
HP 2000 COMPUTER SYST MS

-HP 243078

DOS-Ill
Disc Operating System

reference manual

HEWLETI'.PACKARD COlllPMV
11000WOLFI ROAD, CUPERTINO, CAUFORNlA, 96014

MANUAL PART NO. 24307-90006
MICROFICHE PART NO. 24307-«>007

Printed: JUL 1974
Printed in U.S.A.

Preface

This manual is a programming guide to DOS-III, a Hewlett-Packard Disc Operating System for 2000-
series computer systems. Programmers using this manual should be familiar with the functions of
batch-processing operating systems and one of the programming languages supported by the DOS-III
Operating System.

The Hewlett-Packard programming languages and program libraries that can operate under control
of DOS-III are described in the following reference manuals:

• HP ALGOL (02116-9072)

• HP ASSEMBLER (24307-90014)

• HP FORTRAN (02116-9015)

• HP FORTRAN IV (5951-1321)

• RELOCATABLE SUBROUTINES (02116-91780)

Other information, which may be useful to the programmer, is included in the SMALL PROGRAMS
MANUAL, the MANUAL OF DIAGNOSTICS and the SOFTWARE OPERATING PROCEDURES.
These manuals contain custom-assembled modules pertaining to each customer's software and hard­
ware configurations, and are supplied with each Hewlett-Packard computer system.

This manual is divided into six functional parts:

• Part 1. DOS-III OPERATING SYSTEM

Part 1 defines the standard capabilities of DOS-III. It includes a summary of DOS-III organi­
zation, hardware and software; definitions of DOS-III directives, EXEC calls and I/O routines;
a description of the interaction of DOS-III and its subsystems; and a set of sample job decks.

• Part 2. DOS-III EXTENDED FILE MANAGEMENT PACKAGE (EFMP)

Part 2 describes the capabilities of the DOS-III Extended File Management Package (EFMP),
which allows the programmer to extend the file-handling capabilities of the DOS-III Operating
System. Part 2 contains sections on EFMP organization, EXEC calls and use of UTIL, the EFMP
Utility Program.

iii

• Part 3. GENERATING AND LOADING DOS-III

Part 3 gives complete instructions for generating and loading a DOS-III System.

• Part 4. DOS-III SYSTEMS PROGRAMMING

Part 4 contains information which will help the advanced programmer to write his own EXEC
modules, plan I/0 drivers and use the DOS-III privileged mode capabilities.

• Part 5. ERROR CODES AND MESSAGES

Part 5 is a complete set of all DOS-III Operating System error codes and messages.

• Part 6. APPENDIX AND INDEXES

Part 6 contains an appendix of DOS-III system tables and three indexes: the first two are con­
venient summaries of DOS-III directives and EXEC calls; the third refers to terms discussed in
the manual.

iv

Preface

PART 1 DOS-III Operating System

SECTION I DOS-III Organization

MAIN MEMORY LAYOUT

DOS-III OPERATION

Deleting Keyboard Errors

Batch Abort

DOS-III DIRECTIVES

DOS-III EXEC CALLS

DOS-III INPUT/OUTPUT

PRIVILEGED INTERRUPT

TIMING CAP ABILITIES

Timer Buffer

Time-out Processor Routine

Calllng Sequence

DOS-III FILES

Standard Files

DOS-III Extended File Management Package

DOS-III MEMORY MANAGEMENT

GENERATING A DOS-III SYSTEM

DISC USAGE

HP 7900/7901

HP 2883/2884

DISC STORAGE

DOS-III HARDWARE

Required Hardware

Hardware Options

v

Contents

iii

1-1

1-1

1-3

1-3

1-3

1-3

1-4

1-5

1-5

1-6
1-6
1-6
1-7

1-8

1-8

1-9

1-9

1-9

1-10

1-10

1-10

1-11

1-12

1-12

1-12

DOS-III SOFTWARE

Required Software

Software Options

SECTION II DOS-III Directives

FORMAT FOR DIRECTIVES

ENTERING DIRECTIVES

ORDER OF DIRECTIVES

ABORT

BATCH

CLEAR

COMMENT

DATE

DOWN

DUMP (DISC-TO-DISC)

DUMP (FILE)

DUMP (PROGRAM)

DUMP (SECTOR)

EDIT

END-OF-FILE

END-OF-JOB

EQUIPMENT TABLE

GO

INITIALIZE

JOB

LIST

LOGICAL UNIT

MMGT

OFF

PAUSE

PROGRAM

PURGE

RENAME

JlEWIND

RP ACK

RUN

vi

1-13

1-13

1-13

2-1

2-1

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-11

2-13

2-15

2-17

2-21

2-22

2-23

2-25

2-26

2-28

2-29

2-33

2-35

2-37

2-38

2-39

2-40

2-42

2-43

2-44

2-45

SPECIFY SOURCE FILE

STORE

SYSTEM SEARCH

TOP-OF-FORM

TRACKS

TYPE

UP

USER DISC CHANGE

SECTION III DOS-III EXEC Calls

ASSEMBLY LANGUAGE EXEC CALLS

ALGOL EXEC CALLS

FORTRAN EXEC CALLS

BASE PAGE STORE

FILE CREATE

FILE NAME SEARCH

FILE PURGE

FILE READ /WRITE

FILE RENAME

I/O CONTROL

I/0 READ/WRITE

I/O STATUS

MEMORY MANAGEMENT (BUFFER ALLOCATION)

MEMORY MANAGEMENT (BUFFER RELEASE)

MEMORY MANAGEMENT (INITIALIZE)

MEMORY MANAGEMENT (STATUS REQUEST)

MEMORY PROTECT CONTROL

PROGRAM COMPLETION

PROGRAM LOAD

PROGRAM SUSPENSION

SEGMENT LOAD

SEGMENT RETURN

TIME REQUEST

WORK AREA LIMITS

WORK AREA STATUS

USER DISC CHANGE

PARAMETER PROCESSING

vii

2-46

2-47

2-52

2-54

2-55

2-57

2-58

2-59

3-1

3-2

3-3

3-5

3-6

3-7

3-9

3-11

3-13

3-15

3-17

3-20

3-23

3-24

3-25

3-26

3-28

3-29

3-30

3-31

3-33

3-35

3-37

3-38

3-39

3-41

3-43

3-46

SECTION IV Input/Output

USER PROGRAM I/0

SYSTEM I/O PROCESSING

INPUT/OUTPUT DRIVERS

SPECIAL DRIVER CONSIDERATIONS

Line Printer Formatting

Automatic Page Eject

Magnetic Tape Usage

Magnetic Tape Error Recovery

SECTION V DOS-III Subsystems

SOURCE PROGRAM FILES

LOAD-AND-GO FACILITY

ALGOL COMPILER

ALGOL I/0

Compiler Operation

PROG,ALGOL

Messages During Compilation

Language Considerations

ASSEMBLER

Assembler I/O

Assembler Operation

PROG,ASMB

Messages During Assembly

Language Considerations

FORTRAN COMPILERS

FORTRAN I/0

Compiler Operation

PROG,FTN(4)

Messages During Compilation

Language Considerations

Extended and Auxiliary Statements

PROGRAM Statement

DATA Statement

EXTERNAL Statement

PAUSE and STOP

ERRO LIBRARY ROUTINE

viii

4-1

4-1

4-2

4-3

4-4

4-4

4-5

4-5

4-6

5-1

5-1

5-1

5-2

5-2

5-2

5-3

5-3

5-5

5-6

5-6

5-6

5-7

5-7

5-9

5-11

5-11

5-11

5-12

5-12

5-13

5-14

5-15

5-16

5-17

5-18

5-19

DOS-III RELOCATING LOADER

PROG,LOADR

I/0 Drivers

Loader Operation

Matching Entries with Externals

THE RELOCATABLE LIBRARIES

DEBUG LIBRARY SUBROUTINE

DEBUG OPERATIONS

SEGMENTED PROGRAMS

FORTRAN Segments

ALGOL Segments

SECTION VI Typical DOS-III Job Decks

PART 2 DOS-III Extended File Management Package (EFMP)

SECTION VII EFMP Organization

ENVIRONMENT

FUNCTIONS AND STRUCTURE

DOS-III Files vs. EFMP Files

Duplicate Pack Numbers

EFMP Buffers and Tables

Logical Read vs. Physical Read

Logical Write vs. Physical Write

Update-Writes vs. Append-Writes

SETUP

SECTION VIII EFMP EXEC Calls

FORMAT FOR EFMP EXEC CALLS

DEFINE

CREATE

DESTROY

OPEN

CLOSE

READ

INITIALIZE

WRITE

RESET

STATUS

STATUS (FSTAT = 1)

STATUS (FSTAT = 2)

STATUS (FSTAT = 3)

ix

5-20

5-21

5-23

5-23

5-24

5-28

5-29

5-29

5-30

5-34

5-34

6-1

7-1
7-1
7-1
7-1
7-2

7-2

7-3
7-3
7-3
7-3

8-1

8-1

8-2

8-4

8-6

8-7

8-8

8-9

8-10

8-11

8-12

8-13

8-14

8-15

8-16

STATUS (FSTAT = 4)

STATUS (FSTAT = 5)

STATUS (FSTAT = 6)

STATUS (FSTAT = 7)

REPACK (PURGE)

COPY

CHANGE FILE NAME

POST

SECTION IX EFMP Utility Program

:PROG,UTIL

BRIEF

CHANGE

CLOSE

COPY

CREATE

DESTROY

END

INITIALIZE

OPEN

POST

RESET

REPACK

STATUS-1

STATUS-2

STATUS-3

STATUS-4

STATUS-5

STATUS-6

STATUS-7

PART 3 Generating and Loading DOS-III

SECTION X Generating DOS-III
DSG EN

DSGEN Configuration
DSGEN Start-up

USING DSGEN TO FORMAT DISCS

x

8-17

8-18

8-19

8-20

8-21

8-22

8-24

8-25

9-1

9-2

9-4

9-5

9-6

9-7

9-8

9-9

9-10

9-11

9-12

9-13

9-14

9-15

9-16

9-17

9-18

9-19

9-20

9-21

9-22

10-1
10-1
10-2
10-3
10-5

USING DSGEN TO GENERATE DOS-III 10-7
Restart 10-7
Initialization Phase 10-8
Program Input Phase 10-11
Parameter Input Phase 10-12
Disc Loading Phase 10-15
Sample System Generation 10-18

DSGEN DISC CARTRIDGE SYSTEM GENERATION 10-28
Sample DSGEN Cartridge Preparation and System Generation 10-35

SECTION XI Loading DOS-III 11-1

USING THE BMDLTO LOAD ABSOLUTE BINARY PROGRAMS 11-3

INITIATING DOS-III WITH THE BMDL 11-4

CONFIGURING THE DOS-III STAND-ALONE BOOTSTRAP LOADER 11-5

INITIATING DOS-III WITH THE STAND-ALONE BOOTSTRAP 11-6
LOADER

BMDL 11-7

PART 4 DOS-III Systems Programming

SECTION XII User-written EXEC Modules

USER EXEC MODULES: DIRECTIVES

USER EXEC MODULES: EXEC CALLS

USER EXEC MODULES: INTERNAL DESIGN

SAMPLE EXEC MODULE

SECTION XIII Planning I/O Drivers

STANDARD I/O DRIVERS

Initiation Section

Completion Section

SAMPLE I/0 DRIVER

PRIVILEGED INTERRUPT I/0 DRIVERS

Privileged Interrupt Section

Privileged Interrupt Completion Section

SAMPLE PRIVILEGED INTERRUPT I/O DRIVER

SECTION XIV Privileged Mode

xi

12-1

12-1

12-3

12-4

12-6

13-1

13-1

13-1

13-4

13-7

13-20

13-22

13-24

13-26

14-1

PART 5 Error Codes and Messages

SECTION XV Halt Codes and Error Messages

DSGEN ERROR HALTS

DSGEN ERROR MESSAGES

Messages During Initialization and Input Phases

Messages During the Parameter Phase

General Messages

Messages During I/0 Table Entry

DOS-III BOOTSTRAP ERROR HALTS

DOS-III ERROR HALTS

DOS-III ERROR MESSAGES

DOS-III EFMP ERROR CODES

PART 6 Appendix and Indexes

APPENDIX A System Tables

INDEX 1 Summary of Directives

INDEX 2 Summary of EXEC Calls

INDEX 3 Terms

xii

15-1

15-2

15-2

15-2

15-3

15-3

15-4

15-5

15-6

15-6

15-15

A-1

Table 2-1.

Table 11-1.

Table 11-2.

Table 15-1.

Table 15-2.

Table 15-3.

Table A-1.

Table A-2.

Figure 1-1.

Figure 5-1.

Figure 5-2.

Figure 5-3.

Figure 5-4.

Figure 7-1.

Figure 13-1.

Figure 13-2.

Figure 13-3.

Figure 13-4.

Figure 13-5.

Figure A-1.

Figure A-2.

Figure A-3.

Figure A-4.

TABLES

:DUMP Formats

HP 7900/7901 BMDL

HP 2883 BMDL

DSGEN Error Conditions

DOS-III Bootstrap Error Halts

DOS-III Error Conditions

DOS-III Base Page Constants

DOS-III Base Page Communication Area

FIGURES

Functional Diagram of DOS-III

Segmented Programs

Main Calling Segment

Segment Calling Segment

Main-to-Segment Jumps

EFMP File Directory Format

I/0 Driver Initiation Section

I/0 Driver Completion Section

Privileged Interrupt I/0 Driver Initiation Section

Privileged Interrupt I/O Driver Privileged Interrupt Section

Privileged Interrupt I/O Driver Completion Section

Main Memory Allocations in DOS-III

Disc Structure in DOS-III

Disc Directory Entry Format

The Equipment Table

xiii

2-11

11-7

11-8

15-2

15-5

15-6

A-3

A-4

1-2

5-30

5-31

5-32

5-33

7-4

13-3

13-6

13-21

13-23

13-25

A-2

A-9

A-10

A-14

PART 1
DOS-/// Operating Systsm

SECTION I
DOS-/// Organization

The DOS-III supervisory software consists of a Disc Monitor (DISCM) that resides in main memory;
EXEC modules which may reside either in main memory or on disc; and a Job Processor (JOBPR)
that is disc-resident. Together these modules manage I/0 processing, interrupt processing, executive
processing, job processing, and file handling.

Other DOS-III software consists of a series of relocatable binary software modules. Since each
module is an independent, general-purpose program, the hardware and software configuration of
the system is flexible. Modules can either reside in main memory or on the disc, at the user's option
(specified during system generation). In a system with a small main memory, the modules can reside
on the disc to save main memory space; in a large main memory system, modules can reside in main
memory for greater efficiency.

MAIN MEMORY LAYOUT

When DOS-III is active, the main memory is divided into a User Area and a System Area (as shown
in Figure 1-1). The Disc Monitor program handles all EXEC calls and, if they are legal, transfers
them to the proper module for processing. The I/O drivers handle all actual I/0 transfers of infor­
mation. If some I/0 drivers are disc-resident, they are read into main memory by the supervisor
when needed. The User Area provides space for execution of user programs.

In addition, large DOS-III software modules, such as the FORTRAN Compilers, Assembler, Relocat­
ing Loader, and Job Processor, reside on the disc and execute in the User Area. (See Appendix A
for figures on disc and main memory layout.)

If the memory protect option is present, a memory protect boundary is set between the System
Area and the User Area. This boundary interrupts whenever a user program attempts to execute an
I/0 instruction (including a HALT) or to modify the System Area. (Instructions can reference the
switch register and overflow register.) Programs to be run in the User Area must use EXEC calls for
input/output, termination, suspension, and other external processes.

1-1

System Area

User Area DISC MEMORY

Work Area

Job Binary Area

Listings, punched tapes,
t low memory

etc. to output device(s)

System Area

Directives, source ..,..
statements and data

I ~ from system console
and batch input device 1 MAIN MEMORY

User Area

high memory

Figure 1-1. Functional Diagram of DOS-Ill

1-2

DOS-III OPERATION

DOS-III operates in either keyboard or batch mode. In keyboard mode, the user enters statements
and commands to the system (called directives) to control his programming job through a keyboard
device (system console). Each line entered must terminate with a return and a linefeed. In batch
mode, the user enters directives through a batch input device, sometimes integrated with a source
program on punched cards, paper tape or magnetic tape, thus forming a job deck. Jobs can be
stacked one upon another in a queue.

Deleting Keyboard Errors

To delete an entire line of input, strike rubout then linefeed. To delete the character just entered,
strike Control-A (simultaneous "A" and control key striking). Each Control-A deletes one addi­
tional preceding character.

Batch Abort

Some errors when encountered in batch mode cause a batch abort. When such an error occurs
(mostly in response to a directive) DOS-III takes the following action:

1. The offending directive and an error message is printed on the list device.

2. JOB ABORTED is printed on both the system console and the list device.

3. The offending statement and subsequent statements are ignored until a JOB, EJOB, or TYPE
directive is encountered. The current operation is aborted and the next input is processed.

DOS-III DIRECTIVES

The DOS-III Supervisor operates in response to directives input by the programmer or operator.
Directives are strings of up to 72 characters that specify tasks to DOS-III. They are entered in one
of the two modes of DOS-III operation: keyboard or batch.

The DOS-III directives are used for the following functions:

• Create, rename, edit, list, and dump user files (relocatable, absolute, loader-generated,
source statements, and ASCII or binary data)

• Search the various disc subchannels for specified file names

• Check status of user disc tracks

• Turn on user programs or system programs such as FORTRAN and Assembler

• Examine and modify the logical organization of the I/O; rewind magnetic tapes and output
end-of-file commands to magnetic tapes; output top-of-form commands to list devices

• Start and stop a job; type comments; suspend operations; resume execution of suspended
programs

1-3

• Assemble or compile, load and execute a user program

• Dump main or disc memory

• Set the date; abort programs; transfer to batch mode (from keyboard mode or batch mode);
return to keyboard mode (from batch mode)

• Change the subchannel of the user disc

• Initialize (label) a disc subchannel

• Dump all (or part of) a disc to another disc

• Purge file name entries from the user file directory

• Repack discs to eliminate purged user files

• Reserve logical memory space for specific subsystems (Memory Management)

DOS-III directives are described in Section II.

DOS-III EXEC CALLS

After being translated and loaded, an executing user program communicates with DOS-III by means
of EXEC calls. An EXEC call is a JSB instruction which transfers control to the DOS-III Supervisor.

The EXEC calls perform the fallowing functions:

• I/0 read and write operations

• User file and work area read and write operations

• I/O control operations (backspace, EOF, etc.)

• Request I/O status

• Change the subchannel of the user disc

• Request limits and status of WORK area (temporary disc storage)

• Program completion

• Program suspension

• Loading of program segments or main programs

• Request the time

• Control of memory protect

• Store values into base page memory locations

• Memory Management

• Programmatic file control

DOS-III EXEC calls are described in Section III.

1-4

DOS-III INPUT/OUTPUT

All 1/0 operations and interrupts are channeled through the DISCM section of the DOS-III Super­
visor. DISCM is always main-memory resident and maintains ultimate control of the computer
resources.

1/0 programming is device-independent. Programs written in FORTRAN, ALGOL, and Assembler
specify a logical unit number (with a predefined function, such as data input) in 1/0 statements
instead of a particular device. Logical unit numbers initially are assigned to appropriate devices by
the operator during system generation, depending upon what is available and can be assigned during
a job. Thus, the programmer need not worry about the type of input or output device performing
the actual operation.

PRIVILEGED INTERRUPT

For DOS-III system interrupt processing, the 1/0 channel select codes are assigned decreasing priority.
Channel 108 has the highest priority and channel 37 8 has the lowest. When an interrupt occurs on an
1/0 channel, system interrupt processing is disabled on all channels having a lower priority (higher
number) until the higher priority interrupt processing is completed.

DOS-III provides an optional capability which permits privileged interrupts on specific 1/0 devices
(channels). These devices have their own user-supplied interrupt routines and have their interrupts
processed without going through the system's central interrupt processor ($CIC). The system guaran­
tees a response time of 100 microseconds for privileged device interrupts. (For a description of
privileged interrupt driver routines, see Section 13.)

The privileged interrupt capability is obtained by including a "fence" board in the system hardware
configuration and notifying the system software of the existence of the fence during system gener­
ation (see Section 10). The privileged interrupt fence physically separates privileged devices from
system devices. Privileged devices are those with interface boards in 1/0 channels of a lower number
(higher priority) than the fence. System devices are those with interface boards in 1/0 channels with
a higher number than the fence.

The DMA channels are always considered system devices although they reside on the privileged side
of the fence. When the privileged interrupt option is included in the system, any DOS-III drivers
which require DMA interrupts must explicitly inform the system of this fact. This is accomplished
by issuing the following subroutine call from the driver before returning control to the system:

EXT $SDMA
JSB $SDMA

When the last DMA interrupt has been received, the driver should inform the system th.at no further
DMA interrupts are expected by issuing the following subroutine call:

EXT $CDMA
JSB $CDMA

When the privileged interrupt fence is installed in the system and necessary privileged interrupt
drivers are included, the user can access his privileged devices with standard 1/0 calls (JSB EXEC).

1-5

TIMING CAP ABILITIES

A library subroutine called $TIME is available to both system programs and user programs. The
Time Base Generator is required to use this subroutine (see "Hardware Options"). $TIME provides
the capability to set, reset, or release a timer (100 millisecond resolution).

Note: Upon return from the $TIME subroutine, Memory Protect is
disabled until a system request (JSB EXEC) is issued.

When setting (activating) a timer, an initial time value is placed into a user-supplied buffer and this
timer buffer is added to a linked list of currently active timers. When the timer expires, the sub­
system, driver, or user receives temporary control from the system. A timer is reset by placing a
new time value into an active timer buffer. A timer is released (deactivated) by removing the timer
buffer from the linked list of active timers. It is possible to remove all timer buffers from the list
with one calling sequence.

To use $TIME, the program must include a timer buffer, a time-out processor routine, and a calling
sequence.

Timer Buff er

A 4-word timer buffer must be available to $TIME. The address of this buffer is passed to $TIME
to identify the desired timer. Timer buffer format is:

Word 1: 16-bit buffer identifier

Word 2: Address of time-out processor routine

Word 3: Current time value
System use only

Word 4: Address of next timer buffer in linked list

Program must not modify word 3 or 4.

Time-out Processor Routine

Control is passed to the time-out processor routine when a specified timer expires. Unless the
system was generated with the privileged interrupt option, the interrupt system will be OFF and
should remain OFF during execution of the time-out processor routine. If the privileged interrupt
option is included in the system, the interrupt system will be ON upon entry into the time-out
processor. To prevent further privileged interrupts from occurring during execution of the time-out
processor, the time-out processor must disable the interrupt system.

Caution: Interrupts should not be disabled for more than 100 microseconds.

1-6

On entry into the time-out processor routine, the timer buffer is released from the timer list and
the A- and B-registers set as follows:

A = 16-bit identifier of the timer just expired (this allows one time-out
processor to service many timers).

B = 15-bit address of the timer buffer associated with the expired timer.

Calling Sequence

To set or reset a timer:

EXT

LDA
LDB
JSB
SZA
JMP

VALUE DEC

$TIME

VALUE
ATMBF
$TIME

ERROR

-2

(Time specified in -100 milliseconds)
(Address of timer buffer)
(Set/reset timer)
(If A= 0, no error; A= 1, illegal address)

(Set timer for 200 milliseconds)

When this request is received, the list of timers is scanned for a matching timer buffer. If no match
is found, a set request is assumed and the new entry is placed in the timer list. If a match is found, a
reset request is assumed and the new value is stored into the existing timer buffer.

On return from $TIME, the contents of the A-register indicate the termination condition:

A = 0; normal termination

A = 1; illegal timer buffer address

1-7

To release a timer:

EXT $TIME

CLA (Indicates release request)
LDB ATMBF (Release a specific timer) } or or Choose one
CLB (Release all timers)
JSB $TIME (Release timer)
<return point>

ATMBF DEF TMBUF[,I] (Address of timer buffer)
TMBUF OCT n (16-bit identifier) }

DEF TOP[,I] (Address of time-out processor) Time Buffer
BSS 2 (Reserved for system)

TOP NOP

} Time-out Processor

JMP TOP,I

Note: Routines using $TIME must remain main-memory resident during
program execution because the system uses a linked list mechanism
to keep track of the timers.

DOS-III FILES

Two types of files can be included in the DOS-III system: standard files (created by the STORE or
EDIT directives) and files created under the Extended File Management Package (if EFMP is in­
cluded in the system).

Standard Files

The disc provides quick access and mass storage for user files consisting of source statements, re­
locatable, absolute and loader-generated object programs, or ASCII or binary data. Each file has
a name that is used to reference it.

Programs use the' Work Area of the disc for temporary storage. The System Area contains files of
systems programs, EXEC modules, a system directory, and system library subroutines.

1-8

DOS-III Extended File Management Package

DOS-III installations can use the DOS-III Extended File Management Package (EFMP). This set of
optional EXEC modules allows the user to exploit a more powerful file structure than that provided
by DOS-III. EFMP files allow logical record sizes of varying lengths for different files, security codes,
flexible buffering, sequential reads and writes with a pointer, and detailed status information. In
addition, a utility program (UTIL) is available that operates in the User Area. UTIL makes those
EFMP functions (except reads and writes), normally only usable through EXEC calls, usable from
the keyboard. For more information on EFMP, see Part 2.

DOS-III MEMORY MANAGEMENT

A memory management EXEC module allows user and system programs to allocate and release
buffer space within memory. The following memory management capabilities are provided:

e A directive (:MMGT) to specify and list subsystem names and block sizes.

• An initialization call (RCODE=35) to reserve a block of memory under a unique block name.

• A status call (RCODE=36) to interrogate the state of various blocks of memory.

• A buffer allocation call (RCODE=38) to subdivide blocks of memory into individual buffers.
A unique buffer identification is assigned each buffer allocated.

• A buffer release call (RCODE=41) to release previously allocated buffer space.

GENERATING A DOS-III SYSTEM

DOS-III is generated and loaded using two absolute programs:

• Configured DSGEN (the system generator)

• BMDL (the bootstrap loader which loads the configured DOS-III from the disc into
main memory)

First, DSGEN outputs instructions to the operator asking for information about the system. At the
appropriate point in the dialogue, the operator loads in the relocatable binary modules which make
up DOS-III and specifies whether the modules are to be disc- or main-memory resident. Finally,
DSGEN stores the configured DOS-III system on the disc in absolute form. (The disc is protected
from alteration by a hardware override switch.)

DOS-III then resides as a System Area and User Area on the disc. Each area is labeled and contains
a directory of all the files contained within the area. The System Area contains system main-memory
resident and disc-resident modules, while the User Area contains user files.

To load DOS-III into main memory and begin system execution, the user executes BMDL. This
Loader loads all the modules designated main memory resident into main memory. (The disc­
resident modules are brought into main memory when needed by the main-memory resident
modules.)

1-9

DISC USAGE

HP 790017901

The controller for the moving-head disc supports up to four disc drives (one is required). Each 7900
drive contains two discs: a fixed disc and a removable cartridge. Each 7901 drive contains one disc:
a removable cartridge. Each disc is referenced through a subchannel of the controller. Therefore,
the controller has a maximum of eight subchannels (numbered 0 to 7). The channels are assigned
as follows:

7900 7901

0 1 2 3 Disc Drive Numbers 0 1 2 3

1 3 5 7 Removable Subchannels 1 3 5 7

0 2 4 6 Permanent Subchannels None

HP 2883/2884

During system generation, the HP 2883 disc drives can be configured for one of two modes - four
subchannels per drive or two subchannels per drive. In either case, the controller supports one or
two drives (one drive is required).

For the four subchannel per drive mode, each drive contains a removable pack of disc surfaces
divided into four subchannels. Thus, the controller can support up to eight subchannels assigned
as follows:

Disc drive 0 - subchannels 0, 1, 2, 3

Disc drive 1 - subchannels 4, 5, 6, 7

For the two subchannel per drive mode, each drive contains a removable pack of disc surfaces
divided into two subchannels. One controller supports up to four subchannels. A second controller
(optional) can be added to provide support for up to eight subchannels. Subchannel assignments
follow:

First controller { Disc drive 0
Disc drive 1

{ Disc drive 2 Second controller
Disc drive 3

subchannels 0, 1
subchannels 2, 3

subchannels 4, 5
subchannels 6, 7

When two controllers are used (two subchannels per drive mode only) they must reside in contiguous
I/0 channel slots. In addition, the subchannels associated with the second controller (subchannels
4 through 7) can contain only user discs - no generation or bootstrap operations are permitted on
these subchannels.

1-10

DISC STORAGE

Each subchannel contains 203 tracks. At least three of these tracks must be reserved as spares. The
smallest addressable unit on a disc is a sector. One sector contains 128 sixteen-bit words of storage.
On the HP 2883 with four subchannels per drive, each track contains 115 sectors; on the HP 2883
with two subchannels per drive, each track contains 230 sectors; on the HP 7900/7901, each track
contains 48 sectors.

DOS-III normally allows two subchannels to be available to the user: one subchannel contains the
system disc and the other contains the user disc (which may be the same subchannel as the system
disc). The user subchannel assignment can be changed during job or program execution. In addition,
an optional system search mode is available to allow searching for user files on any specified sub­
channels.

The disc storage has four parts:

1. The System Area

Executable code created by the system generator and hardware protected; includes
DOS-III Supervisor and other system programs.

2. The User Area (optional)

User file directory and user files (data, object programs, source statements, etc.).

3. The Work Area

Temporary storage for the current job.

4. Job Binary Area

Temporary storage for relocatable object code generated by the Assembler and compilers; this
is an area of variable size and starts from the end of the disc.

All four of these areas can reside on the system subchannel, or the User Area can be on a separate
subchannel. Only one User Area is available to the system at a time. The standard user subchannel
is assigned at system generation time; this can be the system disc or another subchannel (removable
or permanent disc). The UD directive and an analogous EXEC call allow the user to temporarily
change the User Area to another subchannel.

Automatic track switching is provided within each subchannel.

1-11

DOS-III HARDWARE

Required Hardware

The minimum hardware requirements for DOS-III are:

1. HP 2100A or 21008 computer, with 16,384 words of main memory, and DMA.

2. Moving-head Disc device (HP 7900 Moving-head Disc Drive with fixed disc and removable
cartridge; or HP 7901 Moving-head Disc Drive with removable cartridge; or HP 2883 Disc
File with one removable pack).

3. System Console device.

4. Paper Tape Reader.

Hardware Options

The following hardware options are available:

1. Time-base Generator (provides accounting times and time-of-day).

2. Privileged Interrupt Fence.

3. Floating-point hardware.

4. Additional main memory to a total of 24,576 or 32,768 words.

5. Using extenders, additional I/O channels (up to channel 378).

6. Memory Protect. (Without memory protect, user programs can destroy DOS-III.)

7. Paper Tape Punch.

8. Line Printer.

9. Card Reader.

10. Magnetic Tape Unit.

11. Additional Disc Drives. (Maximum is four on HP 7900/7901; two on HP 2883 with four sub­
channels per drive; and four on HP 2883 with two subchannels per drive.)

12. CRT Display Console.

13. Writable Control Store.

14. Fast FORTRAN Processor.

1-12

DOS-III SOFTWARE

Required Software

The minimum software requirements for DOS-III are

1. Absolute Programs

a. DOS-III System Generator (DSGEN)

b. DOS-III Bootstrap Loader

2. Relocatable Programs

a. DOS-III Disc Monitor (DISCM)

b. DOS-III Exec Modules

c. DOS-III Job Processor (JOBPR)

d. DOS-M Disc Driver (DVR31)

e. DOS-M System Console Driver (DVR05)

Software Options

In addition, the following programs can be included when DOS-III is generated:

1. DOS-III Relocating Loader

2. DOS-M Assembler

3. DOS-M FORTRAN Compiler

4. RTE/DOS FORTRAN IV Compiler

5. RTE/DOS FORTRAN IV Compiler- lOK Compiler Area

6. RTE/DOS ALGOL Compiler

7. RTE/DOS Relocatable Library (EAU, or floating point)

8. RTE/DOS FORTRAN IV Library (extended-precision arithmetic)

1-13

9. RTE/DOS FORTRAN Formatter

10. DOS 1/0 Drivers (either main-memory or disc-resident):

Teleprinter (DVROO)

Photoreader Driver (DVROl)

Tape Punch (DVR02)

Display Terminal (DVR04)

Card Reader (DVRll)-uses DMA

Line Printer (DVR12)

Magnetic Tape (DVR23) - uses DMA

Terminal/Printer (DVR26)

Writable Control Store (DVR33)

11. DOS-III Extended File Management Package

12. RTE/DOS Fast FORTRAN Processor Subroutine Library

1-14

SECTION II

DOS-/// Directives

Directives are the direct line of communication between the keyboard or batch input device and
DOS-III. Directives may enter DOS-III in two modes: keyboard and batch. In either mode, all
directives are listed on the system console. Certain directives can be used in one mode only; others
can be used in both modes. In keyboard mode, the operator manually inputs the directives through
the system console keyboard. In batch mode, the programmer prepares the directives (commonly
on punched cards, paper tapes, or magnetic tape) and inputs them along with programs, data, etc.,
in a complete job.

FORMAT FOR DIRECTIVES

Directives have the same format, regardless of the mode in which they occur: a colon (:) followed
by a directive word (first two characters are significant) and, if necessary, a list of parameters
(maximum is 15) separated by commas. For example,

:PURGE,FILE1 ,FILE2,FILE3

When the sequence and position of parameters is significant, missing parameters must be represented
by commas if the following parameters are to be recognized. The first blank character not preceded
by a comma is the end of the directive. Comments may appear after this blank; they are ignored by
DOS-III.

Note: The total length of an input string cannot exceed 72 characters.

ENTERING DIRECTIVES

DOS-III has two conventions for notifying the operator that directives may be entered:

1. DOS-III outputs a "commercial at" sign(@) and rings a bell (at the system console). At this
time, the operator may enter any directive.

2-1

2. DOS-III outputs an asterisk (at the system console). At this time the operator may enter an
"operator attention" directive only. The "operator attention" directives are

:ABORT

:DN

:EQ

:LU

:OFF

:PAUSE

:TRACKS

:TYPE

:UP

Should the operator type any other directive, DOS-III outputs the following message:

IGNORED

and returns to the executing program.

To attain control of DOS-III (to enter an "operator attention" directive) the operator can
strike any system console keyboard key. If the system console is available, DOS-III immediately
outputs an asterisk(*); if the system console is busy, DOS-III will output the asterisk as soon
as it releases the system console.

Notes: 1. Operator attention is disabled during the completion phase of :EDIT and
during :PURGE.

2. Some system conditions restrict allowable directives; e.g., after an I/0
ERR NR EQT# nn, the system is waiting for an : UP,nn, followed by :GO.
Under such conditions, otherw.ise legitimate directives will be ignored.

3. Some operations, such as editing, require perceptible waits while DOS-III
processes the directive.

ORDER OF DIRECTIVES

The DOS-III directives described in this section are presented in alphabetic order (by function name).
If a directive must be used in keyboard mode only, a note to that effect is placed at the top of each
page describing the directive. A quick cross-reference index of DOS-III directives, "Summary of
Directives," is included at the back of this manual.

2-2

Keyboard Mode Only

ABORT

Purpose

To terminate the current job before the next JOB or EJOB directive.

Format

:ABORT

Comments

Abort carries out all the operations of a batch mode EJOB directive. All I/0 devices are cleared.

2-3

BATCH

Purpose

To switch from keyboard mode to batch mode, or to reassign the batch device.

Format

:BATCH,logical unit

where logical unit is the logical unit number of the desired batch input device.

Comments

See "TYPE" in this section for the opposite procedure of returning from batch mode to keyboard
mode. Assigning a null device or logical unit numbers 2 or 3 as the batch device results in an
ILLEGAL LUN error (see LOGICAL UNIT directive).

2-4

CLEAR

Purpose

To clear the Job Binary Area on the disc, or to issue a clear command to an I/0 device.

Format

:CLEAR[,logical unit]

where logical unit is the logical unit number of the device to be cleared. If logical unit is omitted,
the disc Job Binary Area is cleared.

Comments

Using logical units 1, 2, or 3 results in an LU error.

The effect of clearing an I/0 device is the transmittal of a clear function to the appropriate driver.

2-5

COMMENT

Purpose

To print a message on the system console.

Format

:COMMENT character string

where character string is a message to be printed on the system console.

Comments

A space (but not a comma) is required between the directive word and the comment string.

The programmer can use :COMMENT or :PAUSE to send a message to the operator at the system
console; using :COMMENT causes no suspension of processing. Use :PAUSE when a processing
delay is desired, for example to request that the operator mount a magnetic tape.

EXAMPLES:

:COMMENT PLACE MAGTAPE LABELED "INPUT" ON THE M.T. UNIT

:COMMENT IF THIS NEXT PROGRAM ABORTS, CALL Xl 234.

2-6

Keyboard Mode Only

DATE

Purpose

To set the date and time for accounting purposes whenever DOS-III is activated.

Format

:DATE, day [,hour,min]

where day is any string of ten or fewer characters (commas not permitted) chosen by the operator
(such as 7/10/69, 10.JULY.69, etc.);

hour and min are the current time in hours and minutes on a 24-hour clock. If not given or
a Time-base Generator is not present, they are set to zero.

Comments

The DATE directive is legal only as the first directive in a start-up procedure. The directive is not
accepted any other time.

EXAMPLES:

:DATE, 7 /10/69,12,23

:DA TE, WEDNESDAY, 7,45

:DATE,10JULY1969

2-7

DOWN

Purpose

To declare an 1/0 device unavailable for use during the remainder of a job.

Format

:DN,n

where n is the equipment table entry number for the device to be set down.

Comments

The system console and the disc (logical units 1, 2, and 3) cannot be set down.

2-8

DUMP (DISC-TO-DISC)

Purpose

1. To dump an entire disc onto another subchannel (:DD)

2. To dump the System Area (including system buffer) onto another subchannel (:DD,X)

3. To dump all or specified files of the User Area (optionally assigning some new file names) onto
another subchannel (:DD,U ...)or, onto the current subchannel (assigning new file names).

Formats

1. :DD

2. :DD,X

3. :DD, U[,file 1 [,(file A)] ,file 2[,(file B)] ...]

where X specifies the System Area,

U specifies the User Area,

file 1, file 2, ... specify the files to be dumped (the entire User Area if no files are specified),

file A, file B, . .. specify the optional new names for file 1, file 2, etc. (renamed files can be
intermixed with unchanged files).

Note: No more than 14 parameters can be specified after :DD,U.

The destination disc must be specified by a :UD immediately following the :DD. Any other direc­
tive will negate the :DD. (For :DD and :DD,X, the directive must be :UD,*,n where n is not the
system disc.)

2-9

Comments

When the destination for a :DD,U is a system disc, other than the current system, the user files are
dumped in the User Area following the system files. This allows the user to dump a system and
selected user files to a single disc. (See also "INITIALIZE")

The SS directive does not apply to :DD.

If the files of the source disc cannot completely fit on the destination disc, DOS-III transfers as
many whole files as possible and outputs

TRAC# TOO BIG

If DOS-III cannot find some of the files specified to be dumped, the message

file

UNDEFINED

is output. This does not effect dumping of the files which are defined.

If a file specified to be dumped has the same name (after the optional renaming) as an existing file
on the destination disc, the message

file

DUPLICATE FILE-NAME

is output and the file is not dumped. This does not effect dumping of other files.

Caution: A DOS-III system created through the :DD directive
(disc-to-disc dump) cannot be protected with the
Protect/Override switch on the disc drive because the
protect bits on the system portion of the original disc
are not copied during the dump operation.

2-10

DUMP (FILE)

Purpose

To dump a user file to a specified peripheral I/0 device in a format appropriate to the file content.

Format

:DUMP,logical unit,file[,81 [,82]]

where logical unit is the logical unit number of output device to be used for the dump

file is the user file to be dumped

81 and 82 are the first and last relative sectors to be dumped

If 81 and 82 are not given, the entire file is dumped. If only 81 is given, then the file, starting with
81, is dumped.

Comments

Files may be dumped on list devices or punch devices (including magnetic tape). The dump format
varies with the type of file and the type of device. See Table 2-1.

Table 2-1. :DUMP Formats

File Type Punch Device List Device

ASCII data 64 characters/record 64 characters/record

Binary data 64 words/record 8 octal words/line

Absolute binary Absolute binary records 8 octal words/line

Relocatable binary Relocatable binary 8 octal words/line
records (loadable)

Source statements 1 statement/record 1 statement/line

Note: Sector numbers on listings are not related to the 81 and 82 parameters.

2-11

Source statements are packed and do not necessarily start on sector boundaries. Thus, if the SJ and
S2 parameters are used, dumping begins with the start of the first statement beginning in sector SJ,
and ends with the last statement beginning in sector S2 (this will probably end in the following sector).

Files in the System Area cannot be dumped.

An error message occurs when SJ > S2, or when either SJ or S2 is greater than the length of the file.

Source statements, relocatable binary and absolute binary files can be dumped to a punch device and
later restored by using the appropriate STORE directive. In general, however, this cannot be done
with ASCII data and binary data files.

EXAMPLES:

Where Lis a source file:

:DUMP,J,L

A

BB

CCC

DDDD

EEEEE

FFFFFF
GGGGGGG
@

Where SSE RH is a binary file:

(On the system console:)

:DU,6,SSERH,J ,J
@

(On the list device:)

OOJ 000000 062J25
002400 052JOO
OJ 0025 OJ 0076
OJ0077 OJOJOJ
JJ4535 OJ0050
114535 OJ0056
036006 036J2J
OJOJ20 JJ4535
000000 020116
043522 0405J5
OOOOJJ 000000
020040 020040
020040 020040
020040 020040
020040 04JJ02
042040 020040

072J2J 114535
0260J4 026036
OJ0077 OJ0006
OJOJJ 7 J0250J
OJOJ23 OJ0076
OJ0076 OJ0077
026003 JJ4535
OJ0074 OJ0074
047524 020J06
020J03 0475J5
000000 OOOOJ6
020040 020040
020040 020040
020040 000003
04J040 020040
042505 042440

2-12

OJOOJO OJ0075 OJOJ56 OJOJOO
062006 042J54 072023 JJ4535
OJOJ53 JJ4535 OJ0033 OJ0076
002002 026056 062006 072046
OJOJ27 OJOJ24 OJ0006 OJOJ22
OJOJ26 OJOJ53 036006 036006
OJ0071 OJ0076 OJ0077 OJOJ06
000006 000022 000002 OOOOOJ
047525 047J04 020J20 05JJJ7
050JJ4 042524 042504 000005
000002 J77746 020040 020040
020040 020040 020040 020040
020040 020040 020040 020040
J77777 020040 02050J 040440
04J503 04J440 020040 042J04
020040 043J06 043040 020040

DUMP (PROGRAM)

Purpose

To request that a user program be dumped to the standard list device (logical unit 6) when it com­
pletes execution. Two directives are provided: PDUMP for dumping on a normal completion, and
ADUMP for dumping when the program aborts.

Format

:PDUMP[,FWA[,LWAJ J [,BJ [,SJ

:ADUMP[,FWA[,LWAJ J {,BJ [,SJ

where FWA is the octal address, relative to the program origin, of the first word to be dumped

LWA is the octal address, relative to the program origin, of the last word to be dumped

B means dump the base page linkage area of the program

S means dump the entire system area.

If LWA is missing, the entire program, starting with FWA,.is dumped. B alone dumps all the main
program, plus base page linkages, but not the system routines. S alone dumps only the system.

If no parameters are given, everything except the system area is dumped.

Comments

The dump directives, PDUMP and ADUMP, must precede the RUN or PROG request in a job. They
implicitly refer to the next program to be executed. DOS-III sets a flag when it encounters either
PDUMP or ADUMP, then checks the flag the next time a program is executed. Only one of the
requests will be honored, depending upon whether the program runs normally or is aborted. The
dump is labeled accordingly. These flags are cleared when a program terminates.

Any parameter following S in the directive is ignored. If FWA is greater than LWA, this message is
output:

LIMIT ERROR

2-13

The main program and library subroutines are dumped eight octal words per line, along with the
octal starting address for that line. For example,

wd-1

wd-1

wd-2

wd-2

wd-3

wd-3

wd-4

wd-4

wd-5

wd-5

wd-6

wd-6

wd-7

wd-7

wd-8

wd-8

If present, the base page dump follows the main program and library. Base page linkages exist for
page boundary crossings and subroutines. For each line, the starting octal address appears first,
followed by four pairs of octal numbers. The first number of each pair records the content of the
base page word (an address elsewhere in main memory). The second number of each pair records the
contents of the address specified by the first item. If the first item is the address of a subroutine, then
the second item contains the last address from which the subroutine was called. For example,

pair-1 pair-2 pair-3 pair-4

adr item-1 item-2 item-1 item-2 item-1 item-2 item-1 item-2

adr+4 item-1 item-2 item-1 item-2 item-1 item-2 item-1 item-2

Note: :OFF before a program executes clears the dump flags.
:OFF during a program execution causes an abort dump.
:OFF during a dump terminates the dump.

EXAMPLE:

:ADUMP,0,15,B (Set up dump flag)

:R UN,PRG9,6 (Run program)

LU 012140

(Main program dump)

AD UMP

12000 160001 002002 130573 170574 006004 160001 002003 026012
12010 130575 170576 006004 160001 170577 006004 160001 170600

(Page Eject)

(Base page dump)

00570 010137 002045 010711 003237 010763 002045 017014 000300
00574 017641 000000 017015 000400 017641 000406 017601 000000
00600 017650 000000 017615 000000 017664 000000 017662 000573
00604 017637 000573 017571 177205 017563 001204 017714 017715
00610 017562 021121 017534 021122 017536 021122 017633 160656
00614 017544 037626 017546 037626 017673 000000 017605 000040

2-14

DUMP (SECTOR)

Purpose

To dump any specified sector or sectors of the current user disc on the standard list device (logical
unit 6) in either ASCII or octal format.

Format

: SA, track,sector [,number]

:SO, track,sector[,number]

(ASCII)

(OCTAL)

where track and sector give the starting disc address for the dump

number gives the number of sectors to be dumped. If number is absent, only one sector is
dumped.

All three parameters are decimal numbers.

Comments

The ASCII dump format (:SA) is 64 characters per record. The octal dump format (:SO) is eight
octal numbers per line. Two ASCII characters equal one computer word (also represented by one
octal number). Although :SA dumps 64 characters per record, these do not necessarily appear on
one line since the binary numbers are converted to ASCII characters, some of which might be
linefeeds or returns.

2-15

EXAMPLE:

(On the system console:)

:S0,0,1

@

(On the list device:)

001 000000 067767 017570 067744 077743 017613 017613 017613
017613 064120 007004 077310 064117 044055 160001 044051
010072 073773 053774 077761 053775 077762 077304 044056
160001 001727 013733 073305 050060 027460 053763 027445
067304 044066 037310 027415 027505 044052 160001 023773
033774 170001 063773 073302 002004 073303 063774 073773
067304 160001 073766 164000 017570 063305 050060 027440
006004 160001 033773 170001 006004 063730 170001 006004
003004 170001 067304 077311 027440 060154 001722 013765
033774 001727 001723 070154 063761 067302 017606 063762
067303 017606 002400 067774 017606 063311 067775 017606
067761 006003 027540 044055 160001 023774 033302 170001
067762 006003 027546 023775 033303 170001 063776 001200
067777 006003 002004 064155 070155 054175 070175 006400
050175 064115 074200 047740 074157 064175 074161 124003
000000 057766 127570 037766 163766 002021 027571 013764

2-16

EDIT

Purpose

To perform listed edit operations on a user source file (follows the :SS condition).

Format

:EDIT,file,logical unit[,new file]

where file is the name of a source file (the primary file) to be edited according to an edit list (edit
operations plus associated source statements) input on the specified logical unit. If new file
appears, the edited source file is stored in a new file (with the name new file) on the same
subchannel and the old file is not purged. Otherwise, the edited source file destructively
replaces the old file. (Follows :SS in searching for duplicate file names.)

Comments

An edit list consists of one or more edit commands and, optionally, a series of associated source
statement (i.e., following REPLACE, INSERT). Edit operations are executed when they are
entered. When using the system console, the operator must not enter the next operation until the
"@" prompt is output on the console.

All edit operations begin with a slash(/), and only the first character following the slash is required.
The rest are ignored (until a comma is reached).

In the edit operation formats, the letters m and n are the sequence numbers of the source statements
to be edited, starting with one. Letter m signifies the starting statement, and n is the ending
statement of the operation, inclusively. In all cases, n must be greater than or equal to m;
neither can be less than one, nor greater than the last source statement of the file. The m must be
greater than the n of the previous operation. Sequence numbers refer to the original sequence of
the unedited file; inserted'statements cannot be referenced until the current editing process is com­
pleted and the file automatically resequenced prior to another EDIT directive.

Source statements following /REPLACE or /INSERT on the current batch device cannot contain a
colon(:) in column 1, although those entered from the system console can, with the exception of
:OFF and :ABORT (which are interpreted as directives instead of data). Source statements can
never contain a slash (/) in the first column. Source statements on any device other than the system
console and the current batch device can contain anything else in column 1 (including :OFF or
:ABORT).

Input is terminated only by an /END.

2-17

If the edit file is entered on the system console and either a

PARAMETER ILLEGAL

or

NO SOURCE

error occurs, the user merely re-enters the statement in error. If the edit list is entered on any other
device, the EDIT directive is aborted (if the EDIT directive was entered in keyboard mode) or the
entire job is aborted (in batch mode).

EDIT OPERATIONS

IDELETE,m[,n]

Deletes source statements m through n, inclusively, from the source file. If only m is specified,
that one statement is deleted.

IINSERT,m

Inserts the source statements in the edit list immediately following this command into the primary
file following statement m.

/MERGE[,k] ,secondary file[,m{,n]]

Merges source statements from the secondary file into the primary file named in the EDIT directive.

k is the sequence number of the primary file (named in the EDIT directive) after which
source statements of the secondary file are merged. If k=O, the secondary file source state­
ments are merged at the beginning of the primary file; if k is omitted, the secondary file
source statements are merged at the end of the primary file.

Secondary file is the name of the source file to be merged with the primary file. If
m and n are specified, then only lines m through n of the secondary file are merged.
If only mis specified, then only that one line is merged.

IREPLACE,m{,n]

Replaces source statements m through n (inclusively) in the primary file with source statements
following the /R in the edit list. If n is omitted, then only statement m is replaced.

2-18

!SUPPRESS

Suppresses echoing of the edit operations on the system console, providing that the logical unit
specified in the EDIT directive was not the system console. Normally, echoing occurs after each
EDIT directive unless/Sis entered.

/UNSUPPRESS

Resumes echoing of the edit operations on the system console.

!END

Terminates the edit file and returns DOS-III to its previous mode for further directives. (The last
edit command must be /END.)

EXAMPLES:

If a file named SOURC contains:

ASMB,R,B,L Statement 1

Statement 2

Statement 3

Statement 4

Statement 5

Statement 6

Statement 7

NAM START

A EQU 30

B EQU20

START NOP

LDAA

END

and the EDIT directive is

:EDIT,SOURC,5

and the edit list, which follows :EDIT on the batch device, is

IR,3

A EQU 100

B NOP

/D,4

/I,6
STAB

IE

2-19

then the new file SOURC equals:

Statement 1 ASMB,R,B,L

Statement 2 NAM START

Statement 3 A EQU 100

Statement 4 B NOP

Statement 5 START NOP

Statement 6 LDAA

Statement 7 STAB

Statement 8 END

Assume now that there exists a source file named FILE2:

Statement 1

Statement 2

ALF,ALF

JMPSTART

To merge FILE2 into the new SOURC, the following EDIT directive, along with its edit
list, is required:

:ED,SOURC,5

/M,7,FILE2

IE

The new file SOURC looks like this:

Statement 1 ASMB,R,B,L

Statement 2 NAM START

Statement 3 A EQU 100

Statement 4 B NOP

Statement 5 START NOP

Statement 6 LDAA

Statement 7 STAB

Statement 8 ALF,ALF

Statement 9 JMPSTART

Statement 10 END

2-20

END-OF-FILE

Purpose

To write an end-of-file mark on a magnetic tape.

Format

:EF[,logical unit]

where logical unit is the logical unit number of the desired magnetic tape (default is 8).

2-21

END-OF-JOB

Purpose

To terminate the current job normally and return to keyboard mode.

Format

:EJOB

Comments

The EJOB directive outputs a message recording the total run time of the job and execution time,
then returns to keyboard mode.

If :SS condition is active, :EJOB purges temporary files on all specified user subchannels. If :SS
condition is not active, :EJOB purges temporary files on the current user subchannel. (See STORE
directive and "DOS-III Relocating Loader," Section V.) All directives except :TRACKS, :OFF,
:TYPE or :BATCH are ignored until the next JOB directive.

:EJOB resets logical units 1 through 9 and resets the :SS condition. :EJOB resets the user disc
assignment to the standard subchannel unless that subchannel is not ready or a new cartridge has
been inserted (with a different label and without a UD directive).

When the EJOB directive occurs, a message is printed, similar to that of :JOB, giving the total run
time of the job and total execution time (if a Time-base Generator is present). For example,

END JOB START RUN= 0007 MIN. 52.6 SEC. EXEC= 0001 MIN. 21.0 SEC.

or

END JOB START

This message is printed on the system console and on the standard list device (logical unit 6). A
top-of-form is issued on the list device prior to the message.

2-22

EQUIPMENT TABLE

Purpose

To list one or all entries in the equipment table on the system console (see Appendix A for equip­
ment table format).

Format

:EQ[,n]

where n, if present, indicates the one entry to be listed.

If n is absent, the entire equipment table is listed.

Comments

Each entry is output in the following format:

EQT nn CH vu DVRmm d r Uu Ss

where nn is the decimal number of the entry

uv is the octal channel number of the device

mm is the I/O driver number for the device

d specifies DMA if equal to D, no DMA if zero

r specifies main-memory resident if equal to R, disc-resident if zero

u is a single decimal digit used for subchannel addressing

sis the availability status of the device:

0 for not busy, and available,

1 for disabled (down),

2 for busy

2-23

EXAMPLE:

Following is a listing of a DOS-III Equipment Table.

: F:Q
EOT 0 l CH 1 1 nv:10 s 0 H U0 S0
EQT (;>.•'.)

