111111 01 1111 

(+)PZ + 192 1100 0000 co 12 0 12 0 20 01 0000 11 1010 

A 193 1100 0001 Cl 12 1 12 1 21 01 0001 11 0001 

B 194 1100 0010 C2 12 2 12 2 22 01 0010 11 0010 

c 19S 11000011 CJ 12 3 12 3 23 01 0011 11 0011 

D 196 1100 0100 C4 12 4 12 4 24 01 0100 11 0100 

E 197 1100 0101 cs 12 s 12 s 2S 01 0101 11 0101 

F 198 11000110 cs 12 s 12 s 26 01 0110 11 0110 

G 199 11000111 C7 12 7 12 7 27 01 0111 11 0111 

H 200 1100 1000- CS 12 8 12 8 30 01 1000 11 1000 

I 201 1100 1001 C9 12 9 12 9 31 01 1001 11 1001 
MULT 

(!IMZ x 208 1101 0000 DO 11 0 11 0 40 10 0000 10 1010 

J 209 1101 0001 01 11 1 11 1 41 10 0001 10 0001 

K 210 1101 0010 02 11 2 11 2 42 10 0010 10 0010 

L 211 11010011 03 11 3 11 3 43 10 0011 10 0011 

M 212 1101 0100 04 11 4 11 4 44 10 0100 10 0100 

N 213 1101 0101 OS 11 s 11 s 4S 10 0101 10 0101 

0 214 1101 0110 OS 11 s 11 s 4S 100110 10 0110 
p 21S 1101 0111 07 11 7 11 7 47 10 0111 10 0111 

•All other codes 

B-1 



DATA REPRESENTATION 

EBCDIC DECIMAL EBCDIC HEX. EBCDIC BCL BCL BCL 
GRAPHIC BCL VALUE INTERNAL GRAPHIC CARD CODE CARD CODE OCTAL INTERNAL EXTERNAL 

a 216 11011000 DB 11 8 11 8 60 10 1000 10 1000 
R 217 1101 1001 09 11 9 11 9 61 10 1001 10 1001 

f 224 11100000 EO 0 8 2 000000 
s 226 11100010 E2 0 2 02 62 11 0010 01 0010 
T 227 11100011 E3 0 3 0 3 63 11 0011 01 0011 
u 228 1110 0100 E4 0 4 0 4 64 11 0100 01 0100 
v 229 11100101 E5 0 5 0 5 65 11 0101 01 0101 
w 230 11100110 E6 0 6 06 66 11 0110 01 0110 
x 231 11100111 E7 0 7 0 7 67 11 0111 01 0111 
y 232 11101000 EB 08 0 8 70 11 1000 011000 

I. 233 11101001 E9 0 9 0 9 71 11 1001 01 1001 

0 240 11110000 FO 0 0 00 000000 00 1010 
1 241 11110001 F1 1 1 01 000001 00 0001 
2 242 11110010 F2 2 2 02 000010 00 0010 
3 243 11110011 F3 3 3 03 000011 00 0011 
4 244 11110100 F4 4 4 04 00 0100 00 0100 
5 245 1111 0101 F5 6 6 05 00 0101 00 0101 
6 246 1111 0110 F6 6 6 06 000110 00 0110 
7 247 11110111 F7 7 7 07 000111 000111 
8 248 1111 1000 FS 8 8 10 00 1000 00 1000 
9 249 11111001 F9 9 9 11 00 1001 00 1001 

NOTES 
1. EBCDIC 0100 1110 also translates to BCL 11 1010. 

2. EBCDIC 1100 1111 is translated to BCL 00 0000 with an additional flag bit on the most 
significant bit line (8th bit). This function is used by the unbuffered printer to stop scanning. 

3. EBCDIC 1110 0000 is translated to BCL 00 0000 with an additional flag bit on the next 
to most significant bit line (7th bit). As the print drums have 64 graphics and space this signal 
can be used to print the 64th graphic. The 64th graphic is a "CR" for BCL drums and a "¢ " 
for EBCDIC drums. 

4. The remaining 189 EBCDIC codes are translated to BCL 00 0000 (? code). 
5. The EBCDIC graphics and BCL graphics are the same except as follows: 

B-~ 

BCL 
~ 

x (multiply) 
~ 

F 

EBCDIC 
' (single quote) 

(not) 

T (underscore) 

I 



MODE ID& 
HEX CODE 

(P)OO_. 3F 

(P)40-+ 7F 

(V)42 

(V)43 

(V)44 

(V)45 

(V)46 

(V)47 

(V)48 
(V)4A 

(V)4E 

(P)80 
(P)81 
(P)82 

(P)83 
(P)84 
(V)84 

(P)85 
(V)85 
(P)86 

(P)87 

(V)87 

(P)88 
(P)89 

(P)8A 
(P)8B 

(V)8B 
(P) 
(P)8D 
(P)8E 

(P)8F 

(V)SF 

(P)90 
(P)91 
(P)92 
(P)93 

(P)94 
(P)95 

APPENDIX C 

PROCESSOR OPERATORS, BY 
HEXADECIMAL CODE 

OPERATOR NAME MNEMONIC MODE ID & OPERATOR NAME 
HEX CODE 

VALUE CALL VALC (P)96 BIT SET 

NAME CALL NAMC 
(P)97 DYNAMIC BIT SET 
(P)98 FIELD TRANSFER 

SET TWO SINGLES TO JOIN (P)99 DYNAMIC FIELD 
DOUBLE TRANSFER 
SET DOUBLE TO TWO SPLT (P)9A FIELD ISOLATE 
SINGLES (P)9B DYNAMIC FIELD 
IDLE UNTIL IDLE ISOLATE 
INTERRUPT (P)9C FIELD INSERT 

SET INTERVAL SINT 
(P)9D DYNAMIC FIELD 

INSERT TIMER (P)9E BIT RESET 
ENABLE EXTERNAL EEXI (P)9F DYNAMIC BIT RESET 
INTERRUPTS (P)AO BRANCH FALSE 
DISABLE EXTERNAL DEXI (P)Al BRANCH TRUE 
INTERRUPTS (P)A2 BRANCH 
IGNORE PARITY IGPR 
SCAN IN SCNI 

UNCONDITIONAL 

READ PROCESSOR WHOI 
IDENTIFICATION (P)A3 EXIT 
ADD ADD (P)A4 STEP AND BRANCH 
SUBTRACT SUBT (P)A5 INDEX AND LOAD 
MULTIPLY MULT NAME 
DIVIDE DIVD (P)A6 INDEX 
INTEGER DIVIDE IDV (P)A7 RETURN 
PAUSE UNTIL PAUS (P)A8 DYNAMIC BRANCH 
INTERRUPT FALSE 
REMAINDER DIVIDE RDIV (V)A8 SET MEMORY 
OCCURS INDEX OCRX INHIBITS 
INTEGERIZE, NTIA (P)A9 DYNAMIC BRANCH 
TRUNCATED TRUE 
INTEGERIZE, NTGR (P)AA DYNAMIC BRANCH 
ROUNDED UNCONDITIONAL 
INTEGERIZE, NTGD (V)AA SET MEMORY LIMITS 
ROUNDED, DOUBLE (P)AB ENTER 
PRECISION (P)AC EVALUATE 
LESS THAN LESS DESCRIPTOR 
GREATER THAN OR GREQ (V)AC FETCH MEMORY FAIL 
EQUAL (P)AD INDEX AND LOAD 

GREATER THAN GRTR 
VALUE 

(P)AE MARK STACK 
LESS THAN OR LSEQ (P)AF STUFF 
EQUAL ENVIRONMENT 
LEADING ONE TEST LOG2 
EQUAL EQUL (V)AF MOVE TO STACK 
NOT EQUAL NEQL (P)BO LIT CALL ZERO 
CHANGE SIGN BIT CHSN (P)Bl LIT CALL ONE 

EXTENDED 
(P)B2 LIT CALL 8 BITS 

MULX (P)B3 LIT CALL 16 BITS 
MULTIPLE 
INTERRUPT INCN (P)B4 PUSH DOWN STACK 
CHANNEL N REGISTERS 
LOGICAL AND LAND (V)B4 SET TAG FIELD 
LOGICAL OR LOR (P)B5 DELETE TOP OF 
LOGICAL NE!GATE LNOT STACK 
LOGICAL LEQV (V)B5 READ TAG FIELD 
EQUIVALENCE (P)B6 EXCHANGE 

