APL2 GRAPHPAK: User's Guide

and Reference
SH21-1074-02

APL Products and Services
IBM Silicon Valley Laboratory
555 Bailey Avenue
San Jose, California 95141
APL2@vnet.ibm.com

Copyrights
© Copyright IBM Corporation 1980, 2017 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corporation

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02
© Copyright IBM Corporation 1980, 2017

Contents

Notices

We Would Like to Hear from You
Preface

Getting Started and Drawing Line Graphs
Drawing Bar Graphs, Step Charts, and Pie Charts
Representing Surfaces

Fitting Curves

Writing Text and Drawing Flat Pictures
Drawing Three-Dimensional Objects
Function Reference

Variable Reference

Installation and Customization

Group Variables

Device Dependencies

Messages
Glossary

0 0 0O o oo oo 0O o o o0 o o o o

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02
© Copyright IBM Corporation 1980, 2017

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to make
these available in all countries in which IBM operates. Any reference to an IBM product, program, or service is
not intended to state or imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe on any of IBM's intellectual property rights may
be used instead of the IBM product, program, or service. Evaluation and verification of operation in conjunction
with other products, except those expressly designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject material in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 4
© Copyright IBM Corporation 1980, 2017

Programming Interface Information

This book is intended to help you write applications in APL2. It documents General-Use Programming
Interface and Associated Guidance Information provided by APL2. General-use programming interfaces allow
the customer to write programs that obtain the services of APL2.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02
© Copyright IBM Corporation 1980, 2017

Trademarks

IBM Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other countries or both:

AIX/6000
APL2
GDDM
IBM

0S/2
WebSphere

Other Trademarks

The following terms are trademarks of other companies:

PostScript Adobe Systems, Inc.
Sun Sun Microsystems, Inc.
Solaris Sun Microsystems, Inc.
TrueType Apple Computer, Inc.
Windows Microsoft Corporation
Windows NT Microsoft Corporation

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02
© Copyright IBM Corporation 1980, 2017

We Would Like to Hear from You

APL2 GRAPHPAK: User's Guide and Reference

Please let us know how you feel about this online documentation by placing a check mark in one of the columns
following each question below:

To return this form, print it, write your comments, and mail it to:
International Business Machines Corporation
APL Products and Services - PGUA/E1
555 Bailey Avenue
San Jose, California 95141
USA

For postage-paid mailing, please give the form to your IBM representative.

You can also send us your comments by email. To send us this form, copy it to a file, write your comments
using a file editor, and then send it to:

apl2@vnet.ibm.com

Overall, how satisfied are you with the online documentation?

Very Very
Satisfied Dissatisfied
1 2 3 4

Overall Satisfaction

Are you satisfied that the online documentation is:

Accurate

Complete

Easy to find

Easy to understand

Well organized
Applicable to your tasks

Please tell us how we can improve the online documentation:

Thank you! May we contact you to discuss your responses?

__Yes ___No
Name :
APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 7

© Copyright IBM Corporation 1980, 2017

Title:

Company or Organization:

Address:

Please do not use this form to request IBM publications. Please direct any requests for copies of publications, or
for assistance in using your IBM system, to your IBM representative or to the IBM branch office servicing your
locality.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 8
© Copyright IBM Corporation 1980, 2017

Preface

GRAPHPAK is an APL2 workspace containing predefined functions that control graphics devices. This manual
tells how to use those functions to produce computer graphics.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 9
© Copyright IBM Corporation 1980, 2017

How Much APL2 Background You Need

This manual is for people who know only a little about APL2, as well as for experienced programmers. To use
this manual, you will need to know how to:

e Assign a value to a variable. (As an example, ABC«+10 assigns the value 10 to variable ABC.)

e Form vectors and matrices. (Probably you will use the APL2 functions catenate, laminate, and reshape.)
o Execute a defined function. (DRAW X executes the function DRAW with the argument X.)

e Write a simple APL2 function.

e)LOAD and)SAVE a workspace. And you will have to know what happens when you do those things.

o Tell when a statement has finished executing and the system is ready for more input.

You will need to know whether or not you are using the APL2 session manager. If you are using it, you will
need to know how it controls the display on your screen.

You will also need to know what is meant by types of data structures in APL2: scalars (single values), vectors
(1-dimensional arrays), matrices (2-dimensional arrays), and arrays of higher dimension.

You will come upon some other APL2 words also: rank, global variable, and the like. You can find definitions
for most of these in the glossary at the end of this manual. If you find terms that you think ought to be in the
glossary, but aren't, please let us know. The Reader's Comment Form in We Would Like to Hear from You is a
good way to tell us.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 10
© Copyright IBM Corporation 1980, 2017

How Much Mathematics Background You Need

Some of the functions in GRAPHPAK use fairly sophisticated mathematical methods, like least-squares fitting.
In order to use these methods it is not always necessary to understand them. This manual does not attempt to
give the detail that would be needed for that kind of understanding.

Instead, the manual assumes that, if you want to fit a function to a set of points, you are already familiar with
the method and know why you want to use it. If the manual mentions a method you don't know about, and
doesn't explain it, then it probably doesn't do what you want. In that case, you can generally skip the entire
section it appears in without missing anything you will need for other sections.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 11
© Copyright IBM Corporation 1980, 2017

How This Manual is Organized

Getting Started and Drawing Line Graphs describes concepts and methods that are used in all the later sections.

Drawing Bar Graphs, Step Charts, and Pie Charts tells how to produce displays like those shown below.

Representing Surfaces shows how to draw representations of surfaces like those below.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 12
© Copyright IBM Corporation 1980, 2017

Fitting Curves tells how to calculate and plot the best fit to a set of points. The functions fitted can have these
forms:

e Average

e Straight line
e Polynomial
o Exponential
o Power

e Spline-like

Writing Text and Drawing Flat Pictures tells how to

e Write text anywhere on the screen
e Draw hierarchic diagrams (organization charts)
e Draw arbitrary lines and fill areas

Drawing Three-dimensional Objects tells how to draw and transform projections of 3-dimensional objects.

Function Reference gives an alphabetic list of the functions that you would likely use directly. It describes the
syntax and results of each. (Functions that are typically used by other functions, and not directly by you, are not
listed.)

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 13
© Copyright IBM Corporation 1980, 2017

Variable Reference gives an alphabetic list of the variables in GRAPHPAK that you may need to change
explicitly. It summarizes their content and meaning. (Variables that you will not likely use directly are not
listed.)

Installation and Customization tells how to:

e Do some things you have to do once, to install GRAPHPAK
e Remove comments and symbols from a private copy of GRAPHPAK, to save space
o Change the area of your screen that is given over to the APL2 session manager

APL2 Group Variables lists the group variables and shows which functions call which others. You may have to
refer to this section if you copy or delete a portion of GRAPHPAK.

Device Dependencies lists the functions and variables that contain information about your output device.
GRAPHPAK is supplied with all the different versions of APL2 for OS/2, AIX, Sun Solaris , Linux, Windows,
DOS, and the mainframes. If you intend to use GRAPHPAK in applications that will be used on multiple
platforms or want to take advantage of features specific to a particular platform, you may have to change some
of these items.

Messages lists and explains the messages you might receive from GRAPHPAK, in order by message number.

There is also a glossary.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 14
© Copyright IBM Corporation 1980, 2017

APL2 Documentation

Along with this manual, APL2 GRAPHPAK: User's Guide and Reference, the following additional on-line
manuals are included with Workstation APL2:

e APL2 User's Guide

e APL2 Language Summary

e APL2 Programming: Language Reference

e APL2 Programming: Developing GUI Applications (for Windows only)
e APL2 Programming: Using SQL

e APL2 Programming: Using APL2 with WebSphere

The following table shows all the books in the APL2 library, organized by the tasks for which they are used.
The APL2 library can be found on the web at http.//www.ibm.com/software/awdtools/apl/library.html.

Information Book Publication Number
Introductory |An Introduction to APL2 SH21-1073
language APL2 Language Summary SX26-3851
material
Common APL2 Programming: Language Reference SH21-1061
reference APL2 Reference Summary S$X26-3999
material APL2 GRAPHPAK: User's Guide and Reference | SH21-1074
APL2 Programming: Using SQL SH21-1057
APL2 Migration Guide SH21-1069

Mainframe |APL2 Programming: System Services Reference ~ |SH21-1054
programming | APL2 Programming: Using the Supplied Routines SH21-1056
APL2 Programming: Processor Interface Reference SH21-1058
APL2 Installation and Customization under CMS |SH21-1062
APL2 Installation and Customization under TSO SH21-1055

APL2 Messages and Codes SH21-1059
APL2 Diagnosis LY27-9601
Workstation |APL2 User's Guide SC18-7021

programming APL2 Programming: Developing GUI Applications SC18-7383
APL2 Programming: Using APL2 with WebSphere SC18-9442

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02
© Copyright IBM Corporation 1980, 2017

15

Related Publications

On APL2 mainframe systems, the graphic services used by GRAPHPAK are provided by the GDDM
(Graphical Data Display Manager) product.

You must have GDDM to communicate between GRAPHPAK and a display terminal.
GDDM Publications:

GDDM General Information, GC33-0319

GDDM: Programming Reference, SC33-0332

GDDM Manager Presentation Graphics Feature: Programming Reference, SC33-0333
GDDM Application Programming Guide, SC33-0337

GDDM Messages, SC33-0325

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02
© Copyright IBM Corporation 1980, 2017

16

Syntax Notation

This manual uses a syntax notation that distinguishes between information you must enter exactly as shown and
information that you may change as appropriate.

If an entry is to be made exactly as shown, it appears in APL, FONT.

If an entry represents information that you may change according to your circumstances, it appears in lowercase
italics. For example, a model entry might be described as

DRAW right

To use this model, you would enter DRAW (the name of an APL2 function) exactly as shown, and supply some
other appropriate information (actual data, the name of an APL2 variable) in place of right.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 17
© Copyright IBM Corporation 1980, 2017

Getting Started and Drawing Line Graphs

The purpose of GRAPHPAK is to help you create graphs, charts, and drawings on a computer display screen.
The purpose of this document is to tell you how to use GRAPHPAK.

Perhaps you have already looked through this document to look at the pictures. That's a good way to start. With
a little luck, one of the pictures looks like something you want to create. If so, you know exactly where you
want to go. This chapter will try to get you there quickly.

If you found a likely picture, you probably found near it a set of APL statements that you thought might create
it. If you tried to modify those statements to produce exactly what you wanted, you were probably frustrated.
Even if you tried to execute just what appears in the manual, you might not have been pleased with the result. A
few explanations might be needed. The next sections should help:

e A Quick Example

o Getting Started and Drawing Line Graphs

e A Model Function: PLOT Draws a Line Graph
o Basic Housekeeping Routines

e Structuring Data for PLOT

¢ Defining Spaces and Viewports

o Putting on the Finishing Touches

e A Note on APL2 Functions

¢ Summary of Basic Concepts

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 18
© Copyright IBM Corporation 1980, 2017

A Quick Example

But explanations can be tedious. Would you like to do something right away? If you have all the hardware and
software installed, know how to sign on to APL, and know where to find the GRAPHPAK workspace, try this:

1. Sign on to APL and turn on the APL character set.
2. Load GRAPHPAK.
3. Enter these statements:

YDATA«1 2 "1 3 2 2 4
PLOT YDATA
VIEW

There is a good chance that your screen will display the following figure. If it did, and if these steps all made
sense to you, you can skip the next section Getting Started and Drawing Line Graphs. Go on to A Model
Function: PLOT Draws a Line Graph.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 19
© Copyright IBM Corporation 1980, 2017

Getting Started and Drawing Line Graphs
This section explains the steps in the quick example.
When you sit down at a computer to use GRAPHPAK, you typically do something like this:

1. Sign on to APL2.

2. Load the GRAPHPAK workspace.

3. Copy data into the GRAPHPAK workspace.
4. Process the data with GRAPHPAK functions.

"Getting Started" includes the first three of these steps. Most of the rest of this manual tells how to do step 4 for
different kinds of tasks.