'iJ<'... ..• CH 1 3 DVHD l 0 0 lJ[,) S0
EQT 03 CH 1 IJ DVH3 1 D R U0 so
EOT f} LJ CH 1 6 Di/H02 0 H U\1 S0
EQT 05 CH 80 DVRlP. 0 R U0 SC1
EQT 06 CH 21 DVHl 1 D 0 uo S:Zl
EOT 07 CH 22 D\iH23 D 0 U\il so
f)

2-24

Keyboard Mode Only

GO

Purpose

To resume a program that has been suspended, and optionally, to transfer up to five parameters to
that program.

Format

where P1 through P5 are optional parameters and must be decimal values between 0 and 32767.

Comments

When a program suspends itself (see "Program Suspension" in Section III), it is restarted by a GO
directive. Upon return to a suspended program, the initial address of the five parameters is located
in the B register. A FORTRAN program calls the library subroutine RMPAR to transfer the
parameters to a specified 5-word array. The first statement after the suspend call, in a FORTRAN
program, must be the call to RMPAR. For example,

DIMENSION I (5)

CALL EXEC (7)

CALL RMPAR (I)

An assembly language program should use the B register upon return from the suspend to obtain
and save the parameters prior to making any EXEC request or 1/0 request.

2-25

Keyboard Mode Only

INITIALIZE

Purpose

To label or unlabel the current user disc, and to destroy an existing System Area (and, optionally, a
User Area).

Format

:IN,label

where label is a six-character name to be written on the disc, or"*" which means unlabel the
disc.

Comments

Four basic cases are possible:

1. :IN,* An unlabeled disc (a disc containing only a User Area). The user directory and all
user files are destroyed.

2. :IN,* A labeled disc. The message

DOS (or TSB) LABEL xxxxxx

OK TO PURGE?

is output. To purge both the System and User Areas, the operator must respond with

YES

If the existing label is SYSTEM (the disc contains a DOS or TSB system), the Override/Protect
switch must be in the override position (if the disc was created using DSGEN); otherwise, a
HLT 31 will occur. If the operator responds with

NO

the directive is ignored.

2-26

3. :IN,label An unlabeled disc. Only the label is.changed; no files are destroyed.

4. :IN,label A labeled disc. The message

??? LABEL xxxxxx

OK TO PURGE?

is output. To purge an existing DOS or TSB system, move the user files to the beginning of
the disc, and assign the new label to the User Area, respond with

YES

If the existing label is SYSTEM (the disc contains a DOS or TSB system), the Override/Protect
switch must be in the override position (if the disc was created using DSGEN); otherwise, a
HLT 31 will occur. If the operator responds with

NO

the directive is ignored.

2-27

JOB

Purpose

To initiate a user job and assign it a name for accounting purposes.

Format

:JOB[,name]

where name is a string of up to five characters (starting with a non-numeric character) which
identifies the job.

Comments

When DOS-III processes the JOB directive, it issues a top-of-form to the list device (logical unit 6),
prints an accounting message on the system console and the list device recording the job's name
(as specified in the JOB directive), the date (as specified in the DATE directive), and the current
time (if a Time-base Generator is present).

For example,

:JOB,START

JOB START MON6.16.9 TIME= 0013 MIN. 41.6 SEC.

or

JOB START MON 6.16.9

If an EJOB directive has not been encountered, :,JOB also acts as the :EJOB for the previous job.
In this case, all actions of the :EJOB are carried out (except for returning to keyboard mode from
batch mode) before starting the new job.

2-28

LIST

Purpose

To list file information recorded in the user or system directories; or to list and sequentially number
the contents of all or part of a source file.

Format

(System) :LIST,X,logical unit[,file1 , ••.]

(Unaffected by :SS)

(User) :LIST, U,logical unit[,file 1 , .••]

(Lists the specified directory entries from all the subchannels defined by :SS.)

(Source) :LIST,S,logical unit, file[,m[,n]]
(follows :SS)

where X specifies the System Area directory

U specifies a User Area directory

S specifies a user source file

logical unit specifies the list device

file1 , ••• names up to 13 entries to be listed (if none is specified, the entire directory is
listed)

m and n, if present, specify the first and last statements to be listed. If n is absent, then
all statements beginning with m are listed. If neither appear, then the entire file
is listed. The restrictions for m and n are the same as those for the EDIT directive.

Comments

A top-of-form is issued to the list device prior to listing.

2-29

DIRECTORY LISTING OUTPUT

The first line is a heading, identifying the information that follows:

NAME TYPE SCTRS DISC ORG PROG LIMITS B.P. LIMITS ENTRY FWAM PB

SUBCHAN = n

The following lines are then printed:

name type sctrs trk sec lowerp upperp lowerb upperb entry fwam p-b

where name identifies the file,

type tells what kind of file name is

AB absolute binary program

AD ASCII data

BD binary data User File Only

RB relocatable binary program

SS source statements

LB-= library } XS = supervisor module
System File Only

DR disc resident I/0 driver

} UM user main program

us user program segment

Either File

sctrs is the number of sectors in the file,

trk is the track origin of the file,

sec is the starting sector of the file within the track specified.

The information below does not appear for types AB, AD, BD, LB, RB, and SS.

lowerp is the lower limit (octal) of the program,

upperp is the upper limit (octal) of the program,

lowerb is the upper limit (octal) of the program base page links,

upperb is the upper limit (octal) of the program base page links,

entry is the absolute octal address where execution begins,

fwam is the octal address of the first word of available memory following the
program, and

p-b is equal to T if the file is temporary and will be purged by :EJOB unless stored by
:STORE,P.

2-30

If the requested file does not exist, a message appears:

file UNDEFINED

SOURCE LISTING OUTPUT

Each source statement is preceded by a four-digit decimal sequence number.

If the requested file is not a source file, the following message appears,

file

ILLEGAL

The list is terminated by the message

****LIST END ****

EXAMPLES:

(on the system console:)

:LI,U,6

@

(On the list device:)

NAME TYPE SCTRS DISC ORG
SUBCHAN=4
EX9 SS 00080 T001 000
EXM RB 00063 T004 008
BBB SS 00001 T006 023
SRCH RB 00003 T007 000
SSE RH UM 00002 T007 003
ASCII AD 00200 T007 005
BINRY BD 00300 T015 013

PROG LIMITS B.P. LIMITS ENTRY FWAM PB

10000 10271 00713 00713 10000 10271 T

Note: Tin the "PB" column means that the entry is temporary.

2-31

(On the system console:)

:ST,P (To make all temporary files permanent.)

@

:LI,U,6

@

(On the list device:)

NAME TYPE SCTRS DISC ORG PROG LIMITS B.P. LIMITS ENTRY FWAM PB
SUBCHAN=4
EX9 SS
EXM RB
BBB SS
SRCH RB
SSERH UM
ASCII AD
BINRY BD

00080
00063
00001
00003
00002
00200
00300

T001 000
T004 008
T006 023
T007 000
T007 003
T007 005
T015 013

Note: "PB" no longer equals T.

(On the system console:)

:LI,S,6,EX19,926,936

@

(On the list device:)

0926 ASMB,L,R,X,C,N,B

10000 10271 00713 00713 10000 10271

0927 HED DUMMY $LIBR AND $LIBX FOR RTS SIMULATION ON DOS
0928 NAM DUMRX,6
0929 ENT $LIBR,$LIBX
0930 SPC 2
0931 * CALLING SEQUENCES: ENTRY
0932 *
0933 *
0934 *
0935 *
0936 *

PRIVILEGED

**** LIST END ****

JSB $LIBR
NOP

2-32

TERMINATION

JSB $LIBX
DEF (PROGRAM ENTRY POINT)

LOGICAL UNIT

Purpose

To assign logical unit numbers (4 through 63) for a job or to list the device reference table (logical
unit assignments) on the system console.

Format

where n1 and n2 (if present) are decimal numbers.

If neither n1 nor n2 is present: the entire device reference table is printed.

If only n 1 is present: the equipment table entry number assigned to logical unit number
n1 is printed. (See EQUIPMENT TABLE directive.)

If both n 1 and n 2 are present (and n 2 does not equal zero): the device recorded in equipment
table entry n2 is assigned to logical unit n1 •

If both n1 and n2 are present (and n2 does equal zero): the logical unit specified by n1

becomes a null device, and any 1/0 request on that device is ignored.

Comments

Assignments made by :LU for logical units 4 through 9 are only valid during the current job.
Assignments for 10 and above remain after EJOB. ·At the beginning of each new job, the device
reference table for the first nine logical units is reset to the assignments given when the system was
generated. This insures a standard 1/0 organization for all users.

If n2 = 0 (that device is to be made null), the logical unit specified by n1 may not be equal to 1, 2,
3, or the logical unit number of the current batch device.

2-33

EXAMPLE:

:LU
LUOl EQT03
LU02 EQTOl
LU03 EQTOl
LU04 EQT05
LU05 EQT04
LU06 EQT06
LU07 EQT07
LUOB EQT02
LU09 EQTOO (null device)
@

2-34

MMGT

Purpose

To reserve logical memory address space for specific subsystems.

Note: This directive applies to memory associated with system programs only.
Memory associated with user programs is strictly under program control.

In addition, this directive may be used to obtain a report of memory space previously reserved for
subsystems.

Format

:MMGT[,subsystem-name1, wwwww1, subsystem-name2, wwww2, .. . , subsystem-namen,
wwwwwnl

subsystem-name is a 4-character ASCII name defined for a subsystem at system generation.

wwwww is the number (decimal) of logical words to be reserved for the associated subsystem.

If no parameters are entered, the directive is interpreted as an inquiry request and a list of subsystem
names and the number of reserved words previously set is printed on the console. The list appears in
the fallowing form:

SUBSYSTEM

subsystem-name 1

subsystem-name 2

subsystem-namen

WORDS

WWWWWJ

2-35

Comments

The :MMGT directive is entered just prior to the :PROG or :RUN directive and reserved memory
space is released at program termination. If the subsystem name specified was not defined at system
generation, the system prints:

subsystem-name - UNDEFINED

where subsystem-name is the 4-character subsystem name. Any defined subsystem names is included
in the parameter string are accepted.

If an attempt is made to update or display the subsystem table and no subsystems were defined
when the system was generated, the system prints:

NO SUBSYSTEMS DEFINED

If the cumulative sum of words requested for subsystems exceeds the amount available, the system
prints:

LIM/TERROR

Any requests up to the available space limit are accepted. If more than one subsystem name is in­
cluded in the parameter string, the user may determine which requests have been accepted by enter­
ing the :MMGT directive with no parameters. This causes a list of subsystem names together with
the number of words reserved for each name to be printed on the console.

Note: The subsystem names discussed here must be included as entry points
(ENT) within the associated subsystem routines which are included as
part of the system at generation time.

2-36

Keyboard Mode Only

OFF

Purpose

To abort the currently executing user program or system operation without terminating the job.

Format

:OFF

Comments

:OFF returns the system to keyboard mode.

:OFF can be used to terminate undesired lists, edits, disc-to-disc dumps, program loops, Loader
operations, assemblies, and compilations.

:OFF cancels any pending DD, ADUMP, or PDUMP directives, unless a program is running, in
which case, a pending :ADUMP is executed.

2-37

PAUSE

Purpose

To interrupt the current job, optionally print a comment on the system console, and return to the
system console for operator action.

Format

:PAUSE [character string]

Comments

PAUSE may be entered through the keyboard even when DOS-III is in batch mode. PAUSE suspends
the current job until the operator inputs a GO directive. During this time the operator may mount
magnetic tapes or prepare I/0 devices. (A series of COMMENT directives or a remark in the
PAUSE directive itself can be used to tell the operator what to do during the PAUSE.)

The GO directive returns DOS-III to the job in the previous mode.

2-38

PROGRAM

Purpose

To turn on (i.e., load from the disc and begin executing) a program from the System Area or a
program from the User Area which was generated with the DOS-III Relocating Loader. (Follows
the :SS condition in searching for the program.)

Format

:PROG,name[,P1 ,P2 , ••• P5 }

where name denotes a system program, such as FTN for the DOS-M FORTRAN Compiler,
FTN4 for the RTE/DOS FORTRAN IV Compiler, ASMB for the DOS-M Assembler,
LOADR for the DOS-III Relocating Loader, or ALGOL for the RTE/DOS ALGOL
Compiler. '

A user program is specified via the file name assigned by the DOS-III Relocating
Loader (the name specified in the program's PROGRAM, HPAL, or NAM statement).

P1 through P5 are optional parameters which DOS-III transfers to the program named.
P1 through P5 must be positive integers less than 32767. The program must retrieve
the parameters immediately. This procedure is described under :GO.

Comment

Consult Section V for the parameters required by FTN, FTN4, ASMB, ALGOL, and LOADR.
Additional programs may be added during system generation, if desired.

Note: User programs can be run using :PROG or :RUN. :PROG is useful when
the program needs parameters. DOS-III first searches the user files for
the program, then the system files. :RUN is usef'ul when an execution
time limit is desired (and a Time-base Generator is present).

EXAMPLES:

:PROG,FTN,2,99

:PROG,MYFIL,0,3,84

2-39

PURGE

Purpose

To remove the directory entry associated with a user file. (Follows the :SS condition.)

Format

where file1,file2, . .. (up to 15 file names or 72 characters per directive) designate files in the
User Area. The directory entry for the specified file name is purged (marked for removal)

If no file names are given, all directory entries for temporary files are purged.

Comments

After the directory entries are purged, the remaining User Area files may be repacked for efficiency
(see :RPACK directive). If the end of the User Area moves below a track boundary during the
purge, the Work Area becomes a track larger. As each file's directory entry is purged, DOS-III prints
its name on the system console.

The presence of undefined files in the list has no effect on the purging of named (and existing)
entries. However, if an entry cannot be found, this message is output to the system console:

file UNDEFINED

The fastest way to purge all files on a single disc is to use :IN,* (see "Initialize" in Section 2).

CAUTION: OPERATOR ATTENTION IS DISABLED DURING :PURGE.

2-40

EXAMPLE:

Original contents of user directory: Fl, F2, F3, F4, FLONG, and F5 (at least)

Directive: :PURGE,FLONG,Fl,F2,D3,D7,F3,F4,F5

Output: FLONG

Fl

F2

D3 - - UNDEFINED

D7 - - UNDEFINED

F3

F4

F5

2-41

RENAME

Purpose

To rename a specified user file and, optionally, change its program type. (Follows the :SS
condition.)

Format

: RN AME,oldname,newname {,type]

where oldname is the name of the user file to be renamed

newname specifies the new name for the file

type specifies the new type for the file.

Comments

If a file name on one of the active subchannels is the same as newname, the message

DUPLICATE FILE NAME

is output and the file name is not changed. If the file named oldname cannot be found on any of
the active subchannels, the message

oldname UNDEFINED

is output.

The type parameter must be a decimal number from 3 to 12. File types 3-5 require 11-word
directory entries and types 6-12 require 5-word directory entires. If the file type is incompatible
in this respect, a

PARAMETER ILLEGAL

message results. (File type numbers are described in Appendix A.)

Note: It is the users responsibility to insure that the format and structure of
the file contents are compatible with its new file type.

2-42

REWIND

Purpose

To rewind a magnetic tape.

Format

:RWND[,logical unit]

where logical unit is the logical unit number of the desired magnetic tape (default is 8).

2-43

RPACK

Purpose

To repack the disc, eliminating purged files.

Format

:RP ACK

Comments

When a :PURGE directive is issued, the directory entry for specific or implied files is purged. The
:RP ACK directive is used to search the directory for purged entries. If any are detected, the user
file area is repacked, eliminating those files.

Note: This repacking function is automatically performed at the end of
each job.

EXAMPLE:

:RP ACK

scans the user directory for purged entries and repacks the disc to eliminate files
associated with those entries.

2-44

RUN

Purpose

To run a user or system program. (Follows the :SS condition.)

Format

:RUN,name[,time] [,NJ

where name is a user file containing the desired program

time is an integer specifying the maximum number of minutes the program may run
(default is five minutes). DOS-III ignores time if a Time-base Generator is not present.

N, if present, tells DOS-III to allow the program to continue running even if it makes
EXEC calls with illegal request codes.

Comments

Programs which have been relocated during the current job but not stored (see STORE directive)
permanently in a user file, may be run using this directive.

If a program executes longer than the time limit, the current job is aborted and DOS-III scans to
the next JOB directive.

If N is not present in the RUN directive, the current job will be aborted by any illegal request codes.
The N option is provided so that programs can be written and tested on DOS-III ultimately to exe­
cute with other HP software not having the same request codes.

EXAMPLE:

:RUN,ROUT,15

executes program ROUT up to fifteen minutes, not allowing illegal request codes.

2-45

SPECIFY SOURCE FILE

Purpose

To specify the user source file to be used as input by the Assembler and compilers. (Follows the
:SS condition.)

Format

:JFILE,file

where file is the name of a source file on any active subchannel.

Comments

If logical unit 2 is specified as the input device when the compiler or Assembler is turned on (using
:PROG) and a :JFILE has been defined, then the compiler or Assembler reads the source statements
from the :JFILE.

Only one program can be translated from a file; any statements beyond the end of the source program
will be ignored. The JFILE assignment is only valid for the current job, and can be reassigned by
another JFILE directive.

It is highly recommended that the JFILE directive immediately precede the corresponding PROG
directive.

2-46

STORE

Purpose

To create a user file on the current user disc and assign it a name. The STORE directive can create
relocatable object program files (type-R), loader-generated object program files (type-P), source
statement files (type-S), ASCII data files (type-A), binary data files (type-B), and absolute binary
program files (type-X). (Follows :SS in checking for duplicate file names.)

Format

The format varies according to what type file is being created. See Comments below for details:

TYPE-R

TYPE-P

TYPE-S

TYPE-A

TYPE-B

TYPE-X

:STORE,R,file[,logical unit]

:STORE,P[,file1 ,file2 •••]

:STORE,S,file,logical unit [,CJ

:STORE,A,file,sectors

:STORE,B,file,sectors

:STORE,X,file,logical unit

Note: Control @should not be used in file names.

Comments

TYPE-R FILES. The directive format is

:STORE,R,file[,logical unit]

where file is a name consisting of five (or fewer) characters and must not duplicate another
name already present in the user files.

2-47

A user file is created under this name, and relocatable binary programs are read into it from the
logical unit specified or from the Job Binary Area of the disc if none is specified. The Job Binary
Area remains as it was before the STORE,R directive.

If DOS-III comes to an end-of-tape, it asks:

DONE?

If there are more tapes, the operator places the next tape in the reader and replies NO; otherwise,
he answers YES.

EXAMPLES:

:STORE,R,RINE

(Stores all of the relocatable programs from the Job Binary Area into the file RINE
created for that purpose.)

:STORE,R,JUGG,5

(Stores relocatable programs from logical unit 5, the standard input device, into the
file JUGG.)

TYPE-P FILES. The directive format is

:STORE,P[,name1 ,name2 ,. •••]

where name1 ,name2 ••• are programs that the DOS-III Relocating Loader had relocated into
executable format during the current job. A program is stored in a file of the same
name. Up to 14 programs per directive are allowed. If none are specified, all programs
loaded during the current job are stored. DOS-III finds these temporary programs in
the user file and converts them to permanent user files by removing their "temporary"
flags (see the description of the LIST,U directive).

Programs loaded during the current job but not stored as permanent files (as shown above) may be
executed normally (RUN or PROG directive) and appear in the user file directory. At the end of a
job, however, they are purged from the directory unless they have been converted to user files by
a STORE,P directive.

2-48

EXAMPLES:

:STORE,P

(Changes all programs loaded during the current job using the Relocating Loader into
permanent user files.)

:STORE,P,ARITH,MATH, TRIG,ALGEB

(Searches for the programs listed and makes them permanent user files.)

TYPE-S FILES. The directive format is

:STORE,S,file,logical unit [,CJ

where file is the name of the user file to be filled with source statements from the logical unit
specified. File is a name of five or fewer characters, and must not duplicate a name
already present in the user files. The source statement input must be terminated by a
record containing a double colon (: :) if the C option is omitted; or a triple colon (: : :) if
the C option is included. If the termination record is omitted, DOS-III stores the succeeding
data on the disc as if it were source statements.

If DOS-III comes to an end-of-tape before finding the termination record (:: or : : :), it outputs

DONE?

on the system console.

If there are more tapes, the operator replies NO; otherwise, he answers YES.

When DOS-III completes the STORE,S it outputs

nnnnLINES

where nnnn is the number of statements stored.

If the C parameter is included in the STORE directive, statements with colons in columns 1 and/or
2 are interpreted as data and transferred to the designated source file. In this case, input is termi­
nated with a triple colon (:::). The logical unit specified in the STORE, S directive (when the C
parameter is used) must not be the current batch device. If it is, DOS-III outputs the message

ILLEGALLUN

2-49

If the user is in keyboard mode, DOS-III outputs an@ and waits for a new directive. If the user is
in batch mode, a batch abort occurs.

If the C parameter is used and the logical unit specified is the system console, then all input received
prior to : : : is transferred to the designated source file, except OFF and ABORT directives. If
either of the two are encountered during keyboard entry, they are interpreted as directives and
executed. (:OFF returns control to keyboard mode without terminating the job. :ABORT aborts
the current job if the directive was entered from the keyboard, or DOS-III performs a batch abort
if the STORE, S directive was entered from the batch device.) Files containing :OFF and :ABORT
can be created by storing from a device other than the system console or the current batch device.

EXAMPLE:

:STORE,S,SOURC,5

(Reads source statements from the standard input device and stores them in a new file
SOURC.)

TYPE-A AND TYPE-B FILES. The directive format is

:STORE,type,file,sectors

where type is either A (for ASCII character data) or B (for binary data), and file is the name
assigned to a file containing the number of sectors requested. These requests are made
prior to executing a program to reserve a file area; no data is involved.

The program must store and retrieve data from the file through a call to EXEC. It is the programmer's
responsibility to store the right kind of data in the file. The EXEC call must specify the file name
and the relative sector within the file. DOS-III checks only that the file name exists and that it
contains the sector specified.

EXAMPLE:

:STORE,A,ASCII,20

(Creates a file name ASCII, 20 sectors in length. A sector equals 128 sixteen-bit
words.)

2-50

TYPE-X FILES. The directive format is

:STORE,X,file,logical unit

where file is the name of the user file to be filled with absolute binary programs from the device
specified by logical unit.

When an end-of-tape is encountered, DOS-III outputs

DONE?

To continue loading tapes, place the next tape in the reader and type NO; otherwise, type YES.

2-51

Optional Directive

SYSTEM SEARCH

Purpose

To specify a list of disc subchannels which may be searched for file names. This is the :SS condition
which applies to all EXEC calls and directives that require a file search. (No check is made for
existing duplicate file names during searches; the first file found is used.)

Format

:SS

:SS,99

Comments

All active subchannels are searched, starting with the current user subchannel,
then continuing from the highest to the lowest number.

Where n1 ,n2 ••• are subchannel numbers. The current user subchannel is
searched first, then the subchannels specified, starting \'Vi.th the lowest
number.

Only the current user subchannel is searched. This is the default condition.
Every job starts out in this condition.

The SS directive can only be used if it was specifically allowed during system generation. (See
"Generating and Loading DOS-III," Part 3.) Otherwise, any SS directive will cause the following
message:

BAD CONTROL STATE

If a file search results in the file being found, the current user subchannel is changed to the sub­
channel containing the file. If the file was not found, the current user subchannel is restored to
its previous assignment

The LIST,U, file directive is an exception: this directive does not stop after it finds the file; it con­
tinues to look for duplicate entries. When the LIST search is complete, the original user subchannel
is al ways restored.

2-52

However, if a search is interrupted before completion, the current user disc may be on any sub­
channel. (This should be checked with a : UD directive.)

More than one :SS can occur during a job. The job starts in :SS,99 condition until a different SS
directive is issued. Each SS directive remains in effect until another is issued. SS directives do not
apply to file searches initiated by the Relocating Loader or to disc dumps initiated by the DD
directive.

Whenever the user subchannel assignment is changed (except by a running program through the
appropriate EXEC call), the system outputs a message:

SUBCHAN=n

2-53

TOP-OF-FORM

Purpose

To issue a top-of-form command to a list device.

Format

:TOF[,logical unit]

where logical unit is the logical unit number of the desired list device. If logical unit is omitted,
then logical unit 6 receives the command.

2-54

TRACKS

Purpose

To output information about the next available track on the current user disc.

Format

:TRACKS

Comments

The decimal number corresponding to the first track beyond the end of the current user area (and
the number of faulty tracks encountered, if any) is output to the system console.

Faulty tracks are replaced by spares when parity errors occur on read or write.

EXAMPLES:

The following is an example in which no faulty tracks are reported.

(INPUT) :TRACKS

(OUTPUT) NEXT A VAIL TRACK= 0010

@ (End of directive processing)

In this example, the system reports that 2 tracks have been replaced by spares.

(INPUT) :TRACKS

(OUTPUT) NEXT AVAIL TRACK= 0012

BAD=2

@

2-55

(End of directive processing)

In this example, the system reports that there are no more tracks available in the user area.

(INPUT) :TRACKS

(OUTPUT) NEXT A VAIL TRACK= NONE

@ (End of directive processing)

2-56

TYPE

Purpose

To return from batch mode to keyboard mode.

Format

:TYPE

Comments

Control is returned to the system console. :TYPE may be entered through the batch device or the
keyboard device; when it is entered from the keyboard, DOS-III waits until the currently executing
program is completed or is aborted before returning to keyboard mode. If :TYPE is entered while
already in keyboard mode, the directive is ignored.

2-57

UP

Purpose

To declare an 1/0 device ready for use.

Format

:UP,n

where n is the equipment table entry number corresponding to the device.

Comments

The UP directive (followed by a :GO) is usually used in response to one of the following messages
from DOS-III:

I!O ERR ET EQT #n

I/0 ERR NR EQT #n

I!O ERR PE EQT #n

where ET indicates end of tape,

NR indicates device not ready,

PE indicates parity error, and

n is the equipment table entry number.

If the incorrect n is entered, DOS-III outputs a list of all the down devices.

2-58

USER DISC CHANGE

Purpose

To change the subchannel assignment for the user disc.

Format

: UD[,[label] [,n]]

where label is a six-character disc label(* for an unlabeled disc)

n is the new subchannel.

Comments

Discs are labeled by the INITIALIZE directive.

Each form of the UD directive has a different purpose.

EXAMPLES:

:UD
(without label
or subchannel)

:UD,,n
(no label)

:UD, label, n

Interrogates the current user disc subchannel and outputs its
label on the system console:

SUBCHAN=n

LBL =label (or UNLBL)

If n is labeled, DOS-III outputs

LBL =label (or UNLBL)

No assignment is made.

If n is labeled with the specified label, DOS-III assigns n as the
user disc. If n is unlabeled or has a different label, DOS-III
outputs

LBL =label (or UNLBL)

Operator can then reissue : UD,label,n with the correct label.

2-59

:UD,label
(no subchannel)

:UD, *,n

:UD,*

DOS-III searches for the label, starting with the highest number
subchannel (determined at system generation). If label is found,
DOS-III makes it the user disc and outputs

SUBCHAN=n

If label is not found, DOS-III outputs

DISC NOT ON SYS

If n is unlabeled, DOS-III assigns n as the user disc.

If n is labeled, DOS-III makes no assignment and outputs

LBL =label

Assigns the highest number unlabeled disc as the user disc
and outputs

SUBCHAN=n

If there are no unlabeled discs, DOS-III outputs

DISC NOT ON SYS

If the UD directive specifies a subchannel with an incorrect system proprietary code (see "Disc
Labels" in Appendix A), DOS-III still makes the assignment, and outputs

TSB DISC or??? DISC

If the UD directive specifies a subchannel whose system generation code does not match that of the
current system disc, DOS-III still makes the assignment but outputs

DISC GEN CODE nnnn NOT SYS GEN CODE mmmm ERR POSS

The changes made by :UD are only temporary; the user disc is reset at the end of each job.

Notes: 1. Before executing a :DD or :DD,X to a TSB or??? DISC, the disc should
be initialized with :IN,*; otherwise, bad tracks may be reported erroneously.

2. If a disc pack is changed on a DOS-III system, the subchannel assigned to
that pack must be explicitly reassigned using a : UD directive or EXEC call.

2-60

SECTION Ill

DOS-Ill EXEC Calls

DOS-III EXEC calls are the line of communication between an executing program and DOS-III.
An EXEC call is a block of words, consisting of an executable instruction and a list of parameters
defining the request. The execution of the instruction transfers control to DOS-III. DOS-III then
determines the type of request (from the parameter list) and, if it is legally specified, initiates
processing of the request.

In FORTRAN, EXEC calls are coded as CALL statements. In ALGOL, procedure calls are used.
In Assembly Language, EXEC calls are coded as a JSB EXEC, followed by a series of parameter
definitions. For any particular call, the object code generated for the FORTRAN CALL Statement
and the ALGOL procedure call is equivalent to the corresponding Assembly Language object code.

This section describes the basic formats of FORTRAN, ALGOL and Assembly Language EXEC
calls; presents each EXEC call in detail; and concludes with a discussion of how parameters are
passed to and from a program.

The EXEC calls detailed in this section are presented alphabetically, according to their function.
The Request Code (RCODE) value they have in the Assembly-language calling sequence appears
at the top of each page.

Note: DOS-III may include two user-created EXEC modules, loaded along with
the DOS-III system EXEC modules during system generation. The pur­
pose of the EXEC modules (called $EX36 and $EX37) and the number
of parameters needed in the EXEC call are defined by the user. User EXEC
module calling sequences are defined in Section XII, "User-written EXEC
Modules."

3-1

ASSEMBLY LANGUAGE EXEC CALLS

The following is a general model of an EXEC call in Assembly Language:

EXT EXEC

JSBEXEC

DEF *+n+l

return point

p - - -n

(Used to link program to DOS-III)

(Transfer control to DOS-III)

(Defines point of return from DOS-III, n is number of
parameters; may not be an indirect address; must be the
location immediately following the last parameter
address)

(Define addresses of parameters which may occur any­
where in program; may be multi-level indirect. Seven is
the maximum number of allowable parameters for any
EXEC call.)

(Continue execution of program)

(Actual parameter values)

3-2

ALGOL EXEC CALLS

In ALGOL, certain conventions must be followed in making EXEC calls. First, since EXEC is
external to the program it must be declared a CODE procedure. Second, parameters that are
going to be changed must not be declared VALUE. Third, when arrays are passed as parameters,
the first element of the array (not just the array name) must be passed as a type INTEGER and
not by VALUE. Fourth, since ALGOL requires that the format of each procedure call be defined,
a program must declare a dummy external procedure for each EXEC call requiring a different
number of parameters. (These dummy procedures must be compiled as separate procedures to
provide proper linkage in the Loader.)

EXAMPLE:

The program below (DXFER) reads one sector from the work area and writes the
information into a different location in the work area. DXFER calls EXEC through
the CODE procedure EXECX (compiled externally). EXECX is compiled in the program
DSKIO, although that program name is irrelevant to the linkage between DXFER and
EXECX.

MAIN PROGRAM

HPAL,B,L, "DXFER"
BEGIN

INTEGER ARRAY BUFFER[1:128];
BOOLEAN READX;
INTEGER TRACK,SECTOR;
FORMAT Fl ("SOURCE TRACK,SECTOR ?"),

F2("DESTINATION TRACK,SECTOR ?");
PROCEDURE EXECX(RD,TRK,SCTR,BFR);

VALUE RD,TRK,SCTR;
BOOLEAN RD;
INTEGER TRK,SCTR,BFR;
CODE;

WRITE(1,F1);
READ(1, *, TRACK,SECTOR);
READX.,,....TRUE;
EXECX(READX, TRACK,SECTOR,BUFFR[1]);
WRITE(1,F2);
READ(1, *,TRACK,SECTOR);
READX.,,....FALSE:
EXECX(READX, TRACK,SECTOR,BUFFR[1]);

END$

3-3

PROCEDURE

HPAL,P,B,L, "DSKIO"
PROCEDURE EXECX(RD, TRK,SCTR,BFR);

VALUE RD, TRK,SCTR;
BOOLEAN RD;
INTEGER TRK,SCTR,BFR;

BEGIN
PROCEDURE EXEC(IO,LU,BFR,BFSZ, TRK,SCTR);

INTEGER IO,LU,BFR,BFSZ, TRK,SCTR;
CODE;

INTEGER REQCD;
IF RD THEN REQCD+-1 ELSE REQCD+-2;
EXEC(REQCD,2,BFR,128, TRK,SCTR);

END;

3-4

FORTRAN EXEC CALLS

In FORTRAN, the EXEC call consists of a CALL Statement and a series of assignment statements
defining the variable parameters of the call:

where P1 through Pn are either integer values or integer variables defined elsewhere in the program.

EXAMPLE

CALL EXEC (7)
or

IRCDE = 7
CALL EXEC (IRCDE)

) Equivalent calling sequences

Some EXEC call functions are generated automatically by the FORTRAN compiler or special sub­
routines. (Refer to "FORTRAN," in Section V and the specific EXEC calls in this section.)

3-5

RCODE =-19

BASE PAGE STORE

Purpose

To store values into base page memory locations.

Assembly Language

EXT EXEC

LDA NUMB
LDB ADDR
JSB EXEC
DEF *+2
DEF RCODE
return point

RCODE DEC -19
NUMB DEC n
ADDR DEF LOC

FORTRAN

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(Continue execution)

(Request code= -19)
(n is value to be stored)
(LOC is a base page location)

This feature must not be invoked by a FORTRAN program.

Comments

Base Page Store stores values into base page locations normally protected by memory protect.
Prior to. using the calling sequence specified above, the user loads the value to be stored into the
A register and the absolute address of the base page location in the B register. Base Page Store then
performs a store indirect through the B register.

CAUTION: CARE MUST BE TAKEN NOT TO MODIFY SYSTEM-ESSENTIAL
BASE PAGE LOCATIONS.

3-6

RCODE=32

FILE CREATE

Purpose

To allow the user to create a user disc file under program control.

CA UT/ON: Because of the relationship between disc space used for the work area
and disc space used for creating new files, care must be taken to create
all files before issuing requests that access the disc work area (work
area limits requests, disc allocation requests, work area 1/0 requests).

Assembly Language

EXT EXEC

JSB EXEC
DEF *+6
DEF RCODE
DEF RSTAT
DEF FNAME
DEF TYPE
DEF DSKLN
return point

RCODE DEC 32
RSTAT BSS 1

(Transfer control to DOS-III)
(Point of return from DOS-Ill)
(Request code)
(Return status)
(File name)
(Program type)
(File length)
(Continue execution)

(Request code= 32)
(Return status from system:

3-7

-4 illegal parameter
-3 invalid file name
-2 invalid file type
-1 insufficient file space

0 normal termination
>O duplicate file name -content is

address of old directory entry)

FNAME ASC
TYPE OCT

DSKLN DEC

FORTRAN

3,xxxxx
nnnnnn

s

DIMENSION INAM(3)
INAM(l) = xxxxxB
INAM(2) = xxxxxB
INAM(3) = xxxxxB
!TYPE = n
IDSK = s
IRCDE = 32

RCODE=32

(5-character file name)
(Program type:

bit 7 = O; permanent
= 1; temporary

bits 5-0 = 6-14 8 ; program type as defined
in Disc Directory "Entry Type,"
Appendix A)

(Length in sectors)

(File name)
(First two characters)
(Next two characters)
(Last character and blank)
(n is numeric program type)
(s is disc length in sectors)
(Request code)

CALL EXEC(IRCDE,IRST,INAM,ITYPE,IDSK)

3-8

RCODE = 18

FILE NAME SEARCH

Purpose

To check whether a specific file name exists in the directory of user or system files. (Follows the
:SS condition.)

Assembly Language

EXT EXEC

JSB EXEC
DEF *+4 (or 5)
DEF RCODE
DEF FNAME
DEF NSECT
DEF /PRAM
return point

RCODE DEC 18
FNAME ASC 3,xxxxx
NSECT NOP

!PRAM DEC n

(Transfer control to DOS-III)
(Point of return from DOS-Ill)
(Request code)
(File name)
(Number of sectors)
(Optional parameter)
(Continue execution)

(Request code= 18)
(xxxxx is the file name)
(Number of sectors returned here; 0 if not
found)
n = 0 user area with wait
n = 1 user area without wait
n = 2 system area with wait
n = 3 system area without wait

FORTRAN

DIMENSION NAME (3)
!PRAM = 2
IRCDE = 18
NAME (1) = xxxxxB
NAME (2) = xxxxxB
NAME (3) = xxxxxB

RCODE = 18

(File name)
(System search, with wait)
(Request code)
(First two characters)
(Next two characters)
(Last character and blank)

CALL EXEC (IRCDE, NAME, !SECT, !PRAM)

Comments

File searches can be performed on either the system or user area, with or without wait, according
to the value of IPRAM. If IPRAM is omitted, the search is performed on the user area with wait.
If the search is requested with wait, the A register contains the track/sector address of the file, and
the B register contains the memory address of the track/sector address, upon return to the user
program.

Before executing a File Name Search without wait, NSECT should be initialized to some value
other than zero (for example, -1) to distinguish between "file not found" and "operation still in
process" conditions on completion of the search. EXEC calls issued while the File Name Search is
still in progress are queued by DOS-III and the system goes into the wait loop until the search is
completed.

3-10

RCODE=33

FILE PURGE

Purpose

To allow the user to purge a user disc file directory entry or to purge all temporary file entries.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+3 (or 4)
DEF RCODE
DEF RSTAT
DEF FNAME
return point

RCODE DEC 33
RSTAT BSS 1

FNAME ASC 3,xxxxx

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(Return status)
(Optional file name)
(Continue execution)

(Request code = 33)
(Return status from system:

-4 illegal parameter
-3 invalid file name
-1 undefined file name

0 normal termination

(5-character file name)

3-11

FORTRAN

DIMENSION INAME(3)
INAME(l) xxxxxB
INAME(2) = xxxxxB
INAME(3) = xxxxxB
IRCDE = 33

RCODE=33

(File name)
(First two characters)
(Next two characters)
(Last character and blank)
(Request code= 33)

CALL EXEC(IRCDE,IRST,INAME)

Comments

If the file name parameter is omitted, all temporary file entries are deleted from the directory.

3-12

RCODE = 14, RCODE = 15

FILE READ/WRITE

Purpose

To transfer information to or from a file on the user disc; the file must be referenced by name.
(The : SS condition is followed.)

Assembly Language

EXT EXEC

JSB EXEC
DEF *+7 (or 8)
DEF RCODE
DEF CONWD
DEF BUFFR
DEF BUFFL
DEF FNAME
DEF RSECT
DEF !PRAM

return point

RCODE DEC 14or15
CONWD OCT conwd
BUFFR BSS n
BUFFL DEC n or-2n
FNAME ASC 3,xxxxx
RSECT DEC m
IP RAM NOP

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(Control information)
(Buffer location)
(Buffer length)
(File name)
(Relative sector within file)
(Area which could have been legally transferred
if an overflow occurred-optional parameter)
(Continue execution)

(Request code: 14 =read, 15 =write)
(See Comments, 1/0 READ/WRITE EXEC call)
(Buffer of n words)
(Same n; words(+) or characters(-))
(User file name= xxxxx)
(Relative sector number)
(Optional parameter; see Comments)

3-13

RCODE = 14; RCODE = 15

FORTRAN

DIMENSION NAME (3), IBUF(lO)
NAME(l) = xxxxxB
NAME(2) = xxxxxB
NAME(3) = xxxxxB
ICRDE = 14 (or 15)
ICON = conwd
IRSCT = 0

(First two characters of file name)
(Second two characters)
(Last character and blank)
(Request code)
(See comments)
(Relative sector number)

CALL EXEC (IRCDE, ICON, IBUF, 10, NAME, IRSCT, !PRAM)

or
CALL EXEC (IRCDE, ICON, IBUF, 10, NAME, IRSCT)

Comments

See the Comments under I/0 READ/WRITE EXEC call (RCODE = 1or2) for a description of the
conwd fields needed in the above calling sequences.

To read or write on the mth sector of a file, set RSECT = m-1. To determine the size of a file,
use the FILE NAME SEARCH EXEC call (RCODE = 18).

Data files to be written (or read) should be created with a STORE directive before executing the
EXEC call.

Any type of file may be read, but Qnly ASCII or binary data files may be written.

If the DOS-III installation is likely to have more than one user disc, the program should use the
USER DISC CHANGE EXEC call (RCODE = 23) without a subchannel specified to check whether
the correct user disc is currently assigned. Alternatively, the user can use an SS directive to set
up a system search condition for referencing files on many subchannels.

This call provides an optional parameter, IP RAM, to provide the user with information concerning
a file read/write overflow (where the buffer length exceeds the sector contents). If IPRAM is
omitted, an overflow causes an IT error. If IPRAM is included and an overflow occurs, control is
returned to the user program with IPRAM set equal to the number of words (+) or characters (-)
(as defined by BUFFL) that could legally have been transferred. If an overflow occurs, no disc
transfer takes place, whether IPRAM is included or not. If IPRAM is included and no overflow
occurs, the value of the parameter is set to zero.

3-14

RCODE=34

FILE RENAME

Purpose

To allow the user to change a file name (and optionally, its type) under program control.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+5 (or 6)
DEF RCODE
DEF RSTAT
DEF ON AME
DEF NNAME
DEF NTYPE
return point

RCODE DEC 34
RSTAT BSS 1

ONAME ASC 3,xxxxx
NNAME ASC 3,xxxxx
NTYPE OCT nnnnnn

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(Return status)
(Old file name)
(New file name)
(Optional new file type)
(Continue execution)

(Request code= 34)
(Return status from system:

-4 illegal parameter
-3 invalid old or new file name
-2 invalid old or new file type
-1 undefined old or new file name

0 normal termination
>O duplicate new file name; content

is address of duplicate directory
entry)

(5-character file name to be changed)
(5-character new file name)
(New program type:

3-15

bit 7 O; permanent
1; temporary

bits 5-0 6-14 8 ; program type as defined
in Disc Directory "Entry Type,"
Appendix A)

RCODE=34

FORTRAN

DIMENSION INAM0(3), INAMN(3)
IN AMO(l) xxxxxB
INAM0(2) xxxxxB
IN AMO(3) xxxxxB
INAMN(l) xxxxxB
INAMN(2) xxxxxB
INAMN(3) xxxxxB
IRCDE=34
!TYPE= n

(Old file name, new file name)
(First two characters)
(Next two characters)
(Last character and blank)
(First two characters)
(Next two characters)
(Last character and blank)
(Request code= 34)
(File type)

CALL EXEC(IRCDE,IRST,INAMO,INAMN,ITYPE)

Comments

The specified old name may match the new name - no error message is returned, the new program
type (if specified) will be changed.

3-16

RCODE=3

110 CONTROL

Purpose

To carry out various 1/0 control operations, such as backspace, write end-of-file, and rewind.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+3 (or 4, or 5)
DEF RCODE
DEF CONWD
DEF PRAMl
DEF PRAM2
return point

RCODE DEC 3
CONWD OCT conwd
PRAMl DEC n
PRAM2 BSS m

FORTRAN

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(Control information)
(First optional parameter)
(Second optional parameter)
(continue execution)

(Request code= 3)
(See Comments)
(OjJtional value parameter; see "Comments")
(Optional buffer address)

Use the specific FORTRAN auxiliary 1/0 statements (see Comments) or an EXEC calling sequence.

DIMENSION IPRM2(10)
IRCDE=3
ICNWD = conwd
IPRAM=n
CALL EXEC (IRCDE,ICNWD,IPRAM)

or
CALL EXEC (IRCDE,ICNWD)

or

(Request code)
(See Comments)
(Optional; see Comments)

CALL EXEC (IRCDE,ICNWD,IPRAM,IPRM2)

3-17

RCODE=3

Comments

CONWD

The control word value (conwd) has three fields:

0 0 w FUNCTION CODE (see below) LOGICAL UNIT NUMBER

BITS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WAIT FIELD (W)

If W = 1, DOS-III returns to the calling program after starting the control request.

If W = 0, DOS-III waits until the control request is complete before returning.

FUNCTION CODE FIELD

Note: The following are standard function codes; they may be redefined programatically.

Function Code (Octal) Action

000
001
002
003
004
005
006
007
010
011
012
013
014

Clear the device
Write end-of-file (magnetic tape)
Backspace one record (magnetic tape)
Space forward one record (magnetic tape)
Rewind (magnetic tape)
Rewind standby (magnetic tape)
Dynamic status (magnetic tape)
Set end-of-paper tape
Generate paper tape leader
List output line spacing (PARMl or IPRAM required)
Write file gap (magnetic tape)
Space forward one file (magnetic tape)
Backspace one file (magnetic tape)

For function code values 000 through 077 8 , no DMA is assigned. For function code values 100
through 1778 , DMA is assigned if required by the I/0 driver.

LOGICAL UNIT FIELD

This field specifies the logical unit number of the device which is to receive the control request.

OPTIONAL PARAMETERS

Specification of Parameter1 (PRAMl or IPRAM) or Parameter2 (PRAM2 or IPRM2) depends on
the contents of the function code field in the control word. Function code 118 requires Parameter1.
This parameter designates the number of lines to be spaced on the specified logical unit. A negative
value specifies a page eject on a line printer or the number of lines to be spaced on the System Con­
sole. For details on line printer formatting, see "Line Printer Formatting," in Section IV. When
Parameter1 is specified, its value is passed to EQTlO prior to entering the driver. If Parameter2 is
specified, Parameter1 must be specified. The value of Parameter2 is passed to the driver via EQTll.

3-18

..

RCODE = 3

Compiler Considerations

Within FORTRAN and ALGOL programs, various control operations for magnetic tape may be
performed by the following auxiliary I/0 statements:

BACKSPACE

END FILE

REWIND

Refer to the appropriate compiler manual for a detailed description of these statements .

3-19

RCODE = 1; RCODE = 2

110 READ/WRITE

Purpose

To transfer information to or from an external 1/0 device or the work area of the disc. (DOS-III
handles track switching automatically.)

Assembly Language

EXT EXEC

JSB EXEC (Transfer control to DOS-III)
DEF *+5 (or 7) (Point of return from DOS-III; 7 is for disc request)
DEF RCODE (Request code)
DEF CONWD (Control information)
DEF BUFFR. (Buffer location)
DEF BUFFL (Buffer length)
DEF DTRAK (Track number - disc transfer only)
DEF DSECT (Sector number - disc transfer only)
return point (Continue execution)

RCODE DEC 1 (or 2) (Request code: 1 = read, 2 = write)
CONWD OCT conwd (conwd is described in comments)
BUFFR BSS n (Buffer of n words.)
BUFFL DEC n (or -2n) (Same n; words(+) or characters(-))
DTRAK DEC f (Work area track number, decimal)
DSECT DEC g (Work area sector number, decimal)

3-20

RCODE = 1; RCODE = 2

FORTRAN

DIMENSION IBUF (100)
IRCDE = 1 (or 2)
ICON= conwd

(Define buffer)
(Request code)
(see Comments)

IBUFL = 100 (Buffer length in words)
(Disc track number)
(Disc sector number)

ITRAK= 150
ISECT=O

CALL EXEC (IRCDE, ICON, IBUF, IBUFL, ITRAK, !SECT)
CALL EXEC (IRCDE, ICON, IBUF, IBUFL)

for disc transfers
for non-disc transfers.

Comments

CONWD

The conwd, required in the calling sequence, contains the following fields:

BITS

FIELD

w

J

A

K

0

15

0 w J A K v M LOGICAL UNIT#

14 13 12 11 10 9 8 7 6 5I4l3l2l1I 0
..

I

FUNCTION

If 1, tells DOS-III to return to the calling program after starting the I/O transfer.
If W = 0, DOS-III waits until the transfer is complete before returning.

If 1, and logical unit number is 2 or 3 (disc), a backward track increment will be
performed (for example, JBIN read/write). (This field is applicable only to
RCODE = 1 or RCODE = 2.)

When transferring variable length· binary records (M = V = 1), A= 1 indicates
absolute binary format.

1) When used with console keyboard input, if K=O "no printing" is specified.
If K=l printing the input as received is specified.

2) When used with disc write requests, if K=O execute cyclic check after disc
write. If K=l eliminate cyclic check after disc write.

V 1) When reading variable length records from punched tape devices in binary
format (M = 1), if V = 0 the record length is determined by buffer length.
If V = 1, the record length is determined by the word count in the first
non-zero character read in.

2) When outputting ASCII records to a list device (M = 0), if V = 0 the first
character in the buffer is interpreted as a carriage control character (see
Section IV). If V = 1, single spacing occurs, and the entire buffer (including
the first character is output to the list device.

M Determines the mode of data transfer. If M = 0, transfer is in ASCII character
format, and if M = 1, binary format.

'
3-21

RCODE = 1; RCODE = 2

"Waiting and No Waiting"

If the program requests the "waiting" option in the conwd (W = 0), DOS-III will return the trans­
mission log in the B register upon completion. (The transmission log is a positive number, repre­
senting the number of words or characters transmitted, depending upon which was originally
requested.)

If the program requests the "no waiting" option in the conwd (W = 1), it can check for the com­
pletion of the I/O operation with the I/0 STATUS EXEC call (RCODE = 13). When the operation
is complete (STATS;;;::: 0), the transmission log can be retrieved from the TLOG parameter.

Notes: When using "no waiting" I/0 and loading program segments:

1. Under : RUN, DOS-III waits for all I/O to complete before loading the
segment.

2. Under :PROG, DOS-III does not wait.

If a read or write is issued to a disc address that does not lie in the Work Area, the message IT nnnnn
is output and the program is terminated.

Compiler Considerations

Within FORTRAN and ALGOL programs, I/0 transfers to standard devices are programmed by
the READ and WRITE statements.

I/0 transfers to the Work Area and the disc may be done through the BINRY library routine. The
user must specify: an array to be used as a buffer, the length of the buffer in words (equal to the
number of elements in an integer array, double that for a real array), the disc logical unit number,
track number, sector number, and offset in words within the sector. (If the offset equals 0, the
transfer begins on the sector boundary. If the offset equals N, then N words of the sector are
skipped before starting the transfer.) BINRY has two entry points, BREAD and BWRIT, for read
and write operations respectively. An example below gives the calling procedure.

DIMENSION IBUF(10), BUF(20)
LUN=2
ITRK = 120
!SECT= 36
!OFF= 0
CALL BREAD (BUF, 40, LUN, ITRK, !SECT, !OFF)

or
CALL BWRIT (IBUF, 10, LUN, ITRK, !SECT, !OFF)

3-22

RCODE = 13

110 STATUS

Purpose

To request the status of a particular I/0 device, and the amount transmitted in the last operation.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+4 (or 5)
DEF RCODE
DEF LUN
DEF STATS
DEF TLOG
return point .

RCODE DEC 13
LUN DEC n
STATS NOP
TLOG NOP

FORTRAN

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(Logical unit)
(Status returned)
(Transmission log returned, optional)
(Continue execution)

(Request code= 13)
(Logical unit number)
(Status returned here)
(Transmission log returned here)

IRCDE = 13 (Request code)
LUN = n (n is decimal logical unit number)
CALL EXEC (IRCDE, LUN, /STAT, ITLOG)

Comments

The status returned in the A register and in ST ATS is the hardware status of the device specified by
the logical unit number. The transmission log in the B register and in TLOG contains the amount of
information which was last transferred (a positive number of words or characters, depending on
which was requested by the call initiating that transfer).

3-23

Purpose

RCODE=38

MEMORY MANAGEMENT
(BUFFER ALLOCATION)

To allocate buffer space within an area reserved under a block name identifier (see "Memory
Management (Initialize)") or from unassigned available memory.

Assembly Language

RCODE
RSTAT

LENG
SADR
ID
BID

Comments

EXT EXEC

JSB EXEC
DEF *+6 (or 7)
DEF RCODE
DEF RSTAT
DEF LENG
DEF SADR
DEF ID
DEF BID
return point

DEC 38
BSS 1

DEC n
BSS 1
BSS 1
ASC 2,x~xx

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(Return status)
(Desired buffer length)
(Buffer starting address is returned here)
(Buffer identifier is returned here)
(Optional block name identifier)
(Continue execution)

(Request code= 38)
(Return status from system:

-4 illegal parameter
-3 BID not present
-1 no memory available

0 normal return
>O requested amount not available;

contents is actual number of
words available)

(Buffer length in words)
(Actual starting address from system)
(Buffer identifier from system 1 .;;;;; ID.;;;;; 1023)
(4-character unique memory management block
name identifier)

If a block name identifier is specified, the buffer will be allocated space within the area reserved
for that identifier. If the block name identifier is omitted, space is allocated from unassigned
available memory.

3-24

RCODE = 41

MEMORY MANAGEMENT
(BUFFER RELEASE)

Purpose

To release reserved buffer space.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+4
DEF RCODE
DEF RSTAT
DEF ID
return point

RCODE DEC 41
RSTAT BSS 1

ID DEC n

Comments

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(Return status)
(buffer identifier)
(Continue execution)

(Request code= 41)
(Return status from system:

-4 illegal parameter
-1 illegal ID

0 normal return
(Buffer identifier 1 ~ID~ 1023)

This request releases space allocated to buffers. If the specified buffer resides within the area
reserved under a block name identifier, the logical address space remains reserved. Otherwise,
the released space is returned to the system.

3-25

RCODE = 35

MEMORY MANAGEMENT
(INITIALIZE)

Purpose

To reserve a block of memory under a block name identifier specified by the user.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+6 (or 7)
DEF RCODE
DEF RSTAT
DEF LENG
DEF SADR
DEF BID
DEF LADR
return point

RCODE DEC 35
RSTAT BSS 1

LENG DEC n
SADR BSS 1
BID ASC 2,xxxx

LADR OCT n

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(Return status)
(Desired block length)
(Block starting address is returned here)
(Block name identifier)
(Optional starting address parameter)
(Continue execution)

(Request code= 35)
(Return status from system:

-4 illegal parameter
-2 another block name identifier

assigned to area specified by LADR
-1 no memory available

0 normal termination
>O space requested not available;

content is number of words
available)

(Block length in words)
(Actual starting address of block-from system)
(4-character memory management block name
identifier)
(Requested starting address-0 =don't care)

Note: A non-zero LADR value must be an
address between ending program address
and last word of available memory.

