UNISYS CTOS™

Programming
Guide

Volume |l
Extended System Services
and Libraries

3.2 BTOSII March 1990

9.10 CTOS Distribution code SA
24 CTOSNVM

3.0 CTOS/XE

12.0 Standard Software
Printed in USA
Priced item 09-02393

UNISYS

CTOS®

Programming
Guide

Volume |
Extended System Services
and Libraries

Copyright © 1991 Unisys Corporation
All Rights Reserved
Unisys is a trademark of Unisys Corporation

CTOS 13.3 June 1991
CTOS 11 3.3 Printed in USA
CTOS/XE 3.0/3.1

Priced ltem ‘ 43574490-110

The names, places, and/or events used in this publication are not intended to correspond to any
individual, group, or association existing, living, or otherwise. Any similarity or likeness of the names,
places, and/or events with the names of any individual, living or otherwise, or that of any group or
assaociation is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product and
related material disclosed herein are only furnished pursuant and subject to the terms and conditions of
a duly executed Program Product License or Agreement to purchase or lease equipment. The only
warranties made by Unisys, if any, with respect to the products described in this document are set forth
in such License or Agreement. Unisys cannot accept any financial or other responsibility that may be
the result of your use of the information or software material, including direct, indirect, special or
consequential damages.

You should be careful to ensure that the use of this information and/or software material complies with
the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

Conver, ent,‘Convergent Technoloéies, CTOS, and NGEN are registered trademarks of Convergent
Technologies, Inc.

Art Designer, AutoBoot, AWS, Chart Designer, ClusterCard, ClusterShare, Context Manager, Context
ManagerNM. CTAM, CT-DBMS, CT-MAIL, CT-Net, CTOS/VM, CWS, Document Designer, Generic
Print System, Image Designer, IWS, Network PC, PC Emulator, Phone Memo Manager, Print Manager,
Series 186, Series 286, Series 386, Series 286i, Series 386i, Shared Resource Processor, Solution
Designer, SRP, SuperGen, TeleCluster, The Operator, Voice/Data Services, Voice Processor, and
X-Bus are trademarks of Convergent Technologies, Inc.

Intel is a registered trademark of Intel Corporation.

MS-DOS is a registered trademark of Microsoft Corporation.

Page Status

6/91

Page

Volume |

i through xviii

1-1 through 1-17
1-18

2-1 through 2-13
2-14

3-1 through 3-46
4-1 through 4-18
5-1 through 5-79
5-80

6-1 through 6-9
6-10

7-1 through 7-20
8-1 through 8-13
8-14

9-1 through 9-20
10-1 through 10-10
Index—1 through Index—22

Volume Il

i=xvi

1-1 through 1-30
2-1 through 2-30
3-1 through 3-15
3-16

4-1 through 4-104
5-1 through 5-19

5-20

6-1 through 6-62

7-1 through 7-58

8-1 through 8-28
Index—1 through Index-22

Issue

6/91
6/91
Blank
Original
Blank
6/91
Original
6/91
Blank
Original
Blank
Original
Original
Blank
Original
Original
6/91

6/91
Original
Original
Original
Blank
6/91
6/91
Blank
Original
6/91
6/91
6/91

Contents

6/91

Mouse Services

What Are the Mouse Services?ccoiviviiiienn... 1-1
Mouse System Serviceccoiiii it 1-1
Object Module Library, 1-1

Functional Groupsooiiiiiiiiii i iniiveenenennn. 1-2

Examplesot i i i e 1-2
Important Conceptscoiiiiiiiiiiiiiiiinn.. 1-3
Using the Mouse Buttons 13
Screen Coordinatesc.ooiiiiiiniiiiiiiinennenn, 1-4

Normalized Screen Coordinates 1-4
Virtual Screen Coordinatescuuu.. 14

U o e e e s 1-6

(01 =) 5 U= 1-7

Cursor Shape ...t e 1-12

Changing the Graphics Cursor................ooooiiiiae, 1-14

Cursor Movementouiiiiniinninniennnennnnonans 1-15

Troubleshootingcouiiiiiiiiiii e iinnnnnnnns 1-17

Sample Mouse Programo ool 1-18

Queue Manager

What Is the Queue Manager?, 2-1
RunFiles..... oot 22
Installation/Deinstallation., 22

Functional Groups of Queue Management Operations......... 2-3
Client Operations ..., 23

Adding an Entrytoa Queue.............. e 2-3
Reading Queue Entriesl 2-4
Removingan Entry oo i, 2-4

Contents v

Queue Server Operationscoveiviiiinnivn. e
Establishing Queue Servers...............cooivinne..

Marking Queue Entriescoiiiiiiiinnn. ‘

Unmarking Queue Entriescccivivnnn..
Rescheduling and Removing Queue Entries............
Queue Manipulation Operationsoovv...
Summary of Queue Manager Operations
Queue Manager Configurationciiieninennnn.
QUELIES . . o vt vttt et e e
Format..... ittt
Queue File Headert iiiieinnnnnnn
Queue Entry e eerae ety
Queue Entry Processing Order.......................
Queue Entry Formatcooiiiiiiinne,
Calculating Queue Entry Size oot
Queue Examples..........oooiiiiiiiiiiiiiiiiiiinnnn,
Defining Queues.ovvuiniinieirereeiieeeennnnns
Defining Queues in the Queue Index File.................
Defining Queues Dynamically...........................
Referencing Queues and Queue Entries
ReferencingQueuesttt
Queue Namesottivtinniiieenieiinneenens
Queue Handlesooiiiiiiiiiiiiininne,
Referencing Queue Entriescoovvveeninean...
Queue Entry Handlescooiiiiiinnenn,
Queue Status Block ..ot

Keys covn i e
Sequence for Using Queue Management Operations
Using the Queue Manager Across Network Nodes............
Data Structures.ovivi it

vi CTOS Programming Guide, Volume II

2-5
2-5
2-6
2-6

2-7

2-7

2-9
2-11
2-11
2-11
2-12
2-12
2-13
2-13
2-14
2-14
2-14
2-17
2-17
2-17
2-17
2-18
2-18
2-18
2-19
2-19
2-21
2-22
2-25

6/91

3

6/91

Spooler

Spooler Configuration i, 3-1

SendingaPasswordol 32

Operations. i e 3-2

Programmer’s Notes on the Spooler 33
Pre-GPS Spooler Byte Streams 33
Spooler Configuration File Requirements 34
Printer Spooler Escape Sequences 35
Queue Management ...ttt 35
SchedulingQueue.............. i, 3-6
Status QUEUE . . oottt it i i et e e 3-6
ControlQueueottt 3-7
ConfigureSpooler Program Example 3-7
SpoolerPassword Program Example 3-8

Data Structures.ottt i e i 39

Voice/Data Services

OVEIVIEW . .ottt i i i i i e e e 4-1
Telephone Service L. 4-1
Audio Serviceooi i i 4-2

Voice Managementcoiiiiiiiiiiinniiinann.. 4-2

Telephone Managementiiiiiineninnnnnn. 4-3

Telephone Status Monitor Program......................... 4-3

Data Management0oiiiiiiiiiiiiiiniiean, 4-3

AudioManagementooiiiiiiiiiiiiii it 4-4

Functional Groups of Operations 4-4
Voice Management Operations 4-4
Telephone Management Operations 4-5
Data Management Operationscuunn. 4-7
Audio Management Operations 4-7

Hardward Features of the B25/NGEN Workstation 4-8
Voice Featuresoiiiiiiiiiiniiniineiiinennnns 4-8

CODEC. .. i e 4-8
Voice Amplifieroo i il 4-8
Telephone Featuresccoviuiiiiieinninnnn... 4-8
Two Telephone Lines, 4-9
DTMEF Tone Generator and Receiver................. 49
Call Progress Tone Detector (CPTD) 4-10

Contents vii

Data Featuresovtiniitininenennneneneeneonnns
Modem.ovuiiiit ittt it iieeneaonneannns
Analog Crosspoint Switch Array.....................

Hardward Features of the Series 5000 Workstation

Digital Signal Processor (DSP).............coviiinnn.

CODEC. ... i it i i i it et ceeenaens PPN

Voice Recording.ttt
Recording Rates...........oviiiiiiiiiiiiiineennn
Pause Compressioncccoiiiiiiiiiiiiiinnn
Amplification i e
Memory and Disk Filesot
Memory Usageovvviiineiiniineineinnennen
Structure of a Voice File............. ...t
Pulse Code Modulation (PCM) and Adaptive Pulse
Code Modulation (ADPCM)cooviinnnnn..
Voice Control Structurecoviiinn.
Typical Sequence for Record/Playback
Multiple Voice Messages in One File
Voice Playback from Memory

Telephonycounii i i i i e
Voice and Data Linescoooiiiiin
Telephone Unit vs. Telephone Line
Hold. ... i
Dialing ...cooviiiiii i e
Generating DTMF Tonesooiiiiiennne.
Internationalized Call Progress Tone Detection
Sample Program Using Internationalized Call Progress
Tone Detection Systemccoiiiiinnn...

Data ..o e
StartingaDataCallo,
Converting a Voice CalltoaDataCall
AcceptingaDataCallot
OriginatingaDataCall,
Reading and Writing Data....................ooouut.
TerminatingaDataCall

CTOS Programming Guide, Volume II

Telephone Status Debugging Tool 4-31

Command Formcooiiiiiiiiii i, 4-31
Parameter Field i, 4-31
Operationoo ittt 4-31
Lines JOthrough J3 it 4-33
LinesLOthrough L7 i, 4-34
Status Monitor Function Keysooiiii, 4-35
Program Examples i 4-36
Listing4-1: Dialing i, 4-36
Listing 4-2: Voice Response System..................... 4-40
Setting Up Request Blocks, 4-40
fNoWaitFlagt 4-40

Use of TsVoiceConnectoovvviiiiiiinnn... 4-41
Possible Modifications to This Program 4-41
Listing 4-3: Voice Memory Playback 4-60
Listing4-4: DataCall P 4-71
Listing 4-5: Audio Service Example..................... 4-82
Data StUCHUTES . .« v e v et ete e teee et ete i aeaeneneeaeennns 4-84

5 Performance Statistics Service

OVEIVIEW . .ttt i i it i ittt ettt en s 51
Functional Groups of Operations 52
Statistics Session Operationscooii... 52
Logging Session Operationscoiviinne. 52
General-Purpose Operations.oovinnen. 5-2
Statistics Session o il e 52
Statistics ID Blockl 5-2
Block Numbercoviiiiiiiiiiiiiiiiiiiiineennn, 53
IndeX ..ottt e e e e 53
Opening a Statistics Session (PSOpenStatSession) 53
BlockID ... 5-4
Session Handle i i i, 5-5

Disk ACtvVity. ...t 5-5
Getting the Counters (PSGetCounters)................... 56
Closing a Statistics Session (PSCloseSession) 5-8

6/91 Contents ix

Logging Sessionouuiiiinneiiieieeiiiine 5-8

Opening a Logging Session (PSOpenLogSession) 5-8
Reading a Log (PSReadLog)covviiiniiennn.. 59
Closing a Logging Session (PSCloseSession) 5-9
Program Example........................... e 5-10
Data Structurecoiiiiiiiiiiii it 5-16

6 Asynchronous System Service Model

Introductionoi it 6-1
Terminology 6-2
Synchronous and Asynchronous System Service Models. 6-3
Writing an Asynchronous System Service 6-6
Asyncdib Procedures...... ..ottt 69
Async.lib Procedures You Can Use in the Main Module. 6-10
Requesting a Service on Behalf of a Client 6-10
Review of the Synchronous Request Procedural
Interface ... 6-10
Asynchronous Request Procedural Interface........... 6-10
Passing a Variable Length Parameter List in PL/M 6-12
Building Request Blocksoiiiiiiiiiiiinne, 6-13
AsyncRequest..........ooiiiiiiiiiiiiiiiiiiie 6-14
AsyncRequestDirect ...ttt 6-14
Checking the Context Stackviiinnn., 6-15
CheckContextStack ...t 6-15
Heap ...t i i it i e 6-15
Allocating and Deallocating Heap Memory 6-15
Conserving Heap Memorycoovvviinnnnns 6-16
System Requests.covveiiinrrnneeeinneieennnn.. 6-17
Termination and Abort Requests 6-17
Swapping Requestscoiiiiiiiiiiiiiinann, 6-18
Handling System Requestsoooeiie., 6-19
Handling Termination and Abort Requests 6-19
Handling Swapping Requestsccovvvnn... 6-20
Debugging Aidscotiiiiiii i 6-22
Examining the Logging Module LogAsync 6-22
Maintaining Debugging Statistics 6-23

x CTOS Programming Guide, Volume II 6/91

Async.lib Procedures Used by the Common-Code Module. 6-24

Managing Contexts.ooiiiiiiiiiiiiiinnnn. .. 6-24
CreateContext ...t iiiiinnnnean.. 6-26
Context Control Blocko oo, 6-26
ResumeContextooovviiiiiiii e, 6-27
TerminateContext ..., 6-27

Other Ways Contexts CanBe Used...................... 6-28

Terminating Contexts at Deinstallation................... 6-28

Usingthe Heap............. ..., 6-29
Managingthe Heapcoiiiiiias, 6-30

Logging Messages for Debugging Purposes................ 6-32

Inmitializing i 6-32
AllocMemorylInit...... o i 6-32
Freeing Leftover Memoryoouus, 6-33

Availability of Asynchronous System Service Files 6-33
Binding Your System Service i, 6-34

Object Modules ..ottt 6-34
InitAlloc and LogAsync..........covviiiiiiiiieenn.. 6-35
Main Program o il 6-35

RunFile.......oo o 6-35

Librarieso i 6-35

DS Allocation....... ...ttt 6-35

Program Exampleot 6-36

ASYNCSEIVICE.C . vvv it ittt i .. 636

Example.c ...t e e e e 6-36

Start.c, Stop.c, and Deinstall.c 6-37

7 CD-ROM Service

OVEIVIEW .o vv ittt ittt i i it ittt e iii e 71
Requirementsooiiiiiiii ittt 7-1
Functional Groups of Operations 7-2
Volume Information o ... 7-2
StatlS . .o e s 7-3
Read File..t 7-3
Audio. ...t e e 7-3
Miscellaneous (Rarely Used)covvnnn... 7-3

6/91 Contents xi

Standard File Formats.ttt nrenrnnanes 7-3

Determining the File Format Using CdGetVolumelnfo 7-4
Other Uses of CdGetVolumelnfo 7-5
File Structure: Hierarchicalvs. Flat........................ 7-6
CTOS File Specification (for Flat File Structures) 7-6
Backslash File Specification (for Hierarchical File
SHIUCHUIES) . v vt v v ettt 77
Obtaining the Directory List............oooiiiiiiiiinn.. 7-8
Example: Using CdDirectoryList 79
Searching for Files............ ittt iiinnnnes 7-11
Example. ... i i e 7-12
Copying a CD-ROM Fileto Diskoooiviiiiin, 7-17
Example.ottt i e e 7-17
Using Audio Features of CD-ROM.......................e. 7-21
Specifying Locations on the CD-ROM Disc 7-21
Q-Channeliit ittt iinnnens 7-22
AudioExample............ooiiiiiiii i 7-22
File Formatsottt ittt 7-29
Character Sets S 7-56
d-characters........... ... o ittt 7-56
a-characters.........oiiiiiin i it ianieenes 7-56
c-characters...........cooiiiiiiniiiineinnneennnns 7-57
al-characters............. i i, .. 157
dl-characters............ccoiiiiiiiiiiiiiiieiinennn, 7-57
Separators ...t e 7-58

8 Sequential Access Service

OVEIVIEW . oot i i ittt ettt 81
Functional Groups of Operationscovvn. 82
Basic Operationsccovvvviiiiiiiiniene. 82
Advanced Operationsoviiiiiiiiieeennnes 83
Miscellaneouscooiiiiiiiiiiiiiniiiiinnnn, 84
General Model of Sequential Access Devices 8-4
Data Storage Characteristicsoiiviiiin, 84
Logical Elements withina Tape 87
Logical Data BlockS.....cvviriiniiiiiiiinnennn,s 87
Inter-block Gapscoiiiiiiiiiiiiiiiiiii 8-7

Filemarks ... cv vt ittt it i ettt 8-7

xii CTOS Programming Guide, Volume II 6/91

6/91

Blank Spaceo i 8-7

Frase Gapscovviiiiiiiiii it 8-8
DataBuffering......... ..o, 8-8
Device Buffers o il 8-8
Sequential Access Service Buffers 89
Allocating Memory for Recovering Buffer Data 89
Residual Data o i, 89
Buffer Recovery Ordercooviiviiniiine, 8-12
Example. ... 8-12
SeqAccessCheckpoint.o, 8-14
Specifying Buffer Sizes oo oLl 815
Fixed-Length and Variable-Length Records 816
Increasing Block Size: Prosand Cons 8-16
Programming Considerationso0vuun.. 8-17
Record Size and Block Size, 817
Recording Density and Transport Speed 8-18
Buffered Modeo i, 8-18
Erase to EOM after Close 8-18
Suppress Default Mode on Open..................... &19
Buffer Recovery Order - 819
Examples.. ... i e 8-19
Example 1: Fixed-Length, Blocked Records.............. 8-19
Example 2: Variable-Length Records.................... 823
.. I-1

Contents xiii

Figures

1-1
1-2
2-1

2-2

41

42
43

44

Xiv

Virtual and Normalized Screen Coordinates 1-5
Cursor Movement Inside and Outside a Motion Rectangle 19
Example of a Configuration with the Queue Management

Facility e 2-10
Example of a Queue Index Fileoonie. 2-16
Parts of the Telephone Unito, 4-9
Voice Processor Module Connections 4-10

Block Diagram of Audio Portion of the Series 5000

Workstationiiiiiiiiiiii i 4-12
Input/Output Switches on the Series 5000 Workstation 4-14
Telephone Status Command Screencovvtt. 4-32
Telephone Status Screen with Telephone Offhook 4-33
Program Flow for the Synchronous Model. Ce oo 6-5
Program Flow for the Asynchronous Model 6-7
Source Modulesto Run File.............. ...t 6-9
Flat File Structureo it iiiiiiinnn.. 7-6
Hierarchical File Structure, 7-7
General LayoutofaTapecoieeiia.. L. 85
Serpentine Recording (QIC Tape)..............covvvvenn... 86
Parallel Recording (Half-inch Tape) 8-6
Helical Scan Recording (DDS)ooivntn e 86
Example of Variable-Length Records 8-18

CTOS Programming Guide, Volume II 6/91

Tables

11
21
22
23
24
3.1
32
33
41
42
43
4-4
45
46
4-7
4-8
5-1
7-1
72
73
7-4

6/91

Mouse Procedures by Function 1-2
Queve Examples........cooiiiiiiiiii ittt 2-14
Queue File Header............ i i, 2-25
Queue Entry Header oo, 2-28
Queue Status Block . ..o ovii i e 2-30
Spooler Scheduling Queue Entryo ..., 39
Spooler Status Queue Entryoo i 312
Spooler Control Queue Entry.iiiiiiinonn.. 3-15
Dial Characterscoiuiiniiiiiininiiniennneennnn, 4-23
Telephone Service Configuration File Format................ 4-84
Telephone Service Configuration Block 4-85
Telephone Status Structure.o i, 4-88
Voice File Header iiiiiiiiiiiiiiinnn... 4-95
Voice File Recordo i, 4-98
Voice Control Structureoooiiiiiiiiiii .. 4-99
Data Control Structureot 4-102
Performance Statistics Structure 5-16
ISO Primary Volume DescriptoroouiL., 7-30
High Sierra Primary Volume Descriptor.......... EEEREERRTES 7-39
ISO Directory Record Format.................oooiiiion, 7-46
High Sierra Directory Record Format 7-51

Contents xv

Listings

1-1
12
13
1-4
15
16
4-1
42
43
44
45
51
6-1
6-2
6-3
6-4
6-5
7-1
72
73
7-4
81
82

xvi

R £ P 1-6
LT3 5 1T 1-10
Cursor Shapet it it 1-12
Changing the Graphics Cursor................cooiiiiinnn, 1-14
Cursor Movementoouuuiininerrernnnnnneeenns 1-15
Sketcher.C... ..ot e 1-18
) | 4-36
Response.c ..ot e e 4-41
MeEMOTY.C vt ittt it ittt ittt s eeennenns 4-60
DataCall.c ..o it i i it it cin e 4-71
Audio Service Example. i 4-82
StatExample.C.....ooiiiit i i e e 5-10
ASYNCSEIVICE.C. oottt i e e e 6-38
Example.C ... e 6-47
R o e 6-60
(0] 0 2 6-61
Deinstall.c . .ovo it i i e e e 6-62
CdDirectoryList Exampleooviiiiiiiiiiiiiiiiennn, 7-10
CD Search Examplecoiiiiiiiiiiiiiiiieennnn, 7-12
Copying a CD-ROM File to Diskccovviiiiiinnnnnn 7-17
Audio Example.ttt 7-23
Fixed-Length, Blocked Records..............cociviiieent, 8-20
Variable-Length Recordsc..cvviiiiiiniinnn, 8-24

CTOS Programming Guide, Volume II 6/91

1

Mouse Services

What Are the Mouse Services?

The Mouse Services are a set of commands and software programs for
interfacing the mouse with the operating system and application programs.

Mouse System Service

The Mouse System Service is a system service that contains the
programming request and procedural interfaces for the mouse. It handles
cursor control and tracking, the main activities of the mouse software.
Application programmers will use the Mouse System ‘Service and the

object module library, described below.

To use the Mouse Services, first install the Mouse System Service on your
workstation, as described in the Executive Reference Manual and the
CTOS System Administration Guide.

NOTE: Although the procedures described here support any pointing
device, this manual uses the term mouse as the pointing device.

Object Module Library

The object module library provides high-level procedures that deal with the
mouse, such as coordinate translations from one coordinate system to

another.

Mouse Services 1—1

Functional Groups

Table 1-1 groups the mouse procedures according to function. The
examples that follow provide further explanation of procedures dealing
with setup, queries, cursor shape, and cursor movement. See the CTOS
Procedural Interface Reference Manual for complete descriptions of these

procedures.

Table 1-1. Mouse Procedures by Function
Setup Queries
PDSetCursorType GetlibusDevinfo
PDSetTracking PDGetCursorPos
PDSetVirtualCoordinates PDGetCursorPosNSC
PDSetMotionRectangle PDQueryControls
PDSetMotionRectangleNSC PDQuerySystemControls
PDinitialize ReadInputEvent

ReadInputEventNSC

Cursor Shape

Cursor Movement

PDLoadCursor PDSetCursorPos
PDLoadSystemCursor PDSetCursorPosNSC
PDReadCurrentCursor PDSetCursorDisplay
PDReadIconFile
Controls Transformations
PDSetControls PDTranslateVCtoNSC
PDSetSystemControls PDTranslateNSCtoVC
Examples

This section presents a series of programming examples that illustrate
basic mouse functions and important concepts involved when writing
software for the mouse. There are five examples contained in this section.

1-2 CTOS Programming Guide, Volume II

¢ Listing 1-1 explains some sample initialization procedures.

o Listing 1-2 shows how information is obtained from the mouse
through the ReadInputEvent procedure.

e Listing 1-3 describes how a graphics cursor shape can be defined.

o Listing 1-4 shows how to change a graphics cursor.

o Listing 1-5 demonstrates how to turn tracking off so that the screen
cursor does not track the mouse automatically.

Important Concepts

Important concepts discussed in this section include the following:
e screen coordinate systems (Listing 1-1)
e cursor tracking (Listings 1-1 and 1-5)
e motion rectangles (Listing 1-2)

The examples contained in this section are excerpts from a C program that
allows a user to sketch a drawing with the mouse. The complete sketching
program follows this example section. These examples were developed
using the CCGI+ Library. You could also use Graphics.lib to create this
example. In this case, the graphics calls would be different.

Using the Mouse Buttons

Mouse buttons should be used consistently across applications. When the
mouse is set up for right-handed use, the three mouse buttons are used as
follows:

Left button Mark
Middle button Pop-up menus
Right button Bound (or a similar function)

To be compatible with the two-button mouse, applications that make use
of the middle button on the three-button mouse should also make those

middle-button features accessible through the keyboard.

Mouse Services 1—-3

Screen Coordinates
Mouse procedures use two different sets of screen coordinates:

Normalized Screen Coordinates

These coordinates are obtained with the GetlbusDevinfo procedure.
For example, for one workstation type, the (x, y) coordinates are (0, 0)
for the top-left corner of the screen and (32767, 22435) for the
bottom-right corner of the screen.

Normalized screen coordinates are used when a high degree of
precision is required. The mouse procedures themselves deal directly
in normalized screen coordinates.

Virtual Screen Coordinates

These coordinates are application-defined coordinates. It is recom-
mended that, for the most part, your programs use these virtual screen
coordinates.

Virtual screen coordinates can, for example, be based on the number

of pixels in a particular workstation’s bit map. Or they can be based
on any other useful division of the screen, such as (100, 80). Figure 1-1
compares normalized screen coordinates for a particular workstation
with one possible set of virtual screen coordinates.

The PDTranslateNSCtoVC and PDTranslateVCtoNSC procedures can be
used to convert screen coordinates from one system to the other. The
object module procedures that deal in virtual screen coordinates perform

this transformation for you. If you use the request-and-wait style of
programming, you may want to use these procedures since the requests
handle only normalized screen coordinates.

I1-4 CTOS Programming Guide, Volume II

(0.0

Normalized
Screen
Coordinates
©0) (32767, 22435)
Virtual
Screen
Coordinates

(719, 347) 2393.1~1

Figure 1-1. Virtual and Normalized Screen Coordinates

Mouse Services 1-5

Setup

Listing 1-1 shows a sample series of initialization procedures.

*

* Set up the tracker.

*/

erc = PDSetCursorType(l);

if (erc != ercOK) return(erc);

erc = InitDrawingCursor();

if (erc != exrcOK) return(erc);

erc = PDSetvVirtualCoordinates (0, O,
ScreenAttrs.wxDeviceMax, ScreenAttrs.wyDeviceMax);

if (erc != ercOK) return(erc);
erc = PDSetTracking(TRUE);
if (erc != ercOK) return(erc);

erc = PDSetCursorPos(ScreenAttrs.wxDeviceMax / 2,
ScreenAttrs.wyDeviceMax / 2);

Listing 1-1. Setup

PDSetCursoxType (1)

Specifies a graphics cursor. The shape of the graphics cursor is defined
in InitDrawCursor (see Listing 1-3, below). On character-mapped
workstations, the character cursor is a reverse video block, which
cannot be changed. The graphics cursor is the default arrow or an icon
defined by the programmer.

PDSetVirtualCoordinates (0, 0, ScreenAttrs.wxDeviceMax,

ScreenAttrs.wyDeviceMax)

Sets up the virtual screen coordinates based on the raster coordinates
for a particular workstation type. In this example, the (x, y)
coordinates are (0, 0) for the top-left corner of the screen and

(ScreenAttrs.wxDeviceMax, ScreenAttrs.wyDeviceMax) for the

bottom-right corner of the screen (see the description of virtual screen
coordinates, above, and Figure 1-1).

The raster coordinates (pixel count) for the workstation were obtained
in this example by using the CGI cgi_OpenWk procedure call for the

1-6 CTOS Programming Guide, Volume II

screen. This information can alternatively be obtained by using the
QueryVideo service (see the CTOS Procedural Interface Reference
Manual). QueryVideo can be used also to obtain character coordinates
for a character cursor.

PDSetTracking (TRUE)

Turns on cursor tracking. The cursor on the screen moves with the
mouse. Cursor tracking is a screen attribute because only one mouse
cursor can be on the screen. The cursor-can, however, take on
different shapes, depending on the application. @ When multiple

windows are on the screen, the cursor thus moves across all windows.
Listing 1-5 shows how to turn off cursor tracking to separate movement
of the screen cursor from movement of the mouse.

PDSetCursorPos (ScreenAttrs.wxDeviceMax / 2,
ScreenAttrs.wyDeviceMax / 2)

Places the cursor in the middle of the screen. Note that this procedure
uses virtual screen coordinates. Cursor tracking continues from this
position.

Queries

Listing 1-2 shows using the mouse to draw a line and illustrates the use of
motion rectangles with ReadInputEvent.

A motion rectangle is a rectangle that is defined on the screen. When a
motion rectangle has been defined and the cursor moves outside of this
rectangle, an input event occurs and is returned by ReadlnputEvent.

In certain applications, for example, the motion rectangle might be set to
the size of a single character, 9 by 12 bits. Mouse movement within a

given 9-by-12-bit area is not processed. Only when the cursor moves out
of this 9-by-12-bit motion rectangle is an event returned by
ReadInputEvent.

Figure 1-2 shows how movement within a motion rectangle is ignored (1).
Movement outside of the motion rectangle, however, results in a motion
rectangle event being returned by ReadInputEvent).
PDSetMotionRectangle is called again to set another motion rectangle (3).

Mouse Services 1-7

When a character cursor is used, the virtual screen coordinates are set
according to the character map. On one type of workstation, for example,
the virtual screen coordinates are (0, 0) for the top-left corner and (79, 28)
for the bottom-right corner. (See QueryVideo in the CTOS Procedural
Interface Reference Manual.) The motion rectangle would then be set to
(1,1), so that the cursor movement from one character space to another
would be returned, but movement within a character space would be
ignored. Motion rectangles thus avoid unnecessary processing of mouse
movement.

A motion rectangle event is a one-time occurrence. After the cursor
moves outside of the motion rectangle, that motion rectangle is canceled.
Another call to PDSetMotionRectangle must be made to set a new motion
rectangle at the new position. (See Figure 1-2.)

1-8 CTOS Programming Guide, Volume II

@ LA RKS

(3) A ’*i%

N = Cursor position

= Motion rectangle ;393,1_2

Figure 1-2. Cursor Movement Inside and Outside a Motion Rectangle

Mouse Services 1-9

ErcType Sketcher()

{

Byte bChar;

FlagType fUserHappy = TRUE, fFound;
Word Idx;

EventBlockType EventBlock;

fButtonPress = FALSE;
bButton = lNoPress;

erc = PDGetCursorPos(&wOldX, &w0ldY);

if (erc != ercOK) return(erc);
erc = PDSetMotionRectangle (wOldx, wOldy, 1, 1);
if (erc != ercOK) return(erc);

erc = cgi_LineColor(dhScreen, iColor);

if (erc != ercOK) return(erc);
/*
* Loop until the user hits any key on the keyboard.
*
while(fUserHappy)
{
erc = ReadInputEvent(lWait, &EventBlock,
lsEventBlock);
if (erc != ercOK) return(erc);

/*
* Mouse button event.
*

if ((EventBlock.wType == lMouseButtonEvent) ||
(EventBlock.wType == lMotionRectangleEvent))

{

if (EventBlock.wType == lMouseButtonEvent)
bButton = EventBlock.bCode;

wX = EventBlock.wX;

wY = EventBlock.wY;
if (EventBlock.wType == lMotionRectangleEvent)

{

*

* Reset the motion rectangle.

*/
erc = PDSetMotionRectangle(wX, wY, 1, 1);
if (erc != ercOK) return(erc);

)

fButtonPress = TRUE;

Listing 1-2. Queries (Page 1 of 2)

1-10 CTOS Programming Guide, Volume II

if (bButton == lNoPress)
fButtonPress = FALSE;

/* :

* Is the user in the sketching area?

*/

if ((wY < wUserMaxY) && (WY > wUserMinY) &&
(wX > wUserMinX) && (wX < wUserMaxX))

{
if ((bButton != lNoPress) && ((wX != woldx) ||
(WY != w0ldY)))
{
erc = DrawRasterLine(wOldX,w0ldY, wX,wY);
if (erc != ercOK) return(erc);
)
wOldX = wX;
wOoldy = wY;
else {
/*
* User may be choosing a color.
*/
)
else {
/*
* Keystroke event.

*/

) .
} /* end of While (fUserHappy) */

return(ercOK);

/* end of Sketcher */

Listing 1-2. Queries (Page 2 of 2)

Mouse Services 1—11

PDGetCursorPos (&wOldX, &w0ldY)

Returns the current cursor coordinates.

PDSetMotionRectangle (w0ldX, wO0ldy, 1, 1)

Defines a motion rectangle using the current cursor coordinates as
minimum values. The width and height of the motion rectangle are
both 1. The motion rectangle is specified in virtual screen
coordinates.

The application waits for a mouse button event, a motion rectangle
event, or a keystroke. Note that after a motion rectangle event, the
motion rectangle must be reset with PDSetMotionRectangle.

ReadInputEvent returns input from both the keyboard and the mouse.
Note that use of ReadKbdDirect causes mouse information to be lost.
If ReadKbdDirect is used, the motion rectangle may thus be lost and
should be reset.

DrawRasterLine (w0ldX, wO0ldY, wX, wY)

Draws a line from the old cursor position to the new position.

Cursor Shape

Listing 1-3 defines a graphics cursor (a fountain
pen).

ErcType InitDrawCursor ()

(

ErcType erc = ercOK;

DrawCursor.wSignature = lIconSig;
DrawCursor.wVersion = 0;

DrawCursor.slIcon = 512;
DrawCursor.cblLine = 8;
DrawCursor.bWidth 64;

]

Listing 1-3. Cursor Shape (Page 1 of 3)

1-12 CTOS Programming Guide, Volume II

DrawCursor.bHeight = 64;
DrawCursor.bxOffset = 0;
DrawCursor.byOffset = 0;
DrawCursor.Pattern[0] = 0x1;
DrawCursor.Pattern(4] = 0x6;
DrawCursor.Pattern[8] = 0x0C;
DrawCursor.Pattern[12] = 0x18;
DrawCursor.Pattern[16] = 0x38;
DrawCursor.Pattern[20] = 0x78;
DrawCursor.Pattern[24] = 0xOF8;
DrawCursor.Pattern[28] = Ox1lES8;
DrawCursor.Pattern([32] = 0x3C8;
DrawCursor.Pattern([36] = 0x788;
DrawCursor.Pattern{(40] = 0x1710;
DrawCursor.Pattern([44] = 0x3E20;
DrawCursor.Pattern([48] = 0x4C40;
DrawCursor.Pattern[52] = 0x8480;
DrawCursor.Pattern[56] = 0x300;
DrawCursor.Pattern[57] = 0x1;
DrawCursor.Pattern[60] = 0x180;
DrawCursor.Pattern[61l] = 0x2;
DrawCursor.Pattern{64] = 0x100;
DrawCursor.Pattern[65] = 0x4;
DrawCursor.Pattern[68] = 0x200;
DrawCursor.Pattern[69] = 0x8;
DrawCursor.Pattern[72] = 0x400;
DrawCursor.Pattexrn([73] = 0x10;
DrawCursor.Pattern[76] = 0x800;
DrawCursor.Pattern[77] = 0x20;
DrawCursor.Pattern[80] = 0x1000;
DrawCursor.Pattern{81] = 0x40;
DrawCursor.Pattern[84] = 0x2000;
DrawCursor.Pattern[85] = 0x80;
DrawCursor.Pattern{88] = 0x4000;
DrawCursor.Pattern[89] = 0x100;
DrawCursor.Pattern{[92] = 0x8000;
DrawCursor.Pattern[93] = 0x200;
DrawCursor.Pattern[97] = 0x401;
DrawCursor.Pattern([101] = 0x802;
DrawCursor.Pattern[105] = 0x1004;

Listing 1-3. Cursor Shape (Page 2 of 3)

Mouse Services 1-13

DrawCursor.
DrawCursor.
DrawCursor.
DrawCursor.
DrawCursor.
DrawCursor.

DrawCurxsor

DrawCursor.
DrawCursor.

DrawCursor

DrawCursor.
DrawCursor.
DrawCursor.
DrawCursor.
DrawCursor,
DrawCursor.
DrawCursor.
DrawCursor.

CheckErc (PDLoadCursor (&DrawCursor,

} /* end of InitDrawCursor */

Pattern[109]
Pattern([113]
Pattern[117]
Pattern[121]
Pattern[122]
Pattern[1l25]
.Pattern([126]
Pattern([129]
Pattern([130]
.Pattern[133]
Pattern[134]
Pattern[137]
Pattern[138]
Pattern([141])
Pattern([142]
Pattern[145]
Pattern([146]
Pattern[150]

0x2008;
0x4010;
0x8060;

= 0x80;

[}

0x1;
0x100;
0x2;
0x600;

= 0x4;
= 0x800;
= 0x8;

0x1000;
0x10;
0x6000;
0x10;
0x8000;

= 0x11;

0x1E;

544, 3));

Listing 1-3. Cursor Shape (Page 3 of 3)

Changing the Graphics Cursor

Listing 1-4 shows how to change the graphics cursor.

/* Open cursor icon file.

CheckErc
CheckErc

CheckExrc
CheckErc

*/

(PDSetCursorDisplay (FALSE));
(PDReadIconFile (fh,

&Cursor, sCursor,

&WorkArea, sWorkArea, &cbRet));

(PDLoadCursor (&Cursor, sCursor, bType));
(PDSetCursorDisplay (TRUE));

Listing 1-4. Changing the Graphics Cursor

1-14 CTOS Programming Guide, Volume II

PDSetCursorDisplay (FALSE)
Turns off the cursor display.

PDReadlIconFile (fh, &Cursor, sCursor, &WorkArea, sWorkArea, &cbRet)

Reads the file for the new icon.

PDLoadCursor (&Cursor, sCursor, bType)
Changes the cursor to the new icon.

PDSetCursorDisplay (TRUE)

Turns on the new cursor display.

NOTE: This example assumes that Cursor is the same memory area for
the old and new cursor shapes. Therefore it is necessary to turn off the
cursor display before loading the new cursor. If the old and new cursor
shapes are in different memory areas, you need not turn off the cursor
display before loading the new cursor.

Cursor Movement

This example shows how an application can separate mouse tracking from
cursor movement. Here, the programmer wants to have the cursor move
in discrete jumps as if bound to a grid. Initialization is very similar to

Listing 1-1, except that instead of calling PDSetTracking to turn on the

cursor display and start tracking movement of the mouse with the cursor,
PDSetCursorDisplay is called to turn on the cursor only. The second part
of this example is similar to Listing 1-2. Underlined portions of the
program show the changes necessary to Listings 1-1 and 1-2.

erc = PDSetCursorType(l);

if (erc != ercOK) return(erc);

erc = PDSetVirtualCoordinates (0, O,
ScreenAttrs.wxDeviceMax, ScreenAttrs.wyDeviceMax);

if (erc != ercOK) return(erc);

erc = (PDSetCursorDisplay (TRUE);

erc = PDSetCursorPos(ScreenAttrs.wxDeviceMax / 2,
ScreenAttrs.wyDeviceMax / 2);

Listing 1-5. Cursor Movement (Page 1 of 2)

Mouse Services 1-15

/*
* Loop until the user hits any key on the keyboard.
*/

while(fUserHappy)

{

erc = ReadInputEvent(lWait, &EventBlock,
1sEventBlock);

if (erc != exrcOK) return(erc);

/*
* Mouse button event.
*/
if ((EventBlock.wType == 1MouseButtonEvent) ||
(EventBlock.wType == lMotionRectangleEvent))
{
if (EventBlock.wType == lMouseButtonEvent)
bButton = EventBlock.bCode;
wX = EventBlock.wX;
wY = EventBlock.wY;
*
* Calculate the on—grid values for x and y

*/
wX = ((wX + (wGridvalue / 2)) / wGridvalue) *
wGridvValue;
wY = ((wY + (wGridvalue / 2)) / wGridvalue) *
wGridvValue;
/*
* Check to see if we need to move the cursor
*/

if ((wX != w0ldx || (wY != w0ldY))
CheckErc(PDSetCursorPos(wX, wY));

if (EventBlock.wType == lMotionRectangleEvent)
{

/* Reset the motion rectangle. */

erc = PDSetMotionRectangle(wX, wY, 1, 1);
if (erc != ercOK) return(erc);

Listing 1-5. Cursor Movement (Page 2 of 2)

1—-16 CTOS Programming Guide, Volume II

Troubleshooting

If problems occur with loading your own cursor, you may have forgotten
to reverse the order of the bits of the cursor image when loading them
into screen memory. See the PDLoadCursor procedure in CTOS

Procedural Interface Reference Manual.

If it appears that you are not receiving motion rectangle events, check to
be sure that the procedures you are calling are preserving motion
rectangles. If they are canceling motion rectangles, reissue
SetMotionRectangle.

The examples in this chapter use the CCGI+ Library. If you are using an
older version of the Graphics Library, you may notice fragments of the
cursor on the screen or fragments of graphics. If this occurs, correct the
problem by preceding the calls to the Graphics Library with
PDSetCursorDisplay(false), and ending the series of Graphics Library calls
with PDSetCursorDisplay(true), as illustrated below:

PDSetCursorDisplay (false);

: /* Calls to Graphics Library */

PDSetCursorDisplay (true);

Mouse Services 1-17

Sample Mouse Program

/* This High C program allows a user to sketch using a
pointing device. You will require Mouse.lib and CGI.lib
to link this program. */

#include <stdio.h>
#include <stdlib.h>

#define Syslit
#include <CTOSTypes.h>

#define CheckErc
#define ResetFrame
#include <CTOSLib.h>

#include "CGI_User.h" /* Comes with CGI.lib */

DWord dwGraphicsMemory = 32768L;
unsigned int wHPixels;
unsigned int wVPixels;

cgi_InitParamType InitParam;
cgi_OpenWkRetType ScreenAttrs;
cgi_OpenWkRetType OffScreenAttrs;
cgi_OpenWkParamType OffScreenParam;
cgi_OpenWkParamType DumpFileParam;
cgi_OpenWkRetType DumpFileAttrs;
Word dhScreen;

#define MaxColor 9 /* maximum colors used */
rgRGBColorType ColorPalette[MaxColor];
/*

*Type declarations
*

typedef struct {
Word wSignature;
Word wVersion;
Word slIcon;
Word cbLine;
Byte bWidth;
Byte bHeight,;
Byte bxOffset;
Byte byOffset;
Byte bFlag;

Listing 1-6. Sketcher.c (Page 1 of 13)

1-18 CTOS Programming Guide, Volume II

Byte rgbReserved[3]:
Byte sbName[l6];
Word Pattern[256];

} IconHeaderType;

typedef struct {
Word wType;
Byte bCode;
Word wX;
Word wY;

} EventBlockType;

typedef struct {

Word X1;

Word Y1;

Word X2;

Woxrd Y2;
} rgPaletteType;
#define 1lbFinish 4
#define 1lbClearFKey Ox1F /* F10 key */
#define 1White 0
#define 1Black 1
#define lYellow 2
#define 1Green 3
#define 1lCyan 4
#define 1Blue 5
#define 1lMagenta 6
#define 1lRed 7
#define lKeyboardEvent 0x20
#define 1lMotionRectangleEvent 0x60
#define lMouseButtonEvent 0x80
#define lIconSig 0x4349
#define lsEventBlock 7
#define 1lWait 0
#define 1lNoPress 0
#define 1lBoxStartOffset 20
#define 1BoxEndOffset 50
#define 1lBoxHeight 10

Word wOldX, wOldY, wX, wY, wUserMaxX, wUserMaxy,
wUserMinX, wUserMinY, wCurY, iColor;

ErcType erc;

Byte bButton;

FlagType fButtonPress, fBitmap;

IconHeaderType DrawingCursor;

rgPaletteType rgPalette[8];

Listing 1-6. Sketcher.c (Page 2 of 13)

Mouse Services

pragma Calling_convention(CTOS_CALLING_CONVENTIONS) ;

/* Mouse calls */

extern ErcType PDGetCursorPos(Pointer pwXPosRet,
Pointer pwYPosRet);

extern ErcType PDLoadCursor(IconHeaderType *pCursorShape,
Word sCursorShape, Byte bType);

extern ErcType PDSetCursorPos(Word wXPos, Word wYPos);

extern ErcType PDSetCursorType(Byte bType);

extern ErcType PDSetMotionRectangle(Word wXMin,
Word wYMin, Word wDX, Word wDY);

extern ErcType PDSetTracking(FlagType fOn);

extern ErcType PDSetVirtualCoordinates(Word wXMin,
Word wYMin, Word wXMax, Word wYMax):;

extern ErcType ReadInputEvent(Word wMode,
EventBlockType *pEventBlock, Word sEventBlock);

/* CGI calls */
extern ErcType cgi_ColorTable(Word dh,
Word StartIndex, Word wMaxColor,
rgRGBColorType *ColorPalette);
extern ErcType cgi_FillColor(Word dh, Word Idx);
extern ErcType cgi_EdgeColor(Word dh, Word Idx);
extern ErcType CGI_Initialize (DWord dwGraphicsMemory,
cgi_InitParamType *InitParam, Word sInitParam);
extern ErcType cgi_InteriorStyle (Word dh, Word wStyle);
extern ErcType cgi_LineColoxr(Word dh, Word Color);
extern ErcType CGI_OpenWk (Pointer Params, Word sParams,
Word *dhScreen, cgi_OpenWkRetType *ScreenAttrs,
Word sScreenAttrs);
extern ErcType cgi_Polygon(Word dh, Word Points,
Word *rgwPoints);
extern ErcType cgi_Polyline(Word dh, Word Points,
Word *rgwPoints);
extern ErcType cgi_PrepareViewSurface(Word dh,
Woxrd HardCopy) :
extern ErcType CGI_VDCExtent (Word dh, Word X1,
Word Y1, Word X2, Word Y2);

Listing 1-6. Sketcher.c (Page 3 of 13)

1-20 CTOS Programming Guide, Volume II

*

* SetColorPalette
*

* This procedure sets up the colors for sketching
*/

ExrcType SetColorPalette()

{

ErcType erc = ercOK;

ColorPalette[lWhite] .wRed = 1000; /* background */
ColorPalette[lWhite] .wGreen = 1000;
ColorPalette[1lWhite] .wBlue = 1000;

ColorPalette[lBlack] .wRed = 0;
ColorPalette[lBlack] .wGreen = 0;
ColorPalette[lBlack] .wBlue = 0;

ColorPalette[lGreen] .wRed = 0;
ColorPalette[lGreen] .wGreen =1000;
ColorPalette[lGreen] .wBlue 0;

ColorPalette[lBlue] .wRed = 0;
ColorPalette[1lBlue] .wGreen = 0;
ColorPalette[1lBlue] .wBlue = 1000;

ColorPalette[lYellow] .wRed = 1000;
ColorPalette[lYellow] .wGreen =1000;
ColorPalette[lYellow] .wBlue = 0;

ColorpPalette[lCyan] .wRed = 0;
ColorPalette[lCyan] .wGreen = 1000;
ColorPalette[lCyan] .wBlue =1000;

ColorPalette[lMagenta] .wRed = 1000;
ColorPalette[lMagenta] .wGreen = 0;

ColorPalette[lMagenta] .wBlue = 1000;

ColorPalette[lRed] .wRed = 1000;
ColorPalette[lRed] .wGreen = 0;
ColorPalette[lRed] .wBlue = 0; ?

Listing 1-6. Sketcher.c (Page 4 of 13)

Mouse Services

/

*
*
*
*
*

*

*
* Set the alpha color same as foreground graphics
* color.
*/ .
ColorPalette[8] .wRed = ColorPalette(l] .wRed;
ColorPalette[8) .wGreen = ColorPalette[l] .wGreen;
ColorPalette([8] .wBlue = ColorPalette(l].wBlue;

erc = cgi_ColorTable(dhScreen, 0, MaxColor,

ColorPalette);
return erc;

FillRasterRectangle

This procedure fills a rectangle specified in
raster coordinates.

ErcType FillRasterRectangle(Word wXl, Word wYl,

Word wX2, Word wY2, Byte bFillType)

ErcType erc;
#define lsPoints 4
Word rgwPoints[8];

rgwPoints[0] = wXl;
rgwPoints([1l] = wYl;
rgwPoints[2] = wX2;
rgwPoints[3] = wYl;
rgwPoints[4] = wX2;
rgwPoints[5] = wY2;
rgwPoints[6] = wX1l;
rgwPoints([7] = wY2;

erc = cgi_Polygon(dhScreen, lsPoints, rgwPoints);

return(erc);

Listing 1-6. Sketcher.c (Page 5 of 13)

1-22 CTOS Programming Guide, Volume II

/*

*
*
*
*

DrawRasterLine

This procedure draws a line specified in raster
coordinates.

*/
ErcType DrawRasterLine(Word wXl, Word w¥l, Word wX2,

/*

{

*
*

*

Word wY¥Y2)

ExrcType erc; :
#define lsLinePoints 2
Word rgwPoints[4];

rgwPoints[0] = wXl;
rgwPoints[1l] = wYl;
rgwPoints[2] = wX2;
rgwPoints[3] = wY2;

erc = cgi_Polyline(dhScreen, lsLinePoints, rgwPoints);
return(erc);

InitDrawingCursor

This procedure initializes the sketch cursor.

*/
ErcType InitDrawingCursor()

ErcType erc

exrcOK;

DrawingCursor.wSignature
DrawingCursor.wVersion

0;

lIconSig;

DrawingCursor.sIcon = 512;

DrawingCursor.cbLine
DrawingCursor.bwidth
DrawingCursor.bHeight =
DrawingCursor.bxOffset
DrawingCursor.byOffset
DrawingCursor.Pattern[0]
DrawingCursor.Pattern{4]
DrawingCursor.Pattern[8]
DrawingCursor.Pattern[12]
DrawingCursor.Pattern([16]
DrawingCursor.Pattern[20]
DrawingCursor.Pattern[24]

oo~
~e

8.
6

O\ >~

.

-~ .

oxl;
0x6 ;
0x0C;
0x18;
0x38;
0x78;
0xO0F8;

Listing 1-6. Sketcher.c (Page 6 of 13)

Mouse Services 1-23

DrawingCursor.Pattern([28] = OxlES8;
DrawingCursor.Pattern[32] = 0x3C8;
DrawingCursor.Pattern[36] = 0x788;
DrawingCursor.Pattern[40] = 0x1710;
DrawingCursor.Pattern([44] = 0x3E20;
DrawingCursor.Pattern{48] = 0x4C40;
DrawingCursor.Pattern([52] = 0x8480;
DrawingCursor.Pattern([56] = 0x300;
DrawingCursoranttern[57] = 0x1;
DrawingCursor.Pattern{60] = 0x180;
DrawingCursor.Pattern[61] = 0x2;
DrawingCursor.Pattern([64] = 0x100;
DrawingCursor.Pattern[65] = 0x4;
DrawingCursor.Pattern[68] = 0x200;
DrawingCursor.Pattern[69] = 0x8;
DrawingCursor.Pattern[72] = 0x400;
DrawingCursoxr.Pattern[73] = 0x10;
DrawingCursor.Pattern{[76] = 0x800;
DrawingCursor.Pattern[77] = 0x20;
DrawingCursor.Pattern[80] = 0x1000;
DrawingCursor.Pattern([81] = 0x40;
DrawingCursor.Pattern([84] = 0x2000;
DrawingCursor.Pattern([85] = 0x80;
DrawingCursor.Pattern[88] = 0x4000;
DrawingCursor.Pattern[89] = 0x100;
DrawingCursor.Pattern[92] = 0x8000;
DrawingCursor.Pattern(93] = 0x200;
DrawingCursor.Pattern[97] = 0x401;
DrawingCursor.Pattern[101] = 0x802;
DrawingCursor.Pattern[105] = 0x1004;
DrawingCursor.Pattern[109] = 0x2008;
DrawingCursor.Pattern[113] = 0x4010;
DrawingCursor.Pattern[117] = 0x8060;
DrawingCursor,.Pattern[121] = 0x80;
DrawingCursor.Pattern[122] = 0x1;
DrawingCursor.Pattern[125] = 0x100;
DrawingCursor.Pattern[126] = 0x2;
DrawingCursor.Pattern[129] = 0x600;
- DrawingCursor.Pattern[130] = 0x4;
DrawingCursor.Pattern[133] = 0x800;
DrawingCursor.Pattern[134] = 0x8;
DrawingCursor.Pattern[137] = 0x1000;
DrawingCursor.Pattern[138] = 0x10;
DrawingCursor.Pattern{141] = 0x6000;
DrawingCursor.Pattern[142] = 0x10;
DrawingCursor.Pattern[145] = 0x8000;
DrawingCursor.Pattern[146] = O0x11;
DrawingCursor,Pattern[150] = 0x1E;

Listing 1-6. Sketcher.c (Page 7 of 13)
1-24 CTOS Programming Guide, Volume II

/*

*
*
*
*

*

erc = PDLoadCursor(s&DrawingCursor, 544, 3);
return(erc);

Sketcher

This procedure handles the mouse events and lets the
user draw in color.

ErcType Sketcher()

{

Byte bChar;
FlagType fUserHappy = TRUE, fFound;
Word Idx; :

EventBlockType EventBlock;

fButtonPress = FALSE;
bButton = 1NoPress;

erc = PDGetCursorPos(&w0ldX, &w0ldY);

if (erc != ercOK) return(erxc);

erc = PDSetMotionRectangle (wOldX, wOldy, 1, 1);
if (erc != ercOK) return(erc);

erc = cgi_LineColor(dhScreen, iColor);
if (erc != ercOK) return(erc);

/*
* Loop until the user hits any key on the keyboard.
*

while(fUserHappy)

erc = ReadInputEvent(lWait, &EventBlock,
1sEventBlock);
if (erc != ercOK) return(erc);

/*
* Mouse button event.
*

if ((EventBlock.wType == lMouseButtonEvent) ||
(EventBlock.wType == lMotionRectangleEvent))

{

if (EventBlock.wType == lMouseButtonEvent)
bButton = EventBlock.bCode;

EventBlock.wX;

EventBlock.wY;

wX
wY

mon

Listing 1-6. Sketcher.c (Page 8 of 13)

Mouse Services 1-25

if (EventBlock.wType == lMotionRectangleEvent)

/*

* Reset the motion rectangle.

*/
erc = PDSetMotionRectangle(wX, wY, 1, 1);
if (erc != ercOK) return(erc);

)

fButtonPress = TRUE;

if (bButton == 1NoPress)
fButtonPress = FALSE;

/*
* Is the user in the sketching area?
*/
if ((wY < wUserMaxY) && (WY > wUserMinY) &&
(wX > wUserMinX) && (wX < wUserMaxX))

{

if ((bButton != 1NoPress) && ((wX != woldx) ||
(WY !'= wOldY)))
{
exrc = DrawRasterLine(w0ldX,w0ldY, wX,wY);

if (erc != ercOK) return(erc);
)
wOldX = wX;
w0ldYy = wY;
else {
/*

* User may be choosing a color.
*
if ((wX >= wUserMaxX) &&
(bButton !=1NoPress))
{

*
* Check to see if user choosing a colorx.
*/

fFound = FALSE;

Idx = 0;

while ((!fFound) && (Idx < 8))

{

if ((wX > rgPalette[Idx].X1l) &&
(wX < rgPalette[Idx].X2) &&
(WY > rgPalette[Idx].Y1l) &&
(WY < rgPalette{Idx].Y2))
fFound = TRUE;

else Idx++;

}

Listing 1-6. Sketcher.c (Page 9 of 13)
1-26 CTOS Programming Guide, Volume II

if (fFound && ((Idx) != iColor))
{
/*
* Remove current color indicator.
*

erc = cgi_FillColor(dhScreen, 0);

if (erc != ercOK) return(erc);
erc = cgi_EdgeColoxr(dhScreen, 0);
if (erc != ercOK) return(erc);

erc = FillRasterRectangle(
rgPalette[iColorxr] .X1 - 6,
rgPalette[iColor] .Yl + 3,
rgPalette[iColor] .x1 - 3,
rgPalette[iColox].Y1l + 6,0);
if (erc != ercOK) return(erc);
iColor = Idx;
x
* Show new color.
*/
erc = cgi_FillColor(dhScreen, iColor);
if (erc != ercOK) return(erc);
erc = cgi_EdgeColor(dhScreen, 1lBlack);
if (erc != ercOK) return(erc);
erc = FillRasterRectangle(
rgPalette[Idx].X1 - 6,
rgPalette[Idx].Y1l + 3,
rgPalette[Idx].X1 - 3,
rgPalette[Idx] .Yl + 6, 0);

if (erc != ercOK) return(erc);
erc = cgi_LineColor(dhScreen, iColor);
if (erc != ercOK) return(erc);

)

)
else {
/*
* Keystroke event.
*
if (EventBlock.wType == lKeyboardEvent)
{
bChar = EventBlock.bCode;
if (bChar == lbClearFKey)
{
/* Clear the sketching area. */
erc = cgi_EdgeColor(dhScreen, 1lWhite);

if (erc != ercOK) return(erxrc):;
erc = cgi_FillColor(dhScreen, 1lwWhite);
if (erc != ercOK) return(exc);

Listing 1-6. Sketcher.c (Page 10 of 13)
Mouse Services 1-27

/*

*
*
*
*

erc = FillRasterRectangle(
wUserMinX+1l, wUserMin¥Y+1,
wUserMaxX-1l, wUserMax¥-1l, 0);
if (erc != ercOK) return(erc);

else {
if (bChar == 1lbFinish) fUserHappy = FALSE;
)

)

}
} /* end of While (fUserHappy) */
return(ercOK);

MainProg

This is the main procedure for the sketcher and
handles initialization.