LOGICAL EQUAL SAME (V)B6 ROTATE STACK UP 
ESCAPE TO 16-BIT VARI (P)B7 DUPLICATE TOP OF 
INSTRUCTION STACK 

MNEMONIC 

BSET 
DBST 
FLTR 

DFTR 

ISOL 
DISO 

INSR 
DINS 

BRST 
DBRS 
BRFL 
BRTR 
BRUN 

EXIT 
STBR 
NXLN 

INDX 
RETN 

DBFL 

SINH 

DBTR 

DBUN 

SLMT 
ENTR 
EVAL 

FMFR 
NXLV 

MKST 
STFF 

MVST 
ZERO 
ONE 
LT8 
LT16 

PUSH 

STAG 
DLET 

RTAG 
EXCH 

RSUP 
DUPL 

C-1 



MODE ID & OPERATOR NAME MNEMONIC MODE ID & OPERATOR NAME MNEMONIC 
HEX CODE HEX CODE 

(V)B7 ROTATE STACK DOWN RSDN (P)D2 EXECUTE SINGLE EXSD 
(P)BS STORE DESTRUCTIVE STOD 
(V)BS READ PROCESSOR RPRR 

MICRO, DESTRUCTIVE 

REGISTER 
(V)D2 TRANSFER WHILE TWFD 

FALSE, DESTRUCTIVE 
(P)B9 STORE NON- STON (E)D3 SKIP REVERSE SRSC 

DESTRUCTIVE SOURCE CHARACTERS 
(V)B9 SET PROCESSOR SPRR (P)D3 TRANSFER WORDS, TWSD 

REGISTER DESTRUCTIVE 
(P)BA OVERWRITE OVRD (V)D3 TRANSFER WHILE TWTD 

DESTRUCTIVE TRUE, DESTRUCTIVE 
(V)BA READ WITH LOCK RDLK (E)D4 RESET FLOAT RSTF 
(P)BB OVERWRITE NON- OVRN (P)D4 TRANSFER WORDS, TWOD 

DESTRUCTIVE OVERWRITE 
(V)BB COUNT BINARY ONES CBON DESTRUCTIVE 
(V)BC LOAD TRANSPARENT LODT (V)D4 SCAN WHILE FALSE, SWFD 
(P)BD LOAD LOAD DESTRUCTIVE 
(V)BD LINKED LIST LOOKUP LLLU (E)D6 END FLOAT ENDF 
(P)BE LIT CALL 48 BITS LT48 (P)D6 STRING ISOLATE SISO 

(V)BE MASKED SEARCH FOR SRCH (V)D6 SCAN WHILE TRUE, SWTD 
EQUAL DESTRUCTIVE 

(P)BF MAKE PROGRAM MPCW (E)D6 MOVE NUMERIC MVNU 
CONTROL WORD UNCONDITIONAL 

(V)BF STOP STOP (P)D6 SET EXTERNAL SIGN SXSN 
(P)CO SCALE LEFT SCLF (E)D7 MOVE CHARACTERS MCHR 
(P)Cl DYNAMIC SCALE DSLF (P)D7 READ AND CLEAR ROFF 

LEFT OVERFLOW FLIP-FLOP 
(P)C2 SCALE RIGHT SCRT (V)D7 TRANSLATE TRNS 

TRUNCATE (E)DS INSERT OVERPUNCH INOP 
(P)C3 DYNAMIC SCALE DSRT (P)DS TABLE ENTER EDIT, TEEU 

RIGHT TRUNCATE UPDATE 
(P)C4 SCALE RIGHT SAVE SCRS (V)DS UNPACK SIGNED USNU 
(P)C6 DYNAMIC SCALE DSRS UPDATE 

RIGHT SAVE (E)D9 INSERT DISPLAY INSG 
(P)C6 SCALE RIGHT FINAL SCRF SIGN 
(P)C7 DYNAMIC SCALE DSRF (P)D9 PACK UPDATE PACU 

RIGHT FINAL (V)D9 UNPACK ABSOLUTE, UABU 
(P)CS SCALE RIGHT ROUND SCRR UPDATE 
(P)C9 DYNAMIC SCALE DSRR (E)DA SKIP FORWARD SFDC 

RIGHT ROUND DESTINATION 
(P)CA INPUT CONVERT, ICVD CHARACTERS 

DESTRUCTIVE (P)DA EXECUTE SINGLE EXSU 
(P)CB INPUT CONVERT, ICVU MICRO, UPDATE 

UPDATE (V)DA TRANSFER WHILE TWFU 
(P)CC SET TO SINGLE SNGT FALSE, UPDATE 

PRECISION (E)DB SKIP REVERSE SRDC 
TRUNCATE DESTINATION 

CHARACTERS 
(P)DB TRANSFER WORDS, TWSU 

(P)CD SET TO SINGLE SNGL UPDATE 
PRECISION, ROUNDED (V)DB TRANSFER WHILE TWTU 

(P)CE SET TO DOUBLE XTND TRUE, UPDATE 
PRECISION (E)DC INSERT INSU 

(P)CF INSERT MARK STACK IMKS UNCONDITIONAL 
(E)DO MOVE WITH INSERT MINS (P)DC TRANSFER WORDS TWOU 
(P)DO TABLE ENTER EDIT, TEED OVERWRITE UPDATE 

DESTRUCTIVE (V)DC SCAN WHILE FALSE, SWFU 
(V)DO UNPACK SIGNED, USND UPDATE 

DESTRUCTIVE (E)DD INSERT CONDITIONAL INSC 
(E)Dl MOVE WITH FLOAT MFLT (P)DD EXECUTE SINGLE EXPU 
(P)Dl PACK DESTRUCTIVE PACD MICRO, SINGLE 
(V)Dl UNPACK ABSOLUTE, UABD POINTER UPDATE 

DESTRUCTIVE (V)DD SCAN WHILE TRUE, SWTU 
(E)D2 SKIP FORWARD SFSC UPDATE 

SOURCE CHARACTERS (E)DE END EDIT ENDE 

C-2 



MODE ID Ii OPERATOR NAME MNEMONIC MODE ID Ii OPERATOR NAME MNEMONIC 
HEX CODE HEX CODE 

(P)DE READ TRUE/FALSE RTFF (V)FO SCAN WHILE LESS, SLSD 
FLIP-FLOP DESTRUCTIVE 

(E)DF CONDITIONAL HALT HALT 
(P)DF CONDITIONAL HALT HALT (P)Fl COMPARE CGED 
(V)DF CONDITIONAL HALT HALT CHARACTERS 
(P)EO TRANSFER WHILE TLSD GREATER OR EQUAL, 

LESS, DESTRUCTIVE DESTRUCTIVE 

(P)El TRANSFER WHILE TGED 
(V)Fl SCAN WHILE SGED 

GREATER OR EQUAL, 
GREATER OR EQUAL, DESTRUCTIVE DESTRUCTIVE 

(Z)El (P)F2 COMPARE CGTD (P)E2 TRANSFER WHILE TGTD CHARACTERS GREATER, GREATER, 
DESTRUCTIVE DESTRUCTIVE 

(V)F2 SCAN WHILE SGTD 
(P)E3 TRANSFER WHILE TLED GREATER, 

LESS OR EQUAL, DESTRUCTIVE 
DESTRUCTIVE 

(P)E4 TRANSFER WHILE TEQD 
(P)F3 COMPARE CLEO 

CHARACTERS LESS 
EQUAL, DESTRUCTIVE OR EQUAL, 

(P)E6 TRANSFER WHILE TNED 
DESTRUCTIVE 

(V)F3 SCAN WHILE LESS OR SLED 
NOT EQUAL, EQUAL, DESTRUCTIVE 
DESTRUCTIVE 

(P)E6 TRANSFER TUND 
(P)F4 COMPARE CEQD 

CHARACTERS EQUAL, 
UNCONDITIONAL, DESTRUCTIVE DESTRUCTIVE (V)F4 SCAN WHILE EQUAL, SEQD 

(P)E7 MULTIPLE-WORD VMOM 
DESTRUCTIVE 

VECTOR MODE 
(P)F6 COMPARE CNED 

CHARACTERS NOT 
(P)E8 TRANSFER WHILE TLSU EQUAL, DESTRUCTIVE 

LESS, UPDATE (V)F6 SCAN WHILE NOT SNED 
EQUAL, DESTRUCTIVE 

(P)E9 TRANSFER WHILE TGEU 
GREATER OR EQUAL, (P)F8 COMPARE CLSU 
UPDATE CHARACTERS LESS, 

UPDATE 
INCREMENT (V)F8 SCAN WHILE LESS, SLSU 

(P)EA TRANSFER WHILE TGTU UPDATE 
GREATER, UPDATE 

TRANSFER WHILE TLEU 
(P)F9 COMPARE CGEU 

(P)EB CHARACTERS 
LESS OR EQUAL, GREATER OR EQUAL, 
UPDATE UPDATE 

(V)F9 SCAN WHILE SGEU 
INCREMENT GREATER OR EQUAL, 

(P)EC TRANSFER WHILE TEQU UPDATE 
EQUAL, UPDATE 

(P)ED TRANSFER WHILE TNEU INCREMENT 
NOT EQUAL, UPDATE 

(P)FA COMPARE CGTU 
CHARACTERS 

(P)EE TRANSFER TUNU GREATER, UPDATE 
UNCONDITIONAL, (V)FA SCAN WHILE SGTU 
UPDATE GREATER, UPDATE 

(P)EF SINGLE-WORD VMOS (P)FB COMPARE CLEU 
VECTOR MODE CHARACTERS LESS 

OR EQUAL, UPDATE 
(V)FB SCAN WHILE LESS OR SLEU 

(P)FO COMPARE CLSD 
EQUAL, UPDATE 

CHARACTERS LESS, 
DESTRUCTIVE 

C-3 



MODE ID A OPERATOR NAME MNEMONIC MODE ID A OPERATOR NAME MNEMONIC 
HEX CODE HEX CODE 

(P)FC COMPARE CEQU 
CHARACTERS EQUAL, 
UPDATE (E)FE NO OPERATION NOOP 

(V)FC SCAN WHILE EQUAL, SEQU (P)FE NO OPERATION NOOP 
UPDATE (V)FE NO OPERATION NOOP 

(P)FD COMPARE CNEU 
CHARACTERS NOT (E)FF INVALID OPERATION NVLD 
EQUAL, UPDATE (P)FF INVALID OPERATION NVLD 

(V)FD SCAN WHILE NOT SNEU (V)FF INVALID OPERATION NVLD 

EQUAL, UPDATE 

C4 



APPENDIX D 
PROCESSOR OPERATORS BY MNEMONICS 

Mode ID& Operator Mode ID& Operator 
Mnemonic Hex Code Name Page Mnemonic Hex Code Name Page 

