Inside the

i

ANUTSHELL®

HANDBOOK

IFSMgr, the Installable File System Manager

Y

=
“Z
: 7 5
W) A4
: l//, /,//
DY
3 7 7
/ % 1
)
s SN
/ SS=
j N
/ >
o
= y’ 4 7} £
/ = Y
= =3 *¢¢<§§‘\\\
= &3’ \~\an
= S
St AN
s e
e 1\“
N
Ny AR
N

i ‘\}’\\\\\ i
) 5

Stan Mitchell
O’Reilly & Associates, Inc.

Inside the Windows 95 File System

Inside the Windows 95 File System

Stan Mitchell

O’REILLY”

Cambridge - Koéln - Paris - Sebastopol + Tokyo

Inside the Windows 95 File System
by Stan Mitchell

Copyright © 1997 O'Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.
Editor: Andrew Schulman

Production Editor: David Futato

Printing History:

May 1997: First Edition

Nutshell Handbook and the Nutshell Handbook logo are registered trademarks, and The Java
Series is a trademark, of O'Reilly & Associates, Inc. The use of the mollusk image in
association with Windows file systems is a trademark of O’Reilly & Associates, Inc. Windows,
Windows NT, and Windows 95 are registered trademarks of Microsoft Corporation. Many of
the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc.
was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein. '

&
This book is printed on acid-free paper with 85% recycled content, 15% post-consumer waste.

O'Reilly & Associates is committed to using paper with the highest recycled content available
consistent with high quality.

ISBN: 1-56592-200-X

Table of Contents

PrefaICe ...t ix
1. From IFSMgr to the Internet ..., 1
LoNg FIleNAmMES ...co.oiiiiiiiiiiiiiiiiiciic ettt 1
Windows 3.11 Had an IFSMEI?ccccccoiviiiiiiiiiiiieincinenieie e secceeneiene e eieenes 3
Peering “Under the HOOA”cccooiiiiieiiiiiiiiiiiiee ettt 4

AN OVEIVIEW Of IFSMELoiiiiiiiiiiiiiiiieiiiienicienie sttt ettt n e s 4
Loading Netscape Navigatorivoveiiiriiiiiiiiiieienieateieeneseeeieeeeieennesee s 8
GOING O WWW.OTA.COIM ..eutiiuiianiieieenieentieieaiieatenteenseianeeteeseeesseesseeeenneenneense 14

2. Where Do Filenames GO? ... 20
What's in @ NADIE? ...oocviiiiiiiiiiiiiiiiee ittt snee s 20
Accessing LOCAl FIlESccveviiviiiiiiiiieiiiieieesenie et s 21
Accessing REMOtLe FilESccociviivinieiiiiiiiiiicnenceiieeccre st 24
AcceSSING DEVICEScccviiiiiiiiiiiiiiiciiiiicrc e 26

3. Patbways to the File SYSIemoooivicninicniiniiniinenrneeen. 29
THE Big BANG ..oviiieiieiiiiiiieieeie ettt ettt st be ettt st eae e e er et e 29
ACCESSING IFSMEI ..eiiiiiiiiiiiiiiiii it 41
The Win32 Callbackccccoceviiiiiiiiiiiiiiiiiei e 47

4. File System API MAPPINGccooooovviionininineininineiernieesienenes 53
The Win32 API and KERNEL32 ODbJECtSccccccvviiviiiiiiiiiiiniciinicncn 53
Implementation of VWIN32_Int21Dispatchcccccoiviciiiiiiiiiinniiiinns 73
Win16 File SEIVICES ...iceiiiiiiiiieiiiiinisinieieieteitnstn ettt 77

vi

Table of Contents

The “New” MS-DOS File SYstemccocoionionncnrocnncnn. 79
Interrupt 21h Handlers ..., 79
Interrupt 2Fh Handler ...t 92
Interrupt 25h and 26h Handlerscccovceieiieiisioiinicieiceenencesnevenenas 94
Interrupt 17h Handlerccoocviiiiiiiiiiiiiiieiics st 95
IFSMGR’s Common Dispatch ROULINEccccoiviriiiiiiiinciiniiicienesrciienene 95
Dispatching File System Requestsccn.... 100
The Dispatch Pointcccocevveereneniciienienenen. e 101
Dispatch FUNCHONSciviiiiiiiiiiirieiiciieiesieiesiese st ee et sae e 107
Shell Resources and the FSD’s Volume-Based Function Table 113
fhandle Structures and the FSD’s Handle-Based Function Table 115
Calling into'a File System DIIVETcccccvviiiiiiiiineneneeinesesesreee e 117
FSDS 28 PrOVIAEISoviiviiiiiiiiiiiiiicieiit sttt st st st 120
Enumerating Shell Resources and fhandlesccccocevivniniiiininicnnnnnn 121
Monitoring File ACHUILY ..., 124
The File System APT HOOKcccoeoiiiiiiiiiiiiieiisiine e sie e sneennens 124
The NetFunction HOOKccccoiiiiiniiniiiiiiiiiceiceecse e 137
HOoOKING 2 Path ..oociiiiiiiiie e 142
Anatomy of a File System Driveriiicncnnn. 144
FSD t0 IFSMEE LINKAZEcovviiiiiiiiiiiiiiieiie ettt s 144
FSDs Come in Three FIaVOrScccoceiiiiiiiiiiiieneneeiecreeneeeeee e 145
FSD MECRHAMNICSooviiiiiiiiiiiiiiiiciiein ettt 147
FSD LINKAZEetiiiiiiniiiiiiiiieiir ettt ettt ettt et saene et e 152
MONOCEFSD: A Character File System DIiVerccccccvvevvieiieieeneneneenens 165
FSINFILE: A Remote File System DIiverccoccovcviiieiienireiieiienineeenreenenns 172
VFAT: The Virtual FAT File System Driver 175
DOS 6.x FAT, Boot Record, and Directory Entri€scccccoovvveviviverenenin. 176
Windows 95 DireCtory ENLHESc.ccveverierierieniiniinieieiesiesaiesessesiesesenenens 179
Changes in Disk Layout with FAT32cccccueviiiniiiinienienecieie e 180
IOS and the Layered Driver Modelcccocovienineininnieniinnceen e 183
VFAT Initialization and REGISIIAtioncccceverieireieieneneieneeseeeneennnas 185
Mounting a VFAT VOIUMEc.coooviiieiiiiereiereeeeeieseceeiei e 187
Opening a VFAT File—Top Levelccccvvnininiiiiiniiiineccneeee e 193
Opening a VFAT File—Lower Levelcccocoovivvinieniiniiiiniiieieenennas s 197
Locating a Directory ENtrycccooiiiiiviiiiniiiiienicecnecnecsecsiec e 199

VFEAT'S Fil€ StIUCLUIES ...oociiiuviiiiiiiiii ettt e s 202

Table of Contents vii

10. Virtual Memory, the Paging File, and Pagers ... 205
The Windows 95 Paging Filecccccoiririinieiiiiiiiineieies e 205
PAGEIS .oiiiiiiiiiiiii e 213
The SYStem PAGEIS ...cc.oiiiiiiiiiiiiii ittt s 214
Demand Page LOadingccecueruiruirinieieiienieiesiesieseenieseesieeseesasinsssnaeens 225

11. VCACHE: Caches Big and Small ..., 234
Where Does Block Cache Memory Come From?cccccceveenineniennenns 235
How Does the Memory Manager Control Block Cache Size? 237
Block Cache Data StIUCTUTES vvvviiieeeeeeieeeeee e eeeeeeeeereeeereveaeaeeeeas 239
BlOCK Cache SEIVICESiiiciiiiiiiiiiiiiiiiiniinit ettt st sres 241
Monitoring VCAChEcccooiiiiiiiiiiiiiiiiiei ettt e s 243
The Lookup Cache Data StIUCLUIESccceveeieiirieiiinieeieienreniesiireencaneens 246
LOOKUDP CaChe SEIVICES ...ccviiiviiiiiiiiiiciiiiecie sttt sve e srna e evs e 247
An Example: IFSMgr’s ServerNameCachecccocovveierviivcnenicniie e 249

12. A Survey of IFSMgr Services ..., 252
TESMGE VEISIONS .oiiiiiiiiiiiiiiiiiieiiiiiiiieit e ee et e et et e e e s st e sebeneaeeeees 253
FSD REGISLIAtION ...veiiiiiiiiiiiiiiiiiiiiiiec ettt e e e 253
Heap ManQgEemMENTccoouiieiiiiiiieriiiteeeiiiieesaiieeesitteesiieeesseneeesnseresseeeseeseenes 254
Time ManaGeIMENEcceiiiiiiiiirieiieitenie it enteeee st et e srresbee e e eraseeseresanees 257
NetWOrk ManagemeEntceerueruiriieienirieenieniieieesesieetensesienseeneensensnseensenees 259
Event ManagemMeEntcccuiuiiiieiiiaiiaiiesieesieeateetesieesteesieesbeenbeen e e sanesneeens 260
Codepage and Unicode CONVEISIONccuiiuerviveriererienienienineeneenireeeennes 263
Filename Manipulationcccc.eceririieiiiirnienieneee e eieeaene e seaesaesmieeseeeneens 2064
Filename MatChingccccociviriiiiiiiininiiiciestie st 265
Path PAISING ...oouiiiieiieiiiiiiiiieiict sttt ettt e 266
File SRATING ..ooviiiiiiiii ettt ettt e 268
Plug-and-Playc.cccccoviivniviniiiiiiininns e ifeneirentie e eiresseneereiinenernsiasniiesived 270
WiIN32 SUPPOLT ..oviiiiiiiiiiiiiiiiiiic e e 270
RING-0 File I/O ..ottt ittt 271
MISCEIIANEOUSoviiiiiiiiiiiicic e e 273
DEDUZZING ..eovviiiieiieiieiteie st e rteeseae e e s est e e taesaessaesetaseeeteesseenbeensesnreneeanaeaes 274

13. VREDIR: The Microsoft Networks Client 275
VREDIR and Other Network COMPONENLScccovevrireerienerenienieiieneenns 275
VREDIR INEEITACESeeeiviiiiiiiiiiiiiieniieieiesie ettt ettt ene e e s 277
The SMB File Sharing ProtoColcccvviiiiieiieniiinienieeniesie st 281
Tracing VREDIR OPErationscccccciiiiiiiviiiiiiiiiiiiiiiiiccein i 288

TPC £Or NEIWOTK FSDIS ... vvoeesee oo eeeee s eeeeeeeeee e s s et es et eseseeseeeenee 291

viii Table of Contents
14. LoORING APead ...t 296
IFSMgr vs. NT’s ODbject Managerccccoverieeenieiiincnreieinesieieenenennens 296
IFSMgr vs. NT’S I/O MANAGETcccoveviivirieiiiiiiiiieereiieiereesesieiesseieereseasseseenns 298

NT Kernel Mode Drivers vS. VXSciviiiiiiiiiieiiiiiiee e e e eeiee e 300
1 11 SR PPRPPPPPPPPPPRPPIRE 301

A. MultiMon: Setup, Usage, and Extensions SRR 303
B. MultiMon: Monitor Reference 318
C. IFSMgr Data SIruUCIUTeS ..o, ... 333
D. IFS Development Aids O S 341
BiDIIOZIAPDY ...t 347

Preface

This book will walk you through the inner workings of the Windows 95 file
system. The standard file systems which ship with Windows 95 include: VFAT, the
virtual FAT file system; VREDIR, the Microsoft Networks client; and NWREDIR, the
Microsoft Netware client. These and other file systems supplied by third party
developers register with the Installable File System Manager, or IFSMgr, to make
their services available to the system. IFSMgr manages the resources which are
currently in use by each file system and routes client requests to the intended file
system.

This book anticipates some of the changes to the file system which will appear in
the successor to Windows 95 (code-named Memphis). These new features include
FAT32, support for volumes up to 2 terabytes in size, and WDM (the Win32
Driver ModeD. The Microsoft Networks file and printer sharing protocol—the SMB
(Server Message Block) protocol—is also undergoing some changes to make it
suitable for accessing the Internet. SMB’s future extension to the Internet as CIFS
(the Common Internet File System) is also examined.

The core of this book is based on the flow of execution through the layers of the
file system (stopping short of the disk system, managed by IOS, the I/O Super-
visor). Requests are made of the file system through the application programming
interfaces (APIs) that are appropriate for the operating environment (interrupt
21h, Winl16, or Win32). These requests ultimately arrive at IFSMgr, which must
find a file system driver to relay the request to. Although three different Windows
95 operating environments generate these requests, IFSMgr relays them to the file
system drivers using a common I/O request packet structure. A file system driver
doesn’t know and doesn’t care if the request originated in a DOS application or in
a Win32 program.

X : Preface

As file system requests pass through IFSMgr on their way to file system drivers, a
file system monitor may intercept the I/O request packets. These monitors may
simply report the file system requests and pass them on, or they may change the
operation or direct it to a different driver. This capability provides some inter-
esting possibilities for developers.

Of the three Windows 95 programming environments, special attention is given to
the new Win32 environment. The focus will be on the mapping between the
Win32 APIs and the lower level file system functions which are used to imple-
ment them. This will also lead us to explore KERNEL32 objects, especially the file
object.

The structure of file system drivers (FSDs) is examined and two sample FSDs are
implemented. One is for a character device which acts as an interface to a mono-
chrome display adapter; the other implements a “file system within a file” by
using some of [FSMgr’s ring-0 services. The VFAT and VREDIR file system drivers
are also scrutinized. ’

Our coverage will stray a little from IFSMgr and FSDs by examining paging and
cache services. The paging file in Windows 95 is implemented as a VFAT file;
page-ins and page-outs to this file are done using the system pagers, routines
which control the lifecycle of pages. FSDs rely upon VCACHE'’s services to keep
the most recently used disk blocks in memory, thereby minimizing disk “hits.”
Chapter 11, on VCACHE, will explain how these services work.

Since much of this material is new, you are probably wondering: “What is the
source for this information? Do you have access to IFSMgr source code, or do you
have a good connection at Microsoft?” Recently, Geoff Chappell (author of DOS
Internals) was asked a similar question in an Internet newsgroup. His answer says
it all: '

Q: So bave you gotten your bands on IFSMgr code somebow, or are you just
hacking through it with SoftICE?

A: I have my hands on IFSMgr code. So have you. Source code, of course, is
another matter—but why should I want that? I may be the only person on the
planet who works primarily with VxDs but who doesn’t use SoftICE (and
indeed never have), but yes, if I talk of looking over code, I mean the code
that the machine sees. I prefer to think of this as high-quality documentation
written in a language that happens not to be English. It is, however, the only
authoritative, reliable documentation that Microsoft releases.

Preface Xi

Versions

Unless otherwise stated, code fragments shown in the book are from Windows 95
build 950. This is the retail release of the product. Some material is specific to
OEM Service Release 2, also known as Windows 95 build 950B. References to this
material are flagged with the abbreviation “OSR2”.

Intended Audience

This book is geared to engineers and managers who wish to tap into the new
capabilities of Windows 95. IFSMgr, file system drivers, and file system monitors
are all implemented as kernel mode or ring-0 components. In the Windows 95
environment this means they are implemented as virtual device drivers, or VxDs.
First-hand experience with VxDs is not a requirement for reading this book.
However, I do not attempt to provide a tutorial on VxDs.

MultiMon—a Windows 95 internals snooping tool—and the other utilities and
samples on the companion disk can be used for exploration as is. However, if
you intend to write your own drivers and use some of the development aids
which accompany this book, you will need to have a copy of the Windows 95
device driver kit (DDK) as well as a compatible version of Visual C++.

The book takes a hands-on approach and where appropriate demonstrates an
idea with example code. Several working programs are developed over the
course of the book and these are included on the accompanying diskette. Thus,
this book also provides examples that can serve as starting points for your own
projects.

Chapter Summary

This book contains fourteen chapters and four appendixes:

Chapter 1, From IFSMgr to the Internet, introduces and provides an overview of
IFSMgr. MultiMon is used to watch the Netscape web browser load and surf the
Internet.

Chapter 2, Where Do Filenames Go? traces the path of filenames, UNC names, and
device names as they pass through the file system.

Chapter 3, Pathways to the File System, examines the mechanisms that the kernel
(VMM) uses to allow DOS, Windows 3.x, and Win32 programs access to IFSMgr.

Chapter 4, File System API Mapping, reveals how the Win32 APIs create Kernel32
file objects and how file object services ultimately become Interrupt 21h requests.

xii Preface

Chapter 5, The “New” MS-DOS File System, shows that the MS-DOS interrupt inter-
faces are still supported but now they are mostly implemented in IFSMgr’s ring-0
code.

Chapter 6, Dispatching File System Requests, looks at the how I/O request packets
are routed to file system drivers. Three key IFSMgr data structures are introduced:
the ifsreq structure, the shell resource, and the fhandle structure. These data
structures allow IFSMgr to call into the appropriate file system driver entry points.

Chapter 7, Monitoring File Activity, examines the use of file system hooks and
looks at several example programs. IFSMgr_NetFunction and path hooks are also
discussed.

Chapter 8, Anatomy of a File System Driver, looks at the details of the linkage
between file system drivers and IFSMgr. It examines in detail how each type of
FSD handles the mounting and dismounting operations. Two sample FSDs are
described: MONOCEFSD, a character FSD, and FSINFILE, a remote FSD.

Chapter 9, VFAT: The Virtual FAT File System Driver, reviews the FAT16 file struc-
ture and contrasts it with that of FAT32. Some implementation details of VFAT are
examined, including initialization and registration, mounting a volume, opening a
file, and locating a directory. Some basic IOS data structures and services are
introduced.

Chapter 10, Virtual Memory, the Paging File, and Pagers, shows how the paging
file is accessed via IFSMgr. The use of each of the system pagers is also explored.

Chapter 11, VCACHE: Caches Big and Small, describes the VCache services and
data structures. Many undocumented features are described here.

Chapter 12, A Survey of IFSMgr Services, categorizes and enumerates all IFSMgr
services. It provides undocumented details on heap management, event manage-
ment, and path-parsing services.

Chapter 13, VREDIR: The Microsoft Networks Client, looks at how the redirector
interfaces with other network components. The NetBIOS and SMB protocols are
introduced and these protocols are traced with MultiMon to see how remote file
system requests are handled. The CIFS protocol is contrasted with the SMB
protocol.

Chapter 14, Looking Abead, explores the differences between the Windows NT
and Windows 95 file systems. The impact of WDM is also assessed.

Appendix A, MultiMon: Setup, Usage, and Extensions, describes how to install and
use MultiMon, a Windows 95 internals snooping tool. A sample extension driver
is also described.

Preface Xxiti

Appendix B, MultiMon: Monitor Reference, is a reference for the set of monitor
drivers which accompany the book. These include file system, Winsock, Devicelo-
Control, NetBIOS, SMB, and other monitors.

Appendix C, IFSMgr Data Structures, provides typedefs and descriptions of some
key (and undocumented) IFSMgr data structures.

Appendix D, IFS Development Aids, describes four tools for VXD writers using the
DDK, including IFSWRAPS, a library of all IFSMgr services, and DEBIFS, a
debugger “dot” command for examining IFSMgr data structures.

What's on the Diskette?

All of the programs and drivers on the companion disk come with complete
source code. These include:

MultiMon and monitor drivers
A Windows 95 internals snooping tool

Sr
A utility that dumps IFSMgr’s local and remote volume data structures

Fh
A utility that dumps IFSMgr’s data structures for a volume’s open files

Sample file system book VxDs
Sample VxDs which show techniques for calling into FSDs from a file system
hook

MonoCFSD
A character file system driver for a monochrome display adapter

FSinFile
A remote file system driver that implements a file system within a file
DumpDisk
A utility that displays important FAT16 and FAT32 structures
Pagers
A utility that displays the system pagers
Chentry ’ .
A utility for removing leading underscore on VxD’s export name

Headler Files for File System Development
Supplements to the DDK headers

IFSWraps
A C-callable library of all IFSMgr services

xiv Preface

DebIFS
A debug command for use with WDEB386 or SoftICE

Typograpbical Conventions

Throughout this book, we have used the following typographic conventions:

Bold
Indicates the name of a Windows API or a VXD service name, functions, moni-
tors, and commands. Bold is also used to indicate menus, buttons, dialogs,
and other parts of the Windows 95 GUIL.

Italic
Indicates filenames, variables, and is used for emphasis. Manifest constants
are represented by uppercased italicized names, e.g., MAXFUNC.

Constant width
Indicates a language construct such as a data type, a data structure, a macro,
or a code example.

Comments and Corrections

Every effort has been made to verify the accuracy of this book’s contents. Please
report any errors and corrections to the author at stanm@sourcequest.com. An
errata sheet will be posted to the web site listed below. We would also like to
hear comments and suggestions you have for improving future editions of this
book.

Getting Updates

Updates to the source code on the companion diskette can be found at:
bttp://www.sourcequest.com/win95ifs

From time to time, new utilities will be posted there for download.

Acknowledgments

Thanks are due to the many people who have helped make this book possible.

Andrew Schulman, my editor, who saw the significance of the Windows 95 file
system and encouraged me to expose it in a Nutshell series book. This book
would not have been attempted without his encouragement. Although he sparks
controversy by his writings, he has won the admiration and respect of the

Preface xv

developer community with his classic books on undocumented DOS . and
Windows. His suggestions and comments helped immensely.

Ron Burk, the editor at Windows/DOS Developer’s Journal. When he published my
article “Monitoring Windows 95 File Activity in Ring 0,” in July 1995, I had no idea
it would be the seed for a new book.

Andy Cohen, for technical review.

Geoff Chappell, for sharing some of his intimate knowledge of IFSMgr. Material
that he has generously provided is duly noted.

Rajeev Nagar, author of the forthcoming Windows NT File System Internals, for
making suggestions about the content of the “Looking Ahead” chapter.

Mark Russinovich, for supplying me with an advance copy of his Dr. Dobb’s
Journal article, “Examining the Windows NT Filesystem” (February 1997), written
with Bryce Cogswell.

Ed Stitt, Steve Farrell, and Gary Schoolcraft, my co-workers at Xerox/XSoft. Our
discussions on the Windows 95 architecture helped me expose the gaps in my
knowledge.

Russ Arun at Microsoft for prying the “IFS Specification” loose and getting it into
developers’ hands during the Chicago beta.

The many developers who post file-system related questions in the Internet
newsgroups and CompuServe forums. Some of these questions became the basis
for a book topic or sample program.

The crew at O'Reilly who helped this novice bookwriter learn the ropes. Special
thanks to Troy Mott, my “O’Reilly connection,” who helped resolve many issues
that arose during the course of the project. Thanks also to Edie Freedman for her
excellent cover design. Frank Willison, Editor in Chief, who made many sugges-
tions for improvement. David Futato, for producing an attractive addition to our
bookshelves.

And last, but not least, Maggie, my wife, for enduring yet another project. Her
support kept me sane during the long haul. She also kept an eye on my schedule
and kept me moving towards the final goal.

From IFSMgr to
the Internet

The file system in Windows 95 resides in a component named the Installable File
System Manager, or IFSMgr. As its name suggests, [FSMgr is responsible for
routing file system requests to the installed file systems. Multiple file systems are
implemented as independent drivers underneath IFSMgr. Thus, it is hard to get a
complete picture of the file system without examining file system drivers (FSDs)
too. Later chapters will focus on the underpinnings of IFSMgr and file system
drivers, but for now let’s get a feel for why the file system is so important.

Long Filenames

One of the most touted features of Windows 95 is its support for long filenames.
This support is brought to you through the Win32 API (application programming
interface) and also through the clunky, old Int 21h interface. These two interfaces
cover three of the Windows 95 operating modes: Win32, Winl16, and DOS box.
But what about MS-DOS mode, the real-mode DOS version 7.0? Does it support
long filenames?

To find out, let's build the simple DOS application in Example 1-1, which uses
one of the new long filename APIs (the source and executable for this example
are in the DOSVOL directory of the companion disk).

- For brevity, Example 1-1 does not display the implementations of several support
routines such as GetStartupDrive(), GetVollnfo(), etc. These are small C functions
that contain inline assembler Int 21h calls.

This little application prints the MS-DOS version and, if Windows is detected, the
Windows version as well. The function GetVollnfo moves its function arguments
into appropriate registers and then invokes interrupt 21h function 71a0h. This Int
21h service returns volume information for the drive specified by a root path

2 Chapter 1: From IFSMgr to the Internet

string, e.g., C:\. If successful, this service returns the file system name, the
maximum length for a filename component, and the maximum length for a fully
qualified filename for the specified volume. This is essentially the DOS equivalent
of the Win32 function GetVolumelInformation

Example 1-1. DOSVOL: Test Application Using Long Filename API

void main(void) {
unsigned short flags, maxfn, maxpath;
char szFS[32], szRootName([4];

printf("MSDOS Version %d.%02d", GetDosMajorVersion(),
GetDosMinorVersion());

if (WinCheck() == 0)
printf(" - Windows Version %d.%02d\n", GetWinMajorVersion(),
GetWinMinorVersion());
else printf("\n");

strepy (szRootName, "@:\\"); /* volume string */
szRootName[0] += GetStartupDrive();

printf("Get Volume Information, Int 21h Function 71A0h.\n");
if (!GetVolInfo(szRootName, szFS, sizeof(szFS),
&maxfn, &maxpath, &flags))
printf(" Drive %c - FAILED.\n\n", szRootName[0]);

else
printf(" Drive %c - File system: %s MaxFileName: %d "
MaxPathName: %$d\n\n", szRootName[0], szFS, maxfn,
maxpath);

}

Executing DOSVOL in a Win95 DOS box yields this output:

MSDOS Version 7.00 - Windows Version 4.00
Get Volume Information, Int 21h Function 71A0h.
Drive C - File system: FAT MaxFileName: 255 MaxPathName: 260
Now let’s take the same DOS application and execute it in MS-DOS mode. You
reach that mode by selecting “Restart windows in MS-DOS mode” from the Shut
Down Windows dialog. This time you get these results:
MSDOS Version 7.00
Get Volume Information, Int 21h Function 71A0h.
Drive C - FAILED.
Hmm... long filename support is not available from real-mode DOS! Well, where
is it coming from then? Function 71a0h and the other long filename (71xxh) func-
tions are supplied by IFSMgr. IFSMgr defines the APIs that a file system can
support, but it in turn needs an installed file system driver to fulfill the requests.:
This simple example illustrates that the DOS long filename APIs are only available
if VxDs, like IFSMgr, are present to provide them.

Windows 3.11 Had an IFSMgr? 3

It might appear that IFSMgr is adding features to an MS-DOS base. Actually, the
change is more fundamental than that. Most of the DOS-like functionality that you
enjoy in a Windows 95 DOS box, at least as far as the file system goes, is brought
to you by IFSMgr. It is more accurate to think of IFSMgr as a replacement for the
DOS file system. The MS-DOS code base is still used for some functions, but in a
subservient role.” '

We've just looked at a single API here, one of many that are documented in “Part
5: Using Microsoft MS-DOS Extensions,” of Programmer’s Guide to Microsoft
Windows 95. Microsoft calls these new APIs MS-DOS extensions. The name is
significant: they look like good old MS-DOS but they are not a part of a new MS-
DOS version. Rather, they are part of IFSMgr, extending it from the baseline imple-
mentation that came with Windows 3.11.

Windows 3.11 Had an IFSMgr?

Yes, IFSMgr quietly debuted in Windows for Workgroups version 3.11. That
version of IFSMgr had already implemented. a substantial portion of the MS-DOS
interrupt 21h interface. However, where it lacked a complete implementation, it
“gracefully degraded” to using 16-bit file access through MS-DOS.

A good example of this is provided by the DOS subst command. The subst
command, youll recall, is used to map a drive letter to a local directory. If you
have a Windows 3.11 configuration available, you might want to try this. First you
should make sure that you are currently using 32-bit file access. You do this with
the 386 virtual memory settings from the Control Panel. Once you have 32-bit file
access set up, insert a command like this into autoexec.bat:

subst d: c:\windows\system

where d: is whatever the next available drive letter might be for the system.

Now shut down Windows and reboot the system so that the new line added to
autoexec.bat will execute. After the initial Windows logo screen is displayed, a
blue character mode “pop up” will appear with the following message:

32-bit File System
The 32-bit file system is incompatible with the SUBST utility.
To use 32-bit file access, do not use the SUBST utility before
starting Windows for Workgroups.
Press any key to continue

* This topic is discussed in great detail in Unauthorized Windows 95 by Andrew Schulman (especially
Chapter 8, appropriately entitled “The Case of the Gradually Disappearing DOS”). Also ‘see btp://
www.sonic.net/~undoc/. '

4 Chapter 1: From IFSMgr to the Internet

If you press Return, Windows continues to start up. But if you check the 386
virtual memory settings in the Control Panel, you will find that you are using 16-
bit file access, even though the checkbox for 32-bit file access is checked. What is
happening here? If IFSMgr detects that you have subst drives in the system during
its initialization, it will not support 32-bit file access on any drive, and drops back
into 16-bit file access using MS-DOS.

subst is only one example where the Windows 3.11 [FSMgr gracefully degrades
back to 16-bit file access; other examples include the presence of a DOS 6.0
DoubleSpace drive, the presence of some other types of compressed drives, and
the existence of open files on a drive when IFSMgr initializes. In contrast,
Windows 95 fully supports subst drives and DoubleSpace drives.

Peering “Under the Hood”

By now you should have a feel for the hands-on approach I will take in this
book. By “hands-on,” I mean exploring with tools like MultiMon—a general
purpose monitor for examining Windows internals, looking at source code or
pseudo-code of portions of Windows 95, and stepping through that code with a
debugger. We'll also be writing some code, including small sample applications
and drivers. (Source and executables for these are provided on the companion
disk.)

MultiMon is an exciting new tool, which you get with this book. It is described in
detail in Appendix A, MulitiMon: Setup, Usage, and Extensions, and you also get
complete source code for it. Unlike a lot of other “snooping tools,” MultiMon
reveals what is going on at ring-0. It doesn’t tell you'which Win32 API is being
called; instead, it may reveal a sequence of ring-0 APIs and events that corre-
spond to a single Win32 API.

The experiments we conducted at the beginning of this chapter give you first-
hand knowledge about the role IFSMgr plays in Windows 95. Tools like MultiMon
will take you much further and allow you to ferret out many other secrets about
IFSMgr and other Windows 95 internals. Before we put MultiMon to work, let’s
digress a bit to get an overview of IFSMgr. The next section may be a little
abstract, but having this conceptual framework will prepare you for what’s to
come.

An Overview of IFSMgr

To reiterate, the Installable File System Manager is respomnsible for routing file
system requests to the installed file systems, and file systems are implemented as
independent drivers under IFSMgr. The target file system for a request depends

An Overview of IFSMgr 5

upon the format of the filename by which the file is initially opened or created.
The forms that a filename may take are discussed in Chapter 2, Where Do File-
names Go? '

The system components to which IFSMgr interfaces are shown in Figure 1-1. The
arrows leading in to IFSMgr are from clients that make requests upon a file
system. The arrows leading out from IFSMgr are to file system drivers (FSDs). All
of the components shown here execute in one of the Intel x86 processor’s
protected modes. The dark grey boxes indicate components with the least privi-
lege level (ring-3) whereas the pale boxes are virtual device drivers with the
highest privilege level (ring-0).

Win32

. DOSBox
_ Application

v‘App!it:ati‘a:n_ v

Ring 3
Ring 0

File System Drivers

Supporting Sub-layers

Figure 1-1. IFSMgr in relation to otber system components

IFSMgr’s Client Interface

There are many ways in which IFSMgr is called upon to provide services. The
most common request mechanism is for an application to call a published API. In
the Windows 95 environment, there are three operating modes that are the source
of such file system requests. The first of these is MS-DOS executing in a special
Intel x86 processor mode known as virtual-86 mode. Here, file system requests
are made via software interrupt 21h, with CPU registers loaded with command

6) : Chupter 1: From IFSMgr to thé Internet

parameters. This mode is available in a “DOS box,” a window into a virtual 8086
machine executing some DOS application.

The second mode corresponds to a 16-bit Windows application. In this protected
mode, the processor addresses memory using 16-bit selectors and offsets. The
Win16 API supplies the commonly used file system services. Ultimately these func-

tions are implemented as calls to software interrupt 21h. Inasmuch as the
processor is in protected mode as opposed to virtual-86 mode, the ring-0 handler
for interrupt 21h is different from that used by “DOS box” applications.

The third mode corresponds to a 32-bit Windows application. In this protected
mode, the processor addresses memory using 32-bit linear addresses. The Win32
API supplies applications with a rich set of file system services. A helper VxD
(VWIN32) acts as an intermediary; it takes calls from Kernel32 and in turn
dispatches them to IFSMgr using the ring-0 service Exec_PM_Int for interrupt 21h.
An intermediary is necessary because issuing a software interrupt 21h from a 32-
bit client will raise an application exception.

Given that all of these application modes ultimately make requests via an inter-
rupt 21h interface, it should come as no surprise that this interface is IFSMgr’s
primary client interface. However, this interrupt 21h interface is extended beyond
the range of commands currently encountered in the MS-DOS environment. In the
DOS environment, the upper limit is set at function 71h, which corresponds to the
new long-filename commands added as MS-DOS extensions to Windows 95.
IFSMgr maps commands over the range 00h to E7h, with 00h through 71h being
equivalent to MS-DOS usage. (The highest DOS command is 73h in OSR2.)

IFSMgr also has many ring-0 clients. Figure 1-1 shows a couple of examples with
VSERVER and VWIN32. VSERVER provides support for the server side of an MS-
NET peer-to-peer network. When some remote system requests a file operation of
a server, VSERVER fields the request and routes it directly to IFSMgr. Another
example is provided by VWIN32, the driver which helps KERNEL32 implement
the Win32 APIs. This driver exposes an interrupt 21h dispatcher interface which
ultimately calls into IFSMgr when it executes interrupt 21h requests on behalf of
Win32 applications. Yet another -example is provided by DYNAPAGE, the driver
which supports the dynamic paging file. When the memory manager needs to
page-out or page-in some part of virtual memory, it uses IFSMgr to do the reads
and writes via the DYNAPAGE driver. '

IFSMgr’s Management of Resources and Handles

IFSMgr’s job is to field these requests and pass them on to a file system driver
(FSD). It isn’t sufficient to just identify the target FSDj; it must also specify one of
perhaps several resources the FSD owns. This information and other parameters

An Overview of IFSMgr 7

which are required by the service request are combined in an ifsreq data struc-
ture. IFSMgr uses this common ifsreq structure to send commands to all FSDs.
The FSD also uses the ifsreq structure to return the command results.

IFSMgr must keep track of registered resources and the FSDs that registered them.
Resources can include local disk drives, network connections, network drives,
and character devices. When a resource is added to the system, it is registered
with IFSMgr through a “mount” operation. This operation also binds a resource to
a particular FSD. Resources may also be removed from the system through a
“dismount” operation.

Similarly, IFSMgr tracks open file handles and the resources with which they are
associated. A file handle may refer to a mapping between a filename and a disk
allocation, or it can refer to a search context, as in the Win32 functions FindFirst-
File and FindNextFile. A file handle may also be used for tracking clients which
are accessing a character device.

Resources and file handles each have their own sets of operations. These opera-
tions are exposed by each FSD through two separate function tables: a table of
functions for accessing a resource’s services and a table of functions for accessing
services requiring an open file handle. The functions which make up these tables
are defined by the FSD interface; each function expects specific usage of fields in
the ifsreq structure for passing arguments and returning results.

When IFSMgr receives a request, it must convert it into one or more calls to an
FSD’s function table. It uses the information in the request to pair up with a partic-
ular FSD. In the case of local drives, the volume number provides this association;
in the case of remote drives and connections, the server name and share name
are used; in the case of character devices, the device name is used.

File Systems and Their Drivers

FSDs come in three different flavors: local, remote, and character. Each type has
its own characteristics.

Local drive FSDs (e.g., VFAT) are responsible for implementing the semantics of a
particular file system. They know about things like disk layout, disk storage alloca-
tion, and file and directory naming. These FSDs call upon IFSMgr for help with
name parsing but rely upon IOS (I/O Supervisor) for accessing the physical disk.

A local file system is created to provide user-friendly names to chunks of disk
storage and to shield the programmer from the intricacies of hardware. Fixed
disks and disk controllers come in an endless variety. It is the purpose of the IOS
to provide low level services that allow physical locations on a disk to be read
and written. A physical location is identified by head, cylinder, and sector

8 Chapter 1: From IFSMgr to the Internet

coordinates. Local file systems are used to partition the fixed disks and to provide
hardware-independent coordinates for locations on the disk (e.g., volume C,
logical sector 234). The I/O Supervisor is only briefly discussed in this book.

Remonte or network FSDs (e.g., VREDIR) typically package a file system request
in one or more packets and ship it across a network. The request is translated
into a file-sharing protocol (such as SMB) and transferred using a transport
protocol (such as NETBEUD. These FSDs call upon IFSMgr for help with name
parsing, setting up, and tearing down connections, but rely upon the transport
layer for accessing the remote system.

In terms of the layers of the Open System Interconnect (OSD) Reference Model, a
network FSD or redirector occupies the application and presentation layers and
interfaces at its lower boundary with the session layer (e.g., VNETBIOS).

Character FSDs (e.g., MONOCFSD) model devices that send and receive data one
byte at a time, in a serial fashion.

All FSDs use the same function table structure to interface with IFSMgr. The func-
tions that each type of driver exposes can be quite different. If an FSD does not
need to support a particular function, it returns an error if a client should happen
to call it. This is necessary because there is no means of determining in advance
which functions a particular FSD has implemented.

To finish up this introduction, I'll introduce MultiMon by putting it to work, exam-
ining the popular web browser Netscape Navigator 3.0. Let’s start by looking at
how Netscape utilizes the file system to load as a new process.

Loading Netscape Navigator

From the point of view of the file system, creating a process consists of loading its
image into memory. What starts out as a ShellExecute, WinExec, or CreateProcess
function call for a particular EXE can expand into implicit loads of multiple DLLs.
As a real world example, Figure 1-2 shows a filtered trace that was collected by
MultiMon when loading Netscape Navigator (netscape.exe). Only file opens (FS_
OpenfFile) and file closes (FS_CloseFile) were sampled.

The Function column in Figure 1-2 displays the names FS_OpenFile and FS_Close-
File. These are the names of entry points provided by a file system driver. The
Device column tells us which file system driver is being used. In this case, all of
the file opens are completed by VFAT, the Virtual FAT file system. The Handle
column contains the numeric value of the handle returned by the open. Two
ranges of numeric handles will be seen in this column: DOS handles, which are
less than 200h, and extended handles, which are 200h and greater. The Args
column contains the pathname of the file. It is followed by a Flags2 column

Loading Netscape Navigator 9

FILES\NETSCAPE\NAVIGATORY,..
Explorer FS_CloseFile (3e) VFAT 028e f
*netscape FS_OpenFile (bc) WFAT 0293 oe
FILESA\NETSCAPEYNAVIGATORN...
netscape FS_OpenFile (o) VFAT 0298 ' oe
M FILESY\NETSCAPE\NAVIGATO...
netscape FS_OpenFile (6c) VFAT 0299 oe
CAWINDOWSASYSTEMYWSOCK...
netscape FS_OpenFile (6c) VFAT 029a ' oe
CAWINDOWSYSYSTEMMSVCR...
netscape FS_OpenFile (Bc) VFAT 029b oe
FILES\NETSCAPEY{NAVIGATORA...
netscape FS_OpenFile (6c) VFAT 029c oe
CAWINDOWS\SYSTEM\MFC40.D...
Netscape FS_OpenFile (3d) VFAT —— oe
CAWINDOWSYWSOCK VXD
Netscape FS_OpenFile (3d) VFAT 0006* oe
CAWINDOWSASYSTEMYWSOCK.

Figure 1-2. MultiMon trace from loading Netscape Navigator

which contains “oe” for each of the opens, which indicates open-existing,
meaning the open will fail if the file does not already exist.

In Figure 1-2, we see the span of time which starts with Explorer calling ShellExe-
cute until Netscape is an independent process. We are narrowing our focus to
those components that are loaded by the operating system before control is actu-
ally passed to the newly-formed Netscape process. During this intermediate stage,
the address space for Netscape is being prepared. It’s not quite a complete .
process yet, so its module name is flagged with a * prefix. You can see this in the
column labeled Module, where the name changes from “Explorer” to “*netscape”
to “Netscape”.

Table 1-1 contains a list of the files that we see being opened in Figure 1-2. At the
bottom of the table, there is an entry for the VXD WSOCK. This is a helper VxD
that wsock32.dll opens when its entry point is called with the DLL_PROCESS_
ATTACH flag. This is after the Netscape process is created, so we will ignore it for
now. :

You may feel a little uneasy about what is missing in this Table 1-1. Where are
KERNEL32, USER32, and GDI32? Surely, Netscape uses these ubiquitous system
DLLs. Actually, a better way to get a list of required modules is to look at the
import list for Netscape using a utility like Quick View. Doing this yields the

10 Chapter 1: From IFSMgr to the Internet

following, more complete list of import modules: KERNEL32, USE32, GDI32,
SHELL32, OLE32, OLEAUT32, COMDLG32, ADVAPI32, MFC40, MSVCRT40,
RPCRT4, VERSION, JRT3230, and PR3230. JRT3230 and PR3230 both use imports
from WSOCK32. Why don’t we see opens for all of these DLLs?

Table 1-1. Files Opened During Netscape Load

Files Opened File Handle
..\NETSCAPE\NAVIGATOR\ PROGRAM\NETSCAPE.EXE 0293h
..\INETSCAPE\NAVIGATOR\PROGRAM\PR3230.DLL 0298h
\WINDOWS\SYSTEM\ WSOCK32.DLL 029%h
\WINDOWS\SYSTEM\MSVCRT40.DLL 029Ah
..\NETSCAPE\NAVIGATOR\PROGRAM\JRT3230.DLL 029Bh
\WINDOWS\SYSTEM\MFC40.DLL 029Ch
\ WINDOWS\SYSTEM\ WSOCK.VXD 0006h

You may be thinking that these DLLs reside in shared memory and so there is no
need to load them for each process. That answer is partially correct. To see why,
let’s look at the image base addresses for each of Netscape’s imported modules.
The image base address is the preferred address at which a module wishes to be
loaded. If it gets that address, its memory image does not have to be relocated, so
this provides a load-time optimization. (Image base addresses can also be deter-
mined using Quick View.)

Table 1-2 shows the modules and their image base addresses in descending
order. The linear address of an application is divided into four regions or arenas:
DOS (0-003fffffh), private (00400000-7ffffffh), shared (80000000-bfffffffh), and
system (c0000000—ffbfffffh). The first five modules in Table 1-1 are loaded to the
shared memory arena. To quote the DDK documentation, “This arena is used for
ring-3 shared code and data.” Thus, once one of these DLLs is loaded it will be
visible to all other code and data, such as 16-bit Windows applications and DLLs,
DPMI memory, and 32-bit system DLLs. ‘

Table 1-2. Netscape Import Modules

Module Name Image Base
ADVAPI32 bfef0000h
VERSION bfee0000h
KERNEL32 bff70000h
USER32 bff60000h
GDI32 bff30000h
OLE32 7ff60000h
COMDLG32 7fed0000h

Loading Netscape Navigator

11

Table 1-2. Netscape Import Modules (continued)

Module Name Image Base
SHELL32 7fe00000h
RPCRT4 7fd00000h
WSOCK32 7e2e0000h
OLEAUT32 76de0000h
MFC40 5£800000h
MSVCRT40 10200000h
JRT3230 10050000h
PR3230 10000000h

The remaining ten modules in Table 1-2 are destined to be loaded into Netscape’s
private arena. The private arena is used for code and data that is private to a
Win32 process. Private means that the page table entries corresponding to the
linear address range are kept separately for each process. Each Win32 process has
its own mapping of pages in its private arena; this mapping is called a memory
context. This is why all applications can load at the same linear address of
400000h.

At this point you are probably comfortable with the idea of sharing DLL code and
data as long as it is in the shared arena. But what if modules are loaded into a
process’s private arena—can they still be shared with other processes? We need
more information to answer this. Let's try another MultiMon trace. This time we’ll
continue to look at only file opens (FS_OpenFile) and file closes (FS_CloseFile)
but we'll start sampling from the time the system boots and continue until we
have launched Netscape. This, in effect, will give us a list of open modules at the
time we start Netscape.

This experiment produces a lot of output, over 1800 lines for this particular config-
uration. Many files go through an open and close cycle; we are not interested in
these. Once we filter out this noise, we are left with files which are opened and
remain opened. Further condensing this list to just the modules which Netscape is
dependent on, we arrive at Table 1-3.

Table 1-3. Modules Opened Before Netscape Is Launched

Module Name Open File Handle
KERNEL32 201h
GDI32 215h
ADVAPI32 216h
USER32 21Dh
SHELL32 252h

12 Chapter 1: From IFSMgr to the Internet

Table 1-3. Modules Opened Before Netscape Is Launched (continued)

Module Name Open File Handle
OLE32 2CCh
RPCRT4 2CEh
COMDLG32 2F1h
OLEAUT32 2F2h

In this experiment, we get a slightly different list of modules which are opened
and loaded along with netscape.exe. This list is given in Table 1-4.

Table 1-4. Modules Loaded Along with netscape.exe

Module Name Open File Handle
PR3230 280h
WSOCK32 281h
MSVCRT40 282h
JRT3230 283h
VERSION : 284h
MFC40 285h

What we see here is that any module that has already been loaded won't be
loaded again. It makes no difference whether the module is loaded into a private
arena; it can still be shared.

How does Windows 95 do this? It turns out that there is an obscure function,
called _PageAttach, made just for this purpose. For example, if I know that the
memory context for explorer.exe contains an image of the module OLE32, I can
map all or some of the pages of that image into my process’s memory context.
Selective mapping is necessary because some pages of the image, such as data,
may have to be loaded directly from the source file and not be shared with other
memory contexts.

MultiMon shows us the gory details of OLE32’s attachment to the Netscape
process in Figure 1-3. The PageReserve, PageCommit, and PageAttach functions
are Win32 services provided by VMM, the Virtual Machine Manager. The handle
02cch used by the FS_ReadFile calls corresponds to ole32.dll (see Table 1-3).

Here is an interpretation of this trace. Netscape requests that 134 pages of
memory be reserved starting at the linear address 7ff60000h, the image base of
OLE32. The first page is committed and thus is private to Netscape. The next 102
pages starting at linear address 7ff61000h (the .text section) are mapped to the
same set of pages in the memory context whose handle is c10a0e20h (Explorer).
Similarly, the 5 pages starting at linear address 7ffc7000h (the .orpc section) are

Loading Netscape Navigator

13

*netscape
*netscape
*netscape
*netscape
*netscape
*netscape
*netscape
*netscape
*netscape
*netscape
*netscape
*netscape
*netscape
*netscape
*netscape
*netscape
*netscape
*netscape
“netscape
*netscape
*netscape
*netscape

FS_ReadFile (3f)
PageReserve
PageCommit
PageAittach
PageAttach
PageCommit
PageCommit
PageAttach
PageAttach
PageCommit
PageCommit
PageCommit
PageCommit
PageAttach

‘Pageattach

PageAttach
FS_ReadFile (3f)
FS_ReadFile (3f)
FS_ReadFile (3f)
PageCommit
FS_ReadFile (3f)
FS_ReadFile (3f)

02f?

02cc
02cc
O2cc

02cc
p2f?

cnt=1000H ofs=6a400H ptr=c135{000H
0007460 00000086 00000010

0007{f60 00000001 09 00b20000 60040000
7161 c10a0e20 7161 66

7ffc? c10a0e20 7ffc? 5

0007ffcc 00000001 01 0000000 BOOGO0OO
00071fcd 00000001 01 00L50001 60060000
7ffce c10a0e20 7ffce 1

7ffcf c10a0e20 7ffcf B

00071fd5 00000003 08 a0L00070 60060000
0007ffd8 00000001 08 a0b10073 60060000
0007ffd9 00000002 08 cOb00073 60060000
0007ffdb 000000071 08 cOb30075 60060000
7ffdc c10a0e20 7ffdc 2

?ffde c10ale20 ?ffde 2

7ffel c10a0e20 7ffel b

cnt=1000H ofs=73c00H ptr=c135f000H
cnt=1000H ofs=74c00H ptr=c135f000H
cnt=600H ofs=75c00H ptr=c135{000H
00071fd9 00000001 08 cObO0073 60060000
cnt=1000H ofs=73c00H ptr=c135f000H
cnt=1000H ofs=6b400H ptr=c135f000H

Figure 1-3. Netscape “attaches” to OLE32

also mapped to the same set of pages in Explorer’s memory context. You get the
idea: attached pages are mapped and thus shared whereas committed pages are

private. The three FS_ReadFile calls load a private copy of the .idata section, the
module’s import table. A summary of how the page ranges are treated is given in

Table 1-5.

Table 1-5. Attachment of OLE32 to Netscape (all values are in HEX)

Base Addr Pages Section Treatment Properties

7£f60000 1 commit

7£f61000 66 .text attach code

7ffc7000 5 .orpc attach code

7ffcc000 2 .bss commit uninitialized data
7ffce000 1 .sdata attach initialized, shared data
7£tcf000 6 .rdata attach initialized, read-only data
7ffd5000 3 .data commit initialized, writeable data
7££d9000 3 .idata commit imports, read from disk
7£tdc000 2 .edata attach export table

7ftde000 2 .rsrc attach resources

7{fe0000 6 .reloc attach relocation table

14 Chapter 1: From IFSMgr to the Internet

What we have seen in our first example is how the file system intermingles with
operating system internals. Now let’s turn our attention to an example from the
application realm.

Going to www.ora.com

Now that we have Netscape loaded, it's time to do some web surfing. We're
going to look at a typical surfing operation, connecting to a server and displaying
its home page. Today’s web applications, like Netscape, utilize Windows Sockets
for establishing connections and transferring data “over the wire.” If we can
monitor Netscape’s socket calls, we can get a much clearer picture about how this
application works.

A glance back at Table 1-1 will remind you that Netscape loads wsock32.dll and
then wsock.vxd is opened by WSOCK32. The relationship between these two
components is that of a client and a service provider. WSOCK provides an inter-
face to socket services, and WSOCK32 exports the Windows Sockets APIs and
makes calls into WSOCK to implement the APIs. WSOCK32 accesses these ring-0
socket services via the DeviceloControl Win32 API.

It just so happens that we have a MultiMon extension for monitoring DeviceloCon-
trol calls (see Chapter 3, Pathways to the File System). Each DeviceloControl call
targets a specific device; it specifies a command code and buffers for input and
output arguments. To report-on WSOCK calls, we just need to interpret the argu-
ments which are passing through the monitor. A little bit of work leads to the
mapping shown in Table 1-6.

Table 1-6. DeviceloControl Command Codes for Winsock APIs

WSOCK32 API WSOCK ControlCode Argument Length
accept 100h , 1Ch
bind 101h 14h
closesocket 102h 04h
connect - 103h 14h
getpeername 104h Och
getsockname 105h : Och
getsockopt 106h ' 18h
ioctlsocket 107h Och
listen 108h 08h
recv 109h A 28h
recvfrom 109h 28h
select 10ah 20h

Going to www.ora.com 15

Table 1-6. DeviceloControl Command Codes for Winsock APIs (continued)

WSOCK32 API WSOCK ControlCode Argument Length
*select 10bh 18h
WSAAsyncSelect 10ch 10h
send 10dh 28h
sendto 10dh 28h
setsockopt 10eh ' 18h
shutdown 10fh 08h
socket | 110h 14h
? 111h

? 112h

? 113h

? 114h

? 115h

? 116h

? 117h

‘WsControl 118h 18h
SetPostMsgAddr | 11%h 04h
Arecv 11ah 14h
Asend 11bh 14h

Armed with our primitive Winsock monitor we can now see web browser opera-
tions in terms of socket calls. For the results which I show here, the Netscape disk
cache was cleared and a connection to my Internet service provider was already
established. To minimize extraneous noise, the display of the default home page
which you connect to should be finished as well. MultiMon is then started and
monitors are enabled for “VWIN32 DeviceloControl” and “IFSMgr Filehook” (with
FS_OpenfFile, FS_CloseFile, FS_ReadFile, and FS_WriteFile APIs selected). Then go
back to Netscape and at the Go to: prompt enter http://www.ora.com/ and
press Return. This will take you to the O'Reilly & Associates, Inc. home page.
Once the status message says “Document Done”, you can stop MultiMon.

The output that I got for this experiment is spread over several examples, starting
with Example 1-2. The output has been “cleaned up” by removing traces of swap-
file I/O, extra *select calls, and file I/O for non—-web-page files.

Example 1-2 shows the steps . that are taken just to get connected to
www.ora.com. To establish a connection a socket is opened with the socket APL
Sockets have handles just like files do, but they also have a “handle context,”
which is like a file descriptor structure. The first socket opened returns a handle
of 42h, but is referenced in subequent calls with the handle context of cOf10eS0h.