Signing On

This step is necessary, but outside the scope of this manual. Instructions for signing on to APL2 are in the APL2
User's Guide for workstation systems or in APL2 Programming: System Services Reference for mainframe
systems. Variations on the process may have been set up for your installation.

There are also options you can name when signing on. One of them allows you to use, or suppress, the APL2
session manager. The figures in this manual have been made using the session manager. On CMS and TSO, the
session manager is not required.

Loading GRAPHPAK

When you are signed on to APL2 you get a series of messages, possibly ending with:

CLEAR WS

You can then load the GRAPHPAK workspace by giving the command:

) LOAD 2 GRAPHPAK

Here 2 is (probably) the number of the APL2 library that contains GRAPHPAK. When GRAPHPAK is loaded
you'll get another message, containing an IBM copyright notice.

GRAPHPAK is an APL2 workspace like any other. You can add things to it, delete things from it, and store
copies of it, even under other names. If you have a copy of the workspace in your private library, you don't need

a library number in the)LOAD command. And if you have a copy stored under some other name, you can use
that name instead of "GRAPHPAK".

Messages

Even the quick example can involve you in a series of messages issued by the programs you are using. You will
receive the text of a message without a message number. If you wish to see the message number, issue the
APL2 command MORE. Most of them, like these, are not disasters.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 20
© Copyright IBM Corporation 1980, 2017

e If you are running on the mainframe, and you got the message,
SYMBOL SETS DO NOT EXIST ON AUXILIARY STORAGE

then some data sets, called "the symbol sets," were not loaded onto auxiliary storage when GRAPHPAK
was installed. You can go ahead without them, but the system may not work as quickly. See What to Do
with Symbol Sets to learn what the symbol sets are and what you can do about them.

e If you got the messages,

GDDM RETURN CODE WARNING
W CO-ORDINATE OUTSIDE PICTURE SPACE

then the size of your session manager field, or the size of your graphic field, or both, are not what the
examples in this manual used. See Changing the Session Manager and Graphic Fields to learn what
these fields are and how you can change them.

o If you got any other GRAPHPAK message, look it up in Messages. There you will find a further
explanation of what caused the message.

e If you got an APL2 error or trouble report, you probably spelled something wrong. This manual does not
discuss APL2 errors. You can look them up in APL2 Programming: Language Reference.

Copying Data into GRAPHPAK

It is likely, but not necessary, that you will want to use data that exists in some other APL2 workspace. For
example, to produce a simple graph like that shown in A Quick Example you need a set of Y-values, probably
assigned to some variable - YDATA in the example. To plot YDATA, it must be in GRAPHPAK. If it exists in
some other workspace, you can copy it into GRAPHPAK by giving the system command

) COPY wsid YDATA
where wsid is the name of the other workspace.

Other Methods

There are other ways to get data into GRAPHPAK. For example, you could

o Read the data from a file that is not an APL2 workspace. You can either associate a variable name with
the file using associated processor 12 or read the file using a processor 10 function or an auxiliary
processor. For information about using associated processors 10 and 12 and the auxiliary processors,
consult the APL2 User's Guide for your workstation system or APL2 Programming: System Services
Reference for the mainframe.

e Generate the data within GRAPHPAK by executing an APL2 function that you have defined within
GRAPHPAK. This was done to produce several of the figures in this manual, for example Drawing
Surface Charts.

o Enter the data into GRAPHPAK from the computer keyboard, as you did in the example.

If you are going to copy group variables under APL2, refer to APL2 Group Variables, and also to APL2
Programming: Language Reference.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 21
© Copyright IBM Corporation 1980, 2017

A full discussion of any of these methods is outside the scope of this manual. In most of what follows, it is
assumed that you have the data you need within GRAPHPAK.

Drawing Pictures

Drawing pictures is a special case. There are functions in GRAPHPAK that allow you to use your cursor or
mouse to draw pictures. These functions assign data about the location of the cursor or mouse to variables in
GRAPHPAK. For information, see the options of READ described in Writing Text and Drawing Flat Pictures.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02
© Copyright IBM Corporation 1980, 2017

22

A Model Function: PLOT Draws a Line Graph

Now you are through getting started. Pause here to think about how you'll be using GRAPHPAK.

The simplest model for using GRAPHPAK is this: You provide the data (in YDATA in the example), and find a
function (PLOT) that produces the display you want. Combine the function and the data in a statement like

PLOT YDATA
What to Expect Next

The rest of this chapter looks at a sample task: plotting a line through a set of points. The sample serves two
purposes:

o Itintroduces two functions, PLOT and SPLOT, that are both typical and simple.
o Itillustrates concepts and methods that will be needed later, under the headings of
o Basic Housekeeping Routines
e Structuring Data for PLOT
e Defining Spaces and Viewports
o Putting on the Finishing Touches

A final example combines these concepts and methods into a new APL2 function like one you might want to
create for yourself. This example is found in the section titled A Note on APL.2 Functions.

A Bit of a Warning: The descriptions of functions given in the rest of this chapter are not necessarily complete.
The same is true of descriptions in Chapters 2 through 6. But there are complete descriptions of the functions
you need, in alphabetic order, in Function Reference, and complete descriptions of the global variables in
Variable Reference.

The reason for omitting some of the details is to make some other things stand out more clearly. The first
sections of this manual give you the big picture; if they don't tell you how to do something you want to do, try
the later reference sections.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 23
© Copyright IBM Corporation 1980, 2017

Basic Housekeeping Routines

These are the things about which people ask, "Why didn't the computer know I wanted to do that?" But no,
every little thing needs a function to do it. This section describes

e VIEW

e COPY and COPYN

e FSSAVE and FSSHOW

e GSSAVE GSLOAD and PRINTFILE

ERASE
RESTORE

VIEW

Depending on how you use the APL2 session manager, you may have to use VIEW (It was used in the
statements that produced A Quick Example, just in case.)

On Workstation Systems:

GRAPHPAK and the session manager display their output in separate windows. Normally, you can use window
manager techniques to switch between windows. However, if the GRAPHPAK window is lost behind other
windows or you want to bring it to the foreground under program control, you can use the VIEW function.
VIEW will bring the GRAPHPAK window to the foreground and wait for user input.

On CMS and TSO:

With the APL2 Session Manager:

You have a session manager field and a graphic field available.

e On the session manager field, you enter APL2 statements and display character and numeric output.
e On the graphic field, you display graphic output.

If the two fields do not overlap, they appear together on your screen. If they do overlap, only one will be in the
foreground at any given time.

o If the session manager field is in the foreground, use VIEW to switch to the graphic field to see graphic
output. Press the Enter key to return to the session manager field.

o If they appear together, you don't need VIEW. Graphic output will appear in the graphic field as soon as
it is created.

The figures in this manual were made using the session manager. If you are trying to execute the examples
exactly, and think you have gotten out of step somewhere, see Changing the Session Manager and Graphic
Fields to learn how to reset the session manager control.

Without the APL2 Session Manager:

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 24
© Copyright IBM Corporation 1980, 2017

You have an APL screen and a graphic field. The graphic field is under control of the graphics processor. Use
VIEW to switch to the graphic field so you can see graphic output. Press the Enter key to return to the APL
screen.

Remember VIEW: It's left out of the examples from now on.

COPY and COPYN

To produce a printed copy of graphic output, do one of these procedures:

copyname«destination
COPY

or
COPYN destination

The function COPY finds the print destination in the global variable copyname. The function COPYN simply
assigns its right argument to copyname and executes COPY.

If copyname begins with a blank or asterisk, COPY will prompt you for a destination.
On OS/2 and Windows:

destination is either a file specification of the form:

[path] filename

or a null character vector. If a file specification is supplied, a metafile is written. If a null character vector is
supplied, the default printer is used.

On CMS and TSO:
COPY and COPYN produce output on the alternate GDDM device.

COPY and COPYN use the global variable copyct1 which controls the number of copies, page depth, and
margin size.

On TSO, destination is the address of the printer.
On CMS, destination is a character vector of up to 8 characters that names a file which will be created and

stored on your CMS disk. destination is used as the file name and ADMPRINT is the file type. After you
have finished your APL2 session and signed off APL2, you can print the file using the print utility ADMOPUV:

ADMOPUV filename

The printer must be connected to virtual address 061.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 25
© Copyright IBM Corporation 1980, 2017

GDDM allows ADMQPOST EXEC to process print files and nicknames for automatic processing. See
Graphical Data Display Manager Base: Application Programming Guide for further information on the use of
GDDM on CMS and TSO.

On Unix Systems:

COPY and COPYN are not supported on these operating systems.

FSSAVE and FSSHOW
Note: FSSAVE and FSSHOW are only supported on CMS and TSO.

To save a copy of graphic output in a file, execute

FSSAVE filename
where filename is a file name of your choice.

To read it back and display it again, execute

FSSHOW filename
where filename is the same name you used before.
There's little need for this operation with simple examples: To see the plot of YDATA again in a later session, it's

easiest to save YDATA in your workspace and execute PLOT YDATA all over again. You might well want to
use FSSAVE and FSSHOW with a complex example that takes many statements to produce.

GSSAVE, GSLOAD, and PRINTFILE
Note: GSSAVE, GSLOAD, and PRINTFILE are only supported on CMS and TSO.

To save a copy of graphic output in an ADMGDF file, execute

GSSAVE filename
where filename is a file name of your choice.

To load the output back onto the graphics screen, execute

GSLOAD filename

where filename is the same name you used before. The VIEW function may be needed to cause the graphics
screen to be displayed.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 26
© Copyright IBM Corporation 1980, 2017

ADMGDF files are more flexible than the files produced by FSSAVE. FSSAVE produces ADMSAVE files
which can be processed very quickly. However, they are device dependent. This means that they can only be
displayed on the same type of terminal on which they were created.

ADMGDF files, however, are device independent. They can be displayed on many kinds of terminals and can
also be converted for use on other types of devices, for example printers and plotters.

To save a copy of graphic output in a GDDM print file, execute

PRINTFILE filename
where filename is a file name of your choice. GDDM print files cannot be read using GRAPHPAK

GDDM print files are device dependent and are used when printing graphics on 3800 family printers.

ERASE

Suppose you have just executed

PLOT YDATA

and you now execute

ZDATA«2 3 3 2 4 4 4
PLOT ZDATA

When you look at the result, you will see the two graphs superimposed. In some cases, this is what you want to
happen. But to make the second example completely separate from the first, execute

ERASE
PLOT ZDATA

RESTORE

Some of the things you do in GRAPHPAK change the values of global variables that are used as controls. Often
you want to change those values back again before doing something else. RESTORE restores many of them;
execute

RESTORE

RESTORE will be mentioned again often, in connection with each variable it modifies.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 27
© Copyright IBM Corporation 1980, 2017

Structuring Data for PLOT

A Quick Example shows that PLOT will take an argument that is a vector of n Y-values, and plot them versus
integral values of X from 1 to n. It will also take a 2-column matrix, containing X-values in its first column and
corresponding Y-values in its second column. But there are other possibilities also.

The following figure shows a graph of YDATA and ZDATA versus 7 values of X from 5 to 35. It was created by

the following statements:

Xe5%x17
PLOT YDATA AND ZDATA VS X

The purpose of AND and VS (versus) is to structure data into the form required by PLOT.