A EQUAL 
ADD (P)80 ADD 3-4-5 UPDATE 3-4-9 

CLSD (P)FO COMPARE 
B CHARACTERS 

BRFL (P)AO BRANCH ON 3-4-7 LESS 
FALSE DESTRUCTIVE 3-4-9 

BRST (P)9E BIT RESET 3-4-7 CLSU (P)F8 COMPARE 
BRTR (P)Al BRANCH ON CHARACTERS 

TRUE 3-4-7 LESS UPDATE 3-4-9 
BRUN (P)A2 BRANCH CNED (P)FS COMPARE 

UNCONDITIONAL 3-4-7 CHARACTERS 
BSET (P)96 BIT SET 3-4-6 NOT EQUAL 

DESTRUCTIVE 3-4-9 
c CNEU (P)FD COMPARE 

CBON (V)BB COUNT CHARACTERS 
BINARY ONES 3-4-7 NOT EQUAL 

CEQD (P)F4 COMPARE UPDATE 3-4-9 
CHARACTERS 
EQUAL D 
DESTRUCTIVE 3-4-8 DBFL (P)A8 DYNAMIC 

CEQU (P)FC COMPARE BRANCH 
CHARACTERS FALSE 3-4-8 
EQUAL DBRS (P)9F DYNAMIC BIT 
UPDATE 3-4-8 RESET 3-4-7 

CGED (P)Fl COMPARE DBST (P)97 DYNAMIC BIT 
CHARACTERS SET 3-4-6 
GREATER OR DBTR (P)A9 DYNAMIC 
EQUAL BRANCH TRUE 3-4-7 
DESTRUCTIVE 3-4-8 DBUN (P)AA DYNAMIC 

CGEU (P)F9 COMPARE BRANCH 
CHARACTERS UNCONDITIONAL 3-4-7 
GREATER OR DEXI (V)47 DISABLE 
EQUAL EXTERNAL 
UPDATE 3-4- INTERRUPTS 3-4-25 

CGTD (P)F2 COMPARE DFTR (P)99 DYNAMIC 
CHARACTERS FIELD 3-4-20 
GREATER TRANSFER 
DESTRUCTIVE 3-4-8 DINS (P)9D DYNAMIC 

CGTU (P)FA COMPARE FIELD INSERT 3-4-21 
CHARACTERS DISO (P)9B DYNAMIC 
GREATER FIELD 
UPDATE 3-4- ISOLATE 3-4-21 

CHSN (P)8E CHANGE SIGN DIVD (P)83 DIVIDE 3-4-6 
BIT 3-4-7 DLET (P)B5 DELETE TOP 

CLED (P)F3 COMPARE OF STACK 3-4-15 
CHARACTERS DSLF (P)Cl DYNAMIC 
LESSOR SCALE LEFT 3-4-14 
EQUAL FINAL 
DESTRUCTIVE 3-4-9 DSRF (P)C7 DYNAMIC 

CLEU (P)FB COMPARE SCALE RIGHT 
CHARACTERS FINAL 3-4-14 
LESSOR DSRR (P)C9 DYNAMIC 

5010796-001 D-1 



Mode ID& Operator Mode ID& Operator 
Mnemonic Hex Code Name Page Mnemonic Hex Code Name Page 

SCALE RIGHT H 
ROUNDED 34-14 HALT (P)DF CONDITIONAL 

DSRS (P)C5 DYNAMIC HALT 34-22 
SCALE RIGHT HALT (V)DF CONDITIONAL 34-22 
SAVE 34-14 HALT 

DSRT (P)C3 DYNAMIC HALT (E)DF CONDITIONAL 
SCALE RIGHT HALT 34-22 
TRUNCATE 34-14 

DUPL (P)B7 DUPLICATE I 
TOP OF STACK 34-15 ICVD (P)CA INPUT 

CONVERT, 
E DESTRUCTNE 34-11 

EEXI (V)46 ENABLE ICVU (P)CB INPUT 
EXTERNAL CONVERT, 
INTERRUPTS 34-25 UPDATE 34-11 

ENDE (E)DE ENDEDIT 34-30 IDN (P)84 INTEGER 
ENDF (E)D5 END FLOAT 34-30 DNIDE 34-6 
ENTR (P)AB ENTER 34-20 IDLE (V)44 IDLE UNTIL 
EQUL (P)8C EQUAL 34.13 INTERRUPT 34-25 
EVAL (P)AC EVALUATE IGPR (V)48 IGNORE 

DESCRIPTOR 34-20 PARITY 34-28 
EXCH (P)B6 EXCHANGE 34-14 IMKS (P)CF INSERT MARK 
EXIT (P)A3 EXIT 34-20 STACK 34-19 
EXPU (P)DD EXECUTE INCN (V)8F INTERRUPT 

SINGLE CHANNELN 34-28 
MICRO, INDX (P)A6 INDEX 34-10 
SINGLE INOP (E)D8 INSERT 
POINTER OVERPUNCH 34-29 
UPDATE 34-10 INSC (E)DD INSERT 

EXSD (P)D2 EXECUTE CONDITIONAL 34-29 
SINGLE INSG (E)D9 INSERT 34-29 
MICRO DISPLAY SIGN 34-29 
DESTRUCTIVE 34.9 INSR (P)9C FIELD INSERT 34-21 

EXSU (P)DA EXECUTE INSU (E)DC INSERT 
SINGLE UNCONDITIONAL 34-29 
MICRO, ISOL (P)9A FIELD 
UPDATE 34-10 ISOLATE 34-20 

F J 
FLTR (P)98 FIELD JOIN (V)42 SET TWO 

TRANSFER 34-20 SINGLES TO 
FMFR (V)AC FETCH DOUBLE 34-21 

MEMORY FAIL 
REGISTER 34-28 L 

LAND (P)90 LOGICAL AND 34-12 
G LEQV (P)93 LOGICAL 

GREQ (P)89 GREATER EQUNALENCE 34-12 
THAN OR LESS (P)88 LESS THAN 34-13 
EQUAL 34-13 LLLU (V)BD LINKED LIST 

GRTR (P)8A GREATER LOOKUP 34-26 
THAN 34-1 LNOT (P)92 LOGICAL 

NEGATE 34-12 

D-2 



Mode ID& Operator Mode ID& Operator 
Mnemonic Hex Code Name Page Mnemonic Hex Code Name Page 

LOAD (P)BD LOAD 34-11 NVLD (V)FF INVALID 

LOOT (V)BC LOAD OPERATOR 34-22 

TRANSPARENT 34-11 NVLD (E)FF INVALID 
LOG2 (V)8B LEADING ONE OPERATOR 34-22 

TEST 34-7 NXLN (P)A5 INDEX AND 
LOR (P)91 LOGICAL OR 34-12 LOAD NAME 34-10 
LSEQ (P)8B LESS THAN OR NXLV (P)AD INDEX AND 

EQUAL 34-13 LOAD VALUE 34-10 

LT16 (P)B3 LIT CALL 16 
BITS 34-11 0 

LT48 (P)BE LITCALL48 OCRX (V)85 OCCURS INDEX 34-27 
BITS 34-11 ONE (P)Bl LIT CALL ONE 34-11 

LT8 (P)B2 LITCALL8 OVRD (P)BA OVERWRITE 
BITS 34-11 DESTRUCTNE 34-15 

OVRN (P)BB OVERWRITE 
M NON-

MCHR (E)D7 MOVE DESTRUCTNE 34-15 

CHARACTERS 34-29 
MFLT (E)Dl MOVE WITH p 

FLOAT 34-30 PACO (P)Dl PACK 
MINS (E)DO MOVE WITH DESTRUCTNE 34-12 

INSERT 34-29 PACU (P)J)CJ PACK UPDATE 34-13 
MKST (P)AE MARK STACK 34-19 PAUS (V)84 PAUSE UNTIL 
MPCW (P)BF MAKE INTERRUPT 34-28 