16 Chapter 1: From IFSMgr to the Internet

Next we see several calls setting up the properties and event handlers on this
socket. For instance, the WSAAsyncSelect call requests that notifications for read,
write, connect, accept, etc. be sent as Windows messages to the window with
handle 408h. A single registered message (c£feh) is used with the socket handle
in the wparam and the event in the [param. The setsockopt API requests that the
socket linger a certain amount of time when it is closed if unsent data is present.
The joctlsocket call requests that the socket operate in non-blocking mode.

Example 1-2. Resolving the IP Address

Function Device Handle Args
(socket) WSOCK 42 AF_INET, SOCK_STREAM, IPPROTO-TCP
(WSAAsyncSelect) WSOCK c0£f10e50 hWwnd=408, wMsg=cffe, 3f
(setsockopt) WSOCK c0£10e50 SOL_SOCKET, SO_LINGER, buf=0090f214 len=8
(ioctlsocket) WSOCK c0f10e50 FIONBIO, parm=1

(select) WSOCK Rd=1 Wr=1 Err=1

(select) WSOCK Rd=1 Wr=1 Err=1
FS_OpenFile (6c¢) VFAT 2cd*C: \WINDOWS \HOSTS oe
FS_ReadFile (d6) VFAT 2cd cnt=19H ofs=0H ptr=6eec79H -—
FS_CloseFile (3e) VFAT 2cd £

(socket) WSOCK 62 AF_INET, SOCK_DGRAM, IPPROTO_IP

(connect) WSOCK c0fllca8 AF_INET, 53, 204.156.128.1
(send/sendto) WSOCK c0fllca8 buf=006eee80 len=1d flags=0
0,3,1,0,0,1,0,0,0,0,0,0,3,
"www",3,"ora",3,"com",
0,0,1,0,1,0,0,0
(select) WSOCK Rd=1 Wr=0 Err=0
(recv/recvfrom) WSOCK c0fllca8 buf=00d6ee38 len=400 flags=0
(closesocket) WSOCK cOfllca8
(connect) WSOCK c0£10e50 AF_INET, 80, 204.148.40.9
(select) "WSOCK Rd=1 Wr=1 Err=1
(select) WSOCK Rd=1 Wr=1 Err=1
(connect) WSOCK c0f10e50 AF_INET, 80, 204.148.40.9

Next we see a couple of select calls. A select is similar to a WaitForMultipleOb-
jects call. It could block its thread until it is signaled or a timeout occurs, or Gf the
timeout value is 0) it will return immediately. A select call takes three lists of
sockets: the first list is interested in whether the socket is readable, the second list
is interested in whether the socket is writeable, and the third list is interested in
any error conditions on the listed sockets. On return from select, each list is
updated to indicate the status of each socket.

At this point socket 42h is poised to connect to www.ora.com, but before it can
do so it needs to know the IP address (204.148.40.9) to connect to. The next few
lines are involved with resolving this name. First, we see a read from the local-
HOSTS file to see if there is a matching entry. My HOSTS file only contains names
of local machines so I know that will fail. So Netscape is forced to go to the
Internet to find the IP address for the name. To do this it opens another socket,
number 62h, and connects on that socket to 204.156.128.1, the IP address of my

Going to www.ora.com 17

service provider's DNS (Domain Name System) name server. It connects on the
well-known port 53 for DNS and sends a packet containing information about the
name it is searching. The select call waits for the reply and the subsequent recv
presumably gets a matching IP address back. Now that we have the IP address,
we're done with socket 62h, so closesocket gets rid of it.

Now we're really ready to connect to www.ora.com. The connect call succeeds
on the second try; socket 42h is now connected on the well-known port 80 for
HTTP.

Continuing with the trace in Example 1-3, Netscape sends a packet containing the
string “GET / HTTP/1.0...”, which requests the server’s home page from the root
directory of the web server. Several recv’s are then made on socket 42h, but the
actual amount read is uncertain since the requested amount is usually not the
same as the returned amount. With some portion of the HTML home page read
in, Netscape creates a file named mop17ie0 in its .\cache directory in which to
store it. As more data is received on socket 42h, it is appended to a local buffer.
Finally, at the bottom of Example 1-4, the entire home page has been received—
all 0a18h bytes—the socket handle is closed, the buffer is written to mop1 7ieO,
and the file is closed.

Example 1-3. Retrieving the Home Page

Function Device Handle Args
(send/sendto) WSOCK c0£f10e50 buf=012569e0 len=a5 flags=0
"GET / HTTP/1.0",d,a,
"Connection: Keep-Alive",d,a,
"User-Age",0,
(recv/recvfrom) WSOCK c0£f10e50 buf=0090£f534 len=104 flags=0
(recv/recvfrom) WSOCK c0£f10e50 buf=0090£f534 len=104 flags=0
(select) WSOCK Rd=1 Wr=0 Err=0
(select) WSOCK Rd=1 Wr=0 Err=0
(recv/recvfrom) WSOCK c0£f10e50 buf=0090£534 len=104 flags=0
(recv/recvfrom) WSOCK c0£f10e50 buf=0092bc94 len=400 flags=0
FS_OpenFile (6c¢) VFAT 20e* ..\NETSCAPE\NAVIGATOR\CACHE\MOP17IEQ0 ca

While the home page is still being read in, sockets 63h, 64h, and 65h are created
in Example 1-4. These sockets are created in the same fashion as socket 42h was.
Note that as these new sockets are added, the socket lists passed to select appear
to include them as well, since the list sizes increase by the same amount. Each of
these sockets is going to handle the transfer of a referenced image in the HTML

page.
The final bit of output that we’ll look at, shown in Example 1-5, corresponds to
socket 65h (handle context c0f29a3ch). The output for sockets 63h and 64h is
essentially the same, so there is no need to show that too. After connecting to the
IP address for www.ora.com, Netscape sends a packet containing the string “GET /

18 Chapter 1: From IFSMgr to the Internet

graphics/space.gif HTTP/1.0”, which requests the server’s space.gif file from the /
graphics directory of the web server. Several recv’s are then made on socket 65h.
Once the GIF file has been received, Netscape creates a file named mop17IE3.gif
in its .\cache directory and then closes socket 65h. At the bottom of Example 1-
5, the received buffer is written to mop1 7IE3.gif, and the file is closed. ’

Example 1-4. Create a Socket for Each Embedded GIF

Function Device Handle Args
(socket) WSOCK 63 AF_INET, SOCK_STREAM, IPPROTO_TCP

(WSAAsyncSelect) WSOCK cOflbca8 hwWwnd=408, wMsg=cffe, 3f
(setsockopt) WSOCK c0flbca8 SOL_SOCKET, SO_LINGER, buf=0090efe8 len=8
(ioctlsocket) WSOCK cOflbca8 FIONBIO, parm=1)
(connect) WSOCK c0flbca8 AF_INET, 80, 198.112.208.23

(recv/recvfrom) WSOCK c0£10e50 buf=0092bc94 len=7c00 flags=0

(socket) WSOCK 64 AF_INET, SOCK_STREAM, IPPROTO_TCP
(WSAAsyncSelect) WSOCK c0f25e54 hwnd=408, wMsg=cffe, 3f
(setsockopt) WSOCK c0f25e54 SOL_SOCKET, SO_LINGER, buf=0090£f0£f0 len=8
Function Device Han Args
(ioctlsocket) WSOCK c0f25e54 FIONBIO, parm=1
(connect) WSOCK c0f25e54 AF_INET, 80, 198.112.208.23

(recv/recvfrom) WSOCK c0£10e50 buf=0092bc94 len=7c00 flags=0
(select) WSOCK Rd=3 Wr=2 Err=2
(select) WSOCK Rd=3 Wr=2 Err=2
(recv/recvfrom) WSOCK c0f10e50 buf=0092bc94 len=7c00 flags=0

(socket) WSOCK 65 AF_INET, SOCK_STREAM, IPPROTO_TCP
(WSAAsyncSelect) WSOCK c0f29a3c hwWnd=408, wMsg=cffe, 3£
(setsockopt) WSOCK c0f29a3c SOL_SOCKET, SO_LINGER, buf=0090f0f0 len=8
(ioctlsocket) WSOCK c0f29a3c FIONBIO, parm=1
(connect) WSOCK c0f29a3c AF_INET, 80, 198.112.208.23

(recv/recvfrom) WSOCK c0£f10e50 buf=0092bc94 len=7c00 flags=0
(closesocket) WSOCK c0£f10e50
FS_WriteFile (d6) VFAT 20e cnt=al8H ofs=0H ptr=12c6618H —-—=
FS_CloseFile (3e) VFAT 20e f

This example illustrates the limits of looking just at the file system. If all we saw
were the opens, writes, and closes, we would be unaware of the concurrency of
these operations. By combining some rudimentary information about Windows
sockets with a trace of file system activity, we see that a socket connection is
assigned to each file transfer, and when the transfer completes, the socket goes
away.

We have covered a lot of territory in this chapter, literally from IFSMgr to the
Internet. I hope it has impressed upon you how pervasive the file system is. In

Going to www.ora.com

19

the next chapter we’ll continue our excursion with a look at the varieties of file-
names supported by Windows 95.

Example 1-5. Retrieving a GIF file

Function Device

(select)
(select)
(connect)
(send/sendto)

(recv/recvirom)
(recv/recvirom)
(select)

(select)
(récv/recvfrom)
(recv/recvirom)
FS_OpenFile (6c)
(closesocket)
FS_WriteFile (d6)
FS_CloseFile (3e)

WSOCK
WSOCK
WSOCK
WSOCK

WSOCK
WSOCK
WSOCK
WSOCK
WSOCK
WSOCK

VFAT
WSOCK

VFAT

VFAT

Handle

c0f29%a3c
c0f29a3c

c0f29%a3c
c0f29%a3c

c0f29a3c

c0f29a3c
29b*

c0f29a3c
29b
29b

Args

Rd=3 Wr=3 Err=3

Rd=3 Wr=3 Err=3

AF_INET, 80, 198.112.208.23
buf=012b50f0 len=d0 flags=0 .

"GET /graphics/space.gif HTTP/1.0",d,a,
"Referer: http:",0,8,0,0
buf=0090£534 len=104 flags=0
buf=0090£f534 len=104 flags=0

Rd=3 Wr=2 Err=2

Rd=3 Wr=2 Err=2

buf=0090£534 len=104 flags=0
buf=0092bc94 len=400 flags=0

. . \NETSCAPE\N. .R\CACHE\MOP17IE3.GIF ca
cnt=39H ofs=0H ptr=12c6618H -——
£

Where Do
Filenames Go?

A file system is an abstract idea. What you deal with on a daily basis are the
names of files that a file system stores and retrieves. Before Windows 95, DOS
and Windows 3.x users learned to accept the limitations of their systems. Instead
of a descriptive name like FooTech Annual Report 97.doc, they constructed a
name like foo_ar97.doc. Much of the talk about the Windows 95 file system
focuses on this transition from “short names” to “long names.” While increasing a
name’s length is a long-awaited benefit, there are much more interesting aspects
of a filename.

What's in a Name’?

Most of us equate filenames with strings like c:\foobar\foo.ixt. This example
adhers to the “8.3” convention of limiting filename components to 8 characters
with an optional dot followed by a three-character extension. Characters like \ (or
/) and . serve as a form of punctuation that allows us to combine simple strings
to represent a disk directory hierarchy. Another special character, the colon (:),
delimits a leading character which stands for a physical or logical volume. The 8.3
naming convention also places the limit on the length of a fully-qualified file-
name, including the drive letter, at 64 characters. This kind of naming is used by
the MS-DOS FAT filesystem.

Windows 95 has extended this file-naming convention to now allow filename
components of up to 256 characters in length, including the null terminator. The
length of a fully-qualified filename is limited to 260 characters. The dot character
may now be used like any other character in composing a filename; it is not
limited to marking the start of a three-character extension. Spaces and the + char-
acter are also valid path component and filename characters. While filenames are
not case sensitive, case is preserved. This kind of naming is used by the Windows

20

Accessing Local Files 21

95 VFAT file system. VFAT continues to support the 8.3 naming convention and
provides for conversions between long and short forms of pathnames.

We won't delve into the detailed rules governing the construction of valid file-
names in the FAT and VFAT systems. These topics have been addressed in other
books and periodicals (see “Long Filenames” in Programmer’s Guide to Microsoft
Windows 95, Microsoft Press, 1995).

Another kind of naming that you will encounter follows the Universal Naming
Convention (UNC). A UNC name consists of two leading backslashes followed by
a machine name, a share name, and then directory and filename, as in
\\TOPDOG\DEVDISK\bin\nmake.exe. These names are used primarily for refer-
encing network resources, although a local share can be accessed with a full UNC
name, as in \\MYMACHINE\MYSHARE\foodir\foofile.txt. The machine name is
limited to 16 characters, including the null terminator, and the share name is
limited to 13 characters, including the null terminator. The remaining portions of a
UNC name follow the VFAT naming conventions.

Some special forms of UNC names are based on the use of a dot (.) for the server
name. These names are used to refer to resources residing on the local machine.
For example, a local mailslot is referenced as \\ \MAILSLOT\fooslot. Windows 95
also uses this form of UNC name for referencing some devices. To open a virtual
device driver, you pass the name \\.\VxDName to the Win32 API CreateFile.
VxDName can be either a VXD module name, a VXD file name, or an entry under
the registry key HKLM\System\CurrentControlSet\ Control\SessionManager\
KnownVxDs. A filename is distinguished by having the name include an explicit
extension.

Another type of device name is used to reference the “standard devices.” Some of
these are holdovers from MS-DOS: devices like CON, LPT1, and PRN. New stan-
dard device names can be added to the system by implementing a character file
system driver and registering it with IFSMgr.

So we see that Windows 95 supports several kinds of names. Some are meant to
access plain-vanilla disk files, others reach across the network to access a file at a
remote location, and yet others point to a device. Let’s look at how Windows 95
deals with these different varieties of names.

Accessing Local Files

Filenames can be introduced into the operating system through a variety of APIs.
The Win32 functions CreateFile, OpenFile, _Icreat, and _lopen are perhaps the
most common ones. The C run-time library offers the more portable wrappers for
these APIs with fopen, _creat, and _open. The companion disk contains a sample

22 Chapter 2: Where Do Filenames Go?

application, called NT32, for testing names with the Win32 APIs. It attempts to
open the filename entered on the command line with the fopen, CreateFile, and
OpenFile functions. If the function is successful, the returned handle is immedi-
ately closed. This little application also emits tag strings at each step so that we
may easily trace its execution with MultiMon. Here is the MultiMon trace that was
logged when the command nt32 c:\windows\system.ini was executed:

Type Function Flagsl Dev HAl Args . Flags2
tag ======== fopen

w21l LFN(71)Ext.Open(6c) c¢:\windows\system.ini

p21 LFN(71)Ext.Open(6c) c:\windows\system.ini

fsh FS_OpenFile (6c¢) e_cLnu_s..VFAT 2da* C:\WINDOWS\SYSTEM.INI oe
w21l TIOCTL(44)GetDevData (00) 2da

p21 IOCTL(44)GetDevData (00) 2da

w2l Close(3e) 2da

p21 Close(3e) 2da

fsh FS_CloseFile {(3e) e_cLnu_s..VFAT 2da . £
tag ======== CreateFile .

w21l LFN(71)Ext.Open(6c) c:\windows\system.ini

p21 LFN(71)Ext.Open(6c) c:\windows\system.ini

fsh FS_OpenFile (6c¢) e_cLnu_s..VFAT 2e9* C:\WINDOWS\SYSTEM.INI oe
w21l Close(3e) 2e9

p21 Close(3e) 2e9

fsh FS_CloseFile (3e) e_cLnu_s..VFAT 2e9 f
tag ======== QOpenFile

w21l LFN(71)GetFileAttr (43) c:\windows\system.ini Gt
p2l LFN(71)GetFileAttr (43) c:\windows\system.ini Gt
fsh FS_FileAttribs(43) e_cLnu_s..VFAT C:\WINDOWS\SYSTEM. INI Gt
w21l LFN(71)Extended Open(6c) c:\windows\system.ini

p21 LFN(71)Extended Open(6c) c:\windows\system.ini

fsh FS_OpenFile (6c) e_clnu_s..VFAT 2f9* C:\WINDOWS\SYSTEM.INI oe
w21l TIOCTL (44)RemDrvChk(09) drive: C -

p21 IOCTL(44)RemDrvChk (09) drive: C

v21 IOCTL(44)RemDrvChk (09) drive: C

w21l TIOCTL (44)RemovMedChk (08) drive: C

p21 IOCTL(44)RemovMedChk(08) drive: C

v21 IOCTL (44)RemovMedChk (08) drive: C

fsh FS_IoctlléDrive(4408) e_cLnu_s..VFAT drive: C

w2l Get File Date/Time(5700) 2f9

fsh FS_FileDateTime(57) e_cLnu_s..VFAT 2f9 Gm
w21l Close(3e) 2f9

p2l Close(3e) ' 2f9

fsh FS_CloseFile (3e) e_cLnu_s..VFAT 2f9 £
tag = ==

This output packs quite a bit of information. Let’s start by getting familiar with
what each column contains. The first column, Type, tells us which MultiMon
monitor reported the line. This trace contains lines of output contributed by five
different monitors: tag comes from TAGMON, fsh comes from FSHOOK, w21
comes from WIN32CB, and p21 and v21 come from I21HELP1.

Accessing Local Files 23

The next column, labeled Function, contains a description of the API or event
which the line represents. Many of the lines identify functions of the interrupt 21h
interface. Those whose names begin with “FS_” are functions in a file system
driver like VFAT.

The Flagsl column looks like a pattern in a bowl of alphabet soup. All these odd-
looking characters are described in detail in Appendix B, MultiMon: Monitor Refer-
ence. Each character represents a state flag that is either on—uppercase, or off—
lowercase. For instance, the leading e indicates the function call succeeded
whereas an E indicates the function failed. The next four flags indicate the kind of
resource where a filename resides. In this example, every call into VFAT was
accompanied by the flags cLnu; the capital L signifies local.

The Dev (or Device column) contains the module name of the device that is
receiving the function request. For instance, in this listing, each “FS_” call is to the
VFAT file system driver.

The Hdl (or Handle) column contains the system file number, if the call is handle-
based. When a file is initially opened and the handle is first created, it is marked
with an asterisk.

The Args column contains the filename or pathname that is an argument to the
function. There is a limit to how many characters are stored, so you may see trun-
cation at the beginning of the name.

Finally, we have another. flags column, called Flags2. This column reports flags
that are passed to a function as part of the calling parameters. Here, we have oe
for open existing, £ for final, Gt for get attributes, and Gm for get modification
time and date.

Now. that you are little more comfortable with the output, what does it mean?
Start with the fopen call. In our test application, #32, there are two program
statements:

fh = fopen(argv[i],"r");

if (fh != NULL) fclose(fh);
The first response we- see to fopen is an interrupt 21h function 716¢h, or
extended file open (the 71h indicates that this is the long filename, or LFN,
variant). We see this request in the w21 for the Int21Dispatch in VWIN32. This is
the result of a call from KERNEL32, via the Win32 API VxDCall, into VWIN32’s
ring-0 Win32 service for dispatching interrupt 21h requests. VWIN32 acts as a
middle-man and just passes it to the protected-mode interrupt 21h interface,
which is hooked by many VxDs, including IFSMgr. The [21HELP1 monitor hooks
the protected-mode interrupt 21h interface just before requests are sent down to
IFSMgr; this is where we get the type p21 line for function 716¢ch. The next line

24 Chapter 2: Where Do Filenames Go?

that we see is an FS_OpenFile reported by the fsh monitor. This is where IFSMgr
is making a call into the VFAT file system driver. This open succeeds and returns
a handle of 0x2da. Note that this handle is not the same as the handle returned
by CreateFile.

What we have seen so far corresponds to a CreateFile call within the fopen func-
tion. Before fopen returns, it also makes a call to the Win32 API GetFileType. This
call appears in the log as two lines reporting the interrupt 21h function 4400h (get
device data). As with the extended file open call, the w21 monitor first picks it up
as a KERNEL32 call into VWIN32. Then VWIN32 passes it to the protected-mode
interrupt 21h interface which generates the p21 monitor line. Since this call is not
sent along any further, i.e., to the file system driver, it is presumably handled by
IFSMgr.

To keep our little program tidy, we close the file descriptor returned by fopen as
soon as fopen returns. The fclose call adds three lines to our trace. These entries
follow the same pattern. We first see the close request in the w21 monitor of
VWIN32. VWIN32 passes the request down to the protected-mode interrupt 21h
interface, which generates the p21 monitor line. The next line that we see is an
FS_CloseFile reported by the fsh monitor. Again, we see IFSMgr making a call into
the VFAT file system driver.

I won’t provide detailed descriptions of the CreateFile and OpenFile traces since
they are very similar. It is interesting that OpenFile is.the “busiest” of the three;
apparently it has more work to do to fill in an OFSTRUCT. OpenFile also- has
some different sequences than we have seen before. For instance, the removable
media check function 4408h goes from w21 to p21 to v21 to fsh. The v21
monitor is a virtual-86 mode interrupt 21h hook; it will see the interrupt before
IFSMgr sees it on its V86 interrupt 21h hook. By absorbing this interrupt 21h
request much later in the chain, IFSMgr is giving a wider range of drivers an
opportunity to see it.

Before we move on to see how the system handles a UNC name, let’s sketch a
picture of the path we have followed. Tracing our path in Figure 1-1, we started
in a Win32 application (nt32), then dropped down into the file system, passing
through KERNEL32, VWIN32, IFSMgr, and finally ended up in VFAT.

Accessing Remote Files

Let’s use nt32 again, but this time we’ll supply it with the name of a remote file,
or, more accurately, a UNC name of a remote file. In this example, a second
machine called WETSUIT shares its ¢: drive as C. The two machines are
connected in a peer-to-peer Microsoft Network.

Accessing Remote Files ‘ 25

Here is a portion of the MultiMon trace that was logged when the command nt32
\\WETSUIT\C\windows\system.ini was executed:

Type Function Flagsl Dev H41 Args Flags2

tag ======== fopen

w21l LFN(71)Ext.Open(6c) \\WETSUIT\C\
windows\system.ini

p21 LFN(71)Ext.Open(6c) \\WETSUIT\C\
windows\system.ini

fsh FS_OpenFile (6c) e_clNU_s..VREDIR 2fa* \WINDOWS\SYSTEM.INI oe

w21l TIOCTL (44)GetDevData (00) 2fa

p21l IOCTL (44)GetDevData (00) 2fa

- w21l Close(3e) 2fa

p21 Close(3e) 2fa

fsh FS_CloseFile (3e) e_clNU_s..VREDIR 2fa : £

tag ======== CreateFile

Here we only show the response to the fopen call. If you compare this with the
function sequence for a local file system call, youll see they are the same.
However, if you compare the FS_OpenFile and FS_CloseFile calls you’ll see that
they reference different devices—in this case VREDIR instead of VFAT. VREDIR is
a network file system driver, also known as a redirector. Note that the Flags1 field
has also changed from cLnu for a local file system call to c1NU for a remote file
access. The “N” signifies a network resource is being accessed and the “U” indi-
cates that the filename is 2 UNC name.

In the FS_OpenFile call to VREDIR, the server name and share name have been
stripped off; only the directory and filename are supplied (for example,
\\WETSUIT\ C\windows\system.ini becomes \windows\system.ini). This - trun-
cated name is passed because there is an implicit connection established with the
server called “WETSUIT” for the share named “C”. Once the connection is made
there is no need to keep passing around its name; a resource handle is used
instead. This resource handle is a hidden argument to FS_OpenFile.

What we have been looking at is the client side of Microsoft Network. If you have
configured your machine to share files (and printers, too), you can be a server
like WETSUIT in the example above. If we run MultiMon on the server side, we
get a log like this corresponding to the fopen call:

Tvpe Function Flagsl Dev HAl Args Flags2
fsh FS_FindFirstFile(4e) e_cLnu_S.. VFAT 262* C:\WINDOWS\SYSTEM.INI

fsh FS_FindClose (dc) e_cLnu_S.. VFAT 262 h
fsh FS_OpenFile(6c) e_cLnu_S.. VFAT 263* C:\WINDOWS\SYSTEM.INI oe
fsh FS_CloseFile(3e) e_cLnu_S.. VFAT 263 f

"What is conspicuously absent is any interrupt 21h call; we only see calls into
VFAT. First there is an attempt to locate the file using FS_FindFirstFile, and if that
succeeds an open is attempted. If you have keen eyesight, you might have also
noticed that the S flag is set in the Flagsl column. This flag is set if a file system

26 Chapter 2: Where Do Filenames Go?

request originates by a call to IFSMgr_ServerDOSCall. This is sort of a “back door”
into IFSMgr that file servers use to service client requests.

Before we move on to see how the system handles a device name, let’s refer back
to Figure 1-1 to trace the the path we have just followed. On the client side, we
started in a Win32 application (nt32) and then dropped down into the file system
passing through KERNEL32, VWIN32, IFSMgr, and finally ending up in VREDIR
and ultimately out onto the LAN. On the server side, packets come in .and move
up through the network layers to arrive at VSERVER; it passes the request directly
to IFSMgr, who relays it on to the local file system driver, VFAT.

One type of naming that IFSMgr is unable to cope with is a Uniform Resource
Locator (URL). For example, in Chapter 1, From IFSMgr to the Internet, we
retrieved a graphics image from the O'Reilly & Associates home page using the
URL btip://www.ora.com/graphics/space.gif. In addition to the server’s directory
and filename, /graphbics/space.gif, this name specifies a protocol, bttp, and server
location, www.ora.com. Currently, URLs are handled in the Explorer shell’s
namespace using OLE COM (Component Object Model).” But there is an effort
underway to extend the SMB protocol, which is currently used as the LAN file
sharing protocol, to also share files across the Internet. This new file sharing
protocol is called CIFS, for Common Internet File System (see Chapter 13,
VREDIR: The Microsoft Networks Client).

Accessing Devices

To complete our mini-tour of file system names, we’ll look at the peculiarities of
using device names. Let’s use nt32 again, but this time we’ll supply it with the
name of a “standard device.” The standard device that we’ll access is housed in
the file system driver, MONOCFSD, which is presented in Chapter 8, Anatomy of
a File System Driver (instructions are given there for installation). MONOCFSD

adds a device called “mono” which stands for a monochrome TTL display (as
~ opposed to a monochrome VGA display). This is a write-only device.

Here is a portion of the MultiMon trace that was logged when the command nt32
mono was executed:

Type Function Flagsl Dev HAL Args Flags2
tag ======== fopen
w21 LFN(71)Ext.Open(6c) E:\ifsbook\
nt32\mono
p21 LFN(71)Ext.Open(6c) E:\ifsbook\
nt32\mono

* See the article “Sweeper,” by Paul DiLascia and Victor Stone, in Microsoft Interactive Developer, available
at bitp://www.microsoft.com/mind/0396/sweeper.sweeper.btm.

Accessing Devices 27

Type Function Flagsl Dev HAL Args Flags2
fsh FS_MountVolume (00) e_clnu_s.. MONOCFSD drive: A m
fsh FS_OpenFile (6c¢) e_Clnu_s.. MONOCFSD 2d8* \IFSBOOK\NT32\MONO oe
w21l IOCTL(44)GetDevData (00) 248
p21 TIOCTL(44)GetDevData (00) 2d8
fsh FS_Ioctll6éDrive(4400) e_Clnu_s.. MONOCFSD
w21l Close(3e)’ . 2d8
p21 Close(3e) 2d8
fsh FS_CloseFile(3e) e_Clnu_s.. MONOCFSD 2d8 B £
tag ======== CreateFile
w21 LFN(71)Ext.Open(6c) E:\ifsbook\

nt32\mono
p21 LFN(71)Ext.Open(6c) E:\ifsbook\

nt32\mono
fsh FS_OpenFile(6c) e_Clnu_s.. MONOCFSD 2eb* \IFSBOOK\NT32\MONO . oe
w21l Close(3e) ' 2eb
p21 Close(3e) 2eb
fsh FS_CloseFile (3e) e_Clnu_s.. MONOCFSD 2eb £
tag ======== QOpenFile :

If you compare this with the function sequences for our previous examples, you’ll
see they are quite similar. One call that stands out here is FS_MountVolume. On
the first call to open this device, IFSMgr calls MONOCFSD’s mount entry point.
This function establishes the linkage between the file system driver and IFSMgr.
Since this is a character file system driver, subsequent calls into MONOCFSD have
the C flag set in the Flagsl column, to indicate that this is a character resource.

Although we passed momno as the filename to fopen and CreateFile, notice that
the argument that the interrupt 21h functions see—and that ultimately gets passed
to FS_OpenFile—is E:\ifsbook\nt32\momno. The directory E:\ifsbook\nt32 was the
directory from which I executed nt32. IFSMgr doesn’t care because when it comes
to standard device names, it ignores the drive and path.

In the section “What's in a Name?” earlier in this chapter, I mentioned that
another form of device name is used to reference virtual device drivers. Here is
MultiMon trace that we get when we try the command nt32 \\\ifsmgr:

Type _ Function Flagsl Dev HAl Args Flags2
tag ======== fopen

tag == == CreateFile

tag ======== QOpenFile

w21l LFN(71)Get File Attr(43) \\.\ifsmgr Gt
p21 LFN(71)Get File Attr(43) \\.\ifsmgr Gt
tag ===

In this case, IFSMgr doesn’t see these requests. Instead this is a job that VWIN32
assumes as part of its support for the DeviceloControl function. If we change

28 Chapter 2: Where Do Filenames Go?

MultiMon’s filters to include VWIN32’s DeviceloControl interface, we get a more
informative trace log:

Type Function Flagsl Dev HA1 Args Flags2
tag ======== fopen

dev Open Device IFSMGR

dev Close Device IFSMGR

dev (256)) TAGMON

tag ======== CreateFile

dev Open Device IFSMGR

dev Close Device IFSMGR

dev (256) TAGMON

tag ======== QOpenFile

w21l LFN(71)Get File Attr(43) \\.\ifsmgr Gt
p21 LFN(71)Get File Attr(43) \\.\ifsmgr Gt
dev (256) TAGMON

tag ===

The new lines that we have added, of Type dev, originate in the WIN32CB
monitor. One of the things this driver monitors is VWIN32’s ring-0 Win32 service
to support KERNEL32’s DeviceloControl interface. This interface is also “wired-up”
to the Win32 functions CreateFile and CloseHandle, when these functions are
referencing a VXD name. That is what we are seeing here, an “Open Device” for
IFSMgr from CreateFile and a “Close Device” for IFSMgr from CloseHandle. The
TAGMON driver, which spits out the tag strings in our trace, also uses Devicelo-
Control to receive tag strings. The private code that it assigns to this function is
256. This trace also shows us that the Win32 OpenFile API doesn’t accept VXD
device names. :

To finish up our mini-tour of filenames, let’s refer back to Figure 1-1 one last
time. We have traced two different paths for device names. For a standard device
name, we start in a Win32 application, then pass through KERNEL32, VWIN32,
and IFSMgr before ultimately arriving at the character file system driver,
MONOCEFSD, in our example. On the other hand, for a VXD device name, only
KERNEL32 and VWIN32 are involved.

Our exploration of filenames was based on a Win32 application. We could easily
repeat these experiments using a Winl6 or a DOS-box application. Figure 1-1
shows that a Winl16 application interfaces with the 16-bit Kernel, which in turn
issues protected-mode interrupt 21h requests to IFSMgr. A DOS-box application,
on the other hand, issues virtual-86 mode interrupt 21h requests to IFSMgr.

This chapter has been a quick “once-over” to introduce you to some of the
system components which play a role in the file system’s operation. I have
thrown out some terms like Win32 services, protected-mode interrupts, and virtual-
86 interrupts. These system features are at the heart of what makes the file system
tick. They are the focus of the next chapter.

Pathways to the
File System

In this chapter we will focus on file system plumbing—those mechanisms that are
used to make file system services available to an array of operating system modes:
DOS/V86, Winl6, Win32, and ring-0. In the next chapter we’ll look at what gets
carried through this plumbing: the various APIs.

To carry the plumbing analogy further, when a building is finished the pipes are
hidden from view. To see the plumbing you have to peer into crawl spaces with
a flashlight, or remove wall panels. But, if you visit while the building is going
up, before the floors and walls are erected, the plumbing is in clear view.

Well, we’re not going to rebuild Windows 95 from the ground up; instead we’re
going to watch as Windows 95 starts up to get a clearer view of the file system.
We'll be tracing through Windows 95 from the “Big Bang” to its quiescent state,
kernel idle. Armed with this background, we’ll come back to the Windows 95
operating system modes, and examine how the file system is accessed from each
of them.

The Big Bang

By the time you type your password to log on as a Windows 95 user, an enor-
mous amount of software has executed to prepare the system to do useful work.
Out of this mountain of software, we will concentrate on the main Windows 95
kernel components: vmm32.vxd, krni386.exe, and kernel32.dll. VMM32 is a
compressed library of virtual device drivers along with a real mode loader. Each
VXD in the library may execute real mode initialization before the processor is
switched to protected mode. Upon entering protected mode, VMM issues system

29

30 Chapter 3: Pathways to the File System

control messages to notify VxDs of each initialization stage. Here is a summary of
these stages:

1. The first stage is System Critical Init. At this point, interrupts are still disabled,
so it provides an opportunity for drivers to install hardware handlers and
perform other critical initialization steps. During this phase there are restric-
tions on which services are available to VxDs. For instance, Exec_Int, a
service for executing software interrupts, is not available.

2. Device Init stage follows System Critical Init. During this stage most services
are available to drivers. This is the stage at which most drivers perform the
bulk of their initialization.

3. Init Complete stage follows Device Init. After this stage, VMM discards the
driver initialization code and data segments. Subsequent stages continue the
preparation of the system virtual machine.

4. System VM Init marks the stage at which the system virtual machine has been
created and initialized.

5. Begin PM App marks the execution of KRNL386 in the system VM.

6. Kernel32 Init indicates that KERNEL32 initialization in the system VM is
complete.

These stages provide a timeline along which we can mark important and inter-
esting events.

Within each stage, there is another timeline which is based on the initialization
order of devices. Each device specifies a doubleword init order ranging from 0,
the first, to FFFFFFFFh, the last. Each category of VxDs has a specific init order;
for instance, IFSMgr has the value A0010000h, whereas file system drivers are
assigned A0010100h. This assures that IFSMgr is initialized prior to the FSDs
which rely upon it.

By the time the kernel components have initialized, many VxDs have hooked
interrupts, installed callbacks, and in other ways have left their imprint on the
final system configuration. MultiMon is an ideal tool for watching these initializa-
tion steps.

Sampling the Startup Timeline with MultiMon

To make the sequence of events easier to visualize, we’ll be using MultiMon to
log events of interest during system startup. For a detailed description of
MultiMon and for instructions on installing it, see Appendix A, MultiMon: Setup,
Usage, and Extensions. We will be making use of the BOOTMGR driver, which
allows us to monitor and collect a log of events during the time the system is -

The Big Bang 31

booting. More accurately, the log will collect events from System Critical Init until
Kernel Idle.

MultiMon can be configured with a variety of drivers to collect information about
different APIs and events. In this chapter, we are especially interested in looking
at how the interrupt vector tables and callbacks get initialized. With this goal in
mind, I've used the set of MultiMon drivers shown in Table 3-1 to collect the
traces that we will be examining in the coming sections.

Table 3-1. MultiMon Configuration for Creating a Log flle

MultiMon Driver Monitor API Selections
BOOTMGR
VECTORS Interrupts & Callbacks
I121HELP1 Int21 PM (pre-IFSMgr) Set Vect(25)
" Int21 V86 (pre-IFSMgr) Set Vect(25)
12FMON1 Int2F PM (pre-IFSMgr) Win/386 Multiplex(16)
" Int2F V86 (pre-IFSMgr) Win/386 Multiplex(16)
WIN32CB VWIN32 DeviceloControl
" VWIN32 Win32 Services K32Init (36)
" VWIN32 Win32 Services ReplGlobalEnv (47)

If you want to repeat this on your own system, you need to follow these steps:

Install the drivers listed in Table 3-1, using MultiMon’s Add/Remove Driver...
dialog from Options on the main menu.

You must reboot your system to actually get the drivers loaded, since these
are static VxDs.

After rebooting, start MultiMon and bring up the Filters dialog to adjust your
session logging options. Make sure the monitors in Table 3-1 are checked off
and other monitors are disabled. Within in each monitor, select only the APIs
listed in Table 3-1.

After each monitor and its associated APIs are selected, press the dialog but-
ton Save As Default. (This button must be pressed once for each monitor.)

Now reboot your system and this time, as it starts up, a log file will be cre-
ated. Once the system has finished initialization, launch MultiMon; you will
be greeted with a message box stating: “BOOTMGR has captured a log file.
Do you wish to display it now?” Answer yes; you may also save the log file
in text form using the Save As... button.

To disable MultiMon’s “boot-logging” mode later, remove the BOOTMGR
driver using the Add/Remove Driver... dialog from Options on the main

32 Chapter 3: Patbways to the File System

menu; you may also want to remove other drivers which you don’t plan to
use again.

Interpreting MultiMon Output: Pre-System VM

In this section we will examine a typical log file. The example shown here was
collected from a Texas Instruments TM-4000M notebook with Microsoft Networks
client and server installed.

The session log file is subdivided into the following sections:

Initial V86 Interrupt Vectors
Initial IDT Vectors

Sys Critical Init

Device Init

Init Complete

Sys VM Init

Begin PM App

Kernel32 Initialized

These sections mark easily recognizable stages during system startup and corre-
spond to control messages that BOOTMGR receives from VMM. Within each
section, each log entry is divided into columns. The first column is labeled
Module. Generally, this column contains the name of a process that owns the
thread from which the event was generated. In the case of descriptive messages,
the monitor driver that generated the message will be entered here (e.g.,
BOOTMGR or VECTORS). The next column is labeled Type. This column contains
a three-character abbreviation for the name of the monitor, e.g., vec for Interrupts
& Callbacks. The third column is labeled Function. For the early portion of the log
file, these entries will refer to virtual device driver services. The VXD services that
will be seen here are:

Get_PM_Int_Vector
Get_V86_Int_Vector
Allocate_PM_Call_Back
Allocate_V86_Call_Back
Set_PM_Int_Vector
Set_V86_Int_Vector
Hook_V86_Int_Chain
Allocate_V86_Break_Point

With the exception of the first two services, all of these services are booked by
vectors.vxd. For these hooked services, VECTORS has installed a preamble and/or
postamble which is executed whenever these services are called.

The Big Bang 33

In the last two sections of the session logfile, Begin PM App and Kernel32 Initial-
ized, we also see other types of entries in the Function column. In these cases,
the line Type will be p21, v21, p2f, v2f, vw32, or dev. The first four refer to inter-
rupts 21 and 2f, whereas vw32 and dev refer to the Win32 callback. We have
hooked these interfaces by installing an interrupt handler and chaining it to the
previous handler. Hooking the Win32 callback is a little more involved and we’ll
get to the details later in this chapter.

The other columns you will see in the log are:

Flags1
May contain “Entry” or “Return” to indicate which side of a call the line was
reported from

Device
May contain the name of the VXD which is being called into

Handle

Used to store the interrupt number, as in “Int 21”
Args

A string describing input arguments or return values

Flags2
Not used

Let us examine the output section-by-section, starting with the first two tables,
shown in Figure 3-1. These tables display the values of the V86 and protect mode
interrupt vectors for the five software interrupts which IFSMgr monitors. The V86
vectors are segment:offset pairs that reference code that executes in V86 mode.
The protect mode vectors all have the characteristic 003Bh selector which
earmark it as a protected mode callback. The segment with this selector consists
of an array of Int 30h instructions (interrupt gates) which change the execution
ring level (see the sidebar “Breakpoints and Callbacks™).

BOOTMGR txt *exx SpsCritlnit

VECTORS st Initial ¥86 Interrupt Vectors

? vec Get_V8E_Int_Vector Entry Int17 V86 Vector=DEC.0428
? vec Get V86 _Int_Vector Entry Int 21 W86 Vector=DEC:04A0
? vec Get_V86_Int_Vector Entry Int25 V86 Vector=C3:0FBC
? vec Get V86_Int_Vectar Entry Int26 V86 Vector=C3:0FCE

? vec Get V8E_Int_Vector Entry Int2F V86 Vector=159B:03CC
VECTORS Initial IDT Vectors :

? vec Get PM_Int_Vector Entry Int17 PM Vector=3B:2E

? vec Get PM_Int_Vector Entry Int 21 PM Vector=3B:42

? vec Get PM_Int_Vector Entry Int25 PM Vector=3B:44

? vec Get PM_Int_Vector Entry Int26 PM Vector=3B:4C

? vec Get_PM_Int_Vector Entry Int2F PM Vector=3B:208

Figure 3-1. Initial IVT and IDT Contents

34

Chapter 3: Patbways to the File System

Breakpoints and Callbacks

During VMM initialization, one or more pages are allocated in which system
breakpoints and callbacks are stored. The amount of storage set aside depends
on the value of the MaxBPS key in the [386Enh] section of system.ini. In
Windows 95 Build 950, the default value for MaxBPS is 400. The MaxBPS value
is rounded upwards to the actual number of breakpoints (ActualBPS) so the
storage claimed is the nearest whole number of pages. This storage is divided
into two portions.

The lower portion begins at the base address of the allocation and is Actual-
BPS$*8 in size. Each V86 callback or PM callback consumes 8 bytes of this re-
gion. A V86 breakpoint needs twice as much storage as a callback. To get the
additional space, ActualBPS is reduced by one and the freed storage is used
for the breakpoint.

For every callback and breakpoint two doublewords are stored, the Refdata
value and the Callback address as they were passed as arguments to the cor-
responding services. Note that this table does not distinguish a V86 callback
from a PM callback or a V86 breakpoint. This table grows towards higher ad-
dresses, limited only by ActualBPS.

The additional 8 bytes of storage required for a V86 breakpoint is also allocated
from this same region but from the other end, i.e., from higher addresses to-
wards lower. The first breakpoint would be stored at (ActualBPS-1)*8, the next
at (ActualBPS-2)*8, and so on. Thus as breakpoints are added, the maximum
number of breakpoints (and callbacks) is reduced by one. In the 8 bytes of ad-
ditional storage, the first doubleword is the linear address of the V86 break-
point, followed by a word index into the “Refdata/Callback” array, followed by
the byte replaced with the arpl instruction, and then a byte of Ofth for padding
(and probably to assure a mismatch when scanning for a matching CS:EIP).

Immediately following the region just described is a region filled with Int 30h
instructions, the interrupt gates for jumping from ring-3 to ring-0. The size of
this region is defined by the equation (ActualBPS+100h)*2 bytes. A descriptor
with selector 3Bh is defined just to reference this table. The additional 100h
entries are included for default reflection of protect-mode interrupts to V86
mode.

When a V86 callback is called, an invalid opcode fault causes the program to
enter VMM. VMM uses the CS:EIP in the client registers to determine if the call-
er came from the arpl byte location. If it did, the actual segment-offset encod-
ing of the address is used to look up the entry in the “Refdata/Callback” array.

—Continued—

The Big Bang 35

When a PM callback executes its matching Int 30h instruction, the interrupt
gate transfers control to VMM. VMM uses the CS:EIP in the client registers to
determine if the interrupt came from code executing with selector 3Bh. If so,
EIP-2 is used to index into the “Refdata/Callback” array.

When a V86 breakpoint is “hit”, an invalid opcode fault causes the program to
enter VMM. In this case, the CS:EIP in the client registers does not point to the
single callback arpl instruction; rather, it points to an arpl that has been inserted
in the instruction stream. VMM uses the CS:EIP value to scan the breakpoint
array to locate a matching CS:EIP. If found, the index value is used to look up’
the corresponding “Refdata/Callback” entry.

IDT stands for interrupt descriptor table. There isn’t just one IDT; separate IDTs
exist for virtual-86 and protected mode. What is more, each virtual machine has
its own pair of V86 and PM IDTs. The current IDT is constantly changing, as VMM
switches VMs and execution modes are changed within a VM. When Set_PM_Int_
Vector is called it sets the protected mode IDT vector referenced by the current
VM to the specified handler; the IDT for V86 mode is not affected. In V86 mode,
it is the V86 IDT which is consulted when a hardware or software interrupt
occurs, not the interrupt vector table (IVID) at 0:0 in the current VM. The IVT
comes into play when no protected mode handler services the request. VMM then
reflects the interrupt to “real mode” to the corresponding entry in the IVT. To
assign a vector to the IVT for the current VM, Set_V86_Int_Vector is used. This
service stuffs the vector into the currently mapped VM at 00000000+4*intnum.

Software interrupts or traps occurring in V86 mode are always going to be initially
serviced at ring-0. In protected mode, the situation is a little more complicated.
Each entry in the PM IDT is a gate with a specific privilege level. When a software
interrupt occurs, the privilege level of the interrupting program is compared
against the privilege level of the gate. The interruptor must be at least the same
privilege level as the gate or a general protection fault is issued against the int 7
instruction, This will still force the program to enter VMM, but at the GP fault
handler rather than at the intended interrupt handler.

This property of PM software interrupts also allows the PM IDT to contain
addresses of handlers which reside in a ring-3 DLL. It is also for this reason that
protected mode callbacks go through an interrupt gate which has a privilege level
of 3.

Now we have seen that Set_PM_Int_Vector and Set_V86_Int_Vector apply to the
current VM, but during System Critical Init, Device Init, etc. a VM does not yet
exist, so what affect do they have at this early stage? The DDK reference tells us

36 . Chapter 3: Pathways to the File System

that if these services are called before the System VM Init control message is
broadcast, the installed handler becomes part of the default IDT and IVT which
are used for every VM which is subsequently created. ‘

Another observation we can make from the protected mode vectors shown in
Figure 3-1 is that each one is at an offset of 2*intnum in the Int 30h segment. The
first 100h entries in this array are the default protected mode vectors that are used
for each VM. Their corresponding addresses will be from 3b:0000 to 3b:01fe. Note
that the address for the Int 2f handler lies outside this range. This is because VMM
has already overidden the default entry by installing a callback at 3b:0208. The
default protected mode vector which this handler should chain to would be at
3b:005e.

Continuing with the System Critical Init phase, Figure 3-2 shows a few of the
entries from this stage. There are no entries made by IFSMgr, but DOSMGR does
install protected mode handlers for Int 21h, 25h, and 26h, the same interrupts
IFSMgr has an interest in. Note that for each protected mode handler installed,
first a callback is allocated and then the protected mode vector is set to this call-
back address. Each of the Allocate_PM_Call Back calls associates a ring-0
procedure with the callback. For instance, in the case of Int 21h, the ring-0 proce-
dure is c02201lac. VMM provides a handy service, _GetVxDName, that converts a
ring-0 address into a device name, segment, and offset form. For example, the
ring-0 address c02201ac is located in DOSMGR segment 0Ah at an offset of 1ACh
from its origin (DOSMGR(0A) + 000001AC).

vec Allocate V86_Call_Back Entry g0 Function=c025a22¢ [DOSMGR(13) + 00000190)
vec Allocate_V86_Call_ Back Retumn V86 App Callback: fe65:18dd

vec Hook_V8E_Int_Chain Entry Int 24 RingD Hook=c02943cc [DOSMGR(05) + 0000002C)
vec Hook_V86_Int_Chain Entry Int21 Ring0 Hook=c0220000 (DOSMGR(0A) + 00000000)
vec Hook_V¥B6_Int_Chain Enty Int24 RingD Hook=c022b270 [DOSMGR(0B) + 00000244)
vec Hook_V86_Int_Chain Enty Int23 Ring0 Hook=c025a237 (DOSMGR(13) + 00000198)
vec Hook_V86_Int_Chain Entry Int1B Ring0 Hook=c025a2d7 (DOSMGR(13) + 0000023B)

vec Allocate_PM_Cal_Back Entry Ring0 Function=c02201 ac [DOSMGR(0A) + 000001AC)
vec Allocate PM_Call_ Back Retumn PM App Callback: 3b:0330

vec Set_PM_int_Vector Enty Int21 PM Vector=3B:330

vec Allocate_PM_Call_Back Entiy Ring0 Function=c022b77e (DOSMGR(0B) + 000007B2)
vec Allocate PM_Call Back Retumn P App Callback: 3b:0332

vec Set PM_Int_Vector Entry Int25 PM Vector=3B:332

vec Allocate_PM_Call Back Entry RingQ Function=c022b77e ([DOSMGR(0B) + 000007B2)
vec Allocate_PM_Call_Back Retumn PM App Callback: 3b:0334

vec Set_PM_Int_Vector Enty Int26 PM Vector=3B:334

Figure 3-2. MultiMon trace fragment from System Critical Init

Hook_V86_Int_Chain is used to install V86 interrupt handlers for 1Bh, 21h, 23h,
24h, and 2Ah. When VMM receives the interrupt via the V86 IDT, it will check to
see if any handlers have been installed for the interrupt by the Hook_V86_Int_

The Big Bang 37

Chain service, and if so, control is passed to the handler. This service may be
used to install multiple V86 handlers for a particular interrupt. The last handler
installed gets the first crack at handling the interrupt. Only if it doesn’t handle the
interrupt or wishes other handlers to see the interrupt too, it returns with carry
set. If carry is cleared on return, then VMM does not pass the interrupt on any
further. Only if all of the installed handlers fail to service the interrupt (or if no
ring-0 handlers have been installed) VMM consults the IVT for this VM and pass
the interrupt to the “real mode” components in the VM.

Device Init phase is the phase during which devices do most of their initialization.
This is the phase where we see the first entries in the log file for IFSMgr. We see
from the output in Figure 3-3 that IFSMgr is interested in interrupts 17h, 21h, 25h,
26h, and 2Fh. Of these, 21h, 25h, and 26h have protected mode vectors installed

" using the Allocate_PM_Call_Back service along with Set_PM_Int_Vector, as we
saw with DOSMGR. For the V86 IDT, IFSMgr installs ring-0 handlers for interrupts
17h, 21h, 25h, 26h, and 2Fh. The only thing unaccounted for is the V86 call back.
This callback is passed to the DOS device driver ifship.sys. It provides a way for it
to enter IFSMgr (see the section “Bouncing Back from ifshlp.sys” in Chapter 5, The
“New” MS-DOS File System).

vec Allocate V86_Call_Back Entiy Ring0 Function=c00aae58 (IFSMGR(01) + 00000521)
vec Allocate_V86_Call_Back Retum 86 App Callback: feb0:142d ‘

vec Hook_V86_Int_Chain Enty Int21 RingD Hook=c00abb22 (IFSMGR(01) + 000011EA)
vec Allocate_PM_Call Back Entry Ring0 Function=c00aba?8 [IFSMGR(01) + 00001140)
vec Allocate PM_Cal_Back Return PM App Callback: 3b:03c6

vec Set_PM_Int_Vector Entry Int 21 PM Vector=3B:3C6

vec Hook_WBE_Int_Chain Enty Int17 Ring0 Hook=c0276c1a (IFSMGR(03) + 000016DA)
vec Hook_¥86_Int_Chain Entry Int25 Ring0 Hook=c0276bcc (IFSMGR(03) + 0000168C)
vec Hook_¥B6E_Int_Chain Entry Int26 Ring0 Hook=c0276bce (IFSMGR([03) + 0000168C)

vec Allocate_PM_Cal_Back Enty Ring0 Function=c0276bEf (IFSMGR(03) + 0000162F)
vec Allocate PM_Cal_Back Retumn PM App Callback: 3b:03c8

vec Set_PM_Int Vector Entry Int25 PM Vector=3B:3C8

vec Allocate PM_Call Back Entry Ring(Function=c0276b6f [IFSMGR(03] + 0000162F)
vec Allocate_PM_Cal_Back Retumn PM App Callback: 3b:03ca

vec Set_PM_Int Vector Entry Int26 PM Vector=3B:3CA

vec Hook_¥86_Int_Chain Entry Int2F RingQ Hook=c00ab81c IFSMGR(01) + O0DO0OEE 4)
Figure 3-3. MultiMon trace fragment from Device Init

Figure 3-4 shows the entries for the final VMM initialization stage, Init Complete.
Here, we see VMPOLL install both protected mode and V86 mode handlers for
Interrupt 21h.

Interpreting MultiMon Output: Post-System VM

Once the System VM is created, VMM broadcasts the Sys VM Init message, to
allow VxDs to perform any initialization needed for the new VM. The initial V86

38 Chapter 3. Pathways to the File System

nitComplete
vec Hook_WBE_lnt_Chain Enty Int 21 Ring0 Hook=c0220310 [VMPOLL(DS) + 00000068)
vec Allocate_PM_Call Back Entry Ring0 Function=c02202fc (VMPOLL(05) + 00000054)
vec Allocate PM_Call_Back Retum P App Callback: 3b:03d6

vec Set_PM_Int_Vector Entry Int 21 PM Vector=38:3D6

Figure 3-4. MultiMon trace fragment from Init Complete

IVT and protected mode IDT of the system VM are stored away as templates to
be used for creating future VMs.