Note: This example, and others throughout the manual, assumes that the APL2 index origin system variable
(010)is setto 1, as it is when GRAPHPAK is distributed.

-1

Plotting Several Graphs at Once with AND and VS

The names AND, VS, and PLOT have been chosen so that you can write a command that looks like English and
have it mean to APL?2 just about what it means to you. (But the use of parentheses follows algebraic notation,

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 28

© Copyright IBM Corporation 1980, 2017

not English.) The actual data structure that is produced is probably not important to you, though it is described
in the reference section in the appendix.

How you write a command depends on the form of your data, as these examples show:
Example - Data in Vector Form

You have several pairs of vectors, say XA and YA, XB and YB, XC and YC, containing the X- and Y-values of
several sets of points. To plot the graphs of all the sets on the same pair of axes, execute

PLOT (YA VS XA) AND (YB VS XB) AND (YC VS XC)

Other combinations of the data are possible. For example,

PLOT (YA VS XA) AND (YB AND YC VS XB)
Example - Data in Matrix Form
You have the Y-values of several sets of points in successive columns of the matrix YMAT, and the

corresponding X-values in the corresponding columns of matrix XMAT. To plot the graphs of all the sets on the
same pair of axes, execute

PLOT YMAT VS XMAT

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 29
© Copyright IBM Corporation 1980, 2017

Defining Spaces and Viewports

If you do the examples shown so far in this chapter, without changing anything else in GRAPHPAK, the graphs
will take up most of your graphics window. You may want to make them a little larger, make them smaller, or
put several graphs in the window side by side. To make these changes, you need to know how information
about your window is kept in GRAPHPAK. This section describes the basic concepts you will need.

Virtual Space

Regardless of the physical size of any particular output device, PLOT prepares output for a 2-dimensional space
of 100 units by 100 units. Each point in this space is known by its coordinates: the point (0,0) is at the lower left
of the screen; the point (100,100) is usually off the screen at the upper right. The entire set of points is called
virtual space.

When you use GRAPHPAK functions that draw graphs or charts, think of them plotting their output on virtual
space. There are other functions (WRITE, DRAW, and FILL) that allow you to address virtual space directly.

Real Space

The set of real points on a cathode-ray tube at which an electron beam can be physically aimed, or the set of
points on a piece of paper on which a distinct dot can be printed or at which a plotting arm can be positioned, is
a real space. The number of distinct points in real space may differ for each type of device. Hence GRAPHPAK
must keep information about the size of real space, and include functions that transform output for virtual space
into output for real space. The information is kept in the global variable dd.

The Scaling Viewport
Overview

PLOT prepares output for virtual space, but usually not to fill all of virtual space. The typical display screen is
already smaller than virtual space, and to allow room for titles and labels the typical graph should be smaller
still. So PLOT (like most of the GRAPHPAK functions) scales down its output to fit a subset of virtual space;
this subset is called the scaling viewport.

The following figure shows a possible relationship of the scaling viewport to virtual space and to your display
screen.

100,100

R +

I I
Virtual space --------------------- |

I I

| Ammm e + |
Graphic field --------------- [
of screen I T + |

iR R
Scaling viewport (SVP) ---------- ||

[L

[[110,7 L
APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 30

© Copyright IBM Corporation 1980, 2017

Definition

The scaling viewport is a rectangle within virtual space that has been allotted for the output of plotting and
charting functions. It is described by the global variable svp, a vector of length 4, as shown below. The
numbers there are coordinates in virtual space.

Coordinates of

I
I
I
lower left corner ----+

upper right corner ----------- +
Example

The figure uses the default value of svp, which defines a scaling viewport that fits comfortably into the display
screen of the IBM 3279 model 3 terminal; it is 86 units wide (96 minus 10) and 62 units high (69 minus 7). The
comfortable fit allows room for labels that fall outside the scaling viewport on the left and bottom of the screen.
If your data is such that labels will fall on the right and/or top, you may need to adjust svp to avoid truncation
of the labels.

Changing It

To change the size of a graph, or to relocate it in virtual space, change the scaling viewport. For example, to put
the graph of YDATA above the graph of ZDATA, execute the following statements:

svp«l1l0 8 90 32

PLOT ZDATA VS X
svp«l0 36 90 60
PLOT YDATA VS X

In the example, the first assignment to svp makes the scaling viewport 80 units wide and 24 units high, with its
lower left corner at (10,8) in virtual space. The graph of ZDATA is plotted in that rectangle. The second
assignment defines a new scaling viewport, of the same size, with its lower left corner at (10,36); the graph of
YDATA is plotted there.

Limits on It

Before defining a new scaling viewport, consider the size of your graphic field. You don't want to put part of
the viewport outside the graphic field. The size is given in the global variable dd. The lower left corner of your
screen is at (0,0) in virtual space; the coordinates of the upper right corner are in the first two elements of dd.
(For the IBM 3279 model 3 terminal, and with the settings of the session manager that this manual uses, the
upper right corner is at (100, 71.2).)

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 31
© Copyright IBM Corporation 1980, 2017

Restoring It

If you had just executed the previous example, your scaling viewport would now be set to 10 36 90 60. Before
creating a new graph, you might want to set the scaling viewport back to its initial value. RESTORE resets it to a
convenient size.

The Clipping Viewport

If you're tired of spaces and viewports, skip to the next heading. You can do everything in the manual without
knowing about this.

GRAPHPAK contains the description of another viewport, the clipping viewport, that also helps to define what
your output will look like. Functions that produce graphic output normally discard anything that would lie
beyond the boundaries of the clipping viewport. Hence you can think of the clipping viewport as a device that
cuts away unwanted parts of your output.

Typically, the clipping viewport is set to coincide with the boundaries of your graphic field. In that setting it
prevents any attempt to produce a line beyond the edge of the field. However, you can also use the clipping
viewport to define a new viewing area, of almost any shape you like, within the boundaries of your actual
screen. Any output you try to produce can be cut off at the boundaries you establish for the clipping viewport.

The description of the clipping viewport is in the global variable cvp. The function FIXVP puts a description
of a shape you define into the form required by cvp. (Use the function VIEWPORT to display and FIXVP to set
cvp.)

What happens to lines that might extend outside the clipping viewport can be modified. The result depends on
the value of the global variable sci.

RESTORE restores cvp to a description of the screen boundaries.

The Window in Problem Space

Don't skip this section: it might be just what you need.

Definitions

A set of points to be plotted defines a problem space, which is the set of all possible points with the same type
of coordinates. For example, if you are plotting revenues by year, your problem space consists of all possible

points with an X-coordinate that represents a year and a Y-coordinate that represents an amount of revenue.

In practice, you use a subset of your problem space - say only years from 1985 to 1995 and dollar amounts from
0 to $1,000,000. This subset is the window in your problem space.

Example

A Quick Example shows that PLOT will calculate a window in your problem space, based on the values you
give it to plot. (The window in that figure extends from O to 7 along the X-axis and from -1 to 4 along the Y-
axis.) But you can specify a different window. For example, if you are plotting percentages, you may want to

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 32
© Copyright IBM Corporation 1980, 2017

specify that the window extends upward to 100%. Or you may want the area of your graph to extend outward to
2010 and upward to $2,000,000 even though none of your points reaches either limit.

Changing It

To change the window in your problem space, assign its coordinates to the global variable w. The format of w is
the same as the format of svp: the coordinates of the lower left corner followed by the coordinates of the upper
right corner.

Coordinates of |
lower left corner ---------- +

upper right corner ---------------- +

Relationship to the Scaling Viewport and Virtual Space

The relationship between the window in problem space and the window in virtual space (the scaling viewport)
is likely to become quite important to you. The figure below suggests a way to think of it: The plotting and
charting functions in GRAPHPAK map a window in problem space into the scaling viewport. If you don't
define a window explicitly, they will derive one from the data you supply.

_{$2M,1992)
| "“-;.__‘_H\-
($0.1975) (3659;
The window \ (10,7}
in prablem _—
space T
is mapped
into the
scaling viewport
in virtual spoce The Scaling Viewport
displays in the
grophic window
APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 33

© Copyright IBM Corporation 1980, 2017

Using Your Window

To make use of a window you have set yourself, use the function SPLOT (specified plot). For example, to plot
the points of A Quick Example in a window extending from O to 10 on the X-axis, and as far below the X-axis
as it does above, execute

we0 "4 10 4
'S' SPLOT YDATA

The function SPLOT uses a left argument to specify variations in the display. This argument is a character
vector whose elements can appear in any order; each controls a different aspect of the result.

The character S, used here, tells SPLOT to suppress its automatic computation of a new window w from the
problem data and instead to use the w you have specified. (Using 'S"', you need not specify all four elements of
w yourself. You may, for example, set only the lower limits and leave SPLOT to complete w by computing the
remaining values. However, when specifying the lower X element as a single element, it must be preceded by a
comma.) Other control characters you can use are described in the next section.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 34
© Copyright IBM Corporation 1980, 2017

Putting on the Finishing Touches

The figures that have appeared so far in this chapter are pretty bare-bones affairs, not quite what you would
want to present to a board of directors or an international conference. This section tells how you can

Create axes, labels, annotations, and titles.
Specify color, style, width, and mode.

Fill and edge areas.

Specify other aspects of line graphs.

So they will look like this...

Creating Axes, Labels, Annotations, and Titles

The plotting and charting functions in GRAPHPAK will generally draw axes for you by default, if you want.
But you can suppress these, and create new or additional axes if you like.

You can also specify three different types of identifiers for parts of a graph.

Labels
identify the tick marks on axes. (The numbers 10, 20, 30 in Structuring Data for PLOT are labels.)
Annotations

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02
© Copyright IBM Corporation 1980, 2017

identify an entire axis. (For example, you could identify the Y-axis with the annotation REPORTED
VALUE, as in the following figure.)

Titles
identify the entire figure. (The graph below bears the title, "A Plot with Labels, Annotations, and a
Title.")
4 /
'.’r}
L /f
3 7
/ £
: / /
3T /
2 / \ /
ol . /
§ 1 \-. / & Plat with Labsls, Annctaticns,
\ l',"’ and a Thle
L \". f"
/
C 1 ‘...l'l lll 1 1]
Jan|92 Jul 82 "\ /f Jan €3 Jul 83 Jan 94
B \
't

-

Quarterly Report Cates

The following statements were used to produce the figure:

YDATA«1l 2 "1 3 2 2 4

svp«10 10 85 60

'A' SPLOT YDATA

0 246 8 AXIS O

0 24 6 8 LBLX 5 6p'Jan 92Jul 92Jan 93Jul 93Jan 94°'

"1 012 3 4 LBLY O

0.1 ANNX 'Quarterly Report Dates'

~0.25 ANNY 'Reported Value'

6 1 TITLE 'A Plot with Labels, Annotations,” and a Title'

What's Coming

This sequence of statements includes the following items:

1. The function SPLOT, introduced earlier.
2. A character that tells SPLOT not to use the default method of locating tick marks on the axes and

labeling them.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02
© Copyright IBM Corporation 1980, 2017

36

3. New functions to specify the axes, labels, annotations, and titles you prefer.
This section describes the new items.
Using Control Characters in Left Arguments
Quite a few of the functions in GRAPHPAK use characters and digits in a left arguments as controls. You have
already seen the use of S in the left argument of SPLOT. Some other control characters are coming up soon.

Many more appear in later chapters.

