intal iISBC
Applications
Handbook

®@

¥OOQUEH SUOIEOAAY OFS!

Q.
o
LD
3
S |
D i
~
2

intel

iISBC™
APPLICATIONS
HANDBOOK

SEPTEMBER 1981

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or
disclosureis subject to restrictions stated in Intel’s software license, or as defined in ASPR 7-104.9 (a) (9). Intel Corporation
assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit
patent licenses are implied.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of
Intel Corporation.

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

BXP Intelevision MULTIBUS

CREDIT Intellec MULTIMODULE

i iSBC Plug-A-Bubble

ICE iSBX PROMPT

ICS Library Manager Promware

im MCS RMX

Insite Megachassis UPI

Intel Micromainframe uScope
Micromap System 2000

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk
Data Sciences Corporation.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation

Literature Department SV3-3
3065 Bowers Avenue

Santa Clara, CA 95051

© INTEL CORPORATION, 1981 AFN-01300C-1

PREFACE

Since Intel introduced the iSBC 80/10 Single Board Computer in early 1976, the family of Intel OEM
Microcomputer Systems has grown rapidly. Original equipment manufacturers and volume end-users
alike have responded to the concept originated by Intel of having all the functions of a computer — cen-
tral processing unit, memory, input-output and system expansion capability — present on one printed cir-
cuit board.

The capabilities of a single board computer have been enhanced by the creation of the industry-standard
MULTIBUS system bus. System expansion boards have been introduced for memory, serial /O and
parallel /O expansion, as well as analog /0O, DMA controllers and peripheral controllers. A unique feature
of the MULTIBUS architecture, however, is its capability to support multiple single board computers. This
capability permits sophisticated multiprocessing configurations using standard off-the-shelf 8-bit and
16-bit single board computers. The introduction of the iISBX MULTIMODULE expansion boards has revolu-
tionized the concept of the single board computer. Now iSBC host boards may be custom configured with
iSBX expansion boards based on the I/O requirements of the application. This capability provides lower
cost, higher performance single board solutions. Powerful software tools like the iRMX 80 and iRMX 88
RealTime Executives and the iRMX 86 Operating System are key members of the iSBC product family.
They provide users with the tools for quick implementations of simple or complex systems. iCS product
line provides chassis and signal conditioning/termination strips as well as board level products which
were developed specifically for industrial users.

This application manual is divided into three sections: iISBC Hardware, iISBC Software and iCS Products.
It contains all of the current application notes, reliability reports, magazine articles and professional jour-
nal reprints on the products of the Intel iSBC product family. We have compiled all of this information into
asingle publication for your convenience. Please contact us with your questions, comments, and sugges-
tions on how we may provide you with useful information on our products.

INTEL CORPORATION

OEM Microcomputer Systems
Applications Engineering
Hillsboro, Oregon 97123

iii AFN-01931A

TABLE OF CONTENTS

iSBC SOFTWARE (con't)

iSBC HARDWARE

AP-26

AP-28A
AP-43

AP-53

AP-96

AR-48

AR-55

AR-65

AR-69
AR-72

AR-122

AR-123

AR-133

iSBC 80/10A-SYSTEM 80/10
Single Board Computer Applica-
tions 1-3

Intel MULTIBUS Interfacing..... 1-45
Using the iSBC 957 Execution

Vehicle for Executing 8086

Program Code 1-79
Using the iSBC 544 Intelligent
Communications Controller 1-111

Designing iSBX MULTIMODULE
Boards....................... - 1175

Reduce Your xC-Based System
Design Time by Using Single
Board Microcomputers......... 1-199

Design Motivations for Multiple
Processor Microcomputer
Systemsl 1-211

Triple-Bus Architecture on a
Single Board Microcomputer ...

Dual-Port RAM Hikes
Throughput in Input/Output
ControllerBoard 1-229

16-Bit Single Board Computer
Maintains 8-Bit Family Ties 1-237

A New Family of MULTIMODULE
Boards Extends the Solutions

Provided by Intel’s Single Board
Computerso.o. 1-245

Special Function Modules Ride
on Computer Board 1-249

Multiprocessing System Mixes

8- and 16-Bit Microcomputers ... 1-257

iSBC SOFTWARE

AP-33

AP-47

RMX/80 Real-Time Multitasking
Executive 2-3

Using FORTRAN-80 for iSBC
Applications

AP-86

AP-88

AP-109

AP-110

AR-41

AR-124

AR-125

AR-172

Using the iRMX 86 Operating

System, 2-73
Multiprocessing Extensions
for the RMX/80 Real-Time

Executive 2-131

Using Intel Single Board
Computers for Serial Distributed
Processing Links.............. 2-173

Using the iRMX 86 Operating
System on iAPX 86 Component:
Designs.......... ...t 2-243

An Integral Real-Time Executive
for Microcomputers 2-303

Introducing the. RMX/86 Real-
Time, Multitasking, 16-Bit
Operating System R 2-311

Modular Multitasking Executive
Cuts Cost of 16-Bit OS Design .. 2-315

A Small-Scale Operating System
Foundation for Microprocessor
Applications.................. 2-321

Multitasking Executive Speeds
16-Bit Micros 2-329

iCS PRODUCTS

AP-52 Using Intel’s Industrial Control

Series in Control Applications .. 3-3
AP-60 Closed Loop Control Using the

iSBC 569/941 Intelligent Digital

Processors 3-61
AR-91 Designing and Assembling

Microcomputer Systems Grows

Easier 3-123
DOCUMENTATION

Related Intel Publications 4-3

Technical Literature List........ 4-5

AFN-01931A

intgl

APPLICATION AP-26
NOTE :

iSBC 80/10A-SYSTEM 80/10
Single Board Computer
Applications

1-4

Contents
INTRODUCTION ...coiiiiiiiiiinennenennnns 1-5
OVERVIEW.oiiiiiiiiiinnnnenneneannnns 1-5
SBC CONFIGURATION OPTIONS 1-7
Serial /O OPtions . . o ovvvee i 1-7
Parallel I/0Optionscovvvveneeneennnnn. 1-8
BusInterfacing.............cooveviiiiiiiina, 1-8
APPLICATIONS ...ttt iiiiiitennnennennas 1-10
Instrumentation........... ..., 1-10
Communicationcovvveiievenneennneeenns 1-15
ProcessControlcovvviinieiniennnnn. 1-23
I/ODeviceController.ccoviieninn.. 1-27
CONCLUSION ... otiiiie it ieieneannannss 1-31
APPENDIX A — iSBC 80/10A
SCHEMATICSooiiiiittiiiiiininneenenns 1-33
AFN-01931A

INTRODUCTION

The recent entry of the single board computer into
the broad field of electronic applications is sub-
stantiating the billing as a ‘“‘super component”.
Single board computers provide a solution to
several problems that have not been solved by the
use of conventional computers: cost, size, and
design specialization.

Many potential microcomputer applications have
been overlooked because of the design tasks
required to build a microcomputer system. These
tasks traditionally include interfacing of the system
clock, read/write memory, I/O ports and drivers,
serial communications interface, bus control logic
and drivers. Intel’s iSBC 80/10A enables the design
engineer to concentrate on the application of
microcomputers, rather than on implementation
details.

This application note begins with an overview of
the Intel® iSBC 80/10A. Readers who are familiar
with the iSBC 80/10A may choose to skip to the
applications section, which describes the following
typical iSBC 80/10A applications:

e The iSBC 80/10A used for instrumentation
control of a Fluke 8375 Digital Multimeter.

e The iSBC 80/10A used as a SCADA Terminal
in a communication application.

e The iSBC 80/10A used for temperature moni-
toring in a process control application.

e The iSBC 80/10A used as an interrupt driven
device controller for a Centronics printer.

Each example shows the user program and hard-
ware required for the application. The program
listings are interspersed with the text describing
the application. Both 8080 Macro Assembly
Language and Intel’s PL/M-80 are used in the
examples.

The software was developed on an Intel® Micro-
computer Development System (MDS). The MDS
provided the tools necessary to edit, assemble or
compile, link and locate the application software.
Hardware development was facilitated by the use
of Intel’s In-Circuit Emulator (ICE 80). For further
information regarding the Microcomputer Develop-
ment System, the reader is referred to the publica-
tions listed at the beginning of this application
note.

OVERVIEW

The iSBC 80/10A is a member of Intel’s complete
line of OEM computer systems which take full
advantage of Intel’s LSI technology to provide
economical, self-contained computer based solu-
tions for OEM applications. The iSBC 80/10A is a
complete computer system on a single 6.75-by-12
inch printed circuit card. A block diagram of the
iSBC 80/10A is shown in Figure 1.

Intel’s powerful 8-bit n-channel MOS 8080A CPU,
fabricated on a single LSI chip, is the central pro-
cessor for the iSBC 80/10A. The 8080A contains
six 8-bit general purpose registers and an accumu-
lator. The six general purpose registers may be
addressed individually or in pairs, providing both
single and double precision operators.

RS 232C
COMPATIBLE
DEVICE TTY

:] i SERIAL SERIAL] [] I

INTERRUPT
REQUEST

USER DESIGNATED
PERIPHERALS

1 D {}48 PROGRAMMABLE

PARALLEL 1/0 LINES

LINE

8080A
CPU

DRIVER/TERMINATOR
INTERFACE

I

PROGRAMMABLE
PERIPHERAL
INTERFACE

1K x8
RAM
MEMORY

2 INTERRUPT
REQUEST
LINES

SBC-80/10A
SYSTEM

CONTROL DATA DATA CONTROL
INTERFACE INTER- INTER- INTERFACE
FACE FACE
RS 232C TTY
INTERFACE INTERFACE
N\ // JUMPER 2 INTERRUPT
SELECTABLE REQUEST
LINES
8K x 8 PROGRAMMABLE
ROM/PROM COMMUNICATIONS
MEMORY INTERFACE
(SOCKETS) (USART)
BUS INTERRUPT
ADDRESS BUS REQUEST LINE
DATA BUS

CONTROL BUS

BUS MEMORY
AND
1/0
1" EXPANSION

1. Interrupts originating from the Programmable Communications Interface and Programmable Peripheral Interface are jumper selectable.

Figure 1. iSBC 80/10A Block Diagram

15

AFN-01931A

The 8080A has a 16-bit program counter which
allows direct addressing of up to 64K bytes of
memory.. An external stack; located within any
portion of read/write- memory, may be used as a
last in/first out stack to store the contents of the

program counter, flags, accumulator and all of the:

six general purpose registers. A 16-bit stack pointer
addresses the external stack. This provides sub-

routine nesting that is bounded only by memory

size.
The iSBC 80/10A contains 1K bytes of read/
write memory using Intel’s low power static RAM.

All on board RAM read and write operations are

performed at maximum processor speed. Four
sockets for up to 8K bytes of non-volatile read-
only memory are provided on the board. Read-
only memory may be added in 1K byte increments
(up to 4K total) using Intel® 8708 erasable and
electrically reprogrammable ROMs (EPROMs)
or Intel 8308 masked ROMs. Optionally, if more
than 4K bytes are required, read only memory may
be added in 2K byte increments (up to 8K total)
using Intel® 2716 EPROMs or 2316E masked
ROMs. All on-board ROM or EPROM read opera-
tions are performed at maximum’processor speed.

The iSBC 80/10A contains 48 programmable para-
llel I/O lines implemented using two Intel® 8255
Programmable Peripheral Interfaces. The system
software is used to configure the I/O lines in any
combination of unidirectional input/output, and
bidirectional ports indicated in Table I. Therefore,
the I/O interface may be customized to meet
specific peripheral requirements. To support the
large number of possible I/O configurations,
sockets are provided for interchangeable I/O line
drivers and terminators. Hence, the I/O interface

provides the appropriate combination of optional
line drivers and terminators to allow the required
sink current, polarity, -and drive/termination
characteristics for each application. The 48 pro-
grammable I/O lines and signal ground lines are
brought out to two 50-pin edge connectors that
mate with flat, round, or woven cable. -

A programmable communications interface using
Intel’s 8251 Universal Synchronous/Asynchronous
Receiver/Transmitter (USART) is contained on the
iSBC 80/10A. A jumper selectable baud rate
generator provides the 8251 with all common
communication frequencies. The 8251 can be pro-
grammed by the user’s system software to select
the desired asynchronous or synchronous serial
data transmission technique (including IBM Bi-
sync). The mode of operation (synchronous or
asynchronous), data format, control character
format, parity, and asynchronous transmission
rate are all under program control. The 8251 pro-
vides full duplex, double buffered transmission and
receive capability. Parity, overrun, and framing
error detection circuits are all incorporated in the
8251. The inclusion of jumper selectable TTY or
EIA RS232C compatible interfaces on the board,
in conjunction with the 8251, provide a direct
interface to teletypes, CRTs, asynchronous and
synchronous modems, and other RS232C com-
patible devices. The RS232C or TTY command
lines, serial data lines, and signal ground lines are
brought out to a 25-pin edge connector that mates
with RS232C compatlble flat, round, or woven
cable.

Interrupt requests may originate from six sources.
Two from the 8255, two from the 8251 and two
from user designated peripheral devices.

TABLE 1 INPUT/OUTPUT PORT MODES OF OPERATION
MODE. OF OPERATION
UNIDIRECTIONAL
INPUT . OUTPUT
PORT | NO. OF LINES LATCHED & LATCHED & | BID'RECTIONAL | CONTROL
UNLATCHED | STROBED | LATCHED | STROBED

1 8 X X X X X
2 8 X X X X
3 8 X X X1
4 8 X X
5 8 X X
6 4 X X

4 X X

1. Note: Port 3 must be used as a control port when either Port 1 or Port 2 are used as a Iatchad and strobed input or a latched and

strobed output or Port 1 is used as a bidirectional port.

1-6

AFN-01931A

The 8255’°s can génerate interrupts when a byte of
information is ready to be transferred to the CPU
(i.e., input buffer full) or a byte of information has
been transferred to a peripheral device (i.e., output
buffer is empty).

The 8251 can generate interrupts when a character
is ready to be transferred to the CPU (i.e., receive
channel buffer is full) or a character is ready to be
transmitted (i.e., transmit channel data buffer is
empty).

The user designated peripheral devices can generate
two interrupts: one via the system bus and the
other via the I/O edge connector.

The two interrupts from the 8255’s and the two
interrupts from the 8251 are all individually mask-
able under program control. The six interrupt
request lines share a single CPU interrupt level.
When an interrupt request is recognized, a RE-
START 7 instruction is generated. The processor
responds by suspending program execution and
making a subroutine call to a user defined interrupt
service ‘routine originating at location 38 (Hexa-
decimal).

iSBC 80/10A memory and I/O capacity may be
increased by adding standard Intel memory and
I/O boards. Modular expandable backplanes and
card cages, each with a four-board capacity, are
available to support multi-board systems.

The development cycle of iSBC 80/10A based
products may be significantly reduced using the
Intellec Microcomputer Development System. The
resident macro-assembler, PL/M-80 compiler, text
editor, and system monitor greatly simplify the
design, development, and debug of user designed
iSBC 80/10A system software. A diskette-based
system allows programs to be loaded, assembled,
edited, and executed faster than using conventional
paper tape, card, or cassette peripherals. A unique
In-Circuit Emulator (ICE 80) provides the capa-
bility of developing and debugging software
directly on the iSBC 80/10A.

iSBC CONFIGURATION OPTIONS

The iSBC 80/10 provides the user with a powerful
and flexible I/O capability for both parallel and
serial transfers. This section discusses the user
programmable and jumper-selectable options, and
bus interfacing.

SERIAL I/O OPTIONS

The serial I/O interface, uéi‘ng Intel’s 8251 USART,
provides a serial data communications channel that
can be programmed to operate with most of the

17

current serial data transmission protocols. There
are three general areas of serial I/O options:

1. choice of interface type, RS232C or current
loop,

2. baud rate and program-selectable. mode
options,

3. choice of an interrupt mechanism.

The user has the choice, through jumper connec-
tions, of configuring the serial I/O logic to present
either an RS232C or a 20 mA current loop inter-
face to an external device. If an RS232C interface
is used, the 8251 can assume the role of a ‘“‘data
set” or a “data processing terminal”. This enables
the serial interface to be connected to different
devices such as modems and computer terminals.

There are two factors which enter into the choice
of baud rate. They are the actual clock frequency
used to drive the transmit/receive clocks on the
8251 and the baud rate factor selected by a pro-
grammable mode instruction control word output
by the processor to the 8251. The baud rate factor
is used to effectively divide the 8251 transmit and
receive clocks by 1, 16 or 64. During normal oper-
ation a factor of 16 is selected for asynchronous
transmissions from 9.6K to 300 baud. A factor of
64 must be used to achieve a baud rate of 110. The
baud rate factor is only applicable to asynchronous
transmission, as all synchronous transmission is
done with an implied factor of one.

Before beginning serial I/O operations, the 8251
must be program-initialized to support the desired
mode of operation. The CPU initializes the 8251
by issuing a set of control bytes to the USART
device. These control words specify:

e synchronous or asynchronous operation
baud rate factor

character length

number of stop bits

even/odd parity

parity/no parity

Refer to the iSBC 80/10 and iSBC 80/10A Single
Board Computer Hardware Reference Manual or
the “8251 Application Note” for details on the
control words used to direct the operation of the
8251.

The serial I/O logic can be configured with differ-
ent forms of interrupt request mechanisms. By
connecting a jumper, the user can allow the 8251°s
Receiver Ready output to generate an interrupt
request. The Receiver Ready output goes high
whenever the Receiver Enable bit of the command

AFN-01931A

word has been set and the 8251 contains a charac-
ter that is ready to be input to the CPU. The user
can also choose to have the 8251’s Transmitter
Ready or Transmitter Empty output activate the
interrupt request. The Transmitter Empty goes
high when the 8251 has no characters to transmit.
Transmitter Ready is high when the 8251 is ready
to accept a character from the CPU. Both Trans-
mitter Empty and Transmitter Ready are enabled
by setting the Transmit Enable bit of the command
word. Upon receiving an interrupt, the program
can determine the actual condition which is
responsible for the interrupt by reading the status
of the 8251 device.

PARALLEL I/O OPTIONS

The parallel I/O interface consists of six 8-bit I/O
ports implemented with two Intel 8255 Program-
mable Peripheral Interface devices. Eight lines
already have a bidirectional driver and termination
network permanently installed. The remaining 40
lines are uncommitted. Sockets are provided for
the installation of active driver networks or passive
termination networks as required to meet the
specific needs of the user system.

The primary considerations in determining how to
use each of the six I/O ports are:

1. choice of operating mode,

2. direction of data flow (input, output or

bidirectional),
3. selection of interrupt mechanism,

choice of driver/termination networks for
the port’s data path.

Operating Modes. There are three basic operating
modes that can be selected by the system software.
The modes of operation will be described here in
general terms, leaving it to the reader to obtain
details from the iSBC 80/10 and iSBC 80/10A
Single Board Computer Hardware Reference
Manual or the “8255 Application Note.”

Mode O is a basic input/output functional con-
figuration which provides simple input and out-
put operations. No ‘handshaking” is required,
data is simply written to or read from a specified
port. The outputs are latched and the inputs are
unlatched.

Mode 1 is a strobed input/output functional
configuration which provides a means for trans-
ferring I/O data to or from a specified port in
conjunction with strobes or handshaking signals.
The outputs are latched and are accompanied by

1-8

an output control line which indicates that the
processor has loaded the output port with a data
byte. The input data is latched when accompa-
nied by its externally operated control signal.

Mode 2 is a strobed bidirectional bus input/
output functional configuration which provides
a means for communicating with a peripheral
device or structure on a single 8-bit bus for both
transmitting and receiving data. Handshaking
signals are provided to maintain proper bus flow
discipline in a manner similar to mode 1.

Data Flow Direction. In addition to the choice of
operating mode, the user may also specify the
direction of data flow, input or output from the
8255%. At the time of RESET, the 8255’s are
configured into the input mode until altered by a
control word directed to the control word register.
When an output mode control word is received,
all of the data bits are set to the low output state.

Interrupt. Mechanism. When the 8255 is pro-
grammed to operate in mode 1 or mode 2, control
signals are provided that can be used as interrupt
request inputs to the CPU. The interrupt request
signals, generated from one of the ports (port C),
can be inhibited or enabled by setting or resetting
the associated interrupt enable flip-flop, using the
bit set/reset function of port C. This function
allows the programmer to mask the interrupts from
specific 1/O devices without affecting any other
device in the interrupt structure.

Driver/Termination Networks. Depending on the
direction of data flow, the user will select the
appropriate TTL line drivers and Intel terminators
that are compatible with the I/O driver/terminator
sockets on the iSBC 80/10A. The list of suitable
line drivers includes those with inverting, non-
inverting, and open collector characteristics.
There are two types of terminators: a 220-ohm/
330-ohm divider or a 1K ohm pull-up.

BUS INTERFACING

The system bus interface logic consists of three
general groups of circuitry:

1. gates that accept the various bus control
signals, the interrupt request lines, and the
ready indications, and then apply these
signals to the CPU logic elements,
the system bus drivers,

3. the failsafe circuitry which generates an
acknowledgment during interrupt sequences
and during those cycles in which an ac-

AFN-01931A

knowledgment is not returned because a
non-existent device was inadvertently ad-
dressed.

Bus Interface Signals. The following paragraphs
describe portions of the system bus interfacing
logic relevant to interfacing a user device to the
iSBC 80/10A. (Note: Whenever a signal is active-
low, its mnemonic is followed by a slash; for
example, MRDC/ means that the level on that line
will be low when the memory read command
is true.)

BCLK/ — Bus clock; used to synchronize bus
control circuits on all master modules. BCLK/
has a frequency of 9.216 MHz. BCLK/ may
be slowed, stopped or single stepped, if
desired.

INIT/ — Initialization signal; resets the entire
system to a known internal state.

BPRN — Bus priority input signal; indicates to
the iSBC 80/10A that a higher priority mas-
ter module is requesting use of the system
bus. BPRN suspends the processing activity
and drivers of the iSBC 80/10A until the sig-
nal goes low.

BUSY/ — Bus busy signal; indicates that the bus
is currently in use. BUSY/ prevents all other
master modules from gaining control of the
bus. BUSY/ is driven by the HLDA/ output
from the iSBC 80/10A in response to a
BPRN' input. It indicates that the bus is
available.

MRDC/ — Memory read command; indicates
that the address of a memory location has
been placed on the system address lines and
specifies that the contents of the addressed
location are to be read and placed on the sys-
tem data bus.

MWTC/ — Memory write command; indicates
that the address of a memory location has
been placed on the system address lines and
that a data word has been placed on the
system data bus. MWTC/ specifies that the
data word is to be written into the addressed
memory location.

IORC/ — 1/O read command; indicates that the
address of an input port has been placed on
the system address bus and that the data at
that input port is to be read and placed on the
system data bus.

IOWC/ — I/O write command; indicates that the
address of an output port has been placed on
the system address bus and that the contents

19

of the system data bus are to be output to
the addressed port.

XACK/ — Transfer acknowledge signal; the
required response of an external memory
location or I/O port which indicates that the
specified read/write operation has been com-
pleted (that is, data has been placed on, or
accepted from, the system data bus lines).

AACK/ — An advance acknowledge, in response
to a memory read or write command, that
allows the memory to complete the specified
operation without requirifig the CPU to wait.

CCLK/ — Constant clock; provides a clock signal
of constant frequency (9.216 MHz) for use by
optional memory and I/O expansion boards.
The same signal is used to drive both CCLK/
and BCLK/.

INTR1/ — Externally generated interrupt re-
quest.

ADRO/—ADRF/ — 16 Address lines; used to
transmit the address of the memory location
or 1/O port to be accessed. ADRF/ is the most
significant bit.

DATO/—-DAT7/ — Bidirectional data lines; used
to transmit/receive information to/from a
memory location or I/O port. DAT7/ is the
most significant bit.

Bus Acknowledges. Further distinction between
transfer acknowledge (XACK/) and advance
acknowledge (AACK/) is required. All external
memory and I/O transfer requests must return
XACK/ to the iSBC 80/10A (even if AACK/ is also
returned). XACK/ indicates that data has been
placed on (read command) or accepted from (write
command) the system data bus lines. AACK/ is an
advance acknowledge in response to a memory or
1/O port command. It has been provided because
the 8080A samples the ready line before valid data
is required on the bus. If this condition is properly
anticipated, AACK/ can be returned before the
data is actually read, thus allowing an earlier opera-
tion to be completed. AACK/ should be used only
with a thorough understanding of the additional
information provided in the iSBC 80/10 and
iSBC 80/10A Single Board Computer Hardware
Reference Manual. DMA Transfers. An external
device can make DMA transfers to or from RAM
expansion boards. The transfer is coordinated
with the iSBC 80/10A by means of two bus
signals: bus priority input (BPRN) and bus busy
(BUSY/). The first step in making a DMA transfer
is to obtain control of the system bus. This is

AFN-01931A

achieved by asserting BRPN to the iSBC 80/10A
and then waiting until the iSBC 80/10A returns
BUSY/, indicating that it has relinquished control
of the system bus. When this step is completed the
external device may proceed with its DMA trans-
fers until it is finished. At that time BPRN should
be removed to allow the iSBC 80/10A to regain
control of the system bus. It should be noted
that the iSBC 80/10A is placed in a hold state
when it ‘does not have control of the system
bus.

APPLICATIONS

The iSBC 80/10A may be applied to a wide vanety
of applications. Specific applications in four areas
are presented in this application note. They are
presented to illustrate a broad spectrum of single
board computer capabilities and to demonstrate
the use of various system features.

INSTRUMENTATION

Microprocessors have been used in instrumentation
for many tasks ranging from handling simple inter-
face functions to control of the analog to digital
conversion process. The use of a single board com-
puter can’ further serve in the application of
instruments themselves to- laboratory or process
control environments. It is quité often necessary in

these applications to control instrumentation.

remotely. A number of rather expensive minicom-
puter—controlled solutions now exist on the market

as automatic test equlpment (ATE) systems. The

iSBC 80/10A presents itself as a cost effective solu-
tion in situations where the larger ATE systems are
beyond economic justification.

The iSBC 80/10A can be the sole CPU element

in the system, providing instrumentation control
and .computational capability; or it.can supple-

ment a larger host CPU by. handling distributed

processmg requirements.

Instrumentatlon Control Applicafion Example

Most instruments such as DVMs, counters, - data
loggers, synthesizers, ‘etc:, have optional data out-
put units ((DOUs) and/or remote control units
(RCUgs). It is particularly time consuming to inter-
face each instrument’s DOU/RCU: with custom-
digital logic. Until the recent IEEE-488 interface
standard, there was little in common from one
interface to the next. The parallel I/O lines of the
iSBC 80/10A provide a common interface element
that can be adapted to a majority of the DOUs and
RCUs available today by means of software.

.. FLUKE 8375

Doy iSBC 80/10A

PORT 4 (A) .

DATA

DIGIT
SELECT .
PORT 6 (C)

GROUP #2
8255

PORT 5 (B)

CONTROL -,

Figure 2. Interface Block ‘Diagram °

This instrumentation - control.. application shows
how the iSBC 80/10A has been used to control and
read the data from the data output unit (DOU) of
a Fluke 8375 Digital Multimeter.,

Interfacing the iSBC 80/10A ‘to the Fluke 8375
DOU has been accomplished through the use of
three parallel I/O ports shown in Figure 2. An 8-bit
port has been used to read input .data from the
Fluke 8375 DOU. Another 8-bit port has been
used to control the multiplexing of data. from the
DOU to the iSBC 80/10A. And, an 8-bit port has
been used to provide the required control and
monitoring of the following DOU functions:
busy flag, sample sync flag, timeout enable, exter-
nal trigger and trigger inhibit.

The following listing contains a complete program
to provide the necessary interface control func-
tions as well as an exercise program. The program
listing is interspersed with text that is used to
clarify the elements of the program.

INSTRUMENTATION CONTROL APPLICATION
"FLUKE 8375 DIGITAL MULTIMETER
DATA OUTPUT UNIT (DOU) CONTROLLER:

®NOV EWN O

The CSEG directs the ISIS-II ‘8080 Assembler to
generate a relocatable code segment. Relocatable
code can later be placed at any memory address by
Intel’s LOCATE program. This lets you write your
program without worrying about the application’s
final memory configuration.

1" CSEG

AFN-01931A

Equate Table. The following table is used to give
symbolic names to the binary I/O port addresses.
The names used later in the program increase
readability.

i

155
16 ; EQUATE TABLE
17 5

3
18 CWR EQU OEBH 5 8255 #2. CONTROL WORD REGISTER
19 DATIN EQU OE8H 3 DECADE PAIR DATA INPUT PORT
20 STB EQU OE9H 3 STROBE OUTPUT PORT

21 FLG EQU OEAH ; FLAG INPUT PORT

22 TRG EQU OEAH ;3 TRIGGER OUTPUT PORT

23 5

2y
The exercise program uses sonie of the subroutines
provided in the iSBC 80/10A System Monitor
PROMs. The addresses of the subroutines are
included in the equate table.

25

26 5

27 GETCH 0220H
28 co 01E8H
01F3H
02C2H

5 GET CONSOLE INPUT, MASK OFF PARITY
; CONSOLE OUTPUT

;5 PRINT <CR><LF>

; DISPLAY BYTE IN ACCUM

29 CROUT
30 NMOUT
315

32

The use of the iSBC 80/10A parallel I/O ports
requires that the mode of operation be defined for
each port. This is typically done by an initializa-
tion subroutine executed when the iSBC 80/10A
is powered up or reset.

8255 Control Word. When the opcode field (bit 7)
of a control word directed to an 8255 is equal to
one, the control word is interpreted as a mode
definition control word. The mode definition
control word format is shown below:

CONTROL WORD

CEELEEEE

—

GROUP B

PORT C (LOWER — PC3-PCq)
1=INPUT
0=0UTPUT

PORT B
1=INPUT
0=0UTPUT

MODE SELECTION
0 = MODE 0
1=MODE 1

GROUP A

PORT C (UPPER = PC7-PCq)
1= INPUT
0=0UTPUT

PORT A
1=INPUT
0=0UTPUT

MODE SELECTION

1X = MODE 2

/ OPCODE \,
Il 1=MODE SET I

Observing the schematic for the iSBC 80/10A —
Fluke 8375 DOU (Figure 3), it can be seen that the
8255 #2 should be configured through the use of
the mode control word as:

Port 4 (A) Mode O Input

Port 5(B) Mode O Output
Port 6 (C) Bits PC2—PCO Output
Port 6 (C) Bits PC5—-PC4 Input

The following mode control word is used:

[pr] 6] o5 oa] DaTDﬂmIDol

Port C Bits PCO—PC2 Output = 0

Port B Output = 0

Port B Mode 0 = 0

Port C Bits PC4—PC5 Input = 1

Port A Input = 1

Port A Mode = 00

Opcode Mode Set = 1

Mode Control Word = 1001 1000 Binary = 98H

2
345

35 § ##% 8255 42 INITIALIZATION SUBROUTINE
36 ;

37 InIT:
38

39

10 ;

u

MVI
ouT

A,100110008
CWR

3 LD MODE CONTROL WORD
;5 OUTPUT TO 8255#2 CNTL WD REG

This coding loads the mode control word into the
8255 #2 control word register. Additional initial-
ization code is required to set the strobe and
trigger output ports to an inactive state. The sche-
matic shows that inverting drivers have been used
for both the strobes and the trigger. When a com-
mand is issued to place port 5 (B) into the output
mode, bits PB7—PB0 are set to the low output
state. Because the low outputs are then inverted
and used as strobes to the Fluke 8375, they must
then be disabled. The initialization subroutine
concludes by disabling the strobes and trigger. The
strobes are signals to the DOU which enable its
drivers to send data to the iSBC 80/10A. The trig-
ger is a signal to the DOU that the Fluke 8375
should take a reading.

MVI
ouT
ouT
RET

A, OFFH
STB ;
TRG :

; LD MASK TO:
DISABLE STROBES
DISABLE TRIGGER

External Trigger Control. Two subroutines are
implemented to enable and disable the external
trigger mode of the instrument. These subroutines
use the bit set/reset capability of the 8255 to inde-
pendently set or reset three control lines of the
Fluke 8375 DOU.

AFN-01931A

When the opcode field (bit 7) of an 8255 control
word equals zero, the control word is a port 6 (C)
bit set/reset command word.

The bit set/reset control word format is' shown
below:

CONTROL WORD

D, 06105104|D3102|D,{00l
—

SET/RESET FLAG

0= RESET BIT

1=SETBIT

BIT SELECT
D3D, Dy PORT CBIT
00 0 BITO
00 1 BIT1
010 BIT2

NOT USED SET TO 000 011 BIT3

100 BIT4
101 BITS
110 BIT6
111 BIT7

OP CODE

0=BIT SET/RESET

The following example demonstrates how the port
6 (C) bit set/reset control word is constructed to
disable the Fluke 8375 external trigger. Note from
the schematic (Figure 3) that port 6 (C) bit O con-
trols the inhibit external trigger line. -

DB

Set Bit=1

Bit Select = 000 (Binary)

Not Used = 000 (Binary)

Bit Set/Reset Opcode = 0

The control word for set Port C bit 0 is 0000 0001 Binary = 01H

50

51 ;

52§ #%% ENABLE EXTERNAL TRIGGER SUBROUTINE ¥#

53 ;)

5h ETRIG:

55 MVI 4,000000008 ; LD RESET BIT O CONTROL WORD
56 ouT CWR ; OUTPUT TO 8255#2 CNTL WD REG
ST RET

58 ;

59 ; *#* DISABLE EXTERNAL TRIGGER SUBROUTINE *##*

0 .

61 DIRIG:

62 MVI 4,00000001B 3 LD SET BIT 0 CONTROL WORD
63 ouT CHR ; OUTPUT TO 8255#2 CNTL WD REG
61 RET

65 ;

66

Subroutines to enable and disable the timeouts are
written in an analogous fashion. The timeout
enable line is controlled by port 6 (C) bit 2.

67 .

68 ;

69 , ### ENABLE TIMEOUTS SUBROUTINE *##

7

71 EPOS:

72 MV A,00000101B ;LD SET BIT 2 CONTROL WORD
n UT - CWR ; OUTPUT TO 8255#2 CNTL WD REG
7 RET

753
76 z ##4 DISABLE TIMEOUTS SUBROUTINE ###
77 3

78 DPOS:

7 MVI A,00000100B 3 LD RESET BIT 2 CONTROL WORD.
80 ouT CWR ; OUTPUT TO 8255#2 CNTL WD REG
81 RET

32 3

83

Obtaining Readings. The Fluke 8375 DOU allows
readings to be taken in one of two modes. The
first, a triggered mode, assumes that the external
triggering has not been inhibited and requires the
positive edge of a pulse with a minimum width of
1 microsecond on the trigger input. Setting and
resetting the port 6 (C) bit 1 produces the 8375
external trigger. After a reading is triggered the
8375 busy flag is tested until the not busy state is
reached. At that time the reading that was
triggered can be read by the iSBC 80/10A. The
last statement in this routine jumps to TKDATA
which reads the data from the DOU and then
executes the return.

84

85 ; :

gs ; %*% SUBROUTINE TO TAKE EXTERNALLY TRIGGERED READING ###

7 5

88 TRGR

89 MVI A,000000108 ; LD RESET BIT 1 CONTROL WORD

90 oUT CWR ; OUTPUT TO 8255#2 CNTL WD REG
.91 NN A ; MODIFY CONTROL WORD TO SET BIT 1
92 ouT CWR ;3 OUTPUT TO 8255#2 CNTL WD REG

93 TWT.

9l N FLG 3 INPUT THE BUSY FLAG

95 ANI 001000008 ; TEST PORT C BIT 5

96 INZ ; LOOP UNTIL NOT BUSY

9g JMp TKDATA 3 GO READ DATA FROM DOU AND RETURN
98 3 '

The second method for reading the Fluke 8375 is
to rely on the sample rate set from the front panel
controls and to wait until a full transition of the
busy flag is observed. This guarantees that a previ-
ous reading is not mistakenly interpreted as a new
reading.

100

101
102 : *#% SUBROUTINE TO OBTAIN NEXT.READING ##¥

103 5
104 NXTRD:
105 N FLG 5 INPUT THE BUSY FLAG
106 ANI 001000008 ; TEST PORT C BIT 5
107 Jz NXTRD ; LOOP UNTIL BUSY WITH NEXT READING
108 NXTWT:
109 N FLG ; INPUT THE BUSY FLAG
110 ANI 001000008 ; TEST PORT C BIT 5
m INZ NXTWT ; LOOP UNTIL NOT BUSY
; GO READ DATA FROM DOU AND RETURN

12 Jup TKDATA

&

Notice that the loops beginning at NXTWT in the
above program segment and at TWT in the previous
program segment are identical. This suggests the
possibility of some obvious code optimization that
is omitted here for the sake of clarity.

There is one subroutine remaining to complete full
utilization of the Fluke 8375 DOU capabilities. It
is the subroutine to take data from the 8375 DOU.
The schematic (Figure 3) shows that port 5 (B) bits
PB4 —PBO are used to enable the DOU drivers. Data
from the DOU includes:

e 5 decades of digits
e encoded range and overrange

AFN-01931A

e function: Volts DC, Volts AC, Ohms, Kil-
ohms

e modifiers: Filter, Ext. Ref., Remote

e overload

® trigger

The function of this subroutine is to read five
bytes of data from the 8375 DOU and place them
in a RAM buffer on the iSBC 80/10A.

115

116 ;

11; ; *##%% SUBROUTINE TO TAKE DATA FROM 8375 DOU *##

118

119 TKDATA:

120 LXI H, RDBUF ; LD BUFFER POINTER

121 MVI A, 0EFH ; SETUP FIRST STROBE

122 TKO

123 MoV B,A 5 SAVE CURRENT STROBE

124 our ST8 ; STROBE DECADE PAIR

125 N DATIN ; READ DATA

126 MOV M,A ; PLACE DATA INTO SBC 80/10 RAM
127 INX H ; INCREMENT BUFFER POINTER

128 MOV A,B ; RESTORE STROBE

129 RRC ; ROTATE TO NEXT STROBE POSITION
130 Jc TKO ; LOOP UNTIL BIT O STROBE DONE
131 ouT ST8 ; DISABLE ALL STROBES

132 RET

133 5

134

This completes the software required to service the
Fluke 8375 DOU. The following code consists of a
routine to display the data from the interface on
the console output device and a short executive
program to allow exercising of the driver sub-
routines.
The display subroutine takes 5 bytes of data from
the RAM buffer in which the reading has been
stored and prints them, 2 ASCII characters per
8-bit byte, on the console.

135

}é? : ##% SUBROUTINE TO DISPLAY READING BUFFER ON CONSOLE *##

139 BISPLAY:

140 LXI

H, RDBUF ; LD BUFFER POINTER
141 MVL D,5 ;3 INITIALIZE COUNTER
142 DISPO:
143 MOV WM ; LD NEXT BYTE FROM BUFFER
144 CALL NMOUT ; CALL SBC 80/10 MONITOR SUBROUTINE
145 ; TO DISPLAY ACCUMULATOR CONTENTS
146 INX f ; INCREMENT BUFFER POINTER
W7 DCR D ; DECREMENT COUNTER
148 JINZ DISPO ; LOOP FOR 5 DISPLAY BYTES
149 RET
150 ;

151

Operator Interface. The short executive program
provides a tool for the purposes of exercising the
8375 DOU driver subroutines. The executive begins
by calling the initialization subroutine and then
continues on to prompt the operator with a =’ on
the console. At that point the operator may enter
one of the following characters, causing the pro-
gram to execute the specified subroutine:

SUBR DESCRIPTION
T ETRIG Enable external trigger
I DTRIG Disables external trigger
E EPOS Enable programmed timeouts
D DPOS Disable programmed timeouts
N NXTRD Next reading
S TRGR Trigger and get a reading
X DISPLAY Display reading buffer

After the operator has entered a command charac-
ter, the program obtains the address of the sub-
routine to be executed and proceeds to set up a
return address on the stack. This technique allows
a load program counter instruction (PCHL) to be
used to enter the subroutine and a return instruc-
tion (RET) to resume execution of the executive.

152

153 5

154 ; ### SIMPLE EXECUTIVE EXERCISE PROGRAM ###

155 5

156 START:

157 LXI SP,STACK ; SETUP STACK POINTER

158 CALL INIT ; INITIALIZE THE SBC 80/10 8255#2
159 EXEC

160 CALL CROUT ; EXEC ENTRY POINT - PRINT <CRX<LE>
161 MVL C," 5 C LOADED WITH PROMPT CHARACTER

162 CALL Co ; CONSOLE OUTPUT

163 CALL GETCH ; GET CMND CHAR, MASK OFF PARITY

164 CALL co 3 PRINT THE CHARACTER ON THE CONSOLE
165 MOV A,C 3 PUT CHARACTER BACK INTO THE ACCUM
166 LXI B, NCMDS ; C CONTAINS LOOP AND INDEX COUNT
167 LXT H,CTAB ; HL POINTS TO CMND TABLE

168 EXECO:

169 MP M ; COMPARE TABLE ENTRY AND CHARACTER
170 Jz EXEC1 ; BRANCH IF EQUAL - CMND RECOGNIZED
171 INX H ; ELSE, INCREMENT TABLE POINTER

172 DCR C 3 DECREMENT LOOP COUNT

173 INZ EXECO ;5 BRANCH IF NOT AT TABLE END

174 JMP EXEC ; ELSE, CMND ILLEGAL - IGNORE IT

175 EXEC1:

176 LXI H,CADR ; LD ADR OF TABLE OF CMND SUBRS

177 DAD ; ADD WHAT IS LEFT OF LOOP COUNT

178 DAD B 3 =~ EACH ENTRY IN CADR IS 2 BYTES
179 MoV AM ; GET LSP OF ADR OF TABLE ENTRY TO A
180 INX H ; POINT TO NXT BYTE IN TABLE

181 MOV H,M ; GET MSP OF ADR OF TABLE ENTRY TO H
182 MOV L,A 3 PUT LSP OF ADR OF TABLE ENTRY TO L
183 LXI D,EXEC ;3 SETUP RETURN ADR ON THE STACK

184 PUSH D

185 PCHL ; NEXT INSTR COMES FROM CMND SUBR
186 3

187

The command and address tables as well as the
reading buffer follow to complete the application
software.

188

189 ;

190 COMMAND AND ADDRESS TABLES
191

192 Cas:

193 08 ' XSNDEIT"

194 NCMDS EQU $-CTAB ; NUMBER OF VALID COMMANDS

197 DW 0

198 W ETRIG
199 oW DTRIG
200 DW EPOS
201 DH DPOS
202 DH NXTRD
203 DW TRGR
204 W DISPLAY

05 ;
206 ; READING BUFFER AND STACK SPACE
208 RDBUF:

209 DS 5 ; READING BUFFER
210 ;

213 END START ; TRANSFER.ADDRESS IS TO START

SUMMARY/CONCLUSIONS

This instrumentation control application has been
presented to demonstrate the simple techniques
used to apply the iSBC 80/10A to the task of inter-
facing instrumentation. A natural extension of this
example would include the control of the Fluke
8375 RCU, as well as the control of many addi-
tional instruments to build a small ATE system.

AFN-01931A

1 ' SBC 80/10A
FLUKE 8375 DOU i

————— a
» [|
(DATA OUTPUT-UNIT) . vee |
< PORT 6 (C)
™ :: | UPPER :
28) (1229 ‘ T
BUSY FLAG b3 ! |
2:27)
SAMPLE SYNC N (231 pCa |
FLAG Ao | |
' 7437 k I
w2:21)
TIMEOUTS 22) . 4__1___ pC2 |
ENABLE
(5223) PORT 6 (C
EXTERNAL , 2y | : 1 71 o awen |
TRIGGER (42 25) 1
(2:1) vco |
EXTERNAL e
TRIGGER 217 | |
INHIBIT I
(213) I
OVERLOAD | |
(2.15) |
TRIGGER 222) | |
(2-18) | |
POLARITY — l
(2.20) | |
FILTER — |
m (216) |
EXT. REF — | |
(214) |
REMOTE l——:l} (226) i |
(26) | 8255 |
VOLTS DC — GROUP 2 _ |
(24) | |
VOLTS AC 1 |
(2:12) |
OHMS }—E& | |
(2:10) |
KILOHMS &——:D: (1.35) | |
(136) | |
) (1:33) | |
b & — |
o (131) | |
RANGE c¢{ % — |
D 132) I
d | — A11. A21 | |
y.__i:D'* (134) . 7437 |
Rixé'é (1:25) u211) q oon :
:D nd | PORT 5 (B) |
—
(129) 2 | 1
2 _ j)"‘ {k——r B3
FIRST (1-28) ‘
DECADE :D> | |
(130) |
)—_D: (119) (529 1 otz |
- 21 | |
a l~——~-—13‘F I
(1:23) . | |
o — D LA/ S
SECOND 1:22) |
DECADE :} | |
:D (1:24) |
d (113) 2:5) pEo |
:D (1.15) q | }
— A7
! :D (147) Vee - | | |
@ < < (’ <
THIRD (116) w22 :; 3| |
DECADE) , | % o J2:35) | PA7 |
2 | F ! | PORT 4 (A)
4 (15) (1237) o |
(19) (2.39) A ens |
(D . |
am u241) ;i - |
»—:&
FOURTH (1-10) ne | |
DECADE L I |
112) Iy (L |
222322 |
¢ an PIDS 1»)
:D" 13 . (J249) e {
o e)) (9247) T P |
N PE—— .
FIFTH :D (12) ; w245) 1| PAY |
DECADE
o] —) (J243) o :
d P;D
Lo]

Figure 3. Interface Schematic

114 AFN-01931A

COMMUNICATION

A diverse range of single board computer applica-
tions exists in the field of communication. The
increase in distributed processing generatés require-
ments for self-contained computers to control
elements of a communication system, increasing
both the throughput and reliability.

There are many situations that necessitate monitor-
ing and controlling a system from a remote site.
Typical examples are systems that cover large geo-
graphic areas or systems in dangerous environments
for human operators. If the object system, which
provides the actual parallel inputs and outputs to
the plant, is far from the controlling system, you
can lower costs by reducing the number of inter-
connecting wires via the addition of multiplexers
to both systems. In the extreme (and often desira-
ble) case of reducing the interconnects to an
absolute minimum, all communication between the
systems takes place on a single serial data link. If
large distances are involved, this link can be stand-
ard telephone wires. For moderate distances, the
link can be a single twisted pair. In either case, the
equipment used to interface the object system to
the serial link is called a supervisory control and
data acquisition (SCADA) terminal.

The decision to replace a multitude of intercon-
nects with a SCADA terminal is largely economic.
Cables and their associated drivers and receivers
can represent a significant part of the total cost of
a factory automation project, particularly if an
electrically noisy environment requires the use of
shielded cables. Any potential savings in cabling
must, of course, compensate for the additional cost
incurred by adding the SCADA terminal to the
system.

Communication Application Example

A SCADA terminal demonstrates an industrial com-
munication ‘application of the iSBC 80/10A. The
Intel® 8251 USART provides the serial communi-
cation link and the two Intel 8255 Programmable
Parallel 1/O devices provide 48 parallel lines for. the
object system. A block diagram of a SCADA
terminal is shown in Figure 4.

The task of the software in:this SCADA terminal
example is two-fold. First, it must continually scan
its -parallel inputs, transmitting the status of those
lines in a bit serial mode using the USART. And
second, it receives bit serial data from the USART
which is to be used to update the parallel outputs.

Thus, a major portion of the software deals with’

iSBC 80/10A

SERIAL

PARALLEL’
OUTPUT INPUT

PARALLEL

» SERIAL
INPUT

OuUTPUT *

Figure 4. SCADA Terminal Block Diagram

the communications protocol on the serial data
lines.

Communications Protocol. A communication pro-
tocol is an agreement between communications
users that defines the record formats used for data
transmissions. The protocol selected for this
SCADA terminal application prov1des the follow-
ing features:

1. A readable character set to simplify the
human interface.

2. . Error detection by means of a checksum.

3. Each record specifies the number of data
bytes in :the record and the . initial port
number.. .

Despite its value for human interface, the ASCII
character set has problems representing 8-bit
binary values, since the high-order bit is not used.
Therefore, each binary value is treated as two 4-bit
hexadecimal values. Because hexadecimal numbers
fall in ‘the range 0-9 and A—F, they can be repre-
sented as ASCII characters. However, this repre-
sentation requires twice as many bytes as a pure
binary format.

Record Format. The information encoded into the
ASCII hexadecimal format is grouped to form
records. Each record has a record mark to flag the
beginning of the record, a number of ports specifi-
fication (record length), destination output start
port number, the data field itself, and a checksum.

The record format described below is according to
the fields in the record.

Recbrd mark field: Byte O

The ASCII code for a colon (:) is used to 51gnal
the start of a- record

Number of ports field: Byte 1 ..

" The number of data bytes in the record is repre-
" sented by a single ASCII hexadecimal digit in this
field. This corresponds to the number of 8-bit

AFN-01931A

ports to which data will be output by the
SCADA terminal in a parallel fashion. The maxi-
mum number of data bytes in a record is 15 (F
in hexadecimal). A record length of zero is a
special case and can be reserved for control
information.

Port address field: Byte 2

The single ASCII hexadecimal digit in byte 2
gives the port number of the initial output port.
The first data byte is output to the port indi-
cated by the port address; successive bytes are
output in successive port locations on the iSBC
80/10A or on expansion I/O boards.

Data field: Bytes 3 to 3+2*(number of ports)-1

An 8-bit binary value is represented by two
bytes containing the ASCII characters 0—9 or
A—F, which represent a hexadecimal value
between 0 and FF (0 and 255 decimal). The
high-order digit is in the first byte of each pair.

Checksum field: Bytes 3+2*(number of ports) to
3+2*(number of ports)+1

The checksum field contains the ASCII hexa-
decimal representation of the two’s complement
of the 8-bit sum of the 8-bit bytes that result
from converting each pair of ASCII hexadecimal
digits to one byte of binary, from the number of
ports field (the number of ports and port ad-
dress constitute a pair) to and including the last
byte of the data field. Therefore, the sum of all
the ASCII pairs in a record after converting to
binary, from the number of ports field to and
including the checksum field, is zero.

Sample Hexadecirrial format:

:303A178FEF0

' L checksum Fietd
Data Field
Starting Port Address

Number of Ports

Record Mark

Design Approach Using a State Diagram. Before
proceeding to examine the software used to imple-
ment the SCADA terminal; consider how the prob-
lem might have been approached with TTL logic
rather than a microcomputer. The design would
likely have been formulated with a state diagram to
specify the transitions of a sequential state ma-
chine. The sequential-circuit operations would
include decoding the serial input records and

encoding the serial output records. An examination
of the serial input record state diagram (Figure 5)
is useful in understanding some of the procedures
encountered later. "

N7

LHAC/PO

Figure 5. State Diagram

Notes: HAC = Hexadecimal ASCII character
LHAC = Last Hexadecimal ASCII character
PO = Parallel output

The receipt of an invalid HAC will cause a return
to state 0. :

The receipt of a colon at any time will produce a
transition to state 1.

STATE DESCRIPTION
0 = record mark state
1 = number of ports state
2 start port number state
3 high-order half of data byte state
4 = low-order half of data byte state

State O is entered at the time of initialization. All
state transitions occur when the next character is
received. States 1, 2, and 3 are entered with the
input of a colon (:), the number of ports and start
port number, respectively. States 3 and 4 will cycle
as required until all the high and low-order pairs of
data have been input. The transition from state 4
to state 0 occurs when the last data byte has been
received. If the checksum is correct, the parallel
output latches are loaded with the data field of
the record. :

There are many references to the states contained
in this diagram during the discussion of the soft-
ware procedures. Thus, the state diagram is used as
a “flowchart” for the software. As in the other
examples in this application note, a textual descrip-
tion accompanies each segment of code. Intel’s
high-level programming language, PL/M-80, - has
been used to show the capability to program in a
natural, algorithmic language which eliminates the
need to manage register usage or memory alloca-
tion.

AFN-01931A

SCADA Terminal Program. The program begins
with a comment, that is followed by the program
segment label “SCADA”. With resident PL/M-80,
all programs are considered to be labelled blocks,
or modules. This means that all PL/M programs
must begin with a LABEL and a DO statement and
end with an END statement.

/%
INDUSTRIAL COMMUNICATION APPLICATION

SCADA TERMINAL
L%
1 SCADA:
Do;

All variables used in the program must be declared
before they can be referred to by their identifiers.
This is done by means of a DECLARE statement.
In addition to the declaration of variables, macros
are declared using the reserved word LITERALLY.
These macros are expanded at compile time by
textual substitution.

2 1 DECLARE
SRL$INSSTATE BYTE,
SRLSINSPRT BYTE,
RLINCNT BYTE,
PRLINSTATE BYTE,
PRLINSTRT$PRT BYTE,
PRL$I TS BYTE,

RLINPRLSOUTSBFR(3) BYTE,

PRLOUTPRT$0 LITERALLY 'OESH',
PRLOUTPRT$1 LITERALLY 'OEAH',
PRLOUTPRT$2 LITERALLY 'OESH',

SRLOUTSTATE BYTE,
SRLOUTPRT BYTE,
SRLOUTCNT BYTE,
PRL$OUTS$STATE BYTE,

PRLOUTSTRT$PRT BYTE,
PRL$OU RTS BYTE,
RLOUTPRLSINSBFR(Y) BYTE,

PRLSINSPRT$O LITERALLY 'OEH!,
PRLSINPRT1 LITERALLY 'OE6H!,
PRLINPRT$2 LITERALLY 'OE9H',

USART$CMD LITERALLY 'OEDH',
USART$IN LITERALLY 'OECH',
USART$OUT LITERALLY 'OECH',
USART$STATUS LITERALLY 'OEDH',
USART$MODE$INSTR LITERALLY 'OCFH',
USARTCMDINSTR LITERALLY '025H',

TXRDY LITERALLY '001H',
RXRDY LITERALLY '002H',

PPICWR1 LITERALLY 'OE7H',
PPICWR2 LITERALLY 'OEBH',

PPICWD1 LITERALLY '08OH',
PPICWD2 LITERALLY '09BH',

TRUE LITERALLY 'OFFH',
FALSE LITERALLY '000H',

FOREVER LITERALLY 'WHILE TRUE',

NEXT$BYTE BYTE,
CHECKSUM BYTE;

8251 and 8255 Initialization. The INIT procedure
sets up the 8251 and 8255’s and initializes several
variables. Interrupts are disabled to insure that no
interrupts are serviced during the execution of the
INIT procedure.

3 1 INIT: PROCEDURE;
42 DISABLE;

The serial input and serial output state counters are
set to state 0. Port number O is the parallel input
start port and 3 ports of data are input from the
parallel ports for serial transmission.

SRLINSTATE = 0;

SRLOUTSTATE = 0;

PRLINSTRT$PRT = 0;
PRL$INSNMBSPRTS = 3;

@ on
[ENENTN

The Intel 8251 USART must be set up by loading
it with mode and command instructions.

The mode instruction format is shown below:

T L T T
|D7 | Dg | D5 | ud% | Dzrm | D,]
e 1 1 L
BAUD RATE FACTOR
00 = SYN MODE
01 = ASYN X1
10 = ASYN X16
11 = ASYN X64

CHARACTER LENGTH

00 =5BITS
01=6BITS
10=78BITS
11-=8BITS

PARITY CONTROL

X 0 = NO PARITY
01 =0DD PARITY
11 = EVENPARITY

FRAMING CONTROL

SVN NO — ASYN (D4 Dg # 00) 00 =~ NOT VALID

? 01=1STOPBIT
10 = 1% STOP BITS
11=2STOPBITS

YES
(D1Dg=0) SYN CONTROL

X 0 INTERNAL SYN

X 1 EXTERNAL SYN
0X DOUBLE SYN CHAR
1X SINGLE SYN CHAR

The 8251 characteristics required by this SCADA
terminal application include 9600 baud transmis-
sion and 8-bit characters. The parallel inputs of the
8255’ are periodically scanned. The scanning
frequency is determined by the baud rate and
number of ports of data being transmitted. For
example, the transmission of 3 ports of data
requires 11 characters. At a baud rate of 9600 the
approximate scan rate is 100 Hz.

The following 8251 mode instruction is used:

DoDooonD
t Baud Rate Factor = 10.
L— Character Length = 11

Parity Control = 00

Framing Control = 11

Instruction = 1100 1110 Binary = CEH

AFN-01931A

After the mode instruction is sent to the 8251, a
command instruction is required to complete the
8251 initialization.)

The command instruction format is shown below:

b7

[=

Dg D5 Dg O3 D Dy Do

iR DTR

RTS l ER

SBRK] RxE

TxENI

L

‘TRANSMIT ENABLE
1= ENABLE
0= DISABLE

DATA TERMINAL
READY
“HIGH” WILL FORCE
DTR OUTPUT TO ZERO

RECEIVE ENABLE
1=ENABLE RxRDY
0 = DISABLE RxRDY

SEND BREAK

CHARACTER
1=FORCES TxD “LOW"
0=NORMAL OPERATION

ERROR RESET
1=RESET ALL ERROR
FLAGS (PE, OE, FE)

REQUEST TO SEND
“HIGH” WILL FORCE
RTS OUTPUT TO ZERO

| INTERNAL RESET

“HIGH” RETURNS 8251
TO MODE INSTRUCTION
FORMAT)

ENTER HUNT MODE
1= ENABLE SEARCH FOR
SYN CHARACTERS

The command instruction enables the transmit and
receive functions of the 8251.

The following command instr’uctionvis used:

joonoonon

Transmit Enable = 1

Data Terminal Ready = 0"

Receive Enable = 1

Send Break Character = 0

Error Reset = 0

Request to Send = 1

Internal Reset = 0

Enter Hunt Mode = 0

Instruction = 0010 0101 Binary = 25H

Output instructions send’ the initialization com-
mands to the 8251. Note that previously declared
macros are used to literally replace the mnemonics
in the following lines of code.