VMs begin life in V86 mode, and the System VM is no different. To switch the VM
to protected mode requires launching an application in the VM that makes use of
Window’s DPMI services to make the change. The application that gets launched
is krni386.exe, a 16-bit protected mode application. When a protected mode appli-
cation starts in a VM, VMM broadcasts the message “Begin PM App.” Starting with
this stage, we see ring-3 services added to the MultiMon trace in Figure 3-5.

Many of the services listed in the Function column in Figure 3-5 are ring-3, appli-
cation level services. These include:

Win/386 Multiplex, Get Device API (Int 2Fh, AX=1684h)
Win/386 Multiplex, Get DPMI Extension (Int 2Fh, AX=168Ah) -
Win/386 Multiplex, Get Win32 API (Int 2Fh, AX=188Dh)
SetVect (Int 21h, AH=25h)

ReplGlobalEnv (VxDCall(002A0031h))

K32Init (VxDCall(002A001Fh))

These are just a small fraction of the services that could be logged at this stage.
There are numerous Int 21h and Win32 services that don’t show up here. The
services that were selected were chosen because they help to account for the ring-
0, Allocate_PM_Call_Back, and Set_PM_Int_Vector calls.

The log shows us that KRNL386 at this stage is concerned with fault and excep-
tion handlers. We see it installing protected mode handlers for Interrupts 1 and 3,
the Debug Exception and Debug Breakpoint. We also see several PM callbacks
being allocated to the VMM address c023183bh. These are used to install' excep-
tion handlers for interrupts 6, B, C, D, and E: the invalid opcode, segment not
present, stack exception, general protection fault, and page fault, respectively.
Presumably DPMI calls are used to set these exception handlers.

There are several Int 2Fh calls to retrieve the protected mode interfaces for
devices. The devices that are interrogated on this system are: PAGEFILE, VWIN32,
VMM, and VIDAPI. Note that the protected mode callback (which is used for the
PM APIs for these VxDs) is not allocated until some client requests it from the
device.

Tbe Big Bang 39

txt *x* Begin PM App

vec Allocate_PM_Call Back Entry Ring0 Function=c00a9849 (VwIN32(01
vec Allocate_PM_Call_Back Return PM App Callback: 3b:03da

p2f ‘Win/386 Multiplex(16)DPMIE xt(8a)

p2f Win/386 Multiplex(16)GetDevAPI(84) PAGEFILE(21h)

vec Allocate_PM_Call_Back Entry Ring0 Function=c0006186 [VMM(01) +

vec Allocate_PM_Call_Back Retun PM App Callback: 3b:03dc

p2f Win/386 Multiplex(16)GetDevAPI(84) VWIN32 (24h)

vec Allocate_PM_Call Back Entry Ring0 Function=c0006186 (VMM(01) +

vec Allocate_PM_Call_Back Return PM App Callback: 3b:03de

p2f Win/386 Multiplex(16)GetDevAPI(84) VMM (1h)

vec Allocate PM_Call Back Entry Ring0 Function=c0006186 (VMM(01) +

vec Allocate PM_Call Back Return PM App Callback: 3b:03e0

vec Allocate_PM_Call_Back Entry Ring0 Function=c023183b (VMM(OD) +
vec Allocate_PM_Call_Back Return PM App Callback: 3b:03e2

p21 SetVect(25)

vec Set_PM_Int_Vector Entry Int1 PM Vector=117.ABA

p2l SetVect25)

vec Set_PM_Int_Vector Entry Int3 PM Vector=117.AC4

vec Allocate_PM_Call Back Entry - Ring0 Function=c023183b (VMM(OD] +
vec Allocate_PM_Call Back Retun PM App Callback: 3b:03e4

vec Allocate_PM_Call_Back Entry Ring0 Function=c023183b (VMM(OD] +
vec Allocate PM_Call Back Retumn PM App Callback: 3b:03e6

vec Allocate_PM_Call_Back Entry RingQ Function=c023183b [VMM(OD) +
vec Allocate_PM_Call_Back Return PM App Callback: 3b:03e8

vec Allocate_PM_Call_Back Entry Ring0 Function=c023183b (VMM(OD) +
vec Allocate PM_Call Back Return PM App Callback: 3b:03ea

p2f Win/386 Multiplex(16)GetDevAPI(84) VWIN32 (28h)

p2f Win/386 Multiplex(16)Getwin324pi...

vec Allocate_PM_Call Back Entry Ring0 Function=c00dbcff (wIN32CB(01
vec Allocate PM_Call Back Retumn PM App Callback: 3b:03ec

p2f Win/386 Multiplex(16)GetDevAPI(84) VTDAPI (442h)

vec Allocate_PM_Call_Back Entry Ring0 Function=c0006186 (YMM(01) +

vec Allocate_PM_Call_Back Retumn PM App Callback: 3b:03ee

vw32 ReplGlobalEny(47)

vec Allocate_PM_Call_Back Entry Ring0 Function=c026f1ae (VWIN32(04)
vec Allocate_PM_Call_Back Return PM App Callback: 3b:03f0

vw32 K32Init(36)

Figure 3-5. MultiMon trace from Begin PM App

There are also a couple of rare Int 2Fh calls: 168Ah, which retrieves the protected
mode callback to vendor specific DPMI extensions, and 168Dh, which retrieves
the protected mode callback to Win32 services. It is KERNEL32 which actually
uses this callback to implement the undocumented VxDCall function. At the time
Get Win32 API is called, a protected mode callback is allocated and asssigned a
ring-0 handler in VMM. In order to monitor VxDCall traffic we install our ring-0
handler in its place and then chain on to the original handler. This allows us to
examine all VxDCall calls, but we only show two at the end of this section of the
log. The first, ReplaceGlobalEnv, is a wrapper for the VMM function VMM_
Replace_Global_Environment. K32Init is a wrapper for the VMM System_Control
service. It is used to broadcast the control message “Kernel32 Init,” which marks
the beginning of the next stage.

After the Kernel32 Initialized message is broadcast, the kernel continues with its
initialization and performs operations similar to what we saw -in the previous

40 Chapter 3: Patbways to the File System

stage. The log is much longer for this stage; a portion of it is shown in Figure 3-6.
Again, there are several Int 2Fh calls to retrieve the protected mode interfaces for
devices. The devices that are interrogated on this system include VDD, VIDAPI,
VMOUSE, Device=37h, REBOOT, SHELL, VMM, VFLATD, CONFIGMG,
MMDEVLDR(44ah), VDSPD, and VJOYD.

p2l SetVect(25] .

vec Set_PM_Int_Vector Entry Int2F PM Vector=317.8C47
p21 SetVect(25) ‘

vec Set_PM_Int_Vector Entry Int10 PM Vector=317:9C3E
p2f Win/386 Multiplex(16)GetDevAPI(84) VDD [Ah)

p2f Win/386 Multiplex(16)GetCutvMID(...

p21 SetVect[25)

vec Set_PM_Int_Vector Entry Int9 PM Vector=247.44
p21 SetVect(25)

vec Set_PM_Int_Vector Entry Int2F PM Vector=317.9C47
p21 SetVect(25)

vec Set PM_Int_Vector Entry Int24 PM Vector=117:9094
vec Set PM_Int_Vector Entry Int24 PM Vector=3B:386
p2l SetVect(25)

vec . Set_PM_Int_Vector Entry Int0 PM Vector=117:9298
p21 SetVect(25) '

vec Set PM_Int_Vector - Entry Int2 PM Vector=117.92BA
p21 SetVect(25]

vec Set PM_Int_Vector Entry Int4 PM Vector=117:92C0
p21 SetVect(25)

vec Set PM_Int_Vector Entry Int6 PM Vector=117:92C6
p21 SetVect(25))

vec Set_PM_Int_Vector Entry Int?7 PMVector=117:92CC
p21 SetVect(25)

vec Set PM_Int_Vector Entry : Int3E PM Vector=117:92D2
p21 SetVect(25)) ‘
vec Set_PM_Int_Vector Entry Int75 PM Vector=117:92D8
p21 SetVect(25) '

vec Set PM_Int_Vector Entry Int31 PM Vector=117:8899
p21 SetVect(25)

vec Set PM_Int_Vector Entry . Int21 PM Vector=117:8434
p2f Win/386 Multiplex(16)GetDevAPI(84) VTDAP! (4.

p2f Win/386 Multiplex(16)TSRIident{b)

p2f Win/386 Multiplex(16]GetDevAPI(84) SHELL (1.

p2f Win/386 Multiplex(16)GetDevAPI(84)) [444h)

dev OpenDevice IFSMGR

dev (IFS_IOCTL_21)- Ax:5f8a IFSMGR

dev (IFS_IOCTL_21) - AX:5(8a IFSMGR

Figure 3-6. MultiMon trace fragment after Kernel32 Init

The kernel also continues to toy with the protected mode IDT. In this stage we
see handlers installed for interrupts 0, 2, 4, 6, 7, 9, D, 21, 24, 2f, 31, 3e, 71, and
75. The handlers that are getting installed are in ring-3; they are specific to the
System VM. Recall that after System VM Init, Set_PM_Int_Vector applies to the
current VM. So, the modification of the IDT we have seen here and in the
previous stage only affects the System VM.

This trace shows us traces from the dev monitor for the first time. These lines
come from the monitor for WIN32 DeviceloControl. This isn’t the Win32 Devicelo-
Control exactly; rather, it is the VWIN32 function that implements a large portion

Accessing IFSMgr 41

of it. We are seeing this function called through the Win32 callback on behalf of
Win32 APIs: DeviceloControl, CreateFile, and CloseHandle.

Up until now our trace has shown a lot of Int 2Fh calls to retrieve the protected
mode interface for a variety of devices. These protected mode callbacks can only
be used from Winl6 programs that still allow Int 2Fh calls. Win32 programs are
required to use a new mechanism for accessing VxDs.

This requirement is that the device be opened by CreateFile, exchanges data or
commands using DeviceloControl, and is closed with CloseHandle. All three of
these functions go through the same VWIN32 function. If the dwloControlCode is
0 we have an open on behalf of CreateFile (labeled as Open Device in the trace);
if the dwloControlCode is —1 we have a close on behalf of CloseHandle. Other
dwloControlCode values indicate specific DeviceloControl commands that are
private to the device, i.e., a value of 100 for IFSMgr does not mean the same as a
value of 100 for VREDIR.

For IFSMgr, the dwloControlCode of 100 is defined in ifs.h from the DDK as IFS_
IOCTL_21. The comment with the equate states “These definitions are used by
MSNET32 for making DeviceloControl calls to IFSMgr.” The last two lines in
Figure 3-6 show two such calls with an AX value of 5f8ah, indicating a call to the
DOS Int 21h function 5f8ah. There are three other dwloControlCodes which
IFSMgr recognizes: IFS_IOCTL_2F(101), IFS_IOCTL_GET_RES(102), and IFS_
IOCTL_GET_NETPRO_NAME_A(103). In the next chapter we'll take a closer look
at what these functions do.

Accessing IFSMgr

Figure 3-7 illustrates the IFSMgr entry paths from the four Windows 95 execution
modes. IFSMgr is a virtual device driver that executes in ring-0; thus, three of the
paths involve a ring transition from the application level, ring-3, to the kernel
level, ring-0. To support DOS and Windows 3.x applications, we see continued
support for the software interrupt interfaces, whereas for Win32 applications and
ring-0, new interfaces have been introduced.

Accessing IFSMgr from DOS/V86 Mode

The bottom arrow in Figure 3-7 symbolizes pathways from Windows DOS boxes
to IFSMgr.

Recall that in virtual-86 mode, interrupts are serviced by ring-0 handlers in VMM.
. Using MultiMon, we traced the installation of these handlers for all interrupts by
hooking the VMM service Hook_V86_Int_Chain. Table 3-2 summarizes V86 inter-
rupt handlers for interrupts 17h, 21h, 25h, 26h, and 2fh, the interrupts that IFSMgr

42 Chapter 3: Patbways to the File System

Ring0
VxD Services

Win16 PM/Ring3

Int21h
Int 25h
Int 26h

Win32 PM/Ring3

* DeviceloControl
IN32 Win32 Services

Ini

Int 26h
Int 2fh
Int 17h

DOS/V86 - Ring3

Figure 3-7. Patbways to IFSMgr

monitors. Each column shows the sequence of events for servicing that interrupt.
For instance, interrupt 17h is initially handled by the service routine in the VM’s
V86 IDT. This will be a ring-0 interrupt handler in VMM that will check for
installed V86 handlers. If handlers have been installed, then the last one installed
is called first, then next most recent, etc., until one services the interrupt. If none
of them service it, then the ring-3 V86 handler in DOS is used.

Table 3-2. Sequence of Events for V86 Interrupt Handlers

Int 17 Int 21 Int 25 Int 26 Int 2f
VM V86 IDT) VM V86 IDT VM V86 IDT VM V86 IDT VM V86 IDT
Ring-0 Int Ring-0 Int Ring- Int Ring-0 Int Ring-0
Hdlr Hdlr Hdlr Hdlr Int Hdlr
IFSMGR(03) VMPOLL (05) IFSMGR(03) IFSMGR(03) IFSMGR(01)
+ 16DA + 68 + 168C + 168C + EE4
VMPOLL (06) SHELL (0A) DOSMGR (05)
+ 30 + 12C + F4
VPD(01) + IFSMGR(01) VvDD(01) +
5C4 + 11EA 37B
DOSMGR (0A) VCDFSD(01)
+ 0 + 3A
SHELL(01)

+ 47¢C

Accessing IFSMgr 43

Table 3-2. Sequence of Events for V86 Interrupt Handlers (continued)

Int 17 Int 21 Int 25 Int 26 Int 2f
VSHARE (01)
+ 29E

V86 hdlr V86 hdlr V86 Hdlr V86 hdlr V86 hdlr

0c59:0a28 0c59:04a0 00c9:0£fbc 00c9:0fc6 10c0:03cc

A DOS box is a VM that contains an application running in V86 mode (unless it is
using a DOS extender). This VM’s V86 IDT is cloned from a template that had
been created by the time the “System VM Init” message was broadcast. It doesn’t
have the customizations to the protected mode IDT like the System VM does, but
if you are executing in V86 mode, a program wouldn’t use those customizations
anyway. What is important is that IFSMgr (as well as DOSMGR, etc.) are thor-
oughly hooked into the interrupt plumbing of a DOS box through the ring-0 V86
interrupt handlers. As we see in Table 3-2, DOS programs which invoke software
interrupts 17h, 21h, 25h, 26h, and 2fh stand a good chance of executing some
IFSMgr code. Whether that happens depends on which function request is being
made and whether IFSMgr is interested in that function or whether a driver
installed later handles it before it gets to IFSMgr.

IFSMgr does not export a V86 API.

Accessing IFSMgr from Win16/Protect Mode

The left arrow in Figure 3-7 symbolizes pathways from 16-bit Windows to IFSMgr.
The same interrupts that we examined for DOS/V86 mode are shown in Table
3-3. Here, the interrupts are serviced in 16-bit protected mode, so the System
VM’s PM IDT determines the interrupt handler.

Table 3-3. Sequence of Events for PM Interrupt Handlers

Int17 Int 21 Int 25 Int 26 Int 2f

VM PM IDT | VM PM IDT VM PM IDT VM PM IDT VM PM IDT
117:849%a 3b:03be 3b:03c0 30£f:026¢

(IFSMGR) (IFSMGR)

3b:03c4 3b:0332 3b:0334 3b:03b8
(VMPOLL) (DOSMGR) (DOSMGR) (V86MMGR)
3b:03bc 3b:0372
(IFSMGR) (VDD)
3b:0330 3b:0208
(DOSMGR) (vMM)

3b:002e 3b:0042 3b:004a 3b:004c 3b:005e

44) Chapter 3: Pathways to the File System

The handlers in the protected mode IDT may reside in 16-bit Windows DLLs or in
ring-0 VxDs. In Table 3-3, the first handlers to get a shot at Int 21h and Int 2fth
reside in DLLs. All of the other handlers in this table are the addresses of
protected mode callbacks. Each of these callbacks corresponds to an Int 30h inter-
rupt gate which maps the callback to a ring-0 handler. The VxDs which own
these handlers are shown in parentheses in the table.

As we saw in our trace of MultiMon events, KRNL386 has further customized the
System VM by installing ring-3 protected mode interrupt handlers. This gives
KRNL386 an opportunity to look at some of the interrupt requests before they are
passed down to ring-0 drivers. The kernel has a chance to “skim off” some Int
21h requests and handle them internally so they never reach the lower interrupt
chain, or perhaps arrive there in a different form.

At the bottom of each column is the address of the default PM callback. If none of
the PM handlers service the interrupt request, then when VMM sees a default PM
callback it reflects the interrupt to V86 mode. This means the interrupt chain
continues in the corresponding column of Table 3-2.

One exceptional case is Int 17h. It does not have a protected mode interrupt
handler installed for it in the PM IDT. So whatever handler is found here was
installed by VMM during system initialization. If you examine the PM IDT (using
WDEB386 or Winlce) you will find a ring-0 interrupt gate in the Int 17h slot.
Gates are like selectors in that they have descriptors which provide details about
their address, type, and privilege level. When issuing a software interrupt from a
protected mode application, the interrupt gate or trap gate must have a privilege
level no higher than that of the application.

In the case of Int 17h, the interrupt gate has a privilge level of 0, but it is being
called by an application with a privilege level of 3; the result is a General Protec-
tion fault (Int ODh). The fault handler in VMM looks at which instruction caused
the fault; if it was an Int #, it reflects the interrupt to V86 mode as if VMM had
encountered the default PM callback for that interrupt number.

IFSMgr does not export a PM APIL

Accessing IFSMgr from Win32/Protect Mode

The previous two sections describe features that are carried over from Windows
3x to support legacy DOS and Windows applications. In this and the next
section, we'll be describing new interfaces that have been introduced with
Windows 95. We first turn our attention to the right arrow in Figure 3-7, the arrow
which represents the interfaces between Win32 applications and IFSMgr.

Accessing IFSMgr ‘ 45

Although we have entered the brave new world of 32-bit Windows development,
maintaining compatibility with 16-bit applications puts some serious constraints
on the Windows 95 architecture. One such constraint is the “bitness” of VMs.

Recall that VMs begin life in virtual-86 mode. If DPMI services are subsequently
used to switch the VM into protected mode, either a 16- or 32-bit mode is
selected as one of the arguments. Thereafter, that VM is marked as either a 16-bit
or 32-bit protected mode VM.

Since the System VM is created to load KRNL386 (a 16-bit protected mode applica-
tion), the System VM is marked as a 16-bit protected mode VM. The offshoot of
this is that if Win32 apps were to call into VMM through PM callbacks, VMM
would still perceive them as having a 16-bit stack. This breaks routines like
Simulate_Iret when it manipulates the stack using the contents of the Client_
Register structure.

For these reasons, Microsoft is endorsing the DeviceloControl interface as the way
to go. Protected mode callbacks are out. Here is a quote from the introductory
chapter of the DDK reference on VMM: '

...Win32 programs will appear as 16-bit applications from VMM'’s point of view.
In other words, Win32 programs will not be recognized by VMM as 32-bit applica-
tions. This should not be a problem because Win32 programs should be using the
DeviceloControl interface to communicate with VXDs. This is merely a warning
not even to try it any other way because it won’t work. [my italics]

Despite this dire warning, KERNEL32 continues to use a protected mode callback
to access VXD services, specifically what are called Win32 services. Before
Windows 95, VxDs only exported functions which could be used by other VxDs
as a table of services. With Windows 95, VxDs can now export a table of services
which can be accessed from ring-3 through a special protected mode callback.
The table of Win32 services is constructed much like “regular” VxD services, by
using several macros: Begin_Win32_Services, End_Win32_Services, and Declare_
Win32_Service. Win32 services are dynamically registered with VMM using the
VMM service Register_Win32_Services. Only a few VxDs export Win32 services at
this time; the most notable are VMM and VWIN32 (IFSMgr does not).

To get the Win32 protected mode callback address, you need to use the Int 2Fh
interface with the function W386_Get_Win32_API(168Dh), which is defined in
int2fapi.b from the DDK. This function returns a PM callback in ES:DI. You can
see the call to this function in the MultiMon trace shown in Figure 3-5. There is a
catch-22 situation here. We need the callback address in a Win32 program but we
can’t retrieve it because software interrupts (Int 2Fh) are not allowed in a Win32
application! There are various work-arounds here; perhaps the easiest is to use an
undocumented KERNEL32 function which has Ordinal 1. In the early Windows 95

46 Chapter 3: Patbways to the File System

beta, this function was exported as VxDCall and the name has stuck although the
function is no longer exported by name in the retail release. KERNEL32 relies
heavily on this interface to access Win32 services in VWIN32 and VMM. If you are
curious about the details of how this Win32 callback works, see the section “The
Win32 Callback.”

Windows NT, in comparison, has a similar mechanism for user mode (ring-3)
‘components to call into kernel mode (ring-0). Interrupt 2Eh, the system trap, is
called with EAX holding a function number and EDX pointing to arguments on
the stack. Since both user mode and kernel mode have the same “bitness,” 16-bit
and 32-bit stacks do not need to be distinguished.

The Win32 callback is an interface to IFSMgr but not a direct one, since IFSMgr
does not provide Win32 services itself; rather, it is VWIN32 that provides the
connection. Andrew Schulman, in Unauthorized Windows 95, describes the argu-
ments required for VxDCall. Here is the passage in which he describes the Win32
service that provides Int 21h:

VxDCall0 expects a VxD Win32 service number (such as 2A0010h), and any
values for EAX and ECX on the stack. 2A0010h indicates VXD ID #002Ah, Win32
service #0010h. The PM callback in VMM decodes such Win32 service requests.
VxD 2Ah is VWIN32, and the PM callback in VMM will call its Win32 service #10.
VWIN32’s Win32 service #10h issues INT 21h on behalf of Win32 applications by
calling Exec_PM_Int, a VMM service new to Windows 95, with the parameter 21h.

This VWIN32 Win32 service is being called constantly but doesn’t show up in our
MultiMon trace because it was filtered out. Many Win32 file operations are
converted into one or more calls to this service and many ultimately are handled
by IFSMgr’s protected mode Int 21h callback. There are other VWIN32 Win32
services which call IFSMgr services- directly; we will examine these in the next
chapter.

The real meat of the file system services is provided via the Win32 callback by
way of VWIN32. Another Win32 interface to IFSMgr that we uncovered during our
examination of the MultiMon trace is DeviceloControl. IFSMgr exports this inter-
face to MSNET32; the Network API Library for Microsoft Networks.

Accessing IFSMGR from Ring-0

Now we turn our attention to the topmost arrow in Figure 3-7, the arrow which
represents the interfaces between ring-0 VxDs and IFSMgr. IFSMgr exports 117
services for use by other VxDs. Most of these are only needed by file system
drivers, but others are more general purpose. For instance, using the IFSMGR_
Ring0_FilelO services, VxDs may now perform DOS-like file operations.

The Win32 Callback 47

IFSMgr provides services that allow other VxDs to install hooks into the file
system. In some cases, a program needs to only monitor file activity. These
services provide mechanisms for doing so.

IFSMgr also installs service hooks on a number of other VxDs at Init Complete
time. These include:

VWIN32_ActiveTimeBiasSet (2a0015)
Schedule_Global_Event (1000e)
Resume_Exec(10085)
Suspend_VM(1002b)
Resume_VM(1002¢)
No_Fail_Resume_VM(1002d)
Nuke_VM(1002¢e)
Close_VM(100ec)

" Crash_Cur_VM(1002f)

So IFSMgr is even lurking around in VxD-land and doing a number on some stan-
dard VxD services.

The Win32 Callback

Many Win32 functions exported by KERNEL32 rely upon the Win32 callback for
their implementation. Let’s trace through the GetLocalTime function as an
example. The first code section below is output captured from Winlce while
tracing through this function. The trace skips over some of the initial parameter
checks, etc., and picks up where the kernel is preparing to make an Int 21h func-
tion 2ah (Get Date) call. EDI points to a buffer where the return values (in AX,
CX, and DX) will be stored. The function at BFF712B9 expects the DOS function
number in AX and an optional parameter in ECX.

It pushes these registers and the Win32 service number for VWIN32’s Int 21h
provider and then calls yet another KERNEL32 service. This function, ORD_0001
is exported as ordinal 1; it is also known as VxDCall. This function is a wrapper
for the Win32 callback. It copies the first argument on the stack (the Win32
service number) to EAX and then pops the return address over the top stack argu-
ment, replacing the Win32 service number with another copy of the return
address. It then performs an intersegment call using a far pointer (an FWORD in
32-bit land). It should come as no surprise that the address stored in
CS:[BFFBC004] is none other than our Win32 callback address: 003b:000003da.
The Int 30h interrupt gate then transfers us into ring-0.
0137:BFF767F8 MOV EDI, [EBP+08]

0137:BFF767FB MoV AH,2A
0137:BFF767FD CALL BFF712B9

48 Chapter 3: Patbways to tbe File System

0137:BFF712B9 PUSH ECX
0137:BFF712BA° PUSH EAX
0137:BFF712BB PUSH 002A0010
0137:BFF712C0 CALL KERNEL32 !ORD_0001

KERNEL32 !ORD_0001

0137:BFF713D4 MOV EAX, [ESP+4]

0137:BFF713D8 POP DWORD PTR [ESP]

0137 :BFF713DB CALL FWORD PTR CS: [BFFBC004]

003B:000003DA INT 30 ; #0028:C0236288 VMM(OD)+1288
0137:BFF712C5 RET ---- this is where we return

0137 :BFF76802 MOV [EDI+02],DH
0137:BFF76805 MOV [EDI+061,DL
0137:BFF76808 MOV [EDI],CX
0137 :BFF7680B SUB AH, AH
0137 :BFF7680D MOV [EDI+04],AX

Before we look at the Win32 service handler, let’s take a quick look at the Int 30h
handler. This is the common entry point in VMM for all protected mode callbacks,
not just for Win32 services. On entry into ring-0, the ring-3 register state is
preserved in the client register structure. VMM checks whether the caller’s ring-3
CS was selector 3bh on entry, i.e., VMM is expecting an Int 30h from the break-
point segment to get us here. If that is true, then the caller's EIP is decremented
by two to point to the beginning of the Int 30h instruction that caused the
transfer. This value is then used to consult the breakpoint table to load the corre-
sponding reference data to EDX before branching to the installed PM callback.
Note that a number of other registers are also initialized before control is trans-
ferred: EBX is set to the current VM handle, EDI is set to the current thread
handle, and ESP is set to the current thread’s stack. Note also the check for an EIP
value less than 200h; this signifies a default PM callback and requires a different
handler which is responsible for reflection to V86 mode.

VMM (01)

+ 0b04 sub esp,+04 ;no error code on stack
;for trap

+ 0b07 cld

+ 0b08 pushad ;complete the client
; register area

+ 0b09 mov ebp, esp ;set EBP to client
; register structure

+ 0b0b - mov dword ptr [ebp+3c],ds ;save segments to client
; registers

+ 0bOe mov dword ptr [ebp+38],es

+ 0bll mov dword ptr [ebp+40],fs

+ 0bl4 mov dword ptr [ebp+44]1,gs

+ 0bl7 cmp word ptr [esp+28],+3bh ;client CS == 3bh?

+ 0bld jnz short L_B5D :

+ 0Oblf mov ax,0030 . ;set segment registers

+ 0b23 mov ds,eax)

The Win32 Callback

49

+ + 4+ o+ o+ o+

+

EN
+
+

0b25
0b2b
0b2d
0b2f
0b31
0b34

0b37
Ob3a

0b3d
0b40
0b41l

0b46
0b49

0b4f
0b56

0b5d
0b62
0b67

mov
mov
mov
mov
mov
sub

mov
mov

L_B3D:
xchg
sti
push

cmp
je

mov
jmp

L_B5D:
mov
jmp
nop

ebx,dword ptr D1_F71C ;jcurrent VM handle
es,eax

fs,eax

gs,eax

eax,dword ptr [ebp+24] ;client EIP
eax,+02 ;backup to Int 30h

; instruction
edi,dword ptr [ebx-20] ;current thread handle
dword ptr [ebp+24],eax ;store adjusted EIP

dword ptr [edi+4c],esp

offset C1_300 ;the handler will return
; to C1_300

ah,02 ;callback offset < 200h?

L_1666 . ;branch to V86 reflection

edx,dword ptr [eax*4+9390h] ;retrieve refdata

dword ptr [eax*4+938ch] ;branch to ring-0

; handler

esi,0cOh
L_2C0

We’ve finally arrived at the handler for Win32 services. A close study of this code
reveals some interesting facts. The first thing it does is examine the caller’s stack
by testing SS from the client registers. SS is just a selector to which there corre-
sponds a descriptor. The LAR assembly instruction returns a byte of attributes
from the descriptor for a given selector. Only one bit is of interest here—the B-bit
(big-bit). It tells us whether the stack segment is 32-bit (pushes and pops are 32
bits at a time) or whether it is 16-bit (pushes and pops are 16 bits at a time). If it
is a 16-bit stack then VMM is careful to clear the upper 16 bits of ESI since it is an

alias for SP and not ESP.

VMM (0D)

+
+
+

+ +

1288
128c
128f

1293

1298
129a

mov ds,word ptr [ebp+34] ;client SS

mov esi,dword ptr [ebp+30] ;client ESP

lar eax,dword ptr [ebp+34] ;load attribute byte of

; SS descriptor

test eax,400000h ;test B-bit for 32-bit stack
; (ESP)

jnz short I_129D ;branch if 32-bit

movzx esi,si ;zero extend 16-bit stack
; offset (SP)

Note that DS:ESI now points to the caller’s stack, with the following contents:

BFF713E2 - return addr from CALL FWORD
00000137
BFF712C5 - return addr from CALL ORD_0001

50 Chapter 3: Patbways to the File System

00002A00 - Int 21h function number
00000000 - value of ECX pushed
BFF76802 - return address from BFF712B9

Continuing our trace, we see t_hat VMM discards the Win32 callback and ORD_
0001 return addresses on the client stack by adding 12 to the stack pointer (ESD.

It sets the client CS:EIP to the return instruction in the procedure starting at
BFF712C5, as if returning from ORD_0001.

L_129D:
+ 1294 mov eax,dword ptr [esi+08] ;get EIP to ORD_0001 return
+ 12a0 mov edx,dword ptr [esi+04] ;get CS to ORD_0001 return
+ 1l2a3 mov dword ptr [ebp+24],eax ;store to client registers
+ 12a6 mov word ptr [ebp+28],dx
+ 1l2aa add esi, +0c ;jremove return addresses from stack

Recall that EAX is loaded with the Win32 service number before entering the call-
back, so this argument is retrieved here and its device number is extracted. If the
device number is less than 40h, VMM consults a Win32 service table in an array
for faster lookup. If the device number is 40h or higher, the VxD list is searched
for a matching device ID. In either case, if the device ID is found and the device
has Win32 services registered for it, the service number is compared against the
total number of services offered. If this is within range, then a lookup in the
Win32 service table is made for the number of expected arguments (pushed on
the stack) and the address of the service routine.

+ 12ad mov eax,dword ptr [ebp+lc] ;get client EAX
; (e.g. 002a0010)

+ 12b0 mov edx, eax H

+ 12b2 shr edx, 10 ;extract device ID to EDX

+ 12b5 cmp edx, +40 jdevice ID less than 40h?

+ 12b8 jnc short L_12F4 ;branch if >= 40h

; Has this device registered Win32 services?

+ 12ba mov edx,dword ptr es:[edx*4+0c600h]

+ 12c2 or edx, edx

+ 12c4 jz short service_not_found

lookup_Win32_service:

+ 12c6 movzx eax,ax ;extract Win32 service to EAX

+ 12c9 cmp dword ptr es:[edx],eax ;number of services >
; requested service# ?

+ l2cc jbe short service_not_found ;branch if service outside
; range

+ 12ce inc eax

+ 12cf mov ecx,dword ptr es:[edx+eax*8+04] ;number of args

; on stack

+ 1244 mov edx,dword ptr es:[edx+eax*8] ;address of service

The Win32 Callback 51

Now prepare the ring-0 stack before calling the service. A VWIN32 Int 21h service
is passed two arguments on the stack, EAX and ECX, so 8 bytes are reserved on
the ring-0 stack for these arguments.

Next, the current VM handle, then the address of the client register structure, and
finally the address of the return procedure, are pushed onto the stack. The passed
arguments are copied from the ring-3 stack to the reserved area on the ring-0
stack. This leaves ESI pointing at BFF76802 (the return address from BFF712B9)
and it is stored as the new ESP in the client registers.

+ 12d8 pop eax ;temporarily remove return
; proc addr g

+ 1249 shl ecx, 02 ;allocate stack space for
; args*4 bytes

+ 12dc sub esp, ecx ;

+ 12de mov edi,esp ;

+ 12e0 push ebx ;iplace current VM on stack

+ 12el push ebp ;place client registers on
; stack

+ 12e2 push eax ;put back return proc addr

-+ 12e3 shr ecx, 02

+ 12e6 jz short L_12EB

+ 12e8 cld

+ 12e9 repe movsd ;copy ring3 stack args to
; ring0 stack

L_12EB:

+ 1l2eb mov eax,ss ;restore DS

+ 12ed mov ds, eax

+ 12ef mov dword ptr [ebp+30],esi ;save new stack ptr to

; client ESP
When control is transferred to the Win32 service, the ring-0 stack looks like this:

C0001300 - return address

EBP - address of client register structure
EBX - current VM handle

00002200 - Int 21h function number

00000000 - value of ECX pushed

+ 12f2 jmp edx ;branch to Win32 service
L_12F4: ; device ID is >= 40h

+ 12f4 mov ecx,offset D1_C360 ;get base Device Descriptor

; Block

next_DDB:

+ 12f9 mov ecx,dword ptr es: [ecx] ;last device?

+ 12fc jecxz short service_not_found ;then exit loop

+‘12fe cmp word ptr es:[ecx+06],dx ;matching device ID?

+ 1303 jnz short next_DDB ;no, then loop back

52

Chapter 3: Patbways to the File System

+ 1305

+ 130c
+ 130e
+ 1312

+ 1314

131b
1314
131f
1322

+ o+ 4+ +

test

jz
mov
jmp

word ptr es:[ecx+0al,4000 ;device has Win32

.) ; services?

short service_not_found ;no, then exit

edx,dword ptr es:[ecx+38] ;get Win32 service table
short lookup_Win32_service ;

service_not_found:

mov

mov
mov
mov
retn

dword ptr [ebp+lc],lh ;set carry in client
; flags

eax, ss) ;restore DS

ds,eax

dword ptr [ebp+30],esi ;store client ESP
;return

This concludes our examination of the file system plumbing. In the next chapter
we turn our attention to the file system APIs, especially the Win32 APIL

File System
API Mapping

In Chapter 3, Pathways to the File System, we saw how file system requests are
channeled in diverse operating environments. The MS-DOS Int 21h interface
forms the core API for the operating system modes: DOS/V86, Win16, and Win32.
To a considerable extent, the Win32 file APIs are mapped to the extended MS-
DOS API, although some additional assistance is needed from VWIN32 and VMM.

In this chapter, we will survey the Win32 and Winl16 APIs and see how they map
to the extended MS-DOS API. We'll also encounter the concept of KERNEL32
objects, a concept which will provide a framework for our examination of the
Win32 APIs. Microsoft has us all believing that Win32 is the API of the future, so
let’s begin with a look at how the Win32 APIs are implemented, primarily those
related to file 1/0.

The Win32 API and KERNEL32 Objects

To begin our excursion, I've chosen GetFileInformationByHandle because it is
short and yet illustrates several key aspects of KERNEL32’s implementation.

A Sample Win32 API: Geth'leInformatiohByHandle

The prototype for GetFileInformationByHandle and its C pseudocode are shown
in Example 4-1. This function is designed to take a file handle as its input argu-
ment and fill-in and return a BY_HANDLE_FILE_TINFORMATION structure as output.
This structure contains fields for file create, modify, and access times as well as
other information. The real meat of this function is in the assembly language lines
preceding Int21Dispatch. Here we see registers getting loaded with BX set to the
file handle, EDX pointing to the BY HANDLE_FILE_INFORMATION structure, and
AX set to the requested function 71AG6h.,

53

54 Chapter 4: File System API Mapping

Int21Dispatch is a thin wrapper around a callback to VWIN32 Win32 service
Int21. Here is the actual code:

Int21Dispatch proc near
push ecx
push eax
push 2a0010h
call VxDCall
retn

Function 71A6H is one of many new Int 21h services that have been added to
Windows 95 to support long filenames and other extensions for MS-DOS and
Win16 applications.”

There are still other calls to Int 21h hiding here. For instance, X_GetExtendedError
is another thin wrapper around a Win32 callback. In this case the code is:

X_GetExtendedError Proc Near
push ebx
mov eax, 5900h
call Int2lDispatch
. mMovVzX eax,ax
pop ebx
retn

The functions x_MaybeChangePSP and x_RestorePSP utilize interrupt 21h function
50h to set the current PSP.T These examples of Int 21h calls are typical of much of
KERNEL32. You can see this for yourself by running MultiMon with the WIN32CB
driver installed and the monitor for VWIN32 Int 21h enabled.

Example 4-1. Pseudo Source Code for GetFileInformationByHandle

BOOL GetFileInformationByHandle(HANDLE hFile,
LPBY_HANDLE_FILE_INFORMATION lpFileInfo) {
DWORD wPSP;
PK32FILEOBJ pK32FileObj;
int retc;

EnterMustComplete() ;

x_MaybeChangePSP(hFile, &wPSP);

pK32FileObj = retc = x_ConvertHandleToK320bject(hFile,

. K320BJ_INCREF|K3ZOBJ_FILE_TYPE, 0);

if (pK32FileObj) {
_asm movzx ebx,word ptr pK32FileObj->hExtendedFileHandle
_asm mov edx, dword ptr lpFileInfo
_asm mov eax,7la6h

* You will find documentation for these functions in the Programmer’s Guide to Microsoft Windows 95,
Part 5: Using Microsoft MS-DOS Extensions. See htip://www.microsoft.com/msdn/sdk/platforms/doc/sdk/
win32/95guide/src/95func_28.bim.

1 A PSP (Program Segment Prefix) refers to the DOS data structure that describes a program’s execution
environment.

The Win32 API and KERNEL32 Objects 55

Example 4-1. Pseudo Source Code for GetFileInformationByHancdle (continued)

_asm stc
retc = Int21Dispatch();
if (carry set) {
if (retc == 0x7100) retc = ERROR_NOT_SUPPORTED;
else retc = x_GetExtendedError();
InternalSetLastError(retc);
retc = 0;
}
else retc =.1;
}
else if (x_ConvertHandleToK320bject (hFile,K320BJ_ALL_TYPE,0)) {
InternalSetLastError (ERROR_NOT_SUPPORTED) ;
retec = 0;
}
X_RestorePSP(wPSP);
LeaveMustComplete () ;
return retc;

}

There is a lot more going on in this function besides Win32 callbacks. Let’s take a
closer look. First, you’ll notice some unfamiliar functions names: EnterMustCom-
plete, x_MaybeChangePSP, x_ConvertHandleToK320bject, etc. These are names
I've coined for some internal KERNEL32 functions.

The entire function is sandwiched with the EnterMustComplete and LeaveMust-
Complete calls. These place the body of the function in a must-complete section.
This is a type of synchronization primitive that is supported by VMM. To quote
the DDK Reference, a “must-complete section” is “block of code that must be
executed in its entirety before any other thread or virtual machine can run.”

Next, we see an inner sandwich of the functions x_MaybeChangePSP and x_
RestorePSP. The first function looks at the Win32 handle and, depending on its
value, may switch the thread to another PSP, storing the original PSP in the vari- ‘
able wPSP. On leaving GetFilelnformationByHandle, x_RestorePSP restores the
original PSP if it was changed.

Why would a thread want to change its PSP? In this case, it wants the PSP to
match the owner of the handle. As we’ll see later, the handle table is a per-
process data structure and handles are indexes into this table. For instance, a
handle of 5 in one process may reference a file, whereas in another process it
may reference a pipe. However, KERNEL32 also recognizes global handles; these
are handles which are associated with the KERNEL32 process and one of its PSPs.
These global handles have a unique signature formed by the index value exclu-
sive-ORed with 0x544a4d3f. To test if a handle is global, first AND it with
0xffff0000 and then compare with 0x544a0000.

56 Chapter 4: File System API Mapping

So, x_MaybeChangePSP looks at the Win32 handle and checks whether it is a
global handle. If it is, it switches the thread’s PSP to a PSP which is associated
with the KERNEL32 process. It does this using Int21Dispatch, function 50h (Set
PSP), and BX set to the new PSP value. The current PSP is saved in wPSP so it
can later be restored by a call to x_RestorePSP.

The last function that is also preparatory before making the Int21Dispatch is x_
ConvertHandleToK32O0bject. Basically, this function converts any type of Win32
handle into a pointer to a KERNEL32 data structure that describes that object. In
this case, we are asking it to take what we believe to be a file handle (hFile) and
convert it into a KERNEL32 file data structure. Now, if the caller passes us, say, a
console handle instead, the return value stored in pK32FileObj will be NULL
causing the else if (x_ConvertHandleToK320bject..) clause to be executed.
This time the call will look for any handle type (K320BJ_ALL_TYPE). If this last
‘call succeeds, the function fails and an ERROR_NOT_SUPPORTED will be
returned by GetLastError.

If a valid file handle is supplied by the caller, then pK32FileObj will contain a
pointer to a file object structure. The only piece of information we need from it is
yet another file handle, one that IFSMgr will understand, an “extended file
handle” in the field named hExtendedFileHandle. This is the handle that is ulti-
mately passed to Int21Dispatch to acquire the BY_HANDLE FILE TINFORMATION
data structure.

Delving Into KERNEL32 Objects

Just as NT executive objects provide a unifying theme for Windows NT,
KERNEL32 objects do the same for Windows 95. Quoting from Helen Custer
(Inside Windows NT, Microsoft Press):

In the NT executive, an object is a single, runtime instance of a statically defined
object type. An object type comprises a system-defined data type, services that
operate on instances of the data type, and a set of object attributes.

For example, a file is an instance of a file object type and an event is an instance
of an event object type. As with Windows NT, instances of object types are
created by services and are represented by object handles. Again using the same
examples, a file is created by the service CreateFile, which returns a file handle;
and an event is created by the service CreateEvent, which returns an event
handle. Quoting again from Helen Custer, “An NT object handle is an index into a
process-specific object table.”

For each indexed entry in the object table there is a pointer to the object instance
and a flags field specifying access rights and inheritance designations. Although
there are a lot of similarities between NT executive objects and Windows 95

The Win32 API and KERNEL32 Objects 57

KERNEL32 objects, the KERNEL32 object is admittedly a very watered-down
version of its NT counterpart; for instance, there is no support for security. Further-
more, in Windows NT, objects are created by a separate kernel mode component
called the object manager.

Matt Pietrek has discussed KERNEL32 objects in Chapter 3 of Windows 95 System
Programming Secrets (IDG Books). He has enumerated the 17 KERNEL32 object
types and these are shown in Table 4-1. I have added the service names for
creating and destroying each object type.

Table 4-1. The KERNEL32 Objects

Object

ID | Constructor Destructor
K320BJ_SEMAPHORE 1 CreateSemaphore CloseHandle
K320BJ_EVENT 2 CreateEvent CloseHandle
K320BJ_MUTEX 3 CreateMutex CloseHandle
K320BJ_CRITICAL_SECTION 4 InitializeCriticalSec- DeleteCriticalSection
tion
K320BJ_PROCESS 5 CreateProcess CloseHandle
K320BJ_THREAD 6 CreateThread CloseHandle
K320BJ_FILE 7 CreateFile CloseHandle
K320BJ_CHANGE 8 FindFirstChangeNoti- | FindCloseChangeNoti-
fication fication
K320BJ_CONSOLE 9 AllocConsole FreeConsole
K320BJ_SCREEN_BUFFER 10 | AllocConsole FreeConsole
K320BJ_MEM_MAPPED_FILE 11 | CreateFileMapping CloseHandle
K320BJ_SERIAL 12 | CreateFile CloseHandle
K320BJ_DEVICE_IOCTL 13 | CreateFile CloseHandle
- K320BJ_PIPE 14 | CreatePipe, CloseHandle
CreateFile
K320BJ_MAILSLOT 15 | CreateMailslot CloseHandle
K320BJ_TOOLHELP_SNAPSHOT | 16 | CreateToolhelp32- CloseHandle
Snapshot : i
K320BJ_SOCKET 17 | socket closesocket

For each of these object types, a block of data is allocated from the KERNEL32
heap to represent an object’s instance. The KERNEL32 process object is also
known as the process database, or PDB. Similarly, the KERNEL32 thread object is
also known as the thread database, or TDB. Both of these data structures are
described in detail in Windows 95 System Programming Secrets. Although each
KERNEL32 object is represented by a different data structure, all KERNEL32
objects have the same header:

typedef struct { DWORD dwType; DWORD dwRefCnt; } K320bjectHeader;

58 : Chapter 4: File System API Mapping

The dwType field takes a value between 1 and 17 corresponding to its object
type. The dwRefCnt field is used to maintain a usage count for the object. When a
handle is closed and the dwRefCnt of its corresponding object has reached zero,
the object is destroyed.

The KERNEL32 process object contains a member (at offset 0x44) which points to
the table of object handles. The Win32 handles which are returned by CreateFile,
CreateMutex, etc. are simply indices into this table. The function that we met in
the last section, x_ConvertHandleToK32Object, is designed to retrieve an object
from the object handle table given its Win32 handle. Thus given a handle of one
of these 17 object types, we can get the address of its corresponding data struc-
ture, which was allocated from the KERNEL32 heap. Actually, there are two fields
for each entry in the object handle table:

typedef struct { DWORD dwFlags; PVOID pK320bject; } TableEntry;

The first DWORD in the object handle table contains the maximum number of
entries in the table, so the handle table can be represented by this structure:

typedef struct { DWORD dwMaxCnt; TableEntry entry[l]; }
ObjHandleTable;

Converting Win32 Handles to KERNEL32 Objects

Let's put together what we have just learned and see how x_Convert-
HandleToK320bject works. First, from the listing that follows, we see that this
function immediately calls another function, which I've named x_RefHandleTo-
K320bject. One argument is added to this call, a pointer to the current process
database (*ppCurrentProcess).

K320bjectHeader* x_ConvertHandleToK320bject (HANDLE hObject,
DWORD fObjTypes, DWORD fAccess) {
return x_RefHandleToK320bject(*ppCurrentProcess,
hOobject, fObjTypes, fAccess);
}

Dropping down another level, we see in the listing below that x_RefHandle-
ToK320bject sandwiches its body by acquiring a KERNEL32 mutex and releasing
it on exit. We also see the reference count for the KERNEL32 object incremented
on return from x_Win32HandleToK32Object if the K320B/_INCREF flag is set in

SObjTypes.

K320bjectHeader* x_RefHandleToK320bject (PPDB pProcess, HANDLE hObject,
DWORD fObjTypes, DWORD fAccess) {
K320bjectHeader* pK320bj;
DWORD fObjTypeFlags;

_EnterSysLevel (pKrn32Mutex);
fObjTypeFlags = fObjTypes;

The Win32 API and KERNEL32 Objects 59

pK320bj = x_Win32HandleToK320bject(pProcess, hObject,
fObjTypes, fAccess);
if (pK320bj && fObjTypeFlags & K320BJ_INCREF)
pK320bj->dwRefCnt++;
_LeaveSysLevel (pKrn32Mutex) ;
return pK320bj;
}

Drilling down one more level brings us to x_Win32HandleToK320bject, shown
in Example 4-2. This is where the interesting stuff happens. As we walk through
it, keep in mind that this function is designed to take an object handle (hObject)
from a given process (pProcess) and return its KERNEL32 object. The flags in fObj-
Types and fAccess apply additional matching criteria.

Example 4-2. Source for the KERNEL32 Function x_Win32HandleToK320bject

K320bjectHeader* x_Win32HandleToK320bject(PPDB pProcess,
HANDLE hObject, DWORD fObjTypes, DWORD fAccess) {

DWORD handle = hObject;
PPDB pPDB;
K320bjectHeader* pK320bj;
ObjHandleTable* pHAlTbl;

if (hObject & Oxffff0000 == 0x544a0000) { /* global handle? */
pPDB = pK32Process; .
handle = hObject ~ 0x544a4d3f;

}
else pPDB = pProcess;

switch(handle) {

case Ox7fffffff: handle = pPDB->pEDB.hProcess; break;
case STD_ERROR_HANDLE: handle = pPDB->pEDB.hStdErr; break;
case STD_OUTPUT_HANDLE: handle = pPDB->pEDB.hStdOut; break;
case STD_INPUT_HANDLE: handle = pPDB->pEDB.hStdIn; break;

case Oxfffffffe:
pK320bj = *ppCurrentThread;
if (1 << (pK320bj->dwType-1)) & fObjTypes) return pK320bj;
else { InternalSetLastError(ERROR_INVALID_HANDLE);
return NULL; }
break;

pHd1Tbl = pPDB->pHandleTable;

if (pHdlTbl->dwMaxCnt > handle) {
TableEntry* pEntry;
pEntry = &pHd1lTbl->entryl[handle];
pK320bj = pEntry->pK320bject;

if (pK320bj && pK320bj != -1) {
if (fAccess) {
if (((pEntry->dwFlags & fAccess) & 0x130) != fAccess) {

InternalSetLastError (ERROR_ACCESS_DENIED) ;
return NULL;
}

60 ' Chapter 4: File System API Mapping

Example 4-2. Source for the KERNEL32 Function x_Win32HandleToK320bject (continued)
}

if (1 << (pK320bj->dwType-1)) & fObjTypes) return pK320bj;
}
}
InternalSetLastError (ERROR_INVALID_HANDLE) ;
return NULL; i
}

This function can be split into roughly two halves. The first half massages the
input handle to get it into a form that can be used to directly access the process’s
object handle table. The second half retrieves the entry in the object handle table
and returns its pK320bject member.

First we see that the high-order word of the handle is tested for the signature
0x544a. Normally when an application creates KERNEL32 objects, the handles
which are returned are nice small integer numbers, so we are talking handle
values in the range 1 to say 1000. However, if you place a breakpoint at this loca-
tion in the function, you will see handles are frequently passed which indeed
have this 0x544a signature. The next two lines in the code help clarify what these
handles signify. First, we switch to a different process (pK32Process), namely
KERNEL32, and then the handle is exclusive-ORed with the value 0x544a4d3f.
After this operation the handle value becomes a “nice small integer.”

So what have we done? We have just created an index into KERNEL32’s handle
table and ultimately, when we return, we'll be returning a KERNEL32 object that
actually belongs to the KERNEL32 process.

To summarize, the hObjects which are passed to x_Win32HandleToK32Object
come in two flavors: global handles which have been exclusive-ORed with
0x544a4d3f, and private handles which are “small integer numbers.” I've called
these KERNEL32 handles “global” because an exported function is used to
produce them, namely, ConvertToGlobalHandle.

In my statements above, I've simplified things a bit by separating handles into just
two groups. There is actually a third group that might be called “standard
handles;” these are handles every process has. For instance, the return value from
GetCurrentProcess is always Ox7fffffff no matter which process you are calling
from. Similarly, the return value from GetCurrentThread is always Oxfffffffe no
matter which thread you call from. These magic values as well as the standard
console handles are just constants that KERNEL32 translates into “real” object
handles. In the switch statement, the first four magic values are translated into
handles by looking up the values in the environment database (pEDB) of the
process. The fifth value in the switch statement represents the handle of the
current thread. Here, it is easier to just look up the KERNEL32 object for the

The Win32 API and KERNEL32 Objects 61

current thread since it is stored in a global variable, rather than determine its
index in the object handle table.

Before the KERNEL32 thread object is returned, we see that some test is
performed. This test is in the form of the following expression:

(1 << (pK320bj->dwType-1)) & fObjTypes

The first half of this expression simply takes a KERNEL32 object type number,
decrements it by 1, and then left-shifts a single bit that number of times. In other
words, it is converting the object type number to a bit position. For example,
0x00001 represents K320BJ_SEMAPHORE, 0x00002 represents K320BJ_EVENT,
0x00040 represents K320BJ_FILE, and 0x10000 represents K320BJ_SOCKET. fObyj-
Types is also a bit map of the types of KERNEL32 objects that the caller will accept
a conversion into. We know that a thread object has a dwType of 6 so its bit map
will be 0x00020. If the caller did not set this bit in fObjTypes, the function will fail
and return NULL; otherwise it will return pK320bj for the thread object.