PROGRAM PUSH (P)B4 PUSHDOWN 
CONTROL STACK 
WORD 34-12 REGISTERS 34-15 

MULT (P)82 MULTIPLY 34-
MULX (P)8F EXTENDED R 

MULTIPLY 34 RON (P)85 REMAINDER 
MVNU (E)D6 MOVE DIVIDE 34-6 

NUMERIC RDLK (V)BA READ WITH LOCK 34-15 
MYST (V)AF MOVE TO RETN (P)A7 RETURN 34-20 

STACK 34-27 ROFF (P)D7 READAND 
CLEAR 

N OVERFLOW FLIP-
NAMC (P)40 NAME CALL FLOP 34-22 

-.7F 34-19 RPRR (V)B8 READ 
NEQL (P)8D NOT EQUAL 34-13 PROCESSOR 
NOOP (P)FE NO OPERATION 34-22 REGISTER 34-25 
NOOP (V)FE NO OPERATION 34-2 RSDN (V)B7 ROTATE STACK 34-14 
NOOP (E)FE NO OPERATION 34-2 DOWN 
NTGD (V)87 INTEGERIZE, RsTF (E)D4 RESET FLOAT 34-30 

ROUNDED, RSUP (V)B6 ROTATE STACK UP 34-15 
DOUBLE RTAG (V)B5 READ TAG FIELD 34-24 
PRECISION 34 RTFF (P)DE READ TRUE/ 

NTGR (P)87 INTEGERIZE, FALSE FLIP-
ROUNDED 34 FLOP 34-22 

NTIA (P)86 INTEGERIZE, 
TRUNCATED 34-6 s 

NVLD (P)FF INVALID SAME (P)94 LOGICAL EQUAL 34-13 
OPERATOR 34-22 SCLF (P)CO SCALE LEFT 34-13 

5010796-001 D-3 



Mode ID& Operator Mode ID& Operator 
Mnemonic Hex Code Name Page Mnemonic Hex Code Name Page 

SCNI (V)4A SCANIN(TOD LIMITS 34-28 
ONLY) 34-23 SLSD (V)FO SCAN WHILE 

SCRF (P)C6 SCALE RIGHT LESS, 
FINAL 34-14 DESTRUCTNE 34-24 

SCRR (P)C8 SCALE RIGHT SLSU (V)F8 SCANWIIlLE 
ROUNDED 34-14 LESS, UPDATE 34-24 

SCRS (P)C4 SCALE RIGHT SNED (V)F5 SCAN WHILE 
SAVE 34-14 NOT EQUAL, 

SCRT (P)C2 SCALE RIGHT DESTRUCTIVE 34-24 
TRUNCATE 34-14 SNEU (V)FD SCAN WHILE 

SEQD (V)F4 SCAN WHILE NOT EQUAL, 
EQUAL UPDATE 34-24 
DESTRUCTIVE 34-23 SNGL (P)CD SET TO 

SEQU (V)FC SCAN WHILE SINGLE 
EQUAL, UPDATE 34-23 PRECISION, 

SFDC (E)DA SKIP ROUNDED 34-21 
FORWARD SNGT (P)CC SET TO 
DESTINATION SINGLE 
CHARACTERS 34-30 PRECISION, 

SFSC (E)D2 SKIP TRUNCATED 34-21 
FORWARD SPLT (V)43 SET DOUBLE 
SOURCE TO TWO 
CHARACTERS 34-30 SINGLES 34-21 

SGED (V)Fl SCAN WHILE SPRR (V)B9 SET 
GREATER OR PROCESSOR 
EQUAL, REGISTER 34-25 
DESTRUCTIVE 34-23 SRCH (V)BE MASKED 

SGEU (V)F9 SCAN WHILE SEARCH FOR 
GREATER OR EQUAL 34-27 
EQUAL, SRDC (E)DB SKIP REVERSE 
UPDATE 34-23 DESTINATION 

SGTD (V)F2 SCAN WHILE CHARACTERS 34-30 
GREATER, SRSC (E)D3 SKIP REVERSE 
DESTRUCTNE 34-23 SOURCE 

SGTU (V)FA SCAN WHILE CHARACTER 34-30 
GREATER, STAG (V)B4 SET TAG 
UPDATE 34-23 FIELD 34-24 

SINH (V)A8 SET MEMORY STFF (P)AF STUFF 
INHIBITS 34-28 ENVIRONMENT 34-22 

SINT (V)45 SET INTERVAL STOD (P)B8 STORE 
TIMER 34-25 DESTRUCTNE 34-15 

SISO (P)D5 STRING STON (P)B9 STORE NON-
ISOLATE 34-16 DESTRUCTNE 34-15 

SLED (V)F3 SCAN WHILE STOP (V)BF STOP 34-28 
LESSOR SUBT (P)81 SUBTRACT 34-5 
EQUAL, SWFD (V)D4 SCAN WHILE 
DESTRUCTIVE 34-23 FALSE, 

SLEU (V)FB SCAN WHILE DESTRUCTNE 34-24 
LESS OR SWFU (V)DC SCAN WHILE 
EQUAL, FALSE, 
UPDATE 34-2 UPDATE 34-24 

SLMT (V)AA SET MEMORY SWTD (V)D5 SCAN WHILE 
D4 



Mode ID& Operator Mode ID& Operator 
Mnemonic Hex Code Name Page Mnemonic Hex Code Name Page 

TRUE, TNED (P)E5 TRANSFER 
DESTRUCTIVE 34-24 WHILE NOT 

SWTU (V)DD SCAN WHILE EQUAL, 
TRUE, UPDATE 34-24 DESTRUCTIVE 34-18 

SXSN (P)D6 SET TNEU (P)ED TRANSFER 
EXTERNAL WHILE NOT 
SIGN 34-22 EQUAL, 

UPDATE 34-18 
T TRNS (V)D7 TRANSLATE 34-22 

TEED (P)DO TABLE ENTER TUND (P)E6 TRANSFER 
EDIT, UNCONDITIONAL 
DESTRUCTIVE 34-9 DESTRUCTIVE 34-18 

TEEU (P)D8 TABLE ENTER TUNU (P)EE TRANSFER 
EDIT, UPDATE 34-9 UNCONDITIONAL 

TEQD (P)FA TRANSFER UPDATE 34-18 
WHILE EQUAL, TWFD (V)D2 TRANSFER 
DESTRUCTIVE 34-17 WHILE FALSE, 

TEQU (P)EC TRANSFER DESTRUCTIVE 34-18 
WHILE EQUAL, TWFU (V)DA TRANSFER 
UPDATE 34-17 WHILE FALSE, 

TGED (P)El TRANSFER UPDATE 34-18 
WHILE TWOD (P)D41 TRANSFER 
GREATER OR WORDS 
EQUAL, OVERWRITE, 
DESTRUCTNE 34-17 DESTRUCTNE 34-16 

TGEU (P)E9 TRANSFER TWOU (P)DC TRANSFER 
WHILE WORDS 
GREATER OR OVERWRITE, 
EQUAL, UPDATE 34-17 
UPDATE 34-17 TWSD (P)D3 TRANSFER 

TGTD (P)E2 TRANSFER WORDS, 
WHILE DESTRUCTIVE 34-16 
GREATER, TWSU (P)DB TRANSFER 
DESTRUCTIVE 34-17 WORDS, 

TGTU (P)EA TRANSFER UPDATE 34-16 
WHILE TWTD (V)D3 TRANSFER 
GREATER, WHILE TRUE, 
UPDATE 34-17 DESTRUCTIVE 34-18 

TLED (P)E3 TRANSFER TWTU (V)DB TRANSFER 
WHILE LESS WHILE TRUE, 
OR EQUAL, UPDATE 34-18 
DESTRUCTNE 34-17 

TLEU (P)EB TRANSFER u 
WHILE LESS UABD (V)Dl UNPACK 
OR EQUAL, ABSOLUTE, 
UPDATE 34-17 DESTRUCTNE 34-25 

TLSD (P)EO TRANSFER UABU (V)D9 UNPACK 
WHILE LESS, ABSOLUTE, 
DESTRUCTIVE 34-17 UPDATE 34-25 

TLSU (P)E8 TRANSFER USND (V)DO UNPACK 
WHILE LESS, SIGNED, 
UPDATE 34-17 DESTRUCTIVE 34-25 

5010796-001 D-5 



.. 

Mode ID& Operator Mode ID& Operator 
Mnemonic Hex Code Name Page Mnemonic Hex Code Name Page 

USNU (V)D8 UNPACK PROCESSOR 
SIGNED, IDENTIFICATION 34-25 
UPDATE 34-2 

x 
v XTND (P)CE SET TO 

VAi.£ (P)00-.3F VALUE CALL 34-19 DOUBLE 
VARI (P)95 ESCAPE TO 16- PRECISION 34-21 

BIT 
INSTRUCTION 34-22 

z 
w ZERO (P)BO LIT CALL 

WHOI (V)4E READ ZERO 34-11 

D-6 



APPENDIX E 

IOM WORD FORMATS 

HA WORD 1, START 1/0 COMMAND 

LK ~43 
~ r7j 47 ~ 35 31 27 :!3 . 19 ts u 1 

T5o f42 
UN IT 

14 10 ~ a 46 38 34 30 26 22 18 

A49 
c rr>~ m-

45 lQ_41 37 33 29 25 21 17 13 9 6 1 

G 48 44 1~40 36 N~ [TE28 a4 20 Ul 12 8 4 0 

FIELD BITS DESCRIPTION 

TAG 50:3 Denotes word is single precision 
(000). 

