Series/1

SC34-0316-2

File No. S1-30

IBM Series/1
Event Driven Executive

LICENSED
PROGRAM

Communications and Terminal

Applications Guide

Program Numbers: 5719-LM5
5719-UT3
5719-XS1

~ 5719-XX2
5740-LM2

5719-LM6 5719-MS1
5719-UT4
5719-XS2
5719-XX3
5740-LM3

Series/1

SC34-0316-2

File No. S1-30

IBM Series/1

Event Driven Executive

LICENSED
PROGRAM

Communications and Terminal
Applications Guide

Program Numbers:

5719-LMb
5719-UT3
5719-XS1

5719-XX2
5740-LM2

5719-LM6 5719-MS1
5719-UT4
5719-XS2
5719-XX3
5740-LM3

Third Edition (APRIL 1980)
Use this publication only for the purpose stated.
Changes are periodically made to the information herein;

before using this publication in connection with the operation
of IBM systems, refer to the latest JIBM Seriess/1 Graphic

Bibliography, GA34-0055, for the editions that are applicable
and current.

It is possible that this material may contain reference to, or
information about, IBM products (machines and programs),
programming, or services which are not announced in your coun-
try. Such references or information must not be construed to
mean that IBM intends to announce such IBM products, program-
ming, or services in your country.

Publications are not stocked at the address given below.
Requests for copies of IBM publications should be made to your
IBM representative or the IBM branch office serving your local-
ity.

This publication could contain technical inaccuracies or
typographical errors. A form for reader's comments is provided
at the back of this publication. If the form has been removed,
address your comments to IBM Corporation, Systems Publica-
tions, Department 277, P.0O. Box 1328, Boca Raton, Florida
33432. IBM may use and distribute any of the information you
supply in any way it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the
information you supply.

(C) Copyright IBM Corporation 1979,1980

N

SUMMARY OF AMENDMENTS

Terminal Support

Terminal support information for the 3101 Display Termi-
nal (Models 1 and Model 2) was added to Chapter 1.

Multiple Terminal Manager

Chapter 5 has been modified for PL/I and 3101 Display
Terminal as provided by the Multiple Terminal Manager.

Remote Management Utility (Version 2 only)

Chapter 6 is a new chapter that describes the Remote
Management Utility.

Bibliography

The Bibliography lists the books in the Event Driven
Executive library and a recommended reading sequence.
Other publications related to the Event Driven Executive
are also listed.

Miscellaneous Changes

This manual has been modified to include new function
and to improve technical accuracy and clarity. Addi-
tional material and technical changes are indicated by
vertical bars in the left margin.

SC34-0316 iii

HOW TO USE THIS BOOK

The material in this section is a guide to the use of this book.
It defines the purpose, audience, and content of the book as
well as listing aids for using the book and background materi-
als.

PURPOSE

The IBM Series/1 Event Driven Executive Communications and
Terminal Applications Guide, SC34-0316 describes how to use
the Event Driven Executive to communicate with interactive
devices, such as, terminals or other processors.

This manual provides extensions to the System Guide, the
Utilities, Operator Commands, Program_ Preparation, Messages
and Codes, and the Language Reference manuals.

AUDIENCE

This book is written for system and application programmers
with considerable knowledge in BSC and host operation, includ-
ing IBM and non—-IBM communications harduare.

To uwrite applications for remotely attached devices, you must
be familiar with line control procedures. Experience in pro-
gramming realtime programs in the Event Driven Language is
required. Experience coding programs in assembler language for
the Series/1 will enable you to extend the terminal application
capabilities of the system.

HOW THIS BOOK IS ORGANIZED

This book is organized into two parts. The first part explains
criteria for selecting communications methods or techniques
available with the Event Driven Executive system. The second
part consists of individual chapters which describe how to
design particular communication techniques.

iv SC34-0316

The topics covered in part two include:
Terminal Support
Binary Synchronous Communications
Host Communications Facility
Multiple Terminal Manager
Remote Management Utility

Graphics

EXAMPLES AND OTHER AIDS

Throughout this book, coding examples and illustrations are
used to clarify coding techniques and requirements. Coding
examples are fully executable portions of complete programs
that may be entered as they are shown., Coding illustrations are
non-executable portions of incomplete programs that show the
correct format of all required parameters on a statement. Miss-
ing code, or code provided by you, is indicated by a series of
vertical or horizontal dots.

Several other aids are provided to assist you in using this
book:

U A Summary of Amendments lists the significant changes made
to this publication since the last edition

U A Bibliography:

- Lists the books in the Event Driven Executive library
along with a brief description of each book and a
recommended reading sequence

- Lists related publications and materials

. A Glossary which defines terms

U A Common Index which includes entries from each book in the
Event Driven Executive library

References to other manuals are made throughout this manual

using shortened titles. For the full title and order number of
manuals mentioned in the text, see the Bibliography.

SC34-0316 v

RELATED PUBLICATIONS

Related publications are listed in the Bibliography.

SUBMITTING AN APAR

If you have a problem with the Series/1 Event Driven Executive
services, you are encouraged to fill out an authorized program
analysis report (APAR) form as described in the IBM Series/l
Authorized Program Analysis Report (APAR) User's Guide,
GC34-0099.

vi S5C34-0316

O

CONTENTS

Introduction . . & & ¢ i i i i it et e e e e e e ee e e
Part I - Technique Selection Criteria ¢ . . .

Chapter 1. Techniques Available Using the Event Driven
Executive e o o o o e o o o s o s s e e e e s e e e o o o e

Terminal Support e e e e s e e e e e e e e e e e e e e

Terminology for Supported Terminals e e e e e e e e e
Binary Synchronous Communications Access Method (BSCAM)
Host Communications Facility e e e s s e e e s e e e e
Multiple Terminal Manager e e e e e e e e e e e e e e e
Remote Management Utility s e e e e e e e e e e e e e e
Graphics e 6 4 e 4 e e e e e e e e e e e ae e e e e e e e
Utilities e

Part II - Technique Design Information e e s e e e e e .

Chapter 2. Terminal Support e e e o e o o o o s e e s o

Terminal Operations e e e e e e e e e e e e e e e e e
Terminal I/0 Instructions e e e e e e e e e e e e e e
Data Formatting Instructions e e e e e e e e e e e e

Terminal Definition Functions e e e e e e e e e e e e s
Interrupt Processing Functions e e e e e e « e e e
Considerations for Feature #1610 or #2091 Nlth #2092
Adapter e
Return Codes e
Considerations for Feature #2095 with #2096 Adapter
#7850 Teletypewriter Adapter e e e e e e e e e e e
Special Considerations for the IBM 3101 in Character

Mode . e e . e e . e e e e e e e e e e e e e
Special ConSIderatlons for the IBM 3101 in Block Mode
Interprocessor Communications e e e e e e e e e e

Hardware Preparation e e e e e e e e e e e e e e e e
Terminal Control Block (CCB) e e e e e e e e e e e
Transmission Protocol e e et e e e e e e e e e e

Modifications to the Protocol « « « « « .« .+

CRDELAY= . . . o v v o i i v v v e e e e e e e e e e
CODTYPE= v &+ & ¢ v« 0 v e 6 e o v o e o o o o o o o o &

Chapter 3. Binary Synchronous Communications e o e o e
Access Level et e e e e e e e e et e e e e e e e e e e
Conversational Operations v e e e e e e e e e e e e
Multipoint Operations c e e e e e s e e s e e e e e e
Task Control t e e s e e e e e e e e e e e e e e e e e e
The Event Driven Language BSC Statements e e e e e e
BSCCLOSE e
BSCIOCB e
BSCLINE e e e e e e e e s e e e e e e e e e e e e e
BSCOPEN e
BSCREAD e

BSCREAD Types e e e s e e e e et e e e e e e e e e e

Contents

ot pa
[= W =JRV-JV. IV IRV NN W | |

-
=

13
14
15
16
16
17

17
19
21
21

22
25
29
29
30
31
33
33
33

35
36
36
36
37
38
38
39
42
44
45
46

vii

BSCWRITE e
BSCHRITE Types s e s e e e e e e e e e e e e e e e
Error Recovery e b e s e e e e e e e e e e e e e e e
Sample Program: Write Transparent e e e e e e e e
Sample Program: Read Transparent s e e e e e e e e
Utility Programs (BSC) v e e e e e e e e e e e e e e
$BSCTRCE e
$BSCUT1 e
$BSCUT2 e e e et e e e e e e e e e e e e e e e e e e
RWI - Read/Write Non—-transparent Data « e e e e e
RHWIX - Read/Write Transparent Data e e e s e e e
RWIXMP - Read/WHrite Transparent, Multidrop Line
RI - Read Transparent/Non-transparent e e e e e s
WI — Write Non-transparent s e e e e e e e e e e
WIX - Write Transparent s e e s e e e e e e e e e s
EN - End $BSCUT2 Program s e e e e e e e e e e e e
CH - Change Hardcopy Device e e e e e e e e e e e
RWIVX - Read/Hrite Transparent Conversational .
RWIV - Read/Hrite Non-transparent Conversational
$PRT2780 and $PRT3780 Utility Programs v e e e e e
$RJE2780 and $RJE3780 Utility Programs e e e e e e s

Chapter 4. Host Communications Facility e e e e e e .
Open Series/1 Data Sets e e e s e e e e e e e e e e
Host Data Set Naming Conventions e e e e e e e e e
Host Data Set Characteristics e e e e e e e e e e e
Host System Considerations e e e 4 e e e e e e e e
Record Sizes S
Variable Length Records C e e e e e e e e e e e e e
Data Transfer Rates e e e s e e s e e e e e e e e e e
System Status Data Set e e 4 e e e e e e e e e e e
TP Statement e e e e e e e e e e s e e e e e e e e e e
Examples of Use e e e e e e e e e e e e e e e e e e e

TP Statement Syntax s e e e e e e e e e e e e e e
TP CLOSE e
TP FETCH e et e e e e e e e e e e e e e e e e e e e
TP OPENIN et e e e e e e e e e e e e e e e e e e e
TP OPENOUT . & ¢ i v v v e e o o o o o o o o o o o o
TP READ e
TP RELEASE e
TP SET e
TP SUBMIT e e e e e e e e e e s e e e e e e e e e e
TP TIMEDATE e
TP WRITE e e e e e s e e e e e e e e e e e e e e e e
Return Codes e e e e e e e e e e e e e e e e e .
Example Transfer a Series/1 Data Set to the Host .
Example Transfer a Host Data Set to the Series/1 .
$HCFUT1 Utility Program e e e e e e e e e e e e e e
READDATA & v v v v e o 6 o o o o o o o o o o o o o o
READ8C and READOBJ e e e e e e e e e e e e e e e e
SET, FETCH, and RELEASE e e e e e e e e e e e e e
SUBMIT e
WRITE e e e e e e e s e e e e e e e e e e e e e e e

Chapter 5. Multiple Terminal Manager e v e e e e e e

viii SC34-0316

49
50
56
59
60
61
61
62
64
66
67
67
68
69
69
70
70
70
71
72
73

81
82
82
83
83
83
84
84
85
88
88
90
90
92
93
94
95
96
97
98
100
101

102

105
106
107
108
109
110
111
112

113

Introduction .

Hardware Requirements
Software Requirements

.

.

. . .

Program Operation OQverview .
Program Management
Terminal/Screen Management

File Management

.

.

.

. e e

- . .

.

.

.

Multiple Terminal Manager Operation .
Multiple Terminal Manager Initialization Program . e
Terminal Server Programs .

Application Program Manager

.

.

Multiple Terminal Manager Utilities
Sign-0n/Sign-0ff

Data Files .

Application Program Interface

.

.

.

.

.

.

o &

.

.

.

.

.

.

.

-

.

.

.

Considerations for the IBM 3101 Model 2 Terminal « e e

Multiple Terminal Manager Components
Program Execution

.

.

e« s

User Program Organization
Input Buffer Address
Qutput Buffer Address .
Terminal Environment Block (TEB)
Interrupt Information Byte (IIB)

Controlling the Logic Flow of Programs

CALL ACTION
CALL LINK
CALL LINKON
CALL CYCLE
Communicating
CALL WRITE
Communicating
CALL SETPAN
CALL CHGPAN
CALL SETCUR
CALL BEEP
CALL MENU
CALL FTAB
CALL FAN .

with ASCII Terminals

.

.

with IBM

.

.

.

.

Accessing the Terminal

CALL CDATA

Disk File Support

CALL FILEIO

.

.

.

Event Driven Executive

FILEIO Indexed Access Method Considerations

* .

. ¢

. .

4978/74979/73101

* e+

.« s

o o o

- - .

Environment

e o .

.

-

.

.

.

.

.

.

-

.

.

.

.

.

.

.

.

.

.

.

.

. *« o o .

Direct File I/0 Considerations

Programming Considerations .
Event Driven Language Programming Considerations .

FORTRAN Programming Considerations
COBOL Programming Considerations
PL/I Programming Considerations

SIGNON/SIGNOFF Programs .

SIGNON ..
SIGNOFF

Operator Interface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Multiple Terminal Manager Initiation and Termination

Signing On .

.

.

.

.

.

.

.

.

.

.

Contents

113
114
114
115
115
117
118
118
119
119
119
119
120
120
121
122
123
127
127
127
128
128
128
130
130

131

132
132
133
133
134
134
135
137
137
137
138
139
139
139
140
141
146
148
150
151
152
153
155
156
156
157
158
158
158

ix

Program Initiation and Termination e e e v v e e e
Utilities e e et e e e e e e e e e e e e e e e e e
Distribution, Installation and Program Preparation
Installation e e e s e s e e e e e e e e e e e e e
Program Preparation C e e e e e e e e e e e e e e
Event Driven Language Program Preparation . v e
FORTRAN Program Preparation v e e e e e e e e e
COBOL Program Preparation e e e e e e e e e e e
PL/I Program Preparation e e e e e e e e e e e
Storage Requirements st e e e e e e e e e e e e e e
System Generation Considerations e e e e e e e e e
Volume Requirements e b e e e e e e e e e e e e e
Data Set Requirements o e e e e e e e e e e e e e
MTMSTORE e
TERMINAL et e e e e e e e e e e e e e e e e e e e
Screen Format Volume - SCRNS e e e e e e e e e e
User Application Program Volume - PRGRMS . e e
SIGNONFL e
Multiple Terminal Manager Defaults and How to Change
Multiple Terminal Manager Messages e e e e e e e e
Example — File Maintenance Transaction Application
EDL Sample Progl e e e e e e e e e e e e e e e e e
EDL Sample Prog? e v e s e e s e e e e e e e e e e
COBOL Sample Progl C e e e e e e e e e e e e e e e
COBOL Sample Prog?2 e e s e e e s e e e e e e e e s
FORTRAN Sample Progl e e e e e e e e e e e e e e e
FORTRAN Sample Prog?2 e e e e e e e e e e e e e e e
PL/1I Sample Progl e e e e e e e e e e e e e e e e e
PL/1I Sample Prog?2 v e e e e e e e e e e e e e e e e

Chapter 6. Remote Management Utility e o v e e e e e
Remote Management Functions e e e e a e e e e e e e
Hardware Requirements c e e e e s e e e e e e e e e
Software Requirements e e e e e e e e e e e e e e e
Remote Management Utility Interface e e e e e e e
Binary Synchronous Communication Protocol e e e a
Record Exchange e e e e e e e v e e e e e e e e s e
Record Format s e & e e 4 s e e s s e s s e e e e e
Record Blocking e e e e s s e e e e e e e e e e e e
Buffer Allocation s e e e e e e e e e e e e e e e e
Parameter Passing v e e e e e e e e e e e e e e
Remote Management Utility Func’clonal Operation .
ALLOCATE Function « ¢ v v v ¢ o v ¢ o o o o o s o o
Required Field Descriptions e e e e e e e e e e
DELETE Function C e e e e e e e e e e e e e e e e e
Required Field Descriptions e e e e e e e e e e
DUMP Function e e e e e e e e e e e e e e e e e e e
Required Field Descriptions s e e e e e e e e e
EXEC Function e e e e e e e e e e e e e e e e e e e
Required Field Descriptions e e e e e e e e e e
IDCHECK Function e e e e e e e e e e e e e e e e
Required Field Descriptions e s s s s s e e e s
PASSTHRU Function e e e e e e e e e e e e e e
Establishing a PASSTHRU Sessron e e e s e 4 e e
Conducting a PASSTHRU Session e e e e e e e e e e

x SC34-0316

158
159
161
162
le64
164
165
166
167
168
169
169
171
171
171
173
173
174
177
178
182
190
191
193
195
197
198
200
202

205
206
207
207
207
208
208
209
211
211
212
213
214
214
216
216
218
218
220
220
223
223
225
225
227

AN

NS

O

Passthru Record Types v e e e e
Text or Program Function Key . .
Request for Data e b e e e e e e s
Program End e e e e e e e e e e e
No Data e e e e e e e e e e e e
PASSTHRU Blocking e e e e e e e e
Considerations on Using PASSTHRU
RECEIVE Function e e e e e e e e e
Required Field Descriptions . . e
SEND Function e e e e s e e e e e e
Required Field Descriptions “ . .
SHUTDOWN Function e e e e e e e e e
Required Field Descriptions . . s
WRAP Function c e e r e e e e e e
Required Field Descriptions . e
Count Record e s e e e e s e e e e e e

Data Record s e e e e e e e e e e e
Status Record e e e e e e e e e e e
Sample Host Programs e s e s s e s
Error Handling e et e e e e e e e e e
Types of Errors e e e e e e e e e e
Error Messages s e e e e e e e e e

Installation ¢« v ¢ v v v v ¢ o
Remote Management Utility Modules
System Generation Requirements .
Storage Requirements e e e e e e e
Remote Management Utility Defaults
Modifying Defaults e e e e e e e e

Host ID s e e e e e e e e e e e e
Remote ID e e s e e e e e e e e e
BSC Device Address P
Communications Line e e e e e e
Storage C e et e e e e e e e e s
Buffer Size e e s e e e e e e s
Standard Data Set e e e e e e e e
Source Data Set v e e e e e e e e
Passthru Data e e e e e e e e e
CDRRM Equate Listing c e e e e e e e

Chapter 7. Graphics e e e e e e e e s
General Description e e e e e e e e
Hardware Considerations e e e e e e

Appendix A. Code Types e e e e e e s s

Bibliography . . . ¢ + ¢ ¢ ¢ v ¢ ¢ o v &
Event Driven Executive Library Summary

Event Driven Executive Library .

Summary of Library v e e e e e e
System Guide e e e e e e s e e e
Utilities e e e e e e e e e e e e
Language Reference e e e e e e e e
Communications Guide e e e e e e e
Internal Design o e e e e e e e e e
Reference Summary e e e e e e e e

Contents

232
232
236
236
236
237
237
2643
244
247
2438
251
251
254
254
256
257
258
259
277
277
279
281
281
281
282
283
283
284
285
286
287
288
289
2940
290
291
292

299
299
300

303

309
309
309
310
310
310
311
311
311
312

X i

Reading Sequence

Tabs .« .

.

.

.

.

-

.

.

.

.

.

.

.

.

.

.

.

.

.

Other Event Driven Executive Programming Publications
Other Series/1 Programming Publications

Other Programming Publications
Series/1 System Library Publications

Glossary .

Common Index

xii

SC34-0316

.

.

.

.

.

.

312
312
313
313
314
314

317
329

Figure
Figure
Figure
Return
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
(Part
Figure
(Part
Figure
Figure
Figure
Figure
Figure
Utilit
Figure
Figure
Figure
Figure
Figure
Figure
Figure

1.
2.
3.

LIST OF FIGURES

Supported Devices and Features c e e e e e e s
Terminal I/0 - ACCA Return Codes e e e e e e e
Terminal 170 - Interprocessor Communications

Codes e e e e e e e e e e e s . e e e e . e e e

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14,
15.
l6.
17.
18.
19.
20.
21.
22.

Required Buffers for BSCREAD and BSCNRITE . .
BSC Return Codes e e e s e e e e e e e e e e e
SRJE Attention Requests . v e v e e e e e
Sample $RJE Session (Part 1 of 2) e e e e e e
Sample $RJE Session (Part 2 of 2) e h e e e e
System Status Data Set Sample Program e e e .
TP Return Codes (Part 1 of 3) e e e e e e e e
TP Return Codes (Part 2 of 3) e e e s e e e e
TP Return Codes (Part 3 of 3) e e e e e e e e
Remote Management Utility Record Types . e e
Remote Management Utility Record Scheme e .
Communications Flow for the ALLOCATE Function
Communications Flow for the DELETE Function
Communications Flow for the DUMP -Function . .
Communications Flow for the EXEC Function . .
Communications Flow for the IDCHECK Function
Logic Flow of a PASSTHRU Session e e e s e e e
Example of Passthru Records Received by Host
Communications Flow for the PASSTHRU Function

1 of 2) e s s s e e e o e 4 s e e e e e e e e e e .

23.

Communications Flow for the PASSTHRU Functlon

2 of 2) e

26,
25.
26.
27.
28.
y

29.
30.
31.
32.
33.
36,
35.

Communications Flow for the RECEIVE Function
Communications Flow for the SEND Function . .
Communications Flow for the SHUTDOWN Function
Communications Flow for the WRAP Function .
Error Handling by the Remote Management

Error Handling by the Host Program « e e e e e
CDRRM Copy Code (Part 1 of 6) e e e e e e e e
CDRRM Copy Code (Part of 6) e e e e e e e e s
CDRRM Copy Code (Part of 6) e e e e e e e e
CDRRM Copy Code (Part of 6) c e v e e e e e
CDRRM Copy Code (Part of 6) e e e e e e e e .
CDRRM Copy Code (Part of 6) e e e e e e e e e

[N - BT R \V

List of Figures

. 31
. 61
. 57
. 74
. 78
. 79
. 86

102
103
104
209
210
215
217
219
222
224
230
235

261

262
266
250
253
255

278
279
292
293
294
295
296
297

xiii

Xiv

SC34-0316

O

SN

O

INTRODUCTION

The Event Driven Executive can be used to interact with a vari-
ety of terminals. Various techniques are available using the
Event Driven Executive. These techniques support applications
ranging from simple applications interacting with a single
terminal to complex communications networks. This book con-
tains both the information you need to understand which Event
Driven Executive technique is best suited for your particular
application and, the information needed to design your appli-
cation using the technique selected.

These techniques are:

. Terminal Support

. Binary Synchronous Communication Access Method (BSCAM)
. Host Communications Facility

. Multiple Terminal Manager

. Remote Management Utility
U Graphics

. Utilities

Introduction 1

2

SC34-0316

PART I - TECHNIQUE SELECTION CRITERIA

This part of the book lists and briefly describes the tech-
niques supported by the Event Driven Executive. The informa-
tion in this part of the book allows you to see what is
available and to select the technique best suited for your par-—
ticular application.

Part I - Technique Selection Criteria 3

4

SC34-0316

CHAPTER 1. TECHNIQUES AVAILABLE USING THE EVENT DRIVEN EXEC-—

UTIVE

This chapter describes the technigues available using the
Event Driven Executive. The information in this chapter will
help you select the technique best suited to your application.

TERMINAL SUPPORT

This technique is the basic Event Driven Executive terminal
support and should be selected if you are writing an Event
Driven Language program which will interact with a single ter-
minal. See Figure 1 on page 6 for supported terminals. Use of
this facility will also allow the Event Driven Language program
to interact with another Event Driven Language program. The
interaction with another Event Driven Language program is
known as virtual terminal support. For information on the vir-
tual terminal support, refer to "Virtual Terminal Communi-
cations™ in the System Guide.

Using the terminal support, you interact with the terminal in
either field or line mode. If the terminal is a supported
display, the interaction may also be in full screen mode. For
information on the full screen mode support, refer to "Defining
and Accessing Logical Screens"™ in the System Guide.

Chapter 1. Techniques Available Using the Event Driven
Executive 5

The following figure lists the devices and features which are

supported by the Event Driven Executive.

Devi

IBM
IBM
IBM
IBM
IBM
IBM
IBM
IBM
IBM

ASC

Gra

1560
1610
2091
2092
2095
2096
3585
5620
5630
7850
RPQ D

ce (or equivalent) Attach Via Series/1
Controller/Adapter
Feature Number

2741 1610
4973 5630
4974 5620
4978 RPQ D02038
4979 3585
Series/1 1610
5100 1610
5110 1610
3101 1610 or, 2091 with 2092 or,
2095 with 2096 or, 7850
II terminalx 1610 or, 2091 with 2092 or,
2095 with 2096 or, 7850
phics terminalx 1560

%¥Teletype! ASR 33735 (TTY) or equivalent
*xTektronix2 Model 4013 or equivalent

- Integrated Digital Input/0Qutput Non-Isolated

- Asynchronous Communications Single Line Controller
- Asynchronous Communications Eight Line Controller
- Asynchronous Communications Four Line Adapter

- Feature Programmable Eight Line Controller

- Feature Programmable Four Line Adapter

- 64979 Display Station Attachment

- 64974 Printer Attachment

- 4973 Line Printer Attachment

- Teletypewriter Adapter

02038 - 4978 Display Station Attachment

Figure 1. Supported Devices and Features

6

Trademark of Teletype Corporation.
Trademark of Tektronix, Inc.

§C34-0316

Terminology for Supported Terminals

The following is a definition of terminologies used in describ-
ing Event Driven Executive supported terminals. This terminol-
ogy is also used to describe the coding of the TERMINAL
statement during system generation time which is discussed in
the System Guide.

Terminology Definition

ASCII Terminal Any device which attaches via #7850,
#1610, #2091 with #2092, or #2095
with #2096 adapters. (Teletypeuwriter,
Asynchronous Single Line, Asynchronous
Multiline, and Feature Programmable
adapters respectively) and uses code
type ASCII or EBASC,

ACCA Terminal An ASCII terminal attached via #1610,
#2091 with #2092, or #2095 with #2096
adapters.

Mirror Image An ACCA terminal attached via #1610 or
ACCA Terminal #2091 with #2092 using code type EBASC.
Real Image An ACCA terminal attached via #2095
ACCA Terminal with #2096 using code type ASCII.

TTY Any Teletype ASR 33/35 or compatible

terminal attached via #7850 only.

2761 Terminal A terminal attached via #1610 using
code type CRSP or EBCD.

PROC A terminal attached via #1610 using
code type EBCDIC.

Note: Appendix A of this book contains all the code types men-
tioned in the previous text.

Chapter 1. Techniques Available Using the Event Driven
Executive 7

The following table shows the different device configurations.

System
Device Code Locals Controls Configuration
Class Type Remote Adapter Davice Type Device
Display Graphics Local #1560 4013 4013
Display ASCII Remote #2095 ACCA 3101
with *
#2096
Display Mirror Remote #1610 ACCA 3101
Image or
ASCII #2091
with
#2092
Display EBCDIC Local RPQ 4978 4978
D02038
Display EBCDIC Local #3585 4979 4979
Display ASCII Local #7850 TTY 3101
Printer ASCII Local #7850 TTY Teletype
Printer Real Remote #2095 ACCA Teletype
Image with
ASCII #2096
Printer Mirror Remote #1610 ACCA Teletype
Image or
ASCII #2091
with
#2092
Printer CRSP Remote #1610 2761 2761
Printer EBCD Remote #1610 27461 2741
Printer EBCDIC Local #5620 4974 4974
Printer EBCDIC Local #5630 4973 4973
Program EBCDIC Local n/a VIRT Series/1
Program EBCDIC Remote #1610 PROC Series/1
Program EBCD Remote #1610 PROC 5100/5110
Program CRSP Remote #1610 PROC 5100/5110

8 5C34-0316

C

BINARY SYNCHRONOUS COMMUNICATIONS ACCESS METHOD (BSCAM)

The binary synchronous communications access method technique
should be selected when interacting with remotely connected
terminals or CPUs using the binary synchronous communications
facility. The remote terminals and CPUs may be any which sup-
port the BSC protocol. In order to use this technique, the con-
nection must be via a BSC line. The Event Driven Language
support allows vou to write programs which send and receive
data consistent with the BSC protocol on the line. This support
also provides IBM utilities or, IBM supplied applications,
which have general applicability. These utilities are 2780 and
3780 RJE emulators and aids for the debugging of programs which
use binary synchronous communications.

HOST COMMUNICATIONS FACILITY

The Host Communications Facility allows you to send/receive
data sets and background Jjobs to/from a host system. It
requires the Host Communications Facility Installed Users Pro-
gram (IUP) (5796-PGH) be installed on the host S/7370 systenm.
This technique provides Event Driven Language instructions and
a utility ($HCFUT1) +to provide interactive communications
between a S/370 host and remote Series/1 over a binary synchro-
nous communications facility. The Host Communications Facility
utilizes the BSCAM support to perform its functions.

MULTIPLE TERMINAL MANAGER

The Multiple Terminal Manager support should be selected when
the requirement is to support a transaction-oriented applica-
tion. A transaction—-oriented application is one which consists
of several terminals, each of which may request concurrent
interaction with one or more programs. The Multiple Terminal
Manager manages the Seriess/1 storage area to reduce the amount
of storage required to support interaction with more than one
terminal by one program. High—-level language support is pro-
vided.

REMOTE MANAGEMENT UTILITY

The Remote Management Utility support should be selected when
the requirement is to provide remote Series/1 processing for a
host computer. The Remote Management Utility provides a means

Chapter 1. Techniques Available Using the Event Driven
Executive 9

of distributed processing on a remote Series/1l, with little or
no operator intervention required. The Remote Management Util-
ity and the host communicate via a user-written host program
over a BSC line using the BSCAM support of the Event Driven
Executive.

GRAPHICS

This support should be selected when the application has a
requirement for graphics support. This technique enables you
to communicate with a Tektronix Model 4013 (or equivalent) ter-
minal. The physical connection is via the #1560 adapter. 1In
addition to the basic terminal support statements available,
graphics-oriented Event Driven Language statements and IBM
utilities are provided.

UTILITIES

Various IBM utilities are supplied to ease the burden of data
transmission to/from interacting devices. These utilities are
described in the appropriate sections and are:

. Terminal support (see Utilities, Operator Commands,
Program Preparation, Messages and Codes)

$IMAGE
SFONT
SPFMAP
STERMUTI1
STERMUT?Z2
STERMUT3

. BSCAM (see Chapter 3)

$PRT2780 $BCSUT1
$PRT3780 $BSCUT?2
$RJE2780
$RJE378C
] Host Communications Facility (see Chapter 4)
$HCFUT1!

L Graphics (see Chapter 7)
SDIUTIL

$DICOMP
$DIINTR

10 SC34-0316

»

7N
N

PART ITI — TECHNIQUE DESIGN INFORMATION

This part of the book describes in detail the different tech-
niques supported by the Event Driven Executive. After you have
selected the technique which best suits your application, you
can design your application using the information provided in
this part of the book.

Part II - Technique Design Information 11

12

SC34-0316

CHAPTER 2. TERMINAL SUPPORT

The Event Driven Executive terminal support is designed to be
as device independent as possible. With few exceptions, you
need not be concerned with what type of device is being driven
by terminal functions coded in the program. The same sequence
of terminal output instructions, for instance, can be used to
print data on a matrix or line printer, on a locally attached
teletypewriter device, on a remote 2741 terminal, or to display
the data on an electronic display screen device.

Terminals are Hefined in the system with the TERMINAL system
configuration statement. This statement generates system
control blocks and tables that contain the logical and physical
variables required to operate the terminal.

The high degree of device independence is achieved in part by
treating all terminals as though they were line printers,
differing only in their page sizes (forms length) and margin
settings, which are defined by TERMINAL statement operands.
The support provides instructions allowing interactive commu-
nications between you and your application programs. See
Figure 1 on page 6 for a list of supported terminals.:

Generally, you can write terminal I/0 functions in an applica-
tion program without concern for the actual terminal being
used. The default terminal to be used by the program is dynam-
ically assigned by the supervisor to be the same terminal that
was used to initially invoke the program. Therefore, the termi-
nal assigned can vary from one program invocation to the next,
with little or no program change. Utilizing the terminal
instructions, any application program that contains no device
dependent information can be operated in a compatible manner
from any Event Driven Executive supported terminal.

Terminals can be referenced by symbolic name and accessed by
any application program .through appropriate instructions.
Forms and screen format control can be dynamically changed
within your program and the 4978/4979 screen can be copied to
any designated hard copy terminal.

Chapter 2. Terminal Support 13

Terminal Operations

When a program is loaded from a terminal, that terminal is
dynamically designated by the system as the terminal to be used
by terminal I/0 instructions in the program. Each terminal 170
instruction automatically has exclusive use of the terminal
while executing, and can request extended control for multiple
I1/0 operations.

If more than one task is using the terminal, terminal oper-
ations from different tasks could become interspersed. When
this is not desirable, you can specify the ENQT (enqueue termi-
nal) instruction to reserve the terminal for the exclusive use
of a task, thereby preventing other tasks from using the termi-
nal until the task issuing the ENQT releases it with the DEQT
(dequeue terminal) instruction.

You can also use ENQT to gain exclusive control of any other
terminal. The symbolic name of a terminal is the name coded on
the label of the TERMINAL statement that defines the device.
Coding a name in the label field of the TERMINAL statement dur-
ing system configuration automatically defines the terminal to
the system as a global resource that can be enqueued (ENQT) by
other programs. Normally, an IOCB statement would be used to
establish the connection between the ENQT and the TERMINAL
statements at execution time.

Three symbolic terminal names are used by the supervisor for
system utility programs:

$SYSLOG Names the system logging device or operator station,
and must be defined in every system. In the starter
supervisor, $SYSLOG defines an IBM 4978 or an IBM
4979 Display Station.

$SYSLOGA Names the alternate system logging service. If
unrecoverable errors prevent use of $6SYSLOG, the
system will use the $SYSLOGA terminal as the system
logging device/operator station. If defined, this
device should be a terminal with keyboard capabili-
ty, not Jjust a printer. The starter supervisor
defines the $SYSLOGA terminal as a teletypeuriter
device.

$SYSPRTR Names the system printer. If defined, the output
from some system programs is directed to this
device. The starter supervisor defines a 4974 matrix
printer as the $SYSPRTR device.

14 SC34-0316

Terminal I/0 Instructions

The Event Driven Language terminal I/0 instructions are pro-
vided to control the input/output operations to terminals.
These instructions are defined in the Language Reference and
are:?

DEQT Releases a terminal from exclusive use
ENQT Acquires exclusive access to a terminal
ERASE Clears designated portions of static type screens

GETVALUE Reads one or more integer values that are entered by
the terminal operator

PRINDATE Prints the date on the terminal
PRINTNUM Converts a floating-point variable or integer
variable to printable form and writes it on the ter-

minal, with an optional format specification

PRINTEXT Writes an alphameric text string to a terminal, with
or without forms control

PRINTIME Prints the time of day on the terminal

QUESTION Prints a message and queries the operator for a Y
(yes) or N (no) reply

RDCURSOR Acquires the cursor position of static screens
READTEXT Reads an alphameric text string from the terminal

TERMCTRL Controls device dependent features

Chapter 2. Terminal Support 15

Data Formatting Instructions

Data formatting instructions allow you to prepare formatted
data for display on the terminals or printers attached to the
Series/1l. The capability is provided to format data in storage
and then allow the program to decide the destination.

Use of the data formatting instructions FORMAT, GETEDIT, and
PUTEDIT require that the user's object program be processed by
the link edit program, $LINK, in order to include the supervi-
sor interface routines and the formatting routines which are
supplied as object modules. Refer to the Utilities, Operator

Commands, Program Preparation, Messages and Codes for the
description of the autocall option of $LINK, and information on
the use of the "AUTO=$AUTO,ASMLIB" option of $LINK.

These instructions are defined in the Language Reference and
are?

CONVTB Converts a binary value to an EBCDIC string.
CONVTD Converts an EBCDIC string to a binary value.
FORMAT Describes the conversion performed between internal

and external representations of data items.
GETEDIT Receives data from a terminal using FORMAT.

PUTEDIT Sends data to a terminal using FORMAT.

Terminal Definition Functions

Two Event Driven Language statements are provided to define the
type of terminal the program is connected to. These are:

TERMINAL A system configuration statement to define the
existence of the terminal to the Event Driven Execu-
tive supervisor. This statement is defined in the
System Guide.

IOCB Used in a program to define the variable attributes
of a terminal, such as margins, and to supply the
symbolic name of the TERMINAL statement supplied
during system configuration. This statement is
defined in the Language Reference.

16 SC34-0316

Interrupt Processing Functions

Normally a program would need to wait for an operator to
respond to a request for input. This program wait capability is
provided automatically by the READTEXT instruction or via the
WAIT Event Driven Language instruction. The capability also
exists to define asynchronous attention interrupt routines via
the ATTNLIST instruction. When the Attention key is pressed on
a terminal, the system wWwill query the operator for a command.
If this command is specified on the ATTNLIST statement, control
is given to the appropriate program. These two instructions are
defined in the Language Reference:

WAIT KEY - Hait for operator response.

ATTNLIST - Defines asynchronous attention interrupt routine.

See the Language Reference for a full discussion and sample
programs illustrating the use of the terminal support tech-
nique.

Considerations for Feature #1610 or #2091 with #2092 Adapter

Devices attached via the #1610 controller or #2091 controller
with #2092 adapters are supported by the standard terminal 1/0
instructions. The adapters operate in half-duplex mode and
require special attention to the operating environment. Com-
pared to the Event Driven Executive implementation of the #7850
adapter, the following differences are noted:?

. Half-duplex mode
. No Series/1 Echo (must use Local Echo on terminal)
. Uses eight-bit data interchange code

The attached device may be used in a switched, leased, or
direct connect environment. Each adapter feature has harduware
jumpers that are used to customize the adapter to meet a varie-
ty of network configurations. Prior to defining the adapter to
the Event Driven Executive via the TERMINAL statement, you
should become familiar with these hardware jumpers. The
Communications Feature Description should be referenced before

actual connection of terminals or modems. Be sure the harduare
is configured correctly prior to defining the software inter-
face.

Chapter 2. Terminal Support 17

Some general rules for hardware jumpers are:
. For Direct Connect terminals:
- Data Terminal Ready (DTR) is usually jumpered.

- Request to Send (RTS); jumper only when Carrier Detect
(CD) is not provided by terminal.

- Carrier Detect (CD); jumper only when Request to Send
(RTS) is provided by the terminal.

* For Leased Lines using modems:
- Data Terminal Ready (DTR); Jjumper only when Event
Driven Executive application programs do not control

the modem.

- Request to Send (RTS); jumper only if the modem pro-
vides a steady Clear to Send (CTS) signal.

- Carrier Detect (CD); jumper only if the modem supports
this feature.

. For Switched Lines using modems:
- Data Terminal Ready (DTR); jumper only when Event
Driven Executive application programs do not control

the modem.

- Request to Send (RTS); jumper only if the modem pro-
vides a steady Clear to Send (CTS) signal.

- Carrier Detect (CD); jumper only if the modem supports
this feature.

Speed range jumpers should be installed in accordance with
instructions in the Communications Feature Description.

Once the hardware features have been properly defined, you may
define the features to the Event Driven Executive system. The
TERMINAL statement is used for this description. Additionally,
the TERMCTRL statement has operands which allow the control of
the modem. See the System Guide for information on the TERMINAL
statement and the Language Reference for the TERMCTRL state-
ment.

18 SC34-0316

| |
Y

The TERMCTRL operands are as follows:

RING Waits until the Ring Indicator (RI) is presented to
the Series/1 from the modem. No timeout is provided.

RINGT Waits until the Ring Indicator (RI) is presented to
the Seriess/1 from the modem. If no Ring Indicator
(RI) occurs after 60 seconds, then the instruction
is terminated and an error condition is returned to
the application program in the first word of the task
control block (TCB).

ENABLE Activates Data Terminal Ready (DTR) if it is not
already jumpered on and then waits for Data Set Ready
(DSR) to be returned by the modem. No timeout is pro-
vided.

ENABLET Activates Data Terminal Ready (DTR) if it 1is not
already jumpered on and then waits for Data Set Ready
(DSR) to be returned by the modem. If Data Set Ready
is not returned within 15 seconds, then the
instruction is terminated and an error condition is
returned to the application program in the first
word of the TCB.

ENABLEA Provides the same function as ENABLE except that an
answer tone is activated for 3 seconds following the
activation of Data Set Ready (DSR). The modem must
allow for the control of the ansuer tone.

ENABLEAT Provides the same function as ENABLET and ENABLEA
combined.

DISABLE Disables Data Terminal Ready (DTR) if it is not
jumpered on and waits for 15 seconds. Use this func-
tion to hang up the modem.

Return Codes

After each I/0 instruction issued:by the Event Driven Executive
application program, a return code is provided in the first
word (taskname) of the TCB. These return codes have special
meaning for terminals attached via #1610 controller, #2091
controller with #2092 adapters and #2095 controller with #2096
adapters.

Chapter 2. Terminal Support 19

-1 Successful completion.
Bit Description

0] Unused

1-8 ISB of last operation (I/0 complete)

9-1¢C Unused

11 1 if a write or control operation (I/70 complete)
12 Read operation (I/0 complete)

13 Unused

14-15 Condition code +1 after I1/0 start (or)

Condition code after I/0 complete

Figure 2. Terminal I/0 - ACCA Return Codes

If any error has occurred after I/0 complete, then the cycle
steal status information 1is also available at #CCBSTWO,
$CCBSTH1 and #CCBSTW2. If the supervisor is mapped into vyour
partition, you can obtain the three cycle steal status words by
coding the following instructions:

coPy PROGEQU

coPY CCBEQU

MOVE #1,$PRGCCB GET ADDRESS OF CCB

MOVE SAVE, (#CCB-#CCBSTWO0,#1),3 MOVE STATUS
SAVE DATA 3F'0"

Refer to the Communications Feature Description for a detailed
description of the Interrupt Status Byte (ISB) Condition Codes
both after start I/0 and after I/0 complete as well as the mean-—
ing of the cycle steal status words 1, 2, and 3.

20 SC34-0316

O

C

Considerations for Feature #2095 with #2096 Adapter

The Event Driven Executive system includes support for the Fea-
ture Programmable Controller and Adapter. The #2095 controller
with #2096 adapter has two modes of operation:

. Compatibility mode — allows the substitution of #2095 con-
troller with ﬁ2096 adapter for current asynchronous commu-
nication features (#1610 controller and #2091 controller
with #2092 adapter using eight bit interchange code).

. EXIO mode -~ provides access to the full command set.

In compatibility mode the difference between the #1610 con-
troller and the #2091 controller with #2092 adapter is that the
line code is ASCII. This is of particular importance during
system configuration because the line control characters spec-
ified on the TERMINAL statement are not coded in mirror image,
but in standard ASCII. The line code (CODBTYPE) must also be
specified as ASCII. Refer to the System Guide for details and a
definition of mirror image.

#7850 Teletypeuriter Adapter

The most frequent use of the #7850 Teletypewriter Adapter sup-
port is to receive or send messages composed of ASCII character
strings between the Series/1 and a teletypewriter terminal.
The most common forms of such terminals are keyboard/printer
and keyboard/CRT type display configurations. However, use of
the terminal I/0 instructions need not be limited to these
types of terminals.

Devices are available from many vendors which are compatible
with the physical transmission methods of the Series/1 Tele-
typewriter Adapter, for example, Isolated Contact sense, TTL,
and EIA. Such devices include terminals which transmit only, or
receive only, or transmit only in response to being polled for
information. The devices may not have keyboards for informa-
tion input but may acquire data from bar code scanners, analog
or digital input features within the device, etc. The trans-
mission code emploved by these devices may be alphameric ASCII
characters or may be any of the 256 possible 8-bit character
combinations.

Proper use of the terminal I/0 instructions enables your pro-
gram to communicate with many such devices. For example, if the
device attached to the #7850 Teletypewriter Adapter does not
expect the data which it ¢transmits to be returned by the
Series/1 (usually returned for printing purposes), then the
ECHO=NO parameter on the appropriate TERMINAL statement should
be coded.

Chapter 2. Terminal Support 21

Further, the device data ¢transmission to the Series/1 may
include bit combinations which match the LINEDEL and CHARDEL
parameter characters defined on the TERMINAL statement. To
receive these characters as data in your program, the READTEXT
instruction must specify the parameter XLATE=NO. Using
XLATE=NO will permit the reception, as data, of any 8-bit pat-
tern except for the carriage return (hexadecimal values 0D or
8D). You may detect the reception of a carriage return charac-
ter by performing/ the input operation as one or more READTEXT
instructions, each of which specifies an input area that is one
character in length. If the READTEXT operation completes with
the received character count equal to zero, the character input
was either an X'8D' or X'0OD' value since reception of a car-
riage return terminates a READTEXT instruction without passing
that character into your input area. There is no method avail-
able to distinguish between reception of X'0D' and X'8D' val-
ues.

Transmission of other than standard alphameric ASCII charac-—
ters to a terminal is accomplished by specifying XLATE=NO on
the PRINTEXT instruction. In this case, you must define the
8-bit values to be transmitted by means of DATA or DC
instructions. The output data area must have the same format as
is generated by a TEXT instruction.

Special Considerations for the IBM 3101 in Character Mode

The IBM 3101 Display Terminal can be connected to the Series/1
via four attachments: the #7850 Teletypewriter Adapter, #1610
controller, #2091 controller with #2092 adapter, or #2095
controller with #2096 adapter. In the following discussion,
all connections are direct, with no intervening modem. For a
discussion of leased and switched lines using modems, refer to
"Considerations for Feature #1610 or #2091 with #2092 Adapter™
on page 17.

For attachment with the #7850 Teletypeuwriter Adapter, the
#7850 input selection jumpers (see IBM Series/1 User's Attach-
ment Manual, GA34-0033) may be set as follows:

Input Input
MSB LSB Selected Interpreted as
0 1 0 EIA Minus=datamark
MSB = Most Significant Bit
LSB = Least Significant Bit

Also, the bit rate selection jumpers must match the 3101 setup
switch settings.

22 SC34-0316

7N

Ne

O

A typical setup suwitch setting would be:

on

Groupl

Group?

Group3

Groupé

X

X
XXXXXXX

X

X

XX

XXXX

X

XXXXXXX

off XX XXXXX

In the illustration above, the 3101 setup suitch settings indi-
cate 4800 bps. The #7850 bit rate selection jumpers would then
also indicate 4800 bps. Abit rate of 110 bps would require that
two stop bits be set in the 3101 setup switches instead of one
as illustrated above.

For attachment via the #1610 controller or #2091 controller
with #2092 adapter, or #2095 controller with #2096 adapter, the
3101 setup switches may be set as follows:

on
off

Groupl

Group?

Group3

Group4%

X

XXX

XXXX

X
XX XXXXX

X

X

XX

XXXX

X

X
XX XXXX

The jumpers for the #2091 controller with #2092 adapter should
have Data Terminal Ready and Request to Send jumpered on. Also,
the HIGH or LOW speed option must be jumpered to reflect the
speed set in the 3101 setup switches. In the illustration
above, the speed is 9600 bps. The RANGE and BITRATE operands on
the TERMINAL configuration statement must also be compatible
with the #2091 controller with #2092 adapter jumpers and 3101
setup switches.

The jumpers for the #2095 controller with the #2096 adapter
should have Data Terminal Ready, Request to Send, and Receive
Line (on = mark) jumpered on.

Finally, special consideration must be given to operator input

and internal code representation. This is summarized in the
following table.

Chapter 2. Terminal Support 23

Character Generated
Device=ACCA Device=TTY
Operator Key on 3101 #1610 or #2095 #7850
Function #2091 with with
#2092 #2096
EBASC ASCII ASCII
ATTENTION ESC followed X'D9’ X'9B" X'1B"
by space bar
ENTER I X'B1"’ X'8D?* X'oD*
<
(Key above
SEND key)
BACKSPACE < X'1i1’ X'88" X'08"
(character|(top row, not
delete) bottom row)
LINE DEL X'FF"* X'FF?* X'7F"
DELETE

Note that ECHO=NQO or PROTECT=YES on the READTEXT statement (for
suppression of input text) has no effect when the 3101 is
attached via the #1610 controller or the #2091 controller with
#2092 adapter, or the #2095 controller with #2096 adapter.

24 SC34-0316

O

N
w7

Special Considerations for the IBM 3101 in Block Mode

The IBM 3101 Model 2 may be operated in block mode under control
of the Multiple Terminal Manager.

For attachment via the #1610 controller or #2091 controller

with #2092 adapter, or #2095 controller with #2096 adapter, the
3101 setup switches may be set as follows:

Groupl Group?2 Group3 Group4

on XXXX X XX XX X XXX
off XX X XX XX XXXXXXX X XXXX

The jumper for the #2091 controller with #2092 adapter should
have Data Terminal Ready and Request to Send jumpered on. Also,
the HIGH or LOW speed option must be jumpered to reflect the
speed set in the 3101 setup switches. In the illustration
above, the speed is 2400 bps. The RANGE and BITRATE operands on
the TERMINAL configuration statement must also be compatible
with the #2091 controller with #2092 adapter jumpers and 3101
setup switches.

The jumpers for the #2095 controller with the #2096 adapter
should have Data Terminal Ready, Request to Send, and Receive
Line (on = mark) jumpered on.

Refer to the System Guide for sample TERMINAL statements and
other system generation considerations.

Chapter 2. Terminal Support 25

Sample Terminal Support Program (1 of 3): The following exam-

pl
th

26

e shows how to use the terminal support technique to print
e IBM logo and the time and date.

SAMPLE PROGRAM START,500, TERMERR=ERROR

336 3 % 3 3 36 3 I X I 9 H X X X 3 3 H 3 I K K H K H K K I H K I I K K K K KK K KKK KKK N KKK KKK KKK

¥ NOTE THAT THE SUPERVISOR USED TO EXECUTE THIS *

SAMPLE PROGRAM MUST HAVE BEEN SYSGEN'ED TO INCLUDE TIMERS, ¥

$SYSLOGA, AND THE TARGET COMMUNICATIONS TERMINALS. THE *

NAME OF A TARGET TERMINAL IS THE LABEL USED ON THE TERMINAL x
*
*

X XK X X

STATEMENT DESCRIBING IT.
336 36 % XK 3 3 K I 3 K I3 3 3 3 I I 3K 3 I K I K I I I K I3 X I I I KK I K I I K KKK
*
TERMX IOCB $SYSLOGA TARGET TERMINAL IOCB
SPACE 2
START EQU *
*

b 3

ASK OPERATOR FOR NAME OF TARGET TERMINAL. MOVE THAT NAME
INTO THE 'TERMX' IOCB AND THEN '"ENQT' ON TERMX. THIS WILL
ALLOCATE THAT TERMINAL TO THIS PROGRAM AND ALL TERMINAL I/0
INSTRUCTIONS WILL THEN BE ROUTED TO IT.

X K XK K X X
X X X X X X

— ———— — ———- - —— " =t~ —— ———_—— — ——— ——— —~ —— e W = T W ——— e - - T - v V- — ton - e m—— v —.

x
X

X

READTEXT TNAME, "ENTER 8 CHAR TERMINAL NAME:
MOVE TERMX, TNAME, (8,BYTE) MOVE 8 CHARS TO IOCB

X

DETERMINE THE LINE CONNECTION TYPE. IF SWITCHED, INQUIRE
IF THE CPU IS THE CALLER OR THE ANSHERER.

X XK X X X
X XK X X

QUESTION '9IS THE LINE CONNECTION SWITCHED? ',NO=XFER
MOVEA LINETYPE,+SWITCHED INDICATE SWITCHED CONNECTION
PRINTEXT 'a %% ANSWER THE FOLLOWING QUESTION, THEN'
PRINTEXT ' PERFORM THE DIAL OPERATION xxx 7'
QUESTION 'dIS THE CPU THE CALLER? '",YES=XFER
MOVEA DIALTYPE,+ANSWER INDICATE CPU WILL ANSHER
XFER ENQT TERMX

IF (LINETYPE,EQ,+SWITCHED) SWITCHED COWRNECTION?

IF (DIALTYPE,EQ,+ANSWER) CPU TO ANSWER?

TERMCTRL RING WAIT FOR RING INT. TO ANSHWER

ENDIF

TERMCTRL ENABLE WAIT FOR DATA SET READY
ENDIF
EJECT

SC34-0316

-
S

O

Sample Program (2 of 3)

3 e e e e e e e *
* *
% NOW THAT ALL TERMINAL I/0 IS GOING TO *
* THE TARGET TERMINAL: *
* 1. PRINT IBM LOGO x
* 2. PRINT DATE AND TIME x
P o e e e e e e e e e e e e e %*
LOGO EQU *

PRINTEXT LINE=1
PRINTEXT LOGO1,SPACES=15,S5KIP=4
PRINTEXT LOGOZ2,SPACES=15
PRINTEXT LOGO3,SPACES=15,SKIP=1
PRINTEXT LOGO4%,SPACES=15
PRINTEXT LOGO5,SPACES=15,5KIP=1
PRINTEXT LOGO6,SPACES=15,SKIP=1
PRINTEXT LOGO7,SPACES=15,SKIP=1
PRINTEXT LOGO8,SPACES=15
PRINTEXT LOGO9%9,SPACES=15
PRINTEXT SKIP=4
SPACE

TIMES EQU *

PRINTEXT 'DATE = ',SPACES=5
PRINDATE
PRINTEXT 'TIME = ',SPACES=5
PRINTIME
STOP EQU
GOTO ENDIT END OF SAMPLE
EJECT
3 e e e e e e e e e e e e e e e *
* TERMINAL ERROR ROUTINE x
3 o e e e e e e e i e e e *
ERROR EQU x
MOVE RC,SAMPLE SAVE THE ERROR CODE
DEQT RETURN TO SYSTEM CONSOLE
PRINTEXT 'a@%% UNRECOVERABLE TERMINAL ERROR OCCURRED %'
PRINTEXT '3 THE ERROR CODE WAS '

PRINTNUM RC,MODE=HEX
PRINTEXT '3%% SAMPLE IS TERMINATED *%3°'

GOTO ENDIT END THIS PROGRAM
RC DC F'0°

EJECT
K e e e e e *
* END OF PROGRAM *
K e *

Chapter 2. Terminal Support 27

Sample Program (3 of 3)

ENDIT EQU * .
IF (LINETYPE,EQ,+SWITCHED) SWITCHED LINE CONNECTION?

TERMCTRL DISABLE HANG UP IF SWITCHED CONNECTION
ENDIF END OF LINE CONNECTION TEST
DEQT RETURN TO CONSOLE USE
PROGSTOP
EJECT
M *
* *
* DATA A REA *
* *
36 e e %
TNAME TEXT LENGTH=38 HOLDS NAME OF TARGET TERMINAL
LOGO1 TEXT '"IIIIIIIIII BBBBBBBB MM MMa®
LOGO?2 TEXT 'IIIIIIIIII BBB BBBB MMM MMM’
LOGO3 TEXT 11 BBB BBBBB MMMM MMMMQ3'
LOGO4 TEXT ' II BEBBBBBBBB MMMMMMMMMM *
LOGOS5 TEXT ! 11 BBBBBEBB MMMMMMMMMM *
LOGOS6 TEXT ! Il BBBBBBBBBB MM MMMM MM'
LOGO7 TEXT 7 II BBB BBBB MM MM MM3'
LOGOS8 TEXT "IIIIIIIIII BBB BBBB MM MM
LOGO9 TEXT 'IIIIIIIIII BBBBBBBB MM MM
*
DIALTYPE DATA F'-1" DIAL CONNECTION TYPE:
CALL EQU -1 -1 = CALL
ANSHWER EQU © 0 = ANSHER
LINETYPE DATA F'0’ LINE CONNECTION TYPE:
SWITCHED EQU -1 —-1 = SWITCHED
NONSH EQU 0 0 = NON-SWITCHED
ENDPROG
END

28 SC34-0316

®

Interprocessor Communications

Using the #1610 Asynchronous Communication Single Line Con-
troller Adapter feature with Event Driven Executive, processor
to processor communication is available through the standard
terminal interface. This mode of communication is specified by
defining DEVICE=PROC on the TERMINAL statement. It allows con-
necting Series/1 to Series/l, Seriess/1 to IBM 5100 and IBM 5110
(using the Serial I/0 feature), or Series/1 to any other
processor capable of handling the required protocols. As with
terminals, ATTENTION signals can be transmitted. The line pro-
tocol used by interprocessor communications is 2741 and is
restricted to a single line ACCA feature #1610 per communi-
cation line to another processor. This provides a means to load
or cancel programs, synchronize the action of tasks, and send
and receive data to and from programs residing in remote
processors. If CODTYPE=EBCDIC 1is defined on the TERMINAL
statement, arbitrary binary data can be transmitted. The TER-
MINAL statement is coded in your source statements for system
generation, and is assembled together with DISK, SYSTEM, and
other supervisor configuration statements. Refer to the
section "System Configuration” in the System Guide for
detailed information.

Hardware Preparation

In addition to defining the #1610 controller to the Event Driv-
en Executive with the TERMINAL statement, you should set the
hardware jumpers on the attachment according to the I1BM
Series/1 Communications Feature Description, GA34-0028.

Note: Interprocessor communication is restricted to the single
line ACCA feature #1610.

For a direct processor interconnection:
. Data Terminal Ready (DTR) is jumpered
U] Request To Send (RTS) is jumpered

. Low or High speed range is jumpered depending on the bit
rate chosen (100 to 9600 baud).

Chapter 2. Terminal Support 29

Be sure to use the right cables for the type of attachments
being interconnected. For a direct Series/1 to Series/1 con-
nection, one side should use the Local Communication Cable
(feature #2056) and the other should use the EIA Data Set cable
(feature #2057) in order to interchange the Receive/Transmit
lines; Data Set Ready (DSR)s/Data Terminal Ready (DTR) and
Request To Send (RTS)/Clear To Send (CTS). The #2056 cable
allows attachment to a modem (male 25-pin type D connector);
the #2057 cable allows attachment to a terminal (female 25-pin
type D connector).

If only one cable type is available, the following lines of the
25-pin type D connectors have to be crossed:

Pin number to Pin number
(connector 1) (connector 2)

Protective Ground “XMT
Transmit Data (X or T)
Receive Data (REC)
Request to Send (RTS)
Clear to Send (CTS)

Data Set Ready (DSR)
Signal Ground

Data Terminal Ready (DTR)

ONONUTHDWN =
~nN
R NODUTN W

[\V]

For a Seriess/1 to IBM 5100 connection, the #2056 cable may be
used.

Terminal Control Block (CCB)

When DEVICE=PROC is specified on the TERMINAL statement, the
#1610 controller is defined as an interprocessor communi-
cations pipeline. The CODTYPE and CRDELAY parameters of the
TERMINAL statement affect the protocol to be used. See "Modifi-
cations to the Protocol™ on page 33. The BITRATE and RANGE
parameters should be set in accordance with the hardware jump-
ers, matching the setting in the other processor. Also, the
LINSIZE parameter should have the same value in both process-
ors.

30 SC34-0316

Y
R

O

Transmission Protocol

The length of a continuous message generated, for example, by a
series of PRINTEXT commands on the sending side, might exceed
the size of the receiving system buffer. Therefore the message
is divided into records, which themselves may consist of subre-

.cords (only for CODTYPE=EBCDIC).

A record corresponds to a line of text ended by a New Line (NL)
character, the end of a message is defined as transition from
Print to Read state and is indicated by an End of Transmission
(EOT) character. Both messages and/or records may be empty;
that is, contain no text (for example, in a transmission of
SKIPs).

To a reading Event Driven Executive program, the received end
characters are signalled as different return codes in the task
code word. For the possible code types, the hexadecimal repres-
entation of the end characters is given, together with the cor-
responding return codes, in Figure 3.

CODTYPE=

Return
EBCD/CRSP EBCDIC Codes

End of Transmission (EOT) 1F FDFF -2

End of Record (NL) 5B FEFF -1
End of Subrecord (EQSR) Not used FCFF Handled
by device
support

Figure 3. Terminal I1/0 - Interprocessor Communications Return
Codes

Note: For CODTYPE=EBCDIC, two characters are used to signal
the respective end condition.

As in the IBM 2741 protocol, the beginning of a message (for
example, the transition from Read to Print state) is indicated
by transmission of an End of Address (E0QOA) character to the
receiver (X'16' for EBCD/CRSP code. For EBCDIC code, see
"CODTYPE=" on page 33.)

Before a message is sent, an EOT character indicating that the
other side entered Read mode must be received. If this charac-
ter has not been received as the end of the previous message,
the device support waits the time period specified on the
CRDELAY parameter, or the the default for this character. If it
is not received, an error code (8) is returned to your progranm.

Chapter 2. Terminal Support 31

Modifications to the Protocol

The communication protocol may be modified to satisfy special
requirements by assigning the appropriate values to TERMINAL

statement

parameters. These options are discussed in

"CRDELAY=" on page 33, and also in "CODTYPE=" on page 33.

CRDELAY=

PROMPT,n

SP5100,n

DELAY,n

CODTYPE=

CRSP

The device support waits before every record (and
subrecord) for the EOT prompt character. The time
limit is n times 3.33 milliseconds, starting at the
end of the previous operation. In response to the
EOT, and also at the beginning of every record (and
subrecord), an EOA character is sent.

Identical to the PROMPT mode except that at End of
Record, the two characters Line Feed and New Line
(X'"3B5B'") are sent. This is necessary for communi-
cation with the IBM 5100 or IBM 5110 running APL or
BASIC and using the Serial I1/0 feature.

At the beginning of a message, the device support
waits a maximum of one second for the EOT
character(s). After each record a delay of n times
3.33 milliseconds is inserted. This mode might be
used to simulate an 274l-1like terminal for another
processor.

With this option the #1610 controller is set to PTTC
mode (see Communications Feature Description) and
messages are translated via the CRSP conversion
table (PTTC/correspondence code). The communication
is restricted to characters, as PTTC mode allous
only the transmission of bytes with the seven
low-order bits of odd parity. Therefore, XLATE=ND
should not be specified on PRINTEXT or READTEXT
instructions.

32 S5C364-0316

N
NS

C

EBCD

EBCDIC

Similar to CRSP, except that the EBCD conversion
table is used. The EBCD option is recommended for
connection to an IBM 5100 or IBM 5110 computer. The
6-bit code must be selected with the Serial I/0
microprogranm.

This option sets the #1610 controller to Eight Bit
Coded Data Interchange mode with all change of
direction codes equal to XYFF* (see the
Communications Feature Description). Special
protocol provides for transparent exchange of arbi-
trary binary data. As there are no parity
restrictions and only the code X'FF' is recognized
as change of direction (indicating EOT, NL or EOSR),
all bytes (especially all EBCDIC characters) other
than X'FF' are transmitted "as is". Before a message
or record is sent, it is scanned for a byte code
(other than X'FF') not contained in it. This special
code is sent as EQOA and every occurring X'FF'" in the
message or record is replaced by it. On the receiving
side, every EOA code is replaced by X'FF'. If a
record is larger than 128 bytes, it is divided into
appropriate subrecords (length < 128 bytes) to which
the procedure can be applied.

Note: If CODTYPE=EBCDIC is used, arbitrary binary
data may be transmitted.

Chapter 2. Terminal Support 33

34

SC36-0316

C

CHAPTER 3. BINARY SYNCHRONOUS COMMUNICATIONS

The Event Driven Executive binary synchronous communications
access method provides statements that allow you to write pro-
grams to send and receive data on a binary synchronous communi-
cations line. These statements are a part of the Event Driven
Language and are coded in your application program. A general
introduction to binary synchronous communications and details
of the line protocol used by the Event Driven Executive may be
found in General Information - Binary Synchronous
Communications, GA27-3004.

Series/1 binary synchronous communications closely parallels
the Systems/7370 and additional information on the subject of
binary synchronous communications may be found in IBM_ 0S/VS
Basic Telecommunications Access Method (BTAM), GC27-6980.

Features of the binary synchronous communications access meth-
od provided with the Event Driven Executive are:

. Multiple line support
. Point-to-point leased line

. Point-to-point switched line (automatic answer, manual
call and answer)

. Multipoint tributary station

. Multipoint master station
. Optional transparent mode
. Optional conversational mode

Hardware features and BSC protocol not supported by the Event
Driven Executive are:

4 ASCII mode

. Leading graphics support

. Transparent ITB and ENQ transmission

Throughout this chapter, the TYPE parameter is mentioned fre-
quently, and refers to the TYPE parameter of the BSCLINE state-
ment discussed in "BSCLINE" on page 42

For generation of BSC support into your Event Driven Executive

supervisor, refer to the "System Configuration™ section in the
System Guide.

Chapter 3. Binary Synchronous Communications 35

Access Level

The Event Driven Executive BSC Access Method provides facili-
ties at the READ/WRITE 1level. No control characters are
inserted into or stripped from blocks of data in your buffer.
However, all additional control sequences are managed by the
access method in a manner transparent to the using program. You
must ensure that the proper STX, DLE STX, ETX, and other con-
trol characters are contained in the output buffer. The single
exception to this convention is the transmission of the DLE ETX
or DLE ETB sequence to complete a transparent write, in which
case these characters must not be included in the output buff-
er. On input, the buffer will contain all control characters
received.

Conversational Operations

The BSC protocol provides a limited conversational response
capability which is supported by the Event Driven Executive BSC
Access Method. During conversational write operations, the
response, which may be either an acknowledgement sequence or
text, is read into a second buffer area specified by your pro-
gram. Acknowledgement sequences are checked by the access
method and error recovery is attempted when indicated. If text
is received, a -2 return code is returned in lieu of the normal
-1 and no error recovery is attempted.

Conversational writes may also be used to perform other special
functions. For example, an IAM/WRU (I am/Who are you) explana-
tion sequence can be transmitted by a calling station on a
switched network using a conversational write.

Multipoint Operations

When the Seriess/1 is operating as the control station on a
multipoint line (TYPE=MC), the access method handles the poll-
ing/selection requirements of initial operations via a poll
sequence whose location address is specified in the BSCIOCB
statement. A single poll/select is associated with each oper-
ation. A 3-second time-out is always enabled during
poll/select operations regardless of the TIMEQOUT parameter
specifications.

When the Seriess1 is operating as a tributary station on a
multipoint line (TYPE=MT), the access method assumes that
polling/selection has been established before a read/urite
initial operation is requested. The Read Poll operation moni-
tors the line for receipt of a polling or selection sequence.

36 SC34-0316

&

It assumes the BSC Adapter has been jumpered for multipoint
tributary operation. Once the line has been polled/selected,
your program should check the next operation request and issue
appropriate read/urite initial operation.

The initialization phase for multipoint operation is accom-
plished by the control station transmitting the following
sequence:?

NUL,EOT,PAD,NUL,(poll or selection address),ENQS

This is the polling/selection sequence. The NUL,EOT,PAD,NUL?
portion is generated by the access method. The (poll or
selection address),ENQ3 portion is supplied by vou and refer-
enced in the BSCIOCB. Generally this sequence consists of three
bytes containing address,address,ENQ3. Refer to General
Information — Binary Synchronous Communications, GA27-3004 for

details.

Task Control

An implied wait is associated with each operation; that is, no
immediate exit capability is provided. However, you may choose
to attach a separate task to perform the operations in an asyn-
chronous manner.

Sample programs are included at the end of this section which
illustrate the most common communications operations.

3 Commas are for readability only and not part of the data
stream.

Chapter 3. Binary Synchronous Communications 37

The Event Driven Language BSC Statements

The followi

ng text describes the Event Driven Language (BSC)

statements and their syntax.

BSCCLOSE

BSCCLOSE is used to free a binary synchronous line for use by
other tasks. If the line is switched (TYPE=SM or SA), it will
also drop Data Terminal Ready causing the line to be discon-

nected.

Syntax
label BSCCLOSE bsciocb, ERROR=,P1=,P2=
Required: bscioch
Defaults: None

Indexable: bscioch

Operands

Description

label

bscioch

ERROR=

The optional symbolic name of the BSCCLOSE
statement.

The symbolic address or indexed location of the
BSCIOCB statement to be associated with the close
operation. Close processing uses this BSCIOCB to
determine the address of the line to be closed.

The symbolic address of the next instruction to be
executed if an error occurs while closing the line.
If not specified,; control will be returned to the
next sequential instruction. In either case, the
return code will reflect the results of the oper-
ation. See Figure 5 on page 57.

The optional labels, Pl and P2 to be affixed to the
bsciocb and ERROR operands, respectively.

.

38 6SC34-0316

C

BSCIOCB

BSCIOCB is used to specify the line address and buffer(s) for
BSCCLOSE, BSCOPEN, BSCREAD and BSCWRITE operations. BSCIOCB is
a non—-executable instruction. The first word of the BSCIOCB is
also used to return auxiliary information about the ending sta-
tus of the operation.

If variable~length records are to be written, the length field
(lengthl operand) must specify the actual length of the message
to be written. The value specified in the length field should
be reset to the buffer length before issuing a READ. Figure &
on page 41 lists the number of buffers required by each type of
BSCREAD and BSCHRITE statement.

Syntax

label BSCIOCB lineaddr,bufferl,lengthl,buffer?e,
length2,pollseq,pollsize,Pl=,P2=,
P3=;P4=,P5=’P6=,P7=

Required: lineaddr
Defaults: None
Indexable: Not applicable

Operands Description

label The symbolic name of the BSCIOCB for reference in a
BSCCLOSE, BSCOPEN, BSCREAD, or BSCWRITE operation.
Label may also be used by other instructions to ref-
erence the auxiliary information returned in the
first word of the BSCIOCB. This word will contain:

. After successful receipt of text, the address
of the last character received.

. For all other conditions, the Interrupt Status
Word from the Series/1 BSC Adapter.

lineaddr The harduware address, in hexadecimal form, of the
line on which to perform the operation.

bufferl The address in storage of the first buffer to be
used in an operation. This buffer is located in the
target Address Space as defined by $TCBADS.

lengthl The length, in bytes, of the first buffer.

Chapter 3. Binary Synchronous Communications 39

buffer? The address in storage of the second buffer to be
used in an operation. This buffer is located in the
target Address Space as defined by $TCBADS.

length?2 The length, in bytes, of the second buffer.

pollseq The address in storage of the poll or selection
sequence to be used in a multipoint control line
initial operation.

pollsize The length, in bytes, of the poll or selection
sequence.

Pn= The optional labels to be affixed to the lineaddr,
bufferl, lengthl, buffer2, length2, pollseq, and
pollsize operands, respectively.

Note: The polling and selection sequences, consisting of from
one to seven characters, are followed by: ENQ,(Read or Hrite
Initial)¢. Specific sequences for a given device may be found
in the device component description manual. Generally a 3-byte
pollsize is sufficient for a sequence of address,address, ENQ¢
between Series/1 processors. The actual sequence is determined
by the device type tributary.

4 Commas are for readability only and are not part of the
data stream.

40 SC34-0316

'
N

(:} Number Number
Read of Write of
type buffers type buffers

C 1 C 1
D 0 cv 2
E 1 cvX 2
I 1 CX 1
P 1 CXB 1
Q 0 D 0
R 1 E 0
U 1 EX 0
I 1
1V 2
IVX 2
IX 1
IXB 1
Q 1
N 0
u 1
UX 2

Figure 4. Required Buffers for BSCREAD and BSCWRITE

O

Chapter 3. Binary Synchronous Communications 41

BSCLINE

The BSCLINE statement is coded as part of your supervisor
configuration. See "System Configuration” in the System Guide.
BSCLINE defines the binary synchronous lines to be supported in
the generated system. One BSCLINE statement is required for
each line to be referenced by programs using the Binary Syn-
chronous Communications Access Method. All BSCLINE statements
must be grouped together with the 1last BSCLINE statement
including an END=YES specification.

Syntax

blank BSCLINE ADDRESS=,TYPE=,RETRIES=,MC=,END=

Required: None
Defaults: ADDRESS=9,TYPE=PT,RETRIES=6,MC=N0O,END=NO
Indexable: Not Applicable

Operands Description
ADDRESS= The hardware address (in hexadecimal) of the line.

TYPE= PT (Point-to-Point) - The line is a point-to-point
(non-switched) line with a single remote station.
The adapter should be jumpered with DTR permanently
enabled.

SM (Switch Manual) - The line is on a switched net-
work and connection will be established manually by
the operator. The adapter should be Jjumpered for
switched line operation and DTR should not be per-
manently enabled.

SA (Switched Auto Answer) - The 1line is on a
switched network and calls should be answered auto-
matically by the BSC Access Method (during
BSCOPEN). The adapter should be jumpered for
switched line operation and DTR should not be per-
manently enabled.

MC (Multipoint Control) - The Series/1 is the con-
trolling station on a multipoint line. The adapter
should be jumpered with DTR permanently enabled and
multipoint line should not be jumpered.