Now, we are faced with the last half of the function. We have our Win32 handle
massaged so it can index the object handle table, so we first find the object
handle table pHdAITbl in the process database. Then the Win32 handle is
compared with the range of the object handle table by verifying that it is less than’
the maximum handle value in the first DWORD of the table. If this test succeeds,
the handle is used as an index into the array of table entries. The KERNEL32
object pointer in the entry is then tested to see that it is non-zero and not —1. If
this holds true ‘then the fAccess argument is tested for a non-zero value. If the
caller has specified fAccess bits, then these are also tested. Finally, the requested
object types fObjTypes are compared against the returned object type. If these
match, then a pointer to the KERNEL32 object is returned.

Now that your curiosity about KERNEL32 objects has been whetted, let’s fill in
some more details about the following types: K32O0BJ_FILE, K32OBJ_PIPE,
K320BJ_MAILSLOT, K320BJ_CHANGE, K320BJ_MEM_MAPPED_FILE, and
K320BJ_DEVICE_IOCTL.

The File Object

A file object represents a local or remote file that has been created or opened
using the MS-DOS extension function 716ch. Note that this function takes 8.3 or
long filenames as well as UNC filenames. A KERNEL32 file object is represented
by a 28-byte data structure. The members of this structure are as follows:

00h DWORD dwType
The constant value (0x7) that represents a KERNEL32 file object.

04h DWORD dwRefCnt
The reference count for this object.

62 ' Chapter 4: File System API Mapping

08h DWORD pK32ProcessObject
Pointer to the process database for the owning process.

0Ch DWORD pK32EventObject
Pointer to an event object which is created with each file object.

10h WORD hExtendedFileHandle
The file handle which is used by IFSMgr to reference this file. The undocu-
mented Win32 API, Win32HandleToDosFileHandle, returns this value for a
given Win32 file object handle.

12h WORD reserved

14h DWORD dwModeAndFlags
This member is 0 except for some special cases. If the file is opened with the
FILE_FLAG_DELETE_ON_CLOSE flag, then this member is Oxffffffff. If the file
handle is less than 0x200 (a DOS handle) then store the mode and flags word
used to open or create the file.

18h DWORD pszFullPath
This member is 0 except for some special cases. If dwModeAndFlags is non-
zero, the a heap allocation is made in which the full path of the file is stored,;
in that case, this member holds the pointer to that allocation.

There are numerous file object services supplied by the Win32 APIL. Some of these
services are general purpose and work with many different types of KERNEL32
objects. CreateFile and CloseHandle are good examples of such general purpose
services. Internally they have separate implementations for each object type.
Table 4-2 enumerates the file object services and key Int21Dispatch calls used in
their implementation. All of the Int 21h functions listed are documented.

Table 4-2. File Object Services

Win32 API Key Int21Dispatch Calls Other Win32 Callbacks
CloseHandle, _Iclose 3eh
CopyFile 7143h, 716ch, 42h, 3fh, 40h,
71a7h, 57xxh, 3eh
CreateDirectory : 713%h
CreateDirectoryEx 7143h, 713%h
CreateFile, _Icreat, _lopen 716¢h
DeleteFile 7141h
DosDateTimeToFileTime 71a7h
DuplicateHandle _VWIN32DupHandle
FileTimeToDosDateTime 71a7h
FindClose 71alh
FindFirstFile 714eh

The Win32 API and KERNEL32 Objects 63
Table 4-2. File Object Services (continued)

Win32 API Key Int21Dispatch Calls Other Win32 Callbacks

FindNextFile 714fh

FlushFileBuffers 6800h

GetCurrentDirectory 19h, 7147h

GetDiskFreeSpace 3600h

GetDiskFreeSpaceEx (OSR2) | 7303h (OSR2)

GetDriveType 4408h, 4409h, 714eh, 71alh

GetFileAttributes 7143h

GetFileInformationByHandle | 71AGh

GetFileSize
GetFileTime
GetFileType
GetFullPathName
GetLogicalDrives
GetLogicalDriveStrings
GetShortPathName
GetTempFileName
GetVolumelnformation

LockFile
MoveFile

OpenFile

ReadFile, _hread, _Iread
RemoveDirectory
SearchPath
SetCurrentDirectory
SetEndOfFile
SetFileAttributes
SetFilePointer, _llseek
SetFileTime
SetVolumeLabel

UnlockFile
‘WriteFile, _hwrite, _lwrite

4200h, 4201h, 4202h
5700h, 5704h, 5706h
4400h

19h, 7147h

4409h

4409h

7160h, 4300h
7143h, 2ch, 716¢ch, 3eh

4409h, 440d/66h, 71a0h,
714eh, 71alh

5c00h

7156h (rename), 7143h, 716¢h,
42h, 3th, 40h, 71a7h, 57xxh,
3eh, 7141h (copy/delete)

716¢h, 4400h, 4401h
3th
713ah

7143h, 713bh

42h, 40h

7143h

4200h, 4201h, 4202h
5707h, 5705h, 5701h

Thunks! to KRNL386: 4409h,
2f00h, 1a00h, 4e00h, 1300h,
3ch, 3eh

5¢01h
40h

1A thunkis a small section of code, similiar to a Remote Procedure Call (RPC) that handles the transitions

between 16-bit and 32-bit code.

64 Chapter 4: File System API Mapping

The File-Change Object

A file-change object is created by a call to FindFirstChangeNotification. It returns
a Win32 handle which can be used as an argument to WaitForSingleObject, Wait-
ForMultipleObjects, WaitForSingleObjectEx, or WaitForMultipleObjéctsEx to wait
for certain file-change notifications within a specified directory. A KERNEL32 file-
change object is represented by a 20-byte data structure. The members of this
structure are as follows:

00h DWORD dwType
The constant value (0x8) that represents a KERNEL32 file-change object.

04h DWORD dwRefCnt
The reference count for this object.

08h DWORD pK32ProcessObject
Pointer to the process database for the owning process.

0Ch DWORD pK32EventObject
Pointer to an event object which is created with each file-change object.

10h DWORD hFcnHandle
IFSMgr’s handle to the file-change context.

Table 4-3 enumerates the file-change object services and key Int21Dispatch calls
used in their implementation. All of the Int 21h functions listed are undocumented.

Table 4-3. File-Change Object Services

Win32 API Key Int21Dispatch Calls
FindFirstChangeNotification 71a3h
FindNextChangeNotification 71a4h
FindCloseChangeNotification 71a5h
WaitForSingleObject

WaitForSingleObjectEx

WaitForMultipleObjects

WaitForMultipleObjectsEx

The Pipe Object

A pipe object can represent an “anonymous pipe,” which is created with the
service CreatePipe, or the client-side of a “named-pipe,” created with the service
CreateFile. A KERNEL32 pipe object is represented by a 48-byte data structure.
The members of this structure are as follows:

00h DWORD dwType
The constant value (0xe) that represents a KERNEL32 pipe object.

The Win32 API and KERNEL32 Objects 65

04h DWORD dwRefCnt
The reference count for this object.

08h DWORD reserved

0Ch LPVOID pPipeBuffer
Item allocated from the KERNEL32 heap.

10h DWORD hExtendedFileHandle
This is the file handle which is used by IFSMgr to reference the pipe.

14h DWORD Counterl
Counter which controls when SetEvent is called on pK32EventObject1. -

18h DWORD Counter2
Counter which controls when SetEvent is called on pK32EventObject2.

" 1Ch DWORD dwPipeBufferSize
Number of bytes allocated for pipe buffer.

20h DWORD unknownl

24h DWORD unknown2
The usage for these two doublewords is unknown

28h DWORD pK32EventObjectl
2Ch DWORD pK32EventObject2
These are pointers to KERNEL32 Event Objects.

Table 4-4 enumerates the pipe object services and key Int21Dispatch calls used in
their implementation. The Int 21h functions in the 5fxxh series are wundocu-
mented. (See Chapter 13 for more information.)

Table 4-4. Pipe Object Services

Win32 API Key Int21Dispatch Calls
CallNamedPipe 5f37h
CreateFile _ 716¢ch
CreatePipe

DuplicateHandle

GetNamedPipelnfo 5f32h, 5f33h
PeekNamedPipe 5f35h
ReadFile

ReadFileEx

SetNamedPipeHandleState 5f34h, 5f3bh
TransactNamedPipe 5f36h
WriteFile

WriteFileEx

66 Chapter 4: File System API Mapping

The Mailslot Object

Mailslots have server-side and client-side functions. On the server-side, a mailslot
object is created by the service CreateMailslot and it is read from by ReadFile and
ReadFileEx, and eventually closed by CloseHandle. The client-side uses CreateFile
to create a mailslot object for writing only using WriteFile and WriteFileEx. A
KERNEL32 mailslot object is represented by a 20-byte data structure. The
members of this structure are as follows:

00h DWORD dwType
The constant value (0xf) that represents a KERNEL32 mailslot object.
04h DWORD dwRefCnt
The reference count for this object.
08H DWORD reserved
O0CH DWORD pszMailslotName
String tem allocated from the heap.

10H DWORD hExtendedFileHandle
The file handle used by IFSMgr to reference the mailslot (a DOS handle is
used).

Table 4-5 enumerates the mailslot object services and key Int21Dispatch calls
used in their implementation. The Int 21h functions in the 5fxxh series are undoc-
umented. (See Chapter 13 for more information).

Table 4-5. Mailslot Object Services

Win32 API Key Int21Dispatch Calls Other Win32 Callbacks
CreateFile

CreateMailslot 5f4dh

DuplicateHandle . _VWIN32DupHandle
GetMailslotInfo 5f4fh

ReadFile 3f00h

ReadFileEx

SetMailslotInfo 5f3bh

WriteFile : 5f52h

WriteFileEx

The Memory-Mapped File Object

A memory-mapped file object is created by the service CreateFileMapping. A
KERNEL32 memory-mapped file object is represented by a 48-byte data structure.
The members of this structure are as follows:

The Win32 API and KERNEL32 Objects 67

~ 00h DWORD dwType
The constant value (0xb) that represents a KERNEL32 memory-mapped file
object.

04h DWORD dwRefCnt
The reference count for this object.

08h DWORD reserved

0Ch DWORD pMapName
An item allocated from the KERNEL32 heap to hold a copy of the map name
if a map name is specified as a CreateFileMapping argument.

10h DWORD dwMapSize
Size of the mapping in bytes.

14h DWORD dwLinearBase :
This is the linear address of the base of the mapping as returned by
PageReserve.

18h DWORD dwPagerData
This value, shifted left by 12, is used as the starting value for the pager data
argument to PageCommit.

1Ch DWORD dwModeAndFlags
If the KERNEL32 file object which is being mapped meets the following
criteria:

— bExtendedFileHandle < 0x200,

— pszFullPath is non-zero,

— dwModeAndFlags is not Oxffffffff,

— and the CreateFileMapping was called with PAGE_READONLY protection,

then the dwModeAndFlags from the file object is copied here; otherwise it is
assigned OxfTfffff.

20h DWORD pszFullPath -
If the KERNEL32 file object which is being mapped meets the following
criteria:

— hExtendedFileHandle < 0x200,

— pszFullPath is non-zero,

— dwModeAndFlags is not Oxfffffttf,

— and the CreateFileMapping was called with PAGE_READONLY protection,

then a heap allocation is made and the file object’s pszFullPath is copied to it,
and the pointer is stored here; otherwise it is assigned 0.

68 Chapter 4: File System API Mapping

24h DWORD pRingOHandle
This is the ring0 file handle for the duplicated handle; this is a pointer to a
fhandle structure.

28h DWORD dwtFileSize
This is the size in bytes of the mapped file.

2Ch BYTE bProtection
One of the protection flags passed to CreateFileMapping: PAGE_READONLY,
PAGE_READWRITE, or PAGE_WRITECOPY.

2Dh BYTE hPager
This is the pager handle which is used by the PageCommit call. (See Chapter
10).

2Eh WORD wPSPSelector
If the mapped file belongs to a Netware-managed drive, the PSP of the
process is stored here; otherwise it is 0.

Table 4-6 enumerates the memory-mapped file object APIs and key Win32
services used in their implementation. (See Chapter 10, Virtual Memory, the
Paging File, and Pagers, for more information.)

Table 4-6. Memory-Mapped File Object Services

Win32 API Other Win32 Callbacks
CloseHandle _VMMPageFree, _VWIN32Ring0CloseHandle
CreateFileMapping _VWIN32DupHandle
FlushViewOfFile
MapViewOfFile) _VMMPageReserve, _VMMPagECommit
MapViewOfFileEx _VMMPageReserve, _VMMPageCommit
OpenFileMapping
UnmapViewOfFile

The Device Object

A KERNEL32 device object represents a statically or dynamically loaded virtual
device which supports the device IOCTL interface. The CreateFile service can be
used to obtain a handle to a device which meets these requirements. Note that
this excludes virtual devices which do not support an IOCTL interface, such as
Windows 3.x virtual drivers. A KERNEL32 device object is represented by a 28-
byte data structure. The members of this structure are as follows:

00h DWORD dwType
The constant value (0xd) that represents a KERNEL32 device object.

The Win32 API and KERNEL32 Objects 69

04h DWORD dwRefCnt
The reference count for this object.

08h DWORD reserved
This member always appears to be 0.

0Ch DWORD pDDB
Pointer to the ring-0 device descriptor block for the virtual device.

10h DWORD pszLoadPath
If the device object is created with the FILE_FLAG_DELETE_ON_CLOSE, this
member contains a pointer to the pathname used to load the device, e.g,
\\.\VTESTD. Later when the device is closed and its dwRecCnt reaches zero,
DeleteFile will be performed on this path.

14h CHAR szDeviceName|[8]
The name of the virtual device.

Unlike the file, file-change, pipe, and mailslot object services, which rely on
IFSMgr for implementation support, the device object is dependent on VWIN32,
specifically the Win32 service with ordinal 0x2a001f. This service takes 12 argu-
ments and there appears to be three distinct ways of calling it. First, when a
virtual device is loaded or opened by a call to CreateFile, the calling arguments
take this form:

VxDCall (DWORD svc, // has the Win32 service ordinal (0x2a001f)
DDB pDDB, // pointer to device descriptor block
DWORD FuncAddr, // FuncAddr, is the address of a K32 procedure
char* pszDevName, // 8 character device name as it appears in
// the DDB

BOOL bDoLoad, // if TRUE load device, else search DDB list

char* pszLoadPath, // pathname used to load the device :
DWORD unusedo0, // has the value 0

DWORD unusedl, // has the value 0

DWORD InitialRingOID, - // contains a ring-0 THCB

DWORD unused2, Y // has the value 0 '

PPDB pProcess, // pointer to the process database

char* pszReturnName); // pointer at which to store device name

This call is always made with pDDB equal to NULL. There are two variations
based on the value of bDoLoad. If bDoLoad is FALSE, the Device Descriptor Block
list is searched for a device with a name matching pszDeviceName. If bDoLoad is
TRUE, the VXDLDR_LoadDevice service is used to attempt to load the device file
pszDeviceName. It turns out that bDoLoad is TRUE if the device name has an
extension, but FALSE if an extension is not specified. If the device is located or
loaded successfully, the 8-character device name is copied to pszReturnName and
a DIOC_OPEN (DIOC_GETVERSION) call is made to the device’s control proce-
dure. The arguments FuncAddr and InitialRingOID appear to only be used. for

70 Chapter 4: File System API Mapping

initialization of VWIN32 variables when the first call is made to Win32 service
0x2a001f.

When a virtual device is unloaded by a call to DeleteFile, the arguments to
VxDCall take this form:

VxDCall (DWORD svc, // has the Win32 service ordinal (0x2a001f)
DDB pDDB, // pointer to device descriptor block
DWORD unused0, // unused argument
char* pszDevName, // 8 character device name

BOOL bDoLoad, // if TRUE load device, else search DDB list
char* pszLoadPath, // pathname used to load the device

DWORD unusedl, // unused argument

DWORD unused2, // unused argument

DWORD unused3, // unused argument

DWORD unused4, // unused argument

DWORD unused5, // unused argument

DWORD unused6) ; // unused argument

Furthermore, pDDB is NULL, pszLoadPath is —1, and bDoLoad is TRUE although
the value is not tested.

Finally, when a virtual device is closed by a call to CloseHandle or an operation is
requested via DeviceloControl, the calling arguments take this form:

VxDCall(DWORD svc, // has the Win32 service ordinal (0x2a001f)

DDB pDDB, // pointer to device descriptor block
DWORD dwIoControlCode, // control code to process
LPVOID lpvInBuffer, // address of input buffer
DWORD cbInBuffer, // size, in bytes, of input buffer
LPVOID lpvOutBuffer, // address of output buffer
DWORD cbOutBuffer, // size, in bytes, of output buffer

LPDWORD lpcbBytesReturned, // # bytes transferred to
// 1lpvOutBuffer
LPOVERLAPPED lpo, // address of OVERLAPPED structure,
// 1f async command

HANDLE hDeviée, // Win32 handle to device
PPDB pProcess, // pointer to process database
char szDeviceName[]); // pointer to 8 character device name

If the call is on behalf of CloseHandle, dwloControlCode has the value DIOC_
CLOSEHANDLE(-1); lpvinBuffer, lpvOutBuffer, IpcbBytesRetuned, and Ipo are all
NULL; and cbInBuffer and cbOutBuffer are both 0. If the call is on behalf of Devi-
celoControl, dwloControlCode takes a non-zero value which specifies the
operation to perform. Depending on the control code and the manner in which
the VXD processes it, input and output parameters may or may not be required.

IOCTL Services

Once an application retrieves a handle to a device object, it may use that handle
to access IOCTL services using the DeviceloControl API. It turns out that both

The Win32 API and KERNEL32 Objects ' 71

VWIN32 and IFSMgr offer public services of this kind, each with different sets of
functionality.

VWIN32 provides a DeviceloControl interface for a limited set of MS-DOS func-
tions. It seems that these functions were added primarily for disk utility programs
which require direct access to file system structures and need to request exclusive
volume locks on the drives which are being manipulated. There are four dwloCon-
trolCode values that are defined:

VWIN32_DIOC_DOS_INT13 (4)
This control code is used for BIOS level Int 13h. It allows access to the phys-
ical sectors of a disk drive but only for the floppy disk drives in a system. This
behavior is documented by the MSDN KnowledgeBase Article Q137176: PRB:
DeviceloControl Int 13b Does Not Support Hard Disks. If you need BIOS Int
13h services for a fixed disk, this article shows how to thunk to a2 Win16 DLL
that uses the DPMI Simulate Real Mode Interrupt function to issue Int 13h.

VWIN32_DIOC_DOS_INT25- (3)
This control code is used for issuing an absolute disk read on a specific
volume. Int 25h reads chunks of disk storage which are referenced by logical
sectors. To force a read from the physical disk, an exclusive volume lock
needs to be acquired for the volume or the read may actually return cached
data. This interrupt has been superseded by Int 21h Function 440dh Minor
Code 61h, Read Track on Logical Drive.

VWIN32_DIOC_DOS_INT26 (2)
This control code is used for issuing an absolute disk write on a specific
volume. Int 26h writes chunks of disk storage which are referenced by logical
sectors. To write to the physical disk, an exclusive volume lock needs to be
acquired for the volume; otherwise a write protect error will be returned. This
interrupt has been superseded by Int 21h Function 440dh Minor Code 41h,
Werite Track on Logical Drive.

VWIN32_DIOC_DOS_IOCTL (1)
This control code is used for issuing Int 21h Functions in the range 4400h
through 4411h. This range includes the “conventional” DOS IOCTL functions
as well as the new volume locking functions.”

To issue the above DeviceloControl calls, the lpvInBuffer and IpvOutBuffer refer-
ence DIOC_REGISTERS structures. These structures define the values of the 32-bit

* See Programmer’s Guide to Microsoft Windows 95, Article 25, “Exclusive Volume Locking.”

72 Chapter 4: File System API Mapping

registers EAX, EBX, ECX, EDX, EDI, ESI, and flags. Note, however, that the
segment registers are 7ot specified.”

IFSMgr also provides a DeviceloControl interface for use by Network Provider
DLLs. The API which network programmers are familiar with consists of the
“WNet” functions which are exported by the Multiple Provider Router (MPR) DLL.
The Network Provider DLLs are never called by applications, only by the MPR.
The most common Network Providers are Microsoft MSNet (msup32.dl) and
Novell Netware (nwnp32.dlD). In the case of Microsoft Networks, these Devicelo- -
Control calls are made by msnet32.dll, on behalf of the Network Provider,
MSNP32. There are four dwloControlCode values that are defined:

IFS_IOCTL_21 (100)
This control code is used for issuing Int 21h functions of the 5Fxxh series
which are handled by IFSMgr’s dFuncSF dispatch function (see Chapter 6,
Dispatching File System Requests). Other Int 21h functions are passed to the
IFSMgr_NetFunction hook chain (see Chapter 7, Monitoring File Activity). The
lpvInBuffer and IpvOutBuffer arguments to DeviceloControl reference
win32apireq structures. These structures define the values of the 32-bit regis-
ters EAX, EBX, ECX, EDX, EDI, ESI, and EBP. There is also a field that will
give the ID of the Network Provider and a field in which to store a return
code. This structure is defined in ifs.h of the Windows 95 DDK. ‘

IFS_IOCTL_2F (101
This control code is used for issuing Int 2Fh functions. These are also passed
to the IFSMgr_NetFunction hook chain. The same calling arguments are used
as with control code IFS_IOCTL_21.

IFS_IOCTL_GET_RES (102)
This function takes a WORD size input buffer (pvInBuffer) which holds an
SFT or extended file handle that is owned by the calling process. The output
is returned in a DWORD size output buffer (JpvOutBuffer) which holds the
address of the file’s fhandle structure after it has been exclusive-ORed with
0xa5a5a5a5 and rotated left by 13 bit positions.

IFS_IOCTL_GET_NETPRO_NAME_A (103)
This function takes a buffer containing an ASCIIZ UNC pathname (Jpuvin-
Buffer) with the length of the pathname in cbInBuffer. It looks up the Net ID
of the FSD which owns this UNC connection and returns it in the DWORD
size output buffer (JpvOutBuffer). Net IDs are enumerated in the SDK header
file winnetwk.b, e.g., the Net ID for Microsoft Networks is given the manifest
constant WNNC_NET_LANMAN (0x00020000).

* For more details on using these functions, see Programmer’s Guide to Microsoft Windows 95, Article 20,
“Device 1/0 Control.”

Implementation of VWIN32_Int21Dispatch) 73

Implementation of VWIN32_
Int2 1Dispatch

Our survey of the Win32 API, as summarized in Tables 4-2 through 4-6, has
shown that Int21Dispatch is the primary link that KERNEL32 has to IFSMgr. In
Chapter 3, we traced a Win32 callback into VMM and looked at how a Win32
service was dispatched. For a review of that, see the section “The Win32 Call-
back” in Chapter 3. Now we are going to pick up where we left off there, and
trace into the VWIN32’s Win32 service 0x2a0010, which we’ll refer to as VWIN32_
Int21Dispatch hereafter. The assembly code for VWIN32_Int21Dispatch is shown
in Examples 4-3 and 4-4.

Example 4-3. Source Code for VWIN32_Int21Dispatch, Part 1
VWIN32 (4) ’

+ 0b2b VMMcall Get_Cur_ Thread_Handle
+ 0b31 or dword ptr [edi].TCB_Flags, THFLAG_EXTENDED_HANDLES
+ 0b37 mov ebx,dword ptr pCurrentThread ;jcurrent K32 TDB
+ 0b3d test dword ptr [ebx].Flags, fOpenExeAsImmovableFile
+ 0b44 jz short L_B4C
+ 0b46 or dword ptr [edi].TCB_Flags, THFLAG_OPEN_AS_IMMOVABLE_FILE
: L_BAC:
+ Obdc mov esi,dword ptr [edi].TCB_Flags
+ Obde and esi, THFLAG_CHARSET MASK
+ 0b54 and dword ptr [edi].TCB_Flags,NOT THFLAG_CHARSET. MASK
+ Ob5a test dword ptr [ebx].Flags, fOkToSetThreadOem ’
+ 0b61 jz short L_B69
+ 0b63 or dword ptr [edi].TCB_Flags, THFLAG_OEM
I_B69:
+ 0b69 mov eax,dword ptr [esp+0c] ;Int 21h function
+ 0bed mov edx,dword ptr [esp+04] ;client register structure
+ 0b71 mov dword ptr [edx].Client_EAX, eax
+ 0b74 mov ecx,dword ptr [esp+10] ;3rd VxDCall arg
+ 0b78 mov dword ptr [edx].Client_ECX,ecx
+ 0b7b push dword ptr [edx].Client_FS ;preserve this

;Is the requested Int 21h function a read or write?

+ 0b7e cmp ah,3f
+ 0b81 jz short r0_read_or_write
+ 0b83 cmp ah,40
+ 0b86 jz short r0_read_or_write

nested_exec:
0b88 . mov eax,21h
+ 0b8d VMMcall Exec_PM_Int

+

L_B93:
+ 0b93 pop eax
+ 0b94 mov edx,dword ptr [esp+04]

74 : Chapter 4: File System API Mapping

Example 4-3. Source Code for % WIN32_Int21Dispatch, Part 1 (continued)

0b98 mov word ptr [edx].Client_FS,ax ;restore Ciient_FS

+

+ 0b9c and dword ptr [edi].TCB_Flags,NOT FILE_MASK

+ Oba2 or esi,esi

+ Oba4 jz short L_BAS8

+ 0ba6 or dword ptr [edi].TCB_Flags,esi ;restore charset flags
L_BAS8:

+ 0ba8 retn 0010

Note:
FILE_MASK equ (THFLAG_EXTENDED_HANDLES OR THFLAG_OPEN_AS_IMMOVABLE_FILE)

The raw disassembly has been cleaned up by adding equates from VMM.INC and
using names that Matt Pietrek has assigned to members of the thread database
structure (TDB). In the simplest case this function takes five steps. It modifies the
current thread’s flags, it initializes some client registers, it performs the Int 21h
request, it restores some client registers, and it restores the current thread’s flags
before returning. Let’s look at each of these steps.

Lines Ob2bh to 0b63h modify the current thread’s flags. This starts with a call to
Get_Cur_Thread_Handle which returns the handle, which is also the address, of
the thread control block (#cb_s in vmm.inc). The first field of the thread control
block contains the thread flags, TCB_Flags. The first flag to be modified is
THFLAG_Extended_Handles; it is simply set. This informs IFSMgr that this thread
uses extended file handles. The next flag which may be modified is THFLAG_
Open_As_Immovable_File. Whetheér this flag is set depends upon the setting of the
equivalent flag in the ring-3 thread database. Yes, even down in VWIN32, the
current KERNEL32 thread object is being accessed! The DDK has this to say about
this flag: “Used by VWIN32 to prevent defragmenter from moving an open file.”
Moving along to the last set of flags, THFLAG_ANSI and THFLAG_OEM, are both
cleared, which implies use of the ANSI character set. Then the current KERNEL32
thread object is consulted to see if it is using the OEM character set; if so, the
THFLAG_OEM bit is set.

Next, in lines 0b69h to Ob7bh, we see the calling arguments being accessed.
Recall that on entry to VWIN32_Int21Dispatch the stack looks like this:

ESP Return address

ESP+4 Address of client register structure
ESP+8 Current VM handle

ESP+C 2nd VxXDCall argument (Int 21 function)
ESP+10 3rd VxDCall argument

We see that EAX is loaded with the requested Int 21h function number (the
second VxDCall argument) and EDX is loaded with the address of the client

Implementation of VWIN32_Int21Dispatch 75

register structure. Then we see EAX stored to Client_EAX and the third VxDCall
argument stored to Client_ECX. Finally, the current value of Client FS is pushed
on the stack. These actions prepare the registers that will be used when Int 21h is
invoked.

On lines Ob7eh to-0b86h, we see a check for AH values 3fh (read) and 40h
(write). If either of these functions is being requested, a branch is made to the
code shown in Example 4-4.

Example 4-4. Source Code for VWIN32_Int21Dispatch, Part 2

r0_read_or_write:

Obab push esi

Obac push ebx

Obad push edx

Obae push eax

Obaf push ecx

'0bb0 mov ebx,dword ptr [edx].Client_EBX ;extended handle
0bb3 mov esi,dword ptr [edx].Client_EDX ; R/W buffer
0bb6 VxDcall IFSMgr_ Win32_Get_Ring0_Handle

Obbc pop ecx

Obbd pop eax

Obbe jc short L_BF7

0bc0 sub ah,3f

0bc3 movzx eax,ah

Obcé6 add eax,RO_READFILE_IN_CONTEXT ;0d602h

Obcb VxDcall IFSMgr_Ring0O_FileIO

Obdl pop edx

0bd2 push edx

0bd3 push eax

0bd4 mov dword ptr [edx].Client_EAX,eax ;save xfer count
0bd7 sbb eax, eax ; carry set if error occurred
0bd9 and eax,+01

Obdc and word ptr [edx].Client_Flags,0fffeh ;clr client carry
Obel or word ptr [edx].Client_Flags,ax ;set client carry on err
0be5 test eax,eax

Obe7 pop eax

O0be8 jz short L_BF6

Obea push edi

Obeb VMMcall Get_Cur_Thread_Handle

0bf1l mov word ptr [edi+34],ax ;save error code

0bf5 pop edi

B T T T S e T

L_BF6:
+ Obfé6 clc

L_BF7:
0bf7 pop edx
0bf8 pop ebx
0bf9 pop esi
Obfa jc short nested_exec ; try Int 21h-
Obfc jmp short L_B93

+ 4+ 4+ o+ o+

76 Chapter 4: File System API Mapping

Finally, on lines 0b88h and 0b8dh, Int 21h is invoked by the service Exec_PM_Int.
This service simulates the interrupt into the current virtual machine (the System
VM). It first assures that the caller is in PM execution mode, and if not calls Set_
PM_Execution_Mode. Then it safeguards its stack from being paged out by
locking it in place, using the service Begin_Use_Locked_PM_Stack. It uses the
current client registers during the execution of the interrupt, except that a PM call-
back is stored in CS:EIP. This breakpoint becomes the return address after the
interrupt completes. The interrupt is then launched by the service Exec_Int,
which in turn performs the Simulate_Int and Resume_Exec services. When the
interrupt returns, control is regained at the breakpoint. Then the service End_Nest_
Exec is called, which restores CS:EIP and the original stack before returning from
Exec_PM_Int.

Exec_PM_Int does pack quite a punch. It has a serious side effect too. The client
registers and flags are modified to reflect the results of the software interrupt that
was performed. Perhaps this is why the DDK warns us: “This service is intended
to be used only by the Windows kernel; external virtual devices should not use it.
External virtual devices should use the Exec_Int service instead.”

On lines 0b93h to 0b98h, we see the original value of Client_FS being popped
into EAX and then written back to the client register member Client_FS. So when
VxDCall returns, the only client register which you can be sure of is FS! On lines
0b9ch to Oba8h, VWIN32_Int21Dispatch undoes any changes it has made to
thread control block flags and then returns.

Now let’s look at the case where the requested function is a read or write. For
these cases, VWIN32 tries to perform an optimization. Instead of sending the
request to the protected mode Int 21h handler, it attempts to convert the
extended file handle into a ring-0 file handle using the IFSMgr service IFSMgr_
Win32_Get_Ring0_Handle. This service takes an extended file handle in EBX and
returns a ring0 handle, also in EBX. Extended file handles are numbers greater
than 0x200, whereas ring-0 file handles are ring-0 addresses. If this conversion
succeeds, then another IFSMgr service, IFSMgr_RingO_FilelO, is used to perform
the file read or write, thereby completely bypassing Int 21h.

IFSMgr_RingO0_FilelO supports a range of DOS-like file I/O services. For read and
write, it takes the following arguments: '

EAX Service number

EBX Ring-0 file handle

ECX 32-bit transfer count

EDX File position at which to start operation

ESI Linear address of read/write buffer

Win16 File Services : 77

EBX and EDX are returned by IFSMgr_Win32_Get_Ring0_Handle, whereas ECX
and ESI are set to the equivalent arguments for the Int 21h function 3fh or 40h
calls. The service number used is either RO_READFILE_IN_CONTEXT (d602h) or
RO_WRITEFILE_IN_CONTEXT (d603h). The “in context” modifier indicates that the
operation takes place in the context of the current thread as opposed to a global
context. On return, this service sets the carry flag if an error occurred and places
an error code in AX. If the operation is successful, EAX will contain the number
of bytes actually transferred.

‘Winli6 File Services

This chapter would not be complete without some mention of Win16 file services.
Table 4-7 summarizes Int 21h usage for some common Winl6 APIs. A number of
services have been updated to use the long filename form of the Int 21h calls.
Remember that in the Winl6 environment, software. interrupts are allowed and
are serviced by handlers installed in the protected mode IDT. Thus most of the Int
21h requests will arrive at the PM Int 21h handler installed by IFSMgr, as
discussed in Chapter 3. ‘

Table 4-7. Win16 File Services

Winl6 API PM Interrupt 21h Thunk to Win32 API
_lcreat, _lopen 716¢h, 6000h '

_hread, _Iread 3fth

_hwrite, _Iwrite 40h

_llseek 42h

_Iclose 3eh

CreateDirectory 713%h

DeleteFile 7141h

FindClose FindCloseA
FindFirstFile FindFirstFileA
FindNextFile FindNextFileA
FlushCachedFileHandle 3eh

GetCurrentDirectory . ‘ GetCurrentDirectoryA
GetDiskFreeSpace 36h

GetDriveType)

GetFileAttributes - 7143h

GetTempDrive 1%h :

GetTempFileName 2ch, 5b00h, 3eh

OpenFile 3dh

OpenFileEx ?

78

Chapter 4: File System API Mapping

Table 4-7. Win16 File Services (continued)

Winl6 API PM Interrupt 21h Thunk to Win32 API
RemoveDirectory 713ah '
SetCurrentDirectory) SetCurrentDirectoryA
SetFileAttributes 7143h

Table 4-7 shows an added twist for some of the new Winl16 APIs. APIs such as
FindFirstFile, FindNextFile, and FindClose thunk to the corresponding KERNEL32
routines. Thus, even though the function originates in a Winl6 application, it will
still generate VWIN32_Int21Dispatch calls.

The “New” MS-DOS
File System

Back in Chapter 3, Pathways to the File System, we saw that IFSMgr hooks several
“legacy” interfaces. In this chapter we’ll look at IFSMgr’s handlers for these inter-
rupts and see to what extent they are passed down the interrupt chain or handled
within IFSMgr. Recall from Chapter 3 that there are five interrupts to be consid-
ered and they come in either PM or V86 modes, or both. Here again is the list of
interrupts:

Int 21h PM and V86
Int 25h PM and V86
Int 26h PM and V86
Int 2fh V86
Int 17h V86

Although the bulk of file I/O continues to be serviced through these interrupt
interfaces, this need not be the case since ring-0 file services (IFSMgr_Ring0_
FileIO) are also available and in a few instances are used directly for performance
or design reasons.

Interrupt 21bh Handlers

IFSMgr’s protected mode and virtual-86 mode Int 21h handlers have many similari-
ties. Disassemblies of these handlers are shown in Examples 5-1 and 5-2. Keep in
mind that a protected mode handler consumes an interrupt by returning via
Simulate_Iret and chains to the previous handler by a Simulate_Far_Jmp. In
Example 5-1, the labels SimiRet and NxtPMZ21 correspond to these two cases. On
the other hand, a V86 interrupt handler consumes an interrupt by returning with
carry clear and chains to the previous handler by returning with carry set. In
Example 5-2, NextV86Hook and a return through line 1238h both set the carry

79

80 Chapter 5: The “New” MS-DOS File System

flag, so the next V86 interrupt handler will be called. So to see which Int 21h func-
tions are handled by IFSMgr and which are passed on, we need to examine how
these handlers decide upon these alternatives.

Initially, both PM and V86 handlers look at the Int 21h function in the AH client
register, to see if it lies below the constant MAXDOSFUNC+1. The functions .
between 0 and MAXDOSFUNC make up the MS-DOS API. For the retail release of
Windows 95, MAXDOSFUNC is 71h, and for OSR2 it is 73h. Function numbers
from MAXDOSFUNC+1 to FFh correspond to APIs supported by various network
providers, or vendor specific extensions; e.g., function EAh is used to detect if a
Netware client is installed. Each of these groupings has a separate lookup table
for it. The lookup table is indexed by the function number and the table entries
are the addresses of preamble functions.

The first table of functions, called Lower72_Preambles, is filled in with default
. handlers by IFSMgr. The second table of functions, called Upper8E_Preambles, is
not created by IFSMgr until a network provider or other client registers a
preamble for a function in the range MAXDOSFUNC+1 to FFh. When the table is
initially created, it is filled with addresses of a preamble function which just sets
carry and returns. A preamble function for either table can be registered using the
IFSMgr service IFSMgr_SetReqHook, which is available during Device Init or Init
Complete phases.

Example 5-1. Protected Mode Int 21b Handler at IFSMGR(1)+1140b

PM_Int21_Chain Proc Near
1140 movzx ecx,byte ptr [ebpl.Client_AH
1144 cmp cl,72
1147 jnc short FuncGt71
1149 xor edx, edx
114b test byte ptr HookerFlags, 03 ; LOCALINT21 | UNUSEDFLAG
1152 jz short TryPreamble0
1154 test byte ptr HookerFlags, 02 ; LOCALINT21
115b jz short TryPreamblel
1154 push ebx
115e : add ebx, dword ptr OfsVMCB
1164 test byte ptr [ebx+08],10 ; LOCALINT21HOOKER
1168 pop ebx
1169 jz short TryPreamblel
116b call TIs71_A3_A4_A5_AS8
1170 jnc short TryPreamble(
1172 Jmp short NxtPM21
TryPreamblel:
1174 inc edx
TryPreamble0: .
1175 mov esi,Offffffffh
117a call dword ptr Lower72_Preambles[ecx*4]
1181 jnc short Dispatch_PM_Int21

1183 cmp ecx,-01

Interrupt 21b Handlers 81

Example 5-1. Protected Mode Int 21h Handler at IFSMGR(1)+1140b (continued)

1186 jz short SimIRet
NxtPM21:
1188 mov ecx,dword ptr NextPM21lSel
118e mov edx,dword ptr NextPM21lOfs
1194 VMMjmp Simulate_Far_Jmp
FuncGt71:
119%a cmp dword ptr Upper8E_Preambles, 00
1llal jz short NxtPM21
1l1a3 mov edx, dword ptr Upper8E_Preambles
11a9 mov esi,Offffffffh
llae call dword ptr [edx+ecx*4-1c8h]
11b5 jc short NxtPM21
11b7 mov ecx, 0d4h
Dispatch_PM_Int21l:
11lbc VxDcall IFSMgr_FillHeapSpare
1lc2 mov eax,dword ptr OfsVMCB
11c7 mov edx, 0ffff£fffh
llcc call dword ptr [ebx+eax+0c]
1140 je short NxtPM21
SimIRet:
1142 mov ax,word ptr [ebp].Client_Flags
11d6 and ax,+01
1lda VMMcall Simulate_Iret
1le0 and word ptr [ebp].Client_Flags,-02
11e5 or word ptr [ebp].Client_Flags,ax
11le9 retn

In Examples 5-1 and 5-2, you can see calls to the Lower72_Preambles at lines
117Ah and 122Ah. In each case, the Int 21h function number is multiplied by 4,
the size of each doubleword address in the table, and added to the base of the
table. You can also see calls to the Upper8E_Preambles, at lines 11AEh and
124Ah. In these cases, the offset is reduced by 1C8h (or 1DOh for OSR2), the
offset to the base of the table ((MAXDOSFUNC+1) * 4).

In both Examples 5-1 and 5-2, we see that a number of tests are performed before
a Lower72_Preambles function is called. The first test involves the HookerFlags
variable, which uses two bits of one byte of storage. This variable is global in
scope; that is, it is visible across all VMs. I've called bit 1 LOCALINT21 and bit 0
UNUSEDFLAG. The UNUSEDFLAG bit is always zero. The LOCALINI21 bit is set
when V86 Int 21h is hooked in any VM. For instance, if I startup a DOS box and
run a DOS application that hooks Int 21h, this flag will be set and will be seen
from the System VM as well as other VMs. So we may interpret the four lines of
code starting at 114bh in Example 5-1 and at 1200h in Example 5-2 as a three-way
test. If both flags are clear, then call the preamble with EDX=0. If only the
UNUSEDFLAG bit is set, call the preamble with EDX=1. And last, if only the
LOCALINT21 bit is set, continue performing additional tests.

82 Chapter 5: The “New” MS-DOS File System

Example 5-2. Virtual-86 Int 21b Handler at IFSMGR(1)+11eab

V86_Int21_Chain Proc Near

llea VxDcall IFSMgr_FillHeapSpare
11£f0 movzx ecx,byte ptr [ebp]l.Client_AH
11£4 mov esi,Offffffffh
11£9 cmp cl,72
11fc jnc short _FuncGt71
1l1fe xor edx, edx
1200 test byte ptr HookerFlags, 03 ; LOCALINT21 | UNUSEDFLAG
1207 jz short _TryPreamblel
1209 test byte ptr HookerFlags, 02 ; LOCALINT21
1210 jz short _TryPreamblel
1212 push ebx
1213 add ebx,dword ptr OfsVMCB
1219 test Dbyte ptr [ebx+08],10 ; LOCALINT21HOOKER
121d pop ebx
121e jz short _TryPreambleO
1220 call Is71_A3_A4_A5_AS8
1225 jnc short _TryPreamblel
1227 Jjmp short NextV86Hook
_TryPreamblel:
1229 inc edx
_TryPreamble0:
122a call dword ptr Lower72_Preambles[ecx*4]
1231 jnc short Dispatch_V86
1233 cmp ecx,-01
1236 jz short _WasHandled
1238 stc
_WasHandled:
1239 retn
L_123A:
123a retn
_FuncGt71: :
123b cmp dword ptr Upper8E_Preambles, 00
1242 jz short NextV86Hook
1244 mov edx,dword ptr Upper8E_Preambles
124a call dword ptr [edx+ecx*4-1c8h]
1251 jc short NextV86Hook
1253 mov ecx, 0d4h
Dispatch_V86 Proc Near
1258 mov eax,dword ptr lin_SDA_base
1254 movzx edx,word ptr [eax+0e]
1261 movzx eax,word ptr [eax+0c]
1265 shl edx, 04
1268 add edx, eax
126a add edx,dword ptr [ebx+04]
1264 mov eax,dword ptr OfsVMCB
1272 jmp dword ptr [ebx+eax+0c]
NextV86Hook:
1278 stc

1279 retn

Interrupt 21b Handlers 83

Let’s assume only LOCALINT21 is set. We then drop into another bit test over the
next five lines, starting at 115bh in Example 5-1, and at 1212h in Example 5-2. At
this point, EBX is the current VM handle, which is also the base of the VM control
block. During Device Init, IFSMgr calls _Allocate_Device_CB_Area to allocate a
block of memory which is specific to IFSMgr and which is private to each VM.
This block begins at offset OfsVMCB from the beginning of the VM control block;
thus EBX + OfsVMCB is the address of the base of this pervm data structure (see
Appendix C, IFSMgr Data Structures, for pervms typedef). The pv_flags member
of this structure, a byte at offset 8, contains flag bits. Bit 4, which I've named
LOCALINT21HOOKER, indicates whether there is a local Int 21h hooker in this
VM. So this test is checking whether this VM is the VM which has installed the
local hook. If not then the preamble is called with EDX=0.

Ok, now let’s assume the LOCALINT21 bit is set and we are in a VM which has a
local Int 21h hook; then the function Is71_A3_A4_A5_A8 is called. This is a simple
function which returns with carry set if the requested function is not 71A3h,
71A4h, 71A5h, or 71A8h. So unless the Int 21h request is for one of these func-
tions, the request will be passed to the next PM or V86 handler. It is interesting to
note that functions 71A3h to 71A5h are undocumented but clearly are related to
the implementation of Find Change Notification. Function 71A8h is used to
generate a short name alias from a long filename.

In any event, if a preamble is called, the carry flag on return determines whether
the function is ultimately dispatched. If the preamble returns with carry set, then
the function is not handled and is passed on to the next handler. However, if the
preamble returns with carry clear, then the function is dispatched to the file
system at Dispatch_PM_Int21 or Dispatch_V86. In either case, the address of the
dispatch function is located in the VM’s pervm data structure in the member pv_
dispfunc. If the dispatch function fails, it also returns with'carry set, and the func-
tion is passed on to the next handler in the chain.

The LOCALINT21 bit of HookerFlags and the LOCALINT21HOOKER bit of the puv_
Slags member of the VM’s pervm structure have a dramatic effect on the routing of
Int 21h requests. When both bits are set for a VM, they essentially shut down the
PM and V86 Int 21h handlers. This is a pretty drastic measure. Why would IFSMgr
do this? Well, before we explore this mystery let’s take a closer look at preamble
functions.

Preamble Functions

Preamble functions are described in the DDK’s IFS Specification under the section
on the IFSMgr_SetReqHook service. This service takes two arguments, an
unsigned int containing the interrupt number in the high word and the function
number in the low word, and the address of the preamble function to install. At

84 Chapter 5: The “New” MS-DOS File System

this time, this service only installs preambles for Int 21h. IFSMgr_SetReqHook
returns the address of the previous preamble function, if successful, or 0 if the
service fails. If a preamble function rejects an Int 21h request, it must chain to the
previous preamble function.

A preamble function receives the following register-based arguments when it is
invoked:

EBX
The current VM handle
ECX :
The Int 21h function number

EBP
A pointer to the client register structure

EST
The provider ID which is initialized to ANYPROID (~1)

The preamble function decides whether to accept or reject the Int 21h request.
There is always a default preamble function installed for a given request number.
The default preamble function will return with carry set if it wishes for the
request to be rejected, and with carry clear if the request is to be accepted. An
installed preamble function will return with carry clear if it accepts the request,
but chains on to the next preamble if it rejects the request. So the net effect of
calling a preamble function chain is to return with carry set to indicate rejection
or clear to indicate acceptance. Note that this description is at odds with the IFS
Specification, which incorrectly states that an installed preamble function should
return with carry set if it accepts a request.

If an installed preamble function accepts a request, it needs to preserve the EBX
and EBP registers. Optionally, it may set ESI to the specific provider ID of the file
system driver that installed the preamble. If a specific provider ID is returned,
then when the function is dispatched, it will only be seen by the file system driver
for that provider ID. If ESI is left set as ANYPROID (any provider ID), then when
the function is dispatched all file system drivers will be able to see the call.

If an installed preamble function rejects a request, it must preserve all registers
and chain to the previous preamble.

Table 5-1 enumerates the default preamble functions which IFSMgr uses to
initialize Lower72_Preambles. Functions 44h and 71h also have subtables indexed
by the subfunction number in the AL register. These preamble functions are
entered as 44xxh and 71xxh. The 71xxh series functions (except 71a0h—71aah)
are remapped by the preamble into their non-long filename equivalent functions
but with the LFN flag set (bit 30 of the ECX register). Functions 71a0h through

Interrupt 21b Handlers

71aah are mapped to a different set of functions, but these also have the LFN flag

set.

The functions which do not appear in Table 5-1 are not accepted by IFSMgr.

Table 5-1. Default Preamble Functions

Int 21h Function Default Preamble

0Bh IFSMGR(1)+127ch
0Dh,710dh IFSMGR(3)+1e50h
OEh IFSMGR(3)+18f2h
1Ah IFSMGR(3)+18c8h
1Bh, 1Fh IFSMGR(3)+1a4eh
1Ch, 36h, 47h, 7147h IFSMGR(3)+1a68h
25h IFSMGR(3)+1b52h
29h IFSMGR(3)+1bcfh
32h IFSMGR(3)+1a62h
33h IFSMGR(3)+1e8%h
39h, 3Ah, 3Bh, 3Ch, 3Dh, 41h, 43h, 4Eh, 56h, 5Bh, 7139h, | IFSMGR(3)+1c3fh
713ah, 713bh, 7141h, 7143h, 714eh, 7156h

3Eh, 3Fh, 40h, 42h, 4400h, 4401h, 4402h, 4403h, 4406h, IFSMGR(3)+000ch
4407h, 440ah, 4410h, 57h, 5Ch, 68h, 71a6h

44h IFSMGR(3)+19b7h
4404h, 4405h, 4408h, 4409h, 440dh, 440eh, 440fh, 4411h IFSMGR(3)+19d0Oh
45h, 46h IFSMGR(3)+0000h
4Bh IFSMGR(3)+182ch
4Dh IFSMGR(3)+17fch
4Fh, 714fth IFSMGR(3)+1aa5h
5Dh IFSMGR(3)+1dcOh
SEh IFSMGR(3)+18b8h
5Fh IFSMGR(3)+1840h
60h, 6Ch, 7160h, 716¢ch, 71a9h IFSMGR(3)+1c38h
6%h IFSMGR(3)+1a3eh
71h IFSMGR(3)+1f14h
71a0h, 71alh, 71a2h, 71a3h, 71a4h, 71a5h, 71a7h, 71a8h, IFSMGR(3)+1f8ch

71aah

IFSMGR(4)+1febh (OSR2)

7302h, 7303h, 7304h 7305h (OSR2 only)

The Preamble for Function 25b, Set Interrupt Vector

In Chapter 8 of Unauthorized Windows 95, entitled “The Case of the Gradually
Disappearing DOS,” Andrew Schulman performed some interesting experiments

86 Chapter 5: The “New” MS-DOS File System

with Windows for Workgroups 3.11 and Windows 95. The experiments were
performed with a simple DOS application, TEST21, which hooks Int 21h using
DOS function 25h, set interrupt vector. TEST21 issues a sequence of Int 21h func-
tions and tabulates a count of received Int 21h requests. It then compares the sent
versus received counts for each function number.

When TEST21 is executed at the DOS prompt (outside of Windows), the sent and
received counts are equal. However, if TEST21 is executed in a Windows for
Workgroups 3.11 DOS box, the only Int 21h request which is received is the func-
tion 25h request; the other calls, functions 3D, 3F, 40, and 3E, are handled by
IFSMgr without being reflected to DOS. When the same test is performed in a
Windows 95 DOS box, all of the Int 21h requests are received by TEST21.

Schulman attributed the difference in behavior between Windows 95 and
Windows for Workgroups 3.11 to the way that IFSMgr handles interrupt 21h func-
tion 25h for Windows 95. He found that changing the method used to hook Int
21h to a direct memory write to the interrupt vector table resulted in Windows 95
behaving the same as Windows for Workgroups, i.e., none of the Int 21h calls
sent were received.

This interpretation is in line with Microsoft’s documentation on Int 21h hookers.
In a Microsoft white paper by Russ Arun, Chicago File System Features—Tips &
Issues (April 22, 1994), the following explanation is given: '

On default all Int 21 interrupts, except file API Int 21s, are passed down to any
hooker present in the system. The file API Int 21s are just passed to VM (local)
hookers, but not to global (autoexec.bai) type hookers. This is done because
there are new file APIs (new Int 21s) that support long filenames for delete,
rename and so on that an older hooker won't understand anyway. Furthermore,
not all file API calls are Int 21 calls. Specifically server calls and swapper calls to
the file system are not Int 21 calls.

TEST21 falls into the category of a “local hooker” since it is executed in a DOS
box (VM) after Windows is running. The reflection of file I/O Int 21h requests to
a local hooker is a change from the Windows for Workgroups 3.11 behavior.
Notice that the intent is not to actually service the interrupt requests in MS-DOS in
virtual-86 mode; after all, that is what Windows 3.1 did. Instead, this change is
intended to increase compatibility with local hookers as well as global hookers by
allowing them to see Int 21h traffic.

By using the HOOKER21 TSR, which is on the companion diskette, you can
confirm this behavior for yourself. HOOKER21 is a minimal TSR that calls set inter-
rupt vector to establish a new Int 21h handler that does nothing except chain to
the previous handler. If this TSR is placed in a winstart.bat file in the \windows
directory, it will be executed in the context of the System VM after IFSMgr has

Interrupt 21h Handlers 87

completed Device Init. Thus IFSMgr detects the re—vectormg of Int 21h and flags
the System VM for Int 21h reflection.

To see this, perform a “before-and-after” test. Run MultiMon with the monitors
“VWIN32 Int 21”7 and “V86 Int 21 (post-IFSMgr)” enabled. Generate some file
activity by using the right mouse button to create a shortcut on the desktop. Most
of the Int 21h requests which originate in VWIN32 do not make it as far as the
V86 Int 2lh handler. Now, perform the steps above after creating a
\windows\winstart.bat file and having it load hooker21.exe. Then restart the
system. Repeat the MultiMon test and generate some file activity. The MultiMon
trace will now show a matching V86 Int 21h request for each VWIN32 Int 21h
request (at least for the file I/O functions).

We can see why this is happening if we examine the code for the function 25h
preamble in Example 5-3. First we see that this preamble is only interested in
changes to the Int 21h vector and only if they originate in V86 mode. If the client
making the request is executing in protected mode or if the vector being set is not
for Int 21h, the preamble returns immediately. Next, the preamble determines
whether the vector it is restoring is the original vector (whose linear address was
stored in LinV86I121Vec during Device Init) or whether a new vector is being set.
The vector argument in DS:DX is converted to a linear address for comparison
with LinV86I21Vec, and execution continues at the label ResVect or SetVect,
depending on the outcome.