*/
ErcType MainProg()

{

Word Idx;

exrc
exc
erc

ResetFrame(0);
ResetFrame(l);
ResetFrame(2);

nnon

iColor = 1;

erc = CGI_Initialize (dwGraphicsMemory, &InitParam,
sizeof (InitParam));

if (erc != ercOK) return (erc);

/* Open the screen device. */
erc = CGI_OpenWk (NULL, 0, &dhScreen, &ScreenAttrs,
sizeof (ScreenAttrs));
if (erc != ercOK) return(erc);
*
* Set the extent to match the physical resolution of
* the display.
*/
erc = CGI_VDCExtent (dhScreen,
0, ScreenAttrs.wyDeviceMax,
ScreenAttrs.wxDeviceMax, 0);

if (erc != ercOK) return (erc);
erc = cgi_PreparevViewSurface(dhScreen, 0);
if (erc != ercOK) return(erc);

Listing 1-6. Sketcher.c (Page 11 of 13)

1-28 CTOS Programming Guide, Volume II

erc = SetColorPalette();
if (erc != ercOK) return(erc);

/*
* Make a box around the usable sketching area leaving
* room around the edges.,

*/
wUserMaxX = ScreenAttrs.wxDeviceMax -
(2*1BoxStartOffset + 1BoxEndOffset);
wUserMaxY = ScreenAttrs.wyDeviceMax - lBoxStartOffset;
wUserMinX = lBoxStartOffset/2;
wUserMinY = wUserMinX;

iColor = lBlack;

erc = cgi_FillColor(dhScreen, 0);

if (erc != ercOK) return(erc);

erc = FillRasterRectangle(wUserMinX, wUserMinY,
wUserMaxX, wUserMaxY, 0);

if (erc != ercOK) return(erc);

wCurY = wUserMinY + lBoxStartOffset;
erc = cgi_InteriorStyle(dhScreen, 1Solid);
if (erc != ercOK) return(erc);
/*
* Draw color boxes
*

for (Idx = 0; Idx < 8; Idx++) (
rgPalette[Idx].X1 wUserMaxX + lBoxStartOffset;
rgPalette[Idx].X2 wUserMaxX + lBoxEndOffset;

rgPalette[Idx].Yl = wCurY + lBoxHeight;
rgPalette([Idx].Y2 = rgPalette([Idx].Yl + 1BoxHeight;
wCurY = rgPalette[Idx].Y2;

nown-

1]

erc = cgi_FillColor(dhScreen, Idx);

if (erc != ercOK) return(erc);
erc = cgi_EdgeColor(dhScreen, 1lBlack);
if (erc != ercOK) return(erc);

erc = FillRasterRectangle(rgPalette[Idx] .X1,
rgPalette[Idx].Y1l, rgPalette[Idx].X2,
rgPalette[Idx].Y2, 0);

if (erc != exrcOK) return(erc);

)

Listing 1-6. Sketcher.c (Page 12 of 13)

Mouse Services 1—29

)
/*

*

/*

* Set up ‘'dot' for active color
*
/
erc = cgi_FillColor(dhScreen, iColor);
if (erc != ercOK) return(erc);
erc = cgi_EdgeColor(dhScreen, 1Black);
erc = FillRasterRectangle(rgPalette[iColor] .X1-6,
rgPalette[iColor].Y1+3, rgPalette[iColor].X1-3,
rgPalette[iColor] .Yl + 6, 0);

if (erc != ercOK) return(erc);
/*
* Set up the tracker.
*/
erc = PDSetCursorType(l);
if (erc != ercOK) return(erc);

erc = InitDrawingCursor();

if (erc != ercOK) return(exc);

erc = PDSetVirtualCoordinates (0, O,
ScreenAttrs.wxDeviceMax, ScreenAttrs.wyDeviceMax);

if (erc != ercOK) return(erc);
erc = PDSetTracking(TRUE);
if (erc != ercOK) return(erc);

erc = PDSetCursorPos(ScreenAttrs.wxDeviceMax / 2,
ScreenAttrs.wyDeviceMax / 2);
return(erc);

MainLine

*/
void main()

{

)

CheckErc(MainProg())
CheckErc(Sketcher());

-~

Listing 1-6. Sketcher.c (Page 13 of 13)

1-30 CTOS Programming Guide, Volume II

2

Queue Manager

The queue management facility maintains disk-based queue entry files.
Queue entry files (hereafter called queues) are used to communicate
information among programs within a workstation, between workstations,
or across the network. Because queues are disk-based, their contents are
preserved across system reboot or a power failure. Note that under
similar circumstances when interprocess communication (IPC) or
inter-CPU communication (ICC) is used, such data preservation does not

occur.

Each queue contains information for a single type of processing, such as
spooled printing, 2780/3780 BSC remote job entry (RJE), or Systems
Network Architecture (SNA) RJE. This information is created,
accessed, and modified by programs that call queue management

operations.

To use queues, you must install the Queue Manager. The Queue Manager
can be installed on a server or a standalone workstation. Queues can be
defined by the system administrator before the Queue Manager is installed
or at any time after installation by programs that call the AddQueue
operation. Each queue must be assigned a unique name and file
specification.

What Is the Queue Manager?
The Queue Manager is a system service that maintains queues. In this

capacity, it acts as a facilitator of queue activities generated by programs
that make calls to queue management operations.

Queue Manager 2—1

Run Files

The Qdeue Manager consists of two run files:
¢ InstallQMgr.run installs and deinstalls the Queue Manager.

¢ QueueMgr.run is the Queue Manager system service.

Installation/Deinstallation

The Queue Manager can be installed on a server or on a standalone
workstation.

In a cluster configuration, the Queue Manager must be installed at the
server. Programs that use the queue management facility, however, can
be installed at cluster workstations as well as at the server. In addition,

. multiple programs on different cluster workstations can access the same
queue simultaneously.

To install the Queue Manager, you can use

o A Batch JCL file when the system is bootstrapped. (See the CTOS

Batch Manager II Installation and Configuration Guide for details on’
the Batch Manager.)

o The Executive Install Queue Manager command. This command
allows you to configure use of the Queue Manager for greater
flexibility. (See the Executive Reference Manual and the CTOS
System Administration Guide for details.)

e The Print Manager. (See the GPS Administration Guide for details.)

Once the Queue Manager is installed, programs can call queue
management operations to perform such functions as adding or deleting
queue entries, setting queue entries to be in service, or returning queue
status information. The Queue Manager acts as a facilitator in acceptmg

parameters passed to it to carry out these functions.

The Queue Manager can be deinstalled only at the server (or at the
standalone workstation); it cannot be deinstalled from a cluster
workstation. To deinstall the Queue Manager, you can either use the
Executive command, Deinstall Quene Manager, or your program can call

2-2 CTOS Programming Guide, Volume II

the DelnstallQueueManager operation. (For details on the Deinstall
Queue Manager command, see the Executive Reference Manual.)

Functional Groups of Queue Management Operations

There are three functional groups of queue management operations that
can be used by programs: client operations, queue server operations, and

queue manipulation operations. (Note that the term queue server, which
refers to the group of queue management operations that control the
queues, is different from the term server, which refers to the workstation
server for a cluster.)

Client Operations

A program can submit requests to the Queue Manager for processing
services, such as for printing ‘or file transmission, by using client
operations. These operations enable a program to perform the following
functions:

e Access queues by using operations that specify the queue name.
o Submit entries to the appropriate queue.

e Delete previously queued entries.
e Obtain a list of entries queued.

NOTE: Any program requesting queue entry processing can call the client
operations. Such a program is commonly called a client even though the
queue server, as noted earlier, is not necessarily a system service.

Adding an Entry to a Queue

5
A program adds an entry to the specified queue with the AddQueueEntry
operation. To do so, the program specifies information, including

e A queue name that must correspond to an already created queue.

o The memory address of a buffer containing the queue entry.

Queue Manager 2-3

e A priority level (0 through 9, with 0 the highest) at which the entr)} is
queued. '

e An optional date/time specification for the earliest time the entry is
made available for service. (For details, see "Queue Entry
Processing Order,” later in this chapter.)

e An optional repeat time interval for making the queue entry
available again after it has been used. The repeat time interval is

added to the time specification for servicing the entry. (For details,
see "Queue Entry Processing Order,” later in this chapter.)

Before adding a new entry to the queue, the Queue Manager checks the
number of active queue servers. If no queue servers are actively serving
the queue, some clients may elect not to queue a new entry.

Reading Queue Entries

A client reads queue entries with the ReadKeyedQueueEntry or the
ReadNextQueueEntry operation. ReadNextQueueEntry typically is used
by a program not having exclusive access to the queue to list the contents
of all queue entries for processing purposes.

The client specifies the queue name, queue entry handle, and memory
addresses of buffers to which the queue entry and Queue Status Block are
returned. (For details on the queue entry handle and the Queue Status
Block, see "Referencing Queues and Queue Entries,” later in this
chapter.)

Removing an Entry

A client removes a specific queue entry from the queue with the
RemoveKeyedQueueEntry operation. The queue entry is identified by
one or two key fields.

A key is a particular field or combination of fields in a data record upon
which the search process is performed. The RemoveKeyedQueueEntry

operation can specify that up to two key fields must match corresponding
fields in the queue entry before the queue entry is removed. (For details,
see "Referencing Queues and Queue Entries,” later in this chapter.)

2—-4 CTOS Programming Guide, Volume II

Queue Server Operations

A program can submit requests to the Queue Manager to process entries,
such as when printing or transmitting files, by using the queue server
operations. These operations enable a program to perform the following
functions:

o Specify the queue(s) to be served.

¢ Obtain exclusive access to queue entries in the specified queue(s) by
marking the entries (as in use).

e Process marked entries in the specified queue(s).

o Request the removal of processed queue entries or the rescheduling
of processed entries with associated repeat time intervals.

e Relinquish exclusive access to queue entries by unmarking the
entries (as not in use) without removing the entries from the
specified queue(s).

NOTE: Although some of the more commonly known queue servers also are
system services [for example, the spooler and SNA remote job entry (RJE)],
application programs as well can serve queues. The only requirement is that
the program call EstablishQueueServer.

Establishing Queue Servers

A program must establish itself as a queue server for the specified
queue(s) with the EstablishQueueServer operation before it can use any of
the queue server operations for marking or unmarking queues.

EstablishQueueServer enables the Queue Manager to keep a count of the
number of programs serving each queue. The Queue Manager checks the
count of queue servers before adding entries to a queue. If no queue
servers are active, a client may elect not to queue a new entry.

Queue Manager 2-5

Marking Queue Entries

The queue server obtains exclusive access to a queue entry on which to

operate by marking the entry as being in use. Marking is accomplished by
using either of the following operations: MarkNextQueuedEntry or
MarkKeyedQueueEntry. MarkNextQueuedEntry specifies the next
available queue entry, whereas MarkKeyedQueueEntry specifies a
particular entry. '

The queue server marks the specified entry to prevent other queue servers
from operating on it.

The marking operations prevent interference among multiple queue
servers serving a single queue. While a queue entry is marked, it is not
returned in subsequent marking operations.

Unmarking Queue Entries

Entries are reset to the unmarked (not in use) state when

e An explicit call is made to the UnmarkQueueEntry operation.

¢ The Queue Manager is installed or deinstalled.

e A queue server terminates operation for any reason, including

malfunction of a cluster workstation. The Queue Manager searches
all queues affected and resets any queue entries marked by servers
from the malfunctioning workstation.

e A queue server elects to discontinue serving a queue and issues a
TerminateQueueServer operation. The Queue Manager decrements
the count of active queue servers for that queue and resets all entries

previously marked by the terminating server. It also returns any
blocked MarkNextQueueEntry requests.

Rescheduling and Removing Queue Entries

The queue server can remove a queue entry from the specified queue with

the RemoveMarkedQueueEntry and RescheduleMarkedQueueEntry
operations. RescheduleMarkedQueueEntry also can be used to
reschedule entries with an associated repeat time interval.

2-6 CTOS Programming Guide, Volume II

Queue Manipulation Operations

A third functional qroup of queue management operations provides a
means of managing queues (not queue entries) and obtaining information
about them.

These operations are

e AddQueue
¢ CleanQueue

¢ RemoveQueue
¢ GetQMStatus

The AddQueue operation defines a queue dynamically and returns a
queue handle. (See "Defining Queues Dynamically,” later in this chapter.)
The queue handle can be used in a subsequent call to the CleanQueue
operation to reset the queue to its initial (empty) state or a call to

RemoveQueue to delete the queue from the Queue Manager’s list of
recognized queues (the queue file, however, remains on disk).

Information about all queues of a given type can be obtained by calling
GetQMStatus and specifying the queue type.

Summary of Queue Manager Operations

The queue management operations are described below. (See the CTOS
Procedural Interface Reference Manual for a complete description of each
operation.)

AddQueue
Activates a new queue.
AddQueueEntry

Adds an entry to the specified queue for processing by the appropriate
queue server.

Queue Manager 2-7

CleanQueue
Resets a queue to empty.

DelnstallQueueManager

Terminates operation of the Queue Manager and frees its memory
partition.

EstablishQueueServer
Establishes a program as a queue server for the specified queue.

GetQMStatus

Interrogates the Queue Manager about usage statistics, as well as the
queues of the specified type.

MarkKeyedQueueEntry

Locates the first unmarked entry in the specified queue with up to two
key fields equal to the values specified, marks it as being in use, reads
it into a buffer, and returns a queue entry handle for use in a sub-
sequent RemoveMarkedQueueEntry operation.

MarkNextQueueEntry

Reads the first unmarked entry in the specified queue into a buffer,
marks it as being in use, and returns a queue entry handle. Entries are
marked in order of priority.

ReadKeyedQueueEntry

Obtains the first queue entry in the specified queue with up to two key
fields equal to the values specified, reads it into a buffer, and returns
the Queue Status Block.

ReadNextQueueEntry

Reads an entry from the specified queue into a buffer and returns the
queue entry handle of the next queue entry.

2—8 CTOS Programming Guide, Volume II

RemoveKeyedQueueEntry

Locates an unmarked entry in the specified queue with up to two key
fields equal to the values specified and removes it from the queue.

RemoveMarkedQueueEntry

Removes a previously marked entry from the specified queue.
RemoveQueue

Removes a queue dynamically.
RescheduleMarkedQueueEntry

Removes a previously marked entry from the specified queue or
reschedules the entry if it is associated with a repeat time interval.

RewriteMarkedQueueEntry

Rewrites the specified marked queue entry with a new ‘queue entry.

TerminateQueueServer

Notifies the Queue Manager that a queue server is no longer serving
the specified queue.

UnmarkQueueEntry

Resets the specified queue entry as unmarked (not in use).

Queue Manager Configuration
Figure 2-1 shows an example of a cluster configuration with the queue

management facility, a client, and a queue server (in this case, the
spooler, which is also a system service).

Queue Manager 2-9

Server

Queue Entry Files

Queue Manager | Data Files
Cluster Cluster Cluster Cluster
Workstation Workstation Workstation Workstation
Requestor Spooler
Printer(s)
2393.2-1

Figure 2-1. Example of a Configuration with the
Queue Management Facility

2-10 CTOS Programming Guide, Volume II

Queues

A queue contains information for a single type of processing such as
spooled printing or RJE.

Format

A queue consists of a 512-byte header record followed by a series of
queue entry records.

o The queue file header contains all the data that the Queue Manager
needs to control the file. '

e Each queue entry consists of Queue Manager control information
followed by the specific data placed in the queue by the client.

Queue File Header

The queue file header contains all the information needed by the Queue
Manager to manage the queue entries in the file. This information

includes the following entries:

o the queue type, such as spooler or RJE
e the queue version

e a listing of all current queue servers

e two sets of head and tail pointers to a doubly linked list of queue
entries

As a consistency check, the Queue Manager matches the queue type
against the type specified in all client and server operations.

The Queue Manager checks the queue version of existing queues against
the Queue Manager version. Note that all queues created by an earlier
version of the Queue Manager are interpreted correctly and thus can be
managed by a later Queue Manager version. The reverse, however, is not

true: queues created by a later Queue Manager cannot be used by an
earlier Queue Manager version.

Queue Manager 2-11

Two sets of head and tail pointers contain memory addresses in a doubly
linked list of queue entries.

¢ One set contains the addresses of the first and last entries available
for use.

o The other contains the addresses of the first and last entries
currently being served or waiting to be served.

(For the format of the queue file header, see Table 2-2 below under "Data
Structures.”)

Queue Entry

A queue entry is a formatted request for processing that is added by
clients to the specified queue. Clients and queue servers communicate by
means of fields within the queue entries located at fixed offsets known to

both the clients and the servers. When a queue server is available, it
obtains a queue entry for processing.

Queue Entry Processing Order

Queue entries are priority ordered such that new entries are inserted after

the last entry of higher priority, and before the first entry of lower
priority. Priorities range from 0 through 9, with O the highest. A program
can specify the queue entry priority with the AddQueueEntry operation.

Within a given priority, entries are arranged in a first-in, first-out (FIF0)
order.

In addition to setting the priority of a queue entry, a program can use the
AddQueueEntry operation to specify the earliest time at which to make
the entry available for processing and a repeat time interval for making
the entry available for processing at a later time. These options are
represented by the dateTime and repeatTime parameters, respectively, of
the AddQueueEntry operation.

The dateTime parameter can be used to specify that a queue entry not be
made available for use until a particular date and time. For example, if
today were February 15, 1990, a queue entry can be added to a queue that
is first made available for use at 6:00 AM on March 2, 1990, and that
subsequently remains available until its removal from the queue.

2-12 CTOS Programming Guide, Volume II

The repeatTime parameter can be used to specify a repeat time interval at
which the queue entry again is made available for use. For example, a
queue entry with a repeat time interval of 12 hours can be added to a
queue that is first made available for use at 6:00 AM on March 2, 1990,
and that is available twice every day thereafter until its removal from the
queue.

Queue Entry Format

Each queue entry consists of the following two parts:

e The queue entry header is contained in the first 40 bytes. The
header is reserved for the Queue Manager and includes control
information for linking the queue entries together. (The format of
the queue entry header is shown below in Table 2-3 under "Data
Structures.” The Queue Status Block, shown in Table 2-4, is derived
from this header.)

o The remaining bytes are data placed in the queue entry by the client.
This information rarely is used by the Queue Manager except in a
few cases where queues are internally defined. (Tables 3-1 through
3-3 in Chapter 3, "Spooler,” show this portion of the queue entry for
pre-GPS spooler queue entries.)

Calculating Queue Entry Size

A queue entry is one or more contiguous 512-byte sectors in a queue.
The smallest size for a queue entry is 512 bytes. Larger queue entries
must be a multiple of 512 bytes.

The 16-bit links to the preceding and next queue entries in the queue
entry header place a maximum limit on the number of queue entries in a
queue. To determine the maximum number of queue entries, divide
65,534 by the queue entry size (in sectors). As an example, a queue with
queue entries that are 4 sectors long can contain a maximum of (65534/4)
or 16383 entries.

Queue Manager 2-13

Queue Examples

More than one type of queue generally is required for each
queue-oriented service. (A spooler queue, for example, requires a

scheduling, a control, and a status queue.) Table 2-1 shows examples of
typical queues.

Table 2-1. Queue Examples

Queue Server Type Number Required
Remote Job Transmit One per cluster
Entry (RJE) configuration
Receive One per cluster
configuration
Spooler Scheduling One per print class
Control One per printer
Status One per cluster
configuration

Defining Queues

Queues can be defined by the system administrator before the Queue
Manager is installed or after installation by programs that call the
AddQueue operation.

Defining Queues in the Queue Index File

/
During Queue Manager installation, the Queue Manager obtains
information about the queues that it is to manage by reading the contents
of the file, [Sys]<Sys>Queue.Index. This file, also known as the Queue
Index file, is located at the server or standalone workstation where the
installation takes place.

2—14 CTOS Programming Guide, Volume II

The Queue Index file is a text file that defines queues to be used in the
system. It contains information such as the name of each queue to be
used in the system and the associated queue entry file.

NOTE: The Queue Manager reads the Queue Index file only once (during
Queue Manager installation). To effect any new changes made to the file
after installation, deinstall the Queue Manager and install it again.

If required, the system administrator creates the Queue Index file in the

[Sys]<Sys> directory at the server (or standalone workstation) where the
Queue Manager is to be installed.

The Queue Index file is created with a text editor or word processor. For
each queue, an entry of the following format is required:

QueueName/FileSpec/EntrySize/QueueType <Return>
where
QueueName

Is a user-defined queue name that is unique to the installation. The
name can be any name of up to 50 characters. Following are examples
of acceptable names: SpoolerA, SPL, PrinterX, Centronix, Diablo,

Imagen2.0, and RJEtoBoston. Note that this name can be preceded
by a node specification to specify that the queue itself is being serviced

at a remote node by another Queue Manager. (For details, see "Using
the Queue Manager Across Network Nodes,” later in this chapter.)

FileSpec

Is the file specification of the queue in which qyeue entries submitted
by clients are stored. Following is an example:
[Win1]<Sys>Spooler AQueueEntryFile.

Queue Manager 2—-15

EntrySize

Is the size of a queue entry in the queue. The size is the number of
512-byte sectors per entry. For example, to define 1K-byte entries,
specify an entry size of 2. In such a case, 984 bytes are usable, and 40
are reserved for the Queue Manager. (Also see "Calculating Queue
Entry Size,” earlier in this chapter.)

QueueType

Is the type of the queue (an integer less than or equal to 255), which
enables a consistency check. The Queue Manager checks the type
against the type specified in operations to add entries to the queue and

to establish servers for the queue. Types O through 80 are reserved for
internal use. Types 1, 2, 3, and 4 are assigned as follows:

Type Assignment
1 spooler queue

2 BSC 2780/3780 RJE queue
3 Batch queue

4 SNA RJE queue

An example of a Queue Index file is shown in Figure 2-2.

SpoolerA/SpoolerAQueueEntryFile/1/1 <Return>

RUEBoston/RJEBostonQueueEntryFile/1/2 <Return>

2393.2-2

Figure 2-2. Example of a Queue Index File

2-16 CTOS Programming Guide, Volume II

Defining Queues Dynamically

Programs can add queues dynamically by calling the AddQueue operation
and supplying the same information that is contained in the Queue Index
file entry fields. The Queue Manager adds these queues to its tables and
it creates, if necessary, and opens the specified queue entry file.

A queue handle returned by the AddQueue operation can be used by the
caller in subsequent operations to reset the dynamic queue to its initial
state, or to remove it entirely. (See the AddQueue, CleanQueue, and

RemoveQueue operations in the CTOS Procedural Interface Reference
Manual.)

Referencing Queues and Queue Entries

A program references a queue or a queue entry in a queue management
operation in several ways.

With the exception of GetQMStatus, which requires that the caller supply
only the queue type, a queue is referenced by the queue name or the
queue handle as well as the type of the queue. Queue entries are
referenced by the queue entry handle or keys embedded in the client
portion (starting at byte 40) of the queue entry itself.

The four common methods of referencing queues and queue entries (by
queue name, queue handle, queue entry handle, and keys) are described
in detail in the following section.

Referencing Queues
Queue Names

Most queue management operations require that the caller supply the
queue name. (Exceptions are when the queue is being removed or reset.)

If a queue is defined in the Queue Index file, the queue name (as well as
the queue type) must be known in advance by programs using the queue.

If, however, the queue is defined dynamically using the AddQueue
operation, the program defining the queue actually supplies this
information as part of the queue definition.

Queue Manager 2-17

The only queue management operations that do not require a queue name
are CleanQueue, RemoveQueue, DeinstallQueueManager, and
GetQMStatus. The CleanQueue and RemoveQueue operations accept a
queue handle. Calling GetQMStatus is one way this handle can be
obtained, as described next.

Queue Handles

Queue handles are unique 16-bit identifiers of queues. These handles can
be used by the queue manipulation operations, CleanQueue and
RemoveQueue.

A program can obtain a queue handle in one of two ways. If the program
defined the queue dynamically using AddQueue, a queue handle is
returned. (See "Queue Manipulation Operations,” earlier in this chapter.)
If the queue is defined in the Queue Index file, the program must call
GetQMStatus, specifying the queue type of the queue whose queue handle
is to be obtained. Because GetQMStatus provides information about all
queues of a specified type, the program must extract the queue handle
from the returned information. (For a detailed description of
GetQMStatus, see the CTOS Procedural Interface Reference Manual.)

Referencing Queue Entries

Queue Entry Handles

Queue entry handles are unique 32-bit identifiers of queue entries. The
caller must use the queue entry handle to specify to the Queue Manager
which queue entry to remove, unmark, reschedule, or rewrite. A queue
entry handle also is used by callers of the ReadNextQueueEntry operation
to obtain the next queue entry.

2—-18 CTOS Programming Guide, Volume II

Queue entry handles are returned by the following Queue Manager
operations:

o MarkKeyedQueueEntry
e MarkNextQueueEntry
¢ ReadKeyedQueueEntry
¢ ReadNextQueueEntry

The handle is returned in the Queue Status Block structure.

Queue Status Block

The Queue Status Block is a structure derived from information contained
in each queue entry header. This structure reports a queue entry’s server
user number (if the entry is marked), priority, and the buffers in which
the queue entry handle for the queue entry as well as the logically
following queue entry are stored.

(For the structure of the Queue Status Block, see Table 2-4.)

Keys

A key is a particular field or combination of fields that identifies a queue
entry to be processed. Unlike queue names, queue handles, and queue
entry handles, which reference data in the Queue Manager control portion
of the queue file header or a queue entry header, keys reference data
actually stored within the client’s portion of a queue entry. (See "Queue

Entry Format,” earlier in this chapter.) For this reason, keys are
recognized by the Queue Manager only when they are defined by the
caller.

The following operations allow a program to access queue entries by keys:

¢ ReadKeyedQueueEntry
o MarkKeyedQueueEntry

¢ RemoveKeyedQueueEntry

Queue Manager 2—19

Note that the MarkKeyedQueueEntry operation can be used only by a

program established as a queue server. (For details, see "Queue Server
Operations,” earlier in this chapter.)

In the operations listed above, a program specifies one or two queue entry
key fields and their offsets within the queue entry. The Queue Manager
uses this information to search the queue until it either finds the first
entry containing the specified key(s) or no entry containing the specified
key is found.

Each key field in the queue entry is described with an sb string: the first
byte contains the key field length and the remaining bytes contain the key.

In the following example, each entry consists of three key fields
(Date/Time, Title, and Message). The format of the entry is:

Size
Offset Field (bytes) Description
0 sDateTime 1 length of date/time specification
1 DateTime 4 date/time specification
5 sTitle 1 length of a title
6 Title 20 title buffer
26 sMessage 1 length of a message
27 Message - 255 message buffer

A program can delete the first queue entry in the queue with a key field
containing the Title

From Mom

by calling RemoveKeyedQueueEntry and specifying the title ’From Mom’
as the key, the key length (8 bytes), and the key offset (5).

RemoveKeyedQueueEntry also can be called to delete the first queue
entry containing a specified title as well as a date/time specification. In
this case, a second key containing the date/time specification, its length (4
bytes), and its offset (0) also is used in the search.

2-20 CTOS Programming Guide, Volume II

NOTE: Any program using keys must know the exact format and content of
queue entries in the target queue entry file. It follows that multiple programs
accessing the same queue must agree at least upon the contents of queue
entries in that queue.

Sequence for Using Queue Management Operations

A typical sequence for installing and using the queue management facility
is described below.

1.

The Queue Manager is installed on the server or the standalone
workstation with a Batch utility, the Executive Install Queue
Manager command, or the Print Manager. At installation, the

system administrator can choose to specify a maximum number of
queues that can be defined dynamically.

If a Queue Index file exists, the Queue Manager uses it during
initialization to open the queues defined within the file (otherwise, it
installs with the dynamic queues, if specified).

At any time after the Queue Manager is installed, programs can add
queues dynamically with the AddQueue operation, provided that
dynamically defined queues were specified when the Queue Manager
was installed. (See step 1.) The number of queues defined in this
manner must not exceed the maximum number specified at Queue
Manager installation. The Queue Manager adds these queues to its
tables, and it creates, if necessary, and opens the specified queue

entry file.

A program intending to serve a particular queue uses the
EstablishQueueServer operation to establish itself as an active queue
server. It specifies the name of the queue it intends to serve and the

queue type.

A client adds queue entries to the specified queue with the
AddQueueEntry operation. The fQueuelfNoServer parameter to
AddQueueEntry allows the client to indicate whether or not a queue
server is established for the queue. In either case, the Queue
Manager places the entry in the queue.

Queue Manager 2-21

6. The queue server can obtain a particular queue entry for processing
with the MarkKeyedQueueEntry operation. It also can obtain the
unmarked queue entry at the head of the queue by using

MarkNextQueueEntry. The Queue Manager marks the queue entry
as being in use to prevent other queue servers from operating on it.

7. The queue server processes the marked queue entry and then
removes the entry from the queue using the
RemoveMarkedQueueEntry operation. The server also can either

reschedule the queue entry (if a repeating time interval is specified
for the queue entry), or simply unmark it, making it available for
further processing at a later time.

8. To obtain a list of entries in the queue, the client can call -
ReadNextQueueEntry repeatedly. The client also can call
RemoveKeyedQueueEntry to delete an entry before the entry is
marked by the queue server.

9. When a queue server elects to discontinue serving a queue, the
queue server removes itself from the list of active queue servers by
calling the TerminateQueueServer operation.

Using the Queue Manager Across Network Nodes

Programs can access queues residing on remote network nodes. Remote
access is transparent to the calling program that uses the following subset
of the queue management operations:

¢ AddQueueEntry
¢ ReadKeyedQueueEntry
¢ ReadNextQueueEntry

¢ RemoveKeyedQueueEntry

Calling any other queue management operation, however, results in the
return of error code 920 ("Not a remote Queue Manager operation”).

To access a remote queue, the queue must be defined in the local Queue

Index file as well as in Queue Index file at the remote node. (See
"Defining Queues in the Queue Index File,” earlier in this chapter.) The

2—-22 CTOS Programming Guide, Volume II

only difference in the local and remote queue definition is that the local
queue name must include the node name of the remote node. Installation
of the Queue Manager at both locations then allows programs to use the
operations listed above.

The local Queue Manager forwards requests with node specifications to
the Queue Manager at the remote node specified in the queue name.

The following steps describe how to define a remote queue:

1. At the local node, create an entry in the Queue Index file. Enter
the node specification of the queue preceding the queue' name.
Note that since the Queue Manager at this node will forward any
requests to use this queue, the remaining elements of the entry
(queue file specification, queue type, and queue size) are not used,
bt must be present for Queue Manager installation to succeed.

2. At the remote node, set up an entry in the Queue Index file using
the same queue name, but omitting the node name. Omission of the
node means that the queue is to be served locally (at this node).
Include the remaining elements of the entry using the same queue
file specification, queue type, and queue size as were specified in
step 1.

3. Install the Queue Manager at the local and remote nodes.

Once the Queue Managers are installed, they are provided the required
information for recognizing and processing requests across the network.
Subsequent use of a remote -queue is totally transparent to programs using
the subset of queue management operations listed earlier.

Following is an example of the local and remote Queue Index file entries:

At the server at the local node, the Queue Index file contains the
following entry:

{Ranger}RmtQueue/[d0]<Queues>Rmt.Queue/1/8

This local entry requires that the Queue Index file at the server at the
remote node (Ranger), contain the corresponding entry:

RmtQueue/[d0]<Queues>Rmt.Queue/1/8

Queue Manager 2-23

Although the information in the local Queue Index file following the
queue name (/[d0]...1/18) is unused by the local Queue Manager, it must
be present and must match the information in the Queue Index File at the
remote node. '

Including a node name in the queue file specification is not

recommended. By doing so, the Queue Manager servicing the queue is
required to perform multiple reads and writes of data across the network,
even to perform a single Queue Manager function. This could lead to
impaired system performance.

2-24 CTOS Programming Guide, Volume II

Data Structures

Table 2-2. Queue File Header

Size
Offset Field {bytes) Description
0 version 4 current version string for the queue
4 queueType 2 value from 1 to 255
6 fUnique 1 queue access by only one queue server
7 cClients 1 number of queue servers for this queue
8 freeTop 2 first free sector to hold a new queue entry
10 queueTop 2 sector index of the first queued entry
12 freeBot 2 last free sector to hold a new queue entry
14 queueBot 2 sector index of the last queued entry
16 priTops 20 linked list of one-word sector indexes
36 priNext 20 linked list of one-word sector indexes
56 reserved 4
60 rgUserNum 64 queue server user numbers for this queue
124 rgUserNumQd 64 queue servers waiting for queue entries
188 earliestDT 4 earliest time for delayed/repeating entry
192 earliestid 2 queue entry with the time stamp earllestDT.
196 latestDT 4 latest time for delayed/repeating entry
200 latestld 2 queue entry with the time stamp latestDT.
202 {Stable 1 queue file properly closed when last used
203 cQdEntries 2 number of queue entries
205 reserved 309
version

is the current version string for the queue (for example, 11.3).

queueType

is a value from 1 to 255. Types 1, 2, 3, and 4 are assigned as follows:

Type

1

Assignment

spooler queue

BSC 2780/3780 RJE queue

Batch queue

SNA RJE queue

Queue Manager 2-25

fUnique

is a flag that is TRUE if only one queue server is allowed to access the
queue.

cClients

is the number of programs currently established as queue servers for
this queue.

JreeTop

is the sector index of the first free sector (available to contain a new
queue entry).

queueTop
is the sector index of the first queued entry.
freeBot

is the sector index of the last free sector (available to contain a new
queue entry).

queueBot
is the sector index of the last queued entry.
priTops

is a linked list of sector indexes (one word each) of the first queue

entry for a given priority. (The first word contains the first sector
index with a priority O entry, if any. The last word contains the first
sector index with a priority 9 entry.) Priorities for which there are no
entries contain the value 0.

priNext

is a linked list of sector indexes (one word each) of the first queue
entry with the next highest priority.

2—-26 CTOS Programming Guide, Volume II

rgUserNum

is an array of user numbers of programs currently established as queue
servers for this queue.

rgUserNumQd

is an array of user numbers of queue servers waiting for available
queue entries.

earliestDT

is the earliest time stamp for any delayed or repeating queue entry in
the queue.

earliestld
is the sector index of the queue entry with the time stamp, earliestDT.

latestDT

denotes the latest time for any delayed or repeating queue entry in the
queue.

latestld

is the sector index of the queue entry with the time stamp, latestDT.

fStable

is a flag that is TRUE if the queue file was properly closed when it was
last used.

cQdEntries

number of entries in the queue.

Queue Manager 2-27

~ Table 2-3. Queue Entry Header

Offset Field Description
0 idxSelf 2 sector index of this queue entry
2 uniqld 2 unique [D for this queue entry
4 chainType 1 link to list of queued/available entries
5 priority 1 priority (0 to 9) of this queue entry
6 nxtUnigld 2 unique ID of next queue entry in the queue
8 previdx 2 sector index of the preceding queue entry
10 nextldx 2 sector index of the next queue entry
12 dateTime 4 indicates when queue entry is to be used
16 repeatint 2 repeat interval for rescheduling entry
18 markUNum 2 user number of current queue server
20 prevDTidx 2 sector index of the next earlier queue entry
22 nextDTidx 2 sector index of the next later queue entry
24 reserved 14
idxSelf

is the sector index of this queue entry.

unigld

is a unique identification number for this queue entry. idxSelf (above)
and unigld are the queue entry handle for this entry.

. ChainType

indicates whether this entry is linked to the list of queued or available
entries.

priority

is the priority (0 to 9 with O the highest) of this queue entry.

nxtUnigld

is a unique identification number of the next queue entry in the queue.

2-28 CTOS Programming Guide, Volume II

previdx

is the sector index of the preceding queue entry in the queue.

nextldx

is the sector index of the next queue entry in the queue. nxtUniqld
(above) and nextldx are the queue entry handle of the next entry.

dateTime

is a time stamp used to determine when this queue entry is to be made
available for use.

repeatint
is the repeat interval to be used in rescheduling this queue entry.

markUNum

is the user number of the queue server that currently is using (has
marked) this queue entry.

prevDTIdx
is the sector index of the queue entry with the next earlier time stamp.

nextDTIdx

is the sector index of the queue entry with the next later time stamp.

Queue Manager 2-29

Table 2-4. Queue Status Block

Size
Offset Field (bytes) Description
0 qehRet 4 buffer for queue entry handle
4 priority J 1 priority of the queue entry
5 serverUserNum 2 user number of the current queue server
7 gehNextRet 4 buffer for next queue entry handle
qgehRet

is the buffer in which the queue entry handle of the queue entry is
stored.

priority

is the priority (0 to 9, with 0 the highest) at which the queue entry is
placed in the queue.

serverUserNum

is the user number of the queue server that currently is using (has
marked) this queue entry. This field contains OFFFFh if the queue

entry currently is not marked.

qgehNextRet

is the buffer in which the queue entry handle of the logically following
queue entry is stored.

2-30 CTOS Programming Guide, Volume II

3

Spooler

The spooler (simultaneous peripheral gperation gnline) management facility provides
direct and spooled printing to parallel (Centronics-compatible) and serial
(RS-232-C-compatible) printer interfaces.

Direct printing transfers text directly from application program memory to a parallel
or serial printer interface of the local workstation. The local printer must be available
before direct printing is activated.

In spooled printing, a queue entry is created for each printing request and entered in a
queue managed by the Queue Manager. (For details on the Queue Manager, sce

Chapter 2, "Queue Manager.") A spooler obtains a queue entry for printing when a

printer is available. The user need not wait for a printer to be available to enter a
printing request.

The user can print, either directly or spooled, with the Spooler Status command,

described in the Executive Reference Manual. The reader should be familiar with the
pertinent text in that manual before continuing in this chapter.

Spooler Configuration
When the spooler is installed, it reads a spooler configuration file designated by the
user. The spooler configuration file at spooler installation must contain at least the
specification of each printer channel to be controlled by the spooler. Additional
information required for each printer can be supplied to the spooler in either of two
ways:

« in the spooler configuration file at spooler installation

« dynamically through the ConfigureSpooler operation

Spooler 3-1

The additional information required for each printer is

« the name of the printer

the name of the scheduling queue

« the printer configuration file specification

the priority of the process that controls the printer

« whether to print a banner page at the beginning of each file
See the GPS Administration Guide and the CTOS System Software Installation and
Configuration Guide for information on setting up and configuring the spooler.
Sending a Password

If the security mode is specified in a printing request, the spooler pauses before
printing the file and waits for receipt of a password. The password can be sent to the
spooler in either of two ways:

« by the operator invoking the Spooler Status command and typing the
password at the local printer

+ by a process using the SpoolerPassword operation

Operations

Spooler management provides the operations described below.

ConfigureSpooler
Sets or changes the spooler’s configuration.

SpoolerPassword

Sends a file password to the spooler.

3-2 CTOS Programming Guide, Volume Il

Programmer’s Notes on the Spooler

The information below is provided for programmers writing application programs
that use the spooler.

Pre-GPS Spooler Byte Streams

Spooled printing can be accessed through pre-GPS spooler byte streams. (See
"Sequential Access Method" in the CTOS Operating System Concepts Manual for a
description of pre-GPS spooler byte streams.)

The queue name must be enclosed in brackets (for example, [Joe]) to distinguish it
from a file specification. The name must not match a built-in byte stream device.

(See "Sequential Access Method" in the CTOS Operating System Concepts Manual
for details on device/file specifications.)

During the OpenByteStream operation, the pre-GPS spooler byte stream creates a
temporary file whose name is automatically generated to ensure its uniqueness. A
WriteBsRecord or WriteByte operation transfers text to the temporary disk file and
expands the disk file as necessary. The CloseByteStream operation closes the disk
file and then sends the file to the specified scheduling queue. (For descriptions of the
OpenByteStream, WriteBsRecord, WriteByte, and CloseByteStream operations, see
the CTOS Procedural Interface Reference Manual.)

In a cluster environment, the temporary file is created at the server. At system build
time, the system administrator can specify the volume on which the temporary files
are to be created. The byte stream specifies [!Scr] as the volume name of the
temporary file, and the operating system file system replaces [!Scr] with the volume
name specified at system build. The symbol ! is interpreted by the cluster local file

system to specify a volume at the server. (For details, see "File Management" in the
CTOS Operating System Concepts Manual.)

In addition to the queue name, the user can optionally specify a document name
following the queue name ([Joe]Report). The pre-GPS spooler byte stream creates
the temporary file called [!Scrj<SpI>Report$$xxxxx, where $$xxxxx is a unique

sequence generated by the byte stream. The installation procedure creates directory
<Spl> on the volume [!Scr].

Spooler 3-3

The pre-GPS spooler byte stream creates temporary files without password protection
and deletes them after printing. If the security of temporary files is a concem, the
user should create a disk file with the byte stream, and then spool it with the Print
command, using the security mode. (See the Executive Reference Manual.)

Spooled printing can be reconfigured through the ConfigureSpooler operation. (See
the CTOS Procedural Interface Reference Manual.)

Spooler Configuration File Requirements

During installation, the spooler reads a Spooler Configuration file designated by the
user.

When the spooler is installed, the Spooler Configuration file must contain at least the
predefined code of each printer channel to be controlled by the spooler (even if the
printer is not configured at this time). The code(s) tell the spooler how much memory
space to allocate for printers.

Additional information required for each printer can be specified by either of the
following:

. including it in the Spooler Configuration file when the printer spooler is
installed

« using the ConfigureSpooler operation during execution or the Spooler Status
command

The additional information required for each printer is the following:
« The name of the printer.

+ The name of the scheduling queue.

+ The printer configuration file specification.

+ The priority of the printer control process. (See "Control Queue," later in this
chapter.)

« A code to indicate whether a banner page is printed between files.

3—4 CTOS Programming Guide, Volume Il

Printer Spooler Escape Sequences

Printer spooler escape sequences are special character sequences embedded in text
files to be printed by the printer spooler. They either cause an intentional manual
intervention condition when processed by the printer spooler or override the page

count generated by the printer spooler. The format for a printer spooler escape
sequence is

OFFh, type, cbText, text
where
type

identifies the reason a manual intervention is required:

Value Description

1 forms change

2 print whecl change

3 generic printer pause

4 page number overwrite
cbText

is the count of bytes in the following text. The maximum is 12 for types 1 and 2,
and 60 for type 3.

text

is a character string that identifies the chosen form or print wheel, the reason for
the generic printer pause, or the page number.

Queue Management

Traditional spooler queucs are type 1 queues, which require that the Queue Manager
verifies the entries added to the queue. The runtime determination of the printer

queues is achieved with the GetQMStatus operation. GetQMStatus is used to specify

the queue type (in the case of the spooler, type 1) and the number of spooler queues,
along with each queue name and its associated queue handle,

Spooler 3-5

The spooler queues retumned are of the following classes:
+ Scheduling (for example, SPL)

- Status (for example, SpoolerStatus)

« Control (for example, SPLControl)

Scheduling Queue

If an application program is reading through a scheduling queue with the
ReadNextQueueEntry operation (described in Chapter 2, "Queue Manager"), it can
determine if an entry is currently being printed by looking at the serverUserNum field

of the returned Queue Status Block. If the serverUserNum field is OFFFFh, the entry
is waiting to be printcd; otherwise, the entry is currently printing.

Table 3-1 shows the format of a scheduling queue entry.

Status Queue

If an application program is rcading through a status queue with the
RcadNextQueucEntry operation, the only active (valid) printer status entries are
those that are marked. A program can determine which entries arc marked by looking
at the scrverUserNum field of the rcturned Queue Status Block. If the
serverUserNum field is OFFFFFh, the entry is not an active printer.

Table 3-2 shows the format of a status queue entry.

3-6 CTOS Programming Guide, Volume Il

Control Queue
The following operations use the control queue:
« Align Printer
« Cancel Printer
+ Halt Printer
+ Restart Printer

The control queues have a specific queue entry format:

Command byte
Restart Page word
sbWpRestartPage (13) byte

To perform these functions, an AddQueueEntry operation for a specific control queue
is specified, with the desired command entered in the queue entry.

Table 3-3 shows the formt of a control queue entry.

ContigureSpooler Program Example

To remove a printer channel from the spooler’s control, the following operations are
required:

1. This step enables you to determine whether the printer is attached locally.
You can remove a printer channel only if it is attached locally.

Call ConfigureSpooler with the channel specified and null values for all other
parameters. If an erc 702 results (Invalid printer), the printer is under the
spooler’s control. If an erc 33 results (Service not available), the printer is not
attached locally and you will not be able to remove it.

2. If the printer is local, follow this step to remove the printer channel. Call
ReadKeyedQueueEntry on the SpoolerStatus queue with the

Spooler 3-7

specified printer. If an erc O results, the channel is free. If any other error is
reported, a problem exists and the printer channel has not been removed.

SpoolerPassword Program Example

If a print request through the Executive Print command has been issued and the
[Security Mode?] ficld has a Yes value, then the file will be queued waiting for

printing until a SpoolerPassword request is issued. The status queue for this printer
indicates a paused state (1). If the scheduling queue entry shows that a password is
required (fPswdProtect = TRUE), then the entry is expecting a password. The
SpoolerPassword request is then issued to allow printing to continue.

3-8 CTOS Programming Guide, Volume 11

Data Structures

Table 3-1. Spooler Scheduling Queue Entry

Size
Offset Fleld (bytes) Description
0 fDelAftPrt 1 TRUE deletes spooled file after printing
1 sbFileSpec 92 name of the file to be printed
93 sbFormName 13 name of the form to be used
106 sbWheelName 13 name of the print wheel to be used
119 cCopies 2 number of copies of the file to be printed
121 bPrintMode 1 printing mode
122 fAlignForms 1 TRUE uses the forms alignment option
123 {SecurityMode 1 TRUE prints the file in security mode
124 reserved 5
129 sbDocName 92 name of the document being printed
221 sbUserName 31 client's user name
252 reserved 4
256 timeQueued 4 date and time that the print was queued
260 fSupressNewPage 1 TRUE supresses form-feed at start of print
261 fWPPaging 1 TRUE uses WP page escape sequences
262 fSupressBanner 1 TRUE suppresses banner on the notice file
263 fSingleSheet 1 TRUE means printer is manual feed
264 reserved 20
fDelAftPrt

isaflag. TRUE deletes the spooled file after it is printed.

sbFileSpec

is the name of the file to be printed. The first byte of the sb string is the string
length,

sbFormName

is the name of the form to be used. If the length is 0, the standard form will be

used.

Spooler 3-9

sbWheelName

is the name of the print wheel to be used. If the length is 0, the standard print
wheel will be used.

cCopies

is the number of copies of the file that are to be printed.

bPrintMode

is the printing mode. The values are

Mode Description

0 Normal

1 Image

2 Binary
fAlignForms

is a flag. TRUE mecans the forms alignment option will be used.

fSecurityMode
is a flag. TRUE meanns the file will be printed in security mode.

sbDocName

is the name of the document being printed. This is different from sbFileSpec,
which is typically a temporary file in the [!Scr]<Spl> directory.

sbUserName

is the client’s user name.

timeQueued

are the date and time that the print was queued.

3-10 CTOS Programming Guide, Volume II

fSupressNewPage

is a flag. TRUE means the Spooler Manager will not print a form-feed at the
start of the print.

fWPPaging

is a flag. TRUE means the Spooler Manager will use WP page escape sequences
to determine page numbers.

fSupressBanner

is a flag. TRUE means the Spooler Manager will not print a banner on the notice
file.

fSingleSheet

is a flag. TRUE means the printer attached is manual feed.

Spooler 3-11

Table 3-2. Spooler Status Queue Entry

Size .
Offset Field (bytes) Description
0 sbPrinterName 13 name of the printer
13 sbCurrentPage 13 character sequence defining page number
26 reserved 25
51 sbQueueName 51 name of the queue the printer is serving
102 bChannelNum 1 channel used
103 sbConfigFile 79 printer configuration file name
182 fAtServer 1 TRUE if the systen service is at the server
183 bStatus 1 printer status
184 sbSpooledFile 79 name of the currently printing file
263 sbWheelName 13 name of the current print wheel
276 sbFormName 13 name of the current forms
289 sbPauseMessage 61 pause message to be displayed
350 fNeedWheelChange 1 TRUE if a different print wheel is needed
351 {NeedFormsChange 1 TRUE if a different form is needed
352 {ShowPauseMsg 1 TRUE means display the pause message
353 wsNum 2 workstation number
355 reserved 2
357 sbDocName 79 name of the document being printed
436 sbUserName 31 client's name
467 timeStarted 4 date and time that the print was started
sbPrinterName
is the name of the printer.
sbCurrentPage
is the character sequence that defines a page number in a word processor print
file.
sbQueueName

is the name of the queue the printer is serving.

3-12 CTOS Programming Guide, Volume II

bChannelNum

is the channel used. See the CTOS Operating System Concepts Manual for a
description of the channels.

sbConfigFile
is the name of the printer configuration file.

fAtServer

is a flag. TRUE means the system service is located at the server of a cluster.

bStatus

is the printer status. The status values are

Value ‘ Description

0 Idle

1 Paused

2 Printing

3 Offline

4 Down
sbSpooledFile

is the name of the currently printing file.

sbWheelName

is the name of the current print wheel. If the length is 0, the standard print wheel
is being used.

sbFormName

is the name of the current forms. If the length is 0, the standard forms are being
used.

Spooler 3-13

sbPauseMessage
is the pause message to be displayed.
JNeedWheelChange

is a flag. TRUE means a different print wheel is needed.
{
fNeedFormsChange

is a flag. TRUE means a different form is needed.
fShowPauseMsg

isa flag. TRUE means the pause message should be displayed.
wsNum

is the workstation number,
sbDocName

is the name of the document being printed.
sbUserName

is the client’s name.

timeStarted

are the date and time that the print was started.

3-14 CTOS Programming Guide, Volume Il

Table 3-3. Spooler Control Queue Entry

Size
Offset Field (bytes) Description
0 bCommand 1 command to the spooler
1 restartPage 2 restart printing from this page number
3 sbWpRestartPage 13 description of page from which to restart

bCommand

is the command to the spooler. The command values are

Value Description

0 Halt/pause printer

1 Cancel print

2 Restart printer

3 Align forms
restartPage

is the page number from which to restart printing. If this value is 0, the printing
restarts at the beginning of the current page. If this value is OFFFFh, the
printing starts at the next character in the file.

sbWpRestartPage

is the name describing the page from which to restart printing (for example, a
Roman numeral). If the first byte in this entry is 0, this field is ignored.

Spooler 3-15

4

Voice/Data Services

Overview

The Voice/Data Services comprise two system services, the Telephone
Service and the Audio Service. On B25/NGEN workstations, the
Telephone Service provides an interface between application programs and
a Voice Processor Module. On SuperGen Series 5000 workstations, the
Audio Service provides the interface between application programs and
the Video/Voice/Keyboard card (SGV-100), which is a standard
component of a Series 5000 workstation.

All references to B25/NGEN workstations in this chapter include the
following workstation types:

B39/Series 386i
B38/Series 386
B28/Series 286

To use the operations described in this chapter, first use the Install Voice
Service command to install the Telephone Service or Audio Service on
your workstation, as described in the Executive Reference Manual and the
CTOS System Administration Guide. This command automatically installs
the correct Voice/Data system service for your workstation type.

Telephone Service

The Telephone Service, the system service that manages Voice/Data
Services on a B25/NGEN workstation, is an extension of your current
operating system. Application programs use the Telephone Service
request and procedural interfaces to access the Voice Processor hardware
for voice, telephone, and data operations. :

6/91 Voice/Data Services 4—1

Using the Telephone Service, an application program can record and play
back voice messages, manage telephone functions, and transmit data over
a modem. One example of an application using the Telephone Service
would be a computerized system in which a customer telephones the bank,
listens to a recorded message, and then enters digits on the telephone
keypad to complete a series of banking transactions. Other simple
applications include telephone answering machine packages, dialing
programs, and data transfer applications.

Another important component of the Telephone Service is the Telephone
Status monitor program (described below). The Telephone Status monitor
program is a B25/NGEN debugging tool used primarily by programmers.

Audio Service

The Audio Service, the system service that manages Voice/Data Services
on a Series 5000 workstation, is also an extension of your current operating
system. Application programs use the Audio Service request and
procedural interfaces to access the Series 5000 audio hardware.

The Audio Service provides sophisticated voice record and playback
capabilities through use of a high-speed digital signal processor (DSP)
contained in the Series 5000. The Series 5000 audio channel does not have
telephony or modem hardware and does not support any of the data
management features of the Telephone Service. For compatibility within
applications that run on both B25/NGEN and Series 5000 workstations,
the Audio Service also supports the telephone management features of the
Telephone Service used in voice management. Applications such as
electronic mail and word processing programs with voice annotation can
thus run on either type of workstation without modifications to the
software.

Voice Management
(B25/NGEN and Series 5000 Workstations)

The voice management facility of the Telephone and Audio Services is
supported on both B25/NGEN and Series 5000 workstations. This facility
allows an application program to use the analog-to-digital signal conversion
feature of the hardware to encode voice to binary data stored on disk.
This digitized binary data can later be decoded back into an analog signal.

4-2 CTOS Programming Guide, Volume II 6/91

The voice management facility does not support either voice recognition or
speech synthesis (text-to-speech).

Telephone Management (B25/NGEN Workstations Only)

The telephone management facility of the Telephone Service is supported
on B25/NGEN workstations only. This facility allows an application
program to use all the telephone functions of the Voice Processor
hardware, including automatic dialing, placing a call on hold, switching
between calls on different telephone lines, and automatic answering of a
ringing telephone line. '

Telephone Status Monitor Program
(B25/NGEN Workstations Only)

The Telephone Status monitor program provides a useful debugging tool
for software developers on B25/NGEN workstations. The Telephone
Status command allows the programmer to view a simplified picture of the
hardware circuits that are connected when a telephone management
function is performed. The Status Monitor has function keys that allow
the programmer to select which lines to place on hold, which lines to hang
up, and which lines to link for conference calling. As each function is
performed, the screen provides a visual representation of the circuits
connected for the operation.

Data Management (B25/NGEN Workstations Only)

The data management facility of the Telephone Service is supported on
B25/NGEN workstations only. This facility allows an application program
to use the optional internal modem of the Voice Processor Module. Data
transfers can be made from a local workstation or from a server on the
network. User interaction with the modem can be direct, via the
Asynchronous Terminal Emulator (ATE), or transparent, via an

application program such as the Operator or electronic mail. '

6/91 Voice/Data Services 4—3

Audio Management (Series 5000 Workstations Only)

The audio management facility of the Audio Service is supported on Series
5000 workstations only. This facility allows an application program to use
the digital signal processor (DSP) included in the Series 5000 workstation.
The DSP is designed to facilitate extremely fast mathematical operations,
such as those required to digitize voice and reconstruct audio information.

Functional Groups of Operations

The following sections offer a brief description of the Voice/Data Services
operations. See the CTOS Procedural Interface Reference Manual for
complete descriptions of these operations. With the Telephone Service
and the Audio Service, the application and the service must run on the
same workstation, except that data management requests of the Telephone
Service can be routed across the network.

Operations that are fully supported only on a particular workstation type
are designated as "B25/NGEN only” or "Series 5000 only” in the righthand
column.

Voice Management Operations

TsVoiceConnect specifies the connection to make for a subsequent
TsVoicePlaybackFromFile or TsVoiceRecord-
ToFile operation when the fAuroStart flag in the
Voice Control Structure is FALSE (see Table 4-7
for the Voice Control Structure). This call is not
required on Series 5000 workstations.

TsVoicePlaybackFromFile

plays back voice from the specified file (or from
memory) to the output device. On a B25/NGEN
workstation, the output device is the telephone
handset or one of the telephone lines. On a
Series 5000 workstation, the output device is the
base unit speaker, the Series 5000 monitor
speaker, or one of the SGV-100 jacks that is
attached to headphones or an amplifier.

4—4 CTOS Programming Guide, Volume II 6/91

TsVoiceRecordToFile

TsVoiceStop

digitizes voice from the input source to the
specified file. On B25/NGEN workstations, the
input source is the telephone handset or one of
the telephone lines. On Series 5000 workstations,
the input source is the condenser microphone on
the monitor, the jack on the monitor, or the
SGV-100 jack.

terminates the recording or playback of a voice
message.

Telephone Management Operations

Although Series 5000 workstations have no telephony hardware, many of
the operations included in this section are supported on both B25/NGEN
and Series 5000 workstations for compatibility among applications that run
on both types of workstation.

TsConnect

TsDeinstall

TsDial

TsDoFunction

6/91

connects and disconnects the telephone unit and
the telephone lines.

deinstalls the Telephone Service.

causes the dual-tone multi-frequency (DTMF)
encoder to generate specified characters (see
Table 4-1, Dial Characters).

performs functions similar to those available on a
two-line telephone unit, such as selecting a
telephone line, placing it on hold, hanging up,
turning on the speaker phone, and so on. This
function also locks and unlocks the voice
encoder/decoder (CODEC), which allows certain
parts of the hardware and Voice/Data Services to
be reset as well as providing Context Manager
switching. On Series 5000 workstations, this
function also controls certain aspects of using the
DSP and the audio input sources and output
locations.

Voice/Data Services 4-5

TsGetStatus

TsHold

returns the status of the Voice Processor Module
or Audio Processor Module and of all users (see
Table 4-4, Telephone Status Structure).

places the specified telephone line on hold.

