Program Product

Licensed Material — Property of IBM
LY20-2339-2

Time Sharing Option
3270 Display Support
and Structured
Programming Facility
Version 2.2:)

Program Logic Manual

Program Number 5740-XT8

The Structured Programming Facility/Time Sharing Option
is a program development tool designed to take advantage
of the characteristics of IBM 3270 display terminals and to
increase productivity in the Time Sharing Option environ-
ment for users of both structured and conventional pro-
gramming techniques.

This document describes the internal logic, program
structure, and data areas. It is intended for those who
change and maintain this program product.

Third Edition (October 1979)
This edition is a major revision obsoleting LY20-2339-1.

This edition applies to Version 2, Release 2, Modification Level 1, of the program product
TS0-3270 Display Support and Structured Programming Facility (5740-XT8) and to all
subsequent versions and modifications until otherwise indicated in new editions or
Technical Newsletters.

Changes are continually made to the information herein. Therefore, before using this
publication, consult your System/370 Bibliography (GC20-0370) for the editions that
are applicable and current.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available outside the United States.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for readers’ comments has been provided at the back of this publication. If
this form has been removed, address comments to:: IBM Corporation, Technical
Publications, Dept. 824, 1133 Westchester Avenue, White Plains, New York 10604.
IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course, continue
to use the information you supply.

© Copyright International Business Machines Corporation 1977, 1978, 1979

PREFACE

THIS MANUAL DESCRIBES THE FUNCTIONS AND LOGIC OF INTERNAL OPERATIONS,
PROGRAM STRUCTURE AND CONTROL FLOW, DATA FLOW, AND DATA AREAS OF SPF/TSO
VERSION 2, RELEASE 2, MODIFICATION LEVEL 1 (SPF 2.2.1). IT IS INTENDED
FOR SYSTEMS PROGRAMMING PERSONNEL WHO NEED TO MODIFY THE DISTRIBUTED
VERSION OF THE PROGRAM. -

THE MANUAL IS ORGANIZED INTO FIVE MAJOR SECTIONS, AS FOLLOWS:

SECTION 1. INTRODUCTION -
INCLUDES GENERAL INFORMATION ABOUT THE SPF OPERATING
ENVIRONMENT, PHYSICAL CHARACTERISTICS, TASK STRUCTURE,
AND SPF DATA SETS.

SECTION 2. METHOD OF OPERATION -
DESCRIBES THE LOGIC AND DATA FLOW IN SUFFICIENT DETAIL
FOR THE READER TO BE ABLE TO IDENTIFY THE SPF MODULE
WHICH PERFORMS A PARTICULAR OPERATION.

SECTION 3. PROGRAM ORGANIZATION -
DESCRIBES THE OVERALL PROGRAM STRUCTURE AND LISTS
PERTINENT INFORMATION ABOUT EACH MODULE, INCLUDING
INTERFACE REQUIREMENTS.

SECTION 4. DIRECTORY -
CONTAINS CROSS-REFERENCE INFORMATION BY OBJECT MODULE,
SUMMARIZING USAGE OF SPF COMMON SUBROUTINES, MENUS,
MESSAGES, AND SVC ROUTINES.

SECTION 5. DATA AREAS -

SHOWS THE FORMAT AND CONTENTS OF MAJOR SPF TABLES
AND CONTROL BLOCKS.

RELATED PUBLICATIONS

THE READER SHOULD BE FAMILIAR WITH THE FOLLOWING PUBLICATIONS:
/1S5S0 P RAM REFERENCE MANUA SH20-1975~-
THIS MANUAL PROVIDES A DETAILED DESCRIPTION ON HOW TO USE SPF.

EEEBTEEUAL INCLUDES SEVERAL EXAMPLES OF SPF USAGE AND A SAMPLE

SPF/T750 INSTALLATION AND CUSTOMIZATION GUIDE, SH20-2402-0

THIS MANUAL PROVIDES INFORMATION ON HOW TO INSTALL AND CUSTOM
TAILOR SPF.

FOR ADDITIONAL DETAIL ABOUT SPF PROGRAMS AND DATA AREAS, THE READER

SHOULD CONSULT THE PL/S COMPILER AND ASSEMBLER OUTPUT LISTINGS WHICH ARE
AVAILABLE ON MICROFICHE (LYB0-2481-0).

LICENSED MATERIAL - PROPERTY OF IBM PREFACE 111

SECTION 1. INTRO

PROGRAM OVERVIEW .
PROGRAMMING SYSTEMS
MACHINE CONFIGURATION

TERMINALS

PHYSICAL CHARACTERISTICS .
TASK STRUCTURE
DATA SET USAGE

DATA SET NAMES

DATA SET ATTRIBUTES
SECTION 2. METHOD OF OPERATION e e e e e e e e e e
VISUAL TABLE OF CONTENTS .« .. « e e e

CHART 1.1 T50/SPF LOGON PROCEDURE . .

CHART 1.2 TS0 TERMINAL MONITOR PROGRAM

CHART 1.3 SPF DRIVER e e e e e e e e e

CHART 1.4 SPF CONTROLLER e e e e e e e

CHART 1.4.1 SPF INITIALIZATION . ..

CHART 1.4.2 PROCESS DISPLAY REQUEST .« e e .

CHART 2 PROCESSOR MAIN DRIVER

CHART 2.1 PMD TERMINATION FUNCTIONS

CHART 3 SPF PARAMETER OPTIONS . .

CHART 4 BROWSE . . .« . .

CHART 4.1 COMMON BROWSE SUBROUTINE . e

CHART 5 EDIT . . « e e e e e

CHART 5.1 EDIT 140 ROUTINE

CHART 5.2 EDIT PROCESSOR

CHART 5.2.1 EDIT DISPLAY SCREEN .« e .

CHART 6 UTILITIES . « e e e .

CHART 6.1 LIBRARY/DATA SET UTILITY .

CHART 6.1.1 COMPRESS DATA SET

CHART 6.1.2 PRINT INDEX e e e e e e e e

CHART 6.1.3 PRINT DATA SET o« e e e e e

CHART 6.1.4 PROCESS MEMBER REQUEST .« e e

CHART 6.1.5 ALLOCATE NEW DATA SET .« e e e

CHART 6.1.6 RENAME DATA SET N

CHART 6.1.7 DELETE DATA SET . . .

CHART 6.1.8 DISPLAY DATA SET INFORMATION .

CHART 6.1.9 CATALOG/UNCATALOG DATA SET . .

CHART 6.2 MOVE/COPY UTILITY .

CHART 6.2.1 MOVE/COPY MEMBER PROCESSOR

CHART 6.3 CATALOG MANAGEMENT UTILITY

CHART 6.3.1 SVS CATALOG MANAGEMENT .

CHART 6.3.2 MVS CATALOG MANAGEMENT .

CHART 6.4 RESET STATISTICS UTILITY

CHART 6.4.1 RESET MEMBER PROCESSOR . .

CHART 6.5 HARDCOPY UTILITY . .

CHART 6.5.1 PROCESS HARDCOPY REQUEST

CHART 6.6 VT0C UTILITY e e e e e

CHART 6.6.1 PROCESS VTOC LIST« ..

CHART 6.7 OUTLIST UTILITY o e e e e

CHART 6.8 SCRIPT/VS UTILITY .« v e

CHART 7 FOREGROUND PROCESSING .

CHART 7.1 GENERATE AND EXECUTE TSO COMMAND

CHART 8 BACKGROUND PROCESSING « v e e e

CHARTY 8.1 BUILD JOB STEPS « e e

CHART 8.2 SPF BACKGROUND SCAN PROGRAM

CHART 9 TS0 COMMAND PROCESSOR e e e e e

CHART 10 TUTORIAL PROCESSOR .« . .
SECTION 3. PROGRAM ORGANIZATION . o« e e e

PROGRAM COMPONENTS

LOAD MODULE HI

OBJECT MODULE
BCD -
BRO -
CAT
CBC
CBDSN

LICENSED MATERIAL

DUCTION

e« o o o e o o

ERARCHY
DESCRIPTIONS .
BROWSE COMMAND DEFINITIONS
BROWSE DRIVER ROUTINE - . .
COMMON ATTACH ROUTINE .
COMMON BROWSE CLEANUP ROUTINE
COMMON BUILD DSNAME ROUTINE

o o o o
.
.

- PROPERTY OF IBM

oooooo

oooooo

ooooo

CONTENTS

......

ooooooooo

oooooo

oooooo

oooooo

oooooo

......

ooooo

ooooooooo

.........

ooooooooo

oooooo

.....

oooooooooo

117

TABLE OF CONTENTS v

vi

CBF
CBG
CBR
CBS
CCB
ccD
ccP
CcCS
CDA
CDAIR
CDATE
CcbC
CDERR
CDF
CDG
CDISPL
cho
CDP
CDT
CERR
CFI
CHC
CHELP
CHPJ
CHPL
CIPARMS
CIR
CIV
cJC
CJF
CJN
CKVGET
CKVPUT
CLM
CLOG
CMB
cML
CMSG
CPRINT
CRELS
CRESV
CSB
CSCROLL
CSM
CTA
CTF
CTGET
CTPUT
CTl
CcT2
CUPARMS
CVM
CVSDE
EBA
EBE
EBI
EBR
EBS
EBX
ECD
ECR
EDD
EDI
EDO
EFC
EFR
EFT
EGN
EGR
EMC
EML
EMP
EPC

SPF/T50 PROGRAM LOGIC MANUAL

COMMON BROWSE FIND ROUTINE e B A
COMMON BROWSE GET ROUTINE e e e e e e e e e e s e e 120
COMMON BROWSE ROUTINE e e e e e s e e e e . e ... 121
COMMON BROWSE SET UP ROUTINE e e e e e e e e e . . 122
COMMON COMMAND BUILD ROUTINE 123
COMMON CONVERT DIRECTORY ROUTINE e b e e e e s e e 125
COMMON COMMAND PARSE ¢« ¢ ¢ ¢ v v v o o o & . 126
COMMON COMMAND SCAN . o e e e e e e e e e 127
COMMON DATASET ALLOCATE ROUTINE 128
COMMON DAIR INTERFACEROUTINE 138
COMMON CONVERT DATE ROUTINE T R))
COMMON DATASET CLOSE e e e e e e e 132
COMMON DAIR ERROR ROUTINE e e e e e e « e e e o . . 133
COMMON DATASET FREE ROUTINE « o v . e 136
COMMON GET RECORD ROUTINE e e e e e e e e e e e . . 135
COMMON DISPLAY ROUTINE « e e s e e e s e e e .. 137
COMMON DATA OPEN ROUTINE e e e e e e e e e . . . 138
COMMON DATA PUT ROUTINE e e e e e e . e e e e e e . 139
COMMON DEVICE TYPE ROUTINE e s e e e e e e e . . l6al
COMMON ERROR DISPLAY ROUTINE e ¥4
COMMON FIND ROUTINE o« o e e e e e e s e e e s e . . 163
COMMON HARDCOPY ROUTINE e K
COMMON HELP ROUTINE . . S 11
COMMON HARDCOPY PRINT JCL ROUTINE 146
COMMON HARDCOPY PRINT LOCAL ROUTINE e et e e e e . 148
COMMON INITIALIZE USER PARAMETERS ROUTINE 149
COMMON READ PDS DIRECTORY ROUTINE 150
COMMON READ VTOC ROUTINE e e e e . c e e« « e« .+ . 151
COMMON JOB CARD ROUTINE e v e e e e e e e« « . . 152
COMMON JOBNAME FIND ROUTINE e e e . « 153
COMMON JOBNAME INIT ROUTINE S - 1
COMMON KEYWORD-VALUE GET ROUTINE« . . 155
COMMON KEYWORD-VALUE PUT ROUTINE e e e e e e e e 156
COMMON LOAD MODULE LOADER ROUTINE« . . . 157
COMMON LOG ROUTINE« ¢« . « . o e e e e s 158
COMMON MENU BUILD ROUTINE e e v e e e e e e .. 159
COMMON MEMBER LIST ROUTINE vt e e e e N 160
COMMON MESSAGE ROUTINE e e e e e e e . e e« . . 163
COMMON PRINT ROUTINE e e e e e e e . 165
COMMON RELEASE ROUTINE 1 1)
COMMON RESERVE ROUTINE e e e e e e e e e e .« . . 167
COMMON SUBMIT ROUTINE e e e e e e e e 1 1)
COMMON SCROLL ROUTINE . . e e e « « « « . 169
COMMON STORAGE MANAGEMENT ROUTINE . . e e .. . 171
COMMON ALLOC-OPEN TEMP DATA SET ROUTINE e e e e .. 172
COMMON CLOSE-FREE TEMP DATA SET ROUTINE B ¥
COMMON TGET (TERMINAL GET) ROUTINE e v s e e e e .. 175
COMMON TPUT (TERMINAL PUT) ROUTINE e e e e e e e .. 176
COMMON ALLOC-OPEN TEMP DATA SET SUB 177
COMMON CLOSE-FREE TEMP DATA SET SUB B Y &
COMMON UPDATE USER PARAMETERS ROUTINE o o .. . 180
COMMON VERIFY MEMBER NAME ROUTINE . . B £) §
COMMON VERIFY SPF DIRECTORY ENTRY ROUTINE 182
EDIT RECOVERY INITIALIZATION ROUTINE e e e e e e . . 183
EDIT BACKUP END ROUTINE . e £ 1
EDIT BACKUP INITIALIZATION ROUTINE . e« o o o+ . 185
EDIT RECOVERY READ ROUTINE 186
EDIT BACKUP STORE RECORD ROUTINE B 124
EDIT BACKUP RESET ROUTINE . e v e e . « « 138
EDIT COMMAND DEFINITIONS TABLE e e e e e e e e e . 189
EDIT CREATE-REPLACE ROUTIRE 190
EDIT DRIVER ROUTINE e 0
EDIT DATA INPUT ROUTINE e e e e e e e e s . .. 192
EDIT DATA QUTPUT ROUTINE e e e e e c e e e e e . 193
EDIT FIND-CHANGE ROUTINE e e e e e e e e e e e .. 194
EDIT FORMAT DISPLAY ROUTINE e e e e e e e e . . . 195
EDIT FLOW TEXT ROUTINE . e e e e e e . 196
EDIT GENERAL NUMBER-RENUMBER ROUTINE 197
EDIT GENERAL RESET ROUTINE c e e e e « « e . . . 198
EDIT MOVE-COPY ROUTINE e e e s e e e e e e e s e . 199
EDIT MESSAGE LINES ROUTINE e e e e e e e e e . . 200
EDIT MENU PROCESSOR ROUTINE -4) |
EDIT PROCESS (LINE) COMMANDS ROUTINE « v e e 202

LICENSED MATERIAL

PROPERTY OF IBM

EPD
EPF
EPI
EPO
EPP
EPR
EPS
EPX
ERA
ERC
ERD
ERF
ERI
ERN
ERO
ERR
ERS
ERX
EST
ETC
ETL
ETS
FOR
JOB
MERR
MHA
MNT
OPT
PFT
PMD
PRS
PTC
SCN
SIP
SMA
SMC
SMD
SMI
SML
SoP
SPC
SPF
SPFCALCP
SPFSC93X
SPFSC94X
TCM
TKV
TKW
TRT
TSC
TSI
TT1
T2
TT3
TUT
UAA
UAC
UAD
UAI
UAR
UCA
ucl
uc2
UDA
UDM
UDMS
UDP
UDX
uDZ
UHC
UMC
umMcs
oL

EDIT PROCESS DATA ROUTINE o« o e e
EDIT PROCESS (PRIMARY) FINAL ROUTINE
EDIT PROCESS (PRIMARY) INITIAL ROUTINE . .
EDIT PARTITIONED ORGANIZATION ROUTINE . .

EDIT OPTIONS-PROFILE ROUTINE
EDIT PROCESS MAIN ROUTINE ..

EDIT PHYSICAL SEQUENTIAL ROUTINE

EDIT "OTHER™ DATA SET ORGANIZATION ROUTINE

EDIT RECORD ALLOCATE ROUTINE
EDIT RECORD CHANGE ROUTINE .
EDIT RECORD DELETE ROUTINE .
EDIT RECORD FREE ROUTINE . .
EDIT RECORD INSERT ROUTINE
EDIT RECORD NUMBER ROUTINE
EDIT RECORD ORIGINAL ROUTINE
EDIT RECORD RESET ROUTINE ..
EDIT RECORD SHOW ROUTINE ..
EDIT RECORD EXCLUDE ROUTINE .
EDIT SPLIT TEXT ROUTINE .« .
EDIT TABLE CLEANUP ROUTINE .
EDIT LINE COMMANDS TABLE . o
EDIT TABLE SETUP ROUTINE
FOREGROUND PROCESSOR ROUTINE
BACKGROUND PROCESSOR ROUTINE
COMMON MENU ERROR ROUTINE N
COMMON MENU HANDLER ROUTINE .

MENU TESTER (DEBUGGING AID) ROUTINE.

SPF PARAMETER OPTION ROUTINE

PROCESSOR FINAL TERMINATION ROUTINE

PROCESSOR MAIN DRIVER ROUTINE

PROCESSOR RESTART ROUTINE ..
TSO COMMAND PROCESSOR ROUTINE
BACKGROUND SCAN ROUTINE . ..

SPF INPUT PARMS EXIT ROUTINE
SPF MAIN ATTACH ROUTINE .« ..
SPF MAIN CONTROLLER ROUTINE .
SPF MAIN DRIVER ROUTINE .
SPF MAIN INITIALIZATION ROUTINE

SPF MAIN LINE I-0 INTERFACE ROUTINE

SPF OUTPUT PARMS EXIT ROUTINE
SPF PARMS CONVERSION ROUTINE
SPF DRIVER ROUTINE

SPF CALL COMMAND PROCESSOR ROUTINE

SVC 93 EXIT ROUTINE e e e e .
SVC 96 EXIT ROUTINE e e e
TABLE - COMMANDS-CLISTS .« .

TABLE - KEYWORD VALUES
TABLE - KEYWORDS . « ..
TABLE - STATIC TRANSLATE TABLES

TABLE - SUBROUTINE COMMON .

TABLE - SPF INTERFACES . . .
TABLE - 3277 DEPENDENT TABLES
TABLE - 3278 DEPENDENT TABLES

e o o o o o

e« o o e

o« o o o

.....

.

.

e o o o o o

e o e o o o o o
.
e o o o o o o

.....

TABLE - 3278 CANADIANCFRENCH) DEPENDENT TABLES .

TUTORIAL PROCESSOR ROUTINE .
ALLOCATE NEW DATA SET ROUTINE

CATALOG OR UNCATALOG DATA SET ROUTINE . .

DELETE DATA SET ROUTINE

« o

DISPLAY DATA SET INFORMATION ROUTINE

RENAME DATA SET ROUTINE

CATALOG MANAGEMENT DRIVER ROUTINE

SVS CATALOG MANAGEMENT ROUTINE
MVS CATALOG MANAGEMENT ROUTINE

.

o o .

e o o o o
.

.
e o o o o o

LIBRARY AND DATA SET UTILITY DRIVER ROUTINE

LIBRARY UTILITY MEMBER LIST ROUTINE .
LIBRARY UTILITY MEMBER SELECT ROUTINE . .

PRINT DATA SET ROUTINE

PRINT INDEX ROUTINE . .« .
COMPRESS DATA SET ROUTINE . s
HARDCOPY UTILITY ROUTINE ..
MOVE-COPY UTILITY ROUTINE

MOVE-COPY UTILITY MEMBER SELECT
OUTLIST UTILITY ROUTINE o« .

LICENSED MATERIAL - PROPERTY OF IBM

« e o

o o

e o o o

ROUTINE .

.

TABLE OF

e o e o

e o o o o o

.....
.....
.....

.....

CONTENTS

203
204

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
264
245
2646
2647
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
276
275

vii

URS - RESET STATISTICS UTILITY ROUTINE e e e e e e e e e . 276

URSS - RESET STATISTICS UTILITY MEMBER SELECT ROUTINE .. 277

usc = SCRIPT/VS UTILITY ROUTINE e e e e e e e e e e e e . 278

UTIL = UTILITY DRIVER ROUTINE e e e e e e e e e e e e e .. 279

uvT = VTOC UTILITY ROUTINE . . . ¢ ¢ ¢ ¢ ¢ o o o o o & . . . 280
SECTION 4. DIRECTORY s o s e s e s s e o e s e e e e e e e e e e e e 281
LOAD MODULE 7 OBJECT MODULE LISTING ¢« ¢ ¢ ¢ o v ¢ o o o o 282
OBJECT MODULE 7 LOAD MODULE LISTING e e e e e e e s e e e e e e e 283
OBJECT MODULE s/ MENUS LISTING 2 1
MENUS 7 OBJECT MODULE LISTING e e e e e e e s e e 285
OBJECT MODULE # MESSAGES LISTING 213
MESSAGES » OBJECT MODULE LISTING « + o« o+ « « . . 288
OBJECT MODULE » CALLED OBJECT MODULES LISTING 293
OBJECT MODULE 7 CALLING OBJECT MODULES LISTING e e e e e e e e e 296
OBJECT MODULE s/ EXTERNAL SYMBOLS DEFINED LISTING o e e e e e e e e 299
OBJECT MODULE 7 EXTERNAL SYMBOLS REFERENCED LISTING 300
OBJECT MODULE / SVC ROUTINE LISTING e e s e e s e s e e e e e e e 301
SVC ROUTINE 7 OBJECT MODULE LISTING e e e s e e e s s e e e e e e e 303
OBJECT MODULE # LOAD MODULE REFERENCED LISTING c e s e s e s s e 305
SECTION 5. DATA AREAS e o e e s s e s e e e e e 1
PRIMARY DATA AREAS DIAGRAM e e e e e s e e e e e e e e e e e e s 308
PRIMARY DATA AREAS LIST O . . 309
DATA AREAS LIST o o o o o s s s o s o e o e e s o s e s e s s e s e 310
DATA AREAS DESCRIPTIONS e ¢ s e o s e o s e e s e o o e s v s s s . 312
SPF TABLES FORMATS o b s e s s 6 s e s s s e s s e s s e s e s e s s 320
BCT - BROWSE CONTROL TABLE 12 §

CBT - COMMON BROWSE TABLE T 74
CIVCOMM - CIV COMMON AREA e o s e s e e e e e e e e e e e . . 326

EDR - EDIT RECORD s e s s e e e s e . 1

EDT - EDIT TABLE e e 6 s e e s s e s s s s s s e s e e e s 326

ELC - EDIT LINE COMMAND e e e s s e e e e e e e e e e e 332

MHAF - MENU BUFFER e o o e o e s s e e s e s s e e e s e e s 333

SDE - SPF DIRECTORY ENTRY e

TCS = COMMAND SCAN TABLE ¢ ¢ ¢ v v v v o v o o o @ 335

TCT - CONTROL TABLES TABLE ¢« ¢ ¢ ¢ ¢ o o v o o 336

TDS - DATA SET TABLE . e e e e e e e e e e e e e e . 337

TFD - FILE DEFINITION TABLE O .2

TFI - FIND MEMBER TABLE e 11

TKV - KEYWORD/VALUES TABLE e e e e s e e e e e e e e e e 341

TLD - LOGICAL DISPLAY TABLE e e o o o e s e s s e s e e s s 342

TLS = LOGICAL SCREEN TABLE ¢+ ¢+ . « « . 365

TPD = PHYSICAL DISPLAY TABLE e e e e e e e e e e e e . . 346

TSC - SUBROUTINES (COMMON) TABLE C e e e e e e e e e e .. 347

TSI - SPF INTERFACE TABLE e v e e s s e s e s e s e .« o .. 349

TSV - SPF VARIABLES TABLE o« e e e e e e e e e e 351
UDACOMM - UDA COMMON AREA o« e e e e e e 353
APPENDIX A. SYSTEM INTERFACE NOTES e e e e e e s e e e e e e e e . . 355
SESSION MANAGER INTERFACE . N « + e+« + o« . . 355
PROGRAM CONTROL FACILITY (PCF) INTERFACE “ e s e s s e s e e e s 355
HIERACHICAL STORAGE MANAGER (HSM) INTERFACE « « . . 355
ENQ/DEQ LOGIC AND SHARED DASD SUPPORT e e e s s s e e e e e s e s 356
APPENDIX B. TERMINAL I/0 NOTES e e e e e e e e e e e e e s 359
TS0/TCAM INTERFACE e e e e e e o s s s e e S 124

| TS0/VTAM INTERFACE e b e e e e e e s e e e s s e s e e s e s . . 360
APPENDIX €. ERROR CODES c e s e e e e e s e e e 361
ABEND CODES . . . & ¢ ¢ e ¢ ¢ o o o o o o o o - 12
TERMINAL INPUT/OUTPUT ERROR CODES .+ & + & v o v v v v v e v . . . 362

viii SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

1 33.3333333333333.333333383333333333333.83232.223.8

*
* *
* SECTION 1 *
* *
* INTRODUCTION *
* *
* *
26 36 96 36 36 36 36 26 26 36 6 36 36 36 26 36 3 36 36 36 36 36 36 I I I 36 36 3 36 2 36 6 3 3 I I 2 3 3 I I 3¢ 36 36 ¢

THIS SECTION CONTAINS GENERAL INFORMATION ABOUT THE SPF OPERATING
ENVIRONMENT, PHYSICAL CHARACTERISTICS, TASK STRUCTURE, AND DATA SETS.
THE SECTION IS ORGANIZED AS FOLLOWS:

PROGRAM OVERVIEW
PROGRAMMING SYSTEMS
MACHINE CONFIGURATIONS
TERMINALS

PHYSICAL CHARACTERISTICS
TASK STRUCTURE

DATA SET USAGE

DATA SET NAMES

DATA SET ATTRIBUTES

LICENSED MATERIAL - PROPERTY OF IBM INTRODUCTION 1

PROGRAM OVERVIEH

SPF IS A PROGRAMMING AID THAT OPERATES IN THE TIME SHARING OPTION (TS0)
ENVIRONMENT AND IS DESIGNED TO INCREASE PRODUCTIVITY IN DEVELOPING AND
MODIFYING PROGRAMS.

SPF SUPPORTS BOTH STRUCTURED AND CONVENTIONAL PROGRAMMING TECHNIQUES.
IT CAN BE USED EITHER BY AN INDIVIDUAL PROGRAMMER, OR BY MANY
PROGRAMMERS WORKING TOGETHER ON A PROJECT. THE PRIMARY FUNCTIONS THAT
IT PROVIDES INCLUDE:

== FULL SCREEN, CONTEXT EDITING WHICH ALLOWS MULTIPLE LINES TO BE
MODIFIED IN A SINGLE INTERACTION.

== FORWARD, BACKWARD, AND SIDEWAYS SCROLLING OF SOURCE CODE OR
OUTPUT LISTINGS.

== SPLIT SCREEN, ALLOWING TWO SPF FUNCTIONS TO BE PERFORMED
INDEPENDENTLY ON THE SAME DISPLAY TERMINAL.

== ALLOCATION AND MAINTENANCE OF PROGRAMMING LIBRARIES, AUTOMATIC
COLLECTION OF LIBRARY ACTIVITY STATISTICS, AND PRINTING OF
LIBRARY CONTENTS.

== INTERFACE WITH STANDARD LANGUAGE PROCESSORS FOR EXECUTION IN THE
FOREGROUND OR BACKGROUND.

== ONLINE TUTORIAL FOR INSTRUCTION AND REFERENCE.

PROGRAMMING SYSTEMS

SPF OPERATES AS A TSO COMMAND PROCESSOR UNDER THE TIME SHARING OPTION OF
V52 RELEASE 1.7 (SVS), OR VS2 RELEASE 3.7 OR 3.8 (MVS). SPF IS WRITTEN
IN PL/S AND TRANSLATED INTO 0S/VS ASSEMBLER LANGUAGE. THE BPAM AND

BSAM ACCESS METHODS ARE EMPLOYED BY SPF FOR READING AND WRITING DATA
SETS, AND THE FACILITIES OF TSO/TCAM OR TSO/VTAM ARE USED FOR READING
AND WRITING THE DISPLAY.

SPF PROVIDES INTERFACES TO THE FOLLOWING IBM PRODUCTS:
SYSTEM ASSEMBLER (SUPPLIED WITH 0S/VS2)

05/VS COBOL COMPILER 5740-CB1
FORTRAN IV Gl COMPILER 5734-F02
PLs/I CHECKOUT COMPILER 5734-PL2
PL/I OPTIMIZING COMPILER 5734-PL1
LINKAGE EDITOR (SUPPLIED WITH 0S/VS2)
COBOL INTERACTIVE DEBUG (FOREGROUND ONLY) 5734-CB%
FORTRAN INTERACTIVE DEBUG (FOREGROUND ONLY 5734-F05
TSO ASSEMBLER PROMPTER (FOREGROUND ONLY) 5734-CP2
TSO COBOL PROMPTER (FOREGROUND ONLY). 5734-CP1
TSO FORTRAN PROMPTER (FOREGROUND ONLY) 5734-CP3
DOCUMENT COMPOSITION FACILITY (SCRIPT/VS) 57648-XX9
WITH THE FOREGROUND ENVIRONMENT FEATURE
0S/VS2 MVS 3270 EXTENDED DISPLAY SUPPORT - 57640-XE2
SESSION MANAGER, RELEASE 2
TSO0/TCAM COMMAND PROCESSOR "DSPRINT™ 5798-AYF
T50/VTAM DATA SET PRINT (DSPRINT) 5798-CPF
TS0/VS2 PROGRAMMING CONTROL FACILITY (PCF) 5798-BBJ

TS0 PROGRAMMING CONTROL FACILITY - II (PCF2) 5798-CLW
ALL THE PROGRAM-NUMBERED PRODUCTS LISTED ABOVE CAN BE ORDERED SEPARATELY

UNDER IBM LICENSING AGREEMENTS. NONE OF THE ABOVE PRODUCTS ARE
DISTRIBUTED AS PART OF SPF.

2 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

MACHINE CONFIGURATION

THE COMPUTER SYSTEM REQUIREMENTS ARE THE SAME AS NEEDED FOR 0S/VS2 WITH
THE TIME SHARING OPTION (TS0).

THE STORAGE REQUIREMENTS FOR THE USER REGIONS WILL VARY DEPENDING UPON
THE SIZE OF THE DATA SETS BEING EDITED AND THE EXTENT THAT "SPLIT
SCREEN"™ WILL BE USED. THE SPF PROGRAMS ARE REENTERABLE AND SHOULD BE
PLACED IN THE SYSTEM LINK PACK AREA. THIS WILL REDUCE THE SIZE
REQUIREMENT FOR THE USER REGIONS AND SHOULD ALSO IMPROVE PERFORMANCE.

THE FOLLOWING MINIMUM REGION SIZES ARE SUGGESTED FOR SVS. THESE SIZES
MAY HAVE TO BE EXPANDED IF LARGE CODE SEGMENTS ARE TO BE EDITED.

256K - IF SPF RESIDES IN THE LINK-PACK AREA
512K - IF SPF DOES- NOT RESIDE IN THE LINK-PACK AREA

TERMINALS

SPF SUPPORTS THE FOLLOWING IBM 3270 DISPLAY STATIONS:

3275 MODELS 2 AND 12

3276 MODELS 2, 3, 4, 12, 13, AND 14

3277 MODEL 2 (LOCAL OR REMOTE ATTACHMENT)

3278 MODELS 2, 3, AND 4 (LOCAL OR REMOTE ATTACHMENT)

THE FOLLOWING KEYBOARDS ARE SUPPORTED:
FOR 3275 OR 3277 DISPLAY STATIONS:

78 KEY OPERATOR CONSOLE (FEATURE 64632)

78 KEY EBCDIC TYPEWRITER (FEATURE 4633)

78 KEY ASCII TYPEWRITER (FEATURE 4635)

78 KEY EBCDIC TYPEWRITER/APL (FEATURE %638), APL SWITCH OFF

FOR 3276 OR 3278 DISPLAY STATIONS:

75 KEY EBCDIC TYPEWRITER (FEATURE 4621)

75 KEY ASCII TYPEWRITER (FEATURE 4624)

87 KEY EBCDIC TYPEWRITER (FEATURE 4627)

87 KEY ASCII TYPEWRITER (FEATURE 4628)

87 KEY EBCDIC TYPEWRITER/APL (FEATURE 4626), APL SWITCH OFF
87 KEY EBCDIC TYPEWRITER/TEXT (FEATURE 4629), TEXT SWITCH OFF

THE STANDARD CHARACTER SET (94 GRAPHICS PLUS BLANK AND NULL) IS
SUPPORTED ON 3276 AND 3278 DISPLAY STATIONS.

THE FOLLOWING ARE SUPPORTED, BUT NOT REQUIRED:

AUDIBLE ALARM (FEATURE #1090)
IBM 3284, 3286, 3287, 3288, AND 3289 PRINTERS
PRINT DUAL-CASE CHARACTER SET (RPQ #8K0366)

THE IBM 3284, 3286, 3287, 3288, AND 3289 PRINTERS, IF USED, ARE
SUPPORTED VIA THE "DSPRINT™ TSO COMMAND PROCESSOR, WHICH MUST BE
INSTALLED IF SPF OUTPUT IS DIRECTED TO ONE OF THESE PRINTERS.

PRYSICAL CHARACTERISTICS

SPF IS COMPRISED OF 30 REENTERABLE LOAD MODULES AND 1 NON-REENTERABLE
LOAD MODULE. THESE LOAD MODULES ARE BUILT FROM 156 OBJECT MODULES. THE
OBJECT MODULES ARE ARE DISTRIBUTED ON TAPE IN SMP INSTALLABLE FORMAT AND
MUST BE LINK EDITED TO CREATE THEIR RESPECTIVE LOAD MODULES. 1IT IS
RECOMMENDED THAT MOST OF THE LOAD MODULES BE COPIED TO THE SYSTEM LINK
PACK AREA (DATA SET 'SYS1.LPALIB'). SEE THE INSTALLATION AND
CUSTOMIZATION GUIDE FOR MORE INFORMATION.

LICENSED MATERIAL - PROPERTY OF IBM INTRODUCTION 3

JASK S CTUR

THE SPF TASK STRUCTURE IS SHOWN IN FIGURE 1.1. THE SPF MAIN CONTROLLER
IS ATTACHED BY 7SO WHENEVER THE USER ENTERS THE "SPF™ COMMAND. THE MAIN
CONTROLLER PERFORMS INITIALIZATION/TERMINATION FUNCTIONS AND HANDLES
DISPLAY I/0 (VIA TCAM OR VTAM) ON BEHALF OF THE OTHER SPF PROGRAMS. IT
ATTACHES THE PROCESSOR MAIN DRIVER, WHICH DISPLAYS THE PRIMARY OPTION
MENU AND LINKS TO ONE OF SEVERAL PROCESSING PROGRAMS, DEPENDING ON THE
OPTION SELECTED.

IF THE USER ENTERS SPLIT SCREEN MODE, THE MAIN CONTROLLER AGAIN
ATTACHES THE PROCESSOR MAIN DRIVER TO HANDLE OPERATIONS ON THE SECOND
LOGICAL SCREEN. THUS, IN SPLIT SCREEN MODE THREE TASKS ARE ACTIVE:

SPF CONTROL TASK
SPF PROCESSING TASK FOR LOGICAL SCREEN 1
SPF PROCESSING TASK FOR LOGICAL SCREEN 2

THE WAIT/POST LOGIC BETWEEN THE CONTROL TASK AND EITHER OF THE
PROCESSING TASKS IS SHOWN IN FIGURE 1.2. AFTER THE CONTROL TASK
ATTACHES A PROCESSING TASK, IT WAITS FOR EITHER OF TWO EVENT CONTROL
BLOCKS (ECB'S) TO BE POSTED:

1. DISPLAY REQUEST ECB
2. TASK COMPLETION ECB

WHEN A PROCESSING TASK WANTS THE CONTROL TASK TO PERFORM DISPLAY I/0 OR
SOME OTHER FUNCTION, IT POSTS THE DISPLAY REQUEST ECB (ECB #1) WITH ONE
OF THREE SPECIAL CODES AND ISSUES A WAIT ON:

3. PROCESS REQUEST ECB
THE THREE TYPES OF DISPLAY REQUESTS ARE:

1. NORMAL FULL SCREEN I/0 - THIS REQUEST IS USED WHEN A PROCESSING TASK
WANTS TO DO NORMAL SPF DISPLAY I/0.

IN RESPONSE TO A DISPLAY REQUEST, THE CONTROL TASK:
- WRITES INFORMATION TO THE TERMINAL (TPUT),
- WAITS FOR A RESPONSE FROM THE USER (TGET),
= POSTS THE PROCESS REQUEST ECB (ECB #3), AND
= WAITS FOR DISPLAY REQUEST OR COMPLETION OF THE PROCESSING TASK.

PROCESSING PROGRAMS GENERALLY CALL THE COMMON DISPLAY SUBROUTINE,
CDISPL, TO PERFORM THE POST-WAIT SEQUENCE.

2. LINE I/0 - THIS REQUEST IS USED WHEN A PROCESSING TASK WANTS TO ENTER
STANDARD TSO LINE I/0 MODE.

IN RESPONSE TO A LINE I/0 REQUEST, THE CONTROL TASK:
- CLEARS PART OF THE SCREEN AND SETS THE LINE COUNT,
- POSTS THE PROCESS REQUEST ECB (ECB #3), AND
- WAITS FOR DISPLAY REQUEST OR COMPLETION OF THE PROCESSING TASK.

3. COMMON CONTROL INTERFACE - THIS REQUEST IS USED WHEN A PROCESSING
TASK WANTS TO EXECUTE A COMMON SUBROUTINE UNDER THE CONTROL TASK'S
TCB.

IN RESPONSE TO A COMMON CONTROL INTERFACE REQUEST, THE CONTROL TASK:
= CALLS THE COMMON SUBROUTINE,
- POSTS THE PROCESS REQUEST ECB (ECB #3), AND
- WAITS FOR DISPLAY REQUEST OR COMPLETION OF THE PROCESSING TASK.

WHEN A PROCESSOR TASK COMPLETES (EITHER NORMALLY VIA END FUNCTION
REQUEST, OR ABNORMALLY DUE TO AN ABEND), THE TASK COMPLETION ECB IS
POSTED (ECB #2). FOR ABNORMAL COMPLETION, THE CONTROLLER RE-ATTACHES
THE PROCESSOR TASK. FOR NORMAL COMPLETION, THE CONTROLLER TERMINATES
SPLIT SCREEN MODE (IF IT WAS IN EFFECT), OR TERMINATES SPF.

4 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

SYSTEM TASK SPF CONTROL TASK SPF PROCESSING TASK(S)

2ND TASK
(SPLIT SCRN)

r
s============z}> PROCESSOR
MAIN l | MAIN

TS0
TERMINAL | |

MONITOR CONTROLLER DRIVER

——> SPF PARMS
——b BROWSE
—> EDIT
> UTILITIES
LEGEND:
——> FOREGROUND
——> BACKGROUND

—> TSO COMMAND

—> TUTORIAL

FIGURE 1.1 SPF TASK STRUCTURE

LEGEND: ======> ATTACH

SPF CONTROL TASK SPF PROCESSING TASK
1
INITIALIZE SPF
—>
ATTACH PROCESSOR > FORMAT DISPLAY
OUTPUT
—>
WAIT = - 71— =--====1Db | DISPLAY
| REQ. ECB [4 — - - - — POST
COMPLE-
Le—ec---p | TIONECB | 4 - 4
IF DISPLAY REQ: |
TPUT (OUTPUT)
TGET (INPUT) |
POST —-—-=-—-=-=—-=b | PROCESS | 4 = — = — — WAIT
REQ. ECB |
IF ABNORMAL COMPL: PROCESS INPUT
RE-ATTACH TASK | AND CONTINUE
IF NORMAL COMPL: |
END SPLIT SCREEN ON COMPLETION:
L - - - posT
OR RETURN
TERMINATE SPF

= = = b WAIT/POST
——> PROGRAM FLOW

FIGURE 1.2 WAIT/POST LOGIC

LICENSED MATERIAL - PROPERTY OF IBM INTRODUCTION 5

DATA SET USAGE

THE DATA SETS USED BY SPF ARE SHOWN IN FIGURE 1.3. SOME OF THE DATA
SETS ARE PERMANENT DATA SETS THAT ARE REQUIRED TO EXECUTE SPF. OTHERS
ARE TEMPORARY DATA SETS THAT ARE ALLOCATED BY SPF IF THEY ARE REQUIRED.

THE NAMES SHOWN ARE THE NAMES USED TO REFER TO THESE DATA SETS FOR
DOCUMENTATION PURPOSES. ™TEMPCNTL™ IS SOMETIMES USED GENERICALLY TO
REFER TO EITHER TEMPCNTL1 OR TEMPCNTL2. LIKEWISE, "TEMPLIST"™ REFERS TO
EITHER TEMPLIST1 OR TEMPLIST2. ACTUAL DATA SET NAMES AND THE FILE NAMES
TO WHICH THEY ARE ASSIGNED ARE DISCUSSED LATER IN THIS SECTION.

INPUT

SPFMENU§ ———————b
(REQUIRED)

SPFMSGS ———D
(REQUIRED)

SPFPROCS ——
(REQUIRED)

SPFPARMS —
(REQUIRED)

TEMPCNTL1 ——>
(TEMPORARY)

TEMPLIST] —>
(TEMPORARY)

TEMPCNTL2 —>
(TEMPORARY)

TEMPLIST2 —
(TEMPORARY)

TEMPEDITA —
(TEMPORARY)

TEMPEDITB —
(TEMPORARY)

SPF
PROCESS

SPF MENU PROTOTYPES
AND TUTORIAL PAGES

SPF MESSAGE
PROTOTYPES

SPF PROCEDURE
PROTOTYPES

SPF USER PARAMETERS

SPF LOG DATA SET

SPF LISTING DATA SET

TEMPORARY CONTROL
DATA SET
(LOGICAL SCREEN 1)

TEMPORARY LISTING
DATA SET
(LOGICAL SCREEN 1)

TEMPORARY CONTROL
DATA SET
(LOGICAL SCREEN 2)

TEMPORARY LISTING
DATA SET
(LOGICAL SCREEN 2)

TEMPORARY EDIT
RECOVERY DATA SET
(FIRST USED)

TEMPORARY EDIT
RECOVERY DATA SET
(SECOND USED)

—— SPFPARMS

—> SPFLOG

——— SPFLIST

——> TEMPCNTL1

~————p TEMPLIST1

——> TEMPCNTL2

————> TEMPLIST2

—> TEMPEDITA

——> TEMPEDITB

FIGURE 1.3 SPF DATA SET USAGE

6 SPF/TSO PROGRAM LOGIC MANUAL

LICENSED MATERIAL - PROPERTY OF IBM

SPFMENUS: THIS DATA SET CONTAINS PROTOTYPE MENUS THAT ARE FORMATTED
FOR THE DISPLAY SCREEN. MENUS CAN BE EASILY EDITED, MAKING
IT POSSIBLE TO CHANGE THE FORMAT OF A DISPLAY WITHOUT
PROGRAM CHANGES. INSTALLATIONS MAY ALSO WANT TO CHANGE
EXISTING MENUS OR ADD NEW MENUS TO BE USED BY FOREGROUND
(OPTION 4) OR BACKGROUND (OPTION 5).

SPFMSGS: THIS DATA SET CONTAINS PROTOTYPE MESSAGES THAT ARE FORMATTED
AND USED PRIMARILY AS ERROR, INFORMATION, OR LOG MESSAGES.
EACH MESSAGE CONSISTS OF A SHORT PORTION (24 CHARACTERS)
THAT CAN BE DISPLAYED IN THE UPPER RIGHT HAND CORNER OF THE
SCREEN, AND A LONG PORTION (72 CHARACTERS) THAT CAN BE
DISPLAYED ON LINE 3 OF THE DISPLAY.

SPFPROCS: THIS DATA SET CONTAINS PROTOTYPE COMMANDS AND JCL. THE
PROTOTYPE COMMANDS ARE USED BY THE FOREGROUND OPTION (OPTION
4) IN BUILDING TSO COMMANDS OR CLISTS. PROTOTYPE JCL IS
USED BY THE BACKGROUND OPTION (OPTION 5) IN BUILDING JOB
STREAMS FOR BACKGROUND EXECUTION.

SPFPARMS: THIS DATA SET CONTAINS SPF USER INFORMATION TO BE RETAINED
FROM ONE SESSION TO ANOTHER. IT CONSISTS OF ONE MEMBER FOR
EACH SPF USER. WHEN A TS0 USER FIRST USES SPF, A NEW MEMBER
IS AUTOMATICALLY CREATED. THEREAFTER, IT IS READ DURING SPF
INITIALIZATION AND UPDATED DURING SPF TERMINATION.

SPFLOG: THIS DATA SET CONTAINS LOG MESSAGES WHICH SHOW SIGNIFICANT
ACTIONS DURING THE SESSION. THE USER CAN CONTROL WHETHER OR
NOT A LOG DATA SET IS TO BE CREATED (OPTION 0.2). SETTING
THE PRIMARY ALLOCATION TO 0 WILL ELIMINATE THE OVERHEAD OF
ALLOCATING, WRITING, AND FREEING THE LOG DATA SET.

SPFLIST: THIS DATA SET CONTAINS FORMATTED PRINTER OUTPUT REQUESTED BY
THE USER. ALLOCATION OF A LIST DATA SET CAN BE PREVENTED BY
AVOIDING THE FOLLOWING OPTIONS THAT WRITE TO SPFLIST:

PRINT SCREEN IMAGE PF KEY.

EDIT AUTOMATIC PRINT (EDIT COMMAND)

PRINT INDEX LISTING (OPTION 3.1 X)

PRINT ENTIRE DATA SET (OPTION 3.1 L)

PRINT MEMBER (OPTION 3.1 P)

PRINT CATALOG ENTRIES (OPTION 3.4 P)

PRINT VTOC ENTRIES (OPTION 3.7 P)

TEMPCNTL: THIS TEMPORARY DATA SET CONTAINS CONTROL CARD IMAGES, OR
UTILITY OUTPUT WHICH HAS BEEN FORMATTED FOR DISPLAY. IT IS
ALLOCATED THE FIRST TIME IT IS REQUIRED, AND DELETED WHEN A
LOGICAL SCREEN TERMINATES. OPTIONS THAT USE TEMPCNTL ARE:

- EDIT (SUBMIT COMMAND) FOR JCL TO BE SUBMITTED

BACKGROUND (OPTION 4) FOR JCL TO BE SUBMITTED

HARDCOPY UTILITY (OPTION 3.6 J) FOR JCL TO BE SUBMITTED

CATALOG UTILITY (OPTION 3.4) FOR IEHLIST OR IDCAMS

CONTROL CARDS

VTOC UTILITY (OPTION 3.7) FOR DATA TO BE DISPLAYED

TERMINATION (FINAL MENU) FOR JCL TO BE SUBMITTED

TEMPLIST: THIS TEMPORARY DATA SET CONTAINS LISTINGS THAT HAVE BEEN
GENERATED BY 0S UTILITIES, INVOKED BY SPF. THE LISTINGS ARE
DISPLAYED ON THE SCREEN. IT IS ALLOCATED THE FIRST TIME IT
IS REQUIRED, AND DELETED WHEN A LOGICAL SCREEN TERMINATES.
THE FUNCTION THAT USES TEMPLIST IS:
- CATALOG UTILITY (OPTION 3.4) FOR IEHLIST OR IDCAMS
OUTPUT LISTINGS TO BE DISPLAYED

TEMPEDIT: THIS TEMPORARY DATA SET CONTAINS DATA THAT IS SAVED DURING
AN EDIT SESSION WHEN YOU HAVE "RECOVERY ON™ SPECIFIED. 1IT
IS ALLOCATED THE FIRST TIME YOU CHANGE DATA IN AN EDIT
SESSION. IT REMAINS ALLOCATED UNTIL YOU TERMINATE SPF.
THERE ARE TWO DATA SETS (™A™ AND "B") WHICH ALLOWS YOU TO DO
RECOVERY PROCESSING IN SPLIT SCREEN MODE.

LICENSED MATERIAL - PROPERTY OF IBM INTRODUCTION 7

AME

THE DEFAULT NAMES THAT ARE USED BY SPF FOR THE VARIOUS DATA SETS ARE:

SPFMENUS - 'SPF22.MOD1.MENUS' --

SPFMSGS - 'SPF22.MOD1.MSGS' = THE NAMES SHOWN ARE THE
SPFPROCS - 'SPF22.MOD1.PROCS' FULLY QUALIFIED DATA SET NAMES.
SPFPARMS - 'SPF22.MOD1.PARMS' --

SPFLOG - SPFLOG1.LIST (1 -- .

SPFLIST - SPF1.LIST (1) = THE NAMES SHOWN ARE QUALIFIED
TEMPCNTL - SPFTEMP1.CNTL (2) WITH THE TSO USERID OR

TEMPLIST - SPFTEMP1.LIST (2) PREFIX.USERID

TEMPEDIT - SPFEDITA.BACKUP (3) --

(1) THESE DATA SETS MAY HAVE NUMBERS OTHER THAN "1"™. FOR EXAMPLE:
SPFLOG - SPFLOG4.LIST, SPFLIST - SPF8.LIST

(2) THESE DATA SETS WILL HAVE NUMBERS "1™ FOR LOGICAL SCREEN 1 AND
"2" FOR LOGICAL SCREEN 2. FOR EXAMPLE: TEMPCNTL - SPFTEMP2.CNTL

(3) THESE DATA SETS WILL HAVE CHARACTERS "A™ FOR FIRST USE AND "B"™
FOR SECOND USE. FOR EXAMPLE: TEMPEDIT - SPFEDITA.BACKUP

DATA S RIBUTES

THE DEFAULT ATTRIBUTES THAT ARE DISTRIBUTED ARE SHOWN BELOW. SOME OF
THE VALUES ARE REQUIRED AS SHOWN. OTHER VALUES CAN BE CHANGED AT YOUR
INSTALLATION BY SUPERZAPING THE TSV. STILL OTHERS CAN BE CHANGED BY
INDIVIDUAL USERS BY USING OPTION 0.2 (LOG/LIST DEFAULT MENU).

FOR SPF ALLOCATION PARAMETERS
DATA SET FILE NAME LRECL BLKSIZE RECFM UNITS PRIMARY SECONDARY

SPFMENUS SPFMENUS 84 3120 VB BLKS 300 40
SPFMSGS SPFMSGS 76 3120 VB BLKS 36 8
SPFPROCS SPFPROCS 80 3120 FB BLKS 32)
SPFPARMS SPFPARMS 6000C1) 6000(1) F BLKS %¥%(2) *%(2)
| SPFLOG SPFNNNNN(3) 125 129 VA PAGES 10 10
SPFLIST SPFNNNNN(3) 121 3146 FBA PAGES 100 200
TEMPCNTL SPFNNNNN(3) 30 300 FB BLKS 10 100
TEMPLIST SPFNNNNN(3) 121 31646 FBA BLKS 10 10
TEMPEDIT SPFNNNNN(3) 3120 3120 U BLKS 40 200

(1) SPFPARMS BLOCKSIZE CAN BE INCREASED LARGER THAN 6000 AT
INSTALLATION TIME.

I (2) SPFPARMS SPACE ALLOCATION SPECIFIED AT INSTALLATION TIME. SEE
INSTALLATION AND CUSTOMIZATION GUIDE.

I (3) THE VALUE FOR "NNNNN" IS A UNIQUE NUMBER DETERMINED BY SPF AT
THE TIME OF ALLOCATION.

8 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

TSO/SPF
LOGON
PROCEDURE

CHART 1.1

!

TS0
TERMINAL
MONITOR
PROSRAM

CHART 1.2

--___-___-_1_________-__

N

VISUAL TABLE OF CONTENTS

OTHER TSO COMMAND PROCESSORS

SPF
DRIVER

SPF
CONTROLLER

CHART 1.4

PROCESSOR
MAIN
DRIVER

CHART 2

SPF CONTROL TASK

SPF PARMS

CHART 3

BROWSE

CHART 4

EDIT

CHART 5

UTILITIES

CHART 6

FOREGROUND
PROCESSING

CHART 7

BACKGROUND
PROCESSING

CHART 8

TSO
COMMAND

CHART

9

LICENSED MATERIAL - PROPERTY OF IBM

TUTORIAL

CHART 10

SPF PROCESSING TASK

METHOD OF OPERATION 11

EXTENDED DESCRIPTION

CHART 4.1
CUNMON BROMSE SUBROUTINE

1.

4’

INITIALIZE TABLES, VARIABLES, ETC. SUBROUTINE CBS
MUST BE CALLED BEFORE CALLING CBR TO SET UP THE
COMMON BROWSE TABLE (CBT). THE CBT IS GETMAINED
FROM SUBPODL 4 VIA SUBROUTINE CSM.

THE SCREEN IMAGE IS FILLED FROM BROWSE LINE BUFFERS.
DATA IS-READ INTO THE LINE BUFFERS ON A DEMAND
BASIS. LOGICAL RECORDS ARE READ A CALL TO
SUBROUTINE CDG IN SUBROUTINE CBG. WHEN THE DISPLAY
IS COMPLETE, SUBROUTINE CDISPL IS CALLED TO DISPLAY
THE SCREEN IMAGE.

IF THE END KEY WAS PRESSED, STEP 6 IS NEXT.
OTHERWISE PROCESSING PROCEEDS WITH STEP 4.

INFUT ON LINE 2 IS ANALYZED. 1IF A "FIND" COMMAND
WAS ENTERED (OR IF THE REPEAT FIND PF KEY KWAS
PRESSED) THE LINE BUFFERS ARE SEARCHED FOR THE
DESIGNATED CHARACTER STRING. CBG IS CALLED, WHEN
NECESSARY, TO READ MORE DATA INTO THE LINE BUFFERS.
IF A “CAPS'" OR "ASIS" COMMAND WAS ENTERED, THE
INTERNAL MCDE INDICATORS ARE UPDATED. IF A "LOCATE"
COMMAND KAS ENTERED, THE DISPLAYED DATA IS SCROLLED
TO THE PROPER LINE. PROCESSING PROCEEDS WITH

STEP 2.

IF A SCROLL KEY WAS PRESSED, THE NEW STARTING LINE
OR COLUMN IS DETERMINED. PROCESSING PROCEEDS WITH
STEP 2.

WHEN THE END KEY IS PRESSED, CONTROL IS RETURNED TO
THE CALLER. SUBROUTINE CBC MUST BE CALLED AFTER
CALLING CBR TO CLEAN UP THE CBT.

LOAD _ OBJECT
MODULE = -MODULE - LABEL
SPFSUBS | cBs c8s
CBR CBR10TH
SPFSUBS | CBR CBR20FS
CBG €86
SPFSUBS | CBR CBR
SPFSUBS | CBR CBR50AI
CBF CBF
CBR CBR54LN
SPFSUBS | CBR CBR8OPS
SPFSUBS | CBR CBR
cBC cBC

LICENSED MATERIAL - PROPERTY OF IBM

METHOD OF OPERATION 33

CHART 5
EDIT
FROM 2
INPUT PROCESS OUTPUT
INITIALIZE EDIT —\
TABLE (EDT)) EOT
l | 4
DISPLAY EDIT
TKV DATA SET MENU EDIT
| DATA SET
| MENU
SPF INTERPRET RESPONSE
MENUS & FROM TERMINAL]
MSGS |

34 SPF/T7S0 PROGRAM LOGIC MANUAL

TKV

BUILD/CHECK, ALLOCATE,
CONCATENATE, AND OPEN
DATA SETS FOR INPUT

/
DISPLAY MEMBER LIST,
IF REQUESTED
|
(—_

MEMBER
SELECTION
LIST

INTERPRET RESPONSE
FROM TERMINAL

PROCESS
EDIT I/0 @
FUNCTIONS 4

CLOSE AND FREE
DATA SET(S), AND
RETURN

RETURN TO 2

LICENSED MATERIAL ~ PROPERTY OF IBM

‘J e e——y

s

EXTENDED DESCRIPTION

LOAD
MODULE

DBJECT
FODULE

CHART &
EDIT

LABEL

1. THE EDIT TABLE (EDT) IS INITIALIZED. TAIS VABLE IS
USED FOR COMMUNICATION BETWEEN THE EDIT PROGRAMS.

2. SUBROUTINE MHA IS CALLED TO DISPLAY THE EDIT MENU,
ARD SUBROUTINE MERR IS CALLED TO DISPLAY AN ERRCR OR
CONFIRMATION MESSAGE FROM THE FREVIOUS PASS THRUOGH
THE LOOP (IF ANY). INITIAL VALUES FOR PROJECT,
LIBRARY, TYPE, AND PASSWORD ARE FROM THE TKV.

3. IF THE END KEY WAS PRESSED, STEP 10 IS EXECUTED
NEXT. OTHERWISE, PROCESSING CONTINUES WITH STEP 3.
ENTERED VALUES ARE PLACED BACK IN THE TKV.

4. SUBROUTINE CDA IS CALLED TO CONSTRUCT THE DATA SET
NAMES (FROM "PROJECT', UP TO 4 "LIBRARY" NAMES, AND
“TYPE') OR VALIDITY CHECK THE NAME (IF "OTHER"™ DATA
SET NAME WAS ENTERED). THE PREVIOUSLY EDITED DATA
SET(S), IF ANY, ARE CLOSED AND FREED. THE NEW DATA
SET(S) ARE ALLOCATED (DISP=SHR) AND CONCATENATED IF
PARTITIONED, OR ALLOCATED (DISP=0LD) IF SEQUENTIAL.
SUBROUTINE CDO IS CALLED TO OPENED THEM FOR INPUT,
AND THE DATA SET CHARACTERISTICS ARE CHECKED FOR
VALIDITY.

5. STEPS 5 AND 6 ARE EXECUTED ONLY IF THE DATA SET(S)
ARE PARTITIONED AND THE MEMBER NAME WAS NOT
SPECIFIED. SUBROUTINE CML IS CALLED TO DISPLAY THE
MEMBER LIST.

6. IF THE END KEY WAS PRESSED, STEP 2 IS EXECUTED NEXT.
OTHERWISE, PROCESSING CONTINUES WITH STEP 7.

7. IF THE DATA SET(S) ARE PARTITIONED, THE BLDL AND
FIND SYSTEM SERVICES ARE ISSUED FOR THE SELECTED
MEMBER. THE EDIT HEADER LINES ARE THEN SET UP AND
THE EDIT PROCESS ROUTINE EPR IS CALLED TO CONTINUE
PROCESSING.

8. WHEN THE END KEY IS PRESSED, THE DATA SET(S) ARE
CLOSED AND FREED, AND CONTROL IS RETURNED TO THE
CALLER (PMD).

SPFSUBS

SPFSUBS

SPFSUBS

SPFSUBS

SPFSUBS

SPFSUBS

SPFSUBS

SPFSUBS

ETS

EMP

EMP

EMP

EPO

EPO

EPO
EPS

EMP

ETS

EMP

EMP

EMP

EPO

EPO

EPO
EPS

EMP

LICENSED MATERIAL -~ PROPERTY OF IBM

METHOD OF OPERATION 35

INPUT

FROM 5

EDT

3l

B s R L b h T

36 SPF/TSO PROGRAM LOGIC MANUAL

CHART 5.1

EDIT I/0 ROUTINE

PROCESS ’

READ DATA SET
OR MEMBER

CHECK FOR NUMBER MODE

PERFORM
EDIT
FUNCTIONS

PROCESS "END", ''SAVE",
OR "CANCEL"

PROCESS ''CREATE"
OR "REPLACE"

PROCESS ''MOVE"
OR "'COPY"

kel

RETURN

EDT

EDR CHAIN

EDIT
DATA SET

SPF LOG
DATA SET

RETURN TO 5

LICENSED MATERIAL - PROPERTY OF IBM

e

CHART 5.1
EDIT I/0 ROUTINE

LOAD . OBJECT
EXTENDED DESCRIPTION ‘ MODULE MOBULE LABEL

1. EDIT DATA INPUT (EDI) IS CALLED TO READ IN THE DATA. | SPFSUBS EDI EDI
EACH LOGICAL RECORD IS STORED IN AN EDR (EDIT
RECORD). THE EDR'S ARE CHAINED TO THE EDIT TABLE.

2. IF RECORDS HAVE ASCENDING SEQUENCE NUMBERS, EDIT IS SPFSUBS EDI EDI
INITIALIZED TO "NUMBER" MODE. OTHERWISE, IT IS
“NONUM'" MODE. AN UPPER/LOMER CASE CHECK IS ALSO
DONE SO "CAPS' MODE CAN BE SET ON OR OFF.

3. THE EDIT PROCESSING ROUTINE (EPR) PERFORMS BASIC SPFSUBS EPR EPR
EDIT FUNCTIONS. (I.E. SCROLLING, LINE COMMANDS, AND
PRIMARY COMMANDS). EPR RETURNS CONTROL WHEN THE
PRIMARY COMMANDS SAVE OR CANCEL ARE EXECUTED, OR
WHEN THE END KEY IS PRESSED.

4. STEP 4 IS EXECUTED IN THE EVENT OF "END", "SAVE', OR | SPFSUBS EPR EPR
“CANCEL". FOR "SAVE', THE DATA 1S WRITTEN TO THE
EDIT DATA SET, BUT NOT THE LIST DATA SET. FOR
“END', THE DATA IS WRITTEN TO THE EDIT DATA SET IF
ANY CHANGES HAVE OCCURRED.» AND IT IS RECORDED IN THE
LIST DATA SET IF "PRINT" MODE IS ON VIA SUBROUTINE
CPRINT. THE PROCEDURES FOR WRITING THE EDIT DATA
SET ARE AS FOLLOWS:

= THE SUBROUTINE CDO IS CALLED TO OPEN THE DATA SET
FOR OUTPUT AND PERFORM A RESERVE.

~ THE SUBROUTINE CDP IS CALLED TO WRITE EACH RECORD.

~ THE STOW-REPLACE SYSTEM SERVICE IS ISSUED,IF IT
IS A PARTITIONED DATA SET.

= THE SUBROUTINE CDO IS CALLED TO CLOSE AND RELEASE
(AND DEQ) THE DATA SET.

WHENEVER THE DATA IS SAVED, A RECORD IS WRITTEN TO
THE LOG DATA SET BY CALLING THE SUBROUTINE CLOG.

FOLLOWING "END' OR "CANCEL'', CONTROL IS RETURNED TO
THE CALLING PROCEDURE (STEP 7). FOLLOWING "SAVE",
STEP 3 IS EXECUTED.

5. STEP 5 IS EXECUTED FOR A "CREATE" OR '"REPLACE" SPFSUBS ECR ECR
PRIMARY COMMAND. THE EDIT, LIST, AND LOG DATA SETS
ARE WRITTEN USING THE SAME PROCEDURES DESCRIGED
FOR STEP 4. THEN STEP 3 IS EXECUTED.

6. STEP 6 IS EXECUTED FOR A 'MOVE' OR ''COPY' FRIMARY SPFSUBS EMC EMC
COMMAND. SUBROUTINE CGET IS CALLED TO READ EACH
RECORD OF THE EDIT DATA SET MEMBER. FOR "MOVE", A
STOW-DELETE SYSTEM SERVICE IS ISSUED TO DELETE THE
MEMBER FOLLOWING A SUCCESSFUL COPY. THE SUBROUTINE
CLCG IS CALLED TO WRITE A RECORD TO THE LOG DATA
SET. THEN STEP 3 IS EXECUTED.

7. WHEN END OR CANCEL HAS BEEN PROCESSED, CONTROL IS SPFSUBS EPR EPR
RETURNED TO THE CALLER (EFO OR EPS).

"LICENSED MATERIAL - PROPERTY OF IBM "METHOD OF OPERATION 37

INPUT

EDT

EDR CHAIN

38 SPF/TSO PROGRAM LOGIC MANUAL

FROM 5

.1

¥ PROCESS

CHART 5.2
EDIT PROCESSOR

INITIALIZE

DISPLAY SCREEN
IMAGE

ANALYZE PRIMARY
COMMAND

PERFORM INITIAL
PRIMARY COMMAND
PROCESSING

FROCESS DATA
AREAS

PROCESS LINE
COMMANDS

PERFORM FINAL
PRIMARY COMMAND
PROCESSING

RETURN

EDT

EDR CHAIN

RETURN TO 5.1

LICENSED MATERIAL - PROPERTY OF IBM

CHART 5.2

EDIT PROCESSOR

* OBJECT

LOAD
EXTENDED DESCRIPTION MODULE MODULE LABEL
1. SELECTED FIELDS IN THE EDIT TABLE (EDT) ARE SPFSUBS EPR EPR10IH
INITIALIZED. EPR20OIR
= IF THE EDIT RECORD CHAIN IS EMPTY, ENOUGH "'INSERT" -
LINES ARE INSERTED BETWEEN THE TOP AND BOTTOM EDIT
RECORDS TO FILL THE CURRENT LOGICAL SCREEN.
2. THE LOGICAL SCREEN IS FORMATTED. EITHER SUBROUTINE SPFSUBS EFR EFR
CERR OR CDISPL IS CALLED TO DISPLAY IT. THEN THE
SCREEN IMAGE IS RESTORED BY REMOVING TABS AND NULLS.
3. IF THE COMMAND INPUT FIELD IS NOT BLANK, IT IS SPFSUBS EPI EPI
ANALYZED. THE COMMAND VERB IS IDENTIFIED AND
PARAMETERS ARE SCANNED. THE EDPCWDS ARRAY IN THE
EDIT TABLE (EDT) IS BUILT.
4. INITIAL COMMAND PROCESSING IS PERFORMED FOR THE
FOLLOWING PRIMARY COMMANDS:
AUTONUM SPFSUBS EPI EPIAUTON
CANCEL SPFSUBS EPL EPICANCL
CAPS SPFSUBS EPI EPICAPS
CREATE SPFSUBS EPI EPIMEMB
COPY SPFSUBS EPI EPIMEMB
HEX SPFSUBS EPI EPIHEX
MOVE SPFSUBS EPI EPIMEMB
NULLS SPFSUBS EPI EPINULLS
NUMBER SPFSUBS EPI EPINUMB
PRINT SPFSUBS EPI EPIPRINT
PROFILE SPFSUBS EPI EPIPROF
RECOVERY SPFSUBS EPI EPIRECVR
RENUM SPFSUBS EPI EPINUMB
REPLACE SPFSUBS EPI EPIMEMB
RESET SPFSUBS EPI EPIRESET
STATS SPFSUBS EPI EPISTATS
TABS SPFSUBS EPI EPITABS
UNNUM SPFSUBS EPI EPINUMB
5. EACH DATA AREA THAT HAS BEEN MODIFIED IS PROCESSED SPFSUBS EPD EPD
AS FOLLOKS:
= MASK DATA IS MOVED TO THE MASK FIELD,
= TABS DATA IS VALIDATED AND MOVED TO THE TABS
FIELD.
- BOUNDS DATA IS USED TO COMPUTE NEW BOUNDS.
= ALL OTHER DATA IS MOVED INTO A CORRESPONDING EDIT
RECORD (EDR).

LICENSED MATERIAL - PROPERTY OF IBM

METHOD OF OPERATION 39

CHART 5.2
EDIT PROCESSGR

LOAD ZOBJECT
EXTENDED DESCRIPTION MODULE MODULE LABEL
6. LINE COMMANDS THAT HAVE BEEN ENTERED IN THE SEQUENCE | SPFSUBS | EPC EPC
FIELDS ARE MOVED TO THE CORRESPONDING EDIT RECORDS.
THE EDIT RECORD CHAIN IS THEN SCANNED AND LINE -
COMMANDS ARE VALIDITY CHECKED. FINALLY THE EDIT
RECORD CHAIN IS SCANNED AND THE LINE COMMANDS ARE
EXECUTED.
THE FUNCTION IS PERFORMED BY USING THE SUBROUTINE
CODE FROM THE EDIT LINE COMMAND DEFINITION (ELC
ENTRY) AND INDEXING INTO A LIST OF ADDRESSES OF
INTERNAL PROCEDURES. THE COMMANDS THAT ARE EXECUTED
ARE:
A (AFTER) SPFSUBS | EPC ECLAFTER
B (BEFORE) SPFSUBS | EPC ECLBEFOR
BOUNDS SPFSUBS | EPC ECLBOUND
C (COPY) SPFSUBS | EPC ECLCOPY
coLs SPFSUSS | EFC ECLCOLS
D (DELETE) SPFSUBS | EFC ECLDEL
I (INSERT) SPFSUBS | EPC ECLINSRT
M (MOVE) SPFSUBS | EPC ECLMOVE
MASK SPFSUBS | EPC ECLMASK
0 (OVERLAY) SPFSUBS | EPC ECLOVER
R (REPEAT) SPFSUBS | EPC | ECLREP
L (LAST) SPFSUBS | EPC ECLSBOT
S (SHOW) SPFSUBS | EPC ECLSHON
F (FIRST) SPFSUBS | EPC ECLSTOP
TABS SPFSUBS | EPC ECLTABS
TE SPFSUBS | EPC ECLTENTR
TF SPFSUBS | EPC ECLTFLOW
TS SPFSUBS | EPC ECLTSPLT
X (EXCLUDE) SPFSUBS | EPC ECLXCLUD
> (SHIFT) SPFSUBS | EPC ECLSR
< (SHIFT) SPFSUBS | EPC ECLSL
) (SHIFT COLS) SPFSUBS | EPC ECLSCR
((SHIFT COLS) SPFSUBS | EPC ECLSCL
7. THE FOLLOWING PRIMARY COMMANDS ARE PROCESSED: SPFSUBS | EPF EPF
CANCEL SPFSUBS | EPF EPFCANCL
CHANGE SPFSUBS | EFC EFC
COPY SPFSU3S | EMC EMC
CREATE SPFSUBS | ECR ECR
FIND SPFSUBS | EFC EFC
LOCATE SPFSUBS | EPF EPFLOC
MOVE SPFSUBS | EMC EMC
NUM3ER SPFSUBS | EPF EPFNUMB
PROFILE SPFSUBS | EPF EPFPROF
RENUM SPFSUBS | EPF EPFNUNMB
REPLACE SPFSUBS | ECR ECR
RESET SPFSUBS | EFF EPFRESET
SAVE SPFSUBS | EFF EPFSAVE
SUBMIT SPFSUBS | EPF EPFSUBMT
UNNUM SPFSUBS | EPF EPFNUMB
THE FOLLOMING PROGRAM FUNCTION KEYS (PFK'S) ARE ALSO
PROCESSED: END SPFSUBS | EPR EPR
REPEAT FIND SPFSUBS | EFC EFC
REPEAT CHANGE SPFSUBS | EFC EFC
8. IF NO ERRORS HAVE BEEN DETECTED AND NO INFORMATION SPFSUBS | EPFR EPR
MESSAGES ARE TO BE DISPLAYED, AND IF THE END KEY HAS
BEEN PRESSED, OR A CANCEL COMMAND HAS BEEN ENTERED,
THEN EDIT PROCESSING IS TERMINATED.

LICENSED MATERIAL - PROPERTY QF IBM METHOD OF OPERATION 41

CHART 6.2.1
EDIT DISPLAY SCREEN

FROM 5.2
INPUT PROCESS OUTPUT
EDT
1. PERFORM SCROLLING
EDR CHAIN Y

2. FOR EACH LINE
A. FORMAT SEQUENCE
‘ NUM3ER FIELD

B. FORMAT DATA FIELD

3. DETERMINE CURSOR
LOCATION

4. OVERLAY SCREEN IMAGE
WITH TAB (ATTR) BYTES

5. OVERLAY TRAILING BLANKS
WITH NULL CHARACTERS

6. CONVERT SCREEN IMAGE
TO HEX FORMAT

7. DISPLAY SCREEN AND
WAIT FOR RESPONSE

8. RECONVERT FROM HEX
TO STANDARD FORMAT

EDIT
DATA
DISPLAY

9. CLEAR TAB CHARACTERS

10. RESET NULL CHARACTERS
BACK TO BLANKS

11. SAVE CURSOR LOCATION

RETURN TO 5.2

42 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

EXTENDED DESCRIPTION

CHART 5.2.1
EDIT DISPLAY SCREEN

LOAD = _OBJECT
MODULE MODULE LABEL

1. IF A SCROLL REQUEST WAS MADE (TLDSCROL = ON), A NEW
FIRST DISPLAY LINE (EDRP(EDFDISPL)) OR A NEW FIRST
DISPLAY COLUMN (EDCOL(EDRECDSP,EDLEFT)) IS SET UP,
AND SUBROUTINE CSCROLL IS CALLED.

2. FORMAT THE DISPLAY, PROCESSING EDIT RECORDS,
STARTING AT THE FIRST DISPLAY LINE (EDRP(EDFDISPL))
A. IN THE SEQUENCE FIELD, SET UP EITHER:
1. PENDING LINE COMMAND FROM PREVIOUS IMAGE
2. A MASK (%3%%¥¥*¥%,,...., »BOUNDS,~ - —,COLS
MASK », TABS », =ERR=>, OR =CHG=>)
3. A SEQUENCE NUMBER EITHER FROM THE EDIT
RECORD (IF RENUM MODE) OR THE RELATIVE
NUMBER OF THE EDIT RECORD IN THE EDIT
RECORD CHAIN (IF NONUM MODE).
SET THE INTENSITY LOW FOR SEQUENCE NUMBERS AND
HIGH FOR ALL OTHERS.
B. IN THE DATA FIELDS:
1. MOVE IN DATA FROM THE EDIT RECORD, OR
2. MOVE IN DATA FROM THE MASK FIELD, OR
3. MOVE IN DATA FROM THE TABS FIELD, OR
4. MOVE IN THE EXCLUDED LINES MESSAGE AND
ENTER THE NUMBER OF EXCLUDED LINES, OR
5. GENERATE THE BOUNDS LINE, OR
6. GENERATE THE COLS LINE.

3. DETERMINE THE CURSOR LOCATION. IF EDCSRSET = ON THE
CURSOR POSITION HAS ALREADY BEEN DETERMINED AND
STORED IN THE TLDCSRP FIELD. IF NOT, THE THE CURSOR
MAY BE ASSOCIATED WITH AN EDIT RECORD AND AN OFFSET
IN THE RECORD. 1IF SO DETERMINE THE CORRESPONDING
POSITION ON THE SCREEN. IF THE POSITION ON THE
SCREEN CANNOT BE DETERMINED, PUT THE CURSOR ONTO
LINE 2. 1IF THE CURSOR IS WITHIN THE DATA PORTION OF
THE SCREEN, USE THE TABS LINE TO DETERMINE THE NEXT
POSITION FOR THE CURSOR AND SET IT TO THAT LOCATION.

4. IF TABS MODE IS IN EFFECT PUT ATTRIBUTE BYTES IN
EACH COLUMN POSITION WHERE AN ASTERISK IS FOUND IN
THE TABS LINE (OVERLAY NON-BLANK CHARACTERS ONLY IF
IN TABS ANY MODE).

5. BACKWARD SCAN EACH FIELD OF THE DATA PORTION OF THE
SCREEN FOR TRAILING BLANKS TO REPLACE WITH NULL
CHARACTERS. 1IF ENTIRE FIELD IS BLANK, DO NOT
REPLACE FIELD WITH NULLS UNLESS TABS ALL IS IN
EFFECT (EDTABBO = OFF). IF CURSOR IS WITHIN A
FIELD, DO NOT REPLACE BLANKS AT OR BEFORE CURSOR
WITH NULLS.

6. IF HEX MODE IS ON, CONVERT SCREEN IMAGE FROM
STANDARD FORMAT TO HEX FORMAT. THE FIRST FEW LINES
ON THE SCREEN WILL BE EXPANDED TO FILL THE SCREEN.
THE CURSOR IS REPOSITIONED FOR HEX MODE.

SPFSUBS EFR EFR15PS

SPFSUBS EFR EFR20FS

SPFSUBS EFR EFR21CA

SPFSUBS EFR EFR22DA

SPFSUBS EFR EFR30SC

SPFSUBS EFR EFR40OST

SPFSUBS EFR EFR45SN

SPFSUBS EFR EFR50FH

LICENSED MATERIAL - PROPERTY OF IBM

METHOD OF OPERATION 43

L
i
" CHART 5.2.1
p EDIT DISPLAY SCREEN
f‘;
LOAD %JﬁJECT
EXTENDED DESCRIPTION MODULE MODULE LABEL
7. IF AN ERROR OR INFORMATION MESSAGE IS TO BE SPFSUBS EFR EFR60DS
- DISPLAYED SUBROUTINE CERR IS CALLED, OTHERWISE -
- SUBROUTINE CDISPL IS CALLED.
8. IF HEX MODE KAS ON, RECONVERT THE SCREEN IMAGE FROM SPFSUBS EFR EFR70RH
HEX FORMAT TO STANDARD FORMAT. REPOSITION CURSOR.
9. REPLACE ATTRIBUTE BYTES THAT WERE CREATED IN SPFSUBS EFR EFR80CT
STEP 6 WITH THE DATA CHARACTERS THAT THEY OVERLAYED.
10. IF TABS MODE IS NOT ON, ONLY MODIFIED LINES WILL BE SPFSUBS EFR EFR80OCT
EXAMINED, AND THE DISPLAY INTERFACE WILL HAVE
TRANSLATED NULLS TO BLANKS. IF TABS ARE ON ONLY
PART OF A LINE MIGHT HAVE BEEN MODIFIED, SO
TRANSLATE ANY NULLS TO BLANKS.
11. IF THE CURSOR WAS ON A LINE, ASSOCIATE IT WITH THE SPFSUBS EFR EFR90RC
CORRESPONDING EDIT RECORD (EDR).

