
Microsoft®
Macro Assern bier

User's Guide

for the MS TM-DOS Operating System

Microsoft Corooratlon

Information in this document is subject to change without notice and
does not represent a commitment on the part of Microsoft Corpora­
tion. The software described in this document is furnished under a
license agreement or nondisclosure agreement. The software may be
used or copied only in accordance with the terms of the agreement. It
is against the law to copy this software on magnetic tape, disk, or any
other medium for any purpose other than the purchaser's personal
use.

c Copyright Microsoft Corporation, 1984

Microsoft and the Microsoft logo are registered trademarks, and MS
and XENIX are trademarks of Microsoft Corporation.

Intel is a trademark of Intel Corporation.

IBM is a registered trademark of International Business Machines
Corporation.

Atron is a trademark of Atron Corporation.

Document Number: 8450L-300-00

Part Number: 016-014-009

Contents

Chapter I Introduction

1.1 Overview 1-1
1.2 What You Need 1-1
1.3 HowToBegin 1-2
1.4 Notational Conventions 1-3

Chapter2 MASM: A Macro Assembler

2.1 Introduction 2-1
2.2 Starti!lg and Using MASM 2-1
2.3 Using MASM Options 2-6
2.4 Reading the Assembly Listing 2-11

Chapter 3 LINK: A Linker

3.1
3.2
3.3
3.4

Introduction 3-1
Starting and Using LINK 3-1
UsingL1nk_Q_ptions 3-10
HowLINKWorks 3-21

SYMDEB:
A Symbolic Debug Utility

Chapter4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.Q
4.10
4.11
4.12
4.13
4.14
4.15

Introduction 4-1
Starti!!_g SYMDEB 4-2
Using Control Keys 4-5
Commands 4-8
Assemble Command 4-16
Breakpoint Set Command 4-18
Breakpoint Clear Command 4-19
Breakpoint Disable Command 4-20
Breakpoint Enable Command 4-20
Breakpoint List Command 4-21
Compare Command 4-22
Display Command 4-22
Dump ASCII Command 4-23
Dump ~ytes Command 4-24
Dump Words Command 4-25

4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.3Q
4.40
4.41
4.42
4.43

Dump Doublewords Command 4-26
Dump Short Reals Command 4-27
Dump Long Reals Command 4-28
Dump Ten-Byte Reals Command 4-29
Dump Command 4-30
Enter Command 4-31
Examine Symbol Map Commands 4-32
Fill Command 4-34
Go Command 4-35
Help Command 4-36
Hex Command 4-37
Input Command 4-38
Load Command 4-38
Move Command 4-40
Name Command 4-41
Open Maj> Command 4-42
Output Command 4-43
PTrace Command 4-43
Quit Command 4-44
Redirection Commands 4-45
Register Command 4-46
Search Command 4-48
Set Source Mode Command 4-49
Trace Command 4-51
Unassemble Command 4-52
Write Command 4-55
Error Messages 4-57
SYMDEB-Compatible
Assemblers and Compilers 4-59

Chapters CREF:A Cross-Reference Utility

5.1 Introduction 5-1
5.2 Using CREF 5-1
5.3 Cross-Reference Listing Format 5-5
5.4 Error Messages 5-7

Chapter& LIB: A Library Manager

6.1
6.2
6.3

Introduction 6-1
Starting and Using LIB 6-1
Using LIB Commands 6-9

Chapter7 MAKE: A Program Maintainer

7.1 Introduction 7-1
7.2 Maintaining a Program: An Example 7-4

Appendix A Error Messages

A.l Introduction A-1
A.2 Macro Assembler Messages A-1
A.3 Linker Messages A-10

Chapter 1
Introduction

1.1 Overview 1-1

1.2 What You Need 1-1

1.3 How To Begin 1-2

1.4 Notational Conventions 1-3

Introduction

1.1 Overview

The Microsoft Macro i\ssembler User's Guide explains how to create
and debug assembly language programs using the ~iicrosoft Macro As­
sembler, MASM, and the other utilities in the Macro Assembler pack­
age.

The rvtacro Assembler package consists or the following programs and
files:

MASM.EXE ~ .. 1icrosoft Macro i\ssembler
LINK.EXE ~1icrosoft Link Utility
SY~IDEB.EXE rv1icrosoft Symbolic Debugger
MAPSYM.EXE f\·1icrosoft Symbol Map Utility
CREF .EXE ~1icrosoft Cross Reference Utility
I.JB.EXE ~1icrosoft Library Manager
MAKE.EXE ~1icrosoft Program Maintainer
README.DOC Additional information about rvfASM and the

other u ti 1 it i es

The function or each program and an explanation of bow t.o invoke and
operate the programs is given in the remaining chapters of this guide.

The following sections explain what you need to create assembly
language programs, what steps you need to take t.o create these pro­
grams, and what document conventions you will find when reading
this guide.

1.2 What You Need
To make an assembly language program, you need a text editor and
you need to know the correct syntax and format of assembly language
source files. You also need to kno\Y the function and operation of the
instructions in the instruction sets of the 8086/ 186/'286 family of mi­
croprocessors.

The rvticrosoft Macro Assembler creates progra1ns that can be execut­
ed under the 8086/186/286 family of microprocessors. It provides a
logical program syntax that is ideally suited for the segmented archi­
tecture of the 8086. This syntax is fully explained in the Alicroso/t
Macro Assembler Reference Af anual. The manual describes the syntax
and function of assembly language directives; operands, and expres-.
SIODS.

Microsoft Macro Assembler User's Gulde

The Microsoft Macro Assembler supports the instruction sets of all
processors in the 8086/186/286 family. This means you can assemble
programs for computers having the 8086, 8088, 186, and 286 micropro­
cessors and the 8087 and 287 coprocessors. For an explanation of these
instructions, you will need to turn to one or the many books that de­
fine them. For your convenience, the Microsoft ~I aero Assembler
Reference Manual defines the syntax and function of all instructions
for all processors in this family.

1.3 How To Begin

You begin by creating an assembly language source file, then carrying
out the steps needed to make an executable program. There are four
steps:

1. Use a text editor to create an assembly language source file.

2. Use MASM to assemble the source file.

3. Use LINK to link the assembled file with other assembled files
or with routines from libraries.

4. Use SYMDEB to test the resulting program.

You can automate these steps by using MAKE to create a description
file containing the commands needed to invoke each step. You can
make debugging easier by using CREF to make a cross reference listing
of all symbols in your program. You can use LIB to construct the pro­
gram libraries you may need to create your executable programs.

Once you have tested the program, you can invoke it from the Ms:M
DOS command line at any time. Programs that you create, like all
othrr ~fS-DOS programs, can accept command parameters, be copied
toot.her systems, and be invoked from batch files.

1 _l)

Introduction

1.4 Notational Conventions

This manual uses the following notational conventions to define com­
mand syntax:

Convention Meaning
Roman Indicates command or parameter names

that must be typed as shown. In most
cases, upper and lowercase letters can be
freely intermixed.

Italics Indicates a placeholder, that is, a name
that you must replace with the value or
filename required by the program.

[)

Ellipses. Indicates that you can repeat
the preceding item any number or times.

Brackets. Indicates that the enclosed
item is optional. If you do not use the op­
tional item, the program selects a default
action to carry out.

Vertical bar. Indicates that only one or
the separated items can be used. You
must make a choice between the items.

Chapter2
MASM:
A Macro Assembler

2.1 Introduction 2-1

2.2 Starting and Using MASM 2-1
2.2. l Assen1bling a Source File 2-1
2.2.2 Assembling a

Source File With Prompts 2-3

2.3 Using MASM Options 2-6
2.3. l Creating a Pass 1 Listing 2-6
2.3.2 Changing the Output Radix to Octal 2-7
2.3.3 Preserving Lowercase Names 2-7
2.3.4 Preserving Lowercase

in Public and External Names 2-8
2.3.5 Listing False Conditionals 2-8
2.3.6 Creating Code for

a Floating Point Processor 2-9
2.3.7 Creating Code for

aFloatingPointEmulator 2-10
2.3.8 OutputtingSegments

in Alphabetical Order 2-10

2.4 Reading the Assembly Listing 2-11
2.4.l Reading Program Code 2-11
2.4.2 Reading a Macro Table 2-13
2.4.3 Reading a Structure

and Record Table 2-14
2.4.4 Reading a Segment

and Group Table 2-15
2.4.5 ReadingaSymbolTable 2-17
2.4.6 Reading a Pass 1 Listing 2-19

MASM: A Macro Assembler

2.1 Introduction

The Microsoft Macro Assembler, MASM, assembles 8086, 186, and 286
assembly language source files and creates relocatable object files that
can be linked and executed under the MS-DOS operating system. This
chapter explains how to invoke MASM and describes the format of as­
sembly listings generated by MASM. For a complete description of the
syntax of assembly language source files, see the Aficroso/t Macro As­
sembler Reference Manual.

2.2 Starting and Using MASM

This section explains how to start and use MASM to assemble your
program source files. You can use MASM in two different ways: with a
command line or through a series of prompts.

Once you have started MASM, it either processes the files you have
supplied or prompts for additional files. You can terminate MASM at
any time by pressing the CNTRL-C key.

2.2.1 Assembling a Source File

You can assemble a program source file by typing the MASM com­
mand name and the names of the files you wish to process. The com­
mand line has the form

MASM (options) source, (object), (listing), [cross-ref]

The options can be any combination of MASM options. The options
are described in Section 2.3, ''Using tvlASM Options.'' Options can be
placed anywhere on the command line.

The source must be the name of the source file to be assembled. If you
do not supply a filename extension, ~1ASM uses .ASM by default.

The optional object is the name of the file to receive t.he relocatable ob­
ject code. If you do not supply a name, MASM uses a default name. The
default filename is the same as the source file, except that the filename
extension is replaced with .OBJ.

Microsoft Macro Assembler User 'a Gulde

The optional listing is the name of the file to receive the assembly list­
ing. The assembly listing lists the assembled code for each source
statement and the names and types of symbols defined in the program.
If you do not supply a listing filename, MASM does not create an as­
sembly listing. If you do not supply a filename extension, MASM sup­
plies .LST by default.

The optional cross-ref is the name of the file to receive the cross refer­
ence output. This output can be processed with CREF, the cross refer­
ence utility, to create a cross reference listing of the symbols in the
program for use in program debugging. If you do not supply a
filename, MASM does not create cross reference output. If you do not
supply a filename extension, MASM supplies .CRF by default.

You can use a semicolon (;)in the command line to direct MASM to
select defaults for the remaining filenames. A semicolon after the
source filename selects a default object filename and suppresses crea­
tion or the assembly listing and cross reference files. A semicolon after
the object filename suppresses just the listing and cross reference. A
semicolon after the assembly listing filename suppresses the cross
reference.

Note

2-2

Unless a semicolon(;) is used, all the commas in the command line
are required. If you do not wish to supply a filename for a given
file, place the commas that would otherwise separate the filename
from the other names side-by-side(,,).

Spaces in a command line are optional. If you make an error enter­
ing any filenames, MASM displays an error message and prompts
for new filenames, using the method described in the next section.

MASM: A Macro Assembler

Examples

MASM file.asm, file.obj, file.1st, file.err

This example directs MASM to assemble the source file "file.asm."
The generated relocatable code is copied to the object file "file.obj."
MASM also creates an assembly listing and a cross reference file.
These are written to "file.1st" and "file.err," respectively.

MASM startup, , stest;

This example directs MASM to assemble the source file
"startup.asm." MASM then outputs the relocatable object code to
the default object file, "startup.obj." MASM creates a listing file
named ''stest.lst," but the semicolon causes MASM to skip creating
a cross reference file.

MASM A:\src\build;

This example directs ~1ASM to assemble the source file "build.asm"
in the directory "\5rc" on drive A:. The semicolon causes ~1ASM to
create an object file named "build.obj" in the current directory, but
prevents MAS~1 from creating an assembly listing or cross reference
file.

2.2.2 Assembling a Source File With Prompts

You can direct ~1ASM to prompt you for the files it needs by start­
ing MASM with just the command name. Follow these steps:

1. Type

MASM

and press the RETURN key at the MS-DOS command level.
MASM displays a message, then displays the prompt

Source filename [.ASM]:

Microsoft Macro Assembler User's Gulde

2. Type the name of the file you wish to assemble and press the
RETURN key. If you do not give a filename extension,
MASM uses .ASM by default. MASM requires a source file,
so you must enter a filename.

Once you have pressed the RETURN key, MASM displays
the prompt

Object filename [source.OBJ]:

3. Type the name of the file to receive the relocatable object
code and press the RETURN key. IC you do not give a
filename extension, r..1ASM uses .OBJ by default. If you
want to use the default filename (enclosed in brackets), do
not type a filename. Just press the RETURN key. MASM
replaces source with the filename of the given source file.

Once you have pressed the RETURN key, MASM displays
the prompt

Source listing [NUL.LST]:

4. Type the name of the file to receive the assembly listing and
press the RETURN key. If you do not give a filename exten­
sion, MASM uses .LST by default. If you do not want to
create an assembly listing, do not type a filename. Just
press the RETURN key.

Once you have pressed the RETURN key, MASM displays
the prompt

Cross reference [NUL.CRF]:

5. Type the name of the file to receive the cross reference list­
ing and press the RETURN key. If you do not supply a
filename extension, rvtASM uses .CRF by default. If you do
not want a cross reference listing, do not type a filename.
Just press the RETURN key instead.

Once you have pressed the return key, MAS~1 assembles the given
source file.

2-4

MASM: A Macro Assem bier

Notes

You can specify one or more options at the end of each prompt
line. Each option must be preceded by a forward slash (/).
MASM options are described in section 2.3, ''Using MASM
Options."

You must use an appropriate pathname or device name for any
file that is in another directory or on a different drive.

You can select the def au It responses by typing a semicolon (;) at
any prompt after the source filename. When MASM encounters
a semicolon, it immediately selects the default responses for any
prompts that have not been answered and starts assembling the
source file.

If MASM cannot find or open the named files, it redisplays the
appropriate prompt and lets you type a new filename.

Examples

MASM

Source filename [.ASM]: file
ObJect filename [file.OBJ]:
Source listing [NUL.LST]: f123/D
Cross reference [NUL.CRF]: f123

This example directs MAS~1 to assemble the source file "file.asm"
and place the relocatable object code in the default object file
"file.obj." The /D option directs MASM to create a pass 1 listing in
the assembly listing file "f123.lst." MASM also creates a cross refer­
ence file named "f 123.crf."

MASM

Source filename [.ASM]: file
ObJect filename [file.OBJ]: !123;

This example directs MASM to assemble the source file "file.asrn"
and place the relocatable object code in the object file "f123.obj."

Microsoft Macro Assembler User's Gulde

The semicolon after the object filename prompt directs MASM to
select the default filenames for the remaining prompts. This means
MASM creates no assembly or cross reference listing.

2.3 Using MASM Options

The MASM options control the operation of the assembler and the
format or the output files it generates.

MASM has the following options:

/D Pass 1 Listing
/0 Octal Output Radix
/ML Case Sensitivity in Names
/MX Case Sensitivity in Public and External Names
/X False Conditional Listing Toggle
/R Real Floating Point Instructions
/E Emulated Floating Point Instructions
/A Alphabetical Ordering for Segments

You can place options anywhere on a MASM command line. An op­
tion affects all relevant files in the command line even if the option
appears at the end of the line.

2.3.1 Creating a Pass 1 Listing

The /D option directs MASrvt to add a pass 1 listing to the assembly
listing file, making the assembly listing show the results of both as­
sembler passes. A pass 1 listing is typically used to locate and
understand progran1 phase errors. Phase errors occur when MAS~1
makes assun1ptions about the program in pass I that are not valid in
pass 2.

The /D option does not create a pass 1 listing unless you also direct
MASM to create an assembly listing. It does direct MASM to
display error messages for both pass 1 and pass 2 of the assembly,
even if no assembly listing is created.

Example

MASM file,, !1le/D;

2-6

MAS~{: A Macro Assembler

This example directs MASM to create a pass 1 listing for the source
file "file. asm." The listing is placed in the file "file .1st."

2.3.Z Changing the Output Radix to Octal

The /0 option directs MAS~1 to display all numbers in the assem­
bly listing as octal numbers. The actual code in the object file will
be the same as if the /0 option were not given, but the code in the
assembly listing will be in octal.

The /0 option does not take affect unless you direct MASM to
create an assembly listing file.

Note

Future releases of MASM will not support the /0 option.

Example

MASM file,, !ile/O;

This example directs MAS~-1 to create an assembly listing that
displays all its numbers in the octal radix.

2.3.3 Preserving Lowercase Names

The /ML option directs MAS~1 to preserve lowercase letters in la­
bel, variable, and symbol names. This means names that ha\·e the
same spelling but use different case letters are considered unique.
For exarnple, with the /ML option, "DATA" and Hdata" are
unique. Without the option, ~1ASM automatically converts all
lowercase letters in a name to uppercase.

The /ML option is typically used when a source file is to be linked
with object modules created by a case-sensitive cornpiler.

Microsoft Macro Assembler User'• Gulde

Example

MASM file /ML,, file;

This example directs MASM to preserve lowercase letters in any
names defined in the source file "file.asm."

2.3.4 Preserving Lowercase in Public and External Names

The /MX option directs MASM to preserve lowercase letters in
public and external names only when copying these names to the ob­
ject file. For all other purposes, MASM converts the lowercase
letters to uppercase.

Public and external names are any label, variable, or symbol names
that have been defined using the EXTRN or PUBLIC directives.
Since MASM converts the letters to uppercase for assembly, these
names must have unique spellings. That is, the names "DATA" and
"Data'' are not unique.

The /MX option is used to ensure that the names of routines or
variables copied to the object module have the correct spelling. The
option is used with any source file that is to be linked with object
modules created by a case-sensitive compiler.

The /MX option overrides the /ML option if both are used in the
same command line.

Example

MASM ~~~e /MX, , file;

This example directs MASM to preserve lowercase letters in any
public or external names defined in the source file "file.asm."

2.3.5 Listing False Condltlonals

The /X option _directs MASf\1 to copy to the assembly listing all
state.~en ts f orm1ng the body of an IF directive whose expression (or
cond1t1on) evaluates to false. If you do not give the /X option in the
c?mmand line, _MASM supp~esses all such statements. The /X op­
tion lets you display cond1t1onals that do not generate code. This

n n

MASM: A Macro Assembler

option applies to all IF directives: IF, IFE, IFl, IF2, IFDEF,
IFNDEF, IFB, IFNB, IFIDN, and IFDIF.

The .SFCOND, .LFCOND, and .TFCOND directives modify the ef­
fect of the /X option. The .SFCOND and .LFCOND directives
suppress false conditionals regardless of whether or not /X is given
in the command line. The .TFCOND directive reverses the normal
meaning of the /X option. When the /X option has been given and
~1ASM encounters a .TFCOND directive in a source file, MAS~1
suppresses all subsequent false conditionals. The next .TFCOND
directive restores the listing. The following chart illustrates the ef­
fect of the .TFCOND, .SFCOND, and .LF'C~OND directives on the
/X option:

If the source ftle has:
.SFCOND
.LFCOND
.TFCOND

No directive

The /X option:
Has no effect; listing is suppressed
Has no effect; false conditionals are listed
Suppresses the listing
Lists false conditionals

The /X option does not affect the assembly listing unless you direct
MASM to create an assembly listing file.

Example

MASH file,, f11e/X;

If the source file, '~file.asm." does not contain a .TFCOND directive,
this example directs MASM to list all false conditionals it finds in
the source file.

2.3.6 Creating Code For a Floating Point Processor

The /R option directs MASM to generate floating point instruction
code that can be executed by an 8087 or 287 coprocessor. Programs
created using the /R option can run only on machines having an
8087 or 287 coprocessor.

Example

MASH file/R,, file;

Microsoft Macro Assembler User's Gulde

This example directs MAS~1 to assemble the source file "file.asm"
and create actua) 8087 or 287 instruction code for floating point in­
structions.

2.3.7 Creating Code For a Floating Point Emulator

The /E opt.ion directs MAS!\'1 to generate floating point instruction
code that emulates the 8087 or ~87 coprocessor. Programs created
with the /E option must be linkC'd with an appropriate math library
before being executed. If a lihrary is not specified, LINI(cannot
create an executable program.

If you intend to execute the program on machines without an 8087
or 287 coprocessor, you must link the program to the appropriate
emulation library. This library contains specific routines that use
standard 8086 instructions to emulate the floating point operations
performed by the 8087 and 287.

If you intend to execute the program on machines that do have an
8087 or 287 coprocessor, you must link the program to the appropri­
ate math library. This library contains specific routines that use
the 8087 or 287 coprocessor to carry out floating point operations.

Math libraries are provided with some MS-DOS language products.

Example

MASM file /E;

This example directs MAS~1 to create emulation code for any float­
ing point instructions it finds in the program.

2.3.8 Outputting Segments in Alphabetical Order

The /A option directs ~fASM to place the assembled segments in al­
phabetical order before copying them to the object file. If this op­
tion is not given, MASM copies the segments in the order encoun­
tered in the source file.

Example

MASH file /A;

2-10

MASM: A Macro Assembler

This example creates an object. file, "file.obj,'' whose segments are
arranged in alphabetical order. Thus, if the source file "file.asm"
contains definitions for the segments "D.A. T 1\," "(!ODE," and
"MEMORY," the assembled segments in the object file have the
order "CODE," "DAT A," and "~1E~10R"l'"."

2.4 Reading the Assembly Listing

~1AS~1 creates an assembly listing of your source file whenever you
give an assembly listing filename on the ~1AS~·1 command line. The
assembly listing contains a list of the statements in your program
and the object code generated for each statement. The listing also
lists the names and values of all labels, variables, and symbols in
your source file. MASM creates one or more tables for macros,
structures, records, segments, groups, and other symbols and places
these tables at the end of the assembly listing.

MASM lists symbols only if it encounters any in the program. If
there are no symbols in your program for a particular table, the
given table is omitted. For example, if you use no macros in your
program, you will not see a macro section in the symbol table.

The assembly listing will also contain error messages if any errors
occur during assembly. MASM places the messages below the state­
ments that caused the errors. At the end of the listing, MASM
displays the number of error and warning messages it issued.

The following sections explain the format of the assembly listing and
the meaning of special symbols used in the listing.

2.4.1 Reading Program Code

MASM lists the program code generated from the statements of a
source file. Each line has the form:

(line-number) offset code statement

The line-number is from the first statement in the assembly listing.
The line numbers are given only if a cross reference file is also being
created. The off set is the offset from the beginning of the current
segment to the code. The code is the actual instruction code or data
generated by MASM for the statement. MASM gives the actual

Microsoft Macro Assembler User's Gulde

numeric value of the code if possible. Otherwise, it indicates what
action needs to be taken to compute the value. The statement is the
source statement shown exactly as it appears in the source file, or
after processing by a MACRO, IRP, or IRPC directive.

If any errors occur during assembly, the error message will be print­
ed directly below the statement where the error occurred.

MASM uses the following special characters to indicate addresses
that need to be resolved by the linker or values that were generated
in a special way:

Character
R
E

nn:
on/
nn [xx)
+
c

Meaning
Relocatable address; linker must resolve
External address; linker must resolve
Segment/group address; linker must resolve
EQU or = directive
Segment override in statement
REP or LOCK prefix instruction
DUP expression; nn copies of the value xx
Macro expansion
Included line from INCLUDE file

MASM: A Macro Assembler

Example

Microsoft Macro Assembler Page 1-1 11-01-84

1 extrn go:near
2
3 0000 data segment public 'DATA'
4 assume es:data
5 0000 0002 s2 dv 2
6 0002 data ends
7
8 0000 code segment public 'CODE'
g assume cs:code
10 0000 start:
11 0000 ES 0000 E call go
12 0003 36:A1 0000 R mov ax, s2
13 0007 B4 4C mov ah, 4ch
14 0009 CD 21 int 21h
15 OOOB code ends
16
17 end start

2.4.2 Reading a Macro Table

MASM lists the names and sizes or all macros defined in a source
file. The list has two columns: Name and Length.