TsLoadCallProgressTones

TsOffHook
TsOnHook

TsQueryConfigParams

TsReadTouchTone

TsRing

TsSetConfigParams

TsVersion

sets the call progress tones to be used for a
subsequent TsDial request. This call is necessary
only when the call progress tone values are to be
changed. (B25/NGEN workstations only)

places the specified telephone line offhook.

places the specified telephone line onhook (that
is, hangs it up).

returns the Telephone Service configuration file
name and the current configuration information
(see Table 4-3, Telephone Service Configuration
Block). (B25/NGEN workstations only)

reads DTMF characters from one of the
telephone lines or from the telephone unit.
(B25/NGEN workstations only)

turns on (or off) the video monitor ringing. The
ringing is turned on by specifying a video monitor
ring frequency between 1 and 255. Video monitor
ringing is turned off by specifying a frequency of
0. This operation allows an application and user
to select a ring frequency interactively.
(B25/NGEN workstations only)

sets configuration information for the Telephone
Service (see Table 4-3, Telephone Service
Configuration Block). (B25/NGEN workstations
only)

returns the version of the Telephone Service or
the Audio Service (depending on which service is
installed).

4—6 CTOS Programming Guide, Volume Il 6/91

Data Management Operations

TsDataChangeParams

TsDataCheckpoint

. TsDataCloseLine

TsDataOpenlLine

TsDataRead

TsDataRetreiveParams

TsDataUnAcceptCall

TsDataWrite

allows a program to change the parity, line
control, and other parameters for an open line.
(B25/NGEN workstations only)

causes a data line to be checkpointed. The
request returns only after all TsDataWrite
requests have been returned and after the modem
has transmitted the last character.

(B25/NGEN workstations only)

closes a data line and terminates the call.
(B25/NGEN workstations only)

starts a data session using the modem.
(B25/NGEN workstations only)

moves a block of received data from the modem
to the specified user memory.
(B25/NGEN workstations only)

returns the parameters of the specified line.
(B25/NGEN workstations only)

allows a program to retrieve a TsDataOpenLine
request before the timeout expires.
(B25/NGEN workstations only)

writes a block of data to the modem.
(B25/NGEN workstations only)

Audio Management Operations

AsGetVolume

AsSetVolume

6/91

returns the current volume setting.
(Series 5000 workstations only)

sets the volume level. (Series 5000 workstations
only)

Voice/Data Services 4—7

Hardware Features of the B25/NGEN Workstation

This section describes the major hardware features of the B25/NGEN
workstation that pertain to the Voice/Data Services.

Voice Features

Important hardware features of the B25/NGEN workstation that relate to
voice management are the CODEC and the voice amplifier, described in
the following sections.

CODEC

A speech analyzer/synthesizer, known as the CODEC (encoder/decoder)
converts analog (voice) signals to digital (binary) signals, and back again.
This feature allows your workstation to store and retrieve voice messages
as file data. The answering machine functions of some application
software use the CODEC.

The CODEC is not shareable; that is, it is not possible to play back or
record on one telephone line while playing back or recording on the other
line.

Voice Amplifier

The Voice Processor Module includes a voice amplifier that can be used
when signal strength is low (such as from a speaker phone) to improve
recording quality.

Telephone Features

This section provides a brief overview of the B25/NGEN Voice Processor
hardware features used by the Telephone Service. These features include
the telephone lines, DTMF tone generator and receiver, and call progress
tone detector. For more detailed information, see the Voice Processor
Manual.

4—-8 CTOS Programming Guide, Volume II 6/91

Two Telephone Lines

The Voice Processor Module supports two telephone lines. A standard
telephone unit (see Figure 4-1) is connected to the "PHONE" connector on
the rear of the Voice Processor Module. Separate telephone cables
connect each of the two Voice Processor telephone lines to the telephone
wall jacks, as shown in Figure 4-2. Although it is possible to have two
telephone lines, only one is required.

The Voice Processor Module enhances operation of the telephone unit but
does not replace it. If your workstation is turned off, the telephone
reverts to normal operation, and defaults to line 1 if you have two
telephone lines.

DTMF Tone Generator and Receiver

The dual-tone multi-frequency (DTMF) touch-tone autodialer is a standard
feature of the Voice Processor Module. The DTMF tone generator
produces all sixteen DTMF digits (0 through 9, *, #, and A through D)
under software control and is normally used in autodial applications. The
DTMF tone generator can be programmed to transmit various key
sequences to activate specific features of private branch exchange (PBX)
systems. It can also produce single tones. See the section below on
"Dialing” for more information on how DTMF tones are generated.

Handset

Switch
Hook Touch Pad

Line
Connector
to Voice

Processor

2393.4-1
Figure 4-1. Parts of the Telephone Unit

6/91 Voice/Data Services 4—9

The DTMEF tone receiver decodes incoming DTMF tones as digits for use
by application programs. For example, numeric information can be input
using the telephone unit touch pad and used by programs supporting voice
mail or voice response capabilities. The Voice Response System program
example later in this chapter uses this hardware feature.

Line 2

Figure 4-2. Voice Processor Module Connections

Call Progress Tone Detector (CPTD)

The call progress tone detector (CPTD) consists of analog circuitry that, in
conjunction with the Telephone Service, detects a busy signal, dial tone,
reorder tone (fast busy), and answer (ringback) tone.

4-10 CTOS Programming Guide, Volume II 6/91

Data Features

Important hardware features of the B25/NGEN workstation that relate to
data management are the modem and the analog crosspoint switch array,
described in the following sections.

Modem

Some models of the Voice Processor Module include an internal modem.
The modem can be used in both originate and answer modes and supports
full-duplex transmission (asynchronous mode) over ordinary two-wire
telephone circuits. This modem is compatible with the Western Electric
212A series at 1200 baud, and the Bell 103/113 series at 300 baud.

Analog Crosspoint Switch Array

All Voice Processor devices are connected to an analog crosspoint switch
array. Under software control, this switch array allows either telephone
line to be connected to the telephone unit, the modem, the CODEC, the
DTMF generator, or the DTMF decoder. See also the Telephone Status
command, described later in this chapter, for a graphic representation of
the analog crosspoint switch array.

Hardware Features of the Series 5000 Workstation

The audio portion of the Series 5000 workstation has four major
components (see Figure 4-3):

e digital signal processor (DSP) (Texas Instruments TMS 320C10)
¢ 8K bytes of static RAM (SRAM)

« CODEC (TCM 29C13)

¢ two audio jacks, one for input and one for output

This portion of a Series 5000 workstation contains two I/O spaces: one on
the CPU, which controls the analog I/O switches, and one on the DSP,
which controls the audio channel, setup of the CODEC and serial port,
and the interrupt line to the CPU.

6/91 ' Voice/Data Services 4—11

The DSP can also communicate with the CPU through the DSP
dual-ported memory. The DSP memory appears as 8K bytes on the CPU
side. On the DSP side, it appears as 4K words. Code and data space are
separate (data space on the DSP is 144 words).

SuperGen <;:‘J>M Voice _<::> DSP CODEC
CPU Data
8K | Buffers

(dual rroCT T T
port)

(@]
C
~—
©
<
N
N\

Figure 4-3. Block Diagram of Audio Portion of the
Series 5000 Workstation

Digital Signal Processor (DSP)

The audio portion of the Series 5000 workstation contains a 20MHz
RISC-based controller that can perform a 16-by-16-bit multiply in one
clock cycle. This DSP performs the high-speed numeric computations
required by signal processing applications such as voice recording and
compression. The DSP is 16 bits wide and uses Harvard architecture (data
and code space are separate).

CODEC
The CODEC is a single-chip pulse code modulated encoder/decoder and

line filter. It has a 64 Kbit per second sampling rate and uses the mu-Law
compression technique. The CODEC provides an analog-to-digital

4—12 CTOS Programming Guide, Volume II 6/91

converter on the input side, and a digital-to-analog converter on the output
side. On the input side, for example, it digitizes voice data and sends it to
the DSP. The DSP then compresses the data and buffers it into its code
space, where it becomes available to the Audio Service, which can write it
to memory as a file. :

Volume Control

The Series 5000 workstation includes an external digital volume control on
the monitor. A programmatic interface to control volume is also
provided. Through the AsGetVolume and AsSetVolume requests, volume
can be incremented, decremented, or set to an arbitrary level.

Input/Output Switches

Audio input and output can come from one of several different sources on
a Series 5000 workstation. The Series 5000 monitor has the following
sources:

e a built-in condenser microphone (input)

e a microphone jack (input)

e a built-in speaker (output)

e a headset jack (output)

In addition, the Series 5000 SGV-100 cartridge has the following:
e a microphone jack (input)

e a headset jack (output)

The input sources are handled hierarchically, as follows. If a microphone
is plugged into the monitor jack, the built-in condenser microphone on the
monitor is turned off. If a microphone is plugged into the jack on the
SGV-100 cartridge, all input from the monitor is turned off.

Similarly, when a headset is inserted into the output jack on the Series
5000 monitor, the built-in speaker in the monitor is turned off. If a
headset jack is inserted into the output jack on the SGV-100 cartridge, no
output goes to the built-in monitor speaker or monitor output jack.

6/91 Voice/Data Services 4—13

The volume keys on the Series 5000 base unit work only if the Audio
Service is installed. If the service is not installed, all beeps are
full-volume. In addition, the microphone inputs can be turned on only if
the Audio Service is installed.

Mike Jaok
IKe Jac
Heodset Jack
AUDEN _copEcPD
LOOPETJM :&Dﬂ;ﬂ@’\m
CODEC|H SGV-100
Vx—-103 Headset Jack
Mike Jack . "
Diagnostic —{ED[S ()
Loopback
SPEAKER
809h.0
AUDIO—
" . 808h.0
Audio Summing Line

from SuperGen b
(perGen bus) 512.4-4

Figure 4-4. Input/Output Switches on the
Series 5000 Workstation

Software Concepts

The following sections describe key software concepts as they relate to
voice recording, telephony, and data.

Voice Recording

The voice interface is a set of requests that allow application programs to
use the CODEC for voice annotation of files, for voice messaging, or for
use with a software answering machine. The following paragraphs describe
key concepts involved in writing programs that use the voice interface.
B25/NGEN and Series 5000 voice files are not compatible.

4—14 CTOS Programming Guide, Volume II 6/91

Recording Rates

On B25/NGEN workstations, the CODEC operates at either a 6KHz or an
8KHz sampling rate, generating digitized voice information at either
24Kbps (for 6KHz) or 32 Kbps (for 8KHz). Use the 8KIIz rate for
high-quality voice transmission. Use the 6KHz rate for applications where
storage and transmission costs are a greater concern than voice quality.
The f6KH?z flag in the Voice Control Structure (see Table 4-7) specifies the
recording rate.

On Series 5000 workstations, only 8KHz recording/playback is supported.

Pause Compression (B25/NGEN Workstations Only)

Pause compression can be used to reduce the size of voice files. During
recording, when pause compression is enabled, low threshold sound is
replaced with pure silence for a particular period. The indication of
silence is recorded as escape sequences 7Fh—0F7h, as described in detail
in the following paragraph.

B25/NGEN workstations support pause compression on both record and
playback. Series 5000 workstations do not support pause compression.

During Recording . To enable pause compression, set the fNoPause and
fRawData flags in the Voice Control Structure (Table 4-7) to FALSE.
When these flags are set to FALSE and the sound level falls below a
certain threshold, the byte 7Fh replaces the current sample to mark the
beginning of the low sound period. (The actual CODEC data is still
recorded during this low-sound period.) When the voice level rises above
the minimum threshold, the escape character OF7h is added to the data
stream to terminate the low-sound sequence.

When pause compression is enabled as described above, the Telephone
Service interprets the escape sequences before the file is written to disk.
When it encounters a 7F escape byte, it removes all the data bytes up to
the F7 escape byte and replaces them with a count of the bytes read.

Playback of Compressed Files. During playback of compressed files, set
the fRawData flag to FALSE. (The fNoPause flag has no effect during
playback.) The pause compression escape sequences are then expanded to
their original length when the voice file is played back.

6/91 Voice/Data Services 4—15

Note that if fRawData is set to TRUE during playback, pause compression
escape sequences in the voice file (if any) will not be expanded; they are
simply “played.” This may result in slight anomalies in the sound output,
most notably the running together of words.

Advantages and Disadvantages. Use of pause compression produces
smaller files, but the voice file, when played back, may sound somewhat
choppy because periods of low sound have been compressed and then
expanded. Noncompressed recording of voice files results in slightly
higher quality voice recordings, at the expense of disk space
(approximately one-third more).

Amplification

When a voice message is being recorded on a B25/NGEN workstation, you
can specify the use of an alternate connection that automatically increases
the volume. To specify this amplified connection, set the fAltConnection
flag in the Voice Control Structure to TRUE. (See Table 4-7, Voice
Control Structure.) There is no way to amplify playback on a B25/NGEN
workstation.

On a Series 5000 workstation, there is no way to amplify recording. You
can, however, amplify the playback programmatically with the
AsSetVolume operation, or manually with the volume buttons on . the
Series 5000 monitor.

Memory and Disk Files

The disk requirement without pause compression is 4000 bytes/second at
8KHz and 3000 bytes/second at 6KHz. With pause compression on
B25/NGEN workstations, the disk requirement can be about two-thirds of
that amount, depending on the speaker. The following table shows these
disk requirement values:

4—16 CTOS Programming Guide, Volume II 6/91

B25/NGEN B25/NGEN Series 5000
8KHz/6KHz 8KHz/6KHz ADPCM/PCM
Pause Compression No Yes No
Sampling Rate 8KHz / 6KHz 8KHz / 6KHz 8KHz only
Data Rate 4/3 27172 4/8
Bytes/Second
(in thousands)
Bytes/Minute 240 / 180 "160 / "120 240 / 480
(in thousands)
Minutes/Megabyte 4.37/5.83 "6.55/78.74 1.09 / 2.19

Memory Usage

When recording or playing back voice files, the application program must
supply a work area for the Telephone or Audio Service that is 13,312
bytes, or larger (in 1024-byte increments). The work area is divided into
an 8192-byte data queue used by the hardware, and the balance (a
minimum of 5120 bytes) is used for two file system I/O buffers.

Additional memory improves performance. The disk performance is
largely determined by disk seek time, which occurs once per 1/0
regardless of the number of bytes transferred. The larger the buffer sizes,
the more bytes transferred per I/O, and the fewer disk seeks needed.
Performance improves with more memory because the system has more
time in which to process the data. (Although the average time to process
the data remains the same, a longer time interval allows a more uneven
distribution of CPU and disk usage to occur.)

Structure of a Voice File

A voice file is divided into 512-byte sectors. The first 512 bytes of the
voice file are used for the Voice File Header (Table 4-5), which contains
information about how the voice message was recorded, the size of the
file, when the recording was made, and over which telephone line. Many
separate voice messages can be put into one voice file. See the section
below, "Multiple Voice Messages in One File.”

6/91 Voice/Data Services 4—17

Within each 512-byte record after the Voice File Header, the first six bytes
(0 through 5) are used for information about the record. Bytes 6 through
511 of each record are used for the voice information. (Table 4-6 shows
the structure of a Voice File Record.) The first four bytes of each record
contain the accumulated sample number of the first sample in that record.
The sample number can be thought of as the raw count of bytes of voice
information in the file. In the Voice File Header (Table 4-5),
qSampleStart and qSampleMax give the starting and ending sample
numbers for a particular voice message in the file. A logical file address
(Ifa), in contrast, refers to an absolute byte position within a file. IfaStart
and IfaMax specify the absolute byte position of the beginning and end of a
particular message in the voice file. Because of pause compression, the
difference between IfaMax and IfaStart can be smaller than the difference
between qSampleMax and qSampleStart for a particular voice message.

The Voice File Header is the same for the Telephone Service and the
Audio Service, except for the version field. A value of 1 in the version
field indicates Adaptive Differential Pulse Code Modulation (ADPCM),
which is the only form of compression used on B25/NGEN workstations.
On Series 5000 workstations, a value of 2 in the version field indicates
Series 5000 Adaptive Pulse Code Modulation (APCM), and a value of 3
indicates Series 5000 Pulse Code Modulation (PCM), a second form of
compression available with the Audio Service only (see the following
section). '

Pulse Code Modulation (PCM) and
Adaptive Differential Pulse Code Modulation (ADPCM)

Adaptive Differential Pulse Code Modulation (ADPCM) is a general
method of moderately compressing and expanding digitized voice
information. B25/NGEN workstations use ADPCM for recording and
playback.

Series 5000 workstations offer a choice between ADPCM and Pulse Code
Modulation (PCM), which produces voice files of higher quality than those
produced with ADPCM. The tradeoff is that PCM files yield half the
compression of ADPCM files. B25/NGEN and Series 5000 ADPCM files
are not compatible.

To use PCM on a Series 5000 workstation, set the fPCM flag in the Voice
Control Structure to TRUE. In addition, set the fPCM flag in the Voice
File Header to TRUE.

4—18 CTOS Programming Guide, Volume II 6/91

Voice Control Structure

The Voice Control Structure (Table 4-7) contains information such as the
file handle of the voice file, starting and ending logical file addresses, and
starting and ending sample numbers. The TsVoiceRecordToFile and
TsVoicePlaybackFromFile operations both require the caller to pass a
pointer to this structure.

Typical Sequence for Record/Playback
The typical sequence for voice recording to or playing back from a file is
1. Open the voice file.

2. Allocate a 13,312-byte or larger work area in memory for use
of the Telephone Service or Audio Service.

3. Set up the Voice Control Structure. When playing back, use
information from the voice file’s Voice File Header(s).

4. Call TsVoiceRecordToFile or TsVoicePlaybackFromFile.

Multiple Voice Messages in One File

Up to 65,536 messages can be contained in one voice file. A Voice File
Header (Table 4-5) contains information for each message on recording
rate, starting and ending Ifa, and so on. ‘Each Voice File Header can
contain information for 15 voice messages. In the first Voice File Header,
the message field should contain the count of messages. In all subsequent
Voice File Header(s), if any, this field is ignored.

6/91 ‘ Voice/Data Services 4—19

Voice Playback from Memory

You can play back a voice message from a disk file or from memory. To
play back from memory, call TsVoicePlayBackFromFile with the following
parameters:

. pWorkArea points to a memory area where the first 8192
bytes are reserved, and the following 0 to 56,320 bytes contain
0 to 110 voice file records (512 bytes each).

. sWorkArea is the size of the above memory area (8192 + size
of voice information)

. The following fields of the Voice Control Structure (Table 4-7)
should be set as follows:

fh OFFFFh
IfaStart 0
IfaMax = Size of the voice information, or

(sWorkArea — 8192)

qSampleStart = qSampleStart value in the first Voice
File Record

See Listing 4-3, "Voice Memory Append,” for an example of voice
playback from memory.

Telephony (B25/NGEN Workstations only)

The telephony interface allows an application program to control directly
the functions of the Voice Processor hardware, including the two
telephone lines, telephone unit, DTMF generator, DTMF decoder, CPTD,
CODEC, and optional modem. This, in effect, allows an application
program full access to the standard two-line telephone unit and the two
telephone lines. The following paragraphs describe key concepts involved
in writing programs that use the telephony interface.

4-20 CTOS Programming Guide, Volume II 6/91

Voice and Data Lines

Both telephone lines can be used to send either voice (analog information)
or data (digital information), but not both at the same time. If your
system has two telephone lines, it is conventional to use line 1 for voice
and line 2 for data, but this is not a requirement. If you have only one
telephone line, that line can be used for either voice or data, but not for
both at the same time.

Telephone Unit vs. Telephone Line

When you remove a standard telephone handset from the cradle, the
telephone line is said to be offhook. The term offhook refers to this active
state of the telephone, when it is connected to the PBX or telephone
company. When you replace the telephone handset, the switch hook on
the telephone unit is depressed, and the telephone line is said to be
onhook. '

When a telephone unit is connected to the Voice Processor Module, there
is a distinction between the telephone handset being offhook and the
telephone line being offhook. The TsOnHook and TsOffHook operations
place the telephone line onhook and offhook, even when the telephone
handset remains in place. Similarly, the TsDoFunction operation instructs
the Telephone Service to perform standard telephone unit functions, such
as picking up lines, placing them on hold, and hanging up. In such cases,
even though the telephone handset is not physically offhook, the telephone
line can be offhook.

Hold

Placing the currently active telephone line on hold disconnects the
telephone unit from the telephone line, but leaves the telephone line
offhook. Both TsDoFunction and TsHold can be used to place the
selected line on hold.

6/91 Voice/Data Services 4-21

Dialing

Telephone numbers can be dialed directly from the telephone unit attached
to the Voice Processor, from an application program such as the Operator
or Telephone Status command, or through the programmatic call TsDial.
Spaces, hyphens, and parentheses are ignored and can be omitted.

Some numbers need special characters for the Telephone Service to
complete the call. For example, some PBXs require a pause after
requesting an outside line and before dialing the outside number, as
follows:

979412233

Table 4-1 includes a complete list of special characters used with the
Telephone Service.

TsDial connects the DTMF tone generator to the specified telephone line
and dials a telephone number. (See Listing 4-1, "Dialing,” later in this
chapter.) TsReadTouchTone is used to read DTMF (touch-tone)
characters from a telephone line or from the telephone unit.

4-22 CTOS Programming Guide, Volume II 6/91

Table 4-1. Dial Characters

Character

Function

0-9, A-Y, a-y, ", #

IA, 1B, IC, ID

%

$t/

spaces (l)y) /

These characters are the dial or DTMF characters normally
found on the touch pad or rotary switch. Q, g, Z, and z are
not mapped.

These are the DTMF characters A through D, which do not
normally appear on the touch pad.

Switch to pulse dialing.

Switch to tone dialing.

Flash for the default flash time.

Flash for x units of 100 ms (x is a byte).
Wait for a dial tone.

Wait for any tone.

Indicates busy/fast busy condition on line.

Indicates ringing, busy, or answered. This character can
be configured (see "Call Progress Tone Detection”).

Pause for the default pause time.
Pause for x units of 100 ms.

Generate part of a dual-tone multi-frequency (DTMF) tone t
for time / (units of 10 ms). The primary use of this
sequence is to generate a single tone (for use in answering
machines, for example). See also the section below on
"Generating DTMF Tones.”

These characters are ignored (space is ASCII 20h).
Flash for the default flash time.

Wait for a data carrier signal.

Voice/Data Services 4—23

Generating DTMF Tones

The tone generated by the character sequence $#/ described in Table 4-1 is
derived from a combination of the two frequencies specified by the upper
(column) and lower (row) 4-bit nibbles of f. The valid values of the
nibble are 0Eh, O0Dh, 0Bh, and 07h. If both upper and lower nibbles are
valid, then the tone generated will be one of the 16 DTMF tones as
specified in the following table:

OEOh 0DOh 0BOh 070k

OEh 1 2 3

0Dh 4 5 6 B
0Bh 7 8 9 C
07h * 0 # D

For example, a value of OE7h will generate the tone for *. If only one of
the nibbles is valid (such as 07h or OEOh), then a single tone is generated.
If neither nibble is valid, then no tone is generated.

Internationalized Call Progress Tone Detection

When the Telephone Service is initialized, it first looks for the standard
call progress tones configuration file [Sys]<Sys>TmCptr.cfg. If all of the
required entries are present and valid, they are loaded into the Telephone
Service. If this file is not present, or if it cannot be opened by the
Telephone Service or is incomplete, then the default values for the
United States are used.

The fixed call progress detection system is turned on by inserting a
question mark (?) in the dial string (see Table 4-1). The internationalized
system is turned on by the vertical bar (|). A brief example of how to use
the internationalized system is shown below.

4-24 CTOS Programming Guide, Volume II 6/91

To use a nondefault call progress tones configuration file, first create the

file. Then call TsLoadCallProgressTones to load the new call progress
tones into the Telephone Service.

The TmCptr.cfg file should contain the following entries:

:RingTonelHigh:
:RingTonelLow:
:RingTone2High:
:RingTone2Low:
:RingToneTolerance:
:nRingsReturnNoAnswer:
:BusyTonelHigh:
:BusyTonelLow:
BusyTone2High:
BusyTone2Low:
:BusyToneTolerance:
:CptrTimeout:

The values for the RingTone and BusyTone entries are integers, specified
in milliseconds. The RingTones and BusyTones are defined by either one
or two high/low cycles. For instance, in the United States, the ringing

signal has a cycle of six seconds: two seconds on and four seconds off.
Thus the entries would be

:RingTonelHigh:2000
:RingTonellL.ow:4000
:RingTone2High:0
:RingTone2Low:0

In New Zealand, however, the ring tone has two cycles: .4 seconds on, .2
seconds off; .4 seconds on, 2 seconds off. Its entries are:

:RingTonelHigh: 400
:RingTonelLow: 200
:RingTone2High: 400
:RingTone2Low: 2000

The :RingToneTolerance: and :BusyToneTolerance: entries are specified as

percentages. These values indicate how much the duration of the cycle
can vary from what was specified.

Ten percent tolerance is usually
adequate for most telephone networks.

6/91 Voice/Data Services 4—25

The :nRingsReturnNoAnswer: field is used to return the TsDial request
when the specified number of rings have been detected. Although this
field can be set to any value, it should be at least 4 or 5 to allow the

called party to reach the telephone.

The :CptrTimeout: field specifies the maximum -number of seconds to

perform nationalized call progress tone detection.

Make sure that this

field is greater than the cycle of the longest call progress tone multiplied

by the value for :nRingsReturnNoAnswer:.
Default values for the United States are

:RingTonelHigh:2000
:RingTonellL.ow:4000
:RingTone2High:0
:RingTone2Low:0
:RingToneTolerance:10
:nRingsReturnNoAnswer:5
:BusyTonelHigh:500
:BusyTonelLow:500
:BusyTone2High:0
:BusyTone2Low:0
:BusyToneTolerance:10
:CptrTimeout:30

Examples of values used for other countries are

Germany France Spain
RingTonelHigh 1000 1660 1500
RingTonelLow 4000 3330 3000
BusyTonelHigh 500 500 200
BusyTonelLow 500 500 200

4-26 CTOS Programming Guide, Volume II

Japan
1000

2000
500

500

6/91

Sample Program Using
Internationalized Call Progress Tone Detection System

/*
* Assume:
Filename is "[Sys]<Sys>TmCptr.cfg," or some other name
such as "[Sys]<Sys>TmCptr.cfg=XYZ" where XYZ is the
abbreviation for a country

* DialString is "7973957186]"

*/

#define lercTsTimeOut 11206
#define lercTsCptrFileNotFound 11214
#define lercTsCptrFileIncomplete 11215
#define lercTsCptrBusy 11216
#define lercTsCptrUnknownTone 11217
#define lercTsCptrAnswered 11218
#define lercTsDialNoAnswer 11278
/*

* Load the customized call progress file.
* This request will return either:
* ercOK
* lercTsCptrFileNotFound or
* lercTsCptrFileIncomplete
*/
erc = TsLoadCallProgressTones (iVpModule,
Filename.pString, Filename.cbString);

/*
* Take the telephone line off hook
*/
erc = TsDoFunction (iVpModule, iLine);
erc = TsDial (iVpModule, iLine, DialString.pString,

DialString.cbString, cErrorTimeout, &wStatus));

6/91 Voice/Data Services 4-27

/*
* The ercs returned by TsDial include:
* lercTsTimeOut
* This erc is returned when the CptrTimeout variable
* (in seconds) is reached.
* lercTsCptrBusy
The TsDial call returns immediately when the busy
signal is detected.
lercTsCptrUnknownTone
A tone of length not known to the system has been
detected. This erc may mean that additional tuning
of the values loaded with the
TsLoadCallProgressTones request is needed. It may
also mean that the called party has answered the
phone. The frequencies and cadence of a person
- saying "Hello" may be beyond the scope of the
signal processing code.
lercTsCptrAnswered
This erc is returned when the ringing signal has
been detected, and then it has stopped.
lercTsDialNoAnswer
This erc is returned when the line has rung the
amount of times specified in the
nRingsReturnNoAnswer field of the call progress
tones confiquration file.

* 0% % % % % % F % ¥ R R % X % ¥ ¥ X *

* .

* Based on the erc returned, the application either

* plays the outgoing message or begins the next outbound
* call.

*/

Data (B25/NGEN Workstations Only)

The data interface allows application programs to use the optional modem
in the Voice Processor Module available on B25/NGEN workstations.
This modem allows the workstation and another computer or terminal with
a compatible modem to transfer data over a telephone line. Either
telephone line can be used to transmit data. Listing 4-4 in the "Program
Examples” section is an example of a data call.

4-28 CTOS Programming Guide, Volume IT 6/91

Starting a Data Call

A data line is initiated with TsDataOpenLine. Data is transferred with
either TsDataRead or TsDataWrite. A line is closed with TsDataClose.
TsDataCheckpoint is used to checkpoint the data, allowing a program to
guarantee transmission of all data. TsDataChangeParams and
TsDataRetreiveParams are used to modify or examine control parameters
such as parity or line control. TsDataUnacceptCall is used to retrieve a
TsDataOpenLine request that is waiting to answer an incoming call.

The TsDataOpenLine service returns a handle that is used by subsequent
data operations.

Use of the modem by a system service running under a single partition
version of CTOS requires that the fLL flag in the Data Control Structure
(Table 4-8) be set to TRUE. In all other cases, fLL should be FALSE.

Converting a Voice Call to a Data Call

An existing voice call can be converted to a data call. To do so, call
TsDataOpenLine and set openMode in the Data Control Structure (Table
4-8) to 0. In this case, the specified telephone line must be offhook. The
modem is connected to it, and the telephone unit and/or CODEC are
disconnected if necessary. The fOriginate flag can be set to TRUE or
FALSE, depending on which modem (remote or local) acts as originator.
One modem must be the originator, and one must be the answerer.

Accepting a Data Call

A data call is accepted by using the TsDataOpenLine service and setting
openMode in the Data Control Structure to 1 and the fOriginate flag to
FALSE. When the specified telephone line rings, the line is placed
offhook and connected to the modem.

6/91 Voice/Data Services 4—29

Originating a Data Call

A data call is originated by using the TsDataOpenLine service, setting
openMode to 2 and the fOriginate flag to TRUE. The telephone line must
be onhook. It is then placed offhook and a number is dialed. The
number to be dialed can contain special characters, as described in Table
4-1. Unless the fNoWaitForDialTone flag in the Data Control Structure is
set to TRUE (Table 4-8), the Telephone Service will wait for a dial tone
before dialing.

Reading and Writing Data

Most applications use the Voice Processor modem asynchronously to read
and write data at the same time. Asynchronous processing is
accomplished in one of two ways:

. By having two processes in the application that each use the
procedural interface to TsDataRead and TsDataWrite, or

. By having one process that issues TsDataRead and
TsDataWrite requests with the Request kernel primitive, and
then waits for responses to the TsDataRead and TsDataWrite
requests with the Wait kernel primitive.

Terminating a Data Call

A data call is terminated when a TsDataClose occurs, when the program
using the modem terminates, or when a nonrecoverable error occurs. The
following errors are recoverable:

11205 Invalid handle (all)

11260 Duplicate request (TsDataCheckpoint)

11287 Data overrun (TsDataRead)

11288 Bad parity (TsDataRead)

11289 Data timeout (TsDataRead, TsDataWrite, or
TsDataCheckpoint)

11290 End of block character (TsDataRead)

4-30 CTOS Programming Guide, Volume II 6/91

If a call is terminated due to a nonrecoverable error, subsequent
operations using the same line handle will be returned with the terminating
error code (until a TsDataCloseLine occurs). A TsDataCloseLine must be
issued, or the application program terminated, before the modem can be
used again.

Telephone Status Debugging Tool

Use the Telephone Status command to verify the proper operation of
Voice/Data Services or to debug programs that use the Voice Processor
Module hardware. This command is available on B25/NGEN workstations
only. The Telephone Status command provides a simplified visual image
of the hardware circuits that are connected when a telephone management
function is performed.

This command is implemented with the run file TmStatus.run, command
case TS.

Command Form

‘Telephone Status
[Module number]

Parameter Field
[Module number]
Default: 1

If your workstation has more than one Voice Processor Module, enter
the appropriate module number. The Voice Processor Module closest
to the CPU is 1. The second Voice Processor Module is 2, and so on.

Operation

After you fill in the command form and press Go, the screen will appear
as shown in Figure 4-5.

6/91 Voice/Data Services 4—31

Telephone Status x2.2-2/13-14:24

i s Lineg on hoak

: R PP P

P T y

U IO SO SO Mod i

Posdomd ot Ly oo Modem !

| R B '

oo . :

ISR AT I R L, - Dialer ¢

i i ! $ (
[A

bresd onld - Detector !

- !

-+ Encoder !

1)

i

- Decoder !

{

)

Ponitor] Link]] Dinf - B Errar | DiolIhany U

Figure 4-5. Telephone Status Command Screen

The upper righthand corner of the screen shows the three lines that
represent the telephone unit connection and the two external telephone
lines attached to the plug-in jacks on the back of the Voice Processor
Module. (See the Voice Processor Manual for more information about
connections to the Voice Processor Module.)

By using the soft function keys shown along the bottom of the screen, you
can perform several telephone functions and watch a representation of the
connections being made inside the Voice Processor Module. As circuits
are completed and functions performed, lines on the screen light up to
show a map of the internal circuitry of the module.

4-32 CTOS Programming Guide, Volume Il 6/91

Telephone Status x2.2-2/13~14:24

Phone of f hook

momann SR PN o l—'. Line; off hook

omevene Line, on hook

{
] -9
ool -+ Modem
[
oo .
R e L, - Dialer
i)
[S
oedeid vt Ly oo Detector
Ly
H 3
[O ¢
[IRVRUY RN IR)
[l LT RE Ls Encoder !
S T T)
4 HE 4
$eeg it st Lg oo Decoder !
P (

Hold RMonitaoel Link o]0] Dtnt W Error) Dial JHang U

Figure 4-6. Telephone Status Screen with Telephone Offhook

Lines JO through J3

Lines JO and J1 are the connecting lines between telephone lines 1 and 2
and other Voice Processor circuits, such as the connection for the
telephone unit. They are lit when incoming calls pass through the internal
hardware to make a connection with the telephone, as shown in Figure
4-6. Line JO corresponds to telephone line 1, and Line J1 corresponds to
telephone line 2.

Lines J2 and J3 are auxiliary lines that act as jumpers to facilitate internal
hardware switching. Telephone calls to the modem, dialer, or CODEC,
for example, are connected to lines J2 and J3. These lines also light up to
show you how the internal switching takes place.

6/91 Voice/Data Services 4—33

Lines LO through L7

The functions of lines LO through L7 are summarized below.

Line Number Function

LO (Telephone Unit)

L1 Modem
L2 Dialer
L3 Detector

L4 (Telephone Unit)

L5 Encoder

L6 Decoder

L7 (Telephone Unit)

Description

Is a straight-through connection to the
telephone unit, without any modulation of
the signal.

Is the connection between the telephone
lines and the optional modem.

Is the connection from the DTMF
touch-tone dialer to the telephone lines
and/or telephone unit.

Is the connection to the detector, which
senses activity on the incoming and
outgoing lines, such as busy signals and
dial tones.

Is a comnnection that amplifies voice
signals to and from the telephone unit for
improved clarity.

Is the connection to the encoder, which
converts analog (voice) signals to digital
(binary) signals so that the workstation
can process voice messages as file data.

Is the connection to the decoder, which
converts digital (binary) signals to analog
(voice) signals.

Is a connection to the telephone unit that
attenuates the high-volume DTMF dialing
signals generated inside the module.

4-34 CTOS Programming Guide, Volume II : 6/91

Status Monitor Function Keys

The functions performed by the Telephone Status function keys are
summarized below:

Key
F1

F2

F4

F5

F8

F9

F10

6/91

Label

Line 1
Line 2

Hold

Monitor

Link

DTMF

Error

Dial

Hang up

Explanation

Makes the connection between the
telephone unit and telephone line 1.

Makes the connection between the
telephone unit and telephone line 2.

Places the currently active telephone line
on hold. Pressing F1 or F2 takes the
telephone line off hold (if it is currently
on hold).

Allows the screening of incoming calls
(designed for use with an application
software’s answering machine function).

Allows conference calling by connecting
the telephone unit, telephone line 1, and
telephone line 2.

Toggles on/off the reading of touch-tone
characters. When the DTMF characters
are detected, they are displayed on the
screen.

Displays the request block of the most
recent request that the Telephone Service
returned with an error.

Allows you to type a number on the
keyboard and then dial it by pressing F9.
(This can replace, but will not obstruct,
dialing from the telephone unit.)

Disconnects the telephone line from the
telephone unit and hangs it up.

Voice/Data Services 4-35

Program Examples

Listing 4-1: Dialing

The following program uses the telephony features of the Telephone
Service and Voice Processor Module to dial a telephone number. This
program is for B25/NGEN workstations only. In this program, the
TsGetStatus call returns the telephone status (see Table 4-4, Telephone
Status Structure, for descriptions of this data structure, which includes
LineState and tUnitState.)

The example uses TsDial twice: first, to wait for a dial tone, and second,
to dial the number. A comment shows how to call TsDial multiple times
to dial separate parts of a dialing sequence.

Note the section that begins with the pragma statement. This section is
required because the C language uses a different parameter-passing
convention than CTOS uses. See your compiler manual for information
about your compiler’s calling conventions. For more information on the
calling conventions used by CTOS, see “Stack Format and Calling
Conventions" in CTOS/Open Programming Practices and Standards.

/* Program title: Dial.c
Compiler: Metaware High C Compiler

*

*

* Dial
* [Number]
*/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define Syslit
#define sdType
#include <CTOSTypes.h>

#define CheckErc
#define ErrorExit

#define RgParam
#include <CTOSLib.h>

Listing 4-1. Dial.c (Page 1 of 4)

4-36 CTOS Programming Guide, Volume II 6/91

/*
* This is one of the fields of TSStatusType
*
struct LineState {
char status;
char fDialing;
char dialState;
char fRinging;
char iRing;
char fRingThrough;
char fOffHook;
char fHold;
char fCodec;
char fDtmfRec;
int handle;
char reserved;
char fModem;
char reserved2[2];

}i

struct TSStatusType {
int iEvent;
char defaultLine;
char fNeedCodecConnection;
char fCodecInUse;
char aTmcb (3],
int reserved;
int baudrate;
char originateMode;
char parityMode;
char lineControlMode;
char reserved2;
*
* the following are part of tUnitState
*/
char fOffHook;
char rgfTLine[2];
char rgfRingThrough[2];
char fCodec;
char fDtmfRec;
char fMonitor;
int handle;
char hookThroughMode;
char reserved3[5];
/*
* end of tUnitState
*/
struct LineState rgLineState[2];

Listing 4-1. Dial.c (Page 2 of 4)

6/91 Voice/Data Services

/*
* codec state
*
long lfaCurrent;
long gSampleCurrent;
char reserved4[8];
*
* end of codec state
*/
}:

pragma Calling_convention(CTOS_CALLING_CONVENTIONS) ;

int TsDial(int livpModule, int line, void *pbString,
int cbString, int cErrorTimeOut,
void *pcbStringRet);

int TsOffHook(int liVpModule, void *pThRet,
int line);

int TsGetStatus(int liVpModule, void *pStatusRet,
int sStatusRetMax, int fNoWait);,

pragma Calling_convention();

#define livpModule 1
#define liLine 0

void main()

{
int th, cbDialRet;

char fPrompted = FALSE;
sdType sdParam;
struct TSStatusType TSStatus;

/*

* Get phone number
*

CheckErc(RgParam(1l, 0, &sdParam));

Listing 4-1. Dial.c (Page 3 of 4)

4-38 CTOS Programming Guide, Volume II

6/91

/*
* See if telephone unit is connected to liLine.
* If not, then prompt the user and wait until
* it is.

*/
do {
CheckErc(TsGetStatus(livpModule, &TSStatus,
sizeof (struct TSStatusType), FALSE));
if ((!fPrompted) && (TSStatus.fOffHook
== FALSE)) {
printf("Please pick up the handset...\n");
fPrompted = TRUE;

)
} while (TSStatus.fOffHook == FALSE);
/*
* Take phone off hook
*

CheckErc(TsOffHook(1l, &th, 0));

/*
* Wait for a dial tone
*/
CheckErc(TsDial(livpModule, liLine, "=", 1, 100,
&cbDialRet)),
/*
* Dial number, the following code fragment shows that
* multiple TsDial calls can be made to dial the
* number, one character at a time. However, we will
* do it all at once now that TsDial has been used to
* wait for a dial tone.
*
* for (i = 0; i < sdParam.cb; i++) {
* CheckErc(Tsbial(livpModule, liLine,
sdParam. pb++,
* 1, 100, s&cbDialRet));

*)
*
CheckErc(TsDial(liVpModule, liLine, sdParam.pb,
sdParam. cb,
100, &cbDialRet));

Listing 4-1. Dial.c (Page 4 of 4)

6/91 Voice/Data Services 4—39

Listing 4-2: Voice Response System

This example answers the telephone, plays an initial message, and then
plays other messages in response to DTMF input. At any time during the
playing of a message, if a DTMF character is received, the current
message is stopped and the message corresponding to the new DTMF
character begins. In a voice response application, ACTION-FINISH
should be disabled and the typing of the FINISH key should be an
asynchronous event that is recognized. This program is for B25/NGEN
workstations only.

Setting up Request Blocks

This program shows use of the request procedure interface as well as use
of direct requests to the Telephone Service. Request blocks are set up
for TsReadTouchTone and TsVoicePlaybackFromFile. = These two
requests are made at the same time. As the initial voice file is playing,
the Telephone Service is waiting at an exchange (the default exchange
cannot be used when using the Request and Wait kernel primitives). One
of two events occurs. Either TsVoicePlaybackFromFile returns first and
the fPlayBackFinished flag is set to TRUE, or TsReadTouchTone returns
first. If TsReadTouchTone returns first, either a DTMF character was
received or a timeout occurred without a character having been read. If a
DTMF character was received, the message currently being played (if any)
is stopped, and the message for the new DTMF character is played. In
addition, any functions associated with that character are carried out—for
example, hanging up after the # message is played.

fNoWait Flag

In cases where you want TsGetStatus to return the status immediately, set
the fNoWait flag to TRUE. If you want status returned only when a
change in status occurs, set this flag to FALSE. This sample program
illustrates both cases. In the WaitForCall function, fNoWait is set to
FALSE, which causes TsGetStatus to wait until there is a change in
status. In the StartResponse function, fNoWait is set to TRUE, because
we need to know immediately whether the CODEC is already in use.
Since the CODEC cannot be shared, we must be sure that it is free
before we call TsDoFunction to lock the CODEC.

4-40 CTOS Programming Guide, Volume II 6/91

Use of TsVoiceConnect

In the ConnectVoice function, TsVoiceConnect specifies the connection
of the telephone line to the CODEC. Because the fAutoStart flag in the
Voice Control Structure is FALSE, TsVoiceConnect must be called
before each call to TsVoicePlaybackFromFile, as shown below.

Possible Modifications to This Program

For purposes of example, this program reads and responds to one DTMF
character at a time. A more sophisticated system could be built around
this one. For example, if the user needs to enter a string of numbers,
such as a telephone extension, the system might read the first character
into a buffer and then immediately reissue additional requests to
TsReadTouchTone until the complete string is received. Reading the
characters one-by-one enables the system to make an immediate response
to the first character, for example, by turning off the recorded message as
soon as the user enters the first number of the extension.

/*

* Program title: Response.c

* Compiler: Metaware High C Compiler

* *

* Response

* [iVpModule]

* [Line to answer]

* [Answer on ring]

* [First Message]

* [DTMF 1 Message]

* [DTMF 2 Messagel]

* [DTMF # Message]

* [DTMF Error Msg]

*

* Explanation of command form options:

*

* iVpModule: Voice Processor Module number
* (default = 1)

* Line to answer: Either Line 1 or Line 2
* (default = 1)

* Answer on ring: Answer the phone after this many
* rings. (default = 1)

*

First Message: The initial message.

Listing 4-2. Response.c (Page 1 of 19)

6/91 Voice/Data Services 4—41

* DTMF ? Message:
*

*

* DTMF # Message:
*

*

* DTMF Error Msg:
*

*

*

*

*/

#include <{string.h>
#include <stdlib.h>

#define RgHeaderType
#define Syslit
#define sdType

#include <CTOSTypes.h>

/*

Message played when the
corresponding DTMF character

is read.

Stops the playing of any message,
plays the hangup message and
hangs up the phone.

The message that is played if a
DTMF digit is read for which
there is no file to playback or if
the DTMF read operation has timed
out.

* Voice Control Structure

*/

struct VCStype {
int fh;
long lfaStart;
long lfaMax;
long gSampleStart;
long gSampleMax;
int cPauseMax;
int cSampleOn;
int cSampleOff;
char f6KHz;
char fAutoStart;
char fNoPause;

char fStopOnDialTone;

char fAltConnection;

int nSectorStatusUpdate;

int sPauseGap;
char fRawData;

}i

Listing 4-2. Response.c (Page 2 of 19)

4—42 CTOS Programming Guide, Volume Il 6/91

/*
* Voice File Entry
*/
struct VDFHEntrytype {
char f6KHz;
long 1faStart;
long lfaMax;
long gSampleStart;
long gSampleMax;
char bReserved;
long dateTime;
char line;
char fNoPause;
char fAltConnection;
char rgReserved[7];
)i
* Voice File Header
*/
struct VDFHtype {
int signature;
int version;
int wReserved;
struct VDFHEntrytype message[1l5];
char rgReserved[26];
)i

* LineState is used in TSStatusType below

*/

struct LineState {
char status;
-char fDialing;
char dialState;
char fRinging;
char iRing;
char fRingThrough;
char fOffHook;
char fHold;
char fCodec;
char fDtmfRec;
int handle;
char reserved;
char fModem;
char reserved2(2];

Listing 4-2. Response.c (Page 3 of 19)

6/91

Voice/Data Services

/*
* Telephone Service Status
*
struct TSStatusType {
int iEvent;
char defaultLine;
char fNeedCodecConnection;
char fCodecInUse;
char aTmcb[3];
int reserved;
int baudrate;
char originateMode;
char parityMode;
char lineControlMode;
char reserved2;
char fOffHook; /* beginning of tUnitState */
char rgfTLine[2];
char rgfRingThrough[2];
char fCodec;
char fDtmfRec;
char fMonitor;
int handle;
char hookThroughMode;
char reserved3[5]; /* end of tUnitState */
struct LineState rgLineState(2];
long 1lfaCurrent; /* beginning of codec state */
long gSampleCurrent;
char reserved4([8]; /* end of codec state */
i
* Voice Processor Requests
*/
pragma Calling_convention(CTOS_CALLING_CONVENTIONS) ;
int TsDoFunction(int iVpModule, int function);
int TsGetStatus(int iVpModule, void *pStatusRet,
int sStatusRetMax, int fNoWait);
int TsOffHook(int iVpModule, void *pThRet, int line);
int TsOnHook(int iVpModule, int line);
int TsVoiceConnect(int iVpModule, char fVoiceUnit,
char fLine0O, char fLinel);
int TsVoicePlaybackFromFile(int iVpModule,
void *pWorkArea, int sWorkArea, void *pVoiceControl,
int sVoiceControl, void *pLfalast,
void *pgSamplelast, void *pStatusRet);
int TsVoiceStop(int iVpModule);
pragma Calling convention();

Listing 4-2. Response.c (Page 4 of 19)

4—44 CTOS Programming Guide, Volume II 6/91

/*

* TsReadTouchTone request code and request block

*

#define rcTsReadTouchTone 0x8030
struct rqTsReadTouchToneType {

)i
/*

char sCntInfo;
char RtCode;

char nReqPbCb;
char nRespPbCb;
int userNum;

int exchResp;

int ercRet;

int rgCode;

int ivpModule;
int device;

int bStopDigit;
int cTimeOut;
char *pbDigits;
int cbDigitsMax;
char *pcbDigitsRet;
int scbDigitsRet;

* TsVoicePlaybackFromFile request code and request block

*

#define rcTsVoicePlaybackFromFile 0x8021
struct rqTsVoicePlaybackFromFileType {

char sCntInfo;

char RtCode;

char nReqPbCb;

char nRespPbCb;

int userNum;

int exchResp;

int ercRet;

int rqCode;

int iVpModule;

char *pWorkArea;
int sWorkArea;

char *pvoiceControl;
int sVoiceControl;
long *plfalast;

int slfalast;

long *pgSampleLast;
int sgSamplelast;
int *pStatusRet;
int sStatusRet;

Listing 4-2. Response.c (Page 5 of 19)

6/91

Voice/Data Services - 4—45

/*
* CTOS Library calls
*
#define AllocExch
#define AllocMemorySL
#define CheckErc
#define CloseFile
#define Delay
#define ErrorExit
#define OpenFile
#define Read
#define Request
#define RgParam
#define Wait
#include <CTOSLib.h>
/*
* constants
*/
#define lsbWorkArea 32768
#define 1Digits 1
#define lParameterFound 0
#define lParameterNotFound 2450
#define lercDTMFTimeout 11206
#define lercRequestIncomplete 282
#define 1lLinel 1
#define lLine2 2
#define lercInvalidParameters 11203
*

* global variables
*/
struct TSStatusType TSStatus; /* Used by TsGetStatus */
struct VDFHtype VDFH; /* Voice file header structure */
struct VCStype VCS; /* for TsVoicePlaybackFromFile */
struct rgqTsVoicePlaybackFromFileType
rqTsVoicePlaybackFromFile;
struct rgTsReadTouchToneType rqTsReadTouchTone;
RqHeaderType *pRequestRet;
char fAnswer = FALSE, rgbParam[64], *pWorkArea,
rgbDigits[1Digits], fPlaybackFinished = FALSE,
fDTMFReceived = FALSE, fDTMFTimeout = FALSE,
fContinue = TRUE;
int iVpModule, iLine, nAnswerRings, erc, fhInitial,
fhDTMF1, fhDTMF2, fhDTMFPound, fhError, :
TSExchange, StatusRet, th, cbRead, cbDigitsRet;
long 1faEnd, SampleEnd;

Listihg 4-2. Response.c (Page 6 of 19)

4—46 CTOS Programming Guide, Volume II 6/91

/***/
int main()

{
ErrorCleanup(GetParams());
*

* Allocate exchange for Telephone Service responses.
*/

ErrorCleanup(AllocExch(&TSExchange));
*

* Buffer for Telephone Service voice playback.
*/ '
ErrorCleanup(AllocMemorySL(lsbWorkArea, &pWorkArea));
while (TRUE) { .
ErrorCleanup(WaitForCall()),; /* Wait for call */
*
* Check to make sure that the telephone unit is
* not connected to the line we want to answer.
* If so then don't answer the phone.
*/
ErrorCleanup(Delay(2));
ErrorCleanup(TsGetStatus(iVpModule, &TSStatus,
sizeof (struct TSStatusType), TRUE));
if(TSStatus.rgfTLine[iLine — 1] == FALSE) {
ErrorCleanup(StartResponse());
ErrorCleanup(CleanupLine());
}
}
return(ercOK) ;
},
/***/
int WaitForCall()
{

while (!fAnswer) |

/%
* If TsGetStatus is called with the fNoWait FALSE,
* call returns when telephone event occur.
*/

erc = TsGetStatus(iVpModule, &TSStatus,

sizeof(struct TSStatusType), FALSE);
if (erc != ercOK) return erc;

Listing 4-2. Response.c (Page 7 of 19)

6/91 Voice/Data Services 4—47

/*
* Is the event a ringing telephone line?
*/
if (TSStatus.rgLineState[iLine-1].fRinging
I= FALSE) {
if (TSStatus.rgLineState[iLine - 1]. 1R1ng
>= nAnswerRings) fAnswer = TRUE; /* answer */

}
}

fAnswer = FALSE; /* Reset flag for next call */
return erc;

}

/***'k*******/
int GetParams()
{

sdType sdParam; /* for RgParam calls */

erc = RgParam(l, 0, &sdParam);

strncpy(rgbParam, sdParam.pb, sdParam.cb);
switch(erc) {

case lParameterFound:

rgbParam[sdParam.cb] = '\0';

iVpModule = atoi(rgbParam);

if ((ivpModule < 1) || (iVpModule > 5))
iVpModule = 1;

break;

case lParameterNotFound:
iVpModule = 1;
break;
default:
return erc;
}
erc = RgParam(2, 0, &sdParam);
strncpy(rgbParam, sdParam.pb, sdParam.cb);
switch(erc) {
case lParameterFound:

rgbParam[sdParam.cb] = '\0';

iLine = atoi(rgbParam);

if ((iLine < 1) || (iLine > 2)) iLine = 1;
break;

case lParameterNotFound:
iLine = 1;
break;

default:
return erc;

Listing 4-2. Response.c (Page 8 of 19)

4—48 CTOS Programming Guide, Volume II 6/91

erc = RgParam(3, 0, &sdParam);
strncpy(rgbParam, sdParam.pb, sdParam.cb);
switch(erxc) {

case lParameterFound:

rgbParam|[sdParam.cb] = '\0';

nAnswerRings = atoi(rgbParam);

if ((nAnswerRings < 1) || (nAnswerRings > 10))
nAnswerRings = 2;

break;

case lParameterNotFound:
nAnswerRings = 1;
break;
default:
return erc;
}
erc = RgParam(4, 0, &sdParam);
switch(erc) {
case lParameterFound:
erc = OpenFile(&fhInitial, sdParam.pb,

sdParam.cb, "", 0, modeRead);
if (erc != ercOK) return erc;
break;

case lParameterNotFound:
strncpy(rgbParam, "Initial.Voice", 13);
sdParam.cb = 13;
erc = OpenFile(&fhInitial, rgbParam, sdParam.cb,
"", 0, modeRead);
if (erc !'= ercOK) return erc;
break;
default:
return erc;
}
erc = RgParam(5, 0, &sdParam);
switch(erc) {
case lParameterFound:
erc = OpenFile(&fhDTMF1l, sdParam.pb, sdParam.cb,
"", 0, modeRead);
if (erc != ercOK) return erc;
break;
case lParameterNotFound:
strncpy(rgbParam, "DTMF1l.Voice", 11);
sdParam.cb = 11;
erc = OpenFile(&fhDTMF1, rgbParam, sdParam.cb,
"", 0, modeRead);
if (erc != ercOK) return erc;
break;
default:
return erc;

Listing 4-2. Response.c (Page 9 of 19)
6/91 Voice/Data Services 4—49

erc = RgParam(6, 0, &sdParam);
switch(erc) {
case lParameterFound:
erc = OpenFile(&fhDTMF2, sdParam.pb, sdParam.cb,
"" 0, modeRead);
if (erc != ercOK) return erc;
break;
case lParameterNotFound:
strncpy(rgbParam, "DTMF2.Voice", 11);
sdParam.cb = 11;
erc = OpenFile(&fhDTMF2, rgbParam, sdParam.cb,
"", 0, modeRead);
if (erc != ercOK) return erxrc;
break;
default:
return erc;

)

erc = RgParam(7, 0, &sdParam);
switch(erc) {
case lParameterFound:
erc = OpenFile(&fhDTMFPound, sdParam.pb,

sdParam.cb, "", 0, modeRead);
if (erc != ercOK) return erc;
break;

case lParameterNotFound:
strncpy(rgbParam, "DTMFPound.Voice", 15);
sdParam.cb = 15;
erc = OpenFile(&fhDTMFPound, rgbParam,

sdParam.cb, "", 0, modeRead);
if (erc != ercOK) return erc;
break;
default:

return erc;

}

erc = RgParam(8, 0, &sdParam);
switch(erc) {
case lParameterFound:
erc = OpenFile(&fhError, sdParam.pb, sdParam.cb,
"", 0, modeRead);
if (erc != ercOK) return erc;
break;

Listing 4-2. Response.c (Page 10 of 19)

4-50 CTOS Programming Guide, Volume II 6/91

case lParameterNotFound:
strncpy(rgbParam, "Error.Voice", 11);
sdParam.cb = 11;
erc = OpenFile(&fhError, rgbParam, sdParam.cb,
"", 0, modeRead);
if (erc != ercOK) return erc;
break;
default:
return erc;
}
return(ercOK);

)

/*****************'k**********’k**************************/
int StartResponse()

{
/*
* Don't answer phone if codec is in use. TsGetStatus
* called with fNoWait TRUE returns immediately.
*/
erc = TsGetStatus(iVpModule, &TSStatus,
sizeof (struct TSStatusType), TRUE);
if ((erc != ercOK) || (TSStatus. fCodecInUse == TRUE))
return erc;
erc = TsDoFunction(iVpModule, 12); /* Lock codec */
if (erc != ercOK) return erc;
*

* Take phone off hook.
*

erc = TsOffHook(iVpModule, &th, (iLine - 1));

if (erc !'= ercOK) return erc;
erc = ConnectVoice();
if (erc != ercOK) return erc;
erc = PlayMessage(fhInitial); /* play first msg */
if (erc != ercOK) return erc;
/%
* Now wait for returned requests. Two cases:
.
* a. TsReadTouchTone is returned first. Stop the
* currently playing message and do whatever
* the DTMF digit instructs.
* b. TsVoicePlaybackFromFile is returned first.
* Just turn on a flag that request has been
* returned and rewait for DTMF respond.
*/

Listing 4-2. Response.c (Page 11 of 19)