The flags which track Int 21h reflection are found in three different locations.
First, there is the pv_flags member of the VM’s' pervm structure. Next, there are
HookerFlags and HookedVMs variables which reside in global IFSMgr memory.
Finally, there are flags in the DOS device driver, ifship.sys. These flags are refer-
enced as offsets from lin_IFSHLP_data, the linear address of a shared data area in

ifship.sys.

The key flag is LOCALINT21HOOKER of pv_flags in the VM’s pervm data struc-
ture. If it is getting cleared by the restoration of the Int 21h vector or if it is getting
set because a new vector is installed, then all of the other flags also are updated.
Setting the Int 21h vector multiple times in a VM has no affect on the flags after
the first change.

Recall that when the LOCALINT21 bit of HookerFlags and the
LOCALINT21HOOKER bit of pervm's pv_flags are both set, they essentially shut
down the PM and V86 int 21h handlers for IFSMgr in that VM. We now under-
stand the mechanism by which Int 21h is reflected into a VM but the connection
with ifship.sys is still unclear. Let’s look at the role it plays, shown in Example 5-3.

88 Chapter 5: The “New” MS-DOS File System

Example 5-3. Preamble for Function 25b at IFSMGR(3) + 1b52h

Preamble_25 Proc Near

1b52 test dword ptr [ebx],VMSTAT_PM_EXEC
1b58 jnz short Reject25
1b5a cmp byte ptr [ebp].Client_AL,21
1b5e jnz short Reject25
1b60 mov edx, dword ptr OfsVMCB
1b66 add edx, ebx
1b68 mov edi,dword ptr lin_IFSHLP_data
1b6e push ecx ‘
1b6f movzx ecx,word ptr [ebpl.Client_DS
1b73 shl ecx, 04
1b76 movzx eax,word ptr [ebp]l.Client_DX
1b7a add ecx, eax
1b7c cmp ecx,dword ptr LinV86I21Vec
1b82 pop ecx
1b83 jnz short SetVect
ResVect:
1b85 test byte ptr [edx+08],10 ; LOCALINT21HOOKER
1b89 jz short Reject25
1b8b and byte ptr [edx+08],0ef ;- ~LOCALINT21HOOKER
1b8f and byte ptr [edi+12eh],0fe
1b96 dec byte ptr HookedVMs
1b9c jnz short Reject25
1b9%e and byte ptr HookerFlags,0fdh ; ~LOCALINT21
1bab - and byte ptr [edi+11],0£7
1ba9 Jmp short Reject25
SetVect:
1bab test byte ptr [edx+08],10 ; LOCALINT21HOOKER
1baf jnz short Reject25
1bbl or byte ptr [edx+08],10 ; LOCALINT21HOOKER
1bb5 or byte ptr [edi+12eh], 01
1bbc inc byte ptr HookedVMs
1bc2 or byte ptr HookerFlags, 02 ; LOCALINT21
1bc9 or byte ptr [edi+11],08
Reject25:
1bcd stc
1bce retn

Bouncing Back from ifshlp.sys

In Chapter 3, in the section “Accessing IFSMgr,” we summarized in Tables 3-2 and
3-3 all of the virtual devices which hooked Int 21h in either protected mode or
virtual-86 mode. If none of these virtual devices accept the Int 21h request, it will
get passed down the chain and arrive at the handler in the virtual-86 IVT (the
“real-mode” interrupt vector table). This is represented by the last entry in the Int
21 column of Table 3-2. The address displayed there, 0c59:04a0, is the handler in

ifship.sys. :

Interrupt 21b Handlers 89

If a VM has a local hooker installed, it will appear before ifship.sys in the IVT
chain. There may also be other global hookers installed via autoexec.bat or
config.sys that appear in the IVT chain before ifship.sys and any local hooker.

If a request gets routed all the way down to ifshilp.sys, what happens to it? Does it
keep going and end up being serviced by MS-DOS? To answer these questions
we’ll need to look at the disassembly of the Int 21h handler in ifShip.sys, shown in
Example 5-4.

Example 5-4. Interrupt 21b Handler in ifShip.sys

int_21h proc far

04A0 cmp ah,72h

04A3 jae next_in_chain

04A5 test cs:flags, 2

04AB jz try_preamble

04AD test cs:flags, 0Ch

04B3 jz try_preamble

04B5 test cs:flags,4

04BB jnz haveOverride

04BD test cs:perVM_flags, 1

04cC3 jz try_preamble
haveOverride:

04cC5 cmp ah, 0Bh

04C8 jb try_preamble

04ca push ax

04CB Jjmp short bounce_back
try preamble: '

04CD push ax

04CE push bx

04CF mov bl,ah

04D1 mov bh, 0

04D3 mov al,cs:Lower72[bx]

04D8 mov ah,0

04DA pop bx

04DB add ax,offset basePreamble

04DE call ax

04E0 jnc bounce_back

04E2 pop ax
next_in_chain:

04E3 Jjmp far ptr prevInt2l
bounce_back:

04ES8 pop ax

04E9 push bx

04EA mov bl,ah

04EC sub bh,bh

04EE Jjmp cs:IFSMGR_V86CallBack

This handler routes requests in two possible directions. If line 4E3 is reached, the
request is being sent down the interrupt chain to the next “real-mode” handler
and may end up being serviced by MS-DOS. If line 4EE is reached, the jmp trans-
fers control to a V86 callback which re-enters IFSMgr.

90 Chapter 5: The “New” MS-DOS File System

This 16-bit code bears some resemblance to the PM_Int21_Chain and V86_Int21_

Chain handlers shown in Examples 5-1 and 5-2. The flags variable resides in

global memory and is modified by all VMs. Bit 1 signifies that IFSHLP has been

initialized by a call from IFSMgr, bit 7 is equivalent to the LOCALINT21 bit of

HookerFlags, and bit 6 is equivalent to the UNUSEDFLAG bit of HookerFlags, as

used in IFSMgr. The other variable tested here is perVM_flags. It lies in a region
of IFSHLP which is instanced, i.e., which has a private copy mapped into each

VM’s address space.

The V86 callback to IFSMgr is called if, at least, the following conditions are met:

e Bit 1 is set in the flags variable, indicating IFSHLP has been initialized by
IFSMgr;

e Bit 7 is set in the flags variable, indicating that some VM has a local Int 21h
hooker;

e Bit 0 is set in the perVM_flags variable, indicating that the current VM has a
local Int 21h hooker;

* The function number is 0Bh or greater but less than 72h.

The callback may also get called if a preamble returns with carry clear. Preambles
may be called on the following Int 21h functions: 0Bh, 0Dh, OEh, 3Eh, 3Fh, 40h,
41h, 42h, 47h, 57h, 5Ch, 5Dh, SEh, 5Fh, 68h, and 71h.

One question still remains unanswered: who sets and clears these IFSHLP vari-
ables? We can find the answer back in Example 5-3 in the code for Prcamble_ZS.
IFSMgr stores away a linear address (in lin_IFSHLP_data) which points to offset
0024h in IFSHLP, the start of the shared data area. Preamble_25 loads EDI with
lin_IFSHLP_data and then uses EDI to reference bytes at offsets 11h ‘and 12eh. If
you add 24h to these offsets, you get the addresses of the flags and perVM_flags
variables in IFSHLP.

Before we move on, let’s recap. Several flags are maintained at a global scope
and at a per-VM scope, to determine whether to reflect an Int 21h request down-
ward towards MS-DOS land. IFSHLP is positioned along this downward path so
that it can snatch up these requests and redirect them back to IFSMgr just before
they drop into MS-DOS. For more details on how IFSMgr and IFSHLP exchange
data, see the sidebar “The IFSHLP/IFSMgr Connection.”

This excursion into IFSHLP and its role in Int 21h reflection has uncovered a
“back door” into IFSMgr—that of the V86 callback. The ring-0 code for this call-
back is shown in Example 5-5. This routine’s first order of business is to clean up
the client stack. It does this by simulating a POP BX and then an IRET. Before BX
is restored, the value of BX in the client registers is loaded into ECX to use as the
function number. Except for the check for a special function value, BDh, which is

Interrupt 21b Handlers : : 91

The IFSHLP/IFSMgr Connection

The connection between IFSHLP and IFSMgr is established during the Device
Init stage. IFSMgr opens a handle to IFSHLP using the MS-DOS device name
“IFSHLP”. If successful, the handle is then used to acquire the entry point for
subsequent calls. To do this, DOS function 4402h (receive control data from
character device) is used. The caller passes in an 8-byte buffer, the first two
words of which contain a version code: E970h followed by 3735h. If the call
returns without error and 8 bytes are read, then the buffer should contain the
following information: WORD 3735h, WORD EF70h, WORD entry_ofs, WORD
entry_seg. ‘

A call into IFSHLP takes the following form:

push word offset

push word segment

push word function number
call entry_seg:entry_ofs

add sp,6

The first two arguments (offset and segment) are not always used, although
some values are pushed onto the stack. The function number is in the range 0
to 7. The functions have the following uses:

0 returns address of IFSHLP’s shared data area in DX:AX

1 enables IFSHLP traps (int 17h,1bh,21h,2ah,2fh); IFSMgr's V86 callback
passed to IFSHLP on the stack

disables IFSHLP traps (int 17h,1bh,21h,2ah,2fh);
unknown
unknown

unknown (unused by IFSMgr)

A LA WN

unknown (unused by IFSMgr)
7 unknown (unused by IFSMgr)

IFSMgr uses the return value from function 0 to initialize the following internal
variables: lin_IFSHLP_data, lin_IFSHLP_base, lin. SDA_base.

vectored to the Int 17h handler, this code closely follows that of V86_Int_Chain.
There is one small difference in the arguments to preamble functions: EDX has
the value 2; when preambles are called from PM_Int21_Chain and V86_Int_Chain,
EDX is either O or 1. If the preamble function rejects the request, or if IFSMgr fails
the call, then the request is channeled back down the “real-mode” interrupt chain.

92 Chapter 5: The “New” MS-DOS File System

The address of the previous Int 21h handler is loaded from IFSHLP’s shared data

area. This address is passed to Build_Int_Stack_Frame to make it the new CS:EIP

after the client registers Client_CS and Client_EIP, and Client Flags are pushed on

the client stack. When the callback returns, execution resumes in the VM at this

previous handler. Note that if the callback services the request, CS:EIP is set to the
~ instruction following the Int 21h call since the request has been completed.

Example 5-5. V86 Callback Routine at IFSMGR(1) + 521

V86_CallBack_ From IFSHLP Proc Near

521 VMMcall Simulate_Pop

527 VMMcall Simulate_Iret

52d movzx ecx,word ptr [ebp].Client_BX

531 mov word ptr [ebp].Client_BX,ax

535 cmp cl, Obdh

538 jz To_Intl7_Chain

53e cmp c¢l,72

541 jnc short AcceptBounceBack

543 mov edx, 2h

548 mov esi,0ffffEffEFfh

544 mov eax,21lh

552 call dword ptr Lower72_Preambles[ecx*4]

559 jc short SendBackToDOS
AcceptBounceBack:

55b mov eax,dword ptr lin_SDA_base

560 movzx edx,word ptr [eax+0el

564 movzx eax,word ptr [eax+0c]

568 shl edx, 04

56b add edx, eax

564 add edx,dword ptr [ebx+04]

570 mov esi,0fEffffEEfh

575 mov eax,dword ptr OfsVMCB.

57a call dword ptr [ebx+eax+0c]

57e jc short SendBackToDOS

580 retn
SendBackToDOS :

581 mov edx,dword ptr lin_IFSHLP_data

587 mov cx,word ptr [edx+lceh]

58e movzx edx,word ptr [edx+lcch]

595 VMMcall Build_Int_Stack_Frame

59b retn

Interrupt 2Fb Handler

IFSMgr’s interrupt 2Fh handler is more straightforward than that for Int 21h. Of
the many possible functions which could be intercepted, it is content with
looking at only 05h (Critical Error Handler) and 11h (Network Redirector).

The handler for interrupt 2Fh function 05h, shown in Example 5-6, is quite
simple. If AL is zero, the call is an installation check and AL is returned as OFFh

Interrupt 2Fb Handler 93

(installed). If AL is non-zero, the call is a request for an error string corresponding
to the values in AL and BX. This request is converted into a function D2h and
passed to the same dispatch routine utilized by the Int 21h handler, Dispatch_V86.

Example 5-6. V86 Interrupt 2Fb Function 05b Handler at IFSSMGR(3)+1130

Int2f_05xx_Handler Proc Near
1130 mov edx,dword ptr [ebp].Client_EAX
1133 test dl,dl
1135 jnz short L_113C
1137 mov byte ptr [ebpl.Client_ AL,0ff
113b retn
L_113C:
113c mov ecx, 0d2h
1141 push edx
1142 call Dispatch_v86
1147 pop edx
1148 test byte ptr [ebp].Client_Flags, 01
114c jnz short L_114F
1l4e retn
L_114F:
114f mov dword ptr [ebp].Client_EAX,edx
1152 stc
1153 retn

The handler for the Network Redirector functions (11xxh) is more complicated.
The disassembly for this routine is shown in Example 5-7. For each minor func-
tion number (in client AL), a table in IFSHLP is consulted to see if it is supported.
The linear address for the table is at lin_IFSHLP_data + 2eh. This table lies in the
instanced portion of the IFSHLP data area, so the address in the current VM’s
address space is found by adding [EBX].CB_High_Linear, where EBX is the current
VM handle. This table is indexed by the minor function number. If the high order
bit of the byte at the indexed location is set, then a function in the array, Table_
'2f11, is called. Otherwise, the previously installed V86 Int 2Fh handler will get
control.

Example 5-7. V86 Interrupt 2Fb Function 11h Handler at IFSMGR(3)+1104

Int2f_ 1lxx_Handler Proc Near

1104 movzx ecx,byte ptr [ebp].Client_AL
1108 mov edx,dword ptr lin_IFSHLP_data
110e add edx,dword ptr [ebx].CB_High_Linear
1111 test byte ptr [ecx+edx+2e], 80

1116 3jz = prev_V86_Int2f

111lc cmp cl, 80

111f cmc

1120 sbb edx, edx

1122 and edx,0fffffec8h

1128 jmp dword ptr Table_2fll[edx+ecx*4]

94 Chapter 5: The “New” MS-DOS File System

The code which determines the index into Table_2f11 is a little tricky. If the
minor function number is less than 80h, then the comparison at line 111c will set
the carry flag. The instruction at line 111f then complements the carry flag,
thereby clearing it, so that the subtract with borrow at line 1120 makes EDX zero.
The net effect is that Table_2f11 is indexed by (function*4). However, if the minor
function number is 80h or greater, then the comparison at line 111c will clear the
carry flag. Complementing the carry flag then sets it so that the subtract with
borrow leaves EDX equal to ffffffffh. The subsequent AND with fffffec8 sets EDX
to that value. This is equivalent to c8h—(80h*4). The net effect is that minor func-
tions 80h or greater index a section of Table_2f11 starting at offset c8h.

Table 5-2 summarizes the functions for which handlers are installed by IFSMgr.
Most of the functions are mapped to a different function number and then sent to
Dispatch_V86.

Table 5-2. Network Redirector Functions, Int 2Fb, 11xxH

Minor Function Handler Action

00h IFSMGR(3)+12a%h

01h, 02h, 03h, 04h, 05h, ODh, OEh, | IFSMGR(3)+1411h | Dispatch as (minor function +

OFh, 10h, 11h, 12h, 13h, 14h, 15h, 76h)

16h, 17h, 18h, 19h, 1Bh, 2Eh »

06h, 08h, 09h IFSMGR(3)+12d6h | Dispatch as (minor function +
76h)

0Ch IFSMGR(3)+1500h | Dispatch as function 82h

1Ah, 1Ch IFSMGR(3)+147eh

1Dh IFSMGR(3)+14b%h | Dispatch as function 93h

21h IFSMGR(3)+1315h | Dispatch as function 97h

23h IFSMGR(3)+1154h

25h IFSMGR(3)+1288h

31h IFSMGR(3)+132eh | Dispatch as function b8h

80h, 81h, 82h, 84h, 86h, 8Bh, 8Ch, | IFSMGR(3)+14b1lh | Dispatch as (minor function +

8Dh, 8Eh, 8Fh, 90h, 91h 26h)

Note that in MS-DOS the Network Redirector functions are called by DOS. The
functions which are enumerated here are not called internally. For more informa-
tion on the Network Redirector, see Chapter 8 of Undocumented DOS by Andrew
Schulman et al.

Interrupt 25h and 26b Handlers

Protected mode as well as virtual-86 mode interrrupt 25h and 26h handlers are
implemented by IFSMgr. The two handlers are very similar, so only the protected

IFSMGR’s Common Dispatch Routine 95

mode code is shown here in Example 5-8. On entry, AL contains the drive
number on which the read or write is to be performed. If the drive number is vali-
dated, the request is sent to the dispatch point as function DDh for Int 25h or
function DEh for Int 26h. After the request is dispatched and retums, the client
flags are pushed onto the client stack. This is done to simulate the “quirky”
behavior of these software interrupts.

Example 5-8. Protected Mode Int 25b / 26b Handler at IFSMGR(3)+162f

PM_Int25_26_Chain Proc Near
162f mov eax, edx
1631 movzx edx,byte ptr [ebp].Client_AL
1635 call ValidateDrive
163a jc short next_pm_int
163c mov ecx, 0ddh
1641 cmp eax, +25
1644 jz short dispatch_int
1646 mov ecx, 0deh
dispatch_int:
164b VMMcall Simulate_Iret
1651 mov eax,dword ptr OfsVMCB
1656 mov edx, 0ffffffffh
165b call dword ptr [ebx+eax+0c]
165f mov eax,dword ptr [ebp].Client_EFlags
1662 VMMcall Simulate_Push
1668 retn

next_pm_int:

1669 mov ecx,dword ptr NextPM25Sel
166f mov edx,dword ptr NextPM250fs
1675 cmp eax, +25

1678 jz short L_1686

167a mov ecx,dword ptr NextPM26Sel
1680 mov edx, dword ptr NextPM260fs
) L_1686:

1686 VMMjmp Simulate_Far_Jmp

Interrupt 17h Handler

The virtual-86 mode Int 17h handler for BIOS printer services would take several
pages if we were to display it all. However, it is relevant to discuss one aspect of
it. This is that even printer services are channeled to the Dispatch_V86 routine.
The function number which they are dispatched under is CCh.

IFSMGR’s Common Dispatch Routine

Our survey of IFSMgr’s interrupt handlers has revealed a surprising fact. If an inter-
rupt request is accepted, in most cases it is directed to a single dispatch routine, a
routine whose address is stored in IFSMgr's pervm data structure. Placing the

96 Chapter 5: The “New” MS-DOS File System

address in a per-VM data location would seem to lend itself to customization,
depending on the kind of application executing in the VM. There is no evidence
that this is the case since the same dispatch address is used in the System VM as
well as DOS boxes. ‘

Storing the dispatch address in such a convenient location makes it easy to write
a simple hook for monitoring traffic through the dispatch point. The IFSDSPAT
monitor driver does just that. It hooks the dispatch point in all VMs and displays
each dispatched function and some associated registers. This driver works in
conjunction with MultiMon, so its output is displayed in MultiMon’s application
window along with the output from other monitors that are also enabled.

The output in Example 5-9 was generated in response to clicking the right mouse
button on the desktop and selecting “New Folder.” These are just the first few
lines; the complete trace spans several pages. The lines of output that we see
here are from three different monitors:

e w21, VWIN32’s Int 21h dispatcher (WIN32CB)
e p21, protect-mode Int 21h hook before IFSMgr (I21HELP1)
e dsp, hook at IFSMgr’s dispatch point IFSDSPAT)

Example 5-9. MultiMon Output for Creating a Folder
Explorer p21l Seek(42) (0) handle=024c offs=2b400

Explorer dsp Func= 42 EDX=ffffffff ESTI=ffffffff
Explorer p21l Read(3f) handle=024c cnt=1000 buf=7b:£000
Explorer dsp Func= 3f EDX=ffffffff ESI=ffffffff

Explorer w21l LFN(71)Get File Attr(43)

Explorer p21 LFN(71)Get File Attr(43)

Explorer dsp Func=40000043 EDX=ffffffff ESTI=ffffffff
Explorer p2l Seek(42) (0) handle=024c offs=32400

Explorer dsp Func= 42 EDX=ffffffff ESI=ffffffff
Explorer p21 Read(3f) handle=024c cnt=1000 buf=7b:£000
Explorer dsp Func= 3f EDX=ffffffff ESI=ffffffff
Explorer p21 Seek(42) (0) handle=024c offs=30400
Explorer dsp Func= 42 EDX=ffffffff ESTI=ffffffff
Explorer p21 Read(3f) handle=024c cnt=1000 buf=7b:£000
Explorer dsp Func= 3f EDX=ffffffff ESI=Ffffffff

Explorer w21l LFN(71)MkDir(39) C:\WINDOWS\Desktop\New Folder
Explorer p21 LFN(71)MkDir(39) C:\WINDOWS\Desktop\New Folder
Explorer dsp Func=40000039 EDX=ffffffff ESI=ffffffff
Explorer w21l LFN(71) (a4)

Explorer p21 LFN(71) (a4)

Explorer dsp Func=400000el EDX=ffffffff ESI=ffffffff

For each Int 21h function, two or three lines are displayed. If the interrupt request
originated in VWIN32, then the trace begins with the Win32 callback shown as a
w21 line. VWIN32’s interrupt dispatcher then generates a protected-mode nested

IFSMGR’s Common Dispatch Routine 97

execution of the interrupt which produces the p21 line. If the interrupt request is
handled by IFSMgr, then it gets sent to the dispatch point and we get a dsp line.

The Func value shown on each dsp line is the function number. We see that this
is usually the same as the Int 21h function number. The get file attributes func-
tion, 7143h, is mapped to function 43h with the long filename flag set in the high
order byte giving us 40000043h. We also see this apply to the make directory func-
tion, 713%9h. Something different is happening with the last function call in the
trace. Here, 71A4h becomes 400000elh when it is dispatched. In this case, there
is no standard implementation of function A4h so it is mapped to an available
number above 71h, which happens to be Elh. In fact we have been seeing this
kind of mapping in the handlers for interrupts 2Fh, 25h, 26h, and 17h.

Here is a more formal description of the calling convention for the dispatch point:

ECX
The dispatched function number in the low byte, the high byte consists of
several flag bits

EBX
The current VM handle

EAX
The offset to IFSMgr’s pervm data structure for the VM

EBP -
Pointer to the client register structure

EST
The provider ID (usually -1 for ANYPROID)

EDX .
? (may be function specific)
EDI

? (may be function specific)

The file API which IFSMgr exports to other VxDs, IFSMgr_Ring0_FilelO, is also a
thin veneer around a call to the dispatch point. Unfortunately, the dispatch
routine is called directly and not through the entry in IFSMgr’s area of the VM
control block. So our hook doesn’t show these calls.

IMplementing a Dispatch Hook

We've spent a lot of time looking at disassembled code in this chapter, so for a
break let’s look at how the IFSDSPAT virtual device is implemented. There are
two interesting problems that need to be resolved to get this monitor to work.

98 Chapter 5: The “New” MS-DOS File System

The first involves determining the offset of IFSMgr’s VM control block area, and
the other is how to track the dispatch function for each VM separately.

To get IFSMgr’'s VMCB offset, I used a direct approach: just load before IFSMgr,
hook the _Allocate_Device_CB_Area service, and watch for IFSMgr's call. The
code for this is shown in Example 5-10. This function has a special header in
order to support Unhook_Device_Service; HOOK_PREAMBLE is the macro which
achieves this. At the center of the code is the indirect call to pPrevAllocDevCB, a
variable which holds the previous service address when the Hook_Device_Service
returns. The key to knowing which VXD has made the call is to look at the return
address on the stack. This address is passed to _GetVxDName to let it do the
grunge work of figuring out which device that address belongs to. For instance, if
IFSMgr is making the call, the string returned might be “IFSMGR(2)+c01234567”.
The intrinsic function memcmp() then compares the first 6 characters returned
against “IFSMGR”. If we get a match, then we've got what we’re after and store
the returned offset in the global variable OfsIfsVMCB. Since our hook has served
its purpose, we unhook it before returning—that way it won’t get called again.

Example 5-10. Service Hook for _Allocate_Device_CB_Area

HOOKPROC MyAllocDevCB(void) {
PVOID pReturnAddr;
char szBuf[80];
DWORD dwOfs;
HOOK_PREAMBLE (pPrevAllocDevCB)

‘_asm push ebp

_asm mov ebp,esp

asm sub esp,___LOCAL_SIZE
asm pushad

asm mov eax, [ebp+4]
asm mov pReturnAddr, eax

asm push [ebp+0ch]
asm push [ebp+08h]

asm call dword ptr pPrevAllocDevCB

asm add esp,8

asm mov dwOfs, eax

if (_GetVxDName(pReturnAddr, szBuf) &&
!memcmp (szBuf, szMatchStr, 6)) {
OfsIfsVMCB = dwOfs;
Unhook_Device_Service(___ Allocate_Device_CB_Area,
MyAllocDevCB) ;
}

_asm popad
_asm mov eax,dwOfs
_asm mov esp,ebp

IFSMGR’s Common Dispatch Routine 99

Example 5-10. Service Hook for _Allocate_Device_CB_Area (¢ continited)

_asm pop ebp
_asm ret

}

The second problem I needed to address was how to keep track of each VM’s
dispatch function address so that if MultiMon shuts down, the original dispatch
function can be restored on a per-VM basis. Currently, all VMs use the same
dispatch function but IFSMgr’s design allows multiple dispatch addresses, so let’s
support that.

The solution to this is fairly simple. IFSDSPAT also uses _Allocate_Device_CB_
Area to allocate a private doubleword in each VM. This is accomplished by these
lines in the Device Init message handler:

_asm push 0 // flags

_asm push 4 // sizeof DWORD

VxDCall(_Allocate_Device_CB_Area);

_asm add esp, 8

_asm mov OfsMyVMCB, eax
This doubleword of storage lies at the address VMHandle+OfsMyVMCB for each
VM. The original dispatch address for a VM is stored in this location before it is
replaced with the dispatch hook function.

Dispatching File
System Requests

This chapter is going to look at what is our first taste of the real IFS. So far, we
have been hovering about looking at the various ways we arrive at the IFSMgr
and its services, but now we have arrived. The dispatch point is the ultimate IFS
service. It is the entry point to the file system or systems, the gateway to local and
remote file systems as well as character-based I/O to printers; I/O to mailslots and
named-pipes also passes through here. At this point, we start utilizing data struc-
tures and file system drivers that are uniquely those of IFSMgr. We are no longer
propping up legacy APIs. However, IFSMgr borrows a lot from DOS and builds
upon it, so we can’t claim a clean break with the past.

This dispatch point is just another API of sorts. It is not one that has been docu-
mented in the IFS Specification, although key data structures that are part of it
have been partially documented. Unlike the many interrupt-based APIs we have
been looking at, this new API is based upon a packet or block of data describing
a desired operation. This packet is constructed from a set of input parameters,
one of which is a function number. This function number lies in the range 0 to
MAXIFSFUNC, where MAXIFSFUNC is E7h for the retail release of Windows 95
and EAh for OSR2. The values 0 through MAXDOSFUNC (see Chapter 5, The
“New” MS-DOS File System) overlap with the corresponding DOS function
numbers, although there are large gaps in the coverage, especially for those func-
tions which are not file-related. Other legacy APIs are also mapped in this
function range; for instance, Int 25 and Int 26h are mapped to functions DDh and
DEh, and Int 17h is mapped to function CCh.

100

The Dispatch Point 101

This API is not just a convergence of legacy interrupts into a single linear range of
function numbers; it is more fundamental than that. By moving the function
description into a packet structure, a function request can be more completely
described. It can carry a complete description of the register state and pointers to
important system data structures upon which the command depends. Packets can
also be scheduled to execute as an event providing a mechanism for asynchro-
nous operations.

Since the packet is such a key part of this new API, we'll start by examining how
these packets are constructed. The dispatch point is where this process begins.

The Dispatch Point

In the last chapter, we saw that I/O requests from the file system are funneled
through the dispatch point. The dispatch point is not entered as a service or even
as a fixed location, but rather via an indirect call or jump through the pv_dispfunc
member of the pervm structure for the current VM. This allowed us tO write a
simple hook to monitor calls through the dispatch point.

Although the dispatch point is primarily the common entry point for ring-3 file
system requests, there are two ring-0 IFSMgr services which also use it. First, the
service IFSMgr_Ring0_FileIO enters the dispatch point directly using a near call.
On the other hand, IFSMgr_ServerDOSCall enters the dispatch point using an indi-
rect jump through pv_dispfunc.

The dispatch point routine needs to do several things. It builds an ifsreq packet
and passes it to a function handler. After the function handler returns, it performs
some optional cleanup and other completion handling chores.

Think for a minute about who will be calling this routine. Just about every compo-
nent in the system will be executing this code—applications, system services, and
ring-0 clients—on different threads and in different process contexts. Is this inter-
face going to be synchronous or asynchronous? Will it be re-entrant? If so, how
might these objectives be achieved?

The standard way to support re-entrancy is by eliminating static variables. You

can’t quite get rid of all static variables, but at least you can reduce the number

that need to be worried about. Well, the designers of the file system did just this. -
The dispatch point handler builds the ifsreq packet on the stack through a

series of pushes and copies to the stack frame. Note that the ifsreq packet is the

unit which IFSMgr works with. The IFS documentation only describes the ioreg

structure which is a structure nested within the ifsreq. The ifsreq structure is

260 bytes in length whereas the ioreq structure is only 116 bytes long. (Note that

these sizes are applicable to IFSMgr version 0x22.)

102 Chapter 6: Dispatching File System Requests

Figure 6-1 portrays the ifsreq packet, showing its members and the groupings
which are initialized by the dispatch point handler. For details on each of the
members, see Appendix C, IFSMgr Data Structures. There are four groupings of
members that are distinguished in Figure 6-1. At the bottom of the ifsreq
packet, storage is set aside for saving the client register structure. On top of the
client register structure is a group of members which are undocumented. These
start with the member ifs_pdb and ends with member ifs_VMHandle. These are
all initialized in the dispatch point handler. Then there is a section which is initial-
ized to zero, followed by the topmost members of the structure. The. topmost
members are documented in the IFS Specification. Of these, members ir_length
through ir_data are initialized by the dispatch point handler.

Figure 6-1. ifSreq structure

It would be interesting to walk through the dispatcher code, but it would take us
four or five pages just to display it in pseudocode form. Instead, Table 6-1 distills
this routine into a chart of ifsreq members and how each member gets its value
from the execution of the dispatcher code. Although the main purpose of the
dispatcher is to get the ifsreq packet into a good known state before passing it on,
it also performs other chores such as passing CTRL-C down to IFSHLP if CTRL-C
checking is turned on and the VM is not the system VM. It also performs a series
of post-dispatch cleanup steps which, under some circumstances may include
suspending a VM, adjusting a thread’s execution priority, or even terminating a
Win32 application, to name a few.

The Dispatch Point

103

Table 6-1. ifsreq Initialization

Member Initial Value Notes
ir_length [EBP].Client_ECX From EBP on entry; only 16 bits
of ECX used if 16-bit PM client
ir_flags [EBP].Client_AL From EBP on entry
ir_user from byte at IFSMGR(1) + 64c8h
ir_sfn 00FFh
ir_pid IFSMgr_Ring0_FilelO:
FFFFFFFFh
IFSMgr_ServerDOSCall/LFN:
(DPL32_UID << 16) + DPL32_PID
ir_ppath FFFFFBBBh
ir_auxl EDX From EDX on entry
ir_data IFSMgr_Ring(_FilelO:
[EBP].Client_ESI
IFSMgr_ServerDOSCall/LFN:
DPL32_EDX
Other: :
[EBP].Client_DS, [EBP].Client_DX
ir_options 0
ir_error 0
ir_rh 0
ir_fb 0
ir_pos 0
ir_aux2 0
ir_aux3 0
ir_pev 0
ir_fsdl16] {0}
s pfb 0
ifs_psft 0
ifs_psr 0
ifs_pdb IFSMgr_Ring0_FilelO:
FFFFFFFFh
IFSMgr_ServerDOSCall/LFN:
FFFFFBDBh
IFSMgr_ServerDOSCall:
(current PSP) << 4
Other:
(current PSP) << 4
ifs_func CL, between 00h and MAXISFUNC From CL on entry
ifs_drv ir_vmbc->curdrv + 1 From VM’s control block

ifs_hflag

?

?

104

Chapter 6: Dispatching File System Requests

Table 6-1. ifsreq Initialization (continued)

Member

Initial Value

Notes

ifS_proid

ifs_nflags

ifS_pbuffer
ifS_VMHandle
ifs PV

ifs_crs

IFSMgr_Ring0_FilelO:
ESI

IFSMgr_ServerDOSCall:
FFFFFFFFh

Other:
ESI

80h - IFSMgr_ServerDOSCall
40h - LFN

20h - Uses Extended Handles
10h - IFSMgr_Ring0_FileIO
08h - 8.3 Match Semantics
04h - Caller is Win32 app

02h - BCS/Unicode

01h - ANSI/OEM character set

FFFFFBBBh
EBX(current VM handle)

EBX(current VM) + EAX(offset to IFS
control block)

Copy of VM’s client registers; for
IFSMgr_Ring0_FilelO calls EBP points
to a shortened register structure of
only 48 bytes; for IFSMgr_ServerDOS-
Call calls, EBP also points to a short-
ened register structure

From ESI on entry

From ECX on entry

From EBX on entry
From EBX and EAX on entry

From EBP on entry

Once ifsreq is initialized, it is passed as an argument in a call to a function
handler. The function handlers are arranged in a table which is indexed by the
function number. The function number is stored in #f5_func. As the ifsreq
packet moves through the routines called by the handler, the members of ifsreq
are interpreted and changed in ways which are unique to each command. On
return, the changes to ifsreq will reflect the results of the function.

Table 6-2 shows the contents of an ifsreq before and after a file create opera-
tion: creating a shortcut on the Windows 95 desktop The Int 21h function that is
behind the ultimate dispatch call is 716¢ch.

Table 6-2. {fsreq for a Fz’le Create Operation

Entry

Value " Return

Value

ir_length (ir_
attr)

ir_flags

FILE_ATTRIBUTE_
ARCHIVE (20h)

ACCESS_READWRITE |
SHARE_DENYNONE |
OPEN_FLAGS_NOIN-
HERIT (c2h)

attr)
ir_flags

ir_length (ir_

FILE_ATTRIBUTE_
ARCHIVE (20h)

ACCESS_READWRITE |
SHARE_DENYNONE |
OPEN_FLAGS_NOINHERIT
(c2h)

The Dispatch Point

105

“Table 6-2. ifsreq for a File Create Operation (continued)

Entry Value Return Value

ir_user 01h ir_user 01h

ir_sfn 00ffh ir_sfn 0248h

ir_pid 000121e3h ir_pid 000121e3h

ir_ppath FFFFFBBBh “ir_ppath C0087af4h (ParsedPath)
ir_auxl FFFFFFFFh ir_hfunc ¢1084f38h

ir_data €3400012h ir_data 0066f450h (Client_ESI)
ir_options 0 ir_options ACTION_CREATED (0002h)
ir_error 0 ir_error 0

ir_rh 0 ir_rh ¢1058db8h (sr_rh)

ir_fb 0 ir_fb ¢10869b8h (fh_fh)

ir_pos 0 ir_size 0

ir_aux2 0 ir_dostime 205ca94dh

ir_aux3 0 ir_upath c0087f04h

ir_pev 0 ir_pev 0

ir_fsd[16] {0} ir_fsd[16] filled by FSD

ifS_pfb 0 ifs_pfd ¢1084f38h (fhandle)
is_psft 0 ifs_psft 0

ifS_psr 0 ifS_psr c1039b28h (shres)
ifS_pdb 00021€20h ifs_pdb 00021e20h

ifs_proid FFFFFFFFh ifs_proid FFFFFFFFh

ifs_func 6Ch ifs_func 6Ch

ifs_drv 03h ifs_drv 03h

ifS_hflag 00h ifs_hflag 00h

ifs_nflags 60h ifs_nflags 60h

ifS_pbuffer FFFFFBBBh ifS_pbuffer c0087af4h (ParsedPath)
ifS_VMHandle | c35200e8h ifS_VMHandle | c35200e8h

ifs PV ¢35202ach ifs PV c35202ach

In the Return column, several of the ioreq members have different names than
the operation started with in the Entry column. These represent overlays of
different members of a union. For example, i7_auxI is a union of type aux_t.
The ioreq structure declaration in ifs.h declares this member as:

aux_t

ir_auxl;

/* secondary user data buffer (CurDTA) */

The ifs.h header file also contains this declaration of the union aux_t.

typedef union {

ubuffer_t
unsigned long

aux_buf;
aux_ul;

106 Chapter 6: Dispatching File System Requests

dos_time aux_dt;
vfunc_t aux_v£f;
hfunc_t aux_hf;
void *aux_ptr;
string t aux_str;
path_t aux_pp;
unsigned int aux_ui;
} aux_t;

Any of these members can be combined with ir_aux1. So if this field happened
to represent an unsigned long volume handle, then it would be referred to as ir_
aux]l.aux_ul, or if it represents a table of handle-based functions, it would be
referred to as ir_aux1.aux_hf. ifs.b has gone further and defined macros for some
common union references:

#define ir_volh ir auxl.aux_ul /* VRP address for Mount */
#define ir_hfunc ir_auxl.aux_hf /* file handle function vector */

The ir_hfunc member is one of the more interesting return values on a file create.
It points to a table of functions in the FSD that support read, write, and other
handle-based operations. The results column also contains three different forms of
handles. The member ir_sfrn contains the System File Number for the newly
created file. This is the number that backs up a Win32 file object (see Chapter 4,
File System API Mapping). The field ifs_pfb is a pointer to a fhandle structure
~ which also happens to be used as a ring-0 file handle. And lastly, ir. _ﬂa is a file
handle that is private to the FSD.

It is interesting to follow what has happened to the file name that was passed to
the function. Originally, it was a pointer in the client registers, specifically,
Client_ESI, and it pointed to the long filename C:\ WINDOWS\Desktop\New
Shortcut.lnk.

On return, four different fields contain some representation of the original file
name: ir_ppath, ir_data, ir_upath, and ifs_pbuffer. Now, ir_data just holds the
original pointer to the filename but the other three pointers are different. The
member #7_upath is declared as type string_t, which is unsigned short *, i.e., a
Unicode string. This string is also “unparsed”—it is a straight conversion of the
input path to Unicode. The members ir_ppath and ifs_pbuyffer, on the other hand,
are of type ParsedPath. A path which is represented by a ParsedPath structure
is called a canonicalized path. Here is the declaration for the ParsedPath type:

struct ParsedPath ({
unsigned short pp_totalLength;
unsigned short pp_prefixLength;
struct PathElement pp_elements[1l];
}i

The member pp_totallength gives the total length of the pathname including the
size of the ParsedPath structure (4 bytes). The member pp prefixLength gives

Dispatch Functions 107

the offset of the last path element in the pathname relative to the start of the
ParsedPath structure. These members are followed by zero or more PathEle-
ment structures. A PathElement structure has this declaration: ’
struct PathElement ({
unsigned short pe_length;
unsigned short pe_unichars[1];
};
The member pe_length gives the length in bytes of pe_umnichars, including its null
termination. The member pe_unichars contains the zero or more Unicode charac-
ters that make up the path element string. The PathElements in a pathname are
delimited by the path separator character (“\” or “/”) but the separator character is
removed from the extracted Unicode string.

An example will make this much more clear. Here is the ParsedPath representa-
tion for our “New Shortcut”:

0046h 0024h

0010h “WINDOWS”

0010h “DESKTOP”

0022h = “NEW SHORTCUT.LNK”
In this example, the total length of the path, 46h, is equal to the sum of the
lengths of the PathElements (10h+10h+22h) plus the length of the ParsedPath
structure (4). We also see that pp_prefixLength, which has a value of 24h, gives us
the offset to the filename portion of the path. Note that all elements are converted
to uppercase and the strings are in Unicode. These canonicalized paths are
always relative to the root of the volume, and a volume designator is not part of
the path description. For instance, a root path can be represented by a Parsed-
Path structure containing a pp_totalLength of 4 and a pp_prefixLength of 4.

There is a lot more information that we could extract from Table 6-2, but it will
make more sense once we have better grounding in the IFSMgr’s internal data
structures.

Dz’spatcb Functions

The dispatch function table contains functions for handling each command type,
as shown in Tables 6-3 through 6-5. For instance, the command 6Ch can come in
several forms. If it is function 6Ch using a short filename, then the LFN command
flag will be cleared. However, if it was called using function 716Ch, then the LFN
bit will be set. Or, it may have been invoked in response to an IFSMgr_Ring0_
FileIO service and the command LFN and IFSMgr_Ring0_FilelO flags will be set.
Yet another variation in command flags would be seen if the call was made via
IFSMgr_ServerDosCall. Although several different calling methods could be used,
the same dispatch function will service all of these requests for function 6Ch.

108 Chapter 6: Dispatching File System Requests

Tables 6-3, 6-4, and 6-5 enumerate the functions in the dispatch function table.
Each known function has been given a descriptive name in these tables. These
are simply names that I have created for convenience; you will not find them
documented anywhere. If a function number is not represented in the tables but
lies in the range 0 through MAXIFSUNC, the default handler shown in Example
6-1 is called. This routine does nothing but return with a error code of 1.
However, if a kernel debugger is loaded, a breakpoint will occur at the int 3
instruction. The contents of the ECX, EAX, EDX, and EBX will indicate which
command was attempted and where it originated. In reality, this function should
not get called; the preamble routines should weed out any unsupported functions.

Table 6-3. Dispatch Functions 00-69h

Name Function Number(s)
dResetDrive 0Dh
dDriveData 1Bh, 1Ch, 36h
dOpenCreate 3Ch, 3Dh, 5Bh, 6Ch
dGetDefDPB 1Fh

dGetDPB ’ 32h
dMKRmDir 39h, 3Ah
dChDir 3Bh

dClose 3Eh
dReadWrite 3Fh, 40h
dDelete 41h

dSeek ' 42h

dAttribs 43h

dloctl ‘ 44h

dDup 45h
dForceDup 46h
dGetCurDir 47h

dFindFile 4Eh,4Fh
dRename 56h
dFileDateTime 57h

dLock 5Ch

dFunc5E SEh

dFunc5F 5Fh
dGetFullName 60h

dCommit 68h
dDiskSerial 6%h

Dispatch Functions ' 109

Table 6-3 consists entirely of Int 21h functions with the table function number
corresponding to the Int 21h function. In Table 6-4, many of the functions are
handlers for the Int 2fh function 11xxh interface. Where this is the case, the func-
tion number is indicated in parentheses. Similarly, in Table 6-5, where the
originating interrupt is known, it is indicated in parentheses along with a function
number. Table 6-5 contains dispatch functions for many of the Win32 MS-DOS
extensions and several IFSMgr_RingO_FileIO functions (those beginning with
“dR0O”).

Table 6-4. Dispatch Functions 77bh-CFb

Name ' Function Number(s)
dFunc77 77h(2f/1101h), 78h(2f/1102h), 79h(2f/1103h), 7Ah(2f/1104h)
dChDir : 7Bh(2f/1105h)
dFunc7C 7Ch(2f/1106h)
dFunc7E 7Eh(2f/1108h), 7Fh(2f/1109h)
dFunc82 82h(2f/110Ch)
dFunc83 83h(2f/110Dh), 84h(2f/110Eh)
dFunc85 85h(2f/110Fh), 86h(2f/1110h)
dFunc87 ‘ 87h(2f/1111h), 88h(2f/1112h)
dFunc89 89h(2f/1113h), 8Ah(2f/1114h)
dFunc8B
dFunc8F 8Fh(2f/1119h), 90h(2fh/111Ah), 91h(2f/111Bh), 92h(2f/
111Ch)
dProcExit 93h(2f/111Dh)
dFuncsSF 94h(2fh/111eh)
dFunc5E 95h(2f/111fh)
dSeek 97h(2f/1121h)
dNetFunc A6(2f/1180h), A7(2f/1181h), A8(2f/1182h), AAh(1184h),
B1(2f/118Bh), B2(2f/118Ch), B3(2f/118Dh), B4(2f/118Eh)
. dFuncB8 B8h(2{/1131h)
dFuncBE BEh, BFh, COh, C1h, C2h, C3h, C4h, C5h, C6h
dFuncC9 C%h
dFuncCC CCh
dFuncCD CDh
dFuncCF CFh
Table 6-5. Dispatch Functions DOb-EAb
Name Function Number(s)
dFuncCF DOh
dFuncD1 Di1h

110 Chapter 6: Dispatching File System Requests

Table 6-5. Dispatch Functions DOb-EAb (continued)

Name) Function Number(s)
dCritErr D2h (2f/05)
dFuncD3 D3h

dFuncA6 D4h
dRO_OpenCreate D5h
dRO_ReadWrite D6h

dRO_Close D7h
dRO_FileSize D8h
dGetVolInfo DBh (21/71A0h)
dFindClose DCh (21/71A1h)
dAbsReadWrite DDh (25h), DEh (26h)
dFuncDF DFh

dFcnFirst EOh (21/71A3h)
dFcnNext Elh (21/71A4h)
dFcnClose v E2h (21/71A5h)
dGetByHandlelnfo E3h (21/71A6h)
dConvertTime E4h (21/71A7h)
dGenShortName E5h (21/71A8h)
dOpenCreate E6h (21/71A9h)
dSubst E7h (21/71Aah)
dSetDPB (OSR2) E8h (21/7304h)
dSetDPBAllocInfo (OSR2) | ESh (21/7305h)
dFuncEA (OSR2) Eah

Example 6-1. ‘Defaull Dispatch Function

nov ecx,dword ptr [edi].ifs_func

mov eax,dword ptr [edi].ifs_crs.Client_EAX
movzx edx,word ptr [edi].ifs_crs.Client_CS
nov ebx,dword ptr [edi].ifs_crs.Client_EIP
int 3

mnov word ptr [edi].ir_error,0001

retn

To get a feel for how a dispatcher function is implemented, we’ll take a look at
the pseudocode for dGetVollnfo, one of the shorter functions (see Example 6-2).
The Programmer’s Guide to Microsoft Windows 95 describes the input and output
parameters for this function in the section “Interrupt 21h Function 71A0h Get
Volume Information.” There is essentially one input, the root path of the volume
for which information is requested. This string takes the form “C:\”. Upon arrival
at dGetVollnfo, the pointer to the rootname, which was originally in DS:DX or

Dispatch Functions 111

Example 6-2. Pseudocode for dGetVollnfo

void dGetVolInfo(ifsreqg* pifs) {
int retc;

retc = _PathToShRes(pifs, 0);
if ('retc) {
if (pifs->ifs_drv == 2 && // drive B
(DriveAttribs[1l] & 0x08) && // single drive system
! (DriveAttribs[1l] & 0x80) &&

pifs->ifs_VMHandle == hvmSystem) {
pifs->ifs_ir.ir_error = ERROR_INVALID_DRIVE;
return;

}
pifs->ifs_ir.ir_options = 2; // Level 2 Request

if (pifs->ifs_nflags & 0x04) // Win32 call
pifs->ifs_ir.ir_data = pifs->ifs_crs.Client_EDI;

else // convert Client_ES : Client_DI to linear address
pifs->ifs_ir.ir_data = MapFlat_Seg Ofs(0x3800);

pifs->ifs_ir.ir_length = pifs->ifs_crs.Client_CX;//size of name buffer
pifs->ifs_ir.ir_pos = 0;

if (! Ccall_FSD(pifs->ifs_psr->sr_func->vfn_func[VFN_QUERY],
IFSFN_QUERY, pifs, FALSE)) {

pifs->ifs_crs.Client_BX = pifs->ifs_ir.ir_options; // FS flags
pifs->ifs_crs.Client_AX = pifs->ifs_ir.ir_pos; // cache block size

if (HookerFlags & 0x01) { //OVERRIDE flag (see Ch.5)
pifs->ifs_crs.Client_CX = 0x000c; // Max fn len
pifs->ifs_crs.Client_BX = 0x8000; // File system flags
pifs->ifs_crs.Client_DX = 0x0050; // Max path len
}

else { // use values returned by FSD for volume
pifs->ifs_crs.Client_CX = pifs->ifs_ir.ir length; // Max fn len
pifs->ifs_crs.Client DX = (pifs->ifs_ir.ir_length >> 16);
}

}

return;

}

if (retc == OxffffffcO) {

if (IsPhysicalDrive(pifs->ifs_drv)) {

. pifs->ifs_crs.Client_CX 0x000c; // Max fn len
pifs->ifs_crs.Client_BX = 0x8000; // FS flags
pifs->ifs_crs.Client_DX = 0x0050; // Max path len
pifs->ifs_ir.ir_error = 0;

}
else pifs->ifs_ir.ir_error = ERROR_INVALID_DRIVE;
}

112 : ~ Chapter G: Dispatching File System Requests

EDX, is now stored in the ifsreq member ir_data. Other members of ifsreq -
are filled in as outlined in Table 6-1.

The dispatcher function wants to pass the request to a file system driver, specifi-
cally the driver’s FS_QueryResourcelnfo routine which is designed to return its
“Volume Information.” To do this, it has to find which FSD handles the requested
volume. The call to _PathToShRes (my name) achieves this by processing the
ifsreq packet. It relies upon the service IFSMgr_ParsePath to convert the path in
member ir_data into a ParsedPath with a pointer to it left in ir_ppath (and ifs_
pbuffer) on return. This service also fills in #_uFName (ir_aux2), ir_upath (ir_
aux3), and, most importantly, ifs_psr. This last member is important because a
ParsedPath only contains the path components and not the drive letter. The ifs_
psr member is a pointer to an [FSMgr shell resource, it describes the volume to
which the ParsedPath refers. When IFSMgr_ParsePath returns, _PathToShRes
does some additional processing and also fills in the ir_rb member. This is a
resource handle for the volume; a handle which the FSD returned when the
volume was initially mounted.

Once the ifsreq packet is primed with this information, we know how to call
the FSD. Before doing so, there are few more parameters which need to be set
up: ir_options is set to 2 for a level 2 request, i7_data is now pointed at the buffer
which will hold the file system name on return, ir_length contains the length of
this buffer, and ir_pos is set to 0. The ifsreq structure is now ready for a FS_
QueryResourcelnfo call (for a description of the calling parameters see the DDK’s
IFS Specification).

This brings us to the Call_FSD function. The first argument to this function is
key—it is the address of the FSD function to be called. How does it know which
FSD and which function? By using #fs_psr. This pointer to the shell resource gives
us access to a function “exported” by the FSD. The shell resource’s member s7._
JSunc is a pointer to a volfunc structure, which is an array of all of the volume-
based entry points in the FSD. This structure is defined in ifs.h along with mani-
fest constants for each function. In our case, we need VFN_QUERY, which
corresponds to FS_QueryResourcelnfo. The pir argument to Call_ FSD will be
passed as an argument on the call to the FSD function.

The FSD’s FS_QueryResourcelnfo function will retrieve various bits of volume
information and store them in the designated locations of the ifsreq structure.
So on return, we see ir_options, ir_pos, and ir_length being accessed to transfer
the results back to registers. At this level, we are supporting an Int 21h function,
so the return values are placed into the BX, CX, and DX registers. This is where
having the saved copy of the client register structure included in the ifsreq struc-
ture is very convenient. It is this image of the client registers which will be

Shell Resources and the FSD’s Volume-Based Function Table 113

restored before the Int 21h request ultimately returns. By changing this image we
are assured that the caller will see the returned values.

From this example we have seen that volume-based FSD functions are found in a
shell resource structure for a given local or remote drive. There are also handle-
based FSD functions which are found in the fhandle structure corresponding to
the file’s SEN. So, just as the ifsreq member ifs_psr is required for volume-based
FSD function calls, ifs_pfh is required for handle-based FSD function calls.
Detailed descriptions of fhandle structures and shell resource are given in
Appendix C. In the next two sections we will examine these key file system struc-
tures in more detail.

Shell Resources and the FSD’s
Volume-Based Function Table

IFSMgr maintains several data structures that relate to the mounted volumes in the
system, whether these are local or remote volumes. At the base of the chain of
structures is the system volume table, SysVolTable[], which is an array of
pointers to volinfo structures (see Appendix C for volinfo’s typedef).
SysVolTable can hold up to 32 entries and is indexed by a zero-based drive
number. The volinfo structure contains several members, the most important of
which is the very first entry, a pointer to the volume’s shell resource structure,
shres (see Figure 6-2). SysVolTable and volinfo structures are kept pretty
well hidden, since they are not exposed through any services and they are not
cross referenced by other data structures. The shell resource, however, is included
as an undocumented member of the ifsreq packet. For most dispatch table func-
tions, the shell resource is resolved and inserted into the ifsreq structure prior
to dispatching the function.