3-26

RCODE = 35

Comments

This request reserves a block of memory under the block name identifier (BID) specified by the
user. Subsequent user requests for allocation of buffer space within this area may be made. If the
memory management initialize request (RCODE=35) is not included in a user program prior to
buffer allocation requests (RCODE=38) for buffers within the specified BID, an error return con­
dition results. If LADR is specified and is non-zero, the value must be an address between the end
of program address and the last word of available memory.

3-27

Purpose

RCODE = 36

MEMORY MANAGEMENT
(STATUS REQUEST)

To determine the number of words reserved under a block name identifier or the number of
unallocated words remaining.

Assembly Language

EXT EXEC

JSB EXEC
DEF (+3 (or 4)
DEF RCODE
DEF LENG
DEF BID
return point

RCODE DEC 36
LENG BSS 1

BID ASC 2,xxxx

Comments

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(Word count from system)
(Optional block name identifier)
(Continue execution)

(Request code= 36)
(Number of words allocated to BID or number of
available words if BID is not present. If BID
parameter is specified but not found, a -3 value
is returned)
(Unique memory management block name identi­
fier)

When the BID parameter is specified, this request returns the number of words reserved under a
user-specified block name identifier (BID). If the BID parameter is specified but not found, a -3
value is returned. If the BID parameter is not specified, the request returns the number of unalloc­
ated words remaining in the system.

3-28

RCODE = 30

MEMORY PROTECT CONTROL

Purpose

To enable or disable the memory protect option from a user program.

CAUTION: THE SYSTEM IS NOT PROTECTED WHEN MEMORY PROTECT IS
IS DISABLED.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+3
DEF RC ODE
DEF MPTK
return point

RCODE DEC30
MPTK DECn

FORTRAN

IRCDE =30
MPTK = 0(or1)
CALL EXEC (IRCDE,MPTK)

Comments

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(Define the memory protect parameter flag)
(Continue execution)

(Request code= 30)
(If n = 0, memory protect is activated, and
is activated following any interrupt
completion. If n I 0, then memory protect
is deactivated and remains off after
interrupt completion)

Any program termination, either normal or aborted, enables memory protect. Program segments
can make memory protect EXEC calls to turn memory protect on or off, but calling and exiting
from segments has no effect on memory protect settings.

3-29

RCODE =6

PROGRAM COMPLETION

Purpose

To notify DOS-III that the calling program is finished and wishes to terminate.

Note: Every program must terminate and return to DOS-III using this
EXEC call, whether the EXEC call is explicitly coded or indirectly
generated by a compiler.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+2
DEF RCODE

RCODE DEC 6

FORTRAN

IRCDE=6

CALL EXEC (IRCDE)

Compiler Considerations

(Transfer control to DOS-III)
(Define end of parameter list)
(Request code)

(Request code= 6)

The FORTRAN and ALGOL compilers automatically generate a PROGRAM COMPLETION EXEC
call when they compile an END or STOP statement.

3-30

RCODE = 10

PROGRAM LOAD

Purpose

To load a main program from the disc into main memory and transfer control to its entry point.
Follows the :SS condition.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+3 (to 8)
DEF RCODE
DEF PNAME
DEF PRAM1

DEF PRAMS

RCODE DEC 10
PNAME ASC 3,xxxxx
PRAM1

PRAMS

FORTRAN

DIMENSION NAME(3)
IRCDE = 10
NAME(1) = xxxxxB
NAME(2) = xxxxxB
NAME(3) = xxxxxB
CALL EXEC (IRCDE,NAME[,p 1 .••])

(Transfer control to DOS-III) ·
(Determine number of parameters)
(Request code)
(Program name)
(First optional parameter)

(Fifth optional parameter)

(Program name)
(Up to S words of parameter information
passed to the program. See "Parameter
Processing" at the end of this section.)

(Program name)

(First two characters)
(Next two characters)
(Last character and blank)

3-31

RCODE = 10

Comments

During main program loading, the system interrogates a system flag called AEPF (location 1358).

This flag is normally zero unless specifically set by a user program. If AEPF is not zero, the contents
of AEPF are treated as an alternate entry point address. The system transfers control to the alter­
nate entry point by performing a JMP AEPF,I (jump indirect). AEPF is then cleared. If AEPF = 0,
control transfers to the program main entry point.

The Assembly language user can alter the contents of AEPF (and any other base page location) by
using the BASE PAGE STORE EXEC call (RCODE = -19).

3-32

RCODE = 7

PROGRAM SUSPENSION

Purpose

To suspend the calling program from execution until restarted by the GO directive.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+2
DEF RCODE
return point

RCODE DEC 7

FORTRAN

IRCDE = 7

CALL EXEC (IRCDE)

Comments

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(Continue execution)

(Request Code= 7)

DOS-III prints a message on the system console when it processes the PROGRAM SUSPENSION
EXEC call:

name SUSP

When the operator restarts the program with a :GO, up to five parameters may be passed to the sus­
pended program. (See "Parameter Processing" at the end of this section.)

3-33

RCODE = 7

Compiler Considerations

The FORTRAN and ALGOL compilers automatically generate a PROGRAM SUSPENSION EXEC
call when they compile a PAUSE statement.

3-34

RCODE=8

SEGMENT LOAD

Purpose

To load a segment of the calling program from the disc into the segment overlay area and transfer
execution control to the segment's entry point. (See Section V, "DOS-III Subsystems," for infor­
mation on segmented programs.) Follows the : SS condition.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+3 (to 8)
DEF RCODE
DEF SNAME
DEF PRAM1

DEF PRAM5

RCODE DEC 8
SNAME ASC 3,xxxxx
PRAM1
PRAM5

FORTRAN

DIMENSION NAME (3)
IRCDE=8
NAME (1) = xxxxxB
NAME (2) = xxxxxB
NAME (3) = xxxxxB
CALL EXEC (IRCDE, NAME [,p1 •••])

(Transfer control to DOS-III)
(Determine number of parameters)
(Request code)
(Segment name)
(First optional parameter)

(Fifth optional parameter)

(Request code= 8)
(xxxxx is the segment name)
(Up to 5 words of parameter information
passed to the segment. See "Parameter
Processing" at the end of this section.)

(Segment name)

(First two characters)
(Next two characters)
(Last character and blank)

3-35

RCODE=S

Comments

In the FORTRAN or ALGOL calling sequence, the user must convert the name of the segment from
ASCII to octal and store it in the NAME array, two characters per word. The RTE/DOS FORTRAN
IV Compiler, however, can convert this automatically through Hollerith constants.

During program segment loading, the system interrogates a system flag called AEPF (location 1358).

This flag is normally zero unless specifically set by a user program. If AEPF = 0, control transfers
to the program segment main entry point. If AEPF is not zero, the contents of AEPF are treated
as an alternate entry point address. The system transfers control to the alternate entry point by
performing a JMP AEPF,I (jump indirect). AEPF is then cleared. (The Assembly language user can
alter the contents of AEPF (and any other base page location) by using the BASE PAGE STORE
EXEC call (RCODE = -19).)

See "Segmented Programs," in Section V, for a description of segmented programs.

3-36

RCODE = 29

SEGMENT RETURN

Purpose

To return control from a segment to the main program at the instruction immediately following the
program segment load call. (This provides a subroutine-like return from a segment to a main
program.)

Assembly Language

EXT EXEC

JSB
DEF
DEF
DEF

DEF

EXEC
*+2 (to 7)
RCODE
PRAM I

PRAMS

RCODE DEC29
PRAM I

PRAMS

FORTRAN

IRCDE=29
CALL EXEC (IRCDE [,Pl, ... ,PS])

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Define the request code)
(Define the first parameter)

(Define the fifth optional parameter)

(Request code= 29)
(Up to five words of parameter information
are passed from the segment to the main
program. See "Parameter Processing" at
the end of this section)

3-37

Purpose

To request the current time.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+3
DEF RCODE
DEF ARRAY
return point

RCODE DEC 11
ARRAY BBS 5

FORTRAN

DIMENSION !TIME (5)
IRCDE= 11

RCODE = 11

TIME REQUEST

(Transfer control to DOS-III)
(Point of return from DOS-Ill)
(Request code)
(Time value array)
(Continue execution)

(Request code = 11)
(Time value array)

CALL EXEC (IRCDE, !TIME)

Comments

When DOS-III returns, the time value array contains the time on a 24-hour clock:

ARRAY
ARRAY+ 1
ARRAY+ 2
ARRAY+ 3
ARRAY+4

or ITIME (1) = Tenth of seconds
or ITIME (2) = Seconds
or ITIME (3) = Minutes
or ITIME (4) = Hours
or ITIME (5) = Not used, but must be present (always= 0)

If DOS-III does not contain Time-base Generator, all values in the time array are set to zero.

3-38

RCODE=17

WORK AREA LIMITS

Purpose

To ascertain the first and last tracks of the Work Area on the system or current user disc and the
number of sectors per track.

Assembly Language

RCODE
FTRAK
LTRAK
SIZE
DISC

FORTRAN

EXT EXEC

JSB EXEC
DEF *+5 (or 6)
DEF RCODE
DEF FTRAK
DEF LTRAK
DEF SIZE
DEF DISC
return point

DEC 17
NOP
NOP
NOP
DEC n

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(First track)
(Last track)
(Number of sectors/track)
(Optional parameter - see Comments)
(Continue execution)

(Request code= 17)
(Returns first work track number here)
(Returns last work track number here)
(Returns number of sectors per track here)
(n = 0 for system disc; n I= 0 for current user disc)

IRCDE = 17 (Request code)
CALL EXEC (IRCDE, IFTRK, ILTRK, ISIZE, IDISC)

or
CALL EXEC (IRCDE, IFTRK, ILTRK, ISIZE)

3-39

RCODE = 17

Comments

This call returns the limits of the Work Area, which is that area of the system or user disc which pro­
grams use for temporary storage with the I/0 READ/WRITE EXEC call (RCODE = 1or2). If the
DISC parameter is omitted from the calling sequence, or if DISC = 0, the system disc information is
returned. If DISC f 0, user disc information is returned.

3-40

RCODE= 16

WORK AREA STATUS

Purpose

To ascertain whether a specified number of consecutive operable tracks exist in the Work Area of
the system disc.

Assembly Language

EXT EXEC

JSB EXEC (Transfer control to DOS-III)
DEF *+5 (Point of return from DOS-III)
DEF RCODE (Request code)
DEF NTRAK (Number of tracks desired)
DEF TRACK (Starting track desired)
DEF STRAK (Actual starting track)
return point (Continue execution)

RCODE DEC 16 (Request code= 16)
NTRAK DEC n (Consecutive tracks desired)
TRACK NOP (Desired track; from LIMITS call)
STRAK NOP (Actual starting track available, 0 if n tracks

not available)

FORTRAN

IRCDE = 16 (Request code)
NTRAK= n (Consecutive tracks desired)
ITRAK = m (Desired starting track)
CALL EXEC (IRCDE, NTRAK, ITRAK, ISTRK)

3-41

RCODE = 16

Comments

This call is used with the WORK AREA LIMITS EXEC call (RCODE = 1 7) to establish the nature
of the Work Area. The READ/WRITE EXEC call (RCODE = 1 or 2) then transmits information to
and from this area, using the track numbers determined by this call. DOS-III handles track switching
automatically.

DOS-III checks whether there are n consecutive tracks starting at the track specified. If n tracks are
available, DOS-III returns the starting track number to the program. If DOS-III does not locate n
consecutive tracks, it returns 0 in STRAK or ISTRK.

3-42

RCODE = 23

USER DISC CHANGE

Purpose

To change the subchannel assignment for the user disc.

Assembly Language

EXT EXEC

JSB
DEF
DEF
DEF
DEF
return

RCODE DEC
LABEL ASC
SUBCH DEC

FORTRAN

EXEC
*+3 (or 4)
RCODE
LABEL
SUBCH
point

23
3,xxxxxx
(0 to 7)

DIMENSION LABEL (3)
IRCDE = 23
LABEL (1) = xxxxxB
LABEL (2) = xxxxxB
LABEL (3) = xxxxxB
ICHNL = M

CALL EXEC (IRCDE, LABEL, ICHNL)
or

CALL EXEC (IRCDE, LABEL)

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(Disc label)
(Disc subchannel; optional)
(Continue execution)

(Request code= 23)
(Label= xxxxxx)

(New label)

(First two characters)
(Next two characters)
(Last two characters)
(0 through 7)

3-43

RCODE = 23

Comments

If both the label and subchannel are specified, DOS-III checks whether the subchannel has that
label. If it does, the assignment is made and DOS-III returns. If not, DOS-III outputs

LBL =name
or
UNLBL
UDnnnnn
xxxxxSUSP

(name is label on the subchannel)

(nnnnn =address of EXEC call)
(xxxxx = name of program)

The operator can load a correctly labeled disc on the subchannel and input

:GO

to return to the beginning of the EXEC call (not the normal return point) so that the program can
reissue the EXEC call. If the operator does not have a properly labeled disc (or the subchannel is
a permanent disc), he should use :OFF or :ABORT.

If only a label is specified, DOS-III searches for the label, starting with the highest subchannel. If
DOS-III finds the label, it makes the assignment. If DOS-III cannot find the label, it suspends the
program and outputs

DISC NOT ON SYS
UD nnnnn
xxxxx SUSP

The operator can then abort the program or load a properly labeled disc then input

:GO

to return to the beginning of the EXEC call.

If the label equals"*" and a subchannel is specified, DOS-III checks whether the subchannel is
unlabeled. If it is, DOS-III makes the assignment. If the subchannel is labeled, DOS-III suspends
the program and outputs

LBL =name
UDnnnnn
xxxxx SUSP (xxxxx is the program)

The operator can then abort the program or load an unlabeled disc on the proper channel then
input

:GO

to return to the beginning of the EXEC call.

3-44

RCODE = 23

If the label equals"*" and a subchannel is not given, DOS-III searches for an unlabeled disc, starting
with the highest subchannel. DOS-III assigns the first unlabeled disc as the user disc, or if noun­
labeled discs are found, it suspends the program and outputs

DISC NOT ON SYS
UDnnnnn
xxxxxSUSP

The operator can then abort the program or load an unlabeled disc then input

:GO

to return to the beginning of the EXEC call.

Notes: 1. If the EXEC call specifies a subchannel with an incorrect system
proprietary code (see Appendix A), DOS-III still makes the assign­
ment but outputs

TSB DISC or ? ? ? DISC

2. If the EXEC call specifies a subchannel whose system generation
code (see Section VII) does not match that of the system disc,
DOS-III still makes the assignment, but outputs

DISC GEN CODE nnnn NOT SYS GEN CODE mmmm ERR POS

3. The changes made by this EXEC call are only temporary, and will be
reset at the end of each job to the user subchannel specified during
system generation.

4. If the specified subchannel is not active (physically present), DOS-III
suspends the programaand outputs

IIO ERR NR USER DISC
or
I/0 ERR PE USER DISC
UD nnnnn
xxxxxSUSP

(nnnnn =address of EXEC call)

3-45

PARAMETER PROCESSING

Certain user programs require parameters for their execution. DOS-III allows pa.Ssing of parameters
in the following environments:

(1) from a main program to a main program

(2) from a main program to a segment

(3) from a segment to a main program

(4) from a user to a suspended program

Parameter transferral from program to program (1-3) is handled programmatically by specifying
parameters in an EXEC calling sequence. Parameter transferral from a user directly to a program (4)
is handled by passing parameters back to the suspended program through the GO directive.

All the programs receiving parameters retrieve them in the same way. The parameters to be passed
(if any) are located in the base page parameter buffer RONBF (see Appendix A). In the Assembly
language environment, the B register contains the address of the parameter buffer. In the FORTRAN/
ALGOL environment, a library routine (RMP AR) is provided to transfer parameters to a user-defined
buffer. (This call must be the first statement executed upon entry.)

ASSEMBLY LANGUAGE EXAMPLE

EXT EXEC

JSB EXEC
DEF *+2
DEF RCODE
LDA B,I
SZA,RSS
JMP NOPAR

RCODE DEC 7
B EQUl

FORTRAN EXAMPLE

DIMENSION I(5)
CALL EXEC (7)
CALL RMPAR (I)

(Call EXEC to suspend program)

(Get parameter from GO directive)

(Define user parameter buffer)
(Suspend program)
(Get parameters from :GO)

3-46

SECTION IV
Input/Output

In DOS-III, centralized control and logical referencing of I/O operations effect simple, device­
independent programming. Each 1/0 device is interfaced to the computer through one or more I/O
channels which are linked by hardware to corresponding main memory locations for interrupt
processing. By means of several user-defined I/0 tables, multiple-device drivers, and program
EXEC calls, DOS-III' relieves the programmer of most I/O problems.

Note: Refer to Section XIV, "Privileged Mode," for a discussion of privileged
mode processing.

USER PROGRAM 1/0

The user program requests I/O by means of an EXEC call (see Section III) which specifies the
logical unit, control information, type of operation, buffer location and buffer length.

All references to I/O devices are made through logical unit numbers. This relieves the programmer
of the burden of knowing which physical device or which I/O channel is actually going to perform
the I/O transfer.

4-1

DOS-III has the following standard function assignments for logical unit numbers:

Logical Unit Number

1

2

Restored
3

4
after

5
each

6
:JOB.

7

8

9

10

6310

Function

System console

System mass storage

User mass storage

Standard punch device

Standard input device

Standard list device

Unassigned

Recommended for magnetic tape

Can be assigned to any device

by user

The user determines the number of logical units when the system is generated. At the beginning of
each JOB, logical units 1 through 9 are restored to the values established at system generation
(see Section X), whereas 10 through 63 are restored only on a start-up from the disc.

SYSTEM 1/0 PROCESSING

System 1/0 processing is controlled by three 1/0 tables:

1) Equipment Table (EQT) -which records all devices, 1/0 channels, driver entry
points, DMA requirements, and disc location (if disc-resident).

2) Logical Unit Table (LUT) - which assigns an equipment table number to each
of its entries, thus allowing the programmer to reference changeable logical units
instead of fixed physical units.

3) Interrupt Table (INT) - which relates each 1/0 channel to its corresponding
equipment table entry.

For a detailed description of these tables see Appendix A.

4-2

When the system recognizes an EXEC call that performs I/O, the request is sent to the I/O supervisor
EXEC module ($EX18). $EX18 determines if the driver for the requested device is main-memory
resident; if not, the driver is loaded into main memory from the disc. Once the driver is in main­
memory, the addresses of its EQT entries are placed in the base page communication area and control
is transferred to the driver's initiation section. After the driver initiates the I/O operation, it returns
to $EX18. If the I/O was requested "without wait", DOS-III immediately returns control to the
user program; if the I/O was requested "with wait", DOS-III waits until the I/O transfer is complete
before returning to the user program.

Once a driver has been initiated, interrupts from the device are channeled through a central inter­
rupt processing routine ($CIC). (All interrupt locations in main memory contain a JSB $CIC.)
$CIC determines which device interrupted, resets the addresses of the EQT entries into the base
page communication area (if necessary), and transfers control to the driver's continuation section.
The driver either continues or completes the I/0 operation, and control is then returned to the
executing user program.

INPUT/OUTPUT DRIVERS

The I/O driver routines, either main-memory or disc-resident, handle the actual transfers of informa­
tion between the computer and external devices. They are responsible for initiating and continuing
operations on all devices of equivalent type. When a transfer is initiated, DOS-III places the EQT
entry addressed into the base page communication area and executes a subroutine jump to the
driver entry point. The driver configures itself for the particular channel (in this way the same driver
can handle several devices of the same type on many channels), initiates the transfer, and returns
to DOS-III. When an interrupt occurs on the channel, indicating continuation or completion of
the transfer, DOS-III again transfers control to the driver. DOS-III requires only two drivers: the
Moving-Head Disc Driver (DVR31) and the System Console Driver (DVR05). However, these
additional drivers are fully compatible with DOS-III:

DVROO Teleprinter

DVROl Photoreader

DVR02 High Speed Punch

DVR04 Display Terminal

DVRll Card Reader

DVR12 Line Printer

DVR23 7970 Magnetic Tape

DVR26 2762A Terminal/Printer

DVR33 Writable Control Store

The driver name consists of the letters "DVR" prefixed to the equipment type code. In addition,
the programmer can write drivers for special devices, following the guidelines in Section XIII,
"Planning I/O Drivers." The driver is only responsible for updating the status field in the EQT
entry; DOS-III handles the availability field.

4-3

SPECIAL DRIVER CONSIDERATIONS

Some devices require special considerations while processing, particularly line printers and magnetic
tape drivers.

Line Printer Formatting

When a user program makes a I/O READ/WRITE EXEC call to the line printer, the line printer
driver (DVR12) checks bit 7 of the CONWD in the calling sequence. If bit 7 = 1, the line printer
single-spaces each line and all characters in the output buffer are printed. If bit 7 = 0, the first
character of the output buffer determines the carriage control and is printed as a space.

Note: DVR12 checks for certain program names (ALGOL, FTN, ASMB, LOADR,
JOBPR); for these programs it prints the first character of each line and
generates a single space.

The control characters have the following meaning:

Character

blank

0

1

*
others

Meaning

Single space (print on every line)

Double space (print on every other line)

Eject page

Suppress space (overprint next line)

Single space

Each printed line is foll9wed by an automatic single space unless suppressed by the control
character asterisk (*).Double spacing requires an additional single space prior to printing the
next line. If the last line of a page is printed and the following line contains a "l ",then a com­
pletely blank page occurs.

Note: DVR12 returns top-of-form status (status word bit 6 = 1) whenever top-of­
form is executed.

4-4

When a user program makes an EXEC call for I/0 CONTROL (RCODE = 3) with the function bits
in the CONWD (or the ICNWD) set to Olls (see Section III), the optional parameter PARAM
(or IPRAM) word defines the format action to be performed by the line printer:

Parameter Word (Dec)

<o
0

1 to 55

56

57

58

59

60

61

62

63

64

65

Meaning

Page Eject

Suppress space on the next print operation
only

Space 1 to 55 lines, ignoring page boundaries

Single space with automatic page eject

Skip to next even line with automatic page eject

Skip to next triple line with automatic page eject

Skip to next 1/2 page boundary

Skip to next 1/4 page boundary

Skip to next 1/6 page boundary

Skip to bottom of the page

Skip to top of next page

Set automatic page eject mode

Clear automatic page eject mode

Note: The automatic page eject mode is not supported on the 2767 line printer.

Automatic Page Eject

Automatic page eject mode applies only to single space operations. During non-automatic page
eject mode, if the parameter word is equal to 56, it is then interpreted as equal to 1.

Magnetic Tape Usage

Input/output transfers to and from a HP 7970 magnetic tape unit can be programmed using the
standard I/0 READ/WRITE EXEC call (RCODE = 1 or 2). When specifying the data buffer length,
the programmer must know that a buffer length of zero (0) causes the driver to take no action on a
write or an ASCII read. Only the amount of data that fits within the buffer is transmitted to the
user on read. A zero (0) buffer length on binary read causes a forward skip of one record.

4-5

In the I/O STATUS EXEC call (RCODE = 13), bits 7-0 of the status word contain the status of
the magnetic tape unit. The bits have the following meaning when they are set (i.e., equal to one):

Bit

7

6

5

4

3

2

1

0

Meaning

End-of-file record encountered while reading, forward spacing, or
backward spacing

Start-of-tape marker sensed

End-of-tape marker sensed

Timing error on last read/write operation

I/O request rejected by magnetic tape unit

No write enable ring, or the tape unit is rewinding

Parity error on last read/write operation

Tape unit busy, or in local mode

The status bits are stored in the EQT entry; they are updated every time the driver is called.
A dynamic status request is processed as soon as the magnetic tape EQT entry is available (availa­
bility bits equal to 00), and returns the actual status of the device (obtained from the driver) to the
calling program in the A register and to the EQT entry.

The maximum buffer length is 16,384 words.

Magnetic Tape Error Recovery

On a read parity error, the driver rereads the record three times before setting the parity error status
bit and returning to the calling program. The final read attempt is transmitted to the program buffer.

On a write parity error, the driver continues to retry the write until one of these two conditions
occurs:

a) The record is successfully written, or

b) The end-of-tape is encountered.

On a write without the write enable ring, the magnetic tape unit is made unavailable (magnetic tape
not ready). DOS-III outputs

l/O ERR NR EQT#n

and waits for the operator to correct the unit and enter :GO.

4-6

At the end-of-tape there are only two legal forward motion requests:

a) Write end-of-file, or

b) Read record.

All other forward motion requests (write, forward space) cause the unit to be made unavailable.
In addition, only one of the legal motion requests may be made after an end-of-tape. A backward
motion request clears the end-of-tape status.

A rewind, backspace record, or backspace file request will result in no action if the magnetic tape

unit is at load point. The start-of-tape marker sensed condition is reflected in the status word both

before and after the request is issued.

A forward space file or backspace file request causes the magnetic tape unit to move forward or

backward until a file mark is detected. Data is not transferred, but parity is checked. A parity error

encountered in any record of the file sets the parity error status bit. A backspace file request positions

the tape in front of a file mark or at load point, whichever is encountered first.

If the end-of-tape marker is sensed during execution of a forward space file request, the tape stops
at the end of the current record rather than after a file mark. A status request must be issued to
check for the end-of-tape marker sensed condition.

4-7

SECTION V
DOS-/// Subsystems

This section describes conventions for using the following DOS-III subsystems:

• ALGOL Compiler

• Assembler

• FORTRAN and FORTRAN IV Compilers

• Relocating Loader

• Relocatable libraries, including the DEBUG subroutine

and concludes with a discussion of program segmentation.

SOURCE PROGRAM FILES

Using the DOS-III STORE,S and EDIT directives, the operator creates and edits files of source pro­
grams written in FORTRAN, ALGOL, or Assembly language. In load-and-go operations the
FORTRAN Compiler, FORTRAN IV Compiler, ALGOL Compiler, and Assembler generate
relocatable binary code onto temporary disc storage. The Relocating Loader can then relocate
and merge the code with referenced subroutines of the Relocatable Library. Once loaded, a pro­
gram is executed by the PROG or RUN directive.

LOAD-AND-GO FACILITY

DOS-III provides the facility for "load-and-go," which is defined as compilation or assembly,
loading, and execution of a user program without using intervening object paper tapes. To
accomplish this, the compiler or assembler generates relocatable object code from source statements
and stores it on the disc in the Job Binary Area. Then separate directives initiate loading (PROG,
LOADR) and execution (RUN,program).

DOS-III can store the object code of several programs and associated segments and subroutines on
the disc. The Relocating Loader retrieves them from the disc, and relocates them into executable
absolute program units.

5-1

ALGOL COMPILER

The ALGOL Compiler consists of a main program and a data segment which operate under the
control of DOS-III. The compiler resides on the disc and is read into main memory when called
for by a PROG directive.

Source programs written in ALGOL are accepted either from an input device or from a user disc
file and are translated by the ALGOL Compiler into relocatable object programs optionally
punched on paper tape (and optionally stored in the Job Binary Area of the disc). The object pro­
gram can be loaded using the DOS-III Relocating Loader and executed using the RUN or PROG
directive.

ALGOL 1/0

The HP ALGOL I/O statements should specify the proper logical unit numbers for the DOS-III
configuration. (See Section IV.)

Compiler Operation

The ALGOL Compiler is initiated with a PROG directive, and inputs the source program from an
input device, or, if from a source file, from a file specified by a JFILE directive. The PROG direc­
tive for the ALGOL Compiler should take the following form:

5-2

PROG,ALGOL

:PROG,ALGOL [,P 1 ,P2 ,P 3 ,P 4 ,99]

where P1

99

logical unit number of input device (default is 5; set to 2 for source file
input indicated by a JFILE directive)

logical unit number of list device (default is 6)

logical unit number of punch device (default is 4)

lines/page on the source listing (default is 56)

the job binary parameter. If present, the object program is stored in the Job Binary
Area for later loading. Any requested punch output still occurs. (The 99 may occur
anywhere in the parameter list, but terminates the list.)

All parameters are optional. If pl through p4 are not present, the default operations are assumed.
If 99 is not present, the binary output is not placed in the Job Binary Area.

Messages During Compilation

When the end of a source tape is encountered, the following is output on the system console:

I/O ERR ET EQT #n

EQT #n is unavailable until the operator declares it up:

:UP,n

:GO

Compilation continues after the :GO. More than one source tape can be compiled into one program
by loading the next tape before giving the :GO.

5-3

At the end of the compilation, the following message is output to the system console:

$END, ALGOL

If the Job Binary Area (where binary code is stored because of a 99 parameter in the PROG
directive) overflows, the following message is output and compilation continues:

JBINOVF

The compilation will be completed, but there will be no further loading of binary code into the job
binary area.

The compiler terminates if

• Logical unit 2 has been given for input and no :JFILE has been declared. The
following message is output:

NO SOURCE

• The first statement of the source file specified by the PROG directive p 1 parameter
does not begin with the word HPAL. (Or the control statement contains an error.)
The following message is output:

HPAL??

• A colon occurs in the first position of a source statement line. The following message
is output:

IE nnnnn

where nnnnn is the memory location of the ~nput request.

5-4

Language Considerations

The HP ALGOL control statement has this format:

HPAL [,L,A,B,P], "name" [,P) [,P2]

where HPAL is mandatory

L,A,B,P are symbols (any combination is allowed) representing:

L produce source program listing

A produce object code listing

B produce object tape

P a procedure only is to be compiled

"name" is the program name (the quotes and a program name are mandatory)

P1 is a decimal digit between 0 and 9 specifying the name of the error routine to be
called if an error occurs in ALOG, SQRT, .RTOR, SIN, COS, .RTOI, EXP, .ITOI,
TAN. The name of the error routine is ERRn, where n = P1 , or n = 0 if P1 is not
specified. ERRO is supplied in the Relocatable Library; all other error routines
must be supplied by the user.

P2 is a decimal digit specifying the type of the program: 3 for a main program, 5 for
a segment, and 6 or 7 for a utility subroutine or procedure. If P2 is not specified,
the type is set to 3 for main programs and to 7 for procedures (P option in the
control statement).

If no symbols are specified, the program will run but will not produce any output other
than diagnostic messages and job binary (if requested). A program name in quotes (the NAM-record
name which must be a legitimate identifier without blanks) must follow the symbols.

Sense switch control is not used with DOS-III.

EXAMPLE

HPAL,L,B, "TEST",1,3

5-5

ASSEMBLER

The Assembler, a segmented program that executes in the main-memory User Program Area,
operates under control of DOS-III. The Assembler consists of a main program (ASMB) and six
segments (ASMBD, ASMBl, ASMB2, ASMB3, ASMB4, ASMB5), and resides on the disc. The
main program is read into main memory when called by a PROG directive.

Source programs, accepted from either an input device or a user source file on the disc, are trans­
lated into absolute or relocatable object programs; absolute code is punched in binary records,
suitable for execution only outside of DOS-III. ASMB can store relocatable code in the Job Binary
Area of the disc for on-line execution, as well as punch it on paper tape.

A source program passes through the input device only once, unless there is insufficient disc storage
space. In the latter case, DOS-III informs the user that two passes are required.

Assembler 1/0

The Assembly Language I/0 EXEC calls should specify the proper logical unit numbers for the
DOS-III configuration. (See Section IV.)

When preparing input for the batch device, the programmer must remember to never put a colon(:)
in column one of the source statement. DOS-ill aborts the current program if a directive (signified
by : in column one) occurs during data input.

If the memory protect hardware option is present (and enabled), it protects the resident supervisor
from alteration. It interrupts the execution of a user program under these conditions:

• Any operation that would modify the protected area or jump into it.

• Any I/0 instruction, except those referencing the switch register or overflow register.

• The halt instruction.

Memory protect gives control to DOS-III when an interrupt occurs, and DOS-III checks whether it
was an EXEC call. If not, the user program is aborted.

Assembler Operation

The DOS-III Assembler is initiated with a PROG directive. However, before entering the PROG
directive, the operator must place the source program in the input device. If the source program is
on the disc, the operator must first specify the file with a JFILE directive, and set parameter
P1 = 2 in the PROG directive. The PROG directive for Assembler should take the following form:

5-6

PROG,ASMB

:PROG,ASMB[,P1 ,P2 ,P3 ,P4 ,99]

where P1

99

logical unit number of input device (default is 5; set to 2 for source file
input indicated by a JFILE directive)

logical unit number of list device (default is 6)

logical unit number of punch device (default is 4)

lines/page on the source listing (default is 56)

the job binary parameter. If present, the object program is stored in the Job
Binary Area for later loading. Any requested punch output still occurs. (The 99
may occur anywhere in the parameter list, but terminates the list.)

All parameters are optional. If p1 through p4 are not present, the default operations are assumed.
If 99 is not present, the binary output is not placed in the Job Binary Area.

Messages During Assembly

When the end of a source tape is encountered, the following is output on the system console:

J/0 ERR ET EQT #n

EQT #n is unavailable until the operator declares it up:

:UP,n

:GO

Compilation continues after the :GO. More than one source tape can be compiled into one program
by loading the next tape before giving the :GO.

5-7

The following message on the system console signifies the end of assembly:

$ENDASMB

If another pass of the source program is required, this message is output at the end of pass one.

$END ASMB PASS

The operator must replace the program in the input device and enter:

:GO

If an error is found in the Assembler control statement, the following message is output on the
system console:

$ENDASMBCS

and the current assembly stops.

If an end-of-file condition on source input occurs before an END statement is found, the console
signals:

$END ASMB XEND

and the current assembly stops.

If source input from logical unit 2 (disc) is requested, but no file has been declared (see :JFILE,
Section II), the system console signals:

$END ASMB NPRG

and the current assembly stops.

If the Job Binary Area, where binary code is stored by a 99 parameter, overflows, assembly continues
but the following message is output on the system console:

JBINOVF

However, no further binary code is stored in the Job Binary Area.

5-8

The next message is printed on a separate line just above each error diagnostic printed in the pro­
gram listing during pass 1.

nnn

nnn is the "tape" number on which the error (reported on the next line of the listing) occurred.
A program may consist of more than one tape. The tape counter starts with one and increments by
one whenever an end-of-tape condition occurs (paper tape) or a blank card is encountered. When
the counter increments, the numbering of source statements starts over at one.

Each error diagnostic printed in the program listing during pass 2 of the assembly is associated with
a different message (printed on a separate line just above each diagnostic):

PG PPP

ppp is the page number (in the listing) of the previous error diagnostic. PG 000 is associated with
the first error found in the program.

Language Considerations

ASSEMBLER CONTROL STATEMENT. Although only relocatable code can be run under DOS-III,
the DOS-III Assembler is able to assemble absolute code if it is specified. Absolute code is never
stored in the Job Binary Area. To get absolute code, the control statement must include an "A"
parameter. The "R" parameter, however, is not required for relocatable code. An "X" causes the
assembler to generate non-Extended Arithmetic Unit code.

EXAMPLES

ASMB,L,B

ASMB,R,L,B,X

ASMB,T,L

ASMB,A,B,L

List and Punch Relocatable Binary.

List and Punch Relocatable, non-EAU Binary.

List and Print Symbol Table.

List and Punch Absolute Binary.

5-9

NAM STATEMENT. The NAM statement allows up to eight optional parameters. Only the first
two parameters are significant in DOS-III.

NAM name [,type] [,link mode]

where name is the program name (it should not equal any file name).

type is the program entry type code (octal):

0 - System main memory resident (default)
1 - Disc resident executive supervisor module
2 - Reserved for system
3 - User program, main
4 - Disc resident device driver
5- User program segment
6 - Library routine
7 - Subroutine

10 - Relocatable binary
11 - ASCII source statements
12 - Binary data
13 - ASCII data
14 - Absolute binary

link mode is the mode of linkage to be performed:

0 - current page linking
non-zero - base page linking (default)

If type is 0, 1, 2, or greater than 7, the assembler and DSGEN will accept it, but the Relocating
Loader will not.

The link mode parameter specifies the mode of linking that will occur at system generation time. If
zero, current page linking occurs. If non-zero, base page linking occurs. If omitted, the default con­
dition (non-zero) is assumed and base page linking occurs.

In addition to the name defined by NAM, each program, with the exception of the main program,
has one or more entry points defined by an ENT statement. For the main program (type= 3), the
transfer address of the END statement is sufficient. The program name is used for programmer-to­
DOS-III communication, while the entry point is used for program-to-program communication.

Note: DOS-III Assembly language does not contain the ORB statement because
information cannot be directly loaded into the protected base page area
by user programs. However, programs can read information from base
page using absolute address operands up to 1777 8 •

5-10

FORTRAN COMPILERS

The FORTRAN Compilers operate under control of the DOS-III Supervisor. The compilers reside
on the disc and are read into main memory only when needed.

FORTRAN and FORTRAN IV are problem-oriented programming languages. Source programs,
accepted from either an input device or a user disc file, are translated into relocatable object
programs, optionally punched on paper tape, and optionally stored in the Job Binary Area of the
disc. The object program can be loaded using the DOS-III Relocating Loader and executed using
the RUN or PROG directive.

FORTRANI/0

FORTRAN 1/0 statements should specify the proper logical unit numbers for the DOS-III
configuration. (See Section IV.)

When preparing input data for the batch device, the user should never put a colon(:) in column one
of the record because the colon in the first position signifies a directive. DOS-III aborts the job if a
directive occurs during data input.

Compiler Operation

The FORTRAN compilers are initiated with a PROG directive, and input the source program from
an input device, or, if from a source file, from a file specified by a JFILE directive. The PROG
directive for FORTRAN compilers should take the following form:

5-11

PROG,FTN[4]

P1 logical unit number of input device (default is 5; set to 2 for source file input indicated
by a JFILE directive)

P 2 logical unit number of list device (default is 6)

P 3 = logical unit number of punch device (default is 4)

P4 lines/page on the source listing (default is 56)

99 = the job binary parameter. If present, the object program is stored in the Job Binary Area
for later loading. Any requested punch output still occurs. (The 99 may occur anywhere
in the parameter list, but terminates the list.)

All parameters are optional. If Pt through p4 are not present, the default operations are assumed.
If 99 is not present, the binary output is not placed in the Job Binary Area.

Messages During Compilation

When the end of a source tape is encountered, the following is output on the system console:

l/O ERR ET EQT #n

EQT #n is unavailable until the operator declares it up:

:UP,n

:GO

Compilation continues after the :GO. More than one source tape can be compiled into one program
by loading the next tape before giving the :GO.

At the end of compilation, the following message is output on the system console:

$END, FTN[4]

5-12

If the Job Binary Area (where binary code is stored because of a 99 parameter in the PROG direc­
tive) overflows, the following message is output and compilation continues:

JBINOVF

There is no further loading into the Job Binary Area.

The compiler terminates if

• logical unit 2 has been given for input and no JFILE has been declared.
($END,FTN[4] is not output.)

• There are not enough work tracks for the compiler. The following message is output:

TRACKS UNAVAILABLE

• A colon occurs in the first column of a source program entered through the batch
device. (Blank cards in the source program are ignored.) The following message is
output.

IE nnnnn

where nnnnn is the memory location of the input request.

Language Considerations

FORTRAN CONTROL STATEMENT. Besides the standard options described in the FORTRAN
manual, two compiler options, T and n, are available. A "T" lists the symbol table for each program
in the compilation. If a "u" follows the address of a variable, that variable is undefined (the program
does not assign a value to it). The A option includes this T option. If n appears, n is a decimal digit
(1 through 9) which specifies an error routine. The user must then supply an error routine, ERRn.
If this option does not appear, the standard library error routine, ERRO, is used. The error routine
is called when an error occurs in ALOG, SQRT, .RTOR, SIN, COS, .TROI, EXP, .ITOI, or TAN.

5-13

Extended and Auxiliary Statements

In addition to the standard FORTRAN statement, the FORTRAN compiler running under DOS-III
supports the following extensions and additions:

1. extended PROGRAM statement

2. additional DATA statement

3. additional EXTERNAL statement

Execution of the following two FOR TRAN statements results in special processing in the DOS-III
environment:

1. PAUSE

2. STOP

5-14

PROGRAM STATEMENT

The program statement includes an optional type parameter.

PROGRAM name [,type]

name is the five-character name of the program (and its main entry point). When
the program is executed using a RUN or PROG directive, this name is used.

type is a decimal digit specifying the program type. Only types 3 (main),
5 (segment), and 6 or 7 (library) are significant in DOS-III. The type
is set to 3 if not given.

5-15

DATA STATEMENT

The DATA statement sets initial values for variables and array elements. The format of the DATA
statement is

where k is a list of variables and array elements separated by commas, d is a list of (optionally
signed) constants, separated by commas and optionally preceded by j* U is an integer
constant).

The elements of d 1 are serially assigned to the elements of k 1• The form j* means that the constant
is assigned j times. The k 1 and d 1 must correspond one-to·one.

Elements of k 1 must not be from COMMON.

Arrays must be defined (i.e., DIMENSION) before the DATA statements in which they appear.
DAT A statements may occur anywhere in a program following the specification statements.

EXAMPLE

DIMENSION A(3), I(2)

DATA A(1),A(2),A(3)/1.0,2.0,3.0/,l(1),I(2)/2*1/

EXTERNAL STATEMENT

With the EXTERNAL statement, subroutines and functions can be passed as parameters in a sub­
routine or function call. For example, the routine XYZ can be passed to a subroutine if XYZ is
previously declared EXTERNAL. Each program may declare up to five EXTERNAL routines.

The format of the EXTERNAL statement is

where v is the entry point of a function, subroutine, or library program.

EXAMPLE

EXTERNAL XYZ,FL1
Z = Q-RMX(XYZ,FLl,3.56,4. 75)

END

FUNCTION RMX(X, Y,A,B)
RMX = X(A)*Y(B)
END

ERROR E-0018 means too many externals.

Note: If a library routine, such as SIN, is used as an EXTERNAL, the compiler
changes the first letter of the entry point to "% ". Special versions of the
library routines already exist with the first character changed to "% ".

5-17

PAUSE AND STOP

PAUSE causes the following message to be output to the system console:

PAUSExxxx

where xxxx is an optional octal number.

To restart the program, the operator uses a GO directive.

STOP causes the program to terminate after the following message:

STOP program name xxxx

where xxxx is an octal number.

5-18

ERRO LIBRARY ROUTINE

ERRO, the error print routine referred to under the FOR TRAN or ALGOL control statement, out­
puts the following message to the system console whenever an error occurs in a library routine:

name: nn xx

where name is the name of the user's program,
nn is the routine identifier, and
xx is the error type.

The compiler generates calls to ERRO automatically. If the FORTRAN (or ALGOL) control
statement includes an n option, the call will be to ERRn, a routine which the user must supply.

5-19

DOS-III RELOCATING LOADER

The DOS-III Relocating Loader accepts relocatable object programs which have been translated by
the Assembler, ALGOL Compiler, or FORTRAN Compilers. It generates an executable main­
memory image of each such program. The relocatable programs may enter the loader as

• Job Binary Area programs translated during the current job

• User files

• Punched tapes, magnetic tapes

• Subroutines from the disc-resident Relocatable Library

Each main program is relocated to the start of the User Area and linked to its external references,
such as library routines. Segments will overlay the area following the main program and its sub­
routines. Programs may run under control of the DEBUG library routine. The main program, plus
its subroutines and its longest segment, can be as large as the User Area. With a RUN or PROG
directive, the program is called by name from the disc and executed. With the STORE,P directive,
the program may be stored as a permanent user file to be run during a later job. If the Loader is
to be re-executed during a single job, the Job Binary Area must be cleared (using the CLEAR
directive) to prevent duplicate program names.

5-20

PROG,LOADR

The DOS-III Relocating Loader is initiated by a PROG directive from the batch or keyboard device.

Format

:PROG,LOADR [,P1 ,P2 ,P 3 ,P 4 ,P5]

P1 0 for loading from JBIN and relocatable library (default)

2 for loading from JBIN, user files, and relocatable library

n for loading from JBIN, user files, relocatable library, and paper tape or
magnetic tape (logical unit n)

list device logical unit number (default is 6)

0 for no DEBUG, =I= 0 for DEBUG (default is 0)

0 for base page linking, =I= 0 for current page linking (default is 0)

0 for system default program bounds (e.g., UBFWA-UBLWA and
UMFWA-UMLWA); = 1 for user-specified program bounds (default is 0)

Comments

INPUT PARAMETER [P1]. Note the hierachy here. If n is specified, the JBIN area is still scanned
first, then user files are r~quested and, finally, the peripheral relocatable input is accepted.

If P1 t- zero, the Loader first expects a list of relocatable file names. In keyboard mode, the
Loader requests:

ENTER FILE NAME(S) OR IE

then waits for input. After each list of files is entered, the message repeats until a /E is entered.

In batch mode the list of files is entered as

file-name 1, file-name 2, ... ,IE

following the PROG directive (or following the bounds parameters if P5 = 1). If there are no
user files, a /E record must be entered.

5-21

The file list is a series of records containing file names separated by commas, ending with a /E.
All programs in each file are loaded unless a particular subset of the file is specified:

file-name (prog 1, prog 2 . . .)

Only the programs specified within the parentheses are loaded from the file-name. The file list is
simply a "/E" if no files are to be loaded. (The search for these files is made only on the current
user disc; the Loader is unaffected by :SS.)

DEBUG PARAMETER [P3]. Selecting the DEBUG option causes DEBUG to be appended to each
main program and segment. The Loader sets the primary entry point of each to DEBUG, rather
than the user routine. When the program is run, DEBUG takes control of the program's execution
and seeks instructions from the system console.

CURRENT PAGE LINKING PARAMETER [P 4 J. If requested t<;> do so (P 4 'f zero), the Loader
attempts to place necessary program links on the current page of memory as opposed to the base
page, to provide more area on the base page for large programs.

Note: While using the Loader with the current page linking option, remember that:

a. Current page linking cannot be used on programs which use main
memory following the program area for writing data (at execution
time). For instance, the Assembler builds its symbol table imme­
diately following the last word of the largest segment.

b. Programs should be broken into subroutines of less than 2K
because links are generated only at the beginning and end of
the program. Links cannot be inserted into the middle of a
program since the boundary between program and links may
fall in the middle of a skip or jump sequence. If the program
spans more than two pages, the middle page(s) will have no
area available for current links and will use base page links; thus,
the potential for greater efficiency will be lost.

PROGRAM BOUNDS SPECIFICATION PARAMETER [P5]. The user has the option of specifying
the base page bounds and the main memory bounds for the relocatable modules being loaded. If
parameter P5 in the PROG,LOADR directive is zero, the program bounds are determined by the
system pointers: ·

UBFWA

UBL WA

UMFWA

UMLWA

lower base page bound

upper base page bound

lower main memory bound

upper main memory bound

If P5 is equal to one, the user can specify his own memory bounds. In batch mode, the Loader
reads the bounds from the input device immediately following the :PROG, LOADR directive. The
bounds are in the form of two records: the first record is interpreted as the lower and upper base
page bounds, specified by two octal constants separated by a comma. If an error occurs in the first

5-22

record, the Loader outputs an L18 error message. The second record is interpreted as the lower
and upper main memory bounds, specified by two octal constants separated by a comma. If an
error occurs in the second record, the Loader outputs an L19 error message. If any of the bounds
are omitted, the appropriate system default value is used. In keyboard mode, the two records are
entered in response to the messages

BP

PROG

BND

BND

[L,U}?

[L,U}?

If an error occurs while entering the bounds in keyboard mode, the user can re-enter the bounds
(after an L18 or L19 error message). If an L18 or L19 error message occurs in batch mode, the
Loader aborts the job.

1/0 Drivers

The Loader will accept Type 4 programs (Disc Resident Device Drivers) and store them as such in
the user directory. Type 4 programs cannot be combined with any other program type during any
given load operation.

Loader Operation

The DOS-III Relocating Loader is a two-pass Loader. The first pass consists of setting the bounds,
inputting and scanning relocatable programs to build the necessary tables (program name table
and a table of entry points and externals), and matching entry points with externals. The second
pass involves the relocation of the programs into an absolute core image format on the disc.

INPUTTING AND SCANNING THE PROGRAMS. Programs are scanned (and input, if necessary)
according to P1 in the PROG,LOADR directive. (Only non-disc relocatable programs must be input;
there are stored temporarily on the Work Area of the disc for processing during the second pass.)
Since main programs are matched with segments during the scan, each main program must be loaded
before any of its segments.

If paper tape input is requested, the following messages are output to the system console:

LOAD TAPE

LOADR SUSP

@

The loader suspends. The operator places a tape in the input device and types

:GO

5-23

When an end-of-tape condition occurs, three messages are output to the system console:

I/0 ERR ET EQT# nn
LOAD TAPE
LOADR SUSP
@

(paper tape only-not magnetic tape)

The operator places the next tape in the input device, enters :UP,nn and :GO to read the next tape.
Enter :UP,nn and :G0,1 to indicate that all tapes have been read in.

If a checksum error occurs when loading relocatable programs from paper tape, the Loader prints
an LOl error message and returns to the paper tape load point with the messages

LOAD TAPE
LOADRSUSP
@

The operator can attempt to reload the program by placing the tape in the reader at the beginning
of the program and typing : GO.

Matching Entries with Externals

After matching all possible entry points and external references in the user programs, the loader
scans the Relocatable Library (disc-resident) looking for entry points to match the undefined
external references. If undefined external references still exist,

UNDEFINED EXTS

is output and the external references are listed, one per line.

To load additional programs from a peripheral device, the operator types

:GO,O[,n]

where n is the logical unit number of the input device, if different from P1 of the PROG,LOADR
directive.

To continue without fulfilling external references, the operator types

:G0,1

To specify a file name from the keyboard, enter

:G0,2

and the appropriate prompt is output:

ENTER FILE NAME(S) OR IE

5-24

RELOCATING PROGRAMS. The main and segment names (from the PROGRAM, HPAL, or NAM
records) become user file names once the programs are loaded. To ensure unique file names, the
Loader compares all program and segment names against the names of existing user files (current
user disc only). If duplicate names occur, an error message is printed and loading stops.

The Loader converts each main program into an absolute main memory image, stores it on the disc,
places the name in the user directory where it remains during the current job, and lists (on the
logical unit specified by the P2 parameter) the program address map and entry points. After each
main program, any associated segments are loaded in the same way. When the Loader is completely
finished, the following message is output:

LOADR COMPLETE

During the current job, the absolute main memory images appear in the user file area (see LIST
directive, Section II) and can be executed by name (see RUN and PROG directives). At the end of
the job, however, they disappear from the file area, unless they are made permanent files by means
of the STORE, P directive.

If no programs are entered, the Loader outputs the following messages and terminates:

NO PROGRAMS LOADED

LOADR COMPLETE

Loader error messages are given in Section XV.

5-25

EXAMPLE

In the following example, DOS-III is in keyboard mode.

:CLEAR
@

:PROG .. LOADR_, 5
ENTER FILE NA~ECS> OR /E
ALGLM .. /E
LOAD TAPE
LOADR SUSP

@:GO
I/O ERR ET EQT# 02
LOAD TAPE
LOADR SUS?

8:UP1 2

i:G01l

Eliminate any programs from the job binary area

Paper tape input is specified

One disc file is specified

Place paper tape in input device

Return to Loader
End of paper tape

Declare input device ready

Specify no more paper tapes

5-26

The following is then output on the standard list device (logical unit 6):

RELOCATING LOADER

NA'l\1E PROG BOUNDS BP BOUNDS

ALGOL
*HPAL 26601 Main program
*%HPST 27005 Main 'sentry points

•EAU. 30370 01402 Subroutine
*·MPY 30370 Subroutine's entry points
*·DIV 30375
*• DLD 30402
*•DST 30407

%WRIT 30440 01407
*%WRIT 30626
*%W'RIF 30522
*%WBUF 30725

SREAD 31141 01411
*%READ 31141
*%JFIL 31612
*%RDSC 31563

DUMRX 31677 01412
*$LIBR 31677
*$LIBX 31724

• OPSY 317 57 01412
*•OPSY 31757

<BOUNDS> 16000 32017 00716 01415 Main programs bounds

ALGL 1 Segment
*ALGL 1 32461 Segment's entry points
*%LNAL 32020
*%ABAL 32017

<BOUNDS> 32017 32463 01415 01416 Segment's bounds

LO.ADR CO!'l!PLETE Console message to indicate normal Loader completion

@:ST, P Make newly created programs permanent disc files

5-27

THE RELOCATABLE LIBRARIES

There are two System libraries, or collections of relocatable subroutines that can be used by DOS­
III: the RTE/DOS Relocatable Library (EAU or Non-EAU versions) and the RTE/DOS FORTRAN
IV Library. These libraries contain mathematical routines such as SIN and COS, and utility routines
such as BINRY. A program signifies its need for a subroutine by means of an "external reference."
External references are generated by EXT statements in Assembly language, by CALL statements and
external function references in FORTRAN, and by CODE procedures in ALGOL.

When the system is generated, several combinations of libraries are possible. Every system should
contain an RTE/DOS Relocatable Library: either an EAU version or a non-EAU version, depending
on the computer hardware. This library does not contain a formatter, but the FORTRAN IV Library
contains a formatter that handles extended precision numbers. If extended precision arithmetic is
not needed, a separate RTE/DOS Basic FOR TRAN Formatter is available to take the place of the
FORTRAN IV Library.

All of these libraries and the subroutines they contain are documented in the manual Relocatable
Subroutines (02116-91780).

5-28

DEBUG LIBRARY SUBROUTINE

RTE/DOS DEBUG, a subroutine of the Relocatable Library, allows programmers to check for logical
errors during execution. DEBUG is described in A Pocket Guide to HP 2100 Computers (5951-4423).
If the P3 parameter of the PROG,LOADR directive is not zero, the Loader combines DEBUG with
the user program being loaded. The primary entry point (the location where execution begins) is set
to DEBUG. Therefore, when the program is executed with a RUN directive, DEBUG takes control
and outputs the message

BEGIN 'DEBUG' OPERATION

The programmer now enters any legal debug operation. DEBUG ignores illegal requests and outputs
the message

ENTRY ERROR

DEBUG OPERATIONS

B,A

D,A,N l [,N 21

D,B,N 1[,N21

M,A

R[,Al

W,A,D1

W,B,D2

W,E,D3

W,O,D4

X,A

A

Instruction breakpoint at octal address A (Note: if A= JSB EXEC, a
memory protect violation occurs)

ASCII dump of octal main memory address N 1 or from N 1 to N 2

Binary dump of octal main memory address N 1 or from N 1 to N 2

Sets absolute base of relocatable program unit

Execute user program starting at octal address A or execute starting
at next location in user program (used after a breakpoint or to initiate
the program at the transfer point in the user program)

Set D 1 in octal address A 1

Set D1 to Dn in successive memory locations beginning at octal address

Al

Set A register to octal D 1

Set B register to octal D 2

Set E register (0 =off, non-zero= on)

Set Overflow (0 =off, non-zero= on)

Clear breakpoint at octal address A

Abort DEBUG operation

5-29

SEGMENTED PROGRAMS

User programs may be structured into a main program and several segments, as shown in Figure 5-1.
The main program begins at the start of the user program area. The area for the segments starts
immediately following the last location of the main program. The segments reside on the disc and
are read into main memory by EXEC calls, when needed. Only one segment may be in main memory
at a time. When a segment is read into main memory, it overlays the segment previously in main
memory.