42 SC34-0316

-
L

»

RETRIES=

MC

END=

Examples:

MT (Multipoint Tributary) - The Series/Z1 1is a
tributary station on a multipoint line. The adapter
should be jumpered for multipoint tributary oper-
ation with DTR permanently enabled.

The number of attempts which should be made to
recover from common error conditions before posting
a permanent error.

NO - The binary synchronous adapter located at the
address specified on the ADDRESS operand is either
a medium speed, single line feature card or a high
speed, single line feature card.

YES - The binary synchronous adapter located at the
address specified on the ADDRESS operand is part of
a multiline controller feature configuration. When
generating supervisors using multiline controller
attachments, note the following:

. The character string YES must be specified. Any
other character string will be equivalent to
NO.

. All multiline feature cards must start at a
base address ending with either X'0' or X'8'. A
BSCLINE statement must exist for the line at
this base address if any of the other lines of
the multiline attachment are to be used.

YES, for the last BSCLINE statement in the system
definition module.

BSCLINE ADDRESS=28,TYPE=PT,RETRIES=10,MC=NO
BSCLINE ADDRESS=30,TYPE=SM,RETRIES=2,MC=YES,END=YES

Chapter 3. Binary Synchronous Communications 43

BSCOPEN

BSCOPEN is used to prepare a binary synchronous line for use by
a task. It first enqueues on the ‘line and then prepares it for
interrupts. If the line is switched manual (TYPE=SM), it will
also raise Data Terminal Ready and wait up to two minutes for
the telephone connection to be established. If the 1line is
switched auto—-answer (TYPE=SA), it will wait indefinitely for
the ring interrupt and then raise Data Terminal Ready.

Syntax

label BSCOPEN bsciocb, ERROR=,Pl1=,P2=

Required: bscioch
Defaults: None
Indexable: bscioch

Operands Description
label The optional symbolic name of the BSCOPEN

instruction.

bsciochb The -symbolic address or indexed location of the
BSCIOCB statement to be associated with the open
operation. Open processing uses this BSCIOCB to
determine the address of the line to be opened.

ERROR= The symbolic address of the next instruction to be
executed if an error occurs while opening the line.
If not specified, control will be returned to the
next sequential instruction. In either case, the
return code will reflect the results of the oper-
ation.

Pn= The optional labels to be affixed to the bsciocb and
ERROR operands, respectively.

Note: BSCOPEN assumes that point-to-point lines will be jump-
ered with Data Terminal Ready (DTR) permanently set on.

44 SC34-0316

BSCREAD

BSCREAD is used to read data from a binary synchronous line. If
the read is successful, the first word of the associated

BSCIOCB wil

Syntax

1 contain the address of the last character read.

label

Required:
Defaults:

Indexable?! bsciochb

BSCREAD type,bsciocb, ERROR=,END=,
TIMEOUT=,Pl=,P2=,P3=

type,bscioch
TIMEQUT=YES

Operands

label

tvpe

bsciochb

ERROR=

END=

Description

The optional symbolic name of the BSCREAD
statement.

The type of read operation to be performed. See
"BSCREAD Types"™ on page 46 for a description of each
type.

The symbolic address or indexed 1location of the
BSCIOCB statement to be associated with the read
operation.

The symbolic address of the next instruction to be
executed if an error (return codes 10 through 99) is
encountered. If not specified, control will be
returned to the next sequential instruction. In
either case, the return code will reflect the
results.

The symbolic address of the next instruction to be
executed if an ending condition (return codes 1
through 6) is encountered. If not specified, con-
trol will be returned to the next sequential
instruction. In either case, the return code will
reflect the results.

Chapter 3. Binary Synchronous Communications 45

TIMEOUT=

Pn

YES - The access method will enable a 3-second
time-out during receive operations. If data is not
received within this interval, a time-out error
will occur. The appropriate retry procedure will
then be attempted up to the limit specified in the
RETRIES parameter of the BSCLINE statement defining
this line. For initial type reads, the time-out may
occur both when attempting to establish the correct
initial sequence and during the subsequent read of
the first record.

NO - The access method will disable the 3-second
time-out during all receive operations.

The optional labels to-be affixed to the bsciochb,
ERROR, and END operands, respectively.

BSCREAD Tvpes

The eight types of read operations to binary synchronous lines

are:

Jvpe

46

CTLoUVU~MMOO

Read Continue
Read Delay
Read End

Read Initial
Read Poll
Read Inaquiry
Read Repeat
Read User

Operation

Read Continue - Used to read subsequent blocks of data
after an initial block is received via a Read Initial.

Read Continue writes a positive response and reads a mes-
sage block:

1. MWrite ACK-0 (X'1070"') or ACK-1(X'1061")
2. Read Text — The text received is either message text
or an EOT (X'37")
SC34-0316

N

N

-

Read Delay - Used to acknowledge correct receipt of a
block of data and to request that the transmitting
station wait before sending the next block. Multiple
Read Delays may be issued before resuming transmission
of data via a Read Continue.

Read Delay urites a WACK sequence and checks for the pro-
per ENQ response:

1. Write WACK (X'106B"')

2. Read ENQ (X'2D")

Read End - Used to acknowledge correct receipt of a block
of data and to request that the transmitting station stop
sending data. Only one Read End should be issued during a
single transmission and Read Continues should then be

issued until EOT is actually received.

Read End writes an RVI sequence and reads a message
block:

1. MWrite RVI (X'107C")

2. Read Text - The text received is either message text
or an EOT (X'37')

Read Initial - Used to read the first block of data in a
transmission. After a successful Read Initial, Read Con-
tinues should be issued until EOT is received.
Point-to-point operation (TYPE=PT,SA,SM).

A Read Initial monitors the line for an ENQ sent by the
transmitting station, writes a positive response
(ACK-0), and reads the message block that follous:

1. Read ENQ (X'2D")

2. HWrite ACK-0 (X'1070")

3. Read message text

Multipoint operation controller operation (TYPE=MC).

Read Initial polls a tributary station and if the
response to polling is positive, reads the message text.

1. HHrite EOT (X'37')

2. Write polling sequence from address location speci-
fied in BSCIOCB

3. Read message text

Chapter 3. Binary Synchronous Communications 47

48

Multipoint operation tributary operation (TYPE=MT).

Read Initial writes a positive response (ACK-0), and
reads the message block that follows.

1. MHWrite ACK-0 (X'1070")
2. Read message text

Read Poll - Used to read the polling/selection sequence
received when the Seriess/1 1is acting as a tributary
station on a multipoint line (TYPE=MT). Upon successful
completion, the specified buffer will contain the
sequence received starting with the second station (con-
trol unit) address character. The content of the
received data stream, including control characters is
not checked by the access method. Once polled/selected,
your program should check the next operation requested
and issue the appropriate Read/Write Initial Operation.

Read Inquiry - Used to read an ENQ character. Read
Inquiry will return an invalid sequence error if ENQ or
EOT is not received. If EOT is received, the END= exit
will be taken if specified.

1. Read ENQ (X'2D"'")

Read Repeat - Used to request retransmission of the last
block of data following an unsuccessful read. The Read
statements retry most common errors up to the limit of
the RETRIES operand of the BSCLINE statement; however,
Read Repeat may be used to attempt further recovery
depending on the actual error encountered.

Read Repeat writes a negative response to the remote
station and reads a message block:

1. Write NAK (X'3D'")

2. Read Text

Read User - Used in special situations to simply receive
data. No associated write operation is performed by the

access method, the data is not checked, and no error
recovery is attempted.

SC34-0316

O

BSCWRITE

BSCWRITE is

used to write data to a binary synchronous line.

Syntax
label BSCWRITE typesbsciocb, ERROR=,END=,CHECK=,
P1=,P2=,P3=

Required:
Defaults:

Indexable: bscioch

type,bscioch
CHECK=YES

Operands

label

type

bsciochb

ERROR=

END=

CHECK=

Description

The optional symbolic name of the BSCWRITE
statement.

The type of write operation to be performed. See
"BSCWRITE Types" on page 50 for a description of
each type.

The symbolic address or indexed location of the
BSCIOCB statement to be associated with the write
operation.

The symbolic address of the next instruction to be
executed if an error (return codes 10 thru 99) is
encountered. If not specified, control will be
returned to the next sequential instruction. In
either case, the return code wWill reflect the
results.

The symbolic address of the next instruction to be
executed if an ending condition (return codes 1
through 6) is encountered. If not specified, con-
trol will be returned to the next sequential
instruction. In either case, the return code will
reflect the results.

YES - Valid only for type CV or CVX. Normal checking
of the response occurs.

NO - The response is not checked for protocol valid-

ity. This provides a chained write to read similar
to Write User and Read User.

Chapter 3. Binary Synchronous Communications 49

The optional labels to be affixed to the bscioch,
ERROR=, and END= operands, respectively.

BSCWRITE Types

Seventeen types of write operations can be

synchronous communications line. They are:

cv
cvX
cX
CXB

EX
Iv
IvVX

IX
IXB

cv

- HWrite Continue

Write Continue Conversational

Write Continue Conversational Transparent
- Write Continue Transparent

Write Continue Transparent Block

- Write Delay

- Write End

Write End Transparent

- Write Initial ‘

Write Initial Conversational

— Write Initial Conversational Transparent
Write Initial Transparent

Write Initial Transparent Block

- Write Inquiry

- Write NAK

- Write User

Write User Transparent

Operation

Write Continue - Used to write subsequent blocks of data
after an initial block is written via a Write Initial.

Write Continue writes message text and reads a response
from the receiving station.

1. Write Text
2. Read Response

Write Continue Conversational — Used to write subsequent
blocks of data in conversational mode.

Write Continue Conversational writes message text and
reads a response into your buffer. Acknowledgement
sequences are checked by the access method and error
recovery is attempted when indicated. If text is
received, a -2 return code is returned in lieu of the
normal -1,

1. Write Text

50 SC34-0316

issued to a binary

cvX

cX

cXB

2. Read Response/Text

Write Continue Conversational Transparent - Used to
write subsequent blocks of transparent data in conversa-
tional mode.

Write Continue Conversational Transparent writes mes-
sage text and the ending sequence, DLE ETX, and reads a
response into your buffer. Acknowledgement sequences are
checked by the access method and error recovery is
attempted when indicated. If text is received, a -2
return code is returned in lieu of the normal -1.

1. Write Text
2. Write DLE ETX (X'1003")
3. Read Response/Text

Write Continue Transparent - Used to write subsequent
blocks of transparent data after an initial block is
written.

HWrite Continue Transparent writes message text and the
ending characters, DLE ETX, that must follow transparent
data and reads a response from the receiving station.

1. Write Text
2. Write DLE ETX (X'1003"')
3. Read Response

Write Continue Transparent Block - Used to write
subsequent blocks of transparent data after an initial
block is written. This operation is the same as BSCHWRITE
type CX except ETB is used instead of ETX as the ending
character.

Write Continue Transparent Block writes message text and
the ending characters DLE ETB, that must follow trans-
parent data, and reads a response from the receiving
station.

1. Write Text

2. Write DLE ETB (X'1026")

3. Read Response

Write Delay - Used to inform the remote station that the
transmission of the next block of data will be delayed.

Multiple Write Delays may be issued before transmission
of data is resumed.

Chapter 3. Binary Synchronous Communications 51

Write Delay writes a temporary text delay (TTD) sequence

to the receiving station and reads a NAK response. The M~%
purpose of this operation is to inform the receiving ‘Wwf
station of a TTD before resuming transmission of message =
blocks.

1. Write TTD (X'022D")
2. Read NAK (X'3D")

E Write End - Used to inform the remote station that the
previous block of data was the last of this transmission.
Write End writes an EOT:

1. Hrite EOT (X'37)

EX Write End Transparent - Used to write a transparent EOT
(DLE EOT). This sequence is most commonly used to notify
the receiving station on a suwitched line that the trans-
mitting station is disconnecting from the line. Hrite
End Transparent writes DLE EOT:

1. Write DLE EOT (X'1037"')

I Write Initial — Used to write the first block of data in a
transmission. Write Initial first establishes the cor-
rect initial sequence (depending on the type of line),
and then writes the first block and checks the response. N

. Point-to-point Operation (TYPE=PT,SA,SM)
Write Initial writes an ENQ to gain use of the line,
reads positive response (ACK-0), writes the message
text and reads the response to the text:
1. Write ENQ (X'2D")
2. Read ACK-0 (X'1070")
3. Write Message text
4, Read Response

. Multipoint Operation Controller Mode (TYPE=MC)
Write Initial selects a tributary station and if the
response to selection is positive, writes message
text, then reads the response:

1. HWrite EQT (X'37")

2. Write selection sequence where location address
is specified in BSCIOCB

@

52 §C34-0316

IV

3. Read ACK-0 (X'1070"')

4. HWrite Message Text

5. Read Response

Multipoint Operation Tributary Mode (TYPE=MT)

Write Initial writes message text and reads a
response from the controller station:

1. Write Message Text
2. Read Response

Write Initial Conversational - Used to write the first
block of data of a transmission in conversational mode.

Write Initial Conversational establishes <the correct
initial sequence (depending on the type of line), writes
the first block of message text and reads a response into
your buffer. Acknowledgement sequences are checked by
the access method and error recovery is attempted when
indicated. If text is received, a -2 return code is
returned in lieu of the normal -1.
. Point-to-point Operation (TYPE=PT,SA,SM)

1. Write ENQ (X'2D")

2. Read ACK-0 (X'1070")

3. Write Message Text

4. Read Response Text
U Multipoint Operation Controller Mode (TYPE=MC)

1. HWrite EOT (X'37')

2. Write selection sequence found in BSCIOCB

3. Read ACK—-0 (X'1070"')

4, Write Message Text

5. Read Response Text
. Multipoint Operation Tributary Mode (TYPE=MT)

1. Write Message Text

2. Read Response Text

Chapter 3. Binary Synchronous Communications 53

IVX

IX

54

Write Initial Conversational Transparent - Used to write
the first block of transparent data of a transmission in
conversational mode.

Write Initial Conversational Transparent first estab-
lishes the correct initial sequence (depending on the
type of line), writes the first block of message text and
the ending characters, DLE ETX, that must follow trans-
parent data and reads a response into your buffer.
Acknowledgement sequences are checked by the access
method and error recovery is attempted when indicated.

If text is received, a -2 return code is returned in lieu
of the normal -1.

. Point-to-point Operation (TYPE=PT,SA,S5M)

1. MWrite ENQ (X'2D'")

2. Read ACK-0 (X'1070")

3. MWrite Message Text

4., MWrite DLE ETX (X'1003")

5. Read Response Text
i Multipoint Operation Controller Mode (TYPE=MC)

1. HWrite EOT (X'37")

2. MHrite selection sequence found in BSCIOCB

3. Read ACK-0 (X'1070°')

4. Write Message Text

5. MWrite DLE ETX (X'1003")

6. Read Response Text
. Multipoint Operation Tributary Mode (TYPE=MT)

1. HWrite Message Text

2. MWrite DLE ETX (X'1003")

3. Read Response Text
Write Initial Transparent - Used to write the first block
of transparent data in a transmission. MHWrite Initial
Transparent first establishes the correct initial
sequence (depending on the type of line), and then urites
the first block of transparent data and checks the

response. The block is terminated by the access method
with DLE ETX.

S§C34-0316

C

IXB

UXx

Write Initial Transparent Block - Same as IX except ETB
is used instead of ETX as the ending character.

Write Inquiry - Used to write an ENQ character and to
read the response (which may be either a control sequence
or text) into your buffer. This sequence is most commonly
used to request retransmission of the response to a mes-
sage block. It also retries upon time-out.

1. Write ENQ (X'2D")
2. Read Response/Text

Write NAK - Used to simply write a NAK character down the
line. The most likely use of this operation is to respond
"device not ready" to polling/selection when the
Series/1 is operating as a tributary station on a multi-
point line (TYPE=MT).

1. Write NAK (X'3D'")

Write User - Used in special situations to simply
transmit a character stream. No associated read oper-
ation is performed by the access method, and no error
recovery is attempted.

1. Write buffer in BSCIOCB for length indicated.

Write User Transparent - Used in special situations to
simply transmit a transparent character stream. No asso-
ciated read operation is performed by the access method,
and no error recovery is attempted.

1. Write the stream described by BSCIOCB
bufferl/lengthl

2. Exit transparent write using the character pair
described by BSCIOCB buffer?d.

Note: The only valid character pairs which may be
contained in buffer2 are DLE ETX, DLE ETB, or DLE ENQ.

Chapter 3. Binary Synchronous Communications 55

Error Recovery

Each BSC operation results in a return code being returned in
the calling task's TCB (may be referenced by the taskname).
Figure 5 on page 57 describes these return codes. Three basic
completion conditions are possible:

. Successful operation
. Ending sequence received (END=)
. Permanent error encountered (ERROR=)

The particular type of condition encountered determines which
of two optional completion exits may be taken during a read or
write operation.

The access method attempts to recover from common line errors,
but hardware and specification errors are not retried. Your
program is free to retry permanent errors, and under certain
conditions such attempts may prove successful.

Auxiliary error information is returned in the first word of
the BSCIOCB. After successful receipt of text, the address of
the last character received is returned in this word. For all
other conditions, the Interrupt Status Word (ISW) from the
Seriess/1 BSC Adapter is returned.

56 SC34-0316

™

)

~

Code Description Notes
-2 Text received in conversational mode
-1 Successful completion
END=
1 EOT received
2 DLE EOT received
3 Reverse interrupt received
4 Forward abort received
5 Remote station not ready (NAK received) 4
6 Remote station busy (WACK received) 4
ERROR=
10 Timeout occurred 1
11 Unrecovered transmission error (BSC error) 1
12 Invalid sequence received 3
13 Invalid multi-point tributary write attempt 2
14 Disregard this block sequence received 1
15 Remote station busy (WACK received) 1
20 Wrong length record - long (No COD) 6
21 Wrong length record - short (urite only) 2
22 Invalid buffer address 2
23 Buffer length zero 2
24 Undefined line address 2
25 Line not opened by calling task 2
30 Modem interface error 2
31 Hardware overrun 2
32 Hardware error 5
33 Unexpected ring interrupt 2
34 Invalid interrupt during auto-ansuer
attempt 2
35 Enable or disable DTR error 2
99 Access method error 2
Figure 5. BSC Return Codes

Notes:

1. Retried up to the l1imit specified on the RETRIES operand of
the BSCLINE definition.

2. Not retried.

3. Retried during write operations only when a wrong ACK is

received following an ENQ request after timeout (indicat-
ing that no text had been received at the remote station).

Chapter 3. Binary Synchronous Communications 57

G, Returned only during an initial sequence with no retry
attempted. N
C

4

5. Retried only after an unsuccessful start I/0 attenmpt.

6. Retried only during read operations.

58 SC34-0316

Sample Program: Write Transparent

SOURCE STATEMENT

PRINT NOGEN
WRITEX PROGRAM START

START BSCOPEN IOCB,ERROR=PRINTERR
RESTART BSCWRITE IX,IOCB
IF (WRITEX,EQ,10),G0T0,RESTART
IF (WRITEX,NE,-1),607T0,PRINTERR
DO 29, TIMES
ADD I,1

CONVTB MSG#,1I
BSCWRITE CX,IOCB,ERROR=PRINTERR
ENDDO
BSCWRITE E,IOCB,ERROR=PRINTERR
GOTO ALLDONE
PRINTERR MOVE ERRCODE,WRITEX
PRINTEXT 'WRITE ERROR:',SKIP=1
PRINTNUM ERRCODE
BSCCLOSE IOCB
ALLDONE PROGSTOP

I10CB BSCIOCB 19,BUFFER,82
BUFFER DC X'i002"’

DC CL74'TEST MESSAGE'
MSG# DC CLe' 1
I DC F'1?
ERRCODE DC F'o?

ENDPROG

END

Chapter 3. Binary Synchronous Communications 59

Sample Program: Read Transparent

SOURCE STATEMENT

PRINT NOGEN
READX PROGRAM START
START ENQT $SYSPRTR
BSCOPEN IOCB,ERROR=PRINTERR
RESTART BSCREAD I,I0CB
IF (READX,EQ,10),GOTO,RESTART
IF (READX,NE,-1),G0TO,PRINTERR
PRINTIT MOVE MSG,INPUT+2,(80,BYTE)
PRINTEXT MSG,SKIP=1
BSCREAD C,IOCB,END=ALLDONE, ERROR=PRINTERR
GOTO PRINTIT
PRINTERR MOVE RETCODE,READX
PRINTEXT ERRMSG,SKIP=1
PRINTNUM RETCODE
BSCREAD R, IOCB,ERROR=ALLDONE, END=ALLDONE
GOTO PRINTIT
ALLDONE DEQT
BSCCLOSE IOCB

PROGSTOP
IocB BSCIOCB 29, INPUT,83
INPUT DC cL83" !
MSG TEXT LENGTH=80
ERRMSG TEXT 'READ ERROR:'
RETCODE DC F'o?

ENDPROG

END

Note: The $BSCUT2 utility contains many examples of the use of
the Seriess/1 Event Driven Executive binary synchronous
instructions. Examination of the source program for $BSCUTZ2
should answer many questions on buffer content of both data to
be transmitted and data received.

60 SC34-0316

Utility Programs (BSC)

This section describes the Event Driven Executive BSC utility
programs and their syntax.

&BSCTRCE

The $BSCTRCE utility program provides a means to trace the 170
activities on a given BSC line. $BSCTRCE must be loaded in the
same partition as the application program that is controlling
the traced line. If loaded in any other partition, unpredict-
able results will occur. When loaded, $BSCTRCE prompts for the
disk or diskette file in which to place the trace output.
$BSCTRCE then prompts for the line number to be traced. The
trace action is terminated by the attention command STOP. Since
the output file is reused from the beginning whenever the end
is reached, $BSCTRCE displays the relative record number of the
last trace record written upon termination. The trace file can
then be displavyed or listed using the $BSCUTY utility. Multiple
BSC lines may be traced concurrently with multiple loads of
$BSCTRCE using different trace files, for example:

> $L SBSCTRCE

DS1(NAME,VOLUME): TRACE?9
$BSCTRCE 6P,11:03:22, LP=6500
ENTER LINE NUMBER (HEX): 9

.
.

> STOP

LAST TRACE RECORD EQUALS 19
$BSCTRCE ENDED AT 11:13:31

Trace File Record Format: The format of the records produced by
$BSCTRCE is shown below.

cC ISH STATUS DCB LGTH DATA LASTG

0 +2 +4 +10 +26 +28 +252

Chapter 3. Binary Synchronous Communications 61

*xCC Interrupt Condition Code on completion of the I/0.
*ISH Interrupt Status Word on completion of the 1/0.

*¥*STATUS The three status words of the BSC Adapter (produced
when bit 0 of the ISH is on.)

DCB The Device Control Block for the I/0.

LGTH The length of the data sent/received.

DATA The data in main storage following the 1/0.

LASTG ghe last 4 bytes of data if the data is longer than 227
ytes.

Note: ¥ These fields are zero when the DCB has been chained
from the previous record's DCB.

$BSCUT1

The $BSCUT1 utility program formats binary synchronous trace
files (see $BSCTRCE utility description) to either $SYSPRTR or
a terminal. You may select the records of the trace file to
dump. You will be prompted, as necessary, for information
required by the functions of $BSCUT1.

Following is a list of the available functions of $BSCUT1l, as
obtained by using the ? command.

COMMAND(?2): ?

CV - CHANGE VOLUME

DP - PRINT TRACE FILE ON PRINTER

DU - DUMP TRACE FILE ON TERMINAL
(CA WILL CANCEL)

EN - END PROGRAM

COMMAND (2):

62 SC34-0316

</

fﬂ h

Example:

Dump trace file to your console

COMMAND (?):
FIRST RECORD:
LAST RECORD:

32
33

DUMP OF TRACE FILE

DU TRACE9

TRACE9 ON EDXO0O02

* 3% % % % RECORD 32 * % % % % START OF CHAINED OPERATION
CC = 0002 ISW = A009 STATUS = 98DA 0001 CO080
RESULT: EXCEPTION - WRONG LENGTH RECORD (SHORT)
DCB = 8004 0000 0000 0000 0000 2B1C 0002 2AE4
OPERATION: CHAINED TRANSMIT
DATA LENGTH =

1 1061
% % % % % RECORD 33 %X XXX CONTINUATION OF CHAINED OPERATION
DCB = 2008 0000 0000 0000 0000 0000 0200 96F6
OPERATION: RECEIVE WITH TIMEOUT
DATA LENGTH = 485
1 0227 615B F1F6 4BF5 F94B F3F4 40D1 D6C?2 l..7$16.59.34 JOB]
17 64040 F4F2 F440 D7D9 F3F0 F1F6 F5F6 40C5 | 626 PR301656 E|
33 E7C5 C3E4 E3C9 D5C7 40D4 40D7 D9C9 D640 |XECUTING M PRIO |
49 GOF7 1EZ27 615B F1Fé 4BF5 F94B F3F4 40D1 | 7..7616.59.34 J|
65 D6C2 4040 F4F2 F340 C8D8 F1F2 F1F6 F5F6 |0B 423 HQ121656]
81 40C5 E7C5 C3E4 E3C9 D5C7 40D4 40D7 D9C9 | EXECUTING M PRI|
97 D640 40F7 1E27 615B F1F6 4BFS F94B F3Fa¢ |0 7../616.59.346]
113 40D1 D6C2 4040 F3F0 FO040 C9E2 FOF3 F1F4 | JOB 300 IS0314]|
129 F4F5 40C5 E7C5 C3E4 E3C9 D5C7 40ES5 40D7 145 EXECUTING V P|
145 D9C9 D640 GDF5 1E27 615B F1F6 4BF5 F94B |RIO 5../%16.59.|
161 F3F4 40D1 D6C2 1D43 F4F8 407B C7E2 D7C5H |34 JOB..48 $GSPE|
177 FOF1 F040 D6D5 40D7 D9C9 DBE3 D9F2 4040 |010 ON PRINTR2 |
193 D7D9 C9D6 4040 FS51E 2761 5BF1 F64B F5F9 |PRIO 5../%16.59]
209 4BF3 F440 D1D6 C240 40F3 F2F0 40Cé6 C7F6 1.36 JOB 320 FG6]
LAST 4 D4D5 1E26 |MN. . |
DUMP COMPLETE
ANOTHER AREA?

Chapter 3. Binary Synchronous Communications 63

$BSCUTZ

The $BSCUT2 utility program checks out the binary synchronous
communications access method (BSCAM), the BSCLINE definitions
generated in the executing supervisor, and the hardware cus-—
tomized jumper assignments in the adapters. Various BSCAM
capabilities may be tested as follows:

1. Read and write both transparent and non—-transparent data

2. Operate in limited conversational mode with both transpar-
ent and non-transparent data

3. Operate as a master controller on a multipoint (multidrop)
line to both poll and select tributaries (text written only
for transparent data)

4. Operate as a tributary on a multipoint line and be polled
and selected (text written only for transparent mode)

The primary purpose of this utility is to check out your system
after installation, supervisor generation, and your tailored
adapter assignments via the jumper options (device address,
type such as PT, SM or SA, tributary address, etc.). Therefore
it is essential to have this information available to run this
program. For each selected function in $BSCUT2, you will be
prompted for the device (line) address, tributary address (if
multipoint), record length, etc. Error messages will print if
any discrepancies exist between the function being performed
and the hardware assignments. These error codes are defined in
this section.

Normal or successful exercising of any given function results
in a test pattern message being printed or displayed on the
selected output terminal. The output basically consists of:

1. First section - Internal task identifier (for example READ
for transparent and non-transparent reads), and optionally
record number and record length.

Example:

Task READ entered RECORD NUMBER= 1 RECORD LENGTH= 80

64 SC34-0316

2. Second line - Function identifier, record number, and
alphabetic text string (A through 2Z) repeated to fill
record length specified. The identifier and record number
make up a 25-byte field and the remaining record length is
filled by the alphabetic string. Therefore if you speci-
fied a record length of 80, the alphabetic string would
consist of 55 characters (A through Z, A through 2Z, and
ABC).

The output message in the previous example is repeated for the
number of records transmitted.

Following is a list of the available functions of $BSCUT2 as
obtained by using the ? command.

$BSCUT2 74P,00:33:52:, LP=9400

COMMAND (?): ?

RWI —-—--- READ/WRITE - NONTRANSPARENT

RWIX —--- READ/WRITE - TRANSPARENT

RWIMP -- READ/WRITE - MULTIDROP LINE NONTRANSPARENT
RWIXMP - READ/WRITE - MULTIDROP LINE TRANSPARENT

RI -—=—- READ - TRANSPARENT/NONTRANSPARENT

WI ————- WRITE — NONTRANSPARENT

WIX =—-—— WRITE - TRANSPARENT

EN —-———- END THE PROGRAM

CH —--——- CHANGE HARDCOPY DEVICE

RWIVX —-- READ/WRITE - TRANSPARENT CONVERSATIONAL
RWIV —-—- READ/WRITE - NONTRANSPARENT CONVERSATIONAL

$BSCUTZ2 can be used to check out binary synchronous operations
if at least two binary synchronous adapters are available on
Series/1 processors and if a connection between the two adapt-
ers is made. If switched manual connections are used, $BSCUTZ2
does not prompt you to make cennection. This must be done once
the $BSCUT2 command has been issued and all questions have been
ansuwered.

Note: $BSCUT2 contains many examples of the use of the Series/1
Event Driven Executive binary synchronous instructions. Exam-
ination of the source program for $BSCUT2 should answer many
questions on buffer content of both data to be transmitted and
data received.

Following are explanations of each type of command for $BSCUTZ2:

Chapter 3. Binary Synchronous Communications 65

RHI — Read/Write Non—-transparent Data

This command writes non-transparent messages on 1line. Each
message is numbered. The record length for write includes the
control characters. The read task receives the messages,
analyzes them, and prints them on the hardcopy device. The
analysis includes transparent or non-transparent and record
length received.

COMMAND (?): RWI

RWI —-—-—-— READ/WRITE - NONTRANSPARENT
READ ADDRESS? 5A

WRITE ADDRESS? 5B

READ RECL? 80

WRITE RECL? 80

NUMBER OF RECORDS? 10

READ MONITOR? Y

WRITE MONITOR? Y

Notes:

1. READ ADDRESS and WRITE ADDRESS refer to binary synchronous
adapter channel address. If the test is to be run between
two processors (one to read and one to write), load $BSCUTZ2
on both processors and enter the correct address for read
on one processor and the correct address for write on the
other processor. The other address can be invalid and the
corresponding task on each processor will fail due to an
undefined line; however, the read/write task will function
properly., This is true for all $BSCUT2 commands.

2. RECL questions refer to the buffer size to be used and
therefore the number of bytes transferred in one trans-
mission over the binary synchronous 1line. The maximum
buffer size permitted is 512 bytes. READ (RECL) should
always be equal to or greater than WRITE or errors will
occur.

3. NUMBER OF RECORDS determines the number of transmissions
to be made before the test ends.

G, "Monitor™ functions turn on a switch which allows each task
to report its progress to the terminal. Thus TASK ENTERED,
TASK EXITED messages and so on are written to the invoking
terminal if the monitor function is enabled.

66 SC34-0316

o

s

RHIX — Read/Write Transparent Data

COMMAND (?): RWIX

RWIX —-— READ/WRITE — TRANSPARENT
READ ADDRESS? 5A

WRITE ADDRESS? 5B

READ RECL? 80

WRITE RECL? 80

NUMBER OF RECORDS? 10

READ MONITOR? Y

WRITE MONITOR? Y

Same as "RWI - Read/WHrite Non-transparent Data™ on page
except data transmitted by the WRITE task is transparent.

RWIXMP - Read/Write Transparent, Multidrop Line

66

COMMAND (?2): RWIXMP

RWIXMP - READ/WRITE - MULTIDROP LINE TRANSPARENT
MC DEVICE ADDRESS? 50

BUFFER LENGTH? 80

NUMBER OF RECORDS? 5

LOOP COUNT? 1

MONITOR? Y

NUMBER OF TRIBUTARIES? 1

PARAMETERS FOR TRIBUTARY? 1
MT DEVICE ADDRESS? 51

MT TRIBUTARY ADDRESS? 02
BUFFER LENGTH? 80

NUMBER OF RECORDS? 5
MONITOR? Y

See notes under "RWI - Read/Hrite Non—transparent Data™ on page

66. In this command, BUFFER LENGTH is equivalent to RECL.

Chapter 3. Binary Synchronous Communications

67

The master controller (MC) at device address polls and selects
all tributaries (MT) and sends and receives messages to them.
Since each task both transmits and receives, successful oper-
ation requires the controller buffer length to equal all
tributary buffer lengths. Values other than this can be entered
to test access method error detection. Received messages are
logged to the hardcopy device.

DEVICE ADDRESS for this command refers to binary synchronous
adapter channel address. TRIBUTARY ADDRESS refers to the jump-
ered tributary address on each card.

Note: The adapter must be jumpered in tributary mode for this
test to function properly.

If the test being performed is between two $BSCUT2 programs
then:

1. Program 1 would use a valid MC device address and dummy
tributaries (MT)

2. Program 2 would use a dummy MC device address and valid
tributaries (MT)

3. NUMBER OF TRIBUTARIES must be equal in both programs

G, LOOP COUNT must be equal in both prograns.

RI —~ Read Transparent/Non-transparent

COMMAND (?): RI

RI -———- READ — TRANSPARENT/NONTRANSPARENT
READ ADDRESS? BA

READ RECL? 80

READ MONITOR? Y

See note under "WIX - Write Transparent” on page 69.

68 SC34-0316

C

WI - Write Non—-transparent

COMMAND (?2): MWI

WI -———- WRITE — NONTRANSPARENT
WRITE ADDRESS? 5B

WRITE RECL? 80

NUMBER OF RECORDS? 10

WRITE MONITOR? Y

See note under "WIX — Write Transparent."”

WIX — Write Transparent

COMMAND (?): WIX

WIX ---- WRITE - TRANSPARENT
WRITE ADDRESS? 5B

WRITE RECL? 80

NUMBER OF RECORDS? 5

WRITE MONITOR? Y

Note: RI, WI, and WIX commands individually activate the tasks
comprising RWI and RWIX. The Read task does not require NUMBER
OF RECORDS since it wWwill read either transparent or non-
transparent data until EOT is received. This makes the Read
task useful for monitoring any binary synchronous line sending
data to the processor. For example, RI can receive data from
SRJE27380 or $RJE3780 utilities operating in the same Series/1
or in another Series/l1.

Chapter 3. Binary Synchronous Communications 69

EN - End $BSCUTZ2 Program

COMMAND (?): EN
$BSCUT2 ENDED AT 01:14:40

CH - Change Hardcopy Device

COMMAND (2?2): CH
NEW HARDCOPY DEVICE? $SYSLOGA

Note: If the hardcopy device entered is not defined, then the
hardcopy output will come to the terminal which loaded $BSCUTZ2. TN

RWIVX — Read/Hrite Transparent Conversational

COMMAND (2): RWIVX

RWIVX —-- READ/WRITE - TRANSPARENT CONVERSATIONAL
READ ADDRESS? BA

WRITE ADDRESS? 5B

BUFFER LENGTH? 5

NUMBER OF RECORDS? 10

READ MONITOR? Y

WRITE MONITOR? Y

70 SC34-0316

RWIV - Read/MWrite Non-transparent Conversational

COMMAND (?): RWIV

READ ADDRESS? BB
WRITE ADDRESS? 5A
BUFFER LENGTH? 80
NUMBER OF RECORDS
READ MONITOR? Y
WRITE MONITOR? Y

RWIV —--—— READ/WRITE

? 5

— NONTRANSPARENT CONVERSATIONAL

For RWIVX and RWIV commands,

is equivalent to REC

RHIVX and RWIV test limited conversational operation

L‘

see Notes under "RWI - Read/Hrite
Non—-transparent Data"™ on page 66. In this command BUFFER LENGTH

in both

transparent and non-transparent mode. following is a
description of the binary synchronous line transactions:
WRITE TASK READ TASK
BSCWRITE N(X) —mmmENQm - > BSCREAD I
<-——-ACKO (Response)-
————Text-—————————— >
<---Text (Response)-- BSCHWRITE CV(X)
BSCREAD C ~-———ACK1 (Response)->
==—Text——==w———————— BSCWRITE CV(X)
BSCHWRITE CV(X) -——-—-Text (Response)->
<-—-ACKO (Response)—- BSCREAD C
BSCWRITE CV(X) ————Text-———=——=————— >
{===Text-———————————— BSCWRITE CV(X)
BSCREAD C m—==ACKl - >
This sequence continues until the NUMBER OF RECORDS count is
satisfied.
Chapter 3. Binary Synchronous Communications 71

SPRT2780 and $PRT3780 Utility Programs

$PRT2780 and $PRT3780 are utility programs which will print the
spool records produced by the $RJE2780 and $RJE3780 utilities.
When these utilities are loaded, they prompt for the name of
the spool file to be printed. The wutility terminates upon
reaching the end of the spool file. An initial option allowus
you to choose a printer other than $SYSPRTR if desired.

Example:

> SL $PRT3780

DS1(NAME,VOLUME): ASMWORK

$PRT3780 9P,00:02:44, LP= 8000
PRINT TO $SYSPRTR? (Y OR N): Y
$PRT3780 ENDED AT 00:03:05

Spooled data from a /%DR HASP command during remote job entry
session as printed out by above utility is:

$19.28.14 RM74.RD1 xx% INACTIVE
$19.28.14 RM74.PR1 xxx% INACTIVE
$19.28.14 RM74.PU1 xxx INACTIVE
$19.28.14 RM75.RD1 *xx INACTIVE
$19.28.14 RM75.PR1 %% INACTIVE
$19.28.14 RM75.PU1l xxx* INACTIVE

72- SC34-0316

N
WS

O

SRJE2780 and SRJE3780 Utility Programs

SRJE2780 is a utility program which can be used to interface
Wwith a System/7360 or Systems/7370 via remote job entry. It simu-
lates an IBM 2780 having the following characteristics and fea-
tures:

. Model 2 (Card reader, card punch, and printer)

. EBCDIC transparency

N Multiple record transmission

. 132-character print line

L Transparent punch output only

° No horizontal tab

. No tape controlled operations (except channel 1 as new page

indicator)
SRJE3780 is a utility program which can be used to interface
with a Systems/7360 or System/370 via remote job entry. It simu-
lates an IBM 3780 having the following characteristics and fea-—
tures:
J 3780 with IBM 3781 Card Punch
. Compression for both input and output
. Vertical tab

. Transparent punch output only

SRJE2780 and $RJE3780 present the same interface to the follow-
ing list of host RJE facilities:

d HASP or HASP V4
° JESZ or JES3

. RES

o VMRSCS

In the following pages, $RJE refers both to $RJE2780 and
$RJE3780.

The $RJE utility is controlled by a set of attention requests.
See Figure 6 on page 74.

Chapter 3. Binary Synchronous Communications 73

ABORT Stops transmission to or from the
host

COMMAND Sends a single card image to the host

END Terminates execution of the utility

ENDSPOOL Switches from spooling to direct printing
PRINTON Defines the terminal name used for output

PUNCHO Defines a disk or diskette file for
punch output of object data

PUNCHS Defines a disk or diskette file for
punch output of source data

RESET Reset function (use caution)

SPOOL Defines a disk or diskette file for
printer output and to commence spooling

SUBMIT Sends a data stream to the host

SUBMITX Sends a transparent data stream to the
host

Figure 6. $RJE Attention Requests

When the $RJE utility is first loaded, it checks for the pres-
ence of only one BSC line specified in the supervisor. If true,
the actual device address of the adapter is used as the default
line address and a prompting message is suppressed. If more
than one BSC line has been defined, it prompts for the RJE line
address. Subsequent control operations are all performed using
the attention request commands. Multiple copies of $RJE can be
loaded using different lines to the host. The spool facility
can be used to avoid contention for a single printer. Figure 7
on page 78 and Figure 8 on page 79 show a sample $RJE session.

Attention Requests

ABORT: ABORT is used to stop a data transmission which is cur—
rently in process. During a SUBMIT or SUBMITX operation, normal
end-of-file is transmitted to the host following the current
block. During receive operations, EOT is returned instead of a
normal acknowledgement and data then continues to be received
until the host sends EOT. Depending on the operation of the
host RJE system, this can result in suspension of print or
punch output and a pause during which the host will receive

76 SC36-0316

O

input. Since the pause for input by the host may be short, any
desired commands (for example, to submit another job, cancel
the current output, hold a job, or display status) should be
entered before the ABORT command. This command simulates
pressing STOP on a 2780 while printing or punching, CARRIAGE
STOP on a 3780 printer while printing, or STOP on a 3781 punch
while punching.

COMMAND: COMMAND is used to send a single card image record to
the host. The most common use of this capability will be to send
control commands and information requests to the host; for
example, a HASP /%$DA command.

Upon entering the COMMAND attention request, you are asked to
enter the command to be sent.

END: END is used to terminate the $RJE utility program.

ENDSPOOL: ENDSPOOL is used to terminate the spooling of printer
output (see SPOOL command). If a print data stream is being
received and spooled when this command is entered, spooling
Will continue until the end of the data stream. Subsequent
print data streams will then be printed on the defined printer.

PRINTON: PRINTON is used to define the name of the terminal to
be used for print output. If not specified, $SYSPRTR is
assumed.

PUNCHS and PUNCHO: PUNCHS and PUNCHO are used to define a disk
or diskette file to be used to receive punch data from the host.
Card image punch data streams can be written to disk in two dif-
ferent formats: source (S) or object (0). Source format will
produce two 80-byte card image records per 256-byte disk record
with the second card starting at byte location 129. Object for-
mat will produce three 80-byte contiguous card image records
per 256-byte disk record with the 1last 16 bytes set to
hexadecimal zeros. The punch specification is automatically
reset at the completion of each punch data stream so that mul-
tiple punch data streams can be separated into different output
data sets by issuing another PUNCHS or PUNCHO command.

Upon entering the PUNCHS or PUNCHO attention request, you will
be queried for the name and volume of the file to be used for
punch output. If volume is not specified, the IPL volume is
assumed. The file name and volume can also be specified as part
of the PUNCHS or PUNCHO command, for example:

PUNCHS PUNCHOUT,EDX001

Chapter 3. Binary Synchronous Communications 75

SRJE examines the first cards received from the host and disre-
gards those containing a X'6A"' in columns 1, 10, and 11 (indi-
cating a HASP punch header card). $RJE must be modified by vyou
to purge other than HASP punch header cards.

RESET: RESET is used to reset functions that have not started
operation in SRJE (for example buffered command images that
have not yet been sent to the host, SUBMIT files that have not
yet started transmission). RESET should be used with caution.
If RESET is used, once a function is in process or if use of
RESET overlaps a function initiation sequence, unpredictable
results may occur. RESET conditionally prompts you with the
following:

ENTER RESET TYPE (CO,SU,SP,PU):
C3 - COMMAND function

SU - SUBMIT(X) function

SP - SPOOL function

PU - PUNCH(S or 0) function

SPO0OL: SPOOL is used to define a disk or diskette file to be
used to receive printer data from the host. If not specified,
$RJE Will print received data directly to the printer. Once
specified, all printer output will be spooled until an ENDSPOOL
command is issued. The utility programs $PRT2780 or $PRT3780
can be used to print the contents of a spool file produced by
$RJE2780 or SRJE3780, respectively.

Upon entering the SPOOL attention request, you will be prompted
for the name and volume of the disk or diskette file to be used
for printer output. If volume is not specified, the IPL volume
is assumed. The space allocated to this file must be at least
equal in size (256~byte records) to the number of print lines
to be spooled and there must be an even number of records in the
spool file. Once the spoocl file is full, the output reverts to
the defined printer. The spool file name and volume may also be
entered with the SPOOL command, for example:

SPOCL SPOOLFLE,WRKLIB

76 SC34-0316

SUBMIT and SUBMITX: SUBMIT is used to define and send a data

stream to the host. SUBMITX is used to define and send a trans—
parent data stream to the host. Multiple disk or diskette files
may be sent using the /%CONCAT statement in the data stream
itself. The files must be in the same format as that produced by
the S$EDITIN and $FSEDIT utility programs (for example, two
80-byte card image records per 256-byte disk or diskette record
with the second card beginning at byte location 129). Two com-
mand statements within the data stream are recognized by $RJE
and are not transmitted to the host:

1. /*%END - signifies the end of the data stream to be sent.

2. /*CONCAT filename,volume - signifies that the data stream
is to be continued using the file specified. If volume is
not specified, the IPL volume is assumed. Any number of
files may be concatenated into one data stream.

Upon entering the SUBMIT or SUBMITX attention request, you will
be queried for the name and volume of the file to be sent to the
host. If volume is not specified, the IPL volume is assumed.
The submit file name and volume may also be entered with the
SUBMIT or SUBMITX command, for example:

SUBMITX MYJOB,WRKLIB

Chapter 3. Binary Synchronous Communications 77

> SL $RJE2780

$RJE2780 35P,00:00:00, LP= 7CO00
ENTER RJE LINE ADDRESS IN HEX: bF
DIAL HOST

HOST CONNECTION ESTABLISHED

> COMMAND

ENTER COMMAND

/¥SIGNON REMOTEXX

COMMAND READY TO SEND
COMMAND SENT
> PUNCHO

ENTER PUNCH FILE NAME (NAME,VOLUME): PCHOUTO01l,EDX002
PUNCH FILE DEFINED
> SUBMIT

ENTER SUBMIT FILE NAME (NAME,VOLUME): RJEJOBO1l,EDX002
SUBMIT FILE READY TO SEND

FILE TRANSMISSION STARTED

FILE TRANSMISSION COMPLETED

> COMMAND

ENTER COMMAND

/7%SDA

COMMAND READY TO SEND

COMMAND SENT

> PRINTON

ENTER PRINTER NAME: PRTR1

PRTR1 DEFINED AS RJE PRINTER

> COMMAND

ENTER COMMAND

/7%SDA

COMMAND READY TO SEND

> RESET

ENTER RESET TYPE (CO,SU,SP,PU): CO
RESET COMPLETED

PUNCHING STARTED

PUNCHING COMPLETED

LAST CARD PUNCHED WAS CARD 2 ON RECORD 34
> SPOOL

Figure 7. Sample $RJE Session (Part 1 of 2)

78 8C34-0316

C

SPOOL FILE DEFINED

> SUBMIT RJEJOBOZ2

SUBMIT FILE READY TO SEND
FILE TRANSMISSION STARTED
FILE TRANSMISSION COMPLETED

SPOOLING STARTED

PUNCH DATA BEING RECEIVED - NO PUNCH FILE DEFINED
ENTER PUNCH FORMAT - S OR 0: S

PUNCH FILE DEFINED
PUNCHING STARTED
PUNCHING COMPLETED
LAST CARD PUNCHED WAS CARD 1 ON RECORD 51
> ENDSPOOL

SPOOLING COMPLETED

> COMMAND

ENTER COMMAND
/%SIGNOFF

COMMAND READY TO SEND
COMMAND SENT

$RJE2780 ENDED AT 00:00:00

> &L SPRT2780

DS1(NAME,VOLUME): SPOOLO1l,EDX002
$PRT2780 9P,00:00:00, LP= 7C00
PRINT TO $SYSPRTR? (Y OR N): N
ENTER PRINTER NAME: PRTR1

$PRT2780 ENDED AT 00:00:00

ENTER SPOOL FILE NAME (NAME,VOLUME): SPOOLO1,EDX002

ENTER PUNCH FILE NAME (NAME,VOLUME): PCHOUTO0Z2,EDX002

Figure 8. Sample $RJE Session (Part 2 of 2)

Chapter 3. Binary Synchronous Communications

79

80

S§C34-0316

CHAPTER 4. HOST COMMUNICATIONS FACILITY

An application program coded in the Event Driven Language may
communicate with the facilities of Installed User Program
5796-PGH, the IBM Series/1 Host Communications Facility
installed on an IBM System/370 running 0S/MVT or 0S/VS2. The TP
statement, a part of the Event Driven Language, provides you a
means of performing the following general functions:

d Write to a host data set.

. Read from a host data set.

. Submit a background job to the host system.

. Obtain the time and date from the host system.

U Set the occurrence of a Series/1 event so tha® it may be
tested by a program running on the host system.

U Test for the occurrence of an event which is set by the host
system.
. Erase an event which occurred on either the Series/1 or the

host system.

To configure vyour supervisor for the Host Communications
Facility, refer to the section "System Configuration™ in the
System Guide.

Chapter 4. Host Communications Facility 81

Open Seriess/1 Data Sets

A Series/1 may only have one host data set open at a time. If a
second task attempts to open a data set, it will be placed in a
queue of tasks waiting to use the TP facility.

If the task currently using the TP facility attempts to open a
second data set, then the currently open data set will automat-
ically be closed and the second one will be opened.

Host Data Set Naming Conventions

Data set names referenced by a TP instruction must consist of
an alphameric character string immediately preceded by one
word which specifies the length of the name field. This is most
easily done by using a labeled TEXT instruction to define the
name, for example:

DSN1 TEXT "XYZ.EXP1.DATA'®

Data set names follow standard host system naming conventions
and must not exceed 44 characters in length (including delimit-
ing periods). The name field must be padded on the right with
blanks.

A partitioned data set and member name is specified wWwith a
string of the form dsnhname(membername), for example:

PDSDSN TEXT 'XYZ.EXP1.DATA(RUNI1)®

The maximum length of such a string is 54 characters.

A data set name can be read into a text field from the console
with the READTEXT instruction.

82 SC364-0316

O

A

;
/
P

Host Data Set Characteristics

Host system data sets referenced in these functions must all be
cataloged, single-volume, direct—-access data sets, with fixed-
or variable-length records. Either sequential data sets or
members of partitioned data sets may be accessed. Fixed—-length
logical records must contain an even number of words. The datsa
sets may be blocked or unblocked. If fixed blocked format is
used, the block size must be an integral multiple of the log-
ical record length (LRECL), not exceeding 13030.

Either sequential data sets or members of partitioned data sets
may be used for the SUBMIT function. Logical records must be 80
bytes long and may be blocked or unblocked. If blocked records
are used, the block size must be an integral multiple of 80.

Host System Considerations

To ensure economical utilization of host main storage, while
also providing large record capability, host main storage is
shared by all Series/]1 systems. The Host Communications Facil-
ity IUP region allocation determines how much buffer space is
available and therefore the upper limit for host BLKSIZE. It is
still possible an error code 222 (sufficient I/0 buffer space
unavailable) may occur because of multiple and simultaneous
requests for access to data sets with very large block sizes.,
This is very improbable, but you are cautioned to minimize the
amount of realtime during which you use the Host Communications
Facility in order to minimize the probability of interference.

You are also cautioned to test for the specific error code 222
(sufficient I/70 buffer space unavailable) in response to a TP
OPEN and, if received, to retry your request a little later.

Record Sizes

A large range of logical and physical record sizes is available
to the application programmer. In selecting record size, you
should understand that there is no absolute best choice. Howev-
er, the following points are offered for your consideration.

1. The basic disk or diskette record size on the Series/1 is
256 bytes. This is therefore a natural unit of measure for
transfer to and from disk and a natural choice for a log-
ical record size on the host. This is the default chosen
for the TP instructions.

Chapter 4. Host Communications Facility 83

2. A host physical record (block) size of 1536 bytes yields an
efficient (80 percent) utilization of host direct access
storage on an IBM 3330 disk. This also yields moderate
requirements for host buffer storage.

3. For unformatted data, FORTRAN IV on the host system sup-
ports either fixed-length unblocked data sets or
variable—-length blocked data sets.

4. The larger the physical record being transferred between
host and Series/1 (a host logical record), the higher the
effective data transfer rate which will be achieved. Also,
the larger the physical record (block) being transferred
between host main storage and direct access, the higher the
effective data rate. The maximum data rate is achieved when
using track size records (13030 bytes for the 1IBM 3330
disk) for both operations.

5. The large physical records naturally require correspond-
ingly large buffers in your program. In order to achieve
overlapped I/70, multiple buffers are required.

Variable Length Records

A variable length record is always prefixed by four bytes of
control information. This is called a Record Descriptor Word or
RDW. The structure of a variable format record is shown belowu.

LL 00 DATA

The length (LL) field (bytes 1 and 2) describes the total
length of the record in bytes and is therefore always four
greater than the length of the data field. The field showun as 00
(bytes 3 and 4) is reserved for use by the host system.

When a variable format record is transferred from the host to
Series/1, the total record, including the LL field, will be
transferred. When a variable format record is to be transferred
from Series/1 to the host, you must set the RDW to the proper
value.

Data Transfer Rates

The data transfer rates which may be achieved between Series/1
and the host is a function of the activity on the host and as

84 SC34-0316

—

TN

s

such will vary somewhat from time to time. Of course, the speed
of transmission is also a function of the type of physical con-
nection used between the systems. In general, you should avoid
implementing any functions in a manner which depends on specif-
ic data rates between the host and Series/1.

System Status Data Set

The status functions (SET, FETCH, and RELEASE) provide a method
of communication and therefore, of synchronization betuween
programs in a distributed system environment. This function is
implemented by using a shared system data set on the host com-—
puter. Programs on the host or satellite processors can commu-—
nicate by writing (SET), reading (FETCH), and deleting
(RELEASE) records.

In the simplest case, one program (Program A) makes an entry in
the System Status Data Set by invoking a SET instruction speci-
fying an index and a key. Another program (Program B) would
test for the existence of such an entry with a FETCH or RELEASE
referring to the same index and key names and would receive a
positive return code if the entry existed. After performing a
SET, the first program (Program A) could periodically issue a
FETCH. A companion program (Program B) on the other system
might also be issuing a periodic FETCH for the agreed upon
index and key. At the appropriate time, this program (Program
B) could issue a RELEASE which would result in the first pro-
gram (Program A) receiving a "not found” return code from its
next FETCH. This could be interpreted as a notification by the
companion program (Program B) that the message had been
received. Figure 9 on page 86 graphically illustrates the
previous explanation.

The FETCH, SET, and RELEASE functions can be invoked from a
user—written program using the TP commands or, through the use
of the Event Driven Executive $HCFUT!l utility. The return codes
that could be returned are listed in the section "Return Codes"
on page 102.

Chapter 4. Host Communications Facility 85

PROGA PROGRAM A PROGRAM A

STATA STATUS PROGID,KEYA DEFINE STATUS ID & KEY
*
A TP SET,STATA SEND MESSAGE TO PROGB
* VIA HOST
Al TP FETCH,STATA, ERRORA CHECK IF PROGB RECEIVED
* MESSAGE
* FALL THRU IF KEY & ID STILL ON HOST
*
G0TO Al CONTINUE INTERROGATION
ERRORA EQU * DELETE THE MESSAGE ON HOST
PROGSTOP
ENDPROG
END
PROGB PROGRAM B FROGRAM B
STATB STATUS PROGID,KEYA DEFINE SAME STATUS ID & KEY
*
B TP FETCH,STATB, ERROR=ERRORB FETCH MESSAGE
*
* MESSAGE WAS FOUND AND IS DELETED, THUS SIGNALING PROGA
*
TP RELEASE,STATB
GOTO END
ERRORB GOTO B CONTINUE LOOKING FOR MESSAGE
END PROGSTOP
ENDPROG
END

Figure 9. System Status Data Set Sample Program

The System Status Data Set has DIRECT organization. Records are
written into this data set with the SET function, tested for
existence with the FETCH function, or tested and deleted with
RELEASE.

A STATUS entry has three possible logical parts, two of which
are mandatory. These are:

1. Index entry
2. Key field
3. Data (optional 256-byte field)

Index entries and key fields are each eight EBCDIC characters
in length and have significance for the using programs.

86 SC34-0316

The System Status Data Set has one 268-byte index record capa-
ble of containing 22 separate index entries. An index entry has
two parts. These are:

. Index name — eight EBCDIC characters

. Key pointer - a 4-byte relative record pointer to the first
associated key field record.

A key entry is a 268-byte record which has the following for-
mat:

1. Forward pointer - a 4-byte relative record number of the
next key entry or zero if this is the last one

2. Key name — eight EBCDIC characters
3. Data - 256 bytes of optional data

The next record pointer allows more than one key to be associ-
ated with a given index. The next record pointer of the last key
field will be set to zero to indicate the end of the chain.

Logically, an unlimited number of key records may be associated
with a single index. In practice, the limiting factor is the
physical size of the data set. The distributed data set allous
for a total of 94 key entries.

The System Status Data Set format is defined and allocated dur-
ing the 1installation of the Host Communications Facility
Installed User Program.

Appendix B of the IBM Series/] Host Communications Facility
Program Description and Operation Mapual, SH20-1819, contains
more details on the use of the System Status Data Set.

Chapter 4. Host Communications Facility 87

TP Statement

The TP statement supports only the single line BSC adapter in
point-to-point leased line mode. The following list shows the
required TP statement, or required sequence of TP statements,
to perform each of the general functions. These statements are
coded in your Event Driven Language application program, which
runs on the Series/1 end of the BSC link.

Examples of Use

1. Write data from the Series/1 to a host data set.

Requires: TP OPENOUT, ...
) TP WRITE,...
TP CLOSE, ...

2. Read data from a host data set to the Series/l1.

Requires: TP OPENIN, ...
TP READ, ...
TP CLOSE, ...

3. Submit a background job to the host system.

Requires: TP SUBMIT,...

4. Obtain the time and date from the host systen.

Requires: TP TIMEDATE, ...

88 S5C34-0316

5. Set, on the host system, the occurrence of a Series/l
event, so that it may be tested by a program running on the
host system.

Requires: TP SET,...

6. Test for the occurrence of an event set by a program run-
ning on the host system.

Requires: TP FETCH, ...

7. Erase the record, on the host system, of an event which was
set by either the host system or the Series/1.

Requires: TP RELEASE, ...

Chapter 4. Host Communications Facility 89

TP _Statement Svyntax

Each of the forms of the TP instruction is described starting
with "TP CLOSE." The use of each function is shown in "Example
Transfer a Series/1 Data Set to the Host™ on page 105 and
"Example Transfer a Host Data Set to the Series/1"™ on page 106.
Certain standard information is described on the following
pages.

TP _CLOSE

TP CLOSE terminates a transfer operation. This instruction is
used to terminate either an operation begun with TP OPENOUT, ...
or with TP OPENIN,....

Notes:

1. If an error occurs, an open data set will be automatically
closed by the system. The only time that a TP CLOSE must be
issued is when a data set transfer is being terminated and
no errors have occurred. For instance, this would occur if
only 10 records were being written to or read from a data
set capable of containing 20 records.

2. The return code should always be tested after issuing a TP
CLOSE because some errors Will only be detected at this
time; for example, 50 and 51. Return codes are shouwn in
Figure 10 on page 102, Figure 11 on page 103 and Figure 12
on page 104,

3. While you have an open data set, no one else will be able to
use the facility. Use discretion in your operations.

Svntax

label TP CLOSE, ERROR=

Required: CLOSE
Defaults: None
Indexable: None

Operands Description
label The optional symbolic name of the TP statement.

90 SC34-0316

®

o

CLOSE

ERROR=

Coded as shown. Specifies operation termination.

Use this operand to specify the first instruction
of the routine to be invoked if an error condition
occurs during the execution of this operation. If
this operand is not specified, control will be
returned to the next instruction after this one and
you must test for errors.

Chapter 4. Host Communications Facility 91

TP_FETCH

TP FETCH tests for the existence of a specific record in the
System Status Data Set on the host system and optionally reads
in the associated data record.

Syntax

label TP FETCH,stloc,length, ERROR=,P2=,P3=

Required: FETCH, stloc
Defaults: length=0
Indexable: stloc, length

Operands Description

label The optional symbolic name of the TP statement.
FETCH Coded as shoun.

stloc The label of a STATUS instruction. Refer to the

Language Reference for a description of this
instruction.

length A count specifying the length, in bytes, of the data
portion of the status record to be received. A count
of zero indicates that no data is to be received.
The maximum value of this field is 256.

ERROR= Use this operand to specify the first instruction
of the routine to be invoked if an error condition
cccurs during the execution of this operation. If
this operand is not specified, control will be
returned to the next instruction after this one and
you must test for errors.

Pn

]

The optional labels to be affixed to the stloc and
length operands, respectively.

92 SC34-0316

£
N

TP _OPENIN

TP OPENIN prepares to read data from a host data set.

Syntax

label TP OPENIN,dsnloc, ERROR=,P2=

Required: OPENIN, dsnloc
Defaults: None
Indexable: dsnloc

Operands Description

label The optional symbolic name of the TP statement.

OPENIN Coded as shown. Specifies an input operation,

dsnloc The label of a TEXT instruction which specifies the
fully qualified name of a host data set of standard
format as detailed in "Host Data Set Naming
Conventions™ on page 82.
This may be either (1) a sequential data set or (2)
a partitioned data set with member name included.

ERROR= Use this operand to specify the first instruction
of the routine to be invoked if an error condition
occurs during the execution of this operation. If
this operand is not specified, control will be
returned to the next instruction after this one and
vou must test for errors.

P2= The optional label to be affixed to the dsnloc

operand.

Chapter 4. Host Communications Facility 93

TP _OPENOUT

TP OPENQUT prepares to transfer data to a host data set.

Syntax

label

Required:
Defaults:
Indexable: dsnloc

TP OPENOUT,dsnloc,ERROR=,P2=

OPENOUT,dsnloc
None

Operands
label
OPENOUT

dsnloc

ERROR=

P2

Description
The optional symbolic name of the TP statement.
Coded as shown. Specifies an output operation.

The label of a TEXT instruction which specifies the
fully qualified name of a host data set of standard
format as detailed in "Host Data Set Naming
Conventions™ on page 82.

This may be either (1) a sequential data set or (2)
a partitioned data set with member name included.

Use this operand to specify the first instruction
of the routine to be invoked if an error condition
occurs during the execution of this operation. If
this operand is not specified, control will be
returned to the next instruction after this one and
vou must test for errors.

The optional label to be affixed to the dsnloc
operand.

94 SC34-0316

@

TP_READ

TP READ receives a data record from the host systen.

Syntax

label

Required:
Defaults:

Indexable: buffer, count

TP READ,buffer,count, END=, ERROR=,P2=,P3=

READ, buffer
count=256

Operands

label

READ

buffer

count

END=

ERROR=

Pn=

Description
The optional symbolic name of the TP statement.

Coded as shown. Specifies that a record is being
received.

The label of the data buffer into which the record
is to be stored. This buffer should be generated
with or conform to the specifications of a BUFFER
statement specifying TPBSC.

The maximum number of bytes which may be
transferred. For variable length records, this
includes the 4-byte RDW as shown 1in "Variable
Length Records™ on page 84.

Use this operand to specify the first instruction
of the routine to be invoked if an "End of Data Set"™
condition is detected (return code 300). If this
operand is not specified, an EOD will be treated as
an error.

Use this operand to specify the first instruction
of the routine to be invoked if an error condition
occurs during the execution of this operation., If
this operand is not specified, control will be
returned to the next instruction after this one and
you must test for errors.

The optional labels to be affixed to the buffer and
count operands, respectively.

Chapter 4. Host Communications Facility 95

TP _RELEASE

TP RELEASE deletes a specific record in the System Status Data
Set on the host system and optionally reads the associated data
record.

Svyntax

label TP RELEASE,stloc,length, ERROR=,P2=,P3=

Required: RELEASE, stloc
Defaults: length=0
Indexable: stloc, length

Operands Description

label The optional symbolic name of the TP statement.
RELEASE Coded as shouwn.

stloc The label of a STATUS instruction. Refer to the

Language Reference for a description of this
instruction.

length A count specifying the length, in bytes, of the data
portion of the status record to be received. A count
of zero indicates that no data is to be transmitted.
The maximum value of this field is 256.

ERROR= Use this operand to specify the first instruction
of the routine to be invoked if an error condition
occurs during the execution of this operation. If
this operand is not specified, control will be
returned to the next instruction after this one and
you must test for errors.

Pn The optional labels to be affixed to the stloc and

length operands, respectively.

96 SC34-0316

O

TP _SET

TP SET writes a record in the System Status Data Set on the host

system.

Svyntax

label

Required:
Defaults:

Indexable: stloc, length

TP SET,stloc,length, ERROR=,P2=,P3=

SET, stloc
length=0

Operands

label
SET

stloc

length

ERROR=

Pn=

Description

The optional symbolic name of the TP statement.
Coded as shoun.

The label of a STATUS instruction. Refer to the

Language Reference for a description of this
instruction.

A count specifying the length, in bytes, of the data
portion of the status record to be transmitted. A
count of zero indicates that no data is to be trans-
mitted. The maximum value of this field is 256.

Use this operand to specify the first instruction
of the routine to be invoked if an error condition
occurs during the execution of this operation. If
this operand is not specified, control wuwill be
returned to the next instruction after this one and
vou must test for errors.

The optional labels to be affixed to the stloc and
length operands, respectively.

Chapter 4. Host Communications Facility 97

TP _SUBMIT

TP SUBMIT submits a job to the host batch job streanm.

Syntax

label

Required:
Defaults:
Indexable: dsnloc

TP SUBMIT,dsnloc,ERROR=,P2=

SUBMIT, dsnloc
None

Operands
label
SUBMIT

dsnloc

Description

The optional symbolic name of the TP statement.
Coded as shown.

The label of a TEXT instruction which specifies the
name of a host data set containing the job (JCL and
optional data) to be submitted.

This may be either:

1. TEXT "dsname"” for a sequential data set, or

2. TEXT "dsname(membernamel)" for a partitioned
data set.

In systems with a HASP/Host Communications Facility
interface, specifying DIRECT for dsnloc allous
immediate transmission of data records to the job
stream without employing an intermediate host data
set. To use this facility, issue:

TP SUBMIT,DIRECT
followed by a series of
TP WRITE,buffer,80

instructions, one for each job stream record, ter-
minated with a

TP CLOSE

98 SC34-0316

®

e ‘\\
.

ERROR=

Use this operand to specify the first instruction
of the routine to be invoked if an error condition
occurs during the execution of this operation. If
this operand is not specified, control will be
returned to the next instruction after this one and
you must test for errors.

The optional label to be affixed to the dsnloc
operand.

Chapter 4. Host Communications Facility 99

TP _TIMEDATE

TP TIMEDATE
and seconds

obtains the current time of day (hours, minutes,
) and the date (month, day, and year) from the host

system.
Syntax
label TP TIMEDATE, loc,ERROR=,P2=
Required: TIMEDATE, loc
Defaults: None
Indexable: loc

Operands Description

label The optional symbolic name of the TP statement.

TIMEDATE Coded as shoun.

loc The label of the 6—-word data area where time of day
and date will be stored as hours, minutes, seconds,
month, day, and year.

ERROR= Use this operand to specify the first instruction
of the routine to be invoked if an error condition
occurs during the execution of this operation. If
this operand is not specified, control will be
returned to the next instruction after this one and
you must test for errors.

P2= The optional label to be affixed to the loc operand.

100 SC34-0

316

®

O

C

TP WRITE

TP WRITE sends a data record to the host systen.

Syntax

label

Required:
Defaults:

Indexable: buffer, count

TP WRITE,buffer,count,END=, ERROR=,P2=,P3=

WRITE, buffer
count=256

Operands

Description

label

WRITE

buffer

count

END=

ERROR=

Pn=

The optional symbolic name of the TP statement.

Coded as shown. Specifies that a record is being
sent.

The label of the data buffer which contains the
record to be transmitted. This buffer should be
generated with, or conform to the specifications
of, a BUFFER statement specifying TPBSC.

The number of Seriess/1 bytes to be transferred. For
variable length records, this includes the 4-byte
RDH as shown in "Variable Length Records"™ on page
84,

Use this operand to specify the first instruction
of the routine to be invoked if an "End of Data Set™
condition is detected (return code 400). If this
operand is not specified, an EOD will be treated as
an error.

Use this operand to specify the first instruction
of the routine to be invoked if an error condition
occurs during the execution of this operation. If
this operand is not specified, control will be
returned to the next instruction after this one and
you must test for errors.

The optional labels to be affixed to the buffer and
count operands,respectively.

Chapter 4. Host Communications Facility 101

Return Codes

Program execution will be halted until the operation is
complete, and the first word of the TCB (taskname) must be
tested to determine if the operation was successful. The return
codes are shouwn in Figure 10, Figure 11 on page 103 and
Figure 12 on page 104.

Note: If an error is detected, an open data set is
automatically closed for you.

Code Description Module
-1 Successful completion Supervisor
1 Illegal command sequence Supervisor
2 TP 170 error Supervisor
3 TP I/70 error on host HCFCOMM
4 Looping bidding for the line Supervisor
5 Host acknowledgement to request Supervisor
code was neither ACKO, ACKl, WACK,
or a NACK
6 Retry count exhausted - last error Supervisor
was a timeout; the host must be douwn
7 Looping while reading data from Supervisor
the host
8 The host responded with other than Supervisor

an 'EOT' or an "ENQ' when an ‘EOT®'
was expected

9 Retry count exhausted - last error Supervisor
was a "modem interface check™
10 Retry count exhausted - last error Supervisor

was not a timeout, modem check,
block check or overrun

11 Retry count exhausted - last error Supervisor
was a transmit overrun

50 170 error from last I/0 in DSHWRITE DSCLOSE

51 I/0 error when writing the last buffer DSCLOSE

100 Ltength of DSNAME is zero HCFCOMM

101 Length of DSNAME exceeds 52 HCFCOMM

102 Invalid length specified for I/0 HCFINIT

Figure 10. TP Return Codes (Part 1 of 3)

102 SC34-0316

Code Description Module
200 Data set not on volume specified for HCFINIT
controller
201 Invalid member name specification DSOPEN
202 Data set in use by another job DSOPEN
203 Data set already allocated to this task DSOPEN
204 Data set is not cataloged DSOPEN
205 Data set resides on multiple volumes DSOPEN
206 Data set is not on a direct access
device DSOPEN
207 Volume not mounted (archived) DSOPEN
208 Device not online DSOPEN
209 Data set does not exist DSOPEN
211 Record format is not supported DSOPEN
212 Invalid logical record length DSOPEN
213 Invalid block size DSOPEN
214 Data set has no extents DSOPEN
216 Data set organization is partitioned and
no member name was specified DSOPEN
217 Data set organization is sequential and
a member name was specified DSOPEN
218 Error during 0S/ OPEN DSOPEN
219 The specified member was not found DSOPEN
220 An I/0 error occurred during a
directory search DSOPEN
221 Invalid data set organization DSOPEN
222 Sufficient I/0 buffer space unavailable DSOPEN
300 End of an input data set DSREAD
301 I/0 error during an 0S/ READ DSREAD
302 Input data set is not open DSREAD
303 A previous error has occurred DSREAD

Figure 11.

TP Return Codes (Part 2 of 3)

Chapter 4.

Host Communications Facility 103

Code Description Module
400 End of an output data set DSWRITE
401 I/70 error during an 0S/ WRITE DSHWRITE
402 Output data set is not open DSHWRITE
403 A previous error has occurred DSHRITE
406 Partitioned data set is full DSCLOSE
700 Index, key, and status record added SET
701 Index exists, key and status added SET
702 Index and key exist, status replaced SET
703 Error - Index full SET
704 Error - Data set full SET
710 I/0 Error SET
800 Index and key exist FETCH
801 Index does not exist FETCH
802 Key does not exist FETCH
810 1/0 error FETCH
900 Index and/or key released RELEASE
901 Index does not exist RELEASE
902 Key does not exist RELEASE
910 I/0 error RELEASE

Ixxx An error occurred in a subordinate S7SUBMIT

module during SUBMIT. 'xxx' is
the code returned by that module.

Figure 12.

104 SC34-

TP Return Codes (Part 3 of 3)

0316

O

Example

Transfer a Series/l Data Set to the Host

In the following example, a Series/1 data set, which is entered
by the user at program load time, is written to a 256-byte data

set on the host. The user wWwill be prompted for a target host
data set.

WRITASK PROGRAM TPOPEN,DS=((SOURCE,??))

%

* OPEN TP LINE

TPOPEN READTEXT DSNAME, "HOST DATASET: ',PROMPT=COND
TP OPENOUT,DSNAME
IF (WRITASK,EQ,-1),G0T0O,DSREAD OPEN 0OK?
MOVE SWITCH, 3 .. TPOPEN ERROR
GOTO ERRSH

* READ A RECORD FROM DATA SET

DSREAD READ DS1,BUFFER,ERROR=ERR2,END=TPCLOSE

* WRITE A RECORD TO HOST

TPWRITE TP WRITE,BUFFER,256
IF (WRITASK,EQ,-1),GO0T0O,DSREAD ..0K?