The Name column lists the names or all macros. The names are list­
ed in alphabetical order and are spelled exactly as given in the
source file except that lowercase letters are converted to uppercase
(unless the /ML option is used). Names longer than 31 characters
are truncated.

The Length column lists the size of the macro in terms of 32-byte
blocks. This size is in hexadecimal.

Microsoft Macro Assembler Uaer'a Gulde

Example

Na.me Length
BIOSCALL 0002
DISPLAY. 0005
DOSCALL. 0002
KEYBOARD 0003
LOCATE 0003
SCROLL 0004

2.4.3 Reading a Structure and Record Table

MASM lists the names and dimensions of all structures and records
in a source file. The table contains two sets of overlapping columns.
The Width and # Fields list information about the structure or
record. The Shift, Width, Mask, and Initial columns list informa­
tion about the structure or record members.

The Name column lists the names of all structures and records. The
names are listed in alphabetical order and are spelled exactly as
given in the source file except that lowercase letters are converted to
uppercase (unless the /ML option is used). Names longer than 31
characters are truncated.

For a structure, the Width column lists the size (in bytes) of the
structure. The # Fields column lists the number of fields in the
structure. Both values are in hexadecimal.

For fields of structures, the Shift column lists the offset (in bytes)
from the beginning of the structure to the field. This value is in
hexadecimal. The other columns are not used.

2-14

Example

PARMLIST . .
BUFSIZE ..
NAMESIZE .
NAMETEXT .
TERMINATOR .

MASM: A Macro Assembler

Name Width # !1elds
Shift Width Mask Initial

001C 0004
0000
0001
0002
0018

For a record, the Width column lists the size (in bits) of the record.
The# Fields column lists the number of fields in the record.

For fields in a record, the Shift count lists the offset (in bits) from
the lower order bit of the record to the first bit in the field. The
Width column lists the number of bits in the field. The Mask
column lists the maximum value of the field, expressed in hexade­
cimal. The Initial column lists the initial value of the field, if any.
For each field, the table shows the mask and initial values as if they
were placed in the record and all other fields were set to 0.

Example

Name Width # fields
Shift Width Mask Initial

RECO 0008 0003
FLD1 0006 0002 ooco 0040
FLD2 0003 0003 0038 0000
FLD3 0000 0003 0007 0003

REC1 . . OOOB 0002
FL1. 0003 0008 07F8 0400
FL2. 0000 0003 0007 0002

2.4.4 Reading a Segment and Group Table

MASM lists the names, sizes, and attributes of all segments and
groups in a source file. The list has five columns: Name, Size, Align,
Combine, and Class.

Microsoft Macro Assembler User's Gulde

The Name column lists the names or all segments and groups. The
names in the list are given in alphabetical order, except that the
names of segments belonging to a group are placed under the group
name. Names are spelled exactly as given in the source file; lower­
case letters are converted to uppercase (unless the /ML option is
used). Names longer than 31 characters are truncated.

The Size column lists the size (in bytes) of each segment. Since a
group has no size, only the word GROUP is shown. The size, if
given, is in hexadecimal.

The Align column lists the alignment type of the segment. The
types can be any or the following:

BYTE
WORD
PARA
PAGE

If the segment is defined with no explicit alignment type, MASM
lists the default alignment for that segment.

The Combine column lists the combine type or the segment. The
types can be any one of the following:

NONE
PlTBLIC
STACK
MEMORY
COMBINE

NONE is given if no explicit combine type is defined for the seg­
ment. NONE represents the private combine type.

The Class column lists the class name of the segment. The name is
spelled exactly as given in the source file. If no name is given, none
is shown.

For a complete explanation of the alignment, combine types, and
class names, see Chapter 3, "LINK: A Linker."

2-16

MASM: A Macro Assembler

Example

Na.me Size Align Combine Class

AAAXQQ 0000 WORD NONE 'CODE'
DGROUP GROUP

DATA 0024 WORD PUBLIC 'DATA'
STACK. . 0014 WORD STACK 'STACK'
CONST. . . . 0000 WORD PUBLIC 'CONST'
HEAP cooo WORD PUBLIC 'MEMORY'
MEMORY . 0000 WORD PUBLIC 'MEMORY'

ENTXCM 0037 WORD NONE 'CODE'
MAIN STARTUP . 007E PARA NONE 'MEMORY' -

2.4.5 Reading a Symbol Table

MASM lists the names, types, values, and attributes of all symbols
in the source file. The table has four columns: Name, Type, Value,
and Attr.

The Name column lists the names of all symbols. The names in the
list are given in alphabetical order and are spelled exactly as given in
the source file, except that lowercase letters are converted to upper­
case (unless the /ML option is used). Names longer than 31 charac­
ters are truncated.

The Type column lists each symbol's type. A type is given as one of
the fallowing:

LNEAR
L F.~R
NPROC
FPROC
Number
Alias
Opcode
Text

a near label
a far label
a near procedure label
a far procedure label
an absolute label
an alias for another symbol
an instruction opcode
a memory operand, string, or other value

If Type is Number, Opcode, Alias, or Text, the symbol is defined by
an EQU directive or an = directive. The Type column also lists the
symbol's length if it is known. A length is given as one of the follow-.
1ng:

Microsoft Macro Assembler User's Gulde

B'{TE
WORD
DWORD
QWORD
TBYTE

one byte (8-bits)
one word (16-bits)
doubleword (2 words)
quadword (4 words)
ten-bytes (5 words)

A length can also be given as a number. In this case, the symbol is a
structure, and the number defines the length (in bytes) of the struc­
ture. For example, the type

L 0031

identifies a label to a structure that is 31 bytes long.

The Value column shows the numeric value of the symbol. For abso­
lute symbols, the value represents an absolute number. For labels
and variable names, the value represents that item's offset from the
beginning of the segment in which it is defined. If Type is Number,
Opcode, Alias, or Text, the Value column shows the symbol's
"value," even if the "value" is simple text. Number shows a con­
stant numeric value. Opcode shows a blank (the symbol is an alias
for an instruction mnemonic). Alias shows the name of another
symbol. Text shows the "text" the symbol represents. Text is any
operand that does not fit one of the other three categories.

The Attr column lists the attributes of the symbol. The attributes
include the name of the segment in which the symbol is defined, if
any, the scope of the symbol, and the code length. A symbol's scope
is given only if the symbol is defined using the EXTRN or PlTBLIC
directives. The scope can be External or Global. The code length is
given only for procedures.

2-18

Example

Symbols:

Na.me

SYMO
SYM1
SYM2 .
SYM3 .
SYM4 .
SYM5 .
SYM6 .
SYM7 .
SYM8 .
SYM9 .
LABO .
LAB1 .

. . . .

. . . .

.

MASM: A Macro Assembler

Type Value Attr

Number 0005
Text 1.234
Number
Alias
Text
Opcode

0008
SYM4
5 [BP] [DI]

L BYTE 0002 DATA
L WORD 0012 DATA
L DWORD 0022 DATA
L QWORD 0000
L FAR 0000
L NEAR 0010 CODE

Global

External
External

2.4.6 Reading a Pass 1 Listing

When you specify the /D option in the ~JAS~.f command line,
MASM adds a pass 1 listing to the assembly listing file, making the
listing file show the results of both assembler passes. The listing is
intended to help locate the source of phase errors.

The following exa1nples illustrate the pass 1 listing for a source file
that assembled \\'ithout error. Although an error was produced on
pass 1. i\1.i\Si\1 corrected the error on pass 2 and completed assembly
correctly.

Du ring pass 1, a JLE instruction to a forward reference produces an
error message:

0017 7E 00
E r r o r

0019 BB 1000
001C SMLSTK:

JLE SMLSTK
9:Symbol not defined
MOV BX,4096

MASM displays th is error since it has not yet encountered the defin­
ition for the symbol Si\1LSTK.

{\ 1 n

Microsoft Macro Assembler User's Gulde

By pass 2, S~1LSTK has been defined and r..,fAS~1 can fix the instruc­
tion so no error occurs:

0017 7E 03
0019 BB 1000
001C SMLSTK:

JLE
MOV

SMLSTK
BX,4096

The JLE instruction's code now contains 03 instead of 00. This is a
jump of 3 bytes.

Since ~1ASM generated the same amount of code for both passes,
there was no phase error. If a phase error had occurred, MAS~1
would have displayed an error message.

In the following program fragment, a mistyped label creates a phase
error: In pass 1, the label '"go" is used in a forward reference and
creates a "Symbol not defined'' error. ~·1ASt\1 assumes that the
symbol will be defined later and generates three bytes of code,
reserving two bytes for the symbol's actual value.

0000 code segment
0000 E9 0000 u jmp go

E r r o r 9: Symbol not defined
0003 go label byte
0003 88 0001 mov ax, 1

0006 code ends

In pass 2, the label "go'· is known to be a label of Bl .. TE type which
is an ill<>gal type for the J~1P instruction. As a result, MASM pro­
duces only two bytes of code in pass 2, one less than in pass 1. The
result is a phase error.

2-20

0000
0003 R
E r r o r

0003
E r r o r

0003 BS 0001
0006

code segment
jmp go

57:Illegal size for item
go label byte

6:Pha.se error between passes
mov a.x, 1

code ends

Chapter3
LINK: A Linker

3.1 Introduction 3-1

3.2 Starting and Using LINK 3-1
3.2. l Creating a Program 3-1
3.2.2 C~reating a Program

Through Prompts 3-3
3.2.3 C~reating a Program

\Vi th a Response File 3-5
3.2.4 Giving Search Paths \Vith Libraries 3-7
3.2.5 Map File 3-8
3.2.6 The Temporary Disk File - VM.TMP 3-9

3.3 Using Link Options 3-10
3.3. l Pause During Linking 3-11
3.3.2 Producinga.PublicSy1nbol~1a.p 3-12
3.3.3 Setting the Stack Size 3-12
3.3.4 Setting the

~1aximum Allocation Space 3-13
3.3.5 Setting a High Start Address 3-14
3.3.6 Allocating a Data Group 3-15
3.3.7 Display Line Numbers 3-16
3.3.8 Preserving C~ase 3-17
3.3.9 Ignoring Default Libraries 3-17
3.3.10 Removing Groups From a Program 3-18
3.3.11 Setting the Overlay Interrupt 3-19
3.3.12 Setting the Maximum

Number of Segments 3-20
3.3.13 Using DOS Segment Order 3-21

3.4 How LINK Works 3-21
3.4.1 Alignment of Segments 3-22
3.4.2 Frame Number 3-22
3.4.3 Order of Segments 3-23
3.4.4 Combined Segn1ents 3-23
3.4.5 Groups 3-24
3.4.6 Fixups 3-25
3.4.7 Controlling the Loading Order 3-26

LINK: A Linker

3.1 Introduction

The Microsoft Linker, LINK, creates executable programs from object
files generated by ~v1AS~1 or by high-level language compilers, such as
C or Pascal. LINI(copies the resulting program to an executable
(.EXE) output file. The user can then run the program by typing the
file's name on the ~1S-DOS command line.

To use LINK, you must create one or more object files, then submit
these files, along with any required library files, to LINI< for process­
ing. LINl< combines code and data in the object files and searches the
named libraries to resolve external references to routines and vari­
ables. It then copies a relocatable, execution image and relocation in­
formation to the executable file. Using the relocation information,
MS-DOS can load the executable image at any convenient memory lo­
cation and execute it. LINK can process programs that contain up to 1
Mbyte of code and data.

The following sections explain how to use LINK to create executable
programs. They also define the options you can use in a LINK com­
mand line to control the linking process. The last section in this
chapter explains how LINI< creates programs.

3.2 Starting and Using LINK

This section explains how to start and use LINK to create executable
programs. You can use LINK in three different ways: through an MS­
DOS command line, in response to prompts, or with a response file.

Once you have started LINK, it will either process the files you sup­
plied or prompt you for additional files. You can stop LINK at any
time by pressing the CNTRL-C key.

3.2.1 Creating a Program

You can create an executable program by typing LINK followed by the
names of the files you wish to process. The command line has the form

Microsoft Macro Assembler User's Gulde

LINK (options) object-file, [exe-file), [map-file), [lib-file)

The options are execution options that control the operation of LINK.

The object-file is the name or names of object files that you want to
link together. The files must have been created using MASM or a
high-level language compiler.

The optional exe-file is the name of the executable file you wish to
create. LINK uses a default name if you do not supply one.

The optional map-file is the name or the file to receive the map listing.
If you do not name a file and do not specify the /MAP or
/LINENUMBERS option, no map file is created.

The option a.I library-file is the name or names of the libraries contain­
ing routines that you wish to link to your program. If you do not a
specify library name, you must type a semicolon(;).

The cominas separating the different types of files are required, even if
no filename is supplied. If you give more than one object-file or
library-file, you must separate the names with spaces or the plus sign
(+). You can place options anywhere on the command line as long as
they do not appear between filenames.

LINK requires at least one object file name in the command line. If you
do not supply an exe-file, LINK creates a default name by using the
filename or the first object file it finds in the line and appending the
the filename extension .EXE to it.

LINK supplies default filename extensions for the files if you do not
use extensions. LINK uses .OBJ for object files, .EXE for the execut­
able file, .MAP for the map file, and .LIB for library files.

Examples

LINK !1le.obj,f1le.exe,!11e.map,!1le.11b

This example uses the object file "file.obj" to create the executable
file "file.exe." LINK searches the library "file.lib" for routines and
variables used within the program. It creates a map file named
"file.map" that contains a list of the program's segments and
groups.

LINK: A Linker

LINK startup+f1le,f1le,f1le,;

This example creates an executable file named "file.exe" from two
object files: "startup.obj" and "file.obj." LINK does create a map
file, but does not search any libraries.

LINK moda+modb+modc+startup/PAUSE,,abc,\11b\math

This example links the object modules "moda.obj," "modb.obj,"
"mode .obj," and "startup.obj," searching the library file
"math.lib" (in the \lib directory) for routines and data used in the
program. It then creates an executable file named "moda.exe," and
a map file named "abc.map." The /PAlTSE option in the command
line causes LINK to pause before creating the executable file.

3.2.2 Creating a Program Through Prompts

You can let LINK prompt you for the information you need by typ­
ing just the command name at the MS-DOS command level. Follow
these steps:

1. Type

LINK

and press the RETURN key. LINK prompts you for the ob­
ject files you wish to link by displaying the following mes­
sage:

Object Modules [.OBJ]:

2. Type the name or names of the object files you wish to link.
If do not supply filename extensions, LINK supplies .OBJ by
default. If you have more than one name, make sure you
separate them with spaces or plus signs (+). If you have
more names than can fit on one line, type a plus sign (+) as
the last character on the line and press the RETURN key.
LINK prompts for additional object files.

Once you have given all object file names, press the RE­
TURN key. LINK displays the prompt:

Microsoft Macro Assembler User's Guide

Run File [filename. EXE] :

3. Type the name of the executable file you wish to create and
press the RETURN key. If you do not give an extension,
LINK supplies .EXE by default. If you want LINK to sup­
ply a default executable filename, just press the RETURN
key. The filename will be the same as the first object file,
but the file will have the extension .EXE.

Once you have pressed the RETURN key, LINK displays the
prompt

List File [NUL.MAP]:

4. Type the name of the map file you wish to create, then press
the RETURN key. If you do not supply a filename extension,
LINK uses .MAP by default. If you do not want a map file,
do not type a filename. Just press the RETURN key.

Once you have pressed the RETURN key, LINK displays the
prompt

Libraries [.LIB]:

5. Type the name or names of any libraries containing routines
or variables referenced but not defined in your program. If
you give more than one name, make sure the names are
separated by spaces or plus signs (+). If you do not supply
filename extensions, LINK uses .LIB by default. If you have
more names than can fit on one line, type a plus sign (+) as
the last character on the line and press the RETURN key.
LINK prompts for additional filenames.

After entering all names, press the RETURN key. If you do
not want to search any libraries, do not enter any names.
Just press the RETURN key.

LINK now creates the executable file.

LINK~ A Linker

Notes

When entering filenames, you must give a pathname or a device
name for any file that is in another directory or on another disk.
If LINK cannot find an object file, it displays a message and
waits so that you can change disks if necessary.

You can add options to any input line by typing the option at
the end or the line.

You can direct LINK to choose the default responses for all
remaining prompts by typing a semicolon (;) after any prompt.
(Ir you type it after the object file prompt, be sure to supply at
least one filename.) When LINK encounters the semicolon, it
immediately chooses the default responses and creates the exe­
cutable file.

Example

LINK

Object Modules [.OBJ]: moda+modb+
Object Modules [.OBJ]: modc+startup/PAUSE
Run File [moda.EXE]:
List File [NUL.MAP]: abc
Libraries [.LIB]: \lib\math

This example links the object modules "moda.obj," "modb.obj,"
"mode.obj," and "startup.obj," searching the library file
"math.lib" (in the \lib directory) for routines and data used in the
program. It then creates an executable file named "moda.exe," and
a map file named "abc.map." The /PAUSE option in the object file
prompt line causes LINK to pause before creating the executable
file.

3.2.3 Creating a Program With a Response File

You can create a program by listing the names of all the files to be
processed in a "response file" and giving the name of the file on the
LINK command line. The command line has the form

Microsoft Macro Assembler User's Gulde

LINK @filename

The fi~lename must be the name of the response file. It must be pre­
ceded by an at sign (@). If the file is in another directory or on
another disk drive, it must have a pathname or device name.

You can name the response file anything you like. The file content
has the general form

object-file
exe-file)
map-file)
library-fit e)

Each group of filenames must be placed on separate lines. If you
have more names than can fit on one line, you can continue the
names on the next line by typing a plus sign (+) as the last character
in the current line. If you do not supply a filename for a group, you
must leave an empty line. Options can be given on any line.

You can place a semicolon (;) on any line in the response file. When
LINK encounters the semicolon, it automatically supplies default
filenames for all files you have not yet named in the response file.
The remainder of the file is ignored.

When you create a program with a response file, LINK displays each
response from your response file on the screen. If the response file
does not contain names for required files, LINK prompts for the
missing names and waits for you to enter responses by hand.

Example

moda modb mode startup
/PAUSE
a.be
\lib\ma.th

This response file tells LINK to link the four object modules
"moda," "modb," "mode," and "startup." LINK pauses to permit
you to s\vap disks before producing the executable file "moda.exe."
LINK also creates a map file "abc.map," and searches the library
"\lib\math.lib."

LINK: A Linker

3.2.4 Giving Search Paths With Libraries

You can direct LINK to search directories and disk drives for the li­
braries you have named in a command by specifying one or more
search paths with the library names, or by assigning the search
paths to the environment variable LIB before you invoke LINK.

A search path is simply the path specification of a directory or drive
name. You enter search paths along with library names on the
LINK command line or in response to the "Libraries" command
prompt. You can specify up to 16 search paths. You can also assign
the search paths to the LIB variable using the MS-DOS SET com­
mand. In this case, the search paths must be separated by semi­
colons (;).

The search paths are used only if a library does not have an explicit
path specification or drive name. LINK searches the current direc­
tory first. It then searches each of the directories and disk drives
specified in the command. Finally, it searches the directories and
disk drives specified by the LIB variable. LINK continues the search
until it finds a library with the given name or runs out of places to
search.

Directories and disk drives are searched in the order in which their
search paths appear in the command or are assigned to LIB. If a li­
brary name has a path specification or a drive name, LINK searches
for that library in the specified directory or disk drive only.

Examples

LINK f1le,,f1le.map,A:\altl1b\math.11b+common+B:+D:\11b\

In this example, LINK will search only the "\altlib" directory on
drive A: to find the library "math.lib," but to find "common.lib" it
will search the current directory on drive A:, the current directory
on drive B:, and finally the directory "\lib" on drive D:.

SET LIB=C:\11b;U:\system\11b

LINK f1le,,f1le.map,math+common

In this example, LINK "'ill search the current directory, the directo­
ry "\lib" on drive C:, and the directory "\system\lib" on drive lJ: to
find the Ii bra r i es " math .Ii b " and "common . Ii b. "

.. ,..._.. ________ ._

Microsoft Macro Assembler User's Gulde

3.2.5 Map File

The map file lists the names, load addresses, and lengths of all seg­
ments in a program. It also lists the names and load addresses of
any groups in the program, the program start address, and messages
about any errors it may have encountered. If the /MAP option is
used in the LINK command line, the map file lists the names and
load addresses of all public symbols.

Segment information has the general form

Start Stop Length Name
OOOOOH 0172CH 0172DH TEXT

01730H 01E1QH 006EAH DATA

Class
CODE

DATA

The "Start" and "Stop" columns show the 20-bit addresses (in hex­
adecimal) of the first and last byte in each segment. These ad­
dresses are relative to the beginning of the load module which is as­
sumed to be address OOOOH. The operating system chooses its own
starting address when the program is actually loaded. The "Length"
column gives the length of the segment in bytes. The "Name"
column gives the name of the segment, and the ''Class" column
gives the segment's class name.

Group information has the general form

Origin Group
0000: 0 I GROUP

0173: 0 DGROUP

In this example, IGROlJP is the name of the code (instruction)
group and DGROlJP is the name of the data group.

At the end of the listing file, LINK gives you the address of the pro­
gram entry point.

If you have given a /!\1~i\P option in the LINI(rommand line, LINI\:
adds a public symbol list to the map file. The s)rmbols are pres(lnt<'d
twice: once in alphabetical order, then in order of load address. The
list has the general form

ADDRESS
0000:1567
0000:16Q6
0000:01DB
0000:131C
0173:0035

ADDRESS
0000:0108
0000:131C
0000: 1567
0000: 1696
0000:0035

PUBLICS BY NAME
brk
chmod
chkstk
clea.rerr
f a.c

PUBLICS
chkstk
clearerr
brk
chmod
f a.c

BY VALUE

LINK: A Linker

The address of the public symbols are in segment:offset format.
They show the location of the symbol relative to the beginning of
the load module, which is assumed to be at addrrss 0000:0000.

When the /lII GH and /DSALLOCA TE opt ions are used and the
program's code and data combined do not exceed 64 }(bytes, the
map file may show symbols that have unusually large segment ad­
dresses. These addresses indicate a symbol \\-'hose location is below
the actual start of the program code and data. For example, the
symbol entry

FFFO:OA20 template

shows that "template" is located below the start of the program.
Note that template's 20-bit address is 009~0H.

3.2.6 The Temporary Disk File - VM.TMP

LINI(normally uses available memory for the link session. If it runs
out of available memory, it creates a temporary disk file named
"Vtvt.TrvtPH in the current working directory. \\'hen LINK creates
this file, it displays the n1essage

vr..,1. T~·1P has been created.
Do not change diskette in drive, < d: >

I) "

Microsoft Macro Assembler User's Gulde

After this message appears, you must not remove the disk from the
given drive until the link session ends. After LINK has created the
executable file, it deletes the temporary file automatically.

Warning

Do not use the filename \TM.T~1P for your own files. When
LINK creates the temporary file, it destroys any previous file
having the san1e name.

3.3 Using Link Options

The linker options specify and control the tasks performed by LINK.
All options begin \vit.h the linker option character, the forward slash
(/).)r ou can use an option anywhere on a LINK command line.

LINK has the following options:

/PAlTSE
/r..1AP
/STACK
/CP ARI\·1AXALLOC
/HIGH
/DSALLOCA TE
/OVERLA '{INTERRlTPT
/LINENlT~-fBERS
/NOIGNORECASE
/NOGROUP ASSOCIATION
/NODEF AUL TLIBRARYSEARCH
/SEGMENTS
/DOSSEG

Pause During Linking
Public Symbol map
Stack Size
r..1aximum Allocation Space
High Load
Data Group Allocation
Overlay Interrupt
Line Number
Case Sensitivity in Names
Group Association Override
Default Library Override
Segment Number Maximum
lTse MS-DOS Segment Ordering

LINK: A Linker

3.3 .. 1 Pause During Linking

Syntax

/PAUSE

The /PAUSE option causes LINK to pause before writing the exe­
cutable file to disk. This switch allows you to swap disks before
LINK outputs the executable (.EXE) file.