The main program must be type 3, and the segments must be type 5. When using DSGEN to con­
figure the system or loading programs with the Loader, the main program must be entered prior
to its segments. One external reference from each segment to the main routine is required for
DSGEN or the Loader to link the segments and main programs. Also, each segmented program
should use unique external reference symbols. Otherwise, DSG EN or the Loader may link segments
and main programs incorrectly.

low memory

high memory

Main Program

Seg111ent 1

Segment 2

Segment 3

Main Program

Segment Overlay
Area

DISC MEMORY

MAIN MEMORY
(User program area)

Figure 5-1. Segmented Programs

5-30

Figure 5-2 shows how an executing program may call in any of its segments from the disc using the
SEGMENT LOAD EXEC call (1-2). DOS-III locates the segment on the disc (3-4), loads it into
main memory (5) and begins executing it. The segment may call in another of the main program's
segments using a similar EXEC call (6).

DISC MEMORY

Main
Program

Segment 1 ©

Segment 2

Segment 3

MAIN MEMORY

@
DOS-Ill

Supervisor

r-+ 0

v
NAM MAIN

""'
EXT EXEC
ENTM

'--- 0 JSB EXEC

NAM SEGl
EXT EXEC, M

®

I © JSB EXEC

(CALL for
Segment 2)

Figure 5-2. Main Calling Segment

5-31

low memory

Main
Program

Segment
Overlay
Area

high memory

User
Program
Area

Figure 5-3 shows how DOS-III processes the call from the segment (7) by locating the segment on
the disc (8-9), loading it into main memory (10), and beginning execution of it.

DISC MEMORY

Main
Program

Segment 1

Segment 2 ®

Segment 3

MAIN MEMORY

®
DOS-Ill

Supervisor

r G)

(CALL from
Segment 1)

NAM MAIN
EXT EXEC
ENTM

!¥'
~

NAM SEG2
EXT EXEC, M

...... @

Figure 5-3. Segment Calling Segment

5-32

low memory

Main
Program

Segment
Overlay
Area

high memory

User
Program
Area

When a main program and segment are currently residing in main memory, they operate as a single
program. Jumps from a segment to a main program (or vice versa) can be programmed by declaring
an external symbol and referencing it via a JMP or JSB instruction. (See Figure 5-4.) A matching
entry symbol must be defined as the destination in the other program. DSGEN or the Loader
associates the main programs and segments, replacing the symbolic linkage with actual absolute a
addresses (i.e., a jump into a segment is executed as a jump to a specific address). The programmer
should be sure that the correct segment is in main memory before any JMP instructions are
executed.

MAIN MEMORY

EXT S1
ENT M1

......-.Ml JMPS1 -

EXT M1
ENTS1

....__ JMP M1
S1 --.........

low memory

Main
Program

Segment
Overlay
Area

high memory

Figure 5-4. Main-to-Segment Jumps

5-33

User
Program
Area

FORTRAN Segments

Segmented user programs may be written in FORTRAN, but certain conventions are required. A
segment must be defined as type 5 in the PROGRAM statement. The segment must be initiated by
using the SEGMENT LOAD EXEC call (RC DE = 8) from the main or another segment. A dummy
CALL to the main must appear in each segment to ensure that proper linkage will be established be­
tween the main and its segments.

Once a segment is loaded, control is passed to it and execution begins at its primary entry point (or
at the address specified in base page location 1358). The segment, in turn, may call another segment
using another SEGMENT LOAD EXEC call. Communication between the main program and seg­
ments may be through COMMON or via parameters passed in the SEGMENT LOAD or SEGMENT
RETURN EXEC calls. Segments may not contain DAT A statements.

Any segment may return to the main program at the statement immediately following the initial
SEGMENT LOAD EXEC call (RCODE = 8) by executing a SEGMENT RETURN EXEC call
(RCODE = 29). (See Section n: for a description of these EXEC calls.) However, segments may
not return directly to other segments.

ALGOL Segments

ALGOL programs can be segmented if certain conventions are followed. A segment must be defined
as type 5 in the HP AL control statement. The segment must be initiated by using the SEGMENT
LOAD EXEC call (RCODE = 8) from the main or another segment. In order to establish the proper
linkage between a main program and its segments, each segment must declare the main a CODE
procedure. For example, if MAIN is the main program, each segment must declare the following:

PROCEDURE MAIN;CODE;

Once a segment is loaded, control is passed to it and execution begins at its primary entry point (or
at the address specified in base page location 1358). The segment, in turn, may call another segment
using another SEGMENT LOAD EXEC call. Communication between the main program and its seg­
ments may be through parameters passed in the EXEC call.

Any segment may return to the main program at the statement immediately following the initial
SEGMENT LOAD EXEC call by executing a SEGMENT RETURN EXEC call (RCODE = 29). (See
Section III for a description of these EXEC calls.) However, segments may not return directly to
other segments.

5-34

SECTION VI
Typical DOS-/// Job Decks

ASSEMBLE A PROGRAM AND STORE IN FILE

:JOB,ASMBS
:PROG,ASMB, 5, 6,4, 56, 99
ASMB,B,L

NAMTEST,3

END ENTER
:STORE,R,AFILE
:JOB,NEXTJ

LOAD AND EXECUTE A RELOCATABLE FILE

:JOB,LOADE
:PROG,LOADR,2
AFILE,/E
:STORE,P, TEST
:RUN, TEST
10
23

51
:JOB,NEXTJ

6-1

Source Program

Data

STORE, EDIT, COMPILE, LOAD AND RUN A PROGRAM

:JOB, EVERY
:STORE,S,SOURC,5
FTN,B,L

PROGRAM ZOOM
DIM 1(10)

END$

:LIST,S,6,SOURC
:EDIT,SOURC,5
/l,2

IE
:JFILE,SOURC
:PROG,FTN,2,6,4,56,99
:PROG,LOADR
:RUN,ZOOM
123.62

00001
:RUN,ZOOM
321.5

0.56
:JOB,NEXTJ

)

)

l

6-2

Source Program

Edit List

Data for first run

Data for second run

PART 2
DOS-/// Extended File

Management Package (EFMP)

SECTION VII

EFMP Organization

The DOS-III Extended File Management Package (EFMP) extends the file handling capabilities of
DOS-III by allowing the user to create and use files with different record lengths, security codes,
and other conveniences. EFMP consists of a series of additional EXEC modules and a utility pro­
gram; it maintains a file structure that operates within, and in addition to, the standard DOS-III
file structure.

ENVIRONMENT

EFMP functions in the DOS-III environment. It is implemented through a set of EXEC modules
which are incorporated into DOS-III at system generation time: the EXEC modules are invoked
using the standard EXEC call mechanism.

FUNCTIONS AND STRUCTURE

The EFMP modules themselves allow any program executing in the user area to Initialize EFMP
areas, Create/Destroy, Open/Close, Read/Write, Reset, Repack, Copy, Change Name, and Post files
on the moving-head disc. Also, EFMP makes available detailed status information on all files and
packs known to it. EFMP may be accessed conversationally from the keyboard by using UTIL, a
utility program that executes in the User Area.

DOS-III Files vs. EFMP Files

DOS-III maintains files that are referenced by five-character names and relative sector numbers. The
user can access these files in either a keyboard mode (via directives) or in a programming mode
(via EXEC calls). In keyboard mode, the user creates a file with the STORE directive and operates
on that file with directives such as :EDIT and :DUMP. In programming mode, the DOS-III files are
accessed by EXEC calls such as FILE READ/WRITE and FILE NAME SEARCH.

In addition to the file structure, DOS-III maintains a subchannel (or user disc) identification scheme.
User discs are first formatted either during system generation or by a special function of the system
generator. These functions format the hardware tracks and set up information such as the Label
Presence Code and System Proprietary Code. After a disc pack is formatted, the INITIALIZE directive
is used to set up labels (six-character codes), change labels, and purge old discs.

7-1

EFMP operates within this file structure of DOS-III to set up and maintain additional-but distinctly
different- files. Areas of discs within DOS-III (hereafter referred to as EFMP areas) are turned over
to EFMP exclusively. The user must identify them with a pack number of the form PNxxx, where
xxx is a decimal integer. The procedure for doing this is described under "Set Up."

Within an EFMP area, EFMP creates files of its own that are not known to DOS-III. They are identi­
fied by a fixed-length name, contain a grouping of specified length records, and have a security code.
Since only the DOS-III files can be created and accessed by directives, all EFMP files must be used
through the EFMP EXEC calls or the UTIL program. EFMP files are limited in size only by the re­
quirement that they fit within one subchannel or pack.

Note: All references to files within this Part will mean EFMP files, not
DOS-III files, unless specifically stated otherwise.

Duplicate Pack Numbers

EFMP pack numbers are always unique on any given platter, but not necessarily unique across
platters. To minimize the possibility of accessing a duplicate pack number, the user should (if
possible):

1. Create unique pack numbers.

2. Have platters containing EFMP areas mounted on the subchannel designated as the current
user subchannel.

EFMP Buffers and Tables

To provide maximum flexibility in main memory size and speed of file accessing, EFMP allows the
user to define (at execution time) the size and location of the tables and buffers required in main
memory by EFMP. Two areas are defined by the user and provided in his program space:

1. Opened File Table

2. Temporary Record Buffers

The Opened File Table contain_s all information necessary for EFMP to identify and access files
belonging to the user. The minimum size of the Opened File Table is one sector (128 words) and
allows up to seven files to be opened concurrently.

EFMP uses the Temporary Record Buffers as an intermediate storage area between the disc and
the user's record buffer. The user defines the number of Temporary Record Buffers and the size of
each. There must be at least one buffer and it must be at least two sectors (256 words) long. Par­
ticular files and buffers can be linked to increase the access speed of files. The effect of varying the
number and size of these buffers cannot be predicted exactly and must be determined empirically
by trial and error.

CAUTION: SINCE THESE TABLES AND BUFFERS EXIST IN THE USER
AREA AND ARE NOT PROTECTED, EXTREME CAUTION
MUST BE TAKEN NOT TO MODIFY THEM IN ANYWAY.

7-2

Logical Read vs. Physical Read

A logical read occurs each time the user requests a record from a file. At that time EFMP checks
the appropriate Temporary Record Buffer to determine if the requested record is already in main
memory. If in main memory, the record is transferred to the user's record buffer without actually
physically reading the disc. If the record is not present in main memory, the necessary disc transfers
are performed (physical reads-and writes, if necessary) to bring the record into main memory. If
the Temporary Record Buffer is larger than the record size, several records are brought into main
memory at once.

Logical Write vs. Physical Write

A logical write occurs each time a user requests that a record be written to a file. At that time,
EFMP determines if that record is present in the Temporary Record Buffer; if it is, EFMP simply
transfers the data in the user's record buffer to the Temporary Record Buffer and flags it as "must
be written." Each succeeding read or write is treated in the same manner until a logical record trans­
fer occurs for which the record is not in main memory, or until the last record in the Temporary
Record Buffer is logically written. In these cases, the EFMP must physically write the records in the
Temporary Record Buffer (i.e., post them) on the disc.

If the record is not present in main memory on a write request, EFMP locates the record on the
disc and transfers it physically into the Temporary Record Buffer. The data to be written is then
transferred from the user buffer to the Temporary Record buffer and flagged as "must be written."
The read before write is necessary because records do not necessarily fall on sector boundaries in
the disc. If a CLOSE or POST request occurs, all buffers flagged are written to the disc.

Update-Writes vs. Append-Writes

The purpose of an update-write is to change the contents of an existing record; the purpose of
append-write is to add new records onto the end of a file. EFMP writes a record as an update-write
whenever the record specified exists in a previously accessed section of a file.

EFMP writes a record as an append-write whenever the record specified is beyond the previously
accessed section of a file. In this case, EFMP automatically inserts zeros into all records (if any)
between the highest record previously written and the new record.

SETUP

There are two prerequisites for EFMP. First, the EFMP EXEC modules must be included in
DOS-III when the system is generated. Second, when DOS-III is running, the user must create
EFMP areas on formatted DOS-III packs or cartridges.

7-3

An EFMP area is created by issuing a STORE, B directive in this format:

:STORE,B,PNxxx,sectors

where xxx is a unique decimal number,

PNxxx is the unique pack number, and

sectors is the number of sectors of the EFMP area.

Note: EFMP changes the file from Type-B to Type-A during initialization
(see "Initialize").

WORD CONTENTS

0 first character second character

third character fourth character

2 fifth character (not used)

3 starting relative sector

4 file length (in records) '

5 record length (in words)

6 security code

7 user-supplied status

8 highest record number accessed

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Figure 7-1. EFMP File Disc Directory Format

7-4

BITS

SECTION VIII
EFMP EXEC Calls

The method of communication between a user program and EFMP is through the standard DOS-III
EXEC call format (discussed in Section III of this manual).

One standard DOS-III request code (RCODE = 24) is reserved for EFMP requests. The DOS-III
operating system combines this request code with an EFMP function number to determine which
action the user EXEC call is requesting. The EFMP function numbers are one element in each of the
EFMP EXEC calling sequences.

FORMAT FOR EFMP EXEC CALLS

In this section, only the Assembly language calling sequences are given for the EFMP EXEC calls.
The methods for converting these calling sequences to FORTRAN or ALGOL are described in
Section III.

The EFMP EXEC calls described in this section are presented in ascending order, by EFMP function
number. The STATUS EXEC call (EFMPF = 10) has several status function numbers: these are
presented in ascending order, by status function number.

Note: A complete list of EFMP error codes can be found in PART 5 of this manual,
"Error Codes and Messages."

8-1

EFMPF = 1

DEFINE

Purpose

To define, before any other EFMP calls are made, the number of 16-bit words within the user
program to be used by EFMP for its internal buffers and tables.

Assembly Language

JSE EXEC
DEF *+9 Return address
DEF RCODE Request code
DEF EFMPF EFMP function number
DEF OPNTE Opened-file table address
DEF OPNSZ Opened-file table size
DEF TRBUF Temp. record buffer address
DEF NOTRE Number of temp. record buffers and number of

active pack numbers
DEF TRESZ Temp. record buffer size
DEF ERRNO Error number
return Continue execution

RCODE DEC 24
EFMPF DEC 1
OPNTE ESS n Opened-file table (n is the size)
OPNSZ DEC n Size of opened-file table (in 16-bit words,

see Comment 1)
TREUF ESS m Beginning of temp. record buffers, see Comment 2
NOTRE DEC p No. of temp. record buffers, see Comment 2
(NOTRE+l) DEC n n = the maximum number of unique EFMP pack

numbers active (MAXPK), see Comment 4
TRESZ DEC q Size of each temp. record buffer (in sectors)
ERRNO ESS 1 Return point for error codes

Comments

1. The size of the Opened-file table (n) can be calculated by this formula:

n = 4*(MAXPK)+ 3*(NOTRE)+16*(Max. no. of files to be opened)

The minimum size of this table is 128 words. This allows approximately seven files to be
opened concurrently.

8-2

EFMPF = 1

2. There must be at least one temporary record buffer and it must be at least two sectors long
(256 words). There may, however, be more buffers and they may be more than two sectors
in size. All of the space for these buffers must be allocated starting at the location TRBUF.
Increasing the number of buffers allows disc efficiency to be increased by assigning a buffer
exclusively to one file. Increasing the size of each buffer increases the speed of disc accessing
by allowing more than one sector to be transferred per disc access.

The total size of the Temp. Record Buffers (m) can be calculated by the following formula:

m = NOTRB * TRBSZ * 128

(The minimum value for TRBSZ is 2.)

3. All the tables and buffers are fixed by DEFINE until the end of a program, or until another
DEFINE. Each time a DEFINE occurs, all information contained in tables and buffers is lost,
all pointers are reset, and EFMP assumes a fresh start. At the end of each program, DOS-III
calls EFMP to perform a POST on any records flagged as "must be written."

4. MAXPK indicates the maximum number of unique EFMP pack numbers a user will have
active at any one time. A pack number is active when one or more of its files are opened by
a user through an OPEN call (or for PNOOO through a CREATE call).

8-3

EFMPF = 2

CREATE

Purpose

To set up a directory on disc with all of the information necessary to create a file that can be
accessed at a later time.

Assembly Language

JSB EXEC
DEF *+9 Return address
DEF RCODE Request code
DEF EFMPF EFMP function number
DEF FNAME File name
DEF PAKNO Pack number
DEF FLGTH File length (in records)
DEF RLGTH Record length (in words)
DEF SCODE Security code and user status
DEF ERR NO Error number
return Continue execution

RCODE DEC 24
EFMPF DEC 2
FNAME ASC 3,xxxxx xxxxx is the name to be applied to the file

(first two characters cannot be zero or 177400 8)

PAKNO DEC p pis the pack number, see Comments
FLGTH DEC q q is the number of records in the file;

(1'(q'(32,767)
RLGTH DEC r r is the number of words in a record;

r must be less than or equal to 112 the size
of the temp. record buffer

SCODE OCT s s is any 16-bit combination to be checked by EFMP
during OPEN and DESTROY

(SCODE+l) OCT t t is any 16-bit combination of status information
desired by the user (referred to as USTAT elsewhere)

ERRNO BSS 1 Return point for error codes

8-4

EFMPF = 2

Comments

1. If PAKNO is a number between 1 and 999 it indicates the EFMP area in which the file is to
be created. When EFMP creates a file, it reserves the necessary area on the disc after the last
previous file generated. No attempt is made to search for an area between files. If P AKNO is
equal to -1, the file is to be created in any EFMP area that is available.

2. If PAKNO equals zero, the file is placed on the Work Area of the disc and no area will be
reserved in the EFMP areas. When such a temporary file is created, the only directory in­
formation that is maintained is in the Opened-File Table. A disc-based directory is not main­
tained. Also, since the directory information is established in main memory during the
CREATE function, the OPEN function is not required. The only reason for using an OPEN
call for a temporary file is to assign it to a specific Temporary Record Buffer or to change
the starting record number to a value other than 1. If no OPEN call is given, the first
Temporary Record Buffer is used.

3. When the Work Area is used for temporary files, EFMP reserves this whole area and identifies
it as PNOOO. In order to keep PNOOO from using the entire Work Area, the user must enter a
STORE,B,PNOOO directive for the system disc with the desired number of sectors. When
EFMP has terminated, the user should PURGE the file PNOOO from the Work Area.

8-5

EFMPF = 3

DESTROY

Purpose

To eliminate the directory information for a particular file from main memory and the disc. The
user must specify the correct security code for the file. The disc area is repacked only for temporary
files. To repack the EFMP areas use the REPACK EFMP call.

Assembly Language

JSB EXEC
DEF *+7 Return address
DEF RCODE Request code
DEF EFMPF EFMP function code
DEF FNAME File name
DEF PAKNO Pack number
DEF SCODE Security code
DEF ERRNO Error number
return Continue execution

RCODE DEC 24
EFMPF DEC 3
FNAME ASC 3,xxxxx
PAKNO DEC n If n = 0, then FNAME refers to a temporary file

(if n ~ 1 and n :;;;;; 999, FNAME is to be located in
this EFMP area; if n = -1, EFMP searches all of its
areas until it finds a file that matches FNAME)

SCODE OCT s s is the security code for the file established by the
CREA TE EFMP call; security code ignored on
temporary files

ERRNO BSS 1 Return point for error codes

8-6

EFMPF = 4

OPEN

Purpose

To make a previously created file accessible by extracting the necessary file information from the
disc directories and placing it in main memory. The number of files that can be opened at any one
time is limited by the size of the Opened File Table (see DEFINE).

Assembly Language

JSB EXEC
DEF *+9 Return address
DEF RCODE Request code
DEF EFMPF EFMP function code
DEF FNAME File name
DEF PAKNO Pack number
DEF RCDNO Record number
DEF SCODE Security code
DEF BUFNO Buffer number
DEF ERRNO Error number
return Continue execution

RCODE DEC 24
EFMPF DEC 4
FNAME ASC 3,xxxxx
PAKNO DEC n If n = 0, the file is a temporary file on the work area;

if n is between 1 and 999, EFMP looks for FNAME in
the appropriate area; if n = -1, EFMP searches all
available areas for the requested file

RCDNO DEC r If r = 0, EFMP sets the next record to be accessed
(for sequential READS or WRITES) to the highest
record previously accessed + 1. Otherwise, r can be
any number between 1 and the maximum record
number contained in the file. This allows sequential
access to be initialized at any record.

SCODE OCT s sis the security code established by the CREATE
call. It must match.

BUFNO DEC b b must be a number between 1 and the maximum
number of Temp. Record Buffers available. For
any other number, EFMP uses 1

ERRNO BSS 1 Return point for error codes

8-7

EFMPF = 5

CLOSE

Purpose

To remove information about a particular file from the Opened-File Table. This allows an additional
file to be opened. Also, CLOSE updates the user status information (USTAT) and the highest record
accessed on the disc.

Assembly Language

JSB EXEC
DEF *+6 Return address
DEF RCODE Request code
DEF EFMPF EFMP function number
DEF FNAME File name
DEF USTAT User status
DEF ERRNO Error number
return Continue execution

RCODE DEC 24
EFMPF DEC 5
FNAME ABC 3,xxxxx See Comment 2
USTAT OCT u User status information (any 16-bit combinatiorU to

be written into the disc directory for the file
ERRNO BSS 1 Return point for error codes

Comments

1. If a CLOSE is requested for a temporary file, the directory information in the Opened-File
Table is deleted and the Work A.tea is automatically repacked. If a file has been copied to the
Work Area, the user status (USTAT) and highest record assessed are not updated on the
original copy of the file.

2. To CLOSE all files in the Opened-File Table set the first word of FNAME equal to a binary
zero.

8-8

EFMPF = 6

READ

Purpose

To retrieve a specified record (random access) or the next record (sequential access) from a file
that has previously been opened and written.

Assembly Language

JSB EXEC
DEF *+7 Return address
DEF RCODE Request code
DEF EFMPF EFMP function code
DEF FNAME File name
DEF RCDNO Record number
DEF BUFFR Buffer for data
DEF ERRNO Error number
return Continue execution

RCODE DEC 24
EFMPF DEC 6
FNAME ASC 3,xxxx
RCDNO DEC n n is a record number between 1 and 32, 767. For

sequential access and backspacing, see Comments.
BUFFR BSS m m is the length of the buffer in words. It must be

at leas~ the record length.
ERRNO BSS 1 Return point for error codes

Comments

If RCDNO = 0, a sequential read or write is implied. This feature provides the program with the
next record available relative to the last read or write performed (or OPEN operation). If RCDNO
is a negative number, it specifies a backspace, relative to the current record (last record accessed
plus 1), before the read or write. If an attempt is made to backspace the record number indicator
to a value less than one, the EFMP issues an error and terminates the read or write. Unless needed,
care should be taken so as not to backspace the record number indicator beyond the range of
records held in the Temporary Record Buffer at that time, since this will initiate a posting oper­
ation and a physical disc access.

8-9

EFMPF = 7

INITIALIZE

Purpose

To initialize an EFMP area previously created by means of a DOS-III STORE directive.

Assembly Language

JSB EXEC
DEF *+6 Return address
DEF RCODE Request code
DEF EFMPF EFMP function number
DEF PAKNO Pack number
DEF DIRSZ Directory size
DEF ERRNO Error number
return Continue execution

RCODE DEF 24
EFMPF DEC 7
PAKNO DEC p (1 ~ p ~ 999)
DIRSZ DEC n (n =number of entries, one entry/file; see Comment 2)
ERRNO BSS 1 Return point for error codes

Comments

L Pack number PNOOO cannot be initialized.

2. The directory occupies the first sector(s) of the EFMP area.

The number of sectors allocated to a directory is determined as follows:

The variable n is used to calculate the number of sectors to be reserved for the directory. It does
not indicate the maximum number of file entries allowed in the directory. If the nth file entry
does not completely fill the last sector of the directory, the space remaining may be used to con­
tain additional file entries.

(l+n)*9
#Sectors = 128

(add 1 to #Sectors if remainder is > zero)

8-10

EFMPF = 8

WRITE

Purpose

To write into a specified record (random access) or into the next record (sequential access) of a
file that has previously been opened.

Assembly Language

JSB EXEC
DEF *+7 Return address
DEF RCODE Request code
DEF EFMPF EFMP function number
DEF FNAME File name
DEF RCDNO Record number
DEF BUFFR Buffer for data
DEF ERR NO Error number
return Continue execution

RCODE DEC 24
EFMPF DEC 8
FNAME ASC 3,xxxxx
RCDNO DEC n Same as for the READ EXEC CALL
BUFFR BSS m Same as for READ
ERRNO BSS 1 Return point for error codes

8-11

EFMPF = 9

RESET

Purpose

To reset the highest record accessed pointer for a file to a lower value. The information beyond the
pointer is lost. The file must be open before it can be reset. (PAKNO below provides an additional
check.)

Assembly Language

JSB EXEC
DEF *+7
DEF RCODE Request code
DEF EFMPF EFMP function code
DEF FNAME File name
DEF PAKNO Pack number
DEF RCDNO Record number
DEF ERRNO Error number
return Continue execution

RCODE DEC 24
EFMPF DEC 9
FNAME ASC 3,xxxxx
PAKNO DEC n If n = 0, EFMP searches the work area to find the

desired file name; if n is a number between 1 and 999,
EFMP searches EFMP area PNn to find the desired
file name; if n = -1, EFMP searches all EFMP areas

RCDNO DEC m mis a number between 0 and 32, 767 to which the
highest record accessed pointer will be set (m must
be lower than the current value)

ERRNO BSS 1 Return point for error codes

8-12

EFMPF = 10

STATUS

Purpose

To allow the user program access to various types of status information relative to EFMP. Several
separate status functions (identified by unique Status Function Numbers) are provided; all have
basically the same form of calling sequence, but they vary in the parameters used.

Assembly Language

RCODE
EFMPF
DUMMY

JSB EXEC
DEF *+9 Return address
DEF RCODE Request code
DEF EFMPF EFMP function code
DEF FSTAT Status function number
DEF FNAME File name
DEF PAKNO Pack number
DEF DUMMY Not used
DEF STA TB Status buffer
DEF ERRNO Error number
return Continue execution

Note: Above is the general format for Status EFMP calls. The use
and meaning of each parameter in the calling sequence varies
from status call to status call. The parameters for each call
are given separately. below. Common to all status functions
are

DEC 24
DEC 10
BSS 1

8-13

FSTAT = 1

STATUS

Purpose

To provide the user with all information, except the security code, contained in the directory for
a file.

Parameters

FSTAT DEC 1
FNAME ASC 3,xxxxx
PAKNO DEC m If m = 0, EFMP searches the Work Area for the

requested file. If m is between 1 and 999, EFMP
searches the EFMP area of that pack number. For
m = -1, EFMP searches all available EFMP areas
for the requested file.

STA TB BSS 10 The pack number is returned in the first word if
PAKNO = -1. The remaining nine words will
receive the directory status information in the
same format as the directory itself (see Figure 7-1).

ERRNO BSS 1 Return point for error code.

8-14

FSTAT = 2

STATUS

Purpose

To determine if a file is open.

Parameters

FSTAT DEC 2
FNAME ASC 3,xxxxx
PAKNO OCT 0 Not used
STA TB BSS 2 The first word returns the pack number if the

file is open. The second word returns a value
of 0 if the file is open or 1 if the file is not
open.

ERRNO BSS 1 Return point for error codes.

8-15

FSTAT=3

STATUS

Purpose

To check the security code of a file.

Parameters

FSTAT DEC 3
FNAME ASC 3,xxxxx
PAKNO DEC m Same as function number 1
STA TB BSS 3 The first word returns the pack number if

appropriate. The second word is used by the
user program to give the security code to be
checked. The third word returns 0 if the code
checks or 1 if it does not check.

ERRNO BSS 1 Return point for error codes.

8-16

FSTAT = 4

STATUS

Purpose

To determine the number of available full sectors left between the highest record accessed in a file
and the end of the file.

Parameters

FSTAT DEC 4
FNAME ASC 3,xxxxx
PAKNO DEC m Same as function number 1
STA TB BSS 2 The first word returns the pack number if

appropriate. The second word returns the
number of sectors available.

ERRNO BSS 1 Return point for error codes.

8-17

FSTAT = 5

STATUS

Purpose

To determine the number of available sectors left between the last file in an EFMP area and the
end of the EFMP area.

Parameters

FSTAT DEC 5
FNAME OCT 0 Not used
PAKNO DEC m Same as function number 1, but cannot equal -1
STA TB BSS 2 The first word must be present, but is not used.

The second word returns the number of sectors
available.

ERRNO BSS 1 Return point for error codes.

8-18

FSTAT= 6

STATUS

Purpose

To obtain the name of the nth file in an EFMP area where n is an integer between 1 and the
maximum number of files in an EFMP area.

Parameters

FSTAT DEC 6
FNAME BSS 3 Return point for file name or all zeroes if no

file is present
PAKNO DEC m mis a number between 1 and 999
STA TB DEC n n indicates the nth file
ERRNO BSS 1 Return point for error codes

8-19

FSTAT = 7

STATUS

Purpose

To obtain the name of the nth pack number on a specific subchannel where n is an integer (specie
fying the ordinal position of the pack number) between 1 and the maximum number of pack
numbers on a subchannel.

Parameters

FSTAT DEC 7
FNAME DEC m m = the desired subchannel

On return, FNAME is zero if the EFMP area of
the pack number is initialized and 1 if the EFMP
area of the pack number is not initialized.

PAKNO BSS 1 Return point for the pack number
STA TB DEC n n indicates the nth pack number.
ERRNO BSS 1 Return point for error codes.

8-20

EFMPF = 11

REPACK (PURGE)

Purpose

To repack the existing files, on an EFMP area(s), removing empty spaces left when files have been
destroyed.

Assembly Language

JSB EXEC
DEF *+5
DEF RCODE Request code
DEF EFMPF EFMP function code
DEF PAKNO Pack number
DEF ERRNO Error number
return Continue execution

RCODE DEC 24
EFMPF DEC 11
PAKNO DEC n For n between 1 and 999, only the specified EFMP

area is repacked; for n = -1, all the EFMP areas
available to EFMP are repacked

ERRNO BSS 1 Return point for error codes

CAUTION: IF THE EFMP DISC DIRECTORY CONTAINS A LARGE NUMBER
OF FILES AND THE SIZES OF THE TEMPORARY RECORD
BUFFERS ARE SMALL, REPACKING MAY REQUIRE CONSIDER­
ABLE TIME. THEREFORE, REPACK SHOULD BE PERFORMED
WHEN SUFFICIENT TIME IS AVAILABLE. UNDER NO CIRCUM­
STANCES SHOULD AN ABORT BE PERFORMED DURING A
REPACK.

8-21

EFMPF = 12

COPY

Purpose

To transfer a copy of an opened file and its directory from an EFMP area to the Work Area of
DOS-III, from one EFMP area to another EFMP area or from the Work Area to an EFMP area.

Assembly Language

JSB EXEC
DEF *+6
DEF RCODE Request code
DEF EFMPF EFMP function code
DEF FNAME File name
DEF PAK.NO Pack number
DEF ERRNO Error number
return Continue execution

RCODE DEF 24
EFMPF DEC 12
FNAME ABC 3,xxxxx See Comment 1
PAK.NO DEC n If n = 0, EFMP copies the file onto the Work Area;

if n is between 1 and 999, EFMP copies the file
into the specified EFMP area; if n is between -1
and -999, EFMP copies the file from the Work
Area to an EFMP area specified by the 10 's
complement of n (see Comment 2)

ERRNO BSS 1 Return point for error codes

Comments

1. Remember that a file must be opened before it can be copied. This is necessary to determine
from which pack to copy the file. When a file has been copied to the Work Area, all reads and
writes referencing that file use the Work Area version until the file is closed. (Files copied
from the Work Area to an EFMP area continue to use the Work Area version for reads and
writes.) Temporary copies of files do not have security codes. Therefore, files copied from the
Work Area to a pack have a security code of 0. When a file is copied from pack to pack, the
original security code is retained. See "CLOSE" for further notes on Work Area files.

8-22

EFMPF = 12

2. If there is already a file with the same name in the destination EFMP area directory, an error
code is returned and the copy is aborted. In this case, the user can first destroy the name in
the destination EFMP area, and then perform the copy again.

3. When copying from one EFMP area to another EFMP area not on the drive (and only a single
removable pack is available), EFMP automatically requests that the user continually swap
packs until the entire file has been copied. EFMP outputs:

INSERT DESTINATION [SOURCE] PACK AND PRESS RUN.

and halts the computer with 102076 in the DISPLAY register.

After the user inserts the appropriate pack and presses RUN, a check is made to determine if
the proper pack has been entered. If EFMP cannot find the correct pack, the message is re­
peated. To allow the user an orderly exit in case the correct pack is not available, the following
question is asked after each question:

ENTER CORT

where C means to continue copying, and

T means to terminate the copy and return to the program.

4. Care must be taken to insert the original pack (if it has been removed during the copy function)
into its original subchannel.

8-23

EFMPF = 13

CHANGE FILE NAME

Purpose

To change a file name (file need not be opened).

Assembly Language

JSB EXEC
DEF *+7
DEF RCODE Request code
DEF EFMPF EFMP function code
DEF FNAME File name
DEF PAKNO Pack number
DEF SCODE Security code
DEF ERRNO Error number
return Continue execution

RCODE DEC 24
EFMPF DEC 13
FNAME ASC 3,xxxxx Current file name

ASC 3,zzzzz New file name
PAKNO DEC n n = 0, indicates that the file is on the Work Area,;

if n is between 1 and 999, n indicates the EFMP
area containing the file; if n = -1, EFMP searches
all available EFMP areas for the current file name

SCODE OCT m Security code, see CREA TE
ERRNO BSS 1 Return point for error codes

8-24

EFMPF = 14

POST

Purpose

To physically write on the disc all buffers that have been flagged as "must be written" in the
Temporary Record Buffer. (That is, convert all outstanding logical writes into physical writes.)

Assembly Language

JSB EXEC
DEF *+4
DEF RCODE Request code
DEF EFMPF EFMP function code
DEF ERRNO Error number
return Continue execution

RCODE DEC 24
EFMPF DEC 14
ERRNO BSS 1 Return point for error codes

Comments

The POST operation updates the highest record accessed pointer in the disc directories, but not
the user status word (USTAT).

8-25

SECTION IX
EFMP Utility Program

'

The EFMP Utility Program (UTIL) allows the user to access most of the EFMP functions through
the keyboard. UTIL accepts commands or directives from the operator and converts these into
EFMP calling sequences. After EFMP has processed the call, UTIL reports back (to the operator) a
successful operation or an EFMP error.

This section describes how to initiate the UTIL program using the DOS-III PROG directive and
then describes the following UTIL commands (presented in alphabetic order):

BRIEF
CHANGE
CLOSE
COPY
CREATE
DESTROY
END
INITIALIZE
OPEN
POST
REPACK
RESET
STATUS-I
STATUS-2
STATUS-3
STATUS-4
STATUS-5
STATUS-6
STATUS-7

All are EFMP functions, except BRIEF and END,
which are UTIL program functions.

Note: UTIL requires the FORTRAN IV version of the Formatter program to
operate properly.

9-1

:PROG,UTIL

Purpose

To initiate execution of the UTIL program.

Format

:PROG, UTIL,n

where n = 0 to print a list of commands or

n f- 0 to skip printing the list.

List of commands message (all parameters are decimal):

/INI,PAKNO,DIRSZ
/CRE,FNAME,PAKNO,FLGTH,RLGTH,SCODE, USTAT
/DES,FNAME,PAKNO,SCODE .
/OPE,FNAME,PAKNO,RCDNO,SCODE
!CLO,FNAME, UST AT
/RES,FNAME,PAKNO,RCDNO
/STA,DF,FNAME,PAKNO
/STA,FO,FNAME
/STA,SC,FNAME,PAKNO,SCODE
/STA,LR,FNAME,PAKNO
/STA,LF,PAKNO
/STA,NF,PAKNO,STATB
/STA.AP
/REP,PAKNO
/COP,FNAME,PAKNO
/CHA,FNAM1,FNAM2,PAKNO,SCODE
/POS
!BRI,FNAME,SCODE
/END

9-2

UTIL begins by outputting a message to indicate that it is ready for a directive:

UTILREADY

After it processes the directive, UTIL outputs the results of the operation (where appropriate) or
any error codes that may have been returned by EFMP. When it is ready for another directive,
UTIL outputs

UTILREADY

If an incorrect directive is entered, UTIL outputs

ILLEGAL OPERATION
UTILREADY

UTIL is terminated when the operator inputs the command /END.

UTIL outputs any error messages on the system console; normal output is output on the list device.

9-3

BRIEF

Purpose

To increase or decrease the amount of disc storage reserved for a file. BRIEF is a UTIL program
function, not an EFMP function.

Format

/BRI, fname,scode

{name is the name of the file, and

scode is the security code of the file.

BRIEF first outputs the status of the file:

AVAILABLE RECS. = m

NEW RECORD COUNT?

The operator inputs either:

RECORDS USED = r

/E to terminate the command and prepare UTIL for more commands,
or

n to change the available record count to n

BRIEF stores the contents of {name on the Work ~rea, destroys the current file, repacks the EFMP
area, and creates and opens a new file. The contents of {name are transferred from the Work Area
to the new file and BRIEF prints out a message:

AVAILABLE RECS. = n RECORDS USED= r

BRIEF then terminates.

Comment

BRIEF creates and uses a temporary file named "t:,.t:,.t:,.t:,.t:,.t:,." (all blanks).

9-4

CHANGE

Purpose

To change the name of a file (i.e., to invoke the CHANGE FILE NAME function of EFMP).

Format

/CHA,fnam1 ,fnam2,pakno,scode

fnam1 is the current file name

fnam2 is the new file name.

See CHANGE FILE NAME EFMP CALL for explanation of other parameters.

EXAMPLE

ICHA,LOB70,XXXXX,120,0

Example print-out:

FILE LOB70 OLD FILE
FILE XXXXX NEW FILE
THE FILE IS ON PACK# 120
THE SECURITY CODE IS 0

9-5

CLOSE

Purpose

To close a previously opened file (i.e., to invoke the CLOSE function of EFMP).

Format

/CLO,fname, ustat

See CLOSE EFMP CALL for explanation of parameters. Note, however, that all the files in the
Opened-File Table cannot be closed by setting the first word of FNAME (in the CLOSE calling
sequence) to a binary zero.

EXAMPLE

/CLO,LOB70,0

Example print-out:

FILE LOB70 CLOSED

THE USER STATUS WORD IS 0

9-6

COPY

Purpose

To copy a file (i.e., to invoke the COPY function of EFMP).

Format

/COP,fname,pakno

See COPY EFMP CALL for explanation of parameters and messages.

EXAMPLE

/COP,LOB70, 120

Example print-out:

FILE LOB70 COPIED
THE FILE IS TEMPORARY IN WORK AREA
FILE LOB70 COPIED
THE FILE IS ON PACK# 120

9-7

CREATE

Purpose

To create a new file (i.e., to invoke the CREATE function of EFMP).

Format

/CRE,fname,pakno,flgth, rlgth,scode, us tat

See CREATE EFMP CALL for explanation of parameters.

EXAMPLE

!CRE,C0,120,8,8,0,0

Example print-out:

FILE CO CREATED
THE FILE IS ON PACK# 120
THE FILE LENGTH IS 8 RECORDS
THE RECORD LENGTH IS 8 WORDS
THE SECURITY CODE IS 0
THE USER STATUS WORD IS 0

9-8

DESTROY

Purpose

To destroy a file by eliminating its directory entry (i.e., to invoke the DESTROY EFMP function).

Format

/DES,fname,pakno,scode

See DESTROY EFMP CALL for explanation of parameters.

EXAMPLE

IDES,C0,120,0

Example print-out:

FILE co DESTROYED

9-9

END

Purpose

To terminate the operation of the UTIL program. END is an UTIL program function, not an EFMP
function.

Format

!END

9-10

INITIALIZE

Purpose

To initialize an EFMP area previously allocated space by means of a DOS-III STORE directive.

Format

/INI,pakno, dirsz

See INITIALIZE EFMP CALL for explanation of parameters.

EXAMPLE

/INI,100,20

Example print-out:

PACK #100 INITIALIZED

9-11

OPEN

Purpose

To OPEN a previously CREATED file (i.e., to invoke the OPEN function of EFMP).

Format

/OPE,fname,pakno,rcdno,scode

See OPEN EFMP CALL for explanation of parameters.

EXAMPLE

/OPE,LOB70,120,1,0

Example print-out:

FILE LOB70 OPENED
THE FILE IS ON PACK# 120
THE RECORD #IS 1
THE SECURITY CODE IS 0

9-12

POST

Purpose

To post files (i.e., to invoke the POST function of EFMP).

Format

/POS

Example print-out:

ALL FILES POSTED

9-13

RESET

Purpose

To reset the highest record number accessed for a file (i.e., to invoke the RESET function of EFMP).

Format

/RES,fname,pakno,rcdno

See RESET EFMP CALL for explanation of the parameters.

EXAMPLE

/RES,LOB70,120,0

Example print-out:

FILE LOB70 RESET
THE FILE IS ON PACK# 120
THE RECORD #IS 0

9-14

REPACK

Purpose

To repack existing EFMP areas (i.e., to invoke the REPACK EXEC CALL function of EFMP).

Format

/REP,pakno

See REP ACK EFMP CALL for explanation of parameters.

EXAMPLES

/REP,42 (repacks EFMP area in pack 42)
/REP, -1 (repacks all EFMP areas)

Example print-out:

PACK# 42 REPACKED

or

ALL PACKS AVAILABLE REPACKED

9-15

STATUS-1

Purpose

To print out directory information about a file (i.e., to invoke STATUS function number 1 of
EFMP).

Format

/STA,DF,fname,pakno.

See STATUS EFMP CALL (FSTAT = 1) for explanation of the parameters and results.

EXAMPLE

/STA,DF,LOB70,120

Example print-out:

FILE LOB70 STATUS
THE FILE IS ON PACK# 120
STARTING TRACK# IS 6
STARTING SECTOR #IS 9
THE FILE LENGTH IS 12 RECORDS
THE RECORD LENGTH IS 128 WORDS
THE USER STATUS WORD IS 0
HIGHEST RECORD #ACCESSED IS 0

9-16

STATUS-2

Purpose

To determine if a file is OPEN (i.e., to invoke STATUS function number 2 of EFMP).

Format

/ST A,FO,fname

See FST AT = 2 for explanation of the parameters and results.

EXAMPLE

/STA,FO,LOB70

Example print-out:

FILE LOB70 STATUS
FILE IS OPEN

9-17

STATUS-3

Purpose

To check the security code of a file (i.e., to invoke STATUS function number 3 of EFMP).

Format

/ST A,SC,fname,pakno,scode

See FST AT=3 for explanation of parameters and results.

EXAMPLE

!STA,SC,LOB70,120,0

Example print-out:

FILE LOB70 STATUS
THE FILE IS ON PACK# 120
THE SECURITY CODE IS 0
CODE CHECKS

Note: The security code returned is a restatement of the security code
entered; it is not necessarily the correct security code.

9-18

STATUS-4

Purpose

To determine the number of available full sectors left between the highest record accessed in a file
and the end of the file (i.e., to invoke STATUS function number 4 of EFMP).

Format

!STA,LR,fname,pakno

See FSTAT=4 for explanation of parameters and results

EXAMPLE

/STA,LR,LOB70,120

Example print-out:

FILE LOB70 STATUS
THE FILE IS ON PACK# 120
OF AVAILABLE SECTORS IS 12

9-19

STATUS-5

Purpose

To determine the number of available sectors left between the last file in an EFMP area and the
end of the EFMP area (i.e., to invoke STATUS function number 5 of EFMP).

Format

/ST A,LF,pakno

See FSTAT=5 for explanation of parameters and results.

EXAMPLE

/STA,LF,120

Example print-out:

FOR PACK# 120
#OF AVAILABLE SECTORS IS 4610

9-20

STATUS-6

Purpose

To obtain the name of the nth file in an EFMP area where n is an integer between 1 and the
maximum number of files in an EFMP area (i.e., to invoke STATUS function number 6 of EFMP).

Format

/STA,NF,pakno,statb

See FSTAT=6 for explanation of parameters and results.

EXAMPLE

/STA,NF,120,1

Example print-out:

FILE LOB70 STATUS
THE FILE IS ON PACK# 120
FILE # 1 IN THE DIRECTORY

9-21

STATUS-7

Purpose

To obtain the name of the nth pack number on a specific subchannel where n is an integer
(specifying the ordinal position of the pack number) between 1 and the maximum number of
pack numbers on a subchannel.

Format

/STA,AP,subch,statb

See FSTAT = 7 for explanation of parameters and results.

EXAMPLE

/STA,AP,1,1

Example print-out:

PACK #120 IS AVAILABLE AND INITIALIZED

9-22

PART 3
Generating and Loading DOS-I/I

SECTION X
Generating DOS-I/I

HP 24307B DOS-III Disc Operating System software must be generated and then loaded into the
computer's memory before DOS-III system operation is possible. Generating a DOS-III system con­
sists of two operations:

1. Configuring the system to the available hardware.

2. Storing the configured system on disc memory.

In addition, the discs included in the system must be formatted before they can be used by DOS-III.

This section describes the procedures required to format a disc and to generate DOS-III system soft­
ware. Both disc formatting and system generation are performed using a stand-alone program, DSGEN.

Depending on the type of moving-head disc device selected for the DOS-III system, generation can be
performed either from relocatable modules and drivers punched on paper tape or contained on a master
disc cartridge. Systems including an HP 7901, HP 2883, or HP 2884 disc device initially must be
generated from paper tape. Systems including an HP 7900 disc device are delivered with a master
disc cartridge (HP part number 24307-13001) labeled DSGEN. The DSGEN disc cartridge con-
tains a DOS-III software system together with a set of relocatable modules and drivers. The cartridge
may be used to generate DOS-III software. A procedure for preparing to generate DOS-III software
from the DSGEN disc cartridge is described later in this section (see "DSGEN Disc Cartridge Sys-
tem Generation").

DSG EN

DSGEN (the DOS-III System Generator) is an absolute program, loaded into main memory by the
paper tape portion of the main-memory loader, BMDL. Since DSG EN input/output is independent
of the DOS-III system it generates, the I/0 operation of DSGEN requires SIO drivers which are
distributed with the DOS-III software. The SIO drivers must be configured to the user's hardware
configuration. A copy of the configured DSGEN program can be punched on paper tape using SIO
System Dump, if desired. SIO drivers and SIO System Dump are absolute programs -- not part of
DOS-III -- needed only for DSGEN operation. An optional utility program which uses SIO drivers
is the Prepare Tape System (PTS). PTS can be used to transfer relocatable modules from paper tape
to magnetic tape to expedite the DSGEN program input phase. DSGEN has two independent
functions:

10-1

1. To format new disc cartridges (or packs).

2. To generate a DOS-III software system that fits the user's main-memory size, I/O equipment,
and programming needs.

DSGEN Configuration

DSGEN is executed in a Software Input/Output (SIO) environment to generate DOS-III. First,
ensure that equipment power is on and disc storage is unprotected (Disc Protect Override enabled).
During DSGEN configuration, programs must be loaded into memory from paper tape using the
main-memory loader, BMDL. BMDL is described in detail in Section XI. A simplified procedure
follows:

A. Place the paper tape into the photoreader and press READ.

B. On the computer front panel, set the P-register to the BMDL starting address 377008 for 16K
words of memory; 577008 for 24K words; or 777008 for 32K words.

C. Press PRESET (INTERNAL and EXTERNAL); then press RUN. After a successful load, the
computer will halt with 102077 8 in the display register.

To configure DSGEN, proceed as follows:

1. Specific SIO drivers must be configured before DSGEN can be executed. To configure a driver:

a. load the driver program into memory via the photoreader using the procedure described
in Steps A through C, above.

b. set the I/O channel select code of the device (lower numbered select code if there are two
I/0 channels) in bits 5-0 of the switch register.

c. start the driver program by setting the P-register to address 28 ; then press RUN. Upon
successful completion of the driver configuration, the computer will halt with 102077 8

in the display register.

2. Configure the SIO console driver (HP part no. 24127-60001) using Steps 1-a through 1-c. (If
the console device is an HP 2754B teleprinter, switch register bit 15 must be set to one at
Step 1-b.)

3. If program input is to be from the photoreader, configure the SIO photoreader driver (HP part
no. 20319-60001) using Steps 1-a through 1-c.

4. If a high-speed paper tape punch is included in the system configure the SIO punch driver
(HP part no. 20320-60001) using Steps 1-a through 1-c.

5. Load DSGEN via the photoreader using the procedure described in Steps A through C.

6. If program input is to be from magnetic tape, configure the SIO magnetic tape driver (HP
part no. 13022-60001) using Steps 1-a through 1-c.

10-2

7. If the system includes a high-speed or console punch, a configured DSGEN can be punched on
paper tape using the following procedure:

a. load the SIO System Dump program (HP part no. 20335-60001) via the photoreader using
the procedure described in Steps A through C.

b. set switch register bit 15 to one.

c. start the SIO System Dump program by setting the P-register to address 28 ; then press
RUN. After tape punching is successfully completed, the computer will halt with 102077 8

in the display register. For an additional copy of the configured DSGEN, press RUN.

8. If the disc or discs to be used by DOS-III have been formatted, DOS-III system generation can
begin immediately. Proceed as follows:

a. Set switch register bit 15 to zero.

b. Set the P-register to DSGEN starting address 1008 .

c. Press RUN. DOS-III system generation dialog begins (see "Using DSGEN to generate
DOS-III").

9. To format discs before executing system generation:

a. Set switch register bit 15 to one.

b. Set the P-register to DSG EN starting address 1008 •

c. Press RUN. The disc formatting dialog begins (see "Using DSGEN to Format Discs").

DSGEN Start-up

To start either disc formatting or DOS-III system generation from a configured DSGEN program on
paper tape:

1. Place the paper tape containing the configured DSGEN program into the photoreader and
press READ.

2. On the computer front panel, set the P-register to the BMDL starting address 377008 for 16K
words of memory; 577008 for 24K words; or 777008 for 32K words.

3. Press PRESET (INTERNAL and EXTERNAL).

4. Press RUN. The program is read in from paper tape. After a successful load, the computer will
halt with 102077 8 in the display register.

10-3

5. For disc formatting:

a. Set switch register bit 15 to one.

b. Set the P-register to the DSG EN starting address 1008 .

c. Press RUN. The disc formatting dialog begins (see "Using DSGEN to Format Discs").

6. For DOS-III system generation:

a. Set switch register bit 15 to zero.

b. Set the P-register to the DSG EN starting address 1008 •

c. Press RUN. DOS-III system generation begins at the initialization phase (see "Using
DSGEN to generate DOS-III").

10-4

USING DSGEN TO FORMAT DISCS

Before a fresh disc can be used in DOS-III, it must be formatted by DSGEN. System discs (including
a possible User Area) are formatted during system generation, but dedicated user discs must be for­
matted by running DSGEN again in a special mode. Formatting a disc involves assigning it a system
generation code, reading every sector, clearing any existing user or system directory, and so forth.
The result is an unlabeled user disc ready for use in DOS-III. The following operator responses are
only examples, actual responses should be appropriate to the particular system being generated.

Operating Instructions

1. Turn on all equipment.

2. Unprotect the disc (enable Disc Protect Override).

3. Load a configured DSGEN using the main-memory resident Bootstrap Loader. (See "DSGEN
Configuration and Start-up" in this section.)

4. Set up a starting address at location 1008 •

5. Set switch register bit 15 equal to 1.

6. Start the computer executing (press RUN).

7. DSGEN asks for a decimal number to be written on the disc
label. This number is used for identification

Operator responds with a 1- to 4-digit decimal number

8. DSGEN requests the octal channel number (select code) of
the disc controller

Operator responds with the appropriate octal number .

9. DSGEN requests the type of disc storage.

Operator responds with 7900, 7901, 2883, or 2883B
(A response of 2883 implies four subchannels per disc

SYS GEN CODE?

...... 79

SYS DISC CHANNEL?

. ... 10

DISC TYPE?

drive; 2883B implies two subchannels per disc drive.) 7900

10. DSGEN requests the subchannel number (0 to 7) of the
user disc to be formatted. USER DISC SUBCHANNEL?

Operator responds with a number between 0 and
7 inclusive

10-5

3

11. DSGEN requests that the disc be unprotected (if it is
still protected). TURN ON DISC PROTECT OVERRIDE - PRESS RUN

Operator unprotects the disc and starts the
computer executing.

12. DSGEN carries out formatting on the specified subchannel
and halts with a code of 102007 8 •

13. This procedure should be repeated for each proposed user disc.

Operator can start the computer (press RUN) to format
a new disc of the same type (switch bit 15 must still be
equal to 1).
DSGEN repeats from USER DISC SUBCHANNEL?

Operator can set switch bit 15 equal to 0 and start the
computer (press RUN) to proceed to system generation.

10-6

USING DSGEN TO GENERATE DOS-Ill

The operation of DSGEN involves four phases:

1. INITIALIZATION PHASE. DSGEN requests specifications for DOS-III, including description
of available disc space, memory, Time-base Generator channel, system generation code, system
and user disc subchannels, and program input devices.

2. PROGRAM INPUT PHASE. DSGEN reads the relocatable programs to be included in the sys­
tem. The relocatable program modules can be input via paper tape, disc, or magnetic tape (the
magnetic tape must be prepared off-line using the Prepare Tape System).

3. PARAMETER INPUT PHASE. Parameters to change EXEC modules or drivers from disc- to
main-memory resident may be entered. The programs' NAM records are already set for a
minimum main-memory system except that DVROO should be changed to disc-resident.
DISCM, $EX30 (if EFMP is used), DVR31 (moving-head disc driver) and DVR05 (system
console driver) must be main-memory resident.