LK 47:1 When set by software indicates the 
HA words are available for IOM 
use. Resets when IOM services HA 
words. 

46:3 Not used. 

HOME 43:4 Defines Start I/0 command (0001). 
CODE 

39:4 Not used. 

UNIT 35:8 A unique 8-bit code-used with the 
DE SIG- UT base address to index and lock 
NATE fetch from memory the UT word for 

the device to be started, and used 
with the QH base address to unlock 
fetch from memory the QH word, 
which points to the IOCB base 
address. 

27:28 Not used. 

HA WORD 1, SET CHANNEL BUSY /RESERVED 

LK [ff ~ 3 I"' 27 J]I l/11' 
1.··· 

47 043 ~ 23 19 7 3 

T 50 
r¥ H. /. 

~ E42 3S: ~· ~ll 26 . 22 18 M 10 6 2 

A49 
.,,.-

45 ~41 37 ~ ~N2s 21 17 13 9• 5 1 

G 48 t4o ~ 
0. 

44 ~ ~ 24 2-0 16 12 8 4 0 

FIELD BITS DESCRIPTION 

TAG 50:3 Denotes word is single precision 
(000). 

LK 47:1 When set by software indicates the 
HA words are available for IOM 
use. Resets when IOM services HA 
words. 

46:3 Not used. 

HOME 43:4 Defines Set CH Busy/Set CH 
CODE Reserved Commands (0010). 

B/R 39:1 When reset, further defines 
command as Set CH Busy; when 
set, further defines command as Set 
CH Reserved. 

HA WORD 1, SET CHANNEL BUSY /RESERVED 

38:11 Not used. 

CH. NO. 27:5 Identifies one of the 28 possible 
IOM channels. 

22:23 Not used. 

HA WORD 1, RESET CHANNEL 
RESERVED 

LK H BIR 
47 o~ 39 !!! 31 C21 23 19 

T5o IM H. 
l~ 46 E 42 38 ~ ;!!! 26 22 

A49 i2[8_41 37 ~ 29 N2s 21 17 

G48 
D 

3~ 
0. 

44 E4o 36 28 24 20 !§ 

15 

H 

13 

12 

FIELD BITS DESCRIPTION 

11 7 

10 6 

9 5 

8 4 

TAG 50:3 Denotes word is single precision 
(000). 

3 

2 

1 

0 

LK 47:1 When set by software indicates the 
HA words are available for IOM 
use. Resets when IOM services HA 
words. 

46:3 Not used. 

HOME 43:4 Defines Reset CH Busy/Reset CH 
CODE Reserved Commands (0011). 

B/R 39:1 When reset, further defines 
command as Reset CH Busy; when 
set, further defines command as 
Reset CH Reserved. 

38:11 Not used. 

CH. NO. 27:5 Identifies one of the 28 possible 
IOM channels. 

22:23 Not used. 

HA WORD 1, LOAD BASE ADDRESS (HA, UT, 
UOQH, SQ) COMMANDS 

LK H 
47 043 39 35 31 2'1 23 19 15 11 7 3 

FIELD 

TAG 

LK 

M}'.MORY 
18 14 10 6 

29 2~ 21 

28 24 20 16 12 8 4 

BITS DESCRIPTION 

50:3 Denotes word is single precision 
(000). 

2 

0 

47:1 When set by software indicates the 
HA words are available for IOM 
use. Resets when IOM services HA 
words. 

E-1 



HA WORD 1, LOAD BASE ADDRESS (HA, UT, 
UOQH, SQ) COMMANDS 

HOME 
CODE 

46:3 Not used. 

43:4 Defines: 

(1) Load Home Address Command 
(0100) 
(2) Load Unit Table Address 
Command (0101) 
(3) Load I/0 Queue Head Address 
Command (0110) 
(4) Load Status Queue Address 
conn 

39:20 Not used. 

MEMORY 19:20 The memory addres1:1 to be stored in 
ADDRESS the Translator of the IOM to enabh 

access of the IOM Job Map. 

HA WORD 1, DFO SCAN-OUT COMMANDS 
(CLEAR STACK AND STORE CW REQUEST) 

LK H D D ES 
47 043 39 35 31 2~ 23 E 19 F 15 Ntt 7 3 

T ffif ! 
014 

u 
50 48 E42 38 34 30 26 22 1!_rn LMto 6 ..AJ 

A 
1841 

E 
l{_13 ~9 T 

49 ts S'1 33 29 25 21 T 17 Y5 1 

G 1~40 . 24 [16 II12 Ra rr4 48 44 36 32 28 20 0 

FIELD BITS DESCRIPTION 

TAG 50:3 Dl'nott>s the word is singlt> precision 
(000). 

LK 47:1 When st>t hy software indic11tt•s Uw 
HA word1:1 are available for IUM 
use. Rest>ts when IOM servi<.'eS HA 
words. 

46:3 Not used. 

HOME 43:4 l>t>firws tht> <.'ommand as Scan Out 
CODE (D1''0 or I>CPl when 1000. 

39:20 Not used. 

DEVICE 19:4 Defines the ~<.'an Out command is 
TYPE for a 111"0 (1001 ). 
DFEU 15:8, Together define the DFO by 
UNIT 7:1 s1wl'ifyini;r a DFEU unit number 
NMBR and whether it is dire<.'tly (bit 7=0) 
and ES or indirectly (bit 7=1) connected to 
(EXCH the DFO. 
SELECT) 

6:1 Not ust>d. 

TYPE 5:2 Defines the DFO Scan-Out command 
as Clear the Sta<-'k (10) or Store 
Control Word Request (01). 

3:4 Not ust>d. 

E-2 

HA WORD 2, DFO SCAN OUT/STORE 
CONTROL WORD REQUEST COMMAND 

4'1 43 39 ~~ 31 2'1 23 19 15 11 7 3 
oc ~ ~ DI :>K 

50 46 42 38 3~ 26 22 18 14 10 6 2 
AD )~1 st ADDl ES p 5 49 45 41 37 29 25 21 17 13 9 1 

48 44 40 36 ~ 28 24 20 16 12 8 4 0 

FIELD BITS DESCRIPTION 

50:3 Not used. 

IOCB 47:20 The base addre1:1s or' the job in 
ADDRESS memory. 

27:2 Not used. 

DISK 25:26 The disk address to be used for the 
ADDRESS job. 

NOTE 
This format also represents the format of 
the Scan Information word sent to the 
DFO. 

HA WORD 1, DCP SCAN-OUT COMMANDS 
(INITIATE, HALT, SET ATTENTION) 

LK H D 11J1 lR3 47 043 39 35 Sl _!! 23 J19 15 
I!!' l! 18 

. p 
Tso 46 E42 38 34 30 2_1i 22 14 10!6 2 
I~ ,. rE It:. ~ 
G49 45 tl41 S'I 33 29 ~ 21 LI 11 13 9 5 0.1 

48 44 ~40 36 32 28 24 20 lf 16 12 8 4 0 

FIELD BITS DESCRIPTION 

TAG 50:3 Denotes the word is single precision 
(000). 

LK 47:1 When set by software indicates the 
HA words are available for IOM 
use. Resets when IOM services HA 
words. 

46:3 Not used. 

HOME 43:4 Defines the command as Scan Out 
CODE (DFO or DCP) when 1000. 

39:20 Not used. 

DEVICE 19:4 Defines the Scan Out command is 
TYPE for a DCP (110). 

15:8 Not used. 

TYPE 7:3 Defines the DCP Scan-Out command 
as Initiate (000), Halt (010), or Set 
Attention (100). 

4:1 Not used. 

DCP NO. 3:3 Defines the DCP for which the 
command is intended. 

0:1 Not used. 



HA WORD 2, DCP SCAN-OUT/INITIATE 
COMMAND 

4'1 43 39 35 31 27 23 l~Jsw~~ 
50 46 42 38 34 30 26 22 18 JA~o 

33 
AD PR~ 

49 45 41 37 29 25 21 17 13 9 

48 44 40 36 32 28 24 20 16 12 8 

FIELD BITS DESCRIPTION 
50:31 Not used. 

T~N 
7 3 

6 2 

SS 
5 1 

4 0 

INSTRUCTION 19:20 Define the memory base addre1 
BASE the DCP code. 
ADDRESS 

NOTE 
this format also represents the format of 
the Scan Information word sent to the 
DCP. 

HA WORD 1, DFO SCAN-IN COMMANDS 
(QUEUED CONTROL WORD, TOP OF STACK, 
REPORT) 

LK H D 0 E~ 
:.: .· .. 