LICENSED -MATERIAL - PROPERTY OF IBM METHOD OF OPERATION 45

INPUT

SPF
MENUS
DATA SET

SPF
MSGS
DATA SET

PROCESS

CHART 6
UTILITIES

DISPLAY UTILITY
SELECTION MENU

INTERPRET RESPONSE
FROM TERMINAL

IF RESPONSE IS NOT
END XEY, LINK TO
INDICATED PROGRAM

Tis CERFORM REQUESTED %E%

FUNCTILN

RETURN

———

d

UTILITY
SELECTION
MENY.

1L

-

o
s i"\'

OO0 C DG
« o
[I LA

¢t SPF/TSO PRIUGRAM LGGIC MaNJAL

RETURN TO 2

LICENSEY MATERIAL - ©*ROPERTY OF .%

Y

36 3 JE 26 JE I JE I I I I I € I JE I JE I JE I JE I JE I IE I IE I IE I IE I IE I I JE I IE I I I I I 3¢ ¢ 3¢

] %
% *
* SECTION 3 *
*]
* PROGRAM ORGANIZATION :
*

*]
36 96 26 96 26 26 26 36 36 36 J6 I I I6 26 I I I I I I I I I 26 I 26 26 26 26 26 36 36 36 26 I 36 36 36 36 36 36 36 36 36 X

THIS SECTION ILLUSTRATES THE PHYSICAL STRUCTURE AND ORGANIZATION OF
SPF PROGRAMS AND DESCRIBES THE PROGRAM INTERFACE REQUIREMENTS. THE
SECTION IS ORGANIZED AS FOLLOWS:

PROGRAM COMPONENTS = LISTS THE NAMES OF ALL SPF LOAD MODULES
AND OBJECT MODULES.

LOAD MODULE HIERARCHY - gHgNS THE RELATIONSHIP BETWEEN LOAD
ODULES.

OBJECT MODULE DESCRIPTIONS - BRIEFLY DESCRIBES THE PURPOSE OF EACH
OBJECT MODULE. FOR OBJECT MODULES THAT
ARE PROGRAMS, CALLING SEQUENCE
INFORMATION IS ALSO GIVEN. THIS SECTION
IS ORDERED ALPHABETICALLY BY MODULE NAME.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 105

PROGRAM COMPONENT

THE FOLLOWING IS A LIST IN ALPHABETICAL ORDER OF THE LOAD MODULES WHICH

COMPRISE S

PF,

SHOWING THE OBJECT MODULE(S) INCLUDED IN EACH LOAD MODULE.

THE NAME OF THE ENTRY POINT (EP) MODULE FOLLOWS THE LOAD MODULE TITLE.

LOAD OBJECT DESCRIPTION (EP: ENTRY POINT)
MODULE MODULE . .
SPF —========—-=-- SPF DRIVER LOAD MODULE (EP: SPF)
SPF —-===-- SPF DRIVER
SPFBRO ========-- BROWSE LOAD MODULE (EP: BRO)
BRO ====-- BROWSE MAIN
SPFCALCP =======- CALL COMMAND PROCESSOR (EP: SPFCALCP)
SPFEDIT -=====—-- EDIT LOAD MODULE (EP: EDD)
EDD -===--- EDIT MAIN DRIVER
SPFFOR =========- FOREGROUND PROCESSOR LOAD MODULE (EP: FOR)
FOR ====-=- FOREGROUND PROCESSOR
SPFJOB ======w=-- BACKGROUND PROCESSOR LOAD MODULE (EP: JOB)
JOB —===-- BACKGROUND PROCESSOR
SPFMAIN =====—==-- SPF CONTROLLER LOAD MODULE (EP: SMD)
CIPARMS -- COMMON INITIALIZE USER PARMS
SIP -===-- SPF INPUT PARMS EXIT ROUTINE
SMA —===-- SPF MAIN ATTACH
SMC —-===-- SPF MAIN CONTROLLER
SMD -==--- SPF MAIN DRIVER
SMI ===--- SPF MAIN INITIALIZATION
SML -==--- SPF MAIN LINE I/0 INTERFACE
TKY ====-- SPF KEYWORD/VALUE PROTOTYPE TABLE
TKW =====- SPF KEYWORD TABLE
TRT ====-- SPF TABLE OF REENTRANT TABLES
SPFOPT =======—--- SPF PARAMETERS -AND DEFAULTS LOAD MODULE (EP: OPT)
OPT —-==—-- SPF PARAMETERS AND DEFAULTS OPTION
SPFPMD ========-- PROCESSOR MAIN DRIVER LOAD MODULE <(EP: PMD)
PFT ====-- PROCESSOR FINAL TERMINATION
PMD ====-- PROCESSOR MAIN DRIVER
PRS =====- PROCESSOR RESTART
SPFSCAN ---=-=---- BACKGROUND SCAN LOAD MODULE (EP: SCN)
SCN ===—-- BACKGROUND SCAN
SPFSPC =======—-- SPF PARMS CONVERSION LOAD MODULE (EP: SPC)
SPC —==--- SPF PARMS CONVERSION (VERSION 2.1 TO VERSION 2.2)
SPFSUBS —======-- COMMON SUBROUTINE LOAD MODULE (EP: TSC)
BCD ====-- BROWSE COMMAND DEFINITIONS
CAT —-==--- COMMON ATTACH COMMAND
CBC —-==--- COMMON BROWSE CLEANUP
CBDSN —---- COMMON BUILD DATASET NAME
CBF —-===-- COMMON BROWSE FIND
CBG —=—--- COMMON BROWSE GET
CBR ====-- COMMON BROWSE
CBS =-===-- COMMON BROWSE SETUP
CCB ===--- COMMON COMMAND BUILD
CCD -==--- COMMON CONVERT DIRECTORY ENTRY
CCP —===-- COMMON COMMAND PARSE
CCS —==—-- COMMON COMMAND SCAN
CDA —-=—=-- COMMON DATASET ALLOCATE

106 SPF/TSO PROGRAM LOGIC MANUAL

(CONTINUED ON NEXT PAGE)

LICENSED MATERIAL - PROPERTY OF IBM

CDAIR ----
CDATE ----
CbC
CDERR ==---
CDF
CbG
CDISPL ---

-——-——
- — - ——
-—— - -
- — - - -

CKVGET =---
CKVPUT =---
CLM

CTGET ----
CTPUT ----
CT1

-——————
- — - - -
- ———-—
- - ——
- — - ——
-——— -
- ————
- ————
- ————
-——————
- - - -
- ————
-—————
- —————
-——— -
-—— —— - -

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

PROGRAM COMPONENTS (CONTINUED)

DAIR INTERFACE

CONVERT DATE

DATASET CLOSE

DAIR ERROR

DATASET FREE

DATASET GET

DISPLAY

DATASET OPEN

DATASET PUT

GET DEVICE TYPE

ERROR MESSAGE

FIND

HARDCOPY

HELP

HARDCOPY JOB

HARDCOPY LOCAL

GET DIRECTORY ENTRY
GET DSCB INFORMATION
JOB CARD

JOB NAME FIND

JOB NAME SETUP
KEYWORD/VALUE GET
KEYWORD/VALUE PUT

LOAD MODULE LOADER

LOG

MENU BUILD

MEMBER LIST

MESSAGE

PRINT DATASET

RELEASE DASD

RESERVE DASD

SUBMIT

SCROLL

STORAGE MANAGEMENT
ALLOCATE TEMPORARY DATASET
FREE TEMPORARY DATASET
TGET

TPUT

ALLOCCATE TEMPORARY DATASET
FREE TEMPORARY DATASET
UPDATE USER PARMS
VERIFY MEMBER NAME
VERIFY SPF DIRECTORY ENTRY

RECOVERY INITIALIZATION
BACKUP END

BACKUP INITIALIZATION
RECOVERY READ

BACKUP STORE

BACKUP RESET

COMMAND DEFINITIONS
CREATE/REPLACE COMMAND FINAL
DATA INPUT

DATA OUTPUT

FIND/CHANGE

FORMAT DISPLAY

FLOW TEXT

GENERAL NUMBER

GENERAL RESET

MOVE/COPY COMMAND FINAL
MESSAGE LINE

MENU PROCESSOR

PROCESS LINE COMMAND
PROCESS DATA

PROCESS FINAL

PROCESS INITIAL

PDS PROCESSOR

PROFILE PROCESSOR

(CONTINUED ON NEXT PAGE)

LICENSED MATERIAL - PROPERTY OF IBM

PROGRAM ORGANIZATION

107

PROGRAM COMPONENTS (CONTINUED)

SPFTBLS

SPFTCM --

SPFTMENU

SPFTSO --

SPFTUTOR

SPFUCA --

SPFUCl --

SPFUC2 --

SPFUDA --

SPFUHC --
SPFUMC —-

SPFUOL --

108 SPF/TSO PROGRAM LOGIC MANUAL

EPR —-==—-- EDIT MAIN PROCESSOR

EPS —-===-- EDIT SEQUENTIAL DATASET PROCESSOR

EPX —==--- EDIT OTHER DATASET PROCESSOR

ERA —-===-- EDIT RECORD ALLOCATE

ERC —-====-- EDIT RECORD CHANGE

ERD =-====-- EDIT RECORD DELETE

ERF —=-====-- EDIT RECORD FREE

ERI —-=-—-- EDIT RECORD INSERT

ERN ====-- EDIT RECORD NUMBER

ERQ ---—-- EDIT RECORD DELETE ORIGINAL

ERR ====-- EDIT RECORD RESET

ERS —==—-- EDIT RECORD SHOW

ERX ====-- EDIT RECORD EXCLUDE

EST —-=—=—-- EDIT SPLIT TEXT

ETC —-—-—-- EDIT TABLE CLEANUP

ETS =—===-- EDIT TABLE SETUP

ETL ------ EDIT LINE COMMAND TABLE

MERR --=--- COMMON MENU ERROR

MHA --=--- COMMON MENU HANDLER

SOP =-—=--- SPF QUTPUT PARMS EXIT

TSC -===--- TABLE OF COMMON SUBS

-------- COMMON TABLES LOAD MODULE (EP: TSI)

TSI -==--- COMMON TABLES

-------- COMMAND TABLE LOAD MODULE (EP: TCM)

TCM ==-=-- COMMAND TABLE

-------- MENU TESTER LOAD MODULE (EP: MNT)

MNT ==-—-- TEST MENU (DEBUGGING AID)

-------- TS0 COMMAND PROCESSOR LOAD MODULE (EP: PTC)
PTC -==--- TSO COMMAND PROCESSOR

-------- TUTORIAL PROCESSOR LOAD MODULE (EP: TUT)
TUT ==-=-- TUTORIAL PROCESSOR

-------- CATALOG MANAGEMENT DRIVER LOAD MODULE (EP: UCA)
UCA -————- CATALOG MANAGEMENT DRIVER

-------- SVS CATALOG MANAGEMENT LOAD MODULE CEP: UCL)
UCl ------ SVS CATALOG MANAGEMENT

-------- MVS CATALOG MANAGEMENT LOAD MODULE (EP: UC2)
uc2 ------ MVS CATALOG MANAGEMENT

-------- LIBRARY/DATA SET UTILITY LOAD MODULE (EP: UDA)
UAA -==--- ALLOCATE NEW DATA SET

UAC -=---- CATALOG/UNCATALOG DATA SET

UAD ------ DELETE DATA SET

UAL --=--- DISPLAY DATA SET INFORMATION

UAR =-==--- RENAME DATA SET

UDA -==--- LIBRARY/DATA SET UTILITY DRIVER

UDM —--=--- LIBRARY UTILITY MEMBER LIST

UDMS ----- LIBRARY UTILITY MEMBER SELECT

UDP —-=—---- PRINT DATA SET

UDX ==—==-- PRINT INDEX LISTING

UbZ -=-=--- COMPRESS DATA SET

—-——===-== HARDCOPY UTILITY LOAD MODULE (EP: UHC)
UHC -—=--- HARDCOPY UTILITY

-------- MOVE/COPY UTILITY LOAD MODULE (EP: UMC)
UMC ------ MOVE/COPY UTILITY

UMCS —--—- MOVE/COPY UTILITY MEMBER SELECT
-------- OUTLIST UTILITY LOAD MODULE (EP:UOL)

uoL --—-—--- OUTLIST UTILITY

(CONTINUED ON NEXT PAGE)

LICENSED MATERIAL - PROPERTY OF IBM

L

PROGRAM COMPONENTS (CONTINUED)

SPFURS -

SPFUSC -
SPFUTIL
SPFUVT -
SPF3277
SPF3278

SPF3278C

LICENSED MATERIAL - PROPERTY OF IBM

--------- RESET SPF STATISTICS LOAD MODULE (EP: URS)

URS =====- RESET STATISTICS UTILITY

URSS ===-- RESET STATISTICS UTILITY MEMBER SELECT
--------- SCRIPT/VS UTILITY LOAD MODULE (EP: USC)
USC -===-- SCRIPT/VS UTILITY

--------- UTILITY DRIVER LOAD MODULE (EP: UTIL)
UTIL -=--- UTILITY DRIVER
--------- VTOC UTILITY LOAD MODULE (EP: UVT)

UVT —==-—- VTOC UTILITY
--------- 3277 TABLES LOAD MODULE (EP: TT1l)

TTl =====- 3277 TABLES

--------- 3278 TABLES LOAD MODULE (EP: TT2)

TT2 ====-- 3278 TABLES

-------- 3278 CANADIANCFRENCH) TABLES LOAD MODULE (EP: TT3)

TT3 ====-- 3278 CANADIAN(CFRENCH) TABLES

PROGRAM ORGANIZATION

IERARC

THE FOLLOWING FIGURE. SHOWS THE SPF LOAD MODULE HIERARCHY. THE UPPER
NAME IN EACH BOX IS THE LOAD MODULE NAME. THE LOWER NAME IN EACH BOX
CONTAINS THE ENTRY POINT NAME.

THE FLOW BETWEEN THE LOAD MODULES IS ACCOMPLISHED VIA 0OS ATTACH, LOAD,
OR LINK MACROS, AS SHOWN IN THE FIGURE.

SPFTCM

TCM

SPFTBLS
TSI

SPFSUBS

TSC

SPF3277
Tl

SPF3278
TT2

SPF3278C

173

ATTACH

SPF

SPF

LINK

SPFMAIN

(FROM TSO TERMINAL

MONITOR PROGRAM)

LOAD

SMD

|
ATTACH

SPFPMD

PMD

LINK

CONTINUED

SPFSPC

SPC

ON NEXT PAGE

110 SPF/TSO PROGRAM LOGIC MANUAL

LICENSED MATERIAL - PROPERTY OF IBM

LINK

(FROM SPFPMD)

!

!

v

SPFOPT

SPFBRO

SPFEDIT

oPT

BRO

EDD

v

!

¢

SPFPTC SPFUTIL SPFTHENU SPFTUTOR
PTC UTIL MNT
I
LINK
SPFUDA SPFUMC SPFUHC
UDA UMC UHC
SPFUVT SPFUCA SPFUOL SPFUSC SPFFOR
uvTt UCA uoL usc FOR
|
LINK ATTACH
VIA
CAT
SPFUC1 SPFUC2 SPFCALCP
ucl ucz SPFCALCP

ATTACH

SPFSCAN

SCN

LICENSED MATERIAL - PROPERTY OF IBM

(BY INITIATOR —~ FOR SPF

BACKGROUND PROCESSING OPTION)

PROGRAM ORGANIZATION

111

CY MODULE DESCRIPTIO

THIS SECTION CONTAINS DESCRIPTIONS OF ALL SPF OBJECT MODULES.
THE FOLLOWING IS A DESCRIPTION OF THE FORMAT USED IN THIS SECTION:

XXXX - TITLE OF OBJECT MODULE.

PURPOSE:

THIS SECTION IS SPECIFIED ONLY FOR OBJECT MODULES THAT ARE PROGRAMS
ANDXBRIEFLY DESCRIBES THE PURPOSE OF THE PROGRAM (OBJECT MODULE
XXXX) .

INVOKED WITH:

THIS SECTION IS SPECIFIED ONLY FOR OBJECT MODULES THAT ARE
PROGRAMS. THE SECTION IDENTIFIES HOW OBJECT MODULE XXXX IS
INVOKED. INVOCATION IS VIA EITHER CALL, LINK OR ATTACH. FOR
MODULES OTHER THAN COMMON SUBROUTINES, THE INVOKING OBJECT MODULE
IS GIVEN IN PARENTHESIS. FOR EXAMPLE:

LINK TO SPFZzzZ (FROM PMD).

REFERENCED VIA:

THIS SECTION IS SPECIFIED ONLY FOR OBJECT MODULES THAT ARE TABLES
%ngTTnggRAMS) AND DESCRIBES HOW PROGRAMS GET ADDRESSABILITY TO
A .

CALLING SEQUENCE PARAMETERS:

THIS SECTION IS SPECIFIED ONLY FOR OBJECT MODULES THAT ARE
PROGRAMS. THE SECTION LISTS ALL PARAMETERS PASSED TO THE MODULE BY
THE INVOKING MODULE. THE COLUMNS ARE FROM LEFT TO RIGHT:

PARAMETER NUMBER, PARAMETER NAME, FORMAT, USAGE, TITLE. THE FORMAT
COLUMN EITHER CONTAINS THE FORMAT OF THE PARAMETER (E.G. "™CHAR(8)"™)
OR THE DATA AREAS SECTION DESCRIBING THE TABLE (E.G. "<TLD>") OR AN
ASTERISK (%) INDICATING THAT THE PARAMETER IS DESCRIBED BELOW IN
THE "WHERE™ SECTION. FOR EXAMPLE:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. MEMBER CHAR(8) INPUT NAME OF PDS MEMBER
2. DSNS * INPUT DSNAME STRUCTURE

RETURN CODE:

THIS SECTION IS SPECIFIED ONLY FOR OBJECT MODULES THAT ARE

PROGRAMS. THIS SECTION LISTS REGISTER 15 CONTENTS WHEN THE MODULE

RETURNS TO THE INVOKING MODULE. FOR ROUTINES USING THE
?PSEEOE;EEERETRN INTERFACE, THE RETURN CODE IS ALSO PLACED IN THE
L .

NOTES:

THIS SECTION CONTAINS OTHER INFORMATION USEFUL FOR UNDERSTANDING
THE OBJECT MODULE.

112 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

BCD - BROWSE COMMAND DEFINITIONS BCD

PURPOSE:

BCD IS THE BROWSE COMMAND DEFINITION TABLE. IT CONTAINS ONE ENTRY
FOR EACH BROWSE PRIMARY COMMAND. THE COMMAND DEFINITION TABLE IS
INPUT TO THE COMMON COMMAND PARSE (CCP) ROUTINE, AND IS USED FOR
ERROR CHECKING AND FOR ORDERING PARAMETERS.

REFERENCED VIA:

THE ADDRESS OF THE BCD IS IN THE TSC. IT IS SYMBOLICALLY REFERENCED
BY THE NAME "BCD™ DEFINED IN SEGMENT "TSCDCLS".

NOTES:

= THE BCD TABLE IS TERMINATED WITH AN X'FF' CHARACTER.

- EACH COMMAND DEFINITION WITHIN THE TABLE IS TERMINATED WITH AN
X'FE'" CHARACTER.

- EACH PARAMETER DEFINITION WITHIN A COMMAND DEFINITION IS TERMINATED
WITH AN X'FD' CHARACTER.

= IN ADDITION, THE LENGTH OF EACH COMMAND DEFINITION ENTRY IS PART
8; ;HE E:;E;; AND THE NUMBER OF PARAMETERS DEFINED IS ALSO PART

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 113

BRO = BROKSE DRIVER ROUTINE BRO

PURPOSE:
BRO IS INVOKED BY PMD WHEN OPTION 1 IS SELECTED FROM THE PRIMARY

OPTION MENU. IT ALLOCATES APPROPRIATE DATA SETS, DISPLAYS MEMBER
LISTS, AND PERFORMS BROWSING.

¢

INVOKED WITH:
LINK TO SPFBRO

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:

0 — ALWAYS.
NOTES:
NONE.

114 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

‘ CAT - COMMON ATTACH ROUTINE CAT

PURPOSE:
CAT IS USED TO ATTACH OTHER COMMANDS AND CLISTS UNDER SPF.

INVOKED WITH:
CALL TO CAT

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. CBUF * INPUT COMMAND BUFFER
3. CCODE FIXED(31) ouT COMPLETION CODE
WHERE
CBUF - IS THE TSO COMMAND BUFFER CONTROL BLOCK.
CCODE - IS SET TO THE COMPLETION CODE OF THE COMMAND OR CLIST.

IF THE COMMAND COMPLETED DUE TO ATTENTION, THIS FIELD
WILL BE SET TO ZERO.
RETURN CODES:
0 - NORMAL COMPLETION.
¢ - ATTENTION TERMINATION.
{‘ 8 - ABEND TERMINATION.

NOTES:

CAT WILL HANDLE COMMANDS AND CLISTS SUBJECT TO THE FOLLOWING
RESTRICTIONS:

l. THE FOLLOWING COMMANDS ARE NOT SUPPORTED: LOGON, LOGOFF, SPF,
© TEST, AUTHORIZED COMMANDS, COMMANDS INVOKING AUTHORIZED PROGRAMS.

2. 2;13;5 MAY NOT INVOKE ANY OF THE RESTRICTED COMMANDS LISTED
OVE.

3. CLIST ATTENTION EXITS ARE NOT SUPPORTED.
4. COMMAND PROCEDURE STATEMENT TERMIN IS NOT SUPPORTED.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 115

cBC = COMMON BROWSE CLEANUP ROUTINE

PURPOSE:

CBC CLEANS UP (FREEMAINS) THE COMMON BROWSE TABLE (CBT).

CBC -

IT MUST BE

CALLED, IF CBS IS CALLED TO SET UP THE CBT.

INVOKED WITH:
CALL TO CBC

CALLING SEQUENCE PARAMETERS:
1. TLD
2. CBTP

<TLD>
PTR(31)

INPUT
INPUT

RETURN CODE:
0 - ALWAYS.

NOTES:
TO USE THE COMMON BROWSE ROUTINE:

FIRST CALL CBS (COMMON BROWSE
THEN CALL CBR (COMMON BROWSE
THEN CALL CBC (COMMON BROWSE

LOGICAL DISPLAY TABLE
PTR TO BROWSE TABLE (CBT)

SETUP ROUTINE)
ROUTINE) ONE OR MORE TIMES
CLEANUP ROUTINE)

FIND STRINGS, AND BROWSE MODES (ASIS, HEX ETC) WILL BE REMEMBERED
FROM ONE CBR CALL TO THE NEXT (UNTIL CBC IS CALLED).

NOTE THAT CBR CAN BE CALLED WITHOUT EXPLICITLY CALLING CBS/CBC AND

WITHOUT PASSING A VALID COMMON BROWSE TABLE (CBT).

IN THIS CASE, CBR

CALLS CBS/CBC AND SETS UP THE CRT INTERNALLY.

116 SPF/TS0O PROGRAM LOGIC MANUAL

LICENSED MATERIAL - PROPERTY OF IBM

CBDSN - COMMON BUILD DSNAME ROUTINE . CBDSN

PURPOSE:
CBDSN IS PASSED PARAMETERS FROM A DATA SET MENU. IT BUILDS THE
APPROPRIATE FULLY-QUALIFIED DATA SET NAME AND VERIFIES THAT IT IS
NOT AN SPF DATA SET THAT IS CURRENTLY OPEN. IT STORES THE DATA SET
NAME AND LENGTH IN A STRUCTURE SUITABLE FOR USE WITH DAIR.

INVOKED WITH:

CALL TO CBDSN

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. MPROJ CHAR(8) INPUT PROJECT NAME FROM MENU
3. MLIBR CHAR(8) INPUT LIBRARY NAME FROM MENU
4. MTYPE CHAR(8) INPUT TYPE NAME FROM MENU
5. MMEMB CHAR(8) INPUT MEMBER NAME FROM MENU
6. MDSN CHAR(56) INPUT "OTHER™ DATA SET NAME FROM MENU
7. DSNS CHAR(46) OUTPUT SELECTED DATA SET NAME STRUCTURE
8. MEMBER CHAR(8) OUTPUT SELECTED MEMBER
9. MSGID CHAR(4%) OUTPUT ERROR/PROMPTING ERROR MESSAGE ID
10. PARM# FIXED(31) OUTPUT PARAMETER NUMBER FOR CURSOR
WHERE

DSNS = IS THE DATA SET NAME STRUCTURE (STANDARD DAIR FORMAT).

E.G., DCL 1 DSNS,
2 DSNL FIXED(15), /% DSNAME LENGTH ¥/
2 DSN CHAR(44); /% DSNAME x/

MEMBER - IS THE USER-SPECIFIED MEMBER NAME (IF ANY) WHICH IS
EXTRACTED FROM "OTHER™ DSNAME OR COPIED FROM THE
"MMEMB™ INPUT PARAMETER.

MSGID = IS THE ID OF AN ERROR OR PROMPTING MESSAGE (IF ANY).
IF NO ERROR IS DETECTED, THE MSGID IS NOT CHANGED.
PARMS - IS THE PARAMETER NUMBER ASSOCIATED WITH THE ERROR OR

PROMPTING MESSAGE, FOR CALLING MERR. NOTE: A PARM#
IS ALWAYS RETURNED, EVEN IF THERE WAS NO ERROR.
RETURN CODE:
0 - DSNAME IS NOT A GENERATION DATASET FORMAT NAME, EG. A.B(-1)
4 - DSNAME IS A GENERATION DATASET FORMAT NAME.
(CONTINUED ON NEXT PAGE)

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 117

CBDSN = COMMON BUILD DSNAME ROUTINE (CONTINUED) CEBDSN

NOTES:
THE MSGID AND PARM#& VALUES THAT MAY BE RETURNED BY CBDSN ARE:

MSGID MEANING PARM&
'6002' - ENTER PROJECT NAME 1
'GO03' - ENTER LIBRARY NAME 2
'6004' - ENTER TYPE QUALIFIER 3
'6054' - DATA SET IS OPEN 1 OR 5%
'6090' - MISSING QUOTE 5
'YG091' - DSN LENGTH ERROR 5
'G092' - INVALID MEMBER NAME 5
'6G093' - IMBEDDED BLANKS IN DSN 5
6094 - GDS NOT CATALOGUED 5
(UNCHANGED) - NO ERROR 1 OR 5%

% PARM® 1 IF PROJECT, LIBRARY, TYPE WAS SPECIFIED
% PARM®# = 5 IF "OTHER"™ DSNAME WAS SPECIFIED

MSGID 'G054' IS RETURNED ONLY IF AN SPF DATA SET (LIST, LOG, TEMPLIST,
TEMPCNTL, EDIT RECOVERY) WAS SPECIFIED AND IT IS OPEN. 1IN THIS CASE, A VALID
DATA SET NAME STRUCTURE HAS BEEN RETURNED, AND THE USING PROGRAM MAY CHOOSE
TO IGNORE THE 'G054' CONDITION.

CBDSN DOES NOT PRODUCE ERRORS FOR MANY TYPES OF UNACCEPTABLE DATA
SET NAMES, I.E. INVALID CHARACTERS OR QUALIFIERS MORE THAN EIGHT
CHARACTERS LONG. THESE KINDS OF ERRORS WILL BE CAUGHT BY THE
DYNAMIC ALLOCATION ROUTINE (DAIR) WHICH IS CALLED FROM CDAIR.

118 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

¢

CBF = COMMON BROWSE FIND ROUTINE CBF

PURPOSE:
CBF IS CALLED BY COMMON BROWSE (CBR) IF A FIND COMMAND IS ENTERED AS
A PRIMARY COMMAND, OR IF THE FIND PF KEY IS PRESSED. IT DECODES THE

FIND COMMAND (IF REQUIRED), AND PERFORMS THE SEARCH TO FIND THE
REQUIRED STRING.

INVOKED WITH:
CALL TO CBF

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. CBT * IN/OUT COMMON BROWSE TABLE
WHERE
CBT = IS THE COMMON BROWSE TABLE, WHICH IS INITIALIZED BY CBS

AND USED BY CBF, CBR, CBG AND CBC.
RETURN CODE:

0 - ALWAYS.

NOTES:
NONE.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 119

CBG - COMMON BROWSE GET ROUTINE C8G

PURPOSE:
CBG IS CALLED BY COMMON BROWSE (CBR) TO GET A SPECIFIED RELATIVE
RECORD. IT ATTEMPTS TO FIND THE RECORD ALREADY IN MAIN MEMORY

(IN AN I/0 BUFFER) AND IF IT CANNOT, CALLS COMMON DATASET GET (CDG)
TO READ A LOGICAL RECORDS.

INVOKED WITH:
CALL TO CBG

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. CBT * IN/OUT COMMON BROWSE TABLE
WHERE
CBT = IS THE COMMON BROWSE TABLE, WHICH IS INITIALIZED BY CBS

AND USED BY CBF, CBR, CBG AND CBC.
RETURN CODE:
0 - ALWAYS.

NOTES:

CBR BUILDS A TRACK/RECORD TABLE AS RECORDS ARE READ, TO ENABLE IT
TO COMPUTE A TTRN FOR ANY LOGICAL RECORD ALREADY READ. IT ALSO
MAINTAINS IN THE COMMON BROWSE TABLE AND ARRAY OF POINTERS AND
LENGTHS TO LOGICAL RECORDS THAT ARE ALREADY IN MAIN MEMORY IN AN
I/0 BUFFER. THESE FUNCTIONS IMPROVE PERFORMANCE AND MINIMIZE THE
AMOUNT OF ACTUAL I/0 REQUIRED TO GO TO SPECIFIC LOCATIONS IN THE
DATA SET OR MEMBER.

SPECIAL INTERFACES TO COMMON DATASET GET (CDG) ARE USED BY CBG TO

ENABLE CBG TO DETERMINE THE RELATIVE TTRN OF EACH LOGICAL RECORD,
AND TO POINT DIRECTLY TO THE CORRECT TTR WHEN I/0 IS NOT SEQUENTIAL.

120 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

CBR = COMMON BROKWSE ROUTINE CBR
PURPOSE:
CBR IS USED TO DISPLAY C(AND ALLOW SCROLLING) OF A SEQUENTIAL DATA SET
OR MEMBER OF A PARTITIONED DATA SET.

INVOKED WITH:
CALL TO CBR

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. TFD <TFD> INPUT FILE DEFINITION TABLE
3. CBTP PTR(31) INPUT PTR TO COMMON BROWSE TABLE
WHERE
TFD = IS A FILE CONTROL BLOCK FOR THE DATA SET TO BE BROWSED.

THE ASSOCIATED DCB MUST BE OPEN AND, FOR A PDS, A FIND
MUST HAVE BEEN ISSUED FOR THE MEMBER.

CBTP = EITHER ZERO (0), OR A POINTER TO THE COMMON BROWSE
TABLE (CBT).
ZERO - IS PASSED IF CBR IS TO CALL CBS/CBT TO GET
AND RELEASE THE CBT.
PTR =~ IS PASSED IF CBS HAS BEEN CALLED TO SET UP
THE COMMON BROWSE TABLE, AND CBT WILL BE
CALLED TO CLEAN UP THE CBT.
RETURN CODE:
0 - BROWSE COMPLETED SUCCESSFULLY.
4 - MEMBER OR DATA SET DOES NOT CONTAIN ANY RECORDS.
8 - I/0 ERROR ATTEMPTING TO READ FIRST RECORD.

12 - INSUFFICIENT MAIN STORAGE FOR BUFFERS ETC.

NOTES:
THIS MODULE HAS REPLACED THE SPF VERSION 2.1 CBRO SUBROUTINE.
CBR IS CALLED BY BROWSE (SPF OPTION 1), AND VARIOUS UTILITIES.
CBR ASSUMES THAT THE FIRST TWO LINES OF THE TLS HAVE ALREADY BEEN SET
UP. IT DOES NOT CHANGE THESE LINES EXCEPT TO DISPLAY COLUMN NUMBERS.
CBR ALSC ASSUMES THAT THE INITIAL SCROLL AMOUNT HAS ALREADY BEEN
STORED IN THE TLD (TLDSCAMT).

CBR NEVER CLOSES OR FREES THE DATA SET WHICH IT IS PASSED.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 121

CBS - COMMON BROWSE SET UP ROUTINE

PURPOSE:

CBS SET UPS (ACQUIRE AND INITIALIZE) THE COMMON BROWSE TABLE (CBT).
THIS FUNCTION CAN BE PERFORMED BEFORE CALLING CBR (ONE OR MORE X

TIMES).
THE CBT.

INVOKED WITH:
CALL TO CBS

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD>
2. CBTP PTR(31)

INPUT
OUTPUT

RETURN CODE:
0 - ALWAYS.

NOTES:
TO USE THE COMMON BROWSE ROUTINE:

FIRST CALL CBS (COMMON BROWSE
THEN CALL CBR (COMMON BROWSE
THEN CALL CBC (COMMON BROWSE

IF CBS IS CALLED, CBC MUST BE CALLED TO CLEANUP (RELEASE)
CBS RETURNS A POINTER TO THE CBT TO THE CALLER.

LOGICAL DISPLAY TABLE
PTR TO BROWSE TABLE (CBT)

SETUP ROUTINE)
ROUTINE) ONE OR MORE TIMES
CLEANUP ROUTINE)

FIND STRINGS, AND BROWSE MODES (ASIS, HEX ETC) WILL BE REMEMBERED
FROM ONE CBR CALL TO THE NEXT (UNTIL CBC IS CALLED).

NOTE THAT CBR CAN BE CALLED WITHOUT EXPLICITLY CALLING CBS/CBC AND

PASSING A VALID COMMON BROWSE TABLE (CBT).

IN THIS CASE, CBR CALLS

CBS/CBC AND SETS UP THE CBT INTERNALLY.

122 SPF/TS0 PROGRAM LOGIC MANUAL

LICENSED MATERIAL ~ PROPERTY OF IBM

L cce - COMMON COMMAND BUILD ROUTINE ccB

PURPOSE:

CCB IS USED TO PROCESS A MENU s/ PROC PAIR. IF THE PROC CONTAINS A
COMMAND STATEMENT, THE CORRESPONDING COMMAND WILL BE BUILT AND
RETURNED TO THE CALLER.

INVOKED WITH:
CALL TO CCB

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. MHAPM * INPUT MHA PARAMETER LIST
3. CMDPM * OUTPUT COMMAND BUILD AREA
4. MSGPM CHAR(104) OUTPUT MESSAGE BUILD AREA
5. DDNPM CHAR(548) QUTPUT DDNAME / DSNAME BUILD AREA
6. KNTPM CHAR (%) INPUT KEYBLOCK AREA
7. VNTPM CHAR(%) INPUT KEYWORD VALUE AREA
WHERE
MHAPM - IS AN AREA FORMATTED AND INITIALIZED EXACTLY THE SAME
| - AS THE INPUT PARAMETER LIST 7O MHA. INITIALIZATION
{ g:LEH¥g éﬁg? WILL OCCUR AUTOMATICALLY BY A PREVIOUS
CMDPM = IS AN AREA WHERE THE COMMAND WILL BE BUILT.

IT IS FORMATTED BY CCB TO CONTAIN:
2 BYTE - LENGTH VALUE,
2 BYTE - OFFSET VALUE,
VARIABLE LENGTH - COMMAND STRING, (MAX LENGTH OF
250 BYTES).
IN THIS FORMAT, IT MAY BE PASSED DIRECTLY TO CAT FOR
COMMAND EXECUTION.

MSGPM = IS AN AREA WHERE ERROR MESSAGE DATA IS RETURNED.
IT IS MEANINGFUL ONLY IF THE CCB RETURN CODE IS
NON-ZERO. IT'S FORMAT IS:
2 BYTE - MESSAGE 1D,
2 BYTE - CURSOR POSITION,
24 BYTE - SHORT MESSAGE,
72 BYTE - LONG MESSAGE.

(CONTINUED ON NEXT PAGE)

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 123

cce = COMMON COMMAND BUILD ROUTINE (CONTINUED) . cce

DDNPM - IS AN OPTIONAL PARAMETER AND DEFINES AN AREA WHERE
DDNAME AND DATA SET NAME DATA IS RETURNED. IF THE
PROC INVOKED BY CCB CONTAINS ALLOC AND/OR FREEDSN
CONTROL CARDS, THE ASSOCIATED DDNAME (FOR ALLOC)
AND THE DATA SET NAME (FOR FREEDSN) INFORMATION
IS RETURNED. THE FORMAT OF THIS AREA IS:
4 BYTE - DDNAME INDEX (NUMBER OF DDNAME'S BELOW)
80 BYTE - DDNAME LIST (UP TO TEN 8 BYTE DDNAME'S)
4 BYTE - DATA SET NAME INDEX (NUMBER OF DATA SET
NAMES BELOW)
460 BYTE DATA SET NAME LIST (UP TO TEN 46 BYTE
DATA SET NAMES FORMATTED AS FOLLOWS:
2 BYTE - DATA SET NAME LENGTH
44 BYTE - DATA SET NAME NAME (EBCDIC)

KNTPM - IS AN OPTIONAL PARAMETER AND DEFINES AN AREA RESEMBLING
A KVBLOCK. THAT IS, IT CONTAINS THE NAMES OF KEYWORDS
IN THE SAME FORMAT AS A KVBLOCK AREA. IF A KEYWORD
VALUE CANNOT BE OBTAINED FROM THE NAME BEING PROCESSED,
THIS AREA IS SEARCHED PRIOR TO CALLING CKVGET.

VNTPM - IS AN OPTIONAL PARAMETER (REQUIRED IF KNTPM IS PRESENT)
AND DEFINDS AN AREA OF KEYWORD VALUES. IF A KEYWORD
EXISTS IN THE KNTPM AREA, ITS CORRESPONDING VALUE IS
OBTAINED FROM THIS AREA.

RETURN CODE:
0 - SUCCESSFUL.

4 - Ezggg ENCOUNTERED. MSGPM AREA HAS DATA ABOUT THE NATURE OF THE

NOTES:

CCB IS INTENDED TO BE USED AFTER A PREVIOUS CALL TO CMB. FOR THE
PURPOSE OF SUBSTITUTING KEYWORD VALUES, CCB ASSUMES THAT THE MENU
HANDLER BUFFER (MHAF) AND THE MENU ACTION ENTRIES (MHAFACTN) ARE BOTH
PROPERLY INITIALIZED (WHICH CMB WILL DO).

IF A PROC KEYWORD VALUE SUBSTITUTION IS REQUIRED FOR AN ITEM WHICH
DOES NOT EXIST ON THE CORRESPONDING MENU, CCB WILL CALL CKVGET IN AN
EFFORT TO OBTAIN THE MISSING KEYWORD VALUE. IT WILL FIRST DETERMINE
IF OPTIONAL PARAMETERS 6 AND 7 ARE PRESENT. IF THEY ARE, THE KNTPM
AREA WILL BE SCANNED FOR THE KEYWORD. IF FOUND, THE CORRESPONDING
KEYWORD VALUE WILL BE OBTAINED FROM THE VNTPM AREA. IF PARAMETERS 6
AND 7 ARE NOT PRESENT, OR IF THE CORRECT KEYWORD COULD NOT BE FOUND
IN THE KNTPM AREA, CCB WILL CALL CKVGET TO DETERMINE THE VALUE OF THE
KEYWORD IF IT EXISTS IN THE TKV.

126 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

cco - COMMON CONVERT DIRECTORY ROUTINE cco

PURPOSE:
CCD CONVERTS A DIRECTORY ENTRY TO EBCDIC FOR PRINTING OR DISPLAYING.

INVOKED WITH:
CALL TO cCD

CALLING SEQUENCE PARAMETERS:

l. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

2. BLDLENT * INPUT BLDL LIST ENTRY

3. SPFFLAG CHAR(1) OUTPUT SPF DIRECTORY ENTRY FLAG
4. NAME CHAR(3) OUTPUT MEMBER NAME

5. LIB CHAR(1) OUTPUT LIBRARY NUMBER

6. VERSMOD CHAR(7) OUTPUT VERSION/MODIFICATION LEVEL
7. CDATE CHAR(8) OUTPUT CREATION DATE

8. MDATE CHAR(8) OUTPUT LAST MODIFIED DATE

9. MTIME CHAR(5) OUTPUT LAST MODIFIED TIME

10. CURLIN CHAR(5) OUTPUT CURRENT NUMBER LINES

11. INITLIN CHAR(5) OUTPUT INITIAL NUMBER LINES

12. MODLIN CHAR(5) OUTPUT MODIFIED NUMBER LINES
13. USERID CHAR(7) OUTPUT USER ID

WHERE

BLDLENT - IS AN ENTRY FROM THE 0S BLDL CONTROL BLOCK.

SPFFLAG - INDICATES IF THE ENTRY IS IN SPF LIBARAY ENTRY FORMAT:
00" HEX - NOT SPF FORMAT
01" HEX - SPF FORMAT

LIB - CONCATINATION LEVEL NUMBER OR '"-' IF MEMBER NOT FOUND.
VERSMOD - VERSION/MODIFICATION LEVEL - ' VV.MM ' EBCDIC.

CDATE - CREATION DATE - 'YY/MM/DD' EBCDIC.

MDATE - LAST MODIFIED DATE - 'YY/MM/DD' EBCDIC.

MTIME = LAST MODIFIED TIME - 'HH:MM' EBCDIC.

USERID - ID OF USER WHO LAST MODIFIED THE MEMBER.

RETURN CODES:
0 - ALWAYS.

NOTES:
NONE.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 125

cce - COMMON COMMAND PARSE cce

PURPOSE:
CCP PARSES A COMMAND THAT HAS BEEN PRESCANNED BY CCS (COMMON COMMAND
SCAN). CCP DETECTED CERTAIN ERRORS, AND REORDERS THE PARAMETERS TO
MAKE THEIR USE BY PROCESSING PROGRAMS EASIER.

INVOKED WITH:

CALL TO CCP

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

2. TCS <TCS> IN/OUT COMMAND SCAN TABLE

3. TCD * INPUT COMMAND DEFINITION TABLE

6. ERRCODE CHAR(4) OUTPUT ERROR CODE

5. ERRPTR1 PTR(31) OUTPUT ERROR MESSAGE PTR #1.

6. ERRPTR2 PTR(31) OUTPUT ERROR MESSAGE PTR #2.

7. ERRPTR3 PTR(31) OUTPUT ERROR MESSAGE PTR #3.

WHERE
TCS = IS A COMMAND SCAN TABLE THAT HAS BEEN SET UP BY CCS.
TCD = IS THE COMMAND DEFINITION TABLE THAT IS USED IN

PROCESSING THE TCS.

ERRCODE - IS AN ERROR MESSAGE CODE THAT CAN BE PASSED TO MERR
OR CERR. NOT USED IF NO ERRORS ARE DETECTED.

ERRPTR1 - IS A POINTER THAT MAY BE SET UP IF AN ERROR CODE IS
ALSO SET UP.

RETURN CODE:

0 - NORMAL RETURN.

'N' - A NON-ZERO CODE OF 'N' INDICATES THAT AN ERROR WAS DETECTED

IN PROCESSING THE N'TH PARAMETER IN THE COMMAND.

NOTES

NONE.

126 SPF/TS0O PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

ccs - COMMON COMMAND SCAN ccs

PURPOSE:

CCS IS USED TO SCAN A PRIMARY COMMAND. IT DETERMINES THE NUMBER OF
WORDS IN THE COMMAND AND BUILDS AN ARRAY WITH ONE ENTRY FOR EACH
WORD. THE ENTRY CONTAINS A PTR TO THE WORD, THE LENGTH OF THE WORD,
THE KEY/WORD CODE, IF THE WORD WAS FOUND IN THE PRIMARY COMMAND WORD
TABLE, FLAGS TO INDICATE THE TYPE OF WORD (OR STRING) AND FLAGS TO
INDICATE ANY ERROR CONDITIONS THAT WERE FOUND.

INVOKED WITH:
CALL TO CCS

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. TCS * IN/OUT COMMAND SCAN TABLE
WHERE
TCS - COMMAND SCAN TABLE. FIELDS TCSCIP, TCSCISZ, AND

TCSWDCT (MAX POSSIBLE VALUE) MUST BE FILLED IN BY THE
CALLER. CCS WILL RETURN TCSWDCT (ACTUAL) AND AN
TSCWDS ENTRY FOR EACH WORD (OR STRING) FOUND.

RETURN CODES:
0 - NORMAL RETURN.

*N' - A NON-ZERO CODE OF 'N' INDICATES THAT AN ERROR WAS DETECTED
FOR WORD 'N' IN THE COMMAND. AN ERROR FLAG WILL BE SET IN THE
'N'TH ENTRY TO INDICATE THE TYPE OF ERROR. POSSIBLE ERRORS ARE:
- TCSIVSIZ = ON - HEX STRING CONTAINS ODD NUMBER OF DIGITS.

= TCSIVHEX = ON - HEX STRING CONTAINS NON-HEX CHARACTERS.

NOTES:

CCS MOVES THE LINE TO A LOCAL AREA AND TRANSLATES IT TO UPPER CASE
BEFORE SCANNING IT.

POINTERS FOR QUOTED STRINGS POINT TO THE FIRST CHARACTER OF THE
STRING, AND NOT TO THE QUOTE OR PREFIX CHARACTER. THE LENGTH
gsEAQSggggD STRING IS THE NUMBER OF CHARACTERS CONTAINED WITHIN

LICENSED MATERIAL - PROPERTY OF 1IBM PROGRAM ORGANIZATION 127

CDA =~ COMMON DATASET ALLOCATE ROUTINE CDA

PURPOSE:
CDA IS USED TO ALLOCATE A SINGLE DATA SET OR TO ALLOCATE AND
CONCATENATE FROM TWO TO FOUR DATA SETS. CDA WILL HANDLE ALLOCATION
OF EXISTING DATA SETS ONLY. OPTIONALLY, CDA WILL CLOSE AND FREE THE
DATA SET(S) ASSOCIATED WITH A TFD, AND THEN ALLOCATE THE NEW FILE.
INVOKED WITH:

CALL TO CDA

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

2. TFD <TFD> IN/OUT FILE DEFINITION TABLE

3. SMSG6 CHAR(24) SUTPUT SHORT ERROR MESSAGE

4. LMSG CHAR(72) OUTPUT LONG ERROR MESSAGE

WHERE
TFD - FILE DEFINITION TABLE FOR THE FILE BEING ALLOCATED.
SMSG - RETURN AREA FOR SHORT ERROR MESSAGE IF ERROR OCCURRED.
LMSG - RETURN AREA FOR LONG ERROR MESSAGE IF ERROR OCCURRED.

RETURN CODES:
0 - NORMAL RETURN.

UNACCEPTABLE OR MISSING "PROJECT™ (FAILED CBDSN).
PROBLEM FREEING OLD PROJECT.LIBL.TYPE.

PROBLEM ALLOCATING PROJECT.LIB1.TYPE.

PROBLEM CONCATENATING DATASETS.

UNACCEPTABLE OR MISSING "LIB1™ (FAILED CBDSN).

UNACCEPTABLE OR MISSING "LIB2"™ (FAILED CBDSN).
PROBLEM FREEING OLD PROJECT.LIB2.TYPE.

PROBLEM ALLOCATING PROJECT.LIB2.TYPE.
CONCATENATION DATASETS HAVE UNLIKE DSORG.

UNACCEPTABLE OR MISSING "LIB3™ (FAILED CBDSN).
PROBLEM FREEING OLD PROJECT.LIB3.TYPE.

PROBLEM ALLOCATING PROJECT.LIB3.TYPE.
CONCATENATION DATASETS HAVE UNLIKE DSORG.

UNACCEPTABLE "LIB4™ (FAILED CBDSN).
PROBLEM FREEING OLD PROJECT.LIB4.TYPE.
PROBLEM ALLOCATING PROJECT.LIB4.TYPE.
CONCATENATION DATASETS HAVE UNLIKE DSORG.
UNACCEPTABLE OR MISSING TTYPE™ (FAILED CBDSN).
7 - UNACCEPTABLE "OTHER™ DSN (FAILED CBDSN).

- PROBLEM FREEING "OTHER"™ DATASET.

= PROBLEM ALLOCATING "OTHER™ DATASET.
8 - UNACCEPTABLE VOLUME SERIAL.

(CONTINUED ON NEXT PAGE)

N
[I N N I |

(-]
]

128 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

chA = COMMON DATASET ALLOCATE ROUTINE (CONTINUED) Cba

NOTES:

IF RETURN CODE > 0 THEN MESSAGES ARE RETURNED IN SMSG AND LMSG AND NO
DATASET(S) ASSOCIATED WITH THE TFD WILL BE ALLOCATED.

IF REOUESTED (TFDMENUP -= 0), CDA WILL BUILD THE DSNAME(S) BY CALLING
CBDSN.

THE DA08 AND DAOC BLOCKS WILL BE CONSTRUCTED FOR THE DURATION OF CDA
ONLY AND CDAIR WILL BE CALLED TO PERFORM THE ALLOCATE AND CONCATENATE
FUNCTIONS.

ERROR MESSAGES WILL BE OBTAINED FROM CDERR FOR ALLOCATION ERRORS, AND
CMSG FOR CBDSN ERRORS.

IF CDA IS CALLED WITH A TFD IN WHICH A FILE IS CURRENTLY DESCRIBED,
(I.E., TFDDDN(1) IS NOT ZERO BITS), THEN CDA WILL COMPARE THE
IDENTIFICATION (DSN'S, VOLUME, DISPOSITION, AND PASSWORD) OF THE
CURRENT AND REQUESTED FILES AND, IF DIFFERENT, WILL CLOSE AND FREE
THE CURRENT ALLOCATION, AND ALLOCATE THE REQUESTED FILE.

IF CDA IS CALLED WITH MENU DATA (TFDMENUP -= 0), THEN ALLOCATION
WILL BE FOR THE DATASET(S) DESCRIBED IN THE MENU DATA.

OTHERWISE ALLOCATION WILL BE FOR THE DATASET DESCRIBED IN
TFDDSNP(1) -> TFDDSNS.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 129

CDAIR = COMMON DAIR INTERFACE ROUTINE : CDAIR

PURPOSE:
CDAIR SERVES AS THErCOMNON‘INTERFACE WITH THE DAIR MODULE "IKJEFDOO™.
IT HANDLES THE SPECIAL CASE OF A DATA SET ALLOCATED SHARED, BUT TO BE

TREATED BY PCF (PROGRAM CONTROL FACILITY) AS OLD FOR PURPOSES OF
VOLUME VERIFICATION: .

INVOKED WITH:.
CALL TO CDAIR

CALLING SEQUENCE PARAMETERS:

1. TLD © . <TLD® INPUT LOGICAL DISPLAY TABLE
2. BLOCK : X INJOUT DAIR BLOCK
WHERE ” o |

BLOCK~ =~ IS A TSO DYNAMIC ALLOCATION INTERFACE ROUTINE (DAIR)

CONTROL BLOCK (DA08,DAl8, ETC.).

RETURN CODE:
RETURN CODE THAT IS RETURNED IN REG 15 FROM "IKJEFDOO™.

NOTES:

IF A DAO8 (ALLOCATE) BLOCK IS ENCOUNTERED, AND IF BOTH THE

SHR (DAO08SSHR) AND OLD (DAO8SOLD) FLAG BITS ARE ON, A SPECIAL PCF
INTERFACE IS RECOGNIZED, SINCE THIS COMBINATION IS INVALID AS INPUT
TO DAIR. IN THIS CASE, THE DA0O8SOLD BIT IS TURNED OFF BY CDAIR,
AND A '01'X IS STORED IN THE FIRST BYTE OF THE ECTSCMD FIELD

AS A SIGNAL TO PCF THAT THIS SHR REQUEST SHOULD BE TREATED FOR
VOLUME VERIFICATION PURPOSES AS AN OLD REQUEST.

IF A DAO8 (ALLOCATE) BLOCK IS ENCOUNTERED, AND IF THE VOLUME SERIAL
FIELD IS BLANK (REQUEST FOR A CATALOGED DATA SET), A LOCATE MACRO
IS ISSUED BY CDAIR TO FIND THE VOLUME SERIAL, AND CDT IS CALLED TO
DETERMINE THE UNIT TYPE. THE VOLUME AND UNIT VALUES ARE PLACED IN
THE DA08 BLOCK BEFORE DAIR IS CALLED.

IF A DA18 (FREE) BLOCK IS ENCOUNTERED, AND IF BOTH THE DELETE
(DA1SNDL) AND UNCATALOG (DA18NUC) BIT FLAGS ARE SET, THE DATA SET
WILL BE UNCATALOGED BY A CATALOG MACRO REQUEST AFTER DAIR HAS BEEN
CALLED TO SCRATCH AND DEALLOCATE THE DATA SET. IN THIS CASE, THE
;$EDR¥gATALOG FLAG BIT IS TURNED OFF BEFORE THE BLOCK IS PROCESSED

CDAIR CAN EITHER LINK TO "IKJEFDOO™ OR BRANCH DIRECTLY TO THE
ADDRESS STORED IN TSIDAIRP. THE LATER CASE IS THE NORMAL CASE AND
RESULTS IN IMPROVED PERFORMANCE. TSIDAIRP IS SET UP BY SMI WHICH
LOADS "IKJEFDOO™ AND THEN STORES ITS ADDRESS. 1IF TSIDAIRP < 4
(BECAUSE SMI DID NOT LOAD "IKJEFDOO™) THEN LINKING TAKES PLACE.
THIS OPTION COULD SAVE STORAGE AT THE EXPENSE OF CPU OVERHEAD IF
THE DAIR MODULES WERE NOT ALREADY IN THE LINK PACK AREA.

1380 SPF/TS0 PROGRAM-LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

CDATE = COMMON CONVERT DATE ROUTINE

PURPOSE:

CDATE CONVERTS A FIXED POINT OR PACKED DECIMAL DATE TO EBCDIC.

INVOKED WITH:
CALL TO CDATE

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. DATEIN CHAR(4) INPUT INPUT DATE

3. DATEOUT CHAR(8) OUTPUT OUTPUT DATE

WHERE

DATEIN - THE INPUT DATE IN ONE OF THE FOLLOWING FORMATS:

PACKED DECIMAL - 'CCYYDDDS' HEX:

cC = '00" HEX

YY = DECIMAL DIGITS FOR YEAR

DDD = DECIMAL DIGITS FOR DAY OF YEAR
S = PACKED DECIMAL SIGN (IGNORED)

FIXED POINT - 'CCYYDDDD' HEX:
cC 'FF' HEX
YY BINARY VALUE FOR YEAR
DDDD BINARY VALUE FOR DAY OF YEAR

DATEOUT - THE OUTPUT DATE - °'YY/MM/DD' EBCDIC:
YY EBCDIC YEAR
MM EBCDIC MONTH
DD EBCDIC DAY

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION

CDATE

131

coc - COMMON DATASET CLOSE coc

PURPOSE:
CDC IS USED TO CLOSE A FILE. THE FILE IS EXPECTED TO HAVE PREVIOUSLY
OPENED BY CALLING CDO. IN ADDITION TO CLOSING THE DCB, THE CDC WILL
OPTIONALLY CALL CRELS TO DEQ THE DATA SET RESOURCE AND OPTIONALLY
CALL CSM TO FREEMAIN THE I/0 BUFFER.

INVOKED WITH:

CALL TO CDC

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. TFD <TFD> IN/OUT FILE DEFINITION TABLE
3. MSGID CHAR(%) QUTPUT ERROR MESSAGE ID (NOT USED)
WHERE
TFD - FILE DEFINITION TABLE FOR THE FILE BEING ALLOCATED.
MSGID - ERROR MESSAGE ID IS PROVIDED FOR FUTURE POSSIBLE USE.

RETURN CODES:
0 - ALWAYS.

NOTES:
CDC WILL CLEAR THE DCB I/0 ERROR SWITCH BEFORE CLOSING THE DCB.

132 SPF/T7S0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

¢

CDERR - COMMON DAIR ERROR ROUTINE

PURPOSE:

CDERR

CDERR IS CALLED AFTER AN ERROR IS ENCOUNTERED FROM THE TSO "DAIR"
ROUTINE. IT DETERMINES THE SPF MESSAGE ID WHICH DESCRIBES THE ERROR,
THEN OPTIONALLY INVOKES THE SPECIFIED ERROR HANDLING ROUTINE.

INVOKED WITH:

CALL TO CDERR

CALLING SEQUENCE PARAMETERS:

1. TLD

2. RETCODE

3. DA08

4. SHORT

5. LONG

WHERE
RETCODE
DAO3
SHORT
LONG

RETURN CODE:
0 - ALWAYS.

NOTES:

<TLD> INPUT
FIXED(15) INPUT
* INPUT

CHAR(24) OUTPUT
CHAR(72) OUTPUT

LOGICAL DISPLAY TABLE

DAIR RETURN CODE

DAG8 CONTROL BLOCK

SHORT (LEVEL 1) ERROR MESSAGE
LONG (LEVEL 2) ERROR MESSAGE

THE SAVED CONTENTS OF REGISTER 15 ON RETURN FROM DAIR.
IS THE TSO DAIR DAO8 CONTROL BLOCK, WHICH IS USED TO

ALLOCATE A FILE.

THIS PARAMETER IS USED TO RETURN SHORT ERROR MESSAGES.
THIS PARAMETER IS USED TO RETURN LONG ERROR MESSAGES.

THE SPF MESSAGES IDS USED BY CDERR TO GENERATE THE SHORT AND
LONG ERROR MESSAGES ARE D001 THROUGH D022.

LICENSED MATERIAL - PROPERTY OF IBM

PROGRAM ORGANIZATION 133

CDOF - COMMON DATASET FREE ROUTINE COF

PURPOSE:
CDF IS USED TO FREE ALLOCATION(S) OF A FILE PREVIOUSLY ALLOCATED
USING CDA. THE FILE MAY CONSIST OF A SINGLE DATA SET OR A
CONCATENATION OF TWO TO FOUR DATASETS. CDF WILL CALL CDC TO CLOSE
THE DCB, IF NECESSARY, BEFORE CALLING CDAIR TO FREE THE ALLOCATION.
INVOKED WITH:

CALL TO CDF

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

2. TFD <TFD> IN/OUT FILE DEFINITION TABLE

3. SMSG CHAR(24) OUTPUT SHORT ERROR MESSAGE

4. LMSG CHAR(72) OUTPUT LONG ERROR MESSAGE

WHERE
TFD = FILE DEFINITION TABLE FOR THE FILE BEING FREED.
SMSG = SHORT ERROR MESSAGE RETURNED WHEN RETURN CODE IS NOT 0.
LMSG - LONG ERROR MESSAGE RETURNED WHEN RETURN CODE IS NOT 0.

RETURN CODES:
0 - NORMAL RETURN.
1 - PROBLEM FREEING PROJECT.LIB1.TYPE.
2 - PROBLEM FREEING PROJECT.LIB2.TYPE.
3 - PROBLEM FREEING PROJECT.LIB3.TYPE.
4 - PROBLEM FREEING PROJECT.LIB4.TYPE.
5 - PROBLEM FREEING "OTHER™ DATASET.

NOTES:

CDF WILL FREE THE DDNAMES SAVED IN THE TFD BY CDA, BY CONSTRUCTING A
DA18 BLOCK AND CALLING CDAIR FOR EACH DDNAME TO BE FREED.

IF A DAIR ERROR OCCURS, AN ERROR MESSAGE WILL BE PLACED IN THE SMSG

AND LMSG FIELDS. AN ATTEMPT WILL BE MADE TO FREE ALL DDNAMES IN THE
EVENT THAT ANY ERROR IS ENCOUNTERED.

134 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

€06 = COMMON GET RECORD ROUTINE cbG

PURPOSE:
CDG IS USED TO READ A LOGICAL RECORD FROM A SEQUENTIAL DATA SET OR

MEMBER OF A PDS AND OPTIONALLY NOTE THE TTR OF EACH BLOCK READ.
CDG MAY ALSO BE USED FOR UPDATE IN PLACE OF A PDS.

INVOKED WITH:
CALL TO CDG

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

2. TFD <TFD> IN/OUT FILE DEFINITION TABLE

WHERE

TFD = IS A STRUCTURE WHICH INCLUDES THE FOLLOWING PARAMETERS:

TFDRECP PTR(31) IN/OUT RECORD POINTER
TFDRECL FIXED(15) OUTPUT RECORD LENGTH
TFDECODE FIXED(15) IN/OUT ENTRY CODE
TFDTTRN CHAR(4&) IN/OUT FIRST OR CURRENT TTRN

PARAMETER USAGE

TFDRECP - A ZERO VALUE ON INPUT TO CDG INDICATES 'LOCATE' MODE,
IN WHICH CASE CDG WILL RETURN A POINTER TO THE LOGICAL
RECORD IN TFDRECP. (NOTE: LOCATE MODE MUST BE USED
FOR UPDATE IN PLACE OF A PDS.)

A NON-ZERO VALUE ON INPUT TO CDG INDICATES 'MOVE'
MODE, IN WHICH CASE CDG WILL MOVE THE LOGICAL RECORD
TO THE ADDRESS SPECIFIED BY TFDRECP.

TFDRECL - OUTPUT PARAMETER ONLY. CONTAINS THE LENGTH OF THE
LOGICAL RECORD RETURNED BY CDG.

TFDECODE - INDICATES THE ENTRY CONDITION, AS FOLLOWS:

0 - 1ST ENTRY TO CDG (FOR "STANDARD™ MODE OF
OPERATIONS). 1ST RECORD WILL BE RETURNED.
THE TTRN OF THE FIRST BLOCK WILL BE STORED
IN TFDTTRN. CDG WILL SET TFDECODE=l.

1 - ITH ENTRY TO CDG. ITH RECORD WILL BE
RETURNED. NO CHANGE TO TFDECODE.

2 - RESET TO THE TTRN CONTAINED IN TFDTTRN
(INVALID FOR UPDATE IN PLACE). 1ST RECORD
STARTING AT THE NEW TTRN WILL BE RETURNED.
CDG WILL SET TFDECODE=l.

3 - CLOSE OUT. CDG WILL SET TFDECODE=0.
. NO RECORD IS RETURNED.
NOTE: CLOSE OUT IS AUTOMATIC WHENEVER RETURN
CODE > 0, EXCEPT WHEN ORIGINAL VALUE OF TFDECODE
WAS 5 (SEE NOTES).

(CONTINUED ON NEXT PAGE)

‘LICENSED MATERIAL - PROPERTY OF IBM ' PROGRAM ORGANIZATION 135

coG - COMMON GET RECORD ROUTINE (CONTINUED) coG

4 - 1ST ENTRY TO CDG FOR UPDATE IN PLACE.
1ST RECORD WILL BE RETURNED.
CDG WILL SET TFDECODE=1.

5 - 1ST ENTRY TO CDG IF CURRENT TTRN FOR EACH
RECORD IS TO BE RETURNED IN TFDTTRN.
1ST RECORD WILL BE RETURNED.
CDG WILL SET TFDECODE=1.
TFDECODE=5 IS USED BY BROWSE.

RETURN CODE:
0 - NORMAL COMPLETION.

1 - END OF FILE CONDITION. NO RECORD WAS RETURNED. CDG HAS CLOSED
ITSELF OUT UNLESS TFDECODE=5 WAS USED, IN WHICH CASE CLOSE OUT
IS NOT AUTOMATIC ON END OF FILE.

2 - UNRECOVERABLE I/0 ERROR. NO RECORD WAS RETURNED. CDG HAS
CLOSED ITSELF OUT UNLESS TFDECODE=5 WAS USED, IN WHICH CASE
CLOSE OUT IS NOT AUTOMATIC ON I/0 ERROR. (NOTE: RETURN CODE
ALSO SET TO 2 IF CERTAIN USER ERRORS ARE DETECTED.)

NOTES:
THIS MODULE HAS REPLACED THE SPF VERSION 2.1 CGET SUBROUTINE.

IT IS ASSUMED THAT CALLERS OF CDG HAVE PREVIOUSLY ALLOCATED AND
OPENED THE DATASET BY CALLING EITHER CTA OR CDA AND CDO.

CDG ALWAYS RETURNS THE TTRN OF THE FIRST BLOCK, TO ALLOW THE

DATA SET OR MEMBER TO BE RE-READ FROM THE TOP (SEE TFDECODE=2).
OPTIONALLY, CDG MAY BE INITIALIZED TO RETURN THE CURRENT TTRN FOR
EACH RECORD AS IT READS THROUGH THE DATA (SEE TFDECODE=5).

FOR VARIABLE LENGTH RECORDS, THE TFDRECP AND TFDRECL PARAMETERS
REFER TO THE DATA PORTION ONLY, I.E. THEY EXCLUDE THE FOUR BYTE
RECORD PREFIX AREA.

FOR UNDEFINED RECORD FORMAT (RECFM=U), THE RECORD LENGTH RETURNED
IN TFDRECL IS THE SIZE OF THE PHYSICAL BLOCK.

ON CLOSE OUT, CDG DOES NOT CLOSE THE DATA SET; TO REUSE CDG FOR A
DIFFERENT MEMBER OF THE SAME PDS, THE FOLLOWING STEPS ARE REQUIRED:

1. CLOSE 0UT CDG (TFDECODE=3) IF IT HAS NOT ALREADY CLOSED
ITSELF 0UT.

2. ISSUE FIND MACRO FOR NEW MEMBER.

3. CALL CDG (TFDECODE=0) TO START READING NEW MEMBER.

THE ONLY USER ERROR WHICH WILL CAUSE RETURN CODE = 2 IS FOR CDG
TO BE CALLED WITHOUT FIRST CALLING CDO. TFDOPN MUST BE ON.

IF THE ORIGINAL TFDECODE WAS 0 OR 4, TFDECODE WILL BE RESET
TO ZERO FOR ANY CONDITION WHICH RESULTS IN A NON-ZERO RETURN CODE.

IF THE ORIGINAL TFDECODE WAS 5, AND AN END OF FILE OR I/O0 ERROR
OCCURS, TFDECODE WILL BE SET TO 1.

CDG USES BSAM I/0.

136 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

C..

CDISPL - COMMON DISPLAY ROUTINE CDISFL

PURPOSE:

CDISPL IS USED TO DISPLAY THE CURRENT CONTENTS OF THE TLD/TLS
AND WAIT FOR USER RESPONSE (POST DISPLAY REQUEST ECB AND WAIT ON
PROCESS REQUEST ECB).

INVOKED WITH:
CALL TO CDISPL

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD> IN/OUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:

CDISPL SCANS THE TLS INPUT LINE (LINE 2) .FOR AN ATTRIBUTE BYTE
INDICATING THE BEGINNING OF THE TLSINPUT FIELD (IF ANY) AND
INITIALIZES THE TLD POINTER (TLDIDABP) ACCORDINGLY.

AFTER THE USER RESPONSE, CDISPL PERFORMS THE FOLLOWING:

IF THE HELP PFK WAS PRESSED AND THE TLDHELP FIELD IS NOT BLANK:
CHELP IS CALLED.

IF A PRIMARY COMMAND PFK WAS PRESSED:
THE ASSOCIATED COMMAND IS RETRIEVED FROM THE TKV AND PLACED
IN THE TLSINPUT FIELD.

IF A LINE COMMAND PFK WAS PRESSED:
THE ASSOCIATED COMMAND IS RETRIEVED FROM THE TKV AND PLACED
IN THE TLS EDIT LINE COMMAND FIELD.

IF THE RETURN PFK WAS PRESSED:
CDISPL INTERFACES WITH THE CALLING PROGRAMS AS THOUGH THE END KEY
HAD BEEN PRESSED, BUT WITHOUT INTERFACING WITH THE SPF MAIN TASK,
AND THUS WITHOUT CAUSING ANY ACTUAL DISPLAY OUTPUT. PMD STOPS
THIS FUNCTION WHEN IT GETS CONTROL.

IF ANY DISPLAYABLE INPUT FIELD HAS AN EXTENDED RETURN VALUE (A
PRIMARY OPTION VALUE) PRECEEDED BY AN EQUAL SIGN (=) THEN IT WILL
BE PLACED IN THE TLSINPUT FIELD WHEN THE PRIMARY OPTION MENU IS
DISPLAYED. CDISPL WILL THEN RETURN TO PMD AS THOUGH THE ENTER
KEY HAD BEEN PRESSED.

IF THE SCROLL FIELD WAS MODIFIED:
THE MDT BIT FOR THE SCROLL FIELD IS SET TO OFF.

IF A SCROLL PFK WAS PRESSED AND THE TLSINPUT FIELD CONTAINS A
SCROLL AMOUNT:
THE NEW AMOUNT IS MOVED TO THE SCROLL FIELD AND THE MDT BIT FOR
THE INPUT FIELD IS SET TO OFF. THIS HAS THE EFFECT OF A
TEMPORARY CHANGE TO THE SCROLL FIELD JUST FOR THIS INTERACTION.

NOTE: WHENEVER CDISPL MODIFIES AN MDT (MODIFIED DATA TAG) IN THE
TLS, IT ADJUSTS THE MDT COUNT IN THE TLD ACCORDINGLY.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 137

coo - COMMON DATA OPEN ROUTINE : ' coo

PURPOSE:* Jl

CDO IS USED TO OPEN A FILE.. THE FILE IS EXPECTED TO HAVE PREVIOUSLY
BEEN ALLOCATED BY CALLING CDA OR CTAL IF THE FILE IS AN EMPTY
SEQUENTIAL DATASET BEING OPENED FOR INPUT (AN INVALID THING TO DO),
THE DSCB WILL BE READ TO OBTAIN DATASET ATTRIBUTES, BUT OPEN WILL NOT
BE DONE. OPTIONALLY CDO WILL VALIDATE DATASET ATTRIBUTES AS REQUIRED
BY THE CALLER. VALID COMBINATIONS OF DSORG, LRECL, BLKSIZE AND
RECORD FORMAT WILL BE CHECKED. CDO WILL OPTIONALLY CALL CRESV TO
ISSUE A SHARED DASD RESERVE AGAINST THE DATA SET. CDO WILL ALSO
OPTIONALLY CALL CSM TO GETMAIN SPACE FOR AN I/0 BUFFER.

INVOKED WITH:
CALL TO CDO

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

2. TFD <TFD> IN/OUT FILE DEFINITION TABLE

3. MSGID CHAR(4) OUTPUT ERROR MESSAGE ID

WHERE
TFD - THE FILE DEFINITION TABLE FOR THE FILE BEING OPENED.
MSGID - CONTAINS ID OF ERROR MESSAGE ON ABNORMAL RETURN.

OTHERWISE, THE MSGID WILL NOT BE MODIFIED.

RETURN CODES: J
0 - NORMAL RETURN.
% - ERROR RETURN (MSGID CONTAINS THE ERROR MSG ID).

NOTES:

ON AN ABNORMAL RETURN, THE DCB WILL BE CLOSED AND CRELS WILL BE
CALLED, IF NECESSARY, TO RELEASE THE DATA SET RESOURCE.

138 SPF/TS0O PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

copP = COMMON DATA PUT ROUTINE cop

PURPOSE:

CDP IS USED TO OUTPUT A LOGICAL RECORD TO A SEQUENTIAL DATA SET OR
MEMBER OF A PDS. CDP WILL OPTIONALLY NOTE THE TTR OF A PHYSICAL
BLOCK WRITTEN. CDP USES BSAM I/0.

INVOKED WITH:
CALL TO CDP

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. TFD <TFD> IN/OUT FILE DEFINITION TABLE
WHERE
TFD = IS A STRUCTURE WHICH INCLUDES THE FOLLOWING PARAMETERS:
TFDRECP PTR(31) INPUT RECORD POINTER
TFDRECL FIXED(15) INPUT RECORD LENGTH

TFDECODE FIXED(15) 1IN/OUT ENTRY CODE
PARAMETER USAGE
TFDRECP -~ CONTAINS A POINTER TO THE LOGICAL RECORD. CDP
SUPPORTS 'MOVE' MODE ONLY FOR RECFM=F OR RECFM=V AND
YLOCATE' MODE ONLY FOR RECFM=U DATA.
TFDRECL - IS THE LENGTH OF THE LOGICAL RECORD IN BYTES.
TFDECODE - IS AN ENTRY CODE, AS FOLLOWS:

0 -~ 1ST ENTRY TO CDP. 1ST RECORD WILL BE OUTPUT.
CDP WILL SET TFDECODE=1.

1 -~ 'I'TH ENTRY TO CDP. ITH RECORD WILL BE OUTPUT.
TFDECODE WILL NOT BE CHANGED.

2 = CLOSE OUT. CDP WILL WRITE THE FINAL BLOCK, IF

NECESSARY AND SET TFDECODE=0. NOTE: CLOSE OUT
IS AUTOMATIC WHENEVER RETURN CODE > 0.

RETURN CODE:
0 - NORMAL COMPLETION.
2 - UNRECOVERABLE I/0 ERROR. CDP HAS CLOSED ITSELF OUT.
(CONTINUED ON NEXT PAGE)

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 139

copP - COMMON DATA PUT ROUTINE (CONTINUED) CDP

NOTES:
THIS MODULE HAS REPLACED THE SPF VERSION 2.1 CPUT SUBROUTINE.

IT IS ASSUMED THAT CALLERS OF CDP HAVE EITHER PREVIOUSLY ALLOCATED
AND OPENED THE DATA SET BY CALLING CDA AND CDO OR BY CALLING CTA.
THIS ASSURES THAT THE TFD IS INITIALIZED PROPERLY.

FOR VARIABLE LENGTH RECORDS, THE TFDRECP AND TFDRECL PARAMETERS

REFER TO THE DATA PORTION ONLY, I.E. THEY EXCLUDE THE FOUR BYTE

RECORD PREFIX AREA. CDP WILL AUTOMATICALLY CONSTRUCT THE RECORD
AND BLOCK PREFIXES IN THE OUTPUT BUFFER.

THE RECORD LENGTH INDICATED BY TFDRECL NEED NOT AGREE WITH THE DCB
LRECL. FOR FIXED RECORD FORMATS, CDP WILL EITHER TRUNCATE OR PAD
WITH BLANKS TO MAKE THE RECORD LENGTH EQUAL THE DCB LRECL. FOR
VARIABLE RECORD FORMATS, CDP WILL TRUNCATE IF THE LOGICAL RECORD
LENGTH EXCEEDS DCB LRECL-4. 1IN ADDITION, CDP WILL AUTOMATICALLY
REMOVE ANY TRAILING BLANKS FOR VARIABLE LENGTH RECORDS.

FOR UNDEFINED RECORD FORMAT (RECFM=U), TFDRECL MUST SPECIFY THE
SIZE OF THE PHYSICAL BLOCK. FOR RECFM=U, CDP WRITES THE BLOCK
DIRECTLY FROM THE AREA SPECIFIED VIA TFDRECP, AND ISSUES A CHECK
IMMEDIATELY FOLLOWING THE WRITE.

ON CLOSE OUT, CDP DOES NOT WRITE END-OF-FILE NOR DOES IT CLOSE THE
DATA SET, IT SIMPLY FLUSHES THE I/0 BUFFER. TO REUSE CDP FOR A
DIFFERENT MEMBER OF THE SAME PDS:

1. CALL CDP FOR CLOSE OUT (TFDECODE=2) TO FLUSH THE BUFFER.

2. ISSUE STOW MACRO FOR THIS MEMBER.
3. CALL CDP (TFDECODE=0) TO START WRITING NEW MEMBER.

140 SPF/TS0O PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

cbT = COMMON DEVICE TYPE ROUTINE coT

PURPOSE:
CDT IS USED TO OBTAIN THE DEVICE TYPE OF A VOLUME, WHEN THE VOLUME
SERIAL OR DEVICE CODE IS KNOWN. THE DEVICE TYPE IS RETURNED IN
CHARACTER FORMAT.

INVOKED WITH:

CALL TO CDT

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

2. VOLUME CHAR(6) INPUT VOLUME SERIAL OR DEVICE CODE
3. DEVICE CHAR(8) OUTPUT DEVICE TYPE

4. OPTION FIXED(31) INPUT OPTION CODE

WHERE

VOLUME =~ IF THE FIRST TWO BYTES ARE X'FFFF' THEN THE NEXT FOUR
BYTES ARE ASSUMED TO BE THE CATALOG DEVICE CODE FOR
THE VOLUME. 1IF THE FIRST TWO BYTES ARE X'FFFE' THEN
THE NEXT FOUR BYTES ARE ASSUMED TO BE THE UCB DEVICE
CODE FOR THE VOLUME. OTHERWISE, THE FIELD IS ASSUMED
TO BE THE ACTUAL VOLUME SERIAL.

DEVICE - VALUE FROM THE SYSTEM DEVICE NAME TABLE 'DEVNAMET'
(E.G. '3330' OR '2314"'), '3330V', OR BLANK.

OPTION - 0 OR 1.

RETURN CODE:
0 - ALWAYS.

NOTES:

IF THE OPTION VALUE IS 0, THEN BLANK IS RETURNED AS THE DEVICE
TYPE. IF THE OPTION IS 1, THEN THE FOLLOWING NOTES APPLY. ALL
THE CALLS TO CDT BY THE DISTRIBUTED SYSTEM USE OPTION 1.

IF THE VOLUME SERIAL IS SUPPLIED THEN THE UCBS ARE SEARCHED TO FIND
THE DEVICE CODE. IF THE DEVICE CODE IS NOT FOUND AND THERE IS A
MASS STORAGE SYSTEM (MSS) AVAILABLE, THE DEVICE TYPE RETURNED IS
'3330V'. IF THE CODE IS NOT FOUND AND THERE IS NO MSS, BLANK IS
RETURNED AS THE DEVICE TYPE.

THE DEVICE CODE FOR A CATALOGED DATA SET IS AVAILABLE THROUGH THE
CATALOG VIA THE LOCATE MACRO AND THEN CAN BE USED AS INPUT TO CDT.