4. DISC LOADING PHASE. DSGEN requests a specification of the base page linkage, and begins
loading programs onto the disc in absolute format. Systems programs (i.e., the modules of
DOS-III) are loaded first, after which DSGEN requests information for the equipment table,
device reference table (logical unit table), and interrupt table and proceeds to load the rest of
the programs onto the disc.

Restart

If an error occurs during execution of any phase, the operator can restart that phase by restarting
DSG EN at location 1008 •

10-7

Initialization Phase

During the initialization phase, DSGEN requests information necessary to begin generating the
DOS-III. After each output on the system console, the operator responds by entering the required
information terminated by a return linefeed. The following responses are typical. (The operator
responses are only examples, actual responses should be appropriate to the particular system being
generated.)

1. DSGEN requests a decimal system generation code. This
code is written in the label field of the system disc for
identification

Operator responds with a 1- to 4-digit decimal integer.

2. DSGEN requests the octal channel number (select code) of

SYS GEN CODE?

. 79

the disc controller . SYS DISC CHNL?

3.

Operator responds with the high priority (low number)
channel

DSGEN requests the type of disc storage .

Operator responds with 7900, 7901, 2883, or 2883B. A response
of 2883 implies four subchannels per disc drive; 2883B implies

. ... 14

DISC TYPE?

two subchannels per disc drive. 7900

4. DSGEN requests the number of tracks (decimal) on the
system disc

Operator responds with a decimal number less than
or equal to 200. (A response of 200 leaves three
tracks as spares. A response less than 200 leaves
extra tracks as spares.)

5. DSGEN requests the number of drives on the system

SYS DISC SIZE?

200

#DRIVES?

If response to Step 3 was 2883, the operator responds with 1 or 2;
if response to Step 3 was 2883B, 7900, or 7901, the operator
responds with a number between 1 and 4 inclusive. 3

6. DSG EN requests the decimal number of the first track
on the system disc which is available to DOS-III

Operator responds

7. DSGEN requests the decimal number of the first sector
available to DOS-III

Operator responds. (The system area cannot begin
before track 0, sector 3)

10-8

. FIRST SYSTEM TRACK?

0

FIRST SYSTEM SECTOR?

3

8. DSGEN requests the subchannel number of the system disc SYS DISC SUBCHNL?

Operator responds with a number between 0 and 7 0

Note: On a 7901 disc, only odd numbered subchannels are available.

9. DSGEN requests the subchannel number of the user disc.
(This may be the same as the system disc.) USER DISC S UBCHNL?

Operator responds with a number between 0 and 7.
(System efficiency increases if the user disc is on a
different drive from the system disc.)

10. DSGEN requests the octal channel number (select code) of
the Time-base Generator

Operator responds with the proper select code or 0
if the Time-base Generator is not present

DSGEN now requests the select code of the privileged­
in terrupt card

Operator responds with the channel (octal) of the privileged
interrupt fence if privileged interrupt is desired; otherwise,
type 0.

11. DSGEN requests the number of DMA channels in the
system

Operator responds with the number of DMA
channels available

12. DSGEN requests the last word of available main memory
in octal

Operator responds

13. DSGEN asks whether SS directives are to be allowed in the
system

Operator responds either YES or NO

14. DSGEN requests the type of primary input unit for relocatable
program modules

Operator responds with PT (for paper tape), TY (for
teleprinter), DF (for disc file), or MT (for magnetic
tape; see PREPARE TAPE SYSTEM (02116-91751)) .

10-9

2

TIME BASE GEN CHNL?

0

PRIV INT CARD CHNL?

0

DMA CHANNELS?

2

LWAMEM?

27677

ALLOW :SS?

YES

PRGM INPT?

DF

15. If the previous answer is DF, DSGEN requests the subchannel
number of the disc containing the relocatable program
modules . INPUT DISC SUBCHNL?

Operator responds with the appropriate subchannel
number. The subchannel must contain a disc (prepared
by a pre-existing DOS-III) whose user area contains only
relocatable modules of DOS-III. By specifying PT to the
next question (LIBR INPT?) the operator can include
programs from the paper tape reader in addition to those
on the disc file

16. DSGEN requests the type of optional input unit for relocatable
program modules

Operator responds with PT, TY, DF, or MT

3

LIBR INPT?

.... PT

Note: Any type of relocatable program can be entered through the Program
Input Unit or the Library Input Unit.

1 7. DSGEN requests the type of input unit for the parameter
input phase

Operator responds with PT or TY

When DSGEN finishes the initialization phase, the computer halts.

10-10

PRAM INPT?

..... TY

Program Input Phase

During the program input phase, DSGEN accepts relocatable programs from the Program Input
Unit and Library Input Unit specified during the initialization phase. The operator selects the
input device by setting switch register bits 0-1 (002 for the Program Input Unit, or 102 for the
Library Input Unit), and places the programs in the input device. Main programs must be entered
prior to their segments. DISCM should be the first module loaded.

The suggested order of tape input is

DOS-III MAIN-MEMORY RESIDENT SYSTEM (DISCM)

DOS/DOS-M I/0 DRIVERS (DVR05, DVROl, ... ETC)

DOS-III EXEC MODULES ($EX01 ...)

EFMP EXEC MODULES (IF DESIRED-$EX30 ...)

DOS-III JOB PROCESSOR/FILE MANAGER (JOBPR)

DOS-III RELOCATING LOADER (LOADR)

DOS-M ASSEMBLER (MAIN CONTROL, SEGMENTD, SEGMENTl, ...)

DOS-M FORTRAN (MAIN CONTROL, PASS 1, ...)

DOS-III EFMP UTIL (IF $EX30 ... AND FORTRAN IV LIBRARY ARE INCLUDED)

RTE/DOS ALGOL

RTE/DOS FORTRAN IV LIBRARY OR RTE/DOS BASIC FORMATTER

RTE/DOS RELOCATABLE PROGRAM LIBRARY (EAU OR FLOATING POINT)

RTE/DOS FAST FORTRAN PROCESSOR (FFP) SUBROUTINE LIBRARY AND $SETP
SYSTEM SUBROUTINE

Any relocatable user programs to be made a permanent part of DOS-III.

Note: When the FFP and $SETP tapes are loaded, ERR OB and ERR05 will
occur and messages will be printed on the console because the entry
point names used by these subroutines replace the FORTRAN and
library subroutine entry point names.

Load the first input module and start the computer executing. When entering paper tape, the
message "*EOT" is output whenever an end-of-tape occurs. The computer halts. Program input can
be switched back and forth between the input units by varying the switch register bits between 002

and 102 before starting the computer.

To terminate the program input phase, the operator must set switch register bits to 012 , and start
the computer. If there are no undefined externals, this message is printed on the system console:

NO UNDEF EXTS

If there are undefined externals, the following message is output:

UNDEF EXTS

10-11

The externals are listed one per line and the computer halts. External references are satisfied by
loading more programs. The operator must set switch register bits to 002 (for Program Input Unit)
or 102 (for the Library Input Unit) and start the computer executing. If the externals are to be left
unsatisfied, set the switch register bits to 012 and start the computer executing.

Note: $EX30 through $EX33 (the EFMP EXEC modules) and $EX36 and
$EX37 (user EXEC modules) are not listed when missing.

Parameter Input Phase

During the parameter input phase, the operator can change selected I/0 drivers and EXEC modules
from disc-memory to main-memory resident. In addition, an optional parameter allows the opera­
tor to change the linking mode for each module. Either current page or base page linking can be
selected.

Because DVROO is a DOS driver, it is distributed as main-memory resident; it should be changed to
disc-resident if DVR05 is included in DOS-III. Any unnecessary I/0 drivers must be eliminated at
this time. If the memory management capability is not desired, delete modules $EX22 and $$MGT
from the system by specifying them as type 8 (see below).

DVR05, DVR31, DISCM, and $EX30 are distributed as main-memory resident modules; they must
not be changed to disc-resident.

Each parameter record has the form:

name,type[,link mode]

where name is the name of the program to be changed.

type is the program type code:
O- System main-memory resident
1 - System disc-resident EXEC modules
3 - User disc resident main
4 - Disc resident I/0 driver
5- User segment

6, 7 - Library
>7 - Program is deleted from the system

link mode is the mode of linking to be performed:
0 - current page linking (default)
non-zero - base page linking

When changing the linking mode, the program type must be specified. An error in either the type
or link mode parameter results in an error message (ERRlO).

10-12

The following modules are designed to execute with base page linking and must not be changed to
current page linking mode:

Program

HP ALGOL
HP Assembler
HP FORTRAN
HP FORTRAN IV

HP DOS-III Job Processor

Module Name

ALGOL
ASMB
FTN
.FTN4 (4K area)
FTN4 (lOK area)
JOBPR

For programs changed to current page linking mode, the programs should be structured into sub­
routines of less than 2048 words (two pages of memory) in length. Current page links are generated
only at the beginning and end of a program. They cannot be inserted into the program area because
the boundary between program code and current page links might occur within a skip or jump
sequence. If a program spans more than two pages, there is no area available for current page links
in the middle pages, so base page links will be used; thus, the potential for greater efficiency is lost.

Parameter input is terminated by entering the slash character followed by the letter E (/E). This
ends the parameter input phase.

EXEC modules and drivers that are often used may be changed from disc- to main-memory resident.
The functions of the EXEC modules are

Module Name Request Codes Function

$EX01 16 Disc work tracks status

$EX02 17 Disc work tracks limits

$EX03 6 Program completion

$EX04 7 Program suspension and associated messages

$EX05 8,10 Program main or segment search

(Note: $EX05 calls $EX10)

$EX06 18 User file name search

$EX07 11 Current time processor

$EX08 4 (RT) Real-time disc allocation

$EX09 :EQ processor

$EX10 8,10 Load and execute main program or segment

(Note: see also $EX05)

$EX11 14,15 System file name search

(Note: used for file read/write)

$EX12 System startup

10-13

Module Name Request Codes Function

$EX13 Error message processor

$EX14 :UP, :DN, :LU processor

$EX15 Abort and post-mortem dump

$EX16 : GO parameter processor

$EX17 23 : UD processor

$EX18 1,2,3, I/O initiation processor
14,15 (Note: See also $EX11)

$EX19 :IN processor

$EX20 Disc parity processor

$EX21 32,33,34 Programmatic file control

$EX22 35,36,38,41 Memory management

Functions of EFMP EXEC Modules

$EX30

$EX31

$EX32

$EX33

Always main-memory resident (common routines and values).

DEFINE,CREATE,DESTROY,OPEN,CLOSE

READ, WRITE, RESET, STATUS, CHANGE

COPY, REPACK

When changing program types, it is not necessary to explicitly specify all subroutines called by an
EXEC module which is made main-memory resident. The generator automatically makes the
proper linkages. In addition to making the subroutine main memory resident, the generator places
it in the system library, thus making it available to user programs.

10-14

Disc Loading Phase

1. DSGEN asks for the number of base page links #LINKS?

The operator responds with the decimal number of
links. If the operator responds with a blank character,
DSGEN allocates the maximum number of links (800)

Loading of the absolute, resident supervisor begins after the establishment of the user and
system linkage areas. As each program is loaded, DSGEN prints a memory map giving the
starting and ending locations of both main memory and base page portions of the program.
In addition, if bit 15 is set (ON), the entry points for main programs and subroutines are
printed. (Subroutines are indented two spaces, and entry point addresses are preceded by
an asterisk.)

540

2. DSGEN requests memory management subsystem names . . ENTER SUBSYSTEM NAMES

The operator responds with a series of one line entries which specify the
subsystem name (1-4 characters) of each subsystem that utilizes memory
management (see :MMGT directive). Terminate the input list with the
characters "/E"

Note: Next, DSGEN generates the three l/O tables; equipment table,
device reference table (logical unit table) and the interrupt table.

SUB3
SUB7
IE

3. DSGEN requests the equipment table entries *EQUIPMENT TABLE ENTRY

Operator responds with a series of one-line EQT entries, which
are assigned EQT numbers sequentially from one as they are
entered. The EQT entry relates the EQT number to an I/O
channel and driver, in this format ... nn,DVRnn[,D] [,u]

where nn is the octal channel number (lower number if multi-board, maximum is 37 8)

DVRnn is the driver name (nn is the equipment type code)

D, if present, means DMA channel required

u is the physical subchannel (unit) number (valid responses; 0-31)

Operator terminates the equipment table entries by typing .

Here is a sample Equipment Table:

*EQUIPMENT TABLE ENTRY
10,DVR31,D (EQT entry #1 =disc)
12,DVR23,D (EQT entry #2 =magnetic tape)
14,DVR05 (EQT entry #3 =system console)
15,DVROl (EQT entry #4 = photoreader)
16,DVR02 (EQT entry #5 = tape punch)
17,DVRl 2 (EQT entry #6 = line printer)
IE (End of table)

10-15

...... IE

4. DSGEN requests the logical unit assignments for the device
reference table. *DEVICE REFERENCE TABLE

For each logical unit number, DSGEN prints n =EQT#?

Operator responds with an EQT entry number (m)
appropriate to the standard definition of n. Numbers
above 6 may be assigned any EQT entry desired

Operator terminates entry by typing

Here is a sample Device Reference Table:

*DEVICE REFERENCE TABLE
1 = EQT#? (System console on channel 14, EQT #3)
3

2 = EQT#? (Disc on channel 10, EQT #1)
1

3 = EQT#? (Disc on channel 10, EQT #1-reserved for system use)
1

4 EQT#? (Standard punch unit on channel 16, EQT #5)
5

5 EQT#? (Standard input unit on channel 15, EQT #4)
4

6 EQT#? (Standard list unit on channel 1 7, EQT #6)
6

7 EQT#? (Standard unit definable by user)
2

8 EQT#? (End of table)
IE

Note: The number of responses given here determines the number of logical
units allowed in the system. To allow unassigned logical units for the
user, respond with a 0 to as many questions as units are desired.

m

IE

5. DSGEN requests the interrupt table entries. *INTERRUPT TABLE

where

Operator responds with an entry for each 1/0 channel which
may interrupt; in ascending order and in the format

n 1 is the octal channel number (high number if multi-board) between 108 and 37 8

inclusive (must be entered in ascending order)

option directs the system in handling the interrupt:

EQT,n2 relates the channel to EQT entry number n2,

ABS, value places an absolute octal value in the interrupt location. value is an
octal integer.

ENT,entry transfers control to the entry point of a user-written system program
upon interrupt (typically the P.xx entry of a privileged 1/0 driver).

If 2883B was specified as the disc type (see "Initialization Phase," step 3) and a second con­
troller is added, the octal channel number of both controllers must be specified.

The operator terminates entry by typing IE

10-16

Here is a sample Interrupt Table:

6.

*INTERRUPT TABLE
1 O,ENT,P. 73
12,EQT,1
13,ABS, 102077
14,EQT,4
15,EQT,5
16,ABS,O
IE

(Channel 10 linked to privileged interrupt routine P. 73)
(Channel 12 linked to EQT #1)
(Channel 13 interrupt location filled with an octal halt instruction)
(Channel 14 linked to EQT #4)
(Channel 15 linked to EQT #5)
(Channel 16 interrupt location filled with a NOP; all zeros)
(End of table)

Note: The EQT numbers need not appear in numerical order. This order
is determined by referring back to the Equipment Table. The octal
channel numbers, however, must be in ascending sequence.

Following the completion of the I/O tables, DSGEN loads the disc-resident executive modules
(if any), and the disc-resident I/0 drivers (if any).

DSGEN reports the last octal address plus 1 of the system
base page link area LWA LINKS YYYYY

7. DSGEN requests the first word base page octal address
of the user link area FWA USER LINKS?

Operator responds with an octal address greater than
or equal to yyyyy and less than 20008 • • • • • mmmmm

8. DSG EN reports the last octal address plus 1 of the main-memory
resident system LWA PROG xxxxx

9. DSGEN requests the octal address of the first word of the
user program area FWA USER?

Operator responds with an octal address greater than
or equal to xxxxx. (This option is provided so that user
programs can start on a page boundary, if desired) . . . nnnnn

DSGEN proceeds to load all user main programs and segments onto the disc with memory map
listings as described for system programs.

10. When system generation is complete, DSGEN reports * SYSTEM STORED ON DISC

11. Protect the disc (enable Disc Protect) to prevent access to the system portion of the disc.

12. The DOS-III system which has just been generated (in this case, on Subchannel 0) must be
loaded into main memory. This is accomplished by using BMDL (see Section XI).

Note: If a configured DOS-III system resides on a disc starting at head 0, track 0,
simply press RUN. The system will execute and halt with 1020778 in the
Memory Data register. Then, set the switch register to the subchannel of
the newly generated system (in this case, Subchannel 0), press PRESET
(INTERNAL and EXTERNAL) and press RUN. The newly generated
DOS-III system will be automatically loaded into memory.

10-17

Sample System Generation

SYS GEN CODE?
0103

SYS DISC CHNL?
15

DI SC TYPE?
7900

SYS DI SC SI Z E?
200

II DRIVES?
2

FIRST SYSTEM TRACK?
0
FIRST SYSTEM SECTOR?
3

SYS DISC SUBCHNL?
3

USER DISC SUBCHNL?
3

TIME BASE GEN CHNL?
14

PRIV INT CARD CHNL?
11

II OMA CHANNELS?
2

LWA MEM?
77677

ALLOW : SS?
YES

PRGM INPT?
DF
INPUT DISC SUBCHNL?
1

LIBR INPT?
PT

10-18

PRAM INPT'?
TY

NO UNDEF EXTS

ENTER PROG PARAMETERS

$EX 18, 0
IE

II LINKS?
800

SYSTEM

NAME

DISCM
$TIME
$SETP
$PFAL

<BOUNDS>

DVR31

<BOUNDS>

F4D.C

<BOUNDS>

F2F.B

<BOUNDS>

PROG BOUNDS

05231
05362
05403

02000 05406

05406 06127

06127 06127

06127 06127

BP BOUNDS

00574
00574
00574

00337 00574

00574 00635

00635 00635

00635 00635

10-19

DVR00

<BOUNDS> 06127 06600

DVR70

<BOUNDS> 06600 07022

$EX 18

<BOUNDS> 07022 07712

$$MGT

<BOUNDS> 07712 10523

ENTER SUBSYSTEM NAMES

/E

* EQUIPMENT TABLE ENTRY

10,, DVR70
12,, DVR00

13,, DVR0 J
15.1DVR31.1D
17.1DVR12
20,, D\TR 11,, D
21,, DVR23,, D
23,, DVR02
/E

00635 00637

00637 00642

00642 00642

00642 00667

10-20

* DEV I CE REFERENCE TABLE

l = EQT #?
2

2 = EQT II?
4

3 = EQT #?
4

4 = EQT #?
8

5 = EQT II?
3

6 = EQT II?
5

7 = EQT #?
6

8 = EQT #?
7

9 = EQT #?
IE

* INTERRUPT TABLE

10.tENT,,P.70
12,. EQT,, 2
13,, EQT,, 3
16,,EQT,4
17,EQT,,5
20,, EQT,, 6
22,, EQT, 7
23,, EQT, 8
/E

EXEC SUPERVISOR MODULES

NAME

$EX21
$SRCH

<BOUNDS>

PROG BOUNDS

117 34

11034 12375

BP BOUNDS

00670

00667 00713

10-21

$EX01
$ADDR 1112 1 00670

CBOUNDS> 11034 11136 00667 00670

$EX02
$ADDR 11124 00670

<BOUNDS> 11034 1114 1 00667 00670

$EX03

<BOUNDS> 11034 11105 00667 00667

$EX04
.A.SCI I 11426 0067 1

CBOUNDS) 11034 11550 00667 00671

$EX05
$$RCH 1 11 1 7 00670

CBOUNDS> 11034 I 1560 00667 00670

$EX06
$SRCH 1 1 136 0067 1
$ADDR 11577 00671

<BOUNDS> 11034 1 1614 00667 00671

$EX07
$.ADDR 11221 00670

<BOUNDS> 11034 11236 00667 00670

$EX08
$ADDR 11207 00670

CBOUNDS> 11034 11224 00667 00670

10-22

$EX09
ASCII 11433 00671

<BOUNDS> 11034 11555 00667 00671

$EX 10

<BOUNDS> 11034 11372 00667 00667

$EX 11
$SRCH 11057 00670

<BOUNDS) 11034 11520 00667 00670

$EX 12

CBOUNDS) 11034 11320 00667 00667

$EX 13
ASCII 1 1 4 1 1 00671

CBOUNDS> 11034 11533 00667 00671

$EX 14
ASC! I 115 57 00670

<BOUNDS> 11034 11701 00667 00671

$EX 15
ASCII 11403 00670

<BOUNDS> 11034 11525 00667 00671

$EX 16

<BOUNDS> 11034 1116 5 00667 00667

10-23

$EX 17
$LBL 11424 00672

CBOUNDS> 11034 11532 00667 00674

$EX 19
$LBL 11427 00674

CBOUNDS> 11034 11535 00667 00674

$EX20

CBOUNDS> 11034 11520 00667 00667

$EX22

<BOUNDS> 11034 13134 00667 00705

I/0 DRIVER MODULES

NAJl.fE PROG BOUNDS BP BOUNDS

DVR01

CBOUNDS> 13134 13525 007 13 007 15

DVR02

CBOUNDS> 13134 13361 00713 00715

DVR 11

CBOUNDS> 13134 14053 00713 00724

DVR12

CBOUNDS> 13134 13521 00713 00715

10-24

DVR23

CBOUNDS> 13134 13752

LWA LINKS 00724

FWA USER LINKS?
724

LWA PROG

FWA USER?
16000

14053

USER SYSTEM PROGRAMS

NA?.!E

LOADR
.EAU.
DUMRX

CBOUNDS>

ASMB

CBOUNDS>

ASMBD

CBOUNDS>

ASMBl

CBOUNDS>

ASMB2

CBOUNDS>

PROG BOUNDS

27501
27551

16000 27631

16000 23131

23131 23741

23131 24553

23131 24570

00713 00715

BP BOUNDS

01422
01426

1210724 01426

00724 01303

01303 01304

01303 01347

01303 01331

10-25

ASMB3

CBOUNDS> 23131 24002 01303 01307

ASMB4

CBOUNDS> 23131 24040 01303 01311

ASMBS

CBOUNDS> 23131 24445 01303 01326

XREF
eOPSY 21230 01013
DUMRX 21270 01015

(BOUNDS) 16000 21350 00724 01015

FTN4

CBOUNDS> 16000 31170 00724 01272

F4.0

<BOUNDS> 31170 37041 01272 01354

F4. 1

CBOUNDS) 31170 34732 01272 01406

F4.2

CBOUNDS> 31170 36260 01272 01370

10-26

XDISC
.swcH 20620 01041
FMTIO 20637 01041
INDEX 22070 01 101
.PRAM 22246 01101
EXECX 22356 01101
IN I TX 22402 01101
FLIB 22441 01101
.FLUN 22544 01107
.xFER 22565 01107
DBLE 22631 01110
SNGL 22666 01112
FRMTR 22734 0 1113
.QPSY 25474 01360
•EAU. 25534 01360
DUMRX 25604 01361
.zRLB 25664 01361
eXPAK 25725 01361
.ENTR 26122 01373
.PACK 26212 01374
.xcoM 26326 fZI 1374

CBOUNDS> 16000 26377 00724 01374

JOBPR

CBOUNDS> 16000 30422 00724 01401

*SYSTEM STORED ON DISC

10-27

DSGEN DISC CARTRIDGE SYSTEM GENERATION

Each HP 24307B DOS-III Disc Operating System with an HP 7900 Disc device included in the sys­
tem hardware is delivered with a disc cartridge labeled DSGEN (HP part number 24307-13001).
The DSGEN cartridge contains a DOS-III software system together with a set of modules with which
to generate a DOS-III software system in the computer's memory.

Care must be taken to protect the contents of this disc from modification or destruction. The
DSGEN cartridge can be copied to another disc and then set aside. Modification can then be made
to the copy without affecting the original disc. The procedure for preparing the DSGEN cartridge
contents for system generation follows.

If modules not included on the DSGEN cartridge are required, they must be loaded into the system
from another type of input unit during the system generation procedure.

To prepare for system generation using the DSGEN disc cartridge, proceed as follows:

1. The I/0 PCA boards must be arranged according to the select codes specified by the label on
the DSGEN cartridge. For example:

Select Codes

11 7900 DISC
10 SYSTEM CONSOLE

The example indicates that the HP 7900 disc device resides in select codes 11 and 12, and the
system console device resides in select code 10.

2. Load and configure the Stand-alone Paper Tape Bootstrap Loader to the system hardware.

3. Insert the DSGEN cartridge in the HP 7900 Disc device.

4. Load DOS-III from Subchannel 1 and initiate it using the Stand-alone Paper Tape Bootstrap
Loader.

Once DOS-III is initiated, a dialog between the system and the operator begins on the system console.
In the following example, information typed by the operator is underlined, and information printed
by the system is not underlined. These underlines will not appear on the terminal under actual
operating conditions.

10-28

5. The DOS-III system begins the dialog by requesting the DATE directive:

INPUT :DATE,XXXXXXXXXX

@:DATE,,
SUBCHAN=l
LBL=DSGEN
@

:JOB
JOB
@

:UD,*,O
@

:IN,*
@

:UD,DSGEN,1
@

:UD
SUBCHAN=l
LBL=DSGEN
@

:DD
@

:UD,*,O

DATE directive entered

JOB directive entered

Change user disc to Subchannel 0, no label

Initialize user disc, no label

Change user disc to Subchannel 1, label is DSGEN

Verify correct subchannel and label

Disc-to-disc dump of disc on Subchannel 1

Destination disc for dump operation.

6. Wait for the system to respond with @ to indicate that the entire contents of Subchannel 1
have been copied to Subchannel 0.

7. Press HALT.

8. Remove the DSGEN cartridge from the HP 7900 Disc device.

9. Insert a disc cartridge to be used for subsequent DOS-III system generation.

10. Load DOS-III from Subchannel 0 and initiate it using the Stand-alone Paper Tape Bootstrap
Loader.

11. System dialog begins:

INPUT :DATE,XXXXXXXXXX

@:DATE,,
SUBCHAN=O
LBL=DSGEN
@

:JOB
JOB
@

:LIST,S,1,INDEX

DATE directive entered

JOB directive entered

List user source file, INDEX on the console (the
following list is an example)

10-29

0001 DOS III B (24307B) REV 1419
0002 THIS INDEX RELATES THE NAMES OF THE RELOCATABLE MODULES
0003 TO THE PART NUMBERS OF THE EQUIVALENT PAPER TAPES AND
0004 INDICATES THE PURPOSE OF THE MODULES IN THE SYSTEM.
0005 NAME PART NUMBER REV DESCRIPTION
0006 DISCM 24307-16002 1419 DISC MONITOR
0007 $EXMD 24307-16003 1419 EXEC MODULES
0008 DVR00 20985-60001 1419 TTY-LIKE CONSOLE/TERMINAL
0009 DVR01 20987-60001 1419 PAPER TAPE READER
0010 DVR02 20989-60001 1419 PAPER TAPE PUNCH
0011 DVR05 24157-60001 1419 TTY-LIKE CONSOLE
0012 D2892 24272-60001 1419 2892B CARD READER (DVRll)
0013 D2767 24168-60001 1419 2767A LINE PRINTER (DVR12)
0014 D2610 24271-60001 1419 2610A/2614A LINE PRINTER (DVR12)
0015 D2607 24349-60001 1419 2607A LINE PRINTER (DVR12)
0016 DVR23 13024-60001 1419 7970B/E MAG TAPE
0017 DVR26 24333-60001 1419 2762A CONSOLE PRINTER
0018 DVR31 24156-60001 1419 7900/7901/2870 DISC
0019 DVR67 24341-16001 1419 12889A HS SERIAL IF
0020 DVR72 24350-16001 1419 12587B ASYNC DATA SET IF
0021 DVR73 24377-16001 1419 12920A/B MUX
0022 EFMP 24309-60002 1419 EXT FILE MGR EXEC MODULES
0023 24309-60003 1419 EXT FILE MGR UTILITIES
0024 JOBPR 24307-16004 1419 JOB PROCESSOR
0025 RLODR 24308-60001 1419 RELOCATING-LINKING LOADER
0026 ASMB 24158-60001 B ASSEMBLER
0027 24158-60002 B
0028 24158-60003 B
0029 24158-60004 B
0030 24158-60005 B
0031 24158-60006 B
0032 24158-60007. B
0033 .FTN4 24170-60001 C
0034 24170-60002 c
0035 24170-60003 c
0036 FTN4 24177-60001 B
0037 24177-60002 B
0038 ALGOL 24129-60001 C
0039 24129-60002 c
0040 XREF 24223-60001 B
0041 F2E.N 24151-60001 D
0042 F2F.N 24248-60001 B
0043 F4D.N 24152-6r001 C
0044 FFP.N 12907-1~001 A
0045 ATD01 24381-16001 1419
0046 DVR33 24278-60001 1419
0047 MASMB 24332-60001 1419
0048 WCSUT 24333-60001 A
0049 MDBUG 24334-60001 1419
**** LIST END ****

FORTRAN IV COMPILER

FORTRAN IV COMPILER (10K AREA)

ALGOL COMPILER

CROSS REF TABLE GENERATOR
RELO SUBR (EAU) LIBR
RELO SUBR (FP) LIBR
RELO SUBR (FTN4) LIBR
RELO SUBR (FFP) LIBR
ASYNC TERMINAL DRIVER #1
12908 WCS DRIVER
12908 WCS MICRO ASSEMBLER
12908 WCS I/O UTILITIES
12908 WCS DEBUG EDITOR

1~30

At this point, use the list printed to select those modules which are to be included in the system to
be generated. The PURGE directive is used to flag modules and drivers for deletion. Some guide­
lines for building a DOS-III system follow.

a. These modules must be included in every system:

DISCM
$EXMD
DVROl

DVROO}
DVR05
DVR26
DVR31
JOBPR
EFMP

F2E.N)
F2F.N

Choose One,

Choose One,

Disc Monitor
EXEC Modules
Paper Tape Reader Driver

System Console Driver

Disc Device Driver
Job Processor
Include if EFMP or IMAGE is desired

(
EAU
Floating-point Arithmetic

b. These driver modules are required if the associated peripheral device is included in the system
to be generated:

D2767)
D2610
D2607
DVR23
DVR02
D2892
DVR67
DVR72
DVR73
DVR33

{
DVR12 - HP 2767 Line Printer Driver

Choose One, DVR12 - HP 2610/2614 Line Printer Driver
DVR12 - HP 2607 Line Printer Driver
HP 7970A/B/E Magnetic Tape Driver
HP 2895/2753 Paper Tape Punch Driver
DVRll - HP 2892 Card Reader Driver
HP 12889A Interface Driver
HP 12587B Interface Driver
HP 12920A/B MUX Driver
HP 12908A WCS Driver

c. These modules are normally included during system generation, but may be run from the user
area instead:

RLODR
ASMB
ALGOL
FTN4
F4D.N

FFP.N

XREF

Relocating/Linking Loader
Assembler
ALGOL Compiler
FORTRAN IV Compiler
FOR TRAN IV Library - Required in addition to the

library selected under point a above if FORTRAN IV
or EFMP is included in the system to be generated.

FFP Library - Required if the FFP option is present
(this module must appear in the directory after F4D.N).

Cross Reference Table Generator

d. These modules should be included if WCS is present:

MAS MB
WCSUT

HP 12908 WCS Micro-assembler
HP 12908 WCS 1/0 Utilities

10-31

e. These modules must be deleted from the cartridge on Subchannel 0 under specific conditions:

FFP.N
F2F.N
MD BUG

If FFP hardware is not present
If Floating Point hardware is not present
HP 12908 WCS Micro Debug Editor (run only from the

user area)

Any drivers not required by the system to be generated.

f. This module must be deleted from the cartridge on Subchannel 0:

INDEX

In the dialog following, assume that a DOS-III system is to be generated which includes these
modules:

DIS CM
$EXMD
DVROl
DVR02
DVR03
D2767
DVR23
DVR31
JOBPR
RLODR
ASMB
FTN4
XREF
F2F.N
F4D.N

The dialog continues from the @ symbol at the end of Step 11:

:PURGE,EFMP,DVROO,DVR26,F2E.N,D2892,D2610,D2607
EFMP
DVROO
DVR26
F2E.N
D2892
D2610
D2607
@

10-32

:PURGE,DVR67,DVR72,DVR73,ALGOL,FFP.N,ATD01,DVR33
DVR67
DVR72
DVR73
ALGOL
FFP.N
ATDOl
DVR33
@

:PURGE,.FTN4,MASMB,WCSUT ,MDBUG
.FTN4
MAS MB
WCSUT
MD BUG
@

:PURGE,INDEX
INDEX
@

:LIST,U,1 List the user directory on the console

NAME TYPE SCTRS DISC ORG PROG LIMITS B.P. LIMITS
SUBCHAN=.0
DISCM RB .0.0 ,02 6 T,0,0 7 .0.0.0
$EXMD RB .0~1,08 T,0,07 ,026
DVR,01 RB .0.0 .0.04 T,0,09 ,043
DVR,02 RB .0.0.0.03 T,0,09 ,047
DVR,05 RB .0.0.0.0 3 T,01,0 ,0,02
02767 RB .0.0.0.04 T.01.0 ,011
DVR23 RB .0.0.0.06 TfH.0 ,027
DVR31 RB .0.0.0.05 T,01,0 ,037
JOBPR RB .0.0.081 T,015 .0fb.0
RLODR RB .0.0.059 T,016 ,033
ASMB RB .0.0.088 T,017 ,044
FTN4 RB .0.0177 T,024 ,028
XREF RB .0.0.02 3 T,0 3,0 .0.0 6
F2F.N RB .0.0113 T,033 ,0,04
F4D.N RB .0.0148 T,035 ,021
@

:EJOB Terminate current job
END JOB
@

ENTRY FWAM

The modules residing on Subchannel 0 are ready to be used for DOS-III system generation. Proceed
as follows:

PB

1. Load the DSGEN program from paper tape using the Stand-alone Paper Tape Bootstrap Loader.

2. If the DSGEN program loaded is not configured, perform the procedure under "DSGEN Con­
figuration" presented earlier in this section.

10-33

3. Use DSGEN to format the disc cartridge on Subchannel 1. When this step is completed, the
computer will halt with 1020778 in the Memory Data register.

4. Use DSGEN to generate a DOS-III system on Subchannel 1. Proceed as directed under "Using
DSGEN to Generate DOS-III" in this section.

After DOS-III system generation is completed, modules to be run from the user area of disc memory
can be retrieved from the master DSGEN cartridge. For example, if WCS is present in the system,
the modules WDBUG and ATDOl may be loaded into the user area as follows:

1. Insert the master DSGEN disc cartridge in the HP 7900 Disc device.

2. Load DOS-III from Subchannel 0 and initiate it using the Stand-alone Paper Tape Bootstrap
Loader.

3. System dialog begins:

INPUT :DATE,XXXXXXXXXX

@:DATE,,
SUBCHAN=O
LBL=DSGEN
@

:UD,DSGEN,l
@

:DD,U,MDBUG,ATDOl
@

:UD,*,O
@

:LIST,U,1

DATE directive entered

Change user disc to Subchannel 1, label is DSGEN

Disc-to-disc dump of specified files from user area

Destination disc for dump operation

List user directory to verify that modules were copied

4. The system will print a list of the user directory on the console.

10-34

Sample DSGEN Cartridge Preparation and System Generation

INPUT :DATE .. XXXXXXXXXX

@:DA
SUBCHAN= 1
LBL=DSGEN
@

: JOB
JOB
@

:UD.1*.10
LBL=SYSTEM

..

DISC GEN CODE 6500 NOT SYS GEN CODE 0529 ERR POSS
RE-ENTER STATEMENT ON TTY·
@

:UD .. SYSTEM .. 0
DISC GEN CODE 6500 NOT SYS GEN CODE 0529 ~RR POSS
@

: IN .. *
DOS LABEL SYSTEM
OK TO PURGE?
YES
@

: UD.1 DS GEN, 1
@

:UD
SUBCHAN= 1
LBL=DSGEN
@

:DD
@

:UD.1*.10
@

INPUT :DATE .. XXXXXXXXXX

@:DATE .. ,
SUBCHAN=0
LBL=DSGEN
@

:JOB
JOB
@

..

10-35

:LIST .. s .. 1 .. INDEX

0001 DOS III B C24307B> REV 1419
0002 THIS INDEX RELATES THE NAMES OF THE RELOCATABLE MODULES
0003 TO THE PART NUMBERS OF THE EQUIVALENT PAPER TAPES AND
0004 INDICATES THE PURPOSE OF THE MODULES IN THE SYSTEM.
0005 NAME PART NUMBER REV DESCRIPTION
0006 DISCM 24307-16002 1419 DISC MONITOR
0007 $EXMD 24307-16003 1419 EXEC MODULES
0008 DVR00 20985•60001 1419 TTY-LIKE CONSOLE/TERMINAL
0009 DVR01 20987-60001 1419 PAPER TAPE READER
0010 DVR02 20989-60001 1419 PAPER TAPE PUNCH
0011 DVR05 24157•60001 1419 TTY-LIKE CONSOLE
0012 02892 24272-60001 1419 2892B CARD READER CDVRll>
0013 02767 24168-60001 1419 2767A LINE PRINTER CDVR12>
0014 02610 24271•60001 1419 2610A/2614A LINE PRINTER CDVR12>
0015 02607 24349-60001 1419 2607A LINE PRINTER CDVR12>
0016 DVR23 13024-60001 1419 7970B/E MAG TAPE
0017 DVR26 24333-60001 1419 2762A CON SOLE PRINTER
0018 DVR31 24156-60001 1419 7900/7901/2870 DISC
0019 DVR67 24341-16001 1419 12889A HS SERIAL IF
0020 DVR72 24350-16001 1419 12587B ASYNC DATA SET IF
0021 DVR73 24377-16001 1419 12920A/B MUX
0022 EFMP 24309-60002 1419 EXT FILE MGR EXEC MODULES
0023 24309-60003 1419 EXT FILE MGR UTILITIES
0024 JOBPR 24307-16004 1419 JOB PROCESSOR
0025 RLODR 24308-60001 1419 RELOCATING-LINKING LOADER
0026 ASMB 24158-60001 B ASSEMBLER
0027 24158-60002 B
0028 24158-60003 B
0029 24158-60004 B
0030 24158-60005 B
0031 24158-60006 B
0032 24158-60007 B
0033 .FTN4 24170-60001 C FORTRAN IV COMPILER
0034 24170•60002 c
0035 24170-60003 c
0036 FTN4 24177-60001 B FORTRAN IV COMPILER C10K AREA>
0037 24177-60002 B
0038 ALGOL 24129-60001 C ALGOL COMPILER
0039 24129-60002 c
0040 XREF 24223-60001 B CROSS REF TABLE GENERATOR
0041 F2E•N 24151-60001 D RELO SUBR <EAU> LIBR
0042 F2F•N 24248-60001 B RELO SUBR CFP > LIBR
0043 F4D•N 24152-60001 C RELO SUBR CFTN4> LIBR
0044 FFPeN 12907-16001 A RELO SUBR CFFP> LIBR
0045 ATD01 24381-16001 1419 ASYNC TERMINAL DRIVER #1
0046 DVR33 24278-60001 1419 12908 WCS DRIVER
0047 MASMB 24332-60001 1419 12908 WCS MICRO ASSEMBLER
0048 WCSUT 24333-60001 A 12908 WCS 1/0 UTILITIES
0049 MDBUG 24334-60001 1419 12908 WCS DtBUG EDITOR
**** LIST END ****

10-36

:PU,DVR00,DVR26,F2f.N,EFMP,D2767,D2610,D2892,DVR67,DVR7J,~VR72

DVRl2l0
DVR26
F2F .N
EFMP
D2767
D26112l
D2892
DVR67
DVR73
DVR72
@

:PU,DVR3J,.FTN4,ALGOL,FFP.N,ATD01,MASM8,~CSUT,MD8UG

DVR33
·FTN4
ALGOL
FFP.N
ATD01
MAS MB
'WCSUT
MDBUG
@

:PU, INDEX
INDEX

:LISr,u, l

NAME TYPE
SUBCHAN=0
DISCM RB
$EXMD RB
DVR1211 RB
DVR02 RB
DVR05 RB
D2607 RB
DVR23 RB
DVR31 RB
JOB PR RB
RLODR RB
ASMB RB
FTN4 RB
XREF RB
F2E.N RB
F4D·N RB
@

:EJOB
END JOB

•

SCTRS DISC ORG PROG LIMITS B.p. LIMITS

0012126 T007 000
00108 T007 026
00004 T009 12143
00003 T009 047
00003 T0112l 002
0012106 Tl2ll0 021
1210006 T121I121 027
012101215 T121l12l 12137
121012181 T015 000
0121059 T016 033
0012188 T017 044
00177 Tl2l24 028
12112112123 T0312l 006
00119 T0312l 12129
121121148 T035 021

10-37

ENTRY FwAM PLI

Preparation of the DSGEN cartridge is completed. Proceed as directed under "Using DSGEN to
Generate DOS-III" in this section. Sample generation dialog follows:

SYS GEN CODE?
4000

SYS DISC CHNL?
1 1

DISC TYPE?
7900

USER DISC SUBCHNL?
1

SYS GEN CODE?
4000

SYS DISC CHNL?
1 1

DISC TYPE?
7900

SYS DISC SIZE?
200

II DRIVES?
1

FIRST SYSTEM TRACK?
0
FIRST SYSTEM SECTOR?
3

SYS DISC SUBCHNL?
1

USER DISC SUBCHNL?
1

TIME BASE GEN CHNL?
1 7

PRIV INT CARD CHNL?
0

I DMA CHANNELS?
2

10-38

L'WA MEM?
3 7677

ALLOW :SS?
YES

PRGM INPT?
DF
INPUT DISC SUBCHNL?
0

LIBR INPT?
PT

PRAM INPT?
TY

*EOT

NO UNDEF EXTS

ENTER PROG PARAMETERS

$EX18, 0
IE

I LINKS 7

800

SYSTEM

NAME

DISCM
$TIME
$SETP
SPF AL

<BOUNDS>

$EX18

<BOUNDS>

PROG BOUNDS

05274
05421
05442

02000 05445

05445 06341

BP BOUNDS

00603
00603
00603

00337 00603

00603 00631

10-39

$$MGT

<BOUNDS> 06341 07152-

DVR05

<BOUNDS> 07152 07421

DVR31

C BOUNDS> 07421 10145

F2E.D

<BOUNDS> 10145 10145

F4D.C

<BOUNDS> 10145 10145

ENTER SUBSYSTEM NAMES

/E

* EQUIPMENT TABLE ENTRY

10,,DVR00
ERR 25
10,,DVR05
l l .1 DVR3 l .1 D
13 .. DVR01
14 .. DVR02
15,, DVR23,, D,, 0
JS,, DVR23.1 D,, 1
20.1DVR12
/E

00631 00647

00647 00651

00651 00713

00713 00713

00713 00713

10-40

* DEVICE REFERENCE TABLE

1 = EQT #?
1

2 = EQT #?
2

3 = EQT #?
2

4 = EQT II?
4

5 = EQT II?
3

6 = EQT II?
7

7 = EQT #?
0

8 = EQT II?
5

9 = EQT II?
6
1 0 = EQT II?
/E

* INTERRUPT TABLE

10.1EQT.1l
12,,EQT,,2
13,, EQT,, 3
14,,EQT,,4
16,,EQT,, 5
20,,EQT,, 7
IE

EXEC SUPERVISOR MODULES

NAME PROG BOUNDS BP BOUNDS

$EX01
$ADDR 10520 00714

<BOUNDS> 10433 10535 00713 00714

$EX02
$ADDR 10523 00714

<BOUNDS> 10433 10540 00713 00714

10-41

SEX03

<BOUNDS> 10433 10504 00713 00713

$EX04
ASCII 11025 00715

<BOUNDS> 10433 1114 7 00713 00715

SEX05
SSRCH 10516 00714

<BOUNDS> 10433 1115 7 00713 00714

$EX06
SSRCH 10535 00715
$ADDR 11176 00715

<BOUNDS> 10433 11213 00713 00715

$EX07
SAD DR 10620 00714

CBOUNDS> 10433 10635 00713 00714

SEX08
$ADDR 10606 00714

<BOUNDS> 10433 10623 00713 00714

SEX09
ASCII 11032 00715

<BOUNDS> 10433 11154 00713 00715

SEX10

<BOUNDS> 10433 10771 00713 00713

10-42

SEXl 1
SSRCH 1121456 121121714

<BOUNDS> 1121433 1 1 1 1 7 1210713 1210714

SEXl 2

<BOUNDS> 1121433 10717 0121713 00713

$EX13
ASCII 11010 00715

<BOUNDS> 10433 11 132 00713 00715

$EX14
ASCII 11156 0121714

CBOUNDS> 10433 1130121 1210713 00715

$EX15
ASCII 11002 00714

<BOUNDS> 10433 11124 00713 0121715

$EX16

<BOUNDS> 1121433 10564 00713 00713

SEXl 7
$LBL 11023 00716

<BOUNDS> 10433 1 1 13 1 0121713 0072121

$EX19
$LBL 11026 00720

<BOUNDS> 10433 11134 00713 0072121

$EX20

CBOUNDS> 10433 l l 1 l 7 00713 00713

10-43

$EX21
$SRCH

<BOUNDS)

$EX22

<BOUNDS)

I/O DRIVER

NAME

DVR01

<BOUNDS)

DVR02

<BOUNDS)

DVR12

<BOUNDS)

DVR23

<BOUNDS)

114 72

10433 12133

10433 12603

MODULES

PROG BOUNDS

12603 13174

12603 13030

12603 13374

12603 13422

LWA LINKS 00744

F'WA USER LINKS?
744

LWA PROG

FWA USER?
14000

13422

00714

00713 00742

00713 00727

BP BOUNDS

00742 00744

00742 00744

00742 00744

00742 00744

10-44

USER SYSTEM PROGRAMS

NAME PROG BOUNDS BP BOUNDS

JOBPR

<BOUNDS) 14000 26613 00744 01412

LOADR
.EAU· 25511 01446
DUMRX 25561 01452

<BOUNDS> 1401210 25641 121121744 01452

ASMB

CBOUNDS> 14000 21131 0121744 01323

ASMBD

<BOUNDS) 21131 21741 01323 01324

ASMBl

<BOUNDS) 21131 22553 01323 01367

ASMB2

<BOUNDS> 21131 22570 01323 01351

ASMB3

<BOUNDS> 21131 22002 01323 01327

ASMB4

<BOUNDS> 21131 22040 01323 01331

ASMB5

<BOUNDS> 21131 22445 01323 01346

10-45

FTN4

<BOUNDS> 14000 27170 00744 01312

F4·0

<BOUNDS> 27170 35041 01312 01374

F4·1

<BOUNDS> 27170 32732 01312 01426

F4.2

<BOUNDS> 27170 34260 01312 01410

XREF
.OPSY 17241 01033
DUMRX 1 7301 01035

<BOUNDS> 14000 17361 00744 01035

*SYSTEM STORED ON DISC

10-46

SECTION XI
loading DOS-///

This section describes the loaders used to load a generated DOS-III system into main memory. In
this section are

• An introduction to the main-memory resident Bootstrap Loader (BMDL) and the Stand-alone
Bootstrap Loader

• The following operating procedures:

"USING THE BMDL TO LOAD ABSOLUTE BINARY PROGRAMS"

"INITIATING DOS-III WITH THE BMDL"

"CONFIGURING THE DOS-III STAND-ALONE BOOTSTRAP LOADER"

"INITIATING DOS-III WITH THE STAND-ALONE BOOTSTRAP LOADER"

• Tables presenting the addresses and contents of these main-memory resident loaders:

HP 7900/7901 BMDL

HP 2883 BMDL

To load a generated DOS-III system from the disc into main memory, the user executes either the
BMDL or the Stand-alone Bootstrap Loader. The former resides in the last 64 10 words of main
memory and is hardware protected. The BMDL exists in two versions depending upon the type of
disc included in the system (HP 7900/7901, HP 2883/2884). Operation of these loaders is
essentially the same: They consist of two parts; a basic binary loader which loads absolute binary
programs into main memory (from paper tape devices), and a disc loader which loads the configured
DOS-III system from the disc into main memory.

11-1

The BMDL loads the system from any active subchannel, with one major requirement: whether
that particular system is loaded or not, a configured DOS-III system must exist on the disc starting
at head 0, drive 0 of the disc device. Head 0, drive 0 corresponds to Subchannel 0 on the HP 2883/
2884 disc, or to Subchannel 1 on the 7900/7901 disc. The BMDL will read that system or any other
configured DOS-III system on the disc as long as a configured system resides on head 0, drive 0.

To load a configured DOS-III system when no system exists on head 0, drive 0, the user must load
the Stand-alone Bootstrap Loader into main memory (using the paper tape portion of the BMDL) and
execute the Stand-alone Bootstrap Loader. This program loads the configured DOS-III system from
the specified disc subchannel without the existence of a configured system on head 0, drive 0 of the
disc.

11-2

USING THE BMDL TO LOAD
ABSOLUTE BINARY PROGRAMS

The BMDL loads absolute binary program tapes into main memory. The Loader resides in the
last 64 10 words of main memory.

Operating Instructions

1. Halt the computer.

2. Place the tape to be loaded into the paper tape input device and ready that device.

3. Set the Loader starting address according to the memory size of the computer:

4. Clear the switch register.

5. Enable the Loader

Memory Size

16K

24K

32K

6. Press both PRESET buttons.

7. Press RUN.

Starting Address (octal)

037700

057700

077700

8. After all or part of the tape is read, the computer halts with 1020xx8 displayed.

If xx= 11, a checksum error was detected. Check for torn tape or dust in the reader, check the
tape for ragged edges or torn holes, then return to step 2.

If xx= 55, an address error was detected. A program being loaded attempted to enter a location
reserved for the main-memory resident Loader, or a location not available in the com­
puter. Check that an absolute binary tape was used, and that it was placed properly
in the reader.

If xx= 77, the tape was loaded correctly.

11-3

INITIATING DOS-Ill WITH THE BMDL

When DOS-III has been generated on the disc (by DSGEN), it can be loaded into main memory and
initiated by a main-memory resident program called the BMDL. This program resides permanently
in the last 6410 words of main memory and is hardware protected. Once DOS-III has been loaded
and initiated, it is ready to process user tasks.

Operating Instructions

1. Verify that a configured DOS-III system resides on head 0, drive 0 of the disc. (Head 0, drive 0
corresponds to subchannel 1 for the HP 7900/7901, or to subchannel 0 for the HP 2883/2884
disc.) If a configured system does not resfde there, then use the Stand-alone Bootstrap Loader
program (see Initiating DOS-III with the Stand-alone Bootstrap Loader, in this Section).

2. Set a starting address of Ox7750, where x = 3for16K; x = 5 for 24K; x = 7 for 32K.

3. Enable (unprotect) the main-memory resident Loader.

4. Press PRESET button(s) and start the computer executing.

5. The computer halts with 102077 8 displayed in the Display register. Protect the main­
memory resident Loader (if necessary).

6. Set the disc subchannel number of the system to be loaded into the switch register (bits 5
through 0).

7. Start computer execution. The system is loaded into main memory and prints the following
message:

INPUT :DATE, XXXXXXXXXX (No Time-base Generator)
or

INPUT :DATE, XXXXXXXXXX,H,M (Time-base Generator)

8. All other directives are ignored until a valid DATE directive is entered. Immediately following
the DATE directive, the only valid directives are :TRACKS, :BATCH, :TYPE, and :JOB.
All other directives are ignored until a JOB directive is entered.

11-4

CONFIGURING THE DOS-Ill STAND-ALONE
BOOTSTRAP LOADER

Once DOS-III has been generated onto a disc, it may be initiated into operating status using the
DOS-III Stand-alone Bootstrap. The Bootstrap, however, must be configured before being used.

Operating Instructions

1. Turn on all equipment.

2. Load (using the BMDL) and configure the SIO Punch or Teleprinter Driver.

3. Load the Bootstrap with the BMDL. (See "Using the BMDL to Load Absolute Binary
Programs" in this section.)

4. Set up the Bootstrap configuration starting address at location 28 .

5. Set switch register bits 5 through 0 equal to the octal channel number (select code) of the
disc controller (low number, high priority channel).

6. Set switch register bit 15 on to punch a configured Bootstrap tape; off to configure the
Bootstrap in main memory only.

7. Start the computer executing.

8. If bit 15 of the switch register is set, the Bootstrap punches out a configured copy of itself
and halts. For another copy, simply start the computer executing again.

11-5

INITIATING DOS-Ill WITH THE STAND-ALONE
BOOTSTRAP LOADER

When DOS-III has been generated onto the disc, it can be loaded into main memory and initiated
by using a small stand-alone program called the Stand-alone Bootstrap Loader. Once DOS-III has
been loaded and initiated, it is ready to process user tasks.

Note: The Stand-alone Bootstrap Loader need be used only if a configured
DOS-III system does not reside on head 0, drive 0 of the disc. If a
system resides on the disc in the above mentioned area, the BMDL
can be used.

Operating Instructions

1. Turn on all equipment.

2. Configure a Stand-alone Bootstrap Loader (as previously described).

3. Load the configured Bootstrap into main memory using the BMDL. (See "Using the BMDL
to Load Absolute Binary Programs" in this section.)

4. Set up the starting address of the Bootstrap at location 1008 •

5. Set switch register bits 5 through 0 equal to the octal subchannel of the system disc. (If this
subchannel differs from that established at system generation time, the new subchannel
overrides the old.)

6. Set switch register bit 14 equal to one if the disc type is 2883 with two subchannels per drive;
to zero if the disc type is 7900, 7901, or 2883 with four subchannels per drive.

7. Start the computer executing.

8. When DOS-III has been loaded into main memory, it prints the following message:

INPUT :DATE,XXXXXXXXXX (No Time-base Generator)
or

INPUT :DATE, XXXXXXXXXX,H,M (Time-base Generator present)

9. All other directives are ignored until a valid DATE directive is entered. Immediately following
the DATE directive, the only valid directives are :TRACK, :BATCH, :TYPE, and :JOB.
All others are ignored until a JOB directive is entered.