OUTPUT(USART$CMD) = USART$MODE$INSTR;
OUTPUT(USART$CMD) = USART$CMD$INSTR;

1-18

Initialization of the 8255’ is then ‘done to set up
the following configurations: S

8255#1

Port 1 (A) Mode 0 Output ‘
"Port 2 (B) Mode O Output
Port 3 (C) Mode O Output
8255 #2
Port 4 (A) Mode O Input
Port 5(B) Mode O Input
Port 6 (C) Mode O Input

The following:command instruction is used for the
8255 #1: A

EEEFEERE

Port C Bits PC3—RCo Output =0

Port B Output ='0.

Port B Mode 0 = 0

Port C Bits PC7—PC4 Output = 0

Port A Output =0

Port A Mode = 00

Opcode Mode Set = 1

Mode Control Word = 1000 0000 Binary = 80H

The following command instruction is used for the
8255 #2:

BRI R

. Port C Bits PC3—PCq Input =1

Port B Input'=1

Port B Mode 0 =0

Port C Bits PC7—-PC4 Input =1

Port A Input =1

Port A Mode 3 00

Opcode Mode éet =1

Mode Control Word = 1001 1011 Binary = 9BH

The 8255 initialization commands are given in a
similar manner to the 8251 commands.

OUTPUT(PPICWR1) = l"P-I;w‘HDN;
OUTPUT(PPICWR2) = PPICWD2;

n 2
12 2

The INIT procedure cohcludeé by enaBling inter-
rupts.)

ENABLE;
END INIT;

AFN-01931A

Conversion Procedures. Two conversion procedures
are required in the program. The first procedure
produces a hexadecimal ASCII character from a
4-bit binary value. A typed procedure has been
used which returns a value of the type byte. It is
called by using its name in an expression.

CHAR$CONV: PROCEDURE (CHAR) BYTE;
DECLARE CHAR BYTE;
CHAR = CHAR + '0'
IF CHAR > '9' THEN
CHAR = CHAR + T;
RETURN CHAR;

END CHAR$CONV;

>
LY UF XY OO N

The second procedure produces a 4-bit binary
value from a hexadecimal ASCII character. Because
this procedure is used only when a hexadecimal
ASCII character is expected, an illegal character
(i.e., not a 0—9 or A—F) causes the serial input
state counter to indicate state 0. This procedure is
also typed. The NMBSCONYV procedure emphatic-
ally illustrates the point that PL/M-80 performs
unsigned arithmetic. Note that when the ASCII
value for a zero is subtracted from the digit,
NUM = NUM - ‘0’; a positive number is always
produced, even if the value of NUM is less than ‘0’

NMB$CONV: PROCEDURE (NMB) BYTE;
DECLARE NMB BYTE;

= NMB - '0';
IF NHB > 9 THEN

17 (NMB > 16) AND (NMB < 23) THEN
NMB = NMB - T7;

BLSE
SRLSINSSTATE = 0;
RETORN NMB;

~N
3
NPWW WWRNN N =

END NMB$CONV;

Parallel Input Procedure. A parallel input proce-
dure is used to input data bytes from the 8255°s.
The data bytes are then transmitted by the bit
serial output device. This procedure also computes
the checksum for the serial output record. The
checksum, TEMP2, is initialized to contain the
parallel input number of ports and the start port,
shifted to fit within a single byte. Each cycle of the
iterative DO block adds the next data byte to the
checksum and places the input data into the
SRL$OUTSPRLSINSBFR array until the loop is
complete. The checksum is then computed as the
two’s complement of the accumulated sum and
also stored in the serial input parallel output
buffer.

3 PARALLEL$IN: PROCEDURE;
34

1

2 DECLARE (TEMP1,TEMP2) BYTE;

3% 2 TEMP2 = PRLINNMB$PRTS # 16 + PRL$IN$STRT$PRT;
2

36 DO PRLINSTATE = PRLINSTRT$PRT TO
PRL$INSSTRT$PRT + PRLSINNMBPRTS - 1;
37 3 DO CASE PRLINSTATE;
/% PRL IN PRT O *
38 4 TEMP1 = 1NPUT(PRLINPRT$0)
/% PRL IN PRT 1 %,
39 4 TEMP1 = INPUT(PRL$[II$PRT$1),

/* PRL IN PRT 2 %

"} TEMP1 = mpm(msmspnrsz)

[T END;

w2 3 SRLOUTPRLSINSBFR(PRL$INSSTATE) = TEMP1;

w33 TEMP2 = TEMP2 + TEMP1;

w3 END;

U5 2 SRLOUTPRLSIN$BFR(PRLSINSSTRTSPRT + PRLSINSNMBSPRTS) = ~TEMP2;
4 2 END PARALLEL$IN;

Parallel Output Procedure. When a complete serial
input record has been received and the checksum is
correct, the transition from state 4 to state O is
accompanied by the parallel output of the data
from the data field of the serial input record. The
parallel output starting port and the number of
ports of data is contained in the input record and
is thus used in directing the parallel output opera-
tion. An iterative DO block increments the
PRLSOUTSSTATE index variable through the
required ports and a DO CASE block selectively
executes one of the OUTPUT statements for each
cycle of the loop.

u 1 PARALLEL$OUT: PROCEDURE;
2 DECLARE TEMP BYTE;
4 2 DO PRLOUTSTATE = PRLOUTSTRT$PRT TO
PRLOUTSTRT$PRT + PRLSOUT$NMBSPRTS ~ 1;
50 3 TEMP = SRLINPRLOUTBFR(PRLSOUTSSTATE) ;
51 3 DO CASE PRLOUTSTATE;
/% PRL OUT PRT 0 %/
52 4 0UTPUT(PRLOUTPRT$0) = TEMP;
/% PRL OUT PRT 1
53 4 OUTPUT(PRLSOUTQPRTM) = TEMP;
/* PRL OUT PRT 2
sS4 4 wTPUT(PRLtOUTsPRTGZ) = TEMP;
5 4 END;
56 3 END;
57T 2 END PARALLEL$OUT;

Serial Input and Output Procedures. The next two
procedures contain the software implementations
of the state diagram described previously. The
processing during each state of the first procedure,
the serial character input procedure, is described
in the following text.

The procedure begins by reading a character from
the 8251 and then converts the character into a
4-bit binary value using the number conversion
procedure. The DO CASE block is the mechanism
by which a program segment is selected to examine

AFN-01931A

the input character, provide the required outputs,
and to specify the transition to the next state.

8 1 SERIAL$CHAR$IN£ PROCEDURE;

59 2 DECLARE (CHAR,TEMP) BYTE;

60 2 CHAR = INPUT(USART$IN) AND OTFH;
61 2 TEMP = NMB$CONV(CHAR);

62 2

DO CASE SRLINSTATE;

State 0 is entered through the initialization proc-
ess, at the completion of the processing of a serial
input record, or when an invalid character has been
received. The serial input state will remain O until a
colon (:) is received, at which time a transition to
state 1 is specified.

/“ SRL IN STATE O = RECORD MARK */

63 3

64 4 I CHAR = ':' THEN
65 4 SRL$[N$STATE =13
66- 4 H .

The parallel output num‘ber of ports is obtained,
the counter initialized, and a transition to state 2 is
specified from state 1.

& /' SRL IN STATE 1 = NMB PRTS #/
7 3

68 4 PRLOUTNMB$PRTS = Tﬂ'ﬂ’,

69 4 SRLINCNT = TEMP;

70 4 SRLINSTATE = 2;

AR D;

In state 2 the parallel output starting port number
is obtained, the serial input port is initialized, the
checksum is set to contain the parallel output
number of ports and starting port, and a transition
to state 3 is specified.

/% SRL IN STATE 2 = STRT PRT */

72 3 H
73 4 PRLOUTSTRT$PRT = TEMP;
U SRLINPRT = TEMP;
75 4 CHECKSUM = PRL$0UT$NMB$PRTS“16 + PRL$OUT$STRT$PRT;
;_6, : SRLINSTATE = 3;
H

In state 3 the high-order half of a data byte is
obtained and shifted into the proper position of
the NEXT$BYTE variable. A transition is specified
to state 4.

/* SRL IN STATE 3 = HI ORDER HALF DATA BYTE */

8 3 H
79 4 NEXT$BYTE = TEMP#16;
80 4 SRL$INSSTATE = U;

4 D;

State 4 is the final state and Téquires more process-
ing than the others. First, a whole byte of data is

assembled by adding the low and high-order data

halves, and then testing to determine if the check-
sum has been received. If so, and the checksum is
correct, the parallel output procedure is executed.
Once the entire serial input record has been re-
ceived, a transition is specified to state 0 whether
the checksum is correct or not. However, if the

serial ‘input count has not been exhausted, the
assembled byte is placed into the serial input
parallel output buffer and a transition back to state
3 is specified.

/* SRL IN STATE 4 = LO ORDER. HALF DATA BYTE */

82 3

83 i Nsmsm - Nexteaire « Toue;

8 HECKSUM + NEXT$BYTE;

85 4 T ALeTnaONT o o e

8 4 ;

87 5 "IF CHECKSUM = 0 THEN

8 5 CALL PARALLEL$OUT;

8 5 SRLYINSSTATE = 0;

90 5 D;

91 4 DO; .
2 5 RLINPRLSOUTSBFR(SRLSINSPRT) = NEXT$BYTE;
B 5 RLSINSPRT = SRLYINSPRT + 1;

9% 5 RL$INSCNT = SRL$INSCNT - 1;

% 5 RL$INSSTATE = 3;

% 5 END;

97 & END;

%8 3 END; /% END OF CASES %/

99 2 END SERTAL$CHARSIN;

The serial character output procedure is similar to
the serial character input procedure. During state 0
the parallel inputs of the 8255’s are stored in the
serial output parallel input buffer for transmission.

100 1 SERIAL$CHAR$OUT: PRﬁCEDURE;

01 2 DECLARE' (CHAR, TEHP) BYTE;
02 2 CHAR = 0;
103 - 2 DO CASE SRLOUTSTATE;
/% SRL OUT STATE 0 = RECORD MARK */
04 3 5
105 4 AR = i
106 4 CALL PARALLEL$IN;
07 4 SRLOUTSTATE = 1;
108 4 END;
/% SRL OUT STATE 1 = NMB PRTS ¥/
109 3
110 4 “1ep - phL INNMBPRTS,
no4 SRL$OUTSCN
2 4 SRLSOUTSSTATE = 2;°
113 4 H N .
/* SRL OUT STATE 2 = SIRT PRT */
13 D0;
15 4 TEMP = PRLSINSSTRT$PRT;
116 4 SRLOUTPRT = TEMP;
M7 4 SRLOUTSTATE = 3;
18 4 END;
/% SRL OUT STATE 3 = HI ORDER HALF DATA BYTE */
193 H
120 b "TEMP = SHR(SRLOUTPRLSTN$BFR(SRLSOUTSPRT) 1) ;
21 4 SRLOUTSTATE = 4;
122 4 END; .

/% SRL OUT STATE 4 = LO ORDER HALF DATA BYTE */
,TEMP = SRLSOUTPRLIN$BFR(SHL$0UT$PRT) AND OFH;

IF SRLOUTCNT = 0 1
SRL$0UT$SI‘ATE = 0,
E .

DO;;
’SRLOUTCNT = SRLOUTCNT - 1;

N
>
EvnunE EEEw

129 SRLSOUTSPRT =:SRL$OUTSPRT + 1
130 SRL§OUTSSTATE = 3;

131 ;'

132 END;

1333 END; /* END OF CASES */

1382 IF CHAR <> ': THEN

135 2 CHAR = CHARSCONV(TENP) ;

36 2 OUTPUT(USART$OUT) ‘= CHAR;

32

D SERIAL$CHAR$OUT;

Interrupt Service Routine. The software. in this
SCADA terminal application example is interrupt
driven. Interrupts, which occur when the trans-
mitter of the 8251 is ready for another character
ot when the receiver has obtained a serial charac-
ter, direct the execution of either the serial input

AFN-01931A

or output character procedures. The following
procedure is entered when an interrupt occurs.

1381 USART$ INTERRUPT: PROCEDURE INTERRUPT 7;

139 -2 DECLARE STATUS BYTE;

1o 2 STATUS = INPUT(USART$STATUS);
w2 IF (STATUS AND TXRDY) = TXRDY THEN
w2 2 CALL SERIAL$CHAR$OUT;

w32 IF (STATUS AND RXRDY) = RXRDY THEN
w2 CALL SERIAL$CHAR$IN;

w2 END USART$INTERRUPT;

Main Program. The function of the main program
is rather simple. It calls the initialization routine
and then loops “FOREVER.” Notice that the
other software is executed only when an interrupt
occurs. Rather than loop idly while waiting for an
interrupt, the “‘main. program” could take advan-
tage of excess CPU time by processing some other
task. .

JHRRRRER RS
MAIN$PROGRAM:
HEERRRRRRER)

He 1 CALL INIT;
147 1

DO FOREVER;
w2 ;

H

w9 1 END;

1-21

SUMMARY/CONCLUSIONS

Further consideration should be given to error
checking in the implementation of a SCADA termi-
nal. A checksum has been used in this example
which provides some error detection but no
correction,

The industrial communication example in this
application note has shown a SCADA terminal.
Besides providing a convenient forum in which to
explore the use of PL/M in an interrupt-driven
environment, this application provides a realistic
and almost fully-developed tool for the replace-
ment of a multitude of parallel lines. Two such
systems can be connected through the serial lines
to provide a parallel to parallel transmission
scheme as shown in Figure 6.

PARALLEL I/0

SCADA TERMINAL

PARALLEL 1/0

<

SERIAL 1/0

SCADA TERMINAL
=1

Figure 6. Two SCADA Terminals

AFN-01931A

e _ . iSBCBO/10A
BIT SERIAL INTERFACE '1

w3s)
SERIAL OUTPUT 33 S :::::t ;T:;T
SERIAL INPUT € GRouP 1
8226 - —:
PARALLEL INTERFACE 14 !
) ouTo & w141 |
out 145 |
our2 147) q pa3 |
out3 T 9] pagTORT 1) |
outa 0137 4 1, - |
ouTs (41:35) P L PAg |
ouTE &~ w133) -~ I PA7 |
ovr? 7437 : |
vee w17 4 | PBo |
outs | o ” 1 | oy |
ouT9 1-3) . 4—__1__ P82 |
outo win d v83 |
outn w19) | vy 0T 2@ '
w ™) ouree n 4 J g |
ouT 3 W13 - 4 . |
ouT x ouT 14 w1-15) 4,__.1_ P87 |
ouT15 a3 | |
1:25) 1 (I oy |
ouT 16 129) N 4,_—| Prronrs ol |
ouriz (31-19) 1. | pc, UPPER |
ouT 18 wan N 4 vcs |
ouT 19 w2 Pl e = =] |
e Lz =~ 4—‘—|— PCsport3ic)f |
out21 1:23) 4 o LOWER |
out22 & w1:31) 4__*|_ pcy |
ouT 23 T vee] ——
| GROUP2

$3222ET BT
(J243) | PAQ I
No (92-45) 1 ton, |
N1 (247) 1 Ph2 |
N2 1249) | e '
N3 wzan 1] parormem| |
N4 (2:39) L dons |
NS 1237 I Jong |
NG w2:35) L {on, !
IN7 | |
$¥333zsad |
25) = |
N8 w27 e |
NX N9 u29) 7o |
SWITCH w10 2 . |
N w2 I pag PORTS® |
INPUT w2 o [os |
= IN13 4215) I rBg |
N4 W217) T |
" B > 3| |
$333333 3 1
w2.25) }—rco |
e (4229 H"Clp0nrs 0| |
N7 (1221) 4+—pcy UrpeR |
IN18 102-19) +—rca |
19 (42:27) +—Pca |
e 1229) Hresporre | |
N2 w23 e tower | |
IN22 (J2:33) —rcy |
IN23 [——]

Figure 7. SCADA Terminal Schematic

AFN-01931A
1-22

PROCESS CONTROL

Many single board computers have already been
applied in the field of process control. Some of the
common denominators observed in these applica-
tions include the use of A/D and D/A peripheral
boards, process monitoring functions such as
servicing display panels for operator interaction,
and alarm indicators.

Temperature Monitoring Application Example

A temperature monitoring system has been devel-
oped for the purposes of a process control applica-
tion example. The single open loop system utilizes
an A/D converter, a multiplexed display, switches
for operator control, and two alarms. A block dia-
gram of the operator’s panel is shown in Figure 8
and a schematic in Figure 9.

TEMPERATURE MONITORING

iSBC 80/10A OPERATOR'S PANEL

PORT 5 (B)
SWITCH
INPUT

PORT 4 (A)

GROUP #2 7-SEGMENT
8255 DATA

PORT 6 (C)
DIGIT SELECT &
ALARM
INDICATORS

Figure 8. Operator’s Panel Block Diagram

Operator’s Panel. The operator’s panel in this
temperature monitoring system contains four
7-segment displays to show the temperature, two
light emitting diodes (LEDs) that indicate alarm-
low and alarm-high conditions, and six switches.
The function of the switches is as follows:

Set Limit controls whether the current
temperature reading is to be displayed (off) or
if upper/lower limits are to be set (on).

Set Hi Lo — when set:limit is “on”, this switch
controls whether the low (off) or high (on)
limit is to be displayed. -

Digit Selects — these two switches control the
selection of the digit of the limit which is to
be modified. The four binary positions 00,
01, 10 ‘and 11 correspond to the four 7-
segment digits.

1-23

Leave It — controls whether the digit selected
is to be incremented (off) or maintained at its
current value (on). When this switch is “off”
the digit selected is incremented every 512 ms

until the operator turns the switch “on”.

Enable Alarm — when set limit is “off” and the
current temperature is displayed, this switch
controls whether the action of the alarm indi-
cators is to be enabled (on) or disabled (off).

The simple means used to set upper and lower
temperature limits is similar to setting the time on
a digital wrist watch.

The purpose of the software is to initialize the
system and then to enter an endless loop which
accumulates 16 readings, updates the displayed
reading or handles limit setting, updates the display
latches, waits 4 ms, and obtains an A/D reading.

Temperature Monitoring Program. This application
example has been coded in Intel’s resident PL/M-
80 language.

/%
PROCESS CONTROL APPLICATION

OPEN LOOP
TEMPERATURE MONITOR
*/
1 TEMPERATURE$MONITOR:
Do;

The declaration statement includes some dimen-
sioned variables with INITIAL attributes. They
provide data strobe positions, a table of bit pat-
terns to convert BCD data to 7-segment data, and
a table of the powers of 10 for binary to BCD
conversions.

2 1 DECLARE
READING ADDRESS,
DIGITS(Y4) BYTE INITIAL (80H,40H,20H,10H),
BCDTO7SEG(11) BYTE INITIAL (3FH,O06H,5BH, IJFH,66H,
6DH, 7CH, OTH, TFH, 67H,0) ,
TENS(4) ADDRESS INITIAL (1000 100, 10 \),
DIGIT$DATA(4) BYTE,
NXT$DIGIT BYTE,
UPDATE$COUNT BYTE,
SET$COUNT BYTE,
- LIMIT(2) ADDRESS,
ACCUM$RDNG ADDRESS,

CWR LITERALLY 'OEBH',
SLCT LITERALLY 'OEAH',
SEGS LITERALLY 'OE8H',
SWIS LITERALLY 'OE9H',
SETUP$PORTS LITERALLY '082H',

SET$LIMIT LITERALLY '001H',
SETHILO LITERALLY '002H',
LEAVE$IT LITERALLY '010H',
DIGIT$SLCT LITERALLY 100CH" ,
ENABLE$ALARM LITERALLY '020H!',
SET$ALARM$LO LITERALLY '001H',
SET$ALARM$HI LITERALLY '003H',
RESET$ALARM$LO LITERALLY 'OOQH',
RESET$ALARM$HI LITERALLY 'Q02H',

TRUE LITERALLY -'OFFH',
FOREVER LITERALLY 'WHILE TRUE';

AFN-01931A

The analog to digital conversion procedure has
been coded in assembly language and is not in-
cluded in this application note. It is declared as an
external typed procedure with no arguments and
returns a value of the type address. The value
returned is the current temperature. The ATOD
procedure is linked later in a step to produce an
absolute load module of the entire program.

31 ATOD: PROCEDURE ADDRESS EXTERNAL;
4 2 END ATOD;

Bit set/reset functions of the 8255 have béen used
to control the alarm-low and high output bits. Use
of this function allows individual bits to be con-
trolled without affecting others of port C which
are concurrently selecting the digit to be multi-
plexed on the display.

RESET$ALARMS: PROCEDURE;

1

2 OUTPUT(CWR) = RESET$ALARMS$LO;
2 OUTPUT(CWR) = RESET$ALARMSHI;
2

« ~oo»

END RESET$ALARMS;

The following procedure is used to initialize the
8255 and several program variables.

INIT: PROCEDURE;
OUTPUT(CWR) = SETUP$PORTS;

CALL RESET$ALARMS;
NXT$DIGIT = 03

ACCUM&RDNG
LIMIT(0) = 0000
LIMIT(1) = 9999;

END INIT;

A multiplexed display is controlled by the soft-
ware. Two ports of an 8255 are required for this
function shown in Figure 9. The first output port
holds the data which drives the four 7-segment dis-
plays in parallel. The second output port contains
four strobes, each going to a separate common
cathode of one of the 7-segment displays.

The update display procedure begins by blanking
7-segment data in the output port. This step avoids
shadows that would be produced if the data for
the next digit position were loaded prior to up-
dating the strobe. The strobe is then advanced,
retaining the alarm bits that occupy other bits of
the same output port. Note that an output con-
figured 8255 port can be read with an 8080A
INPUT instruction to determine the currently
latched output data. The BCD data is obtained
from the next digit position of the DIGITSDATA
array and used as a subscript into a table of
BCDTO7SEG data. The 7-segment data is also

output to the 8255 port in the same statement.
The procedure concludes by advancing the
NXT$DIGIT pointer.

DISPLAY$UPDATE: PROCEDURE;

1
21 2 OUTPUT(SEGS) = 0;
22 2 OUTPUT(SLCT) = (DIGITS(NXT$DIGIT) OR (INPUT(SLCT) AND 03H));
23 2 OUTPUT(SEGS) = BC])TO’(SEG(DIGIT$DATA(NXT$DIGIT)),
24 2 NXT$DIGIT = (NXT$DIGIT+!) AND 03H;
5 2 END DISPLAY$UPDATE;

Binary to BCD Conversion. Binary data from the
A/D converter must be converted to BCD before it
can be used by the DISPLAYSUPDATE procedure
to show the current temperature reading. The
BINTOBCD procedure performs this conversion
operation.

% 1 BINTOBCD: PROCEDURE;

271 2 DECLARE (BCD,I) BYTE;

28 2 I=07103;

29 3 BCD = 0;

0 3 DO WHILE READING >z TENS(I);
314 RE.ADING = nmnmc - TENS(D);
2y = BCD + 1;

33 END;

M3 DIGIT$DATA(I) = BCD;

E END;

36 2 END BINTOBCD;

BCD to Binary Conversion. The reverse conversion
process is also needed. That is, BCD data must be
converted to binary. This procedure is used to take
limits, which are set by manipulating BCD digits,
and convert them to binary data for use in testing
against current temperature readings. Based vari-
ables have been used in this procedure to allow
access to the actual variables used as arguments in
the calling program.

37 1 BCDTOBIN: PROCEDURE (BCD$ARRAY$ADR,BIN$DATA$ADR);

3B 2 DECLARE
(BCD$ARRAY$ADR, BINSDATASADR) ADDRESS,
(BCD$ARRAY BASED BCD$ARRAY$ADR) (4) BYTE,
(BIN$DATA BASED BIN$DATA$ADR) ADDRESS,
1 BYTE; .

39 2 BINsDATA = 05
4 2
/' BIN$DATA = BINSDATA*10 + BCD$ARRAY(I) *
413 BIN$DATA = SHL(BIN$DATA,1) + SHL(BIN$DATA, 3) + BCD$ARRAY(I);
L7 END;
43 2 END BCDTOBIN;

Updating the Display. The UPDATE procedure is
entered each time 16 readings have been taken
from the A/D converter. The UPDATE$COUNT is
reset and the operator switches are input to control
the execution path through the procedure. The
accumulated reading, which is: the total of 16 A/D
readings, is divided by 16 to obtain an average
reading. Then the accumulated reading is zeroed.

AFN-01931A

44 1 UPDATE: PROCEDURE;

2 DECLARE (SWTFLG,HILO,DIGIT) BYTE;
46 2 UPDATE$COUNT = 15;

a7 2 SWT$FLG = INPUT(SWTS);

u 2 READING = SHR(ACCUM$RDNG,4);

4 2 ACCUM$RDNG = 05

Setting Limits. If the set limit switch is ON, the
limits are to be dealt with instead of testing and
displaying the current temperature reading. The
alarms are reset during limit setting. The specified
limit is converted to BCD and then the Leave-It
switch is tested to see if the digit selected is to be
incremented or held constant.

50 2 IF (SWT$FLG AND SET$LIMIT) = SET$LIMIT THEN
51 2 H

52 3 CALL RESET$ALARMS;

53 3 HI$LO = SHR((SWT$FLG AND SETHILO),1);
543 READING = LIMIT(HI$LO);

%5 3 CALL BINTOBCD;

56 3 IF (SWT$FLG AND LEAVE$IT) <> LEAVE$IT THEN

Another counter is used to control digit incre-
menting. Its purpose is to control the rate at which
the selected digit is to be incremented. The major
loop in the program has a 4-millisecond delay.
Thus, 16 A/D conversions require a period of
64 ms which provides an update frequency of 16
readings per second. This is too fast to accurately
select a desired digit which is being incremented.
SET$COUNT insures eight update periods (512
ms) between each increment. After the digit has
been incremented, the BCD limit value is con-
verted back to binary to set the respective limit.
This concludes the action taken when setting
limits.

DO;
IF SET$COUNT = O THEN

H

SET$COUNT = T;

DIGIT = SHR((SWT$FLG AND DIGIT$SLCT),2);

IF DIGIT$DATA(DIGIT) = 9 THEN
DIGIT$DATA(DIGIT) = 0;

ELSE

DIGIT$DATA(DIGIT) = DIGIT$DATA(DIGIT) «+ 1;
CALL BCDTOBIN(.DIGIT$DATA, .LIMIT(HI$LO));
END;

ELSE
SET$COUNT = SET$COUNT - 1;

H

o
<&
WESE VUV VUV EEW

END;

Testing the Averaged Reading. If the set limit
switch is OFF, then the averaged reading is to be
tested and displayed. The averaged reading is con-
verted to BCD and then a test is performed to
determine whether the reading is to be compared
with the upper and lower limits.

ELSE

70 2 D0;
7103 CALL BINTOBCD;
72 3 IF (SWI$FLG AND ENABLE$ALARM) = ENABLESALARM THEN

The reading is compared with both the upper and
lower limits if the alarms have been enabled. The
results of the tests are used to set and reset the
corresponding alarm output bits.

73 3 Do;

T4 IF READING < LIMIT(0) THEN

754 OUTPUT(CWR) = SET$ALARM$LO;
ELSE

7% 4 OUTPUT(CWR) = RESET$ALARM$LO;

IF READING > LIMIT(1) THEN
OUTPUT(CWR) = SET$ALARM$HI;

ELSE
OUTPUT(CWR) = RESET$ALARM$HI;
ND

mn
8

79
80

==

s

If the alarms are not enabled, both the alarms are
reset to the “off” condition.

ELSE
81 3 CALL RESET$ALARMS;
82 3 END;

83 2 END UPDATE;

Main Program. The main program is shown below.
Its purpose is to initialize the system and then to
cycle, continuously executing the code previously
described.

Py
MAIN$PROGRAM:
RERRREREARAE)

8y

85

86

87
88

89
90
92
93

CALL INIT;

DO FOREVER;
ACCUM$RDNG = ACCUM$RDNG + READING;

IF UPDATE$COUNT = 0 THEN
CALL UPDATE;

ELSE
UPDATE$COUNT = UPDATE$COUNT - 1;
CALL DISPLAY$UPDATE;

CALL TIME(40);
READING = ATOD;

[N N U VR X VO)

END;

94

END;

SUMMARY/CONCLUSIONS

The goal of this application example is to demon-
strate some of the common functions required for
process control systems. Rather than show a small
portion of a larger, more complex problem, this
example was chosen because it presents a complete
solution to a smaller problem. In summary, refresh-
ing a multiplexed display was shown. Conversion
procedures for binary to BCD and BCD to binary
were used. A simple technique, in terms of hard-
ware requirements, was used to enter lower and
upper test values. And, limits testing was done,
providing alarm indicators.

AFN-01931A

iSBC 80/10A x-Logic
Vee b :
_____ 9 S L .
r ~I :> % :, :, Sk OPERATOR'S PANEL
23222
| | (42:13)
PBs ———1 ENABLE ALARM
| 11 w21
snoup sz | PB4 | LEAVE IT
8256 I 83 ! {J2-3) e
I PORT 5 (B} | 3 J2-9) DIGIT SFLECT:
| PB2 | .
| PB1 W2.7) SETHI/LO ~
| pBo |+ 125 SETLIMITS
| | 1L
| b
| . I 2 vee
| | L < < <E & < <
| | b s b bS s :b. s 200
| | 7437 :
| v 1235) N
—‘—-' > VWA
IN
I oag | (492:37) " p \-'
| > €
| pag f— 1'\, (239) AN~ — 6:
| | 7~
| paq | . 1’> (J2:41) A g - .
PORT 4 (A) g . \
8 S N S 4
| | N
(92.47)
l poa > g
! onr L Do 2 %
| | € ’ £
N (243) 8 g \5
| AAA
| PA - VWA
! i v '
| | Cl3 12 1 6 5 3 4 10
| I A B c D E F G Dp
| 29
| : 7437 : : .
N W233)
| 7 L
! N
| ! 2
| |
o 4231)
| PCs [l'> -
| |
| | . &
| | (02:29) |
| =
| |
| PoRTE (@) | | 2.9
| l (J2-27)
| pca L_’____DA] TIL313
| 1 ‘,
: : R . I = . vee
| (12:23) . '
|] ——'——-DF — —¢ .- ALARMHI
‘ ‘ T B
| |
| i {> (42:25) : @-—AM- ALARM |?o
(— 4
_Figure 9. Operator's Panel Schematic
1-26 AFN-01931A

1/0 DEVICE CONTROLLER

Peripheral processors have become common ele-
ments in computer systems of all sizes and capa-
bilities. The purpose of such a processor is to
relieve a central processor from the burden of
handling I/O devices. In effect, it is a form of
distributed processing. The iSBC 80/10A can be
used as a peripheral processor and/or as an I/O
device controller. In such a capacity it can signifi-
cantly reduce the amount of hardware required to
interface peripherals. Because the iSBC 80/10A
controls only I/O, it is of little consequence that
it must do a great deal of detail work that other-
wise wastes the processing capability of a larger
central processor.

Consider the activity of producing a listing on a
line printer. The overhead in maintaining a pro-
gram in the queue of a central processor which is
producing data for a line printer can seriously
impact system throughput. If, however, the pro-
gram were to send the list to a disk file and then
command a peripheral processor to take care of the
printing, a significant improvement in system
performance may be achieved. Printers represent
one example of a large number of I/O devices that
can be controlled by an iSBC 80/10A. Other
devices include cassettes, magnetic tape drives,
paper tape readers and punches, etc.

Character Printer Controller Application Example

The control of a Centronics 306 character printer
is used as an I/O device controller application
example. This example shows the interrupt capa-
bility of mode 1 8255 operation. A block diagram
of the printer controller is shown in Figure 10 and
a schematic in Figure 11.

Table 2. Printer Software Control Block

CENTRONICS

iSBC 80/10A PRINTER

PORT 1 (A)

DATA

PORT 3 (C)

CONTROL

Figure 10. Printer Controller Block Diagram

When the mode 1 or mode 2 configuration is used,
software is generally required to support interrupts
used in conjunction with handshaking operations.
Software routines written for an interrupt driven
environment tend to be more complex than status
driven routines. The added complexity is because
interrupt-driven systems are constructed such that
other software tasks are run while the I/O transac-
tion is in progress. A software routine that controls
a peripheral device is generally referred to as a
device driver. One method of implementing an
interrupt-driven device driver is to partition the
device driver into a “command processor” and an
“interrupt service routine.” The command proces-
sor is the module that validates and initiates user
program requests to the device driver. A common
method of passing information between the various
software programs is to have the requesting routine
provide a device control block in memory. The
device control block used in this application
example is shown in Table 2.

NAME POSITION DEFINITION
Status Byte 0 A 1-byte field which defines the completion status of an 1/0.
00 = Good completion
01 = Error — command already in progress.
Buffer Address Byte 1, 2 Pointer to the start of the data to print.
Character Count Byte 3 Count of the number of characters to print.
Character ' Byte 4 The numbef of characters transferred.
Transferred Count
Completion Byte 5, 6 Address of a user supplied routine which will be called after the 1/0 has been
Address performed.

1-27

AFN-01931A

The command processor validates the transaction
and initiates the operation described by the control
block. Control is then returned to the requester
so that other processing may proceed. The inter-
rupt service routine processes the remainder of the
transaction.

Interrupt Service Routine Requirements. The
interrupt service routine requires the following
functions:

1. The state of the machine (registers, status,
etc.) must be saved so that it may be re-
stored after the interrupt is processed.

The source of the interrupt must be deter-
mined. The hardware may support a register
which indicates the interrupting device, or
the software may poll the device status
registers.

Data must be passed to or from the device.

Control must be passed to the requesting
routine at the completion of the I/O.

The state of the machine must be restored
before returning to the interrupted program.

Printer Controller Program. The software for this
application has been coded using Intel® 8080
Macro Assembly Language.

1/0 DEVICE CONTROLLER APPLICATION

03

15

253

3

45

5; INTERRUPT DRIVEN
6.

7] CHARACTER PRINTER
85

93

The following program equates are used to allow
symbolic reference to the 8255 ports. Group #1
8255 on the iSBC 80/10A has been used because

it will support mode 1 operation.

10 ;

17 jhenns

12 PROGRAM EQUATES

13 jeemek

14 PORTA EQU OE4H ; 8255 PORT A

15 PORTB EQU VESH 3 8255 PORT B

16 PORTC EQU OE6H ; 8255 PORT C

17 CWR EQU 0ETH ; 8255 CONTROL WORD REGISTER

An initialization control word sent to the control
word register of the 8255 will set up the desired
configuration.

Daennn

INITIALIZATION CONTROL WORD
USED TO CONFIGURE THE 8255 AS FOLLOWS:

PORT A - OUTPUT MODE 1
PORT B - INPUT MODE O (NOT USED)

;
;
5
;
i
24 5
H
;
i

27 PORT C LOWER - OUTPUT

28

29 jueesk

30 ICW EQU 101010108 ;5 INITIALIZATION CONTROL WORD

JerERe

1-28

The bit set/reset capability of the 8255 is used to
control the strobe to the printer and to enable/
disable interrupts from the 8255.

325 SET/RESET CONTROL WORDS

33 jekeen

34 STBON EQU 00000001B ; SET STROBE

35 STBOF EQU 000000008 ; RESET STROBE

36 jeRkRs

375 8255 ENABLE/DISABLE INTERRUPT CONTROL WORDS
38 jemkRR

39 IEN EQU 000011018 ; ENABLE INTERRUPTS
40 IDN EQU 000011008 ; DISABLE INTERRUPTS
41 e

Device status, control block, and comp‘letion
equates are shown below. ’

2 5 DEVICE SIATUS EQUATES

ER T

44 LPBSY - EQU 080H ; BUFFER FULL (LINE PRINTER BUSY)
45 INTRA EQU 08H ; INTERRUPT REQUEST

4p jueer

a7 5 CONTROL BLOCK EQUATES

48 jeenak

49 CBST EQU 00H ;3 STATUS BYTE

50 CBUF EQU 01H ; BUFFER ADDRESS

51 CBCC EQU 03H ; CHARACTER COUNT

52 CBCT EQU OlH ; CHARACTER TRANSFERED COUNT

53 CBCMP EQU 05H ; COMPLETION SERVICE ADDRESS
et

55 ; COMPLETION STATUS EQUATES

56 jReRER

57 STGD EQU 00H ; GOOD COMPLETION

58 STE1 EQU 0TH ;5 ERROR - COMMAND ALREADY IN PROGRESS
59 jEeesk

There are two origin statements in this program.
The first origin at 38 hexadecimal is the entry
point used when an interrupt is generated by the
8255. A jump instruction to the printer interrupt
routine is stored at that location. The second
origin at 3000 hexadecimal is the address where
the rest of the code will be located.

60 ; RESTART 7 ENTRY POINT
61 jHewer

62 ORG 0038H

63 JMP. PINT
TR

65 ; PROGRAM ORIGIN

66 HerRk

67 ORG 3000H

68 jHuNwx

An initialization subroutine issues the mode con-
trol word to the 8255 control word register after
reset of the device. The printer strobe must then be
disabled.

69 ;

70 ; INITIALIZATION ROUTINE

5

72} A,H,L REGISTERS MODIFIED

735

Th jaeens

75 INIT

76 MVI A,ICH GET MODE CONTROL WORD

1 OUT CWR OUTPUT TO CONTROL WORD REGISTER
78 MVI A,STBON ; GET SET DATA STROBE CONTROL WORD

ouT
RET

CWR SET DATA STROBE (LOW TRUE SIGNAL)

RETURN TO CALLER

The command processor is started by the user
routine through a subroutine call to PSTRT, with
the address of the control block in the D and E
registers. The command processor insures that an
I/O operation is not already in progress, starts the
I/O, enables interrupts, and returns to the caller so
that other processing may proceed.

AFN-01931A

The flowchart and listing for the command proces-
sor are shown below.

SET
COMMAND ERROR
IN PROGRESS
CLEAR POST TO
cT USER

ENABLE
PROCESSOR
INTERRUPTS

[

RETURN

82
83 jwaNwn
8i ;
gg ; COMMAND PROCESSOR
;
87 ; INPUTS: CONTROL BLOCK ADDRESS IN D AND E REGISTERS
88 ;
89 ; OUTPUTS: START /0 OR ERROR STATUS IN CONTROL BLOCK
90 ;)
91 ; A,H,L REGISTERS MODIFIED
92 ;
93 ;l("i
9l PSTRT:
95 LDA PIPRG+1 ; GET PRINT IN PROGRESS BLOCK ADDRESS
9% ANA A i SEE IF ZERO (PRINT IN PROGRESS)
97 ; IF BLOCK ADDRESS NOT EQUAL TO ZERO THEN
98 ; PRINT IN PROGRESS
99 UNZ PSTE ; IF YES - BRANCH TO ERROR
100 XCHG
101 SHLD PIPRG ; SAVE.CONTROL BLOCK ADDRESS
102 XCHG
103 LXI H,CBCT ; GET INDEX TO CT
108 DAD D ; COMPUTE ADDRESS OF CT
105 MVI M,008 ; CLEAR CT
106 CALL PDATA ; START I/O
107 EI ; ENABLE PROCESSOR INTERRUPTS
108 RET ; RETURN TO CALLER
109 jerssx
110 ; ERROR - TRANSACTION ALREADY IN PROGRESS
117 jaenn
112 PSTE: .
13 MVI A,STE1 ; GET ERROR STATUS CODE
114 JMP POST ; PASS CONTROL TO COMPLETION ROUTINE
15

Interrupt Processing. When the 8255 generates an
interrupt, the interrupt request is serviced by the
8080A CPU. The CPU disables processor interrupts
and then executes the instruction at location 38
hexadecimal, which is a jump to the interrupt
service routine. The interrupt service routine saves
the processor state and polls the 8255 to determine
the source of the interrupt. Once the interrupting
device is identified, the printer output data routine

1-29

is called. After the entire buffer has been printed,
the interrupt service routine passes control to the
user-supplied completion routine. Before returning
from the interrupt, the state of the processor is
restored.

There are a number of error conditions which may
occur, such as an interrupt from a device that does
not have an active control block, or an interrupt
when polling establishes that no device requires
service. Neither of these errors should occur, but if
they do, the driver should perform in a consistent
fashion. The recovery routines implemented to
handle these interrupt error conditions are deter-
mined by the environment of the particular appli-
cation.

The flowchart and listing for the printer interrupt
service routine are shown below.

INT7

SAVE
REGISTERS

No

YES

DISABLE 8255
INT ENABLE
PROCESSOR
INTERRUPTS

1/0 IN
PROGRESS?,

POLL
OTHERS &
PROCESS

ERROR

)

RESTORE
REGISTERS

l

ENABLE
PROCESSOR
INTERRUPTS

RETURN

16 .
117 jasees

18 5 PRINTER INTERRUPT SERVICE ROUTINE

19 5 ALL REGISTERS SAVED AND RESTORED

120 jewenx

121 PINT

122 PUSH PSW ; SAVE PSW

123 PUSH B ; SAVE REGISTER PAIR B AND C
124 ‘PUSH D ; SAVE REGISTER PAIR D AND E
125 PUSH H ; SAVE REGISTER PAIR H AND L
126 jewwss

AFN-01931A

127 5 POLL INTERRUPT SOURCE - SEE OF 8255
128 jHanen .

129 IN PORTC ; GET STATUS OF DEVICE .
130 ANI INTRA ; SEE IF INT <
131 Jz PPOLL ; NO -BRANCH TO POLL OTHER DEVICES IF ANY
132 MVI A,IDN ; GET 8255 INT DISABLE CONTROL WORD
133 ouT CWR ; DISABLE DEVICE INTERRUPTS

134 EL .3 ENABLE PROCESSOR INTERRUPTS ..

135 LHLD PIPRG ; GET CONTROL BLOCK ADDRESS

136 XRA A ; CLEAR A REG

137 CMp H ; SEE IF PRINT IN PROGRESS

138 Jz PIERT ; NO - BRANCH TO ERROR ROUTINE

139 XCHG]

140 CALL PDATA ; PRINT DATA

141 jrree .

142 5 RESTORE REGISTERS AND RETURN FROM INTERRUPT

143 jHewns

144 PRTN

145 pOP H ; RESTORE REGISTER PAIR H AND L

146 poP D ; RESTORE REGISTER PAIR D AND E

47 POP B ; RESTORE REGISTER PAIR B AND C

148 POP PSW ; RESTORE PSW AND A

149 EL ; ENABLE PROCESSOR INTERRUPTS

150 RET ; RETURN TO INTERRUPTED PROCESS

151 jHeses

152 POLL OTHER DEVICES IF ANY

H
153 : IF NO OTHER DIVICES TO POLL - USER SUPPLIED ERROR
H

154 RECOVERY ROUTINE.
155 jHesek

156 PPOLL:

157 JMP PRTN ; RETURN

158 jHeuss

159 5 ERROR - INTERRUPT FROM IDLE DEVICE

160 ; USER SUPPLIED ERROR RECOVERY ROUTINE
161 jHasen

162 PIER1:

163 JMP PRTN ; RETURN

164

The printer output data routine places a character
in the output buffer of the 8255. Data in the
control block is used to direct the transfer of a
character. A data strobe signal is then generated
through the use of the port C bit set/reset feature.

The flowchart and listing for the printer output
data routine are shown below.

PDATA

-
z
<]

YES
DISABLE
PROCESSOR
INTERRUPTS -
ENABLE 8255
INTERRUPTS UPDATE
cT
RETURN l
YES
NO
GOOD ComP
GET CHAR l
1 STORE
ouTPUT STATUS
CHARACTER
GENERATE
STROBE
I POST TO
USER

RETURN

165

166 ;esxns

167 5

168 ; PRINTER OUTPUT DATA ROUTINE

169 ;

}7? H CONTROL BLOCK ADDRESS IN D AND E REG

1;2 e

173 PDATA:

174 IN PORTC ; GET STATUS OF DEVICE

175 ANI LPBSY ; SEE IF BUSY (BUFFER FULL)
176 Jz PD10 3 IF BUSY - BRANCH

177 LXI H,CBCT ; GET INDEX TO CT

178 DAD D ; COMPUTER ADDRESS OF CT

179 MOV AM

180 INR ; INC CT

181 DCX H ;. DEC TO CC

182 CMP M ; SEE IF EQUAL

183 JZ PCOMP ; IF EQUAL - DONE GO TELL USER
184 LXI H,CBUF ; GET INDEX TO BUFFER ADDRESS

;
i
H
H
H
H
H
5
H
H
185 DAD D : COMPUTE ADDRESS OF BUFFER ADDRESS
H
H
H
H
H

186 PUSH D ; SAVE D AND E REGISTERS

187 MOV E,M ; GET LSB OF BUFFER ADDRESS

188 INX H 3 INC TO NEXT BYTE

189 MoV D,M ; GET BUFFER MSB

190 MVL H,00H ; CLEAR H REG

191 MoV L,A ; GET CT -

192 DAD D ; COMPUTER CHARACTER ADDRESS
193 MoV AM 3 GET CHARACTER

194 ouT PORTA ; OUTPUT CHARACTER TO PRINTER
195 MVI A,STBOF ; RESET DATA STROBE (LOW TRUE SIGNAL)
196 QUT Ch

197 INR A ; GENERATE SET CONTROL WORD

198 ouT CWR ; SET DATA STROBE

199 POP D ; RESTORE CONTROL BLOCK ADDRESS
200 Jaup PDATA ; LOOP UNTIL BUSY

201

If the printer is busy at the time the printer output
routine is called, a printer busy routine is executed.
The printer ‘busy routine disables the processor
interrupts, enables the 8255 interrupts and then
enables the processor interrupts on its return to
the caller.

202

203 jERRRR
204 ; PRINTER BUSY - RETURN
205 jKREs

206 PD10:

207 DI ; DISABLE INTERRUPTS

208 MVL A,IEN ; ENABLE DEVICE INTERRUPTS
209 ouT CWR 3 SET INTERRUPT ENABLE
210 RET 3 RETURN TO CALLER

When the printer output routine has exhausted the
data from the buffer, a good status code is posted
to the user. The command in progress flag is also
cleared.

211 s
212 ; POST GOOD COMPLETION TO USER

213

214 PCOMP:

215 MVI A,STGD ; GET GOOD STATUS CODE

216 CALL ~ POST ; POST TO USER

217 XRA A ; CLEAR A REG

218 STA PIPRG+1 ; CLEAR COMMAND IN PROGRESS ADDRESS
219 RET ; RETURN TO CALLER

220

The post to user completion routine obtains the
completion address from the device control block
and passes cor_xtrol to the user routine.

POST TO USER COMPLETION ROUTINE

H
H
H INPUTS:. STATUS CODE IN A REG

H CONTROL BLOCK ADDRESS IN D AND E REG
2285 OUTPUTS: PASSES CONTROL TO USER COMPLETION ADDRES

H SPECIFIED IN CONTROL BLOCK

H

H

H

230 WITH CONTROL BLOCK ADDRESS IN D AND E RE
231

232 A,H,L,B,C REG MODIFIED

233

234 jeeeex

1-30 AFN-01931A

XCHG

MoV M,A- 3 UPDATE STATUS
238 XCHG
239 LXI H,CBCMP ; GET INDEX TO COMPLETION ADDRESS
240 DAD D ; COMPUTE ADDRESS
2u MOV c,M ; GET LSB OF COMPLETION ADDRESS
242 INX H 5 INC TO NEXT BYTE
243 MOV B,M 5 GET MSB OF COMPLETION ADDRESS
2u4 PUSH B ; PUSH ADDRESS ON STACK
2u5 RET ; PASS CONTROL TO USER ROUTINE
2146 jusnus
2u7 5 DATA AND TABLES
248 jHwurs
249 ORG 3DOCH
250 PIPRG: DW 0 5 IN PROGRESS CONTROL BLOCK ADDRESS

251 ; IF DATA = O NO CONTROL BLOCK IN PROGRESS
252 ; IF DATA <> O CONTROL BLOCK IN PROGRESS
253 jasnss
254 ; END OF MODE ONE EXAMPLE
255 ;EnER

256 END

SUMMARY/CONCLUSIONS

The iSBC 80/10A has the capability to function in
the capacity of a peripheral processor and/or a
device controller. This capability is provided in
part by the interrupt support logic accompanying
the parallel 1/O ports. This application example
shows how the iSBC 80/10A requires only an inter-

connect to the device to be controlled.

iSBC 80/10A CENTRONICS 306

r 7437
| A7 | (41-33)
|
D 1-35)
GROUP =1 : PAs |
8255
| Pas D 41-37)
| I (41-39)
as >
| PORT 1 (A) i) DATA
| PA3
| I (41.45)
| pre [=>
| [v1-41)
PAq —T—b‘
! 41-43)
| PAg
| |
| |
| | 7437
41-25) ___
| PCo —L-I >o DATA STROBE
| : ve
|
PORT 3(C) |
| 1K
| I 1-23) o
I PCs —— ACKNLG
| ACKA | |
L !

Figure 11. Printer Controller Schematic

CONCLUSION

The purpose of this application note has been to
expose the reader to a broad spectrum of potential
applications of the Intel iSBC 80/10A and System
80/10 products. Applications have been presented
in the areas of instrumentation, communication,
process control and I/O device control. The exam-
ples were limited to short problems that could be
completely described.

Intel’s PL/M-80 and 8080 Macro Assembly Lan-
guage were both used in the examples. Instead of
using only assembly language, it was felt that
PL/M-80 should also be shown. Coding in an
algorithmic language is generally more natural than
assembly language and provides these added bene-
fits: reduced program development time and cost,
improved product reliability, and easier program
maintenance.

While the task of actually configuring the SBC
80/10 for the applications has not been described
in this note, detailed instructions are contained in
the tables of Chapter 4 in theiSBC 80/10 and iSBC
80/10A Single Board Computer Hardware Refer-
ence Manual.

The Intel iSBC 80/10A has been designed to pro-
vide users with subsystems that have processing
power, memory storage, parallel and serial pro-
grammable I/O interfaces. A design goal of the
iSBC 80/10A was to minimize the requirements
for customized interface hardware in user applica-
tions. This application note has demonstrated the
achievement of this goal. The net effect is to
reduce the number of tedious design tasks, thus
allowing the systems designer to concentrate on
systems integration and other problems unique
to his job.

1-31

AFN-01931A

APPENDIX A
iSBC 80/10A SCHEMATICS

1-33 AFN-01931A

el

VY1€610-N4V

) TORDYIN/
57A1L PROM ROYIN/

ZnL
708

poPenn-g 28
a=—=*0

T7A1 RAaMm RDYIN/

Ado
14804

P2-55

MOTES: UMLESS OTHERWISE SPECIFIED;

1. THIS DOCUMENT REFLECTS ARTWORK REV 'l
2. RESISTOR VALUES ARE IN OHMS

Ifaw 5% .

=. CAPACITOR VALUES ARE IN MICROFARADS ISV

4. ON Ji AND J2,EVEN PINS ARE GROLNO

|> A3 THRU Al1,2123-26 ARE SHOWN FOR
CLARITY. ACTUAL COMPONENTS ARE

CUSTOMER

INSTALLED-

[E= aey,92,19 Mav BE SUBSTITUTED WITH
A

TaLSI3B.

=] e ot
o
e e
k2 oBi -2
| S
8226 p—SfEn asol
‘A4T
23
171 o
Aa7 12
S)iz o 415 H
- |
79509 Il
R37 r27 o2 £ ;
S
BrSLE! 0,8 9 1
Jasoz 1430% S
DHLDA B0’ DHLDA o
S5
=
5
572
S 2 ea g1
L
st o0—o0 2-56 1
el @3 Z0)]
;
=

0% .

(igaanz MHE)
(T

=

Tow/

RESET 1-Y
osc

22 A
ADV I0W/

BUSY,

ccLk/ (9:216 MHz)
BCLK/ (9.216MHE)

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

Se-t

VIEBLO-NAY

2oL
EFY

oL

ADR 8
ADR'S
ADR A
ADREF

(AOR &
ADR C

0P =%

G Zsoron-d

<l

AT

2 Tioof%
¢
51S Toa®

e
SRS Tiosf?
oD sma-4
logw A3
PeE e

s

LoC 2CdP

i rrretd

LOC 3DPB

3
8

P ——
JensuN-

%@
5
4

&
|

o
i

LoC 3BRd

o
Po1Ae oo o
=itz 2
D T/o. 1
a3 N 37c
S||s T z
SpE Tiogfl oM3
=lom enas
W A
odce =
= J
Loc 2FeR

DME
s
3Zc
Y
oM

i P2
2 e
b IYYY
) o1
P
il Py

RAMRDY IN/ T8 S 788

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

9€-1

VIE6LO-NIY

R

-8

YOIONPHN

g

ADEA

B

o1 t <
£

ADRE

Z7a1 RAMEDYIN/

28l MEMR/

+SVeizv sV

A®
|
z
3
.
3l|s
<
x| DY
A9
oM |
2 Tz
=]
be
St zzen
oM |
.
D— 3 s s ons
141802 El a2 1K kg
- 1
! o5y ogs [T .
80ARD 5
Ou B0 >
£141500 =7
8V MEM CMD/ =
2 500 b= 1/oa
u ezic
B P2 ©ofce, Sehy "
2o8s p, papal s
Aa3 2 o8¢ v 0 S P
= © e, S5 o]
74L804 ? N;N
A43
91,>:e MEM__RD
14500
M¥Ls04 :ﬁ e PROM RDY 1N/
Zea
ADREF Z_Zma&

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

281

VIE6LO-NIY

AL ADV_ IOW, a1
%m: Ioe// > JA30) Fa(,—“j" IomDYIN/ TZCa
S csi/
She csa/
DRZ I
? E
Zo :
2 2
+ 1
ADRG
\ZAI osc
TTY Tx
240 5] RECEIVED DATA
1] DATA SET RDVY
LR TO SEND
Re
-i2v Z& TTv Tx ReT
petten
-2V DATA CARRIER RET
Ai2,20K
I3
awssisane [—8 &
[=
|
[izv
[R INT 51/ DA
. 250 R
W
T Rx sk e
RECENECLKITY RY RETRN ‘ i
i 2
TRANSMITTED DATA 3 >
I 2 -iZas
Tx CLK /DATA TeERML ROv [TE}— g
[o8
REQ TO SEND [T} s
9
&] TTY RD CONTROL
— RV -— TTY RD CONTROL. RET
L 26
- 47
2w
1 ow/
AL HE(TTLY
T ESET
T ADRQ®

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

8¢-1

V1I€6L0-NJY

i
53

5 R
N L3
1 Sy SRR SRPI
" ® K Sk
B>
2
L i
= {3s)
L
v
ere| !
K i
o [[
J S (=]
tele, e il
o oasfe] TeRn oyl e}
3 1o 14 Y
8ss L a T . AIEI
PORTE4 | & a5 4 & G
9 5 s pas »_.__—._‘74‘ INTS5/
TaLso2 . Zne
s "
5] 8 z5)
al A3 =
(3 d
13 : = | 21
3 2 =
— (L
48 ot
f = v
" [
e - &0
P T n =]
-5Y = |2 EE)
=5V - T IusIcza.mZB.w :!
q: 22 Im] 5] e L4
= [
+zv [
esotl Laa 1 ces2r Vo
- 50,65 - c233l '
g2 T '[o1 G Bl =
-]
ce3't L co + u =
2z | T -0 =]
-2V 8 0
bt
+5V [
[
£9-11,13,14,20,21 Q-6,15-19
thee o lsmipsadsiasis L e ° !
T% 3 5(-58,60,67 . Tig| =1
eyt .ot 2 [o
. A |
D
1 = B> Y|
= 3 T
= 1z Osl

L

A7

6
L

niinkada
v‘
L

-
|

INTR ACK/ OR

TZBL STATUS STROBE

To2 p@ (Bovo)

TIME OUT ACK/
ke

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

6€-1

VIE6L0-N4V

2/0%
™ SOIIN-]— 3 /81
Be—e9Q 3B
5708

ADRO 78R ZLR IS/08

EXT INTR @/

EXT INTR 1/
BPRN

B3 nay 2Bl
34

K 7als04 327K

v

INT 7

q>
P238 +5V +12V

cel
K o1 I lo]9«
2|e:

INTACK/
SZAL v oot Ak
47D 10RDYIN/
FZAL PROM ROYIN/

27AL BAM ROYIN/
3788

MOTES: UMLESS OTHERWISE SPECIFIED:
1. THIS DOCUMEMT REFLECTS AETWORK ‘REVA®,
2. RE3ISTOR VALUES ARE IN OHMS,1/a W, +5%.

3. CAPACITOR VALUES ARE IN MICEOFARADS,25V,+80 —20%.

g OM JV AND J2 EVEM PINS ARE GROUND.

A B a
1
Pvas
3 778 3AZpA
A
7
g 2ks 3708
1
10
1
fis s s
14
Al ADR
wggl%g_ D7 (#080) 328
Wi
17 Pl
feg{Fa oz te2[l—5T) Avea /
2 S
! oz 83 >—5E Aoe i/
80| Z01 oeile ADER/
bio m’:ﬁ ADR 3/
z e Asz
2 12dew BZ26
3P 0B2NG 37 Ave 4/
< 0B AR S/
5 ey
ldes Ast
o228 2 +—Sden 8220
n??a e ADR 8/
= OB1p=E—— 13 ADR 9/
8226 7y
DIk
057
2N
E
e N8 4 : 4% 5/
200 N2 aNs - te—ax) ade £/
r_ 3, 1 T =—{d3a) ADR F/
vy —
2091 =
1ap13 DATA AG/
{5 1/
Ad 7 ’ %i/l
. o A4
gJasor | 7808 8031 2
|T,]A45 i3 1) 0 0N ar
s
MWTE 7
I0RC /
D§M WC /

10
ADV MEM

A3 THRU AlI,21,23 THEU 2l ARE SHOWW FOR CLARITY,

ACTUAL COMPOMEMTS ARE CUSTOMER INSTALLED.

D Ad41,42 t14 MAY BE SUBITITUTED WITH A T4LSI33.