ERR1 MOVE SWITCH,1 ..WRITE ERROR
GOTO TPCLOSE

ERR2 MOVE SWITCH,2 ..READ ERROR

* LOSE DATA SET AND PRINT MESSAGE AS APPROPRIATE

TPCLOSE TP CLOSE

ERRSH GOTO (RETO,RETL1,RET2,RET3),SWITCH

RETO PRINTEXT "%%x%%READ/WRITE SUCCESSFUL%%%%xx3"'
PROGSTOP

RET1 PRINTEXT "%%%%*WRITE UNSUCCESSFUL**x%%%3"'
PROGSTOP

RET2 PRINTEXT "*%x%*READ UNSUCCESSFUL»*x%xx%x%x3"
PROGSTOP

RET3 PRINTEXT "%%x%*TP OPEN UNSUCCESSFULX%Xx%x%x%Q"'
PROGSTOP

SWITCH DATA F'0°’

DSNAME TEXT LENGTH=40

BUFFER BUFFER 256, TPBSC
ENDPROG
END

Chapter 4. Host Communications Facility

105

Example Transfer a Host Data Set to the Series/l

In the following example, a host data set which is entered by
the user at the prompt "HOST DATASET: ", is read into a preallo-
cated data set on a Series/1 volume. At program load time the

user is prompted for the target Series/1 data set.

READTASK PROGRAM TPOPEN,DS=((TARGET,??))

* OPEN TP LINE

TPOPEN READTEXT DSNAME, 'HOST DATASET: ',PROMPT=COND
TP OPENIN,DSNAME
IF (READTASK,EQ,-1),G0T0, TPREAD OPEN 0K?
MOVE SWITCH,3 .. TP OPEN ERROR
GOTO ERRSH

* READ A RECORD FROM HOST

TPREAD TP READ,BUFFER
IF (READTASK,EQ,-1),60TO,DSWRITE ..0K?
IF (READTASK,EQ,300),G6G0T0, TPCLOSE ..END?
GOTO ERRZ2

* WRITE RECORD ON DISK

DSWRITE WRITE DS1,BUFFER,ERROR=ERR1
IF (READTASK,EQ,~1),G0T0, TPREAD ..0K?

ERR1 MOVE SWITCH,1 ..WRITE ERROR
GOTO ERRSH

ERR2 MOVE SWITCH,?2

* CLOSE TP LINE AND PRINT MESSAGE AS APPROPRIATE

TPCLOSE TP CLOSE

ERRSH GOTO (RETO,RET1,RET2,RET3),SWITCH

RETO PRINTEXT "*%x%*READ/WRITE SUCCESSFUL*x%x%x%xx3"
PROGSTOP

RET1 PRINTEXT '"*xx%*WRITE UNSUCCESSFUL*%%%%3"
PROGSTOP

RET2 PRINTEXT '"#xx%%READ UNSUCCESSFUL*xx%x3"'
PROGSTOP

RET3 PRINTEXT "*%xxxTP OPEN UNSUCCESSFULX%xxxx3'
PROGSTOP

SWITCH DATA F'0"

DSNAME TEXT LENGTH=40

BUFFER BUFFER 256, TPBSC
ENDPROG
END

106 SC34-0316

@

SHCFUT1 Utility Program

$HCFUT!l is a utility program that uses the Host Communications
Facility on the Series/1 to interact with the Host Communi-
cations Facility on the System/370. $HCFUT1l contains four
host—-related data set functions. These are:

U Read a data set from the host.

. Write a data set to the host.

. Submit a job to the host.

L Status - Set, Fetch, and Release records in the System Sta-
tus Data Set.

The table below lists the commands and their codes:

? Help

END End

FEtch Fetch status

RELease Release status

READDATA Read host

READSO Read 80-byte records and write two 80-byte

records in one disk sector
READOBJ Read 80-byte records and uwrite three 80-byte
records in one disk sector

SEt Set status
SUbmit Submit a job
WRite Write to host
Notes:
. See "Host Data Set Naming Conventions™ on page 82 and "Host

Data Set Characteristics™ on page 83.

. See "System Status Data Set"™ on page 85. Appendix B of the
IBM Series/1 Host Communications Facility Program
Description and Operation Manual, SH20-1819, contains more
details on its use.

. The Host Communications Facility IUP, program number
5796-PGH, is required on the host Systems/370.

. Host Communications Facility must be installed and config-
ured on the Series/1.

Chapter 4. Host Communications Facility 107

READDATA

READDATA transfers a data set from the host to the Series/1.
The host logical record size is assumed to be 256 bytes.

There are three items of control information to be specified at
the time of execution. These items are:

DS1 The 1-8 character éame of the Series/1 data set
to which data is to be transferred, and its vol-
ume name, if not the IPL volume.

Record Count The number of records to be transferred,
beginning with the first. This would be used if,
for example, only the first 10 records of a
50-record data set are to be transferred.

A count of zero is used to indicate that the
entire data set is to be transferred.

DSNAME The name of the host data set to be transferred.

The following is a terminal printout of a typical run. In this
example, all records (length = 256 bytes each) of the host data
set "S1.EDX.TESTIN.DATA"™ (which contains 40 records) are
transferred to the Series/1 data set "DATAFIL2".

> SL

PGM(NAME, VOLUME): SHCFUT1
DS1(NAME,VOLUME): DATAFIL2,EDX001
SHCFUT1 8P,08.15.30, LP=4BOO

COMMAND (?): READDATA

NO. OF RECORDS TO READ(O=ALL): O
DSNAME: S1.EDX.TESTIN.DATA

END AFTER 40

COMMAND (?):

108 SC34-0316

READ80 and READOBJ

READ80 and READOBJ transfer 80-byte records from a host data
set and store them in 256-byte Series/1 disk or diskette data
set records.

READ8O stores two 80-byte records per 256-byte disk record.
The first 80-byte record is stored in the first 80 bytes of the
disk record. The second 80-byte record is stored starting at
byte 129 of the disk record. This format is compatible with the
saved results of using $EDITIN or $FSEDIT and is also the for-
mat required for input to a:language compiler or $EDXASM pro-
gram preparation. READ80O is normally used to transfer source
program modules from the System/7370 to Series/1 disk.

READOBJ stores three 80-byte records in the first 240 bytes of
each disk record. This format is compatible with object modules
produced by any of the assembler programs. It is also the for-
mat required for input to $LINK and 1is one of the formats
accepted by $UPDATE. READOBJ is normally used to transfer the
output object module of a host assembly to the Seriess/1 for
processing by $LINK or $UPDATE.

Both READ80 and READOBJ are invoked in a manner similar to
"READDATA"™ on page 108.

Chapter 4. Host Communications Facility 109

SET, FETCH, and RELEASE

The status commands are used to perform, from a terminal, any
of the three functions, SET, FETCH, and RELEASE, on the System
Status Data Set. See "System Status Data Set"™ on page 85 and
Figure 11 on page 103 for STATUS return codes.

The following is an example of the use of the SET function of
S$HCFUT1. STATUS return code 700 indicates that the index, key,
and status record have been added.

COMMAND (?): SE
INDEX = TESTSET
KEY = NEWRECD
STATUS = 700
COMMAND (?2):

The following are examples of the use of the FETCH and RELEASE
functions. The FETCH return code of 802 indicates that that
particular key does not exist. The RELEASE return code of 900
indicates a successful release.

COMMAND (?): FE
INDEX = TESTSET
KEY = MISSINGI1
STATUS = 802
COMMAND (?): REL
INDEX = TESTSET
STATUS = 900
COMMAND (?):

110 SC34-0316

SUBMIT

SUBMIT causes a job to be submitted to the host job stream. See
"Host Data Set Naming Conventions"™ on page 82 and "Host Data
Set Characteristics”™ on page 83.

The name of the host data set containing the job control lan-
guage to be submitted is specified on the Series/1 terminal.
The following is a sample of the terminal printout illustrating
the use of SUBMIT to submit the data set "S1.EDX.TESTSUB.CNTL",

COMMAND (?): SU

DSNAME: S1.EDX.TESTSUB.CNTL
JOB SUBMITTED

ANOTHER JOB? N

COMMAND (?2):

Chapter 4., Host Communications Facility 111

WRITE

WRITE transfers a data set from the Seriess/1 to the host
processor. Host data set naming conventions and character—
istics are described in this chapter. The host logical record
size is assumed to be 256 bytes.

There are three items of control information to be specified at
the time of execution. These items are:

DS1 The 1-8 character name of the Series/l data set
to be transferred, and its volume name, if not
the IPL volume.

Record Count The number of records to be transferred,
beginning with the first. This would be used if,
for example, only the first 10 records of a
50-record data set are to be transferred.

A count of zero is used to indicate that the
entire data set is to be transferred.

DSNAME The name of the host data set to which the data
is to be transferred. The name will consist of up
to 44 characters or, 54 characters if a member of
a partitioned data set.

The following is a terminal printout of a typical run. In this
example, 28 records of the Seriess/1 data set "DATAFIL1" are
transferred to the host data set "S1.EDX.TESTOUT.DATA".

> S$L SHCFUT1
DS1(NAME,VOLUME) :DATAFIL1
$HCFUT1 8P,08.15.20, LP=4BO0O0O

COMMAND (?2): WR

NO. OF RECORDS TO WRITE(O=ALL): 28
DSNAME: S1.EDX.TESTOUT.DATA

END AFTER 28

COMMAND (?2):

112 SC34-0316

O

CHAPTER 5. MULTIPLE TERMINAL MANAGER

INTRODUCTION

The Series/1 Event Driven Executive Multiple Terminal Manager
is a program which provides support, via high-level functions,
for transaction-oriented applications on a Seriess/1. In addi-
tion, it provides the management of multiple terminals as
needed to support these transactions and their various appli-
cation programs. The user creates programs which interface
with the Multiple Terminal Manager via CALL statements. The
components of the Multiple Terminal Manager are the following:

. A program/storage manager which controls the execution and
flow of the application programs within a single program
area.

. A terminal/screen manager which controls the presentation

of screens and communications between terminals and appli-
cation programs.

] A file handling mechanism which simplifies the storage and
retrieval of data on direct access devices.

Note: The reader should be familiar with the terminology
used in the discussion of the TERMINAL statement in the
section "System Configuration" of the System Guide. The
syntax of the CALL statements in this chapter can be found
in the Language Reference.

Chapter 5. Multiple Terminal Manager 113

HARDWARE REQUIREMENTS

The minimum hardware configuration required for the Multiple

Terminal Manager is as follows:

. Series/]1 processor (either 4952 or 4955) with 96KB storage

. Disk storage device (either 4962 or 4963)

. An Event Driven Executive $SYSPRTR device

. 4978/7497973101 or ASCII terminal

A separate $SYSLOG device is also required for receiving system

messages; this device should not be included in the Multiple

Terminal Manager environment in that system messages may not be

displayed.

Additional hardware that may be attached to the system:

. 4978, 4979, or 3101 Models 1 or 2 terminal devices

U ASCII terminals connected via: #7850 Teletypewriter Adapt-
er, #1610 controller, #2091 controller with #2092 adapter,
or #2095 controller with #2096 adapter.

. 4973 or 4974 printers

. Additional direct access devices (disk or diskette)

U Additional storage

SOFTWARE REQUIREMENTS

The minimum software requirements for executing the Multiple
Terminal Manager is the Event Driven Executive V1.1. Addi-
tionally, the Event Driven Executive utilities and program
preparation facilities are required for program preparation
and installation of Multiple Terminal Manager applications.
The following is a list of the additional softuware supported by
the Multiple Terminal Manager:

. Indexed Access Method
. COBOL
. FORTRAN

. PL/1I

114 SC34-0316

Y

ya

PROGRAM OPERATION OVERVIEW

The Multiple Terminal Manager is a transaction processing sub-
system which executes as an application program within the
Event Driven Executive system. Multiple Terminal Manager
transactions are initiated by a terminal operator via a trans-
action selection menu (also referred to as @ program selection
menu). Transactions can consist of single or multiple operator
prompts, and responses are processed by user applications pre-
pared explicitly for the Multiple Terminal Manager.

Multiple Terminal Manager applications are processed in a mes-
sage in/message out fashion and are automatically connected to
a terminal when a transaction begins. The Multiple Terminal
Manager, in turn automatically processes terminal I/0 for Mul-
tiple Terminal Manager applications. Multiple Terminal Manager
applications execute within the program area managed by the
Multiple Terminal Manager. The applications are provided pro-
gram, terminal, screen and file management services via the
Multiple Terminal Manager.

Program Management

The program management facilities allow applications to manage
programs while these programs perform their respective
transactional processes Wwithin a single overlay area. Because
all of the Multiple Terminal Manager application programs
operate in the same area, the Multiple Terminal Manager program
management facilities contain the support needed to allow mul-
tiplex operation and sharing of the program area. The applica-
tion programs interface with these facilities using the
callable functions described in the following sections.

The program management callable functions are:

LINK: Load and Execute Program

The LINK function allows an application program to complete its
own execution by loading and executing some other application
program.

LINKON: Fetch Response and Execute Program

The LINKON function is a combination of the functions provided
by the ACTION and LINK functions; that is, it requests an oper-

ator action and, when this action is complete, loads and exe-
cutes some other application program.

Chapter 5. Multiple Terminal Manager 115

CYCLE: Suspend Current Terminal Application

The CYCLE function allows an application program to suspend its
execution to allow other applications/terminals to become
active.

MENU: Return to Multiple Terminal Manager Control

The MENU function allows the application program to abort its
own operation and return control to the Multiple Terminal Man-
ager base program. The operator selection menu is then dis-
played on the terminal.

The application programs using these program/storage manage-
ment facilities will always have the following four items asso-
ciated with them:

Application Program: This is the user—-written code that per-
forms the transaction processing as required by the user. It
resides in the PRGRMS volume and is loaded into the in-storage
program area by the manager.

Swap Out Data Set: Resides on MTMSTORE,MTMSTR. This data set is
used by the manager to save programs and data across calls to
ACTION, LINK, LINKON, CYCLE, and WRITE.

Input Buffer: This buffer contains either the data last entered
by the operator when the current part of the application pro-
gram was entered or, the protected characters of the screen
display that the application program is preparing for the next
dialogue with the operator. This buffer is allocated by the
Multiple Terminal Manager and is normally 2048 bytes in length.

Output Buffer: This buffer contains the unprotected characters
of the screen display that the current application program is
preparing for the next dialogue with the operator. These unpro-
tected characters can either be default values, or values sup-
plied by the application program. This buffer is allocated by
the Multiple Terminal Manager and is 1024 bytes in length.

116 SC34-0316

A
Y

Terminal/Screen Management

The terminal/screen management facilities provide you with a
simplified method of performing the terminal handling func-
tions that your application program may require. These facili-
ties are described as follous:

ACTION: Fetch Operator Response

The ACTION function allows the application program to display a
screen on the terminal and then obtain operator input from that
display.

SETPAN: Retrieve a Screen Image from the SCRNS Volume

The SETPAN function allows the application program to request a
specified screen be retrieved from the SCRNS volume and loaded
into the Input and Qutput Buffers.

SETCUR: Move Cursor to Specified Position

The SETCUR function allows the application program to reset the
character position at which the terminal/screen manager will
display the cursor when the screen is displayed.

BEEP: Set Audible Alarm

The BEEP function allows the application program to activate
the audible alarm, if this feature is supported by the termi-
nal, on the next output as a signal to the terminal operator.

CHGPAN: Change Panel

The CHGPAN function is used to notify the terminal manager of
changes to the number of protected/unprotected characters of a
screen in the input buffer. As a result of this function, the
terminal manager will know how many unprotected data charac-
ters to write on the next output operation. This function
allows an application program to dynamically modify or create a
screen image.

FTAB: Describe Unprotected Input Fields
The FTAB function is used to set up a table that describes the
unprotected input fields placed in the Input Buffer after a

SETPAN or CHGPAN is issued. This function is useful in cursor
positioning.

Chapter 5. Multiple Terminal Manager 117

WRITE: Output to an ASCII Terminal

This function is provided for those applications which utilize
ASCII terminals such as the Teletype* ASR 33/35. This function
executes similar to the functions described in the section
"Program Management™ on page 115, in that the application
program does not remain in storage while the buffer is being
written; hence, the manager returns control to the calling
application program at the next sequential instruction.

¥ Trademark of the Teletype Corporation

File Management

The file management facilities of the Multiple Terminal Manag-
er provide common, easy—-to-use support for all disk
data-transfer operations as needed for the
transaction-oriented application programs. These facilities
provide support for both indexed and direct files under the
control of a single callable function. The file management
facilities consist of the FILEIO function.

FILEIO: Perform Disk I/0

This function allows the application program to perform read
and write operations to disk using either indexed or direct
accessing.

Multiple Terminal Manager Operation

The Multiple Terminal Manager is invoked using the Event Driven
Executive $L command ($L S$MTM,PRGRMS). When this command is
issued, the Multiple Terminal Manager program manager is
loaded into storage and activated. The first program activated
by the program manager 1is the Multiple Terminal Manager
initialization program.

118 SC34-0316

AN
N

O

Multiple Terminal Manager Initialization Program

This program determines the number of terminals that are being
controlled and prepares the tables and in-storage control
blocks necessary to support those terminals. The initializa-
tion program LOADs and initializes a terminal server for each
terminal that is to be controlled by the Multiple Terminal Man-
ager. When initialization is complete, control is returned to
the program manager.

Terminal Server Programs

The terminal server programs perform all input/output and
interrupt handling functions for those terminal devices oper-
ating under the control of the Multiple Terminal Manager. There
is one terminal server program for each terminal assigned to
the Multiple Terminal Manager.

Application Program Manager

The application program manager controls the contents of the
program area and the execution of programs within that area.

Multiple Terminal Manager Utilities

The utility program support provided with the Multiple Termi-
nal Manager consists of operator service functions which
assist you in the operation of your Multiple Terminal Manager
system. These utilities are described as follows:

Terminal Connection Facilities: The Multiple Terminal Manager
supervisor program provides the operator with the facilities
to disconnect and reconnect terminals during the normal Multi-
ple Terminal Manager operation. These services are performed
by the following operator commands:

DISCONNECT: Turn Off Specified Terminals

This facility allows the operator to shut down all or
individually-specified terminals on the Multiple Terminal Man-
ager system. If the operator requests a terminal, which is cur-
rently involved in a transaction, to be disconnected, that
terminal will be allowed to complete its associated trans-
action before being disconnected.

Chapter 5. Multiple Terminal Manager 119

RECONNECT: Turn On Specified Terminals

This facility allouws the operator to restore a disconnected
terminal (via DISCONNECT) back into operation.

Terminal Activity Report: This report utility allows the oper-
ator to display the names and current status of the terminals
under control of the Multiple Terminal Manager.

Programs Report: This report utility allows the operator to
display the names and sizes of Multiple Terminal Manager appli-
cation programs.

Screens Report: This report utility allows the operator to dis-
play screen formats developed for Multiple Terminal Manager
applications.

Sign-0n/Sign—-0Ff

The Multiple Terminal Manager provides an optional facility to
support operator sign-on and user provided sign-off. This sup-
port is provided when the Multiple Terminal Manager user wishes
to restrict the use of the Multiple Terminal Manager system to
only user—-specified authorized personnel.

Data Files

The Multiple Terminal Manager maintains several files on disk
to assist in the operation of the program and its users. The
following is a list of these data files:

SCRNS Volume This volume contains the formatted screen
displays which are built by the Event Driven
Executive $IMAGE utility.

TERMINAL File This file describes the terminals that are to be
controlled by the Multiple Terminal Manager.

PRGRMS Volume This volume contains the Multiple Terminal
Manager and user application programs.

MTMSTORE File This file is used by the program manager as a
work file primarily for saving and restoring
programs across calls to the Multiple Terminal
Manager.

120 SC34-0316

O

APPLICATION PROGRAM INTERFACE

The Multiple Terminal Manager provides the Series/1 Event
Driven Executive user with a set of high-level functions
designed to simplify the definition of "transaction oriented"”
applications, such as inquiry, file update, data collection,
and order entry.

"Transaction oriented” means that program execution is driven
by operator actions, typically, responses to prompts from the
system. For example, a program executing under control of the
Multiple Terminal Manager displays a "menu" screen offering
the operator a choice of functions. Based on the operator's
selection, the application program then performs processing
operations, such as reading information from a data file, dis-
playing the data at the terminal, and waiting for the next
response.

This "prompt—-response—-process" cycle between the Series/1 pro-
gram and the terminal operator is the basic principle for the
design of applications using the Multiple Terminal Manager.

The terminal manager simplifies such transactions by:

. Automatically allocating input and output buffers for the
application program.

. Performing I/0 operations to access fixed screen formats
from the screen file. The term "screen™ in this discussion
refers to the image which is displayed on the screen of an
IBM 4979, 4978, or 3101 (in block mode) terminal. Fixed
screen formats consist of protected data and definitions
of possible areas for data input. On other systems, these
are referred to as "Maps", "Formats", or "Panels"™. Screens
are built via the Event Driven Executive $IMAGE utility.

. Returning control to the user program to allow modifica-
tion of the buffers containing the screen (if desired}.

. Performing the set of I/0 operations involved in writing
the screen to the terminal, filling in unprotected fields
with user—-defined output data, and reading the data
entered by the operator before returning control to the
application program that requested the action. (The termi-
nal manager assumes that each ACTION request involves both
output and input operations, thus eliminating the need for
the application program to make separate requests).

In addition, the Multiple Terminal Manager provides storage,
file, and program managementyservices, terminal transaction
statistics, and sign on/off facilities for password vali-
dation. Error recovery for I/0 and program check conditions are
provided by the Event Driven Executive.

Chapter 5. Multiple Terminal Manager 121

Series/1 Multiple Terminal Manager applications can be written
in EDL, assembler language, COBOL, FORTRAN IV, or PL/I. Disk
I1/0 can be performed by an application program using indexed or
direct access methods. Terminal support is provided for local-
ly attached IBM 4979, 4978, and 3101 display terminals and
ASCII compatible terminals attached via the #7850, #1610,
#2091 with #2092, or #2095 with #2096 adapters. See Figure 1 aon
page 6 for a description of devices and attachments.

Considerations for the IBM 3101 Model 2 Terminal

The Multiple Terminal Manager supports the IBM 3101 Model 2
terminal in full screen mode ("block mode"). This support is
only for Multiple Terminal Manager based application programs;
other applications are not supported. In particular, screen
design using the Event Driven Executive $IMAGE utility must be
performed on a 4978 or 4979. Throughout this chapter, any dis-
cussion of the 3101 refers to the Model 2 operating in block
mode unless specified otherwise.

3101 support performs a subset of the functions equivalent to
the support for IBM 4978 and 4979 terminals. That is, from the
programming perspective, the 3101, 4978, and 4979 terminals
are functionally very similar. However, they are operationally
different in that the 3101 uses "attribute characters™ +to
define fields. Multiple Terminal Manager support for the 3101
places an attribute character just prior to and following each
input field, and at the first position on the screen.

Attribute characters appear as protected blanks on the display
screen. Hence, the characters preceding and following an input
field shall each appear as a protected blank. The same is true
of the first character on the screen. These attribute charac-
ters should be taken into account and allowed for when design-
ing screen images.

The maximum number of unprotected fields that can be displayed
is 127.

Any invalid (unprintable) characters encountered by the 3101
will cause the alarm to ring. This condition might occur, for
instance, when displaying a non-EBCDIC disk or diskette
record. The Multiple Terminal Manager will convert to blanks,
any nulls (X'00') found in an unprotected data stream to help
avoid this condition.

122 SC34-0316

C

The keys on the 3101 are labelled differently than the 4978 and
4979. The SEND key performs the same function as the ENTER key.
Furthermore, the Program Function keys on the 3101 require that
the ALT key on the lower right hand side of the keyvboard be
pressed as well as the appropriate numeric key. The PF6 key
when pressed (hardcopy screen print) however, uwill not cause
the screen image to be printed.

Multiple Terminal Manager Components

Major components of the Multiple Terminal Manager for the
application programmer are:

. Functions (callable routines)
. User application programs

. TERMINAL file

. Screen formats

The functions provided by the Multiple Terminal Manager are
callable routines that perform terminal, disk and diskette
input/output operations and, control the execution of applica-
tion programs. Program execution and terminal I/70 are combined
in most instances; for example, the LINK function causes a new
program to be loaded and executed. If the current screen format
has not yet been displayed, LINK also causes the screen to be
written to the terminal.

The program-execution control and terminal I/0 functions
include:

] A routine (ACTION) to initiate the "prompt-response™ ter-
minal I/0 operation

. Two routines (LINK and LINKON) to link to a new program
from the currently executing program

U] A routine (MENU) to terminate program execution and return
control to the Multiple Terminal Manager

. A routine (CYCLE) to voluntarily give up control of the
program area to other users. This allows a user-controlled
formof time sharing.

In addition, the following functions are used with 4978, 4979,

or 3101 terminals. These routines can be executed prior to a

CALL ACTION to initiate a terminal I/0 cycle:

. A routine (SETPAN) to retrieve a screen into the input and
output buffers

Chapter 5. Multiple Terminal Manager 123

A routine (SETCUR) to override the initial cursor position
defined for that screen format

. A routine (BEEP) to request the audible alarm (if avail-
able) be sounded on the next terminal I/0 cycle

1 A routine (CHGPAN) to notify the terminal manager of
changes to a screen before it is written

. A routine (FTAB) to build a table which describes the posi-
tion and length of unprotected fields in the Input Buffer.

For the ASCII terminals, the following functions are provided:

. A routine (ACTION) to write to the terminal and read a
reply.

. A routine (WRITE) to write to the terminal without waiting
for an operator response. Multiple writes may be used to
write lengthy messages, with the last message being writ-
ten via ACTION.

. A routine (BEEP) to cause a bell character to be included
in the next output line.

The disk I/0 function provides the following for disk and
diskette files:

. Automatic open of the requested file
. Indexed Access Method file support
. Direct file support

. Storage conservation through automatic open and close
functions

User application programs can be executed by the operator via a
selection from the primary menu or by a program via a call to
LINK or LINKON. A primary menu is used only for program
selection. The application programmer/terminal operator need
only specify the program name. The Multiple Terminal Manager
performs the operations necessary to load the program and con-
trol its execution. User programs reside in the volume PRGRMS.

The TERMINAL file is another basic element that describes the
terminals to run under the terminal manager. In this file, the
user specifies the terminal type, the name of the terminal, the
screen to be used as the primary menu screen, and whether or not
sign—on is required. The TERMINAL file provides flexibility to
the user; that is, terminals can be added or deleted without
rebuilding the terminal manager. The TERMINAL file resides in
the volume PRGRMS,

124 SC34-0316

-

Screen formats are used by application programs and the Multi-
ple Terminal Manager itself. Each screen is a data set in the
volume SCRNS and defines protected fields and default unpro-
tected fields. The following screens are predefined in the
SCRNS volume:

IPLSCRN The initial program load (IPL) screen that is
displaved when the Multiple Terminal Manager task
set starts.

SCRNSREP Used by the Screens Report Utility

SIGNONSC The sign—-on screen (displayed if a sign—-on procedure
is specified for the terminal).

MENUSCRN A sample primary menu screen for program selection;
however, the user can select any screen as a menu
screen.

These screens are provided as samples and can be modified to
suit individual requirements. You can define additional

screens by using the Event Driven Executive $IMAGE utility.

The following are examples of the predefined screens in the
SCRNS volume.

IPLSCRN

I K I I I I I I K K I K I I I W I I I NI IE K I I N K I N I K I ;K I NI I I I N I I I KK K I NN K KKK

IPLSCRN
EVENT DRIVEN EXECUTIVE
MULTIPLE TERMINAL MANAGER

HIT ENTER OR A FUNCTION KEY TO START THE MULTIPLE
TERMINAL MANAGER FOR THIS TERMINAL.

X K XK XK X X X X X X X

5719-MS1 COPYRIGHT IBM CORP 1979

3 I K I I I I I I I I I I I I I I I I I K I K I I I K I K I K K I K I K I K I I I NI K I N K I K I KN KKK KX

The next example shows the sign—-on screen.

Chapter 5. Multiple Terminal Manager 125

*
*
*
*
*
*
*
*
*
*
*
*

SIGNONSC

36 36 36 I I I I I I I I I I I NI I I K I I I I H I XK I NI K K KKK

* SIGNON *
* EVENT DRIVEN EXECUTIVE *
* MULTIPLE TERMINAL MANAGER *
* *
* §55SSS ITITIIIII GGGGGG N N 0000 N N *
*xS S I G G NN N O 0 NN N *
* §SS I G N N N O 0 NN N *
* §SSS I G GG N N N O ON N N *
*S S I G G N NN O 0N N N %
* §S5S5SSS ITITIIII GGGGGG N N 0000 N NN *
* *
* *
% # 272220222 PASSWORD ==> ?27?2%% *
3* *
* *
36 36 26 36 36 96 36 3 3 3 3 36 3 I K 3 36 3 3 I I X K K I K K K K K KK I K I KK KKK K KK K KKK KKK XX

This last example is the MENUSCRN.

36 26 36 I I I I I I I I I I K I I KKK I X I I K I I I I K I I I I I K I I I I I N I I I K N K KK I NHN

MENUSCRN
ENTER PROGRAM NAME

=>

EVENT DRIVEN EXECUTIVE
MULTIPLE TERMINAL MANAGER

VALID PROGRAM NAMES : RECONNECT DISCONNECT PGMRPT
REPORT SCRNSRPT

X XK XK X X K X X X X

PRIMARY MENU FOR FULL SCREEN TERMINALS

*
%

X K X X X X X X

36 3 3 I I I I I I H I I I I I I I K I I H I I I H K I I I I K I I I I I K I XK I I I I I I A I I NN KN HK K NX

Errors encountered by the Multiple Terminal Manager in the
primary menu mode are written protected at the first 20 charac—
ter positions of a screen. User-written primary menus (defined
by the TERMINAL data set) should be designed with this taken
into account.

The Multiple Terminal Manager responds to an interrupt from a
terminal by loading the requested program specified by program
name or program function key selection. The terminal manager
routes subsequent operator entries to the associated program.
Two program function keys are reserved:

L PF3 signals the Multiple Terminal Manager to terminate the
current program and display the menu screen.

. PF6 signals Event Driven Executive to print the contents of
the current screen on the device specified by the HDCOPY
parameter of the TERMINAL statement for 4978764979 termi-
nals only. Normally, this device is the device specified
for $SYSPRTR.

126 SC34-0316

Program Execution

The Multiple Terminal Manager uses a single—-thread approach to
program execution, that is, only one application is resident at
one time.

When a program is initially requested for execution (terminal
operator selects by name or PF key), a copy of the program is
loaded into the terminal manager program area.

When the program requests an operator response, the program is
swapped out to disk and other terminals may use the program
area while the operator is keying in new data. When the
response is completed and the program area is available, the
program is read into the program area from the swapped out data
set and the program is given control at the next sequential
instruction after the instruction that caused the swap out. The
swap data set is MTMSTORE residing on the volume MTMSTR.

User Program Organization

All programs must be written to operate in a conversational
mode. That is, each program (or linked sequence of programs) is
expected to receive data from a terminal and then send data
back to the same terminal.

Upon initiation, each user program automatically receives a
list of parameters. The parameters are:

Input Buffer Address

This is the address of a buffer used for two distinct purposes:
to contain the protected data defining a screen format before
an ACTION and, to contain the data input from the terminal
after an ACTION. After a call to SETPAN , the Input Buffer con-
tains a 26 X 80 (1920) byte image of the screen, where unpro-
tected fields are defined by s5trings of null characters
(zeroes). A call to ACTION writes the screen image from the
Input Buffer to the terminal. After the operator presses ENTER
or a PF key, ACTION reads the data found in the unprotected
fields into the Input Buffer. The input data fields are contig-
uous and start at the beginning of the buffer. Input from ASCII
terminals (such as teletypeuwriters) is read from the device
with the change-of-direction character removed and backspace
characters converted to a logical backspace in the Input Buffer
(that is, backspace characters and a corresponding number of
characters preceding them are not in the buffer). This buffer
is 2048 bytes in length; however, only the first 1920 bytes are

Chapter 5.‘Nu1tiple Terminal Manager 127

used for protected output. The remainder of the buffer contains
unusable information and is to be ignoreaq.

Note: The output function described above is also performed by
CYCLE, LINK, and LINKON; of these, only LINKON also performs
the input function.

Initially, this buffer contains the characters entered on the
terminal's menu screen for the first entry to a program. The
name of the program must be the first eight characters. Addi-
tional characters are not used by the manager but are passed to
the program. These extra characters can be used for programs
which minimize operator interaction by allowing the operator
to enter a complete request on the menu screen and thus avoid
the need for intermediate menus or prompts.

Qutput Buffer Address

This is the address of a buffer which is also used for tuwo pur-
poses. It contains "default data™ to be written by ACTION into
the unprotected portions of the screen., That is, a call to
SETPAN reads concatenated data defined by $IMAGE into the Out-
put Buffer. A subsequent call to ACTION writes the data from
the buffer to the unprotected fields. If more characters are in
the Output Buffer than there are unprotected positions on the
screen, the excess characters are lost. The Qutput Buffer is
set to blanks after a return from CALL ACTION.

The Output Buffer is also used for passing data between pro-
grams, when one LINKs to another. Prior to 2 LINK to another
program, a program may store data in the Qutput Buffer. The
second program will find that data in its OQutput Buffer.

Terminal Environment Block (TEB)

This is the address of a control block which contains informa-
tion about the terminal that initiated this program.

Interrupt Information Byte (IIB)

This is the address of a word (16 bits) in storage containing,
in the low—-order half of the word, a code indicating the status
of the prior I/0 to or from this terminal.

128 SC364-0316

N
W

For a 4978/4979/3101,
enting the
operator response. Since there 1is no WRITE
49787497973101 this code never reflects the statu
operation.

this is always the numeric

For ASCII terminals, this value is the return
READTEXT operation issued by the Multiple Termina

interrupting key which wWwas pressed as part

value repres-
of an
available to
s of an output

code from
1 Manager.

a

The following figure provides a programmer's view of the con-

tents of the Input and Qutput Buffers at various
terminal manager operation cycle.

stages in the

BUFFER CONTENTS UPON
ENTRY TO APPL PROGRAM

INPUT BUFFER

OUTPUT BUFFER

UNPROTECTED DATA
READ FROM SCREEN

FROM CALL ACTION

BLANKS (X'40'")

FROM CALL LINK BLANKS (X'40") UNCHANGED FROM
CALLING PGM
FROM CALL LINKON UPROTECTED DATA BLANKS (X'40")
READ FROM SCREEN
FROM CALL CYCLE BLANKS (X'40"') UNCHANGED
(i? FROM CALL SETPAN PROTECTED DATA FROMJUNPROTECTED DATA

NEW SCREEN PANEL

FROM NEW SCREEN
PANEL

ACTION TAKEN UPON
BUFFER CONTENTS BY
FUNCTION CALL

INPUT BUFFER

OUTPUT BUFFER

WRITTEN PROTECTED
IF CALL SETPAN
HAD BEEN ISSUED

BY CALL ACTION

WRITTEN INTO
UNPROTECTED
FIELDS ON SCREEN

SAME AS BY CALL
ACTION

BY CALL LINKON

SAME AS BY CALL
ACTION

SAME AS BY CALL
ACTION

BY CALL LINK

SAVED

BY CALL CYCLE SAME AS BY CALL

ACTION

SAME AS BY CALL
LINK

Program Contents During 4978/4979/3101 Buffer

C

Chapter 5. Multiple Terminal

Operation

Manager 129

Controlling the Logic Flow of Programs

Program Calling Parameters: Application programs use the EDL
parameter passing facilities for passing parameters to the
Multiple Terminal Manager.

For example:

CALL SETPAN, (SCRNX), (RC)

SCRNX DC CL3'SCRN10' SCREEN PANEL NAME
RC DC Frg' RETURN CODE FIELD

This example passes the addresses of the screen name and return
code field to the Multiple Terminal Manager screen manager.

Five callable functions are provided to control I/0 to termi-
nals and to control the execution of user programs. They are
ACTION, LINK, LINKON, WRITE, and CYCLE.

ACTION and WRITE perform terminal I/0. LINK and LINKON control
the loading of user programs to service the current or the next
operator input, respectively. CYCLE provides a method of time
sharing the program area.

CALL ACTION

CALL ACTION, (buffer),(length),(crlf)

All parameters for all languages are one l6-bit word in length,
unless otherwise specified as character strings.

ACTION parameters:

buffer A buffer of EBCDIC text of any length.
length The number of characters in the buffer.
crlf A binary value of 1 specifies that the terminal is to

be issued a carriage return and 1line feed (CRLF)
after the message is sent. Any other value results in
no CRLF being sent.

130 SC34-0316

VR

\

O

O

For ASCII terminals this routine:
1. Writes the specified buffer contents to the terminal
2. Waits for the operator to respond

3. Reenters the current program at its next sequential
instruction after the CALL ACTION

CALL ACTION

The Input Buffer is written protected to the screen if a CALL
SETPAN or CALL CHGPAN command was executed previously during
this transaction. The Output Buffer is written into the unpro-
tected fields on the screen. The terminal then waits for opera-
tor input and reenters the current program (with operator input
in the Input Buffer) at the next sequential instruction after
CALL ACTION. (For IBM 4978/4979/3101 displays, a parameter
list is ignored if specified.)

CALL LINK

CALL LINK,(pgmname)

LINK causes the named program to be loaded and executed (re-
placing the current program).

During the link, IBM 6978/4979/3101 terminals for which a
SETPAN or CHGPAN has been issued will have the Input Buffer
displayed. The Output Buffer is passed unchanged to the next
program.

The program being linked to receives the standard parameter
list for application programs (Input Buffer, Output Buffer,
TEB, IIB).

LINK parameters:

pgmname An 8-byte (right padded with blanks, if necessary)
program name.

If the program name is invalid, control returns to the next

sequential instruction in this program; therefore, any return
to the user from CALL LINK is an error condition.

Chapter 5. Multiple Terminal Manager 131

CALL LINKON

CALL LINKON, (pgmname)

LINKON provides a combined ACTION and LINK function. When the
operator has entered the requested information, the named pro-
gram is entered at its entry point with the Input Buffer con-
taining the unprotected characters from the screen or all
entered characters from an ASCII terminal.

LINKON parameters:

pgmname An 8-byte (right padded with blanks, if necessary)
program name.

CALL _CYCLE

CALL CYCLE

When CALL CYCLE executes, the program may be swapped out as all
other applications are given an-opportunity to process inputs.
The QOutput Buffer is preserved and the contents of the Input
Buffer are lost (set to blanks). If a SETPAN or CHGPAN has been
executed, the screen in the Input Buffer is displayed protected
at this time to free up the Input Buffer.

After all other terminals have processed their inputs, the pro-

gram is swapped into the program area and control is returned
to the next sequential instruction after the CALL CYCLE.

132 SC34-0316

7N
WS

Communicating with ASCII Terminals

The Multiple Terminal Manager provides CALL WRITE to satisfy
operator interaction to ASCII terminals for multiple output
messages.

CALL WRITE

CALL WRITE,(buffer),(length),(crlf)

CALL WRITE is for ASCII terminals only. It writes the specified
buffer contents to the current terminal. While writing, other
terminals are permitted to operate. When I/0 is complete, the
current user program is reloaded and reentered at the next
sequential instruction after CALL WRITE.

WRITE parameters:

buffer A buffer of EBCDIC text of any length.

length One word containing the number of characters in the
buffer.

crlf A binary value of 1 specifies that the terminal is to

be issued a carriage return and line feed (CRLF)
after the message is sent. Any other value results in
no CRLF being sent.

If CRLF is not equal to 1, trailing blanks in the buffer are
transmitted to permit you to position the terminal cursor for
the next message or operator response.

The Multiple Terminal Manager does not keep track of current
terminal cursor or carriage position. No CRLF is inserted if,
due to messages without CRLF or a buffer size larger than the
terminal line length, the right margin is reached.

Upon completion, the contents of the buffer are unchanged.

If executed by an IBM 4978/4979/3101, control returns imme-
diately to the caller. :

No operator entry is permitted (see ACTION if operator entry is
required).

Chapter 5. Multiple Terminal Manager 133

| Communicating with IBM 4978/4979/3101 Displays

The Multiple Terminal Manager provides the following callable
functions for specific control of the IBM 4978/64979/3101 dis-
play:

. SETPAN - Retrieve a screen image

U CHGPAN — Reset the unprotected character count

. SETCUR - Set the cursor position

. BEEP - Sound the audible alarm

. FTAB - Build unprotected input field table

CALL SETPAN

CALL SETPAN, (dsname),(return code)

This routine causes the specified screen format to be read into
the Input Buffer (replacing the last operator input) and sets a
switch to cause the screen format to be written“to the screen
during the next output cycle. Any nulls (X'00') in the screen
image will be written unprotected. All other characters will be
written protected. In addition to the 1920-byte screen being
placed into the Input Buffer, any unprotected defaults that
were specified when the screen was built, are moved, concat-
enated, into the Output Buffer. The cursor position for the
next display after SETPAN will be set at the first unprotected
character position. Before executing a CALL SETPAN, be sure to
save desired information which is in the buffers, as they will
be overlaid by the screen definition.

SETPAN parameters:

dsname The data set name of the desired screen format in
the SCRNS volume.

return code A word to receive the return code. The following is
a list of the possible return codes:

134 SC34-0316

o

VA

WS

-1 = Successful, new screen in buffer.

-500 This terminal is not an IBM 437874979/3101.

No action has been taken.

-501 Screen data set not found.

1 = Warning, data set does not contain a
valid $IMAGE screen. Input Buffer has
been set to unprotected nulls (X'00"')
and cursor position set to (0,0).

2 = Warning, too many unprotected default
characters in the screen definition.
The number of default characters that
will be displayed has been truncated.

This return code is received if there
are no default unprotected characters
in the screen. The $IMAGE utility
initially assigns 1920 unprotected
characters to a screen. This number is
unchanged if the data (unprotected)
was not modified using the edit mode
of the $IMAGE utility.

Use PF2 with $IMAGE to enter default
data.

Other = Return code from disk READ.
See the Language Reference.

CALL CHGPAN

CALL CHGPAN

After a CALL SETPAN, the protected characters of the screen
specified have been placed in the Input Buffer. You can add
data to the image by changing the Input Buffer prior to the next
output cycle, and the data is displayed as protected data. If
you do this, you must also CALL CHGPAN to inform the manager
that it needs to recompute the location of the first unpro-
tected character position in the current screen and the count
of unprotected characters. The cursor position is set to the
first unprotected character position. CHGPAN also sets the
SETPAN indicator thus allowing applications to dynamically
develop protected screens.

Chapter 5. Multiple Terminal Manager 135

Dynamic Screen Modification and Creation: By direct manipu-
lation of the Input and OQutput Buffers it is possible to modify
screens built by $IMAGE and retrieved by SETPAN. It is also
possible to create screen images dynamically.

The Input Buffer contains a 24 X 80 (1920) byte image of the
screen wherein unprotected fields are represented by null (ze-
ro) fields. The other bytes will be displayed as protected
characters. Additional protected characters may be added to
the screen image simply by inserting them in the appropriate
positions 'in the Input Buffer. Additional unprotected fields
can be added to the screen image by inserting nulls appropri-
ately. Both protected and unprotected fields can be modified,
deleted, extended, or contracted by the correct insertion of
characters in the desired portions of the Input Buffer. If this
is performed, it is necessary to call CHGPAN in order to indi-
cate screen image modification.

It is also possible to modify the contents of the Output Buff-
er. For example, after a call to SETPAN, the Qutput Buffer may
be modified to allow the program to modify or supply default
data. Furthermore, if the Input Buffer is filled with null
characters, the contents of the Output Buffer will be displayed
"as is". CHGPAN must be called whenever the Input Buffer is
modified.

To create a new sbreen, fill up the Input Buffer as desired with

protected and unprotected characters, blanks, and null fields.
Place default data in the Qutput Buffer, and call CHGPAN.

136 SC34-0316

CALL SETCUR

CALL SETCUR,(row),(column)

CALL SETCUR specifies (overrides) the position at which the
cursor is to be displayed for the next output cycle.

SETCUR parameters:

row One-word value representing the row position, 0-23.
column One-word value representing the column position,
0-79.

The cursor position for each screen displayed on a terminal is
set to first unprotected character position by default. This
function permits you to override the cursor position for the
output only.

CALL BEEP

CALL BEEP

CALL BEEP causes the audible alarm (if available) to be sounded
following the next output cycle.

The IBM 4979 terminal has no audible alarm and ignores this
request.

When executed for an ASCII terminal, this request causes the
next output line to be followed by a bell character.

CALL MENU

CALL MENU

CALL MENU immediately aborts the current dialog and causes the
terminal's menu screen (or request for program name message) to
be displayed.

Chapter 5. Multiple Terminal Manager 137

The operator can cause this at any time by pressing PF3 at an
IBM 4978/6979/73101 or by typing OUT on an ASCII terminal while
in adialog.

| cCALL FTAB

CALL FTAB,(table),(size),(return code)

FTAB sets up a table which describes the unprotected (input)
fields placed in the Input Buffer after a SETPAN or a CHGPAN has
been executed. The table is a sequence of 3-word entries which
describe unprotected (input) fields. This is useful for such
functions as setting the cursor.

Note: The FTAB function must be included in the application
link for it to be available. See the section on "Program
Preparation™ on page 164 for information.

| FTAB parameters:

table A sequence of 3-word entries which describe the
unprotected fields of the screen image in the
Input Buffer. Each entry contains the starting row
and column positions, and the length (in bytes) of
a field. Unused entries in a table will be set to
zero. The format is as follows:

table row (first field)
column " "
length " "

table+6 row (second field)
column " "
length " "

table+1l2 row (third field)
column " "
length " "

size A word which gives the number of 3-word entries in
the table.

return code A word for the return of a status code. The return
codes are as follows:

-2 = FTAB code not linked with application
-1 = successful return

1 = no data fields found

2 = warning, table truncated

138 SC34-0316

=
¢

by

| cALL FAN

’ CALL FAN

| FAN performs no operation ("no-op").

Accessing the Terminal Environment Block

Although the terminal environment block (TEB) can be accessed
directly (since its address is a user program parameter), the
user program may find it more convenient with the following
function to determine the attributes of the calling terminal.

CALL CDATA

CALL CDATA, (type),(userid),(userclass),(termname), (buffersize)

This subroutine returns data concerning the terminal currently
executing the program.

CDATA parameters:

type A word specifying the terminal type:

0 = Terminal is an IBM 4978, 64979, or 3101

2 = Terminal is an ASR 33735 or equivalent
userid The 4-byte value set by the SIGNON program when the

current terminal signed on. If the current termi-
nal does not use SIGNON, this value is meaning-
less.

userclass The 4-byte value set by the SIGNON program when the
current terminal signed on. If the current termi-
nal does not use SIGNON, this value is meaning-
less.

termname The 8-byte (right padded with blanks, if
necessary) name of the current terminal.

buffersize The length of the terminal's I/0 buffer. For IBM
4978/76979/73101 terminals, this is the number of
unprotected characters in the last screen which
was set using SETPAN.

Chapter 5. Multiple Terminal Manager 139

Disk File Support

All requests for disks/diskette I/0 are by means of a call to the
FILEIO routine. FILEIO provides the following functions:

° Automatic open of the requested data set.

. Direct access support for non-Indexed Access Method files,
where records are accessed by a relative record number
(RRN).

U] Support for Indexed Access Method files, providing a

high—-level language interface to most Indexed Access Meth-
od services.

. Data integrity, via automatic close at terminal manager
shutdown and automatic write back of data buffers.

If Indexed Access Method files are used, the Event Driven Exec-
utive /7 Indexed Access Method (5719-AM3) is required.

Automatic OPEN/CLOSE: FILEIO automatically controls the
opened/closed status of a data set. Thus data set names must
not be coded on the PROGRAM statement of Multiple Terminal Man-
ager programs. If the data set is not open when a request is
made, the data ;et is opened. Since many terminals can require
many data sets, both the same and different, the user can find
that there was no storage available to open a requested data
set. In order to avoid this situation, a limit is set for the
number of open data sets. In the Multiple Terminal Manager
default system, space is allocated for 14 open data sets. When
this limit is reached, the least recently accessed data set is
closed, and the space it required is reused. A data set is not
available for automatic close if it has an update pending. The
user can adjust the maximum number of open data sets by chang-
ing the file table in the Multiple Terminal Manager source
module CDMCOMMN.

Indexed File Support: FILEIO provides an interface to the Event
Driven Executive Indexed Access Method.

Programs written in high-level languages can access indexed
files by calling the FILEIO routine. The functions supported
are listed under the heading "Indexed File Request Types" in
this section. An Indexed Access Method file must be created.
For information on how to create an Indexed Access Method file,
see the System Guide.

140 SC34-0316

N

s

. ==

Some features of the indexed file support include the follow-
ing:

. Records can be retrieved sequentially or by key.

U The key can be a generic key, that is, the first n bytes of
the actual key.

] Records can be added or deleted by key.

. It takes the same length of time to retrieve added records
as original records.

If an application requires access to a file sequentially, and
also directly by alphameric keys, indexed files are required.

Since Indexed Access Method files are owned by a supervisor
task, using the ¢C command to cancel the terminal manager does
not close these files. For data integrity, use the
DISCONNECT,ALL command described in the section "Operator
Interface”™ on page 158.

Additional information on indexed files and indexed file
request types is discussed in the System Guide under "Indexed
Access Method".

CALL FILEIO

FILEIQO provides the facility to access previously created
files via the call interface described earlier. These files
must have been previously defined and loaded.

CALL FILEIO,(fca),(buffer),(return code)

FILEIO parameters:

fca The file control area. The address of a table with
the parameters describing the requested oper-
ations:

Chapter 5. Multiple Terminal Manager 141

12

14

16

18

20

22

28

buffer

Request Type

Data Set Name

Key Relation
Operator

or
Number of
Records

Key Length

Key Location

or
EOD Record
Number

Reserved
Relative
Record
Number

Volume Name

Key Field

A 4-byte EBCDIC request,
for example: CL4'READ'

™
An 8-byte EBCDIC data set name q;/

A 2-byte EBCDIC key relation
operator, the characters
"GT“, "GE"’ "EQ"

(indexed files only)

A word value for the number
of 256-byte records to be
read or written by this
call (direct files only)

A word specifying the length of
the key to be used for retrieval.
If the length specified is less
than the actual key length, the
first n bytes of the key are

used (indexed files only).

The address of the key
(FORTRAN, EDL, and PL/I) to be
used (indexed files only).

For COBOL, the value must be 0.

The system maintained logical A
EOD record number passed back &Jy
to the application after each)
direct file READ or HWRITE

(direct files only).

A word value for the

RRN. The first record is
record number 1 (direct files
only).

A 6-byte EBCDIC volume name
The key to be used

(COBOL indexed files only),
if Key Length non-zero.

return code

The address of the user program I1/0 buffer. This is
in the user program space. FILEIO and Indexed
Access Method have their own buffers.

The address of the 2-byte field to contain the
return code passed back by FILEIO. This can be a
FILEIO return code, an Event Driven Executive sys-—
tem error code or an Indexed Access Method code.

142 SC364-0316

File Control Area (FCA): The entire FCA must be mapped

Event Driven Language, FORTRAN, PL/I, and COBOL except
noted.
1]
REQUEST TYPE
4
DATA SET NAME
12
KEY REL OP OR NUMBER OF RECORDS
14
KEY LENGTH
16
KEY LOCATION OR EOD RECORD NUMBER
18
RESERVED
20
RELATIVE RECORD NUMBER
22
VOLUME NAME
28
KEY FIELD (COBOL index files only)
(size defined in KEY LENGTH field)
SIS/ /7SS S/

Chapter 5. Multiple Terminal Manager

for
as

143

Indexed File Request Types: The indexed file request types and
functions are defined as follows:

RELS Release from sequential processing mode

RELR Release a record held for update

PUTU Put operation, update mode

PUTD Put operation, delete mode

PUTN Put operation, new mode adds a record to the file
GETD Get operation, direct read

GETS Get operation, sequential read

IDEL Delete operation

ICLS Close an indexed data set

GTDU/GTRU Direct get, update mode
GTSU Sequential get, update mode

Note: GTDU and GTRU are identical in the operation they
perform.

Direct File Request Types: The direct file request types and
functions are defined as follouws:

READ Read the record defined by the RRN field of the FCA
into the user-provided buffer

WRIT Write the record defined by the RRN field of the FCA
into the major user—-provided buffer

SEQD Set the system maintained EOD pointer to the record
number provided in the relative record number field
of the FCA

144 SC34-0316

-

',;&
\
<

FILEIO Return Codes

Return
Code Description
-1 Successful
201 Data set not found
202 Volume not found
203 No file table entries are available; all have
updates outstanding
204 I1/0 error reading volume directory
205 I/0 error writing volume directory
206 Invalid function request type
(this is returned for a valid Indexed Access
Method function if the Indexed Access Method
link module is not linked with the Multiple
Terminal Manager)
207 Invalid key operator
208 SEOD record number greater than data set length

Other return codes not shown above are returned by the Indexed
Access Method or by the Event Driven Executive data management
support.

Chapter 5. Multiple Terminal Manager 145

Event Driven Executive Direct File I/0 Considerations

The Multiple Terminal Manager FILEIO interface to Event Driven
Executive direct file support allows the user to access records
by specifying relative record numbers (RRNs). Normally, a
direct file may be viewed as a sequence of records starting
with RRN=1 and continuing until the end of data record number,
that is, RRN=EOD. The end of data record number is returned in
the file control area (FCA) after each READ or MWRIT (write)
request. It may be set by a "set end of data" (SEOD) request.

No effort is made to ensure the data integrity of Event Driven
Executive direct files involving concurrent access to the same
record. That is, no record locking is performed. However, it is
possible to ensure that Multiple Terminal Manager applications
cannot access the same record concurrently by ensuring that
application is not swapped out of the application area at an
inappropriate moment. (An application is only vulnerable to
swap out during an ACTION, LINK, LINKON, WRITE, or CYCLE). That
is, an application can read, modify, and write a particular
record and be assured that another Multiple Terminal Manager
application will not alter the record at the same time.

This technique only applies to applications competing for
concurrent access under a single copy of Multiple Terminal Man-
ager. Other disciplines must be used if other applications are
involved.

If a user desires sequential access to a direct file, it is the
user's responsibility for incrementing the RRN field and
ensuring it does not exceed the end of data record number. One
technique involves reading the file to get the end of data
record number, and then entering a loop, as in the example on
the following page where a file "A,EDX002" is processed.

146 SC34-0316

¥ GET EOD (RETURNED BY READ OPERATION)

MOVE RRN,1
CALL FILEIO,(FCA), (BUFFER), (RC)
‘ ¥ PROCESS FILE FROM RRN=1 TO EOD
MOVE RRN,O
Do EOD, TIMES
ADD RRN,1

CALL FILEIO,(FCA),(BUFFER), (RC)
ENDDO
¥ FILE CONTROL AREA
FCA EQU
REQTYPE DATA CL4'READ'
DSNAME DATA CL3'A'
NUMREC DATA Fr1”

DATA F'0"

EQCD DATA F'o’
DATA F'o’
RRN DATA F'0’

VOLNAME DATA CL6'EDXO0O2'

Chapter 5. Multiple Terminal Manager 147

FILEIO Indexed Access Method Considerations

FILEIO uses the parameters provided to create a parameter list
for an Indexed Access Method supervisor call. Therefore, it is
important to understand Indexed Access Method operation, as
explained in the section "Indexed Access Method" of the System
Guide.

FILEIO executes a file cleanup routine after each user program
ACTION, LINK, LINKON, WRITE, or CYCLE. If any record locks have
not been released, the cleanup routine causes these records to
be released in order to prevent any deadlock situations. A pro-
cedure to ensure data integrity on update is illustrated as
follows:

GET

SAVE RECORD
CONTENTS

DISPLAY TO
OPERATOR

GET WITH UPDATE

ENSURE RECORD
CONTENTS ARE
UNCHANGED

PUT WITH UPDATE

DISPLAY TO OPERATOR

148 SC34-0316

O

If sequential processing has been initiated on any indexed
files, the FILEIO cleanup routine also releases those files
from sequential processing mode. Thus, in order to continue
sequential processing from the same key, applications should
save the last key before issuing an ACTION, LINK, LINKON, WRITE
or CYCLE.

An indexed file may be scanned from beginning to end by use of a
sequence of "get sequential™ (GETS) operations. The first GETS
in a sequence thereof should specify a key of all nulls (X'00"')
and a key relational operator of greater than (C'GT'). When
executed, this initial GETS operation will receive the first
record in the file (following the record, i1f any, for which the
key is all nulls.) Subsequent GETS will retrieve the records
following the first, in sequence.

After a DISCONNECT,ALL command is issued, FILEIO executes a
termination routine before the Multiple Terminal Manager ter-
minates. This termination routine closes all remaining open
Indexed Access Method files. This causes any control informa-
tion and records remaining in the Indexed Access Method
internal storage buffers to be written to disk.

Following is a mapping of Multiple Terminal Manager/Indexed
Access Method request types to the actual Indexed Access Method
function. .

MULTIPLE TERMINAL INDEXED ACCESS
MANAGER REQUEST METHOD FUNCTION
RELS ENDSEQ
RELR RELEASE
PUTU PUTUP
PUTD PUTDE
PUTN PUT
GETD GET
GETS GETSEQ
IDEL DELETE
ICLS DISCONN
GTDU/GTRU GET/UPEQ,UPGT,UPGE
GTSU GETSEQ

Note: The Indexed Access Method is accessed by the Multiple
Terminal Manager and, therefore, the application programs that
run under the Multiple Terminal Manager will not need to
include the Indexed Access Method equates and, must not be
LINKed with Indexed Access Method link module.

Chapter 5. Multiple Terminal Manager 149

Programming Considerations

Multiple Terminal Manager applications are processed as ini-
tial tasks of a program which execute within the program manag-
er's overlay area. On the first execution of a program during a
transaction, the program is brought into the overlay area via a
LOAD instruction. Then, when the program returns control to the
Multiple Terminal Manager via a CALL ACTION, WRITE, CYCLE,
MENU, LINK or LINKON, the Multiple Terminal Manager dequeues
the program from Event Driven Executive via a DETACH
instruction. Also, if the program returned via a CALL ACTION,
WRITE or CYCLE, the Multiple Terminal Manager writes the pro-
gram out to the MTMSTORE data set. The overlay area is then free
for use by other programs. When the Multiple Terminal Manager
is ready to re-execute that program for subsequent processing
of the transaction, the program manager reads the program into
the overlay area and requeues that program to Event Driven
Executive via an ATTACH instruction.

Thus, Multiple Terminal Manager application programs should
adhere to the following conventions:

U No subtasks should be active across calls to the Multiple
Terminal Manager.

. No system—-wide resources should be enqueued across calls
to the Multiple Terminal Manager.

. Application programs cannot use overlays.

] Application programs must be written as subroutines named
MTMSUB and designed to receive four parameters at initi-
ation.

. Application programs should utilize the Multiple Terminal

Manager for all terminal and disk I/0.

. All other I/0 should be complete prior to any call to the
Multiple Terminal Manager.

. Application programs should terminate only via calls to
the Multiple Terminal Manager and should not issue any
PROGSTOP, ENDTASK, or DETACH instructions.

. Error exit routines should terminate via a CALL MENU.
. Changes affecting the SCRNS or PRGRMS volumes during the
Multiple Terminal Manager session will not be effective

until the Multiple Terminal Manager 1is terminated and
reloaded.

150 SC34-0316

TN
W &

Event Driven lLanquage Programming Considerations

An Event Driven Language application, which must be written as
a subroutine, must be defined to accept four parameters. In
addition, the Multiple Terminal Manager functions must be
identified via the EXTRN statement. The subroutine name MTMSUB
must also appear on the ENTRY statement. For example:

ENTRY MTMSUB
EXTRN ACTION,BEEP,CYCLE,SETCUR,CHGPAN,CDATA,MENU
EXTRN SETPAN,FILEIO, LINK,LINKON,KNRITE,FTAB,FAN

SUBROUT MTMSUB, INPUT,0OUTPUT, TEB,I11IB

The interface used by the Multiple Terminal Manager stub
CDMEMAIN for calling the Event Driven Language subroutine is
via the CALL instruction.

For example, the statement to call SETPAN is:
CALL SETPAN, (MENUNAME), (RC)

This statement would result in the addresses of MENUNAME and RC
being passed to the Multiple Terminal Manager.

The syntax for calling Multiple Terminal Manager functions in
the Event Driven Language is:

CALL ACTION

CALL ACTION, (BUFFER), (LENGTH), (CRLF)
CALL LINK, (PROGRAM)

CALL LINKON, (PROGRAM)

CALL CYCLE

CALL WRITE, (BUFFER), (LENGTH), (CRLF)
CALL SETPAN, (DSNAME), (RC)

CALL CHGPAN

CALL SETCUR, (ROW), (COLUMN)

CALL BEEP

CALL MENU

CALL CDATA,(TERMTYPE), (USERID), (USERCLASS), (TERMNAME), (BUFSIZ)

CALL FILEIO,(FCA), (BUFFER), (RC)
CALL FTAB,(TABLE), (SIZE), (RC)
CALL FAN

Chapter 5. Multiple Terminal Manager 151

FORTRAN Programming Considerations

A FORTRAN application, which must be written as a subroutine,
must be defined to accept four parameters, for example?

SUBROUTINE MTMSUB(INPUT,OUTPUT,TEB,IIB)

The interface used by the Multiple Terminal Manager stub
CDMFMAIN for calling the FORTRAN subroutine is via the Event
Driven Language CALLFORT instruction. For interfacing to the
Multiple Terminal Manager, FORTRAN applications utilize the
FORTRAN CALL statement for calling Event Driven Executive sub-
routines.

For example, the statement to call SETPAN is:
CALL EDX(SETPAN,2,IADDR(MENUNAME), IADDR(RC))

This statement would result in the addresses of MENUNAME and RC
being passed to the Multiple Terminal Manager.

All Multiple Terminal Manager functions which the application
calls must be declared as EXTERNAL, for example:

EXTERNAL SETPAN,ACTION,MENU,FILEIO

The syntax for calling Multiple Terminal Manager functions in
FORTRAN is:

CALL EDX(CACTION,O0)

CALL EDX(ACTION,3,IADDR(BUFFER),IADDRCLENGTH),IADDR(CRLF))
CALL EDXC(LINK,1,IADDR(PROGRAM-NAME))

CALL EDX(LINKON,1,IADDR(PROGRAM-NAME))

CALL EDX(CYCLE, Q)

CALL EDX(WRITE,3,IADDR(BUFFER),IADDRC(CLENGTH), IADDR(CRLF))
CALL EDX(SETPAN,2,IADDR(DSNAME),IADDR(RET-CODE))

CALL EDX(CHGPAN,0)

CALL EDX(SETCUR,2,IADDR(ROW), IADDR(COLUMN))

CALL EDX(BEEP,0)

CALL EDX(MENU,0)

CALL EDX(CDATA,5,IADDR(TERM-TYPE), IADDR(USERID),

IADDR(USER-CLASS), IADDR(TERM-NAME) , IADDR(BUF-SIZE))

CALL EDX(FILEIO,3,IADDR(FILE-CONTROL-AREA),IADDR(BUFFER),
IADDR(RET-CODE))

CALL EDX(FTAB,3,IADDR(TABLE),IADDR(SIZE),IADDR(RC))

CALL EDX(FAN,0)

152 SC34-0316

O

COBOlL Programming Considerations

The PROGRAM-ID for all Multiple Terminal Manager COBOL appli-
cations must be "MTMSUB™. In addition, all parameters passed to
the Multiple Terminal Manager must be level 01 or 77. The four
parameters passed to the application, Input Buffer, OQOutput
Buffer, TEB, and IIB must be defined in the program's LINKAGE
SECTION. Refer to "COBOL Sample Progl"™ on page 193 for an exam—
ple. The PROCEDURE DIVISION must contain the USING clause
followed by the names given to the Input Buffer, OQutput Buffer,
TEB, and IIB, in that order.

For CALL FILEIO, if key location equals 0 and key length not
equal to 0, the file manager assumes that the key is immediate-
ly following the FCA. This is primarily to facilitate COBOL
programs, which cannot code addresses.

The following example shouws an FCA for indexed files which
would read a record associated with a 4-character key "XXXX".

01 FILE-CONTROL-AREA,
05 REQUEST-TYPE PIC X(4) VALUE "GETD".
05 DATA-SET-NAME PIC X(8).

05 KEY-REL-OP PIC XX VALUE "EQ™.
05 KEY-LENGTH PIC $S999 COMP VALUE 4.
05 KEY-LOCATION PIC $999 COMP VALUE 0.
05 FILLER PIC X(4).

05 VOLUME-NAME PIC X(6).

05 KEY PIC X(4) VALUE "XXXX".

For interfacing to the Multiple Terminal Manager, COBOL appli-
cations utilize the COBOL CAlLL statement for calling subrou-
tines.
For example the statement to call SETPAN is:

CALL "SETPAN™ USING SCREEN, RC.

This would result in the addresses of SCREEN and RC being
passed to Multiple Terminal Manager.

The WORKING-STORAGE SECTION would have the following:

77 SCREEN PICTURE X(8) VALUE "SCRNNAME"™.
77 RC PICTURE 99 COMP.

Chapter 5. Multiple Terminal Manager 153

The syntax for calling Multiple Terminal Manager functions
COBOL is:

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL
CALL
CALL

"ACTION".

"ACTION"™ USING BUFFER, LENGTH, CRLF.
"LINK"™ USING PROGRAM-NAME.

"LINKON™ USING PROGRAM-NAME.

"CYCLE™.

"WRITE"™ USING BUFFER, LENGTH, CRLF.
"SETPAN"™ USING DATA-SET-NAME, RETURN-CODE.
"CHGPAN".

"SETCUR"™ USING ROW, COLUMN.

"BEEP™.

"MENUY.

"CDATA™ USING TERMINAL-TYPE, USER-ID, USER-CLASS,
TERMINAL-NAME, BUFFER-SIZE.

"FILEIO"™ USING FILE-CONTROL-AREA, BUFFER, RETURN-CODE.

"FTAB" USING TABLE, SIZE, RETURN-CODE.
"EAN".

154 SC34-0316

in

.

Y

| PL/I Programming Considerations

: A PL/I application must be named MTMSUB, and defined to accept
four parameters:

MTMSUB: PROCEDURE (INPUT_BUFFER,
OUTPUT_BUFFER,
TEB,
PF_KEY);

INPUT_BUFFER, OUTPUT_BUFFER, and TEB should usually be
declared as structures. PF_KEY should be declared BINARY FIXED
(15).

All Multiple Terminal Manager functions which the application
calls must be declared as ENTRY, for example:

DECLARE
(SETPAN, ACTION, MENU, SETCUR, BEEP, FILEIO)
ENTRY;

The syntax for calling Multiple Terminal Manager functions in
PL/I is:

CALL ACTION;
CALL ACTION(BUFFER, LENGTH, CRLF);
(rm CALL LINK(PROGRAM_NAME);
/ CALL LINKON(PROGRAM_NAME);
CALL CYCLE;
CALL WRITE(BUFFER, LENGTH, CRLF);
CALL SETPAN(DATA_SET_NAME, RETURN_CODE);
CALL CHGPAN;
CALL SETCUR(ROW, COLUMN);
CALL BEEP;
CALL MENU;
CALL CDATA(CTERMINAL_TYPE, USER_ID, USER_CLASS,
TERMINAL_NAME, BUFFER_SIZE);
CALL FILEIOCFILE_CONTROL_AREA, BUFFER, RETURN_CODE);
CALL FTAB(TABLE, SIZE, RETURN_CODE);
CALL FAN;

-

For WRITE, the buffer variable must be a character string. For
FTAB, the table variable must be an array. All variables should
be declared as STATIC whenever possible.

Chapter 5. Multiple Terminal Manager 155

SIGNON/SIGNOFF Programs

SIGNON

A sample SIGNON program is distributed with the Multiple Termi-
nal Manager. If the terminal requires sign-on, the IBM supplied
SIGNON program displays the SIGNON screen and does a CALL
ACTION to obtain the user ID and password.

The user must enter the sign-on ID (8 bytes alphanumeric) and a
password (4 bytes alphanumeric). This data will be passed to
the SIGNON program in the Input Buffer as it would be to any
other program. The sign-on ID and password are validated
against the SIGNON file. If valid, the sign-on is complete and
the primary menu is displayed. If invalid, a bad return code is
set (=1) and the SIGNON program is reloaded by Multiple Termi-
nal Manager. The two sign-on ID records in the distributed
SIGNON file are:

SIGNON ID PASSWORD
11111111 1111
22222222 2222

You can add additional records with the Event Driven Executive
text editor.

In addition to the four parameters passed to all applications,
the SIGNON routine receives a fifth parameter which is the
address of the sign-on control area. The contents of the
sign-on control area are as follows:

. RC - 2-byte return code indicating to the system the
action to be taken.

. USERID - Four bytes handled exactly like USERCLASS.

. USERCLASS -~ Four bytes set by user sign-on program which
will be saved and passed as a parameter to the sign-off
program when the current user signs off. These four bytes
are contained in the TEB and are also available to any
standard program to validate the user if desired.

0
1

valid sign-on, display the terminal's menu screen.
invalid sign-on, redisplay the sign-on screen.

USERCLASS and USERID are not used by the Multiple Terminal Man-
ager. They are saved in the TEB and reported via CALL CDATA to
requesting programs from this terminal while the current
sign—-on is active.

156 SC34-0316

O

SIGNOFF

A sign-off program is not provided with the default system;
however, provisions are made within the Multiple Terminal Man-
ager to invoke a sign-off program. If you write a sign-off pro-
gram, it will be passed the same parameters as the sign-on
program.

If these programs exist, they must meet the following consider-
ations:

. SIGNON and SIGNOFF are optional. Either SIGNON alone or
SIGNON and SIGNOFF can be in the system. If they are in the
system, the names must be SIGNON and SIGNOFF. If they are
not in the system, the names SIGNON and SIGNOFF must not be
used for other user-uwritten programs.

. The SIGNOFF program is invoked when the PF3 key is entered
from the menu screen.

. SIGNON/SIGNOFF cannot be executed from the menu screen by
entering the program name.

. Individual terminals can be generated to require or not
require sign-on. If the user does not include a SIGNON pro-
gram, any terminals marked requiring sign—-on are unusable
since there is no way to validate sign—on attempts.

. SIGNON/SIGNOFF can use CALL CDATA to obtain the terminal
name and other terminal information.

. When complete, SIGNON/SIGNOFF should perform a CALL MENU
to return to the Multiple Terminal Manager. Note that a
return code should be set in the RC field by the SIGNON pro-
gram before issuing the CALL MENU. The RC field is ignored
by the Multiple Terminal Manager for the SIGNOFF program.

. The use of USERCLASS and USERID is optional.
. LINK and LINKON can not be used.
. PF3 entered by the operator during SIGNON, will cause the

current SIGNON session to be terminated and a new SIGNON
session to be started.

Chapter 5. Multiple Terminal Manager 157

OPERATOR INTERFACE

Multiple Terminal Manager Initiation and Termination

The Multiple Terminal Manager can be initiated from any termi-
nal defined to the Event Driven Executive system by entering
the $L $MTM,PRGRMS command. This command starts the Multiple
Terminal Manager program manager. The program manager then
initiates a terminal server for each terminal specified in the
TERMINAL file. Upon completion of initiation, the IPL screen,
IPLSCRN, is displayed at each of the Multiple Terminal Manager
terminals. IPLSCRN specifies that the operator press the ENTER
key in order to display either the sign-on or menu screen.

The Multiple Terminal Manager is terminated by disconnecting
all terminals using the DISCONNECT command. The $C command
should not be used to terminate Multiple Terminal Manager
tasks.

Signing On

If sign-on is specified for the terminal, then the sign-on
screen, SIGNON, is displayed following the IPL screen. The
sign-on screen requires that the operator enter a sign-on and
password. After sign-on processing is completed, the menu
screen is displayed.

Program Initiation and Termination

After Multiple Terminal Manager initiation and sign-on proc-
essing are completed, the menu screen is displayed. The menu
screen is the screen from which the operator can initiate
transactions. A transaction 1is initiated by the operator
entering either a program name or pressing a PF key when the
menu screen is displayed. A PF key initiates program PFnn,
where nn reflects the number of the PF key pressed. If data is
entered, the Multiple Terminal Manager considers the first
eight bytes to be a program name.