ONCE CDT HAS A DEVICE CODE, THEN THE SYSTEM DEVICE NAME TABLE
(MODULE NAME 'DEVNAMET') IS SEARCHED FOR A DEVICE TYPE (E.G. "'3330'
OR '2314'). IF CDT FINDS NO CORRESPONDING DEVICE TYPE FOR A DEVICE
CODE, A BLANK IS RETURNED.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 141

CERR = COMMON ERROR DISPLAY ROUTINE CERR

PURPOSE:

CERR IS USED TO FORMAT AND DISPLAY SPF MESSAGES. THE MESSAGE IS READ
AND FORMATTED BY CMSG. A SHORT MESSAGE OF UP TO 24 CHARACTERS IS
FIRST DISPLAYED IN THE UPPER RIGHT HAND CORNER OF THE LOGICAL SCREEN.
IF THE SPF USER RESPONDS BY PRESSING THE HELP KEY, A 2ND LEVEL
MESSAGE OF UP TO 77 CHARACTERS IS DISPLAYED ON THE THIRD LINE OF THE
DISPLAY. IF THE SPF USER AGAIN RESPONDS BY PRESSING THE HELP KEY,
CHELP IS CALLED BY CDISPL TO DISPLAY TUTORIAL INFORMATION.

INVOKED WITH:
CALL TO CERR

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. MSGID CHAR(4) INPUT MESSAGE 1D

3. PARM] * INPUT MESSAGE PARAMETER 1
.. PARMN * INPUT MESSAGE PARAMETER 'N'
WHERE

PARM(S) - PARM1 THROUGH PARMN CAN BE IN ANY FORMAT THAT CAN BE
HANDLED BY CMSG IN FORMATTING MESSAGES. THE PARAMETERS
NEED NOT BE ACTUALLY REFERENCED BY A MESSAGE. A
MAXIMUM OF 50 PARAMETERS IS SUPPORTED.
RETURN CODE:

0 - ALWAYS.

NOTES:
THE CERR PARAMETER LIST MUST BE TERMINATED WITH A VLIST FLAG.
ON EXIT, CERR RESTORES THE SCREEN TO ITS CONDITION AT ENTRY TO CERR.
CERR CALLS CMSG TO OBTAIN THE REQUESTED MESSAGE.
CALL CMSG, BUT FILLS THE SHORT MESSAGE AREA WITH DASNES AND AND

DISPLAYS THE SCREEN. 1IN THIS CASE, NO 2ND LEVEL MESSAGE IS
PROCESSED. *

142 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

CF1

= COMMON FIND ROUTINE . CFI

PURPOSE:

CFI IS USED TO FIND MEMBERS OF THE SPFMENUS, SPFMSGS, AND SPFPROCS
DATA SETS. CFI MAINTAINS BLDL LISTS LOCATED IN THE FIND TABLE (TFI)
FOR THE DATA SETS, THUS ELIMINATING MOST PDS DIRECTORY SEARCHES FOR
THESE DATA SETS. IF THE REQUESTED MEMBER IS NOT IN THE TFI, CFI
ISSUES A BLDL AND THEN A FIND MACRO.

INVOKED WITH:

CAL

CALL TO CFI
LING SEQUENCE PARAMETERS:]
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. TFD <TFD> INPUT FILE DEFINITION TABLE
3. MEMBER CHAR(8) INPUT SEARCH MEMBER NAME
WHERE

TFD = THE TFD FOR THE DATA SET TO BE SEARCHED.

MEMBER ~ IS THE MEMBER FOR WHICH THE FIND IS TO BE DONE.

RETURN CODE:

0 - NORMAL RETURN, MEMBER FOUND.
4 - MEMBER NOT FOUND.
8 - I/0 ERROR RETURN FROM BLDL.

NOTES:

THE CALLING PROGRAM MUST SET UP THE TFD AND OPEN THE DATA SET BEFORE
CALLING CFI.

SEE THE DATA AREAS SECTION FOR A DESCRIPTION OF THE FIND TABLE (TFI).

LICENSED MATERIAL - PROPERTY OF IBM v PROGRAM ORGANIZATION 143

CHE - COMMON HARDCOPY ROUTINE ’ CHC

PURPOSE:
CHC PERFORMS THE HARDCOPY FUNCTION FOR UOL AND USC:.

INVOKED WITH:
CALL TO CHC

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. TFD <TFD> IN/OUT FILE DEFINITION TABLE
3. MENU CHAR(S8) INPUT MENU NAME
WHERE
MENU = IS THE NAME OF THE MENU TO BE DISPLAYED BY CHC.

RETURN CODE:
0 - ERROR RETURN
% - DELETE REQUESTED
8 - KEEP REQUESTED

NOTES:
NONE.

1464 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

CHELP = COMMON HELP ROUTINE CHELP

PURPOSE:
CHELP IS USED TO INVOKE THE SPF TUTORIAL STARTING AT A SPECIFIC PAGE.
THE TLS AND APPROPRIATE TLD FIELDS ARE SAVED BEFORE INVOKING THE
TUTORIAL, AND RESTORED BEFORE RETURNING. WHEN CHELP IS INVOKED, THE
USER MAY PAGE THROUGH THE TUTORIAL AS DESIRED. MWHEN HE ENDS THE
TUTORIAL, THE SCREEN IS RESTORED.

INVOKED WITH:

CALL TO CHELP

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
WHERE
TLD = TLDHELP (CHAR(8)) CONTAINS THE MEMBER NAME OF THE

FIRST TUTORIAL PAGE TO BE DISPLAYED.

RETURN CODE:
0 - SPFTUTOR WAS INVOKED.
& = SPFTUTOR WAS NOT INVOKED BECAUSE THE TLDHELP FIELD CONTAINED
AN INVALID MEMBER NAME.
NOTES:
NONE.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 145

CHPJ = COMMON HARDCOPY PRINT JCL ROUTINE e CHRJ

PURPOSE:
CHPJ IS USED TO PRINT A SPECTIFIED DATA SET VIA A BACKGROUND JOB.
CHPJ GENERATES JCL FOR A JOB STEP AND WRITES THE JCL TO THE TEMPCNTL
DATA SET ('USERID.SPFTEMP¥.CNTL'). THE PROTOTYPE FOR THE GENERATED
JCL IS TAKED FROM THE SPFPROCS DATA SET (MEMBER CHPJ).

INVOKED WITH:

CALL TO CHPJ

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICIAL DISPLAY TABLE
2. DSNS CHAR(58) INPUT DATA SET NAME STRUCTURE
3 VOLUME CHAR(6) INPUT VOLUME SERIAL NUMBER
4 DEVICE CHAR(3) INPUT DEVICE TYPE
5. DISP CHAR(1) INPUT DATA SET DISPOSITION
6. SCLAS CHAR(15) INPUT SYSOUT CLASS
7 RECFM CHAR(6) INPUT OUTPUT RECORD FORMAT
8. LRECL FIXED(15) INPUT OUTPUT LOGICAL RECORD LENGTH
9. BLKSIZE FIXED(15) INPUT OUTPUT BLOCK SIZE
10. OPTJ CHAR(1) INPUT CUTPUT OPTCD
WHERE
DSNS - THE DATA SET NAME STRUCTURE (STANDARD DAIR FORMAT).

E.G., DCL 1 DSNS,
2 DSNL FIXED(15), /% DSNAME LENGTH */
2 DSN CHAR(56); /% DSNAME

NOTE: THE DSN MAY INCLUDE A MEMBER NAME IN PARENS.

VOLUME - THE SERIAL NUMBER OF VOLUME THAT THE DATA SET IS ON,
IF IT IS NOT CATALGGED.
DEVICE - THE TYPE OF THE DEVICE THAT THE DATA SET IS ON,
IF IT IS NOT CATALOGED.
DISP - A CODE THAT INDICATES THE REQUESTED DISPOSITION OF
THE DATA SET AFTER PRINTING:
'D" - DELETE
'K' - KEEP
SCLAS - THE SYSQUT CLASS USED FOR THE OUTPUT OF THE PRINT STEP.
RECFM - THE DATA SET RECORD FORMAT, WHICH IS USED TO CONTROL
THE OUTPUT OF THE PRINT STEP.
LRECL - THE DATA SET LOGICIAL RECORD LENGTH, WHICH IS USED
TO CONTROL THE OUTPUT OF THE PRINT STEP.
BLKSIZE - THE DATA SET BLOCK SIZE, WHICH IS USED TO CONTROL
THE OUTPUT OF THE PRINT STEP.
OPTJ - THE OPTCD VALUE FOR THE 3800, ‘'J° Oh BLANK.

(CONTINUED ON NEXT PAGE)

146 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL — PROPERTY OF IBM

CHPJ = COMMON HARDCOPY PRINT JCL ROUTINE (CONTINUED) CHPJ

RETURN CODE:
0 - NO ERRORS DETECTED.
1-39 - CDP ERROR RETURN CODE WRITING TO TEMPCNTL DATA SET.
40 - CHPJ MEMBER NOT FOUND IN PROCS DATA SET.
44 - I/0 ERROR READING SPFPROCS MEMBER CHPJ.
48 - CMSG ERROR CONSTRUCTING A CARD FROM THE MODEL.

NOTES:

THE CALLING SEQUENCE PARAMETERS REFER TO THE DATA SET TO BE PRINTED,
NOT THE TEMPCNTL DATA SET.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 147

CHPL - COMMON HARDCOPY PRINT LOCAL ROUTINE CHPL
PURPOSE:

CHPL IS USED TO ROUTE A SPECIFIED DATA SET TO A LOCAL PRINTER

VIA DSPRINT.

INVOKED WITH:
CALL TO CHPL

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICIAL DISPLAY TABLE
2. ENTCODE FIXED(31) INPUT CHPL ENTRY CODE

3. DSNS CHAR(58) INPUT DATA SET NAME STRUCTURE
4. PSWD CHAR(8) INPUT DATA SET PASSWORD

5. LPID CHAR(3) INPUT LOCAL PRINTER ID

WHERE

ENTCODE - THE ENTRY CODE TO CHPL:

0 - NO CARRIAGE CONTROL CHARACTERS IN THE INPUT
DATA SET, USE DSPRINT'S DEFAULTS.

1 - CARRIAGE CONTROL CHARACTERS PRESENT IN THE
INPUT DATA SET, INDICATE SUCH TO DSPRINT.

DSNS = THE DATA SET NAME STRUCTURE (STANDARD DAIR FORMAT).
E.G., DCL 1 DSNS,
2 DSNL FIXED(15), % DSNAME LENGTH %/

2 DSN CHAR(56); /% DSNAME *x/
NOTE: THE DSN MAY INCLUDE A MEMBER NAME IN PARENS.
PSWD - THE PASSWORD, IF THE DATA SET TO BE PRINTED IS
PASSWORD PROTECTED.
LPID ~ LOCAL PRINTER ID KNOWN BY DSPRINT.

RETURN CODE:
0 - NO ERROR DETECTED.
& -~ THE USER ATTENTIONED OUT OF DSPRINT.
8 - DSPRINT ABENDED.
12 - DSPRINT HAD A RETURN CODE GREATER THAN ZERGO.

NOTES:
NONE.

148 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

CIPARMS - COMMON INITIALIZE USER PARAMETERS ROUTINE CIPARMS

PURPOSE:
CIPARMS GETMAINS THE AREA FOR THE SPF TABLE OF KEYWORD VALUES (TKV)
AND INITIALIZES IT WITH A MEMBER OF THE SPF PARMS DATA SET. THE
MEMBER HAS THE SAME NAME AS THE USERS TSO LOGON ID.

INVOKED WITH:

CALL TO CIPARMS (FROM SMI)

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - PARMS MEMBER READ AND PROCESSED. NO ERRORS DETECTED.

1 - PARMS MEMBER READ AND CONVERTED FROM SPF VERSION 2.1 FORMAT.
NO ERRORS DETECTED.

- NO PARMS MEMBER READ, NEW MEMBER CREATED. NO ERRORS DETECTED.

= NO PARMS MEMBER READ, NO NEW MEMBER CREATED. NO ERRORS DETECTED.
- OPEN ERROR OPENING PARMS DATA SET TO OUTPUT NEW MEMBER.

DIRECTORY FULL ERROR ATTEMPTING TO STOW NEW MEMBER.

= I/0 FIND ERROR FINDING PARMS MEMBER.

I/0 READ ERROR READING PARMS MEMBER.

I/0 STOW ERROR STOWING DIRECTORY ENTRY FOR NEW MEMBER.

I70 WRITE ERROR WRITING NEW MEMBER TO PARMS DATA SET.

DATA SET FULL ERROR ATTEMPTING TO WRITE NEW MEMBER.

H = 0 00 N UL N
N ©
[I N R | !

NOTES:

IF THE PARMS MEMBER WAS CREATED BY SPF VERSION 2.1 IT IS CONVERTED
T0 THIS VERSION'S FORMAT BY SPC (VIA LINK TO SPFSPC).

IF THE PARMS MEMBER IS NOT FOUND, DEFAULT VALUES FROM A COMPILED
VERSION OF THE TKV ARE USED 7O INITIALIZE THE TKV. IF THERE ARE
NO OTHER ERRORS, THIS DEFAULT TKV IS WRITTEN TO THE PARMS DATA SET.

AFTER THE TKV IS INITIALIZED THE SUBROUTINE SIP (SPF INPUT PARMS) IS
CALLED. SIP WAS DESIGNED AS A USER EXIT ROUTINE AND CAN BE MODIFIED
IF AN INSTALLATION REQUIRES THAT DATA BE VERFIED OR MODIFIED BEFORE
BEING USED BY SPF. SIP ALSO COPIES SOME DATA FROM THE TKV TO THE
TSV. FOR MORE INFORMATION SEE THE DESCRIPTION OF SIP.

RETURN CODES 5 TO 12 ARE ERROR CODES. THEY WILL CAUSE AN
INITIALIZATION ERROR MENU TO BE DISPLAYED WHEN PMD IS FIRST EXECUTED,
BUT FOLLOWING THAT SPF WILL CONTINUE PROCESSING.

FOR RETURN CODES 3 TO 12 DEFAULT TKV VALUES ARE USED DURING THE
SESSION BUT WILL NOT BE REMEMBERED FOR THE NEXT SESSION.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 149

CIR - COMMON READ PDS DIRECTORY ROUTINE CIR
PURPOSE:
CIR READS PDS DIRECTORY ENTRIES AND RETURNS THE INFORMATION TO THE
CALLER. IT IS USED BY THE LIBRARY AND DATA SET UTILITIES.

INVOKED WITH:
CALL TO CIR

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. TFD <TFD> IN/OUT FILE DEFINITION TABLE
3. WORK PTR(31) IN/OUT WORK AREA
WHERE
TFD - TFDBLDLP POINTS TO A BLDL LIST IN THE SAME FORMAT
AS THAT REQUIRED BY THE 0Ss/VS BLDL MACRO.
WORK = A FULL WORD WHICH CIR USES TO POINT TO A WORK

AREA BETWEEN CALLS. THE CALLER MUST SET THIS WORD
TO ZERQO BEFORE THE FIRST CALL TO CIR. OTHERWISE
IT IS OF NO CONCERN TO THE CALLER.

RETURN CODE:
0 - NO ERRORS DETECTED.

4 - I/0 ERROR READING DIRECTORY.
8 - UNABLE 7O OPEN DCB FOR DIRECTORY READ.

NOTES:

CIR READS THE PDS DIRECTORY SEQUENTIALLY. IT RETURNS ONE DIRECTORY
ENTRY TO THE CALLER ON EACH CALL.

THE CALLER SETS UP A BLDL FORMAT LIST (POINTED TO FROM TFDBLDLP)
WITH THE NUMBER OF ENTRIES SET TO ONE AND THE ENTRY LENGTH FILLED
IN, TO DESCRIBE TO CIR HOW MUCH DATA TO RETURN ON EACH CALL. CIR
FILLS IN THE REMAINDER OF THE BLDL LIST FOR THE ENTRY. CIR MAY BE
CALLED REPEATEDLY UNTIL ALL DIRECTORY ENTRIES HAVE BEEN READ.

AFTER THE ENTIRE DIRECTORY HAS BEEN READ, CIR RETURNS A TRAILER
ENTRY, INDICATED BY THE FIRST 4 BYTES OF THE MEMBER NAME BEING
X'FFFFFFFF'. THE NEXT TWO BYTES THEN CONTAIN THE TOTAL NUMBER OF
DIRECTORY BLOCKS, AND THE LAST 2 BYTES CONTAIN THE NUMBER OF USED
DIRECTORY BLOCKS.

150 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

cIv - COMMON READ VYTOC ROUTINE cIv

PURPOSE:

CIV OBTAINS VTOC AND DIRECTORY INFORMATION ABOUT THE DATA SET
SPECIFIED IN THE TFD AND PLACES IT IN THE CIV COMMON AREA.

INVOKED WITH:
CALL TO CIV

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. TFD <TFD> IN/7OUT FILE DEFINITION TABLE
3. COMM <CIV> OUTPUT CIV COMMON AREA

4. OPTION FIXED(31) INPUT OPTION

WHERE

OPTION - CONTROL CIV PROGRAM AS FOLLOWS:
0 - NORMAL PROCESSING.
1 - NO PARTITIONED DATA SET DIRECTORY INFORMATION
RETURN CODE:
0 - NO ERRORS DETECTED. CIV COMMON AREA IS COMPLETE.
>0 - OBTAIN OF VTOC INFORMATION FAILED. THE OBTAIN MACRO RETURN

CODE IS PASSED BACK AS THE CIV RETURN CODE. THE CIV COMMON
IS SET TO ZEROS.

NOTES:
NONE.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 151

cJc

PUR

INV

CAL

RET

NOT

- COMMON JOB CARD ROUTINE : cJC

POSE:

CJC IS USED TO WRITE JOBCARD IMAGES TO THE TEMPORARY CONTROL CARD
DATA SET ('USERID.SPFTEMP%.CNTL'). UP TO 'FOUR RECORDS ARE WRITTEN. -

OKED WITH:

CALL T0O cJC

LING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

2. JOBCARDS (4)CHAR(72) INPUT JOBCARD IMAGES (FROM MENU)
URN CODE:

0 - NORMAL COMPLETION.
NON-ZERO - ABNORMAL COMPLETION (RETURN CODE PASSED THROUGH FROM CDP).

ES:

BEFORE CJC IS CALLED, THE CONTROL CARD TEMPORARY DATA SET MUST BE
ALLOCATED AND OPENED BY CALLING CTA. CJC WILL INITIALIZE THE
FOLLOWING FIELDS OF THE TFD BEFORE CALLING CDP:

TFDRECP = ADDR(CJC OUTPUT BUFFER)
TFDRECL = 80
TFDECODE = 0

THE CALLING PROGRAM MUST USE CDP TO WRITE OUT ADDITIONAL JCL TO
THE TEMPORARY DATSET, LATER CLOSEOUT CDP, AND CLOSE THE TEMPORARY
DATA SET BEFORE SUBMITTING THE JCL TO 0S BY CALLING THE CSB ROUTINE.

CJC DOES NOT SYNTAX CHECK THE JOBCARD INFORMATION. IT IS ASSUMED
THE USER HAS VERIFIED THE JOBCARD INFORMATION BEFORE CJC IS CALLED.

152 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

CJF - COMMON JOBNAME FIND ROUTINE CJF

PURPOSE:

CJF IS USED TO SEARCH JOBCARD IMAGES TO FIND THE JOBNAME AND TO
UPDATE THE TSVJCHAR FIELD APPROPRIATELY. CJF IS CALLED AFTER DISPLAY
CJF IS USED IN CONJUNCTION WITH CJN AND CJC IN
PROCESSING USER JOBCARDS.

OF THE JOBCARDS.

INVOKED WITH:
CALL TO CJF

CALLING SEQUENCE PARAMETERS:

<TLD> INPUT LOGICAL DISPLAY TABLE
CHAR(1) IN/OUT CURRENT JOBNAME CHARACTER
CHAR(1) IN/CUT NEXT JOBNAME CHARACTER
(4)CHAR(72) INPUT ARRAY OF 4 JOBCARDS
CHAR(8) OUTPUT JOBNAME

1. TLD

2. CURCHAR

3. NEXTCHAR

4. JOBCARDS

5. JOBNAME

WHERE
CURCHAR
NEXTCHAR
JOBNAME

RETURN CODES:
0 - ALWAYS.

NOTES:

IS
T0
IF

IS
T0
IF

IS
IT

THE OUTPUT FIELD FROM CJN. IT IS UPDATED BY CJF
REFLECT POSSIBLE USER MODIFICATION OF THE JOBNAME
JOBCARDS WERE DISPLAYED.

THE OUTPUT FIELD FROM CJN. IT IS UPDATED BY CJF
REFLECT POSSIBLE USER MODIFICATION OF THE JOBNAME
JOBCARDS WERE DISPLAYED.

SET TO THE JOBNAME IF ANY IS FOUND, OTHERWISE,
IS SET TO BLANKS.

SEE THE NOTES FOR OBJECT MODULE CJN.

LICENSED MATERIAL - PROPERTY OF IBM

PROGRAM ORGANIZATION 153

CJN = COMMON JOSNAME INIT ROUTINE . ’ C{N

PURPOSE:

CJN IS USED TO INITIALIZE THE JOBNAME ON A SET OF JOBCARDS BEFORE.
DISPLAYING THEM.

T

CJN ALSO UPDATES THE TSVJCHAR FIELD IF AN SPF .

FORMAT JOBNAME IS BEING USED. SPF JOBNAMES CONSIST OF THE TSO USERID
FOLLOWED BY A SINGLE CHARACTER FROM ™A™ TQ "Z"™ OR ™0™ 7O "9". CJN IS
USED IN CONJUCTION WITH CJF AND CJC IN HANDLING USER JOBCARDS. k

INVOKED WITH:

CALL TO CJN
CALLING SEQUENCE PARAMETERS:) B
1. LD <TLD> INPUT LOGICAL DISPLAY TABLE
2. CURCHAR CHAR(1) ouT CURRENT JOBNAME CHARACTER
3. NEXTCHAR CHAR(1) ouT NEXT JOBNAME CHARACTER’
4. JOBCARDS (4)CHAR(72) IN/OUT ARRAY OF & JOBCARDS
WHERE ‘
CURCHAR IS THE JOBNAME CHARACTER TAKEN FROM TSVJCHAR AND"
USED TQ INITIALIZE THE JOBCARDS.
NEXTCHAR IS SET TO THE VALUE OF TSVJCHAR AFTER IT IS
INCREMENTED BY CJN.
JOBCARDS IS THE JOBCARD ARRAY INTO WHICHTHE JOBNAME WILL BE

RETURN CODES:
0 - ALWAYS.

NOTES:

PLACED BY CJN.

IF THE CALLING PROGRAM DOES NOT SUBMIT A JOB AFTER CALLING CJN,
IT MUST COMPARE NEXTCHAR WITH TSVJCHAR AND IF EQUAL IT MUST SET
TSVJCHAR TO CURCHAR. THIS PROCEDURE INSURES THAT THE JOBNAME IS
INCREMENTED ONLY WHEN SPF FORMAT JOBNAMES ARE SUBMITTED.

154 SPF/TS0O PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF. IBM

CKUGET - COMMON KEYHORD-VALUE GET ROUTINE CKVGET

PURPOSE:
CKVGET IS USED TO RETRIEVE THE "REMEMBERED™ VALUE(S) OF A LIST OF
NAMED KEYWORDS FROM THE KEYWORD/VALUE TABLE (TKV). CKVPUT IS USED
TO STORE KEYWORD/VALUES INTO THE TKV.

INVOKED WITH:

CALL TO CKVGET

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

2. KVBLOCK <KVBLOCK> INPUT KEYWORD/VALUE CONTROL BLOCK
3. AREA CHAR(%) OUTPUT VALUE AREA

WHERE

KVBLOCK - CONSISTS OF ONE OR MORE KEYWORD/VALUE ENTRIES
DELIMITED BY A BYTE SET TO '00'X. SEE DATA AREAS
SECTION FOR A DESCRIPTION OF THE KEYWORD/VALUE BLOCK.

AREA = AN AREA EQUAL IN LENGTH TO THE SUM OF THE VALUE
LENGTH FIELD(S) IN THE KVBLOCK.
RETURN CODES:
0 - ALL KEYWORDS WERE FOUND IN TKV.
4 - ONE OR MORE KEYWORDS WERE NOT FOUND IN TKV.

NOTES:

EACH VALUE RETRIEVED IS PLACED IN THE NEXT N BYTES OF AREA. N IS
THE VALUE LENGTH FROM A GIVEN KVBLOCK ENTRY. IF A GIVEN KEYWORD IS
NOT FOUND IN THE TKV, ITS AREA SPACE IS SET TO BLANKS. IF THE
LENGTH OF THE SPACE IS GREATER THAN THE VALUE RETRIEVED, THE SPACE
IS PADDED WITH BLANKS.

IF THE FIRST CHARACTER OF A KEYWORD NAME IS "' (ASTERISK) THEN
THE KEYWORD/VALUE ENTRY IS ASSUMED NOT TO BE IN THE TKV. THE
SEARCH OF THE TKV IS SKIPPED, THE OUTPUT AREA IS SET TGO BLANKS AND
THE RETURN CODE IS SET TO 4.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 155

CKVPUT - COMMON KEYHORD-VALUE PUT ROUTINE CKUPUT

PURPOSE:
CKVPUT IS USED TO STORE KEYWORDS AND THEIR "REMEMBERED™ VALUES INTO
THE KEYWORD/VALUE TABLE (TKV). CKVGET IS USED TGO RETRIEVE VALUES
FROM THE TABLE.

INVOKED WITH:

CALL TO CKVPUT

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

2. KVBLOCK <KVBLOCK> INPUT KEYWORD/VALUE CONTROL BLOCK
3. AREA CHAR (%) INPUT VALUE AREA

WHERE

KVBLOCK - CONSISTS OF ONE OR MORE KEYWORD/VALUE ENTRIES
DELIMITED BY A BYTE SET TO '00°'X. SEE DATA AREAS
SECTION FOR A DESCRIPTION OF THE KEYWORD/VALUE BLOCK.

AREA - AN AREA EQUAL IN LENGTH TO THE SUM OF THE VALUE
LENGTH FIELD(S) IN THE KVBLOCK. AREA CONTAINS THE
VALUES TO BE STORED INTO THE TKV.

RETURN CODES:
0 - ALWAYS.

NOTES:

EACH KEYWORD/VALUE PAIR REPLACES AN EXISTING TKV ENTRY OF THE SAME
KEYWORD NAME, OR IS ADDED TO THE TKV IF NOT CURRENTLY STORED THERE.

EACH VALUE IS BACKSCANNED FOR THE LAST NON-BLANK CHARACTER BEFORE
STORING, AND ONLY THE NON-BLANK CHARACTERS ARE STORED, UNLESS THE
KEYWORD IS FOUND IN THE "FIXED™ PART OF THE TKV. BLANK VALUES ARE
NOT STORED IN THE "VARIABLE™ PART OF THE TKV.

THESE TECHNIQUES REDUCE THE TKV LENGTH AS WELL AS THE SPFPARMS DATA
SET BLKSIZE REQUIRED. IF THERE IS INSUFFICIENT SPACE TO STORE A
KEYWORD/VALUE IN THE TKV, THE USER IS NOTIFIED AND THE TKVFULL FLAG
IN THE TKV HEADER IS SET.

IF THE FIRST CHARACTER OF A KEYWORD IS '"%' (ASTERISK) THEN THE
KEYWORD/VALUE ENTRY IS NOT STORED IN THE TKV.

156 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

CLM - COMMON LOAD MODULE LOADER ROUTINE CLM

PURPOSE:
CLM IS A SUBROUTINE USED TO LOAD COMMON SUBROUTINE MODULES.
THESE MODULES CONTAIN SUBROUTINES AND THEIR ASSOCIATED ADDRESSES.
THE ADDRESSES FROM THE PSEUDO TSC (AT THE ENTRY POINT OF THE MODULE)
ARE STORED IN THE CORRESPONDING ENTRIES IN THE REAL TSC FOR THE
CURRENT PROCESSOR TASK.

INVOKED WITH:

CALL TO CLM

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. NAME CHAR(38) INPUT LOAD MODULE NAME
WHERE

NAME - THE NAME OF THE MODULE TO BE LOADED.

RETURN CODES:

0 - NORMAL COMPLETION.

& - ERROR IN THE LOADED MODULE. AN ENTRY FROM THE LOADED MODULE
CANNOT BE STORED IN THE REAL TSC BECAUSE THERE IS NO
CORRESPONDING ENTRY.

NOTES:
CLM IS USED BY PMD TO LOAD A MODULE THAT IS IDENTIFIED WITH INPUT
FROM APRIOPT. THIS ALLOWS EXIT ROUTINES OR ALTERNATE ROUTINES TO

TAKE EFFECT DURING THE LIFE OF A PROCESSOR. THE MODULE IS DELETED
BEFORE THE NEXT PRIMARY OPTION IS INVOKED BY PMD.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 157

CLOG - COMMON LOG ROUTINE CLOG

PURPOSE:
CLOG IS USED TO WRITE AN ENTRY TO THE SPF LOG DATA SET. CLOG
ADDS A TIME STAMP TO THE MESSAGE BEFORE WRITING IT. IT ALSO WRITES
PAGE HEADINGS.

INVOKED WITH:

CALL TO CLOG

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. MSGID CHAR(4) INPUT MESSAGE ID
3. PARM1 * INPUT LOG MESSAGE PARAMETER 1
.. PARMN * INPUT LOG MESSAGE PARAMETER 'N'
WHERE
MSGID - IDENTIFIES THE MESSAGE FROM THE SPF MESSAGE DATA

SET THAT IS TO BE USED IN CREATING THE LOG RECORD.

PARM(S) - PARM1 THROUGH PARMN ARE OPTIONAL PARAMETERS. THEY
CAN BE IN ANY FORMAT THAT CAN BE HANDLED BY CMSG AND
ARE USED AS SUBSTITUTIONAL PARAMETERS IN FORMAYTING
THE LOG MESSAGE. A MAXIMUM OF 10 OPTIONAL PARAMETERS
IS SUPPORTED BY CLOG.

RETURN CODE:
0 - ALWAYS.

NOTES:
THE CLOG PARAMETER LIST MUST BE TERMINATED BY A VLIST FLAG.

SPF PROGRAMS SHOULD USE CLOG TO WRITE LOG MESSAGES ANY TIME A
PERMANENT CHANGE IS MADE TO A DATA SET, OR A SIGNIFICANT EVENT
OCCURS SUCH AS SPF INITIALIZATION/TERMINATION.

TO FORM THE LOG RECORD, THE LEVEL 1 AND LEVEL 2 MESSAGES FROM THE
SPF MESSAGE DATA SET ARE COMBINED TO PRODUCE A LOG RECORD OF 96
CHARACTERS.

IF THE LOG DATA SET PRIMARY ALLOCATION (AS SPECIFIED USING OPTION
0.2) IS NOT ZERO, CLOG WILL CALL CTA TO ALLOCATE THE LOG DATA SET
THE FIRST TIME THAT A LOGGING REQUEST IS MADE. THEN IT WILL LOG
THE START OF SESSION MESSAGE (P00l1) BEFORE LOGGING THE REQUEST.

THE ONE EXCEPTION IS WHEN THE FIRST REQUEST IS FOR THE SESSION
TERMINATION MESSAGE (P002). 1IN THIS CASE, THE LOG IS ALLOCATED AND
START AND END OF SESSION MESSAGES ARE LOGGED ONLY IF TSV FIELD
"SLOGFLAG™ IS "A™ (ALWAYS).

158 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

CcMB - COMMON MENU BUILD ROUTINE CMB

PURPOSE:
CMB IS USED TO BUILD A PARAMETER LIST WHICH CAN BE USED TO CALL MHA.
ALL PARAMETER ENTRIES IN THE LIST WILL BE INITIALIZED TO POINT TO
THE PROPER KEYWORD VALUES (ALSO OBTAINED BY CMB).

INVOKED WITH:

CALL TO CMB

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. MHAPM * IN/OUT MHA PARAMETER LIST
3. KVBPM * OUTPUT KVBLOCK AREA
4. KVGPM * OUTPUT KEYWORD VALUE AREA
WHERE
MHAPM - IS AN AREA FORMATTED EXACTLY THE SAME AS THE INPUT

PARAMETER LIST TO MHA. THE CALLER MUST INITIALIZE

THE TLD POINTER FIELD, THE MENU ID FIELD, AND THE
PARM1, ..., PARMN FIELDS. THE PARMl, ..., PARMN FIELDS
SHOULD BE EACH INITIALIZED TO ZERO WITH THE HIGH

ORDER BIT ON IN THE LAST (NTH) FIELD. IT WILL BE
RETURNED BY CMB WITH THE PARM FIELDS SET TO THE
ADDRESSES OF THE CORRESPONDING KEYWORD VALUES,

(IN THE KVGPM AREA).

KVBPM = IS AN AREA WHERE A KVBLOCK IS BUILT. IT IS FORMATTED
BY CMB BASED ON DATA RETURNED BY A NON-DISPLAY CALL
T0 MHA FOR THE REQUESTED MENU ID. IT IS THE CALLER'S
RESPONSIBILITY TO SUPPLY A LARGE ENOUGH AREA.

KVGPM = IS AN AREA INTO WHICH THE KEYWORD VALUES, ASSOCIATED
WITH THE REQUESTED MENU, ARE READ. 1IT IS THE CALLER'S
RESPONSIBILITY TO SUPPLY A LARGE ENOUGH AREA.

RETURN CODE:

0 OR & - RETURN CODE IS PASSED BACK FROM CALL TO CKVGET.

NOTES:
THIS ROUTINE IS CALLED BY UOL AND USC.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 159

cML

= COMMON MEMBER LIST ROUTINE

PURPOSE:

CML IS USED TO PROCESS MEMBER LISTS.

CML

SEVERAL SERVICES ARE PROVIDED:

1. READ PDS DIRECTORY AND BUILD IN-MEMORY MEMBER NAME LIST.
FREEMAIN PREVIOUSLY CONSTRUCTED IN-MEMORY MEMBER LIST.

ADD AN ENTRY TO A PREVIOUSLY CONSTRUCTED IN-MEMORY MEMBER LIST.
DISPLAY A MEMBER LIST AND PROCESS SCROLLING AND USER SELECTIONS.
SPF STATISTICS ARE DISPLAYED IF PRESENT. CML INTERFACES WITH A

SELECTION ROUTINE SUPPLIED BY THE CALLING PROGRAM OR A BUILT-IN
SELECTION ROUTINE INTERFACES ARE DESCRIBED

2.
3.
4.

INVOKED
CALL

CALLING SEQUENCE PARAMETERS:

1.
2.
3.
4.
5.
6.
7.
WHER

SELECTION ROUTINE.
IN FOLLOWING PAGES OF THIS SECTION.

WITH:
TO CML

TLD
TFD
CODE
SUBR
NAME
PARM
MSGID
E

TFD

CODE

<TLD>
<TFD®>
BIT(32)
PTR(31)
CHAR(3)
*

CHAR(%)

INPUT
IN/OUT
INPUT
INPUT
IN/OUT
INPUT
OUTPUT

LOGICAL DISPLAY TABLE

FILE DEFINITION TABLE
CONTROL BIT CODES

SELECT SUBROUTINE

MEMBER NAME

PARM FOR SELECT SUBROUTINE
ERROR MESSAGE ID

THE DATA SET MUST BE A PDS WITH AN OPEN DCB WITH
DSORG=PO. TFDDDNAM MUST BE SET UP.

32 BIT SWITCHES,

AS FOLLOWS:

ECODE(1) TO ECODE(24) - RESERVED

- NOT AN ADD ENTRY REQUEST
- ADD AN ENTRY TO MEMBER LIST

= NO TTR IN MEMBER LIST
- PLACE TTR IN MEMBER LIST

= ALLOW SELECTION GF MEMBERS NOT IN LIST
= ALLOW SELECTION OF MEMBERS IN LIST ONLY

= DISPLAY MEMBER LIST
- SUPPRESS DISPLAY

-~ NO RENAME FIELD
- RENAME FIELD

= SINGLE INPUT DATA SET
- CONCATENATED INPUT DATA SETS

ECODE(25)

ECODE(26)

ECODE(27)

ECODE(238)

ECODE(29)

ECODE(30)

-0 o O - -~ -o

(CONTINUED ON NEXT PAGE)

160 SPF/TSO PROGRAM LOGIC MANUAL

LICENSED MATERIAL - PROPERTY OF IBM

CML - COMMON MEMBER LIST ROUTINE (CONTINUED) *CML

ECODE(31) RETAIN MEMBER LIST FOR FUTURE CALLS

FREE MEMBER LIST ON EXIT

DO NOT BUILD A MEMBER LIST
READ DIRECTORY AND BUILD MEMBER LIST

ADDRESS OF A SELECT ROUTINE WHICH CML WILL INVOKE WHEN
A SELECT CODE IS ENTERED. 1IF SUBR IS ZERO, CML WILL
CALL THE BUILT-IN SELECT ROUTINE DESCRIBED BELOW.

ON INPUT, NAME OF THE FIRST MEMBER TO BE DISPLAYED

ON THE SCREEN. IF THE MEMBER REQUESTED DOES NOT
EXIST, THE LIST IS DISPLAYED STARTING WITH THE MEMBER
PRECEDING THE MEMBER REQUESTED IN COLLATING SEQUENCE.

ON OUTPUT, NAME OF THE MEMBER SELECTED IF THE BUILT-IN
SELECT ROUTINE IS USED.

PARAMETER THAT IS PASSED TO THE SELECT ROUTINE WHEN
ONE IS SPECIFIED.

CONTAINS AN ERROR MESSAGE ID IF RETURN CODE IS NOT 0.

-0
1

ECODE(32)

o
|

SUBR

NAME

PARM

MSGID

RETURN CODES:
0 - NORMAL RETURN.

4 - ERROR RETURN. ONE OF THE FOLLOWING OCCURRED.
- NO MEMBERS IN DATA SET.
- BLDL ERROR OCCURRED.
= I/0 ERROR READING THE PDS DIRECTORY.
- OPEN OF DCB FOR DIRECTORY READ FAILED.

NOTES:

ON EXIT FROM CML, TFDCML POINTS TO THE MEMBER LIST IN SUBPOOL 3 IF
THE MEMBER LIST WAS RETAINED.

IF CML IS PASSED A ZERO 'SUBR' ADDRESS, IT CALLS A BUILT-IN
SELECT SUBROUTINE (USED BY BROWSE AND EDIT). THE BUILT-IN ROUTINE
PERFORMS THE FOLLOWING FUNCTIONS:

VALIDITY CHECKS THE SELECT CODE -- 'S' IS THE ONLY VALID CODE.
CHANGES A VALID SELECT CODE TO BLANK.

RETURNS THE MEMBER SELECTED IN THE NAME PARAMETER.

IGNORES THE RENAME FIELD.

SETS THE ENDFLAG ON.

SEE THE NEXT PAGE FOR INFORMATION ON CML SELECT SUBROUTINES INVOKED
WHEN THE SUBR PARAMETER IS NON-ZERO.

(CONTINUED ON NEXT PAGE)

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 161

CML - COMMON MEMBER LIST ROUTINE (CONTINUED) CML

CML INVOKED SELECT SUBROUTINE:
CML INVOKES A ™SELECT SUBROUTINE™ TO PROCESS EACH MEMBER SELECTED
FROM THE LIST. THE 'SUBR' PARAMETER PASSED TO CML IS THE ADDRESS OF
THE SELECT SUBROUTINE.

THE CALLING SEQUENCE PARAMETERS FOR THE SELECT SUBROUTINE ARE:

l. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. TFD <TFD> IN/OUT FILE DEFINITION TABLE
3. CODE BIT(32) INPUT CONTROL BIT CODES
4. NAME CHAR(8) IN/OUT MEMBER NAME TO CML
5. PARM * IN/OUT PARAMETER FOR SELECT SUBROUTINE
6. SCODE CHAR(1) IN/7OUT SELECT CCDE
7. MEMBER CHAR(3) INPUT SELECTED MEMBER NAME
8. RENAME: CHAR(3) IN/OUT RENAME FIELD
9. FLAGS BIT(8) OUTPUT FLAGS
WHERE
CODE - 32 BIT SWITCHES, AS PASSED TO CML.
NAME - MEMBER NAME, AS PASSED TO CML.
PARM - PARAMETER THAT IS PASSED TO THE SELECT ROUTINE FROM
THE PROGRAM THAT CALLED CML.
SCODE - IS THE SELECTION CODE THAT WAS ENTERED BY THE TERMINAL

USER. THIS CODE SHOULD BE SET TO BLANK OR '%' BEFORE
EXITING UNLESS ENDFLAG IS SET.

MEMBER - IS THE NAME OF THE MEMBER THAT WAS SELECTED BY THE
TERMINAL USER.

RENAME = IS THE CONTENTS OF THE RENAME FIELD ASSOCIATED WITH
THE MEMBER. THE SELECT ROUTINE CAN CHANGE THIS FIELD.

FLAGS - Is A BYTE CONTAINING TWO FLAGS IN THE FOLLOWING FORMAT.
LAGS
2 ENDFLAG BIT(1),
2 PAGEFLAG BIT(1),
2 x BIT(6),

ENDFLAG - INDICATES ACTION TO BE TAKEN BY CML UPON
RETURN FROM SELECT SUBROUTINE, AS FOLLOWS:
0 - RESCAN SCREEN IMAGE FOR SELECT CODES.
1 - RETURN TO CALLING PROGRAM.

PAGEFLAG - SET BY CML AS FOLLOWS:
0 - IF THE CURRENT SELECTION IS NOT THE
LAST SELECTION ON THE PAGE.
1 - IF THE CURRENT SELECTION IS THE LAST
ON THE PAGE. THE SELECT ROUTINE SHOULD
CLOSE AND RELEASE THE DATA SET BEING
PROCESSED IN THIS CASE.

THE RETURN CODE (IN REG 15) FROM THE SELECT SUBROUTINE IS NOT
USED BY CML.
NOTES:

THE NAMES OF THE OBJECT MODULES WHICH ARE CML SELECT SUBROUTINES
ARE AS FOLLOWS:

UDMS - USED BY UDM (MEMBER LIST OPTION OF LIBRARY UTILITY)
UMCS - USED BY UMC (MOVE/COPY UTILITY)
URSS - USED BY URS (RESET STATISTICS UTILITY)

162 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

¢

CMSG = COMMON MESSAGE ROUTINE CMSG

PURPOSE:

CMSG IS USED TO FORMAT ERROR MESSAGES. CMSG OPTIONALLY READS A
MESSAGE FROM THE SPFMSGS DATA SET, FORMATS THE MESSAGE AND RETURNS
THE MESSAGE TO THE CALLER. PARAMETERS MAY BE SUBSTITUTED INTO THE
MESSAGE.

INVOKED WITH:
CALL TO CMSG

'

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. MSGID CHAR(4%) INPUT MESSAGE ID
3. LEVEL FIXED(31) INPUT MESSAGE LEVEL
4. AREA CHAR(%) QUTPUT AREA FOR MESSAGE
5. SIZE FIXED(31) INPUT SIZE OF AREA (BYTES)
6. PARML * SUBSTITUTION PARAMETER 1
PARMN * SUBSTITUTION PARAMETER N
WHERE
MSGID - IS THE MESSAGE ID. THE FIRST CHARACTER MUST BE AN

UPPER CASE ALPHA CHARACTER. THE REMAINING CHARACTERS
MUST BE NUMERIC.

LEVEL = 0 - TO REQUEST THE HELP (TUTOR) NAME (CHARS(8))
BE RETURNED TO TLDHELP.

- TO REQUEST THE LEVEL 1 (SHORT) MESSAGE

- TO REQUEST THE LEVEL 2 (LONG) MESSAGE

- TO REQUEST SHORT AND LONG MESSAGES, AND FOR
TLDHELP AND TLDALARM TO BE SET FROM THE MESSAGE.

W -

AREA - IS THE AREA WHERE THE MESSAGE(S) IS TO RETURNED.
IF LEVEL 3 IS REQUESTED, THE SHORT MESSAGE (24 BYTES)
IS FOLLOWED BY THE LONG MESSAGE (LENGTH SPECIFIED BY
THE SIZE PARAMETER, I.E. AREA MUST BE 24 PLUS SIZE).
SIZE - IS THE NUMBER OF AREA BYTES PROVIDED. IF THE MESSAGE
EXCEEDS THE SIZE, IT WILL BE TRUNCATED. NORMALLY, THE
VALUE OF THIS PARAMETER 1IS:
LEVEL SIZE
0 NOT USED
1 24
2 72
3 72
PARM(S) - PARM1 THROUGH PARMN ARE OPTIONAL PARAMETERS FOR

SUBSTITUTION INTO THE CORRESPONDING PARAMETER FIELDS
OF THE MESSAGE (SEE THE INSTALLATION AND CUSTOMIZATION
GUIDE FOR A DESCRIPTION OF SPF MESSAGE FORMATS). A
MAXIMUM OF 50 PARAMETERS IS SUPPORTED.

(CONTINUED ON NEXT PAGE)

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 163

CMSG = COMMON MESSAGE ROUTINE (CONTINUED) CMSG

RETURN CODE:
0 - ALWAYS.

NOTES:
THE INPUT PARAMETER LIST TO CMSG MUST TERMINATE WITH A VLIST FLAG.

CMSG NORMALLY ACCESSES THE SPF MESSAGES DATA SET (SEE THE
INSTALLATION AND CUSTOMIZATION GUIDE FOR A DESCRIPTION OF SPF
MESSAGE FORMATS). THE REQUESTED MESSAGE IS PLACED IN THE SPECIFIED
ANSWER AREA. IF THE AREA IS TOO LONG, IT IS PADDED WITH TRAILING
BLANKS. IF TOO SHORT, THE MESSAGE IS TRUNCATED.

IF THE FIRST CHARACTER OF THE MESSAGE ID IS BLANK OR BINARY ZERO,
THE MESSAGE IS CONTAINED IN THIS CALLING SEQUENCE, AND THE MESSAGE
DATA SET IS NOT ACCESSED. IN THIS CASE, PARM1 IS THE ENTIRE

LEVEL 1 MESSAGE (24 CHARACTERS), AND PARM2 IS THE ENTIRE LEVEL 2
MESSAGE (72 CHARACTERS). THE REMAINING PARMS, IF ANY, CORRESPOND
TO THE SUBSTITUTABLE PARAMETERS IN THE MESSAGE. THIS SPECIAL CASE
ALLOWS PREVIOUSLY RETRIEVED (OR INTERNALLY GENERATED) MESSAGES TO
gERiggggggED BY CMSG FOR THE PURPOSE OF FILLING IN SUBSTITUTABLE

164 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

CPRINT - COMMON PRINT ROUTINE CPRINT

PURPOSE:
CPRINT WRITES A MEMBER OF A PDS OR A SEQUENTIAL DATA SET TO THE SPF
LIST DATA SET. HEADERS AND OTHER INFORMATION ARE PRINTED BASED ON A
FORMAT CODE. THE DATA SET OR MEMBER TO BE PRINTED IS NOT MODIFIED.
INVOKED WITH:

CALL TO CPRINT

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. TFD <TFD> INPUT FILE DEFINITION TABLE
3. PROJECT CHAR(8) INPUT PROJECT NAME

6. LIBRARY CHAR(8) INPUT LIBRARY NAME

5. TYPE CHAR(8) INPUT TYPE QUALIFIER

6. MEMBER CHAR(8) INPUT MEMBER NAME

7. FORMAT CHAR(1) INPUT OUTPUT FORMAT TYPE CODE
WHERE

FORMAT - ONE OF THE FOLLOWING OUTPUT FORMAT TYPE CODES:

'S'" - SPF LIBRARY PDS HEADER, START COLS, MOD FLAGS,
AND DATA LEN (IF VARIABLE LRECL). PARAMETERS
3, 4, AND 5 ARE USED ONLY FOR THIS FORMAT.

*N' - NONSPF LIBRARY PDS OR SEQUENTIAL HEADER,
START COLS, AND DATA LEN (IF VARIABLE LRECL).
THE DATASET NAME IN THE TFD IS USED.

'X' - NO HEADERS OR ADDITIONAL INFORMATION.

RETURN CODE:

0 - THE DATA HAS BEEN SUCESSFULLY WRITTEN.

4 - THE DATA WAS NOT WRITTEN OR WAS PARTIALLY WRITTEN DUE TO AN
ALLOCATION, OPEN, OR I-/0 ERROR.

8 - THE DATA WAS NOT WRITTEN DUE TO DATA SET CHARACTERISTICS. A
MESSAGE WAS WRITTEN TO THE SPF LISTING DATA SET.

12 - THE DATA WAS NOT WRITTEN BECAUSE THE MEMBER SPECIFIED WAS NOT
FOUND OR THERE WAS A FIND OR BLDL ERROR. A MESSAGE WAS WRITTEN
TO THE SPF LISTING DATA SET.

16 - THE DATA WAS PARTIALLY WRITTEN DUE TO AN I/0 ORROR READING THE
DATA. A MESSAGE WAS WRITTEN TO THE SPF LISTING DATA SET.

20 - THE MEMBER OR DATA SET IS EMPTY. A MESSAGE WAS WRITTEN TO THE
SPF LISTING DATA SET.

NOTES:
THE DCB MUST BE OPENED FOR INPUT BEFORE CALLING CPRINT.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 165

CRELS - COMMGN RELEASE ROUTINE . CRELS

PURPOSE:
CRELS IS USED TO RELEASE A SHARED DASD PACK AFTER UPDATING A DATA
SET, AND TO DEQ THE RESOURCE. CRELS IS USED IN CONJUNCTION WITH THE
COMMON RESERVE SUBROUTINE (CRESV).

INVOKED WITH:

CALL TO CRELS

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. TFD <TFD> INPUT FILE DESCRIPTION TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
THE TFD BLOCK MUST BE THE SAME AS THAT USED FOR CRESV.

IF THE TFDLENQ FLAG IS SET BY THE CALLER, AN ADDITIONAL DEQ IS ISSUED
OF THE FORM USED BY THE LINK EDITOR.

CRELS CLEARS THE TFDRESV FLAG.

166 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

~ CRESV = COMMON RESERVE ROUTINE - CRESV

PURPOSE:
CRESV IS USED TO RESERVE A SHARED DASD VOLUME PRIOR TO UPDATING A
DATA SET. CRESV SHOULD BE CALLED BEFORE WRITING, DELETING, OR
RENAMING ANY USER DATA SET OR MEMBER, EXCEPT FOR TEMPORARY DATA SETS

WHICH ARE ALLOCATED BY SPF ON BEHALF OF THE USER (SUCH AS SPF¥.LIST,
SPFLOG*.LIST, SPFTEMP*.LIST, AND SPFTEMPX.CNTL).

INVOKED WITH:
CALL TO CRESV

CALLING SEQUENCE PARAMETERS:
l. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. TFD <TFD> INPUT FILE DEFINITION TABLE

RETURN CODE:
8 - NORMAL RETURN.
4 - DDNAME IN TFD WAS NOT FOUND IN THE TIOT; RESERVE NOT ISSUED.

NOTES:

THE RESERVE MACRO ISSUED BY CRESV INCLUDES AN "ENQ™ FUNCTION. THE
ENQ PARAMETERS ARE DERIVED FROM THE TFD PARAMETER.

IF THE DATA SET IS A POTENTIAL LOAD MODULE DATA SET, THE CALLER
SHOULD SET THE TFDLENQ SWITCH SO THAT CRESV WILL ISSUE A SECOND

Eg?;g;E OR ENQ. THE SECOND ENQ IS THE SAME AS THAT USED BY THE LINK

TO DEQ THE RESOURCE FOLLOWING UPDATE, THE COMMON RELEASE SUBROUTINE
(CRELS) IS USED.

REFER TO APPENDIX A FOR MORE INFORMATION ON THE ENQ/DEQ LOGIC.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 167

CSB - - COMMON SUBMIT ROUTINE Y csB

PURPOSE:

CSB IS A COMMON SUBROUTINE USED FOR SUBMITTING BACKGROUND JOBS TO
0S. THE JCL TO BE SUBMITTED IS PASSED TO CSB IN A TEMPORARY CONTROL
CARD DATA SET. THE TEMPORARY DATA SET SHOULD CONTAIN A JOB STATEMENT
AS THE FIRST RECORD(S), UNLESS THE SUBMIT COMMAND IS SET UP TO
PROVIDE VALID JOBCARDS AT YOUR INSTALLATION. THE TEMPORARY DATA SET
MUST BE CLOSED AT ENTRY TO CSB.

INVOKED WITH:
CALL TO CSB

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. DSNS CHAR(46) INPUT DATA SET NAME STRUCTURE
WHERE
DSNS = IS THE DATA SET NAME STRUCTURE (STANDARD DAIR FORMAT).

E.G., DCL 1 DSNS,
2 DSNL FIXED(15), /% DSNAME LENGTH ¥/
2 DSN CHAR(44); /7% DSNAME L 74
THE DATA SET NAME IS NORMALLY 'USERID.SPFTEMP1.CNTL'
OR "USERID.SPFTEMP2.CNTL', AS SET UP BY CTA.
RETURN CODE:
0 - NORMAL COMPLETION.
& - ATTENTION TERMINATION.
8 ~- ABEND TERMINATION.

OTHER - RETURN CODE FROM SUBMIT COMMAND.
NOTES:

CSB CALLS CAT TO ATTACH THE TSO SUBMIT COMMAND WHICH ACTUALLY SUBMITS
THE JOB TO THE JOB QUEUE.

168 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

CSCROLL =~ COMMON SCROLL ROUTINE CSCROLL

PURPOSE:

CSCROLL IS USED fO INTERPRET THE SCROLL PFK'S AND THE SCROLL AMOUNT
FIELD, AND RETURN AN UPDATED BINARY VALUE FOR THE FIRST LINE OR
COLUMN BEING VIEWED.

INVOKED WITH:

CALL TO CSCROLL

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. PARM * IN/OUT PARAMETER STRUCTURE
WHERE

PARM = IS A STRUCTURE CONSISTING OF:
CURLINE FIXED(31) IN/OUT CURRENT RELATIVE LINE NUMBER

MAXLINE FIXED(31) INPUT MAXIMUM RELATIVE LINE NUMBER
PGLEN FIXED(31) INPUT PAGE LENGTH (NUMBER OF LINES)
CURCOL FIXED(31) IN/OUT CURRENT COLUMN NUMBER

MAXCOL FIXED(31) INPUT MAXIMUM COLUMN NUMBER

PGWIDTH FIXED(31) INPUT PAGE WIDTH (NUMBER OF COLUMNS)

PARAMETER USAGE

CURLINE - ON INPUT, INDICATES THE FIRST LINE BEING DISPLAYED
(VALID RANGE: 1 <= CURLINE <= MAXLINE).
ON OUTPUT, CURLINE WILL BE SET AS FOLLOWS:

FOR SCROLL DOWN: CURLINE = CURLINE + AMOUNT
(BUT NOT EXCEEDING MAXLINE)

FOR SCROLL UP: CURLINE = CURLINE = AMOUNT
(BUT NOT LESS THAN ONE)

WHERE ™AMOUNT™ IS EITHER THE NUMERIC VALUE ENTERED
BY THE USER OR:

PGLEN IF 'PAGE' WAS SPECIFIED
PGLEN/2 IF 'HALF' WAS SPECIFIED

IF SCROLL UP "MAX™ IS REQUESTED, CURLINE IS SET TO 1.
IF SCROLL DOWN "MAX™ IS REQUESTED, CURLINE IS SET TO
A NEGATIVE NUMBER = -PGLEN.

MAXLINE -~ (INPUT ONLY - NOT CHANGED BY CSCROLL). INDICATES
THE MAXIMUM VALID LINE NUMBER TO BE VIEWED. NOTE:
IF THE ACTUAL NUMBER OF LINES IN THE DATA SET IS
UNKNOWN, MAXLINE SHOULD BE SET TO A VERY LARGE
NUMBER, SUCH AS '7FFFFFFF'X.

PGLEN = C(INPUT ONLY - NOT CHANGED BY CSCROLL). INDICATES

THE CURRENT NUMBER OF LINES PER LOGICAL PAGE (FOR
SCROLLING DOWN OR UP BY A PAGE).

(CONTINUED ON NEXT PAGE)

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 169

CSCROLL - COMMON SCROLL ROUTINE (CONTINUED) B - CSCROLL

CURCOL - ON INPUT, INDICATES THE 1ST COLUMN BEING DISPLAYED
(VALID RANGE: 1 <= CURCOL <= MAXCOL-PGWIDTH+1l).
ON OUTPUT, CURCOL WILL BE SET AS FOLLOWS:

FOR SCROLL RIGHT: CURCOL = CURCOL + AMOUNT

(NOT EXCEEDING MAXCOL-PGWIDTH+1)
FOR SCROLL LEFT: CURCOL = CURCOL = AMOUNT

(BUT NOT LESS THAN ONE)

WHERE T™AMOUNT™ IS EITHER THE NUMERIC VALUE ENTERED
BY THE USER OR:

PGWIDTH IF 'PAGE' WAS SPECIFIED
PGWIDTH/2 IF 'HALF'" WAS SPECIFIED

IF SCROLL RIGHT "™MAX™ IS REQUESTED, CURCOL IS SET TO
MAXCOL - PGWIDTH + 1.
IF SCROLL LEFT "MAX™ IS REQUESTED, CURCOL IS SET TO 1.

MAXCOL - THE MAXIMUM COLUMN TO BE VIEWED (SHOULD NOT BE LESS
THAN PGWIDTH).

PGWIDTH - THE CURRENT NUMBER OF COLUMNS PER LOGICAL PAGE (FOR
SCROLLING RIGHT OR LEFT BY A PAGE).

RETURN CODES:
0 - NORMAL COMPLETION.
1 - INVALID SCROLL AMOUNT.

2 - NONE OF THE SCROLL PFK'S WAS PRESSED. THIS IS A
PROGRAMMING ERROR == CSCROLL SHOULD BE CALLED ONLY
WHEN BIT TLDSCROL IS ON IN THE TLD.

NOTES:
IF RETURN CODE IS NON-ZERO, NEITHER CURLINE NOR CURCOL IS CHANGED.

CSCROLL "CLEANS UP™ THE VALUE IN THE SCROLL AMOUNT FIELD
AS FOLLOWS:

*P---' REPLACED WITH 'PAGE’
*H---' REPLACED WITH 'HALF'
*C——-" REPLACED WITH 'CSR'
*M--—-' REPLACED WITH PREVIOUS VALUE ('MAX' DOES

NOT REMAIN IN EFFECT).
FOR NUMERICS FOLLOWED BY ALPHABETICS (E.G., "15XX')
THE LOW ORDER ALPHABETIC CHARACTERS ARE BLANKED OUT.

CSCROLL ALWAYS LEAVES THE CURSOR POSITIONED UNDER THE BEGINNING
OF THE SCROLL AMOUNT FIELD.

170 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

CSM - COMMON STORAGE MANAGEMENT ROUTINE CSM
PURPOSE:
CSM PROVIDES AN INTERFACE WITH THE GETMAIN AND FREEMAIN SYSTEM
SERVICES.

INVOKED WITH:
CALL TO CSM

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

2. CODE FIXED(31) INPUT GETMAIN/FREEMAIN CODE

3. LENGTH FIXED(31) OUTPUT LENGTH OF AREA

4. ADDRESS PTR(31) IN/OUT ADDRESS OF PTR, OR
FIXED(31) IN/OUT REGISTER NUMBER (1-12)

5. SUBPOOL FIXED(31) INPUT SUBPOOL TO BE USED

WHERE

CODE = SYMBOLICALLY - GETMAINC, GETMAINU OR FREEMAIN.

NUMERIC CODE - (1) ’ 2) OR 3)

LENGTH - NUMBER OF BYTES TO GETMAIN OR FREEMAIN. USE ZERO IF
SUBPOOL (PARM 5) IS TO BE FREEMAINED.
ADDRESS - IF A NUMBER FROM 1-12 IS PRESENT, THE CORRESPONDING

REGISTER IS USED TO PASS AN ADDRESS FROM OR TO CSM.

= IF AN ADDRESS 1S PRESENT IT POINTS TO A WORD TO BE
USED TO PASS AN ADDRESS FROM OR TO CSM.

- IF A GETMAIN IS TO BE DONE, THE ADDRESS OF THE AREA
WHICH IS GETMAINED IS PASSED AS OUTPUT FROM CSM BACK
T0 THE CALLER.

- IF A FREEMAIN IS TO BE DONE, THE ADDRESS OF THE AREA TO
BE FREEMAINED IS PASSED FROM THE CALLER TO CSM.

RETURN CODE:
0 - GETMAIN OR FREEMAIN SUCCESSFUL.
% - CONDITIONAL GETMAIN WAS UNSUCCESSFUL.

8 - INVALID REQUEST CODE WAS ENTERED OR ERROR RETURNED FROM
GETMAIN OR FREEMAIN.

NOTES:
CSM DOES NOT USE SPFPROC/SPFRETRN BECAUSE NO DYNAMIC AREA IS USED.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 171

CTa - COMMON ALLOC-OPEN TEMP DATA SET ROUTINE ' CTa

PURPOSE:

CTA PASSES CONTROL TO CT1l TO ALLOCATE AND OPEN THE FOLLOWING DATA
SETS THAT MAY BE USED DURING AN SPF SESSION.

USERID.SPFX.LIST LIST DATA SET

USERID.SPFLOGX.LIST LOG DATA SET

USERID.SPFTEMP1.CNTL CONTROL CARD DATA SET (LOGICAL DISPLAY 1)
USERID.SPFTEMP1.LIST LISTING DATA SET (LOGICAL DISPLAY 1)
USERID.SPFTEMP2.CNTL CONTROL CARD DATA SET (LOGICAL DISPLAY 2)
USERID.SPFTEMP2.LIST LISTING DATA SET (LOGICAL DISPLAY 2)
USERID.SPFEDIT1.BACKUP FIRST EDIT RECOVERY DATA SET
USERID.SPFEDIT2.BACKUP SECOND EDIT RECOVERY DATA SET

INVOKED WITH:
CALL TO CTA

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> IN/7OUT LOGICAL DISPLAY TABLE
2. TYPE CHAR(8) INPUT TYPE OF DATA SET
3. OPTION FIXED(31) INPUT TYPE OF OPEN REQUIRED
WHERE
TYPE - 8 CHARACTERS CODED EXACTLY AS SHOWN BELOW (INCLUDING

THE CHARACTER "X' AND TRAILING BLANKS). ANY OTHER
TYPE CODE CAUSES CTA TO ABEND WITH USER CODE 970.

'SPFLIST ' - FOR THE LIST DATA SET.

'SPFLOG ' - FOR THE LOG DATA SET.

"SPFCNTLX' - FOR A CONTROL CARD DATA SET.

'SPFLISTX' - FOR A LISTING DATA SET.

'SPFEDITX' - FOR AN EDIT RECOVERY DATA SET.
OPTION - THE OPEN TYPE REQUIRED.

0 - OUTPUT

1 - INPUT

RETURN CODE:
0 - ALWAYS.
(CONTINUED ON NEXT PAGE)

172 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

CTA = COMMON ALLOC-OPEN TEMP DATA SET ROUTINE (CONTINUED) CThA

NOTES:
THIS MODULE HAS REPLACED THE SPF VERSION 2.1 CALLOC SUBROUTINE.

SPFLOG, SPFLIST, AND THE EDIT RECOVERY DATA SETS HAVE TFD'S COMPILED
INTO THE TSI (TABLE TDS). TFD'S FOR THE SPFCNTLX AND SPFLISTX DATA
SETS ARE CREATED BY CTA THE FIRST TIME THAT THE DATA SET IS USED.
THE TFD FOR EACH TYPE OF DATA SET IS LOCATED AS FOLLOWS:

'SPFLOG ' - TDSLOGP -> TFD FOR LOG DATA SET.

YSPFLIST ' - TDSLISTP -> TFD FOR LIST DATA SET.
'SPFCNTLX' = TLDTFDCP -> TFD FOR CONTROL CARD DATA SET.
*SPFLISTX' -~ TLDTFDLP -> TFD FOR LISTING DATA SET.
'SPFEDITX' - TLDTFDEP -> TFD FOR EDIT RECOVERY DATA SET.

ON RETURN FROM CTA, THE APPROPRIATE TFD, DATA SET NAME, AND DCB HAVE
BEEN SET UP. IF CTA WAS SUCCESSFUL, THE DCB WILL BE OPENED. IF
ALLOCATION OR OPEN FAILED, THE DCB WILL BE CLOSED. THE CALLING
PROGRAM IS RESPONSIBLE FOR TESTING "TFDOPN™ BEFORE ATTEMPTING TO USE
THE DCB.

THE ADDRESSES OF THE DATA SET NAME STRUCTURE (TFDDSNSP) AND DCB
(TFDDCBP) ARE CONTAINED IN THE TFD.

IF THE DATA SET HAS ALREADY BEEN ALLOCATED WHEN CTA IS CALLED, THE
DCB WILL BE OPENED. IF THE DCB IS OPEN WHEN CTA IS CALLED, THE DCB
WILL BE CLOSED AND REOPENED.

IF ALLOCATION FAILS, CTA WILL TPUT LINE MESSAGES THAT INDICATE THE
DATA SET NAME AND REASON FOR FAILURE. THE USER CAN THEN ATTEMPT TO
CONTINUE WITHOUT THE DATA SET (FOR EXAMPLE WITHOUT THE LOG DATA SET),
OR HE CAN CHOOSE TO EXIT FROM SPF.

WHEN AN ATTEMPT (EITHER SUCCESSFUL OR UNSUCCESSFUL) HAS BEEN MADE TO
ALLOCATE A DATA SET THE "TFDALLOC"™ FLAG BIT IS SET ON. CALLING
PROGRAMS CAN CHECK THIS BIT BEFORE CALLING CTA TO AVOID REPEATED
ATTEMPTS TO ALLOCATE A DATA SET THAT, FOR SOME REASON OR OTHER,
CANNOT BE ALLOCATED, AND THUS AVOID REPEATED NOTIFICATIONS TO THE
TERMINAL USER THAT THE DATA SET CANNOT BE ALLOCATED.

A TYPICAL SEQUENCE FOR USING CTA FOR SPFLIST OR SPFLOG MIGHT BE:

IF TFDALLOC = OFF THEN
ELgéLL CTA (TLD,'SPFLIST "); (NOTE 8 CHARACTER NAME)

IF TFDOPN = ON THEN
[URITE GUTPUT TO LIST DATA SET;
DISPLAY ERROR MESSAGE;

A TYPICAL SEQUENCE FOR USING CTA FOR SPFLISTX, SPFCNTLX, OR
SPFEDITX MIGHT BE:

CALL CTA (TLD, "SPFCNTLX");

IF TFDOPN = ON THEN

ELgEITE OUTPUT TO TEMPCNTL DATA SET;
DISPLAY ERROR MESSAGE;

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 173

CTF = COMMON CLOSE-FREE TEMP DATA SET ROUTINE CTF

PURPOSE:

CTF PASSES CONTROL TO CT2 TO CLOSE AND FREE THE DATA SETS THAT

WERE ALLOCATED AND OPENED BY CTA.

INVOKED WITH:
CALL TO CTF

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> IN/OUT LOGICAL DISPLAY TABLE
2. TYPE CHAR(3) INPUT TYPE OF DATA SET
3. OPTION CHAR(1) INPUT FREE OPTION
WHERE
TYPE = 8 CHARACTERS CODED EXACTLY AS SHOWN BELOW (INCLUDING

THE CHARACTER 'X" AND TRAILING BLANKS). ANY OTHER
TYPE CODE CAUSES CTF TO ABEND WITH USER CODE 971.

'SPFLIST ' - FOR

'SPFLOG ' - FOR
"SPFCNTLX® - FOR
'SPFLISTX" - FOR
'SPFEDITX' - FOR

OPTION -~ SINGLE CHARACTER AS
TREATED LIKE 'K'.

THE LIST DATA SET.

THE LOG DATA SET.

A CONTROL CARD DATA SET.

A LISTING DATA SET.

AN EDIT RECOVERY DATA SET.

SHOWN BELOW. ANY OTHER CODE IS

'D' - IF THE DATA SET IS TO BE DELETED.
'K' - IF THE DATA SET IS TO BE KEPT.

RETURN CODE:
0 - ALWAYS.

NOTES:

THIS MODULE HAS REPLACED THE SPF VERSION 2.1 CFREE SUBROUTINE.
ON RETURN FROM CTF, THE APPROPRIATE DCB WILL HAVE BEEN CLOSED,

AND THE ALLOCATION FREED.

FOR FURTHER INFORMATION ON THE DATA SETS HANDLED BY CTA/CTF

SEE THE DESCRIPTION OF CTA.

FOR FURTHER INFORMATION ON THE CTF/CT2 INTERFACE, SEE THE

DESCRIPTIONS OF CT1 AND CTZ2.

176 SPF/TSO'PROGRAM LOGIC MANUAL

LICENSED MATERIAL - PROPERTY OF IBM

CTGET = COMMDN TGET (TERMINAL GET) ROUTINE CTGET

PURPOSE:
CTGET IS USED TO ISSUE A TGET SVC.

INVOKED WITH:
CALL TO CTGET

CALLING SEQUENCE PARAMETERS:

l. TLD <TLD> INPUT
2. AREA CHAR(X) OUTPUT
3. AREASIZE FIXED(31) INPUT
4. OPTIONS BIT(32) INPUT

5. INSIZE FIXED(31) OUTPUT
WHERE

LOGICAL DISPALY TABLE
INPUT/0UTPUT AREA
INPUT AREA SIZE

TGET OPTIONS

INPUT DATA SIZE

THE AREA WHERE SCREEN DATA WILL BE RECEIVED FROM

CODES REPRESENTING THE VARIOUS TGET MACRO OPTIONS.

THE ONLY CODE USED BY SPF IS '129' = 'ASIS,WAIT'

AREA -
THE TERMINAL ACCESS METHOD.
AREASIZE - THE MAXIMUM SCREEN DATA SIZE ACCEPTABLE.
OPTIONS -
INSIZE -

RETURN CODE:
RETURN CODE FROM TGET SVC.

NOTES:
NONE.

LICENSED MATERIAL - PROPERTY OF IBM

THE ACTUAL SIZE OF SCREEN DATA PLACED IN AREA.

PROGRAM ORGANIZATION 175

CTPUT = COMMON TPUT (TERMINAL PUT) ROUTINE CTPUT

PURPOSE:
CTPUT IS USED TO ISSUE A TPUT SVC.

INVOKED WITH:
CALL TO CTPUT

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. AREA CHAR(%) QUTPUT OUTPUT DATA AREA
3. AREASIZE FIXED(3l) INPUT OUTPUT DATA SIZE
4. OPTIONS BIT(32) INPUT TPUT OPTIONS
WHERE
AREA - THE OUTPUT DATA FOR THE TERMINAL ACCESS METHOD

TO SEND TO THE SCREEN.
AREASIZE - THE SIZE OF THE OUTPUT DATA.

OPTIONS - CODES REPRESENTING THE VARIOUS TPUT MACRO OPTIONS.
THE FOLLOWING ARE USED BY SPF:

0 - 'NO OPTIONS®

3 = 'FULLSCR!

8 - THOLD'

11 - "FULLSCR,HOLD'

RETURN CODE:
RETURN CODE FROM TPUT SVC.

NOTES:
NONE.

176 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

cT1 - COMMON ALLOC-0PEN TEMP DATA SET SUB cT1

PURPOSE:
CT1 IS USED TO ALLOCATE AND OPEN TEMPORARY SPF DATA SETS. IT
HANDLES ALLOCATION ERROR RECOVERY IF REQUIRED.
INVOKED WITH:
CALL FROM CTA (EITHER DIRECLY OR VIA "SYSCCI™ - COMMON CONTROLLER
INTERFACE, AN SPF INTERNAL PLS PROCEDURE)

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. TFD <TFD> IN/OUT FILE DEFINITION TABLE
3. DA08 % IN/OUT DA08 BLOCK
4. DA3% * INPUT DA34 BLOCK
WHERE
TFD - A TFD WHICH CONTAINS A DEFAULT DDNAME AND POINTERS
TO A DATA SET NAME STRUCTURE AND DCB.
DAO8 = IS THE TSO DAIR DAO8 CONTROL BLOCK USED TO ALLOCATE
A DATASET.
DA34 = IS THE TSO DAIR DA34 BLOCK USED TO SPECIFY DATASET
ATTRIBUTES.

RETURN CODE:
0 - SUCCESSFUL ALLOCATION AND OPENING OF THE DATA SET.
1 - UNABLE TO OPEN DATA SET.
>1 = DAIR RETURN CODE FROM UNSUCCESSFUL ALLOCATION.

(CONTINUED ON NEXT PAGE)

"LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 177

CcT1

NOT

178

- COMMON ALLOC-OPEN TEMP DATA SET SUB (CONTINUED) cT1

ES:
RECOVERY FROM THE FOLLOWING ALLOCATION ERRORS IS ATTEMPTED.

- IF THE DATA SET TO BE ALLOCATED IS CATALOGED BUT DOES NOT
EXIST ON THE CATALOGED DASD VOLUME, OR IF THE VOLUME IS NOT
MOUNTED, CT1l WILL UNCATALOG THE DATA SET AND ATTEMPT ALLOCATION
AGAIN.

- IF THE DATA SET TO BE ALLOCATED AND OPENED IS NOT CATALOGED, BUT
EXISTS ON A DASD VOLUME, THE EXISTING DATA SET IS SCRATCHED, AND
CTl WILL ATTEMPT ALLOCATION AGAIN.

UP TO FOUR ALLOCATION ATTEMPTS ARE MADE. THIS HANDLES MOST CASES
OF TEMPORARY DATA SETS NOT BEING CLEANED UP AFTER A SYSTEM CRASH.

WHEN CT1 IS INVOKED TO ALLOCATE AND OPEN 'SPFLOG ', 'SPFLIST ', OR
'*SPFEDITX', IT MUST BE EXECUTING UNDER THE SPF MAIN TASK. WHEN IT
IS INVOKED TO ALLOCATE AND OPEN 'SPFCNTLX' OR 'SPFLISTX' IT MUST BE
EXECUTING UNDER THE PROCESSOR TASK. THIS IS BECAUSE THE LO0G, LIST,
AND EDIT BACKUP DATA SETS BELONG TO THE SPF MAIN TASK AND MUST BE
AROUND EVEN WHILE PROCESSOR TASKS ARE ATTACHED AND DETACHED TO
SUPPORT SPLIT SCREEN. THE TEMPCNTL AND TEMPLIST DATA SETS BELONG TO
THE PROCESSOR AND WILL BE CLEANED UP BY TASK TERMINATION IF THE
PROCESSOR TASK TERMINATES ABNORMALLY.

SINCE CTA (WHICH INVOKES CTl) MAY BE CALLED UNDER EITHER TASK, A
DUAL SCHEME FOR INVOKING CTl IS PROVIDED. 1IF CTA AND CT1l ARE UNDER
THE SAME TASK, A DIRECT CALL IS PERFORMED. 1IF CTA IS EXECUTING
UNDER THE PROCESSOR TASK, AND CT1l MUST BE EXECUTED UNDER THE SPF
MAIN TASK, AN INTERNAL SPF PROCEDURE NAMED 'SYSCCI' (COMMON
CONTROLLER INTERFACE) IS INVOKED. IT IN TURN EXECUTES POST/WAIT
LOGIC SO THAT THE SPF MAIN TASK WILL ACTUALLY CALL THE SUBROUTINE.
WHEN THE SUBROUTINE RETURNS, THE SPF MAIN TASK USES POST/WAIT LOGIC
TO RETURN TO SYSCCI WITH THE REG 15 RETURN CODE.

THE SAME LOGIC THAT APPLIES TO CTA INVOKING CTl ALSO APPLIES TO CTF
(CLOSE/FREE DATA SETS) INVOKING CT2, SINCE THE DCBS MUST BE OPENED
AND CLOSED UNDER THE SAME TASK.

THE FOLLOWING FILE NAMES CAN BE PREALLOCATED. 1IF CTl1 RECOGNIZES
THAT A FILE HAS BEEN PREALLOCATED BY USING READJFCB, IT SKIPS
ALLOCATION AND GOES IMMEDIATELY TO OPEN THE DATA SET. NO ERROR
CHECKING OF PREALLOCATED FILES IS DONE.

SPFLOG - LOG DATA SET
SPFLIST - LIST DATA SET
SPFCNTL1 - CONTROL CARD DATA SET, LOGICAL SCREEN 1
SPFCNTL2 - CONTROL CARD DATA SET, LOGICAL SCREEN 2
SPFLIST1 = LISTING DATA SET, LOGICAL SCREEN 1
SPFLIST2 - LISTING DATA SET, LOGICAL SCREEN 2
SPFEDITA - FIRST EDIT RECOVERY DATA SET
SPFEDITB - SECOND EDIT RECOVERY DATA SET
SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

cT2 - COMMON CLOSE-FREE TEMP DATA SET SUB

PURPOSE:

CT2 IS USED TO CLOSE AND FREE THE DATA SETS THAT WERE ALLOCATED

AND OPENED BY CTA/CTl.

INVOKED WITH:

CALL FROM CTF (EITHER DIRECLY OR VIA "SYSCCI™ - COMMON CONTROLLER

INTERFACE,

CALLING SEQUENCE PARAMETERS:

AN SPF INTERNAL PLS PROCEDURE)

1. TLD <TLD> LOGICAL DISPLAY TABLE
2. TFD <TFD> FILE DEFINITION TABLE
3. DAl8 * DAl18 BLOCK
WHERE
DA18 = IS THE TSO DAIR DAl8 BLOCK USED TO FREE A FILE.

RETURN CODE:

0 - SUCCESSFUL CLOSE AND FREE OF THE DATA SET.
>0 ~ DAIR RETURN CODE FROM UNSUCCESSFUL FREE.