Descriptions of the members of the shell resource are given in Appendix C. For
our purposes now, we are interested in the sr_func->vfn_func and sr_rb entries.
When a file system driver registers with IFSMgr during the Device Init stage, the
address of the FS_MountVolume function provided by the FSD is supplied. When
the first access is made to this volume, the FS_MountVolume function is called to
mount the volume. This establishes its table of volume-based functions and the
FSD returns a unique handle, sr_rh, which is then passed to the FSD on future
calls. This handle is not interpreted by IFSMgr, so the FSD is free to use the
address of a data structure or any other unique value to identify a volume.

The contents of the FSD’s volume-based function table is shown in Table 6-6. At
the head of the table, version and revision are given first, followed by the table
size, and then the actual function entries (this structure is defined in #fs.h). The

114 Chapter 6: Dispatching File System Requests

SysVolTable

Figure 6-2. Volume-related data structures

corresponding FS_ function name for each table entry is also shown. These are
the functions which are described in the IFS Specification.

Table 6-6. Volume-Based Function Table

Table Entry Value

vfn_version IFS version (030Ah)
vfn_revision IFS interface revision (10h)
vfn_size 15
yfn_func/VFN_DELETE] FS_DeleteFile
vfn_func/VEN_DIR] _ FS_Dir
vfn_func/VFEN_FILEATTRIB] FS_FileAttributes
ufn_jfunc/VFN_FLUSH] : . FS_FlushVolume
vfn_func/VFN_GETDISKINFO/ FS_GetDiskInfo
vfn_func/VEN_OPEN] FS_OpenfFile
vfn_func/VEN_RENAME] FS_RenameFile
vfn_jfunc/VFN_SEARCH] FS_SearchFile
vfn_func[VEN_QUERY] FS_QueryResourcelnfo
vfn_func/VEN_DISCONNECT] FS_DisconnectResource
vfn_func[VEN_UNCPIPEREQ] FS_NamedPipeUNCRequest
vfn_func/VFEN_IOCTL16DRIVE] FS_Joctl16Drive
vfn_func/VEN_GETDISKPARMS] FS_GetDiskParms
vfn_func/[VEN_FINDOPEN] FS_FindFirstFile
vfn_func/[VEN_DASDIO/ FS_DirectDiskIO

Jfhandle Structures and the FSD’s Handle-Based Function Table 115

IFSMgr calls an internal function during Device Init to construct the
SysVolTable, its volinfo members, and the shell resource structures. These
initial structures are based upon IRS_drv_get calls to IOS_Requestor_Service over
the range of drives ending with the DOS last drive. The DOS current directory
structures (CDS) are copied into the volinfo structure for each drive.

Jhandle Structures and the FSD’s
Handle-Based Function Table

IFSMgr maintains several data structures for tracking open files, shown in Figure
6-3. SFNs, or system file numbers, are used to reference each file. SFNs are split
into two groups: those numbering 0 through FFh, which refer to DOS file handles
backed by a VM specific SFT entry, and extended file handles, which are
numbered 200h and above and which are allocated at a global scope—global in
the sense that a single table is shared by all VMs.

Figure 6-3. File-related data structures

Several data structures are used to represent a system file number. Initially a
single SFNBucket is allocated; it is a pointer that references a block of storage
able to hold 256 files. As more handles are required, additional SFNBuckets are
allocated by IFSMgr. The maximum number of SFNBuckets that can be accomo-
dated is 254, so the file system has a capacity for 65024 files.

Each block of memory referenced by a SFNBucket contains 256 8-byte structures.
The first member of the structure is the owner’s process ID (pid, in Figure 6-3)
and the second member is a pointer to a fhandle structure (pfb, in Figure 6-3). A
ring-0 file handle, such as that used by the IFSMgr_Ring0_FileIO service, is the
address of a fhandle structure. The service IFSMgr_Win32_Get_Ring0_Handle is
used to convert an extended file handle to a ring-0 handle, i.e., given an SFN it
returns the address of its fhandle structure.

116 Chapter 6: Dispatching File System Requests

Descriptions of the members of the fhandle structure are given in Appendix C.
The first four members of fhandle are provided by the FSD. When a file is opened
on a volume, the volume’s FSD returns three pointers: a pointer to a read func-
tion, fh_hfhf read; a pointer to a write function, fh_hfhf write; and a pointer to
the table of other handle-based functions, fh_hfhf misc. The FSD also returns a
unique handle, fb_fb, which is then passed to the FSD on future calls for this file.
As with its shell resource counterpart, fb_fb is not interpreted by IFSMgr; it is
simply treated as a “magic cookie.”

The contents of the FSD’s handle-based function table is shown in Table 6-7. At
the head of the table, version and revision are given first, followed by the table
size and then the actual function entries (this structure is defined in ifs.h). The
corresponding FS_ function name for each table entry is also shown. Note that the
functions FS_ReadFile and FS_WriteFile correspond to the members bf read and
bf_write and are not included in the table pointed to by fh_hf.hf misc.

Table 6-7. Handle-Based Function Table

Table Entry Value

bm_version “IFS version (030Ah)
bm_revision IFS interface revision (10h)
bm_size 8
bm_func/HM_SEEK] FS_FileSeek
bm_jfunc[HM_CLOSE] FS_CloseFile
bm_func[HM_COMMIT] FS_CommitFile
bm_func[HM_FILELOCKS] FS_LockFile
bm_func(HM_FILETIMES] » FS_FileDateTime
bm_func/HM_PIPEREQUEST/ FS_NamedPipeRequest
bm_jfunc/HM_HANDLEINFO] FS_NetHandlelnfo
bm_jfunc[HM_ENUMHANDLE] FS_EnumerateHandle

The FSD function FS_FindFirstFile is similar to a file open (FS_OpenFile). It
returns addresses of hf read, hf write, and hf_misc members but their contents
are different. In this case, hf_read contains the address of a FS_FindNextFile func-
tion, and hf write is not defined, so it is set to an error function. Most of the
entries in the table hf misc are filled with the address of an error function, the
two exceptions being HM_CLOSE, which contains the address of an FS_FindClose
- function, and HM_ENUMHANDLE, which contains a pointer to a FS_Enumerate-
Handle function.

Calling into a File System Driver 117

Calling into a File Sys'tem Driver

Now that we know about these FSD function tables, we can re-examine the use
of Call_FSD in dGetVollnfo. Here is the call into Call_ FSD as it appears in
assembly language:

push 00

push esi

push +27

mov eax,dword ptr [esi+7c]
mov eax,dword ptr [eax+0c]
push dword ptr [eax+24]
call Call_FSD

add esp, +10

ESI is a pointer to an ifsreq packet, pifs, and [ESI+7c] references its member ifs_
psr, the shell resource. EAX is assigned the address of the shres structure, so
[EAX+0c] references its member, s7._func, the volfunc structure. Finally, the func-
tion at offset 24h in the structure is pushed on the stack as an argument. This
corresponds to sr_func->yfin_ func/VFN_QUERY]. In C the function call would
look like this:

Call_FSD(pifs->ifs_psr->sr_func->vfn_func [VFN_QUERY],
IFSFN_QUERY, pifs, FALSE);
The constant IFSFN_QUERY is part of an enumeration of FSD functions that
IFSMgr uses. These are defined in ifs.h.

The volume-based call was straightforward. Now let’s take a look at a handle- -
based call from the dispatch handler: dByHandleInfo. Here is the call into Call_
FSD as it appears in assembly language:

push 00

push esi

push +11

mov eax,dword ptr [esi+74]
mov eax,dword ptr [eax+08]
push dword ptr [eax+20]
call Call_FSD

add esp, +10

ESI is a pointer to an ioreq packet, pifs, and [ESI+74] references its member ifs_
pfb, the fhandle structure. EAX is assigned the address of the fhandle structure,
so [EAX+08] references its member, fb_hf->hf misc, the handle-based function
table. Finally, the function at offset 20h in Af misc is pushed on the stack as an
argument. This corresponds to fb_bf->bf misc.hm_ func[HM_ENUMHANDLE]. In C
the function call would look like this:

Call_FSD(pifs->ifs_pfh->fh_hf->hf_ misc.hm func[HM_ENUMHANDLE],
IFSFN_ENUMHANDLE, pifs, FALSE);

118 Chapter 6: Dispatching File System Requests

From these two examples, we see that the first argument to Call_FSD is the
address of either a volume-based or handle-based FSD function. The other argu-
ments include a constant which identifies the FSD function, a pointer to the
ifsreq packet, and a Boolean. To gain some further insight into this function,
take a look at its pseudocode in Example 6-3.

Call_FSD is just a wrapper around the call to the FSD function which is passed as
the first argument. Call_FSD decides whether or not to call a file system API hook
rather than making a direct call to the FSD. The Boolean argument bHookLock
plays a role in making this decision. If bHookLock is FALSE, which is the most
common situation, the file system API hook will not be called if the volume refer-
enced by the ifsreq packet has a lock on it.

Example 6-3. Pseudocode for Call_FSD

#define ALLRES (IFSFH_RES_UNC|IFSFH_RES_NETWORK |
IFSFH_RES_LOCAL | IFSFH_RES_CFSD)

int Call_FSD(pIFSFunc FSDFnAdr,int Func,ifsreq* pifs,BOOL bHookLock) {
fhandle* pfh = pifs->ifs_pfh;
shres* psr = pifs->ifs_psr;
DWORD flags, drive, retc;
BOOL bCallHook = bHookLock;

if (bHookLock) // decide if hook will be called
if (!psr->sr_LockType) bCallHook = FALSE;
else if (!psr->sr_LockType))
bCallHook = TRUE;

// If a file system API hook has been installed ...
if (pFSHook != NULL && bCallHook) {
if (Func==IFSFN_CLOSE || Func==IFSFN_READ) {
if (pfh->fh_type & 0x0c) {
if (Func==IFSFN_CLOSE) Func=IFSFN_FINDCLOSE;
else Func=IFSFN_FINDNEXT;
if (pfh->fh_type & 0x08) {
if (Func==IFSFN_CLOSE) Func=IFSFN_FCNCLOSE;
else Func=IFSFN_FCNNEXT;
}
}
}
flags = psr->sr_flags;
if (flags & IFSFH_RES_NETWORK) {
if (Func <= IFSFN_ENUMHANDLE) drive =0xffffffff;
else drive = pifs-s3ifs_drv;
}

else drive = psr->sr_uword + 1;

if (Func == IFSFN_CONNECT && D1_6844)
drive = pifs->ifs_drv + 1;

-asm 1inc cntHookCalls

Calling into a File System Driver 119

Example 6-3. Pseudocode for Call_FSD (continued)

retc = (*pFSHook) (FSDFnAdr, Func, drive,
flags & ALLRES,
pifs->ifs_nflags & (BCS_WANSI|BCS_OEM),
pifs);

_asm dec cntHookCalls

asm cmp claimHookerList,0

_asm jz not_claimed
asm cmp cntHookCalls, O

asm jnz not_claimed

asm mov claimHookerList,0

IFSMgr_WakeUp(&claimHookerList);
not_claimed:
return retc;

}

// No hook call - call direct to FSD
return (*FSDFnAdr) (pifs);
}

If it is decided that the file system hook will be called, then some additional work
is needed to prepare the arguments to the hook function. Here is a prototype for
this function:

int FileSystemApiHookFunction(pIFSFunc FSDFnAddr, int FunctionNum,

int Drive, int ResourceFlags,

int CodePage, pioreq pir); »
The first argument is simply the address of the FSD function to be called. The
second argument is the function number being called. This is the same as the
second argument to Call_FSD and would be IFSFEN_QUERY or I[FSFN_ENUM-
HANDILE in the examples shown above. There are some special cases, however. If
the second argument to Call_FSD is either IFSFN_CLOSE or IFSFN_READ, these
may need to be translated. For IFSFN_CLOSE, IFSFN_FINDCLOSE or IFSFN_
FCNCLOSE may be substituted if the fhandle indicates it refers to a find or file
change handle. Similarly, IFSFN_READ may be replaced with IFSFN_FINDNEXT or
IFSFN_FCNNEXT, if appropriate.

The drive argument for a local drive is derived from the s7_uword member of the
shell resource. This is a zero-based drive number so one is added to it. If the
drive is remote, the drive is set to -1 for functions less than IFSFN_
ENUMHANDLE, otherwise the drive number in the ifsreq packet is used. The
ResourceFlags argument is the value of the s7_flags member of the shell resource
ANDed with the mask ALLRES. The CodePage is determined by the corresponding
bits in the ifsreq member ifs_nflags.

Before each call into the file system hook, the global variable cntHookCalls is
incremented; when the file system hook returns, this count is decremented. If this

120 . Chapter 6: Dispatching File System Requests

variable is zero, there are no calls executing or blocked which were initiated from
the file system hook chain. A related global variable, claimHookerList, is a
syncronization primitive used to control access to the list of installed file system
hooks. When either IFSMgr_InstallFileSystemApiHook or IFSMgr_RemoveFileSys-
temApiHook attempt to modify the hook list, the critical section around the hook
list needs to be claimed. If cntHookCalls is non-zero, then these services block
until all pending hook calls complete. Threads are blocked waiting for this critical
section when claimHookerList is non-zero. The blocked threads are awakened by
the call IFSMgr_WakeUp(&claimHookerList), once cntHookCalls drops to zero.

FSDs as Providers

The idea of a “provider” stems from the WOSA (Windows Open System Architec-
ture) concept of a SP and SPI, a service provider and service provider interface.
IFSMgr and its file system drivers are part of the WOSA-SPI layer, and thus are
considered service providers. During the Device Init stage of system initialization,
each FSD registers with IFSMgr using one of the registration services and thereby
establishes its provider ID. There are four types of providers that an FSD can
supply and these have distinct registration functions: IFSMgr_RegisterMount for
local drives, IFSMgr_RegisterNet for remote drives, IFSMgr_RegisterCFSD for char-
acter devices, and IFSMgr_RegisterMailSlot for mailslots. Each of these registration
functions returns a provider ID on success.

[FSMgr_RegisterMount allows up to ten providers to register with it. A FSD
supplies its type when it registers, either NORMAL_FSD or DEFAULT_FSD. Only
one ‘FSD is allowed to register with type DEFAULT_FSD; this FSD is used to
mount a drive if all other FSDs refuse to mount it. The provider IDs which IFSMgr._
RegisterMount returns are in the range 0 through 9, with 0 reserved for a
DEFAULT_FSD. On each call to IFSMgr_RegisterMount, the supplied FSD function
address is added to a table (MountVolTable[]). Later, when a local disk volume
is mounted, this table will be consulted to.find a potential FS_MountVolume
function.

[FSMgr_RegisterNet allows up to eight providers to register with it. A FSD
supplies its Net ID when it registers. The provider IDs which IFSMgr_RegisterNet
returns are in the range 0Ah through 11h. On each call to IFSMgr_RegisterNet, the
supplied FSD function address is added to a table (ConnectNetTable[]) and the
supplied Net ID is also added to another parallel table (NetIDs[]). Later, when a
connection is attempted, the ConnectNetTable table will be consulted to find a
potential FS_ConnectNetResource function.

Enumerating Shell Resources and fbandles 121

Enumerating Shell Resources
and fhandles

To make it easy to examine the system shell resources and fhandles, a couple of
windows utilities are included on the companion diskette. sr.exe displays shell
resource structures for all drives reported by a call to the Win32 API GetLogicalD-
rives. Figure 6-4 displays some sample output.

cl021e74 00000000 cOO1fded (VFAT(01) + 00000F54) 00000088 00000002
cOfd4ddc c1038950 c001fde8 [VFAT(01) + DOOOOF54) 0000001a 00000002 |
1038350 c1021e74 c001fde8 (VFAT(01) + D0000F54) 0000000c 00000002
c1074718 c105d094 cO01fdeB [VFAT(01) + 00000F54) 00000002 00000002
c10cdbed c1074718 c0fd7554 (CDFS(01) + 00000944) 00000004 00000001
c107f1d4 00000000 c00379d0 (VREDIR(01) + 00004818) 00000004 00000002

Figure 6-4. SR sample output

Each column in Figure 6-4 corresponds to a member of the shres structure (see
Appendix C for details) with the exception of the Drive and Sr Address columns
which contain the drive letter and the address of each line’s shres structure,
respectively. The shell resource structures are arranged in a singly linked list; the
links are shown in the sr_next column. The lists for local drives and remote drives
are kept separately. The sr_jfunc column contains the address of this drive’s
volume-based function table. The address is decomposed into the FSD’s name,
segment, and address, The system that this output was produced on has a floppy
drive A which has not had a floppy inserted since system startup. Until it sees
some media inserted, the default FSD is used: VDEF. The other local drives all use
VFAT except for a CD-ROM which is using the CDFS driver. A connection to
\\SERVER\SERVER _C is mapped to drive K and it is represented by the MSNet
redirector VREDIR. Note that each of these FSDs has a unique provider ID given
in the s»_Proid column.

If you run ScanDisk on a volume and at the same time capture output from
sr.exe, you will see results like those in Figure 6-5. You may refresh the SR
display while the ScanDisk operation proceeds, by selecting Refresh from the
Operations menu. In this case, ScanDisk is being executed on drive D. The s7_
LockType column shows the type of volume lock currently active, with 0 corre-
sponding to none, 1 to a level 0, 2 to a level 1, 3 to a level 2, etc. It is interesting
that the s7_func column now indicates that IFSMgr owns the volume function
table for this drive; the original function table address is stored in sr_LockSav-
Func. This reflects the fact that IFSMgr takes over the function tables for drives
that are volume locked.

122 Chapter 6: Dispatching File System Requests

001fde (VFAT(01) + 00000F54) 00000000 00000000
001 eBec (IFSMGR(01) + D00DBADS) 0001213 cO01fded

- c001fded [VFAT(01) + 00000F54) 0004 00000000 000ODOOD
c001fde8 (VFAT(01) + 000D0F54) 0005 00000000 DOOOO0OO
cOfd7554 (COFS[01] + 00000944) 0006 00000000 00000000
c00379d0 (VREDIR(01) + 00004818) 0000 00000000 00000000

Figure 6-5. SR output with volume lock

To retrieve the shell resource, sr.exe relies upon a dynamically-loaded VXD,
volsr.uxd. 'This virtual driver supports a DeviceloControl interface. A shell
resource structure is requested from VOLSR by supplying it with a drive number
and a buffer in which to copy the structure. VOLSR retrieves the shres by
installing a file system hook and the calling IFSMgr_Ring0_FileIO to get the drive’s
the root directory attributes. When the FS_FileAttributes call is detected at the
hook, the shres structure passed in via ifS_psr member of the ifsreq structure is
copied. When the IFSMgr_Ring0_FileIO call completes, the file system hook is
removed and the results are returned to SR.

Another windows utility, fb.exe, displays fhandle structures for currently open
files on a specified volume. Each column in Figure 6-6 corresponds to a member
of the fhandle structure (see Appendix C for details) with the exception of the
$fn, Pathname, and pfh columns which contain the system file number, the associ-
ated pathname, and _the address of each line’s fhandle structure, respectively.
You may select a different drive or refresh the FH display by selecting the corre-
sponding option from the Operations menu.

AWINDOWSASYSTEMAUSER EXE c105(c78 cl061bec c105fb60 0001181d
AWINDOWSA\FONTSAVGAOEM.FON c105fb60 c105fc78 c105fa48 0001181d
\WINDOWSA\FONTSAVGAFIX.FON c105fa48 c105b60 c105f930 0001181d
AWINDOWSA\FONTSWGASYS.FON c106f930 c105fa48 c105f614 0001181d
AWINDOWSASYSTEM\ADVAPIS2. DLL c105(614 c105f30 c105t4tc 0001166d
AWINDOWSASYSTEMAGDI32.DLL c105t4fc cl05f614 c105f3d4 0001166d
AWINDOWSASYSTEMAGDILEXE c105f3d4 c105f4fc c105f2be 0001181d
\WINDOWSASYSTEMACOMM DRV c105f2bc c105f3d4 c105fa4 0001181d
\WINDOWSASYSTEM\MMSDOUND.DRY c105 a4 c105f2bc ~ c105f08c 0001181d
AWINDOWSASYSTEMADIBENG.DLL c105f08¢c c105fla4 c105ef74 0001181d
WINDOWSASYSTEMADMSSTL3D.DRY c105ef74 cl05f08c c105eeSc 0001181d
\WINDOWSASYSTEMAMOUSE DRV - c105ee5c c105ef74 cOid04dc 0001181d
\WINDOWSASYSTEMAKEYBOARD.DRV cOfd04de) cl05eeSc cOide538 0001181d
AWINDOWSASYSTEMASYSTEM.DRY c0fde538 c0fd04de cOfd00cO 0001181d
\WINDOWSASYSTEMAUNICODE.NLS c0fd00c0 c0fde538 c1038¢c10 0001181d
AWINDOWSASYSTEMALOCALE.NLS c1033¢10 0042 c0fd00c0 c103%ac4 0001181d
AWINDOWSASYSTEMACP_437.NLS c103%ac4 0042 c1038c10 c1039188 0001181d
\WINDOWSASYSTEMACP_1252.NLS c1039188 0042 . c103%ac4 cOid57d4 0001181d
\WINDOWSASYSTEMAKERNEL32.DLL c0fd57d4 0042 <1039188 00000000 0001181d

Figure 6-6. Sample FH Output

Enumerating Shell Resources and fbandles 123

The first few entries of the list of files open on a system drive (drive C) are shown
in Figure 6-6. The numbers in the sfn column appear to have gaps in the
sequence. In some cases this is because the file was opened as a memory-
mapped file. A memory-mapped has two handles refer to it, the initial fhandle
used to open it (fb_sfn) and a duplicate handle used for the memory-mapping (f/_
mmsfn).

To retrieve a list of open files on a volume, fb.exe relies upon a dynamically
loaded VXD, filefb.vxd. This virtual driver supports a DeviceloControl interface. A
list of open files is requested of FILEFH by supplying it with volume number and
a buffer in which to copy the fhandle structures and associated file names.
FILEFH creates the list by first installing a file system hook and then requesting a
level 1 volume lock on the specified volume. One of the activities associated with
acquiring a level 1 lock is to build a list of open files on the volume. To do this,
the volume locking function (interrupt 21h, function 440dh, subfunction 084ah)
calls FS_EnumerateHandle repeatedly to get the names of all the open handles
associated with the volume. As each FS_EnumerateHandle call comes in, the ifs_
pfb and ir_sfn members of the ifsreq structure are copied. After the FS_Enumer-

ateHandle call completes, the filename is also copied. When the volume lock
function completes, the volume is immediately unlocked and the file system hook
is removed. One advantage of using a volume lock to get the file list is that it
creates a snapshot at one instant in time.

Monitoring File
Activity

IFSMgr provides at least three methods for hooking file system notifications. The
most general technique is to install a file system API hook. This method allows an
application to see much of the ifsreq packet traffic that passes through to file
system drivers. This method can also change the way a request is handled, and so
can serve to override the behavior of a FSD. Another source of notifications can
be tapped by installing a hook (using Hook_Device_Service) on the service
IFSMgr_NetFunction. IFSMgr makes various internal broadcasts through this func-
tion, such as when a drive appears in a system or when a drive goes away. This
service is also called when a “hooked” Int 21h function is called. Here, the term
“hooked” means that a preamble has been installed for an Int 21h function which
is greater than 71h. Some Int 2fh functions also generate events here. Yet another
source of notifications can be received by way of IFSMgr_ParsePath (or IFSMgr_
FSDParsePath) to allow a FSD installed path checking routine to get a first crack at
parsing a path. This path checking routine is installed with the service IFSMgr_
SetPathHook.

The File System API Hook

One of the most popular IFS features is the file system hook. This hook provides
functionality similar to an Int 21h hook under DOS and Windows 3.x. Unlike its
DOS/Windows 3.x counterpart, there are a variety of APIs (besides Int 21h) that
ultimately pass through a file system hook. The hook gets called whenever the
dispatch handler for a particular function calls into a file system driver via Call_
FSD. Unlike the Int 21h hook, the file system hook will only see file-related calls
so it is not appropriate for every need.

A file system API hook is installed using the IFSMgr service IFSMgr_InstallFileSys-
temApiHook. Once it is installed, it is not permanent, it can be removed using the

124

The File System API Hook ' 125

companion service IFSMgr_RemoveFileSystemApiHook. This makes it easy for a
dynamic VxD to install and remove a file system hook as an adjunct to a Win32
application. However, we will find it useful to install a file system hook during
Device Init so we can track events during system startup.

Under what conditions is the file system hook called? Generally, any file system
request, either local or remote, will pass through the installed hook function. The
hook will also see activity on any character FSDs, such as LPTn and PRN of
spooler.vxd and PIPESTDX of vcond.vxd. IFSMgr_RingOFileIO and IFSMgr_Server-
DOSCall services are also routed through the file system hook.

Having said that, you should be aware of some exceptions. IFSMgr does not
always use Call_FSD as the gateway into file system drivers. For instance, there
are circumstances where FS_MountVolume is called directly using the addresses in
MountVolTable[]. Similarly, FS_ConnectNetResource sometimes is called
directly through ConnectNetTable[].

Even if Call_ FSD is used, recall that one argument to that function controls
whether a file hook will be called when a volume lock is taken. So, if a volume
lock is in place you won't see the FSD calls on that volume. Another peculiarity
occurs with the functions that support file change notifications. The FindFirstFile-
ChangeNotification call does not go through the file system hook although the
FindNextChangeNotification and FindCloseChangeNotification = functions do.

- Although, some “change” notification functions do go through the file system
hook, they do not get serviced by a file system driver; rather they are routed back
into IFSMgr.

A file system hook has this interface:

int FileSystemApiHookFunction(pIFSFunc FSDFnAddr,
int FunctionNum, int Drive,
int ResourceFlags, int CodePage,
pioreq pir)

We saw this function called in the routine Call_FSD in the previous chapter.

The first argument, FSDFnAddr, is simply the address of the function to call in the
FSD. It corresponds to one of the addresses in the volume-based or handle-based
tables (see Table 6-6 and Table 6-7). Most commonly this address resides in
another VxD, although there are cases where this address will reside in IFSMgr
(the change notification functions and the mailslot functions).

The value of the FunctionNum argument tells us which FSD function is being
called. There is a mapping between the set of FunctionNum values and the
entries in the FSD’s volume-based and handle-based function tables. Table 7-1, -
later in the chapter, shows this relationship. There are two exceptions to this rule:
IFSFN_FCNNEXT and IFSFN_FCNCLOSE do not have FSD functions corresponding

126 Chapter 7: Monitoring File Activity

to them. This is because the support for file change notifications is done entirely
within IFSMgr without the - participation of FSDs. Still, these functions are sent
down the file system hook before being processed by IFSMgr, and IFSMgr has an
internal handle-based function table which is referenced by the fhandle structure
which FindFirstChangeNotification creates. FindFirstChangeNotification is not sent
down to the file system hook, so there is no FunctionNum corresponding to it."

The third argument, Drive, is the 1-based volume number to which the function
refers. If the volume resource is a UNC name, this argument has the value -1.
There are situations where Drive can have the value 0. This may happen when
the target resource is a character FSD. In general, you can think of Drive as corre-
sponding to ir_rh, the resource handle, and ifs_psr, the address of the shell
resource structure.

The fourth argument, ResourceFlags, is a collection of four bits extracted from the
shell resource that indicate whether the resource is a character FSD, whether it is
local, whether it is remote, and whether it is represented by a UNC name.

The CodePage argument indicates which of the ANSI or OEM code page character
sets should be used with the function. The corresponding manifest constants are
BCS_WANSI and BCS_OEM.

The last argument, pir, is a pointer to the ioreq or ifsreq structure. This is the
only argument passed to the FSD. The other arguments here are provided as a
convenience to the file hook.

So what can a file system hook do when it gets called? Here is what Microsoft
says, in DOS/Win32 Installable File System Specification, p. 70: '

The hooker gets control before the FSD is called to perform the function and it
can do anything it wants. Hookers can do one of four things when they get called
on a hooked call:

— Ignore the call and chain on to the previous hooker in the hook chain.

— Process the call and return directly to the IFS manager..

— Change the call or make multiple calls to the FSD directly, and then return to the
IFS manager.

— It can call down the chain and do some processing on the way back.

Basically, the hooker has complete control over how it wants to process the call.

From this description it would appear that anything is possible in a hook func-
tion. The documentation does not elaborate on how to go about making “multiple
calls to the FSD directly.” It does hint that:

The preferred method for hookers to perform other functions while on a hooked
call is to use the ring-0 APIs. It is usually quite safe to issue a ring-0 API call while
on a file system API hook; the IFS manager is re-entrant.

The File System API Hook 127

These statements bear a closer examination. Re-entrancy comes into play in at
least four possible ways:

e A thread executing a dispatch routine is blocked waiting for results. ‘While it
is blocked other threads may continue to execute within the dispatch routines.

e A thread may deliberately re-enter the dispatch point by calling a ring-0 API
such as IFSMgr_Ring0_FileIO or IFSMgr_ServerDOSCall from a file system API
hook.

e While executing a dispatch function, a page fault occurs as part of normal sys-
tem paging activity; the file system may be re-entered to read-in or write-out

pages.
e If a thread is executing in a dispatch routine and a thread switch occurs
which causes the newly scheduled thread to also execute a dispatch routine.

By “ring-0 API call” one would have to consider that both IFSMgr_Ring0_FileIO
and IFSMgr_ServerDOSCall are fair game. An equally attractive alternative is to
perform a direct call into the FSD without performing re-entrant calls to the
dispatch point. This requires that we use our knowledge of undocumented fields
in the ifsreq structure, namely ifs_psr and ifs_pfb, to access the volume-based
~and handle-based function tables. It is clear that this is what is implied in the state-
ment “make multiple calls to the FSD directly.” We'll work through a few
examples to give you a feel for these different approaches.

FSHook

FSHook is a file system API hook that reports all FSD calls to MultiMon for
display. Its predecessor, FILEMON, was the basis for an article on monitoring file
system activity in Windows 95 that appeared in what was then called Windows/
DOS Developer’s Journal (“Monitoring Windows 95 File System Activity in Ring 0,”
July 1995; now Windows Developer’s Journal). The file monitor presented here is
" much improved. It is configurable through MultiMon’s filter settings; it spools its
output to a file for later display and the spooler file is accessed using ring-0 APIs.
These changes eliminate the buffer overrun problems that FILEMON had. FSHook
output can be combined with other monitor output to gain a multidimensional
picture of system activity.

FSHook displays one line of output for each FSD call. Each FSD call is identified
by a function number (see Table 7-1 for a list of possible values). Output from
FSHook tends to be rather lengthy if all functions are included, so usually it helps
to filter out Read, Write, and Seek functions. Figure 7-1 contains a trace fragment
that was collected during the system’s response to a right mouse-button click on
the icon for drive A, when the drive did not contain a floppy diskette. The first
column, which contains “Explorer,” is the process which was executing when the

128 Chapter 7. Monitoring File Activity

call was made. fsh is an identifier for file system hook entries in the trace. The
next column contains the name of the operation; here we see FS_MountVolume
for IFSFN_CONNECT, FS_loctl16Drive for IFSFN_IOCTL16DRIVE, and FS_FileAt-
tribs for IFSFN_FILEATTRIB. The dispatch function (ifs_func) associated with an
operation is shown in parentheses. The Flagsl column shows the settings for ifs_
nflags and the ResourceFlags passed in to the file hook function. For the FS_
MountVolume entries, ifs_jfunc and ifs_nflags are both 0, indicating that these
FSD calls did not directly originate from a dispatch call; rather, they were “spun
off’ to bring the volume online. For the FS_FileAttributes entries we see the
dispatch function 43h, which corresponds to the Int 21h function number for
getting or setting file attributes. The ifs_nflags indicate two conditions accompany
this function. It is a long filename call (1) and it uses extended handles (X), i.e.,
this was Int 21h function 7143h. The first five characters in the Flagsl column are
a sequence of 5 letters, eclnu. An e indicates the call reported an error, a ¢ indi-
cates the call is to a character FSD, an 1 indicates the call is to a local FSD, an n
indicates the call is to a network FSD, and a u indicates that the remote volume is
referenced by an UNC name. From this we see that all of the FS_MountVolume
function calls for drive A have failed. The Device column gives the name of the
FSD which was called. Here we see an attempt to mount drive A through VFAT,
but that fails. The next available local FSD is VDEF, the default FSD. A mount is
attempted through its FS_MountVolume, and it also fails. If there were additional
local FSDs in the system, they would be called before VDEF. Finally, we see the
call to FS_FileAttributes getting passed to VDEF and it fails. The Gt signifies get
attributes and “A:” is the path for which the attributes are requested.

Table 7-1. FSD Function Numbers

FunctionNum FSD Function IFS Specification API
IFSFN_READ (0) | hf_read FS_ReadFile
IFSFN_WRITE (1) hf_write FS_WriteFile
IFSFN_FINDNEXT (2) hf_read FS_FindNextFile
IFSFN_FCNNEXT (3) hf reed | ------

IFSFN_SEEK (10)
IFSEN_CLOSE (11)
IFSFN_COMMIT (12)
IFSFN_FILELOCKS (13)
IFSFN_FILETIMES (14)
IFSFN_PIPEREQUEST (15)
IFSFN_HANDLEINFO (16)
IFSFN_ENUMHANDLE (17)
IFSFN_FINDCLOSE (18)

hm_func[HM_SEEK]
hm_func[HM_CLOSE]
hm_func[HM_COMMIT]
hm_func[HM_FILELOCKS]
hm_func[HM_FILETIMES]
hm_func[HM_PIPEREQUEST]
hm_func[HM_HANDLEINFO]
hm_func[HM_ENUMHANDLE]
hm_func[HM_CLOSE]

FS_FileSeek

FS_Close
FS_CommitFile
FS_LockFile
FS_FileDateTime
FS_NamedPipeRequest
FS_NetHandlelnfo
FS_EnumerateHandle
FS_FindClose

The File System API Hook 129
Table 7-1. FSD Function Numbers (continued)
FunctionNum FSD Function IFS Specification API

IFSFN_FCNCLOSE (19)
IFSFN_CONNECT (30)

IFSFN_DELETE (31)
IFSFN_DIR (32)
IFSFN_FILEATTRIB (33)
IFSFN_FLUSH (34)
IFSFN_GETDISKINFO (35)
IFSFN_OPEN (36)
IFSFN_RENAME (37)
IFSFN_SEARCH (38)
IFSFN_QUERY (39)
IFSFN_DISCONNECT (40)

IFSFN_UNCPIPEREQ (41)
IFSFN_IOCTL16DRIVE (42)
IFSFN_GETDISKPARMS (43)

IFSFN_FINDOPEN (44)
IFSFEN_DASDIO (45)

hm_func[HM_CLOSE]

MountVolTable(],
NetConnectTable(], ...

vin_func[VFN_DELETE]
vin_func[VFN_DIR]
vfn_func[VFN_FILEATTRIB]
vin_func[VFN_FLUSH]
vin_func[VFN_GETDISKINFO]
vin_func[VFN_OPEN]
vin_func[VFN_RENAME]
vin_func[VFN_SEARCH]
vin_func[VFN_QUERY]
vin_func[VFN_DISCONNECT]

vin_func[VFN_UNCPIPEREQ]

vin_func[VFN_
IOCTL16DRIVE]

vin_func[VFN_GETDIS-
KPARMS]

vin_func[VFN_FINDOPEN]
vin_func[VFN_DASDIO]

FS_MountVolume, FS_
ConnectNetResource

FS_DeleteFile

FS_Dir
FS_FileAttributes
FS_FlushVolume
FS_GetDiskInfo
FS_OpenfFile
FS_RenameFile
FS_SearchFile
FS_QueryResourcelnfo

FS_DisconnectRe-
source

FS_NamedPipeUNCRe-
quest

FS_loctl16Drive

FS_GetDiskParms

FS_FindFirstFile
FS_DirectDiskIO

Explorer fsh FS_MountVolume [00) E_clnu_slkrmwoa VDEF
Explorer fsh FS_loctl16Drive (440d) e_clnu_slkrmwod VDEF
Explorer fsh FS_FileAttributes [43) e clhu_slxmwoa VFAT
Explorer fsh FS_Mountvolume (00) E_clhu_slsrmwoa VDEF
Explorer fsh FS_loctl16Drive (4408) e_clnu_slXrmwoa VDEF
Explorer fsh FS_MountVolume [00) E_clnu_slkrmwoa VFAT
Explorer fsh FS_MountVolume [00) E_clhu_slxrmwoa VDEF
Explorer fsh FS_FileAttributes (43) E_clnu_sl¥mwoa VDEF
Explorer fsh FS_MountVolume (00) E_clhu_slxrmwoa VFAT
Explorer fsh FS_MountVolume [00) E_clnu_slximwoa VDEF
Explorer fsh FS_FileAttributes (43) E_clnu_slXmwoa VDEF
Esplorer fsh FS_FileAttributes [43) g clnu_slxXmwoa VFAT

drive: A m
drive: A
Gt
C:AWIN...
drive: & m
drive: A
drive: A m
drive: A m
Gt
A:
drive: A m
drive: & m
Gt
A
Gt
C:AWIN...

Figure 7-1. MultiMon/FSHook sample output.

130 Chapter 7. Monitoring File Activity

Figure 7-2 shows another sample fragment. Here we see a sequence of FS_Read-
File calls on a local volume supported by the VFAT FSD. For FS_ReadFile and FS_
WriteFile functions, the FSD name is followed by system file number, some func-
tion arguments, and another set of flags in the Flags2 column. The possible
characters in the Flags2 column are msn, where an m indicates 2 memory-mapped
file access, an s indicates a swap file access, and an n indicates that caching
should #ot be used on the call. What is significant about the calls in this sample is
that they are reads from the paging file and they all have a system file number of
200h, the base value for the range of extended file handles. Also notice the value
of the dispatch function (d6h) and the R flag under Flagsl. These indicate that the
read originated as an IFSMgr_Ring0_FilelO call.

Explorer fsh FS_ReadFile (d6) e_cLnu_sLxRmwoa VFAT 200 cnt=1000H ofs=388000H ptr=c135f000H -sn
Explorer fsh - FS_ReadFile (d6) e_cLnu_sLxRmwoa VFAT 200 cnt=1000H ofs=373000H ptr=c135f000H -sn
Explorer fsh FS_ReadFile (d6) e_cLnu_sLxRmwoa VFAT 200 cnt=1000H ofs=372000H ptr=c135f000H * -sn

Figure 7-2. A second MultiMon/FSHook sample fragment

For a complete reference to the meanings of the various fields in FSHook output,
see Appendix B, MultiMon: Monitor Reference.

To ease implementation of FSHook (and other samples), all of the IFSMgr services
have been wrapped as C-callable routines and made available through
ifSwraps.clb. (For more information see Appendix D, IFS Development Aids.)

The simplest scenario for installing a file system hook would start with a call to
IFSMgr_InstallFileSystemApiHook during Device Init phase. This function takes the
address of the hook function to be installed and returns the address of the
previous hook function you chain onto. Example 7-1 shows the simplest possible
hook function, where ppPrevHook is a pointer to the previous hook function. It
simply calls the previous hook function and returns.

Example 7-1. Simplest File System Hook

int ___cdecl FileHook(pIFSFunc pfn, int fn, int drv,
int res, int cp, pioreqg pir) {
return (* (*ppPrevHook)) (pfn, fn, drv, res, cp, pir);
}

In response to System VM Terminate, your driver would remove this hook by
calling IFSMgr_RemoveFileSystemApiHook and passing it the address of your file
hook routine.

The FileHook function used by FSHook examines the function number to deter-
mine the type of function call and fills in an event structure describing the
function call. When the call into the previous hook function returns, the error
status and sometimes other values are retrieved and added to the event structure

The File System API Hook 131

before it is sent to MultiMon. FSHook uses a passive hook; it doesn’t attempt to
modify the call or to make additional calls into the FSD. To see how one might
make additional calls into the FSD, let’s look at some examples.

FSHQuery

FSHQuery demonstrates how to “piggyback” an additional call to a FSD whenever
a FS_DeleteFile is attempted. The piggybacked call is a FS_QueryResourcelnfo,
the equivalent of a GetVolumeInformation Win32 call for local drives or a WNet-
GetConnection for a remote drive. The code for FSHQuery’s file system hook
function is shown in Example 7-2. This is a stand-alone driver that is installed by
making an entry in the system.ini file. To see its output you need to execute it
with a kernel debugger (Winlce or WDEB386).

Example 7-2. FSHQuery: File System Hook

int __cdecl FileHook(pIFSFunc pfn, int fn, int drv,
int res, int cp, pioreq pir) {

// Look for a volume-based FS_DeleteFile call,
if (fn == IFSFN_DELETE) {

ifsreq* pifs;

pIFSFunc pQueryFunc;

// Call-down into the FSD using a modified copy
// of the ifsreq passed in.
pifs = IFSMgr_GetHeap(sizeof(ifsreq)):
if (pifs != NULL) {
memcpy (pifs, pir, sizeof(ifsreq));
// Get Level 0 Information if we are dealing

// with a Network Resource
if (res & IFSFH_RES_NETWORK) {
_QWORD qw;

ParsedPath* pUniResource;
char* pszName;
pszName = IFSMgr_GetHeap(MAX_PATH);
if (pszName != NULL) {
pUniResource = IFSMgr_GetHeap(1024);
pifs->ir_options = 0; // Level 0
pifs->ir_ppath = (DWORD)pUniResource;
pQueryFunc = pifs->ifs_psr->sr_func->vfn_func[VFN_QUERY]
(* (*ppPrevHook)) (pQueryFunc, IFSFN_QUERY, drv, res,
cp, (pioreq)pifs);
memset (pszName, 0, MAX PATH);
qQw = UniToBCSPath(pszName, pUniResource->pp_elements,
: MAX_PATH, cp);
if (gw.ddLower)
Debug_Printf("Query level 0, drive = %d resource name = %s\n",
drv, pszName);
IFSMgr_RetHeap(pUniResource);
}

132 Chapter 7: Monitoring File Activity

Example 7-2. FSHQuery: File System Hook (continued)

IFSMgr_RetHeap (pszName) ;
}
}

// Get Level 2 Information if we are dealing
//) with a Local Resource
else {

char szFileSystemName[32];

pifs->ifs_ir.ir_options = 2; // Level 2

pifs->ifs_ir.ir_length = sizeof (szFileSystemName) ;

pifs->ifs_ir.ir_data = (DWORD)szFileSystemName;

pQueryFunc = pifs->ifs_psr->sr_func->vin_func[VFN_QUERY];

(* (*ppPrevHook)) (pQueryFunc, IFSFN_QUERY, drv, res,

cp, (pioreq)pifs);

Debug_Printf("Query level 2, drive = %d file system = %s\n",
drv, szFileSystemName) ;

Debug_Printf(" maxpath = %d, maxcomp = %$d\n",
pifs->ifs_ir.ir_length >> 16,
pifs->ifs_ir.ir_length & Oxffff);

Debug_Printf(" flags = %04x, cache block size = %d\n",
pifs->ifs_ir.ir_options, pifs->ifs_ir.ir_pos);

}

IFSMgr_RetHeap(pirx);
}
}

return (*(*ppPrevHook)) (pfn, fn, drv, res, cp, pir);
}

The general approach is to clone the ifsreq packet that is used by the FS_Delete-
File call. This gives us a painless way to get the ir_pid, ir_user, ir_rb, ifs_psr, ifs_
VMHandle, and ifs_PV fields. Some of the remaining fields will require initializa-
tion for the FS_QueryResourcelnfo call. Specifically, it is necessary to set the ir_
options member to the “query level,” level 2 for local resources and level 0 for
remote resources. If it is a level 2 query, we need to provide a buffer to hold the
returned file system name string, in i7._data, with the length of the buffer given by
ir_length. On the other hand, for a level 0 query, we just provide a pointer, in ir_
~ ppath, to a buffer for the returned ParsedPath structure which represents the
name of the remote resource.

Several of the fields require buffers—one to contain the cloned ifsreq, one to
contain a ParsedPath structure, etc. You'll notice that _HeapAllocate is not used
here, but instead IFSMgr’s heap routines: IFSMgr_GetHeap and IFSMgr_RetHeap.
IFSMgr creates its heap in pages of locked system memory. There is a main heap
and a “spare heap”; the latter is allocated prior to entering the dispatch point by a
call to IFSMgr_FillHeapSpare. The advantage of using the IFSMgr_GetHeap routine
is that for requests less than a page in size, it will not trigger paging activity. This
is a requirement for file hooks and FSDs that are accessing the swap file or a

The File System API Hook 133

memory-mapped file. IFSMgt’s heap routines avoid paging by returning pieces of
its pre-allocated locked heap. (See the section entitled “Heap Management” in
Chapter 12, A Survey of IFSMgr Services.)

In Example 7-2, the actual call into the FSD occurs at the following lines:

pQueryFunc = pifs->ifs_psr->sr_func->vfn_func[VFN_QUERY] ;

(* (*ppPrevHook)) (. pQueryFunc, IFSFN_QUERY, drv, res, cp, (pioreq)pifs

)i
The variable pifs is a pointer to the ifsreq structure, which is described in
Appendix C, IFSMgr Data Structures. Its ir_psr member is a pointer to the shell
resource structure for the volume which is being queried. The declaration of the
shell resource structure is also given in Appendix C. Its sr_func member is a
pointer to the volume-based function table (see Table 6-6). The vfin_func/VFN_
QUERY] member gives us the FSD’s address for the FS_QueryResourcelnfo func-
tion. The address of this function is then passed to the previous hooker function,
thereby giving downstream file hooks an opportunity to see the request. When
this call returns, the results are stored in the ifsreq structure. The member pifs->
ifs_ir.ir_error is zero if the call succeeded and a non-zero error code otherwise.

Note that the 7es argument to the FileHook function distinguishes a remote from a
local resource call by the bits IFSFH_RES NETWORK and IFSFH_RES_LOCAL. 1f
the resource flags indicate a remote resource, then a level 0 query is performed;
otherwise a level 2 query is performed. On a level 0 query, a ParsedPath struc-
ture is returned, which represents the name of the remote resource. To convert
this into a printable form, the IFSMgr service, UniToBCSPath, is used to convert it
into a byte-wide string in the selected character set (ANSI/OEM).

FSHEnum

FSHEnum demonstrates how to piggyback an additional call to a FSD whenever a
FS_CloseFile is attempted. The piggybacked call is a FS_EnumerateHandle,
subfunction ENUMH_GETFILENAME. There is no Win32 or Int 21h call that
directly maps to this function. The closest ones are GetFileInformationByHandle
which maps to FS_EnumerateHandle, subfunction ENUMH_GETFILEINFO, and Int
21h Function 440dh Subfunction 086dh, Enumerate Open Files. The code for
FSHEnum’s file system hook function is shown in Example 7-3. This is a stand-
alone driver that is installed by making an entry in the system.ini file. To see its
output you need to execute it with a kernel debugger (Winlce or WDEB3806).

Here again we clone the ifsreq packet that, in this case, is used by the FS_Close-
File call. This gives us a painless way to get the #r_pid, ir_user, ir_rb, ir_sfn, ir_
b, ifs_psr, ifs_pfb, ifs_VMHandle, and ifs_PV fields. Some of the remaining fields
will require initialization for the FS_EnumerateHandle call. Specifically, it is neces-

134 Chapter 7: Monitoring File Activity

sary to set the ir_flags member to ENUMH_GETFILENAME to request the filename
for the given resource handle (ir_rb) and FSD file handle (ir_fb). We also need to
provide a pointer, in ir_ppath, to a buffer for the returned Parsedpath structure
which represents the name of the file.

Example 7-3. FSHEnum: File System Hook

int __cdecl FileHook(pIFSFunc pfn, int fn, int drv,
int res, int cp, pioreq pir) {

// Look for a handle-based FS_CloseFile call,
// but skip any character FSDs

if (fn == IFSFN_CLOSE && ! (res & IFSFH_RES_CFSD)) {
// Call-down into the FSD using a modified copy
// of the ifsreq passed in.
_QWORD qw;

ifsreq ifs;
pIFSFunch pEnumHandle;
ParsedPath* pUniPPath;
char* pszName;
pszName = IFSMgr_GetHeap (MAX_PATH);
if (pzName != NULL) {
pUniPPath = IFSMgr_GetHeap(1024);
if (pUniPPath != NULL) {
memcpy (&ifs, pir, sizeof(ifsreq));
ifs.ifs_ir.ir_flags = ENUMH_GETFILENAME;
ifs.ifs_ir.ir_ ppath = (DWORD)pUniPPath;
pEnumHandle = ifs.ifs_pfh->fh_hf.hf_misc->hm_func[HM_ENUMHANDLE] ;
(* (*ppPrevHook)) (pEnumHandle, IFSFN_ENUMHANDLE, drv, res,
cp, (pioreq)&ifs);
memset (pszName, 0, MAX_PATH);
gw = UniToBCSPath(pszName, pUniPPath->pp_elements, MAX_PATH, cp);
if (gw.ddLower) { '
Debug_Printf("Closing file %s\n", pszName);
}
IFSMgr_RetHeap((void*)pUniPPath);
}
IFSMgr_RetHeap (pszName) ;
) .
}

return (* (*ppPrevHook)) (pfn, fn, drv, res, cp, pir);
}

It is important to note that the filename is not stored by IFSMgr. It is the job of the
FSD to store this information for files which are opened on its drives. IFSMgr only
holds onto the FSD file handle and fhandle information. When an open occurs
the FSD receives a name in a standard canonicalized form (a ParsedPath).
Whether the drive accepts a particular name depends on its underlying filesystem.
So it makes sense that, given a SFN (System File Number), it would be necessary
to retrieve its name from its FSD.

The File System API Hook 135

In Example 7-3, the actual call into the FSD occurs at the following line:

pEnumHandle = ifs.ifs_pfh->fh_hf.hf misc->hm_func[HM_ENUMHANDLE] ;
(* (*ppPrevHook)) (pEnumHandle , IFSFN_ENUMHANDLE, drv, res, cp,
(pioreq) &ifs):

The variable ifs is an ifsreq structure as described in Appendix C. Its ifs_pfh
member is a pointer to the fhandle for the file which is being enumerated. The
declaration of the fhandle structure is also given in Appendix C. Its fb_hf hf_
misc member is a pointer to the handle-based function table (see Table 6-7). The
bm_func[HM_ENUMHANDLE] member gives us the FSD’s address for the FS_
EnumerateHandle function. The address of this function is then passed to the
previous hooker function, thereby giving downstream file hooks an opportunity
to see the request. When this call returns, the filename is stored in the buffer
pointed to by ir_ppath. This is a ParsedPath structure, which represents the
canonicalized filename. To convert this into a printable form, the IFSMgr service,
UniToBCSPath, is used to convert it into a byte-wide string in the selected char-
acter set (ANSI/OEM) of the current code page.

When I was testing this code with Build 950 of Windows 95, I found an inter-
esting bug in VCOND, the virtual console device for Win32 cornsole applications.
VCOND registers a character FSD with IFSMgr called PIPESTDX. This is used
when redirecting output from a console application, such as running NMAKE
from an editor and collecting its output to a file. FS_CloseFile is called on a
handle of this character FSD. The bug appears when attempting to call FS_Enumer-
ateHandle for this handle—it will always crash the system. The problem occurs
because VCOND’s handle-based function table does not contain a valid function
address for HM_ENUMHANDILE (it is always 00000001h). It should implement an
error handler if it doesn’t support the function.

To work around this problem, you’ll see the following code:
if (fn == IFSFN_CLOSE && ! (res & IFSFH_RES_CFSD))

This ignores FS_CloseFile for character FSDs.

FSHAttr

For a final file system hook example, we’ll use IFSMgr_Ring0_FileIO to create a re-
entrant call into the dispatch point. We aren’t able to take the FSHQuery or
FSHEnum examples and redo them using this ring-0 API because they each use
FSD APIs that are not exposed through the ring-0 interface. So in some cases, the
“direct call to FSD” approach is the only one viable.

FSHAttr demonstrates how to piggyback a ring-0 call to Get File Attributes when-
ever a FS_DeleteFile is attempted. The piggybacked call is a IFSMgr_Ring0O_FileIO,
subfunction RO_FILEATTRIBUTES. This is equivalent to a Int 21h function 7143h

136 Chapter 7: Monitoring File Activity

call. The code for FSHAttr’s file system hook function is shown in Example 7-4.
This is a stand-alone driver that is installed by making an entry in the system.ini
file. To see its effect, you need to look at the trace output from FSHook after
performing some file deletes.