22
ADV_IOW/ 27D&

Qs
eweeee

T BUsY/

CCUK/ (9.216Mu
13] BOLK/ (3216MAT
Pl

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

ov-t

VIEBLO-NDY

U'__.E
[['d
SRR BN-8

2. 8
-—

R n
VENROAHN-8

a
Bw GND I
1 h |
||y o a|s
513 A3 4
| 80284 i
i o]
© 7
iel| 7 5}
0@ a2
1Sy 8 f’z 12|05
14] &
lefv_ce 3 lar
3[13
2
ADY MEM W/ 5 1 oN
TZAl =t z
3
5 a3
S 5
[
oMz
¥rvs P4
AR C 71 o> rPS e
TZo1 - AR D 318 12K 3 1K
ADRE iz
74300 o +5v sV
TN () Lo 1o
781 MEMR/ sJude SlEs
< 741300 41E1 3205 o
2 B afpsople I
ADE A
Zot 2AM RDY 1N/
AR F TZes

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

Ly

VIE6LO-NIY

o 3 osveb

Y sy
659" & T T
6 eyer ez “or
15 N2 v T =
‘Ilolem
¢ =
z
B
a4
/0! 2
33
7
kS
ADR'S 54
24 lio_lz) PROM 1
AB
| o2
L—s| % aeadiin
4| |2 8708|315
|k Slia
| eB> el
a8 osbl]
23
A9 s
0
DM
1
2
3k 2z
2 g
b.
oM 7
|t
%
DR A
)
2]
c 5
/D1 &
10 el
F 8, oL, Fp———————— OB{|
AR E 2], nas 09 i
oy "1 2y i
3 |,aB216 22 12 2
T v
OU BOARD ey, o2 3
74500 10741500 ooy (2T
S & 1 MEM CMY
T7C8 RAM RDY 1N/ rs |— TZDa
1058 9
or, | a
741804 003 f
5.6 1014300 3jon; o075 [5
pad 31peB26 o 312)
R *SV B ol
ISool oe oL DB
[1 1 '
B vewe/ ey ess ot
o €3 DIEM!
1 15

JUMPEE TABLE

2716 | 66-67 [62-70] 74 -75] 77-78

2706 | 65-66 |68 -69(73-74 [76-78

A23

A24

A25

A2

2716

0-7TFF

1000-TFF|

800-FFF

2708

0 -3FF

[400-7FF

{800-BFF

PROM RDY IN/
7C8

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

[44d"

VLIE6LO-NAY

74300

TZAL AV TOW/ '0‘7%00
Al ADV TOW. 8 W
TZAL - IOR/ BN 12]pad TO DY IN/ TZLB
£S1/ 57D8
cs2/ 5/D8
Ade 2 5
3 K
5
ZD\ b,
7 4
a -
74804
ADR 6 ——] v 10
41304 =7
56
< P2t
g; 7 LAAgv—» +5V
B
a3
7781 OsC 25 11y 1x
34, 33 Ty CLK
32
o2
RECEIVED DATA
— {T1] DATA SET READY
L 1 A1z =7 CLEAR TO SEND
33 - _t, tmuss N 25w
CHASSIS GMD (TR0 oﬁl 212V @AA—I{ZE) TTY Tx RETUEM
= & +2v MRJ\/Z\'AE DATA CABRIER RETURN
Bo
v Y ! 74_5.0'2 27K
o 12V 240K c TXE D L 2 A 2)M INT 8/ /08
750, \W @i FRES . S .3 nT §|5
TTY Ry TaK L,AM_AB? o N | %, 25 17 A T =
BECENE LI/ TTY Ry RET 70 10 M ——1alexo Y] o8
EYI Seu s) BJXE azo 4! '
TRANSMITTED mTAF,{ > ' o T3 é«“ﬁz 8751 |2 2
— 3
Tx CLK /DATA TERML RDY] 4l P le 2icK 2 4 [~ T4
| 1 s +sv =g 5 5
REQ TO SEWD [T} > oo | ®
oo I = x5 N 7 07 25 e
500V iz 47,2W J3
= = 5% pa L&) TTY RD COMTROL
. Tows 27K - =17V ==~ ——(IG] TTY RD CONTEQL RET
ZAl b
Al @2(TTL) 2N12907 o
Al REET 25k
by ADR @ .
+5V

INFORMATION AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

-l

VIE6L0-NIY

70l ADRI
TZAl RESET
TAL I
TZal Iow/
4701 csz/
4701 CSI/
o
1
2
3
/D4 2
5
3
7

/81 STATUS STROBE

T/DI D@ (8080)

+] 22 TCcas TC26
10%,i0% .01 | .1

+5v

J
oy B>

HH B EH

B

g

PA D
s ,
2755 B
PORTE4 | 2
2 ap 5
LBIAT o}
Ry 7
<2IRD/ L g|
/ 1
-
34 2
3302 meT e
i Al
2Tz
215
5912
29][3
28112
21|12
PORTES
T

Cel

-5V

L E)
rcoo v T 3065

o!
2z 0% | .0l .

r—i—¢

[cos sv]ca
22 0% | .01

+12v

€25,27,29.31

—12v

BB HH

WIL{)
%E

)
Bl o
E

I

g

o]

0

Ut oronoRG

|3|00] 2| O | =[]l

ol gl e

~

7

'

MM H BHEHE

ZHENE)

sl
13, old

12

i3]

=)

10

3

1]

12

1]

4

5]

1

7]

g

T 55/ 1708

INT ACK/ OR

TIME OUT ACK/
s

AND SCHEMATICS
SUBJECT TO CHANGE WITHOUT
NOTICE, FOR REFERENCE ONLY.

intal

APPLICATION AP-28A
NOTE
ADDENDUM

July 1980

o
{@
29
& \Q
0‘0
N
&
0\ @f’i&i‘;fo

1-45

Intel® MULTIBUS™
Interfacing

Contents
- 'I. INTRODUCTION 1-47
II. MULTIBUS™ SYSTEM BUS
DESCRIPTION..........cocvvvuvnnn. 1-47
OVEIVIEW . oo vt iiiei e e iiiiee e 1-47
MULTIBUS™ Signal Descriptions 1-47
Operating Characteristics 1-51
MULTIBUS™ Slave Interface Circuit
Elementsccovvenn..n. 1-60
III. MULTIBUS™ SLAVE DESIGN
EXAMPLE............coiiiiiivnnnn. 1-62
Functional/Programming
Characteristics 1-62
Theory of Operation 1-63
IV.SSUMMARYcoiiiiiininnnnnn 1-66

1-46

APPENDIX A — MULTIBUS™ PIN
ASSIGNMENTS ...t 1-67

APPENDIX B — BUS TIMING
SPECIFICATIONSccovviinnnn, 1-69

APPENDIX C — BUS DRIVERS,
RECEIVERS, AND TERMINATIONS...... 1-71

APPENDIX D — BUS POWER SUPPLY
SPECIFICATIONScoiiiine, 1-73

APPENDIX E — MECHANICAL
SPECIFICATIONScoiiinnn, 1-74

APPENDIX F — MULTIBUS™ SLAVE
DESIGN EXAMPLE SCHEMATIC
8/16-BITVERSIONovtt 1-75

APPENDIX G — MULTIBUS™ SLAVE
DESIGN EXAMPLE SCHEMATIC
8-BITVERSIONcooiiiiiinants 1-77

AFN-01931A

I. INTRODUCTION

A significant measure of the power and flexibility
of the Intel OEM Computer Product Line can be
attributed to the design of the Intel MULTIBUS
system bus. The bus structure provides a common
element for communication between a wide
variety of system modules which include: Single
Board Computers, memory, digital, and analog
1/0 expansion boards, and peripheral controllers.

The purpose of this application note is to help you
develop a working knowledge of the Intel MULTI-
BUS specification. This knowledge is essential for
configuring a system containing multiple mod-
ules. Another purpose is to provide you with the
information necessary to design a bus interface for
a slave module. One of the tools that will be used to
achieve this goal is the complete description of a
MULTIBUS slave design example. Other portions
of this application note provide an in depth
examination of the bus signals, operating charac-
teristics, and bus interface circuits.

This application note was originally written in
1977. Since 1977, the MULTIBUS specification
has been significantly expanded to cover opera-
tion with both 8 and 16-bit system modules and
with an auxiliary power bus. This application
note now contains information on these new
MULTIBUS specification features.

In addition, a detailed MULTIBUS specification
has also been published which provides the user
with further information concerning MULTIBUS
interfacing. The MULTIBUS specification and
other useful documents are listed in the overleaf of
this note under Related Intel Publications.

II. MULTIBUS™ SYSTEM BUS
DESCRIPTION

Overview

The Intel MULTIBUS signal lines can be grouped
in the following categories: 20 address lines, 16
bidirectional data lines, 8 multilevel interrupt
lines, and several bus control, timing and power
supply lines. The address and data lines are
driven by three-state devices, while the interrupt
and some other control lines are open-collector
driven.

Modules that use the MULTIBUS system bus have
a master-slave relationship. ‘A bus master module
can drive the command and address lines: it can
control the bus. A Single Board Computer is an
example of a bus master. A bus slave cannot

1-47

control the bus. Memory and I/0 expansion
boards are examples of bus slaves. The MULTI-
BUS architecture provides for both 8 and 16-bit
bus masters and slaves.

Notice that a system may have a number of bus
masters. Bus arbitration results when more than
one master requests control of the bus at the same
time. A bus clock is usually provided by one of the
bus masters and may be derived independently
from the processor clock. The bus clock provides a
timing reference for resolving bus contention
among multiple requests from bus masters. For
example, a processor and a DMA (direct memory
access) module may both request control of the
bus. This feature allows different speed masters to
share resources on the same bus. Actual transfers
via the bus, however, proceed asynchronously
with respect to the bus clock. Thus, the transfer
speed is dependent on the transmitting and
receiving devices only. The bus design prevents
slow master modules from being handicapped in
their attempts to gain control of the bus, but does
not restrict the speed at which faster modules can
transfer data via the same bus. Once a bus request
is granted, single or multiple read/write transfers
can proceed. The most obvious applications for the
master-slave capabilities of the bus are multi-
processor configurations and high-speed direct-
memory-access (DMA) operations. However, the
master-slave capabilities of the bus are by no
means limited to these two applications.

MULTIBUS™ Signal Descriptions

This section defines the signal lines that comprise
the Intel MULTIBUS system bus. These signals
are contained on either the P1 or P2 connector of
boards compatible with the MULTIBUS specifi-
cation. The P1 signal lines contain the address,
data, bus control, bus exchange, interrupt and
power supply lines. The P2signal lines contain the
optional auxiliary signal lines. Most signals on
the bus are active-low. For example, a low level on
a control signal on the busindicates active, while a
low level on an address or data signal on the bus
represents logic “1” value.

NOTE

In this application note, a signal will be
designated active-low by placing a slash (/)
after the mnemonic for the signal.

Appendix A contains a pin assignment list of the
following signals:

AFN-01931A

MULTIBUS P1 Signal Lines —

Initialization Signal Line

INIT/

Initialization signal; resets the entire system to
aknown internal state. INIT/ may be driven by
one of the bus masters or by an external source
such as a front panel reset switch.

Address and Inhibit Lines

ADRO/ - ADR13/

20 address lines; used to transmit the address of
the memory location or I/0 port to be accessed.
The lines are labeled ADR0/ through ADR9/,
ADRA/ through ADRF/ and ADR10/ through
ADRI13/. ADR13/ is the most significant bit.
8-bit masters use 16 address lines (ADRO/ -
ADRF/) for memory addressing and 8 address
lines (ADRO/ - ADR7/) for 1/0 port selection.
16-bit masters use all twenty address lines for
memory addressing and 12 address lines
(ADRO/ - ADRB/) for 1/0 port selection. Thus,
8-bit masters may address 64K bytes of memory
and 256 I/0 devices while 16-bit masters may
address 1 megabyte of memory and 4096 1/0
devices. (The 8086 CPU actually permits 16
address bits to be used to specify I/0 devices,
the MULTIBUS specification, however, states
that only the low order 12 address bits can be
used to specify I/0 ports.) In a 16:bit system,
the ADRO0/ line is used to indicate whether alow
(even) byte or a high (odd) byte of memory or
1/0 space is being accessed in a word oriented
memory or I/0 device.

BHEN/

Byte High Enable; the address control line
which is used to specify that data will be trans-
ferred on the high byte (DAT8/ - DATF/) of the
MULTIBUS data lines. With current iSBC
boards, this signal effectively specifies that a
word (two byte) transfer is to be performed. This
signal is used only in systems which incorporate
sixteen bit memory or I/0 modules.

INH1/

Inhibit RAM signal, prevents RAM memory
devices from responding to the memory address
on the system address bus. INH1/ effectively
allows ROM memory devices to override RAM
devices when ROM and RAM memory are

1-48

assigned the same memory addresses. INH1/
may also be used to allow memory mapped I/0
devices to override RAM memory.

INH2/

Inhibit ROM signal; prevents ROM memory
devices from responding to the memory address
on the system address bus. INH2/ effectively.
allows auxiliary ROM (e.g., a bootstrap pro-
gram) to override ROM devices when ROM and
auxiliary ROM memory are assigned the same
memory addresses. INH2/ may also be used to
allow memory mapped I/0 devices to override
ROM memory.

Data Lines

DATO0/ - DATF/

16 bidirectional data lines; used to transmit or
receive information to or from a memory loca-
tion or I/0 port. DATF/ being the most signifi-
cant bit. In 8-bit systems, only lines DATO/ -
DAT7/ are used (DAT7/ being the most signi-
ficant bit). In 16-bit systems, either 8 or 16 lines
may be used for data transmission.

Bus Priority Resolution Lines

BCLK/

Bus clock; the negative edge (high to low) of
BCLK/ is used to synchronize bus priority re-
solution circuits. BCLK/ is asynchronous to the
CPU clock. It has a 100 ns minimum period and
a 35% to 65% duty cycle. BCLK/ may be slowed,
stopped, or single stepped for debugging.

CCLK/

Constant clock; a bus signal which provides a
clock signal of constant frequency for unspeci-
fied general use by modules on the system bus.
CCLK/ has a minimum period of 100 ns and a
35% to 65% duty cycle.

BPRN/

Bus priority in signal; indicates to a particular
master module that no higher priority module
is requesting use of the system bus. BPRN/ is
synchronized with BCLK/. This signal is not
bused on the backplane.

AFN-01931A

BPRO/

Bus priority out signal, used with serial (daisy
chain) bus priority resolution schemes. BPRO/
is passed to the BPRN/ input of the master
module with the next lower bus priority. BPRO/
is synchronized with BCLK/. This signal is not
bused on the backplane.

BUSY/

Bus busy signal; an open collector line driven
by the bus master currently in control toindicate
that the bus is currently in use. BUSY/ prevents

all other master modules from gaining control -

of the bus. BUSY/ is synchronized with BCLK/.

BREQ/

Bus request signal, used with a parallel bus
priority network to indicate that a particular
master module requires use of the bus for one
or more data transfers. BREQ/ is synchronized
with BCLK/. This signal is not bused on the
backplane.

CBRQ/

Common bus request; an open-collector line
which is driven by all potential bus masters
and is used to inform the current bus master
that another master wishes to use the bus. If
CBRQY/ is high, it indicates to the bus master
that no other master is requesting the bus, and
therefore, the present bus master can retain the
bus. This saves the bus exchange overhead for
the current master.

Information Transfer Protocol Lines

A bus master provides separate read/write
command signals for memory and I/0 devices:
MRDC/, MWTC/, IORC/ and IOWC/, as ex-
plained below. When a read/write command is
active, the address signals must be stabilized at all
slaves on the bus. For this reason, the protocol
requires that a bus master must issue address
signals (and data signals for a write operation) at
least 50 ns ahead of issuing a read/write command
to the bus, initiating the data transfer. The bus
master must keep address signals unchanged until
at least 50 ns after the read/write command is
turned off, terminating the data transfer.

A bus slave must provide an acknowledge signal to

1-49

the bus master in response to a read or write
command signal.

MRDC/

Memory read command; indicates that the
address of a memory location has been placed
on the system address lines and specifies that
the contents (8 or 16 bits) of the addressed
location are to be read and placed on the system
data bus. MRDC/ is asynchronous with respect
to BCLK/.

MWTC/

Memory write command,; indicates that the
address of a memory location has been placed
on the system address lines and that data (8 or
16 bits) has been placed on the system data bus.
MWTC/ specifies that the data is to be written
into the addressed memory location. MWTC/ is
asynchronous with respect to BCLK/.

IORC/

1/0 read command; indicates that the address
of an input port has been placed on the system
address bus and that the data (8 or 16 bits) at
that input port is to be read and placed on the
system data bus. IORC/ is asynchronous with
respect to BCLK/.

IOWC/

1/0 write command, indicates that the address
of an output port has been placed on the system
address bus and that the contents of the system
data bus (8 or 16 bits) are to be output to the
address port. IOWC/ is asynchronous with
respect to BCLK/.

XACK/

Transfer acknowledge signal; the required
response of a slave board which indicates that
the specified read/write operation has been
completed. That is, data has been placed on, or
accepted from, the system data bus lines.
XACK/ is asynchronous with respect to BCLK/.

Asynchronous Interrupt Lines

INTO/ - INT7/

8 Multi-level, parallel interrupt request lines;

AFN-01931A

used ‘with a parallel interrupt resolution- net-
work. INTO/ has the highest priority, while
INT7/ has lowest priority. Interrupt lines
should be driven with open collector drivers.

INTA/

Interrupt acknowledge; an interrupt acknowl-
edge line (INTA/), driven by the bus master,
requests the transfer of interrupt information
onto the bus from slave priority interrupt con-
trollers (8259s or 8259As). The specific informa-
tion timed onto the bus depends upon the
implementation of the interrupt scheme. In
general, the leading edge of INTA/ indicates
that the address bus is active while the trailing
edge indicates that data is present on the data
lines. ‘

MULTIBUS P2 Signal Lines — The signals
contained on the MULTIBUS P2 auxiliary con-
nector are used primarily by optional power
back-up circuitry for memory protection.
signals are not bused on the backplane, and
therefore, require a separate connector for each
board using the P2 signals. Present iSBC boards
have a slot in the card edge and should be used
with a keyed P2 edge connector. Use of the P2
signal lines is optional. : .

ACLO

AC Low; this signal generated by the power
supply goes high when the AC line voltage
drops below a certain voltage (e.g., 103v AC in
115v AC line voltage systems) indicating D.C.
power will fail in 3 msec. ACLO goes low when
all D.C. voltages return to approximately 95%
of the regulated value. This line must be pulled
up by the optional standby power source, if one
is used.

PFIN/

Power fail interrupt; this signal interrupts the
processor when a power failure occurs, it is
driven by external power fail circuitry.

PFSN/

Power fail sense; this line is the output of a
latch which indicates that a power failure has
occurred. It is reset by PFSR/. The power fail

P2

1-50

sense latch is part of external power fail cir-
cuitry and must be powered by the standby
., power source. '

PFSR/

Power fail sense reset; this line is used to reset
the power fail sense latch (PFSN/).

MPRO/

Memory protect; prevents memory operation
during period of uncertain DC power, by in-
hibiting memory requests. MPRO/ is driven
by external power fail circuitry.

ALE

Address latch enable; generated by the CPU
(8085 or 8086) to provide an auxiliary address
latch.

HALT/
Halt; indicates that the master CPU is halted.

AUX RESET/

Auxiliary -Reéet; this externally generated sig-
nal initiates a power-up sequence.

WAIT/

Bus master wait state; this signal indicates
that the processor is in a wait state.

Reserved — Several P1 and P2 connector bus
pins are unused. However, they should be regard-
ed as reserved for dedicated use in future Intel
products.

Power Supplies — The power supply bus pins
are detailed in Appendix' A which -contains the
pin assignment of signals on the: MULTIBUS
backplane.)

It is the designer’s responsibility to provide
adequate bulk decoupling on the board to avoid
current surges on the power supply lines. Itis also
recommended that you provide high frequency

AFN-01931A

decoupling for the logic on your board. Values of
22uF for +6v and +12v pins and 10uF for -5v and
-12v pins are typical on iSBC boards.

Operating Characteristics

Beyond the definition of the MULTIBUS signals
themselves, it is important to examine the
operating characteristics of the bus. The AC
requirements outline the timing of the bus signals
and in particular, define the relationships between
the various bus signals. On the other hand, the DC
requirements specify the bus driver character-
istics, maximum bus loading per board, and the
pull-up/down resistors.

The AC requirements are best presented by a
discussion of the relevant timing diagrams.
Appendix B contains a list of the MULTIBUS
timing specifications. The following sections will
discuss data transfers, inhibit operations, inter-
rupt operations, MULTIBUS multi-master opera-
tion and power fail considerations.

Data Transfers — Data transfers on the MULTI-
BUS system bus occur with a maximum band-
width of 5 MHz for single or multiple read/write
transfers. Due to bus arbitration and memory
access time, a typical maximum transfer rate is
often on the order of 2 MHz.

Read Data

Figure 1 shows the read operation AC timing
diagram. The address must be stable (tAS) for a
minimum of 50 ns before command (IORC/ or
MRDCY/). This time is typically used by the bus
interface to decode the address and thus provide
the required device selects. The device selects
establish the data paths on the user system in
anticipation of the strobe signal (command)
which will follow. The minimum command pulse
width is 100 ns. The address must remain stable
for at least 50 ns following the command (t A pp)-
Valid data should not be driven onto the bus prior
to command, and must not be removed until the
command is cleared. The XACK/ signal, which is
a response indicating the specified read/write
operation has been completed, must coincide br
follow both the read access and valid data (tpxy,)-
XACK/ must be held until the command is cleared

(tXAH)

1-51

I0RC/

or
MRDC/
MASTER
SONS MIN-»| | =-tas taH—| [sons miN
SLAVE
ADDRESS STABLE
LINES ADDRESS
IXACK t
-— | CXAH|
I ONS MIN I (;7“5NS
AX
XACK/ » PASSIVE
toxL | stave
ONS MIN—> | IDHR |=-65NSMAX AR
paTA x STABLE DATA X
Figure 1. Read AC Timing
Write Data

The write operation AC timing diagram is shown
in Figure 2. During a write data transfer, valid
data must be presented simultaneously with a
stable address. Thus, the write data setup time
(tpg) has the same requirement as the address
setup time (tpAg). The requirement for stable data
both before and after command (IOWC/ or
MWTC/) enables the bus interface circuitry to
latch data on either the leading or trailing edge of
command.

- tcMp >
100NS MIN
1owc/

or
MWTC/

50NS MIN—>| tas]4— —>| taH |<—50NS MIN

MASTER
ADDRESS
x STABLE ADDRESS TO

LINES X SLAVE

50NS MIN->] DS [—>{DHW}-50NS MIN

DATA
LINES

A X

<« XACK - AH-»
ONS MIN !;)éNg
MAX PASSIVE

Figure 2. Write AC Timing

STABLE
WRITE DATA

XACK/

Data Byte Swapping in 16-bit Systems

A 16-bit master may transfer data on the MULTI-
BUS data lines using 8-bit or 16-bit paths
depending on whether a byte or word (2 byte)
operation has been specified. (A word transfer
specified with an odd I/0 or memory address will
actually be executed as two single byte transfers.)
An 8-bit master may only perform byte transfers
on the MULTIBUS data lines DAT0/ - DAT7/.

In order to maintain compatibility with older
8-bit masters and slaves, a byte swapping buffer
is included in all new 16-bit masters and 16-bit
slaves. In theiSBC product line, all byte transfers
will take place on the low 8 data lines DATO/ -
DAT7/. Figure 3 contains a example of 8/16-bit

AFN-01931A

data driver logic for 16-bit master and slave

systems. In the 8/16-bit system, there are three USER BUS Lowen MULTIBUS
sets of buffers; the lower byte buffer which BVIE
accesses DATO/ - DAT7/, the upper byte buffer 00.074n NR 8287 o | gaaiTo/-0AT?/
which accesses DAT8/ - DATF/, and the swap) ¢ 1T
byte buffer which accesses the MULTIBUS data OE T
lines DATO0/ - DAT7/ and transfers the data
to/from the on-board data bus lines D8 - DF. RECTION
Figure 4 summarizes the 8 and 16-bit data paths swap
used for three types of MULTIBUS transfers. Two EAAI. m: DATO/
signals control the data transfers. _ M2 ol ‘m{m
Byte High Enable (BHEN/) active indicates that o T
the bus is operating in sixteen bit mode, and
Address Bit 0 (ADRO0/) defines an even or odd byte
transfer address. -
On the first type of transfer, BHEN/ is inactive, " 3 R 8287 e
and ADRO/ is inactive indicating the transfer of PeOr e 4 DAT8/-DATF/
an even eight bit byte. The transfer takes place BUFFERED 7400 SWAP oE UPPER
across data lines DATO0/ - DAT7/. BHEN/ :Dof"s’ BYTE
On the second type of transfer, BHEN/ isinactive, ANy | 74532
and ADRO/ is active indicating the transfer of a o
high (odd) byte. On this type of transfer, the odd rase 74532
(high) byte is transferred through the Swap Byte
Buffer to DATO/ - DAT7/. This makes eight bit Figure 3. 8/16-Bit Data Drivers
and sixteen bit systems compatible.
16-BIT DEVICE MULTIBUS BHEN/ ADRO/ MULTIBUS DEVICE
TRANSFER BYTE
DATA PATH TRANSFERRED
DATO/ - DAT7/
H H 8-BIT, EVEN
DATO/ - DAT7/
DATO/ - DAT7/
H L “8-BIT, obD
DATO/ - DAT7/
DATO/ - DAT7/
L H 16-BIT, EVEN
DATO/ - DATF/ AND
obD
DATS8/ - DATF/

Figure 4. 8/16-Bit Device Transfer Operation

1-52 AFN-01931A

The third type of transfer is a 16 bit (word)
transfer. This is indicated by BHEN/ being
active, and ADRO/ being inactive. On this type of
transfer, the low (even) byte is transferred on
DATO/ - DAT7/ and the high (odd) byte is
transferred on DAT8/ - DATF/.

Note that the condition when both BHEN/ and
ADRO/ are active is not used with present iSBC
boards. This condition could be used to transfer a
high odd byte of data on DAT8/ - DATF/, thus
eliminating the need for the swap byte buffer.
However, this is not a recommended transfer type,
because it eliminates the capability of communi-
cating with 8-bit modules.

Inhibit Operations — Bus inhibit operations are
required by certain bootstrap and memory mapped
I/0 configurations. The purpose of the inhibit
operation is to allow a combination of RAM, ROM,
or memory mapped I/0O to occupy the same
memory address space. In the case of a bootstrap,
it may be desirable to have both ROM and RAM
memory occupy the same address space, selecting
ROM instead of RAM for low order memory only
when the system is reset. A system designed to use

memory mapped 1/0, which has actual memory
occupying the memory mapped I/0 address
space, may need to inhibit RAM or ROM memory
to perform its functions.

There are two essential requirements for a success-
ful inhibit operation. The first is that the inhibit
signal must be asserted as soon as possible, within
a maximum of 100 ns (tC]), after stable address.
The second requirement for a successful inhibit
operation is that the acknowledge must be delayed
(tXACKRB) to allow the inhibited slave to ter-
minate any irreversible timing operations in-
itiated by detection of a valid command prior toits
inhibit.

This situation may arise because a command can
be asserted within 50 ns after stable address (tAS)
and yet inhibit is not required until 100 ns (t[)
after stable address. The acknowledge delay time
(tXACKB) is a function of the cycle time of the
inhibited slave memory. Inhibiting the iISBC 016
RAM board, for example, requires a minimum of
1.5 usec. Less time is typically needed to inhibit
other memory modules. For example, the iSBC 104
board requires 475 ns.

Figure 5 depicts a situation in which both RAM

ADDRESS/

=

DATA/

|-

_J— o

/|

—

COMMAND/ (I

DRIVER

ENABLE/

L

| RAM XACK IF NOT INHIBITED

SLAVE A
(RAM) XACK/ }\ ' (
|

'XACKA

LOCAL |
SELECT/ \ /'l

L

-

-
DRIVER
ENABLE/

'xaCKB

XACK/
SLAVEB

tip al

(PROM)
INH1/ \

LOCAL
SELECT/

Figure 5. Inhibit Timing

AFN-01931A

and PROM memory have the same memory
addresses. In this case, PROM inhibits RAM,
producing the effect of PROM overriding RAM.
After address is stable, local selects are generated
for both the PROM and the RAM. The PROM local
select produces the INH1/ signal which then
removes the RAM local select and its driver enable.
Because the slave RAM has been inhibited after it
had already begun its cycle, the PROM XACK/
must be delayed (tXACKRB) until after the latest
possible acknowledgement from the RAM

(tXACKA)-

Interrupt Operations — The MULTIBUS inter-
rupt lines INTO/ - INT7/ are used by a MULTI-
BUS master to receive interrupts from bus slaves,
other bus masters or external logic such as power
fail logic. A bus master may also contain internal
interrupt sources which do not require the bus
interrupt lines to interrupt the master. There are
two interrupt implementation schemes used by
bus interrupts, Non Bus Vectored Interrupts and
Bus Vectored Interrupts. Non Bus Vectored
Interrupts do not convey interrupt vector address
information on the bus. Bus Vectored Interrupts
are interrupts from slave Priority Interrupt Con-
trollers (PICs) which do convey interrupt vector

address information on the bus.

Non Bus Vectored Interrupts

Non Bus Vectored Interrupts are those interrupts
whose interrupt vector address is generated by the
bus master and do not require the MULTIBUS
address lines for transfer of the interrupt vector
address. The interrupt vector address is generated
by the interrupt controller on the master and
transferred to the processor over thelocal bus. The
source of the interrupt can be on the master module
or on other bus modules, in which case the bus
modules use the MULTIBUS interrupt request
lines (INT0/ - INT7/) to generate their interrupt
requests to the bus master. When an interrupt
request lineis activated, the bus master performs it
own interrupt operation and processes the inter-
rupt. Figure 6 shows an example of Non Bus
Vectored Interrupt implementation.

Bus Vectored Interrupts

Bus Vectored Interrupts (Figure 7) are those inter-
rupts which transfer the interrupt vector address
along the MULTIBUS address lines from the
slave to the bus master using the INTA/ command
signal for synchronization.

BUS MASTER

MASTER CPU

INTX/ I

REMOVED BY BUS
MASTER COMMAND

TO SLAVE
\I

BUS SLAVE

1 p
BUS SLAVE
. DATA
INTA/ iNTR/ BUS
INTERRUPT
A 4 STROBE
- >

PROGRAMMABLE INTERRUPT
CONTROLLER

INTERRUPT
REQUEST
FLIP-
FLOP

INTERRUPT

INTERRUPT
STROBE REQUEST

FLIP-
FLOP

R

7 6 5 4 3 2 1 0

IORC/
[¢]

FROM R
MASTER owc/

IORC/
FROM

OR
MASTER IoWC/

INTO/

INT1/

INT2/

INTERRUPT
LINES

INT3/

AR

.
INT7/

Figure 6. Non Bus Vectored Interrupt Implementation

1-54

AFN-01931A

BUS MASTER

MASTER CPU

h

DATA INTR/
BUS INTA/

¥

L INT
PROGRAMMABLE INTERRUPT
CONTROLLER

DATO0/-7/ 0-7
E 3

INTERRUPT ACKNOWLEDGE (INTA/)

BUS SLAVE

INTERRUPT

STROBE

——————»] INTERRUPT

(I0RC/ REQUEST
OR

I0WC/)

FROM
MASTER

7 6 5 4 3 2 1 0

PROGRAMMABLE INTERRUPT
CONTROLLER

INT DATO0/-7/
e 3

INTERRUPT REQUEST (INTx/)

INTERRUPT CODE (ADR8/ - ADRA/)

INTERRUPT VECTOR ADDRESS (DATA BUS)

INTR/

L.

MULTIBUS TIMING

INTA/

[S

ADR8/A X

INTR X ADDRESS

Y-

DATO0/-7

X RESTART # x

XACK/

*
BUS LOCK/

LI

/

* NON MULTIBUS SIGNAL

Figure 7. Bus Vectored Interrupt Logic (With 2 INTA/ Timing Diagram)

When an interrupt request from the MULTIBUS
interrupt lines INTO/ - INT7/ occurs, the interrupt
control logic on the bus master interrupts its
processor. The processor on the bus master
generates an INTA/ command which freezes the
state of the interrupt logic on the MULTIBUS
slaves for priority resolution. The bus master also
locks (retains the bus between bus cycles) the
MULTIBUS control lines to guarantee itself
consecutive bus cycles. After the first INTA/
command, the bus master’s interrupt control logic
puts an interrupt code on to the MULTIBUS
address lines ADR8/ - ADRA/. Theinterrupt code
is the address of the highest priority active inter-
rupt request line. At this pointinthe Bus Vectored

1-66

Interrupt procedure, two different sequences could
take place. The difference occurs, because the
MULTIBUS specification can support masters
which generate one additional INTA/ (8086
masters) or two additional INTA/s (8080A and
8085 masters).

If the bus master generates one additional INTA/,
this second INTA/ causes the bus slave interrupt
control logic to transmit an interrupt vector 8-bit
pointer on the MULTIBUS data lines. The vector
pointer is used by the bus master to determine the
memory address of the interrupt service routine.

If the bus master generates two additional
INTA/s, these two INTA/ commands allow the

AFN-01931A

bus slave to put a two byte interrupt vector address
on to the MULTIBUS data lines (one byte for each
INTA/). The interrupt vector address is used by
the bus master to service the interrupt.

The MULTIBUS specification provides for only
one type of Bus Vectored Interrupt operation in a
given system. Slave boards which have an 8259
interrupt controller are only capable of 3 INTA/
operation (2 additional INTA/s after the first
INTA/). Slave boards with the 8259A interrupt
controller are capable of either 2 INTA/ or 3
INTA/ operation. All slave boards in a given
system must operatein the same way (2INTA/sor
3 INTA/s) if Bus Vectored Interrupts are to be
used. However, the MULTIBUS specification
does provide for Bus Vectored Interrupts and Non
Bus Vectored Interrupts in the same system.

MULTIBUS Multi-Master Operation — The
MULTIBUS system bus can accommodate several
bus masters on the same system, each one taking
control of the bus as it needs to affect data trans-
fers. The bus masters request bus control through
a bus exchange sequence.

Two bus exchange priority resolution techniques
are discussed, a serial technique and a parallel
technique. Figures 8 and 9 illustrate these two
techniques. The bus exchange operation dis-
cussed later is the same for both techniques.

Serial Priority Technique

Serial priority resolution is accomplished with a
daisy chain technique (see Figure-8). The priority
input (BPRN/) of the highest priority master is

tied to ground. The priority output (BPRO/) of the |

highest priority master is then connected to the
priority input (BPRN/) of the next lower priority
master, and so on. Any master generating a bus
request will set its BPRO/ signal high to the next
lower priority master. Any master seeing a high
signal on its BPRN/ line will sets its BPRO/ line
high, thus passing down priority information to
lower priority masters. In this implementation,
the bus request line (BREQ/) is not used outside of
the individual masters. A limited number of
masters can be accommodated by this technique,
due to gate delays through the daisy chain. Using
the current Intel MULTIBUS controller chip on
the master boards up to 3 masters may be accom-
modated if a BCLK/ period of 100 ns is used. If
more bus masters are required, either BCLK/ must
be slowed or a parallel priority technique used.

Parallel Priority Technique

In the parallel priority technique, the priority is
resolved in a priority resolution circuit in which
the highest priority BREQ/ input is encoded with
a priority encoder chip (74148). This coded value is
then decoded with a priority decoder chip (745138)
to activate the appropriate BPRN/ line. The
BPROY/ lines are not used in the parallel priority
scheme. However, since the MULTIBUS back-
plane contains a trace from the BPRN/ signal of
one card slot to the BPRO/ signal of the adjacent
lower card slot, the BPRO/ must be disconnected
from the bus on the board or the backplane trace
must be cut. A practical limit of sixteen masters
can be accommodated using the parallel priority
technique due to physical bus length limitations.
Figure 9 contains the schematic for a typical
parallel resolution network. Note that the parallel
priority resolution network must be externally
supplied.

HIGHEST
PRIORITY
MASTER

LOWEST
PRIORITY
MASTER

BPRN/ I
BPRO/

BPRN/

BPRN/
BPRO/ BPRO/ o

Figure 8. Serial Priority Technique

AFN-01931A

NO. 1 NO.2 NO.7 NO.8
PRIORITY PRIORITY PRIORITY PRIORITY
(HIGHEST) (LOWEST)

BPRAN/ BPRN/ BPRN/ —of BPRN/
LA XN]
BREQ/ Jo— BREQ/ o—] BREQ/ BREQ/ Jo—
BUS
PRIORITY
RESOLVER
d 7 7
6 3
P P
—ofs RE RY sp—
1 1
OTHER ‘ a c ¢ ajo—| omHer
MASTER 20 ©0o MASTER
INPUTS l—o s o to s o— [outeuts
T T
2 4R yR 2Pp—
1 o
—ofo 74148 743138 ¢ fo-

Figure 9. Parallel Priority Technique

MULTIBUS Exchange Operation — A timing
diagram for the MULTIBUS exchange operation
is shown in Figure 10. This implementation
example uses a parallel resolution scheme, how-
ever, the timing would be basically the same for
the serial resolution scheme.

In this example, master A has been assigned a
lower priority than master B. The bus exchange
occurs because master B generates a bus request
during a time when master A has control of the
bus.

The exchange process begins when master B
requires the bus to access someresource such as an
1/0 or memory module while master A controls the
bus. This internal request is synchronized with
the trailing edge (high to low) of BCLK/ to
generate a bus request (BREQ/). The bus priority
resolution circuit changes the BPRN/ signal from
active (low) to inactive (high) for master A and
from inactive to active for master B. Master A
must first complete the current bus command if
one is in operation. After master A completes the
command, it sets BUSY/ inactive on the next
trailing edge of BCLK/. This allows the actual bus
exchange to occur, because master A has relin-
quished control.of the bus, and master B has been
granted its BPRN/. During this time, the drivers

1-57

for master A are disabled. Master B must take
control of the bus with the next trailing edge of
BCLK/ to complete the bus exchange. Master B
takes control by activating BUSY/ and enabling
its drivers.

It is possible for master A to retain control of the
bus and prevent master B from getting control.
Master A activates the Bus Override (or Bus Lock)
signal which keeps BUSY/ active allowing con-
trol of the bus to stay with master A. This
guarantees a master consecutive bus cycles for
software or hardware functions which require
exclusive, continuous access to the bus.

Note that in systems with only a single masteritis
necessary to ground the BPRN/ pin of the master,
if slave boards are to be accessed. In single board
systems which use a CPU board capable of Bus
Vectored Interrupt operation, the BPRN/ pin must
also be grounded.

In a single master system bus transfer efficiency
may be gained if the BUS OVERRIDE signal is
kept active continuously. This permits the master
to maintain control of the bus at all times, there-
fore saving the overhead of the master reacquiring
the bus each time it is needed.

The CBRQ/ line may be used by a master in
control of the bus to determine if another master

AFN-01931A

/ BCLK/

TRANSFER
REQUEST/

tgcy |

-

(LOW)

MASTER A
BREQ/

(LOW)

[]

.
AN

o
MASTER A UsS
ON BUS HANGE

MASTER B
ON BUS

|

taH

HIGH IMPEDENCE
STATE

\ HIGH IMPEDENCE

\

e
{ acTive !

[

ACTIVE

|
|
]

/ O
BPRN/ /Vl
PRIORITY J
REgObwrl‘ON
H
TRANSFER
HERE REQUEST/ K
MASTER B BREQ/ \>]
8PRN/ (,1
*NOTE: BUS PRIORITY MUST BE RESOLVED
WITHIN ONE BCLK/ PERIOD.
BUSY/ K
ADDRESS/ ACTIVE STATE l
MASTER A COMMAND/ ACTIVE
DRIVER
EXCHANGE
NS ENABLE/
SHOWN
HERE
HIGH IMPEDENCE
ADDRESS/
HIGH IMPEDENCE
MASTERB { COMMAND/
DRIVER
ENABLE/

—

Figure 10. Bus Control Exchange Operation

requires the bus. If a master currently in control of
the bus sees the CBRQ/ line inactive, it will
maintain control of the bus between adjacent bus
accesses. Therefore, when a bus access isrequired,
the master saves the overhead of reacquiring the
bus. If a current bus master sees the CBRQ/ line
active, it will then relinquish control of the bus
after the current bus access and will contend for
the bus with the other master(s) requiring the bus.
The relative priorities of the masters will deter-
mine which master receives the bus.

1-68

Note that except for the BUS OVERRIDE state, no
single master may keep exclusive control of the
bus. This is true because it is impossible for the
CPU on a master to require ccntinuous access to
the bus. Other lower priority masters will always
be able to gain access to the bus between accesses
of a higher priority master.

Power Fail Considerations — The MULTIBUS
P2 connector signals provide a means of handling
power failures. The circuits required for power

AFN-01931A

3ms —»‘

AC LINE

VA~

115 VAC l

ACLO

| »200 ns MAX
4.75VDC

+5VVce

4.75vDC
AN

PFIN/

0-200 ns

PFSN/

MPRO/

\

(2.5 ms]«—

0ns MIN
<— 100 ns MIN —>|

INIT/

POWER DOWN

—

|«——s5msMIN—»]

AN

POWER UP

Figure 11. Power Fail Timing Sequence

failure detection and handling are optional and
must be supplied by the user. Figure 11 shows
the timing of a power fail sequence.

The power supply monitors the AC power level.
When power drops below an acceptable value, the
power supply raises ACLO which tells the power
faillogic that a minimum of three milliseconds will
elapse before DC power will fall below regulated
voltage levels. The power fail logic sets a sense
latch (PFSN/) and generates an interrupt (PFIN/)
to the processor so the processor can store its
environment. After a 2.5 millisecond timeout, the
memory protect signal (MPRO/) is asserted by the
power fail logic preventing any memory activity.
As power falls, the memory goes on standby
power. Note that the power fail logic must be
powered from the standby source.

As the AC line revives, the logic voltage level is
monitored by the power supply. After power has
been at its operating level for one millisecond
minimum, the power supply sets the signal ACLO
low, beginning the restart sequence. First, the
memory protect line (MPRO/) then the initialize
line (INIT/) become inactive. The bus master now
starts running. The bus master checks the power
fail latch (PFSN/) and, if it finds it set, branches to

1-59

a power up routine which resets the latch (PFSR/),
restores the environment, and resumes execution.

Note that INIT/ is activated only after DC power
has risen to the regulated voltage levels and must
stay low for five milliseconds minimum before the
system is allowed to restart. Alternatively, INIT/
may be held low through an open collector device
by MPRO/.

How the power failure equipment is configured is
left to the system designer. The backup power
source may be batteries located on the memory
boards or more elaborate facilities located off-
board. The location of the power fail logic
determines which MULTIBUS power fail lines are
used. Pins onthe P2 connector have been specified
for the power failure functions for use as needed.

To further clarify the location and use of the power
fail circuitry, an example of a typical power fail
system block diagram is shown in Figure 12. A
single board computer and a slave memory board
are contained in the system. It is desired to power
the memory circuit elements of the memory board
from auxiliary power. The single board computer
will remain on the main power supply. To ac-
complish this, user supplied power fail logic and

AFN-01931A

SINGLE SLAVE:
BOARD MEMORY
COMPUTER BOARD
o
g i i
oal | 2zl ga [8ql [l
a wi
szl | &9 szl 152 (g
ol afa a3 a =
< ‘ MULTIBUS ™™
g g §
-
173 JslelEl © » 2
< g gl (2R 9‘ e y I ﬁ 9
=3 (el tvad [N W z -
N EAVAS S &3 Zs 2
. |
FRONT power |* [auxiwary |* [oouen
PANEL FAIL POWER SUPPLY
SWITCH LOGIC SUPPLY

* USER SUPPLIED

Figure 12. Typical Power Fail System Block Diagram

an auxiliary power supply have been included in
the system.

The single board computer is powered from the P1
power lines and accesses the P2 signal lines
PFIN/, PFSN/ and PFSR/ (only the P2 signal
lines used by a particular functional block are
shown on the block diagram). The PFSR/ line is
driven from two sources: a front panel switch and
the single board computer. The front panel switch
is used during normal power-up to reset the power
fail sense latch. The single board computer uses
the PFSR/ line to reset the latch during a power-up
sequence after a power failure. Current single
board computers must access the PFSN/ and
PFSR/ signals either directly with dedicated
circuitry and a P2 pin connection or through the
parallel I/0 lines with a cable connection from the
parallel 1/0 connector to the P2 connector.

The slave memory board uses both the P1 and P2
power lines, the P2 power lines are used (at all
times) to power the memory circuit elements and
other support circuits, the P1 power lines power all
other circuitry. In addition, the MPRO/ line is
input and used to sense when memory contents
should be protected.

The power fail logic contains the power fail sense
latch, and uses the PFSR/ and ACLO lines for
inputs and the PFIN/ PFSN/, and MPRO/ lines
for outputs.. The power fail logic must be powered
by the P2 power lines.

1-60

DC Requirements — The drive and load charac-
teristics of the bus signals are listed in Appendix
C. The physical locations of the drivers and loads,

" as well as the terminating resistor value for each

bus line, are also- specified. Appendix D contains
the MULTIBUS power specifications.

MULTIBUS™ Slave Interface
Circuit Elements

There are three basic elements of a slave bus
interface: address decoders, bus drivers, and
control signal logic. This section discusses each of
these elements in general terms. A description ofa
detailed implementation of a slave interface is
presented in a later section of this application note.

Address Decoding — This logic decodes the
appropriate MULTIBUS address bits into RAM
requests, ROM requests, or I/0 selects. Care must
be taken in the design of the address decode logic
to ensure flexibility in the selection of base address
assignments. Without this flexibility, restrictions
may be placed upon various system configura-
tions. Ideally, switches and jumper connections
should be associated with the decode logic to
permit field modification of base address assign-
ments.

The initial step in designing the address decode
portion of a MULTIBUS interface is to determine
the required number of unique address locations.
This decision is influenced by the fact that
address decoding is usually done in two stages.
The first stage decodes the base address, pro-
ducing an enable for the second stage which
generates the actual device selects for the user
logic. A convenient implementation of this two
stage decoding scheme utilizes a pair of decoders
driven by the high order bits of the address for the
first stage and a second decoder for the low order
bits of the address bus. This technique forces the
number of unique address locations to be a power
of two, based at the address decoded by the first
stage. Consider the scheme illustrated in Figure
13.

As shownin Figure 13, the address bits A4 - AB are
used to produce switch selected outputs of the first
stage of decoding. The 1 out of 8 binary decoders

AFN-01931A

have been used. The top decoder decodes address
lines A4 - A7, and the bottom decoder decodes
address lines Ag-Apg. Ifonly addresslines Ag-A7
are being used for device selection, as in the case of
1/0 port selection in 8-bit systems, the bottom
decoder may be disabled by setting switch S2to the
ground position. Address lines A7 and Ag drive
enable inputs E2 or E3 of the decoders. The
address lines A - A3 enter the second stage
address decoder to produce 8 user device selects.
The second stage decoder must first be enabled by
an address that corresponds to the switch-selected
base address.

Address decoding must be completed before the
arrival of a command. Since the command may
become active within 50 ns after stable address,
the decode logic should be kept simple with a
minimal number of layers of logic. Furthermore,
the timing is extremely critical in systems which
make use of the inhibit lines.

A linear or unary select scheme in which no binary
encoding of device address (e.g., address bit A
selects device 0, address bit A1 selects device 1,
etc.) is performed is not recommended because the
scheme offers no protection in case multiple

R0 Ao Dsg
M Ay DSy
A2 Ao DSy
A3 E2/E3 DS3
DS,
8205 D8
DECODER Rl
— 6
E1 DSs7
SECOND STAGE USER
DEVICE SELECTS
Ag o
As A —3
! ——o SWITCH
A A2 —3 st
A7 E2/E3 —3
——o0
8205 f—o
DECODER
e
74532
Ag— A |—o
Ag — A, —=
A A, —
AB E2/E3 —s3 SWITCH
8205 9 s2
DECODER |—0
E - —_
= FIRST STAGE BASE
ADDRESS DECODER
Figure 13. Two Stage Decoding Scheme

1-61

devices are simultaneously selected, and because
the addressing within such a system is restricted
by the extent of the address space occupied by such
a scheme.

Data Bus Drivers — For user designed logic
which simply receives data from the MULTIBUS
data lines, this portion of the bus interface logic
may only consist of buffers. Buffers are required
to ensure that maximum allowable bus loading is
not exceeded by the user logic.

In systems where the user designed logic must
place data onto the MULTIBUS data lines, three-
state drivers are required. These drivers should be
enabled only when a memory read command
(MRDC/) or an I/0 read command (IORC/) is
present and the module has been addressed.

When both the read and write functions are re-
quired, parallel bidirectional bus drivers (e.g., Intel
8226, 8287, etc.) are used. A note of caution must be
included for the designer who uses this type of
device. A problem may arise if data hold time
requirements must be satisfied for user logic
following write operations. When bus commands
are used to directly produce both the chip select for
the bidirectional bus driver and a strobe to a latch
in the user logic, removal of that signal may not
provide the user’s latch with adequate data hold
time. Depending on the specifics of the user logic,
this problem may be solved by permanently
enabling the data buffer’s receiver circuits and
controlling only the direction of the buffers.

Control Signal Logic — The control signal logic
consists of the circuits that forward the I/0 and
memory read/write commands to their respective
destinations, provide the bus with a transfer
acknowledge response, and drive the system
interrupt lines.

Bus Command Lines

The MULTIBUS information transfer protocol
lines (MRDC/, MWTC/, IORD/. and IOWC/)
should be buffered by devices with very hlgh speed
switching. Because the bus DC requirements
specify that each board may load these lines with
2.0 mA, Schottky devices are recommended. LS
devices are not recommended due to their poor
noise immunity.. The commands should be gated

AFN-01931A

with a signal indicating the base address hasbeen
decoded to generate read and write strobes for the
user logic. .

Transfer Acknowledge Generation

The user interface transfer acknowledge genera-
tion logic provides a transfer acknowledge re-
sponse, XACK/, to notify the bus master that write
data provided by the bus master has been accepted
or that read data it has requested is available on
the MULTIBUS data lines. XACK/ allows the bus
master to conclude its current instruction.

Since XACK/ timing requirements depend on both
the CPU of the bus master and characteristics of
the user logic, a circuit is needed which will provide
a range of easily modified acknowledgeresponses.

The transfer acknowledge signals must be driven
by three-state drivers which are enabled when the
bus interface is addressed and a command is
present.

Interrupt Signal Lines

The asynchronous interrupt lines must be driven
by open collector devices with a minimum drive of
16 mA.

In a typical Non Bus Vectored Interrupt system,
logic must be provided to assert and latch-up an
interrupt signal. In addition to driving the
MULTIBUS interrupt lines, the latched interrupt
signal would be read by an I/0 operation such as
reading the module’s status. The interrupt signal
would be cleared by writing to the status register.

III. MULTIBUS™ SLAVE DESIGN
EXAMPLE

A MULTIBUS slave design example has been
included in this application note to reinforce the
theory previously discussed. The design example
is of general purpose I/0 slave interface. This
design example could easily be modified to be used
as a slave memory interface by buffering the
address signals and using the appropriate
MULTIBUS memory commands. In addition, to
help the reader better understand an application
for an I/0 slave interface, two Intel 8255A Parallel
Peripheral Interface (PPI) devices are shown con-
nected to the slave interface.

The design example is shown in both 8/16-bit
version and an 8-bit version. The 8/16-bit version

1-62

is an I/0 interface which will permit a 16-bit
master to perform 8 or 16 bit data transfers. 8-bit
masters may also use the 8/16-bit version of the
design example to perform 8-bit data transfers.

The 8-bit version of the design example may be
used by both 8 or 16-bit masters, but will only
perform 8-bit data transfers. It does not contain
the circuitry required to perform 16-bit data
transfers.

Both the 8/16-bit version and the 8-bit version of
the design example were implemented on an iISBC
905 prototype board. The schematics for each of
the examples are given in Appendices F and G.

Functional/Programming Characteristics

This section describes the organization of the
slave interface from two points of view, the
functional point of view and the programming
characteristics. First, the principal functions
performed by the hardware are identified and the
general data flow is illustrated. This point of view
is intended as an introduction to the detailed
description provided in the nextsection; Theory of
Operation. In the second point of view, the
information needed by a programmer to access the
slave is summarized.

Functional Description — The function of this
1/0 slave is to provide the bus interface logic for
general purpose I/0 functions and for two Intel
8255A Parallel Peripheral Interface (PPI) devices.
Eight device selects (port addresses) are available
for general purpose I/0 functions. One of these
device select lines is used to read and reset the state
of an interrupt status flip-flop, the other seven
device selects are unused in this design. An
additional eight I/0O device port addresses are
used by the two 8255A devices; four I/0O port
addresses per 8255A (three I/0 port address for
the three parallel ports A, B, and C and the fourth
1/0 port address for the device control register).

Figure 14 contains a functional block diagram of
the slave design example. This block diagram
shows the fundamental circuit elements of a bus
slave: bidirectional data bus drivers/receivers,
address decoding logic and bus control logic. Also
shown is the address decoding logic for the low
order four bits, the interruptlogic which is selected
by this decoding logic, and the two 8255A devices.

AFN-01931A

4 ADDRESS

8
INTERRUP
IDECODING ﬁ>05°,‘ LOGIC

Cso0/ -
cs7/

9 INTERRUPT

4 REQUEST

Do

8255A
PPI
(2)

ADDRESS
ADR4/ - |
VT pp— — L

BASE ADDR SELECT

IORD/ ————
IOWRT/ ———————»
XACK/

CONTROL |—— RD/
LOGIC > WRT/

- [~ BD ENABLE/

16 16
N

DATA
DATO/ -
DATF/

BUS
DRIVERS
Figure 14. MULTIBUS™ Slave Design Example
Functional Block Diagram

V" ON-BOARD DATA BUS DO - DF

Programming Characteristics — The slave
design example provides 16 I/0O port addresses
which may be accessed by user software. The
base address of the 16 contiguous port addresses
is selected by wire wrap connections on the proto-
type board. The wire wrap connections specify
address bits ADR4/ - ADRB/. They allow the
selection of a base address on any 16 byte
boundary. Twelve address bits (ADR0/ - ADRB/)
are used since 16-bit (8086 based) masters use 12
bits to specity I/0 port addresses. If an 8 bit (8080
or 8085 based) master is used with this slave board,
the high order address bits (ADR8/ - ADRB/) must
not be used by the decoding circuits; a wire wrap
jumper position (ground position) is provided for
this.

The 16 I/0 port addresses are divided into two
groups of 8 port addresses by decoding address line
ADR3/. Port addresses XX0 - XX7 are used for
general I/0 functions (XX indicates any hexi-
decimal digit combination). Port address XXO0 is
used for accessing the interrupt status flip-flop and

1-63

port addresses XX1 - XX7 are not used in this
example. Port addresses XX8 - XXF are used for
accessing the PPIs. If port addresses XX8 - XXF
are selected, then ADRO/ is used to specify which
of two PPIs are selected. If the address is even
(XX8, XXA, XXC, or XXE) then one PPl is selected.
If the address is odd (XX9, XXB, XXD, or XXF),
then the other PPI is selected. ADR1/ and ADR2/
are connected directly to the PPIs. Table 1
summarizes the I/O port addresses of the slave
design example. Note that if a 16-bit master is
used, it is possible to access the slave in a byte or
word mode. If word access is used with port
address XX8, XXA, XXC, or XXE, then 16 bit
transfers will occur between the PPIs and the
master. These 16 bit transfers occur because an
even address has been specified and the MULTI-
BUS BHEN/ signal indicates that a 16-bit
transfer is requested.

Theory of Operation

In the preceding section, each of the slave design
example functional blocks was identified and
briefly explained. This section explains how these
functions are implemented. For detailed circuit
information, refer to the schematicsin Appendices
F and G. The schematic in Appendix F is on a
foldout page so that the following text may easily
be related to the schematic.

The discussion of the theory of operation is divided
into five segments, each of which discusses a
different function performed by the MULTIBUS
slave design example. The five segments are:

1. Bus address decoding
2. Data buffers

3. Control signals

4. Interrupt logic

5. PPI operation

Each of these topics are discussed with regard to
the 8/16-bit version of the design example;
followed by a discussion of the circuit elements
which are required by the 8-bit version of the
interface.

Bus Address Decoding — Bus address decoding
is performed by two 82051 out of 8 binary decoders.
One decoder (A3) decodes address bits ADR8/ -
ADRB/ and the second decoder (A2) decodes
address bits ADR4/ - ADR7/. The base address

AFN-01931A

Table 1
SLAVE DESIGN EXAMPLE PORT ADDRESSES

1/0 PORT ADDRESS READ WRITE
BYTE ACCESS'

XX0 Bit 0 = Interrupt Status Reset Interrupt Status
XX1:- XX7 Unused Unused
XX8 Parallel Port A, Even PPI Parallel Port A, Even PPI
XX9 Parallel Port A, Odd PPI Parallel Port A, Odd PPI
XXA Parallel Port B, Even PPI Parallel Port B, Even PPI
XXB Parallel Port B, Odd PPI Parallel Port B, Odd PPI
XXC Parallel Port C, Even PPI Parallel Port C, Even PPI
XXD Parallel Port C, Odd PPI Parallel Port C, Odd PPI
XXE lllegal Condition Control, Even PPI
XXF lllegal Condition Control, Odd PPI

WORD ACCESS

XX0 Bit 0 = Interrupt Status

XX2 - XX6 Unused

XX8 Parallel Port A, Even and Odd PPls
XXA Parallel Port B, Even and Odd PPls
XXC Parallel Port C, Even and Odd PPIs
XXE lllegal Condition

Reset Interrupt Status

Unused

iParallel Port A, Even and Odd PPIs
Parallel Port B, Even and Odd PPIs
Parallel Port C, Even and Odd PPIs
Control, Even and Odd PPIs

XX = Any hex digits, assigned by jumpers; XX defines the base address.

selected is determined by the position of wire wrap
jumpers. The outputs of the two decoders are
ANDed together to form the BASE ADRSELECT/
signal. * This signal specifies the base address
for a group of 16 I/0 ports. Using the wire wrap
jumper positions shown in the schematic, a base
address of E3 has been selected. Therefore, this
MULTIBUS slave board will respond to 1/0 port
addresses in the E30 - E3F range.