NOTES:

IF CT2 1S PASSED THE SPFLOG OR SPFLIST TFD, CDP IS CALLED TO

COMPLETE THE OUTPUT TO THE DATA SET.

IF THE TFDPREAL FLAG BIT IS ON INDICATING THAT THE CORRESPONDING
FILE WAS PREALLOCATED, CT2 DOES NOT FREE THE FILE.

CT2 MAY BE CALLED DIRECTLY BY CTF,

OR INDIRECTLY VIA "SYSCCI™.

THIS DUAL INTERFACE IS REQUIRED FOR THE SAME REASONS THAT CTA

CALLS CT1 WITH A DUAL INTERFACE.

AN EXPLANATION.

LICENSED MATERIAL - PROPERTY OF IBM

SEE THE DESCRIPTION OF CT1l FOR

PROGRAM ORGANIZATION

cT2

179

CUPARMS - COMMON UPDATE USER PARAMETERS ROUTINE o CUPARMS

PURPOSE:
CUPARMS DOES AN UPDATE IN PLACE OF A MEMBER OF THE SPF PARMS DATA
SET. THE MEMBER BEING UPDATED IS THE SAME MEMBER THAT WAS READ IN OR
CREATED DURING SPF INITIALIZATION BY CIPARMS. THE NAME OF THE MEMBER
IS THE SAME AS THE USER'S TS0 LOGON ID. THE DATA WHICH IS WRITTEN
COMES FROM THE SPF TABLE OF KEYWORD VALUES (TKV).

INVOKED WITH:

CALL TO CUPARMS

CALLING SEQUENCE PARAMETERS:
1. 7LD <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - PARMS MEMBER WAS UPDATED AND NO ERRORS DETECTED.
4 - FIND ERROR ATTEMPTING TO FIND THE PARMS MEMBER.
8 - I/0 ERROR ATTEMPTING TO READ THE PARMS MEMBER.
12 - I/0 ERROR ATTEMPTING TO WRITE THE PARMS MEMBER.

NOTES:

BEFORE WRITING OUT THE TKV TO THE PARMS DATA SET, A COPY IS MADE AND
SET UP T0O BE ADDRESSED BY TSITKVP. THEN THE SUBROUTINE SOP (SPF
OUTPUT PARMS) IS CALLED. SOP WAS DESIGNED AS A USER EXIT ROUTINE AND
CAN BE MODIFIED IF A INSTALLATION REQUIRES THAT DATA BE VERIFIED OR
MODIFIED BEFORE BEING WRITTEN TO THE PARMS DATA SET. SOP ALSO COPIES
SOME DATA FROM THE TSV TO THE TKV. FOR MORE INFORMATION SEE THE
DESCRIPTION OF SOP.

180 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

¢

CUM = COMMON VERIFY MEMBER NAME ROUTINE CUM

PURPOSE:
CVM VERIFIES THAT A MEMBER NAME THAT IS TO BE GENERATED BY SPF IS
A VALID MEMBER NAME. IT MUST BEGIN WITH AN ALPHA OR a,#%#,$ CHARACTER
AND THE REMAINING 7 CHARACTERS MUST BE ALPHAMERIC.

INVOKED WITH:

CALL TO CVM

CALLING SEQUENCE PARAMETERS:
l. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. MEMBER CHAR(3) INPUT NAME OF MEMBER TO BE VERIFIED

RETURN CODES:
0 - MEMBER NAME IS VALID.
4 - MEMBER NAME IS INVALID.

NOTES:

SUPERZAP CAN BE USED TO MODIFY THIS SUBROUTINE SO THAT SPF WILL
ALLOW ANY INVALID MEMBER NAME TO BE USED IN CREATING NEW MEMBERS.
THE CODE CAN BE MODIFIED AND REASSEMBLED TO ALLOW SOME, BUT NOT
ALL TYPES OF INVALID MEMBER NAMES TO BE GENERATED BY SPF. FOR
EXAMPLE, THE SUBROUTINE COULD BE MODIFIED TO ALLOW MEMBER NAMES
g;:sxg#gRgITH A NUMBER, AND REJECT NAMES THAT INCLUDE SPECIAL

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 1381

CUSDE - COMMCGN VERIFY SPF DIRECTORY ENTRY ROUTINE CVUSDE
PURPOSE:
CVSDE DETERMINES IF A PDS DIRECTORY ENTRY PASSED TO IT IS IN SPF
DIRECTORY ENTRY FORMAT OR NOT.

INVOKED WITH:
CALL TO CVSDE

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. BLDLENT ¥ INPUT BLDL ENTRY
WHERE

BLDLENT - IS AN ENTRY FROM THE 0S BLDL CONTROL BLOCK.

RETURN CODES:
0 - SPF ENTRY.
4 - NOT SPF ENTRY, NO USER DATA.
8 - NOT SPF ENTRY, USER DATA NOT IN SPF FORMAT.

NOTES:

SPF DIRECTORY ENTRIES ARE 15 HALFWORDS IN LENGTH. THE LAST THREE
BYTES MUST BE BLANKS, AND CREATION DATE AND LAST MODIFIED DATE MUST
BE PACKED DECIMAL FIELDS. SEE DATA AREAS SECTION ON SPF DIRECTORY
ENTRY FORMAT <SDE>.

182 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

-EBA = EDIT RECOVERY INITIALIZATION ROUTINE EBA

PURPOSE:
EBA DETERMINES IF RECOVERY IS PENDING AND PERFORMS THE RECOVERY
PROCESS INITIALIZATION. IT ALLOCATES AND OPENS THE RECOVERY DATA
SET AND ESTABLISHES THE BACKUP/RECOVERY CONTROL TABLE (EBT). 1IT

ALSO VALIDATES THE OUTPUT DATA SET CHARACTERISTICS IF RECOVERY
IS INDICATED.

INVOKED WITH:
CALL TO EBA

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 -> <EDT> IN/OUT EDIT TABLE
REG 9 -> <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:

0 - NO RECOVERY AVAILABLE IF RECOVERY NOT IN PROGRESS (1ST CALL
FROM EMP), OR OUTPUT DATA SET ACCEPTABLE IF RECOVERY ALREADY IN
PROGRESS (2ND CALL FROM EMP).

& - RECOVERY AVAILABLE (1ST CALL FROM EMP).

8 ~ OUTPUT DATA SET NOT ACCEPTABLE (2ND CALL FROM EMP).
NOTES:

EBA IS ALWAYS CALLED AT THE BEGINNING OF EDIT PROCESSING BY EMP.
THE RECOVERY PROCESS IS COMPLETED BY A CALL TO EBR.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION

183

EBE - EDIT BACKUP END ROUTINE : EBE

PURPOSE:
EBE FREES CONTROL OF THE RECOVERY DATA SET AND ELIMINATES THE
BACKUP/RECOVERY CONTROL TABLE (EBT).

INVOKED WITH:
CALL TO EBE

CALLING SEQUENCE PARAMETERS:
NONE -~ SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 -> <EDT> IN/OUT EDIT TABLE
REG 9 -> <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALMWAYS.

NOTES:
EBE IS ALWAYS CALLED AT THE TERMINATION OF EDIT PROCESSING. IT IS

ALSO CALLED WHEN CERTAIN ERRORS ARE ENCOUNTERED DURING THE BACKUP
OR RECOVERY PROCESS.

184 SPF/T7S50 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

L

EBI = EDIT BACKUP INITIALIZATION ROUTINE ‘ EBI

PURPOSE:
EBI PERFORMS THE BACKUP PROCESS INITIALIZATION. IT ALLOCATES AND

OPENS A RECOVERY DATA SET AND ESTABLISHES THE BACKUP/RECOVERY
CONTROL TABLE (EBT).

INVOKED WITH:
CALL TO EBI

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 -> <EDT> IN/OUT EDIT. TABLE
REG 9 -> <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
EBI IS CALLED FROM EBS ONLY WHEN "RECOVERY ON™ IS INITIALLY

REQUESTED. THE ACTUAL BACKUP PROCESS IS STARTED AND CONTINUED BY
CALLS TO EBS.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 185

EBR - EDIT RECOVERY READ RGUTINE $:EBR

PURPOSE:
EBR READS THE RECOVERY DATA SET. -

INVOKED WITH:
CALL TO EBR

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKABE CONVENTIONS ARE USED:
REG 3 -> <EDT> IN/OUT EDIT TABLE
REG 9 -> <TLD> IN/OUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
EBR IS CALLED TO READ THE RECOVERY DATA SET. FOLLOWING THE

RECOVERY PROCESS THE BACKUP PROCESS IS IN EFFECT AND CAN BE
CONTINUED BY CALLS TO EBS.

186 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - :PROPERTY OF IBM

- ¥

EBS = EDIT BACKUP STORE RECORD ROUTINE EBS

PURPOSE:
EBS STORES DATA IN THE RECOVERY DATA SET.

INVOKED WITH:
CALL TO EBS

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 -> <EDT> IN/OUT EDIT TABLE
REG 9 -> <TLD> IN/OUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:

EBS IS CALLED EVERY TIME A RECORD IS ADDED, DELETED, OR MODIFIED IN
THE EDIT RECORD CHAIN. THE FIRST TIME EBS IS CALLED FOR A DATA SET
OR MEMBER THE BACKUP PROCESS IS STARTED. EBI IS CALLED BY EBS IF
BACKUP/RECOVERY HAD NOT BEEN PREVIOUSLY INITIALIZED THE BACKUP
PROCESS IS STOPPED BY A CALL TO EBX WHEN THE DATA SET OR MEMBER IS
SAVED OR CANCELLED OR WHEN THE USER REQUESTS "RECOVERY OFF"™.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 187

EBX = EDIT BACKUP RESET ROUTINE EBX

PURPOSE:
EBX RESETS THE BACKUP/RECOVERY CONTROL.

INVOKED WITH:
CALL TO EBX

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 =-> <EDT> IN/7OUT EDIT TABLE
REG 9 =-> <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
EBX STOPS THE BACKUP PROCESS WHEN A DATA SET OR MEMBER IS SAVED OR

CANCELLED OR WHEN THE USER REQUESTS "RECOVERY OFF™. THE BACKUP
PROCESS CAN BE RESTARTED BY A CALL TO EBS.

188 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

ECD = EDIT COMMAND DEFINITIONS TABLE ECD

PURPOSE:

ECD IS THE EDIT COMMAND DEFINITION TABLE. IT CONTAINS ONE ENTRY
FOR EACH EDIT PRIMARY COMMAND. THE COMMAND DEFINITION TABLE IS
INPUT TO THE COMMON COMMAND PARSE (CCP) ROUTINE, AND IS USED FOR
ERROR CHECKING AND FOR ORDERING PARAMETERS.

REFERENCED VIA:

THE ADDRESS OF THE ECD IS IN THE TSC. IT IS SYMBOLICALLY REFERENCED
BY THE NAME "ECD™ DEFINED IN SEGMENT "ECSDCLS"™ (EDIT COMMON SUBS).

NOTES:

- THE ECD TABLE IS TERMINATED WITH AN X'FF' CHARACTER.

- EACH COMMAND DEFINITION WITHIN THE TABLE IS TERMINATED WITH AN
XYFE' CHARACTER.

- EACH PARAMETER DEFINITION WITHIN THE COMMAND DEFINITIONS IS
TERMINATED WITH AN X'FD' CHARACTER.

- IN ADDITION, THE LENGTH OF EACH COMMAND DEFINITION ENTRY IS PART OF
EHRNTRY’ AND THE NUMBER OF PARAMETERS DEFINED IS ALSO PART OF THE

N .

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 189

ECR = EDIT CREATE-REPLACE ROUTINE

PURPOSE:
ECR PERFORM PROCESSING FOR THE ™CREATE™ AND "REPLACE™ COMMANDS.

INVOKED WITH:
CALL TO ECR

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 -> <EDT> IN/OUT EDIT TABLE
REG 9 -> <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE

ECR

190 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

EBD = EDIT DRIVER ROUTINE EDD

PURPOSE:
EDD IS INVOKED BY PMD WHEN OPTION 2 IS SELECTED FROM THE PRIMARY
OPTION MENU. IT CALLS SUBROUTINES TO DISPLAY THE EDIT DATA SET,

éh%ggagE APPROPRIATE DATA SETS, DISPLAY MEMBER LISTS, AND PERFORM

INVOKED WITH:
LINK TO SPFEDIT

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. MENU CHAR(8) INPUT MENU NAME

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 191

EDX - EDIT DATA INPUT ROUTINE

PURPOSE:
EDI PERFORMS DATA INPUT FOR EDIT.

EDI

IT IS CALLED AT INITIALIZATION

TO READ THE INITIAL DATA, AND IS ALSO CALLED IF A "MOVE™ OR "COPY™
PRIMARY COMMAND IS PERFORMED. IN ADDITION TO READING DATA, EDI
LIMITS THE RECORDS ACTUALLY PUT ON THE EDR CHAIN (FOR A "COPY"™

WITH START/END RECORDS SPECIFIED).

IT ALSO CHECK TO SEE IF SEQUENCE

NUMBERS ARE PRESENT IN THE DATA AND IF LOWER CASE AND/OR INVALID

CHARACTERS ARE PRESENT.

INVOKED WITH:
CALL TO EDI

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT
2. EDT <EDT> IN/OUT
3. TFD <TFD> INPUT

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

192 SPF/TS0O PROGRAM LOGIC MANUAL

LOGICAL DISPLAY TABLE
EDIT TABLE
INPUT FILE DEFINITION TABLE

LICENSED MATERIAL - PROPERTY OF IBM

L

EDO - EDIT DATA OUTPUT ROUTINE EDC

PURPOSE:
EDO PERFORMS THE WRITING OF QOUTPUT FOR EDIT. IT IS CALLED FOR A
STANDARD "END™ (IF A CHANGE IN THE DATA HAS OCCURRED), IF A "SAVE" IS
DONE, OR IF A "CREATE"™ OR "REPLACE™ PRIMARY COMMAND IS ISSUED. EDO
EERFORMS AUTO-RENUMBERING IF BOTH NUMBER MODE AND AUTONUM MODE ARE
INVOKED WITH:

CALL TO EDO

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. EDT <EDT> IN/OUT EDIT TABLE
3. TFD <TFD> INPUT INPUT FILE DEFINITION TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 193

EFC = EDIT FIND-CHANGE ROUTINE EFC

PURPOSE:
EFC IS CALLED TO ANALYZE AND/OR PERFORM THE FIND/CHANGE COMMANDS.

INVOKED WITH:
CALL TO EFC

CALLING SEQUENCE PARAMETERS:
NONE -~ SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 -> <EDT> IN/OUT EDIT TABLE
REG 9 -> <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

194 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

EFR = EDIT FORMAT DISPLAY ROUTINE EFR

PURPOSE:
EFR IS CALLED TO FORMAT THE DISPLAY SCREEN.

INVOKED WITH:
CALL TO EFR

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 =-> <EDT> IN/OUT EDIT TABLE
REG 9 -> <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 195

EFT - EDIT FLOH TEXT ROUTINE

PURPOSE:
EFT FLOWS TEXT TO SUPPORT BOTH THE "TF™ AND "TE™ COMMANDS.

INVOKED WITH:
CALL TO EFT

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 -> <EDT> IN/OUT EDIT TABLE
REG 9 -> <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

EFT

196 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

EGN - EDIT GENERAL NUMBER-RENUMBER ROUTINE EGN

PURPOSE:
EGN IS CALLED TO NUMBER OR RENUMBER ALL OF THE STANDARD RECORDS ON
THE EDR CHAIN.

INVOKED WITH:
CALL TO EGN

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 -> <EDT> IN/OUT EDIT TABLE
REG 9 -> <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:

EGN USES THE EDTNUMBR FIELD TO DETERMINE WHETHER TO NUMBER, RENUMBER
OR UNNUMBER THE DATA.

EDTNUMBR = 'R" MEANS RENUMBER STARTING AT THE EDTDELTA NUMBER AND
INCREMENTING BY THE SAME DELTA NUMBER.

EDTNUMBR 'U' MEANS UNNUMBER, BLANKING OUT EXISTING SEQUENCE

EDTNUMBR

NUMBERS.

'I' MEANS INITIAL NUMBER OPERATION. MOD FLAGS ARE
RESET IF APPROPRIATE (I.E. IF MOD FLAGS ARE BEING USED
AND THE CURRENT MOD FLAG IS TOO LARGE) AND A STANDARD
NUMBER OPERATION IS PERFORMED.

'N' (OR ANY OTHER CODE) MEANS STANDARD NUMBER OPERATION
CHANGING THE SEQUENCE NUMBER ONLY IF REQUIRED TO FORCE
A VALID SEQUENCE NUMBER (I.E. IF THE RECORD ALREADY
CONTAINS A VALID SEQUENCE NUMBER IT IS NOT CHANGED).

EITHER NUMBERING OR RENUMBERING RESULTS IN EVERY RECORD CONTAINING
A VALID ASCENDING SEQUENCE NUMBER.

EDTNUMBR

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 197

EGR = EDIT GENERAL RESET ROUTINE

PURPOSE:
EGR IS CALLED TO RESET THE EDR CHAIN. THIS CONSISTS OF DELETING
ANY SPECIAL RECORDS THAT ARE ON THE CHAIN (BOUNDS,COLS,MASK, AND
TABS), MARKING ALL RECORDS NOT-EXCLUDED, AND RESETTING ALL SPECIAL
FLAGS (=ERR=>, =CHG=>, ETC).

INVOKED WITH:

CALL TO EGR

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 =-> <EDT> IN/OUT EDIT TABLE
REG 9 -> <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

198 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

EMC = EDIT MOVE-COPY ROUTINE EMC

PURPOSE:
EMC PERFORMS PROCESSING FOR THE "MOVE™ AND "COPY™ COMMANDS.

INVOKED WITH:
CALL TO EMC

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 -> <EDT> IN/OUT EDIT TABLE
REG 9 -> <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 199

EML = EDIT MESSAGE LINES ROUTINE EML

PURPOSE:
EML HANDLES -CAUTION- AND -WARNING- MESSAGES FOR EDIT. IT READS
TWO MESSAGES FROM THE MESSAGE DATA SET AND PUTS THEM ON THE EDR
CHAIN, AFTER THE FIRST LINE ON THE DISPLAY.

INVOKED WITH:

CALL TO EML

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. MSG CHAR(4) INPUT LONG MESSAGE ID
3. CODE FIXED(31) INPUT MESSAGE TYPE CODE
WHERE
MSG - IS THE IDENTIFIER OF THE FIRST MESSAGE THAT IS TO BE

PUT ON THE EDR CHAIN. THE SECOND MESSAGE IS ONE DIGIT
HIGHER IN SEQUENCE (I.E. INPUT OF E702 RESULTS IN
MESSAGE E702 AND E703 BEING PUT ON THE EDR CHAIN.)

CODE = IS A CODE THAT IS STORED IN THE EDRTYPE FIELD OF THE
EDIT RECORDS THAT CONTAIN THE MESSAGES. THE CODES ARE
TAKEN FROM EDRDCLS AND ARE USED TO DELETE THE MESSAGE
LINE IF THE CONDITION INDICATED HAS CHANGED.

RETURN CODE:
0 - ALWAYS.

NOTES:

AN EXAMPLE OF A -CAUTION- MESSAGE THAT IS HANDLED BY EML IS THE
MESSAGE INIDICATING THAT V"STANDARD NUMBER MODE HAS BEEN TURNED OFF"™.
THE CODE WILL INDICATE THAT NUMBER MODE IS OFF. IF A NUMBER COMMAND
IS ISSUED, NUMBER MODE WILL BE TURNED ON, AND THE MESSAGE WILL BE
ERRONEOUS. THE CODE WHICH IS STORED IN THE EDR IS USED AS A TRIGGER
TO CAUSE THE MESSAGE EDR TO BE DELETED.

200 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

EMP = EDIT MENU PROCESSOR ROUTINE EMP

PURPOSE:
EMP DISPLAYS THE EDIT DATA SET MENU, AND DISPLAYS ERROR MESSAGES.
IT CALLS COMMON SUBROUTINES TO ALLOCATE AND OPEN THE APPROPRIATE
DATA SETS.

INVOKED WITH:

CALL TO EMP

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. EDT <EDT> IN/OUT EDIT TABLE
3. MENU CHAR(8) INPUT MENU NAME

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 201

EPC - EDIT PROGCESS (LINE) COMMANDS ROUTINE - = = . EPC

PURPOSE:
EPC PROCESSES EDIT LINE COMMANDS.

INVOKED WITH:
CALL TO EPC (FROM EPR)

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 -> <EDT> IN/OUT EDIT TABLE
REG 9 -> <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:

EPC IS INVOKED BY EPR WHEN ANY EDIT LINE COMMANDS ARE TO BE
PROCESSED. IT SCANS THE EDIT RECORD CHAIN, PERFORMS VALIDITY
CHECKIN?NSND. IF NO ERRORS ARE DETECTED, PERFORMS LINE COMMAND
PROCESS .

&

202 SPF/T7S0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

EPD = EDIT PROCESS DATA ROUTINE EPD

PURPOSE:
EPD IS CALLED TO PROCESS DATA INPUT FROM THE DISPLAY SCREEN.

INVOKED WITH:
CALL TO EPD

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 -> <EDT> IN/OUT EDIT TABLE
REG 9 -> <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 203

EPF = EDIT PROCESS (PRIMARY) FINAL ROUTINE EPF

PURPOSE:
EPF PERFORMS ANY FINAL PROCESSING THAT IS REQUIRED TO COMPLETE
EDIT PRIMARY COMMANDS. THE PROCESSING IS DONE AFTER EDIT LINE
COMMANDS HAVE BEEN PROCESSED.

INVOKED WITH:

CALL TO EPF

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 -> <EDT> IN/OUT EDIT TABLE
REG 9 -> <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:

EPF IS INVOKED BY EPR WHEN FINAL PROCESSING OF A PRIMARY EDIT
COMMAND IS REQUIRED (AFTER LINE COMMAND PROCESSING HAS BEEN
PERFORMED). IT PERFORMS VALIDITY CHECKING AND, IF NO ERRORS
ARE DETECTED, COMPLETES THE PRIMARY COMMAND PROCESSING.

204 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

EPI -~ EDIT PROCESS (PRIMARY) INITIAL ROUTINE

PURPOSE: ‘
EPI PERFORMS INITIAL PROCESSING OF EDIT PRIMARY COMMANDS.

INVOKED WITH:
CALL TO EPI (FROM EPR)

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 -> <EDT> IN/OUT EDIT TABLE
REG 9 -> <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:

EPI IS INVOKED BY EPR WHEN INITIAL PROCESSING OF A PRIMARY EDIT
COMMANDS IS REQUIRED (BEFORE LINE COMMAND PROCESSING HAS BEEN
PERFORMED). IT PERFORMS VALIDITY CHECKING AND, IF NO ERRORS
ARE DETECTED, PERFORMS INITIAL (IN SOME CASES COMPLETE) PRIMARY
COMMAND PROCESSING.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION

EP1

205

EPO = EDIT PARTITIONED ORGANIZATION ROUTINE EPO

PURPOSE:

EPO PROCESSES PARTITIONED DATA SET.

PROCESSING IF APPROPRIATE.

INVOKED WITH:
CALL 7O EPO

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD>
2. EDT <EDT>

INPUT
IN/OUT

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

206 SPF/TS0O PROGRAM LOGIC MANUAL

IT CALLS CML TO DO MEMBER LIST

LOGICAL DISPLAY TABLE
EDIT TABLE

LICENSED MATERIAL - PROPERTY OF IBM

EPP - EDIT OPTIONS-PROFILE ROUTINE EPP

PURPOSE:
EPP IS INVOKED YO RETRIEVE AND/OR STORE EDIT PROFILE OPTIONS.

INVOKED WITH:
CALL TO EPP

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. EDT <EDT> IN/OUT EDIT TABLE

3. GETPROF CHAR(3) INPUT GET PROFILE NAME

4. PUTPROF CHAR(3) INPUT PUT PROFILE NAME
WHERE

GETPROF - IDENTIFIES THE PROFILE TO BE RETRIEVED. IF THE NAME
IS BLANK, NO RETRIEVAL IS PERFORMED.

PUTPROF - IDENTIFIES THE PROFILE TO BE STORED. IF THE NAME
IS BLANK, NO STORING IS PERFORMED.

RETURN CODE:
0 - ALWAYS.

NOTES:
EPP RETRIEVES PROFILE INFORMATION INCLUDING MASK AND TABS LINES FROM

THE TKV BY CALLING CKVGET. IT MOVES THE INFORMATION INTO THE EDIT
TABLE. STORING PROFILE INFORMATION IS THE REVERSE OPERATION.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 207

EPR = EDIT PROCESS MAIN ROUTINE

PURPOSE:
EPR GETS CONTROL WITH THE INPUT DATA SET ALLOCATED AND OPEN. IT
READS THE DATA IN (EDI), FORMATS THE SCREEN (EFR) AND PERFORMS
THE LOGICAL EDITING OF THE DATA (EPI,EPD,EPC,EPF).

INVOKED WITH:

CALL TO EPR

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. EDT <EDT> IN/OUT EDIT TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

EPR’

208 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

EPS - EDIT PHYSICAL SEQUENTIAL ROUTINE EPS

PURPOSE:
EPS PROCESSES PHYSICAL SEQUENTIAL DATA SETS.

INVOKED WITH:
CALL TO EPS

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. EDT <EDT> IN/OUT EDIT TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 209

EPX = EDIT "OTHER™ DATA SET ORGANIZATION ROUTINE. . EPX

PURPOSE:

EPX PROCESSES DATA SETS THAT ARE NEITHER PARTITIONED NOR SEQUENTIAL.
IT CAUSES AN ERROR MESSAGE TO BE DISPLAYED, BUT COULD REPLACED TO

PROCESS OTHER TYPES OF DATA SETS.

INVOKED WITH:
CALL TO EPX

CALLING SEQUENCE PARAMETERS:
l. TLD <TLD>
2. EDT <EDT>

INPUT
IN/OUT

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

210 SPF/TSO PROGRAM LOGIC MANUAL

LOGICAL DISPLAY TABLE
EDIT TABLE

LICENSED MATERIAL - PROPERTY OF IBM

ERA = EDIT RECCRD ALLOCATE ROUTINE ERA

PURPOSE:
ERA ALLOCATES ONE EDIT RECORD AND STORES ITS ADDRESS IN THE EDIT
TABLE (EDRP(EDFREE)). ALLOCATION CONSISTS OF UNCHAINING ONE RECORD
FROM THE FREE CHAIN, OR IF NO RECORDS EXIST ON THE FREE CHAIN, OF
GETMAINING A DATA BLOCK AND BREAKING IT UP INTO FREE EDIT RECORDS

WHICH ARE PUT ON THE FREE CHAIN. THE HEADER OF THE NEW EDIT RECORD
IS ZEROED AND ITS DATA AREA IS BLANKED.

INVOKED WITH:
CALL TO ERA

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 -> <EDT> IN/OUT EDIT TABLE
REG 9 -> <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
WHEN STORAGE IS REQUIRED, AN UNCONDITIONAL GETMAIN IS PERFORMED.
THIS WILL RESULT IN AN 80A ABEND IF INSUFFICIENT STORAGE EXISTS TO
SATISFY THE REQUEST.

THE SIZE OF THE GETMAIN IS 4K. IT IS TAKEN FROM A FIELD IN THE
EDIT TABLE (EDGMSIZE) WHICH IS INITIALIZED BY ED.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 211

ERC = EDIT RECORD CHANGE ROUTINE ERC

PURPOSE:
ERC MARKS A RECORD AS CHANGED BY SETTING THE CHANGED BIT IN THE EDR
AND IT ALSO SETS THE OVERALL CHANGED BIT IN THE EDT. THE MOD FLAG
PART OF THE SEQUENCE NUMBER IS SET (IF APPROPRIATE) AND THE BACKUP
ROUTINE EBS IS CALLED IF RECOVERY IS ON.

INVOKED WITH:

CALL TO ERC

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 -> <EDT> IN/QUT EDIT TABLE
REG 9 -> <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:

ALL ROUTINES THAT CHANGE THE DATA WITHIN AN EDR MUST CALL ERC
TO INDICATE THAT THE CHANGE WAS MADE.

THE TYPE OF CHANGE IS INDICATED BY SETTING THE APPROPRIATE BIT

échDTEDRBS WHICH IS OR'ED TO THE EDR THAT IS BEING CHANGED BY

212 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

ERD = EDIT RECORD DELETE ROUTINE ERD

PURPOSE:
ERD DELETES ONE EDIT RECORD FROM THE EDR CHAIN.
onE%:;?EﬁCURR) - POINTS TO THE EDR TO BE DELETED FROM THE EDR CHAIN.
ONEgggﬁggéURR) = POINTS TO THE EDR PRECEDING THE DELETED EDR.
EDRP(EDFREE) - POINTS TO THE DELETED EDR.
INVOKED WITH:

CALL TO ERD

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 -> <EDT> IN/OUT EDIT TABLE
REG 9 -> <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
ERD DECREMENTS THE TOTAL EDR COUNT.

POINTERS IN THE EDIT TABLE THAT MUST POINT TO EDR'S THAT ARE ON THE
EDR CHAIN ARE EITHER ZEROED OUT, OR ARE RESET TO POINT TO THE
PRECEDING OR FOLLOWING EDR ON THE CHAIN.

ERD INSURES THAT BLOCKS OF EXCLUDED (X'ED) RECORDS ARE CONSISTENT
AFTER THE DELETION HAS OCCURRED.

ERD USES EDTSA2 (EDIT TABLE SAVE AREA 2) AS A SAVE AREA SO THAT
IT CAN CALL A LOWER LEVEL PROGRAM. THIS AREA IS USED INSTEAD OF
A DYNAMICALLY GETMAINED AREA TO IMPROVE PERFORMANCE SINCE ERD IS
INVOKED FREQUENTLY..

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 213

ERF - EDIT RECORD FREE ROUTINE ERF

PURPOSE:
ERF TAKE ONE RECORD (EDR) AND PUTS IT ON THE FREE CHAIN SO THAT IT
WILL BE AVAILABLE FOR REUSE.
ON INPUT:
EDRP(EDFREE) - POINTS TO THE EDR TO BE FREED.
INVOKED WITH:

CALL TO ERF

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 -> <EDT> IN/sOUT EDIT TABLE
REG 9 -> <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

214 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

e

ERI = EDIT RECORD INSERT ROUTINE - ERI

PURPOSE:

ERI INSERTS ONE EDIT RECORD ONTO THE EDR CHAIN. IN ADDITION TO
PERFORMING FORWARD AND BACKWARD CHAINING, ERI COMPUTES AN INTERNAL
EDR SEQUENCE NUMBER FOR THE EDR HEADER. IT ALSO CALLS ERN (EDIT
RECORD NUMBER) IF SEQUENCE NUMBERS ARE TO BE STORED IN THE DATA.
ERI CALLS EBS (EDIT BACKUP) IF RECOVERY MODE IS ON, AND INCREMENTS
T:EI;gaAL EDR COUNT AND THE TOTAL STANDARD EDR COUNT.
0 T:

EDRP(EDAFTER) = POINTS TO THE EDR AFTER WHICH THE INSERTION

IS TO BE MADE.
EDRP(EDFREE) = POINTS TO THE EDR TO BE INSERTED.

INVOKED WITH:
CALL TO ERI

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 -> <EDT> "~ IN/OUT EDIT TABLE
REG 9 -> <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:

0 - ALMWAYS.
NOTES:
NONE.

LICENSED MATERIAL - PROPERTY OF IBM . PROGRAM ORGANIZATION 215

ERN - EDIT RECORD NUMBER ROUTINE ERN

PURPOSE:
ERN_PUTS A SEQUENCE NUMBER INTO A RECORD THAT IS ON THE EDR CHAIN.
0 : : -
EDRP(EDFREE) - POINTS TO THE EDR WHICH IS TO BE SEQUENCE NUMBERED.
INVOKED WITH:

CALL TO ERN

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 -> <EDT> IN/OUT EDIT TABLE
REG 9 => <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

216 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

ERO = EDIT RECORD ORIGINAL ROUTINE ERO

PURPOSE:
ERO MAKES A COPY OF AN ORIGINAL RECORD (ONE THAT WAS INITIALLY READ
s:)lagBTQUEUES IT TO AN ORIGINAL RECORD CHAIN.
EDRP(EbFREE) - POINTS TO THE ORIGINAL EDR TO BE COPIED.
INVOKED WITH:

CALL TO ERO

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 -> <EDT> IN/OUT EDIT TABLE
REG 9 =-> <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
ERO IS CALLED ONLY FROM ERD.
KEEPING A COPY OF ORIGINAL EDR'S ALLOWS A DETERMINALTION AT SAVE

TIME OF WHAT WAS DELETED FROM THE ORIGINAL DATA. THIS CAPABILITY
IS NOT CURRENTLY UTILIZED.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 217

ERR = EDIT RECORD RESET ROUTINE ERR

PURPOSE: N
ERR TAKE ONE RECORD (EDR) AND PERFORMS THE CLEANUP NECESSARY TO
REMOVE A COMMAND THAT WAS ASSOCIATED WITH IT. THIS INCLUDES CLEARING
THE COMMAND BIT, FREEING THE EDR EXTENSION IF APPROPRIATE, AND
HANDLING EXCLUDED LINE CONSIDERATIONS. ERR DECREMENTS THE COMMAND
COUNT AND INSURES THAT THE CHAIN OF EDR'S WITH ASSOCIATED COMMANDS IS
UﬁD?;EBi AS ARE THE POINTER TO THE FIRST AND LAST COMMAND EDR.
0 :

EDRP(ERRP) - POINTS TO THE EDR TO BE RESET.
INVOKED WITH:

CALL TO ERR

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 -> <EDT> IN/OUT EDIT TABLE
REG 9 -> <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
THE COMMAND COUNT IS DECREMENTED, POINTERS TO THE FIRST AND LAST

EDR CONTAINING COMMANDS ARE UPDATED IF REQUIRED, AND THE CHAIN
OF ERS'S CONTAINING COMMANDS IS ALSO UPDATED IF REQUIRED.

218 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

L ERS - EDIT RECORD SHOH ROUTINE ERS

PURPOSE:
ERS MARKS A RECORD AS NOT EXCLUDED.

ON INPUT:
EDRP(EDXCURR) = POINTS TO THE EDR TO BE 'UN'-EXCLUDED.

INVOKED WITH:
CALL TO ERS

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 => <EDT> IN/OUT EDIT TABLE
REG 9 -> <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.
NOTES:

ERS INSURES THAT BLOCKS OF EXCLUDED (X'ED) RECORDS ARE CONSISTENT
AFTER THE EDR IS RESET SO IT IS NOT EXCLUDED.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 219

ERX - EDIT RECORD EXCLUDE ROUTINE

PURPOSE:
ERX MARKS A RECORD AS EXCLUDED.
ON INPUT:
EDRP(EDXCURR) - POINTS TO THE EDR TO BE EXCLUDED.
INVOKED WITH:

CALL TO ERX

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 -> <EDT> IN/7OUT EDIT TABLE

REG 9 => <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.
NOTES:

ERX INSURES THAT BLOCKS OF EXCLUDED (X'ED) RECORDS ARE CONSISTENT

AFTER THE EDR IS RESET SO IT IS EXCLUDED.

220 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

EST = EDIT SPLIT TEXT ROUTINE EST

PURPOSE:
EST SPLITS TEXT INTO TWO LINES AND INSERTS ONE OR MORE LINES BETWEEN
THE PARTS OF THE TEXT. IT IS INVOKED WHEN THE "TS"™ LINE COMMAND
IS PROCESSED.

INVOKED WITH:

CALL TO EST

CALLING SEQUENCE PARAMETERS:
NONE - SPECIAL SPF EDIT LINKAGE CONVENTIONS ARE USED:
REG 3 -> <EDT> IN/OUT EDIT TABLE
REG 9 -> <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 221

ETC - EDIT TABLE CLEANUP ROUTINE ETC

PURPOSE:
ETC IS INVOKED TO FREE THE EDIT TABLE.

INVOKED WITH:
CALL TO ETC

CALLING SEQUENCE PARAMETERS:
l. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. EDT <EDT> IN/7OUT EDIT TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

222 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

ETL = EDIT LINE COMMANDS TABLE ETL

PURPOSE:

ETL IS THE EDIT LINE COMMAND DEFINITION TABLE. IT CONTAINS ONE ENTRY
FOR EACH EDIT LINE COMMAND. THE LINE COMMAND DEFINITION TABLE IS
REFERENCED BY EPC IN VALIDATING AND PROCESSING LINE COMMANDS.

REFERENCED VIA:

THE ADDRESS OF THE ETL IS IN THE TSC. IT IS SYMBOLICALLY REFERENCED
BY THE NAME ™ETL™ DEFINED IN SEGMENT ™ECSDCLS™ (EDIT COMMON SUBS).

NOTES:

THE ETL TABLE IS TERMINATED WITH AN X'FF' CHARACTER. EACH COMMAND
DEFINITION ENTRY IS FIXED LENGTH. THE ENTRIES INCLUDE THE COMMAND
NAME, THE COMMAND TYPE (MOVE, COPY, AFTER, ETC), THE PASS (1-3) ON
WHICH THE COMMAND SHOULD BE EXECUTED, THE DEFAULT SUFFIX, A CURSOR
POSITION CODE, INVALID LINE MASK AND THE INDEX IN THE TSC OF THE
ROUTINES THAT IS TO BE EXECUTED WHEN THE COMMAND IS ENTERED.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 223

ETS = EDIT TABLE SETUP ROUTINE

PURPOSE:
ETS IS INVOKED TO GETMAIN AND INITIALIZE THE EDIT TABLE.

INVOKED WITH:
CALL TO ETS

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. EDTPTR PTR(31) OUTPUT PTR TO THE GETMAINED EDT

RETURN CODE:
0 - ALWAYS.

NOTES:

THE PTR WHICH IS RETURNED BY ETS SHOULD BE LOADED INTO REG 3 BEFORE

CALLING EDIT SUBROUTINES.

ETS

224 SPF/TS0O PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

FOR

PUR

INV

CAL

RET

NOT

= FOREGROUND PROCESSOR ROUTINE FOR

POSE:

FOR PROCESSES FOREGROUND SUBOPTIONS. A FOREGROUND SUBOPTION MENU IS

DISPLAYED AND THE APPROPRIATE SPFPROCS DATASET MEMBER IS READ AND

PROCESSED. A TSO COMMAND MAY BE GENERATED FROM THE USER INPUT AND

A COMMAND PROTOTYPE IN THE SPFPROCS DATASET. FOR CALLS COMMON

ggBRgggINE CAT TO EXECUTE A TSO COMMAND OR CLIST, IF SPECIFIED IN THE
F c.

OKED WITH:
LINK TO SPFFOR (FROM UTIL OR PMD)

LING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. MENUID CHAR(3) INPUT MENU NAME

WHERE

MENUID - INDICATES THE FOREGROUND SUBOPTION MENU TO BE
DISPLAYED. THIS PARAMETER ALSO IS THE NAME OF THE
285;23%5 DATASET MEMBER TO BE USED TO GENERATE THE

URN CODE:
0 - ALWAYS.

ES:

THE FOREGROUND SELECTION MENU IS PROCESSED BY OBJECT MODULE UTIL, NOT
THE FOR OBJECT MODULE. SEE THE DESCRIPTION OF OBJECT MODULE UTIL FOR
FURTHER INFORMATION.

THE INSTALLATION CAN CREATE NEW SPF OPTIONS SIMILAR TO OPTION 4 OR
ADDITIONAL OPTION 4 SUBOPTIONS WITHOUT MAKING ANY PROGRAM
?ﬂgégéﬁ?}égNS. SEE INSTALLATION AND CUSTOMIZATION GUIDE FOR FURTHER

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 225

JoB = BACKGROUND PROCESSOR ROUTINE JoB

PURPOSE:

JOB IS INVOKED WHEN OPTION 5 IS SELECTED FROM THE PRIMARY OPTION
MENU. IT DISPLAYS THE BACKGROUND SELECTION MENU (JOBA) AND
GENERATES JCL BY MERGING USER INPUT THAT IS ENTERED FROM A SECONDARY
BACKGROUND MENU AND A JCL PROTOTYPE READ FROM THE SPFPROCS DATA SET.
JCL IS WRITTEN TO A TEMPORARY DATA SET ('USERID.SPFTEMPX.CNTL')> AND
SUBMITTED TO THE JOB STREAM BY CALLING SUBROUTINE CSB.

INVOKED WITH:
LINK TO SPFJOB (FROM PMD)

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. MENUID CHAR(3) INPUT MENU NAME
WHERE

MENUID - INDICATES THE MENU TO BE DISPLAYED. IF THE FIRST
CHARACTER OF THIS PARAMETER IS '%', THEN MENUID(2:7)
CONTAINS A SELECTION MENU ID. IF THE FIRST CHARACTER
IS NOT 'x', THEN MENUID(1:8) CONTAINS THE MENU ID OF
A SECONDARY MENU TO BE DISPLAYED, AND THE SELECTION
MENU IS BYPASSED.

IF THE SELECTION MENU IS NOT BYPASSED, UPON RETURN
FROM A SECONDARY MENU, A TERMINATION SELECTION MENU IS
DISPLAYED. THE TERMINATION SELECTION MENU ID IS
OBTAINED BY INCREMENTING THE LAST CHARACTER OF THE
SELECTION MENU ID BY 1 DECIMAL. FOR EXAMPLE, IF MENUID
CONTAINS '"*JOBA', THEN THE SELECTION MENU ID IS 'JOBA'
AND THE TERMINATION SELECTION MENU ID IS 'JOBB'.

RETURN CODES:
0 - ALWAYS.

NOTES:

THE INSTALLATION CAN CREATE NEW SPF OPTIONS SIMILAR TO OPTION 5 BY

PASSING A MENU ID OTHER THAN "%JOBA' TO THIS MODULE. ADDITIONAL

OPTION 5 SUBOPTIONS CAN ALSO BE ADDED WITHOUT MAKING ANY PROGRAM

%:éNGEsil aEE THE INSTALLATION AND CUSTOMIZATION GUIDE FOR FURTHER
ORMATION.

226 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

MERR - COMMON MENU ERROR ROUTINE MERR

PURPOSE:
THE MENU ERROR ROUTINE IS CALLED TO DISPLAY ERROR MESSAGES AFTER A
MENU HAS BEEN PROCESSED BY COMMON SUBROUTINE MHA. MERR ALSO CAUSES
THE MENU 7O BE RE-PROCESSED. THE CURSOR IS POSITIONED TO THE FIELD

CONTAINING THE ERROR (AS INDICATED BY THE PARMID PARAMETER), AND THE
AUDIBLE ALARM IS SOUNDED IF SPECIFIED IN THE MESSAGE.

INVOKED WITH:
CALL TO MERR

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> IN/OUT LOGICAL DISPLAY TABLE
2. MSGID CHAR(4) INPUT ERROR MESSAGE ID

3. PARMID FIXED(31) INPUT PARAMETER CURSOR ID
4. PARML * INPUT PARAMETER FOR MESSAGE
.. PARMN * INPUT PARAMETER FOR MESSAGE
WHERE

PARMID -~ IDENTIFIES THE PARAMETER IN THE PREVIOUS CALL TO THE
MENU HANDLER WHICH CORRESPONDS TO THE FIELD IN ERROR.
THE CURSOR WILL BE POSITIONED TO THIS PARAMETER. IF
THIS PARAMETER CONTAINS A FULLWORD ZERO, THE CURSOR
WILL BE PLACED ACCORDING TO THE SPECIFICATIONS ON THE
MENU ACTION STATEMENTS.

PARM(S) - OPTIONAL PARAMETERS ARE USED AS SUBSTITUTIONAL VALUES
IN THE SPECIFIED MESSAGE. ANY VALUES THAT ARE VALID
IN CALLING CMSG MAY BE USED. A MAXIMUM OF 50
PARAMETERS MAY BE SPECIFIED.

RETURN CODE:
SAME AS MHA.

NOTES:

MERR IS LIKE AN ALTERNATE ENTRY TO THE MENU HANDLER (OBJECT MODULE
MHA). MERR SETS TLDMERRC ON AND CALLS MHA.

A CALL TO MERR ACTUALLY RESULTS IN MERR CALLING MHA, MHA CALLING
CERR, CERR CALLING CMSG AND CDISPL.

THE MERR PARAMETER LIST MUST BE TERMINATED BY A VLIST FLAG.

WHEN AN ERROR MESSAGE IS DISPLAYED VIA MERR, THE TERMINAL USER MAY
PRESS PFl1 TO OBTAIN A SECOND LEVEL MESSAGE ON LINE 3. 1IF PFl IS
AGAIN PRESSED, TUTORIAL MODE IS ENTERED AT AN APPROPRIATE PAGE.
WHEN THE USER EXITS FROM TUTORIAL MODE, THE SCREEN IS RESTORED.

THE CALLING PROGRAM MUST BE PREPARED FOR ALTERATIONS TO ANY INPUT
FIELD ON THE MENU. THE NEW INPUT FIELDS ARE RETURNED IN THE SAME
MANNER AS IN THE PREVIOUS CALL TO THE MENU HANDLER.

ERROR MESSAGES ARE OBTAINED BY CALLING OBJECT MODULE CMSG. SEE
THE INSTALLATION AND CUSTOMIZATION GUIDE FOR A DESCRIPTION OF SPF
MESSAGE FORMATS.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 227

= COMMON MENU HANDLER ROUTINE . MHA

PURPOSE:

MHA IS CALLED TO READ, DISPLAY AND PROCESS A MENU FROM THE SPFMENUS
DATA SET. MHA INITIALIZES FIELDS ON THE MENU FROM PASSED PARAMETERS,
AND FROM THE MENU DEFINITION READ FROM THE SPFMENUS DATA SET. AFTER
READING INPUT FROM THE TERMINAL, MHA PASSES INFORMATION BACK TO THE
CALLING PROGRAM VIA THE CALLING SEQUENCE PARAMETERS.

INVOKED WITH:
CALL TO MHA

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> IN/OUT LOGICAL DISPLAY TABLE
2. MENUID CHAR(8) INPUT MENU NAME
3. OPTIONS FIXED(31) INPUT CONTROL OPTIONS
4. PARM1 x IN/OUT PARAMETER FOR THE MENU
.. PARMN * IN/OUT PARAMETER FOR THE MENU
WHERE
MENUID - IS THE NAME OF A MEMBER OF THE SPFMENUS DATA SET TO BE
PROCESSED.
OPTIONS - THIS PARAMETER SPECIFIES WHICH OPTIONS ARE TO BE USED. \
0 - NO SPECIAL OPTION REQUESTED. J
1 - RETURN IF NOT FOUND OPTION. IF THIS OPTION IS
SPECIFIED, MHA WILL RETURN TO THE CALLER IF THE
REQUESTED MENU IS NOT FOUND IN THE SPFMENUS
DATA SET. SEE RETURN CODE SECTION BELOW.
2 - NON-DISPLAY. THIS OPTION CAUSES THIS ROUTINE TO
BUILD THE MENU IN THE TLS, BUT NOT TO DISPLAY OR
AWAIT RESPONSE. THE CALLING PROGRAM MAY, FOR
EXAMPLE, USER MERR TO DISPLAY THE MENU.
3 - BOTH 1 AND 2 ABOVE.
PARM(S) - OPTIONAL PARAMETERS THAT ARE REFERENCED BY THE MENU
ACTION STATEMENTS, WHERE VALUES ARE TO BE RETURNED
(AND/OR PASSED TO THE MENU). A MAXIMUM OF 100 OPTIONAL
PARAMETERS IS SUPPORTED.
RETURN CODE:
0 - NORMAL RETURN.
& - MENU NOT FOUND (ONLY IF OPTION 1 OR 3 IS SPECIFIED).
998 ABEND - MHA TERMINATES WITH ABEND 998 IF AN ERROR IS ENCOUNTERED
PROCESSING THE MENU AND IT IS NOT POSSIBLE TO PROCEED.
NOTES:
THE MHA PARAMETER LIST MUST BE TERMINATED WITH A VLIST FLAG.

SEE THE INSTALLATION AND CUSTOMIZATION GUIDE FOR MORE INFORMATION
ON MENU FORMATS.

228 SPF/TS0O PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

MNT = MENU TESTER (DEBUGGING AID) ROUTINE MNT

PURPOSE:

MNT IS A TESTING ROUTINE USED TO DISPLAY A MENU SO THAT ITS LAYOUT
CAN BE EXAMINED.

INVOKED WITH:
LINK TO SPFTMENU (FROM PMD)

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
MNT IS INVOKED BY KEYING "TESTMENU™ ON THE PRIMARY OPTION MENU.

MNT CALLS MHA WITH 50 SUBSTITUTIBLE PARAMETERS. MENUS WITH MORE THAN
50 PARAMETERS CANNOT BE TESTED WITH TESTMENU.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM DRGANIZATION 229

oPT - SPF PARAMETER OPTION ROUTINE

PURPOSE:

oPT

OPT IS INVOKED WHEN OPTION 0 IS SELECTED FROM THE PRIMARY OPTION
MENU. IT DISPLAYS THE SPF PARAMETER OPTIONS MENU, AND THEN EITHER

THE TERMINAL CHARACTERISTICS MENU,

THE LOG/LIST DEFAULTS MENU, OR

THE PROGRAM FUNCTION KEY DEFINITION MENU. PARAMETERS ARE VALIDATED
AND THE INFORMATION IS PLACED IN THE TSV OR TKV.

INVOKED WITH:
LINK TO SPFOPT (FROM PMD)

CALLING SEQUENCE PARAMETERS:
l. TLD <TLD> INPUT
2. PARM CHAR(8) INPUT

RETURN CODE:
0 - ALWAYS.

NOTES:

LOGICAL DISPLAY TABLE
MENU NAME

THE INITIAL MENU NAME IS PASSED TO THIS PROGRAM FROM PMD VIA THE
SECOND PARAMETER OF THE PRIMARY OPTION MENU. MENU NAME "OPTOO™
(SPF PARAMETER OPTIONS MENU) IS USED TO INDICATE OPTION 0 WAS
SELECTED. MENU NAMES "OPTO01™ (TERMINAL CHARACTERISTICS MENU),
"OPTO02™ (LOG/LIST DEFAULTS MENU), OR "OPTO03"™ (PROGRAM FUNCTION KEY
DEFINITION MENU) INDICATE OPTION 0.1, 0.2, OR 0.3 WERE SELECTED

RESPECTIVELY.

IF SESSION MANAGER RELEASE 2 IS INSTALLED, THE TERMINAL
CHARACTERISTICS MENU IS CHANGED TO "OPTO1SM™. THIS MENU HAS MENU
AND ACTION STATEMENTS AFTER THE <END> STATEMENT. WHEN THESE LINES
ARE MOVED TO THEIR APPROPIATE PLACES, IT ALLOWS THE USER TO CONTROL
GOING INTO SESSION MANAGER MODE FOR TS0 MESSAGES OUTSIDE OF PRIMARY

OPTIONS 4 AND 6.

THE PROGRAM FUNCTION KEY DEFINITION MENU IS EITHER "OPTO03A™,
"OPTO3B™, OR "OPTO3C". THE PROPER MENU IS SELECTED BASED ON THE
TERMINAL TYPE AND THE NUMBER OF PF KEYS ENTERED ON THE TERMINAL

CHARACTERISTICS MENU.

230 SPF/TS0 PROGRAM LOGIC MANUAL

LICENSED MATERIAL - PROPERTY OF IBM

PFT = PROCESSOR FINAL TERMINATION ROUTINE PFT

PURPOSE:

PFT IS CALLED BY PMD WHEN SPF TERMINATION HAS BEEN REQUESTED.
IT DISPLAYS ONE OF THE FINAL MENUS (LOG, LIST, OR LOG/LIST), AND
THEN HANDLES THE DISPOSITION OF THE LOG AND LIST DATA SETS.

INVOKED WITH:
CALLED BY PMD

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - NORMAL RETURN, COMPLETE TASK TERMINATION.
% - TERMINATION ABORTED, RETURN TO PRIMARY OPTION MENU.

NOTES:
NONE.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 231

PMD = PROCESSOR MAIN DRIVER ROUTINE ' PMD

PURPOSE:
PMD IS INVOKED FROM THE SPF MAIN TASK. IT DISPLAYS THE PRIMARY
OPTION MENU ("APRIOPT™) AND THEN LINKS TO A LOAD MODULE WHOSE NAME
IS TAKEN FROM THE PRIMARY OPTION MENU, BASED ON THE OPTION SELECTED
BY THE USER.

INVOKED WITH:

ATTACH TO SPFPMD (FROM SMI OR SMA)

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. TYPE FIXED(31) INPUT ENTRY TYPE - 1(CINIT), 2(RESTART)
3. CODE FIXED(31) INPUT CODE DEPENDS ON ENTRY TYPE
WHERE

CODE = IF TYPE 1 ENTRY (SPF INITIALIZATION) CODE IS:

0-3 - SUCCESSFUL INITIALIZATION
>3 - INITIALIZATION FAILED (SEE MENU PMDPIER
FOR A LIST OF REASONS).

- IF TYPE 2 ENTRY (SPLIT SCREEN OR REATTACH) CODE IS:
0 - SPLIT SCREEN
N - 'N' IS THE ABEND CODE FROM PMD TASK
TERMINATION WHICH IS TO BE DISPLAYED ON THE
PRSTRT (BOX) MENU.
RETURN CODE:

0 - ALWAYS.

NOTES:

WHEN A VALID OPTION IS SELECTED FROM THE PRIMARY OPTION MENU, TWO
NAMES ARE RETURNED. PMD LINKS TO THE FIRST OF THE TWO NAMES AND
PASSES THE SECOND NAME AS A PARAMETER (ALONG WITH THE TLD).

IF THE PROCESSOR TASK ABENDS, THE SPF MAIN TASK REATTACHES SPFPMD
AND PASSES IT THE TASK COMPLETION CODE. PMD THEN CALLS PRS TO LOG
THE ABEND INFORMATION AND DISPLAY THE RESTART MENU.

232 SPF/TS0O PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

L PRS = PROCESSOR RESTART ROUTINE PRS

PURPOSE:
PRS IS CALLED BY PMD WHEN PMD IS BEING REATTACHED BECAUSE OF A
PREVIOUS TASK ABEND. IT LOGS OUT A MINI-DUMP OF ABEND INFORMATION
;gNaHE LOG DATA SET. IT THEN FORMATS AND DISPLAYS THE ABEND (BOX)
INVOKED WITH:

CALLED BY PMD

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. CODE FIXED(31) INPUT PREVICOUS TASK TERMINATION CODE

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 233

PTC = TSO COMMAND PROCESSCR ROUTINE PTC

PURPOSE:
PTC IS INVOKED WHEN OPTION 6 IS SELECTED FROM THE PRIMARY OPTION MENU
AND ALLOWS EXECUTION OF TSO COMMANDS AND CLISTS UNDER SPF.

INVOKED WITH:
LINK TO SPFTSQ (FROM PMD)

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
PTC CALLS OBJECT MODULE CAT TO EXECUTE THE COMMAND OR CLIST.

SEE THE NOTES SECTION OF OBJECT MODULE CAT FOR A LIST OF
RESTRICTIONS.

234 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

SCN - BACKGROUND SCAN ROUTINE

PURPOSE:

SCN

SCN IS EXECUTED IN THE BACKGROUND AS THE FIRST JOBSTEP OF BACKGROUND
JOBS SUBMITTED VIA THE IBM SUPPLIED BACKGROUND PROCESSING?SUB-OPTIONS

(OPTION 5). THIS JCL IS GENERATED FROM JCL PROTOTYPES IN THE
SPFPROCS DATA SET. THE PROGRAM SEARCHES A CONCATENATION OF

PARTITIONED DATA SETS FOR A SPECIFIED MEMBER AND, IF THE MEMBER IS
FOUND, COPIES IT TO A SEQUENTIAL TEMPORARY DATA SET WHERE IT SERVES

AS INPUT TO A PROCESSING PROGRAM IN A SUBSEQUENT JOBSTEP. THIS
FUNCTION IS NEEDED TO SUPPORT HIERARCHICAL LIBRARIES.

INVOKED WITH:

/7/5CAN EXEC PGM=SPFSCAN,PARM="'MEMNAME',COND=(12,LE)
//STEPLIB DD DSN=SPF22.MOD1l.SPFLOAD,DISP=SHR

/71N DD DSN=DSNAME1,DISP=SHR
/77 DD DSN=DSNAMEZ,DISP=SHR
4 DD DSN=DSNAME3,DISP=SHR
/77 DD DSN=DSNAME4,DISP=SHR
//70UT DD UNIT=SYSDA,DISP=(NEW,PASS),SPACE=(CYL,(2,2)),
/77 DSN=&TEMP1
WHERE
MEMNAME - THE PDS MEMBER BEING SEARCHED FOR
DSNAME1 = FIRST PDS TO BE SEARCHED
DSNAME2 - SECOND PDS TO BE SEARCHED
DSNAME3 - THIRD PDS TO BE SEARCHED
DSNAME4 - FOURTH PDS TO BE SEARCHED

CALLING SEQUENCE PARAMETERS:

1. MEMBER ¥ INPUT PARTITIONED DATA SET MEMBER NAME

WHERE

MEMBER - IS THE STANDARD 0S PARAMETER LIST. THE FIRST TWO BYTES

CONTAIN THE LENGTH OF THE PARAMETER IN BINARY. THE
LENGTH IS FOLLOWED BY A 1 TO 8 BYTE MEMBER NAME.

RETURN CODES:

0 - NORMAL RETURN, MEMBER FOUND AND COPIED.
12 - MEMBER NOT FOUND.

16 - UNABLE TO OPEN INPUT DCB.

20 - I/0 ERROR ON INPUT DATA SET.

2% - UNABLE TO OPEN OUTPUT DCB.

28 - Is/0 ERROR ON OUTPUT DATA SET.
NOTES:

IT IS RECOMMENDED THAT ALL DATA SETS BEING SCANNED HAVE THE SAME
BLOCK SIZE. I-0 ERRORS MAY RESULT IF THE BLOCK SIZE OF THE FIRST
gégﬁESEE IS SMALLER THAN OTHER DATA SETS IN THE CONCATENATION

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION

235

SIP = SPF INPUT PARMS EXIT ROUTINE SIP

PURPOSE:
SIP IS AN, EXIT ROUTINE THAT CAN EXAMINE AND MODIFY SPF PARAMETERS
AFTER THEY HAVE BEEN READ FROM THE PARMS DATA SET, AND BEFORE THEY
ARE USED FOR SPF PROCESSING. IT ALSO MOVES SELECTED PARAMETERS
FROM THE TKV TO THE TSV.

INVOKED WITH:

CALL TO SIP (FROM CIPARMS)

CALLING SEQUENCE:
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:

SIP IS DESIGNED TO PROVIDE A SIMPLE INTERFACE FOR INSTALLATIONS THAT
REQUIRE MODIFICATION TO SPF USER PARMS ON INPUT. IT PROVIDES AN
INTERFACE TO CKVGET AND CKVPUT TO RETRIEVE AND THEN STORE BACK
SELECTED USER PARAMETERS. IT ALSO PROVIDES ADDRESSABILITY TO SOME
COMMON SPF TABLES. BY MODIFYING, ASSEMBLING, AND LINK EDITING SIP AN
INSTALLATION CAN PERFORM PARAMETER VALIDATION/MODIFICATION AND STILL
MAINTAIN A CLEAN INTERFACE WITH OTHER SPF MODULES.

SIP IS LINK EDITED INTO SPFMAIN.

THE PARAMETERS THAT ARE MODIFIED BY SIP ARE NOT IMMEDIATELY WRITTEN
OUT TO THE PARMS DATA SET. THEY WILL NORMALLY BE WRITTEN OUT AT
SPF TERMIgATION AND MAY BE WRITTEN OUT AT OTHER TIMES DURING SPF
PROCESSING.

A SIMILAR TYPE OF EXIT IS PROVIDED WHEN SPF PARAMETERS ARE WRITTEN
TO THE PARMS DATA SET. SEE THE DESCRIPTION OF OBJECT MODULE SOP.

236 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

SMA = SPF MAIN ATTACH ROUTINE SMA

PURPOSE:
SMA IS CALLED BY SMI AND SMC TO ATTACH A PROCESSOR TASK (SPFPMD).
IT IS ALSO CALLED TO DETACH SPFPMD AND CLEAN UP THE ASSOCIATED TLD.

SMA CONTAINS THE STAI EXIT ROUTINE THAT 1S ENTERED IF THE PROCESSOR
TASK ABENDS.

INVOKED WITH:
CALL SMA (FROM SMI AND SMOC)

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE (TLDO)
2. PMDTYPE FIXED(31) INPUT PMD ENTRY TYPE

3. PMDCODE FIXED(31) INPUT PMD INPUT CODE

WHERE

PMDTYPE - ENTRY TYPE FOR PMD (SEE PMD).
PMDCODE - ENTRY CODE FOR PMD (SEE PMD).

RETURN CODE:
0 - ALWAYS.

NOTES:

SMA IS FIRST CALLED BY SMI TO CREATE THE FIRST PROCESSOR TASK. SMC
CALLS SMA TO CREATE ANOTHER PROCESSOR TASK WHEN THE SPLIT PF KEY IS
PRESSED. SMC ALSO CALLS SMA TO DETACH THE PROCESSOR TASK AND CLEAN
UP THE TLD WHEN A PROCESSOR TASK TERMINATES (NORMAL OR ABNORMAL).
ABNORMAL TERMINATION CAUSES A REATTACH OF SPFPMD.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 237

SMC = SPF MAIN CONTROLLER ROUTINE SMC

PURPOSE:
SMC INTERFACES BETWEEN A PROCESSOR TASK AND THE TERMINAL. IT
GENERATES AN OUTPUT STREAM USING THE LOGICAL SCREEN TABLES (TLS)
FROM THE PROCESSORS. IT CALLS THE COMMON SUBROUTINE CTPUT TO
OUTPUT TO THE TERMINAL AND THEN READS FROM THE TERMINAL USING THE
COMMON SUBROUTINE CTGET. AFTER THE INPUT IS RECEIVED, THE
#IgENTION ID (AID) IS ANALYZED AND THE INPUT DATA IS MOVED TO THE

INVOKED WITH:

CALL TO SMC (FROM SMD)

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE (TLDO)

RETURN CODE:
0 - ALWAYS.

NOTES:
THE REDISPLAY KEY (PA2) AND THE SPLIT, SWAP, CURSOR, AND PRINT PF

KEYS ARE COMPLETLY PROCESSED BY SMC. OTHER KEYS CAUSE CONTROL TO
BE PASSED TO THE PROCESSOR TASKS VIA POST/WAIT LOGIC.

238 SPF/TS0O PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

SMD = SPF MAIN DRIVER ROUTINE SMD

PURPOSE:
SMD IS INVOKED FROM THE SPF DRIVER (MODULE SPF). 1IT LOADS SPFTBLS,
SPFSUBS, AND SPFTCM. THEN SMD CALLS SMI AND IF THERE IS NO

INITIALIZATION ERROR IT CALLS SMC. SMD CONTAINS THE STAX EXIT
ROUTINE THAT IS ENTERED IF THE PAl KEY IS PRESSED.

INVOKED WITH:
LINK TO SPFMAIN (FROM SPF)

CALLING SEQUENCE PARAMETERS:

1. TSOPARM PTR(31) INPUT ADDR OF TSO PARAMETER LIST
2. DCB * INPUT ADDR OF SPFLIB DCB, OR ZERO
WHERE

TSOPARM - IS THE ADDRESS OF THE FOUR-ADDRESS LIST PASSED BY
THE TSO TMP TO ANY COMMAND PROCESSOR. THE FOUR
ADDRESSES ARE:

1. CBUF - THE TSO COMMAND BUFFER CONTROL BLOCK
2. UPT = THE TS0 USER PROFILE TABLE

3. PSCB - THE TSO PROTECTED STEP CONTROL BLOCK
4. ECT = THE TSO ENVIRONMENT CONTROL TABLE

DCB - IS THE ADDRESS OF AN OPEN DCB, IF SPFLIB WAS
ALLOCATED PRIOR TO SPF EXECUTION. THE DCB IS USED
AS THE TASKLIB DCB WHEN ATTACHING SPFPMD.
ZERO IS PASSED IF SPFLIB WAS NOT ALLOCATED.
RETURN CODE:

0 - ALWAYS.

NOTES:
THE TSOPARM LIST CONTAINS THE STANDARD PARAMETERS THAT ARE PASSED

TO ANY TSO COMMAND PROCESSOR. SEE "GUIDE TO WRITING A TERMINAL
MONITOR OR A COMMAND PROCESSOR™ FOR MORE INFORMATION.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 239

SMI = SPF MAIN INITIALIZATION ROUTINE SMI

PURPOSE:
SMI PERFORMS SPF INITIALIZATION. INCLUDED IS THE ALLOCATION AND
OPENING OF SPFMENUS, SPFMSGS, SPFPROCS, AND SPFPARMS. THE PARMS
INITIALIZATION SUBROUTINE (CIPARMS) IS CALLED TO READ THE USER
PARMS RECORD FROM THE PARMS DATA SET OR CREATED A FIRST-TIME SPF
USER PARMS RECORD. SMI CONTAINS THE STAE EXIT ROUTINE THAT IS
ENTERED IF THE SPF MAIN TASK ABENDS.

INVOKED WITH:

CALL TO SMI (FROM SMD)

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE (TLDO)

RETURN CODE:
0 - SPF IS SUCCESSFULLY INITIALIZED.
>0 - SMI ENCOUNTERED AN ERROR DURING INITIALIZATION.

NOTES:
NONE.

240 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

SML = SPF MAIN LINE I-0 INTERFACE ROUTINE SML

PURPOSE:

SML IS CALLED BY SMC WHENEVER A PROCESSOR TASK IS ABOUT TO INVOKE A
PROGRAM THAT MIGHT PERFORM STANDARD TSO LINE I/0.

INVOKED WITH:
CALL TO SML C(FROM SMC)

CALLING SEQUENCE PARAMETERS:
l. TLD <TLD> INPUT LOGICAL DISPLAY TABLE (TLDO)

RETURN CODE:
0 - ALWAYS.

NOTES:

THE PROCESSOR TASK SIGNALS SMC BY POSTING THE DISPLAY REQUEST ECB
(TLDDRECB) WITH A SPECIAL CODE. SML POSITIONS THE CURSOR AND
CLEARS THE SCREEN FROM THE CURSOR POSITION TO THE BOTTOM. SML THEN
WAITS FOR THE NEXT DISPLAY REQUEST, AFTER WHICH IT PASSES CONTROL
BACK TO SMC WHICH PROCESS THE DISPLAY REQUEST ALONG WITH A COMPLETE
REDISPLAY OF THE SCREEN.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 2641

soP - SPF OUTPUT PARMS EXIT ROUTINE. . soP

PURPOSE: N

SOP IS AN EXIT ROUTINE THAT CAN EXAMINE AND MODIFY SPF PARAMETERS
BEFORE THEY ARE WRITTEN TO THE PARMS DATA SET. IT ALSO MOVES
SELECTED PARAMETERS FROM THE TSV TO THE TKV. THE PASSWORD VALUE IS
BLANKED AND "RACF"™ VALUES ON JCL JOB CARDS ARE SET TO QUESTION
MARKS.

INVOKED WITH:
CALL TO SOP (FROM CUPARMS)

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:

SOP IS DESIGNED TO PROVIDE AN EASY INTERFACE FOR INSTALLATIONS

THAT REQUIRE MODIFICATION TO SPF USER PARMS ON OUTPUT. IT PROVIDES
AN INTERFACE TO CKVGET AND CKVPUT TO RETRIEVE AND THEN STORE BACK
SELECTED USER PARAMETERS. IT ALSO PROVIDES ADDRESSABILITY TO

SOME COMMON SPF TABLES. BY MODIFYING, ASSEMBLING, AND LINK EDITING
SOP AN INSTALLATION CAN PERFORM PARAMETER VALIDATION/MODIFICATION
AND STILL MAINTAIN A CLEAN INTERFACE WITH OTHER SPF MODULES.

SOP IS LINK EDITED INTO SPFSUBS.

SOP ACTUALLY MODIFIES A COPY OF THE PARAMETERS. THIS COPY IS
WRITTEN TO THE PARMS DATA SET, BUT THE ORIGINAL (UNMODIFIED) DATA
CONTINUES TO BE USED DURING THE CURRENT SPF SESSION.

A SIMILAR TYPE OF EXIT IS PROVIDED WHEN SPF PARAMTERS ARE READ FROM
THE PARMS DATA SET. SEE THE DESCRIPTION OF OBJECT MODULE SIP.

ONLY THE "RACF™ "PASSWORD"™ VALUE IS SET TO QUESTION MARKS. A

SUPER-ZAPPABLE SWITCH BYTE IS PROVIDED TO HAVE "USER"™ AND "GROUP™
VALUES ALSO SET TO QUESTION MARKS. REFER TO THE PROGRAM LISTINGS.

242 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

SPC = SPF PARMS CONVERSION ROUTINE SPC

PURPOSE:
SPC CONVERTS A PARMS RECORD FROM THE SPF VERSION 2.1 FORMAT INTO THE
SPF VERSION 2.2 FORMAT. CIPARMS LINKS TO SPC WHEN IT RECOGNIZES
THAT THE PARMS RECORD WHICH HAS BEEN READ IS A VERSION 2.1 RECORD.
INVOKED WITH:

LINK TO SPFSPC (FROM CIPARMS)

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE (TLDO)
2. TKV <TKV> INPUT DEFAULT TKV FOR VERSION 2.2
3. TKv2 CHAR (%) INPUT SPF PARMS DATA SET RECORD
WHERE

TKV2 - IS THE VERSION 2.1 PARMS RECORD.

RETURN CODE:
0 - ALMAYS.

NOTES:

IN CREATING THE TKV, DATA IS TAKEN FROM THE VERSION 2.1 TSV.
HOWEVER, NOT ALL OF THE DATA THAT MIGHT BE USED IS COPIED OVER TO
JES ?Eﬁ ;Kg. SINCE SOME OF IT MIGHT BE INCONSISTENT WITH SPF

SIO0 2.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 243

SPF - SPF DRIVER ROUTINE - SPF

PURPOSE:
SPF IS THE HIGHEST LEVEL ROUTINE IN THE SPF MAIN TASK. IT RECEIVES
CONTROL FROM THE TSO TERMINAL MONITOR PROGRAM AND PASSES CONTROL TO
THE SPF MAIN DRIVER ROUTINE (SMD).

INVOKED WITH:

ATTACH TO SPF (FROM TERMINAL MONITOR PROGRAM)

CALLING SEQUENCE PARAMETERS:

1. CBUF * INPUT THE TSO COMMAND BUFFER

2. UPT * INPUT THE TSO USER PROFILE TABLE

3. PSCB * INPUT THE TS0 PROTECTED STEP CONTROL
BLOCK

4. ECT * INPUT THE TSO ENVIRONMENT CONTROL
BLOCK

WHERE

THE FOUR PARAMETERS ARE THE STANDARD PARAMETERS THAT ARE PASSED
TO ANY TSO COMMAND PROCESSOR. SEE "GUIDE TO WRITING A TERMINAL
MONITOR OR A COMMAND PROCESSOR™ FOR MORE INFORMATION.

RETURN CODE:
0 - ALWAYS.

NOTES:

SPF DETERMINES WHETHER OR NOT AN SPFLIB FILE HAS BEEN ALLOCATED.
IF IT HAS, A DCB IS OPENED AND ITS ADDRESS IS USED IN LINKING
TO SPFMAIN (WHICH IN TURN USES IT FOR LOADS AND AS A TASKLIB IN
ATTACHING SPFPMD). IF THE SPFLIB FILE HAS NOT BEEN ALLOCATED,
AN ADDRESS OF ZERO IS PASSED TO SPFMAIN.

244 SPF/TS0O PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

SPFCALCP - SPF CALL COMMAND PROCESSOR ROUTINE SPFCALCP
PURPOSE:
SPFCALCP IS A COPY OF THE TSO CALL COMMAND PROCESSOR. IT IS INVOKED
WHEN A CALL COMMAND IS TO BE EXECUTED UNDER SPF.

INVOKED WITH:
CALL TO SPFCALCP

CALLING SEQUENCE PARAMETERS:

1. CBUF * INPUT THE TSO COMMAND BUFFER

2. UPT % INPUT THE TS0 USER PROFILE TABLE

3. PSCB * INPUT THE TSO PROTECTED STEP CONTROL
BLOCK

4. ECT * INPUT THE TSO ENVIRONMENT CONTROL TABLE

5. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

WHERE

THE FOUR PARAMETERS ARE THE STANDARD PARAMETERS THAT ARE PASSED
TO ANY TSO COMMAND PROCESSOR. SEE "GUIDE TO WRITING A TERMINAL
MONITOR OR A COMMAND PROCESSOR™ FOR MORE INFORMATION. THE LAST
PROGRAM IS THE LOGICAL DISPLAY TABLE AND ALLOWS THE CALLED
TO HAVE ACCESS TO ANY SPF TABLES.

RETURN CODE:

FROM THE CALLED PROGRAM.

NOTES:

SPFCALCP IS NEEDED BECAUSE THE TSO CALL COMMAND PROCESSOR (CALL) NO
LONGER EXISTS IN MVS SYSTEMS.

ONLY UNAUTHORIZED PROGRAMS MAY BE INVOKED VIA SPFCALCP BECAUSE SPF
RUNS AS AN UNAUTHORIZED PROBLEM PROGRAM.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 245

SPFSC93X - SUC 93 EXIT ROUTINE SPFSCI3X

PURPOSE:

SPFSC93X IS AN SVC 93 EXIT ROUTINE WHICH PROVIDES THE SPF/SESSION
MANAGER INTERFACE. THIS INTERFACE ALLOWS SPF TO CONTROL WHEN SESSION
MANAGER MODE IS ENTERED.

INVOKED WITH:
CALL TO SPFSC93X (FROM IKTTMPX1)

CALLING SEQUENCE PARAMETERS:

REGISTERS 0 AND 1 ARE THE SAME AS ENTRY TO SVC 93.
REGISTERS 2 AND 10 ARE AVAILABLE FOR PROGRAM USE.
ALL OTHER REGISTERS CONTAIN SESSION MANAGER DATA.

RETURN CODE:

¢

-8 - REQUEST HAS NOT BEEN PROCESSED BY SPFSC93X. THE SESSION MANAGER
SHOULD PROCESS IT.

-4 - REQUEST HAS BEEN PROCESSED BY SPFSC93X. THE SESSION MANAGER
SHOULD PASS THE -4 RETURN CODE BACK TO SVC 94.

0 - REQUEST HAS BEEN PROCESSED BY SPFSC93X. THE SESSION MANAGER
SHOULD PASS THE 0 RETURN CODE BACK TO SVC 93.

NOTES:

SESSION MANAGER RELEASE 2 IS REQUIRED FOR THE SPF/SESSION MANAGER
INTERFACE TO BE EFFECTIVE.

246 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

SPFSC34X - SUC 94 EXIT ROUTINE SPFSC94X

PURPOSE:
SPFSC94X IS AN SVC 94 EXIT ROUTINE WHICH PROVIDES THE SPF/SESSION
MANAGER INTERFACE. THIS INTERFACE ALLOWS SPF TO CONTROL WHEN
SESSION MANAGER MODE IS ENTERED.

INVOKED WITH:

CALL TO SPFSC94X (FROM IKTTMPX2)

CALLING SEQUENCE PARAMETERS:

REGISTERS 0 AND 1 ARE THE SAME AS ENTRY TO SVC 94.
REGISTERS 6 AND 8 ARE AVAILABLE FOR PROGRAM USE.
ALL OTHER REGISTERS CONTAIN SESSION MANAGER DATA.

RETURN CODE:

-8 - REQUEST HAS NOT BEEN PROCESSED BY SPFSC94X. THE SESSION MANAGER
SHOULD PROCESS IT.

-4 - REQUEST HAS BEEN PROCESSED BY SPFSC94X. THE SESSION MANAGER
SHOULD PASS THE -4 RETURN CODE BACK TO SVC 94.

0 - REQUEST HAS BEEN PROCESSED BY SPFSC94X. THE SESSION MANAGER
SHOULD PASS THE 0 RETURN CODE BACK TO SVG 94.

NOTES:

SESSION MANAGER RELEASE 2 IS REQUIRED FOR THE SPF/SESSION MANAGER
INTERFACE TO BE EFFECTIVE.

-LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 247

TCM = TABLE - COMMANDS-CLISTS TCM

PURPOSE:

TCM IS THE TABLE OF COMMANDS. IT CONTAINS A LIST OF COMMAND NAMES.
THE COMMON ATTACH ROUTINE (CAT) LOOKS UP IN THIS TABLE THE NAME OF
ANY PROCESSOR OR CLIST THAT IS TO BE EXECUTED.

REFERENCED VIA:
TLD (TLDDCLS - TLDTCMP).

NOTES:

EACH NAME IN THE TCM IS IDENTIFIED AS A COMMAND PROCEDURE (CLIST), A
COMMAND PROCESSOR, AN INVALID COMMAND, OR A BLDL REQUIRED COMMAND.
IN THE CASE OF A BLDL REQUIRED COMMAND, A BLDL IS PERFORMED (WITH
DCB=0) AND IF THE COMMAND IS FOUND IT IS ASSUMED TO BE A COMMAND
PROCESSOR. IF IT IS NOT FOUND WITH A BLDL, IT IS ASSUMED TO BE A
CLIST. THE LAST ENTRY IN THE TCM SPECIFIES HOW COMMANDS NOT IN

THE TABLE SHOULD BE HANDL.:&

THZ TCM OBJECT MODULE IS IN REENTRANT LOAD MODULE SPFTCM, WHICH
IS LOADED BY OBJECT MODULE SMD.