If the /PAUSE switch is given, LINK displays the following mes­
sage before creating the run file:

About to generate .EXE file
Change disks <hit any key>

LINK resumes processing when you press any key. LINK without
the /PAUSE option performs the linking session from beginning to
end without stopping.

Minimum abbreviation: /P

Note

Do not remove the disk used for the VM.TMP file, if one has
been created.

Example

LINK f1le.obj/PAUSE,f1le.exe,,\11b\math.11b

This command causes LINK to pause just before creating the exe­
cutable file "file.exe." After creating the executable file, MASM
pauses again to let you replace the original disk.

Microsoft Macro Assembler User's Gulde

3.3.2 Producing a Public Symbol Map

Syntax

/~1AP

The /MAP option causes LINK to produce a listing of all public
symbols declared in your program. This list is copied to the map file
created by LINK. For a complete description of the listing file for­
mat, see Section 3.2.4, "~1ap File."

Note

If you do not specify a map file in a LINK command, you can
use the /MAP option to force LINK to create a map file by
placing the option at or before the "List file" prompt. LINK
gives the forced map file the same filename as the first object
file specified in the command and the default extension
".MAP."

Minimum abbreviation: /M

Example

LINK f11e.obj,f1le.exe,f1le.map/MAP,;

This command creates a map of all public symbols in the file
"file.obj."

3.3.3 Setting the Stack Size

Syntax

/ST ACK: size

The /STACK option sets the program stack to the number of
bytes given by size. The s1~ze can be any positive integer value in the
range 1 to 65,535. The value can be a decimal, octal, or hexadecimal
number. Octal numbers must begin with a zero. Hexadecimal
numbers must begin with "Ox".

LINK: A Linker

LINK usually calculates a program's stack size automatically, bas­
ing the size on the size of any stack segments given in the object
files. If /STACK is given, LINK uses the given size in place of any
value it may have calculated.

LINK displays an error message if the program has no stack seg­
ments. To avoid this message, all programs should define at least
one stack segment.

Minimum abbreviation: /ST

Examples

LINK f1le.obj/STACK:512,!1la.axa,,;

This example sets the stack size to 512 bytes.

LINK moda+modb, run/ST:OxFF,ab.map,\lib\start;

This example sets the stack size to ~55 (FFtI) bytes.

LINK startup+!1le/ST:030,f1le,,;

This example sets the stack size to 24 (30 octal) bytes.

3.3.4 Setting the Maximum Allocation Space

Syntax

The /CPARMAXALLOC option sets the maximum number of
16-byte paragraphs needed by the program \\'hen it is loaded into
memory. This number is used by the operating system when allocat­
ing space for the program prior to loading it. The number can be
any integer value in the range 1 to 65,535. It must be a decimal, oc­
tal, or hexadecimal number. Octal numbers must begin with a zero.
Hexadecimal values must begin with "Ox".

LINK normally sets the maximum number of paragraphs to 65,535.
Since this represents all of memory, the operating system always
denies the request and allocates the largest contiguous block of
memory it can find. If the /CP ARMAXALLOC option is used,

Microsoft Macro Assembler User's Guide

the operating system will allocate no more space than given by this
option. This means any additional space in men1ory is free for other
programs.

If number is less than the minimum number of paragraphs needed by
the program, LINK ignores your request and sets the maximum
value equal to the minimum. The minimum number of paragraphs
needed by a program is never less than the number of paragraphs of
code and data in the program.

~1inimum abbreviation: /C

Examples

LINK f1le.obj/C:15, !1le.exe,,;

This example sets the maximum allocation to 15 paragraphs.

LINK moda+modb, run/CPARMAXALLOC:Oxff, ab.map,;

This example sets the maximum allocation to 255 (FFII) paragraphs.

LINK startup+f1le, f1le/C:030,,;

This example sets the maximum allocation to 24 (30 octal) para­
graphs.

3.3.5 Setting a High Start Address

Syntax

/HIGH

The /HIGH option sets the program's starting address to the
highest possible address in free memory. This option actually causes
LINK to add information to the executable file that makes the
operating system load the program as high as possible.

If /HIGH is not given, the program's starting address is set as low
as possible in memory.

Minimum abbreviation: /H

~-14

LINK: A Linker

Example

LINK startup+f11e/HIGH,f11e,f1le, ;

This example sets the starting address of the program in "file.exe''
to the highest possible address in free memory.

3.3.6 Allocating a Data Group

Syntax

/DSALLOCA TE

The /DSALLOCATE option directs LINK to reverse its normal
processing when assigning addresses to items belonging to the group
named "DGROlJP." Normally, LINK assigns the offset 00001-I to the
lowest byte in a group. If /DSALLOCATE is given, LINK assigns
the offset FFFFH to the highest byte in the group. The result is
data that appears to be loaded as high as possible in the memory
segment containing DGROlJP.

The /DSALLOCATE option is typically used with the /HIGH
option to take advantage of unused memory before the start of the
program. LINK assumes that all free bytes in DGROUP occupy the
memory immediately before the program. To use the group, a seg­
ment register must be set to the start address of DGROUP.

Minimum abbreviation: /D

Example

LINK startup+f11e/HIGH/DSALLOCATE,!1le,!11e,;

This example directs LINI< to place the program as high in memory
as possible, then adjust the offsets of all data items in DGROUP so
that they are loaded as high as possible within the group.

Microsoft Macro Assembler User's Gulde

3.3.7 Display Line Numbers

Syntax

/LINENlTrv1BERS

The /LINENUMBERS option directs LINK to list the starting
address of each program source line. The starting address is actual­
ly the address of the instructions that make up the corresponding
source line. LINI< copies this information to the map file where you
can use it for program debugging.

LINK carries out the line numbering only if you give a map file name
in the LINK command line, and only if the given object file has line
number information. Line numbering is available only in high-level
language compilers. If an object file has no line number informa­
tion, LINK ignores the /LINENUMBERS option.

Note

If you do not specify a map file in a LINK command, you can
use the /LINENUMBERS option to force LINK to create a
map file by placing the option at or before the "List file"
prompt. LINK gives the forced map file the same filename as
the first object file specified in the comrr.and and the default ex­
tension ".MAP."

Minimum abbreviation: /LI

Example

LINK f1le.obj/LINENUMBERS,f1le.exe,f1le.map, ;

This example causes the line number information in the object file
"file.obj" to be copied to the map file "file.map."

3-16

LINK: A Linker

3.3.8 Preserving Case

Syntax

/NOIGNORECASE

The /NOIGNORECASE option directs LINI< to treat upper and
lowercase letters in symbol names as distinct letters. Normally,
LINK considers upper and lowercase letters to be identical, treating
the names "TWO," "two," and· "Two" as the same symbol. Using
/NOIGNORECASE causes the LINK to treat these names as
unique symbols.

The /NOIGNORECASE option is typically used with object files
created by high-level language compilers. Some compilers treat
upper and lowercase letters as distinct letters and assume that
LINK will too.

Minimum abbreviation: /NOi

Example

LINK f1le.obj/NOI,!1le.exe,!1le.map,\11b\Sl1bc.11b;

This command causes LINK to treat upper and lowercase letters in
symbol names as distinct letters. The object file "file.obj" is linked
with routines from the standard C language library "\lib\Slibc.lib."
The C language expects upper and lowercase letters to be treated
separately.

3.3.9 Ignoring Default Libraries

Syntax

/NO DEF AlJL TLIBRARYSEARCH

The /NODEF AULTLIBRARYSEARCH option directs LINK to
ignore any library names it may find in an object file. A high-level
language compiler may add a library name to an object file to ensure
that a default set of libraries are linked with the program. Using
this option overrides these default libraries and lets you explicitly
name the libraries you want on the LINK command line.

~-17

Microsoft Macro Assembler User's Gulde

Minimum abbreviation: /NOD

Example

LINK startup+f1le/NOD,!1le.exe,,\11b\math.11b

This example links the object files "startup.obj" and "file.obj" with
routines from the library "\lib\math .lib." Any default libraries that
may have been named in startup.obj or file.obj are ignored.

3.3.10 Removing Groups From a Program

Syntax

/NOGROUP ASSOCIATION

The /NOGROUPASSOCIATION option directs LINK to ignore
group associations when assigning addresses to data and code items.

Note

lTse of this option is not recommended.

Minimum abbreviation: /NOG

3-18

LINK: A Linker

3.3.11 Setting the Overlay Interrupt

Syntax

/OVERLAYINTERRlTPT: number

The /OVERLAYINTERRUPT option sets the interrupt number
of the overlay loading routine to number. This option overrides the
normal overlay interrupt number (03FH).

The number can be any integer value in the range 0 to 255. It must
be a decimal, octal, or hexadecimal number. Octal numbers must
have a leading zero. Hexadecimal numbers must start with "Ox".

Note

Using interrupt numbers that conflict with the standard MS­
DOS interrupts is not recommended.

Minimum abbreviation: /0

Examples

LINK !1le.obj/0:255,!1le.exe,,;

This example sets the overlay interrupt number to 255.

LINK moda+modb, run/OVERLAY:Ox!!,ab.map,;

This example sets the overlay interrupt number 255 (FFH).

LINK startup+!1le,f1le/0:0377,,;

This example sets the overlay interrupt to 255 (377 octal).

Microsoft Macro Assembler User's Gulde

3.3.12 Setting the Maximum Number or Segments

Syntax

/SEGMENTS: number

The /SEGMENTS option directs LINK to process no more than
number segments per program. LINK displays an error message and
stops if it encounters more than the given limit. The option is used
to override the default limit or 128 segments.

The number can be any integer value in the range 1to1024. It must
be a decimal, octal, or hexadecimal number. Octal numbers must
have a leading zero. Hexadecimal numbers must start with "Ox".

If /SEGMENTS is not given, LINK allocates enough memory
space to process up to 128 segments. If a program has more than 128
segments, setting the segment limit higher will increase the number
of segments LINK can process.

Minimum abbreviation: /SE

Example

LINK !1le.obj/SE:10,f1le.exe,,;

This example sets the segment limit to 10.

LINK moda+modb,run/SEGMENTS:Oxff,ab.map,;

This example sets the segment limit to 255 (FFH).

LINK startup+!1le,!1le/SE:030,,;

This example sets the segment limit to 24 (30 octal).

3-20

LINK: A Linker

3.3.13 Using DOS Segment Order

Syntax

/DOSSEG

The /DOSSEG option causes LINK to arrange all segments in the
executable file according to the MS-DOS seg1nent ordering conven­
tion. This convention has the following rules:

1. All segments having the class name, "CODE," are placed at
the beginning of the executable file.

2. Any segments that do not belong to the group named
"DGROUP" are placed immediately after the "CODE" seg­
ments.

3. All segments belonging to "DGROUP" are placed at the end
of the file.

Minimum abbreviation: /DO

Example

LINK start+test/DOSSEG,test,,math+common

This command causes LINK to create an executable file, named
"file.exe," whose segments are arranged according to the MS-DOS
segment ordering convention. The segments in the object files
"start.obj" and "test.obj," and any segments copied from the li­
braries "math.lib" and "common.lib" are arranged in the order
specified above.

3.4 How LINK Works

LINK creates an executable file by concatenating a program's code
and data segments according to the instructions supplied in the
original source files. These concatenated segments form an "execut­
able image" which is copied directly into memory \\'hen you invoke
the program for execution. Thus, the order and manner in which
LINK copies segments to the executable file ciefines the order and
manner in which the segments will be loaded into memory.

Microsoft Macro Assembler User's Gulde

You can tell LINK how to link a program's segments by giving seg­
ment attributes with a SEGMENT directive or by using the GROUP
directive in the program to form segment groups. These directives
define group associations, classes, alignments, and combine types
that define the order and relative starting addresses of all segments
in a program. This information works in addition to any informa­
tion you supply through command line switches.

The following sections explain the process LINK uses to concatenate
segments and resolve references to items in memory.

3.4.1 Alignment of Segments

LINK uses a segment's alignment type to set the starting address for
the segment. The alignment types are BYTE, WORD, PARA, and
PAGE. These correspond to starting addresses at byte, word, para­
graph, and page boundaries, representing addresses that are multi­
ples of 1, 2, 16, and 1024, respectively.

When LINK encounters a segment, it checks the alignment type be­
fore copying the segment to the executable file. If the alignment is
WORD, PARA, or PAGE, LINK checks the executable image to see
if the last byte copied ends at an appropriate boundary. If not,
LINI(pads the image with extra zero bytes.

3.4.2 Frame Number

LINK computes a starting address for each segment in a program.
The starting address is based on a segment's alignment and the size
of the segments already copied to the executable file. The address
consists of an offset and a "canonical frame number." The canonical
frame number specifies the address of the first paragraph in memory
that contains one or more bytes of the segment. A frame number is
always a multiple of 16 (i.e., a paragraph address). The offset is the
number of bytes from the start of the paragraph to the first byte in
the segment. For BYTE and WORD alignments, the offset may be
non-zero. The offset is always zero for PARA and PAGE align­
ments.

3-22

LINK: A Linker

The frame number of a segment can be obtained from the map file
created by LINK when linking the segment. The frame number is
the first five hexadecimal digits of the "Start" address specified for
the segment.

3.4.3 Order of Segments

LINK copies segments to the executable file in the same order that it
encounters them in the object files. This order is maintained
throughout the program unless LINK encounters two or more seg­
ments having the same class name. Segments having identical class
names belong to the same class, and are copied as a contiguous block
to the executable file.

For example, in the following program fragment the segments "DA­
TAX" and "DAT AZ" form a class. Both segments are ~opied to the
executable file before the "TEXT" segment.

DA TAX
DA TAX

TEXT
TEXT

DAT AZ
DAT AZ

segment 'DATA'
ends

segment 'CODE'
ends

segment 'DATA'
ends

All segments belong to a class. Segments for which no class name is
explicitly defined have the "null" class name, and will be loaded as a
contiguous block with other segments having the null class name.

LINK imposes no restriction on the number or size of segments in a
class. The total size of all segments in a class can exceed 64 Kbytes.

3.4.4 Combined Segments

LINK uses combine types to determine whether or not two or more
segments sharing the same segment name should be combined into a
single, large segment. The combine types are public, stack,
memory, common, and private.

~-'>~

Microsoft Macro Assembler User's Gulde

If a segment has public type, LINK will automatically combine it
with any other segments having the same name and belonging to the
same class. \Vhen LINK combines segments, it ensures that the seg­
ments are contiguous and that all addresses in the segments can be
accessed using an offset from the same frame address. The result is
the same as if the segment were defined as a whole in the source file.

LINK preserves each individual segment's alignment type. This
means that even though the segments belong to a single, large seg­
ment, the code and data in the segments do not lose their original
alignment. If the combined segments exceed 64 Kbytes, LINK
displays an error message.

If a segment has stack or memory type, LINI< carries out the same
combine operation as public segments. The only exception is that
stack segments cause LINK to copy an initial stack pointer value to
the executable file. This stack pointer value is the offset to the end
of the first stack segrnent (or combined stack segment) encountered.

If a segment has common type, LINI(will automatica.lly combine it
with any other segmf'nts having the same name and belonging to the
same class. \Vhrn LINI(combines comrnon S<'gments, however, it
places the start of each segment at the same address, creating a
series of overlapping segments. The result is a single segment which
is no larger than the largest segment combined.

A segment has private type only if no explicit combine type is de­
fined for it in the source file. LINK does not combine private seg­
ments.

3.4.5 Groups

Groups let segments that are not contiguous and do not belong to
the same class be addressable relative to the same frame address.
\Vhen LINI< encounters a group, it adjusts all rnemory references to
items in the group so that they are relative to the same frame ad­
dress. LINI< does not check to see if all elements of a group fit
within the same 64 Kbytes of memory.

LINK: A Linker

Segments in a group do not have to be contiguous, do not have to
belong to the same class, and do not have to have the same combine
type. The only requirement is that all segments in the group fit
within 64 l(bytes.

Groups do not affect the order in \\'hich the segments are loaded.
Unless you use class names and enter object files in the right order,
there is no guarantee that the segments will be contiguous. In fact,
LINK may place segments that do not belong to the group in the
same 64 Kbytes of memory. Although LINI(does not explicitly
check that all segments in a group fit within 64 l(bytes of memory,
LINK is likely to encounter a fixup overflow error if this require­
ment is not met.

3.4.6 Fixups

Once the starting address of each segn1ent in a program is known
and all segment combinations and groups have been established,
LINK can "fixup" any unresolved ref errnces to labels and variables.
To fix up unresolved references, LINI(computes an appropriate
offset and segment address and replaces the ternporary values gen­
erated by the assembler with the new values.

LINK carries out fixups for 4 different references:

• Short

• Near Self-Relative

• Near Segment-Relative

• Long

The size of the value to be computed depends on the type of refer­
ence. If LINI(discovers an error in the anticipated size of a refer­
ence, it displays a fixup overflow rnessage. This can happen, for ex­
ample, if a program attempts to use a 16-bit offset to reach an in­
struction in a segment having a different frame address. It can also
occur if all segments in a group do not rit within a single 64 Kbyte
block of memory.

Microsoft Macro Assembler User's Gulde

A short reference occurs in JMP instructions that attempt to pass
control to labelled instructions that are in the same segment or
group. The target instruction must be no more than 128 bytes from
the point of reference. LINK computes a signed, 8-bit number for
this reference. It displays an error message if the target instruction
belongs to a different segment or group (has a different frame ad­
dress), or the target is more than 128 bytes distant (either direc-
tion).

A near self-relative reference occurs in instructions which access
data relative to the same segment or group. LINK computes a 16-
bit offset for this reference. It displays an error if the data is not in
the same segment or group.

A near segment-relative reference occurs in instructions which at­
tempt to access data in a specified segment or group or relative to a
specified segment register. LINK computes a 16-bit offset for this
reference. It displays an error message if the offset of the target
within the specified frame is.greater than 64K or less than 0, or the
beginning of the canonical frame of the target is not addressable.

A long reference occurs in CALL instructions that attempt to access
an instruction in another segment or group. LINK computes a 16-
bit frame address and 16-bit offset for this reference. LINK displays
an error message if the computed offset is greater than 64K or less
than 0, or the beginning of the canonical frame of the target is not
addressable.

3.4.7 Controlling the Loading Order

You can control the loading order of the segments in a program by
creating and assembling a dummy program file that contains empty
segment definitions given in the order you wish to load your real
segments. Once this file is assembled, you simply give it as the first
object file in any invocation of LINK. LINK will automatically load
the segments in the order given.

For example, the following dummy program file defines the loading
order of segments in a program having segments named CODE,
DATA, STACK, CONST, and MEMORY.

LINK: A Linker

CODE segment 'CODE'
CODE ends
CONST segment 'CONST'
CONST ends
DATA segment 'DATA'
DATA ends
STACK segment stack 'STACK'
STACK ends
MEMORY segment 'MEMORY'
MEMORY ends

The dummy program file must contain definitions for all classes to
be used in your program. If it does not, LINK will choose a default
loading order which may or may not correspond to the order you
desire. When linking your program, the dummy program must be
the first object file specified in the LINK command line.

Note

Do not use a dummy program file with C, Pascal, or other high­
level language programs. These languages define their own load­
ing order. This order must not be modified.

You can force LINK to load MEMORY segments as the last seg­
ments in a program by placing an empty MEMORY segment at the
end of your dummy program file. The empty segment should have
the form

segment-name SEGMENT MEMORY 'class-name'
segment-name ENDS

where segment-name is the name you intend to use for MEMORY
segments and class-name is the name you intend to use for the
memory class.

Example

MEMORY segment memory 'MEMORY'
MEMORY ends

Chapter4
SYMDEB:
A Symbolic Debug Utility

4.1 Introduction 4-1

4.2 Starting SYMDEB 4-2
4.2. l Starting SYMDEB

With a Program File 4-2
4.2.2 Starting S)r~1DEB With Symbols 4-3
4.2.3 PassingArguments

to a Loaded Program 4-3
4.2.4 Starting SYMDEB Without a File 4-4
4.2.5 Preparing a Symbol File 4-4
4.2.6 Starting SYMDEB

on IBM-Compatible Systems 4-5

4.3 UsingControlKeys 4-5
4.3. l Stopping a SYMDEB Command 4-6
4.3.2 Suspending a Command 4-6
4.3.3 Using Non-Mask able Interrupts 4-7

4.4 Commands 4-8
4.4. l Comn1and Format 4-8
4.4.2 Symbols 4-9
4.4.3 Numbers 4-10
4.4.4 Addresses 4-11
4.4.5 Address R.ange 4-11
4.4.6 Object Range 4-12
4.4.7 Line Numbers 4-13
4.4.8 Strings 4-14
4.4.Q Expressions 4-14

4.5 Assemble Command 4-16

4.6 Breakpoint Set Command 4-18

4.7 Breakpoint Clear Command 4-19

4.8 Breakpoint Disable Con1mand 4-20

4.g Breakpoint Enable Command 4-20

4.10 Breakpoint List Command 4-21

4.11 Compare Command 4-22

4.12 Display Command 4-22

4.13 Dump ASCII Command 4-23

4.14 Dump Bytes Command 4-24

4.15 Dump \Vords Command 4-25

4.16 Dump Doublewords Command

4.17 Dump Short R.eals Command

4.18 Dump Long Reals Command

4-26

4-27

4-28

4.19 Dump Ten-Byte Reals Command 4-2g

4.20 Dump Command 4-30

4.21 Enter Command 4-31

4.22 Examine Symbol ~1ap Commands 4-32

4.23 Fill Command 4-34

4.24 Go Command 4-35

4.25 Help Command 4-36

4.26 Hex Comn1and 4-37

4.27 Input Con1ma.nd 4-38

4.28 Load Command 4-38

4.2Q Move Command 4-40

4.30 Name Command 4-41

4.31 Open Map Command 4-42

4.32 Output Command 4-43

4.33 PTrace Command 4-43

4.34 Quit Command 4-44

4.35 Redirection Commands 4-45

4.36 Register Command 4-46

4.37 Search Command 4-48

4.38 Set Source Mode Command 4-49

4.39 Trace Command 4-51

4.40 Unassemble Command 4-52

4.41 Write Command 4-55

4.42 Error Messages 4-57

4.43 SYMDEB-Compatible
Assemblers and Compilers 4-59

SYMDEB: A Symbolic Debug Utility

4.1 Introduction

The Microsoft Symbolic Debug lJtility (SYMDEB) is a debugging pro­
gram that provides a controlled testing environment for executable
files. SYMDEB lets you load, examine, and modify programs and oth­
er binary files. You can display program code, examine registers. set
breakpoints, and trace the execution of instructions. SY~1DEB can
also debug programs that use the floating point emulation conven­
tions used by Microsoft languages.

As a symbolic debug utility, SYMDEB lets you refer to data and in­
structions by name rather than by address. You can display a variable
or execute a routine by providing a name -you do not need to provide
an address. SYMDEB accepts symbol map (.SYM) files that contain
address information about the global symbols in your program. You
can create .SYM files by using MAPSYM, the Symbol Map File Utility,
and the map files created by LII\J1<.

SYMDEB breakpoint comn1ands let you set, enable, display, and clear
"sticky" breakpoints in your program code. Sticky breakpoints stop
execution of your program a.t any instruction and remain active until
you disable or remove them.

The SYMDEB expression evaluator lets you operate on symbols and
numbers. You can perform all arithmetic, Boolean, and address opera­
tions, including extracting segment and offset values from symbols.
You can refer to operands by value, address or port number.