General Rules for Control Characters

e No two functions allow exactly the same list of control characters. When in doubt as to what a function
allows, check its description in Function Reference.

e Even if you want none of the options allowed by the control characters, you can't ignore the left
argument if the function uses one. At the very least, you have to use an empty vector (' ') as the
argument.

e When two different functions allow some of the same control characters, those characters mean pretty
much the same thing to both functions. (Several functions use A, L, and S as SPLOT does.)

Note: Lower Case and Underbarred Control Characters

In previous versions of GRAPHPAK, some functions supported underbarred control characters. All these
functions now support lower case control characters rather than underbarred characters.

Because these characters are usually coded in literal character strings in functions, they are unaffected by the

CASE invocation option setting. User functions which use underbarred control characters should be modified to
use lower case control characters.

Control Characters for SPLOT

This is not a complete list, but only an introduction. By using control characters for SPLOT you can:

e Omit drawing default axes. (Use A.)
o Put default labels on the axes. (Use L.)

The figure above was plotted using A. The axes were drawn by a separate statement.

AXIS and AXES

Use these functions if you have used A in the left argument of SPLOT.

AXIS uses its left argument to control the X-axis, and its right argument to control the Y-axis. If an argument is
a vector, AXIS will put tick marks on the corresponding axis at the numbers given in the vector. If the argument

is 0, AXIS draws a default set of tick marks. The figure in Creating Axes, Labels, Annotations, and Titles was
plotted using the statement

0 2 4 6 8 AXIS O

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 37
© Copyright IBM Corporation 1980, 2017

which put tick marks at 0, 2, 4, 6, and 8 on the X-axis and at default locations on the Y-axis.

AXES uses no arguments, and draws two default axes. It is equivalent to 0 AXIS O.

With other values of the arguments for AXIS you can specify color, style, width, and mode for an axis and its
tick marks independently; specify a length for the tick marks; or specify that there be no tick marks at all. You
can also vary the location of an axis. (By default, the X-axis is placed to intersect the Y-axis as near as possible
to Y=0. And similarly for the Y-axis.) And you could use AXIS more than once, to put several sets of axes on
the same graph.

LBLX and LBLY

These functions put labels on the X- and Y-axes, respectively. Their left arguments give the locations at which
labels are to be placed on an axis. (They could be the same vectors that were used as arguments for AXIS.)

The right argument for LBLX or LBLY is a numeric vector or a character vector or matrix. It contains the labels
themselves, generally one to each row.

The label can include two APL characters for special purposes:

signals the beginning of a new line of a label.
I signals the beginning of a new label.

(You can change the characters used for these purposes; they are held in the global variable d1c.)

Creating Axes, Labels, Annotations, and Titles was plotted using the statements

0 246 8 LBLX 5 6 p '"Jan 92Jul 92Jan 93Jul 93Jan 94
"1 012 34 LBLY O

Here the O in the right argument of LBLY specifies that the labels are the numbers in the left argument. In this
case, the left argument could have been 0 to indicate that data values will be used to label the axis.

A Warning About Space

When you first put labels, annotations, and titles on your graphs, it is possible that they will, in whole or in part,
fall outside the viewport defined by svp. On the mainframe, you may see the message

GDDM RETURN CODE WARNING
W CO-ORDINATE OUTSIDE PICTURE SPACE

This generally means that you created a graph that filled the space available on your screen, and then tried to
put labels or titles outside that. You can view the result and see how much is missing. Then

1. Erase the screen.
2. Reduce the size of your scaling viewport, by assigning new coordinates to svp.
3. Create your graph, with its labels and titles, again.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 38
© Copyright IBM Corporation 1980, 2017

This was done in creating Creating Axes, Labels, Annotations, and Titles, for example.

You may also find that the characters used in labels and the like are larger than you expect. The size of the
characters is determined by the last use of the function WRITE. To set them back to their default size, execute

0 0 1 WRITE ''

(More interesting uses of WRITE are described in Writing Text and Drawing Flat Pictures.)

ANNX, ANNY, HOR, and VER Write Annotations

ANNX and ANNY specify, respectively, annotations to be placed near the X- and Y-axes. The annotations in our
graph were created by the statements

0.5 ANNX 'Quarterly Report Dates'
0 ANNY 'Reported Value'

ANNX and ANNY use both right and left arguments. The left argument is a distance of the annotation from its
default position, given in problem-space units. (The displacement is vertical for ANNX and horizontal for
ANNY.) The right argument contains the annotation.

The default positions for annotations are held in the global variables ofx and ofy. These variables are set by
the functions LBLX and LBLY, respectively. So if you are using both LBLX and ANNX, use LBLX first.
RESTORE restores the default values.

HOR and VER specify annotations for the horizontal and vertical axes, respectively, and produce default labels.
They don't allow displacements, and take only right arguments. (Thus HOR annotation is equivalent to 0 ANNX
annotation followed by 0 AXIS ''.)

TITLE Writes Titles

TITLE gives a title and its location on the graph. Its syntax is

P TITLE C

Here P is a numeric vector that controls the position and other characteristics of the title. Its first two elements
give the coordinates (in problem space, not virtual space) of the center of the title. Using other elements, you
may cause your coordinates to refer to an edge or corner point of the title, or you may position the title in
relation to the scaling viewport, or put a box around the title and fill it with a pattern, or specify legends that
describe the lines in the graph (as in A Note on APL.2 Functions).

C is a character vector or matrix that contains the title, as in the functions LBLX or ANNX. It can also contain
coding to specify legends that show the symbols, colors, or patterns used in plotting the graph.

The title on Creating Axes, Labels, Annotations, and Titles was added by the statement

6 1 Title 'A Plot with Labels, Annotations,”’ and a Title'

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 39
© Copyright IBM Corporation 1980, 2017

You can use TITLE more than once to put more than one title on a single plot. Also, you can use the function
WRITE to write text in the graphic field along with a plot; see its description in Writing Text and Drawing Flat
Pictures.

Specifying Color, Style, Width, and Mode

The next of the finishing touches on your output is perhaps an attractive color. But changing the colors of your
output is not merely a matter of what you do in GRAPHPAK, but also of what your output device can do. The
IBM 3279 display terminal can show eight colors. What happens when you ask for color, then, is device-
dependent.

Similar remarks apply to style, width, and mode. The IBM 3279 can produce lines in seven styles (solid, dotted,
dashed, and so on). It can produce lines in two widths. It can produce only one mode. Other devices have other
capabilities; an additional mode, for example, might be a blinking line on some displays.

The discussion that follows describes ways to change colors, styles, widths, and modes. The operations
described can be done on any device that supports GRAPHPAK. But bear in mind that the visible results may
differ considerably from one device to another.

Attributes, Values, and Attribute Codes Defined

Color, style, width, and mode are attributes. Particular colors, styles, widths, and modes are represented by
numbers, and these numbers are values of the corresponding attributes. A line is drawn, or a character is written,
with a set of attribute values that gives one value for each attribute of the line.

A set of attribute values can be represented by a single number, called an attribute code. 1f this code is

negative
it represents a set of attribute values coded in base 100 and combined into a single integer. There is a set
of functions described below that construct negative attribute codes. You do not need to remember a
formula for negative codes; just note that an unexpected negative number in a series of control codes is
probably an attribute code. (You can find a description of the code in av.)

positive
it is an index into the attribute vector (av), which contains negative codes. av is described below.

Specifying Attribute Codes

The functions COLOR, STYLE, WIDTH, and MODE build negative attribute codes. To assign to the variable
CODE the attribute code for color 3, style 4, and width 2, execute

CODE « COLOR 3, STYLE 4, WIDTH 2
In this example, it wasn't necessary to specify MODE: if one of the attributes is omitted, a default value is used.
The functions can be used in combination, in any order. If they are used in combination, the arguments of each

must be of the same length (except that one may have an argument of length one). The following examples
show some of the possibilities.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 40
© Copyright IBM Corporation 1980, 2017

CODE « COLOR 1 2 3 4, STYLE 3

makes CODE a vector of four attribute codes. They specify colors 1 through 4, each combined with style 3.

CODE « STYLE 1 2 3, COLOR 4 5 6

assigns three attribute codes. They specify style 1 combined with color 4, style 2 combined with color 5, and
style 3 combined with color 6.

What Does It Look Like

There is a group of demonstration programs in GRAPHPAK. One of them displays the results of various
combinations of attribute values; ATTRIBUTES produces the following figure:

UNE STLEAIRTH
141 241 3 41 541 BA1 T 1/2 242 372 +2 5/2 6/2 7/

LATTER' STYLE

T a
%. y
SN

N

| 10 11 12 13

| w
IR
'
o
o
—
(S
'

A\
=
2
7

I

L

'3

sfR==cd
7
[T
1 H
e
| K
7
[T T T

¥
\
|

COLOR

A

If you try out all the color values in turn, watch out for the neutral color; it may not show up against the
background.

Using Attribute Codes

Every function that produces a display looks somewhere for an attribute code, or set of codes, to control it. To
use an attribute code, find out where to put it.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 41

© Copyright IBM Corporation 1980, 2017

For example, the function TITLE can create a border around your title. (One appears in Specifying Other
Aspects of Line Graphs.) The third position of the left argument controls its attributes. Try, for example,

(6 1, (COLOR 2, STYLE 3)) TITLE 'A TITLE WITH A BORDER'
The Attribute Vector (av)

There is also a way to use attribute codes without building them yourself. RESTORE sets the global variable av,
called the attribute vector, to a systematic variation through the set of all attribute codes that your output device
will recognize. Any function that looks for an attribute code recognizes a positive number as an index into the
attribute vector; it uses the code the index points to.

For example, execute

RESTORE
6 1 18 TITLE 'A TITLE WITH A BORDER'

If your output device allows 8 color specifications, then this produced the same result as the example before.
The first eight positions of av coded all colors with style 1, the second eight positions coded all colors with
style 2, and color 2 combined with style 3 appeared in position 18.

USE

Many functions - HOR, VER, AXIS, ANNX, LABX and so on -look to av for default values of attributes.
It is probably better not to change the contents of av at this point, but later you may want to. There is a function
that does it, called USE, described in Writing Text and Drawing Flat Pictures.

The Plot Attribute Vector (pa)
The place to put attribute codes for plotting is in the plot attribute vector (pa).

PLOT and SPLOT, and many other functions that turn up in Chapters 2 through 4, look in the plot attribute
vector for attribute codes. What they find there can either be negative codes or indexes into the attribute vector.
(RESTORE puts into pa a set of indexes into av.)

If PLOT or SPLOT is plotting more than one graph, the function looks repeatedly at elements of pa for further
attribute codes. It will plot the first graph with the values specified by the first element, the second graph with
the attributes specified by the second element, and so on. If there are more graphs than elements in pa, the
search for values will wrap around to the first element again. (And if an index into av is larger than the number
of elements in av, it also causes the search to wrap around to the first element of av again.)

Changing Colors for PLOT and SPLOT

Probably the simplest way to change colors, styles, and widths for plotting is to do something like this:

pa « STYLE 1 2 1 2, COLOR 2 3 4 5
PLOT A AND B AND C AND D VS X

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 42
© Copyright IBM Corporation 1980, 2017

If the color and style combinations aren't to your taste, change the assignment to pa.

SPLOT allows another possibility: You can use digits in its left argument that are indexes into pa. With these,
you can change colors without altering pa.

Or you can change the attribute vector av. But this changes default values for almost everything.
USING Changes Colors for Titles
There are quite a few parts to a graph, and you can vary the attribute values for all of them. To do some of the

things you may have in mind, you may have to study the function descriptions in Function Reference very
carefully. But changing the color of a title seems common, and there is a special function for it.

4 1 18 TITLE 'ANOTHER TITLE' USING COLOR 4

does about what you would expect: It sets the color of the text of the title to a particular value, without changing
the border or the output of any other function.