248 SPF/T7S0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

o

TKV = TABLE -~ KEYHORD VALUES TRV

PURPOSE:
TKV 1S THE TABLE OF KEYWORD/VALUES. THIS OBJECT MODULE IS THE USED
TO CREATE FOR A NEW USER THE IN-MEMORY TKV CONTROL BLOCK THAT IS USED
BY SPF TO SAVE A USERS "REMEMBERED"™ PARAMETERS. THE IN-MEMORY TKV IS
SAVED FROM SESSION TO SESSION IN THE SPFPARMS DATASET.

REFERENCED VIA:

VCON (CIPTKVCP IN CIPARMS GBJECT MODULE)

NOTES:

FOR FURTHER INFORMATION ABOUT THE TKV SEE THE DATA AREAS SECTION OF
THIS MANUAL.

THE TKV OBJECT MODULE IS LINK EDITED TO THE SPFMAIN LOAD MODULE.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 249

TKH

PUR

REF

NOT

250

= TABLE - KEVHORDS TKR

POSE:

TKW IS THE TABLE OF KEYWORDS TABLES. IT CONTAINS POINTERS TO THE
THREE KEYWORD TABLES (FOR SPF SYSTEM WIDE KEYWORDS, FOR EDIT AND
BROWSE PRIMARY COMMAND KEYWORDS, AND FOR EDIT LINE COMMAND KEYWORDS).
ERENCED VIA:

TLD (TLDDCLS - TLDTKWP).

ES:

KEYWORDS ARE 1 TO 8 CHARACTER NAMES. ASSOCIATED WITH EACH KEYWORD
IS ITS LENGTH, AND AN INTERNAL ONE BYTE CODE.:

THE USE OF KEYWORD TABLES ENABLES MORE EFFICIENT CODE (SINCE ONLY
A SINGLE BYTE NEEDS TO BE REFERENCED IN CHECKING COMMANDS AND
PARAMETERS, AND IT ALLOWS ALIAS NAMES SINCE TWO ENTRIES IN THE
TABLE CAN HAVE THE SAME INTERNAL CODE.

THE NUMBER OF KEYWORD ENTRIES IS LIMITED TO 255.
CALLED INTERNAL PROCEDURES ARE USED TO REFERENCE INFROMATION IN THE
KEYWORD TABLES.
"SYSCODE™ IS USED TO RETRIEVE A CODE, IF A KEYWORD IS KNOWN.
"SYSWORD™ IS USED TO RETRIEVE A KEYWORD, IF A CODE IS KNOWN.

THE TKW OBJECT MODULE IS LINK EDITED TO THE SPFMAIN LOAD MODULE.

SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

TRT = TABLE - STATIC TRANSLATE TABLES TRT

PURPOSE:

TRT IS A TABLE OF STATIC TRANSLATE TABLES.

REFERENCED VIA:

INDIVIDUAL TABLES IN TRT ARE ADDRESSABLE FROM THE TCT WHICH IN
TURN IS ADDRESSABLE FROM THE TLD. (TLDDCLS - TLDTCTP)

NOTES:

THE TABLES THAT MAKE UP THE TRT ARE:

TRTLOC
TRTATT =~
TRTAID -

THE TRT OBJECT

SCREEN LOC TRANS TABLE
ATTR BYTE TRANS TABLE
AID TRANS TABLE

MODULE IS LINK EDITED TO THE SPFMAIN LOAD MODULE.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 251

TSC ~ TABLE - SUBROUTINE COMMON TSC

PURPOSE:
THE TSC OBJECT MODULE IS USED TO BUILD THE TSC CONTROL BLOCKS IN

DYNAMIC STORAGE, WHICH IN TURN ARE USED TO ADDRESS SPF COMMON
SUBROUTINES.

REFERENCED VIA:
TSI (TSIDCLS = TSITSCP)

NOTES:

EACH LOGICAL SCREEN HAS A TSC WHICH IS BUILT IN GETMAINED STORAGE
FROM THE T7SC OBJECT MODULE BY OBJECT MODULE PMD. THE TSC CONTROL
%tgggc;N DYNAMIC STORAGE IS REFERENCED BY THE PROCESSOR TASKS VIA

SEE THE DATA AREAS SECTION OF THIS MANUAL FOR FURTHER INFORMATIGON
ABOUT THE TSC CONTROL BLOCK.

THE TSC OBJECT MODULE IS LOCATED IN THE SPFSUBS LOAD MODULE WHICH
IS LOADED BY OBJECT MODULE SMD.

252 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

TSI = TABLE - SPF INTERFACES TS1

PURPOSE:

THE 751
BLOCKS.

REFERENCED

OBJECT MODULE IS A SKELETON FOR THE PRIMARY SPF CONTROL

VIA:

TLD (TLDDCLS - TLDTSIP)

NOTES:

FOLLOWING IS A LIST OF THE CONTROL BLOCKS CONTAINED WITHIN THE
TSI OBJECT MODULE:

DCB

TCT
TDS
TFD
TFI

TLDO
TLD1
TLD2
TPD
TSV
TSI
TXC

THE TSI
INVOKED

THE TSI

- DATA CONTROL BLOCKS FOR THE FOLLOWING DATASETS:
SPFMENUS
SPFMSGS
SPFPARMS
SPFPROCS
SPFLOG
SPFLIST
SPFEDIT BACKUP DATASET 1
SPFEDIT BACKUP DATASET 2
CONTROLLER TABLES ARRAY
DATA SET TABLE
FILE DEFINITION TABLES FOR ALL DATASETS LISTED UNDER DCB
FIND MEMBER TABLES FOR THE FOLLOWING DATASETS:
SPFMSGS
SPFPROCS
SPFMENUS
LOGICAL DISPLAY TABLE (CONTROLLER)
LOGICAL DISPLAY TABLE (PROCESSOR TASK 1)
LOGICAL DISPLAY TABLE (PROCESSOR TASK 2)
PHYSICAL DISPLAY TABLE
SPF VARIABLES TABLE
SPF INTERFACE TABLE
SPF EXITS CONTROL TABLE (SVC 93 AND 94 EXIT ROUTINES)

OBJECT MODULE ALSO CONTAINS THE SPF PROLOG AND EPILOG CODE
VIA THE SPFPROC AND SPFRETRN MACROS.

OBJECT MODULE IS LOCATED IN LOAD MODULE SPFTBLS, WHICH IS THE

ONLY NON-REENTERABLE MODULE IN SPF. IT IS LOADED BY OBJECT MODULE

SMD.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 253

g} = TABLE - 3277 DEPENDENT TABLES Tl

PURPOSE:

TT1 CONTAINS THE TERMINAL DEPENDENT TABLES FOR THE 3277/3275

TERMINALS.

REFERENCED VIA:

INDIVIDUAL TABLES TT1 ARE ADDRESSABLE FROM THE TCT WHICH IN
TURN IS ADDRESSABLE FROM THE TLD. (TLDDCLS - TLDTCTP)

NOTES:

THE TABLES THAT MAKE UP TT1 ARE:

TTIUPP
TT1LOW
TTIVAL
TT1BTO
TT1ETO
TT1G6SC
TT1GSM
TT1GSS

UPPER CASE TRANS TABLE

LOWER CASE TRANS TABLE

VALID OUTPUT CHARACTER TRANS TABLE

BROWSE INVALID CHARACTER TRANS TABLE

EDIT INVALID CHARACTER TRANS TABLE

EDIT GENERIC STRING CHARACTER CODE TRANS TABLE
EDIT GENERIC STRING MASTER TRANS TABLE

EDIT GENERIC STRING SPECIAL CHARACTER TRANS TABLE

THE TT1 OBJECT MODULE IS IN REENTRANT LOAD MODULE SPF3277, WHICH
IS LOADED BY OBJECT MODULE SMI OR SMC.

254 SPF/TS0O PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

-6

T2 = TABLE - 3278 DEPENDENT TABLES

PURPOSE:

TT2 CONTAINS THE TERMINAL DEPENDENT TABLES FOR THE 327873276

TERMINALS.

REFERENCED VIA:

INDIVIDUAL TABLES TT2 ARE ADDRESSABLE FROM THE TCT WHICH IN
TURN IS ADDRESSABLE FROM THE TLD. (TLDDCLS - TLDTCTP)

NOTES:

THE TABLES THAT MAKE UP TT2 ARE:

TT2UPP
TT2LOW
TT2VAL
TT2BTO
TT2ETO
TT2GSC
TT2GSM
TT2GSS

UPPER CASE TRANS TABLE

LOWER CASE TRANS TABLE

VALID OUTPUT CHARACTER TRANS TABLE

BROWSE INVALID CHARACTER TRANS TABLE

EDIT INVALID CHARACTER TRANS TABLE

EDIT GENERIC STRING CHARACTER CODE TRANS TABLE
EDIT GENERIC STRING MASTER TRANS TABLE

EDIT GENERIC STRING SPECIAL CHARACTER TRANS TABLE

THE TT2 OBJECT MODULE IS IN REENTRANT LOAD MODULE SPF3278, WHICH
IS LOADED BY OBJECT MODULE SMI OR SMC.

LICENSED MATERIAL - PROPERTY OF IBM

PROGRAM ORGANIZATION

TT2

255

| TT3 = TABLE - 3278 CANADIANCFRENCH) DEPENDENT TABLES 7713

| PURPOSE:

I TT3 CONTAINS THE TERMINAL DEPENDENT TABLES FOR THE 3278/3276
CANADIANCFRENCH) TERMINALS.

| REFERENCED VIA:

I INDIVIDUAL TABLES TT3 ARE ADDRESSABLE FROM THE TCT WHICH IN
TURN IS ADDRESSABLE FROM THE TLD. (TLDDCLS - TLDTCTP)

| NOTES:
THE TABLES THAT MAKE UP TT3 ARE:
TT3UPP - UPPER CASE TRANS TABLE
TT3LOW - LOWER CASE TRANS TABLE
TT3VAL = VALID OUTPUT CHARACTER TRANS TABLE
TT3BTO - BROWSE INVALID CHARACTER TRANS TABLE
TT3ETO - EDIT INVALID CHARACTER TRANS TABLE
TT3GSC = EDIT GENERIC STRING CHARACTER CODE TRANS TABLE
TT3GSM - EDIT GENERIC STRING MASTER TRANS TABLE
TT3GSS = EDIT GENERIC STRING SPECIAL CHARACTER TRANS TABLE

THE TT3 OBJECT MODULE IS IN REENTRANT LOAD MODULE SPF3278C, WHICH
IS LOADED BY OBJECT MODULE SMI OR SMC.

256 SPF/TS0O PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

TUT = TUTORIAL PROCESSOR ROUTINE TUT

PURPOSE:
TUT IS INVOKED WHEN OPTION 7 IS SELECTED FROM THE PRIMARY OPTION
MENU. IT DISPLAYS EACH TUTORIAL PAGE, USING THE MENU HANDLER
(MHA), AND DETERMINES THE NEXT PAGE TO BE DISPLAYED. TUT IS ALSO
INVOKED WHEN THE HELP PF KEY IS PRESSED AFTER A LONG MESSAGE IS
DISPLAYED ON THE SECOND LINE.

INVOKED WITH:

LINK TO SPFTUTOR (FROM PMD OR CHELP)

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. PARM CHAR(8) INPUT MENU NAME

RETURN CODE:
0 - ALWAYS.

NOTES:

TUTORIAL PAGE SEQUENCES ARE DEFINED IN THE MENU DEFINITIONS FOR THE
PAGES THEMSELVES BY A MOTHER-SISTER-DAUGHTER RELATIONSHIP. THIS
PROGRAM SELECTS THE APPROPRIATE PAGE (MOTHER, SISTER, DAUGHTER OR
SPECIAL REQUEST) TO BE DISPLAYED BASED ON THESE PARAMETERS, USER
REQUEST, AND PREVIOUS PAGE FLOW.

THE MENU NAME "T™ (TUTORIAL INTRODUCTION) IS PASSED TO TUT VIA THE
SECOND PARAMETER OF THE PRIMARY OPTION MENU WHEN INVOKED FROM PMD.
THE TLDHELP FIELD IS PASSED TO TUT WHEN INVOKED FROM CHELP. THIS
FACILITY ALLOWS TUT TO BE USED AS A GENERAL PURPOSE DISPLAY PROGRAM
FOR A SET OF TUTORIAL TYPE MENUS.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 257

UAh = ALLOCATE NEW DATA SET ROUTINE URA

PURPOSE:
UAA ALLOCATES A NEW DATA SET (DATA SET UTILITY OPTION).

INVOKED WITH:
CALL TO UAA (FRuM UDA)

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. TFD <TFD> IN/OUT FILE DEFINITION TABLE
3. comMM <UDACOMM> IN/OUT UDA COMMON AREA

RETURN CODE:

0 - ALWAYS.
NOTES:
NONE.

258 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

UAC = CATALOG OR UNCATALOG DATA SET ROUTINE UaC

PURPOSE:
UAC CATALOGS OR UNCATALOGS A DATA SET (DATA SET UTILITY OPTION).

INVOKED WITH:
CALL TO UAC (FROM UDA)

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. TFD <TFD> IN/OUT FILE DEFINITION TABLE
3. COMM <UDACOMM> IN/OUT UDA COMMON AREA

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 259

UAD - DELETE DATA SET ROUTINE UAD

PURPOSE:
UAD DELETES A DATA SET (DATA SET UTILITY OPTION).

INVOKED WITH:
CALL TO UAD (FROM UDA)

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. TFD <TFD> IN/OUT FILE DEFINITION TABLE
3. comMM <UDACOMM> IN/OUT UDA COMMON AREA

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

260 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

UAL - DISPLAY DATA SET INFORMATION ROUTINE UAI

PURPOSE:
UAI DISPLAYS DATA SET INFORMATION (DATA SET UTILITY OPTION).

INVOKED WITH:
CALL TO UAI (FROM UDA)

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. TFD <TFD> IN/OUT FILE DEFINITION TABLE
3. comM <UDACOMM> IN/OUT UDA COMMON AREA

RETURN CODE:

0 - ALWAYS.
NOTES:
NONE.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 261

UAR =~ RENAME DATA SET ROUTINE UAR

PURPOSE:
UAR RENAMES A DATA SET (DATA SET UTILITY OPTION).

INVOKED WITH:
CALL TO UAR (FROM UDA)

CALLING SEQUENCE PARAMETERS:

l. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. TFD <TFD> IN/OUT FILE DEFINITION TABLE
3. COMM <UDACOMM> IN/OUT UDA COMMON AREA

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

262 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

A

UChA = CATALOG MANARGEMENT DRIVER ROUTINE uca

PURPOSE:
UCA IS INVOKED WHEN THE USER SELECTS OPTION 4 FROM THE UTILITY
SELECTION MENU (OR OPTION 3.4 FROM THE PRIMARY OPTION MENU). ITS
ONLY FUNCTION IS TO DETERMINE WHETHER THE OPERATING SYSTEM IS SVS

OR MVS, AND TO LINK TO THE APPROPRIATE CATALOG MANAGEMENT ROUTINE
(SPFUC1 OR SPFUC2).

INVOKED WITH:
LINK TO SPFUCA (FROM UTIL OR PMD)

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALKWAYS.

NOTES:
NONE.

LICENSED MATERIAL - PROPERTY OF IBM * PROGRAM ORGANIZATION 263

ucl = SUS CATALOG MANAGEMENT ROUTINE T ucl
PURPOSE:
gngCSOCESSES CATALOG MANAGEMENT REQUESTS IF THE OPERATING SYSTEM

INVOKED WITH:
LINK TO SPFUC1 (FROM UCA)

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

264 SPF/TS0O PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

uc2 = MUS CATALOG MANAGEMENT ROUTINE uca
PURPOSE:
¥§2MCSOCESSES CATALOG MANAGEMENT REQUESTS IF THE OPERATING SYSTEM

INVOKED WITH:
LINK TO SPFUC2 (FROM UCA)

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 265

uDAa = LIBRARY AND DATA SET UTILITY DRIVER ROUTINE UDA

PURPOSE:
UDA IS INVOKED WHEN THE USER SELECTS OPTION 1 OR 2 FROM THE UTILITY
SELECTION MENU (OR OPTION 3.1 OR 3.2 FROM THE PRIMARY OPTION MENU).
IT DISPLAYS THE LIBRARY UTILITY MENU OR DATA SET UTILITY MENU,
ALLOCATES THE SPECIFIED DATA SET, AND CALLS ONE OF THE FOLLOWING
PROGRAMS TO PERFORM THE DESIRED FUNCTION: UAA, UAC, UAD, UAI, UAR
UDM, UDP, UDX, OR UDZ.

INVOKED WITH:

LINK TO SPFUDA (FROM UTIL OR PMD)

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. PARM CHAR(8) INPUT MENU NAME

RETURN CODE:
0 - ALWAYS.

NOTES:

THE MENU NAME "UDA1"™ FOR THE LIBRARY UTILITIES OR "UDA2" FOR THE
DATA SET UTILITIES IS PASSED TO THIS PROGRAM FROM UTIL VIA THE
SECOND PARAMETER OF THE ™UTIL™ MENU (OR FROM PMD VIA THE SECOND
PARAMETER OF THE PRIMARY OPTION MENU). THIS ALLOWS UDA TO BE USED
AS A GENERAL PURPOSE DRIVER FOR UTILITIES. THE SELECTIONS ON

"UDA1" AND "UDA2" COULD BE REARRANGED, E.G. ALL THE SELECTIONS COULD
BE PLACED ON ONE MENU OR BE REARRANGED ON THREE MENUS.

266 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

UDM = LIBRARY UTILITY MEMBER LIST ROUTINE UDM

PURPOSE:
UDM PROCESSES MEMBER LIST REQUESTS (LIBRARY UTILITY OPTION). IT
CALLS CML TO DISPLAY THE MEMBER LIST, AND PASSES THE ADDRESS OF
UDMS C(INVOKED VIA CML TO PROCESS EACH MEMBER SELECTED FROM THE

LIST). UDM ALSO HANDLES REQUESTS TO PRINT, RENAME, DELETE, OR
BROWSE A SINGLE MEMBER. 1IN THIS CASE, IT CALLS UDMS DIRECTLY.

INVOKED WITH:
CALL TO UDM (FROM UDA)

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. TFD <TFD> IN/OUT FILE DEFINITION TABLE
3. COMM <UDACOMM> IN/OUT UDA COMMON AREA

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 267

UDMS = LIBRARY UTILITY MEMBER SELECT ROUTINE UDMS

PURPOSE:
UDMS IS CALLED BY CML (ON BEHALF OF UDM) OR DIRECTLY BY UDM.
IT IS A CML SELECTION ROUTINE USED TO PROCESS PRINT, DELETE, RENAME,
AND BROWSE MEMBER REQUESTS.

INVOKED WITH:

CALL TO UDMS (FROM UDM OR CML)

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

2. TFD <TFD> IN/OUT FILE DEFINITION TABLE

3. CODE BIT(32) INPUT CML CONTROL BIT CODES

4, NAME CHAR(8) IN/OUT CML MEMBER NAME

5. UDMSPARM <UDACOMM> IN/OUT COMMON PARAMETERS FROM UDM
6. SCODE CHAR(1) IN/OUT SELECT CODE

7. MEMBER CHAR(8) INPUT SELECTED MEMBER NAME

8. RENAME CHAR(8) IN/OUT SELECTED NEW MEMBER NAME
9. FLAGS BIT(8) IN/OUT FLAGS

WHERE

UDMSPARM IS THE UDM/UDMS COMMON PARAMETER AREA (UDACOMM) WHICH
IS PASSED TO UDMS DIRECTLY FROM UDM OR INDIRECTLY
THROUGH CML.
RETURN CODE:

0 - ALWAYS.
NOTES:

SEE CML OBJECT MODULE DESCRIPTION FOR FURTHER EXPLANATION OF
PARAMETERS.

268 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

uppP = PRINT DATA SET ROUTINE uopP

PURPOSE:
UDP PROCESSES PRINT DATA SET REQUESTS (LIBRARY UTILITY OPTION).

INVOKED WITH:
CALL TO UDP (FROM UDA)

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. TFD <TFD> IN/OUT FILE DEFINITION TABLE
3. COMM <UDACOMM> IN/OUT UDA COMMON AREA

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 269

uDx = PRINT INDEX ROUTINE upx

PURPOSE:
UDX PROCESSES PRINT INDEX LISTING REQUESTS (LIBRARY UTILITY OPTION).

INVOKED WITH:
CALL TO UDX (FROM UDA AND UDP)

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. TFD <TFD> IN/OUT FILE DEFINITION TABLE
3. COMM <UDACOMM> IN/OUT UDA COMMON AREA

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

270 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

uonz - COMPRESS DATA SET ROUTINE uDz

PURPOSE:

UDZ PROCESSES PDS COMPRESS REQUESTS (LIBRARY UTILITY OPTION).
THE IBM UTILITY 'IEBCOPY' IS ATTACHED TO ACCOMPLISH THE COMPRESS.

INVOKED WITH:
CALL TO UDZ (FROM UDA)

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. TFD <TFD> IN/OUT FILE DEFINITION TABLE
3. comM <UDACOMM> IN/7OUT UDA COMMON AREA

RETURN CODE:
0 - ALWAYS.

NOTES:

THE LOAD MODULE NAME THAT IS ATTACHED TO PERFORM THE COMPRESS IS
TAKEN FROM THE °'UDAl1' MENU. IF THE NAME IS BLANK (AS DISTRIBUTED),
'IEBCOPY' IS USED. SINCE 'IEBCOBY' ABENDS UNDER MVS (DUE TO THE
NONAUTHORIZED STATE OF SPF), THIS NAME MAY BE CHANGED TO A COMPRESS
PROGRAM THAT DOES NOT REQUIRE AUTHORIZATION. REFER TO “FOREGROUND
gg?;EESS PROCEDURES UNDER MVS™ IN THE INSTALLATION AND CUSTOMIZATION

LICENSED MATERIAL - PROPERTY OF IBM . PROGRAM ORGANIZATION 271

UHC = HARDCOPY UTILITY ROUTINE UHC

PURPOSE:
UHC IS INVOKED WHEN THE USER SELECTS OPTION 6 FROM THE UTILITY
SELECTION MENU (OR OPTION 3.6 FROM THE PRIMARY OPTION MENU).
IT PRINTS OR PUNCHES SPECIFIED DATA SETS VIA A BACKGROUND JOB, OR
PRINTS DATA SETS VIA YDSPRINT"™.

INVOKED WITH:

LINK TO SPFUHC (FROM UTIL OR PMD)

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

272 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

-

UMC = MOVE-COPY UTILITY ROUTINE UMC

PURPOSE:
UMC IS INVOKED WHEN THE USER SELECTS OPTION 3 FROM THE UTILITY
SELECTION MENU (OR OPTION 3.3 FROM THE PRIMARY OPTION MENU). IT
DISPLAYS THE MOVE/COPY UTILITY MENUS, ALLOCATES THE SPECIFIED DATA
SETS, AND OPENS THE "FROM" DATA SET FOR INPUT.
UMC CALLS SUBROUTINE UMCS TO PROCESS EACH MEMBER IN THE "FROM"™ DATA
SET. IF A MEMBER LIST WAS REQUESTED, UMC CALLS CML AND PASSES THE
ADDRESS OF UMCS (TO BE INVOKED VIA CML). UMC ALSO CALLS UMCS TO
HANDLE A SEQUENTIAL DATA SET.

INVOKED WITH:

LINK TO SPFUMC (FROM UTIL OR PMD)

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 273

UMCS - MOVE-COPY UTILITY MEMBER SELECT ROUTINE UMCS

PURPOSE:
UMCS IS CALLED BY CML (ON BEHALF OF UMC) OR DIRECTLY BY UMC. UMCS IS

A CML SELECTION ROUTINE USED TO COPY EACH MEMBER (OR AN ENTIRE
SEQUENTIAL DATA SET) FROM ONE DATA SET TO ANOTHER.

INVOKED WITH:
CALL TO UMCS (FROM UMC OR CML)

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

2. TFD <TFD> IN/OUT FILE DEFINITION TABLE

3. CODE BIT(32) INPUT CML CONTROL BIT CODES

4. NAME CHAR(8) IN/OUT CML MEMBER NAME

5. UMCSPARM % IN/7OUT COMMON PARAMETERS FROM UMC
6. SCODE CHAR(1) IN/OUT SELECT CODE

7. MEMBER CHAR(3) INPUT SELECTED MEMBER NAME

8. RENAME CHAR(8) IN/OUT SELECTED NEW MEMBER NAME
9. FLAGS BIT(3) IN/OUT FLAGS

WHERE

UMCSPARM IS THE UMC/UMCS COMMON PARAMETER AREA (UMCCOMM) WHICH
IS PASSED TO UMCS DIRECTLY FROM UMC OR INDIRECTLY
THROUGH CML.
RETURN CODE:

0 - ALWAYS.
NOTES:

SEE CML OBJECT MODULE DESCRIPTION FOR FURTHER EXPLANATION OF
PARAMETERS.

274 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

uoL = OUTLIST UTILITY ROUTINE uoL

PURPOSE:
UOL IS INVOKED WHEN THE USER SELECTS OPTION 8 FROM THE UTILITY
SELECTION MENU (OR OPTION 3.8 FROM THE PRIMARY OPTION MENU).

IT PERFORMS THE OUTPUT LISTING UTILITY FUNCTIONS VIA THE TSO
"OUTPUT™ COMMAND.

INVOKED WITH:
LINK TO SPFUOL (FROM UTIL OR PMD)

CALLING SEQUENCE PARAMETERS:

1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. PARM CHAR(8) INPUT MENU NAME
WHERE
PARM = IS THE NAME OF THE MENU THAT WILL BE DISPLAYED BY UOL.

RETURN CODE:
0 - ALWAYS

NOTES:

THE MENU NAME ™UOLO1™ IS PASSED TO UOL FROM UTIL VIA THE SECOND
PARAMETER OF THE “UTIL™ MENU OR FROM PMD VIA THE SECOND PARAMETER
OF THE PRIMARY OPTION MENU.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 275

URS = RESET STATISTICS UTILITY ROUTINE URS

PURPOSE:
URS IS INVOKED WHEN THE USER SELECTS OPTION 5 FROM THE UTILITY
SELECTION MENU (OR OPTION 3.5 FROM THE PRIMARY OPTION MENU). URS
DISPLAYS THE RESET STATISTICS MENU, ALLOCATES THE SPECIFIED DATA
SET, AND OPENS IT FOR INPUT.
URS CALLS SUBROUTINE URSS TO PROCESS EACH MEMBER. IF A MEMBER LIST
WAS REQUESTED, URS CALLS CML AND PASSES THE ADDRESS OF URSS (TO BE
INVOKED VIA CML).

INVOKED WITH:

LINK TO SPFURS (FROM UTIL OR PMD)

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:
NONE.

276 SPF/TS0O PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

‘ - URSS = RESET STATISTICS UTILITY MEMBER SELECT ROUTINE URSS

PURPOSE:

URSS IS CALLED BY CML (ON BEHALF OF URS) OR DIRECTLY BY URS.
IT IS A CML SELECTION ROUTINE USED TO UPDATE THE STATISTICS FOR
A SINGLE MEMBER OF AN SPF LIBRARY DATA SET.

INVOKED WITH:

CALL TO URSS (FROM URS OR CML)

CALLING SEQUENCE PARAMETERS:

1. TLD
2. TFD
3. CODE
4. NAME
5. URSSPARM
6. SCODE
7. MEMBER
8. RENAME
9. FLAGS
¢
\ WHERE
URSSPARM

RETURN CODE:
0 - ALWAYS.

NOTES:

SEE CML OBJECT

PARAMETERS.

<TLD>
<TFD>
BIT(32)
CHAR(8)
*
CHAR(1)
CHAR(8)
CHAR(8)
BIT(8)

INPUT
IN/OUT
INPUT
IN/OUT
IN/OUT
IN/OUT
INPUT
IN/OUT
IN/OUT

LOGICAL DISPLAY TABLE

FILE DEFINITION TABLE

CML CONTROL BIT CODES

CML MEMBER NAME

COMMON PARAMETERS FROM URS
SELECT CODE

SELECTED MEMBER NAME
SELECTED NEW MEMBER NAME
FLAGS

IS THE URS/URSS COMMON PARAMETER AREA (URSSPARM) WHICH
IS PASSED TO URSS DIRECTLY FROM URS OR INDIRECTLY

THROUGH CML.

MODULE DESCRIPTION FOR FURTHER EXPLANATION OF

«LICENSED MATERIAL - PROPERTY OF IBM

PROGRAM ORGANIZATION 277

usc = SCRIPT/VS UTILITY ROUTINE . usc

PURPOSE:
USC IS INVOKED WHEN THE USER SELECTS OPTION 9 FROM THE UTILITY

SELECTION MENU (OR OPTION 3.9 FROM THE PRIMARY OPTION MENU). USC
~ INTERFACES TO THE SCRIPT/VS PROGRAM PRODUCT.

INVOKED WITH:
LINK TO SPFUSC (FROM UTIL OR PMD)

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. MENU CHAR(38) INPUT SCRIPT SELECTION MENU NAME

RETURN CODE:
0 - ALWAYS.

NOTES:

THE MENU NAME "SCRPTA™ IS PASSED TO USC FROM UTIL VIA THE SECOND
PARAMETER OF THE "UTIL"™ MENU OR FROM PMD VIA THE SECOND PARAMETER
OF THE PRIMARY OPTION MENU.

1

278 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

¢

UTIL = UTILITY DRIVER ROUTINE UTIL

PURPOSE:
UTIL IS A GENERAL PURPOSE SELECTION MENU PROCESSOR. IT IS USED TO
PROCESS THE OPTION 3 AND OPTION 4 SELECTION MENUS, AND CAN BE USED TO
CREATE ADDIVIONAL INSTALLATION SELECTIGN MENUS. THE PROGRAM DISPLAYS

A SELECTION MENU, AND LINKS TO THE APPROPRIATE LOAD MODULE, BASED ON
THE SUBOPTION SELECTED.

INVOKED WITH:
LINK TO SPFUTIL (FROM PMD)

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE
2. PARM CHAR(8) INPUT MENU NAME

RETURN CODE:
0 - ALWAYS.

NOTES:

UTIL CAN BE BYPASSED BY ENTERING A FULLY QUALIFIED SELECTION ON THE
PRIMARY OPTION MENU (E.G. "3.1%, "4.5", ETC.).

FOR FURTHER INFORMATION ABOUT USING UTIL FOR CUSTOM TAILORED
SELECTION MENUS, SEE THE INSTALLATION AND CUSTOMIZATION GUIDE.

LICENSED MATERIAL - PROPERTY OF IBM PROGRAM ORGANIZATION 279

uvT = UTOC UTILITY ROUTINE ' uvT

PURPOSE:

UVT IS INVOKED WHEN THE USER SELECTS GPTION 7 FROM THE UTILITY
SELECTION MENU (OR OPTION 3.7 FROM THE PRIMARY OPTION MENU). UVT
DISPLAYS OR PRINTS THE VTOC OF A DASD VOLUME.

INVOKED WITH:
LINK TO SPFUVT (FROM UTIL OR PMD)

CALLING SEQUENCE PARAMETERS:
1. TLD <TLD> INPUT LOGICAL DISPLAY TABLE

RETURN CODE:
0 - ALWAYS.

NOTES:

THERE ARE 3 PARAMETERS PASSED TO UVT FROM THE UVT MENU WHICH CONTROL
THE CONSTRUCTION OF THE VTOC LIST AND SUSEQUENT PROCESSING TIME.

1. DATA SET LIST SORT CODE - CHAR(1) - "A"™ FOR ALPHABETIC SORT.
- "PW FOR NO SORT.

2. FORMAT CONTROL MENU - CHAR(8) - MENU NAME TO FORMAT LIST.

3. DATA SET LIST CONTROL -~ CHAR(1) - ™"Y"™ FOR DATA SET LIST.
"N" FOR NO DATA SET LIST.

THE FORMAT CONTROL MENU PROVIDES THE DETAIL OF THE VTOC LIST. THE
FIRST CHARACTER OF EACH LINE OF THIS MENU DESCRIBES ITS INTENDED USE
BY UVT AS FOLLOWS:
"I™ - INFORMATION SECTION BEFORE THE DATA SET LIST.
"E"™ - TRAILER SECTION AFTER THE DATA SET LIST.
"M™ - MESSAGE MODEL USED TO CONSTRUCT EACH DATA SET LINE.
RULES:
- THERE MUST BE AT LEAST 1 LINE AND NO MORE THAN 24.
= THE "I™ AND "E™ TYPE LINES ARE SIMILAR EXCEPT FOR THEIR
LOCATION IN THE LIST. THEY CAN BE MODIFIED ACCORDING TO MENU
PROCESSING RULES. THE VARIABLES CAN BE PLACED ON ANY OF THESE
LINES. 1IF THERE ARE NO "I™ OR "E"™ TYPE LINES THEN THE
CORRESPONDING SECTION IS NOT INCLUDED IN THE LIST.
- A SINGLE "M™ TYPE LINE IS REQUIRED. THIS LINE CAN BE MODIFIED
ACCORDING TO MESSAGE PROCESSING RULES.
THE DISTRIBUTED VERSION OF THE FORMAT CONTROL MENU IS "™UVTI™. THE
FIRST LINE IN THIS MENU IS A "FIELDS™ STATEMENT TO ALLOW PERCENT
SIGNS IN THE MENU.

280 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL ~ PROPERTY OF IBM

Ko

1 3333333333333 83833 33333333333333133333 3333222

*
*
%*
%*
%*
*
*
*

SECTION 4
DIRECTORY

3333333333 3333333333 333333333333.333333333 38

*
¥*
*
*
*
*
*
*

THIS SECTION CONTAINS LISTINGS AND CROSS REFERENCE LISTINGS OF SPF LOAD

MODULES, OBJECT MODULES,

MENUS,

THE SECTION CONTAINS THE FOLLOWING LISTS:

LOAD MODULES
OBJECT MODULES
OBJECT MODULES
SPF MENUS
OBJECT MODULES
SPF MESSAGES
OBJECT MODULES
OBJECT MODULES
OBJECT MODULES
OBJECT MODULES
OBJECT MODULES
SVC ROUTINES

WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH

INCLUDED OBJECT MODULES
INCLUDING LOAD MODULE

SPF MENUS REFERENCED

OBJECT MODULES REFERENCING

SPF MESSAGES REFERENCED

OBJECT MODULES REFERENCING
OTHER OBJECT MODULES REFERENCED

MESSAGES AND EXTERNAL SYMBOLS.

OTHER OBJECT MODULES REFERENCING

EXTERNAL SYMBOLS DEFINED
EXTERNAL SYMBOLS REFERENCED
SVC ROUTINES REFERENCED
OBJECT MODULES REFERENCING

LICENSED MATERIAL - PROPERTY OF IBM

DIRECTORY

281

M

SPF LOAD MODULES ARE LISTED ALPHABETICALLY. EACH LOAD MODULE NAME IS
FOLLOWED BY THE NAME ITS OF ENTRY POINT, AND THE NAMES OF ALL OF THE
OBJECT MODULES THAT ARE INCLUDED IN THE LOAD MODULE.

LOAD
MODULE

SPFBRO
SPFCALCP
SPFEDIT
SPFFOR
SPFJOB
SPFMAIN
SPFOPT
SPFPMD
SPFSCAN
SPFSPC
SPFSUBS

SPFTBLS
SPFTCM
SPFTMENU
SPFTSO
SPFTUTOR
SPFUCA
SPFUCL
SPFUC2
SPFUDA
SPFUHC
SPFUMC
SPFUOL
SPFURS
SPFUSC
SPFUTIL
SPFUVT
SPF3277
SPF3278
SPF3278C

ENTRY
POINT

BRO
SPFCALCP
EDD
FOR
JOB
SMD
OPT
PMD
SCN
SPC
TSC

T51
TCM
MNT
PTC
TUT
UCA
ucl
uca2
UDA
UHC
umMc
uoL
URS
uUsc
UTIL
uvT
TT1
TT2
TT3

INCLUDED
OBJECT MODULES

BRO

SPFCALCP

EDD

FOR

JOB

Cg?ARHS SIP SMA SMC SMD SMI SML TRT TKV TKW

0

PFT PMD PRS

SC

SPC

BCD CAT CBC CBDSN CBF CBG CBR CBS CCB CCD CCP CCS
CDA CDAIR CDATE CDC CDERR CDF CDG CDISPL CDO CDP CDT
CERR CFI CHC CHELP CHPJ CHPL CIR CIV CJC CJF CJN
CKVGET CKVPUT CLM CLOG CMB CML CMSG CPRINT CRELS
CRESV CSB CSCROLL CSM CTA CTF CTGET CTPUT CTl1l CT2
CUPARMS CVM CVSDE EBA EBE EBI EBR EBS EBX ECD ECR
EDI EDO EFC EFR EFT EGN EGR EMC EML EMP EPC EPD EPF
EPI EPO EPP EPR EPS EPX ERA ERC ERD ERF ERI ERN ERO
$§§ ERS ERX EST ETC ETS ETL MERR MHA SOP TSC

TCM

MNT

PTC

TUT

UCA

ucl

ucz2

Haé UAC UAD UATI UDA UAR UDM UDMS UDP UDX UDzZ

UMC UMCS

uoL

URS URSS

Usc

UTIL

UvTt

TT1

TT2

TT3

282 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

BJEC

SPF OBJECT MODULES ARE LISTED ALPHABETICALLY.

ODUL

LOAD MODULE

STING

IS FOLLOWED BY THE NAME OF THE INCLUDING LOAD MODULE.

OBJECT
MODULE

CDISPL

CDP
CDT
CERR
CFl
CHC
CHELP
CHPJ
CHPL
CIPARMS
CIR
C1v
cJC
CJF
CJN
CKVGET
CKVPUT
CLM
CLOG
CMB
CML
CMSG
CPRINT
CRELS
CRESV
CSB
CSCROLL
CsSM
CTA

CTGET

LOAD
MODULE

SPFSUBS
SPFBRO

SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFMAIN
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS

OBJECT
MODULE

CUPARMS
CVM
CVSDE
EBA
EBE
EBI
EBR
EBS
EBX
ECD
ECR
EDD
EDI
EDO
EFC
EFR
EFT
EGN
EGR
EMC
EML
EMP
EPC
EPD
EPF
EPI
EPO
EPP
EPR
EPS
EPX
ERA
ERC
ERD
ERF
ERI
ERN
ERO
ERR
ERS
ERX
EST
ETC
ETL
ETS
FOR
JOB
MERR
MHA

LOAD
MODULE

SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFEDIT
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFSUBS
SPFFOR

SPFJOB

SPFSUBS
SPFSUBS

LICENSED MATERIAL - PROPERTY OF IBM

OBJECT
MODULE

SPF
SPFCALCP
SPFSC93X
SPFSC94X
TCM
TKV
TKW
TRT
TSC
TSI
TT1l
TT2
TT3
TUT
UAA
UAC
UAD
UAI
UAR
UCA
ucl
uc2
UDA
ubM
UDMS
ubp
UDX
ubDz
UHC
uMc
UMCS
uoL
URS
URSS
usc
UTIL
uvTt

EACH OBJECT MODULE NAME

LOAD
MODULE
SPFTMENU
SPFOPT
SPFPMD
SPFPMD
SPFPMD
SPFTSO
SPFSCAN
SPFMAIN
SPFMAIN
SPFMAIN
SPFMAIN
SPFMAIN
SPFMAIN
SPFSUBS
SPFSPC
SPF
SPFCALCP
I16C0009C
IGC0009D
SPFTCM
SPFMAIN
SPFMAIN
SPFMAIN
SPFSUBS
SPFTBLS
SPF3277
SPF3278
SPF3278C
SPFTUTOR
SPFUDA
SPFUDA
SPFUDA
SPFUDA
SPFUDA
SPFUCA
SPFUC1
SPFUC2
SPFUDA
SPFUDA
SPFUDA
SPFUDA
SPFUDA
SPFUDA
SPFUHC
SPFUMC
SPFUMC
SPFUOL
SPFURS
SPFURS
SPFUSC
SPFUTIL
SPFUVT

DIRECTORY

283

MODU! MENU N

SPF OBJEdT MODULES WHICH USE SPF MENUS ARE LISTED ALPHABETICALLY. EACH
OBJECT MODULE NAME IS FOLLOWED BY THE NAMES OF THE SPF MENUS WHICH IT

USES.
NAMES,

OBJECT
MODULE

UDMS

usc

UTIL
uvTt

MENU NAMES FOLLOWED BY AN ASTERISK(%) ARE EITHER CONSTRUCTED
OR ARE NAMES THAT ARE PASSED TO THE SPECIFIED MODULE.

SPF

MENUS

BROWSEO1 BROWSEO2 CMLO1B

EDITBR EDITBRER

EDITCRA1 EDITCRA2 EDITCRA3 EDITRPL1 EDITRPL2 EDITRPL3

Eg{;g;Yl EDITCPY2 EDITCPY3 EDITMOV1 EDITMOV2 EDITMOV3

E

CMLOLE CMLO1EC EDITO2

EDIT02

;gggég*; FOR02(%) FORO03(%) FORO4(%) FORO5(%) FORO06(%) FORO7(%)
*

JOBA(%) JOBB(%) JOBERROR JOBO1(%) JOBO02(%) JOBO3(%) JOBO4(%)

;g%OS(i) JOBO06 (%)

OPTO00(%) OPTOl(%) OPTOLSM(%) OPTOLCF(%) OPT02(%) OPTO3A(X)

OPTO3B(%) OPTO3C(x*)

T(%) TERR THELP TINDEX TTUTOR

PFT0l PFT02 PFTO03

APRIOPT PMDPIER

PRSTRT

PTC

UAA

UADC

UAI UAIPO UAIPOX UAIXX

UAR

UCl UC1B

uc2 UcCzB

UDA1(%) UDA2(x)

CMLO2

UDMSB

UHC UHCJ

CMLO3 UMC1 UMC2A UMC2B

UOLB UOLCHC UOLCHCS UOLOl UOLO1lS

CMLO04 URS

ﬁgtg%g CMLO1FC SCRERR SCRPRTD SCRPRTF SCRPTA SCRPTD SCRPTF

FORA(%) UTIL (%)

UVT UVTB UVTI

284 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

MENUS / OBJECT MODULE LISTING

SPF MENUS ARE LISTED ALPHABETICALLY.

NAME OF THE OBJECT MODULE(S) THAT USES IT.
"T" ARE TUTORIAL MENUS AND ARE NOT INCLUDED IN THE LIST.

SPF
MENUS
APRIOPT
BROWSEOL
BROWSEO2
CMLO1B
CMLOlE
CMLO1lEC
CMLO1F
CMLO1FC
CMLO2
CMLO3
CMLO4
EDITBR
EDITBRER
EDITCPY1
EDITCPY2
EBITCPY3
EDITCRAl
EDITCRAZ2
EDITCRA3J
EDITMOV1
EDITMOVZ2
EDITMOV3
EDITRPL1
EDITRPLZ2
EDITRPL3
EDITO1
EDITO02
FORA
FORO1
FORO02
FORO03
FORO04
FORO05
FORO6
FORO07
FOR08
JOBA
JOBB
JOBERROR
JOBOO
JOBO1
JOBO02
JOBO3
JOBO4
JOBO5
JOBO6
MNT
oPTOO
0PTOl

OBJECY
MODULE(S)

EMC
ECR

ECR
EMP
EPO EPS
UTIL
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
JOB
JOB
JOB
JOB
JOB
JOB
JOB
JOB
JOB
JOB
MNT
OPT
OPT

SPF
MENUS
OPTO1SM
OPTO1CF
OPTO02
OPTO3A
OPTO03B
OPTO03C
PFTO01
PFT02
PFTO03
PMDPIER
PRSTRT
PTC
SCRERR
SCRPRTD
SCRPRTF
SCRPTA
SCRPTD
SCRPTF
SETUP
UAA
UADC
UAI
UAIPO
UAIPOX
UAIXX
UAR

ucl
ucls
ucz
uczs
UDAl
UDAZ2
UDMSB
UHC
UHCJ
UMC1
UMC2A
UMC2B
uoLB
UOLCHC
UOLCHCS
uoLol
uoLols
URS
USCBRO
UTIL
uvT
UVTB
UVTI

LICENSED MATERIAL - PROPERTY OF IBM

EACH MENU NAME IS FOLLOWED BY THE

OBJECT
MODULE(S)

ucz
ucz

UDMS
UHC
UHC
UMC
UMC
umc
uoL
uoL
uoL
uoL
uoL
URS
usc
UTIL
uvTt
UvT
UvT

ALL MENUS THAT START WITH

DIRECTORY

285

JE DU MESSAGE N

SPF OBJECT MODULES WHICH USE SPF MESSAGES ARE LISTED ALPHABETICALLY.
EA%HHOg#EggEQODULE NAME IS FOLLOWED BY THE NAMES OF THE SPF MESSAGES
WHIC .

OBJECT SPF

MODULE MESSAGES

BCD B500 B501 B502 B503 B504 B505 B506 B507 B508 B510 B511 B512
B513 B514 B515 B516 B517 B518

BRO B001 B002 BOO3 G018 G021 Gl20 Gl21 Gl22

CAT G060 G061 G062 G063 G064 GO65 G066 G067 GO74 GO76 GO77

CBDSN G002 G003 G004 G054 G090 G091 G092 GO9I G094

CBF B101l B102 B103 B104 B105 Bl06 B151 Bl52 B153 Bl54 B1l55 B156
B157 B158 B159 Bl61 Bl62 B163 Bl64 Bl65 B166 Bl67

CBR B005 BO10 BO13 BOl4 BO1l5 BOl6 BOl7 BO1l8 BO1l9 G024 G044

CCB G140 Gl4l Gl42 G143 Gl44 Gl45 Gl46 Gl47 G150 G151 G152 G153
G154 G155 G156 G157 G158 G159 Gl62 Glé66

CDA G007 G044 G080 G081 G082 G087 G088

CDERR D001 D002 D003 D004 DOO5 D006 DOO7 D008 D009 D010 DO1ll DO12

CDF G083 G084 G085

CDISPL G056 G057 G058 G059

CcDO Gl00 G101 Gl02 G103 G104 Gl05 G106 Gl07 G108 Gl09 Gl1l0 Glll
Gl12 G113 Gll4 Gll5 Gll6 G117 G118 Gl19 G130 G131 G132 G133

CHC Gl49 U281 U282 U283 U284 U285 U286 U287 U288 U289 U290

CKVPUT J022 J023 J02¢4

CLOG P00l P002

CML G021 G024 G030 G033 G035 G037 G038 GO39 GO50 G068 GO69

CTA AOOl A002 AO003 A004 A0O05 A006 A0O07

EBA E300 E301 E303 E310 E311 E312 E313 E314 E315 E316 E319

EBR E302 E304 E305

EBS E306 E307 E308 E309

ECD E500 E501 E502 E503 E504 E505 E506 E507 E508 E510 E511 E512

E513 E514 E515 E516 E517 E518 E520 E521 E522 E523 E524 E525
E526 E527 E528 E530 E531 E532 E533 E534 E535 E536 E537 E538
E540 E541 E542 E543 E544%4 E545 E546 E547 E548 E550 E551 E552
E553 E554 E555 E556 E557 E558

ECR ggg% EC1l8 EO019 E056 E058 E059 E415 E4l16 E417 GOl0 GOl2 GO18
EDI E400 E409 E414 GO19

EDO E006 EO007 E008 EO009 EO015 G020 G031 G032 G034 G045 G048 G053
EFC E101 E102 E103 E104 E105 E106 E150 E151 E153 E154 E155 E156

E157 E158 E159 El161 El162 E163 E164 E165 E166 E167 E168 E169
E199 E201 E202 E203 E204 E205 E206 E207 E208 E209 E211 E212
E213 E221 E222 E223 E224% E251 E253 E254 E255 E256 E257 E258
E259 E261 E262 E263 E264% E265 E266 E267 E268 E269

EFR E002 E005 E600 E602 E612 E613 E614 E615 E616 E617 E620 E621
E624 E625 E626 E627 E630 E631 E634 E635 E636 E637 E640 E641
E642 E643 E646 E647 E650 E651 E652 E653 E654 E655 E660 E661
E662 E663 E664 E665 E670 E671 E672 E673 E676 E677 E680 E681
E682 E683 E684 E685 E690 E691 E692 E693 E694 E695 E704 E705
E706 E707 E708 E709 G024

EFT E068

EMC E0L0 EOLll EO13 EOl4 E021 E028 E059 E076 E401 E402 E403 E404
E405 E406 E407 E408 E410 E4l1 EG12 E413 E419 G010 GOl1l8 GOl19
G021 GO8l

EMP EQC00 E003 E004 E028 GO1l0

EPC E040 E041 E042 EO043 E044% E045 E046 E047 E048 E049 E050 EO51
E052 E053 E054 E055 E080 E081 E082 E083 E084 E085 E086

EPD E035 E036 E037 E038

EPF Eg;g E017 EO31 E032 E033 E034 E064 E065 E066 E067 E576 E577

EPI E060 EO071 E560 E561 E562 E563 ES564 E565 E566 E567 E568 E570

E571 E572 E573 E574 E575 ES580 E581 E582 E583 E590 E591 E592
E593 E594 E595 E596 E597 E598 E599

(CONTINUED ON NEXT PAGE)

286 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

OBJECT MODULE / MESSAGES LISTING (CONTINUED)

OBJECT SPF
MODULE MESSAGES

EPO E022 EO023 E024 G012 G018 G022

EPR E016 EO17 E028 E040 E049 EO051 E052 E418 E700 E701 E702 E703
E710 E711 GOlO

EPS E024 GO13

EPX G040

ERN E069 E318

FOR FO00 FOOl1 F0O02 FOO3 FOO04 FOO5 FOO6 FOO7 FOO09 FO1l0 FOll FO1l2

FO013 FO0l4 FO01l5 FOlé FO17 FO18 FO0l9 F020 F021 F022 F023 F024
F025 F026 F027 G044

JOB J00l JOO4 JOO6 JOO7 JOO9 JO10 JO1ll1l JO1l2 JO13 JO1l4 JO15 JO16
J017 JO018 JO19

MHA MO0l MOO2 MOO3 MOO5 MOO6 MOO7 MOO8 MOO9 MO1lO MOll MOl2 MOlé4
MO015 MOl6 MO17 MO18 MO19

MNT MO1l1l

OPT 0001 0002 0003 0004 0006 0007 0008 0009

PFT 0002 0003 P002 P020 P021 P022 P023 P024 P025 P026 P027 P0238
P032 P033 P034 P035 P036 P037 P038

PMD G001 POO3

PRS P01l P012 PO1l3 POl4 POl5 POl6 POl7

PTC G070 G071 G072 GO73

SMA S011 S012 SO013 S014 SO015

SMC S001 S002 S006 S007

TUT G023

UAA MO03 U050 UO51 U052 U053 U054 U055 U056 UO58 UODS59

UAC U017 U130 U131 U132 U133 U134 U135 U136 U137 U138 U139

UAD U020 U021

UAI U049

UAR U008 U010 UOl2 UO13 UOLl4 UO15 UOl6 UOL7 U018 U023 U024 U025

UCl G002 U170 U171 U172 U173 U174 U175 U176 U177 U178 U179 Ul8l
Ulgz2 U183 Ul84 U185 U186 U187 U188 U139

uc2 G002 U200 U201 U202 U203 U204 U205 U207 U208 U209

UDA 3321 G006 G007 GOl5 G027 G054 UOOO U002 UOD3 UOD6 UOOD7 U008

09

UDM U004 U027 U028 U039

UDMS Gl22 U002 U003 U026 UB29 UO30 U031 U032 U033 U034 UO35 UDB36
U037 U038 U039 U042 Ul48 Ul49

ubP G069 UOD5 U043 UD44 U045 U046 U047 U048

UDX U040 U041 U049

ubz U004 U140 Ul4l Ul42 Ul43 Ul4é Ul46

UHC G005 G009 U091 UO92 U093 UD94 UO95 UO99 U100 U101 U103 Ul05
Ul06 U107 U160 Ul6l Ulé2 Ul64 UL65 Ul66 Ulé7 Ul68 UL69

UMC G008 G018 U060 UOD61 UB62 U063 UD64 UD65 U067 UD68 UD69 UODT70
Hg{% U072 U073 U074 U078 U079 U080 U088 U089 Ull0 Ull3 Ulls4

UMCS G018 GOl19 G020 G031 G032 G035 U063 U066 UOD68 U075 UD76 U077

uo78 U080 UO81 U032 UOB3 UO84 UD85 UO86 U087 UD88 Ulll Ull2
Ull5 Ullé6 Ull7 Ull8 Ull9

uoL U220 U221 U222 U223 U224 U225 U228 U229

URS Ul20 U121 Ul27 U129 U230 U231 U233

URSS G018 G019 G031 G032 G035 Ul22 U123 Ul24 U125 U126 U128

usc G018 G021 G120 Gl21 Gl22 U241 U250 U251 U252 U253 U254 U260
U261 U262 U263 U264 U265 U266 U267 U268 U269 U270 U271 U272
U282 U283

UTIL G001

uvT Sggg U150 U151 U190 U191 Ul92 U193 U194 U195 U196 U197 U198

LICENSED MATERIAL - PROPERTY OF IBM DIRECTORY 287

MESSAGES / OBJECT MODULE LISTING

SPF MESSAGES ARE LISTED ALPHABETICALLY. EACH MESSAGE NAME IS FOLLOWED
BY THE NAME OF THE OBJECT MODULE(S) THAT USES IT. MODULE NAMES
FOLLOWED BY AN ASTERISK(%) CONSTRUCT THE MESSAGE NAME.

SPF OBJECT SPF OBJECT SPF OBJECT
MESSAGE MODULE MESSAGE MODULE MESSAGE MODULE
A001 CTA D001 CDERR E038 EPD
A002 CTA D002 CDERR E040 EPC
A003 CTA D003 CDERR E040 EPR
A004 CTA D004 CDERR E041 EPC
A005 CTA D005 CDERR E042 EPC
A006 CTA D006 CDERR E043 EPC
A007 CTA D007 CDERR E044 EPC
Bo0l BRO D008 CDERR E045 EPC
B002 BRO D009 CDERR E0646 EPC
B003 BRO D010 CDERR E047 EPC
B005 CBR D01l CDERR E048 EPC
B0O1l0 CBR D0l2 CDERR E049 EPC
BO13 CBR D013 CDERR E049 EPR
BOl4 CBR D014 CDERR E050 EPC
B0O15 CBR D015 CDERR E051 EPC
BO1l6 CBR DOl6 CDERR E051 EPR
BO1l7 CBR D017 CDERR E052 EPC
B018 CBR D018 CDERR E052 EPR
BO1l9 CBR D019 CDERR EO053 EPC
Bl0l1 CBF D020 CDERR E054 EPC
Bl02 CBF D021 CDERR E055 EPC
B103 CBF D021 UDA E056 ECR
Bl104 CBF D022 CDERR E058 ECR
B105 CBF E000 EMP E059 ECR
B106 CBF E002 EFR E059 EMC
B151 CBF E003 EMP E060 EPI
B152 CBF E004 EMP E064 EPF
B153 CBF E005 EFR E065 EPF
Bl5% CBF E006 EDO E066 EPF
B155 CBF E007 EDO E067 EPF
B156 CBF E008 EDO E063 EFT
B157 CBF E0O09 EDO E069 ERN
B158 CBF EOLO EMC E071 EPI
B159 CBF EO1ll EMC E076 EMC
Bl61 CBF EO012 ECR EC80 EPC
Bl62 CBF EO13 EMC E081 EPC(%)
B163 CBF EO1l4 EMC E082 EPC
Bl6% CBF EOL5 EDO E083 EPC(3%)
B165 CBF E016 EPF E084 EPC
Bl166 CBF EOl6 EPR E085 EPC(%)
B167 CBF EOL7 EPF E086 EPC
B500 BCD EOL17 EPR El01 EFC
B501 BCD(%) E018 ECR E102 EFC
B502 BCD () EO019 ECR E103 EFC
B503 BCD E021 EMC E104% EFC
B504% BCD () E022 EPO E105 EFC
B505 BCD(%) E023 EPO E106 EFC
B506 BCD E024 EPO E150 EFC
B507 BCD (%) E024% EPS E151 EFC
B508 BCD(x%) E028 EMC E153 EFC
B510 BCD E028 EMP E154 EFC
B511 BCD(%) E028 EPR E155 EFC
B512 BCD (%) E031 EPF E156 EFC
B513 BCD E032 EPF E157 EFC
B514 BCD (%) E033 EPF E158 EFC
B515 BCD(%) E034 EPF E159 EFC
B516 BCD E035 EPD El61 EFC
B517 BCD(%) E036 EPD El62 EFC
B518 BCD(%) E037 EPD E163 EFC

(CONTINUED ON NEXT PAGE)

288 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

<

MESSAGES /7 OBJECT MODULE LISTING (CONTINUED)

SPF OBJECT : SPF OBJECT SPF OBJECT
MESSAGE MODULE MESSAGE MODULE MESSAGE MODULE
E164 EFC E404 EMC E552 ECD (%)
E165 EFC E405 EMC E553 ECD
E166 EFC E406 EMC E554 ECD(%)
E167 EFC E407 EMC E555 ECD(%)
E168 EFC E408 EMC E556 ECD
E169 EFC E409 EDI E557 ECD(%)
E199 EFC E410 EMC E558 ECD(%)
E201 EFC E41l1l EMC E560 EPI
E202 EFC E412 EMC E561 EPI(x%)
E203 EFC : E413 EMC E562 EPI(x%)
E204 EFC E4l4 EDI E563 EPI
E205 EFC E415 ECR E564 EPI(%)
E206 EFC EG16 ECR E565 EPI(%)
E207 EFC E&17 ECR E566 EPI
E208 EFC E418 EPR E567 EPI(%)
E209 EFC E419 EMC E568 EPI (%)
E211 EFC E500 ECD E570 EPI
E212 EFC E501 ECD(%) E571 EPI(%)
E213 EFC E502 ECD(%) E572 EPI(%)
E221 EFC E503 ECD E573 EPI
E222 EFC E504 ECD(%) E574 EPI
E223 EFC E505 ECD(%) E575 EPI
E224 EFC E506 ECD E576 EPF
E251 EFC(%) ' E507 ECD(%) E577 EPF
E253 EFC(x) E508 ECD(%) E579 EPF
E254 EFC(%) E510 ECD E580 EPI
E255 EFC(%) E511 ECD(%) E581 EPI
E256 EFC(%) E512 ECD(%) E582 EPI
E257 EFC(%) E513 ECD E583 EPI
E258 EFC(%) E514 ECD(%) E590 EPI
E259 EFC(%) E515 ECD(%) E591 EPI
E261 EFC(%) E516 ECD E592 EPI
E262 EFC(%) E517 ECD(3%) E593 EPI
E263 EFC(%) E518 ECD(%) E594 EPI
E264 EFC(%) E520 ECD E595 EPI
E265 EFC(%) E521 ECD(%) E596 EPI
E266 EFC(%) E522 ECD(%) E597 EPI
E267 EFC(%) E523 ECD E598 EPI
E268 EFC(%) E524 ECD(%) E599 EPI
E269 EFC(%) E525 ECD(%) E600 EFR
E300 EBA E526 ECD E602 EFR
E301 EBA E527 ECD(%) E612 EFR(%)
E302 EBR E528 ECD (%) E613 EFR (%)
E303 EBA E530 ECD E6l¢4 EFR(%)
E304 EBR E531 ECD(%) E615 EFR(%)
E305 EBR E532 ECD(%) E616 EFR(%)
E306 EBS E533 ECD E617 EFR(%)
E307 EBS E534 ECD(%) E620 EFR(%)
E308 EBS E535 ECD(%) E621 EFR (%)
E309 EBS E536 ECD E624 EFR (%)
E310 EBA E537 ECD(%) E625 EFR(%)
E311 EBA E538 ECD(%) E626 EFR(%)
E312 EBA E540 ECD E627 EFR(%)
E313 EBA E541 ECD(%) E630 EFR(%)
E31l4 EBA E542 ECD (%) E631 EFR(%)
E315 EBA E543 ECD E634 EFR(%)
E316 EBA E544 ECD(%) E635 EFR(%)
E318 ERN E545 ECD (%) E636 EFR(%)
E319 EBA E546 ECD E637 EFR(%)
E400 EDI E547 ECD(x%) E640 EFR(¥%)
E401 EMC E548 ECD(%) E641 EFR(¥%)
E402 EMC E550 ECD E6642 EFR (%)
E403 EMC E551 ECD(%) E643 EFR(3)

(CONTINUED ON NEXT PAGE)

LICENSED MATERIAL - PROPERTY OF IBM DIRECTORY 289

MESSAGES /7 OBJECT MODULE LISTING (CONTINUED)

SPF OBJECT SPF OBJECT SPF OBJECT
MESSAGE MODULE MESSAGE MODULE MESSAGE MODULE
E646 EFR(%) F020 FOR G035 CML
E647 EFR(%) F021 FOR G035 UMCS
E650 EFR (%) F022 FOR G035 URSS
E651 EFR(%) F023 FOR G037 CML
E652 EFR(%) F02¢4 FOR G033 CML
E653 EFR(%) F025 FOR G039 CML
E654 EFR(%) F026 FOR G040 EPX
E655 EFR(%) F027 FOR G044 CCB
E660 EFR(%) G001l PMD G044 CDA
E661 EFR(%) Gool UTIL G044 FOR
E662 EFR(%) G002 CBDSN G045 EDO
E663 EFR(%) G002 ucl G043 EDO
E664 EFR(%) G002 uce G050 CML
E665 EFR(%) G003 CBDSN G053 EDO
E670 EFR(%) G004 CBDSN G054 CBDSN
E671 EFR(%) G005 UHC G054 UDA
E672 EFR(%) G006 UDA G056 CDISPL
E673 EFR(%) G006 uvrt G057 CDISPL
E676 EFR(%) G007 CDA G058 CDSIPL
E677 EFR(%) G007 UDA G059 CDISPL
E680 EFR(%) G003 UMC G060 CAT
E681 EFR(%) G009 UHC G061 CAT
E682 EFR(%) GO1l0 ECR G062 CAT
E683 EFR(%) G010 EMC G063 CAT
E684 EFR (%) GOlo EMP G064 CAT
E685 EFR(%) GO0l0 EPR G065 CAT
E690 EFR(%) G012 ECR G066 CAT
E691 EFR(%) G012 EPO G067 CAT
E692 EFR(%) GOl3 EPS G068 CML
E693 EFR(%) GO0l5 UDA G069 CML
E694 EFR(%) G018 BRO G069 UDP
E695 EFR(%) G018 ECR G070 PTC
E700 EPR G018 EMC G071 PTC
E701 EPR(3%) G018 EPO G072 PTC
E702 EPR G018 UMC G073 PTC
E703 EPR(%) G018 UMCS G074 CAT
E704 EFR G018 URSS G076 CAT
E705 EFR(%) G018 usc G077 CAT
E706 EFR G019 EDI G030 CDA
E707 EFR(%) G019 EMC G031 CDA
E708 EFR G019 UMCS G081 ECR
E709 EFR(%) G019 URSS G031 EMC
E710 EPR G020 EDO G082 CDA
E711 EPR(%) G020 UMCS G083 CDF
F000 FOR G021 BRO G084 CDF
FOOl FOR G021 CML G085 CDF
F002 FOR G021 EMC G087 CDA
F003 FOR G021 usc G088 CDA
F004 FOR G022 EPO G0S0 CBDSN
FO005 FOR G024 CBR G091 CBDSN
F0O06 FOR G024 CML G092 CBDSN
F007 FOR G024 EFR G093 CBDSN
FOO09 FOR G027 UDA G094 CBDSN
FO1l0 FOR G028 TUT G100 CDO
FOll FOR G030 CML G101 CcDO
F0l2 FOR G031 EDO G102 CcDOo
FO13 FOR G031 UMCS Gl03 cDo
FO0l4 FOR G031 URSS Gl04 CDO
FOl5 FOR 6032 EDO G105 cDho
FO1l6 FOR G032 UmMcCs Gl06 cDho
FO17 FOR G032 URSS G107 cDho
FO18 FOR G033 CML G108 (9]
FO19 FOR G034 EDO Gl09 cDOo

(CONTINUED ON NEXT PAGE)

290 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

e

-

MESSAGES /7 OBJECT MODULE LISTING (CONTINUED)

SPF OBJECT SPF OBJECT SPF 0BJECT
MESSAGE MODULE MESSAGE MODULE MESSAGE MODULE
G110 CDO MO0O03 UAA S013 SMA
Glll CDO MOO05 MHA S014 SMA
Gll2 CcDO MO06 MHA S015 SMA
Gll3 CDOo M007 MHA uooo UDA
Gll¢ ChO0 MO08 MHA uooz UDA
G115 CDO MO09 MHA ugo2 UDMS
Gl1l6 CDO MO10 MHA uoo3 UDA
Gl17 CDO MO1ll MHA uoo3 UDMS
G118 CDO MO11 MNT uoos4 UDM
Gl1l9 CcDO MO12 MHA uoo4 ubnz
G120 BRO MO14 MHA uoos ubp
G120 usc MO15 MHA ucoé UDA
Gl2l BRO MO16 MHA uoo? UDA
6121 UscC MO17 MHA uoos UAR
Gl22 BRO MO18 MHA uoos UDA
Gl22 UDMS MO019 MHA uoo9 UDA
Gl22 usc 0001 OPT uolo UAR
G130 CDO 0002 OPT uolz UAR
G131 CDO 0002 PFT uol3 UAR
6132 CDO 0003 OPT uole UAR
G133 CDO 0003 PFT uols UAR
G140 CCB 0004 OPT uolé UAR
Gl41l CCB 0006 OPT uol? UAC
Glé2 CCB 0007 OPT uol? UAR
Gl43 CCB 0008 OPT uols UAR
Gl44 CCB 0009 OPT uo20 UAD
Gl45 CCB P001 CLOG uoz2l UAD
G146 CCB P002 CLOG uo23 UAR
G147 CCB P002 PFT uoz24 UAR
G149 CHC P003 PMD uo25 UAR
G150 CCB P01l PRS uo2é6 UDMS
G151 CCB POl2 PRS uo27 UDM
6152 CCB PO13 PRS uo28 UDM
G153 CCB P0l4 PRS uo29 UDMS
Gl54 CCB PO15 PRS uo3o UDMS
G155 CCB PO16 PRS uo3l UDMS
G156 CCB POl17 PRS uo32 UDMS
G157 CCB P020 PFT uo33 UDMS
G158 CCB P021 PFT uo34e UDMS
6159 CCB P022 PFT U035 UDMS
6162 CCB P023 PFT uo3eé UDMS
G166 CCB P024 PFT uo3z UDMS
Joo1l JOB P025 PFT uo3s UDMS
J004 JOB P026 PFT U039 UDM
J0O06 JOB P027 PFT uo39 UDMS
Jooz JOB P028 PFT U040 uDX
J0oo9 JOB P032 PFT(%) uosl UDX
JOl0 JOB P033 PFT(%) uo42 UDMS
Joll JOB P034 PFT (%) uo43 ubpP
Jolz JOB P035 PFT (%) T ubP
JO1l3 JOB P036 PFT (%) U045 UuDP
JO0l4 JOB P037 PFT(%) U046 UDP
JOl5 JOB P038 PFT (%) uo47 ubpp
Jol6 JOB S001 SMC U048 ubpP
Jol7z JOB 5002 SMC uo49 UAI
Jols JOB S003 CTPUT uo49 UDX
Jol9 JOB $00¢ CTGET uo50 UAA
Jo22 CKVPUT §006 SMC uo51 UAA
J023 CKVPUT S007 SMC uos2 UAA
J02¢4 CKVPUT $008 CTPUT uos3 UAA
MOO1 MHA S008 CTGET Uc54 UAA
M002 MHA S$011 SMA uo55 UAA
M0O03 MHA S012 SMA uos6 UAA

(CONTINUED ON NEXT PAGE)

LICENSED MATERIAL - PROPERTY OF IBM DIRECTORY 291

MESSAGES /7 OBJECT MODULE LISTING (CONTINUED)

SPF OBJECT SPF OBJECT SPF OBJECT
MESSAGE MODULE MESSAGE MODULE MESSAGE MODULE
uo58 UAA Ul2e URSS ul99 uvT
uos9 UAA ul25 URSS U200 ucz2
uoe6o UMC ul26 URSS U201 ucz2
uoél UMC ulzz URS u202 ucz
uoe62 umMc ul28 URSS U203 ucza
U063 umMc ulz9 URS U204 ucza
uoé63 UMCS ul3o UAC U205 ucz
uoé64 umMc ul3l UAC u207 ucz2
uoé5 UMC ul32 UAC U208 uca2
(Y UMCS Ul33 UAC u209 ucz
uoe6?7 UMC Ul34 UAC U210 umMce
uoe6s umcC U135 UAC U220 uoL
uoés UMCS ul3eé UAC u221 uoL
usé69 umMcC ul37 UAC uz222 uoL
uo7o umMcC ul3s UAC u223 uoL
Uo7l umMcC ul39 UAC U224 uoL
uoz2 umc Ul40 ubz uz225 uoL
uoz3 umc Ulsl ubz U228 uoL
uoz4 umMc Ulé42 ubz U229 uoL
uo75 UMCS Ulse3 ubz U230 URS
uozé UMCS Uls44 ubz uz3l URS
uoz7 UMCS Ul46 ubZ uz233 URS
uo78 UMc Ulsd UDMS U241 usc
uo78 UMCS Ul49 UDMS U250 usc
uo79 umMc ulse uvTt U251 usc
uogo umMc Ul51 uvT U252 usc
uoso UMCS uleéo UHC U253 usc
uosl UMCS ulé6l UHC U254 usc
uos2 UMCS uleé2 UHC U260 usc
uos3 UMCS Ulés UHC U261 usc
uog4 UMCS Ul65 UHC u262 usc
uo85 UMCS Ulé66 UHC U263 usc
Uoaé UMCS uleéz UHC U264 usc
uoag?z UMCS ulés UHC U265 usc
uosa umMc ulé69 UHC U266 usc
uoss UMCS ulzo Uucl uz267 usc
uos9 umc ulzl Ucl U268 usc
uo9l UHC ulza ucl u269 usc
uog2 UHC ulz3 UcCl U270 usc
uo93 UHC Ul74 UCl u271 usc
uosge UHC ul75 ucl uz272 usc
uo9s UHC ulzeé ucl uz28l CHC
uo99 UHC ulzz Ucl u282 CHC
uloo UHC U178 UCl U282 usc
ulol UHC ul79 ucl U283 CHC
ulo3 UHC ulsgl ucl uz283 usc
ulo05 UHC ulsz Ucl U284 CHC
uloé UHC uls3 UCl U285 CHC
ulo7z UHC ulds ucl u28é6 CHC
Ullo UMC ulss ucl u287 CHC
Ulll UMCS U186 ucl U288 CHC
ullz UMCS uls? ucl U289 CHC
Ull3 umMc U188 ucl U290 CHC
Ullé4 uMC ulg9 ucl

Ulls UMCS ulsgo uvT

Ullé UMCS ulsl uvt

ullz uMcs ul92 uvT

Uulls UMCS ulol uvT

Ull9 UMCS ulos uvT

U120 URS U195 uvT

ulzl URS Ul96 uvT

uizz URSS U197 uvr

ul23 URSS ul9s uvT

292 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

-

CBJECTY MODULE / CALLED GBJECT MODULES LISTING

SPF OBJECT MODULES WHICH REFERENCE OR CALL OTHER OBJECT MODULES ARE
LISTED ALPHABETICALLY. EACH OBJECT MODULE NAME IS FOLLOWED BY THE NAMES
OF THE OBJECT MODULES WHICH IT REFERENCES OR CALLS.

OBJECT
MODULE

¢DC
CDERR
CDF
CDG
CDISPL
CDO
CERR
CHC

CHELP
CHPJ
CHPL
CIPARMS
CIR
CIV
cJC
CKVPUT
CLOG
CMB
CML
CMSG
CPRINT
CSB
CTA
CTF
CTGET
CTPUT
CTl
CT12
CUPARMS
EBA
EBE
EBI
EBR
EBS
EBX
ECR
EDD
EDI
EDO
EFC
EFR
EFT
EGN
EGR
EMC
EML
EMP
EPC

OBJECT MODULES REFERENCED OR CALLED
CBC CBR CBS CDA CDF CDO CKVGET CKVPUT CML CMSG CVSDE MERR MHA
CDAIR CMSG CSM CTPUT
CSM
CBG
CDG CSM
BCD CBC CBF CBG CBS CCP CCS CDG CDISPL CERR CSCROLL CSM
CSM
CDAIR CDERR CDG CFI CKVGET CLOG
CDATE CVSDE
CBDSN CDAIR CDERR CDF CMSG
CDT
CRELS CSM
CMSG
CDAIR CDC CMSG
cDC CDO
CHELP CKVGET CMSG
CDC CRELS CRESV CSM
CDISPL CMSG
CDC CDP CHPJ CHPL CIV CJC CJF CJN CKVPUT CLOG CMB CMSG CSB CTA
CTPUT MERR MHA
CSM
CDG CDP CFI CMSG
CAT
CDC CDG CDO CDP CSM SIP
CDC CDG CDO CSM
CDATE CIR CVSDE
cDP
CMSG CTPUT
CDATE CDP CMSG CTA
CKVGET MHA
CCD CDC CDG CDISPL CDO CERR CSCROLL CSM CVM
CDG CFI
gDATE CDG CDP CTA CVSDE
AT
CDERR CMSG CSM CTPUT CT1
cT2
CLOG
CLOG
CDAIR CDC CDO CDT
CDAIR CDC CDP
CDG SOP
CDG CLOG CMSG CSM CTA CUPARMS EBE MHA
CsM CTF EBX
CDP CSM CTA
CDG CLOG CTA CUPARMS EBE ERA ERD ERI
CDP CSM CTA CUPARMS EBI
CUPARMS
CDA CDC CDF CDO CML CPRINT CVM EDO ERR MERR MHA
EBE EMP EPO EPS EPX ETC ETS
CDG ERA ERI EX1
CDC CDF CDO CDP CLOG CSM ERD ERF EX2
ERC ERS
CDISPL CERR CSCROLL EML ERA ERD ERF ERI
CSM ERA ERC ERD ERF ERI ERN :
ERC ERN
ERD ERF ERR ERS
CDA CDC CDF CDO CLOG EDI ERR MERR MHA
CMSG ERA ERI
CDA CDF CDO CKVGET CKVPUT CVM EBA MERR MHA
EFT ERA ERC ERD ERF ERI ERR ERS ERX EST ETL

(CONTINUED ON NEXT PAGE)

LICENSED MATERIAL - PROPERTY OF IBM DIRECTORY 293

OBJECT MODULE / CALLED OBJECT MODULES LISTING (CONTINUED)

OBJECT
MODULE

ERN
ERO
ERR
ERS
ERX
EST
ETC
ETS
FOR
JOB

MERR
MHA
MNT
OPT
PFT

PMD
PRS
PTC
SIP
SMA
SMC
SMD
SMI
SML
SOP
SPC
TUT
UAA
UAC
UAD
UAI
UAR
ucl

ucz
UDA

UDM
UDMS
UuDP
UDX
ubz
UHC

umMc

UMCS
uoL

OBJECT MODULES REFERENCED OR CALLED

ERA ERC ERD ERF ERI ERN

Egg Egg CLOG CML CSB CTA CVM EDO EFC EGN EGR EPP ERA ERD ERF
CCP CCS ECD EGN EGR

CML CMSG CVM CVSDE EPR MHA

CKVGET CKVPUT

CDA CDF CDO CML CPRINT CSM EBR EBS EBX EDI EDO EFC EFR EFT EML
EPC EPD EPF EPI EPP ERA ERD ERF ERI

CMSG EPR MHA

CSM

EBS

EBS ERO ERR ERS ERX

EBS ERN ERS ERX

EGN ERC

ERA

ERS ERX

ERA

ERA

ERA ERC ERI

CSM

CSM EBE

CAT CDAIR CDERR CDG CFI CKVGET CKVPUT CLOG CSM MERR MHA

CDC CDG CDP CFI CJC CJF CJN CKVGET CKVPUT CLOG CSB CSM CTA MERR
MHA

MHA

CDG CDISPL CERR CFI CSM

MERR MHA

CJF CJN CKVGET CKVPUT CLOG CUPARMS MERR MHA

CDC CDP CHPJ CHPL CIV CJC CJF CJN CKVGET CKVPUT CLOG CMSG CSB
CTA CTF CTPUT CUPARMS MERR MHA

CDATE CLM CSM CTF MERR MHA PFT PRS

CLOG MHA

CAT CLOG MERR MHA

CKVGET CKVPUT

CDAIR CDP CMSG CSM CTPUT

CDP CMSG CTA CTGET CTPUT CUPARMS SMA SML

CSM SMC SMI

CDAIR CMSG CSM CTA CTF CTPUT CIPARMS SMA

CTGET CTPUT

CKVGET CKVPUT

CKVGET CKVPUT CSM

CSM MERR MHA

CESIR CDERR CDO CDT CKVGET CKVPUT CLOG MERR MHA

CLOG

CDF CLOG MHA

CIV CKVPUT MHA

CBDSN CLOG MERR MHA UAC

CBC CBR CBS CDA CDC CDF CDO CDP CDT CKVGET CLOG CPRINT CTA MERR
MHA

CBC CBR CBS CDC CDO CDP CKVGET CKVPUT CLOG CPRINT CTA MERR MHA
CBDSN CDA CDF CKVGET CKVPUT MERR MHA UAA UAC UAD UAI UAR UDM
UDP UDX UDZ

CBC CDO CML MHA UDMS

CBR CBS CDC CDO CERR CLOG CMSG CPRINT CSM CVM CVSDE MHA

CDO CML CPRINT UDX

CCD CDATE CDP CIR CIV CTA

CDC CDP CLOG CRELS CRESV CTA

CBDSN CDA CDC CDF CDO CDP CHPJ CHPL CIV CJC CJF CJN CKVGET
CKVPUT CLOG CSB CTA MERR MHA

ﬁaéSCDC CDF CDO CKVGET CKVPUT CLOG CML CMSG CPRINT CVM MERR MHA
CDC CDG CDO CDP CERR CLOG CPRINT CVM

gaz CBC CBR CBS CCB CDA CDC CDF CDO CHC CKVGET CKVPUT CMB MERR

(CONTINUED ON NEXT PAGE)

294 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

OBJECT MODULE / CALLED OBJECT MODULES LISTING (CONTINUED)

OBJECT

MODULE OBJECT MODULES REFERENCED OR CALLED

URS CDA CDF CDO CKVGET CKVPUT CLOG CML CMSG MERR MHA URSS

URSS CDC CDG CDO CERR CLOG CVSDE

usc CAT CBC CBR CBS CCB CDA CDAIR CDC CDF CDO CHC CKVPUT CMB CML
CMSG CVSDE MERR MHA

UTIL MERR MHA

uvT CBC CBR CBS CDATE CDC CDO CDP CDT CMSG CSM CTA MERR MHA

LICENSED MATERIAL - PROPERTY OF IBM DIRECTORY 295

0BJECT MOD

CA OBJECT MODULES LI N

SPF OBJECT MODULES ARE LISTED ALPHABETICALLY. EACH OBJECT MODULE NAME
IS FOLLOWED BY THE NAMES OF THE OBJECT MODULES WHICH CALL OR OTHERWISE

REFERENCE IT.