After a transaction is initiated, the operator can terminate it
by pressing the PF3 key. Upon termination of the transaction,
the menu screen is redisplayed. A subsequent pressing of the
PF3 key from the menu screen causes the sign-on screen to be
redisplayed if sign-on is specified for that terminal. Other-
wise, PF3 will be a "no-op" and the menu screen remains dis-
played.

158 SC34-0316

A
</

O

Utilities

Disconnect: Terminals can be disconnected from the Multiple
Terminal Manager or the Multiple Terminal Manager can be termi-
nated via the DISCONNECT facility. DISCONNECT is invoked from
the menu screen by keying in either DISCONNECT, DISCONNECT x,
DISCONNECT,termname, or DISCONNECT,ALL., If DISCONNECT or DIS-
CONNECT * is entered, the terminal upon which that request was
entered is disconnected. If a referenced terminal is in a
transaction, that transaction is allowed to complete. When the
terminal returns to MENU state, it is automatically signed off
and immediately displays the YOU ARE DISCONNECTED message.

If DISCONNECT,ALL is specified, all terminals are discon-
nected. When the last terminal is truly disconnected, whether
via DISCONNECT,ALL or separate DISCONNECTs, the manager task
is stopped. This is the only method that should be used to ter-
minate the Multiple Terminal Manager.

Note that to enter this command from a screen, the terminal's
menu screen must contain at least 19 unprotected characters.

While a terminal continues in a transaction with disconnect
pending, the audible alarm is sounded after every interaction
to tell the operator that a disconnect is pending.

Reconnect: If the referenced terminal is disconnected, it is
reconnected using RECONNECT,ALL or RECONNECT,termname in a
signed-off status (if applicable). If the terminal is not dis-
connected, the command is ignored. The reconnect should be
issued from a terminal other than the disconnected terminal.
The program name of this command is RECONNEC.

Programs Report: This report displays data about each avail-
able program. It is intended mainly for debugging during devel-
opment of the manager but is included as a working example for
passible use.
The name of this program is PGMRPT.
The Programs Report will have the following headings:

PGM NAME LENGTH (in records)
Terminal Activity Report: This program displays the names and
status of all terminals on the system. If more than 19 termi-
nals are attached, the operator must press ENTER to page to

successive groups of 19 lines.

The name of this program is REPORT.

Chapter 5. Multiple Terminal Manager 159

\

The Terminal Activity Report has the following headings:

TERMINAL TERMINAL USER USER PROGRAM OPERATOR TERMINAL Q:D
NAME TYPE ID CLASS INPUTS OUTPUTS

Screens Report: This program displays the names of the screens
defined in the SCRNS volume. The operator can key in the screen
name to be displayed.

The name of this program is SCRNSRPT.
Screen Print: Displayed screens on a 4978 or 4979 terminal can
be printed on the system printer by pressing the PF6 key or the

key specified on the HDCOPY parameter of the TERMINAL statement
during system generation.

160 SC34-0316

O

DISTRIBUTION, INSTALLATION AND PROGRAM PREPARATION

The Multiple Terminal Manager is distributed as a program pro-
duct and each distribution consists of the following items:

. Prebuilt Multiple Terminal Manager - This is a prebuilt
Multiple Terminal Manager consisting of a program manager,
file manager, terminal servers and utility programs. The
Indexed Access Method interface is not included.

. Multiple Terminal Manager source for module CDMCOMMN -
This is the Multiple Terminal Manager source code for the
user who wants to tailor the Multiple Terminal Manager
environment.

. Screen formats — This is a set of screens to support the
default Multiple Terminal Manager and sample programs.

U TERMINAL File - This.is a set of miscellaneous terminal
statements to support the default system.

. CDMEMAIN, CDMFMAIN, CDMCMAIN, and CDMPMAIN - These are the
Multiple Terminal Manager application stubs in object for-
mat that must be included with either Event Driven Lan-
guage, FORTRAN, COBOL, or PL/I programs at link time.

Chapter 5. Multiple Terminal Manager 161

Installation

The user must have created the following volumes on the system
disk at system generation time.

PRGRMS This volume is for the Multiple Terminal Manager
programs, user application programs, terminal spec-
ifications file and SIGNONFL file.

SCRNS This volume is for the screen formats used by
Multiple Terminal Manager and user applications.

MTMSTR This volume is for the MTMSTORE data set used by the
Multiple Terminal Manager.

After the volumes have been created, the user can then copy the
prebuilt Multiple Terminal Manager, screen formats and termi-
nal file from the source diskettes to disk. This installs the
default Multiple Terminal Manager and establishes the follow-
ing data sets.

Data sets within the PRGRMS volume:
$MTHM The Multiple Terminal Manager program manager

CDMSVR89 The Multiple Terminal Manager full screen, 4978 and
4979, terminal server

CDMSVR33 The Multiple Terminal Manager TTY terminal server

CDMSVRO1 3101 Model 2 terminal server

CDMINIT The Multiple Terminal Manager initialization
routine
TERMINAL The Multiple Terminal Manager terminal

specification file

In addition, the PRGRMS volume contains miscellaneous data
sets needed for the utility programs.

Data sets within the SCRNS volunme:

IPLSCRN The initial Multiple Terminal Manager displayed
screen

SIGNONSC The sign—on screen
MENUSCRN The default menu screen

SCRNSREP The SCRNSRPT selection menu

162 SC34-0316

AN
s

-

The Multiple Terminal Manager can be tailored by reassembling,
rebuilding and replacing the changed Multiple Terminal Manager
components.

The terminal specifications file (TERMINAL) can be modified to
match your system environment by using the $FSEDIT Event Driven
Executive utility. Screen formats can be added to the SCRNS
volume via the $IMAGE Event Driven Executive utility.

Before executing the Multiple Terminal Manager, the user has to
create the MTMSTORE dataset.

Chapter 5. Multiple Terminal Manager 163

Program Preparation

Event Driven language Program Preparation

The Multiple Terminal Manager contains a main routine,
CDMEMAIN, for supporting Event Driven Language applications.
CDMEMAIN is the Multiple Terminal Manager stub for Event Driven
Language applications, and is object code which enables the
Multiple Terminal Manager to invoke and pass parameters to the
application program.

It is necessary to link CDMEMAIN with the application object
module so that the application can communicate with the Multi-
ple Terminal Manager. For linking Event Driven Language appli-
cations, this requires that the following be used as the link
control data set during the $LINK program preparation step:

OUTPUT output data set,volume
INCLUDE CDMEMAIN,volume
INCLUDE object data set,volume
END

For example, the link control statements for an Event Driven
Language application called "QUERY" might be:

OuUTPUT QUERY,EDX0O0Z2
INCLUDE CDMEMAIN,EDX003
INCLUDE QUERY,EDXO003
END

The subsequent $UPDATE step would then specify the object input
to be "QUERY,EDXQO2"™ and the program output to be
"QUERY, PRGRMS", where "PRGRMS"™ is the Multiple Terminal Manag-
er program volume.

Note: If the FTAB function is used by the application, the FTAB
object code must be linked with the application object code.
This requires that the object module CDMFTAB be included in the
linking process. The following link control statement must be
included in the link control data set:

INCLUDE CDMFTAB,volume
For example:

QUTPUT QUERY,EDX0O02
INCLUDE CDMEMAIN,EDXO0O03
INCLUDE QUERY,EDXO003
INCLUDE CDMFTAB,EDX003
END

164 SC34-0316

AN
%

FORTRAN Program Preparation

The Multiple Terminal Manager contains a main routine,
CDMFMAIN, for supporting FORTRAN applications. CDMFMAIN is the
Multiple Terminal Manager stub for FORTRAN applications, and
is object code which enables the Multiple Terminal Manager to
invoke and pass parameters to the application program.

It is necessary to link CDMFMAIN with the application object
module so that the application can communicate with the Multi-
ple Terminal Manager. For linking FORTRAN applications, this
requires that the following be used as the link control data
set during the $LINK program preparation step?

OUTPUT output data set,volume AUTO=FORTAUTO,ASMLIB
INCLUDE CDMFMAIN,volume

INCLUDE object data set,volume

END

For example, the link control statements for a FORTRAN applica-
tion called "QUERY"™ might be:

OUTPUT QUERY,EDX002 AUTO=FORTAUTO,ASMLIB
INCLUDE CDMFMAIN,EDXO0O3

INCLUDE QUERY,EDXO003

END

The subsequent $UPDATE step would then specify the object input
to be "QUERY, EDXOO2", and the program output to be
"QUERY,PRGRMS", where "PRGRMS" is the Multiple Terminal Manag-
er program volume,

Note: If the FTAB function is used by the application, the FTAB
object code must be linked with the application object code.
This requires that the object module CDMFTAB be included in the
linking process. The following link control statement must be
included in the link control data set:

INCLUDE CDMFTAB,volume
For example:

OUTPUT QUERY,EDX002 AUTO=FORTAUTO,ASMLIB
INCLUDE CDMFMAIN,EDXO003

INCLUDE QUERY,EDXQOD3

INCLUDE CDMFTAB,EDX0O03

END

Chapter 5. Multiple Terminal Manager 165

COBOL Prodgram Preparation

The Multiple Terminal Manager contains a main routine,
CDMCMAIN, for supporting COBOL applications. CDMCMAIN is the
Multiple Terminal Manager stub for COBOL applications, and is
object code which enables the Multiple Terminal Manager to
invoke and pass parameters to the application progran.

It is necessary to link CDMCMAIN with the application object
module so that the application can communicate with the Multi-
ple Terminal manager. For linking COBOL applications, this
requires that the following be used as the link control data
set during the $LINK program preparation step:

OUTPUT output data set,volume AUTO=COKAUTO,ASMLIB
INCLUDE CDMCMAIN,volume

INCLUDE MTMSUB#1,volume

INCLUDE MTMSUB#B,volume

END

In the previous example, MTMSUB#1 is the name of the data set
containing the COBOL compiled output. MTMSUB#B is the name of
the data set containing the COBOL I/0 buffers (if required).

For example, the link control statements for a COBOL applica-
tion called "QUERY"™ might be:

oUTPUT QUERY,EDX002 AUTO=COKAUTO,ASMLIB
INCLUDE CDMCMAIN,EDX003

INCLUDE MTMSUB#1,EDX003

END

The subsequent SUPDATE step would then specify the object input
to be "QUERY,EDX0O02", and the program output to be
"QUERY,PRGRMS", where "PRGRMS" is the Multiple Terminal Manag-
er program volume.

Note: If the FTAB function is used by the application, the FTAB
object code must be linked with the application object code.
This requires that the object module CDMFTAB be included in the
linking process. The following link control statement must be
included in the link control data set:

INCLUDE CDMFTAB,volume
For example:

OUTPUT QUERY,EDXD02 AUTO=COKAUTO,ASMLIB
INCLUDE CDMCMAIN,EDX003

INCLUDE MTMSUB#1,EDX003

INCLUDE CDMFTAB,EDX003

END

166 SC34-0316

\\

A\‘\‘A //'

PL/]1 Program Preparation

The Multiple Terminal Manager contains a main routine,
CDMPMAIN, for supporting PL/I applications. CDMPMAIN is the
Multiple Terminal Manager stub for PL/I applications, and is
object code which enables the Multiple Terminal Manager to
invoke and pass parameters to the application progranm.

It is necessary to link CDMPMAIN with the application object
module so that the application can communicate with the Multi-
ple Terminal Manager. For 1linking PL/I applications, this
requires that the following be used as the link control data
set during the SLINK program preparation step:

OUTPUT output data set,volume AUTO=PLIAUTO,ASMLIB
INCLUDE CDMPMAIN,volume

INCLUDE object data set,volume

END

For example, the link control statements for a PL/I application
called "QUERY"™ might be:

OUTPUT QUERY,EDX002 AUTO=PLIAUTO,ASMLIB
INCLUDE CDMPMAIN,EDX0O03

INCLUDE QUERY,EDX0GC3

END

The subsequent SUPDATE step would then specify the object input
to be "QUERY,EDXQOO2", and the program output to be
"QUERY, PRGRMS", where "PRGRMS" is the Multiple Terminal Manag-
er program volume.

Note: If the FTAB function is used by the application, the FTAB
object code must be linked with the application object code.
This requires that the object module CDMFTAB be included in the
linking process. The following link control statement must be
included in the link control data set:

INCLUDE CDMFTAB,volume
For example:

OUTPUT QUERY,EDX002 AUTO=PLIAUTO,ASMLIB
INCLUDE CDMPMAIN,EDXO003

INCLUDE QUERY,EDX0O03

INCLUDE CDMFTAB,EDX003

END

Chapter 5. Multiple Terminal Manager 167

STORAGE REQUIREMENTS

Listed below are the storage requirements for the Multiple Ter-
minal Manager. These requirements are in addition to the stor-
age required for the Multiple Terminal Manager application
programs, the Event Driven Executive supervisor, the supervi-
sor's required device support programs and control blocks.

Program manager - 12K (K = 1024 bytes)

Terminal server - 1K per terminal for TTY (ASCII)

. 75K per 497876979 display
1.75K per 3101 Model 2 display

The storage required for Multiple Terminal Manager application
programs is the larger of 6K or the size of the largest applica-
tion which includes the application stub. This is the size
obtained after linking the application via $LINK.

During system configuration, the above information is used to
calculate the partition size to code on the SYSTEM statement,
PARTS= operand. For more information on the SYSTEM statement
see the System Guide.

168 SC34-0316

SYSTEM GENERATION CONSIDERATIONS

Volume Requirements

Three volumes must be provided when planning your Event Driven
Executive system for the Multiple Terminal Manager. These vol-
umes are:?

. PRGRMS - Multiple Terminal Manager programs volume
. MTMSTR — Multiple Terminal Manager work volume
. SCRNS - Multiple Terminal Manager screens volume

In Multiple Terminal Manager only systems, the most 1likely
access frequency distribution of these three volumes would be:

(1) MTMSTR
(2) SCRNS
(3) PRGRMS

Therefore, it is recommended that these volumes be allocated so
that the MTMSTR and SCRNS volumes are adjacent to each other
with PRGRMS on one side or the other.

If fixed-head disks are to be used, it may be beneficial to
allocate the MTMSTR volume under the fixed head. (In this case
the location of SCRNS relative to MTMSTR is irrelevant.) This
is accomplished by specifying FHVOL=MTMSTR on the appropriate
system configuration DISK statement. It will not be possible to
place MTMSTR under the fixed head if the total volume size
exceeds 480 records for a 4962, or 512 records for a 4963.

Chapter 5. Multiple Terminal Manager 169

To calculate the size requirements for each of the three vol-
umes, first calculate the data set requirements (see the
section "Data Set Requirements™ on page 171). Add to this the
directory size in number of records, each volume requires. The
directory sizes may be calculated as follows:

Number of Directory

Volume Records Required

MTMSTR 1 Record

SCRNS (number of screens + 2) 7/ 8
rounded to the next highest
record

PRGRMS (number of user programs + 9%9) / 8
rounded to the next highest
record

See the System Guide for a sample Multiple Terminal Manager
system configuration.

170 SC34-0316

O

Data Set Requirements

MTMSTORE

MTMSTORE is the Multiple Terminal Manager work file, and as
such, it contains:

. The Multiple Terminal Manager program table.
. The Multiple Terminal Manager screen table.
. A program and buffer save area for each terminal defined in

the TERMINAL file.
The size of the MTMSTORE file can be calculated as follows:

. Allow 10 bytes per screen in the SCRNS volume; round up to
the nearest 256-byte record.

. Allow 14 bytes per program in the PRGRMS volume; round up
to the nearest 256-byte record.

. Allow per terminal:

enough records to hold a copy of the largest

program in the PRGRMS volume plus & records; round
up to the nearest track; that is, nearest 64 records
for a 4963 disk or nearest 60 records for a 4962
disk.

This data set is in the volume MTMSTR and is normally the only
data set in that volume.

TERMINAL

This file is built with the $FSEDIT Event Driven Executive
utility. It contains one record/terminal containing the spec-
ifications of a terminal.

The record prototype is:

Dvtp,Termname,Menuscrn, Y/N

Chapter 5. Multiple Terminal Manager 171

The following is a description of the record:

Dvtp The type of terminal. Specify one of the following
per terminal:

4979 (IBM 4979 full screen)

4978 (IBM 4978 full screen)

3335 (ASR 33735 line at a time)

3101 (IBM 3101 Model 2 in block mode)

Termname The 1 to 8 character name of the terminal. This name
must be identical with the device name specified on
the TERMINAL statement at system generation. This
name should not be the name of the Event Driven Exec—-
utive $SYSLOG device.

Menuscrn The name of the data set in the SCRNS volume which
contains the screen to be displayed after an opera-
tor exits a transaction or signs on. For ASCII termi-
nals, this field is ignored.

Y/N Specifies whether the terminal uses SIGNON/SIGNOFF.

Y = This terminal is required to use the SIGNON and
SIGNOFF programs. If a user program named SIGNON
does not appear in the program library, this termi-
nal is not usable.

N = This terminal is always signed on.

Comment records are acceptable in this file as well as comments
following specification records. Comment records must have an
¥ in position 1.

An example of this file would be:

3101,DIS31010,MENUSCRN,N
4979,DISPLAY1,MENUSCRN,N
4978,D1549780,MENUSCRN, Y
3335,ACCA1,MENUSCRN,Y

/%

End of specifications must be indicated with a record contain-
ing /7* beginning in column 1.

Before the Multiple Terminal Manager processes each record
during startup, the record is listed on the $SYSPRTR device.
When startup is complete, all terminals will have the Multiple
Terminal Manager IPL screen displayed. The TERMINAL file is in
the volume PRGRMS.

172 SC34-0316

Screen_Format Volume - SCRNS

This volume contains screen data sets for full screen images
built via the $IMAGE Event Driven Executive utility. These
screens must have been built with a 24 x 80 dimension size. The
unprotected fields must be initialized with blanks or default
data. If a screen is modified or added to the SCRNS volume, the
Multiple Terminal Manager should be terminated and restarted
so that the Multiple Terminal Manager can initialize linkage to
the screens.

The IPLSCRN data set is displayed on each full screen terminal
after the Multiple Terminal Manager is started. It requests
that the operator press the ENTER key to connect the terminal
to the Multiple Terminal Manager. It should not be displayed
again.

Screen definition procedure (under $IMAGE) should always be

concluded by entering unprotected field initialization mode
using PF2, even when a fully protected screen is being defined.

User Application Program Volume — PRGRMS

All programs loaded by the Multiple Terminal Manager are loaded
using the names of the data sets in this volume. The TERMINAL
and SIGNONFL files arg.also in this volume.

Application programs are stored in this volume as the output of
the $UPDATE Event Driven Executive utility. The names of the
programs are the names used by the operator from the MENU mode
to invoke programs and can also be used as the program parame-
ter on a CALL LINK or CALL LINKON that passes control from one
program to another. (If an existing program is modified or a
new program added, the Multiple Terminal Manager should be ter-
minated and restarted so that Multiple Terminal Manager can
establish linkage to these changes or additions.)

When the Multiple Terminal Manager is initiated, a program
table is built containing the name of each program data set in
the PRGRMS volume. '

Each program is checked at initialization time to see if the
program is too big for the program area in the Multiple Termi-
nal Manager. If the program is too big for the program area in
the Multiple Terminal Manager, split the program into separate
programs using LINK or increase the size of the program area.

Chapter 5. Multiple Terminal Manager 173

SIGNONFL

o

This file contains sign-on records for use by the SIGNON pro- (:E
gram. The format of the file is:

Field Name Positions Contents

SIGNON ID 1-08 Sign-on ID number

PASSWORD 9-12 Password

USERID 13-16 User 1ID

USER CLASS 17-20 User Class

NAME 21-32 User Name

This file is built by using the $FSEDIT Event Driven Executive
utility. This file is in the volume PRGRMS. A /¥ in columns 1
and 2 denote the end of the file.

AN
W

174 SC34-0316

Multiple Terminal Manager Data Set Requirements for Execution

ITEM voL ID DATA SET NAME APPROXIMATE SIZE

SWAP DATA SET MTMSTR MTMSTORE See MTMSTORE in the
Multiple Terminal
Manager Data Set
Requirements section

PROGRAM MGR PRGRMS $MTM 5% records
697874979 TERM PRGRMS CDMSVR89 4 records
SERVER
| 3101 TERM SERVER PRGRMS CDMSVRO1 8 records
TTY TERM SERVER PRGRMS CDMSVR33 5 records
MULTIPLE TERMINAL
MANAGER PRGRMS CDMINIT 29 records
INITIALIZATION
TERMINAL PRGRMS TERMINAL 1 record
SPECIFICATIONS per 2
FILE entries
(:§> USER APPLICATION PRGRMS ? ?
J PROGRAMS ? ?
SCREEN FORMATS SCRNS USER SPECIFIED 4 records
: SCREENS per screen
SIGNON FILE PRGRMS SIGNONFL 1 record

per 2 entries

Chapter 5. Multiple Terminal Manager 175

Multiple Terminal Manager Requirements for Proaram Preparation

MULTIPLE TERMINAL Approximate size QQE
MANAGER STUBS: 6 records each ”
CDMEMAIN
CDMFMAIN
CDMCMAIN
CDMPMAIN
CDMFTAB 2 records
plus

Event Driven Executive
program preparation
data set requirements

Requirements for Rebuilding the Multiple Terminal Manager

MULTIPLE TERMINAL Approximate size
MANAGER OBJECT 100 records
Multiple Terminal Manager

source module: CDMCOMMN 98 records
plus

Event Driven Executive
program preparation
data set requirements

/M\
N

176 SC34-0316

MULTIPLE TERMINAL MANAGER DEFAULTS AND HOW TO CHANGE

The Multiple Terminal Manager default system contains the fol-
lowing limitations.

U Maximum number of screens - 307

This number can be increased by increasing the Input or
Output Buffer size 10 bytes per additional screen. The
Input Buffer (COMINPUT) and the Output Buffer (COMOUTPT)
are in the module CDMCOMMN,

. Maximum number of concurrently open data sets - 14

This number can be changed by altering the file table size.
The file table is in the module CDMCOMMN.

. Maximum number of terminals - 10

This number can be increased by increasing the terminal
table size 12 bytes per terminal. The terminal table
(COMTERM) is in the module CDMCOMMN.

. Maximum program size — 16K bytes

This size can be changed by reallocating the CDMDUMMY mod-
ule to the desired size or by patching the name of your
largest application program into the PGM1 name position of
the program manager's program header. The offset in $MTM of
the name CDMDUMMY is X'D8"

. Maximum packed screen format size as built by the Event
Driven Executive screen formatter, $IMAGE - 1024 bytes

This size can be increased by increasing the screen buffer
size. The screen buffer (COMPMGR) is in the module
CDMCOMMN.

. Maximum number of programs - 73

This number can be increased by increasing the screen buff-
er size 14 bytes per program. The screen buffer (COMPMGR)
is in the module CDMCOMMN,

Whenever the source module CDMCOMMN is changed, it must be
reassembled and the program manager must be rebuilt with the
new CDMCOMMN object module.

Note: Changes to the screen buffer or Input Buffer must be in

increments of 256 to facilitate Event Driven Executive disk
READs.

Chapter 5. Multiple Terminal Manager 177

MULTIPLE TERMINAL MANAGER MESSAGES

NO TERMINALS ARE AVAILABLE: No valid terminal specification
records found in the TERMINAL file, or, no terminal servers can
be loaded, or, all terminals are busy. Other messages generated
indicate the problem area. The manager program is terminated.

MTMSTORE DATA SET LIMITS EXCEEDED: The specified MTMSTORE file
is too small. Delete and recreate it larger. The manager has
been terminated.

This can occur after adding a new program with a storage
requirement greater than any previous program's requirement or
after adding a new terminal or screen.

PROGRAM AREA TOO SMALL TO HOLD PGM BEBBBBBBB: The manager's pro-—
gram area is too small to hold the named program. The program is
unusable.

Increase the program area size by reallocating CDMDUMMY or
split the program into smaller LINKed programs.

BRBBBBBB PROGRAM TYPE INVALID: The named program in the PRGRMS
volume is not a program type data set. The named program is
unusable.

SIGNON PROGRAM NOT AVAILABLE FOR TERMINAL BBBBBBBB: The speci-
fied terminal is required to sign on and off but no program
named SIGNON was found in the PRGRMS volume. The terminal is
not connected to the Multiple Terminal Manager.

MULTIPLE TERMINAL MANAGER TERMINAL FILE RECORDS: The TERMINAL
file records processed by the Multiple Terminal Manager are
listed after this message. Any messages pertaining to a specif-
ic TERMINAL file record will be displayed immediately after the
file record.

DEVICE TYPE INVALID: The device type specified for the TERMINAL
file record listed immediately before this message is invalid.
The terminal is not connected. Correct the TERMINAL record.
Stop and restart the manager.

INVALID SIGNON CHARACTER: The SIGNON specification for the
TERMINAL file record listed immediately before this§ message is
not "Y" or "N". The terminal is not connected. Correct the TER-
MINAL record. Stop and restart the manager.

MENUNAME INVALID: The primary menu name specified for the TER-
MINAL file record listed immediately before this message is
invalid. The terminal is not connected. Correct the TERMINAL
record. Stop and restart the manager.

178 SC34-0316

A

g\\

TERMINAL BBBBBBBB NOT DEFINED IN EVENT DRIVEN EXECUTIVE
SYSTEM: The specified terminal was not included in the defi-
nition of terminals when the Event Driven Executive system was
generated. The terminal is not connected. Include a terminal
definition for the specified terminal when the Event Driven
Executive system is generated.

TERMINAL NAME INVALID: The terminal name specified for the TER-
MINAL file record listed immediately before this message is
invalid. The terminal is not connected. Correct the TERMINAL
record. Stop and restart the manager.

CONNECTED TO MULTIPLE TERMINAL MANAGER: This message is uwrit-
ten to a non-full screen type terminal when it is connected to
the Multiple Terminal Manager.

LOAD FOR SERVER BBBBBBBB FAILED, RC=CCCCC: A 1load failure
occurred during initialization for the specified server. Refer
to Event Driven Executive messages and codes to determine the
cause of failure. Ensure that the specified server program is
in the PRGRMS volume.

PRIMARY MENU BBEEBBBBBB FAILED FOR TERMINAL BEBBBBBB: A SETPAN
function for the primary menu indicated has failed. Ensure that
a valid menu name is specified in the TERMINAL file for the
specified terminal.

DISK ERROR DURING JINITIALIZATION, RC=CCCCC: A disk error
occurred while reading the SCRNS volume directory, the PRGRMS
volume directory, or the TERMINAL data set. Or, an error
occurred while writing to the MTMSTORE data set. Determine the
cause using Event Driven Executive messages and codes.

SCREEN TABLE LARGER THAN INPUT BUFFER: The screen table built
during initialization exceeds the Input Buffer size.

Increase the Input Buffer size in module CDMCOMMN.

PROGRAM FILE LARGER THAN PROGRAM MANAGER BUFFER: The program
table built during initialization exceeds the size of the buff-
er used by the program manager.

Increase the program manager buffer size in module CDMCOMMN.

TERMINAL TABLE OR WORK SPACE SIZE EXCEEDED: While building the
terminal table and loading servers, the storage size or the the
maximum number of terminals (10) allowed has been exceeded. The
work space, defined in CDMINIT, is defined to allow a maximum
of 50 terminals. The terminal table size can be increased by
changing module CDMCOMMN.

BBBEBBBBB SCREEN SIZE TOO LARGE: The specified screen in the
SCRNS volume will not fit in the screen manager buffer.

Increase the screen manager buffer size in CDMCOMMN.

Chapter 5. Multiple Terminal Manager 179

BEBBBBBB SETPAN FAILED, RC=CCCCCC: A SETPAN failed for the
screen name specified. Determine the cause of failure using the
return code and the Multiple Terminal Manager SETPAN documen-
tation.

TERMINAL BBBBBBBB BUSY: A terminal specified in the TERMINAL
file is connected to another program.

Try to RECONNECT at a later time.

ERROR ENCOUNTERED DURING CLOSE OF INDEXED ACCESS METHOD
(DDDDDDDD, VVVVVV), ERROR CODE=(ccceccec): An error occurred dur-
ing AUTOCLOSE of an Indexed Access Method data set.

INITIALIZATION ERROR: Initialization has been unsuccessful,
Multiple Terminal Manager is terminated. This message is writ-
ten to the terminal which loaded Multiple Terminal Manager.
Additional messages are printed on $SYSPRTR.

INVALID PROGRAM NAME: The name of the program requested from
the primary menu was not found in the Multiple Terminal Manager
program table or invalid parameters supplied on a DISCONNECT
command.

INVALID TERMINAL: The terminal name entered with a DISCONNECT
command is not a Multiple Terminal Manager terminal.

PROGRAM LOAD ERROR: An Event Driven Executive LOAD error
occurred for the requested program.

DISK READ ERROR: An internal Multiple Terminal Manager disk
Read error has occurred and results may be unpredictable.

TERMINAL BEEBBBBB RECONNECTED: The named terminal has been
reconnected to the Multiple Terminal Manager.

RECONNECT SYNTAX INVALID: The RECONNECT operator interface
facility is invalid and the proper syntax has not been used.

RECONNECT TERMINAL DEFINITION ERROR: The RECONNECT operator
interface facility has encountered a failure while attempting
to reconnect a terminal to the Multiple Terminal Manager. Since
initialization would have already performed all functions
necessary to include the terminal in the terminal table, the
TERMINAL file, SCRNS volume or source table in RECONNEC has
probably been altered since the Multiple Terminal Manager wuwas
started.

BRBEBBBBB DISCONNECT: Terminal bbbbbbbb has been issued a suc-
cessful DISCONNECT command.

180 SC34-0316

C

MULTIPLE TERMINAL MANAGER SYSTEM FAILURE: The Multiple Termi-
nal Manager task error exit routine has been entered due to a
machine or program error. The Multiple Terminal Manager
program remains active waiting for an event which will not be
posted.

The PSW and LSB at the time of failure has been saved at a
displacement of X'172' into the program storage. Register 1 in
the LSB contains the address of the failing instruction in the
case of a program check. Use Event Driven Executive operator
facilities to display storage.

An example follows showing a specification check which
occurred at location X'053C"'.

MULTIPLE TERMINAL MANAGER SYSTEM FAILURE
> SA

PROGRAMS AT 00:06:24

IN PARTITION #2

SMTM 0000

CDMSVR33 6C0O0

> sD 0 172 30 X

0172: 8002 28E6 0110 10DO ODDC 053C ODAC 7361
0182: 0540 815C 00B8 ODDA 0000 OOFA 0004 0028
0192: 0052 007C 00A6 0017 OE72 AOA2 OE72 FFFF
01A2: 0102 8026 1616 40C9% D5C9 E3CHY

ANOTHER DISPLAY?

The PSW is 8002 at 0172 and Rl is 053C on same line.

Chapter 5. Multiple Terminal Manager 181

EXAMPLE - FILE MAINTENANCE TRANSACTION APPLICATION

This example consists of a pair of programs which perform a
simple file maintenance task. The tasks it can perform are
reading or writing a single record, or setting an end of data
(EQD) marker. Both programs are presented in the following lan-
guages

. Event Driven Language (see "EDL Sample Progl™ on page 190
and "EDL Sample Prog2™ on page 191)

. COBOL (see "COBOL Sample Progl™ on page 193 and "COBOL
Sample Prog2"™ on page 195)

. FORTRAN (see "FORTRAN Sample Progl"™ on page 197 and
"FORTRAN Sample Prog2™ on page 198)

. PL/I (see "PL/I Sample Progl"™ on page 200 and "PL/I Sample
Prog2™ on page 202)

The first program displays a screen which requests the file
parameters which include data set name and relative record num-
ber. It then LINKs to the second program, passing the file
parameters.

The second program builds a file control area (FCA) from the
file parameters and performs the requested file I/0 operation.
The results of the operation are displayed on the screen, and
the program ends.

The following is a detailed explanation of each program state-
ment in Event Driven Language and the effects of program exe-—
cution of the application.

The first statements in the first program are declarations.

EXTRN BEEP,SETPAN,MENU,ACTION, LINK
ENTRY MTMSUB
SUBROUT MTMSUB, INBADDR,OUTBADDR, TEBADDR, IIBADDR

EXTRN declares Multiple Terminal Manager functions as
external, so they may be accessed by the application. ENTRY
declares the application as an entry point. All Multiple Termi-
nal Manager applications are subroutines, as depicted in the
SUBROUT statement, called MTMSUB. They all have four parame-—
ters, the addresses of the Input Buffer, Qutput Buffer, Termi-
nal Environment Block and Interrupt Information Byte. (The
latter two are not used in this example.)

The next instructions put the buffer addresses into registers 1
and 2.

MOVE #1,INBADDR
MOVE #2,0UTBADDR

182 SC34-0316

AN
@

The terminal is prepared to sound the audible alarm by
CALL BEEP

A screen image is retrieved from a disk data set and placed into
the buffers.

CALL SETPAN, (REQSCRN), (RC)
RC DATA F'0!
REQSCRN DATA CL8'REQ'

A screen image consists of two portions. These are protected
data, which may be considered a screen template or form, and
unprotected data, usually considered default information. The
protected data is a screen sized (24 x 80) image consisting of
character data which is displayed, and fields of nulls used for
data entry. Default data is written by the ACTION call into
these null fields and operator inputs are read from them.
(Screen images are constructed using the $IMAGE utility. See
the Utilities, Operator Commands, Program Preparation, Mes-
sages and Codes for detailed information on $IMAGE.)

Note that both the protected and unprotected parts of a screen
built by $IMAGE must be explicitly initialized by the user;
failure to do so causes CALL SETPAN to return return code 2 when
the screen is retrieved for use by an application program.

After the call to SETPAN, the Input Buffer contains the screen
as shown in SCREEN 1, with five null fields as depicted by dol-
lar sigans. The ¢ is for illustrative purposes only, null fields
are actually displayed as blanks.

SCREEN 1

DATA SET, VOLUME NAME ==>8$5%%%$55,8655%66
REQUEST (READ, WRIT, SEOD) ==>$%%$%
RELATIVE RECORD NUMBER ==>%%$%$%

NUMBER OF RECORDS ==>1

DATA TO BE WRITTEN:

Chapter 5. Multiple Terminal Manager 183

The Output Buffer contains data used to initialize (unpro-
tected) input fields. It consists of 14 blanks, followed by
READOOOLl, followed by 80 blanks. When written to the unpro-
tected portion of the screen, the terminal appears as shown in
SCREEN 2. An example of SCREEN 2 is on the following pages.

(14 BLANKS) READOO0O1l (80 BLANKS)

The Input Buffer holds the screen format, and the Qutput Buffer
contains fields to initialize input fields.

A test of the return code from SETPAN is done. If the return
code does not indicate a successful return, the program ends by
giving control to the primary menu routine.

IF (RC)NE)'I)
CALL MENU
ENDIF

Call the ACTION routine to display the contents of the buffers,
and read the operator response.

CALL ACTION
ACTION's effects are:

. Write the Input Buffer's contents to the terminal as pro-
tected characters.

4 Write the Output Buffer contents , if any, into the null
fields as unprotected characters.

. Wait for the operator to enter data and press ENTER or a PF
key.

. Read the contents of the unprotected fields, (that is the
operator input) into the Input Buffer.

This results in SCREEN 2 appearing on the terminal, where the
default characters are highlighted.

1864 SC34-0316

C

N

7

SCREEN 2

DATA SET, VOLUME NAME ==

REQUEST (READ, WRIT, SEOD) ==>READ
RELATIVE RECORD NUMBER ==>0001
NUMBER OF RECORDS ==>1

DATA 7O BE WRITTEN:

The operator then enters data, changing the default data asso-
ciated with relative record number. For example, to read the
third record of data set "K" on volume EDX013, the following
data would be entered. See highlighted fields on SCREEN 3.

SCREEN 3

DATA SET, VOLUME NAME ==>K yEDX013
REQUEST (READ, WRIT, SEOD) ==>READ
RELATIVE RECORD NUMBER ==>0003

NUMBER OF RECORDS ==>1

DATA TO BE WRITTEN:

The operator signals that the input is ready by pressing ENTER
or a PF key. ACTION then completes the input cycle by reading
the contents of the unprotected fields into the Input Buffer.
See the following example of the Input Buffer.

Chapter 5. Multiple Terminal Manager 185

K EDX013READOOCO3 (80 blanks)

In order for PROG2 ("EDL Sample Prog2" on page 191, TCOBOL
Sample Prog2"™ on page 195, "FORTRAN Sample Prog2"™ on page 198
and "PL/I Sample Prog2" on page 202), to receive the file
parameters they must be passed through the Output Buffer. The
next instruction moves the input data from the Input Buffer to
the Qutput Buffer.

MOVE (0,#%#2),(0,%#1),(106,BYTES)
Finally, PROG2 is LINKed to.
CALL LINK, (IOPROG)
I0OPROG 5A+A CL8'PROG2"

A call to MENU to terminate the transaction is placed after the
LINK, in case the LINK is unsuccessful.

CALL MENU

The first four lines of PROG2 are similar to those of PROG1,
except that other functions are declared external, and only
register 2 is assigned a buffer address.

EXTRN FILEIO,SETPAN,MENU,ACTION

ENTRY MTMSUB

SUBROUT MTMSUB, INBADDR,OUTBADDR,TEBADDR, IIBADDR
MOVE #2,0UTBADDR

At this point the Qutput Buffer (pointed to by register #2)
contains various file parameters. A file control area (FCA) is
constructed using these parameters. For example, the request
type is moved from the Qutput Buffer to the FCA.

MOVE FCAREQ, (REQTYPE,#2),(4,BYTES)
FCAREQ DATA CLg'

* o .

REQTYPE EQU 14

Similarly, other fields must be moved, and relative record num-
ber must be converted to numeric.

186 SC34-0316

O

C

¥ SET UP FILE CONTROL AREA AND BUFFER.
FCAREQ, (REQTYPE,#2),(4,BYTES) REQUEST TYPE
FCADSN, (DSNAME, #2), (8,BYTES) DATA SET NAME

NUMBER OF RECS

FCARRN, (RRN,#2),FORMAT=(4,0,1I) CONVERT RRN

FCAVOL, (VOLNAME,%2),(6,BYTES) VOLUME NAME
BUFFER, (BUFFDISP,%#2),(80,BYTES) DATA BUFFER

MOVE

MOVE

MOVE FCANUM, 1

CONVTD

MOVE

MOVE
¥ FILE CONTROL AREA.
FCA EQU *
FCAREQ DATA CL4" '
FCADSN DATA cLg' '
FCANUM DATA F'lr

DATA F'o"*
FCAEOQD DATA F'o"’

DATA F'o"
FCARRN DATA F'0"’
FCAVOL DATA cL6"
¥ EQUATES FOR OUTPUT BUFFER DATA.
DSNAME EQU 0
VOLNAME EQU 8
REQTYPE EQU 14
RRN EQU 18
BUFFDISP EQU 22
EODRRN EQU 102
RCDISP EQU 106

A screen image

fields.

LISTSCRN

REQUEST TYPE
DATA SET NAME
NUMBER OF RECORDS

EOD RELATIVE RECORD NUMBER

RELATIVE RECORD NUMBER
VOLUME NAME

DATA SET NAME

VOLUME NAME

REQUEST TYPE

RELATIVE RECORD NUMBER
BUFFER DISPLACEMENT

EOD RRN DISPLACEMENT
RETURN CODE DISPLACEMENT

with which to display the file data is
retrieved, and the return code is checked. This screen is simi-
lar to the previous screens shown with the addition of two new

CALL SETPAN, (LISTSCRN), (RC)

IF

(RC;NE)'l)
CALL MENU

ENDIF

DATA

CL8'LST?®

Chapter 5. Multiple Terminal Manager 187

At this point the image depicted in SCREEN 4 is in the buffers.
Since there is no default data, the Qutput Buffer is empty. qim

SCREEN 4

DATA SET, VOLUME NAME ==>,
REQUEST (READ, WRIT, SEOD) =
RELATIVE RECORD NUMBER ==
NUMBER OF RECORDS ==>1

DATA TO BE WRITTEN:

]
v

EOD RELATIVE RECORD NUMBER ==>
RETURN CODE ==

The actual FILEIOQ operation is performed, specifying the FCA, a O
buffer, and a return code. S
CALL FILEIO, (FCA), (BUFFER), (RC)
RC DATA F'o0’
BUFFER DATA 256X'0"
Note that the buffer is 256-bytes in length (the length of an
Event Driven Executive record) even though only the first 80
bytes are used.
Now that all the file data is available, it is placed in the
Output Buffer so that it can be displayed. The data is taken
from the FCA, the buffer and return code, and concatenated so
that it may be written into the unprotected fields of the
screen image.
¥ PUT DATA INTO OUTPUT BUFFER SO IT WILL BE DISPLAYED.
MOVE (REQTYPE, #2),FCAREQ, (4,BYTES) REQUEST TYPE
MOVE (DSNAME, #2),FCADSN, (8,BYTES) DATA SET NAME
CONVTB (EOQODRRN,#2),FCAEOD,FORMAT=(4,0,I) CONV EOD RRN
CONVTB (RRN,#2),FCARRN,FORMAT=(4,0,1I) CONVERT RRN
MOVE (VOLNAME,#2),FCAVOL,(6,BYTES) VOLUME NAME
MOVE (BUFFDISP,#2),BUFFER,(80,BYTES) DATA
CONVTB (RCDISP,#2),RC,FORMAT=(4,0,1) CONV RET CODE Q:;

188 SC34-0316

The OQutput Buffer now looks as follous:

K EDX013READOOO3IRECORD 3(72 blanks)0005-001

Both Input and Qutput buffers are displayed on the screen by
the following:?

CALL ACTION
The following is an example of the displayed screen:

SCREEN 5

DATA SET, VOLUME NAME ==>K »yEDX013
REQUEST (READ, WRIT, SEOD) ==>READ

RELATIVE RECORD NUMBER ==>0003 !
NUMBER OF RECORDS ==>1

DATA TO BE MWRITTEN:

—— - —- " — - — ——— — " = - " - ——_ " ——— " ——_—_—_—————— ——————

EOD RELATIVE RECORD NUMBER ==>0005
RETURN CODE ==>0000

A call to ACTION waits for operator input followed by an ENTER
or PF key. In this case no input is desired; however, the use of
ACTION allows the user to view the screen and press ENTER after
the contents have been read. At that point the program ends.

CALL MENU

The following pages contain the applications used to perform
the example previously shoun.

The first sample application uses Event Driven Language, the
second uses COBOL, the third FORTRAN, and the fourth PL/I.

Chapter 5. Multiple Terminal Manager 189

EDL

%

*

% %
*
*
*
* %
RE
I0
RC

190

Sample Progl

EXTRN BEEP,SETPAN,MENU,ACTION, LINK
ENTRY MTMSUB
SUBROUT MTMSUB, INBADDR,OUTBADDR, TEBADDR, IIBADDR
MOVE #1, INBADDR GET INPUT BUFF ADDRESS
MOVE #2,0UTBADDR GET OUTPUT BUFF ADDRESS
BEEP UPON TERMINAL IO0.
CALL BEEP
RETRIEVE SCREEN IMAGE AND ABORT IF ERROR.
CALL SETPAN, (REQSCRN)J, (RC) GET SCREEN IMAGE
IF (RC,NE,-1) 0K?
CALL MENU NO
ENDIF
DISPLAY SCREEN IMAGE, READ OPERATOR RESPONSE.
CALL ACTION
MOVE DATA FROM INPUT BUFFER TO OUTPUT BUFFER (106 BYTES).
MOVE (0,#2),(0,#13,(106,BYTES)
LINK TO PROGRAM WHICH WILL PERFORM FILE IO.
CALL LINK, (I0OPROG)
ABORT IF LINK FAILS.
CALL MENU
2 36 36 X 26 36 3 3 3 3 I 3 3 I I I I K K I 3 H I H K K H K K X K I KKK I I K I KK K KK I K I K I KKK
*
DATA ITEMS *
%
3 % 363 3 3 36 2 9 36 X 2 3 36 3 3 3 X 2 K K K K I K I3 K K K I I KK KKK K K I K KK I K H KK
QSCRN DATA CL3'REQ"’ NAME OF REQUEST SCREEN
PROG DATA CL8'PROG2' NAME OF IO PROGRAM
DATA F'0" RETURN CODE
ENDPROG
END
SC34-0316

e

\r

EDL Sample Prog2

EXTRN FILEIO,SETPAN,MENU,ACTION
ENTRY MTMSUB
SUBROUT MTMSUB, INBADDR,OUTBADDR, TEBADDR, IIBADDR

MOVE #2,0UTBADDR GET O/P BUFFER ADDR
¥ SET UP FILE CONTROL AREA AND BUFFER.
MOVE FCAREQ, (REQTYPE,#2),(4,BYTES) REQST TYPE
MOVE FCADSN, (DSNAME, #2), (8,BYTES) DATA SET NAME
MOVE FCANUM, 1 NUMBER OF RECS
CONVTD FCARRN, (RRN,#2),FORMAT=(4,0,I) CONVERT RRN
MOVE FCAVOL, (VOLNAME,#2),(6,BYTES) VOLUME NAME
MOVE BUFFER, (BUFFDISP,#2),(80,BYTES) DATA BUFFER
* RETRIEVE LISTING SCREEN AND ABORT IF ERROR.
CALL SETPAN, (LISTSCRN), (RC)
IF (RC,NE,-1) GOT SCREEN IMAGE 0K?
CALL MENU NO
ENDIF
PERFORM FILE 1IO.
CALL FILEIO, (FCA), (BUFFER), (RC)
¥ PUT DATA INTO OUTPUT BUFFER SO IT WILL BE DISPLAYED.
MOVE (REQTYPE,#2),FCAREQ, (4,BYTES) REQUEST TYPE
MOVE (DSNAME, #2),FCADSN, (8,BYTES) DATA SET NAME

CONVTB (EODRRN,#2),FCAEOD,FORMAT=(4,0,1I) CONV EOD RRN
CONVTB (RRN,#2),FCARRN,FORMAT=(4,0,1) CONVERT RRN

MOVE (VOLNAME,#2),FCAVOL, (6,BYTES) VOLUME NAME

MOVE (BUFFDISP,#2),BUFFER,(80,BYTES) DATA

CONVTB (RCDISP,#2),RC,FORMAT=(4,0,1) CONV RET CODE
¥ DISPLAY SCREEN IMAGE AND DATA.

CALL ACTION
¥ END PROGRAM.

CALL MENU
I I K, KKK I I I KKK I K KK I I KK I K I K KK I K I I K K K K K KK KK
* *
* DATA ITEMS *
* *

K I I I I, I I I, I, I I I K I I I K I K I I I I KN NK NI N KX
*

LISTSCRN DATA CL8'LST' NAME OF LISTING SCREEN

RC DATA F'0’ RETURN CODE

BUFFER DATA 256X'0" DATA BUFFER

¥ FILE CONTROL AREA.

FCA EQU *

FCAREQ DATA cLg REQUEST TYPE

FCADSN DATA cLa* ' DATA SET NAME

FCANUM DATA Frir NUMBER OF RECORDS
DATA F'o?

FCAEOD DATA F'0" EOD RELATIVE RECORD NUMBER
DATA F'o’

FCARRN DATA F'o" RELATIVE RECORD NUMBER

FCAVOL DATA cL6" VOLUME NAME

Chapter 5. Multiple Terminal Manager 191

EDL Sample Prog2 (continued)

¥ EQUATES FOR OUTPUT BUFFER DATA. Qi)
DSNAME EQU 0 DATA SET NAME , =
VOLNAME EQU 8 VOLUME NAME
REQTYPE EQU 14 REQUEST TYPE
RRN EQU 18 RELATIVE RECORD NUMBER
BUFFDISP EQU 22 BUFFER DISPLACEMENT
EODRRN EQU 102 EOD RRN DISPLACEMENT
RCDISP EQU 106 RETURN CODE DISPLACEMENT
ENDPROG
END

O

192 SC34-0316

COBOL Sample Progl

IDENTIFICATION DIVISION.
PROGRAM-1ID.
MTMSUB.
*
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
IBM-S1.
OBJECT-COMPUTER.
IBM-S1.

DATA DIVISION.
WORKING-STORAGE SECTION.

77 REQUEST-SCREEN PIC X(8) VALUE "REQ ".
77 I0-PROGRAM PIC X(8) VALUE "PROGZ2 ".
77 RC PIC S99 USAGE IS COMPUTATIONAL.

LINKAGE SECTION.
01 INPUT-BUFFER.
05 DATA-SET-NAME PIC X(8).
05 VOLUME-NAME PIC X(6).
05 REQUEST-TYPE PIC X(4).
05 RELATIVE-RECORD-NUMBER PIC 9999.
05 BUFFER-DATA PIC X(80).
01 OUTPUT-BUFFER.
(:? 05 DATA-SET-NAME PIC X(8).
/ 05 VOLUME-NAME PIC X(6).
05 REQUEST-TYPE PIC X(&).
05 RELATIVE-RECORD-NUMBER PIC 9999.
05 BUFFER-DATA PIC X(80).

05 EOD-RRN PIC 9999.
05 RETURN-CODE PIC 9999.
77 TEB PIC X(100).
77 11IB PIC 99 COMP.

Chapter 5. Multiple Terminal Manager 193

COBOL Sample Progl (continued)

194

*
PROCEDURE DIVISION
USING INPUT-BUFFER, OUTPUT-BUFFER, TEB, IIB.
BEGIN.
¥ BEEP UPON TERMINAL IO.
CALL "BEEP™.
¥ RETRIEVE SCREEN IMAGE AND ABORT IF ERROR.
CALL "SETPAN"™ USING REQUEST-SCREEN, RC.
IF RC IS NOT EQUAL TO -1
CALL "MENUT™.
DISPLAY SCREEN IMAGE, READ OPERATOR RESPONSE.
CALL "ACTION™.
MOVE DATA FROM INPUT BUFFER TO OUTPUT BUFFER.
MOVE CORRESPONDING INPUT-BUFFER TO OUTPUT-BUFFER.
¥ LINK TO PROGRAM WHICH WILL PERFORM FILE IO.
CALL Y"LINK™ USING IO-PROGRAM.
¥ ABORT IF LINK FAILS.
CALL "MENUT™.
RETURN-POINT.
EXIT PROGRAM.

X

k3

SC34-0316

A\
J

“

-

»

COBOL Sample Prog2
IDENTIFICATION DIVISION.
PROGRAM-ID
MTMSUB.
*
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
IBM-S1.
OBJECT-COMPUTER.
IBM-S1.

DATA DIVISION.
WORKING-STORAGE SECTION.

77 LIST-SCREEN PIC X(8) VALUE "LST
77 RC PIC S99 USAGE IS COMP.
77 BUFFER PIC X(256).

01 FILE-CONTROL-AREA.
05 REQUEST-TYPE PIC X(4).
05 DATA-SET-NAME PIC X(8).

05 NUMBER-OF-RECORDS PIC S999 USAGE COMP
05 FILLER PIC S99.
05 EOD-RRN PIC S999 USAGE IS COMP.
05 FILLER PIC S99.
05 RELATIVE-RECORD-NUMBER PIC S999 USAGE
(j) 05 VOLUME-NAME PIC X(6).
LINKAGE SECTION.
01 INPUT-BUFFER PIC X(1920).

01 OUTPUT-BUFFER.
05 DATA-SET-NAME PIC X(8).
05 VOLUME-NAME PIC X(6).
05 REQUEST-TYPE PIC X(4).
05 RELATIVE-RECORD-NUMBER PIC 9999.
05 BUFFER-DATA PIC X(80).

05 EOD-RRN PIC 9999.
05 RETURN-CODE PIC 9999.
77 TEB PIC X(100).
77 11IB PIC 99 COMP.

Chapter 5. Multiple Terminal Manager

VALUE 1.

COMP.

195

COBOL Sample Prog2 (continued)

*
PROCEDURE DIVISION
USING INPUT-BUFFER, OUTPUT-BUFFER, TEB, IIB.
BEGIN.
% SET UP FILE CONTROL AREA.
MOVE CORRESPONDING OUTPUT-BUFFER
TO FILE-CONTROL-AREA.
MOVE BUFFER-DATA TO BUFFER.
RETRIEVE LISTING SCREEN AND ABORT IF ERROR.
CALL "SETPAN"™ USING REQUEST-SCREEN, RC.
IF RC IS NOT EQUAL TO -1
CALL "MENU".
PERFORM FILE IO.
CALL "FILEIO"™ USING FILE-CONTROL-AREA, BUFFER, RC.
PUT DATA INTO OUTPUT BUFFER SO IT WILL BE DISPLAYED.
MOVE CORRESPONDING FILE-CONTROL-AREA
TO OUTPUT-BUFFER.
MOVE BUFFER TO BUFFER-DATA OF OUTPUT-BUFFER.
MOVE RC TO RETURN-CODE OF OQUTPUT-BUFFER.
DISPLAY SCREEN IMAGE.
CALL "ACTION".
END PROGRAM.
CALL "MENU™.
RETURN-POINT.
EXIT PROGRAM.

X

b 3

X

X

X

196 SC34-0316

FORTRAN Sample Progl

C

*PROCESS NOCMPAT
SUBROUTINE MTMSUB(INBUFF, OUTBUF, TEB, IIB)
IMPLICIT INTEGER (A-Z)
INTEGER TEB(50), IIB
INTEGER*2 INBUFF(960), OUTBUF(512)
EXTERNAL BEEP,SETPAN,ACTION,MENU, LINK

REAL*8 REQSCR /'REQ "v/, I0PROG /'PROG2 '/
INTEGER RC
c
C BEEP UPON TERMINAL IO.
c
CALL EDX(BEEP, 0)
c
C RETRIEVE SCREEN AND ABORT IF ERROR.
c
CALL EDX(SETPAN, 2, IADDR(REQSCR), IADDR(RC))
IF (RC.NE.-1) CALL EDX(MENU, 0)
c
C DISPLAY SCREEN IMAGE, READ OPERATOR RESPONSE.
c
CALL EDX(ACTION, 0)
c
C MOVE DATA FROM INPUT BUFF TO OUTPUT BUFF.(106 BYTES)
c
(j? DO 10 I=1,53
OUTBUF(I) = INBUFF(I)
10 CONTINUE
c
C LINK TO PROGRAM WHICH WILL PERFORM FILE IO.
c
CALL EDX(LINK, 1, IADDRC(IOPROG))
c
C ABORT IF LINK FAILS.
c
CALL EDX(MENU, 0)
RETURN
END

Chapter 5. Multiple Terminal Manager 197

FORTRAN Sample Prog2

198

*¥PROCESS NOCMPAT
SUBROUTINE MTMSUB(INBUFF, OUTBUF, TEB, IIB)
IMPLICIT INTEGER (A-2Z)

INTEGER TEB(50), IIB

INTEGER*2 INBUFF(960), OUTBUF(512)
EXTERNAL FILEIO,SETPAN,ACTION,MENU
EXTERNAL $I2COT,$I2CIN

INTEGER BUFFER(128)

REAL*8 LSTSCR /'LST v/

INTEGER RC, FOURs/4/, RES/0/

C FILE CONTROL AREAS
INTEGER FCA(14)

C REQUEST TYPE
EQUIVALENCE (REQ,FCAC(1)),(REQL1,FCA(C1)),(REQ2,FCA(2))
INTEGER%*4 REQ
INTEGER*2 REQl, REQ2

C DATA SET NAMES
EQUIVALENCE (DSN, FCA(3))

INTEGER DSN(4)

C NUMBER OF RECORDS
EQUIVALENCE (NUMREC, FCA(7))
INTEGER NUMREC /1/

C END OF DATA RELATIVE RECORD NUMBER
EQUIVALENCE (EODRRN, FCA(9))
INTEGER EODRRN

C RELATIVE RECORD NUMBER
EQUIVALENCE (RRN, FCAC(l1))

INTEGER RNN

C VOLUME NAME ‘
EQUIVALENCE (VOL, FCAC(12))
INTEGER VOL (3)

CALL EDX(ACTION, 0)

c
C SET UP FILE CONTROL AREA.
c
DO 10 I=1,6
10 DSN(I) = OUTBUF(I)
DO 20 I=1,3
20 VOL(I) = OUTBUF(I+4)
REQl1 = OUTBUF(8)
REQ2 = OQUTBUF(9)
c
C CONVERT RELATIVE RECORD NUMBER TO NUMERIC
c
CALL $I2CIN(RRN,FOUR,OUTBUF(10),RES,RES,RES,RES)
DO 30 I=1,40
BUFFER(IJ)= OUTBUF(I+11)
SC364-0316

TN

N

C

FORTRAN Sample Prog2 (continued)

30
c

CONTINUE

C RETRIEVE LISTING SCREEN AND ABORT IF ERROR.

c

OO0

OO0

40

50

c

PER

PUT

CALL EDX(SETPAN, 2, TIADDR(LSTSCR), IADDR(RC))
IF (RC.NE.-1) CALL EDX(MENU, 0)

FORM FILE IO.

CALL EDX(FILEIO,3,IADDR(FCA),IADDR(BUFFER),IADDR(RC))
DATA INTO OUTPUT BUFFER SO THAT IT IS DISPLAYED.

DO 40 I=1,4
OUTBUF(I)= DSN(I)

CONTINUE

DO 50 I=1,3
OUTBUF(I+4) = VOL(I)

CONTINUE
OUTBUF(8) = REQl
OUTBUF(9) = REQ2

C CONVERT RELATIVE RECORD NUMBER TO EBCDIC

c

0

OO0 OO0 OO

OO0

CON

CON

DIS

END

CALL $I2COT(RRN,FOUR,OUTBUF(10),RES,RES,RES,RES)
DO 60 I=1,40

OUTBUF(I+11) = BUFFER(I)
CONTINUE
VERT EOD RELATIVE RECORD NUMBER TO EBCDIC
CALL $I2COTC(EODRRN,FOUR,OUTBUF(52),RES,RES,RES,RES)
VERT RETURN CODE TO EBCDIC
CALL $I2COT(RC,FOUR,OUTBUF(54),RES,RES,RES,RES)
PLAY SCREEN IMAGE.

CALL EDXCACTION, 0)

PROGRAM.

CALL EDX(MENU, 0)

RETURN
END

Chapter 5. Multiple Terminal Manager 199

| PL/I Sample Progl

200

MTMSUB: PROCEDURE (INPUT_BUFFER,

OUTPUT_BUFFER,

TEB,
IIB);
DECLARE
01 INPUT_BUFFER,
05 DATA_SET_NAME CHARACTER (8),
05 VOLUME_NAME CHARACTER (6),
05 REQUEST_TYPE CHARACTER (4),
05 RELATIVE_RECORD_NUMBER CHARACTER (4),
05 BUFFER_DATA CHARACTER (80);
DECLARE
01 OUTPUT_BUFFER,
05 DATA_SET_NAME CHARACTER (8),
05 VOLUME_NAME CHARACTER (6),
05 REQUEST_TYPE CHARACTER (4),
05 RELATIVE_RECORD_NUMBER PICTURE '9999',
05 BUFFER_DATA CHARACTER (80),
05 EOD_RRN PICTURE '9999"',
05 RETURN_CODE PICTURE 'S999';
DECLARE
(TEB, IIB) BINARY FIXED (15);
DECLARE
(SETPAN, ACTION, BEEP, LINK, MENU) ENTRY;
DECLARE

REQUEST_SCREEN CHARACTER (8) INITIAL

DECLARE

PROGRAM_NAME CHARACTER (8) INITIAL

DECLARE

RETURN_CODE BINARY FIXED (15) STATIC;

SC34-0316

('REQ') STATIC;

("PROG2') STATIC;

N
S

o

C

| PL/I Sample Progl (continued)

/% BEEP UPON TERMINAL I10. %/
CALL BEEP;

/% RETRIEVE SCREEN IMAGE AND ABORT IF ERROR. %/
CALL SETPAN (REQUEST_SCREEN, RETURN_CODE);
IF RETURN_CODE -= -1
THEN CALL MENU;

/% DISPLAY SCREEN IMAGE, READ OPERATOR RESPONSE. %/
CALL ACTION;

/% MOVE DATA FROM INPUT BUFFER TO OUTPUT BUFFER x/
OUTPUT_BUFFER.DATA_SET_NAME = INPUT_BUFFER.DATA_SET_NAME;
OUTPUT_BUFFER.VOLUME_NAME = INPUT_BUFFER.VOLUME_NAME;
OUTPUT_BUFFER.REQUEST_TYPE = INPUT_BUFFER.REQUEST_TYPE;
OUTPUT_BUFFER.RELATIVE_RECORD_NUMBER

= INPUT_BUFFER.RELATIVE_RECORD_NUMBER:;
OUTPUT_BUFFER.BUFFER_DATA = INPUT_BUFFER.BUFFER_DATA;

/% LINK TO PROGRAM WHICH WILL PERFORM FILE IO0. x*/
CALL LINK (PROGRAM_NAME);

/% ABORT IF LINK FAILS. x/
CALL MENU;

END;

Chapter 5. Multiple Terminal Manager 201

| PL/T sample Prog2

/f\»\
MTMSUB: PROCEDURE (INPUT_BUFFER, g
OUTPUT_BUFFER,
TEB,
PF_KEY);
DECLARE
01 OUTPUT_BUFFER,
| 05 DATA_SET_NAME CHARACTER (8),
05 VOLUME_NAME CHARACTER (6),
05 REQUEST_TYPE CHARACTER (4),
05 RELATIVE_RECORD_NUMBER PICTURE '9999',
05 BUFFER_DATA CHARACTER (80),
05 EOD_RRN PICTURE '9999"',
05 RETURN_CODE PICTURE 'S$999';
DECLARE
(INPUT_BUFFER, TEB, PF_KEY)
BINARY FIXED (15);
DECLARE
(SETPAN, ACTION, FILEIO, MENU) ENTRY;
DECLARE
RETURN_CODE BINARY FIXED (15) STATIC;
// \
DECLARE \
01 BUFFER STATIC,
05 FIRST_80 CHARACTER (80),
05 LAST_176 CHARACTER (176);
DECLARE
LIST_SCREEN CHARACTER (8) INITIAL ('LST') STATIC;
DECLARE
01 FILE_CONTROL_AREA STATIC,
05 REQUEST_TYPE CHARACTER (4),
05 DATA_SET_NAME CHARACTER (8),
05 NUMBER_OF_RECORDS BINARY FIXED (15) INITIAL (1),
05 FILLER1 BINARY FIXED (15),
05 EOD_RRN BINARY FIXED (15),
05 FILLER2 BINARY FIXED (15),
05 RELATIVE_RECORD_NUMBER BINARY FIXED (15),
05 VOLUME_NAME CHARACTER (69;

202 SC34-0316

| PL/I Sample Prog2 (continued)

(:) /% SET UP FILE CONTROL AREA., x/
FILE_CONTROL_AREA.REQUEST_TYPE =
OUTPUT_BUFFER.REQUEST_TYPE;
FILE_CONTROL_AREA.DATA_SET_NAME =
OUTPUT_BUFFER.DATA_SET_NAME;
FILE_CONTROL_AREA.VOLUME_NAME =
OUTPUT_BUFFER.VOLUME_NAME;
FILE_CONTROL_AREA.RELATIVE_RECORD_NUMBER =
OUTPUT_BUFFER.RELATIVE_RECORD_NUMBER:;
BUFFER.FIRST_80 = OUTPUT_BUFFER.BUFFER_DATA;

/% RETRIEVE LISTING SCREEN AND ABORT IF ERROR. */
CALL SETPAN (LIST_SCREEN, RETURN_CODE);
IF RETURN_CODE -= -1
THEN CALL MENU;

/% PERFORM FILE I0. %/
CALL FILEIO (FILE_CONTROL_AREA, BUFFER, RETURN_CODE);

/% MOVE DATA TO OUTPUT BUFFER SO IT WILL BE DISPLAYED. x/
OUTPUT_BUFFER.DATA_SET_NAME =
FILE_CONTROL_AREA.DATA_SET_NAME;
OUTPUT_BUFFER.VOLUME_NAME =
FILE_CONTROL_AREA.VOLUME_NAME;
OUTPUT_BUFFER.REQUEST_TYPE =
(j? FILE_CONTROL_AREA.REQUEST_TYPE;
/ OUTPUT_BUFFER.RELATIVE_RECORD_NUMBER
= FILE_CONTROL_AREA.RELATIVE_RECORD_NUMBER;
OUTPUT_BUFFER.BUFFER_DATA = BUFFER.FIRST_80;
OUTPUT_BUFFER.EOD_RRN = FILE_CONTROL_AREA.EOD_RRN;
OUTPUT_BUFFER.RETURN_CODE = RETURN_CODE;

/% DISPLAY SCREEN IMAGE. x*/
CALL ACTION;

/% END PROGRAM. x/
CALL MENU;

| END;

Chapter 5. Multiple Terminal Manager 203

204

SC34-0316

AN

«

CHAPTER 6. REMOTE MANAGEMENT UTILITY

The Event Driven Executive Remote Management Utility provides
facilities for the management of a remote Series/1. The remote
Series/]1 is controlled by a host system. The utility waits for
a request sent from the host, and then performs the particular
function as specified by the request. Through implementation
of this utility, the concept of distributed processing can be
realized.

This chapter describes these facilities and their operation,
discusses the interface requirements, and provides information
about the installation and execution of the Remote Management
Utility.

The Remote Management Utility runs as a program in the remote
Series/1 and supports such functions as file allocation and
transfer, and remote operator interaction, thus minimizing the
need for an operator at the remote Series/1.

The remote Series/1l is controlled by the host system via a
point-to-point or multipoint binary synchronous communication
line using the Event Driven Executive Binary Synchronous Com-
munication Access Method (BSCAM).

Remote Host
Series/1 System
Remote Yoy Host
Management / Program
Utility / (

A user—uwritten host program communicates with the Remote Man-
agement Utility via a record exchange. Through this record
exchange, the host requests function execution on the remote
system. Any system supporting BSCAM-compatible binary synchro-
nous line protocol including transparency mode, and the Remote
Management Utility record exchange interface may serve as the
host system.

Chapter 6. Remote Management Utility 205

REMOTE MANAGEMENT FUNCTIONS

The utility provides various remote management functions that
can be invoked through a request issued by the host progran.
Listed here is a brief description of the functions provided by
the utility:

ALLOCATE

DELETE

DUMP

EXEC

IDCHECK

PASSTHRU

RECEIVE

SEND

SHUTDOWN

WRAP

Allocate a disk/diskette data set on the Series/1
Delete a disk/diskette data set on the Series/1

Dump storage to a disks/diskette data set on the
Series/1

Initiate execution of a program on the Series/1

Verify identification between the host and the
Remote Management Utility

Establish an interactive connection between the host
and an application or utility on the remote Series/1

Receive data from the host and write it to an
existing disk/diskette data set on the Series/1

Read a disk/diskette data set on the Series/1 and
transmit it to the host

Terminate the Remote Management Utility and free up
any allocated resources; may also initiate execution
of another program

Transmit a block of data just received back to the
host

The section "Remote Management Utility Functional Operation"
on page 213 describes in detail these functions and how they

operate.

206 SC34-0316

O

HARDWARE REQUIREMENTS

The Remote Management Utility requires approximately 7K bytes
of storage plus buffer space. The default buffer space is 1024
bytes. In addition, the following are the minimum require-
ments:
J 4952, 4953, or 4955 processor (64K minimum recommended)
. One of the following BSC features:

- Single-line adapter (#2074 or #2075)

- Multiline controller (#2093) and one or two ,4-line
adapters (#2094)

. Point—-to-point (leased or suwitched) or multipoint (remote
Seriess/1 as a tributary) binary synchronous communications
line

. Disk or diskette
- Disk (4962 or 4963)

- Diskette (4964 or 4966)

SOFTWARE REQUIREMENTS

The Remote Management Utility executes with Event Driven Exec-
utive Version 2.0. The Event Driven Executive utilities are
required for the installation-of the Remote Management Utili-
ty. A user—-written program is required on the host to communi-
cate with the Remote Management Utility.

REMOTE MANAGEMENT UTILITY INTERFACE

The Remote Management Utility requires a user-written host
program that will provide inter—-program communication betuween
the host system and the remote Series/1l. The Remote Management
Utility interface is comprised of tuwo levels of communication:
the binary synchronous communication (BSC) protocol, and a
Remote Management Utility record exchange between the host
system and the remote Seriess/1. A feature of the record
exchange interface provides data-record blocking operations.

Chapter 6. Remote Management Utility 207

Binary Synchronous Communication Protocol

The Remote Management Utility uses the BSC protocol as defined
by the Event Driven Executive BSCAM. A general introduction to
binary synchronous communications and details of the line pro-
tocol can be found in General Information — Binary Synchronous

Communications, GA27-3004. Specific implementations of BSC
with the Remote Management Utility are as follows:

. The utility sends EOT as "abort". The host program should
also send EOT to abort.

. The utility will not time out when receiving data. The host
- program may send TTD, which will be responded to by NAK.

. EOT is sent whenever the utility expects a delay. The util-
ity will not send TTD in the event of unforeseen delays.

. Transparent EBCDIC mode is used exclusively. The host must
be capable of communicating with transparent EBCDIC.

. Point-to-point communications (leased or switched) or
multipoint communications are supported. If multipoint
communications are wused, the wutility functions as a
tributary on the multipoint line.

Record Exchange

The second level of communication of the Remote Management
Utility interface is that of a record exchange between the host
and the remote Series/l1.

Records are transmitted between the host system and the remote
Series/1 in a predefined format. As the content of the record
determines the function to be performed, this predefined for-
mat ensures that all necessary information is properly commu-
nicated between the host system and the remote. The host is
responsible for formatting records sent to the remote
Series/1l, and processing records received from the remote
Seriess/1. After receiving a function request, the utility
sends a record containing a status code to the host signaling
the result of the function execution.

208 SC34-0316

N

Record Format

Each Remote Management Utility record has 4 bytes at the begin-
ning, that are referred to as the header. The first 2 bytes of
the header contain the BSC control characters DLE STX, and are
represented as X'1002'. The third byte contains the character
'X', identifying it as an Event Driven Executive Remote Manage-
ment Utility record. The fourth byte contains a character code
identifying the record type. Figure 13 lists the various
record types. The remainder of the record, or the record exten-
sion, is determined by the record type as specified in the
header. There are 10 types of record extensions for a Request
type record. Figure 14 on page 210 illustrates the structure of
the Remote Management Utility record scheme,

The section at the end of this chapter, "CDRRM Equate Listing"™
on page 292 illustrates the various record types, including the
extensions. This set of equates defining the Remote Management
Utility record is obtainable through copy code "COPY CDRRM".

Code Type Usage
R Request Sent by host to request a func-
tion
S Status Sent by either system to indi-

cate success or failure of a
function

C Count Sent by the remote Series/1
after transfer of a data set, to
indicate the number of data

records processed

D Data Used for transfer of a data set

P Passthru Used to pass data and data
requests between the host and an
application on the remote
Series/1

Figure 13. Remote Management Utility Record Types

Chapter 6. Remote Managément Utility 209

4—byte header

WRAP
Request

[]

U (7 other requests)

DELETE

1002 X
(hex)

ALLOCATE

Request

Figure 14.

210

Status
Record

Count
Record

Data
Record

No Data

Program End

Request Data

Text or PFK

Passthru

Record

SC34-0316

Remote Management Utility Record Scheme

O

U

Record Blocking

On data transfer operations (SEND and RECEIVE), the Remote Man-
agement Utility performs two types of record blocking, which
are performed independently of one another, and thus, may be
combined. A field in the SEND and RECEIVE record header dynam-
ically determines the number of 80-byte or 256-byte records to
be sent over the BSC line per transmission. In addition, if
data sets are specified as containing 80-byte records (as in
Event Driven Executive source files), the redundant 48 bytes
per line of text are not transmitted.

The following example illustrates a 256-byte record containing
"text":

80 bytes 48 bytes 80 bytes 48 bytes
TEXT (unused) TEXT (unused)

The use of blocking nill increase the efficiency with which the
communications line is used. This is for two reasons:

. Blocking decreases the amount of data transmitted. The
4-byte header, along with other communications control
information is sent only once per block.

. Blocking decreases the number of delays associated with
each message sent over a communications line.

Provided sufficient storage resources are available, it is
advantageous to use large block sizes. However, the point
occurs uwhen, due to errors on the communications line, error
recovery makes use of large blocks less efficient.

Buffer Allocation

The Remote Management Utility contains a constant that deter-
mines the amount of storage to allocate for buffers. Records
received by the utility may not exceed this buffer length. If a
record is received greater than this length, a Status record
indicating this condition (BSC I/0 failure) is sent to the host
and the function in progress (if any) 1is terminated. The
default buffer size is 1K (1024 bytes). The section "Modifying
Defaults” on page 283 describes how this buffer size may be
modified.