USING can be used in this way with WRITE, DRAW, and FILL, described in Writing Text and Drawing Flat
Pictures. It cannot be used with the functions that draw graphs and charts, axes, labels, or annotations.

Filling and Edging

For another finishing touch, you can fill the area between a graph and its X-axis. Use an F in the left argument
of SPLOT.

The area to be filled is crossed by an (imaginary) point along a series of horizontal lines. Whenever the point
crosses a boundary of the area, it turns on a visible pattern. Or, if the pattern was already on, it turns it off. If the
graph and the axis do not form a closed figure, the area is first closed by extending vertical lines from the
endpoints of the graph to the X-axis. The result is like coloring between the lines in a coloring book, but a bit
more regular. The technique is called filling, and the pattern used is called the fill pattern.

The pattern used for filling is controlled by the plot attribute vector (pa). You can display most of the available
patterns by executing the demonstration function ATTRIBUTES. When filling is called for, the style value in
the attribute code selects one of the available fill patterns. The method of controlling pattern selection for
multiple graphs is complex, and is left to the description of pa in Variable Reference.

The edges of a filled area can be made to contrast with the fill pattern by using F in the left argument. This
technique is called edging. The attribute values for edges are also given by pa. The default value is in the first
element of av.

Specifying Other Aspects of Line Graphs
Here is a mixed bag of other things you can do to a simple line graph with the functions in GRAPHPAK.
Using Logarithmic Axes

For this, there are two more characters for the left argument of SPLOT:

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 43
© Copyright IBM Corporation 1980, 2017

X Make the X-axis logarithmic to the base 10.
Y Make the Y-axis logarithmic to the base 10.

Marking Points on a Graph

Two more characters for the left argument of SPLOT:

P Mark the points of the graph with symbols; do not connect them with a line.
P Mark the points of the graph with symbols and connect them with a line.

The symbols used to mark the points of successive graphs are contained in the global variable pc. As
distributed, the value of this vector is o ° xVA.

Plotting Relative Graphs
Suppose you have three sets of data - expenses for labor, for overhead, and for materials, say - and you want to
plot a graph of each so that the figures add up. That is, the height of the third graph must show the total expense.

(The graph below shows an example.) The successive graphs are said to be relative to each other.

Plotting them uses another control character.

R Add each set of data, element by element, to the previous set, and plot the resulting graphs.

B.—-

— 1234
5 1021

o 1 1 2 4
4_.
3._.
2—

N g
1= il
!]]] !]]]
% 1 2 3 4
APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 44

© Copyright IBM Corporation 1980, 2017

Plotting on a Reference Grid

You can extend the major tick marks on the axes vertically or horizontally across the area of the plot to form a
reference grid. The global variable tm controls the extension; it can have the following values:

Oor0 O Do not extend tick marks.
10 Extend X-axis tick marks vertically.
01 Extend Y-axis tick marks horizontally.
lorl 1 Extend both sets of tick marks.
APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 45

© Copyright IBM Corporation 1980, 2017

A Note on APL2 Functions

The previous section described the statements needed to produce Creating Axes, Labels, Annotations, and
Titles. There were quite a few of them. If you are doing much of this work, remember that you are dealing with
APL2 functions: you can combine them into larger functions that will allow you to execute many repetitive
steps with one statement.

The function ZIP below may serve as a model. ZIP takes as an argument a matrix M. Each row of M contains
the following information:

A product number

A quantity of the product on hand at the beginning of the week

Quantities of the product produced on each of five days of the week (in position 3 through 7)
Quantities of the product shipped on each of five days of the week (in positions 8 through 12)

M produces, for each product, a graph that shows, for each day of the week,

Quantity produced
Quantity shipped
Quantity on hand at the end of the day

(This amount is calculated as the quantity on hand at the end of the preceding day, plus the amount
produced, less the amount shipped.)

ZIP also exemplifies a number of methods and concepts introduced in this chapter, plus a few new ones. Note
the following:

The necessary data, M, must come from somewhere. Its source is not mentioned.

ZIP doesn't use VIEW; all its output is printed by the COPYN function. Still, it needs to use ERASE.
ZIP uses FSSAVE also, to create a copy of each graph that could later be displayed on the screen. (The
graph for each department will be in a file called PICnnnnn, where nnnnn is the department number.)
The output is titled with legends that show the color and symbol used for plotting each type of quantity.
This is done by using values in the arguments of the TITLE function that have not been explained in this
chapter. They are described with the syntax of TITLE in Function Reference.

Somewhat more elaborate models of plotting line graphs appear in the demonstration functions REVENUES and
CAYUGAPLOT.

VZIP;END; INDEX; DEPT; ONHAND ; PRODUCED; SHIPPED; INVENTORY ; pc

[1] A Clear the screen

[2] RESTORE

[3] A The number of graphs is the number of lines in M

[4] END<«11tpM

[5] n Set the window, the scaling viewport, and plot characters
[6] wel 0 5 20

[7] svp«l0 7 60 50

[8] pc«'PSI"

[9] A Go through the loop for each value of INDEX from 1 to END
[10] INDEX«1

[11] LOOP:DEPT«M[INDEX; 1]

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 46

© Copyright IBM Corporation 1980, 2017

[12] ONHAND«M [INDEX; 2]
[13] A Calculate the amounts
[14] PRODUCED«M[INDEX; 3 4 5 6 7]
[15] SHIPPED«M[INDEX; 8 9 10 11 12]
[16] INVENTORY«1!+\ONHAND, (PRODUCED-SHIPPED))
[17] A Draw the graph
[18] ERASE
[19] 'pS' SPLOT PRODUCED AND SHIPPED AND INVENTORY
[20] A Put on the finishing touches
[21] 1 2 3 4 5 LBLX 5 4p'MON TUESWED THURFRI '
[22] O LBLY O
[23] 0 ANNY 'UNITS'
[24] 0 01 0 1 TITLE 'WEEKLY INVENTORY REPORT" DEPARTMENT ', $DEPT
[25] 6 01 03 TITLE 'cp> PRODUCED 'cp> SHIPPED 'cp> INVENTORY'
[26] A Save a copy for print and a copy for display
[27] COPYN 'PRT', 3?DEPT
[28] FSSAVE 'PIC',%DEPT
[29] A Repeat the loop
[30] -+ (END=INDEX«INDEX+1) /LOOP
[31]V
WEEKLY INVENTORY REFCRT
DEPARTMENT 12345
20—
18—

n I

= 10—

3

a
MON TUES WED

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02

© Copyright IBM Corporation 1980, 2017

47

Summary of Basic Concepts

The examples in this chapter may not show the particular kind of output you hope to produce. If some other
chapter has what you're looking for, you can go directly from here to there without reading the intervening
material.

But to produce displays like the examples in any other chapter, you will have to use some basic concepts that
were introduced here. Later on they are used without explicit mention. Keep in mind that:

1.
2.

3.

6.

You have to start APL2, load GRAPHPAK, get data from somewhere.

You have to find a GRAPHPAK function that does what you want. (PLOT and SPLOT were introduced
in this chapter; others appear later.)

There are some basic housekeeping routines (VIEW, COPY and COPYN, FSSAVE and FSSHOW, ERASE,
RESTORE).

You may want to specify a new scaling viewport (svp) or a window in your problem space (w).

There are ways to write labels, annotations, and titles; to specify color, style, width, and mode; to
specify attributes for edging and filling; to change other aspects of the output. The ways may differ
according to the function you use.

You are using an APL2 workspace. You can do all these things within other APL2 functions.

A Bar Graph, with Stacked Data

| 4 Mt:i:
— - —~ L M :2_
i M[:3]

-

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 48
© Copyright IBM Corporation 1980, 2017

A Column Chart, with Grouped Data

30

20

IllI|lllllllllllllllllllllllll

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02
© Copyright IBM Corporation 1980, 2017

14

49

Drawing Bar Graphs, Step Charts, and Pie Charts

This section tells how to draw the following kinds of graphs:

Bar Graphs
This includes column charts, which are bar graphs with the bars running vertically instead of

horizontally.
Step Charts

These are often used for frequency functions, and in those cases are also known as histograms.
Pie Charts

There are demonstration functions in GRAPHPAK that produce examples of these charts. Execute REVB to get
a bar graph and REVC to get a column chart. PIES produces pie charts and NHIST a step chart. MILERUN
gives a more elaborate bar chart, and HEALTH a more elaborate column chart.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 50
© Copyright IBM Corporation 1980, 2017

Drawing Bar Graphs

A bar graph or bar chart represents data by rectangles stretched horizontally, as in A Bar Graph, with Stacked

Data. That graph was produced by the statement

'BLf' CHART M

A column chart does the same kind of thing with rectangles stretched vertically, as in A Column Chart, with
Grouped Data. That graph was produced by the statement

'GLf' CHART M

In both graphs, M is this matrix:

1 2 3

These Things are Different

The data that produced the line graphs in Getting Started and Drawing Line Graphs could as well be plotted
with bar or column charts. To make a bar or column chart from your data, instead of a line graph, you need to
do only two, maybe three, things differently.

o Use the function CHART instead of PLOT or SPLOT.
o Structure the data for multiple plots differently.
o Pick the control characters for the left argument of CHART from a new list.

The following sections describe each of these things in turn.

These Things are the Same

Just for reminders, when using CHART you can still
o Specify attribute codes with the functions COLOR, STYLE, WIDTH, and MODE.
e Write labels, annotations, and titles with the functions AXIS, LBLX, LBLY, ANNX, ANNY,
HOR, VER, and TITLE.

These techniques were all described in Getting Started.

CHART Draws Bar and Column Charts

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02
© Copyright IBM Corporation 1980, 2017

51

Use CHART as you would SPLOT. For example, replace the first line of Creating Axes, Labels, Annotations,
and Titles with

'A' CHART YDATA

and compare the result.

Structuring Data for CHART

The right argument of CHART can be a vector, and in that case it is used exactly as is the right argument of
PLOT or SPLOT.

For multiple sets of data, there is a difference. CHART does not use an array built by AND and VS. It does use a
matrix, but the first column is not a set of X-values. (That is, it does not specify the positions of bars or columns
along the axis of the graph.)

For multiple sets of data, each set of data must be one column of the matrix. For example, to draw a bar chart of
ADATA, BDATA, and CDATA, execute

'BFL' CHART ADATA,BDATA, [1.1] CDATA

(In the example, ', [1.1] ' laminates CDATA with BDATA, and ', ' catenates the resulting matrix with
ADATA. ADATA, BDATA, and CDATA must all have the same length.)

Control Characters for CHART
CHART uses a left argument of control characters, much as SPLOT does. With the control characters you can

e Specify a bar chart rather than a column chart. (Use B).

e Group multiple sets of data, as in A Column Chart, with Grouped Data, rather than stacking them, as in
A Bar Graph, with Stacked Data. (Use G.)

o Suppress the axes. (Use A.)

o Label the axes. (Use L.)

o Fill (use F) or fill and edge (use f) the bars or columns.

e Use the scale factors implied by the window in problem space. (Use S.)

If you want to do none of these things, use an empty vector (' ').

Results of CHART

The chart in A Bar Graph, with Stacked Data has the following characteristics:

e The data is stacked. That is, the lengths of the bars in each stack are 6, 15, 24, ..., the sums of each row
of M. Also the bars are divided to show the relative contribution of each set of data. (If you used g in the
left argument, the bars would be grouped, like a horizontal version of A Column Chart, with Grouped
Data picture.)