47 043 39 35 31 27 23 E 19 F 15Nll :: .• 
(lVI" 

I ~ u 
TSO ~~ E 42 38 34 30 Z6 22 c 18 u 14 MIO 6 z 

A49 
c E u B T Ti 4:5 0 41 37 33 H 2a 21 lI_l7 N 13E 9 y 5 

G 48 
0 y I R p 

44 !:: 40 36 32 28 24 20 Lt 16 T 12 8;,. 4 0 

FIELD BITS DESCRIPTION 
TAG 50:3 Denotes the word is single precision 

(000). 

LK 47:1 When set by software indicates the 
HA words are available for IOM 
use. Resets when IOM services HA 
words. 

46:3 Not used. 

HOME 43:4 Defines the command as Scan in 
CODE (1001). 

39:20 Not used. 

DEVICE 19:4 Defines the command as for a DFO 
TYPE '1001). 
DFEU 15:8, Together define the DFO by 
UNIT 7:1 specifying a DFEU unit number 

NMBR and whether it is directly or 
and ES indirectly connected to the DFO (via 
(EXCH an exchange). These fields are not 
SELJ used for the Scan-In DFO Report 

Command. 
6:1 Not used. 

TYPE 5:2 Defines the DFO Scan-Out command 
as either Queued Control Word (01), 
Top of Stack (10), or Report (11). 

3:4 Not used. 

HA WORD 2 (SCAN-IN WOAD), SCAN-IN DFO 
QUEUED CONTROL WORD AND TOP OF 
STACK COMMANDS 

.~47 1~43 3ii 35 3l 27 23 19 15 11 7 J 
'T re;- IOC 9 so A46 p 42 se 34 30 26 22 18 14 10 6 2 
T 0 

33 
AD ~~~ SS 

49 h"145 18_ 41 37 29 25 21 13 9 5 1 

411 5 44 T 40 38 32 28 24 20 16 12 8 4 Ao 

FIELD 

STATUS 
REPORT 

IOCB 
ADDR 

A 
(ATTEN) 

BITS 
50:3 

47:8 

39:13 

DESCRIPTION 
Not used. 

Describes the nature of the DFO by 
bits set as follows: 

(1) 47 set = No Access to Exchange 
(2) 46 set = SU Not Available 
(3) 45 set = Parity Error 
(4) 44 set = Disk Address Error 
(5) 43 set = Queded Control Word 
(6) 42 set = Top of Stack Control 
Word 
(7) 41 set = Stack Empty 
(8) 40 set = Control Word Not 
Available 

Not used. 

26:20 Defines the memory address of the 
IOCB. 

6:6 Not used. 

0:1 When set, alerts the IOM to 
examine the STATUS REPORT 
FIELD. 

NOTE: 
This format also represents the format of 
the Scan Information word received from 
the DFO. 

HA WORD 2 SCAN-IN DFO REPORT 
COMMAND 

v4 .. 

Xi~ P46 
:-::::·:: R 

·.: .. : .. : !45 

>•· !44 

FIELD 

v 

PRI 1 

s 
43 391 C-3! ·~ 31 

27 23 ~ l5 !.l '[ 3 

v42 
r= l"'7 Q l'R 

38 C34 E3o 26 22 ~ 14 !2 _J ... 2 
p 

v3, i3~ 
['{; ./ 

1E41 lft29 25 21 ll .13 9 .. 6 i 
rr 

vl1 
rr 

240 36 28 24 20 !! 12 8 .f .O· 

BITS DESCRIPTION 

50:3 Not used. 
47:1 When true indicates connection of 

an EU/DFO bus at port 1 and the 
EUs connected to this bus are 
referenced by the EUD code present 
on lines 43-46 of the Scan 
Information Lines. 

46:4 EUD code for port 1 bus (bit 
46=MSB). 

E-3 



v 42:1 When true indicates connection of 
an EU/DFO bus at port 2 and the 
EUs connected to this. bus are 
referenced by the EUD code present 
on lines 38-41. 

PRI 2 41:4 EUD code for port 2 bus (bit 
41=MSB). 

v 37:1 When true indicates connection of 
an EU/DFO bus at port 3, and the 
EUs connected to this bus are 
referenced by the EUD code present 
on lines 33-36. 

SEC 1 36:4 EUD code for port 3 bus (bit 
~r. ... ,1~g; 

v 32:1 When true indicates connection of 
an EU/DFO bus at port 4, and the 
EUs connected to this bus are 
referenced by the EUD code present 
on lines 28-31. 

SEC 2 31:4 EUD code for port 4 bus (bit 
31=MSB). 

NOTE 
If a given EUD code appears on Scan Infor­
mation lines 38-41 or 43-46, then the EUs 
referenced by the code are connected to the 
responding DFO in a direct manner, but if 
the EUD code appears on lines 28-31 or 33-
36, then the EUs referenced by the EUD 
code are connected to the responding DFO 
indirectly (that is, via the other DFO of the 
DFO-pair). 

QAR 27:6 Indicates capacity of memory stack 
<hit 27=MSB). 

21:22 Not used. 

NOTE 
This format also represents the format of 
the Scan Information word received from 
the DFO. 

HA WORD 1, SYNC 110 COMMAND 

LI< H 
47 0 43 

fM" 
Tso 46 E 42 

A49 
c 

4S 0 41 
G D 

48 •• E 40 

FIELD 

TAG 

LK 

E-4 

c 
39 35 31 H 27 23 19 15 11 7 3 

pr 

18 'f4 P~J 38 34 30(~ 2~ 22 6 2 
E ~DJ RE ~s 37 33 29 L 25 21 17 9 5 I 

36 32 
N 

28 024 20 16 12 8 4 0 

BITS DESCRIPTION 

50:3 Denotes the word is single precision 
(000). 

47:1 When set by software indicates the 
HA words are available for IOM 
use. Resets when IOM services HA 
words. 

46:3 Not used. 

HOME 
CODE 

43:4 Defines the command as Sync 1/0. 

29:12 Not used. 

CHANNEL 27:5 Identifies one of the 28 possible 
NO. IOM channels. 

22:3 Not used. 

IOCB 19:20 The address of the job request in 
ADDRESS memory. 

HA WORD 1, INTERROGATE PERIPHERAL 
STATUS COMMAND 

LK 
47 

Tso •6 
A 

l(i49 45 

48 44 

FIELD 

TAG 

LK 

HOME 
CODE 

a43 
v 

39 3_!; 31 27 23 ~ ~ tn 'I 3 
IM 'f 
E 42 38 34 30 26 22 !.!! 1_4 ~JO 8 2 .,.. ~ 

X41 37 ~ ~ 25 21 17 ~ N0.5 5 1 
D 
Ei<l 36 3~ 2~ 24 20 Uli 12 8 4 0 

BITS DESCRIPTION 

50:3 Denotes the word is single precision 
(000). 

47:1 When set by software indicates the 
HA words are available for IOM 
use. Resets when IOM services HA 
words. 

46:3 

43:4 

Not used. 

Defines Interrogate Peripheral 
Status Command (1011). 

VECTOR 12:4 Defines the number of the status 
vector to be interrogated. NO. 

8:9 Not used. 

HA WORD 2 (STATUS WORD RETURNED), 
INTERROGATE PERIPHERAL STATUS 
COMMAND 

47 

50 46 

49 45 

48 44 

FIELD 

STATUS 
BITS 

A'M' 

43 

42 

41 

40 

39 ~ 31 27 23 191 15 ti 7 3 

34 22f>~~ TU~ 38 30 26 14, 10 6 2 

~ 
Bl !fs13 37 29 25 2.1 17 9 5 1 

36 32 28 24 20 16 12 8 4~11 

BITS DESCRIPTION 

50:18 Not used. 

32:32 Each bit of this field, when on, 
indicates the ready status of the 
associated unit on the vector. (Refer 
to table 1-1 for referencing the 
ready status vector, ready status 
bit, and device number of any 
peripheral device.) 

0:1 When set, alerts the IOM to 
examine the STATUS BITS field. 



trl v. 

VECTOR 
BITNO. 

"B" REGISTER 

31 - 0 

63- 32 

95- 64 

UNIT 127 - 96 

DEST. 159-128 

191 -160 

223- 192 

255- 224 

Table E-1. Status Vector Cross Reference 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 

TO FIND THE STATUS VECTOR FOR AUD NUMBER, DIVIDE THE UD NUMBER BY 32. 
THE STATUS VECTOR IS THE INTERGER QUOTIENT AND THE VECTOR BIT IS THE 
REMAINDER PLUS ONE. 

EXAMPLE: UD NUMBER = 95 

2 (STATUS VECTOR) 
32,/95 

64 

31 + 1 = 32 (VECTOR BIT NUMBER) 

TO FIND THE UD NUMBER, MULTIPLY THE STATUS VECTOR NUMBER BY 32 AND 
ADD TO THE RESULT THE VECTOR BIT NUMBER MINUS ONE. 