Chapter 6. Remote Management Utility 211

Parameter Passing

The EXEC, PASSTHRU, and SHUTDOWN functions of the Remote Man-
agement Utility allow programs to be loaded for execution if
specified on the request. Many programs require parameters to
be passed to them in the form of a character field. An example
of some of the programs requiring parameters are S$EDXASH,
$LINK, and SUPDATE, any of which may be specified on the
request. The format of the parameter(s) to be passed 1is
described in program preparation via the $JOBUTIL utility in
Utilities, Operator Commands, Program Preparation, Messages

and Codes.

The parameter is coded for $JOBUTIL on the PARM statement in
columns 10 through 72. To provide the equivalent information on
the PASSTHRU request for example, you should code a parameter
of 64 characters Wwith the same content as columns 10 through 72
of the PARM statement. The length of the parameter is 32 words.

The following two examples illustrate how parameters would be
passed to $EDXASM by way of the $JOBUTIL utility and the Remote
Management Utility via a PASSTHRU request:

$JOBUTIL statements:

PROGRAM $EDXASM, ASMLIB

PARM ERRORS *
DS MYSRC,MYVOL
DS ASMHWORK

DS ASMOBJ

EXEC

PASSTHRU Request:

RMHBSCC DATA X'1002'

RMHID DATA C'X?

RMHTYP DATA C'R'

RMREQ DATA F'12?
DATA H'0"

RMPRPTN DATA H'0"
RMPRPGM DATA CL8'S$SEDXASHM®
RMPRVOL DATA CL6'"ASMLIB'
RMPRLFS DATA F'0°
RMPRBLK DATA F'0°
RMPRPRM# DATA F'32°

RMPRPRM DATA CL64"ERRORS * '
RMPRDS# DATA F'3°
RMPRDS DATA CL14'MYSRC MYvVQL"

DATA CL14'ASMWORK'
DATA CL14'ASMOBJ'

212 SC34-0316

C

™
/

-

C

REMOTE MANAGEMENT UTILITY FUNCTIONAL OPERATION

This section describes the remote management functions in
detail, including the communications flow and record formats
for each function. The section "Sample Host Programs"™ on page
259 illustrates several host programs which perform some of the
functions provided by the Remote Management Utility.

The examples in this section of the communications flow between
the host and the remote Series/1 reflect the BSCAM level of
access used by the host program and the wutility. The DATA
statements in these examples reflect code passed to the utility
from the host program. The responses sent to the host from the
utility are preceded by equal signs (=), Additional detail on
the access method and BSC functions can be found in "Chapter 3.
Binary Synchronous Communications"™ on page 35.

Chapter 6. Remote Management Utility 213

ALLOCATE Function

The ALLOCATE function requests the utility to allocate a
disk/diskette data set on the remote Series/1.

The host sends the remote Series/1 a Request record with the
ALLOCATE function specified. After receiving and executing the
ALLOCATE request, the utility sends a Status record to the host
indicating the results of the function execution. The utility
then waits for a new request from the host.

The ALLOCATE function uses the $DISKUT3 utility in performing
its function. Thus, data sets with the names: $EDXNUC,
$$EDXVOL, and $$EDXLIB may not be allocated with the ALLOCATE
function.

Required Field Descriptions

Specify the following fields for the ALLOCATE function:

RMHBSCC A 2-byte hexadecimal field containing the BSC control
characters DLE STX, specified as X'1002"'.

RMHID A 1-byte alphameric field containing the header 1ID
'X', identifying the record as an Event Driven Execu-—-
tive Remote Management Utility record.

RMHTYP A l-byte alphameric field identifying the header
type. This field contains the character '"R', specify-
ing a Request record type.

RMREQ A 2-byte numeric field specifying the request type.
For an ALLOCATE request, this field contains the num-
ber 2.

RMADSN An 8-byte alphameric field containing the name of the
data set to be allocated.

RMAVOL A 6-byte alphameric field specifying the name of the
volume on which the data set is to be allocated. If
RMAVOL is blank, the volume name defaults to the IPL
volume.

RMANREC A 4-byte (double word) numeric field containing the

number of 256-byte records to be allocated for the
data set. Only the second word of this field is used.

2164 SC34-0316

RMADST A 2-byte numeric field identifying the type of data
set to be allocated. Specify one of the following
types:

0 User defined
1 Data
3 Program

Figure 15 illustrates the host-remote interaction for the
ALLOCATE function. In the example, the host requests a data set
named "MYDATA"™ to be allocated on the volume "MYVOL". The data
set type is 1 (data) and is to contain ten 256-byte records. The
remote sends a status of -1 (successfull) to the host, and the
operation is completed.

Host Program Host Remote

Write Initial - Request ENQ ——=——-- >
{mmmm——= ACKx

RMHBSCC DATA X'1002'" TEXT -—-=-—-——- >

RMHID DATA C'X?

RMHTYP DATA C'R'

RMREQ DATA F'2'

RMADSN DATA CL8'MYDATA"’
RMAVOL DATA CL6'MYVOL®
RMANREC DATA DB'1l0?
RMADST DATA F'1?

o e e e e ACK*
Write End EOT —-——-—w- >
Read Initial - Status Lmmmmm—— ENQ
ACK% —~————w- >
RMHTYP="'S" D TEXT
RMSREQ=2
RMSFN=-1
Read Continue - EOQOT ACK¥ ———e——-— >
{mmmmom—— EOT

Figure 15. Communications Flow for the ALLOCATE Function

Chapter 6. Remote Management Utility 215

DELETE Function

The DELETE function requests the utility to delete a
disk/diskette data set on the remote Series/1.

The host sends the remote Series/1 a Request record with the
DELETE function specified. After receiving and executing the
DELETE request, the utility sends a Status record to the host
indicating the results of the function execution. The utility
then waits for a new request from the host.

The DELETE function uses the $DISKUT3 utility in performing its

function. Thus, data sets with the names: S$EDXNUC, $$EDXVOL,
and $$EDXLIB may not be deleted with the DELETE function.

Required Field Descriptions

Specify the following fields for the DELETE function:

RMHBSCC A 2-byte hexadecimal field containing the BSC control
characters DLE STX, specified as X'1002"'.

RMHID A 1l-byte alphameric field containing the header 1ID
*X', identifying the record as an Event Driven Execu-
tive Remote Management Utility record.

RMHTYP A 1-byte alphameric field identifying the header
type. This field contains the character "R', specify-
ing a Request record type.

RMREQ A 2-byte numeric field specifying the request type.
For a DELETE request, this field contains the number
3.

RMDDSN An 8-byte alphameric field containing the name of the
data set to be deleted.

RMDVOL A 6-byte alphameric field specifying the name of the
volume that contains the data set to be deleted. If
RMDVOL is blank, the volume name defaults to the IPL
volume.

216 SC34-0316

RN

./

o

Figure 16 illustrates the host-remote interaction for the
DELETE function. In the example, the host specifies a data set
named "MYDATA" to be deleted from the volume "MYVOL". The
remote sends a status of -1 (successful) to the host, and the
operation is completed.

Host Program Host Remote

Write Initial - Request ENQ ——————— >
oo ACKx

RMHBSCC DATA X'l1002" TEXT ——==——- >

RMHID DATA C'X?

RMHTYP DATA C'R'

RMREQ DATA F'3?

RMDDSN DATA CL8'MYDATA'
RMDVOL DATA CL6'MYVOL'

{emmm ACK %
Write End EOT —=————- >
Read Initial - Status mmmm——— ENQ
ACK¥*¥ —=————— >
RMHTYP="'S" L TEXT
RMSREQ=3
RMSFN=-1
Read Continue - EOT ACK¥ ——————— >
<mmmm——- EOT

Figure 16. Communications Flow for the DELETE Function

Chapter 6. Remote Management Utility 217

DUMP Function

The DUMP function requests the utility to dump an Event Driven
Executive storage partition to a disks/diskette data set on the
remote Series/1.

The host sends the remote Series/! a Request record with the
DUMP function specified. After receiving and executing the
DUMP request, the utility sends a Status record to the host
indicating the results of the function execution. The utility
then waits for a new request from the host.

Required Field Descriptions

Specify the following fields for the DUMP function:

RMHBSCC A 2-byte hexadecimal field containing the BSC
control characters DLE STX, specified as X'1002"'.

RMHID A l-byte alphameric field containing the header ID
*X', identifying the record as an Event Driven Exec—
utive Remote Management Utility record.

RMHTYP A l-byte alphameric field identifying the header
type. This field contains the character '"R', speci-
fying a Request record type.

RMREQ A 2-byte numeric field specifying the request type.
For a DUMP request, this field contains the number 4.

RMDPDSN An 8-byte alphameric field containing the name of a

previously allocated data set into which the storage
of the partition is to be dumped.

RMDPVOL A 6-byte alphameric field specifying the name of the
volume containing the dump data set. If RMDPVOL is
blank, the volume name defaults to the IPL volume.

filler A l-byte reserved field (unused).

RMDPPTN A l-byte numeric field specifying the partition to
be dumped. Specify one of the following:

-1 Remote Management Utility partition
1-8 Specific partition

218 SC34-0316

N
7

Figure 17 illustrates the host—-remote interaction for the DUMP

function. In the example,
dumped to the data set "MYDATA"

remote sends a st

volume

the host requests that partition 1 be
on the

"MYVOL". The

atus of -1 (successful) to the host, and the
operation is completed.

Host Program

Write Initial -

RMHBSCC
RMHID
RMHTYP
RMREQ
RMDPDSN
RMDPVOL

DATA
DATA
DATA
DATA
DATA
DATA
DATA
RMDPPTN DATA
Write End

Read Initial -

RMHTYP="'S"
RMSREQ=¢6
RMSFN=-1

Read Continue -

Request

X'1002"
c!x'

C!R'

F'q_l
CL8'MYDATA"
CL6'MYVOL"
H'O"

HY1e

Status

EOT

Host

ENQ

TEXT

EOT

ACKx

ACK*

Remote

——————— >
Lmmm———— ACK*
——————— >
{mmm———- ACKx*
——————— >

& v o e ENQ
——————— >
mm e —— TEXT
------- >
{mmm———— EOT

Figure 17. Communications Flow for the DUMP Function

Chapter 6.

Remote Management Utility 219

EXEC Function

The EXEC function requests the utility to load and invoke
execution of a program on the remote Series/1.

The hosts sends the remote Series/l a Request record with the
EXEC function specified. After receiving and executing the
EXEC request, the utility sends a Status record to the host
indicating the results of the function execution. The utility
then waits for a new request from the host.

If the program specified by the host requires a parameter and
the parameter is not supplied, the load (via LOAD) of the pro-
gram will fail. For further information on parameter passing,
refer to the section "Parameter Passing™ on page 212.

Required Field Descriptions

Specify the following fields for the EXEC function:

RMHBSCC A 2-byte hexadecimal field containing the BSC control
characters DLE STX, specified as X'1002"'.

RMHID A l-byte alphameric field containing the header 1ID
*X', identifying the record as an Event Driven Execu-
tive Remote Management Utility record.

RMHTYP A l-byte alphameric field identifying the header
type. This field contains the character "R', specify-
ing a Request record type.

RMREQ A 2-byte numeric field specifying the request type.
For an EXEC request, this field contains the number 9.

filler A 2-byte reserved field (unused).

RMXFLG A l-byte numeric field containing the RMXFLGL and
RMXFLGHW bits. RMXFLGL and RMXFLGHW correspond to the
usage of the LOGMSG and WAIT parameters of the Event
Driven Language LOAD instruction.

RMXFLGL - When set on, this bit indicates that a "pro-
gram loaded" message is to be printed on the terminal
which loaded the utility. The value for RMXFLGL when
set on is X'40°".

220 SC34-0316

RMXPTN

RMXPGM

RMXVOL

RMXLFS

RMXPRM#

RMXPRM

RMXDS#

RMXDS

RMXFLGW - When set on, this bit indicates that the
utility is to wait for the completion of the program
before sending a Status record to the host. Other-
Wwise, the program executes asynchronously with the
utility, and the utility sends a Status record after
invoking the LOAD instruction. If the utility waits
for the completion of the program, the PROGSTOP code
from the program is returned in the RMSST field of the
Status record. The value for RMXFLGW when set on is
Xvr20°'.

A 1l-byte numeric field specifyinaga the partition the
program is to run in. Specify one of the following:

-1 Remote Management Utility partition
0 Any partition
1-8 Specific partition

An 8-byte alphameric field specifying the program to
be executed.

A 6-byte alphameric field specifying the name of the
volume which contains the program. If RMXVOL 1is
blank, the volume name defaults to the IPL volume.

A 2-byte numeric field specifying the amount of free
space (in bytes) to pass to the program.

A 2-byte numeric field specifying the length of the
parameter(s), in words, to pass to the program. This
field must be zero if no parameters are passed.

A variable length field containing the parameter(s)
to be passed to the program. The length of this field,
in words, must correspond to the value contained in
the RMXPRM# field. See the section "Parameter
Passing™ on page 212 for details on this field.

A 2-byte numeric field specifying the number of data
set names to pass to program. The maximum number of
data sets that may be specified is nine. This field
must be zero ¥f no data set names are passed.

A variable number of 1l4-byte alphameric fields
specifying the data set and volume names to be passed
to the program. The first eight bytes contain the data
set name, and the last six bytes contain the volume
name. If the volume name is blank, the name of the
volume defaults to the IPL volume. The number of data
set and volume names specified must correspond to the
value contained in the RMXDS# field.

Chapter 6. Remote Management Utility 221

Figure 18 illustrates the host-remote interaction for the EXEC
function. In the example, the host specifies a program named
"MYPROG"™ on the volume "MYVOL", is to be executed in partition
1l with 256 bytes of free space passed to the program. The RMXFLG
field specifies that both RMXFLGL and RMXFLGHW bits are set on.
No parameters or data sets are passed to "MYPROG". The program
ends with a return code of -1. The remote sends a status of -1
(successful) to the host, along with the return code and the
operation is completed.

Host Program Host Remote
Write Initial - Request ENQ -—--—-——- >
Lmmmmm—— ACK>*

RMHBSCC DATA X'1002" TEXT ——-=—m=- >
RMHID DATA C'X!
RMHTYP DATA C'R’
RMREQ DATA F'9"

DATA F'0Q’

RMXFLG DATA X'60"'
RMXPTN DATA H'1? ”
RMXPGM DATA CL8'MYPROG’
RMXVOL DATA CLé6'MYVOL?’
RMXLFS DATA F'256"
RMXPRM# DATA F'0"

RMXPRM EQU *

RMSDS# DATA F'0°

RMSDS EQU *
C=m=———- ACKx
Write End EOT ——=————— >
Read Initial - Status Cmmmmm ENQ
ACK* ——————- >
RMHTYP="'S" e TEXT
RMSREQ=9
RMSFN=-1
RMSST=-1
Read Continue - EOT ACK¥% —~—————— >
mmmm——— EOT

Figure 18. Communications Flow for the EXEC Function

222 SC34-0316

O

IDCHECK Function

The IDCHECK function allows the host and the remote system to
verify each others identification.

The host sends the remote Series/1 a Request record with the
IDCHECK function and the host ID specified. The utility com-
pares this ID with a constant defined in the utility as the host
ID. If the IDs match, the utility returns a Status record which
contains the ID of the remote system, which is another con-
stant, If the IDs do not match, an error status is returned to
the host and the ID of the remote Series/1 is not returned. In
either case, after the Status record is sent to the host, the
utility then waits for a new request from the host.

The default host ID for the host system is "HOSTRMUX", and
"REMTRMUXﬁ is the default ID of the remote system.

Required Field Descriptions

Specify the following fields for the IDCHECK function:

RMHBSCC A 2-byte hexadecimal field containing the BSC control
characters DLE STX, specified as X'1002"'.

RMHID A l-byte alphameric field containing the header 1ID
X', identifying the record as an Event Driven Execu-
tive Remote Management Utility record.

RMHTYP A 1-byte alphameric field identifying the header
type. This field contains the character 'R', specify-
ing a Request record type.

RMREQ A 2-byte numeric field specifying the request type.
For an IDCHECK request, this field contains the num-
ber 6.

RMICHK An 8-byte alphameric field specifying the host ID.

Chapter 6. Remote Management Utility 223

Figure 19 illustrates the host-remote interaction for the
IDCHECK function. In the example, the host specifies the 1ID
"HOSTRMUX". The remote validates the host ID , sends a status
of -1 (successful) to the host along with the remote system's
ID, "REMTRMUX"™, thus completing the operation.

Host Program Host Remote

Write Initial - Request ENQ ——-———- >
{====——- ACKx

RMHBSCC DATA X'l1002" TEXT —=—————- >

RMHID DATA C'X'

RMHTYP DATA C’'RT

RMREQ DATA F'6"

RMICHK DATA C'HOSTRMUX®
ommmm— ACKx

Write End EOT @ ——————- >

Read Initial - Status (e ENQ

ACK* ——=-——- >

RMHTYP='S" P TEXT

RMSREQ=6

RMSFN=-1

RMSRID="REMTRMUX"

Read Continue - EOT ACK¥ ——————— >
{mmmm—=- ECT

Figure 19. Communications Flow for the IDCHECK Function

224 SC34-0316

U

O

PASSTHRU Function

The PASSTHRU function provides the host with an interface which
simulates the capabilities of a terminal connected to a
Series/1l. Through this interface, the host can interact with
the Event Driven Executive supervisor by issuing operator com-
mands, or by interacting with a program as if that program was
loaded from a terminal on the Series/1l. The host's interaction
with the supervisor or a program is conducted in a PASSTHRU
session.

Most programs which do not require full screen terminal sup-
port, including most Event Driven Executive utilities may be
used with the PASSTHRU function. Characteristics of programs
which prevent programs from running under the PASSTHRU func-
tion are discussed in the section "Considerations on Using
PASSTHRU" on page 237.

An example of the use of PASSTHRU could be a host program that
formats a host terminal to look like a remote Series/1 termi-
nal. The operator on the host system could then interact with
the program as if the terminal was on the remote Series/1.

The PASSTHRU function is initiated by the host sending a
PASSTHRU request to the utility. After the request is sent, a
series of records are exchanged betuween the host and the utili-
ty, similar to the way messages are written to and read from a
terminal. This procedure will be discussed in two parts:

. Establishing a PASSTHRU Session

. Conducting a PASSTHRU session

Establishing a PASSTHRU Session

As was previously discussed, a PASSTHRU function is initiated
by the host sending a PASSTHRU request to the utility. The ses-
sion is established after the host receives a successful Status
record and an EOT. The PASSTHRU request may specify (RMPRPGHM
field) one of two ways of establishing a session:

L Communication with the Event Driven Executive supervisor

. Communication with a program which the utility will load

Chapter 6. Remote Management Utility 225

If a session With the supervisor is established, the utility
will issue an "attention™ (as if the attention key on the ter-
minal was pressed). Following the attention, the PASSTHRU ses-
sion Will be conducted with the terminal on the host receiving
the caret symbol (>), and continued by the operator entering an
operator command, for example $L.

If a session with a program is established, the host specifies
the name of the program and the program is loaded by the utili-
ty. The PASSTHRU session will be conducted with the host inter-
acting with the program.

The following fields must be specified on the PASSTHRU request
to establish a PASSTHRU session?

RMHBSCC A 2-byte hexadecimal field containing the BSC control
characters DLE STX, specified as X'1002"'.

RMHID A l-byte alphameric field containing the header 1ID
'X', identifying the record as an Event Driven Execu-
tive Remote Management Utility record.

RMHTYP A 1l-byte alphameric field identifying the header
type. This field contains the character 'R', specify-
ing a Request record type.

RMREQ A 2-byte numeric field specifying the request type.
For a PASSTHRU request, this field contains the num-
ber 12.

RMPRBLK A 2-byte numeric field indicating whether the host is
to receive blocked records from the remote. A value of
0 specifies that records are unblocked. A value
greater than 0 specifies the size, in bytes, of the
record block (size of "Text or PF Key" extension after
the RMPTYP field). See the section "PASSTHRU
Blocking™ on page 237 for details on this field.

RMPRFLG A l-byte reserved field (unused).

RMPRPTN A 1-byte numeric field specifying the partition the
program is to run in. Specify one of the following:

-1 Remote Management Utility partition
0 Any partition
1-8 Specific partition

RMPRPGM An 8-byte alphameric field specifying the name of the
program or utility to interact with the host. If this
field is blank, a session with the Event Driven Execu-
tive is established.

RMPRVOL A 6-byte alphameric field specifying the name of the

volume which contains the program or wutility. If
blank, the name defaults to the IPL volume name.

226 SC36-0316

RMPRLFS A 2-byte numeric field specifying the amount of free
space (in bytes) to pass to the program.

RMPRPRME A 2-byte numeric field specifying the length of the
parameter(s), in words, to pass to the program. This
field must be zero if no parameters are passed.

RMPRPRM A variable length field containing the parameter(s)
to be passed to the program. The length of this field,
in words, must correspond to the value contained in
the RMPRPRM# field. See the section "Parameter
Passing”™ on page 212 for details on this field.

RMPRDS# A 2-byte numeric field specifying the length of data
sets to pass to the program. The maximum number of
data sets that may be specified is nine. This field
must be zero if no data sets are passed.

RMPRDS A variable number of l4-byte alphameric fields
specifying the data set and volume names to be passed
to the program. The first eight bytes contain the data
set name, and the last six bytes contain the volume
name. If the volume name is blank, the name of the
volume defaults to the IPL volume. The number of data
set and volume names specified must correspond to the
value contained in the RMPRDS# field.

Figure 22 on page 241 illustrates the host-remote interaction
in establishing a PASSTHRU session.

Conducting a PASSTHRU Session

Once the PASSTHRU session is established, the session is
conducted with Passthru type records exchanged between the
host and the remote Series/1. The Passthru records provide
information to and receive information from the host program,
as if the host program were a terminal on the remote Series/1.
Four Passthru records are defined to provide this information.
These records are described as follouws:

. Text or Program Function (PF) Key — Passthru record which
passes messages or program function keys.

. Request for Data - Passthru record which indicates data
should be sent.

U Program End — Passthru record which indicates termination.

. No Data - Passthru record which indicates no messages are
are available.

Chapter 6. Remote Management Utility 227

The content and format of these records is discussed in the
section "Passthru Record Types"™ on page 232.

Figure 20 on page 230 graphically illustrates how a PASSTHRU
session is conducted. In this illustration, each vertical line
represents a "state" the host may be in at any time during the
session. The name attached at the top of each vertical line is
the name of the state. The state of the host may change by one
of the following:

. Receiving a Passthru record from the utility. This is
represented by a solid horizontal line with an arrow point-
ing to the new state.

. Sending a Passthru record to the utility. This is repres-
ented by a horizontal line of dashes with an arrow pointing
to the neuw state.

. A change of state with no Passthru record transfer. This is
represented by a dotted line with an arrow pointing to the
new state.

The PASSTHRU session begins with the host in the state
"READTEXT"™ as shown in the figure. The host issues a "read"” to
the communications line and will receive either a "Text or PF
Key", "Request for Data™, or "Program End" record. The type of
record the host receives is determined by the terminal activity
occurring in the remote Series/l1.

If the host receives a Text or PF Key record, data is being sent
to the host. The program (or the supervisor) has 1issued a
PRINTEXT or other terminal I/0 instruction, and the message is
transmitted to the host as if the host were a terminal. As shoun
in the figure, the state of the host changes from "READTEXT" to
"READING" because the host received a Text or PF Key record.
The state then changes back to "READTEXT"., Effectively the host
remains in the "READTEXT™ state as long as Text or .PF Key
records are received.

If the host receives a Request for Data record, data is needed
from the host. The program (or the supervisor) has issued a
READTEXT or other terminal I/0 instruction, and requires data
from the host as if the host uwere a terminal. As shown in the
figure, the state of the host changes from "READTEXT"™ to "PGM
NEEDS DATA". Note that an EOT follows the the Request for Data
record. The host must read the EOT also.

In the host's current state, "PGM NEEDS DATA", the host must
send a Text or PF Key record followed by an EOT. The Text or PF
Key record the host sends may contain either text or a PF key
(the host, as a terminal, has entered text or a program func-—
tion key in response to Request for Data).

228 SC34-0316

AN

,
//

.

If the host sends text, the state of the host changes from "PGM
NEEDS DATA"™ back to "READTEXT". If the host sends a program
function key, the host goes to the state "PFK SENT". The host
issues a read to the communications line and will receive a
Request for Data record followed by an EOT. This Request for
Data is sent to the host because the original request was not
satisfied by the program function key. As a result, the host is
now in the state "SEND TEXT". The host must send a Text or PF
Key record which contains text, followed by an EQOT. The host is
then back to the state "READTEXT".

The last possibility from the state "READTEXT"™ is that the host
will receive a Program End record, followed by an EOT. This
indicates either the program, the operator command, or an
attention exit has completed. The host changes from the state
"READTEXT™ to "CONTINUE ?". At this point, the host must deter-
mine whether the PASSTHRU session should continue.

If the PASSTHRU session was with a program and the program has
ended (while in the "CONTINUE ?" state), the host would most
likely decide not to continue. If the session was wWith the
supervisor and a $L command was successfully entered, the host
would most likely decide to continue the session and communi-—
cate with the program which was loaded.

To terminate the PASSTHRU session, the host sends a Program End
record, followed by an EOT. This changes the state of the host
from "CONTINUE ?" to "EXIT". The PASSTHRU session is now termi-
nated and the Remote Management Utility will wait for a new
request from the host. To continue the session, the host should
send a Request for Data record followed by an EOT. The state of
the host then changes from "CONTINUE ?"™ to "ACTIVITY 2",

At this point, the utility determines if there is any terminal
activity on the remote Series/1 for the host. If there 1is
activity, one of the three Passthru records which can be
received from the "READTEXT"™ state will be received by the
host. These three records are Text or PF Key, Request for Data,
or Program End. The state of the host will change as it would
from the state "READTEXT".

If there is no terminal activity, the host will receive a No
Data record followed by an EOT, and the host's state changes
from "ACTIVITY 2" to "CONTINUE ?". The host may then determine
again whether it should continue. If the program in the remote
Series/1 has any delays in performing terminal I/0 while the
host is in the "CONTINUE ?" state, the host may change from
"CONTINUE 2" to "ACTIVITY ?" and back again several times. How-
ever, if no activity ever occurs, the host must eventually send
a Program End record and terminate the PASSTHRU session.

Chapter 6. Remote Management Utility 229

Utility to Host

READTEXT}{ me——— Host to Utility
ce e Change of State
READING (no record transfer)
Recv "Text or PFK"
X >
-<ooo0..oo.'ooooo ooooo .
PGM NEEDS
DATA
Recv "Req Data"™ & EOT
X > PFK
SENT
Text &
Send "Text or PFK" - EOT
o e e e . PF Key
Send "Text or PFK"™ - & EOT
————————————————————————————— >
SEND
TEXT
Text &
Send "Text or PFK"™ - EOT Recv "Req Data"™ & EOT
B et E R T b <
CONTINUE EXIT
?
Recv "Pgm End"™ & EOT Send "Pgm End™ & EOT J
X D, —————————— >
ACTIVITY
?
Send "Req Data"™ & EOT
_________________________ >4
Recv "No Data”™ & EOT
-< x NO
ACTV
o ST .o et et eeees s . c et e e . Gt e e et e .X ACTV
Figure 20. Logic Flow of a PASSTHRU Session

230 SC34

-0316

AN
NS

£
\

The preceding discussion and Figure 20 on page 230 summarizes
the flow of a PASSTHRU session. The only addition to this is
that of a severe error being encountered, in which case the
host may receive or send a Status record followed by an EOT. An
example of where this error condition could occur is if the
host sends an invalid Passthru record. The utility will respond
to this invalid record with a Status record. Similarly, the
host may send a 4-byte Status record (preceded by "abort" if
necessary). In either case, the PASSTHRU session is terminated
and the utility will wait for a new request.

The following is the format of the Status record sent by the
host:

RMHBSCC DATA X'lo002'

RMHID DATA C'X?
RMHTYP DATA (C'S’

Chapter 6. Remote Management Utility 231

Passthru Record Types

This section describes in detail the format and content of the
four types of Passthru records previously mentioned.

Text or Program Function Key

This record is comprised of two segments. The first six bytes,
or the main segment, identifies this record as a Passthru Text
or Program Function (PF) Key record. Following the main segment
is one or more text or PF key segments. The following is an
illustration of these two segments:

Main segment:

RMHBSCC DATA X'l1o002°
RMHID DATA C'X'
RMHTYP DATA C'P?
RMPTYP DATA F'1’

Text or program function key segment:

RMPST DATA F'nnnn'
RMPTXTL DATA F'nnnn'
RMPTXT DATA C'xxxx'

In the main segment, all values are constants as shoun. The
text or program function key segment contains the information
to be transferred:

RMPST A 2-byte value of the return code. This field
contains a value only on records received by the
host.

RMPTXTL A 2-byte numeric field specifying either the length
of the text, or indicating a PF key is being sent.

RMPTXT Either a variable—-length alphameric field
containing text, or a 2-byte numeric field contain-
ing the PF key value.

If the Text or PF Key record is not blocked, it will contain one
of each segment. If the record is blocked, it will contain one
main segment followed by more than one text or program function
key segments. All records sent by the host are unblocked.
Records received by the host may be blocked if specified on the
PASSTHRU request. Details on how to specify blocking is dis-—
cussed in the section "PASSTHRU Blocking” on page 237.

232 S5C34-0316

(0
.\)/

C

When the host sends a Text or PF Key record, the record may con-
tain either text (the host as a terminal has entered text), or a
PF key (the host as a terminal has entered a program function
key). If text is sent, the length of the text is specified in
the RMPTXTL field, and the text is specified in the RMPTXT
field. The RMPST field is not used.

The following example illustrates a record sent by the host
which contains the text "MESSAGE FROM HOST PROGRAM":

Text record sent by the host:

RMHBSCC DATA X'l1002'®

RMHID DATA C'X?

RMHTYP DATA C'P?

RMPTYP DATA F'1°"

RMPST DATA F'0° (IGNORED)

RMPTXTL DATA F'25"

RMPTXT DATA C'MESSAGE FROM HOST PROGRAM®

When the host sends a program function key, the value of the
RMPTXTL field is set to —1 and the program function key is spec-
ified as a 2-byte numeric value in the RMPTXT field. A PF key
value of 0 is the equivalent of an "attention".

The following example illustrates a program function key 3
being sent by the host:

Program function key record sent by host:

RMHBSCC DATA X'1002"
RMHID DATA C'X?
RMHTYP DATA C'P?
RMPTYP DATA F'1"

RMPST DATA F'0"' (IGNORED)
RMPTXTL DATA F'-1' (INDICATES PF KEY)
RMPPF DATA F'3° PF KEY 3

All Text or PF Key records received by the host will aluays con-
tain text; the host will never receive a program function key.
Each Text or PF Key record begins with the 6-byte main segment
followed by one or more text segments. The fields in each text
segment are defined as follouws:

RMPST A 2-byte numeric containing the return code
associated with the text. For example, the return
code indicates whether the.text is to appear on a new
line. Some return codes have no text associated with
them. For a complete description of the possible
return codes, refer to virtual terminal communi-
cations return codes as described for the READTEXT

instruction in the Language Reference.

Chapter 6. Remote Management Utility 233

RMPTXTL

RMPTXT

The return codes which are applicable are:

X'8Fnn' LINE=nn received
X'8Enn' SKIP=nn received
-2 Line received (no CR)
-1 New line received

A 2-byte numeric field containing the text length,
If there is no text, this field will contain the val-
ue 0.

A variable-length alphameric field containing the
text received by the host. The length of this field,
in bytes, is the value of RMPTXTL. If RMPTXTL is an
odd number, one byte of blanks (X'40') follows the
text.

If records are blocked, multiple text segments are received on
a Text or PF Key record. The host must determine the length of

the record

in order to process each segment. Figure 21 on page

235 is an example of the records the host receives from a pro-
gram which executes a PRINTEXT instruction.

236 SC34-0316

O

(:} Issued by program on remote Series/1:

PRINTEXT 'ENTER COMMAND',SKIP=1

Passthru record received by host
Wwith no blocking:

RMHBSCC DATA X'1002°

RMHID DATA C*'X'

RMHTYP DATA C'P’

RMPTYP DATA F'1°"

RMPST DATA X'8EO1' (SKIP=1)
RMPTXTL DATA F'0" (NO TEXT)

RMHBSCC DATA X'l002'

RMHID DATA C'X’

RMHTYP DATA cC'P?

RMPTYP DATA F'1?

RMPST DATA F'-2"

RMPTXTL DATA F'13°

RMPTXT DATA C'ENTER COMMAND'
DATA C' (PAD)

Passthru record received by host
(:ﬁ with blocking:

RMHBSCC DATA X'1002’
RMHID DATA C'X"
RMHTYP DATA C'P’
RMPTYP DATA F'l?
DATA X'8EO1’ (SKIP=1)
DATA F'0’ (NO TEXT)
DATA F'-2! (NEXT SEGMENT)
DATA F'13'
DATA C'ENTER COMMAND®
DATA C' ° (PAD)

Figure 21. Example of Passthru Records Received by Host

Chapter 6. Remote Management Utility

235

Request for Data

The Request for
constant values.
by an EOT.

The following is
RMHBSCC DATA
RMHID DATA

RMHTYP DATA
RMPTYP DATA

Program_ End

The Program End
stant values. A
EOT.

The following is

RMHBSCC DATA
RMHID DATA
RMHTYP DATA
RMPTYP DATA

No Data

The No Data reco
values. A No Data

The following is
RMHBSCC DATA
RMHID DATA

RMHTYP DATA
RMPTYP DATA

236 SC34-0316

Data record is a 6-byte record which contains
A Request for Data record is always followed

the format of the Request for Data record:

Xri002"
c'x?
C'P'
F'2'

record is a 6-byte record which contains con~-
Program End record is always followed by an

the format of the Program End record:

Xrio002"
c'xX?
C’P'
F'3'

rd is a 6-byte record which contains constant
record is always followed by an EOT.

the format of the No Data record:

X'1002°
c'X?
Clp'
F!(*I

27N

W

PASSTHRU Blocking

When Passthru records are blocked, the communications line is
used more efficiently. Without blocking, each Text or PF Key
record contains only one text segment. With blocking, each
record may contain multiple text segments. Through use of
blocking, the amount of information and the number of records
transmitted over the communications 1line 1is reduced. Thus
blocking allows more efficient usage of the communications
line, especially for PASSTHRU sessions in which the host
receives many consecutive lines of output, such as a result of
a "list” command to a utility.

To use PASSTHRU blocking, the host must determine the length of
the Text or PF Key record and process each text segment until
the end of the record is reached.

The host specifies blocking on the PASSTHRU request in the
RMPRBLK field. If this field is set to zero blocking is not per-
formed. A value greater than zero indicates the maximum length
of the text segments which the host can process. To determine
the value for the RMPRBLK field, start with the size of the
buffer at the host. Subtract 6 from the size of the host buffer
for the 6-byte main segment of each record. Then subtract 2
more to allow space for the ETX plus one byte for word align-
ment. The resulting number is the maximum blocking size the
host may use. This number would then be specified in the
RMPRBLK field of the PASSTHRU request. The utility will use
this value if it can. If, however, the utility does not have a
buffer of sufficient size to provide records of the size
requested, the utility will block to the largest size it can
handle. Refer to the section "Modifying Defaults™ on page 283
for additional information on the maximum blocking size of the
utility.

If a single text record should exceed the size specified for
RMPRBLK, the utility will send that record to the host. This
may result in a "wrong length record" condition; the host
should ensure that it can handle the longest length record
expected from the utility. For example, if the longest text
length is 132 bytes, a minimum block size of 136 would be suffi-
cient for all records.

Considerations on Using PASSTHRU

As mentioned earlier, most programs can be used with the
PASSTHRU function of the Remote Management Utility. In this
section, considerations on the use of the PASSTHRU function are
discussed. These include a discussion of restrictions on the
use of the PASSTHRU function and programming techniques.

Chapter 6. Remote Management Utility 237

The PASSTHRU function uses the virtual terminal support of the
Event Driven Executive, and therefore has any restrictions
inherent in this support. The primary one is that static
screens are not supported, therefore programs requiring static
screens can not be run under the PASSTHRU function. This
includes such programs as the full screen editor, $FSEDIT.
Another restriction is that message length may be no longer
than 254 bytes.

The utility allows the host to transmit a program function key
or an attention only when the remote is already requesting
data. Therefore output from the remote may not be "interrupted®
by an "attention™, as it could be on a local terminal. For exam-
ple, a listing produced by the $DISKUTZ2 utility could not be
interrupted by an "attention"”™ and cancel command.

If a program stops communicating with the terminal which loaded
it, and waits on the terminal to enter commands by way of "at-
tention" or program function keys, it will not run directly
under the PASSTHRU function. This occurs because the Remote
Management Utility will wait indefinitely on a "READTEXT" to
the virtual channel while the remote program is waiting on an
attention or PF key. When this happens, this is referred to as a
deadlock situation. Programs which do this include the follow-
1ng:

$DEBUG

$TRAP

$LOG

$BSCTRCE

STERMUT3 (Attention-entered commands)
$IOTEST (Attention-entered commands)
CALCDEMO (Sample program)

A program has been provided which will break the deadlock situ-
ation when it occurs. The program name is $RMUPA. It must be
started under the PASSTHRU function prior to starting a
PASSTHRU session uwith one of the programs which may have this
problem. $RMUPA will cause a "disconnect", resulting in a Pro-
gram End Passthru record being received at the host whenever
the following sequence of events occurs:

1, No activity has occurred over the virtual channel for 20
seconds.

2. The utility is waiting on completion of a "“READTEXT"
instruction.

3. The remote program is not ENQT'ed on its virtual terminal.

The program uses the STIMER instruction, and therefore
requires timer support to be included in the remote systemn.

238 SC34-0316

O

o

Due to a timing situation when multiple programs are communi-
cating over a virtual channel, blocking must be used while run-
ning these programs.

The sample PASSTHRU host program in the section "Sample Host
Programs™ on page 259 illustrates how to use the program $RMUPA
from a host program. $RMUPA is first started under the PASSTHRU
function. When a Program End Passthru record is received at the
host, the host responds with a Program End Passthru record and
the PASSTHRU session with $RMUPA is terminated. Only one copy
of $RMUPA should be running at a time. I€|nay run in any parti-
tion. It continues running until an "attention" followeﬂ by
"SRMUPAY is entered.

Once $RMUPA is running, another program may be started. The
sample PASSTHRU host program interaction in the section
"Sample Host Programs™ on page 259 illustrates how $DEBUG may
be used. Note that "$PFO" is entered to provide the same func-
tion as entering the "attention™ key.

If a remote program should take longer than 20 seconds between
performing terminal I/0, $RMUPA will cause a Program End record
to be sent even though the program is still running. If this
happens, the host should respond with a Request for Data record
until the remote program performs terminal I1/0.

If a program is run under the PASSTHRU function which issues an
ENQT instruction for a terminal other than the terminal which
loaded the program and the program terminates, the utility does
not receive a "disconnect™ over the virtual channel and the
host will not receive a Program End record. The utility will
wait indefinitely. One example of where this will occur is in
running $EDXASM, with output directed to a printer. This condi-
tion can be avoided in two ways:

. Load the program from another program (such as the $JOBUTIL
utility) which will wait on the program to complete.

. Load the program through a session with the Event Driven
Executive via a 8L command and respond with a Program End
when the command terminates. Programs requiring terminal
interaction after being loaded, such as $EDXASM, will not
work in this manner, so should be handled in the first way.

When multiple programs are communicating over a virtual chan-
nel, blocking must be used. As mentioned previously, this is
due to a timing situation with multiple programs.

Only one PASSTHRU session may be conducted at a time, since the
utility uses a predefined set of virtual terminals, CDRVTA and
CDRVTB. While a PASSTHRU session is being conducted, another
copy of the utility (defined for another communications line)
may be performing any other function except PASSTHRU.

Chapter 6. Remote Management Utility 239

In the event a PASSTHRU session is abruptly terminated (status
received from host, invalid message received from host, or an
error in the BSC), the utility will cause a terminal I/0 return
code 5 ("Disconnected™) to be received by the program for the
outstanding terminal request. This code will only be received
once by the PASSTHRU-invoked program, and the program should
then take appropriate action, which would most likely be to
terminate. However, if the program does not recognize the ter-
minal error and continues to perform terminal I/0, the program
will interfere with attempts to establish a new PASSTHRU ses-
sion. If the new session is being established with a program,
the utility will return the status "virtual terminal busy". The
host may establish a session with the Event Driven Executive
and issue a $C command to cancel the suspended program. The $C
command should be used with caution, as noted in the Utilities,
Operator Commands, Program Preparation, Messages and Codes.

When a $L command is issued during a PASSTHRU session with the
Event Driven Executive supervisor, a Program End Passthru
record, resulting from completion of the command, may be
received by the host. Whether it is received depends on how
quickly the loaded program begins performing terminal 1/0.

As described in the System Guide, two virtual terminals, named
CDRVTA and CDRVTB, must be defined for using the PASSTHRU func-
tion. Also, virtual terminal support must be included at system
generation time. Refer to the System Guide for details.

The utility will not time-out while it is receiving messages
during a PASSTHRU session. However, if the host does not
acknowledge reception of messages sent by the utility, a
time-out will occur and the PASSTHRU session is terminated.
This can be avoided in two ways:

. Avoid any long delays at the host while messages are being
received from the remote Series/1.

. Define a high retry count for the RETRIES parameter of the
BSCLINE statement in the remote system.

Figure 22 on page 241 illustrates the host-remote interaction
for the PASSTHRU function. In the example, the host specifies
the program "MYPROG" on the volume "MYVOL" is to be executed.
While executing, the program writes one message to the virtual
terminal via a Passthru record, receives one message from the
virtual terminal via a Passthru record, and terminates.

240 SC34-0316

~,

—

L

Host Program Host Remote

Write Initial - Request ENQ ———-——m >
rmmmm—— ACK*

RMHBSCC DATA X'l002" TEXT -—-—-—=—=-— >

RMHID DATA C*'X?

RMHTYP DATA C'R’

RMREQ DATA F'12"

RMPRFLG DATA H'0"
RMPRPTN DATA H'O0'
RMPRPGM DATA CL8'MYPROG'
RMPRVOL DATA CLé6'MYVOL"
RMPRLFS DATA F'256"
RMPRBLK DATA F'0"
RMPRPRM# DATA F'O0°
RMPRPRM EQU *

RMPRDS# DATA F'0°

RMPRDS EQuU *

- ACK*
Write End EOT —-—————— >
Read Initial - Status ' —m————= ENQ
ACK% ————e—- >
RMHTYP="'S" Lo TEXT
RMSREQ=12
RMSFN=-1
Read Continue - EOT ACK¥ ——m—em—m >
{mmmm—— EOT

Figure 22. Communications Flow for the PASSTHRU Function (Part
1 of 2)

Chapter 6. Remote Management Utility 241

Read Initial - Passthru Data {mmm———— ENQ

ACK® ————e—- >
RMHTYP="'P" D TEXT
RMPTYP=1

RMPST=Status from READTEXT
RMPTXTL=Message length
RMPTXT=Message text

Read Continue - Request for Data ACK%¥ ——————-— >

RMHTYP='P" Cmmm e TEXT

RMPTYP=2

Read Continue - EOT ACK¥ —=-————- >
Lmmm——— EQCT

Write Initial - Passthru Data ENQ -—----—-- >
Lmmm e ——— ACK*

RMHTYP="'P" TEXT ——=——=—w— >

RMPTYP=1

RMPST=0 (Unused)

RMPTXTL=Message length
RMPTXT=Message text

Lmmm———— ACKx*
Write End EOT -—-——————- >
Read Initial - Passthru Program End {mmmm—— ENQ
ACK»* ————ce—- >
RMHTYP="P" P N —— TEXT
RMPTYP=3
Read Continue - EOT ACK¥ —=—www—- >
{mmmm——— EOT
Write Initial - Passthru Program End
ENQ --————- >
mmmm ACKx
RMHTYP="'P" TEXT —--—-—=- >
RMPTYP=3
e = ACKx
Write End EOT —~-———= >

Figure 23. Communications Flow for the PASSTHRU Function (Part

2 of 2)

242 SC36-0316

O

/’/M\:
W

®

RECEIVE Function

The RECEIVE function requests the utility to receive a data set
transmitted from the host and to uwrite it to a disk/diskette
data set on the remote Series/1.

The host can specify it is sending a data set consisting of
256-byte data records, or a source data set, consisting of
80-byte text records. The host may also specify blocking, in
which case, the utility receives records containing multiples
of 256-byte or 80-byte records.

The host sends the remote Series/1 a Request record with the
RECEIVE function specified. After receiving and executing the
RECEIVE request, the utility checks to see if it can handle
records of the size requested and attempts to open the data
set. The utility then sends a Status record to the host. If a -1
(successful) status is returned to the host the RECEIVE func-
tion continues, otheruwise the function is terminated.

Upon receipt of the successful status, the host sends Data
records to the utility. The data contained within the Data
records sent by the host should have a length which is a multi-
ple of 256 or 80, depending on the data set type. If the utility
receives a record whose length is not a multiple of 256 or 80
(short record), the record is padded with 2zeroes, and then
written to disk or diskette. For example, assume that a
256-byte record data set with a blocking factor of 3 is speci-—
fied. A record received with with a length of 256 will cause one
record to be written. A record received with a length of 512
Wwill cause two records to be written, and similarly, a length
of 768 will cause three records to be written, all with no pad-
ding. However, a record received with a length of 300 would
cause two records to be written. The first containing the first
256 bytes of data, and the second containing the last 44 bytes
of data followed by 212 zeroes (X'00'), thus padding it to a
length of 256 bytes.

If the utility receives a Data record whose length is greater
than the length specified on the request, the RECEIVE function
is terminated with a status indicating "BSC I/0 Failure”™, and a
BSC return code 20 (wrong length record - long).

At the completion of the data set transfer, the utility per-
forms a SETEOD on the data set, and sends the host a Count
record. The Count record specifies the number of records
received in the RMCCNT field, and if padding occurred at any
time, the RMCFLGPD bit of the RMCFLG field is5 set to 1. The
RMCFLGPD bit is defined by the value X'8000°'.

If the data set to be received by the utility is empty, the host

should send one Data record which contains no data (only the
4-byte header), and then the EOT.

Chapter 6. Remote Management Utility 263

In the event of unrecoverable errors, such as disk or diskette
errors, the utility interrupts the host transmission by send-
ing an EOT ("abort") and a Status record containing the appro-
priate error code. The utility terminates the RECEIVE
operation, and then reads again for another request from the
host. The host should accept the Status record to determine the
reason for failure.

The host may terminate the RECEIVE function at any time by
sending a Status record followed by an EOT.

The RECEIVE function has no restrictions on receiving data sets
with names such as S$EDXNUC, $$EDXVOL, or SEDXLIB. However,
care should be exercised if these data sets are transferred. As
was previously mentioned, a SETEOD is performed upon com-
pletion of a data set transfer. The SETEOD may not be performed
on data sets with the names $$EDXVOL or SEDXLIB. Thus, if
these data sets are transferred, the host will receive a Status
record indicating a SETEOD error. Additionally, SETEOD will
fail if the data set type is "program™. This failure is ignored
by the Remote Management Utility.

Required Field Descriptions

Specify the following fields for the RECEIVE function:

RMHBSCC A 2-byte hexadecimal field containing the BSC control
characters DLE STX, specified as X'1002"'.

RMHID A l-byte alphameric field containing the header 1ID
'X', identifying the record as an Event Driven Execu-
tive Remote Management Utility record.

RMHTYP A l-byte alphameric field identifying the header
type. ¥his field contains the character 'R', specify-
ing a Request record type.

RMREQ A 2-byte numeric field specifying the request type.
For a RECEIVE request, this field contains the number
1.

RMRDSN An 8-byte alphameric field specifying the name of the
data set to receive data from the host.

RMRVOL A 6-byte alphameric field specifying the name of the

volume containing the data set. If RMRVOL is blank,
the volume name defaults to the IPL volume.

244 SC34-0316

&

éi\
NS

RMRSTR A 4-byte (double word) numeric field specifying the
starting record of the host data set. Only the second
word of this field is used. If a value of 0 is speci-
fied, the data set is received and written from the
beginning record. If a value greater than zero is
specified, the utility issues a POINT instruction and
starts receiving data at the record specified.

RMRTYP A 2-byte numeric field specifying the type of data to
be received. Specify one of the following:

0 Standard (256-byte records, possibly blocked)
1 Source (80-byte records, possibly blocked)

RMRBLK A 2-byte numeric field specifying blocking. A value
of 0 or 1 specifies no blocking; otherwise it speci-
fies the number of 80-byte or 256-byte records to be
received on each Data record.

Figure 24 on pade 246 illustrates the host-remote interaction
for the RECEIVE function. In the example, the host specifies a
data set named "MYDATA™ on the volume "MYVOL" is to receive two
256-byte data records. The records to be received start at the
beginning of the host data set, and are unblocked. The remote
returns a Count record, and the RECEIVE function terminates.

Chapter 6. Remote Management Utility 245

Host Program

Write Initial - Request

RMHBSCC DATA X'1o002'

RMHID DATA C'X"
RMHTYP DATA C'R'
RMREQ DATA F'1"

RMRDSN DATA CL8"MYDATA®
RMRVOL DATA CLé'MYVOL'
RMRSTR DATA D'0°
RMRTYP DATA F'0"
RMRBLK DATA F'1’

Write End

Read Initial - Status
RMHTYP="'S"

RMSREQ=1

RMSFN=-1

Read Continue - EOT
Write Initial - Data
RMHBSCC DATA X'1002°
RMHID DATA C'X"'

RMHTYP DATA C'D’
RMDDATA DATA C text

Write Continue - Data
RMHBSCC DATA X'l1002°'
RMHID DATA C'X?

RMHTYP DATA C'D’
RMDDATA DATA C text
Write End

Read Initial - Count
RMHTYP='C"

RMCREQ=1

RMCCNT=2

Read Continue - EOT

Host

ENQ

TEXT

EOT

ACKx

ACK*

ENQ

TEXT

TEXT

EOT

ACKx

ACKx

Remote

——————— >

o o e e ACK»
——————— >

o e e ACK*
——————— >

(omm e ENQ
——————— >
Lommme TEXT
——————— >
ommm EOT
——————— >
e ACKx*
——————— >
mmm——— ACKx*
——————— >
{=mmm—— ACKx
——————— >
mmm———— ENQ
——————— >
(o TEXT
------- >
mmmm——— EOT

Figure 24. Communications Flow for the RECEIVE Function

246 SC364-0316

/«r \Mw
N

AN
\ H

N

SEND Function

The SEND function requests the utility to read a disk/diskette
data set on the remote Series/1 and transmit it to the host.

The host can specify whether it wants a data set consisting of
256-byte data records, or a source data set, consisting of
80-byte text records sent from the remote. The host may also
specify blocking, in which case, the utility sends records con-
taining multiples of 256-byte or 80-byte records.

The host sends the remote Series/1 a Request record with the
SEND function specified. After receiving and executing the
request, the utility checks to see if it can handle records of
the size requested and attempts to open the data set. The util-
ity then sends a Status record to the host. If a -1 (successful)
status is returned to the host the SEND function continues,
otherwise the function is terminated.

After sending a successful status to the host, the remote
Series/1 reads the records from the data set and transmits Data
records containing the data to the host. If blocking is speci-

.fied, the utility sends blocked Data records to the host. The

length of the data portion of each Data record, except for the
last, will be the blocking factor times 256 or 80, depending on
the data set type. The data portion of the last Data record will
have a length of a multiple of 256 or 80, however that multiple
may be less than the blocking factor. For example, if a
256-byte record data set contains 14 records and a blocking
factor of 5 is specified, the utility will send two 1285-byte
records (256x5=1280+5), and one 1029-byte record
(256x4=1024+5). The actual records are five bytes longer due to
the 4-byte header and the ETX.

If the host requests a data set to be sent as source (80-byte
records) and the data set is not source, the utility will treat
the data set as source, and discard the remaining 48-bytes
following the 80-byte records.

When the last record (the logical end) of the data set is trans-
mitted to the host, the utility will send a Count record. The
RMCCNT field of the Count record contains the number of records
that were sent. The RMCFLG field of the Count record is not used
for the SEND function. The host should compare this number to
the number of records received to verify a complete file trans-—
fer.

In the event of an unrecoverable error, such as a disk or
diskette read error, the utility sends the host a Status
record, with the appropriate error code, and terminates the
SEND function. The host may terminate a SEND function by send-
ing an EOT ("abort™), followed by a Status record and another
EOT.

Chapter 6. Remote Management Utility 267

Required Field Descriptions

Specify the following fields for the SEND function:

RMHBSCC

RMHID

RMHTYP

RMREQ

RMSDSN

RMSVOL

RMSSTR

RMSTYP

RMSBLK

A 2-byte hexadecimal field containing the BSC control
characters DLE STX, specified as X'1002"'.

A l1-byte alphameric field containing the header 1ID
X', identifying the record as an Event Driven Execu—
tive Remote Management Utility record.

A l1-byte alphameric field identifying the header
type. This field contains the character 'R', specify-
ing a Request record type.

A 2-byte numeric field specifying the request type.
For a SEND request, this field contains the number 0.

An 8-byte alphameric field specifying the the name of
the data set to be transmitted to the host.

A 6-byte alphameric field specifying the name of the
volume containing the data set. If RMSVOL is blank,
the volume name defaults to the IPL volume.

A 4-byte (double word) numeric field specifying the
starting record of the data set. Only the second word
is used. If a value of 0 is specified, the data set is
sent beginning with the first record. If a value
greater than zero is specified, the utility issues a
POINT instruction to start at the record specified.

A 2-byte numeric field specifying the type of data set
to send. Specify one of the following:

0 Standard (256-byte records, possibly blocked)
1 Source (80-byte records, possibly blocked)

A 2-byte numeric field specifying blocking. A value
of 0 or 1 specifies no blocking; otherwise it speci-
fies the number of 80-byte or 256-byte records to be
transmitted on each Data record.

248 SC36-0316

Figure 25 on page 250 illustrates the host-remote interaction
for the SEND function. In the example, the host requests that a
256-byte record data set named "MYDATA™ on the volume "MYVOL"™
is to be sent, starting with the first record, with no blocking
requested. The utility transmits three Data records, sends a
Count record to the host, and the SEND function terminates.

Chapter 6. Remote Management Utility 249

Host Program Host Remote
Write Initial - Request ENQ ——ce——— >
(=== ACKx*
RMHBSCC DATA X'1002° TEXT —==———- >
RMHID DATA C'X'
RMHTYP DATA C'R’
RMREQ DATA F'0"
RMSDSN DATA CL8'MYDATA'
RMSVOL DATA CL6'MYVOL'
RMSSTR DATA D'0’
RMSTYP DATA F'0°
RMSBLK DATA F'1°
{mmmmm—— ACKx*
Write End EOT -—=-————- S
Read Initial - Status Cmmm———— ENQ
ACK¥ ——————- >
RMHTYP="'S" Y T TEXT
RMSREQ=0
RMSFN=-1
Read Continue - Data ACK*% ———we—- >
RMHTYP="'D" P TEXT
RMDDATA=Data Text
Read Continue - Data ACK* ——————-— >
RMHTYP="D" T TEXT
RMDDATA=Data Text
Read Continue - Data ACK¥ —~—m—m—— >
RMHTYP='D" PG - TEXT
RMDDATA=Data Text
Read Continue - Count ACK® ——————- >
RMHTYP='C" & o e e TEXT
RMCREQ=0
RMCCNT=3
Read Continue - EOT ACK¥ ————m—- >
mmmm——- EQT

Figure 25. Communications Flow for the SEND Function

250 SC34-0316

SHUTDOKN Function

The SHUTDOWN function requests the utility to terminate and to
free up any remote Series/1 resources it has allocated. 1In
addition, the SHUTDOWN function can optionally start a program
to replace the utility.

The host sends the remote Series/1l a Request record with the
SHUTDOWN function specified. The request may also specify the
name of a program to be executed, similar in format to the EXEC
function.

When a program is specified on the SHUTDOWN request, the utili-
ty issues a LOAD instruction for the program. If the LOAD
instruction fails, the utility sends the host a Status record
indicating the error, and the utility remains active. Other-
wise, the utility sends a successful status via a Status record
and terminates.

I1f the program specified by the host requires a parameter and
the parameter is not supplied, the load (via LOAD) of the pro-
gram will fail. The character string is the parameter(s). For
further information on parameter passing, refer to the section
"Parameter Passing™ on page 212.

Required Field Descriptions

Specify the following fields for the SHUTDOWN function:

RMHBSCC A 2-byte hexadecimal field containing the BSC control
characters DLE STX, specified as X'1002"'.

RMHID A 1l-byte alphameric field containing the header 1ID
X', identifying the record as an Event Driven Execu-
tive Remote Management Utility record.

RMHTYP A l-byte alphameric field identifying the header
type. This field contains the character "R', specify-
ing a Request record type.

RMREQ A 2-byte numeric field specifying the request type.
For a SHUTDOMWN request, this field contains the num-
ber 7.

filler A 2-byte reserved field (unused).

Chapter 6. Remote Management Utility 251

RMSDFLG

RMSDPTN

RMSDPGM

RMSDVOL

RMSDLFS

A l-byte numeric field containing the RMSDFLGX and
RMSDFLGL bits.

RMSDFLGX - When set on, this bit indicates that a pro-
gram is to be executed. The value for RMSDFLGX when
set on is X'80"'.

RMSDFLGL - When set on, this bit indicates that a
"program loaded" message is to be printed on the sys—
tem logging terminal. RMSDFLGL corresponds to the
usage of the LOGMSG parameter of the Event Driven
Language LOAD instruction. The value for RMSDFLGL
when set on is X'40°',

A l-byte numeric field specifying the partition the
program is to run in. Specify one of the following:

-1 Remote Management Utility partition
0 Any partition
1-8 Specific partition

An 8-byte alphameric field specifying the name of the
program to be executed.

A 6-byte alphameric field specifying the name of the
volume containing the program. If RMSDVOL is blank,
the volume name defaults to the IPL volume.

A 2-byte numeric field specifying the amount of free
space (in bytes) to pass to the program.

RMSDPRM# A 2-byte numeric field specifying the length of the

RMSDPRM

RMSDDS#

RMSDDS

parameter(s), in words, to pass to the program. This
field must be zero if no parameters are passed.

A variable length field containing the parameter(s)
to be passed to the program. The length of this field,
in words, must correspond to the value contained in
the RMSDPRM# field. See the section "Parameter
Passing™ on page 212 for details on this field.

A 2-byte numeric field specifying the number of data
set names to be passed to the program. The maximum
number of data set names that may be specified is
nine. This field must be zero if no data set names are
passed.

A variable number of 1l4-byte alphameric fields
specifying data set and volume names to be passed to
the program. The first eight bytes contain the data
set name, and the last six bytes contain the volume
name. If the volume name is blank, the name of the
volume defaults to the IPL volume. The number of data
set and volume names specified must correspond to the
value contained in the RMSDDS# field.

252 SC34-0316

N
{ \
N

Figure 26 illustrates the host-remote interaction for the
SHUTDOKWN function. In the example, the host sends the remote a
SHUTDOWN request with a program name specified. The program,
"MYPROG"™ on the volume "MYVOL™ is to execute in partition 1,
has 256 bytes of free space passed to it, and has no parameters
or data sets passed to it. The RMSDFLG field specifies that a
program is to be executed and a "program loaded" message is to
be printed following a successful LOAD of the program. The
remote sends a status of -1 (successful) to the host, loads the
program, and the utility terminates itself.

Host Program Host Remote

Write Initial - Request ENQ ———=——- >
mmmm——— ACKx

RMHBSCC DATA X'l002' TEXT —=—em—— >

RMHID DATA C'X?

RMHTYP DATA C'R’

RMREQ DATA F'7°"

RMSDFLG DATA X'CO°
RMSDPTN DATA H'1l?
RMSDPGM DATA CL8'MYPROG'
RMSDVOL DATA CL6'MYVOL"®
RMSDFLS DATA F'256"'
RMSDPRM# DATA F'0'
RMSDPRM EQU *

RMSDDS# DATA F'0"

RMSDDS EQU *

{mmmm—— ACK*
Write End EOT ——————- >
Read Initial - Status e ENQ
ACK% —-—w——— >
RMHTYP="'S" R TEXT
RMSREQ=7
RMSFN=-1
Read Continue - EOT ACK»* ——=———— >
{mmm EOT

Figure 26. Communications Flow for the SHUTDOWN Function

Chapter 6. Remote Management Utility 253

WRAP Function

The WRAP function requests the utility to send a block of data
just received back to the host.

The host sends the remote Series/1 a Request record with the
WRAP function specified. The text to be wrapped (transmitted)
is specified in the RMWTXT field of the record extension. The
utility transmits the Request record including the text back to
the host exactly as it was received, and the function termi-
nates. The utility does not send a Status record to the host
after execution of a WRAP function.

A possible use of the WRAP function could be for testing the
host/remote communications.

Required Field Descriptions

Specify the following fields for the WRAP function:

RMHBSCC A 2-byte hexadecimal field containing the BSC control
characters DLE STX, specified as X'1002"'.

RMHID A l1-byte alphameric field containing the header 1ID
X', identifying the record as an Event Driven Execu-
tive Remote Management Utility record.

RMHTYP A l1-byte alphameric field identifying the header
type. This field contains the character "R', specify-
ing a Request record type.

RMREQ A 2-byte numeric field specifying the request type.
For a WRAP request, this field contains the number 5.

RMUTXT A field of any length (not greater than the buffer)
specifying text to be transmitted back to the host.

254 SC34-0316

N

N Y

Figure 27 illustrates the host-remote interaction for the WRAP
function. In the example, the host sends the remote a WRAP
request along with the text "HRAP TEXT" specified. The remote
receives the request and transmits the identical request back
to the host, and the operation is completed.

Host Program Host Remote

Write Initial - Request ENQ ——————- >
L= ACKx

RMHBSCC DATA X'1002° TEXT —==m—=——m— >

RMHID DATA C'X'

RMHTYP DATA C'R'

RMREQ DATA F'5"

RMUWTXT DATA C'WRAP TEXT®
L= ACK*

Write End EOT —=—————- >

Read Initial - HWrap P T ENQ

ACK% —=——mem >

RMHBSCC=X'1002" Lmmmo— TEXT

RMHID=C'X"

RMHTYP=C'R"

RMREQ=F'5"

RMUWTXT=C'WRAP TEXT'

Read Continue - EOT ACK%X ——————— >
{mmmmmm—- EOT

Figure 27. Communications Flow for the WRAP Function

Chapter 6. Remote Management Utility 255

Count Record

The Remote Management Utility sends a Count record to the host
after an end-of-data condition is detected during a data set
transfer (from either a SEND or RECEIVE request). This record
contains the number of records sent or received by the utility.
Additionally, the Count record indicates if record padding has
occurred during the data set transfer. The host should use this
record to verify whether a complete file transfer has occurred.

The following is the format of the Count record:

RMHBSCC A 2-byte hexadecimal field containing the BSC control
characters DLE STX, specified as X'1002"'.

RMHID A l-byte alphameric field containing the header 1ID
'X', identifying the record as an Event Driven Execu-
tive Remote Management Utility record.

RMHTYP A l-byte alphameric field identifying the header
type. This field contains the character 'C', specify-
ing a Count record type.

RMCREQ A 2-byte numeric field specifying the request type
(0=SEND, 1=RECEIVE).

RMCFLG A 2-byte field indicating if record padding has
occurred during a data set transfer. The bit defined
by RMCFLGPD (X'8000') is set to 1 if padding has
occurred, otherwise 0.

RMCCNT A 6-byte numeric field specifying the number of
records transmitted. This number reflects the number
of logical records (80-byte or 256-byte records)
transmitted, independent of how the records were
blocked.

256 SC34-0316

C

F

o
N

Data Record

The Data record is used by the Remote Management Utility to
send data to or receive data from the host. This record con-
tains the 80-byte or 256-byte records from a specified data set
on a SEND or RECEIVE request.

The following is the format of the Data record:

RMHBSCC

RMHID

RMHTYP

RMDDATA

A 2-byte hexadecimal field containing the BSC control
characters DLE STX, specified as X'1002"'.

A l-byte alphameric field containing the header 1ID
*'X', identifying the record as an Event Driven Execu-
tive Remote Management Utility record.

A 1-byte alphameric field identifying the header
type. This field contains the character 'D', specify-
ing a Data record type.

A variable-length field containing the data to be
transmitted (from a SEND or RECEIVE request). The
length of this field will be a multiple of 80 or 256,
depending on the type of data transfer.

Chapter 6. Remote Management Utility 257

Status Record

The Status is sent to the host by the Remote Management Utility
to indicate the success or failure of a requested function.

The following is the format of the Status record:

RMHBSCC

RMHID

RMHTYP

RMSREQ

RMSFN

RMSST

RMSRID

A 2-byte hexadecimal field containing the BSC control
characters DLE STX, specified as X'1002"'.

A 1-byte alphameric field containing the header 1ID
'X', identifying the record as an Event Driven Execu-
tive Remote Management Utility record.

A l-byte alphameric field identifying the header
type. This field contains the character 'S', specify-
ing a Status record type.

A 2-byte numeric field specifying the request type.

A 2-byte numeric field indicating the success of the
request. If the request is successful this field will
contain a -1, otherwise this field will contain a pos-
itive value indicating the error which occurred. The
equated values, included in the copy code CDRRM, with
the names beginning with the RMSFN field define these
errors.

A 2-byte numeric field with a return code if an Event
Driven Executive function failed. For example, if
RMSFN contained the value 24 (LOAD failed), RMSST
will contain the return code from the LOAD
instruction.

An 8-byte alphameric field specifying the ID of the

.remote Series/1 on completion of a successful IDCHECK

request. This field is not sent to the host if the
IDCHECK request fails.

258 SC34-0316

d
N

Sample Host Programs

The following sample programs illustrate host programs (on =a
host Series/1) which can communicate with and perform func-
tions of the Remote Management Utility.

Chapter 6. Remote Management Utility 259

This sample host program can perform all the functions of the
utility except SEND, RECEIVE, and PASSTHRU. This program sends
an ALLOCATE request and prints a status message, but could be
used for the other functions by simply defining the fields of
the desired request at label "RM".

uT PROGRAM START
START EQU *
BSCOPEN I0CB,ERROR=BSCERR OPEN BSC LINE
MOVE I0CB3, +REQLEN LENGTH OF REQUEST
* IN I0CB
BSCWRITE IX,IOCB,ERROR=BSCERR WRITE REQUEST
BSCWRITE E,IOCB,ERROR=BSCERR WRITE EOT
MOVEA I0CB2,ST ADDRESS OF STATUS
MOVE I0CB3,20 LENGTH OF STATUS
* IN I0CB
BSCREAD I,I0CB,ERROR=BSCERR,TIMEOUT=NO READ STATUS
SUB I0CB,I0CB2,RESULT=PN2 LENGTH INTO PRINTNUM
ADD PN2,+1
SHIFTR PN2,1 CONVERT LENGTH TO WORDS
PRINTEXT '@STATUS MESSAGE:d'
PRINTNUM ST,0,MODE=HEX,P2=PN2 PRINT STATUS MSG
BSCREAD C,I0CB,ERROR=BSCERR,TIMEOUT=NO READ EOT
IF (ST+6,EQ,-1) IF SUCCESSFUL STATUS
* THEN
PRINTEXT '"@FUNCTION SUCCESSFUL'
ELSE ELSE a
PRINTEXT 'QFUNCTION FAILED' S
ENDIF ENDIF
TERM EQU * TERMINATION POINT
BSCCLOSE IOCB CLOSE BSC LINE
PROGSTOP
%*
BSCERR EQU * BSC ERROR ROUTINE
MOVE ST,UT MOVE RETURN CODE
PRINTEXT 'dBSC ERROR:'
PRINTNUM ST PRINT RETURN CODE
GOTO TERM GO TO TERMINATION
*
10CB BSCIOCB 9,RM,0,P2=10CB2,P3=I0CB3 10CB
* P2=10CB2 IS MESSAGE ADDRESS
* P3=I0CB3 IS MESSAGE LENGTH
*
ST DATA 10F'0" AREA FOR STATUS RECORD
* 10 BYTES NORMAL STATUS RECORD
* 8 BYTES IDCHECK STATUS EXT.
* 1 BYTE ETX
¥ e —————
* 19 BYTES TOTAL, ROUNDED UP TO
* 10 WORDS
260 SC34-0316

¥—— THE FOLLOWING MAY BE CHANGED

*

RM EQU

RMHBSCC DATA
RMHID DATA
RMHTYP DATA
RMREQ DATA

RMADSN DATA
RMAVOL DATA
RMANREC DATA
RMADST DATA
REQLEN EQU
*
ENDPROG
END

*

X'1002"
crx’

C'R"’

Fr2°
CL3"MYDATA"
CL6'MYVOL"
brig*

Frie

*—RM

FOR OTHER REQUESTS --x

REQUEST

BSC CTRL CHARS (DLE STX)
HEADER 1D

HEADER TYPE: REQUEST
REQUEST TYPE: ALLOCATE
DATA SET NAME: MYDATA
VOLUME NAME: MYVOL

NUMBER RECORDS: 10

DATA SET TYPE: DATA

LENGTH OF REQUEST

Chapter 6. Remote Management Utility 261

This sample host program receives data set "MYDATA"™ at the
remote Series/1 from the host Seriess/1. Data is blocked with a .
factor of 2, and transferred as 80-byte records. @

EXRECV PROGRAM START,DS=((RECVDS,?2))
START EQU *
BSCOPEN IOCB,ERROR=BSCEOPN OPEN BSC LINE

*
MOVE I0OCB3,+REQLEN LENGTH OF REQUEST IN IOCB
BSCWRITE IX,I0CB,ERROR=BSCERR WRITE REQUEST
BSCWRITE E,IOCB,ERROR=BSCERR WRITE EOT
%
MOVEA I0CB2,ST ADDRESS OF STATUS
MOVE I0CB3,+STL LENGTH OF STATUS IN IOCB
BSCREAD I,I0CB,ERROR=BSCERR READ STATUS
BSCREAD C,IOCB,ERROR=BSCERR READ EOT
IF (STSFN,NE,-1) IF STATUS INDICATES ERROR
PRINTEXT '@STATUS INDICATES ERROR' THEN PRINT IT
PRINTNUM ST,5,MODE=HEX
GOTO TERM1 TERMINATE
ENDIF ENDIF
*
MOVEA I1I0CB2,DT ADDRESS OF DATA
MOVE I0CB3,+DTL SET LENGTH
DATA EQU *
READ DS1,DISKREC,ERROR=RDERR, END=RDEND READ RECORD
MOVE DTDATA,DISKREC, (80,BYTE) FIRST RECORD N
MOVE DTDATA+80,DISKREC+128, (80,BYTE) SECOND RECORD .~
IF (COUNT,EQ,0) IF FIRST TIME THEN
BSCWRITE IX,IOCB,ERROR=BSCERR,END=BSCAB WRITE INITIAL
ELSE ELSE
BSCWRITE CX,IOCB,ERROR=BSCERR,END=BSCAB WRITE CONTINUE
ENDIF ENDIF
ADD COUNT, 2 ADD 2 TO COUNT
GOTO DATA CONTINUE TRANSFERRING DATA
RDEND EQU %* TO HERE WHEN AT ENDFILE

BSCWRITE E,IOCB,ERROR=BSCERR WRITE EOT
BSCREAD 1I,IO0CB,ERROR=BSCERR READ COUNT
BSCREAD C,I0OCB,ERROR=BSCERR READ EOT

IF (DTCCNT,EQ,COUNT) IF COUNT OK THEN
PRINTEXT *COUNT OK:'® PRINT IT
PRINTNUM COUNT

ELSE ELSE
PRINTEXT "QCOUNT FAILED. COUNTED:'

PRINTNUM COUNT PRINT COUNTS

PRINTEXT ' COUNT RECORD:"
PRINTNUM DTCCNT
ENDIF ENDIF

262 SC34-0316

TERMI1

TERMZ2

BSCAB

*
BSCERR

*
BSCEOPN

RDERR

EQU
BSCCLOSE
EQU
PROGSTOP
EQU
BSCREAD
BSCREAD
PRINTEXT
PRINTNUM
GOTO

EQU %*
MOVE
PRINTEXT
PRINTNUM
GOTO

EQU *
MOVE
PRINTEXT
PRINTNUM
GOTO

EQU *
MOVE
PRINTEXT
PRINTNUM
MOVEA

MOVE
MOVE
MOVE
BSCHRITE
BSCWRITE
GOTO

BSCIOCB

DATA

DATA

Chapter 6.