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 52
© Copyright IBM Corporation 1980, 2017

e 1,4,7, ... was the first column of the matrix, and so produced the bars at the left end of each stack. (If
the data were grouped instead of stacked, the first column of the matrix would produce the bottom set of
bars or the left-hand set of columns.)

e All the data in the first column of the matrix is shown with the same set of attribute values. The second
column is shown with another set, and so on.

o The bars are centered on the axis at points 1 through 10, because each column of the matrix has 10
elements. But you could label the axes in any way you want. For example, to label the locations of the
bars with the letters A B C D E F G, do this:

1. Omit the character L from the left argument of CHART.

2. After using CHART, execute
10 LBLX 'ATBICIDIEIFIG'
0 LBLY O

o The width of each bar is 0.8 (80%) of the distance between the centers of two adjacent bars. You can
change this value by assigning a new value to the variable bw. RESTORE will set it back to 0.8.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 53
© Copyright IBM Corporation 1980, 2017

Drawing Step Charts

The picture below is a step chart. It looks a lot like a column chart with columns wide enough to touch each
other, and with the dividing lines between them erased.

4__

-

What's New

The figure uses the same data that was used to produce A Quick Example. To get a step chart instead of a line
graph, again you have to do two, maybe three, things a little differently:

1. Use the function STEP instead of PLOT or SPLOT.
2. Structure the data differently for some situations.
3. Pick the characters for the left argument of STEP from a new list.

The following sections describe each of these things in turn. You can specify attribute values, and write labels,
annotations, and titles, with the same functions you used for CHART and SPLOT.

STEP Draws Step Charts

Use STEP as you would SPLOT. For example, out step chart was produced by the statement

'L' STEP YDATA

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 54
© Copyright IBM Corporation 1980, 2017

Structuring Data for STEP
Structure the data for STEP as for PLOT or SPLOT. If the right argument is a
vector
the elements of the vector are Y-values, its indexes are the corresponding X-values.
matrix
then the first column is a set of X-values and the remaining columns are successive sets of Y-values.

(But there is an exception to this rule, described below.)

If you have only one set of X- and Y-values, you can use the function VS instead of constructing a matrix for
the right argument. For example,

'' STEP YDATA VS X

Exception for Disconnected Steps

If you use B in the left argument, STEP needs a 3-column matrix for its right argument. In this case, the first
two columns contain X-values. Values in the first column are the beginning points of horizontal steps; values in
the second column are the corresponding endpoints. Values in the third column are the Y levels of the steps.

Control Characters for STEP

Like CHART and SPLOT, STEP uses a left argument of control characters. The statement that produced our step
chart used L, to label the axes. With other control characters you can

e Suppress the axes. (Use A.)

e Draw disconnected steps. (Use B.)

o Fill (use F) or fill and edge (use f) the area under the steps.

o Plot each set of data relative to the previous one. (Use R.)

e Use the scale factors implied by the window in problem space. (Use S.)

Results of STEP

The step chart picture tells nearly all about the results of STEP. But note how the last point on the graph is
plotted. In going from one pair of (X,Y) coordinates to the next, STEP draws first a horizontal line and then a
vertical one. Hence, if the last two pairs of coordinates in a sequence are not the same, the plot should end with
a vertical line up (or down) to the last point. But without a horizontal line at the last point, its Y-value might be
less noticeable than the values at other points. So in this case STEP continues the graph to the right by one more
index. (If the steps were different widths, STEP would draw a small arrow.)

Plotting Frequency Functions

Step charts are often used to display frequency functions. The X-coordinates of the beginning and end of each
step are known as class boundaries; the distance between two successive class boundaries is the class interval.
The height of each step represents the number of measurements that occur between the corresponding class
boundaries.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 55
© Copyright IBM Corporation 1980, 2017

In order to plot the frequency function of a set of raw data, you need a function that constructs the function in
the form required by STEP. Here it is.

FREQ Constructs Frequency Functions

To plot a frequency function, execute

'L' STEP (classes FREQ data)
In this statement,

data
is a numeric vector containing your raw data.
classes
1s a numeric vector that specifies the class boundaries and whether the graph is to be normalized or not.

e A graph is normalized when the Y-axis is adjusted so that the total area under the curve is equal
to 1. If you want this done, make the first element of classes equal to 1. Otherwise, make it 0.

o If you want all class intervals to be the same, make the second element of classes equal to the
interval size, and stop. You need no more elements.

o If you want class intervals of different sizes, put the class boundaries in elements 2, 3, 4, ... of
classes.

Example

Suppose you would like to plot the frequency function of a set of data contained in the vector FDATA. Suppose
further that the elements of FDATA are integers, and that you would like to use class boundaries of “0.5,
2.5, 5.5, ..., 32.5.Also, you do not want the graph normalized. Execute

CLBNDS+ 3.5+3x112
'FL' STEP (0, CLBNDS) FREQ FDATA

Plotting Cumulative Distributions

A step chart of a cumulative distribution shows, for each value, the number of data elements less than or equal
to that value. If you are plotting frequency functions, you are very likely plotting cumulative distributions also.
The following example illustrates no new feature of GRAPHPAK, but reminds you how to generate a

cumulative distribution.

This function will order the data for the distribution:

V Z«DIST X
[1] ZeX[AX], [1.1] (1pX)+pX
\Y

And this one will draw a step chart of the distribution:

'L' STEP DIST FDATA
APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 56
© Copyright IBM Corporation 1980, 2017

Drawing Pie Charts

A pie chart shows what proportions the parts of a set bear to the sum of the parts. The whole is shown by a full
circle; the parts are sectors of the circle.

4 Simpla Pla Chal

Our pie chart was produced by the statements

'' PIECHART 2 3 5 WITH 'LaborrzOverheadrMaterials'
WeSVP
20 60 1 TITLE

These Things are Different

A comparison of this example with one of the uses of SPLOT in Getting Started and Drawing Line Graphs
shows these new elements:

1. There is a new function, PIECHART, that uses data in a different way. The numbers 2, 3, and 5 are not
interpreted independently of each other. Instead, what is pictured is the ratio that each number has to
their total sum. For example, the number 2 tells that "LABOR" takes up 2 parts out of 10.

2. There is a new list of control characters for the left argument.

3. There are no axes for a pie chart, and no annotations. There is a new function, WITH, that creates labels.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 57
© Copyright IBM Corporation 1980, 2017

The following sections describe each of these new items in turn.

PIECHART Draws Pie Charts

To create a pie chart showing the proportion that each number in a set bears to the sum of the set, execute

'' PIECHART data

Here data is a vector containing the set of numbers.

Control Characters for PIECHART
Like SPLOT and CHART, PTECHART uses a left argument of control characters. With these characters you can

o Fill (use F) or fill and edge (use f) the slices of the pie.

o Label the slices with their numeric values. (Use L or N.)

o Label the slices with their relative percentages. (Use P.)

¢ Draw a box around the labels (use E) and fill the boxes (use B).

o Bound the slices with chords, rather than arcs, so they appear as triangles, rather than as sectors of a
circle. (Use C.)

o Label pie segments with text you have placed in a variable named t. (Use T.)

Creating Labels for a Pie Chart
The labels on a pie chart can have up to three parts:

1. Text, entered as an argument of the function WITH (described below).
2. A data value, specified by using the control characters L or N.
3. A percentage value, specified by using the control character P.

WITH

The function WITH combines data and text labels into a right argument for PIECHART. Labels for WITH are
similar to those used by LBLX and TITLE in Getting Started and Drawing Line Graphs. They can contain the
same delimiters for a new line or a new label. A variable containing labels for WITH may be

e A vector, containing all the labels in a continuous string, with delimiters for new lines and new labels.

e A matrix, with a different label in each row. The labels may contain delimiters for new lines.

e An array of rank 3, with a different label in each matrix of the array. Each row of the matrix is a
different line. No delimiters are needed.

Our example shows WITH using a numeric vector as a left argument and a character vector as a right argument.
Actually, the order of the two items is not important - the numbers could appear on the right and the characters

on the left.

Using USING with WITH

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 58
© Copyright IBM Corporation 1980, 2017

You can change the color of the text portion of a label (but not of the data values or percentage values) by using
USING with WITH as it is used with TITLE. USING must follow immediately the argument that contains
text, as in

"' PIECHART 1 1 WITH 'TOP HALFIBOTTOM™ HALF' USING COLOR 3

PIELABEL

If you want to change the attribute values completely between the drawing of a pie chart and the labeling of it,
use PIELABEL. Like this...

1. Execute
"' PIECHART data

2. Change the attribute values as you wish.
3. Execute

data PIELABEL label
where label is a variable containing the label you want and data is the same as in step 1.
If you use PIELABEL, you cannot use L, N, or P in the left argument of PTECHART.

Using TITLE with PIECHART

PIECHART does not set a window in problem space or change the scaling viewport. In order to use TITLE, it
helps to specify these. In the example that produced out pie chart, the assignment

WeSVP
makes both the window and the scaling viewport equal to the maximum screen size. Then TITLE can use
coordinates in virtual space.

Other Controls for PIECHART

There are several other fancy things you can do with the slices in a pie chart. Some of them are illustrated in this
chart.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 59
© Copyright IBM Corporation 1980, 2017

20%

The figure was produced by the statement

'LP' PIECHART DATA

The variable DATA looked like this:

Uk whN -
oo oNO
ool N oNe]
C);—\OOC)
RPOOOO

In this matrix, each row represents one slice of the pie. The number governing the size of the slice is in column
1 of the row. The number in columns 2 through 5 tell what variations (if any) are used in displaying the slice.

What the Numbers in the Matrix Do

To use one or more of the variations illustrated, do this:

1. Create a 5-column matrix as a right argument for PTIECHART. Put the numeric data in the first column
and zeros elsewhere.
2. In column 2, put attribute codes for label backgrounds. (You can have filled backgrounds without
having boxes around the labels, as in slice 2.)
3. Put any of the following values in column 3. They vary the placement of a label:
APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 60
© Copyright IBM Corporation 1980, 2017

a positive number s

Puts the label outside the pie. Offsets the label from the slice by s times the pie radius.

a negative number

Puts the label outside the pie. Lets PTECHART choose the position. (In the figure, slice 3 is outside the
pie in a position chosen by PIECHART.)

If you leave zero in this column, PIECHART will put the label inside the pie if it will fit. Otherwise it
will put it outside the pie in a default position, as it did for slice 1.

4. Put any number s (positive or negative) in column 4 to offset a slice away from the center of the pie. The
amount of offset is s times the radius of the pie; a positive offset is directed outward from the center.
(Slice 4 in the figure is offset by one-tenth of a radius.)

5. Putal in column 5 to omit drawing the slice and its label. (Slice 5 in the figure is omitted.)

If you are drawing pie charts, you will probably experiment with different settings of these controls to find the

variation most pleasing to your eye or most appropriate to your purpose. Just for fun, then, you might like to see
what happens when you offset each slice of a pie inward by a whole radius. Try executing

'' PIECHART 1,0,0,[1.5]17p1

What pie does

The global variable pie controls still other aspects of pie charts. The first two elements of this vector contain
the coordinates (in virtual space) of the center of the pie, and by changing these you can put your pie wherever
you want it on the screen. Other elements control

e The radius of the pie.

o Where the first slice starts. (The default setting starts the first slice at 3 o'clock, as in the figures.)

e The angular span of the whole pie. (The setting is a number of degrees. By setting it to 180, your whole
pie will be a semicircle.)

o The attributes of label backgrounds.

RESTORE restores the default values of pie.

Drawing Polygons

A polygon has nothing much to do with a pie chart, but the PIECHART function was easily adaptable to
drawing polygons, so here it is.

'C' PIECHART 1 1 1 11 1
draws six equal slices, with chords instead of arcs - a regular hexagon. But the radii are still there.