6/91 Voice/Data Services 4—51

while (fContinue) {
erc = Wait(TSExchange, &pRequestRet);
if (erc != ercOK) return erc;
if (pRequestRet->rqCode
== rcTsVoicePlaybackFromFile)
VoicePlaybackRespond(); /* Playback respond */
else if (pRequestRet->rqCode ==
rcTsReadTouchTone)
ReadTouchToneRespond(); /* ReadTT respond */
else return(l7); /* "Mismatched respond" */
/*
* A DTMF character has been received or the voice
* file finished playing. Wait for DTMF chars and
* play messages until timeout or # key is pressed.
*
if ((fPlaybackFinished == FALSE) &&
(fDTMFReceived == TRUE)) {
erc = TsVoiceStop(iVpModule) ;
if (erc != ercOK) return erc;
erc = Wait(TSExchange, &pRequestRet);
if (erc != ercOK) return erc;
*
* should be TsVoicePlaybackFromFile request
*/
if (pRequestRet->rqCode !=
rcTsVoicePlaybackFromFile) return(17);
sw1tch(rng191ts[0]) {
!

case '1l'.
erc = ConnectV01ce();
if (erc != ercOK) return erc;

erc = PlayMessage(MapDTMFtoFH
(rgbDigits[0]));

if (erc != ercOK) return erc;
break;
case '#':
erc = SetupVoiceFileVCSForPlayback
(fhDTMFPound) ;
if (erc != ercOK) return erc;
erc = ConnectVoice();
if (erc != ercOK) return erc;

erc = TsVoicePlaybackFromFile(iVpModule,
pWorkArea, lsbWorkArea, (char *)(&VCS),
sizeof(struct VCStype), &lfaEnd,
&SampleEnd, &StatusRet);

if (erc != ercOK) return erc;
fContinue = FALSE;
break;

Listing 4-2. Response.c (Page 12 of 19)

4-52 CTOS Programming Guide, Volume I1 6/91

6/91

*
* default if DTMF is not 1, 2, or #.
*/
default:
erc = SetupVoiceFileVCSForPlayback
(fhError);
if (erc != ercOK) return erc;
erc = ConnectVoice();
if (erc != ercOK) return erc;
erc = TsVoicePlaybackFromFile(iVpModule,
pWorkArea, lsbWorkArea, (char *)(&VCS),
sizeof (struct VCStype), &lfaEnd,
&SampleEnd, &StatusRet);
if (erc != ercOK) return erc;
fContinue = FALSE;
}

} else if (fDTMFTimeout) {

/*
* Play error messadge and hang up. No DTMF.
*/

erc = TsVoiceStop(iVpModule);

if (erc != ercOK) return erc;
erc = Wait(TSExchange, &pRequestRet);
if (erc != ercOK) return erc;
/*
* TsVoicePlaybackFromFile request
*/

if (pRequestRet->rgCode !=
rcTsVoicePlaybackFromFile) return(17);
erc = SetupVoiceFileVCSForPlayback(fhError);

if (erc != ercOK) return erc;
erc = ConnectVoice();
if (erc !'= ercOK) return erc;

erc = TsVoicePlaybackFromFile(iVpModule,
pWorkArea, lsbWorkArea, (char *)(&VCS),
sizeof (struct VCStype), &lfaEnd,
&SampleEnd, &StatusRet);
if (erc != ercOK) return erc;
fContinue = FALSE;
lse if ((fPlaybackFinished == TRUE) &&

(fDTMFReceived == FALSE)) |
/*
* wait for a character or timeout,.
*/
erc = Wait(TSExchange, &pRequestRet);
if (erc != ercOK) return erc;

Listing 4-2. Response.c (Page 13 of 19)

Voice/Data Services 4—353

4-54 CTOS Programming Guide, Volume II

/* if Timeout set flag. "while" handles it on
* next pass; otherwise call PlayDTMFMessage()
*/

if (pRequestRet->rqCode != rcTsReadTouchTone)

return(17);
switch(rgTsReadTouchTone.ercRet) {
case ercOK:
break;
case lercDTMFTimeout:
fDTMFTimeout = TRUE;
break;
default:
return(rqgTsReadTouchTone.ercRet);

if (fDTMFTimeout) {
erc = SetupVoiceFileVCSForPlayback(fhError);

if (erc != ercOK) return erc;
erc = ConnectVoice();
if (erc != ercOK) return erc;

erc = TsVoicePlaybackFromFile(iVpModule,
pWorkArea, lsbWorkArea, (char *)(&VCS),
sizeof (struct VCStype), &lfaEnd,
&SampleEnd, &StatusRet);

if (erc '= ercOK) return erc;
fContinue = FALSE;
} else {
sw1tch(rnglglts[0]) {
case '1'..'2
erc = ConnectV01ce();
if (erc != ercOK) return erc;

erc = PlayMessage(MapDTMFtoFH
(rgbDigits[0]));

if (erc != ercOK) return erc;
break;
case '#':
erc = SetupVoiceFileVCSForPlayback
(£fhDTMFPound) ;
if (erc != ercOK) return erc;
erc = ConnectVoice();
if (erc != ercOK) return erc;

erc = TsVoicePlaybackFromFile
(ivpModule, pWorkArea,
lsbWorkArea, (chaxr *)(&VCS),
sizeof (struct VCStype), &lfaEnd,
&SampleEnd, &StatusRet);

if (erc != ercOK) return erc;
fContinue = FALSE;
break;

Listing 4-2. Response.c (Page 14 of 19)

6/91

)
)

fContinue

*
* default if DTMF is not 1, 2 or #.
*
/
default:
erc = SetupVoiceFileVCSForPlayback
(fhError);
if (erc != ercOK) return erc;
erc = ConnectVoice();
if (erc != ercOK) return erc;
erc = TsVoicePlaybackFromFile
(ivpModule, pWorkArea, lsbWorkArea,
(char *)(&VCS), sizeof(struct
VCStype), &lfaEnd,
&SampleEnd, &StatusRet);
if (erc != ercOK) return erc;
fContinue = FALSE;

= TRUE;

fDTMFTimeout = FALSE;
return(ercOK) ;

}

/***********
int SetupVoi

******'k********'k****************************/

ceFileVCSForPlayback(fh)

int fh;
{
int erc;
erc = Read(fh, &VDFH, sizeof(struct VDFHtype), O,
&cbRead) ;
if (erc != ercOK) return erc;
if (cbRead != 512) return(lercRequestIncomplete);
VCS.fh = fh;
VCS.1lfaStart = VDFH.message[0].lfaStart;

VCS.1lfaMa

X = VDFH.message[0].1lfaMax;

VCS.gSampleStart = VDFH.message[0].gSampleStart;
VCS.gSampleMax = VDFH.message[0].gqSampleMax;

VCS.cPauseMax = 0;
VCS.cSampleOn = 0;
VCS.cSampleOff = 0;
VCS.f6KHz = VDFH.message[0].f6KHz;

VCS. fAutoStart = FALSE;
VCS.fNoPause = FALSE;
VCS.fStopOnDialTone = FALSE;

6/91

Listing 4-2. Response.c (Page 15 of 19)

Voice/Data Services 4—55

VCS.fAltConnection = FALSE
VCS.nSectorStatusUpdate
VCS.sPauseGap = 0;

VCS. fRawData FALSE;
return(ercOK) ;

)

/****************************
int SetupVoiceFileRgForPlayba

{
rqTsVoicePlaybackFromFile.
rqTsVoicePlaybackFromFile.
rqTsVoicePlaybackFromFile.
rqTsVoicePlaybackFromFile,
rgTsVoicePlaybackFromFile.
rqTsVoicePlaybackFromFile,
rqTsVoicePlaybackFromFile.
rqTsVoicePlaybackFromFile.
rcTsVoicePlaybackFromFi
rqTsVoicePlaybackFromFile.
rqTsVoicePlaybackFromFile.
rqTsVoicePlaybackFromFile.
rqTsVoicePlaybackFromFile.
(char *)(&VCS);
rqTsVoicePlaybackFromFile.
sizeof(struct VCStype);
rqTsVoicePlaybackFromFile.
rqTsVoicePlaybackFromFile.
rgqTsVoicePlaybackFromFile,
rqTsVoicePlaybackFromFile,
rqTsVoicePlaybackFromFile.
rqTsVoicePlaybackFromFile,
return(ercOK);
]

/****************************
int SetupReadTouchToneRq()

{
sCntInfo
RtCode =
nReqPbCb
nRespPbC
userNum
ercRet

rqTsReadTouchTone.
rqTsReadTouchTone.
rqTsReadTouchTone.
rqTsReadTouchTone.
rqTsReadTouchTone.
rgqTsReadTouchTone.
rqTsReadTouchTone.
rqTsReadTouchTone.
rgTsReadTouchTone.

rqCode
ivpModul

exchResp

i

FALSE;

***************************/
ck()

sCntInfo = 2;

RtCode = 0;

nRegPbCb = 2;

nRespPbCb = 3;

userNum = 0;

ercRet = 0;

exchResp = TSExchange;
rgCode =

le;

iVpModule = iVpModule;
pWorkArea = pWorkArea;
sWorkArea = lsbWorkArea;
pVoiceControl =
sVoiceControl =
plfalast = &lfaEnd;
slfalLast = 4;
pgSampleLast = &SampleEnd;
sqSampleLast = 4;
pStatusRet = &StatusRet;
sStatusRet = 2;

***************************/

8;

0

ol

b = 2;
0;
= TSExchange;

rcTsReadTouchTone;

ivpModule;

e

Listing 4-2. Response.c (Page 16 of 19)

4-56 CTOS Programming Guide, Volume II

6/91

rqTsReadTouchTone.device = iLine - 1;
rqTsReadTouchTone.bStopDigit = 0; /* illegal char */
rqTsReadTouchTone.cTimeOut =180;
rqTsReadTouchTone.pbDigits = &rgbDigits[0];
rgTsReadTouchTone.cbDigitsMax = sizeof(rgbDigits);
rqTsReadTouchTone.pcbDigitsRet = (char *)&cbDigitsRet;
rqTsReadTouchTone. scbDigitsRet 2;

return(ercOK) ;

}

/****************************'k*******************‘k******/
int VoicePlaybackRespond()

{
/*
* Check request block for errors.
*
/
if (rqTsVoicePlaybackFromFile.ercRet != 0)
return(rqTsVoicePlaybackFromFile.ercRet);
fPlaybackFinished = TRUE; /* indicate respond rcvd */
return(ercOK);

)

/***/
int ReadTouchToneRespond()

{
VA
* Check request block for DTMF char or timeout.
*/
switch(rgqTsReadTouchTone.ercRet) {
case ercOK:
fDTMFReceived = TRUE;
break;
case lercDTMFTimeout:
fDTMFTimeout = TRUE;
break;
default:
return(rqTsReadTouchTone. ercRet);
}

return(ercOK) ;

Listing 4-2. Response.c (Page 17 of 19)

6/91 ' Voice/Data Services 4—57

/***/
int CleanupLine()

{

int erc;
erc = TsOnHook(iVpModule, (iLine - 1)); /* hangup */
if (erc != ercOK) return erc;

erc = TsDoFunction(iVpModule, 13); /* unlock codec */
return erc ;

}

/***/
ErrorCleanup(erc)

int erc;

{

if (erc != ercOK) { /* cleanup as much as possible */
TsVoiceStop(iVpModule);
CleanupLine();
CloseFile(fhInitial);
CloseFile(fhDTMF1);
CloseFile(fhDTMF2) ;
CloseFile(fhError);
ErrorExit(erc);
}
}
/***/

int PlayMessage(fh)
int fh;

{
erc = SetupVoiceFileVCSForPlayback(fh);

if (erc != ercOK) return erc;

erc = SetupVoiceFileRgForPlayback();

if (erc != ercOK) return erc;

erc = SetupReadTouchToneRq(); /* Setup DTMF rq */
if (erc != ercOK) return erc;

fPlaybackFinished = FALSE; /* Reset state flags */
fDTMFReceived = FALSE;
. /*
* Issue the requests.
*/
erc = Request(&rgTsVoicePlaybackFromFile);
if (erc != ercOK) return erc;
erc = Request(&rgTsReadTouchTone) ;
return erc;

Listing 4-2. Response.c (Page 18 of 19)

4-58 CTOS Programming Guide, Volume Il 6/91

/***/
int MapDTMFtoFH(ch)

char ch;

{
switch(ch) {
case '1l':
return fhDTMF1;
case '2':
return fhDTMF2;
case '#':
return fhDTMFPound;
default:
return fhError;

}

/***/
int ConnectVoice()

{

if (iLine == 1lLinel) {
erc = TsVoiceConnect(iVpModule, FALSE, TRUE, FALSE);
return erc;

} else if (iLine == 1lLine2) {
erc = TsVoiceConnect(iVpModule, FALSE, FALSE, TRUE) ;
return erc;

} else return(lerciInvalidParameters);

Listing 4-2. Response.c (Page 19 of 19)

6/91 Voice/Data Services 4—59

Listing 4-3: Voice Memory Playback

This program takes between one and three files as arguments, concatenates
them in memory, and then plays them when the telephone unit is taken
offhook.

The Voice File Header from the first file is used to initialize the fields of
the Voice Control Structure. Any subsequent voice files must have been
recorded compatibly, or an error is returned.

See the section above, "Voice Playback from Memory,” for a review of the
steps necessary to playback a voice file from memory rather than from
disk. This program has been written so that the Append procedure is
" general enough to be called for any number of voice files, as long as the
limit of 110 voice sectors is not exceeded.

/%
Program title: Memory.c
Compiler: Metaware High C Compiler

*

*

*

* Memory
* File
* [File]
* [File]
*
*
*
*

Voice Control Structure

struct VCSType {
int fh;
long lfaStart;
long lfaMax;
long gSampleStart;
long gSampleMax;
int cPauseMax;
int cSampleOn;
int cSampleOff;
char f6KHz;
char fAutoStart;
char fNoPause;
char fStopOnDialTone;
char fAltConnection;
int nSectorStatusUpdate;
int sPauseGap;
char fRawData;

Listing 4-3. Memory.c (Page 1 of 11)
4—-60 CTOS Programming Guide, Volume II 6/91

/*
* Voice File Header Entry Structure
*/
struct VDFHEntxyType {
char f6KHz;
long 1faStart;
long lfaMax;
long gSampleStart;
long gSampleMax;
char bReserved;
long dateTime;
char line;
char fNoPause;
char fAltConnection;
char rgReserved[7];

}i
/*

* Voice File Header Structure
*/
struct VDFHType ({

int signature;
int version;
int wReserved;
struct VDFHEntryType message[1l5];
char rgReserved[26];

}i

/*
* LineState is part of TSStatusType
*/

struct LineState {

char status;

char fDialing;
char dialState;
char fRinging;
char iRing;

char fRingThrough;
char fOffHook;
char fHold;

char fCodec;

char fDtmfRec;

int handle;

char reserved;
char fModem;

char reserved2[2];

Listing 4-3. Memory.c (Page 2 of 11)

6/91 A Voice/Data Services

4—61

/*
*
*
*

TSStatus Structure

Information returned by the TSGetStatus call

struct TSStatusType {

}i

int iEvent;
char defaultLine;
char fNeedCodecConnection;
char fCodecInUse;
char aTmcb([3];
int reserved;
int baudrate;
char originateMode;
char parityMode;
char lineControlMode;
char reserved2;
/*
* the following are part of tUnitState
*/
char fOffHook;
char rgfTLine[2];
char rgfRingThrough[2];
char fCodec;
char fDtmfRec;
char fMonitor;
int handle;
char hookThroughMode;
char reserved3|[5];
*
* end of tUnitState
*/
struct LineState rgLineState(2];
/*
* codec state
*
long lfaCurrent;
long gSampleCurrent;
char reserved4([8];
/*
* end of codec state

*/

Listing 4-3. Memory.c (Page 3 of 11)

4—62 CTOS Programming Guide, Volume II

6/91

*
* This union is used to change the offset of pWorkArea
* as the files are Read into memory from disk file.
*/
union p_u {
char *p;
int i[2];
}:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define Syslit
#define sdType
#include <CTOSTypes.h>

/*
* CTOS.Lib calls
*/
#define AllocMemorySL
#define CheckErc
#define CloseFile
#define DeallocMemorySL
#define ErrorExit
#define OpenFile
#define Read
#define RgParam
#include <CTOSLib.h>

/%
* Function prototypes for Telephone Service requests
*

pragma Calling_convention(CTOS_CALLING_CONVENTIONS) ;

int TsDoFunction(int 1iVpModule, int function);

int TsGetStatus(int liVpModule, void *pStatusRet,
int sStatusRetMax, int fNoWait);

int TsOnHook(int liVpModule, int line);

int TsVoiceConnect(int liVpModule, char fVoiceUnit,
char fLine0O, char fLinel);

int TsVoicePlaybackFromFile(int 1liVpModule,
void *pWorkArea, int sWorkArea, void *pVoiceControl,
int sVoiceControl, void *poaLast, void *pqSamplelast,
void *pStatusRet);

pragma Calling_convention();

Listing 4-3. Memory.c (Page 4 of 11)

6/91 Voice/Data Services 4—63

*

* Global constants

*/

#define livpModule 1

#define liLine 0

#define lercVoiceFileTooLarge 1

#define lercNotAvVoiceFile 2

#define lercVoiceFilesNotCompatible 3

#define lsWorkAreaMax 64512

#define lercParameterFound 0

#define lercParameterNotFound 2450

#define 1lRateNotSet 42 /* some magic number */
#define lercNotOffHook 11204

/*

*

*/

Function definitions

int GetParams();
void CleanUp();
int SetupVvCS();

void main()

{

char fPrompted = FALSE, *pWorkArea;
int erc, fhl, fh2, fh3, StatusRet;
struct VCSType VCS;
struct TSStatusType TSStatus;
/*
* sWorkArea is an unsigned long int instead of an
* int because of overflow when checking for file
* sizes greater than the allowed buffer size.
*/
unsigned long int 1faNext, gSampleNext,
sWorkArea = 64512;

CheckErc(AllocMemorySL((unsigned int) sWorkArea,
&pWorkArea));

erc = GetParams(&fhl, &fh2, &fh3);

if (erc != ercOK) CleanUp(erc, fhl, fh2, fh3,
pWorkArea);

Listing 4-3. Memory.c (Page § of 11)

4—64 CTOS Programming Guide, Volume II 6/91

* AllocMemorySL has been called to allocate a 64K
* memory segment. As the voice files are appended
* to this segment, their length will be added to

* sWorkArea, which starts out at 8192, as per the
* instructions in the 2.0 Voice/Data Services

* Release Notes.

*/

sWorkArea = 8192;
erc = SetupVCS(&VCS);
if (erc != ercOK) CleanUp(erc, fhl, fh2, fh3,

pWorkArea);

erc = Append(fhl, &VCS, &sWorkaArea,
pWorkArea) ;

if (erc != ercOK) CleanUp(exrc, fhl, fh2, fh3,
pWorkArea) ;

if (fh2 1= 0) {
erc = Append(fh2, &VCS, &sWorkArea,
pWorkArea);
if (erc != ercOK) CleanUp(erc, fhl, fh2, fh3,
pWorkArea);

if (£fh3 = 0) {
erc = Append(fh3, &VCS, &sWorkArea,
pWorkArea) ;
if (erc !'= ercOK) CleanUp(erc, fhl, fh2, fh3,
pWorkArea) ;
}
/*
* Last field to set up. The sWorkArea is not known
* until after the calls to Append.
*/
VCS.lfaMax = sWorkArea — 8192;

/*
* See if telephone unit is connected to liLine.
* If not, then prompt the user and wait until
* it is.
*/
do {
CheckErc(TsGetStatus(livpModule, &TSStatus,
sizeof(struct TSStatusType), FALSE));
if (!'fPrompted && (TSStatus.fOffHook == FALSE)) {
printf("Please pick up the handset...\n");
fPrompted = TRUE;

}
} while (TSStatus.fOffHook == FALSE);

Listing 4-3. Memory.c (Page 6 of 11)

6/91 Voice/Data Services 4—65

/*
* Hang up the line to get rid of dial tone.
* If the line is already onhook then erc 11204 is
* returned. This case is trapped for.

*/
erc = TsOnHook(liVpModule, liLine);
if (!((erc == ercOK) || (erc == lercNotOffHook)))
CleanUp(erc, fhl, fh2, fh3, pWorkArea);
/*
* Lock the codec
*/

erc = TsDoFunction(liVpModule, 12);

if (erc != ercOK) CleanUp(erc, fhl, fh2, fh3,
pWorkArea) ;

erc = TsVoiceConnect(livVpModule, TRUE, FALSE, FALSE);

if (erc t= ercOK) CleanUp(erc, fhl, fh2, fh3,
pWorkArea);

erc = TsVoicePlaybackFromFile(liVpModule, pWorkArea,
(unsigned int) sWorkArea, &VCS,
sizeof (struct VCSType), &lfaNext, &gSampleNext,
&StatusRet) ;

/* :

* Exit, either normally or abnormally, based on erc.

*/

CleanUp(erc, fhl, fh2, fh3, pWorkArea);

/**/

int GetParams(fl, f2, £3)

int *fl, *f2, *f3;

{

sdType sdParam;
int erc;

erc = RgParam(l, 0, &sdParam);

if (erc != lercParameterFound) {
return(erc);
} else {

erc = OpenFile(fl, sdParam.pb, sdParam.cb,
"", 0, modeRead);
if (erc != ercOK) return(erc);

}

Listing 4-3. Memory.c (Page 7 of 11)

4—66 CTOS Programming Guide, Volume II 6/91

erc = RgParam(2, 0, &sdParam);
switch(erc) {
case lercParameterFound:

erc = OpenFile(f2, sdParam.pb, sdParam.cb,

"", 0, modeRead);
if (erc != ercOK) return(erc);
break;
case lercParameterNotFound:
*f2 = 0;
erc = ercOK;
break;
default:
return(erc);

)

erc = RgParam(3, 0, &sdParam);
switch(erc) {
case lercParameterFound:

erc = OpenFile(f3, sdParam.pb, sdParam.cb,

"", 0, modeRead);
if (erc != ercOK) return(erc);
break;
case lercParameterNotFound:
*f3 = 0;
erc = ercOK;
break;
default:
return(erc);
}
return(ercOK);

)

/*'k***‘k**************'k**'k'k**'k**************************/

int SetupVCS(pVCS)
struct VCSType *pVCS;

{
/*

* Set up VCS for TsVoicePlaybackFromFile call
* setting VCS.fh to OxXFFFF causes Telephone

* Service to playback from memory.
*/
pvCS—>fh = OXFFFF;
pvCS—->1faStart = 0;
pVCS—->gSampleStart = 0;
pVCS—->gSampleMax = OXFFFFFFFF;
pVCS—->cPauseMax = 0;

Listing 4-3. Memory.c (Page 8 of 11)

6/91 Voice/Data Services

4-67

)

pVCS—>cSampleOn = 0;
pVCS—>cSampleOff = 0;
pVCS—->f6KHz = 1lRateNotSet;
pVCS—>fAutoStart = OxFF;
pVCS->fNoPause = OXFF;
pvVCS->£fStopOnDialTone = 0;
pvCS->fAltConnection = 0;
pVCS—->nSectorStatusUpdate = 0;
pVCS—->sPauseGap = 0;
pvCS->fRawData = 0;

return(ercOK) ;

/**************************’k***************************/
int Append(fh, pVCS, psWorkArea, pWorkArea)

int fh;

struct VCSType *pVCS;

unsigned long. int *psWorkArea;
union p_u pWorkArea;

struct VDFHType VDFH;
int erc, sDatdaRet;

/*
* Read in the first sector of the file
*

erc = Read(fh, &VDFH, 512, 0, &sDataRet);

if (erc != ercOK) return(erc);

/*
* Will the file fit in the workarea?
*/

if ((VDFH.message[0].lfaMax -
VDFH.message[0] .1faStart +
*psWorkArea) > lsWorkAreaMax)
return (lercVoiceFileTooLarge);

Listing 4-3. Memory.c (Page 9 of 11)

4—~68 CTOS Programming Guide, Volume II

6/91

*
* Check to see if this file is recorded at same rate
* as previous file. If VCS.f6KHz is set to
*1RateNotSet, then set rate. Otherwise, compare
*rates.
*
if (pvCS->f6KHz == 1RateNotSet) {
pVCS—>f6KHz = VDFH.message[0].f6KHz;
} else {
if (pvCS—->f6KHz != VDFH.message[0].f6KHz) {
return(lercVoiceFilesNotCompatible);
}
}
/*
* Munge pointer so that the voice records are
* read in after either the 8192 byte header or the
* previous file.
*/
pWorkArea.i[0] = (unsigned int) *psWorkArea;
erc = Read(fh, pWorkArea.p,
(VDFH.message[0] .1faMax— VDFH.message[0].lfaStart),
512, &sDataRet);
if (erc != ercOK) return(erc);

/*

* Update sWorkArea to include this file
*/
*psWorkArea = VDFH.message[0].lfaMax -—
VDFH.message[0] .1faStart +
*psWorkArea;
return(ercOK) ;

**/

void CleanUp(erc, fhl, fh2, fh3, pWorkArea)

int erc, fhl, fh2, fh3;
char *pWorkArea;

{

*
* Close the files, if they are open. Error checking
* is not done, because we want to clean up as much
* as possible before leaving.
*/
if (fhl != 0) CloseFile(fhl);
if (fh2 != 0) CloseFile(fh2);
if (fh3 != 0) CloseFile(fh3);

Listing 4-3. Memory.c (Page 10 of 11)

6/91 Voice/Data Services 4—69

/*
* Unlock the codec
*/

TsDoFunction(liVpModule, 13);
*

* Deallocate SL memory
*

DeallocMemorySL(pWorkArea, lsWorkAreaMax);
/*
* Handle the error code
*/
switch (erc) {
case lercVoiceFileTooLarge:
printf("The voice files are larger than \
56K.\n");
ErrorExit(0);
break;
case lercNotAVoiceFile:
printf("The specified voice file is \
invalid.\n");
ErrorExit(0);
break;
case lercVoiceFilesNotCompatible:
printf("Voice file recorded rates \
different.\n");
ErrorExit(0);
break;
default:
ErrorExit(erc);

Listing 4-3. Memory.c (Page 11 of 11)

4-70 CTOS Programmiﬁg Guide, Volume II 6/91

Listing 4-4: Data Call

This program shows how a telephone or voice application can make a data
call. It uses the Asynchronous Terminal Emulator (ATE). The exit run
file for the partition is saved in the Application System Control Block
(ASCB), and the currently executing run file (DataCall.run) is substituted
as the exit run file before the Chain to ATE. When ATE terminates,
DataCall.run gets reloaded, and if it detects that it is called because of the
termination of ATE, it restores the previous run file and then exits. This
example does this because an application that places a data call would
probably want to resume after completion of the call. See the comments
in the code for the entry and exit points when run from a larger
application.

This program is for B25/NGEN workstations only.

/*
* Program title: DataCall.c

* Compiler: Metaware High C Compiler
*
DataCall

Comm Channel

Baud rate

Stop bits

Parity

Data bits

XON/XOFF

Script

Open mode

[Dial String]

Explanation of command form options:

Comm Channel: Comm Port or VP Line
(default = [Phonell)

Baud rate: Data transmission speed
(default = 1200)

Stop bits: Number of data stop bits per frame
(default = 1)

Parity: Definition of frame parity bit.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* (default = Even)

Listing 4-4. DataCall.c (Page 1 of 11)

6/91 Voice/Data Services 4—71

¥ % % % ¥ % ¥ % %

*

XON/XOFF: Use XON/XOFF flow control?

(default = no)

Script: Filename of command script.
(default = "")

Open mode: Default = Dial

Dial string: Phone number to dial (required)

#include <string.h>
#include <stdlib.h>

#define Syslit
#define sdType
#include <CTOSTypes.h>

#define sAscb 304
struct ASCBType {

int fhSwapFile;

char *pVLPB;

char fExecScreen;
char fChkBoot;

int ercRet;

char *pbMsgRet;

int cbMsgRet;

char DtModelD;

char DtModeYmd;

char DtModeTim;

char DtModeFnt;

char reserved;

char fChainedTo;
char fTermination;
char fVacate;

int oLastTask;

char fExecFont;

char bActionCode;
int cParMemArray;
int ALSignature;

int fhContext;

char fDollarContext;
char *pExitRunFileBuf;
char *pbPassedData;
int cbPassedData;
char sbNodeMail[13];
long gMailId;

int naMailServer;
char sbUserName[31];

Listing 4-4. DataCall.c (Page 2 of 11)

4-72 CTOS Programming Guide, Volume II

6/91

char
char
char
char
char
char
char
char
char
char
char
char
char
char
char

}i

sbUserPswd[13];
sbCmdFile([79];
cbExitRunFile;
ExitRunFile([78];
cbPswd;
Pswd[12];
priority;
fColor;
rgbColorBytes|[8];
fReversevVideo;
fBackGround;
bBackGround;
fFilter;
bStatusRet;
reserved2([10];

struct ExParDescType {

char
char .
char
char
}i
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

sbCurRunFileSpec([79];
sbExitRunFileSpec([79];
sbExitRunFilePswd[13];
ExitRunFilePriority;

AllocMemoryLL
Chain

CheckErc
CloseFile
ErrorExit
GetpASCB
GetpStructure
OpenFile
QueryExitRunFile
ResetMemoryLL
RgParam
RgParamInit
RgParamSetSimple
SetExitRunFile

#include <CTOSLib.h>

/*

* constants

*/
#define
#define
#define
#define
#define
#define

6/91

1CommChannel 2
1BaudRate 3
1StopBits 4
lParity 5
lDataBits 6
1XOnXoff 11

Listing 4-4. DataCall.c (Page 3 of 11)

Voice/Data Services

#define 1lScript 12
#define lOpenMode 13
#define 1lDialChars 15
#define 1VLPBSize 300
#define 1lFileNameMax 30
#define lPasswordMax 12
#define 1CTSignature 0x4354
#define 1Priority 0x40
#define lParameterFound 0
#define lParameterNotFound 2450
/*

* procedure definitions

*/
int GetParams();
int SaveExitRunFile();
int RestoreExitRunFile();

*

* global variables
*

char rgbParams([9] [20];

/**/
void main()

int fh;

char *pVLPB;

struct ASCBType *pASCB;
struct ExParDescType *pEPD;
sdType sdTemp;

/* :
* Check to see if we are returning from the Chain
*

CheckErc(GetpASCB(&pASCB)) ;
/*
* In SaveExitRunFile the ALSignature is set to CT
* so we know if we are returning from a Chain.
*/
if (pASCB->ALSignature == 1CTSignature) {
CheckErc(RestoreExitRunFile())
/*
* If this were an actual application, this is
* where the application would continue after the
* data call. For this example, we exit.
*/
ErrorExit(0);

Listing 4-4. DataCall.c (Page 4 of 11)

4—74 CTOS Programming Guide, Volume II 6/91

*
* Save all the parameters to DataCall before
* calling RgParamInit
*
CheckExrc(GetParams());
VA
* Prepare VLPB for ATE command options.
*/
CheckErc(ResetMemoryLL())
CheckErc(AllocMemoryLL(1VLPBSize, &pVLPB));
CheckExc(RgParamInit (pVLPB, 1VLPBSize, 17));
*

* Fill in fields of VLPB.

*/
sdTemp.pb = &rgbParams[0][1];
sdTemp.cb = rgbParams[0] [0];
if (sdTemp.cb != 0)

CheckErc(RgParamSetSimple(lCommChannel, &sdTemp));

sdTemp . pb &rgbParams[1] [1];

sdTemp.cb rgbParams[1][0];

if (sdTemp.cb != 0)
CheckErc(RgParamSetSimple(lBaudRate, &sdTemp));

sdTemp.pb = &rgbParams([2][1];

sdTemp.cb = rgbParams[2][0];

if (sdTemp.cb != 0)
CheckErc(RgParamSetSimple(1StopBits, &sdTemp));

sdTemp.pb = &rgbParams([3][1];

sdTemp.cb = rgbParams[3][0];

if (sdTemp.cb != 0)
CheckErc(RgParamSetSimple(lParity, &sdTemp));

sdTemp.pb = &rgbParams[4][1];

sdTemp.cb = rgbParams[4][0];

if (sdTemp.cb != 0)
CheckErc(RgParamSetSimple(lDataBits, &sdTemp));

sdTemp.pb = &rgbParams[5][1];
sdTemp.cb = rgbParams[5][0];
if (sdTemp.cb != 0)

CheckErc(RgParamSetSimple (1XOnX0ff, &sdTemp));

sdTemp . pb &rgbParams[6] [1];

sdTemp.cb rgbParams[6] [0];

if (sdTemp.cb != 0)
CheckErc(RgParamSetSimple(lScript, &sdTemp));

o

Listing 4-4. DataCall.c (Page 5 of 11)

6/91 Voice/Data Services

sdTemp.pb = &rgbParams[7][1];

sdTemp.cb = rgbParams[7][0];

if (sdTemp.cb != 0)
CheckErc(RgParamSetSimple(lOpenMode, &sdTemp));

sdTemp. pb s&rgbParams([8] [1];

sdTemp.cb rgbParams[8] [0] ;

if (sdTemp.cb != 0)
CheckErc(RgParamSetSimple(lDialChars, &sdTemp));

/*
* Check to make sure that the ATE run file is
* present.
*/

CheckErc(OpenFile(&fh, "[sys]<sys>ATE.run", 17, "",

0, modeRead)); .

CheckErc(CloseFile(fh));

/*
* Save the current exit run file before setting it
* to this program.
*

CheckErc(SaveExitRunFile());
*

* Get address of the Extended Partition Descriptor

*/
CheckErc(GetpStructure(0, 0, &pEPD));
/*

* Set exit run file to ourselves.

*/

CheckErc(SetExitRunFile(& (pEPD->sbCurRunFileSpec(1]),
pEPD—->sbCurRunFileSpec[0],
& (pEPD-)>sbExitRunFilePswd[1]),
pEPD—>sbExitRunFilePswd[0],
pEPD->ExitRunFilePriority));
/*
* Chain to ATE.
*
CheckErc(Chain(" [sys] <sys>ATE.run", 17, 0, O,
1Priority, 0, 0));

Listing 4-4. DataCall.c (Page 6 of 11)

4—-76 CTOS Programming Guide, Volume II 6/91

/***‘k**/
int GetParams()

{

/*
* rgbParams is a two dimensional array that holds
* the field values from the command form of DataCall
*/

int erc;

sdType sdParam;

/*
* Get the parameters, filling in the default values
* if they are not supplied.
*/
erc = RgParam(1l, 0, &sdParam);
switch(erc) {)
case lParameterFound:
strncpy(&rgbParams[0] [1], sdParam.pb,
sdParam.cb);
rgbParams[0] [0] = sdParam.cb;
break; .
case lParameterNotFound:
strnepy(&rgbParams{0] [1], "[Phonell", 8);
rgbParams[0] [0] = 8,
break;
default:
return(erc);

}

erc = RgParam(2, 0, &sdParam);
switch(erc) {
case lParameterFound:
strnepy(&rgbParams[1] [1], sdParam.pb,
sdParam.cb) ;
rgbParams[1] [0] = sdParam.cb;
break;
case lParameterNotFound:
strnepy(&rgbParams[1] [1], "1200", 4);
rgbParams[1] [0] = 4;
break;
default:
return(erc);

Listing 4-4. DataCall.c (Page 7 of 11)

6/91 Voice/Data Services 4—77

erc = RgParam(3, 0, &sdParam);
switch(erc) |
case lParameterFound:
strnepy(&rgbParams([2][1],
sdParam.cb) ;
rgbParams[2] [0] = sdParam.
break;
case lParameterNotFound:
strncpy(&rgbParams([2][1],
rgbParams[2] [0] = 1;
break;
default:
return(erc);

)

erc = RgParam(4, 0, &sdParam);
switch(erc) {
case lParameterFound:
strncpy(&rgbParams{3][1],
sdParam. cb) ;
rgbParams[3] [0] = sdParam.
break;
case lParameterNotFound:
strncpy(&rgbParams([3][1],
rgbParams([3] [0] = 4;
break;
default:
return(erc);

)

erc = RgParam(5, 0, &sdParam);
switch(erc) {
case lParameterFound:
strncpy(&rgbParams[4][1],
sdParam.cb);
rgbParams[4] [0] = sdParam.
break;
case lParameterNotFound:
strncpy(&rgbParams[4]([1],
rgbParams[4][0] = 1;
break;
default:
return(erc);

sdParam. pb,

cb;

"l", 1);

sdParam. pb,

cb;

"Even", 4);

sdParam. pb,

cb;

"7l|, 1);

Listing 4-4. DataCall.c (Page 8 of 11)

4-78 CTOS Programming Guide, Volume II

6/91

erc = RgParam(6, 0, &sdParam);
switch(erc) {
case lParameterFound:
strncpy(&rgbParams[5] [1], sdParam.pb,
sdParam.cb); :
rgbParams[5] [0] = sdParam.cb;
break;
case lParameterNotFound:
strncpy(&rgbParams([5] [1], "no", 2);
rgbParams[5] [0] = 2;
break;
default:
return(erxrc);

}

- erc = RgParam(7, 0, &sdParam);
switch(erc) {
case lParameterFound:
strnecpy(&rgbParams[6] [1], sdParam.pb,
sdParam.cb);
rgbParams[6] [0] = sdParam.cb;
case lParameterNotFound:
strncpy(&rgbParams([6][1], "", 0);
rgbParams[6] [0] = O0;
break;
default:
return(erc);

}

erc = RgParam(8, 0, &sdParam);
switch(erc) {
case lParameterFound:
strnepy(&rgbParams[7][1], sdParam.pb,
sdParam.cb);
rgbParams[7] [0] = sdParam.cb;
break;
case lParameterNotFound:
strnepy(&rgbParams[7][1], "Dial", 4);
rgbParams[7][0] = 4;
break;
default:
return(erc);

Listing 4-4. DataCall.c (Page 9 of 11)

6/91 Voice/Data Services

)

*

* The dial string must be specified, so if it is not
* present, the program will call ErrorExit
*/
erc = RgParam(9, 0, &sdParam);
switch(erc) {
case lParameterFound:
strncpy(&rgbParams[8] [1], sdParam.pb,
sdParam.cb);
rgbParams[8] [0] = sdParam.cb;
break;
default:
return(erc);
}

return(ercOK);

/**/
int SaveExitRunFile()

{

char sbExitRunFile[lFileNameMax],

sbExitRunFilePswd [lPasswordMax], bExitRunFilePr;
int erc;
struct ASCBType *pASCB;

/*
* Get address of ASCB
*/
erc = GetpASCB(&pASCB);
if (erc != ercOK) return(erc);
/*
* Save exit run file,
*/

erc = QueryExitRunFile(&sbExitRunFile, 1lFileNameMax,
&sbExitRunFilePswd, lPasswordMax,
&bExitRunFilePr);
if (erc != ercOK) return(erc);
/*
* Update ASCB with run file name
*/
pASCB->cbExitRunFile = sbExitRunFile[O0];
strncpy (pASCB->ExitRunFile, &sbExitRunFile[l],
sbExitRunFile[0]);
pPASCB->cbPswd = sbExitRunFilePswd[0];
strncpy (pASCB->Pswd, &sbExitRunFilePswd[1l],
sbExitRunFilePswd[0]);
PASCB->priority = bExitRunFilePr;

Listing 4-4. DataCall.c (Page 10 of 11)

4-80 CTOS Programming Guide, Volume II 6/91

/*
* Use batch signature to know if we are returning
* from Chain.

*/

pASCB->ALSignature = 1CTSignature;

return(ercOK);

int RestoreExitRunFile()

{

int erc;
struct ASCBType *pASCB;

*
* Get address of ASCB

*/
erc = GetpASCB(&pASCB);

if (erc != ercOK) return(erc);
/*

* Restore original exit run file so that DataCall
* exits normally.
*/
erc = SetExitRunFile(pASCB->ExitRunFile,
pPASCB->cbExitRunFile, pASCB->Pswd, pASCB->cbPswd,
PASCB->priority);

if (erc !'= ercOK) return(erc);
pASCB->cbExitRunFile = 0;
/%

* Reset signature

*/

PASCB->ALSignature = 0;
return(ercOK) ;

Listing 4-4. DataCall.c (Page 11 of 11)

6/91 Voice/Data Services 4—81

Listing 4-5: Audio Service Example

The following code fragment illustrates the use of the AsGetVolume and
AsSetVolume operations. (This code is not supplied on disk.) In this
excerpt, AsGetVolume is used to obtain the current volume setting, which
is put on the screen as part of a menu asking the user to specify how to
change the volume setting. Then AsSetVolume changes the volume
setting according to the volume type selected by the user. This example is
for Series 5000 workstations only.

void VolumeSubmenu(void)

{

char ch;
Byte bVolumeType;
unsigned int wVolumeSetting;

Cls():
while(TRUE)

bvolumeType = 1; /* always 1 for AsGetVolume */
CheckErc(AsGetVolume(iModule, bvolumeType,
&wVolumeSetting));

printf("\n\n Volume submenu\n\n"); ’
printf(" Volume currently set to %d\n",

wVolumeSetting);
printf("S Specify a new volume setting\n");
printf ("I Increment current volume by 16\n");
printf ("D Decrement current volume by 16\n\n");
printf ("R Return to MAIN MENU\n");

CheckErc(ReadKbdDirect (0, &ch));
switch(toupper(ch))

{
/*
* Set the volume explicitly
*/
case 'S':
bvolumeType = 1; /* 1 means set volume to

* specified value */
printf("\n\n Volume range is 0 - 1024. 0 =
silence, "
"256 = full vol, >256 =
amplification");

Listing 4-5. Audio Service Example (Page 1 of 2)

4-82 CTOS Programming Guide, Volume II 6/91

printf("\n Volume setting: ");

wVolumeSetting = GetDecWord();

CheckErc(AsSetvolume(iModule, bVolumeType,
wVolumeSetting));

break;
/*
* Increment volume by 16
*/
case 'I':
bvolumeType = 2; /* 2 means increment
* volume by 16 */
CheckErc(AsSetVolume(iModule, bVolumeType,
wVolumeSetting));
break;
/%
* Decrement volume by 16
*/
case 'D':
bvolumeType = 3; /* 3 means decrement
* volume by 16 */
CheckErc(AsSetVolume(iModule, bVolumeType,
wVolumeSetting));
break;
/*
* Return to main menu from this volume submenu
*/
case 'R':
printf("\n\n\n");
return;
/*
* Beep on unexpected response
*/
default:
Beep()

Listing 4-5. Audio Service Example (Page 2 of 2)

6/91 Voice/Data Services 4—83

Data Structures

Table 4-2. Telephone Service Configuration File Format

Size
Offset Field (bytes) Description
0 signature 2 always 'tC’
2 version 2 configuration file version number
4 TsConfig 252 configuration information
256 OperatorConfig 768 used for storing opérator configuration
signature

is always ’tC’.
version

is the version number of the configuration file (currently 1).
TsConfig

is configuration information. For the format of this information, see
Table 4-3, in this chapter.

operatorConfig
is an area used by the Operator program to store configuration

information such as the phone number of each line, diaing prefixes,
and so forth.

4—84 CTOS Programming Guide, Volume 11 6/91

Table 4-3. Telephone Service Configuration Block

Size
Offset Field (bytes) Description
0 rgDtmfGenOff 2 time between DTMF tones
2 rgDtmfGenOn 2 time during DTMF tones
4 rgFlashTime 2 length of a default flash ("@" in dial string)
6 rgPauseTime 2 length of a default pause ("™ in dial string)
8 rgfPulseDial 2 TRUE means pulse dialing is used
10 rgRingHz 4 workstation monitor ring signal frequency
14 rgiRingThrough 2 ring number in which the ring current sent
16 rgRingMode 2 ring mode for each line
18 rgCodecMode 2 CODEC mode
20 nSecHoldRing 2 ring if on hold this many seconds
22 nSecHoldHangup 2 hang up if on hold this many seconds
24 rgbConfigfile 100 Telephone Service configuration file name
124 rgAction 64 action key values mapped to TsDoFunction
188 rgFunction 64 functions executed when action key typed
rgDimfGenOff
rgDtmfGenOn

specify the time between (rgDimfGenOff) and during (rgDtmfGenOn)
DTMF tones when dialing, in units of 10ms. Most PBX’s can handle
values of 10 (100ms), and some as little as 6 (60ms). The default is 6
for rgDtmfGenOff and 8 for rgDtmfGenOn.

rgFlashTime

specifies the length of a default flash ("@" character in a dial string) in
units of 100ms. Most PBX’s use a value of 10 (1 second). The default
is 10.

rgPauseTime

specifies the length of a default pause ("™ character in a dial string) in
units of 100ms. The default is 20.

6/91

Voice/Data Services 4—85

rgfPulseDial

is a flag. If TRUE, pulse dialing is used instead of DTMF generation.
The default is FALSE.

rgRingHz

is an array used to specify the frequency of the workstation monitor’s
ringing signal when the telephone line is ringing. A value of 0 means
no tone is generated. The range of frequencies is 1 to 255.

Byte Description

0 neither line (default 0)

1 line 1 (default 40)

2 line 2 (default 90)

3 both lines 1 and 2 (default 150)
rgiRing Through

is the ring number in which the ring current will be sent directly to the
telephone unit. A value of OFFFFh means the ring current is never
passed through. The default is 4.

rgRingMode

is the ring mode for each line. When a line rings, some combination
of monitor ringing and telephone unit ringing is done. The ring mode
values are

Value Description

0 Do not ring either the telephone unit or the
monitor.

1 Ring only the telephone unit.

2 Ring only the monitor.

3 Always ring both the telephone unit and the
monitor.

4-86 CTOS Programming Guide, Volume II 6/91

Value Description
4 Ring the monitor for the number of rings
‘ specified in rgiRingThrough above, then ring
the telephone unit.

5 Ring the monitor for the number of rings
specified in rgiRingThrough above, then ring
both the monitor and the telephone unit
(default).

rgCodecMode
is the CODEC mode (always 0).
nSecHoldRing

ring if on hold this many seconds (default is 300).

nSecHoldHangup

hang up if on hold this many seconds (default is 600).

rgbConfigfile

is the Telephone Service configuration file name.

rgAction

is an array of action key values (encoded keyboard values) to be
mapped to TsDoFunction functions. A value of 0 terminates the list.

rgFunction

is an array of functions (see TsDoFunction in the CTOS Procedural
Interface Reference Manual) to be executed when the corresponding
action key listed in rgAction is typed.

6/91 Voice/Data Services 4—87

Table 4-4. Telephone Status Structur

(Page 1 of 2) :

Size
Offset Field (bytes) Description

0 iEvent 2 incremented with status structure change
2 defaultline 1 default line as selected by TsDoFunction
3 fNeedCodecConnection 1 TRUE means a voice operation is waiting
4 fCodecinUse 1 CODEC is recording or playing back
5 pVPCB 3 24-bit physical address of the VPCB
8 reserved 2

10 baudRate 2 either 300 or 1200

12 originateMode 1 either TRUE or FALSE

13 parityMode 1 is0,1,2,3,0r4

14 lineControlMode 1 eitherOor 1

15 reserved 1

16 tUnitState 16 telephone unit state (see tUnitState below)

32 rgLineState(2) 32 line 1/line 2 states (see lineState below)

64 codecState 16 CODEC state (see codecState below)

tUnitState Fields
Size
Offset Field (bytes) Description

0 fOffHook 1 if TRUE, the telephone unit is offhook
1 rgfTLine(2) 2 line 1/line 2 connection to telephone unit
3 rgfRingThrough(2) 2 line 1/line 2 ring voltage to telephone unit
5 fCodec 1 telephone unit connection to the CODEC
6 fDtmfRec 1 telephone unit DTMF decoder connection
7 fMonitor 1 telephone unit monitor mode connection
8 handle 2 telephone unit connection handle

10 hookThroughMode 1 mode for passing through on/offhook

11 reserved 5

4—-88 CTOS Programming Guide, Volume II 6/91

Table 4-4. Telephone Status Structure
(Page 2 of 2)

lineState Fields

Size
Offset Field (bytes) Description

0 status 1 line status
1 fDialing 1 dial string is being processed on this line
2 dialState 1 the current state of dialing
3 fRinging 1 if TRUE, the line is ringing
4 iRing 1 number of rings
5 fRingThrough 1 passing ring through to the telephone unit
6 fOffHook 1 if TRUE, the line is offhook
7 fHold 1 if TRUE, the line is on hold
8 fCodec 1 if TRUE, the CODEC is being used
9 {DtmfRec 1 if TRUE, the DTMF detector is being used

10 handle 2 telephone unit connection handle

12 reserved 1

13 fModem 1 if TRUE, the modem is being used

14 reserved 2

codecState Fields
Size
Offset Field (bytes) Description

0 IfaCurrent 4 ifa of data record last processed
4 qgSampleCurrent 4 data byte number last processed
8 reserved 8

iEvent

is a counter which is incremented every time the contents of the status

structure changes.

defaultLine

is the default line as selected by TsDoFunction.

6/91

Voice/Data Services 4—89

fNeedCodecConnection
is a flag that is TRUE if a voice operation is waiting for a connection.
fCodecInUse

is a flag that is TRUE if the CODEC is recording or playing back
voice.

pVPCB

is the 24-bit physical address of the Voice Processor Control Block
(VPCB).

baudRate

is either 300 or 1200.
originateMode

is TRUE if the originator or FALSE if the answerer.
parityMode

is the parity control, where the values are

Value Descripﬁon

0 none

1 even (bit 7 is set or cleared so that there are
always an even number of bits set in each
byte)

2 odd (bit 7 is set or cleared so that there are

always an odd number of bits set in each byte)

3 1 (bit 7 is always set); also known as ’mark’
4 0 (bit 7 is always cleared); also known as
’space’

4-90 CTOS Programming Guide, Volume II 6/91

lineControlMode

is one of the following values:

Value Description

0 no flow control

1 XON/XOFF flow control
tUnitState

is the telephone unit state. (See "tUnitState Fields,” below.)
rgLineState

are the line 1 and line 2 states. (See "lineState Fields,” below.)
codecState

is the CODEC state. (See "codecState Fields,” below.)
tUnitState Fields
fOffHook

is a flag that is TRUE if the telephone unit is offhook.
rgfTLine

is an array of flags which, if TRUE mean line 1 and/or line 2 is
connected to the telephone unit.

rgfRingThrough

is an array of flags which, if TRUE mean line 1 or line 2 is connected
directly to the telephone unit to allow ring voltage to be passed
through.

fCodec

is a flag that is TRUE if the telephone unit is connected to the
CODEC.

6/91 v Voice/Data Services 4—91

fDtmfRec

is a flag that is TRUE if the telephone unit is connected to the DTMF
decoder.

fMonitor

is a flag that is TRUE if the telephone unit is connected in monitor
mode.

handle
is the handle associated with the current telephone unit connection.
hookThroughMode

is the mode for passing through on/off hook from the telephone unit to
the telephone lines. The values are

Value Description
0 neither line
1 line 1

2 line 2

3 both lines

lineState Fields

status

is the line status. The values are

Value Description

0 onhook

1 ring current detected
2 modem not ready

4-92 CTOS Programming Guide, Volume Il 6/91

Value Description

3 modem ready (FSK, 300 baud)
4 modem ready (PSK, 1200 baud)
5 offhook

fDialing

is a flag that is TRUE if a dial string is being processed on this line.
dialState

is the current state of dialing. The values are

Value Description
0 idle
1 . generating DTMF
2 analyzing CPTR (waiting for dial tonc)
3 generating pulse
4 generating flash
5 generating pause
6 analyzing CPTR (waiting for any tone)
7 analyzing CPTR (waiting for answer)
255 performing error recovery
fRinging

is a flag that is TRUE if the line is ringing.
iRing

is the number of rings.

6/91 Voice/Data Services 4—93

fRingThrough

is a flag that is TRUE if the ringing is being passed through to the
telephone unit.

fOffHook

is a flag that is TRUE if the line is offhook.
fHold

is a flag that is TRUE if the line is on hold.
fCodec

is a flag that is TRUE if the CODEC is being used.
fDtmfRec

is a flag that is TRUE if the DTMF detector is being used.
handle

is the connection handle associated with the current telephone unit
connection.

fModem
is a flag that is TRUE if the modem is being used.
codecState Fields
IfaCurrent
is the logical file address (Ifa) of the data record last processed.
qSampleCurrent

is the data byte number last processed.

4-94 CTOS Programming Guide, Volume II 6/91

Table 4-5. Voice File Header

Size
Offset Field (bytes) Description
0 signature 2 must be 'VC’ (4356h)
2 version 2 version of file
4 nMessages 2 number of recordings in this file
6 rgMessages(15) 480 (see "Message Fields")
485 reserved 26
Message Fields
Size
Offset Field (bytes) Description
0 f6KHz* 1 if TRUE, the data was recorded at 6KHz
1 IfaStart 4 starting Ifa in file of voice data
5 IfaMax 4 ending Ifa in file of voice data
9 gSampleStart 4 starting data byte count of voice data
13 gSampleMax 4 ending data byte count of voice data
17 reserved 1
18 dateTime 4 system date/time when recording made
22 line* 1 line over which recording was made
23 fNoPause* 1 FALSE if pause compressed
24 fAltConnection* 1 TRUE if recorded with alternate connection
25 {PCM 1 TRUE if PCM recording method used
26 rgbReserved 6

* This field does not apply to Series 5000 workstations.

Voice File Header Fields

signature

must be *VC’ (4356h).

version

is the version of the file. For the Telephone Service, this value is 1.
For the Audio Service, this value is 2 for Series 5000 Adaptive Pulse
Code Modulation and 3 for Series 5000 Pulse Code Modulation.

6/91

Voice/Data Services 4—95

nMessages

is the number of messages in the file.

rgMessages

is the array of 15 messages. The format of each is described in
"Message Fields,” below.

Message Fields
f6KHz

is a flag that is TRUE if the data was recorded at 6KHz.
IfaStart | |

is the starting Ifa in the file of the recording.
lfaMax-

is the ending Ifa in the file of the recording.
qSampleStart

is the starting data byte count of the recording.
qSampleMax

is the ending data byte count of the recording.
dateTime

is the system date and time when the recording was made.

4-96 CTOS Programming Guide, Volume II 6/91

line

is the line over which the recording was made. The values of line are

Value Description

0 telephone unit

1 telephone line 1

2 telephone line 2
fNoPause

is a flag that is TRUE if the pause compression was suppressed during
recording.

fAltConnection

is a flag that is TRUE if the alternate (amplified) connection was used
to record.

fPCM

is a flag that is TRUE if the PCM recording method is to be used
instead of the ADPCM recording method. This field only applies to
Series 5000 workstations.

6/91 Voice/Data Services 4—97

Table 4-6. Voice File Record

Size

Offset Field (bytes) Description
0 gSampleStart 4 number of the first sample in this record
4 signature 1 always 'V’ (56h)
5 version 1 version number of data file
6 rgbSample 506 voice data
qSampleStart

is the accumulated sample number of the first sample in this record.
signature

is always *V’ (56h).
version

is the version number of the data file. Each value indicates the
following:

Value Description
1 B25/NGEN adaptive pulse code modulation
(ADPCM)
2 Series 5000 ADPCM
3 Series 5000 pulse code modulation (PCM)
rgbSample

is the voice data bytes.

4-98 CTOS Programming Guide, Volume Il 6/91

Table 4-7. Voice Control Structure

Size
Offset Field (bytes) Description

0 fh 2 is an open file handie

2 IfaStart 4 file position to start the recording/playback

6 IfaMax 4 position where record/playback terminate
10 qgSampleStart 4 sample number to start record or playback
14 gSampleMax 4 number terminating recording/playback
18 cPauseMax 2 max silence before recording terminated
20 cSampleOn 2 determine the playback "fast forward” rate
22 cSampleOff 2 determine the playback "fast forward” rate
24 f6KHz* 1 determines sampling rate
25 fAutoStart* 1 determines record/playback start
26 fNoPause* 1 disables pause detection hardware
27 {StopOnDialTone* 1 recording terminated if dial tone detected
28 fAltConnection* 1 alternate connection increases gain levels
29 nSectorStatusUpdate 2 response to TsGetStatus requests
31 sPauseGap* 2 number of data bytes in pause
33 fRawData* 1 data not checked for escape sequences
34 {PCM 1 TRUE if PCM recording method used

* This field does not apply to Series 5000 workstations.

fn

is the open file handle (or OFFFFh if playing back from memory) of
the voice file.

IfaStart

is the logical file address (Ifa) at which to start recording or playing
back.

IfaMax
is the Ifa which, if reached, will terminate recording or playback.

gSampleStart

is the sample number to be assigned to the first sample recorded, or to
be skipped to on playback.

6/91 Voice/ Data Services 4—99

gSampleMax

is the sample number, which if reached will terminate recording or
playback.

cPauseMax

is the maximum silence (in units of 100ms) when recording before the
recording is terminated (the terminating pause will not be included in
the recording).

On playback, all pauses will be truncated to this amount. A value of
OFFFFh means no pause termination or truncation.

cSampleOn
cSampleOff

determine the - playback "fast forward” rate. A zero value for
cSampleOff means playback at normal speed. The cSampleOn value
determines the number of pairs of samples that will be played back,
and cSampleOff is the number of sample pairs that will be discarded.
cSampleOn should be greater than 50. To playback at double speed,
values of 100 and 100 could be used. To playback at triple speed,
values of 100 and 200 could be used.

f6KHz

is a flag that is TRUE if the CODEC sampling rate is to be 6KHz.
Otherwise the rate is 8KHz (8000 4-bit samples per second).

fAutoStart

is a flag that is TRUE if recording or playing back is to start as soon as
the telephone unit is placed offhook, or immediately if it is already
offthook.

fNoPause

is a flag that is TRUE if the pause detection hardware is to be disabled
and no pause detection or compression will be done.