Example 7-4. FSHAttr: File System Hook

int __cdecl FileHook(pIFSFunc pfn, int fn, int drv,
int res, int cp, pioreq pir) {
// Look for a volume-based FS_DeleteFile call,
if (fn == IFSFN_DELETE && (res & IFSFH_RES_LOCAL)) {
short attr;

// Get file attributes for pathname
_QWORD qw;
char *pszName, *p;

p = pszName = IFSMgr_GetHeap (MAX_PATH);
if (pszName != NULL) {
memset (pszName, 0, MAX_PATH);
*p++ = '@' + drv;
*p+t+ = '
qgqw = UniToBCSPath(p, pir->ir_ppath->pp_elements, MAX_PATH, cp);
if (gw.ddLower) {
EREGS r;
int retc;
r.r_eax = RO_FILEATTRIBUTES l GET_ATTRIBUTES;
r.r_esi = (DWORD)pszName;
retc = IFSMgr_Ring0_FileIO(&r);
attr = (retc==0) ? r.r_ecx : 0;
Debug_Printf("FSHATTR: %s attribs: %04x\n", pszName, attr);
}
IFSMgr_RetHeap (pszName) ;
}
}
return (* (*ppPrevHook)) (pfn, fn, drv, res, cp, pir);

}

In this example, FS_DeleteFile is called with a complete pathname. We can
convert it from a ParsedPath structure to a byte-string for passage to the ring-0
API. The IFSMgr_Ring0_FilelO service wrapper provided by ifswraps.clb uses the
EREGS structure to pass values of register-based arguments. The FileAttributes
function requires that the following registers be loaded prior to invoking the
" service:

AH = 43h, AL = 00h,

ESI = linear address of pathname.
On return, if carry is clear, then the attributes are in the CX register; if carry is set,
AX holds the error code. ‘

The NetFunction Hook 137

There is an error in the IFS Specification regarding the arguments to this function.
It shows the calling parameters as AH=RO_FILEATTRIBUTES. This has the effect of
setting AH to O because RO_FILEATTRIBUTES is defined as 0x4300 in ifs.h.
Instead, you should set AX=RO_FILEATTRIBUTES and then adjust AL to O for a get
and 1 for a set.

Figure 7-3 shows the FSHook trace when deleting c:\windows\desktop\test.txt
from Explorer. The FS_FileAttributes entry preceding the FS_DeleteFile shows that
the re-entrant ring-0 API call goes through the file system hook.

Expler fsh FS_FileAttributes (43) e_cLnu_sLXRmwoa VFAT Gt

CAWINDOWSADESKTOPATEST.TXT

Explorer fsh FS_DeleteFile (41) e_clnu_slXmwoa VFAT

C:AWINDOWSADESKTOPATEST. TXT

Figure 7-3. MultiMon/FSHook output on delete

The NetFunction Hook

Another function which IFSMgr uses for notifications is IFSMgr_NetFunction.
Unlike the file system hook, this service is used mostly by network redirectors
and other network components. This is not a service which is called but a service
which is intended to be hooked, using VMM'’s service Hook_Device_Service. On
the occurrence of various events, I[FSMgr calls this service as a broadcast to all
hookers. ‘

An IFSMgr_NetFunction hook will receive four arguments on each call. These are
a pointer to an ifsreq structure appropriate for the call, a pointer to the client
registers structure, a provider identifier, and a flag indicating whether the call origi-
nated from a Win32 API (see Example 7-5). All of the arguments actually
reference the contents of the ifsreq structure, i.e., pRegs is &(pir->ifs_crs), prold
is pir->ifs proid, and flags is given by the expression (pir->ifs_nflags & 0x04). A
NetFunction handler will need to examine the Client_AX value in the client regis-
ters structure to determine the type of call. The calls can be grouped into three
different categories: IFSMgr broadcasts, dispatch handlers, and DeviceloControl
handlers.

Example 7-5. Prototype for IFSMgr._NetFunction

int IFSMgr_NetFunction(pioreq pir, PCRS pRegs, int prolId, int flags);

Table 7-2 shows the function values for IFSMgr broadcasts. The first five entries in
the table correspond to events generated by IFSMgr. The function type is given by
the value of Client_AX in the client register structure. Functions 1 and 2 occur
when a drive (local or remote) appears or disappears from the system. When
these events are broadcast, the ifsreq structure contains the resource handle for

138 Chapter 7: Monitoring File Activity

the drive (ir_rb), the 1-based drive letter (ir_flags), and the provider ID for the
FSD which handles the drive (ir_aux1.aux_ul). Functions 3, 4 and 5 report events
for network printers. For these functions, prold contains the provider ID of the
printer handler, and ifsreq holds the resource handle (ir_rb) for the printer, a
buffer to contain a returned job ID (4r_data), or an index (0-8 for LPT1 through
LPT9) to the printer (ir_flags). For each of these calls, the return value is stored to
the ir_error member of the ifsreq structure.

Table 7-2. NetFunction Broadcasts

Function Type ifsreq Provider ID Event Description
NF_DRIVEUSE(1) ir_rh, ir_flags, ir_aux1 | ANYPROID new drive appears
in system
NF_DRIVEUNUSE(2) ir_rh, ir_flags, ir_auxl | ANYPROID drive goes away
NF_GETPRINTJOBID(3) | ir_rh, ir_data ID of printer | IFSMgr needs a
handler print job ID from

NF_PRINTERUSE(4)

ir_rh, ir_ﬂags

ID of printer

FSD
Network printer is

handler attached
NF_PRINTERUNUSE(5) ir_rh, ir_flags ID of printer | Network printer is

handler disconnected
NF_PROCEXIT(111Dh) ir_pid ANYPROID process exits

The last entry in Table 7-2 corresponds to an Int 2Fh function call and should be
lumped together with the dispatch handlers. DOS/Win32 Installable File System
Specification, p. 91, has this to say about NetFunctions:

This service is provided to export certain functions most of which are specific to
the network FSDs. These functions can come from a variety of sources: Int 21h
and int 2fh functions that the IFS hooks but does not support, Int 21h functions
that the IFS does not support that are hooked via IFSMgr_SetReqHook. ..

Several of the dispatch functions listed in Table 6-3 call into IFSMgr_NetFunction.
These include dProcExit, dFunc5F, and dNetFunc. dProcExit corresponds to the
Int 2fh call 111dh. Some other Int 2fh functions are sent to dNetFunc: 1180h,
1181h (NF_NetSetUserName), 1182h, 1184h, 118bh, 118ch, 118dh, and 118eh.
dFunc5F handles several Int 21h functions in the range 5f00h through 5f53h.
Many of the functions in this range and all those greater than 5f54h are routed to
IFSMgr_NetFunction. For some of these functions, IFSMgr does provide an imple-
mentation (e.g., dProcExit) and the call to IFSMgr_NetFunction is only another
form of broadcast. However, in most cases IFSMgr only goes as far as wiring the
functions up to the dispatcher so that a FSD can use a NetFunction hook to
provide an implementation.

The NetFunction Hook 139

Actually, IFSMgr takes this interface a step further by allowing some Int 21h func-
tions to be attached to the dNetFunc dispatch function. This is done by installing
a preamble for the function using IFSMgr_SetReqHook. We looked at preamble
functions back in Chapter 6, Dispatching File System Requests. There we concen-
trated on the preambles which IFSMgr installs by default for Int 21h functions in
the range 00 through MAXDOSFUNC. Here, we are interested in the Int 21h func-
tions from MAXDOSFUNC+1 to FFh.

The preamble function decides whether it wishes to accept the Int 21h function
call. It “accepts” by returning with the carry flag cleared. For functions greater
than MAXDOSFUNC, an accepted request will be dispatched as command 0x00d4
(see Figure 6-1 and Example 6-1), which has dNetFunc as its handler. The
preamble function only decides whether it wants to accept the call; it is the
IFSMgr_NetFunction hook which will actually look for the function call by exam-
ining the Client AX register value. Unlike the broadcasts from IFSMgr, which
provide information, these calls to IFSMgr_NetFunction are requests for a service.
This implies that if a FSD completes the request it should not pass the request
down the chain. Rather, it should return with the same value that it stuffed into ir_
ervor.

One additional source of calls into IFSMgr_NetFunction come from IFSMgr's Devi-
celoControl interface. In Chapter 4, several IOCTL Services were described. Two
of these, IFS_IOCTL_21 and IFS_IOCTL_2F, use the contents of the win32apireq
structure to fill the client register portion of an ifsreq packet. The remainder of
the packet is initialized and then, for functions of the 5fxxh series, are sent to
dFunc5f. Others are routed to the chain of IFSMgr_NetFunction hooks.

NetFunc

NetFunc is a IFSMgr_NetFunction hook that reports all calls to MultiMon for
display. NetFunc shows one line of output for each NetFunction call. Figure 7-4
shows a sample trace fragment that was collected while running a simple program
from DEBUG in a DOS box. The first column, which contains “VM2’, indicates
the process was executing in a second VM (DOS box) when the call was made.
nfn is an identifier for NetFunction entries in the trace. The next column contains
the function number. 8000h corresponds to an Int 21h function that NetFunc has
installed. Function 111dh is recorded when DEBUG is terminated. The Args field
shows the values of the EDX and ESI registers. The four bytes that comprise EDX,
from most significant to least significant, are: ifs_nflags, ifS_bflag, ifs_drv, and ifs_
Junc from the ifsreq structure; ESI contains the value of the provider ID passed
to the hook function. In Figure 7-4, we see interrupt 21h function 80h map to the
dispatcher function D4h and we see interrupt 2fh function 111dh map to
dispatcher function 93h.

- 140 Chapter 7: Monitoring File Activity

VM2 nfh Func=00008000 EDX=010003d4 ESI=FHft
WM2 nfh Func=0000111d EDX=01000393 ESI=Fffff
WM2 nfh Func=0000111d EDX=010003393 ESI=fftftf

Figure 7-4. NetFunc sample output

The hook function installed by NetFunc is shown in Example 7-6. This function
does not use a stack frame so that the HOOK_PREAMBLE macro can insert extra
information to allow the hook to be removed. This also requires that the calling
arguments be moved into local variables so they can be referenced by C state-
ments. There are two main sections here. In the clause beginning if
(bEnabled).., the routine is checking if MultiMon has enabled monitoring of
IFSMgr_NetFunction calls. If so, it prepares a notification structure and sends it.
The next interesting clause begins if (pRegs->Client_AX == 0x8000)... This
checks if the function we are being called on is one that we have installed a
handler for. If it is, we just print out a message and return. Otherwise, we restore
the original stack frame and jump to the next hook function.

Example 7-6. IFSMgr_NetFunction Hook

HOOKPROC MyNetFunction(pioreq pir, PCRS pRegs, int prolId, int flags) {
PEBLOCK pBlk;
ifsreq _pifs;
struct Client_Word_Reg_Struc* _pRegs;
int _provider;
HOOK__PREAMBLE (pPrevNetFunc)
_asm push ebp
_asm mov ebp,esp
_asm sub esp,__LOCAL_SIZE

_asm mov eax, [ebp+0ch]
_asm mov _pRegs, eax
_asm mov eax, [ebp+10h]
_asm mov _provider, eax
_asm mov eax, [ebp+8]
asm mov _pifs, eax

if (bEnabled) { // monitor enabled?
if (Get_Cur_Thread_Handle() != pFmon2TCB) { // not MultiMon thread?
if (Directed_Sys_Controll(pFilemon2, REQUEST_EVENT_ BLK, &pBlk)) {

FillDispBlk(pBlk, _pRegs->Client_AX, _provider,
_pifs->ifs_func, IFS_NETFUNC);

Directed_Sys_Controll(pFilemon2, EVENT_NOTIFY, pBlk);
}

else if (pBlk != NULL) {
pBlk->type = OVR_ERROR;
Directed_Sys_Controll(pFilemon2, EVENT_NOTIFY, pBlk);
}

The NetFunction Hook 141

Example 7-6. [FSMgr._NetFunction Hook (continued)
}

// This is for handling our "bogus" Int 21h Function 8000h
if (_pRegs->Client_AX == 0x8000) {

Debug_Printf("Int 21h Function 8000h called\n");

_asm mov esp,ebp

_asm pop ebp

_asm ret

}

_asm mov esp, ebp

_asm pop ebp

// Chain to the next Net Function Hooker
_asm jmp dword ptr pPrevNetFunc

}

To show how IFSMgr_NetFunction and IFSMgr_SetReqHook work together, I
select an Int 21h function, which is unused by MS-DOS, say 80h. To get our Int
21h Function 8000h to create IFSMgr_NetFunction cal}s, we install a preamble for
it as shown in Example 7-7. This code fragment is executed as part of Device Init.
The address of the previous preamble function is saved in pPrevPreamble so that
if we decide to reject the request, we can chain on to the previous preamble func-
tion.

Example 7-7. Installation of Preamble During Device Init
pPrevPreamble = IFSMgr_SeERequok(0x00210080, MyPreamble);

The actual preamble function, MyPreamble, is shown in Example 7-8. This func-
tion simply clears the carry flag and returns. Some logic may be required to
decide whether to accept or reject the request.

Example 7-8. Preamble Function for Int 21h Function 80b
void __declspec(naked) MyPreamble(void) {

#ifdef NOT_HOOKED

// ... If we don't handle it, call the next preamble
_asm jmp dword ptr pPrevPreamble

#else

// ... Do whatever checks are required

_asm clc // Clear carry if we accept the function call
_asm ret

#endif

}

To test our preamble and NetFunction hook we need to generate an Int 21h Func-
tion 80h call in either V86 or protected mode. The simplest way to do this is to

142 Chapter 7: Monitoring File Activity

open a DOS box and run DEBUG. At the - prompt, type the following four-line
program:

-al00

mov ax, 8000

int 21

mov ax,4c00
int 21

-g
Then let it execute. To see the message “Int 21h Function 8000h called,” a kernel
debugger will have to be running (Winlce or WDEB386). This little program also
creates the MultiMon trace shown in Figure 7-4 when the IFSMgr NetFunction
filter is enabled.

Hooking a Path

The last hook function that we’ll take a look at, IFSMgr_SetPathHook, is closely
tied to IFSMgr_ParsePath (and IFSMgr_FSDParsePath). Recall that IFSMgr_Parse-
Path is called for the volume-based FSD functions that receive a path string (in
ifsreq member #7_data). In other words, in preparation for calling FS_OpenFile,
FS_FileAttributes, etc.,, a call into IFSMgr_ParsePath is needed to set up the
ifsreq packet. By parsing the path string, this service fills in the ifs_psr member
of the ifsreq packet, as well as the ParsedPath structure required for ir_ppath.

IFSMgr_SetPathHook has the following function prototype:
void* IFSMgr_SetPathHook(void* PathCheckFunc).

This service installs a path check routine and returns a previous path check
routine. The service is available at Device Init or Init Complete time. The path
check routine is called by IFSMgr_ParsePath if the input path does not contain
leading \, /, or d: characters. What does a path check routine do? Here is what
Microsoft has to say in DOS/Win32 Installable File System Specification, p. 90:

This service has been provided for FSDs to check for special path prefixes and
process them separately. The FSD can register a routine with the IFS manager that
is called every time a path is parsed. If this is a prefix the FSD wants to process, it
can claim it and the IFS manager will then call the FSD directly on the path-based
operation.

If the path check routine does not “claim” the path, then it needs to jump to the
previous path check routine -with all registers preserved. The last path check
routine in the chain is supplied by IFSMgr; it just sets the carry flag and returns.
This tells the parser to use default handling.

The inputs to and outputs from the path check function are summarized in Table
7-3."As you can see it is entirely register-based, so it needs to be written in inline

Hooking a Path 143

assembly code. We also see from the input arguments that by the time the path
check function is called, the #r_data member of ifsreq has been translated into
a Unicode string (ESD); however, the PathElements (EDID) have not been created

yet.

Table 7-3. Path Check Function Arguments and Returns

Input Output Description
ESI Pointer to Unicode pathname
EDI Destination buffer to hold PathElements
EAX Length (pe_length) of last PathElement consumed and
stored to buffer at EDI :
EBX Pointer to Unicode string of the last PathElement
consumed by the FSD
EDX Provider ID of FSD that claimed the path
ESI Pointer to Unicode pathname, next char to parse
EDI Pointer to buffer holding zero or more consumed
PathElements
Carry Flag Return Clear—request is hooked; else jump to previous
path check routine

The path check routine can look for a specific signature at the beginning of the
string pointed to by ESI. This string can be a prefix which is stripped off from the
remainder, or it may convert the prefix into some other string or character and
store it to a PathElement structure in the buffer pointed to by EDI. The prefix
string may also just be copied to a PathElement. There is considerable flexibility
here: from one extreme, the string may be completely parsed into PathElements
before returning; to the other extreme, the entire path might be passed back and
no parsing is done, only the provider ID is set. If any of the string is passed back
to IFSMgr_ParsePath to complete parsing, then that portion must follow the
convention that elements are delimited by / or \ characters.

In any case, when IFSMgr_ParsePath returns, #_ppath will contain a ParsedPath
structure comprised of the PathElements, some or perhaps all of which were
extracted by the path check routine. This canonicalized path is really private to
the FSD that has “claimed” it. The path becomes claimed because IFSMgr. Parse-
Path modifies the contents of the ifsreq structure to earmark it for a specific
FSD. It does this by clearing ifs_psr, to indicate that there is no associated shell
resource and by setting ifs_proid to the FSD’s provider ID. The net effect is that
instead of calling a volume-based function based on default parsing behavior, the
volume-based functions that correspond to the specified provider ID are used .

Anatomy of a File
System Driver

Over the course of this book we have progressively stripped away the layers of
the Windows 95 file system. We have seen that the programming APIs converge
upon a dispatch point that has the characteristics of an extended Int 21h interface.
Many of the dispatch functions require support from an underlying file system
driver. In the last chapter we used MultiMon, with the FSHook driver, to monitor
the calls into the underlying FSDs. In this chapter we will shift our focus to the
file system drivers.

FSD to IFSMgr Linkage

A file system driver is a virtual device driver containing entry points which are
only accessed by IFSMgr (or a file system API hook). There are three stages by
which a FSD exposes these -entry points. In the initial registration step, an FSD
passes the address of a FS_MountVolume or FS_ConnectNetResource entry point.
The next stage occurs when a file system resource is first used. [IFSMgr determines
which FSD maps to the resource and then performs the “mount” or “connect”
operation by calling the entry point which was supplied during the registration
step. As a result of the mount or connect, IFSMgr is returned the FSD’s table of
volume-based entry points. Amongst the entry points in this table, some provide
an “open” type operation. For instance, FS_OpenFile opens a file and FS_FindFirst-
File opens a find context. When an open is performed, the FSD exposes its last
layer of entry points. In response to these calls, IFSMgr receives 2 handle and a
table of handle-based entry points. Table 8-1 illustrates these relationships for a
local FSD; the same relationships apply to remote and character FSDs.

144

FSDs Come in Three Flavors 145

Table 8-1. FSD/IFSMgr Linkage

File System Driver IFSMgr
Registration Pass address of '
: FS_MountVolume — IFSMgr_RegisterMount
Volume Mounting FS_MountVolume <« Mount call
returns volfunc[] —
File Open FS_OpenFile <« Open call
returns hdlfunc[] —

FSDs Come in Three Flavors

Although all FSDs exhibit the linkage characteristics described above, three types
of FSDs are distinguished by IFSMgr: character, local, and remote.

Character FSDs

The term character originated in the UNIX world to distinguish block and char-
acter devices. Block devices are characterized by data transfers of blocks of data
of a fixed size (usually the sector size), whereas character devices transfer data
byte-at-a-time in a serial fashion. This is also the meaning attached to character as
it applies to FSDs.

Character FSDs register with IFSMgr by calling the service IFSMgr._RegisterCFSD.
The registering FSD passes the address of the FS_MountVolume entry point and a
pointer to an array of pointers to one or more device names. When a listed device
is first accessed, FS_MountVolume is called for its name. Each name registered is
separately mounted. Each successful mount creates a shell resource for the speci-
fied device name.

Some examples of character FSDs include vcond.vxd and spooler.vxd. VCOND,
the virtual console driver, exposes a number of Win32 VxD services which are
used by KERNEL32 to provide support for Win32 console applications. Tucked
away inside this driver is a character FSD, which registers under the name
PIPESTDX. This device is opened by redirect.mod, which in turn is loaded by
KERNEL32, to enable redirection for certain kinds of console applications.
SPOOLER, the other example given, is a character FSD registered for the system
printer devices: LPT1 through LPT9 and PRN.

Character FSDs are good candidates for modeling devices which transfer data a
byte at a time and which do not already have an existing driver class. It is the
lack of dependency on the I/O subsystem or network protocol stack that makes
this type of FSD most flexible.

146 Chapter 8: Anatomy of a File System Driver

Local FSDs

A local FSD provides support for local storage devices, such as floppy disk drives,
fixed disk drives, and CD-ROM drives.

Local FSDs register with IFSMgr by calling the service IFSMgr_RegisterMount. The
registering FSD passes the address of its FS_MountVolume entry point. Local
storage devices are partitioned into volumes, and when a volume is first accessed,
FS_MountVolume is called on each local FSD until one recognizes the media and
claims it. This establishes a shell resource for the local device and the volume-
based function table which provides linkage to IFSMgr.

The system registers one default local FSD through IFSMgr_RegisterMount. When
IFSMgr searches for a local FSD to claim a volume, the search may fail. The
default local FSD is there to claim those volumes that other local FSDs do not
recognize. Some common situations where this would occur include an unfor-
matted volume or a floppy drive without media inserted.

Some examples of local FSDs include vfat.vxd, cdfs.vxd and vdef.vxd. VFAT is the
protected mode FAT file system driver that provides access to most floppy and
fixed media. CDFS is the protected mode ISO-9660 file system driver that provides
access to CD-ROM media. VDEF is the default local FSD (the source for vdef.vxd
is given in the DDK).

Each storage device present in the system requires one or more hardware drivers
that fall under the umbrella of the I/O subsystem. These drivers hide the differ-
ences in bus types and controller chip sets, and present a logically consistent
view of the various devices, to the file system drivers. Thus, local FSDs rely upon
the I/O subsystem services for their implementation. Local FSDs also conceal
knowledge of the disk layout for a specific file system. A local FSD just accepts
properly constructed filenames and returns handles through which logical opera-
tions may be performed.

- Remote FSDs

A remote FSD connects to a resource which is shared by a server. There are two
scenarios. In a peer-to-peer network, each system may be a client and a server
and the protocol stacks of the client and server match, layer for layer. In a
non-peer-to-peer network, a client PC system connects to a server host; there is
no peer server. A

The remote FSD, which resides in a client machine, connects to the server
through some network medium and protocol. IFS requests on the client machine
are redirected by the remote FSD to the server. The shared resource can be a char-
acter or block storage device.

FSD Mechanics 147

Remote FSDs register with IFSMgr by calling the service IFSMgr_RegisterNet. The
registering FSD passes the address of its FS_ConnectNetResource entry point.
Dynamic connections to remote resources are made using the service IFSMgr_
SetupConnection and broken by IFSMgr’s internal function IoreqDerefConnection.
These services call FS_ConnectNetResource and FS_DisconnectResource, respec-
tively. A connection is attempted when a UNC path is resolved to a remote server
and share. If the connection is mapped to a volume, then the connection persists
until the volume is explicitly unmapped. Each connection to a unique remote
server and share is represented by a shell resource.

To support the Windows 95 peer-to-peer networking, Microsoft Networks and
Microsoft Netware Networks clients and servers are included in the package. The
Microsoft Networks client is the remote FSD, vredir.uxd, and its matching server is
vserver.vxd. These components work with NetBEUI, TCP/IP, and IPX/SPX proto-
cols through the NetBIOS interface. When an IFS request is redirected by VREDIR,
it is in the form of the Server Message Block (SMB) protocol. VSERVER interprets
the SMB protocol and, if appropriate, generates an IFS request on the server
machine using the IFSMgr_ServerDOSCall service. The results of the request are
then returned via the SMB protocol.

" In a similar fashion, the Netware Networks client is the remote FSD, nwredir.vxd,
and its matching server is nwserver.vxd. These components work with the IPX/
SPX protocols. When an IFS request is redirected by NWREDIR, it is in the form
of the Netware Core Protocol (NCP). NWSERVER interprets the NCP protocol and,
if appropriate, generates an IFS request on the server machine using the IFSMgr_
ServerDOSCall. The results of the request are then returned via NCP.

FSD Mechanics

There are certain characteristics of an FSD that you must understand to use them
properly: the contents of the Device Description Block; whether it is static or
dynamic; how it can be segmented; and how it is affected by multiple threads.

Device Descriptor Block

As with other VxDs, an FSD requires a Device Descriptor Block. Generally, there
is no need to export services or APIs, since linkage with IFSMgr is established
dynamically. This implies that the DDB’s protected-mode and virtual-86 API
entries, as well as its service table, will be empty. This rule holds at least for local
FSDs, but the other types of FSDs do not fit this mold. Remote FSDs export
services that are needed by other network components and in the case of
VCOND, a character FSD, it has every possible interface: V86 and PM APIs, Win32
services, and standard VxD services.

148 Chapter 8: Anatomy of a File System Driver

Initialization order for a static FSD is important. The header file vmm.b defines
the manifest constant FSD_INIT _ORDER (0xa0010100) as the base value for FSDs.
This assures that they load after IFSMgr. This is the Init_Order assigned to VFAT,
CDFS, and VDEF. But again there are exceptions to the rule. In the case of remote
FSDs, the Init_Order may also require that other network components be loaded
before the FSD. For example, VREDIR has an Init_Order of 0xa0021000, which
assures that it loads after IFSMgr and also after vnetsup.vxd. VCOND breaks even
this rule by having an Init_Order of UNDEFINED_ORDER (0x80000000) that is less
than IFSMgr. It gets away with this because VCOND does not register its character
device with IFSMgr until a V86 API is called in response to running a console
application. This is long after IFSMgr has completed its initialization.

All VxDs have a control procedure and FSDs are no different.

Static or Dynamic?

The DOS/Win32 Installable File System Specifcation is emphatic about FSDs being
static drivers. On page 3, it states:

The FSDs will be loaded and initialized when the system starts up. Once they are
loaded they will remain loaded until the system hardware is shutdown or
rebooted.

This makes sense because a file system has to be in place for the operating
system to start up. However, there may be circumstances where an FSD might
load dynamically; this is especially true of character FSDs.

If you intend to unload the FSD as well, one precaution needs to be observed.
This arises because registering an FSD with IFSMgr creates a permanent linkage to
the mount entry point and, in the case of character FSDs, a list of device names.
Removing these from memory by performing an unload may eventually lead to a
page fault. One work-around is to make the segment containing the mount entry
point and device names a static segment.

OEM Service Release 2 appears to expand the options available to. FSDs. Although
the services are undocumented at this time, two new services are provided for
registering and deregistering FSDs with IFSMgr. (See Chapter 12, A Survey of
IFSMgr Services.) '

Segmentation

This section may seem to be an anachronism; after all, weren’t segments
supposed to go away with 32-bit code? Segmentation as used here might be more
accurately thought of as groupings of code or data with similar attributes. For
instance, some code gets discarded after Device Init, other code is locked in

FSD Mechanics ‘ 149

memory and never swapped to disk, while pageable code may be paged-out
when demands upon system memory require it. Although these code and data
areas are distinct “objects” with different memory attributes, they are part of the
continuum of the 4-gigabyte address space and thus don’t require selector
changes when switching from one to another.

The segmentation of a VxD is rooted in its linear executeable (LE) file format.
Each grouping of code or data is assigned to a distinct object in the file. The
attributes of each object determine what the loader does with it. An object will be
created for each unique (non-empty) segment in the assembly language source.
Traditionally, a macro from vmm.inc is used to specify the segment directives in a
VxD.

Using C to write VxDs is more typical today and this change requires using a
different sort of macro to specify segmentation. These new macros are found in
vmm.b. The more common ones are reproduced in Example 8-1.

Example 8-1. Segmentation Pragmas

#define VxD_LOCKED_CODE_SEG code_seg ("_LTEXT", "LCODE")
#define VxD_LOCKED_DATA_SEG data_seg ("_LDATA", "LCODE")
#define VxD_INIT_ CODE_SEG code_seg ("_ITEXT", "ICODE")
#define VXD_INIT_DATA_SEG data_seg ("_IDATA", "ICODE")

#define VxD_PAGEABLE_CODE_SEG code_seg ("_PTEXT", "PCODE")
#define VxD_PAGEABLE_DATA_SEG data_seg ("_PDATA", "PDATA")
#define VxD_STATIC_CODE_SEG code_seg ("_STEXT", "SCODE")
#define VxD_STATIC_DATA_SEG data_seg("_SDATA", "SCODE")

The keywords code_seg and data_seg are pragma directives specific to the
Microsoft compiler. The first argument in parentheses is the Portable Executable
section name and the second argument is a class name. At the compile stage, a
COFF object module is created with each segment name mapped to the named
section. At the link stage, instead of creating a portable executeable (PE) format
EXE file, the linker generates a VxD with the OBJ’s sections mapped to linear
executeable objects.

Example 8-2 shows a C code fragment using pragmas to set the code and data
segments. The assembly language output from the compiler for this fragment is
given in Example 8-3. To assure that pageable_item is assigned to the proper
segment (_PDATA), it is necessary to initialize it; otherwise the variable will be
assigned to the _DATA segment, the default segment for uninitialized data.

Segmentation also affects which library routines are statically linked to a VxD. The
libraries VXDWRAPS and IFSWRAPS create six versions of each routine, one
specific to each of the main segment types. The name of a library routine is
prefixed by the name of the segment it resides in. By default, the header file
vxdwraps.h sets the macro CURSEG() to return LCODE, so locked segment

150 Chapter 8: Anatomy of a File System Driver

versions are used. For instance, if you are calling IFSMgr_InstallFileSystemApi-
Hook only from Device Init, but you link in the “locked” segment version, that
routine will remain part of your memory image after initialization, although you
have no intention of calling it again. To call a library routine in a specific
segment, redefine CURSEG() to the required segment; for example, CURSEG is
defined as PCODE in Example 8-2.

Example 8-2. Pageable C Code and Data

1171177777707777177777171717177
#pragma VxD_PAGEABLE_CODE_SEG
#pragma VxD_PAGEABLE_DATA_SEG
#pragma warning (disable:4005)
#define CURSEG() PCODE
#pragma warning (default:4005)
111117111717111711171111171717
int pageable_item = 0;

void pageable_func() {}

Example 8-3. Assembly Language for C Sample

_PDATA SEGMENT
_pageable_item DD 00H

_PDATA ENDS

PUBLIC _bageable_func
_PTEXT SEGMENT

_pageable_func PROC NEAR

; 494 : void pageable_func() {}

00000 55 push ebp
00001 8b ec mov ebp, esp
00003 53 push ebx
00004 56 push esi
00005 57 push edi
$L5493:
00006 5f pop edi
00007 S5e pop esi
00008 5b pop ebx
00009 c9 leave
0000a c3 ret 0
_pageable_func ENDP

_PTEXT ENDS

The segment prefixes are as follows:

LCODE for VXD_LOCKED_CODE_SEG
ICODE for VxD_INIT_CODE_SEG
PCODE for VXD_PAGEABLE_CODE_SEG
SCODE for VXD_STATIC_CODE_SEG

FSD Mechanics 151

DCODE for VXD_DEBUG_ONLY_CODE_SEG
CCODE for VXD_PNP_CODE_SEG

An FSD may have a need for all of the segment types in Example 8-1. Only
general recommendations can be given here. Here are some general rules of
thumb for placement of FSD code and data into segments:

e If the code or data will be hit during swap file or memory-mapped file han-
dling, then this code and data must be locked. This will apply to most of the
code and data in a local FSD which supports a swap file. We see this with
VFAT, where the bulk of the code lies in VXD_LOCKED_CODE_SEG and
VXD_LOCKED_DATA_SEG.

e A character FSD may place the bulk of its implementation in pageable seg-
ments.

* Any initialization code and data, such as routines specific to System Critical
Init, Device Init, and Init Complete phases, should be placed in VXD_INIT_
CODE_SEG and VXD_INIT_DATA_SEG segments. Usually, an FSD will check
the IFSMgr version number and register with IFSMgr at this time. This code is
discarded after Init Complete phase.

e As with other VxDs, the control procedure and device descriptor block must
reside in locked code and data segments.

e If the FSD is dynamically loaded and unloaded, place its mount entry point
and device names (if a character FSD) in static code and data segments.

Multi-Threading Considerations

As noted in Chapter 7, Monitoring File Activity, the path through the file system is
multi-threaded. This will have an impact on the design of an FSD. Any global data
accessed by more than one thread in an FSD must be protected by synchroniza-
tion primitives. A variety of synchronization services are supplied by VMM to fill
this need.”

In the sample FSDs described at the end of this chapter, I use a simple technique
based on blocking identifiers. To gain access to a critical section containing a
shared resource, the following page-locked code acts as a guard:

DWORD claim_ resource = -1;

_asm pushfd /* save interrupt flag */

get_resource:
asm = cli

* For a good discussion of synchronization services, see Walter Oney’s account in Systems Programming
Jfor Windows 95 (Microsoft Press), Chapter 9.

152 Chapter 8: Anatomy of a File System Driver

_asm inc claim_resource

_asm jz got_resource

_BlockOnID((DWORD)&claim_resource, 0);

_asm Jmp short get_resource
got_resource:

_asm popfd /* restore interrupt flag */

The variable claim_resource is initialized to —1. If another thread is currently using
the resource, then on entry claim_resource will be greater than or equal to 0, and
the increment instruction will not set the zero flag. This will cause the thread to
execute the VMM service _BlockOnID, which will block the thread on the speci-
fied blocking ID (the address of the variable claim_resource). Interrupts are
disabled to assure that _SignallD is not called before the thread blocks.

If the resource was not already in use when entering the above code, then claim_
resource will be set to 0 and the thread will continue execution at the label got__
resource. The thread then does whatever it needs to do within the critical
section, and then on leaving it executes this code:

_asm dec claim_resource
_asm jl released_resource
asm mov claim_resource, -1

_SignalID((DWORD)&claim_resource);
released_resource:

If only a single thread has attempted to claim the critical section, then on leaving,
the variable claim_resource will be 0, and decrementing it will restore it to -1 and
execution will continue at the label released resource. However, if one or
more threads have been blocked attempting to get at the resource, then claim_
count will be greater than or equal to zero after the decrement operation. In this
case, claim_resource is reset to —1, all threads which are currently blocked on the
specified blocking ID are signaled by the call to the service _SignallD, and then
the critical section is left. Since all threads blocked on the &claim_resource 1D
will be awakened, the first one to retry the get_resource test above will be able
to access the critical section.

FSD Linkage

Although much of IFSMgr’s internals are undocumented, perhaps an area where
documentation is most sorely missed is in how IFSMgr and FSDs establish their
linkage. A better understanding of this linkage can help when analyzing certain
kinds of bugs, like “Why doesn’t IFSMgr call my FSD?” or “Why isn’t my FSD
mounted?”

The process of making a device visible to IFS is called mounting if the device is
local, or connecting if the device is remote. The reverse processes, dismounting
or disconnecting, remove a device from the system. At the FSD level, mounting is

FSD Linkage 153

handled by FS_MountVolume, connecting is handled by FS_ConnectNetResource,
and dismounting and disconnecting are handled by FS_DisconnectResource.

First, we’ll review how FSDs register with IFSMgr. Then we’ll examine the
processes of mounting and dismounting, as well as connecting and disconnecting,
in detail. In the descriptions which follow, only the commonly traversed pathways
through the file system are examined during the mounting and dismounting of
local drives and character devices. Many “corner cases” are left unexplored so as
not to distract you with additional details that do not clarify the overall picture.

FSD Registration

The FS_MountVolume and FS_ConnectNetResource functions are installed by
each FSD through one of the registration calls to IFSMgr. Recall that there are
three different types of registration: IFSMgr_RegisterMount, IFSMgr_RegisterNet,
and IFSMgr_RegisterCFSD, corresponding to local FSDs, remote FSDs, and char-
acter FSDs. The provider IDs returned by IFSMgr_RegisterMount and IFSMgr_
RegisterNet form a continuous range 0 through 9 for local FSDs and 10 through
17 for remote FSDs. IFSMgr creates a function pointer table, MountVolTable[],
of 18 entries, where FS_MountVolume and FS_ConnectNetResource addresses are
stored. (When searching for a remote FSD, sometimes the elements 10 through 17
are treated as a separate table, ConnectNetTable[].) Given a provider ID, a
mount operation is performed by a call, such as

(*MountVolTable[provider ID]) (pifs)
or, if a file system hook is to see the call, by
Call_FSD(MountVolTable[provider ID], IFSFN_CONNECT, pifs, FALSE)

Character devices store their mount function pointers in a table separate from
local and remote FSDs. The elements in this table are structures with two
members:
typedef struct { int (*mntfunc) (); PathElement* pDevName[]; }
CHARDEV, *PCHARDEV;

The first member, mntfunc, holds the address of the mount function, and the
second member, pDevName, is. a pointer to an array of pointers to device names
stored as PathElements. Up to 8 character FSDs can be registered with IFSMgr
and these are stored in an array I've named MountCharTable[]. Once a
matching device name is located in MountCharTable[], its accompanying mount
function can be called like this:

Call_FSD(MountCharTable[i] .mntfunc, IFSFN_CONNECT, pifs, FALSE)

154 Chapter 8: Anatomy of a File System Driver

Mounting a Local Drive

A local drive will be mounted the first time it is accessed and on the first access
after its media has changed. Any file system request that references a volume may
initiate a mount operation if that volume is not already mounted. In practice, the
system drive will be accessed first and mounted first, but only after IFSMgr has
completed its Device Init phase. It is during the Device Init phase that IFSMgr
initializes its internal data structures to reflect known drives in the system as deter-
mined by examining the DOS CDS array and querying IOS for drive information.
For each such drive detected, a zero-filled volinfo structure is allocated and its
address stored in SysVolTable[]. Recall from Figure 6-2 that for each local
volume (volnum 0-31), SysVolTable[volnum] contains the address of a
volinfo structure. The first member of the volinfo structure, vi_psr, is a pointer
to the volume’s shell resource structure (see Appendix C, IFSMgr Data Structures,
for details on the volinfo structure).

The first access to a local drive typically occurs through IFSMgr’s Int 21h dispatch
routines. These routines indirectly rely upon a pair of IFSMgr’s internal functions
to check if a mount is needed (_NeedMount) and to actually perform the mount
(_Gen_FSMount_IFSReq). The prototype for _NeedMount has this form:

BOOL _NeedMount(ifsreq* pifs, int Drive, BOOL bChgReset)

If the function returns TRUE, the specified zero-based Drive needs to be mounted.
The variable pifs holds a pointer to the ifsreq structure for the current file system
request, and the variable bChgReset indicates whether the IOS function for media
change reset is to be called.

One indicator that a drive needs to be mounted is given by SysvVolTable[]. If
the indexed entry is NULL, or if the volinfo member which points to the shell
resource (SysVolTableldrivel->vi_psr) is NULL, the drive needs to be mounted.
After a successful mount, volinfo and shell resource structures are allocated and
initialized.

To do the mounting operation, _Gen_FSMount_IFSReq is called. It has the
prototype:

int _Gen_FSMount_IFSReq(int Drive, int arg2)

This function and subfunctions which it calls ultimately call FS_MountVolume on
the FSD which supports the drive. The steps which are taken can be summarized
as follows:

¢ Allocate an ifsreq structure and initialize its contents

e If SysVolTable[Drive] is NULL, allocate a volinfo structure and insert it
in SysVolTable[Drivel '

FSD Linkage 155

®

Allocate a shell resource structure

Fill in the ifsreq structure with parameters specific to a FS_MountVolume
call:

— ir_volb = address of 10S’s VRP structure for Drive

— ir_rb = address of first DOS DPB

— ir_fb = address of shell resource

— ir_mntdrv = Drive

— ir_flags = the type of mount operation (JR_FSD_MOUNT)

— ifs_drv= Drive+ 1

— ifs_psr = address of shell resource

look up the provider ID in the array Vol_to_ProId[] indexed by Drive

— if the value is 0xff, start with provider ID of the last registered local FSD

— if the value is 0, start with the provider ID of last registered local FSD

— for any other value, use it as an initial provider ID

Step A: attempt to mount Drive using FS_MountVolume function by calling:
Call_FSD(MountVolTable[provider ID], IFSFN_CONNECT, pifs, FALSE);

If mount succeeds, add address of shell resource to SrTable[]:

1. Fill in the shell resource structure,

- 2. Insert address of shell resource in the volinfo structure,

3. Send an IFSMgr_NetFunction broadcast of type NF_DRIVEUSE,

4. Call_FSD(pifs->pfs_psr->sr_func.uflVEN_DIR], IFSEN_DIR, pifs, FALSE) to
check that the directory in the drive’s CDS (current directory structure)
“exists,

5. Update 10S’s VRP structure for Drive,
and save the succeeding provider ID in Vol_to_ProId[Drivel; go to step B
If mount fails, and provider ID > 0, decrement provider ID, and repeat from
step A;
If mount fails, and provider ID is 0, go to step B;
Step B: if provider ID > 0, notify IOS of the mount using IRS_MountNotify
Free the ifsreq structure

Return the ir_error value

A drive created as a subst alias of an existing logical drive and subdirectory is a
special case. In this case, a volinfo structure is created which references the

156 Chapter 8: Anatomy of a File System Driver

parent drive’s shell resource. Three members of a volinfo structure are used to
track the subst drive: vi_drv contains the volume number for the referenced drive,
vi_subst_path is the null-terminated Unicode string of the complete path to which
the subst drive refers, and vi_leng contains the length of the Unicode string in
bytes. While the creation of such a drive generates IFSMgr_NetFunction (NF._
DRIVEUSE) notifications, there is no underlying call to the parent FSD’s FS_
MountVolume entry point. Figure 8-1 shows the relationships between the various
data structures used to track standard and subst local drives.

SysVolTable

volinfo

Shell Resource

Figure 8-1. subst drive K mapping to C:\WIN

Mounting a Character Device

As with local drives, a character device will be mounted the first time it is
accessed. Any file system request that references a registered device name will
initiate a mount operation if that device name is not already mounted. The first
access to a character device typically occurs through IFSMgr’s Int 21h dispatch
routines. These routines rely upon IFSMgr’s internal function, _PathToShRes, to.
convert a pathname into a shell resource. This function distinguishes device
names, local file pathnames, and UNC names by inspecting an undocumented
return code from IFSMgr_ParsePath (see Chapter 12). The parser always checks
the last PathElement to see if it is a registered device name or a DOS device
name.

The function prototype for _PathToShRes has this form:
int _PathToShRes(ifsreq* pifs, int wildcards)

where pifs is a pointer to the ifsreq structure for the current file system request
and wildcards indicates how wildcards are to be treated; a value of 0 for no

FESD Linkage v 157

wildcards, a value of 1 to accept long filename wildcards, and a value of 2 to
accept “8.3” wildcard names. Calling _PathToShRes with pifs->ifs psr set to NULL
and with pifs->ir_data containing a pathname which is a device name will initiate
mounting of the character device. Here, in summary, are the steps taken:

e Using the last PathElement parsed in the input pathname, search through
MountCharTable[] for a matching registered device name; if a match is
found, return two indexes, one to MountCharTable[] and one to Mount-
CharTable[i] .pDevNames|]

e Insert this device into the CharSrTable[] array; each entry consists of two
DWORDS: the first is the pair of indexes returned in the previous step and
the second will hold the address of the corresponding shell resource;
CharSrTable[] can hold up to 64 device names

e Allocate and initialize an ifsreq structure
e Allocate storage for a shell resource

e Fill in the ifsreq structure with parameters specific to a FS_MountVolume
call: '

— ir_volb = address of IOS’s VRP structure for the character device; if one is
returned by IOS_Requestor_Service, IRS_GET_VRP; otherwise NULL

— ir_fb = address of shell resource
— ir_flags = the type of mount operation (JR_FSD_MOUNT)
— ifs_psr = address of shell resource
— ifs_proid = provider ID of character device (index to MountCharTable[])
- — ir_aux2 = index into MountCharTable [provider ID].pDeviName|]

e Call the FS_MountVolume entry point for the device using:
Call_FSD(MountCharTablelil. mnifunc, IFSEFN_CONNECT, pifs, FALSE)

e If the mount succeeds, insert the address of the shell resource into CharSr-
Tablell

e Initialize the contents of the shell resource

Figure 8-2 illustrates the relationships between the data structures used to track
character devices. ‘

Dismounting a Local Drive

Mounts of local drives are intended to be static, with the exception of drives
which support removable media. For example, CD-ROM FSDs are provided with.
the services IFSMgr_CDROM_Attach and IFSMgr_CDROM_Detach, to asynchro-
nously mount and dismount a CD-ROM drive. Fixed media drives will only

158 Chapter 8: Anatomy of a File System Driver

MountChar Table CharSr Table

Shell Resource

pDevNames

Figure 8-2. Using a CharSrTable to get device name (“zeta”) and mount function (funcl)

dismount at system shutdown. To be more exact, when IFSMgr receives the
System Exit control message, it will procede to dismount local drives, in reverse
order, from the last mounted to the first.

IFSMgr uses an internal function to perform the dismount (_Dismount_Local_
Drives). The prototype for _Dismount_Local_Drives has this form:

void _Dismount_Local_Drives(ifsreq* pifs)

The variable pifs holds an ifsreq structure which has been allocated and initial-
ized for the function call.

_Dismount_Local_Drives and the functions it calls attempt to reduce the reference
counts on the various data structures that track the local drives. This involves
closing any open files, reclaiming heap allocations, and ultimately calling FS_
DisconnectResource on each volume.

IFSMgr maintains a single table, SrTable, containing addresses of shell resource
structures for local drives and remote connections. Two separate one-way linked
lists thread their way through the table. The heads for these lists are Head_Local_
Srs, for the shell resources which refer to local drives, and Head_Net_Srs, for shell
resources which refer to network resources. To dismount all local drives, IFSMgr
starts at Head_Local_Srs and walks the list to remove each shell resource. The
steps which are taken to dismount each shell resource can be summarized as
follows: '

1. Walk list of local shell resources (a nested walk) for those having a matching
VRP address close open files on the volume.

FSD Linkage 159

2. Walk list of local shell resources (a nested walk) for those having a matching
VRP address and a non-zero sr_inUse. Remove any remaining references such
as subst drives.

3. Do a final IoreqDerefConnection which reduces the sr_inlUse to zero and
forces a FS_DisconnectResource call on the volume; this call also frees the
shell resource structure if it succeeds, followed by removal of the resource
from the SrTable with adjustment of Head_Local_Srs.

Finally, for each drive which has been removed, perform these steps:

1. Generate an IFSMgr_NetFunction broadcast of type NF_DRIVEUNUSE.
2. Free the volinfo structure storage.

3. For subst drives, also copy the complete pathname to the DOS CDS structure.

Dismounting a Character Device

As with local drives, mounts of character devices are usually static, with IFSMgr
automatically dismounting the devices when the system exits and IFSMgr receives
the System Exit control message. However, [FSMgr also provides the service
IFSMgr_FSDUnmountCFSD for dynamically dismounting a character FSD.

IFSMgr uses an internal function to perform the dismount (_Dismount_Char_
Devices). The prototype for _Dismount_Char_Devices has this form:

void _Dismount_Char_Devices(ifsreg* pifs)

The variable pifs holds a pointer to an ifsreq structure which has been allocated
and initialized for the function call. _Dismount_Char_Devices and the functions it
calls attempt to reduce the reference counts on the various data structures that
track the character device. This involves closing any open handles, reclaiming
heap allocations, and ultimately calling FS_DisconnectResource on each device.

IFSMgr maintains a separate table, CharSrTable, containing addresses of shell
resources for character devices and printers. A one-way linked list threads
through the table. The head for the list is Head_Char._Srs, and starts with the most
recently mounted character device. To dismount all character devices, IFSMgr
starts at Head_Char_Srs and walks the list, removing the resources associated
with each device. The steps which are taken at each shell resource in the list can
be summarized as follows:

e If the resource has a non-zero sr_inUse and a valid pointer to a chain of fhan-
dles, the corresponding handles are closed, thereby reducing the sr_inUse.

e Sr_inUse is decremented.

160 Chapter 8: Anatomy of a File System Driver

¢ The internal function, IoreqDerefConnection, is called for the shell resource;
if the sr_inUse decrements to zero, FS_DisconnectResource is called for the
character device, the heap allocation for the resource is freed, and it is
removed from CharSrTable with adjustment to Head_Char._Ss.

FSD Connecting

Some examples of connections are mapping a local drive letter to a remote server
and share name, and accessing a remote file by a UNC pathname.

Drive-based connections

When mapping a local drive to a remote drive and directory, the standard connec-
tion dialog is displayed in response to the WNetConnectionDialogl API. The
information gathered by this dialog is used by the Multiple Provider Router (MPR)
to route the request to an appropriate Network Provider and call that provider’s
NPAddConnection SPI.

The Network Provider then passes the request to the remote FSD, using the Devi-
celoControl, IFS_IOCTL_21, interface. As an example, for Microsoft Networks, Int
21h function 5F47h (NetUseAdd, a Lan Manager DOS extension), is called. This
function receives the following register arguments: BX is the level number, either
1 or 2; CX is the size of the use_info structure; and ES:DI is a pointer to the use_
info structure. The use_info structure which is passed to NetUseAdd is either a
use_info_1 or a use_info_2 structure, depending on the level of the call. As
part of its argument checking, IFSMgr verifies the size (CX) of the use_info struc-
ture to be either 26 bytes for use_info_1 or 52 bytes for use_info_2. This
function is actually handled by IFSMgr’s dispatch function dNetFunc. A similar Int
21h function, Make Net Connection, 5F03h, serves the same purpose but uses
different arguments.

The handlers for Int 21h functions 5F03h and 5F47h massage the input parameters
and call a common internal IFSMgr function which I've named _UseAdd. This
function can also be accessed at ring-0 through the service IFSMgr_UseAdd. This
internal function, _UseAdd, is a frontend to a call to IFSMgr_SetupConncctlon
The function prototype for _UseAdd takes this form:

_UseAdd(ifsreq* pifs, void* pinfo, int connstatus, int bStatic)

The calling arguments consist of pifs, a pointer to the ifsreq structure; pinfo, a
structure containing information about the mapping; comnnstatus, an integer
having the value 0 if the resource is setup connected and 1 if the resource is
setup disconnected; bStatic, a Boolean which is 0 if the connection is to be estab-
lished at system startup (static), and 1 if the connection is established by the user.

FSD Linkage 161

The use_info_1 structure has the following declaration:

typedef struct use_info_1 {

char ui2_locall[9]; // ASCIIZ local drive letter ("F:") or device
// name

char ui2_pad_1; // unused

char* ui2_remote; // pointer to ASCIIZ remote UNC pathname

char* ui2_password; // pointer to ASCIIZ password (NULL if none)

WORD wui2_status; //

WORD ui2_asg_type; // type of resource connected to
// (USE_DISKDEV, etc.)

WORD wui2_refcount; //

WORD wui2_usecount; //

}

use_info_1, * puse_info_1;
The declaration for the use_info_2 structure is given in i#fsmgrex.b on the
companion disk. The only members which _UseAdd cares about are ©i2_local,
ui2_remote, ui2_password, and wui2_asg _type, whether pinfo points to a use_
info_1 or use_info_2 structure. (Note that the use_info_2 structure given in
the DDK file ifsmgr.inc is not correct.)

_UseAdd performs several preliminaries prior to calling IFSMgr_SetupConnection:

e Validates the local drive (from wi2_local) to use in a mapping, and verifies it
is not a drive in use and does not exceed the “last drive” limit; the local drive
number (1-based) is placed into pifs->ifs_drv.

o If a printer port is specified in place of a drive letter, e.g., LPT1, a drive num-
ber is. assigned in the range 21h to 2%h for LPT1 to LPT9 and is placed into
Difs->ifs_drv (it isn’t clear how generic character devices are redirected).

e Validates the server name and share name (from ui2_remote) via a call to
IFSMgr_ParsePath; this path must be a UNC path or a path which has been
parsed by a custom parser installed via IFSMgr_SetPathHook; the resultant
ParsedPath is stored to pifs->ir_ppath, e.g., \\SERVER\SHARE.

e Allocates a volinfo structure which is stored to SysVolTable[pifs->ifs_drv-1].
_UseAdd then calls IFSMgr_SetupConnection with these arguments:
IFSMgr_SetupConnection(pifs, RESOPT_DEV_ATTACH, RESTYPE_DISK)

The contents of the ifsreq structure are modified to reflect the arguments passed
to _UseAdd. This form of connection is referred to as a “drive-based” connection
in the IFS specification.

Now what does IFSMgr_SetupConnection do internally? Without getting into all of
the details and handling of error and exceptional conditions, here are the basic
steps it takes:

1. Allocate a block in which to store a shell resource structure.

162 Chapter 8: Anatomy of a File System Driver

2. If an explicit ifs_proid is stored in ifsreq, then call the FS_ConnectNetRe-
source function indexed in the MountVolTable[]; this call is direct to the
table function.