Source Line Display and Numbering. A special feature of SYMDEB is
source line display and numbering. This feature lets you debug C,
Pascal, and FORTRAN programs at the source file level as well as at
the machine level. SYMDEB commands let. you choose the display lev­
el. You can display the actual source statements of a program, the
disassembled machine code of the program, or a combination of source
statements and disassembled machine code. SYMDEB will also accept
source line numbers as arguments to display and breakpoint com­
mands. This means you can refer to the individual statements of a
source file without knowing their exact locations in memory.

Microsoft Macro Assembler User's Gulde

This chapter explains how to use SY~.1DEB. In particular, it explains
how to start the debugger, how to prepare and use syn1bol (.Sl',.~·1) files,
and how to use SYMI)EB commands to debug programs.

4.2 Starting SYMDEB

You can start S'{~1DEB by ~yping its name at the ~1S-DOS comrnand
prompt. The S'{MDEB command line has the forn1

SY~1DEB (/IBM][symfiles) (filespec [arglist)]

where /IBM is the IBM-compatible option, symfiles are optional file
specifications naming symbol files (.S't,.M), filespec is an optional file
specification naming a binary or executable file to be loaded, and ar­
gl£st is an optional list of program arguments. SYMDEB makes this
argument list available to the loaded program.

Once started, SY~1DEB displays a message follo\ved by the SYMDEB
command prompt(-). When you see the prornpt you can enter SYM­
DEB commands.

Example

A> symdeb
Microsoft Symbolic Debug Utility
Version 3.0
(C)Copyright Microsoft Corp 1084
Processor is [8086]

In this example, "symdeb" is typed at the MS-DOS command line.
The command displays the startup message and the SYMDEB
prompt (-).

f.2.1 Starting SYMDEB With a Program File

'{ ou can direct SYMDEB to load an executable program file (.EXE
or .COM) by giving the name of the file on the SYMDEB command
line. For example, to load the file "file.exe" when you start SYM­
DEB, type

SYMDEB: A Symbolic Debug Utility

symdeb file.axe

\Vhen you load an program file, SYrvtDEB prepares a 256-byte
header for the program in the lowest available segment in memory,
then copies the contents of the file to t.he free memory just after the
header. SYMDEB copies the size of the file (in bytes) to the BX:CX
register pair. It then adjusts the segment and other registers to the
initial values defined in the file.

4.2.2 Starting SYMDEB With Symbols

You can start SY~1DEB for symbolic operation by giving one or
more symbol files in the command line. Giving a symbol file directs
SYMDEB to load the given file and lets you use the symbols defined
by that file in SYMDEB commands. You can create symbol files for
loading by using the MAPSYM program. See the section "Preparing
a Symbol File" given below.

For example, to load the symbol file "file.sym" along with the pro­
gram file "file.exe", type

symdeb file.sym file.axe

SYMDEB copies symbolic information from ''file.sym'' into
memory, then loads Hfile.exe" after preparing the program header.

You can give more than one symbol file if you wish. Multiple sym­
bol files are typically used with programs that consist of several
separately-linked program files. You must make sure however , '
that all symbol files are given before the program file. Any files
given after the program file are assumed to be program arguments.

You do not have to load a program file when you load symbols.
SYMDEB starts just as if you started it without a filename (see the
section, "Starting SYMDEB Without a File").

4.2.3 Passing Arguments to a Loaded Program

You can pass one or more program arguments to the program being
loaded by typing the arguments immediately after the program
filename on the SYMDEB command line. SYMDEB copies all argu­
ments to the program header exactly as you typed them.

Microsoft Macro Assembler User's Gulde

For example, to pass the name of a data file "test.dat" and the op­
tions "/m" and "/b" to the program file "file.exe," type

symdeb !1le.sym file.axe test.dat /m /b

SYMDEB places the string of characters "test.dat /m /b" in the
program header, then loads "file.exe." It a.lso loads the symbol file
"file.sym." Once arguments are loaded, "file.exe" can read them
from the program header at any time.

For more information about the program header, see the section
"Name Command" given later in this chapter.

4.2.4 Starting SYMDEB Without a File

You can start SYMDEB without a file by typing just SYMDEB.
When you start SYMDEB without a file specification, it creates a
program header, but does not attempt to load a program. You are
then Cree to use the Name and Load commands to name and load
whatever files you wish.

When you start SYMDEB without a file, it sets the segment regis­
ters to the bottom of free memory, sets the Instruction Pointer to
OIOOH, clears all flags, and sets the remaining registers to zero.

4.2.5 Preparing a Symbol File

You can prepare symbol files for use with programs to be debugged
by SYMDEB by using the MAPSYM program. The program con­
verts the contents of the program's symbol map (.MAP) file into a
Corm suitable for loading with SYMDEB .

••

The MAPSYM command line has the form

MAPSYM (-I I /I) filespec

where filespec is the file specification tor a symbol map (.MAP) file
created during linking. If you do not give a filename extension,

4-4

SYMDEB: A Symbolic Debug Utility

".MAP" will be assumed. The symbol map file can be created by
specifying a map file and giving the /MAP option with the LINK
command. If source line debugging is desired, the
/LINENUMBERS option must also be given. See Chapter 3,
"LINK: A Linker," for details.

The -l and /I options are identical. They direct MAPSYM to
display information about the conversion, such as the names or
groups defined in the program, the program start address, and
whether or not line numbers are present.

For example, to prepare the symbol file "Cile.sym" from the map file
"file.map,'' type

mapsym file.map

The program creates the new file and copies the symbol information
to it.

4.2.8 Starting SYMDEB on IBM-Compatible Systems

If your system is not an IBM Personal Computer but is designed to
run IBM Personal Computer software, the /IBM option should be
used to start SYMDEB in the IBM-compatible mode. This mode al­
lows SYMDEB to take advantage of special hardware features of
your system, such as the 80/ 40 column display and the 8259 Inter­
rupt Controller. It does not affect the number or operation of SYM­
DEB commands. (Systems designed to run IBM software have the
same basic input and output system (BIOS) as the IBM Personal
Computer.)

The /IBM option is not required when starting SYMDEB on an IBM
Personal Computer.

4.3 Using Control Keys

You can correct mistakes and stop commands by using the control
characters and the special editing functions described in the ~1S­
DOS User's Guide. The following sections explain how to stop and
suspend commands.

. -

Microsoft Macro Assembler User's Gulde

4.3.1 Stopping a SYMDEB Command

You can stop a SYMDEB command at any time by pressing the
CNTRL-C key. This key directs SYMDEB to terminate the current
command and display the SYMDEB prompt ..

The CNTRL-C key is typically used to stop a long Dump command.
The key can also be used to retrieve control from a Go command
that has entered an infinit.e loop, but only if the program is perform­
ing an input or output operation.

Note

If SYMDEB input has been redirected to "CO Ml" using the
Redirection command, the CNTRL-C key is not available and
will be ignored.

4.3.2 Suspending a Command

You can temporarily suspend SYMDEB output by pressing the
CNTRL-S key. The CNTRL-S key directs SYMDEB to suspend out­
put of the command until you signal it by pressing another key. To
resume suspended output, press the CNTRL-S key again. To cancel
any further output, press the CNTRL-C key. The CNTRL-S is typi­
cally used to hold the output of a Dump or Unassemble command
so you can examine a particular byte or instruction.

Note

4-R

If SYMDEB input has been redirected to "CO Ml" using the
Redirection command, the CNTRL-S key is not available and
will be ignored.

SYMDEB: A Symbolic Debug Utility

4.3.3 Using Non-Maskable Interrupts

You can use the non-maskable interrupt (NMI) at any time to stop
execution or a program being debugged. When a non-maskable in­
terrupt occurs, SY:MDEB stops program execution and displays the
contents or registers and flags at the time of the interrupt. It also
displays the next instruction to be executed.

To use non-maskable interrupts, your system must be equipped with
one or the following:

• IBMe Professional Debugging Facility

• Software Probe (AtronTht Corp.)

On an IBM Personal Cornputer AT, the System Request (Sys Req)
can be used to simulate a non-maskable interrupt. This interrupt is
not available if interrupts have been disabled.

. -

Microsoft Macro Assembler User's Gulde

4.4 Commands

The following table lists all SYMDEB commands.

? .
<
>
A
BP
BC
BD
BE
BL
c
D
DA
DB
DW
DD
DS
DL
DT

Display Values, Display Help
Redirect Input
Redirect Output
Redirect Input and Output
Assemble
Breakpoint Set
Breakpoint Clear
Breakpoint Disable
Breakpoint Enable
Breakpoint List
Compare
Dump
Dump ASCII
Dump Bytes
Dump Words
Dump Doublewords
Dump Short Reals
Dump Long Reals
Dump Ten-Byte Reals

E Enter
F Fill
G Go
H Hex
I Input
L Load
M Move
N Name
0 Output
P PTrace
Q Quit
R Register
S Search, Set Source Mode
T Trace
U Un assemble
W Write
X Examine Symbol Map
XO Open Symbol Map

The following sections describe the format for SYMDEB commands
and command parameters.

4.4.1 Command Format

All SYMDEB commands have the general form

command-name parameter

where command-name is a one- or two-character name, and parame­
ter is a number, symbol, or expression that represents values or ad­
dresses to be used by the command. Any combination or uppercase
and lowercase letters may be used in commands and parameters.

The number of parameters with each command depends on the com­
mand. If a command takes two or more parameters, you can
separate them with a single comma (,), or with any number of
spaces.

Al 0

Examples

D cs:100 110
U Co:100 110

SYMDEB: A Symbolic Debug Utility

F ds:100,110 !f ,!e,01,00

The following sections describe command parameters in detail.

4.4.2 Syrn1':>ola

Syntax

name

A symbol is a name that represents a register, an absolute value, a
segment address, or a segment offset. A symbol consist.s or one or
more characters, but always begins with a letter, underscore (_),
question mark (?), at sign (@), or dollar sign ($).

Symbols that name registers are always available (see the section,
"Register Command," for a complete list). Other symbols are avail­
able only when the .SYM file(s) that define their names and values
have been loaded.

Notes

SYMDEB treats corresponding upper- and lowercase letters as
the same letter (case-insensitive).

Symbols whose spellings differ only in case are treated as the
same symbol. If a symbol map file has two such symbols, only
one of the symbols will be recognized by SYMDEB. Any at­
ten1pt to access information about the other symbol will always
return information about the first.

Symbols that have the same spelling as registers are ignored.
Register names always take precedence over such symbols.

Microsoft Macro Assembler User's Gulde

Examples

AX
ma.in

DGROUP
IP

4.4.3 Numbers

Syntax

digitsY
digitsO
digitsQ
digitsT
digitsH

A number represents an integer number. It is a con1bination of
binary, octal, decimal, or hexadecimal digits and an optional radix.
The digits can be one or more digits of the specified radix: Y, 0, Q,
T, or H. If no radix is given, H (hexadecimal) is assumed. The fol­
lowing table lists the digits that can be used with each radix:

Radix T~e Digits
y Binarx 0 1
0 Octal 01234567
Q
T Decimal 0123456789
H Hexadecimal 0 1 2 3 4 5 6 7 8 9 /\ B C~ D E F

Although a number can contain any number of digits, S'{t\1DEB
truncates leading digits if the number is great.er than 65,535. Lead­
ing zeroes, if any, are ignored.

Examples

0111111Y 77Q 63T 3FH 3F
01001010100101Y 112450 4773! 12A5H 12A5

Al 1 n

SYMDEB: A Symbolic Debug Utility

4.4.4 Addresses

Syntax

segment: offset

An address is a combination of two 16-bit values, one representing a
segment address, the other a segment offset. The values combined
specify a unique memory location.

A full address has both a segment address and an offset, separated
by a colon (:). A partial address is just an offset. Jn both cases, the
segr11ent or offset can be any number, register name, or symbol. For
most commands, a partial address is supplied with a default seg­
ment address; the default is the current contents of the DS segment
register. For the Assemble, Go, Load, PTrace, Trace,
Unassemble, and Write commands, the default segment address is
the cont.en ts of the CS register.

Examples

CS:0100
04BA: IP
CS: main
DGROUP:count

4.4.5 Address Range

Syntax

start-address end-address

A range is a combination of two memory addresses that specifies a
sequence of contiguous memory locations. The start-address and
end-address specify the first and last addresses in the range.

If a command takes a range but you do not supply a second address,
SYMDEB usually assumes a range of 128 bytes. Ir a command takes
a range followed immediately by a third parameter, you must supply
a second address. If you do not, SYMDEB uses the third parameter
as the second address.

Microsoft Macro Assembler User's Gulde

Examples

CS:100 110
main ma.1n+20

4.4.8 Object Range

Syntax

start-address L value

An object range is a combination of a memory address and a count
of "objects" that specifies a range of contiguous bytes, \\'ords, in­
structions or other objects in memory. The start-address specifies
the address of the first object in the list and L value specifies the
nun1ber of objects in the list.

An object range can be used with the Dump, Fill, Search, and
Unassemble commands only. Each command determines the size
and type of objects in the list: the Dump Bytes command has byte
objects, the Dump Words command has words, the Unassemble
command has instructions, and so on.

Examples

4-12

DGROUP:table L 100
main L 20

SYMDEB: A Symbolic Debug Utility

4.4.7 Line Numbers

Syntax

. +I- numbtr

. (/ il en a ni e: I n u nib er

.symbol[+ - number}

A line number is a combination of decimal nun1bers, filenames, and
symbols that specifies a unique line of text in a program source file.

In the first form, the combination specifies a relative line number.
The number is an offset (in lines) from the current source line to the
new line. If the plus sign (+) is given, the new line is closer to the
end of the source file. If the minus sign (-)is given, the new line is
closer to the beginning. SY.f\i1DEB displays an error if there is no
current line number, or no source line exists for the specified line
number.

In the second Corm, the combination specifies an absolute line
number. If a filenarne is given, the specified line is assumed to be in
the source file corresponding to the symbol file identified by
filename. If no filename is given, the current instruction address
(i.e., current values of the CS and IP registers) determines which
source file contains the line. SYMDEB displays an error if filename
does not exist, or no source line exists for the specified line.

In the third form, the combination specifies a symbolic line number.
The symbol can be any instruction or procedure label. If number is
given, the number, if given, is an offset (in lines) from the given label
or procedure name to the new line. If the plus sign (+) is given, the
new line is closer to the end of the source file. If the n1inus sign (-)
is given, the new line is closer to the beginning. SYMDEB displays
an error if the symbol does not exist, or no source line exists for the
specified line number.

Examples

. +5

. 10

.sample:10

.main

.ma1n+5

; 5th line down from current line .
; 10th line in the current source file .
; 10th line in the source file named by "sample."
; First line in the routine "main."
; 5th line in the routine "main."

Microsoft Macro Assembler User 'a Gulde

The symbol "main,, can also be used to specif)' a line number. In
this case, "main" is equal to ".main." Not.e, however, that
''main +3" specifies an a<ld res~ th at is three byt cs from "main," but
".main+3" specifies a source line that is three lines fron1 "main."

4.4.8 Strings

Syntax

'characters'
"characters"

A string represents a list of ASCII values. It can be any number and
combination of characters enclosed in single(') or double(") quota­
tion marks. The starting and ending quotation marks must be the
same type. If a matching quotation mark appears inside the string,
it must be given twice to prevent SYMDEB from ending the string
too soon.

Examples

'This is a string.·
•this is a string.•
'This ''string'' is okay.'
•this ••string•• is okay.•
'This •string• is okay.·
•this 'string' is okay.•

4.4.9 Expressions

An expression is a combination of parameters and operators that
evaluates to an 8-, 16-, or 32-bit value. Expressions can be used as
values in any command.

An expression can combine any symbol, number, or address with any
of the following unary and binary operators:

A_lA

SYMDEB: A Symbolic Debug Utility

Opera.tcr
+

NOT
SEG
OFF
BY
WO
DW
POI
PORT
WP ORT

Unary Operators

Meaning
Unary plus
Unarv minus ..
1'3 complement
Segment address of operand
Address offset of operand
Low-order byte from given address
Low-order word from given address
Doubleword from given address
Pointer (4 bytes) from given address
One byte from given port
Word from given port

Binary Operators

Precedence
Highest

Lowest

Operator
*

Meaning
Multiplication
Integer division
Modulus

Precedence
Highest

I
MOD

+

AND
XOR
OR

Segment override
Addition
Subtraction
Bitwise Boolean AND
Bitwise Boolean exclusive OR
Bitwise Boolean OR Lowest

Expressions are evaluated in order or operator precedence. Ir adj a­
cen t operators have equal precedence, the expression is evaluated
from left to right. Parentheses can be used to override this order.

Examples

4+2*3
SEG 0001:0002
OFF 0001:0002
4+(2*3)
(4+2)•3

; equals 10 (OAH)
; equals 1
; equals 2
; equals 10 (OAH)
; equals 18 (12H)

Microsoft Macro Assembler User's Gulde

4.6 Assemble Command

Syntax

A [address)

The Assemble command assembles 8086/8087 /8088 mnemonics and
places the resulting instruction code into memory at the given ad­
dress. The command displays the address and the instruction code
at the given address, then prompts for a new instruction. Ir no ad­
dress is given, the assembly starts at the address given by the
current values of the CS and IP registers.

Instructions can be entered in standard 8086/8087 /8088 instruction
mnemonics. To assemble a new instruction, press the RETURN key
after entering the desired mnemonics. SYMDEB assembles the in­
struction and displays the next available address. To terminate as­
sembly and return to the SYMDEB prompt, press the RETURN key
only.

The rules for entry of instruction mnemonics are as follows:

1. Prefix mnemonics, such as WAIT and REP, must be speci­
fied before the instruction to which they apply. This must
be on a separate line.

2. The far return mnemonic is RETF.

3. String manipulation mnemonics must explicitly state the
string size. For example, use MOVSW to move word strings
and MOVSB to move byte strings.

4. SYMDEB automatically assembles short, near or far jumps
and calls, depending on byte displacement to the destination
address. These may be overridden with the NEAR or FAR
prefix. Examples:

4-lR

JMP 502
JMP NEAR 606
JMP FAR 50A

The NEAR prefix may be abbreviated to NE, but the FAR
prefix cannot be abbreviated.

SYMDEB: A Symbolic Debug Utility

5. SYMDEB cannot tell whether some operands ref er to a word
memory loc:1t.ion or to a byte memory location. In this case,
the data type must be explicitly stated with the prefix
"WORD prf~\·' or "BYTE PTR". Acceptable abbreviations
are "WO" an,1 "BY". Examples:

MOY WORD PTR [BP], 1
MOV BYTE PTR [SI-1], SYMBOL

6. SYMDEB cannot tell whether an operand refers to a
memory location or to an immediate operand. SYMDEB
uses the convention that operands enclosed in square brack­
ets refer to memory. Examples:

HOV AX,21
MOV AX, [21]

7. The DB opcode assembles byte values directly into memory.
The DW opcode assembles word values directly into
memol"y. Examples:

DB 1,2,3,4,•THIS IS AN EXAMPLE•
DB 'THIS IS A QUOTE: ••
DB •THIS IS A QUOTE: '•
DW 1000,2000,3000,•BACH•

8. SYMDEB supports all forms of register indirect commands.
Examples:

ADD BX,34[BP+2]. [SI-1]
POP [BP+DI]
PUSH [SI]

9. All opcode synonyms are also supported. For example,

LOOPZ 100
LOOPE 100
JA 200
JNBE 200

.......

Microsoft Macro Assembler User 'a Guide

10. For 8087 opcodes, the WAIT or FW AIT must be explicitly
specified on a separate line immediately preceding the
corresponding instruction. Example:

FWAIT
FADD ST,ST(3)

If a syntax error is found, SYMDEB displays the message "Error"
and redisplays the current assembly address.

Examples

A CS: main

This example starts assembly at the address given by "CS:...J11ain."

A 04BA:0100

This example starts assembly at the address given by "04BA:0100."

4.6 Breakpoint Set Command

Syntax

BP[n) address (passes)

The Breakpoint Set command creates a "sticky" breakpoint at
the given address. When encountered during program execution,
sticky breakpoints cause the program to stop and SYMDEB to
display the current values of all registers and flags. Sticky break­
points, unlike breakpoints created by the Go command, remain in
the program until removed using. the Breakpoint Clear command,
or temporarily disabled using the Breakpoint Disable command.

SYMDEB allows up to ten sticky breakpoints (0 through 9). The n
specifies which breakpoint is to be created. Spaces between the BP
and n are not allowed. If no n is given, the first available breakpoint
number is used. The address can be any valid instruction address
(that is, it must be the first byte of an instruction opcode). The
passes specifies the number or times the breakpoint is to be ignored
before being taken. It can be any 16-bit value.

A 1 0

SYMDEB: A Symbolic Debug Utility

Examples

BP main -

This example creates a sticky breakpoint at "Jllain."

BPS add -

This example creates breakpoint 8 at address "_add."

BP 100 10

This example creates a breakpoint at address 100 in the current CS
segment. This breakpoint is ignored 16 (lOH) times before being
taken.

4.7 Breakpoint Clear Command

Syntax

BC list I*

The Breakpoint Clear removes one or more breakpoints from a
program. If list is given, the command removes the breakpoints
named in the list. The list can be any combination of integer values
from 0 to 9. If* is given, the command removes all breakpoints.

Examples

BC 0 4 8

This example removes breakpoints 0, 4, and 8.

BC *
This example removes all breakpoints.

.. "'n

Microsoft Macro AstJembler User's Gulde

4.8 Breakpoint Disable Command

Syntax

BO list I*

The Breakpoint Disable command temporarily disables one or
more breakpoints from a program. The breakpoints are not deleted.
They can be restored at any time by using the Breakpoint Enable
command.

If list is given, the command disables the breakpoints named in the
list. The list can be any combination of integer values from 0 to 9.
If * is given, the command disables all breakpoints.

Examples

BD 0 4 8

This example disables breakpoints 0, 4, and 8.

BD *
This example disables all breakpoints.

4.9 Breakpoint Enable Command

Syntax

BE list I*

The Breakpoint Enable command restores one or more break­
points that were temporarily disabled by a Breakpoint Disable
command.

If list is given, the command enables the breakpoints named in the
list. The list can be any combination of integer values from O to 9.
If* is given, the command enables all breakpoints.

4-20

SYMDEB: A Symbolic Debug Utility

Examples

BE 0 4 8

This example enables breakpoints 0, 4, and 8.

BE *
This example enables all breakpoints.

4.10 Breakpoint List Command

Syntax

BL

The Breakpoint List command lists current information about all
breakpoints created by the Breakpoint command. The command
displays the breakpoint number, the enabled status, the address of
the breakpoint, the number of passes remaining, and the init.ial
number of passes (in parentheses).

If a breakpoint is not currently defined, nothing is disabled.

Example

BL

This example displays all breakpoints. The display should look like
this:

0 e 04BA:0100
4 d 04BA:0503 4 (10)
8 e 0020:0001 3 (3)

In this example, breakpoint 0 and 8 are enabled (e) and 4 is disabled
(d). Breakpoint 4 has an initial pass count of 10 and has 4 remain­
ing passes to be taken before the breakpoint. Breakpoint 8 has ini­
tial pass count of 3 and has all 3 passes remaining. Breakpoint 0
shows no initial pass count. This means it was set to 1.

.. n1

Microsoft Macro Assembler User's Gulde

4.11 Compare Command

Syntax

C range address

The Compare command compares the bytes in the memory loca­
tions specified by range with the corresponding bytes in the memory
locations beginning at address. If all corresponding bytes match,
SYMDEB displays its prompt and waits for the next command. If
one or more corresponding bytes do not match, each pair of
mismatched bytes is displayed.

Examples

C 100,1FF 300

This example compares the block of memory fron1 100 to lFFl1 with
the block of memory from 300 to 3FFH.

C 100 L 100 300

This example compares the 256 (lOOH) bytes starting at memory ad­
dress lOOH with the 256 bytes starting at address 300H.

4.12 Display Command

Syntax

? expression

The Display command displays the value of the given expression.
The command evaluates the expression, then displays the value in a
variety of formats. The formats include a full address, a 16-bit hex­
adecimal value, a full 32-bit hexadecimal value, a decimal value (en­
closed in parentheses), and a string value (enclosed in double quota­
tion marks).