11-6

BMDL

The BMDL resides in the last 64 10 words of main memory (hardware protected by a button/switch
on the computer front panel) and is responsible for loading main-memory resident modules from
configured DOS-III systems residing on the disc into main memory. The BMDL also loads absolute
binary programs into main memory through the paper tape input device. A separate version of the
BMDL exists for each of two classes of disc, depending upon which disc type is used with the system
(HP 7900/7901, or HP 2883/2884). Only one version can exist in main memory at any one time. The
following three tables show the last 64 10 word addresses and their octal contents for each version of
the BMDL.

Note: When using the HP 790017901 BMDL with a newly-inserted 7900 or 7901
disc cartridge, it is necessary to execute the bootstrap twice. After executing
the bootstrap the first time, the system loops; it must be halted and the
bootstrap executed a second time. This procedure does not apply to the
Stand-alone Bootstrap.

Address Contents

x7700 002701

x7701 063722

x7702 002307

x7703 102077

x7704 017735

x7705 007307

x7706 027702

x7707 077733

x7710 017735
x7711 017735

x7712 074000

x7713 077734

x7714 067734

x7715 047777

x7716 002040

x7717 102055

x7720 017735

x7721 040001

x7722 177734

x7723 037734

x7724 000040

x7725 037733

x7726 027714

x7727 017735

x7730 054000

x7731 027701

x7732 102011

x7733 000000
x7734 000000

x7735 000000

x7736 006600

x7737 1037kk

Table 11-1. HP 7900/7901 BMDL

Address Contents

x7740 1023kk

x7741 027740

x7742 1064kk

x7743 002041

x7744 127735

x7745 005767

x7746 027737

x7747 030000

x7750 002400

x7751 1026cc

x7752 1037cc

x7753 067747

x7754 1066dd

x7755 1037dd

x7756 1066cc

x7757 063776

x7760 102606

x7761 067732

x7762 106602

x7763 1037cc

x7764 102702

x7765 106602

x7766 013741

x7767 1026dd

x7770 1037cc

x7771 103706

x7772 1037dd

x7773 1023dd

x7774 027773

x7775 127717

x7776 1200cc

x7777 1n0100

11-7

Paper tape loader starting ad­
dress= x77008 ; Moving-head
disc loader starting address =
x77508 (PRESET must be
pressed).

x 3 for 16k, 4 for 20k,
5 for 24k, 6 for 28k,
7 for 32k

kk tape input device

select code

dd low priority (higher

numbered) disc

select code

cc high priority (lower

numbered) disc

select code

n 4 for 16k, 3 for 20k,
2 for 24k, 1 for 28k,
0 for 32k

Table 11-2. HP 2883/2884 BMDL

Address Contents Address Contents

x7700 002701 x7740 1023kk Paper tape loader starting ad-

x7701 063722 x7741 027740 dress= x77008 ; Moving-head

x7702 002307 x7742 1064kk disc loader starting address=

x7703 102077 x7743 002041 x77508 (PRESET must be

x7704 017735 x7744 127735 pressed).

x7705 007307 x7745 005767

x7706 027702 x7746 027737

x7707 077733 x7747 177600 x 3 for 16k, 4 for 20k,
x7710 017735 x7750 063775 5 for 24k, 6 for 28k,

x7711 017735 x7751 1026dd 7 for 32k

x7712 074000 x7752 1037dd

x7713 077734 x7753 1023dd

x7714 067734 x7754 027753 kk tape input device

x7715 047777 x7755 067776 select code

x7716 002040 x7756 106606

x7717 102055 x7757 067732 dd low priority (higher

x7720 017735 x7760 106602 numbered) disc

x7721 040001 x7761 102702 select code

x7722 177734 x7762 067747

x7723 037734 x7763 106602 cc high priority (lower

x7724 000040 x7764 001000 numbered) disc

x7725 037733 x7765 1067dd select code

x7726 027714 x7766 1026dd

x7727 017735 x7767 1037cc n 4 for 16k, 3 for 20k,
x7730 054000 x7770 103706 2 for 24k, 1 for 28k,

x7731 027701 x7771 1037dd 0 for 32k

x7732 102011 x7772 1023dd

x7733 000000 x7773 027772

x7734 000000 x7774 127717

x7735 000000 x7775 020000

x7736 006600 x7776 1200cc

x7737 1037kk x7777 1n0100

11-8

0001
0~J02

0003
02>04
0005
0006
0007
OOvJS
0009
0010
00 l 1
0012
0013
0014
0015
ro 16
0017
0018
0019·
0020
0021.
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033.
0034
0035
0036
0037
0038
0039
0040
004.1
0042
0043*
0044
0045
0046
0047
0048
0049
0050
00 51
0052
0053
€054
0055
0056
0057
0058

1 7:700
1 7700 I 07700
17701 063770
I 7702 106 501
17703 00LJ010
17704 002400
1770 5 006020
17706 063771
17707 073736
17710 006401
1771 l. 067773
17712 006006
17713 027717
17714 107700
17715 102077
17716 027700
17717 017762
17720 002003
17721 027712.
17722 003104
17723 073774
17724 017762
17725 017753
17726 070001
17727 073775
17730 063775
J 7731 043772
177.32 002040
17733 027751
1 7734 017753
t 7735. 044000

' 17736 000000
17737 002101
17740 102000
17741 037775
l 7 7 42 0 3 7 7 7 4
17743 027730
17744 017753
l 77 45 0 54000
17746 027711
17747 102011

T = 102011.1
17750 027700
17751 102055
I 7 7 52 0 2 7 7 0 0
17753 000000
17754 017762
I 77 55 00 J 727
17756 073776
I 7 7 5 7 0 J 7 7 62
17760 033776
17761 127753
1 7 7 62 0 0 0 0 0 0
J 7763 103700
17764 102300
17765 027764
17766 102500.

A SM B, A I 8 I L I T
ORG 177008

LOAD CL.:C 0, C
LOA STAI
LIS 1
SLB
CLA
SSS
LOA CPA[
STA OPTI
CLB' RSS

CONT L DB CM l l
EO TCH I NB, SlB

JMP L D 1
CLC 0, C
HL T 778
JMP LOAD

LDl JSB CHAR
SZA.1RSS
JMP EOTCH
CMA, CLE_, I NA
STA. COUNT
JSB CHAR
JSB WORD
STA 1
STA ADDRS

LD2 LOA ADORS
ADA MAXAD
SEZ
JMP ADERR
JSB WORD
ADS 0

OPT! NOP
CLE, RSS
HLT 0
I SZ ADORS
I SZ COUNT
JMP L.D2
JSB WORD
CPS 0
JMP CONT
HL T 118

A = TAPE CHECKSLM,
JMP LOAD

ADERR HL T 558
JMP LOAD

WORD NO?
JSB CHAR
ALF, ALf
STA TEMP
J SB CHAR ···>·
IOR TEMP.

. JMP WORD, I
CHAR NOP

src@;c
SF S (F_>j:P
JMP *- l ,.,,~
L.JAi'P~ ,_

TURN OFF ALL DEVICES•
SET STORE INDIRECT INSTRUCTlON•
CHECK FOR OPTIONS.
SR<0> = 17 ·
YES: CH ECK Sl.J\'·1 VER I FY OPT! ON
SR< 1 5> = l?
YES: DU~P VERIFY OPTION
STORE OPTION INSTRUCTION
BYPASS EOT CHECK FOR LEADER
SET B = -11 rOR EOT TEST
END OF TAPE?
NO: GET NEXT CHARACTER
TURN OFF ALL DEVICES
EOT HAL TJ T = 102077
START NEXT TAPE
GET A CHARACTER
IS IT THE WORD COUNT?
NO I CH ECK FOR EO T •
NEGATE & RESET E FOR OVFLO CHK
SET WORD COUNT
SKIP THE NEXT CHARACTER
GET STARTING ADDRESS
INITIALIZE CHECKSUM IN B•
STORE IN LOADING ADDRESS POI
CHECK LOADING ADDRESS TO PREVENT

LOADER FROM SUICIDING•
IS LOADING ADDRESS GREATER THAN
YESi TERMINATE LOADING
GET NEXT WORD IN A.
ADD I T TO THE CHE CK SUM
OPTIONAL INSTR1 StA 0,I/CPA
BYPASS FOLLOWING HALT EXCPET FOR
Bl.MP VERIFY ERROR HALT
INCREMENT LOADING ADRS• POINTER
ANY MORE WORDS IN BLOCK?
YESS LOOP TO LD2 TO LOAD NEXT WD
NO a GET CH ECK SU'1 l'ROM TAPE•
CHECKSU'1S AGREE?
YES: CHECK fOR EQT,
NOl CHECKSUM ERROR

B = LOADER CHECKSLM ·
START OVER•
ERROR HALT FOR ILLEGAL ADDRESS
START OVER
READS ONE WORD FROM TAPE•
GET FIRST CHARACTER
POSlTION IT.
SAVE I Te
GET SECOND CHARACTER
PACK WI TH F' ! RST
RETURN WI fH ~tQRO IN A.
READ A CHAR. FROM THE PHOTO~RDER
TURN ON PHOTOREADER ~
WAIT FOR FLAG INDICATING

DATA IS READY•
LOAD CHARACTER INTO A•

PAGE 000 3 #0 l

0059
0060
0061
0062
0063
006LJ
0065

. 0066
0067
0068*
0069
** NO

17767 127762
17770 173775
17771 153775
17772 160100
t 7773 177765
17771~ 000000
17775 000000
17776 000000
00000

ERRORS*

JMP CHAR1 1
STAI STA ADDRS, I
CPAI CPA ADDRS1l
MAXAD ABS -LOAD
CM 1 1 DEC - 11
COUNT. BSS 1
ADDRS BSS 1
TEMP BSS 1 _

(fB__ __ ~==-----E Q U --0 0 BJ
INPUT LOCATION

END

C-1-3

RETURN•
NORMAL CONTENTS OF OPTIONAL INS1
OlJ'-1P VERIFY OPT! ONAL I NSTRUCTI Or-.
LOADER PROTECTION VALUE
EOT CHARACTER COUNT
COUNTS WORDS IN BLOCK
LOADING ADDRESS POINTER
HOLDS UPPER CHAR. FOR PACKING

THIS EQU SHOLLD REFLECT THE
OF THE PHOTOREADER

HEWLETT-PACKARD co. ~ff-------..
'EXTERNAL REFERENCE SPECIFICATION

HP 25102J Bootstrap Loader

HP 25102J is a bootstrap loader, whose purpose is to restore
the BASIC BINARY LOADER, in case the latter is deseroxea.

To use the bootstrap loader:

A. Toggle in the following:

Starting address = 20
21
22
23
24
25
26
27
30
31
32
33

,../

1037SC
l023SC
026021
1025SC
001727
1037SC
1023SC
026026
l024SC
170001
006004
026020

Where SC = Select code {Chan.#) of photoreader.

B. Set starting address = 2¢

c. Set B register = n 7700

D.

E.

F.

G.

H.

Push

where n = 0 for 4K machine
= 1 for 8K machine
= 3 for 16K machine
= 5 for 24K machine
= 7 for 32K machine

LOADERSWITCH to ENABLE.

Put bootstrap loader in photoreader.

Press PRESET. Press RUN.

Press HALT.
'

For machines other than 8K, make the

.
following change:

§ MOD El HP 25102J 1 SK NO

Bootstrap Loader

J DATE May H 12,69

ff
!l i~ /'· .

A p FO ~ ,.ft.-;• /V·1 J.l!' j SHEET NO. 1 Of
. 12 pc NO APPROVED DATE

• ~/' , ,.1 _.,._,. .' ••

r--~ - .-i-·"·
- - - . -£1 f:.u,. '"" 25000 90068

.

2

H-EW LETT-PAC KA RD co.

c (n777 2) = lmOlOO

where n is as defined in step c

m = 7 for 4K machine
·-

= 6 for 8K machine
= 4 for 16K machine ..
= 2 for 24K machine
= 0 for 32K machine

I~ For all machines, if photoreader is not in slot 10, change
C (n7763) = 1037SC
C (n7764) = 1023SC
C (n7766} = 1025SC

where n is defined in step C
SC is defined in step A

Note; For the bootstrap loader to operate properly, it is
important that the tape does not contain feed-holes
at the beginning of text.

Listing: The listing of the bootstrap loader is given an
Drawing Number 25000-90068 •

. ,

·r-----+---~-~-1-------{ M00fl HP 25102J ST~ NO

Bootstrap Loader

OA re May 12 , 6 9

-+-------4-------~-------l AP?O SHEET NO 2 OF 2
PC NO DA TE

I owe NO 25000-90068

PART 4

DOS-/// Systems Programming

SECTION XII
User-written EXEC Modules

DOS-III is capable of accepting user-written EXEC modules. Up to two EXEC modules may be
written; these must be loaded with all the DOS-III EXEC modules during DOS-III Generation.
(See Section X, "Generating DOS-III" for details.)

This section presents the user-written EXEC call directives and calling sequences, along with a brief
description of internal design and a sample EXEC module.

For example, DOS-III halts on power failure. The user may write a power fail recovery routine.
Because of system requirements, the routine must be called $PF AL.

12-1

USER EXEC MODULES: DIRECTIVES

Purpose

To execute user EXEC modules.

Format

:EA[,pl, . .. ,p5]

:EB{,pl, ... ,p5}

(Calls EXEC module $EX36)

(Calls EXEC module $EX37)

where all parameters are non-negative decimal integers.

Comments

Number and meaning of the parameters varies depending upon user definition of the EXEC module.

12-2

USER EXEC MODULES: EXEC CALLS

Purpose

To execute either user-created EXEC module $EX36 or $EX37. The number of parameters in the
EXEC call are defined by the user. The general format of the call is

Assembly Language

RCODE
PRAMl

PRAMS

FORTRAN

EXT

JSB
DEF
DEF
DEF

DEF

DEF

IRCDE = 27 (or 28)

EXEC

EXEC (Transfer control to DOS-III)
*+2 (to 7) (Determine number of parameters-from 1 to S)
RCODE (Define request code)
PRAMl (Define the first optional parameter)

PRAMS (Define the fifth optional parameter)

27 (or 28) (RCODE for $EX36 = 27; RCODE for $EX37 = 28)
(Up to five words of parameter information)

CALL EXEC (IRCDE[,Pl, PS])

12-3

USER EXEC MODULES: INTERNAL DESIGN

EXEC modules are typically type-1 Assembly-language routines which are incorporated at genera­
tion time as part of the operating system. As "system" modules, they execute with the interrupt
system and memory protect off. They may directly access entry points and subroutines within the
system, but must not issue any EXEC calls (EXEC processing is not re-entrant). Also, user-written
EXEC modules should be defined as disc-resident supervisory modules; the NAM pseudo-instruction
for these modules should indicate that the routine is a type-1 program.

Special programming considerations are required upon initiation and completion.

Initiation

Upon entry, information used in processing the EXEC function can be found in the following base
page locations.

Location Name Definition

2248 RQCNT # of parameters in the calling sequence

2258 RQRTN return address upon completion

2268 RQPl address of request code

227-2338 RQP2-RQP6 address(es) of specified parameters

Completion

Prior to returning to the system, the EXEC module must

1. release itself from the EXEC module overlay area if it is disc-resident. This code handles EXEC
module release:

EXMOD
NUMB

LDA EXMOD
CPA NUMB
CMA,INA
STA EXMOD

EQU
DEC

245B
-36 (or -37)

(Get current module in overlay area)
(Is it this one?)
(Yes-set value positive)
(No-leave value alone)

12-4

2. place the desired transfer address in XIRT (location 137 8) and jump to the label $IRT
(defined as an EXTernal), for example,

EXT $IRT

LDA RQRTN (Set the return address)
STA XIRT
JMP $IRT (Transfer to system)

RQRTN EQU 225B
XIRT EQU 137B

12-5

SAMPLE EXEC MODULE

PAGE 0"101

0001 ASMe,L,C,X,N,R,B DISC WORK LIMITS MODULE CSExm2>
•• NO E~~ORS•

12-6

PAGE 0002 #01

0001
0002
0003
0004
0005
0006•
0001•
0008•
0009•
001 liH
0011•
0012•
0013•
0014•
0015•
0016•
0017•
12H'J18•
0019•
0020
Hl21
0022
0023
1Ul24
0eJ2'5
0026
0021
0028
0029
0030
003t
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052

ASMa,L,c,x,N,~,B DISC WORK LIMITS MODU~E ($EX02)
00000 NAM SEX02,1

ENT SEX02
EXT SRQE'R, SA.DOR
EXT S!RT

SEX02 ROUTINE PROVIDES THE USER WITH OISC WORK AREA TRACK
ADDRESS LIMITS ANO THE # OF SECTORS PER DISC TRACK,

CALLING SEQUENCES

JSB EXEC
DEF ••SCOR 6)
DEF RCOOE RCODE • 17
DEF FTRAK PTRAK • ADOR OF WORD TO STORE !ST WORK TRK
DEF LTRAK LTRAK • AOOR OF WORD TO STORE LAST WORK TRK
DEF SIZE SIZE • # SECTOR/TRACK WORD ADOR.
DEF DlSC(OPTIONALl DISC • 0 FOR SYSTfM DISC, NON•0 FOR US

DEFAULT lS SYSTEM.

00000 060224
00001 050057
00002 0260tl'IR
00003 0!50060
00004 002001
00005 0260t5!5R
00006 060232
00007 0t6002X
00010 060221
000'1 016002)(
00012 060230
00013 0t6002X
00014 060231
00~15 016002)(
00016 064224
00CH 7 054057
00020 026024R
00021 160232
00022 002002
00023 026057R
00024 060160
00025 040014
00026 0ell12'1
00021 01007A
00030 110227
00031 060102
00032 0021'J03
00033 026043R
00034 010074
00035 070001
00036 020102
00031 001727
00040 0102114

SEX02 I.DA RQCNT
CPA ,.•4
JMP CHK
CPA ,,•5
RSS
JMP RciER
LOA RQP5
JSB $AOOR

CHK LDA RQP2
JSB SAOOR
L.OA RQP3
JSB SAOOR
L.DA RQP4
JSB SADOR
1..08 RQCNT
CPB 1 ,•4
JMP SYS
L.DA RQP5 1 J
SZA
JMP USER

SYS l.,l')A SYNTS
ADA , 37'1
ALF,Alf
ANO 11 377
STA RQP2,I
I.DA JBlNC
SZA,RSS
JMP EX010
AND ,377
STA B
XOR JBlNC
ALF,ALF
ANO ,'J7'1

12-7

CHECK PARAMETER COUNT
4 PARAMETERS?
YES. OK,

5 P 41'UMETERS1
YES, 01<

TOO FEW OR TOO MANY PARAMETERS.
CHECK AOOR OF 5TH PARAM

PARAMETERS

DEFAULT AS SYSTEM otse?
YES.

NO, CHECK 5TH PARAM
0 MEANS SYSTEM DISC

GET START OF WORK AREA TRACK

PAGE 0l'J~3 #IU

0053 00Cl!l4t 040052 ADA Nt
0C!l54 00042 026045R JMP EX020
012155 00043 06015'1 EX0t0 I.DA DISCO STORE END OF WORK AREA TRACI< I

0056 00QJ44 fiH 001' 4 AND ,377
111057 0012145 1'1023(1 EX020 STA RCIP3,I
011158 00046 eeru te LDA SEC TR STORE # OF SECTORS PER TRACI<
011159 00041 1102Jt STA RQP4,t
IHJ60 00050 060245 LDA EXMOO
0061 00et!5t 0!50091 CPA ,,•2
111062 00o.t52 12103004 CMA,INA
0063 00083 0102•e STA EXMOD
111054 00054 060225 LDA RQRTN SET UP TRANSFER ADDR FOR SIRT
IHJ65 000!55 010137 STA XtRT
0066 00056 026003X JMP S!RT
0el61 00051 060t51 USER LDA UDNTS GET USER DISC NEXT TR/SECTR
IUJ68 00060 040074 ADA ,37'1
0069 000et 0etl727 ALF,ALF
00'10 0l'H'J62 GH 007 4 AND 1 377
007t 00063 110221 STA RCIP2,?
0072 00064 f2126043R JMP EX"t0
0073 00"6! 00241210 RQER Cl.A FREE. ~ODULE AREA
0014 00066 12.11024!,5 STA EX MOD
012115 0121067 0~600t)(JMP SRQER
0076•
0077 00A00 A EQU 0
0178 12100m1 B EQU 1
0079 00053 It EQU 538
0080 00eJ52 Nt EQU •• •t
0081 00014 ,371 EQU t'
008:.? 1210UJeJ I EQU 1e0e
0083 00t02 JBINC EQU ,•2
0rlJ84 Hltl6 SE CTR EQU • .. t 4
0085 0f21t26 RONeF EQU ,•26B
IHJ86 HI t 37 X!RT ECIU RONBF•9
0087 00t54 otsco EQU ,•44
(/JrlJ88 00!!1 UDNTS ECIU ,•4'1
0089 00t60 SYNTS EQU ,•48
0090 00'824 RQCNT EQU ,•84
0091 0022! RQRTN EQU ,•85
f.leJ92 1210227 RQP2 EQU ,•81
012193 00230 tQP3 EQU ,•88
00g4 1210~31 ,lQP4 EQU ,•89
009!5 0023:? RQPe EQU ,•9~
00ge 0024! EX MOD EQU .•tll
0091 END
•• NO ERRORS•

12-8

S!'.X02 CROSS•REFERENCE SYMBOL TABLE PAGE 00ru

SADDR IZl0HJ4 IHJ27 00029 0003 l 00033

SEXeJ2 130020 00003

S!RT Hl00!5 00066

SRQ!R lll0004 00015

I eJl082 00083 0HJ84 00085 QHHl81 00088 00089
00000 0121091 01UJ92 00093 HteJ9.C 00095 00098

I e 00079 00021 00023 00035 00061 llH1080 210QJ8 l

,371 00081 0011141 00043 00048 HH!152 00056 00068
00070

'A 002177

B fHIJ078 1100.cg

CHK 00028 CIHIJ022

DISCO 00087 ' 00055

EX0t 0 O'J0055 00041 00072

EX020 00J057 eJ0054

EX MOD 00096 00060 00063 00014

JBINC eJl!J083 00045 00050

NI 1210080 01HJ53

RONBF 00085 CU!1086

RQCNT fHHOit _ llUJ20 rll1Ul34

RQER C'Jl073 80025

RQP2 01002 fJHJ28 110Ql44 01!1011

RQP3 0e0;3 80030 f!fHl57

RQP4 08094 00032 1211.1059

RQP!S eJ10915 10026 01137

RQRTN 08091 IHl64

SEC TR 01084 801!58

SVNTS 00089 80040

SYS 00040 180036
12-9

SEX02

UDNTS 00088

USER 00061

XIIH 00086

CROSS•REFfRENCE SYMBOL T4BLE

00067

00039

00065

12-10

PAGE 0002

STANDARD 1/0 DRIVERS

SECTION XIII
Planning 1/0 Drivers

Note: Before attempting to program an l/O driver, the programmer should be
thoroughly familiar with Hewlett-Packard computer hardware l/O organi­
zation, interface kits, computer l/O instructions, and Direct Memory Access
(DMA).

An I/0 driver, operating under control of the Input/Output Control ($EX18) and Central Interrupt
Control ($CIC) modules of DOS-III, is responsible for all data transfer between an I/0 device and
the computer. During its execution, the driver may refer to the base page communication area for
information from the system: the device equipment table (EQT) entry, which contains the param­
eters of the transfer, and the current DMA value (CHAN), which contains the number of the
allocated DMA channel (if required).

An I/O driver includes two relocatable, closed subroutines: the Initiation Section and the Completion
Section. If nn is the octal equipment type code of the device, I.nn and C.nn are the entry point
names of the two sections and DVRnn is the driver name.

Initiation Section

The I/O control module ($EX18) calls the initiation section directly when an I/0 transfer is initiated.
Locations EQTl through EQTl 7 of the base page communication area contain the addresses of the
appropriate EQT entry. CHAN in the base page contains the number of the DMA channel assigned
to the device, if needed. This section is entered by a jump subroutine (JSB) to the entry point I.nn.
On entry, the A register contains the select code (channel number) of the device (bits 0 through 5 of
EQT entry word 3). The driver returns to $EX18 by an indirect jump through I.nn.

Before transferring to I.nn, DOS-III places the request parameters from the user program's EXEC call
into words 7 through 13 of the EQT entry. Word 9, CONWD, is modified to contain the request code
in bits 0 through 5 in place of the logical unit. (See Figure A-4 and Section III, I/0 READ/WRITE
EXEC Call (RCODE = 1 or 2), for details of the parameters.)

Once initiated, the drive can use words 5, 6, and 11through14 of the EQT entry in any way, but
words 1, 2, 3, 7, 8, 9, 10, 15, 16, and 17 must not be altered. The driver updates the status field in
word 4, if appropriate, but the rest of word 4 must not be altered.

13-1

FUNCTIONS OF THE INITIATION SECTION: The initiation section is responsible for these
functions (as flow-charted in Figure 13-1):

1. Rejects the request and proceeds to step 5 if:

• the device is inoperable, or

• the request code, or other of the parameters, is illegal.

Note: All drivers must accept a clear request. (Request code= 3, function code= 0.)

2. Configures all 1/0 instructions in the driver to include the select code of the device (or DMA
channel). (Does not apply to DVR05 and 7900/7901 DVR31.)

3. Initializes DMA, if appropriate.

Note: The initiation section must save the DMA channel number (found in CHAN)
in the EQT entry, since it is not set on entry to the continuation section.

4. Initializes software flags and activates the device. All variable information pertinent to the
transmission must be saved in the EQT entry because the driver may be called for another
device before the first operation is complete.

5. Returns to $EX18 with the A register set to indicate initiation or rejection and the cause of
the reject:

If A = 0, then the operation was initiated.

If A f- 0, then the operation was rejected with A set as:

1 = read or write illegal for device

2 = control request illegal or undefined

3 = equipment malfunction or not ready

4 =immediate completion (for control requests)

6 = driver cannot handle a control request; the system is instructed to wait

13-2

return
to

P+t

(A)= 1 or
2 reject
codes

(A)•3,
reject
code

NO

NO

l.nn

configure
1/0 instructions

for device

YES

initialize
operating,

conditions,
flags, etc.

set buffer
address, length,
mode, etc. for

transfer

activate
device

A register
(A)= 4 or 0

return to
P+t

Figure 13-1. 1/0 Driver Initiation Section

13-3

Completion Section

DOS-III calls the completion section of the driver whenever an interrupt is recognized on a device
associated with the driver. Before calling the driver, $CIC sets the EQT entry addresses in base page,
sets the interrupt source code (select code) in the A register, and clears the I/0 interface or DMA
flag. The calling sequence for the completion section is

Location

p

P+l

P+2

Action

Set A register equal to interrupt source code

JSB C.nn

Completion return from C.nn

Continuation return from C .nn

The point of return from C.nn to $CIC indicates whether the transfer is continuing or has been
completed (in which case, end-of-operation status is returned also).

FUNCTIONS OF THE COMPLETION SECTION: The completion section of the driver is responsible
for the functions below (as flow-charted in Figure 13-2):

1. The driver configures all I/O instructions in the completion section to reference the interrupting
device.

2. If both DMA and device completion interrupts are expected and the device interrupt is
significant, the DMA interrupt is ignored by returning to $CIC in a continuation return.

3. Performs the input or output of the next data item if the device is driven under program
control. If the transfer is not completed, the driver proceeds to step 6.

4. If the driver detects a transmission error, it can re-initiate the transfer and attempt a
retransmission. A counter for the number of retry attempts can be kept in the Equipment
Table. The return to $CIC must be (P+2) as in step 6.

5. At the end of a successful transfer or after completing the retry procedure, the following
information must be set before returning to $CIC at (P+l):

a. Set the actual or simulated device status into bits 0 through 7 of EQT word 4.

b. Set the number of transmitted words or characters (depending on which the user
requested) in the B register.

c. Set the A register to indicate successful or unsuccessful completion.

0 = successful completion

1 = device malfunction or not ready

2 = end-of-tape (information)

3 = transmission parity error

13-4

6. Clear the device and DMA control on end-of-operation, or set the device and DMA for the
next transfer or retry. Return to $CIC at

(P+l) completion, with the A and B registers set as in step 5

(P+2) continuation; the registers are not significant.

13-5

return
to

P+2

re-initialize
conditions

return
to

P+2

C.nn

configure
1/0 instructions

for device

(B) =#
words or
characters
transferred

(A)=
completion

code

clear
device
control

return
to

P+1

transfer next
data item;

update indexes,
flags, etc.

Figure 13-2. 1/0 Driver Completion Section

13-6

return
to

P+2

SAMPLE 1/0 DRIVER

The following pages provide an assembly listing and cross-reference symbol table for a sample 1/0
driver.

13-7

PAGE 0001

0001
•• NO ERROPS•

13-8

PAGE 0002 #01 ** o.o.s, DRIVER <02> PAPER TAPE PUNCH •t

0001 ASMB,R,A,L,C
0003 00000
0004•

NAM OVR02,4

0005••········
0006•

VERSION 6/24/72

0007•
0008
0009•
0010****** PROGRA~ DESCRIPTION *******

ORIVER 02 OPERATES UNDER THE CONTROL OF THE
I/O CONTROL MODULE Of THE D,0,S, EXECUTIVE
THIS ORJVER IS RESPONSIBLE FOR CONTROLLING

0011•
0012•
0013•
0014•
0015•
0016•
0017•
0018•
0!2119•
0020•
0021• -
0022•
0023•
0024•
0025•
0026•
0027•
0028•
002~h
0030•
0031•
0032•
0033•
0034•
0035•
0036•
0037•
0038•
0039•
0040•
0041•
0042• ..
0043•
0044•
0045•
0046•
0047•
0048•
0049•
0050•
0PJ51•
0052•
0PJ53t
Hl54•
0QJ55•
0056•
09.157•

OUTPUT DATA TRANSMISSION WITH A 2753A TAPE PUNCH.
<02> IS THE EQUIPMENT TYPE CODE ASSIGNED TO THIS
TYPE OF DEVICE. 1,02 IS THE ENTRY POINT FOR THE
•INITIATION• SECTION ANO Cq02 FOR THE •COMPLETION•
SECTION.

THE INITIATION SECTION IS CA~LEO FROM I/O
CONTROL TO INITIALIZE A DEVICE AND INITIATE
AN OUTPUT OR CONTROL OPERATION.

CALLING SEQUENCES

• ADDRESSES OF DEVICE EQT ENTRY
SET IN "EDTt•EQT17" e

CA> • I/O ADDRESS Of DEVICE

CP) JSB I.02
(P+l) - RETURN ..

(Al • 0, OPERATION INITIATED, OR
CA) • REJECT CODES

t, ILLEGAL REAO REQUEST
2, ILLEGAL CONTROL FUNCTION

THE COMPLETION SECTION IS CALLEO BY CENTRAL
INTERRUPT CONTROL TO CONTINUE OR COMPLETE
AN OPf'RATION.

CALLING SEQUENCE:

• ADDRESSES OF DEVICE EQT ENTRY
SET IN "EQTt•EQT17" •

(A) • 1/0 ADDRESS OF DEVICE

(P) JSR C,1212

--CP+t) •• COMPLETION RETURN
(P+2) •• CONTINUATION RETURN ••

• COMPLETION RETURNS
13-9

PAGE 0003 #01 tt o.o,s, DRIVER <02> PAPER TAPE PUNCH **

0058•
0059•
0060•
0e.161 •
0062•
0063•
012l64t
0065•
0066•
0067•
0068•
0069•
00?0•
0011•
0072•
0073•
0074•
007~•
0076•
0077•
0078•
0019•
008CH·
0081•
0082•
0083•
0084•
IH.185t
IHJ88t
0087'•
0fr.'J88t
0fr.'J89t
0e9e.i.
0091•
0092•
0093•
IHH14t
02195•
0096•
0097•
0098•
012199•

CA) • ~, &uccessruL COMPLETlON WITH
(B) • # WORDS OR CHARACTERS

TRANSFERRED.
(A) • 2 IF •TAPEwSUPPLY•LOW• CONDITION

DETECTED AFTER RECORO lS
FINISHED,

(B), SAME AS FOR CA) • 0

• CONTINUATION RETURNS REGISTERS
MEAN?NGLESS

~ RECORD FORMATS1

ASCII: A STRING OF CHARACTERS, THE NUMBER
••··~ DESIGNATED AV THE BUFFER LENGTH IN

THE REQUEST, TERMINATED BY A RETURN
ANO L!NE•FEEO (SUPPLIED BY THE DRIVER),

SPECIAL CHARACTER PROCESSINGI

LEFT•ARROWI IF A LEFTwARROW IS THE LAST
CHARACTER JN THE USER BUFFER,
THE RETURN/LINE•FEED AND LEFT
ARROW CODES ARE NOT OUTPUT.

A ZERO BUFFER LENGTH CAUSES ONLY A RETURN/
LINE•FEED TO BF OUTPUT.

B!NARVI A STRING OF CHARACTERS SPECIFIED
•••·•· BY THE "BUFFER LENGTH" IN THE REQUEST,

~ CONTROL FUNCTIONS ACCEPTEOS

t~ • TEN INCHES OF ZEROS CFEEOwFRAMES) ARE
OUTPUT FOR LEAnER/TRAILER.

ll - LINE S~ACINGI THE PARAMETER WORD OF THE
CONTROL REQUEST OETERMINES THE NUMBER
OF LINE•FEEOS TO B£ OUTPUT.

13-10

PAGE 0004 #01 < DRIVER 02 •INITIATION• SECTION >

0UH•
0102•••••**** INITIATION SECTION ••••••••••
0103•
0104•
0105 00000 000000 I.02 NOP
0Ul6t
0107 00001 016201R
0UJ8•
0109 00002 160213
0110 00003 010056
0111 •
0112
0113
0114
0115
0116•

00004 050054
00005 126000R
00006 050055
00et07 026043R

JSB SETIO

l.OA EQT9,l
ANO • 3

CPA el
JMP I,02,?
CPA • 2
JMP 004

0117• CONTROL FUNCTION REQUEST
0118•
01U~
0120
0121
0122
0123
el124
0125
0126
0127
0128
0129•

00010
00Cll 1 l
00012
00013
00014
0121015
00016
00017
00020
00021

160213
001727
001222
010073
00201213
026024R
0~0063
026026R
050064
026032R

I.DA EQT9,?
Alf ,ALF
RAl,.,RAL.
ANO MASK1
SZA,RSS
JMP CLEAR
CPA 1 108
JMP 001
CPA 1 110
JMP 01212

5ET J/0 INSTRUCTIONS FOR UNIT.

GET CONTROL WORD OF REQUEST,
ISOLATE,

ERRO~ IF REQUEST IS
FOR INPUT, REJECT CALL,

PROCESS POR
WRITE REQUEST 1

GET CONTROL WORD
FROM REQUEST, POSITION ANO
ISOLATE FUNCTION FIELO,

?S IT A CLEAR?
n:s.

FIEL.O • <10> TO GENERATE
LEACE~ (10 INCHES OF BLANK TAPE)

FIEL.O • <tt> FOR L.!NE
SF'AC:ING.

0130• REQUEST ERROR • CAUSE REJECT RETURN TO I/O CONTROL
0131•
0132
0133
0134
IUJ5
0136•

00022 06005!5
000~3 126000R
00024 106700
00025 026066R

L.OA 1 2
JMP 1.02,r

CLEAR CLC 0
JMP I.A.6

0137• LEADER/TRAILER GENERATOR
0138•
0139
0140
0141
0142
0143•

00026 062224R 001
000:?.7 1''02 U5
00030 0f?J2400
00031 026041R

0144t LINE SPACING
0145•
0146
0141
0148
0149
0150
0151
0152
0153•

00032
00033
00034
00035
00036
00037
00040

160214
002021
003004
002003
HIJ40el
110'-16
06006!5

002

1..t'A N100
STA EClT12,l
CLA
JMP 003

LOA EQTt0,I
SSA,RSS
C~A,lNA
SZA,RSS
CCA
STA EQT121l
L.DA LINf

TURN DEVICE: OFF

SET !NOEX COUNTER FOR FEED FRAMES
• •Ul0 1

(A) • 0 POR
FEED FRAME.

GET LINE COUNTER
INSURE VAL.UE

IS NEGATIVE.
PROTECT AGAINST

A ZERO VALUE,

WORO,

CA) • LINE FEED CODE.

0154 0004t 110217 003 STA EQTtJ,I SET ACTION CODE.
0155 00042 026056R JMP 005
0t56• 13-11

PAGE 0005 #01 c DRIVER 02 •INITIAT!ON• SECT?ON >

0t57*
0158•
0159
ruse
1161
0162
0163
fJt64
0165
0166
0161
0168•
0169
01 ?Ill
0111•
0112•
0173•
0174
0115
0176
0177•
0t18
0179
0180
0181•
0182
0183
IU84
1185

WRJTE REQUEST PROCESSING

00043 160214 004
'"'"''. 01211200 Hl045 170216
00046 160215
00047 0020221
000~0 026053R
00PH5 t 00 l 00el
00052 012130QJ4
000!53 110211

LDA ECITt0,I
AAL
STA EQT121l
LOA EQTtt, l
SSA
JMP ••3
ALS
CMA,INA
STA ECITtJ,I

CLA

CONVERT !UFF!R ADDRESS TO EVEN
CHAAACT!R AODRESS AND SET
AS CURRENT BUFFER ADDRESS,

GET BUFFER LENGTH,
IF CHARACTER SPECIFI!D,

USE VALUE,
CONVERT WORDS TO NEGATIVE

CHARACTERS,
SET CURRENT BUFFER LENGTH,

00054 002400
00055 170220 STA EQT14,1 FOR BINARY WRITE,

CALL •COMPLETION• SECTION TO WRITE FIRST CHAR,

000!56 062223R Dlll5
00057 072Q!7eJR
H.11860 026075R

LOA IEXTA
STA C,02
JMP Dt0

00061 026064R
0eJeJ62 002400
00063 l2621G!l21R

00064 006400
00065 174220
QJelli'J66 060057
00eJ61 126000R

JMP I.A.4
IEX!T CLA

JMP 1.02,I

I.A.4 CLB
STB EQTl41l

I,A.6 LOA ,4
JMP I.02,1

13-12

ADJUST RETURN
TO •INITIATOR• SECTION,

BINARY READ WITH 0 BUFFER LEN.
RETURN TO 1/0 CONTROL WITH

OPERATION INITIATED,

CLEAR Tl.OG.
SET A•4 FOR IMMED~COMPL RETURN

Rf TURN

PAGE 0006 #01 c DRIVER 02 •COMPLETION SECTION• >

0187•
0t88••••••••• COMPLETION SECTION **********
0189•
0t90•
0191 00070 000000 C.02 NOP
QH 9?.•
0193
1"194
0195
13196
0197•
0198
0199
0200
0201
0202
0203•
0204
0205
0206
0201•

00071 016201R
0011!12 160207
00073 002C'l20
00074 026155R

00075
00076
00077
00100
00UH

160213
01000i
001721
001200
072222R

00t02 002400
HlUJ3 150216
0121104 026155R

0208 00105 004010
0209 0010& 026tJJR
0212!•
0211 00t07 150217
0212 00tt0 026tJ7R
0213•
0214
0215
0216
0211
0218
0219
0220
0221•
0222
0223
0224
0225•

00111
00t12
00t13
00t14
00 tt !5
00116
00t17

16421e
134216
004065
160001
002C!l~1
001727
010014

00120 066222R
00UH 134217
00t22 026t27R

e22e 00123 00ee20
0227 0~124 026t21R
0228•
022~ 00t25 052220R
0230 00t26 026t55R
0231•

010

JSB SETIO
LOA EGT5,I
SSA
JMP 103

l..OA EQT9,I
STA B
ALF',ALF
R.AL
STA TEMP1

CLA
CPA EQT12 1 1
JMP 103

SLB
JMP DU

CPA EQT131l
JMP 012

L.DB EtHt2, l
ISZ ECITt2,l
CLE,ERB
LOA Brl
SEZ,RSS
ALf"1ALF
ANO MASK3

l.OB TEMP1
lSZ EQTt3,I
JMP 101

SSB
JMP 101

CPA ARROW
JMP 103

0232• OUTPUT CHARACTER TO PUNCH UNIT.
0233•
023'1
0235
0236
0231
0238•

00t21 102600
00!30 102700
00!31 0360'J70R
00t32 126070R

101
102

OTA 0
STC 0
l!Z c.02
JMP c.0~,!

0239• CONTROL FUNCTION OUTPUT
0240•

SET I/0 INSTRUCTIONS FOR UNIT,
GET "CLEAR" FLAG.
CLEAR?
Yf.'S,TERMINATE,

GET CONTROL WORD
SAVf FOR CODE TEST,

ROTATE MOOE BIT
TO FUT 15
AND SAVE11

IF CURRENT BUFFER ADDRESS OR
FUNCTION INDEX • 0, THEN
OPERATION COMPLETED.

• CONTROL FUNCTION •

If CURRENT CHARACTfR INDEX •
0, THEN OUTPUT ENO OF RECORO,

GET CURRENT CHAR. BUFFER ADDRESS.
ADO l FOR NEXT CHARACTER.
eONVERT TO WORD A00RES5 1

GET WORD AND
POSITION PROPER
CHARACT[R IN A(07•00),

~EMOVE UPPER POSITION DATA.

PUT MOOE lN B(t5),
INDEX CHARACTER COUNTER,
• NOT LAST CHARACTER,

!F BINARY MOOE,
WRITE LAST CHARACTER.

JF CHAR a ~ ~ >, THEN OMIT IT
ANO R/LF ON ASCII RECORD,

OUTPUT CHARACTER TO INTERFACE
TURN DEV !CE ON,
ADJUST RETURN TO (P•2).
•EXIT•,

0241 00t33 160217 Dll LDA EQT13,l (A) • LlNE•FEED OR F!ED 'RAME,
0242 00t34 1342te ISZ EQT121l INOEX OUTPUT COUNT FOR LfADER/

13-13

PAGE 0007 #01 < DRIVER 02 •COMPLETION SECTION• >

0243 00135 000000 NOP T~A!LER OR LINE SPACING.
0244 00t36 026121R JMP 101 GO TO OUTPUT CHARACTER.
0245•
0246• ENO OP' RECORD PROCESSING
0247•
0248 Hlt37 0e2222R 012 LOA TfMPt CHECK MOOE OF TRANSFER.
024g 00140 002020 SSA
0250 0e:lt41 026t55R JMP 103 .. BINARY •
0251•
0252 ICHH42 164220 L.OB EQTt4,I •ASCII• RECORD
0253 00143 0622t7R LOA RE'.TN OUTPUT FIRST A
0254 00t44 0562t1R CPB RETN ~ETURN ANO THEN A
0255 00!45 06fH'!l65 LOA L.INF LlNE•FEED.
0256 00!46 17022e!! STA EGIT14,I SET EQT11 FOR LlNE•FEED CHECK,
0267 00t47 056217R CPB RETN IF LTNE•FEED IS BEING OUTPUT,
0258 00t50 0261. 52R JMP 014 GO TO SET COMPLETION FLAG~
0259 00te1 026t27R JMP ?01 • OUTPUT RETURN •
0260•
0261•
026~ 00152 006400 014 CLB SET BUFFER 40DRESS • 0
0263 00t53 1142U5 STB E1Ht2, I TO INDICATE LAST CHARACTER,
0264 00154 026127R JMP 101

13-14

PAGE 0008 #01 < DRIVER 02 •COMPLETION SECTION• >

0266•
0261•
0268•
0269
0270
027'1
027'2
0273
021A
027'5
021e
0271
0218
0219
0280
0281•
028:?
0283
028A
0285•
0286
0287•
0288
0289•
0290
0291
0292
0293•
0294•
029!•
0296•
0291•
02ge•
0299•
0300•
0301•
0302•
0303•
030A
0305
0306
0307•
0308
0309
03Hl*
0311
0312
0313ir
0314
0315
0316
0317•
0318

STATUS ANO TRANSMJSSION COMPLETION SECTION

00155 102500 IOJ
00156 010001
01H 57 16020~
00 t 60 0 Ul075
01?lt 61 030001
0121162 110?.0e
00t6l 002400
01H64 006002
00165 060055
013166 16421211
00t67 006020
IUJ! 70 026176R

IUlP't 164215
00112 006020
00173 007004

I.. I A 0
STA B
l..t'>A EClT4, I
ANO M~SK2
IOR B
STA EQT4 1 !
CLA
SZB
1."A • 2
L.DB EQT5 1 !
SSB
JMP I05

L.DB EQT 11, I
SSB
CMB,lNB

00114 106700 I04 CLC 0

00t75 l26070R

00!16 006400 ?05
0CH 11 174207
l?H'.1200 t 26070R

S IBROUTtN~t <SETIO>

CLB
STB EQT5,I
JMP c.~n,r

GET DEVICE STATUS,

REMOVE PREVIOUS
STATUS,

SET NEW
STATUS WORD,

IF I.OW TAPf
SUPPLY, SET
A • 2 FOR •EOT•,
GET "CLEAR" FLAG.
CLEAR?
n:s,

SET CB) • TRANSMISSION
LOG AS POSITIVE # OF WORDS
OR eHARACTERS.

TURN DEVICE OFF,

AND EXIT FOR COMPLETION,

RESET "CLEAR" FLAG,
RETURN

'URPOSfC TO CONf!GURE THE 1/0 INSTRUCTIONS
IN THE DRIVER TO REFERENCE THE
SUBJECT PAPER TAPE PUNCH.

(A)05w00 CONTAINS I/O ADDRESS
JSB SET!O

00201 000000
00~02 03222tR
0021213 072t55R

00204 040067
00205 072127R

00206 042215R
1210207 012t30R

00210 0322t6R
00211 012t74R
00212 072024R

00213 1262C!ltR

•RETURN• (REGISTERS MEAN!NSLESS)

SETIO NOP
lOR L!A
STA 103

ADA ,100
STA 101

ADA , t U10
STA 102

lOR e4000
STA 104
STA CLEAR

JMP SET!O,I

13-15

COMBINE ~LIA• WITH 1/0 ADO~ESS
ANO SET,

CONSTRUCT «OTA> INSTRUCTION

CONSTRUCT <STC,C> INSTRUCTION

CONSTRUCT <CLC> INSTRUCTION

PAGE 00eJ~ #01 c DRIVER 02 •COMPLETION SECTION• >

0320•
032lt CONSTANT AND VARIABLE STORAGE AREA
0322•
0323 ta0<MJOJ A EQU " DEFINE SYMBOLIC REFERENCE FOR
0324 00Jl\0l B EQU 1 A AND 8 REGISTERS.
0325•
0326 QHn' t 4 0000AC'J • 40 OCT 40
0327 00~US 001 teim ,1100 OCT 110e
0328 0~216 l'UJ4000 11 •0J00 OCT 400l'J
0329•
0:3321•
0331 10217 01210211~ RETN OCT 1e
0332 00220 000137 ARROW OCT 131
0333•
0334 0022! 102580 LIA LIA " 0335•
0336 00222 000000 TEMPI NOP
0337•
0338 00223 IZH,0061R IEXTA DEF IEX!T•l
0339 00224 1776UJ Nl0C!I DEC wl20
0340•

13-16

PAGE 00t0 #01 •• SVSTF.M BAS~ PAGE COMMUNICATION AREA ••

0342•
0343••• SYSTEM BA~E PAGE COMMUNICATION AREA •••
0344•
0345 000!53 •• EQU 538
el346 00041 N4 EQU •• ,..4
0347 00054 , 1 EQU •• •t
0348 00e.155 ,2 EQU ,,•2
0349 00056 ,3 EQU •• •3
0350 0012151 ,4 EQU I I •4
035t 0006! ,6 f QU ... ~
0352 00063 ,tee EQU •• •e
0353 00064 , ue EQU .. •9
0354 00065 L. I NF EQU I I• l 0
0355 00067 t f 0C'J EQU •• •t2
0356 0007J MASl<l EQU .. •16
121357 00014 MASl(3 EQU •• •t7
0358 00075 MASK2 EQU • • .. l 8
0359 00U10 • EQU UlllJA ESTABLISH CRIGIN OF AREA
0360•
0361•
0362• I/O MODULE/DRIVER COMMUNICATION
0363•
0364 0021213 EQTt EQU ,•67
0365 00~04 EOT2 ECIU ,•Ge
0366 0020'5 ECIT3 EQU .i•69
e3e1 00206 EQT4 EQU .•70
0368 00207 EQT!5 EQU ,•71
0369 00210 EQT6 EQU .•12
el310 00211 ECIT1 EQU .•13
0371 Hl2t2 ECIT8 ECIU .. , ..
0372 00213 ECIT9 EQU ,•7!5
0373 0021• EQT10 EQU ,•7e
0374 002t5 EQTt1 EQU ,•7'1
l/J375 0021e EQT12 El':IU ,•78
03'16 00211 EQTt3 EQU ... ,g
0377 1210220 EQTt4 EQU ,•80
0378 00221 EQT15 EQU ,•81
Qf 379 00222 E1Ut6 EQU ,•82
03821 1210223 EQTt7 EQU ,•83
0381 END
•• NO ERRORS•

13-17

DVR02 CROSS•REFERFNCE SYMBOL TABLE PAGE 0001

I! 00359 00364 00:365 00366 00361 00368 00369
00370 00311 00372 00373 00374 00375 00376
00377 00318 00379 00380

t' 00345 00346 00347 00348 00349 00350 00351
00352 00353 00354 00355 00356 00357 00358

'1 00341 00112

,100 00355 00308

,10e 00352 00125

• 1100 00327 00311

,t1B 00353 00127

,2 00348 0t'Jl14 0iHJ2 00277

,3 00349 00110

,4 00350 00184

•,40 00326

• 401210 00328 00314

•,6 el0351

•A 00323

ARROW 00332 00229

B 00324 00199 00217 00210 P!0273

C,02 00191 00008 00175 01l1236 00237 00288 00292

CLEAR 00134 00124 00316

001 00139 00125

002 00146 00128

003 00154 00142

004 00159 00115

005 00114 00155

DUI 00198 0011'6

011 00241 00209

012 00248 00212

13-18

OVR02 CROSSwRfFERf.NC:E SYMBOL TABLE PAGE 0002

014 00262 00258

tEGlTt 00364

EGITt0 00J73 00146 00159

EQT11 00374 00162 00282

EGIT12 00375 00140 00151 001tH 00205 00214 00215
00242 00263

EQT13 00376 00154 00167 00211 00223 00241

EtH14 00377 GIJ0110 00183 01212!52 00256

•EQT15 00378

•EQT16 00379

•EQT17 00380

•EQT2 0036!5

tEQT3 00366

EQT4 00367 00271 00274

EQT5 00368 00194 121021e 002~1

•Erne 00369

tEGlT7 00370

•EQT8 00371

EQT9 00372 00109 00119 00198

1.02 00105 00008 00113 00133 00180 00185

I.A,4 00182 OH'.1178

I.A.6 00184 00135

u:xrr 00179 00338

lEXTA 12H!J338 00114

IOt "0234 00224 00227 0121244 00259 00264 00309

102 00235 Hl312

?03 1210269 00106 0111206 fHl230 0025121 00306

104 00286 00315

,!05 t!J0290 00280

13-19

DVR02 CROSS•REFERENC:E SYMBOL TABLE PAGE 0003

I.! A 00334 00305

LINF 00354 00152 00255

MASl<1 00356 00122

MASl<2 00358 0121212

MASl<J ~0351 00220

Nl00 00339 00139

tN4 00346

RETN 1210331 00253 00254 00257

SE TIO 0eJ304 0011211 00193 00318

TEMPl 00336 00202 00'-22 00248

PRIVILEGED INTERRUPT 1/0 DRIVERS

Privileged interrupt I/O drivers include a third relocatable, closed subroutine in addition to the
Initiation Section and the Completion Section. This subroutine is the Privileged Interrupt Section.
P.nn is the entry point name. The Initiation Section is identical to those written for the standard
I/O drivers except that the EQT entry should be saved for subsequent use by the Privileged Inter­
rupt Section. Figure 13-3 is a flowchart of the privileged interrupt driver Initiation Section.

13-20

return
to

P+1

(A) = 1 or
2 reject
codes

(A)= 3,
reject
code

configure
1/0 instructions

for device

initialize
operating,
conditions,
flags, etc.

save EQT
entry for

the Privileged
Interrupt Section

set buffer
address, length,
mode, etc. for

transfer

activate
device

A register
(A)= 4 or 0

return to
P+1

Figure 13-3. Privileged Interrupt 1/0 Driver Initiation Section

13-21

Privileged Interrupt Section

Control passes directly to the Privileged Interrupt Section of the driver (P.nn) whenever an inter­
rupt occurs from a device associated with the driver. The address specifying where control is to be
passed (that is, the P.nn entry point) must be included at generation time while building the inter­
rupt table entries (the ENT option should be used; see Section 10). Since control does not pass
through the system's central interrupt routine before entering the Privileged Interrupt Section, the
following standard interrupt processing is not performed:

l. The I/0 interface flag for the device is not cleared.

2. The A register does not contain the interrupt source code.

3. The EQT entry addresses are not set in the base page.

Note: To allow access to the EQT entry, the Initiation Section should
save the EQT address, then the Privileged Interrupt Section can
use the saved address to reference the EQT entry.

FUNCTIONS OF THE PRIVILEGED INTERRUPT SECTION: The Privileged Interrupt Section is
responsible for the following functions (flowcharted in Figure 13-4):

1. Upon entry to P.nn, the driver must save the contents of the A, B, E, and 0 registers.

2. The driver services the current data item and determines whether or not the transfer is
complete.

3. If the transfer is not complete, the Privileged Interrupt Section should set the device for the
next transfer and proceed to step 5.

4. If the transfer is complete, the Privileged Interrupt Section should make the following system
completion call:

EXT $PCOM
LDA EQTl
JSB $PCOM

(saved EQT entry)

This call directs the system to pass control to the standard Completion Section (C.nn entry
point) as soon as it is possible for a "system" device to interrupt.

5. Prior to returning control to the point of suspension, the Privileged Interrupt Section must
restore the A, B, E, and 0 registers. In addition, since memory protect is automatically dis­
abled whenever an interrupt occurs, the Privileged Interrupt Section is responsible for restoring
memory protect to its original state. A memory protect flag exists on the base page (MPTFL =
271 8) to provide the driver with information concerning the state of memory protect. If
MPTFL is zero, memory protect was on and an STC 5 instruction should be executed immedi­
ately prior to returning to the point of suspension. If MPTFL is one, memory protect was off
and an STC 5 instruction should not be issued.