OBJECT
MODULE

CBS
CCB
CcCcD
CCP
CCS
CDA
CDAIR
CDATE
cDC

CDERR
CDF
CDG

CDISPL
CcDo

CDP

CcDT
CERR
CFI
CHC
CHELP
CHPJ
CHPL
CIPARMS
CIR
CIV
CcJC
CJF
CJN
CKVGET

CKVPUT

CLM
CLOG

CMB
CML
CMSG

CPRINT
CRELS
CRESV
CSB
CSCROLL
CSM

CTA

OBJECT MODULES WHICH CALL OR REFERENCE

CBR

CHPL CSB FOR PTC UOL USC

BRO
CDA
CBR
CBF
BRO
BRO
uoL
CML
CBR
CBR
BRO
CAT
cCcD
CDF
ucCl
CCB
BRO
CBG
EDI
CBR
BRO

CBR
UAR

CBR
UCl
CBR
usc
ubDXx
EPI
EPI
ECR
CCB
CIV
CDG
ucz2
CDA
CDA
CBR
FOR

UCl UC2 UDM UOL USC UVT
UDA UHC

UC2 UDMS UOL USC UVT
UCl UC2 UDMS UOL USC UVT

EMC EMP EPR UCl1l UDA UHC UMC UOL URS USC

CDA CDF CT1l CT2 FOR SMA SMI UAA USC

CLOG CPRINT PMD UDX UVT

CDO CHC CIPARMS CIR CML CT1l CT2 ECR EDO EMC EPF JOB PFT
UDMS UDZ UHC UMC UMCS UOL URSS USC UVT

CTA FOR UAA

ECR EDO EMC EMP EPR UAD UCl UDA UHC UMC UOL URS USC

CCB CHPJ CIPARMS CIR CML CMSG CPRINT CUPARMS EBA EBR
JOB MHA UMCS URSS

CERR CML EFR MHA

CDG

CIPARMS CIR CML CT1l ECR EDO EMC EMP EPR UAA UCl1l UC2 UDM

UDMS UDP UHC UMC UMCS UOL URS URSS USC UVT

CHC CHPJ CIPARMS CJC CLOG CPRINT CT2 EBI EBS EDO EPF JOB PFT
SMA SMC UC1 UC2 UDX UDZ UHC UMCS UVT

CDAIR CT1 UAA UCl UVT

CBR CML EFR MHA UDMS UMCS URSS

CCB CHPJ CMSG FOR JOB MHA

UoL

usc

CDISPL

CHC
CHC
SMI
CIvV
CHC
CHC
CHC
CHC
BRO
ucz2
BRO
umMc
PMD
CCB
UAA
CHC
BRO
BRO
EML
ECR
cDC
Ccho
CHC
CBR
CAT
EBI
TUT
CHC
ubz

PFT
PFT

uDX
PFT
JOB
JOB
JOB
CCB
UDA
CHC
uoL

CHC
UAC
uoL
ECR
CAT
EPO
EPR
CcDO
ubz
EPF
CML
CBC
EBS

UHC
UHC

UAI UDX UHC

PFT UHC

OPT PFT UHC

OPT PFT UHC

CDISPL CMB EMP EPP FOR JOB OPT PFT SIP SOP SPC UAA UCl

UHC UMC UOL URS

EEP EPE FOR JOB OPT PFT SIP SOP SPC UAA UAI UC2 UDA UHC
S US

CTGET CTPUT EBA EBR EDO EMC EPF FOR JOB OPT PFT PRS PTC
gég UAR UC1 UC2 UDMS UDZ UHC UMC UMCS URS URSS

EPF EPO EPR UDM UDP UMC URS USC
CDA CDERR CDF CDISPL CERR CHC CHPJ CKVPUT CLOG CTA EBA
EPS PFT SMA SMC SMI UDMS UMC URS USC UVT
ﬂCé UC2 UDMS UDP UMC UMCS

D

égB PFT UHC

R

CBG CBR CBS CDC CDO CHELP CIPARMS CIR CML CTA EBA EBE
EDO EFT EPR ERA ETC ETS FOR JOB MHA PMD SMA SMD SMI SPC

UDMS UVT
CLOG CPRINT EBA EBI EBR EBS EPF JOB PFT SMC SMI UCl1l UC2 UDX

UHC

uvT
(CONTINUED ON NEXT PAGE)

296 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

OBJECT MODULE / CALLING OBJECT MODULES LISTING (CONTINUED)

OBJECT
MODULE

EPS
EPX
ERA
ERC
ERD
ERF
ERI
ERN
ERO
ERS
ERX
EST
ETC
ETL
ETS
EX1
EX2
MERR

MHA

PFT
PRS
SIP
SMA
SMC
SMI
SML
SOP
SPFSC93X
SPFSC94X
UAA

OBJECT MODULES WHICH CALL OR REFERENCE

- - — " " - T T e - ——— -

EBE PFT PMD SMI
CAT CHC CKVPUT CTA PFT SMA SMC SMI SML

EBA EBR EBS EBX OPT PFT SMC
CML ECR EMP EPF EPO UDMS UMC UMCS
BRO CCD CIV CPRINT EPO UDMS URSS USC

EBA EBR EDD ETS

EPR ERC ERD ERI
EBE EPR

EMC EPR
ECR EPF EPR
EPF EPR

EPC EPR
EPF EPI ERN
EPF EPI
EFR EPR

EPR

EDD

EPF EPR

EPO EPS

EDD

EDD

EBR EDI EFR EFT EML EPC EPD EPF EPR ERO ERS ERX EST
EFC EFT EGN EPC EPD ERN EST

EBR EDO EFR EFT EGR EPC EPD EPF EPR

EDO EFR EFT EGR EPC EPD EPF EPR

EBR EDI EFR EFT EML EPC EPD EPF EPR EST

EFT EGN EPD ERI

ERD ECR EGR EMC EPC ERD

EFC EGR EPC EPF ERD ERI ERR

EPC ERD ERI ERR

EPC

EDD

EPC

EDD

EDI

EDO

BRO CHC ECR EMC EMP FOR JOB MNT OPT PFT PMD PTC TUT UAA UAR UC1
UC2 UDA UHC UMC UOL URS USC UTIL UVT

BRO CHC CMB EBA ECR EMC EMP EPO EPS FOR JOB MERR MNT OPT PFT
PMD PRS PTC TUT UAA UAD UAI UAR UCl1l UC2 UDA UDM UDMS UHC UMC
UOL URS USC UTIL UvT

PMD

PMD

CIPARMS

SMC SMI

SMD

SMD

SMC

CUPARMS

IKTTMPX1

IKTTMPX2

UDA

(CONTINUED ON NEXT PAGE)

LICENSED MATERIAL - PROPERTY OF IBM DIRECTORY 297

OBJECT MODULE / CALLING OBJECT MODULES LISTING (CONTINUED)

OBJECT

MODULE OBJECT MODULES WHICH CALL OR REFERENCE
UAC UAR UDA
UAD UDA

UAL UDA

UAR UDA

UDM UDA
UDMS UbM

ubP UDA

UDX UDA UDP
ubz UDA
UMCS umMc
URSS URS

298 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

GBJECT MODULE / EXTERNAL SYMBOLS DEFINED LISTING

SPF EXTERNAL SYMBOLS WHICH ARE DEFINED BY SPF OBJECT MODULES ARE LISTED
ALPHABETICALLY. EACH OBJECT MODULE NAME IS FOLLOWED BY A LIST OF THE
EXTERNAL SYMBOLS DEFINED. ALL OBJECT MODULES IN SPF CONTAIN THEIR OWN
NAME AS AN EXTERNAL SYMBOL DEFINED, AND THESE ARE NOT INCLUDED IN THE
LIST.

OBJECT

MODULE EXTERNAL SYMBOLS DEFINED

EPC ECLAFTER ECLBEFOR ECLBOUND ECLCOPY ECLCOLS ECLDEL ECLINSRT
ECLMOVE ECLMASK ECLOVER ECLREP ECLSBOT ECLSHOW ECLSTOP ECLSL
ECLSCR ECLSCL ECLSR ECLTENTR ECLTFLOW ECLTSPLT ECLTABS ECLXCLUD

EPF EPFCANCL EPFCHG EPFFIND EPFLOC EPFNUMB EPFPROF EPFRESET
EPFSAVE EPFSUBMT

EPI EPICANCL EPIMEMB EPINUMB EPIOPTS EPIREASN EPIRESET

ETL EPCELC

SMA STAI

SMI STAE

LICENSED MATERIAL - PROPERTY OF IBM DIRECTORY 299

OBJECT MODULE / EXTERNAL SYMBOLS REFERENCED LISTIN

SPF EXTERNAL SYMBOLS WHICH ARE REFERENCED BY SPF OBJECT MODULES ARE
LISTED ALPHABETICALLY. EACH OBJECT MODULE NAME IS FOLLOWED BY A
LIST OF THE EXTERNAL SYMBOLS REFERENCED.

0BJECT
MODULE

CIPARMS
CUPARMS
PMD
SMC
SMD
SMI
TSC

UAR
UDA
UDM
upp
UMC
URS

EXTERNAL SYMBOLS REFERENCED

SIP TKV

SOP

PFT PRS

SMA SML

SMC SMI TKW TRT

CIPARMS SMA

BCD CAT CBC CBDSN CBF CBG CBR CBS CCB CCD CCP CCS CDA CDAIR
CDATE CDC CDERR CDF CDG CDISPL CDO CDP CDT CERR CFI CHC CHELP
CHPJ CHPL CIR CIV CJC CJF CJN CKVGET CKVPUT CLM CLOG CMB CML
CMSG CPRINT CRELS CRESV CSB CSCROLL CSM CTA CTF CTGET CTPUT CT1
CT2 CUPARMS CVM CVSDE EBA EBE EBI EBR EBS EBX ECD ECLAFTER
ECLBEFOR ECLBOUND ECLCOLS ECLCOPY ECLDEL ECLINSRT ECLMASK
ECLMOVE ECLOVER ECLREP ECLSBOT ECLSCL ECLSCR ECLSHOW ECLSL
ECLSR ECLSTOP ECLTABS ECLTENTR ECLTFLOW ECLTSPLT ECLXCLUD ECR
EDI EDO EFC EFR EFT EGN EGR EMC EML EMP EPC EPD EPF EPFCANCL
EPFCHG EPFFIND EPFLOC EPFNUMB EPFPROF EPFRESET EPFSAVE EPFSUBMT
EPI EPICANCL EPIMEMB EPINUMB EPIOPTS EPIREASN EPIRESET EPO EPP
EPR EPS EPX ERA ERC ERD ERF ERI ERN ERO ERR ERS ERX EST ETC ETL
ETS MERR MHA

UAC :

UAA UAC UAD UAI UAR UDM UDP UDX UDZ

UDMS

uDX

UMCS

URSS

300 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

| OBJECT MODULE / SUC ROUTINE LISTING

LICENSED MATERIAL - PROPERTY OF IBM

ALPHABETICALLY.
OBJECT SVC
MODULE NO.
BRO 18
CAT 1
2
3
6
18
40
42
62
CBDSN 26
CCB 18
19
20
CDAIR 6
26
26
40
cDC 20
CDERR 26
CcDG 1
2
CDISPL 1
2
13
13
CcDO 19
27
60
CFI 18
CHC 1
2
CHELP 6
CIPARMS 6
13
21
CIV 24
27
CKVPUT 1
2
CLM 3
CLOG 11
CML 18
31
CPRINT 11
18
CRELS 438
CRESV 40
56
56
CSM 4
10
10
CTA 1
2
CTF 1
2

SYSTEM
SERVICE

BLDL
EXTRACT
ATTACH
DETACH
LOCATE
FIND
OPEN
CLOSE
LINK
LOCATE
UNCATALOG
EXTRACT
CLOSE
LOCATE
WAIT
POST
WAIT
POST
ABEND
ABEND
OPEN
OBTAIN
STAE
BLDL
WAIT
POST
LINK
LINK
BLDL
STOW
DEVTYPE
OBTAIN
WAIT
POST
LOAD
TIME
BLDL
FEOV
TIME
BLDL
DEQ
EXTRACT
ENQ
RESERVE
GETMAIN
FREEMAIN
GETMAIN
WAIT
POST
WAIT
POST

OBJECT
MODULE

cT2

CUPARMS
EBS
ECR

EDO

EMC

EPO

EPS
FOR

MHA

PFT

PMD

SCN

SMA

SMC

SPF OBJECT MODULES WHICH REFERENCE SYSTEM SERVICES VIA SVC ARE LISTED
EACH OBJECT MODULE NAME IS FOLLOWED BY THE SVC NUMBER
AND SYSTEM SERVICE IT REFERENCES.

SVC SYSTEM
NO. SERVICE
93 TGET
94 STFSMODE
93 TPUT

94 STFSMODE
26 LOCATE
26 UNCATALOG
29 SCRATCH
64 RDJFCB
26 UNCATALOG
29 SCRATCH
11 TIME

11 TIME

18 BLDL
48 DEQ
56 ENQ

11 TIME
21 STOW
60 STAE
18 BLDL
21 STOW
48 DEQ
56 ENQ

18 BLDL
48 DEQ
56 ENQ
48 DEQ
56 ENQ

18 FIND

19 OPEN
20 CLOSE

13 ABEND

1 WAIT

2 POST

94 GTSIZE
94 STFSMODE
6 LINK

8 LOAD

9 DELETE
11 TIME
40 EXTRACT
10 FREEMAIN
10 GETMAIN
18 FIND

19 OPEN
20 CLOSE

1 WAIT

13 ABEND
42 ATTACH
62 DETACH
93 TPUT

94 STLINENO
1 WAIT

2 POST

8 LOAD

9 DELETE
13 ABEND(997)
94 STFSMODE

(CONTINUED ON NEXT PAGE)

DIRECTORY

301

OBJECT MODULE / SUC ROUTINE LISTING (CONTINUED)

OBJECT SVC SYSTEM
OBJECT SVC * SYSTEM

MODULE NO. SERVICE MODULE NO. SERVICE
SMD 2 POST ubz 1 WAIT
8 LOAD 42 ATTACH
10 FREEMAIN 62 DETACH
10 GETMAIN UHC 18 BLDL
20 CLOSE UMC 18 BLDL
79 STATUS UMCs 18 BLDL
94 STFSMODE 21 STOW
96 STAX URSS 11 TIME
SMI 8 LOAD 18 BLDL
11 TIME 21 STOW
19 OPEN usc 18 BLDL
24 DEVTYPE UTIL 6 LINK
44 CHAP uvT 11 TIME
60 STAE 27 OBTAIN
64 RDJFCB
93 TPUT
94 GTERM
94 GTSIZE
94 STCC

94 STFSMODE
94 STLINENO

94 STTRAN

94 TCLEARQ
SML 1 WAIT

2 POST

94 STLINENO
94 TCLEARQ

SPF 6 LINK
10 FREEMAIN
10 GETMAIN
19 OPEN
20 CLOSE
2% DEVTYPE
SPFCALCP 1 WAIT
6 LINK
8 LOAD
9 DELETE
10 FREEMAIN
10 GETMAIN
10 IKJRLSA
18 BLDL
19 OPEN
20 CLOSE
42 ATTACH
62 DETACH
94 TCLEARQ
UAC 24 DEVTYPE

26 CATALOG
26 UNCATALOG

UAR 24 DEVTYPE
30 RENAME
UCA 6 LINK
ucl 1 WAIT
26 INDEX
26 LOCATE
42 ATTACH
62 DETACH
ucz2 1 WAIT
42 ATTACH
62 DETACH
UDMS 18 BLDL
21 STOW
ubX 11 TIME

302 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

<

UC ROUTIN

SYSTEM SERVICES WHICH ARE REFERENCED BY SPF VIA SVC ARE LISTED BY SVC

OBJECT MODULE

NUMBER AND SERVICE NAME.
OBJECT MODULES WHICH REFERENCE IT.

SVC SYSTEM
NO. SERVICE
1 WAIT

2 POST

3 EXIT

4 GETMAIN
6 L INK

8 LOAD

9 DELETE

10 FREEMAIN

10 GETMAIN

10 IKJRLSA

OBJECT
MODULE

SPFCALCP
ucl

uc2

uDzZ

CAT

CDG
CDISPL
CHC
CKVPUT
CTA

CTF

PFT

SMC

SMD

SML

CAT

CSM

CAT
CDAIR
CHELP
CIPARMS
PMD

SPF
SPFCALCP
UCA

UTIL

CLM

PMD

SMC

SMD

SMI
SPFCALCP
PMD

SMC
SPFCALCP
CSM

SCN

SMD

SPF
SPFCALCP
CSM

SCN
SMD
SPF
SPFCALCP
SPFCALCP

STING

EACH SERVICE IS FOLLOWED BY THE NAMES OF THE

SVC
NO.

11

13

18

18

19

20

21

24

(CONTINUED ON NEXT PAGE)

‘LICENSED MATERIAL - PROPERTY OF IBM

SYSTEM
SERVICE

ABEND

BLDL

FIND

OPEN

CLOSE

STOW

DEVTYPE

OBJECT
MODULE

CUPARMS
EBS

EDO

PMD

SMI

UDX
URSS
uvT
CDISPL
MHA

SMA

SMC

BRO

CAT

CFI
CIPARMS
cML
CPRINT
ECR

EMC

EPOD
SPFCALCP
UDMS
UHC

uMc
uMCS
URSS
usc

CCB

FOR

SCN

CCB

CDO

FOR

SCN

SMI

SPF
SPFCALCP
CCB

cDC

FOR

SCN

SMD

SPF
SPFCALCP
CIPARMS
EDO

EMC
UDMS
uMcs
URSS
cIv

SMI

SPF

UAC

UAR

DIRECTORY

303

SUC ROUTINE / OBJECT MODULE LISTING (CONTINUED)

SvVC
NO.

26
26
26

26

29
30
40

42

44
48

56

64
79
93
94
96
96

SYSTEM
SERVICE

CATALOG
INDEX
LOCATE

UNCATALOG

OBTAIN

SCRATCH
RENAME

FEOV
EXTRACT

ATTACH

CHAP
DEQ

ENQ

RESERVE
STAE

DETACH

RDJFCB
STATUS

TGET
TPUT

GTERM
GTSIZE

STCC

OBJECT
MODULE

CDAIR
CRESV
PMD
CAT
SMA
SPFCALCP
ucl
ucz2
ubz
SMI
CRELS
ECR
EMC
EPO
EPS
CRESV
ECR
EMC
EPO
EPS
CRESV
CDO
EDO
SMI
CAT
SMA
SPFCALCP
ucl
ucz
ubz
CTl
SMI
SMD
CTGET
CTPUT
SMA
SMI
SMI
PFT
SMI
SMI

304 SPF/TSO PROGRAM LOGIC MANUAL

SVeC
NO.

94

96

94
96

96

SYSTEM
SERVICE

STFSMODE

STLINENO

STTRAN
TCLEARQ

STAX

LICENSED MATERIAL - PROPERTY OF IBM

0BJECT
MODULE
CTGET
CTPUT
PFT
SMC
SMD
SMI
SMA
SMI
SML
SMI
SMI
SML
SPFCALCP
SMD

| OBJECT MODULE / LOAD MODULE REFERENCED LISTING

OBJECT MODULES WHICH ISSUE LINK, LOAD, OR ATTACH SYSTEM SERVICES ARE
LISTED BY SYSTEM SERVICE AND THEN OBJECT MODULE. EACH OBJECT MODULE IS
Fng?gED BY THE NAMES OF THE LOAD MODULES IT REFERENCES VIA THE SYSTEM
SER .

SYSTEM OBJECT
SERVICE MODULE LOAD MODULE REFERENCED
ATTACH CAT (COMMAND PROCESSOR PASSED BY CALLER)
EXEC IKJEFT25 SPFCALCP
SMA SPFPMD
SPFCALCP (PROGRAM SPECIFIED IN CALL COMMAND)
ucl IEHLIST
ucz IDCAMS
unzZ IEBCOPY
LINK CAT IKJPARS IKJPTGT IKJPUTL IKJSCAN IKJSTCK

CDAIR IKJEFDOO

CHELP SPFTUTOR

CIPARMS SPFSPC

PMD SPFBRO SPFEDIT SPFFOR SPFJOB SPFOPT SPFTMENU SPFTSO
SPFTUTOR SPFUCA SPFUDA SPFUHC SPFUMC SPFUOL SPFURS
SPFUSC SPFUTIL SPFUVT

SPF SPFMAIN
SPFCALCP IKJEFD0O0 IKJPARS IKJPUTL IKJSTCK
UCA SPFUC1 SPFUC2
UTIL SPFFOR SPFUCA SPFUDA SPFUHC SPFUMC SPFUOL SPFURS
SPFUSC SPFUVT
LOAD SMC SPF3277 SPF3278 SPF3278C
SMD SPFSUBS SPFTBLS SPFTCM
SMI SPF3277 SPF3278 SPF3278C

SPFCALCP IKJEFF18

LICENSED MATERIAL - PROPERTY OF IBM DIRECTORY 305

13338382

* *
¥ *
%* SECTION 5 x
* *
* DATA AREAS x*
* ¥*
* *
636 36 36 36 36 36 36 36 3 36 36 36 36 36 36 36 3 36 36 26 36 6 I I 36 6 36 36 3 33 I I I 36 36 3 3 I 3¢ 3¢ 36 3¢ 3 3¢

THIS SECTION SHOWS THE BLOCKS, TABLES, AND COMMON AREAS THAT ARE USED IN

SPF. THE FIRST TWO PAGES GIVE AN OVERVIEW OF THE PRIMARY SPF TABLES.
THE OVERVIEW IS FOLLOWED BY A LIST OF ALL OF THE BLOCKS, TABLES, AND
COMMON AREAS REFERENCED BY SPF AND A DESCRIPTION OF THOSE THAT ARE
UNIQUE TO SPF. FINALLY, FORMATS ARE INCLUDED FOR COMPLEX AND/OR
EXTENSIVELY USED SPF TABLES.

LICENSED MATERIAL - PROPERTY OF IBM DATA AREAS

307

PRIMARY DATAR AREAS DIAGRAM

THIS CHART SHOWS THE CENTRAL SPF TABLES AND THEIR RELATIONSHIPS. THOSE

TABLES ENCLOSED IN ASTERISKS

DIRECTLY ADDRESSABLE FROM THE TLD AS WELL AS BEING ADDRESSABLE AS SHOWN

IN THE CHART.

(¥TCT%) OR A COPY OF THE TABLE ARE

]] 3
(TSO COMMAND PROCESSOR
CBUF UPT PSCB ECT CONTROL BLOCKS)
#TCM *TCT *TDS* *TKV* *TKW* TPD *#TSCH *TSV* *TXCH*
| | !
COMMON
SUBROUTINES
—> | Loc SPFPARMS >| TPS
—>| TFD
DCB
—>| ATT —> |KEYTBL1 —>| TSB
SPFPROCS
> TFD
—>| AID DCB —b [KEYTBL2 —>| T [->| TFK
SPFMENUS
TFD TFI
—>
—>| upPP DcB > |KEYTBL3 ——>| TAD
TFI
SPFMSGS
—>| LOW TFD —>| TRTO
Dcs
—>| VAL SPFLIST TFI —>| TRT1
—>| TFD
DCB
—>| BTO ——b>| TLS
SPFLOG
———————>| TFD
—>| ETO pcB ——> | MHAF
SPFEDITA
—>| TFD
—>| 6sc pes TEMPX.CNTL
—>| TFD
SPFEDITB
>| TFD DCB
—b>| 6SM
DCcB
TEMPX.LIST
—>| 6ss —>]| TFD
DcB
> OPTIONAL ADDITIONAL TABLES

308 SPF/TS0O PROGRAM LOGIC MANUAL

LICENSED MATERIAL - PROPERTY OF IBM

‘ RIMARY DATA AREAS LIST

CHART.
SPFMAIN, SPFSUBS,

TSI -
CBUF -
UPT
PSCB
ECT
TCM
TCT

LoC
ATT
AID
UPP
LOW
VAL
BTO
ETO
GSC
GSM
GSS
TDS -
TFD
DCB
TFD
DCB
TFI
TFD
DCB
TFI
TFD

TKW
KEYTBL1
KEYTRLZ2
KEYTBL3

TPD -
TPS

TSC -
TSV -
TXC -

Ls

LOAD MODULES

SPFTCM AND SPF3277 ARE REENTRANT MODULES.

SPF INTERFACE

COMMAND BUFFER
USER PROFILE TABLE
PROTECTED STEP CONTROL BLOCK
ENVIRONMENTAL CONTROL TABLE
COMMAND TABLE
CONTROL TABLES
= 3270 LOCATION TRANS
ATTRIBUTE BYTE TRANSLATE
ATTENTION ID TRANS TBL
UPPER CASE INPUT TRANS TBL
LOWER CASE INPUT TRANS TBL
3270 TRANSLATE
BROWSE TERM OUTPUT TRANS TBL
EDIT TERM OUTPUT TRANS TBL
GENERIC STRING CHARS TBL
GENERIC STRING MASTER TBL
GENERIC STRING SPECIAL TBL
ATA SET INTERFACE
FILE DEF (SPFPARMS)
- DCB
FILE DEF (SPFPROCS)
- DCB
- FIND MEMBER LIST
= FILE DEF (SPFMENUS)
- DCB
- FIND MEMBER LIST
- FILE DEF (SPFMSGS)
- DCB
- FIND MEMBER LIST
= FILE DEF (SPFLIST)
- DCB
- FILE DEF (SPFLOG)
- DCB
- FILE DEF (SPFEDITA)
- DCB
- FILE DEF (SPFEDITB)
- DCB
KEYWORD/VALUE TABLE
KEYWORD TABLE
= SCROLLING KEYWORDS
- EDIT LINE COMMAND KEYWORDS
- EDIT/BROWSE PRIMARY KEYWORDS
PHYSICAL DISPLAY
- PHYSICAL SCREEN IMAGE
- SCREEN I,/0 BUFFER
- LOGICAL DISPLAY
FUNCTION KEY TABLE
ALLOCATED DDNAME TABLE
TRANSLATE AND TEST ZEROS
TRANSLATE AND TEST IDENTITY
LOGICAL SCREEN IMAGE
MENU HANDLER BUFFER
FILE DEF (TEMPX.CNTL)
) - DCB
= FILE DEF (TEMPX.LIST)
) - DCB
COMMON SUBROUTINE INTERFACE
VARIABLES
EXITS CONTROL TABLE

LI~ 2 T O A O N N N B N |

SPFTBLS - TSI
(PARAMETERS)
(PASSED)
(FROM TMP)
(TO SPF)

SPFTCM - TCM
SPFTBLS - TSI
SPFMAIN - TRT
SPFMAIN - TRT
SPFMAIN - TRT
SPF3277 - TT1
SPF3277 - TT1
SPF3277 - TT1
SPF3277 - TT1
SPF3277 = TT1
SPF3277 - TT1
SPF3277 - TT1
SPF3277 - TT1
SPFTBLS - TSI
SPFTBLS - TSI
SPFTBLS - TSI
SPFTBLS - TSI
SPFTBLS - TSI
SPFTBLS - TSI
SPFTBLS - TSI
SPFTBLS = TSI
SPFTBLS - TSI
SPFTBLS - TSI
SPFTBLS - TSI
SPFTBLS TSI
SPFTBLS - TSI
SPFTBLS - TSI
SPFTBLS - TSI
SPFTBLS - TSI
SPFTBLS - TSI
SPFTBLS - TSI
SPFTBLS - TSI
SPFTBLS - TSI
(GETMAINED)

SPFMAIN - TKH
SPFMAIN - TKW
SPFMAIN - TKW
SPFMAIN = TKW
SPFTBLS - TSI

(GETMAINED)
(GETMAINED)
SPFTBLS - TSI
SPFTBLS - TSI
SPFTBLS - TSI
SPFTBLS - TSI
SPFTBLS - TSI
(THESE)
(TABLES)
(ARE)
(GETMAINED)
(AS)

(REQUIRED)
SPFSUBS - TSC
SPFTBLS - TSI
SPFTBLS - TSI

FOR 3278 CANADIAN/FRENCH TERMINALS "SPF3278C - TT3"™ IS USED.

LICENSED MATERIAL

- PROPERTY OF IBM

(%)
(%)
(%)
(%)
(%)
(%)
(%)
(%)

(1) MORE THAN ONE COPY CAN EXIST TO SATISFY SPLIT SCREEN REQUIREMENTS.
((%) USED FOR 3277 TERMINALS. FOR 3278 TERMINALS "SPF3278 - TT2"

DATA AREAS

THE FOLLOWING LIST IDENTIFIES THE SPF TABLES THAT ARE IN THE PRECEEDING
FOLLOWING THE NAME AND TITLE OF EACH TABLE IS THE NAME OF THE
LOAD MODULE AND OBJECT MODULE WHERE THE TABLE EXISTS.

IS USED.

309

ATA AREA IS

THE FOLLOWING IS A LIST OF DATA AREAS REFERENCED BY SPF. THE TABLE NAME
IS FOLLOWED BY A CODE INDICATING THE TYPE OF CONTROL BLOCK (0-0S/VS,
T-T50, S-SPF CONTROLLER, P-SPF PROCESSOR)

THE FORMAT DESCRIPTION, IS THE NAME OF THE PLS SEGMENT THAT DESCRIBES
THE TABLE. THIS SEGMENT CAN BE FOUND IN PLS LISTINGS THAT REFERENCE THE
TABLE. SOME TABLES, FOR EXAMPLE 256 BYTE TRANSLATE TABLES DO NOT HAVE A
FORMAT DESCRIPTION. THE NAMES OF THE SQURCE MODULE, OBJECT MODULE, AND
LOAD MODULE ARE SHOWN FOR TABLES WHICH ARE COMPILED.

AN ASTERISK (%) FOLLOWS TERMINAL DEPENDENT TABLES. THE TABLES USED FOR
3277 TERMINALS IS SHOWN. FOR 3278 TERMINALS REPLACE TT1l WITH TT2 AND
REPLACE 3277 WITH 3278.

0 - - — 0S/VS CONTROL BLOCKS

= T = =TSO CONTROL BLOCKS

= = 8 — SPF CONTROLLER TABLES

- —=— P SPF PROCESSOR TABLES
TABLE FORMAT SOURCE OBJECT LOAD
NAME O TSP DESCRIPT MODULE MODULE MODULE TITLE
AID -=—8§ = — TRTAID TRT SPFMAIN ATTENTION ID TRANSLATE TABLE
ASCB 0 - - - ASCBDCLS — _ -_— ADDRESS SPACE CONTROL BLK
ASVT 0 === ASVTIDCLS — —_— -_ ADDRESS SPACE VECTOR TABLE
ASXB 0= - - ASXBDCLS — _— —_— ADDRESS SPACE EXTENSION BLOCK
ATT -=-5=- -— TRTATT TRT SPFMAIN ATTRIBUTE BYTE TRANSLATE TABLE
ATTACHL 0—-—=—=— ATTDCLS — —_ -_— ATTACH MACRO LIST FORM
BCT -==P BCTDCLS — -_ -_— BROWSE CONTROL TABLE
BLB -==-pP BLBDCLS — _— _— BROWSE LINE BUFFER
BLDL 0 — = - BLOLDCLS — -_ _ BLDL MACRO CONTROL BLOCK
BTO(%) -=-SP — TTIBTO TT1 SPF3277 BROMWSE TERMINAL OUTPUT TR TABLE
BT -=-=-P CBTDCLS — _— -_— COMMON BROWSE TABLE
CBUF -T == - -_— -_— _ TSO COMMAND BUFFER
cIvcoMM -=-=pP CIVCOM — -_ -_— COMMON VTOC INFORMATION AREA
CMLCENT - ==P CHMLDCLS — -_ -_ COMMON MEMBER LIST ENTRY
csce 0 ~-- CSCBDCLS — — _— COMMAND SCHEDULING CONTROL BLK
CSPL = T == CSPLOCLS — —_ _— COMMAND SCAN PARAMETER LIST
CcvT === CVIDCLS — -_— _— COMMUNICATIONS VECTOR TABLE
DAIRACB = T = = DA34DCLS — —_— -_— DAIR ATTRIBUTE CONTROL BLOCK
DAPL - T = = DAPLDCLS — -_ -_— DAIR PARAMETER LIST
DAOC = T == DAOCDCLS — -_— — DAIR DAOC BLOCK
DAOO = T - -= DAQCDCLS — —_— -_— DAIR DA0O BLOCK
DAOS - T — - DAOSDCLS — -_— _— DAIR DA08 BLOCK
DAl0O = T - = DAlCDCLS — —_— -_ DAIR DAlC¢ BLOCK
DAl8 = T == DAlSDCLS — —_— —_— DAIR DAl8 BLOCK
DA2C = T = = DA2CDCLS — _— —_— DAIR DA2C BLOCK
DA34 = T == DA34DCLS — — _— DAIR DA34% BLOCK
oce 0--- DCBDCLS — —_— _— DATA CONTROL BLOCK
DEB 0 - =- DEBDCLS — —_— — DATA EXTENT BLOCK
DECB 0 - - - DECBOCLS — —_— -_— DATA EVENT CONTROL BLOCK
DEVT 0~--= DEVIDCLS — _— -_— DEVICE TABLE
DsCB Q0 ~-- - DSCBDCLS — -_ -_— DATA SET CONTROL BLOCK
EBT -==-P EBTDCLS — —_— _— EDIT BACKUP TABLE
ECB 0-——- ECBDCLS — —_ -_— EVENT CONTROL BLOCK
ECT = T—-=- ECTDCLS — _— —_— ENVIRONMENTAL CONTROL TABLE
EDL - ==P EDLOCLS — _— _ EDIT DISPLAY LINE
EDR — —==P EDRDCLS — -_— e EDIT RECORD
EDT - =-—P EDTDCLS — _— _— EDIT TABLE
ELC - ==P ELCDCLS — -_— -_ EDIT LINE COMMANDS
ETO(») --sSP — TTIETO TT1 SPF3277 EDIT TERM OUTPUT TRANS TABLE
GSC(*) --sSpP — TTIGSC TT1 SPF3277 GENERIC STRING CHARACTER TABLE
GSM(%) --8SpP — TT16SM TT1 SPF3277 GENERIC STRING MASTER TABLE
GSS(%) -=-sSP — TT16SS TT1 SPF3277 GENERIC STRING SPECIAL CHAR TBL

(CONTINUED ON NEXT PAGE)

310 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

-

DATA AREAS LIST (CONTINUED)

TABLE FORMAT SOURCE OBJECT LOAD
NAME 0TS P DESCRIPT MODULE MODULE MODULE TITLE
JsCB 0 === JSCBDCLS — —_— _— JOB STEP CONTROL BLOCK
KEYTBL1 -=-S$SP — KEYTBLL TKW SPFMAIN KEYWORD TABLE 1 (SYSTEM)
KEYTBL2 -=-SP — KEYTBL2 TKW SPFMAIN KEYKORD TABLE 2 (EDIT LINE)
KEYTBL3 -=-SP — KEYTBL3 TKW SPFMAIN KEYWORD TABLE 3 (PRIMARY CMD)
KVBLOCK -=-5P — -_ —_— _— KEYWORD/VALUE BLOCK
Loc -—8$=- — TRTLOC TRT SPFMAIN 3270 SCREEN LOCATION TRANS TBL
LOW(%) -=-SP — TTILOW TT1 SPF3277 LOWER CASE TRANSLATE TABLE
LWA 0---= LWADCLS — -_ -_— LOCAL WORK AREA
MHAF == =P MENUDCLS — _ —_— MENU BUFFER
PSA 0--=- PSADCLS — -_— _— PREFIX STORAGE AREA
PSAX 0 = = = PSAXDCLS — -_ _— PREFIX STORAGE AREA EXTENSIONS
PSCB - T == PSCBDCLS — -_— -_— PROTECTED STEP CONTROL BLOCK
RB 0-~-- RBOCLS — -_ -_ REQUEST BLOCK
RBX 0 - —--= RBXDCLS — -_ _ REQUEST BLOCK EXTENSION
SDE - =S P SDEDCLS — -—_ -_ SPF DIRECTORY ENTRY
SDWA 0 - - - SDWADCLS — -_— —_— SYSTEM DIAGNOSTIC KORK AREA
STOW 0 - == STOKDCLS — —_— -_— STOW MACRO CONTROL BLOCK
TAD1 -=—8S=- — TLD1 TSI SPFTBLS ALLOCATED DDNAME TABLE FOR TLD1
TAD2 -=8=- — TLD2 TSI SPFTBLS ALLOCATED DDNAME TABLE FOR TLD2
TCB 0--- TCBOCLS — —_ —_— TASK CONTROL BLOCK
TCD -==P TCDDCLS — —_— _— COMMAND DEFINITION TABLE
TCH - =S P TCMDCLS TCM TCM SPFTCM COMMAND TABLE
TCT -=8 P TCTDCLS TCT TSI SPFSUBS CONTROLLER TABLES ARRAY
TCS - ==P TCSDCLS — -_— _— COMMAND SCAN TABLE
TCST = T=+-= TCSTDCLS — _— -_ TERM CONTROL ADDR SPACE TABLE
TCX 0--- TCXDCLS — -_— -_— TCAM ADDRESS VECTOR TABLE
TOS - =85 - TDSDCLS TDS TSI SPFSUBS DATA SET TABLE
TFD -=S P TFDDCLS — -_— _— FILE DEFINITION TABLE
TFI -=8SP TFIDCLS — -_ FIND MEMBER TABLE
TFK -=-8=- — o -_ -_— FUNCTION KEY TABLE
TIOT 0=--=-TIOTDCLS — b -_ TASK INPUT/OUTPUT TABLE
TKV -=-SP — TKV TKV SPFMAIN INITIAL KEYWORD/VALUE TABLE
TKV -=S P TKVDCLS — -_— -_— KEYWORD/VALUE TABLE
TKW = =S P TKWDCLS TKHW TKW SPFMAIN KEYKWORD TABLE
TLD -=SP TLDDCLS — -_ —_— LOGICAL DISPLAY TABLE
(TLDO) -=-SP — TLDO TSI SPFTBLS LOGICAL DISPL TBL (CONTROLLER)
(TLDYL) -=-SpP — TLD1 TSI SPFTBLS LOGICAL DISPL TBL (SCREEN 1)
(TLD2) -=-SP — TLD2 TSI SPFTBELS LOGICAL DISPL TBL (SCREEN 2)
TLS -=SP TLSDCLS — _ _— LOGICAL SCREEN TABLE
(TLS1) -=-SpP — _—_ -_— -_— LOGICAL SCREEN TABLE FOR TLD1
(TLS2) -=-SP — -_— _— —_— LOGICAL SCREEN TABLE FOR TLD2
TPD - =$%- TPDDCLS TPD TSI SPFTBLS PHYSICAL DISPLAY TABLE
TPS -=9S$- TPSDCLS — -_ —_— PHYSICAL SCREEN TABLE
TRPT 0 - —-- TRPTDCLS — —_ -_— TIOC REFERENCE POINTER TABLE
TRTO00 -=8=- — TLDO TSI SPFTBLS ZEROS TRANS TABLE FOR TLDO
TRTO1 -—=-P — TLO1 TSI SPFTBLS ZEROS TRANS TABLE FOR TLD1
TRTO02 -—=-P — TLD2 TSI SPFTBLS ZEROS TRANS TABLE FOR TLD2
TRT10 -=S= — TLDO TSI SPFTBLS IDENTITY TRANS TABLE FOR TLDO
TRT11 -—=-P — TLD1 TSI SPFTBLS IDENTITY TRANS TABLE FOR TLD1
TRT12 -—=-P — TLD2 TSI SPFTBLS IDENTITY TRANS TABLE FOR TLD2
TSB - =8 - TSBDCLS — -_ -_— TPUT/TGET SCREEN BUFFER
TSC - =S P TSCDCLS TSC TSC SPFSUBS COMMON SUBROUTINE ADDRESS TABLE
TSI -=SP TSIDCLS TSI TSI SPFTBLS SPF INTERFACE TABLE
TSV - =SSP TSVDCLS TSV TSI SPFTBLS SPF VARIABLES TABLE
TSVKV - =8 - TSVKVDCL — -_ —_— TSV KEYHORD/VALUE TABLE
T -=8=- TTIDCLS — _ -_— TERM DEPENDENT TRANS TABLES
TXC - =S P TXCDCLS TXC TSI SPFTBLS SPF EXITS CONTROL TABLE
uce Q--- UCBDCLS — _— -_— UNIT CONTROL BLOCK
UDACOMM -==P UDACOMM — -_ -_— DATASET UTILITY COMMON AREA
UMCCOMM -==P UuMCCOMM — -_— -_— MOVE/COPY UTILITY COMMON AREA
UPP(%) --SP — TTIUPP TT1 SPF3277 UPPER CASE TRANSLATE TABLE
UPT - T==- UPTDCLS — -_— -_ TSO USER PROFILE TABLE
URSSPARM = == P URS3COMM — —_ -_— RESET UTILITY COMMON AREA
VAL(%) -—--SpP — TTIVAL TNl SPF3277 VALID CHARACTER TRT TABLE

LICENSED MATERIAL - PROPERTY OF IBM

DATA AREAS 311

DATA AREAS DESCRIP

ATT

BCT

BLB

BTO

CBT

CIVCOMM

ATTENTION ID TRANSLATE TABLE

USED TO TRANSLATE 3270 AID'S (ATTENTION IDENTIFIERS) INTO SPF
LOGICAL AID'S. FOR EXAMPLE, THE 3270 AID OF X'7C' (PROGRAM
FUNCTION KEY 12) IS TRANSLATED TO SPF LOGICAL AID OF 12.

THE AID IS USED IN CONJUNCTION WITH THE TFK TO ASSIGN SPECIFIC
SPF FUNCTIONS TO SPECIFIC 3270 PF KEYS.

ATTRIBUTE BYTE TRANSLATE TABLE

USED TO TRANSLATE FROM SPF LOGICAL ATTRIBUTE BYTES INTO 3270
ATTRIBUTE BYTES. SPF LOGICAL ATTRIBUTE BYTES ARE DEFINED IN
TLSDCLS (SEE TLS DESCRIPTION) AND ARE STORED AS CHARACTERS IN
THE TLS AND TPS. THEY ARE ALL LESS THAN X'40' AND ARE
TRANSLATED TO 3270 ATTRIBUTE BYTES WHEN DATA IS FORMATTED FOR
OUTPUT TO THE DISPLAY.

BROKSE CONTROL TABLE

USED BY COMMON BROWSE TO REPRESENTS 8000 LOGICAL RECORDS FROM
THE DATA SET BEING BROWSED. ONE BCT IS CREATED INITIALLY. AS
MORE RECORDS ARE READ, ADDITIONAL BCT'S ARE ALLOCATED,
INITIALIZED, AND CHAINED. THE PURPOSE OF THE BCT TABLES IS TO
ALLOW COMPUTATION OF THE RELATIVE 'TTRN' FOR EACH RELATIVE
RECORD IN THE DATA SET (EVEN FOR VARIABLE BLOCKED RECORDS).
BITS IN THE TRACK BIT TABLE AND THE RECORD BIT TABLE ARE SET
THE FIRST TIME THAT A LOGICAL RECORD IS READ, BASED ON THE
TTRN THAT IS RETURNED FROM CGET. ONCE A RECORD HAS BEEN READ,
THE TABLES ARE USED TO COMPUTE A RELATIVE TTRN FOR THE RECORD.

BROWSE LINE BUFFER

USED BY COMMON BROWSE TO HOLD DATA FROM ONE DATA RECORD (WHICH
CORRESPONDS TO ONE LINE ON THE DISPLAY). DATA IS MOVED FROM A
BLB WHEN THE SCREEN IS BEING FORMATTED. BLB'S ARE GETMAINED
FROM SUBPOOL 4 (AS A BLOCK) AND FORWARD AND BACKWARD CHAINED
AS PART OF CBR INITILIZATION. THEY ARE FREEMAINED DURING CBR
TERMINATION.

BROWSE TERMINAL OUTPUT TRANSLATE TABLE

USED BY COMMON BROWSE TO TRANSLATE DATA AS IS IS PUT IN THE
TLS FOR DISPLAY. TINVALID CHARACTERS ARE TRANSLATED TO PERIODS
'*.'" BY THIS TRANSLATION. ONE BTO IS USED FOR 3277 TERMINALS
AND A DIFFERENT BTO IS USED FOR 3278 TERMINALS.

COMMON BROWSE TABLE

USED TO COMMUNICATE INFORMATION BETWEEN THE PROGRAMS THAT MAKE
UP COMMON BROWSE AND TO RETAIN INFORMATION FOR COMMON BROWSE
BETWEEN CALLS TO IT (FOR EXAMPLE BETWEEN MEMBERS SELECTED FROM
A MEMBER LIST). AN EXAMPLE OF THE INFORMATION SAVED IS THE
CURRENT "FIND™ COMMAND. THE CBT IS ALLOCATED AND INITIALIZED
BY CBS (COMMON BROWSE SETUP) EITHER BEFORE CBR (COMMON BROWSE)
IS CALLED, OR BY CBR ITSELF IF NECESSARY. IT IS FREED BY

CBC (COMMON BROWSE CLEANUP).

COMMON UTOC INFORMATION AREA

USED TO PASS DATA SET INFORMATION FROM CIV BACK TO ROUTINES
WHICH CALL CIV. THE AREA IS PASSED TO CIV AS A PARAMETER.

312 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

CMLCENT COMMON MEMBER LIST ENTRY

COMMON MEMBER LIST ENTRIES ARE GENERATED AND CHAINED TOGETHER
BY CML WHENEVER A LIST OF PARTITIONED DATA SET MEMBERS IS
NEEDED, EITHER FOR A MEMBER LIST DISPLAY, OR FOR INTERNAL
PROCESSING. THE ENTRIES ARE CHAINED OFF OF THE TFDCML FIELD
OF A FILE DEFINITION TABLE (TFD). THE FIRST ENTRY ON THE
CHAIN ALWAYS CONTAINS A NAME FIELD OF BINARY ZEROS, AND THE
LAST ENTRY ON THE CHAIN ALWAYS CONTAINS A NAME FIELD OF ALL
BINARY ONES. EACH CHAIN ENTRY CONSISTS OF:

- A BYTE CONTAINING STATUS BITS,

- A POINTER TO THE NEXT ENTRY,

- THE 8 CHARACTER MEMBER NAME

- 3 BYTES OF TTR INFORMATION.

EBT EDIT BACKUP TABLE

USED IN CONTROLLING EDIT BACKUP AND RECOVERY. THE EBT IS AN
E§¥ENSION TO THE EDT (EDIT TABLE) AND IS ADDRESSED FROM THE

EDL EDIT DISPLAY LINE

USED TO DESCRIBE THE EDIT DISPLAY LINE AS IT APPEARS ON THE
DISPLAY SCREEN, WITH THE COMMAND AREA ON THE LEFT, AND THE
DATA AREA ON THE RIGHT.

EDR EDIT RECORD

USED TO HOLD CONTROL INFORMATION AND DATA FOR ONE EDIT RECORD.
THERE IS ONE EDIT RECORD FOR EACH LINE OF DATA THAT IS BEING
EDITED, AND FOR EACH SPECIAL LINE (SUCH AS TOP, BOTTOM, MASK,
TABS LINES ETC.) EDIT RECORDS ARE INITIALLY ALLOCATED WHEN
DATA IS READ IN BY EDO, AND ADDITIONAL EDIT RECORDS ARE
ALLOCATED AS REQUIRED. EDR'S ARE FORWARD AND BACKWARD CHAINED
ON THE EDIT RECORD CHAIN.

EDT EDIT TABLE

THE EDIT TABLE (EDT) IS THE MAIN COMMUNICATION AREA FOR DATA
PASSED AMONG THE VARIOUS EDIT SUBROUTINES. IT IS DYNAMICALLY
ALLOCATED AND INITIALIZATED BY ETS (EDIT TABLE SETUP) AND
DELETED BY ETC (EDIT TABLE CLEANUP). IT IS ADDRESSED BY
REGISTER 3 IN ALL EDIT ROUTINES (AND THUS DOES NOT HAVE TO BE
PASSED AS A PARAMETER WHEN CALLING EDIT ROUTINES).

ELC EDIT LINE COMMANDS
USED TO DESCRIBE AN EDIT LINE COMMAND DEFINITION. THE COMMAND

DEFINITIONS THEMSELVES ARE IN THE MODULE ETL (EDIT LINE
COMMAND TABLE.)

ETO EDIT TERM OUTPUT TRANS TABLE

USED BY EDIT TO TRANSLATE DATA AS IT IS PUT INTO THE TLS FOR
DISPLAY. INVALID CHARACTERS ARE TRANSLATED TO ATTRIBUTE BYTES
BY THIS TRANSLATION. ONE ETO IS USED FOR 3277 TERMINALS AND A
DIFFERENT ETO IS USED FOR 3278 TERMINALS.

LICENSED MATERIAL - PROPERTY OF IBM DATA AREAS 313

GSC

GSM

GSS

KEYTBL1

KEVTBL2

KEVTBL3

KUBLOCK

GENERIC STRING CHARACTER TABLE

USED TO DEFINE THE BIT MASK ASSOCIATED WITH A PARTICULAR
SPECIAL CHARACTER. THE BIT MASK IDENTIFIES THE TYPE(S) OF
CHARACTERS THAT ARE TO BE REPRESENTED BY THE SPECIAL
CHARACTER. A CODE FROM THE GSS TABLE IS USED AS AN INDEX INTO
THIS TABLE. THIS TABLE CONSISTS OF BIT MASKS THAT ARE MATCHED
AGAINST BYTES IN THE GSM TO SEE IF A PARTICULAR CHARACTER FITS
INTO A PARTICULAR CATAGORY.

GENERIC STRING MASTER TABLE

USED TO ASSIGN TO EACH POSSIBLE CHARACTER, ONE OR MORE BITS
WHICH DESCRIBES THE CHARACTERS. POSSIBILITIES INCLUDE ALPHA,
NUMERIC, SPECIAL, INVALID, ETC. THE TABLE IS USED PRIMARILY
IN PROCESSING PICTURE STRINGS IN BROWSE AND EDIT, BUT CAN BE
USED AS A TRANSLATE TABLE TO DETERMINE WHETHER DATA CONTAINS
INVALID OR LOWER CASE CHARACTERS (EDIT USES THE GSM FOR THIS
FUNCTION).

GENERIC STRING SPECIAL CHAR TBL

USED IN PROCESSING PICTURE STRINGS WITH THE TR (TRANSLATE) AND
TRT (TRANSLATE AND TEST) INSTRUCTIONS.

- ALL ALPHABETIC/NUMERIC CHARACTERS TRANSLATE INTO
THEMSELVES.

- SPECIAL PICTURE STRING CHARACTERS TRANSLATE INTO CODES
WHICH ARE USED AS AN INDEX INTO THE GSC TABLE. IN THE
TABLES THAT ARE DISTRIBUTED, SPECIAL CHARACTERS ARE "=",
"‘", "<"’ ")l" “#"’ "S"’ "aﬂ’ "won AND "_".

- ALL INVALID CHARACTERS AND SPECIAL CHARACTERS THAT ARE NOT
DEFINED AS BEING SPECIAL CHARACTERS TRANSLATE INTO X'FF'.

KEYRORD TABLE 1 (SYSTEM)

USED TO ASSIGN 1 BYTE INTERNAL CODES TO 1 TO 8 BYTE CHARACTER
SYMBOLS. TABLE 1 CONTAINS SYSTEM WIDE SYMBOLS. SEE ALSO TKW.

KEYHORD TABLE 2 (EDIT LINE)

USED TO ASSIGN 1 BYTE INTERNAL CODES TO 1 TO 8 BYTE CHARACTER
SYMBOLS. TABLE 2 CONTAINS EDIT LINE COMMAND SYMBOLS. SEE
ALSO TKW.

KEYHORD TABLE 3 (PRIMARY CMD)

USED TO ASSIGN 1 BYTE INTERNAL CODES TO 1 TO 8 BYTE CHARACTER
SYMBOLS. TABLE 3 CONTAINS BROWSE AND EDIT PRIMARY COMMAND
SYMBOLS. SEE ALSO TKW.

KEYHORD/VALUE BLOCK

USED TO DESCRIBE THE KEYWORDS AND VALUES THAT ARE PROCESSED BY
THE CKVGET AND CKVPUT COMMON SUBROUTINES. IT CONTAINS A LIST
OF VARIABLE LENGTH ENTRIES, ONE FOR EACH KEYWORD. EACH ENTRY
CONSISTS OF THE FOLLOWING ITEMS IN ORDER:
VALUE LENGTH - FIXED(8)

~ KEYWORD LENGTH - FIXED(8)

= KEYWORD - CHARACTER(KEYWORD LENGTH)
THE END OF THE LIST IS INDICATED BY A BYTE-SET TO '00'X.
SEE ALSO TKV.

314 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

g

LocC

LOKH

MHAF

TAD

TCD

TCM

3270 SCREEN LOCATION TRANS TBL

USED TOD ASSIST IN TRANSLATING FROM RELATIVE LOCATIONS ON A
32%0 DISPLAY SCREEN TO AN EBCDIC LOCATION AS USED IN 3270
RDERS.

LOHER CASE TRANSLATE TABLE

USED TO TRANSLATE DATA THAT IS READ IN FROM THE TERMINAL.

THE ONLY CHARACTERS ACTUALLY CHANGED BY THIS TRANSLATION ARE
THE 3270 DUP, FIELD MARK, AND GRAPHIC ESCAPE CHARACTERS WHICH
ARE CHANGED TO BLANK.

MENU BUFFER

THE MENU HANDLER BUFFER IS SET UP BY MHA AND AND IS SAVED AND
RESTORED BY CHELP. INFORMATION IN THIS AREA IS PRESERVED
ACROSS CALLS TO MHA. MENUACTN - (MENU ACTION ENTRY) IS A
DSECT THAT DESCRIBES MENU HANDLER ACTION STATEMENTS IN THE MHA
BUFFER. THERE IS ONE MHAFACTN ENTRY FOR EACH ACTION STATEMENT

SPF DIRECTORY ENTRY

USED TO HOLD INFORMATION THAT IS COLLECTED AND MAINTAINED BY
SPF ABOUT A PDS MEMBER. THE SDE IS KEPT IN THE USER AREA OF A
PARTITIONED DATA SET DIRECTORY ENTRY.

ALLOCATED DDNAME TABLE

USED TO HOLD THE NAMES OF ALLOCATED DDNAMES. WHEN CDAIR
ALLOCATES A FILE, THE DDNAME IS ADDED TO THE TAD, AND WHEN
IT FREE THE FILE, THE NAME IS REMOVED. THE PURPOSE OF THE
TABLE IS TO ALLOW FILES TO BE FREED AT TASK TERMINATION TIME
IF THEY HAVE NOT BEEN PREVIOUSLY FREED. THIS SITUATION WILL
OCCUR IF THE TASK TERMINATES ABNORMALLY.

COMMAND DEFINITION TABLE

USED TO DESCRIBE PRIMARY COMMAND USED IN BROWSE AND EDIT. THE
COMMAND DEFINITIONS (WHICH ARE COMPILED INTO MODULES ECD -
EDIT, AND BCD - BROWSE) ARE USED BY CCP (COMMON COMMAND PARSE)
TO CATCH CERTAIN COMMAND SYNTAX OR PARAMETER ERRORS AND TO
REORDER THE COMMAND PARAMETERS IN THE TCS (COMMAND SCAN TABLE)
SO THAT LATER PROCESSING OF THE COMMAND IS MADE EASIER.

COMMAND TABLE

THE COMMAND TABLE (TCM) IS USED TO DESCRIBE COMMANDS TO BE
INVOKED UNDER SPF VIA THE COMMMON ATTACH ROUTINE (CAT).
COMMANDS MAY BE CLASSIFIED IN ONE OF FOUR WAYS AS SPECIFIED BY
THE TCM TYPE FIELD DESCRIBED BELOW. SPF LOOKS UP EACH COMMAND
IN THE TCM BEFORE INVOKING THE COMMAND. ANY COMMAND NAME NOT
FOUND IN THE TABLE WILL BE TREATED AS INDICATED BY THE FINAL
ENTRY IN THE TCM. USE OF THE TCM IMPROVES SYSTEM PERFORMANCE
BY ELIMINATING THE OVERHEAD OF SEARCHING LINKLIB FOR COMMANDS
THAT ARE IN LPA AND FLAGGED AS COMMAND PROCESSORS, COMMANDS
THAT ARE FLAGGED AS CLISTS, OR COMMANDS THAT ARE FLAGGED AS
INVALID. IF IT IS UNKNOWN WHETHER A GIVEN COMMAND NAME IS A
COMMAND PROCESSOR OR A CLIST, THE ENTRY MAY BE FLAGGED AS A
"BLDL"™ TYPE TO CAUSE SPF TO SEARCH THE LINKLIST USING BLDL.
THE TCM IS ASSEMBLED AND LINKEDITED BY ITSELF. THIS MAKES IT
POSSIBLE TO CREATE A TAILORED VERSION OF TCM FOR A SUBSET OF
USERS, THUS RESTRICTING THE COMMANDS THAT ARE AVAILABLE TO
THEM. THESE USERS WOULD HAVE A SEPARATE LOGON PROCEDURE WHICH
WOULD INCLUDE A STEPLIB CONTAINING THE MODIFIED TCM.

LICENSED MATERIAL - PROPERTY OF IBM DATA AREAS 315

TCT

TCS

TDS

TFD

TF1I

TFK

CONTROLLER TABLES ARRAY

THE CONTROLLER TABLES ARRAY (TCT) CONTAINS THE ADDRESSES OF 13
TABLES THAT ARE USED BY THE CONTROLLER TASK. THESE TABLES ARE
USED FOR TRANSLATE AND TRANSLATE-AND-TEST FUNCTIONS. THE
FIRST FIVE TABLE ADDRESSES POINT TO THE STATIC TRANSLATE
TABLES (TRT). SEE THE TRT OBJECT MODULE DESCRIPTION. THE
LAST EIGHT TABLE ADDRESSES POINT TO THE TERMINAL DEPENDENT
TABLES (TTT). SEE THE TT1l OR TT2 OBJECT MODULE DESCRIPTION.

COMMAND SCAN TABLE

IS CREATED BY CCS (COMMON COMMAND SCAN) IN PROCESSING BROWSE
AND EDIT PRIMARY COMMANDS. THE TCS IS AN ARRAY OF ENTRIES,
EACH REPRESENTING ONE PARAMETER IN THE COMMAND.

DATA SET TABLE

THE SPF DATA SETS TABLE CONSISTS OF POINTERS TO EIGHT SPF
TFD'S THAT ARE USED THROUGHOUT SPF. THE TDS AND THE EIGHT
TFD'S ALONG WITH THE DCB'S FOR THE EIGHT DATA SETS ARE ALL
COMPILED INTO THE TSI OBJECT MODULE WHICH IS LINK EDITED INTO
THE SPFTBLS LOAD MODULE.

FILE DEFINITION TABLE

USED TO COMMUNICATE FILE DEFINITION INFORMATION BETWEEN COMMON
SUBROUTINES. SOME TFD'S ARE COMPILED. FOR EXAMPLE, THE TFD'S
FOR THE MENUS, MSGS, PROCS AND PARMS FILES. MOST ARE CREATED
DYNAMICALLY, INITIALIZED WITH ZEROS, AND FILLED WITH
APPRIOPRIATE INFORMATION. TFD'S ARE PASSED TO COMMON ALLOCATE
FOR ALLOCATING A FILE, COMMON OPEN FOR OPENING IT, COMMON GET
TO READ A RECORD, COMMON PUT TO WRITE A RECORD, COMMON CLOSE
TO CLOSE THE FILE, AND FINALLY COMMON FREE TO FREE THE FILE.

FIND MEMBER TABLE

USED TO CONTAIN BLDL INFORMATION IN MAIN MEMORY SO THAT THE
PDS DIRECTORY ON DISK NEED NOT BE REFERENCED EACH TIME THAT A
MEMBER IS TO BE READ. THERE IS A TFI TABLE FOR THE SPFMENUS
DATASET, FOR THE SPFMSGS DATASET, AND FOR THE SPFPROCS
DATASET. THE TFI IS ADDRESSED BY A FIELD IN THE TFD FOR THE
DATA SET. A TFI TABLE IS MADE UP OF TWO BLDL LISTS (LISTS
THAT CAN BE PASSED TO THE BLDL MACRO TO READ A PDS DIRECTORY
ENTRY). THE FIRST LIST IS FOR ONE MEMBER, AND IS USED WHEN A
MEMBER IS SELECTED THAT IS NOT IN THE SECOND LIST. THE SECOND
LIST CONTAINS COMMONLY USED MEMBERS. THE FIRST TIME THAT A
FIND IS REQUESTED (BY CALLING CFI), A BLDL IS DONE FOR THE
SECOND LIST. THEREAFTER, WHEN A FIND IS REQUESTED, THE SECOND
LIST IS SCANNED, AND IF THE MEMBER NAME IS FOUND, NO I/0 TO
THE DATASET DIRECTORY IS REQUIRED. IF A MEMBER IS NOT FOUND,
FOR EXAMPLE TUTORIAL MEMBERS ARE NOT INCLUDED IN THE SECOND
LIST, A SINGLE MEMBER BLDL IS DONE INTO THE FIRST (SINGLE
MEMBER) LIST.

FUNCTION KEY TABLE

USED IN TRANSLATING FROM A 3270 ATTENTION ID, INTO AN SPF
PROGRAM FUNCTION CODE. THE CODE IN TURN IS USED IN
CONJUNCTION WITH BITS IN THE TLD TO DETERMINE WHETHER OR NOT
THE FUNCTION IS ENABLED OR NOT.

316 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

e

TKV KEYHORD/VALUE TABLE

THE KEYWORD/VALUE TABLE IS USED TO REMEMBER USER PARAMETERS
DURING AN SPF SESSION. THE TKV IS SAVED IN THE SPFPARMS DATA
SET FROM SESSION TO SESSION. FOR A NEW USER, THE TKV IS
INITIALIZED FROM OBJECT MODULE TKV, WHICH IS IN THE SPFMAIN
LOAD MODULE. DURING THE SESSION, TKV ENTRIES MAY BE
RETRIEVED, UPDATED, ADDED OR DELETED VIA THE CKVGET AND CKVPUT
COMMON SUBROUTINES. THE TKV CONSISTS OF THREE PARTS: THE
HEADER, THE FIXED SECTION AND THE VARIABLE SECTION. ENTRIES
IN THE FIXED SECTION ARE NEVER DELETED FROM THE TABLE.

ENTRIES IN THE VARIABLE SECTION ARE DELETED BY CKVPUT IF THE
VALUE BECOMES BLANK. THE MAXIMUM LENGTH OF THE TKV IS
DETERMINED FROM THE BLKSIZE OF THE SPFPARMS DATA SET.
INSTALLATIONS THAT REQUIRE A LARGER TKV THAN THAT SPECIFIED IN
THE SPF INSTALLATION PROCEDURE MAY CREATE AN SPFPARMS DATA SET
WITH A LARGER BLKSIZE. THIS MAY BE NECESSARY IF THE
INSTALLATION ADDS ADDITIONAL KEYWORDS TO THE BACKGROUND AND
FOREGROUND PROCS AND MENUS.

TKH KEYHORD TABLE

THERE ARE THREE KEYWORD TABLES, KEYTBL1, KEYTBL2, AND KEYTBL3.
THEY ARE USED TO ASSOCIATE WORDS OF 1 TO 8 CHARACTERS WITH
INTERNAL CODES. THEY ALLOW SPF PROGRAMS TO BE CODED
INDEPENDENT OF ACTUAL COMMANDS AND KEYWORDS THAT ARE ENTERED
BY AN SPF USER. THEY ALSO IMPROVE THE INTERNAL EFFICIENCY OF
SPF SINCE A SINGLE ONE BYTE INTERNAL CODE CAN BE USED INSTEAD
OF SEVERAL CHARACTER LITERALS. AND THEY PERMIT THE KEYWORDS
TO BE EASILY CHANGED WITHOUT CHANGING ANY PROGRAMS. TWO
INTERNAL PROCEDURES ARE USED TO REFERENCE ENTRIES IN THE
KEYWORD TABLES.

SYSCODE - IS5 USED TO RETRIEVE A CODE FROM A KEYWORD TABLE

WHEN THE WORD IS KNOWN

SYSWORD - IS USED TO RETRIEVE A WORD FROM A KEYWORD TABLE
- WHEN ITS INTERNAL CODE IS KNOWN.

THE KEYWORD SCHEME ALLOWS MORE THAN ONE KEYWORD TO BE
ASSOCIATED WITH A CODE. FOR EXAMPLE, THE WORDS C, CHG, AND
CHANGE, USED AS EDIT PRIMARY COMMANDS ALL HAVE THE SAME
INTERNAL CODE. THE EDIT PROGRAM AFTER CALLING SYSCODE TO
TRANSFORM THE COMMAND INTO AN INTERNAL CODE NEED ONLY CHECK
FOR A SINGLE CODE TO DETERMINE IF ANY FORM OF THE CHANGE
COMMAND WAS ENTERED. THE KEYWORD TABLES ARE ASSEMBLED
TOGETHER IN THE TKW. THEY ARE ADDRESSED ONLY BY THE SYSCODE
AND SYSWORD ROUTINES. AN ENTRY IN THE TLD CONTAINS THE
?Rgfggs OF THE TKW WHICH CONTAINS THE ADDRESSES OF THE THREE

TLD LOGICAL DISPLAY TABLE

USED TO CONTAIN INFORMATION ASSOCIATED WITH ONE LOGICAL
DISPLAY (AND WITH ONE 0S TASK). THERE ARE TWO LOGICAL DISPLAY
TABLES, ONE FOR EACH LOGICAL SCREEN. SOME OF THE INFORMATION
IS PASSED BETWEEN THE CONTROLLER AND A PROCESSOR AND OTHER
gégéEggogSED EITHER WITHIN THE CONTROLLER OR WITHIN A

LICENSED MATERIAL - PROPERTY OF IBM DATA AREAS 317

TLS

TPD

TPS

TRTO

TRT1

TSB

TSC

LOGICAL SCREEN TABLE

THE LOGICAL SCREEN IMAGE IS A 1920, 2560 OR 36440 BYTE AREA
THAT IS FORMATTED EXACTLY AS THE FORMAT DISPLAY IS TO APPEAR.
WHERE ATTRIBUTE BYTES ARE TO BE LOCATED, LOGICAL SPF
ATTRIBUTE INTERNAL CODES MUST BE USED. THE INTERNAL ATTRIBUTE
CODES THAT ARE SUPPORTED BY SPF ARE:

SYMBOL BINARY HEX DESCRIPTION

TLSON = '00000100'B '04"'X - OUTPUT NON-DISPLAY

TLSOL - '00000101'B '"05'X - OUTPUT LOW INTENSITY

TLSOH = '00000111'B '07'X - OUTPUT HIGH INTENSITY

TLSIAN - '00010000°'B '10"'X - INPUT ASIS NON-DISPLAY

TLSIAL - '00010001'B '11'X - INPUT ASIS LOW INTENSITY
TLSIAH - '00010011'B '13'X - INPUT ASIS HIGH INTENSITY
TLSIBN - '00010100'B '14'X - INPUT CAPS (BLANK) NON-DISPLAY
TLSIBL - '00010101'B '15'X - INPUT CAPS (BLANK) LOW INTENS
TLSIBH = '00010111'B '17'X - INPUT CAPS (BLANK) HIGH INTENS

PHYSICAL DISPLAY TABLE

THE PHYSICAL DISPLAY TABLE (TPD) CONSISTS OF VALUES AND
POINTERS TO OTHER TABLES THAT ARE USED IN MANAGING THE
PHYSICAL DISPLAY. THE TPD IS COMPILED INTO THE TSI OBJECT
MODULE WHICH IS LINK EDITED INTO LOAD MODULE SPFTBLS.

PHYSICAL SCREEN TABLE

THE PHYSICAL SCREEN IS AN IMAGE OF THE SCREEN THAT THE USER IS
VIEWING. DATA IS MERGED INTO THE TPS FROM THE TLS (IN SINGLE
SCREEN MODE, OR FROM BOTH TLS'S (IN SPLIT SCREEN MODE).

ZEROS TRANS TABLE

USED AS A GENERAL PURPOSE 256 BYTE TABLE INITIALIZED TO ZEROS.
THE TRTO0 IS ASSOCIATED WITH A TLD AND THUS WITH A SINGLE TASK.
IT IS USED PRIMARILY WHEN A PROGRAM WANTS TO CHANGE ONE OR A
FEW BYTES IN THE TABLE, AND THEN DO TRT (TRANSLATE AND TEST)
INSTRUCTIONS TO SCAN FOR PARTICULAR CHARACTERS. EACH PROGRAM
USING THE TRTO IS RESPONSIBLE FOR RESTORING IT TO ITS INITIAL
STATE (ALL ZEROS) BEFORE CALLING OTHER PROGRAMS OR RETURNING.

IDENTITY TRANS TABLE

USED AS A GENERAL PURPOSE 256 BYTE TABLE. EACH BYTE CONTAINS
ITS OWN VALUE (I.E. BYTE 0 IS X'00', BYTE 1 IS X'0l1', BYTE 255
IS X'FF', ETC). THE TRT1 IS ASSOCIATED WITH A TLD AND THUS
WITH A SINGLE TASK. IT IS USED PRIMARILY WHEN A PROGRAM WANTS
TO TRANSLATE DATA. BYTES IN THE TABLE CAN BE CHANGED AND THEN
TRT C(TRANSLATE AND TEST) INSTRUCTIONS CAN BE DONE TO TRANSLATE
PARTICULAR CHARACTERS TO OTHER CHARACTERS. EACH PROGRAM USING
THE TRT1 IS RESPONSIBLE FOR RESTORING IT TO ITS INITIAL STATE
(IDENTITY) BEFORE CALLING OTHER PROGRAMS OR RETURNING.

TPUT/TGET SCREEN BUFFER
TSB IS THE BUFFER USED FOR BOTH TPUT AND TGET.

COMMON SUBROUTINE ADDRESS TABLE

TSC IS INCLUDED IN THE SPFSUBS LOAD MODULE AND SERVES AS AN
INTERFACE TO THE COMMON SUBROUTINES THAT ARE INCLUDED IN THAT
LOAD MODULE. THE BEGINNING OF THE TSC SERVES AS THE ENTRY POINT
OF THE SPFSUBS LOAD MODULE. WHEN SPFSUBS IS LOADED, ITS ENTRY
POINT, AND THUS THE ADDRESS OF THE TSC, IS STORED IN THE TSI.

318 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

—

TSI

TSV

TIT

TXC

UDACOMM

UMCCOMM

uPP

SPF INTERFACE TABLE

THE SPF INTERFACE TABLE (TSI) IS THE CENTRAL INTERFACE POINT
FOR SPF. IT CONTAINS POINTERS TO OTHER SIGNIFICANT TABLES AND
IN TURN IS POINTED AT BY THE LOGICAL DISPLAY TABLES (TLD).

TSI IS COMPILED AS PART OF THE TSI OBJECT MODULE, AND IS LINK
EDITED AS PART OF SPFTBLS. ITS INITIALIZATION IS COMPLETED BY
SPF MAIN INITIALIZATION (SMI).

SPF VARIABLES TASLE

THE SPF VARIABLES TABLE CONTAINS PARAMETERS, CODES, AND
VARIABLES THAT ARE USED THROUGHOUT SPF. DURING SPF
INITIALIZATION, PORTIONS OF THE TSV ARE OVERLAID WITH
InFORMATION FROM THE SPFPARMS DATA SET (IF A MEMBER EXISTS FOR
THIS USER).

TERM DEPENDENT TRANS TABLES

IS AN ADDRESS ARRAY CONTAINING POINTERS TO TERMINAL DEPENDENT
TRANSLATE TABLES. ITS ADDRESS IS OBTAINED FROM THE ENTRY
POINT OF THE TERMINAL DEPENDENT LOAD MODULES (SPF3277,S5PF3278,
OR SPF3278C). THE ADDRESSES OF INDIVIDUAL TABLES ARE MOVED TO
THE TCT. THEY ARE NOT REFERENCED DIRECTLY FROM THE "TTT".

SPF EXITS CONTROL TABLE
THE TXC IS USED FOR COMMUNICATE WITH THE SPF EXIT ROUTINES
THAT OPERATE AS PART OF SVC 93 AND SVC 94.

DATASET UTILITY COMMON AREA
USED TO PASS INFORMATION BETWEEN UDA AND ITS SUBROUTINES.

MOVE/COPY UTILITY COMMON ARER
USED TO PASS INFORMATION BETWEEN UMC AND ITS SUBROUTINES.

UPPER CASE TRANSLATE TABLE

USED TO TRANSLATE LOWER CASE CHARACTERS TO UPPER CASE. THIS
TABLE IS USED TO TRANSLATE DATA THAT IS READ IN FROM THE
TERMINAL (INSTEAD OF TABLE LOW), IF THE SPF ATTRIBUTE BYTE FOR
THE DISPLAY FIELD INDICATES THAT TRANSLATION TO UPPER CASE IS
TO0 BE DONE. IN ADDITION TO TRANSLATING LOWER CASE ALPHABETIC
CHARACTERS, THE 3270 DUP, FIELD MARK, AND GRAPHIC ESCAPE
CHARACTERS ARE CHANGED TO BLANK.

URSSPARM RESET UTILITY COMMON AREA

VAL

USED TO PASS INFORMATION BETWEEN URS AND- ITS SUBROUTINES.

VALID CHARACTER TRT TABLE

USED TO DETERMINE WHETHER DATA CONTAINS CHARACTERS THAT ARE
INVALID FOR THE TERMINAL CURRENTLY IN USE. VAL CONTAINS AN
X'FF' IN EACH CHARACTER POSITION THAT CORRESPONDS TO AN
INVALID CHARACTER AND X'00' FOR EACH VALID CHARACTER. 1IT CAN
BE USED WITH THE TRANSLATE AND TEST (TRT) INSTRUCTION TO SCAN
A CHARACTER STRING FOR AN INVALID CHARACTER. ONE VAL IS USED
;gsniﬁzstERMINALS AND A DIFFERENT VAL IS USED FOR 3278

LICENSED MATERIAL - PROPERTY OF IBM DATA AREAS 319

SPF_TABLES FORMAT

THE PAGES THAT FOLLOW CONTAIN THE FORMATS OF BLOCKS, TABLES, AND COMMON
AREAS THAT ARE COMPLEX, OR ARE USED EXTENSIVELY IN SPF. FORMATS OF
OTHER TABLES AND BLOCKS CAN BE FOUND IN THE PLS COMPILATION LISTINGS.

BCT - BROWSE CONTROL TABLE
CBT - COMMON BROWSE TABLE
CIVCOMM - CIV COMMON AREA

EDR - EDIT RECORD

EDT - EDIT TABLE

ELC - EDIT LINE COMMAND

MHAF = MENU HANDLER BUFFER

SDE - SPF DIRECTORY ENTRY

TCS - COMMON COMMAND SCAN TABLE
TCT - CONTROLLER TABLES ARRAY
TDS - SPF DATA SETS TABLE

TFD - FILE DEFINITION TABLE
TFI - FIND MEMBER TABLE

TKV - KEYWORD-VALUE TABLE

TLD - LOGICAL DISPLAY TABLE
TLS - LOGICAL SCREEN TABLE
TPD = PHYSICAL DISPLAY TABLE
TSC - SUBROUTINE COMMON TABLE
TSI - SPF INTERFACE TABLE

TSV - SPF VARIABLES TABLE
UDACOMM - UDA COMMON AREA

THE FIELD DESCRIPTIONS THAT ARE PART OF EACH DETAILED DESCRIPTION ARE IN
THREE COLUMNS. THE COLUMNS ARE:

OFFSET - THE NUMERIC ADDRESS OF THE FIELD RELATIVE TO THE BEGINNING
OF THE AREA. THE FIRST NUMBER IS THE OFFSET IN DECIMAL,
THE SECOND IS THE HEXADECIMAL EQUIVALENT. THE BIT OFFSET
WITHIN A BYTE IS SHOWN FOLLOWING THE HEXIDECIMAL OFFSET.