To get rid of the radii, use R in the left argument. Then PTECHART will draw a regular polygon, using the first
element in the right argument as the number of sides. The following graph was drawn by

'R' PIECHART 6 WITH 'HEXAGON'

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 61
© Copyright IBM Corporation 1980, 2017

HEXAGON

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02
© Copyright IBM Corporation 1980, 2017

62

Representing Surfaces

This section tells how to draw the kinds of charts listed below. Each of these charts represents the height of a
point above (or below) the (X,Y)-plane.

o Surface Charts.
The 3-dimensional analogy to a line graph is a network. Like the line graph, the network is made of
straight line segments. But the line graph extends over only an interval on the X-axis; the network
extends over a rectangle in the (X,Y)-plane. On your display screen or on the printed page we can
picture the network only by a 2-dimensional projection. Such is a surface chart.

o Skyscraper Charts.
These are the 3-dimensional analog to column charts.

o Contour Maps.
These represent surfaces by contour lines, as in the topographic maps so well-known to wilderness
hikers.

For still other examples of these charts, execute the demonstration functions WAVEGUIDE, SKYSCRAPER,
and WGCONT.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02
© Copyright IBM Corporation 1980, 2017

63

Drawing Surface Charts

Compare the following chart with any of the graphs produced by SPLOT in Getting Started and Drawing Line

Graphs. The surface chart is the 3-dimensional analog to the line graph. To produce one, we need these new

things:

¢ A new function, called SURFACE

e A way to structure data that describes a surface

e A list of control characters for the left argument of SURFACE

e Some new functions for putting in axes, labels, and titles (because there are now three axes, instead of

two).

The following sections describe each of these things in turn.

;.
3 N
\ S
5 v

-

ik v ol R Fias

(=]

. hﬁ“ﬁ‘ﬁﬁ%‘“ﬁa

N

;WHH~H-“*“~W

SURFACE Draws Surface Charts

The surface chart on the previous page was produced by the statements

M«3 4p3 1.6 3 3,
'L' SURFACE M

221.81,

Structuring Data for SURFACE

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02
© Copyright IBM Corporation 1980, 2017

\

1202

S

k)

B

L]

64

The heights to be plotted in a surface chart must appear in the right argument of SURFACE as a matrix. The
matrix M, plotted in our surface chart, is

3 1.6 3 3
2 2 1.8 1
1 2 0 2

The function regards the value in the lower left corner of the matrix as the Z-coordinate corresponding to the
(X,Y)-coordinates (0,0). It plots that point on the screen nearest you.

If the matrix has n rows and m columns, the function regards the value in the upper right corner as the Z-
coordinate corresponding to the (X,Y)-coordinates (m,n). It plots that point on the screen farthest from you.

(The example has 3 rows and 4 columns. The value Z=3, corresponding to X=3, Y=2, is farthest from you in
the perspective of the figure.)

The X-axis, if not suppressed, extends from the nearest point toward your right. The rows of the matrix extend
along the X-axis. The Y-axis extends to your left. The columns of the matrix extend along the Y-axis. The Z-
axis appears where the value in the upper left corner of the matrix is plotted, and extends upward.

Control Characters for SURFACE

SURFACE uses a left argument of control characters, much as SPLOT does. In producing our chart, the
character L was used to put labels on the axes.

With the control characters, you can also do the following:

e Suppress axes. (Use 2).

o Use scaling factors you have defined yourself.

o Extend traces across the surface parallel to the X-axis or the Y-axis. The traces parallel to one axis are
drawn at the location of the tick marks on the other axis. (Use X or Y, and see the note on traces below.)

Defining Scaling Factors

To use scaling factors of your own choice, do this:

Define a scaling viewport in svp, as you did for SPLOT in Getting Started.

Assign the limits on Z-values to sw[1 2], a global variable called the surface window.

Assign the maximum X- and Y-values to sw[3 4].
Use S as a control character in the left argument of the function.

el NS

A Note on Traces

The method of plotting traces plots the X-traces and Y-traces independently. In some cases, particularly in
surfaces with sharp ridges, a trace is displayed that should have remained hidden. The effect is illustrated in the
following two figures. The first is plotted with X-traces only, and the second with both X- and Y-traces. The
statements that produced them were

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 65
© Copyright IBM Corporation 1980, 2017

Q«®11 11p0 1 2 3 4 54 3 210
'AX' SURFACE Q

and

P

- o
M
Hx“ﬁ
M__\

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02
© Copyright IBM Corporation 1980, 2017

66

Drawing Axes, Labels, and Titles for Surface Charts
Axes

You can specify X-, Y-, and Z-axes for a surface chart with the functions SAXISX, XAXISY, and XAXISZ.
Each takes a right argument only, which may have the following values:

Scalar 0

specifies using the default positions for the axis and its tick marks.
Vector

gives locations for tick marks by their coordinates in the problem space.

You can also specify axes with the function SAXES, which takes no arguments and produces default settings for
all three axes.

Labels

You can specify labels for the axes of surface charts with the functions SLBLX, SLBLY, and SLBLZ. These
work very much like LBLX and LBLY, described in Getting Started. The left argument can be a scalar O or the
vector that you used as a right argument of SAXI SX, (or SAXISY, or SAXISZ). The right argument contains
the label, just as in LBLX.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 67
© Copyright IBM Corporation 1980, 2017

You can also specify labels with the function SLABEL. It takes no arguments and produces default labels for all
three axes.

Titles

You can specify titles for surface charts with the function STITLE. This works like TITLE, described in
section 1, except that now the first three elements of the left argument give the location of the center of the title.

The next chart illustrates the results of these functions. It was produced by the following statements:

O0I0«0

'XY' SURFACE A+Q8A«26 26ploo(126)=+10

0 510 15 20 25 SLBLX 0 .25 .5 .75 1 1.25
0 510 15 20 25 SLBLY 0 .25 .5 .75 1 1.25
0 SLBLZ O

513 4.75 1 STITLE 'SINE'

1 3
11N
d 4

4

2T
P
126 T N
1. h-‘hh"hu

Writing Text

8

=
=
7]

\
A

.25 ™

o
t

For a suggestion about using WRITE to place text on a surface chart, see Writing in Three-dimensional Space.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 68
© Copyright IBM Corporation 1980, 2017

Drawing Skyscraper Charts

A skyscraper chart is another way to show heights above a 2-dimensional base: it represents the same kind of
data as a surface chart does. To produce one, you need:

e A new function, called SS
e A new list of control characters for the left argument of SS

You do not need a new way to structure data.
SS Draws Skyscraper Charts

Our skyscraper chart uses the same data as the surface chart. It was produced by these statements:

Me3 4p3 1.6 3 3, 22 1.81, 120 2
'LF' SS M

ol

[+]

]

=y

o

2 < 5 7 b b
tMﬁ‘llll"f‘llll?lllll;rllll<?llll"l‘llllq

Structuring Data for SS

SS uses a right argument identical to that used by SURFACE. Unlike SURFACE, SS plots the value in the upper
(not lower) left corner of the matrix at the point nearest you on the screen. Furthermore, it regards this value as

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 69
© Copyright IBM Corporation 1980, 2017

corresponding to the (X,Y)-coordinates (1,1), instead of (0,0). This separates the columns of the graph from the
axes.

A comparison of the surface and skyscraper charts shows that the first plots the same data as the second, but
back-to-front. If this is troublesome, you can easily turn one of them around. Try plotting

'L, SS eM
Control Characters for SS

Like SPLOT and SURFACE, SS uses a left argument of characters to control aspects of the output. Again L puts
labels on the axes.

With the control characters, you can also do the following:

e Suppress axes. (Use A).

o Use scaling factors you have defined yourself. (Use S, define svp as you did for SPLOT in Getting
Started, and assign the limits on Z-values to the first two elements of the surface window, sw.)

o Fill the columns. (Use F.)

o Fill and edge the columns. (Use £.)

e Draw a base grid. (Use G.)

The next chart shows filled and edged columns and a base grid.

157

—

&?1|||T||||‘F|11|

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 70
© Copyright IBM Corporation 1980, 2017

Other Controls for SS

On a first pass at skyscraper charts, you can skip this section. But when you want a really elegant chart, you
may want to tune your output by changing the defaults for

e Column widths
e Spread factors

o Attribute values for sides and tops of columns

Column Widths

The default widths of columns are 0.3 (30 %) of the distances between the centers of adjacent columns, in both
the X- and Y-directions. You can change these values by assigning new values to the 2-element vector sbw.
RESTORE sets both values back to 0.3.

Spread factors

The ratio of the two spread factors is the ratio of a unit distance along the X-axis to a unit distance along the Y-
axis. If these distances were the same - that is, if the spread factors were 1 1 - then all the columns in the back of
a skyscraper chart would be directly behind some column in the front. A ratio of 5 to 3 seems to minimize
obstruction of columns when the default column widths are used, so the default spread factors are 5 3.

You can change the spread factors by assigning new values to sw[7 8]. But if you assign them as 1 1, the
default of 5 3 will be used.

Attributes for sides and tops of columns

The attribute codes for the right side, left side, and top of a column in a skyscraper chart are specified by
elements 9, 10, and 11 of the surface window, sw. To change the patterns, assign pattern numbers (not attribute
codes) to these elements, as in

swl[9 10 11]«5 7 9
Drawing Axes, Labels, and Titles for SS

Use the same functions that draw axes, labels, and titles for SURFACE, namely SAXISX, SLBLY, STITLE,
and so on.

For a suggestion about using WRITE to place text on a skyscraper chart, see Writing in Three-dimensional
Space.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 71
© Copyright IBM Corporation 1980, 2017

Drawing Contour Maps

This set of data:

0 0 0 0 0 0 0 0 0 0 0
0.6 0.6 0.6 0.5 0.5 0.4 0.3 0.2 0.1 0 0
1.2 1.2 1.2 1.11 0.8 0.6 0.4 0.2 0.1 0O
1.6 1.7 1.7 1.6 1.5 1.2 1 0.7 0.4 0.2 0
1.9 2.1 2.1 2.11.91.61.31 0.6 0.3 0
2 2.3 2.4 2.4 2.3 2 1.6 1.2 0.8 0.4 0
1.9 2.3 2.5 2.6 2.52.31.91.51 0.5 0
1.6 2.1 2.3 2.6 2.6 2.4 2.11.61.10.50
1.2 1.7 2.1 2.42.52.42.11.71.20.60
0.6 1.2 1.7 2.1 2.3 2.3 2.11.71.20.60
0 0.6 1.2 1.6 1.9 2 1.9 1.6 1.2 0.6 0

can be displayed as in the following chart. The chart is called a contour map.

1.04E210

Q.81

a.6 /’ T

A >\ \\
o_\\ >]

£

IJ

1F=10
% 30 0.4 0.8 0.4

A contour map depicts a surface by showing the lines of constant height. The lines are represented by their

projection on the (X,Y)-plane.
To draw a contour map of a surface, you need:

e A new function, called CONTOUR
e A new way to structure data

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02
© Copyright IBM Corporation 1980, 2017

1.4

72

e A way to specify the heights at which contour lines are to be drawn

CONTOUR Draws Contour Maps

With the data shown assigned to the variable Z, the contour map was produced by these statements:

X«0 .1 .2 .3 .4 .5 .6 .7 .8 .9
Y«<1.0 .9 .8 .7 .6 .5 .4 .3 .2
SAMP« (Y BY X) OF Z

SAMP [1;1]+«1

LEVELS«0 .5 1 1.5 2 2.5

LEVELS CONTOUR SAMP

X AXIS Y

LABEL

B
oo

In addition to the new function CONTOUR, this example contains some other unfamiliar elements:

e The variables SAMP and Z, and the functions BY and OF, are described under Structuring Data for
Contour.
e The argument LEVELS is described under Specifying the Heights of Contour Lines.