13-22

P.nn

save contents
of A, B, E,

and 0 registers

service
current

data item

call $PCOM
to pass

control to
C.nn

restore
A, B, E, and
0 registers

!
restore

memory
protect

1
return

to
P+1

NO set device
for next
data item

Figure 13-4. Privileged Interrupt 1/0 Driver Privileged Interrupt Section

13-23

Privileged Interrupt Completion Section

The completion section in a privileged interrupt driver is used to perform the following functions
(flowcharted in Figure 13-5):

1. Set the actual or simulated device status into bits 0 through 7 of EQT word 4.

2. Set the number of transmitted words or characters (depending on which the user requested)
in the B register.

3. Set the A register to indicate successful or unsuccessful completion.

0 successful completion

1 device malfunction or not ready

2 end-of-tape (information)

3 transmission parity error

4. Clear the device control on end-of-operation, or set device for next transfer.
Return to $CIC at P+ 1.

13-24

C.nn

configure
1/0 instructions

for device

update
status in
EOT(4)

(B) = #
words or
characters
transferred

(A)=
completion

code

clear
device

control

return
to

P+1

Figure 13-5. Privileged Interrupt 1/0 Driver Completion Section

13-25

SAMPLE PRIVILEGED INTERRUPT I/0 DRIVER

The following pages provide an assembly listing and cross-reference symbol table for a sample
privileged interrupt 1/0 driver.

PAGE 0001

0001 PRIVILEGED DRIVER FOR PUNCH
** NO ERRORS•

13-26

PAGE 0002 #~1 PRIVILEGED INTERRUPT PUNCH TAPE ORIVER•DVR02

0001 ASMS,R,B,L,C PRIVILEGED DRIVER FOR PUNCH
000_3 00"100 NAM DVR02,0
0004•
0005
0006•
0007
000t3*
0009••••••
00H'•

EXT $PCOM,SMOVE

PROGRAM DESCRIPTION ******

DRIVER 02 IS A SIMPLIFIED VERSION OF THE GENERAL PURPOSE
PUNCH DRIVER TO ILLUSTRATE THE USE OF PRIVILEGED INTERRUPT
FENCE REGISTER.

0011•
0012•
0013•
0014•
0015•
0016•
0017•
0018•
0019•
0020•
0021•
0022• •
0023•
0024•
0025•
0026•
0027•
0028•
0029•
0030•
0031•
0032•
0033•
00341'
0035•
0036• •
0037•
0038•
0039•
0040•
0041•
0042•
0043•
0044• ..,

DRIVER 02 OPERATES UNDER THE I/O CONTROL MODULE OF THE Dos
EXEClJTIVE FOR INITIATION AND COMPLETION AND DIRECTLY FROM THE
TRAP CELL FOR PRIVILEGED INTERRUPTS,

0045•
0046•
0047•
0048•
0049•
0050•
01651•
0052•
0053•
0054•
0055fl
0056•
0057• ..,

I.02 ts THE ENTRV POINT TO THE •INITIATION• SECTION
P,02 IS THE ENTRY POINT TO THE •PRIVILEGED• SECTION
c.02 IS THE ENTRY POINT TO THE •COMPLETION• SECTION
THE INITIATION SECTION IS CALLED FROM 1/0 CONTROL TO
INITIALIZE A DEVICE AND INITIATE AN OUTPUT

CALLING SEQUENCEt

~ ADORESSES oF DEVICE EQT ENTRY SET IN "EQTl•EQTt7•

(A) • l/O ADDRESS OF DEVICE

CP>
(P+1)

JSB I,1212
-.qf TURN•

(A) • 0, OPERATION INITIATED
• 4, OPERATION REJECTED•lMMEDIATE COMPLETIO

THE PRIVILEGED SECTION IS CALLEO DIRECTLY FROM TH! l/O TRAP
CELL WHOSE ADDRESS HAS BEEN SET AT SYSTEM GENERATION.

CALLING SEQUENCE&

CP)
CP+1)

JSB P.02
-RETURN•

THE COMPLETION SECTION IS CALLED BY CENTRAL INTERRUPT
CONTROL TO COMPLETE AN OPERATION.

CALLING SEQUfNCE1

• ADDRESSES OF DEVICE EQT ENTRY SET IN 1 EQTt•EQTt7•

CA) • I/O ADDRESS OF DEVICE

CP) JSB C,02
(P+l) •RETURN•

(A) • 0, SUCCESSFUL COMPLETION

RECORD FORMAT MUST BE A STRING OF ASCII CHARACTERS

13-27

PAGE 0003 #01 INITIATOR SECTION

·0059*
0060•
0061•
0062•
0063•
0064•
0065•
0066•
0067,ir
0068•
0069•
0070•
0071•
0072•
0073•
0074•
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
01'/Jt
0102
0103
0104
0105
0106
0107
010a
0109
0110

THE FUNCTIONS OF THE INITIATION SECTION AREt

1, CONFIGURE l/O INSTRUCTIONS
2. SAVE SYSTEM EQT ENTRY ADDRESSES USED lN PRIVILEGED

SECTION FROM EQT1•EQT17e
3. CHECK FOR LEGITIMATE REQUEST CODE
4. FORM CHARACTER BUFFER ADDRESS
5. FORM NEGATIVE CHARACTER COUNT
6. OUTPUT FIRST CHARACTER
7. ENABLE DEVICE
8. RETURN

NOTE• FUNCTION 2 rs THE MAIN DIFFERENCE FROM
STANDARD DRIVERS

00000 000000
00001 016140R
00002 062160R
00003 066161R
00004 016002X
00005 000166R
00006 162175R
00007 002020
00010 003004
00011 050055
00012 002001
00013 026042R
~0014 162177R
00015 A01200
00016 t72201R
00017 162200R
00020 002003
00021 026042R
00022 002020
00023 026026R
00024 001000
00025 003004
00026 172202R
00027 166177R
00030 136201R
00031 1601?101
00032 001727
00033 010074
00034 102600
00035 136202R
00036 000000
00037 1·02700
00040 002400
00041 126000R
00042 060057
00043 126000R

l,02 NOP
JSB CONFG
LOA DEQTt
LOB N17
JSB SMOVE
DEF TEQ1
LOA TEQ8,l
SSA
CMA,lN'A
CPA .2
RSS
JMP ERTN
LOA TEQ10,I
RAL
STA TEQ121l
LOA TEQ11 1 I
SZA,RSS
JMP ERTN
SSA
JMP ••3
AL.S
CMA,INA
STA TEQ13 1 I
LOB TEQ10 1 I
rsz TEQ12,1
LOA B,I
AL.F,ALF
AND ,377

l.02A OTA 0
ISZ TfQ1J,I
NOP

I,e2B STC 0
CLA
JMP I.02,1

ERTN LOA ,4
JMP I.0211

13-28

INITIATOR SECTION ENTRY
CONFIGURE 1/0 INSTRUCITONS
MOVE SYSTEM EQTl•EQTt1 INTO

PRIVILEGED DRIVER EQT AREA

GET REQUEST CODE

MAKE + IF NEGATIVf

IGNORE REQUEST CODE RETURN
FORM CHARACTER 8UFFfR ADDRESS

wBUF ADDR USED BY DRIVER•
FORM NEGATIVE CHARACTERS COUNTEF

ERROR IF Z£RO CHARACTER

.CHAR COUNT USED BY DRIVER•

FORM FIRST CHAARACT!R

OUTPUT FIRST CHARACTER
lNCR FOR FIRST CHARACTER

ENA8L.E DEVICE
INDICATE NORMAL RETURN
RETURN TO SYSTEM
IMMEDIATE COMPL!TJON RETURN
RETURN TO SYSTEM

PAGE 0004 #01 PRIVILEGED SECTION

0112•
0113•
0114•
0115•
0116•
0117•
0118•
0119•
li'120•
0121•
0122•
0123•
0124•
0125•
0126•
0121•
0128•
0129•
0130•
0131•
IUJ2•
0133
0134
0135
121136
0137
0138
IU 39
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163

PRIVILEGED PROCESSOR SECTION

THE FUNCTIONS OF THE PRIVILEGED SECTION AREi

1. TURN OFF INTERRUPTS
2. SAVE COMPUTER REGISTERS AT INTERRUPT
J. IF ALL CHARACTERS OUTPUT, GO TO FUNCTION 10
4. OUTPUT NEXT CHARACTER
5. ENABLE DEVICE
6. RESTORE REGISTERS
7. SET MEMORY PROTECT TO ORIGINAL STATE AT TIME oF lNTERAU
e. TURN ON INTERRUPTS
9. RETURN TO POINT TO INTERRUPT

10. CALL sPCOM TO ENTER DEVICE INTO PRIVILEGED INTERRUPT
COMPLETION QUEUE

11. DISABLE DEVICE
12. RETURN TO POINT Of INTERRUPT

00044 000000 P.02
00045 103100
00046 016120R
00041 162202R
00050 002003
00051 026077R
00052 166201R
00053 t36201R
00054 004065
00055 160001
00056 002041
00057 001727
00060 010014
00061 102600 P,02A
00062 103700 P,028
00063 1362"1!2R
00064 000000
00065 064271 P,MPT
00066 006002
00067 026074R
00070 016130R
00071 102100
00072 102705
00073 126044R
00074 016130R MPOFF
00075 102100
00076 126044R
00077 062166R P,020
00100 016001X
00101 106700 P1 02E
00102 026065R

NOP
CLF 0
JSB SEOAB
LOA rEQ1J,I
SZA,RSS
JMp P.020
LOB TEQ12,I
ISZ TEQ12rI
CLE,ERB
LOA Brl
SEZ,RSS
ALF 1 ALF
AND ,377
OTA 0
STC 0,c
ISZ TEQ13,I
NOP
LOB MPTFL

MP OFF
REOAB
0

TURN OFF INTERRUPT SYSTEM
SAVE REGISTERS
CHECK IF LAST CHARACTER sfNT Ouy

YES, SO INITIATE COMPLETION PROC

INCREMENT BUFFER ADDRESS

PUT DATA IN A REGISTER
CHECK IF UPPER OR LOWER CHARACTE

UPPER SO MOVE INTO LOW
MASK OFF OTHER CHARACTER
OUTPUT A CHARACTER
ENABL.E DEVICE
INCREMENT CHARACTER COUNT

CHECK IF MEM PROTECT TO BE ENABL
YES
NO

RESTORE REGISTERS
TURN ON INTERRUPTS
ENABLE MEMORY PROTECT
RETURN TO POINT OF INTERRUPT
RESTORE REGISTERS
TURN ON INTERRUPTS
RETURN TO POINT OF INTERRUPT

CAUSE COMPLETION INTERRUPT

SZB
,JMP
.JS8
STF
STC
JMP
JSB
STF
JMP
LOA
JSB
CLC
JMP

5
p.02,1
REOAB
0
P,02rl
TEQ1
SPCOM
0
P.MPT

ENTER DEVICE INTO PRIV INT COMPLETIO
CLEAR DEVICE

GO TO RETURN PROCESSOR

13-29

PAGE 0005 #~1 COMPLETION SECTION

0165•
0166•
0167•
1iH68•
0169•
0170•
0171•
0172•
0173•
0174•
0175•
0176
0117
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188

COMPLETION PROCESSOR SECTION

THE FUNCTIONS oF THE COMPLETION SECTION ARE:

1. UPDATE STATUS IN EQT4
2. SET TRANSMISSION LOG IN B
J. CLEAR A TO INDICATE OKAY COMPLETION
4. RETURN TO CENTRAL INTERRUPT PROCESSOR

00103 000000 c.02
00104 102500 C,02A
00105 0Ul011
00t06 070001
00107 t62171R
001 Hl 010075
00111 030001
00112 172171R
00113 166200R
0011~ 006020
00115 007004
00116 002400
00117 126103R

NOP
LIA 0
AND ,37
STA B
LOA TEQ4,l
AND MASK2
IOR B
STA TEQ4,l
LOB TEru1,1
SSB
CMB,INB
CLA
JMP c.02,l

13-30

UPDATE STATUS

STATUS IN EQT4
TRANSMISSION LOG IN B

CLEAR A TO INDICATE OKAY STATUS
RETURN TO SYSTEM

PAGE 0006 #01 SUBROUTINES

0190•
0191• SAVE A,B,E,O
0192•
0193 00120 00000e SEOA8 NOP
0194 00121 072207R STA XA A
0195 00122 076210R STB XB 8
0196 00123 001520 ERA,ALS
0197 00124 102201 soc
0198 00125 002004 INA
0199 00126 072211R STA XEO E ANO 0
0200 00127 126120R .JMP SEOAB1I
0201•
0202• RESTORE A,B,E,o
0203•
0204 00130 000000 REOAB NOP
0205 ~0131 062211R LOA XEO E AND 0
0206 00132 103101 CLO
0207 00133 000036 SLA,ELA
0208 00134 102Ul1 STF 1
0209 00135 062207R LOA XA A
0210 00136 066210R LOB XB B
0211 00137 126130R ,JMP REOAB, I
0212•
0213• CONFIGURE I/O INSTRUCTIONS
0214•
0215 00140 000000 CONFG NOP
0216 00141 070001 STA B SAVE SELECT CODE
0217 00142 032162R IOR OTAC
0218 00143 0i'2034R STA l 9 02A CONFIGURE OTA SC
0219 P.10144 0i'206tR STA P.02A
0220 00145 06216lR LDA STCC
0221 00146 030001 IOR 8
0222 00147 072037R STA I,028 CONFIGURE STC SC,C
0223 001!50 0720e2R STA Pe028
0224 00151 062t64R LOA CLCC
0225 00152 030001 IOR B
0226 00153 072101R STA P1 02E CONFIGURE CLC SC
0227 00154 et62165R LOA LlAC
0228 00155 0300f.11 IOR B
0229 Hl156 072UJ4R STA C1 02A CONFIGURE LIA SC
0230 00157 t26140R JMP CONFG,l RETURN

13-31

PAGE 0001 #01 BUFFERS, POINTERS, CONSTANTS, ANO MASKS

0232•
0233 00001 B EQU 1
0234•
0235 P.10053 • • f.QU 53B
0236 00055 .2 f QU •• •2 DEC 2
0237 00057 ,4 EQU ',+4 DEC ..
0238 "10071 ,37 EQU ,,+14 OCT 37
0239 00074 ,377 EQU ,,+17 OCT 377
0240 00075 MASl<2 EQU • ,+18 OCT 177400
0241•
0242 00100 • EQU 1006
0243 00203 EQTl f QU ,+67 EQUIPMENT TABLE ADDRESS
0244 00271 MPTFL EQU ,+121 MEMORY PROTECT FLAG
0245•
0246 (110160 000203 OEQTl DEF EQT1
0247*
0248 01iH61 177757 N17 DEC •17
0249 00162 102600 OTAC OTA 0
0250 00163 103700 STCC STC 0,c
0251 00164 106700 CLCC CLC 0
0252 00165 102500 t..lAC LIA 0
0253*
0254 00166 000000 TEQ1 NOP INITIATION ADDRESS
0255 00167 000000 TEQ2 NOP COMPLETION ADDRESS
0256 00110 000000 Tf Q3 NOP o,R,UNIT1CHANNEL
0257 00171 ((100000 TEQ4 NOP AV1TYPE1STATUS
0258 00172 000000 TEQ5 NOP -0259 Ql0t73 000000 Tf Q6 NOP -0260 00174 000000 TEQ7 NOP REQUEST RETURN
0261 00175 000000 TEQ8 NOP REQUEST CODE
0262 0~176 000000 TEQ9 NOP I/0 REQUEST CONTROL WORD
0263 00177 000000 TEQ10 NOP REQUEST BUFFER ADDRESS
0264 00200 000000 TEQ11 NOP REQUEST BUFFER LENGTH
0265 00201 000000 TECH2 NOP -0266 00202 000000 TEQ13 NOP -0267 00203 000000 TEQ14 NOP -0268 00204 000000 TEQ15 NOP -0269 00205 000000 TEQ16 NOP -0270 00206 000000 TEQ17 NOP -
0271•
0272 00207 000000 XA NOP A REGISTER TEMPORARY
0273 00210 000000 XB NOP B REGISTER TEMPORARY
0274 0021 t 000000 XEO NOP £ AND 0 REGISTER TEMPORARY
0275 ENO
** NO ERRORS•

13-32

DVR02 CROSS•REFERENCE SYMBOL TABLt: PAGE 0001

SMOVE 00007 0012!79

SP COM 00007 00161

• 00242 00243 00244

• • 00235 00236 00231 00238 00239 08240

.2 00236 00084

,37 00238 00178

.317 00239 00102 00145

,4 00237 00109

a 00233 00100 00142 00179 00182 00216 00221
00225 1210228

c.02 00176 00005 00188

C,02A 00177 00229

CLCC 00251 00224

CONFG 00215 00076 00230

DEQTl 00246 00077

EQTl 00243 00246

ERTN 00109 00086 00092

I,02 00015 00005 00108 00110

I.02A 00UJ3 00218

I,028 00106 00222

LIAC 00252 00227

MASK2 00240 00181

MPOFF 00157 00152

MPTFL 00244 001fUJ

N17 00248 00078

OTAC 00249 00217

P,02 00133 0000$ 00156 001'59

P,02A 00146 00219
13-33

DVR02 CROSS~REFERENCE SYMBOL TABLE PAGE 9102

P,028 00147 00223

P,020 00160 00138

P1 02E 00162 00226

P,MPT 00150 00163

REOAB 00204 00153 00151 00211

SEOAB 00193 00135 00200

STCC 00250 00220

TEQ1 00254 00080 00160

TEQ10 00263 00087 0eJllJ98

TEQ1t 00264 00091 00184

TEQ12 00265 00089 00899 lfat39 IHJ148

TEQ1J 00266 00097 80104 01136 011••

•TEQ14 00261

ITEQ15 00268

ITEQ16 00269

ITEQ17 00270

•TEQ2 00255

•TEQJ 00256

TEQ4 00257 00180 00183

•TEQ5 00258

•TEQ6 002!59

•TEQ7 00260

TEQ8 00261 00081

•TEQ9 00262

XA 00272 00194 81289

XB 0027~ 01195 88211

XEO 00274 18109 18215

13-34

SECTION XIV
Privileged Mode

Certain situations may arise where a user wishes to process his own errors instead of having the
operating system handle them for him. In addition, there may be cases where he wishes to determine
when an I/0 operation (initiated without wait) is complete.

Both of these options are available with use of the system's privileged mode flag (MDFLG =location
1338). In order to operate in this privileged mode (i.e., user processing of I/0 errors and/or deter­
mining I/0 completions) the user

• must be programming in Assembly language

• is responsible for setting MDFLG properly

Bit 0 set - user error processing

Bit 15 set - I/0 completion processing

DOS-III uses MDFLG as follows:

1. After an I/0 initiation (performed by an EXEC call) MDFLG bit 0 is checked, and if it is
equal to one, control returns to the user program with the A register set as follows:

Contents (decimal)

0

1

2

3

4

5

6

7

8

9

10

11

12
13

Meaning

Operation initiated

Read or write illegal

Control request ignored

Device down

Immediate completion

DMA busy

Driver busy

Driver overlay area busy

EXEC overlay area busy

Operation rejected

Memory protect error

Request code error

Execution time exceeded
Spare

14-1

Contents (decimal)

14

15

16
17
18

19

Meaning

Illegal logical unit

Unassigned logical unit

Illegal buffer address

Memory wrap around

Illegal track address

File cannot be found

2. After an 1/0 completion, MDFLG bit 15 is checked, and if it is equal to one, control is passed
to a user subroutine which must immediately follow the EXEC call. Upon entry to the routine,
the B register contains the driver transmission log and the A register contains the device status
as follows:

A register Contents

0

-1

-2

-3

-4

Meaning

1/0 completed without errors

Device was not ready

End-of-tape

Parity error

Batch input detected a colon (:)

If the 1/0 completion resulted from an 1/0 error (not ready, parity, or end-of-tape) and the
device is not the system console or the disc, bit 14 of EQT4 (the fourth word of the current
Equipment Table entry) is set to indicate that the device is down.

MDFLG bit 0 is then checked, and if it is equal to one, control returns to user (thus bypassing
system processing of the error).

3. During a FILE NAME SEARCH EXEC call (RCODE = 18) where the search is requested with­
out wait, no subsequent EXEC calls are alloweP.. If a second EXEC call is requested during
execution of a file search, the system will wait for the search to complete before processing the
second EXEC call. If the user does not want the system to wait, he should set Bit 1 of MDFLG.
If Bit 1 of MDFLG is set and the above condition is encountered, control will be returned to the
user following the second EXEC call with the A register= 8 (EXEC busy).

4. The system clears all bits of MDFLG following any program completion.

14-2

5. An 1/0 calling sequence operating in privileged mode might look something like this:

END
COMP

!NIT

JSB EXEC
DEF END
DEF
DEF

JMP
NOP

JMP

RCODE
CONWD

!NIT

COMP,!

(must be an 110 without wait)

}
If present, the completion routine must be located here.
Executed following 110 completion, and should include
a check for completion errors. This routine must not
use any routine that is not re-entrant.

} Executed following an 1/0 initiation, and should
include a check for initiation errors.

14-3

PART 5
Error Codes and IV/essages

SECTION XV
Halt Codes and Error IV/essages

This section describes the error conditions which can occur while DOS-III is being generated, loaded
and operated. Error conditions are reported to the user by one of the following:

• a computer halt; the halt code is displayed in the DISPLAY register

• an error message; the message is displayed on the system console

• an error message (displayed on the system console) followed by a computer halt (halt code
displayed in the DISPLAY register)

• an error code returned to a user program (by EFMP); the error code is also returned in the
A register

This section contains halt code and error message tables, including corrective action (when applicable)
for the following:

• DSGEN ERROR CONDITIONS

DSGEN Error Halts
DSGEN Error Messages

• DOS-III BOOTSTRAP ERROR HALTS

• DOS-III ERROR CONDITIONS

DOS-III Error Halts
DOS-III Error Messages

• EFMP ERROR CODES

Note: The ALGOL, FORTRAN and Assembler subsystems also print error
messages. These subsystem error messages are documented in the
SOFTWARE OPERATING PROCEDURE module "Assembler,
FORTRAN and ALGOL Error Messages" (5951-1377). FORTRAN IV
error messages are described in HP FORTRAN IV (5951-1321).

15-1

Table 15-1. DSGEN Error Conditions

DSGEN ERROR HALTS

Halt Code

102000

102002

102003

102004

102007

102022

102032

102077

102000

Cause

Follows an irrecoverable error message.
Generator unable to find $STRT in DISCM.
DISCM is probably missing.

Follows ERR02.

Follows ERR03.

Follows ERR04.

Normal halt. Disc initialization of sub­
channel has completed.

Disc error after ten attempts. Disc address
in A, disc status in B.

Disc not ready or disc should be unprotected.
Disc address in A and disc status in B.

Normal halt.
Ready to receive another program tape.

If DSG EN is above 100008 an impossible
condition has occurred.

DSGEN ERROR MESSAGES

Messages During Initialization and Input Phases

Message Meaning

ERR01 Invalid response to initialization request.

ERR02 Checksum error on program input.

ERR03 Record out of sequence.

15-2

Irrecoverable
Irrecoverable

Recovery Action

See ERR02 in error messages.

See ER R03 in error messages.

See ER R04 in error messages.

Start the computer executing to initialize
another subchannel or to generate a system.

Start execution to retry ten more times.
When preceded by ERR12continuesto
next track.

Ready or unprotect the disc. Start the
computer executing.

Continue generation.
Enter next tape and start the computer
executing.

Either a hardware/software failure has
occurred or DSGEN has overflowed its
work area because the system was too
large.

Action

Request is repeated. Enter valid reply.

Computer halts; to try again, reposition
tape to beginning of program and start
the computer.

Same as ERR02.

Table 15-1. DSGEN Error Conditions (continued)

Message

ERR04

ERR05
name

ERR06

ERR07

ERR08
name

Meaning

I I legal record type.

Duplicate entry point.

Invalid base page length in BCS-produced
relocatable tape (must be zero).

Program name or entry point table over­
flow of available memory.

Duplicate program name.

Messages During the Parameter Phase

ERR09 Parameter name error (no such program).

ERR10 Parameter type error.

General Messages

ERR11

ERR12

ERR13

ERR14

ERR15

System directory track overflow.

Disc error during disc initialization.

User segment precedes user main program.

Absolute code overlays relocatable code
in the disc scratch area.

More than 63 subprograms called by a
main program.

15-3

Action

Same as ER R02. If input is from disc, error
is irrecoverable; remove non-relocatable files
from disc.

The current entry point replaces the previous
entry point.

Base page area is ignored, but memory pro­
tect error will occur if program is executed.

Irrecoverable error. Revise or delete
programs.

The current program replaces the previous
program.

Enter valid parameter statement.

Same as ERR09.

Irrecoverable.Regenerate system and reduce
the value of the response to the "FIRST
SYSTEM SECTOR?" message.

Start the computer executing to bypass the
faulty tracks.

Irrecoverable.

Irrecoverable. Regenerate the system and
select one of the following two options:
1. Reduce number of programs being loaded
2. Load the library after all other programs

are loaded. If this is not successful, in­
crease the size of the system disc and/or
lower the starting track/sector of the
system.

Revise main program (subsequent calls to
subprograms are ignored).

Table 15-1. DSGEN Error Conditions (continued)

Message

ERR16

ERR17

ERR18

ERR19

ERR20

ERR21

ERR22

ERR23

Meaning

Base page linkage overflow.

Current disc address exceeds number of
available tracks.

Memory overflow (absolute code exceeds
LWA memory).

Program overlay (current word of absolute
code has identical location to previous word).

Binary DBL record overflow of internal
table.

Module containing entry point $CIC not
loaded.

Read parity/decode disc error. A register
bits 8-14 show track number; bits 0-7
show sector number.

EQT not entered for disc-resident 1/0
module.

Messages During 1/0 Table Entry

ERR24 Invalid channel number.

ERR25 Invalid driver name or no driver entry points.

ERR26 Invalid or duplicate D,R,U operands.

ERR27 Invalid logical unit number.

ERR28 Invalid channel number.

ERR29 Channel number decreasing.

ERR30 Invalid INT mnemonic.

ERR31 Invalid EQT number.

ERR33 Invalid entry point.

ERR34 Invalid absolute value.

ERR35 Base page interrupt locations overflow into
linkage area.

ERR36 Invalid number of characters in final operand.

15-4

Action

Diagnostic printed once when overflow
occurs. Bounds field indicates the number
of words overflowed. Revise order and
composition of program loading to reduce
linkage requirements.

Irrecoverable error.

Diagnostic printed once when overflow
occurs. Bounds field indicates the number
of words overflowed. (Absolute code is
generated beyond LWA). Revise program.

Current word is ignored (the address is
printed).

Records overlay previous DBL records
(diagnostic printed for each overflow
record). Revise program.

Irrecoverable error. Regenerate the system;
include DISCM.

After ten attempts to read or write the disc
sector, the computer halts. To try ten more
times, start the computer executing.

Restart at 1008 .

Enter valid EQT statement.

Same as ERR24.

Same as ERR24.

Enter valid DRTstatement.

Enter valid INT statement.

Same as ERR28.

Same as ERR28.

Same as ERR28.

Same as ERR28.

Same as ERR28.

Restart Disc Loading Phase.

Same as ERR28.

Halt Code

102011

102031

Table 15-2. DOS-I II Bootstrap Error Halts

Cause

Disc error status is in the A register. If
A register contains 0, the subchannel did
not contain a system.

Same as above.

15-5

Recovery Action

Check that the device is ready and the
proper disc cartridge is being used; then
call maintenance.

Occurs during execution of disc-resident
part of Bootstrap. Check that the disc is
ready; then call maintenance.

DOS-Ill ERROR HAL TS

Halt Code

102002
102003

102004

102005

102011

102031

102077

Location

location 28 l
location 38 l

DISCM

DISCM

$EX20

DVR31

$EX20

Table 15-3. DOS-111 Error Conditions

Cause

Possible memory wrap-around when
memory protect is not present.

Power has gone up or down with
powerfail option present.

Memory parity error occurred.

Disc parity error. Halt occurs after
a message is printed giving location
of error.

Trying to write on disc cylinder that
is flagged "protected" without first
unprotecting the disc.

Follows message telling operator to
protect the disc after spare track
assignment.

Recovery Action

Program error. Bootstrap DOS-I I I from
the disc and correct the program.

Bootstrap DOS-I I I from disc and restart.

A-register contains address of word con­
taining the parity error. Run the memory
diagnostic programs, then bootstrap
DOS-I I I from disc and restart.

Unprotect the disc and start the com­
puter executing. DOS-I I I assigns next
spare track.

Start the computer executing to exit
DVR31 with no action taken.

Protect the disc and start the computer
executing. DOS-I I I aborts the job that
was running.

DOS-Ill ERROR MESSAGES

During the operation of DOS-I I I certain messages may be output on the system console. These messages may be
error reports or simply informative; they are generated by various parts of DOS-Ill. The messages are listed alpha­
betically including where they originated, what they mean, and what response if any, the operator must make.
Messages that begin with a variable name or a non-alphabetic character are listed by the first non-variable, alphabetic
character.

Message

BAD CONTROL STATE

BEGIN 'DEBUG' OPERATION

BP BND [L,U)?

CHECKSUM ERROR

Source

JOB PR

DEBUG

LOADR

JOBPR

Description

Directive just entered is not acceptable in DOS 111. Enter
correct directive on system console. 1

Any legal DEBUG operations may now be entered. Enter
any legal DEBUG operations.

Specify the base page bounds desired for the program being
loaded by the Loader. The bounds should be entered as two
octal constants separated by a comma.

Checksum error in input to ST,R,file or ST,X,file directive.
Correct tape .1

1This error causes a batch abort if the command is entered in batch mode. See "Batch Abort" in Section 1.

15-6

Table 15-3. DOS-I I I Error Conditions (continued)

Message

CW nnnnn

DEVICE #nn DOWN

DICTIONARY OVERFLOW

??? DISC

Source

DISCM

JOBPR

JOB PR

DISCM

Description

In an 1/0 READ/WRITE EXEC call at nnnnn, buffer extends
beyond memory bounds. Correct program.

EQT #nn is unavailable (down). Use the UP,nn directive to
make the device available. (Then use the GO directive if
needed.)

No room is left for entries in the user file dictionary. Put file
on another disc or remove some of the files.

Informs user that disc is not recognizable by DOS-I I I. Must
be labeled or unlabeled with :IN, or formatted with DSG EN,
before using in DOS-I I I.

DISC GEN CODE nnnn NOT SYS GEN CODE mmmm ERR POSS

DISC NOT ON SYSTEM

DONE?

??? LABEL xxxxxx
DOS LABEL xxxxxx
TSB LABEL xxxxxx
OK TO PURGE?

DUPLICATE Fl LE NAME

$END ALGOL

$END ASMB

$END ASMB CS

$END ASMB NPRG

DISCM Informs the user that the disc being requested was initialized
(labeled) by a system with a different system generation
code. Generation code on disc may be updated by labeling or
unlabeling using :IN.

DISCM

JOBPR

DISCM

JOB PR

ALGOL

ASMB

ASMB

ASMB

No disc pack with the currently requested label can be found
on the system. Mount disc pack with correct label or ready
drive containing disc_

Thirty feed frames (paper tape) or an end-of-file (magnetic
tape) have occurred during input. Enter YES for end of input;
NO for more input.

Attempting to label (or unlabel) an already labeled disc pack.
Enter YES to relabel the disc pack or NO to drop the request
to relabel the disc pack.

Doubly defined file name found in a STORE directive (other
than STOR E,P); an EDIT directive with a new file name;
on DD,U; or on a RENAME directive. Remove file or rename
file. 1

End of ALGOL compilation. No response required.

Assembly has completed. No response required.

Assembly has ended because of an error in the assembler
control statement. Correct the control statement.

Assembly has terminated because no JFI LE was found when
required. Define the file using a JF I LE directive.

1This error causes a batch abort if the command is entered in batch mode. See "Batch Abort" in Section 1.

15-7

Table 15-3. DOS-Ill Error Conditions (continued)

Message Source

$END ASMB PASS ASMB

$END ASMB XEND ASMB

END FILE JOB PR

$END,FTN [4] FTN [4]

Description

Another pass of the source program through the input device
is required. Printed on the system console after Pass 1. Replace
the program in the input device and type :GO.

Assembly stops. An EOF occurred in the source program
before an END statement. Add an END statement to the
program.

During an EDIT, (1) the master file ended before completion
of editing or (2) a triple colon occurred in the first 3 columns
of a source statement. Check input to the EDIT program. 1

Compilation has completed. No response required.

END JOB xxxx [RUN= xxxx MIN. xx.x SEC EXEC= xxxx MIN. xx.x SEC]

JOB PR

ENTER FILE NAME(S) OR /E LOA DR

ENTRY ERROR DEBUG

EOF-NO DATA STORED JOB PR

EQT xx CH xx DVRxx D R Ux Sx JOB PR

EXTRA PARAMETERS JOB PR

Fl nnnnn DISCM

HPAL?? ALGOL

IB nnnnn DISCM

IE nnnnn DISCM

End of current job. Total job time and execution time of the
job are printed on the system console and standard list device
if a Time-base Generator is present.

Enter list of relocatable program files. To terminate list of
file names type "/E".

DEBUG operation entered was illegal. Correct entry.

An attempt was made to read an EOF without first reading
data. A file is not created when this message is output.

Equipment table entry output by the EQ directive. No action
required.

More than 15 parameters in a directive. Excess parameters are
not processed.

In a FILE READ/WRITE EXEC call (1) the file requested at
nnnnn cannot be found. If nnnnn is not present, enter the file.
(2) The length of the buffer requested at nnnnn extends be­
yond the end of the file. Correct the buffer length. Either
case causes calling program to abort.

Control statement error. Correct control statement.

Illegal buffer address in EXEC call at location nnnnn. Program
is aborted. Correct buffer program address.

If a colon occurs in the first column of input entered through
the batch device during a program execution, the program is
aborted, control is given to the JOBPR and the input is pro­
cessed as a directive. nnnnn is the memory location of the
input request.

1 This error causes a batch abort if the command is entered in batch mode. See "Batch Abort" in Section 1.

15-8

Table 15-3. DOS-111 Error Conditions {continued)

Message

IGNORED

*IGNORED

file
ILLEGAL

ILLEGAL DIGIT

ILLEGAL LUN

ILLEGAL PROGRAM RUN LIMITS

ILLEGAL PROGRAM TYPE

INPUT ERROR

Source

DISCM

JOB PR

JOB PR

JOB PR

JOB PR

DISCM

JOB PR

DISCM

INPUT :DATE, XXXXXXXXXX[,H,M]

DISCM

1/0 ERR ET EQT #mm DISCM

1/0 ERR NR EQT #mm DISCM

1/0 ERR PE EQT mm DISCM

Description

Input from system console during program execution cannot
be processed. Correct input.

All directives following EJOB and before next JOB except
BATCH, TYPE, TRACKS, and OFF are ignored. Enter
acceptable directive.

On a source file LIST directive, the requested file was not a
source file. Retype LIST directive using source file. 1

A file name begins with a non-alphabetic character. Rename the file. 1

In a decimal number, character is other than 0-9. Enter correct
decimal number. In an octal number, digit is other than 0-7.
Enter correct octal number. 1

Logical unit requested is equal to zero, greater than the number
of logical units in the system, not the correct type (i.e., input
type for output device), etc. Enter a correct logical unit. 1

Attempt to run a user main or segment whose user area
limits or base page limits will not fit within the limits of the
current system. Recreate user mains or segments on current
system using LOADR.

Program requested in a RUN or PROG is not legal. Enter
correct name. 1

Equipment table entry number or logical unit number in : EQ,
:LU, :UP or :DN is illegal. Enter correct equipment table or
logical unit entry number.

When system is initiated from the disc, DOS-I I I requires a
DATE directive. The [,H,M] is ignored in DOS-Ill if a Time­
base Generator is not in the system. Enter a DATE directive:

End-of-tape on device #mm. EQT #mm is unavailable. To
make the device available (up), use the UP,mm directive.

The device #mm is not ready. To make the device available
(up), use the UP,mm directive.

Parity error on device #mm returns to program return
address with A set to status, B set to 0. Call maintenance.

1This error causes a batch abort if the command is entered in batch mode. See "Batch Abort" in Section 1.

15-9

Table 15-3. DOS-I I I Error Conditions (continued)

Message

1/0 ERR{~~} USER DISC

1/0 ERR{~~} USER DISK

IT nnnnn

JBIN OVF

JOB ABORTED!

Source

DISCM

DISCM

DISCM

FTN [.4],
ASMB,
ALGOL

JOB PR

Description

A parity error or device not ready occurred when attempting
to assign a user disc. Disc may not be formatted; format it
with DSGEN.

Disc error in completion section of DVR31. Retry previous
operation.

Illegal disc track or sector address in EXEC cal I from location
nnnnn. Program is aborted. Correct the track or sector
address in EXEC call.

Overflow of Job Binary Area during assembly or compilation.
Reduce size of job or purge user files.

Correct problem and start new job.

JOB xxxxx dddddddddd [TIME= xxxx MIN. xx.x SECS EXEC= xxxx MIN. xx.x SEC.]

JOB PR

L01 LOADR

t..:02 LOADR

L03 LOADR

L04 LOADR

L05 LOADR

L06 LOADR

L07 LOADR

LOS LOADR

L09 LOADR

L10 LOADR

L 11 LOADR

L12 LOADR

L13 LOADR

Message output at the beginning of each job. The time infor­
mation is deleted in DOS-111 if a Time-base Generator is not
included in the system. Start job.

Checksum error on tape.

II legal record.

Memory overflow.

Base page overflow.

Symbol table overflow.

Duplicate main or segment name (may be caused by attempt­
ing to run the Loader twice in one job).

Duplicate entry point.

No main or segment transfer address.

Record out of sequence.

Insufficient directory work area or user area space.

Program table overflow.

User file specified cannot be found.

Program name duplication.

15-10

Message

L14

L15

L16

L17

L18

L19

LB L = 111111

LIMIT ERROR

xxxx LINES

****LIST END****

LN nnnn

LOADR COMPLETE

LOADR SUSP

LOADR TERMINATED

LOAD TAPE

Table 15-3. DOS-II I Error Conditions (continued)

Source

LOADR

LOADR

LOADR

LOADR

LOADR

LOADR

DISCM

JOB PR

JOB PR

JOB PR

DISCM

LOA DR

LOADR

LOA DR

LOADR

Description

Non-zero base page length.

Segment occurred before main.

Program overlay (illegal ORG).

Illegal library record.

Illegal octal digit in base page bounds specification; or the
lower base page bound is greater than the upper base page
bound; or the lower or upper base page bound is greater than
20008 . In keyboard mode, re-enter new base page bounds.
In batch mode, Loader aborts.

Illegal octal digit in main memory bounds specification; or
the lower program bound is greater than the upper program
bound. In keyboard mode, re-enter new program bounds. In
batch mode, Loader aborts.

Disc subchannel referenced is labeled 111111. If attempting
to change user disc subchannel, enter : UD with correct label.

In a directive, source statement numbers are out of order
(:EDIT), dump limits are incompatible (:PDUMP, :ADU MP),
sector numbers are illegal (:DUMP), number of words re­
quested exceeds number of words available (:MMGT), or
beginning source statement number is greater than final
statement number (:EDIT). Correct directive and re-enter. 1

Total number of statements stored by a STORE,S directive.
No response required.

Terminates list of source statements generated by a LIST
directive. No response required.

Logical unit requested by an EXEC call at nnnnn is unassigned.
Program is aborted. Assign logical unit.

Loading has completed. No responses required.

Loader has suspended (usually at EOT). Type :GO,n to
restart the Loader with proper parameter value.

Loader has terminated because of an error. Correct input.

In conjunction with LOADR SUSP, this message requests that
next relocatable tape be loaded before :GO. Load the next
relocatable tape and enter :GO to read next tape or :GO, 1
to indicate that all tapes are read in.

1 This error causes a batch abort if the command is entered in batch mode. See "Batch Abort" in Section 1.

15-11

Table 15-3. DOS-Ill Error Conditions (continued)

Message

LU nnnnn

LUxx EOTyy

LUN UNASSIGNED

xxxxx MISSING

MISSING PARAMETER

MP nnnnn

NAME *IGNORED

NEXT AVAIL TRACK=tt
BAD=n

NO BIN END

NO PROGRAMS LOADED

NO SOURCE

NO SOURCE

NO SUBSYSTEMS DEFINED

NUMBER OVERFLO

OR nnnnn

OVERFLOW JBIN

PARAMETER ILLEGAL

PARITY ERROR
SC=m,TR K=ttt,SCTR=sss

Source

DISCM

JOB PR

JOB PR

DISCM

JOB PR

DISCM

JOB PR

JOB PR

JOB PR

LOA DR

JOB PR

ALGOL

JOBPR

JOB PR

DISCM

JOB PR

JOB PR

JOB PR

Description

Illegal logical unit in EXEC call at nnnnn. Program is aborted.
Enter correct logical unit number.

Logical unit table entry; EQT #yy assigned to LU #xx. No
response required.

Logical unit requested in a directive is unassigned. Assign
logical unit number requested in the directive. 1

Segment xxxxx requested by an EXEC call is not in system
or user directory. Job is aborted. Correct job.

A parameter is missing in a directive. Retype the directive
correctly .1

Memory protect violation at location nnnnn. Program is
aborted. Correct the program.

Illegal JOB name; numeric first character. Retype correct
job name.

In TRACK directive, tt =first track beyond end of current
user area; n = number of bad tracks. "BAD=n" returned only
if bad tracks do exist. tt = "NONE" if no tracks are available.

No END record detected when storing a relocatable binary
program. 1

No programs were loaded by the Loader. Loading terminates.

No source statements following a /R or /I in an EDIT
directive. Enter source statements after the /R or /1. 1

Source file from disc not pre-set.

Informs the user that a :MM directive was attempted but no
subsystems were defined during system generation.

An integer is too large. 1

1/0 operation requested by EXEC call at nnnnn is rejected.
Program is aborted. Check program.

There is not enough room in the JBIN for storing the re­
locatable binary output from the Assembler or compilers. 1

A parameter of a directive is illegal. Re-enter directive. 1

Parity error during disc read or write. Call maintenance.

1 This error causes a batch abort if the command is entered in batch mode. See "Batch Abort" in Section 1.

15-12

Table 15-3. DOS-111 Error Conditions (continued)

Message

PAUSE xxxx

PROG BND [L,U]?

RE-ENTER STATEMENT ON TTY

RO nnnnn

SPARE TRK OVERFLOW

STOP xxxxx: nnnnn

SUBCHAN = n

xxxxx SUSP

TAPE END

TM nnnnn

#TRACKS UNAVAILABLE

TRAC #TOO BIG

TSB DISC

Source

LIBR
(Formatter)

LOA DR

JOB PR

DISCM

JOB PR

LIBR

DISCM/
JOB PR

DISCM

JOB PR

DISCM

DISCM

JOB PR

DISCM

Description

Program has temporarily suspended itself. xxxx is an octal
number acting as an identifier. Restart program using the GO
directive.

Enter the program bounds for the program being loaded by
the Loader. The bounds consist of two octal numbers
separated by a comma.

Follows most error messages that do not cause abort. Type
in the correct statement.

Illegal parameter in EXEC call at nnnnn. Program is
aborted. Correct the program.

Defective cylinder detected and no spare tracks available for
reassignment.

Program xxxxx has terminated at location nnnnn.

Given in response to :UD information request or when :SS
makes new subchannel assignment. No response required.

Program xxxxx suspended by EXEC call or PAUSE directive.
Restart program using the GO directive.

EOT flag set on magnetic tape or paper tape device during
output via JOBPR directives DUMP and LIST or output
of a JOB or EJOB statement. If a magnetic tape, it is rewound
with standby; if paper tape, a trailer is punched. The JOBPR
will then pause to allow new tape to be set up. Mount a new
magnetic tape. Enter :GO to continue the output.

Maximum execution time exceeded. The program is currently
at nnnnn and is aborted. Increase execution time.

There are not enough word tracks for the compiler. Enter

:OFF then purge disc of unnecessary files.

Track requested is higher than last available disc track (track
may be in JBIN area). Redefine the track request or purge

. files or use different disc. 1

Informs user that the user disc was labeled by a non-DOS-I I I
system. May be made DOS-I I I disc by labeling or unlabeling
with :IN.

1This error causes a batch abort if the command is entered in batch mode. See "Batch Abort" in Section 1.

15-13

Table 15-3. DOS-Ill Error Conditions (continued)

Message Source Description

TURN lo~~! DISC PROTECT OVERRIDE SWITCH

DISCM Unprotect [ON] or protect [OFF] the disc.

UD nnnnn

UNLBL

file name UNDEFINED

subsystem name UNDEFINED

UNDEFINED EXTS

WRONG INPUT

name.: nn xx

@

*

DISCM

DISCM

JOB PR

JOBPR

LOA DR

JOBPR

ERRO

JOBPR/
DISCM

DISCM

Unable to find user disc requested by EXEC call at nnnnn.
Mount required disc and type :GO; or terminate program
with :ABORT or :OFF.

User disc specified in :UD is unlabeled. If t~ying to change
user disc assignment, enter :UD,* Lnl.

Undefined file name as a parameter of a directive. Retype
correct file name on the system console. 1

Undefined subsystem name as a parameter of :MMGT direc­
tive. Subsystem names must be defined at system generation.

Undefined external references exist in programs loaded. The
external references are listed one per line. To load additional
programs from paper tape, type :GO,O(.n].

Relocatable binary input furnished for a source file request
or vice-versa. Enter correct input. 1

Library routine error code, where name is the name of the
user's program, nn is the routine identifier and xx is the
error type.

Directives may be entered. Enter desired directive.

Operator attention directives may be entered. Enter desired
directive.

1This error causes a batch abort if the command is entered in batch mode. See "Batch Abort" in Section 1.

15-14

DOS-Ill EFMP ERROR CODES

These error numbers are returned to the user program (in ERRNO) by the EFMP. The error
numbers are also returned in the A register.

Error No.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

No errors.

Invalid EFMP function number.

Duplicate file name.

File name not in directory.

File too long for this pack.

Invalid record length.

Description

Pack number not available (or name not in directory if a search was made on
all available pack directories).

Invalid security code.

A temporary file must be opened with a CREATE function. An OPEN function
can only change the Temporary Record Buffer number of the starting record
number for a temporary file.

Buffer area specified in Exec call is not valid.

Invalid Record Number.

File not open.

DEFINE not previously executed or Opened-File table used in previous DEFINE
has been altered. Issue a new DEFINE.

Backspaced beyond "start-of-file."

No pack space available.

Invalid pack number.

No pack number entry is available in Opened-File table.

Work Area space not sufficient.

No Opened-File table space available.

Invalid temporary record buffer number.

Invalid number of EXEC call parameters.

15-15

Error No.

21

22

23

24

25

26

27

28

29

30

End-of-File.

COPY terminated.

Invalid argument(s).

Description

Maximum number of files exceeded.

File already OPEN.

Record size larger than one-half of a temporary record buffer.

Pack number previously initialized.

Pack number not initialized.

Directory requested is too large.

Invalid number of active pack numbers.

15-16

PART 6
Appendix and Indexes

APPENDIX A
System Tables

This appendix contains figures and tables which represent the structure of the following

• Main-memory layout, including

main memory allocations in DOS-III

DOS-III base page constants

DOS-III base page communication area

• Disc layout, including

disc structure in DOS-III

disc directory entry format

disc labels

• System I/0 tables, including

the equipment table

the logical unit table

the interrupt table

A-1

low memory
interrupt locations

system base page area

user base page area

r

DISCM, the disc monitor

main-memory resident
drivers and EXEC modules

system tables

disc-resident EXEC
module overlay area

(optional)

disc-resident 1/0
drivers overlay area

(optional)

user common area
(optional)

disc-resident user program area
(main programs and segments)

main-memory resident
bootstrap disc loader

high memory

Figure A-1. Main Memory Allocations in DOS-Ill

A-2

+- location 408

memory protect
._. boundary

Table A-1. DOS-I I I Base Page Constants

Location Type Value

40 DEC -64

41 DEC -10

42 DEC -9

43 DEC -8

44 DEC -7

45 DEC -6

46 DEC -5

47 DEC -4

50 DEC -3

51 DEC -2

52 DEC -1

53 DEC 0

54 DEC

55 DEC 2

56 DEC 3

57 DEC 4

60 DEC 5

61 DEC 6

62 DEC 7

63 DEC 8

64 DEC 9

65 DEC 10

66 DEC 17

67 DEC 64

70 OCT 17

71 OCT 37

72 OCT 77

73 OCT 177

74 OCT 377

75 OCT 177400

76 OCT 3777

77 OCT 177700

A-3

Table A-2. DOS-I I I Base Page Communication Area

Location Name Contents

100 UMLWA Last word address of user available memory

101 JBINS Start track/sector of Job Binary Area

102 JBINC Current track/sector of Job Binary Area

103 TBG Time-base Generator 1/0 channel address

104-5 CLOCK Current system clock time (2 words)

106-7 CLEX Execution clock time (2 words)

110 CXMX Maximum allowable execution time

111 BATCH Logical unit# of batch input device

112 SYS TY Logical unit# of system console

113 DUMPS Abort/Post Mortem dump flag

114 SYSDR System directory track/sector

115 SYS BF System buffer track/sector

116 SE CTR Number of sectors/disc track

117 EQTAB First word address of equipment table

120 EQT# Number of equipment entries

121 LUTAB First word address of logical unit table

122 LUT# Number of logical unit entries

123 JBUF Job input buffer address

124 JFILS Source file starting track/sector

125 JFILC Source file current track/sector

126-32 RON BF Parameter buffer (5 words)

133 MDFLG Mode flag for privileged 1/0

134 DISP (Reserved for System use)

135 AEPF Alternate entry point flag

136 SGRTN Segment return address

137 XIRT System transfer address for interrupt-completion routine

140 SVEQT EQT address for 1/0 operations

141-53 EXPG Directory entry for current program (11 words)

154 DISCO Disc 1/0 channel/last track on disc

155 SYSSC System subchannel

A-4

Location

156

157

160

161

162

163

164

165

166-70

171-73

174

175

176

177

200

201

202

203

204

205

206

207

210

211

212

213

214

215

216

217

Table A-2. DOS-111 Base Page Communication Area (continued)

Name

SCCNT

UDNTS

SYN TS

CU DSC

CRFLG

CUD LA

FSFLG

CUMID

DBUFR

UBUFR

TSONE

GU DSC

SYSCO

JFLSC

DISCL

INTAB

INT#

EQT1

EOT2

EOT3

EOT4

EOT5

EQT6

_EQT7

EQT8

EQT9

EOT10

EOT11

EQT12

EOT13

Contents

Number of subchannels on system minus 1

Next user disc track/sector

Next system disc track/sector

Current user disc subchannel

Current disc request flag: 0 for system, non-0 for user

Current user disc last access

File search flag

Computer identification

System disc triplet parameter buffer (3 words)

User disc triplet parameter buffer (3 words)

Last track/sector referenced +1

Default user disc subchannel

System generation code

Source file subchannel

User label track/sector

First word address of interrupt table

Number of interrupt entries

EQT1-EOT17 are addresses of current equipment table
entry

A-5

Location

220

221

222

223

224

225

226

227

230

231

232

233

234

235

236

237

240

241

242

243

244

245

246-47

250-51

252

253

254

255

256

Table A-2. DOS-II I Base Page Communication Area (continued)

Name

EOT14

EOT15

EOT16

EOT17

ROCNT

RORTN

ROP1

ROP2

ROP3

ROP4

ROP5

ROP6

ROP7

RQP8

NAB RT

XA

XB

XEO

XS USP

EXLOC

EX#

EXMOD

EX MAN

EX BAS

IODMN

IODBS

UMFWA

UBFWA

UBLWA

Contents

EQT 1-EOT17 are addresses of current equipment table
entry

Number of request parameters

Current request return address

ROP1-ROP8 are addresses of current request
parameters

Illegal request code abort/no abort option

A register contents at time of interrupt

B register contents at time of interrupt

E and 0 register contents at time of interrupt

Point of suspension at time of interrupt

Address of Exec module doublet table

Number of Exec module doublet table entries

Exec module #currently in Exec module overlay area

Exec module low and high main memory addresses (2 words)

Exec module low and high base page memory addresses
(2 words)

First word address of 1/0 driver module main area

First word address of 1/0 driver module base page area

First word address of user main area

First word address of user base page area

Last word address of user base page area

A-6

Location

257

260

261

262

263-64

265

266

267

270

271

272

273

274-75

276-304

305

306

307

310

311

312

313

314

315

316

317

320

321

322

323

Table A-2. DOS-Ill Base Page Communication Area (continued)

Name

CHAN

OPATN

OPFLG

SWAP

JOB PM

JOB PB

EJOBF

RTRK

DUMMY

MPTFL

$GOPT

$1DCD

$MDBF

TEMP

TEMPO

) TEMP1

TEMP2

UTMPO

) UTMP1

UTMP2

MSECT

VADR

IODMD

RCODE

SXA

SXB

SXEO

sxsus
EFMP

Contents

Current OMA channel number

Operator/keyboard attention flag

Operator communication flag

Job processor resident flag

Job processor disc address/number of words in main
(2 words)

Job processor base page number of words

End-job flag

Real time simulation track number

Reserved for system use

Memory protect flag

Point of suspension continuation address

Input request code check

Exec module data buffer (2 words)

Reserved for data communications (7 word buffer)

Reserved for System use

User-available Temporary

Negative number of sectors/track

Address of instruction causing memory protect violation

Current resident 1/0 driver module flag

Current request code value

Operator attention restore A register value

Operator attention restore B register value

Operator attention E and 0 register value

Operator attention return address

Extended File Management Package flag

A-7

Table A-2. DOS-Ill Base Page Communication Area (continued)

Location Name Contents

324 DSC LB Disc track/sector of Relocatable Library

325 DSCL# Number of Relocatable Library routines

326 LSTCH Last disc referenced

327 FLFLG/TRAC# User file table validity flag/#Bad tracks found

330 XFLG Entry address for disc not ready

331 SSFLG System search flag

332 CHA RC Batch input character count

333 TYE QT System console EQT 4 address

334 DMFLG Data Management Flag

335 SSTBL Address of Subsystem Table

336 TM BEG Address of Timer List

A-8

track 0

one directory entry
for each disc­
resident module

track boundary --+

track boundary,.

system label sector

bootstrap

system area directory (size varies)

main memory-resident system

equipment table (EQT)

device reference table (DRT)

interrupt table (I NT)

EXEC modules

1/0 driver modules

system programs

EXEC module table

relocatable library

base page linkages

system buffer/user label sector

user directory

user files

work area

job binary area

Figure A-2. Disc Structure in DOS-111

A-9

SYSTEM AREA
(hard""are protected)

USER AREA

WORD

2

3

4

5

6

7

8

9

10

11

CONTENTS

first character second character

third character fourth character

fifth character p entry type

track sector

file length (in sectors)

FWA program

LWA program

FWA base page linkage area

LWA base page linkage area

program entry point

FWA of memory available for memory management (see Note)

15 14 13 12 11 10 9 8 7 6 5 4 3 2

Note: For overlays, word 11 value is the last word (plus 1) of the
overlay. For a main program, word 11 value is the last word
(plus 1) of the largest segment.