If this slave board is to be used with 8-bit MULTI-
BUS masters, the high order address bits mustnot
be decoded. Therefore, the wire wrap jumper
which selects the output of decoder A3 must be
placed in the top (ground) position (pin 10 of gate
A9 to ground).

The low order 4 address lines (ADR(Q/ - ADR3/) are
buffered and inverted using 74LS04 inverters.
These address lines are input to an 8205 for
decoding a chip select for the interrupt logic; the
address lines are also used directly by the PPIs.
LS-Series logic is required for buffering to meet the
MULTIBUS specification for If, (low level input

164

current). S-Series or standard series logic will not
meet this specification.

Address decoder A4 is used to decode addresses
E30 - E37. The CS0/ output of this decoder is used
to select the interrupt logic, thus I/0 port address
E30 is used to read and reset the interrupt latch.
The remaining outputs from decoder A4 (CS1/ -
CS7/) are not used in this example. They would
normally be used to select other functions in a
slave board with more capability. Note that in the
schematic shown in Appendix G for the 8-bit
version of this slave design example, the high
order (ADR8/ - ADRB/) address decoder is not
included and the BHEN/ signal is not used.

Data Buffers — Intel 8287 8-bit parallel bi-
directional bus drivers are used for the MULTI-
BUS data lines DAT0/ - DATF/. In the 8/16-bit
version of the slave board, three 8287 drivers
are used.

When an 8-bit data transfer is requested, either
driver A5, which is connected to.on-board data

AFN-01931A

lines DO - D7, or driver A6, which is connected to
on-board data lines D8 - DF, is used. If a byte
transfer is requested from an even address, driver
A5 will be selected. If a byte transfer from an odd
address is requested, driver A6 will be selected. All
byte transfers take place on MULTIBUS data
lines DAT0/ - DAT7/. When a word (16-bit)
transfer is requested from an even address, drivers
A5 and A7 will be used. Note that if a user program
requests a word transfer from an odd address,
16-bit masters in the iSBC product line will
actually perform two byte transfer requests.

The logic which determines the chip selection
(8287 input signal OE, output enable) signals for
the bus drivers uses the low order address bit
(ADRO/) and the buffered Byte High Enable
signal (BHENBL/). Note that the MULTIBUS
signal BHEN/ has been buffered with an 74L.S04
inverter. This is done to meet the bus address line
loading specification. The SWAP BYTE/ signal
which is generated is qualified by the BD ENBL/
signal and used to select the bus drivers.

The steering pin for the 8287 drivers is labelled T
(transmit) and is driven by the signal RD. When
an input (read) request is active or when neither a
read or write command is being serviced, the
direction of data transfer of the 8287 will be set for
B to A.

The 8287 drivers are set to point IN (direction B to
A) when no MULTIBUS 1/0 transfer command is
being serviced for two reasons. First, if the driver
were pointed OUT (direction A to B) and a write
command occured, it would be necessary to turn
the buffers IN and set the OE (output enable)
signal active before the data could be transferred
to the on-board bus. A possibility of a “buffer-
fight” could occur in some designs if the OE signal
permitted an 8287 to drive the MULTIBUS data
lines momentarily before the steering signal could
switch the direction of the 8287. In this case, both
the MULTIBUS master and the slave would be
driving the data lines; this is not recommended.
(In this particular design, the steering signal will
always stabilize before the OE signal becomes
active.)

The second reason the driver is pointing IN when
no command is present is due to the “data valid
after WRITE” requirements of the 8255As. The
8255A requires that data remain on its data lines
for 30 ns after the WRITE command (WR at the
8255A) is removed. This requirement will be met if
the direction of the 8287 drivers is not switched

1-65

when the MULTIBUS IOWC/ signal is removed
(WRT/ could have been used to steer the 8287
instead of RD); and if the capacitance of the on-
board data bus lines is sufficient to hold the data
values on the bus after the 8287 OE signal and the
8255A PPI WRT/ signal goinactive. The on-board
data bus may easily be designed such that the
capacitance of the lines is sufficient to meet the 30
ns data hold time requirement. In addition, the
current leakage of all devices connected to the on-
board bus must be kept small to meet the 30 ns data
hold time requirement.

The 8-bit version of this design example uses only
one 8287 instead of the three required by the 8/16-
bit version. The logic required to control the swap
byte buffer is also not necessary. The chip select
signal used for the 8287 is the BD ENBL/ signal.

Control Signals — The MULTIBUS control
signals used by this slave design example are
IORC/,IOWC/, and XACK/. IORC/ and IOWC/
are qualified by the BASE ADR SELECT/ signal
to form the signals RD and WRT. RD and WRT
-are used to drive the interrupt logic, the PPI logic
and the XACK/ (transfer acknowledge) logic.

For the XACK/ logic RD and WRT are ORed to
form the BD ENBL/ signal which is inverted and
used to drive the CLEAR pin of a shift register.
When the slave board is not being accessed, the
CLEAR pin of the shift register will be low (BD
ENBL/ is high). This causes the shift register to
remain cleared and all outputs of the shift register
will be low. When the slave board is accessed, the
CLEAR pin will be high, and the A and B inputs
(which are high) will be clocked to the output pins
by CCLK/. Toselect a delay for the XACK/ signal,
a jumper must be installed from one of the shift
register output pins to the 8089 tri-state driver.
Each of the shift register output pins select an
integer multiple of CCLK/ periods for the signal
delay. Since the CCLK/ signal is asynchronous,
the actual delay selected may only be specified
with a tolerance of one CCLK/ period. In this
example a delay of 3 - 4 CCLK/ periods was
selected; with a CCLK/ periocd of 100 ns, the
XACK/ delay would occur somewhere within the
range of 300 - 400 ns from the time when the
CLEAR signal goes high.

The control signal logic used in the 8-bit version of
the slave design example is identical to. the logic
used in the 8/16-bit version.

AFN-01931A

Interrupt Logic — The interrupt logic uses a
74574 flip-flop to latch an asynchronous interrupt
request from some external logic. The Q output
of the INTERRUPT REQUEST LATCH is output
through an open collector gate to one of the
MULTIBUS interrupt lines. The state of the
INTERRUPT REQUEST LATCH is transferred
to the INTERRUPT STATUS LATCH when a
read command is performed on I/0 port BASE
ADDRESS+0 (E30 for the jumper configuration
shown). The Q output of INTERRUPT STATUS
LATCH is used to drive data line DO of the on-
board data bus by using an 8089 tri-state driver.
If a user program performs an INPUT from I/0
port E30, data bit 0 will be set to 1 if the INTER-
RUPT REQUEST LATCH is set

The purpose of INTERRUPT STATUS LATCH is
to minimize the possibility of the asynchronous
interrupt occuring while the interrupt status is
being read by a bus master. If the latch was not
included in the design and an asynchronous inter-
rupt did occur while a bus master is reading
MULTIBUS data line DAT0/, a data buffer on the
master could go into a meta-stable state. By
adding the extra latch, which is clocked by the
IORD/ command for I/O port E30, the possibility
of data line DAT0/ changing during a bus master
read operation is eliminated.

The INTERRUPT REQUEST LATCH is cleared
when a user program performs an OUTPUT toI/0
port E30.

This interrupt structure assumes that several
interrupt sources may exist on the 'same MULTI-
BUS interruptline (for example, INT3/). When the
MULTIBUS master gets interrupted, it must poll
the possible sources of the interrupt received and
after determining the source of the interrupt, it
must clear the INTERRUPT REQUEST LATCH
for that particular interrupt source.

The interrupt logic for the 8-bit.version of the
design example is identical to the interruptlogic of
the 8/16-bit version of the design example.

PPIOperation — Two8255A Parallel Peripheral
Interface (PPI) devices are shown interfaced to
the slave design example logic. One PPI is con-
nected to the on-board data bus lines DO - D7 and
is addressed with the even I/0 port addresses
E38, E3A, E3C, and' ESE. The second PPI is
connected to data bus lines D8 - DF and is address-
ed with the odd I/0 port addresses E39, E3B,

1-66

E3D, and E3F. The even or odd I/0 port selection
is controlled by using the ADRO address line in
the chip select term of the PPIs, In addition, the
odd PPI (All) is selected when the BHENBL
term is high. This occurs when the MULTIBUS
signal BHEN/ is low indicating that a word
(16-bit) I/0 instruction is being executed. When
a word I/0 instruction is executed, both PPIs will
perform the I/O operation specified.

The specifications of the 8255A device state that
the address lines A0 and Al and the chip select
lines must be stable before the RD or WR lines are
activated. The MULTIBUS specification address
set-up time of 50 ns and the short gate propagation
delaysin this design assure that the address lines
are stable before RD or WR are active.

The data hold requirements of the 8255A were
discussed in a previous section, The 8255A speci-
fication states that data will be stable on the data
bus lines a maximum of 250 ns after a READ
command. This specification was used to select
the delay for the XACK/ signal.

The PPI: operation for the 8-bit version of the
design example is slightly different than that used
for the 8/16-bit version. The chip select signal for
the bottom PPI does not use the BHENBL term
since 16-bit data transfers are not possible with an
8-bit I/0 slave board. Also, the chip select-and
address signals have been swapped so the top PPI
occupies 170 address range X8 - XB, and the
bottom PPI occupies I/0 address range XC - XF (X
is the base address of the 8-bit version). This
swapping ‘of the address lines was not necessary;
however, it was thought to be more convenient to
access the PPIs in two groups of 4 contiguous I/0
port addresses.

IV. SUMMARY

This application note has shown the structure of
the Intel MULTIBUS system bus. The structure
supports a wide range of system modules from the
Intel OEM Microcomputer Systems product line
that can be extended with the addition of user
designed modules. Because the user designed
modules are no doubt unique to particular applica-
tions, -a goal of this application note has been to
describe in detail the singular common element -
the bus interface. - ‘Material has also been
presented to assist the systems designer to under-
standing the bus functions so ‘that successful
systems integration can be achieved.

AFN-01931A

APPENDIX A

PIN ASSIGNMENT OF BUS SIGNALS ON MULTIBUS BOARD P1 CONNECTOR

(COMPONENT SIDE) (CIRCUIT SIDE)
PIN | MNEMONIC DESCRIPTION PIN | MNEMONIC DESCRIPTION
1 GND Signal GND 2 GND Signal GND
3 +5V +5Vdc 4 +5V +5Vdc
POWER 5 +5V +5Vdc 6 +5V +5Vdc
SUPPLIES 7 +12V +12Vdc 8 +12V +12vdc
9 -5V -5Vdc 10 -5V -5Vdc
1 GND Signal GND 12 GND Signal GND
13 BCLK/ Bus Clock 14 INIT/ Initialize
15 BPRN/ Bus Pri. In 16 BPRO/ Bus Pri. Out
BUS 17 BUSY/ Bus Busy 18 BREQ/ Bus Request
CONTROLS 19 MRDC/ Mem Read Cmd 20 MWTC/ Mem Write Cmd
21 IORC/ 1/0 Read Cmd 22 IOWC/ 1/0 Write Cmd
23 XACK/ XFER Acknowledge 24 INH1/ Inhibit 1 disable RAM
BUS 25 Reserved 26 INH2/ Inhibit 2 disable PROM or ROM
CONTROLS 27 BHEN/ Byte High Enable 28 AD10/
AND 29 CBRQ/ Common Bus Request 30 AD11/ Address
ADDRESS 31 CCLK/ Constant Clk 32 AD12/ Bus
33 INTA/ Intr Acknowledge 34 AD13/
35 INT6/ Parallel 36 INT7/ Parallel
37 INT4/ Interrupt 38 INT5/ Interrupt
INTERRUPTS | 39 | |NT2/ Requests 40 | INT3/ Requests
4 INTO/ 42 INT1/
43 ADRE/ 44 ADRF/
45 ADRC/ 46 ADRD/
47 ADRA/ Address 48 ADRB/ Address
49 ADR8/ Bus 50 ADR9/ Bus
ADDRESS 51 | ADR6/ 52 | ADR7/
53 ADR4/ 54 ADR5/
55 ADR2/ 56 ADR3/
57 ADRO/ 58 ADR1/
59 DATE/ 60 DATF/
61 DATC/ 62 DATD/
63 DATA/ Data 64 DATB/ Data
DATA 65 DAT8/ Bus 66 DATY/ Bus
67 DAT6/ 68 DAT7/
69 DATA4/ 70 DATS/
il DAT2/ 72 DAT3/
73 DATO/ 74 DAT1/
75 GND Signal GND 76 GND Signal GND
77 Reserved 78 Reserved
POWER 79 -12v -12Vdc 80 -12v -12Vdc
SUPPLIES 81 +5V +5Vdc 82 +5V +5Vdc
83 +5V +5Vdc 84 +5V +5Vdc
85 GND Signal GND 86 GND Signal GND

All Mnemonics © Intel Corporation 1978

1-67

AFN-01931A

APPENDIX A (Continued)
P2 CONNECTOR PIN ASSIGNMENT OF OPTIONAL BUS SIGNALS

(COMPONENT SIDE) (CIRCUIT SIDE)

PIN MNEMONIC DESCRIPTION PIN . MNEMONIC DESCRIPTION
1 GND Signal GND 2 GND Signal GND
3 5VB +5V Battery 4 5VB +5V Battery
5 Reserved 6 VCCPP +5V Pulsed Power
7 -5VB -5V Battery 8 -5VB -5V Battery :
9 Reserved 10 Reserved)

1 12VB +12V Battery 12 12VB +12V Battery

13 PFSR/ Power Fail Sense Reset 14 Reserved

15 -12 VB -12V Battery 16 -12VB -12V Battery

17 PFSN/ Power Fail Sense 18 ACLO AC Low

19 PFIN/ Power Fail Interrupt 20 MPRO/ Memory Protect

21 GND Signal GND 22 GND Signal GND

23 +15V +15V 24 +15V +15V

25 -15V =15V 26 -15V -15V

27 PAR1/ Parity 1 28 HALT/ Bus Master HALT

29 PAR2/ Parity 2 30 WAIT/ Bus Master WAIT STATE

31 \ 32 ALE Bus Master ALE

33 34 Reserved

35 36 Reserved

37 38 AUX RESET/ Reset switch

39 40

40 42

43 > Reserved 44

45 46

47 48

49 50 Reserved

51 52

53 54

55 56

57 58

59 |/ 60

Notes:

1. PFIN, on slave modules, if possible, should have the option of connecting to INTO/ on P1.

2. Allundefined pins are reserved for future use.
All Mnemonics © Intel Corporation 1978

1-68

AFN-01931A

AP-28A

APPENDIX B
BUS TIMING SPECIFICATIONS SUMMARY
Parameter Description Minimum Maximum Units
tBCY Bus Clock Period 100 D.C. ns
tBw Bus Clock Width 0.35tgCy 0.65tgCY
(Not Restricted)
tSKEW BCLK/skew 3 ns
tPD Standard Bus 3
Propagation Delay
tAS Address Set-Up Time 50 ns
(at Slave Board)
tps Write Data Set 50 ns
Up Time
tAH Address Hold Time 50 ns
tDHW Write Data Hold Time 50 ns
toxL Read Data Set 0 ns
Up Time To XACK
tDHR Read Data Hold Time 0 65 ns
tXAH Acknowledge Hold 0 65 ns
Time
tXACK Acknowledge Time 0 8 us
tcMD Command Pulse 100 9.5 ns
Width
tio Inhibit Delay 0 100 ns
(Recommend < 100 ns)
tXACKA Acknowledge Time of tap + 50 ns 1500
of an Inhibited Slave
txACKB Acknowledge Time of 15 8 us
an Inhibiting Slave
tiAD Acknowledge Disable 0 100 ns
from Inhibit (An (arbitrary)
internal parameter on
an inhibited slave;
used to determine
tXACKA Min.)
talz Address to Inhibits 100 ns
High Delay
tINTA INTA/ Width 250 ns
tCSEP Command Separation 100 ns
1-69 AFN-01931A

AP-28A

APPENDIX B (Continued)

BUS TIMING SPECIFICATIONS SUMMARY

Parameter Description Minimum Maximum Units

tBREQL {BCLK/ to BREQ!/ 0 35 ns
Low Delay

tBREQH {BCLK/ to BREQ/ 0 35 ns
High Delay

tBPRNS BPRN/ to {BCLK/ 22 ns
Setup Time

tBUSY BUSY/ delay 0 70 ns
from VBCLK/

tBUSYS BUSY/ to +BCLK/ 25 ns
Setup Time

tBPRO {BCLK/ to BPRO/ 0 40 ns
(CLK to Priority Out)

tBPRNO BPRN/ to BPRO/ 0 30 ns
(Priority In to Out)

tCBRO {BCLK/ to CBRQ/ 0 60 ns
(CLKto Common

Bus Request)

t{CBRQS CBRQ/ to {BCLK/ 35 ns
Setup Time

txco XACK! to Command! 0 1500 ns
Delay

tBSYO CBRQ/! and BUSY/! — 12 us
to BUSY/!

tccy C-clock Period 100 110 ns

tcw C-clock Width 0.35tccy 0.65tccy ns

tNIT INIT/Width 5 ms

tINITS INIT/ to MPRO/ 100 ns
Setup Time

tpBD Power Backup 0 200 ns
Logic Delay

tPFINW PFIN/ Width 25 ms

tMPRO MPRO/ Delay 20 25 ms

tACLOW ACLO/ Width 3.0 ms

tPFSRW PFSR/ Width 100) ns

ttouT Timeout Delay 5 ~ (D.C.) ms

tDCH D.C. Power Supply 3.0 ms
Hold from ALCO/

tocs D.C. Power Supply 5 ms
Setup to ACLO/

1-70

AFN-01931A

AP-28A

APPENDIX C
BUS DRIVERS, RECEIVERS, AND TERMINATIONS
Driver 1,3 Receiver 2,3 Termination
Bus Signals Location Type oL loH Co. Location L hH Cy |Location| Type R Units
Minma Min,a Maxp Maxma Max,a Maxpf
DATO/~DATF/ | Masters TRI 16 -2000 300 | Masters -08 125 18 |1place | Pullup |22 KQ
(16 lines) and Slaves and Slaves)
ADRO/-ADRB/, | Masters TRI 16 -2000 300 | Slaves -0.8 15 18 [iplace | Pullup |22 KQ
BHEN/
(21 lines)
MRDC/ ,MWTC/ | Masters TRI 32 -2000 300 | Slaves -2 125 18 1place Pullup 1 KQ
(Memory;
memory-
mapped 1/0)
IORC/,IOWC/ | Masters TRI 32 -2000 300 |Slaves -2 125 18 [1place |[Pullup | 1 K@
(110) :
XACK/ Slaves TRI 32 2000 300 | Masters -2 15 18 |iplace |Pullup [510 @
INH1/,INH2/ Inhibiting oc 16 — 300 |[inhibited -2 50 18 |1place | Pullup [1 K@
Slaves Slaves
(RAM, PROM,
ROM, Memory-
Mapped 1/0)
BCLK/ 1place TTL 48 -3000 300 | Master -2 125 18 [Mother- | To+5V 1220 Q
(hﬁasterus) board ToGND | 330 Q@
BREQ/ Each TTL 5 200 60 |Central 2 50 18 |Central [Pullup | 1 KQ
Master Priority Priority
Module Module
(not req)
BPRO/ Each CTTL 5 200 60 | NextMaster -16 50 18 | (notreq)
Master in Serial
Priority
Chain at
its BPRN/
BPRN/ Parallel: TTL 5 -200 300 | Master -4 100 (notreq)
Central
Priority
Module
Serial:Prev
Masters
BPRO/
BUSY/, CBRQ | All Masters 0.C. 20 — 300 | AllMasters -2 50 18 |[1tplace | Pullup | 1 K@
INIT/ Master. O.C. 32 — 300 | All -2 50 18 | 1place Pullup 22 KQ
CCLK/ 1 place TTL 48 -3000 300 | Any -2 125 18 | Mother- | To +5V | 220 Q
board ToGND| 330 @
INTA/ Masters TRI 32 -2000 300 | Slaves -2 1% 18 | tplace | Pullup [1 K@
(Interrupting
110)
INTO/~INT7/ Slaves 0.C. 16 — 300 | Masters -1.6 40 18 | 1place Puliup 1 KQ
(8lines)
PFSR/ User's Fron TTL 16 -400 300 | Slaves, -16 40 18 |1place | Puliup | 1 K
Panel? Masters
PFSN/ Power Back 7L 16 -400 300 | Masters -1.6 40 18 | tplace | Pullup [1 K@
Up Unit
ACLO Power 0.C. 16 -400 300 | Sjaves, -16 40 18 | 1place | Pullup | 1 K@
Supply Masters
PFIN/ Power Back- 0O.C. 16 -400 300 | Masters -1.6 40 18 | 1place | Pullup 1 KQ
Up Unit
MPRO/ Power Back-| TTL 16 -400 300 | Slaves -16 40 18 |iplace | Pullup | 1 K@
Up Unit Masters

1-71 AFN-01931A

AP-28A

APPENDIX C (Con@inued)
BUS DRIVERS, RECEIVERS, AND TERMINATIONS

Driver 1,3 Receiver 2,3 Termination.
Bus Signals Location Type loL ‘oW Co Location I "] C Location | Type R Units
‘ Minma Min,a Maxpg Maxma Max,s Maxpg
Aux Reset/ User's Switch — - — | Masters -2 50 18 [None
Front to GND
Panel? (Note 5)

Notes:
1. Driver Requirements

10H = High Output Current Drive
loL = LowOutput Current Drive
Co = Capacitance Drive Capability
TRl = 3-State Drive
0.C. = Open Collector Driver
TTL = Totem-pole Driver

2. Receiver Requirements
H High Input Current Load -

it = LowlInputCurrent Load

Ci = Capacitive Load

3. TTL low state must be > -0.5v but < 0.8v at the receivers
TTL high state must be > 2.0v but < 5.5v at the receivers

4. For the iSBC 80/10 and the iSBC 80/10A use only a 1K pull-up resistor to +5v for BCLK/ and CCLK/ termination.

5. Recommend a 47 resistor in series with switch.

1-72

AFN-01931A

AP-

28A

APPENDIX D
BUS POWER SPECIFICATIONS

Standard (P1) Optional (P2)
Analog Power Battery Power Backup
Ground +5 +12 -12 +15 -15 +5 +12 -12 -5
Mnemonic GND +5V +12V -12V | +15V -15V | +5B +12B -12B -5B
Bus Pins P1+12, P1+34, P1+78 P1+79,[P2+23, P2+25 |P2+34, P2+11, P2+15 P2-78
11,12, 5,6,81, 80 24 26 5,6 12 16
75,76 82,83,
85,86 84
Nominal Qutput | Ref. + 5.0V +12.0V -12.0V| +150V —-15.0V | +5.0V +12.0vVv -120V -50V
Tolerance from
Nominal' Ref. *+5% *5% +5% | *3% +3% +5% +5% +5% +5%
Ripple
(Pk-Pk)? Ref. 50 mV 50 mV 50 mV |10 mV 10mv |50 mV 50 mV 50 mV 50 mV
Transient
Response 500 us 500us 500 us | 100 us 100 us | 500 us 500 us 500 us 500 us
Time®
Transient
Deviation* *+10% *10% *10% |+10% +10% |+*10% =+10% *10% =*=10%
NOTES:
1. Tolerance is worst case, including initial voltage setting line and load effects of power source, temperature drift, and any additional steady
state influences.
2. As measured over any bandwidth not to exceed 0 to 500 kHz.
3. As measured from the start of a load change to the time an output recovers within +0.1% of final voltage.
4. Measured as the peak deviation from the initial voltage.
1-73 AFN-01931A

AP-28A

APPENDIX E
MECHANICAL SPECIFICATIONS

1200 +0.005
026 x 45° 11,500
“2places
' — fe—— 0.25
0.25 n
[> A N
8.109 DIA
3HOLES
COMPONENT SIDE 5.950
*0.003
6.20
6.75 REF
00er — _ - af 2 T T
ve 085 1 & 030
3.080 r- 0.390
L 6.835 + 0.007 { 0.015 + 0.006 x 45°

-5 © o o o CHAMFER ALL 2 PLACES
59 1" 3 2 CONNECTOR EDGES -

s < = S 0.040 x 45

NOTES:

i1 BOARD THICKNESS: 0.062 EJECTOR TYPE: SCANBE #5203

12 MULTIBUS CONNECTOR: 86-PIN, 0.156 SPACING BUS DRIVERS AND RECEIVERS SHOULD BE LOCATED AS CLOSE AS POSSIBLE TO
THEIR RESPECTIVE MULTIBUS PIN CONNECTIONS

(> AUXILIARY CONNECTOR: 60-PIN, 0.100 SPACING
6. BOARD SPACING: 0.6
7. COMPONENT HEIGHT: 0.4

8. CLEARANCE ON CONDUCTOR NEAR EDGES: 0.050

1-74 AFN-01931A

APPENDIX F
MULTIBUS™ SLAVE DESIGN EXAMPLE SCHEMATIC
8/16-BIT VERSION

1-75 AFN-01931A

9/-1

VLEBLONAY

7 6 5) 4 1 3 2 | 1
NULTIBUS CONNECTOR
Pi
[TNa"] T
A 74504 w
TN sE ©
ALYTASGA Al 74504 ;:;ﬂ&l
et P 51/
w04 B Ob 3/
rab d Sp s/
sea apll 54y
TN 3 7
ADR?/ A L7504 ¢ : n %
;?D“%Lsza T Al :'i s/
i AR g oy tsar
— LRz 3 |
CHS AR |
K
e 5510 AR &
B ST ey et
P B
o 2 NG
BRI [
5
£y Bp——=
3 5
i) - BSEAR SR/ -
3 75 s
0 o I
KR () [
1" ! RD
A
3 12 } &K BDENBL/
3 !
ér, o | Sl
[/ Sdee | - ¢ (B, e
5 | -] ©
1 [AR, st Taon 2 l;?:sccfg EVEN PPT
ws = i 450 —‘M’:‘V\;‘q o Boud Ela5uny AR 2 o
‘ - JOKSAFT o[2L | ADR 1 XV D7|M0 o -7
- REGSTER AT | AR © Ly g
J T R "1 110 PORTS (24 UNES)
Rrwr |
PPLRD/ >
PPIWR/
aR7 —2
MR D&-DF
ADR & Neep | A
B RSty
DR &/ DB-b7 TSB TNIT 1/0 PORTS (24 LINES)
e/ . v
/
ADR &
RO ENBL/
N
AMaN STGRATURE. oaTE | = O :_;___‘ BOWERS AVE.
RD om o . Flal| e e
e e
5e0F D e SLVE DESIGN EXAMPLE 1
I o B/G-BIT VERSON]
o
e W =
D [Scweemil
T Tse—To
9300021
7 | 6 l 5 t 4 | 3 l 2 l 1

MULTIBUS™ SLAVE DESIGN EXAMPLE SCHEMATIC 8/16-BIT VERSION

4 XION3ddVv

APPENDIX G
MULTIBUS™ SLAVE DESIGN EXAMPLE SCHEMATIC
8-BIT VERSION

1-77 AFN-01931A

8.-1

V1E610-N4Y

7 6 5 1
MCLTIBUS CONNECTOR
P
NT
">74Lsu
L7 Tas84
S
L7484
S
U nises
S
L asea ADRD
[7 LRz
P S, L AR 1
2057 g
4
A
D2 (mm OKTA BUS)
[XA t
g Bp—
BASE ADR SELECT/
Vee - PPTWRT/
T e ™o
el)
BD ENBL/
0@-07
1/0 7DRTS (W LNES) ~
0@-01
o 8251 1/0 PORTS (24 LWES)
T O0E
RD: BD ENBL/
Sowe Towi | & 65 BowERs AVE
o o W Pl [Ty ey
o oY T]
e & ot SUVE DESIGN EXANALE]
oo &-BIT VERION]
e SIZE | CODE DWG. NO. REV
D |).\swm\\lbt
SE | [SHEEoF |
7 6 5 2 I 1

MULTIBUS™ SLAVE DESIGN EXAMPLE SCHEMATIC 8-BIT VERSION

O XIAN3ddV

mtel ﬁlz)lf’rEICATION AP-43
&
o
&F
8
g"s\ QobO
N \0 (o)
2
P& .
NI
O
Ny 00 u ﬁiﬁﬁ
FF

Using The iSBC™ 957
Execution Vehicle
For Executing 8086
Program Code

1-80

Contents
I. INTRODUCTION 1-81
II. THE iSBC™ 86/12 SINGLE BOARD
COMPUTERcovvuaeinnnnnnn. 1-81
III. THEiSBC™ 957 PACKAGE........... 1-85
IV. THE iSBC™ 957-iSBC™ 86/12
MONITORPROGRAM 1-88
V. MATRIX MULTIPLICATION
EXAMPLE.oouiiieneennnnnn.. 192
VI. CONCLUSIONoovvvveennnnns 1-98

APPENDIX A — iSBC™ 86/12
SIMPLIFIED LOGIC DIAGRAM............ 1-99

APPENDIX B — PROGRAM LISTINGS
FOR EXECUTIONSVEHICLE AND
FINDMODULEScoiiinennn 1-101

APPENDIX C — PROGRAM LISTING
FOR EXECUTIONSVEHICLE MODULE
FOR CODE EXPANSION 1-107

AFN-01931A

I. INTRODUCTION

The iSBC 957 Intellec—iSBC 86/12 Interface and
Execution Package contains the hardware and soft-
ware required to interface an iSBC 86/12 Single
Board Computer with an Intellec Microcomputer
Development System. The iSBC 957 package gives
the 8086 user the capability to develop software on
an Intellec System and then debug this software on
an iSBC 86/12 board using a program download
capability and an interactive system monitor. The
8086 user has all the capabilities of the Intellec sys-
tem at his disposal and has the powerful iSBC
86/12 system monitor commands to use for
debugging 8086 programs.

The iSBC 86/12 board is an Intel 8086 based proc-
essor board which, in addition to the processor,
contains 32K bytes of dual port RAM, sockets for
up to 16K bytes of ROM/EPROM, a serial 1/0O
port, 24 parallel I/0 lines, 2 programmable
counters, 9 levels of vectored priority interrupts,
and an interface to the MULTIBUS™ system bus.
The iSBC 957 package consists of monitor EPROMs
for the iSBC 86/ 12 board, Loader software for the
Intellec system, four (4) cable assemblies, assorted
line drivers and terminators, and signal adapters.
The iSBC 957 package provides the capability of
downloading and uploading program and data
blocks between an iSBC 86/12 board and an Intellec
system. In addition, monitor commands and
displays may be input and viewed from the Intellec
system console. The iSBC 957 package, when used
with the iSBC 86/12 board and an Intellec Micro-
computer Development System, provides the user
with the capability to edit, compile or assemble,
link, locate, download, and interactively debug
programs for the 8086 processor. The iSBC 957
package and the iSBC 86/12 board form an ex-
cellent ‘‘execution vehicle’”” for users developing
software for the 8086 processor regardless of
whether the users are 8086 component users or
iSBC 86/12 board users. Using the iSBC 957 pack-
age 8086 programs may be debugged at the full S
MHz speed of the processor. The recommended
hardware for the execution vehicle is an iSBC 660
system chassis with an 8 card slot backplane and
power supply, an iSBC 032 32K byte RAM memory
board, the iSBC 957 package, and the iSBC 86/12
board.

This application note will describe how the iSBC
957 package may be used to develop and debug
8086 programs. First a description of the iSBC
86/12 board will be presented. Readers familiar

1-81

with the iSBC 86/12 board may want to skip this
section. Next follows a detailed description of the
iSBC 957 package and the iSBC 86/12 system
monitor commands. A program example of a
matrix multiplication routine will then be presented.
This example will contain both assembly language
and PL/M-86 procedures. The steps required to
compile, assemble, link, locate and debug the
program code will be explained in detail. A typical
debugging session using the iSBC 86/12 system
monitor will be presented.

II. THE iSBC™ 86/12 SINGLE BOARD
COMPUTER

The iSBC 86/12 Single Board Computer, which is
a member of Intel’s complete line of iSBC 80/86
computer products, is a complete computer system
on a single printed-circuit assembly. The iSBC 86/
12 board includes a 16-bit central processing unit
(CPU), 32K bytes of dynamic RAM, a serial com-
munications interface, three programmable parallel
1/0 ports, programmable timers, priority interrupt
control, MULTIBUS control logic, and bus expan-
sion drivers for interface with other MULTIBUS-
compatible expansion boards. Also included is dual
port control logic to allow the iSBC 86/12 board
to act as a slave RAM device to other MULTIBUS
masters in the system. Provision is made for user
installation of up to 16K bytes of read only mem-
ory. Figure 1 contains a block diagram of the iSBC
86/12 board and in Appendix A is a simplified
logic diagram of the iSBC 86/ 12 board.

Central Processing Unit

The central processor for the iSBC 86/12 board is
Intel’s 8086, a powerful 16-bit H-MOS device. The
225 sq. mil chip contains 29,000 transistors and has
a clock rate of SMHz. The architecture includes
four (4) 16-bit byte addressable data registers, two
(2) 16-bit memory base pointer registers and two (2)
16-bit index registers, all accessed by a total of 24
operand addressing modes for complex data han-
dling and very flexible memory addressing.

Instruction Set — The 8086 instruction repertoire
includes variable length instruction format (in-
cluding double operand instructions), 8-bit and 16-
bit signed and unsigned arithmetic operators for
binary, BCD and unpacked ASCII data, and iter-
ative word and byte string manipulation functions.
The instruction set of the 8086 is a functional
superset of the 8080A/8085A family and with

AFN-01931A

24 PROGRAMMABLE

RS232C
CDD;;A};IEBLE PARALLEL 4/0 LINES

CONTROL SERIAL
INTERFACE DEVICE

© RS232C
INTERFACE

DRIVER/
TERMINATOR
INTERFACE

AN

32Kx8
RAM

POWER FAIL
INTERRUPT

INTERRUPT
SELECT!
(JUMPERS)

J
OR

DUAL-PORT
BUS

\/

R/

16K x 8
ROM/EPROM
(SOCKETS)

DUAL-PORT N
CONTROLLER

8086
cPU

PROGRAMMABLE

INTERRUPT

CONTROLLER

PROGRAMMABLE

COMMUNICATIONS R ABLE

PERIPHERAL
INTERFACE

TWO IPROGRAMMABLE
PROGRAMMABLE — BAUD RATE
TIMERS GENERATOR

|

INTERFACE
(USART)

ﬁ ON-BOARD INTERNAL BUS
MULTIBUS |
. MULTIMASTER
. INTERFACE
MULTIBUS

Figure 1. iISBC™ 86/ 12 Single Board Computer Block Diagram

available software tools, programs written for the
8080A /8085A can be easily converted and run on
the 8086 processor.

Architectural Features — A 6-byte instruction queue
provides pre-fetching of sequential instructions and
can reduce the 1.2 4 sec minimum instruction cycle
to 400 nsec by having the instruction already in the
queue.

The stack oriented architecture facilitates nested
sub-routines and co-routines, reentrant code and
powerful interrupt handling. The memory expan-
sion capabilities offer a 1 megabyte addressing
range. The dynamic relocation scheme allows ease
in segmentation of pure procedure and data for
efficient memory utilization. Four segment registers
(code, stack, data, extra) contain program loaded
offset values which are:used to map 16-bit addresses
to 20-bit addresses. Each register maps 64K-bytes at
a time and activation of ‘a specific register is con-
trolled explicitly by program control and is also
selected - implicitly by specific functions and
instructions.

1-82

Bus Structure

The iSBC 86/12 board has an internal bus for
communicating with on-board memory and 1/0
options, a system bus (the MULTIBUS) for refer-
encing additional memory and I/0. options, and
the dual-port bus which allows access to RAM
from the on-board CPU and the MULTIBUS Sys-
tem Bus. Local (on-board) accesses do not require
MULTIBUS communication, making the system
bus available for use by other MULTIBUS masters
(i.e. DMA devices and other single board com-
puters transferring to additional system memory).
This feature allows true parallel processing in. a
multiprocessor environment. In addition, the MUL-
TIBUS interface can be used for system expansion
through the use of other 8- and 16-bit iSBC com-
puters, memory and I/0 expansion boards.

RAM Capabilities

The iSBC 86/12 board contains - 32K-bytes of
dynamic read/write memory. Power for the on-
board RAM and refresh circuitry may be option-
ally provided .on an auxiliary power. bus, and

AFN-01931A

memory protect logic is included for RAM Dbattery
backup requirements. The iSBC 86/12 board con-
tains a dual port controller which allows access to
the on-board RAM from the iSBC 86/12’s CPU
and from any other MULTIBUS master via the
system bus. The dual port controller allows 8- and
16-bit accesses from the MULTIBUS System Bus
and the on-board CPU transfers data to RAM over
a 16-bit data path. Priorities have been established
such that memory refresh is guaranteed by the on-
board refresh logic and that the on-board CPU has
priority over MULTIBUS requests for access to
RAM. The dual-port controller includes independent
addressing logic for RAM access from the on-board
CPU and from the MULTIBUS system bus. The
on-board CPU will always access RAM starting
at location 00000H. Address jumpers allow on-
board RAM to be located starting on any 8K-byte
boundary within a 1 megabyte address range for
accesses from the MULTIBUS system bus. In con-
junction with this feature, the iSBC 86/12 board
has the ability to protect on-board memory from
MULTIBUS access to any contiguous 8K-byte
segments. These features allow multi-processor
systems to establish local memory for'each proces-
sor and shared system (MULTIBUS) memory con-
figurations where the total system memory size
(including local on-board memory) can exceed 1
megabyte without addressing conflicts.

EPROM/ROM Capabilities

Four sockets are provided for up to 16K-bytes of
non-volatile read only memory on the iSBC 86/12
board. Configuration jumpers allow read only
memory to be installed in 2K, 4K, or 8K increments.

On-board ROM is accessed via 16 bit data paths.
System memory size is easily expanded by the
addition of MULTIBUS compatible memory boards
available in the iISBC 80/86 family.

Parallel 1/0 Interface

The iSBC 86/12 board contains 24 programmable
parallel I/0 lines implemented using the Intel
8255A Programmable Peripheral Interface. The
system software is used to configure the I/0 lines
in any combination of unidirectional input/output
and bidirectional ports.

Therefore, the 1/0 interface may be customized to
meet specific peripheral requirements. In order to
take full advantage of the large number of possible
170 configurations, sockets are provided for inter-
changeable 1/0 line drivers and terminators.
Hence, the flexibility of the I/0O interface is further

enhanced by the capability of selecting the appro-
priate combination of optional line drivers and
terminators to provide the required sink current,
polarity, and drive/termination characteristics for
each application. The 24 programmable 1/0 lines
and signal ground lines are brought out to a 50-pin
edge connector that mates with flat, woven, or
round cable.

Serial 1/0

A programmable communications interface using
the Intel 8251A Universal Synchronous/Asyn-
chronous Receiver / Transmitter (USART) is con-
tained on the iSBC 86/12 board. A software
selectable baud rate generator provides the USART
with all common communication frequencies. The
USART can be programmed by the system soft-
ware to select the desired asynchronous or syn-
chronous serial data transmission technique (in-
cluding IBM Bi-Sync). The mode of operation (i.e.,
synchronous or asynchronous), data format, con-
trol character format, parity, and baud rate are all
under program control. The 8251A provides full
duplex, double buffered transmit and receive capa-
bility. Parity, overrun, and framing error detection
are all incorporated in the USART. The RS232C
compatible interface on each board, in conjunction
with the USART, provides a direct interface to
RS232C compatible terminals, cassettes, and asyn-
chronous and synchronous modems. The RS232C
command lines, serial data lines, and signal ground
line are brought out to a 26 pin edge connector that
mates with RS232C compatible flat or round cable.
The iSBC 530 teletypewriter adapter provides an
optically isolated interface for those systems re-
quiring a 20 mA current loop. The iSBC 530
adapter may be used to interface the iSBC 86/12
board to teletypewriters or other 20 mA current
loop equipment.

Programmable Timers

The iSBC 86/12 board provides three independent,
fully programmable 16-bit interval timers/event
counters utilizing the Intel 8253 Programmable In-
terval Timer. Each counter is capable of operating
in either BCD or binary modes. Two of these
timers/counters are available to the systems de-
signer to generate accurate time intervals under
software control. Routing for the outputs and gate/
trigger inputs of two of these counters is jumper
selectable. The outputs may be independently
routed to the 8259A Programmable Interrupt Con-
troller and to the I/0 line drivers associated with

AFN-01931A

the 8255A Programmable Peripheral Interface, or
may be routed as inputs to the 8255A chip. The
gate/trigger inputs may be routed to I/0 termin-
ators associated with the 8255A or as output con-
nections from the 8255A. The third interval timer
in the 8253 provides the programmable baud rate
generator for the iSBC 86/12 RS232C USART
serial port. In utilizing the iISBC 86/12, the systems
designer simply configures, via software, each timer
independently to meet system requirements. When-
ever a given time delay or count is needed, soft-
ware commands to the programmable timers/event
counters select the desired function.

The contents of each counter may be read at any
time during system operation with simple read
operations for event counting applications, and
special commands are included so that the contents
can be ready ‘‘on the fly’’.

MULTIBUS™ and Multimaster Capabilities

The MULTIBUS system bus features asynchronous
data transfers for the accommodation of devices
with various transfer rates while maintaining maxi-
mum throughput. Twenty address lines and sixteen
separate data lines eliminate the need for address/
data multiplexing/demultiplexing logic used in
other systems, and allow for data transfer rates up
to 5 megawords/sec. A failsafe timer is included in
the iSBC 86/ 12 board which can be used to gener-
ate an interrupt if an addressed device does not
respond within 6 msec.

Multimaster Capabilities — The iSBC 86/12 board
is a full computer on a single board with resources
capable of supporting a great variety of OEM sys-
tem requirements. For those applications requiring
additional processing capacity and the benefits of
multiprocessing (i.e., several CPUs and/or con-
trollers logically sharing system tasks through
communication over the system bus), the iSBC 86/
12 board provides full MULTIBUS arbitration
control logic. This control logic allows up to three
iSBC 86/ 12 boards or other bus masters, including
iSBC 80 family MULTIBUS compatible 8-bit single
board computers, to share the system bus in serial
(daisy chain) priority fashion, and up to 16 masters
to share the MULTIBUS with the addition of an
external priority network. The MULTIBUS arbitra-
tion logic operates synchronously with a MULTI-
BUS clock (provided by the iSBC 86/12 board or
optionally provided directly from the MULTIBUS
System Bus) while data is transferred via a hand-
shake between the master and slave modules. This

1-84

allows different speed controllers to share reésources
on the same bus, and transfers via the bus proceed
asynchronously. Thus, transfer speed is dependent
on transmitting and receiving devices only. This
design prevents slow master modules from being
handicapped in their attempts to gain control of the
bus, but does not restrict the speed at which faster
modules can transfer data via the same bus. The
most obvious - applications for the master-slave
capabilities of the bus are multiprocessor configur-
ations, high speed direct memory access (DMA)
operations, and high speed peripheral control, but
are by no means limited to these three.

Interrupt Capability

The iSBC 86/12 board provides 9 vectored interrupt
levels. The highest level is the NMI (Non-Maskable
Interrupt) line which is directly tied to the 8086
CPU. This interrupt cannot be inhibited by soft-
ware and is typically used for signalling catastrophic
events (e.g., power failure).

The Intel 8259A Programmable Interrupt - Con-
troller (PIC) provides vectoring for the next eight
interrupt levels. o

The PIC accepts interrupt requests from the pro-
grammable parallel and serial I/0 interfaces, the
programmable timers, the system bus, or directly
from peripheral equipment. The PIC then deter-
mines which of the incoming requests is of the
highest priority, determines whether this request is
of higher priority than the level currently being
serviced, and, if appropriate, issues an interrupt to
the CPU. Any combination of interrupt levels may
be masked, via software, by storing a single byte
in the interrupt mask register of the PIC. The PIC
generates a unique memory address for each in-
terrupt level. These addresses contain unique
instruction pointers and code segment offset values
(for expanded memory operation) for each interrupt
level. In systems requiring additional interrupt
levels, slave 8259A PIC’s may be interfaced via the
MULTIBUS system bus, to generate . additional
vector addresses, yielding a total of 65 unique
interrupt levels.

Interrupt Request Generation — Interrupt requests
may originate from 16 sources. Two jumper select-
able interrupt requests can be automatically gener-
ated by the programmable peripheral interface.

Two jumper selectable interrupt requests can be
automatically generated by the USART when a
character is ready to be transferred to the CPU or a
character is ready to be transmitted.

AFN-01931A

A jumper selectable request can also be generated
by each of the programmable timers. Eight addi-
tional interrupt request lines are available to the
user for direct interface to user designated peripher-
al devices via the system bus, and two interrupt
request lines may be jumper routed directly from
peripherals via the parallel 1/O driver/terminator
section.

Power-Fail Control

Control logic is also included to accept a power-fail
interrupt in conjunction with the AC-low signal
from the iSBC 635 Power Supply or equivalent.

Expansion Capabilities

Memory and 1/0 capacity may be expanded and
additional functions added using Intel MULTIBUS
compatible expansion boards. High speed integer
and floating point arithmetic capabilities may be
added by using the iSBC 310 high speed mathe-
matics unit. Memory may be expanded to 1 mega-
byte by adding user specified combinations of
RAM boards, EPROM boards, or combination
boards. Input/output capacity may be increased by
adding digital I/O and analog I/O expansion
boards. Mass storage capability may be achieved
by adding single or double density diskette con-
trollers. Modular expandable backplanes and card-
cages are available to support multiboard systems.

III. THE iSBC™ 957 PACKAGE

The iSBC 957 Intellec—iSBC 86/12 Interface and
Execution Package extends the software develop-
ment capabilities of the Intellec Microcomputer
Development systems to the Intel 8086 CPU. Pro-
grams for the 8086 may be written in PL/M-86
and/or assembly language and compiled or as-
sembled on the Intellec system. These programs
may then be downloaded from an Intellec ISIS-II
disk file to the iSBC 86/ 12 board for execution and
debug. The programs will execute at the full 5 MHz
clock rate of the 8086 CPU with no speed degrada-
tion caused by the iSBC 957 hardware or software.
Special communication software allows transparent
access to the powerful interactive debug commands
in the iSBC 86/12 monitor from the Intellec con-
sole terminal. These debug commands include
single-step instruction execution, execution with
breakpoints, memory and register displays, memory
searches, comparison of two memory blocks and
several other commands. After a debugging session,
the debugged program code may be uploaded from
the iSBC 86/12 board to an Intellec ISIS-II disk
file.

1-85

The iSBC 957 Intellec—iSBC 86/12 Interface and
Execution Package consists of the following:

a. Four Intel 2716 EPROMs which contain the sys-
tem monitor program for the iSBC 86/ 12 board.

b. An ISIS-II diskette containing loader software
for execution in the Intellec which provides for
communications between the user or an Intellec
ISIS-II file and the iSBC 86/12 board. Also in-
cluded on the diskette are a library of routines
for system console 1/0.

c. Four cable assemblies used for transmitting com-
mands, code and data between the iSBC 86/12
board and the Intellec system.

d. An iSBC 530 adapter assembly which converts
serial communications signals from current loop
to RS232C.

e. Line drivers and terminators used for the iSBC
86/12 parallel ports.

f. A small printed circuit board which is plugged
into an iSBC 86/12 receiver /terminator socket
and is used when program code is downloaded
or uploaded using the parallel cable.

iSBC™ —Intellec™ Configurations

There are two distinct functional configurations for
the iSBC 957 package; one configuration for the
Intellec Series II, Models 220 or 230 development
systems and another for the Intellec 800 series
development systems.

Intellec Series II System Configurations

When used with Intellec Series II Model 220 or
230 systems, a set of cables are used to connect the
serial I/0 port edge connector on the iSBC 86/12
board and the SERIAL 1 output port on the Intellec
system. This configuration is shown in Figure 2.
How this system functions is explained in the fol-
lowing paragraphs.

The SERIAL 1 port on the Intellec Series II Model
220 or 230 system is an RS232 port which is de-
signed for use with a data terminal. This port may
be used on the Intellec system for interfacing to
RS232 devices such as CRT terminals or printers.
The serial ports on the iSBC 86/12 board and the
Intellec systems are connected as shown in the
Figure 2. The flat ribbon cable connected to the
iSBC 86/12 board has an edge connector for con-
necting to the board on one end and a standard
RS232 connector on the other end. The second
cable, the RS232 Up/Down Load cable, has an
RS232 connector on each end. This cable, however,

AFN-01931A

INTELLEC SERIES il

KSER'AL PORT #1

) _-SERlALI/O
PORT

iSBC 86/12

OEM RS232-C
CABLE

— RS232 UP / DOWN LOAD
CABLE

Figure 2. Intellec™ Series Il Model 220, 230—iSBC™ 86 /12 Configuraﬁon

is not a standard cable with the RS232 signals bussed
between identically numbered pins on each of the
connectors. The schematic for the cable is shown in
Figure 3. Note that the TXD (transmit data) and
the RXD (receive data) and the RTS (ready to send)
and the CTS (clear to send) signals- have been
crossed. This is done because both the Intellec system
and the iSBC 86/ 12 board are configured to act as
data sets which are communicating with data
terminals. Swapping these signals permits the units
to communicate directly with no modifications to
the Intellec or iSBC 86/ 12 systems themselves.

FGD
TXD
RXD

FGD (FRAME GROUND)
(TRANSMIT DATA)
(RECEIVE DATA)
(READY TO SEND)
(CLEAR TO SEND)

(SIGNAL GROUND)

TXD

E———
——————

RXD
RTS
CcTs
SGD

RTS
CTs

Nla|slw|Nn]~
wloa|slw|n] =

‘SGD

Figure 3. Intellec™ —iSBC™ 86 /12 RS232
UP/DOWN LOAD Cable

The software in the Intellec system accepts characters
output from the iSBC 86/12 board through the
Intellec SERIAL 1 port. The software then outputs
these characters on the CRT monitor built into the
Intellec Series II Model 220 or 230. In a similar
fashion, characters input from:the Intellec key-

1-86

board are passed down the serial link to the iSBC
86/12 monitor program. The integrated CRT
monitor and keyboard on the Intellec system then
becomes the “‘virtual terminal’’ of the iSBC 86/12
monitor program. If this were the only function of
the iSBC 957 package, there would be no real
benefit to the user. However, when the ‘virtual
terminal”’ capability is combined with the capa-
bility to download and upload program code:and
data files between the Intellec ISIS-II file system
and the iSBC 86/12 board, a very powerful soft-
ware development tool is realized. The software in
the Intellec system must examine the commands
which are input from the keyboard and in the case
of the LOAD and TRANSFER commands (see
later sections for details on monitor commands),
the software must open and read or write ISIS-II
disk files.

Transfer rates using Intellec Series II Model 220 or
230 system are 9600 baud when transferring hexa-
decimal object files to or from a disk file and 600
baud when transferring’ commands between the
iSBC 86/12 board and the CRT monitor and key-
board. With a 9600 baud transfer rate, it is pos-
sible to load 64K bytes of memory in about four
minutes.

Intellec 800 System Configurations

The iSBC 957 package may be used with the In-
tellec ‘800 system in four different configurations.
These four configurations are determined by two

AFN-01931A

variables. The first variable is whether the iSBC
86/12 board is connected to the Intellec 800 TTY
port or to the Intellec 800 CRT port. The second
variable is whether or not a parallel cable is used
for uploading and downloading hexadecimal object
files. Figures 4A and 4B illustrate the four
configurations.

In Figure 4A, the configuration shows the TTY
port of the Intellec 800 system connected to the
iSBC 86/12 serial port using two cables and an
iSBC 530 teletypewriter adapter. The TTY port of
the Intellec 800 system is designed for using a
teletypewriter as the Intellec console device. To use
this port for communication with the iSBC 86/12
board, the current loop TTY signal must be con-
verted to an RS232 compatible voltage signal. This
function is performed by the iSBC 530 adapter.

The cable which connects the Intellec 800 system to
the iSBC 530 adapter performs a function similar
to the RS232 Up/Down Load cable described
above. A schematic for this cable and all other
components of the iSBC 957 package are included
with the delivered product.

The transfer rate for both commands and data
when the TTY port is connected to the iSBC 86/12
board is 110 baud. This means to download even
moderately sized programs would require large
amounts of time, several minutes or even hours.
However, much faster times may be achieved by
using the parallel ports of the iSBC 86/12 board
and the Intellec system for downloading program
files. This parallel port used on the Intellec 800
system is the output port labeled PROM which is
normally used with the Universal Prom Pro-

PARALLEL
aA LOAD CABLE
PROM (OPTIONAL)

INTELLEC
MDS 800
SYSTEM

TO RS232-C
TERMINAL BOARD

iSBC86/12

4B

INTELLEC
DS 800
SYSTEM

SERIAL
1/0 PORT

PARALLEL
LOAD CABLE
(OPTIONAL)

iSBC 86/ 12

OEM RS232-C
CABLE

\ RS232 UP / DOWNLOAD
CABLE

Figure 4A, 4B. Intellec™ 800—iSBC™ 86/ 12 Configurations

AFN-01931A

grammer. A cable is connected between the In-
tellec PROM port and the parallel I/0 port, J1 of
the iSBC 86 /12 board. Parallel port B of the iSBC
86/12 board is used for the 8-bit byte transfers
from the Intellec system to the iSBC 86/12 board,
port A is used for the byte transfers from the iSBC
86/12 board to the Intellec system and port C is
used for controlling the byte transfers. A special
status adapter piggyback board must be inserted
into a receiver / terminator socket of the iSBC 86/12
board. This status adapter circuit is required to
provide the necessary handshaking signals from the
iSBC 86/12 parallel ports to the Intellec PROM
port.

The transfer rate achieved when downloading and
uploading hexadecimal object files with the parallel
cable is approximately 1,000 bytes per second. The
time required to load 64K bytes of memory is
approximately 2'2 minutes.

Figure 4B shows a configuration with the Intellec
800 CRT port connected to the serial port of the
iSBC 86/12 board. The TTY port of the Intellec
800 system is connected to a teletypewriter or some
other current loop device to act as a system con-
sole. The optional parallel load cable is also shown.
The cables used for this configuration are the same
as those used with the Intellec Series II Configur-
ations. Command transfer rates require 110 baud
because the TTY port of the Intellec 800 system is
used for communicating with the console device.
However, hexadecimal object files can be loaded at
9600 baud since this operation uses only the Intellec
to iSBC 86/ 12 RS232 link.

It is also possible to download files with the parallel
cable, this mode being somewhat faster than the
serial download mode (22 minutes versus four
minutes for 64K bytes of memory). Table I con
tains a summary of the command and memory
transfer rates for each of the Intellec-iSBC 86/12
configurations.

Comparing the Intellec 800 configurations shown in
Table 1 and in Figures 4A and 4B it should be
noted:

1. Using the TTY port (Figure 4A) of the Intellec
800 system for communications with the iSBC
86/12 board (essentially) requires installation of
the parallel cable and jumper modifications for
downloading and uploading files, and thus, pre-
vents the use of the parallel ports for other I/0
functions.

2. Using the CRT port (Figure 4B) of the Intellec

1-88

- 800 system for communication with the iSBC
86/12 board provides for a fast serial download
capability, thus freeing the parallel ports for
other uses. However, this configuration requires
a teletypewriter or a CRT capable of accepting
a current loop input signal as the Intellec system
console.

Table 1

COMMAND AND MEMORY TRANSFER RATES FOR
INTELLEC—iSBC™ 86 /12 CONFIGURATIONS

INTELLEC
SERIES 11220/230 INTELLEC 800 INTELLEC 800
SERIAL PORT TTY PORT CRT PORT
TOiSBC86/12 TOiSBC86/12 TOiSBC86/12
Effective
Command Rate 600 Baud 110 Baud 110 Baud*
Load/ Transfer
Rate
Serial 9600 Baud 110 Baud 9600 Baud
Parallel N/A 1K bytes/sec** 1K bytes/sec**
Approximate Time
to load 64K bytes
of memory
Serial 4 minutes 5 hours 4 minutes
Parallel N/A 2.5 minutes 2.5 minutes

*The actual baud rate of the Intellec—iSBC 86/ 12 link is 9600 baud, but the effective
d rate is i by the slower Intell console serial link.

**Transmission rate over the parallel link is determined by the speed of the two processors
and is approximately 1K bytes per second.

IV. THE iSBC 957—iSBC 86/12 MONITOR
PROGRAM

The iSBC 86/12 monitor program is an EPROM
resident program which facilitates debugging of
user written programs. The monitor program used
in the iSBC 86/12 board with the iSBC 957 pack-
age is the same monitor program written to inter-
face the iSBC 86/12 directly to an RS232C data
terminal. When interfaced directly to a terminal,
the iSBC 86/12 board functions in a stand-alone
environment communicating directly with the user
via the data terminal. A user may use the monitor
for entering small programs in hexadecimal format,
executing a program, examining registers and
memory contents, etc.

To use the monitor program with an Intellec system,
the proper cables must be installed and the iSBC
957 Loader program must be loaded into Intellec
memory and executed. The Loader program is resi-
dent on a file named SBC861, and when executed,
the Loader outputs a sign-on message. Next, the
iSBC 86/12 monitor program must be started and
the baud rate of the iSBC 86/12 to Intellec serial
communications link must be determined. This is
done by pressing the RESET switch on the chassis

AFN-01931A

Table 2

MONITOR COMMAND LIST

COMMAND FUNCTION AND SYNTAX
L Load Hex Loads hexadecimal object file from Intellec into iSBC
Object File 86/12 memory using serial (S) or parallel (P) mode.

T Transfer Hex
Object File

E Exit

N Single Step

G Go

S Substitute

Memory

X Examine/Modify

Register
D Display Memory

M Move

C Compare

F Find

H Hex Arithmetic

| Port Input

O Port Output

L {S | P} < filename>|,<bias addr>)<cr>

Transfers blocks of iISBC 86/12 memory to Intellec as
a hex object file using serial (S) or paralle! (P) mode.