4-100 CTOS Programming Guide, Volume II 6/91

fStopOnDialTone

is a flag that is TRUE if the recording is to be terminated if a dial tone
is detected.

fAltConnection

is a flag that is TRUE if an alternate connection will be used (if
possible) to increase gain levels.

nSectorStatusUpdate

is a value that, if greater than zero, will cause any TsGetStatus
requests to be responded to each time the specified number of sectors
has been processed.

sPauseGap

is the number of data bytes after start of pause and before end of
pause where the actual data is used. If sPauseGap is O the default
value (250) will be used.

fRawData

is a flag that is TRUE if the voice data is to be recorded or played
back without examination of the data for escape sequences.

fPCM

is a flag that is TRUE if the PCM recording method is to be used
instead of the ADPCM recording method. This field applies only to
Series 5000 workstations.

6/91 Voice/Data Services 4—101

Table 4-8. Data Control Structure

Size
Offset Field (bytes) Description
0 openMode 1 data open mode
1 fOriginate 1 TRUE programs modem in originate mode
2 cTimeout 2 maximum time to complete the open
4 baudrate 2 either 300 or 1200
6 parity 1 is the parity control
7 lineControl 1 sets flow control mode
8 fLL 1 termination request doesn’t close service
9 fEndOfBlock 1 bEndOfBlock used as last character
10 bEndOfBlock 1 character terminating TsDataRead
11 . fHangup 1 TRUE places the line onhook
12 fCharMode 1 data processing on a per character basis
13 fNoWaitForDialTone 1 Telephone Service waits for dial tone
14 fReadTimeoutReset 1 counter is reset when character is received
15 fWriteTimeoutReset 1 counter reset when character transmitted
openMode

is the data open mode. The values are

Value

0

1
2

[Originate

Description

Convert. Convert an existing voice call to a
data call.

Accept. Wait for an incoming call to occur.

Dial. Place an outgoing data.

is a flag. If TRUE the modem will be the originator. Otherwise it is
the answering party.

cTimeout

is the maximum time that is allowed to complete the open after the
initial connection before returning status code 11206 (“Timeout”).

4—102 CTOS Programming Guide, Volume II 6/91

baudrate
is either 300 or 1200
parity

is the parity control. The values are

Value Description

0 " none

1 even (bit 7 is set or cleared so that there are
always an even number of bits set in each
byte)

2 odd (bit 7 is set or cleared so that there are
always an odd number of bits set in each byte)

3 1 (bit 7 is always set); also known as ’mark’

4 0 (bit 7 is always cleared); also known as
’space’

lineControl

is one of the following values:

Value Description

0 no flow control

1 XON/XOFF flow control
fLL

is a flag that should be set TRUE by the program if it is running on a
Single Partition version of the operating system.

fEndOfBlock

is a flag. TRUE means the byte value in bEndOfBlock will be used as
the last character in any TsDataRead operation.

6/91 Voice/Data Services 4—103

bEndOfBlock

is the character that will terminate a TsDataRead operation when
JEndOfBlock is TRUE.

fHangup

is a flag. TRUE means the line will be placed onhook at the
completion of data transmission. Otherwise it will be placed on hold
when the data call is closed or terminated.

fCharMode

is a flag. TRUE means data will be processed on a per character
basis, rather than on a block basis.

fNoWaitForDialTone

is a flag. TRUE means the Telephone Service will not wait for a dial
tone before dialing.

fReadTimeoutReset

is a flag. TRUE means the Telephone Service will reset its timeout
counter for the TsDataRead operation whenever a character is
received.

fWriteTimeoutReset

is a flag. TRUE means the Telephone Service will reset its timeout
counter for the TsDataWrite operation whenever a character is
transmitted. '

4—104 CTOS Programming Guide, Volume II 6/91

S

Performance Statistics Service

Overview

The Performance Statistics Service collects measurements of I/0 (disk,
device, and file system) and processing (processes and partitions). An
application can open either a logging session or a statistics session. During
a logging session, the Performance Statistics Service keeps a log of either
(1) the current active process in the ready queue or (2) the use of
short-lived and long-lived memory.

During a statistics session, the service collects different types of statistics.
The types of statistics include:

. processor activity, including number of idle process cycles,
number of normal task switches, number of processes
terminated normally and abnormally, number of partitions
swapped in and out

° disk activity, including number of hard disk errors, number of
soft disk errors, and number of IOBs in process

. file system activity, including number of files created,
renamed, opened, closed, and deleted, number of files with
remade handles, and number of files with length changes

. other disk activity, including number of seeks that occurred
during read or write of n sectors, number of accesses for a
particular extent size during read or write, and number of
logical reads and writes

To use the operations described in this chapter, first install the
Performance Statistics Service on your workstation, as described in the
Executive Reference Manual and the CTOS System Administration Guide.

6/91 Performance Statistics Service 5—1

Functional Groups of Operations

The following sections offer a brief description of the Performance
Statistics Service operations. See the CTOS Procedural Interface Reference
Manual for complete descriptions of these operations.

Statistics Session Operations

PSOpenStatSession

PSGetCounters

PSResetCounters

opens a session during which performance
statistics are collected by the Performance
Statistics Service.

returns the structure containing the performance
statistics counters.

resets the performance statistics counters of the
given block/index combinations.

Logging Session Operations

PSOpenLogSession

PSReadLog

opens a log for (1) the current active process in
the ready queue or (2) use of short-lived and
long-lived memory

obtains the log for either the process ready queue
or the memory usage for the opened logging
session.

General-Purpose Operations

PSCloseSession

Statistics Session

Statistics ID Block

closes the session opened by PSOpenStatSession
or by PSOpenLogSession.

A simple statistics ID block is made up of a block number and an index.
PSGetCounters and PSResetCounters use this simple statistics ID block.

5-2 CTOS Programming Guide, Volume II 6/91

Other operations, such as PSOpenStatSession, require a larger ID block
that contains the block number, index, offset, and count of bytes for the
requested statistics. (This larger statistics ID block is described below in
the section on "BlockID.")

Block Number

Each general category of statistics corresponds to a given block number,
ranging from 1 to 9. For example, the processor statistics are assigned to
block number 1. The number of hard disk errors, soft disk errors, and
IOBs in process are assigned to block number 2. See Table 5-1, the
Performance Statistics Structure, at the end of this chapter, for the
complete listing of the types of counters returned in each of the nine
blocks.

Index

The index is a number indicating the position of the disk volume along the
workstation bus. The disk closest to the CPU has an index of 0, the next
disk has an index of 1, and so on. Statistics for a maximum of 18 disks
can be returned for each block. The index must always be specified for
blocks 2 through 9 because they collect statistics for a particular disk. The
index for block 1 is always 0. (Block 1 collects statistics for the
processor.)

Opening a Statistics Session (PSOpenStatSession)
To open a statistics session, use PSOpenStatSession:

PSOpenStatSession (ppbDevName, cbDevName, pbBlockID,
cbBlockID, pbShRet): ercType

where

pbDevName

cbDevName are the specification of the device where you want to
route the request, in the form
{NodeName}[DeviceName]

6/91 ‘ Performance Statistics Service 5—3

pbBlockID
cbBlockID describe a structure that specifies the type of

statistics requested, and for which devices (see
"BlockID,” below).

pbShRet describe the memory area of a word variable in
which the session handle for this statistics session is
returned (see "Session Handle,” below).

Block ID

The statistics ID block used by PSOpenStatSession is an array of records
containing the following elements:

Block number word
Index word
Offset word
Count of bytes word

Use the Performance Statistics Structure (Table 5-1) to determine the
appropriate offset and count of bytes. As an example, let’s look at block 1
of the Performance Statistics Structure.

Offsets within each block always occur at 4-byte boundaries. For block 1,
as shown in Table 5-1, offset 0 specifies idle process cycles, offset 4
specifies normal task switches, and so on. Use the Offset and Count of
Bytes array elements to specify where to begin and end statistics reporting
within a given block.

For example, the following statistics ID block would specify to count the
number of processes terminated normally (offset 8) and abnormally (offset
12): '

Block number I

Index

0
Offset 8
8

~ Count of bytes

5—4 CTOS Programming Guide, Volume II 6/91

Similarly, this statistics ID block would specify to count the number of
partitions swapped in and out:

Block number 1
Index 0
Offset 16
Count of bytes 8

Session Handle

The session handle returned by PSOpenStatSession is used by all
subsequent statistics calls (PSGetCounters, PSResetCounters, and
PSCloseSession).

Disk Activity

Blocks 4 through 9 collect statistics on certain types of disk activity, as
follows. Blocks 4 and 5 count the number of disk seeks for a particular
sector size during read or write (that is, the number of 1-sector seeks,
number of 2-sector seeks, and so on). Blocks 6 and 7 count how many
times a particular extent size is accessed during read or write. The extent
sizes increment in powers of 2. Blocks 8 and 9 count the number of
logical read or write requests occurring in the system for a particular
number of sectors.

For example, suppose you want to request statistics on what extent sizes
are accessed most frequently during read and write for the second disk in
your system. The statistics ID blocks would be:

Block number 6
Index 1
Offset 0
Count of bytes 512

6/91 Performance Statistics Service 5—3

Block number 7
Index 1
Offset 0
Count of bytes 512

In this case, for example, a greater proportion of accesses may have
occurred during both reads and writes to smaller extent sizes. These
statistics indicate that the disk is probably fragmented. The user could
then squash the disk to improve performance.

Getting the Counters (PSGetCounters)

PSGetCounters instructs the Performance Statistics Service to return
counters for specified blocks and indexes:

PSGetCounters: (sh, pbBlockID, cbBlockID, pbCountRet,
cbCountRet): ercType

where

sh is the same session handle PSOpenStatSession
returns.

pbBlockID

cbBlockID specifies the type of statistics requested, and for
which devices.

pbCountRet

cbCountRet describe the memory area the counters must be

moved to.

Parameters pbBlockID and cbBlockID describe the structure that contains
the blocks for which you want data. You do not need to request data on
all of the blocks specified in PSOpenStatSession. In addition, you can
specify the blocks in any order.

For example, suppose you want to collect statistics for two disks in your

system on the number of files opened, closed, created, deleted, and
renamed, and the number of files with changed lengths. (See block 3 of

5—6 CTOS Programming Guide, Volume II 6/91

the Performance Statistics Structure, Table 5-1.) The BlockID arrays
specified to PSOpenStatSession would contain the following information:

Block number 3
Index 0
Offset 0
Count of bytes 24

Block number 3
Index 1
Offset 0
Count of bytes 24

The BlockID used with PSGetCounters is a shorter version of the one
used to open a session. Only the block number and the index are
required. For example, if you specify the following block/index
combinations, the counters for the second disk in the system would be
returned first, followed by the counters for the first disk.

Block number 3
Index 1
Block number 3
Index 0

After calling PSOpenStatSession, your program must stay active until it
calls PSGetCounters.

The size of the area the counters return to is the sum of the number of
bytes specified at the time of open for each of the block/index
combinations. In our example, the area would need to be 48 bytes, since
each block/index requires 24 bytes.

6/91 Performance Statistics Service 5-7

Closing a Statistics Session (PSCloseSession)

To close a statistics session, use PSCloseSession (shRet).

Logging Session

Opening a Logging Session (PSOpenLogSession)

You can choose to log either the active processes in the ready queue or to
log the use of short- and long-lived memory. When you open the logging
session, you allocate a heap for the log in blocks of 512 bytes.

To open a logging session, use PSOpenLogSession:

PSOpenLogSession (pbDevName, cbDevName, wBlockID, witerations,
wLogHeapSize, pbShRet): ercType

where

pbDevName

cbDevName are the specification of the device where you want to
route the request, in the form
{NodeName}[DeviceName]

wBlockID specifies the type of log, either 10 (for active
processes in the ready queue) or 11 (for memory
usage)

wlterations is the number of iterations you want. (The data

returned by PSReadLog indicates the number of
successful iterations. If the log information does not
fit in the given buffer, you may not obtain as many
iterations as you asked for.)

wLogHeapSize the size of the log heap, in 512-byte multiples.

pbShRet the memory area where the session handle for this
logging session is returned.

5—-8 CTOS Programming Guide, Volume Il 6/91

For example, to log processor activity, you might specify:
PSOpenLogSession(pbDevName, CbDevName, 10, 8, 2048, pbShRet):
ercType
Reading a Log (PSReadLog)
To read the log, use PSReadLog:

PSReadLog (sh, pbLogData, cbLogData, psDataRet): ercType

where
sh is the session handle returned by PsOpenLogSession
pbLogData
cbLogData describe the memory area where the data is to be
' returned. (See the CTOS Procedural Interface
Reference Manual for a description of this structure.)
psDataRet is the memory address where the actual count of

bytes of logging information read is returned. This
amount can be less than the total space allotted for
the log.

For example, to read the log, you might specify:
PSReadLog(Sh, pbLogData, 2048, psDataRet): ercType

In this case, the data returned on each successful iteration is either the
ready queue information or the memory usage information. The ready
queue information contains the number of processes for that iteration and,
for each process, the user number, partition name, and priority. The
memory usage information includes the number of partitions for that
iteration and, for each partition, the user number, amount of long-lived
memory used, and amount of short-lived memory used.

Closing a Logging Session (PSCloseSession)

Use PSCloseSession to close a logging session

6/91 Performance Statistics Service 5-9

Program Example

N
*

Program title: StatExample.c

Compiler: Metaware High C Compiler

Description: This program illustrates the following
Performance Statistics System Service calls:

PsOpenStatSession
PsOpenLogSession
PsCloseSession
PsGetCounters
PsResetCounters
PsReadLog

This particular Statistics Session collects:

abnormally

IOBs in process
number of files
deleted for the
- number of seeks
— number of reads

— number of processes terminated normally and

- number of hard disk errors, soft disk errors and

for the second disk

opened, closed, created and
second disk

during read for the second disk
for the second disk

Following is the list of BlockID information required
to collect these statistics: /

¥ % % % % N % ¥ % % % N % ¥ % X ¥ % N ¥ % ¥ ¥ ¥ H % ¥ ¥ ¥ % % ¥
I

*

#include <string.h>
#include <stdio.h>

#define Syslit

#define CheckErc
#define ErrorExit

BlockId Index Offset Byte Count
1 o s s
2 1 0 12
3 1 0 16
4 1 0 512
8 1 0 512

#define PsCloseSession
#define PsGetCounters
#define PsOpenLogSession
#define PsOpenStatSession

Listing 5-1.

StatExample.c (Page 1 of 6)

5—10 CTOS Programming Guide, Volume II 6/91

#define PsReadLog

#define PsResetCounters

define MAXSTATS 0x0005

#define MAXDATA 0x0200

char NodeName [] = "{Local}[DO]";
int sh;

int rgPsLog [1024];

long

rgPsData [MAXDATA];

struct strId{int number; int index; int offset; int cb;};
struct strCnt {int number; int index;};

struct
struct

strid rgPsBlockId [MAXSTATS]:;
strCnt rgPsBlockCnt [MAXSTATS];

void InitializeFsPsBlocks ();
void OpenFsPsStatsSession ();
void GetFsPsStatsCounters ();

void CloseFsPsStatsSession ()

{

/* Use PsResetCounters to reset the associated
counters:

*

¥ % ¥ % N ¥ % X % % ¥ X ¥ % % %

*/

Number of seeks during a read

Number of reads

Number of processes terminated normally and
abnormally

The BlockId format will contain only the blockId
and the index number as follows:

BlockId Index
4 1
8 1
1 0

Don't use the block id array as before; just reset.

CheckErc (PsResetCounters (sh, &rgPsBlockCnt, 12));

6/91

Listing 5-1. StatExample.c (Page 2 of 6)

Performance Statistics Service 5—11

/* Now close the statistics gathering session */
CheckErc (PsCloseSession (sh));
}

void GetFileSystemStats ()
{

InitializeFsPsBlocks;
OpenFsPsStatsSession;
GetFsPsStatsCounters;
CloseFsPsStatsSession;

}

void GetProcessorStats ()

{

int count;

/* Open a logging session to get active processes in

* ready queue
*/
CheckErc (PsOpenLogSession (&NodeName, sizeof
(NodeName), 10, 5, 1024, &sh));

/* Collect the log information */

CheckErc (PsReadlLog (sh, &rgPsLog, 1024, &count));

/* Close the session */
CheckErc (PsCloseSession (sh));
}

void GetFsPsStatsCounters ()
{

/* Get statistics for the following:
* - Number of seeks during a read
Number of reads

|

abnormally

and the index number as follows:
BlockId Index

% % % R % % % F ¥ %

*
N

Listing 5-1. StatExample.c (Page 3 of 6)

5-12 CTOS Programming Guide, Volume II

Number of processes terminated normally and

The BlockId format will contain only the blockId

6/91

/* Set the block id for the number of seeks */
rgPsBlockCnt[0] . number ;
rgPsBlockCnt [0] . index

4;
1;
/* Set the block id for the number of reads */

rgPsBlockCnt[1] . number
rgPsBlockCnt[1] .index

’

8;
1;

/* Set the block id for the number of terminations */
rgPsBlockCnt[2] . number 0;
rgPsBlockCnt[2] .index 1;

/* Get the counter values */

CheckErc (PsGetCounters (sh, &rgPsBlockCnt, 12,
&rgPsData, MAXDATA));

}

void InitializeFsPsBlocks ()
{
/* Set the block for the number of processes
* terminated normally and abnormally
*
rgPsBlockId[0] . number
rgPsBlockId[0] . index
rgPsBlockId[0] .offset
rgPsBlockId[0] .cb

o nn
OO

S S e s,

/* Set the block for the number of hard errors,
* soft errors, and IOBs in process
*
rgPsBlockId[1] . number
rgPsBlockId[1] .index
rgPsBlockId[1l] .offset
rgPsBlockId[1].cb

wnon
HoHN

[ST
~

/* Set the block for the number of files
* opened, closed, created, and deleted
*

rgPsBlockId([2] . number

rgPsBlockId[2].index
rgPsBlockId[2] .offset
rgPsBlockId[2].cb

nwonu
HOoOMW
OV~ e .

/* Set the block for the number of seeks */

rgPsBlockId[3] . number = 4;
rgPsBlockId[3].index = 1;
rgPsBlockId[3] .offset = 0;
rgPsBlockId[3].cb = 512;

Listing 5-1. StatExample.c (Page 4 of 6)

6/91 Performance Statistics Service 5—13

/* Set the block for the number of reads */

rgPsBlockId[4] . number = 8;
rgPsBlockId[4].index = 1;
rgPsBlockId[4] .offset = 0;
rgPsBlockId([4].cb = 512;

/* Open the Stats Session */
CheckExrc (PsOpenStatSession (&NodeName,

sizeof (NodeName), &rgPsBlockId, 40, &sh));
)

void OpenFsPsStatsSession ()

{
/* Get the statistics for the following:
* Number of hard errors, soft errors, and IOBs
* in process for the second disk
* - Number of files opend, closed, created and
* deleted for the second disk
*
* The BlockId format will contain only the blockId
* and the index number as follows:
*
* BlockId Index
K e eee——
* 2 1
* 3 1
*/
/* Set the block id for the error info */
rgPsBlockCnt [0] . number = 2;
rgPsBlockCnt[0] . index = 1;
/* Set the block id for the file usage info */
rgPsBlockCnt [1] . number = 3;
rgPsBlockCnt[1] . index = 1;

/* Get the Ps Counters */

CheckErc (PsGetCounters (sh, &rgPsBlockCnt, 8,
&rgPsData, MAXDATA));

}

Listing 5-1. StatExample.c (Page 5 of 6)

5—-14 CTOS Programming Guide, Volume I - 6/91

void main ()

{
/* Get the file system statistics */

GetFileSystemStats ();

/* Get the processor statistics */
GetProcessorStats ();

/* goodbye */

CheckErc (ErrorExit (0));
}

Listing 5-1. StatExample.c (Page 6 of 6)

6/91 Performance Statistics Service 5—15

Data Structure

Table 5—-1. Performance Statistics Structure

(Page 1 of 4)

Block Counts the
Number Index Offset Number of
1 0 0 Idle process cycles
0 4 Normal task switches
0 8 Processes terminated normally
0 12 Processes terminated abnormally
0 16 Partitions swapped into memory
0 20 Partitions swapped out of memory
2 0 0 Hard Disk Errors
0 4 Soft Disk Errors
0 8 I0B’s in process
1 0 Hard Disk Errors
1 4 Soft Disk Errors
1 8 I0B’s in process
17 0 Hard Disk Errors
17 4 Soft Disk Errors
17 8 I10B’s in process
3 0 0 Files opened
0 4 Files closed
0 8 Files created
0 12 Files deleted
0 16 Files renamed
0 20 File length changes
0 24 Remade file handles
17 16 Files renamed
17 20 File length changes
17 24 Remade file handles

5—16 CTOS Programming Guide, Volume Il

6/91

Table 5—1. Performance Statistics Structure
(Page 2 of 4)

Block Counts the
Number Index Offset Number of
4 0 0 1-sector seeks during Read
0 4 2-sector seeks during Read
0 8 3-sector seeks during Read
0 504 127-sector seeks during Read
0 508 128-sector seeks during Read
17 0 1-sector seeks during Read
17 4 2-sector seeks during Read
17 8 3-sector seeks during Read
17 504 127-sector seeks during Read
17 508 128-sector seeks during Read
5 Same format as block 4 but it counts the
number of seeks during Write
6/91 Performance Statistics Service 5—17

Table 5—1. Performance Statistics Structure
(Page 3 of 4)

Block Counts the
Number Index Offset Number of
6 0 0 Accesses of extents 1 sector long during

Read

0 4 Accesses of extents 2 sectors long during
Read

0 8 Accesses of extents 3 sectors long during
Read

0 504 Accesses of extents 127 sectors long
during Read

0 508 Accesses of extents 128 sectors long
during Read

17 0 Accesses of extents 1 sector long during
Read

17 4 Accesses of extents 2 sectors long during
Read

17 8 Accesses of extents 3 sectors long during
Read

17 504 Accesses of extents 127 sectors long
during Read

17 508 Accesses of extents 128 sectors long

during Read

5—18 CTOS Programming Guide, Volume II 6/91

Table 5—-1. Performance Statistics Structure
(Page 4 of 4)

Block Counts the
Number Index Offset Number of
7 Same format as block 6 but it gives the

number of accesses during Write

8* 0 0 1-sector logical Reads
0 4 2-sector logical Reads
0 8 3-sector logical Reads
0 504 127-sector logical Reads
0 508 128-sector logical Reads
17 0 1-sector logical Reads
17 4 2-sector logical Reads
17 8 3-sector logical Reads
9* Same format as block 8 but it gives the

number of logical Writes

*The appropriate counter is incremented with each Read or Write operation.

6/91 Performance Statistics Service 5—19

6

Asynchronous System Service Model

Introduction

This section describes the asynchronous system service model. The
asynchronous model is a single-process program that operates as if it
contained multiple processes. It provides greater throughput than a
single-process system service.

This section provides you: with an overview of the asynchronous model
and instructions on how to write a program using library procedures
contained in Async.lib. Async.lib is available on the Standard Software
System Development Utilities diskettes, Version 12.0 and later. The
following operating systems support these procedures:

o CTOS workstation operating systems, Version 9.X and later

e Shared Resource Processors, Versions CTOS/XE 3.0.

Use of the asynchronous system service model is transparent to applica-
tions running on these operating systems.

NOTE: Because the procedures contained in Async.lib use global variables,
these procedures are not designed for multiprocess programs.

Asynchronous System Service Model 6—1

Terminology
Key terms used throughout this section are described below.

A request-based system service uses interprocess communication (IPC) to
provide services to client programs. Although this section provides some
review, this section assumes your knowledge of IPC, system services, and

request processing. For additional information, refer to the chapters on
these subjects in the CTOS Operating System Concepts Manual.

With synchronous processing, one transaction at a time is completed
before another is begun. Synchronous processing is probably familar to
you if you’ve ever had to wait your turn in a supermarket checkout line.
Perhaps you have experienced a situation similar to the following.

Although you are next in line with your single pint of ice cream in hand,
you have to wait because the customer at the counter is writing a check.
Fortunately, the customer doesn’t take too much time, so you think the
wait will be short. Then the clerk must call the manager to approve the
check, but the manager is busy with another customer. Minutes drag by
while the clerk idly jingles change in the cash drawer. You wish the clerk
would use this idle time to handle your purchase, but the clerk can
process only one transaction at a time,

Many request-based system services are designed along the lines of the
supermarket checkout system. A system service that operates synchro-
nously cannot start processing the next client queued until the system
service has completed the entire transaction for the current client: if the
system service must send out a request of its own on behalf of the current
client, nothing can be done for the next client queued. The system
service simply waits at its default response exchange for the response.
This type of request-based system service is called a synchronous model of
system service.

With asynchronous processing, more than one transaction can be handled
at a time. The asynchronous model of system service is designed to use
asynchronous processing. Instead of waiting idly for a response to a
request it sent out, an asynchronous system service can process a new
request or a response that arrives at its service exchange. As such, the

asynchronous system service model provides an attractive alternative to
traditional synchronous processing.

6-2 CTOS Programming Guide, Volume II

Contexts are the key design element of the asynchronous processing. A
context is an individual execution thread that has its own stack history
(such as local variables). An asynchronous system service process
consists of multiple contexts, each sharing the system service process
stack.

Stack sharing is possible because each context has a unique stack pointer.
Upon execution of a context, the stack pointer is set to point to the stack
for that context. Before a second context executes, the stack of the first
context is saved in a memory structure. Then the stack pointer is set to
the appropriate location for executing the second context. Because the
stack of a context can be saved, each context can be resumed where it

stopped executing simply by setting the stack pointer to the appropriate
location. As described later in this section, contexts can be easily

created, saved, resumed, or terminated using context procedures in
Async.lib.

A heap is used for the dynamic allocation and deallocation of memory in
context handling. The heap used by the asynchronous library procedures
is a linked list of free memory blocks in the data segment (DS) space.

Synchronous and Asynchronous System Service Models

The asynchronous model has several advantages over the synchronous
one.)

For each model, the main process is a Wait loop. Although the models
are similar in this respect, they have basic underlying differences.

First, let’s examine the Waitloop for the synchronous model. A
simplified version of the loop code is shown below.

while (1)

erc = Wait(exchServ, &pRq); i
erc = ProcessRequest();

pRq->ercRet = erc;

erc = Respond(pRq);

Asynchronous System Service Model 6-3

In this model, the system service waits for requests at its
service exchange. When a request arrives, the system service processes

the request and responds to the client. Then the system service returns to
the top of its Wait loop for the next request to process.

Figure 6-1 illustrates the program flow for this model. (The decision box
following the box labeled "Process request” shows what transpires in the
course of processing a request.) In some cases, a system service can
process a request and respond to the client immediately without making
additional requests to external agents on behalf of the client. If, however,
the system service needs to request the services of an external agent, the
system service must wait at its default response exchange for the response.
In a simple case, such as when a Read request is sent to the operating
system, the wait is relatively short. On the other hand, if a long
document is sent to a device driver for printing, the wait is a significant
period of time. In either case, the system service cannot do any other

useful work until the response arrives.

Now, let’s examine the asynchronous model. A simplified version of the
Wait loop code is shown below.

while (1)

erc = Wait(exchServ, &pRq);
if (pRq—>exchResp == exchServ)
{

erc = ResumeContext();

}

else

{
erc = ProcessRequest();
pRg—>ercRet = erc;
erc = Respond(pRq);

}

}

6—4 CTOS Programming Guide, Volume II

(Enter }

Y

Initialize

Wait at
service exchange
for a request

Y

Process request

Send request
to external agent

Respond

] 2393.6-1

Figure 6-1. Program Flow for the Synchronous Model

Asynchronous System Service Model 6-5

Figure 6-2 illustrates the program flow for this model. The system service
waits for either a request or a response. If a request arrives, the system
service can process that request. If the system service needs to send a
request to an external agent, it does not wait for the response. Instead, it
sends the request (using one of the asynchronous request formats
described later in this section). The context that sent the request is

saved, and the system service process returns to the top of its Wait loop
to wait for other requests or responses to arrive.

If a response from an external agent arrives (the response exchange in the
- request block is the system service exchange), the context that originally
sent the request is resumed. In Figure 6-2, this program flow is
represented by the arrow pointing from the box labeled "Resume context”

to the box labeled "Process request.” (Request processing actually
resumes at the program statement immediately following the asynchronous
request to the external agent.)

Because of the continuous flow of activity among executing contexts, the
asynchronous model can handle several clients within the timeframe
required for the synchronous model to handle a single client.

Writing an Asynchronous System Service

The code that is common to all services you may write in an asynchronous
system service is provided in a single C source module. (See the module
AsyncService.c in "Program Example,” at the end of this chapter. This

module is called the common-code module.) The common-code module
performs the following functions:

o initializes the system service

o waits for incoming requests or responses (Wait loop)

¢ manages (creates, saves, resumes, and terminates) contexts

e responds to a deinstallation request .

6—6 CTOS Programming Guide, Volume II

Initialize

_.______.,.l(
7

Wait at
service exchange
for a request

Process request

!

Send
h,:f:.fe‘g asynchronous
Resume context request? request to
external agent

L

Y

Respond to Save context
c“ent 'n heop
l 2393.6-2

Figure 6-2. Program Flow for the Asynchronous Model

NOTE: Using the asynchronous model does not preclude using
synchronous requests or the standard procedural interface. You can use
synchronous requests in some cases.

Asynchronous System Service Model 6—7

If you have written synchronous system services, you should be familiar
with the installation and deinstallation procedures illustrated in this
module. (Refer to the chapter on request-based system services in the
CTOS Operating System Concepts Manual.) As previously mentioned, the
Wait loop and context managment are unique to the asynchronous model.

In addition to pérforming the functions just described, the common-code

module refers to external variables you need to declare and procedures
you need to write in a module containing the code that is unique to your
asynchronous system service. Because the module you must write will
contain the main program for your particular system service, this module
is called the main module. Your main module serves the requests defined
for your service. It also contains any additional code necessary for

initialization.

To create the run file for your system service, you compile your main
program source code and bind the resulting object module with the
common-code module. Figure 6-3 illustrates this procedure.

More information on binding your program is contained in "Binding Your
System Service,” later in this chapter. For now, you should keep in mind
that you need to write only part of the source code for your system service
run file.

In "Program Example” at the end of this chapter, you also will see the
source to four programs: Example.c, Deinstall.c, Start.c, and Stop.c.
These programs are an example of a user—written system service. (See
your release documentation for details on all the files you need to run this

example program.)

Example.c is the main module. This program filters file system requests
and writes to a recording file the names and access times of all open files.
To write your main module source code, you can use Example.c as a
template.

Start.c, Stop.c, and Deinstall.c support the filter service. These programs
are compiled separately and are used by a command interpreter such as

the Executive for activating and deactivating the filter service’s recording
process and for deinstalling of the filter.

For further information on these programs, see "Program Example.”

6—8 CTOS Programming Guide, Volume II

MainModule.c

l

Compile
l
CommonCodeModule.obj MainModule.obj
Async.lib
N /
Bind
l
YourAsyncService.run 2393.6-3

Figure 6-3. Source Modules to Run File

Async.lib Procedures

All the Async.lib procedures are described next in this section. The
procedures are presented in two categories: those used in your
main module and those used by the common-code module. To see how

the procedures are used in an actual application, refer to the example
programs at the end of this chapter.

Asynchronous System Service Model 6—9

Async.lib Procedures You Can Use in the Main module

Requesting a Service on Behalf of a Client

The easiest way to make a request on behalf of a client is to use the
asynchronous request procedural interface. Because the asynchronous
request procedural interface is similar to its synchronous counterpart, let’s
review the synchronous request procedural interface.

Review of the Synchronous Request Procedural interface

If you are familiar with the synchronous procedural interface, you realize
that its strength lies in its ease of use: to invoke the synchronous
procedural interface, you simply write a statement of the following form:

erc = RequestName(arg0, argl,...,argn-1);

The synchronous procedural interface, guided by a set of operating system
tables addressed by the request name, builds a request block on the
caller’s stack using the parameters passed by the caller. To send the
request to the operating system, the procedural interface calls the Kernel
primitive Request. The operating system, in turn, redirects the request to

the appropriate service exchange. (For details on Request, see the CTOS
Procedural Interface Reference Manual.)

After sending the request, the synchronous procedural interface waits for
a response at the default response exchange. When the response arrives,
the procedural interface removes the request block from the stack, and
the calling program continues with the next statement to be executed.

Asynchronous Request Procedural interface

You can access the asynchronous request procedural interface by using
either of two procedures in Async.lib: BuildAsyncRequest or
BuildAsyncRequestDirect.

BuildAsyncRequest. This procedure sends a request to the exchange
serving the request. To invoke BuildAsyncRequest, you use the same
request parameter list you would provide to the synchronous
procedural interface except that you add the request code to the end of

6—10 CTOS Programming Guide, Volume II

the list. For example, in C language your procedure call would appear as
follows:

erc = BuildAsyncRequest(arg0, argl,...,argn-1, rcRequestCode);
where |

rcRequestCode

is the request code of the specified request.
arg0, argl,...,argn—1

are the parameters for the specified request. (For details on the
parameters for all CTOS requests, see the CTOS Procedural Interface
Reference Manual.)

If you are using PL/M, passing a variable number of parameters is
somewhat different. For details, see "Passing a Variable Length
Parameter List in PL/M," later in this chapter.

Like the synchronous request procedural interface, BuildAsyncRequest
uses tables in the operating system to build the request block on the stack
using the arguments passed by the caller. When the request block is built,
BuildAsyncRequest calls Request to send the request to the operating
system.

Here, however, the similarity between the synchronous and asynchronous
procedural interface ends. Instead of waiting at the system service’s
default response exchange for the request to come back, the asynchronous
procedural interface saves the state of the system service context currently
running. (Code in the common module takes care of handling contexts.
For details on the context management procedures, see "Managing
Contexts,” later in this chapter.) The asynchronous procedural interface
then returns to the top of the system service Wait loop to wait for the next
request or a response.

BuildAsyncRequestDirect. This procedure sends a request to a specified
exchange. The parameters to BuildAsyncRequestDirect are the same as
those to BuildAsyncRequest except that BuildAsyncRequestDirect takes
the target exchange as an additional parameter. For example, to invoke
BuildAsyncRequestDirect in C language, code your procedure call as
follows:

Asynchronous System Service Model 6—11

erc = BuildAsyncRequestDirect(arg0, argl,...,argn-1, rcRequestCode,
exchTarget);

where
rcRequestCode

is the request code number of the specified request.
exchTarget

is the number of the target exchange.

Passing a Variable Length Parameter List in PL/M

To call a procedure and pass a variable number of parameters in PL/M,

your program needs to make an indirect procedure call through a pointer
variable, as shown below:

DECLARE procBuildAsyncRequest POINTER EXTERNAL;
DECLARE ercAsync ErcType EXTERNAL;

CALL procBuildAsyncRequest(arg0, argl,...,argn-1, rcRequestName);
erc = ercAsync;

Two problems arise when making indirect procedure calls in PL/M.

First, a procedure called indirectly may not return a value. For this
reason, the error code (erc) is returned in the global variable ercAsync.
(The variable ercAsync is declared publicly in the common-code module.)

Second, the compiler does not perform any type conversion of
parameters. This problem would occur, for example, if there were literals
in the parameter list because the compiler would not know how to convert
them. Consider the following example of a call to OpenFile using the
synchronous procedural interface:

erc = OpenFile(@fh, @rgbFileName, cbFileName, 0, 0, modeRead);

The first 0 parameter represents a pointer value (pbPassword), and the
second, a word value (cbPassword). The compiler knows this because
OpenFile has been explicitly declared. It appears to follow that to use the
asynchronous procedural interface, you might (erroneously) code a call as
shown below:

6-12 CTOS Programming Guide, Volume II

CALL procBuildAsyncRequest(@fh, @rgbFileName, chnleName,
0, 0, modeRead, rcOpenFile);
erc = ercAsync;

However, this example is incorrect. Instead of converting the 0 values,
the compiler would push a byte value onto the stack for each value. This
would not work in PL/M nor in C. Ways to circumvent this problem are

described next.

Word values. The easiest way to call explicitly for a word value is to use
the INT function. INT(0) causes a word value to be pushed onto the
stack. The request code (last parameter) passed to BuildAsyncRequest
must be a word value. An example of how to declare the INT function is
shown below:

DECLARE rcOpenFile LITERALLY 'INT(4)';

Pointer values. The easiest way to generate a 0 pointer value is to declare
a pointer variable globally with a value of 0, for example,

DECLARE pZero POINTER INITIAL(0);

CALL procBuildAsyncRequest(@fh, @rgbFileName, cbFileName,
pZero, INT(0), modeRead, rcOpenFile);
erc = ercAsync;

Caution: It is extremely important that you check the validity of the
variable length parameter list. If the number and type of arguments passed
are not correct, results of program execution are unpredictable.

Building Request Blocks

Rather than having the asynchronous procedural interface automatically
build the request block, you can build the request block yourself. When
building a request block, your system service can use either the
AsyncRequest or the AsyncRequestDirect procedure to send the
request block to the operating system.

Asynchronous System Service Model 6—13

AsyncRequest |

This procedure uses the Kernel primitive Request to send the
request block to the operating system for routing to the appropriate
service exchange. AsyncRequest then returns to the top of the system
service Wait loop. When the response arrives, the context is resumed at
the next program statement.

To use AsyncRequest, code your procedure call as follows:
erc = AsyncRequest (pRq);

where

PRq

is the memory address of the request block.

AsyncRequestDirect

This procedure uses the Kernel primitive RequestDirect rather than
Request to send the request block to a specified exchange. (For details
on RequestDirect, see the CTOS Procedural Interface Reference Manual.)
AsyncRequestDirect then returns to the top of the system service

Wait loop. When the response arrives, the context is resumed at the next
program statement.

To use AsyncRequestDirect, code your procedure call as follows:

erc = AsyncRequestDirect (exch, pRq);
where

exch

is the specified system service exchange.
PRq

is the memory address of the request block.

6—14 CTOS Programming Guide, Volume II

Checking the Context Stack

All the asynchronous request procedures (BuildAsyncRequest,
BuildAsyncRequestDirect, AsyncRequest, and AsyncRequestDirect)

ensure that the context stack has not overflowed. If you write a
procedure that does not call any of these request procedures, a stack
overflow could go undetected. To validate the context stack in such a
case, your program can call the procedure CheckContextStack.

CheckContextStack

To use CheckContextStack, code your procedure call as follows:

erc = CheckContextStack();

Heap

The heap is a linked list of free memory blocks in the DS space. Initially,
the list contains only one large block of memory. When a request for
heap space is made, the free list is searched until a block large enough for
the memory requirements of the request is found. If the block is exactly
the size requested, the block is removed from the free list and returned to
the caller. If the block is larger than the amount of memory requested,
however, the block is split into two parts: one is returned to the caller and
the other to the free list. The free list is maintained in order of increasing
addresses, allowing blocks that are returned to be merged with adjacent
blocks in the list.

The common-code module initializes the heap. Although the
common-code module uses the heap management procedures to manage
contexts, you can use these procedures to allocate and deallocate memory
in your main module as well.

Allocating and Deallocating Heap Memory

Your main module can use the heap procedures HeapAlloc and HeapFree
to allocate and free memory blocks, respectively, during program
execution. Rather than storing all variables in the stack, it is more
efficient for your program to use these procedures to allocate storage for

large blocks of data as the storage space is needed.

Asynchronous System Service Model 6—15

HeapAlloc. HeapAlloc allocates memory from the heap. To use
HeapAlloc, code your procedure call as follows:

erc = HeapAlloc(cBytes, poMemoryRet);
where
cBytes

is the count of bytes to allocate from the heap.

poMemoryRet

is the memory address into which the pointer to the allocated memory
is returned.

HeapAlloc returns error code 4533 (No heap memory available) if the
heap does not have not enough contiguous memory to meet the
requirements of the request.

HeapFree. This procedure returns memory to the heap. To use
HeapFree, code your procedure call as follows:

erc = HeapFree(pMemory);

where

pMemory
is the pointer to the block that was previously allocated from the heap.

HeapFree returns error code 4534 (Invalid heap block) if the pointer
passed to HeapFree is not the address of a valid heap block.

Conserving Heap Memory

Your program can run out of heap memory if care is not taken to
conserve it. Error code 4533 (Heap memory not available) is returned
when this happens. To avoid running out of memory, your program
should allocate large blocks for a procedure’s data storage when a
procedure begins. The memory should be returned to the heap as soon as

the procedure is finished. You also should ensure that none of your
procedures uses an excessive amount of stack space for local variables. A
- single procedure of this nature can inflate the stack size, wasting memory.

6—-16 CTOS Programming Guide, Volume II

System Requests

You need to define system requests for abort, termination, and swapping
as you would for any system service you write. A general discussion of
the significance of these requests follows. (For additional information,
see the CTOS Operating System Concepts Manual.)

Termination and Abort Requests
The operating system issues a termination or abort to guarantee that

¢ no requests are returned to the program after it has been terminated

e no outstanding requests will access memory associated with a
program that has been terminated

e connection-oriented services in use by the program are closed (for
example, file handles)

When any system service (synchronous or asynchronous model) receives a
termination or abort request, the service is required to respond to all
requests with the same user number and then to respond to the
abort/termination request.

If an asynchronous system service does not have any active context(s) for
the terminating user number, the system service can simply respond to the
abort/termination request.

If, on the other hand, the asynchronous system service does have active
context(s) for the terminating user number, the service has one
outstanding client request for each context. In addition, one outstanding
asynchronous request is issued on behalf of the client for each context.
In this situation, the asynchronous system service should respond to the
client request as soon as possible so that it can respond to the
abort/termination request.

Asynchronous System Service Model 6—17

Swapping Requests

The operating system issues swapping requests for reasons similar to
abort/termination requests, namely to guarantee that

o no requests will be returned to a program after it has been swapped
out of memory

e no outstanding requests will access memory associated with a
program that is swapped out :

When any system service (synchronous or asynchronous model) receives a

swapping request, the system service is required to respond to all requests
with the same user number and then to respond to the swapping request.

When handling swapping requests in your asynchronous program module,
you should consider the following: when control returns to a context after
the return of an asynchronous request, the client request being handled
may not be the same client request the context started with. The request
could have been reissued by the operating system when the client program
was swapped back into memory. In this case, the pointers in the client
request block may not be the same as they were the first time the request
was received. If the request came over the cluster, the request block was
most likely received in a different buffer, and the pointers were
constructed to point to data in that buffer. For this reason, a system
service must not save away any pointers from a client request between
asynchronous requests. The following sequence of events illustrates this
point:

1. Client A’s request OpenYourFile arrives at the system
service exchange.

2. The system service saves (in variable pbPassword) the memory
address of the password located in the OpenYourFile request block.

This causes pbPassword to be saved on the stack as part of the
system service’s current context (Context 1).

3. The system service makes an asynchronous request to read a file on
behalf of Client A.

4. Context 1 is saved, and the system service returns to the top of its
" Wait loop to perform other work.

6-18 CTOS Programming Guide, Volume II

5. While the system service is performing other work, Client A is
swapped to disk.

6. The response to the asynchronous read request arrives, and Context
1 is resumed.

7. The system service attempts to use the password pointed to by
pbPassword to open a file.

It is possible that an error code will be returned when the system service
attempts to open the file using the address at pbPassword. When Client
A was swapped back into memory, the operating system issued a new
OpenYourFile request. Upon reissuing the request, the operating system
may have placed the request at a different location. If so, the
request block pointer saved in pbPassword is no longer valid.

Handling System Requests
Because handling system requests is often the most difficult and bug-prone

part of writing a system service, two Async.lib procedures are provided:
TerminateContextUser and SwapContextUser.

Handling Termination and Abort Requests

To handle termination and abort requests, your program can use the
TerminateContextUser procedure.

TerminateContextUser. This procedure responds to all client requests for
a given user number. Transparent to the caller, it waits for all outstanding

asynchronous system service requests to return.

To use TerminateContextUser, code your procedure call as follows:
erc = TerminateContextUser(userNum, erc);
where
userNum
is the user number associated with the terminating program. The user

number is obtained from the termination request.

Asynchronous System Service Model 6—19

erc

is the error code number.

TerminateContextUser uses the following algorithm:

1. If there are no active context(s) for the terminating user number,
control is returned to the caller.

2. If there are outstanding context(s), TerminateContextUser sets a
terminated flag for each context to be terminated and responds to the
client request immediately if possible (if all the pb/cb pairs point to
system service data).

3. If TerminateContextUser can respond to all the outstanding client
requests immediately, control is returned to the caller. If
TerminateContextUser must wait for one or more asynchronous
requests to finish, it returns to the system service Wait loop rather
than to the next instruction to execute (following the call to
TerminateContextUser). This action suspends the context that called
TerminateContextUser (that is, the client of the abort/termination
request).

4. Each time an asynchronous request returns, its context is resumed by
the procedure ResumeContext. (Resuming contexts is handled by
the common-code module and is described in "Managing Contexts,"”
later in this chapter.) The ResumeContext procedure, however, does
not resume a context flagged as terminated. Instead, ResumeContext
calls TerminateContext (also described in "Managing Contexts"). If
the client request is still outstanding, TerminateContext responds to
the request. If the request is the last outstanding client request,
TerminateContext resumes the context that called it.

Handling Swapping Requests

To handle swapping requests, your program can use the SwapContextUser
procedure.

6—20 CTOS Programming Guide, Volume II

SwapContextUser. To use this procedure, code your procedure call as
follows:

erc = SwapContextUser(userNum);

where
userNum
is the user number associated with the terminating program.

SwapContextUser works very much like TerminateContextUser. With
SwapContextUser, however, the system service is not finished with the
client request. When the user is swapped back into memory, the context
must resume execution where it left off.

The following steps describe how the context procedures handle swapping:

1. SwapContextUser responds to each client request with error code 37
(Service not completed), causing the operating system to reissue the
request when the program is swapped back into memory. This action

is transparent to the application program that originally issued the
request.

2. When a new request arrives, the system service calls CreateContext.
(CreateContext is called in the common-code module. For details,
see "Managing Contexts.”) CreateContext checks to see if the user
number field of the swapping request has an associated context
waiting to be swapped back into memory.

3. If CreateContext finds an associated context, the request was one
reissued by the operating system (see step 1). In this case,
CreateContext searches for the context associated with the same user
number and request code as the request that just arrived. Upon
finding the context, CreateContext resumes it rather than creating a
new context. '

Asynchronous System Service Model 6—21

Debugging Aids

Examining the Logging Module LogAsync

Async.lib contains a module called LogAsync that you can link with your
program for debugging purposes. (If you do not link with LogAsync,
however, you must link with the module LogAsyncDmy to resolve
references. For details, see "Binding Your Program,” later in this
chapter.)

LogAsync contains messages logged by the common-code module when
that module calls the. following procedures:

LogMsglIn
LogRequest
LogRespond

(For details on these procedures, see "Logging Messages for Debugging,”
later in this chapter.)

LogAsync contains a trace buffer (rgLog), which is an array of 50
nine-word entries. Each entry has the format shown below:

Size
Offset Field (bytes) Contents
0 code 2 one of four hexadecimal values (described
below)
2 PRq 4 address of the message
6 rq 12 request block header

The hexadecimal value of the field code can be any of the following:

Value Description

AAAA A message is received at the system service exchange.
This entry is made when LogMsgln is called.

BBBB A request was sent by BuildAsyncRequest or
BuildAsyncRequestDirect. This entry is made when
LogRequest is called.

6-22 CTOS Programming Guide, Volume II

CCCC A response to an asynchronous request was received
at the system service exchange. This entry is made

when LogMsgIn is called.

FFFF A client request was responded to. This entry is
made when LogRespond is called.

The rgLlog array is a ring buffer that starts filling from the last buffer entry
and fills toward the top of the buffer. This arrangement makes the buffer

more convenient to examine with the Debugger. (For details on using the
Debugger, see the Debugger Manual.)

The pointer variable pLog points to the most recent buffer entry in rgLog.
To examine rgLog in the Debugger,

type pLog (Press Code-Right Arrow.)

The Debugger displays the word at pLog.

To see the entire contents of most recent entry,
press Down Arrow eight times.

By pressing Down Arrow nine more times, the Debugger displays the
contents of the previous entry, and so forth.

Maintaining Debugging Statistics

The Async.lib procedures maintain statistics that are helpful when
debugging and tuning system services that use the library procedures. You
can examine the global label AsyncStats while in the Debugger or when

looking at a dump. This label is followed by the statistics described
below.

nStackOverflow

is the number of times stack overflow was detected by
BuildAsyncRequest or BuildAsyncRequestDirect.

nCreateContextError

is the number of times CreateContext returned an error code because
there was no heap space available to create a context.

Asynchronous System Service Model 6—23

nResumeContextError

is the number of times ResumeContext returned an error code because
the global variable pRq did not point to a request block that belonged
to an active context. (For details, see "ResumeContext,” later in this
chapter.)

minStackFree

is the minimum number of bytes free on the stack after building a

request block. This value takes into account the space required for all

request overhead plus the 64 bytes required to handle an interrupt.
minHeapFree

is the minimum number of bytes free in the heap.
nBytesHeap

is the number of bytes allocated to the heap.
nBytesHeapFree

is the number of bytes currently free in the heap.
nCcbActive

is the number of currently active contexts.

nCcbActiveMax

is the maximum number of contexts that were active at any one time.

Async.lib Procedures
Used by the Common-Code Module

The procedures described next are used in the common-code module.

Managing Contexts

The common-code module uses Async.lib procedures to manage contexts.
A context is an instance of program execution along with all the

6—-24 CTOS Programming Guide, Volume II

program’s local variables. Local variables are variables allocated on the
stack. In this sense, a context is very much like a CTOS process. (For
details on CTOS processes, see "Process Management” in the CTOS
Operating System Concepts Manual.) The difference is that, with the
asynchronous system service model, several contexts can exist at any
given time within a single CTOS process. These contexts may be easily
created, saved, restored, and terminated.

As mentioned earlier in this chapter, context handling is a key concept of
asynchronous processing. When the system service receives a request, it
allocates stack space from the heap for a structure called the
Context Control Block (CCB). If the system service needs to send an
asynchronous request to an external agent, the state of the currently
executing context is saved in the CCB. This frees the system service to
return to its Wait loop for processing other incoming requests or
responses. When the response to the asynchronous request arrives, the
context is resumed, allowing the system service to continue processing the
client’s request where it left off at the time it sent the request. When
processing of the client’s request is complete, the system service
terminates the context and returns any memory allocated for it back to the
heap.

Although contexts typically are associated with request blocks, this is not
always the case. Contexts are created whenever any type of message is

received. (For details, see "Other Ways Contexts Can Be Used,” later in
this chapter.)

To manage contexts, the common-code module uses the following
Async.lib procedures:

o CreateContext

o ResumeContext

o TerminateContext

Asynchronous System Service Model 6—25

CreateContext

This procedure allocates stack space for a context from the heap. To
conserve heap memory, stack size for a context is limited to
approximately 300 bytes.

The procedure call to CreateContext is as follows:

erc = CreateContext(stackSize, userNum);
where
stackSize

is the number of bytes to allocate for the stack of the context to be
created.

userNum

is the user number associated with the context.

The user number is used by the abort/termination procedures described in
"Handling System Requests,” earlier in this chapter. If the context is
associated with a Timer Request block (TRB) rather than a client request,

the user number should be 0. (For details on TRBs, see "Other Ways
Contexts Can Be Used,” later in this chapter.)

When control returns from CreateContext with erc = ercOK, the
stack pointer is changed. The caller, therefore, must not use any local
variables upon the return because they are no longer addressable.

If no memory is available from the heap, error code 4533 (Heap memory
not available) is returned. Your main module also can allocate heap
memory during program execution. For ways to conserve memory, see
"Conserving Heap Memory," earlier in this chapter.

Context Control Block

CreateContext allocates a CCB from the heap and sets a global offset to
point to it. The CCB has two parts: the header and the stack.

The header of the CCB is accessed only by the asynchronous system
service library procedures. It contains the following information:

6—26 CTOS Programming Guide, Volume II

o Pointers to a doubly linked list of active CCBs.

o A list of heap blocks allocated to the context. When the context is
terminated, any heap blocks associated with the context are freed.

e A global pointer (pRq) to the client request being served by this
context. CreateContext saves the request block pointer in the CCB

header so the pointer can be restored when the context is resumed.

o The total size of the CCB.
e A seal to ensure that the CCB is not overwritten.

The stack portion of the CCB starts at the end of the CCB and grows
toward the header.

ResumeContext

This procedure resumes execution of a context at the point where
execution left off the last time the system service made an asynchronous
request to an external agent. If a request was built on the stack, the
request block is removed from the stack, and the error code returned in
the request block is stored in the global variable ercAsync.

The procedure call to ResumeContext is as follows:

erc = ResumeContext();

ResumeContext does not take any arguments. Instead, it uses the pointer
to the last request block received (stored in the global variable pRq) to
locate the context to resume. Control does not return from
ResumeContext unless an error is detected. If pRq does not point to a
requestblock sent out by either BuildAsyncRequest or
BuildAsyncRequestDirect, error code 4532 (Context not found) is
returned.
t

TerminateContext

This procedure is used to terminate a context and return its stack space to
the heap. The procedure call to TerminateContext is as follows:

erc = TerminateContext();

- Asynchronous System Service Model 6-27

Like ResumeContext, TerminateContext does not take any arguments. It
uses a global offset that points to the current CCB in the heap. Any heap
space associated with the context is returned to the heap at this time.
After terminating the context and returning the heap memory,
TerminateContext returns to the caller’s Wait loop. An error code is
returned only if the offset to the current CCB does not point to a valid
context.

Other Ways Contexts Can Be Used

The common-code module (AsyncService.c shown at the end of this
section) illustrates how the procedure HandleRequest creates a context
each time a request is received.

Although a context typically is associated with a request that is being
processed, this is not always the case. A context also can be created to
service a timeout when a TRB is received. In the common-code module,
the main process procedure WaitLoop can create a context whenever it
receives any kind of message. The message does not need to be a
request, nor does the pointer to the message need to be unique. For
example, the timeout procedure could send N messages to the system
service exchange to cause N contexts to be created. When a context is
created, the value of the pointer to the last message received (represented
by the global variable pRq) is saved in the new CCB, and the value is

restored whenever a context is resumed.

The example program at the end of this section does not show how to
handle timers, although there is provision for calling a HandleTimer
function in the common-code module (AsyncService.c). The main
program (Example.c) shows to write the code for HandleTimer. (See
AsyncService.c. Note the call to Handl¢Timer in the HandleRequest
function. Then examine the corresponding HandleTimer function in
Example.c.)

Terminating Contexts at Deinstallation

The system service receives a request when it is time to deinstall. The

steps for deinstalling an asynchronous system service are the same as
those for deinstalling a synchronous service. (For an enumeration of
these steps, see the CTOS Operating System Concepts Manual.) However,

6—~28 CTOS Programming Guide, Volume II

the common-code module of an asynchronous system service must
perform one unique procedure to terminate each active context.

To perform this procedure, the common-code module calls
Terminate AllOtherContexts. The call to Terminate AllOtherContexts is
as follows:

erc = TerminateAllOtherContexts(erc);

where
erc

is the error code that is responded to for any outstanding requests
“associated with the context being terminated.

TerminateAllOtherContexts terminates all contexts except for the calling
context. The effect of this procedure is to call TerminateContextUser
(described in "Termination and Abort Requests,” earlier in this chapter)
for every active user, including the system service. This causes any
contexts associated with the system service (such as a context handling a

TRB) and client contexts to be terminated.

Using the Heap

The common-code module uses a heap to manage contexts. When a
context is created, memory for it is allocated from the heap. The memory
is returned to the heap when the context is terminated.

The heap is allocated out of DS space. Using the asynchronous system
service library procedures, DS and SS are equivalent. The advantages of
this arrangement are

o All pointers can be short pointers. (All memory addresses can be
offsets within the same segment.)

e Code size is smaller and faster.

¢ Debugging is easier.

Asynchronous System Service Model 6—29

NOTE: The combined memory of the heap, static data, and the main
program stack cannot exceed 64K bytes.

Managing the Heap

To manage the hegp, the common-code module uses the following
heap management procedures:

¢ Heaplnit
e HeapAlloc
o HeapFree

As described in "Allocating and Deallocating Memory,” earlier in this
chapter, the HeapAlloc and HeapFree procedures also can be used during

program execution of your main program module.

Heapinit. This procedure initializes the heap. Heaplnit is called before
any of the asynchronous system service library procedures are used. The
heap is initialized with a fixed amount of memory. Once this memory is
allocated, it cannot be deallocated or changed in size. Because a system
service cannot allocate any more memory once ConvertToSys is called,
this really is not a disadvantage.

The procedure call to Heaplnit is as follows:
erc = Heaplnit(cBytes, pHeap);

where

cBytes

is the count of bytes to be used for the heap.
pHeap

is the pointer to the first byte of heap space.

The heap space is usually memory allocated by AllocMemorylInit. (For
details, see "AllocMemorylnit,"” later in this chapter.)