The expression can be any combination of numbers, symbols, ad­
dresses, and operators. For a list of operators, see the section, "Ex­
pressions," given earlier in this chapter.

SYMDEB: A Symbolic Debug Utlllty

Examples

This example displays the value or the expression 3*4.

? DS:table

This example displays the value of the symbolic address "DS:table."

? WO DGROUP: bufs1z

This example displays the word at the symbolic address
'' DGRO UP :J>uf siz.''

4.13 Dump ASCII Command

Syntax

DA (address I range)

The Dump ASCII command displays the ASCII characters at a
given address or in a given range of addresses. The command
displays one or more lines of characters, depending on the address or
range given. Up to 48 characters per line are displayed. Non­
printable characters, such as newlines or formf eeds, are displayed as
a dot(.).

If an address is given, the command continues to display ASCII char­
acters until the first zero byte is encountered, or until 128 bytes
have been displayed. If a range is given, the command continues to
display ASCII characters until the end of the range. Ir no address or
range is given, the command displays all characters up to the first
zero byte, or until 128 bytes have been displayed. This display be­
gins at the current dump address, the address immediately after the
last byte previously displayed. If the L option is used in a range,
the Dump ASCII command continues to display characters until
the given number of characters have been displayed.

Examples

DA cs:100 110

Microsoft Macro Assembler User's Gulde

This example displays t.he ASCII values of the bytes from "cs: 100"
to "cs: 110." The display should look like this:

04BA:0100 A string .. Text ..

Non-printable characters are shown as dots.

DA

This example displays characters at the current dump address. If
the last byte in the previous Dump ASCII command was
04BA:Ol 10, this command displays the bytes starting at 04BA:Ol 1 l.

DA na.me

This example displays the characters at the symbolic address
''name".

4.14 Dump Bytes Command

Syntax

DB (address I range)

The Dump Bytes command displays the hexadecimal and ASCII
values of the bytes at the given address or in the given range or ad­
dresses. The command displays one or more lines, depending on the
address or range given. Each line displays the address of the first
byte in the line, followed by up to 16 hexadecimal byte values. The
byte values are immediately followed by the corresponding ASCII
values. The hexadecimal values are separated by spaces, except the
eighth and ninth values which are separated by a hyphen (-). ASCII
values are printed without separation. A non-printable ASCII value
is displayed as a dot (.). No more than 16 hexadecimal values are
displayed in a line. The command displays values and characters un­
til the end of the range or until the first 128 bytes have been
displayed.

Examples

DB cs:100 110

This example displays the byte values from "cs: 100" to "110". The
display should look like this:

SYMDEB: A Symbolic Debug Utility

04BA :0100 41 20 73 74 ~'). 69 6E 67-04 01 05 54 65 78 OD OA A string ... Text ..

04BA:0110 2E

ASCII characters CA.rt- shown on the right.

DB

This example displays 128 bytes at the current dun1p address. If the
last byte in the previous Dump command was 04BA:0110, this com­
mand displays the bytes starting at 04BA:Olll.

DB table ta.ble+5

This exarnple displays the first 6 bytes at the symbolic address
"table".

4.15 Dump Words Command

Syntax

DW (address I range)

The Dump Words command displays the hexadecimal values of
the words (2-byte values) at the given address or in the given range
of addresses. The command displays one or more lines, depending on
the address or range given. Each line displays the address of the
first word in the line, followed by up to 8 hexadecimal word values.
The hexadecimal values are separated by spaces. The command
displays values until the end of the range or until the first 64 words
have been displayed.

Examples

DW cs:100 110

This example displays the word values from "cs: 100" to "cs: 110".
The display should look like this:

04BA:0100 2041 7473 6972 676E 0104 5405 7865 OAOD
04BA:0110 002E

No more than eight values per line are displayed.

Microsoft Macro Assembler User's Gulde

DW

This example displays 64 words at the current dump address. If the
last byte in the previous Dump command was 04BA:Ol 10, this com­
mand displays the words starting at 04BA:Olll.

DW table table+5

This example displays the words in a range from the symbolic ad­
dress "table" to "table+5."

4.16 Dump Doublewords Command

Syntax

DD (address I range)

The Dump Doubleworda command displays the hexadecimal
values of the doublewords (4-byte values) at the given address or in
the given range of addresses. The command displays one or more
lines, depending on the address or range given. Each line displays
the address of the first doubleword in the line, followed by up to 4
hexadecimal doubleword values. The hexadecimal values are
separated by spaces. The command displays values until the end of
the range or until the first 32 doublewords have been displayed.

Examples

DD cs:100 110

This example displays the doubleword values from "cs:IOO" to
''cs: 110' '. The display should look like this:

04BA:0100 7473:2041 676E:6972 5405:0104 OAOD:7865
04BA:0110 0000:002E

No more than four values per line are displayed.

DD

This example displays 32 doublewords at the current dump address.
If the last byte in the previous Dump command was 04BA:Ol 10,
this command displays the doublewords starting at 04BA:Olll.

SYMDEB: A Symbolic Debug Utility·

DD table ta~le+5

This example displays the doublewords in a range from the symbolic
address "tablen ~.o oL ~.able+5."

4.17 Dump Short Reals Command

Syntax

OS (address I range)

The Dump Short Reals command displays the hexadecimal and
decimal values or the short (4-byte) floating point numbers at the
given address or in the given range of addresses. The command
displays one or more lines, depending on the address or range given.
Each line displays the address of the floating point number, followed
by the hexadecimal values or the bytes in the number, followed by
the decimal value of the number. The hexadecimal values are
separated by spaces. The decimal value has the form

+ I- . d d ... dE + I - mm

For display purposes, SYMDEB converts short reals to long reals be­
fore displaying. Although up to 16 decimal digits are displayed,
only the first 7 digits are significant.

The command displays at least one value. If a range is given, it
displays all values in the range.

Examples

DS ds: 100

This example displays the floating point number at the address
''ds: 100.'' The display should look like this:

04BA:0100 00 00 20 40 +.25e+1

Only one value per line is displayed.

Microsoft Macro Assembler User's Gulde

DS pi

This example displays the short floating point number at the sym­
bolic address "pi."

4.18 Dump Long Reals Command

Syntax

DL (address I range)

The Dump Long Reals command displays the hexadecimal and de­
cimal values of the long (8-byte) floating point numbers at the given
address or in the given range of addresses. The command displays
one or more lines, depending on the address or range given. Each
line displays the address of the floating point number, followed by
the hexadecimal values of the bytes in the number, followed by the
decimal value of the number. The hexadecimal values are separated
by spaces. The decimal value has the form

+I- .dd ... dE +I- mm

lJp to 16 decimal digits are displayed.

The command displays at least one value. If a range is given, it
displays all values in the range.

Examples

DL ds:100

This example displays the floating point number at the address
"ds: 100." The display should look like this:

04BA:0100 86 37 6B FO BE 2A 57 3F +.14139993273678774e-2

Only one value per line is displayed.

DL gamma

This example displays the long floating point number at the symbol­
ic address "gamma."

4-28

SYMDEB: A Symbolic Debug Utility

4.19 Dump Ten-Byte Reals Command

Syntax

DT (address I range]

The Dump Ten-Byte Reals command displays the hexadecimal
and decimal values of the ten-byte floating point numbers at the
given address or in the given range of addresses. The command
displays one or more lines, depending on the address or range given.
Each line displays the address of the floating point number, followed
by the hexadecimal values of the bytes in the number, followed by
the decimal value of the number. The hexadecimal values are
separated by spaces. The decimal value has the form

+I- .dd ... dE +I- mm

Up to 16 decimal digits are displayed.

The command displays at least one value. If a range is given, it
displays all values in the range.

Examples

DT ds: 100

This example displays the floating point number at the address
''ds: 100.'' The display should look like this:

04BA:0100 86 37 68 FO BE 2A 57 3F 00 00 +.14139993273678774e-2

Only one number per line is displayed.

DT ga.mma

This example displays the ten-byte floating point number at the
symbolic address "gamma."

Microsoft Macro Assembler User's Gulde

4.20 DuILp Command

Syntax

D r a d d r e 8 s I r a ; 1 g eJ

The Dumr..;i command Jisplays the contents of memory at the given
addres~· or in the given range of addresses. The command displays
memory 1n the same format defined by the previous DA, DB, DW,
DD, DS, DL, or DT command. The command displays one or more
lines, depending on the address or range given. Each line displays
the address of the first item displayed. The command always
displays at least one value. If a range is given, it displays all values
in the range. If no address or range is given, the comrnand displays
the contents of memory at the next byte after the last one displayed.

Note

The Dump command name must be separated by at least one
space from any address or range value.

Examples

DA ds:100
04BA:0100 A string ..
D
04BA:010B Text ...

In this example, the Dump command displays the ASCII string at
the address immediately following the string displayed by the
Dump ASCII command.

4-30

DW ds:100 101
04BA:0100 2041
D ds:324 325
04BA:0324 FE31

SYMDEB: A Symbolic Debug Utility

In this example, the Dump command displays the word at the ad­
dress "ds:324. ''

DS pi
04BA:0100 00 00 20 40 +.25e+1
D gamma
04BA:0104 00 00 20 40 +.25e+1

In this example, the Dump command displays the short floating
point number at the symbolic address "pi."

4.21 Enter Command

Syntax

E address (list]

The Enter command enters one or more byte values into memory at
the specified address. If the optional list is given, the command re­
places the byte at the given address and the bytes at each subse­
quent address until all values in the list have been used. If no list is
given, the command prompts for a replacement value.

If an error occurs, all byte values remain unchanged.

If you do not supply a list, SYr..1DEB prompts for a new value at ad­
dress by displaying this address and its current value followed by a
dot (.). You can then replace the value, skip to the next value, re­
turn to a previous value, or exit the command by following these
steps:

1. To replace the byte value, simply type the new value
after the current value. Make sure you typed a 1- or 2-digit
hexadecimal number. The command ignores extra trailing
digits or other characters.

2. To skip to the next byte, press the SPACE bar. Once you
have skipped to the next byte, you can change its value or
skip to the next byte. If you skip beyond an 8-byte boun­
dary, SYMDEB starts a new display line by displaying the
new address and value.

4-31

Microsoft Macro Assembler User's Guide

3. To return to the preceding byte, type a hyphen (-).
When you return to the preceding byte, SYMDEB starts a
new display line with the address and value of that byte.

4. To exit the E command, press the RETURN key. You can
exit the command at any time.

Examples

E CS:100 1 28 E5

This example replaces the three bytes at CS: 100, CS: 101, and CS: 102
to 1, 28, and E5, respectively.

E CS:100

This example causes SYMDEB to display a prompt like:

04BA:0100 EB.

You can then change the value EB to the new value 41 by typing 41:

04BA:0100 EB.41

You can then skip to the next byte value by pressing the SPACE bar:

04BA:0100 EB.41 10.

You can return to the previous value by typing a hyphen:

04BA:0100 EB.41 10.-
04BA:0100 41.

4.22 Examine Symbol Map Commands

Syntax

x [*]
X? (mapname!) (segname:) (symname)

The Examine Symbol Map command displays the name and ad­
dress of the symbols in the current symbol maps. SYMDEB creates
a symbol map for each symbol filename given in the SYMDEB com-

SYMDEB: A Symbolic Debug Utility

mand line. T'he Examine Symbol Map command can then be
used to examine the contents of the maps.

The X command displays the name and load segment addresses of
the current symbol rnap and the segments in that map. If the aster­
isk (*) is specified, the command displays the names and load seg­
ment addresses for all symbol maps.

The X! command displays the names and addresses of one or more
symbols in the syn1bol map. If a mapname! is given 1 the command
displays information for that symbol map. The mapname must be
the filename (without extension) of the corresponding symbol file. If
a segname: is given, the command displays the name and load seg­
ment address for that segment. The segname must be the name of a
segment named within the explicitly given or currently open symbol
map. If a symname is given, the command displays the segment ad­
dress and segment offset for that symbol. The symname must be
the name of a symbol in the given seg1nent.

To display information about more than one segment or symbol, the
segname or symname can contain an asterisk (*). The asterisk acts
as a wildcard character, and SYMDEB displays information about
all segments or symbols whose names start with the same characters
that segname or symname start with. For example, "F*:" matches
all segment names that start with the letter "F," and "-*" matches
all symbols that start with an underscore(_).

Examples

x

This example displays the name of the current symbol map and the
names and load segment addresses of the segments in that map.

X? test!

This example displays the load segment address of the symbol map
file "test."

X? 1group:

This example displays the load segment address of the segment
named "igroup" in the currently open symbol map.

Microsoft Macro Assem bier User '1 Gulde

X? test!1group:

This example displays the load segment address of the segment
named "igroup" in the symbol map "test."

X? start

This example displays the segment address and segment offset of the
symbol "start" in the currently open symbol map.

X? test!sta.rt

This example displays the segment address and segment offset of the
symbol "start" in the symbol map "test."

X? test!igroup:sta.rt

This example displays the segment address and segment offset of the
symbol "start" in the segment "igroup" in the symbol map '•test."

x? code•

This example displays the segment address and segment offset of all
symbols in the current symbol map that begin with the letters
"code."

4.23 Fill Command

Syntax

F range list

The Fill command fills the addresses in the given range with the
values in the list. If range specifies more bytes than the number of
values in the list, the list is repeated until all bytes in the range are
filled. If list has more values than the number of bytes in the range,
the command ignores any extra values.

Examples

F CS:100 L 100 FF

This example fills memory locations CS: 100 t.hrough CS: lFF with
the byte value FFH.

4-34

SYMDEB: A Symbolic Debug Utility

F DGROUP:tahle L 64 42 45 62 54 41

This example fills the 100 (64H) bytes starting at "DGROUP:table"
with the given byte values. These five values are repeated until all
100 bytes are filled.

4.24 Go Command

Syntax

G [=start-address) [break-address),,,

The Go command passes execution control to the program at the
given start-address. Execution continues to the end of the program
or until a break-address is encountered. The program also stops at
any breakpoints set using the Breakpoint Set command.

If no start-address is given, the command passes execution to the ad­
dress specified by the current values of the CS and IP registers. The
equal sign (=) may be used only when a start-address is given.

If a break-address is given, it must specify an instruction address
(that is, the address must contain the first byte of an instruction op­
code). lJp to ten addresses can be given at one time. The addresses
can be given in any order. Only the first address encountered during
execution will cause a break. All others are ignored. If you attempt
to set more than ten breakpoints, SYMDEB displays an error mes­
sage.

When program execution reaches a breakpoint, SYMDEB displays
the current values of all registers and flags. It also displays the next
instruction to be executed. The display has the same form as the
Register command.

Notes

The Go command uses an IRET instruction to pass control to a
program. To do so, it must set the user stack pointer and push
the user flags, CS register, and IP registers onto the user stack.
If the user stack does not have 6 bytes available or is in invalid
memory, the Go command may cause an operating system
crash.

Microsoft Macro Assembler User's Gulde

To crc:ate a breakpoint, SYMDEB places an INT 3 instruction
(interrupt code ()(~CH) at each breakpoint address, then restores
these addresses to their original instructions when a breakpoint
is encountered. If execution continues to the end of the pro­
gram, however, or is halted by some other means, SYl\·!DEB does
not replace the interrupt code. For this reason, you ;3hould re­
load the program with the Name and Load commands before
attempting to run the program again.

SYMDEB displays the message "Program terminated normally"
whenever execution reaches the program end.

Examples

G =CS:O CS:7550

This example passes execution control to the program at the address
CS:O. If the instruction at the breakpoint address CS:7550 is en­
countered, SYMDEB stops execution and displays the current values
of registers and flags.

G

This example passes control to the instruction pointed to by the
current values of the CS and IP registers. This command is typical­
ly used to continue execution after a breakpoint has been encoun­
tered.

G = main add -
This example passes control to the instruction named by the sym­
bolic address "Jnain". A breakpoint is set at the address "_add".

4.26 Help Command

Syntax

?

The Help command displays the following list of S)r~IDEB com­
mands:

4-36

SYMDEB: A Symbolic Debug Utility

A [<address>] - assemble
BC <bp> - clear breakpo1nt(s)
BD <bp> - disable breakpoint(s)
BE <bp> - enable breakroint(s)
BL <bp> - list breakpolnt(s)
BP [bp] <address> - set breakpoint
c <range> <address> - compare
DA[<range>J - du•p asctz string
DB[<range>] - du•p bytes
DW[<range>] - dump words
DD[<range>] - dump doublets
DS[<range>] - dump short float
DL[<range>] - duap long float
DT[<range>] - dump tempreal float
E [<address>] [<11st>] - enter
F <range> <list> - fill
G [=<address> [<address> ...] J - go

? - help menu
1 <expr> - display expression
> {CONICOM1} - Redirect output
< {CONICOMl} - Redirect input
- {CONICOM1} - Redirect both

4.26 Hex Command

Syntax

H valuel value2

H <value> <value> - hexadd
I <value> - input from port
L [<address> [<drive><rec><rec>]] - load
M <range> <address> - aove

N <filenaae> [<fllenaae> ...] - naae
o <value> <byte> - output to port
P - prograa step
Q - quit
R [<reg>] - register
S <range> <list> - search
S {-ltl+} - source level debugging
T [=<address>] [<value>] - trace
U [<range>] - unassemble
W [<address> [<dr1ve><rec><rec>]] - write
X[?] <SJ•bol> - exaa1ne syabol(s)

XO <syabol> - open map/seg•ent

The Hex command displays the sum and difference of two hexade­
cimal numbers. SYMDEB adds valuel to value2 and displays the
result. It then subtracts value2 from valuel and displays that result.
The results are displayed on one line and are always in hexadecimal.

To evaluate more general expressions, see section 4.12, "Display
Command.''

Microsoft Macro Assembler User's Gulde

Examples

H 3 4

This example displays the resu Its 7 and FFF'F.

H 110 100

This example displays the results 210 and 10.

4.27 Input Command

Syntax

I port

The Input command reads and displays one byte from the given in­
put port. The port can be any 16-bit port address.

Example

I 2F8

This example displays the byte value read from input port number
2F8.

4.28 Load Command

Syntax

L (address [drive record count)]

The Load command copies the contents of a named file or the con­
tents of a given number of logical disk records into memory. The
contents are copied to the given address or to a default address, and
the BX:CX register pair is set to the number of bytes loaded.

To load a file, a filename must be supplied before the Load com­
mand can be used. You can give a name by using the Name com­
mand (see section 4.30). You can also supply a name by passing it
as a program argument when you start SYMDEB (see the section,
HPassing Arguments to a Loaded Program," given earlier in this

SYMDEB: A Symbolic Debug Utility

chapter). If you do not supply a name, Load uses whatever name is
currently at location DS:5C, \\1here DS is the current value of the OS
register. This is the location that receives any filename given with
Name or any filename passed as a program argument.

If an address is given, the command places the contents of the file or
sectors at the memory locations starting at address. Otherwise, it
places the contents at the address given by CS:lOO, "'here CS is the
current value of the CS register.

To load logical records fron1 a disk, the explicit values for address,
drive, record, and count must be given. The drive must name the
drive to be read. It can be any number in the range 0 to 3,
representing drives A: (0), B: (1), C: (2), and D: (3). The record
names the first logical record to be read from the drive. It can be
any 1- to 4-digit hexadecimal number. The count specifies the
number of records to read from the disk. It can be any 1- to 4-digit
hexadecimal number.

Notes

If the named file has a .EXE extension, Load adjusts the load
address to the address given in the .EXE file header. This
means that the address parameter is always ignored for .EXE
files.

Since Load strips any header inf orrnation from an .EXE file be­
fore loading, the number of bytes actually loaded will be dif­
ferent than the number of bytes in the .EXE file.

If the named file has a .HEX extension, the Load command adds
that file's start address to address before loading the file. If no
address is given, the file is loaded at its start address.

Microsoft Macro Assem bier User's Gulde

Example

N file.com
L

This example loads the file named "file.com" into memory at the
address CS:IOO. The number or bytes loaded are copied to the
BX:CX register pair.

L DGROUP:ta.ble

This example loads a file into the memory locations starting at the
symbolic address "DGROUP:table." The command uses whatever
filename is currently at location DS:5C.

L workspace 2 34 3

This example loads 3 logical records, beginning with logical record
number 52 (34H), into memory at the symbolic address
"workspace."

4.29 Move Command

Syntax

M range address

The Move command moves the block of memory specified by range
to the location starting at address.

All moves are guaranteed to be performed without data loss, even
where the source and destination blocks overlap. This means the
destination block is always an exact duplicate of the original source
block. If the destination block overlaps some portion of the source
block, the original source will be changed.

To prevent data loss, Move copies data from the source block's
lowest address first whenever the source is at a higher address than
the destination. If the source is at a lower address, Move copies
data from the source's highest address first.

4-40

SYMDEB: A Symbolic Debug Utility

Example

M CS:100 110 CS:500

This example moves all bytes in the range CS:lOO to CS:110 to the
memory locations starting at CS :500.

M DS:table L 100 workspace

This example copies the 256 {lOOH) bytes at the symboJic address
"OS :table" to the address "workspace."

4.30 Name Command

Syntax

N (filename] (arguments)

The Name command sets the filename for subsequent Load and
Write commands, or sets program arguments for subsequent execu­
tion or a loaded program.

If filenanie is given, all subsequent Load and Write commands will
use this name when accessing disk files.

If arguments are given, the command copies all arguments, including
spaces, to the memory location starting at DS:81 and sets the byte
at DS:80 to a count of the total number of characters copied. In both
cases, OS is the current value of the DS register. Once copied, the ar­
guments are available for access by the program being debugged.

Notes

Ir the first two arguments are also filenames, the command
creates File Control Blocks at addresses DS:5C and DS:6C and
copies the names (in proper format) to these blocks. The FCBs
can then be used by the program being debugged.

Name also treats filename as an argument, copying it to DS:81
and creating an FCB for it at DS:5C. Therefore, setting a new
filename for Load and Write destroys any previous program
arguments.

Microsoft Macro Assembler User's Gulde

Each Name command changes or destroys one or more of th~
following memory locations:

DS:5C
DS:6C
DS:80
DS:81

FCB for file 1
FCB for file 2
Count or characters
All characters typed

Examples

N f11e1.exe

This example sets the filename for subsequent Load and Wrltt
commands to "filel.exe."

N f11e2.dat !11e3.dat /m /b

This example sets the program arguments for the program being de·
bugged. The command creates FCBs for the files "file2.dat" anc
"file3.dat". It also copies the entire command line, except the com·
mand letter N, to DS:81.

4.31 Open Map Command

Syntax

XO (map name!] segname

The Open Map command sets the active symbol map and/or seg·
ment. If mapname! is given, the command sets the active symbo
map to the given map. The mapname must be the filename (withou1
extension) of one of the symbol files specified in the S"f~IDEB com·
mand line. If segname is given, the command sets the active seg·
ment to the named segment. The segnanie must be the name or ::
segment in the specified symbol map.

Examples

XO test!

This example activates the symbol map ''test."

4-42

SYMDEB: A Symbolic Debug Utility

XO test!igroup

This example activates the segment "igroup" in the symbol map
"test.''

XO dgroup

This example activates the segment "dgroup" in the current symbol
map.

4.32 Output Command

Syntax

0 port byte

The Output command sends the given byte to the specified output
port. The port can be any 16-bit port address.

Examples

0 2F8 4F

This example sends the byte value 4F (hexadecimal) to output port
2F8.

0 3 21

This example sends the byte value 21 (hexadecimal) to output port
3.

4.33 PTrace Command

Syntax

P [=st art-address] [count]

The PTrace command executes the instruction at the given start­
address, then displays the current values of all registers and flags.
The display has the sarne format as the Register command.

If the optional start-address is given, the command starts execution

Microsoft Macro Assem bier U aer 's Gulde

at the given address. Otherwise, it starts execution at the instruc­
tion pointed to by the current CS and IP registers. The equal sign
(=)may be used only if a start-address is given.