TIX] {S.P} ,<Start addr>,<end addr>,<filename>
[,<exec addr>}<cr>

Exits the loader program and returns to ISIS.

E<cr>

Executes one user program instruction,

Ni<addr>],[[<addr>],[*<cr>

Transfers control of the 8086 CPU to the user program
with up to 2 optional breakpoints.

Gl<start addr>](,<break 1 addr>
[,<break 2 addr>))<cr>

Displays/modifies memory locations in byte or word
format.

S[(Wi<addr>,[[new contents),1*<cr>

Displays/modifies 8086 CPU registers.
Xl<reg>][[<new contents>],1*<cr>

Displays contents of a memory block in byte or word
format.

DI[W]<start addr>|,<end addr>}<cr>

Moves contents of a memory block.

Mcstart addr>,<end addr>,< destination addr><cr>
Compares two memory blocks.

C<start addr>,<end addr>,<destination addr><cr>
Searches a memory block for a byte or word constant.
FIW]< start addr>,< end addr>,<data><cr>

Performs hexadecimal addition and subtraction.
H<data 1>,<data 2><cr>

Inputs and displays byte or word data from input
port.

[Wil<port addr>,[,1*<cr>
Outputs byte or word data to output port.
O[WIl<port addr>,<data>[,<data>]*<cr>

Syntax conventions used in the command structure are as follows:

[A] indicates that “A’’ is optional

{A]* indicates one or more optional iterations of A"

 indicates that “B’" is a variable
{A|B} indicates “A” or “/B"
<cr> indicates a carriage return is entered

Numeric arguments can be expressed as a number, the contents of a register,
or the sum or difference of numbers and register contents. Thus, addresses
and data can be expressed as follows:

addr ::
expr ii=

]

<expr> {
AX|BX|CX|DX|SP|BP|SI|DI|CS|DS|SS|ES|IP|FL
<digit>|<digit><number >
0[1|2|3]4|5|6]7|8|9|A|B|C|DIE|F

register ::

number ::=
digit 1=

[<expr>:]<expr>

<number>|<register>|<expr> {+|--} <number>|

+ | ~} <register>

containing the iSBC 86/12 board and typing two
““U”’s on the Intellec console. The ASCII uppercase
character U has a binary pattern of alternating ones
and zeros, the iSBC 86/ 12 monitor uses this pattern
to determine the baud rate of the serial link. After
the baud rate has been determined, the monitor
program outputs a sign-on message to the console.
An example of loader program execution and
monitor program initialization is shown below (user
entered characters are underlined).

:F1:SBC861

ISIS-II iSBC 86/12 LOADER, Vx.x

(user resets iSBC 86/ 12 board and types two ‘“U’’s)
iSBC 86/12 MONITOR, Vy.y

The monitor prompts with a period ¢“.”’ when it is
ready for a command. The user can then enter a
command file, which consists of a one- or two-
character command followed by zero, one, or more
arguments. The command may be separated from
the first argument by an optional single space; a
single comma is required as a delimiter between
arguments. The command line is terminated by a
carriage return or a comma depending on the com-
mand, and no action takes place until the command
terminator is sensed. The user can cancel a com-
mand before entering the command terminator by
pressing any illegal key (e.g., rubout or Control-X).

Table 2 contains a summary of the loader and
monitor commands. These commands will not be
explained in detail; instead, the next section of the
application note will show examples of using these
loader and monitor commands. The iSBC 957
User’s Guide referenced at the front of this docu-
ment does, however, contain a complete description
of each of the monitor and loader commands.
Table 3. contains a list of the 8086 hardware registers
and abbreviations used by the monitor program.

Numeric fields within arguments are entered as hexadecimal numbers. The
valid range of numerical values is from 0000-FFFF. Larger numbers may be
entered, but only the last four digits (or two in the case of byte values) are
significant. Leading zeros may be omitted.

An address argument consists of a segment value and an offset value separ-
ated by a colon (:). If a segment value is not specified, the default segment
value is the CS register value.

1-89

Table 3
8086 CPU REGISTERS

REGISTER NAME ABBREVIATION
Accumulator AX
Base ' BX
Count CX
Data . DX
Stack Pointer . - SP
Base Pointer BP
Source Index SI
Destination Index DI
Code Segment Ccs
Data Segment DS
Stack Segment SS
Extra Segment : ES
Instruction Pointer . P
Flag FL

AFN-01931A

. - FFFFF, -
ON-BOARD " : 39 INTR7 aCy
EPROM MONITOR PROGRAM -
(8K bytes) FE00Oy 38 INTR 6 98y
: 37 INTRS %,
36+ ' INTR 4 90, B8259A PIC
35 INTR 3 scy VECTORS
34 INTR 2 88y
| H 33 INTR 1 8y
’ ! AVAILABLE '
C 8000y |------ USER -~ = - - 2 INTR 0 80y
AREA
31
! RESERVED '
| FOR :
I FUTURE '
I USE BY '
1 INTEL H
1 1
1Coy
om-sogm INITIAL USER STACK .
{32K bytes) 1304 .
MONITOR . :
DATA 5
AREA 1 Overfi
4 nterrupt on Overflow
A0y 104
3 One-Byte Intr Instruction Cy
INTERRUPT 2 Non-Maskable Intr 8y
VECTORS
0-39 1 Single Step 4y
k 0 Divide by Zero) Oy
; OH

Figure 5. Memory Map of iSBC™ 86/12 Memory With Monitor Program

Figure 5 contains a memory map of the iSBC
86/12 memory with the monitor program. Note
that the monitor uses the top 8K bytes of memory
for its program code and the first 384 bytes of
memory (locations @ hex to 17F hex) for monitor
and user stack, data and interrupt vectors. When
the monitor program is reset, the segment registers,
the IP and the flags ‘are set to @; and the SP is set
to P1CPH allowing’'64 bytes for the user’s stack. If
64 bytes is not sufficient for the user’s application
program, the SP should be set to some other value.
The monitor program sets the single-step, one-byte
instruction trap and non-maskable interrupt vectors
to monitor entry ‘points. The monitor also sets the
8259A Priority Interrupt Controller to fully nested
mode with level § at the highest priority and all
interrupts unmasked. The eight ‘interrupt vector
addresses for the 8259A are also set to addresses in
the monitor. User programs may change the 8259A
interrupt vectors to interrupt service routine ad-
dresses within the user programs; it is not necessary
for users to program the 8259A chip directly. When
an interrupt occurs, control passes to either the
monitor or directly to user code depending on the
address stored in the vector location. When the
monitor responds to an interrupt, it acknowledges
the interrupt and displays the interrupt ‘level, CS
and IP register values and next instruction byte on

1-90

the system console (e.g., I=3 @ 100:230F F5).

When a user requests a breakpoint with a *‘G”
command, the monitor inserts the single byte
instruction trap instructions (INT 3) in the location
where the breakpoint is requested. It is also possible
for the user to code an INT 3 instruction in his
program. When a user coded INT 3 instruction is
executed, the monitor will be re-entered and a line
with the format @<CS Value>:<IP Value> <In-
struction byte > will be displayed (e.g., @ 1200:3FO2
F5).

Included on the diskette with the Loader program
are two libraries containing I/0O routines for the
console. The library files are named SBCIOS.LIB
and SBCIOL.LIB; they contain similar routines.
The routines in SBCIOS.LIB are written to be
called with intrasegment subroutine calls, a PL/M-
86 module compiled with the ‘‘small’’ control
generates this type of call. The routines in
SBCIOL.LIB are written to be called with interseg-
ment subroutine calls, a PL/M-86 module com-
piled with either the “medium” or ‘‘large’’ control
generates this. type of call.

The console input output routines, CI and CO,
contained in the library should be used when pér-
forming character input and output on the console.
Example PL/M-86 calls to the two routines are:

AFN-01931A

CI: PROCEDURE BYTE EXTERNAL;

END CI;

CO: PROCEDURE (X) EXTERNAL;

DECLARE X BYTE;
END CO;

DECLARE INPUT$CHAR,

OUTPUT$CHAR BYTE;

INPUT$CHAR = CI;

CALL CO(OUTPUT$CHAR);

General Comments on Use of the iSBC 957 Package

1.

If the iSBC 86/12 board is reset any time after
the initial baud rate search, it is not necessary to
reload the iSBC 957 Loader program or to
download the program code a second time to the
iSBC 86/12 board. It is only necessary to re-
establish the communications link by typing two
“U’’s for the baud rate search.

. The iSBC 86/12 board should not be plugged

into an available card slot in an Intellec chassis;
a separate chassis should be used. There are at
least three reasons for this:

a. There is only one RESET signal available on
the Intellec system bus. Thus, each processor
may not be reset independently. This means
that the iSBC 86/12 board cannot be reset
without re-booting the ISIS-II operating sys-
tem and restarting the iSBC 957 Loader.

b. The Intellec system uses five of the eight avail-
able interrupts on the system bus. This severely
restricts the range of interrupts available to
the iSBC 86/12 board. Also, the iSBC 86/12
board cannot turn-off the interrupt lamps on
the Intellec front panel.

c. The iSBC 86/12 board may address up to 1
Megabyte of memory using a 20 bit address.
Many Intellec systems contain boards which
generate and decode only the low order 16
address bits. For example, the iSBC 016 mem-
ory expansion board and the Intellec 800

1-91

monitor PROMs only decode 16 address bits.
Memory expansion above 64K bytes in these
systems is difficult since the boards which de-
code only 16 bits will force ‘‘holes” in the
address space above 64K.

. The iSBC 86/12 board is delivered with two

inputs to the 8259A Priority Interrupt Controller
connected. Interrupt request 2 (IR2) is connected
to the counter @ output of the 8253 Program-
mable Interval Timer. IRS is connected to the
INTS5 /signal of the MULTIBUS System Bus. If
these interrupts are not desired, the wire wrap
jumpers making the connections should be re-
moved from the iSBC 86/12 board. A particular
problem may exist with the counter ¢ connection
to IR2. If the 8253 counter () is not specifically
initialized with software, a low frequency square
wave output will exist at counter @’s output. This
may cause unwanted interrupts when interrupts
are enabled by user programs.

4. If the iSBC 86/12 board is used in a system with

expansion boards, it is important that the MUL-
TIBUS bus exchange pins be properly jumpered.
For example, if the iSBC 86/12 board is used
with an iISBC 032 expansion memory board in a
system, the BPRN/ MULTIBUS pin for the
iSBC 86/12 board should be grounded.

In addition, if any interrupts are used with the
iSBC 86/12 board the BPRN/ pin must be
grounded. This is true in both single and mul-
tiple board systems.

. Certain user systems require more than one single

board computer in the system for performing the
functions required by the application. The MUL-
TIBUS System Bus has been specifically designed
to permit multiple CPU boards to communicate
and to share system resources. However, de-
bugging systems with multiple CPUs has always
posed somewhat of a problem. The iSBC 957
package provides a solution to this problem. The
serial cable which connects the iSBC 86/12
board to the Intellec system may be removed
after the program has been downloaded to the
iSBC 86/12 board. A console CRT may then be
connected directly to the iSBC 86/12 board and
the monitor program may be used to debug the
program running on the board. Other iSBC
86/12 boards may also be downloaded from the
Intellec system and then switched to their own
local terminals. An 8-bit processor board, such
as the iSBC 80/30 board, may also be included

AFN-01931A

.in the system and ICE-85™ may be used for
debugging the iISBC 80/30 program concurrently
with the iSBC 86/12 programs. Using this
scheme, it is possible to debug a system which
has several CPU boards by. setting breakpoints
and using other debugglng features on each of
the 1nd1v1dual CPUs.

V MATRIX MULTIPLICATION EXAMPLE

To illustrate how the iISBC 957 package can be used
to assist in the writing and debugging of 8086 pro-
grams on the iSBC 86/12 board, an example pro-
gram of a matrix multiplication will be presented.
The example chosen has been intentionally kept
simple and straightforward. The emphasis- of this
section will be to document the steps required to as-
semble, compile, link, locate and debug software
using an Intellec system, the iSBC 957 package and
the iSBC 86/12 board. Part of the example will be
written in 8086 assembly language and part in PL/
M-86.

The main program is written in PL/M-86. The
main program first performs some initialization
and the matrix multiplication, then the program
calls an assembly language procedure (subroutine),
a PL/M-86 procedure and the console output pro-
cedure CO supplied in the I/0 library on the iSBC
957 diskette. A flow diagram for the example
program is shown in Figure 6.

Explanatlon of the Program Code

The program code is contained in three software
modules EXECUTIONSVEHICLE, FIND, and
SBCCO. EXECUTIONSVEHICLE contains the
main program coded in PL/M-86 and the binary
to ASCII conversion procedure BINSDEC$ASC
also coded in PL/M-86. The module FIND con-
tains the assembly language procedure FIND$MX
which searches a matrix for its maximum value.
The module SBCCO resides in the library of con-
sole I/0 routines supplied with the iSBC 957 pack-
age. The procedure CO will be used from this
library.

The program code for the EXECUTION$VEHICLE
and FIND modules will be explained in the follow-
ing paragraphs. Appendix B contains compilation
and assembly listings for:the ‘two. modules; also
contained in Appendix B is. a- memory and debug
map ‘for the linked modules. The listings contain
circled reference letters (e.g., @) which are referred
to by the code description below. The listings in the
appendix have been printed on fold-out pages so
that they may easily be seen when reading the text.

1-92

Initialize
X$ROW & Y$ROW
Matrices

.

Muitiply
Matrices,
store result in
Z$ROW

Find MAX value
in ZSROW

BIN$DECS$SASC
Convert to
ASCIl

Output MAX
value on
terminal using
CO routine

Figure 6.
Flow Diagram of Matrix Multiplication Example

Much of the description given below assumes that
the reader is familiar with the PL/M-86 language
and compiler, the 8086 assembler, and the link and
locate program QRLS86. It is recommended that the
reader have at least a cursory knowledge of these
subjects. The Intel: literature for these subjects is
listed near the front of this application note.

The EXECUTIONSVEHICLE Module

@ The first section of the module includes intro-
ductory comments and then statements to de-
clare the matrices, other variables, and pro-
cedures used in the program. Note that the
matrix dimensions are declared using the literals
M, N, and. P which are initially set to 6, 5, and
3. Later in this note, other values for M, N,
and P will be used.

‘ The next section of code contains the state-
ments which initialize the two matrices that will
be multiplied X$ROW and YSROW.

As a result of this initialization, the two ma-
trices will contain values as shown in Figure 7.

AFN-01931A

o ©o o © o©
I

0 0 0
1 L
2 2 2
3 3 3
4 4 4
5 65 5

oA W N = O

a s W N =

X$ROW (6X5) Y$ROW (56X3)

Figure 7.
X$ROW and Y$ROW Matrices After Initialization

@ The next program section performs the matrix

multiplication. The algorithm required to mul-
tiply two matrices X and Y, storing the result in
a third matrix Z is:

n
Zmp = Z Xmi *Yip
i=1
Assuming X to be 6X5 matrix and Y a 5X3
matrix then

le = XllYll +X12Y21 + X13Y3l + X14X41 + XISYSI
Thus, the upper left term is equal to the sum of
the products of the top row of the X matrix
times the left column of the Y matrix. The re-
sult that is obtained by multiplying the two
matrices X$ROW and YSROW after they are
initialized as explained above, is shown in
Figure 8.

o 0 o
0 -5 -10
0 -10 -20
0 -15 -30
0 -20 -4
0 -2 -50
Z$ROW (6X3)

Figure 8. Result of Muitiplying the Initialized Matrices

X$ROW and Y$ROW

@ The external assembly language procedure

FIND$MX is called to determine the maximum
value in the matrix. The procedure is a typed
procedure and returns the maximum value to
the calling program which stores it in the inte-
ger variable MAX.

1-93

®

®

The maximum value is then converted to a six
(6) digit' ASCII character string by the pro-
cedure BINSDECS$ASC. The character string is
stored in the array MAX$ASCSARRAY, which
contains the sign of the number and five (5)
digits for the magnitude.

Finally, the characters ‘“MAX VALUE =" are
output on the system console followed by the
6 ASCII characters containing the maximum
value. The PL/M-86 built-in procedure SIZE
returns the number of bytes of the array TEXT
as a word value. The PL/M-86 built-in pro-
cedure SIGNED changes the type of the value
from WORD to INTEGER. This is required so
that the type of the arguments in the DO state-
ment agree. The console output procedure CO
is used to output the characters on the system
console.

@ Also contained in the module MATRIX.PLM

is the binary to ASCII conversion procedure
BINSDECSASC. The first portion of the code
contains the comments explaining the para-
meters and the calling sequence followed by the
declarations. Note that the address of the array
where the characters are to be stored is passed
to the procedure and that the characters will be
stored in the array using based variables. The
next section of the code stores either a + or —
sign in the first character position of the ASCII
array and stores the absolute value of VALUE
in the variable TEMP. Finally, the binary value
is converted to ASCII using the algorithm
explained in the comments. The MOD operator
returns the remainder of the division by 10. The
UNSIGN built-in procedure is required to
change the type of the expression from INTE-
GER to WORD.

The FIND Module

®

The FIND module contains the assembly lan-
guage procedure FINDMX. The calling - se-
quence and the parameters are explained in the
comments at the beginning of the listing. Note
that the label FINDMX has been declared
PUBLIC so the link program can fill in its
address in the CALL statement in the main
program of module EXECUTIONS$VEHICLE.

The FIND module will contain three segments:
a data segment, a stack segment and a code
segment. It will be both convenient and prag-
matic to append these three segments to the
code, data and stack segments created by the

AFN-01931A

compiler for the EXECUTIONSVEHICLE
module. To accomplish this, the three segments
must be given the same SEGMENT and CLASS
~names as those given these segments by the
compiler. The SEGMENT and CLASS names

used by the compiler are CODE, DATA, and -

-STACK. The GROUP statements are used to
place the segments DATA and STACK in the

. group DGROUP and the segment CODE in the

.-.group CGROUP. These group definitions con-

- form with the group definitions generated by
the PL/M-86 compiler when the SMALL size
control option is used. A group is a collection
of segments which requires less than 64K bytes
of memory.

The ASSUME directive mforms the assembler

that the DS and SS registers will contain the
base address of DGROUP and the CS register

will contain the base address of CGROUP.-

This information will be used by the assembler
when constructing machine instructions.

"The first Segment appearing in the module is
‘the data segment. The order of the segments is
arbitrary, although it is recommended that the
data segment-precede the code segment to mini-
" ‘mize forward references to variables which may
cause the assembler to generate longer instruc-
tion codes. The data segment is ‘declared
PUBLIC, aligned on a WORD boundary and
given both a segment and class name of DATA.
Then follows the contents of the segment. In
~ this particular example, only one word of stor-
age is required. The ENDS dlrectlve indicates
the end of the segment.

® Next comes the stack segment which is given
the segment name of STACK, the combine-
type attribute of STACK and the class name of
STACK. The combine-type attribute of STACK
.. assures that the stack storage required in this
- module will be appended to the storage re-
quired in the PL/M-86 compiled modules. Two
bytes of stack are required by the code in this
module, however, the monitor uses 13 words of
stack when breakpoints and interrupts are used.
Therefore, 14 words are reserved for the stack.

Finally comes the code segment. The code seg-
‘ment has been given a segment name-and class
name of CODE and a group name of
CGROUP, and has been declared PUBLIC.
The alignment attribute of BYTE is specified

1-94

since it is desired that the code from this
module be appended directly to the code from
other modules without gaps between the code
modules.

The assembly language code follows next. The
code for the procedure must be enclosed be-
tween a pair of PROC, ENDP statements. The
PROC statement is given the label FINDMX
and specified as a NEAR procedure indicating
it will be called with a near (intra-segment)
CALL instruction and not a far (inter-segment)
CALL instruction.

The comments at the beginning of the module
and adjacent to the program statements ex-
plain the function being performed by the
assembly language code.

The SBCCO Module

@ The console output procedure CO is contained
in the object module SBCCO of the library file
SBCIOS.LIB. SBCIOS.LIB is part of the iSBC
957 package 1/0 libraries. The calling sequence
and parameters for CO may be seen in the
external procedure declaration in the EXE-
CUTIONSVEHICLE module.

Compiling the EXECUTIONSVEHICLE
Module '

The EXECUTIONS$VEHICLE module is stored on
a file named MATRIX.PLM on disk device :Fl1:.
To compile the module, the following command
line is used:

—PLMS86 :F1:MATRIX.PLM DEBUG

This command line will cause the module stored in
the file :F1:MATRIX.PLM to be compiled. The
object code generated will be stored in a file with
the default name :F1:MATRIX.OBJ and the listing
generated will be stored in a file with the default
name :FI:MATRIX.LST. To override the default
object and listing files, the NOOBJECT and NO-
LIST compiler control switches can be used. File
names for the listing and object files may also be
specified in the command line. The DEBUG com-
piler control switch causes the compiler to generate
extra symbol and line number information which
will be used during debugging of the program. A
listing of the compiled EXECUTION$VEHICLE
module is contained in Appendix B.

To aid in the debugging of the program, the
module was compiled a second time with the fol-
lowing command line:

AFN-01931A

—PLMS86 :F1:MATRIX.PLM NOOBJECT
CODE DEBUG PRINT (:F1:MATRIX.XLS)

This command line specified that no object file is to
be created and a listing file should be stored in the
file :F1:MATRIX.XLS. The CODE compiler con-
trol switch causes the compiler to list the assembly
language statements which the compiler has gener-
ated for each line of PL/M code. The listing stored
in the file MATRIX.XLS is contained in Appendix
C.

Assembly of the FIND Module

The assembly language module FIND is stored on a
file named FIND.ASM, to assemble this module
the following command line is used:

ASMS86 :F1:FIND.ASM DEBUG

This command line will cause the FIND module to
be assembled with the object code stored in the
default file :F1:FIND.OBJ and the listing stored in
the default file :F1:FIND.LST. The listing of the
assembled FIND module is contained in Appendix
B.

Linking and Locating the Object Module

To link and locate the object modules, the QRL86
program will be used. The QRL86 program per-
forms both the linking and the locating of the
object modules in a single step. QRLS86 is primarily
designed for the debugging stages of program devel-
opment. Some applications may require the extended
capabilities’ of the separate LINK and LOCATE
programs when the final link and locate is per-
formed. The command line used to invoke the
QRLS86 program is:

QRLS86 :F1:MATRIX.OBJ, :F1:FIND.OBJ,
SBCIOS.LIB ORIGIN (1000H)

This command line will cause QRL86 to link the
code from the three modules and to locate the
resultant absolute object module starting at location
1000 hexadecimal. The iSBC 86/12 monitor uses
the first 180H bytes of memory for the monitor
stack, data and interrupt vectors, 1000H was chosen
as a convenient starting address for the program.
The absolute object code will be stored in a default
file :FI:MATRIX (note no file name extension is
used). By default, the memory and debug maps
which are generated are stored in the file :F1:MA-
TRIX.MPQ and are contained in Appendix B.

The memory map contains the starting - ad-
dresses and sizes of the CODE, CONST,
DATA, STACK and MEMORY segments of
the object module. Note that the start address

1-95

for the program is specified as (J1p¢H, pPg2H)
indicating a CS value of @1§H and an IP
value of #P2H or an absolute value of @1¢@2H.
The first two bytes of the code segment contain
address values which the code generated by the
compiler will use for setting up the DS and SS
registers. The memory map shows the code
segments from the three modules collected into
the group CGROUP. The code segment from
the EXECUTIONSVEHICLE module is given
the segment and class names of CODE and is
put into CGROUP by the PL/M compiler. To
assure that the code segment from the FIND
module is concatenated with the code segment
from the EXECUTIONSVEHICLE module the
identical class, segment and group names were
specified in the SEGMENT and GROUP state-
ments in the FIND module. Next, the group
DGROUP is shown in the memory map.
DGROUP contains 4 segments labelled
CONST, DATA, STACK and MEMORY.
Putting all of these segments in the same group
tells the linker that they will all be in the same
64K block of memory. The SMALL size con-
trol option of the compiler, which was invoked
by default, creates CGROUP, DGROUP, and
the segments contained in them.

The debug map contains the memory address
of variables, instruction labels and the ad-
dresses of each code line of the PL/M-86
module. Notice that the variable storage labels
have their addresses specified in the format (DS
register value, displacement). For example, the
variable TEMP has an address of DS=012AH,
displacement = @PPCH or an absolute address
of P136H. Instruction labels and line numbers
use the format (CS register value, IP register
value). Thus, line number six (6) in the module
EXECUTIONSVEHICLE has the address
CS=0@1¢¢H, IP=@B5H or p11B5H.

Object to Hex Conversion

Before downloading the program to the iSBC 86/12,
the format of the object module must be converted
from the absolute object module format which
QRLS6 creates to a hexadecimal/ASCII representa-
tion of the object module. This is done using the pro-
gram OH86 with the following command line:

OHB86 :F1:MATRIX TO :FI:MATRIX.HEX
Downloading and Debugging the Program

The hardware configuration used for debugging the
matrix multiplication example program code was

AFN-01931A

an Intellec Series II' Model 230:development sys-
tem, the iSBC 957 package, an iSBC 86/ 12 board,
and an iSBC 660 system chassis. What follows is
the system-user dialog for a typical debugging
session. :

The first step required is to bootstrap load the
ISIS-II ‘operating “system by hitting the RESET
switch of the Intellec. The Intellec resident loader
software is then loaded and executed. Throughout
the dialog which follows operator entered charac-
ters will be underlined:

Is1s-1I,
-5BC861

V3.4

ISIS-II ISBC 86/12 LOADER, V1.2

To initialize the iISBC 86/ 12 monitor, the user must
hit the RESET switch on the iSBC 660 chassis and
type two ‘“U’’s on the system console. The monitor
program will output a line on the console when it is
properly initialized.

ISBC 86/12 MONITOR, V1.2

The monitor command ‘X’ is typed to check that
the monitor is properly operating and to examine
the contents of the 8086 registers.

WX
BX=0000 BX=0000 CX=0000 DX=0¥d0 SP=01C@ BP=0000 SI=0B00
DI=0000 CS=00V0 DS=0000 SS=pBOY ES=0000 IP=0000 FL=0000

To download the hex object file to the iSBC
86/12, the “L” command is used. Because an
Intellec Series II Model 230 is being used, a serial
download is specified. The hex file name is
MATRIX.HEX which is resident on disk device
:F1:.

LS, :F1:MATRIX.HEX

The “X” command is used again to examine the
CPU registers. Note that the monitor has changed
the contents of the CS and IP registers to the value
of the starting address of the program.

X
AX=00006 BX=0000 CX=0000 DX=00G@# SP=0¢1CV BP=0#00 SI=0000
DI=0¥B0 CS=010d DS=0QW@VSS=QBﬂD ES=0090 IP=0002 FL=0000

The “D”’ command is next used to display the first
101 bytes of the program code. Unless another seg-
ment register is specified, the display command
assumes all addresses specified are relative to the CS
register. Thus, the code displayed will be from abso-
lute addresses 1000 through 1100. The program code
displayed may be compared with program code gen-
erated by the PL/M-86 compiler shown in Appendix
C, code line 36.

1-96

The PL/M-86 compiler ends thé main program in
the EXECUTIONSVEHICLE module with a halt
instruction. After execution of the program it is
more desirable to return to the monitor. To ac-
complish this, an INT 3 instruction (code=CC)
will be substituted for the halt instruction (code=
F4) at the address of 1B4H relative to a CS value
of 100H. First the ““D”’ command is used to verify
the address of the halt instruction, then the ¢S’
command is used to change the instruction to an
INT 3 instruction.
D1B4

0184 F4
.51B4, Fd4- CC

To execute the PL/M-86 main program, the “G”’
command is used. After the ‘““G’ is typed, the
current contents of the IP are output, followed by
the contents of the byte pointed to by the IP. A
new value for the IP or breakpoint addresses may
be specified before a carriage return <CR> is typed.
In this example, only a <CR> is typed.

.G UPB2- FA

MAX VALUE = -000560
@p160:61B5 55

The program executes and outputs the maximum
value of the matrix calculated. The INT 3 instruc-
tion is executed which causes a return to the
monitor. The monitor types out an at-sign (@)
followed by the CS and IP register values and the
first byte of the instruction following the INT 3
instruction.

The X command is typed to examine the CPU
registers. Note that the program has set both the SS
and DS registers to §12A. (P12AQH is the address
of the DGROUP as shown in the memory map.)

X
AX=0030 BX=00#5 CX=0¥0A DX=06000 SP=008D0 BP=00DO SI=000.
DI=00606 CS=6190 DS=@12A SS=012A ES=@#00 IP=V1B5 FL=F20.

The three matrices are displayed. Note that a word

AFN-01931A

display has been specified by using the “DW?”’
Command and that the addresses have been speci-
fied relative to the DS register. The addresses of
X$ROW, YSROW, and ZSROW may be found in
the debug map given by QRL86. Note that the
values stored in the matrices are the same as those
shown in Figures 8 and 9.
.DW_DS:10,4A
9010 Q000 VYOO
0020 000P1 V601

0030 Gud3 2063
0040 0004 0005

0600
00062
0063
60d5

0000
0002
¥993
9005

0000
0002
g8v4
8005

0001
0002
0004
0605

0001
0062
0064

9o0l
0003
0004

.DW DS:4C,68

0¥4C 0000 FFFF
8056 FFFE 0000
¥P6Q FFFF FFFE
.DW _DS:6A,8C

V06A 0OUO GY00
0B70 $006 FFFB
Y080 FFE2 0000

FFFF
0000

FFFE
FFFF

171
FFFE

FFFF FFFE 0000

0000
FFF6
FFEC

1)
FFD8

FFF6
2000

FFEC
FFE7

(1))
FFCE

FFF1

The “G”” Command is used to reset the IP register
to the start address of the program (#)2) and to
specify a breakpoint at address PAEH, which is the
address of statement 57 of the main program.
Statement 57 is the point in the program after the
X$ROW and YSROW matrices have been initial-
ized, but before the matrix multiplication is
performed. After the <CRs is typed, the program
executes until the breakpoint is encountered. At
this point, the monitor outputs a line specifying
the number of the breakpoint, the CS and IP
values and the first byte of the next instruction to
be executed.
.G P1B5- 55 0U2,AE

BR1 @0106:080AE C7

Next, the single-step capability is used with the
“N”” command to execute single instructions. At
any time, CPU registers may be examined or
changed. In this example, the ‘“X” command is
used. Execution of succeeding instructions is caused
by typing a comma (,).

N WOAE- C7
0084~ 81 ,

00BA- TE
¢@BF- C7

%
AX=0018 BX=p0@18 CX=FFFE DX=0000 SP=00D@ RP=00ODD SI=0¥04

DI=6006 CS=018@¢ DS=Pp12A SS=@12A ES=0000 IP=60BF FL=F293
.N BOBF- C7 ,

00C5- 81 ,
00CB- TE

The contents of the X$ROW and YSROW matrices
are examined and changed with the ““SW’’ (sub-
stitute word) command. If a comma (,) is typed
after the contents of memory are displayed, then
the contents are left unchanged and the next word
of memory is displayed. If a value followed by a
comma or <CR:> is entered, then the contents are
changed. If a <CR> is entered, the substitute

1-97

sequence is terminated.

.SW DS:1A
o9IC 0001~ ,
901 0021~ 10

.SW DS:5A, FFFF-
805C FFFE- ,

005E 0008-

4860 FFFF- 64

8001~ ,
;

After the matrices are modified, execution is
resumed with the ‘“G’’ command. The max value is
output and the INT 3 instruction executed. Finally,
the contents of the 3 matrices are displayed.

.G 08CB- 7E
MAX VALUE = +00480
@U1060:01B5 S5
.DW DS:10,8C

9010 00006 0000
0020 0001
0030 9003

0000
0002

0001
0002
0004
0895
FFFF
0009
FFEC
#1EQ

2801
00602

0610
0003
0004
FFFF
[1'1'))]
0000
9120

0003
0005
FFFF
0000
FFD8
0180

0004
00080
FFFE
ey
0800
FFCE

Expanding the Example Program’s
Memory Requirements

To illustrate how the iSBC 86/12 board may be
used for executing 8086 programs which require
large amounts of RAM, the example program will
be modified. The matrix dimensions of the example
will be changed from values of 6, S and 3 for the
literal symbols of M, N, and P to values of 100,
50, 70. The three matrices will then be of size
100X50, 50X70, and 100X70. The memory re-
quired for these matrices is 15.5K words or 31K
bytes. The data, constant, stack and memory
segments which are contained in the group
DGROUP will now comprise almost 32K bytes of
memory.

The extra memory requirements will be supplied
by using an iSBC 032 board with the iSBC 86/12
board in the iSBC 660 chassis. The iSBC 032 board
is a 32K byte RAM board which is compatible
with both 8- and 16-bit CPU boards. The base
address of the board may be selected anywhere in
a 0 to 1 megabyte range on any 16K byte boundary.
8- or 16-bit data transfers may be selected. The
iSBC 032 board will be jumpered to respond to
addresses in the 512K or 544K address space (20
bit hex address range to 80¢00H to 87FFFH). This
will illustrate the capabilities of the 8086 to access
a 20-bit, 1 megabyte address range.

One other modification is required to the program.
The magnitude of the numbers which would result
from multiplying matrices of this size would great-
ly exceed the capacity of the 16-bit integer storage,
even with the two matrices initialized to the small

AFN-01931A

values they presently contain. To keep the example
simple, the initialization values will be changed so
all elements of the X$ROW matrix are set equal to
2 and all elements of the YSROW matrix are set
equal to 3. The result of the multiplication.should
make all the elements of ZSROW equal to 300."

The modified lines of program code are shown
below. ,

/* MATRIX DIMENSIONS */

27 1 DECLARE M LITERALLY 'l60°';
28 1 DECLARE N LITERALLY '58';
29 1 DECLARE P LITERALLY '78';
36 1 DO I =9 TO (M-1);

37 2 DO J = 8 TO (N-1);

38 3 . X$ROW(I). COL(J) = 2{
39 3 END;

40 2 END,

41 1 DO I = @ TO (N-1);

42 2 DO J =@ TO (P-1);

43 3 Y$ROW(I).COL(J) = 3;
44 3 END;

45 2 END;

The EXECUTIONSVEHICLE module must be re-
compiled and then the three program modules must
be linked and located using the QRL86 program.
Specifying the SEGMENTS option of QRLS6, the
origin of the CODE segment which is in the group
CGROUP is set at 1000H, as in the first example.
However, the origin of the CONST, DATA
STACK and MEMORY segments which make up
the group DGROUP is set at 80000H.

QRLS86 :F1:MATRIX.OBJ,:F1: FIND OBJ,
SBCIOS.LIB SEGMENTS (CODE(1000H), -,
. CONST (80000H), DATA STACK, MEMORY)

The memory map generated by QRL86 shows the
CGROUP having a start address of 01000H and
the DGROUP having a start address of 80000H.

INVOKED BY et
QRL86 :Fl:MATRIY.OBJ,:Fl:FIND.OBJ,SBCIOS.LIB &
SEGMENTS(CODE(lBGﬂH) CONST(SEDGHH) DATA, STACK, MEMORY)

INPUT MODULES INCLUDED:

- tF1:MATRIY. OBJ(EXECUTIONVEHICLE)
:F1:FIND.OBJ (FIND)
SBCIOS.LIB (SBCCO)

RESULT .WRITTEN TO :F1:MATRIY(EXECUTIONVEHICLE)
START ADDRESS IS (410@H,0002H)

START LTH ALIGN NAME CLASS

/GS/ CGROUP

CODE (EXECUTIONVEHICLE) CODE

CODE (FIND) CODE

CODE (SBCCO) CODE

/GE/ CGRQUP |

/GS/ DGROUP *

CONST (EXECUTIONVEHICLE) CONST

01000H - 298H
1010604 21DH

$1210H 41H
© §125EH- 3AH

8GBUOH 7970H
B80B00H CH

Q@ =EIIININIIQ ZUEQ

800OCH" OH ..CONST (SBCCO) CONST
8000CH 792AH DATA(EXECUTIONVEHICLE) DATA
87936H 2H DATA (FIND) DATA
87938H 2H DATA (SBCCO) DATA
87940H 30H 'S STACK . L STACK
87970H [} MEMORY - MEMORY
' /GE/ DGROUP -
87970H oH 2?SEG (FIND) L (NULL).

- The object code is then converted to hex format

and downloaded to. the iSBC 86/ 12 ‘board. When
the program is. executed, the max1mum value is
calculated and output on the console ;

‘~8BC861
ISIS-11 ISBC 86712 LOADER, V1i2:: "'

ISBC 86/12 MONITOR,,V1.2
.LS,:F1:MATRIY.HEX

.S1AC, F4- CC
G ﬂﬂﬂZ- FA

MAX VALUE = +00300
@@100:01AD 55

VI. CONCLUSION

This application note has descnbed the iSBC 957
Intellec—iSBC 86/12 Interface and Execution
Package, and how this package may be used to
develop and debug programs for the 8086 processor.
First, the iSBC 86/12 single board computer was
described, followed by a detailed description of the
iSBC 957 package and the iSBC 86/12 system
monitor commands. The power and versatlhty of
the iSBC 957 package and monitor commands for
developing, and debugging programs for the 8086
were illustrated by a program example. In the
example a program which consisted of PL/M-86
and assembly language routines was presented. The
program code was explained, and the steps required
to compile, assemble, link, locate, and debug the
program were illustrated. Finally, a typical de-
bugging session using the iSBC 86/12 system moni-
tor which illustrates the powerful capabﬂmes of the
monitor was presented '

AFN-01931A

66-1

VIE6L0-NdV

P1
|]

RESET/ RESET,] BPRO/
v2 oK ciK BUSY/
15 MHZ - RESET/ s0.52 S0-52 BREQ/
[0 BUS
LocK angen o cemo |
. ASSEMBLY
3 $2 ONBD CEN 912
RESET/ oLk AMwe BOLK/ Bus
wroc | see v BPRN, ADEN
5.0 MHZ CLK S0 Mwrc | FIG- 42 18.432 MHZ
CLOCK MCE 1 0! BPAN.
GENERATOR READY st status |INTA D, amee 9.2 MHZ b 8oL
oEcooeR fionc
s2 lowe LOCK - OVERRIDE ceu
. DEN > ol
cpu DT/A
ESET) 2 v ALE c q|
] |
ROY
PRI NM1 Lock CEN: MADC) g,
{ . ADV 0 ADR oLk [mwrc,, [FiG 42
= | 50-52 1owe:
o INTR ADIG-ADIS . s INTA GYGLE 10RC/
COMMAND INT,
XACK! ADDRESS en,| CecobeR NN]
ADO-AD15 16 A4a1/57 AR
7 SLAVE MODE ™
BUS DEN
15T Ack-— ADO-ADF 16 B
—_———
8
P ON BD ADR EN
ADO-ADT / |
p——
AB10-AB13 4 T 3 ADROI-ADRB.
bTR EE— ADR101-ADR13/ 16 ADRO-ADR1Y/ 20
{ ADDRESS. ——
TS DRIVER
A87/88
ADV 10 ADR 8
INTA CYCLE BUS ADEN
AB3.ABF G
SLAVE MODE ADDRESS 4
DRIVER
86
10
10 AACK ADDRESS 10 ENABLE
DECODER
A54/55156 ot
o - 3 <
ADO-ADF 15 DATA DMO-DMF QAT DATOLDATE 16
—— BUFFER o~ —
A60,61
LOCAL INTA DEN z
DUAL PORT
AM
ADS-ADA 3 (SEE FIG. 4-2)
ENABLE Y Qg S— I 10
amce
{ LOCAL INTA DEN_ 1ST Ack:
BUS INTA DEN
8 RESET/
CHIP SELECT
0B0-087
INTR
BUS INTA DEN
cHiPSELECT -
DATA
—
Y1
RESET/ RESET/ 22.1184 MHZ
o
DATA 3 AW DATA TS RW TA CS DATA S| AW INTR [e] INTRY/
82554 PPI AZ5 8251A USART AZ7 8253PIT AZS ciRCUIT 8259 PIC AZ4 LUE
61718 INTR2/
) RXD TXC/RXC_TXD cRy 1ROIRT INTA INTRY
v g =
PAINTR e INTI
heoPBINTR oo 212 . MATRIX INTRS!
S1TXINTR
o BUS INTR OVERRIDE INTRS/
L stRxINTR L o mmwNm® INTRY,
[BIDIRECTIONAL s ic 246 MHZ.
oolse SOCKE SOCKETS T17
Pa | BUS 517X | MR
’t, %, EXT INTRO %,, INTR | INTR [INTR | INTR
out
¢ PB EXT S1RX TMRI
[J1] J2] INTR INTRO INTR INTR

iSBC™ 86/12 SIMPLIFIED LOGIC DIAGRAM
INPUT/OUTPUT AND INTERRUPT

MULTIBUS

(240 1) V XIAN3ddV

00L-L

VIE6L0-NIVY

)
[. RESET/ RESEY/ eeror [
v2 CLX CLK BUSY/
L1 e = = e
N see . 42T o] WSSEUBLY p—o
ONBD ADR a2
RESET/ ok 1oRD vs 8US ADEN
. OWT 18.432 MHZ [z
cLock SEE
BUS ADEN GENERATOR 5.0 MHZ CLK S0 INTA Fle 41 o
A Lx 9.22 MHZ. BCLK/
READY s1 STATUS AMWC =
£AD DECODER cLock
AB1 MROC ciRcurT. |
s2 MwTC AB063 922 Mz
2 DEN o]
cpu oA . §
ROY A9 o—— BHEN ALE
3 cen MROC/
|——Lock oP o P
READ/WRITE
Loaic So52 BUS MWTC/
AD16-AD19 M G . SLAVE MODE e P -
RAM XACK/ An‘g:csss ABO-AB13 20 T oero Y AB3 %’] e g
’ e——e—y AEN
y Ad0/41/57 pNTA g
XACK/ ADO-AD1S 16 0P W/ BUS DEN 3
o nanne B
16 AB10-AB13 53)
———-1
Aoghess 2 ADRO-ADR13
ORIVER
ADO-ADF {7 oA vty
oTR 12 [5] BHEN
- SLAVE MODE 'BUS ADEN. -
mw ouT
ADO-ADF
ABO-ABF 16 ADDRESS 16 AMO-AMF - AMF Avoesss
ADV 1O ADR A8B-AB12 s 19 BUFFER e BUS 7
(SEE FIG. 4-1) 4258 oRVER ADRDY
\ s 5 16] ADRTY
DP ON 8D ADR EN OP ON BD ADREN
| op RO
[PROM ENABLE o1 I
ON BD RAM R OFF BD RAM ADR RQT
Cenowewere])-eneomsnor oua pomr ryrs .
CONTROL OFF BD RAM CHD ADORESS
SLAVE MODE/ oic 2122
BUS DEN L
DATA
BUFFER | oPROMENABLE
A44/a5
0 P2
MEM PROT/
' AUX PWR
cs
PROM
AZ8/29/48/47
RAM
S AT2.73, 9299 DTA.
0B0-DBF m . —
' DRMO-DRMF
MEMORY
DATA |
BUFFER
ATUSY 2]
1]
3
DATA BUS
DRIVER

iSBC™ 86/12 SIMPLIFIED LOGIC DIAGRAM
ROM/EPROM AND DUAL PORT RAM

(2402) V XIN3ddV

APPENDIX B
PROGRAM LISTINGS FOR EXECUTION$VEHICLE AND FIND MODULES

1-101 AFN-01931A

—

PL/M-86 COMPILER

1SIS-II PL/M-86 V1.¢ COMPILATION OF MODULE EXECUTIONVEHICLE

EXECUTIONVEHICLE

OBJECT MODULE PLACED IN :F1:MATRIX.OBJ
COMPILER INVOKED BY: PLM86 :F1:MATRIX.PLM DEBUG

[ERNEVENY

22
23

2

26

27
29

30

32
33
34
35

[SENENN

[RS

[RERERINENY

W W WW N

[N

e

ST

/* MATRIX MULTIPLICATION EXAMPLE PROGRAM

PL/M-86 MAIN PROGRAM WHICH:
A) INITIALIZES TWO INTEGER MATRICES

B) MULTIPLIES THE TWO MATRICES AND STORES THE RESULT IN A
THIRD MATRIX
CALLS AN ASSEMBLY LANGUAGE PROCEDURE WHICH SEARCHES THE

c

THIRD MATRIX FOR THE MAXIMUM VALUE

D) CALLS A PL/M PROCEDURE WHICH CONVERTS THE MAXIMUM VALUE

FROM INTEGER TO ASCII

E) CALLS » PROCEDURE WHICH OUTPUTS THE ASCII CHARACTERS ON

THE SYSTEM CONSOLE

*/

EXECUTIONSVEHICLE :
DO; .

/* FINDSMX - EXTERNAL ASSEMBLY LANGUAGE PROCEDURE WHICH SEARCHES A
MATRIX FOR THE LARGEST ABSOLUTE MAGNITUDE.

PARAMETERS:

MATRIX$ADR -

*

FIND$MX: PROCEDURE (MATRIX$PTR, ROWS, COLS) INTEGER EXTERNAL;

DECLARE (ROWS, COLS) INTEGER;
DECLARE MATRIXSPTR POINTER;

END FINDSMX;

/* BINSDECSASC - BINARY TO DFCIMAL ASCIT CONVERSION PROCEDURE

PARAMETERS:

VALUE - INTEGER VALUE TO BE CONVERTED TO ASCII
CHARSARRAYSADR - ADDRESS OF 6§ BYTE ARRAY WHERE ASCIT
STRING CONTAINING THE VALUE WILL BE

*/
BINSDEC$ASC: PROCEDURE (VALUE, CHARSARRAYSADR);

DECLARE (VALUE, TEMP,

I) INTEGER;

DECLARE CHARSARRAYSADR POINTER;
DECLARE (CHARSARRAY BASED CHAR$ARRAYSADR) (6)

IF VALUE < ¢ THEN
DO;

CHARSARRAY (@) = '-';

TEMP = -VALUE;

DO;
CHARSARRAY (#) = '+'
TEMP = VALUE;

END;

DO T = 5 TO 1 BY

/* SIGN CHARACTER */

-1;
CHARSARRAY (I) = UﬁSIGN(TEMP MOD 1@) + 3¢H;

TEMP = TEMP/1¢;

/* ASCII CHARACTERS 2@ THRU 39 HEX REPRESENT THE DIGITS ¢ THRU 9. THUS
TO CONVERT AN’ INTEGER TO ASCII REPEATED DIVISIONS BY 10 AND ADDING
THE REMATNDER TO 2¢ HEX WILL ACCOMPLISH THE CONVERSION */

END;

END BINSDECSASC;

/* CO - EXTERNAL PROCEDURE TO OUTPUT A CHARACTER TO THE SYSTEM CONSOLE.
THIS PROCEDURE IS PART OF ‘THE ISBC 957 LIBRARY FOR CONSOLE I/O

PARAMETER:

CHAR ~ ASCII CHARACTER TO BE OUTPUT ON THE CONSOLE

*/

CO: PROCEDURE (CHAR)
DECLARE CHAR BYTE;
END CO;

EXTERNAL;

/* MATRIX DIMENSIONS */

DECLARE M LITERALLY *'

DECLARE N LITERALLY 'S

DECLARE P LITERALLY '3';

/* THE THREE MATRICES ARE DECLARED AS ARRAYS OF STRUCTURES.
OF M STRUCTURES EACH OF WHICH IS COMPOSED OF N INTEGER ELEMENTS.

X$ROW MAY BE THOUGHT OF AS A M X N MATRIX.

DECLARE X$ROW(M) STRUCTURE (COL(N) INTEGER);
DECLARE YSROW(N) STRUCTURE (COL(P) INTEGER);
DECLARE Z$ROW(M) STRUCTURE (COL(P) INTEGER);
DECLARE (1,J3,K,MAX) INTEGER;

DECLARE MAXSASCSARRAY (6) BYTE;

DECLARE TEXT(*) BYTE DATA ('MAX VALUE = ');

ADDRESS OF THE MATRIX TO BE SEARCHED
ROWS - NUMBER OF ROWS IN THE MATRIX
COLS - NUMBER OF COLUMNS IN THE MATRIX

XSROW IS COMPOSED

THE MATRIX WILL BE STORED AS
A ROW-ORDER MATRIX WITH THE ELEMENTS OF EACH ROW STORED IN ADJACENT MEMORY
LOCATIONS., Y$ROW IS DECLARED AS A N X P MATRIX AND ZS$SROW AS A N X P MATRIX

1102

AFN-01931A

/* INITIALIZE XSROW SUCH THAT THE FIRST ROW IS SET EQUAL TO @, THE SECOND
ROW EQUAL TO 1, THE THIRD ROW EQUAL TO 2, ETC. */
36 1 DO I = @ TO (M-1);
37 2 DO J = ¢ TO (N-1);
3R 3 XSROW(I).COL(J) = I;
39 3 END;
e 2 END;
/* INITIALIZE Y$ROW SUCH THAT THE FIRST COLUMN IS SET EQUAL TO @, THE
SECOND COLUMN EQUAL TO -1, AND THE THIRD COLUMN EQUAL TO -2. */
41 1 DO I =g T (N-1);
42 2 DO J ¢ TO (P-1);
43 3 YSROW(I) COL(J) = -J;
L 24 3 END;
45 2 END;
/* PERFORM MATRIX MULTIPLICATION */
46] DC K = ¢ TO (P-1);
a7 2 DO I = @ TO (M-1);
28 3 ZSROW(I).COL(K) = @#; /* SET Z$ROW ELEMENT TO # */
© 49 3 DO J = # TO (N-1); /* SUM THE PRODUCT OF X$ROW ROW TERMS AND Y$ROW COLUMN TERMS */
2? 2 Z$ROW(I).COL(K) = ZSROW(I).COL(K) + (XSROW(I).COL(J) * Y$ROW(J).COL(K));
E D;
52 3 END;
53 2 END;
@ 54 1 MAX = FIND$MX (@ZSROW, M, P); /* FIND MAX VALUE OF ZSROW */
@ 55 3 CALL BINSDECSASC (MAX, @MAXSASCS$ARRAY); /* CONVERT TO DECIMAL ASCII */
56 1 DO I = # TO (SIGNED(SIZE(TEXT)) - 1); /* OUTPUT HEADER TEXT */
57 2 CALL CO(TEXT(I));
@ 58 2 END;
50 1 DO I = ¢ TO 5; /* OUTPUT ASCII MAX VALUE */
62 2 CALL CO (MAXSASCSARRAY (I));
61 2 END;
62 1 END EXECUTION$VEHICLE;

MODULE INFORMATTON:

CODE AREA SIZE B225H 549D
CONSTANT AREA SIZE A7 aCH 12D
VARIABLE AREA SIZE Ae90H 144D
MAXIMUM STACK SIZE = @@A8H 8D

137 LINES READ
@ PROGRAM ERROR(S)

END OF PL/M-86 COMPILATION

ISIS-I1 MCS-86 ASSEMBLER ASSEMBLY OF MODULE FIND
OBJECT MODULE PLACED IN :F1:FIND.OBJ

ASSEMBLER INVOKED BY: ASM86 :F1:FIND.ASM DEBUG

’
LoC OBJ
LINE SOURCE
1 NAME FIND
2 PUBLIC FINDMX
3
4
5
6
7 ASSEMBLY LANGUAGE PROCEDURE TO FIND THE ELEMENT OF AN INTEGER
8 MATRIX WITH THE LARGEST ABSOLUTE MAGNITUDE. THE VALUE OF THE
9 ELEMENT IS RETURNED IN THE AX REGISTER.

PL/M CALLING SEQUENCE:
MAX$VALUE = FIND$MX(ADRSOFSMATRIX, #OFROWS, #OFCOLS);

PARAMETERS :
ADR$OFSMATRIX - ADDRESS OF THE MATRIX WHICH WILL BE SEARCHED
#SOFSROWS - NUMBER OF ROWS IN THE MATRIX
#OFCOLS - NUMBER OF COLUMNS IN THE MATRIX

PL/M WILL PASS THE THREE PARAMETERS IN THE CALL TO THIS PROCEDURE ON
THE STACK. ON ENTRY TO THE PROCEDURE SP+6 WILL POINT TO THE FIRST
PARAMETER (ADRSOFSMATRIX) AND SP+4 AND SP+2 WILL POINT TO THE SECOND
AND THIRD PARAMETERS.

THE PROCEDURE IS A TYPED PROCEDURE WHICH ASSIGNS THE MAXIMUM VALUE
IN THE MATRIX TO A VARIABLE (IN THIS CASE MAX$VALUE) IN A PL/M
ASSIGNMENT STATEMENT. TO ACCOMPLISH THIS ASSIGNMENT THE VALUE IS
RETURNED IN THE AX REGISTER.