EXAMPLE: STATUS VECTOR NUMBER= 2 

2 x 32 = 64 + (32-1) = 95 (UD NUMBER) 

v 
E 

13 12 11 10 9 8 7 6 5 4 3 2 1 0 c 
.T 

0 
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R 

A 0 

T 
f--

T 1 

E f--

N 2 

T f--

I 3 
0 f--

N 4 

f--

B 5 

I f--

T 6 

I--

7 



HA WORD 1, INHIBIT IOM, ACTIVATE IOM, 
AND LOAD DFO FLAGS COMMANDS 

LK H D 
47 4 39 31 2'1 23 19 

48 

FIELD 

TAG 

LK 

HOME 
CODE 

26 22 18 10 6 

25 21 

28 24 20 

BITS DESCRIPTION 

50:3 Denotes word is single precision 
(000). 

2 

47:1 When set by software indicates the 
HA words are available for IOM 
services. 

43:4 Defines the command as follows: 

(1) 1100 = Inhibit IOM 
(2) 1101 = Activate IOM 
(3) 1110 = Load DFO Flags 

39:4 DFO Flags (for LOAD DFO FLAGS 
command only). 

35:36 Not Used. 

UNIT TABLE WORD 

FIELD BITS DESCRIPTION 

TAG 50:3 Denotes word is single precision 
(000). 

LK 47:1 When set, indicates the UT word is 
being operated on. 

MGT 46:1 When set, indicates this job request 
is for a magnetic tape. (Set by 
software.) 

DSPK 45:1 When set, indicates this job request 
is for a disk pack. (Set by software.) 

SL 44:1 When set, indicates the presence of 
a side link in IOCB+l. 

43:4 Not used. 

DFO 39:1 When set, indicates unit is under 
control of a DFO. A ring walk will 
not be performed with this bit set. 
(Set by software.) 

EX 38:1 When set, indicates the unit is 
connected to an exchange. A ring 
walk will be performed (if the job 
bit is set) with this bit set. (Set by 
software.) Not used if bit 39 is set. 

E-6 

JB 37:1 When set, indicates that all 
channels associated with this 
request were busy, and when a 
channel becomes free and no 
further request are queued for that 
device, this job is to be done. (Set 
by IOM.) 

Used only with exch. devices (Bit 
38=1). Not used with DFO (Bit 39). 

.BZ 36:1 When set, indicates that this unit is 
busy. (Set by IOM.) 

FUD 

CH. NO. 
BASE 

LCEX 

RC 

LST 

NUD 

CH. NO. 
USED 

ET 

35:8 Points to the First Unit Designate 
Number connected to the exchange. 

27:5 For units not on an exchange, the 
number of the channel to which 
this unit is connected. For units on 
an exchange, the lowest numbered 
channel to which the exchange is 
connected. 
NOTE: CN 0 and 21 through 23 are 
unassigned and will cause a fail. 

22:2 Indicates the 2 least significant bits 
of the last channel number of the 
exchange, for the device to be used. 

20:1 When set, permits this unit to use a 
reserved channel. 

19:3 Not used. 

16:1. When set, indicates this is the last 
Unit Designate on the exchange. 

15:8 Points to the Next Unit Designate 
number connected / to the exchange. 

7:5 These bits specify the channel that 
was used to service the device. (Set 
by IOM.) 

2:2 Not used. 

0:1 When set, indicates that an error 
condition has been reported in the 
current Result Descriptor, and 
therefore additional jobs should not 
be initiated for the unit; This bit is 
normally reset by software. 

IOQH WORD 

~ 2J 
AD PRl~ SS 

47 43 39 3_! 27 19 15 7 3 

Tso ~ ~ 
OF FO ST 

46 42 38 26 22 18 14 10 6 2 

1~49 45 41 37 ~ ~ 25 21 17 
JOC} 

5 1 

48 44 40 36 ~ 28 24 20 16 12 8 4 0 

FIELD 

TAG 
BITS DESCRIPTION 

50:3 Denotes word is single precision 
(000). 

47:28 
ADDRESS 19:20 
OF 
FIRST 
IOCB 

Not used. 
Address of 1st IOCB in the IOQ. If 
bits 19-0 are null (zero), the UT 
word is unlocked and restored to 
memory. 



IOQT WORD 

47 43 ig ~ 31 27 23 19 15 11 7 3 
A' 0. F\F LAi.oT 

Tso 46 42 38 at 30 26 22 i'a 141-'' 10 61" 2 

G 48 44 

FIELD 

TAG 

ADD 
OF 
LAST 
IOCB 

29 25 21 

40 36 32 28 24 20 16 12 8 

BITS DESCRIPTION 

50:3 Denotes word is single 
precision (000). 

47:28 Not used. 

4 0 

19:20 Address of last IOCB in the 
IOQ. 

SQH WORD 

LK 1~43 23 19 15 11 7 3 47 39 35 31 27 

4~ M42 
HEAD TAIC 

Tso 38 34 30 26 22 18 14 10 6 2 

A49 c4j 
NULL 1 41 37 33 29 25 21 17 13 9 5 

G NO. INT. 
48 44 40 36 32 28 24 20 16 12 8 4 0 

FIELD BITS DESCRIPTION 

TAG 50:3 Denotes word is single 
precision (000). 

LK 47:1 When set, indicates the SQH 
word is being operated on. 

46:1 Not used. 

c 45:1 Notifies software, when set, 
that a status change vector 
has occurred. 

CPM 44:3 Points to the CPM that will 
NO. be interrupted by either 

channel interrupt or error 
interrupt. 

NULL 41:1 When a 0, indicates that the 
queue is empty; when a 1, 
indicates terminated jobs are 
under queue. 

INT 40:1 When set, (set by software) 
indicates that the CPM 
number field shall be 
interrupted upon job 
termination. (Reset by IOM) 

HEAD 39:20 A 20-bit address pointing to 
the IOCB of the first device 
terminated. (Not used if bit 
41 = 0) 

TAIL 19:20 A 20-bit address pointing to 
the IOCB of the last device 
terminated. (Not used if 41 
= O) 

IOCB WORD 0 (IOCB 110 LINKAGE (NIL) 
WORD) 

~ 43 39 35 3~ 27 23 19 15 11 7 3 

Tso 34; 30 
NEX r 6 46 4Z 38 26 22 18 14 10 2 

A49 45 41 37 33 29 25 21 17 13 I N9~ 5 1 

G INT 
48 44 40 36 3~ 28 24 20 16 12 8 4 0 

FIELD BITS DESCRIPTION 

TAG 50:3 Denotes word is single 
precision (000). 

47:7 Not used. 

INT 40:1 When set, notifies the IOM 
to interrupt the CPM 
specified in the SQ word 
upon completion of this job. 

39:20 Not used. 

NEXT 19:20 Memory address of the next 
LINK job (IOCB) queued for this 

device. 

IOCB WORD 1 (IOCB SIDELINK (SL) WORD) 

D 
,. 

47 E 43 39 35 31 27 23 li._19 !.~ 11 7 3 
u rs- ID H )M 

Tso N46 J,_ 42 38 34 30 26 22 18 14 10 6 2 

A49 
I tN 1-IN 9 M1 SK 
T 45 A 41 37 33 29 25 21 l7 13 1 

G T 
48 44 E 40 36 32 28 24 20 16 12 8 4 0 

FIELD 

TAG 
BITS DESCRIPTION 

50:3 Denotes the word is single 
precision (000). 

UNIT 47:8 
DESIGNATE 

SIDE 39:20 
LINK 

19:12 

IOM 7:8 
MASK 

Defines the device which is 
to perform this sidelinked 
job. 

Memory address of the 
sidelinked job. 

Not used. 

Defines an IOM channel 
number and thus defines the 
IOM (or IOM's) which can 
perform the sidelinked job. 

E-7 



1/0 CONTROL BLOCK (IOCB) 

47 

BASE ADDRESS (BA) 

l/OLINKAGE 
(NL) 

0 47 

WORDO 

BA+1 

SIDELINK 

WORD 1 

BA+2 

BUFFER 
DESCRIPTOR 

BA+3 

IOCW 

0 47 0 47 

I WORD2 I WORD3 

BA+4 

COL 

0 47 0 47 

I WORD4 

BA+5 

IORD 

WORDS 

BA+6 

TIME 
CELL 

MOD II 

0 47 

WORDS 

0 

•WORDS 7 THRU N ARE RESERVED FOR SOFTWARE USE ONLY 

ET1286 

IOCB WORD 2 (IOCB BUFFER DESCRIPTOR 
(BD) WORD) 

c 
4'1 4~1 T3S ~ 31 27 23 19 15 11 7 

Tso 
rA I G49 45 

_ill 44 

FIELD 

TAG 

33 29 25 21 

4C ~6 32 28 24 20 16 12 8 4 

BITS DESCRIPTION 

50:3 Denotes word is single 
precision (000). 

47:8 Not used. 

3 

2 

0 

CT 
EXT 

39:3 If the length of the buffer 
includes a fractional p11rt of 
a word, this field describes 
the number of characters in 
that fractional part. 

LENGTH 36:17 Describes the length of the 
buff er in words. (Excess 
characters are described by 
the CT EXT, field.) 