Ir the optional count is given, the command continues to execute
courit instructions before stopping. The command displays the
current values of the registers and flags for each instruction before
executing the next.

Note

The PTrace command is identical to the Trace command, ex­
cept that it automatically executes and returns from any calls or
software interrupts it encounters. The Trace command always
stops after executing the call or interrupt, leaving execution
control inside the called routine.

Examples

P = ma.in -
This example executes the instruction at dJnain," then displays the
current values of the registers and flags. It also displays the next in­
struction to be executed.

p

This example executes the instruction pointed to by the current CS
and IP register values.

4.34 Quit Command

Syntax

Q

The Quit command terminates the SYMDEB utility and ret'
control to MS-DOS.

SYMDEB: A Symbolic Debug Utility

Example

This example terminates SYMDEB.

4.36 Redirection Commands

Syntax

<device-name
>device-name
=device-name

The Redirection con1mands redirect the command input and out­
put to the device named by device-name. The < command causes
S)"MDEB to read all subsequent command input from the given dev­
ice. The > command causes S"tMDEB to write all subsequent com­
mand output to the given device. The = command causes SYMDEB
to both read and write to the given device.

The device-name can be

COMI
CON

Communications port 1
Console

If "CO Ml" is used, the port's baud rate and other modes must be
properly set for the attached terminal.

The Redirection commands are typically used to debug programs
that require full use of the console screen.

Note

If input is redirected to C~OMI, the CNTRL-S and CNTRL-C keys
are unavailable and will be ignored.

Microsoft Macro Assembler User's Gulde

Examples

>COM1

This example redirects SYMDEB command output to the "COrvt 1"
device.

=COM1

This example redirects command input and output to "COMl."

4.36 Register Command

Syntax

R [register-name [value} }

The Register command displays the contents of C~PlJ registers and
allo,vs the contents to be changed to new values.

If no register-name is given, the command displays all registers,
flags, and the instruction at the address pointed to by the current
C~S and IP register values.

If a register-name is given, the command displays the current value
of the given register and prompts for a new value. If both a
register-name and value are given, the command changes the register
to the given value.

The register-name can be any one of the following names:

AX
BX
c~x

DX
SP

BP
SI
DI
DS
ES

SS
cs
IP
PC
F

IP and PC name the same register: the Instruction Pointer. F is a
special name for the Flags register.

4-46

SYMDEB: A Symbolic Debug Utility

To change a register 1,a[ue, supply the name of the register when you
enter the R.egister command. If you do not also supply a value, the
command displays th~ name of the register, its current value, and a
colon prompt. Type the new value and press the RETURN key. If
you do not want to change the value, just press the RETlTRN key. If
you enter a. ille,gal register name, the command displays a "Bad Re­
gister!" message.

To change a flag value, suppl}' the register name ''F" when you enter
the Register command. The command displays the current value of
each flag as a two-letter name. The following is a list of flag values:

FLAG SET CLEAR
Overflow ov NV
Direction DN Decrement lJP Increment.
lnterru t EI Enabled DI Disabled
Si n NG Ne ative PL Plus
Zero ZR NZ
Auxiliary AC NA

Carrv
Paritv PE Even PO Odd
Carr CY NC

At the end of the list of values, the command displays a hyphen (-).
Once you see the hyphen, enter new values for the flags you wish to
change, then press the RETURN key. You can enter flag values in
any order. Spaces between values are not required. Flags for which
new values are not entered remain unchanged. If you do not want to
change any flags, just press the RETURN key.

If more than one value is entered for a flag, the command displays a
"Double flag!" message. If you enter a name other than those
shown above, the command returns a "Bad Flag!" message. In both
cases, the flags up to the error are changed; flags at and after the er­
ror are not.

Examples

R

This example displays all register and flag values, as well as the in­
struction at the address pointed to by the CS and IP registers. The
display should look like this:

Microsoft Macro Assem bier User's Guide

AX=OEOO BX=OOFF CX=0007 DX=01FF SP=03QD BP=OOOO
SI=006C DI=OOOO DS=04BA ES=04BA SS=04BA CS=04BA
IP=011A NV UP DI NG NZ AC PE NC
04BA:011A CD21 INT 21

The instruction is shown last.

R AX

This example displays the current value of the AX register and
prompts for a new value. The display should look like this:

AX OEOO

You can type any 16-bit value after the colon (:). Press the RETURN
key if you do not want to make a change.

R F

This example displays the current flags values and prompts for
changes. The display should look like this:

NV UP DI NG NZ AC PE NC -

You must use the prompt method to change flag values; any value in
the command line is ignored.

R IP 100

This example changes the IP register to the value 100.

4.37 Search Command

Syntax

S range list

The Search command searches the given range of memory locations
for the byte values given in list. If the bytes in the list are found,
the command displays the addresses of each occurrence of the list.
Otherwise, it displays nothing.

SYMDEB: A Symbolic Debug Utility

The list can have any number of bytes. Each must be separated by a
space or comma. If the list contains more than _on~ byte, Search
does not display an address unless the bytes beginning at that ad­
dress exactly match the value and order of the bytes in the list.

Examples

S CS:100 200 41

This example displays the address of each memory location in the
range CS: 100 to CS:200 containing the byte value 41.

s table L 100 •F1xup•

This example displays th-e address of each memory location contain­
ing the string "Fixup". The command searches the first 256 (IOOH)
bytes at the address given by "table."

4.38 Set Source Mode Command

Syntax

S-1&1+

The Set Source Mode command sets the display mode for com­
mands that display instruction code. If the plus sign (+) is given,
SYMDEB displays the actual program source line corresponding to
the instruction to be displayed. If the minus sign (-) is given, SY-~1-
DEB disassembles and displays the inst.ruction code in nlemory. If
the ampersand (&)is given, SYMDEB displays both the actual pro­
gram source line and the disassembled code.

The Set Source Mode cornmand affects instructions displayed by
the Register, Trace, PTrace, and Unassemble con11nands. Ini­
tially, S'YMDEB displays disassembled instruction code only. S'{~1-
DEB displays source lines only if the S+ or S& command has been
given and a symbol file containing line number information has been
loaded. If no symbol file is loaded, or the symbol file does not con­
tain line number information, S'{MDEB ignores subsequent requests
to display source lines. If the S& command is given, S'r'~1DEB
displays source lines only when the current instruction address
specified by CS:IP matches a line number.

Microsoft; Macro Assembler User's Gulde

Source lines have the form

l£n en u n1b er: sou rr,e

Source lines are always displayed before any disassembled instruc­
tions are displayed. If S)'"MDEB must change the current source file
to display a requested line, it displays the name of the new source
file before displaying the line.

Note

Although SYMDEB uses the line number information in symbol
files to display source lines, it may need to prompt. for the actual
filename of the source file before these lines can be displayed.
\\rhcnever Sl'"rv1DEB must access a source file for the first time

' it displays the prompt

External file name !or mapriarne (er !or none)?

where mapname is the filename of the sy1nbol file. To display
source lines, you must type the name of the corresponding
source file. The filename must include the filename extension.
If Sl'"MDEB cannot find the named file, it prompts for a new
name.

At times, you may wish to suppress display of source lines. In
such cases, just press the ENTER key \Vhen S)'"~·1DEB prompts
for the filename. S'{~:IDEB will suppress the actual source lines
and display a mapname and line number instead.

Examples

S+

This example sets SYMDEB to source line display mode. On subse­
quent commands, SY~·1DEB displays instruction source lines only.

Set

This example sets S'{MDEB to source line and disassembly display
mode. On the subsequent commands, SYMDEB displays both the
source line and disassembled instruction code.

SYMDEB: A Symbolic Debug Utility

4.39 Trace Command

Syntax

T [=start-address) [count)

The Trace command executes the instruction at the given start­
address, then displays the current values of all registers and flags.
The display has the same format as the Register command.

If the optional start-address is given, the command starts execution
at the given address. Otherwise, it starts execution at the instruc­
tion pointed to by the current CS and IP registers. The equal sign
(=) is required if a st art-address is given.

If the optional count is given, the command continues to execute
count instructions before stopping. The command displays the
current values of the registers and flags for each instruction before
executing the next.

Notes

The Trace cornmand uses the hardware trace mode of the 8086,
8088, 186, or 286 microprocessor. Consequently, you may also
trace instructions stored in ROM (Read Only tv1emory).

Examples

T = main

This example executes the instruction at Jnain, then displays the
current values of the registers and flags. It also displays the next in­
struction to be executed.

T

This example executes the instruction pointed to by the current CS
and IP register values.

T =011A 10

Microsoft Macro Assembler User's Gulde

This example executes sixteen (IOH) instructions beginning at 01 IA
in the current CS segment. The command displays the current regis­
ter and flags values 16 times. It also displays each instruction being
traced.

4.40 Unassemble Command

Syntax

U (range)

The Unassemble command displays the instructions and/or state­
ments of the program being debugged. The format of the display
depends on the current display mode set by the Set Source Mode
command. The display mode can be:

Mode
Disassembly (S-)

Source (S+)

Mixed (S&)

Meaning
Display disassembled instruction code. SYM­
DEB reads memory bytes from the addresses
given by range and translates these bytes into
assembly language statements. The resulting
statements have the same format as defined for
the Assemble command. If a symbol map has
been loaded with the program, operands that
represent public labels, variables, or absolute
symbols are displayed by name instead of ad­
dress.
Display lines from the program's actual source
file. SYMDEB displays the source lines that
correspond to the instructions in the given
range. No disassembly is performed.
Display source lines and disassembled instruc­
tions. SYMDEB displays one source line for
each corresponding group of assembly language
statements. Source lines are read from the
source file. Assembly language statements are
translated from memory bytes.

For both Source and Mixed modes, SYMDEB requires that a symbol
map be loaded with the program and that line number information
for the source file is in the map. If no line number information ex­
ists for a given portion of a program, SYMDEB will display nothing.

SYMDEB: A Symbolic Debug Utility

If the optional rangr is given, the command displays instructions
generated from code within the given range. If no range is given, the
command displays the instructions generated from the first 8 lines
of code at the current unassemble address. The current unassemble
address is simply the address of the first byte (line) after the last
byte (line) displayed by the previous Unassemble command.

When using Disassembly and Mixed mode, SYMDEB displays both
the hexadecimal and ASCII value of 8-bit immediate operands. The
hexadecimal value is shown as part of the instruction; the ASCII
value is shown immediately after a semicolon (;) on the same display
line.

Only 8086 and 8087 mnemonics can be displayed.

Examples

Disassembly Mode.

U CS:02AD

This example disassembles 8 lines of disassembled code beginning at
the address "CS:02AD." The display should look like this:

1156:02AD 55 PUSH BP
1156:02AE 8BEC MOV BP,SP
1156:0280 B80200 MOV AX,0002
1156:02B3 E893FF CALL chkstk
1156:0286 C746FE6100 MOV Word Ptr [BP-02],0061
1156:02BB FFOEEC05 DEC Word Ptr [05EC]
1156:02BF 833EEC0500 CMP Word Ptr [05EC],+OO
1156:02C4 7C11 JL 02D7

u ma.in L OA -

This example displays 10 (OA hexadecimal) lines of disassembled
code at the address "_main." The display should look like this:

Microsoft Macro Assembler User's Gulde

!GROUP: main: -
115o:02AD 55
1156:02AE 88EC
1156:0280 880200
1156:0283 E893FF
1156:0286 C746FE6100
1156:0288 FFOEEC05
1156:028F 833EEC0500
1156:02C4 7C11
1156:02C6 8A46FE
1156:0?.C9 8B1EEA05

Source .'-,lode.

U CS:02AD

PUSH BP
MOV BP,SP
MOV AX,0002
CALL chkstk
MOV Word Ptr [BP-02),0061
DEC Word Ptr [05EC]
CMP Word Ptr [05EC],+OO
JL ma1n+2A (0207)
MOV AL, [BP-02]
MOV BX, [05EA]

This example displays 8 source lines from the program source file.
These lines correspond to the instruction code beginning at the ad­
dress "CS:02AD." The display should look like this:

4:{
5: int 1;
6 :
7: for (1=·a·; 1 <. z ..

'
1++)

8: putcha.r(1);
9: for (1='A.; 1<•z•; 1++)
10: putcha.r(i);
11: for (1=·0·; 1<'9'; 1++)

u ma.in L 5

This example displays 5 source lines beginning at the address
"_main." The display should look like this:

4:{
5: int 1;
6:
7: for (1=·a·; 1<·z·; 1++)
a: putchar(1);

4-!l4

SYMDEB: A Symbolic Debug Utility

Mixed Mode.

U CS:02AD

This example displays 8 lines or disassembled instruction code and
program source code beginning at "CS:02AD." The display should
look like this:

4:{
!GROUP: ma.in:
1156:02AD 55 PUSH BP
1156:02AE 8BEC MOV BP,SP
1156:0280 880200 MOV AX,0002
1156:0283 E893FF CALL chkstk
7: for (1='a.'; 1<'z'; 1++)
1156:02B6 C746FE6100 MOV Word Ptr [BP-02],0061

U ma.in L 5 -
This example displays 5 lines of disassembled instruction code and
program source beginning at the address "_main." The display
should look like this:

4:{
!GROUP: ma.in:
1156:02AD 55
1156:02AE 8BEC
1156:02BO 880200

4.41 Write Command

Syntax

PUSH BP
MOV BP,SP
MOV AX,0002

W [address(drive record count])

The Write command writes the contents of a given memory location
to a named file, or to a given logical record on disk.

To write to a file, the filename must be set with a Name command,
then the BX:CX register pair must be set to the number of bytes to
be \vritten with a Register command. If no address is given, the
command copies bytes starting from the address CS: 100, where CS
is the current value of the CS register. If address is given, the com-

Microsoft Macro Assembler User's Gulde

mand copies bytes starting at that address.

Note

The filename, length, and starting address for a loaded rile must
be set to correct values if any Go, Ptrace, or Trace command
has been executed. The BX and CX registers must also be set to
correct values if they have been modified using a Register com­
mand.

To write to a logical record on disk, the address, drive, record, and
count must be given. The drive must name the drive to be written
to. It can be any number in the range 0 to 3, representing drives A:
(0), B: (1), C: (2), and D: (3). The record names the first logical
record to receive the data. It can be any 1- to 4-digit hexadecimal
number. The count specifies the number of records to write to the
disk. It can be any 1- to 4-digit hexadecimal number.

WARNING

Do not write data to an absolute disk sector unless you are sure
the sector is free. Writing to reserved or occupied sectors can
destroy the contents of a file or even the entire disk.

Examples

N table.bin
R BX
BX 0100
: 0000
R ex
ex D43e
: 0100
w DGROUP:table

This example writes 256 (IOOH) bytes to the file named "table.bin"
on disk. The bytes to be written start at the address
"DGROUP :table."

SYMDEB: A Symbolic Debug Utility

W workspace 2 34 3

This example writes 3 logical records to drive C:, starting at record
number 52 {34H). The bytes to be written start at the address
''workspace.''

4.42 Error Messages

SYMDEB displays an error message whenever it detects a command
it cannot complete. SYMDEB displays the command that caused
the error, followed by the message "Error". A caret (") points to
the approximate location of the error in the command line. For ex­
ample, the following display shows an illegal range of values in the
Dump command.

d cs:100 o
..... Error

Microsoft Macro Assembler User's Gulde

At other times, SYrv1DEB may display other error messages to let
you know more about the error. You can receive any of the follo\v­
ing error messages. Each error terminates the SY~1DEB command
under which it occurred, but does not terminate SYMDEB itself.

ERROR CODE
Bad Flag!

DEFINITION
Bad flag. You attempted to
alter a flag, but the characters
typed were not one of the ac­
ceptable pairs of flag values.
See the Register command for
the list of acceptable flag en­
tries.

Too many breakpoints! You specified more than ten
breakpoints as parameters to
the Go command. Retype the
Go command with ten or fewer
breakpoints.

Bad register! You typed the Register com­
mand with an invalid register
name. See the Register com-
1nand for the list of valid regis­
ter names.

Double flag! You typed t\vo values for one
flag. You may specify a flag
value only once. See the Regis­
ter command.

Breakpoint list or '*' expected! You typed a Breakpoint
Clear, Breakpoint Disable,
or Breakpoint Enable com­
mand \\'ithout. giving a list of
breakpoints to act on.

Error reading .SYM file! '{ ou named a symbol file in the
SY~1DEB command line that
cannot be read. The file may
have 0 length or a disk error
may have occurred.

4-58

SYMDEB: A Symbolic Debug Utility

4.43 SYMDEB-Compatible
Assemblers and Compilers

The symbolic debugging features of SYMDEB/MAPSYM can be used
with programs written in the following languages.

Microsoft FORTRAN version 3.0 and higher
Microsoft Pascal version 3.0 and higher
Microsoft C version 2.0 and higher
Microsoft Macro Asse1nbler version 1.0 and higher
Microsoft BASIC Compiler version 1.0 and higher
Microsoft Business BASIC Compiler version 1.0 and higher

IBM Personal Computer FORTR.A.N version 2.0 and higher
IBM Personal Computer Pascal version 2.0 and higher
IBM Personal Computer Macro Assembler version 1.0 and higher
IB~f Personal Computer BASIC Compiler version 1.0 and higher

The source line display features of SYMDEB/1'1APS)'"~1 can be used
by compilers which generate the proper line number information. The
following compilers generate source line number information au­
tomatically.

Microsoft FORTRAN version 3.0 and higher
Microsoft Pascal version 3.0 and higher
IBM Personal Computer FORTRAN version 2.0 and higher
IBM Personal Computer Pascal version 2.0 and higher

The following compilers require command line switches to generate
source line number information. Please refer to your language user's
guide for the proper compiler switches.

Microsoft C version 2.0 and higher

.. rn

Chapter 5
CREF:
A Cross-Reference Utility

5.1 Introduction 5-1

5.2 Using CREF 5-1
5.2.l Creating a Cross-Reference File 5-1
5.2.2 Creating a Listing

from a Command Li11e 5-2
5.2.3 Creating a Listing

from Prompts 5-3

5.3 Cross-Reference Listing Format 5-5

5.4 Error Messages 5-7

CREF: A Cross-Reference Utility

6.1 Introduction

The ~1icrosoft Cross-Reference Utility, CREF, creates a cross­
reference listing of all symbols in your assembly language programs. A
cross-reference listing is an alphabetical list of symbols in which each
symbol is followed by a series of line numbers. The line numbers indi­
cate the lines in the source program that contain a reference to the
symbol.

CREF is intended to be used as a debugging aid to help speed up the
search for symbols encountered during a debugging session. The
cross-reference listing, together with the symbol table created by the
assembler, can make debugging and correction of a program simpler
and easier.

6.2 Using CREF

CREF creates a cross-reference listing for a program by converting a
non-ASCII "cross-reference file," produced by the assembler, into a
readable ASCII file. 'You create the cross-reference file by supplying a
cross-reference filename when you invoke the assembler. You create
the cross-reference listing by invoking CREF and supplying the name
of the cross-reference file.

The following sections explain how to create a cross-reference file for
CRE:F and how to start CREF for creation of a cross-reference listing.

5.2.1 Creating a Cross-Reference File

You can create a cross-reference file by supplying a cross-reference
filename when you invoke MASM. tv1AS~·1 offers t\vo ways to name
this file: on the command line with other filenan1es, or in response to a
command prompt.

To create a cross-reference ftle from a command line, place the
name as the fourth parameter in the MASM command line. For exam­
ple, to create a cross-reference file "file.er(" for the program
"file.asm," type

... ..

Microsoft Macro Assembler User's Gulde

MASM file.asm,file.obj,file.lst,file.crf

This command also creates object and source listing files for the pro­
gram. M.A.SM parameters must be separated by commas. Even if
you do not supply a name for a given parameter, you still must sup­
ply a comma.

To create a cross-reference ftle using a prompt, invoke MASM,
then supply the filename in response to the fourth command
prompt. For example, to create a cross-reference file "file.crf" for
the program "file.asm," type

MASM

Source filename
ObJect filename
Source listing
Cross reference

[.ASM]: file.asm
[file.OBJ]: file.obj
[NUL.LST]: file.1st
[NUL.CRF]: file.er!

If you do not type a filename in response to this prompt, MASM will
not create a cross-reference file. If you type only a filename (no ex­
tension), MASM uses the extension .CRF by default. This is the ex­
tension expected by CREF and is recommended for all cross­
ref erence files.

5.2.2 Creating a Listing From a Command Line

You can start CREF and create a cross-reference listing by typing
the C~REF command name, the name of the cross-reference file, and
the name of the listing file you wish to create all on on<1 command
line. The command line has the form

CREF crf-file, ref-file

where crf-file is the name of the cross-reference file created by
MASM, and ref-file is the name of the readable ASCII file you wish
to create.

If you do not supply filename extensions when you name the files,
CREF will automatically provide default extensions. It uses the ex­
tension .CRF for the crf-file and .REF for ref-file. If you do not want
these extensions, you must supply your own.

CREF: A Cross-Reference Utility

You can select a default filename for the listing file by typing a
semicolon immediately after crf-file. The default filename has the
same filename as crf-file, but uses the extension .REF instead of
.CRF.

You can specify the directory or disk drive into which CREF will
place the cross-reference listing by supplying an appropriate path­
name or device name for ref-file. You can also name output devices
such as CON: and LPT:.

Examples

CREF !1le.cr!,!1le.ref

This example uses the cross-reference file "file.er(" to create a
cross-reference listing "file.ref."

CREF !1le,!1le

This example uses the cross-reference file "file.crf" to create a
cross-reference listing "file.ref." CREF supplies default filename ex­
tensions since no extensions are given.

CREF file.crs,file.rf

This example uses the cross-reference file "file .crs" to create a
cross-reference listing "file.rf".

CREF file.er!;

This example causes MS-CREF to create the cross-reference listing
"file. ref."

CREF file,con:

This example displays the cross-reference listing at the console.

5.2.3 Creating a Listing From Prompts

You can direct CREF to prompt you for filenames when it starts by
typing just the CREF command name. If you start the program in
this way, CREF displays a series or prompt messages that direct you
to enter filenames.

Microsoft Macro Assembler User's Gulde

To start CREF with prompts, follow these steps:

I. Make sure that MS-DOS is displaying its prompt.

2. Type

CREF

and press the RETURN key. Once CREF starts, it displays
the prompt

Cross reference [.CRF]:

3. Type the name of the cross-reference file that you wish to
convert to a cross-reference listing, then press the RETURN
key. You do not have to supply a. filename extension if your
cross-reference file has the extension . CRF. If your file does
not have this extension, you must supply the correct ext.en-.
SIOn.

Once you supply a filename, CREF displays the prompt

Listing [filename. REF] :

where filename.REF is the default filename for the cross­
reference listing.

4. Press the RETURN key if you wish to use the default name
for the cross-reference listing. Otherwise, type the filename
that you want and then press the RETURN key. If you do
not supply a filename extension, CREF uses .REF by de­
fault.

Once you have supplied the filenames, CREF reads the cross­
reference file and creates the new listing.

CREF: A Cross-Reference Utility

Notes

~{ ou can specify the disk drive or device to which CREF will
place the cross-reference listing by supplying an appropriate
drive or device name.

Typing a semicolon (;) for the listing filename causes CREF to
use the default filename.

You can correct typing errors on a line by using the BACKSPACE
key. You can abort CREF by pressing the CNTRL-C key.

6.3 Cross-Reference Listing Format

The cross-reference listing contains the name of each symbol defined
in your program followed by a list of line numbers. Each line
number represents the line in your program in which a symbol is de­
fined or used. The line number in which a symbol is defined is
marked with a pound sign (#). Each page in the listing begins with
the title of the program. The title is the name or string defined by
the TITLE directive in your program's source file.