THE ALGORITHM USED IS SIMILAR TO THE FOLLOWING PL/M CODE:
FOR I = @ TO (#SOFS$SROWS - 1);
FOR J = § TO (#OFCOLS - 1);
IF IABS(MATRIX(I).Y(J)) > IABS(MAX) THEN MAX = MATRIX(I).Y(J);
END; :
END;

——
<o

WHERE IABS(XYZ) REPRESENTS THE ABSOLUTE VALUE OF THE INTEGER XYZ

w
”

1-103 AFN-01931A

LOC OBJ LINE SOURCE
40 H .
a DEFINE GROUPS TO CONFORM WITH PL/M-86 CONVENTIONS. DATA, STACK, AND
42 CODE SEGMENTS WILL BE APPENDED TO THEIR RESPECTIVE SEGMENTS IN THE
43 PL/M-86 MODULES.
44 DGROUP GROUP DATA,STACK
@ 22 CGROUP GROUP CODE
;
47 INSTRUCT THE ASSEMBLER THAT THE DS, SS, AND CS REGISTERS WILL CONTAIN
48 THE BASE ADDRESS VALUES FOR THE DGROUP, DGROUP AND CGROUP GROUPS.
49 ASSUME DS:DGROUP, SS:DGROUP,CS : CGROUP
50
51 ;
52 ;
53 jRHKEKEKAKKKKRRXDATA SEGMENT
54 H
@ - 55 DATA SEGMENT WORD PUBLIC 'DATA'
000 0200 56 MAX DW
- 57 DATA ENDS
58 H
59 jrAkk kKKK KKK KX**STACK SEGMENT
6% i
—— §1 STACK SEGMENT STACK 'STACK'
opoe (14 62 DW 14 DUP (9) ;RESERVE 13 WORDS OF STACK FOR MONITOR
® (14
)
63 ;AND 1 WORD FOR FINDMX PROCEDURE
——— 64 STACK ENDS
65 H)
66 ;*s***tﬁi*t****tcooe SEGMENT
4 67
= 68 CODE SEGMENT BYTE PUBLIC 'CODE'
69 - .
7¢ ;PARAMETERS ON STACK, DISPLACEMENT FROM TOS INCREASED BY TWO DUE TO INITIAL PUSH
2€86() 71 NO_OF_ROWS EQU WORD PTR [BP+6]
20041 72 NO_OF COLS EQU WORD PTR [BP+4])
2008 (] 73 ADR_OF MATRIX EQU WORD PTR [BP+8]
74
oroe 75 FINDMX PROC NEAR ; PROCEDURE DECLARATION
2¢00 55 76 PUSH BP iSAVE BP REGISTE
7801 8BEC 77 MoV BP,SP ;BP POINTS TO PARAMETEZRS ON STACK
0673 33D2 78 XOR DX, DX ;SET DX = ABS OF CURRENT MAX = @
#2605 8BFA 79 MOV DI,DX ;DI = I(ROW INDEX) = 0
9207 8BF2 80 MoV SI,DX iSI = J(COLUMN INDEX) = 8
€029 89160000 R 81 MoV MAX , DX ;MAX = CURRENT MAX = @
200D 8B4EM4 82 MOV cX, NO OF_COLS
2010 DIEl 83 SHL cX,1 ;CX = (#OFCOLS) * 2
84 ;TERMINATION FOR J(SI) INDEX
#@12 RBSERS 85 MoV BX,ADR_OF_MATRIX ;ADRSOFSMATRIX PARAMETER
86 {BX POINTS TO FIRST ELEMENT OF A GIVEN ROW
@ 8015 8500 87 ABC: MOV AX, [BX] [SI] ;GET ELEMENT OF MATRIX
8817 @BCO 88 OR AX,AX $SET FLAGS
B9 7902 89 JNS DEF ;JUMP IF SIGN = 0
291B F7D8 9p NEG ax ;NEGATE TO FORM POSITIVE NUMBER
#¢1D 3BC? 91 DEF: cmp AX,DX ;COMPARE TO CURRENT MAX
#BIF 7CA7 92 JL XYZ ;JUMP IF LESS THAN CURRENT MAX
2¢21 8BDE 93 MOV DX, AX ;MOVE TO ABS OF CURRENT MAX
2023 8BOC 94 MoV AX, [BX] [SI] ;MOVE MATRIX VALUE TO CURRENT MAX
2025 A3p0C0 R 95 MOV MAX, AX
0028 83C602 96 X¥Z: ADD sI,2 ; INCREMENT J INDEX BY TWO
@@2B 3BF1 97 cMP SI,CX ;END OF THIS ROW ??
#@2D 72E6 98 Js ABC ;IF NO, LOOP BACK FOR NEXT ELEMENT OF THIS ROW
202F 8D18 99 LEA BX, [BX+S1] ;BX = BX + (2 * #SOF$COLS), BX POINTS TO NEXT ROW
€031 BEROOO 100 MOV SI,n ;3 =0
2034 47 101 INC PT=T1 41
#@35 3B7E@6 192 cmp DI,NO OF ROWS ;LAST ROW 22
%038 72DB 103 JB ABC ;IF NO, DO THE NEXT ROW
083 AlP000 R 104 MOV AX, MAX ;RETURN MAX VALUE IN AX REGISTER
993D 5D 105 POP BP ;RESTORE BP REGISTER
0O3E C20600 106 RET 6 ; INCREMENT SP BY 6 AND RETURN TO CALLER
107 ;
188 FINDMX ENDP
1¢9 3
——-- 11¢ CODE ENDS
L 111 H
112 END
SYMBOL TABLE LISTING
NAME TYPE VALUE ATTRIBUTES
?2SEG SEGMENT SIZE=@#@@PH PARA PUBLIC
ABC . . . L NEAR @015H CODE
ADR_OF MATRIX V WORD @@08H [BP)
CGROUP, . . . GROUP CODE
CODE. SEGMENT SIZE=@@41H BYTE PUBLIC 'CODE'
DATA. SEGMENT SIZE=@@@2H WORD PUBLIC 'DATA'
DEF L NEAR (@QlDH CODE
DGROUP. . . . GROUP ., DATA STACK
FINDMX. . . . L NEAR @@@PH CODE PUBLIC
MAX V WORD @@@@H DATA
NO_OF COLS. . V WORD 0@@4H (BP]
NO_OF_ROWS... V WORD @@@6H [BP]
STACK SEGMENT SIZE=P@1CH PARA STACK 'STACK'
X¥Z L NEAR @@28H CODE
ASSEMBLY COMPLETE, NO ERRORS FOUND
1-104 AFN-01931A

, ISIS-II QRL-£64, VI,

INVOKED BY:
QRLBA :F]:MATRIX.OBJ, :F]:FIND.ORJ,SBCTOS.LIB ORTGIN (160AFH)

TNPUT MODULES INCLUDED:

P ATRIX.OBJ (FEXFCUTTONVEHICLE)
:F1:FIND.OBJ (FIND)
SBCIOS.LIB(SBCCO)

RESULT WRITTEN TO :F]1:MATRIX(EXECUTTONVEHICLE)
START ADDRESS IS (01@@H,7AA2H)

START LTH ALIGN NAME CLASS
@ a1007H 2A¢H G /GS/ CGROUP
710708 225H W CODE (EXECUTIONVEHTCLE) CODE
#1225H 41H B CODE(FIND) CODE
PL266H 3AH W CODE (SBCCQ) CODE

/GE/ CGROUP

012A¢0H D@H G /GS/ DGROUP
@12A¢H CH W CONST (EXECUTIONVEHICLE) CONST
M12ACH #H w CONST (SRCCO) CONST
@12ACH 9¢H w DATA (EXECUTIONVEHICLE) DATA
@133CH 2H w DATA (FIND) DATA
@133EH oH w DATA (SBCCO) DATA
01340H 2gH SW STACK STACK
A137¢H oH w MEMORY MEMORY
/GE/ DGROUP
~ ¢ 37¢H oH G ??8EG (FIND) (NULL)

(C DEBUG MAP OF :F1:MATRIX(EXECUTIONVENTCLE)

MODULE: EXECUTTONVEHICLE @1l@@H,0lEIH LINE §: 19 ele¢H,€13%H LINE §: 52
012AH,ZODOH SYMBOL: MEMORY #10@H,¢1FBH LINE #: 20 M100H,R142H LINE #: 53
#10@H,P1BSH SYMBOL: BINDECASC A1A0H,A213H LINE #: 21 ©10@H,ML4BH LINE #: 54
#12AH, ACACH SYMBOL: TEMP #1@@H,F21EH LINE #: 22 010AH,¢15ER LINE #: 55
#12AH,PPEH SYMBOL: I 0100H,0221H LINE #: 23 G10¢H,2169H LINE f: 56
712AH,2@1PH SYMBOL: XROW #10@H, #¢@2H LINE #: 36 #1¢@H,217AH LINE #: 57
#12AH,#G4CH SYMBOL: YROW 7#100H,@621H LINE #: 37 f1ggH,B185H LINE #: 58
¢ 12AH,EA6AH SYMBCL: ZROW A1QpH,#A324 LINE #: 38 010¢H,M18EH LINE #: 59
#12AH,#98EH SYMBOL: I #1@¢H,@A4BH LINE f: 39 #10QH,7)9FH LINE #: 60

® 012AH,#P9PH SYMBOL: J @1APH, AASAH LINE ¥: 4% 010¢H,71ARH LINE #: 61
#12AH,00P92H SYMBOL: K #1¢0H, #ASDH LINE #: 41 #19¢H,P1B3H LINE #: 62
#12AH,#994H SYMBOL: MAX 71¢¢H, P¢6EH LINE #: 42 MODULE: FIN
@12AH,AA9AH SYMBCL: MAXASCARRAY @100H,AA7FH LINE #: 43 0100H,P23AH SYMBOL: ABC
#122H, #AEPH SYMBOL: TEXT ¢107H,009CH LINE #: 44 $l00H,E242H SYMBOL: DEF
P1APH,F1B5H LINE #: 6 71@OH,#PASH LINE #: 45 @100H,0225H SYMBOL: FINDMX
#100H,#1B8H LINE #: 1@ 0100H,C0AEH LINE #: 46 ¢12AH,PB9CH SYMBOL: MAX
#107H,61C2H LINE #: 12 M1¢QH,9EBFH LINE #: 47 01¢0H,P24DH SYMBOL: XYZ
#1O@H,#1C8H LINE #: 12 01(0H,@9DPH LINE #: 48 ¢1¢0H,0225H PUBLIC: FINDMX
#10¢H,¢1DJH LINE #: 14 #1PPH,PAE7H LINE #: 49 MODULE: SBCCO
@10PH,P1D4H LINE #: 16 #100H,PPF8H LINE §: 5¢ £100H,0266H PUBLIC: CO

\ ©@107H,91DAH LINE #: 17 #10@H,P13#H LINE #: 51

1-105 AFN-01931A

APPENDIX C
PROGRAM LISTING FOR EXECUTION$VEHICLE MODULE WITH CODE EXPANSION

PL/M-86 COMPILER EXECUTIONVEHICLE

ISIS-II PL/M-86 V1.2 COMPILATION OF MODULE EXECUTIONVEHICLE
NO OBJECT MODULE REQUESTED
COMPTLER INVOKED BY: PLM86 :F]:MATRIX.PLM DEBUG CODE NOOBJECT PRINT(:Fl:MATRIX.XLS)

/* MATRIX MULTIPLTCATION EXAMPLE PROGRAM

PL/M-86 MAIN PROGRAM WHICH:

A) INITIALIZES TWO INTEGER MATRICES

B) MULTIPLIES THE TWO MATRICES AND STORES THE RESULT IN A
THIRD MATRIX

C) CALLS AN ASSEMBLY LANGUAGE PROCEDURE WHICH SEARCHES THE
THIRD MATRIX FOR THE MAXIMUM VALUE

D) CALLS A PL/M PROCEDURE WHICH CONVERTS THE MAXIMUM VALUE
FROM INTEGER TO ASCII

E) CALLS A PROCEDURE WHICH OUTPUTS THE ASCIT CHARACTERS ON
THE SYSTEM CONSOLE

*/

] EXECUTIONSVEHICLE:

0;

/* FINDSMX - EXTERNAL ASSEMBLY LANCUAGE PROCEDURE WHICH SEARCHES A
MATRIX FOR THE LARGEST ABSOLUTE MAGNITUDE.
PARAMETERS :
MATRIXSADR - ADDRESS OF THE MATRIX TO BE SEARCHED
ROWS - NUMBER OF ROWS IN THE MATRTX
COLS - NUMBER OF COLUMNS IN THE MATRIX

*/
2] FIND$MX: PROCEDURE (MATRIX$PTR, ROWS, COLS) INTEGER EXTERNAL;
2 2 DECLARE (ROWS, COLS) INTEGER;
4 2 DECLARE MATRIXSPTR POINTER;
5 2 END FIND$MX;
/* BINSDECSASC - BINARY TO DECIMAL ASCII CONVERSION PROCEDURE
PARAMETERS:
VALUE -~ INTEGER VALUE TO BE CONVERTED TO ASCII
CHAR$ARRAY$ADR - ADDRESS OF 6 BYTE ARRAY WHERE ASCII
STRING CONTAINING THE VALUE WILL BE STORED
*/
A 1 BINSDECSASC: PROCEDURE (VALUE, CHARSARRAYSADR);
; STATEMENT # 5
BINDECASC PROC NEAR
¢1B5 55 PUSH BP
@1B6 eBEC mov BP,SP
7 2 DECLARE (VALUE, TEMP, I) INTEGER;
8 2 DECLARE CHARSARRAYSADR POINTER;
9 2 DECLARE (CHARSARRAY BASED CHARSARRAY$ADR) (6) BYTE;
10 2 IF VALUE < @ THEN
; STATEMENT # 1@
G1BR Bl7EQGOAOH CMP [BP].VALUE, @H
#1BD 7C@3 JL $+5H
#1BF E912p@ JMP @1
11 2 DO;
12 3 CHARS$ARRAY (8) = '='; /* SIGN CHARACTER */
; STATEMENT # 12
#1C2 8BSER4 MCV BX, TBP] . CHARARRAYADR
g1C5 C6872D MOV CHARARRAY [BX] , 2DH
13 3 TEMP = -VALUE;
; STATEMENT # 13
g1C8 8B46D6 MOV AX, [BP].VALUE
@1CB F7Dg NEG Ax
(IJCD 89767007 MOV TEMP,AX
14 3 END;
;i STATEMENT # 14
@1D1 E9@DeR JMp @2
@l:
ELSE
15 2 DO;
16 3 CHARSARRAY (F) = '+';
; STATEMENT # 16
@1D4 8BS5ERS MoV BX, BP].CHARARRAYADR
#1D7 C6R72B MOV CHARARRAY 'BX1, 2BH
17 3 TEMP = VALUE;
; STATEMENT # 17
#1DA 8B45QA6 MOV AX, [BP].VALUE
21DD 89AGFPAA MoV TEMP,AX
18 3 END;
2z
19 2 DO I =5 TO 1 BY -1;
; STATEMENT # 19
71E1 C70602008500 MOV I,5H
ClE7 EOP6GO Jmp @5
@3:
PIEA 81R6G2¢AFFFF ADD I,AFFFFR

1-107

AFN-01931A

20

21

22

23

24

26

27
28
29

3P
22
32

35

36

37

38

[

—

@5:
813EA2¢07100 CMP

71FQ 1,1H
¢1F6 7D@3 JGE $+5H
g1F8 E926¢0¢ Jmp @4

CHARSARRAY (I) = UNSIGN(TEMP MOD 18) + 3@H;

; STATEMENT # 20

@1FB 8B@6OBBN MOV AX, TEMP

@1FF B9QAQAR MoV CX, 0AH

@2¢2 31D2 XOR DX,DX

#2004 FT7F9 IDIV CX

9206 81C2380@ ADD DX, 30H

¢2¢A 8BSEMA4 MoV BX, [BP].CHARARRAYADR
@20D 8B3602p0 MOV sI,

@211 881¢ MOV [BX).CHARARRAY [SI],DL

TEMP = TEMP/14;

; STATEMENT # 21

/* ASCII CHARACTERS 3¢ THRU 3¢ HEX REPRESENT THE DIGITS # THRU 9. THUS
TO CONVERT AN INTEGER TO ASCII REPEATED DIVISIONS BY 1@ AND ADDING
THE REMAINDER TO 3¢ HEX WILL ACCOMPLISH THE CONVERSION */

213 8BAGALZAG MOV AX,TEMP
@217 99 CWD
7218 F7F9 IDIV cx
621A 89060000 Mov + TEMP,AX
END;
; STATEMENT # 22
@¢21E E9CYFF JMP a3
@4:
END BINS$DECS$ASC;
; STATEMENT # 23
g221 5D POP BP
9222 C2pdpe RET :
BINDECASC ENDP

/* CO - EXTERNAL PROCEDURE TO OUTPUT A CHARACTER TO THE SYSTEM CONSOLE.
THIS PROCEDURE IS PART OF THE ISBC 957 LIBRARY FOR CONSOLE I/0

PARAMETER:

CHAR - ASCII CHARACTER TC BE OUTPUT ON THE CONSOLE

*
C0: PROCEDURE (CHAR)
DECLARE CHAR BYTE;
END CO;

EXTERNAL;

/* MATRIX DIMENSIONS */

DECLARE M LITERALLY 'G';
DECLARE N LITERALLY 'S5!';
DECLARE P LITERALLY '3';

/* THE THREE MATRICES ARE DECLARED AS ARRAYS OF STRUCTURES.

X$ROW IS COMPOSED

OF M STRUCTURES EACH OF WHICH IS CCMPOSED OF N INTEGER ELEMENTS. THUS

X$ROW MAY BE THOUGHT OF AS A M X N MATRIX.

THE MATRIX WILL BE STORED AS

A ROW-ORDER MATRIX WITH THE ELEMENTS OF EACH ROW STORED IN ADJACENT MEMORY
LOCATIONS. YSROW IS DECLARED AS A N X P MATRIX AND Z$ROW AS A N X P MATRIX */
DECLARE X$ROW(M) STRUCTURE (COL (N) INTEGER);
DECLARE Y$ROW(N) STRUCTURE (COL(P) INTEGER);
DECLARE Z$ROW (M) STRUCTURE (COL (P) INTEGER);

DECLARE (I,J,K,MAX) INTEGER;

DECLARE MAXS$ASCSARRAY (6) BYTE;
DECLARE TEXT(*) BYTE DATA ('MAX VALUE = ');

/* INITIALIZE X$ROW SUCH THAT THE FIRST ROW IS SET EQUAL TO @, THE SECOND

ROW EQUAL TO 1, THE THIRD ROW EQUAL TO 2, ETC. */

DO I = @ TO (M-1);

; STATEMENT # 36

a@@2 FA CLI
g0@3 2EBEl6ANES Mov © 8S,CS:@@STACKSFRAME
eaeg BCOABAD MOV SP,@@STACK$OFFSET
@¢@B 8BEC MoV BP,SP
@egD 16 PUSH §S
@@@E 1F POP DS
@0@F FB STI
2010 C70682000000 MOV I,7H
6:
A¢l6 B813E82047500 CMP 1,5H
@a1C TE@3 JLE $+5H
@@lE E93CeR a7

JMP
DO J = 8 TO (N-1);

; STATEMENT # 37

@21 C7068420000¢C MOV J,0H
e8:
@027 R13E84008400 CcMP J,4H
9@2D TEF3 JLE $+5H
@02F E9220¢ JMp e9
X$ROW(I).COL(J) = I;
; STATEMENT # 38
f@32 8BEARB202Q MOV AX,I
A@36 BOCANE MOV CX, #AH
#0#39 F7E9 IMUL (4
@A3B BB368407 MOV sI1,J
@0O3F DIE6 SHL SI,1
@641 89C3 MOV BX,AX
p043 8BPEB2(E MOV CX,I
fA47 8988B40R Mov fBX].XROWISI],CX
END;

1-108

AFN-01931A

40

42

43

40

45

27

49

[X)

INITIALTZE Y$ROW SUCH THAT THE FIRST COLUMN IS SET EQUAL TO @,
AND THE THIRD COLUMN EQUAL TO -2.

epaB e1068400010¢ ADD
20651 EQOD3FF JMP
@o:
END;
@essa 81p6R2p001¢0 ADD
?@5A ECBOFF JMP
@7:
/*
SECOND COLUMN EQUAL
DO I = £ TO (N-1);
785D C78682p¢02¢R MoV
ele:
6262 813ER200040F CMP
#¢69 TE@3 JLE
PGB E940800 JMP
DO J = @ TO (P-1);
OM6E C70684000000 MOV
@12:
@074 813E84000200 CMP
¢n7A TEG3 JLE
0e7C E9260¢ JMP
YSROW(I).COL(J) = -
@@7F 8BO684G0O MoV
@@83 F7D8 NEG
#@85 50 PUSH
7086 8BA68207 MOV
6@8A B9060OO MOV
@@8D F7E9 IMUL
0@8F 8B368400 MOV
6093 DIE6 SHL
¢g95 89C3 MOV
0¢97 59 POP
AP98 89884000 mMov
END;
a@eC 810684402 10¢ ADD
@@A2 EO9CFFF JMP
a13:
END;
AGAS 81468200210 F ADD
@AAB E9BSFF JMP
/* PERFORM MATRTX MULTT
DO K = ¢ TO (P-1);
CRAE C7ARBAANOFAE MOV
al4:
¢AB4 E13ERGARA2A0 CMP
@e¢BA TE#3 JLE
A@BC E98CPA Jvp
DO I =0 TO (M-1);
ACBF C70682¢000CF MOV
@16:
fACS R13ER2AACSG(CMP
eecs 7E@3 JLE
#8CD ES720¢ JMP
ZSROW(I).COL(K) = ¢
0¢D@ 8BP6R2¢A MOV
¢gD4 BOZ6RAE MOV
@en7 F7E9 IMUL
7@D9 8B368670A MOV
@PDD DIEA SHL
@ADF 89C3 MOV
@GE1 C78PSEQQMQAR MOV
DO J = ¢ TO (N-1);
@AET7 C7@6840000C0 MoV
e1e:
PCED S813EB40¢QA4PE CMP
@OF3 T7E03 JLE
@AFS5 E94100 JMP
Z$SROW(I) .COL(K) =
NOF8 8BO6820C MOV
@@FC B9QAGH MOV
@@FF F7E9 IMUL
0101 8B368400 MoV
@1¢5 DIE6 SHL
7107 50 PUSH
0108 8BO68400 MOV
01@C B906OE MoV
@1@F F7E9 IMUL
@111 8B3E860A MOV
7115 DI1E7 SHL
7117 89C3 MOV
2119 8B814¢00 MoV
@]1D SB POP
0l1E F7A8040¢ TMUL
n122 5@ PUSH
123 8B@682AY MOV
#127 F7E9 IMUL
@129 89C2 MOV

3, !
8

I,JH
f6

TO -1,

J,PH

J,2H
$+5H
@13
Ji
i
AX,J
AX
AX ;
AX,I
CX, 6H
CcX
SI,J
81,1
BX,AX
CcX H
[BX].YROW[

J,1H
e12

I,1H
R1e

PLICATION */

i

I,5H
S+5H
817

STATEMENT # 39

STATEMENT 4 40

STATEMENT # 41

STATEMENT # 42

STATEMENT # 43

1

SsI],CX
STATEMENT # 44
STATEMENT { 45

STATEMENT # 45

STATEMENT

=
~
~

; /* BET ZSROW ELEMENT TO ¢

AX, I
CX, %H
cX
SI, K
SI,1

BX,AX
[BX].ZROWT

/* SUM THE PRODUCT OF X$ROW ROW TERMS AND Y$ROW COLUMN TERMS */

J,PH

J,H

$+5H

e19
ZS$ROW (I) .COL (

AX,I
CX,¢AH
CcX
sI,J
SI,1
AX
AX,J
CX,6H
CcX
DI,K
DI, 1
BX,AX
AX,[BX].YR
BX ;
[BX].XROW [
AX H

AX, T
CcX
BX,AX

1-109

STATEMENT # 48

SI1,CH

STATEMENT # 49

K) + (XSROW(I).COL(J) * YSROW(J).COL(K));

STATEMENT # 5@

OWTDI1

1
SI]
1

AFN-01931A

7F12B 58 POP
#12C ¢1815E¢D ADD TBX].ZROW[DI],AX
51 4 END;
; STATEMENT # 51
7130 81p684n08100 ADD J,1H
#1346 E9B4FF Jmp elg
@19:
52 3 END;
; STATEMENT # 52
7139 81M68207E100 ADD 1,1H
@13F E983FF Jmp els
@17:
53 2 END;
; STATEMENT # 53
Ml42 210686000100 ADD K, 1H
#148 E9S9FF Jamp 214
@15:
54 1 MAX = FINDSMX (8ZSROW, M, P); /* FIND MAX VALUE OF Z$ROW */
; STATEMENT # 5¢
#14B BSSEQM MoV AX,OFFSET (ZROW)
#14E 50 PUSH AX ;1
714F B8AGAY MoV AX, 6H
7152 50 PUSH ax ;2
g153 B8R3AR MoV AX,3H
7156 5@ PUSH AX ;3
#4157 E8CROE CALL FINDMX
#15A 89768807 MOV MAX, AX
55 1 CALL BINSDECS$ASC (MAX, @MAXSASCSARRAY); /* CONVERT TO DECIMAL ASCII */
; STATEMENT # S5
B15E FF368808 PUSH MAX i1
2162 BB8AND MOV AX,OFFSET (MAXASCARRAY)
2165 5@ PUSH ax ;2
7166 EB4CE7 CALL BINDECASC
56 1 DO I = @ TO (SIGNED(SIZE(TEXT)) - 1); /* OUTPUT HEADER TEXT */
; STATEMENT # 56
A169 C70682000000 MoV 1,0H
@20:
@16F @13ER2000BE0 cMp 1,0BH
9175 7E3 JLE $+5H
@177 E9l4mAp JMP e21
57 2 CALL CO(TEXT(I));
; STATEMENT # 57
#17A 8BlEB260 MoV BX, I
017E FFB700a0 PUSH TEXTIBX]; 1
7182 EB000H CALL co
58 2 END;
; STATEMENT # 58
7185 81M6520A2100 ADD I,1H
7188 ESELFF Jamp 020
@21:
59 1 DO I = § TO 5; /* OUTPUT ASCII MAX VALUE */
; STATEMENT § 59
P18E C70682008000 MoV I,0H
822:
0194 B13E€200B500 cmp T,5H
#19A 7EM3 JLE $+5H
#19C E91400 Jmp @23
a2 CALL, CO(MAX$ASCSARRAY(T));
; STATEMENT # 60
M19F 8B1ER20# MoV BX, I
#1A3 FFB78AG0 PUSH MAXASCARRAY [BX]; 1
#1A7 EB0ADE CALL co
61 2 END;
; STATEMENT # 61
BIAA 810682000107 ADD 1,1H
#1B@ EOELFF amp @22
e23:
62 1 END EXECUTIONSVEHICLE;
; STATEMENT # 62
9183 FB STI
#1B4 F4 HLT
MODULE INFORMATION:
CODE AREA SIZE = #225H 549D
CONSTANT AREA SIZE = @A@CH 12D
VARIABLE AREA SIZE = 2990H 144D
MAXIMUM STACK SIZE = @@@8H 8D

END OF PL/M-86 COMPILATION

137 LINES READ
@ PROGRAM ERROR (S)

AX i1

1-110

AFN-01931A

intel

APPLICATION
NOTE

AP-53

October 1979

Using the
iSBC 544 Intelligent
Communications Controller

1-112

Contents
I INTRODUCTION 1-113
II. OVERVIEWcc0ivvnnnn 1-113
Intelligent Slave Architecture......... 1-113
TheiSBC544Board 1-115
IIl. HARDWARE CONSIDERATIONS . .1-115
Two Mode Operation 1-115
DualPortRAM 1-116
Interrupt Structure 1-117
Modem and Autocall Interface 1-117
IV. SOFTWARE CONSIDERATIONS...1-117
Device Programming 1-117
Master/Slave Protocols 1-118
Communications Support 1-119
V. THROUGHPUT ANALYSIS........ 1-119
Stand-Alone Throughput 1-119
Intelligent Slave Throughput 1-121
V1. APPLICATIONS EXAMPLES...... 1-124
A Distributed Control System 1-124
Design Requirements 1-125
System Configuration............... 1-126
Preliminary Design 1-126
SUMMAIY ...vvvinvnnnnennnnenennn 1-127
Terminal Cluster Controller.......... 1-127
DesignCriteria..................... 1-127
System Configuration............... 1-128
Preliminary Design 1-129
VII. SYSTEM SOFTWARE 1-130
Data Transfer Primitives 1-130
Sample Slave Software 1-130
Sample Master Software............. 1-135
VIIL SUMMARYooiiiiiinnnnnns 1-136
APPENDIX Acciviiiiininnnns 1-138
APPENDIXB......... S 1-140
APPENDIXC........ooiiiiiiiiinnanens 1-145
APPENDIX Doovviiiiiniinneannnas 1-151
AFN-01931A

I. INTRODUCTION

As the microcomputer system found its way into
more and more demanding applications the need
became clear for a new and innovative solution to
the old problem of providing timely response to
real world events. This need was never clearer
than in the field of communications where
throughput and response time are the keys to
success. The iSBC 544 Intelligent Communica-
tions Controller (ICC) is the vanguard of a family
of intelligent slave computers that provide a
unique and powerful answer to the needs of the
microcomputer user.

This application note is intended to introduce the
reader to the intelligent slave concept in general
and the iSBC 544 board in particular. After a
brief overview of the evolution of the concept and
the features it provides, the hardware and
software aspects of the controller are studied.
Following this a summary of various system
throughput tests is examined to evaluate the
performance of the intelligent slave versus more
traditional system architectures. We then study
two example applications of the product and
relate the earlier discussions to the real world.
Finally, some system software is presented that
handles all data transfer duties between master
single board computers and intelligent slaves on
the MULTIBUS system bus. More detailed
information on many of the topics covered in this
note can be found in the related publications
listed in the front-piece.

II. OVERVIEW
Intelligent Slave Architecture

Over the years, component technology has
increased at a rapid pace going from discrete
components (eg. transistors) to integrated circuits
(eg. TTL devices) to programmable peripheral
controllers (eg. Intel 8251A Universal Synchro-
nous/Asynchronous Receiver/Transmitter) to
fully intelligent slave devices (eg. Intel 8041A
Universal Peripheral Interface). At the system
level the evolution followed a similar path using
the increasing component technology to create
more and more powerful system building blocks.
The iSBC 508 1/0 board used TTL logic to provide
digital I/0 expansion for iSBC computers. The

1-113

iSBC 534 board took advantage of programmable
LSI devices to provide a programmable commu-
nications expansion board. Now, with the advent
of the iSBC 544 Intelligent Communications
Controller, a new level of system capability is
made possible with the fully intelligent slave
controller.

The cornerstone of the intelligent slave architec-
ture is the dual port memory. Through the use of
this shared memory space, a fast and efficient
protocol can be established to allow for coopera-
tion between master and intelligent slave in
solving the needs of the application system. In
addition to the shared memory, the CPU on the
intelligent slave also has some local RAM and
local PROM storage for programs. By using this
architecture the advantages of multiprocessing
and Direct Memory Access (DMA) controllers are
blended together. Unlike DMA controllers, the
intelligent slave works totally within its own data
space. Therefore, it is not affected by bus traffic
nor does it add to this traffic. And, since the on-
board CPU gets its instructions from local PROM
instead of predefined hard-wired logic or micro-
code, the user has total flexibility in defining the
functions the intelligent slave will assume in the
overall system.

Although the contents of an intelligent slave
make it look very similar to a single board
computer, the assumption of the slave role pro-
vides a distinct advantage. By performing duties
for a .master single board computer, the slave
relieves the master of low-level processing duties
and at the same time is itself relieved of system
responsibilities.

In order to position the iSBC 544 product and
outline what features it brings to the application
system it is necessary to define the functions
involved with communicating data. The three
main functional divisions are illustrated in Fig-
ure 1. At the lowest level the physical intercon-
nection is maintained. This level involves such
standards as RS232C which defines the require-
ments for transmitting bits from point to point.

The data transmission level involves the transfer
of bytes and/or blocks of data from devices to
computers and from node to node in computer
networks. The hardware dependent software
such as interrupt service and device polling is

DATA PROCESSING

DATA TRANSMISSION

PHYSICAL INTERCONNECTION

Figure 1. Layering of Communication System Functions

part of this level as are handlers for standard
protocols such as SDLC, HDLC, Bisync and X.25
or special purpose schemes and custom protocols.

The highest level performs the actual processing
of the data and calls upon the lower levels to move
the data from place to place. The application
software resides at this level as do some high level
software functions such as program to program
and process to process communications packages.

Now that we have a map of system functions to
guide us, it is possible to gain an understanding of
the usefulness of a product like the iSBC 544
Intelligent Communications Controller. If an
iSBC 534 board (which contains four USART
devices) was included to handle the expansion of
serial I/0 capacity the mapping of system
functions would look like that shown in Figure
2. The four USARTSs on the board would handle
the physical interconnection but due to the lack of
intelligence on the board the master CPU would
be burdened with all of the data transmission
duties in addition to its real duty, data processing.

When an iSBC 544 board is used in the system,
the mapping of system functions is as shown in
Figure 3. The physical interconnection is still
handled by the USARTSs on the board but now the
on-board CPU can be programmed to assume the
data transmission duties. With an intelligent
slave in the system, the master CPU is freed to
concentrate on the data processing functions and
the end result is that each function in the system
is handled in the most efficient manner possible.

1-114

DATA PROCESSING

DATA TRANSMISSION

Figufe 2. Mapping of System Functllons with

iSBC 534 Board

DATA TRANSMISSION

Figure 3. Mapping of System Functions with

iSBC 544 Board

MULTIBUS SYSTEM BUS

AFN-01931A

The iSBC 544 Board

The iSBC 544 Intelligent Communications
Controller contains:

e An Intel 8085A CPU operating at 2.76 MHz.

® Sockets for up to 8K bytes of read only memory
(user can choose Intel 2716, 2316E or 2732
devices).

® 16K bytes of dynamic, dual port Random
Access Memory (RAM).

e 256 bytes of static local RAM.

o Four Intel 8251A USARTSs with programmable
baud rates.

e Two Intel 8253 Programmable Interval Timers.

e Intel 8155 parallel interface providing 22
parallel I/0 lines and one 14 bit interval
timer. Various input and output lines are
dedicated to provide an interface to a Bell 801
or equivalent Automatic Call Unit (ACU).

® 8259A Priority Interrupt Controller.

III. HARDWARE CONSIDERATIONS

This section of the application note will focus on
the iSBC 544 hardware and will outline the
features of the board and its uses. Appendix A
contains simplified logic diagrams of the iSBC
544 board which can be referenced in the follow-
ing discussions.

Two Mode Operation

The iSBC 544 board is capable of operating in one
of two modes; 1) intelligent slave and 2) stand-
alone communications computer. The mode can
either be set with a switch or it can be “toggled”
via a software driven flip-flop on the board. In
the intelligent slave mode the CPU on the iSBC
544 board operates strictly within its on-board
resources. Communications with 8-bit and 16-bit
master single board computers is accomplished
through the dual port memory. Since the on-
board CPU executes code out of its local PROM
program storage the system designer is free to
define which functions the slave will assume in
the system design. As discussed earlier, this
could include all or part of the system data
transmission duties or could involve application
specific duties such as terminal format control,
code conversion or terminal input editing.

1-115

In the stand-alone mode, the logic on the board
disables off board access to the dual port RAM
and the bus buffers are used to allow the on-board
CPU to access expansion memory and I/0 on the
MULTIBUS system bus. In this mode the iSBC
544 board drives the bus busy (BUSY/) control
line active disallowing any other bus master
access to the bus. The stand-alone communica-
tions computer is capable of performing all of the
functions of the applications system. Referring
once again to the diagram of the functions of a
communication system, the stand-alone commu-
nications computer, with or without system
expansion, is responsible for all data transmis-
sion and data processing functions. In small
applications requiring multiple serial lines the
stand-alone iSBC 544 controller is a perfect fit.

In very special circumstances it is possible to
share the system bus by toggling the mode set
flip-flop between master and slave mode. Figure 4

iSBC 544
BOARD

[

SET
MASTER MODE
FLIP/FLOP

.

INITIALIZE
204

e

iSBC 204
CONTROLLER

SET-UP
TRANSFER
i COMMAND?
RESET
MASTER MODE
FLIP/FLOP
i PERFORM
OPERATION
PERFORM
ON-BOARD l
PROCESSING
INTERRUPT
| T SiGNAL
COMPLETION
SET MASTER
MODE
FLIP/FLOP

!

CHECK
STATUS

]

Figure 4. iSBC 544 Controller Running iSBC 204
Disk Controller '

AFN-01931A

shows the flow chart for a routine (code in
Appendix B) that makes use of the “software
switch” to operate an iSBC 204 Diskette Control-
ler. Using the iSBC 544 board in a system with
DMA devices is not recommended except in cases
where DMA accesses are short and relatively
rare. The use of the CPU for the handling of other
system devices could seriously degrade its
performance as a communications controller.
However, this capability could be extremely
useful in a system such as a small message store
and forward where the disk traffic is not heavy
and including a CPU card just to handle the disk
would be wasteful. Use of the “software switch”
to share the bus with another iSBC CPU is not
advised because of the amount of protocol that
would be required to keep the CPUs from interfer-
ing with each other on the bus.

Dual Port RAM

Figure 5 illustrates the dual port RAM memory
array on the iSBC 544 card. A triple bus architec-
ture is used to allow other MULTIBUS bus
masters access to the RAM on the intelligent
slave. Both the on-board CPU’s bus and the
MULTIBUS system bus are connected to the dual

PN

{\

16K

» 13
2

H a

= o 4

o g

[o

F DUAL PORT Q

£ CONTROL g

o LOGIC

2

2.

~_

8085A

Figure 5. Dual Port Control Logic

port controller. From here the dual port bus is
connected to the 16K of dynamic RAM memory.
Memory transfer requests from either of the first
two busses are handled by the dual port control
logic with the on-board CPU being given priority
if contention arises. The local CPU is favored so
that it is not overly delayed in handling its time
critical functions.

The address mapping of the dual port memory on
the iSBC 544 is diagrammed in Figure 6. The user
can enable access from the MULTIBUS system
bus to 0, 4K, 8K or all 16K of the RAM on each
iSBC 544 board. The dual port control logic
decodes the full 20-bit address and provides an
8-bit data path to the bus. For these reasons the
iSBC 544 board is compatible with 8080A, 8085A
and 8086 based single board computers. The user
can also select the block of addresses on the
system bus to which the iSBC 544 RAM will
respond. o)

MULTIBUS

iSBC 544
ON-BOARD

XF000 Fooo

XDooo E000
) *EOOO D000
XC000 Cooo
XB000 B000
XA000 A000

X9000 9000

X8000 8000

X7000 7000
X6000 6000
X5000 5000

X4000 4000

DEDICATED

X3000 STATIC RAM 3000

X2000 2000

X1000 ROM/PROM 1000

X = ANY PAGE ADDRESS, 0 TO F(HEX)

Figure 6. Address Mapping on Dual Port RAM Block

1-116

AFN-01931A

When accessed by the on-board CPU, the dual
port RAM always appears at 8000H. If the iSBC
544 board is operating in the stand-alone compu-
ter mode, the board is capable of generating the
16-bit bus address supported by the 8085A CPU.

Interrupt Structure

The interrupt structure of the iSBC 544 controller
is designed to handle the heavy load imposed by
the inherent real-time nature of the communica-
tions application. An 8259A Priority Interrupt
Controller handles the four receiver and transmit-
ter ready interrupts from the 8251A devices and
provides vectored interrupts using one of many
available priority schemes. In addition to the
eight interrupt sources handled by the 8259 there
are various others that can be connected directly
to the vectored interrupt inputs on the 8085A
(RST 5.5, 6.5, 7.5 and TRAP). One interrupt is
generated by the dual port control logic whenever
a byte is written into the base address of the dual
port memory by an offboard CPU. This interrupt,
the flag interrupt, is cleared automatically when
the on-board CPU reads the byte and is useful
when designing a master-slave protocol since it
provides a unique interrupt to each slave in the
system.

If the 8251A devices are used to interface to
modems the loss of carrier and ring indicator
interrupts from all four channels need to be
connected to 8085A interrupt request inputs. This
is accomplished with four input OR gates tying
the eight sources into RST 6.5. The ring indicator
and carrier detect lines can also be monitored
through a parallel I/0 port. This port would be
read in a polled system to determine status or
could be used along with the OR-tied interrupts to
determine which channel is sourcing the current
interrupt.

The remaining interrupt sources come from the
extra timer/counters and from the MULTIBUS
interrupt lines. In addition to receiving interrupts
from the bus, the iSBC 544 board has the
capability of generating MULTIBUS interrupts
using the Serial Output Data (SOD) line on the
8085A CPU. .

Modem and Autocall Interface

The iSBC 544 controller uses 8251A and 8155
devices for interface to modems and an autocall

unit respectively. All of the necessary handsha-
king signals concerned with the modem interface
are connected to the 8251A and the carrier detect
and ring indicator signals, as previously men-
tioned, can be connected to interrupt inputs. The
8155 parallel ports are wired as shown in Figure
7. All of the commonly used signals defined in the
EIA RS-366 specification for interface to an
autocall unit are provided. The software neces-
sary for handling the ACU becomes a simple
matter of responding to the ACU requests and
sending out the BCD digits representing the
number being dialed. In addition to the ACU
interface, the 8155 monitors various signal states
and provides software reset capabilities for the
USARTSs and some interrupts.

IV. SOFTWARE CONSIDERATIONS

Software for the iSBC 544 ICC falls into three
main categories; device programming, master-
slave protocols, and communications support.
Each of these three topics is covered in the
following section with the aim of defining the
software requirements and functions of the iISBC
544 board.

Device Programming

The main sources of the power and flexibility of
this product are the programmable L.SI devices on
the board. The first duty of the on-board software
is programming these devices to handle the
specific task at hand. To start with, the 8251A
USART can be programmed for synchronous or
asynchronous operation. In synchronous mode
the user specifies even, odd or no parity and either
external or internal sync detect with one or two
sync characters. In the asynchronous mode the
programmer selects the parity, the character
length (5, 6, 7 or 8 data bits), the framing control
(1, 1% or 2 stop bits) and the baud rate scaling
factor (input clock frequency divided by 1, 16 or
64).

The 8253 Programmable Interval Timers provide
the receiver and transmitter clocks for the
USARTSs and, along with the 8251A baud rate
scaling factor, are programmed by the software to
provide the desired communications frequency. In
addition, two additional 16 bit timers are left
available to the applications programs. to be used
as event counters, real-time interrupts, etc.

1117 AFN-01931A

PORT A

D; Dg D5 Dy D3 Dy Dy Do

OuTPUT
PORT [CRQJPPRI IR | UR INBBINBGFBZINB‘IJ

NUMBER BIT NB8 (MSB): 1
USART RESET: 1 = TRUE

DIGIT
- LINES: 0 = TRUE
CALL REQUEST: 0 = TRUE

PORT C

Dy D, Dy D, D; D

'INPUT :
PORT l PFS | Fm'r]:cn] DLOICOS PNDJ

Figure 7. 8155 Pinout Definitions

INPUT

—T—NUMBER BIT NB1 (LSR): 1 = TRUE
NUMBER BIT NB2: 1 = TRUE
NUMBER BIT NB4: 1 = TRUE

PORT B

D7 Dg Ds. Dy D3 Dy Dy Do

PORT

= TRUE

INTERRUPT RESET: 1 = TRUE
T ON NUMBER BIT

ICDG CDZICD1|CDOI RI3 I RI12 I RN | RIO I

RING INDICATOR, PORT 0: 0 = TRUE
RING INDICATOR, PORT 1: 0 = TRUE
RING INDICATOR, PORT 2: 0 = TRUE
RING INDICATOR, PORT 3: 0 = TRUE
CARRIER DETECT, PORT 0: 0 = TRUE
CARRIER DETECT, PORT 1: 0 = TRUE
CARRIER DETECT, PORT 2: 0 - TRUE
CARRIER DETECT, PORT 3: 0 = TRUE

PRESENT NEXT DIGIT: 0 = TRUE

CALL COMPLETE, LINE TRANSFERRED TO MODEM:
0 = TRUE

DATA LINE OCCUPIED: 0 = TRUE
ABANDON CALL & RETRY:. 0 = TRUE
FLAG INTERRUPT: 1 = TRUE
POWER FAIL éENSED: 1 =TRUE

The 8259A Priority Interrupt Controller is
programmed to vector all interrupts through a
jump table in memory. Also, the device provides
software selectable priority schemes and an
interrupt mask register for sophisticated 1nterrupt
management des1gns.

Last, but not least, the 8155 Programmable
Peripheral Interface provides various software
controlled input and output ports as discussed in
previous sections. One specific point to remember
is that the power on state of the 8155 clamps the
reset signal to the USARTSs active and must be
removed by programming the 8155 before com-
munications can begin.

Master-Slave Protocols .

If an application system is visualized at the
highest level it appears to be a computer with
various inputs and outputs as depicted in Figure
8a. If this computer is broken down into a master
CPU and one or more intelligent slaves, great
increases in efficiency and system throughput

can be realized by distributing the duties between
the CPUs (Figure 8b). Once this split is per-
formed, some well defined means of communica-
tion between master and slaves needs. to be-
defined so that the processes that execute on the-
different machines can cooperate. This means of
communication takes the form of a protocol
followed by both master and slave.

INPUTS
I
APPLICATION
— >
SYSTEM
—— —
OUTPUTS
APPLICATION SYSTEM
INPUTS ——
- >+—> 1 ;
MASTER | 3| SLAVE
—_— >
k ' ‘ ' OUTPUTS

Fiygureksa and 8b. System Software Block Diagrams

1-118

AFN-01931A

The intelligent slave architecture was designed to
simplify the development of the necessary
protocol. The shared memory space in the dual
port RAM provides a large communications
buffer area where data and commands can be
transferred using normal memory transfers. Data
structures of any needed complexity can be built
in this memory area and accessed by both master
and slave. The flag interrupt can be used to
provide a unique synchronization signal from a
master to a given slave. In addition, the MULTI-
BUS interrupt lines can be used to provide extra
signals in both directions. As we shall see in the
system software section, these basic tools can be
utilized to design a general purpose data transfer
mechanism which isolates the applications
processes from the worries of protocols and
synchronization.

Communications Support

The previous software topics dealt mainly with
the system overhead that must be handled by the
communications processor. The larger and more
important duty of the CPU is dealing with the
application at hand—communications.

When configured as an intelligent slave to some
master iISBC CPU board, the iSBC 544 board
works to offload the master of communications
related functions and at the same time is itself
relieved of a major share of the system overhead
and can be tuned to provide the highest possible
throughput. With this combination, more com-
plex applications can be tackled where the
number of lines and the line frequencies are
greatly increased. Multiple systems can be
employed to provide a network facility with the
iSBC 544 board now handling the network
protocol in addition to its other duties. The
architecture of the iSBC 544 controller is designed
to simplify the user’s software development
process. The board can be programmed to handle
many possible data transmission functions from
simple line protocols to terminal control to link
protocols and all the way up to network protocols.

In the stand-alone mode, the iSBC 544 board can
assume total responsibility for the application.
This can be done with on-board resources only or
can include the support of offboard expansion like
the iSBC 534 four channel serial controller. Appli-

cations of the stand-alone controller could include
cluster controllers, peripherals managers, line
concentrators or any other small system.

V. THROUGHPUT ANALYSIS

This section of the application note deals with
studies that have been done to quantify the
performance of the iISBC 544 board in both the
stand-alone and intelligent slave modes. After
describing the various test configurations and
assumptions the data will be presented in
graphical form and analyzed. The graphical data
can be found in Appendix C.

Stand Alone Throughput

The first two tests were run to determine the
absolute best case throughput of the iSBC 544
board configured as a stand-alone computer. Fig-
ure 9a shows the iSBC 544 controller continuously
outputting data from four buffers to the four
USARTS. Figure 9b shows essentially the same
setup with eight channels, four on the iSBC 544
board and four on the iSBC 534 expansion
card. In each configuration the 8251A was run in
synchronous mode and the baud rate was incre-
mented until the transmitter empty signal from
the USARTSs became active. Further increments
of the baud rates would not have resulted in
higher throughput since the CPU was already
spending 100% of its available time responding to
USART service requests.

The maximum rate for the first configuration
(iSBC 544 board only) was 32,311 baud per
channel. When the iSBC 534 expansion board
was added a rate of 12,186 baud per channel was
achieved. The drop in baud rate was due to the
extra processing required by the offboard logic
(eg. reading 8259 interrupt controller on the iSBC
534 board to determine which device is requesting
service).

It should be noted that the serial throughput tests
were run with almost no overhead and no actual
processing of the data involved. The reader is
expected to apply information on the amount of
overhead expected in each individual application.
For instance, if the application code for a given
system is expected to utilize approximately 40% of
the available CPU time and we wish to run four

AFN-01931A

T

1

|

8251A

8251A

8251A

8251A

8085A

m

8251A] 8251Al [8251A [B251A]

/

8085A

—

E

MY
MUMY

iSBC
544
BOARD

EEE—

/isec 544 BOARD

RING BUFFERS

8251 8251 8251 8251

/

iSBC
BOARD

o 2
=

MULTIBUS SYSTEM BUS

Figure 9a and 9b. Stand-Alone Throughput Conflgurations

1120

AFN-01931A

full duplex channels in asynchronous mode the
estimate of maximum baud rate would take the
following form.

32,331 baud per channel — 40% = 19,398.6 baud

19,398.6 baud per channel synchronous x 10/8
= 24,248.25 baud asynchronous

24,248.25 baud per channel half duplex/2 =
12,124.125 full duplex

Therefore, the maximum standard baud rate
would be 9600 baud per channel in full duplex
asynchronous mode.

Intelligent Slave Throughput

The remaining four configurations were set up to
determine the effectiveness of the intelligent slave
in the overall system. The general system config-
uration is illustrated in Figure 10. The boards
surrounded by the box represent the systems
under test. The disk controller and two iSBC
80/20 single board computers were active on the
bus to simulate the normal bus traffic load in an
application system. Various bus duty cycles were
created using the computers and the disk control-
ler to perform tasks that resulted in fixed bus
utilization.

(o] [

(=]

)

MEMORY

Figure 10. General System Configuration for
Throughput Testing

In each configuration a single full duplex channel
was set up with the input provided by another
CPU. Only those functions dealing with system
overhead were included and the data measured

1-121

reflected the amount of bus time, master CPU
time and slave CPU time left available to
applications oriented tasks. In each case this
percentage of time available was measured as the
baud rate was stepped up so that a graph could be
constructed showing time available as a function
of transmission speed.

CPU free time was measured using a counting
program running in the background. After each
USART interrupt the counter was started. As
interrupts from other sources came in the count-
ing was preempted and then resumed after
servicing the interrupt. When the next USART
interrupt occured, the counter contents were
examined and if the value was lower than the
stored value the current value became the stored
value. After ten minutes the stored value was
retrieved and used as an indicator of the worst
case time available between interrupts.

System bus utilization was measured using the
circuit shown in Figure 11. The voltage measured
by the digital voltmeter represented a time
average of the voltage at the output of the flip-
flop. A calibration chart was created using a
pulse generator to simulate various duty cycles
and then this chart was used to measure bus
activity while the test was running.

VOLTMETER

BUSY/

BCLK/

B
I

Figure 11. Bus Free Time Measurement Circuit

Configuraticn 1 is shown in Figure 12. This
system uses a typical method of communications
expansion with the iSBC 80/30 single board
computer handling the lines directly via the serial
1/0 ports on the iSBC 534 I/0 controller board.

AFN-01931A

iSBC 80/30 CPU

ISBC 534

SERIAL
EXPANSION BOARD MEMORY

[|

=

MULTIBUS SYSTEM BUS

I
I
|
|
|
|
I
I
I
|
|
i
I
|
I
I
I
I
|
[

Figure 12. System Throughput Test, Configuration 1

The second configuration (Figure 13) illustrates
the performance of the traditional DMA control-
ler approach. If the communications controller
had DMA logic instead of a dual port memory and
transferred data directly into system memory the
performance would be as observed in this test.

In configuration 3 (Figure 14) the iSBC 544 board
was used in the intelligent slave mode. This

configuration differs from the second in that
memory transfers involved only local memory
and bus access was not required on a per
character basis. '

The fourth and final configuration sought to
identify the loading that additional intelligent
slave controllers would impose on master CPU
time and bus free time. Figure 15 shows the

ISBC 80/30
SINGLE BOARD
COMPUTER

ISBC 80/30
SINGLE BOARD
COMPUTER

MEMORY

MULTIBUS SYSTEM BUS

|
I
|
|
|
!
I
I
I
|
|
|
I
I
I
|
|
|

Figure 13. System Throughput' Tést, 'Conflguratlon 2

1-122

AFN-01931A

8251A

iSBC 80/30
COMPUTER

iSBC 544
INTELLIGENT
COMMUNICATIONS
CONTROLLER

|
|
|
|
|
|
|
|
|
|
|
| SINGLE BOARD
|
|
|
|
|
|
|
|
|
|
|
|

iSBC 80/30 . iSBC 544
SINGLE INTELLIGENT
BOARD COMMUNICATIONS

COMPUTER CONTROLLER

iSBC 544
INTELLIGENT
COMMUNICATIONS
CONTROLLER

Figure 15. System Throughput Test, Configuration 4

1-123

AFN-01931A

configuration with two iSBC 544 boards execut-
ing identical programs.

The graphical presentation of the results is split
into two sections. The first three graphs (Graph 1
through Graph 3) show the relationship between
baud rates and the master CPU, system bus, and
slave CPU utilization. All of these results are
based upon tests with 30% induced bus traffic (i.e.,
the two iSBC 80/20 computers and the iSBC 204
disk controller were active.)

In graph 4, processor free time is graphed as a
function of bus traffic. The processor in this case
is the one actually involved with the data on a per
character basis (i.e.,, iSBC 80/30 board in con-
figuration 1, iSBC 80/30 board simulating DMA
Controller in configuration 2, and iSBC 544 board
in configuration 3).

Finally, graph 5 illustrates the maximum attain-
able baud rate for each configuration as the bus
traffic is increased.

All of the graphs identify the relative perfor-
mance difference between the configurations.
Absolute numbers are not presented due to the
fact that the overhead imposed by the test
software affects the CPU time being measured.
Since the overhead applies equally to all config-
urations, the relative performance indications are
valid.

Based upon the data presented, the DMA control-
ler and intelligent slave use 3 times less CPU time
than an I/0 controller. Also, the iSBC 544
intelligent slave generates 12% and 6% less bus
traffic than the I/0 controller and DMA control-
ler respectively. Finally, the intelligent slave uses
8% less slave CPU time than the DMA controller
approach.

The earlier discussion that dealt with the intelli-
gent slave architecture pointed out that the
distribution of intelligence would offload the
master CPU so that it would retain sufficient
processing power for the actual application,
whatever that may be. In addition, it was stated
that the assumption of the slave role would relieve
the slave CPU of system overhead and at the
same time reduce system bus traffic. All of these
assumptions are supported by the results of the
testing presented here.

1-124

The second set of graphs identify the effects of
bus traffic on the performance of the various
components of the system. The main observation
to be made in this sequence is the drop in CPU
free times and maximum baud rates that occurs
when the bus gets busy. This effect is observable
in the communications processor free time when
the iSBC 534 expansion board or the DMA
controller configuration is used. No effect is
evident in the configuration with an iSBC 544
board.

The cause of this effect is the amount of bus
access required by each configuration to move the
characters from the USART to or from the
buffer. With an iSBC 534 board the master CPU
receives an interrupt, polls the offboard 8259
interrupt controller, reads in a character, stores it
in system memory and sends an end of interrupt
command to the offboard interrupt controller.
When the iSBC 80/30 computer receives an
interrupt all processing is performed onboard
until a bus access is required to move the data
byte from/to memory. In the case of the intelli-
gent slave, all processing for a character is
performed onboard. Thus, ‘as the system bus
becomes very fully utilized, the delays encounter-
ed in receiving bus access by the first two
configurations become significant.

The fourth configuration, which was set up to test
the effects of adding more intelligent slaves,
shows that extra slaves cause no appreciable
increase in system load. All of the data points for
two slaves were identical to the points for one
slave in graphs 1 through 5.

VI. APPLICATION EXAMPLES
A Distributed Control System

The potential applications for a product like the
iSBC 544 communications controller are almost
unlimited and not restricted to the traditional
Data Communications market. The first applica-
tion example that is studied concerns industrial
automation. Due to the fact that the system is
distributed and requires a generalized network,
the iISBC 544 board is a natural prospect to handle
the communication links between the various
nodes in the system. ‘

AFN-01931A

Design Requirements

The system to be designed is intended to provide
the framework for a family of distributed control
systems where the configurations and the objects
to be controlled vary from system to system. Fig-
ure 16 shows the general picture of the system.

HOST

SERIAL

Sd6%

Figure 16. General Diagram of Distributed
Control System

The host is responsible for providing supervisory
control and a high-level human interface. The
system can be expanded as shown in Figure 17
where the controllers attached to the host are
replaced by intermediate nodes which contain
controllers or other nodes. This process can be
continued as far as is necessary to provide the
needed number of controllers. Each controller in
the diagram represents a localized closed loop
control system that is tailored to the specific
application.

The following system requirements need to be met
by the computer network:

e The host CPU must have sufficient computa-
tional power to handle the human interface,
mass storage management, supervisory control
calculations and network control.

® The host CPU must not be overly burdened by
low-level communications functions if it is to
handle the other duties assigned to it.

o Node controllers must be capable of handling 8
medium speed lines and also modems and
autocall units since the nodes or controllers
attached may be remote.

Figure 17. Expanded Diagram of Distributed Control System

1-125

AFN-01931A

o The message transmission format must be
independent of the configuration and end
application. The nodes in the network must be
capable of passing through messages with and
without interpreting the contained data.

e The system must be capable of auto-configura-

_ tion (since the network configuration is tailored
to the specific application, the host must be

~_ able to automatically determine the setup at
power on)

¢ Each node controller is responsible for verify-
ing the integrity of the nodes attached.

System Configuration

Based upon the design criteria and the bench-
mark information the chosen configuration uses
an iSBC 86/12 Single Board Computer as the host
with an iSBC 544 intelligent slave handling the
"communications load for the CPU. The USART
on the CPU board will talk to the local terminal
and an iSBC 206 Hard Disk Controller will be
used to provide up to 40 Megabytes of mass
storage capacity.

The requirements for the node controllers point to
an iSBC 544 board configured as a stand-alone
communications computer with an iSBC 534
board as expansion to provide the necessary 8
lines. The throughput data indicated a raw
throughput value of 12K baud on each channel.
With the data rates expected being far below this,
sufficient time will be left over for background
functions. Thus, the software requirements for
each node can all be met by the CPU on the iSBC
544 board and the inclusion of an expansion
board does not necessitate another iSBC compu-
ter. B

A typical controller in the system would look like
that shown in Figure 18. The iSBC CPU handles
the local closed loop control, using parametric
information sent from the host. This information
would typically include setpoints, tolerances and
alarm limits. The serial channel on the CPU will
be used to maintain the link to the next level in
the network.

Preliminary Design

The message format that the system uses is .

shown in Figure 19. When multiple nested levels

CLOSED LOOP
CONTROLLER
ANALOG

ANPUTS ‘ ISBC 80/10A SINGLE BOARD

> ANALOG
5 OUTPUTS

—] COMPUTER WITH iSBC 732
ANALOG 1/0 BOARD
—
SERIAL
LINK DIGITAL OUTPUTS

Figure 18. Typical Controller in Distributed System

Figure 19. Message Format

; FRAME
FLAG [COMMAND| LENGTH DATA FRAME | FiaG
7 7
/ \
/ \
\
: // \
/ \
/ \
/ \
/ \
ADDRESS | COMMAND DATA

Figure 20. Nested Level Address Information

of nodes are used the data area of the message
contains command and address information for
the next level down (Figure 20). Interpretation of
the commands in a given message is done on an
individual basis except for a set of.system-wide
commands (eg. IDENTIFY is a system command
meaning respond with your ID code). The flexi-
bility afforded by this scheme can be extremely
useful in a system where the end applications and
configurations may be quite diverse (eg. a node
controller that is processing a transmit command
may be the only one that knows that it is sending
to another node via a phone line and thus it
interprets the contained data differently than
another node would). The level of intelligence
and the ease of programming of the iSBC 544
board make this generalized transmission scheme
possible.

AFN-01931A

The simplest means of auto-configuration re-
quires each controller in the system to send an

identity message to the nearest node. This node °

would know the logical address of the controller
that sent the message and would attach this
address to the message and retransmit it to the
next level as illustrated in Figure 21. This process
would be repeated until the host is reached and
would contain, at this point, all necessary address
information to reach the given controller.

[ADDRESS[ADDRESSID)]

CONTROLLER

Figure 21. Auto Configuration -

The human interface on the host would provide a
mapping mechanism to attach meaningful
symbolic names to the various nodes in the
system. This labeling, along with the application
specific control algorithms, make it possible to
say something like “lower the temperature on the
third floor to 68°F”. The host breaks this
information down into setpoints and tolerances,

1127

uses the map to determine the path to the node(s)
responsible for the third floor and transmits the
information through the network.

Each node controller in the system has the added
responsibility of verifying the integrity of all the
nodes attached to it. This duty can be handled by
periodic background commands issued from the
host and propagated through the network. Each
node is responsible for passing the command
along and also polling the nodes attached to it
and reporting back any error conditions.

Summary

Through the use of a powerful 16-bit iSBC Single
Board Computer, various low-cost 8-bit iISBC
CPUs and the iSBC 544 communications control-
ler, a flexible and extensible distributed control
system is easy to design. The dual nature of the
iSBC 544 board provides both an intelligent front
end to the host computer and a high-speed stand-
along nodal concentrator. The ability to individ-
ually customize the software on each controller
provides for an easily expandable system design.

Terminal Cluster Controller

The second application example concerns itself
with a terminal cluster controller. The system
shown. in Figure 22 uses a number of “dumb”
terminals and makes them appear “intelligent”
via a local microcomputer system. The local

‘microcomputer interfaces with the operator and

accesses a local data base to provide an inquiry
and data entry service. When necessary, the local
microcomputer is capable of calling the host via
an autocall unit and exchanging information and
updates to the data base.

Design Criteria

The terminal cluster controller must meet the
following criteria:

e Support must be provided for from four to
sixteen operator terminals all running at rates
up to 2400 baud.

¢ Line editing on input must be provided (delete
characters, delete lines and pause output).

AFN-01931A

" 'HOST

LOCAL
DATA
BASE

L

TERMINAL

Figure 22. Terminal Cluster

TERMINAL

® Support for the terminals must be configurable
in that certain stations may require different
screen formats.

e Support for an optional hard copy device must
be allowed for.

e A considerable amount of CPU free time must
be available after the basic terminal facilities
are included. This is due to the fact that the
data base management software to be written
to run on the master single board computer will
be extensive.

e Type ahead would be a desired feature since the
processing on the master CPU after a line of
input has been transmitted may cause a delay
in responding and we would like to have the
ability to continue entering input while waiting
for the response.