BASE 19:20 Describes the memory 
address of the first data 
word of the buffer. 

ADDRESS 

IOCW (IOCB WORD 3) 

ASffINH B/F 
~ ~ ~ 4 43 39 27 23 15 11 '1 3 

Tso S~6 TRA T 
~ lB ](~ .6' 4 42 38 34 26 22 14 2 

rn-49 s~~ FML TAG 
33 ~ !.'.! 41 37 25 21 13 9 5 1 

v3 MP CTL 
~ ~ ~ ltl 48 40 36 20 12 • 8 4 D 

E·8 

FIELD BITS DESCRIPTION 

TAG 50:3 Denotes the word is single 
precision (000). 

ASC 47:1 When set, indicates that 
ASCII translation is 
required. 

SL 46:1 When set, indicates that a 
sidelink to another IOCW is 
required. (The address of the 
new IOCW is stored in bits 0 
thru 19 of the IOCB SL 
word.) 

SA 45:1 When set, will cause bit 1 of 
the result descriptor word 
(the Exception bit) to be set. 

1/0 44:1 When set, indicates that the 
transfer is to be an input 
operation. When reset, 
indicates that the transfer is 
to be an output operation. 

MINH 43:1 When set, indicates that 
data will not be transferred 
to/from memory. 

TRA 42:1 When set, indicates that 

FML 

internal IOM translation is 
needed. 

41:1 When set, indicates that the 
frame length is to be 8-bits. 
When reset, indicates that 
the frame length is to be 6-
bits. 



MP 40:1 When set, indicates that a 
memory protect interrupt 
will occur if an attempt is 
made to store into a word in 
memory which has bit 48 = 
1. The store will not occur. 

BJF 39:1 When set, indicates a 
backward operation on a 
tape unit. When reset, 
indicates a forward operation 
on a tape unit. 

T 38:1 When set, indicates a test 
operation. 

TAG 37:2 Indicates the following: 
CTL 

37 36 

0 0 Store single precision t: 
1 1 Store double precision 

tags 
0 1 Store program tags 
1 0 Tag field transfer 

35:36 Not used. 

UNIT CONTROL WORD (UCW) 

~23 19 15 11 7 3 
I". LIA T 22 18 14 10 6 2 

MP 
21 17 13 9 5 1 

WRT 
20 16 12 8 4 0 

FIELD BITS DESCRIPTION 

LGT 23:2 Specify the total length of 
the field being transferred 
as foll6ws: 

23 22 

0 1 = Transfer 1 word 
1 0 = Transfer 2 words 

MP 21:1 On a one or two word store, 
if bit 48 of the information 
word already stored in that 
memory location is a one 

WRT 

(protected word), memory 
shall not perform the store 
but shall send an error 
signal to the requestor. 

20:1 Shall identify the service 
request as a Read (WRT=O) 
or Write (WRT=l) operation. 

LlA 19:20 Shall specify the absolute 
starting memory address of 
the transfer. 

MEMORY CONTROL WORD 

w 
47 

Tso 
~YPE 

46 

~ SP 
l<fo 45 

48 IW~ 

FIELD 

TAG 

w 
(Write) 

TYPE 

FB 
43 39 35 31 27 23 19 A~ 1l T 3 

RlL AO )RE 
42 38 34 30 26 5522 1~ 14 10 6 w 2 

MLL L 
41 3T 33 29 25 21 1 13 9 $ lG_ 1 

~ •<> 36 32 28 24 20 12 8 4 Cl 

BITS DESCRIPTION 

50:3 Not significant for control 
purposes; examined only for 
generation of parity. 

47:1 When a 0 specifies that a 
read/restore operation is to 
be performed. When a 1, 
specifies that one of the 
write variations, as defined 
by the TYPE field, is to be 
performed. 

46:1 When the W field is a 1, 
specifies which write 
variation is to be performed 
as follows: when 46=0, a 
Clear/Write operation shall 
be performed (the Overwrite 
and Single-Word protected 
Write operations use this 
variation). When 46=1, a 
Read/Modify/Restore 
operation shall be performed 
(the N-Word Protected Write 
operation uses this 
variation). When the field is 
a 0 and 46=1, the contents 
of the Fail Register are 
fetched. 

E-9 



SP 45:1 
(Specifier) 

WP 44:1 
(Write 
Protect) 

FB 43:1 
(Flashback) 

RIL 42:1 
(Requestor 
Inhibit 
Load) 

MLL 41:1 
(Memory 
Limits 
Load) 

When a 1, indicates that a 
single-word operation is to 

be performed. When a 0, 
indicates that an N-word 
operation is to be performed. 

When a 1, indicates that a 
Protected Write operation is 
to be performed. It is a 0 if 
any other type of operation 
is specified. 

When a l, specifit!s that the 
original contents of the 
memory location are to oe 
sent to the requestor. 

Used in a Sin~le-Word 
Overwrite operation to 
specify that a Load 
Requestor operation is to be 
performed. When a 1, 
specifies that the next data 
word sent to the MCM be 
loaded into the Requestor 
Inhibit Register instead of 
into memory. 

When a 1, specifies that the 
next data word sent to the 
MCM be loaded into the 
Memory Limit Registers and 
the Available Register, 
instead of into memory. 

ADDRESS 36:20 Specify the starting address 
for the memory operation. 

AR 
(Address 
Residue) 

WLG 
(Word 
Length) 

E-10 

16:2 Indicate the proper value 
(00, 01, or 10) that result 
from changes in the 
ADDRESS field. 

14:12 

2:3 

Not used. 

Indicates the number of 
words to be transferred 
during memory operations (2 
words maximum). 

19 

018 

16 

FIELD 

DT 
BITS DESCRIPTION 

19:4 Identifies the information as 

EUD 
NO. 
AND 

15:8, 
7:1 

for a DFO (1001). 

ES 
(EXCHANGE 
SELECT) 

Together define the DFO by 
specifying a DFEU unit 
designate number and 
whether it is directly or 
indirectly connected to 
DFO (via an exchange). 

6:1 

FC 5:2 

3:4 

These fields are not used if 
Scan-In DFO Report is the 
job to be implemented. 
Not used. 

Function code which defines 
the operation as follows: 

(1) During Scan-Out: 
5 4 
0 1 = Store CW Request 
1 0 = Clea~r-the-Stack 

(2) During Scan-In: 
5 4 
0 1 = Queued CW 

Request 
1 0 = Top-of-Stack 

Request 
1 1 = Report Request 

Not used. 

NOTE 
The format of the DFO Scan Ad­
dress word may be related directly 
to bits 0 through 19 of HA word 1, 
when HA word 1 contains a com­
mand for DFO scan-out or scan-in. 



DCP SCAN ADDRESS WORD 

FIELD BITS DESCRIPTION 

DT 19:4 Defines the Scan-Out 
command is for a DCP 
(1100). 

15:8 Not used. 

FC 7:3 Defines the DCP Scan-Out 
command as Initiate (000), 
Halt (010), or Set Attention 
(100). 

4:1 Not used. 

DCP 
ADDR 

3:3 Defines the DCP for which 
the command is intended. 

0:1 Not used. 

NOTE 
The format of the DCP Scan Ad­
dress word may be related directly 
to bits 0 through 19 of HA word 1, 
when HA word 1 -contains a DCP 
scan-out command. 

IOM TIMECELL WORD 

·c 
H 21 23 
A 
NZ& 22 18 

N 25 21 17 13 9 

0 TIME 
24 20 16 12 8 

ET1287 NOTE 
The channel busy time is in units of 503 
microseconds for a total of 527. 72 sec­
onds. 

7 3 

6 2 

5 

4 c 

E-11 





Burroughs m 
NOV 2 7 1982 

PUBLICATION 
CHANGE 

NOTICE 

PCN No.: 5010796-001 Date: February 26, 1981 
Publication Title: B 7800 Information Processing Systems Reference Manual 

(August, 1979) 
Other Affected Publications:-------------------------

Supersedes:-------------------------------

Description 

This PCN contains changes and additions to the B 7800 Information Processing Systems Reference 
Manual, form 5010796, dated August 1979, Revisions to the text are indicated by black vertical 
bars on the affected pages. 

Replace these pages Add these pages 

Title 
iii thru xi 
1-1-1 
2-2-3 
2-2-5 
3-1-1 
3-2-1 thru 3-2-43 

3-3-1 
3-3-3 
3-3-13 
3-3-15 
3-4-1 
3-4-3 
3-4-9 
3-4-11 
3-4-15 
3-4-17 

44-1 
5-1-1thru5-1-15 
6-1-1 
6-1-5 
6-1-7 
6-1-11 
6-1-13 
D-1 
D·3 

3-2-45 thru 3-2-49 
3-3-4A 
3-4-19 thru 34-29 
D-5 

Retain this PCN cover page as a record of changes made to the basic publication. 

The above pages covering 
PCN 5010796-001 

COPYRIGHT«» 1979, 1981 
BURROUGHS COAliORA "rlON 

Detroit, Michigan 48232 

Printed in U.S. America 
5010796-001 