For example, assume that the following source program is in the file
' 'test. as m : ' '

Microsoft Macro Assembler User 'a Gulde

TITLE A Test File.

public start
extrn print:near, exit:nea.r

DATA segment
assume ds:DATA

string db •A test file.•, OdH, OaH, o
DATA ends

CODE segment
assume cs:CODE

Sta.rt proc near
mov ax, DATA
mov ds, ax
mov ax, offset string
push ax
ca.11 print
add sp, 2
call exit

start endp
CODE ends

end start

To assemble this program and create a cross-reference file, you can
type

MASM test.a.sm, test.obj, test.1st, test.er!

The cross-reference file is named "test.err."

To create a cross-reference listing of this file, you can type

CREF test.er!, test.ref

The resulting cross-reference listing in the file "test.ref" should
ook like this:

CREF: A Cross-Reference Utility

A Test File.

Symbol Cross Reference

CODE

DATA

EXIT

PRINT

START
STRING

5.4 Error Messages

(# is definition)

13#

6#

4#

4#

3
8#

14

7

22

20

15#
18

24

11

23

Cref-1

16

26

CREF displays an error message and terminates operation whenever
it encounters an error. Control is then returned to the operating
system. All error messages have the Corm

Fatal 1/0 Error error-number
in: filename

where error-number is one of the numbers listed below, and filename
is the name of the cross-reference file you supplied.

Microsoft Macro Assembler User's Gulde

The following table lists all error numbers and explains the cause
and possible remedy of the error:

Error Number
101

105

108

110

111

103, 104, 106,
112 thru 115

Description
Hard data or device name error. This is an
unrecoverable disk 1/0 error. Make sure your
cross-reference filename is correct and that you
have given the correct drive or device name.

Device offline. Make sure that the disk drive
door is closed, that the printer is attached, or
that the device named for the cross-reference
file or cross-reference listing file is online.

Disk full. You must make enough room on the
given disk for the cros·s-ref erence listing file.

File not found. Make sure you have typed the
cross-reference and cross-reference listing
f ilen am es correctly.

Disk is write-protected. You cannot create a
listing file on a write-protected disk.

Internal error. Please report to Microsoft Cor­
poration.

Chapter6
LIB: A Library Manager

6.1 Introduction 6-1

6.2 Starting and Using LIB 6-1
6.2.1 Starting LIB With a Command Line 6-2
6.2.2 Starting LIB With Prompts 6-3
6.2.3 Starting LIB With a Response File 6-5
6.2.4 Creating a New Library 6-6
6.2.5 Checking a Library's Consistency 6-7
6.2.6 Setting the Library Page Size 6-7
6.2.7 Creating a Cross-Reference Listing 6-8

6.3 Using LIB Commands 6-9
6.3.1 Adding a Module to a Library 6-g
6.3.2 Deleting Library Modules 6-10
6.3.3 Replacing Library Modules 6-11
6.3.4 Copying Library Modules 6-12
6.3.5 Moving Library Modules 6-13
6.3.6 Combining Libraries 6-13

LIB: A Library Manager

6.1 Introduction

The Microsoft Library Manager, LIB, creates, organizes, and main­
tains program libraries. A program library is a collection of one or
more "object modules." Object modules are assembled or compiled in­
structions and data that are ready for linking. A library stores object
modules that other programs may need for execution. Libraries are
used by the program linker, LINK, to resolve references to routines
and variables used but not defined in a program.

LIB creates a library by copying the contents of one or more "object
files" into a library file. An object file contains a single object module,
created by MASM or a high-level language compiler. When LIB adds
an object module to a library, it places the module's name in the
library's table of contents. When LINK searches the library for the
names of routines and variables used in a program, it checks the table
of contents. When it finds the routine, it extracts a copy of the module
containing that routine and links the module to the program. Thus,
only the modules that contain routines or variables used by the pro­
gram are extracted and linked.

This chapter explains how to create libraries, how to organize libraries
to make LINK searches more efficient, and bow to modify libraries by
adding or replacing object modules.

6.2 Starting and Using LIB

This section explains how to start and use LIB to create and maintain
libraries. You can use LIB to work on libraries in three different ways:
through the MS-DOS command line, in response to LIB prompts, and
through responses in a response file.

Once LIB starts, it either carries out the commands you have supplied,
or prompts for additional commands. You can stop LIB at any time by
pressing the CNTRL-C key.

.... -

Microsoft Macro Assembler User's Gulde

6.2.1 Starting LIB With a Command Line

You can start LIB and name all the commands and files to be processed
on a single MS-DOS command line. The LIB command line has the
form

LIB library (/P AGESIZE: n) comniands ... [,list-file, output-file]

The library names the library file to be worked on. If you do not supply
a filename extension, LIB uses .LIB by default. The /P AGESIZE op­
tion defines the page size of the library. The default is 16.

The commands are one or more LIB commands. They specify what
tasks to carry out on the given library.

The optional list-file is the name of the cross-reference listing file you
wish to make. If no filename is given, LIB does not create a listing file.

The optional output-file is the name of the new library file you wish to
copy the modified library to. If no filename is given, LIB uses the input
library name.

If a file is in another directory or on a different device, you must supply
an appropriate pathname or device name.

Ir you give a listing filename, you must separate it from the last com­
mand with a comma (,). If you give an output filename, you must
separate it from the listing file name with a comma(,) or from the last
command with two commas(,,).

You can use a semicolon after any entry but the first to direct LIB to
US\~ the default responses for the remaining entries. The semicolon
should be the last character on the command line.

Examples

LIB la.ng -+hea.p;

This example instructs LIB to replace the module "heap" in the li­
brary "lang.lib." The semicolon at the end of the command line tells
LIB to use the default responses for the listing file and output file.
This means that no listing file is created and that the changes are
written back to the original library file instead of creating a new li­
brary file.

LIB: A Library Manager

LIB lang -+heap,lang.lst,lang1.lib

This example creates a new library named "langl.lib" by modifying
the library ''lang.lib." The new library is identical to the old one ex­
cept that the module "heap" has been replaced. LIB also creates a
listing file for the library named ''lang.lst.''

8.2.2 Starting LIB With Prompts

You can let LIB prompt you for the information it needs by typing
just the command name at the MS-DOS command level. Follow
these steps:

1. Type

LIB

and press the RETURN key. LIB starts and displays the
prompt

Library name:

2. Type the name of the library you wish to work on. If you do
not supply a filename extension, LIB supplies .LIB by de­
fault. If you wish to create a new library, type the new
name. Once you have typed the name, press the RETURN
key.

LIB now examines the library name and either displays the
next prompt or asks for permission to create the new li­
brary. If LIB must create the library file, it displays the
prompt

Library file does not exist. Create?

Type "yes" to create the library file. Type "no" to return
to the MS-DOS command level.

Once the library is ready for work, LIB displays the prompt

Operations:

Microsoft Macro Assembler User's Gulde

3. Type the command or commands you wish to carry out on
the given library and press the RETURN key. If you have
more commands than can fit on one line, type an ampersand
(&) as the last character on the line and press the RETURN
key. LIB prompts for more commands.

Once you have typed all commands, press the RETURN key.
If you only want LIB to check the consistency of the library,
do not type any commands-just press the RETURN key.
Once you have pressed the RETURN key, LIB displays the
prompt

List file:

4. Type the nam~ of the new cross-reference listing file and
press the RETURN key. Make sure the filename is exactly as
you want it. LIB will not provide a default filename exten­
sion. If you do not want a cross-reference listing file, do not
type a name-just press the RETURN key.

Once you have pressed the RETURN key, LIB displays the
following prompt only if you have given commands that
modify the library:

Output library:

5. Type the name of the output file you wish to create. If you
do not supply a filename extension, LIB supplies .LIB by de­
fault. If you do not give any filename, LIB uses the name of
the current library. In this case, LIB saves a backup copy of
the current library by replacing its .LIB extension with
.BAK.

Press the RETURN key when you are ready.

LIB now carries out the commands you have requested.

LIB: A Library Manager

Notes

You can direct LIB to select the default responses to all remain­
ing prompts by typing a semicolon (;) at any prompt line other
than the first. When LIB encounters a semicolon, it immediate­
ly chooses the default responses and carries out any given com­
mands.

You must supply a pathname or device name for any file that is
in another directory or on another disk.

You can set the library page size when you name the library file.
See Section 6.2.6, "Setting the Library Page Size."

Example

LIB

Library File: math
Operations: +sin +cos a
Operations: +atan +exp
List file:
Output library: math1

This example adds the modules in the object files "sin.obj"
"cos.obj" "atan.obj" and "exp.obj" to a new library named
"math I.lib." The rest of the library is identical to the contents of
the library "math .lib."

8.2.3 Starting LIB With a Response File

You can direct LIB to read commands and filenames from a response
file by supplying the name of the response file when you invoke LIB.
The command line has the form

LIB @response-file

The response-file is the name of the response file to be read. It must
be preceded by an at sign (@). A pathname or device name must be
given if the file is in another directory or on a different drive.

Microsoft Macro Assembler User's Gulde

You can name the response file anything you like. The file has the
general r orm

library(/P AGESIZE: n)
commands)
list-file)
output-file)

Each filename must be put on a separate line. Any number or com­
mands can be placed on a line. If you have more commands than can
fit on one line, you can extend the line by typing an ampersand (&)
at the end of the line.

When you run LIB with a response file, it displays each response file
line as it processes it. If the response file does not contain answers
for all the prompts, LIB prompts you for the missing names. You
can use a semicolon anywhere in the response file to cause LIB to
select default filenames for the remaining prompts.

Example

PLib
+cursor +heap -heap *Stack
cross.1st

This response file causes LIB to work on the library "PLib.lib." The
commands add the module "cursor," replace the module "heap" and
copies the module "stack" to a new object file.

6.2.4 Creating a New Library

You can create a new library by simply giving the name of the new
library file when you invoke LIB. The name of the new library must
not be the name of an existing file, or LIB will assume you want to
modify the existing file. \Vhen you give the name of a library file
that does not currently exist, LIB looks for the file, then displays
the prompt

Library file does not exist. Create?

Type "yes" to create the file. Type "no" to abort the library ses-.
SIOD.

6-R

LIB: A Library Manager

You can specify a page size when you create the library. The default
page size is 16 bytes. See Section 6.2.6 "Setting the Library Page
Size."

8.2.5 Checking a Library's Consistency

You can check that a library's contents are consistent and usable by
running LIB without commands. Simply type LIB, the name of the
library you wish to check, and a semicolon. LIB then makes sure
that all entries in the library can be accessed. If any problems are
discovered, LIB displays an error message. Otherwise, it displays
nothing.

For example, the command

LIB math;

carries out a consistency check on the library "math.lib."

Consistency checks are typically used to verify that the contents of
existing libraries are usable. For example, if you copied a library
from another disk, you can run a consistency check to verify that
the copied library is intact.

Note that LIB automatically checks object modules for consistency
before adding them to the library, so you do not need to check the li­
brary each time you add a module.

8.2.8 Setting the Library Page Size

You can set the library page size by adding a page size option after
the library filename in the LIB command line. The command line
has the form

LIB library-name/P AGESIZE: n

The n specifies the new page size. It must be an integer value
representing a power or 2 between the values 16 and 32,768.

The page size of a library affects the alignment of n1odules stored in
the library. Modules in the library are aligned to always start at a

Microsoft Macro Assembler User's Gulde

position that is a multiple or the page size (in bytes) from the begin­
ning of the file. The default page size is 16 for a new library or the
current page size for an existing library.

Note

Because of the indexing technique used by LIB, a library with a
large page size can hold more modules than a library with a
smaller page size. However, for each module in the library, an
average of n/2 bytes of storage space is wasted (where n is the
page size.) In most cases, a small page size is advantageous; you
should use the smallest page size possible.

Example

LIB math/PAGESIZE:256 ;

This example creates a library named "math.lib" whose page size is
256 bytes.

G.2.7 Creating a Cross-Reference Listing

You direct LIB to create a cross-reference listing whenever you give
a listing filename in a LIB command line. A cross-reference listing
file contains two lists: a list of all public symbols in the library, and
a list of all modules in the library.

In the first list, all symbols are listed alphabetically. Each symbol
name is followed by the name of the module in which it is referenced.
The list has the form

START
SUM
SUM2
EXIT

...... main

. add
add
error

In the second list, all modules are listed alphabetically. The module
name is followed by an alphabetical listing of the public symbols
referenced in that module. The list has the form

LIB: A Library Manager

main Offset: 00000200H Code and data size: 20H
START

add Offset: 00000400H Code and data size: 20H
SUM SUM2

error Offset: 00000600H Code and data size: CH
EXIT

6.3 Using LIB Commands

The LIB commands specify the tasks to be carried out on a given li­
brary. The commands add, delete, and replace modules in a given li­
brary. They also copy and move modules to new libraries.

Command
Add
Delete
Replace
Copy
Move

Symbol

+

-+
*

Commands can be given on the LIB command line or in response to
LIB's Operations prompt.

8.3.1 Adding a Module to a Library

Syntax

+object-file

The Add (+)command adds the object module in the given object­
file to the current library. The object-file must be the filename of an
object file. If you do not give a filename extension, LIB supplies
.OBJ by default. If the file is in another directory or on a different
disk, you must supply an appropriate pathname or device name.
There must be no spaces between the plus sign (+) and the name.

Microsoft Macro Assembler User's Gulde

LIB searches for the file you have named, and adds the file's con­
tents to the current library. LIB then strips the drive name, path­
name, and the filename extension (if any) from the object filename
and places the resulting name in the library's table of contents.

LIB always adds object modules to the end of the library file.

Examples

LIB math +sin.obj

This example adds the module in the file "sin .obj" to the library
''math .lib.''

LIB \11b\math +cos, list;

This example adds the module in the file "cos.obj" to the library
"math .lib" in the \lib directory.

LIB math +A:\src\atan ;

This example adds the module in the file "atan.obj" to the library
"math.lib." The object file is in the \src directory on drive A:.

6.3.2 Deleting Library Modules

Syntax

-module-name

The Delete (-) command deletes the object module named module­
name from the current library. The module-name must be the name
of the module you wish to delete. It must be spelled exactly as it ap­
pears it the library's table of contents.

fi-10

LIB: A Library Manager

Note

LIB carries out all Delete commands before attempting to carry
out any Add commands, regardless of the order in which the
commands appear in the command line. This order of execution
prevents confusion in LIB when a new version of a module re­
places an existing version in the library file.

Examples

LIB ma.th - sin

This example deletes the module "sin" from the library "math .lib."

LIB \11b\math -cos, list;

This example deletes the module "cos" from the library "math .lib"
in the \lib directory.

LIB ma.th +A: \src\a.ta.n - a.tan ;

This example deletes the module "atan.obj" from the library
"math.lib." It then adds the module in the object file
"A:\src\atan.obj" to the library. Note that the Delete command is
carried out before the Add command.

8.3.3 Replacing Library Modules

Syntax

-+module-name

The Replace(-+) command replaces the module module-name with
the module in an object file having the same name. The module­
name must have exactly the same spelling as the name in the
library's table of contents. LIB first deletes this module, then
searches the current working directory for a file having the same
name and the filename extension .OBJ.

Microsoft Macro Assembler User's Guide

If LIB cannot find the file containing the replacement module, it
displays an error message.

Example

LIB math - +cos·
'

This example deletes the module "cos.obj" then adds the contents of
the file "cos.obj" to the library.

8.3.4 Copying Library Modules

Syntax

*module-name

The Copy command extracts a copy of the module given by module­
name to an object file having the same name. The module-na11ze
must have exactly the same spelling as the name in the library's
table of contents.

When LIB copies the module to an object file, it creates a file whose
filename is the same as the module, but whose filename extension is
.OBJ. The file is placed in the current working directory.

Example

LIB math *COS ;

This example creates a file named "cos.obj" in the current working
directory. The file contains the object module copied from the
''math .lib" library.

,.. .. "

LIB: A Library Manager

8.3.5 Moving Library Modules

Syntax

-*module-name

The Move (-*) command moves the module given by module-name
from the current library to an object file having the same name as
the module. The module-name must be spelled exactly as it appears
in the library's table of contents.

The move is equivalent to copying the module to an object file, as
described above, then deleting the module from the library.

Example

LIB math -*COS

This example moves the module "cos" into an object file named
"cos.obj" in the current working directory. The module is deleted
from the library "math."

8.3.8 Combining Libraries

Syntax

+library-name

The Add (+) command can also be used to add the contents or one
library to the current library. The library-name must be the name
of the library file you wish to add. You must give the filename ex­
tension of the file, otherwise, LIB assumes the file is an object file.

LIB adds the modules of the named library to the end or the current
library without destroying the named library or deleting any
modules.

Microsoft Macro Assembler User's Guide

Note

LIB can be used to add the contents of XENIX TM and Intel-style
libraries to MS-DOS libraries.

Example

LIB math1 +math.lib;

This example adds the modules contained in the library "math.lib"
to the modules in the library "math 1.lib."

Chapter7
MAKE:
A Program Maintainer

7.1 Introduction 7-1
7.1.1 Using MAKE 7-1
7.1.2 Creating a Make Description File 7-1
7.1.3 Starting MAl(E 7-3

7 .2 Maintaining a Program: An Example 7-4

MAKE: A Program Maintainer

7 .1 Introduction

The Microsoft Program rvlaintainer, f\1AKE, automates the process re­
quired to maintain assembly and high-level language programs.
MAKE automatically carries out all tasks needed to update a program
after one or more of its source files have changed.

Unlike other batch processing programs, M~i\KE compares the last
modification date of the file or files that may need updating with the
modification dates of files on which these target files depend. MAKE
then carries out the given task only if a target file is out-of-date.
MAKE does not assemble, compile, and link all files just because one
file has been updated. This can save much time when creating pro­
grams that have many source files or take several steps to complete.

The following sections explain how to use MAKE and illustrate how to
maintain a sample assembly language program.

7.1.1 UslngMAKE

To use MAKE, you must create a make description file that defines the
tasks you wish to accomplish and the files on which these tasks
depend. Once the description file exists, you simply supply the
filename when you invoke MAKE. t\1AKE then reads the contents of
the file and carries out the requested tasks.

The following sections explain how to create a make description file
and how to start MAKE.

7 .1.2 Creating a Make Description File

You can create a make description file by using a text editor. A make
description file consists of one or more target descriptions. Each
description has the general form

target-file: dependent-file ...
command ...

Microsoft Macro Assembler User's Guide

where target-file is the name of a file that may need updating,
dependent-file is the name of a file on which the target file depends, and
command 1s an external MS-DOS command.

The target-file and dependent-file must be valid file specifications. The
specifications must include pathnames (or drive names) if the files are
not in the same directory (or on the same drive) as the description file.

Any number of dependent files can be given, but only one target name
is allowed. Dependent filenames must be separated with at least one
space. If you have more dependent files than can fit on one line, you
can continue the names on the next line by typing a backslash (\) fol­
lowed by a new line.

The command can be any external MS-DOS command. Internal com­
mands, such as TYPE and COPY, are not allowed. Any number of
commands can be given, but each must begin on a new line and must be
preceded by a TAB or spaces. The commands are carried out only if one
or more of the dependent files have been modified since the target file
was created.

You can give any number of target descriptions in a description file.
You must make sure, however, that the last line in one description is
separated from the first line of the next by at least one blank line.

Note

,, i)

The order in \vhich you place the target descriptions is important.
MAI<E examines each description in turn and makes its decision
to carry out a given task based on the file's current modification
date. If a command in a later description modifies a file, MAKE
has no way to return to the description in which that file is a tar­
get.

MAKE: A Program Maintainer

Example

startup.obj: startup.asm
MASM startup,startup,nul,nul

print.obj: print.asm
MASM print,pr1nt,pr1nt,print

print. ref: print. crf
CREF pr1nt,pr1nt

print.exe: startup.obj print.obJ \lib\syscal.lib
LINK startup+pr1nt,pr1nt,pr1nt/map,\lib\syscal;

print.sym: print.map
MAPSYM -1 print.map

This example defines the actions to be carried out to create five tar­
get files. Each file has at least one dependent file and one command.
The target descriptions are given in the order in which the target
files will be created. Thus, startup.obj and print.obj are examined
and created, if necessary, before print.exe.

7 .1.3 Starting MAKE

The MAKE command line has the form

MAKE filename

where filename is the name of a make description file. A make
description file, by convention, has the same filename (but with no
extension) as the program it describes. Although any filename can
be used, this convention is preferred.

Once you start ~1AKE, it examines each target description in turn.
If a given target file is out-of-date with respect to its dependent file
or if the file does not exist, MAKE executes the given command or
commands. Otherwise, it skips to the next target description.

When MAKE finds an out-of-date target file, it displays the
corresponding command or commands before executing them. If
MAKE finds a file that does not exist, it displays a message of the
form

Microsoft Macro Assembler User's Gulde

make: filename - file not found

It displays this message even if the file is a target file and is created
by subsequent commands.

When MAKE executes a command, it uses the same environment
used to invoke MAKE. Thus, environment variables such as PATH
are available for these commands.

Example

make test

This example directs MAKE to take its instructions Crom the make
description file named "test".

7 .2 Maintaining a Program: An Example

MAKE is especially useful for programs that are in development, be­
cause it offers a quick way to recreate a modified program after
small changes. Consider a test program name "test.asm" that is be­
ing used to debug the routines in a library file named "math.lib."
The purpose of "test.asm" is to call one or more routines in the li­
brary so a study of their interaction can be made. Each time
"test.asm" is modified, it has to be assembled, a cross-reference list­
ing has to be created, the assembled file has to be linked to the li­
brary, and, finally, a symbol file has to be created to use with SYM­
DEB. The following target descriptions copied to the description
file named "test" will carry out all of these tasks:

test.obj: test.asm
MASM test,test,test,test

test.re!: test.er!
CREF test,test

test.axe: test.obj \11b\math.11b
LINK test,test,test/map,\11b\math

test.sym: test.map
MAPSYM -1 test.map

MAKE: A Program Maintainer

These lines define the actions to be carried out to create four target
files: "te~t.obj,'' "test.ref," "test.exe," and "test.sym." Each file
has at least one dependent file and one command. The target
descriptions are given in the order in which the target files will be
created. Thus, test.sym depends on test.map which is created by
LINK; test.exe depends on test.obj which is created by ~1ASM; and
test.ref depends on test.err which is also created by MASM.

Once the description file is in place, you can create test.asm using a
text editor, then invoke MAl<E to create all other required files.
The command line should be

MAKE test

MAKE carries out the following steps:

1. Compares the modification date of test.asm with test.exe. If
test.exe is out of date (or does not exist), MAKE executes
the command

MASH test,test,test,test

Other,vise, it skips to the next target description.

2. ~1.t\.KE compares the dates of test.ref and test.err. If
test.ref is out of date, it executes the command

CREF test, test

3. Compares test.exe \\'ith the dates of test.obj and the library
file math .lib. If test.exe is out-of-date 'vi th respective to
either file, t\1AKE executes the command

LINK test,test,test/map,\11b\math.11b

4. Compares the test.sym and test.map. If out-of-date, it exe­
cutes

MAPSYM -1 test.map

When test.asm is first created, ~1Al(E \viii execute a11 commands,
since none of the target files exist. If you invoke MAKE again
without changing any of the dependent files. it 'viii skip all com­
mands. If you change the library file math.lib, but make no other

Microsoft Macro Assembler User's Gulde

changes, MAl<E will execute the LINK command, since test.exe is
now out-of-date with respect to math.lib. It will also execut.e MAP­
SYM, since test.map is created by LINI(. No other commands are
carried out.

7-6

Appendix A
Error Messages

A.I Introduction A-1

A.2 Macro Assembler Messages A-1

A.3 Linker Messages A-10

Error Messages

A.I Introduction

This appendix lists and explains the error messages that can be gen­
erated by the lvfacro Assembler, MASM, and the Linker LINK.

A.2 Macro Assembler Messages

This section lists and explains the messages displayed by the Macro
Assembler, MASM. MASM displays a message whenever it encounters
an error during processing. It displays a warning message whenever it
encounters questionable statement syntax.