FIELD NAME - THE NAME AND FORMAT IN PLS FORMAT, AS IT WOULD APPEAR
IN COMPILER LISTINGS. '%' INDICATES AN UNNAMED FIELD.
THE FORMATS THAT ARE USED ARE SHOWN IN THE EXAMPLE BELOW.

FIELD DESCRIPTION - A DESCRIPTION OR TITLE FOR THE FIELD.

EXAMPLE OF FIELD DESCRIPTIONS:

OFFSET FIELD FIELD

DEC HEX NAME AND FORMAT DESCRIPTION
0 0 1 TABLE /% TABLE NAME »/
0 0 2 %, /% UNNAMED GROUP OF FIELDS %/
0 0 3 FIELD1 CHAR(8), /% CHAR STRING (8 BYTES) */
8 8 3 FIELD2 BIT(64), /% BIT STRING (8 BYTES) ®/
16 10 3 FIELD3 FIXED(3l), /% FIXED NUMBER (4 BYTES) %/
20 14 3 FIELDG PTR(31), /% ADDRESS (4 BYTES) */
2¢ 18 3 FIELD5 BIT(8), /% BIT STRING (1 BYTE) */
24 18.0 4 BIT1 BIT(1), /% 1ST BIT IN FIELD 5 »/
24 18.1 4 BIT7 BIT(7), /% NEXT 7 BITS IN FIELD 5 x/
25 19 3 FIELD6 PTR(24), /% ADDRESS (3 BYTES) */
28 1C 3 FIELD7 FIXED(15), /% FIXED NUMBER (2 BYTES) %/
32 a0 3 FIELD8 FIXED(8), /% FIXED NUMBER (1 BYTE) L.74
33 21 3 FIELD9 CHAR(%*); /% CHAR STRING (VARIABLE) */

320 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

¢

BCT = BROHSE CONTROL TABLE
OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION
0 0 1 BCT BASED, /% BROWSE CONTROL TBL */
0 0 2 BCTCNTL, /% CONTROL PART OF CNTL TBL %/
0 0 3 BCTNEXTP PTR(31), /% PTR TO NEXT BROWSE BUF */
4 4 3 BCTPREVP PTR(31), /% PTR TO PREV BROKSE BUF %/
8 8 3 BCTF# FIXED(31), /% FIRST LINE # FOR TBL %/
12 c 3 BCTL® FIXED(31), /% LAST LINE # FOR TBL */
16 10 3 BCTLREC® FIXED(3l), /% FIRST LINE OF LAST REC */
20 14 3 BCTFTTRN, /% FIRST TTRN OF CNTL TBL %/
20 14 4 BCTFTRK FIXED(15), /% TRK (TT) FOR *®/
22 16 4 BCTFREC FIXED(8), /% REC (R) ®/
23 17 G * FIXED(8), /% N = 0 ALWAYS */
2¢ 18 3 BCTLTTRN, /% LAST TTRN OF CNTL TBL %/
26 18 4 BCTLTRK FIXED(15), /% TRK (TT) FOR */
26 1A 4 BCTLREC FIXED(8), /% REC (R) */
27 1B 4 * FIXED(8), /% N = 0 ALWAYS */
28 1C 2 BCTTTBL CHAR(1000), /% NEW TRACK BIT TABLE ®/
1028 404 2 BCTRTBL CHAR(1000); /% NEW RECORD BIT TABLE */

LICENSED MATERIAL -~ PROPERTY OF IBM

DATA AREAS

BCT

321

CBT - COMMON BROHSE TABLE
OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION
0 0 1 CBT BASED, /% »/
0 0 2 * BOUNDARY(KWORD), /% »/
0 0 3 %, /% CAPS/ASIS BYTE(BIT) »/
0 0.0 G % BIT(7), /% ON => CAPS MODE */
0 0.7 4% CBTCAPS BITI(1), /% OFF —-> ASIS MODE */
1 1 3 %, /% COLS BYTE(BIT) »/
1 1.0 G * BIT(7), /% ON —> COLS */
1 1.7 4 CBTCOL BIT(1l), /% OFF => NOCOLS */
2 2 3 *, /% HEX BYTE(BIT) */
2 2.0 G * BIT(7), /% ON => HEX *®/
2 2.7 4 CBTHEX BIT(1l), /% OFF —> NOHEX »/
3 3 3 %, /% HEX CHAR FORMAT BYTE(BIT) »/
3 3.0 G * BIT(7), /% ON —> HEX CHARS FORMAT %/
3 3.7 4 CBTHCHAR BIT(1l), /% OFF —> HEX DATA FORMAT #/
4 4 2 % BOUNDARY(WORD), /% *®/
4 4 3 CBTPADCH FIXED(8), /% PAD CHAR FOR SHORT RECS #/
5 5 3 % BIT(24), /% %% RESERVED %% */
8 8 2 * PTR(31), /% %% RESERVED *x »/
12 c 2 CBTBCTP PTR(31), /% BCT PTR »/
16 10 2 CBTBLBP PTR(31), /% BLB PTR »/
20 14 2 CBTCBLP PTR(31), /% FIRST CBL PTR »/
24 18 2 CBTCELBP PTR(31), /% CURRENT BLB PTR */
28 1C 2 CBTCMDP PTR(31), /% COMMAND INPUT PTR */
32 20 2 CBTCSRLP PTR(31), /% CURSOR LINE BUFF (BLB) PTR*/
36 26 2 CBTERIP PTR(31), /% ERROR 1 PARM PTR »/
40 28 2 CBTER2P PTR(31), /% ERROR 2 PARM PTR *®/
46 2C 2 CBTER3P PTR(31), /% ERROR 3 PARM PTR */
48 30 2 CBTER4P PTR(31), /% ERROR 4 PARM PTR */
52 34 2 CBTERS5P PTR(31), /% ERROR 5 PARM PTR */
56 38 2 CBTER6P PTR(31), /% ERROR 6 PARM PTR */
60 3C 2 CBTER7P PTR(3l), /% ERROR 7 PARM PTR »/
66 40 2 CBTERSP PTR(31), /% ERROR 8 PARM PTR */
68 44 2 CBTERSP PTR(31), /% ERRCR 9 PARM PTR »/
72 48 2 CBTGETLP PTR(31), /% GET LINE BUFF (BLB) PTR %/
76 4C 2 CBTIOAP PTR(31), /% 1/0 ARRAY PTR */
80 50 2 CBTLECTP PTR(31), /% LAST BCT PTR »/
8¢ 54 2 CBTCSRP PTR(31), /% CURSOR POINTER L4
83 58 2 CBTTFOP PTR(31), /% TFD PTR */
92 5C 2 CBTTLSP PTR(31), /% TLS PTR L 74
9% 60 2 * PTR(31), /% %% RESERVED »/
100 64 2 * PTR(31), /% %% RESERVED %% .74
1064 68 2 * PTR(31), /% %% RESERVED #** .74
108 6C 2 CBTBCTSZ FIXED(3l), /% BCT SIZE »/
112 70 2 CBTCHMDSZ FIXED(31l), /% COMMAND INPUT SIZE (LINE2)*/
116 74 2 CBTCSR® FIXED(3l), /% CURSOR (LINE) NUMBER »/
120 78 2 CBTCSROS FIXED(31), /% CURSOR OFFSET L4
126 7C 2 CBTCTRK FIXED(31), /% CURRENT TRACK »/
128 80 2 CBTCREC FIXED(31), /% CURRENT RECORD */
132 &4 2 CBTCNUM FIXED(31), /% CURRENT NUMBER */
136 88 2 CBTDUPD FIXED(31), /% DISPLAY UNITS / DISPLAY »*/
140 8C 2 CBTEOF® FIXED(31), /% LINE NUMB OF EOF */
144 90 2 CBTERCOD FIXED(31l), /% ERROR CODE */
148 94 2 CBTFD# FIXED(31), /% FIRST DISPLAY LINE NUMB */
152 98 2 CBTFIO% FIXED(31), /% FIRST I/0 ARRAY LINE NUMB %/
156 Sc 2 CBTGET®# FIXED(31), /% GET REQUEST LINE NUMB .74
160 A0 2 CBTHIGH# FIXED(31), /% HIGHEST LINE # READ 74
l64 A4 2 CBTIODIM FIXED(31), /% 1/0 ARRAY DIMENSION */
168 A8 2 CBTIOX FIXED(31), /% I/0 ARRAY INDEX */
172 AC 2 CBTLRECL FIXED(31l), /% LRECL (OF DATA SET) »/
176 BO 2 CBTLD# FIXED(31), /% LAST DISPLAYED LINE @ »/
180 B4 2 CBTLEFTC FIXED(31), /% LEFT (DISPLAY) COLUMN *®/
184 Bs 2 CBTLIO® FIXED(3l), /% LAST I/0 ARRAY LINE NUMB */
188 BC 2 CBTPCSR FIXED(31), /% PREVIOUS CSR PTR »/
192 co 2 CBTSTRCT FIXED(31), /% STRING COQUNT (FIND ALL) %/
196 C4 2 CBTLINCT FIXED(31), /% LINE COUNT (FIND ALL) »/

322

SPF/TS0O PROGRAM LOGIC MANUAL

(CONTINUED ON NEXT PAGE)

BT

LICENSED MATERIAL ~ PROPERTY OF IBM

¢

-C

CBT - COMMON BROKWSE TABLE (CONTINUED)
OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION
200 C8 2 CBTSCNCT FIXED(31), /% SCAN COUNT (FIND ALL) */
204 CC 2 CBTKWDCNT FIXED(31), /% WORD CNT FOR INPUT SCAN #/
208 DO 2 CBTSCSRB FIXED(31), /% SCROLL CURSOR BACKUP */
2l2 D& 2 CBTCMCOD FIXED(31), /% CONFIRMATION MSG CODE */
2lé D8 2 CBTPL® FIXED(3l), /% PREVIOUS LABEL NUMBER */
220 DC 2 CBTLBACT FIXED(15), /% LEFT BOUND ACTUAL */
222 DE 2 CBTRBACT FIXED(15), /% RIGHT BOUND ACTUAL */
224 EO 2 CBTSCROL, /% SCROLL PARMS (FOR CSCROLL)*/
224 EO 3 CBTSCURL FIXED(31), /% CURRENT LINE NUMBER */
228 E4 3 CBTSHAXL FIXED(31), /% MAXIMUM LINE NUMBER */
232 E8 3 CBTSPLEN FIXED(31), /% PAGE LENGTH (NO. LINES) %/
236 EC 3 CBTSCURC FIXED(31l), /% CURRENT COL NUMBER */
240 FO 3 CBTSMAXC FIXED(31), /% MAXIMUM COLUMN NUMBER */
244 Fa 3 CBTSPCOL FIXED(31), /% PAGE WIDTH (NO. COLUMNS) ¥/
248 F8 2 CBTTCS, /% TCS (CMD SCAN) INTERFACE */
248 F8 3 % PTR(31), /% COMMAND INPUT PTR */
252 FC 3 * FIXED(31), /% COMMAND INPUT SIZE */
256 100 3 % FIXED(31), /% COMMAND INPUT SIZE */
260 104 3 * PTR(31), /% TCD ENTRY PTR */
264 108 3 % (12), /% INPUT PARM WORD ARRAY %/
264 108 G % CHAR(16), /% TCSWDS ENTRY */
456 1C8 2 * /% */
456 1C8 3 CBTCSTAT, /% CURRENT STATUS *®/
456 1C8.0 4 CBTFCTOP BIT(1), /% FIND — TOP OF DATA */
456 1C8.1 4 CBTFCBOT BIT(1), /% FIND — BOTTOM OF DATA */
456 1C8.2 4 CBTCFND BIT(1), /% CURR TIME STR FOUND %/
456 1C8.3 G * BIT(5), /% * RESERVED */
457 1C9 3 CBTPSTAT, /% PREVIOUS STATUS */
457 1C9.0 4 CBTFPTOP BIT(1), /% FIND — TOP OF DATA */
457 1C9.1 4 CBTFPBOT BIT(1), /% FIND — BOTTOM OF DATA */
457 1C9.2 4 CBTPFND BIT(1), /% PREV TIME STR FOUND %/
457 1C9.3 G * BIT(5), /% * RESERVED */
458 1CA 3 CBTDIR FIXED(8), /% FIND DIRECTION */
459 1CB 3 CBTTYP FIXED(8), /% FIND TYPE */
460 1CC 3 CBTDIRW CHAR(8), /% FIND DIRECTION */
468 1D4% 3 CBTTYPW CHAR(8), /% FIND TYPE */
476 1DC 3 CBTLB FIXED(15), /% LEFT BOUND */
478 1DE 3 CBTRB FIXED(15), /% RIGHT BOUND */
480 1EO0 3 CBTSTRSZ FIXED(15), /% FIND STRING SIZE */
482 1E2 3 CBTSTRST BIT(8), /% FIND STRING STATUS */
482 1E2.0 4 CBTSTRF BIT(1), /% STRING IS DEFINED */
482 1E2.1 4 CBTHEXF BIT(1), /% STRING IS HEX FLAG */
482 1E2.2 4 CBTPICTF BIT(1), /% STRING IS PICT FLAG %/
482 1E2.3 4 CBTTEXTF BIT(1), /% STRING IS TEXT FLAG #*/
482 1E2.4 G * BIT(4), /% */
483 1E3 3 % BIT(8), /% #% RESERVED % */
484 1lE4 3 %, /% FIND STRINGS */
484 1lE4 4 CBTSTR CHAR(40), /% USED BY FIND CMD */
524 20C % CBTSTRIA CHAR(46), /% INPUT FORMAT */
570 23A 4 CBTSTROA CHAR(46), /% CUTPUT FORMAT */
616 268 2 CBTTTRN, /% TTRN FROM CGET */
616 268 3 CBTTT FIXED(15), /% TRACK */
618 26A 3 CBTR FIXED(8), /% RECORD */
619 26B 3 CBTN FIXED(8), /% NUMB */
620 26C 2 CBTSPNUM FIXED(8), /% BROWSE SUBPOOL NUMBER */
621 26D 2 * BIT(8), /% */
621 26D.0 3 CBTCSRFG BIT(1), /% CURSOR SET FLAG */
621 26D.1 3 CBTDBOT BIT(1), /% DISPLAY — BOTTOM OF DATA */
621 26D.2 3 CBTEOF BIT(1), /% */
621 26D.3 3 CBTPCF6 BIT(1), /% PRIMARY COMMAND FLAG BIT %/
621 26D.4 3 CBTLIST BIT(1), /% LISTING (FBA,FBM) FLAG BIT*/
621 26D.5 3 CBTTRKOF BIT(1), /% TRACK OVERFLOW CONDITION #*/
621 26D.6 3 % BIT(2), /% */
622 26E 2 CBTENBL CHAR(8), /% */
630 276 2 CBTPCCOD CHAR(1), /% PRIMARY COMMAND CODE */
631 277 2 * CHAR(23)3 /% ¥ RESERVED %% */
LICENSED MATERIAL - PROPERTY OF IBM DATA AREAS

CBT

323

CIVCOMM =~ CIV COMMON AREA
OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION
0 0 1 CIVCOMM BASED BDY(WORD), /%
0 0 2 CIVCNRX FIXED(31), /% NUMBER OF EXTENTS
4 4 2 CIVCNRXU FIXED(31l), /% NUMBER OF EXTENTS IN USE
8 8 2 CIVCTOTQ FIXED(31l), /% TOTAL SPACE QUAN
12 c 2 CIVCTOTU FIXED(31), /% TOTAL SPACE USED
16 10 2 CIVCNRBU FIXED(31), /% NUMBER OF USED DIR BLKS
20 14 2 CIVCNRM FIXED(31), /% NUMBER OF MEMBERS
2¢ 18 2 CIVCSPCL FIXED(31), /% LEN OF WORD IN CIVCSPCU
28 1C 2 CIVCDSOB BIT(16), /% DSORG DSCB BITS
28 1C.0 3 CIVCIS BIT(1l), /% INDEX SEQUENTIAL
28 1C.1 3 CIVCPS BIT(1), /% PHYSICAL SEQUENTIAL
28 1C.2 3 CIVCDO BIT(1), /% DIRECT
28 1C.3 3 % BIT(3), /% %%% UNREFERENCED %%
28 1C.6 3 CIVCPO BIT(1), /% PARTITIONED
28 1C.7 3 CIVCUM BIT(1), /% UNMOVABLE
29 1D.0 3 %* BIT(4), /% %%% UNREFERENCED %
29 1D.4 3 CIVCVS BIT(1), /% VSAM
29 1Db.5 3 % BIT(3), /% OTHER — 3-UNOPENED PS
/% 7-SYSCTLG
30 1E 2 CIVCRECB BIT(8), /% RECFM DSCB BITS
30 1E.0 3 CIVCRFTP BIT(2), /% RECORD FORMAT TYPE
30 1E.2 3 CIVCRFT BIT(1l), /% TRACK OVERFLOW
30 1lE.3 3 CIVCRFB BIT(1), /% BLOCKED
30 1E.4 3 CIVCRFS BIT(1l), /% STANDARD OR SPANNED
30 1lE.5 3 CIVCRFCL BIT(2), /% PRINT CONTROL TYPE
30 1lE.7 3 % BIT(1), /% %%% UNREFERENCED %%
31 1F 2 CIVCFLGS BIT(8), /% FLAGS
31 1F.0 3 CIVCLOAD BIT(1), /% LOAD MODULE DATASET
31 1F.1 3 CIVCSPF BIT(1), /% SPF STATS IN ONE MEMBER
31 1F.2 3 CIVCSUL BIT(1), /% USER LABEL DATASET
31 1F.3 3 BIT(5), /% %% RESERVED %%
32 20 2 CIVCDSO CHAR(8), /% DSORG
40 28 2 CIVCCD CHAR(8), /% CREATION DATE
48 30 2 CIVCED CHAR(8), /% EXPIRATION DATE
56 38 2 CIVCOPTJ CHAR(1), /% OPTCD (J OR BLANK)
57 39 2 %* CHAR(3), /% %% RESERVED %%
60 3C 2 % CHAR(8), /% %% RESERVED %%
68 44 2 CIVCALOC , /% ALLOC TKV PARMS
68 44 3 CIVCVOL CHAR(6), /% VOLUME SERIAL
7% GA 3 CIVCSPCU CHAR(8), /% SPACE UNIT: 'CYLINDER',
/% 'BLOCK ', OR 'TRACK
82 52 3 CIVCRECF CHAR(6), /% RECORD FORMAT
88 58 3 CIVCBLK FIXED(15), /% BLOCK SIZE
90 5A 3 CIVCLREC FIXED(15), /% LRECL
92 5C 3 CIVCEXT1 FIXED(31l), /% SIZE OF FIRST EXTENT
% 60 3 CIVCSECQ FIXED(31), /% SECONDARY QUANTITY
100 6% 3 CIVCNRB FIXED(31); /% NUMBER OF DIR BLKS

324 SPF/TSO PROGRAM LOGIC MANUAL

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

"%/

*/
*/
*/
*/
*/
*/

CIVCOMM

LICENSED MATERIAL - PROPERTY OF IBM

&

EDR = EDIT RECORD
OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION
0 0 1 EDR BASED,» /% EDIT LINE CONTROL */
0 0 2 EDRBASE, /% BASE PART OF EDR »/
0 0 3 EDRNEXTP PTR(31), /% NEXT EDR PTR */
4 4 3 EDRPREVP PTR(31), /% PREV EDR PTR */
8 8 3 EDRALTCT, /% ALTERNATE AREA CONTROL %/
8 8 G * BIT(8], /% TYPE OF RECORD ®/
8 8.0 5 EDRXCLUD BIT(1), /% PTR IN EDRXFP/EDRXLP %/
8 8.1 5 EDRCMD BIT(1), /% CMD IN EDRCAREA */
8 8.2 5 * BIT(6), /% %#* RESERVED 3% */
9 9 4 EDRALTP PTR(24), /7% ALTERNATE AREA PTR */
12 c 3 EDRNUMB FIXED(32), /% INTERNAL ASCENDING NUMB %/
16 19 3 EDRCNTL, /% */
le 10 4 EDRSPECL FIXED(8), /% SPECIAL RECORD INDEX */
17 1 4 EDRSOURC BIT(8), /% SOURCE OF RECORD */
17 1.0 5 EDRORIG BIT(1), /% ORIGINAL */
17 11.1 5 EDRIMOVE BIT(1), /% INTERNAL MOVE */
17 11.2 5 EDRICOPY BIT(1), /% INTERNAL COPY/REPEAT %/
17 11.3 5 EDREMOVE BIT(1), /% EXTERNAL MOVE */
17 1l.4 5 EDRECOPY BIT(1), /% EXTERNAL COPY */
17 1.5 5 EDRTEXTI BIT(1)}, /% TEXT INSERTED */
17 1l.6 5 EDRTYPEI BIT(1l), /% TYPED INSERTED */
17 I1.7 5 » BIT(1), /% ¥% RESERVED %% */
18 12 4 EDRGEN BIT(8), /% GENERAL AND DISPL FLAGS */
18 12.0 5 EDRTOP BIT(1l), /% TOP (RECORD) */
18 12.1 5 EDRBOT BIT(1), /% BOTTOM (RECORD) */
18 12.2 5 EDRSTD BIT(1), /% STANDARD (RECORD) */
18 12.3 5 EDRTEMP BIT(1), /% TEMPORARY (RECORD) */
18 12.4 5 EDRLDINT BIT(1), /% LINE DATA INTENSIFY %/
18 12.5 5 EDRLDPRO BIT(1), /% LINE DATA PROTECTED */
18 12.6 S EDRNOTAB BIT(1), /% NO TABS (ATTR BYTES) #/
18 12.7 5 EDRLCPRO BIT(1), /% LINE CMD PROTECTED */
19 13 % EDRCHGST BIT(8), /% RECORD CHANGED STATUS %/
19 13.0 5 EDRCHG BIT(1), 4 CHANGED */
19 13.1 5 EDRTYPED BIT(1l), /% DATA OVERTYPED ®/
19 13.2 5 EDRCHGED BIT(1), /% CMD CHG OR OVERLAY CHG®/
19 13.3 5 EDRSCOLS BIT(1), /% COLUMNS SHIFTED */
19 13.49 5 EDRSDATA BIT(1), /% DATA SHIFTED */
19 13.5 5 EDRTEXTC BIT(1), /% TEXT CHANGE */
19 13.6 5 % BIT(1), /% ¥*% RESERVED %% */
19 13.7 5 EDRRENUM BIT(1), /% LINE RENUMBERED */
20 14 2 EDRDATA CHAR(3%); /% RECORD DATA */
EDRALT — EDIT RECORD ALTERNATE
OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION
0 0 1 EDRALT BASED (EDRALTP), /% ALT EDR AREA (IF X | cMD)®/
0 0 2 EDRXLP PTR(31), /% PTR TO LAST X'ED OF BLK*/
4 4 2 EDRXFP PTR(31), /% PTR TO 1ST X'ED OF BLK */
8 8 2 EDRXCNT FIXED(31}, /% CNT OF X'ED IN BLOCK %/
12 c 2 EDRCAREA CHAR(6), /% CiD AREA */
& 12 2 EDRCNAME CHAR(6), /% CMD NAME */
24 18 2 EDRCSUFF FIXED{31), /% CMD SUFFIX */
28 1C 2 EDRCELCP PTR(31), /% LINE COMMAND PTR */
32 20 2 EDRCMDNP PTR(31), /% PTR TO NEXT CMD EDR */
36 24 2 EDRCMDPP PTR(31); /% PTR TO PREV CMD EDR */

LICENSED MATERIAL - PROPERTY OF IBM

DATA AREAS

325

EDT - EDIT TABLE EDT
OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION
0 0 1 EDT BASED, /% EDIT TABLE */
/% — EDT®DCLS */
0 0 2 EDTTLDP POINTER(31), /% PTR TO TLD (LOGICAL DISPL)*/
4 4 2 EDTEDTP POINTER(31), /% PTR TO EDT (EDIT TABLE) */
8 8 2 EDTPTR1 POINTER(31), /7% PTR FOR EXIT ROUTINES */
12 c 2 EDTPTR2 POINTER(31), /% PTR FOR EXIT ROUTINES */
16 10 2 EDTTOPP POINTER(31}, /7% PTR TO TOP EDR */
20 14 2 EDTEBOTP POINTER(31), /% PTR TO BOTTOM EDR */
24 18 2 EDTEDROP POINTER(31), /% PTR TO EDRDATA OFFSET */
28 1C 2 EDTLRECP POINTER(31), /7% PTR TO EDRDATA LENGTH */
32 20 2 EDTERCDP POINTER(31), /% PTR TO ERROR CODE KORD */
36 24 2 EDTMGCDP POINTER(31), /% PTR TO MSG CODE WORD */
40 28 2 EDTDSNSP POINTER(31), /% PTR TO D.S NAME STRUCT *®/
44 2C 2 EDTMEMBP POINTER(31), /% PTR TO MEMBER NAME */
48 30 2 EDTSDEP POINTER(31), /% PTR TO SPF DIR ENTRY (IN) »*/
52 34 2 EDTBLDLP POINTER(31), /% PTR TO BLDL AREA (0OUT) */
56 38 2 EDTIDTTP POINTER(31), /% PTR TO IN/DATA TRANS TBL */
60 3C 2 EDTODTTP POINTER(31), /7% PTR TO OUT/DATA TRANS TBL */
64 40 2 EDTITTP POINTER(31), /% PTR TO IN/TERM TRANS TBL */
68 G4 2 EDTOTTP POINTER(31), /% PTR TO OUT/TERM TRANS TBL */
72 48 2 EDTITFDP POINTER(31), /% PTR TO PRIM INPUT TFD */
76 4C 2 EDTOTFDP POINTER(31), /% PTR TO PRIM OUTPUT TFD */
80 50 2 EDTCTFDP POINTER(31), /% PTR TO COPY INPUT TFD */
84 54 2 EDTRTFDP POINTER(31), /% PTR TO REPL OUTPUT TFD */
88 58 2 EDTFREEP POINTER(31), /7% PTR TO FREE CHAIN EDR'S */
92 5C 2 EDTDELP POINTER(31), /% PTR TO DELETE CHAIN EDR'S */
% 60 2 EDTMASKP POINTER(31l), /% PTR TO MASK LINE */
100 64 2 EDTTABSP POINTER(31), /% PTR TO TABS LINE */
106 68 2 EDTXMSGP POINTER(31l), /% PTR TO 'EXCLUDE' LINE MSG */
108 6C 2 EDTHEADP FOINTER(31l), /% PTR TO 2 LINE HEADER */
112 70 2 * CHARACTER(16), /% EXTRA SPACE */
/% — EDTBDCLS */
128 80 2 EDTEBTP POINTER(3l), /% BACKUP TABLE POINTER */
132 84 2 EDTB BIT(8), /% BACKUP FLAGS */
132 84.0 3 EDTBINIT BIT(1), /% BACKUP INITIALIZED */
132 84.1 3 EDTBST BIT(1), /% BACKUP STARTED */
132 84.2 3 EDTBERR BIT(1), /% BKUP/RCVR ERROR */
132 84.3 B 3 BIT(1), /% */
132 84.4 3 EDTBR BIT(1), /% RECOVERY IN PROGRESS */
132 84.5 3 * BIT(3), /% */
133 85 2 EDTBCODE CHARACTER(1), /% EBS BACKUP FUNCTION CODEx/
134 86 2 EDTBSUSC CHARACTER(1), /% EBS SUSPEND CODE */
135 87 2 * CHARACTER(1), /% %% RESERVED w3 */
136 88 2 EDTEBUSZ FIXED(31l), /% BACKUP DATASET BLKSIZE #*/
140 8C 2 * CHARACTER(20), /% EXTRA SPACE FOR BACKUP #/
/% — EDTCDCLS */
/% LINE COMMAND VARIABLES */
160 A0 2 EDABSUF FIXED(31l), /% AFTER/BEFORE SUFFIX ®/
164 A4 2 EDCMOCNT FIXED(31), /% COMMAND COUNT */
168 A8 2 EDSUFFIX FIXED(31l), /% SUFFIX FROM LINE CMD */
172 AC 2 EDFBSUF FIXED(31l), /% FIRST OF BLOCK = SUFFIX %/
176 BO 2 EDCNAME CHARACTER(6), /7% COMMAND NAME */
182 Bé6 2 EDFBCODE FIXED(8), /% FIRST OF BLOCK — CODE %/
183 B7 2 * CHARACTER(1), /% %% RESERVED *% *®/
184 B8 2 * CHARACTER(16), /% %% RESERVED »» */
/% PRIMARY COMMAND VARIABLES »/
200 Cs8 2 EDEPCP POINTER(3l), /% EPC (PRIM CMD DEF) PTR */
204 CC 2 EDTTCS, /% TCS (CMD SCAN ARRAY) */
204 CC 3 * POINTER(31), /% PTR TO COMMAND INPUT < %/
208 DO 3 » POINTER(31), /% SIZE OF COMMAND INPUT —%*/
212 D& 3 * FIXED(31), /% PRIMARY CMD WORD COUNT-—%/
216 D8 3 * POINTER(31), /% PTR TO TCD ENTRY — */
220 ©OC 3 » (12), /% PRIMARY CMD WORDS(ARRAY)*/—
220 DC 4 % CHARACTER(16), /% ARRAY (TCSKDS ENTRIES)*/
412 19C 2 EDPCCODE FIXED(31l), /% PRIMARY COMMAND ERR */
(CONTINUED ON NEXT PAGE)
326 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

$

g
(

EDT = EDIT TABLE (CONTINUED)
OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION
416 1A0 2 EDPCCSRP PTR(31), /% CODE, CURSOR POSITION x»/
420 lA4 2 EDPCER1P PTR(31), /% ** AND ERROR PARM PTRS %/
424 1A8 2 EDPCER2P PTR(31), 4 " PASSED FROM EPI TO */
428 1AC 2 EDPCER3P PTR(31), /% * EPF */
432 1BO 2 EDTPCMD CHARACTER(1), /% EDIT PRIMARY COMMAND */
433 1B1 2 % CHARACTER(3), /% %% RESERVED % ®/
436 1B4 2 % CHARACTER(12), /% EXTRA SPACE */
/% — EDTDDCLS */
/% CURSOR FIELDS ®/
448 1C0 2 EDCSRCO FIXED(31), /% CSR (LINE) CMD OFFSET %/
452 1C4 2 EDCSRDO FIXED(31), /% CSR (LINE) DATA OFFSET %/
456 1C8 2 EDCSRREL FIXED(31l), /% CURSOR REL LINE (0 [1) %/
460 1CC 2 EDCSRRO FIXED(31), /% CSR (EDRDATA) REC OFFSET*/
464 1D0 2 EDPCSR FIXED(31), /% PREVIOUS CURSOR LOCATION*/
468 1D4 2 EDTCSRP POINTER(31), /% CURSOR POINTER */
472 1D8 2 % BIT(32), /% %% RESERVED %% */
472 1D8.0 3 EDTCSRFC BIT(1), /% CSR SET BY FIND/CHG »/
472 1D8.1 3 % BIT(31), /% %% RESERVED %3 */
476 1DC 2 EDTCSRTX FIXED(31), /% CURSOR TEXT OFFSET */
/% DISPLAY FIELDS ®/
480 1EO 2 EDFEDLP POINTER(31), /% FIRST EDIT LINE POINTER %/
484 1E4 2 EDRELNUM FIXED(31), /% REL NUM OF 1ST DISPL EDRx*/
488 1E8 2 EDMAXLNS FIXED(31), /% MAX (DISPLAY) LINES */
492 1EC 2 EDCURLNS FIXED(31l), /% CURR LINES (ON SCREEN) %/
496 1F0 2 EDTPSLNS FIXED(31), /% LINES ON TPS (NOT HDR) %/
500 1F4 2 EDINSCNT FIXED(31), /% INSERT LINE COUNT */
504 1F8 2 EDTRDHDR CHAR(1), /% REDISPLAY HEADER Y | N %/
505 1F9 2 % CHAR(3), /% REDISPLAY HEADER Y | N %/
508 1FC 2 % CHARACTER(20), /% EXTRA SPACE »/
/% — EDTFDCLS ®/
528 210 2 * BIT(8), /% FIND/CHG STATUS BITS ®/
528 210.0 3 EDFCCHG BIT(1), /% CHG CMD LAST ACTION »/
528 210.1 3 EDFCFIND BIT(1), /% FIND CMD LAST ACTION*/
528 210.2 3 % BIT(6), /% #% RESERVED ¥** ®/
529 211 2 EDFCSBIT BIT(8), /% STRING BITS ®/
529 211.0 3 EDFCS1F BIT(1), /% ON —> STRING 1 DEFINED %/
529 211.1 3 EDFCX1F BIT(1), /% ON —=> STRING 1 IS HEX »/
529 21l1.2 3 EDFCP1F BIT(1), /% ON => STRING 1 IS PICT */
529 211.3 3 EDFCT1F BIT(1), /% ON => STRING 1 IS TEXT */
529 211.4 3 EDFCS2F BIT(1), /% ON —> STRING 2 DEFINED */
529 211.5 3 EDFCX2F BIT(1), /% ON => STRING 2 IS HEX =/
529 211.6 3 % BIT(2), /% #* RESERVED %% ®/
530 212 2 * CHAR(2), /% %% RESERVED *%* */
832 214 2 EDFCS1P POINTER(31), /% STR1 PTR */
536 218 2 EDFCS1SZ FIXED(3l), /% STR1 SIZE */
540 21C 2 EDFCS1IP POINTER(31), /% STR1 INPUT AREA PTR */
544 220 2 EDFCS10P POINTER(31), /% STR1 OUTPUT AREA PTR */
548 224 2 EDFCS2P POINTER(31), /% STRZ PTR */
552 228 2 EDFCS2SZ FIXED(31l), /% STR2 SIZE */
556 22C 2 EDFCS2IP POINTER(31), /% STR2 INPUT AREA PTR */
560 230 2 EDFCDIR FIXED(8), /% F/C DIRECTION KEY CODE %/
561 231 2 EDFCLMT FIXED(8), /% F/C LIMIT KEY CODE */
562 232 2 EDFCTYP FIXED(8), /7% F/C TYPE KEY CODE */
563 233 2 % FIXED(8), /% %% RESERVED */
564 234 2 EDFCDIRW CHARACTER(S8), /% F/C DIRECTION KEY WORD #/
572 23C 2 EDFCLMTW CHARACTER(S8), /% F/C LIMIT KEY WORD */
580 244 2 EDFCTYPW CHARACTER(8), /% F/C TYPE KEY WORD */
588 24C 2 EDFCLBU FIXED(3l), /% F/C LEFT BOUND USED */
5%2 250 2 EDFCRBU FIXED(31), /% F/C RIGHT BOUND USED */
596 254 2 EDFCLB FIXED(31), /% F/C LEFT BOUND (ENTERED)*/
600 258 2 EDFCRB FIXED(3l), /% F/C RIGHT BOUND (') */
604 25C 2 EDFCPCRO FIXED(31l), /% F/C PREV CSR OFFSET */
608 260 2 EDFCLNS (4) FIXED(31), /% F/C LINE COUNTERS */
624 270 2 EDFCSTRS (4) FIXED(31), /% F/C STRINGS COUNTERS */
640 280 2 % CHARACTER(16), /% EXTRA SPACE */
(CONTINUED ON NEXT PAGE)
LICENSED MATERIAL - PROPERTY OF IBM DATA AREAS

EDT

327

EDT

EDT - EDIT TABLE (CONTINUED)
OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION
/% — EDTGOCLS
656 290 2 EDTPARNMV, /% TKV PARMS:
656 290 3 EDTPRJO CHARACTER(8), /%
664 298 3 EDTLIBO CHARACTER(8), /%
672 2A0 3 EDTTYPO CHARACTER(8), /%
680 2A8 3 EDTMPARM, /% MENU PARAMETERS:
680 2A8--== 4 EDTMPROJ CHARACTER(8), /% < PROJECT NAME
688 2BO 4 EDTMLIBS, /% - LIBRARY NAMES
688 2B0O 5 EDTMLIB (4) CHARACTER(8), /%
720 2DO 4 EDTMTYPE CHARACTER(8), /% ° TYPE QUALIFIER
728 2D8 4 EDTMMEMB CHARACTER(8), /% - MEMBER NAME
736 2EO 4 EDTMOFID CHARACTER(62), /% - “OTHER" FILE ID:
736 2EO 5 EDTMDSN CHARACTER(56), /% "OTHER' DATASET NAME
792 318 5 EDTMVOL CHARACTER(6), /% “"OTHER" VOLUME SERIAL
798 31E 4 EDTMPSWD CHARACTER(8), /% ° DATASET PASSRKORD
806 326 4 EDTMPNAM CHARACTER(8), /% PROFILE NAME
814 32E 4 EDTHUOPT CHARACTER(2), /% REASON CODE
816 330 4 EDTMREC CHARACTER(2), /% RECOVERY HMODE
818 332 4 EDTMANUM CHARACTER(2), /% AUTONUM MODE
820 334 4 EDTMPRT CHARACTER(2), /% PRINT MODE
822 336 4 EDTMSTAT CHARACTER(2), /% STATS MODE
824 338 4 EDTMUSER CHARACTER(8]), /% USER FIELD
832 340 2 EDTCOFID CHARACTER(62), /% CURRENT '"OTHER' FILE ID
89¢ 37E 2 * CHARACTER(2), /% %% RESERVED
896 380 2 EDTQNAME CHARACTER(8) /% QNAME FOR ENQ/DEQ:
BOUNDARY(DRCRD)» /% “SPFDSN "
904 388 2 EDTRNAME CHARACTER(52) /% RNAME FOR ENQ/DEQ:
BOUNDARY(DWORD) » /%
904 388 3 EDTRDSN CHARACTER(44), /% DSN
948 384 3 EDTRMEM CHARACTER(8), /% MEMBER
956 3BC 2 * CHARACTER(4), /% %% RESERVED %
960 3CoO 2 EDDSTYPE CHARACTER(8), /% DATASET TYPE ('ASM',ETC)
98 3C8 2 EDMEMNAM CHARACTER(8), /% MEMBER NAME FROM CMD
976 3DO 2 * CHARACTER(56), /% %% RESERVED %%
1032 408 2 EDCMEMNM CHARACTER(8), /% EXTEND COMMAND MEM NAME
1040 410 2 EDCFLINE CHARACTER(8) /% EXTEND COPY 1ST LINE
BOUNDARY (DWORD) » /%
1048 418 2 EDCLLINE CHARACTER(8) /% EXTEND COPY LAST LINE
BOUNDARY(DWORD), /%
1056 420 2 EDCRSPEC CHARACTER(1), /% EXTEND COPY RANGE INDIC
/% ' '=N0,S=STD,C=COB,R=REL
1057 421 2 * CHARACTER(3), /% %% RESERVED
1060 424 2 EDCRDSN CHARACTER(44), /% CREATE/REPLACE DSN
1104 450 2 EDCFRLIN FIXED(31), /% FIRST WHEN EDCRSPEC=R
1108 454 2 EDCLRLIN FIXED(31), /% LAST WHEN EDCRSPEC=R
1112 458 2 EDTMENU CHARACTER(8), /% MENU FOR EMP TO DISPLAY
1120 460 2 EDTASIZE FIXED(31), /% SIZE OF EDT & ASSOC AREA
1124 464 2 EDTHELP CHARACTER(8), /% GENHELP MENU FROM HEADER
1132 46C 2 EDTIDABP PTR(31), /% CMD INPUT AREA PTR
1136 470 2 EDTINSIZ FIXED(31), /% CMD INPUT AREA SIZE
1140 474 2 EDCMFLIN CHARACTER(8), /% EXTEND COPY MENU 1ST LINE
1148 47C 2 EDCMLLIN CHARACTER(8), /% EXTEND COPY MENU LAST LIN
1156 484 2 * CHARACTER(12), /% EXTRA SPACE
/% — EDTMDCLS
1168 490 2 EDERCODE CHARACTER(4), /% EDIT ERROR CODE
1172 49 2 EDMGCODE CHARACTER(4), /% EDIT MESSAGE CODE
1176 498 2 EDTSMSGP POINTER(31), /% POINTER TO SHORT MSG
1180 49C 2 EDTLMSGP POINTER(31), /% POINTER TO LONG MSG
1184 4AO 2 EDABCOD CHARACTER(4), /% ABEND CODE FOR ERR MSGS
1188 4A4 2 EDSHFERC FIXED(31), /% SHIFT ERR CNT FOR MSGS
1192 4A8 2 EDER1IP POINTER(31), /% GENERAL ERROR POINTER
1196 4AC 2 EDER2P POINTER(31), /% GENERAL ERROR POINTER
1200 4BO 2 EDER3P POINTER(31), /% GENERAL ERROR POINTER
1204 4B4% 2 EDER4P POINTER(31), /% GENERAL ERROR POINTER
1208 4B8 2 EDER5P POINTER(31), /% GENERAL ERROR POINTER
(CONTINUED ON NEXT PAGE)
328 SPF/TS0O PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

N

N

EDT - EDIT TABLE (CONTINUED)
OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION
1212 4BC 2 EDER6P POINTER(31), /% GENERAL ERROR POINTER %/
1216 4CO 2 EDER7P POINTER(31), /% GENERAL ERROR POINTER %/
1220 4C4 2 EDERS8P POINTER(31), /% GENERAL ERROR POINTER #/
1226 4C8 2 EDERSP POINTER(31), /% GENERAL ERROR POINTER %/
1228 4CC 2 EDER1OP POINTER(31), /% GENERAL ERROR POINTER %/
1232 4DO 2 EDER11P POINTER(31), /% GENERAL ERROR POINTER %/
1236 4D4 2 EDER12P POINTER(31), /% GENERAL ERROR POINTER %/
1240 4D8 2 EDER13P POINTER(31), /% GENERAL ERROR POINTER %/
12644 4DC 2 EDER14P POINTER(31), /% GENERAL ERROR POINTER %/
1248 4EO 2 » CHARACTER(16), /% EXTRA AREA *®/
/% — EDTPDCLS */
1264 4FO 2 EDTPROF CHAR(8), /% PROFILE (D.S.TYPE) NAME %/
1272 4F8 2 EDTEOPN CHAR(24), /% PROFILE OPTIONS NEW *®/
1296 510 2 EDTEOPC CHAR(24), /% PROFILE OPTIONS CURRENT %/
1320 528 2 EDTMASKC CHAR(1), /% MASK CHANGED 'Y' OR 'N' %/
1321 529 2 EDTTABSC CHAR(1), /% TABS CHANGED 'Y’ OR 'N' %/
1322 52A 2 EDTHMISCC CHAR(1), /% MISC CHANGED °'Y' OR 'N' %/
1323 52B 2 EDTPROFL CHAR(1), /% PROF LRECL (1 TO 255) %/
1326 52C 2 EDTPROFR CHAR(1), /% PROF RECFM 'F' OR 'V' %/
1325 52D 2 EDTPROFD CHAR(1), /% PROF DEFAULT 'C’ OR *®/
/% 'C' — USE CURR AS DEF %/
/% ELSE USE STD DEFAULT %/
1326 52E 2 * CHARACTER(2), /% EXTRA AREA *®/
/% — EDTRDCLS %/
/% EDR VARIABLES */
1328 530 2 EDGMSIZE FIXED(31), /% GETMAIN (EDR BLOCK) SIZE %/
1332 5364 2 EDEDRSZ FIXED(31), /% EDR SIZE (LRECL + BASE) %/
1336 538 2 EDTEDRG FIXED(31), /% EDR OFFSET(LENGTH-EDRBASE)%/
13460 53C 2 EDTLRECL FIXED(31), /% LRECL (DATA SIZE IN EDR) %/
1344 540 2 EDTEDRCT FIXED(3l), /% EDR COUNT (ON CHAIN) */
1348 564 2 EDPXNUMB FIXED(31), /% PREV XCLUDED EDR NUMB *®/
1352 548 2 EDTSTDCT FIXED(31), /% STD EDR COUNT (ON CHAIN) %/
1356 54C 2 EDTDELTA FIXED(31), /% SEQUENCE NUMBERING DELTA %/
1360 550 2 EDRDAP POINTER(31), /% EDR DISPLAY ARRAY PTR */
1364 554 2 EDTEDRBS CHARACTER(20), /% ORED INTO EDRBASE BY EDI %/
1384 568 2 EDCOLS,» /% *®/
13864 568 3 EDCOL (8,2) FIXED(31), /% COLUMN (TYPE, L|R) ARRAY #/
1448 5A8 2 EDRP (30) POINTER(31), _ /% EDR (ED REC) PTRS ARRAY */
~3AG (L T7€ /% 1-> TOP (COMMAND AREA) %/ - O
-ThaC EVDEST /% 2=> BOTTOM (COMMAND AREA) %*/- ¢
- TB /% 3=> INSERT */4 C
- TBY /% G~> EXCLUDED */-
12 /% 5=> CHANGED ®/- &
—56C /% 6=> CHANGE NOT DONE ®/- -2
—5 R /% 7-> SHIFT INCOMPLETE *®/:
—Gcd /% 8-> BOUNDS *®/-
e, ~5C¢ /% 9-> COLUMNS */-
) .V —5 CC /% 10->MASK *®/-
T 1¢ LA -5 DR /% 11->TABS */
s — 5 pu /% 12->INPUT TAB ERROR */
~950¢ /% 13->MESSAGE LINE *®/.
5 D¢ /% 14=->0PTION LINE 1 */-
(48 %2 /% 15->0PTION LINE 2 x/ [
“GEY /% 16—>0PTION LINE 3 /- 0L
/% 17->TEXT ENTRY #7
1568 620 2 EDCAREA (20) CHARACTER(6), /% CMD AREA ARRAY *®/
1688 698 2 » CHARACTER(24), /% *®/
/% — EDTSDCLS Y
1712 6BO 2 = BIT(64), /% EDIT STATUS/CNTL BITS: #/
1712 6B0 3 EDCSTAT BIT(8), /% CURRENT STATUS BITS: #/
1712 6B0.0 G % BIT(5), /% *®/
1712 6B0.5 4 EDCTOP BIT(1), /% F/C TOP OF DATA */
1712 6B0.6 4 EDCBOT BIT(1), /% F/C BOTTOM OF DATA %/
1712 6B0.7 4 EDCWRAP BIT(1), /% F/C WRAP AROUND *®/
1713 6Bl 3 EDPSTAT BIT(8), /% PREVIOUS STATUS BITS: */

(CONTINUED ON NEXT PAGE)

LICENSED MATERIAL - PROPERTY OF IBM

DATA AREAS

EDT - EDIT TABLE (CONTINUED) EDT

OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION
1713 6Bl1.0 G * BIT(5), /% »/
1713 6Bl.5 4 EDPTOP BIT(1), /% F/C TOP OF DATA */
1713 6Bl.6 4 EDPBOT BIT(1), /% F/C BOTTOM OF DATA #*/
1713 6Bl1.7 4 EDPWRAP BIT(1), /% F/C KRAP AROUND */
1714 6B2 3 % BIT(8), /% MISC STATUS BITS: */
1714 6B2.0 4% EDBNDMOD BIT(1), /% BOUNDS MODIFIED */
1714 6B2.1 G * BIT(1), /% #% RESERVED %% */
1714 6B2.2 4% EDCSRSET BIT(1), /% CSR (TLDCSRP) SET %/
1714 é6B2.3 4 EDNERHMEM BIT(1), /% NEW MEMBER */
1714 o6B2.4 4% EDTCHGED BIT(1), /% ACTIVE SOURCE CHGED */
1714 6B2.5 4 EDTSAVED BIT(1), /% DATA HAS BEEN SAVED */
1715 6B3 3 % BIT(8), /% %% RESERVED %% »/
1716 6B4% 3 EDCMBITS BIT(16), /% COPY/MOVE STATUS BITS: «/
1716 6B4.0 4 EDSBEFOR BIT(1), /% BEFORE DESTN DEFINED %/
1716 6B4.1 4 EDSAFTER BIT(1), /% AFTER DESTN DEFINED %/
1716 6B4.2 4 EDSOVER BIT(1), /% OVER DESTN DEFINED */
1716 €éB4.3 4 EDSOVER1 BIT(1), /% SECCND OVER EFINED */
1716 6B4.% 4 EDSOVER2 BIT(1), /% SECOND OVER EFINED */
1716 6B4.5 4 * BIT(3), /% #*% RESERVED % */
1717 6B5.0 4 EDSCOPY1l BIT(1), /% COPY 1 DEFINED */
1717 6B5.1 4 EDSCOPY2 BIT(1), /% COPY 2 DEFINED */
1717 6B5.2 4 EDSMOVEl BIT(1), /% MOVE 1 DEFINED */
1717 6B5.3 4 EDSMOVE2 BIT(1), /% MOVE 2 DEFINED »/
1717 6B5.4 4 EDSBLOCK BIT(1), /% BLOCK CMD DECODED »/
1717 6B5.5 G * BIT(3), /% %% RESERVED %% */
1718 6B6 3 * BIT(8), /% %% RESERVED ¥ */
1719 6B7 3 % BIT(8), /% *% RESERVED ** */
1720 6B8 2 %, /% */
1720 6B8 3 EDHTCHAR FIXED(8), /% HARDWARE TABS CHAR (%) */
1721 6B9 3 EDCTCHAR FIXED(8), /% SOFTWARD CURSOR CHAR (=) #*/
1722 6BA 3 EDC2CHAR FIXED(8), /% SOFTHARD CURSOR CHAR (_) =/
1723 6BB 3 EDLBCHAR FIXED(8), /% LEFT BOUND CHAR (<) */
1724 6BC 3 EDRBCHAR FIXED(8), /% RIGHT BOUND CHAR (>) */
1725 6BD 3 » CHAR(3), /% %% RESERVED % */
1728 6CO 3 EDTDSORG CHARACTER(1), /% DSORG (P-PDS, S—~SEQ) */
1729 6C1 3 EDTRECFM CHARACTER(1), /% RECFM (F~FIX, V-VAR) */
1730 e6C2 3 EDTSDEX, /% SPF DIR ENTRY DATA */
1730 e6C2 % EDTSSMEM CHARACTER(1), /% SPF STATS EXIST 'Y','N' */
1731 6C3 4 EDTVLCUR FIXED(8), /% VERSION LEVEL — CURR */
1732 6C4 4 EDTMLCUR FIXED(8), /% MOD LEVEL - CURR */
1733 6C5 3 EDTABEND CHARACTER(1), /% EDO ABEND OCCURRED (Y/N) */
1734 6C6 3 % CHAR(2), /% %% RESERVED %% */
1736 6C8 3 EDTPARMI CHARACTER(1), /% EDTPARMV INITIALIZED(Y/N) %/
1737 6C9 3 EDTRDTOP CHARACTER(1), /% REDISPLAY TOP 2 LINES */
/% ('y* — YES, ELSE NO) */
1738 6CA 3 % CHAR(6), /% %% RESERVED %%) »/
1744 6D0 3 EDTEDIFG CHAR(8), /% CODES SET BY EDI BASED */
/% ON THE DATA IT READS */
/% ' "-DATA IGNORED */
/% “Y"=YES,"N'"-NO »/
/% "M"-MAYBE */
/% (NUMERIC NOT ASCENDING)%*/
1744 6DO 4 EDTEDIIC CHARACTER(1), /7% INVALID CHAR 'Y' OR 'N' %/
1745 601 4 EDTEDILC CHARACTER(1), /% LOWER CASE 'Y' OR 'N*' #/
1746 6D2 4 EDTEDIUC CHARACTER(1), /% UPPER CASE 'Y' OR 'N' */
1747 6D3 4 EDTEDIML CHARACTER(1), /% VALID MOD LVL 'Y' OR 'N' #/
1748 6D4 4% EDTEDIRC CHARACTER(1), /% VALID REASON 'Y' OR 'N' #/
1749 ¢€D5 4 EDTEDICN CHARACTER(1), /% COBOL NUMB 'Y' °'N°' 'M' */
1750 6D6 4 EDTEDI6N CHARACTER(1), /% STD 6 NUMB 'Y' 'N*' 'M' */
1751 6D7 4 EDTEDISN CHARACTER(1), /7% STD 8 NUMB 'Y' 'N* 'M' */
1752 4D8 3 EDTRESET CHARACTER(1), /% EGR RESET TYPE CODE */
/% 'I'—=INIT, 'F'-FINAL %/
1753 6D9 3 EDTNUMBR CHARACTER(1), /% EGN NUMBER TYPE CODE */
/% 'N'=-NUMB, 'R'-RENUM %/
/% ' '=UNNUM */

(CONTINUED ON NEXT PAGE)

330 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

Y -

—

EDT - EDIT TABLE (CONTINUED)
OFFSET FIELD FIELD

DEC HEX NAME DESCRIPTION

1756 6DA 3 EDTEDODF CHARACTER(1), /% EDO: DEL/FREE EDRS(Y,N)} %/
/% (*Y' = YES, ELSE NO) */

1755 6DB 3 EDTEFROD CHAR(1), /% EFR = ORIGINAL DATA READ*/
/% ('Y' = YES, ELSE NO} %/

1756 6DC 3 EDTREASN CHAR(2), /% REASON CODE */
/% BLANK, OR CODE */

1758 6DE 3 » CHAR(2), /% %% RESERVED %% */

1760 6EO 2 EDTEOPB CHARACTER(24), /% EQP BACKUP FCR CHECKING %/

1784 6F8 2 * CHARACTER(24); /% EXTRA AREA */

LICENSED MATERIAL - PROPERTY OF IBM

DATA AREAS

EDT

331

ELC - EDIT LINE COMMAND : ELC

OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION
0 0 1 ELC BASED, /% */
0 0 2 ELCCODE FIXED(8), /% COMMAND CODE L7
1 1 2 ELCPASS FIXED(8), /% PASS TO BE EXEC (1-3) %/
2 2 2 ELCTYPE BIT(8), /% COMMAND TYPE BITS */
2 2.0 3 ELCAFTER BIT(1l), /% AFTER COMMAND */
2 2.1 3 ELCBEFOR BIT(1), /% BEFORE COMMAND »/
2 2.2 3 ELCCOPY BIT(1l), /% COPY COMMAND */
2 2.3 3 ELCMOVE BIT(1), /% MOVE COMMAND */
2 2.4 3 ELCMULTI BIT(1l), /% MULTI-LINE TYPE CMD %/
2 2.5 3 ELCBLOCK BIT(1), /% BLOCK TYPE COMMAND */
2 2.6 3 * BIT(1), /% #% RESERVED % */
2 2.7 3 ELCOVER BIT(1), /% OVER COMMAND */
3 3 2 ELCCSR BIT(8), /% CURSOR POSITIONING BITS %/
3 3.0 3 ELCNEXT BIT(1), /% NEXT (AFTER LAST) EDR¥*/
3 3.1 3 ELCLAST BIT(1l), /% LAST EDR */
3 3.2 3 ELCFIRST BIT(1), /% FIRST EDR */
3 3.3 3 ELCPREV BIT(1l), /% PREV (TO FIRST) EDR */
3 3.4 3 % BIT(3), /% * RESERVED */
3 3.7 3 ELCPLUS1 BIT(1), /% PLUS 1 EDR AT DISPLAY*/
4 4 2 ELCSUFFX FIXED(8), /% SUFFIX DEFAULT VALUE */
5 5 2 ELCLMASK BIT(8), /% LINE (TYPE) MASK */
6 6 2 ELCPRSUB FIXED(8); /% PROCESS SUBROUTINE INDEX»*/

332 SPF/TS0O PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

—C

MHAF - MENU BUFFER
OFFSET FIELD FIELD

DEC HEX NAME DESCRIPTION
0 0 1 MHAF BASED, /% MHA BUFFER FOR MENU ®/
0 0 2 MHAFSPLN, /% BUFFER SUBPOOL & LENGTH */
0 0 3 MHAFSP FIXED(8), /% SUBPOOL */
1 1 3 MHAFLN FIXED(24), /% LENGTH ®/
4 4 2 MHAFNAME CHAR(8), /% NAME OF MENU IN BUFFER */
12 c 2 MHAFHELP CHAR(8), /% PRIMARY HELP NAME */
20 14 2 MHAFPARM (103) PTR(31]}, /% SAVED MHA PARAM LIST */
432 1BO 2 MHAFMME PTR(31), /% PTR TO END OF MODEL MENU + 1 #/
436 1B4% 2 MHAFACTS PTR(31), /% PTR TO START OF ACTION TABLE %/
440 1BS 2 MHAFACTE PTR(31), /% LAST ENTRY OF ACTION TABLE ®/
444 1BC 2 MHAFNRP FIXED(31}, /% NUMBER OF SUBSTITUTION PARAMS %/
448 1CO0 2 MHAFACTT (100) /% ACTION STMT TABLE AREA */
CHAR(LENGTH(MHAFACTN)) /% */
BOUNDARY (WORD), /% 74
3648 E40 2 MHAFADA CHAR(%); /% AREA TO STORE ACTION DATA */
/7% ACTUAL SIZE IF MHAFADA IS *®/
/% DETERMINED BY CONSTANT IN *®/
/% MHA NAMED MHAFADAL */

MHAFACTN — ACTION STATEMENT TABLE ENTRY

OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION

0 0 1 MHAFACTN CHAR(32) /% ACTION STATEMENT TABLE ENTRY %/
BOUNDARY(KORD) BASED, /% (ONE PER ACTION STATEMENT) #/
0 0 2 MHAFAPLP FIXED(15), /% PARAMETER LIST POSITION */
2 2 2 MHAFAPLN FIXED(8), /% PARAMETER LENGTH */
3 3 2 MHAFABTS BIT(8), /% BIT FLAGS *®/
3 3.0 3 MHAFAFXD BIT(1), /% FIXED (ELSE CHAR) */
3 3.1 3 MHAFCURS BIT(1),» /% CURSOR PARAM */
3 3.2 3 MHAFNOCU BIT(1), /% NOCURSOR PARAM */
3 3.3 3 MHAFRJ BIT(1l), /% INITR PARAM (RIGHT JUSTIFY) %/
3 3.4 3 % BIT(4), /% SPARE */
4 4 2 MHAFAFCP FIXED(15), /% INPUT FIELD CHAR POSITION */
6 6 2 * CHAR(2), /% SPARE */
8 8 2 MHAFAIP PTR(31), /% ADDR OF INIT DATA */
12 c 2 MHAFALP PTR(31), /% ADDR OF LIST DATA */
16 10 2 MHAFARP PTR(31), /% ADDR OF RETURN DATA */
20 14 2 MHAFALN FIXED(15), /% NUMBER OF LIST VALUES */
22 16 2 MHAFARN FIXED(15), /% NUMBER OF RETURN VALUES */
2¢ 18 2 MHAFAKEY CHAR(8); /% KEY NAME USED BY FOR & JOB */

LICENSED MATERIAL - PROPERTY OF IBM

DATA AREAS

MHAF

333

*/
*/
*/
*/
*/
*/
*/

*/

SDE = SPF DIRECTORY ENTRY
OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION
0 0 1 SDE BASED» /% SPF DIRECTORY ENTRY
0 0 2 SDEVERS FIXED(8), /% VERSION LEVEL
1 1 2 SDEMOD FIXED(8), /% MOD LEVEL
2 2 2 SDERESV FIXED(1lé), /% % RESERVED
4 4 2 SDECDATE CHAR(4), /% CREATION DATE
8 8 2 SDEMDATE CHAR(4), /% DATE LAST MODIFIED
12 c 2 SDEMTIME CHAR(2), /% TIME LAST MODIFIED
14 E 2 SDECLINE FIXED(16), /% CURRENT NUMBER OF LINES %/
16 10 2 SDEILINE FIXED(16), /% INITIAL NUMBER OF LINES */
18 12 2 SDEMLINE FIXED(16), /% NUMBER OF MODIFIED LINES*/
20 14 2 SDEID CHAR(7), /% USER ID
27 1B 2 SDEBLANK CHAR(3); /% % RESERVED (BLANKS)

334 SPF/TS0O PROGRAM LOGIC MANUAL

*/

LICENSED MATERIAL - PROPERTY OF IBM

TCS - COMMAND SCAN TABLE
OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION

0 0 1 TCS BASED, /% */

0 0 2 TCSCIP PTR(31), /% PTR TO COMMAND INPUT — */

4 4 2 TCSCISZ FIXED(31), /% COMMAND INPUT SIZE — ¥/

8 8 2 TCSWDCT FIXED(31), /% COMMAND INPUT WORD COUNT*/ ~—
12 c 2 TCSTCDP PTR(31), /% COMMAND DEF ENTRY PTR */
16 10 2 TCSWDS (12) CHAR(16); /% PRIMARY CMD WORDS(ARRAY)¥*/ —

TCSWD — COMMAND SCAN TABLE ENTRY
OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION

0 0 1 TCSWD BASED(ADDR(TCSWDS)), /% */

0 0 3 TCSKDSZ FIXED(8), /% SIZE OF TOTAL WORD %/

1 1 3 TCSKDP PTR(24), /% PTR TO TOTAL WORD */

4 4 3 TCSSTRSZ FIXED(8), /% SIZE OF STRING */

5 5 3 TCSSTRP PTR(24), /% PTR TO STRING */

8 8 3 TCSTYPE BIT(8), /% FLAG BITS */

8 8.0 4 TCSQUOT BIT(1), /% QUOTED STRING ("l')*/

8 8.1 G * BIT(1), /% %% RESERVED %% */

8 8.2 4 TCSNUMB BIT(1), /% NUMERIC WORD */

8 8.3 4 TCSHEX BIT(1), /% HEX STRING */

8 8.4 4 TCSPICT BIT(1), /% PICTURE STRING- */

8 8.5 4 TCSTEXT BIT(1), /% TEXT STRING */

8 8.6 4 * BIT(2), /% % RESERVED */

9 9 3 TCSCODE FIXED(8), /% COMMAND WCRD KEYCODEx*/
10 A 3 TCSERR BIT(8), /% ERROR FLAG BITS */
10 A.O 4 TCSIVSIZ BIT(1), /% HEX STRING ODD SIZE %/
10 A.l 4 TCSIVHEX BIT(1), /% NON HEX DIGITS IN STR */
10 A.2 4 TCSIVNCQ BIT(1l), /% INVAL NO CLOSING QUOTE*/
10 A3 G % BIT(5), /% *% RESERVED %% */
11 B 3 * CHAR(1), /% %% RESERVED % */
12 [3 % FIXED(31); /% %% RESERVED %% */

LICENSED MATERIAL - PROPERTY OF IBM DATA AREAS

TCS

335

TCT = CONTROL TABLES TABLE

OFFSET FIELD FIELD

DEC HEX NAME DESCRIPTION
0 0 1 TCT BASED, /% TRANSLATE TABLES TABLE
0] 2 * CHAR(8), /% TCT IDENTIFICATION
8 8 2 TCTTRTPS, /% PTRS FROM TRT
8 8 3 TCTLOCP PTR(31), /% LOC TBL PTR

12 c 3 TCTATTP PTR(31), /% ATT TBL PTR

l6 10 3 TCTAIDP PTR(31), /% AID TBL PTR

20 14 3 » PTR(31), /% #% RESERVED %
24 18 3 PTR(31), /% %*% RESERVED %%
28 1C 2 TCTTTTPS, /% PTRS FROM TTT

28 1C 3 TCTUPPP PTR(31), /% UPP TBL PTR

32 20 3 TCTLCKRP PTR(31), /% LOW TBL PTR

36 24 3 TCTVALP PTR(31), /% VAL TBL PTR

40 28 3 TCTBTOP PTR(31), /% BTO TBL PTR

44 2C 3 TCTETOP PTR(31), /% ETO TBL PTR

48 30 3 TCTGSCP PTR(31), /% GSC TBL PTR

52 34 3 TCTGSMP PTR(31), /% GSM TBL PTR

56 38 3 TCTGSSP PTR(31), /% GSS TBL PTR

60 3C 3 TCTEDIP PTR(31), /% EDI TBL PTR

64 40 3 TCTEDOP PTR(31), /% EDO TBL PTR

68 4% 3 % PTR(31), /% %% RESERVED %
72 48 3 % PTR(31); /% %% RESERVED %

336 SPF/TS0 PROGRAM LOGIC MANUAL

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

TCT

LICENSED MATERIAL - PROPERTY OF IBM

TDS - DATA SET TABLE

&

OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION
0] 1 105 BASED, /% ®/
0 0 2 * CHAR(8), /% TDS IDENTIFICATION */
8 8 2 TOSPARMP PTR(31), /% PARMS TFD PTR *®/
12 c 2 TDSPROCP PTR(31), /% PROCS TFD PTR »/
l6 10 2 TDSMENUP PTR(31), /% MENUS TFD PTR */
20 14 2 TDSMSGSP PTR(31), /% MSGS TFD PTR */
24 18 2 TDSLISTP PTR(31), /% LIST TFD PTR ®/
28 1C 2 TDSLCGP PTR(31), /% LOG TFD PTR */
32 20 2 TDSEBUAP PTR(31), /% EDIT BACKUP "“A" TFD PTR */
36 24 2 TDSEBUBP PTR(31), /% EDIT BACKUP "B" TFD PTR */
40 28 2 % PTR(31), /% %% RESERVED ¥ */
44 2C 2 %* PTR(31}; /% %% RESERVED % »/

LICENSED MATERIAL - PROPERTY OF IBM

DATA AREAS

TDS

337

TFD

TFD = FILE DEFINITION TABLE
OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION
0 0 1 TFD BASED BOUNDARY(WORD), /% L4
0 0 2 TFDHDRID CHARACTER(&), /% ‘TFD:"* »/
4 4 2 TFODON (4) CHARACTER(8), /% ARRAY OF DDNAMES */
36 24 2 TFDSTAT1 BIT(8), /% CTA/CTF STATUS BITS: */
36 24.0 3 TFDREST BIT(1), /7% RESTART FLAG */
36 24.1 3 TFDALLOC BIT(1l), /% ALLOCATED (TRIED) */
36 24.2 3 TFDPREAL BIT(1), /% PREALLOCATED L4
36 24.3 3 TFDOLD BIT(1), /% ALLOCATED OLD */
36 24.4 3 TFDRECVR BIT(1), /% RECOVER FROM ABEND *®/
36 24.5 3 TFDDCBAB BIT(1), /% DCB ABEND OCCURRED */
36 24.6 3 TFBCTAX BIT(1), /% CTA FAILED */
36 24.7 3 » BIT(1), /% RESERVED */
37 25 2 TFDSTAT2 BIT(8), /% INPUT STATUS FOR CDO/CDC %/
37 25.0 3 TFODCBI BIT(1), /% DCB PRE-INITIALIZED */
37 25.1 3 TFDVAL BIT(1), /% VALIDITY CK REQUESTED %/
37 25.2 3 TFDPDS BIT(1), /% PDS OK SWITCH */
37 25.3 3 TFDSEQ BIT(1), /% SEQ OK SWITCH »/
37 25.4 3 TFDRFU BIT(1), /% RECFM=U OK SWITCH L 74
37 25.5 3 TFDRFV BIT(1), /% RECFM=V OK SHITCH »/
37 25.6 3 TFDRFF BIT(1), /% RECFM=F OK SWHITCH »/
37 25.7 3 TFDNCBUF BIT(1l), /% BYPASS BUFFER GETMAIN %/
38 26 2 TFDSTAT3 BIT(8), /% CDO/CDC/CRESV/CRELS SW »/
38 26.0 3 TFDOFN BIT(1), /% ON IF OPENED BY CDO »/
38 26.1 3 TFDESEQ BIT(1), /% EMPTY INPUT SEQ DS »/
38 26.2 3 TFDRESV BIT(1), /% RESERVE REGUEST SHITCH »/
38 26.3 3 TFOLENQ BIT(1), /% LINK EDIT ENQ REQUIRED x*/
38 26.4 3 TFDRFMO BIT(1), /% RECFM OVERRIDE SHITCH %/
38 26.5 3 TFDDEQRS BIT(1), /% CRELS DEQ SYSTEMS SWITCH»/
38 26.6 3 » BIT(2), /% RESERVED */
39 27 2 TFDSTAT4 BIT(8), /% CDG/CDP STATUS BITS: */
39 27.0 3 TFDRREQ BIT(1), /% CDG READ-REQUEST SW */
39 27.1 3 TFDUPPL BIT(1), /% CDG UPDATE-IN-PLACE SW */
39 27.2 3 TFODNOTE BIT(1), /% CDG/CDP NOTE REQUIRED */
39 27.3 3 TFDECOD5 BIT(1), /% CDG ENTRY CODE 5 SW »/
39 27.4 3 % BIT(4]), /% RESERVED */
40 28 2 TFDDCBP POINTER(31), /% DCB POINTER */
40 28 3 TFODCB® FIXED(8), /% DCB NUMBER *Q0S*/
41 29 3 » POINTER(24), /% */
44 2C 2 TFDOSNP (4) POINTER(31), /% TFDDSNS POINTER »/
60 3C 2 TFOMENUP POINTER(31), /% TFDMENUD POINTER */
66 40 2 TFDDECB CHARACTER(24), /% DECB */
88 58 2 TFDXLP POINTER(31), /% DCB EXIT LIST POINTER */
92 5C 2 TFDCML POINTER(31), /% POINTER TO MEMBER LIST */
9% 60 2 TFDBLDLP POINTER(31), /% PTR TO BLDL LIST, OR O */
/% CDG/CDP PARAMETERS: */
100 64 2 TFDECODE FIXED(15), /% ENTRY CCDE */
102 66 2 TFDRECL FIXED(15), /% RECORD LENGTH */
104 68 2 TFDRECP POINTER(31), /% RECORD POINTER */
108 6C 2 TFDTTEN CHARACTER(4), /% 1ST CR CURRENT TTRN */
112 70 2 TFDBUFA POINTER(31), /% BUFFER A ADDRESS */
116 74 2 TFDBO FIXED(15), /% BUFFER OFFSET »/
118 76 2 TFDBLKS FIXED(15), /% ACTUAL BLOCK SIZE READ */
120 78 2 TFDLRECL FIXED(15), /% SPF LOGICAL REC LENGTH */
122 7A 2 TFDBLKSZ FIXED(15), /% SAME AS DCBBLKSI »/
12¢ 7C 2 TFDMAXLN FIXED(15), /% MAXIMUM LRECL ALLOKED */
126 7E 2 TFDRECFM BIT(8), /% RECFM (SAME AS DCBRECFM): %/
126 7E.Q 3 TFORFTYP BIT(2), /% TYPE OF RECORD FORMAT %/
/% SEE CONSTANTS BELOW %/
126 7E.2 3 TFDRFT BIT(1), /% TRACK OVERFLOW */
126 7E.3 3 TFDRFB BIT(1), /% BLOCKED */
126 7E.4 3 TFDRFS BIT(1), /% STANDARD OR SPANNED */
126 7E.5 3 TFDRFCTL BIT(2), /% PRINT CONTROL TYPE */
/% SEE CONSTANTS BELOW %/
126 7E.7 3 TFDRFK BIT(1), /% KEY LENGTH SPECIFIED */
(CONTINUED ON NEXT PAGE)
338 SPF/TS0O PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

TFD = FILE DEFINITION TABLE (CONTINUED)
{
OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION

127 7F 2 TFDMACRF BIT(16), /% MACRF (SAME AS DCBMACRF): #/
127 7F 3 % BIT(8), /% INPUT SWITCHES */
127 7F.0 G » BIT(2), /% */
127 7F.2 4 TFDMRRD BIT(1), /% READ */
127 7F.3 G * BIT(2), /% */
127 7F.5 4 TFDMRPT1 BIT(1l), /% POINT %/
127 7F.6 G * BIT(2), /% */
128 80 3 % BIT(8), /% QUTPUT SWITCHES */
128 80.0 G »* BIT(2), /% */
128 80.2 4 TFDMRWRT BIT(1), /% WRITE */
128 80.3 G * BIT(2), /% */
128 80.5 4 TFDMRPT2 BIT(1), /% POINT */
128 80.6 G % BIT(2), /% */
129 81 2 TFDDSORG BIT(8), /% DSORG (SAME AS DA08BDSO): #/
129 81.0 3 TFDIS BIT(1),» /% INDEX SEQUENTIAL */
129 81.1 3 TFOPS BIT(1), /% PHYSICAL SEGUENTIAL */
129 8l1.2 3 TFDDO BIT(1), /% DIRECT */
129 81.3 3 TFOLG BIT(1), /% BTAM/QTAM LINE GROUP */
129 81.4 3 TFDDAMQ BIT(1), /% QTAM DA MESSAGE QUEUE */
129 81.5 3 TFOPPMQ BIT(1), /% QTAM PROB PROG MSG QUE #/
129 8l.6 3 TFDPO BIT(1), /% PARTITIONED */
129 81.7 3 TFDUM BIT(1), /% UNMOVABLE »/
/% REQUESTED DISPOSITION: */
130 82 2 TFDDSP1 BIT(8), /% STATUS (LIKE DAOGSDSPl) #*/
131 83 2 TFDDSP2 BIT(8), /% DISP (LIKE DAl8DPS2) */
132 84 2 TFDSTATS BIT(8), /% STATUS BITS FOR CDA/CDF: %/
: 132 84.0 3 TFDOTHER BIT(1), /% “OTHER" DATASET */
132 84.1 3 TFDSPVOL BIT(1), /% VOL SER SPECIFIED %/
132 84.2 3 TFDALLCT BIT(1), /% CDA DID AN ALLOC */
. 132 84.3 3 TFDALIAS BIT(1), /% DSN CHANGED TO REAL DSN %/
132 84.4 3 % BIT(4), /% RESERVED */
133 85 2 TFDDISP BIT(8), /% CURRENT DISP STATUS */
136 86 2 TFDOPENT BIT(8), /% OPEN OPTIONS */
135 87 2 TFDCLOST BIT(8), /% CLOSE OPTIONS */
136 88 2 TFDMEMB CHARACTER(8), /% SPECIFIED MEMBER NAME */
144 90 2 TFOPASSW CHARACTER(8), /% PASSKORD */
152 98 2 TFDUNIT CHARACTER(8), /% UNIT TYPE FROM CDAIR */
160 A0 2 TFOVOL CHARACTER(6), /% VOLUME SERIAL */
166 Aé 2 % CHARACTER(2)3 /% %% RESERVED ¥ */

TFDMENUD — DATA SET MENU INFORMATION

FIELD

NAME

FIELD
DESCRIPTION

OFFSET
DEC HEX
0 0
0 0
8 8
8 8
40 28
48 30
56 38
112 70
118 76

LICENSED MATERIAL - PROPERTY OF IBM

1 TFDMENUD BASED,

2
2

2
2
2
2
2

TFOPROJ
TFOLIBS
3 TFDLIB
TFDTYPE
TFDMEM

TFDODSN
TFDOVOL
TFDPSKD

CHARACTER(8),
CHARACTER(32),

CHARACTER(8),
CHARACTER(8),
CHARACTER(56),
CHARACTER(6),
CHARACTER(8)3;

(4) CHARACTER(8),

/7%
/7%
/%
/%
/%
/%
/%
/7%
/7%

DATASET MENU INFORMATION %/

PROJECT NAME
PROJECT LIBRARIES:

*/
*/

LIB1,LIB2,LIB3,LIBG %/

DATASET TYPE
PDS MEMBER NAME
""OTHER" DSN(MEMBER)

*/
*/
*/

"OTHER' DATASET VOLUME %/

PASSKORD

*/

DATA AREAS

TFD

339

*/
L 74
*/
*/
»/
.74
*/
»/
»/
*/
*/
*/
*/
*/
»*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
t 74
*/
*/
*/
.74
*/
*/
*/
.74
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
®/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