* EXIT POINT FOR NORMAL TERM
10CB CLOSE BSC LINE
* EXIT POINT FOR OPEN FAILED

*
I,I0CB,ERROR=BSCERR

ABORT RECEIVED ON WRITE

READ STATUS

C,IOCB,ERROR=BSCERR READ EOT
"QABORT RECEIVED. STATUS:®
DT,5,MODE=HEX
TERM1 TERMINATE
BSC ERROR ROUTINE
ST,EXRECV MOVE RETURN CODE
'dBSC ERROR:'
ST PRINT RETURN CODE
TERM1 GO TO TERMINATION
OPEN ERROR
ST,EXRECV MOVE RETURN CODE
'9BSC OPEN ERROR:'
ST PRINT RETURN CODE
TERM2 GO TO TERMINATION
DISK READ ERROR
ST,EXRECV MOVE RETURN CODE

*aDISK READ ERROR:'
ST
I0CB2,ST

I0CB3,4

ST,X'1002"
ST+2,C"XS"

IX,I0CB, ERROR=BSCERR
E,IOCB,ERROR=BSCERR
TERM2

PRINT RETURN CODE
POINT IOCB 7O

STATUS MESSAGE

SET LENGTH T0 ¢4

SET UP STATUS MESSAGE

SEND STATUS MESSAGE
SEND EOT
GO TO TERMINATION

9,RM,0,P2=10CB2,P3=1I0CB3 I0CB

P2=

IS RECORD ADDRESS

P3= IS RECORD LENGTH
F'o’ RECORD LENGTH
F'o? RECORD COUNT

Remote Management Utility 263

*-- REQUEST TO RECEIVE A DATA SET

*

RM EQU *
RMHBSCC DATA X'1002'
RMHID DATA cC'X?
RMHTYP DATA C'R?
RMREQ DATA F'1"
RMRDSN DATA CL8'MYDATA"®
RMRVOL DATA CLé6"' '
RMRSTR DATA D'0’
RMRTYP DATA F'1l"
RMRBLK DATA F'2°
REQLEN EQU *—RM
¥-— STATUS RECORD
*
ST DATA 6F'0"
*
*
*
STSFN EQU S5T+6
STL EQU ¥=-ST
*
¥—— DATA AND COUNT RECORD
*
DT DATA X'1002'
DATA C'XD"’
DTCCNT EQU DT+10
DTDATA DATA 160C' "
DTL EQU *-DT
*
DISKREC DATA 128F'0’
ENDPROG
END

264 SC34-0316

™,
REQUEST L

BSC CNTRL CHARS (DLE STX)

HEADER 1ID

HEADER TYPE: REQUEST
REQUEST TYPE: RECEIVE
DATA SET NAME: MYDATA
VOLUME NAME: (IPL vOL)
STARTING RECORD: NONE
RECEIVE TYPE: SOURCE

BLOCKING FACTOR: 2
LENGTH OF REQUEST

AREA FOR STATUS RECORD
10 BYTES FOR STATUS RECORD,
1 BYTE FOR ETX, ROUNDED UP
TO 6 WORDS

STATUS FUNCTION

STATUS RECORD LENGTH

DATA RECORD: DLE STX
HEADER ID, TYPE (DATA)
LOCATION OF COUNT e

LENGTH g/

DISK RECORD AREA

o

This sample host program executes a PASSTHRU session through
the utility. The session is established with the Event Driven
Executive supervisor. Blocking is used. All terminal I/70 is
performed to make the host terminal appear as if the terminal
were connected at the remote Series/l1.

EXPASST PROGRAM START, TERMERR=TERMI

THIS EXAMPLE HOST PROGRAM USES THE PASSTHRU FUNCTION
OF THE REMOTE MANAGEMENT UTILITY. THE OPERATOR IS
ASKED WHETHER TO START THE PASSTHRU ASSIST PROGRAM.
IF sO0, THE PROGRAM $RMUPA IS INVOKED. AFTER THIS, A
SESSION IS ESTABLISHED WITH THE EDX SUPERVISOR.

WHENEVER A "PROGRAM END" PASSTHRU RECORD IS RECEIVED,
A "REQUEST DATA"™ RECORD IS SENT. WHEN A ™NO DATA"
RECORD IS RECEIVED, THE OPERATOR IS ASKED WHETHER TO
"ATTN" (END THE SESSION AND START ANOTHER), "READ"™
(TRY TO ACQUIRE DATA FROM THE HOST), OR "QUIT™ (END
THE PASSTHRU SESSION AND THEN TERMINATE.

XK X XK XK XK X X X X X X X X X

TART EQU *
BSCOPEN IOCB,ERROR=BSCEGPN OPEN BSC LINE
*
¥—— START UP PASSTHRU ASSIST PROGRAM ($RMUPA) IF NEEDED
*
QUESTION 'START PASSTHRU ASSIST PROGRAM?',NO=STARTZ2
*
MOVEA IOCB2,REQPTAS ADDRESS OF REQUEST IN IOCB
MOVE I0OCB3, +REQPTASL LENGTH OF REQUEST IN IOCB
BSCWRITE IX,IO0CB,ERROR=BSCERR WRITE REQUEST
BSCWRITE E,IOCB,ERROR=BSCERR MWRITE EOT

MOVEA I10CB2,ST ADDRESS OF STATUS
MOVE I0CB3,+STL LENGTH OF STATUS IN IOCB
BSCREAD I,IGCB,ERROR=BSCERR READ STATUS
BSCREAD C,IOCB,ERROR=BSCERR READ EOT
IF (STSFN,NE,-1) IF STATUS INDICATES ERROR
PRINTEXT 'QSTATUS INDICATES ERROR' PRINT IT
PRINTNUM ST,5,MODE=HEX
GOTO TERM1 TERMINATE
ENDIF ENDIF

Chapter 6. Remote Management Utility 265

*

*_..—

*

MOVEA I0CB2,DT
MOVE I0OCB3,+DTL
BSCREAD 1I,I0CB,ERROR=BSCERR,TIMEOUT=NO

ADDRESS OF DATA
SET LENGTH

READ, EXPECT PROGRAM END

BSCREAD C€,I0CB,ERROR=BSCERR,TIMEOQUT=NO READ EOT
IF (EXPASST,EQ,+1),AND, (DT+RMPTYP,EQ, +RMPTYPPE)

MOVE
MOVE
MOVE
BSCWRITE
BSCWRITE
ELSE
MOVE
PRINTEXT
PRINTEXT
PRINTNUM
PRINTEXT
PRINTNUM
GOTO
ENDIF

DT,X'1002"
DT+RMPTYP, +RMPTYPPE
I0OCB3,+RMPX
IX,I0CB,ERROR=BSCER
E,IOCB,ERROR=BSCERR

ST,EXPASST
'daUNSUCCESSFUL LOAD
'3LAST MESSAGE READ
DT,10,MODE=HEX
'dLAST RETURN CODE
ST,MODE=HEX

TERM1

MAIN PASSTHRU PROCESSING. SEND RE

STARTZ2 MOVEA IOCB2,REQPT
MOVE I0CB3,+REQLEN
BSCWRITE IX,I0OCB,ERROR=BSCERR

266

BSCHWRITE E,

I0CB, ERROR=BSCERR

MOVEA I0CB2,ST
MOVE I0CB3,+STL

BSCREAD I,

I0CB,ERROR=BSCERR

BSCREAD C,I0OCB,ERROR=BSCERR
IF (STSFN,NE,-1)

PRINTEXT

PRINTNUM

GOTO
ENDIF

§C34-0316

'3dSTATUS INDICATES
ST,5,MODE=HEX '
TERM1

IF PGM END AND EOT THEN
SET UP PTHRU PGM END
PTHRU TYPE IS PGM END
SET UP LENGTH IN IOCB

R,END=BSCAB WRITE TO RMU
WRITE EOT

ELSE
SAVE RETURN CODE

OF PASSTHRU ASSIST PGM.

[}

PRINT MESSAGE

FROM READ:'

PRINT RETURN CODE
TERMINATE
ENDIF

-

QUEST

ADDRESS OF REQUEST IN IOCB
LENGTH OF REQUEST IN IOCB
WRITE REQUEST

WRITE EOT

ADDRESS OF STATUS

LENGTH OF STATUS IN IOCB
READ STATUS

READ EOT

IF STATUS INDICATES ERROR
ERROR' PRINT IT

TERMINATE
ENDIF

»

O

READ EQU *

MOVEA 10CB2,DT
MOVE IOCB3,+DTL
IF (BSCST,NE,+BSCSTRD)

BSCREAD 1I,I0CB,ERROR=BSCERR,TIMEOUT=NO

MOVE BSCST, +BSCSTRD

ADDRESS OF DATA
SET LENGTH
IF BSC STATE IS NOT READ

READ INIT
BSC STATE = READ

ELSE ELSE
BSCREAD C€,IOCB,ERROR=BSCERR, TIMEOUT=NO READ CONT
ENDIF ENDIF
*
IF (DT+RMHTYP,NE,C'P',BYTE) IF NOT PASSTHRU THEN

PRINTEXT 'ANON-PASSTHRU MESSAGE RECEIVED:"®

PRINTNUM DT,5,MODE=HEX

PRINT WHAT WAS RECEIVED
(WILL BE STATUS)

BSCREAD C,IOCB,ERROR=BSCERR,TIMEOUT=NO READ EOT
GOTO TERM1 TERMINATE
ENDIF ENDIF
¥-—- CASE: PASSTHRU TYPE
GOTO (ERRPT, TEXT,REQD, PGME,NODA),DT+RMPTYP
*
TEXT EQU * PASSTHRU TYPE: DATA
MOVEA #1,DT+RMPST SET #1 TO BEGINNING OF TXT
DO UNTIL, (#1,EQ,IOCB) DO UNTIL AT END OF TEXT
* (I0OGR CONTAINS ADDRESS
* OF BYTE PAST LAST BYTE
* OF DATA)
IF ((0,%#1),EQ,-1),0R,((0,#1),EQ,-2) IF TEXT
PRINTEXT (4,%#1),MODE=LINE PRINT TO TERMINAL
IF ((0,%#1),EQ,-1) IF NEWLINE
PRINTEXT SKIP=1 THEN DO NEWLINE
ENDIF ENDIF
ADD #1,(2,%1) POINT #1 TO NEXT TEXT
ADD #1,5 ADD HEADER LENGTH + 1
AND #1,X"FFFE’ POINT TO EVEN BOUNDARY
ELSE ELSE
IF (C0,%#1),EQ,X"8F'",BYTE) IF LINE= THEN
AND (0,#1),X'00FF",RESULT=N1 DO IT
PRINTEXT LINE=N1 ON TERMINAL
ELSE ELSE
IF (C0,#1),EQ,X"8E',BYTE) IF SKIP= THEN
AND (0,#1),X'00FF'",RESULT=N1 DO IT
PRINTEXT SKIP=N1 ON TERMINAL
ENDIF ENDIF
ENDIF ENDIF
ADD #1,4 POINT #1 TO NEXT
* TEXT BLOCK
ENDIF ENDIF
ENDDO ENDDO
GOTO READ END TEXT PROCESSING

Chapter 6. Remote Management Utility 267

REQD EQU
BSCREAD
MOVE
READTEXT
MOVE
MOVE
MOVE
IF

*
C,IO0OCB,ERROR=BSCERR
DT+RMPTXTL,X'FEOO®
DT+RMPTXT,MODE=LINE
DT,X'1002"
DT+RMPTYP, +RMPTYPTX
DT+RMPTXTL,0,BYTE

PASSTHRU TYPE: REQ DATA
READ EOT

SET UP "TEXT"™ STATEMENT
GET TEXT FROM TERMINAL
SET UP PTHRU TEXT RECORD
PTHRU TYPE IS TEXT OR PFK
ZERO HI-ORDER LENGTH BYTE

(DT+RMPTXTL,GE,4),AND, (DT+RMPTXT,EQ,C'$P"),
AND, (DT+TXT2,EQ,C'F',BYTE) IF "SPFN" ENTERED

MOVE DT+RMPTXTL, -1 INDICATE PF KEY
MOVE DT+RMPTXT,DT+TXT2 PLACE NUMBER IN MSG
AND DT+RMPTXT,X'000F" PURIFY NUMBER
MOVE I0OCB3,2+RMPTXT LENGTH IN IOCB
ELSE ELSE
MOVE I0OCB3,DT+RMPTXTL SET UP LENGTH IN IOCB
ADD I0CB3, +RMPTXT INCLUDING HEADER
ENDIF ENDIF
BSCWRITE IX,IOCB,ERROR=BSCERR,END=BSCAB WRITE TO RMU
BSCHWRITE E,IOCB,ERROR=BSCERR WRITE EOT
MOVE BSCST, +BSCSTO BSC STATE = RESET
GOTO READ END REQ TEXT PROCESSING
*
PGME EQU % PASSTHRU TYPE: PROGRAM END
* (DISCONNECT)
BSCREAD C,I0OCB,ERROR=BSCERR READ EOT
GOTO SNDRQD GO AND REQUEST DATA
%
NODA EQU * PASSTHRU TYPE: NO DATA
BSCREAD C,I0OCB,ERROR=BSCERR READ EOT
NODAQ PRINTEXT 'Q3"NO DATA"™ RECEIVED. ENTER ONE:'
READTEXT INMSG,'®d A(TTN), RC(EAD), QUIT) °
IF (INMSG,EQ,C'A',BYTE),OR, (INMSG,EQ,C'Q",BYTE)
* IF "ATTN™ OR "QUIT™ THEN
* SEND PROGRAM END
MOVE DT,X'1002" SET UP PTHRU PGM END
MOVE DT+RMPTYP,+RMPTYPPE PTHRU TYPE IS PGM END
MOVE IOCB3, +RMPX SET UP LENGTH IN IOCB
BSCWRITE IX,IOCB,ERROR=BSCERR,END=BSCAB WRITE TO RMU
BSCWRITE E,IOCB,ERROR=BSCERR WRITE EOT
MOVE BSCST, +BSCSTO BSC STATE = RESET
IF (INMSG,EQ,C'A",BYTE),GOTO,STARTZ2
* IF "A"™ THEN START NEMW
* SESSION
GOTO TERM1 OTHERWISE TERMINATE
ELSE ELSE (NOT "ATTN"
* OR "QUIT")
IF (INMSG,EQ,C'R"'),G0OTO,SNDRQD IF "R™ THEN
* REQUEST DATA
GOTO NODAQ ELSE ASK AGAIN
ENDIF ENDIF

268 SC34-0316

7N

N

O

ERRPT

*

I -

*
SNDRQD

TERM1

TERMZ2

BSCAB

C ;

BSCERR

*
BSCEOPN

EQU
PRINTEXT
PRINTNUM
GO0TO

* PASSTHRU TYPE: UNKNOWN
"@INVALID PASSTHRU RECORD RECEIVED:'

DT,20,MODE=HEX

END OF CASES

EQU

MOVE
MOVE
MOVE
BSCWRITE
BSCHWRITE
MOVE
GOTO

EQU
BSCCLOSE
EQU
PROGSTOP
EQU
BSCREAD
BSCREAD
PRINTEXT
PRINTNUM
GOTO

EQU *
MOVE
PRINTEXT
PRINTNUM
GOTO

EQU *
MOVE
PRINTEXT
PRINTNUM
GOTO

TERM1 TERMINATE

* SEND REQUEST DATA
DT,X"1002" SET UP PTHRU REQUEST DATA
DT+RMPTYP,+RMPTYPRD PTHRU TYPE IS REQEST DATA

I0CB3,+RMPX SET UP LENGTH IN IOCB
IX,I0CB,ERROR=BSCERR,END=BSCAB WRITE TO RMU

E,IOCB,ERROR=BSCERR WRITE EOT

BSCST,+BSCSTO BSC STATE = RESET

READ END REQ TEXT PROCESSING
* EXIT POINT FOR NORMAL TERM
10CB CLOSE BSC LINE

* EXIT POINT FOR OPEN FAILED
* ABORT RECEIVED ON WRITE
I,I0CB,ERROR=BSCERR READ STATUS
C,I0CB,ERROR=BSCERR READ EOT

'dABORT RECEIVED. STATUS:®

DT,20,MODE=HEX

TERMI1 TERMINATE

BSC ERROR ROUTINE
ST,EXPASST MOVE RETURN CODE
'dBSC ERROR:'
ST

TERM1

PRINT RETURN CODE
GO TO TERMINATION

OPEN ERROR
ST,EXPASST MOVE RETURN CODE
'9dBSC OPEN ERROR:’
ST

TERM2

PRINT RETURN CODE
GO TO TERMINATION

Chapter 6. Remote Management Utility 269

x—-— DATA AREA
*

INMSG TEXT LENGTH=6
¥
I0CB BSCIOCB
*
»*
*
¥-- REQUEST FOR PASSTHRU
*
REQPT EQU x
DATA X'1002°
DATA C'X'
DATA C'R’
DATA A(RMREQPST)
DATA A(PBL)
DATA H'0"
DATA H'O'
DATA CL8' '
DATA CL6"' '
DATA 3F'0"
REQLEN EQU %-REQPT
¥*
x-- PASSTHRU REQUEST: START
*
REQPTAS EQU x
DATA X'1002°
DATA C'X'
DATA C'R'
DATA A(CRMREQPST)
DATA A(D)
DATA H'O'
DATA H'O'
DATA CL8'$RMUPA®
DATA CL6" '
DATA F'0°'
DATA F'0°'
DATA F'0'
REQPTASL EQU %-REQPTAS

270 SC34-0316

INPUT MSG FROM OPERATOR

9,0,0,P2=10CB2,P3=I0CB3

P2= IS RECORD ADDRESS
P3= IS RECORD LENGTH

REQUEST

BSC CONTROL CHARS (DLE STX)

HEADER ID
HEADER TYPE:
REQUEST TYPE:

PASSTHRU BLKING

FLAG (UNUSED)

REQUEST
PASSTHRU (12)

PARTITION (UNUSED)

PROGRAM:

EDX SUPERVISOR
VOLUME (UNUSED)

(REMAINDER UNUSED)

LENGTH OF REQUEST

REQUEST

PASSTHRU ASSIST PROGRAM

BSC CONTROL CHARS (DLE STX)

HEADER 1ID
HEADER TYPE:
REQUEST TYPE:

PASSTHRU BLKING

FLAG (UNUSED)
PARTITION
PROGRAM:
VOLUME:

FREE SPACE:
PARAMETERS:
DATA SETS:

LENGTH OF REQUEST

REQUEST
PASSTHRU (12)
(NONE)

(ANY)
$RMUPA
IPL
NONE
NONE
NONE

AN
N

O

*

¥-- STATUS RECORD
*

ST DATA 6F'0" AREA FOR STATUS RECORD
* 10 BYTES FOR STATUS RECORD,
* 1 BYTE FOR ETX, ROUNDED UP
* TO 6 WORDS
STSFN EQU ST+6 STATUS FUNCTION
STL EQU *=ST STATUS RECORD LENGTH
*
¥-— PASSTHRU SESSION AREA
*
DT DATA 256F'0" RECORD
DTL EQU *-DT LENGTH
PBL EQU DTL-8 PASSTHRU BLOCK LENGTH
* LENGTH OF DATA AREA -
* 6 BYTES FOR HEADER AND 2
* FOR ETX AND WORD ROUND UP
*
¥—-— MISCELLANEOUS VARIABLES
*
BSCST DATA F'0" BSC STATE:
BSCSTO EQU 0 RESET
BSCSTRD EQU 1 READING
N1 DATA F'0° WORK WORD
*
COPY CDRRM INCLUDE DEFINITION OF RMU MSGS
TXT2 EQU RMPTXT+2 BYTE 2 OF PASSTHRU TEXT
*
ENDPROG
END

Chapter 6. Remote Management Utility 2?1

This sample interaction with the PASSTHRU host program illus-
trates running the $DEBUG utility under the PASSTHRU function.

(Attention) N/
> 6L EXPASST
EXPASST 9P LP=C900
START PASSTHRU ASSIST PROGRAM? Y
> &L SDEBUG
$DEBUG 27P,09:464:08 LP=BFO0O
PROGRAM NAME: &DISKUT1
$DISKUT1 30P,09:44:14 LP=DA0O
REQUEST "HELP"™ TO GET LIST OF DEBUG COMMANDS
TASK STOPPED AT 0064
"NO DATA"™ RECEIVED. ENTER ONE:
ACTTN), RCEAD), Q(UIT) A
> WHERE
TASK STOPPED AT 0066
SATTASK AT 2600
"NO DATA™ RECEIVED. ENTER ONE:
ACTTN), RCEAD), Q(UIT) A
> GO
OPTION(%/ADDR/TASK/ALL): ALL
1 BREAKPOINT(S) ACTIVATED
USING VOLUME EDX002
COMMAND (2?): LA 22ZZ
USING VOLUME EDX002
NAME FREC SIZE
12845 FREE RECORDS IN LIBRARY e~
COMMAND (2): SPFO (/ |
> WHERE
INVALID COMMAND
TASK AT 0274
SATTASK AT 2600
COMMAND (2): SPFO
XX
> AT
INVALID COMMAND
OPTION(*%/ADDR/TASK/ALL): A
BREAKPOINT ADDR: 274
LIST/NOLIST: N
STOP/NOSTOP: S
1 BREAKPOINT(S) SET
COMMAND: XX
TASK STOPPED AT 0274
"NO DATA"™ RECEIVED. ENTER ONE:
ACTTN), RCEAD), QCUIT) A
> LIST A 276 5 X
0274 X' 80AF 1010 C9D5 E5C1 D3C9'
"NO DATA" RECEIVED. ENTER ONE:
ACTTN), RCEAD), QCUIT) A
> END
1 BREAKPOINT(S) REMOVED

INVALID COMMAND Q:)

272 S5C34-0316

O

COMMAND (?): EN

"NO DATA™ RECEIVED.
A(TTN), RCEAD), Q(

"NO DATA™ RECEIVED.
ACTTN), RCEAD), Q¢

> $RMUPA

"NO DATA™ RECEIVED.
ACTTN), RCEAD), Q¢

> SA

PROGRAMS AT 09:50:26

IN PARTITION #1 NO

"NO DATA™ RECEIVED.

ENTER ONE:
UIT) R
ENTER ONE:
UIT) A

ENTER ONE:
UuiTs A

NE
ENTER ONE:

ACTTN), RCEAD), QCUIT) Q

EXPASST ENDED

Chapter 6. Remote Management Utility

273

This sample host program sends data set "MYDATA"™ from the
remote Series/1 to the host Series/1l. Data is blocked with a
factor of 3, and transferred as 256-byte records.

EXSEND PROGRAM START,DS=((SENDDS,2?))

START EQU %
BSCOPEN IOCB,ERROR=BSCEOPN OPEN BSC LINE
MOVE 10CB3,+REQLEN LENGTH OF REQUEST IN IOCB

BSCWRITE IX,IOCB,ERROR=BSCERR WRITE REQUEST
BSCWRITE E,IOCB,ERROR=BSCERR WRITE EOT

MOVEA I0OCB2,ST ADDRESS OF STATUS

MOVE I0OCB3,+STL LENGTH OF STATUS IN 10CB
BSCREAD 1I,IOCB,ERROR=BSCERR READ STATUS

IF (STSFN,NE,-1) IF STATUS INDICATES ERROR

BSCREAD C,IOCB,ERROR=BSCERR READ EOT
PRINTEXT 'QSTATUS INDICATES ERROR' THEN PRINT IT
PRINTNUM ST,5,MODE=HEX

GOTO TERM1 TERMINATE
ENDIF ENDIF
MOVEA I0CB2,DT ADDRESS OF DATA
DATA EQU *
MOVE IOCB3,+DTL SET LENGTH TO MAX
BSCREAD C€,IOCB,ERROR=BSCERR READ DATA OR COUNT
SUB I0OCB,IOCB2,RESULT=RLEN COMPUTE LENGTH
IF (DTHTYPR,EQ,C'D',BYTE) IF DATA THEN
SUB RLEN, +6 -4 FROM LENGTH
* FOR HEADER
SHIFTR RLEN,8 RLEN = NUMBER RECORDS
%* WRITE RECORDS NEXT
WRITE DS1,DTDATA,RLEN,ERROR=WRERR, END=WRERR
ADD COUNT,RLEN ADD NUMBER WRITTEN
* TO COUNT
GOTO DATA GO READ NEXT RECORD
ELSE ELSE
IF (DTHTYPR,EQ,C*'C',BYTE) IF COUNT THEN
IF (DTCCNT,EQ,COUNT) IF COUNT OK THEN
PRINTEXT 'COUNT OK:' PRINT IT
PRINTNUM COUNT
ELSE ELSE
PRINTEXT 'COUNT FAILED. COUNTED:'
PRINTNUM COUNT PRINT COUNTS
PRINTEXT ' COUNT RECORD:"
PRINTNUM DTCCNT
ENDIF ENDIF
ELSE ELSE MUST BE STATUS
PRINTEXT 'ERROR MSG RECEIVED:'
PRINTNUM DT,5,MODE=HEX PRINT IT
ENDIF ENDIF
ENDIF ENDIF

274 SC34-0316

»

BSCREAD

C,I0OCB,ERROR=BSCERR

READ EOT

TERM1 EQU * EXIT POINT FOR NORMAL TERM
BSCCLOSE IOCB CLOSE BSC LINE
TERM2 EQU * EXIT POINT FOR OPEN FAILED
PROGSTOP
BSCERR EQU * BSC ERROR ROUTINE
MOVE ST,EXSEND MOVE RETURN CODE
PRINTEXT 'QBSC ERROR:'
PRINTNUM ST PRINT RETURN CODE
GOTO TERM1 GO TO TERMINATION
*
BSCEOPN EQU * OPEN ERROR
MOVE ST,EXSEND MOVE RETURN CODE
PRINTEXT '3BSC OPEN ERROR:'
PRINTNUM ST PRINT RETURN CODE
GOTO TERMZ2 GO TO TERMINATION
*
WRERR EQU * WRITE ERROR
MOVE ST, EXSEND MOVE RETURN CODE
PRINTEXT '"oDISK WRITE ERROR:®
PRINTNUM ST PRINT RETURN CODE
BSCWRITE E,IOCB,ERROR=BSCERR HWRITE EOT (ABORT)
MOVEA I0CB2,ST POINT IOCB TO STATUS
MOVE I0CB3,4 SET LENGTH TO 4
MOVE ST,X'1002" SET UP STATUS MESSAGE
MOVE ST+2,C'XS"
BSCWRITE IX,I0CB,ERROR=BSCERR WRITE STATUS
BSCWRITE E,IOCB,ERROR=BSCERR WRITE EOT
GOTO TERM1 GO TO TERMINATION
*
I0CB BSCIOCB 9,RM,0,P2=I0CB2,P3=I0CB3 10CB
*
* P2=I0CB2 IDENTIFIES MSG ADDRESS
* P3=I0CB3 IDENTIFIES MSG LENGTH
RLEN DATA F'0" RECORD LENGTH
*
COUNT DATA F'o" RECORD COUNT
*
¥-— REQUEST TO SEND DATA SET
*
RM EQU * REQUEST
RMHBSCC DATA X'1002° BSC CNTRL CHARS (DLE STX)
RMHID DATA C'X' HEADER 1ID
RMHTYP DATA C'R? HEADER TYPE: REQUEST
RMREQ DATA F'0' REQUEST TYPE: SEND
RMSDSN DATA CL8'MYDATA? DATA SET NAME: MYDATA
RMSVOL DATA CLeé" i VOLUME NAME: (IPL vOL)
RMSSTR DATA D'0" STARTING RECORD: NONE
RMSTYP DATA F'0' SEND TYPE: NORMAL
RMSBLK DATA F'3° BLOCKING FACTOR: 3
REQLEN EQU %¥-RM LENGTH OF REQUEST

Chapter 6.

Remote Management Utility 275

¥-—- STATUS RECORD
*

ST DATA 6F'0’ AREA FOR STATUS RECORD

* 10 BYTES FOR RECORD,

* 1 BYTE FOR EXT, ROUNDED
* UP TO 6 WORDS

STSFN EQU ST+6 STATUS FUNCTION

STL EQU *-ST STATUS RECORD LENGTH

*

X
i
i

DATA AND COUNT RECORD

%
DT DATA 387F'0’ AREA FOR DATA RECORD
* 4 BYTES MESSAGE HEADER
* 768 BYTES 3 256-BYTE RECS
* 1 BYTE ETX
* —————————
* 773 BYTES TOTAL, ROUNDED UP
* TO 387 WORDS
DTHTYPR EQU DT+3 RECORD TYPE
DTDATA EQU DT+4 DATA
DTCCNT EQU DT+10 COUNT
DTL EQU ®¥-DT LENGTH

ENDPROG

END

276 SC34-0316

»

C

ERROR HANDLING

This section describes the error handling procedures of the
Remote Management Utility, as well as the procedures the host
program should follow upon encountering an error. The error
messages displayed by the utility are also described in this
section.

Types of Errors

As wWwas discussed in the section "Remote Management Utility
Interface”™ on page 207, the utility is comprised of two levels
of communications protocol. Errors encountered during the
transmission of these protocols by either the host or remote
can be classified as follouws:

. Communications errors

. Errors detected by the utility or the host program while a
function is executing

. Errors detected by the utility at any time

If a communications error is encountered during a Remote Man-
agement Utility session, an error message is written to the
terminal which loaded the utility. If the function requested is
running when the error occurs, the function is terminated imme-
diately by the utility. The SEND, RECEIVE, and PASSTHRU func-
tions could however remain executing, in that these functions
require multiple message exchanges between the host and the
remote, before the function is completed. If the error is
recoverable, the utility sends the host a Status record fol-
lowed by an EOT. If necessary, an EOT ("abort") will precede
the Status record. After this sequence is completed, the host
may then issue a new request.

Errors detected by the utility or the host program while a
function is executing include such errors as disk/diskette 1/0
errors during a SEND or RECEIVE operation. If the utility
detects such an error, a Status record indicating the error
condition is sent to the host, followed by an EOT, and the func—
tion is terminated. If necessary, an EOT ("abort") will precede
the Status record. After this sequence is completed the host
may issue a new request. If the host program detects an error
condition, it should terminate the function in the same
sequence as the utility. However, the Status record the host
sends the remote requires only the 4-byte header information of
a Status record (RMHBSCC, RMHID, RMHTYP fields).

Chapter 6. Remote Management Utility 277

Errors detected by the utility at any time include?

. Short record (text length is less than four bytes)
. Header ID (RMHID field) is not "X"

d Invalid request

. LOAD of overlay failed

. EOT not sent by the host after a request

These errors may occur any time the host sends a record to the
utility. When the utility detects any of these errors, the
utility sends an EOT ("abort") if necessary, followed by a Sta-
tus record. The RMSST field of the Status record will contain
the appropriate error code. In addition, the RMSREQ field of
the Status record will contain the type of request that was in
execution at the time, or a "-1" if no request was executing.

Figure 28 and Figure 29 on page 279 illustrate error handling
on a SEND request.

Host Program Host Remote

(Utility sending data set)

Read Continue - Data ACK¥ ——=v—e——— >

(At this point, Utility gets I/0
error on READ to disk/diskette)

Read Continue - Status ACK¥% ————e——m >
RMHTYP="'S" Status S TEXT
RMSREQ=0 SEND

RMSFN=2 READ failed

RMSST=Disk I/0 return code

Read Continue - EOT ACK% ——————- >

Figure 28. Error Handling by the Remote Management Utility

278 SC34-0316

®

C

Host Program Host Remote

(Utility sending data set)

Read Continue - Data ACK¥ ——————-— >

(At this point, host gets error
processing data record)

Write End - Abort EOT ——————w >
Write Initial - Status ENQ -——=-———- >
{=mmm——= ACKx
RMHBSCC DATA X'1002° TEXT -—-===-—- >
RMHID DATA C'X'
RMHTYP DATA C'S’
{=—m————= ACKx
Write End - EOT EOT ——————— >

Figure 29. Error Handling by the Host Program

Error Messages

This section describes the error messages returned when the
Remote Management Utility encounters an error. These messages
are written to the terminal that loaded the utility.

SRMU ERROR 1 - INSUFFICIENT BUFFER. SIZE: nnnn

The size of the buffer defined for use by the utility is less
than the 512-byte minimum. The default 1024-byte buffer size
has been modified incorrectly.

SRMU ERROR 2 - COMMUNICATIONS OPEN FAILED, RETURN CODE: nnnn
The OPEN of the BSC communications line failed. The return code

is defined in the description of the BSC Access Method for the
Event Driven Executive.

Chapter 6. Remote Management Utility 279

$RMU ERROR 3 - COMMUNICATIONS CLOSE FAILED, RETURN CODE: nnnn

The CLOSE of a BSC communications line failed. The return code
is defined in the description of the BSC Access Method for the
Event Driven Executive.

SRMU ERROR 6 — COMMUNICATIONS I/O0O ERROR.
I/70 FUNCTION: aaaaaa
RETURN CODE: nnnn

A communications error has been detected by the utility. The
I1/0 function ("aaaaaa") will indicate the type of request, and
is one of the following:

READ INITIAL
READ CONTINUE
WRITE EOT

WRITE INITIAL
WRITE EOT (ABORT)
WRITE CONTINUE

The return code is defined in the description of the BSC Access
Method for the Event Driven Executive.

$RMU ERROR 5 - LOAD OVERLAY FAILED, RETURN CODE: nnnn
OVERLAY NUMBER: mmmm

The utility attempted to load an overlay program via a LOAD
instruction, and the load failed. The return code is defined
for the LOAD instruction.

SRMU ERROR 6 — OVERLAY FUNCTION MISSING. FUNCTION: nnnn
OVERLAY NUMBER: mmmm

The utility's function table defined a function as being con-—
tained within an overlay, but it was not. This error may occur
if a user—-written function is not added properly to the func-
tion table.

280 SC34-0316

INSTALLATION

The software requirements necessary to install the Event Driv-
en Executive Remote Management Utility on a Series/1 are dis~-
tributed as part of the Event Driven Executive Version 2.0
product. The section "Hardware Requirements™ on page 207
discusses the minimum hardware requirements. The host program,
however, must be provided by the user.

This section describes the modules which comprise the Remote
Management Utility, system generation requirements, storage
requirements, and the Remote Management Utility defaults and
how they can be modified.

Remote Management Utility Modules

The utility consists of the following modules:

$RMU
SRMUPA
CDROV1
CDROV2
CDROV3
CDROV4
CDROV5
CDROVCP
CDRJP

In addition, the $DISKUT3 utility module is required by the
Remote Management Utility.

System Generation Requirements

The Remote Management Utility uses the Event Driven Executive
BSC access method (BSCAM) and the BSC line protocol in communi-
cating with the host system. To satisfy the BSC requirements,
the BSCLINE statement must be defined at system generation. See
"Chapter 3. Binary Synchronous Communications”™ on page 35 for
details and syntax of the BSCLINE statement.

The INCLUDE statements required for binary synchronous commu-
nications are as followus:

INCLUDE BSCAM,XS2002

L 4
L[]

INCLUDE BSCINIT,X52002

Chapter 6. Remote Management Utility 281

If the PASSTHRU function is to be invoked by the host program,
the following INCLUDE statement is required to provide the vir-
tual terminal support of the Event Driven Executive:

INCLUDE IOSVIRT,XS2002
Note: As discussed in the section "PASSTHRU Function™ on page
225, the names of the virtual terminals must be CDRVTA and
CDRVTB.

Refer to the System Guide for information on including modules
at system generation.

Upon meeting the system generation requirements previously
discussed, the Remote Management Utility can be loaded for exe-
cution via the $¢L operator command as follows: $L $RMU.

Storage Requirements

The storage requirements for the Remote Management Utility
described in this section are in addition to the storage
required by the Event Driven Executive supervisor/emulator and
the supervisor/emulator's required device support programs and
control blocks.

The Remote Management Utility storage requirements are as fol-
lows:

. Maximum of 7K bytes plus buffer space for any function.

. The storage required by the utility can be reduced from 7K
bytes to 5K bytes. If the storage is reduced to 5K bytes,
all functions except ALLOCATE and DELETE can be performed
with a 2K byte savings. However, when the ALLOCATE and
DELETE functions are invoked, the utility will momentarily
require additional storage for the $DISKUT3 utility (which
is approximately 4.5K). The storage will be obtained from
the partition the Remote Management Utility is executing
in.

. Storage required for loading other programs invoked
through the EXEC, PASSTHRU, or SHUTDOWN functions is not
considered storage required by the Remote Management Util-
ity.

Refer to the section "Modifying Defaults™ on page 283 for
details on modifying storage requirements.

282 SC34-0316

o
s

kemote Management Utility Defaults

This section describes the defaults and constants within the
Remote Management Utility as distributed:

. Host system ID of "HOSTRMUX"™

. Remote system ID of "REMTRMUX"™

d BSC device address of X'09"

. Communications line is point-to-point

4 Storage required is 7K for all functions

. Buffer size is 1024 bytes

Modifying Defaults

This section describes how the Remote Management Utility
defaults can be modified to meet specific user programming
requirements. The defaults can be modified via "patching"
through use of the $DISKUT2 utility. Detailed information on
the $DISKUTZ2 utility can be found in Utilities, Operator Com-—
mands, Program Preparation, Messages and Codes.

Chapter 6. Remote Management Utility 283

Host ID

O

The default host ID expected by the IDCHECK function is
"HOSTRMUX"™. This ID may be modified by applying the patch to
the address illustrated in the following example, where the ID
is set to "HOSTSYSA".

(Attention)
> sL SDISKUTZ2

USING VOLUME EDXO0O02
COMMAND(?): PA SRMU

$RMU IS A PROGRAM

ADDRESS: 6B6 4

(D)EC, (E)BCDIC OR (H)EX? E

NOW IS:
06B6 C8D6 E2E3 D9D4 E4E7 |HOSTRMUX|

ENTER DATA: HOSTSYSA

NEW DATA:
06B6 C8D6 E2E3 EZ2E8 E2C1 |HOSTSYSA| AN
OK?2 Y e e e

PATCH COMPLETE
ANOTHER PATCH? N

COMMANDC(?): EN

284 SC34-0316

Remote ID

The default remote system ID returned on a successful IDCHECK
function is "REMTRMUX". This ID may be modified by applying the
patch to the address illustrated in the following example,
where the ID is set to "REMTSYSA"™.,

(Attention)
> SL SDISKUTZ2

USING VOLUME EDX002
COMMAND(?2): PA $RMU

$RMU IS A PROGRAM
ADDRESS: 6AE 4

PATCH COMPLETE
ANOTHER PATCH? N

COMMAND(?): EN

(D)EC, (E)BCDIC OR (H)EX? E

NOW IS:

06AE D9C5 D4E3 D9D& E4E7 | REMTRMUX |
ENTER DATA: REMTSYSA
NEW DATA:

06AE D9C5 D&4E3 E2E8 E2Cl |REMTSYSA|
0K? Y

Chapter 6.

Remote Management Utility

285

BSC Device Address

The default BSC device address defined in the utility is X'09%".
This device address may be modified by applying the patch to

the address illustrated
address is set to X'19"'.

in the following example,

where

the

(Attention)
> SL SDISKUTZ2

USING VOLUME EDXO002
COMMAND(?2): PA SRMU

$RMU IS A PROGRAM
ADDRESS: 6CO0 1

NOW IS:
06CO 0009
ENTER DATA: 0019

NEW DATA:
06CO 0019

0K? Y
PATCH COMPLETE
ANOTHER PATCH? N

COMMAND(2): EN

(D)EC, (E)BCDIC OR (H)EX? H

286 SC34-0316

7N
&m& _;/;

C

Communications Line

The utility is distributed to run on a binary synchronous
communications point-to-point communications line, either
leased or switched. If the utility is to be used as a tributary
station on a multipoint line (TYPE=MT on the BSCLINE
statement), the patch to the address illustrated in the follow-
ing example must be applied:

(Attention)
> SL $DISKUTZ2

USING VOLUME EDXO0O02
COMMAND(?): PA $RMU

$RMU IS A PROGRAM

ADDRESS: 6D8 1

(D)EC, (E)BCDIC OR (H)EX? H

NOW IS:
06D8 0000 |.. |

ENTER DATA: 0001

NEW DATA:
06D8 0001 |.. |

oK? Y
PATCH COMPLETE
ANOTHER PATCH? N

COMMAND(?): EN

Chapter 6. Remote Management Utility 287

Storage

As was discussed in the section "Storage Requirements™ on page (:)
282, storage may be reduced from 7K to 5K. This modification

can be done by applying the patch ("CDRJP") to the address

illustrated in the following example.

(Attention)
> SL $DISKUTZ2

USING VOLUME EDXO002
COMMAND(?): PA $RMU

$RMU IS A PROGRAM

ADDRESS: 102 6

(DYEC, (E)BCDIC OR (H)EX? E

NOW IS:
0102 05BC4 C9E2 D2E4 E3F3 |$DISKUT3|

ENTER DATA: CDRJP

NEW DATA:
0102 C3C4 D9D1 D740 4040 ICDRJP |
N
0OK? Y &‘/

PATCH COMPLETE
ANOTHER PATCH? N

COMMANDC(?): EN

288 SC364-0316

C

Buffer Size

The default buffer size defined in the utility is 1024 bytes.
This buffer size may be modified by applying the patch to the
address illustrated in the following example (nnnn is the buff-
er size),

(Attention)
> SL $DISKUTZ

USING VOLUME EDX002
COMMAND(?): S8S SRMU nnnn

OLD STORAGE SIZE WAS 1024
OK TO CONTINUE? Y

COMMAND(?): EN

Buffer sizes may be modified to allow different sizes of block-
ing. The following table defines maximum blocking factors and
sizes for various buffer sijzes:

Max Blocking Max Blocking Max Block

Factor - Factor - Size -
Buffer Standard Source Passthru
Size Data Set Data Set Data
512 (min) 1 3 248
768 2 6 504
1024 (default) 3 9 760
2048 7 22 1784
4096 15 47 3832
32512 (max) 126 403 32248

The calculations required to determine the blocking factor for
the different data set types will be discussed next. The buffer
size chosen should be a multiple of 256 bytes (the Event Driven
Executive rounds up to the next multiple of 256 bytes).

Chapter 6. Remote Management Utility 289

Standard Data Set
To determine the blocking factor for a standard data set, use
the following calculation:

MSTD = (BUFF - 6) 7 256

where BUFF
MSTD

buffer size (bytes)
blocking factor

i u

Note: The remainder is discarded. The value "6" accounts for a
4-byte header, 1-byte ETX, and 1 byte for word alignment.

Source Data Set

To determine the blocking factor for a source data set, use the
following calculation:

MSRC = (BUFF - 262) / 80

where BUFF
MSRC

buffer size (bytes)
blocking factor

Note: The remainder is discarded. The value "262" accounts for
a G-byte header, l1-byte ETX, 1 byte for word alignment, and 256
bytes in which the disk/diskette record is read or written.

If space is available for more than one disk/diskette record in
the buffer, the utility will read or write as many records as
possible at a time to increase the efficiency of disk/diskette
1/0.

For example, if the buffer size is 1024 bytes and the blocking
factor is 6, the utility will read or write two 256-byte
records at a time.

290 SC34-0316

s

Passthru Data

To calculate the blocking factor for Passthru data,
following calculation:

use the
MPSD = BUFF - 264

where BUFF
MPSD

buffer size (bytes)

Passthru data size

(this is the size of the data segment of
the Passthru "Text or PF Key"™ record)
Note: The value "264"™ accounts for a 6~byte header, l1-byte ETX,

1 byte for word alignment, and 256 bytes for a TEXT statement
for I/0 to the virtual channel.

Chapter 6. Remote Management Utility 291

CDRRM Equate Listing

*

*

RM

RMH
RMHBSCC
RMHID
RMHIDX
RMHTYP
RMHTYPR
RMHTYPS
RMHTYPC
RMHTYPD
RMHTYPP
*

RMHX

*

*

*

RMREQ
RMREQSND
RMREQRCYV
RMREQALC
RMREQDEL
RMREQDMP
RMREQHRP
RMREQIDC
RMREQSHT
RMREQEXC
RMREQPST
*

RMRX

*

*

*

RMSDSN
RMSVOL
RMSSTR

*

RMSTYP
RMSTYPN
*
RMSTYPS
%

RMSBLK

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU
EQU
EQU

EQU
EQU

EQU

EQU

X'1002"

o
o

RMHX+0 F

= OO UN=O

RMHX+2

RMRX+0
RMRX+8
RMRX+14 D

RMRX+18 F
0

1

RMRX+20 F

REMOTE MANAGEMENT UTILITY
RECORD DESCRIPTION

HEADER
BSC CONTROL CHARS (DLE STX)
HEADER ID

HEADER TYPE

R REQUEST
S STATUS

C COUNT

D DATA

P PASSTHRU

EXTENSION AFTER HEADER

RECORD TYPE: REQUEST
REQUEST TYPE:

0 SEND
1 RECEIVE
2 ALLOCATE
3 DELETE
4 DUMP
5 WRAP
6 IDCHECK
7 SHUTDOWN
9 EXEC
12 PASSTHRU

REQUEST EXTENSION

EXTENSION: SEND

CL8 DATA SET NAME
CL6 VOLUME NAME (BLANK=IPL VOLUME)

STARTING RECORD OF DATA SET
(ONLY SECOND HALF USED)
TYPE OF SEND
0 NORMAL (256-BYTE RECORDS,
POSSIBLY BLOCKED)
1 SOURCE (80-BYTE RECORDS,
POSSIBLY BLOCKED)
BLOCKING FACTOR (0 OR 1=NONE)

Figure 30. CDRRM Copy Code (Part 1 of 6)

292 SC364-0316

C

./’/}

AN
.

* EXTENSION: RECEIVE

%

RMRDSN EQU RMRX+0 CL8 DATA SET NAME

RMRVOL EQU RMRX+8 CL6 VOLUME NAME (BLANK=IPL VOLUME)

RMRSTR EQU RMRX+14 D STARTING RECORD OF DATA SET

* (ONLY SECOND HALF USED)
_ RMRTYP EQU RMRX+18 F TYPE OF RECEIVE

RMRTYPN EQU o 0 NORMAL (256-BYTE RECORDS,

* POSSIBLY BLOCKED)

RMRTYPS EQU 1 1 SOURCE (80-BYTE RECORDS,

* POSSIBLY BLOCKED)

RMRBLK EQU RMRX+20 F BLOCKING FACTOR (0 OR 1=NONE)

*

* EXTENSION: ALLOCATE

%

RMADSN EQU RMRX+0 CL8 DATA SET NAME

RMAVOL EQU RMRX+8 CL6 VOLUME NAME (BLANK=IPL VOLUME)

RMANREC EQU RMRX+14 D NUMBER OF 256-BYTE RECORDS

* (ONLY SECOND HALF USED)

RMADST EQU RMRX+18 F DATA SET TYPE

RMADSTU EQU 0 0 UNDEFINED

RMADSTD EQU 1 1 DATA

RMADSTP EQU 3 3 PROGRAM

*

%* EXTENSION: DELETE

*

RMDDSN EQU RMRX+0 CL8 DATA SET NAME

RMDVOL EQU RMRX+8 CL6 VOLUME NAME (BLANK=IPL VOLUME)

%*

* EXTENSION: DUMP

*

RMDPDSN EQU RMRX+0 CL8 DATA SET NAME

RMDPVOL EQU RMRX+8 CL6 VOLUME NAME (BLANK=IPL VOLUME)

* H (UNUSED)

RMDPPTN EQU RMRX+15 H PARTITION NUMBER

* -1 REMOTE MANAGEMENT

* UTILITY PARTITION

* 1-8 SPECIFIC PARTITION

*

% EXTENSION: WRAP

*

RMWTXT EQU RMRX+0 C WRAP TEXT (MAY BE ANY LENGTH)
Figure 31. CDRRM Copy Code (Part 2 of 6)

Chapter 6. Remote Management Utility 293

* EXTENSION: IDCHECK Q:)
% .

RMICHK EQU RMRX+0 CL8 ID OF HOST
*

* EXTENSION: SHUTDOWN

*

* F (UNUSED)

RMSDFLG EQU RMRX+2 H FLAG

RMSDFLGX EQU X'80" PROGRAM TO BE EXECUTED
RMSDFLGL EQU X'40" LOGMSG=YES

RMSDPTN EQU RMRX+3 H PARTITION NUMBER

* -1 REMOTE MANAGEMENT
* UTILITY PARTITION
* 0 ANY PARTITION

* 1-8 SPECIFIC PARTITION

RMSDPGM EQU RMRX+4 CL8 PROGRAM (DATA SET NAME)
RMSDVOL EQU RMRX+12 CL6 VOLUME NAME (BLANK=IPL VOLUME)
RMSDLFS EQU RMRX+18 F FREE SPACE PASSED TO PROGRAM
RMSDPRM# EQU RMRX+20 F NUMBER OF PARAMETER WORDS
RMSDPRM EQU RMRX+22 NF PARAMETER WORDS

RMSDDS# EQU RMRX+24 F NUMBER OF DATA SET NAMES

* PASSED

RMSDDS EQU RMRX+26 NF DATA SET NAMES (DATA SET, VOL-

* UME; BLANK VOLUME=IPL VOLUME)

*

% EXTENSION: EXEC fﬁ\x
X NS
* F (UNUSED)

RMXFLG EQU RMRX+2 H FLAG

RMXFLGL EQU X'40" LOGMSG=YES

RMXFLGW EQU Xr20'" WAIT=YES

RMXPTN EQU RMRX+3 H PARTITION NUMBER

* -1 REMOTE MANAGEMENT

* UTILITY PARTITION

* 0 ANY PARTITION

* 1-8 SPECIFIC PARTITION

RMXPGM EQU RMRX+4 CL8 PROGRAM (DATA SET NAME)

RMXVOL EQU RMRX+12 CL6 VOLUME NAME (BLANK=IPL VOLUME)
RMXLFS EQU RMRX+18 F FREE SPACE PASSED TO PROGRAM
RMXPRM# EQU RMRX+20 F NUMBER OF PARAMETER WORDS
RMXPRM EQU RMRX+22 NF PARAMETER HWORDS (VARIABLE)
RMXDS# EQU RMRX+264 F NUMBER OF DATA SET NAMES

* PASSED
RMXDS EQU RMRX+26 NF DATA SET NAMES (DATA SET, VOL-
* UME; BLANK VOLUME=IPL VOLUME)

Figure 32. CDRRM Copy Code (Part 3 of 6)

294 SC34-0316

m * EXTENSION: PASSTHRU
*
RMPRBLK EQU RMRX+0 F BLOCKING FOR RECORDS FROM
* REMOTE
* 0 NONE
* OTHER LARGEST BLOCK HOST
* CAN RECEIVE
RMPRFLG EQU RMRX+2 H FLAG (UNUSED)
RMPRPTN EQU RMRX+3 H PARTITION NUMBER
* -1 REMOTE MANAGEMENT
»* UTILITY PARTITION
* 0 ANY PARTITION
* 1-8 SPECIFIC PARTITION
RMPRPGM EQU RMRX+4 CL8 PROGRAM (DATA SET NAME) OR
%* BLANK FOR EDX SUPERVISOR
RMPRVOL EQU RMRX+12 CL6 VOLUME NAME (BLANK=IPL VOLUME)
RMPRLFS EQU RMRX+18 F FREE SPACE PASSED TO PROGRAM
RMPRPRM# EQU RMRX+20 F NUMBER OF PARAMETER WORDS
RMPRPRM EQU RMRX+22 F PARAMETER WORDS (VARIABLE)
RMPRDS# EQU RMRX+24 F NUMBER OF DATA SET NAMES
¥* PASSED
RMPRDS EQU RMRX+26 CL8 DATA SET NAMES (DATA SET, VOL-
* CL6 UME; BLANK VOLUME=IPL VOLUME)
*
%* RECORD TYPE: STATUS

ki %

(:j’ RMSREQ EQU RMRX+0 F REQUEST TYPE
RMSFN EQU RMRX+2 F FUNCTION
RMSFNOK EQU -1 -1 O0K; REQUEST SUCCESSFUL
*
%* 1 - 20: REMOTE MANAGEMENT
*® UTILITY FUNCTION
*
RMSFNID EQU 1 1 IDCHECK FAILED
RMSFNBF EQU 2 2 BUFFER AREA T0OO SMALL
»* FOR RECORD
RMSFNSHR EQU 3 3 SHORT RECORD (LESS THAN
* 4 BYTES)
RMSFNHIH EQU 4 4 HEADER ID IS 'H' (INVALID)
RMSFNHID EQU 5 5 INVALID HEADER ID
* (NOT *X'" OR 'H')
RMSFNRQX EQU 6 6 REQUEST EXPECTED
RMSFNREQ EQU 7 7 INVALID REQUEST
RMSFNRQS EQU 8 8 REQUEST SHORT (MISSING
* INFORMATION)
RMSFNSRT EQU 9 9 INVALID SEND/RECEIVE TYPE
RMSFNBLF EQU 10 10 INVALID BLOCKING FACTOR
RMSFNIM EQU 11 11 INVALID MESSAGE RECEIVED
* DURING REQUEST

‘:} Figure 33. CDRRM Copy Code (Part 4 of 6)

Chapter 6. Remote Management Utility 295

RMSFNPD
*

RMSFNDPN
*

RMSFNRQR
*

RMSFNEOT

*
RMSFNVTB
*

X K K X

RMSFNR
*

RMSFNW
*

RMSFNL
RMSFNLFP
RMSFNBIO
RMSFNVTP
*

X K X X X X

*
RMSFNAD
RMSFNOPN
RMSFNSED

RMSFNLDP
*

X XK X X

RMSFNOFM
*

RMSST

*

*

RMSX

*

*

*

RMSRID

EQU
EQU
EQU
EQU

EQU

EQU
EQU
EQU
EQU

EQU
EQU

EQU
EQU
EQU
EQU

EQU

EQU

EQU

EQU

12

13

14

15

16

21
22
26
25

26
27

31
32
33
34

41

RMRX+4 F

RMRX+6

12 INVALID PASSTHRU RECORD
TYPE

13 INVALID DUMP PARTITION
NUMBER

14 REQUEST RECEIVED WHILE
ANOTHER RUNNING

15 EOT EXPECTED AND NOT
RECEIVED

16 VIRTUAL TERMINAL BUSY

21 - 30: EVENT DRIVEN
EXECUTIVE FUNCTION (RMSST
CONTAINS RETURN CODE)

21 READ DISK/DISKETTE
FAILED

22 WRITE DISK/DISKETTE
FAILED

24 LOAD FAILED

25 LOAD OF OVERLAY FAILED

26 BSC I/0 FAILURE

27 PRINTEXT FAILED FOR
VIRTUAL TERMINAL

- 640: EVENT DRIVEN

EXECUTIVE ADDITIONAL FUNCTION
(RMSST CONTAINS RETURN CODE
FROM $DISKUT3 FOR CODES
31-33)

31 ALLOCATE/DELETE FAILED

32 OPEN FAILED

33 SETEOD FAILED

34 PARAMETERS TO BUILD LOAD
INSTRUCTIONS ARE INVALID

- 50: REMOTE MANAGEMENT
UTILITY ERROR

41 OVERLAY FUNCTION MISSING

STATUS OF FAILING FUNCTION
(CONTAINS RETURN CODE IF
INDICATED BY RMSFN)

STATUS EXTENSION

EXTENSION: IDCHECK STATUS

RMSX+0 CL8 ID OF REMOTE SYSTEM

Figure 34. CDRRM Copy Code (Part 5 of 6)

~

296 SC34-0316

//—‘\\

«

%* RECORD TYPE: COUNT

*

%*

RMCREQ EQU RMHX+0 REQUEST TYPE

RMCFLG EQU RMHX+2 F FLAG

RMCFLGPD EQU X'8000" PADDING OCCURED

RMCCNT EQU RMHX+4 D COUNT (NUMBER LOGICAL RECORDS)

RMCL EQU RMHX+8 LENGTH OF COUNT MESSAGE

*

* RECORD TYPE: DATA

*

RMDDATA EQU RMHX+0 C DATA (VARIABLE LENGTH)

*

* RECORD TYPE: PASSTHRU

*

RMPTYP EQU RMHX+0 F PASSTHRU TYPE

RMPTYPTX EQU 1 1 TEXT OR PF KEY

RMPTYPRD EQU 2 2 REQUEST FOR DATA

RMPTYPPE EQU 3 3 PROGRAM END (DISCONNECT)

RMPTYPND EQU G 4 NO DATA

RMPX EQU RMHX+2 PASSTHRU EXTENSION

*

* EXTENSION: TEXT OR PF KEY

*

RMPST EQU RMPX+0 F STATUS OF LTERM MESSAGE

RMPTXTL EQU RMPX+2 F TEXT LENGTH (BYTES) OR -1 IF

% PF KEY

RMPTXT EQU RMPX+4 C TEXT (VARIABLE SIZE) IF LENGTH

*® IS NOT -1

*

RMPPF EQU RMPX+6 F PK KEY NUMBER (IF LENGTH IS -1)

* (THESE FIELDS MAY BE REPEATED

* FOR INPUT TO HOST IF BLOCKING

* IS REQUESTED. IF "RMPTXTL"™ IS

* AN ODD NUMBER, ONE BYTE OF

* FILLER FOLLOWS "RMPTXT™.)
Figure 35. CDRRM Copy Code (Part 6 of 6)

Chapter 6.

Remote Management Utility 297

298

SC34-0316

N
W/

, 3

s

CHAPTER 7. GRAPHICS

General Description

The graphics instructions, used with the terminal support
described in this book, provide a tool for the development of
graphics applications. They can aid in the preparation of
graphic messages, allow interactive input, and draw curves on a
display terminal.

These instructions are only valid for ASCII terminals having a
point—-to-point vector graphics capability, and compatible with
the coordinate conversion algorithm described in Internal
Desian for graphics mode control characters. The function of
the various ASCII control characters used by a terminal are
described in the appropriate device manual. Such terminals may
be connected to the Series/1 via the #7850 Teletypeuwriter
adapter.

Seven graphic instructions are supplied. They are used in the
same manner as other instructions, except that the supporting
code will be included in the user's program, rather than in the
supervisor. If all instructions are coded in a program, this
code requires approximately 1500 bytes of storage.

When using the instructions described in this chapter,
detailed manipulation of terminal instructions and text mes-
sages are not required. All of the graphics instructions deal
with ASCII data, and when sending an ASCII text string to the
terminal, the XLATE=NO parameter should be coded.

Use of the graphics instructions requires that the user's
object program be processed by the linkage editor program,
$LINK, in order to include the graphics functions which are
supplied as object modules. Refer to the Utilities, Operator
Commands, Program Preparation, Messages and Codes for the
description of the autocall option of $LINK, and for informa-
tion on the use of the "AUTO=$AUTO,ASMLIB"™ option of $§LINK.

The following is a list of the graphics instructions provided
by the Event Driven Executive. These instructions are
described in detail in the Language Reference.

CONCAT - Concatenate two data strings

GIN - Unscaled cursor coordinate inputs
PLOTCB - Defines graphics data area

PLOTGIN - Scaled cursor coodinate inputs

SCREEN - Converts x,y coordinates to text string
XYPLOT — Draws a x,y curve on a display

YTPLOT - Plots Y points on a display

Chapter 7. Graphics 299

Additionally, three graphic utilities are provided. They are
$DIUTIL, $DICOMP, and S$DIINTR. Refer to the Utilities,

Operator Commands, Program Preparation, Messages and Codes for
a description.

Harduare Considerations

Terminal support is provided for the Tektronix 4010 series of
display terminals equipped the General Purpose Parallel Inter-—
face (Tektronix Custom Feature Number CM021-0109-03 with cable
CM012-0541-00) or other digital I/0 devices having equivalent
hardware interfaces. The software provides addressing logic
such that up to eight terminals may be shared on one digital
input group and one digital output group, with one process
interrupt bit for each terminal.

The parallel interface is intended to connect directly to the
intergrated digital input/output feature (#1560). This inter-—
face consists of a driver and a receiver card, each of which has
several selectable options. These options allow the user to
customize the interface to his requirements. The user must
refer to the manufacturer's manuals for detailed installation
procedures.

The following description is intended only to supplement those
manuals and guide the user when using the Event Driven Execu-
tive terminal support on the Series/1. The following Tektronix
4010 Series display terminal options should be selected:

Receiver Card

INTR (interrupt) PROG
ADDRESS 000(0)-111¢(7) to match
TERMINAL definition

PERM ADD OFF

PARITY EVEN

DELAY 3.5-18 (depends on distance)

LOGIC SENSE (3) Set all to LOW
HANDSHAKE
CONTROL
DATA

THRESHOLD +2 volts

MASTER OPTION None

300 SC34-0316

~

~

Driver Card

LOGIC SENSE (4) Set as shoun
STATUS HIGH
HANDSHAKE HIGH
INTERRUPT LOW
DATA HIGH
INTERRUPT CHANNEL Use INTR
AUX TSUP ouT
ECHO ouT
PARITY EVEN, BIT 8 IN

AB to A, CD to D

Before the terminal may be used with the computer, some other
considerations are necessary. As noted above, the common
interrupt line (INTR) should be used. It is recommended that
the user select the interrupt line (0 - 7) corresponding to the
terminal address. If fewer than eight terminals are attached,
some of the interrupt lines will not be used. All digital input
and process interrupt lines must be terminated for proper oper-
ation. If only one terminal is used, the DI terminations may
have been installed by the manufacturer. With multiple termi-
nals, all DI lines and PI lines should be terminated at the
computer. A 1000-ohm resistor across the DI and PI inputs is
recommended. The BAUD Rate Selection Suitch should be in the
"stand by" position and the J261 Connector Switch set to
"interface". Both of these switches are on the Tektronix 4010
series display terminals.

When the terminal is powered on, it may be necessary to "reset"
the terminal. The procedure is to put the LOCAL/LINE switch in
LOCAL, back to LINE, and simultaneously press the SHIFT and
RESET keys. If the terminal does not respond during normal
operation, it may be necessary to perform this sequence to
reset the internal circuits.

Since all input/output is done with upper case ASCII character
codes, the TTY LOCK key should be activated when using the ter-
minal with the Series/1. '

The last items which merit special discussion are the GIN mode
and the PAGE FULL BREAK strap options on the terminal control
card (TC-2). The user must press the appropriate key followed
by carriage return (CR). The PAGE FULL BREAK termination may be
set to either OUT or IN, depending on the user's preference. If
it is IN, the terminal will always stop when a full page condi-
tion is reached. The user must press the PAGE RESET key in order
to continue. If it is 0OUT, the terminal will automatically go
to the home address and continue printing without erasing the
screen.

Chapter 7. Graphics 301

302 SC34-0316

R
NS

AN
/ \

"

APPENDIX A. CODE TYPES

FEight-bit 2741
data interchange 2741 PTTC/
ASCIT EBASC* PTTC/EBCD Correspondence
Decimal | Hex Binary EBCDIC (see Note 1) (see Note 2) EBCD CRSP
0 00 0000 0000 NUL NUL NUL (even)
1 01 0001 SOH SOH NUL (odd) space space
2 02 0010 STX STX @ (odd) 1 1,]
3 03 0011 ETX ETX @ (even)
4 04 0100 PF EOT space (odd) 2 2
5 05 0101 HT ENQ space (even)
6 06 0110 LC ACK ‘ (even)
7 07 0111 DEL BEL ¢ (odd) 3
8 08 1000 BS DLE (odd) 4 5
9 09 1001 RLF HT DLE (even)
10 0A 1010 SMM LF P (even)
11 0B 1011 VT VT P (odd) 5 7
12 oC 1100 FF FF 0 (even)
13 0D 1101 CR CR 0 (odd) 6 6
14 OE 1110 SO SO p (odd) 7 8
15 OF 1111 SI SI p (even)
16 10 0001 0000 DLE DLE BS (odd) 8 4
17 11 0001 DC1 DC1 BS (even)
18 12 0010 DC2 DC2 H (even)
19 13 0011 ™ DC3 H (odd) 9 0
20 14 0100 RES DC4 ((even)
21 15 0101 NL NAK ((odd) 0 Z
22 16 0110 BS SYN h (odd) @ (EOQA) @ (EOA),9
23 17 0111 IL ETB h (even)
24 18 1000 CAN CAN CAN (even)
25 19 1001 EM EM CAN (odd)
26 1A 1010 CC SUB X (even) RS RS
27 1B 1011 CU1 ESC X (odd)
28 1C 1100 IFS FS 8 (odd) upper case upper case
29 1D 1101 IGS GS 8 (even) =
30 1E 1110 IRS RS X (even)
31 1F 1111 | 1US Us x (odd) © €om © ®om
32 20 0010 0000 DS space EOT (odd) @ t
33 21 0001 SOS ! EOT (even)
34 22 0010 FS > D (even)
35 23 0011 # D (odd) / X
36 24 0100 BYP $ $ (even)
37 25 0101 LF % $ (odd) s n
38 26 0110 ETB & d (odd) t u
39 27 0111 ESC > d (even)
40 28 1000 (DC4 (even)
41 29 1001) DC4 (0dd) u e
42 2A 1010 SM * T (odd) v d
43 2B 1011 CU2 + T (even)
44 2C 1100 , 4 (even) w k
45 2D 1101 ENQ - 4 (odd)
46 2E 1110 ACK . t (even)
47 2F 1111 BEL / t (odd) X c
48 30 0011 0000 0 form feed (even)
49 31 0001 1 form feed (odd) |1y 1
50 32 0010 SYN 2 L (odd) z h

*The no-parity TWX code for any given character is the code that has the rightmost bit position off. The parity of the code is
indicated in the parenthesis (either odd or even).

Appendix A. Code Types 303

Eight-bit 2741
data interchange 2741 PTTC/
ASCIT EBASC* PTTC/EBCD Correspondence

Decimal | Hex Binary EBCDIC (see Note 1) (see Note 2) EBCD CRSP

51 33 0011 3 L (even)

52 34 0100 PN 4 , (odd)

53 35 0101 RS 5 , (even)

54 36 0110 ucC 6 1 (even) SOA

55 37 0011 o011t | EOT 7 1 (odd) (S) (SOA), commal b

56 38 1000 8 FS (odd)

57 39 1001 9 FS (even)

58 3A 1010 : \ (even)

59 3B 1011 | cus ; \ (odd) index index

60 3C 1100 DC4 < < (even)

61 3D 1101 NAK = < (odd) (EOB)

62 3E 1110 > [(odd)

63 3F 1111 SUB ? | (even)

64 40 0100 0000 space @ EOA (odd) @ (NAK), - !

65 41 0001 A EOA (even)

66 42 0010 B B (even)

67 43 0011 C B (odd) i m

68 44 0100 D ” (even)

69 45 0101 E ” (odd) k

70 46 0110 F b (odd) 1 v

71 47 0111 G b (even)

72 48 1000 H DC2 (even)

73 49 1001 I DC2 (odd) m ’

74 4A 1010 ¢ J R (odd) n r

75 4B 1011 . K R (even)

76 4C 1100 < L 2 (odd) o i

77 4D 1101 (M 2 (even)

78 4E 1110 + N r (even)

79 4F 1111] (0] 1 (odd) P a

80 50 0101 0000 & P line feed (even)

81 51 0001 Q line feed (odd) q o

82 52 0010 R J (odd) r s

83 53 0011 S J (even)

84 54 0100 T * (odd)

85 55 0101 U * (even)

86 56 0110 \'% ; (even)

87 57 0111 w ; (odd) $ w

88 58 1000 X SUB (odd)

89 59 1001 Y SUB (even)

90 5A 1010 ! Z Z (even)

91 5B 1011 $ [Z (odd) CRLF CRLF

92 5C 1100 * \ : (even)

93 5D 1101) 1 : (odd) backspace backspace

94 SE 1110 5 A z (odd) idle idle

95 SF 1111 - —_ z (even)

96 60 0110 0000 - . ACK (even)

97 61 0001 / a ACK (odd) & j

98 62 10010 b F (odd) a g

99 63 0011 c F (even)

100 64 0100 d & (0dd) b

101 65 0101 e & (even)

102 66 0110 f f (even)

103 67 0111 g f (odd) c f

104 68 1000 h SYN (odd) d p

105 69 1001 i SYN (even)

106 6A 1010 , j V (even)

107 6B 1011 R k V (odd) e

108 6C 1100 % 1 6 (even)

304 SC34-0316

Eight-bit 2741
data interchange 2741 PTTC/
ASclT EBASC* PTTC/EBCD Correspondence
Decimal | Hex Binary EBCDIC (see Note 1) (see Note 2) EBCD CRSP
109 6D 1101 m 6 (odd) f q
110 6E 1110 > n v (odd) g comma
111 6F 1111 ? [v (even)
112 70 0111 0000 P shift out (even) h /
113 71 0001 q shift out (odd)
114 72 0010 T N (even)
115 73 0011 s N (odd) i y
116 74 0100 t . (even)
117 75 0101 u . (odd)
118 76 0110 v n (0dd) Q) (YAK), period
119 77 0111 w n (even)
120 78 1000 X RS (even)
121 79 1001 y RS (odd)
122 TA 1010 : z t (odd) horiz tab tab
123 7B 1011 | # { 1 (even)
124 1C 1100 @ | > (odd) lower case lower case
125 7D 1101 > } > (even)
126 7E 1110 = ~ ~ (even)
127 7F 1111 ” DEL ~ (odd) delete
128 80 1000 0000 SOM (odd)
129 81 0001 a SOM (even) space space
130 82 0010 b A (even) = |
131 83 0011 c A (odd)
132 84 0100 d ! (even) < @
133 85 0101 e ! (odd)
134 86 0110 f a (odd)
135 87 0111 g a (even) ; #
136 88 1000 h X-ON (even) : %
137 89 1001 i X-ON (odd)
138 8A 1010 Q (odd)
139 8B 1011 Q (even) % &
140 8C 1100 1 (odd)
141 8D 1101 1 (even) ? ¢
142 8E 1110 q (even) > *
143 8F 1111 q (odd)
144 90 1001 0000 horiz tab (even) * $
145 91 0001 j horiz tab (odd)
146 92 0010 k I (odd)
147 93 0011 1 I (odd) ()
148 94 0100 m) (odd)
149 95 0101 n) (odd)) Z
150 96 0110 [i(even) D (EOA),” (
151 97 0111 p i(odd)
152 98 1000 q EM (0dd)
153 99 1001 T EM (even)
154 9A 1010 Y (even)
155 9B 1011 Y (odd)
156 9C 1100 9 (even) upper case upper case
157 ID 1101 9 (odd)
158 9E 1110 y (odd)
159 9F 1111 y (even) C (EOD) C (EOD
160 A0 1010 0000 WRU (even) ¢ T
161 Al 0001 ~ WRU (odd)
162 A2 0010 s E (odd)
163 A3 0011 t E (even) ? X
164 A4 0100 u % (odd)
165 AS 0101 v % (even) S N
Appendix A. Code Types 305

Eight-bit 2741
data interchange 2741 PTTC/
AScll EBASC* PTTC/EBCD Correspondence
Decimal | Hex Binary EBCDIC (see Note 1) (see Note 2) EBCD 2741
166 A6 1010 0110 w e (even) T U
167 A7 0111 X e (odd)
168 A8 1000 y NAK (odd)
169 A9 1001 z NAK (even) U E
170 AA 1010 U (even) A% D
171 AB 1011 U (odd)
172 AC 1100 5 (even) w K
173 AD 1101 5 (odd)
174 AE 1110 u (odd)
175 AF 1111 u (even) X C
176 BO 1011 0000 return (odd)
177 B1 0001 return (even) Y L
178 B2 0010 M (even) Z H
179 B3 0011 M (odd)
180 B4 0100 - (even)
181 BS 0101 - (0dd)
182 B6 0110 m (odd)
183 B7 0111 m (even) ®) (o4, B
184 B8 1000 GS (even)
185 B9 1001 GS (odd)
186 BA 1010] (odd)
187 BB 1011] (even) index index
188 BC 1100 = (odd)
189 BD 1101 = (even) (EOB), ETB
190 BE 1110 (even) -
191 BF 1111 b (odd)
192 Co 1100 0000 | } EOM (even) ®N NAK),—
193 C1 0001 A EOM (odd)
194 C2 0010 B C (0dd)
195 C3 0011 C C (even) J M
196 C4 0100 D # (0dd)
197 C5 0101 E # (even) K
198 C6 0110 F c (even) L \"
199 C7 0111 G ¢ (odd)
200 C8 1000 H X-OFF (odd)
201 C9 1001 | X-OFF (even) M ”
202 CA 1010 S (even) N R
203 CB 1011 S (odd)
204 cc 100 | [3 (even) o I
205 CD 1101 3 (odd)
206 CE 1o | 9 s (0dd)
207 CF 1111 s (even) P A
208 DO 1101 0000 } vertical tab (odd)
209 D1 0001 J vertical tab (even) Q (¢]
210 D2 0010 K K (even) R S
211 D3 0011 L K (odd)
212 D4 0100 M + (even)
213 D5 0101 N + (odd)
214 D6 0110 (¢] k (odd)
215 D7 0111 P k (even) ! w
216 D8 1000 Q ESC (even)
217 D9 1001 R ESC (odd)
218 DA 1010 [(odd)
219 DB 1011 [(even) CRLF CRLF
220 DC 1100 ; (0dd)
221 DD 1101 ; (even) backspace backspace
222 DE 1110 { (even) idle idle
306 SC34-0316

.