6—30 CTOS Programming Guide, Volume II

HeapAlloc. This procedure allocates memory from the heap. The
procedure call to HeapAlloc is as follows:

erc = HeapAlloc(cBytes, ppMemoryRet);
where
cBytes -

is the count of bytes to allocate from the heap.
ppMemoryRet

is the memory address where the pointer to the DS space allocated is
returned.

HeapAlloc returns error code 4533 (No heap memory available) if the
heap does not contain enough contiguous memory available to meet the
requirements of the request.

HeapFree. This procedure returns memory to the heap. The procedure
call to HeapFree is as follows:

erc = HeapFree(pMemory);
where
pMemory
is the pointer to the block that was previously allocated from the heap.

HeapFree returns error code 4534 (Invalid heap block) if the offset passed
to HeapFree is not the address of a valid heap block.

Asynchronous System Service Model 6—31

Logging Messages for Debugging Purposes

To log requests in a trace buffer as they are received and responded to,
the common-code module uses the following Async.lib procedures:

o LogMsgin.
e LogRespond
o LogRequest

LogMsgin. This procedure logs the message pointed to by the global
variable pRq. LogMsgln is used by the system service when it receives a
message at its exchange.

LogRespond. This procedure logs the response to the request pointed to
by the variable pRq. LogRespond is used by the system service before it
responds to a client request. It also is used by the library procedures

SwapContextUser and TerminateContextUser before responding to
outstanding client requests.

LogRequest. This procedure logs the request pointed to by pRq.
LogRequest is called by the BuildAsyncRequest and
Build AsyncRequestDirect procedures before Request and RequestDirect,
respectively, are called.

Initializing

AllocMemorylnit

To allocate memory out of the DS space below the last CODE segment,
the common-code module uses the procedure AllocMemoryInit. To
allocate memory addressable by short pointers AllocMemorylnit obtains
the memory from two sources. First, it obtains memory from a memory
array in the object module InitAlloc. (For details on InitAlloc, see
"Binding Your System Service,” later in this chapter.) Second, when no
more space is available, AllocMemorylInit allocates additional memory
from the operating system using the ExpandAreaSL operation. (For
details o)n ExpandAreaSL, see the CTOS Procedural Interface Reference
Manual.

6-~32 CTOS Programming Guide, Volume II

The procedure call to AllocMemoryInit is as follows:

erc = AllocMemorylInit(cBytes, ppMemoryRet, fInit);
where

cBytes
is the count of bytes to be allocated.

ppMemoryRet

is the memory address to which the pointer to the DS space allocated is
returned.

SfInit

is a flag that is normally FALSE. fInit is TRUE only if the call is being
made from InitAlloc (or any user-created module containing
initialization code to be deallocated after use) and the data allocated
will be initialized or used before all such modules have finished
executing. (These modules are referred to as COED modules. For
additional information, see CTOS/Open Programming Practices and

Standards.) Setting this flag prevents code yet to be executed from
being overwritten. AllocMemorylInit returns error code 26 (Stray

interrupt) if fInit is TRUE and the next space to allocate is COED

space. To avoid this problem, your program should allocate memory
after all COED modules have finished executing.

Freeing Leftover Memory

All memory is allocated before the call to ConvertToSys. Before the call,
however, unused memory is deallocated using the ShrinkAreaSL
operation. (For details on ConvertToSys and ShrinkAreaSL, see the
CTOS Procedural Interface Reference Manual.)

Availability of Asynchronous System Service Files

All the files required for creating an asynchronous system service are
contained on the Standard Software, Version 12.0 and later, Software
Development Utilities diskettes. For a complete list of these files and
their contents, see your release documentation.

Asynchronous System Service Model 6—33

Binding Your System Service

To bind your program, invoke the Bind command through the Executive
and fill out the command form as shown below:

Bind
Object modules @LinkExample.fis

Run file YourSystemService.run
[Map file) '

[Publics?]

[Line numbers?]

[Stack size]

[Max arrray, data, code]
[Min arrray, data, code]
[Run file mode]

[Version]

[Libraries] [Sys]<Sys>Async.lib
[DS Allocation?] Yes

[Symbol file]

(For general information on binding programs and details on all the fields

in the Bind command form, see the Linker/Librarian Manual.) The field
entries for binding your asynchronous system service program are
described below.

Object Modules

In the Object modules field, you enter the names of all the modules you
are going to bind. Because the command line is not long enough to
contain the names of all the object modules for this example, the at-file
@LinkExample.fls is used to contain the module names. (For details on
using at-files, see the Executive Reference Manual.) The atfile
LinkExample.fls contains the following modules:

[Sys]<Sys>Async.lib (InitAlloc LogAsync)
[Sys]<Sys>YourMainModule.obj

NOTE: For details on other modules you may need to link with your
program, see your language manual.

6—34 CTOS Programming Guide, Volume II

InitAlloc and LogAsync

Two of the object modules, InitAlloc and LogAsync, are in the library
Async.lib. To arrange memory in the proper order, you must list
InitAlloc as the first module in the Object modules field. For debugging
purposes, you can include the module LogAsync. Otherwise, to resolve
references, you must enter the name of the dummy module
LogAsyncDmy.

Main Program

The third module name shown in the at-file is the name of your main
program. This module is produced as a result of compiling your main
program source file. Any other modules that form a part of your system
service would follow the name of the main program in the at-file.

Run File

In the Run file field, you enter the name of the resulting run file.
YourSystemService.run consists of the module you wrote and all the
modules linked with it.

Libraries

In the [Libraries] field, you enter the name Async.lib. Async.lib contains
all the other modules needed by your system service, including all the
asynchronous procedures described in this section.

DS Allocation

In the DS allocation field, you must enter Yes for DS allocation. As a
result, your program code is loaded into memory at a higher address than
the program data. This arrangement frees space below your program
code for use as a dynamically allocatable area containing data relative to
DS. (For additional information on DS allocation, see "Stack Format and
Calling Conventions” in CTOS/Open Programming Practices and
Standards.)

Asynchronous System Service Model 6—35

Program Example

The remaining pages in this chapter show the example system service
program. ‘

AsyncService.c

The first module shown is the common-code module AsyncService.c.
You do not write this code. All you need to do is link it with any system
service you write. Comments indicate which portions of the system
service you must provide. For example, you will see the following
declarations for external functions and variables that you need to provide
in your module:

/*

External functions, provided by user.
*/
extern void InitializeServer (void);
extern ErcType ServeRequest (void);
extern void HandleTimer (void);
extern void InitializeTimer (void);
/*

External Variables, provided by user.
*/

extern Word cbHeap; /* size of service heap */
extern Word defaultStackSize; /* size of stack
' allocated per context */
extern Word wOSRel;
extern FlagType fConvertToSys;
extern FlagType fRespond;
extern Word priorityServ; /* process priority of

service */
extern char rgbPartitionName([]; /* name of partition */

Example.c

Example.c is a system service that filters file system requests and writes to

a recording file the names and access times of all open files. This module
complements the common-code module. If you examine the declarations

6-36 CTOS Programming Guide, Volume II

closely, you will see a variable definition corresponding to each of the
externally declared variables in the main module. There is also a function
for each external function declaration in the main module.

If your program requires only a subset of the functions declared in the
common-code module, you must include a stub for each function you
don’t need. By doing so, you resolve the reference in the common-code
module. For example, the filter program does not require additional
initialization beyond that provided by the common-code. To resolve the
reference, the filter program includes the stub InitializeServer.

NOTE: Example.c does not show how to initialize or handle timers.
However, there is provision for calling a HandleTimer procedure in the
common-code module. The necessary links for the Timer procedure code
are included and identified by comments in Example.c.

At a minimum, your program requires the function for serving requests.
(See the function ServeRequest in Example.c.) In addition to serving
system requests for termination, abort, and swapping, your system service
serves requests unique to its application. The filter program, for example,
intercepts open file requests. The ServeRequest function in this program
serves all open file requests as well as all system requests.

To write your main module source code, you can use Example.c as a
template.

Start.c, Stop.c, and Delnstall.c

As mentioned earlier in this section, Start.c, Stop.c, and Delnstall.c are
three other programs that support the filter service. These programs are
compiled separately and used by a utility such as the Executive to activate
and deactivate the recording process provided by the filter and to carry
out deinstallation. Start.c and Stop.c are used to start and stop the filter’s
recording function, respectively. Delnstall.c is used at deinstallation to
vacate and remove the partition containing the filter service. The source
to these programs follows Example.c.

Asynchronous System Service Model 6—37

x

* Program title: AsyncService.c

* Compiler: Metaware High C Compiler

* pescription: Main program of CTOS Asynchronous
* Service Model

*

*

*/

External Definitions
*/
#define Syslit
#define RqHeaderType
#include <{Ctostypes.h>

#define AllocExch
#define ChangePriority
#define Check

#define CheckErc

#define ConvertToSys
#define ErrorExit
#define FatalError
#define GetPartitionHandle
#define GetUserNumber
$define QueryRequestInfo
#define ResetStack
#define Respond

#define SexrveRq

#define SetPartitionLock
#define SetPartitionName
#define ShrinkAreaSL
#define Wait

#include <CtosLib.h)>

f#define FsExrc
#define RgExc
#include <Erc.h>

#include <string.h>

Listing 6-1. AsyncService.c (Page 1 of 9)

6—38 CTOS Programming Guide, Volume II

*
/* Async.lib Definitions
*

#define AllocMemoryInit
#define CreateContext
#define HeapInit
#define LogMsgIn

#define LogRespond
#define ResumeContext
#define TerminateAllOtherContexts
#define TerminateContext

#include "async.h"

#$include "exdef.h"

pragma Calling_convention
(CTOS_CALLING_CONVENTIONS,_ DEFAULT);

*
External variables provided by async.lib

*/
extern Pointer pToDeallocate; /* set up by InitAlloc */
extern Word cbFree; /* set up by InitAlloc */
/*
External functions, provided by user.
*/
extern void InitializeServer (void);
extern ErcType ServeRequest (void);
extern void HandleTimer (void);
extern void InitializeTimer (void);
/*
External Variables, provided by user.
*/

extern Word cbHeap; /* size of sexvice heap */

extern Word defaultStackSize; /* size of stack
allocated per context */

extern Word wOSRel;

extern FlagType fConvertToSys;

extern FlagType fRespond;

extern Word priorityServ; /* process priority of

service */
extern char rgbPartitionName[]; /* name of partition */

Listing 6-1. AsyncService.c (Page 2 of 9)

Asynchronous System Service Model 6—39

*
/ PUBLIC Variables required by the AsyncService
procedures:
*/
Word rgwRgs[10] = {
/* request codes served by this service */
rcAbortExample,
rcChangeUserNumExample,
rcDeinstallExample,
rcOpenFile,
rcOpenFilellL,
rcStartRecoxd,
rcStopRecord,
rcSwapExample,
rcTerminateExample,
rcReOpenFile);
Word nRgCodes = 10; /* number of request codes served */
Word rgwOldExch{10]; /* temp. storage of old exchange
values */

ErcType ercAsync;
x

The erc from BuildAsyncRequest or
BuildAsyncRequestDirect is
returned here.

*/

ExchType exchServ;
*

This is the exchange where the service waits in its
WaitLoop. This variable is stored in the exchResp
field of the Request block that is built by
BuildAsyncRequest or BuildAsyncRequestDirect.

*/

RgHeaderType *pRq;

/*
PRq points to the current client request. It is set by
the service in its WaitLoop by the call to Wait:

erc = Wait(exchServ, &pRq);

It is saved in the current Context Control Block by
BuildAsyncRequest. It is restored by ResumeContext.

*/
Listing 6-1. AsyncService.c (Page 3 of 9)

6—40 CTOS Programming Guide, Volume Il

Pointer
Word

Word
Pointer

pPZexro = 0;

saveSpBp[2] = {0, 0); /* storage locations for

sp & bp */
pbHeap; / pointer to allocated heap storage */

*pSave;

void FatalServerError (ErcType erc)

FatalError (erc) /* Kill the system service #*/;

)

ErcType DeinstallServer (void)
{

*

This function is invoked as a result of deinstall
request.

*

typedef struct (
RgHeaderType xrqghdr;

Word *pPhRet

)

DeinstallType;

ErcType erc;

Word 1i;

DeinstallType *prx;
RqHeaderType *pRgBlk;

prx = (DeinstallType*) pRq;

/*

Unserve all requests by serving them to the
exchange previously served.

*/

for (i = 0; i < nRgCodes; it++)

{

erc = ServeRq (rgwRgs{i], rgwOldExch[i]);
if (erc != erxrcoOK)

/*

FatalServerError (erc);

Terminate all contexts except for the current
context,

*/

t

erc = TerminateAllOtherContexts (ercOK);
if (erc != erxrcOK)
FatalServerExrror (erc);

Listing 6-1. AsyncService.c (Page 4 of 9)

Asynchronous System Service Model 6—41

/*
Reject all further incoming requests to service's

exchange. '
*

while (erc == ercOK)
{
erc = Check (exchServ, &pRgBlk);
if (erc == ercOK)
{
PRgBlk->exrcRet = ercServiceNotAvail;
LogRespond (pRgBlk);
erc = Respond (pRgBlk);
if (erc != ercOK)
FatalServerError(erc);

)
/*

Return partition handle to calling program so that
the calling program can vacate the partition and
remove it. '
*/
ercAsync = SetPartitionLock (FALSE);
return GetPartitionHandle (&rgbPartitionName,
strlen(rgbPartitionName), prx—>pPhRet);

*

/ HandleRequest: The request pointed to by pRq is a new
Request or a TRB. Given a request code, call the
routine which processes the request. NOTE that this
procedure is NOT REENTRANT. After the call to
CreateContext, its stack pointer has changed, so it
cannot access any local variables on the stack.

*x/

void HandleRequest (void)

{

if (pRg->rqCode == 0)
t /*

rgCode = 0 indicates a timer request block
*

HandleTimer ();
return;

Listing 6-1. AsyncService.c (Page 5 of 9)

6—42 CTOS Programming Guide, Volume Il

ercAsync = CreateContext (defaultStackSize,
PRq—->userNum) ;

if (ercAsync == ercoOk)
L /=
Process request in user-supplied function
*/ .
) PRg->ercRet = ServeRequest ():
else
{ /*
Context could not be started because there was
no heap space
*/i

PRg->exrcRet = ercAsync;
)

if (fRespond) {
LogRespond (pRq);
ercAsync = Respond (pRq);
)
fRespond = TRUE;
ercAsync = TerminateContext ();

*
Only returns if error -—- normally calls WaitLoop
*

FatalServerError (ercAsync);

void Initialize(void)

{
/*
This function is called to initialize the service.
*/
Word i;
Word userNumServ;

pSave = &saveSpBp[0]; /* establish pointer to sp/bp
save area */

*
Allocate exchange for service.
*/
CheckErc (AllocExch (&exchServ));

/*
Set process priority of service.

*/

CheckErc (ChangePriority (priorityServ));

Listing 6-1. AsyncService.c (Page 6 of 9)

Asynchronous System Service Model 6~43

/*
Test Requests;

*/

if (WOSRel < 10)
nRgqCodes—-;

for (i = 0; i < nRgCodes; i++)

/*
Test each request enumerated in rgwRgs([] to
verify that it also exists in the Request.sys
file read at boot time.

*/

CheckErc (QueryRequestInfo (rgwRgsl[il,

&xrgwOldExchi}), 2));

/*
Allocate memory from DS space to be used for the
heap.

*/

CheckErc (AllocMemoryInit (cbHeap, &pbHeap, FALSE));

CheckExrc (HeapInit (cbHeap, pbHeap));

/*

Allocate any other memory required for tables, etc
from DS space.

*/
if (cbFree i= 0)
/*
Free leftover memory used by the initialization
code.
*/
CheckErc (ShrinkAreaSL (pToDeallocate, cbFree));
/*
Service specific initialization.
*/
InitializeServer ();
/*
Initialize Timer Request Block as necessary.
*/

InitializeTimer ();
if (fConvertToSys)
CheckErc (ConvertToSys ());

Listing 6-1. AsyncService.c (Page 7 of 9)

6-44 CTOS Programming Guide, Volume II

)
/*

*

/*

Serve Requests

*/
for (i = 0; i < nRqgCodes; i++)
{
/*
Serve each request code enumerated for this
service.
*/

CheckErc (ServeRq (rgwRgs[i], exchServ));
)

*
Call ErrorExit (ercOK) to 'become' part of 0S.
*/
ErrorExit (ercOK);

ercAsync = GetUserNumber (&userNumServ);
/*
SetPartitionName must come after ConvertToSys.
*/
ercAsync = SetPartitionName ((userNumServ & OxFF),
s&rgbPartitionName, strlen
(rgbPartitionName));

WaitLoop: Main process loop.
It waits for a request or a response to come in.

void WaitLoop (void)

{

ErcType erc;

erc = ResetStack (offsetof (pSave));
FOREVER
{
erc = Wait (exchServ, &pRq);
LogMsgIn ();
if (erc == ercOKk)
{ .
If the response exchange in the request block
equals this service's service exchange, then
the request was sent by this service. If the
request code is 0, then the request is a
timer request block.

*/
Listing 6-1. AsyncService.c (Page 8 of 9)

Asynchronous System Service Model 6—-45

if ((pRg->exchResp == exchServ) &&
(pPRg->xrgCode (= 0))
x

The request in rq is a response to an
asynchronous request that we created
and sent out. Handle the response.
*/
erc = ResumeContext ():
*

Only returns if error was detected.

We have a new Request or a Timer
Request Block.
*/
HandleRequest ();
}

if (erc != ercOKk)
FatalServerError (exc);

)
)

void AsyncServer (void)

Initialize ();
WaitLoop ():

Listing 6-1. AsyncService.c (Page 9 of 9)

6—46 CTOS Programming Guide, Volume II

% % % % % % % % % % % % % % % * *

.o
*/

Program title: Example.c

Compiler: Metaware High C Compiler

Description: This service filters File System open
requests and records the filenames and access times in
a recording file. The requests are then forwarded for
normal processing.

The recording file is normally closed and is opened
and written when an internal buffer fills. This is
done so that another context can examine the recording
file at any time.

When a StartRecord request is seen, the recording
operation is started. When a StopRecord request is

seen, the recording operation is suspended. When. a
DeinstallExample request is seen, this service exits.

External definitions.

#define RgHeaderType
#define Syslit
#define sdType
#define Sublit
#define TRBType
#include <CTOSTypes.h>

#define ChangeFileLength
#define CheckErxrc

#define CloseFile
#define CreateFile
#define CurrentOsVersion
#define ForwardRequest
$define GetbhateTime
#define GetUsexrNumber
#define NlsStdFormatDateTime
#define OpenFile

#define QueryRequestInfo
#define RgParam

#define SetFileStatus
#include <CTOSLib.h»

#define FsErc
#define RgErc
#include <Erc.h>

Listing 6-2 Example.c (Page 1 of 13)

Asynchronous System Service Model 6—47

fidefine BuildAsyncRequest
#define BuildAsyncRequestDirect
#define CheckContextStack
#define CreateContext

#define DebugTrap

#define HeapAlloc

#define HeapFree

#define SwapContextUser
#define TerminateContext
#define TerminateContextUser -
#include "Async.h"

#include <string.h>
#include <stdio.h>
#include <ctype.h)
#include "ExDef.h"

#define All
#include "ExRgBlk.h"

/*
* External functions provided by user.
*/

extern void AsyncServer (void);

extern ErcType DeinstallServer (void);
extern void FatalServerError (ErcType exc);

/*
* Constants
*/
#define NDATESIZE 19
#define LF 0x0A

#define rcChangeFileLength 13
#define rcGetFileStatus 8
#define rcWrite 36

/*
* External variables.

*/

extern RqgHeaderType *pRq;

extern ErcType ercAsync;
extern Pointer pZero;

Listing 6-2 Example.c (Page 2 of 13)

6—48 CTOS Programming Guide, Volume II

/*
* Public variables.

*/
char rgbPartitionName[] = "Example";
char rgbPad[] = " \n";

char rgbMissedFiles[] = "Could not open recording file,
records discarded.\n";

Byte bReadWritePro = 15; /* Protection = R/W
without password */

FlagType fConvertToSys = TRUE; /* Set to FALSE for
debugging */
FlagType fDebug = FALSE;
FlagType fRespond = TRUE;
Word wOSRel,
wOSRev;
TRBType TimeRq; /* Timer Request Block */

*
* The following variables must be set before main ()
* calls AsyncServer (). If any of these values need to
* be computed at runtime, do it in
* InitializeBeforeAsync ().
*/
Word cbHeap = 6000; /* Total size of heap */

Word defaultStackSize = 1200; /* Stack space for each
context */

Word priorityServ = 0x20; /* Process priority of
sexrvice */

/*
* Module variables.

*/

char rgbRecordFile[255];

Word cbRecordFile;

char 2zDefaultRecordFile([] = "[sys]<sys>OpenFile.log\0";
Pointer pbBuffer([2]; /* 2 buffer pointers for double

buffering */
char Bufferl[1024],
Buffer2[1024]; /* buffers for 1/0 */

Word iActive = 0; /* index of active buffer */

Word iBuf = 0; /* buffer data pointer in active
buffer */

char *pWork; /* pointer to data in active buffer */

FlagType fRecording = TRUE; /* recording boolean */
ExchType exchOpenFile,

exchOpenFileLL,

exchReOpenFile;

ErcType AddToBuffer (sdType *pSd)
Listing 6-2 Example.c (Page 3 of 13)

Asynchronous System Service Model 6—49

This function is invoked for each open file request
seen by this service. The file name and the
date/time it was referenced is placed in the
current buffer. If there is insufficient space in
the buffer, DumpBuffer() is invoked to write the

* buffer to the recording file.

*/
ErcType erc;
Word 1len;
DWord dateTime;

extern ErcType DumpBuffer (void);

* ¥ % % %

if (fRecording)
{
/*
* If not enough space is left in the buffer for
* this entry, dump the buffer to the file.
*/
if (iBuf + pSd->cb + NDATESIZE + 2) sizeof
(Bufferl))

erc = DumpBuffer ();
if (erc != ercOK)

/*
* Could not open file, try to record event.
*/

strcpy (pWork, &rgbMissedFiles);

pWork += strlen (rgbMissedFiles);

iBuf += strlen (rgbMissedFiles);

}
/*
* Get date and time of reference
*/
erc = GetbhateTime (&dateTime);
if (erc != ercOK)
return (erc);

/*
* Expand it to human-readable form
*/
erc = NlsStdFormatDateTime (NULL, 16, dateTime,
pWork, sizeof (Bufferl) - iBuf, &len);
if (erc '= ercOK)
return (erc);

Listing 6-2 Example.c (Page 4 of 13)

6—50 CTOS Programming Guide, Volume II

*
* Put date stamp and filename in buffer
*/
pWork += len;
iBuf += len;
*pWork++ = ' ',
iBuf += 1;
strncpy (pWork, pSd->pb, pSd->cb):
pWork += pSd->cb;
iBuf += pSd->cb;
pWork++ = LF; / add line feed to
filename/timestamp */
iBuf += 1;

if (CheckContextStack () != ercOK)

*
* defaultStackSize is too small
*/
DebugTrap ();
)
)
ErcType DumpBuffer (void)
{
/*
* This function is invoked whenever
* (1) a buffer fills,

* (2) recording is turned off,

* (3) the service is deinstalled.
*

Word len;

FhType fh;
ExrcType erc;
DWord 1fa;

Pointer p;

Listing 6-2 Example.c (Page 5 of 13)

Asynchronous System Service Model 6—51

*
* Space fill between last data and end of buffer
*/
while (iBuf < sizeof (Bufferl))
{
len = sizeof (rgbPad);
if (len > (sizeof (Bufferl) - iBuf))
len = sizeof (Bufferl) - iBuf;
strncpy (pWork, rgbPad, len);
pWork += len;
iBuf += len;

)
—-pWork;
*pWork++ = LF;
/*
* Assign a new buffer for output.
x/
p = pbBuffer[iActive];
iActive = (iActive + 1) & 1;
pWork = pbBuffer[iActive];
iBuf = 0;

/*
* Open the file in mode modify
*/
erc = BuildAsyncRequestDirect (&fh, &rgbRecordFile,
cbRecordFile, (DWord)0, 0, modeModify,
rcOpenFileLL, exchOpenFilelL);
if (erc == ercOK)
{
/*
* Change the file length
*
erc = BuildAsyncRequest (fh, 0, &lfa, 4,
rcGetFileStatus);
if (erc != ercOK)
return (erc);
erc = BuildAsyncRequest (fh, lfa + sizeof
(Bufferl), rcChangeFileLength);
if (exrc != erxrcOK)
return (erc);
/*
* Write the data
*
erc = BuildAsyncRequest (fh, p, sizeof (Bufferl),
lfa, &len, rcWrite);
if (erc != ercOKk)
return (erc):;

Listing 6-2 Example.c (Page 6 of 13)

6-52 CTOS Programming Guide, Volume II

{

* % % % %

*

/*
* Close the file
*
erc = BuildAsyncRequest (fh, rcCloseFile);

if (CheckContextStack () != ercOk)

*
* defaultStackSize is too small!!
*/
DebugTrap ();
)

return (erc);

HandleTimer: The request in pRq is a Timer Request
Block. NOTE that this procedure is NOT REENTRANT.
After the call to CreateContext, its stack pointer has
changed, so it cannot access any local variables on
the stack.

void HandleTimer (void)

*
* The timer is not used in this example. This
* function is provided only to resolve the external
* reference made in the Asynchronous Service code.
*/
ercAsync = CreateContext (defaultStackSize, 0);
if (ercAsync != ercoOK)

{ /¢
* Context could not be started because no heap
* space.
*/
TimeRq.cEvents = 0; /* Re—enable timer */
else
{ /*

* Context started OK.
* Insert timer processing code hlere.

*/

Listing 6-2 . Example.c (Page 7 of 13)

Asynchronous System Service Model 6—53

)

ercAsync = TerminateContext ():
*

* Only returns if error —— normally calls Waitloop
*

FatalServerError (ercAsync);

* Early service initialization, service heap not yet
* initialized.
*

void InitializeBeforeAsync (void)

{

ErcType erc;
FhType fh;

sdType sd;
/*

* Process '[Recording file]' parameter
*/

strcpy (rgbRecordrile, zDefaultRecordFile);
cbRecordFile =" strlen (zDefaultRecordFile);
erc = RgParam (1, 0, &sd) /* log file name */;
if (erc == exrcOK)

{
strncpy (&rgbRecordfFile[0], sd.pb, sd.cb);

cbRecoxrdFile = sd.cb;
rgbRecoxrdFile[sd.cb] = 0;

}

erc = CreateFile (&rgbRecordFile, cbRecordFile, pZero,
0, 1024);
CheckErc (OpenFile (&fh, &rgbRecordFile, cbRecordFile,
pZexro, 0, modeModify));
CheckErc (ChangeFileLength (fh, 0));
CheckErc (SetFileStatus (fh, 2, &bReadWritePro, 1));
CheckErc (CloseFile (fh));

*

* Establish array of buffer pointers for double
* buffering.

*

pbBuffer[0] = &Bufferl([0];

pbBuffer[l] = &Buffer2(0];

pWork = pbBuffer[iActive = 0];

Listing 6-2 Example.c (Page 8 of 13)

6—54 CTOS Programming Guide, Volume II

)

/*
*
*

*/

/*
* Get OS Version; ReOpenFile request does not exist

* on real mode Workstation 0S's.
*

CheckErc (CurrentOsVersion (&wOSRel, &wOSRev));

/*
* Save exchange values for forwarding;

*

CheckErc (QueryRequestInfo (rcOpenFile, &exchOpenFile,
2));

CheckErc (QueryRequestInfo (rcOpenFilelLL,
S&exchOpenFilelLL, 2));

if (wOSRel >= 10)

CheckErc (QueryRequestInfo (rcReOpenFile,
&exchReOpenFile, 2));

/*
* Output sign-on message
*
printf ("\nFile Access Recorder installed.\n");

Service-specific initialization, called before
ConvertToSys. The Service Heap is initialized.

void InitializeServer (void)

)
/*

*

*
*

/%
* No additional initialization is required by this
* example.

*/

Timer initialization, called before ConvertToSys.
The Service Heap is initialized.

void InitializeTimer (void)

{

/*
* Timer unused in this example. This function is
* provided to satisfy external reference made by the
* Asynchronous Service- code.

*/

Listing 6-2 Example.c (Page 9 of 13)

Asynchronous System Service Model 6—55

/*

* Service-specific request processing procedure.
*/
ErcType ServeRequest (void)

ErcType erc,
ercDiscard;
sdType sd;

switch (qu—gquode)
{

case rcAbortExample:

{
AbortExampleType *prx;

prx = (AbortExampleType *) PRq:
erc = TerminateContextUser (prx->rghdr.userNum,
ercOK) ;
break;
)

case rcChangeUserNumExample:

{
ChangeUserNumExampleType *prx;

prx = (ChangeUserNumExampleType *) pPRq;
break;
)

case rcDeinstallExample:
{
DeinstallExampleType *prx;

prx = (DeinstallExampleType *) pRQ;
erc = DumpBuffer ();

fRecording = FALSE;
DeinstallServer ():;

break;

Listing 6-2 Example.c (Page 10 of 13)

6—56 CTOS Programming Guide, Volume II

case rcOpenFile:

)

OpenFileType *prx;

prx = (OpenFileType *) pRq;
sd.cb = prx->cbFileSpec;
erc = HeapAlloc (sd.cb, &sd.pb);
if (erc == ercoOK)
strncpy (sd.pb, prx->pbFileSpec, sd.cb);

ercDhDiscard = ForwardRequest (exchOpenFile, PpPRq);

if (exrc == ercOK)

{
ercDiscard = AddToBuffer (&sd);
ercDiscard = HeapFree (sd.pb);

]
fRespond = FALSE;
break;

case rcOpenFileLL:

{

OpenFileLLType *prx;

prx = (OpenFileLLType *) pPRq;
sd.cb = prx->cbFileSpec;

erc = HeapAlloc (sd.cb, &sd.pb);
if (erc == ercoOK)

strncpy(sd.pb, prx->pbFileSpec, sd.cb);

ercDiscard = ForwardRequest (exchOpenFileLL,

PRq) ;
if (erc == ercOK)
(
ercDiscard AddToBuffer (&sd);

ercDiscard = HeapFree (sd.pb);

}
fRespond = FALSE;
break;

Listing 6-2 Example.c (Page 11 of 13)

Asynchronous System Service Model 6—57

case rcReOpenFile:
ReOpenFileType *prx;

prx = (ReOpenFileType *) pRq;
sd.cb = prx->cbFileSpec;
erc = HeapAlloc (sd.cb, &sd.pb);
if (erc == ercoOk)
strncpy (sd.pb, prx->pbFileSpec, sd.cb);

ercDiscard = ForwardRequest (exchReOpenFile,
PRqQ);

if (erc == ercoOK)

ercDiscard = AddToBuffer (&sd);
ercDiscard = HeapFree (sd.pb);
)

fRespond = FALSE;
break;

)

case rcStartRecord:

{
StartRecordType *prx;

prx = (StartRecordType *) PRq;
fRecording = TRUE;
break;

}

case rcStopRecord:

{
StopRecordType *prx;

prx = (StopRecordType *) pRq;
erc = DumpBuffer ();
fRecording = FALSE;

break;

)

case rcSwapExample:

SwapExampleType *prx;

prx = (SwapExampleType *) pRq;
erc = SwapContextUser (prx—>rghdr.userNum):;
break;

Listing 6-2 Example.c (Page 12 of 13)
6—58 CTOS Programming Guide, Volume II

case rcTerminateExample:

{
TerminateExampleType *prx;

Prx = (TerminateExampleType *) pRq;

erc = TerminateContextUser (prx-—>rghdr.userNum,
ercOK) ;

break;

)

DEFAULT:

{
/*
* unrecognized request code
*/
return (ercNoSuchRc);
)
)
return (ercOK);
)
/*
*
void main (void)

Main program.

InitializeBeforeAsync ():
AsyncServer ();

)

Listing 6-2 Example.c (Page 13 of 13)

Asynchronous System Service Model 6—59

N
*

Program title: Start.c
Compiler: Metaware High C

Description: Starts recording of open requests in
example service.

% % % % % % % %

%*
~

#define Syslit
#include <CTOSTypes.h>

#define CheckErc
#include <CTOSLib.h>

#define StartRecord

#include "ExFunc.h"
/* Program used to enable file open recording of File
* Access Recorder service.

*/
void main (void)
CheckErc (StartRecoxd ()):

}
Listing 6-3. Start.c

6-60 CTOS Programming Guide, Volume II

/* ,
Program title: Stop.c
Compiler: Metaware High C Compiler

Description: Disables file recording feature of

*
*
*
*
*
* example service.

*/

#define Syslit
#include <CTOSTypes.h>

#define CheckErc
#include <CTOSLib.h>

#define StopRecord
#include "ExFunc.h"
/*
* Program used to disable file open recording of File

* Access Recorder service.
*

void main (void)

{
)

CheckErc (StopRecord ()):

Listing 6-4. Stop.c

Asynchronous System Service Model 6—61

/*
* Program title: Deinstall.c
* Compiler: Metaware High C Compiler

* Description: Deinstalls example sexrvice.
*

#define Syslit
#include <CTOSTypes.h>

#define CheckExrc
#define RemovePartition
#define VacatePartition
#include <CTOSLib.h>

#define DeinstallExample
#include "ExFunc.h"

#include <stdio.h>
/*
* Program used to remove File Access Recorder service

* from memory.
*

void main (void)
{
Word PartitionHandle;

CheckErc (DeinstallExample (&PartitionHandle));
CheckErc (VacatePartition (PartitionHandle));
CheckErc (RemovePartition (PartitionHandle));
printf ("\nFile Access Recorder removed.\n");

Listing 6-5. Deinstall.c

6-62 CTOS Programming Guide, Volume II

/

CD-ROM Service

Overview

The CD-ROM Service provides access to CD-ROM (compact disc
read-only memory), a read-only media used for storing documents,
databases, audio, or combinations of data and audio elements. The data
portion of the CD-ROM Service supports both the 1ISO-9660 and High
Sierra standards. The CD-ROM Service can be installed on a workstation
with at least one CD-ROM disc drive. The workstation can be either a
cluster server workstation or a cluster client workstation. If installed on
the cluster server, client workstations of the server can also use the
CD-ROM Service.

To use the operations described in this chapter, first use the Install
CDROM Service command to install the CD-ROM Service on your
workstation, as described in the Executive Reference Manual and the CTOS
System Administration Guide. This command installs the system service,
and also sets the maximum number of CD-ROM files that can be open by
all users at one time, as well as the maximum number of users that can
access all CD-ROM drives connected to the workstation that is running the
CD-ROM Service.

Requirements

The CD-ROM Service operates on any workstation that uses one of the
following versions of the operating system (or a subsequent version):

e CTOS/VM
e CTOSII3.3
e BTOS II

6/91 CD-ROM Service 7—1

It requires at least one model CD-001/2 or B25-CDC/X CD-ROM module,
or compatible SCSI CD-ROM disc drive.

Functional Groups of Operations

The following sections offer a brief description of the CD-ROM Service
operations. See the CTOS Procedural Interface Reference Manual for
complete descriptions of these operations.

Volume Information

CdDirectoryList
CdGetDirEntry
CdGetVolumelnfo
CdSearchFirst
CdSearchNext

CdSearchClose
CdVerifyPath

CdVersionRequest

returns a list of all directory paths for a CD-ROM
disc (see the section on "File Structure:
Hierarchical or Flat,” later in this chapter).

returns directory record information, in either
ISO or High Sierra format, for a specified path.

returns specific information for a particular
volume (the primary volume descriptor, copyright
filename, abstract filename, and bibliographic
filename).

for a given file specification (possibly with wild
cards), returns the directory record and path
information for the first matching file on the disc.

(if wild cards were used in a previous
CdSearchFirst operation), finds additional files
that match the wildcard specification.

closes an open CD-ROM search session.
verifies the existence of the specified path.

returns information concerning the software
version level, hardware environment, number of
CD-ROM drives accessible by the service, and
the device name assigned during installation
(default=[CDROM)).

7—2 CTOS Programming Guide, Volume II : 6/91

Status
CdControl

Read File

CdOpen

CdRead

CdClose

Audio
CdAudioCitrl

controls disc eject and door locking mechanisms.
In addition, returns device status, location of
head, sector size, and volume size.

opens an existing CD-ROM file or device and
returns a file or device handle.

transfers a specified number of bytes from
CD-ROM to memory.

closes an open CD-ROM file or device.

controls the audio playback channels in the
CD-ROM disc drive, including selection of output
channels and volume setting, and control of audio
playback, pause, and -stop. Also provides
information on the disc as a whole, on particular
tracks, and on the current Q-channel address.

Miscellaneous (Rarely Used)

CdAbsoluteRead

CdServiceControl

performs a physical read of a specified number of
sectors from CD-ROM to memory. This read is
performed without regard to the specific file
structure used by the disc creator.

deinstalls the CD-ROM Service.

Standard File Formats

Data can be stored on a CD-ROM disc in one of two standard file
formats: ISO-9660 or High Sierra. Your first step in programming for the
CD-ROM is to find out which format the target disc uses. This section

6/91

CD-ROM Service 7-3

includes a code excerpt showing this process, as well as descriptions of the
formats for both ISO and High Sierra directory records and primary
volume descriptors.

Operations that require knowledge of disc format are

CdGetDirEntry
CdGetVolumelnfo

Determining the File Format Using CdGetVolumeinfo

Use the CdGetVolumelnfo request, function 4, to read the primary volume
descriptor for the disc. The complete primary volume descriptor is 2048
bytes. However, the information you need to determine the file format is
found in the first 14 bytes of this structure. In the High Sierra primary
volume descriptor, the first 14 bytes are

Bytes Field Content

1-8 Volume Descriptor LBN numeric value
9 Volume Descriptor Type numeric value
10-14 Volume Structure Standard Identiﬁér CDROM

In the ISO primary volume descriptor, the first 6 bytes contain the -
relevant information:

Bytes Field Content
1 Volume Descriptor Type numeric value
26 Standard Identifier CD001

The following code shows the use of a CdGetVolumelnfo request to
determine the format of the target CD-ROM disc. To conserve memory,
specify 14 bytes instead of 2048 bytes in the CdGetVolumelnfo request if
you are concerned only with the standard identifier field.

7—4 CTOS Programming Guide, Volume II 6/91

ULI CbDh;

uc *CdBuff;
char rgbIsoIdentifier([] = "CD0O01l";
char rgbHsgIdentifier[] = "CDROM";

CheckErc(CdOpen(0,From->pb, From->cb, NULL, 0, &CDh));
CheckErc(CdGetVolumeInfo(CDh, CdBuff, 2048, "s&"wDataRet,
4));
i = ULCMPB(CdBuff+l, &rgbIsoIdentifier, 5);
if (i != OXFFFF) {
i = ULCMPB(CdBuff+9, &rgbHsgIdentifier, 5);
if (i !=- OXFFFF) {
free(CdBuff);
exit(0);
}
else)
fFormatType = HSG_DISC;
}
else
fFormatType = ISO_DISC;

Other Uses of CdGetVolumelnfo

After you have determined the disc’s format, you can use the other
functions of the CdGetVolumelnfo request:

Function Number Information Retrieved

1 Copyright filename
ISO copyright filename is 37 bytes
High Sierra copyright filename is 32 bytes

2 Abstract filename (requires 38 bytes)
ISO abstract filename is 37 bytes
High Sierra abstract filename is 32 bytes

3 Bibliographic filename (requires 38 bytes)
ISO bibliographic filename is 37 bytes
High Sierra bibliographic filename is 32 bytes

6/91 CD-ROM Service 7-5

File Structure: Hierarchical vs. Flat

The CD-ROM Service recognizes two types of file specifications: the
CTOS file specification and the hierarchical file specification. The CTOS
file specification is used for "flat” file structures (described below). The
backslash (\) file specification is used for hierarchical file structures and
can also be used for flat file structures.

CTOS File Specification (for Flat File Structures)
A CTOS file specification has the following form:
{node} [device_name] <directory_name> file_name

The node name is optional and if omitted, the target is assumed to be
local.

In the following directory tree, a CTOS file specification could be used to
access files in Directoryl, Directory2, and Directory3. Because this
directory tree is only one level deep, it can be described as a "flat” file
structure.

Root Directory

Directory1 Directory2 Directory3

512.7-1

Figure 7-1. Flat File Structure
For example, [CDROMO] <Directory2> MyFile

A CTOS file specification could not be used to access the file contained in
the root directory in this example.

7—6 CTOS Programming Guide, Volume II 6/91

Backslash File Specification (for Hierarchical File Structures)

A backslash file specification could also be used to access any of the files
contained in the directory tree shown in Figure 7-1, including the files in
the root directory. For example:

[CDROMO]\Directory2\MyFile
equivalent to the CTOS specification
[Root_Directory] <Directory2>MyFile

[CDROMO\YourFile :
to access a file in the root directory

In addition, a backslash file specification can be used to access files in any
of the directories or subdirectories shown in Figure 7-2.

Root Directory
Directory1 Directory2 Directory3
1
Subdir A Subdir B Subdir C
1
Subdir D Subdir E 512.7-2

Figure 7-2. Hierarchical File Structure
For example:

[CDROMO]\Directory2\Subdir_C\Subdir_E\April Accounts.txt

6/91 CD-ROM Service 7-7

Obtaining the Directory List

Use the CdDirectoryList operation to obtain the directory list for a
particular CD-ROM disc. The syntax for CdDirectoryList is

CdDirectoryList(pbDevSpec, CbDevSpec, pbBuff, cbBuff, psDataRet):

ercType
where

pbDevSpec

cbDevSpec describe a character string of the form
{node} [devname].

pbBuff

cbBuff describe the buffer to which the directory list is
returned.

psDataRet is the memory address where the count of bytes in

the directory list is returned.

The directory list entries (returned to pbBuff/cbBuff) are character strings
in which the first byte is the size of the string (sbType). The directories in
a hierarchical file structure are separated by the backslash character (5C).
For example, the directory list buffer for the example directory tree shown
in Figure 7-2 is shown below.

Offset Directory List Buffer (HEX)

(HEX)

00 0a 44 49 52 45 43 54 4F 52 59 31 13 44 49 52 45
10 43 54 4F 52 59 31 5C 53 55 42 44 49 52 5F 41 13
20 44 49 52 45 43 54 4F 52 59 31 5C 53 55 42 44 49
30 52 S5F 42 Oa 44 49 52 45 43 54 4F 52 59 32 13 44
40 49 52 45 43 54 4F 52 59 32 5C 53 55 42 44 49 52
50 5F 43 1C 44 49 52 45 43 54 4F 52 59 32 5C 53 55
60 42 44 49 52 5F 43 5C 53 55 42 44 49 52 SF 44 1C
70 44 49 52 45 43 54 4F 52 59 32 5C 53 55 42 44 49
80 52 5F 43 5C 53 55 42 44 49 52 5F 45 0a 44 49 52
20 45 43 54 4F 52 59 33

7—-8 CTOS Programming Guide, Volume II 6/91

Example: Using CdDirectoryList

The following example illustrates the use of the CdDirectoryList request.
The four listings included in this chapter can be found on the floppy disk
supplied with this manual. The source code, along with all other necessary
executable files, are provided in archive format. To extract the example
files from the archive, invoke the Restore command and fill out the form
as follows:

Restore

[Archive file] examples

[File list from (<*>*)] <CdTest>*

[File list to (<*>*)] < >*
[Overwrite ok?) yes

[Confirm each?]
[Sequence number]
[Merge with existing file?]
[List files only?]

[Print file]

[Suppress confirmation?]

To build the example programs, first compile the C source files using
MetaWare High C. All of the examples have been designed to link in the
same manner. To link Example 1, use the Link V6 command as follows:

Link V6

Object modules examplel.obj utl.obj startobj
Run file examplel.run

[List file]

[Publics?]

[Line numbers?]

[Stack size]

[Max memory array size]
[Min memory array size]

[System build?] protected

[Version] Your_Version_Here

[Libraries] s]<Sys>Ctos.li <Sys>CtosToolKit.li
[DS allocation?]

[Symbol file]

[Copyright notice?]
[File to append]
[Debug?]

To link the other examples, replace all references to examplel with
examplen, where n is the example number.

6/91 CD-ROM Service 7-9

Use the Run command to invoke the program. For example:
Run

Run file examplel.run

[Case]
[Command]

[Parameter 1]
[Parameter 2]

Examples 1 through 3 require only the appropriate run file name. Example
4 requires additional parameters, as described later in this chapter.

/* The following code illustrates the use of the
* CdDirectoryList Request. This is examplel.

*/

#define offsetof(X) (((Woxrd *)&(X))I[0])
typedef unsigned short int USI; /* word */
typedef unsigned char uc; /* byte */
typedef unsigned long int ULI; /* dword */
typedef void _far * Pointer;
typedef struct {

ucC cb;

char rg[255];
} sbType;
char xrgbDevNamel[] = "[CDROMO]";
char rgbDirList[] =

"DirectoryList";
char rgbFiveSpaces][] " "

/* Obtains the DirectoryList for the installed CD-ROM
* disc. '

*/

USI GetDirList(void)
{

USI wDataRet;
sbType *DirBuff;
USI i;

USI erc;

erc = AllocMemorySL(4096, &DirBuff);
if (erc != ercOK)
return erc;

Listing 7-1. CdDirectoryList Example (Page 1 of 2)

7-10 CTOS Programming Guide, Volume II 6/91

NewLine();
OutputTovidO(&rgbDirectoryList,

sizeof(rgbDirectoryList)-1);
NewLine();

erc = CdDirectoryList(&rgbDevName sizeof(rgbDevName)-
1, DirBuff, 2048, swDataRet);
if (erc != ercOk)
return erc;

/* Display all directory paths */
i=0;
while (i < wDataRet) {
OutputTovidO(&rgbFiveSpaces, sizeof (rgbFiveSpaces)-
1)
OutputTovidO(&DirBuff->rg, DirBuff->cb);
NewLine();
i = 1i + DirBuff->cb + 1;
offsetof (DirBuff) = offsetof(DirBuff) + DirBuff->cb
+ 1;
}

return erc;

Listing 7-1. CdDirectoryList Example (Page 2 of 2)

Searching for Files

The following example shows the use of the CD-ROM search operations
(CdSearchFirst, CdSearchNext, and CdSearchClose) as well as the
CdVersionRequest operation. :

CdSearchFirst finds the first file on the CD-ROM disc that matches the
file specification and returns the directory record and path information for
that file. CdSearchFirst performs an implicit CdOpen and returns the
search file handle and full file specification for the first matching file.
(Although this example does not use it, the directory record for the
matching file is also returned.) The file specification can be in either
standard CTOS format or backslash format, as described earlier in this
chapter, and can include wildcard characters.

6/91 CD-ROM Service 7—11

If the CdSearchFirst operation uses wildcard characters, additional files
that match the specification can be found by calling CdSearchNext until
error code 15715 (No such CD-ROM file) is returned. CdSearchNext
returns directory information and path information for each matching file.

The CdSearchClose operation performs an implicit CdClose, freeing the
search file handle and search buffers and closing the CD-ROM disc.

This example uses CdVersionRequest to display the device names the
CD-ROM service was installed with, as well as the revision level of the
installed CD-ROM service and the hardware environment. (Note that
although the CdVersionRequest operation requires a device specification,
this parameter is merely a placeholder to be sure the request is routed
correctly and is not verified by the operating system. The actual device
names are returned by CdVersionRequest. In this example, the device
names are updated if nondefault names were supplied.)

Example

/* The following code illustrates the use of the
* CdSearchFirst, CdSearchNext, CdSearchClose, and
* CdVersionRequest Requests. This is example2*/

f#define offsetof(X) (((Word *)&(X))[0])
typedef unsigned short int USI;

typedef unsigned char uc;

typedef unsigned long int ULI;

typedef void _far * Pointer;

typedef struct {
ucC cb;
char rg[255];
} sbType;

void movb (void *src, void *dst, size_t cb);

void setb (char ch, void *dst, size t cb);

Listing 7-2. CD Search Example (Page 1 of 5)

7—12 CTOS Programming Guide, Volume II ' 6/91

char rgbDevName [] = "[CDROMO]";

uc cbDevName = 8;

char rgbSearchSpec[] = "<(*>x";

char rgbSearchClose[] = "CdSearchClose
(Request 81BEh)"; ’

char rgbSearchFirst[] = "CdSearchFirst
(Request 81BFh)"; ‘

char rgbSearchNext[] = "CdSearchNext

(Request 81COh)";
char rgbSearchFor (] " Searching for ";
char rng iveSpaces [1 " ",

/* Searches and lists all files in the first directory
* for the first CD-ROM device on the bus. */

USI SearchCD(void)

ULI Dh;

uc *SearchData;

uc *VersionInfo;
sbType *FileSpec;

uc rgbFileSpec[50];
USI cbFileSpec;

UsI erc;

UsI excClose;

CheckErc (AllocMemorySL(4096, &SearchData));
CheckErc (AllocMemorySL(100, &FileSpec));
CheckErc (AllocMemorySL(100, &VersionInfo));

/* Display the request we will execute */
NewLine();
OutputTovido0(&rgbVersionRequest,

sizeof (rgbVersionRequest)-1);
NewLine();
NewLine();

erc = CdVersionRequest (&rgbDevName,
sizeof (rgbDevName)— 1, VersionInfo, 20);

if (erc == ercOK) {
cbDevName = *(VersionInfo+4);
movb((VersionInfo+5), &rgbDevName[l], cbDevName);
rgbDevName[0] = '[';
rgbDevName [cbDevName+1]
rgbDevName [cbDevName+2]
cbDevName += 3;

o',
"

Listing 7-2. CD Search Example (Page 2 of 5)

6/91 ‘ CD-ROM Service 7—-13

/* Display the device name */
OutputToVvidoO(&rgbServiceName,
sizeof (rgbServiceName)-1);
movb((VersionInfo+4), &rgbDeviceName[O0],
*(VersionInfo+4)+1);
0utputToV1d0(&rngev1ceName[1], rgbDeviceName[0]);
NewLine();

/* Display the revision of the installed CD—-ROM
* Service */
OutputToVidO(&rgbvVersionLevel, sizeof
(rgbversionLevel)-1);
rgbVersion[0] = *(VersionInfo+1)%10 + 0x30;

rgbVersion[2] = *VersionInfo + 0x30;
OutputTovVidoO(&rgbVersion, sizeof(rgbVersion)-1);
NewLine();

/* Display the hardware environment */
OutputToVidO(s&rgbHardware, sizeof (rgbHardware)-1);

if (*(VersionInfo+2) == 1)
OutputToVvidO(&rgbNGen,sizeof (rgbNGen)-1);
else

OutputTovidoO(&xrgbSRP,sizeof (rgbSRP)-1);

/* Display the number of CD-ROM drives present */
NewLine();
OutputToVvidO(&rgbNumDrives,sizeof (rgbNumDrives)-1);
rgbDriveCount [0] = *(VersionInfo+3) + 0x30;
OutputToVidO(&rgbDriveCount,sizeof (rgbDriveCount)-
1);

NewLine()

}

/* Generate the full search file specification */

movb(&rgbDevName, &rgbFileSpec, cbDevName);

movb(rgbSearchSpec, &rgbFileSpec|[cbDevName],
sizeof(rgbSearchSpec)-1);

cbFileSpec = cbDevName + sizeof(rgbSearchSpec)-1;

Listing 7-2. CD Search Example (Page 3 of 5)

7—14 CTOS Programming Guide, Volume II 6/91

/* Display the request being executed along with the
* search file specification.
*/

NewLine();

OutputTovidO(&rgbSearchFirst, sizeof(rgbSearchFirst)-

1)

NewLine();

NewLine();

OutputTovidoO(&rgbSearchFor, sizeof(rgbSearchFor)-1);

OutputTovidoO(&rgbFileSpec, cbFileSpec);

NewLine();

/* Set file spec to all white space */
setb(0x20, FileSpec, sizeof(sbType));

/* Search for first match */
erc = ercCDHeapFull;
while (erc == ercCDHeapFull) {
/* Find the first file that matches our spec */
erc = CdSearchFirst(s&rgbFileSpec, cbFileSpec, NIL,
0, NIL, 0, FileSpec, 2048, &Dh);

if (erc != ercOK && erc != ercCDHeapFull)
return erc;

)

/* Time to display the file name */

NewLine();

OutputToVvidO(&rgbFiveSpaces, sizeof(rgbFiveSpaces)-—1);
OutputTovidO(&FileSpec->rg, FileSpec-»>cb);

NewLine();

/* Find all other files that match our spec */
NewLine();

OutputTovidO(&rgbSearchNext, sizeof(rgbSearchNext)-1);
NewLine();

NewLine();

Listing 7-2. CD Search Example (Page 4 of 5)

6/91 CD-ROM Service 7—15

/* Loop until all matches have been found */
erc = ercOK;

while (erc == ercOK) {
erc = CdSearchNext(Dh, NIL, 0, FileSpec, 2048);
if (erc == ercOK) |

/* Time to display the file name */
OutputTovidO(&rgbFiveSpaces,
sizeof(rgbFiveSpaces)-1);
OutputTovidO(&FileSpec—>rg, FileSpec—>cb);
NewLine();
}
else if (erc == ercCDHeapFull)
erc = ercOK;
)
/* This is the erc we expect when all matches have
* been found */
if (erc == ercCDNoSuchFile)
erc = ercOKk;

NewLine();

OutputTovidO(&rgbSearchClose, sizeof(rgbSearchClose)-—
1);

NewLine();

/* Must perform a CdSearchClose to free—up the file
* handle and the CDROM Service search buffers.
*

ercClose = CdSearchClose(Dh);
if (erc == ercOK && ercClose != ercOK)
erc = ercClose;

return erc;

Listing 7-2. CD Search Example (Page S of 5)

7—16 CTOS Programming Guide, Volume II 6/91

Copying a CD-ROM File to Disk

This example shows copying a CD-ROM file to disk. First, it uses
CdGetVolumelnfo to determine whether the CD-ROM file is in ISO or
High Sierra. format. Then it uses the CdGetDirEntry operation to obtain
the directory record of the source file, which tells how long the file is.
Once you know the length of the file to be copied, you can create and
open a disk file and write to it, as shown here.

Example

N
*

* % % % % % ¥ %

N
* *
~N

*
*

*/

MODULE HEADER
DESCRIPTION:

Example CD-ROM API application. This application
takes two input parameters, the name of the CD—-ROM
file you wish to copy from and the name of the disk
file you wish to copy to. The following illustrates
the command form and gives an example of how it might
be used. This is example3.

CD Copy
CD-ROM file to copy [CDROMO] <Sys>readme.doc
Destination [£0] (sys>readme.doc
END OF MODULE HEADER

#define Syslit

#define Sublit

#define sdType

#define FhbType

#define CreateFile
#define CdClose

#define CdGetDirEntry
#define CdGetVolumeInfo

Listing 7-3. Copying a CD-ROM File to Disk (Page 1 of 5)

6/91 : CD-ROM Service 7-17

#define CdOpen
#define CdRead
#define CheckErxc
#define CloseFile
#define GetFileStatus
#define OpenFile
#define RgParam
#define = SetFileStatus
#define ULCMPB
#define Write
#include <CtosLib.h>
#define RxErc
#include <erc.h>
#include <stdlib.h>
#include <stdio.h>

#include "CdRom_Types.h"
/* Defines request specific data structures */
#include "CdRom_Formats.h" »
/* Defines ISO and HSG data structures *x/
#include "CdRomService.h"
/* Defines service specific literals

typedef unsigned short int USI;
typedef wunsigned char uc;
typedef unsigned long int ULI;
typedef void _far * Pointer;
sdType *From;

sdType *To;

uc *CdBuff;
IsoDirRecordType *IsoDirRec;
HsgDirRecordType *HsgDirRec;
FhbType *Fhb;

sdType FileFrom;

sdType FileTo;

FhbType ToFhb;

uc fFormatType;

ULI dataLength;

ULI CDh;

USI fh;

ULT gFileSize;

char rgbIsoIdentifier|[]
char rgbHsgIdentifier([]

*/

/* word */
/* byte */
/*

dword */

"CDOO1";
"CDROM" ;

Listing 7-3. Copying a CD-ROM File to Disk (Page 2 of 5)

7—18 CTOS Programming Guide, Volume II

6/91

voi
{

ULI
USI
USI
USI
USI

d main(void)
1faCD;
wDataRet ;

i;
ercDisk;
ercDisc;

From = &FileFrom;

To = &FileTo;

Fhb = &ToFhb;

CheckErc(RgParam (1, 0, From));
CheckErc(RgParam (2, 0, To));

CdBuff = (Byte *) malloc(2048);
if (CdBuff == NULL)
exit(0);

/* Open the CD-ROM file and perform a CdGetVolumelInfo
* request to determine the format of the target
* CD—-ROM disc.
*/
CheckErc(CdOpen(0, From->pb, From->cb, NULL, 0,&CDh));
CheckErc(CdGetvVolumeInfo(CDh, CdBuff, 2048, s&wDataRet,
4));
i = ULCMPB(CdBuff+l, &rgbIsoIdentifier, 5);

if (i != OXFFFF) [
i = ULCMPB(CdBuff+9, &rgbHsgIdentifier, 5);
if (i != OXFFFF) {
free(CdBuff);
exit(0);
else

fFormatType = HSG_DISC;
]

else
fFormatType = ISO_DISC;

Listing 7-3. Copying a CD-ROM File to Disk (Page 3 of 5)

6/91 CD-ROM Service 7—19

/*

/* Perform a CdGetDirEntry request to obtain the
* directory entry of the source file so that we know
* how large it is.
*/
CheckErc(CdGetDirEntry(From—>pb, From—->cb, CdBuff,
2048, s&wDataRet));
if (fFormatType == ISO_DISC) {
IsoDirRec = (IsoDirRecordType *) CdBuff;
dataLength = IsoDirRec—>sFileSectionLSBF;
}
else |
HsgDirRec = (HsgDirRecordType *) CdBuff;
datalength = HsgDirRec—>sFileSectionLSBF;
}

Create and open the disk file we will be writing to */

qFileSize = dataLength;

offsetof(qFileSize) = (offsetof(gFileSize) + 511) & (~
511);

CheckErc(CreateFile(To—>pb, To—>cb, NIL, O,
qFileSize));

CheckErc(OpenFile(&fh, To->pb, To->cb, NIL, O,
modeModify));

1faCD = 0;
ercDisc = ercOK;
ercDisk = ercOK;

/* Read the CD-ROM file and write to the disk file

* until we hit EOF
*

while(ercDisc == ercOK && ercDisk == ercOK) {
ercbhisc = CdRead(CDh, 1faCD, CdBuff, 2048,
s&wDataRet);
/*

* When writing to a disk file the data length must
* be a multiple of 512
*/
if (wDataRet != 2048)
wDataRet = (wDataRet + 511) & (= 511);

ercDisk = Write(fh, CdBuff, wbhataRet, 1lfaCD,

&wDataRet) ;
1lfaCD += wDataRet;

Listing 7-3. Copying a CD-ROM File to Disk (Page 4 of 5)

7—-20 CTOS Programming Guide, Volume II 6/91

/* Update the FHB with the correct data length */
CheckErc(GetFileStatus(fh, 12, Fhb, 512));
Fhb->endOfFileLfa = dataLength;
CheckErc(SetFileStatus(fh, 12, Fhb, 512));
CheckErc(CloseFile(fh));

CheckErc(CdClose(CDh)) ;
free(CdBuff);
exit(0);

Listing 7-3. Copying a CD-ROM File to Disk (Page 5 of 5)

Using Audio Features of CD-ROM

If a disc does not contain data in High Sierra or ISO format, it may be an
audio disc. Audio functions of the CD-ROM Service are handled by the
CdAudioCtl operation.