TLD

TLD = LOGICAL DISPLAY TABLE
OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION
0 0 1T BASED,» /% LOGICAL DISPLAY
0 0 2 TLDTBLID CHAR(3), /% TABLE ID 'TLD'
3 3 2 TLDID CHAR(1), /% TLD ID ('0','1'»,'2")
4 4 2 TLDNEXTP PTR(31), /% NEXT TLD PTR
8 8 2 TLDRC FIXED(31), /% RETURN CODE
12 c 2 TLDPCODE CHAR(6), /% PROLOG CODE INTERFACE
18 12 2 TLDECODE CHAR(6), /% EPILOG CODE INTERFACE
24 18 2 % PTR(31), /% %% RESERVED ¥
28 1C 2 * PTR(31), /% %% RESERVED ¥
32 20 2 TLDSA (10) FIXED(32), /% SAVEAREA INTERFACE
72 48 2 %, /% CONTROL/PROCESS INTERFACE
72 48 3 TLDTCBP PTR(31), /% TCB (TASK CNTL BLK) PTR
76 4C 3 TLDODRECB FIXED(32), /% DISPLAY REQUEST ECB
80 50 3 TLDPRECB FIXED(32), /% PROCESS REQUEST ECB
8 54 3 TLDTCECB FIXED(32), /% TASK COMPLETION ECB
88 58 3 TLDCCI FIXED(31), /% INTERFACE FOR CONTROL
92 5C 3 TLDSXECB PTR(3l), /% STAX POST ECB
% 60 3 TLDSXTCB PTR(31l), /% STAX POST TCB
100 64 3 » PTR(31), /% %% RESERVED
104 68 2 TLDSTBLS,» /% SPF SYSTEM TABLES PTRS
104 68 3 TLDTCMP PTR(31), /% TCM (CMD TABLE) ENTRY PT¥*/
108 6C 3 TLDTCTP PTR(31), /% TCT (CONT TBLS TBL) PTR %/
112 70 3 TLDTDSP PTR(31), /% TDS (DATA SETS) PTR
116 74 3 TLOTKVP PTR(31), /% TKV (KEY/VALUE TBL) PTR
120 78 3 TLDTKKRP PTR(31), /% TKW (KEY-HORD TBLS) PTR
12¢ 7C 3 TLDTSCP PTR(31), /% TSC (COMMON SUBS) PTR
128 80 3 TLDTSIP PTR(31), /% TSI (SYS INTERFACE) PTR
132 84 3 TLDTSVP PTR(31), /% TSV (SPF VARIABLES) PTR
136 88 3 TLOTXCP PTR(31), /% TXC (TERM EXIT TBL) PTR
140 8C 3 % PTR(31), /% %% RESERVED ¥
144 90 2 ¥, /% SPF PROCESSOR TABLES PTRS
144 90 3 TLDHHABP PTR(31), /% MENU HANDLER BUFFER PTR
148 94 3 TLDTFDCP PTR(31), /% TFD CONTROL CARD PTR
152 98 3 TLDTFOLP PTR(31), /% TFD LISTING PTR
156 9C 3 TLDTFDEP PTR(31), /% TFD EDIT BACKUP PTR
160 A 3 TLDTFKP PTR(31), /% TFK (FUNCT/KEY) PTR
164 A4 3 TLDTLSP PTR(31), /% TLS (LOGIC SCREEN) PTR
168 A8 3 TLOTRTOP PTR(31l), /% TRT ZEROS TBL PTR
172 AC 3 TLDOTRT1P PTR(31), /% TRT IDENTITY TBL PTR
176 BoO 3 TLDTADP PTR(31), /% TAD (ALLCC DONAMES) PTR
180 B% 3 % PTR(31), /% %% RESERVED ¥
184 B8 3 TLDUSER1 PTR(3l), /% USER FIELD # 1
188 BC 3 TLDUSER2 PTR(31l), /% USER FIELD & 2
192 CoO 3 TLDUSER3 PTR(31), /% USER FIELD & 3
196 Co& 2 %, /% DISPLAY/SCREEN INTERFACE
196 C4 3 TLDFUNC BIT(64), /% KEY FUNCTION BITS
196 C4.0 4 TLDNOPK BIT(1), /% NOP
196 C4.1 4 TLDREDK BIT(1), /% REDISPLAY
196 C4.2 4% TLDSPLK BIT(1), /% SPLIT
196 C4.3 4 TLDSWPFK BIT(1), /3% SHAP
196 Cé4.4 4 TLDCSRK BIT(1), /T CURSOR
196 C4.5 4 TLDPRTHK BIT(1), /% PRINT HIGH
196 Cé4.6 4 TLDPRTLK BIT(1), /% FRINT LOW
196 C4.7 G * BIT(1), /% #% RESERVED w3
197 C5.0 4 TLDLNEK BIT(1), /% LINE COMMAND
197 C5.1 4 TLDCMDK BIT(1), /% PRIMARY COMMAND
197 C5.2 4 TLDNOPMK BIT(1), /% NOP WITH MESSAGE
197 ¢5.3 4 TLDHLPK BIT(1), /% HELP
197 C5.4 4 TLDRETK BIT(1), /% RETURN
197 C5.5 G * BIT(3), /% %% RESERVED %
198 C6.0 4 TLDENDK BIT(1), /% END
198 Cé6.1 4 TLDENTK BIT(1), /% ENTER
198 C6.2 4 TLDSHMK BIT(1), /% ENTER/SESS MGR MODE
198 C€6.3 G * BIT(5), /% %% RESERVED %
(CONTINUED ON NEXT PAGE)
342 SPF/TSO PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

TKV = KEVHORD/VALUES TABLE
'
OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION
0 0 1 TKV BASED, /% */
0 0 2 TKVHEAD, /% TKV HEADER */
0 0 3 TKVID CHAR(8), /% IDENTIFICATION *®/
0 0 4 * CHAR(6), /% TABLE ID ®/
6 6 4 TKVWID CHAR(2), /% SPF VERSION ID */
8 8 3 TKVLEN FIXED(15), /% TOTAL LENGTH OF TKV */
10 A 3 TKVUSED FIXED(15), /% OFFSET TO LAST USED BYTE*/
12 (= 3 TKVFIXED FIXED(15), /% OFFSET PAST LAST FIXED %/
14 E 3 TKVFLAGS BIT(16), /% FLAGS ®/
14 E.O G * BIT(6), /% %% RESERVED ¥¥ */
14 E.6 4 TKVNOUPD BIT(1), /% ON => NOT WRITEABLE %/
14 E.7 4 TKVNVZ BIT(1), /% ON —> NOT VER 2 */
/% (VER 2.2 OR GREATER)*/
15 F.0 G * BIT(7), /% ¥#% RESERVED ¥ *®/
15 F.7 4 TKVFULL BIT(1), /% ON —> TKV OVERFILLED */
lé 10 3 % FIXED(31), /% %% RESERVED %% */
20 14 2 TKVENTS CHAR(#%), /% FIRST KEYWORD/VALUE ENTRY %/
TKVENTRY = KEYWORD—-VALUE TABLE ENTRY (TKVDCLS)
OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION
0 0 1 TKVENTRY BASED, /% FORMAT OF KEYWD-VAL ENTRY %/
0 0 2 TKVEHEAD, /% ENTRY HEADER */
0 0 3 TKVVALLN FIXED (8), /% LENGTH OF VALUE */
1 1 3 TKVNAMLN FIXED (8), /% LENGTH OF KEYKWORD *®/
‘ 2 2 2 TKVNAME CHAR (%) /% KEYKORD NAME */

LICENSED MATERIAL - PROPERTY OF IBM

DATA AREAS

TKV

341

o = LOGICAL DISPLAY TABLE (CONTINUED) TLD

OFFSET FIELD FIELD

DEC HEX NAME DESCRIPTION

277 115 3 TLOTFKID CHAR(1), /% TFK ID (A,B,C) »/
278 116 3 TLDTCBID CHAR(1), /% TCB ID (0,1,2) %008/
279 117 3 TLOFORBT CHAR(1), /% OPT 4/5 FLAG (F,B) %CM3w/
280 118 3 TLDPMENU CHAR(8), /% PREV MENU FROM CDISPL #/
288 120 3 TLOPMSG CHAR(4), /% LAST MSG FROM CMSG %/
292 124 3 TLDCSMCA PTR(31), /% CSM AUTO STOR ADDR »/
296 128 3 TLOTMBP PTR(31), /% TASK MGT BLOCK PTR #CMSw/
300 12C 3 TLDBATCT FIXED(8), /% BATCH NAME GEN NUM %CMS»/
301 120 I » CHAR(3), /% %% RESERVED %% »/
304 130 3% PTR(31), /% %% RESERVED #» L 74
308 134 3 » PTR(31), /% %% RESERVED % »/
312 138 3 » PTR(31), /% W% RESERVED M »/
316 13C 3 % PTR(31); /% #% RESERVED »/

344 SPF/TSO PROGRAM LOGIC MANUAL

LICENSED MATERIAL - PROPERTY OF IBM

C

e

TLD = LOGICAL DISPLAY TABLE (CONTINUED)

OFFSET FIELD FIELD

DEC HEX NAME DESCRIPTION

199 C7.0 4 TLDSCRK BIT(4&), /% SCROLL KEYS */
199 C7.0 5 TLDSCRUK BIT(1), /% SCROLL UP */
199 C€7.1 5 TLDSCRDK BIT(1), /% SCROLL DOWN */
199 C7.2 5 TLDSCRLK BIT(1), /% SCROLL LEFT */
199 C7.3 5 TLDSCRRK BIT(1l), /% SCROLL RIGHT */
199 C7.4 4 TLDFKRDK BIT(1), /% REPEAT FIND */
199 C7.5 4 TLDCHGK BIT(1), /% REPEAT CHANGE */
199 C7.6 G * BIT(34), /% ¥% RESERVED %3 */
206 CC 3 TLDENBL BIT(64), /% ENABLED KEY FUNCT BITS /
206 CC.0O 4 TLDNOPE BIT(1), /% NOP »/
204 CC.1 4 TLDREDE BIT(1), /* REDISPLAY */
204 CC.2 4 TLDSPLE BIT(1), /% SPLIT */
204 CC.3 4 TLDSWFE BIT(1), /% SHAP */
204 CC.4 4 TLDCSRE BIT(1), /% CURSOR */
204 CC.5 4 TLDPRTHE BIT(1), /% FRINT HIGH */
204 CC.é6 4 TLDFRTLE BIT(1), /% PRINT LOW */
204 CC.7 G * BIT(1), /% *% RESERVED % */
205 CD.oO 4 TLDLNEE BIT(1), /% LINE COMMAND */
205 CD.1 4 TLDCMDE BIT(1), /% PRIMARY CONMMAND */
205 CD.2 4 TLONOFME BIT(1), /% NOP KRITH MESSAGE */
205 CD.3 4 TLDHLPE BIT(1), /% HELP */
205 CD.4 4 TLDRETE BIT(1), /% RETURN */
205 CD.5 G * BIT(3), /% %% RESERVED % */
206 CE.O 4 TLDENDE BIT(1), /% END */
206 CE.1 4 TLDENTE BIT(1), /% ENTER */
206 CE.2 4 TLDSMME BIT(1), /% ENTER/SESS MGR MODE %/
206 CE.3 G * BIT(5), /% *% RESERVED ¥%x */
207 CF.0 4 TLDSCRE BIT(4), /% SCROLL KEYS */
207 CF.0 5 TLDSCRUE BIT(1l), /% SCROLL UP */
207 CF.1 5 TLDSCRDE BIT(1), /% SCROLL DOWN */
207 CF.2 5 TLDSCRLE BIT(1), /% SCROLL LEFT */
207 CF.3 5 TLDSCRRE BIT(1), /% SCROLL RIGHT */
207 CF.4 4 TLDFNDE BIT(1), /% REPEAT FIND */
207 CF.5 4 TLDCHGE BIT(1), /% REPEAT CHANGE */
207 CF.é 4 % BIT(34), /% #% RESERVED %% */
212 D& 3 TLDAID BIT(8), /* LOGICAL ATTENTION ID */
213 D5 3 % BIT(16), /% MISC FUNCTION BITS */
213 D5.0 4 TLDALARM BIT(1), /% ALARM BIT */
213 D5.1 4 TLOTUT BIT(1), /% TUTORIAL FLAG (TUT) */
213 DS5.2 4 TLDNODSP BIT(1), /% NO DISPLAY REQUESTED %/
213 D5.3 4 TLDTFKLK BIT(1), /% TFK LOCK BIT */
213 D5.4 4 TLDMERRC BIT(1), /% MERR CALLING MHA */
213 D5.5 4 TLDPRIOP BIT(1), /% PRIM OPT FLAG (PMD) */
213 D5.6 4 TLDSAFLG BIT(1), /% SCROLL AMT FLAG */
213 D5.7 4 TLD998 BIT(1l), /% 998 ABEND RESTART FLAG*/
214 D6.0 4 TLDSTAX BIT(1), /% CAT STAX FLAG */
214 Dé6.1 4 TLDSTAX6 BIT(1), /% OPTION 6 STAX FLAG */
214 D6.2 4 TLDDFREE BIT(1), /% CAT DD FREE SWITCH */
214 D6.3 4 % BIT(5), /% #% RESERVED %% */
215 D7 3 % BIT(8), /% %% RESERVED %% */
216 D8 3 TLDCSR FIXED(31), /% CURSOR (REL-LOC) */
220 DC 3 TLDCPSRL FIXED(31), /% CURR PHYS SCR REL-LOC %/
224 EO 3 TLDCPSSZ FIXED(31l), /% CURR PHYS SCREEN USED %/
228 E4 3 TLDMLSSZ FIXED(31), /% MAX LOGIC SCREEN SIZE %/
232 ES 3 TLOCLSSZ FIXED(31l), /% CURR LOGIC SCREEN SIZE %/
236 EC 3 TLDMDTCT FIXED(31), /% MODIFIED DATA TAG CNT #/
240 FO 3 * FIXED(31), /% %% RESERVED % */
244 F4 2 %, /% MISCELLANEOUS INTERFACE %/
244 Fa 3 TLOPOPTN CHAR(8), /% RETURN (FRIMARY OPTION) %/
252 FC 3 TLDHELP CHAR(8), /% CURR HELP (MEMBER) NAME %/
260 104 3 TLDSCAMT CHAR(4), /% CURRENT SCROLL AMOUNT %/
264 108 3 TLOREPCT FIXED(31l), /% REPEAT END COUNT */
268 10C -—3 TLDIDABP PTR(31l), /% FRIM INPUT FLD ATTR BYTE*/
272 110 ——3 TLDINSIZ FIXED(31l), /% PTR AND DATA LEN */
276 114 3 TLDEBUID CHAR(1), /% EDIT BACKUP TFD ID */

LICENSED MATERIAL - PROPERTY OF IBM

(CONTINUED ON NEXT PAGE)

DATA AREAS

TLD

343

TPD = PHYSICAL DISPLAY TABLE TPD

OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION
0 0 1 TPD BASED /% PHYSICAL DISPLAY TABLE »/
BOUNDARY(DHORD), /% */
0 0 2 % CHAR(8),. /% TPD IDENTIFICATION »/
8 8 2 * : BOUNDARY(DWORD) » /% TIMES (IN MICRO-SECONDS) #/
8 8 3 TPOLASTT CHAR(S8), /% LAST TIME (FRCM STCK) %/
16 10 3 TPDTPUTT CHAR(8), /% TPUT TIME (TOTAL) */
24 18 3 TPDFROCT CHAR(8), /% PROCESSING TIME (TOTAL) */
32 20 3 TPDOTGETT CHAR(®8), /% TGET TIME (TOTAL) */
40 28 2 TPDAID BIT(8), /% LOGICAL ATTENTION AID »/
41 29 2 % BIT(8), /% CONTROL BITS */
41 29.0 3 TPDRDISP BIT(1), /% REDISPLAY SCREEN */
41 29.1 3 TPDRSTPS BIT(1), /% RESTORE TPS */
41 29.2 3 TPDRDLIO BIT(1), /% REDISPLAY AFTER LINE I/0%/
41 29.3 3 TPOMSGON BIT(1), /% SMC ERR/INFO MSG FLAG */
41 29.4 3 TPDMSGAL BIT(1l), /% SMC ERR/INFO MSG ALARM */
41 29.5 3 TPDFSINT BIT(1), /% FULL SCREEN INIT #CMS*/
41 29.6 3 * BIT(2), /% %% RESERVED % */
42 2A 2 * CHAR(2), /% %% RESERVED %** */
44 2C 2 TPDCSR FIXED(31), /% CURSOR (REL-LOC) */
48 30 2 %, /% PHYS SCREEN INTERFACE */
48 30 3 TPDTPSSZ FIXED(31), /% TPS (PHYS SCREEN) SIZE »*/
52 3% 3 TPDTPSP PTR(31), /% TPS (PHYS SCREEN) PTR %/
56 38 3 % FIXED(31), /% %% RESERVED % */
60 3C 2 %, /% SCREEN BUFFER INTERFACE %/
60 3C 3 TPDTSBSZ FIXED(3l), /% TSB (SCREEN BUFF) SIZE */
64 40 3 TPOTSBP PTR(31), /% TSB (SCREEN BUFF) PTR #/
68 44 3 * FIXED(31), ' /% %% RESERVED % »/
72 48 2 %, /% LOGICAL DISPL INTERFACE %/
72 48 3 TPDTLDC FIXED(31), /% TLD (LOGIC DISPL) CNT %/
76 4C 3 TPOFTLDP PTR(31), /% FIRST TLD PTR */
80 50 3 TPOPTLDP PTR(31), /% PRIMARY TLD PTR */
84 54 3 TPDDTLDP PTR(31), /% DUMMY (SMC'S) TLD PTR »*/
88 58 3 % FIXED(31)y /% %% RESERVED i#* */
92 5C 2 %, /% PHYSICAL SCREEN I/0O COUNTS»*/
92 5C 3 TPDPUTCT FIXED(31), /% TPUT COUNT */
9% 60 3 TPDPUTSZ FIXED(3l), /% TOTAL TPUT BYTES */
100 64 3 TPDGETCT FIXED(31), /% TGET COUNT */
104 68 3 TPDGETSZ FIXED(31l), /% TOTAL TGET BYTES */
108 6C 2 TPOMSGP PTR(31), /% SMC ERROR/INFO MSG PTR */
112 70 2 TPDCSMGP PTR(31), /% CLEAR SCREEN TPUT DATA */
116 74 2 TPDCSMGL PTR(31), /% CLEAR SCREEN TPUT DATA LEN*/
120 78 2 * PTR(31),» /% %% RESERVED %% */
12¢ 7C 2 * PTR(31); /% %% RESERVED % */

366 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

LS = LOGICAL SCREEN TABLE
OFFSET FIELD FIELD
DEC HEX NANE DESCRIPTION
0 0 1TLS BASED, /% LOGICAL SCREEN
0 0 2 TLSHEAD, /% HEADER AREA OF DISPLAY
0 0 3 TLST CHAR(80), /% TITLE LINE
0 0 % TLSTAB BIT(8), /% TITLE ATTR BYTE
1 1 & TLSTITLE CHAR(55), /% TITLE DATA
1 1 5 TLSTFUNC CHAR(7), /% FUNCTION (EDIT/BRO)
8 8 5 TLSTDSN CHAR(48), /% DATASET NAME
56 38 4 TLSMSG CHAR(24),» /% MESSAGE DATA
56 38 5 % CHAR(7), /% (DASHES)
63 3IF 5 TLSCLABL CHAR(7), /% COLUMN LABEL
70 46 5 % CHAR(1), /% (BLANK)
71 47 5 TLSLCOL CHAR(3), /% LEFT COLUMN
7% 4A 5 » CHAR(1), /% (BLANK)
75 4B S TLSRCOL CHAR(3), /% RIGHT COLUMN
786 4E 5% CHAR(2), /% (BLANKS)
80 50 3 TLSI CHAR(80), /% INPUT LINE
80 50 G * CHAR(62), /% PRIMARY INPUT AREA
142 8E % TLSS, /% SCROLL FIELDS
142 8E 5 TLSSLAB BIT(8), /% LABEL ATTR BYTE
143 8&F 5 TLSSLABL CHAR(1l), /% SCROLL LABEL
156 %A 5 TLSSAAB BIT(8), /% AMOUNT ATTR BYTE
154 9A.0 6 * BIT(2), /% *
154 9A.2 6 TLSSAMDT BIT(1), /% MOD DATA TAG
156 9A.3 6 * BIT(5), /% *
155 9B 5 TLSSAMT CHAR(4), /% SCROLL AMOUNT
159 9F 5 TLSSFAB BIT(8), /% FINAL ATTR BYTE
160 A0 2 TLSBODY CHAR(3280), /% BODY AREA OF DISPLAY
160 A0 3 TLSHELP CHAR(80), /% HELP LINE
160 A0 % TLSHLPAB BIT(8), /% HELP ATTR BYTE
161 Al 4 TLSHLPDA CHAR(77), /% HELP DATA
238 EE % TLSHLPA2 BIT(8), /% HELP END ATTR BYTE
239 FEF 4 TLSHLPEN CHAR(1), /% HELP END DATA
240 FO 3 TLSTEXT CHAR(%*); /% MAIN TEXT AREA

LICENSED MATERIAL -~ PROPERTY OF IBM

DATA AREAS

*/
*/
®/
*/

*/
*/

®/
®/
*/
*/
»/
*/
*/
*/
*/
*/
*/
»/
*/
*/
*/
»/
*/

*/
*/
*/
»/
®/
®/
*/

TLS

365

TSC - SUBROUTINES (COMMON) TABLE (CONTINUED)
OFFSET FIELD FIELD

DEC HEX NAME DESCRIPTION
400 190 2 TSCPTR(098) PTR(31}, /% ADDRESS OF EPP
406 194 2 TSCPTR(099) PTR(31), /% ADDRESS OF EPO
408 198 2 TSCPTR(100) PTR(31), /% ADDRESS OF EPS
412 19C 2 TSCPTR(101) PTR(31), /% ADDRESS OF ETX
416 1A0 2 TSCPTR(102) PTR(31l), /% ADDRESS OF ETC
428 1AC 2 TSCPTR(105) PTR(31), /% ADDRESS OF EPR
432 1BO 2 TSCPTR(106) PTR(31), /% ADDRESS OF EDI
436 1B4 2 TSCPTR(107) PTR(31), /% ADDRESS OF EDO
440 1B8 2 TSCPTR(108) PTR(31), /% ADDRESS OF EFR
444 1BC 2 TSCPTR(109) PTR(31), /% ADDRESS OF EPD
448 1C0 2 TSCPTR(110) PTR(31), /% ADDRESS OF EPC
452 1C4 2 TSCPTR(111l) PTR(31), /% ADDRESS OF EPI
456 1C8 2 TSCPTR(112) PTR(31), /% ADDRESS OF EPF
460 1CC 2 TSCPTR(113) PTR(31), /% ADDRESS OF EFC
468 1D4& 2 TSCPTR(115) PTR(31), /% ADDRESS OF EGN
472 1D8 2 TSCPTR(116) PTR(31), /% ADDRESS OF EGR
476 1DC 2 TSCPTR(117) PTR(31), /% ADDRESS OF EML
480 1EO0 2 TSCPTR(118) PTR(31l), /% ADDRESS OF EFT
484 1lE4 2 TSCPTR(119) PTR(31), /% ADDRESS OF EST
488 1lE8 2 TSCPTR(120) PTR(31), /% ADDRESS OF EBI
492 1lEC 2 TSCPTR(121) PTR(31), /% ADDRESS OF EBS
4%6 1F0 2 TSCPTR(122) PTR(31), /% ADDRESS OF EBX
500 1F4 2 TSCPTR(123) PTR(31), /% ADDRESS OF EBE
504 1F8 2 TSCPTR(124) PTR(31), /% ADDRESS OF EBA
508 1FC 2 TSCPTR(125) PTR(31), /% ADDRESS OF EBR
528 210 2 TSCPTR(130) PTR(31), /% ADDRESS OF ECD
532 214 2 TSCPTR(131} PTR(31), /% ADDRESS OF ETL
548 224 2 TSCPTR(135} PTR(31), /% ADDRESS OF ERA
552 228 2 TSCPTR(136) PTR(31), /% ACDRESS OF ERC
556 22C 2 TSCPTR(137) PTR(31), /% ADDRESS OF ERD
560 230 2 TSCPTR(138) PTR(31), /% ADDRESS OF ERF
564 234 2 TSCPTR(139) PTR(31l), /% ADDRESS OF ERI
568 238 2 TSCPTR(140) PTR(31l), /% ADDRESS OF ERN
572 23C 2 TSCPTR(141) PTR(31), /% ADDRESS OF ERO
576 240 2 TSCPTR(142) PTR(31), /% ADDRESS OF ERR
580 244 2 TSCPTR(143) PTR(31l), /% ADDRESS OF ERS
584 248 2 TSCPTR(144) PTR(31), /% ADDRESS OF ERX

348 SPF/TS0 PROGRAM LOGIC MANUAL

»/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
»/
*/

*/
*/

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
»/
*/
*/
L.74

TSC

LICENSED MATERIAL - PROPERTY OF IBM

¢

-

TSC - SUBROUTINES (COMMON) TABLE
OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION
0 0 1 7sC BASED BOUNDARY(KORD), /% TSC (SYS COMMON SUBS) TBL #/
0 0 2 TSCID CHAR(8), /% IDENTIFICATION "TSCX" %/
8 8 2 TSCLEN FIXED(31), /% LENGTH OF TCS */
12 c 2 TSCPTR(001) PTR(31), /% ADDRESS OF CAT */
16 10 2 TSCPTR(002) PTR(31), /% ADDRESS OF CBC */
20 14 2 TSCPTR(003) PTR(31), /% ADDRESS OF CBDSN */
2¢ 18 2 TSCPTR(004) PTR(31), /% ADDRESS OF CBF */
28 1C 2 TSCPTR(005) PTR(31), /% ADDRESS OF CBG */
32 20 2 TSCPTR(006) PTR(31), /% ADDRESS OF CEBR */
36 24 2 TSCPTR(007) PTR(31), /% ADDRESS OF CBS »/
40 28 2 TSCPTR(008) PTR(31), /% ADDRESS OF CCB */
4% 2C 2 TSCPTR(009) PTR(31), /% ADDRESS OF CCD */
48 30 2 TSCPTR(010) PTR(31), /% ADDRESS OF CCP */
52 34 2 TSCPTR(011) PTR(31), /% ADDRESS OF CCS */
56 38 2 TSCPTR(012) PTR(31), /% ADDRESS OF CDA */
60 3C 2 TSCPTR(013) PTR(31), /% ADDRESS OF CDAIR */
64 40 2 TSCPTR(014) PTR(31), /% ADDRESS OF CDATE */
68 44 2 TSCPTR(015) PTR(31), /% ADDRESS OF CDC */
72 48 2 TSCPTR(016) PTR(31), /% ADDRESS OF CDERR */
76 4C 2 TSCPTR(017) PTR(31), /% ADDRESS OF CDF */
80 50 2 TSCPTR(018) PTR(31), /% ADDRESS OF CDG */
84 54 2 TSCPTR(019) PTR(31), /% ADDRESS OF CDISPL */
88 58 2 TSCPTR(020) PTR(31), /% ADDRESS OF CDO */
92 5C 2 TSCPTR(021) PTR(31), /% ADDRESS OF CDP */
9% 60 2 TSCPTR(022) PTR(31), /% ADDRESS OF CDT */
100 64 2 TSCPTR(023) PTR(31), /% ADDRESS OF CERR */
106 68 2 TSCPTR(024) PTR(31), /% ADDRESS OF CFI */
108 6C 2 TSCPTR(025) PTR(31), /% ADDRESS OF CHC */
112 70 2 TSCPTR(026) PTR(31), /% ADDRESS OF CHELP */
116 74 2 TSCPTR(027) PTR(31), /% ADDRESS OF CHPJ */
120 78 2 TSCPTR(028) PTR(31), /% ADDRESS OF CHPL */
12¢ 7C 2 TSCPTR(029) PTR(31), /% ADDRESS OF CIR */
1286 80 2 TSCPTR(030) PTR(31), /% ADDRESS OF CIV */
132 84 2 TSCPTR(031) PTR(31), /% ADDRESS OF CJC */
136 &8 2 TSCPTR(032) PTR(31), /% ADDRESS OF CJF */
140 &C 2 TSCPTR(033) PTR(31), /% ADDRESS OF CJN */
146 90 2 TSCPTR(034) PTR(31), /% ADDRESS OF CKVGET */
148 94 2 TSCPTR(035) PTR(31), /% ADDRESS OF CKVPUT */
152 98 2 TSCPTR(036) PTR(31), /% ADDRESS OF CLM */
156 9C 2 TSCPTR(037) PTR(31), /% ADDRESS OF CLOG */
160 AC 2 TSCPTR(038) PTR(31), /% ADDRESS OF CMB */
168 A8 2 TSCPTR(040) PTR(31), /% ADDRESS OF CML */
172 AC 2 TSCPTR(041) PTR(31l), /% ADDRESS OF CMSG */
176 BO 2 TSCPTR(042) PTR(31), /% ADDRESS OF CPRINT */
180 B4 2 TSCPTR(043) PTR(31), /% ADDRESS OF CRELS */
184 B8 2 TSCPTR(044) PTR(31), /% ADDRESS OF CRESV */
188 BC 2 TSCPTR(045) PTR(31), /% ADDRESS OF CSB */
192 Co 2 TSCPTR(046) PTR(31), /% ADDRESS OF CSCROLL */
196 Ca4 2 TSCPTR(047) PTR(31), /% ADDRESS OF CSM */
200 C8 2 TSCPTR(048) PTR(31), /% ADDRESS OF CTA */
206 CC 2 TSCPTR(049) PTR(31), /% ADDRESS OF CTF */
208 DO 2 TSCPTR(050) PTR(31), /% ADDRESS OF CTGET */
212 D4 2 TSCPTR(051) PTR(31), /% ADDRESS OF CTPUT */
216 D8 2 TSCPTR(052) PTR(31), /% ADDRESS OF CTl */
220 ©OC 2 TSCPTR(053) PTR(31), /% ADDRESS OF CT2 */
224 EO 2 TSCPTR(054) PTR(31), /% ADDRESS OF CUPARMS */
228 E4 2 TSCPTR(055) PTR(31), /% ADDRESS OF CVM */
232 E8 2 TSCPTR(056) PTR(31), /% ADDRESS OF CVSDE */
252 FC 2 TSCPTR(061) PTR(31), /% ADDRESS OF BCD */
256 100 2 TSCPTR(062) PTR(31), /% ADDRESS OF MERR */
260 104 2 TSCPTR(063) PTR(31), /% ADDRESS OF MHA */
328 148 2 TSCPTR(080) PTR(31), /% ADDRESS OF EX1 */
332 14C 2 TSCPTR(081) PTR(31), /% ADDRESS OF EX2 */
392 188 2 TSCPTR(096) PTR(31), /% ADDRESS OF ETS */
396 18C 2 TSCPTR(097) PTR(31), /% ADDRESS OF EMP */
(CONTINUED ON NEXT PAGE)
LICENSED MATERIAL - PROPERTY OF IBM DATA AREAS

TSC

3647

TSt = SPF INTERFACE TABLE (CONTINUED)
OFFSET FIELD FIELD

DEC HEX NAME DESCRIPTION

136 88 2 ¥, /% SPOOL CLASS *CMSH/
136 88 3 TSISPCL1 CHAR(1), 4] FOR TLD1 *CMS*/
137 89 3 TSISPCL2 CHAR(1), /% FOR TLD2 *CMSw/
138 8A 3% CHAR(2), /% #% RESERVED »* #CMSH/
140 8C 2 TSIDDNN FIXED(3l), /% DDNAME NUMBER (SPFXXXXX)%/
144 90 2 * (16) FIXED(31); /% %% RESERVED w*# */

350 SPF/TSO PROGRAM LOGIC MANUAL

LICENSED MATERIAL - PROPERTY OF IBM

TSI

J)

C

TSI = SPF INTERFACE TABLE
OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION
0 0 1 TSI BASED, /% SYSTEM INTERFACE */
0 0 2 %* CHAR(8), /% TSI IDENTIFICATION */
8 8 2 TSIVRMZ CHAR(8), /% SPF VER/REL/MOD/ZAP LVL »*/
16 10 2 TSISYSP, /% TSI PTRS IN TLD) */
16 10 3 TSITCMP PTR(31), /% CMD TABLE ENTRY POINT %/
20 14 3 TSITCTP PTR(31), /% CONTLER TBLS TBL PTR %/
2¢ 18 3 TSITDSP PTR(31), /% DATA SET TABLE PTR */
28 1C 3 TSITKVP PTR(31), /% KEY/VAL TABLE PTR */
32 20 3 TSITKWP PTR(31), /% KEYWORD TABLE PTR */
36 24 3 TSITSCP PTR(31), /% COMMON SUB PTRS */
40 28 3 TSITSIP PTR(31), /% SYS INTERFACE PTR */
44 2C 3 TSITSVP PTR(31), /% SYS VARIABLES PTR */
48 30 3 TSITXCP PTR(31), /% TERM EXIT TABLE PTR %/
52 34 3 » PTR(31), /% *% RESERVED %% */
56 38 2 TSITPDP PTR(31), /% PHYSICAL DISPLAY PTR */
60 3C 2 TSITFKP PTR(31), /% CURRENT MASTER TFK PTR %/
64 40 2 TSIDEVNP PTR(31), /% DEVICE NAME TABLE PTR %/
68 44 2 TSITSOPL, /% TS0 PARM LIST */
68 44 3 TSICBUFP PTR(31), /% COMMAND BUFFER PTR */
72 48 3 TSIUPTP PTR(3l), /% USER PROFILE TBL PTR %/
76 4C 3 TSIPSCBP PTR(31), /% PROT STEP CNTL BLK PTRx%/
80 50 3 TSIECTP . PTR(31), /% ENVIRON CNTL TBL PTR %/
84 54 2 TSILDCBP PTR(31), /% SPFLIB DCB PTR */
88 58 2 TSIPFXP PTR(31), /% DATA SET PREFIX PTR */
92 5C 2 TSIDAIRP PTR(31l), /% PTR TO LOADED 'IKJEFDOO'%/
9% 60 2 TSISDKAP PTR(31), /7% SYS DIAGNOSTIC W.A. PTR */
100 64 2 TSITLMP PTR(31), /% LOAD MODULE TAB PTR *CMSx/
106 68 2 TSICCFBP PTR(31l), /% CCF EXT INT BUF PTR *CMSx/
108 6C 2 TSICDAF# FIXED(15), /% CDA DYNMC DDNAME NO %*CMS*/
110 6E 2 TSIRFML FIXED(8), /% NUM MODE LETS AVAIL %*CMS»/
111 6F 2 ¥ FIXED(8), /% %% RESERVED %% */
112 70 2 %, /% OPERATING SYSTEM */
112 70.0 3 TSIMVS BIT(1), /% ON —=> MVS EXECUTING %/
112 70.1 3 TSISVS BIT(1), /% ON —=> SVS EXECUTING %/
112 70.2 3 TSIMVT BIT(1), /% ON => MVT EXECUTING %/
112 70.3 3 TSIOOS BIT(1l), /% ON => OTHER 0S EXEC %/
112 70.4 3 TSIAUTH BIT(1), /% ON => SPF AUTHORIZED %/
112 70.5 3 % BIT(1), /% %% RESERVED %% #00S*/
112 70.6 3 % BIT(2), /% %% RESERVED %% */
113 71 2 %, : /% TERMINAL ACCESS */
113 71.0 3 TSITCAM BIT(1), /% ON => TCAM INTERFACE */
113 71.1 3 TSIVTAM BIT(1), /% ON => VTAM INTERFACE */
113 71.2 3 TSIVMALT BIT(1l), /% ON => NDS ALT SZ *CMS»/
113 71.3 3 TSIALT BIT(1), /% ON —=> NDS ALT SZ */
113 71.4 3 TSITRACE BIT(1l), /% ON => TERM I/0 TRACE %/
113 71.5 3 BIT(3), /% %% RESERVED % */
114 72 2 TSIMODES CHAR(1), /% SPF MODES */
114 72.0 3 TSIMSGMN BIT(1), /% ON => MSG/MENU TESTING*/
114 72.1 3 TSISTEST BIT(1), /% OFF—> DO SPF STAX */
114 72.2 3 % BIT(1), /% % RESERVED % */
114 72.3 3 TSISDUMP BIT(1), /% ON => ALLOW MAIN ABEND*/
114 72.4 3 TSIPDUMP BIT(1), /% ON => ALLOW PROC ABEND*/
114 72.5 3 TSITREQ BIT(1), /% ON => TERM TRACE Pla */
114 72.6 3 % BIT(2), /% %% RESERVED */
115 73 2 TSITFKID CHAR(1), /% CURRENT MASTER TFK ID %/
116 74 2 TSIUSRID CHAR(8), /% TSO USERID (8 CHARS) */
12¢ 7C 2 TSISDATE CHAR(4), /% SESSION START DATE */
128 80 2 TSISTIME CHAR(4&), /% SESSION START TIME */
132 84 2 %, /% EDIT BACKUP TFD CONTROL */
132 84 3 TSIEBUAF FIXED(8), /% “A" TFD IN USE */
133 85 3 TSIEBUBF FIXED(8), /% "B" TFD IN USE */
134 86 3 % FIXED(15), /% *% RESERVED %" */

LICENSED MATERIAL - PROPERTY OF IBM

(CONTINUED ON NEXT PAGE)

DATA AREAS

TSI

369

352 SPF/TS0 PROGRAM LOGIC MANUAL

*/

»/

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
L 74
»/
»/
*/
*/
*/
*/
*/
*/

TSV = SPF VARIABLES TABLE (CONTINUED)
OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION
115 73.4 3 $FNDE BIT(1), /% REPEAT FIND
115 73.5 3 $CHGE BIT(1), /% REPEAT CHANGE
115 73.6 3 » BIT(2), /% %% RESERVED %
116 74 3 * BIT(321), /% %% RESERVED %%
Vs i
/% THE FOLLOWING IS SAVED IN
/% IN THE TKV
120 78 2 $TSVKV BOUNDARY(WORD), /%
120 78 3 $JCHAR CHAR(1), /% UNIQUE JOB CHARACTER
121 79 3 $sMm CHAR(1), /% SESS MGR MODE (Y,N)
122 7A 3 % CHAR(1), /% %% RESERVED %
123 78 3 $MODE CHAR(1), /% CHAR MODE (M—MONO,D-DUAL)
12¢ 7C 3 $KEYS CHAR(2), /% NUM PF KEYS ('l12'['24")
126 7 3 » FIXED(15), /% %% RESERVED %%
, 128 —-803———3 $CHARLM CHAR(8),~———— /% CHAR SET LOAD MOD NAME
136 88 3 % FIXED(31), /% %% RESERVED %
140 8C 3 $DATE CHAR(4), /% DATE & TIME PARMS LAST
144 90 3 STIME CHAR(4), /% STORED (TIME MACRO FORM)*/
148 9% 3 $LsT, /% SPFLIST INFORMATION
148 %% 4 $LSTPQTY FIXED(3l), /% PRIMARY QUANTITY (PAGES)*/
152 98 4 $LSTSQTY FIXED(31), /% SECONDARY QUANTITY (PGS)*/
156 9C 4 SLSTLPP FIXED(3l), /% LINES PER PAGE
160 A0 4 $LSTCHAR CHAR(1), /% DATA SET UNIQUE CHAR
161 Al 4 $LSTIDSP CHAR(1), /% INITIAL DISP (FRCM PMD)
162 A2 4 $LSTFDSP CHAR(1), /% FINAL DISP (FROM OPT)
163 A3 4 $LSTKEPT CHAR(1), /% KEPT STATUS 'Y'->YES
l64 A4 G % FIXED(31), /% %% RESERVED %%
168 A8 3 $LOG, /% SPFLOG INFORMATION
168 A8 4 $LOGPQTY FIXED(31), /% PRIMARY QUANTITY (PAGES)*/
172 AC 4 $LOGSQTY FIXED(31), /% SECONDARY QUANTITY (PGS)*/
176 80 4 $LOGLPP FIXED(31), /% LINES PER PAGE
180 B4 4 $LOGCHAR CHAR(1), /% DATA SET UNIQUE CHAR
181 B85 4 $LOGIDSP CHAR(1), /% INITIAL DISP (FROM PMD)
182 Bé 4 $LOGFDSP CHAR(1), /% FINAL DISP (FROM OPT)
183 B7 4 $LOGKEPT CHAR(1), /% KEPT STATUS 'Y'->YES
184 B8 G » FIXED(31), /% %% RESERVED %
188 BC 3 $USESTAT, /% USAGE STATISTICS
188 BC 4 $SESSION FIXED(3l), /% COUNT OF SPF SESSIONS
192 €O 4 $INCNT FIXED(31), /% COUNT INPUT OPERATIONS
196 C4& 4 $INBYTES FIXED(3l1), /% INPUT BYTE COUNT(TOTAL) */
200 C8 4 $OUTCNT FIXED(31), /% COUNT OUTPUT OPERATIONS */
2064 CC 4 $OUTBYTE FIXED(31), /% QUTPUT BYTE COUNT(TOTAL)*/
208 DO 4 $PROCTIM FIXED(31), /% PROCESSING (TOTAL SECS) */
212 D4 4 SUSERTIM FIXED(31), /% USER-THINK (TOTAL SECS) */
216 D8 4 $LOGCNT FIXED(31), /% LOG COUNT
220 DC 4 * FIXED(31), /% %% RESERVED %%
224 EO G * FIXED(31), /% %% RESERVED %%
228 E4 3 $TFK77 CHAR(36), /% MASTER TFK FOR 3277
264 108 3 $TFK7812 CHAR(36), /% MASTER TFK FOR 3278 12PFK
300 12C 3 $TFK7824 CHAR(36), /% MASTER TFK FOR 3278 24PFK
336 150 3 $EBU, /% EDIT BACKUP RECOVER CNTL
336 150 4 $EBUA FIXED(8), /% BACKUP "A" CONTROL
337 151 4 $EBUB FIXED(8), /% BACKUP "B" CONTROL
338 152 G * FIXED(15), /% %% RESERVED
340 154 3 $CHAR CHAR(8), /% CHAR SET NAME
348 15C 3 % CHAR(1), /% END OF TSV/TKV AREA
349 15D 2 * CHAR(3), /% %% RESERVED %%
352 160 2 * (4) FIXED(31); /% %% RESERVED %

™SV

LICENSED MATERIAL - PROPERTY OF IBM

TSV = SPF VARIABLES TABLE
OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION
0 0 1 Tsv BASED, /% SYSTEM VARIABLES */
0 0 2 * CHAR(8), /% TSV IDENTIFICATION */
8 8 2 $MINTGET FIXED(32) UNSIGNED, /% MINIMUM TGET DELAY TIME %/
12 c 2 $SWAPLIN FIXED(15), /% SHAP/SPLIT LINE CONTROL %/
14 E 2 $SPCOUNT FIXED(15), /% PRINT SCREEN CONTROL */
l6 10 2 $SBAINCR FIXED(15), /% 'SBA' OPTIMIZE INCR(4—255)%/
18 12 2 $RAINCR FIXED(15), /% 'RA' OPTIMIZE INCR (1-255)%/
20 14 2 $SETPAGE CHAR(4), /% FULL SCROLL VALUE FOR 'P' %/
2¢ 18 2 $SETHALF CHAR(4), /% FULL SCROLL VALUE FCR ‘'H' %/
28 1C 2 $TCAMACC CHAR(1), /% WCC = STD TPUT = TCAM */
29 1D 2 $VTAMKNCC CHAR(1}, /% HCC —- STD TPUT — VTAM */
30 1E 2 $TCSWCC CHAR(1), /% WCC — CLEAR SCREEN — TCAM */
31 1F 2 $VCSKCC CHAR(1), /% WCC — CLEAR SCREEN — VTAM %/
32 20 2 $TFSON CHAR(2), /% SPEC SBA ADDRS TO TCAM TO */
3¢ 22 2 $TFSOFF CHAR(2), /% TURN FULL SCRN ON OR OFFx*/
36 24 2 $LINES FIXED(8), /% NUMB OF LINES FOR DISPLAY %/
37 25 2 * CHAR(3), /% %% RESERVED %% */
40 28 2 * FIXED(31), /% %% RESERVED %% */
4% 2C 2 $TPL, /% SPF TEMPLIST INFORMATION %/
4 2C 3 $TPLPQTY FIXED(31), /% PRIMARY QUANTITY (BLKS) %/
48 30 3 STPLSQTY FIXED(31), /% SECONDARY QUANTITY (BKS)*/
52 34 3 $TPLBLKS FIXED(31), /% BLOCK SIZE */
56 38 3 % FIXED(31), /% %% RESERVED %% */
60 3C 2 $TPC, /% SPF TEMPCNTL INFORMATION */
60 3C 3 $TPCPQTY FIXED(31), /% PRIMARY QUANTITY (BLKS) */
64 40 3 $TPCSQTY FIXED(31), /% SECONDARY QUANTITY (BKS)#*/
68 49 3 $TPCBLKS FIXED(3l), /% BLOCK SIZE */
72 48 3 % FIXED(31), /% %% RESERVED %% */
76 4C 2 $EBUDS, /% SPF EDIT BACKUP INFO */
76 4C 3 $EBUPQTY FIXED(31l), /% PRIMARY QUANTITY (BLKS) */
80 50 3 $EBUBLKS FIXED(31l), /% BLOCK SIZE */
84 54 3 $EBUSQTY FIXED(3l1), /% SECONDARY QUANTITY (BKS)*/
88 58 3 % FIXED(31), /% %% RESERVED %*x */
92 5C 2 %, /% LIST/LOG VALUES (NON TKV) */
92 5C 3 $LSTBLKS FIXED(31), /% LIST BLOCK SIZE */
9 60 3 $LOGBLKS FIXED(31), /% LOG BLOCK SIZE */
100 64 3 $LOGPG FIXED(15), /% LOG PAGE NUMBER */
102 66 3 $LOGLN FIXED(15), /% LOG LINE NUMBER */
106 68 3 $LOGDATE CHAR(&), /% LOG CURRENT DATE */
108 6C 3 $LOGFLAG CHAR(1), /% LOG FLAG (*A* | * %) */
109 6D 3 % CHAR(3), /% %% RESERVED ¥ */
112 70 2 $ENBL BIT(64), /% INIT KEY/FUN ENABLE BITS %/
112 70.0 3 $NOPE BIT(1), /% NOP */
112 70.1 3 SREDE BIT(1), /% REDISPLAY */
112 70.2 3 $SPLE BIT(1), /% SPLIT */
112 70.3 3 $SHPE BIT(1), /% SKAP */
112 70.4 3 $CSRE BIT(1), /% CURSOR ®/
112 70.5 3 $PRTHE BIT(1), /% PRINT HIGH */
112 70.6 3 $PRTLE BIT(1), /% PRINT LOW */
112 70.7 3 » BIT(1), /% %% RESERVED %% */
113 71.0 3 $LNEE BIT(1), /% LINE COMMAND */
113 71.1 3 $CMDE BIT(1), /% PRIMARY COMMAND */
113 71.2 3 $NOFME BIT(1), /% NOP WITH MESSAGE */
113 71.3 3 $HLPE BIT(1), /% HELP */
113 71.4 3 $RETE BIT(1), /% RETURN */
113 71.5 3 % BIT(3), /% %% RESERVED %% */
114 72.0 3 $ENDE BIT(1), /% END */
114 72.1 3 $ENTE BIT(1), /% ENTER */
114 72.2 3 $SMME BIT(1), /% ENTER/SESS MGR MODE */
114 72.3 3 % BIT(5), /% %% RESERVED ¥ */
115 73.0 3 $SCRUE BIT(1), /% SCROLL UP */
115 73.1 3 $SCRDE BIT(1), /% SCROLL DOWN */
115 73.2 3 $SCRLE BIT(1), /% SCROLL LEFT */
115 73.3 3 $SCRRE BIT(1), /% SCROLL RIGHT */

(CONTINUED ON NEXT PAGE)

LICENSED MATERIAL - PROPERTY OF IBM

DATA AREAS

TSV

351

UDACOMM - UDA COMMON AREA UDACOMM

OFFSET FIELD FIELD
DEC HEX NAME DESCRIPTION
0 0 1 UDACOMM BASED /% */
BOUNDARY(WORD), /% */
0 0 2 UDACIVCP PTR(31), /% CIV COMMON AREA PTR */
4 4 2 UDAMENUP PTR(31), /% MENU PARMS PTR (0 IN TFD) %/
/% (CDA USES TFDDSNS) */
8 8 2 UDAMID CHAR(4), /% MSG ID FROM SUBROUTINE */
12 c 2 UDAMCL FIXED(31l), /% MSG CURSOR LOC FROM SUB %/
16 10 2 UDAP, /% MSG PARMS FOR MERR */
16 10 3 UDAP1 CHAR(80), /% MSG PARM 1 FROM SUB */
9% 60 3 UDAP2 CHAR(80), /% MSG PARM 2 FROM SuB */
176 BO 3 UDAP3 CHAR(80), /% MSG PARM 3 FROM SUB ®/
256 100 2 UDAOPT CHAR(1), /% SELECTED OPTION FROM MENU */
257 101 2 UDABITS BIT(8), /% BIT FLAGS */
257 101.0 3 UDASPF BIT(1), /% ON IF SPF DATASET ®/
257 101.1 3 UDARGN BIT(1), /% GENERATE MENU INDICATOR */
257 101.2 3 UDAERR BIT(1), /% ERROR INDICATOR */
257 101.3 3 UDARN BIT(1), /% RENAME FLAG (FOR UAC) %/
257 101.4 3 UDACML BIT(1), /% CML REQUEST (FOR UDMS) %/
257 101.5 3 UDAALARM BIT(1), /% ALARM FOR '0'X MSG */
257 101.6 3 % BIT(2), /% %% RESERVED %% */
258 102 2 * CHAR(2), /% %% RESERVED ¥*¥* */
260 104 2 UDAREN CHAR(8), /% RENAME FIELD FROM MENU */
268 10C 2 UDAMEM® FIXED(31l), /% PARM NR OF MEMBER NAME */
272 110 2 UDADSN® FIXED(31l), /% PARM NR OF DATASET NAME %/
276 116 2 UDAZPGM CHAR(8), /% “IEBCOPY'" (FOR UDZ) */
284 11C 2 %, /% UDM/UDMS VALUES */
284 11C 3 UDACP CHAR(8), /% "PPRINTED" */
292 124 3 UDACR CHAR(8), /% “RRENAMED" */
300 12C 3 UDACD CHAR(8), /% "“DDELETED" */
308 134 3 UDACB CHAR(8), /% "B " */
316 13C 3 UDAPCT FIXED(31), /% COUNT OF PRINTED MEMS %/
320 140 3 UDARCT FIXED(31), /% COUNT OF RENAMED MEMS */
326 1644 3 UDADCT FIXED(31l), /% COUNT OF DELETED MEMS %/
328 148 3 UDAOTFDP PTR(31), /% PTR TO OUTFUT TFD */
332 14C 3 UDACBRP PTR(31), /% CBR KORK AREA PTR */
336 150 3 % FIXED(31), /% %% RESERVED 3% */
340 154 2 * FIXED(31), /% %% RESERVED %% */
344 158 2 % FIXED(31), /% %% RESERVED %% */
348 15C 2 % FIXED(31), /% %% RESERVED %% */
352 160 2 % FIXED(31); /% %% RESERVED %% */
/% ®/
/% NOTES: */
/% 1. IF UDAMID = '0'X THEN */
/% UDAP1 = SHORT MSG, UDAP2 = LOGN MSG, */
/% UDAP3(1:8) = TUT HELP MENU, AND */
/% UDAALARM = ALARM STATE */

LICENSED MATERIAL - PROPERTY OF IBM DATA AREAS 353

ENG/DEQ LOGIC AND SHARED DASD SUPPORT

PASSWORD PROTECT DATASET

IT IS NOT RECOMMENDED THAT PASSWORD PROTECTED DATASETS BE PLACED ON
SHARED DASD VOLUMES. SPF USERS UPDATING PASSWORD PROTECTED DATASETS
ON SHARED DASD SHOULD BE CAUTIONED TO FILL IN THE PASSWORD FIELD ON
THE SPF MENU TO AVOID BEING PROMPTED FOR A PASSWORD BY OPEN SINCE THE
VOLUME IS RESERVED DURING OPEN PROCESSING.

DATA SET INTEGRITY ENQUE

THE SPF EDITOR, LIBRARY UTILITY, MOVE/COPY UTILITY, AND RESET STATISTICS
UTILITY ALLOCATE PARTITIONED DATA SETS FOR "SHARED"™ USE EVEN THOUGH THE
DATA SET MAY BE MODIFIED (BY ADDING, REPLACING, RENAMING, OR DELETING
MEMBERS). THIS ALLOWS MORE THAN ONE SPF USER TO MODIFY OTHER MEMBERS IN
THE SAME DATA SET WITHOUT TYING UP THE ENTIRE DATA SET.

TO ENSURE THAT DATA SET INTEGRITY IS MAINTAINED, SPF ISSUES RESERVE/DEQ
MACROS AT THE APPROPRIATE TIME. THE RESERVE MACRO PREVENTS SHARED DASD
CONFLICTS IN ACCESSING THE VOLUME AND ALSO CAUSES AN ENQ T8 BE ISSUED.
THIS IS AN UNCONDITIONAL ENQ; IF THE RESOURCE IS IN USE SPF IS PLACED
IN THE WAIT STATE UNTIL IT IS FREED. THE DEQ MACRO DEQUEUES THE
RESOURCE AND ALSO CAUSES THE VOLUME TO BE RELEASED (IF IT IS A SHARED
VOLUME). THE DATA SET INTEGRITY ENQUE IS DONE BY SPF OBJECT MODULES
CRESV AND CRELS.

THE SEQUENCE OF EVENTS IS:

ISSUE SPFDSN RESERVE

ISSUE LINK EDITOR RESERVE OR ENQUE IF LOAD MODULE
OPEN DATA SET FOR OUTPUT
WRITE THE MEMBER (FOR ADD OR REPLACE MEMBER)
ISSUE STOW MACRO (ADD, REPLACE, RENAME, OR DELETE)
CLOSE THE OUTPUT DCB

ISSUE SPFDSN DEQ

ISSUE LINK EDITOR DEQ IF LOAD MODULE

THE RESERVE MACRO PARAMETERS FOR THE SPFDSN ENQUE ARE:

TYPE = SYSTEMS RESERVE

QNAME = 'SPFDSN '

RNAME = DATA SET NAME RIGHT-PADDED WITH BLANKS
RNAME LENGTH = 4%

THE LINK EDITOR ENQUE IS ISSUED ONLY FOR RECORD FORMAT U DATASETS.

IF THE VOLUME IS A SHARED DASD VOLUME:

TYPE = SYSTEMS RESERVE

QNAME: '"SYSIEWLP'

RNAME: DATA SET NAME RIGHT PADDED WITH BLANKS
RNAME LENGTH: 44

IF THE VOLUME IS NOT A SHARED DASD VOLUME:
TYPE = SYSTEM ENQ

QNAME: '"SYSIEWLP'

RNAME: DATA SET NAME RIGHT PADDED WITH BLANKS
RNAME LENGTH: 44

(CONTINUED ON NEXT PAGE)

356 SPF/TS0O PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

APPENDIX A. SYSTEM INTERFACE NOTES

SESSION MANAGER INTERFACE

MODULES SPFSC93X AND SPFSC94X ARE SPF EXIT ROUTINES FOR SVC 93
(IGCO0009C) AND SVC 94 (IGCO009D). THE SESSION MANAGER EXIT ROUTINES
IKTTMPX1 AND IKTTMPX2 REFERENCE THESE MODULES. THE SPF EXITS PROVIDE A
BETTER INTERFACE BETWEEN SPF AND THE SESSION MANAGER, BUT ARE NOT
REQUIRED TO OPERATE SPF WITH THE SESSION MANAGER. THE SPF EXITS ARE
FUNCTIONLESS IF THE SESSION MANAGER IS NOT INSTALLED.

REFER TO THE INSTALLATION AND CUSTOMIZATION MANUAL FOR INFORMATION ON
THE INSTALLATION OF THESE MODULES. REFER TO THE MODULE DESCRIPTIONS AND
THE MICROFICHE OF "™SPFSC93X™ AND "SPFSC94X" FOR A DETAILED DESCRIPTION
OF THEIR OPERATION.

THE SESSION MANAGER PROGRAM NUMBER IS 5740-XE2.

PROGRAM _CONTROL ILIT PCF) INTERFACE

PCF COMMAND AUTHORIZATION

SPF SUPPORTS PCF COMMAND AUTHORIZATION BY INTERFACING WITH PCF VIA
"IKJSCAN". BEFORE CALLING "IKJSCAN", SPF PLACES 'SPF' IN THE PRIMARY
COMMAND FIELD OF THE ECT (ENVIRONMENTAL CONTROL TABLE). THIS INDICATES
TO PCF THAT THE COMMAND BEING SCANNED IS NOT A SUBCOMMAND AND COMMAND
AUTHORIZATION SHOULD BE PERFORMED. IF "IKJSCAN"™ RETURNS WITH RC=52
(INDICATING THE USER IS NOT AUTHORIZED TO USE THE COMMAND), THEN SPF
DISPLAYS AN ERROR MESSAGE.

PCF DATA SET AUTHORIZATION

PCF DATA SET "READ ONLY" AUTHORIZATION IS BASED ON THE ASSUMPTION THAT
PROGRAMS WISHING TO UPDATE A DATA SET WILL FIRST ALLOCATE THE DATA SET
WITH DISPOSITION "OLD"™. HOWEVER, THE SPF EDITOR, LIBRARY UTILITY,
MOVE/COPY UTILITY, AND RESET STATISTICS UTILITY ALLOCATE PARTITIONED
DATA SETS WITH DISPOSITION "SHARE™ AND THEN ISSUES A "“RESERVE"™ TO SERIAL
THE UPDATING OF THE MEMBERS.

IN ORDER TO INFORM PCF THAT A "SHARE"™ ALLOCATION IS BEING DONE FOR
UPDATING PURPOSES, SPF SETS THE FIRST BYTE OF THE ECTSCMD FIELD IN THE
ECT TO '01'X. PCF TESTS FOR THIS FLAG AND PERFORMS THE AUTHORIZATION
CHECK AS IF THE DATA SET WERE ALLOCATED "OLD".

PCF'S PROGRAM NUMBER IS 5798-CLW.

RIERACHICAL STORAGE MANAGER (HSM) INTERFACE

FOR SPF TO ALLOCATE A CATALOGED DATA SET IT ISSUES A LOCATE SYSTEM
SERVICE. IF THE DATA SET IS UNDER HSM CONTROL, THE VOLUME "MIGRAT™ IS
NORMALLY RETURNED. 1IN ORDER TO CAUSE A "RECALL™ AND GET THE REAL VOLUME
SERIAL, SPF SETS THE THIRD BIT IN THE THIRD BYTE (CAMOPTN3) OF THE
PARAMETER LIST (CAMLST) PASSED TO LOCATE (DIAGRAMMED BELOW). THIS IS
DONE FOR ALL SPF ISSUED LOCATES, WHETHER OR NOT HSM IS INSTALLED.

HSM'S PROGRAM NUMBER IS 5740-XRB.

THIS BYTE
REGISTER 1 CAMLST

T

v THIS BIT
XX XX XX XX D] xx | xxX | xx | xx

\{
XX1X XXXX

LICENSED MATERIAL - PROPERTY OF IBM APPENDIX A 355

ENQ/DEQ LOGIC AND SHARED DASD SUPPORT (CONTINUED)

SPF EDITOR MEMBER NAME ENQ

THE SPF EDITOR ISSUES ANOTHER ENQ WHEN DATA IS SELECTED FOR EDITING TO
DETECT WHETHER ANOTHER USER IS CURRENTLY EDITING THE SAME PDS MEMBER.

IN THIS CASE, IT IS A CONDITIONAL ENQ. 1IF THE MEMBER IS BEING EDITED BY
ANOTHER USER, A MESSAGE IS DISPLAYED. OTHERWISE, THE MEMBER IS FETCHED
FOR EDITING. THE CORRESPONDING DEQ IS ISSUED WHEN THE USER ENDS (OR
CANCELS) THE EDIT SESSION.

FOR THIS CASE, THE ENQ/DEQ PARAMETERS ARE:

TYPE = SYSTEM ENQ
QNAME = 'SPFDSN
RNAME (FIRST 44 CHARACTERS) = FULLY QUALIFIED DATA SET NAME,

RIGHT-PADDED WITH BLANKS
RNAME (NEXT 8 CHARACTERS) = MEMBER NAME (BLANKS IF RECFM=PS)
RNAME LENGTH = 52

NOTE THAT THIS ENQ/DEQ CANNOT DETECT ANOTHER USER ON A DIFFERENT CPU
WHO MAY BE EDITING THE SAME MEMBER VIA SHARED DASD.

LICENSED MATERIAL - PROPERTY OF IBM APPENDIX A 357

TS0/TCAM INTERFACE (CONTINUED)

IN ADDITION TO USING THESE SIGNAL STRINGS TO DISTINGUISH SPF-GENERATED
OUTPUT, THE MESSAGE HANDLER MACROS RESET THE TSO/TCAM LINE COUNT
WHENEVER A SIGNAL STRING IS ENCOUNTERED, AS FOLLOWS:

FOR SIGNAL STRING (A) THE LINE COUNT IS SET TO 2. THIS CAUSES
ANY SUBSEQUENT LINE MESSAGE (SUCH AS A BROADCAST) TO BE DISPLAYED
ON LINE 3 OF THE SCREEN.

FOR SIGNAL STRING (B) THE LINE COUNT IS SET TO THE POSITION
INDICATED BY THE SECOND SBA (XXXX). THIS ALLOWS SPF TO CONTROL
THE STARTING LOCATION FOR SUBSEQUENT LINE MESSAGES, SUCH AS A
'SUBMIT' COMMAND CONFIRMATION MESSAGE OR THE BEGINNING OF A
FOREGROUND PROCESSING SESSION.

THE SPF MESSAGE HANDLER MACROS USE THE IEDQFSCR OPTION BYTE TO KEEP
TRACK OF THE MESSAGE SEQUENCE.

IEDQFSCR BITS MEANING
D RESERVED FOR USE BY TSO FULLSCR MACRO
N S EXPFLS REDISPLAY FLAG

. W1 EXPFLS BROADCAST FLAG

R I EXPFLS FULL SCREEN FLAG

I | RESERVED FOR USE BY TSO FULLSCR MACRO

THE OPTION BYTE MUST BE INITIALIZED TO ZERO IN THE ASSSEMBLY OF THE
TCAM MCP.

| TSO/VUTAM INTERFACE

THE FOLLOWING IS A DESCRIPTION OF TSO/VTAM SYSTEM SERVICES THAT ARE USED
TO RUN SPF ON A TSO/VTAM SYSTEM. REFER TO THE INSTALLATION AND
CUSTOMIZATION GUIDE FOR INFORMATION ON INSTALLATION CONSIDERATIONS.

THE NON-SPF-GENERATED MESSAGE SITUATION, DESCRIBED IN THE TSO0/TCAM
INTERFACE NOTES, IS GENERALLY HANDLED BY TSO/VTAM. THERE ARE NO
TERMINAL ACCESS METHOD MODIFICATIONS THAT MUST BE MADE AS IN TSO/TCAM.
HOWEVER, SPF MUST SIGNAL TSO0/VTAM WHEN SPF ENTERS OR LEAVES FULL SCREEN
MODE.

MODULE SMI ISSUES A "STFSMODE ON,INITIAL=YES™ SYSTEM SERVICE BEFORE THE
FIRST SPF FULL SCREEN TPUT. THIS SYSTEM SERVICE IS ALSO USED TO
DETERMINE THE TERMINAL ACCESS METHOD. A NON-ZERO RETURN CODE INDICATES
THAT SPF IS RUNNING UNDER TSO0/TCAM.

WHEN AN SPF MODULE WANTS TO ENTER NORMAL TSO LINE I/0 MODE, CONTROL
FIRST PASSES TO MODULE SML. IT ISSUES THE "STLINENO MODE=0FF,LINENO=XX"
SYSTEM SERVICE TO SET THE LINE NUMBER. THE REQUESTING MODULE THEN CAN
ISSUE LINE I/0 TPUTS AND TGETS TO THE TERMINAL (OR ATTACH A PROGRAM THAT
DOES). WHEN THE MODULE WANTS TO RETURN TO SPF FULL SCREEN OPERATIONS,
ALL IT HAS TO DO IS REQUEST A FULL SCREEN OUTPUT IN ITS NORMAL WAY (CALL
70 SUBROUTINE MHA OR CDISPL). MODULE SMC WILL GET CONTROL AND ISSUE A
FULL SCREEN TPUT. THIS WILL CAUSE TSO/VTAM TO GENERATE A SIMULATED PA2
INTERRUPT. A PA2 INTERRUPT IS HANDLED BY SMC BY FIRST ISSUING A
"STFSMODE ON™ SYSTEM SERVICE AND THEN REDISPLAYING THE COMPLETE SCREEN.

| FINAL TERMINATION (MODULE PFT) ISSUES A "STFSMODE OFF™ SYSTEM SERVICE.

A MAJOR OPERATING DIFFERENCE BETWEEN TSO/VTAM AND TSO/TCAM IS WHEN A
NON-SPF-GENERATED MESSAGE IS SENT TO THE DISPLAY, TSO/VTAM CLEARS THE
SCREEN BEFORE DISPLAYING THE MESSAGE IF THE FULL SCREEN MODE HAS NOT
BEEN TURNED OFF BY A "STFSMODE™ OR "STLINENO"™ SYSTEM SERVICE.

360 SPF/TS0 PROGRAM LOGIC MANUAL LICENSED MATERIAL - PROPERTY OF IBM

APPENDIX B. TERMINAL I/0 NOTES

TSO/TCAM INTERFACE

THE FOLLOWING IS A DESCRIPTION OF MODIFICATIONS TO THE TSO/TCAM MESSAGE
HANDLER THAT ARE REQUIRED TO RUN SPF ON A TSO/TCAM SYSTEM. REFER TO THE
INSTALLATION AND CUSTOMIZATION GUIDE FOR INFORMATION ON THE INSTALLATION
OF THESE MODIFICATIONS.

DURING OPERATION OF SPF, CERTAIN NON-SPF-GENERATED MESSAGES MAY BE SENT
TO THE TERMINAL, SUCH AS BROADCAST MESSAGES FROM THE SYSTEM OPERATOR OR
OTHER TSO USERS. THESE MESSAGES WILL BE QUEUED BY TCAM AND DISPLAYED
WHEN THE USER HITS AN INTERRUPT KEY, SUCH AS "ENTER™ OR ONE OF THE PF
KEYS. THAT SAME INTERRUPT, HOWEVER, WILL GENERALLY CAUSE SPF TO
GENERATE FULL SCREEN OUTPUT. UNLESS INTERCEPTED, THAT OUTPUT WILL BE
SENTATD THE TERMINAL, CAUSING AN IMMEDIATE OVERLAY OF THE BROADCAST
MESSAGE.

THE SPF MODIFICATIONS TO THE STANDARD TSO/TCAM MESSAGE HANDLER ARE
DESIGNED TO CORRECT THIS PROBLEM. WHEN SPF FULL SCREEN OUTPUT IS
FOLLOWED BY NON-SPF LINE OUTPUT:

1. THE LINE MESSAGE IS DISPLAYED WITH HIGH INTENSITY, AND THE
AUDIBLE ALARM IS SOUNDED (IF INSTALLED).

2. A SIMULATED ATTENTION (SIMATTN) IS GENERATED. THIS CAUSES
THREE ASTERISKS (%%%) TO BE DISPLAYED ON THE BOTTOM LINE OF
SCREEN, AND PREVENTS FURTHER OUTPUT FROM BEING SENT TO THE
TERMINAL UNTIL THE USER HITS AN INTERRUPT KEY.

3. WHEN SPF FULL SCREEN OUTPUT FOLLOWS THE LINE MESSAGE, A
SIMULATED PA2 INTERRUPT IS GENERATED. THIS CAUSES SPF TO RE-
DISPLAY THE ENTIRE SCREEN CONTENTS. (SINCE SPF DOES NOT KNCW
ABOUT THE LINE MESSAGE, A GARBLED SCREEN MAY RESULT UNTIL THE
REDISPLAY OCCURS.)

THE FULLSCR EXPFLS=YES OR THE SPFSCRN AND SPFMCHK MESSAGE HANDLER MACROS
PROVIDE THE PROGRAM LOGIC FOR THESE FUNCTIONS. THESE MACROS GENERATE
CODE THAT IS ABLE TO DISTINGUISH SPF-GENERATED OUTPUT FROM
NON-SPF-GENERATED OUTPUT. THIS IS DONE BY MEANS OF A "SIGNAL STRING"
WHICH BEGINS EVERY SPF-GENERATED FULL SCREEN OUTPUT MESSAGE.

THERE ARE TWO TYPES OF SPF SIGNAL STRINGS:
A. SPF FULL SCREEN SIGNAL STRING:

HEX '11 5D7F 11 XXXX '
B. SPF EXIT FULL SCREEN SIGNAL STRING:
HEX "1l 5D7E 11 XXXX '

WHERE: 'THE HEX 11'S ARE 3270 SET BUFFER ADDRESS (SBA) ORDERS,
THE HEX 5D7F REPRESENTS SCREEN LOCATION 1919 (DECIMAL),
THE HEX 5D7E REPRESENTS SCREEN LOCATION 1918 (DECIMAL), AND
XXXX REPRESENTS THE ACTUAL BUFFER ADDRESS DESIRED BY SPF.

SINCE TWO SBA'S IN A ROW IS A VALID BUT MEANINGLESS SEQUENCE, IT IS
ASSUMED THAT NON-SPF-GENERATED MESSAGES WILL NOT CONTAIN EITHER OF
THESE SIGNAL STRINGS.

(CONTINUED ON NEXT PAGE)

LICENSED MATERIAL - PROPERTY OF IBM APPENDIX B 359

| TERMINAL INPUT/CUTPUT ERROR CODES

1.

2.

3.

362 SPF/TS0 PROGRAM LOGIC MANUAL

THE MODULE SMC IS RESPONSIBLE FOR MOST TERMINAL I/0 DONE BY SPF. IT
USES THE COMMON SUBROUTINES CTPUT AND CTGET, WHICH IN TURN ISSUE TPUT
AND TGET SYSTEM SERVICE REQUESTS. THE TPUT AND TGET RETURN CODES ARE
CHECKED AND THE TGET INPUT DATA IS VERIFIED BY SMC. IF AN ERROR IS
DETECTED, SMC SENDS A MESSAGE ALONG WITH CODES TO THE DISPLAY.

| THE FOLLOWING IS A LIST SMC TERMINAL I/0 ERROR MESSAGES AND CODES.

"%¥ SPF SCREEN OUTPUT ERROR - CODE = 41 - TPUT RC = XXXX xx",
WHERE "™XXXX™ IS A TPUT RETURN CODE OTHER THAN 0 OR 8.

"x% SPF SCREEN INPUT ERROR - CODE = 21 - TGET RC = XXXX %x",
WHERE "™XXXX"™ IS A TGET RETURN CODE OTHER THAN 0, 4, OR 8.

"x% SPF SCREEN INPUT ERROR - CODE = NN x*xv,
WHERE "NN" VALUES ARE:

"22"™ - INPUT STREAM SIZE GREATER THAN INPUT BUFFER SIZE OR 0.

"24™ - INVALID INPUT AID.

"25" - INPUT CURSOR LOCATION NOT WITHIN PHYSICAL SCREEN.

"26™ - INPUT STREAM SIZE INVALID FOR INPUT AID.

n28" - INPUT BUFFER FIELD SIZE GREATER THAN CORRESPONDING PHYSICAL
SCREEN FIELD SIZE (INVALID AMOUNT OF INPUT DATA).

"29" - 1ST BYTE OF INPUT BUFFER FIELD NOT WITHIN EITHER LOGICAL
SCREEN WHICH IS ON THE PHYSICAL SCREEN (INPUT DATA FROM
INVALID SCREEN POSITION).

"2A" - éSTAgYTE OF INPUT BUFFER FIELD NOT AN SBA (INVALID INPUT

ATA).

"31™ - PHYSICAL SCREEN FIELD SIZE GREATER THAN 255 (INPUT DATA FROM
INVALID SCREEN POSITION).

"32" - PHYSICAL SCREEN FIELD SIZE IS 0 (INPUT DATA FROM INVALID
SCREEN POSITION).

"33™ - BYTE PRECEEDING THE PHYSICAL SCREEN FIELD IS NOT AN INPUT
ATTRIBUTE (INPUT DATA FROM INVALID SCREEN POSITION).

"34"™ - BYTE PRECEEDING THE PHYSICAL SCREEN FIELD IS PAST THE END OF
TgEIP¥Ya§CAL SCREEN (INPUT DATA FROM INVALID SCREEN
POSITION).

n3gn - }:$3¥ gg?:ER FIELD SIZE GREATER THAN 255 (INVALID AMOUNT OF

NOTES: THE PHYSICAL SCREEN SIZE IS DETERMINED BY SPF DURING

INITIALIZATION. THE INPUT BUFFER SIZE IS A VARIABLE BASED
ON THE PHYSICAL SCREEN SIZE. THE LOGICAL SCREEN IS THE
SAME SIZE AS THE PHYSICAL SCREEN AND IT IS WHAT THE
PROCESSOR TASK USES FOR SCREEN Is/0. ONLY A PART OF THE
LOGICAL SCREEN IS ON THE PHYSICAL SCREEN WHEN SPF IS
RUNNING IN SPLIT SCREEN MODE. A INPUT BUFFER FIELD IS FROM
AN SBA TO THE NEXT SBA OR THE END. A PHYSICAL SCREEN FIELD
IS FROM THE LOCATION INDICATED IN THE INPUT BUFFER SBA TO
THE NEXT ATTRIBUTE BYTE IN THE PHYSICAL SCREEN.

LICENSED MATERIAL - PROPERTY OF IBM

APPENDIX C. ERROR CODES

BEND CODES

ABENDS OF THE SPF CONTROLLER AND PROCESSOR TASKS ARE CONTROLLED BY STAE

AND

STAI EXIT ROUTINES AND SPF EXECUTION MODES WHICH ARE SET VIA THE

"SPF TEST"™ COMMAND (SEE THE INSTALLATION AND CUSTOMIZATION GUIDE).

UNDER NORMAL SITUATIONS (WHEN PROCESSOR AND CONTROLLER DUMPS ARE NOT
REQUESTED VIA THE "SPF TEST™ COMMAND) THE FOLLOWING OCCURS:

THE
AND
THE

WHEN A PROCESSOR TASK ABENDS, NO DUMP IS TAKEN, THE CONTROLLER
REATTACHES THE PROCESSOR MAIN DRIVER (SPFPMD), AND THE PRIMARY
OPTION MENU IS REDISPLAYED FOR THAT LOGICAL SCREEN.

WHEN THE CONTROLLER TASK ABENDS, NO DUMP IS TAKEN, SPF TERMINATES,
AND CONTROL RETURNS TO TSO.

CONTROLLER AND PROCESSOR TASKS WILL ISSUE THE ABEND SYSTEM SERVICE
ALLOW DUMPS UNDER CERTAIN SITUATIONS. THE SPF MODULES THAT ISSUE
ABEND AND THE ASSOCIATED CODES AND REASONS FOLLOW:

CDISPL = USER CODE = "™111"™ OR ™222" - TO PRODUCE THESE ABENDS THE

USER MUST REQUEST PROCESSOR DUMPS VIA THE “SPF TEST"
COMMAND AND ENTER ONE OF THE FOLLOWING COMMANDS IN THE
FIRST 8 BYTES OF THE FIRST INPUT FIELD ON A LOGICAL SCREEN.
WABEND"™ - TERMINATES SPF WITH CODE "111".
"CRASH"™ - TERMINATES SPF WITH CODE ™222" AND PREVENTS
TASK TERMINATION FROM CLOSING THE EDIT
BACKUP/RECOVERY DATA SETS.

MHA ~ USER CODE = "™998™ - THIS ABEND IS USED BY MHA TO PASS

CONTROL TO THE CONTROLLER TASK WHEN MHA IS UNABLE TO
DISPLAY THE MENU REQUESTED BY THE PROCESSOR TASK. THE
CONTROLLER REATTACHES SPFPMD AND THE PRIMARY OPTION MENU IS
REDISPLAYED FOR THAT LOGICAL SCREEN.

SMA - THERE ARE TWO USER ABENDS POSSIBLE FROM SMA AS FOLLOWS:

1. USER CODE = PROCESSOR ABEND CODE OR ATTACH RETURN CODE -
THIS ABEND IS ISSUED WHEN THE ATTACH OF SPFPMD FAILS OR
SPFPMD ABENDS BEFORE THE PRIMARY OPTION MENU IS
DISPLAYED IN THE FOLLOWING SITUATIONS:.

A. FOR THE FIRST LOGICAL SCREEN - ALWAYS.

B. FOR THE SECOND LOGICAL SCREEN - WHEN THEN THE USER
HAS REQUESTED PROCESSOR DUMPS VIA THE "SPF TEST"
COMMAND. NORMALLY, FOR THIS SITUATION, ONLY MESSAGES
ARE DISPLAYED ON THE FIRST LOGICAL SCREEN.

2. USER CODE = PROCESSOR ABEND CODE - THIS ABEND IS ISSUED
WHEN THE PROCESSOR TASK ABENDS AS FOLLOWS:

A. ANYTIME AFTER THE PRIMARY OPTION MENU IS DISPLAYED IF
THE USER HAS REQUESTED CONTROLLER DUMPS VIA THE "SPF
TEST" COMMAND. NORMALLY, THE CONTROLLER REATTACHES
SPFPMD AND THE PRIMARY OPTION MENU IS REDISPLAYED FOR
THAT LOGICAL SCREEN.

B. ANYTIME AFTER THE FINAL TERMINATION PROCESS BEGINS.

SMC - USER CODE = ™997" - WHEN SMC DETECTS A TPUT RETURN CODES

OTHER THAN 0 OR 8, A MESSAGE WILL BE DISPLAYED (DESCRIBED
IN THE TERMINAL I/0 ERROR CODES), AND THEN SMC WILL ATTEMPT
A FULL SCREEN REDISPLAY. IF THE REDISPLAY FAILS TWICE THIS
ABEND WILL BE ISSUED.

OTHERS - SYSTEM CODE = "0Cl1™ - IN SEVERAL SPF COMMON SUBROUTINES

LICENSED MATERIAL - PROPERTY OF IBM

PARAMETER VERIFICATION FAILURE WILL RESULT IN THE EXECUTION
OF A "00"X, WHICH IN TURN CAUSES AN "O0C1™ ABEND. THIS
INDICATES THE CALLER HAS PASSED AN INVALID VALUE FOR A
PARAMETER WHICH IS REQUIRED FOR CONTINUED EXECUTION. THIS
SHOULD NEVER OCCUR IN THE DISTRIBUTED SYSTEM.

APPENDIX C 361

Licensed Material — Property of IBM

LY20-2339-2
== =

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

Z-6EEZ-0ZAT1 "V'S'N Ul pajulld [enuepy 91607 weiboig "' “ais1eA Anjioey BujwueiBold painionig pue woddng Aeidsiq 0£2Z€ uoi-'i “upieys ew)

¢