Eight-bit 2741
: data interchange 2741 PTTC/
‘y ASCIT EBASC* PTTC/EBCD Correspondence
) Decimal | Hex Binary EBCDIC (see Note 1) (see Note 2) EBCD CRSP
223 DF 1101 1111 { (odd)
224 EO 1110 0000 \ bell (odd)
225 El 0001 bell (even) + J
226 E2 0010 S G (even) A G
227 E3 0011 T G (0dd)
228 E4 0100 U ’ (even) B +
229 E5 0101 v > (odd)
230 E6 0110 w g (odd)
231 E7 0111 X g (even) C F
232 E8 1000 Y ETB (even) D P
233 E9 1001 Z ETB (odd)
234 EA 1010 W (odd)
235 EB 1011 W (even) E
236 EC 1100 | 7 (0dd)
237 ED 1101 7 (even) F Q
238 EE 1110 w (even) G comma
239 EF 1111 w (odd)
240 FO 1111 0000 0 shift in (even) H ?
241 F1 0001 1 shift in (odd)
242 F2 0010 2 O (odd)
243 F3 0011 3 O (even) I Y
244 F4 0100 4 / (odd)
245 F5 0101 5 [(even)
246 F6 o110 | 6 o (even) Q) (YAK), —
247 F7 0111 7 o (odd)
248 F8 1000 8 US (odd)
249 F9 1001 9 US (even)
250 FA 1010 LVM < (even) horiz tab tab
‘”\ 251 FB 1011 <= (0dd)
/ 252 FC 1100 ? (even) lower case lower case
253 FD 1101 7 (odd)
254 FE 1110 rub out (odd)
255 FF 1111 rub out (even) delete
Notes.

1. ASCII terminals attached via #7850 or #2095 with #2096.
2. ASCII terminals attached via #1610 or #2091 with #2092.

Appendix A. Code Types 307

308

SC34-0316

// \\

./

J

BIBLTOGRAPHY

EVENT DRIVEN EXECUTIVE LIBRARY SUMMARY

The library summary is a guide to the Event Driven Executive
library. By briefly listing the content of each book and
providing a suggested reading sequence for the library, it
should assist you in using the library as a whole as well as
direct you to the individual books you require.

Event Driven Executive Library

The IBM Seriess/1 Event Driven Executive library materials
consist of five full-sized books, a quick reference pocket
book, and a set of tabs:

. IBM Seriess/1 Event Driven Executive System Guide (or
System Guide), SC34-0312

. IBM Series/Z1 Event Driven Executive Utilities, Operator
Commands, Program Preparation, Messadges and Codes (or
Utilities), SC34-0313

. IBM Series/1 Event Driven Executive Language Reference (or
Language Reference), SC34-0314

. IBM Series/1 Event Driven Executive Communications and
Terminal Application Guide (or Communications Guide),
SC34-0316

. IBM Series/1 Event Driven Executive Internal Design (or

Internal Design), LY34-0168

. IBM Series/1 Event Driven Executive Multiple Terminal Man-—
ager Internal Design (or Multiple Terminal Manager
Internal Design), LY34-0190

U IBM Series/] Event Driven Executive Indexed Access Method
Internal Design (or Indexed Access Method Internal
Design), LY34-0189

. IBM _Series/]1 Event Driven Executive Reference Summary (or
Reference Summaryl), S$SX34-0101

U IBM Series/1 Event Driven Executive Tabs (or Tabs),
S§X34-0030

Bibliography 309

Summary of Library

System Guide

The System Guide introduces the concepts and capabilities of
the Event Driven Executive system. It discusses multi-tasking,
program and task structure, program overlays, storage manage-
ment, and data management.

Planning aids include hardware and software requirements,
along with guidelines for storage estimating.

The System Guide also presents step-by-step procedures for
generating a supervisor tailored to your Series/1 hardware
configuration and software needs.

The description of the Indexed Access Method contains the
information on how to write applications that use indexed data
sets.

The description of the session manager includes a procedure for
modifying the session manager to include application programs
in the primary option menu so that you can execute them under
the session manager. You can also add a procedure to compile,
link, and update programs.

Information is also provided concerning partitioned data sets,
tape data organization, diagnostic aids, inter—-program commu-
nication, logical screens, and dynamic data set allocation.

Utilities

Utjlities describes:

. Event Driven Executive utility programs
. Operator commands
° Procedures to prepare and execute system and application

programs

. The session manager —-— a menu-driven interface program
that will invoke the programs required for program devel-
opment

] Messages and codes issued by the Event Driven Executive
system

310 SC34-0316

/

{“ \;\
X

O

C

The operator commands, program preparation facilities, and
session manager are grouped by function and discussions
include detailed syntax and explanations. The utilities are
presented in alphabetical order.

Language Reference

The Language Reference familiarizes you with the Event Driven
Language by first grouping the instructions into functional
categories. Then the instructions are listed alphabetically,
with complete syntax and an explanation of each operand.

The final section of the Language Reference contains examples
of using the Event Driven language for applications such as:

o Program loading

. User exit routine

. Graphics

. 170 level control program

. Indexing and hardware register usage

Communications Guide

The Communications Guide introduces the Event DBriven Executive
communications support -- binary synchronous communications,
asynchronous communications, and the Host Communications
Facility.

The Communications Guide contains coding details for all util-
ities and Event Driven language instructions needed for commu-—
nications support and advanced terminal applications.

Internal Design

Internal Design describes the internal logic flow and specifi-
cations of the Event Driven Executive system so that you can
understand how the system interfaces with application pro-
grams. It familiarizes you with the design and implementation
by describing the purpose, function, and operation of the vari-
ous Event Driven Executive system programs.

Bibliography 311

Multiple Terminal Manager Internal Design and Indexed Access
Method Internal Design describe the internal logic flow and
specifications of these programs.

Unlike the other manuals in the library, the Internal Design
books contain material that is the licensed property of IBM and
they are available only to licensed users of the Event Driven
Executive system,

Reference Summary

The Reference Summary is a pocket-sized booklet to be used for
quick reference. It lists the Event Driven language
instructions with their syntax, the utility and program prepa-
ration commands, and the completion codes.

JTabs

The tabs package must be ordered separately. The package con-
tains 33 index tabs by subject, with additional blank tabs.
These extended tabular pages can be inserted at the front of
various sections of the library. The tabs are color coded
according to the major library topics.

Reading Sequence

All readers of the Event Driven Executive library should begin
with the first three chapters of the System Guide
("Introduction,” "The Supervisor and Emulator,” and "Data Man-
agement”™) for an overview of the Event Driven Executive con-
cepts and facilities.

Readers responsible for installing and preparing the system
should then continue in the System Guide with "System Config-
uration”™ and "System Generation."

All readers should review the Utilities "Introduction" to
become familiar with the utility functions available for the
Event Driven Executive system. Then you can read more specific
sections for particular utilities, operator commands, and pro-
gram preparation facilities.

After you have a basic understanding of the Event Driven Execu-
tive system and how you can best use the system for your appli-
cations, you should read the Language Reference

"Introduction." This will familiarize you with the potential

312 SC34-0316

of the Event Driven Language and prepare you to start coding
application programs.

If you have communications support for your Event Driven Execu-
tive system, you should read the Communications Guide, which is
an extension of the System Guide, Utilities, and the Language

Reference.

After you know the functions of the various Event Driven
Language instructions, wutilities, and program preparation
facilities, you may wish to refer only to the Reference Summary
for correct syntax while coding your applications.

Only readers responsible for the support or modification of the
Event Driven Executive system need to read Internal Design.

OTHER EVENT DRIVEN EXECUTIVE PROGRAMMING PUBLICATIONS

. IBM Series/]l Event Driven Executive FORTRAN IV User's
Guide, SC34-0315.

U] IBM Series/1 Event Driven Executive PL/I Language
Reference, GC34-0147.

. IBM Seriess/1 Event Driven Executive Pl/I User's Guide,
GC34-0148.
. IBM Seriess/1 Event Driven Executive COBOL Programmer's

Guide, SL23-0014.

. IBM Series/]1 Event Driven Executive Sort/Merge Program-—
mer's Guide, SL23-0016

. IBM Series/1 FEvent Driven Executive Macro Assembler
Reference,GC34-0317.

. IBM Series/1 Event Driven Executive Study Guide,
SR30-0436.

OTHER SERIES/1 PROGRAMMING PUBLICATIONS

. IBM Series/1 Programming System Summary, GC34-0285.

. IBM Series/1 COBOL Language Reference, GC34-0234.

. IBM Series/1 FORTRAN IV Language Reference, GC34-0133.

Bibliography 313

IBM Series/1 Host Communications Facility Program
Description Manual, SH20-1819.

IBM_ _Seriess/1 Mathematical and Functional Subroutine
Library User's Guide, SC34-0139.

IBM Series/) Macro Assembler Reference Summary, SX34-0128

IBM Series/1 Data Collection Interactive Programming RPQ
P82600 User's Guide, SC34-1654.

OTHER PROGRAMMING PUBLICATIONS

IBM Data Processing Glossary, GC20-1699.

IBM Series/] Graphic Bibliography, GA34-0055.

IBM _0S/VS Basic Telecommunications Access Method (BTAM),
GC27-6980.

General Information — Binary Synchronous Communications,
GA27-3004.

IBM System/370 Program Preparation Facility, SB30-1072.

SERIES/1 SYSTEM LIBRARY PUBLICATIONS

IBM Seriess/1 4952 Processor and Processor Features
Description, GA34-0084.

IBM Series/1 6953 Processor and Processor Features
Description, GA34-0022.

IBM Seriess/1 64955 Processor and Processor Features
Description, GA34-0021.

IBM Series/1 Communications Features Description, GA34
-0028.

IBM Series/1 3101 Display Terminal Description, GA34-2034.

IBM Series/1 4962 Disk Storage Unit and 4964 Diskette Unit

Description, GA34-0024.

IBM Series/1 6963 Disk Subsystem Description, GA34-0051.

IBM Series/1 64966 Diskette Magazine Unit Description,
GA34-0052.

SC34-0316

AN
/ \
(

k V)/

O

IBM _Series/1 4969 Magnetic Tape Subsystem Description,

GA34-0087.

IBM Series/1 6973 Line Printer Description, GA34-0044.

IBM Series/1 4974 Printer Description, GA34-0025.

IBM Seriessz1 4978-1 Display Station (RPQ D02055) and
Attachment (RPQ D02038) General Information, GA34-1550

IBM Series/1 4978-1 Display Station, Keyboard (RPQ D02056)
General Information, GA34-1551

IBM Seriessz]1 4978-1 Display Station, Keyboard (RPQ D02057)
General Information, GA34—-1552

IBM Seriess/) 4978-1 Display Station Kevboards (RPQ D02064
and D02065) General Information, GA34-1553

IBM Seriess1 4979 Display Station Description, GA34-0026

IBM Seriess1 4982 Sensor Input/Output Unit Description,
GA34-0027

IBM Seriess/1 Data Collection Interactive RPQs D02312,
D02313, and D02314 Custom Feature, GA34-1567

Bibliography 315

316

5C34-0316

O

O

GLOSSARY

This glossary contains terms that are used in the Series/1 Event Driven
Executive software publications. All software and hardware terms are
Series/]l oriented. This glossary defines terms used in this library and
serves as a supplement to the IBM Data Processing Glossary (GC20-1699).

$SYSLOGA. The name of the
alternate system logging device.
This device is optional but, if
defined, should be a terminal with
keyboard capability, not just a
printer.

$SYSLOG. The name of the system
logging device or operator
station; must be defined for every
system. It should be a terminal
with keyboard capability, not just
a printer.

$SYSPRTR. The name of the system
printer.

ACCA. See asynchronous
communications control adapter.

address key. Identifies a set of
Series/1 segmentation registers
and represents an address space.
It is one less than the partition
number.

address space. The logical
storage identified by an address
key. An address space is the
storage for a partition.

application program manager. The
component of the Multiple Terminal
Manager that provides the program
management facilities required to
process user requests. It con-
trols the contents of a program
area and the execution of programs
within the area.

application program stub. A
collection of subroutines that are
appended to a program by the link-
age editor to provide the link
from the application program to

the Multiple Terminal Manager
facilities.

asynchronous communications con-
trol adapter. An ASCII terminal
attached via #1610, #2091 with
#2092, or #2095 with #2096 adapt-
ers.

attention list. A series of pairs
of 1 to 8 byte EBCDIC strings and
addresses pointing to EDL
instructions. When the attention
key is pressed on the terminal,
the operator can enter one of the
strings to cause the associated
EDL instructions to be executed.

backup. A copy of data to be used
in the event the original data is
lost or damaged.

base records. Records that have
been placed into an indexed data
set while in load mode.

basic exchange format. A standard
format for exchanging data on
diskettes between systems or
devices.

binary synchronous device data
block (BSCDDB). A control block
that provides the information to
control one Series/l Binary Syn-
chronous Adapter. It determines
the line characteristics and pro-
vides dedicated storage for that
line.

block. (1) See data block or
index block. (2) In the Indexed
Method, the unit of space used by
the access method to contain
indexes and data.

Glossary 317

BSCDDB. See binary. synchronous
device data block.

buffer. An area of storage that
is temporarily reserved for use in
performing an input/output oper-
ation, into which data is read or
from which data is written. See
input buffer and output buffer.

bypass label processing. Access
of a tape without any label proc-
essing support.

CCB. See terminal control block.

character image. An alphabetic,
numeric, or special character
defined for an IBM 4978 Display
Station. Each character image is
defined by a dot matrix that is
coded into eight bytes.

character image table. An area
containing the 256 character
images that can be defined for an
IBM 4978 Display Station. Each
character image is coded into
eight bytes, the entire table of
codes requiring 2048 bytes of
storage.

cluster. In an indexed file, a
group of data blocks that is
pointed to from the same
primary-level index block, and
includes the primary-level index
block. The data records and
blocks contained in a cluster are
logically contiguous, but are not
nacessarily physically contiguous.

cop (change of direction). A
character used with ACCA terminal
to indicate a reverse in the
direction of data movement.

command. A character string from
a source external to the system
that represents a request for
action by the system.

common area. A user-defined data

area that is mapped into every
partition at the same address. It

318 SC34-0316

can be used to contain control
blocks or data that will be
accessed by more than one program.

completion code. An indicator
that reflects the status of the
execution of a program. The com-
pletion code is displayed or
printed on the program's output
device.

conversion. See update.

cross partition service, A
function that accesses data in two
partitions.

data block. In an indexed file,
an area that contains control
information and data records.
These blocks are a multiple of 256
bytes.

data set. A group of contiguous
records within a volume pointed to
by a directory member entry in the
directory for the volume.

data sat control block (DSCB). A
control block that provides the
information required to access a
data set, volume or directory
using READ and WRITE.

data set shut doun. An indexed
data set that has been marked (in
main storage only) as unusable due
to an error.

DCE. See directory control entry.
DDB. See disk data block.

direct access. (1) The access
method used to READ or WRITE
records on a disk or diskette
device by specifying their
location relative the beginning of
the data set or volume. (2) In
the Indexed Access Method, locat-
ing any record via its key without
respect to the previous operation.

®

directory. A series of contiguous
records in a volume that describe
the contents in terms of allocated
data sets and free spaces.

directory control entry

(DCE). The first 32 bytes of the
first record of a directory in
which a description of the direc-
tory is stored.

directory member entry (DME). A
32-byte directory entry describing
an allocated data set.

disk data block (DDB). A control
block that describes a direct
access volume.

display station. An IBM 4978 or
4979 display terminal or similar
terminal with a keyboard and a
video display.

DME. See directory member entry.
DSCB. See data set control block.

dynamic storage. An increment of
storage that is appended to a pro-
gram when it is loaded.

end-of-data indicator. A code
that signals that the last record
of a data set has been read or
written. End-of-data is deter-
mined by an end-of-data pointer in
the DME or by the physical end of
the data set.

ECB. See event control block.
EDL. See Event Driven Language.

emulator. The portion of the
Event Driven Executive supervisor
that interprets EDL instructions
and performs the function speci-
fied by each EDL statement.

end-of-tape (EOT). A reflective
marker placed near the end of a
tape and sensed during output.
The marker signals that the tape
is nearly full.

event control block (ECB). A
control block used to record the
status (occurred or not occurred)
of an event; often used to syn-
chronize the execution of tasks.
ECBs are used in conjunction with
the WAIT and POST instructions.

event driven language (EDL). The
language for input to the Event
Driven Executive compiler
(SEDXASM), or the Macro and Host
assemblers in conjunction with the
Event Driven Executive macro
libraries. The output is inter-
preted by the Event Driven Execu-
tive emulator.

EXIO (execute input or

output). An EDL facility that
provides user controlled access to
Series/1 input/output devices.

external labkel. A label attached
to the outside of a tape that
identifies the tape visually. It
usually contains items of iden-
tification such as file name and
number, creation data, number of
volumes, department number, and so
on.

external name (EXTRN). The 1- to
8~character symbolic EBCDIC name
for an entry point or data field
that is not defined within the
module that references the name.

FCA. See file control area.
FCB. See file control block.

file control area (FCA). A
Multiple Terminal Manager data
area that describes a file access
request.

file control block (FCB). 1In an
indexed data set, the first block
of the data set. It contains
descriptive information about the
data contained in the data set.

Glossary 319

file manager. A collection of
subroutines contained within the
program manager of the Multiple
Terminal Manager that provides
common support for all disk data
transfer operations as needed for
transaction-oriented application
programs. It supports indexed and
direct files under the control of
a single callable function.

formatted screen imaga. A
collection of display elements or
display groups (such as operator
prompts and field input names and
areas) that are presented together
at one time on a display device.

free pool. In an indexed data
set, a group of blocks that can be
used as either a data block or an
index block. These differ from
other free blocks in that these
are not initially assigned to spe-
cific logical positions in the
data set.

free space. In the Indexed Access
Method, record spaces or blocks
that do not currently contain
data, and are available for use.

free space entry (FSE). A 4-byte
directory entry defining an area
of free space within a volume.

FSE. See free space entry.

harduare timer. The timer
features available with the
Series/l processors. Specif-
ically, the 7840 Timer Feature
card or the native timer (4952
only). Only one or the other is
supported by the Event Driven
Executive.

host assembler. The assembler
licensed program that executes in
a 370 (host) system and produces
object output for the Seriess/l.
The source input to the host
assembler is coded in Event Driven
Language or Series/1 assembler
language. The host assembler

320 SC34-0316

refers to the System/370 Program
Preparation Facility (5798-NNQ).

host system. Any system whose
resources are used to perform
services such as program prepara-
tion for a Series/1. It can be
connected to a Seriess/l1 by a com~
munications link.

JACB. See indexed access control
block.

IAR. See instruction address
register.

ICB. See indexed access control
block.

IIB. See interrupt information
bvte.

image store. The area in a 4978
that contains the character image
table.

index. In the Indexed Access
Method, an ordered collection of
pairs, each consisting of a key
and a pointer, used to sequence
and locate the records in an
Indexed Access Method data set.

index block. In an indexed file,
an area that contains control
information and index entries.
These blocks are a multiple of 256
bytes.

indexed access control bleck
(IACB/ICB). The control block
that relates an application pro-
gram to an indexed data set.

indexed access method. An access
method for direct or sequential
processing of fixed-length records
by use of a record's key.

indexed data set. A data set
specifically created, formatted
and used by the Indexed Access

‘Method. An indexed data set may

also be called an indexed file.

O

O

indexed file. Synonym for indexed
data set.

index entry. In an indexed file,
a key-pointer pair, where the
pointer is be used to locate a
lower-level index block or a data
block.

index register (#1, #2). Two
words defined in EDL and contained
in the task control block for each
task. They are used to contain
data or for address computation.

input buffer. (1) See buffer.
(2) In the Multiple Terminal Man-
ager, an area for terminal input
and output.

input output control block
(IOCB). A control block contain-
ing information about a terminal
such as the symbolic name, size
and shape of screen, the size of
the forms in a printer.

instruction address register
(IAR). The pointer that identi-
fies the instruction currently
being executed. The Series/1
maintains a harduware IAR to deter-
mine the Series/l assembler
instruction being executed. It is
located in the level status block
(LSB).

interactive. The mode in which a
program conducts a continuous
dialogue between the user and the
system.

internal label. An area on tape
used to record identifying infor-
mation (similar to the identifying
information placed on an external
label). Internal labels are
checked by the system to ensure
that the correct volume is
mounted.

interrupt information byte

(IIB). In the Multiple Terminal
Manager, a word containing the
status of a previous input/output

request to or from a terminal.

job. A collection of related
program execution requests pre-
sented in the form of job control
statements, identified to the
jobstream processor by a JOB
statement.

job control statement. A
statement in a job that specifies
requests for program execution,
program parameters, data set defi-
nitions, sequence of execution,
and, in general, describes the
environment required to execute
the program.

job stream processor. The job
processing facility that reads job
control statements and processes
the requests made by these state-
ments. The Event Driven Executive
job stream processor is $JOBUTIL.

key. In the Indexed Access
Method, one or more consecutive
characters in a data record, used
to identify the record and estab-
lish its order with respect to
other records. See also key
field.

key field. A field, located in
the same position in each record
of an Indexed Access Method data
set, whose content is used for the
key of a record.

level status block (LSB). A
Series/1l harduware data area that
contains processor status.

library. A set of contiguous
records within a volume. It con-
tains a directory, data sets
and/or available space. .

line. A string of characters
accepted by the system as a single
input from a terminal; for exam-
ple, all characters entered before
the carriage return on the tele-
typewriter or the ENTER key on the
display station is pressed.

Glossary 321

link edit. The process of
resolving symbols in one or more
object modules to produce another
single module that is the input to
the update process.

load mode. In the Indexed Access
Method, the mode in which records
are initially placed in an indexed
file.

load module. A single module
having cross references resolved
and prepared for loading into
storage for execution. The module
is the output of the $UPDATE or
SUPDATEH utility.

load point. A reflective marker
placed near the beginning of a
tape to indicate where the first
record is written.

lock. In the Indexed Access
Method, a method of indicating
that a record or block is in use
and is not available for another
request.

LSB. See level status block.

member. A term used to identify a
named portion of a partitioned
data set (PDS). Sometimes member
is also used as a synonym for a
data set. See data set.

menu. A formatted screen image
containing a list of options. The
user selects an option to invoke a
program.

menu-driven. The mode of
processing in which input consists
of the responses to prompting from
an option menu.

multifile volume. A unit of
recording media, such as tape reel
or disk pack, that contains more
than one data file.

multiple terminal manager. An

Event Driven Executive licensed
program that provides support for

322 $C34-0316

transaction-oriented applications
on a Seriess/l. It provides the
capability to define transactions
and manage the programs that sup-
port those transactions. It also
manages multiple terminals as
needed to support these trans-
actions.

multivolume file. A data file
that, due to its size, requires
more than one unit of recording
media (such as tape reel or disk
pack) to contain the entire file.

non-labeled tapes. Tapes that do
not contain identifying labels (as
in standard labeled tapes) and
contain only files separated by
tapemarks.

null character. A user-defined
character usad to define the
unprotected fields of a formatted
screen.

option selection menu. A full
screen display used by the Session
Manager to point to other menus or
system functions, one of which is
to be selected by the operator.
(See primary option menu and sec-—
ondary option menu.)

output buffer. (1) See buffer.
(2) In the Multiple Terminal Man-
ager, an area used for screen
output and to pass data to subse-
gyent transaction programs.

overlay. The technique of reusing
a single storage area allocated to
a program during execution. The
storage area can be reused by
loading it with overlay programs
that have been specified in the
PROGRAM statement of the program.

overlay area. A storage area
within a program reserved for
overlay programs specified in the
PROGRAM statement.

parameter selection menu. A full
screen display used by the Session
Manager to indicate the parameters
to be passed to a program.

partition. A contiguous
fixed-sized area of storage. Each
partition is a separate address
space.

physical timer. Synonym for
hardware timer.

prefind. To locate the data sets
or overlay programs to be used by
a program and to store the neces-
sary information so that the time
required to load the prefound
items is reduced.

primary-level index block. In an
indexed data set, the lowest level
index block. It contains the rel-
ative block numbers (RBNs) and
high keys of several data blocks.
See cluster.

primary menu. The program
selection screen displayed by the
Multiple Terminal Manager.

primary option menu. The first
full screen display provided by
the Session Manager.

primary task. The first task
executed by the supervisor when a
program is loaded into storage.
It is identified by the PROGRAM
statement.

priority. A combination of
hardware interrupt level priority
and a software ranking within a
level. Both primary and secondary

‘tasks will execute asynchronously

within the system according to the
priority assigned to them.

process mode. In the Indexed
Access Method, the mode in which
records may be retrieved, updated,
inserted or deleted.

processor status word (PSH). A
16-bit register used to (1) record
error or exception conditions that
may prevent further processing and
(2) hold certain flags that aid in
error recovery.

program. A disk- or
diskette-resident collection of
one or more tasks defined by a
PROGRAM statement; the unit that
is loaded into storage. (See pri-
mary task and secondary task.)

program header. The control block
found at the beginning of a
program that identifies the prima-
ry task, data sets, storage
requirements and other resources
required by a program.

programs/storage manager. A
component of the Multiple Terminal
Manager that controls the
execution and flow of application
programs within a single program
area and contains the support
needed to allow multiple oper-
ations and sharing of the program
area.

protected field. On a display
device, a field in which the oper-
ator cannot enter, modify, or
erase data from the keyboard. It
can contain text that the user can
read.

PSH. See processor status word.
QCB. See queue control block.

QD. See queue descriptor.

QE. See queue element.

queuve control block (QCB). A data
area used to serialize access to
resources that cannot be shared.
See serially reusable resource.
queue descriptor (QD). A control

block describing a queue built by
the DEFINEQ instruction.

Glaossary 323

queue element (QE). An entry in
the queue defined by the queue
descriptor.

record. (1) The smallest unit of
direct access storage that can be
accessed by an application program
on a disk or diskette using READ
and WRITE. Records are 256 bytes
in length. (2) In the Indexed
Access Method, the logical unit
that is transferred between $IAM
and the user's buffer. The length
of the buffer is defined by the
user.

recovery. The use of backup data
to recreata data that has been
lost or damaged.

raflective marker. A small
adhesive marker attached to the
reverse (nonrecording) surface of
a reel of magnetic tape.
Normally, two reflective markers
are used on each reel of tape.
One indicates the beginning of the
recording area on the tape (load
point), and the other indicates
the proximity to the end of the
recording area (EOT) on the reel.

relative record number. An
integer value identifying the
position of a record in a data set
relative to the beginning of the
data set. The first record of a
data set is record one, the second
is record two, the third is record
three.

reorganize. For an indexed data
set, the copying of the data to a
new indexed data set in a manner
that rearranges the data for more
optimum processing and free space
distribution.

return code. An indicator that
reflects the results of the exe-
cution of an instruction or sub-
routine. The return code is
placed in the task code word (at
the beginning of the task control
block).

326 SC34-0316

roll screen. A display screen on
which data is displayed 24 lines
at a time or data is entered line
by line, beginning with line 0 at
the top of the screen and continu-
ing through line 23 at the bottom
of the screen. When a roll screen
device's screen is full (all 24
lines used), an attempt to display
the next line results in removal
of the old screen (screen is
erased) and the new line on line 0
is displayed at the top of the
screen.

SBIOCB. See sensor based I/0
control block.

second-level index block. In an
indexed data set, the
second-lowest level index block.
It contains the addresses and high
keys of several primary-level
index blocks.

sacondary option menu. In the
Session Manager, the second in a
series of predefined procedures
grouped together in a hierarchical
structure of menus. Secondary
option menus provide a breakdoun
of the functions available under
the session manager as specified
on the primary option menu.

secondary task. Any task other
than the primary task. A second-
ary task must be attached by a
primary task or another secondary
task.

sactor. The smallest addressable
unit of storage on a disk or
diskette. A soctor on a 4962 or
4963 disk is equivalent to an
Event Driven Executive record. On
a 4964 or 4966 diskette, two sec-
tors are equivalent to an Event
Driven Executive record.

sensor based 1/0 control blaock
(SBIOCB). A control block con-
taining information related to
sensor 1/0 operations.

secquential access. The processing
of a data set in order of occur-
rence of the records in the data
set. (1) In the Indexed Access
Method, the processing of records
in ascending collating sequence
order of the keys. (2) UWhen using
READ/WRITE, the processing of
records in ascending relative
record number sequence.

serially reusable resource

(SRR). A resource that can only
be accessed by one task at a time.
Serially reusable resources are
usually managed via (1) a QCB and
ENQ/DEQ statements or (2) an ECB
and WAIT/POST statements.

session manager. A series of
predefined procedures grouped
together as a hierarchical struc-
ture of menus from which you
select the utility functions, pro-
gram preparation facilities, and
language processors needed to pre-
pare and execute application pro-
grams. The menus consist of a
primary option menu that displays
functional groupings and secondary
option menus that display a break-
down of these functional
groupings.

shared resource. A resource that
can be used by more than one task
at the same time.

shut doun. See data set shut
down.

source modulesprogram. A
collection of instructions and
statements that constitute the
input to a compiler or assembler.
Statements may be created or modi-
fied using one of the text editing
facilities.

standard labels. Fixed length
80-character records on tape con-
taining specific fields of infor-
mation (a volume label identifying
the tape volume, a header label
preceding the data records, and a

trailer label following the data
records).

static screen. A display screen
formatted with predetermined
protected and unprotected areas.
Areas defined as operator prompts
or input field names are protected
to prevent accidental overlay by
input data. Areas defined as
input areas are not protected and
are usually filled in by an opera-
tor. The entire screen is treated
as a page of information.

subrouting. A sequence of
instructions that may be accessed
from one or more points in a pro-
gram,

supervisor. The component of the
Event Driven Executive capable of
controlling execution of both sys-
tem and application programs.

system configuration. The process
of defining devices and features
attached to the Series’/l.

SYSGEN. See system generation.

system generation. The processing
of user selected options to create
a supervisor tailored to the needs
of a specific Series/l configura-
tion.

system partition. The partition
that contains the supervisor (par-
tition number 1, address space 0).

tapemark. A control character
recorded on tape used to separate
files.

task. The basic executable unit
of work for the supervisor. Each
task is assigned its own priority
and processor time is allocated
according to this priority. Tasks
run independently of each other
and compete for the system
resources. The first task of a
program is the primary task. All
tasks attached by the primary task

Glossary 325

are secondary tasks.

task code word. The first two
words (32 bits) of a task's TCB;
used by the emulator to pass
information from system to task
regarding the outcome of various
operations, such as event com-
pletion or arithmetic operations.

task control block (TCB). A
control block that contains infor-
mation for a task. The informa-
tion consists of pointers, save
areas, work areas, and indicators
required by the supervisor for
controlling execution of a task.

task supervisor. The portion of
the Event Driven Executive that
manages the dispatching and
switching of tasks.

TCB. See task control block.

terminal. A display station,
teletypewriter or printer.

terminal control block (CCB). A
control block that defines the
device characteristics, provides
temporary storage, and contains
links to other system control
blocks for a particular terminal.

terminal environment block

(TEB). A control block that con-
tains information on a terminal's
attributes and the program manager
operating under the Multiple Ter-
minal Manager. It is used for
processing requests between the
terminal servers and the program
manager.

terminal screen manager. The
component of the Multiple Terminal
Manager that controls the presen-
tation of screens and communi-
cations between terminals and
transaction programs.

terminal server. A group of

programs that perform all the
input/output and interrupt handl-

326 SC34-0316

ing functions for terminal devices

under control of the Multiple Ter-)

minal Manager. fﬁjx
S

trace range. A specified number

of instruction addresses within

which the flow of execution can be

traced.

transaction oriented
applications. Program execution
driven by operator actions, such
as responses to prompts from the
system. Specifically, applica-
tions executed under control of
the Multiple Terminal Manager.

transaction program. See
transaction-oriented applications.

transaction selection menu. A

Multiple Terminal Manager display

screen (menu) offering the user a

choice of functions, such as read-

ing from a data file, displaying

data on a terminal, or waiting for

a response. Based upon the choice

of option, the application program SN
paerforms the requested processing s/
operation. i

unprotected field. On a display
device, a field in which the user
can enter, modify, or erase data
using the keyboard. Unprotected
fields on a static screen are
dafined by the null character.

update. (1) To alter the contents
of storage or a data set. (2) To
convert object modules, produced
as the output of an assembly or
compilation, or the output of the
linkage editor, into a form that
can be loaded into storage for
program execution and to update
the directory of the volume on
which the loadable program is
stored.

user exit. (1) Assembly language
instructions included as part of
an EDL program and invoked via the

USER instruction. (2) A point in @
an IBM-supplied program where a \ P

user written routine can be given
control.

vary offline. (1) To change the
status of a device from online to
offline. When a device is off-
line, no data set can be accessed
on that device. (2) To place a
disk or diskette in a state where
it is not available for use by the
system; however, it will still be
available for executing I/0 at the
basic access level (EXIO0).

vary online. To restore a device
to a state where it is available
for use by the system.

volume. A disk or diskette
subdivision defined during system
configuration. A volume may con-
tain up to 32,767 records. As
many volumes may be defined for a
disk as will physically fit. A
diskette is limited to one volume.

volume label. A label that

uniquely identifies a single unit
of storage media. ‘

Glossary 327

328 SC34-0316

COMMON_INDEX

This index is common to the Event Driven Executive library. The index
includes entries from the seven publications listed below. (The Glossary
is not indexed.) Each publication has a copy of the index, which provides
a cross—reference between the publications.

Each page number entry contains a single letter prefix which identifies
the publication where the listed subject can be found. The letter pre-

fixes have the following meanings:

L C = Communications and Terminal Application Guide

L I Internal Design

) Language Reference

System Guide

L
S
U
Codes
M
A

special Characters

$SEDXLIB system name L-228, S$-57
$SEDXVOL system name L-228, S$-57
$A display active programs,
operator command 5-63, U-11
$ATTASK special task control
block L-61
$AUTO link edit auto call data
set 5-403, U-401
$B blank (clear) screen, operator
command S$-63, U-12
$BSCTRCE trace utility for BSC
lines C-61
$BSCUT1 trace printing utility for
BSC C-62
$BSCUT2 test utility for BSC
lines C-64
$C cancel a program, operator
command 5-63, U-13
$CO§;RES library compress S5-64%,
U—
$COPY copy data sets S5-64, U-59
S$COPYUT1 copy data sets with
allocation S-64, U-64
$CP change terminal's partition
assignment command
overview I-73, 5-63
syntax U-1l4
$D dump storage, operator command
5-63, U-15
$DASDI format disk or diskette
$5-64, U-638
$DBUGNUC debug module description
1-77
$DEBUG debugging tool U-82
$DICOMP display composer
command description U-106
create partitioned data set
member S$-247
invoking U-105
overview 5-67
SDIINTR display interpreter U-150

= Utilities, Operator Commands,

Program Preparation, Messages and

= Multiple Terminal Manager Internal Design

= Indexed Access Method Internal Design

$DISKUT1 allocate/delete, list
directory data
$JOBUTIL procedure 5-229
allocate partitioned data set
$5-248
command descriptions U-135
overview 5-64%
$DISKUT2 patch, dump, or clear
member
description U-142
overview S-64
printing 170 error logs 5-275
syntax U-143
$DISKUT3 data management utility
description 5$-315
input to 5-316
request block contents 5$5-317
return codes 5-319, U-4%44
$DIUTIL display data base utility
5-248, U-150
$DUMP dump saved storage and
registers utility U-163
$E eject printer page, operator
command S5-63, U-16
SEDIT1/$EDITIN text editors
command syntax
EDIT U-174
EDIT mode subcommands
uU-182
END U-175
LIST U-176
READ U-177
SUBMIT U-179
WRITE U-180
control keys U-172
data set requirements U-169
line editing commands U-203
overview S5-66, U-169
summary of commands and
subcommands U-171
$EDXASM Event Driven Language
compiler
features supported U-361
internal overview I-5, I-211
invoking
with $JOBUTIL U-368

Common Index 329

with $L U-370
with session manager

U-369
listing program ($EDXLIST)
U-370

options U-358
output U-359
overlay program example I-244%
overview 5-71, U-356
programming considerations
U-361
arithmetic expression
operators U-365
ATTNLIST U-365
COPY statements U-362
ECB and QCB U-362
EQU U-365
GETEDIT and PUTEDIT U-365
instructions requiring
support modules U-365
IODEF statement placement
U-364
multiple declarations on
DATA/DC U-363
source line continuation
U-361
required data sets U-357
usage example 5-397
using the compiler U-356
$EDXATSR supervisor interface
routine I-48
SEDXDEF harduware configuration
editing to match hardware con-
figuration 5-117
overview I-5, I-6
storage map 1I-7
$EDXL language control data set of
SEDXASM I-221, U-357
$ED§LIST compiler listing program
u-37¢0
SEDXNUC supervisor data set
in system generation 5-126
overview I-5
with $LINK utility U-399
$EDXNUC supervisor data sets
U-399
$EXEC language emulator linkage
I-279, 1-313
$EXEC session manager option
$-216, U-41
$FONT 4978 character image tables
utility 65-68, U-205
$FSEDIT full-screen editor, host
and native
data set requirements U-209
options
BROMWSE U-213
EDIT U-214
END U-218
READ U-216
SUBMIT U-217
WRITE U-216
overview S-66, U-209
primary commands U-218
program function (PF) keys
U-211
scrolling U-210
summary of options and
commands U-212
$HCFUT1 Host Communications
Facility utility C-107
$IAM Indexed Access Method load
module S-155
$IAM task error exit 5-178

330 SC36-0316

$IAMUT]1 Indexed Access Method
utility 5-148, U-235
SIDEF $EDXASM instruction
definition
description I-241
instruction format 1-226
$IMAGE define screen image
utility 5-68, U-250
usage example 5-387
$IMDATA subroutine 5-303
usage example 5-375
$IMDEFN subroutine $-301
usage example 5-375
S$IMOPEN subroutine S-300
usage example 5-374
$IMPROT subroutine 5-302
usage example S5-375
$INDEX subroutine, $EDXASM 1I-233
$INITDSK initialize or verify
volume S-64, U-256
$INITIAL automatic initialization
and restart
description 5-129
with session manager 5-209,
u-28
$IOTEST test sensor 170, list con-
figuration S5-67, U-263
$JOBUTIL job stream processor
5-69, U-271
commands U-272
set up procedure U-271
usage example 5-408, U-290
$L load program, operator command
internals 1-23
overview S-63
syntax U-17
SLEMSG $LINK message data set
U-401
$LINK linkage editor
data set requirements U-400
description U-390
in system generation I-5
invoking
with $JOBUTIL U-405
with $L U-405
with session manager
U-406
overview S-71
usage example 5-402
SLNKCNTL data set 5-118
SLOADER 1I-19, I-22
module description I-78
$LOG I/0 error logging utility
description §-2706, U-292
overview S$-67
SLPARSE subroutine I-240
SMOVEVOL disk volume dump/restore
5-65, U-294
$P patch storage, operator
command S$-63, U-18
$PACK/S$SUNPACK subroutines $-309
$PDS partitioned data set utility
in a program 5-259
overview S5-65
$PFMAP identify 4978 program
function keys §-68, U-301
$PREFIND prefind data sets and
overlays 5-69, U-302
SERT§780 spooled print utility
-7
$ZRT3780 spooled print utility
-7
$RJE2780 remote job entry utility
C-73, S5-66

\\\
_/

f(ﬁ
A

$RJE3780 remote job entry utility
C-73, S5-66

$RM? (see Remote Management Util-
ity

$SMCTL session manager program
$5-209, S$-212

$SMEND session manager program
5-212

$SMJOBR session manager program
5-212

$SMLOG session manager program
5-212

$SMMAIN session manager program
$-210, S-212, U-28

$SMMLOG, logon menu for session
manager 5-212

$SMMPRIM, primary option menu for
session manager 5-212, U-27,
U-35

$SMM02, program preparation sec-
ondary option menu 5-216, U-37

$SMM03, data management secondary
option menu S-215, U-39

$SMM0G, terminal utilities
ﬁecondary option menu $-215,
-41

$SMM0S, graphics utilities second-
ary option menu 5-216, U-41

$SMMB6, execute program utilities
secondary option S$-216

$SMMO07, job stream processor
utilities secondary option 5-216

$SMM08, communications utilities
option S-217, U-43

$SMM09, diagnostic utilities
$-217, U-644

$START supervisor entry point
I-279, I-313

$STOREMAP example I-27

$SYSCOM data area I-12, 1-279,
I-313, S5-113

$SYSLOG system logging device

overview S5-110

$SYSLOGA alternate system logging

device

overview 5-111
$SYSPRTR system printer
overview S5-111

$51A5M Series/1 macro assembler
description U-372
internals I-5, I-253
overview S-9
storage map, general
$T set date/time, operator
command 5-63, U-19
S&APEUTI tape management utility
-311
STCBCCB (ATTACH) L-59
$TERMUT1 change terminal
parameters S5-68, U-334
$TERMUT2
process 4978 image or control
store S5-68, U-339
rastore 497¢ image U-339
STERMUT3 send message to a
terminal 5-68, U-344
S$TRAP class interrupt trap
utility 5-67, U-348
SUNPACK/$PACK subroutines $-309
SUPDATE object program converter
description U-408
in system generation I-5
overview S5-69
usage example 5-407

I-256

$UPDATEH object program converter
(host) S-69, U-418

$VARYOFF set disk, diskette, or
tape offline S5-63, U-20

$VARYON set disk, diskette, or
tape online §-63, U-22 :

with standard labeled tape
5-237

$W display date/time, operator
command $-63, U-25

#1 index register 1 L-6

#2 index register 2 L-6

A

A after, S$FSEDIT line command
u-226
A-conversion L-153
A/l (see analog input)
A0 (see analog output)

abort task level (SVC abend) I-49
ACCA terminal C-7, L-295

Access Method, Indexed

(see Indexed Access Method)

ACTION, Multiple Terminal Manager

CALL
coding description C-130,
L-360
internals M-9
overview C$6-117, L-29
activate
error logging, $LOG utility
U-293

realtime data member, RT
$DICOMP subcommand U-124
stopped task, GO $DEBUG
command U-93

task supervisor execution
state I-43

TRAP function of storage dump,
$TRAP utility U-348

AD
add member, $DICOMP command
uU-106
advance, $DICOMP subcommand
u-111
advance X,Y (PDS) S5-255
assign define key, $TERMUT2
command U-342

add

add member, AD $DICOMP com-
mand U-106

null data set on tape volume,
TA $TAPEUT1 command U-330
options to the session

manager $-22%
support for new I/0 terminals
I-117

calling conventions I-118
code translation tables
I-118
linkage conventions I-119
terminal instruction
modification I-119
ADD data manipulation instruction
coding description L-52
overview L-19
precision table L-53
address relocation translator
I-71, S-62
addressing indexing feature L-6

Common Index 331

ADDV data manipulation
instruction
coding description L-54
index register use L-55
overview L-19
precision table L-55
advance, AD $DICOMP subcommand
u-111
advance and prompting input, ter-
minal I/0 L-46
Al (see analog input)

AL
allocate data member, $DIUTIL
command U-151
allocate data set, $DISKUT1
command U-137
allocate data set, $JOBUTIL
command U-273
allocate member, $DICOMP
command U-107
allocate

data set
$JOBUTIL command U-273
AL $DISKUT1 command U-137
ALLOCATE function C-214
tape, TA $TAPEUT1 command
U-333
member
$DICOMP command U-107
$DIUTIL command U-151
$PDS S-261
ALLOCATE function C-216, I-166,
I-176
allowable precision table L-20
alter member AL $DICOMP command
u-107
alter terminal configuration,
STERMUT1 U-334
alternate system logging device
($SYSLOGA)Y S-47
alternate tracks 65-58, U-73, U-78
ALTIAM Indexed Access Method
subroutine 5-167
analog input 5-49
AI SIOTEST command U-268
control block 1I-129
IODEF statement L-187
overview 5-49
SBIO instruction L-263
SENSORIO configuration
statement L-39
analog output
A0 $IOTEST command U-264%
control block I-129
description S5-49
IODEF statement L-186
SBI0 instruction L-26%
SENSORIO configuration
statement L-39, S$-84
AND data manipulation instruction
coding description L-57
overview L-19
A0 (see analog output)
application program
automatic initialization and
restart 5-129
indexed access 5-149
introduction L-1
manager (C-119
preparation U-351
size estimating S5-344
structure L-8
support S5-20
ASCI1 terminals
codes S5-110

332 SC34-0316

configuring S5-96
devices supported C-6, S5-14
graphics L-26, 5-66
TgRTgEAL statement examples
ASMERROR, $EDXASM instruction
I-230
assembler
(see SEDXASM)
(see $S51ASM)
(see host assembler)
assign
alternate for defective %963
sector, $DASDI utility U-78
DEFINE key in 4978 control
store, AD $TERMUT2 command
U-341
asynchronous communications con-
trol adapter (see ACCA)
AT set breakpoints and trace
ranges, S$DEBUG command U-90
ATTACH task control instruction
coding description L-59
internals I-44
overview L-642, 5-34
attention handling, terminal I/0
I-108, L-47, S5-63
attention keys, terminal I/0 L-47
attention list (see ATTNLIST)
ATTN key (see attention handling)
ATTNLIST task control statement
SATTASK L-61
coding description L-61
overview L-42, S-30
attribute character, 3101 C-122
autocall
option, SLINK U-401
AUTOCALL statement requirement
(WXTRN) L-323
automatic
application initialization
5-13, $-129
application restart 5-13,
5-129

B before, $FSEDIT line command
U-226
backup disk or disk volume on
tape, ST S$TAPEUT1 command U-330
backup dump restore utility,
$MOVEVOL U-29%4
base records, indexed data set
definition S5$-149
loading S5-160
basic exchange
diskette data set copy utili-
ty, $COPY U-59
basic supervisor and emulator (see
supervisor/emulator)
batch job processing (see
$JOBUTIL)
BEEP, Multiple Terminal Manager
CALL
coding description $6-137,
L-361
internals M-9
overview €6-117, L-29
binary synchronous communications
automatic retry 5-17
BSCAM/BSCAMU module

descriptions I-80
BSCLINE configuration state-
ment C-42, S$-76
control flow (BSCAM) 1I-147
device data block (BSCDDB)
I-133
features €-35, 5-16
Host Communications Facility
protocol I-156
instruction formats C€-38.
I1-144
multipoint operation C-36,
5-16
overview 5-16
point-to-point lines 5-16
Remote Management Utility
requirements C-208
sample programs €-59
special labels for,
description 1-149
system internal design I-133
test utility, $BSCUT2 C(C-66
trace printing routine,
$BSCUT1 C-62
trace routine, $BSCTRCE C-61
blank screen, $B operator command
$5-63, U-12
BLANK TERMCTRL function L-288
BLDTXT subroutine, $EDXASM 1-237
BLINK TERMCTRL function L-288
BLP (see bypass label processing)
BOT (beginning-of-tape) L-40
BOTTOM reposition line pointer,
$EDIT1/N editor subcommand U-183
boundary requirement, full-word
DO L-34
IF L-34
PROGRAM L-225
BP list breakpoints and trace
ranges, $DEBUG command U-92
breakpoints and trace setting, AT
$DEBUG command U-90
BROWSE display data set, $FSEDIT
option U-213
BSC (see binary synchronous
communications)
BSCAM (see binary synchronous com-
munications)
BSCCLOSE BSC statement 1I-144,
I-148
coding description C-38
BSCDDB binary synchronous device
data block
description of I-133
equates I-291
BSCEQU L-11
BSCIA immediate action routine
(BSC) 1I-148
BSCIOCB BSC statement C-39, I-144
BSCLINE configuration statement
C-42, S5-76
BSCOPEN BSC statement C-44,
I-1645, I-148
BSCREAD BSC statement C-45,
I-145, I-148
BSCWRITE BSC statement C-49,
I-146, I-148
BSF (backward space file) L-75
BSR (backward space record) L-75
BTE, buffer table entry A-20
BU build data member, $DIUTIL
command U-153
buffer
table entry
definition A-20

description A-31
terminal I/0 buffer
management I-109
BUFFER data definition statement
coding description L-65
overview L-17
build data member, BU $DIUTIL
command U-153
building an indexed data set
U-247
burst output with electronic dis-
play screens L-66
bypass label processing U-311
description 5-2644

change a key definition,
STERMUT2 command U-342
copy line, SFSEDIT line
command U-226
CA cancel
assembly, SEDXASM attention
request U-358
copy, $COPYUT1 attention
request U-64
list option, $FSEDIT attention
request U-217
listing, SEDXLIST attention
request U-358
CAD copy all data members,
SCOPYUT1 command U-64
CALL
copy all members, $COPYUT1
command U-64
program control instruction
coding description L-68
Indexed Access Method
syntax 5-146
Multiple Terminal Manager
syntax L-359
overview L-32, 5-31
program L-68
subroutine L-68
callable routines L-30
CALLFORT program control
instruction
coding description L-70
overview L-32
cancel
$C operator command U-13
assembly, CA $EDXASM attention
request U-358
copy, CA $COPYUT1 attention
request U-64
dump, CA $DUMP command U-165
list option, CA $FSEDIT
attention request U-217
listing, CA SEDIT/N attention
request U-172
CAP copy all programs, $COPYUT1
command U-64%
CC copy block, $FSEDIT line
command U-226

CCB
equate table 1I-292
internals I-105, I-119
intgrprocessor communications
Cc-30
use in terminal I/0 support
I-113

Common Index 333

CCBEQU L-11

CDh
clear data set, $DISKUT2 com-
mand U-14%
capy data set, $COPY command
-61

copy data set, S$TAPEUTI
command U-313
CDATA, Multiple Terminal Manager
CALL
coding description $6-139,
L-362
internals M-9
overview L-29
CDRRM equates (€-292
CG copy all members (generic)
$COPYUT1 command U-64
CH
change hardcopy device,
$BSCUT2 command C-70
change host library, $UPDATEH
command U-420
chain, ECB/QCB/TCB 1I-55
C¥A§2 supervisor service routine
C¥A§2D supervisor service routine
C?Ang supervisor service routine
chaining L-27
C?AgzP supervisor service routine
change
address assignment of termi-
nal, RA $TERMUT1 command
U-336
base address, QUALIFY $DEBUG
command U-101
character string, CHANGE
SEDIT1/N editor subcommand
U-184
character string, change
$FSEDIT primary command
u-219
execution sequence, GOTO $DE-
BUG command U-94
graphics or report display
profile, $DICOMP utility
uU-105
hardcopy device, CH $BSCUT2
command C-70
hardcopy device, RH $TERMUT1
command U-338
host library, CH SUPDATEH
command U-420 :
key definition in 4978 control
store, C $TERMUT2 U-342
name of logical device, RE
$TERMUT1 command U-337
output volume, CV SUPDATE
command U-409
page formatting parameters of
a terminal, CT S$TERMUT1
u-335
partition assignment, S$CP
operator command U-1¢
realtime data member name RT
($PDS) S5-258
tape label support U-322
volume
CV $BSCUT1 command C-62
CV $COPYUT1 command U-64
CV $DISKUT1 command U-137
CV $DISKUT2 command U-143
CV S$UPDATEH command U-418

334 SC34-0316

character constants L-89
character image table U-205
CHGPAN, Multiple Terminal Manager
CALL
coding description C-135,
L-364
internals M-9
overview C-124, L-29
CL clear work data set, $FSEDIT
primary command U-221
class interrupt vector table

I-10, I-277
cla interrupts, intercepting,
STRAP utility U-348

clear
data set, CD $DISKUT2 command
U-144
screen, $B operator command
u-12

CLOSE Host Communications Facili-
ty, TP operand C-90
CLSRU (close tape data set) L-75
cluster, indexed data set 5-200
CM copy member
$COPYUT1 command U-64
$DIUTIL command U-155
CMDEQU L-12
CMDSETUP I-13, I-67
CNG copy all members
6noz-generic),$COPYUT1 command
-6
co czmmand, $RJE2780/SRJE37880
c-7
COoBOL
execution requirements 5-23
link editing §5-71
overview S-7
program preparation
requirements 5-23
use with Multiple Terminal
Manager €-193
code translation
new support tables I-111
terminal I/0 layer 2 I-109
code words, task L-8
COLS display columns, $FSEDIT line
command U-228
command area, $EDXASM I-214
command descriptions U-235
COMMAND send to host,
SRJE2780/$RJE3I780 C-75
command table I-68, I-282, I-301
common data area (see $SYSCOM)
common emulator setup routine
command table I-13, I-282,
I-301
operating conventions I-67
communication error function
I-166
communications utilities
$BSCTRCE C-61
$BSCUT1 C-62
$BSCUT2 C-64
SHFCUT1 C-107
$PRT2780 C-72
SPRT3780 C-72
SRJE2780 C-73
$RJE3780 C-73
SRMU C-282
communications utilities (session
manager) S5-217, U-42
communications vector table 1I-11,
I-278, I-313
compiler (see $EDXASM)

0

completion codes (see return
codes)
SEDXASM U-436
SIAMUT1 U-437
$JOBUTIL U-439
SLINK U-440
$UPDATE U-443
compress
data base, CP $DIUTIL command
U-154
labrary, $COMPRES utility
-57
compressed byte string 5-309
CONCAT graphics instruction
coding description L-72
overview L-26
concatenating indexed data sets
S-167
concurrent access L-27
concurrent execution L-42
configuration statements 5-75
configure terminal CT STERMUT1
command U-335
connecting an indexed data set
$-159
continuation, source program line,
SEDXASM U-361
control, device instruction level
L-24
control block (see DSCB)
control block and parameter
tables
BSCEQU 1I-133, I-291, L-11
CCBEQU (see also CCB) L-11
CMDEQU (see also emulator
command table) L-12
DDBEQU I-92, 1-308, L-12
DSCBEQU (see also DSCB) L-12
ERRORDEF L-12
FCBEQU A-20, L-12
TAMEQU L-12
PROGEQU I-312, L-13
referencing I-289
TCBEQU (see also TCB) L-13
control block module (ASMOBJ)
description I-76
CONTROL IDCB command L-175
control keys for text editors
U-172
control records, $LINK U-396
control statements, program
listing L-28

task L-62
terminal I/0 forms control
L-45

CONTROL tape instruction L-74
conversion
algorithm for graphics 1I-201
alphameric data L-152
definition
EBFLCVT module description
I-80
floating point/binary I1I-205
numeric data L-1648]
program modules by $UPDATE/H
U-418
terminal I/0 binary/EBCDIC
I-110
CONVTB data formatting
instruction
coding description L-79
internals 1I-207
overview L-18
CONVTD data formatting
instruction

coding description L-82
internals I-207
overview L-18
copy
block of text, CC $FSEDIT line
command U-226
data members, all, CAD
$COPYUT1 command U-64
data set, CD $COPY command
U-61
data sets with allocation,
$COPYUTY utility U-6¢4
line of text, C $FSEDIT line
command U-226
member
CM $COPYUT1 command U-64
CM S$DIUTIL command U-155

members
all, CALL $COPYUT!l com-
mand U-64

generic, CG $COPYUT1
command U-64
non-generic, CNG $COPYUT1
command U-64
programs, all, CAP $COPYUT1
command U-64%
text, SEDIT1/N editor
subcommand U-186
volume, CV $COPY command U-62
copy code library, instruction
parsing ($EDXASM) 1-222
COPY instruction
coding description L-86
overview L-33
Count record C€-256
CP compress data base, $DIUTIL
command U-154
CR invoke $DISKUT1l, $IAMUT1
command U-236

create
character image tables, $FONT
u-205
source data set, $FSEDIT
Uu-214

supervisor for another
Seriess71l S5-132
unique labels, $SYSNDX
(SEDXASM) 1I-242
create indexed data set 5-156
cross partition instructions I-71
cross partition services 5-286
CSECT list, supervisor
Version 1.1 5-347
Version 2 §5-357
CSECT program module sectioning
statement
coding description L-87
overview L-33
CT
change tape drive attributes,
$TAPEUT1 command U-315
configure terminal, S$TERMUT1
command U-335
cv

change output volume U-409
$UPDATE command U-409
SUPDATEH command U-418

change volume
$BSCUT1 command C-62
$COPYUT1 command U-64
$DISKUT1 command U-137
$DISKUT2 command U-143

cgpygvolume, $COPY command
-5

Common Index 335

CYCLE
coding description $6-132,
L-365
internals M-9
overview C€-116, L-29

cylinder S5-60

cvylinder track sector (CTS) U-135

D

D delete line, $FSEDIT line com-
mand U-228
D/1I (see digital input)
D/0 (see digital output)
data
conversion (see conversion)
conversion specifications (see
also conversion) L-146
definition statements L-17
files for $S1ASM 1I-254
floating-point arithmetic
instructions L-20
formatting functions L-18
formatting instructions L-18
integer and logical
instructions L-19
length of transmitted, host
communications I-159
management 5-45
management system, Indexed
Access Method L-27
manipulation instructions
L-19
record contents, text editor
I-325
representation L-20
floating-point L-20
integer L-19
terminal input L-45
terminal output L-45
transfer initialization,
terminal I/70 support 1I-112
transfer rates, Host
Communications Facility C-84
transfer ready, (DTR) BSCOPEN
I-148
Data Collection Interactive 5-11
DATA data definition statement
coding description L-88
overview L-17
data management utilities

$COMPRES S-64, U-57
$COPY S-64, U-59
$COPYUT1 S-64, U-64
$DASDI S-64, U-68
$DISKUT1 S-64, U-135
SDISKUT2 S-64, U-142
$DISKUT3 S-315
SIAMUT1 $-148, U-235
SINITDSK S-64, U-256
$MOVEVOL $-65, U-29¢4
$PDS S5-247

$TAPEUT1 U-311

session manager S5-215, U-38
data manipulation, vector L-19
data manipulation instructions

L-19
Data record €-257
datzsrepresentation, terminal I/0
L_
data set
allocation/deletion

336 SC34-0316

$DISKUT1 U-137
SDISKUT3 §-315
$JOBUTIL U-273
$PDS 5-248

session manager

characteristics, HC
format

nami

S$FSEDIT U-210
$PDS 5-249

$PRT2780 C-72
$PRT3780 ¢€-72
ng conventions

transfer

RECEIVE functio
SEND function

u-29
F C-83

C-82, S5-56

n C-243
C-247

utilities (see data management

uti

lities)

data set naming conventions, Host
Communications Facility C-82
data-set-shut-down condition

r command

$-179
date/time
display, $W operato
u-25
set, $T operator command U-19

DC data definition statement

codi

ng description

overview L-17
DCB EXIO control statement

codi

ng description

overview L-2%
DCE directory control entry

format

I1-88

L-88

L-91

DCI (Data Collection Interactive)

$-11

DD block delete, S$FSEDI
command U-228
DDB disk data block
description I-92

equate table

DDBEQU

I-308
L-12

DE delete member
$DISKUTL command U-137
$DIUTIL command U-156
delete data set, $J

command U-274

T line

OBUTIL

deadlocks €-238, S5-180
debug

$EDXASM overlay programs

I-248

aids (see also diagnostic

aids) S-18

facility, $DEBUG utility U-82
define

horizontal tabs, HTAB $IMAGE

command U-252
image dimensions, D
command U-251
indexed data set, D
command U-237
null representation, NULL
$IMAGE command U-253
vertical tabs, VTAB
command U-254
DEFINEQ queue processing
statement
coding description
overview L-37
definition statements,

delete

‘data set

$JOBUTIL comman
DELETE function
tape data set,

command U-333

IMS $IMAGE
F $IAMUTI1

$IMAGE

L-94

data L-17

d U-274
C-216
TA STAPEUT1

N
N

elements, IN $DICOMP command
U-107
member
$PDS S5-261
DE $DISKUT1 command U-137
DE $DIUTIL command U-156

xt
SEDIT1(N) editor subcom-
mand U-188
line, D $FSEDIT line
command U-228
with $PREFIND U-305
DELETE function ¢€-216, I-166,
I-174
DELETE instruction
coding description L-329
overview L-27, S5-147
return codes L-330
DEQ task control instruction
coding description L-95
internals I-59
overview L-42, $-33
supervisor function I-46
D%QBzg dequeue BSC DDB routine
-1
DEQT terminal I/0 instruction
coding description L-97
overview L-44, S5-47
DETACH task control instruction
coding description L-98
internals 1-65
overview L-42, S$-30
detached, task supervisor
execution state I-43
device
busy (EXOPEN) L-129
data block description, EXIO
I-123
instruction level control
L-2¢6
interrupt handling, EXIO
I-125
test utility, SIOTEST U-263
vector table 1I-11, I-278
DF define indexed file, SIAMUT1
command U-237
DI (see digital input)
diagnostic
aids 5-265
summarized S5-18
utilities
$DEBUG U-82
$DUMP U-163
S$IOTEST U-263
$LOG U-292
$TRAP U-348
with session manager
5-217, U-38
digital input
S$IOTEST command U-266
digital I/0 control block
I-129
direct output,$DICOMP subcom-—
mand U-112
direct output to another
device ($PDS) $-255
display parameters, S$IAMUTI1
command U-239
external sync, XI SIOTEST
command U-266
IODEF statement L-186
overview S5-48
SBI0O instruction L-265
SENSORIO configuration
statement 5-8¢

te

digital output
digital I/70 control block
I-129
DO S$IOTEST command U-265
external sync, X0 SIOTEST
command U-266
IODEF statement L-186
overview 5$-48
SBIO instruction L-267
SENSORIO configuration
statement L-84
DIMS define image dimensions,
$IMAGE command U-251
direct access common I/0 module,
DISKIO, description I-77
direct access storage device
organization S-52
direct output, DI $DICOMP
subcommand U-112
directory
control entry (DCE) 1I-88
entries $5-249
member entry (DME) I-89
disaster recovery from tape, RT
$TAPEUT]1 command U-326
DISCONN Indexed Access Method
CALL
coding description L-332
overview L-27, 5-148
return codes L-333
DISCONNECT Multiple Terminal
Manager utility €-119, C-159
disconnecting an indexed data set
$-159
DISK configuration statement S-78
disk/diskette
capacity 5-58
data block (DDB) I-92
fixed-head 5-15, 5-61
I/0 task 1I-95
IPL 5-16, S5-61
primary volume S5-60
resident loading code 1I-19
secondary volume S-60
symbolic addressing L-10
utilities
$COMPRES S5-64, U-57
$COPY S-64%4, U-59
$COPYUT1 S-64, U-64
$DASDI $-64, U-68
$DISKUT1 S-64, U-135
$DISKUT2 S-64, U-142
$DISKUT3 S-315
$IAMUT1 S-148, U-235
SINITDSK S-64, U-256
$MOVEVOL S-65, U-294
$PDS S$-247
utility function table U-49
volume S-16, $-52
disk I/0 instructions L-22
DISKIO direct access common I/0
module description I-77
display (see also list)
character image tables, DISP
$FONT command U-205
contents of storage or
registers, LIST $DEBUG com-
mand U-95
control member ($PDS) S-250
control member format ($PDS)
§-252
initial data values for image
5-303
processor composer, $DICOMP
U-105

Common Index 337

processor interpreter,
$DIINTR U-150
processor utility, $DIUTIL
U-150
processor utility, general
description U-105
profile elements ($PDS) S5-252
protected and null fields of
an image $5-302
report line items ($PDS)
§-255
status of all tasks, WHERE
$DEBUG command U-102
storage, $D operator command
5—63) U‘15
time and data, TD ($PDS)
5-258
time and date, $W operator
command 5-63, U-25
utility program set ($PDS)
$-248
variable, VA(SPDS) §5-254
4978 program function keys,
$PFMAP utility U-301
DISPLAY TERMCTRL function L-288
DIVIDE data manipulation
instruction
coding description L-99
overview L-19
precision table L-100
DME directory member entry
format 1I-89
updated by SETEOD S5-324
DO
digital output (see digital
output)
program sequencing
instruction
coding description L-101
overview L-34
double-precision L-19
flogfing~point arithmetic
L_
integer and logical L-19
DOWN move line poiner, $EDIT1/N
aeditor subcommand U-189
DP
dump to printer
SDISKUT2 command U-16%
STAPEUTY1 command U-317
print trace file, $BSCUT1
command C-62
DR draw symbol, $DICOMP
subcommand U-112
DR draw symbol ($PDS) §S-254
draw
line, LI $DICOMP subcommand
u-12¢
line relative LR ($PDS) 5-257
symbol, DR $DICOMP subcommand
U-112
DS data set identifier, $JOBUTIL
command U-275
DSCB data set control block
statement
coding description L-105
equate table, DSCBEQU 1I-311
for tape, internals 1-99
internals 1I-92
overview L-22
DSCBEQU L-12
DSECT (see control block and
parameter equate tables) L-11
DSOPEN subroutine
description 5-322

338 SC34-0316

DSR 2ata set ready in BSCOPEN
I-148

DTR data transfer ready in
BSCOPEN I-148

DU
dump on terminal, $DISKUT2
command U-144
dump trace file on terminal,
$BSCUT1 command C-62

dump

restore volume utility
SMOVEVOL U-294
storage partition, DUMP
function C-218
to printer
$DUMP utility U-163
DP $DISKUT2 command U-143
DP $TAPEUT1 command U-317
PR $DICOMP command U-108
to terminal
$DUMP utility U-163
DP STAPEUT1 command U-317
DU $DISKUT2 command U-143
PR $DICOMP command U-108
trace file on printer, DP
$BSCUT1l command C-62
trace file on terminal, DU
$BSCUT1 command C-62
DUMP function C€-218, I-166, I-175
D4969, tape device handler module
description I-82

E~conversion (Ew.d) L-150
EBFLCVT, EBDIC to floating-point
conversion I-205
module description I-80
EC control echo mode, $IAMUT1
command U-240
ECB task control statement
coding description L-107
internals I-55
overview L-42, S$-30
with SBIOCB I-128
EDIT
begin editing source data,
$EDIT1/N command U-17¢
create or change data set,
$FSEDIT option U-2146
enter edit mode, $FONT
command U-205
enter edit mode, $IMAGE
command U-251
edit data set subroutine examples,
text editor 1I-326
editor subcommands, $EDIT1/N
U-182
EDL (see Event Driven Language)
compiler ($EDXASM) U-356
instruction format I-67
interpreter, EDXALU, module
description I-77
operation codes I-67
EDXALU Event Driven Language
interpreter description 1I-5,
I-77
EDXFLOAT floating-point operations
module description I-79
EDXINIT supervisor initialization
control module 1I-15
description I-81

O

N

NS

~

C

EBX%%?T host listing formatter
EDXSTART supervisor initialization
task module description I-81
EDXSVCX/EDXSVCXU task supervisor
addr. trans. support desc I-5,
I-76
EDXSYS system data tables,
description I-75
EDXTIMER 7840 timer feature card
module description I-80
EDXTIMR2 4952 timer module
description I-80
EDXTIO terminal I/0
EDXTIO/EDXTIOU module
description I-78
internals 1I-105
EJECT listing control statement
coding description L-109
overview L-28
eject printer page
$E operator command U-16
ELSE program sequencing
instruction
coding description L-110,
L-178
overview L-34
emulator (see
supervisor/emulator)
emulator command table I-13,
I-282, I-301
emulator functional flow I-69
emulator setup routine I-67
command table I-13, I-282,
I-301
EN end program, $IAMUT1 command
uU-235
END
SLINK control record U-396
option selection, $EDXASM
command U-358
option selection, $EDXLIST
command U-371
option selection, $51ASM
U-378
primary command input, $FSEDIT
primary command U-221
task control statement
coding description L-111
overview L-42
end display, EP $DICOMP
subcommand U-118
end-of-file, indicating with
SETEQOD 5-324
ENDATTN task control instruction
coding description L-112
overview L-42, $-30
ENDDO program sequencing
instruction
coding description L-103,
L-113
overview L-34
ENDIF program sequencing
instruction
coding description L-114,
L-178
overview L-34
ENDPROG task control statement
coding description L-115
overview L-42, S$-30
ENDSEQ Indexed Access Method CALL
coding description L-334%
overview L-27, $-147
return codes L-335

ENDSPOOL switch spool to print,
$RJE2780/SRJE3780 C-75
ENDTASK task control instruction
coding description L-116
overview L-642, S$-30
ENQ task control instruction
coding description L-117
internals 1I-60
overview L-42, S-33
supervisor function I-45
ENQT terminal I/0 instruction
5-293
coding description L-119
overview L-44, S-47
enqueue, task supervisor function
(see ENQ)
entering and editing source state-
ments S-66, U-192
entry points, supervisor
Version 1.1 S§-347
Version 2 5-357
ENTRY program module sectioning
statement
coding description L-121
overview L-33
EOF (end-of-file) L-74
E0J end of job, $JOBUTIL command
U-276
EOP end of nested procedure,
$JOBUTIL command U-276
EOR data manipulation instruction
coding description L-122
overview L-19
EOT (end-of-tape) L-%1
EP end display, $DICOMP
subcommand U-118
EQ (equal) L-34
EQU data definition instruction
coding description L-124%
overview L-17
equate tables
SEDXASM compiler common area
I-214
BSCDDB, BSC line control
block 1I-291
CCB, terminal control block
I-292
DDB, disk/diskette control
block I-308
DDB for sensor I/0 I-309
DSCB, data set control block
I-311
emulator command table 1-282,
I-301
Indexed Access Method A-19
parameter and control block
L-11
program header I-312
referencing I-30
supervisor I1-279, I-313
TCB, task control block I-314
ERASE terminal I/0 instruction
coding description L-126
overview L-44, S5-47
error codes (see return codes)
error handling
I/0 error logging 5-270
Indexed Access Method error
exit S5-178
Remote Management Utility
c-277
software trace $-265
task error exit 5-33, 5-268
terminal I/0 L-4%4%
ERRORDEF L-12

Common Index 339

ERRORS list error option
SEDXASM command U-358
$EDXLIST command U-370

estimating storage (see storage

estimating)

event control block (see ECB)

Event Driven Language (see EDL)

EX exercise tape, S$TAPEUT1 com-

mand U-319
EXEC function (€-220, I-166, I-178
EXEC load and execute program,

$JOBUTIL command U-277

execute program
EXEC function C-220
PASSTHRU function C-225
SHUTDOWN function C-251
utilities (session manager)

5-216

executing, task supervisor exe-

cution state I-43
exercise tape, EX $TAPEUT1

command U-319

EXFLIH command start I-125

EXI0O control instruction
coding description L-128
EXIODDB device data block

description I-123
internals I-125
overview L-2%, 5-51

EXIGCLEN, EXIO termination module

I-126

EXIODEV configuration statement

$-82

EXIOINIT, system initialization

I-125
EXOPEN EXIO control instruction

coding description L-129
internals I-125
interrupt codes L-132

overview L-2¢

return codes L-131
external sync DI/DO, XI/X0 $IOTEST
command U-266
EXTRACT, Indexed Access Method

CALL
coding description L-336
overview L-26, 5-148

return codes L-337
EXTRN program module sectioning
statement

coding description L-134
overview L-33
F
F-conversion (Fu.d) L-149
FADD data manipulation
instruction .
coding description L-135

overview L-19

return codes L-136
FAN, Multiple Terminal Manager
CALL

coding description

L-366

overview L-31
FCA file control area, Multiple
Terminal Manager (C-163
FCB file control block for Indexed
Access Method

definition A-9, A-20

description A-11, A-21, S5-19%4

C-139,

340 SC34-0316

location A-20
map provided by FCBEQU §-155
FCBEQU Indexed Access Method copy
code module L-12, S$-155
FDIVD data manipulation NKXN
instruction “&jy
coding description L-137
overview L-19
return codes L=-138
FETCH Host Communications
Facility, TP operand C-92
fetch record ($PDS) S-261
fetch status, FE $HCFUT1 command
c-110
file L-75
bac;ward space file (BSF)
L-75
control area (see FCA)
control block (see FCB)
definition L-40
forward space file (FSF) L-75
manager, Multiple Terminal
Manager M-8
tape control commands L-75
FILEIO, Multiple Terminal Manager