System Configuration

The specific iSBC products needed to implement
the system described are the iSBC 80/30 Single
Board Computer with an iSBC 032 RAM Expan-

1128

sion Board, an iSBC 206 Hard Disk Controller
and one to four iSBC 544 Intelligent Communica-
tions Expansion boards. Inte’s RMX/80 Real-
Time Multitasking Executive will provide the
basis for the software system and will include
disk file support for the iSBC 206 controller
through DFS/80. The full system configuration
is illustrated in Figure 23.

BLOCK DIAGRAM

iSBC 206 iSBC 032
BOARD BOARD
< MULTIBUS SYSTEM BUS >
iSBC 544 iSBC 544 iSBC 544 iSBC 544

: BOARD BOARD BOARD BOARD

Figure 23. Terminal Cluster Controller System
Configuration

iSBC 80/30
BOARD

AFN-01931A

Preliminary Design

The first design decision to be made involves the
distribution of system functions. Due to the
requirements for line-editing and type-ahead the
software for processing characters input from the
terminal keyboards will be somewhat lengthy.
The standard terminal output handler will be
very small but provisions for special screen
format controls and/or hard copy devices must be
allowed for. All of these requirements lead to the
use of the iISBC 544 controller for all terminal
functions. If the master CPU were burdened with
all of these duties it would be unable to adequately
perform its data base management functions.
The fast CPU and 8K PROM capacity of the iSBC
544 board will be more than adequate for the task
at hand.)

The throughput tests indicate that the loading
imposed by expanding the number of terminals
(and therefore the number of iISBC 544 boards)
will not adversely affect the performance of the
rest of the system. Master CPU free time and bus
traffic data for two intelligent slaves in the
system were identical to the numbers for one
slave. Thus, since the iSBC 80/30 single board
computer and the MULTIBUS system bus can
handle one iSBC 544 controller they can also
handle the maximum of four controllers that may
be required by this application. The only observ-
able effect will be caused by the load the extra
operators impose on the data base software itself.

The software needed for the iSBC 544 board is
now defined and divided into three major pieces; a
terminal input handler, a terminal output handler
and system software to support the handlers.
Since the input and output handlers are invoked
via USART interrupts, all that need be done is to
write a single routine for each handler and have it
talk to all of the devices on the board. This can be
accomplished by vectoring the proper interrupts
to the entry point of the routine and then polling
the 8259A interrupt controller to determine which
device needs servicing.

The standard terminal input handler needs to

read in the available character from the USART,

1-129

check it to see if it is a special command character
and, if not, store it into a buffer. If a command
character is encountered, the handler will respond
by performing the appropriate operation.

The standard terminal output handler simply
takes characters out of a buffer upon interrupt
from the transmitter and sends them to the
appropriate USART. If a different output handler
needs to be substituted for a special terminal or a
hard copy device, a new routine can be included
by modifying the interrupt vector address in the
8259A jump table.

Since the RMX/80 Real-Time Multitasking
Executive is being utilized on the master CPU it is
desirable to create an RMX/80 handler for the
iSBC 544 boards that accepts and processes
normal terminal handler request messages. In
this manner, application tasks that formerly
communicated with the on-board USART via the
RMX/80 Terminal Handler can be made to talk to
one of the devices on the iSBC 544 board by
simply changing the address of an exchange. The
following paragraphs, as well as paragraphs in
the section on system software, assume a know-
ledge of the RMX/80 Real-Time Executive. This
knowledge is not necessary to use the information
contained in this application note. Interested
readers are referred to the RMX/80 references
listed in the front-piece.

Since this application can have from one to four
iSBC 544 boards the RMX/80 driver will need to
be configurable. A set of tasks and exchanges
will be created for each terminal in the system.
One task and exchange pair will accept and
process terminal input request messages while
another pair will process terminal output re-
quests.

The remaining piece of software thatis needed by
this system will provide the means for getting
commands and data between the master and
intelligent slave. Since this is a common need in
any system utilizing an intelligent slave we will
develop a general purpose scheme that can be
used by any application. In this manner, a
routine such as the terminal input handler can be
written without any concern for how it will get the
data it is inputting to the master CPU; all it need
do is call upon a standard routine to “transmit”

AFN-01931A

the data. With these thoughts in mind, the
following section discusses the system software
developed for master-intelligent slave communi-
cation. After the discussion of the system soft-
ware we will revisit the software for the second
application as an example of the use of the data
transfer routines. ’

VII. SYSTEM: SOFTWARE

In the earlier discussion of master-slave protocols,
the notion was presented of developing a general
purpose data transfer scheme which would enable
the applications routines on both the slave and
master to operate without concerning themselves
with protocols and synchronization. This scheme
can be implemented by designing a set of
primitive routines to handle the data transfer
activities. Thus, Figure 8b is expanded as shown
in Figure 24 and the applications processes now
call upon the primitives to handle the communica-
tions between the master and the slave.

Data Transfer Primitives

The basic mechanism used by this implementa-
tion of the primitives is a wraparound queéue as
shown in Figure 25. Each 8251A device has
associated with it, in dual port memory, an input
and an output queue each of which have a give

TOP
" POINTER '

TAKE
POINTER

e E——

GIVE
POINTER. -

BOTTOM
POINTER

Figure 25. Wrap-around Queue Used by Data
Transfer Primitives

and a take pointer. The give pointer contains the
address of the next location in the queue that is
available for filling with data. The take pointer
contains the address of the next byte'in an output
queue that has been filled and is available. A
queue is empty when the give and take pointers
are equal and it is full when the act of incre-
menting the give pointer would make it equal to
the take pointer. A wrap function is defined to
increment a pointer such that an increment past
the bottom of the queue “wraps’ the pointer
around to the top of the queue.

MASTER

MASTER
APPLICATION < >
SOFTWARE

MULTIBUS
SYSTEM

APPLICATION SYSTEM

SLAVE

. SLAVE
APPLICATION
SOFTWARE

Y
DATA

TRANSFER «—
PRIMITIVES

Figure 24. System Software Diagram with Data Transfer Primitives

1-130 AFN-01931A

The primitives all make use of a queue informa-
tion block located at the base address of the
slave’s dual port memory (Figure 26). All pointer
information is base relative to accommodate the
needs of the two CPUs who have different
memory maps. The two flag bytes carry informa-
tion for master-slave and slave-master synchron-
ization signals.

FLAG MASTER —— SLAVE
FLAG SLAVE ——» MASTER
GIVE (0))
Xt :
GIVE (7)
TAKE (0)
¢ :
TAKE (7)
TOP (0)
e :
TOP (7) :
; BOTTOM (0)
¢
l L BOTTOM (7) W

Figure 26. Queue Information Block

The set of primitives provides two distinct
methods of information transfer, line oriented
and byte oriented. The line oriented primitives
are listed in Table 1. Both get$line and send$line
transfer information between the queues and
buffers provided by the caller. The disadvantage
of this scheme is the number of memory moves
needed to transfer information. The advantages
of the line oriented method are the relative
efficiencies and the simplicity of the interface
from the calling routine.

The byte oriented primitives (Table 2) allow the
calling routine to transfer data directly into and
out of the queues. An example of the sequence for
putting a character into a queue is illustrated in
Figure 27. The routine servicing the receiver
ready interrupt calls next$space to get a pointer to
the next available slot in the queue and then uses
this pointer to transfer the data byte directly into
the queue. The new$line, xmit, opendline and
recetve primitives are necessary since the global
give and take pointers cannot be modified until
all manipulations on the affected section of the
queue are complete. If the pointers were modified
continuously the routine gathering the data from
the other side may see invalid data.

/* OPERATOR TYPES “L" */

PTR= NE-‘XT$SPACE (QUEUESNUMBER):
VALUE = INPUT (USART$DATASPORT);

QUEUE QUEUE
TOP S
e <— TAKE r_‘H— TAKE
LINES OF INPUT
. WAITING FOR
MASTER PROCESSOR
| >
N N
T T
I
E E
GIVE—{ — L
- — |<—aGIvE
P ——
BOTTOM]

" Figure 27. Sequence for Putting Data Into Queue

Table 1

Line Oriented Primitives
Primitive Alfgumenls Usage
send$line Queue$token, buf$ptr, count Inserts count characters into queue from buffer
Returns: overflow If insufficient room available, overflow indicates how many would not fit
get$line Queue$token, buf$ptr, count Retrieves count characters from queue and puts them in buffer
Returns: Actual : Actual indicates how many were actually moved

1-131

AFN-01931A

The remaining primitive routines deal with the

general purpose needs of the application software
with.regard to interrupts, initialization and status
checking. A full list of these support routines is.
contained in Table. 3. .

There are many features-of this implementation
and a few of them should be pointed out at this
time. By defining a general purpose set of
primitive routines to handle the data transfer, the
actual means by which the bytes are transferred
between: slave and master is not visible to the
calling routine. If the actual mechanism used
needs to be altered the change will not affect the
application software as long as the same external
interface is maintained.

Another important feature:of the primitive
routines is the fact that they do not interpret the
bytes that are sent to them. Due to this fact, the.
applications routines are free yto__send commands
and. parameters interspersed with the. actual
data. As an example, the terminal driver on an
iSBC 544 board. might perform format control
based upon table information. The master appli-
cations-software could use the data transfer
primitives to transmit commands and parameters
to the slave to update,its format control informa-
tion. Another advantage of the fact that the data
is not interpreted is that it allows the calling
routine to determine what data gets sent along.
For instance, a specific terminal might be
transmitting ASCII code while the master

Table 2
Byte Oriented Primitives
Primitive Argurnénls Usage
new$line Queue$token Sets up a queue for byte oriented input.
Returns: ptr Ptr returned points to the first available byte.
next$space Queue$token Increments the temporary give pointer to the next open space.
Returns: ptr Ptr returned either points to next byte or is zero specifying full queue.
back$space Queue$token Decrements temporary give pointer. : .
Returns: ptr Ptr returned either points to byte or is unchanged indicating that the
global give pointer was reached.) '
xmit Queue$token Closes off a line entered via byte mode by updating global give ptr to
Returns: status equal temporary give ptr. Status is either “normal” or “nuli”.
open$line Queue$token Opens up a line for byte oriented output.: o
Returns: ptr Ptr returned either points to the next byte or is zero indicating an-
empty queue.
next$char Queue$token Increments iemporary take pointer. . .
Returns: ptr Ptr returned either points to next byte or is zero indicating an
' empty queue. o ‘ .
receive QueueS$token - Closes off a line retrieved in byte mode by updating global take = |
Returns: status pointer to equal temporary ptr. Status is either “normal” or “null”. |::
Table 3
Support Routines
Primitive Arguménts Usage ‘)
get$stétus ‘ Queue$token 'Returns status of queue. Possible values are “normal”, “empty”,
Returns: status “full” and “null”.
set$interrupt Queue$token, type ... Generates a slave — master or master — slave interrupt. Type code 0
) Returns: status . is illegal and codes 8H — OFH are reserved for use by the primitives. |
set$handler. . Queue$token, handler$adr ... Inserts address into vector table used fo} hén‘d’li,ng inierrupts ‘
Returns: status described above. .
s$init none Called from slave software to initialize.
minit " none .Called from master software to initialize.

1-132

AFN-01931A

software is expecting EBCDIC. The routine on
the slave can very easily perform the necessary
code conversion before stuffing the data into a
queue. :

Sample Slave Software

Given the existence of the primitive routines the
applications routines on the slave and master can
deal with the specific duties of each device. The
following paragraphs revisit the code from
application example 2, first for the slave and then
for the master. Full code listings for these
programs can be found in Appendix D.

The flowchart for the terminal input handler
resident on the iSBC 544 board is shown in Figure
28. Support is provided for deleting characters
(Rubout), deleting lines (control-X), pausing and
resuming output (control-S and control-Q) and
terminating lines (escape and carriage return).
The sections of code reproduced below use this
terminal input handler to present an example of
the use of the data transfer primitives to enter and
edit a line of input from a terminal. The byte
variable value is based on the address variable
value$ptr which is assigned by calls to the
primitives. The routine var$inp inputs and
returns a data byte from an I/0 port specified by
a calling parameter. This is necessary since the
particular USART to be serviced is determined by
reading the 8259A in-service register.

/* case 1; rubout; delete char *x/

doi;
new$ptr=back$space(token);
if newbptr=lengthsptr then :
. dummy=echo(token+l,.(bell),1);
;T else
dos
dummy=echo(token+1,.(BS,SP,BS),3);
ptr=newtptr;
count=count=1;
end;
end;

Following this, the byte input is checked to see if
it is a control character and if so a block within a
DO CASE statement is executed. As an example
of one of these blocks, if the character input was a
RUBOUT the code sequence below is executed.
The back$space primitive is called and a tempo-
rary pointer is returned to a location in the queue.
A check is made to determine if the line was
empty and, if so, a bell is echoed to signal the
operator. If the pointer returned did not indicate

1-133

an invalid RUBOUT the real pointer is assigned
the value of the temporary pointer and a back-
space, space, backspace is echoed to delete the
previous character on the screen. Lastly, the
character count for the current line is decre-
mented.

VALUESPTR=NEXT$SPACE (QUEUESNUMBER) ;
VALUE=VARSINP (USART$DATASPORT (NUM)) ;

RECEIVER READY
INTERRUPT

SAVE
STATE

!

DETERMINE
WHICH
8251A

GET
CHARACTER

CONTROL
CHARQCTER

HANDLE
T

NO

ECHO
CHARACTER

!

PUT INTO
QUEUE

!

INCREMENT
COUNTER

!

UPDATE
POINTER

QUEUE FULL?

STOP
FURTHER ECHOING

NO

Y

END
INTERRUPT

i

RESTORE
STATE

!

RETURN

Figure 28. Flow Chart for Terminal Input Handler

AFN-01931A

In order to facilitate retrieval of the proper
amount of information .on the master side, the
first byte of each message is defined to contain
the number of characters in the message. Thus,
when the master routine needs a line of input he
uses the first byte as a count to retrieve the full
line. The requirement for type-ahead is met by
this mechanism since the number of lines in the

queue at a given time is limited only by the length
of the queue. When a full line of input is finished,
the terminal input handler generates a slave to
master interrupt to signal the master routine who
may be waiting for this event.

The flowchart for a minimal temiinal output
handler is shown in Figure 29. Upon receipt of a

TRANSMITTER
READY
INTERRUPT

SAVE
STATE

DETERMINE
WHICH
8251A

y

GET
CHARACTER

DISABLE

QUEUE EMPTY?

TRANSMITTER

OU;PUT (USART)

YTE~—PTR

!

DECREMENT
COUNTER

YES 1S QUEUE NO

CLOSE OPEN NEW
LINE — LINE >

COUNTER
=100

COUNTER=0? FULL?
\K
NO INTERRUPT
MASTER

END
INTERRUPT

RESTORE
STATE

RETURN

Figure 29. Flow Chart for Terminal Output Handler

1-134 AFN-01931A

transmitter ready interrupt the output handler
requests a character from the appropriate queue.
If one is available it is output to the USART. If
the queue is empty, the transmitter is disabled.
Whenever the master routine sends a line into the
queue it will generate an interrupt to signal the
slave handler and the transmitter will be reen-
abled. A line is opened via a call to opengline and
it is kept open until 100 characters have been
retrieved via calls to next$byte. At this time the
line is closed by a call to receive making the space
available to be reused. After this, a new call to
opendline starts the process over again. If the
call to get$status shows that the queue was full
prior to the call to receive, an interrupt is sent to
the master to reawaken any routine that may
have been waiting for room in the queue to
become available.

Sample Master Software

The RMX/80 handler for the master single board
computer that will communicate with the soft-
ware on the iSBC 544 board is diagrammed in
Figure 30. In addition, the RMX/80 message used
to convey information to the handler is shown on
the right. The full software diagram is illustrated
in Figure 31.

The input driver tasks execute a reentrant routine
that services a request exchange that is specified
in an initialization block that is unique to each of
the input tasks. The necessary information is
extracted from the request message and the
get$line primitive is called upon to get a line of
input from the queue. Ifthe call to get$line for the
length byte is unsuccessful the input task waits at

INPUT
REQUEST
EXCHANGE

INPUT
HANDLER

N —~

LINK

LENGTH

TYPE I

N s N
N/ A\ HOME EXCHANGE
user \
| RESPONSE |-——-»| RESPONSE EXCHANGE
\ EXCHANGE
\ / STATUS CHARSBUFF
No ,

OUTPUT
REQUEST

OUTPUT
HANDLER EXCHANGE

\ EXCHANGE

Figure 30. RMX/80 Handler for.iSBC 544 Board

BUFFER ADDRESS

COUNT

ACTUAL

 USER \
| RESPONSE |———-»

1-135

AFN-01931A

MASTER

DATA
TRANSFER |«
PRIMITIVES

RMX/80
DRIVER

MASTER APPLICATION SOFTWARE

USER
SOFTWARE

Figure 31. Master Software with RMX/80 Handler

the appropriate signal exchange for an interrupt
from the slave indicating that a line is now
available. Once the request is fulfilled the actual
and status fields are set and the message is sent to
the response exchange specified by the user.

The output handler performs in a manner very
similar to the input handler. Upon receipt of a
request message the handler attempts to transfer
the characters from the user buffer to the
appropriate queue. If the attempt is unsuccessful

queue sizes, some means of providing configura-
tion information to the RMX/80 handlers is
needed. This information resides in the mem-
ory$allocation$module. Public variables are
declared in this module that are used by the
RMX/80 tasks to determine how many devices
(and therefore how many tasks need to be created)
are in the system and where in the system address
space their dual port RAM is located. In addition,
queue sizes and device programming information
are specified here.

(ie. the queue has insufficient room available) the |

handler sends as many characters as will fit
(count - overflow) and then waits for an interrupt
from the slave indicating that room has been
made available. This process is repeated until all
of the data has been transmitted. As soon as the
operation is complete the status field is cleared
and the message is returned to the user specified
response exchange.

Since the number of iSBC 544 slaves in the
system is variable as are the memory base
address, device programming information and

VIII. SUMMARY

The intent of this application note has been to
introduce the reader to the concept of the
intelligent slave architecture and show the
versatility of the first product based upon this
architecture, the iSBC 544 Intelligent Communi-
cations Controller. The hardware and software
aspects of the device were studied and results of
benchmark tests were presented and studied.
Finally, two example applications were worked
out using the product as both a stand-alone
controller and as an intelligent slave. -

1-136

AFN-01931A

The bottom line is that the iSBC 544 controller,
due to the advanced architecture around which it
is designed, can be the means to the end for any
application that requires communication. The
dual nature of the controller provides the full
power of a single board computer to the small
application while the large system can make use

1-137

of the fully programmabaleintelligent slave to free
the CPU for complicated processing duties.

I would like to extend my gratitude to Dave
Jurasek for the work on the throughput testing
and to Jack Tyler Inman for aid in the design of
the system software.

AFN-01931A

- APPENDIX A

S8 01 =—Q

24w 9625'S ey

moei | S
T | e
|

30vaNIN — suoLvOIaNI

i Ao
= i
sioduaa
#0070 CELTA)
oz
c e,
:_a._.a.ﬂ ¢ 1vin ;ﬂ. sufsn wufsn wdsn o o
) .g.* e | wocs 508 590w CT—] o E
- . T0UINOD AGHXL Aguxi
s - av sz \ovises aassio -
8% 1%
wy_so ia-00 5o 50 1a-00 @0 wiav-oovss s
wow _wu so | s vy 1 1T
r
g oava 1353
18vd - 08vd 18Vd - 08Vd. ANy ANie
Swwior
T
—
e x
SLANUYMILNI
T . g
:
28V
. e
i T
.
[EE——
P o4 ’ a0s as
s wvov
i Java- oave —
* e R |
T v — .
IS av - oQv §5184] {Udnuu3in ovid)
L4 L osv SLdNUBILNY
Wt . I | Stz
soisy
Sa0uINGO W01 ¥aisYN S0 . susel—C— T;__:w..._.;..
w/ol s — -8y OLNIL
Lvrsey 38va - Bava (Lanuuain
| — | 31140 avis [—v3 vamod)
[o
on
T o
soanosu owos 110 " -
S— Tou03 w x o0,
wu Lasau i
/OMOI o

7iN

AFN-01931A

1-138

Figure A-1. iSBC 544 Input/Output and Interrupt Block Diagram

APPENDIX A (Continued)

A TN L29/9LY
rasasnt HOLVY N
M 741va-/01va Suanma Jouinoo | VAVAWVY
viva < NOILOIUIG
o SN WILSAS
—o
Jeruay ° A4
s \l, v |—o 98v-61v sy
'~ wvy
—o° OINVNAG H3ddng
A¥S
¢ /214QV-/0LHQY ¥ wozs 7>
= —o HS3ua3Y
74 /0¥SS3¥A0Y £804-080d
AQv3y
. ’ zoiv 5808 OL
HITIOHINOD
Wy 29Y Wyl \xo;v#:ﬁmu £
2028
e & N
ssanaav L) Adilive =z viva/4aavy
asva 1t W/ol . .
/8080 | /4Mua /a¥ya 1804-080d » -
(ssavaav rawoor
Is v anvA HXXX8=SS3Haav
p——
6v-rY bV | /0vS8 21901 /4QvY-/00vY
el [st ki
“WHOISNVHL
" »mﬂd_.mnaO_
SS3IHQAV-
H /381v-/081v o
g [2 | o P> wox . :
v 30
n £1v
" H3IAIHG
sng | ¢—
¢ ss3vaav 74Qvy-/0avy
749QV-/0¥aV EY o 1w <5
* 05v/EEY 9V
H344n8
g eIl |}y, ssavaay 30003a ¥334ne
WILSAS AHOWIW QUYOENG $538A0Y WOY¥d viva
) 29-0v 8V SO Wi
vy r'y 7S HOLMS =
3 FERTT 750vS —»1 I04LNOD 3ZISWOUd
¢ » S8 Ld0d . P .)
N /g¥av-/gyqy | ss3vaay /80vY-/8aVY Jvna s)y
s
viva avay=o “vey
IUEM=1L Ndd
3 vseoe
¢ ¢ -] 2av-0av
8 s2 R — Bt N ‘taag-08ad v
ilIIL usiing | (em— 98Vd-08Vd ss3uaav Lavd How v
114Qv-/08Qv ss3daay 1avy-/00vY . B -0avd
AQVY3Y e /N0VX
48vd-gavd
Gv3d AUOWIN B3LSYN SNE Qvau=o snaiLinm
LM ABOWIW HILSVN SN8 ,»:%%l(..
20c8 WO
3114M AHOW3N GUV08 330 (/MW) 3L16M AHOWIN I01NOD "
. L r4m
L av3d AHOW3W QHVOS 340 {/HWY) AQVIY AHONIW GIONVAQY /a8

AFN-01931A

Figure A-2. ISBC 544 Memory Block Diagram
1-139

A M8#Y :Fl:DMAS544.M80

ISIS-II 8986/8¥85 MACRO

LoC

0630
POE4
VBES
0052
4UFF
0004
0001
00832

6000

05 2C
g02C
00 2E
9030
9031
9034
0935

0000
¥yoal
o004
0V86
9009
000B
000D
000F
0011
0013
9015
0017
PB19
001B
001D
0020
0022
0024
0027
0029
06928
00 2E
0030
0832

08J

D3E4

DB81

AF

C43969 C
FB

c9

F3

31FFBF
D3E4
CDU0o0oo E
3E04

D388

3EFF

D385

3E40

D385

3E40 D
D384

3E00 D

D384

CDOGUo E

3E52
D380
CDU0o0D E
3E01
D381

CD00ooo E

3E02
D381
D3E5

LINE

O WO WN -

11
12
13
14
15
16
17
18
19
20
21
22

"23
24
25
26
27
28
29
30
31
32
33
34
35
36

38
39
40
41
42
43
44
45
46
47

49
50
51
52
53
54
55

57

APPENDIX B

PAGE 1

;BASE ADDRESS OF 204

#MASTER MODE SET ADDRESS
;MASTER MODE RESET ADDRESS
;READ. COMMARD CODE

;TERMINAL COUNT AND DMA MODE

__;DMA_MODE "WORD
; TRACK ADDRESS

; SECTOR ADDRESS

;SECTOR 3UFFER

TEST OF CAPABILITY FOR 544 TO SHARE MULTIBUS
WITH OTHER MASTERS. ROUTINE PROGRAMS THE 204
BOARD, INITIATES A READ TRANSFER, WAITS FOR
AN INTERRUPT -AND THEN TRAPS TO ICE85 BREAK-

;RST 5.5 ENTRY POINT

;SET MASTER MODE

;GET RESULT

;SET FLAGS

;NON-ZERO RESULT; ERROR TRAP
; REENABLE

;CONTINUE ON

3204 INITIALIZATION ROUTINE

;WAIT FOR 204 NOT BUSY ROUTINE
;WAIT FOR 204 PARAMETER REGISTI

;DISABLE

3SET STACK POINTER

;SET MASTER MODE FLIP FLOP
;INITIALIZE 204

;SET DMA MODE

SET CONTROL REGISTER

OUTPUT READ COMMAND
TRACK ADDRESS

SECTOR ADDRESS

ASSEMBLER, V3.8 . . MODULE
S0URCE STATEMENT
$MOD85
BASE EQU 80H
MMSET EQU GE4H
MMRSET EQU 9ES5H
READ EQU 524
TCOUNT EQU 4UFFH
DMAMOD EQU 04H
TADDR EQU 1
SADDR EQU 2
DSEG
BUFFER: DS 128
. -
;
r
; POINT AT 206.
r
ASEG
ORG 2CH :
ouUT MMSET
IN BASE+1
XRA A
‘CNZ ERRTRP
EL
RET
; MAINLINE ROUTINE
’
EXTRN INIT24
EXTRN WAITC
EXTRN ' WAITP
CSEG
pI
LXI SP,@BFFFH
ouT MMSET
CALL INIT24
MVI A, DMAMOD
ouT BASE+8 ;
MVI A,LOW(TCOUNT) ;
ouT BASE+5 ;
MVI A, HIGH (TCOUNT) ;
ouT BASE+5 ;
MVI A,LOW (BUFFER) ;
ouT BASE+4 :
MVI A,HIGH (BUFFER) ;
ouT BASE+4 ;
CALL WAITC ;
MVI A, READ :
oUT BASE+0 ;
CALL WALTP ;
MVI A,TADDR ;
ouT BASE+1 ;
CALL WAITP ;
MVI . A,SADDR ;
our BASE+1 ;
ouT MMRSET ;

1-140

RESET MASTER MODE FLIP/FLOP

OUTPUT LOW BYTE OF ‘DMA ADDRESS

OUTPUT 'HIGH BYTE OF DMA ADDRESE

AFN-01931A

8034 FB 58
@35 76 59
9036 C360602 60
61 ERRTRP:
0839 76 62
63

PUBLIC SYMBOLS

EXTERNAL SYMBOLS

INIT24 E 0000 WAITC E 0000

USER SYMBOLS o
BASE A 0080 BUFFER D 6000
READ A 0052 SADDR A 0002

APPENDIX B (Continued)

EI
HLT
JMP

END

2¢0H

WAITP E 0000

DMAMOD A @004
TADDR A 0901

1141

;ENABLE
;AND HALT

$ERROR TRAP
;FOR NOW

ERRTRP C 0639
TCOUNT A 46FF

3 WAIT FOR INTEF
;TRAP TO ICE85 BREAKPOINT AT 240

INIT24 E 0000
WAITC E 9009

. MF
' WAI

AFN-01931A

APPENDIX B-(Continued)

A "M81\0*;= ﬁa mn'z 4.M8ﬁ

ISIS-II 8080/8685 MACRO ASSEMBLER, V3.0 MODULE PAGE 1

LOC O0BJ LINE SOURCE STATEMENT
1 $MOD85 :
2084 2 BASE EQU 80H ; . ;BASE ADDRESS. OF 204
@0E4 3 MMSET EQU @E4H ;MASTER MODE SET ADDRESS
P8 ES 4 MMRSET EQU OES5H iMASTER MODE RESET ADDRESS:
;9069 oo - 5 SEEK - . EQU - 69H 4 ; SEEK .COMMAND
20835 - 6 SPECFY - EQU 350 . s "SPECIFY" COMMAND CODE
0610 7 BADTR1 EQU 16H ;SPECIFY BAD TRACKS SURFACE 1
0013 8 BADTR2 EQU 18H ;SPECIFY BAD TRACKS SURFACE 2
0O FF 9 NOBAD EQU GFFH ;NO BAD TRACKS
GOFF 14 CTADDR EQU @FFH ;CURRENT TRACK ADDRESS NOT KNOWN
[1']'D] 11 CHARS EQU @DH ;SPECIFY DRIVE CHARACTERISTICS
0008 12 SETTLE EQU P8H ;HEAD SETTLE TIME (SA800)
vao8 13 STEP EQU ¢8H ;STEP RATE
0809 14 LOAD EQU U9H ;HEAD LOAD TIME
4000 15 TCOUNT EQU 40008 ; TERMINAL COUNT AND DMA MODE ©OF
6004 16 DMAMOD EQU ¥4H ;DMA MODE WORD
0080 17 BUSY EQU 89H 7204 BUSY MASK
o290 18 PARFUL EQU 20H ;204 PARAMETER REGISTER FULL A€
0914 19 RESFUL EQU 10H ;204 RESULT BYTE FULL MASK
26 ;
21 H 204 INITIALIZATION ROUTINE. RESETS 204 BOARD
22 H AND PERFORMS ALL OF THE NECESSARY INITIALIZATION
23 ; OF THE 8257 AND 8271.
24 H
25 CSEG
26 PUBLIC INIT24 ;ENTRY POINT
27 PUBLIC WAITC sWILL BE USED EXTERNALLY
28 PUBLIC WAITP H
29 INIT24:
pe0o F3 30 DI ;DISABLE
0001 3EOE 31 MVI A,0EH ;ENABLE 5.5 INTERRUPT
0083 30 32 SIM ;
0084 D3E4 33 ouT MMSET ;SET MASTER MODE FLIP FLOP
@046 D3BF 34 ouT BASE+15 ;RESET INTERFACE
00038 3EQL 35 MVI a,l ;s RESET 204
g48A D382 36 ouT BASE+2 :
¥08C AF 37 XRA A H
968D D382 38 ouT BASE+2 ;
POUF CDY90dY C 39 CALL WAITC jWAIT TILL COMMAND WRITE VALI
$812 3E35 40 MVI A,SPECFY ;OUTPUT "SPECIFY"™ COMMAND
9014 D38H 41 ouT BASE+#? ;
0016 CDAl00 C 42 CALL WAITP sWAIT TILL PARAMETER WRITE V? IL
0819 3EOD 43 MVI A,CHARS $SPECIFYING DRIVE CHARACTERISTIC
0418 D381 . 44 ouT BASE+1 ;
901D CDAlo® C 45 CALL WAILTP ;
0v28 3EB8 46 MVI A,STEP ;OUTPUT STEP RATE
0022 D38l 47 ouT BASE+1 i
9024 CoAl@D Cc 48 CALL WAITP ?
¥@27 3E08 49 MVI A,SETTLE ;OUTPUT HEAD SETTLE TIME
8029 D381 50 ouT BASE+1 H
p@2B CDA1l40 [51 CALL WAITP 3
PB2E 3E09 52 MVI a,LoAD ;OUTPUT HEAD LOAD TIME
90308 D381 53 ouT BASE+1 :
9932 CD991v0 C 54 CALL WAITC ;

1-142 AFN-01931A

@35
0837
v039
¥¥3C
003E
0040
pp43
0845
0047
004A
vu4ac
0B4E
0051
0053
0055
0058
Bus5A
0B5C
0B5F
0061
0063
0066
0668
0O6A
06D
QU6F
00871
0074
0076
0078
0678
987D
0OTF
9082
0084
0086
@88
0989
G08A
00 8B
208D
Q68F
0891
8093
0895
0097
0098

0099
0698
989D
0OAD

0eal
00a3
BOAS
o0A8

PUBLIC
INIT24

3E35
D386
CDAl#40 C
3Elw
D381

CDA14® C

3EFF

D381
CDAluYd C
3EFF

D381

CDA 140 ¢
3EFF

D381
CDY908 C
3E35

D389
CDA1Y# C
3E18

D381
CDAlWy C
3EFF

D381
CDA149 ¢
3EFF

D381
CDA1Y0 c
3EFF

D381
CD990#d C
3E69

D380

CDA 140 C
3E00

D381

D3ES5

FB

76

F3

3E04

D388

3E00

D385

3E44

D385

FB

c9

DB8#Y

E680
C29900 C
(o}°]

DB8Y
E620

C2A140 C -

c9

SYMBOLS

C 0000 WAITC C 6099

165

187
108
189
110
111
112
113
114

WAITC:

WAITP:

APPENDIX B (Continued)

MVI
ouT
CALL
MVI
ouT
CALL
MVI
ouT
CALL
MVI
ouT
CALL
MVI
ouT
CALL
MVI
our
CALL
MVI
ouT
CALL
MVI
ouT
CALL
MVI
odT
CALL
MVI
oar
CALL
MVI
oot
CALL
MVI
ouT
ouT
EI
HLT
DI
MVI
ouT
MVI
ouT
MVI
ouT
EI
RET

~e ~o ~e

ANI
JINZ
RET

IN

ANI
INZ
RET
END

A,SPECFY
BASE+d
WAITP
A,BADTR1
3ASE+1
WAITP
A,NOBAD
BASE+1
WAITP
A,NOBAD
BASE+1
WAITP
a,CTADDR
BASE+1
WAITC
A,SPECFY
BASE+d
WAITP
A,BADTR2
BASE+1
WAITP
A,NOBAD
BASE+1
WAITP
A,NOBAD
BASE+1
WAITP
A,CTADDR
BASE+1
WAITC
A,SEEK
3ASE+0
WAITP
a,d
BASE+1
MMRSET

A, DMAMOD
BASE+8
A, LOW (TCOUNT)
BASE+5
A, HIGH (TCOUNT)
BASE+5

WAITC AND WAITP

BASE+#9
BUSY
WAITC

BASE+d
PARFUL
WAITP

WAITP C @UAl

1143

SPECIFY BAD TRACKS

BAD TRACKS FOR SURFACE 1

FIRST TRACK

SECOND BAD TRACK

SURFACE 2

N6 Ne Ne Ne Ss N8 e Se e e Se e Ne we ~e we ~e we o wo

FIRST TRACK

SECOND TRACK

SEEK TO TRACK ¢

Se e e e Se Ne Ne Ne e e Ne we e we

CURRENT TRACK ADDRESS (NOT F "On

CURRENT TRACK ADDRESS (NOT I 'O%

;GO TO SLEEP WHILE 204 DOES IT

;ENABLE INTERRUPTS
; SLEEP

;DISABLE

;SET DMA MODE

SET CONTROL REGISTER

Ne e we we e we

7 RETURN
ROUTINES

;GET STATUS BYTE
;BUSY?

;YES,LOOP
;NO,RETURN

;GET STATUS REGISTER

; PARAMETER BUFFER FULL?
;YES, LOOP

;NO,RETURN

AFN-01931A

EXTERNAL SYMBOLS

USER SYMBOLS

BADTR1 A 0010 BADTR2 A 0018
INIT24 C 0000 LOAD A 0009
SEEK A 9069 SETTLE A 0008

APPENDIX B (Continued)

BASE A 0080

MMRSET A @OES.

SPECFY A #0835

1-144

BUSY

A 0080

MMSET A UBE4

STEP

A 0008

CHARS A 900D - CT2

NOBAD A 00FF
TCOUNT A 40080

- AF
WAl

AFN-01931A

APPENDIX C

1-145 AFN-01931A

% OF MASTER CPU TIME AVAILABLE

APPENDIX C (Continued)

GRAPH 1
MASTER CPU FREE TIME
VS BAUD RATE

DMA CONTROLLER AND INTELLIGENT SLAVE

20

1/0 CONTROLLER

BAUD RATE

1-146

AFN-01931A

% OF BUS TIME AVAILABLE

95 4

ANY

A\

104

APPENDIX C (Continued)

GRAPH 2
BUS FREE TIME
VS BAUD RATE

INTELLIGENT SLAVE

1/0 CONTROLLER DMA CONTROLLER

BAUD RATE

1-147 AFN-01931A

% OF SLAVE CPU TIME AVAILABLE

80

40-]

20

‘APPENDIX C (Continued)

GRAPH 3
SLAVE CPU FREE TIME
VS BAUD RATE

DMA CONTROLLER INTELLIGENT SLAVE

BAUD RATE

1:148

AFN-01931A

AVAILABLE CPU TIME

APPENDIX C (Continued)

GRAPH 4

COMMUNICATIONS PROCESSOR FREE TIME

VS BUS TRAFFIC

@ 9600 BAUD FULL DUPLEX
-1—-
{
—+
T INTELLIGENT SLAVE
DMA CONTROLLER

1

1/0 CONTROLLER
1
4+

TR— . .l : . L '

10 20 40 50 60 70 80 90 100

% MAX BUS TRAFFIC

-1-149 AFN-01931A

MAXIMUM ATTAINABLE BAUD RATE

'APPENDIX C (Continued)

.. _'GRAPHS
MAXIMUM BAUD RATE ' -~
.. VS'BUS TRAFFIC
R : o INTELLIGENT SLAVE

_1/0. CONTROLLER

DMA CONTROLLER

'g‘-;

80 %

B

S

&

2
8

g
34

% MAX BUS TRAFFIC

1-150 AFN-01931A

APPENDIX D

PL/M-80 COMPILER SLAVE MAINLINE ROUTINE PAGE 1

ISIS-II PL/M-88 v3.1 COMPILATION OF MODULE MAINLINE
OBJECT MODULE PLACED IN :F1l:MAINLN.OBJ
COMPILER INVOKED BY: PLM8O :F1:MAINLN.PLM PRINT(:F5:MAINLN.LST) PAGEWIODTH (78)

$title('slave mainline routine')
1 main$line:
DO;

/*
Mainline routine. Sets up stack$ptr, calls s$init to init-
ialize queues,initializes some of the hardware, sets up the
initial flag interrupt handlers, and then halts with interru
- pts
enabled allowing the rest of the system to operate totally
in interrupt mode.

*/
$nolist
13 1 initial$handler: PROCEDURE EXTERNAL;
14 2 END initial$handler;
15 1 DECLARE
command$word LITERALLY ‘41h’',
port$as8155 LITERALLY ‘ded%h’,
command$8155 LITERALLY 'de8h’,
mask$8259 LITERALLY ‘de7h’,
icwl$8259 LITERALLY ‘debh’,
icw2$8259 LITERALLY ‘de7h',
ocw3$8259 LITERALLY 'debh’,
read$isr LITERALLY 'Ybh',
mask$word BYTE PUBLIC,
portavalue BYTE PUBLIC,
stat BYTE,
i BYTE;
16 1 output (icwls$8259)=0£f6h;
17 1 output (icw2$3259)=0fh;
18 1 output (mask$8259) ,mask$word=6f fh;
19 1 CALL s$init;
/* set up 8259 for ISR reads */
20 1 output (ocw3$8259) =readS$isr;
21 1 output (command$8155) =command$word;
22 1 output (porta8155) ,portsasvalue=dcbh;
23 1 DO i=@ TO 7;
24 2 stat=set$handler (i,.initial$handler);

1-151 AFN-01931A

25
26
27
28

29

APPENDIX D (Continued)

2 END;

1 DO WHILE 1;
2 HALT;

2 END;

1 END main$line;

MODULE INFORMATION:

CODE AREA SIZE = UP4DH
VARIABLE AREA SIZE = V004H
MAXIMUM STACK SIZE = QW@2H

72 LINES READ
® PROGRAM ERROR (8)

77D
4D
2D

1-152

AFN-01931A

APPENDIX D (Continued)

P /M~-86 COMPILER SLAVE APPLICATION LEVEL SIGNAL HANDLE PAGE 1

ISIS-II PL/M-88 v3.1 COMPILATION OF MODULE INITIALHANDLER
OBJECT MODULE PLACED IN :Fl:FINTRT.OBJ
COMPILER INVOKED BY: PLM8# :Fl:FINTRT.PLM PRINT (:F5:FINTRT.LST) PAGEWIDTH(78)

$title('slave application level signal handler')
1 initial$handler:
DO;

/*
Fields application level flag interrupts from the
master. If the type=go$type the device attached to the queue
specified is initialized with programming info sent into
the gueue by the master. If the type is data$available the
specified transmitter is enabled unless a control$s pause
is in effect.

*/
Snolist
32 1 DECLARE

no$pause LITERALLY ‘1,
goStype LITERALLY 1,
data$available LITERALLY ‘2,
enable$xmit LITERALLY ',
reset LITERALLY '4ph',

timerlcommand$port LITERALLY ‘'@dbh',
timer2command$port LITERALLY '®#dfh',
mask$8259 LITERALLY 'de7h’,
mask$word BYTE EXTERNAL,
mask (8) BYTE DATA(

@fch,

@fch,

¥£3h,

@£3h,

@cth,

Pcfh,

63fh,

#3£fh),
transmitter$state (8) BYTE PUBLIC,
type BYTE,
token BYTE,
i BYTE,
progsinfo (5) BYTE,
actual ADDRESS,
asart$command$port (8) BYTE EXTERNAL,
usart$state (8) BYTE PUBLIC,
length$pointer (8) ADDRESS PUBLIC,
pointer (8) ADDRESS PUBLIC,
char$count (8) BYTE PUBLIC,
timer$load$vort (8) BYTE DATA(

@ga8h,

1-153 AFN-01931A

APPENDIX D (Continted)

9d9h,
8d%,
‘@ddah,
@dah,
‘@dch,
ddch) ;
33 1 1n1t1a1$handler° PROCEDURE (code) PUBLIC,
34 2 DECLARE code BYTE,
35 2 token=code AND ¥fh;
36 2 'type eht(code,4),
37 2 IF type gobtype THEN
38 2 - DO;
39 3 ~ ' transmlttersstate(token) no$pauqe,
B /* reset ‘usart */
49 3 DO i=@ TO 3;
41 4 CALL varout(usart$command$port (token) ,9);
42 4 END; '
43 3 CALL varout(usart$command$port(token),reset);
44 3 actual get$11ne(token,.ptogslnfo 5),
. /* program the dev1ces */ v
45 3 " 'CALL varout (usart$command$port (token) ,progs$info(9));
46 3 CALL varout(usartscommandspott(token),usart$state(token)
- :=prog$info(1)); :
47 3 IF token <*7 THEN o
48 3 CALL varout (timerlcommandSport,prog$info(2));
ELSE o
49 3 CALL varout(timer2command$port,prog$info(2));
50 3 CALL varout(timer$load$port (token) ,prog$info(3));
51 3 CALL varout (timer$load$port (token) ,prog$info(4));
/* open up the four input gueues for data input */
52 3 length$pointer (token-1)=new$line (token-1);
53 3 901nter(token—l)—nextSspace(ﬁoken—l);
54 3 char$count (token-1)=y;
55 3 output(mask$8259),mask$word—mask$word AND mask (token)
56 3 END;
ELSE ')
57 2 IF (type= datasavallable) AND (transmlttersstate(token)-noSpa
- use) THEN .
58 2 DO;) U
59 3 usartbstate(token) usartSstate(token) OR enable$xmit;
60 3 CALL varout(usart$command$port(token) usart$state (token)
-)i
61 3 END;

1454 AFN-01931A

APPENDIX D (Continued)

RETURN;
63 2 END;
64 1 END initial$handler;

MODULE INFORMATION:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
154 LINES READ
PROGRAM ERROR(S)

0182H 386D
0¥V43H 67D
PO04H 4D

1-155 AFN-01931A

APPENDIX D (Continued)

ISIS-II PL/M-89 V3.1 COMPILATION OF MODULE INPUTHANDLER.
OBJECT MODULE PLACED IN :F1:INHDLR.OBJ : :
COMPILER INVOKED B8Y: PLM80 :Fl:INHDLR.PLM PRINT (:F5:INHDLR.LST) PAGEWIDTH(78)

$nointvector title('slave terminal input handler')
1 input$handler:
DO;

/ * 4 J :
544 resident interrupt service routine, After receiver

ready interrupt the 38259 In Service Register (ISR) is

read to determine which device is requesting service.

The character is read in and placed in the appropriate
queue. A check is made for break characters and appropriate
action is taken if any are found. When an endline character
is encountered the length byte is filled in (it was left
vacant when the line was started) and the xmit primitive is
called to update the global gueue pointer to permit access
to the line. At this time the master is signalled to signify
that a new line is available for processing.

*/
$nolist

34 1 DECLARE
control$x LITERALLY ‘18H',
control$s LITERALLY '138°',
controls$g LITERALLY ‘118',
rubout LITERALLY '7FH"',
escape LITERALLY ‘18H',
CR LITERALLY 'gpH',
LF LITERALLY ‘gan"',
BS LITERALLY ‘v8H"',
SP LITERALLY '20H',
bell LITERALLY ‘748",
Ptr LITERALLY 'pointer (token)"',
length$ptr LITERALLY '‘lengtn$pointer (token)',
count LITERALLY ‘char$count (token) ',
disable$xmit LITERALLY 'dFEH’,
enable$xmit LITERALLY 'plH’',
no$pause LITERALLY ‘1Y,
pause LITERALLY ‘s,
line$available LITERALLY ',
ocw2$8259 LITERALLY 'YE6H"',
ocw3$8259 LITERALLY ‘0E6H"',
EOI LITERALLY '20H°;

35 1 DECLARE

value$ptr ADDRESS,

value BASED value$ptr BYTE,
line$length BASED value$ptr BYTE,
dummy ADDRESS,

ISR BYTE,

token BYTE,

1-156 AFN-01931A

36

37
38

39
41
43
45
47
49
51
52

53
54

55
56
57
58
59

60

61
62
63
64
65
66

67

68
69
79
71
72
73
74
75
76
77

DN N

N =

NN NDNONN

—

DN N [[LS S S SN N S

-

APPENDIX D (Continued)

stat BYTE,
new$ptr ADDRESS;

DECLARE
pointer (8) ADDRESS EXTERNAL,
length$pointer (8) ADDRESS EXTERNAL,
char$count (8) BYTE EXTERNAL,
usart$state (8) BYTE EXTERNAL,
usart$command$port (8) BYTE EXTERNAL,
usart$datasport (8) BYTE EXTERNAL,
transmitter$state (8) BYTE EXTERNAL;

index: PROCEDURE (value) BYTE;

END;

DECLARE value BYTE;

IF value=control$x THEN RETURN @;
IF value=rubout THEN RETURN 1;
IF value=control$s THEN RETURN 2
IF value=control$g THEN RETURN 3
IF value=escape THEN RETURN 4;
IF value=CR THEN RETURN 5;
RETURN 6;

echo: PROCEDURE (token,bufptr,numchar) ADDRESS;

DECUARE (bufptr,numchar,actual) ADDRESS,
token BYTE;

actual=send$line(token,buf$ptr , num$char);

usart$state (token)=usart$state(token) OR enable$xmit;

CALL varout (usart$Scommand$port (token) ,usart$state (token));

RETURN actual;
END; .

delete$line: PROCEDURE;

END;

length$ptr=newS$line (token);
ptr=next$space(token);

count=9; .

dummy=echo (token+l,.('#',CR,LF),3):
RETURN;

end$line: PROCEDURE;

value$ptr=length$ptr;
line$length=count;

‘ptr=next$space(token);

END;

stat=xmit (token);
length$ptr=new$line(token);
ptr=next$space(token);

count=0;
stat=set$sSinterrupt(token,lineSavailable);
RETURN; '

1157

AFN-01931A

78
79

80
81

82
83
84

86
87
83
89

90
91
92

93

94
95
96

97
98
99
100

101
102
103
104
165
166

187
108

109
119
111

112
113

S LU L N S VS oW NN W BB B W wNn

- w

APPENDIX D (Continued)

in$hdlr: PROCEDURE INTERRUPT @ PUBLIC;
ISR=input (ocw338259);

token=6;

again:
ISR‘shl(ISR 2);:

IF NOT carry THEN
DO;
IF token=d THEN RETURN; /* no bits set */
ELSE
00;
token=token-2;
GOTO again;
END;

END;
value$ptr=ptr;
value= varlnp(usartsdatasport(token)) AND 9¥7fh;

DO CASE index(value):;
/* case @; control$x; delete line */

DO;
CALL deleteS$line;
END;

/* case 1; rubout;- delete char */

DO; '
new$ptr=back$space (token);
IF newSptr=length$ptr THEN

dummy=echo (token+l, . (bell), 1);
ELSE

DO;
dummy=echo(token+1,.(BS,SP,BS),3);
ptr=newSptr;
count=count-1;
END; ’
END;

/* case 2; control$s; pause output */

DO;
usart$state (token+l)=usart$state (tokent+l) AND disabl
esSxmit; . R
CALL varout (usart$command$port (token+l) ,usart$state(
token+l));
transmitter$state (token+l)=pause;
END;

/* case 3; control$g; resume output */

DO;
usart$state (tokent+l)=usart$state (token+l) OR enable$

1-158 AFN-01931A

APPENDIX D (Continued)

- xmit;
114 4 CALL varout(usart$Scommand$port (token+l) ,usartS$state(
- token+1));

115 4 transmitter$state (token+l)=nos$pause;
116 4 END;
/* case 4; escape; terminate line */
117 3 DO;
118 4 dummy=echo (token+1,. ('#',CR,LF),3);
119 4 value=CR;
120 4 count=count+l;
121 4 CALL endS$line;
122 4 END; :
/* case 5; carriage return: terminate line */
123 3 DO; o
124 4 dummy=echo (token+l,. (CR,LF) ,2);
125 4 count=count+1;
126 4 ptr=next$space (token);
127 4 valueSptr=ptr; '
128 4 value=LF;
129 4 count=count+1;
136 4 CALL endS$line;
131 4 END;
/* case 6; non-break character; stuff into gueue */
132 3 DO;
133 4 dummy=echo (token+l,ptr,1);
134 4 ptr=next$space (token);
135 4 IF ptr=¢ THEN CALL delete$line; /* full buffer */
137 4 ELSE count=count+l;
138 4 END;
139 3 END; /* of do case */
1490 2 output (ocw3$8259)=EOI;
141 2 RETURN;
142 2 END;
143 1 END input$handler;

MODULE INFORMATION:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
255 LINES READ
@ PROGRAM ERROR(S)

¥398H 920D
0011H 17D
0Y10H 16D

1-159 AFN-01931A

APPENDIX D (Continued)

P /M-84 COMPILER SLAVE CHARACTER OUTPUT HANDLER

ISIS-II PL/M-8¥ V3.1 COMPILATION OF MODULE OUTPUTHANDLER
OBJECT MODULE PLACED IN :F1:OUTHLR.O8J

COMPILER INVOKED BY: PLM8Y :F1:OUTHLR.PLM PRINT(:FS:OUTHLR.LST) PAGEWIDTH (78)

$nointvector title('slave character output handler')

1 output$handler:
DO;

/*

544 resident interrupt service routine. After transmitter

ready interrupt, 8259 In Service Register (ISR)

is read to

determine which device is requesting service. A character
is requested from the appropriate queue and, if available,
is sent to the usart. If the gueue is empty the transmitter
is disabled pending a signal from the master when more

characters are put into the gqueue.

*/
Snolist
11 1 DECLARE
ocw2$8259 LITERALLY '0E6H',
ocw3$8259 LITERALLY 'JE6H',
disable$xmit LITERALLY ‘OFER"',
true LITERALLY 'gFFH"',
false LITERALLY ‘opu’,
EOI LITERALLY ‘9AQH"';
12 1 DECLARE
ISR BYTE,
token BYTE,
actual ADDRESS,
value BYTE;
13 1 DECLARE

usart$state (8) BYTE EXTERNAL,

usart$command$port (8) BYTE PUBLIC DATA(

9D1H,
gD1H,
gD3H,
VD3H,
BD5H,
OD5H,
PD7H,
gD78) ,

usart$data$port (8) BYTE PUBLIC DATA(

PDOH,
9D0H,
gD2H,
9D2H,
go4g,

1-160

AFN-01931A

14

32
33

34
35
36
37
38

w wrhoN N Wb BB s W w NN

Lol SIS N SN V) w

APPENDIX D (Continued)

PD4H,
oD6H,
UD6H) ;

out$hlr: PROCEDURE INTERRUPT 1 PUBLIC;

/* get active level number and use it to determine gqueue$token *

ISR=input (ocw3$8259);
tok=2n=7;

again:
ISR=shl (ISR,1);
IF NOT carry THEN
DO;
IF token=1 THEN RETURN; /* no bits in ISR set */
ELSE
DO;
token=token-2;
ISR=shl(ISR,1);
GOTO again;
END;
END;

actual=get$line(token,.value,l);
IF actual=¢ THEN
DO; /* empty queue. Disable transmitter */
usart$state (token)=usart$state(token) AND disabl
eSxmit;
CALL varout (usartScommand$port (token) ,usart$stat
e (token)) ;
END;
ELSE
CALL varout(usart$data$port (token) ,value);
output (ocw3$8259) =E0I;
RETURN;
END;
END outputS$handler;

MODULE INFORMATION:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
192 LINES READ
¥ PROGRAM ERROR(S)

VoA4H 164D
0d05H 5D
00@eCH 12D

1-161 AFN-01931A

APPENDIX D:(Continued)

PL/M-80 COMPILER RMX/80-544 INITIALIZATION TASK

ISIS-II PL/M-80 V3.1 COMPILATION OF MODULE INIT544
OBJECT MODULE PLACED IN :F1:INIT54.0BJ '

PAGE 1

:F1:INIT54. PLM PRINT (: F5:INIT54. LST) PAGENIDTH(78)

COMPILER INVOKED BY:

PLM39@

$title('rmx/80-544 initialization ‘task')"

1 init$544:
DO;
/*
Task code for 544 driver initialization task. Info
from avplication supplied memory allocation block
is accessed to set up queues and transfer device programming
" info to the slave board(s) 'and create the required
service handler tasks.
*/
$nolist
56 1 input$driver: PROCEDURE EXTERNAL;
57 2 END input$driver;
58 1 output$driver: PROCEDURE EXTERNAL"
59 2 END output$dr1ver,
60 1 ' signal: PROCEDURE EXTERNAL;
61 2 END signal;
62 1 DECLARE
stack$size LITERALLY 1256,
gostype LITERALLY ‘1';
63 1 DECLARE :
ptr ADDRESS,

init$table BASED ptr STRUCTURE(

base$adr ADDRESS

gueues$token BYTE,

prog$info (5) BYTE),
i BYTE,
overflow ADDRESS,
queue$init$table (1) STRUCTURE (

base$adr ADDRESS,

queue$size (8) ADDRESS) EXTERNAL,
initialization$table (1) BYTE EXTERNAL,
stat BYTE,
num$devices BYTE EXTERNAL,
num$boards BYTE EXTERNAL,
service$exchange$table (1) ADDRESS EXTERNAL,
signal$exchange$table (1) ADDRESS EXTERNAL,
service$exchanges (1) BYTE EXTERNAL,
signal$exchanges (1) BYTE EXTERNAL,
task$descriptors (1) BYTE EXTERNAL,

1:162

AFN-01931A

64

65

66

67
68
69
70
71
72
73
74
75
76
77
78
79
80

81

wwN Lnd DN NDN

8]

APPENDIX D (Continued)

stacks (1) BYTE EXTERNAL,

info$block (1) STRUCTURE (
base$adr ADDRESS,
queueS$token BYTE,
index BYTE) EXTERNAL,

rgactv ADDRESS EXTERNAL;
DECLARE
rom$input$std static$task$Sdescriptor DATA(
'input ', .