Structuring Data for Contour

The Height Matrix

The heights of points above the (X,Y)-plane must be given by a matrix, shown below.

Each row of the matrix is a set of Z-values corresponding to a constant value of Y and varying values of X.
Each column is a set of Z-values corresponding to a constant value of X and varying values of Y.

Axis Values
In order to plot the Z-values using CONTOUR, the values of X and Y must be attached to the matrix as an extra

row at the top, and an extra column on the left. That operation is exactly what the functions BY and OF do, so
that after the statement

SAMP« (Y BY X) OF Z

the matrix SAMP looks like this:

=
N
w
ul
0]

oW UToy o0
0o o

ol

oV O

o w

RN

® o b

AN OO

OO0 O0OO0OO0O0OO0OO0ORO
.
P
Wi W

cCoRrRRLRNRRROOO
ORRNNNNRRPOOO
oM UR LW g
FRPONNDNNRROOCO
NUR WO N L
FONNNNDNNRROOO
N N N T I
FONMNNNRRPRROOO
bwhanwoun U1
MOVNNVNNRRROO0OO
PNNNNRPRPRPRPRPRPRPOOOO
bhhboaw ow <
PRPRRPRRPRPROO0OOO
PRI :
PRPRRPRPRPRPOOO0OO0OOOO
[olololololololololoNoNao]
NN TR RN '
[clolololololololNoNoNaN 0

NN

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 73

© Copyright IBM Corporation 1980, 2017

Tags on Contour Lines

Finally, the number in the upper left corner of the matrix is used to control whether or not the contour lines are
tagged with the values of the height they correspond to. The assignment

SAMP[1;1]+«1
puts tags on the contour lines. If the number has any other value than 1, the tags are omitted.

The final form of SAMP is in the GRAPHPAK workspace. To reproduce the figure, execute

(0.5x15) CONTOUR SAMP
Specifying the Heights of Contour Lines

The left argument of CONTOUR is a vector (LEVELS in the example) that gives the heights for which contour
lines are to be drawn.

Specifying Axes, Labels, Annotations, and Titles

You can put axes, labels, annotations, and titles on contour maps with the same functions that were described in
Getting Started. Not, please note, with the functions that you used with SURFACE or S$S, because a contour map
has only two axes, not three.

Plotting Saddle Points

At a saddle point on a surface, two separate contour lines touch. You can keep these lines separate by assigning
to the variable eps some (normally small) negative and positive deviation, say

eps« 1E 10 1E 10
CONTOUR adds eps to the contour height wherever a contour goes exactly through one of the grid points.
Performance
CONTOUR uses an iterative technique to find contour lines. The technique allows considerable generality in

finding open or closed curves with single or multiple branches, but be warned that it can be fairly time-
consuming.

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 74
© Copyright IBM Corporation 1980, 2017

Fitting Curves

The following graph shows a plot of several points, together with the "best" straight line and the "best" cubic
polynomial that can be chosen to approximate them. (Here "best" means a least-squares approximation: The
curve chosen represents the function that minimizes the sum of the squares of the differences between the actual
values and the function values.)

The graph was produced by the following statements:

CLEAR
FIT SL XYTEST
FIT 3 POLY XYTEST

Fitting Least-Squares Approximations describes how to use several new functions to fit least-squares
approximations of different kinds to sets of points.

Fitting a Spline Curve describes a function that fits spline-like curves, which are required to take on the exact
values of a set of points.

2.0—
1.5
B ra e
B ; //
1.0— /
B . S
= L Y
L f #/"/ ,
— /_./'/ I
5 /,-/
- /.-""
N e
.-'/! e il =
o 4 /;/_‘_/'-‘ ol
o b | | . ! i | . !
00 B2 a.4 0.8 0.B 1.0 1.2
p //,
—
APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 75

© Copyright IBM Corporation 1980, 2017

Fitting Least-Squares Approximations

When finding a least-squares approximation, the plot of the resulting function may not be what you want most.
An expression for the function, a way of calculating other values of it, may be more important to you. All of
these things are obtained by the same steps in GRAPHPAK.

Here's what you have to do:

1. Structure your data.
2. Choose from a list the function that describes the kind of approximation you want.
3. Execute

CLEAR
FIT function data

Structuring Data for a Least-Squares Fit

The data XYTEST, used in the example, is in your GRAPHPAK workspace. It looks like this:

.127
11

.324
.042
.521
.723
.193
.251
.104
.622
. 855
.686
.198

OCORPRORPROOODODODOOOCO
AP LOVAOAUTWN -
RPORPRORPROOOOOOOO

O J -

There are two points to make about the data structure:

1. The data is a 2-column matrix, with X-values in the first column and corresponding Y-values in the
second.
2. The points do NOT need to be sorted in order of ascending X-value (or in any other order).

Choosing a Function for a Least-Squares Fit

Choose one of the functions below to describe the kind of mathematical function you would like to fit to your
data.

AVG
fits a horizontal line, Y«C. The height of the line above the X-axis is the average of the Y-values for
your data.

SL
fits a straight line, Y«C1+C2xX.

n POLY

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 76
© Copyright IBM Corporation 1980, 2017

fits a polynomial function, Y«+/CxX« (0, 1n). It takes a left argument that must be an integer, giving
the degree n of the polynomial to be fitted.

EXP, LOG
fit an exponential function, Y«C1x+C2xX. The technique used is to transform to semi-log coordinates
and find the best fit by a straight line. EXP transforms back again and LOG doesn't.

POWER, LOGLOG
fit a power function, Y«C1+X«C2. The technique used is to transform to log-log coordinates and find
the best fit by a straight line. POWER transforms back again and LOGLOG doesn't.

Each of these functions uses a right argument like XYTEST (the one used in the example). POLY is the only one
of the functions that takes a left argument also.

Each of these functions produces a matrix like its right argument. The first column of the matrix is a set of X-

values spanning the domain of the input data. The second column is the set of corresponding values of the
function. (For AVG and SL, which plot as straight lines, only two rows are needed.)

fitmsg
There is another output from each of these functions, not immediately noticeable. Each function sets the global

variable f£itmsg to an expression that describes the function fitted. For example, after SL. XYTEST, fitmsg
becomes

Y« 0.30498-1.447xX

and after 3 POLY XYTEST itis

Ye(Xe.x0 1 2 3)+.x0.13855 ~.16441 0.21048 1.5396

(The examples in this section have been worked with the printing precision (OPP) set to 5. If you still have
yours set to 10, you will see more digits after the decimal places.)

You can use the expression in f i tmsg to calculate values of the function for any values of X you like. For
example, define a function

V FUNC X
[1] DO«t¢fitmsg
v

The execution of FUNC 4 will display the value, for X =4, of the latest function in £itmsg.

Or you can let FIT do this for you.

FIT Plots a Fitted Function
FIT is designed to be used with AVG, SL, POLY, and so on to do several things:

o It plots a graph of the best-fit function, along with a plot of the original data points. (AVG and the others
save these points in the global variable fitpts.)

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 77
© Copyright IBM Corporation 1980, 2017

o It labels axes (you can't suppress this).

o It displays a description of the best-fit function, from fitmsg.

e It creates a function called FITFUN, which executes the function described in f i tmsg. For example,
executing
Y«FITFUN 4 5 6 7

assigns to the vector Y the values of the best-fit function for X =4, 5, 6, and 7.

You do all this by executing

FIT function data

where function is one of the curve-fitting functions described in this section, and data is a 2-column matrix of
the type described earlier.

CLEAR Initializes Axes
Before you use FIT for the first time, and every time you want to change the axes and display a set of data, you

need to initialize things. The function CLEAR does this. It also executes ERASE. The first use of FIT after
CLEAR will draw the axes and display the data points, as well as display the curve.

Some Variations on Least-Squares Fitting
This page describes some other functions that do odd jobs for FIT.
Omitting Points

It's not unreasonable, sometimes, to throw away some data and see what that does to your best fit. SCRATCH
does this.

If vou know the row number of the point

If you look at our least squares plot and decide to omit the fourth point (0.5, 0.042) and the eighth point (0.6,
0.251), execute

NEWTEST«SCRATCH XYTEST[4 8;]

NEWTEST will look like XYTEST with points 4 and 8 omitted. Now you can execute

FIT AVG NEWTEST
FIT 3 POLY NEWTEST

and compare the results with the previous fits.

If yvou don't know the row number of the point

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 78
© Copyright IBM Corporation 1980, 2017

Rather than examine the matrix and try to identify the points you don't want, execute

FIT 3 POLY XYTEST
NEWTEST«SCRATCH ''

These statements display the plot of your points and the fitted curve, with the cursor in the middle of your
screen. You can now use your cursor as an eraser. To throw away data points:

Move the cursor near a point you want to erase. (The cursor doesn't have to touch the point exactly.)
Press any function key.

Repeat the first two steps for any other points you want to erase.

End the process by pressing the Enter key twice.

S

Now the points you selected are crossed out by "+" signs. The points that are not crossed out are in NEWTEST,
and you can see what effect your erasing had by executing

FIT 3 POLY NEWTEST
Plotting in Semi-log and Log-log Coordinates

EXP finds a best-fit exponential function by transforming your data to semi-log coordinates and fitting a straight
line to the result. LOG does the same thing, but omits transforming back to linear coordinates, so that the result
plots as a straight line in semi-log coordinates.

Execute

FIT LOG XYTEST

Similarly, POWER finds a best fit by transforming your data to log-log coordinates and fitting a straight line to
the result. Then it transforms back again. The LOGLOG function does much the same thing, but omits
transforming back. Instead, it signals FIT to plot the result on logarithmic axes.

For example, the next two graphs show two ways of displaying the best fit of an exponential function to the data
in XYTEST. They were produced in succession by these statements:

tmel 1
FIT LOG XYTEST
CLEAR
FIT EXP XYTEST

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02 79
© Copyright IBM Corporation 1980, 2017

L

L2

0.4

0.6

0.8

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02

© Copyright IBM Corporation 1980, 2017

1.2

80

2.0

1.0
a.5
b .~
.-/ -
B . Fﬁ}#’/—'
= _‘_‘_,____-—'—’-'_'_'—H_ﬂf-‘
0‘3.0 o2 0.4 0.6 0.8 1.0

APL2 GRAPHPAK: User's Guide and Reference SH21-1074-02
© Copyright IBM Corporation 1980, 2017

1.2

81

Fitting a Spline Curve

You can also fit to a set of points a curve that is not an approximation, but goes through every point exactly and
smoothly. These curves are called spline curves. They have the following properties:

e They are made of connected segments, each of which can be described by a rational cubic polynomial.
e Where two segments join, they have the same tangent and curvature. (Or, if you like, their first and

second derivatives are the same.) This is the sense in which the curves go through points "smoothly".
o They can be made to have specified tangents at their end points.

The following is a spline curve through the points (10,10), (60,15), (30,80), and (90,50).

106G—

80— - S e

e

\ b

e Y %
""-.H_‘\
& —
N,
60— N R
N e
\ o
N L

43— \

)

SPLINE Fits a Spline Curve

As you might expect, there is a new function to fit spline curves. The example was produced by the following
statements:

XY«4 2p10 10 60 15 30 80 90 50
FIT SPLINE XY

If you execute those statements, you will first be asked to enter more data. The example produced the dialog
shown below. In each statement, the part following the colon (:) was entered by the user.

APL2 GRAPHPAK: User's Guide and Reference SH21-1