CALL
coding description C-141,
L-367
internals M-9
overview C€-118, L-29
FIND

editor commands
character string, $EDIT1/N
subcommand U-191
character string, $FSEDIT
primary command U-222
program sequencing
instruction
coding description
overview L-34%
FINDNOT program sequencing
instruction
coding description
overview L-34
FIRSTQ queue processing
instruction
coding description
overview L-37, §-32
fixed-head devices 5§-61
fixed storage area, contents I-9
floating-point
arithmetic instruction
equates I-283, I-303
arithmetic instructions L-20
binary conversions I-205
command entries module,
NOFLOAT, description 1I-79
operations module, EDXFLOAT,
description I-79
return codes L-21
FMULT data manipulation
instruction
coding description
overview L-19
return codes L-145
format
illustrated L-5
instruction (general) L-3
FORMAT data formatting statement

L-139

AN
\

L-141

L-143

L-1464

'A' conversion L-153
'E' conversion L-150
'F' conversion L-149
'H' conversion L=-152 %
'I' conversion L-148 \

coding description L-146

C

conversion of alphameric data
L-153
conversion of numeric data
L-148
data conversion specifica-
tions L-146
module names L-18
multiple field format L-155
overview L-18
repetitive specification
L-155
using multipliers L-155
X-type format L-15¢4
formatted screen images $5-300,
U-250
formatting instructions, data
L-18
forms control
burst output with electronic
display screens L-46
forms interpretation L-46
output line buffering L-46
parameters, terminal I/0 L-44
terminal I/0 L-45
FORTRAN IV
execution requirements 5-24
link editing 5-71
overview 5-6
program preparation
requirements 5-24
use with Multiple Terminal
Manager C-197
FPCONV data manipulation
instruction
coding description L-157
overview L-19
free pool in Indexed Access
Method L-27
free space
definition 5-148
estimating 5-168
in Indexed Access Method L-27
free space entry I-90
FREEMAIN storage allocation
function I-25
FSE free space entry I-90
FSR (forward space record) L-75
FSUB data manipulation
instruction
coding description L-159
index registers L-160
overview L-19
return codes L-160
FTAB, Multiple Terminal Manager
CALL
coding description C€C-138,
L-372
overview C-124¢, L-31
return codes L-373
full-screen static configuration
$-293
full-screen text editor host and
native, $FSEDIT U-209
full-word boundary requirement
DO L-34
IF L-34
PROGRAM L-225
function process overlays 1I-162
function process subroutines
I-162, I-170
new subroutines I1-187

function table I-164, I-167

G

GE (greater than or equal) L-34
general instruction format L-3
generating the supervisor 5-115
GENxxxx macro I-120
GET Indexed Access Method CALL
coding description L-338
overview L-27, 5-147
return codes L-340
GETEDIT data formatting
instruction
coding description L-162
overview L-18
GETMAIN storage allocation
instruction 1I-25
GETPAR3 1I-69
GETSEQ Indexed Access Method CALL
coding description L-342
overview L-27, S$-147
return codes L-343
GETSTORE TERMCTRL function L-288
GETTIME timing instruction
coding description L-167
overview L-50, §-32
GETVAL subroutine, $EDXASM I-234
GETVALUE terminal I/0 instruction
coding description L-169
overview L-%4, S-47
GIN graphics instruction
coding description L-172
overview L-26
global area, $EDXASM 1I-224
GLOBAL ATTNLIST L-61
G0 activate stopped task, $DEBUG
command U-93
GOTO
change execution sequence,
$DEBUG command U-94
coding sequencing instruction
coding description L-173
overview L-34%
graphics
conversion algorithm I-201
functions overview L-26
hardware considerations C-6,
C-300
instructions L-26
CONCAT L-72
GIN L-172
PLOTGIN L-210
SCREEN L-270
XYPLOT L-324
YTPLOT L-325
requirements L-26
terminals S5-46
utilities
$DICOMP U-105
SDIINTR U-127
$DIUTIL U-15¢
session manager 5-216,
U-40
summarized 5-64%, U-5
6T (greater than) L-34

Common Index 341

H

H-conversion L-152
hardcopy function for terminals
PF6 I-114, U-7
hardware levels $-30
HCF (see Host Communications
Facility)
HDR1 tape label 5-239
header labels, tape 5-235
header record
Remote Management Utility
c-209
h§ageg record format, text editor
-32
HELP list debug commands, $DEBUG
command U-9¢4
higher-level index block 5-197
horizontal tabs, defining with
S$IMAGE U-252
host assembler U-382
Host Communications Facility
c-81, I-153
data set naming conventions

c-82
Program Preparation
Systems/370 I-153, U-382

TPCOM module description I-81
utility program, $HCUT1 C-107
host program, Remote Management
Utility C-205
host system considerations C-83
HOSTCOMM configuration statement
5-83
HX display hex words, $DICOMP
subcommand U-118

initialization, $INITDSK com-
mand U-257
insert line, $FSEDIT line
command U-229
I-conversion (Iw) L-148
I/0 device instruction level L-24
I/0 error logging
data set list utility,
$DISKUT2 U-142
device table 5-276
invoking 5-273, U-292
log control record 5$-276
log data set U-292
LOG macro
equates 5-278
syntax $-272
printing the errors 5-275
recording the errors 5-270
tape log entries 5-245
utility, $LOG U-292
I70 functions
disk/diskette 1I-95, L-22
summarized S-%6
EXIO control I-123, L-2%
summarized S$-51
HOSTCOMM configuration
statement L-39, 5-83
overview 5-45
sensor I-127
summarized §-51

342 5C34-0316

tape L-40, L-75
terminal 5-46
timers L-50, $-32

I/0 instructions N
disk L-22 P

diskette L[-22
tape L-40
IACB indexed access control block
built by connecting data set
5-159
definition A-20
description A-35
location A-14
IAM Indexed Access Method link
module S5-155
IAMEQU Indexed Access Method copy
code module L-12, S$-155
IDCB EXIO control statement
coding description L-175
overview L-24
IDCHECK function (€-223, I-166,
I-177
identification, verify
host system €-223
IDCHECK function €-223
remote system (C-223
IF program sequence instruction
coding description L-177
overview L-34¢
II insert block, SFSEDIT line
command U-231
IIB interrupt information byte,
Multiple Terminal Manager (C-128
IM insert member
$DICOMP subcommand U-118

$PDS S5-257
image dimensions, define, DIMS
$IMAGE command U-251 VRN
image store U-205 k&)
immediate action routines 1-46 e

binary synchronous access

method I-149

specifying maximum number

5-88

task supervisor I-48
i:mediate data L-¢4%
I
initialize data base, $DIUTIL
command U-157
insert or delete elements,
$DICOMP command U-107
INCLUDE $LINK control record

U-398
INCLUDE statement requirement
CEXTRNY L-134

index block A-20, A-33
overview 5-151

index entry A-12

index record contents, text

editor 1-323

index registers

floating-point operations

using L-21

integer operations using L-19

software introduction L-6
indexed access control block (see
IACB/ICB)

Indexed Access Method L-26, L-327
SIAM load medule S5-155
$IAMUTL utility U-235

overview 5-148

parameters 5$-187
used in data set
reorganization S5-166 4

application program

O

C

preparation
$JOBUTIL procedure S5-158
link edit control 5-158
CALL instruction syntax L-638,
5-146
CALL processing A-4¢
coding instructions L-327
control block linkages A-15
control flow A-3
data block location
calculation A-9
devices supported by 5-146
diagnostic aids A-10
I/0 requests
DELETE L-329, S5-147
DISCONN L-332, S-148
ENDSEQ L-334, S5-147
EXTRACT L-336, S-148
GET L-338, 5-147
GETSEQ L-341, S-147
LOAD L-344, S-147
PROCESS L-347, S-147
PUT L-350, S-147
PUTDE L-352, S-147
PUTUP L-354, S-147
RELEASE L-356, 5-147
IAM link module S5-155
operation S5-148
overview L-27, 5-145
performance $-205
program praparation procedure
5-155
record processing A-6
request processing A-5
request verification A-10
storage requirements 5-2064

indexed applications, planning and
designing

connecting and disconnecting
data sets 5-159
handling errors
data-set—-shut-down condi-
tion $-179
deadlocks S5-180
error exit facilities
5-178
long-lock-time condition
5-180
system function return
cedes S5-179
loading’ base records S5-160
processing indexed data sets
delete 5-165
direct read 5-161
direct update 5-162
extract S$-165
insert 5-146
sequential read S5-162
sequential update 5-146
resource contention S5-181

indexed data set

base records 5-149
building U-247
concatenating with ALTIAM
subroutine 5-167
control block arrangement A-8
creation with $IAMUTL utility
U-236
formatting 5-187
procedure S5-156
design A-7
determining size and format
U-247
format
blocks S5-192

cluster 5-200
data block 5-194
file control block (FCB)
$-151, 5-19¢4%
free blocks $5-200
free pool 5-203
free records 5$-200
free space 5-184
higher-level index block
$-197
index 5-195
index block 5-194
introduction 5-151
last cluster 5-203
primary-level index block
(PIXB) S-152, 5-195
relative block number
(RBN)} S-152
reserve blocks $5-201
reserve index entries
$5-202
second-level index block
(SIXB) S-152, S-197
sequential chaining 5-203
loading and inserting records
S-150
maintenance
backup and recovery $-165
deleting 5-167
dumping S-167
recovery without backup
$-166
reorganization 5-166
overview 5-148
physical arrangement A-8
preparing the data
defining the key S5-166
estimating free space
5-168
selecting the block size
$-167
putting records into 5-149
RBN, relative block number
A-7, A-12
record locking 5-146, 5-160
verification A-11
indexed data set, defining U-237
indexed file (see Indexed Access
Method)
indexing, address feature L-6
initial program load (see also
IPLY I-15
initialization
automatic application 5-129
disk (4962) U-68, U-73
disk (4963) U-68, U-78
diskette (4964,64966) U-68
libraries, $INITDSK utility
U-256
modules I-16
nucleus I-15
Remote Management Utility,
internals 1-166, I-171
tape, $TAPEUTI utility U-322
task I-15
initialize data base, IN $DIUTIL
command U-157
initializing secondary volumes
$-132
INITMODS, initialization modules
I-16
INITTASK, initialization task
I-15
input, terminal I/0 L-46

Common Index 343

Input Buffer, Multiple Terminal
Manager C-116
contents during 497874979/3101
buffer operation €-129
description C-116
input data parsing, description
of 1-218
Input Error function I-166, I-182
input/output (see I/0)
input output control block (sea
I0OCB)
INPUT switch to input mode,
SEDIT1/N editor subcommand U-192
insert
block, II $FSEDIT line com-

mand U-231

elements, IN $DICOMP command
u-107

line, I S$FSEDIT line command
U-229

member, IM $DICOMP subcommand
U-118

i?:gguction address register (see
instruction and statements - over-
view L-15
instruction definition and
checking ($EDXASM) 1I-241
instruction format, Event Driven
Language I-67, L-3
instruction format, general L-3
instruction operands L-3
ifteger and logical instructions
-19
interactive program debugging
$-67, U-82
interface routines, supervisor
I-61
interprocessor communications
c-29
interprogram dialogue §-282
interrupt, from EXI0 device I-125
interrupt information byte (see
IIB)
interrupt line 5-313
interrupt servicing I-46, I-113
INTIME timing instruction
coding description L-181
overview L-50, 5-32
introduction to EDL L-1
invoking the loader I-23
invoking the session manager U-27
invoking the utilities U-47
IOCB terminal I/0 instruction
coding description L-183
constructing, for formatted

screen (SIMDEFN) S$-301
overview L-44, 5-47
structure 5-296
terminal I/0 instruction
L-183
TERMINAL statement converted
to S5-96

IODEF sensor based I/70 statement

U-364
coding description
overview L-39, S-51
SPECPI - process interrupt
user routine L-189

IOLOADER, function of I-127

IOLOADER/IOLOADRU sensor based I/0

init. module desc. 1I-78

IOR data manipulation instruction
coding description L-191
overview L-19

L-185

344 SC34-0316

IPL
automatic application initial-
ization and restart 5-129
messages U-421 df\“
date and time U-425 {&)V
IPL operation U-421 —
load utility location
U-424
sensor I/0 status check
U-424
storage map generation
U-423
tape initialization U-423
volume initialization
u-422
procedure U-421
IPLSCRN, Multiple Terminal
Manager C-125
J
job U-278

job control statement U-278
JOB job identifier, S$JOBUTIL
command U-278

job stream processor, $JOBUTIL
$-69, U-271

job stream processor utilities
gsession manager) 5-216

jump ($PDS) S-255
to address, $DICOMP
subcommand U-118
JR jump reference, $DICOMP]
subcommand U-118 YN
JUMP, $JOBUTIL command U-279 && ‘
jump reference, JR $DICOMP w4
subcommand U-118
jump to address, JP $DICOMP
subcommand U-118

K

key (see program function (PF)
keys

keyboard and ATTNLIST tasks, ter-
minal I/0 L-47

keyboard define utility for 4978,
$TERMUT2 U-339

KEYS list program function keys

$IMAGE command U-253
keyword operand L-5

LA
display directory, $DIUTIL
command U-158
list all members, $DISKUT1
command U-135, U-136
list terminal assignment,
STERMUTL command U-336

label L-3
field L-3 ’
syntax description L-4 4

——

LABEL end jump, $JOBUTIL command
U-28¢0
labels, tape (see tape)
LABELS subroutine, $EDXASM I-238
LACTS list all members CTS mode,
$DISKUT1 command U-135
language control data set,
S$EDXASM 1I-221, U-357
LASTQ queue processing
instruction
coding description L-191
overview L-37, $-32
layers, terminal 1I/0 1I-108
LB display characters
SDICOMP display character sub-
command U-119
$PDS S$5-252
LC load control store, $TERMUT2
command U-342
LD

list all hardware devices,
S$IOTEST command U-269
list data members, $DISKUT1
command U-138
LDCTS list data members CTS mode,
$DISKUT1 command U-135
LE (less than or equal) L-34
level status block (see LSB)
LEWORK! work data set for $LINK
U-400
LEWORK2 work data set for $LINK
U-400
LH display member header, $DIUTIL
command U-159

LI
draw line $DICOMP subcommand
U-12¢
draw line $PDS S-253
load image store, $TERMUT2
command U-342
library
definition §$-52
directory, disk or diskette
I1-87
origin 5-60
line
commands, $FSEDIT U-229
continuation, source
statement L-¢
editing, $EDIT1/N U-203
pointer reposition (see move
line pointer)
source line continuation
U-361
LINK, Multiple Terminal Manager
CALL
coding description €-131,
L-374
internals M-9
overview C€-115, L-29
link edit process, $LINK U-394¢
autocall option U-393
building an EDX supervisor
U-394
combining program modules
U-392
control records U-396
elimination of duplication
control sections U-393
formatting modules for
$UPDATE U-392
input to SLINK U-396
multiple control sections
U-392
object module record format

U-407
output from S$LINK U-403
storage map U-393
link edit program object modules
U-390
link module, Indexed Access
Method S-155
linkage editor §$-71, U-353
LINKON, Multiple Terminal Manager
CALL
coding description ¢-132,
L-376
internals M-9
overview C-115, L-29
list
active programs, $A operator
command U-11
breakpoints and trace ranges,
BP $DEBUG command U-92
characters, LB $DICOMP
subcommand U-119
data members, LD $DISKUT1
command U-138
data members, LDCTS $DISKUTI
command U-135
data set
BROWSE S$FSEDIT option
u-213
LP SDISKUT2 command U-143
LU $DISKUT2 command U-146
status, ST S$DIUTIL
command U-162
datestime, $W operator
command U-25
datestime, TD $DICOMP
subcommand U-124
devices, LD $IOTEST command
U-269
end, EP $DICOMP subcommand
u-117
error specification, ERRORS
SEDXASM command U-358
hardware configuration, LD
SIOTEST command U-264%
insert mask, MASK $FSEDIT line
command U-232
member, LM $DISKUT1 command
uU-138
member, PR $DICOMP command
U-108
member header, LH $DIUTIL com-
mand U-159
members, all
LA $DISKUT1 command U-135
LA $DIUTIL command U-158
LACTS $DISKUT1 command
U-135
processor program, S$EDXLIST
u-370
program function key codes,
SPFMAP utility U-301
program function keys, KEYS
S$IMAGE command U-253
program members, LP $DISKUT1
command U-139
program members, LPCTS
$DISKUT1 command U-135
status of all tasks, WHERE
SDEBUG command U-102
storage, $D operator command
U-15
terminal
names/types/addresses, LA
$TERMUT1 command U-335
variables, VA $DICOMP

Common Index 345

subcommand U-125
volume information, VI SIOTEST
command U-270
LIST commands
data set
LIST $EDIT1/N command
u-193
LIST $FSEDIT option U-217
display lines of text,
$EDIT1/N editor subcommand
u-193
display storage or registers,
$DEBUG command U-95
lines of text, LIST $EDIT1/N
editor command U-176
list device option, S$EDXASM
command U-358
list device option, S$EDXLIST
command U-370
obtain full listing, LIST
SEDXASM command U-358
print data set, $EDIT1/N
command U-176
print data set, $FSEDIT
option U-217
registers, LIST $DEBUG
command U-95
storage, LIST $DEBUG command
U-95
listing control functions U-29
listing control instructions
EJECT L-109
overview L-28
PRINT L-216
SPACE L-275
TITLE L-308
LISTP list to $SYSPRTR, $DISKUT1
command U-135
LISTT list to terminal, $DISKUT1
command U-135
LL list log data set, $DISKUT2
command U-145
LM list member, $DISKUT1l command
U-138
L0 load indexed file, $IAMUT1
command U-241
LOAD
Indexed Access Method CALL
coding description L-344
connect file 5-159
overview L-27, S5-146
return codes L-346
task control instruction
coding description L-194
internals 1-24
overview L-42
return codes L-199
used with automatic
initialization 65-129
used with overlays S$-40
load mode S$-149
load point defined L-40
load program
$L operator command I-23,
u-17
automatic initialization
$5-129
EXEC $JOBUTIL command U-277
loading overlays 1I-22
loading programs I-19
locate data sets and overlay
programs, $PREFIND U-302
LOCATE locate requested line
number $FSEDIT primary comman
u-223

346 SC34-0316

location dictionary I-250
lock
locks, block and record A-16
locks, file A-17
record 5-146
LOCK TERMCTRL function L-288
LOG
I/0 error logging macro §-271
job processor commands,
$JOBUTIL command U-281
log data set for I/0 errors U-292
logical end-of-file on disk 5-324
logical screens 5-293
logon menu for session manager
5-212, U-27
long-lock-time condition 5-180
low storage
during IPL I-16
during program load I-20
LP
list data set on printer,
$DISKUT2 command U-144
list program members, $DISKUT1
command U-139
LPCTS list program members CTS
mode, $DISKUT1 command U-135
LR draw line relative
$DICOMP subcommand U-121
$PDS S$-257

list space, $DISKUT1 command
U-140
list supervisor configuration,
SIOTEST command U-270
LSB level status block I-52,
u-427
LT (less than) L-34
LU list data set on console,
$DISKUTZ2 command U-146
LV list through volumes, $DISKUT1
U-141

LS

M

M move line, $FSEDIT line command
U-233
macro assembler
internal overview $51ASM
I-253
overview S$-9
macro library 5-6
macro library/host §-5
macazine diskette (sece 4966
diskette magazine unit)
maghetic tape (see tape)
MASK display insert mask, $FSEDIT
line command U-232
master control block (see MCB)
Mathematical and Functional Sub-
routine Library 5-6
MCB master control block
$PDS S5-260
definition A-20
description A-28
MD move data base, $DIUTIL
command U-160
member area S$-250
member control block (MCB) 5-260
MENU
Multiple Terminal Manager
CALL
coding description €-137,

L=-377
internals M-9
overview C€-116, L-29
return to primary option,
$FSEDIT U-223
menu-driven U-2
menus
(see option selection menu)
(see parameter selection
menu)
(see primary menu)
(see primary option menu)
(see secondary option menu)
(see session manager, menhus)
(see transaction selection
menu)
MENUSCRN, Multiple Terminal Manag-
er C-126
MERgf7merge data, $FSEDIT option
message, PRINTEXT instruction
L-217
message sending utility, $TERMUT3
U-344
messages U-421
error U-427
SDUMP U-431
$SLOG U-432
SRMU U-433
S$TRAP U-435
program check U-6427
system program check
u-429
IPL (see IPL messages)
Multiple Terminal Manager
c-178
Remote Management Utility
c-279
minimum execution system config—
uration 5-22
minimum program preparation
requirements 5-22
mirror image
description C€-7, $-109
in TERMINAL configuration
statement S5-101
mixed precision combinations L-20
MM move block, $FSEDIT line
command U-233
modified data 5-307
modify character image tables
U-339
modify character string, CHANGE
SEDIT1/N editor subcommand
U-184
$FSEDIT primary command U-219
modify default storage allocation,
$DISKUT2 U-149
modifying an existing data set,
SFSEDIT U-215
modi fying TERMINAL statement for
new I/0 terminal 1I-119
module descriptions
$S1ASM 1-269
supervisor I-75
module names and entry points,
supervisor .
Version 1.1 5-347
Version 2 S$-357
move
block, MM $FSEDIT line com-
mand U-233
line pointer
BOTTOM $EDIT1/N editor
subcommand U-183

DOWN $EDIT1/N editor
subcommand U-189
TOP $EDIT1/N editor
subcommand U-200
UP $EDIT1/N editor
subcommand U-201
tape U-324
text
$EDIT1/N editor subcom-
mand U-195
$FSEDIT line command
U-233
volumes on disk or diskette,
$MOVEVOL utility U-29¢4
MOVE data manipulation
instruction
coding description L-201
overview L-19
MOVEA data manipulation
instruction
coding description L-204
overview L-19
MOVEBYTE subroutine, S$EDXASM
I-236
MP
move beam, $DICOMP subcommand
U-121
move position ($PDS) S-253
MT move tape, $TAPEUT1 command
U-324
MTMSTORE file, Multiple Terminal
Manager ¢€6-120, C-171, M-12
MTMSTR, Multiple Terminal Manager
C-169, C-170, M-12
multiple field format L-155
multiple program execution I-36
multiple program structure 5-26
multiple-task programs I-33
Multiple Terminal Manager
accessing the terminal envi-
ronment block C-139, M-22
application program C-116
application program languages
L-30
application program manager
Cc-119, M-4%
automatic OPEN/CLOSE C-140,
M-8
CALL
ACTION C-130, L-360
BEEP C-137, L-361
CDATA C€-139, L-362
CHGPAN C-135, L-364
CYCLE C€-132, L-365
FAN C-139, L-366
FILEIO C-141, L-367
FTAB C€-138, L-372
LINK C-131, L-374
LINKON C-132, L-376
MENU C€-137, L-377
SETCUR C-137, L-378
SETPAN C-134, L-379
WRITE ¢€-133, L-381
coding instructions L-359
components C€-123, M-4
considerations for 3101
terminal C-122
data files C-120
MTMSTORE file C€-120,

c-171, M-12
PRGRMS volume C€-1290,
C-173

SCRNS volume €-120, C-173
TERMINAL volume €-120,
c-171

Common Index 347

348

direct file request types
C-1644, L-370

disk file support C-140
distribution and installation
c-161

dynamic screen modification
and creation C€-136

file control area (C-142
file I/0 considerations (Event
Driven Executive) C€-146
file management C€-118, M-8
FILEIO, disk file support
C-140

FILEIO Indexed Access Method
considerations C-148

fixed screen formats C-125
functions (callable routines)
c-117, C-124

indexed file request types
C-144, L-369

indexed file support C€-140,
L-367

initialization programs
C—119, C—158, M'4} M-6
Input Buffer C-116, C-127
Input Buffer Address C€-116
Input Buffer during
497874979/3101 buffer oper-
ation C€-127

interrupt information byte
c-128

messages C€C-178

module list M-¢

operation C-115

Qutput Buffer C-116

Qutput Buffer Address C€-127
OQutput Buffer during
4978764979/73101 buffer oper-
ation C-128

cverview L-29, S5-10

program management C€-115, M-¢

program preparation

COBOL C-166
Event Driven Language

C-164
FORTRAN C-165
PL/I C-167

programming considerations
COBOL C-153
Event Driven Language

C-151
FORTRAN C-152
PL/I C-155

return codes (FILEIO) C-145,
L-371
screen definition C-121
screen formats C-125
IPLSCRN C€-125
MENUSCRN C-126
SCRNSREP C-126
SIGNONSC C-126
screen panel manager M-7
SIGNON/SIGNOFF C-156
SIGNONFL C€-17¢
storage requirements C-168
swap out data set C-116
system generation
considerations C-169
data set requirements
c-171, C-175
volume requirements C-169
terminal environment block
(TEB) C-128, M-13
TERMINAL file C-124, C-172
terminal manager C€-121

SC34-0316

terminal/screen management
c-117
terminal server C-119, M-7
terminal support C€-114, C-126
transaction oriented
applications C-121
user application programs
C-124%
utilities C-159
DISCONNECT turn off
specified terminals
c-159
programs report C-159
RECONNECT turn on
specified terminals
c-159
screens report C-160
terminal activity report
C-159
work areas, control blocks and
tables M-11
buffer areas M-15, M-29
common area M-11, M-25
file table M-15, M-27
MTMSTORE data set M-12
program table M-14, M-21
screen table M-14, M-21
terminal environment block
(TEB)Y M-13, M-22
terminal table M-13, M-21
MULTIPLY data manipulation
instruction
coding description L-205
overview L-19
precision table L-206
multiprogramming
automatic application initial-
jzation 5-129
design feature 5-13
multitasking 1I-42

N

NE (not equal) L-34
newline subroutine, terminal I/0
I-112
NEXTQ queue processing
instruction
coding description L-207
overview L-37, 5-32
NOFLOAT floating-point command
entries module description I-79
NOLIST no list option, $EDXASM
command U-358
NOMSG message suppression,
$JOBUTIL command U-282
non~-compressed byte string $-309
non-labeled tapes
description 5-241
layout 5-242
processing 5-243
NOTE disk/tape I/0 instruction
coding description L-209
overview L-22
notify of an event (see POST)
NQ reset prompt mode, $COPYUT1
command U-64% -
nucleus initialization I-15
null character U-253
NULL define null representation
$IMAGE command U-253

.

null representation, defining
U-253

number representation conversion
(see conversion)

o

object data set for S$EDXASM U-357
object module record format,
S$LINK U-407
object text elements, format of,
SEDXASM I-215
OFF (set tape offline) L-75
OFF remove breakpoints and trace
ranges, $DEBUG command U-97
OLE operand list element, $SEDXASM
format of 1I-216
in instruction parsing
(SEDXASM) 1I-220
used in $IDEF 1I-241
online debug aids 5-67
op (operation field) L-3
OPCHECK subroutine, $EDXASM 1I-232
opcode table, instruction parsing
($EDXASM) 1-220, I-223
open a data set
disk or diskette I-90
tape I-99
open EXIO device, EXOPEN 1I-125
open member ($PDS) S-261
OPENIN Host Communications
Facility, TP operand C-93
OPENOUT Host Communications
Facility, TP operand C-9¢4
operands
defined L-3
keyword L-5
parameter naming (Px) L-8
operating conventions, supervisor
program I-67
operating environment $-22
operation code, instruction
parsing ($EDXASM) 1-220
operation codes, Event Driven
Language 1I-68
Ofergtions using index registers
-2
operator commands $-63, U-9
oEergtor signals, terminal 1/0
-4
option selection menu U-33
optional features support L-15
O0TE define object text element
SEDXASM instruction 1I-227
OUTPUT SLINK control record U-399
Qutput Buffer, Multiple Terminal
Manager C€-116, C-128
contents during 4978/4979/3101
buffer operation €-129
definition M-29
overflow L-20
overlay function processor table
I-167, I-220
overlay program S5-40
instructions, $EDXASM I-259
loading 1-22
locating, $PREFIND U-302
subroutines, $EDXASM 1I-231
user I-38
overlay program execution I-38
overlay selection, instruction
parsing (SEDXASM) I-223

overlay table 1-167, 1-220
overview
data definition statements
L-17
data formatting instructions
L-18
data format module names
L-18
data manipulation
instructions L-19
data representation L-19
mixed-precision
operations L-20
operations using index
registers L-20
overflow L-20
vector L-19
disk I/0 instructions L-22
EXI0O control instructions
L-24
floating-point arithmetic
L-20
floating-point arithmetic
instructions L-20
data representation L-21
operations using index
registers L-21
return codes L-21
graphics instructions L-26
Indexed Access Method
instructions L-27
instructions and statements
L-15
integer and logical
instructions L-19
listing control statements
L-28
Multiple Terminal Manager
instructions L-29
p{ogram control statements
-32
program module sectioning
statements L-33
program sequencing
instructions L-34
queue processing L-37
sensor—based I/0 statements
L-39
single-precision L-19
system configuration
statements L-39
tape I/0 instructions L-40
task control instructions
L-62
terminal I/70 instructions
L-644
timing instructions L-50

P

P/1 (see process interrupt)
PA patch, $DISKUT2 command U-147
page eject 5-63, U-16
parameter equate tables L-11
parameter naming operands in the
instruction format L-8
parameter passing, Remote
Management Utility €-212
parameter selection menu U-33
parameter tables, control block
and L-11

Common Index 349

PARM program parameter passing,
$JOBUTIL command U-283
parsing, input data (SEDXASM)
I-218
partition assignment changing, $CP
operator command U-14
partitioned data sets 5-247
partitions 5-42
PASSTHRU function
conducting a session €-227
establishing a session C-225
internals I-166, I-179
overview €$6-225
programming considerations
c-237
sample program C-265
types of records C(C-232
virtual terminals (€-239
Passthru record €-209
patch
disk/diskette, PA $DISKUT2
command U-147
Remote Management Utility
defaults €-283
storage, $P operator command
$-63, U-18
storage or registers, PATCH
$DEBUG command U-98
PATCH modify storage or registers,
$DEBUG, command U-98
PAUSE operator intervention,
$JOBUTIL command U-284
PC plot curve
$DICOMP subcommand U-119
from plot curve data member
($PDS) S$-255
PD pulse DO, S$IOTEST command
U-265
PF,code TERMCTRL function L-288
PF keys (see program function
keys)
phase execution and loading,
$S1ASM I-255
PI process interrupt (see process
interrupt) U-267
PID program directory 5-27
PIXB (see primary-level index
block)
PL/I
execution requirements 5-24%
link editing 5-71
overview S-8
program preparation
requirements $-23
supported by Multiple Terminal
Manager €-200
PL plot data, $DICOMP subcommand
u-122
plot control block (see PLOTCB)
plot curve data member ($PDS)
5-251
PLOTCB graphics plot control
block L-210
PLOTGIN graphics instruction
coding description L-210
overview L-26
POINT
disk/tape instruction
coding description L-212
overview L-22, 5-54%
point-to-point (BSC) S5-65
point-to-point vector drawing
5-46
POST
post an event, $DEBUG command

350 S5C34-0316

U-100
task control instruction
coding description L-213
internals I-58
overview L-4%42, 5-34
supervisor function I-46
power outage, restoring after
5-129
PR print member, $DICOMP command
u-108
precision L-19
floating-point arithmetic
L-21
integer and logical L-19
precision combinations,
allowed L-20
precision table
ADD L-53
ADDY L-54
DIVIDE L-101
MULTIPLY L-206
overview L-20
SUBTRACT L-284
prefind U-302
PREPARE IDCB command L-175
PRGRMS volume, Multiple Terminal
Manager €-120, C-173
primary
commands, $FSEDIT U-218
option menu, $FSEDIT U-213
option menu, session manager
5-218, U-35
task
internals I-29
overview S5$-29
volume S5-60
primary-level index block
description 5-195
overview S5-151
PRINDATE terminal I/0 instruction
coding description L-215
overview L-44, S-47
timer-related instruction
$-33
PRINT listing control statement
coding description L-216
overview L-28
paint member, PR $DICOMP command
-108
PRINTEXT terminal I/0 instruction
coding description L-217
overview L-4%, S5-47
return codes L-219
PRINTIME terminal I/0 instruction
coding description L-221
overview L-6¢4%, L-50, S5-47
t;mgg-related instruction
PRINTNUM terminal I/0 instruction
coding description L-222
overview L-44¢, 5-47
PRINTON define terminal name,
SRJE2780/$RJE3780 C-75
priority
assighed to tasks $§-29
design feature 5-13
illustrated 5-38
internals I-31
task L-226, L-286

PROC identify nested procedure,

$JOBUTIL command U-286
procedures, session manhager (see
session manager)
PROEESS Indexed Access Method
CALL

O

coding description L-347
overview L-27, 5-147
return codes L-349
process interrupt
control block (SBIOCB) 1I-128
description 5-48
IODEF statement L-189
IOTEST command U-267
supported by sensor I/0 S5-15
user routine (SPECPI) L-189
process mode
definition 5-150
processing compiler output with
$LINK or S$UPDATE U-360
processor status word (see PSW)
PROGEQU L-13
program
equates I-312
assembly/compilation U-352
control L-32
disabling $-102
entry (see $FSEDIT, $EDIT1/N)
function (PF) keys L-47
internals 1I-108
listing, KEYS $IMAGE
command U-253
listing 4978, $PFMAP
utility U-301
when using $FONT edit
mode U-206
when using $FSEDIT U-211
when using $IMAGE edit
mode U-255
when using session
manager U-28
header I-30
identifier, $JOBUTIL command
U-287
internal processing I-30
library update (see $UPDATE)
load process, $PREFIND U-302
loading (see also LOAD) 1I-19
module sectioning functions
L-33
organization 5-29
sequenting functions L-34
structure 5-29
termination, EXIO I-126
types 1I-32
program check error messages
U-427
program execution via Remote Man-
agement Utility
EXEC function €-220
PASSTHRU function (€-225
SHUTDOWN function C-251
PROGRAM identifier, $JOBUTIL
command U-287
program preparation
SEDXASM I-211, U-356
$S1ASM I-253, U-372
host assembler U-382
of Remote Management Utility
I-184
summary S5-18
usage example 5-367
Program Preparation Facility
description 5-71
overview S-5
program preparation utilities
U-351
program preparation utilities
(session manager) 0U-36, 5-214
program/storage manager, Multiple
Terminal Manager M-4

program structure 5-36
internals I-33
program/task concepts 1I-29, 5-29
PROGRAM task control instruction
coding description L-225
internals I-30
overview L-42, 5-31
PROGSTOP task control statement
coding description L-234%
overview L-42, 5-31
prompting and advance input,
terminal I/70 L-46
protected field 5-307, U-253
protocol, BSC transmission I-156
PSW processor status word U-430
PU PUNCHO/PUNCHS function,
$RJE2780/$RJE3I780 reset type
C-76
pulse a digital output address, PD
S$IOTEST command U-26%
PUNCHO/PUNCHS define output file,
SRJE2780/$RJE3780 C-75
purpose of EDL L-1
PUT Indexed Access Method CALL
coding description L-350
overview L-27
return codes L-351
PUTDE Indexed Access Method CALL
coding description L-352
overview L=-27
return codes L-353
PUTEDIT data formatting
instruction
coding description L-236
overview L-18
return codes L-238
PUTSTORE TERMCTRL function L-288
PUTUP Indexed Access Method CALL
coding description L-354%
overview L-27
return codes L-355
Px L-8 .

Q

QCB task control statement 5-33
coding description L-240
overview L-42
queue control block I-45,

I-54

QD queue descriptor 1I-6%, L-37

QE queue entry
functions I-64
overview L-37
processing 5-32

QUALIFY modify base address,

$DEBUG command U-101

QUESTION terminal I/0 instruction
coding description L-242
overview L-64, S-47

queuable resource 5-33

queue control block (see QCB)

queue descriptor (see QD)

queue entry (see QE)

queue processing 1I-64¢

qregs processing instructions

queue processing support module,

QUEUEIO, description I-81
QUEUEIOQO queue processing support
module description I-81

Common Index 351

R

RA reassign address, $TERMUT1 com-
mand U-336_
random access S$-53
random work file operation,
$S1ASM I-260
RCB (see Remote Management
Utility, control block)

RDCURSOR terminal I/0 instruction
coding description L-244%
overview L-44, 5-47

RE
copy from basic exchange data

set, $COPY command U-59
rename, STERMUT1 command
U-337
rename member, $DISKUT1 com-
mand U-135, U-136
rename member, $DIUTIL

command U-161
reset parameters, $IAMUT1
command U-243
restore 4974 to standard

character set, $TERMUT2

u-339

read

analog input, AI S$IOTEST
U-268

character image table from
4978, GET $FONT U-206
data set into work file

SEDIT1 U-177
$EDITIN U-176
$FSEDIT U-216

digital input, DI $IOTEST
command U-266
digital input using external
sync U-=266
Host Communications Facility,
TP operand C-95
IDCB command L-175
operations (BSC) I-157
program, RP command
SUPDATE U-610
SUPDATEH U-419
READ instruction
disks/diskette return codes
L-249, U-455
disk/diskette/tape I/0
instruction

coding description L-245
overview L-22
tape return codes L-249,

U-456
READDATA read data from host,
$HCFUT1 command C€-108
READID IDCB command L-175
READOBJ read object module,
$HCFUT1 command C-109
READTEXT terminal I/0 instruction
coding description L-251
overview L-%4%, 5-48
return codes L-255
return codes, virtual terminal
communications L-256
ready a task supervisor execution
state I-43
READ1 IDCB command L-175
READ80 read 80 byte records,
SHCFUT1 command C-109
real image ACCA terminals C-7

352 5C34-0316

realtime data member
$PDS S-251
RT $DICOMP subcommand U-124
RECEIVE function N
overview €-243 N
sample program C-262 "l
RECONNECT Multiple Terminal
Manager utility ¢$6-120, C-159
record
blocking, Remote Management
Utility C-211
definition 5-53
exchange, Remote Management
Utility C€-208
format for object module,
$LINK U-407
header, Remote Management
Utility C-209
sizes, Host Communications
Facility C(C-83
reformat diskettes U-68
register, index L-6
register, software L-6
register conventions
$51ASM I-257
BSCAM processing I-147
common emulator setup routine
I-68
EBCDIC to floating-point
conversion I-205
summary chart $51ASM I-258
terminal I/0 support I-106
REL release a status record,
$HCFUT1 command C€-110
relational statements
RELEASE
Host Communications Facility,
TP operand C-96
Indexed Access Method CALL
$-147
coding description L-356
overview L-27, S-147
return codes L-357
release a status record, REL
$HCFUT1 command C-110
release space ($PDS) 5-261
relocating program loader I-19
relogation dictionary, $EDXASM
I-250
REMARK operator comment, $JOBUTIL
command U-288
remote job entry to host,
SRJE2780/$RJE3780 C€-73
Remote Management Utility
CDRRM equates €-292
control block (RCB)
description I-164, I-169
equate tables €-292,
I-295
use in problem determi-
nation I-190
defaults (-283
error handling C€-277
function table I-164%, I-167
functions C-206, I-166
installation C(-281
interface C€-207
internals 1I-216
logic flow I-170
messages C-279
modifying defaults C€-283
module descriptions I-191

module list I-186 ‘ \
operation C-213 J/
overlay function processor

L-180

A
\

table I-167, I-220
overlay table 1I-167, I-220
overview C-205
program preparation I-18%4
requirements C-207
sample host programs €-259
system generation
considerations (C-281
TERMINAL statement example
5-107
terminating C(C-251
remote system (see Remote
Management Utility) C€-205
remove breakpoints and trace
ranges, OFF $DEBUG command U-97
rename member
RE $DISKUT1 command U-135,
U-136
RE $DIUTIL command U-161
RENUM renumber lines
SEDIT1/N subcommand U-196
$FSEDIT primary command U-224
reorganize an indexed data set
u-242
procedure S5-166
report data member ($PDS) §-251
reposition line pointer (see move
line pointer)
Request record €-209
reserved labels L-%
reset
function, $RJE2780/$RJE3780
attention request C-76
IDCB command L-176
Indexed Access Method
ECHO mode, EC $IAMUT1 com-
mand U-240
SE command parameters, RE
SIAMUTL command U-243
line command, S$FSEDIT primary
command U-225
RESET task control instruction
coding description L-258
overview L-42, 5-31
resident assembler routines I-256
resolution, enhanced I-201
resolution, standard graphics
I-201
resource control, supervisor I-5¢4¢
restart, automatic 5-129
restore
disk or disk volume from tape,
RT $TAPEUT1l command U-326
dump volume utility, S$MOVEVOL
U-294
4974 to standard character
set, RE $TERMUT2 command
U-343
resulting field (EOR) L-122
return codes (see also completion
codes)
$DISKUT3 S5-319, U-444
$PDS U-445
BSC C-57, U-446
CONVTB L-80
CONVTD L-83
data formatting instructions
U-447
DELETE L-330
DISCONN L-333
ENDSEQ L-335
EXI0O U-448
EXIO0 instruction L-131
EXI0 interrupt L-132
EXTRACT L-337

FADD L-136

FDIVD L-138

FILEIO C-145

floating point instruction
U-450

FMULT L-145

formatted screen image U-450

FSUB L-160
FTAB C-138, L-373
GET L-340

GETSEQ L-343
in Remote Management Utility
control block I-190
Indexed Access Method U-4%51
LOAD L-199, U-452
LOAD (Indexed Access Method)
L-346
Multiple Terminal Manager
U-453
PRINTEXT L-219
PROCESS L-349
PUT L-351
PUTDE L-353
PUTEDIT L-238
PUTUP L-355
READ disk/diskette L-249,
U-455
READ tape L-250, U-456
READTEXT L-255
RELEASE L-357
SBIO U-457
SBI0 instruction L-262
SETPAN C-135
tape L-77
TERMCTRL L-288
terminal I/0 L-255, U-458
ACCA U-459
interprocessor
communications C€-31,
U-460
virtual terminal L-256,
U-461
TP (Host Communications Facil-
ity) C-102, U-463
WHERES L-316
WRITE disk/diskette L-320,
U-455
WRITE tape L-320, U-456
return from immediate action
routine (SUPEXIT) 1I-49
return from task level (SUPRTURN)
I-49
RETURN program control
instruction
coding description L-259
overview L-32, 5-31
supervisor entry point I-279,
I-313
supervisor interface I-62
REW (rewind tape) L-75
rewind tape, MT S$TAPEUT1 command
U-324
RH reassign hardcopy, STERMUT1
command U-338
RI read
transparent/non—-transparent,
$BSCUTZ2 command C-68
RJE (see Remote Job Entry)
RLOADER I-19, I-22
RLOADER/RLOADRU module
description 1I-78
RO reorganize indexed file,
SIAMUTL command U-242
ROFF (rewind offline) L-75

Common Index 353

roll screen, terminal I/0 L-48,
$-293
RP read program
SUPDATE command U-410
$UPDATEH command U-419
RPQ D02038, 4978 display station
attachment C€C-6, 5-97
different device
configurations C-8
R?TATUS IDCB command L-175
R
activate realtime data member,
$DICOMP subcommand U-124¢
change realtime data member
name ($PDS) S-258
disk or disk volume from tape,
STAPEUT1 utility U-326
RWI read/write non-transparent,
$BSCUT2 command C-58
RWIV read/write non—transparent
conversational, $BSCUT2 C-71
RWIVX read/write transparent
conversational, $BSCUT2 C-70
RWIX read/write transparent,
$BSCUT2 command C-67
RWIXMP read/write multidrop
transparent, $BSCUT2 command
C-60

S

SA save data, $DICOMP subcommand
U-124
SAVE
data set on disk, $IMAGE com-
mand U-25¢%
work data set, $EDIT1/N
subcommand U-197
save current task status
(TASKSAVE) 1I-54
save data, SA $DICOMP subcommand
U-124
save disk or disk volume on tape,
STAPEUTY utility U-330
save storage and registers, S$TRAP
utility U-348
SB special PI bit, $IOTEST
command U-267
SBAI sensor based I/0 support
module description I-80
SBAQ sensor based I/0 support
module description I-80
SBCOM sensor based I/0 support
module description I-80
SBDIDO sensor based I/0 support
module description I-80
SBI0O sensor based I/0 instruction
coding description L-260
control block (SBIOCB) 1I-127
overview L-39, 5-51
return codes L-262
SBIOCB sensor based I/0 control
block I-127
SBPI sensor based I/0 support
module description I-80
SC save control store, S$TERMUT2
command U-343
screen format builder utility,
$IMAGE $-68, U-250
SCREEN graphics instruction
coding description L-270
overview L=-26

354 SC34-0316

screen image format building
U-250
screen images, retrieving and dis-
playing 5$-300
screen management, terminal I/0
L-48
SCRNS volume, Multiple Terminal
Manager €-120, C-173
SCRNSREP, Multiple Terminal
Manager €-125
scrolling, $FSEDIT U-210
SCSS IDCB command L-176
SE set parameters, SIAMUTL
command U-244%
SE set status, SHCFUT1 command
c-11¢0
second-level index block
description 5-197
overview 5-153
secondary
disk volumes §5-132
volumes S-60
secondary option menus $-218,
U-36
(see session manager)
sectioning of program modules
L-33
sector 5-52
self-defining terms L-%
send
data, HX $DICOMP subcommand
U-118
data set, SEND function C(C-247
message to another terminal,
STERMUT3 utility U-344
SEND function
internals 1I-166, I-172
overview C-247
sample program €-274
sensor based I/0
assignment L-188
I/0 control block (SBIOCB)
I-127
mgdgées (IOLOADER/IOLOADRU)
statement overview L-39
support module descriptions
I-81
symbolic L-9
SENSORIO configuration statement
$-51, 5-84
sequence chaining L-27
quuencing instructions, program
-34
saquential access
in Indexed Access Method
$-145
overview 5-53 .
sequential work file operations
($S1ASM) I-259
serially reusable resource (SRR)
I-59, 5-33
session, PASSTHRU
conducting $-227
establishing C€-225
logic flow diagram C€-230
using $DEBUG utility €-272
session manager U-27
$SMALLOC data set allocation
control data set 5$-222, U-30
SSMDELET data set deletion
control data set $-222, U-32
adding an option 5-209, 5-224
communications utilities U-42
communications utilities

$-217
data management §-215
diagnostic utilities

5-217
disk utilities (see data
management)
execute program utilities
5-216

graphics utilities 5-216
job stream processor
utilities 6-216
logon menu U-27
primary 5-218, U-35
program preparation
utilities 5-214
secondary 5-218, U-36
summary of 5-213
terminal utilities 5-215
updating primary option
5-224
creating a new menu $-224
data management U-38
data set deletion U-32
data sets creation U-29
diagnostic utilities U-63
execute program utilities
U-41
graphics utilities U-40
invoking U-27
invoking a $JOBUTIL procedure
$-229
job stream processor
utilities U-42
menus U-33
minimum partition size
required U-27
operational overview S5-209
primary option menu, $SMMPRIM
5-218, U-35
procedures
communications utilities
5-217
data management utilities
5-215
diagnostic utilities
5-217
execute program utilities
5-216
graphics utilities 5-216
job stream processor
utilities 5-216
overview $5-220
program preparation
utilities 5-214
terminal utilities 5-215
updating 5-225
program function keys U-28
paoggam preparation utilities
secondary option menus 5-218,
U-36
storage usage 5-211
terminal utilities U-40
text editing utilities U-36
utilities not supported U-46
SET,ATTN TERMCTRL function L-288
set breakpoints and trace ranges,
AT $DEBUG command U-90
set date and time, $T operator
command 5§-63, U-19
SET Host Communications Facility
TP operand C€-97
SET,LPI TERMCTRL function L-288
sgtlfgatus, SE $HCFUT1 command

set tape offline, MT $TAPEUT1 com-
mand U-324
sSt time, $T operator command
-19
SETBUSY supervisor busy routine
I-48, I-63
SETCUR, Multiple Terminal Manager
CALL
coding description C$-137,
L-378
internals M-9
overview €$6-117, L-29
SETEOD subroutine $-324%
SETPAN, Multiple Terminal Manager
CALL
coding description ¢-134,
L-379
internals M-9
overview ¢$6-117, L-29
return codes L-380
setup procedure for $JOBUTIL
U-271
SG special PI group, $IOTEST com-
mand U-267
SHIFTL data manipulation
instruction
coding description L-271
overview L-19
SHIFTR data manipulation
instruction
coding description L-273
overview L-19
S?UIggNN function C€-251, 1I-166,
SI save image store, $TERMUT2 com-
mand U-341
SIGNON/SIGNOFF, Multiple Terminal
Manager C-156
SIGNONFL C-174
single program execution I-35
single-task program I-33
single task program 5-3%
SIXB (see second-level index
block)
SLE sublist element, S$EDXASM
format of 1-217
in instruction parsing
(SEDXASM) 1I-220
instruction description and
format 1I-229
used in S$IDEF 1I-2641
softuware register L-6
software trace table 5-265
sort/merge S-9
source program compiling 5-71
source program entry and editing
S5-66, U-351
source program line continuation
using SEDXASM L-4, U-361
source statements, $EDXASM overlay
generated I1-243
SP spool function,
$RJE2780/$RJE3780 reset type
C-76
SPACE listing control statement
coding description L-275
overview L-28
special control characters 5-46
special PI
bit, SB $IOTEST command U-267
group, SG SIOTEST command
U-267
speci fications, data conversion
L-146

Common Index 355

SPECPI define special process
interrupt L-189
SPECPIRT instruction
coding description L-276
overview L-39
split screen configuration §-293
SPOOL define spool file,
$RJE2780/SRJE3I780 C-76
SQ set prompt made, $COPYUTL
command U-64%
SQRT data manipulation
instruction
coding description L-277
overview L-19
55 set program storage parameter,
S?DISKUTZ command U-149
display data set status,
$DIUTIL command U-162
save disk or disk volume on

tape, $TAPEUT1 command U-330

standard labels, tape

EOF1 5-240
EOV1 S-239
fields 5-238
HDR1 $-239

header label 5-235
layouts §5-236
processing S5-236
trailer label $5-235
volume label 5-235
VoLl S-238
START
IDCB command L-176
PROGRAM statement operand
L-225
start and termination procedure,
$DEBUG U-85
STARTPGM 1I-16
statement label L-4%
static screen, terminal I/0
accessing example 5-297
overview L-48
séa?gs, set, SE $HCFUT1 command
-110
STATUS data definition statement
coding description L-278
overview L-17
status data set, system Host
Communications Facility C-85
Status record C-258
STIMER timing instruction
coding description L-280
overview L-50, 5-32
with PASSTHRU function €-238
storage estimating
application program size
5-344
supervisor size 5-333
utility program size 5-342
storage management
address relocation translator
I-71, S5-42
allocating 1I-25
description S5-42
design feature 5-13

storage map, resident loader I-26

storage map ($S51ASM) phase to
phase 1I-262

storage resident loader, RLOADER
I-19

storage usage during program load
I-20

store next record ($PDS) S-261
store record ($PDS) S-261

356 SC34-0316

strings, relational statement
L-180
SuU _
submit (X) function,
Rg2780/$RJE3780 reset type
C.-
submit job to host, $HCFUT1
command C-111
SUBMIT
Host Communications Facility,
TP operand C-98
send data stream to host,
S$RJE2780/$RJE3I780 C-77
submit job to host, $EDIT1
command U-179
submit job to host, $FSEDIT
option U-217
SUBMITX send transparent,
SRJE2780/S$RJE3780 ¢€-77
SUBROUT program control statement
coding description L-281
overview L-32, S$-31
subroutines
SIMDATA 5-303
SIMDEFN S-301
SIMOPEN S5-300
SIMPROT S5-302
ALTIAM concatenation 5$-167
DSOPEN S5-322
overview $-31
SETEOD S5-324
SUBTRACT data manipulation
instruction
coding description L-283
overview L-19
precision table L-284
suggested utility usage U-48
supervisor/emulator
class interrupt vector table
I-10, I-277
communications vector table
I-11, I-278, I-313
control block pointers I-11
design features 5-13
device vector table I-11,
I-278
emulator command table I-13,
I-282, I-301
entry routines 1I-¢7
equate table I-279, I-313
exit routines I-49
features 5-13
fixed storage area I-9
functions I-44
calling I-60
generation I-5, 5-115
initialization control module,
EDXINIT, description I-81
initialization task module,
EDXSTART, description 1I-81
interface routines 1I-61
introduction 1I-5
module names and entry points
5-309
module summary I-8
overview S5-29
PASSTHRU session with €-225
referencing storage locations
in I-12
service routines I-53
size, estimating 5-333
task supervisor work area
I-13, I-280
utility functions (see
operator commands)

O

with the address translator
support I-72
SUPEXIT supervisor exit routine
I-49, I-63
srppgrt for optional features
-1
5¥P§;URN supervisor exit routine
surface analysis of tape, S$TAPEUT1
utility U-319
SVC supervisor entry routine
I-47, I-62
S¥022END supervisor exit routine
SVCBUF supervisor request buffer
I-48
SVCI supervisor entry routine
1-48
symbol dictionary, $EDXASM I-250
symbol table types, $EDXASM 1I-216
symbolic L-10
address (disk,tape) L-10
d{skatape I/0 assignments
-1
diskette L-10
reference to terminals 5-110
sensor I/0 addresses L-9
terminal I/0 L-10
symbols (EXTRN) L-134
symbols (WXTRN) L-323
syntactical coding rules L-4%
syntax checking in instruction
parsing ($EDXASM) 1-221
syntax rules L-¢
SYSGEN (see system generation)
system
alternate logging device
5-46, S5-111
class interrupt vector table
I-10, I-277
commands (see operator
commands)
common area I-12
communications vector table
I-11, I-278, I-313
control blocks, referencing
I-289
data tables, EDXSYS, module
description I-75
device vector table I-11,
I-278
emulator command table 1I-13,
I-282, I-301
generation
procedure $5-115
host/remote €-205
logging device S5-46, S5-110
operational and error
messages U-421
printer 5-46, 5-110
program check and error
messages U-427
task supervisor work area
I-13, I-280
SYSTEM configuration statement
L-39, S$-86
systgm configuration statements
5-7
system control blocks 5-42
system reserved labels L-4

T

TA allocate tape data set,
STAPEUT1 command U-333
tables, parameter equate L-11
tabs
HTAB SIMAGE command U-252
TABSET SEDIT1/N subcommand
U-198
VTAB $IMAGE command U-254
TABSET establish tab values
S$EDIT1/N editor subcommand U-198
tape
bypass label processing 5-244%
control L-74
data set L-40
defining volumes 5-62
dffinitions for data sets
-40
end-of-tape (EOT) L-41
I/0 instructions L-40
internals 1-97
labels
external 5-233
internal 65-233
load point (BOT) L-40
non-label
layout 5-242
processing 5-263
support S$-241
record L-40
return codes L-77, U-455
standard label
fields 5-238
layout 5-236
processing 5-236
support 5$-235
storage capacity 5-59
symbolic addressing L-10
utility, S$TAPEUT1 $-233,
U-311
volume L-40
TAPE configuration statement 5-94
tape data set control block I-99
tape device data block (see TDB)
TAPEINIT, tape initialization mod-
ule description I-82
tapemark L-74
task
active/ready level table I-50
concepts I-29
control I-42
control block (see TCB)
definition and control func-
tions
dispatching I-52
error exit facility
check and trap handling
5-268
linkage conventions S5-269
execution states I-43, 5-39
internals 1I-42
multiple-task program I-33,
$-34
overview L-42, 5-29
priority (see priority, task
execution)
single-task program I-33,
5-34
states 5-39
status display, WHERE $DEBUG
command U-102
structure 5-29

Common Index 357

supervisor I-42
supervisor address translator
support module I-76
supervisor functions I-44
supervisor work area I-13,
I-280
switching I-51, $-30
synchronization and control
I-54, 5-30
task code words L-8
TASK task control statement
coding description L-285
overview L-42, 5-31
TASKSAVE supervisor service
routine I-5¢4%
TCB task control block 1I-32,
I-43, I-49, I-56, I-314
TCBEQU L-13

TD
display line and data ($PDS)
§5-258
display time and date, $DICOMP
subcommand U-124
test display, $DICOMP command
u-108
TDB, tape device data block
description I-97
equate listing I-316
TEB terminal environment block
c-128, M-13
Tektronix C-6
devices supported S5-14, S-45
support for digital I/0 5-312
teleprocessing (see TP)
teletypenwriter adapter $6-7, C-21
TERMCTRL terminal I/0 instruction
coding description L-288
overview L-%%
return codes L-301
TERMERR L-44

terminal
#7850 teletypewriter adapter
c-21
ACCA support ¢€-7, L-295
ASCII C-7

assignment list, LA $TERMUT1
command U-336
attention handling L-47
attention keys L-47
code types C€-303
configuration utility,
STERMUTL U-334
connected via digital I/0
5-312
control block (see CCB)
data representation L-46
definition and control
functions §-47
device configurations C-8
EDXTIO/EDXTIOU module
description I-78
environment block (see TEB)
error handling L-44
forms control L-46
forms interpretation for
display screens L-%6
functions
data formatting C-16
definition C-16
interrupt processing $6-17
hardware jumpers C-18
I/0 L-66
attention handling L-47
data representation L-45
error handling L-4%%

358 SC34-0316

forms control L-45
prompting and advance
input L-46
screen management L|-48
I/0 internal design I-105
I/0 support laver 3 I-112

input L-46
kfygoard and ATTNLIST tasks
-47

message sending utility,
STERMUT3 U-344%
new I/0 terminal support
I-117
operations C-14
operator signals L-49
output L-46
output line buffering L-4%6
program function keys L-47
p{oggting and advance input
return codes €-20, L-219,
L-255, U-458
roll screens L-48
sample terminal support
program C-26
screen management L-68
server, Multiple Terminal
Manager C-119, M-7
session manager (see session
manager)
special considerations for
attachments of devices
via #1610 or #2091 with
$2092 adapters C-17
via #2095 with #2096
adapters (C-21
special control characters
S-46
static screens L-%8
supported devices and
features C-6
terminal I/0 L-47
terminology for supported
terminals C-7
transmission protocol C-31
utilities (session manager)
$-215, U-40
virtual Iv0 1I-115
TERMINAL configuration statement
defaults 5-105
definition $-96
overview S5-48
TERMINAL volume, Multiple Terminal
Manager €6-120, C-171
terminate
logging, S$LOG utility U-292
Remote Management Utility
Cc-251
test

Bgcsiines, $BSCUT2 utility
generated report or graphics
profile member U-108
label types, $TAPEUT1 utility
u-319
process interrupt for
occurrence of event, $IOTEST
U-267
TEXT. data definition statement
coding description L-305
overview L-17
text editing utilities
edit dataset subroutine exam-
ples 1I-326
full screen-editor S$FSEDIT

U-209
line editors, $EDIT1/N U-169
overview 5-66
work data set, format of
I-321
text wrapping, WRAP function
C-25¢4
time/date
dispéay, $W operator command
u-2
set, $T operator command U-19
set, automatic initialization
facility 5-130
time of day
GETTIME instruction L-167
TIMEDATE Host Communications
Facility, TP operand C-100
TIMER configuration statement
5-33, S-112
timer control L-50
timer module descriptions
(EDXTIMER, EDXTIMR2) 1I-80
timing instructions L-50, 5-32
TITLE listing control statement
coding description L-308
overview L-28
TONE TERMCTRL function L-288
TOP repostiton line pointer,
$EDIT1/N editor subcommand U-200
TP host communication instruction
description
coding description €-90
internals I-153
subcommand operations I-157
TPCOM host communications support
module description I-81
trace printing routine for BSC,
$BSCUT1 C-62, 5-65
trace ranges and breakpoints
setting, AT $DEBUG command U-90
tragf routine for BSC, $BSCTRCE
c-.
trace table, software 5-265
transaction program, Multiple
Terminal Manager
functions L-28
Multiple Terminal Manager
c-121
transfer data set to host
SEND function €-247
WR $HCFUT1 command C€-112
WRITE S$EDIT1 command U-180
WRITE $FSEDIT option U-216
transfer rates for data, Host
Communications Facility C-8¢4
transient program loader I-19
transmission codes 5-98.
transmission protocol, host
communications I-156
transmitted data, length of, host
communications I-159
TRAPDUMP force trap dump, $TRAP
attention command U-349
TRAPEND end $TRAP use, $TRAP
attention command U-349
TRAPOFF deactivate error trap,
$TRAP attention command U-349
TRAPON activate error trap, $TRAP
attention command U-34%9

U

UN unload indexed file, $IAMUT1
command U-246
UNBLINK TERMCTRL function L-288
undefined length records, tape
5-245
UNLOCK TERMCTRL function L-288
unprotected field 5-307, U-253
UP move line pointer, $EDITI1/N
editor subcommand U-201
update utility
$UPDATE convert object program
to disk U-408
$UPDATEH convert host object
program to disk U-418
updating a menu for the session
manager S5-224
user defined data member ($PDS)
§5-252
usar exit routine L-310
requires Macro Assembler S$-71
usgr initialization modules 1I-17
USER program control instruction
coding description L-310
overview L-32
utilities U-47
BSC communications C-61
inveking U-2
listed by type 5-64, U-3
overview S5-5
utilities not supported by session
manager menu U-46
utility program size 5-342
utility usage U-48

v

gAverify, SINITDSK command U-260

display, variable, $DICOMP
subcommand U-125
display variable ($PDS) S5-254
variable length record, Host
Communications Facility C-8¢4
variable length records, tape
S-24%
variable names L-%
vary disk, diskette, or tape
offline, SVARYOFF U-20
vary disk, diskette, or tape
online, $VARYON U-22
vector
addition L-19, L-54
data manipulation L-19
vector addition (ADDV)
coding description L-5%
overview L-19
verify
disk or diskette data set, V
SINITDSK U-260
tape executing correctly, EX
STAPEUT1 command U-319
tape surface free of defects,
EX $TAPEUT1 command U-319
verify and initialize disk or
diskette library, $INITDSK U-256
verify identification
host system (€-223
remote system (€-223

Common Index 359

VERIFY verify changes, $EDIT1/N
editor subcommand U-202
vertical tabs, defining U-25%
VI list volume information,
SIOTEST command U-270
virtual terminal communications
accessing the virtual termi-
nal 5-281
creating a virtual channel
5-280
establishing the connection
$-280
inter-program dialogue 5-282
internals 1I-115
loading from a virtual
terminal 5-281
Remote Management Utility
requirements (C-281
volume
definitions (disks/diskette)
L-22, S-52
dump restore utility,
$MOVEVOL U-294
labels 5-60
VTAB define vertical tab setting,
$IMAGE command U-25%4%

W

WAIT program sequencing statement
coding description L-313
overview L-42, 5-31
supervisor function I-45,

I-58
wait state, put program in, WS
$IOTEST command U-2664
w?iting, task execution state
-43
WE copy to basic exchange diskette
data set, $COPY command U-63
WHERE display status of all tasks,
$DEBUG command U-102

WHERES task control function
coding description L-315
overview L-42, 5-287
return codes L-316

WI write non-transparent, $BSCUT2

command C-69

WIX write transparent, $BSCUT2

command C€-69

word boundary requirement
DO L-34
IF L-34
PROGRAM L-225

work data set
SEDXASM I-249
SLINK U-400
$51ASM I-258

work files, $S1ASM, how used

I-258
WR write a data set to host,
$HCFUT1 command C-112

WRAP function C€-254, I-166, I-176

WRITE :

disksdiskette 170 instruction
coding description L-317
overview L-22
return codes L-320, U-455

Host Communications Facility,

TP operand C-101
IDCB command L-175
Multiple Terminal Manager

360 SC34-0316

CALL
coding description $6-133,
L-381
internals M-9
overview €-118, L-29
save work data set
$EDIT1 command U-180
SEDITIN command U-181
$FSEDIT primary option
U-216
tape I/0 instruction
coding description L-317
overview L-22
return codes L-320, U-456
write data set to host, WR $HCFUT1
command C-112
write operations, HCF I-156
WRITEl IDCB command L-175
WS put program in wait state,
$IOTEST command U-264%
WTM (write tape mark) L-75
WXTRN program module sectioning
statement
coding description L-323
overview L-33

XYZ

X-type format L-154%
XI external sync DI, $IOTEST
command U-266
X0 external sync DO, $IOTEST
command U-266
XYPLOT graphics instruction
coding description L-324
overview L-26
YTPLOT graphics instruction
coding descrition L-325
overview L-26
ZCOR, sensor I/0 L-189

Numeric Subjects

1560 integrated digital
input/output non-isolated fea-
ture C-6

different device
configurations C-8
u§e7with different terminals

1610 asynchronous communications
single line controller C-6

considerations for attachment
of devices (C-17

different device
configurations C-8

for interprocessor
communications C€-29

to a single line controller
5-99

u€e7with different terminals

2091 asynchronous communications

eight line controller C-6, $5-99
considerations for attachment
of devices C(C-17
different device
configurations C-8
use wWith different terminals

c-7
2092 asynchronous communications
four line adapter C-6
considerations for attachment
of devices C-17
different device
configurations C-8
to attach ACCA terminal 5-99
uge with different terminals
-7
2095 feature programmable eight
line controller C-6
considerations for attachment
of devices (C-21
different device
configurations C-8
u8e7with different terminals
2096 feature programmable four
line adapter C-6
considerations for attachment
of devices (€-21
different device
configurations C-8
use with different terminals
c-7
2741 Communications Terminal
supported 5-45
TERMINAL statement example
5-106
3101 Display Terminal
attribute character (¢-122
block mode considerations
c-25
character mode considerations
c-22
interface with Multiple
Terminal Manager €-121, L-29
TERMINAL configuration
statement examples 5-108
3585 4979 display station
attachment C-6, 5-97
4952 Processor
partitions on 5-%2
timer feature installed on
5-32
4953 Processor
partitions on 5-42
timer feature installed on
5-32
%4955 Processor
partitions on 5-42
timer feature installed on
5-32
4962 Disk Storage Unit
storage capacity 5-58
supported by Indexed Access
Method S5-146
%4963 Disk Subsystem
storage capacity 5-58
supported by Indexed Access
Method S-146
%964 Diskette Storage Unit
part of minimum system config-
uration 5-22
required for program
preparation 5-22
supported by Indexed Access
Method S-146
4966 Diskette Magazine Unit
part of minimum system config-
uration 5-22
required for program
preparation 5$-22

supported by Indexed Access
Method S5-146
4969 Magnetic Tape Subsystem
5-233
4973 Line Printer
defined in TERMINAL configura-
tion statement 5-96
end of forms $-307
TERMINAL statement example
$-105
4974 Matrix Printer
defined in TERMINAL configura-
tion statement 5-96
end of forms 5-307
restore to standard character
set, RE $TERMUT2 U-339
TERMINAL statement example
5-105
4978 Display Station
defined in TERMINAL configura-
tion statement 5-96
part of minimum system
configuration 5-22
reading modified data $-307
required for program
preparation 5-22
TERMINAL statement example
5-105
4979 Display Station
defined in TERMINAL configura-
tion statement §-96
part of minimum system
configuration 5-22
required for program
preparation 5-23
TERMINAL statement example
S-105
4982 sensor I/0 unit 5-8¢
5230 Data Collection Interactive
5-11
5620 4974 matrix printer
attachment C-6
def;ned in TERMINAL statement
$-97
different device
configurations C-8
5630 4973 line printer attachment
C-6
defined in TERMINAL statement
5-97
5719-AM3 (see Indexed Access
Method)
5719-ASA (see Macro Assembler)
5719-CB3 (see COBOL)
5719-CB4 (see COBOL)
5719-F02 (see FORTRAN IV)
5719-LM3 (see
Mathematical/Functional Subrou-
tine Library)
5719-LM5 (see Macro Library)
5719-MS1 (see Multiple Terminal
Manager)
5719-SM2 (see Sort/Merge)
5719-UT3 (see Utilities)
5719-UT4 (see Utilities)
5719-XS1 (see Basic Supervisor and
Emulator)
5719-XX2 (see Program Preparation
Facility)
5740-LM2 (see Macro Library/Host)
5799-TDE (see Data Collection
Interactive)
7850 teletypewriter adapter C-6,
c-21

Common Index 361

7N
N

362 SC34-0316

O

auIm buojy pljo4qioNy — ~— — —— ~— — — — —— — — — ———— — —— =" - =-=-- =

READER’S COMMENT FORM

SC34-0316-2

IBM Series/1 Event Driven Executive Communications
and Terminal Applications Guide

Your comments assist us in improving the usefulness of our publications; they are an
important part of the input used in preparing updates to the publications. IBM may
use and distribute any of the information you supply in any way it believes appro-
priate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

Please do not use this form for technical questions about the system or for requests
for additional publications; this only delays the response. Instead, direct your
inquiries or requests to your 1BM representative or the IBM branch office serving
your locality.

Corrections or clarifications needed:

Page Comment

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

Reader’'s Comment Form

Fold and tape Please Do Not Staple

Fold and tape

NO POSTAGE

NECESSARY
IF MAILED
IN THE

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Systems Publications, Dept 27T
P.O. Box 1328

Boca Raton, Florida 33432

Fold and tape Please Do Not Staple

UNITED STATES

Fold and tape

SC34-0316-2
Printed in U.S.A.

N

READER’S COMMENT FORM

§C34-0316-2

1BM Series/1 Event Driven Executive Communications
and Terminal Applications Guide

Your comments assist us in improving the usefulness of our publications; they are an
important part of the input used in preparing updates to the publications. |BM may
use and distribute any of the information you supply in any way it believes appro-
priate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

Please do not use this form for technical questions about the system or for requests
for additional publications; this only delays the response. Instead, direct your
inquiries or requests to your |BM representative or the IBM branch office serving
your locality.

Corrections or clarifications needed:

Page Comment

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

——______—__’—"———_'—-—_'_"'_—"'—_____”"_—"aunﬁuowmojmmo——_———"——_""____'___‘_—'_'_ - - -- =

Reader’s Comment Form

Fold and tape

Fold and tape

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Systems Publications, Dept 27T
P.O. Box 1328

Boca Raton, Florida 33432

—_—_— — — — — — aunbuojyIn) — — —

— e ——— e e e e e e m—— o — —— — — —— — —

Please Do Not Staple

Fold and tape

SC34-0316-2
Printed in U.S.A.

i

O

READER’S COMMENT FORM

SC34-0316-2

IBM Series/1 Event Driven Executive Communications
and Terminal Applications Guide

Your comments assist us in improving the usefulness of our publications; they are an
important part of the input used in preparing updates to the publications. I1BM may
use and distribute any of the information you supply in any way it believes appro-
priate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

Please do not use this form for technical questions about the system or for requests
for additional publications; this only delays the response. Instead, direct your
inquiries or requests to your |BM representative or the iBM branch office serving
your locality.

Corrections or clarifications needed:

Page Comment

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

_""—__—"—_—__"'_"'_—"__——"__"""'——____"'__9ug16u0|vp|0:]101n0_——__—'-_"'___'____"'_'__—'_"'_'_'_— -

Reader’'s Comment Form

Fold and tape

Fold and tape

Please Do Not Staple

Fold and tape

NO POSTAGE

NECESSARY

IF MAILED
IN THE

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

{BM Corporation

Systems Publications, Dept 27T
P.O. Box 1328

Boca Raton, Florida 33432

Please Do Not Staple

UNITED STATES

Fold and tape

SC34-0316-2
Printed in U.S.A.

»

O

8ulm Buoyy pjo4iownpy —-— ~— ~— ~— —~—~—~—~— ~—~——— — ~— ~—~——T—T—T——— — —— T — T =

READER’S COMMENT FORM

SC34-0316-2

IBM Series/1 Event Driven Executive Communications
and Terminal Applications Guide

Your comments assist us in improving the usefulness of our publications; they are an
important part of the input used in preparing updates to the publications. I1BM may
use and distribute any of the information you supply in any way it believes appro-
priate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

Please do not use this form for technical questions about the system or for requests
for additional publications; this only delays the response. Instead, direct your
inquiries or requests to your |BM representative or the IBM branch office serving
your locality.

Corrections or clarifications needed:

Page Comment

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

Reader’'s Comment Form

—_— — — — — —aunbuogyIny — — —

Fold and tape Please Do Not Staple Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK
POSTAGE WILL BE PAID BY ADDRESSEE

I1BM Corporation

Systems Publications, Dept 27T
P.O. Box 1328

Boca Raton, Florida 33432

Fold and tape Please Do Not Staple Fold and tape

SC34-0316-2
Printed in U.S.A.

,/

{

N~

SC34-0316-2
Printed in U.S.A.