.input$driver,
@, /* stack will be assigned individually */
stack$size,
200,
4, /* tba */
8), /* tba */
rom$output3std static$task$descriptor DATA(
'output’',
.output$driver,
g,
stacksize,
201,
g,
8),
input$hdlr$std static$tasks$descriptor,
output$hdlr$std static$task$descriptor;

init$xch: PROCEDURE (xch$ptr);
/* initializes expanded interrupt exchanges */

DECLARE xch$ptr ADDRESS,
xch BASED xch$ptr int$exchangeS$descriptor;

xch.link=.xch.link;
xch.type=intStype;
xch.length=5;
RETURN;

END;

init$54: PROCEDURE PUBLIC;

DO i=¥ TO num$boards-1;
CALL m$init(.queueSinit$table(i));
END;

CALL move (size(rom$input$std),.rom$input$std,.input$hdlr$std
);:

CALL move (size (rom$output$std) ,.rom$Soutput$std,.output$hdlr$
std) ;

ptr=.initialization$table;

DO i=0 TO num$devices*2 BY 2;
/* send pogramming info to slave */
overflow=send$line(init$table.base$adr,init$table.queue$
token,.init$table.prog$info,5);
stat=setminterrupt(init$table.base$adr,init$table.queu

1-163 ’ AFN-01931A

‘APPENDIX D (Continued)

e$token,go$type),

/* create service and 51gna1 exchanges */

82 3 CALL rqcxch(serv1ce$exchange$tab1e(1)--.serv1ce$exchange
- s+1d*i);
83 3 CALL rccxch(serv1ce9exchange9table(1+1)-*.serv1ce$exchan

- ges+lﬂ*(1+l)),

84 3 ‘CALL init$xch(:signalSexchanges+15%i);

85 3 CALL init$xch(.signal$exchanges+15*(i+l));

86 3 CALL rqcxch(31gna1$exchange»table(1)-—.51gnal$exchanges+

- .0 15%4)
87 3 CALL rqcxch(51gna1$exchanqe$table(1+1)°=.s1gna1>exchange
- s+15% (i+1)) ;
838 3 info$block (i) .baseS$adr,
cinfo$block (i+l) .base$adr=init$table.base$adr;

89 3 info$block (i) .queue$token=init5table.queueStoken-1;
9¢ 3 info$block (i+l). queue$token 1n1t$table gueues$token;
91 3 info$block (i) .index=1i;

92 3 info$block (i+l).index=i+1; "

93 3 input$hdlr$std.sp=.stacks+stack$size*i;

94 3 output3hdlr$std.sp=.stacks+stackS$size* (i+1);

95 3 input$hdlr$std.exchange$address=.info$block (i);

96 3 ‘output$hdlr$std.exchange$address=.info$block (i+l);
97 3 input$hdlr$std.taskSptr=.task$descriptors+20*i;

98 3 outputShdlrsstd taskqptr—vtask$descr1ptors+2w*(1+1)'
99 3 CALL rgctsk (. 1nput$hdlr$std),
100 3 CALL rgctsk (. outputqhdlrbstd),

101 3 ptr=ptr+8; -

192 3 END;

103 2 CALL rgsetv(.signal,2);

104 2 CALL rgelvl(2);

185 2 CALL rgsusp(rgactv);

106 2 END; /* of task */

187 1 END init$544;

MODULE INFORMATION:

CODE. AREA SIZE-
VARIABLE AREA SIZE
MAXIMOUM STACK SIZE
285 LINES READ
U PROGRAM ERROR(S)

82C3H @ 707D
PV2AH 42D
b006H < 6D

onon

1-164 ‘ AFN-01931A

P /M-80 COMPILER

APPENDIX D (Continued)

RMX/80-544 INITIALIZATION MODULE AND PAGE

ISIS-II PL/M-89 V3.1 COMPILATION OF MODULEZ INITMODULE
OBJECT MODULE PLACED
COMPILER INVOKED BY:

Stitle('rmx/8¥-544 initialization module and memory allocation b

IN :F1:MAB.OBJ
PLM80 :F1:MAB.PLM PRINT (:F5:MAB.LST) PAGEWIDTH(78)

lock"')
initSmodule:
DO;
/*
Initialization tables created and allocation of memory for
44
handler done here.
*/
DECLARE
number$ofSdevices LITERALLY 4,
baud$rate$countsl LITERALLY '32',
baud3rate$Scount$h LITERALLY g6,
usart$mode LITERALLY '4enh',
usart$cmd LITERALLY '27h',
ctrs¢éSmode LITERALLY = '36h',
ctr$lsmode LITERALLY '76n",
ctr2mode LITERALLY 'dbéh',
ctr$3smode LITERALLY '36h',

num$devices BYTE PUBLIC DATA (numberS$SofS$devices-1),
num$boards BYTE ‘PUBLIC DATA(1l),
service$exchange$table (8) ADDRESS PUBLIC,
signal$exchange$table (8) ADDRESS PUBLIC,
signal$type (8) BYTE PUBLIC,
service$Sexchanges (82) BYTE PUBLIC,
signal$exchanges (120) BYTE PUBLIC,
task$descriptors (166) BYTE PUBLIC,
stacks (2048) BYTE PUBLIC,
info$block (32) BYTE PUBLIC,
JueueS$init3table (1) STRUCTURE (
base$adr ADDRESS, S
queue$size (8) ADDRESS) PUBLIC DATA (
fed¥@h, :
256,
1765,
256,
1765,
256,
1765,
256,
1765),
base$table (1) ADDRESS PUBLIC DATA (
ded¥oh) ,
initialization$table (number$Sof$devices) STRUCTURE (
base$adr ADDRESS,

1-165 . AFN-01931A

APPENDIX D (Continued)

queue$token BYTE,)
prog$info (5) BYTE) PUBLIC DATA(
fed 60h,

1,
usart$mode,
usart$cmd,
ctrdmode,
baud$rate$count$l,
baud$rate$count$h,

Bed 0bh,

3,

usart$mode,
usart$cmd,
ctrlmode,
baud$rate$count$l,
baud$rateScount$h,

Yed¥dh,

5,

usart$mode,
usart$cmd,
ctr2mode,
baud$rate$Scount$l,
baud$rate$counts$h,

Bed 00h,

7,

usart$mode,

usart$cmd,

ctr3mode,

baud$rate$count$l,

: baud$rate$count$h) ;

3 1 END init$module;

MODULE INFORMATION:

CODE AREA SIZE = @¢036H 54D
VARIABLE AREA SIZE = 09BOH 2480D
MAXIMUM STACK SIZE =

0000H @D
79 LINES READ o ‘
¥ PROGRAM ERROR(S)

1-166 AFN-01931A

APPENDIX D (Continued)

P /M-80 COMPILER SLAVE->MASTER INTERRUPT HANDLER PAGE 1

ISIS-II PL/M-8Y V3.1 COMPILATION OF MODULE SIGNALHANDLER

OBJECT

MODULE PLACED IN :F1:SIGNAL.OBJ

COMPILER INVOKED BY: PLM8(J :F1:SIGNAL.PLM PRINT (:F5:SIGNAL.LST) PAGEWIDTH(78)

26

27

28
29
30
31
32
33

35

37
38

wwhN N

ww

$nointvector title('slave->master interrupt handler')
signal$handler:

DO;
/* ,
Fields all slave->master signals(interrupts) and calls rqgisn
d
with the proper signal exchange address.
*/
$nolist
DECLARE
i BYTE,
ptr ADDRESS,

(flag BASED ptr) BYTE,

num$boards BYTE EXTERNAL,

num$devices BYTE EXTERNAL,

signal$type (1) BYTE EXTERNAL,

index BYTE,

token BYTE,

signal$exchangeStable (1) ADDRESS EXTERNAL,
base$Stable (1) ADDRESS EXTERNAL;

signal: PROCEDURE INTERRUPT 2 PUBLIC;
/* poll slave boards and find one generating interrupt */
i=9;
next:
ptr=base$table(i)+1;
IF flag=@ THEN
DO;
i=i+l;
IF i > num$boards THEN RETURN; /* erroneous signal *

ELSE GOTO next;
END;

/* get queue token and use it to index into signal exchange tabl
e ¥/

token=(flag AND #fh);
index=4*i+token;

/* if index is out of range don't attempt the isend */

1-167 AFN-01931A

39
49
41
42
43

44

45
46
47

48

wWw wn N

NN

APPENDIX D (Continued)

IF index <= num$devices THEN

DO;
CALL rqisnd(signal§exchange$table (index));
signal3type(index)=shr (flag,4);

END;

ELSE
CALL rgendi;

/* zero flag to acknowledge interrupt */
flag=0;
RETURN;
END;

END signalS$handler;

MODULE INFORMATION:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
114 LINES READ
? PROGRAM ERROR (S)

0v8BH 139D
V605H 5D
VOOAH 16D

1-168

AFN-01931A

APPENDIX D (Continued)

P /M-80 COMPILER RMX/84-544 INPUT SERVICE HANDLER PAGE 1

ISIS-II PL/M-80 V3.1 COMPILATION OF MODULE INPUTDRIVER
OBJECT MODULE PLACED IN :Fl:INPUT.OBJ
COMPILER INVOKED BY: PLM8Y :FLl:INPUT.PLM PRINT(:F5:INPUT.LST) PAGEWIDTH(78)

Stitle('rmx/88-544 input service handler')
1 input$driver:
DO;

/*
Master resident task code. Monitors service exchange
and fills input requests by retrieving characters from
the proper gueue(board$base and device info is passed
via default exchange field). By definition the first byte
of a line of input contains the length of that line.
This figure is used to retrieve the exact number of characte

- rs
available in a given line.
*/
$nolist
27 1 DECLARE
rgactv ADDRESS EXTERNAL,
td BASED rgactv task$descriptor,
serviceSexchange$table (1) ADDRESS EXTERNAL,
signal$exchange$table (1) ADDRESS EXTERNAL;
28 1 inputS$driver: PROCEDURE REENTRANT PUBLIC;
29 2 DECLARE

service$exchange ADDRESS,
board$base ADDRESS,
JueueStoken BYTE,
signal$exchange ADDRESS,

msgSptr ADDRESS,
msg BASED msg$ptr th$msg,
actual ADDRESS,
dummy ADDRESS,

info$block$ptr ADDRESS,

info$block BASED info$block$ptr STRUCTURE (
base$adr ADDRESS,
queuestoken BYTE,
index BYTE) ,

num$char BYTE,

stat BYTE;

/* get info out of default field */
30 2 info$block$ptr=td.exchange$address; /* default exchange fiel
*/

- el
31 2 service$exchange=service$Sexchange$table(info$block.index);

1-169 AFN-01931A

APPENDIX D (Continued)

32 .2 board$base=info$block.base$adr;
33 2 queue$Stoken=info$block.queue$token;
34 2 signal$exchange=signal$exchange$table (info$block.index);
35 2 DO forever; ‘
/* wait for request message */
36 3 msgSptr=rgwait (serviceS$exchange,d);
37 3 retry:
/* try to get line count out of queue */
actual=get$line(board$base,queue$token, .num$char,l);
/* if unsuccessful wait for signal and try again */
38 3 IF actual=¢ THEN
39 3 DO; '
49 4 dummy=rqwait (signal$exchange,®);
41 4 GOTO retry;
“ 42 4 END;
/* if all okay get line */
43 3 actual=get$line(board$base,queue$token,msg.buffer$adr,nu
- m$char) ; :
44 3 msg.actual=actual;
45 3 msg.status=0;
46 3 CALL rgsend(msg.respex,msgptr);
47 3 END; /* of do forever */
48 2 END; /* of task */
49 1 END input$driver;

MODULE INFORMATION:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
171 LINES READ
® PROGRAM ERROR(S)

#12CH 306D
0000H oD
90170 23D

1-170 AFN-01931A

APPENDIX D (Continued)

P /M-88 COMPILER RMX/80-544 OUTPUT SERVICE HANDLER PAGE 1

ISI1IS-II PL/M-8# V3.1 COMPILATION OF MODULE OUTPUTDRIVER
OBJECT MODULE PLACED IN :F1:0UTPUT.OBJ
COMPILER INVOKED BY: PLM8# :F1:0UTPUT.PLM PRINT (:F5:0UTPUT.LST) PAGEWIOTH(78)

39

40

41
42

$title('rmx/8¥-544 output service handler')
output$driver:
DO;

/*
Master resident task code. Monitors service exchange and
fills output requests by stuffing characters into the approp
riate
queue. If insufficient room is available the task waits
for 1 second and retries up to 160 times after which it
signals a time out error. If the transmission completes
successfully the slave is signalled to indicate that data is

available.

*/
$nolist
DECLARE
dataS$available LITERALLY 2,
time$out LITERALLY '1';
DECLARE

rgactv ADDRESS EXTERNAL,

(td BASED rgactv) task$descriptor,
service$exchange$Stable (1) ADDRESS EXTERNAL,
signalS$exchange$table (1) ADDRESS EXTERNAL;

output§driver: PROCEDURE REENTRANT PUBLIC;

DECLARE
service$exchange ADDRESS,
signal$exchange ADDRESS,
base$adr ADDRESS,
Jueue$token BYTE,
msg$ptr ADDRESS,
msg BASED msg$ptr th$msg,
triesSleft BYTE,
overflow ADDRESS,
dummy ADDRESS,
stat BYTE,
info$block$ptr ADDRESS,

info$block BASED info$block$ptr STRUCTURE (
base$adr ADDRESS,
queue$token BYTE,
index BYTE) ;

1171 AFN-01931A

APPENDIX D (Continued)

/* initialize */ .

43 2 info$block$ptr=td.exchange$address;
44 2 service$Sexchange=service$exchange$table(info$block.index) ;
45 2 signal$exchange= 51qna1$exchangebtable(1nfo$block index) ;
46 2 bas=2%$adr=info$block.base$adr;
47 2 queue$token=info$block.queue$token;
43 2 DO forever;

/* wait for reguest message */
49 3 msgSptr=rqwait (service$exchange,¥);
50 3 triesSleft=1060;
51 3 . retry: : s e

. overflow=send$line(base$adr,queues$token,msg.buffersadr,m
- sg.count) ;
52 3 . IF overflow <> ¥ THEN
53 '3 DO;))
54 4 . dummy=rqgwait (signal$exchange,20) ;
55 4 tries$left=tries$left-1; .
56 4 IF triesS$left > # THEN GOTO retry,
ELSE
58 4 DO;
59 5 msg.status=timeSout;
60 5 msg.actual=4;
61 5 GOTO quit;
62 5 END;
63 4 END;
64 3 msg.status=0;
65 3 stat= setSmSlnterrupt(base$adr,queuestoken data$available
-)i

66 3 msg.actual=msg.count;
67 3 quit:

. CALL rgsend (msg. respex,msgptr),
68 3 --END;- /* of do forever */ ‘
69 2 END; /* of task */

70 1 END output$driver;

MODULE INFORMATION:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
198 LINES READ
PROGRAM ERROR(S)

01598 . 345D
0000H gD
60198 25D

1:472 AFN-01931A

A M8V

:F1:CFG544.M89 PRINT(:F4:CFG544.L5T) PAGEWIDTH(78) MACROFILE

APPENDIX D (Continued)

ISIS~-II 8084/8085 MACRO ASSEMBLER, V3.4d

LOC OBJ

voo06 @860

P00o
[\ 30)}

PUBLIC SYMBOLS

RQCRTB C 0026

EXTERNAL SYMBOLS

INIT54 E 0000

USER SYMBOLS

CRTAB
INTXCH
NTASK
RQRATE
XCHADR

+

+
A
c
+

$0008
2000
w02
vooe
2002

LINE

Ui W N

127
128
129
130
131
132
133
134

135
136
191
246
247
248
249
253
25%
255
256
264
265
266
267
274

RQRATE

LINECH

GENTD
ITT
PUBXCH
STD

CFG544 PAGE

SOURCE STATEMENT
NAME CPG544
CSEG
PUBLIC RQRATE
RQRATE: DW 8
SNOLIST
SLIST
$NOGEN
NTASK SET)
NEXCH SET]
H
; BUILD THE INITIAL TASK TABLE
H
; ———————- \ THIS TASK IS NECESSARY FOR THE 544 HANDLE
R
; ———————- / IT CREATES EVERYTHING ELSE IT NEEDS.
STD INIT54,200,1,0
31D LINECH,64,130,0
; ALLOCATE TASK DESCRIPTORS
7
GENTD
B
; BUILD INITIAL EXCHANGE TABLE
H
XCHADR RESPEX
i
: BUILD CREATE TABLE
i
CRTAB
END
C 0060
E 0800 RESPEX E 6000
+ Yvoe IET C 0024 INIT54 E 0000
C 2002 LINECH E 06000 NEXCH A 0061
+ 6687 RESPEX E 0000 RQCRTB C @026
+ 0000 TDBASE D #1608 XCH + 0685

1-173

AFN-01931A

APPLICATION ,_ AP-96
NOTE | R

July 1980

PO %
e QQ S\ ° @Q{;}
&, Q).\' >

Designing iSBX™
MULTIMODULE™ Boards

Contents

INTRODUCTIONcoivviininnnnn 1-177
iSBX™ MULTIMODULE™ BOARD
CONCEPTiiiiiiiiiiannnnnnnns 1-177
iSBX™ MULTIMODULE™ SYSTEM
INTERFACEcoiviiiiiiiiiinnnanen, 1-178
HostBoardsccovvvvivvnnnnn. 1-178
iSBX™ MULTIMODULE™ Boards 1-178
iISBX™Connector.oovvvennnnn. 1-180
iSBX™ Bus Interface Signals........... 1-180
iSBX™ BUS INTERFACING 1-181
BusTimingovvviiiiinnennn. 1-181
Command Operations................. 1-181
iSBX™ Addressing 1-183
Considerations for iSBX™ Bus
Interfacingooovvvvevennnnnn. 1-183
Optional Interface Lines 1-184

iSBX™ MULTIMODULE™ DESIGN

EXAMPLEciivviiiiiinncnnnnns 1-185
iSBX™ MULTIMODULE™ Board
Design ...oovvviiiiiiiiiiiiiiinne, 1-185
Display Module Design 1-186
Keyboard Interface Design............. 1-187
Operation With The iSBC 80/10B™
Single Board Computer.............. 1-188
Breadboarding The Design............. 1-189
Software Considerations............... 1-189
Debug Considerations................. 1-190
SUMMARY ...oiiiiiiinninnnnnconannns 1-190

APPENDIX A — iSBX™ Signal
Pin Assignments....................... 1-192

APPENDIX B — iSBX™ MULTIMODULE™
170 AC Specifications. 1-193

APPENDIX C — Listing for the iISBX™
Design Example Software Exerciser 1-194

1-176 AFN-01931A

AP-96

INTRODUCTION

Intel’s single board computers and the MULTIBUS™
system bus have become de facto industry standards in
the microcomputer board market. The speed and capa-
bility of the bus coupled with the functionality and per-
formance of the boards have been used to solve a large
number of problems. iSBC products are in applications
ranging from simple single board relay replacement to
sophisticated multi-board business systems supporting
large hard disk files. However, even with the range of
functionality provided by standard iSBCs and expan-
sion boards, designers have felt the need to design
custom MULTIBUS-compatible boards to fit their ap-
plication. Until the introduction of the iSBX concept,
these custom boards had to be implemented using a
separate MULTIBUS form factor board.

Intel has recently introduced a new line of board prod-
ucts ana 2 new bus which are destined to become
another industry standard because of the niche they fill.
The new iSBX MULTIMODULE boards are designed
to extend the functional capabilities of single board
computers at a much lower cost than previously possi-
ble. iSBX MULTIMODULE boards are supported by a
new bus — the iSBX bus, which allows the MULTI-
MODULE boards to be added directly to the on-board
microprocessor bus.. iSBX MULTIMODULE boards
are from 10 to 20 square inches in size, therefore permit-
ting small modular increments to a single board com-
puter’s capabilities.

System designers now have the capabilities of using
either standard iSBCs- or iSBX MULTIMODULE
boards, or designing custom MULTIBUS compatible or
iSBX MULTIMODULE boards. Cost-effective solu-
tions are easily realized because of this added flexibility.

This ‘application note discusses the iSBX MULTI-
MODULE concept, currently available MULTIMOD-
ULE boards and the iISBCs which support these boards.
The iSBX bus interface specifications are discussed
next, followed by consideration for designing custom
iSBX MULTIMODULE boards. A specific design ex-
ample using an Intel® 8279 Programmable Keyboard/
Display Controller is presented.

The objective of the note is to introduce the reader to
the iSBX MULTIMODULE concept for expanding
iSBC functionality and to illustrate how a designer can
effectively use this concept with either standard or
custom iSBX boards.

References to further documentation on the iSBX bus,
specific iSBX MULTIMODULE boards and iSBC host
boards currently available may be found in the Related
Intel Publications section in the front overleaf of this
application note.

iSBX™ MULTIMODULE™ BOARD
CONCEPT

The iISBX MULTIMODULE board concept was devel-
oped to provide the users of Intel single board com-
puters (iISBCs) with a convenient method to increment-
ally expand the 1/0 or the computing capabilities of a
single board computer. This expansion is done through
the use of a new interface called the iSBX bus interface.
This interface gives the user the capability of adding I/O
mapped functions directly onto the microprocessor bus
via plug-in modules that connect to the iISBC board by
means of a special iISBX connector. With the use of this
new bus interface, it is now possible to expand or add
new features to your iSBC system without incurring
large costs and long engineering development times.

There are a number of unique advantages to using the
iSBX bus interface for system expansion rather than
adding a separate expansion board to your system.
First, when expansion is required, the user needs only to
buy what is required for the application. Second, it is
now possible to return to one board solutions for small
systems. One board solutions eliminate the need for ex-
pensive backplanes and cardcages. Next, the iSBX inter-
face connects directly to the microprocessor or local
bus, as opposed to interfacing to the MULTIBUS sys-
tem bus, therefore [/O expansion does not require
system bus cycles. To the CPU, the iSBX board looks
like any other on-board 1/0 device (Figure 1). Address
decode logic exists on the iSBC host board for each
iSBX connector on the host board.

iSBC™
RAM ROM SINGLE BOARD
COMPUTER
CPUBUS
SERIAL iSBX™ PARALLEL
o o o

I I |

Figure 1. iISBC™ Host Board Block Diagram

Third, if there is no iSBC or MULTIBUS compatible
expansion board available to fit the needs of your appli-
cation or if the expansion boards available offer more
capability than required, then it is possible to design a
custom iSBX MULTIMODULE board. Custom iSBX
boards offer several advantages over custom MULTI-
BUS boards: they require less board real estate (10 or 20

AFN-01931A

AP-96

square inches versus 81 square inches) and less engineer-
ing design time; consequently, they cost considerably
less to implement. Additional capability is therefore
achieved with maximum productivity.

Currently available Intel iSBX MULTIMODULE
Boards include: o

1) iSBX 350 Parallel 170 MULTIMODULE board
which contains 24 programmable 1/0 lines with
sockets for line drivers and terminators.

iSBX 351 Serial /0 MULTIMODULE board
containing one RS232 or RS449/422 program-
mable synchronous/asynchironous communica-
tions channel and two timers.

iSBX 331 Fixed/Floating' Point ‘Math MULTI- -
MODULE board which permits fixed or floating
point mathematics via the Intel 8231 device.

iSBX 332 Floating Point Math MULTIMODULE
board which permits floating point mathematics
using the Intel and proposed IEEE floating point ‘
standards via an Intel 8232 device..

With these iSBX MULTIMODULE boards and other
soon-to-be-announced boards, the capability now exists
to economically tailor a single board computer to the
application using off-the-shelf products.

2

~

3

~

4

~

iSBX™ MULTIMODULE™ SYSTEM
INTERFACE =

This section begins by describing the basic system ele-
ments used in an iISBX MULTIMODULE interface con-
figuration and then defines the interface signals used for
the communication between these elements. The specifi-
cations contained in this application note are included
for descriptive and tutorial purposes only. The ultimate
source for this information is the iSBX Bus Specifica-
tion which is referenced in the front overleaf of this
note.

Host Boards

The host board provides an electrical and mechanical jn-
terface for the iSBX expansion module. The host board
is the master of the communications between the host
and iSBX board, it controls the address and command
signals. '

A new generation of iSBX bus compatible host boards
are evolving. The first board available from Intel is the
iSBC 80/10B Single Board Computer. The 80/10B con-
tains an 8080A CPU operating at 2 MHz, 1K bytes of
RAM with sockets available for expansion to 4K bytes
of RAM, sockets for up to 16K bytes of EPROM, 24
parallel I/0 lines, a programmable synchronous/asyn-
chronous communications interface and a fixed 1.04
msec timer. The 80/10B has one iSBX connector, per-
mitting the use of an iISBX MULTIMODULE board.

1-178

The second iSBC board available supporting .iSBX
boards is the iSBC 80/24 Single Board Computer. The
80/24 board, which supports two iSBX‘MULTIMOD’-
ULE boards, contains an 8085A-2 CPU operationg at
4.8 or 2.4 MHz, 4K bytes of RAM, sockets for up ‘to
32K bytes of EPROM, 48 parallel'1/0 lines, a 'program-'
mable synchronous/asynchronous communications in-
terface, three programmable interval timers and a pro-
grammable interrupt controller. Further RAM expan-
sion on the 80/24 board is accomplished by the addition
of an iSBC 301 4K byte RAM MULTIMODULE board
which expands the RAM by an'additional 4K bytes fora
total of 8K bytes. The iSBC 301 MULTIMODULE
board is not iSBX bus compatible; it is attached via pins
and sockets in the RAM section of the host board.

iSBX™ MULTIMODULE™ Boards

The iISBX MULTIMODULE boards communicate with
the host boards via the iSBX bus interface. These iSBX
boards are 1/0 mapped through pre-defined select lines
to specific port addresses. The iSBX bus currently
defines an 8-bit data path compatible with both 8 and
16-bit' future iSBC 'host boards. Examples of possible’
iSBX expansion boards include a floppy disk controller;,
a cassette interface, -analog-to-digital converter or
digital-to-analog converter boards; an interface to the
IEEE 488 Bus and a vrdeo graphlcs drsplay 1nterface1
board. :

There are two standard sizes of iSBX boards: a single-
wide board measuring 7.24 by 9.40 cm (2.85 by 3.70
inches) and a double-wide board measuring 7.24 by
19.05 cm (2.85 by 7.50 inches). The iSBX MULTI-
MODULE. boards mount onto. any microcomputer:
board containing an iSBX :connector and- mounting
hole. The iSBX boards physically plug into the iSBX
connector on the host board and are secured with a
nylon stand-off and screws. The mounting ‘hardware
supplied as part of the iSBX board includes: :

1) One nylon spacer, 172" threaded = *
2) Two nylon screws, 1/4" 6-32
3) One 36- -pin connector, factory-mstalled onto the

iSBX module. (These may also be, purchased from
Intel.)

The interconnection between the host board and 1SBX
board, as well as'the mountmg clearances may be seen
in Flgures 2 and 3.

NOTE
The iSBX board, when installed onto a host
board, occupies an additional card slot adjacent to
the base board in an:iSBC 604/614 Cardcage.
However, the base board may be inserted in the

- top card slot of the cardcage. If this is done, no
additional slots are required.

AFN-01931A

AP-96

, INTEL iSBX™
<«——MULTIMODULE™
CONNECTOR

INTEL iSBX™
MULTIMODULE™ BOARD

HOST BOARD

1.13 (max.)

0.80

max.)

0.40

max.)

[

MULTIMODULE™ BOARD

CONNECTOR
(MALE)

|

CONNECTOR
(FEMALE)

SOCKET

HOST MICROCOMPUTER BOARD

v

U |

|

0.50 (min.)

Figure 3. iSBX™/iSBC™ Mounting Clearance (inches)

1-179

AFN-01931A

AP-96

iSBX™ Connector

The iSBX interface connector is a 36-pin custom made
connector that was designed by Intel especially for this
interface. The connector is plastic with gold plated con-
tact pins for maximum reliability. The connector for the

iSBX interface was designed for high reliability and dur-

ability. The connection between the host board and the
iSBX MULTIMODULE board was extensively tested
for vibration, shock, humidity, and temperature to in-
sure that the connection is rugged enough to be used in
severe environments. This connection was tested for the
following environment:

Vibration: Sweeping from 10 Hz to 55 Hz and back
to 10 Hz at a distance of 0.010 inches
peak-to-peak, lasting 15 minutes in each

of the three planes.

Shock: 30g’s of force for an 11-msec duration,
three times in three planes, both sides

(total of 18 drops).

Humidity: 90% maximum relative (no condensa-

tion).

Temperature: 0 to 55°C (32-131°F) free moving air
across the base board and the iSBX
MULTIMODULE board.

Further information on the reliability testing that was
done on this inter-connection, or reliability information
on the iISBX MULTIMODULE boards in general, is

contained in the Reliability Report, RR-29, ““Intel iSBX:"'

MULTIMODULE Boards and iSBC 80/10B Single
Board Computer,”’ listed in the overleaf of this note.

The male half of this connector is available from Intel in
the form of the iISBX 960-5 package which contains five
of the connectors.

iSBX™ Bus Interface Signals.
The iSBX bus interface signals are grouped into six

basic groups, or classes, according to the functions per- -

formed relative to the interface:

These signals are:

CONTROL LINES
ADDRESS LINES
DATA LINES
INTERRUPT LINES
OPTIONAL LINES
POWER LINES

Many of the signals on the iSBX bus are active-low,
meaning a low level on a control signal of the bus indi-
cates a logic ‘1’ value, while a low level on an address
or data signal of the bus represents a:logic “‘0’’ value.

1-180

NOTE

In this application note, an active-low signal will
be designated by placing a slash (/) after the
mnemonic for the signal.

Appendix A contains a pin assignment list of the follow-
ing signals:

CONTROL LINES
The following signals are classified as control lines:

1) COMMANDS — IORD/, IOWRT/
2) DMA — DMRQT, MDACK/, TDMA
3) INITIALIZE — RESET

4) CLOCK — MCLK

- 5) SYSTEM CONTROL — MWAIT/, MPST/

Command Lines (/O REAIj, 110 WRITE)

The command lines are active-low signals which control
the communication link between the host board and the
iSBX board. An active command line conditioned by
chip select indicates to the iSBX board that the address -
lines are valid and the iSBX board should perform the
specified operation.

DMA Lines (MDRQT, MDACKI/, TDMA)

The DMA lines control the communication link between
the DMA device on the host board and the iISBX mod-
ule. DMRQT is an-active-high output signal from the
iSBX board to the host board’s DMA device requesting
a DMA cycle. MDACKY/ is an active-low input signal to
the iSBX board from the host board DMA device ac-
knowledging that the requested DMA cycle has been
granted. TDMA is used by the iSBC board to terminate
DMA activity. The use of the DMA lines is optional as
not all host boards will provide DMA channels nor will
all iISBX boards be capable of supporting them.

Initialize_Line (RESET)

This active-high input line to the iSBX board is gener-
ated by the host board to put the iSBX board into a

known internal state.

Clock Line (MCLK)

This input line to the iSBX board is a timing signal. The
clock frequency is 10 MHz (+0%, —10%), and the

"..clock is asynchronous with respect to all other iSBX bus

signals.

System Control Lines (MWAIT/, MPST)

These output signals from the iSBX board control the
state of the system. Active MWAIT/ (active-low) will

AFN-01931A

AP-96

put the CPU on the host board into a wait state, provid-
ing additional time for the iSBX board to perform the
requested operation. MPST/ is an active-low signal
(usually tied to signal ground) that informs the host
board I/0 decode logic that an iSBX module has been
installed. '

ADDRESS AND CHIP SELECT LINES

The address and chip select lines are made up of the
following signals:

1) ADDRESS LINES — MAO, MA1, MA2
2) CHIP SELECT LINES — MCS0/, MCS1/

Address Lines (MAO, MA1, MA2)

These active-high input lines to the iSBX boards are
generally the least three significant bits of the 1/0 ad-
dresses. In conjunction with the command and chip
select lines, they establish the 1/0 port address being ac-
cessed.

Chip Select Lines (MCS0/, MCS1/)

These active-low input lines to the iSBX board are the
result of the host board 1/0 decode logic. When active,
the MCS/ lines condition the I/O command signals and
thus enable communication between the iSBX board
and the host board.

DATA LINES (MD0-MD7)

There are eight bidirectional data lines. These active-
high lines are used to transmit or receive information to
or from the iSBX ports. MDO is the least significant bit.

INTERRUPT LINES (MINTRO, MINTR1)

These active-high output lines from the iSBX board are
used to make interrupt requests to the host board. These

lines are jumper enabled and disabled on the host board

via wire wrap posts.

OPTION LINES (OPTO, OPT1)

These two signals are reserved lines that are connected
to wire wrap posts on both the host board and the iISBX
MULTIMODULE board. They are for unique require-
ments where a user needs a host board or MULTIBUS
bus signal on the iSBX module.

POWER LINES

All host boards provide + 5 volts as weil as =12 volts to.

the iSBX MULTIMODULE board along with signal
ground. All power supply voltages are +5%. Table 1
gives the power supply specifications for the iSBX inter-
face. : .

Table 1. Power Supply Specifications

Minimum | Nominal | Maximum | Maximum

(volts) (volts) (volts) (current)*
+4.75 +5.0 +5.25 3.0A
+11.4 +12 C+126 1.0A
-12.6 -12 —-11.4 1.0A
- GND — 6.0A

*Per iSBX MULTIMODULE board mounted on base board.

iSBX™ BUS INTERFACING

This section of the application note focuses on the iSBX
interface and design considerations related to interfac-
ing with the iSBX bus. It discusses the way the major
operations like READ, WRITE, and DMA work, and
the timing diagrams associated with each. There is also a
discussion on other considerations for designing with
the iSBX bus.

Bus Timing

The AC timing specifications for the iSBX bus interface
can be found in Appendix B of this application note. It
should be emphasized that the interface timing between
the host board and the iSBX MULTIMODULE board is
very critical. This is largely due to the fact that the iSBX
board is attached directly to the microprocessor bus. If
the timing specifications are not met, unpredictable and
possibly intermittent operation of the host board may
result.

Command Operations

The command lines (IORD/, IOWRT) are driven from
the hcest board by three-state drivers with pull-up resis-
tors or standard TTL totem-pole drivers. These lines in-
dicate to the iISBX board that action is being requested.
There are two types of operations for each command
line and it is the iSBX board that determines which
operation is.to be performed.

READ OPERATIONS (IORDI/)

Two different types of read operations are possible. The
first type of read is called a full speed I/0 READ. The
host board generates a valid I/O address (MA0O-MA2)
and a valid chip select signal (MCS1/) which is then sent
to the iISBX board; after the set-up times are met, the
host ‘board activates the IORD/ line. At this time, the
iSBX board must generate valid data from the ad-
dressed 170 port in less than 250 ns. The host board
then reads the data and removes the READ command,
address and chip selects. These are shown in the timing
diagram for this operation-(Figure 4). The second type
of read operation is called an I/O READ with Wait.
This READ is used by iSBX boards that cannot perform
a full speed read operation. Under this operation the

AFN-01931A

AP-96

host board generates the valid address and chip select
signals, as in the full speed read. But this time the iSBX
board will activate the' MWAIT/ signal, which in turn
removes the READY input to the CPU, putting it into a
Wait state. The CPU, however, first activates the
IORDY/ signal before going into the Wait state. After
valid data is placed on the iSBX data bus by the iSBX
board, the iSBX board will remove the MWAIT/ signal.
The host board will then read the data and remove the
command, address, and chip select lines. This 1/0
READ with Wait operation is shown in Figure 5.

WRITE OPERATIONS (IOWRT))

There are also two types of write operations possible:
the type performed is again determined by the iSBX
board. In the full speed I/O WRITE operation, the host
board generates a valid 1/0 address and chip select and
then activates the IOWRTY/ line after the necessary set-
up times are met. The IOWRT/ line, after being acti-
vated, will remain active for 300 ns and the data will be
valid for 250 ns before the IOWRT/ command is re-

moved. The host board will then remove the data, ad-
dress, and.chip select lines. after the hold times are met,
as shown in the timing diagram of this operation (Figure
6).

This second write operation is the I/O WRITE with
Wait operation. This WRITE is used by the iSBX
boards that cannot write into an I/0 port with the full
speed write specifications. The host board again
generates valid address and chip select signals as in the
full speed write operation. However, this time the iSBX
board generates the MWAIT/ signal based on address
information (chip select and MAO-MA1). The activa-
tion of MWAIT/ causes the removal of READY to the
CPU, thus causing the CPU to go into a Wait state. The
iSBX board removes the MWAIT/ signal (allowing the
CPU to leave its Wait state) when it has satisfied the
WRITE pulse width requirements.- At this time the
board removes the WRITE command, followed by the
data, address, and chip select lines. This I/0 WRITE
with Wait operation can be seen in Figure 7.

MAO-MA2

X

VALID

ADDRESS

N\

IORD/

4

/

-
ke

|

MDO0-MD7

X VALID DATA ’-——————

Figure 4. Full Speed I/0 Read Operation

MA0-MA2

VALID ADDRESS

mcs/

X
__—__-_\ '

MWAIT/

10RD/

/

MDO-MD7

VALID DATA

X

InFs
L& T~

Figure 5. /0 Read with Wait Operation

1-182

AFN-01931A

AP-96

MAO0-MA2 l
B -

VALID ADDRESS

mcs/

IOWRT/

MDO-MD7 -————(7

VALID DATA

Figure 6. Full Speed 1/0 Write Operation

MA0-MA2 N

VALID ADDRESS N

mcCs/

e

MwWAIT/
, ~\

IOWRT/ ‘ 7\

woowoy ———

VALID DATA

Figure 7. 1/0 Write with Wait Operation

iSBX™ Addressing

The iSBX boards are addressed by the host board
through the use of the address lines MAO, MA1 and
MAZ2, and the chip select lines MCS0/ and MCS1/. The
host board decodes the I/0 addresses and in turn gener-

ates the chip selects for the iSBX boards. In an 8-bit sys-

tem the host board decodes the high order 13 address

bits and generates the appropriate chip select corre--
sponding to those address bits. The low order three ad-.

dress bits are passed to the iSBX board via MAO-MA2.
Thus, a host board reserves two blocks of eight 1/0
ports for each iSBX connector. There can be as many as
three iSBX connectors per host board, therefore a total
of 48 addresses or six blocks of eight I/0 ports that can
be reserved for the iSBX boards. Table 2 contains a list
of the I/0 addresses and their corresponding host board
iSBX port assignments of the iSBC 80/10B and iSBC
80/24 host boards.

Table 2. iISBX™ Host Board Port Assignment

iSBX™ Connector . iSBX™ Port
Number Chip Select Addresses
iSBC 80/10B MCS0/ FO-F7
Connector MCS1/ F8-FF
iSBC 80/24 First MCS0/ FO-F7
Connector MCS1/ F8-FF
iSBC 80/24 Second MCS0/ C0-C7
Connector MCS1/ C8-CF

Considerations for iSBX™ Bus Interfacing

When designing with the iSBX interface it is important
to note that the iSBX bus is not buffered on the host
board. Since there is no isolation between the iSBX
board and the host board CPU bus, a short between sig-
nal lines and power or ground could have a direct effect

AFN-01931A

AP-96

on the CPU or the drivers and receivers associated with
the CPU on the host board. This must be taken into
consideration, especially when designing and debugging
any custom designed iSBX MULTIMODULE board. It
is usually during the development states of a product
that these types of problems occur. One advantage to
not buffering the iSBX bus is increased speed of data
and command transfers. Applications requiring buffer-
ing may add the buffers on the iSBX board. A second
advantage to not buffering is the saving of parts costs,
board real estate and development time for the host
board. Another consideration when designing with the
iSBX interface is, if the application to be designed re-
quires high throughput, like a floppy disk controller or
a CRT controller, the designer may consider putting
some type intelligent control of buffer RAM onto the
iSBX board. By doing this, the transfer information can
be stored in this buffer and the throughput of the system
increased.

iSBX™ BUS LOADING REQUIREMENTS

Loading requirements for the iSBX bus have been
broken up into two basic categories, output specifica-
tions and input specifications, which can be viewed in

Tables 3 and 4. The output specifications ar¢ the re-
quirements on the output drivers of the iSBX board and
are the minimum drive requirements necessary. A good
example of this would be that the data bus output
drivers must be able to sink a minimum of 1.6 mA and
maintain Vop at a maximum of 0.5 volts and a mini-
mum source of 200 x A, while providing a minimum out-
put of 2.4 volts. The input specifications are the re-
quirements on the receivers of the iSBX board. An ex-
ample of this would be that the loading of the address
lines (MAO- MAZ2) can be no greater than 0.5 mA with a
minimum low threshold of 0.8 volts.

Optional Interface Lines

The iSBX interface has two optional lines which were
included for the user to configure the iSBX board for
special application needs. These two lines can be used in
a number of ways helpful in unique situations. For ex-
ample, they could be used as a way to get two extra in-
terrupt lines down to the host board, thus yielding a
total of four interrupt lines running between the iSBX
MULTIMODULE board and the host board. They
could also be used to get extra address lines, or even
another clock signal to the iSBX board. They could also

Table 3. Output Specifications

Bus Signal Type? loL Max @ Volts loy Max @ Volts Co Min
Name Drive — Min (mA) (VoL Max) — Min (zA) (Von Min) (pF)
MDO0-MD7 TRI 1.6 0.5 -200 2.4 130
MINTRO-1 TTL 2.0 0.5 - 100 2.4 40
MDRQT TTL 1.6 0.5 ~50 ‘ 2.4 40
MWAIT/ TTL 1.6 0.5 -50 2.4 40
OPTI-2 TTL 1.6 0.5 -50 . 2.4 40
MPST/ TTL Note 3
Table 4. Input Specifications
Bus Signal Type? I Max @ Volts iy Max @ Volts C; Max
Name Receiver (mA) ~(Vin Max) (uA) (Vin Min) (pF)
MDO0-MD7 TRI -0.5 0.4 - 70 2.4 40
MAO-MA2 TTL -0.5 04 70 2.4 40
MCS0/-MCS1/ TTL ~-4.0 0.4 100 , 2.4 40
MRESET TTL -2.1 0.4 100 2.4 40
MDACK/ TTL -1.0 0.4 100 2.4 40 -
IORD/ TTL -10 0.4 100 2.4 40
IOWRT/
MCLK TTL 2.4 0.4 100 2.4 40
OPTI-OPT2 TTL 2.0 0.4 100 2.4 40
NOTES:

1. Per iSBX MULTIMODULE board.
2. TTL =standard totem-pole output. TRI =three-state.
3. iSBX MULTIMODULE board must connect this signal to ground.

1-184

AFN-01931A

AP-96

be used to send a special status line to or from the iSBX
- MULTIMODULE board.

iSBX™ MULTIMODULE™ DESIGN
EXAMPLE

This section covers the description of a custom iSBX
MULTIMODULE board which uses the Intel 8279 Pro-
grammable Keyboard/Display Controller. This iSBX
board, when added to an iSBC host board, provides an
interface to a keyboard and display. A description of
the hardware design considerations for breadboarding
the hardware is presented. Following this, a software ex-
erciser, useful for debugging the board, is described. A
listing for the exerciser is contained in Appendix C.

Since the iSBX MULTIMODULE board was designed
using the Intel 8279 Programmable Keyboard/Display
Controller, a brief description of the 8279 is presented.
The 8279 is a general purpose programmable keyboard
and display 170 controller which was designed for use
with the Intel microprocessors. The keyboard portion of
this device is capable of providing a scanned interface to
a 64-contact key matrix. It is also possible to interface to
an array of sensors or a strobed keyboard, such as those
of the Hall Effect or the ferrite variety. The 8279 pro-
vides a variety of keyboard inputs (i.e., 2-key lockout
and N-key rollover), and all key entries are debounced

and strobed into an 8-character FIFO. The display por-
tion provides the user with a scanned display interface
for LED, incandescent, and other popular display tech-
nologies. Both numeric and alphanumeric segment dis-
plays may be used, as well as simple indicators. The
8279 is used in this iISBX design example to provide an
interface of 2-key lockout with key debounce to a
64-character keyboard, and an interface for a 16-char-
acter, 18-segment alphanumeric display.

iSBX™ MULTIMODULE™ Board Design

The iSBX board that was designed for this application
note contains a total of three IC’s, the keyboard/display
controller, a flip-flop, and a 3-to-8-line decoder. Figure
8 contains a block diagram of the hardware used in this
design example. Figure 9 contains a schematic for the
portion of the design example resident on the custom
iSBX board.

The design offers the user some flexibility as to the type
of display or keyboard to be attached. For example, if
the application design was defined to be for a 7-seg-
ment, 16-character display (as the 8279 is designed to
drive), a 4-to-16-line decoder along with the display
drivers could be added to the iSBX board. Another idea
would be to include everything except the display drivers
and the display on the iSBX board, and to put the dis-

ISBX™ BUS CUSTOM iSBX™ BOARD DISPLAY ELECTRONICS
+5v!
| 1
Vee
RESET RESET RLO-RL7
H l KEYBOARD
MINTRO IRQ SHIFT
| CNTLISTB
MAQ 20
SLO-SL3 DECODER l
DBO-DB7 l
(23
a |
@ -
¢, |moso o 8wes > Latch [
2 |
IORDJ " —1
1
IOWRT/ WA) ONE-SHOT DISPLAY
K
Mol CLK A0-A3
T
I | ASCll
GND DECODER
Vss B0-B3 >
MPS1II

Figure 8. Block Diagram of the iISBX™ Design Example

1-185

AFN-01931A

:AP-96

play and drivers'in with the keyboard. It is)possible, and ~to the iSBX interface..To meet the timing requirements
‘probably desirable in some applications, to incorporate of the iSBX bus, a high speed version of the 8279, the
some of-the display. electronics onto the iISBX MULTI- 8279-5, is used.

'MODULE board. Some of the IC’s found in the'display
portion of this design could also have been placed on:the
iSBX board, as there is' enough room on:the fimshed

-product for doing so. "

The keyboard interface side of the iSBX board consists
of a 3-to-8-line decoder, which is used for scanning the
keyboard miatrix. The 8279 scan lines SLO-SL2 are de-
coded by a:74L.S156 open-collector output: decoder and
The design was very easy to implemient because, with the sent to the keyboard via a connector.

exception of one signal, all of the'iSBX bus sighals nec-
essary to drive the 8279 are connected directly. without
any extra logic needed. The one ‘signal that would not
connect directly to ‘the interface is the clock signal
MCILK from the bus to CLK on'the controller. It is not
possible to connect these two together as MCLK is a 10
MHz signal and the 8279 requires a maximum clock sig-
nal of 3.1 MHz to generate its internal timings. It is nec-
essary to add a 74LS74 dual D-type flip-flop to divide . .
the MCLK signal by 4 for the controller. With this ex- Display MOdule’ Desngn‘

ception, all other signals, DBO-DB7 to MD0O-MD7, Ag The display module design (Figure 10) consists of two
to MAO, CS/ to MCS0/, etc., are 'connectcjdb directly 8-digit HDSP 6805 Alphanumeric Displays by Hewlett

The display interface of the iSBX board consists of
sendmg the scan lines and the display outputs to the dis-
‘play module via a connector. The scan lines SLO-SL3

" are sent to the display’ dnvers and the display outputs
A0-A3 and B0-B3 are sent to an ASCII to 18-segment
decoder driver. The display is discussed in further detail
in the next section of this application note. :

+5V 3 ‘;
iSBX™ CONNECTOR ! H - . . GND____1
u P4 J a0
RESET ° 8loeser - YOO AL "
ow! 7 AL 5 |g
10R! 1 10fgp Rzt ol I
2 S
AL]
Moo ALaf g
MD1 ALsfS w | B
MD2 RLel |
MD3 et 1} . .
M4
MDS cnTRusTRB L .
el sHiFT 8 — .
MD7 ‘ . . e
waz stof2 —130a o2 : £
suifss 3g 4o E]
R Py T k] P Pyl 8 |«
MLk siaf2s 19 56 3hz 0 |8
MPST/ . rasise 307 - ’ :
MWAIT ar9s s .
: 2 (5 B
mcso/ ' i © M :
mcs! - |21 P 7j2 :
oPT1 |
: B
opT2 30— oy J;
MINTRO [y p—— i
MINTR1 —_— “
+12v — a
-12v 22— i . 2
- 1
GND 3 NIC
GND 1" we
GND 35 <
4 sy %
‘) -]
e
+5V 44— J Lol 3
+5V 18 N 0AuF +< 47 y.F 2
+5V 36
. iy 9
= GND 8

--Figuré.9.: Schematic of the custom iSBX™ Board

" 1-186 AFN-01931A

AP-96

Packard, the AC5947 ASCII to 18-segment decoder
driver by Texas Instruments, two Signetics NES90
Peripheral Drivers, and a 74LS122 monostable multi-
vibrator. The display is scanned by the outputs A0-Al
and B0-B3, which are connected to the inputs of the
AC5947, and the SLO-SL3 outputs which are connected
to the NE590 digit scanning circuitry. The interdigit
blanking is provided by the 74LS122, which prevents a
display ghosting type effect. With the 8279 display con-
troller it is possible for the display to have either left
entry, where the data enters from left to right across the
display, overflowing in the left most display position, or
right entry, where the data enters from the right side of
the display and all previous data shifts left. Left entry
was chosen for this example. The controller also pro-
vides commands for blanking or clearing the display.

Keyboard Interface Design

The eight output lines from the decoder on the iSBX
board select 1-of-8 keyboard matrix rows for testing by
the controller to see if a key depression has been made in
the selected row. The keyboard matrix column output
lines are connected directly to the return lines of the
8279, RLO-RL7. Open-collector outputs presented by
individual keys within the matrix eliminate the need for
isolation diodes when two keys in a given column are
depressed. The keyboard/display controller has the op-
tion of using either scan keyboard, scan sensor matrix,
or strobed input as modes of operation. With the scan
keyboard mode there is a choice of using either 2-key
lockout or N-key rollover for keyboard entry. The scan
keyboard with 2-key lockout mode is used for this ex-

39K 4 +5V
Tvp)
DISPLAY CONNECTOR < & 3$23<3
(FROM isBX“BOARD) $ S S 3SSS3S
a1] -2 a1
A0 5 »—'g— A2
SR - 2
B2 3 1
B1 2 1 fon
B0 1 i
12— 1 . E
L.
PV £ 1988 HDSP [HDSP
AC 5947) 18 6508 18 o 6508
I cK M 25162 DISPLAY 2 DISPLAY
= H2dH
- -2 1
18
]
8
5 1,
8 |u
+5V 9 +5V "7 P
co
GND 8 GND aND . W s 6 78
11 DECODER & [10]15 |12 . 3 |21]6 |10]15 12[14 [13
- ’ 5 s |7 |8 [11{12]13]1a 5 l6 |7 8 |11]12413 14
00 01 02 03 04 05 06 07 |16 [16] "00 O1 02 03 04 05 08 O7
DRIVERS NES90 l NE590
A0_A1 A2 CE (] A0_A1_A2 CE TLR
g 3 |14 |13 15 2 |3 |13 14_]:5
sto 1
st 13
stz 12
sL3 1
8D 7

Figure 10. Display Module Schematic .

AFN-01931A

AP:96 -

.ample. A diagram of the keyboard interfaces and mat
can be seen in Figure 11.

rix

R T ===

. <499 o8] 10] 18] 20| 29 :w_»%__
“RLO ‘ :

RL7 07| OF| 17| 1F{ 27| 2F| 37] 3F

RETURN LINES
22
[bk

7 o WYV Y VYUY

TO iSBX™ BOARD
2 ; [
. LRER

SCAN LINES
73
o

Figure 11. Keyboard Matrix Schematic

Operation with the iSBC 80/10B™ Single
Board Computer o

The 8279.0n the iSBX expansion board is initialized to
its mode of operation following a system reset. The key-
board mode of operation is ta.scan the keyboard with .
2-key lockout, and the display. mode is set-for the

16-character left entry mode of operation. Upon receiv-., .-

ing a character from the keyboard, the 8279 generates
an interrupt along the MINTRO line of the iSBX bus to. -
the CPU. At this time the .iSBC 80/10B board com-
mences 170 read operations.to the iSBX board by gener-
ating valid 1/0 address and chip select commands. on
the MAO and MCS0/ signal lines.. After the setup times
are met, the 80/10B issues an 1/0 read command. by
asserting the IORD/ line on the bus, and the base board
reads the data from the iSBX board and removes the
IORD/, MAO, and MCS0/ signals from the bus. After
the data has been read in from the keyboard, it must be
output to the display. The iSBC 80/10B board starts an
170 write operation by generating a valid 1/0 address
and the chip select signal with the MAO and MCS0/
lines. After the valid setup times-are met, the IOWRT/
line is activated by the base board. When, the data has
been valid for a minimum of 250 ns, the host board

“removes the IOWRT/ line. When the hold times have

been met, the data, address and chip select lines are also
removed. Figure 12 shows the timing diagrams just
discussed.

MA(N)

MCS(NY

MWAIT/

" 10RD/

7.

—

4
MDO-MD7? van

250 ns !

MINIMUM SETUP TIME FOR 82795

WRITE

MA(N)

MCS(NY

[t

MWAIT/

1OWRT/ \

MDO-MD7

Figure 12. System Timing Diagrams

1-188°

AFN-01931A

AP-96

Breadboarding the Design

When doing the layout of the breadboard, it is also nec-
essary to take into consideration the space required by
the mounting holes and to plan the positioning of the
components accordingly. (This information is available
in the iISBX Bus Specification Manual.)

When attaching the breadboarded design, which typi-
cally contains raised wirewrap posts, it is necessary to
raise the breadboard well above the host board. This
can be accomplished by building a small cable and put-
ting the breadboard on longer nylon standoffs. It is not
recommended that the cable be longer than 15 ¢cm (6
in.), otherwise bus timing problems could result.

With the breadboarding finished it is a good idea to re-
check all wiring connections for possible errors. Also
check all signal lines with an ohmmeter between power,
and then ground, for potential shorts. An error at this
point can cause serious damage to the host board!

Software Considerations

The software written for this application is an exerciser
that is used for hardware checkout. It is a small pro-
gram designed to echo characters from the keyboard to
the display. The software was edited, assembled, linked
and located with an Intel development system; it was
then debugged with an in-circuit emulator. Both the
software and the hardware debug is covered in the next
section of this application note. :

To facilitate this discussion the software exerciser is
divided into three sections based upon the functions per-
formed. The three functions are:

1) Keyboard interrupt routine
2) Initialization and flag checking routine
3) Character output routine

A complete listing of the software exerciser can be
found in Appendix C.

KEYBOARD INTERRUPT ROUTINE

The 8279 generates an interrupt to the CPU whenever
data is introduced into its FIFO/Sensor RAM. The in-
terrupt is cleared by doing a data read. Whenever a key
on the keyboard is depressed an interrupt is generated.
Two things are required when an interrupt occurs. First,
the keyboard input data must be retrieved and stored.
Second, the interrupt routine must indicate that there is
some data ready to be output to the display. Therefore,
a buffer is created in memory (called ‘“‘BUFF”’) at loca-
tion 3COOH to store the keyboard data. A data present
flag is set in a register (REG. C) to indicate that data is
ready to be output and can be found in the buffer. In
this way the interrupt routine is used to input characters
from the keyboard to the input buffer. The buffer is
then read by the output routine, which sends the charac-
ters to the display.))

INITIALIZATION AND FLAG CHECKING
ROUTINE

The initialization and flag checking routine first sets the
stack pointer to the top of memory. After this the pro-
gram proceeds to initialize the 8279 Keyboard/Display
Controller to its proper mode of operation. The modes
of operation used for this application note is scanned
keyboard with 2-key lockout for the keyboard, and 16
characters with left entry for the display. As the 8279
has a desired internal operating frequency of 100 kHz,
the frequency divider chain is programmed to divide by
19 hex, or 25 decimal. After the 8279 has been initial-
ized, the program begins its next procedure of clearing
the buffers. The keyboard input buffer, ‘““BUFF”’, as
well as the display buffer, ‘“‘DBUFF’’, are both cleared
to a blank display. This is done so that at the time of
power up, the display will come up blank. With the
initialization now complete, the program disables the in-
terrupts and checks the data present flag for an indica-
tion that data might be present for output. If the data
present flag is set, the output character routine is called;
if it is not set, the interrupts are enabled and the pro-
gram loops back around to check again. In summary,
this routine initializes the 8279 and clears the buffers,
and then loops on the data present flag looking for an
indication that data is present in the input buffer. The
input buffer is a one-byte wide buffer named ‘‘BUFF.”’

CHARACTER OUTPUT ROUTINE

The character output routine brings the character in
from ‘“BUFF’’ (the keyboard input buffer) and com-
pares it to the characters located in a table. If the char-
acter can be matched to a character in the table it is
replaced in ‘“‘BUFF”’ with the corresponding character
located in the same position of a second table. If there is
no match, it is compared to the code for a control char-
acter. If there is no match with a control character, a
compare is made to see if the character is a delete char-
ater. When a match is found and the acceptable charac-
ter is placed in ‘“‘BUFF’’, the output routine shifts the
data in the display buffer (Figure 13) one position to the
left and places the character from the input buffer into
the display buffer at position ““DBUFF’’ + 15. Now that

1-189

BASE BASE
ADDRESS ADDRESS

DBUFF +15
LITTTTTTTTT T Jesfssfacss]
OoLD NEW
DATA - I DATA

DISPLAY
LITTTTTTTTTT[ifs[B[x]™

Figure 13. Display Buffer
AFN-01931A

AP-96

the new information is in the display, the routine copies
the complete contents of the display buffer, “DBUFF”’,
to “DBUFF’’ + 15 to the display. In the case of the in-
put character being matched up with a delete character,
all information in the display buffer is shifted to the
right one position and the ASCII code for a blank char-
acter is placed into the left-most position or the base ad-
dress of “DBUFF”’, thus making the next character sent
to the display a blank character. In the case of a control
character, nothing i$ done and the program returns to
the flag checking routine.

Debug Considerations

Hardware and software debug was accomplished using
an iSBC 80/10B Single Board Computer, an iSBC 655
Chassis, an Intellec® Series II Model 230 Microcom-
puter Development System, and an ICE-80™ In-Circuit
Emulator.

The software was down-loaded ‘from the disk to the
iSBC 80/10B board using the in-circuit emulator. The
ICE™ module ‘gives the engineer the capability of
interrogating the iSBC system by allowing the user to
access and display the CPU register contents, status,
system memory contents, and all I/O devices and their
data.

The iSBC 80/10B board was configured to enable inter-
rupts from the iSBX board via the interrupt O line
(MINTRO), which is connected to the interrupt pin of
the 8080 CPU. The iSBX board was attached to the
iSBC 80/10B board via the iSBX connector. The iSBC
80/10B board was powered-up and the iSBX board was

checked for proper power and ground connections. The
ICE-80 emulator was connected to the iSBC 80/10B
board. Using the interrogation mode of the emulator, it
is possible to check proper functioning of the iSBX
board by sending and receiving data to/from the 8279.
The keyboard can be tested by depressing a key on the
keyboard and then examining the FIFO/Sensor RAM to
see if the data was entered. The display RAM can alsc
be read and written to for testing the interface to the
display.

After this initial checking of the iSBX board, the soft-
ware exerciser can then be down-loaded with the ICE
module to further check the board.

SUMMARY

The objective of this application note is to introduce the
reader to the iSBX MULTIMODULE concept for ex-
panding a single board computer’s functionality, and to
illustrate how a designer can use this concept with either
standard or custom iSBX boards. In contrast to system
expansion using MULTIBUS-compatible boards, iSBX
MULTIMODULE boards provide smaller, lower cost,
incremental expansion. This application note explains
how a custom iSBX board can be designed and de-
bugged. Using this capability, it is now possible to more
quickly add new VLSI technology to systems as the
technology becomes available. Intel will continue to
provide new iISBX MULTIMODULE boards and, be-
cause of the the publication of the iSBX Bus Specifica-
tion and this application note, it will be easier for Intel’s
customers to also design and build their own custom
iSBX boards.

1-190 AFN-01931A

AP-96

APPENDIX A. 1-192
APPENDIX B............. 1-193
APPENDIX C............. 1-194

1-191 AFN-01931A

AP-96

APPENDIX A
iSBX™ SIGNAL PIN ASSIGNMENTS

Pin Mnemonic Description Pin Mnemonic Description
35 GND Signal Ground 36 +5V +5 V