Specifying Locations on the CD-ROM Disc

Locations on a CD-ROM disc can be specified in one of two ways: by
track number, or by minute-second-frame (MSF) Track numbers are
simply integers that refer to each track on the disc. MSF format refers to
the format used in the Red Book standard, created by N. V. Philips and
Sony Corporation. The address mode parameter of the Audio Play
function indicates which form of addressing is used.

In MSF format, minute ranges are from 0 to 70, second ranges from 0 to
59, and frame ranges from 0 to 75. There are 75 frames in one second.
MSF addresses are usually relative to the physical beginning of the disc.
The first two seconds of information on a disc are reserved for the table of
contents. The usable area of a CD-ROM disc thus starts at 0:2:0 (0
minutes, 2 seconds, 0 frames).

MSF format would be required if you wanted to play only a specific
portion of a track. In a multimedia environment where data and audio are
recorded on the same disc, MSF format would also be used.

6/91 CD-ROM Service 7-21

Q-Channel

The Q-channel is a status feature found on compact discs. It contains
useful information for control and addressing. Use the Audio Q-Channel
Info function to return the current track number, the relative MSF address
to the start of that track, and the absolute MSF address (that is, from the
start of the disc). The code example in this section illustrates use of this
function.

Audio Example

This example uses the Audio Disc Info function of CdAudioCtl to find out
what is on the disk (low track number, high track number, and starting
address of the lead-out track, in MSF format). It then uses the Audio
Track Info function to obtain the MSF address for each audio track on the
disc. (For purposes of illustration, this example uses the MSF form of
addressing, since it is more complex than use of track numbers.)

Each track on the disc is played (Audio Play), and the progress is
monitored through use of the Audio Q-Channel and Audio Status
functions When Audio Q-Channel detects that the play operation has
proceeded to a new track, a pause is performed (Audio Pause), and the
new track is displayed on the screen. Audio Resume then resumes the
playing of the audio disc. When Audio Status detects that the audio play
has completed, the program exits.

Compile and link this example as described earlier for Example 1. Then
use the Run command to invoke the program for Example 4 with the
following parameters:

Run

Run file example4.run

[Case]

[Command]

[Parameter 1] [CDROMO]<DIR>FILE_NAME
[Parameter 2] D <DIR>

7—22 CTOS Programming Guide, Volume II 6/91

* % % % % ¥ ¥ %

*/

#define
#define
#define
#define
#define
#define
“#define
#define
#define
#define
#define
#define
#define
#define
#include

#include
#include
#include

MODULE HEADER

INCLUDE FILE: examples3.c

MACHINE: B20

LANGUAGE: METAWARE C V1.0

0S: BTOS

DESCRIPTION: A CD-ROM example that illustrates the use
of the CdAudioCtl request. This is example4,

END OF MODULE HEADER

Syslit

Sublit
AllocMemorySL
CdAudioCtl
CdClose
CdOpen
CheckErc
DeallocMemorySL
DecOut

Delay

HexOut
HexQdOut
NewLine
zPrint
{CtosLib.h>

<{stdlib.h>
"examples.h"
"example3. h"

/* Perform Audio Disc Info function of the CDAudioCtl
* request to obtain the low, high, and leadout tracks of
* the installed CD-ROM disc.

*/

USI disc_

info (ULI CDh, paramType *Parameter,

discInfoType *DiscInfo)

{

USI erc;

NewLine();
zPrint (&rgbDiscInfo);
NewLine();

Parameter->function = AUDIO_DISC_INFO;

erc =

CdAudioCtl(CDh, Parameter, 1, DiscInfo, 20);

if (erc != ercOK)
return(erc);

6/91

Listing 7-4. Audio Example (Page 1 of 7)

CD-ROM Service 7-23

NewLine();
zPrint (&rgbLowTrack);
DecOut (DiscInfo->lowTrack);

" NewLine();
zPrint (&rgbHiTrack);
DecOut (DiscInfo->highTrack);

NewLine() ;

zPrint (&rgbLeadOutTrack);
HexQdOut (DiscInfo->leadOut);
NewLine();

return (ercOK);

}

/* Perform Audio Track Info function of the CDhAudioCtl
* request to obtain Red Book address for the beginning
* of each audio track on the installed CD-ROM disc.

*/

USI track_info (ULI CDh, trackParamType *Params,

discInfoType *DiscInfo, trackLogType *TrackLog)

{

USI i;
USI erc;

NewLine();
zPrint(&rgbTrackInfo);
NewLine(); :

Params—>function = AUDIO_TRACK_INFO;
-for (i = DiscInfo->lowTrack; i < DiscInfo-
>highTrack+2; i++) |
if (i == DiscInfo->highTrack+l)
Params—>track = LEADOUT;
else
Params—>track = i;

erc = CdAudioCtl(CDh, Params, 2, TrackLog, 6);

if (erc != ercOK)
return (erc);

Listing 7-4. Audio Example (Page 2 of 7)

7—24 CTOS Programming Guide, Volume II 6/91

N
*

* % % % X ¥ % % *

*
USI

{

USI
USI
USI
qCh
tra
USI

/* Don't display leadout track location */
if (i < DiscInfo->highTrack+l) [
NewLine();
zPrint(&rgbTrack);
DecOut (i) ;
if (i > 9)
zPrint(&xgbOneSpace);
else
zPrint (&rgbTwoSpaces);

zZzPrint (&§xgbMSF) ;
HexOut (TrackLog->min) ;
zPrint (&rgbSlash);
HexOut (TrackLog—->sec);
zPrint(&rgbSlash);
HexOut (TrackLog->frame) ;
}
else
TrackLog—>frame——;

TrackLog++;
}
NewLine();
return (ercOK);

Perform Audio Play, Audio Status, Audio Pause, and
Audio Resume functions of the CDAudioCtl request. The
Audio Play function is used to begin playing of the
installed CD-ROM disc and the Audio Status function

is performed to monitor the progress. When Audio
Status detects that the play operation has proceeded
to a new track, Audio Pause is performed and the new
track is displayed on the screen. Audio Resume is
then performed to commence the playing of the audio
disc. '

play_disc (ULI CDh, playMSFType *Params, discInfoType
*DiscInfo, trackLogType *TrackLog,
statusType *AudioStatus)

i;

ji

current_track;
annelType *QChannel;
ckLogType *Track;

erc;

Listing 7-4. Audio Example (Page 3 of 7)

6/91 CD-ROM Service 7-25

NewLine();
zPrint (&rgbAudioPlay);
NewLine(); ’

Params—>function AUDIO_PLAY;
Params-—>addrMode MSF;
Params—>wait 0;

Params—>startMin
Params—->startSec
Params->startFrame

TrackLog->min;
TrackLog—->sec;
TrackLog—>frame;

o n

Track = TrackLog + DiscInfo->highTrack;
Params—>endMin Track->min;
Params—>endSec Track->sec;
Params—>endFrame Track->frame;

/* If the disc does not contain audio tracks we will
* get an erc 15712 */
erc = CdAudioCtl(Cbh, Params, 10, NIL, 0);
if (erc == ercCDHardwareError) {
NewLine();
zPrint (&rgbNoAudio);
return (ercOk);

}

/* Get initial status */
Params—>function = AUDIO_STATUS;
erc = CdAudioCtl(CDh, Params, 1, AudioStatus, 8);
if (erc != ercOK)
return erc;

/* Display current track */

NewLine();

current_track = 0;

zPrint (&rgbPlayingTrack);
DecOut(current_track+l);

Track = TrackLog + current_track + 1;
QChannel = (gChannelType *) AudioStatus;

while (AudioStatus—>statusByte == PLAY_IN_PROGRESS) |
/* Get the g—channel info so we can check the
* current track */
Params—>function = AUDIO_Q CHANNEL;
erc = CdAudioCtl(CDh, Params, 1, QChannel, 20);
if (erc != ercOK) {
zPrint (&rgbBlinkOff);
return erc;

Listing 7-4. Audio Example (Page 4 of 7)

7—26 CTOS Programming Guide, Volume II 6/91

6/91

/* We have moved on to the next track; update the

* display */
if (QChannel->track > current_track+l) {

/* Pause when we reach the end of the track */

Params—->function = AUDIO_PAUSE;
erc = CdAudioCtl(CDh, Params, 10, NIL, 0);
if (erc !'= ercOK) {

zPrint (&rgbBlinkOff) ;

return erc;

)

if (current_track >= 9)
zPrint(rgbBackTrackl);

else
zPrint(rgbBackTrack2);

zPrint (rgbBackUp) ;
zPrint(rgbPausing);
Delay(20);

zPrint (rgbBackUp) ;
zPrint(rgbPlayingOf) ;
DecOut (current_track+l);
zPrint (rgbComplete);
NewLine();

/* Resume playing the next track */

Params—>function = AUDIO_RESUME;
erc = CdAudioCtl(CDh, Params, 10, NIL, 0);
if (erc != ercOK) {

zPrint (&rgbBlinkOff);

return erc;

)

zPrint(rgbPlayingTrack);
Track++;
current_track++;
DecOut(current_track+l);

}

/* Update the audio status */
Params—>function = AUDIO_STATUS;
erc = CdAudioCtl(CDh, Params, 1, AudioStatus,
if (erc != ercOK) [

zPrint (&rgbBlinkOff);

return erc;

Listing 7-4. Audio Example (Page 5 of 7)

CD-ROM Service 7-27

8);

/* Display completion of last track */
if (AudioStatus->statusByte == PLAY_COMPLETE) ({
if (current_track >= 9)
zPrint (rgbBackTrackl);
else
zPrint (rgbBackTrack2);

zPrint (rgbBackUp);
zPrint (rgbPlayingOf);
DecOut (current_track+l);
zPrint (rgbComplete);

~ NewLine();

}

else
zPrint (&rgbBlinkOff);

return (ercOK);

void main (void)

{
trackLogType *TrackLog;
discInfoType *DiscInfo;

ucC *AudioParams;
ucC *Audiolnfo;
ULI . CDh;

CheckErc (AllocMemorySL(20, &DiscInfo));
CheckErc (AllocMemorySL(180, &TrackLog));
CheckErc (AllocMemorySL(200, sAudioParams));
CheckErc (AllocMemorySL(200, &AudioInfo));
setb(0xFF, TrackLog, 180);

CheckErc (CdOpen(modeCDShare, &rgbDevName,
sizeof (rgbDevName)-1,
NULL, 0, &CDh));

CheckErc (disc_info(CDh, (paramType *) AudioParams,
DiscInfo));

CheckErc (track_info(CDh, (trackParamType *)
AudioParams, DiscInfo,

TrackLog));

CheckErc (play_disc(CDh, (playMSFType *) AudioParams,
DiscInfo, TrackLog, (statusType *)
AudioInfo));

Listing 7-4. Audio Example (Page 6 of 7)

7—28 CTOS Programming Guide, Volume II 6/91

CheckErc (CdClose(CDh));

CheckErc (DeallocMemorySL(AudioInfo, 200));
CheckErc (DeallocMemorySL(AudioParams, 200));
CheckErc (DeallocMemorySL(TrackLog, 180));
CheckErc (DeallocMemorySL(DiscInfo, 6));

Listing 7-4. Audio Example (Page 7 of 7)

File Formats

This section lists ISO and High Sierra file formats for data that is returned
by CD-ROM Service operations:

ISO Primary Volume Descriptor
High Sierra Primary Volume Descriptor

ISO Directory Record Format
High Sierra Directory Record Format

This section also describes the following character sets referred to in the
volume descriptor structures:

d-characters
a-characters
c-characters
al-characters
dl-characters
separators

6/91 CD-ROM Service 7—-29

Table 7-1. ISO Primary Volume Descriptor

(Page 1 of 2)

Byte

Field

Content

1

2-6

7

8

9-40
41-72
73-80
81-88
89-120
121-124
125-128
129-132
133-140
141-144
145-148

149-152
163-166

157-190
191-318
319-446
447-574

Volume descriptor type
Standard identifier
Volume descriptor version
Unused field

System identifier

Volume identifier

Unused field

Volume space size
Unused field

Volume set size

Volume sequence number
Logical block size

Path table size

Location of occurrence of type L path table

Location of optional occurrence of type L

path table

Location of occurrence of type M path table

Location of optional occurrence of type M

path table

Directory record for root directory

Volume set identifier
Publisher identifier

Data preparer identifier

numeric value
CDoo1
numeric value
(00) bytes
a-characters
d-characters
(00) bytes
numeric value
(00) bytes
numeric value
numeric value
numeric value
numeric value
numeric value

numeric value

numeric value

numeric value

34 bytes
d-characters
a-characters

a-characters

7—=30 CTOS Programming Guide, Volume II

6/91

Table 7-1. 1SO Primary Volume Descriptor

(Page 2 of 2)

Byte

Field

Content

575-702

703-739

740-776

777-813

814-830

831-847

848-864

865-881

882

883
884-1395
1396-2048

Application identifier

Copyright file identifier

Abstract file identifier

Bibliographic file identifier

Volume creation date and time

Volume modification date and time

Volume expiration date and time

Volume effective date and time

File structure version
Reserved for future standardization
Application use

Reserved for future standardization

a-characters

d-characters,
SEPARATOR 1,
SEPARATOR 2

d-characters,
SEPARATOR 1,
SEPARATOR 2

d-characters,
SEPARATOR 1,
SEPARATOR 2

Digit(s), humeric
value

Digit(s), humeric
value

Digit(s), numeric
value

Digit(s), nhumeric
value

numeric value
(00) byte
Not specified

(00) byte

6/91

CD-ROM Service 7-31

Volume descriptor type

a "1” in this field indicates that the volume descriptor is a standard file
structure volume descriptor. (8 bits)

Standard identifier

specifies the standard to which the volume descriptor is expected to
conform. "CDO001” indicates the ISO standard.

Volume descriptor version

specifies the version of the volume structure standard to which the
volume descriptor is expected to conform. A "1” indicates the present
standard. (8 bits)

Unused
is set to (00).
System identifier

specifies an identification of a system that can recognize and act on the
content of the Logical Sectors with Logical Sector Numbers 0 to 15 of
the volume. See the "Character Sets” section later in this chapter for a
list of a-characters.

Volume identifier

identifies the volume. See the "Character Sets” section later in this
chapter for a list of d-characters.

Unused field
is set to (00).
Volume space size

specifies the number of logical blocks in which the volume space is
recorded. (32 bits)

Unused

is set to (00).

7-32 CTOS Programming Guide, Volume II 6/91

Volume set size

specifies the number of volumes in the volume set of which the volume
is a member. (16 bits)

Volume sequence number

specifies the ordinal number of the volume in the volume set of which
the volume is a member. (16 bits)

Logical block size
specifies the size, in bytes, of a logical block. (16 bits)
Path table size

specifies the length, in bytes, of a recorded occurrence of the path
table identified by this volume descriptor. (32 bits)

Location of occurrence of type L path table

specifies the logical block number (LBN) of the first logical block
allocated to the extent that contains an occurrence of the path table.
Multibyte numeric values in a record of this occurrence of the path
table are recorded with the least significant byte first.

Location of optional occurrence of type L path table

specifies the LBN of the first logical block allocated to the extent that
contains an optional occurrence of the path table. A value of 0
indicates that the extent is not expected to have been recorded.
Multibyte numeric values in a record of this occurrence of the path
table are recorded with the least significant byte first. (32 bits)

Location of occurrence of type M path table

specifies the LBN of the first logical block allocated to the extent that
contains an occurrence of the path table. Multibyte numeric values in
a record of this occurrence of the path table are recorded with the
most significant byte first. (32 bits)

6/91 CD-ROM Service 7—-33

Location of optional occurrence of type M path table

specifies the logical block number of the first logical block allocated to

the extent that contains an optional occurrence of the path table. A

value of O indicates that the extent is not expected to have been

recorded. Multibyte numeric values in a record of this occurrence of
- the path table are recorded with the most significant byte first.

Directory record for root directory
contains the directory record for the root directory.
Volume set identifier

specifies an identification of the volume set of which the volume is a
member. See the "Character Sets” section later in this chapter for a
list of d-characters.

Publisher identifier

specifies an identification of the user who specified what to record on
the volume group of which the volume is a member.

If the first byte is set to (5F), the remaining bytes of this field specify
an identifier for a file containing the identification of the user. This
file is described in the root directory. The file name may not contain
more than eight d-characters, and the file name extension may not
contain more than three d-characters.

Setting all bytes in this field to (20) indicates that no such user is
identified.

See the "Character Sets” section later in this chapter for a list of
a-characters.

Data preparer identifier

specifies an identification of the person or other entity that controls
the preparation of the data to be recorded on the volume group of
which the volume is a member.

If the first byte is set to (5F), the remaining bytes of this field specify
an identifier for a file containing the identification of the data
preparer. This file is described in the root directory. The file name

7—34 CTOS Programming Guide, Volume II - 6/91

may not contain more than eight d-characters, and the file name
extension may not contain more than three d-characters.

Setting all bytes in this field to (20) indicates that no such data
preparer is identified.

See the "Character Sets” section later in this chapter for a list of
a-characters.

Application identifier

specifies an identification of the specification of how the data are
recorded on the volume group of which the volume is a member.

If the first byte is set to (5F), the remaining bytes of this field specify
an identifier for a file containing the identification of the application.
This file is described in the root directory. The file name may not
contain more than eight d-characters, and the file name extension may
not contain more than three d-characters.

Setting all bytes in this field to (20) indicates that no such application
is identified.

See the "Character Sets” section later in this chapter for a list of
a-characters.

Copyright file identifier

specifies an identification for a file described by the root directory and
containing a copyright statement for those volumes of the volume set
whose sequence numbers are less than or equal to the assigned volume
set size of the volume. Setting all bytes in this field to (20) indicates
that no such file is identified.

The file name of a copyright file may contain no more than eight
d-characters. The file name extension of a copyright file identifier may
not contain more than three d-characters.

See the "Character Sets” section later in this chapter for a list of
d-characters.

6/91 CD-ROM Service 7-35

Abstract file identifier

specifies an identification for a file described by the root directory
containing an abstract statement for those volumes of the volume set
whose sequence numbers are less than or equal to the assigned volume
set size of the volume. Setting all bytes in this field to (20) indicates
that no such file is identified.

The file name of an abstract file may contain no more than eight
d-characters. The file name extension of an abstract file identifier may
not contain more than three d-characters.

See the "Character Sets” section later in this chapter for a list of
d-characters.

Bibliographic file identifier

specifies an identification for a file described by the root directory and
containing bibliographic records interpreted according to standards
that are the subject of an agreement between the originator and the
recipient of the volume. Setting all bytes in this field to (20) indicates
that no such file is identified.

The file name of a bibliographic file identifier may contain no more
than eight d-characters. The file name extension of a bibliographic file
identifier may contain no more than three d-characters. '

See the "Character Sets” section later in this chapter for a list of
d-characters.

Volume creation date and time

specifies the date and time of day at which the information in the
volume was created. The date and time are represented by a 17-byte
field as described in the table below. If all the characters in bytes 1
through 16 are the digit ZERO and the number in byte 17 is 0, then the
date and time are not specified.

7=36 CTOS Programming Guide, Volume II 6/91

Format for Date and Time

Bytes Field Content
1-4 Year from 1 to 9999 Digits
5-6 Month of the year from 1 to 12 Digits
7-8 Day of the month from 1 to 31 Digits
9-10 Hour of the day from 0 to 23 Digits
11-12 Minute of the hour from 0 to 59 Digits
13-14 Second of the minute from 0 to 59 Digits
15-16 Hundredths of a second Digits
17 Offset from Greenwich Mean Time = Numeric
in number of 15-minute intervals value

from —48 West to +52 East
Volume modification date and time

specifies the date and time of day at which the information in the
volume was last modified (see "Format for Date and Time,” above).

Volume expiration date and time

specifies the date and time of day at which the information in the
volume can be regarded as obsolete. If the date and time are not
specified, then the information is not considered obsolete (see "Format
for Date and Time,” above).

Volume effective date and time

specifies the date and time of day at which the information in the
volume can be used. If the date and time are not specified, then the
information can be used immediately (see "Format for Date and Time,”
above).

6/91 _ CD-ROM Service 7-37

File structure version

specifies the version of the specification of the records of a directory
and of a path table. A value of "1” indicates the structure of this

International Standard.
Reserved

is set to (00).
Application use

is reserved for application use. Its content is not specified by this
standard.

Reserved for future standardization

is set to (00).

7-38 CTOS Programming Guide, Volume II 6/91

(Page 1 of 2)

Table 7-2. High Sierra Primary Volume Descriptor

Byte Field Content
1-8 Volume descriptor LBN numeric value
9 Volume descriptor type numeric value
10-14 Volume structure standard identifier CDRCM
15 Volume structure standard version numeric value
16 Reserved (00) byte
17-48 System identifier a-characters
49-80 Volume identifier d-characters
81-88 Reserved all (00) bytes
89-96 Volume space size numeric value
97-128 Reserved all (00) bytes
129-132 Volume set size numeric value
133-136 Volume set sequence number numeric value
137-140 Logical block size (LBS) numeric value
141-148 Path table size numeric value
149-152 Location of first mandatory occurrence of numeric value
path table
163-156 Location of optional occurrence of path numeric value
table
157-160 Location of optional occurrence of path numeric value
table
161-164 Location of optional occurrence of path numeric value
table
165-168 Location of second mandatory occurrence numeric value

of path table

6/91

CD-ROM Service 7-39

(Page 2 of 2)

Table 7-2. High Sierra Primary Volume Descriptor

Byte Field Content
169-172 Location of optional occurrence of path table numeric value
173-176 Location of optional occurrence of path table numeric value
177-180 Location of optional occurrence of path table numeric value
181-214 Directory record for root directory 34 bytes
215-342 Volume set identifier d-characters
343-470 Publisher identifier a-characters
471-598 Data preparer identifier a-characters
599-726 Application identifier a-characters
727-758 Copyright file identifier d-characters,

FULL STOP
759-790 Abstract file identifier d-characters,
FULL STOP
791-806 Volume creation date and time digit(s)
807-822 Volume modification date and time digit(s)
823-838 Volume expiration date and time digit(s)
839-854 Volume effective date and time digit(s)
855 File structure standard version numeric value
856 Reserved (00) byte
857-1368 Reserved for application use not specified
1369-2048 Reserved for future standardization all (00) bytes

7—40 CTOS Programming Guide, Volume Il

6/91

Volume descriptor LBN

specifies the logical block number (LBN) of the first logical block
allocated to the primary volume descriptor. (32 bits)

Volume descriptor type

a "1” in the field indicates that the volume descriptor is a standard file
structure volume descriptor. (8 bits)

Volume structure standard identifier

specifies the standard to which the volume descriptor is expected to
conform. "CDROM" indicates the High Sierra standard.

Volume structure standard version

specifies the version of the volume structure standard to which the
volume descriptor is expected to conform. A "1" indicates the present
standard. (8 bits)

Reserved
is set to (00).
System identifier

specifies an identification of a system that can recognize and act on the
content of the Logical Sectors with Logical Sector Numbers 0 to 15 of
the volume. See the "Character Sets” section later in this chapter for a
list of a-characters.

Volume identifier

identifies the volume. See the "Character Sets” section later in this
chapter for a list of d-characters.

Reserved

is set to (00).

6/91 CD-ROM Service 7—41

Volume space size

specifies the number of logical blocks in which the volume space is
recorded. (32 bits)

Reserved
is set to (00).
Volume set size

specifies the number of volumes in the volume set of which the volume
is a member. (16 bits)

Volume set sequence number

specifies the ordinal number of the volume in the volume set of which
the volume is a member. (16 bits)

Logical block size (LBS)

specifies the size, in bytes, of a logical block. (16 bits)
Path table size

specifies the length, in bytes, of the path table. (32 bits)
Location of first mandatory occurrence of path table

specifies the logical block number (LBN) of the first logical block
allocated to the extent that contains the first mandatory occurrence of
the path table. Multibyte number values in a record of this occurrence
of the path table are recorded with the least significant byte first. (32
bits)

Location of optional occurrence of path table

specifies the LBN of the first logical block allocated to the extent that
contains an optional occurrence of the path table. A value of 0
indicates that the extent is not expected to have been recorded.
Multibyte numeric values in a record of this occurrence of the path
table are recorded with the least significant byte first. (32 bits)

7—42 CTOS Programming Guide, Volume II 6/91

Location of second mandatory occurrence of path table

specifies the LBN of the first logical block allocated to the extent that
contains the second mandatory occurrence of the path table.
Multibyte numeric values in a record of this occurrence of the path
table are recorded with the most significant byte first. (32 bits)

Location of optional occurrence of path table

specifies the LBN of the first logical block allocated to the extent that
contains an optional occurrence of the path table. - A value of 0
indicates that the extent is not expected to have been recorded.
Multibyte numeric values in a record of this occurrence of the path
table are recorded with the most significant byte first. (32 bits)

Directory record for root directory
contains the directory record for the root directory.
Volume set identifier

specifies an identification of the volume set of which the volume is a
member. See the "Character Sets” section later in this chapter for a
list of d-characters.

Publisher identifier

specifies an identification of the user who specified what to record on
the volume. See the "Character Sets” section later in this chapter for a
list of a-characters.

Data preparer identifier

specifies an identification of the person or other entity that controls
the preparation of the data recorded on the volume. See the
"Character Sets” section later in this chapter for a list of a-characters.

Application identifier

specifies an identification of the specification for how the data are
recorded on the volume. See the "Character Sets” section later in this
chapter for a list of a-characters.

6/91 CD-ROM Service 7—43

Copyright file identifier

specifies an identification for a file described by the root directory
containing a copyright statement for the volume. A value in this field
of all SPACEs indicates that the file is not expected to have been
recorded.

The file name of a copyright file identifier is limited to 8 d-characters.
The file name extension of a copyright file identifier is limited to 3
d-characters. See the "Character Sets” section later in this chapter for
a list of d-characters.

Abstract file identifier

specifies an identification for a file described by the root directory
containing an abstract statement for the volume. A value in this field
of all SPACEs indicates that the file is not expected to have been
recorded.

The file name of an atract file identifier is limited to 8 d-characters.
The file name extension of an abstract file identifier is limited to 3
d-characters.

Volume creation date and time

specifies the date and time of day at which the information in the
volume was created. The date and time are represented by a 16-byte
field as described in the table below. If all characters of this field are
the digit ZERO, then the date and time are not specified.

Format for Date and Time

Bytes Field Content
1-4 Year from 1 to 9999 Digits
5-6 Month of the year from 1 to 12 Digits
7-8 - Day of the month from 1 to 31 Digits
9-10 Hour of the day from 0 to 23 Digits
11-12 Minute of the hour from 0 to 59 Digits
13-14 Second of the minute from 0 to 59 Digits
15-16 Hundredths of a second ‘ Digits

7—44 CTOS Programming Guide, Volume II ' 6/91

Volume modification date and time

specifies the date and time of day at which the information in the
volume was last modified (see "Format for Date and Time," earlier).

Volume expiration date and time

specifies the date and time of day at which the information in the
volume can be regarded as obsolete. If the date and time are not
specified, then the information is not considered obsolete (see "Format
for Date and Time,” earlier).

Volume effective date and time

specifies the date and time of day at which the information in the
volume can be used. If the date and time are not specified, then the
information can be used immediately (see "Format for Date and Time,"
earlier).

File structure standard version

specifies the version of the file structure standard to which all directory
records and all path tables are expected to conform. A value of "1"
indicates the present standard. (8 bits)

Reserved
is set to (00).
Reserved for application use

is reserved for application use. Its content is not specified by this
standard.

Reserved for future standardization

is set to (00).

6/91 CD-ROM Service 7—45

ISO Directory Record Format

The CdGetDirEntry request returns the directory record for the specified
path. The format for an ISO directory record is described below.

Table 7-3. I1SO Directory Record Format

Offset Field (b?y.tzees) Description
0 Length of directory 0 length of the ISO directory record
record
1 Extended attribute 1 number of logical blocks recorded
record length
2 Location of extent LSBF 4 LBN of first logical block in extent
6 Location of extent MSBF 4 LBN of first logical block in extent
10 Data length LSBF 4 size of the file section
14 Datalength MSBF 4 size of the file section
18 Recording date and time 7 date and time of recording
25 File flags 1 flags for file options
26 File unit size 1 file unit size for file section
27 Interleave gap size 1 number of consecutive logical blocks
28 Volume sequence number4 ordinal numbe‘r of volume in volume set
32 Length of file identifier 1 length in bytes of File Identifier field
33 File identifier varies identification for file or directory
Padding field 1 unused value

Length of directory record

is the length, in bytes, of the ISO directory record. The maximum
length of a directory record is 68 bytes (33 byte record header + 34
byte maximum file identifier + 1 byte padding field).

7—46 CTOS Programming Guide, Volume II 6/91

Extended attribute record length

is the number of logical blocks that make up the extended attribute
record preceding the file data in the extent. If no extent is recorded,
this value is 0. The maximum length of an extended attribute record is
65,786 bytes (251 byte record header + 65,535 byte application use field
+ 0 byte escape sequence field).

Location of extent LSBF

is the logical block number of the first logical block allocated to the
extent, with least significant bit first (for Intel processors, for
example).

Location of extent MSBF

is the logical block number of the first logical block allocated to the
“extent, with most significant bit first (for Motorola processors, for
example).

Data length LSBF
is the length, in bytes, of the file section, with least significant bit first.
Data length MSBF

is the length, in bytes, of the file section, with most significant bit first.

6/91 CD-ROM Service 7—47

Recording date and time

are the date and time the recording was made. Each byte contains the
following information:

Byte Number Description

0 number of years since 1990.

1 month of the year, from 1 to 12.

2 day of the month, from 1 to 31.

3 hour of the day, from 0 to 23.

4 minute of the hour, from 0 to 59.

5 second of the minute, from 0 to 59.

6 offset from Greenwich Mean Time, in 15
minute intervals from -48 (West) to +52 (East).
This value is represented in binary notation by
an 8-bit two’s complement number.

File flags

is a series of bit flags. Each bit, when set to the appropriate state,
indicates the following:

Bit Number Bit State Description
and Name
0 (Existence) 0 Upon inquiry, the user is

informed of the file’s existence.

1 The existence of the file need
not be made known to the user.

1 (Directory) 0 The directory record does not
identify a directory.

1 The directory record identifies
a directory.

7—48 CTOS Programming Guide, Volume II 6/91

Bit Number
and Name

2 (Assoc. File)

3 (Record)

4 (Protection)

5
6

7 (Multi-extent)

6/91

Bit State

0

Description

The file is not an associate file.
The file is an associate file.

The structure of the
information in the file is not
specified by the Record Format
field of any associated extended
attribute record.

The structure of the
information in the file has a
record format specified by a
number other than 0 in the
Record Format field of the
extended attribute record.

An owner identification and a
group identification are not
specified for the file. Any user
may read or execute the file.

An owner identification and a
group identification are
specified for the file. At least
one of the even-numbered bits
or bit 0 in the Permissions field
of the associated extended
attribute record is set to 1.

Reserved; set to 0.
Reserved; set to 0.

This directory record is the
final directory record for the
file.

This is not the final directory
record for the file.

CD-ROM Service 7—49

File unit size

is the file unit size of the file section, provided the file section is
recorded in interleave mode. Otherwise, this value is 0.

Interleave gap size

is the interleave gap size for the file section, provided the file section is
recorded in interleave mode. Otherwise this value is 0.

Volume sequence number

is the ordinal number of the volume in the volume set on which the
extent described by this directory record is recorded.

Length of file identifier
is the length in bytes of the File Identifier field of the directory record.
File identifier

is the identifier for a file or directory. If the Directory bit (bit 1) of
the File Flags field is set to 0, the File Identifier field is the identifier
for a file. The characters in this field are d-characters or
dl-characters, SEPARATOR 1, SEPARATOR 2.

If the Directory bit (bit 1) of the File Flags field is set to 1, the File
Identifier field is the identifier for a directory. The characters in this

field are d-characters or dl-characters, or only a (00) byte, or only a
(01) byte.

Padding field

is an unused value that is only present if an even number is present in
the Length of File Identifier field.

7=50 CTOS Programming Guide, Volume II 6/91

High Sierra Directory Record Format
The format for a High Sierra directory record is described below.

Table 7-4. High Sierra Directory Record Format

Size
Offset Field (bytes) Description
0 Length of directory 0 length of the High Sierra directory record
record
1 Extended attribute 1 number of logical blocks recorded
record length
2 Location of extent 8 LBN of first logical block in extent
10 Data length 8 the size of the file section
18 Recording date and time 6 date and time of recording
24 File flags 1 flags for file options
25 Reserved 1 reserved
26 Interleave size 1 number of logical blocks in extent
27 Interleave skip factor 1 number of logical blocks allocated to files
separating each part of the file recorded in
the extent
28 Volume sequence humber4 ordinal number of volume in volume set
32 Length of file identifier 1 length in bytes of File Identifier field
33 File identifier varies identification for file or directory
Padding field 1 unused value

Length of directory record

is the length, in bytes, of the High Sierra directory record. The
maximum length of a directory record is 68 bytes (33 byte record
header + 34 byte maximum file identifier + 1 byte padding field).

6/91 CD-ROM Service 7-51

Extended attribute record length

is the number of logical blocks that make up the extended attribute
record preceding the file data in the extent. If no extent is recorded,
this value is 0. The maximu length of an extended attribute record is
65,854 bytes (251 byte record header + 65,535 byte application use field
+ 68 byte directory record).

Location of extent

is the logical block number of the first logical block allocated to the
extent.

Data length
is the length, in bytes, of the file section.
Recording date and time

are the date and time the recording was made. Each byte contains the
following information:

Byte Number Description

0 number of years since 1990.

1 month of the year, from 1 to 12.

2 day of the month, from 1 to 31.

3 hour of the day, from 0 to 23.

4 , minute of the hour, from 0 to 59.

5 second of the niinute, kfrom 0 to 59.

7-52 CTOS Programming Guide, Volume II 6/91

File flags

is a series of bit flags. Each bit, when set to the appropriate state,
indicates the following:

Bit Number
and Name

0 (Existence)

1 (Directory)

2 (Assoc. File)

3 (Record)

6/91

Bit State

Description

Upon inquiry, the user is
informed of the file’s existence.

The existence of the file need
not be made known to the user.

The directory record does not
identify a directory.

the directory record identifies a
directory, and the record bit
will contain the value 0.

The file is not an associate file.

The file is an associate file that
will be ignored in interchange.
The content will be interpreted
differently by different systems.

The structure of the
information in the file is not
specified by the Record Format
field of any associated extended
attribute record.

The structure of the
information in the file has a
record format specified by a
number other than 0 in the
Record Format field of the
extended attribute record.

CD-ROM Service 7-53

Bit Number Bit State
and Name
4 (Protection) 0
1
5
6

7 (Multi-extent) 0

Reserved
is set to (00).

Interleave size

Description

The Owner Identification and
Group Identification fields in
the associated extended
attribute record shall contain all
zeros. Also, the Permissions
field in the associated extended
attribute record shall contain
(AAAAD).

Tthe Owner Identification and
Group Identification fields in
the associated extended
attribute record shall not
contain all zeros. Also, the
Permissions field in the
associated extended attribute
record shall contain values
specified by the High Sierra
Proposal. :

Reserve; set to 0.
Reserve; set to 0.

This directory record is the
final directory record for the
file.

 This directory record is not the

final directory record for the
file.

is the number of consecutive logical blocks in which each part of the
file is recorded in the extent described by the directory record.

7—=54 CTOS Programming Guide, Volume II 6/91

Interleave skip factor

is the number of consecutive logical blocks allocated to other files
separating each part of the file recorded in the extent described by the
directory record. The number in this field is 0 if the Directory bit (bit
1) of the File Flags field is 1.

Volume sequence number

is the ordinal number of the volume in the volume set on which the
extent described by this directory record is recorded.

Length of file identifier
is the length in bytes of the File Identifier field of the directory record.
File identifier

is the identifier for a file or directory. If the Directory bit (bit 1) of
the File Flags field is set to 0, the File Identifier field is the identifier
for a file. The characters in this field are d-characters, FULL STOP,
and SEMICOLON.

If the Directory bit (bit 1) of the File Flags field is set to 1, the File
Identifier field is the identifier for a directory. The characters in this
field are d-characters, or only a (00) byte, or only a (01) byte.

Padding field

is an unused value that is only present if an even number is present in
the Length of File Identifier field.

6/91 CD-ROM Service 7-55

Character Sets

The following sections” list the characters classified as d-characters,
a-characters, c-characters, al-characters, d1-characters, and separators.
d-characters

The following 37 characters are referred to as d-characters:

Character Graphic Code (hex)
Digits ZERO to NINE 0.. 30 through 39
Capital letters Ato Z A..Z 41 through 5A
Low line 5F

a-characters

The following 57 characters are referred to as a-characters:

Character Graphic Code (hex)
SPACE 20
EXCLAMATION MARK { 21
QUOTATION MARK ' . 22
PERCENT SIGN % 25
AMPERSAND & 26
APOSTROPHE ' 27
LEFT PARENTHESIS { 28
RIGHT PARENTHESIS) 29
ASTERISK * 2A
PLUS SIGN + 2B
COMMA , 2C
HYPHEN - 2D
PERIOD or FULL STOP . 2E

7—-56 CTOS Programming Guide, Volume Il 6/91

Character Graphic Code (hex)

SOLIDUS / 2F

DIGITS ZERO to NINE 0..9 30 through 39
COLON : 3A
SEMICOLON H 3B
LESS-THAN SIGN < 3C

EQUALS SIGN = 3D
GREATER-THAN SIGN > 3E
QUESTION MARK ? 3F

CAPITAL LETTERS Ato Z A.Z 41 through 5A
LOW LINE - SF
c-characters

The characters of the coded graphic character sets identified by the escape
sequences in a supplementary volume descriptor are referred to as
c-characters. This character set is used only in the ISO-9660
environment.

al-characters

A subset of the c-characters is referred to as al-characters. This subset is
subject to agreement between the originator and the recipient of the
volume. This character set is used only in the ISO-9660 environment.

d1-characters

A subset of the al-characters is referred to as dl-characters. This subset
is subject to agreement between the originator and the recipient of the
volume. This character set is used only in the ISO-9660 environment.

6/91 ' CD-ROM Service 7-57

Separators
The characters separating the components of a file identifier are

SEPARATOR 1 represented by the bit combination
2E(hex) - FULL STOP

SEPARATOR 2 represented by the bit combination
3B(hex) - SEMICOLON

7—-58 CTOS Programming Guide, Volume II 6/91

8

Sequential Access Service

Overview

The Sequential Access Service provides for the faithful transfer of data to
and from a specified medium, at the proper position on the medium. It
mediates the use of sequential access devices among a number of users. A
device is opened for exclusive use by a single user and can be used by a
different user after it has been closed by the first user.

The Sequential Access Service is device-independent. Some of the
devices currently supported are

o quarter-inch cartridge (QIC) tape (either QIC-02 or SCSI
interfaces)

. half-inch reel-to-reel tape (either Shared Resource Processor
Storage Processor or SCSI interfaces)

° 4mm digital data storage (DDS)

The Sequential Access Service must be installed on the workstation or
SRP with the sequential access device. The workstation can be either a
cluster server workstation or a cluster client workstation. If installed on
the cluster server, client workstations of the server can also use the
Sequential Access Service. Multiple Sequential Access Services can be
installed on an SRP, one on each processor board that controls a device
(for detailed information, see the Executive Reference Manual).

The service provides both implicit and explicit routing to sequential access
devices: if the device name is unique in the cluster, the request is routed
to the named device. If two devices have the same name, the request is
‘routed locally first, unless you specify the device at the server with an
exclamation mark (!). Of course, performance can be affected by the

6/91 , Sequential Access Service 8-1

relative placement of the service and the device. For example, if a volume
archive program is running on a cluster workstation, performance is slower
if the target tape drive is located on the server workstation than it would
be if the target tape drive were located on the cluster workstation as well.

To use the operations described in this chapter, first use the Install
Sequential Access Service command to install the Sequential Access
Service on your workstation, as described in the Executive Reference
Manual and the CTOS System Administration Guide.

Functional Groups of Operations

The following sections offer a brief description of the Sequential Access
Service operations. See the CTOS Procedural Interface Reference Manual
for complete descriptions of these operations.

Basic Operations

SeqAccessClose releases a sequential access device from the
exclusive access rights granted by a previous call’
to SeqAccessOpen.

SeqAccessCtrl is used to specify certain medium positioning
operations that do not involve the transfer of user
data to the medium. These operations include
rewinding, unloading, retensioning, erasing, and
writing filemarks and may apply only to certain
devices.

SeqAccessOpen provides exclusive access to the specified
sequential access device and returns a sequential
access handle to be wused in subsequent
operations.

SeqAccessRead reads data from the sequential access device and
places it in a user-specified buffer.

SeqAccessStatus returns the current status of the sequential access
device and its medium.

8—2 CTOS Programming Guide, Volume II . 6/91

SeqAccessWrite

Advanced Operations

SeqAccessCheckpoint

writes "data to the medium mounted on a
sequential access device. This operation also
verifies the data transfer and returns the amount
of data unsuccessfully transferred.

causes the user to wait until all of the data
supplied by previous SeqAccessWrite calls has
been successfully transferred to the medium, or
until an exception condition occurs that prevents
the data’s transfer.

SeqAccessDiscardBufferData

SeqAccessModeQuery

SeqAccessModeSet

allows the user to discard buffered data from the
output data stream. This operation is
commonly used when an exception condition
occurs (for example, end of medium, which
signals that a new tape is to be mounted). It
subsequently allows new operations, such as
Write Filemark, to take place without transferring
the previously buffered data to the medium.

returns information about the current operating
characteristics of the sequential access device,
such as whether the device is write-protected,
whether it is operating in buffered mode, and
what recording density is being used for the
medium.

configures operating characteristics of the
sequential access device, such as buffered or
unbuffered mode, medium transport speed, and
medium recording density.

SeqAccessRecoverBufferData

6/91

transfers data from the buffers of the Sequential
Access Service to a user-specified buffer. This
operation is used when an exception condition
occurs that leaves data in the Sequential Access
Service buffers. In this case, an application

Sequential Access Service 8-3

program may wish to recover this data before
resuming write operations to the medium.

Miscellaneous

SeqAccessVersion returns version information for the specified
sequential access device. This operation also
returns the names of all the devices under control
of the Sequential Access Service that is
responsible for this device.

General Model of Sequential Access Devices

This section provides an overview of the data storage characteristics of
sequential access devices, the logical elements within a tape, and how data
is buffered on certain devices. These devices are used for the storage and
retrieval of user data in a sequential manner, moving from beginning to
end of the medium. For the purposes of this discussion, sequential access
devices are generally tape devices, but they could be other device types as
well. Position changes for sequential access devices typically take a long
time, in contrast to position changes for direct access devices, such as
disks, which are relatively rapid.

Data Storage Characteristics

The recording medium for tape devices consists of magnetic tape that is
wound onto reels and may be enclosed in a cartridge that contains both the
supply reel and the takeup reel. This recording medium has two physical
attributes: beginning-of-medium (BOM) and end-of-medium (EOM). On
most tapes, there are reserved areas at the beginning and end of the tape
that are not used for recording, as shown in Figure 8-1.

Before EOM, there is also an area known as early warning (EW) that is
reported to the program in time to recover unwritten data in the device’s
buffers and in the service’s buffers before changing to a new tape and
writing the remainder of the data. The amount of room left on the tape
when early warning is encountered varies greatly for different devices. On
half-inch tape devices, for example, recording densities range from 800 bits
per inch to 6250 bits per inch. (On such devices, you can either determine

8—4 CTOS Programming Guide, Volume II 6/91

the amount remaining empirically, or check the manufacturer’s
specifications for the device.) In addition, packing density (determined by
block size and inter-block gaps; see below) also affects the amount of
space left on the medium after early warning.

BOM Early Warning (EW)
, '
Reserved Usable Recording Zone Resehed
/
EOM
<<——— Take—up Hub Supply Hlb —————>

512.8-1

Figure 8-1. General Layout of a Tape

A track is the position on the medium where one write component records
data. A device may read from or write to one or more tracks at a time.

The following paragraphs briefly describe how data is recorded on
different types of devices. This information is provided as general
background information, since this difference is transparent to the
programmer.

A QIC tape device reverses direction when it approaches the
end-of-medium and continues writing in the opposite direction on track 2,
as shown in Figure 8-2. When it reaches the beginning-of-medium on
track 2, it again reverses direction and writes toward the end-of-medium on
track 3. This type of recording is called serpentine recording.

6/91 Sequential Access Service 8-5

Track 1 > Track Group 1

Track 2 = Track Group 2

Track 3 > Track Group 3

i:;ock n > :rn:ack Group D
512.8-2

Figure 8-2. Serpentine Recording (QIC Tape)

A half-inch tape device records all the tracks on the medium in parallel,

moving once from beginning-of-medium to end-of-medium, as shown in
Figure 8-3.

Track 1 -
Track 2 > Track
Track 3 - Group 1
Track D >

512.8-3

Figure 8-3. Parallel Recording (Half-inch Tape)

A DDS device records tracks diagonally across the medium, as shown in
Figure 8-4. This type of recording is called helical scan.

T

512.8-4

Figure 8-4. Helical Scan Recording (DDS)

8—6 CTOS Programming Guide, Volume II 6/91

Logical Elements within a Tape

Within a tape, data is composed of collections of logical data blocks,
filemarks, and blank space.

Logical Data Blocks

A logical data block is a unit of data supplied or requested by a user
program. Logical blocks are stored according to the specifications of the
format for the device and may be recorded as one or more physical blocks
on the medium.

Inter-block Gaps

Whenever a block or filemark is written, a gap is introduced on the
medium between the block or filemark and whatever follows. With some
storage formats such as half-inch tape, there is a sizable space between
physical blocks (sometimes as much as three-quarters of an inch). In this
case, increasing the size of the blocks speeds up the data transfer rate and
increases the capacity of the tape. The tradeoff in this case is that larger
blocks require larger extents of tape without defects.

Filemarks

Logical elements within a tape can be separated into discrete units by
filemarks. Filemarks are special recorded elements containing no user
data. They are often used to separate a group of data with a common
origin or destination from another group of data with a common origin or
destination. The SequentialAccessControl operation is used to write a
filemark.

Blank Space

Blank space is generally found only at the end of the used portion of the
medium. With some recording formats, end-of-data (EOD) is indicated by
blank space on the medium. Other formats may use a convention (for
example, two filemarks in a row) to indicate that there is nothing else on
the tape.

6/91 Sequential Access Service 8-7

Erase Gaps

In addition to blocks and filemarks, erase gaps can also be recorded on
the medium (using the SequentialAccessControl operation), for error
recovery purposes. For example, if a stretch of tape has medium defects
that are making it impossible to write the data accurately, the Sequential
Access Service can erase that section of tape and continue to an unharmed
section of the medium.

Data Buffering

To improve throughput, the Sequential Access Service and many
sequential access devices have buffers that act as a pipeline for data. At
one end of this pipeline, you supply the data to be written. At the other
end, that data is transferred physically from the pipeline onto the medium.
(If you are reading from the device, the flow of data through the pipeline
naturally proceeds in the opposite direction.) For the most part, data
buffering is transparent to the application programmer. During exception
conditions such as end of tape, however, you will need to decide how to
handle data remaining in the buffers, as described below.

In some cases, the data you are writing will require more than one tape.
When you approach the end of a tape, the SeqAccessWrite operation
returns an EOM status code. This status code is the early warning signal
that EOM is about to be reached. At this time, you may have unwritten
data in the device’s buffers (if available) and in the service’s buffers. The
following paragraphs describe the process of recovering this data before
you change tapes, then writing the remainder of the new data.

There are two kinds of data buffers: buffers in the sequential access
device and buffers in the Sequential Access Service. Use the
SeqAccessModeQuery operation to determine the total size of the data
buffers available, as described below. Then allocate the appropriate
amount of memory for use in recovering buffer data, as described in the
following paragraphs.

Device Buffers

Some devices have buffers and some do not. In addition, you can reclaim
data from some device buffers, but not from others. To determine the size
of the device buffers, examine the DeviceBufferSize field returned by the

8—8 CTOS Programming Guide, Volume II 6/91

SeqAccessModeQuery operation, which indicates the size in bytes of the
device buffers. This size is a fixed value that cannot be changed by the
programmer. In addition, check the fDataBufRecoverable flag, also
returned by SeqAccessModeQuery. If this flag is TRUE, the Sequential
Access Service can retrieve data from the device’s buffers. If this flag is
FALSE, the data in the device buffers is not available to the service.

Sequential Access Service Buffers

To determine the size of the Sequential Access Service buffers, examine
the ServiceBufPoolSize field returned by the SeqAccessModeQuery
operation, which indicates the size in bytes of the service buffers.

Allocating Memory for Recovering Buffer Data

To determine how much memory to allocate for recovering buffer data,
add the size of the Sequential Access Service buffers to the size of the
device buffers (if fDataBufRecoverable is TRUE). The normal sequence is
to open a device, use SeqAccessModeQuery to determine the available
buffer sizes, and then allocate memory for data recovery when you reach
the end of a tape.

Residual Data

Each SeqAccessWrite operation requires a pointer to an area where the
amount of data unsuccessfully transferred is returned (pCbResidual). The
following discussion of residual data applies when an End of Medium
(EOM) condition occurs. At other times, a nonzero value for residual
data can be an error indicator.

When EOM is reached, you follow one of two general sequences for
dealing with the residual data:

e Case A: The amount of residual data is less than or equal to the size
of the current write.

e Case B: The amount of residual data is greater than the size of the
current write.

The following paragraphs outline the steps to follow for each of these two
cases.

6/91 Sequential Access Service 8-9

Case A is the simpler of the two cases. For purposes of this discussion,
there is no need to distingunish between data in the device’s buffers and
data in the service’s buffers. Residual data includes both kinds of buffer
data. For this example, suppose the current buffer size is 4K bytes. A
SeqAccessWrite operation tries to write a 4K byte block of data. The
operation returns with an EOM status code and a value of 3K bytes of
residual data (that is, 1K byte was successfully written to the tape). The
steps to follow are

1. Use the SeqAccessDiscardBufferData to discard the 3K bytes of
buffered data in the device and service buffers.

2. Change the tape.

3. Since 1K bytes of data in this write has already been successfully
transferred, adjust the starting address of the write by 1K bytes.
Then reissue the SeqAccessWrite for the 3K bytes of data that have
not yet been written.

To illustrate Case B, suppose there are two 8K-Byte buffers in the
Sequential Access Service and no device buffers. The following events
occur.

1. Buffer 1 contains 6K bytes of data, and Buffer 2 contains 8K bytes of
data and is full, as shown below.

Buffer 1 Buffer 2
6K 2K 8K

(] Empty

Data transferred by previous
SeqAccessWrite, but not yet
transferred to the device.
("old" data)

2. While attempting to write the data indicated above by shading, the
Sequential Access Service receives an EOM warning from the
device. The service freezes I/0 and stops writing.

8—10 CTOS Programming Guide, Volume II 6/91

3.

6/91

The application issues a 4K write. Since Buffer 1 has 2K bytes
empty, 2K bytes are copied into Buffer 1. Now both buffers are
filled.

Buffer 1 Buffer 2

Data transferred by the
current SeqAccessWrite,
but not yet transferred to
the device.

"current" data)

] Old data

The SeqAccessWrite operation returns an EOM status code and a
value of 18K bytes for residual data (the 14K bytes of data that were
"safely” accepted before EOM was reached, the 2K bytes received
after EOM, and the 2K bytes not even accepted from the user
buffer).

When the value of residual data is greater than the size of the
previous write (Case B), the amount of previously accepted data that
can be recovered is equal to the difference between residual data and
the size of the previous write. In this example the values are

18K bytes — 4 K bytes = 14K bytes
(of previously accepted data that can be
recovered)

Use the SeqAccessRecoverBufferData to recover the 14K bytes of
data that was previously written to the service’s buffers (step 1). This
data is returned in the same order in which it was originally written
(first-in, first-out) so that you can write it again (see Step 8).

Sequential Access Service §8-11

10.

Buffer 1 Buffer 2
6K 2K 8K

7

Current data
(] Empty

Note in the figure above that Buffer 1 still contains the 2K bytes of
data from the current write. Since there is still data in the buffers,
you are not yet ready to change tapes. (A SeqAccessClose operation
will fail with a status code that indicates that data is still in the
buffers.)

This 2K bytes of data is still available to the program, however, as in
Case A, because it is part of the current write. So all you need to do
is discard the buffered data through use of the
SeqAccessDiscardBufferData operation.

Write the filemark.
The buffers are now empty, so you can change the tape.

Issue a SeqAccessWrite operation with the 14K bytes of data from
the recovery buffer.

Reissue the SeqAccessWrite operation with the 4K bytes of current
data. (This is the same write you were attempting when you received
the EOM warning in Step 3 above.)

Buffer Recovery Order

The sequence described above assumes that data is recovered in a first-in,
first-out order. To change the order to last-in, first-out, specify TRUE for
the fBufRecoverLIFO flag in the Mode Parameters Block passed to the
SeqAccessModeSet Operation.

8—12 CTOS Programming Guide, Volume II 6/91

Example

The following code fragment shows the process of recovering all unwritten
data before writing on a second tape.

char buffer[BUFFER_SIZE];

char recovery buffer [RECOVER_BUFFER_SIZE];
unsigned long prior_data, residual;
unsigned on_medium;

erc = SeqgAccessWrite(handle, buffer, BUFFER_SIZE,
&residual);
if (erc == ercTapeEomWarning) {
if (residual < BUFFER_SIZE) {
on_medium - BUFFER_SIZE - residual;
prior_data = 0;
} else {
on_medium = 0;
prior_data = residual - BUFFER_SIZE;
)
if (prior_data != 0)
CheckErc (SeqgAccessRecoverBufferData(handle,
recovery buffer, prior_data, &residual));
CheckErc(SeqgAccessDiscardBufferData(handle));
erc = SegAccessControl(handle, CTRL_WRITE_FILEMARKS,
n, &residual);
if(erc != ercTapeEomWarning)
CheckErc(erc);
if(residual != 0)
ErrorExit(ercTapeOverflow);
CheckErc(SeqAccessControl (handle, CTRL_UNLOAD,
SYNCHRONIZE, &residual));

/* prompt for mount of new tape */

CheckErc(SeqAccessControl (handle, CTRL_REWIND,
SYNCHRONIZE, &residual));

if (prior_data != 0)

CheckErc(SeqAccessWrite(handle, recovery buffer,
prior_data, &residual));

CheckErc(SeqAccessWrite(handle, &buffer[on_medium],
BUFFER_SIZE - on_medium, &residual));

1 6/91 Sequential Access Service 8-13

SeqgAccessCheckpoint

The SeqAccessCheckpoint operation forces all data out of the device and
service buffers onto the device. This call can be used if you know that the
space remaining on the medium after the early warning EOM is greater
than the amount of data stored in the buffers.

Function 5, Write Filemark, of the SeqAccessControl operation contains
an implicit call to SeqAccessCheckpoint, which tries to write all data onto
the medium before the filemark is written.