Figure A-3. Disc Directory Entry Format

A-10

0

(five-character
file name)

for system or
loader-generated
binary programs
only

BITS

'P' Bit

0 = Permanent file-no action is taken at end-of-job.

1 =Temporary file-purge this entry at end-of-job.

This bit is set by the Relocating Loader and cleared by a STORE,P directive.

Entry Type

Type

0

1

2

3

4

5

6,7

108

lls

128

138

148

File

System resident

Disc-resident executive supervisor module

Reserved for system

User program, main

Disc-resident device driver

User program segment

Library

Relocatable binary

ASCII source statements

Binary data

ASCII data

Absolute binary

Note: The last directory entry in each sector is followed by a word containing-1.
The last entry in the directory is followed by a word containing zero (0).

A-11

DISC LABELS

Sector 0 of track 0 of each disc is used for label information. In addition, if the user area is on the
system disc, a label also exists in Sector 0 of the first track after the system area. The first 64 words
(words 0-63) are reserved for label information. Word 64 contains the next available track and sector.
Words 65 and 66 contain the number of bad tracks and the next available spare track.

The contents of the label include:

Word 0:

Word 1:

Word 2:

Label presence code (ASCII "LB" for labeled, zero for unlabeled)

System proprietary code:

1. "DO" for DOS-III

2. "TS" for Time-shared BASIC

System generation code assigned at system generation time. The code can be any four
decimal digits.

Words 3-5: A six-character disc label. If the first character equals* the disc is unlabeled. This
label can only be set using :IN (for user areas) or by DSGEN (set to "SYSTEM"
for system discs).

Word 31: Checksum of words 0-30.

A-12

THE EQUIPMENT TABLE

The equipment table (EQT) has an entry for each device recognized by DOS-III (these entries are
established by the user when DOS-III is generated). The EQT entries reside in the permanent main­
memory resident part of the system and have this format:

D

R

Unit#

Channel#

Av

1 if DMA channel required.

1 if driver type is main-memory resident.

May be used for subchannel addressing.

I/O select code for device (lower number if multiboard interface).

0 Unit not busy and available

1 Unit disabled (down)

2 Unit busy

Status-Actual or simulated unit status at end of operation.

Equipment Type Code-Identifies type of device and associated software driver. Assigned equip­
ment type codes in octal are:

00-07

00

01

02

04

05

10-17

11

12

20-37

23

26

31

33

Paper Tape Devices

Teleprinter

Punched Tape Reader

High Speed Punch

Display Terminal

System Console

Unit Record Devices

Card Reader

Line Printer

Magnetic Tape/Mass Storage and other devices capable of both input
and output

7970 Magnetic Tape

2762A Terminal Printer

Moving-Head Disc

Writable Control Store

For equipment type codes 01 through 17, odd numbers indicate input devices and even numbers
indicate output devices (except 05, which is both input and output).

A-13

WORD

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

CONTENTS

driver "initiation section" address

driver "continuation section" address

D R (reserved) unit# channel#

Av equipment type code status

(saved for driver use)

(saved for driver use)

request return address

(reserved for system)

current 1/0 request control word request code

request buffer address

request buffer length

temporary or disc track#

temporary or starting sector#

temporary storage for driver

upper memory address: main driver area

upper memory address: driver linkage area

starting track # starting sector #

15 14 13 12 11 10 9 8 7 6 5 4 3 2

Figure A-4. The Equipment Table

A-14

0

All zeros if
main-memory
resident

BITS

THE LOGICAL UNIT TABLE

The logical unit table (LUT) has an entry for each logical unit defined at system generation time
(maximum number is 63). These entries provide logical addressing of the physical devices defined
in the EQT. Logical unit numbers 4-63 may be modified within a job by using the LU directive.
At end-of-job, logical unit number 1-9 are restored to their original system generation values. The
LUT entries reside in the permanent main-memory resident part of the system and have the follow­
ing format:

Word Contents

1 Device EQT number

n Device EQT number

THE INTERRUPT TABLE

The interrupt table (INT) contains an entry, established at system generation time, for each I/0
channel which can cause an interrupt (beginning with I/0 channel 6). The INT entries reside in the
main-memory resident portion of the system and have the following format:

The entry is in the following form:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

[D I EQT address of device

D = 0 no DMA interrupts expected

D = 1 DMA interrupts expected

Bit 15 is set and cleared by calls to $SDMA and $CDMA, respectively.

A-15

Directive

:ABORT

:ADUMP[,FWA {,LWA]] [,BJ [,SJ

:BATCH, logical unit

:CLEAR[,logical unit]

:COMMENT string

:DATE, day[,hour,min]

:DD

:DD,X

:DD, U[,file[,(name)] ,file[,(name)] . . .]

:DN,n

:DUMP, logical unit,file[,S 1 [,82]]

:EA [,P 1,P 2,P 3,P 4,P 5]

:EB[,P1,P2,P3,P 4.P5]

: EDIT,file,logical unit [,newfile]

:EF[,logical unit]

INDEX 1
Summary of Directives

Description

Terminate the current job

Dump a program if it aborts

Switch from keyboard to batch mode, or
reassign batch device

Clear the Job Binary Area or issue a
clear request to an I/0 device

Print a message on the system console

Set the date (and the time, if Time-base
Generator is present)

Dump the entire current disc onto a disc
on another subchannel

Dump the system area only to another
disc

Dump all or specified files of the current
user disc to another disc, optionally as­
signing new file names

Declare an I/0 device down

Dump all or part of a user file to a
peripheral I/O device

Execute user EXEC module $EX36

Execute user EXEC module $EX37

Edit a source statement file stored on
disc, optionally creating a new file

Write end-of-file on magnetic tape

1

Page

2-3

2-13

2-4

2-5

2-6

2-7

2-9

2-9

2-9

2-8

2-11

12-2

12-2

2-17

2-21

Directive

:EJOB

:EQ[,n]

:GO[,P1,P2, ... ,P5]

:IN, label

:JFILE,file

:JOB[,name]

:LIST,S,logical unit,file[,m[,n]]

:LIST,U,logical unit[,file1, . . .]

:LIST,X,logical unit[,file1, . . .]

:LU[,n1 [,n2J1

:MMGT[,subsystem name,wwwww, ... ,
subsystem name,wwwww]

:OFF

:PAUSE [comment string]

:PDUMP[,FWA[,LWA]] [,BJ [,SJ

:PROG,name[,P1,P2, ... ,P5]

:PURGE[,file1,file2 . . .]

:RNAME,oldname,newname [,type]

:RP ACK

:RWND[,logical unit]

:RUN,name[,time] [,NJ

:SA, track,sector[,number]

: SO, track,sector [,number]

:SS

Description

Terminate the current batch and/or job
normally

List the complete equipment table, or
just one line

Continue processing a suspended program

Label or unlabel (" *") the current user disc

Specify a source file on the disc for the
Assembler or a compiler

Initiate a user job

List all or part of a source statement file

List all or part of the user directory

List all or part of the system directory

Assign or list logical unit assignments

Reserve memory address space (in words)
for specific subsystems or obtain a list of
previously reserved memory space

Abort the currently executing program or
operation without terminating the job

Page

2-22

2-23

2-25

2-26

2-43

2-28

2-29

2-29

2-29

2-33

2-35

2-37

Suspend the current job or program (optionally, 2-38
output a comment on the system console)

Dump a program after normal completion 2-13

Turn on a system or user program 2-39

Delete all temporary file or specified user file 2-40
directory entries.

Rename a specified user file and option- 2-42
ally, change its program type

Repack disc user file area eliminating purged 2-44
files (see :PURGE directive)

Rewind a magnetic tape 2-43

Run a user program 2-45

Dump disc in ASCII to standard list device 2-15

Dump disc in octal to standard list device 2-15

Set up system search for file names over 2-52
all subchannels

Set up system search for file names over 2-52
specified subchannels

2

Directive Description Page

:SS,99 Restrict search for file names to current 2-52
user disc (plus system directory for RUN
and PROG)

:STORE,A,file,sectors Reserve space for an ASCII data file 2-47

:STORE,B,file,sectors Reserve space for a binary data file 2-47

:STORE,P[,name1,name2 ...] Store all or specified temporary Loader- 2-47
Generated programs as permanent files

:STORE,R,file {,logical unit] Store a relocatable file from the JBIN 2-47
area of disc after an assembly or compila-
tion or from a peripheral I/0 device

:STORE,S,file,logical unit[,C] Store a source statement file from a 2-47
peripheral I/0 device

:STORE,X,file,logical unit Store absolute binary programs 2-47

:TOF[,logical unit] Issue a top-of-form to a list device 2-54

:TRACKS Print the disc track status of the current 2-55
user disc

:TYPE Return to keyboard mode from batch 2-57
mode

:UD[,[label] [,n]] Change the subchannel assignment for the 2-59
user disc, or request label and subchannel
information for a user disc

:UP,n Declare an I/O device up 2-58

3

INDEX 2

Summary of EXEC Calls

Consult Section III for the complete details on each EXEC call.

RCODE Name Function Page

-19 BASE PAGE STORE Store values into base page memory loca- 3-6
tions (Value to be stored in the A register,
absolute location address in the B register)

1,2 I/0 READ /WRITE Transfer input or output (1 =read or 3-20
2 =write)

3 I/0 CONTROL Carry out control operations 3-17

6 PROGRAM COMPLETION Signal end of program 3-30

7 PROGRAM SUSPENSION Suspend calling program 3-33

8 SEGMENT LOAD Load segment of calling program 3-35

10 PROGRAM LOAD Transfer a main program into main 3-31
memory

11 TIME REQUEST Request the time-of-day 3-38

13 I/O STATUS Request device status 3-23

14,15 FILE READ /WRITE Read or write a user data file (14 = 3-13
read or 15 =write)

16 WORK AREA STATUS Ascertain if n contiguous work tracks 3-41
are available

17 WORK AREA LIMITS Ascertain first and last tracks of work 3-39
area

18 FILE NAME SEARCH Ascertain if a file name exists in the 3-9
directory

1

RCODE

23

24

27,28

29

30

Name

USER DISC CHANGE

EFMPCALLS

USER EXEC CALLS

SEGMENT RETURN

MEMORY PROTECT
CONTROL

Function Page

Change the current user disc subchannel 3-43

Execute EFMP functions Section VII

Execute user EXEC modules $EX36 or Section XII
$EX37 (RCODE = 27 for $EX36;
RCODE = 28 for $EX37; up to five
words of parameter information)

Return from a segment to the main
program at the instruction immediately
following the segment load call

Control memory protect from a user
program

3-37

3-29

31 (Reserved for future assignment)

32

33

34

35

36

FILE CREATE

FILE PURGE

FILE RENAME

MEMORY MANAGE­
MENT (INITIALIZE)

MEMORY MANAGE-
MENT (STATUS REQUEST)

Allows user to create a user disc file under
program control.

Allows user to purge a user disc file under
program control.

Allows user to rename a user disc file under
program control.

Reserves a block of memory under a unique
block name identifier specified by the user.

Requests number of words allocated to speci­
fied block name identifier, or number of re­
maining unallocated words if block name
identifier is omitted.

37 (Reserved for future assignment)

38 MEMORY MAN AGE­
MENT (BUFFER
ALLOCATION)

Allocates buffer area from memory space. If
the block name identifier is specified, the
buffer allocation is from the area reserved for
the block name. If not, the allocation is from
the available memory area.

39 (Reserved for future assignment)

40 (Reserved for future assignment)

3-7

3-11

3-15

3-26

3-28

3-24

41 MEMORY MANAGE­
MENT (BUFFER
RELEASE)

Permanently releases buffer space. If the buffer 3-25
resides within an area reserved under a block
name identifier, the logical address space remains
reserved.

2

A

ADUMP: 2-13, 2-37
ALGOL CODE procedure: 3-3
ALGOL control statement: 5-5
alternate entry-point flag (AEPF): 3-32, 3-36
A Pocket Guide to HP 2100 Computers

(5951-4423): 5-29
ASCII dump format: 2-15
assembler control statement: 5-9
Assembler, FORTRAN and ALGOL Error

Messages (5951-1377): 15-1
assembler NAM statement: 5-10
assembler ORB statement: 5-10

B

BACKSPACE: 3-19
backward motion request: 4-7
base page communication area: A-4
base page contents: A-3
base page linkage area: 2-13
base page linking mode: 5-10, 10-12
batch abort: 2-50
BINRY library routine: 3-22, 5-28
BREAD entry point: 3-22
BRIEF temporary file: 9-4
BWRIT entry point: 3-22

c
central interrupt processing routine ($CIC): 1-5, 4-3
commercial "at" sign@: 2-1, 2-50
configured DSGEN: 1-9, 10-1
Control-A: 1-3
current page linking mode: 5-10, 10-12

D

device independence: 1-5
device reference table: 2-33, 4-2, 10-16, A-15
directory listing output: 2-30
disc labels: A-12
disc monitor (DISCM): 1-1

1

INDEX 3

Index of Terms

DSGEN: 10-1
DVROO: 1-14, 4-3
DVROl: 1-14, 4-3
DVR02: 1-14, 4-3
DVR04: 1-14, 4-3
DVR05: 1-13, 4-3
DVRll: 1-14, 4-3
DVR12: 1-14, 4-3
DVR23: 1-14, 4-3
DVR26: 1-14, 4-3
DVR31: 1-13, 4-3
DVR33: 1-14, 4-3

E

EFMP areas: 7-2
EFMP directory size: 8-10
EFMP function numbers: 8-1
EFMP pack numbers: 7-2
EFMP file security code: 7-2, 8-6, 9-18
ENDFILE: 3-19
equipment table: 2-33, 4-2, 10-15, A-13
equipment table format: A-13
equipment table generating: 10-15
EQT status field: 4-3
ERRO library routine: 5-19

F

file name search: 3-9
FORTRAN control statement: 5-13
FORTRAN DATA statement: 5-16
FORTRAN EXTERNAL statement: 5-17
FORTRAN PAUSE statement: 5-18
FORTRAN PROGRAM statement: 5-15
FORTRAN STOP statement: 5-18
forward motion requests: 4-7
function code field: 3-18
FWA: 2-13

G

Generate DOS-III: 10-7

H

hardware override switch: 1-9, 2-26, 10-5
head 0, drive 0: 11-12
HLT 31: 2-26
HP FORTRAN IV (5951-1321): 15-1

I

input string length: 2-1
interrupt table: 4-2, 10-16, A-15
interrupt table format: A-15
interrupt table generating: 10-16
I/O operation, without wait: 14-1
IPRAM: 3-14

J

job binary area: 1-11, 2-5
job processor (JOBPR): 1-11

K

keyboard mode: 1-3

L

label presence code: 7-1, A-12
library input unit: 10-10
linefeed: 1-3
link mode: 5-10, 10-12
LOADR current page linking parameter: 5-22
LOADR debug parameter: 5-22
LOADR input parameter: 5-21
LOADR program bounds specification parameter: 5-22
logical unit table: 2-33, 4-2, 10-16, A-15
logical unit table format: A-15
logical unit table generating: 10-16
LWA: 2-13

M

memory management: 1-9, 2-35, 3-24

N

NAM statement: 5-10

0

octal dump format: 2-15
opened-file table: 7-2
opened-file table size: 8-2
operator attention directives: 2-2
optional directive (:SS): 2-29, 2-52
override/protect switch: 1-9, 2-26, 10-5

p

P bit: A-11
PDUMP: 2-13, 2-37
PN000:8-5

Prepare Tape System (02116-91751): 10-1
primary file: 2-17
privileged interrupt: 1-5, 13-20
privileged mode flag (MDFLG): 14-1
program entry type: A-11
program input unit: 5-10, 10-12, A-10
jjC.DAI\ 13-2

R

request codes: 3-1
relocatable libraries: 5-28
Relocatable Subroutines (02116-91780): 5-28
relocating loader: 5-20
restarting DSGEN: 10-7
return: 1-3,
REWIND: 3-19
RMPAR library subroutine: 2-25, 3-46
RONBF parameter buffer: 3-46
RTE/DOS FORTRAN IV library: 5-28
RTE/DOS relocatable library: 5-28
rubout: 1-3

s

secondary file: 2-18
sector boundaries: 2-12
sector numbers: 2-11
sense switch control: 5-5
source listing output: 2-31
SS condition: 2-10, 2-29, 2-52
standard list device: 2-22
standard logical unit numbers: 4-2
summary of directives: index 1
summary of EXEC calls: index 2
system area: 1-8
system area directory: 2-29
system area dump: 2-9
system area files: 2-12
system generation code: 10-5, A-12
system proprietary code: 7-1, A-12

T

temporary record buffers: 7-2
temporary record buffer size: 8-3
termination record: 2-49
timing capabilities: 1-6
track switching: 3-20
transmission log (TLOG): 3-23
type A files: 2-50
type B files: 2-50
type P files: 2-48
type R files: 2-4 7
type S files: 2-49
type X files: 2-51

2

u

unassigned logical units: 10-16
user area: 1-1, 1-9
user area directory: 2-29
user area dump: 2-9
user file types: 2-4 7
user source file: 2-29
user status word (UST AT): 8-25

w

wait field: 3-18
waiting and no waiting: 3-22, 4-3
work area: 1-8
write end-of-file: 3-17

3

$

$EX01 ... $EX12: 10-13
$EX13 ... $EX22: 10-14
$EX30 ... $EX33: 10-12, 10-14
$EX36: 3-1, 10-12, 12-3
$EX37: 3-1, 10-12, 12-3

I

/DELETE: 2-18
/END: 2-19
/INSERT: 2-18
/MERGE: 2-18
/REPLACE: 2-18
/SUPPRESS: 2-19
/UNSUPPRESS: 2-19

~ROM:

TO:

HEWLETT,; PACKARD

DA TA SYSTEMS • 11000 Wolfe Road, Cupertino, California 95014, Telephone 408-257-1000

Frank Mendoza

Jim Bridges

Natalie Churchill

John Gowan

Bill Gimple

2100 Software Section

2100 Systems Section

DATE:

SUBJECT:

July 1, 1974

DOS SYSTEM GENERATOR (DSGEN)

(Project #1422)

A new version of the DOS-III System Generator (DSGEN) which allows current
page linking is now in the process of being released. The only difference
in the system gene~tion procedure is the addition of a optional ·
"LINKING MODE" parameter which may be entered during the parameter input
phase. The following paragraph describes the two ways that current page
linking may or may not be specified.

1. At assembly/compile time by the second parameter in the NAM record

e.g. NAM

/'
Prog name

ABC,3,1

t ' Prog. Type Linking mode

If the second parameter is zero, current page linking will occur.

If the second parameter is non-zero, base page linking will occur •..

NOTE: The DOS assembler puts a default value of 99 in the second
parameter of the NAM record, therefore, 111Ciking base page
linking the default mode.

2. At system generation time during the parameter input phase. At this
time the program type and/or its linking mode may be modified.

e.g. ABC, 3,0~

.,A ~ . -----. . nk. d Prog. name Prog type Li ing mo e

If the linking mode is zero, current page linking will occur.

If the linking mode is non-zero, base page linking will occur.

NOTE:

-To change the linking mode, the program type must be included. Any error
in either the program type or linking mode parameter will result in an
ERRlO message. The default mode for modules changed at this time will be
current ~ linking. In other words, what is entered during the parameter
input phase will override the parameters passed in the NAM record.

UNITED STATES
ALABAMA
8290 Whitesburg Dr., S.E.
P.O. Box 4207
Hunstville 35802
Tel: (205) 881-4591
TWX: 810-726-2204

ARIZONA
2336 E. Magnolia St.
Phoenix 85034
Tel: (602) 244-1361
TWX: 910·951-1330

2424 East Aragon Rd.
Tucson 85706
Tel: (602) 889-4661

CALIFORNIA
1430 East Orangethorpe Ave.
Fullerton 92631
Tel: (714) 870-1000
TWX: 910-592-1288

3939 Lankershlm Boulevard
North Hollywood 91604
Tel: (213) 877-1282
fWX: 910-499-2170

6515 Arizona Place
Los Angeles 90045
Tel: (213) 776-7500
TWX: 910-328-6148

1101 Embarcadero Road
Palo Alto 94303
Tel: (415) 327-6500
TWX: 910-373-1280

2220 Watt Ave.
Sacramento 95825
Tel: {916) 482-1463
TWX: 910-367-2092

9606 Aero Drive
P.O. Box 23333
San Diego 92123
Tel: (714) 279-3200
TWX: 910-335-2000

COLORADO
5600 South Ulster Parkway
Englewood 80110
Tel: (303) 771-3455
TWX: 910-935-0705

CANADA
ALBERTA
Hewlett-Packard (Canada) Ltd.
11748 Kingsway Ave.
Edmonton TSG OX5
Te!: (403) 452-3670
TWX: 610-831-2431

Hewlett-Packard (Canada) Ltd.
915-42 Avenue S.E.
Calgary T2G 111
Tel: (403) 262-4279

CONNECTICUT
12 lunar Drive
New Haven 06525
Tel: (203) 369-6551
TWX: 710-465-2029

FLORIDA
P O. Box 24210
2806 W. Oakland Park Blvd.
Ft. Lauderdale 33307
Tel: (305) 731-2020
TWX: 510-955-4099

P.O. Box 13910
6177 Lake Ellenor Dr.
Orlando, 32809
Tel: (3051 859·2900
TWX: 810-850-0113

GEORGIA
P .o. Box 28234
450 Interstate North
Atlanta 30328
Tel: (404) 436-6181
TWX: 810-766·4890

HAWAII
2875 So. King Street
Honolulu 96Bl4
Tel: (8081 955-4455

ILLINOIS
5500 Howard Street
Skokie 60076
Tel: (312) 677·0400
TWX: 910-223-3613

IN DIANA
3839 Meadows Drive
Indianapolis 46205
Tel: (317) 546-4891
TWX: 810-341-3263

IOWA
1902 Broadway
Iowa City 52240
Tel: (319) 338-9466
Night: (319) 338-9467

LOUISIANA
P. O. Box 840
3239 Williams Boulevard
Kenner 70062
Tel: (504) 721-6201
TWX: 810·955·5524

BRITISH COLUMBIA
Hewlett-Packard (Canada) ltd.
837 E. Cordova Street
Vancouver V6A 3R2
Tel: (604) 254-0531
TWX: 610·922·5059

ELECTRONIC

SALES & SERVICE OFFICES

MARYLAND
6707 Whitestone Road
Baltimore 21207
Tel: (301) 944-5400
TWX: 710-862-9157

20010 Century Blvd.
Germantown 20767
Tel: (31) 428·0700

P.O. Box 1648
2 Choke Cherry Road
Rockwilla 20850
Tel: (301) 948-6370
TWX: 710-828-9684

MASSACHUSETTS
32 Hartwell Ave.
Lexington 02173
Tel: (617) 861-8960
TWX: 710-326-6904

MICHIGAN
23855 Research Drive
Farmington 48024
Tel: (313) 476-6400
TWX: 810-242-2900

MINNESOTA
2459 University Avenue
St. Paul 55114
Tel: (612) 645-9461
TWX: 910-563-3734

MISSOURI
11131 Colorado Ave.
Kansas City 64137
Tel: (816) 763-8000
TWX: 910-771-2087

148 Weldon Parkway
Maryland Heights 63043
Tel: (314) 567-1455
TWX: 910-764-0830

*NEVADA
Las Vegas
Teh (702) 382-5777

NEW JERSEY
W. 120 Century Rd.
Paramus 07652
Tel: (201) 265-5000
TWX: 710-990-4951

MANITOBA
Hewlett-Packard 1Canada1 Ltd.
513 Century St.
St. James
Winnipeg R3H Ol8
Tel: (204) 786·7581
TWX: 610-671-3531

NEW MEXICO
P.O. Box 8366
Station C
6501 Lomas Bouleva{d N.E.
Albuquerque 87108
Tel: (505) 265-3713
TWX: 910-989-1665

156 Wyatt Drive
Las Cruces 88001
Tel: (505) 526-2485
TWX: 910-983-0550

NEW YORK
6 Automation Lane
Computer Park
Albany 12205
Tel: (518) 458-1550
TWX: 710-441-8270

1219 Campville Road
Endicott 13760
Tel: (607) 754-0050
TWX: 510-252-0890

New York City
Manhattan, Bronx
Contact Paramus, NJ Office
Tel: (201) 265-5000
Brooklyn, Queens, Richmond
Contact Woodbury, NY Office
Tel: (516) 921-0300

82 Was·hington Street
Poughkeepsie 12601
Tel: (914) 454-7330
TWX: 510-248-0012

39 Saginaw Drive
Rochester 14623
Tel: (716) 473-9500
TWX: 510·253-5981

5858 East Molloy Road
Syracuse 13211
Tel: (315) 454-2486
TWX: 710-541-0482

1 Crossways Park West
Woodbury 11797
Tel: (516} 921-0300
TWX: 510-221-2168

NORTH CAROLINA
P.O. Box 5188
1923 North Main Street
High Point 27262
Tel: (919) 885-8101
TWX: 510-926-1516

NOVA SCOTIA
Hewlett-Packard (Canada) ltd.
2745 Dutch Village Rd.
Halifax B3l 4G7
Tel: (902) 455-0511
TWX: 610-271-4482

CENTRAL AND SOUTH AMERICA
ARGENTINA
Hewlett-Packard Argerstina
S.A.C.e.!
Lavalle ll71 - 3~
Buenos Aires
Tel: 35-0436, 35-0627, 35-0341
Telex: 012-1009
Cable: HEWPACK ARG

BOLIVIA
stambuk & Mark (Bolivia) LTDA.
Av. Mariscal, Santa Cruz 1342
La Paz
Tel: 40626, 53163, 52421
Telex: 3560014
Cable: BUKMAR

BRAZIL
Hewlett-Packard Do Brasil
l.E.C. ltda.
Rua Frei Caneca 1119
01307-Sao Paulo-SP
Tel: 288-7111, 287-5858
Telex: 309151/2/3
Cable: HEWPACK Sao Paulo

Hewlett-Packard Do Brasil
l.E.C. ltda.
Praca Dom Feliciano, 78
90000-Porto Alegre-RS
Rio Grande do Sul (RS) Brasil
Tel: 25-8470
Cable: HEWPACK Porto Alegre

Hewlett-Packard Do Brasil
l.E.C. Ltda.
Rua da Matriz, 29
20000-Rio de Janeiro-GB
Tel: 266-2643
Telex: 210079 HEWPACK
Cable: HEWPACK Rio de Janeiro

CHILE
Hector Calcagni y Cia, Ltda.
Casilla 16.475
Santiago
Tel: 423 96
Cable: CALCAGNI Santiago

COLOMBIA
lnstrumentaci6n
Henrik A. Langebaek & Kier S.A.
Carrera 7 No. 48-59
Apartado Mreo 6287
Bogota, 1 D.E.
Tel: 45-78-06, 45-55-46
Cable: AARIS Bogota
Telex: 44400JNSTCO

COSTA RICA
Lie. Alfredo Gallegos Gurdl6n
Apartado 10159
San Josi
Tel: 21-86-13
Cable: GALGUR San Jos!

ECUADOR
Laboratories de Radlo-lngenieria
Calle Guayaquil 1246
Post Office Box 3199
Quito
Tel: 212-496; 219-185
Cable: HORVATH Quito

EL SALVADOR
Electronic Associates
Apartado Postal 1682
Centro Comercial Gigante
San Salvador, El Salvador C.A.
Paseo Escalon 4649-4° Piso
Tel: 23-44-60, 23-32-37
Cable: ELECAS

GUATEMALA
!PESA
Avenida La Reforma 3-48,
Zona 9
Guatemala
Tel: 63627, 64736
Telex: 4192 TELTRO GU

MEXICO
Hewlett-Packard Mexicana,
S.A. de C.V.
Torres Adalid No. 21, IP Pisa
Col. del Valle
Mexico 12, D.F.
Tel: 543-42-32
Telex: 017-74-507

NICARAGUA
Roberto Ter6n G.
Apartado Postal 689
Edificio Ter6n
Managua
Tel: 3451, 3452
Cable: ROTERAN Managua

PANAMA
Efectr6nico Ba!bo~, S.A.
P.O. Sox 4929
Ave. Manuel Espinosa No. 13-50
Bldg. Alina
Panama City
Tel: 230833
Telex: 3481103, Curunda,
Canal Zone
Cable: ELECTRON Panama City

PARAGUAY
Z. J. Melamed S.R.L.
Division: Aparatos y Equipos

Medicos
Division: Aparatos y Equipos

Scientiflcos y de

P.J~'f:o~tll~8ion
Chile, 482, Edfficio Victoria
Asuncion
Tel: 4-5069, 4-6272
Cable: RAMEL

SOUTH CAROLINA
6941·0 N. Trenholm Road
Columbia 29260
Tel: (803) 782-6493

DHIO
16500 Sprague Road
Cleveland 44130
Tel: (216) 243·7300
Night: 243-7305
TWX: 810-423·9431

330 Progress Rd.
Dayton 45449
Tel: (513) 859-8202
TWX: 810-459-1925

6665 Busch Blvd.
Columbus 43229
Tel: (614) 846-1300

OKLAHOMA
P.O. Box 32008
Oklahoma City 73132
Tel: (405) 721-0200
TWX: 910-830-6862

OREGON
17890 SW Boones Ferry Road
Tualatin 97062
Tel: (503) 620·3350
TWX: 910-467-8714

PENNSYLVANIA
111 Zeta Drive
Pittsburgh 15238
Tel: (412) 782-0400
Night: 782-0401
TWX: 710-795-3124

10218th Avenue
King of Prussia Industrial Park
King of Prussia 19406
Tel: (215) 265-7000
TWX: 510-660-2670

RHODE ISLAND
873 Waterman Ave.
East Providence 02914
Tel: (401) 434-5535
TWX: 710-381-7573

~TENNE3SEE

Memphis
Tel: (901) 274-7472

ONTARIO
Hewlett-Packard (Canada) Ltd.
1785 Woodward Dr.
Ottawa K2C OP9
Tel: (613) 225-6530
TWX: 610-562-8968

Hewlett-Packard (Canada) Ltd.
6877 Goreway Drive
Mississauga L4V IL9
Tel: (416) 678-9430
TWX: 610-492-4246

PERU
Compaiiia Electro Medica S.A.
Ave. Enrique Canaual 312
San Isidro
Casilla 1030
Lima
Tel: 22-3900
Cable: ELMED Lima

PUERTO RICO
San Juan Electronics, Inc.
P.O. Box 5167
Ponce de Leon 154
Pda. 3-PTA de Tierra
San Juan 00906
Tel: (809) 725-3342, 722-3342
Cable: SATRONICS San Juan
Terex: SATRON 3450 332

TEXAS
P.O. Box 1270
201 E. Arapaho Rd.
Richardson 75080
Tel: (214) 231-6101
TWX: 910-867-4723

P.O. Box 27409
6300 Westpark Drive
Suite 100
Houston 77027
Teh (713) 781-5000
TWX: 910·881-2645

231 Bllly Mitchell Road
San Antonio 78226
Tel: (512i 434-4171
TWX: 910-871-1170

UTAH
2890 South Main Street
Salt Lake City 84115
Tel: (801) 487-0715
TWX: 910-925-5681

VIRGINIA
P.O. Box 9854
2914 Hungary Springs Road
Richmond 23228
Te!: (804) 285-3431
TWX: 710-956-0157

WASHINGTON
Bellefield Office Pk.
1203 • 114th SE
Belle"lue 98004
Tel: (206) 454.3971
TWX: 910-443-2446

*WEST VIRGINIA
Charleston
Tel: (304) 345-1640

WISCONSIN
9431 W. Beloit Road
Suite 117
Milwaukee 53227
Tel: (414) 541-0550

FOR U.S. AREAS NOT
LISTED:
Contact the reglonal office near-
est you: Atlanta, Georgia •..
North Hollywood, California •••
Paramus, New Jersey ..• Skokie,
lllinols. Their complete ad-
dresses are listed above.
*Service Only

QUEBEC
Hewlett-Packard (Canada) Ltd.
275 Hymus Boulevard
Pointe Claire H9R 1G7
Tel: (518) 561-6520
TWX; 610-422-3022
Telex: 05-821521 HPCL

Hewlett-Packard (Canada) Ltd.
2376 Galvani Street
Ste-Foy GIN 4G4
Tel: {418) 688-8710

FOR CANADIAN AREAS NOT
LISTED:
Contact Hewlett-Packard (Can­
ada) Ltd. in Mississauga

URUGUAY
Pablo Ferrando S.A.
Comerclal e Industrial
Avenida Italia 2877
Casilla de Correo 370
Montevideo
Tel: 40·3102
Cable: RADIUM Montevideo

VENEZUELA
Hewlett-Packard de Venezuela
C.A.
Apartado 50933
Edificio Segre
Tercera Transversal
Los Ruices Norte
Caracas 107
Tel: 35-00-11
Telex: 21l46 HEWPACK
Cable: HEWPACK Caracas

FOR AREAS NOT LISTED,

CONTACT:
Hewlett-Packard
Inter-Americas
3200 Hillview Ave.
Palo Alto, California 94304
Te!: (415) 493-1501
TWX: 910-373-1267
Cable: HEWPACK Palo Alto
Telex: 034-8300, 034-8493

E 4/74

EUROPE
AUSTRIA Hewlett-Packard France Hewlett-Packard GmbH Hewlett-Packard Ltd. PORTUGAL TURKEY
Hewlett-Packard Ges.m.b.H Zone A6ronautique Vertriebsbliro Hamburg The Graftons Telectra-Ernpresa T6cnlca de Telekom En1ineerln1 Bureau
Handelska 52/3 Avenue Clement Ader Wendenstr. 23 Stamford New Road Equlpamentos Elktricos S.a.r.I. Saglik Sok No. 15/1
P.O. Box 7 F-31770 Colomiers D-2000 Hamburg 1 Altrlncham, Cheshire Rua Rodrigo da Fonseca 103 Ayaspasa-Beyo1lu
A-1205 Vienna Teh (61) 86 81 55 Teh (040) 24 13 93 Teh (061) 928-9021 P.O. Box 2531 P.O. Box 437 Beyoglu
Teh (0222) 33 66 06 to 09 Telex: 51957 Cable: HEWPACKSA Hamburg Telex: 668068 P-Llsban 1 TR-Istanbul
Cable: HEWPAK Vienna Hewlett-Packard France Telex: 21 63 032 hphh d Teh (19) 68 60 72 Tel: 49 40 40
Telex: 75923 hewpak a ITALY Cable: TELECTRA Lisbon Cable: TELEMATION Istanbul

Agence R6gionale Hewlett-Packard GmbH Hewlett-Packard' ltaliana S.p.A. Telex: 1598
BELGIUM Boulevard Ferato-Gamarra Vertriebsbiiro Hannover Via Amerigo Vespucci 2 UNITED KINGDOM
Hewlett-Packard Benelux Boite Postale No. 11 MeUendorfer Strasse 3 1-20124 Milan SPAIN Hewlett-Packard Ltd.
S.A./N.V. F-13100 Luynes D-3000 Hannover-Kleeflld Tel: (2) 6251 (10 lines) Hewlett-Packard Espaiiola, S.A. 224 Bath Road
Avenue de Col-Vert, 1, Teh (47) 24 00 66 Teh (0511) 55 06 26 Cable: HEWPACKIT Miian Jerez No 8 GB·SloURb, Sll 4 DS, Bucks
(Groenkraaglaan) Telex: 41770

Hewlett-Packard GmbH Telex: 32046 E-Mldrld 16 Tel: Slou1h (0753) 33341
B-1170 Brussels Hewlett-Packard France Vertriebsburo Nuremberg Hewlett-Packard ltallana S.p.A.

Tel: 458 26 00 Cable: HEWPIE Slou1h
Teh (02) 72 22 40 Agency R6glonale Hersbruckerstrasse 42 Vicolo Pastorl, 3

Telex: 23515 hpe Telex: 848413
Cable: PALOBEN Brussels 63, Avenue de Rochester D-8500 Nuremllar1 1-35100 Padova Hewlett-Packard Espafiola, S.A. Hewlett-Packard Ltd.
Telex: 23 494 paloben bru F-35000 Rennes Tel: (0911) 57 10 66 Teh (49) 66 40 62 Milanesada 21-23 "The Graftons"

DENMARK
Tel, (99) 36 33 21 Telex: 623 860 Telex: 32046 via Milan E·Barcelona 17 Stamford New Road
Telex: 74912 F Tel: (3) 203 62 00 GB·Altrlncham, Cheshire

Hewlett-Packard A/S Hewlett-Packard GmbH Hewlett-Packard ltaliana SPA Telex: 52603 hpbe e Te" (061) 928-9021
Datavej 38 Hewlett-Packard France VertrlebsbOro MUnchen Via Medaglle d'Oro, 2 Telex: 668068
DK-3460 Birkt~d Agence R6gionale Unterhachinger Strasse 28 1·56100 Pisa Hewlett-Packard Espanola S.A.
Tel, (011 81 66 40 74, All6e de la Robertsau lSAR Center Te" (050) 500022 Av Ramon y CaJal, 1 Hewlett-Packard, Ltd.
Cable: HEWPACK AS F-61000 strasbours D·8012 Ottobrunn Ediflclo Sevilla I, planta 0 9 c/o Makro
Telex: 166 40 hp as Te" (88) 35 23 20/21 Teh (089) 601 30 61/7 Hewlett-Packard ltallana S.p.A.

E·SHille South Service Wholesale Centre
Telex: 89141 Telex: 52 49 85 Amber Way

Hewlett-Packard A/S Cable: HEWPACK STRBG Cable: HEWPACKSA Miichen Via Colli, 24 SWEDEN Ha!esowen Industrial Estate
Torvet 9 1-10129 Turin Hewlett-Packard Sverlge AB GB-Worts.
DK-8600 Sllkeborg GERMAN FEDERAL (West Berlin) Tel: (11) 53 82 64 Enlghetsvlgen 1·3 Tel: Birmingham 7860
Teh (06) 82-71-66 REPUBLIC Hewlett-Packard GmbH Telex: 32046 via Milan Fack
Telex: 166 40 hp as Hewlett-Packard GmbH Vertriebsbiiro Berlin S-161 20 Bromma 20 Hewlett-Packard Ltd's registered
Cable: HEWPACK AS Vertriebszentrale Frankfurt Wilmersdorfer Strasse 113/114 LUXEMBURG Teh (08) 730 0550 address for V.A.T. purposes

Bernerstrasse 117 D-1000 Berlin w. 12 Hewlett-Packard Benelux Cable: MEASUREMENTS only:
FINLAND Postfach 560 140 Teh (030) 3137046 S.A./N.V. Stockholm 70, Finsbury Pavement
Hewlett-Packard Oy D-6000 Frankfurt 56 Telex: 18 34 05 hpbln d Avenue de Col-Vert, 1, Telex: 10721 London, EC2AlSX
Bulevardl 26 Teh (0611) 50 04-1 (Groenkraaglaan) Registered No: 690597
P.O. Box 12185 Cable: HEWPACKSA Frankfurt GREECE 8·1170 Brussels Hewlett-Packard Sverlge AB
SF-00120 Helsinki 12 Telex: 41 32 49 fra Kostas Karayannis Teh (03/02) 72 22 40 Hagakersgatan 9C SOCIALIST COUNTRIES
Teh (90) 13730

Hewlett-Packard GmbH
18, Ermou Street Cable: PALOBEN Brussels S-431 41 Mllndal PLEASE CONTACT:

Cable: HEWPACKOY Helsinki GR-Athens 126 Telex: 23 494 Tel: (031) 27 68 00/01 Hewlett-Packard Ges.m.b.H.
Telex: 12·15363 hel vertrlebsbllro Bi:lbllngen Tel: 8080337, 8080359, Telex: Via Bromma Handelskai 52/3

Herrenbergerstrasse 110 8080429, 8018693 NETHERLANDS P.O. Box 7
FRANCE 0-7030 Biibllngen, Wiirttemberg Cable: RAKAR Athens Hewlett-Packard Senelux/N.V. SWITZERLAND A-1205 Vienna
Hewlett-Packard France Tel: (07031) 66 72 87 Telex: 21 59 62 rkar gr Weerdesteln 117 Hewlett Packard (Schweiz) AG Ph, (02221 33 66 06 to 09
Quartler de Courtaboeuf Cable: HEPAK BObJingen P.O. Box 7825 Ziircherstrasse 20 Cable: HEWPACK Vienna
Bolte Postals No. 6 Telex: 72 65 739 bbn Hewlett-Packard S.A. NL-Amsterdam, 1011 P.O. Box 64 Telex: 75923 hewpak a
F-91401 Orsay Hewlett-PKkard GmbH

Mediterranean & Middle East Tel: 5411522 CH-8952 Schlleren Zorich
Tel: (1) 907 78 25

VertrlebsbOro Dlisseldorf
Operations Cable: PALOBEN Amsterdam Tel: (01) 98 18 21/24 ALL OTHER EUROPEAN

Cable: HEWPACK Orsay
Vogelsanger Weg 38

35 Kolokotroni Street Telex: 13 216 hepa nt Cable: HPAG CH COUNTRIES CONTACT:
Telex: 60048 Platia Kefallarion Telex: 53933 hpag ch Hewlett-Packard S.A. D-4000 DOsseldorf Gr-Klflssia-Atbens NORWAY Rue du Bois-du-Lan 7
Hewlett-Packard France Teh (0211) 63 80 31/38 Tel: 8080337, 8080358, Hewlett-Packard Norge A/S Hewlett-Packard (Schweiz) AG P.O. Box 85
Agenee Regional Telex: 85/86 533 hpdd d 8080429, 8018693 Nesveien 13 9, Chemin louis·Plctet CH-1217 Meyrln 2 Geneva
4 Quai des Etroits Box 149 CH-1214 Vernier-Genna Switzerland
f·69321 Lyon Cedex 1 IRELAND N· 1344 Haslum Tel: (022) 41 4950 Tel: (022) 41 54 00 Tel: (78) 42 63 45 Hewlett-Packard Ltd. Teh (02) 53 83 60 Cable: HEWPACKSA Geneva Cable: HEWPACKSA Geneva
Cable: HEWPACK Lyon 224 Bath Road Telex: 16621 hpnas n Telex: 27 333 hpsa ch Telex: 2 24 86 Telex: 31617 GB·Sloulh, SL! 4 DS, Bucks

Tel: Slough (0753) 33341
Cable: HEWPIE Slough
Telex: 848413

AFRICA, ASIA, AUSTRALIA
ANGOLA ETHIOPIA Blue Star, Ltd. Yokogawa-Hewlett-Packard ltd. The Electronics Instrument&· TAIWAN
Telectra-Empresa Tecnica African Salespower & Agency 1-1-117/l Chuo Bldg. tions Ltd. (TEil) Hewlett Packard Taiwan

de Equipamentos Electricos Private Ltd., Co. Sarojinl Devi Road Rm. 603 3, 16th Floor Cocoa House 39 Chung Shlao West Road
SARL P. o. Box 718 secuaderabad 500 003 2-Chome P.M.B. 5402 Sec. 1

Rua de Barbosa, Rodrigues, 58/59 Cunningham St. Tel: 7 63 91, 7 73 93 IZUMl·CHO, Ibadan Overseas Insurance
42-1°, 01° Addis Ababa Cable: BLUEFROST Mito, 310 Tel: 22325 Corp. Bldg. 7th Floor

P.O. Box 6487 Tel: 12285 Telex: 459 Tel: 0292-25-7470 Cable: THETEIL Ibadan Taipei
Luanda Cable: ASACO Addlsababa Blue Star, Ltd. KENYA Tel: 389160,1,2, 375121,
Cable: TELECTRA Luanda PAKISTAN Ext. 240·249 HONG KONG 23/24 second line Beach Kenya Kinetics Mushko & Company, Ltd. Telex: TP824 HEWPACK
AUSTRALIA Schmidt & Co. (Hong Kong) Ltd. Madras 600 001 P.O. Box 18311 Cosman Chambers Cable: HEWPACK Taipei P.O. Box 297 Tel: 23954 Nairobi, Kenya Hewlett- Packard Australia Telex: 379

Abdullah Haroon Road
Pty, Ltd., Connallght Centre Tel: 57726 Karachi 3 THAI LANO
31-51 Joseph Street 39th Floor Cable: BLUESTAR Cable: PROTON Tel' 511027, 512927 UNIMESA Co., Ltd.
Victoria, 3130 Connaught Road, Central Blue Star, Ltd. KOREA Cable: COOPERATOR Karachi Chongkolnee Building
Tel: 89 6351 Hong Kone Nathraj Mansions American Trading Company Mushko & Company, ltd. 56 Suriwongse Road
Cable: HEWPARD Melbourne Teh 240168, 232735 2nd Floor Blstupur Ban1kok
Telex: 31 024 Telex: HX4766 Jamshadpur 831 001 Korea, 38B, Satellite Town Tel: 37956, 31300, 31307,

Cable: SCHMIDTCO Hong Kong Telr 38 04 1.P.O. Box 1103 Rawalpindi
37540

Hewlett-Packard Australia INOIA Cable: BLUESTAR Dae Kyung Bldg., 8th Floor Tel: 41924 Cable: UNIMESA Bangkok
Ply. Ltd. Blue Star Ltd. Telex: 240 107 Sejong-Ro, Cable: FEMUS Rawalpindi

31 Bridie Street Chongro-Ku, Sloul UGANDA
Pymble,

Kasturi Buildings INDONESIA Tel: {4 lines) 73-8924-7 PHILIPPINES Uganda Tele-Electric Co., Ltd.
New South Wales, 2073

Jamshedjl Tata Rd. Bah Bolon Trading Coy. N.V. Cable: AMTRACO Seoul Electromex, Inc. P .o. Box 4449
Tel: 449 6566

Bombay 400 020 DJalah Merdeka 29 LEBANON 6th Floor, Amalgamated Kampala Tel: 29 50 21 Bandung Development Corp. Bldg. Telex: 21561 Telex: 3751 Constantin E. Macridis Tel: 57279
Cable: HEWPARD Sydney Cable: BLUEFROST

Teh 4915; 51560 P.O. Box 7213 Ayala Avenue, Makati, Rizal Cable: COMCO Kampala
Cable: ILMU RL-Belrut C.C.P.O. Box 1028

Hewlett-Packard Australia Blue Star ltd. Telex: 08-809 Tel: 220846 Makati, Rizal VIETNAM Pty. Ltd. Sa has IRAN Cable: ELECTRONUCLEAR Beirut Tel: 86-18-87, 87-76·77, Peninsular Trading Inc. 97 Churchill Road 414/2 Vlr Savarkar Marg Multi Corp International Ltd.
87-86-88, 87-18-45, 88-91·71, P.O. Box H-3 Prospect 5082 Prabhadevi Avenue Soraya 130 MALAYSIA 83-81-12, 83-82-12 216 Hien-Vuong

South Australia Bombay 400 025 P.O. Box 1212 MECOMB Malaysia ltd. Cable: ELEMEX Manila Sal11n
Tel: 44 8151 2 Lorong 13/6A
Cable: HEWPARD Adelaide Tel: 45 78 87 IR-Teheran SINGAPORE Tel: 20·1305, 93398

Telex: 4093 Section 13 Cable: PENTRA, SAIGON 242 Tel: 83 10 35-39 Mechanical & Combustion
Hewlett-Packard Australia Cable: FROSTBLUE Cable: MULTICORP Tehran Petaling Jaya, Selangor

Engineering Campany Pie.,
Ply. Ltd. Telex: 2893 MC I TN Cable: MECOMB Kuala Lumpur ZAMBIA

Blue Star Ltd. Lid. R. J. Tilbury (Zambia) Ltd. Casablanca Buildlngs Band Box House I SRA EL MOZAMBIQUE 10/12, Jalan Kilang P.O. Box 2792 196 Adelaide Terrace Prabhadevi Electronics & Engineering A.N. Goncalves, Lta. Red Hill Industrial Estate Lusaka Perth, W .A. 6000 Bombay 400 025 Div. of Motorola Israel Ltd. 162, Av. D. ~uls Singapore, 3 Zambia, Central Africa Tel: 25·6800 Tel: 45 73 01 17 Amlnadav Street P.O. Box 107 Tel: 647151 (7 lines) Tel: 73793 Cable: HEWPARD Perth Telex: 3751 Tel-Aviv Lourenco Marques Cable: MECOMB Singapore Cable: ARJAYTEE, Lusaka
Hewlett-Packard Australia Cable: BLUESTAR Tel: 36941 (3 lines) Tel: 27091, 27114

Hewlett-Packard Far East
Ply. Ltd. Blue Star Ltd. Cable: BASTEL Tel·Aviv Telex: 6-203 Negon Mo

Area Office MEDITERRANEAN ANO
10 Woolley Street 14/40 Civil Lines Telex: 33569 Cable1 NEGON

P.O. Box 87 MIOOLE EAST COUNTRIES
P.O. Box 191 Kampur 208 001 N~W ZEALAND Alexandra Post Office NOT SHOWN PLEASE
Dickson A.C.T. 2602 JAPAN CONTACT: Tel: 6 88 82 Yoko1awa-HewJett-Packard Ltd. Hewlett·Packard (N.Z.) Ltd. Sin1apore 3
Tel: 49-8194 Cable: BLUESTAR Ohashi Building 94-96 Dixon Street Tel: 633022 Hewlett-Packard S.A.
Cable: HEWPARD Canberra ACT

Blue Star, Ltd. 1·5S.l Yoyogi P.O. Box 9443 Cable: HEWPACK SINGAPORE Mediterranean and Middle
Hewlett-Packard Australia 7 Hare Street Shlbuya-ku, Tokyo Courtenay Place, East Operations
P!y. Ltd. P.O. Box 506 Teh 03-370-2281/92 Wellington SOUTH AFRICA 35, Kolokotronl Street-
2nd Floor, 49 Gregory Terrace ca1cutta 100 001 Telex: 232·2024YHP Tel: 59.559 Hewlett Packard South Africa Platia Kefal/arlou
Brisbane, Queensland, 4000 Tel: 23-0131 Cable: YHPMARKET TOK 23-724 Telex: 3898 (P!y.), Lid. GR-Kifissia-Athens
Teh 29 1544 Telex: 655 Cable: HEWPACK Wellington Hewlett-Packard House Cable: HEWPACKSA Athens

Cable: BLUESTAR Yokogawa-Hewlett-Packard Ltd.
Hewlett-Packard (N.Z.) Ltd.

Daphne Street, Wendywood, Telex: 21·6588
CEYLON Nisei lbaragi Bldg. Sandton, Transvaal 2001

United Electricals Ltd.
Blue Star Ltd. 2·2-8 Kasuga Pakuranga Professional Centre Tel: 407641 (five lines)

P.O. Box 681
Blue Star House, lbaragi-Shi 267 Pakuranga Highway OTHER AREAS NOT
34 Ring Road Osaka Box 51092 Hewlett Packard South Africa LISTED, CONTACT:

60, Park St. LaJpat Nagar Teh (0726) 23·1641 Pakuranga (Pty.), Lid. Hewlett·Packard
Colombo 2 New Delhi 110 024 Telex: 5332·385 YHP OSAKA Tel: 569-651 Breecastle House Export Trade Company
Tel: 26696 Tel: 62 32 76 Cable: HEWPACK, Auckland Bree Street 3200 Hillview Ave.
Qable: HOTPOINT Colombo Telex: 2463 Yakogawa-Hewlett·Packard Ltd. cape Town Palo Alto, California 94304

Cable: BLUESTAR Nakama Building NIGERIA Tel, 2-6941/2/3 Teh (415) 493-1501 CYPRUS Na. 24 Kamlsasazlma-cho The Electronics lnstrumenta- Cable: HEWPACK Cape Town rwx, 910-373-1267 Kypronlcs Blue Star, Ltd. Nakamura-ku, Nagoya City tlons Ltd. {TEil) Telex: 0006 CT Cable: HEWPACK Palo Alto 19 Gregorlos & Xenopoulos Road Blue Star House Teh (052) 571-5171 144 Agege Motor Rd., Mushin Telex: 034-8300, 034--8493 P.O. Box 1152 11/llA Magarath Road P.O. Box 6645 Hewlett Packard South Africa
CY-Nicosia Bangalore 560 025 Yokogawa-Hewlett-Packard Ltd. (Ply.), Lid.

~~~1:5~WR~NICS PANOEHIS 
Teh 55668 Nitto Bldg. Cable: THETEIL Lagos 641 Ridge Road, Durban 
Telex: 430 2·4-2 Shlnohara·Klta P.O. Box 99 
Cable: BLUESTAR KohokU·kU overport, Natal 

Yokoblllla 222 Tel: 88-6102 
Teh 045-432-1504 Telex: 567954 
Telex' 382-3204 YHP YOK Cable: HEWPACK 

E 4174 



MANUAL PART NO. 24307-90006 
MICROFICHE PART NO. 24307-90007 

Printed: JUL 1974 
Printed in U.S.A. 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	02-51
	02-52
	02-53
	02-54
	02-55
	02-56
	02-57
	02-58
	02-59
	02-60
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	06-01
	06-02
	07-00
	07-01
	07-02
	07-03
	07-04
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	10-00
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	10-45
	10-46
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-08a
	11-08b
	11-08c
	11-08d
	12-00
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	13-33
	13-34
	14-01
	14-02
	14-03
	15-00
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	I1-01
	I1-02
	I1-03
	I2-01
	I2-02
	I3-01
	I3-02
	I3-03
	u-01
	u-02
	x-01
	x-02
	xBack