An end-of-assembly message is displayed at the end or processing,
even if no errors occurred. The message contains a count or errors and
warning messages it displayed during the assembly. The message bas
the form

This message is also copied to the source listing.

Error messages are divided into two categories: assembler errors and
1/0 handler errors. In each category, messages are listed in numeri­
cal order with a short explanation where necessary.

Aasembler Errors

0: Block nesting error
Nested procedures, segments, structures, macros, IRC, IRP,
or REPT are not properly terminated. An example or this
error is closing an outer level or nesting with inner level(s)
still open.

1: Extra characters on line
This occurs when sufficient information to define the in­
struction directive has been received on a line and superflu­
ous characters beyond are received.

Microsoft Macro Assembler User's Guide

2: Register already defined
This will only occur if the assembler has internal logic er-
rors.

3: Unknown symbol type
Symbol statement has something in the type field that is
u n rec ogn i z ab I e.

4: Redefinition of symbol
This error occurs on pass 2 and succeeding definitions of a
symbol.

5: Symbol is multi-defined
This error occurs on a symbol that is later redefined.

6: Phase error between passes
The program has ambiguous instruction directives such that
the location or a label in the program changed in value
between pass 1 and pass 2 of the assembler. An example of
this is a forward reference coded without a segment override
where one is required. There would be an additional byte
(the code segment override) generated in pass 2 causing the
next label to change. You can use the /D option to produce
a listing to aid in resolving phase errors between passes. See
Chapter 2, "MASM: A Macro Assembler."

7: Already had ELSE clause
Attempt to define an ELSE clause within an existing ELSE
clause (you cannot nest ELSE without nesting IF ... ENDIF').

8: Not in conditional block
An ENDIF or ELSE is specified without a previous condi­
tional assembly directive active.

9: Symbol not defined
A symbol is used that has no definition.

10: Syntax error
The syntax or the statement does not match any recogniz­
able syntax.

11: Type illegal in context
The type specified is or an unacceptable size.

Error Me11age1

12: Should have been group name
Expecting a group name but something other than this was .
given.

13: Must be declared in pass 1
An item was referenced before it was defined in Pass 1. For
example, "IF DEBUG" is illegal if DEBUG is not previously
defined.

14: Symbol type usage illegal
Illegal use of a PUBLIC symbol.

15: Symbol already different kind
Attempt to define a symbol differently from a previous de­
finition.

16: Symbol is reserved word
Attempt to use an assembler reserved word illegally. For
example, to declare MOY as a variable.

17: Forward reference is illegal
Attempt to reference something before it is defined in pass
1.

18: Must be register
Register expected as operand but you furnished a symbol -­
was not a register.

19: Wrong type of register
Directive or instruction expected one type of register, but
another was specified. For example, INC CS.

20: Must be segment or group
Expecting segment or group and something else was speci­
fied.

21: Symbol has no segment
Trying to use a variable with SEG, and the variable bas no
known segment.

22: Must be symbol type
Must be WORD, DW, QW, BYTE, or TB but received some­
thing else.

Microsoft Macro Assembler User's Gulde

23: Already defined locally
Tried to define a symbol as EXTERN~'\L that had already
been defined locally.

24: Segment parameters are changed
List of arguments to SEG~fENT \\'ere not identical to the
first time this segment was used.

25: Not proper align/combine type
SEGt\1ENT parameters are incorrect.

26: Reference to mult defined
The instruction references something that has been multi­
defined.

27: Operand was expected
Assembler is expecting an operand but an operator was re­
ceived.

28: Operator was expected
Assembler was expecting an operator but an operand was re­
ceived.

29: Division by 0 or overflow
An expression is given that results in a divide by 0 or a
number larger then can be represented.

30: Shift count is negative
A shift expression is generated that results in a negative
shift count.

31: Operand types must match
Assembler gets different kinds or sizes of arguments in a
case where they must match. For example, MOV.

32: Illegal use of extern al
Use of an external in some illegal manner. For example, D.B
M DUP(?) where Mis declared external.

33: Must be record field name
Expecting a record field name but got something else.

• •

Error Messages

34: Must be record or field name
Expecting a record name or field name and received some­
thing else.

35: Operand must have size
Expected operand to have a size, but it did not.

36: Must be var, label or constant
Expecting a variable, label, or constant but received some­
thing else.

37: Must be structure field name
Expecting a structure field name but received something
else.

38: Left operand must have segment
Used something in right operand that required a segment in
the left operand. (For example, ":. ")

39: One operand must be const
This is an illegal use of the addition operator.

40: Operands must be same or 1 abs
Illegal use of the subtraction operator.

41: Normal type operand expected
Received STRUC, FIELDS, NAMES, BYTE, WORD, or DW
when expecting a variable label.

42: Constant was expected
Expecting a constant and received an item that does not
evaluate to a constant. For example, a variable name or
external.

43: Operand must have segment
Illegal use or SEG directive.

44: Must be associated with data
Use of code related item where data related item was expect­
ed. For example, MOV AX,<code-label>.

45: Must be associated with code
Use or data related item where code item was expected.

Microsoft Macro Assembler User'• Gulde

46: Already have base register
Trying to double base register.

47: Already have index register
Trying to double index address.

48: Must be index or base register
Instruction requires a base or index register and some other
register was specified in square brackets, [).

49: Illegal use or register
Use or a register with an instruction where there is no 8086
or 8088 instruction possible.

50: Value is out or range
Value is too large for expected use. For example, MOV
AL,5000.

51: Operand not in IP segment
Access of operand is impossible because it is not in the
current IP segment.

52: Improper operand type
Use or an operand such that the opcode cannot be generated.

53: Relative jump out or range
Relative jumps must be within the range -128 to +127 of the
current instruction, and the specific jump is beyond this
range.

54: Index displ. must be constant
Illegal use of index display.

55: Illegal register value
The register value specified does not fit into the "reg" field
(the value is greater than 7).

56: No immediate mode
Immediate mode specified or an opcode that cannot accept
the immediate. For example, PUSI-1.

57: Illegal size for item
Size of referenced item is illegal. For example, shift of a
double word.

Error· Messages

58: Byte register is illegal
lJse or one of the byte registers in con text v.rbere it is illegal.
For example, "PUSl-1 AL,~' is illegal.

59: CS register illegal usage
Trying to use the CS register illegally. For example,
"XCHG CS,AX," is illegal.

60: Must be AX or AL
Specification of some register other than AX or AL where
only these are acceptable. For example, the IN instruction.

61: Improper use of segment reg
Specification of a segment register where this is illegal. For
example, an immediate move to a segment register.

62: No or unreachable CS
Trying to jump to a label that is u n reach ab I e.

63: Operand combination illegal
Specification of a two-operand instruction where the combi­
nation specified is illegal.

64: Near JMP /CALL to different CS
Attempt to do a NEAR jump or call to a location in a dif­
ferent CS ASSUME.

65: Label can't have seg. override
Illegal use of segment override.

66: Must have opcode after prefix
Use of a REPE, REPNE, REPZ, or REPNZ instructions
without specifying any opcode after it.

67: Can't override ES segment
Trying to override the ES segment in an instruction where
this override is not legal. For example, "STOS
DS :TAR GET" is illegal.

68: Can't reach with segment reg
There is no ASSUME that makes the variable reachable.

Microsoft Macro Assembler U1er'1 Gulde

69: Must be in segment block
Attempt to generate code when not in a segment.

70: Can't use EVEN on BYTE segment
Segment was declared to be byte segment and attempt to
use EVEN was made.

72: Illegal value for DUP count
DUP counts must be a constant that is not 0 or negative.

73: Symbol already external
Attempt to define a symbol as local that is already external.

7 4: DUP is too large for linker
Nesting of DUPs was such that too large a record was creat­
ed for the linker.

75: Usage of? (indeterminate) bad
Improper use or the "?". For example, !+5.

76: More values than defined with
Too many initial values given when defining a variable using
a REC or STRUC type.

77: Only initialize list legal
Attempt to use STRUC name without angle brackets, < >.

78: Directive illegal in STRUC
All statements within STRUC blocks must either be com­
ments preceded by a semicolon (;), or one of the Define
directives.

79: Override with DUP is illegal
In a STRUC initialization statement, you tried to use DUP
in an override.

80: Field cannot be overridden
In a STRUC initialization statement, you tried to give a
value to a field that cannot be overridden.

81: Override is of wrong type

& n

In a STRUC initialization statement, you tried to use the
wrong size on override. For example, 'HELLO' for DW field.

82: Register can't be forward ref

83: Circular chain of EQU aliases
An alias EQU eventually points to itself.

84: 8087 opcode can't be emulated

Error Messages

Either the 8087 opcode or the operands you used with it pro-
duce an instruction that the emulator cannot support.

85: Unexpected end or rile
You forgot an end statement or there is a nesting error.

I/ 0 Handler Error•

These error messages are generated by the 1/0 handlers. These mes­
sages have the form

MASM Error -- error-message-text
in: filename

The filename is the name of the file being handled when the error oc­
curred. The error-message-text is one or the following messages:

101: Hard data
102: Device name
103: Operation
104: File system
105: Device offline
106: Lost file
107: File name
108: Device full
109: Unknown device
110: File not round
111: Protected file
112: File in use
113: File not open
114: Data format
115: Line too long

Mlcro11<>ft Macro Aaaembler Uaer'• Gulde

A.3 Linker Messages

This section lists the error messages that can occur when linking
programs. The messages are in alphabetical order.

About to generate .EXE file.
Change diskette in drive A: and press ENTER.

This message appears before the .EXE has been written if
the /P switch is given. Insert diskette that the .EXE file is
to be written to into the specified drive (A: for example).

Ambiguous switch error: 'z'
User did not enter a unique switch name prefix after the
switch indicator /. For example, the command

A>LINK /N aa1n;

will generate this error. LINK will abort.

Array element size mismatch
A far communal array has been declared with two or more
different array element sizes (e.g., declared once as an array
or characters and once as an array or reals). NOTE: At the
present time, communal arrays are not available in MASM.

Attempt to put segment name in more than one group in file
filename

A segment was declared to be a member of two different
groups. Correct the source and recreate the object files.

Bad value for cparMaxAlloc
The number specified using the {CP ARMAXALLOC switch
does not lie in the range (1,65535 .

Cannot find library: filename.lib. Enter new file spec:
The linker cannot find filename.lib and is requesting a new
file name or a new path specification or both. The user
should respond to the prompt with a new file name or a new
path specification or both.

Cannot open list file
The directory or disk is full. Make space on the disk or in
the directory.

Error Mes1age1

Cannot open response file
User names a response file the linker cannot open. User has
probably made a typing mistake.

Cannot nest response files
User names a response file within a response file. Fix
response file.

Cannot open run file
. The directory or disk is full. Make space on the disk or in

the directory.

Cannot open temporary file
The directory or disk is full. Make space on the disk or in
the directory.

Cannot reopen list file
User did not actually replace the original diskette when
asked to. Restart the linker.

Common area longer than 65536 bytes
User's program has more than 64K or communal variables.
NOTE: At the present time, only Microsoft C programs can
possibly cause this message to be displayed.

Data record too large
LEDATA record (in an object module) contains more than
1024 bytes or data. This is a translator error. Note the
translator (compiler or assembler) that produced the in­
correct object module and the circumstances under which it
was produced, and report the information to Microsoft.

Dup record too large
LIDATA record (in an object module) contains more than
512 bytes or data. Most likely, an assembly module contains
a struc definition that is very complex, or a series of deeply
nested DUP statements (e.g. ARRAY db 10 dup(ll dup (12
dup (13 dup (...))))). Simplify and reassemble.

filename is not a valid library
The file specified as a library is invalid. LINK will abort.

Microsoft Macro Assembler U1er'1 Gulde

Fixup overflow near num in segment name in filenanie(name) offset
num

Some possible causes are: 1) A group is larger than 64K
bytes, 2) the user's program contains an intersegment short
jump or intersegment short call, 3) the user has a data item
whose name conflicts with that or a subroutine in a library
included in the link, and 4) the user bas an EXTRN declara­
t.ion inside the body or a segment, for example:

CODE segment public 'coda'
extrn ma.in: !ar
start proc !ar

call main
ret

start endp
CODE ends

The following construction is preferred:

extrn ma1n:!a.r
CODE segment public 'code'
start proc !ar

call main
rat

start endp
CODE ends

Revise the source and recreate the object file.

Incorrect DOS version, use DOS 2.0 or later
LINK will not run on pre-DOS 2.0, Reboot your system with
DOS 2.0 or above, and try linking again.

Insufficient st.ac k space
There is not enough memory to run the linker.

Interrupt number exceeds 255

A 1 o

A number greater than 2.55 has been given after the /OVER­
LA YINTERRUPT switch. Try again with a number in the
range 4 to 255.

Error Messages

Invalid numeric switch specification
Typographical error entering value for one or the linker
switches, such as entering a character string for a switch
that requires a numeric value. LINK will abort.

Invalid object module
One or the object modules is invalid. Try recompiling. Ir
the error persists, contact Microsoft.

NEAR/HUGE conflict
Conflicting near and huge definitions for a communal vari­
able. NOTE: At the present time, communal variables are
not available in MASM.

Nested left parentheses
User has made a typing mistake while specifying the con­
tents of an overlay on the command line.

No object modules specified
lTser failed to supply the linker with any object file names.

Out of space on list file
Disk on which list file is being written is full. Free more
space on the disk and try again.

Out of space on run file
Disk on which .EXE is being written is full. Free more space
on the disk and t.ry again.

Out of space on scratch file
Disk in default drive is full. Delete some files on that disk,
or replace with another diskette, and restart the linker.

Overlay manager symbol already defined: name
User has defined a syn1bol name that conflicts with one of
the special overlay manager names. Change the offending
name and relink.

Please replace original diskette in drive A: and press ENTER.
This message appears after the .EXE has been written if the
/P switch is given. Insert the diskette with the list file so
that it can be reopened.

Microsoft Macro Assembler User's Gulde

Relocation table overflow
More than 16384 long calls or long jumps or other long
pointers in the user's program. Rewrite program replacing
long references with short references where possible and re­
create object module. NOTE: Pascal and FORTRAN users
should first try turning debugging orr.

Segment limit set too high
The limit on the number or segments allowed was set too
high using the /SEG~IBNTS switch. LINK will abort.

Segment limit too high
There is insufficient memory for the linker to allocate tables
to describe the number of segments requested (either the
value specified with /SEGMENTS or the default: 128). Ei­
ther try the link again using /SEGMENTS to select a small­
er number of segments (e.g. 64, it the default were used pre­
viously) or free some memory.

Segment size exceeds 64K
lJser has a small model program with more than 64Kbytes of
code, or user has a middle model program with more than
64Kbytes of data. Try compiling and linking middle or
large model.

Stack size exceeds 65536 bytes
The size specified for the stack using the /ST ACK switch is
more than 65536 bytes.

Symbol table overflow
The user's program ha.s greater than 256K of symbolic infor­
mation (Publics, extrns, segments, groups, classes, files,
etc). Combine modules and/or segments and recreate the
object files. Eliminate as many public symbols as possible.

Terminated by user
The user entered Ctrl-C.

Error Messages

Too many external symbols in one module
lJser's object module specified more than the allowed
number of external symbols. Break up the module.

Too many group-, segment-, and class-names in one module
lJser's program contains too many group, segment, and
class names. Reduce the number of groups, segments, or
classes and recreate the object files.

Too many groups
User's program defines more than nine groups. Reduce the
number or groups.

Too many GRPDEFs in one module
LINK encountered more than 9 GRPDEFs in a single
module. Reduce the number of GRPDEFs or split up the
module.

Too many libraries
llser tried to link with more than 16 libraries. Combine li­
braries or link modules that require fewer libraries.

Too many overlays
lJser's program defines more than sixty-three overlays.
Reduce the number or overlays.

Too many segments
The user's program has too many segments. Relink using
the /SEGMENTS switch with an appropriate number or
segments specified.

Too many segments in one module
The user's object module has more than 255 segments. Split
the modules or combine segments.

Too many T),.PDEFs
An object module contains t.o many TYPDEF records.
These records are emitted by a compiler to describe commu­
nal variables. NOTE: At the present time, communal vari­
ables are not available in MASM.

Microsoft Macro Assembler User's Gulde

Unexpected end-of-file on library
The diskette containing the library has probably been re­
moved. Try again after replacing the diskette with the li­
brary.

Unexpected end-of-file on·scratch file
Diskette containg VM. T~1P was removed. Restart linker.

Unmatched left parenthesis
User has made a typing mistake while specifying the con­
tents or an overlay on the command line.

Unmatched right parenthesis
User has made a typing mistake while specifying the con­
tents of an overlay on the command line.

Unrecognized switch error: 'filename'
User entered an unrecognized character after the switch in­
dicator /, such as:

A>LIHK /ABCDEF main;

LINK will abort.

VM.T:MP is an illegal file name and has been ignored
User has used VM.T~1P as an object file name. Rename file
and link again.

Warning: no stack segment
User's program contains no segment or combine-type stack.

Warning: too many local symbols
The user has asked for a sorted listing of local symbols in
the list file, but there are too many symbols to sort. The
linker will produce an unsorted listing or the local symbols.

Warning: too many public symbols
The user has asked for a sorted listing or public symbols in
the list file, but there are too many symbols to sort. The
linker will produce an unsorted listing or the public symbols.

Index
/A option 2-10
Add (+)command 6-9
Assemble command 4-16
Assembler See MASM
Assembly listing

raise conditionals 2-8
pass I listing 2-6

Breakpoint clear command
4-19

Breakpoint disable command
4-20

Breakpoint enable command
4-20

Breakpoint list command 4-21
Breakpoint set command 4-18

Combining (+)command 6-13
Compare command 4-22
Copy(*) command 6-12
/CP ARMAXALLOC option

3-13
CREF

command line 5-2
cross-reference file 5-1
described 5-1
error messages 5-7
invoking 5-1
prompts 5-3, 5-4

Cross-reference file
creating 2-2, 5-1

Cross-reference listing
creating 5-2
format 5-5

/D option 2-6
Debug utility See SYMDEB
Delete(-) command 6-10

Description file 7-1
Disassembly mode 4-52
Display command 4-22
Display modes

disassembly 4-52
mixed 4-52
source 4-52

Index

/DOSSEG option 3-21
/DSALLOCATE option 3-15
Dump ASCII command 4-23
Dump bytes command 4-24
Dump command 4-30
Dump doublewords command 4-26
Dump long reals command 4-28
Dump short reals command 4-27
Dump ten-byte reals command 4-29
Dump words command 4-25

/E option 2-10
Enter command 4-31
Environment variables

LIB 3-7
Examine symbol map command 4-32
Executable files, creating 3-1

Fill command 4-34
Flags 4-47
Floating point emulator 2-10
Floating point processor 2-9

Go command 4-35
Groups, assembly listing 2-15

Help command 4-36
Hex command 4-37
/HIGH option 3-14

Index

/IBM option 4-5
Input command 4-38

LIB
checking consistency 6-7
command line 6-2
commands

add(+) 6-9
combining (+) 6-13
copy(*) 6-12
delete(-) 6-10
move(-*) 6-13
replace(-+) 6-11

creating a library 6-6
cross-reference listing 6-8
environment variable 3-7
invoking 6-1
/PAGESIZE option 6-7
prompts 6-3
response file 6-5

Libraries
combining 6-13
consistency 6-7
creating 6-6
cross-reference 6-8
managing6-1
page size 6-7

/LINENUMBERS option 3-16
LINK

"

command line3-1
default filename extensions

3-2
described 3-1
invoking 3-1
map file 3-8
operation 3-21
options 3-10

/CPARMAXALLOC 3-13
/DOSSEG 3-21
/DSALLOCATE3-15
/HIGH 3-14
/LINENUMBERS 3-16
/MAP 3-12

LINK {continued)
options 3-10 (continued)

/NODEF AUL TLIBRARY -
SEARCH3-17
/NOGROUP ASSOCIATION 3-18
/NOIGNORECASE 3-17
/OVERLAYINTERRUPT 3-19
/PAUSE3-11
/SEGMENTS 3-20
/STACK3-12

prompts 3-3
response file 3-5
search paths 3-7
temporary file 3-9

Linking, described 3-1, 3-21
Load command 4-38

Macro Assembler See MASM
Macros

assembly listing 2-13
MAKE

dependent file 7-2
described 7-1
description file 7-1
invoking 7-3
messages 7-3, 7-4
target file 7-2

/MAP option 3-12
MASM

assembly listing 2-11
command line 2-1
cross-reference file 2-2, 2-3
false conditionals 2-8
floating point emulator 2-10
floating point processor 2-9
group table 2-15
invoking 2-1
macro listing 2-13
options 2-6

/A 2-10
/D 2-6
/E2-10
/~1L 2-7

MASM (continued}
options 2-6 (continued)

/MX 2-8
/0 2-7
/R 2-9
/X2-8

output radix 2-7
pass 1 listing 2-6
phase errors 2-19
preserving lowercase 2-7, 2-8
prompts 2-3
record table 2-14
segment order 2-10
segment table 2-15
structure table 2-14
symbol table 2-17

Mixed mode 4-52
/ML opt.ion 2-7
Move command 4-40
Move(-*) command 6-13
/MX option 2-8

Name command 4-41
/NODEF AUL TLIBRAR­

YSEARCH option 3-17
/NOGROUP ASSOCIATION

option 3-18
/NOIGNORECASE option

3-17
Non-mask able interrupt 4-7

/0 option 2-7
Open map command 4-42
Output command 4-43
/OVERLA YINTERRLJPT op-

tion 3-1 g

/PAGESIZE option 6-7
/P AlTSE option 3-11
Phase errors 2-1 g
Program maintainer See

MAKE

Index

Ptrace command 4-43

Quit command 4-44

/R option 2-9
Records, assembly listing 2-14
Redirection command 4-45
Register command 4-46
Replace(-+) command 6-11

Search command 4-48
Search paths 3-7
Segment order convention 3-21
/SEG~1ENTS option 3-20
Se g rn en ts , assembly Ii sting 2-15
Set source mode command 4-49
Source line display 4-1
Source line numbering 4-1
Source ~1ode 4-49
Source mode 4-52
/ST ACK option 3-12
Stack size, con tr o II in g 3-12
Structures

assembly listing 2-14
Symbol map

linker output 3-8
files 4-3, 4-4

Symbolic debugging 4-1
Symbols, assembly listing 2-17
SY~1DEB

argument passing 4-3
command format 4-8
command list 4-8
command parametPrs 4-8

address range 4-11
addresses 4-11
expressions 4-14
linen umbers 4-13
numbers 4-10
object range 4-12
strings 4-14

3

Index

SYMDEB (continued}
command parameters 4-8

(continued}

4

symbols 4-9
commands

Assemble 4-16
Breakpoint clear 4-19
Breakpoint disable 4-20
Breakpoint enable 4-20
Breakpoint list 4-21
Breakpoint set 4-18
Compare 4-22
Display 4-22
Dump 4-30
Dump ASCII 4-23
Dump bytes 4-24
Dump doublewords 4-26
Dump long reals 4-28
Dump short reals 4-27
Dump ten-byte reals 4-29
Dump words 4-25
Enter 4-31
Examine symbol map 4-32
Fill 4-34
Go4-35
Help 4-36
Hex 4-37
Input 4-38
Load 4-38
Move 4-40
Name 4-41
Open map 4-42
Output 4-43

SYMDEB (continue~)
commands (continued)

Ptrace 4-43
Quit 4-44
Redirection 4-45
Register 4-46
Search 4-48
Set source mode 4-49
Trace 4-51
Unassemble 4-52
Write 4-55

control keys 4-5
described 4-1
error messages 4-57
expressions 4-14
/IBM option 4-5
invoking 4-2
Non-mask able interrupt 4-7
program files 4-2
symbol map file 4-3, 4-4

Trace command 4-51

Un assemble command 4-52

VM.TMP file 3-9

Write command 4-55

/X option 2-8