The following code fragment shows the use of SeqAccessCheckpoint to
flush all unwritten data onto the tape. This method can be used in cases
where you have no buffers to hold data while the tape is being changed
(for example, with tape bytestreams). In general, use the method
described above in the "Residual Data” section if possible.

char buffer[BUFFER_SIZE];
unsigned long buffer_data, prior_data, residual;
unsigned on_medium;

erc = SeqAccessWrite(handle, buffer, BUFFER_SIZE,
&residual);
if (erc == ercTapeEomWarning) {
if (SeqAccessStatus(handle, &status, sizeof(status),
sbuffer data) == ercTapeStatusUnavailable)
ErrorExit (ercTapeStatusUnavailable);
if(residual < BUFFER_SIZE) {
on_medium = BUFFER_SIZE - residual;
prior_data = 0;
} else {
on_medium = 0;
prior_data = residual - BUFFER_SIZE;
}

8—14 CTOS Programming Guide, Volume II 6/91

N

CheckErc(SegAccessCheckpoint (handle, &residual));
if(residual != 0) .
ErrorExit (ercTapeOverflow);
on_medium = on_medium + (buffer_data - prior_data);
erc = SeqAccessWrite(handle, sbuffer[on_medium],
BUFFER_SIZE - on_medium, &residual);

if (erc == ercTapeEomWarning || residual != 0)
CheckErc(SeqAccessCheckpoint (handle, &residual));
else
CheckErc(erc);

erc = SeqgAccessControl (handle, CTRL_WRITE_FILEMARKS,
n, &residual);
if (erc != ercTapeEomWarning)
CheckErc(erc);
if(residual != 0)
ErrorExit(ercTapeOverflow);
CheckErc(SegAccessControl (handle, CTRL_UNLOAD,
SYNCHRONIZE, &residual));

Specifying Buffer Sizes

Usually, the default buffer sizes will meet the needs of your application.
The following guidelines are provided if you have special requirements and
need to change the defaults.

e If you are operating in buffered mode with fixed-length records, each
service buffer must be a multiple of the block size.

e If you are operating in buffered mode with variable-length records,
the service buffer size must be greater than or equal to the maximum
record size.

¢ A minimum of two service buffers is recommended. Increasing the
number of buffers may improve performance.

6/91 Sequential Access Service 8-15

Other considerations for size and number of buffers are
o Size of blocks of data transferred over the cluster to the server

o Size of the device’s internal buffer, and whether it is recoverable or
not

For example, a QIC-02 device has an internal buffer capacity of 2K or 4K
bytes. The current maximum transfer size over the cluster is 4K. The
Sequential Access Service uses a default of four 8K-byte buffers because it
fits well with the device buffer size and the cluster transfer size, and in
addition, it provides a generous cushion to keep the device streaming even
if the supply of data is not steady.

As another example, the SCSI QIC device has a 32K-byte internal buffer
and pauses in accepting data over the SCSI bus at 16K-byte boundaries.
The default buffer allocation for this device is two 32K-byte buffers. The
larger size is chosen because this QIC device has a larger buffer, and this
buffer size matches the natural pauses of the device.

Fixed-Length and Variable-Length Records

A record is a logical division of the physical block written on the medium.
Records can be either of a fixed length, or can vary in length. As
described later (see "Record Size and Block Size”), some devices support
only one type of record. If you specify a fixed record size, each
SeqAccessWrite operation must be a multiple of this record size. If you
specify variable-length records, each SeqAccessWrite operation writes a
separate record, of any length. (With variable-length records, you are
actually varying the physical size of each block written on the tape.)

Increasing Block Size: Pros and Cons

There are both good and bad side effects to increasing block size. In
general, increasing block size increases the amount of data that can fit on
the medium. Larger blocks are more efficient and faster, since larger
portions of data are transferred at once. Remember, though, that a
medium such as a tape contains randomly distributed defects, and
increasing block size also increases the likelihood that you will run into
those defects.

8—16 CTOS Programming Guide, Volume II 6/91

When the Sequential Access Service starts to write a block and runs into a
defect, it erases that portion of the medium and rewrites the data on
another portion. This process consumes time and wastes part of the
medium. If the block size is too large, large portions of the medium may
be unused.

Programming Considerations

In order to write your application, you need to know certain basic facts
about the recording format of the sequential access device you are using
before you can determine values such as minimum and maximum record
size or block size. The following paragraphs indicate key considerations
for the programmer.

Record Size and Block Size

For streaming devices, such as QIC tape, record size is the determining
factor, and block size is not used. Minimum record size should be set to
the same value as maximum record size in the Mode Parameter Block.
Many QIC devices require a record size of 512 bytes.

Some devices, such as half-inch reel-to-reel tape, allow you to group logical
records into physical blocks of a fixed size. In this case, specify the same
size for MaxRecordSize and MinRecordSize in the Mode Parameter Block.
BlockSize, which is the size of the physical block that is written to the
medium, must be a multiple of this record size.

The 4096-byte block size used in the default configuration files shipped
with Standard Software (and used by the archival utilities) is chosen as a
good compromise between tape speed, amount of data that can be put on
the tape, and the 4K XBlock size commonly used on the CTOS cluster.
Generally, the larger the block size, the faster the tape can be kept moving
and the more data can be written on a tape.

Half-inch reel-to-reel tape and DDS also allow you to create
variable-length records, in which all block sizes on the tape vary. Figure
8-5 shows one scheme for variable length records, in which the first field
contains the length of the block, followed by a field with the length of each
record, and then the record itself. To use variable-length records, specify
TRUE in the fVariableLength field of the Mode Parameter Block.

6/91 Sequential Access Service 8-17

I(b) | I(r1)| record1 |I(r2)| record2 |I(rn) { recordn

I(b) = length of the block
I(rn) = length of record n 512.8-5

Figure 8-5. Example of Variable-Length Records

Whether you use fixed or variable-length records depends on the
application and the type of data being recorded. If the size of the fields
varies widely, variable-length records may be more appropriate.

Recording Density and Transport Speed

Specifying 0 for the Density and/or Speed fields uses the default value for
the particular device. You might need to specify a nondefault value if you
are sending data to another system.

Buffered Mode

Currently, only buffered mode is supported. The device may or may not
have buffers, but the Sequential Access Service always buffers data (see
"Data Buffers” earlier in this chapter).

Erase to EOM After Close

In certain cases, perhaps for security reasons, you may need to erase the
medium from the current position to the physical end of the medium to
ensure that the remainder of the tape is blank. (See function 4, Erase
Medium, of the SeqAccessControl operation.) Unless you have a specific
need to be sure that the rest of the tape is blank, you can skip this step
and save time.

A QIC tape drive has a secondary erase head that erases the tape ahead of
the write head, so this step is not necessary for QIC tape. On many QIC
devices, this step actually erases the data you just wrote and therefore
causes serious problems.

8—18 CTOS Programming Guide, Volume II 6/91

Suppress Default Mode on Open

This option refers to SCSI devices only. By default, when a SCSI
sequential access device is opened, the device is reset to the default
configuration parameters. If you have a special application that needs to
configure the device differently, specify TRUE for the
fSuppressDefaultOnOpen flag in the Mode Parameters Block passed to the
SeqAccessModeSet operation. This setting indicates that you do not want
the Sequential Access Service to reset the device to the default
parameters. Instead, the application can use SCSI Manager calls to
configure the device in some special manner.

Buffer Recovery Order

The sequence described above assumes that data is recovered in a first-in,
first-out order. To change the order to last-in, first-out, specify TRUE for
the fBufRecoverLIFO flag in the Mode Parameters Block passed to the
SeqAccessModeSet Operation.

Examples

Example 1: Fixed-Length, Blocked Records

The following example shows writing fixed-length, blocked records onto a
sequential access device. It might be, for instance, a program to copy a
payroll records file onto an unlabelled tape to be read by a mainframe
system. The executive command form might look like:

Write Payroll Tape
Input file
Output tape

The record size is arbitrarily chosen to be 80 (most payroll systems are
antiques, based in the days when data was punched on cards) and the
block size is 8,000. Notice that the size of the buffers allocated by the
Sequential Access Service when the tape is opened must be a multiple of
the block size.

At the end of the file, the Sequential Access Service automatically writes a
short (truncated) block less than 8,000 characters—but still a multiple of
the 80-character record size.

6/91 Sequential Access Service 8-19

Also notice that two filemarks are written at the end of the file, both to
delimit the end of this particular file and to delimit the end of recorded
data on the whole tape. This reflects an assumption that the data is to be
written to half-inch reel-to-reel tape. If the data were written with another
recording technology, for example QIC or DDS, one filemark would
suffice because those recording formats can detect blank tape (whereas
half-inch cannot).

If the number of characters in the input file is not an even multiple of the
record size, the application program pads the last record with garbage data
before writing to the tape. A production program would probably reject
this as an error, instead. ‘

/* Standard C library macros and functions invoked by
this module */

pragma Off(List);
#include <intel80X86.h>
pragma Pop(List);

/* Suppress C run—time (only CTOS functionality needed)*/

pragma Off (List);
#include <stub.h>
pragma Pop(List);

/* External CTOS and CTOS Toolkit functions invoked by
this module */

#define CheckErc

#define CloseByteStream
#define Exit

#define OpenByteStream
#define ReadBsRecord
#define RgParam

#define SeqAccessClose
#define SeqAccessControl
#define SeqAccessOpen
#define SeqAccessWrite

pragma Off(List);
#include <ctoslib.h>
pragma Pop(List);

Listing 8-1. Fixed-Length, Blocked Records (Page 1 of 4)

8-20 CTOS Programming Guide, Volume Il 6/91

/* Type definitions used by this module */

#define BLOCK_SIZE 8000u
#define RECORD_SIZE 80u

#define MODE_MODIFY 0x6D6D

#define CTRL_REWIND 1
#define CTRL_UNLOAD 2
#define CTRL_WRITE_ FILEMARK 5

#define SYNCHRONIZE 0

typedef struct {
Boolean write protected;
Boolean variable_length;
Boolean unbuffered;
Boolean suppress_default mode_on_open;
unsigned speed;
unsigned density;
unsigned long total_blocks;
unsigned long block_size;
unsigned min_record_size;
unsigned long max_record_size;
unsigned long device buffer size;
unsigned long service_buffer pool_size;
unsigned service_ buffers;
unsigned service_buffer_ size;
unsigned long write buffer threshold;
unsigned long read_buffer threshold;
Boolean data_buffer nonrecoverable;
Boolean disable_automatic_velocity;
Boolean buffer recovery LIFO;
Boolean checkpoint_ EOM;
Boolean data_compression;
char gap_size;
unsigned long buffer size EOM;
Boolean report_soft_errors;
Boolean disable_error_correction;
Boolean disable_read_retries;
Boolean disable_write_retries;
unsigned read retry limit;
unsigned write_retry limit;

} seq_parameters_type;

#define sdType
Listing 8-1. Fixed-Length, Blocked Records (Page 2 of 4)

6/91 Sequential Access Service 8-21

pragma Off(List);
#include <ctosTypes.h>
pragma Pop(List);

/* Error return codes used by this module */

pragma Off(List);
#include <erc.h>
pragma Pop(List);

pragma Page(l);

void main(void) {

char bswa[130], buffer[1024], record[RECORD_SIZE];
unsigned erc, seq_handle, transfer_count;
unsigned long residual;

sdType sd_device, sd_file;

seq_parameters_type seq_ parameters;

CheckErc(RgParam(1l, 0, &sd_file));
CheckErc(OpenByteStream(bswa, sd_file.pb, sd_file.cb,
NULL, 0, modeRead, buffer, sizeof(buffer)));
CheckErc(RgParam(2, 0, &sd_device));
memset (&seq_parameters, 0, sizeof(seq_parameters));
seq_parameters.block_size = BLOCK_SIZE;
seq_parameters.min_record_size RECORD_SIZE;
seq_parameters.max_record_size RECORD_SIZE;
seq_parameters.service buffers 2;
seq_parameters.service_buffer size = 2 * BLOCK_SIZE;
CheckErc(SeqgAccessOpen(&seq_handle, sd_device.pb,
sd_device.cb, NULL, 0, MODE_MODIFY,
&seq_parameters, sizeof(seq_parameters)));
CheckErc(SeqAccessControl(seq_handle, CTRL_REWIND,
SYNCHRONIZE, &residual));
while ((erc = ReadBsRecord(bswa, &record,
sizeof(record), &transfer count)) != ercEOF) {
CheckErc(erc);
CheckErc(SeqAccessWrite(seq_handle, record,
sizeof(record), &residual));

Listing 8-1. Fixed-Length, Blocked Records (Page 3 of 4)

8-22 CTOS Programming Guide, Volume II 6/91

if (transfer_count != 0)
CheckErc(SeqAccessWrite(seq_handle, record,
sizeof (record), &residual));

CheckErc(SeqAccessControl (seq_handle,
CTRL_WRITE_FILEMARK, 2, &residual));

CheckErc(SeqAccessControl(seq_handle, CTRL_UNLOAD,
SYNCHRONIZE, &residual));

CheckErc(CloseByteStream(bswa));

CheckErc(SeqAccessClose(seq_handle));

Exit();

Listing 8-1. Fixed-Length, Blocked Records (Page 4 of 4)

Example 2: Variable-Length Records

The following example demonstrates writing variable-length records onto a
sequential access device. To illustrate the division of an input file into
records of differing lengths, a text file is parsed into lines delimited by the
NEW_LINE character. It might be, for instance, a program to transfer
program source code to a mainframe library system that indexes each line
of a program individually for version control and retrieval. In any case,
the executive command form could be:

Write Source Tape
Input text file
Output tape

The program assumes that no text lines in the input are longer than 256
characters; no error checking is performed.

"Variable-length records” might be more accurately described as "variable-
length blocks.” The length of each physical record (or block) varies when
it is written to the medium. Such variable-length blocks typically have an
internal logical structure that further divides the block into individual
records whose length may also vary. The structure used in this program is
to have the first word of a block contain the length of the block, inclusive
of the size of this descriptor field. The block length descriptor is followed
by one or more self-describing records that also contain their own length in
the first word.

More than one scheme for the organization of variable-length records is
possible. The one chosen is common, but the important feature is that the

6/91 Sequential Access Service 8-23

variable-length records are self-describing. A production program, for
example, would check the described length of a record read from tape with
the actual data transfer count to see if any discrepancy exists.

Notice that two filemarks are written at the end of the file, both to delimit
the end of this particular file and to delimit the end of recorded data on
the whole tape. This reflects an assumption that the data is to be written
to half-inch reel-to-reel tape. If the data were written with another
recording technology, for example QIC or DDS, one filemark would
suffice because those recording formats can detect blank tape (whereas
half-inch cannot).

/* Standard C library macros and functions invoked by
* this module

*/

pragma Off(List);
#include <intel80X86.h>
#include <string.h>
pragma Pop(List);

/* Suppress C run—-time (only CTOS functionality needed) */

pragma Off(List);
#include <stub.h>
pragma Pop(List);

/* External CTOS and CTOS Toolkit functions invoked by
* this module

*/

#define AllocMemorySL
#define CheckErc
#define CloseByteStream
#define ErrorExit
#define Exit

#define OpenByteStream
#define ReadByte '
#define RgParam

#define SeqAccessClose
#define SeqAccessControl
#define SegAccessOpen
#define SeqAccessRead
#define SeqgAccessWrite

Listing 8-2. Variable-Length Records (Page 1 of 5)

8~-24 CTOS Programming Guide, Volume II 6/91 -

pragma Off(List);
#include <ctoslib.h>
pragma Pop(List);

/* Type definitions used by this module */
#define MAX RECORD_SIZE 8192u

#define MAX_TEXT SIZE 256u

#define MODE_MODIFY 0x6D6D

#define CTRL_REWIND 1

#define CTRL_UNLOAD 2

#define CTRL_WRITE_FILEMARK 5

#define SYNCHRONIZE 0

typedef struct {

Boolean write_protected;

Boolean variable_length;

Boolean unbuffered;

Boolean suppress_default mode_on_open;
unsigned speed;

unsigned density;

unsigned long total_blocks;

unsigned long block_len;

unsigned min_record_len;

unsigned long max_record_len;
unsigned long device_buffer len;
unsigned long service_buffer pool_len;
unsigned service buffers;

unsigned service_buffer_len;
unsigned long write_buffer_threshold;
unsigned long read_buffer threshold;
Boolean data_buffer nonrecoverable;
Boolean disable_automatic_velocity;
Boolean buffer_recovery_ LIFO; :
Boolean checkpoint_EOM;

Boolean data_compression;

char

gap_len;

unsigned long buffer len_EOM;
Boolean report_soft_errors;
Boolean disable_error_correction;
Boolean disable_read retries;
Boolean disable write_retries;
unsigned read_retry limit;
unsigned write_retry limit;

} seq_parameters_type;

Listing 8-2. Variable-Length Records (Page 2 of 5)

6/91 Sequential Access Service

825

#define sdType

pragma Off(List);

#include <ctosTypes.h>

pragma Pop(List);

/* Error return codes used by this module */
pragma Off(List);

#include <erc.h>

pragma Pop(List);

pragma Page(1l);

void main(void) {

char bswa[1l30], buffer[1024], c;-text[MAX_TEXT;SIZE],

*variable_record;
unsigned available = MAX RECORD_SIZE -
sizeof (unsigned), erc, record len =
sizeof (unsigned), seq_handle, text_len = 0;
unsigned long residual;
sdType sd_device, sd_file;
seq_parameters_type seq parameters;

CheckErc(AllocMemorySL(MAX RECORD_SIZE,
&variable_record));
CheckErc(RgParam(1l, 0, &sd_file));

CheckErc(OpenByteStream(bswa, sd_file.pb, sd_file.cb,
NULL, 0, modeRead, buffer, sizeof(buffer)));

CheckErc(RgParam(2, 0, &sd_device));
memset (&seq parameters, 0, sizeof(seq parameters));
seq_parameters.variable_length = TRUE;
seq_parameters.min_record_len = 1;
seq_parameters.max_record_len = MAX_RECORD_SIZE;
seq_parameters.service_buffers = 4;

seq_parameters.service buffer_ len = MAX RECORD_SIZE;

CheckErc(SeqAccessOpen(&seq_handle, sd_device.pb,
sd_device.cb, NULL, 0, MODE_MODIFY,
&seq_parameters, sizeof(seq parameters)));

CheckErc(SeqAccessControl (seq handle, CTRL_REWIND,
SYNCHRONIZE, &residual));

Listing 8-2. Variable-Length Records (Page 3 of 5)

8-26 CTOS Programming Guide, Volume II

6/91

while ((erc = ReadByte(bswa, &c)) != ercEOF) {
CheckErc(erc);
if (¢ == '\n'") { /* Found the end of a line? */
if (available < text_len + sizeof(unsigned)) {
*((unsigned *) variable_record) = record_len;
CheckErc(SeqAccessWrite(seq_handle,
variable_record, record_len,
&residual));
available = MAX RECORD_SIZE - (record_len
sizeof (unsigned));

)
*((unsigned *) &variable record[record_len])
text_len;
available —= sizeof(unsigned);
record_len += sizeof(unsigned);
memcpy (&variable record[record len], text,
text_len);
available —= text len;
record_len += text_len;
text_len = 0;
} else if (text_len < MAX_TEXT_SIZE)
text[text_lent++] = c;
else
ErrorExit(ercInconsistency);

if (text_len != 0) {
if (available < text_len + sizeof(unsigned)) {

*((unsigned *) variable_record) = record_len;

CheckErc(SeqAccessWrite(seq_handle,
variable record, record_len,
&residual));

available = MAX RECORD_SIZE - (record len

sizeof (unsigned));

)

*((unsigned *) g&variable_record[record_len])
text_len;

available —= sizeof(unsigned);

record_len += sizeof(unsigned);

memcpy (&variable_record[record_len], text,

text_len);
available —= text_len;
record_len += text_ len;

if (record_len > sizeof(unsigned)) {
*((unsigned *) variable_record) = record_len;
CheckErc(SegAccessWrite(seq handle,
variable record, record_len, &residual));

Listing 8-2. Variable-Length Records (Page 4 of 5)

6/91 Sequential Access Service §8-27

CheckErc(SeqAccessControl(seq_handle,
CTRL_WRITE_FILEMARK, 2, &residual));

CheckErc(SeqAccessControl(seq_handle, CTRL_REWIND,
SYNCHRONIZE, &residual));

CheckErc(CloseByteStream(bswa));

CheckErc(SeqAccessClose(seq_handle));

Exit();

Listing 8-2. Variable-Length Records (Page 5 of 5)

8—28 CTOS Programming Guide, Volume II 6/91

Index

82530 serial controller, 1:8-3
EOF reporting, 1:8-7
8274 serial controller, 1:8-3

a-characters, CD-ROM files, I1.7-56
al-characters, CD-ROM files, 11:7-57
Abort requests, 11:6-17, 6-19
Accessing a remote queue, I1:2-22
Adaptive Differential Pulse Code Modulation (ADPCM), 11:4-18
AddQueue operation, 1I:2-1, 2-7, 2-14, 2-17, 2-21
AddQueueEntry operation, 1I:2-3, 2-7, 2-12, 2-21, 3-7
Address space protection, I:2-12
Aliasing, 1:2-9
Allocating heap memory, 11:6-15
AllocMemorylnit procedure, 11:6-32
AlphaColorEnabled, I:3-24, 3-25
Alt requests, 1:4-3
Amplifying voice messages, 11:4-16
Analog crosspoint switch array, 11:4-11
Analog-to-digital signal conversion, I1:4-2
Application programs

as queue servers, I1:2-5
Applications

using the spooler, 1I:3-3
AsGetVolume, 11:4-7, 4-13
AsSetVolume, 11:4-7, 4-13, 4-16
Async.lib procedures

in common-code module, I:6-25 to 6-33

in main module, I1:6-10 to 6-24
Async.lib, I11:6-1
Asynchronous model

advantages of, 11:6-3

example of, I11:6-4
Asynchronous processing, I1:6-2

diagram of, I1:6-7

6/91

Index 1I-1

Asynchronous request procedural interface, I1:6-10
Asynchronous system service model, 1I:6-1
Asynchronous Terminal Emulator (ATE), I1:4-3
AsyncRequest procedure, 11:6-14
AsyncRequestDirect procedure, 11:6-14
AsyncStats, 11:6-23

Attribute byte, 1:3-22

At-files, 11:6-34

Audio features, of CD-ROM, 1I:7-21

Audio management, 11:4-4

Audio Pause, 11:7-22

Audio play function, of CD-ROM Service, 11:7-21
Audio Play, example of, I1:7-22

Audio Q-Channel Info function, of CD-ROM Service, 11:7-22
Audio Resume, I1:7-22

Audio Service, 1I:4-1, 4-2

Audio Status, 11:7-22

Awk, I:1-2

B25/NGEN workstations, II:4-1
Background color, I:3-2
Backslash, used in CD-ROM file specification, 1I:7-7
Banner page, I1:3-1
Batch Manager, 11:2-2
Batch utility, II:2-21
Batch, I:5-5, 5-21
Batch.run, 1:5-1
Baud rate, 1:8-4
Binding a system service, 11:6-34
Blank space, on tape, 11:8-7
Block size, 11:8-17
Blocks, increasing size of, 11:8-16
Buffer recovery order, 11:8-12, 8-19
Buffer size, 1:7-3
Buffers
determining size of, I1:8-8
specifying size of, II:8-15
BuildAsyncRequest procedure, 11:6-10, 6-23
BuildAsyncRequestDirect procedure, 11:6-11, 6-23
Building request blocks, 11:6-13
Byte streams
spooler, I1:3-3

I-2 CTOS Programming Guide, Volumes I and Il 6/91

c-characters, CD-ROM files, I1:7-57
Call gate, 1:2-12
Call progress tone detection (CPTD), 11:4-24
Call progress tone detector, 11:4-10
CdAbsoluteRead, II:7-3
CdAudioCtl, II:7-3, 7-21

example, 11:7-23
CDB, 1:9-3
CdC€lose, 1I:7-3
CdControl, 11:7-3
CdDirectoryList, , 1I:7-2, 7-8, 7-9

example of, 11:7-10
CdGetDirEntry, 11:7-2, 7-17, 7-46
CdGetVolumelnfo, II:7-2, 7-4
CdOpen, I1:7-3
CdRead, II:7-3
CdSearchClose, 11:7-2, 7-12
CdSearchFirst, I1:7-2, 7-11
CdSearchNext, I1:7-2, 7-12
CdServiceControl, II:7-3
CdVerifyPath, I1:7-2
CdVersionRequest, I1:7-2, 7-12
CD-ROM

character sets, I1:.7-56

file formats, 11:7-29

files, example of, II:7-11, 7-12

High Sierra directory record format, II:7-51

High Sierra primary volume descriptor, 11:7-39

ISO directory record format, 11:7-46

ISO primary volume descriptor, 1I:7-30

searching for files, 1I:7-11

structures used, I1:7-6
CD-ROM disc, specifying locations on, 11:7-21
CD-ROM file, copying to disk, II:7-17
CD-ROM Service

audio features of, I1:7-21

function of, II:7-1

operations, II:7-2

requirements for, II:7-1
ChangeCommLineBaudRate, I:8-4
Character

attribute byte, 1:3-22

cell, I:3-2

color, I:3-22

coordinates, II:1-7

cursor, II:1-7, 1-8

map, [:3-3

sets, for CD-ROM, II:7-56
CheckContextStack procedure, II:6-15
Child partition termination status, 1:4-6

6/91

Index I-3

CleanQueue operation, 11:2-8
Client operations

for queue management, I1:2-3
Client-server model, I:1-1
Clock source, 1:8-4
CloseByteStream operation, II:3-3
Cluster network, 1:1-1
Cluster server, I1:8-1
ClusterCard, 1:10-1
ClusterShare, 1:10-1

CODEC (encoder/decoder), 11:4-5, 4-8, 4-11, 4-12, 4-14, 4-15, 4-33

COED modules, II1:6-33
Color intensity, 1:3-6, 3-7

three-palette format, 1:3-8
Color programming, 1:3-1

character attribute byte, 1:3-22

color priority, I:3-25

and graphics, 1:3-4

graphics colors, 1:3-24

palette control structure, 1:3-9

single-palette format, I:3-5

three-palette color format, 1:3-8
Command Descriptor Block (CDB), 1:9-3
Command File Editor, 1:5-6, 5-12
Command file, for installation, I:5-5, 5-12
CommLine interface, 1:8-1

Baud Rate, 1:8-4

clock source, 1:8-4

extensions, 1:8-1

reading signal status, 1:8-4

serial controller differences, 1:8-3

setting signal status, I:8-5

using DMA with, 1:8-5
Common-code module, 11:6-29, 6-32, 6-36

functions of, II:6-6
Communication controller, 1:8-3
Communications DMA, I:8-5

and DTR signal, 1:8-5

and WriteCommLineStatus, 1:8-5

External/Status interrupt, 1:8-7

getting status, 1:8-8

initializing, 1:8-5

Receive Special interrupt, 1:8-7

receiving data, 1:8-7

transmitting data, 1:8-6
Communications Line Configuration Block, 1:8-2

fDMA field, 1:8-6

fV35Mode field, 1:8-12

fX21 field, 1:8-11

I-4 CTOS Programming Guide, Volumes I and II

6/91

Communications Line Return Area, 1:8-2

DMAAvailable field, I:8-6

fV35Auvail field, 1:8-13

i0X21 field, I:8-10
Compressing pauses, in voice files, 11:4-15
Concepts, for programming a mouse, II:1-3
Config.sys parameters, 1:1-16
Config.sys, 1:3-13
ConfigureSpooler operation, II:3-1, 3-2, 3-7
Configuring the Queue Manager, I1:2-9
Configuring the spooler, II:3-1 to 3-2
Connection handle, I:7-18
Conserving heap memory, I1:6-16
Context Control Block (CCB), II:6-25, 6-26, 6-28
Context Manager, 1:4-1, 4-5, 4-8, 5-13, 5-22; 1I:4-5
Context stack, I1:6-15
Contexts, I1:6-3

managing, 11:6-25

other ways to use, I1:6-28

terminating, at deinstallation, 11:6-28
Control file, for installation, 1:5-5, 5-6
ConvertToSys, 11:6-30, 6-33
Copying a CD-ROM file to disk, example of, I1:7-17
CPTD configuration file, 11:4-25
Create Message File command, I:5-11
CreateContext procedure, 11:6-23, 6-26
Creating partitions, 1:4-2
CSKNAMES.OBJ, 1:10-1

function definitions for, 1:10-3

kernel primitives supported by, 1:10-2

models of computation supported, 1:10-3
CTOS, I:1-1 '

accessing from DOS, 1:10-1

calling convention, where described, 1:1-15

development tools, 1:1-2

model of computation used, 1:1-14

protection model used, I1:2-12

SCSI Manager, 1:9-1

system calls, I:1-4

system debugger, 1:1-16

system software, 1:1-3

use of call gates, 1:2-12

use of GDT-based segments, 1:2-8
CTOS.lib version consistency, I:1-16
CTOS/XE, I.7-1

exchanges and user numbers, 1:7-2

ICC buffer blocks, I1:7-3

standard connection handle, 1:7-18

6/91

Index

L5

Cursor
character, 11:1-7, 1-8
graphics, I1:1-6
movement of, II:1-15 to 1-16
tracking of, 1I:1-7
Cyclic Redundancy Check (CRC), I:8-7

d-characters, CD-ROM files, 11:7-56
d1-characters, CD-ROM files, II1:7-57
Data, reading and writing, 11:4-30
Data and voice
separate lines for, 11:4-21
Data blocks, on tape, 11:8-7
Data call
accepting, 11:4-29
converting a voice call to, 11:4-29
example, 11:4-28
originating, 11:4-30
starting, I1:4-29
terminating, 11:4-30
Data Control Structure, 11:4-29
Data management, 11:4-2, 4-3
Data segment (DS) space, 11:6-3
Data storage characteristics
of sequential access devices, 11:8-4
Data Terminal Ready (DTR), 1:8-5
DDS devices, 11:8-17
recording data on, II:8-6
Deallocating heap memory, I1:6-15
Debugger, 1:1-16
Debugging
aids, 11:6-22
an asynchronous system service, I1:6-35
statistics, 11:6-23
Defining queues
dynamically, I1:2-17
in the Queue Index file, I1:2-14
remote, 11:2-23
DeinstallQueueManager operation, I1:2-3, 2-8
Descriptor table, 1:2-4
Development library consistency, 1:1-16
Device routing, 1:7-5
Devices, supported by Sequential Access Service, II:8-1
Dial characters, 11:4-23
Dialer, I1:4-34
Dialing telephone numbers, 11:4-22
Digital data storage (DDS), II:8-1

I-6 CTOS Programming Guide, Volumes I and 11

6/91

Digital signal processor (DSP), 11:4-4, 4-11, 4-12
Digitizing voice, I1:4-5
Direct printing, II:3-1
Directory list buffer, for CD-ROM disc, I1:7-8
Directory list, for CD-ROM disc, 11:7-8
Disk
activity, II:5-1, 5-5
requirements, for voice files, 11:4-16
seeks, 11:4-17
Distributed computing, I:1-1
DMA for communications. See Communications DMA.
DOS, 1:10-1
allocating exchanges under, 1:10-2
calling CTOS from, I:10-1
identifying PC Emulator version from, 1:10-4
making CTOS requests from, 1:10-2
DS (Data Segment)
allocation, I1:6-35
space, I1:6-15, 6-29, 6-33
DTMF
encoder, 11:4-5
generator and receiver, I1:4-5, 4-9
tones, generating, 11:4-22, 4-24

Early warning (EW), of sequential access devices, 11:8-4, 8-8
Edf files, I:1-17
Editor, I:1-5
Electronic mail, 11:4-2
End of data frame (EOF), I:8-7
End of Medium condition, II:8-9
Enhanced video, 1:3-2
EnterDebuggerOnFault, 1:1-16
Erase gaps, on tape, 11:8-8
Escape sequences
printer spooler, 1I:3-5
EstablishQueueServer operation, I1:2-5, 2-8, 2-21
Exception, 1:2-11
Executive, I:1-1, 3-4, 5-6
ExpandAreaSL operation, I1:6-33
External/status interrupt, 1:8-7, 8-10

Fault, I:2-11

fBackgroundColor, 1:3-13, 1:3-15, 3-25
fDataBufRecoverable, 11:8-9

File formats, for CD-ROM, II.7-3, 7-29

6/91 Index I-7

File handle, 1:7-18
File suffix conventions, 1:1-12
File system activity, II:5-1
File transmission, 11:2-3, 2-5
Filemarks, 11:8-20

on tape, I1:8-7
Filter service, I11:6-37
Fixed-length records, 11:8-16
Flat file structure, for CD-ROM disc, II:7-6
Floppy installation, 1:5-2

naming files, 1:5-14
Foreground color, 1:3-2
fSuppressDefaultOnOpen, 11:8-19

Gaps, on tape, 11:8-7
Gate descriptor, 1:2-12
General protection fault, I:2-11
GetCommLineDMAStatus, 1:8-8
GetQMSStatus operation, I1:2-8, 2-17, 2-18, 3-5
GetWsUserName operation, I:7-4
Global Descriptor Table, 1:2-8
Global variables, I1I:6-1
Graphics and color, 1:3-4
Graphics cursor, 11:1-6
changing, 1I:1-14 to 1-15
defining, I1:1-12 to 1-14
GraphicsColorEnabled, 1:3-26
GraphicsEnabled, 1:3-26
Gray-scale monitors, 1:3-21

Half-inch
reel-to-reel devices, 11:8-17, 8-20
recording data on, I1:8-6
reel-to-reel tape, 11:8-1
Handle, 1:7-18
Header files, 1:1-17
Heap, 1I:6-3, 6-15, 6-29
allocating and deallocating, 11:6-15
conserving, I1:6-16
HeapAlloc procedure, 11:6-15, 6-16, 6-31
HeapFree procedure, I1:6-15, 6-16
Heaplnit procedure, 11:6-30
Helical scan recording, II:8-6

I-8 CTOS Programming Guide, Volumes I and 11

6/91

Hierarchical file structure, for CD-ROM disc, I1:7-6
High Sierra standard, for CD-ROM, 1I:7-1
directory record format, I1:7-51
primary volume descriptor, for CD-ROM, 11:7-39
Hold, placing a telephone line on, 11:4-21

1/0, on a Series 5000 workstation, II:4-11
InitAlloc module, I1:6-35
InitCommLine, 1:8-2

and DMA, 1:8-5

selecting extended features, 1:8-2

V.35 protocol support, 1:8-12

X.21 protocol support, 1:8-11
Initializing the mouse, II:1-6
Initiator mode, 1.9-1
Input event, II:1-7
Input/output switches, on a Series 5000 workstation, I1:4-13, 4-14
Inquiry command, 1:9-3
Install CDROM Service command, I1:7-1
Install Queue Manager command, I1:2-2, 2-21
Install Sequential Access Service command, 11:8-2
Installation

database, 1:5-3

media, 1:5-2

organizing, 1:5-18

script file, I:5-5, 5-11

scripts, tips for creating, 1:5-27

variables, 1:5-4, 5-21

restarting, 1:5-25
Installation Manager

file lists created by, 1:5-24

verify feature, 1:5-8
Installing

Mouse Service, II:1-1

Queue Manager, I1:2-1, 2-2
Intel documentation titles, I:2-1
Internationalized call progress tone detection, 11:4-24

example of, 11:4-27
Interprocess communication (IPC), 1I:2-1, 6-2
Interrupt service routine

and DMA, I.8-5

and External/Status interrupt, 1:8-7

and Receive Special interrupt, 1:8-7

6/91

Index I-9

Inter-CPU communication (ICC), , 1:7-2; I1:2-1
buffer size, 1:7-3

1S0-9660 standard, for CD-ROM, 11:7-1
directory record format, for CD-ROM, II:7-46
primary volume descriptor, for CD-ROM, II:7-30

JCL files, I:5-1, 5-11
examples of, 1:5-23, 5-43, 5-51, 5-59, 5-70

Kernel, I:1-3
Keys, II1:2-19

Library version consistency, 1:1-16
Link command, 1:1-6
Link V6 command, 1:1-7, 7-9
Linker, 1:1-7
List file, 1:1-6
Loading a cursor, problems with, 1I:1-17
LoadlInteractiveTask operation, I:4-5
Local Descriptor Table, 1:2-7
Local routing, 1:7-5, 7-6
Log file, 1:6-1
and Volume Home Block, 1:6-3, 6-6
chronological order, 1:6-6
format of, 1:6-1
for installation, I1:.5-9
reading, 1:6-5
record header and trailer, 1:6-1
wraparound, I:6-4, 6-5, 6-6
writing records to, 1:6-2
written by file system, 1:6-3
LogAsync module, 11:6-22, 6-35
Logging messages
for debugging purposes, 11:6-32
Logging session, for Performance Statistics Service, 1I:5-1, 5-8
closing, II:5-9
opening, II:5-8
reading a log, II:5-9
Logical address, 1:2-2
Logical Unit (LU), 1:9-2
LogMsgln procedure, I1:6-32
LogRequest procedure, I1:6-32
LogRespond procedure, 11:6-32

I-10 CTOS Programming Guide, Volumes I and II 6/91

Main module
for an asynchronous system service, 11:6-8
Make, I:1-2
. Managing contexts, I1:6-25
Map file, I:1-8
Marking queue entries, I1:2-6
MarkKeyedQueueEntry operation, 1I:2-6, 2-8, 2-20, 2-22
MarkNextQueuedEntry operation, 11:2-6, 2-8, 2-22
Master FP name table, 1:7-5
MCommands, 1:7-3
Memory
addressing, 1:2-2
freeing leftover, 11:6-33
Merge Command Files command, 1:5-12
Message file, for installation, 1:5-5, 5-11
Minute-second-frame (MSF) format, on CD-ROM disc, 1I:7-21
Mixing programming languages, 1:1-15
Models of computation, 1:1-14
Modem, 1I:4-2, 4-7, 4-11, 4-34
asynchronous use of, 11:4-30
Monochrome graphics, 1:3-22
Motion rectangle, 1I:1-7 to 1-12
Mouse
buttons, I1:1-3
examples of how to program, II:1-3
initialization procedures for, I1:1-6
procedures, by function, II:1-2
tracking, 1I:1-15
Mouse Services, 1:5-6, 5-12
definition of, II:1-1
MS-DOS, I:10-1. See also DOS.
Multiple queue servers, 11:2-6
Multiple voice messages, in one file, 11:4-19

Naming

conventions, I:1-8

floppy installation files, I:5-14

tape installation files, 1:5-17
Nationalization, 1:5-11, 5-26
Network, II:4-3
Normalized screen coordinates, II:1-4 to 1-5
NotifyCM request, 1:4-6
NULL pointer, I:2-11

6/91

Index I-11

Object file, I:1-6
Object module library

for mouse, II:1-1

version consistency, 1:1-16
Object module procedure, 1:1-3
Object modules, binding, 11:6-34
Offhook, 11:4-21
OpenByteStream operation, 11:3-3
Operating system calls, 1:1-3
Operator, 1:4-3

Package, 1:5-3
Paging, 1:2-6
Palette, 1:3-5
alphanumeric vs. graphics, priority, I:3-25
control structure, 1:3-9
sample, 1:3-15
Paragraph, 1:2-3
Parallel recording, 11:8-6
Parameter list
variable length, in PLM, II:6-12
Parity, 11:4-7
Partition
consequences of unsuccessful task load, I:4-5
creating, 1:4-2
deallocating, 1:4-3, 4-10
initializing, 1:4-3
loading a task into, I:4-5
type, 1:4-3
Partition management, 1:4-1
Action-Finish and swapping, 1:4-7
and child termination, 1:4-6
sample program, I:4-11
termination procedure, 1:4-8
use of termination requests, 1:4-7
Password
to print, I1:3-2
Pause compression, 11:4-15
advantages and disadvantages of, 11:4-16
PBX systems, 11:4-9, 4-21
- PC Emulator version port, 1:10-4
PC-DOS, I:10-1. See also DOS.
Performance Statistics Service
example of, II:5-10
function of, 1I:5-1
Performance Statistics Structure, 11:5-4, 5-16
" Piecemealable requests, 1:7-3

I-12 CTOS Programming Guide, Volumes I and II

6/91

Pixel, 1:3-2
Pixel count, II:1-6
Playback, of compressed voice files, I1I:4-15
PLog, 1:6-1, 6-2
record-processing algorithm, 1:6-9
Pointing device, II:1-1
Porting to protected mode, I:7-1
Power failure, 11:2-1
Pre-GPS spooler byte streams, 11:3-3
Primary volume descriptor, for CD-ROM disc, 1I:7-4
Print command, II:3-4
Print Manager, 11:2-2, 2-21
Print wheel change, II:3-5
Printer channel, II:3-1
Printer spooler escape sequences, II:3-5
Printing, 11:2-3, 2-5
spooled, II:3-1
direct, 1I:3-1
Private installation, I:.5-2
Procedural interface
asynchronous, I1:6-10
synchronous, 11:6-10
Procedure naming, 1:1-12
Processing
asynchronous, I1:6-2
synchronous, 11:6-2
Processor activity, II:5-1
Program example, of an asynchronous system service, I1:6-36
ProgramColorMapper, 1:3-1
control structure, 1:3-4
functions performed by, 1:3-4
and monochrome graphics, 1:3-22
single-palette format, I:3-5
three-palette format, 1:3-8
Programming languages, 1:1-2
Protected mode
address calculation in, 1:2-3
descriptor tables, 1:2-7
exceptions and faults, 1:2-11
features of, I:2-1
introduction to, I:2-1
run file, 1:1-7
PSCloseSession, II:5-2, 5-9
PSGetCounters, I1:5-2, 5-6
PSOpenLogSession, II:5-2
PSOpenStatSession, 11:5-2, 5-3
PSReadLog, II:5-2, 5-9
PSResetCounters, I1:5-2
Public installation, 1:5-2, 5-8, 5-23
Pulse Code Modulation (PCM), 11:4-18

6/91 Index I-13

QIC tape device, 11:8-16
recording data on, II:8-5
Quarter-inch cartridge (QIC) tape, 11:8-1
Queries, mouse-related, 11:1-7
QueryVideo, 1:3-12, 3-21
Queue, II:2-1
adding an entry to, 1I:2-3
defining, 11:2-14
defining dynamically, 11:2-17
examples of typical, 11:2-14
format of, II:2-11
referencing, I1:2-17
removing an entry from, 11:2-4
type 1, I1:3-5
Queue entry
files, 11:2-1
format of, 11:2-13
handle, I1:2-4, 2-18
header, 11:2-13, 2-28
marking, 11:2-6
processing order of, I1:2-12
reading, 11:2-4
referencing, 11:2-17
rescheduling and removing, I1:2-6
size, calculating, 1I:2-13
unmarking, II:2-6
Queue file header, 1I:2-11, 2-25
Queue handles, 11:2-18
Queue index file, 11:2-21, 2-22
example of, II:2-16
sample entries, I1:2-23
Queue management
operations, by function, II:2-3
operations, sequence for using, 1I:2-21 to 2-22
of spooler queues, 11:3-5
Queue Manager, 11:2-21, 3-1
configuring, 11:2-9, 11:2-10
deinstalling, I1:2-2
installing, I:2-1, 2-2, 2-23
run files, I1:2-2
using across the network, I1:2-22
Queue manipulation operations
summary of, II:2-7 to 2-9
Queue names, I1:2-17
Queue server, 11:2-3
establishing, II:2-5
multiple, II:2-6
operations, II:2-5

I-14 CTOS Programming Guide, Volumes I and II

6/91

Queue Status Block, 11:24, 2-8, 2-13, 2-19, 2-30
Queue type, 11:2-16
Q-channel, I1:7-22

Raster coordinates, II:1-6
ReadCommlLineStatus, 1:8-4
ReadKeyedQueueEntry operation, 11:2-4, 2-8
ReadNextQueueEntry operation, 11:2-4. 2-8, 2-18, 2-22, 3-6
Real mode address calculation, 1:2-2
Receive command, I:9-5
Receive Special interrupt, 1:8-7
ReceiveCommLineDMA, 1:8-7
Record size, 11:8-17
Record/playback, typical sequence for, 11:4-19
Recording data

on half-inch tape devices, 11:8-6

on QIC tape devices, I1:8-5
Recording density, 11:8-4, 8-18
Recording rates, for voice, 11:4-15
Recording voice, 11:4-14
Records, Sequential Access Service, 11:8-16
Recovering buffer data, 11:8-9, 8-13
Red Book standard, 11:7-21
Referencing queues, I1:2-17
Remote processor memory, 1:7-2
Remote queue

accessing, 11:2-22

defining, 11:2-23
Remote routing, 1:7-5, 7-7
RemoveKeyedQueueEntry operation, I1:2-4, 2-9, 2-20, 2-22
RemoveMarkedQueueEntry operation, 1I:2-6, 2-9, 2-22
RemoveQueue operation, 1I:2-9
Removing queue entries, I1:2-6
Request, 1:1-3
Request-based system service, 11:6-2
Request blocks, building, 11:6-13
Request primitive, 11:6-10
Request routing, 1:7-4

across the cluster, 1:1-2

inter-board routing directives, 1:7-4
Request Sense command, 1:9-6
RescheduleMarkedQueueEntry operation, II:2-6, 2-9
Rescheduling queue entries, I1:2-6
ResetVideoGraphics, 1:3-12, 3-15
Residual data, II:8-10, 8-11
Restarting an installation, 1:5-25
RestartLabel, 1:5-25

6/91 Index I-15

Restore command, I1:7-9
ResumeContext procedure, 11:6-24, 6-27
RewriteMarkedQueueEntry operation, I11:2-9
Routing by device specification, 1:7-10
Run command, I[:1-8
Run file, 1:1-7
for an asynchronous system service, I1:6-35
for a system service, 11:6-8
Run file mode, I:1-7, 2-8

Scheduling queue, I1I:3-1
Screen coordinates. See also Virtual screen coordinates.
normalized, II:1-4 to 1-5
virtual, I1:1-4 to 1-5
SCSI, 1:9-1
devices, I1:8-19
interfaces, I11:8-1
SCSI Manager, I1:9-1
application guidelines, 1:9-16
Command Descriptor Block (CDB), 1:9-3
initiator mode, 1:9-1
target mode, 1:9-1
SCSI target mode
Abort message, 1:9-13
application guidelines, 1:9-16
Bus Device Reset message, 1:9-13
commands accepted, 1:9-2
deferred errors, 1:9-8
Disconnect message, 1:9-13
guidelines for use, 1:9-16
Identify message, 1:9-14
illegal transfer length, 1:9-18
Initiator Detected Error message, 1:9-14
Inquiry command, 1:9-3
introduction, 1:9-1
messages accepted from initiator, 1:9-12
messages generated to initiator, 1:9-12
Receive command, 1:9-5
receiving data from initiator, 1:9-9
remote initiator requirements, 1:9-1
Request Sense command, 1:9-6
Send command, 1:9-9
Send Diagnostic command, 1:9-10
sending data to initiator, 1:9-5
sense data format, 1:9-7
session shutdown, 1:9-19
Synchronous Data Transfer request handling, 1:9-15

I-16 CTOS Programming Guide, Volumes I and II 6/91

SCSI target mode (cont.)

Test Unit Ready command, 1:9-11

transfer length, 1:9-6, 9-10, 9-18
ScsiTargetDataReceive, 1:9-9
ScsiTargetDataTransmit, I:9-5
Searching, for CD-ROM files, I1:7-11
Security mode, I1:3-4

for printing, 1I:3-2
Segment address, 1:2-4
Segment descriptor format, 1:2-9
Segmented addressing, 1:2-2

~in protected mode, I:2-5

Selector, 1:2-4

format of, 1:2-7
Send command, I:9-9
Send Diagnostic command, 1:9-10
Separators, CD-ROM files, 11:7-58
SeqAccessCheckpoint, 11:8-3, 8-14
SeqAccessClose operation, 11:8-2, 8-12
SeqAccessControl, 11:8-2, 8-7, 8-14
SeqAccessDiscardBufferData, 11:8-3, 8-10, 8-12
SeqAccessModeQuery, 11:8-3, 8-8
SeqAccessModeSet, 11:8-3, 8-12
SeqAccessOpen, I1:8-2
SeqAccessRead, 11:8-2
SeqAccessRecoverBufferData, 11:8-3
SeqAccessStatus, II:8-2
SeqAccessVersion, 11:8-4
SeqAccessWrite, 11:8-3, 8-9
Sequential access devices

data storage characteristics of, I1:8-4

model of, 11:8-4
Sequential Access Service

data buffering, 11:8-8

determining size of service buffers, I1:8-9

devices supported by, 11:8-1

function of, II:8-1

installing multiple, I1:8-1

placement of in cluster, 11:8-2

programming considerations, 11:8-17

records, II:8-16

recovering buffer data, 11:8-9
Serial controller, I:8-3

CTS signal and X.21, I:8-9

and DMA, 1:8-6

External/Status interrupt, 1:8-7

initializing for X.21, 1:8-12

Receive Special interrupt, 1:8-7
Series 5000 workstations, 11:4-1, 4-4, 4-11
Serpentine recording, II:8-5

6/91 .

Index I-17

Server installation, 1:5-2
Shared resource processor (SRP), 1:7-1;11:8-1
Administrative Agent, 1:7-3
device specification, I:7-10
exchanges on, 1:7-2
and GetWsUserName, 1.7-4
ICC buffers, 1:7-3
inter-CPU communication on, I:7-2
multi-instance system services, 1:7-10
porting real-mode applications, I:7-1
programming guidelines, I:7-1
request routing, 1:7-4
sample request.txt file for, I.7-7, 7-11
special handle types, 1:7-19
and system. services, 1:7-1
use of handles, 1.7-18
user numbers on, 1:7-2
Single-palette color format, I:3-5
advantages of, 1:3-7
Sketching program, using a mouse, 1I:1-18
Small Computer Systems Interface (SCSI)." See SCSI
Source code files, 1:1-5
Spawn, 1:4-1
Speech synthesis, 11:4-3
Spooled printing, II:2-1, 3-1
Spooler, 1I:2-5, 2-9, 2-11
configuration file, II:3-4
configuration of, 11:3-1 to 3-2
definition of, II:3-1
Spooler queue, 11:2-14
control, I1:3-7
scheduling, 11:3-6
status, 11:3-6
Spooler Status command, II:3-1, 3-2
SpoolerPassword operation, I1:3-2, 3-8
SRP. See shared resource processor.
Stack pointer, 11:6-3
Stack sharing, 11:6-3
Standard connection handle, 1:7-18
Static RAM (SRAM), 1I:4-11
Statistics ID block, II:5-2, 5-4
Statistics session,
closing, I1:5-8
opening, I1:5-3
for Performance Statistics Service, II:5-1
Subpackages, 1:5-3
SuperGen Series 5000 workstations. See Series 5000 workstations.
SwapContextUser procedure, I1:6-21
SwapInContext, 1:4-2
Swapping requests, 11:6-18

I-18 CTOS Programming Guide, Volumes I and 11 ‘ 6/91

Symbol file, 1:1-7
Synchronous data communication, I:8-1
Baud Rate, 1:8-4
clock source, 1:8-4
extensions to traditional interface, 1:8-1
reading signal status, I:8-4
selecting extended features, 1:8-2
serial controller differences, 1:8-3
setting signal status, 1:8-5
using DMA, §:8-5
V.35 protocol support, 1:8-12
X.21 protocol support, 1:8-8
Synchronous processing, 11:6-2
diagram of, I1:6-5
Synchronous request procedural interface, I1:6-10
System build, 1I:3-3
System configuration tips, 1:1-16
System log file, 1:6-1
chronological order, 1:6-6
format of, 1:6-1
reading, 1:6-5
record header and trailer, 1:6-1
and Volume Home Block, 1:6-3, 6-6
wraparound, 1:6-4, 6-5, 6-6
writing records to, 1:6-2
written by file system, 1:6-3
System requests, I1:6-17 to 6-21
System service, 1:7-10 -
asynchronous model of, I1:6-1
binding, I1:6-34
and the SRP, I:7-1
System-common procedure, 1:1-3
and the GDT, 1:2-8

Tape
general layout of, II:8-5
logical elements within, II:8-7
Tape installation, 1:5-2
naming files, I:5-17
organizing files, I:5-20
Target mode. See SCSI target mode.
Telephone
lines, I1:4-9
management, 11:4-3

6/91 Index I-19

Telephone Service, 11:4-1

data call example, 11:4-71

dialing example, 1I:4-36

voice memory playback example, I1:4-60

voice response system example, 11:4-40
Telephone Service Configuration Block, 11:4-6
Telephone Status command, 1I:4-2, 4-3, 4-31

function keys, 11:4-35

screen, 11:4-32
Telephone Status monitor program, II:4-3
Telephone Status Structure, 11:4-6
Telephone unit, 11:4-9, 4-34

parts of, 11:4-9

versus telephone line, 11:4-21
TerminateAllOtherContexts procedure, 11:6-29
TerminateContext procedure, 11:6-28
TerminateContextUser procedure, 11:6-19 to 6-20
TerminateQueueServer operation, 11:2-6, 2-9
Termination requests, 1:4-7, 4-18; 11:6-17, 6-19
Test Unit Ready command, 1:9-11
Three-palette color format, 1:3-8
Timer Request Block (TRB), 11:6-26, 6-28, 6-29
Timers, 11:6-37
Track

number, on CD-ROM disc, II:7-21

definition of, 11:8-5
Tracking the mouse, II:1-15
Transfer length, 1:9-6, 9-10
TransmitCommLineDMA, 1:8-6
Transport speed, 11:8-18
Troubleshooting, programs that use the mouse, II:1-17
TsConnect operation, 11:4-4, 4-5
TsDataChangeParams operation, II:4-7
TsDataCheckpoint operation, 11:4-7
TsDataClose operation, 11:4-29
TsDataCloseLine operation, 11:4-7
TsDataOpenLine operation, II:4-7
TsDataRead operation, 11:4-7
TsDataRetreiveParams operation, 11:4-7
TsDataUnAcceptCall operation, I1:4-7
TsDataWrite operation, 11:4-7
TsDeinstall operation, 1I:4-5
TsDial operation, 11:4-4, 4-22
TsDoFunction operation, II:4-5, 4-21
TsGetStatus operation, I1:4-6
TsHold operation, 11:4-6, 4-21
TsLoadCallProgressTones operation, I1:4-6
TsOffHook operation, 1I:4-6, 4-21
TsOnHook operation, 11:4-6, 4-21
TsQueryConfigParams operation, 11:4-6

I-20 CTOS Programming Guide, Volumes I and Il

6/91

TsReadTouchTone operation, 11:4-6

TsRing operation, 11:4-6

TsSetConfigParams operation, 11:4-6

TsVersion operation, 1I:4-6

TsVoiceConnect operation, 11:4-4
TsVoicePlayBackFromFile operation, 11:4-4, 4-20
TsVoiceRecordToFile operation, 1I:4-5
TsVoiceStop operation, 11:4-5

Unmarking queue entries, 1I:2-6
UnmarkQueueEntry operation, 1I:2-6, 2-9

User configuration file, 1:5-13
User number, 1:7-2

V.35 protocol support hardware, 1:8-12
Variable-length records, 11:8-16, 8-18
VGA, 1:3-2, 3-12
Video, during installation, I:5-13
Video Graphics Array. See VGA.
Video/Voice/Keyboard card (SGV-100), 1I:4-1
Virtual address, 1:2-5
Virtual screen coordinates, II:1-4 to 1-5, 1-7, 1-8, 1-12
Voice amplifier, 11:4-8
Voice and data, separate lines for, I1:4-21
Voice Control Structure, II1:4-4, 4-15, 4-19
Voice file, structure of, 11:4-17
Voice File Header, I1:4-18
Voice File Record, I1:4-18
Voice management, 11:4-2
Voice playback from memory, I1:4-20
Voice Processor Module, 11:4-1
connections, 11:4-10
data features of, 11:4-11
voice features of, II:4-8
Voice
recognition, II:4-3
recording, I1:4-14
response system, 11:4-10

6/91 Index I-21

Voice/Data Services
debugging using Telephone Status command, I1:4-31
definition of, I1:4-1
hardware features used by, 11:4-8, 4-11
functional groups of operations, 11:4-4
Volume control, on a Series 5000 workstation, II:4-13
Volume Home Block
and log file, 1:6-3, 6-6

W-block, I:7-3

Wait loop, 11:6-3, 6-4, 6-6, 6-25

Windows, 11:1-7

Work area, for the Telephone Service, 11:4-17
Workstations, character-mapped, 11:1-6
WriteBsRecord operation, I1:3-3

WriteByte operation, 11:3-3
WriteCommLineStatus, 1:8-5

Writing filemarks on tape, I1:8-7

X.21 hardware
drivers-only mode, 1:8-12
enabling and disabling, 1:8-11
features of, 1:8-9
X.21 protocol
general description, 1:8-8
signal lines used, 1:8-9
special signalling bit patterns, 1:8-9
X.21 support, 1:8-8)
and External/Status interrupt, 1:8-10
hardware features, 1:8-9
initializing communications with, 1:8-11
use of CTS signal, 1:8-9
XE-530, I.7-1
XmitCommLineDMA, 1:8-6

Y-block, 1:7-3
Yacc, I:1-2

Z-block, 1:7-3

I-22 CTOS Programming Guide, Volumes I and 11

6/91

T

09--02393