3. If ifs_proid is ANYPROID (any provider), then look up the server name in the
name cache and if found, convert the returned NetID to a provider ID; then
call the FS_ConnectNetResource function indexed in MountVolTable[]; this
call is made via Call_FSD, so it will be seen by a file system hook.

4. If ifs_proid is ANYPROID and the server name is not in the name cache, then
attempt to call FS_ConnectNetResource for each registered net provider in the
table ConnectNetTablel[], until one succeeds or the list is exhausted; these
calls are made via Call_FSD, so they will be seen by a file system hook.

5. If FS_ConnectNetResource succeeds, then add the server name to the name
cache; adjust the ir_ppath member of the ifsreq structure to advance past
the first two PathElements for server and share names; insert the address of
the shell resource into the SrTable and, finally, fill in the shell resource struc-
ture; the sr_flags member of the shell resource has only the IFSFH_RES_
NETWORK attribute.

6. If FS_ConnectNetResource fails, then IFSMgr_SetupFailedConnection is called
to give an FSD that hooks this function a chance to emulate network services
when the net provider is not available; the default implementation of this
service by IFSMgr simply returns the error ERROR_BAD_NET_PATH (35h);
finally, the block of memory allocated for the shell resource is freed.

If IFSMgr_SetupConnection returns to _UseAdd without error, the volinfo struc-
ture is filled in with the address of the shell resource. An IFSMgr_NetFunction
broadcast is generated of type NF_DRIVEUSE, indicating that a new drive has
appeared in the system. The DOS CDS structure for the drive is also updated for
each VM. Finally, a callback is scheduled (using SHELL_CallAtAppyTime) to a
function which broadcasts a plug-and-play event using the function call:

IFSMgr_PNPEvent (DBT_DEVICEARRIVAL, drvnum, PNPT_VOLUME | DBTF_NET)

_UseAdd also clears the ifs_psr member of the ifsreq structure. This step assures
that the connection’s reference count is not immediately decremented by a call to
IoreqDerefConnection.

UNC-based connections

The path that we have just traced is the system response to the deliberate
mapping of a drive. IFSMgr_SetupConnection is also called when a UNC path-
name is processed by IFSMgr’s Int 21h dispatch routines. Many of the dispatch
routines, including dRing0_OpenCreate, dOpenCreate, dMkRmDir, dChDir, dGet-
CurDir, dAttribs, dGetVolInfo, dDelete, dGetFullName, dFindFile, dRename,

FSD Linkage 163

dSubst, and dloctl, use IFSMgr’s internal function _PathToShRes to convert a path-
name, UNC or otherwise, into a shell resource. These “connections on demand”
are made by a call to IFSMgr_SetupConnection, which takes this form:

IFSMgr_SetupConnection(pifs, RESOPT_UNC_REQUEST, RESTYPE_WILD)

This call establishes what the IFS specification refers to as a UNC-based connec-
tion. It follows the same basic steps as described above for drive-based
connections. The sr_flags member of the shell resource for a UNC-based connec-
tion has both IFSFH_RES' NETWORK and IFSFH_RES_UNC attributes set.

One of the main differences between a UNC-based and a drive-based connection
is in the way the connection’s reference count is maintained. For a UNC-based
connection the reference count is decremented by a call to IoreqDerefConnection
as soon as the dispatch function completes. This happens because the ifs_psr
member of ifsreq is not cleared before returning to the dispatcher. This would
seem to suggest that UNC-based connections only last for the length of a file
system request if the reference count drops to zero. This is not the case and we’ll
see why when we look at how UNC-based disconnection occurs.

FSD Disconnecting

Some examples of disconnection are removing a drive letter mapping to a remote
server and share name and automatic disconnection after a period where a
connection is not used.

Drive-based disconnection

Disconnecting a mapping of a local drive to a remote drive and directory is
accomplished by the WNetCancelConnection2 API. The parameters passed to this
function are used to create a call to NPCancelConnection corresponding to the
Network Provider for the specified server. The Network Provider then passes the
cancel request to the remote FSD, again using the DeviceloControl, IFS_IOCTL _
21, interface. As an example, for Microsoft Networks, Int 21h function 5F48h
(NetUseDel, a Lan Manager DOS extension) is called. This function receives the
local drive name or the remote device UNC name which is to have the mapping
canceled. This function is actually handled by IFSMgr’s dispatch function dNet-
Func. A similar Int 21h function, Delete Net Connection, 5F04h, serves the same
purpose but uses different arguments.

The handlers for Int 21h functions 5F04h and 5F48h massage the input parameters
and call a common internal IFSMgr function which I've named _UseDel. This func-
tion can also be accessed at ring-0 through the service IFSMgr_UseDel. This
internal function, _UseDel, is a frontend to a call to another internal function,
ToregDerefConnection.

164 Chapter 8: Anatomy of a File System Driver

The function prototype for _UseDel takes this form:
_UseDel (ifsreq* pifs, int drvnum, int ForceLevel);

The calling arguments include pifs, a pointer to the ifsreq structure; drvnum,
the one-based local drive which is to be unmapped; and Forcelevel, the force
level to use for the disconnection. There are four force levels which are inter-
preted differently depending on the resource connected to. In the case of a drive-
based disconnection, force levels 0 and 1 will fail if there are any open files on
the mapped drive or if it is the current drive, whereas force level 2 closes open
files and then disconnects the drive, but will fail if it is the current drive, and force
level 3 closes open files and disconnects the drive even if it is the current drive.

_UseDel performs the following steps when called with a mapped-drive argument:

1. Reconcile drive number, provider ID, and shell resource.

2. Look up volinfo structure in SysVolTable[]; if connection is static, fails
the disconnect unless ForceLevel is greater than or equal to 4.

3. Verify that drive’s DOS CDS attributes word at offset 43h has the value
0xC000.

4. If the ForceLevel is less than 3, check if the mapped drive is the current drive
in any VM,; if so, then fail the disconnect.

5. If the ForceLevel is less than 2 and there are open files on the mapped drive,
fail the disconnect; if the ForceLevel is 2 or greater and there are open files on
the mapped drive, close the files one by one.

6. Remove volinfo from SysVolTablel].

7. Decrement the reference count in the shell resource, vi_psr.

8. Broadcast IFSMgr_NetFunction NF_DRIVEUNUSE, to notify that the drive has
gone away.

9. Clear the drive’s DOS CDS entries for each VM.

10. Free the memory block used by volinfo.

11. Schedule callback to broadcast a Plug and Play event:

IFSMgr_PNPEvent (DBT_DEVICEREMOVECOMPLETE, drvnum,
PNPT_VOLUME | DBTF_NET)

12. ToregDerefConnection decrements the shell resource’s reference count; since
it drops to zero and this resource does not have the IFSFH_RES UNC
attribute, call FS_DisconnectResource on this resource, remove it from
SrTable, and free the shell resource’s memory block.

MONOCFSD: A Character File System Driver 165

UNC-Based Disconnection

UNC-based connections persist as long as the connection’s reference count does
not drop to zero. Some actions on a connection keep the connection open until
the actions are explicitly undone, e.g., opening a file will increment the reference
count until a close on that file decrements the reference count.

Other file system requests will only keep the reference count incremented for the
duration of the operation. For example, checking the file attributes on an explicit
UNC pathname will create a UNC-based connection via a call to _PathToShRes.
After the request has been completed, the dispatcher will check for a non-zero ifs_
psr member of the ifsreq structure. If it is non-zero, IoreqDerefConnection will
be called to decrement its reference count. If the reference count drops to zero,
then the sr_flags for the shell resource are checked for the IFSFH_RES_UNC
attribute. If this attribute is set, the connection is not immediately disconnected, as
would be the case with a drive-based connection. Instead, the shell resource’s
reference count is left as zero to mark the connection for removal.

In order for one of these marked UNC-based connections to get removed it needs
to “age” a few minutes. To handle the aging of these connections and their even-
tual removal, IFSMgr schedules a recurring event every 120 seconds. The event
handler walks the list of current connections and looks for two special connection
states. The first state is a UNC-based connection which has a reference count of
zero. When a connection with this state is found it is advanced to the next state.
The state change is indicated by modifying the shell resource’s sr_flags from
IFSFH_RES_NETWORK | IFSFH_RES_UNC to IFSFH_RES_NETWORK | IFSFH_RES._
UNC | 0x02.

If the connection to this particular server and share gets used before it is
removed, the state gets reset on a call to IoreqDerefConnection. However, if the
connection remains idle for 120 seconds until the next event, the event handler
changes the sr_flags once more from IFSFH_RES_NETWORK | IFSFH_RES_UNC |
0x02 to I[FSFH_RES_NETWORK | 0x02.

The connection’s reference count is incremented to 1 and then IoreqDeref-
Connnection is called. This disconnects the resource, removes it from the shell
resource list, and frees the resource’s memory block.

MONOCFSD: A Character File
System Driver

In this section, we'll look at a sample file system driver, MONOCFSD, which is a
character FSD that drives a monochrome monitor. The complete source for

166 Chapter 8: Anatomy of a File System Driver

MONOCEFSD is on the companion diskette. This makes a good example for intro-
ducing the structure of an FSD since we don’t have to worry about IOS or
network protocol details. In the next section, we'll look at an example of a
remote FSD, FSINFILE.

Features

Basically, MONOCFSD is an FSD for a standard 80x25 monochrome display
adapter. It associates a single device name, MONO, with the character device.
Multiple file handles can be opened on MONO. It accepts independent writes on
these separate open handles. Any programming language that supports file open,
file write, and file close can use MONO as an output device. Multiple processes
can write to MONO simultaneously. MONO is equally accessible from Win32,
Winl6, and DOS/V86 operating environments.

Output to the MONO device is buffered in the driver. A primitive keyboard inter-
face allows scrolling of the display using line up, line down, and clear screen
operations, using keys on the numeric keypad.

MONOCESD fails initialization if 2 monochrome display adapter is not detected.

Design

The design centers on using a file model to interact with the monochrome display
device. A client uses the MONO device much like one would use stdout, except
that an explicit open is required. Thus for a client to use MONO, an open is
performed, which returns a handle if successful. Output is sent to the device by
performing writes to the handle. A separate line buffer is managed for each
handle. A line will be displayed when either a carriage return and line feed are
received or the 80 character buffer fills. Thus, all screen output is in complete
lines. This allows multiple processes to interleave lines of output. The combined
output of all clients is stored in a 200-line buffer. Normally, only the most recent
25 lines are displayed. A line-up operation will scroll back through the buffer by
one line; a line-down operation will scroll forward through the buffer by one line.
A keyboard interface to the scroll operations is achieved by assigning each to a
hotkey.

MONOCEFSD supports up to 10 clients; this is an arbitrary limit. MONOCFSD loads
as a static VxD.

Implementation

During Device Init phase, MONOCFSD registers with IFSMgr using IFSMgr_Regis-
terCFSD, passing it the address of a mount function and the single device name,

MONOCFSD: A Character File System Driver 167

MONO. The list of device names is passed as an array of pointers to PathEle-
ments, with the end of array marked by a NULL pointer. The device name is
given by the PathElement { 10, ‘M’, ‘O’, ‘N’, ‘O’ }. The first element is the total
length of the array which is 5 * sizeof(WORD) since the characters are in Unicode.

The mount function for MONOCFSD will get called the first time the “MONO”
device is accessed. The source for the mount function is shown in Example 8-4.

Example 8-4. MONOCFSD’s FS_MountVolume Function

int FS_MountCharDevice(pioreq pir) {
MonoPrint (“FS_MountVolume\n” };

ifs_resource_hdl = pir->ir_fh; // save shell resource
pir->ir_vfunc = &vEf; // return our volume function table
pir->ir_rh = (void*) 'MONO’; // MONO’s resource handle
memset (OpenHandles, 0, 10*sizeof (void*)); // init file handles

return (pir->ir_error = 0);

}

The mount function exchanges parameters with IFSMgr using the ioreq structure.
As input, MONOCEFSD receives the resource handle that IFSMgr is using to track
this device (what we have referred to as a shell resource). MONOCFSD does not
interpret this handle but does store it away, in ifs_resource_hdl, for possible
future use in calls to certain IFSMgr services. MONOCFSD returns to IFSMgr a
pointer to the structure containing all of the volume-based entry points. This
address is placed in the ioreq member #7_ufunc. This structure is shown in
Example 8-5. The other value returned to IFSMgr is a resource handle known
only to the FSD. This handle is placed in the ioreq member ir_rh. It can be the
address of an internal data structure or other guaranteed unique value. IFSMgr
does not interpret this value, it simply passes it in on calls into MONOCFSD corre-
sponding to this particular mount. The FSD can use this value to validate calls and
also to distinguish mounts under different device names. As an example, the
screen might be split into scrolling and non-scrolling regions, and these could be
given separate device names. The non-scrolling screen might be treated as a fixed-
size file, using a file seek to position the output cursor. For our needs it is suffi-
cient to use the unique integer value 'MONO".

Example 8-5. MONOCFSD's Volume-Based Function Table

struct volfunc vf = {
IFS_VERSION, IFS_REVISION, NUM_VOLFUNC,

{ FailFsdcCall, /* VFN_DELETE */
FailFsdCall, /* VFN_DIR */
FailFsdcall, /* VFN_FILEATTRIB */
FailFsdCall, /* VFN_FLUSH */
FailFsdCall, /* VFN_GETDISKINFO */
FS_OpenFile, /* VFN_OPEN */

FailFsdcall, /* VFN_RENAME */

168 Chapter 8: Anatomy of a File System Driver

Example 8-5. MONOCFSD’s Volume-Based Function Table (continued)

FailFsdCall, /* VFN_SEARCH */
FailFsdcCall, /* VFN_QUERY */
FS_Disconnect, /* VFN_DISCONNECT */
FailFsdCall, /* VFN_UNCPIPEREQUEST */
FS_Toctl, /* VFN_IOCTL16DRIVE */
FailFsdCall, /* VFN_GETDISKPARMS */
FailFsdCall, /* VFN_FINDOPEN */
FailFsdCall, /* VFN_DASDIO */

})

The volume-based function table in Example 8-5, which supplies the linkage to
IFSMgr, provides a function for every entry in the array. For most of the functions,
the routine FailFsdCall is used. This function sets the i#r_error member of the
ioreq structure to ERROR _INVALID FUNCTION and returns that value. This
informs IFSMgr that the function is not implemented. The functions which are
implemented include FS_OpenFile, FS_loctl, and FS_Disconnect. Of these, FS_
Disconnect has the simplest implementation; it just sets #7_error to ERROR_
SUCCESS and returns that value. This allows MONO to be dismounted without
returning an error.

The FS_loctl function, shown in Example 8-6, is required to support the Int 21h
function 4400h, Get Device Data. For all other Ioctl functions, an ERROR_
INVALID_FUNCTION error code is returned. The ir flags member of the ioreq
structure contains the Ioctl subfunction number, and only subfunction 0 is
checked for. Depending on the value of the #r_options member, a pointer to the
client registers structure is retrieved from either ir_data or ir_cregptr (ir_aux2).
Within the client registers, bit 7 of DX is set to 1 to indicate that the handle in BX
refers to a device.

Example 8-6. MONOCFSD’s FS_Ioctl Function

int FS_Ioctl(pioreq pir) {
PCRS pClientRegs;)
if (pir->ir_flags == 0) { // "Get Device Data 0x4400"
if (pir->ir_options == IOCTL_PKT_LINEAR_ADDRESS) {
pClientRegs = (PCRS)pir->ir_data;
}
else {
pClientRegs = (PCRS)pir->ir_cregptr;
} .
pClientRegs->Client_EDX = 0x00000080; // is a device
return (pir->ir_error = 0);
}
pir->ir_error = ERROR_INVALID_FUNCTION;
return (pir->ir_error);

}

MONOCFSD: A Character File System Driver 169

Example 8-7 shows the implementation of the FS_OpenFile function. First, a
sanity check is performed on #»_rh, which should have the value 'MONO' that we
returned when the device was mounted. Rather than just return a pointer to a
handle-based function table, the ir_hfunc member contains a pointer to the loca-
tion where the handle-based function pointers should be written. This location is
initialized with three addresses: the address of the FS_ReadFile function, the
address of the FS_WriteFile function, and the address of the “miscellaneous”
handle-based function table (see Example 8-8). Since we don’t support a read
operation, the address of FailFsdCall is used for FS_ReadFile. FS_OpenFile then
adds an entry to the OpenHandles array; the entry is the address of an 80-char-
acter line buffer structure. This address is also returned in #7_fb as a unique value
representing this handle; IFSMgr will pass this value to other handle-based func-
tions. Note that access to the global array OpenHandles is protected with a claim
and release of the critical section. Finally ir_options is set to the value ACTION_
OPENED and ir_errorto ERROR_SUCCESS to indicate that the open succeeded.

Example 8-7. MONOCFSD’s FS_OpenFile Function

- int FS_OpenFile(pioreq pir) {
struct hndlfunc* phf;

LINE* pl;

int i;

if (pir->ir_rh == (void*)'MONO') {
phf = pir->ir_hfunc; // get location where IFSMgr expects pointers
phf->hf_read = FailFsdCall; // no FS_ReadFile support

phf->hf_write = FS_WriteFile; // .. only write supported
phf->hf_misc = &hm; // .. table of other handle-based functions
ClaimHandleArray(); // Critical section around OpenHandles[]
for (i=0; i<MAXHDL; i++)
if (!OpenHandles[i]) break;
if (1 == MAXHDL) {
ReleaseHandleArray () ;
return (pir->ir_error = 4); // ERROR_TOO_MANY_OPEN_FILES
} .
pl = IFSMgr_GetHeap(sizeof(LINE)); // zero initialized
if (pl == 0) {
ReleaseHandleArray () ;

return (pir->ir_error =1);
}
OpenHandles[i] = pl;
ReleaseHandleArray(); // End critical section
// we use the line buffer as our open instance
pir->ir_fh = (void*)pl;
pir->ir_options = ACTION_OPENED;
return (pir->ir_error = 0);
b,
else {
return (pir->ir_error =1);

}

170 Chapter 8: Anatomy of a File System Driver

Only two handle-based functions are supported for the MONO device: FS_Write-
File and FS_CloseFile. The remainder of the functions in the handle-based
function table (see Example 8-8) call into FailFsdCall, to indicate that they are not
implemented.

Example 8-8. MONOCFSD's Miscellaneous Handle-Based Function Table

struct hndlmisc hm = {
IFS_VERSION, IFS_REVISION, NUM_HNDLMISC,

{ FailFsdCall, // HM_SEEK
FS_CloseFile, // HM_CLOSE
FailFsdcCall, // HM_COMMIT
FailFsdCall, // HM_FILELOCKS
FailFsdCall, // HM_FILETIMES
FailFsdCall, // HM_PIPEREQUEST
FailFsdCall, // HM_HANDLEINFO
FailFsdCall // HM_ENUMHANDLE

Yo}

Example 8-9 shows the implementation of the FS_CloseFile function. Again, a
sanity check is performed on #7_»b, which should have the value 'MONO' that we
returned when the device was mounted. The handle to MONO which is being
closed is passed in ir_fh. It is just the address of one of the line buffer structures
which are stored in the OpenHandles array. To validate the handle, OpenHan-
dles is searched for a matching entry. If a match is found, then the current index
of the buffer is checked to see if anything needs to be flushed to the screen.
Finally, the allocation for the line buffer is freed and ir_error is set to ERROR_
SUCCESS.

Example 8-9. MONOCFSD'’s FS_CloseFile Function

int FS_CloseFile(pioreq pir) {
void* hMono;
LINE* pl;
int 1i;

if (pir->ir_rh == (void*) 'MONO') {
hMono = pir->ir_fh;
// First validate the handle

ClaimHandleArray () ; // Critical section around OpenHandles[]
for (i=0; i<MAXHDL; i++)

if (OpenHandles[i] == hMono) break;
if (i == MAXHDL) {

ReleaseHandleArray() ;

return (pir->ir_error = 6); // ERROR_INVALID_HANDLE

} .
ReleaseHandleArray () ; // End critical section
pl = hMono; // handle is our line buffer
if (pl->idx > 0) { // flush any pending characters

pl->pLine[pl->idx+1] = '\0"';

MONOCFSD: A Character File System Driver 171

Example 8-9. MONOCFSD's FS_CloseFile Function (continued)

MonoPrint (pl->pLine);
}

IFSMgr_RetHeap (OpenHandles[i]); // free the line buffer
ClaimHandleArray () ; // Critical section around OpenHandles[]
OpenHandles[i] = 0;

ReleaseHandleArray () ; // End critical section

0);

return (pir->ir_error
}

else {
return (pir->ir_error =1);
}

}

The last function that we’ll take a look at is FS_WriteFile, shown in Example 8-10.
On each write, ir_length contains the number of characters written, ir_data
contains a pointer to the buffer containing the characters to be written, and ir_fb
contains the particular MONO handle to which to write the data. The handle in #7_
/b is validated by checking that it is contained in the OpenHandles array. If the
handle is found to be valid, then the handle is cast to a pointer to a line buffer
structure, The characters in the buffer at i7_data are transferred into the line
buffer starting at the current line buffer index. If a carriage return/line feed pair is
encountered or if the line buffer fills (80 characters), the accumulated line is
written to the monochrome monitor, using the MonoPrint function. The index
into the line buffer is then reset to the beginning and the process continues until
ir_length is exhausted. Multiple writes to a handle may be made before the assem-
bled line is actually written to the monitor.

Example 8-10. MONOCFSD'’s FS_WriteFile Function

int FS_WriteFile(pioreq pir) {
char* pChar;
char lastChar = 0;
int cnt, i;
LINE* pl;
void* hMono;

pChar = pir->ir_data; // characters to be written to MONO
cnt = pir->ir_length; // count of characters

pl = hMono = pir->ir_fh; // line buffer for this handle

// Validate the handle

ClaimHandleArray () ; // Critical section around OpenHandles[]
for (i=0; i<MAXHDL; i++)
if (OpenHandles[i] == hMono) break;

if (i == MAXHDL) {
ReleaseHandleArray () ;
return (pir->ir_error = 6); // ERROR_INVALID_HANDLE
}

ReleaseHandleArray () ; // End critical section

i = pl->idx; // current index to line buffer

172) Chapter 8: Anatomy of a File System Driver

Example 8-10. MONOCFSD'’s FS_WriteFile Function (continued)

while(cnt > 0) {

if (i < 80) pl->pLinel[i] = *pChar;

if (lastChar == 0x0d4 && *pChar == 0x0a) {
pl->pLine[i+1] = '\0';
MonoPrint (pl->pLine);
// Reset line buffer variables and continue
lastChar = '\0';
pChar++;
i=20;
cnt--;
continue;
}

lastChar = *pChar;

pChar++;
if (i < 80) i++;
cnt--;
}
pl->idx = i; // save the current line buffer index

return (pir->ir_error = 0);

}

Using MONOCFSD

To illustrate how one might use MONOCFSD, we’ll show typical usage from a C
program. First, the device must be opened using statements like the following:
FILE* fMono;
fMono = fopen("mono", "r+");
Then, at points where output is to be displayed, any of the standard C stream I/O

functions could be used with the fMono stream. For example, the following lines
output a single line of text:

fprintf(fmono, "In function %s, SomeVariable=%lx\n",

"SomeFunc", SomeVar);

fflush(fmono);
Since stream 1/O is buffered by default, fflush forces the text to be written immedi-
ately. Another way to accomplish this is to use the functions setbuf or setvbuf to
disable buffering for the stream. Finally, the program would release the MONO
handle with a call to fclose. MONO might also be used from a DOS box as a
target for redirection, as in the command dir > mono.

FSINFILE: A Remote File System Driver

In this section, we’ll look at the sample file system driver, FSINFILE, which is a
remote FSD that contains a file-system-in-a-file. The complete source for FSINFILE

FSINFILE: A Remote File System Driver 173

is on the companion diskette. This example is more complicated than
MONOCFSD, and implements many more FSD functions.

Features

FSINFILE creates a file called fsif.bin in the windows directory. The creation of
and reads and writes to this file are done using the IFSMgr_RingOFileIO service.
Internally, fsif.bin contains the structure of a simple file system. It is divided into
three sections: allocation bitmap, root directory entries, and user space. The unit
of user space is a 512 byte sector. For each sector in user space, there corre-
sponds a single bit in the allocation bitmap. If a bit is set, the sector is allocated;
otherwise it is free. Directory entries hold the 8.3 names of files which are stored
in user space, as well as a creation date and time, size, attributes, and a map of
allocated sectors. This is not a “production” file system, but it does provide a great
test-bed for experimenting with FSD functions and exploring interactions with
IFSMgr. A production remote file system would also supply a Network Provider
DLL to support drive enumeration and other WNet functions.

Implementation Notes

The source code for FSINFILE is amply documented, so refer to the companion
disk for complete information. Here, I will just single out one aspect of its imple-
mentation that is a little unusual. The file system registers through IFSMgr_
RegisterNet as a network FSD. I use a “bogus” Net ID, i.e., a value which lies
outside the range of currently assigned networks. This registration returns a
provider ID which is used with subsequent IFSMgr services.

If you think about it, a remote FSD just maps local file operations to operations in
another domain. This applies equally well to our situation except instead of our
file system residing on another machine across the network, it resides on our
machine and it is embedded in a local file.

The main reason for using this approach is that it is the simplest way to create a
drive. IFSMgr provides facilities which make connections to network drives easy
to setup and tear down. This facility is supported through the services IFSMgr_
UserAdd and IFSMgr_InitUseAdd. I use the latter because it allows us to create the
drive implicitly at system startup by assigning it the next available drive in the
range of available drives as shown in Figure 8-3 (the upper limit is set by the Last-
Drive command if it is issued in config.sys, otherwise the default is either 26, or if
you have the Netware client installed, 32). IFSMgr_InitUseAdd uses the supplied
provider ID and use_info_2 structure to create a properly formed IFS request to
the service IFSMgr_SetupConnection. The latter prepares the FS_ConnectNetRe-
source call into the FSD which matches the provider ID. This initial call is used to

174 Chapter 8: Anatomy of a File System Driver

3% Inch Floppy Disk
Local Disk
Local Disk

5 Local Disk
) Removable Disk (F:) Removable Disk
1B G) CD-ROM Disc
1S3 tsinfile on ' (H:) Network Connection
[& Control Panel System Folder
1@ Printers ; System Folder
[Dial-Up Networking System Folder

T

Figure 8-3. Drive H (\\.\fSinfile), a FSINFILE remote driver

mount our file system, by either creating or opening the file fsif.bin and initial-
izing the file system’s internal state.

VFAT: The
Virtual FAT File
System Driver

The FAT file system was invented in 1977 as a method for storing data on floppy
disks for Microsoft Stand-Alone Disk BASIC. It achieved wider usage in 1981 as
the floppy disk storage mechanism used by MS-DOS Version 1 shipped with the
first IBM PC. At that time, the OS code ran in 8 KB of memory and 5.25" floppy
disk media only had a single level directory. With the introduction in 1982 of the
IBM PC-XT with a 10 MB fixed disk, MS-DOS underwent a major revision. In MS-
DOS Version 2, we saw the introduction of a hierarchical directory structure,
support for fixed disks as well as floppy disks, and a UNIX-like handle-based file
structure. Filenames were a maximum of 8 characters long with a 3 character
extension and a pathname could be up to 64 characters long. Since then, the
various releases of MS-DOS have extended support for larger and larger hard
disks, but much of the underlying file structure has remained unchanged.

VFAT was introduced with Windows for Workgroups Version 3.11. Up until that
time, the manipulation of file system structures in Windows 3.x was done by MS-
DOS code executing in virtual-86 mode. Although the actual FAT file structures
on the disk still mirrored those of MS-DOS 5 and 6.x, VFAT and IFSMgr provided
file system services that executed in ring-0 protected mode.

The latest version of VFAT which accompanied the rollout of Windows 95 goes
further by making some changes to the FAT file structures on the disk in order to
support long filenames. Even more recent changes to VFAT, in OEM Service
Release 2 (October 1996), increased the size of entries in the file allocation from

175

176 Chapter 9: VFAT: The Virtual FAT File System Driver

16 bits to 32 bits, thereby increasing the maximum allowable drive size to 2047
gigabytes.

The role of VFAT is to control reads from and writes to the disk in accordance
with the FAT file structure. It understands how to convert a pathname into the
chain of disk clusters and then return the contents of those sectors. Or, it can
reverse direction and create long filename directory entries from a pathname and
allocate clusters of storage and save a file’s image within them. Before we dig into
some aspects of VFAT’s implementation, let’s review the FAT file structure. In
large measure, the DOS 6.x structure remains the same in Windows 95.

DOS 6.x FAT, Boot Record, and Directory
Entries

A storage device has natural divisions based upon its design. There are multiple
read/write heads which sweep over platters coated with ferromagnetic material.
The read/write heads trace out concentric rings called tracks, and the tracks are
divided by gaps into sectors. This sector is the unit by which hard disk storage is
read and written and it usually contains 512 bytes of data.

With multiple megabyte and gigabyte storage commonplace, keeping track of in-
use and available space at the granularity of a sector would require rather large
data structures. By increasing the granularity to a grouping of sectors, smaller data
structures can be used.

The term cluster is used to refer to the fundamental unit by which disk storage is
allocated. The size of a cluster is measured in sectors. A cluster may contain 1, 2,
4, 8, ... sectors; it is always an integral power of 2. The sectors which comprise a
cluster are consecutively numbered logical sectors.

The file allocation table (FAT) is used to track the usage of a volume’s clusters.
The table is organized as an array of either 12-bit or 16-bit cluster numbers.
Cluster numbers start at 2, since the first two entries in the table are reserved. For
12-bit cluster numbers the maximum value is FEFh, whereas for 16-bit cluster
numbers the maximum is FFEFh. A cluster number of 0 indicates that the cluster
is available for allocation. The values FF7h or FFF7h are used to flag a cluster
which contains a bad sector.

Directory entries specify a starting cluster number for a file or directory. This
number is used as an index into the FAT. If the value is in the range for a valid
cluster number, then that cluster is allocated to the file or directory and serves as
an index to the next cluster. The total allocation is determined by following this
chain of cluster numbers until the last cluster indicator is reached. The last cluster
indicator is FF8-FFFh for 12-bit FATs, and FFF8-FFFFh for 16-bit FATs.

DOS 6.x FAT, Boot Record, and Directory Entries ' 177

A volume will usually contain space for two FATs which are mirror images of
each other. The extra FAT is used to detect disk corruption and allows recovery
from some minor FAT problems.

Following the two FATS, space is set aside for the root directory entries. This is a
part of the disk structure that has undergone some change with the Windows 95
version of VFAT. We will take a closer look at directory entries below. The space
following the root directory entries is available for user data, and the first sector
here marks the beginning of cluster number 2.

The boot record is always present as the first sector whether the volume is boot-
able or not. In addition to containing the OS boot code, it begins with a
BOOTSECTOR structure which describes the layout of the disk volume. This
includes such parameters as the size of a sector, the size of a cluster, the number
of sectors used up by the FAT, the number of entries in the root directory, and
the total number -of sectors in the volume.

The information in the boot record is sufficient to delineate the starting positions
of all of the important volume structures. The diskette accompanying this book
contains the utility DUMPDISK, which displays the contents of the boot record,
portions of the FATs, and the root directory entries for a fixed or floppy diskette.
It is a Win32 console application (see source on the diskette) that illustrates use of
the DeviceloControl interface to VWIN32 to do direct disk reads. Some sample
output from DISKDUMP is shown in Example 9-1. In this particular example, a
fixed disk of 455 MB, sectors 0 through 467 are set aside for the boot record, the
FATs, and the root directory entries. The first sector available for allocation to files
and subdirectories is at 468.

Example 9-1. DUMPDISK Sample Output

Sector 0 - BOOTSECTOR structure ...

OEM Name: MSWIN4.0
Bytes/Sector: 0200
Sectors/Cluster: 10
Reserved Sectors: 0001
Number FATS: 02
Number Root Directory Entries: 0200
Total number Sectors: 000d48db5
Media Descriptor: F8
Number of Sectors/FAT: 0049
Sectors/Track: 003b
Heads: 0010
Hidden Sectors: 0000003b
BIOS Drive Number: 80

Boot Signature: 29
Volume ID: 1f285e7a

Volume Label:
File System Type: FAT16

178

Chapter 9: VFAT: The Virtual FAT File System Driver

Example 9-1. DUMPDISK Sample Output (continued)

Sector 1 - First File Allocation Table
fff8 ffff f££ff 0004 0005 0006 0007
0009 000a 000b 000c ffff 000e 000Qf

Sector 218 - Second File Allocation
fff8 f£fff £££f 0004 0005 0006 0007
0009 000a 000b 000c ffff 000e 000f

Sector 435 - Root Directory Entries

Name

10 DOS
MSDOS DOS
COMMAND DOS
COMMAND COM
WETSUIT
DOS
EXTMSDOS SYS
WINA20 386
BOOTLOG TXT
DBLSPACE BIN
AUTOEXEC BAT
scsI
CONFIG DOS
AUTOEXEC DOS
MSDOS ——
SETUPLOG TXT
SUHDLOG DAT
WINDOWS
DETLOG TXT
NETLOG TXT
CONFIG SYS
MSDOS sYs
BOOTLOG PRV
A Program Files
PROGRA~1
SYSTEM -~ 1ST
DRVSPACE BIN
DETLOG OLD
10 SYS

Attrib

Creation
Date/Time

08-10-94
05-31-94
08-10-94
07-11-95
09-08-95
09-08-95
12-12-94
05-31-94
12-21-95
07-11-95
05-02-96
09-08-95
09-08-95
09-08-95
09-08-95
09-08-95
09-08-95
09-08-95
01-20-96
09-08-95
03-24-96
03-24-96
12-21-95

09-08-95
09-08-95
07-11-95
01-18-96
07-11-95

13:
06:
15:
09:
10:
11:
14:
06:
16:
09:

09

12

13:

13
12
19

16

12:
13:
09:
22:
09:

16:
22:
54:
50:
51:
51:

18

22:

50

50:
:14:
12:
12:
12:
:32
10:
:01:
:46:
:44
12:
21:
21:
:39

09
17
17

51

35:

39

52
01

50:
52:
50:

ffff
fEff

Tabl
ffff
ffff

02
00
46
00
42
52
:40
00
:34
00
18
142
:34
:34
:22
16
48
52
140
:36
00
:28
:40

:40
:36
00
00
00

Sector 468 - First available cluster.

e ...

Last
Access
XX-XX-XX
XX-XX~XX
XX -XX~XX
03-29-96
XX-XX-XX
XX-XX-XX
XX-XX-XX
12-11-95
12-21-95
XX-XX-XX
05-20-96
XX-XX-XX
XX-XX-XX
XX-XX-XX
XX-XX~XX
09-08-95
XX-XX~-XX
XX-XX-XX
01-20-96
04-07-96
05-20-96
03-24-96
12-21-95

XX~XX-XX
XX-XX-XX
XX~XX-XX
01-18-96
XX-XX-XX

Start
Cluster
0003
0008
04cf
22a8
0000
0002
0oo0d
Olcf
0391
228e
c022
031f
0397
0396
0755
0756
231b
079%e
21be
0798
9398
7dbd
001d

Oac8
2244
2298
3e90
22fc

Size

40854
38138
54710
92870
0

0
22368
9349
21894
71287
317

270
148
22
46604
5166

67944
1364
235
1641
21420

0
312424
71287
67946
223148

Chksum

20

_ Note that the Chksum column is blank except for the longname entry “Program
Files.” The checksum is only used on longname entries; however, the checksum

is calculated on its associated alias entry (which follows on the next line).

Windows 95 Directory Entries . 179

Windows 95 Directory Entries

Starting with Windows 95, there are now three distinct types of directory entries
written to the disk. The shortname entry is the same as the existing directory
entry used by MS-DOS 5 and 6.x. This directory entry can represent 8.3 filenames,
directory names, and the volume label. The other two types of directory entries
consist of a sequence of one or more Jongname entries followed by a single alias
entry (see Example 9-2). The alias entry is a shortname entry with an additional
member for the last access date.

The longname directory entry is needed to represent case-preserved names or
long filenames. As you can see in Example 9-2, most of the space in the 32-byte
entry is consumed by 13 Unicode characters. The attribute byte is at the same
offset as it occurs in shortname and alias entries, but because it contains a set of
“impossible” settings, it is not recognized by DOS disk utilities. Thus legacy
programs will only recognize and display the shortname and alias directory
entries.

Example 9-2. Directory Entry Structures

typedef struct _DIRENTRY {

char deName [8] ; // base name

char deExtension[3]; // extension

BYTE deAttributes; // file or directory attributes

BYTE deReserved[6];

WORD deLastAccessDate; // *New Win95* - last access date

WORD deEAhandle; //

WORD deCreateTime; // creation or last modification time

WORD deCreateDate; // creation or last modification date

WORD deStartCluster; // starting cluster of the file or directory
DWORD deFileSize; // size of the file in bytes

}
DIRENTRY, *PDIRENTRY;

typedef struct _LONGDIRENTRY {

char leSequence; // sequence byte:1,2,3,.. last entry is
‘ // ORed with 40h
~wchar_t leName[5]; // Unicode characters of name
BYTE leAttributes; // Attributes: 0fh
BYTE leType; // Long Entry Type: 0
BYTE leChksum; // Checksum for matching short name alias
wchar_t leName2[6]; // More Unicode characters of name
WORD leZero; // reserved
wchar_t leName3[2]; // More Unicode characters of name

}
LONGDIRENTRY, *PLONGDIRENTRY;

Since each longname entry can hold 13 characters, if a filename is longer than
that, additional longname entries are needed to store the additional characters.

180 Chapter 9: VFAT: The Virtual FAT File System Driver

The first byte in a longname entry serves as an integral sequence number starting
at 1. The sequence number of the last longname entry is ORed with 40h. A typical
sequence of longname entries is shown in Example 9-3.

Example 9-3. Directory Entries for a Long Filename

Name Attrib Creation Last Start Size Chksum
Date/Time Access Cluster
C ilename --vshr le
2 ee_direntry_ f --vshr le
1 This_is_a_thr --vshr R le
THIS_I~1 a----- 05-20-96 16:57:08 05-20-96 247¢c 8

This sample sequence of entries (shown in Example 9-3) consists of three long-
name entries followed by a single alias entry. The filename which is spread over
the three longname entries is This_is_a_three_direntry_filename. The sequence
numbers are 1, 2, and C (43h). Adjacent to the first longname entry is the alias
entry which contains an 8.3 format name, 7HIS_I~1, which is a capitalized and
compressed version of the long filename. The alias entry is crucial for recording
the actual attributes, creation date/time, starting cluster, and file size. The
checksum value which is stored in the longname entry is computed on the alias

name. This provides a means for reconciling a longname entry with an alias entry.

Changes in Disk Layout with FAT32

A number of changes have been made to disk data structures in order to accomo-
date the new 32-bit FAT. These changes are serious enough that they will break
FAT16 disk utilities. For example, when I first tried DUMPDISK on a FAT32 drive,
it failed miserably. After adding new code to detect and support FAT32 drives, it
displays these disk data structures too. Example 9-4 shows sample output from
DUMPDISK for a 1.79 gigabyte FAT32 partition:

Example 9-4. Sample FAT32 Output from DUMPDISK

Sector 0 - FAT32 BOOTSECTOR structure ...

OEM Name: MSWIN4.1
Bytes/Sector:) 0200
Sectors/Cluster: 08
Reserved Sectors: 0020
Number FATs: 02
Number Root Directory Entries: 0000
Media Descriptor: F8
Number of Sectors/FAT: 0000
Sectors/Track: 003f
Heads: 0080
Hidden Sectors: 0000003 £
Big Total number Sectors: 00397641

*Big Sectors per FAT: 00000e5a

181

Changes in Disk Layout with FAT32

Example 9-4. Sample FAT32 Output from DUMPDISK (continued)

*Extended flags:
*File System Version:
*Root Dir Start Cluster:
*File System Info Sector:
*Backup Boot Sector:
*Reserved[0] :
*Reserved[1l]:
*Reserved[2]:
*Reserved[3]:
*Reserved[4]:
*Reserved[5]:

BIOS Drive Number:
Boot Signature:
Volume ID:
Volume Label:
File System Type:

Sector 1

Signature:
Free Clusters:
Next Free Cluster:

Sector 32 -

0

8
16
24
32
40
48
56

fEE£££8
0000000
0000000
0000000
0000000
0000000
0000000
0000000

Sector 3706

0

8
16
24
32
40
48
56

fEf£££8
0000000
0000000
0000000
0000000
0000000
0000000
0000000

Sector 7380

Sector 7380

Name

SUHDLOG DAT
SUHDLOG BAK

0000
0000
0000
0001
0006
0000
0000
0000
0000
0000
0000
80

29

3618

0002

10£7

NO NAME

FAT3

- FAT32 FS Info Sector...

6141
0005
0003

2

7272
c017
1bla

First File Allocation Table ...

EfE£££E
0000000
0000000
0000000
0000000
0000000
0000000
0000000

- Second File Allocation Table .

fEEEEEE
0000000
0000000
0000000
0000000
0000000
0000000
0000000

- First

fEEfEFfFE
0000000
0000000
0000000
0000000
0000000
0000000
0000000

fEEfEFFf
0000000
0000000
0000000
0000000
0000000
0000000
0000000

0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000

0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000

0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000

0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000

available cluster.

- Root Directory Entries ...

Attrib

Creation
Date/Time
----hr 04-15-97 11:26:04 04-16-97
----hr 04-15-97 10:35:24 04-15-97

0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000

0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000

Last
Access

0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000

0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000

Start
Cluster

6bc0

c88b

0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000

0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000

Size Chksum

7802
7802

182 Chapter 9: VFAT: The Virtual FAT File System Driver

Example 9-4. Sample FAT32 Output from DUMPDISK (continued)

BOOTLOG TXT a---h- 04-16-97 17:16:16 04-16-97 3780 53596
I0 SYS ---shr 04-08-97 14:23:00 04-15-97 6b84 219158
RECYCLED -d-sh- 03-01-97 19:51:00 03-01-97 84ab 0
AUTOEXEC DOS a----- 03-01-97 18:04:14 04-15-97 00bf 1111
CONFIG DOS a----- 09-29-96 18:04:22 03-02-97 0061 312
WINICE -d---- 03-03-97 11:32:38 03-03-97 2b86 0
SCANDISK LOG a----- 04-16-97 17:10:50 04-16-97 3781 448
CONFIG BAK a----- 04-15-97 10:35:24 04-15-97 c88a 167
CONFIG SYS a--=--- 04-16-97 17:51:32 04-18-97 3874 167
DETLOG TXT a--sh- 04-16-97 21:39:52 04-16-97 599¢ 69781
HIMEM SYsS a----- 09-29-96 17:32:28 03-02-97 009a 33191
MSDOS SYS a--shr 04-16-97 18:03:40 04-16-97 38a2 1702
SIW9S -d---- 03-10-97 16:35:42 03-10-97 a%2e 0
ASPI2DOS SYS a----- 09-27-94 03:10:00 04-15-97 00af 28728
ASPICD SYS a----- 09-27-94 03:10:00 03-01-97 00b7 29244
A My Documents --vshr a7
MYDOCU~1 -d---- 03-16-97 18:10:00 03-16-97 142b 0

DBLSPACE BIN ---shr 04-08-97 14:23:00 04-15-97 5¢89 65271

The first thing you’ll notice is that the boot sector has expanded. Actually, the
SDK does not define a BOOTSECTOR structure as was the case with MSDOS.
Instead you have to piece together a “BOOTSECTOR32” structure like this:

typedef struct _BOOTSECT32 {

BYTE bsJump[31; // jmp instruction
char bsOemName [8] ; // OEM name and version

// This portion is the FAT32 BPB
A_BF_BPB bpb;

BYTE bsDriveNumber ; // 80h if first hard drive

BYTE bsReserved;

BYTE bsBootSignature; // 29h if extended boot-signature record
DWORD bsVolumeID; // volume ID number

char bsVolumeLabel[11l]; // volume label

char bsFileSysTypel8]; // file-system type (FAT12 or FAT16)

;OOTSECTOR32, *PBOOTSECTOR32 ;
The structure named A_BF_BPB is 2 new expanded BPB (BIOS Parameter Block)
for FAT32. It is documented in the SDK and it is this portion of the
BOOTSECTOR32 structure where the change has occurred. If you look back at
the DUMPDISK output, a range of entries in the BOOTSECTOR area are marked
with asterisks. These members are either new to the FAT32 BPB or are “widened”
members, i.e. they have expanded from 16 to 32 bits. The Reserved Sectors entry
tells us the number of sectors before the start of the first FAT; in this case it is 20h
or 32 sectors. On this particular drive, only 6 of these sectors are put to use. Four
of these sectors are used for the boot sector, two for a primary copy and two for

10S and the Layered Driver Model 183

a backup copy. Two sectors are now needed for the boot sector because the BPB
has expanded in size causing the boot code to spill over to another sector.

The other two sectors are for a primary and a backup copy of a FS INFO sector.
The SDK describes the structure in this way:

...there is a sector in the reserved area on FAT32 drives that contains values for
the count of free clusters and the cluster number of the most recently allocated
cluster. These values are members of the BIGFATBOOTFSINFO (FAT32) structure
which is contained within this sector. These additional fields allow the system to
initialize the values without having to read the entire file allocation table.

This sector is sandwiched between the two boot sectors on this particular drive.

Another peculiarity about FAT32 partitions is that the BPB indicates they have 0
root directory entries. Instead of specifying a fixed number of entries, a FAT32
root directory is treated like a file. It has a minimum size consisting of a single
starting cluster but can be expanded by adding more clusters to its chain. Note
that for the example FAT32 DUMPDISK output above, the first available cluster on
the drive is also the first cluster of the root directory.

As its name implies, FAT32 File Allocation Tables contain 32-bit cluster numbers.
The SDK notes that “...the high 4 bits of the 32-bit values in the FAT32 file alloca-
tion table are reserved and are not part of the cluster number. Applications that
directly read a FAT32 file allocation table must mask off these bits and preserve
- them when writing new values.” The first cluster which can be allocated is
number 2. A look at the FAT tables reveals a Oxffffffff at this location; this signifies
the end of a cluster chain.

The sample code for DUMPDISK illustrates some techniques for determining
whether a system supports FAT32 and whether a particular drive is a FAT32 drive.
It also includes typedefs for some of the FAT32 data structures.

10S and the Layered Driver Model

So far in this book, I have avoided discussing the layered nature of the file system
in any detail. This is because IFSMgr has cluser affiliations with application APIs
than it does with the underlying hardware. Also, the layered driver model only
applies to local file system drivers; it is not a common structure for all classes of
devices as is the case with the Windows Driver Model (see Chapter 14, Looking
Abead).

The layered model is comprised of 32 distinct layers of drivers. The layering repre-
sents both the ordering of initialization (from the bottom up), and the servicing of
requests (from the top down). At the very top of the hierarchy is IFSMgr and
immediately beneath it are the file system drivers. The other 30 layers are

184 Chapter 9: VFAT: The Virtual FAT File System Driver

occupied by drivers that handle physical aspects of disk I/O and are referred to in
- the DDK as the Layered Block Device Drivers. The layered driver model in
Windows 95 is implemented in a VXD called the I/O Supervisor (10S).

The subject of the IOS could easily fill another book.” Here, we will be content
with addressing only two aspects of 10S: the types of drivers which make up the
layered model and the role which IOS serves.

Some of the common types of block device drivers which Windows 95 uses fall
into these categories, arranged from highest to lowest:

Volume trackers
The volume tracking driver, or VID, makes sure that the target drive for an
incoming request matches the media that is actually in the drive. The VID is
only needed for drives which have removable media, e.g., floppy drives and
CD-ROMs.

Type-specific drivers
All devices of a certain class have a common type specific driver, or TSD. The
TSD is responsible for casting the logical view of a device, as it is viewed
from an FSD, into its physical view. This might involve translating a logical
block address into the physical head, cylinder, and sector. TSDs also know
about drive partitions and are able to match up a volume identifier with a sub-
section of a fixed disk as defined in its master boot record.

Vendor-supplied drivers
Several slots in the hierarchy are set aside for vendor supplied drivers, or
VSDs. This is a provision for adding vendor specific functionality for a device
by inserting an auxiliary driver in the path of I/O requests.

SCSI manager and miniport drivers
The SCSI device architecture is inherited from Windows NT. The SCSI
Manager is a device independent layer that abstracts the behavior of SCSI
controller cards. A miniport driver is the lower layer which supports the SCSI
manager for a specific type of SCSI adapter.

Port drivers , ‘
For non-SCSI controller cards a port driver is required. The port driver
controls the hardware. It does such things as write to I/O ports, program
DMA transfers, and service hardware interrupts, in order to take control of a
disk drive or other device which is attached. Port drivers are also inherited
from Windows NT.

* For more extensive coverage, see the DDK, and Walter Oney’s book, Systems Programming for Win-
dows 95, Chapter 15, “Block Device Drivers.” For a higher-level account, see Chapter 7, “The Filesystem,”
in Inside Windows 95, by Adrian King.

VFAT Initialization and Registration 185

Real-mode mappers
In cases where no protected-mode driver exists for a piece of hardware, calls
to a real-mode driver are passed from protected mode to real mode using this
type of driver.

Here are a couple of examples. A standard floppy disk drive is represented by
drivers from three layers. It has a volume tracking driver for detecting a media
change; a disk-type specific driver, and a port driver for an NEC floppy controller
card. An IDE fixed disk also has three layer drivers. It has a disk-type specfic
driver, a miscellaneous port driver (layer 19), and a port driver for an IDE
controller card.

Three basic services which IOS supplies to clients are IOS_Register, I0S_SendCom-
mand, and IOS_Requestor_Service. IOS_Register is the means by which IOS
becomes aware of a driver. It receives a DRP (Driver Registration Packet) struc-
ture which specifies what level the driver will occupy in the hierarchy. An FSD
will use the I0S_SendCommand interface to make requests of a device. An I/O
packet, or IOP, is passed through this interface and IOS routes it through the
driver layers using the calldown chain. The IOS_Requestor_Service interface
supplies a number of utility functions for clients.

As drivers initialize during startup, each driver for a device specifies the level at
which it wishes to be called in the layered hierarchy. In response, IOS builds a
chain of target functions, the calldouwn cbain, in the correct order. Later, when an
I/0 request is routed to a device, the order of the functions in the calldown chain
determines the order in which the layered drivers will be called. When a driver
receives an I/O packet, it decides what to do with it; it may decide to pass it
down the chain, or possibly complete the request and not pass it down.

VFAT Initialization and Registration

VFAT, as a local FSD, needs to support linkage with IFSMgr and it does this with
volume-based (see Table 6-6) and handle-based (see Table 6-7) function tables.
As with other FSDs, VFAT establishes the first entry point, FS_MountVolume, by
registering with IFSMgr using the IFSMgr_RegisterMount service during the Device
Init phase.

In order for VFAT to access the local disk, it relies upon IOS. To gain access to
IOS services, VFAT registers with IOS during the Device Init phase. To register,
VFAT calls the service IOS_Register with a DRP (Driver Registration Packet) struc-
ture as an argument. The contents of the DRP are shown in Example 9-5 along
with the values that VFAT uses in its IOS_Register call.

186 Chapter 9: VFAT: The Virtual FAT File System Driver

Example 9-5. DRP Passed to 10S_Register

typedef struct DRP {
CHAR DRP_eyecatch_str[8]; // "XXXXXXXX"

ULONG DRP_LGN; // DRP_TSD

PVOID DRP_aer; // Async_Event_Rtn

PVOID DRP_ilb; // Address of ILB structure
CHAR DRP_ascii_name[16]; // "Flatfat FileSysD"
BYTE DRP_revision; // 0

ULONG DRP_feature_code; // 0

USHORT DRP_if_requirements; // O

UCHAR DRP_bus_type; // 0

USHORT DRP_reg_result; // 0

ULONG DRP_reference_data; // 0

UCHAR DRP_reservedl[2]; // reserved; must be zero
ULONG DRP_reserved2[1]; // reserved; must be zero

) DRP, *PDRP;

The DRP_LGN member specifies the driver’s load group and initialization layer.
Each bit of DRP_LGN corresponds to one of 32 initialization layers. The lower the
bit, the higher the layer and the later it will be initialized. At the top of the hier-
archy is IFS manager, followed by FSDs, etc. The DRP_LGN value also informs
IOS of the driver’s registration type. Noncompliant registration is used for FSD’s
and IFS. drivers; this means the driver will not receive AEP (asynchronous event
packet) notifications at its asynchronous event routine. Since VFAT supplies an
asynchronous event routine (Aysnc_Event_Rtn), it uses a load group of DRP_TSD,
giving it the same initialization order as a type specific driver.

The DRP_ilb member supplies the address of an ILB (IOS linkage block) struc-
ture, which I0S will fill in before returning. The members of this structure are
shown in Example 9-6. This structure contains several IOS entry points for
requesting services.

Example 9-6. ILB Returned by 10S_Register

typedef struct ILB {

PFNISP ILB_service_rtn; // addr of service routine
PVOID ILB_dprintf_rtn; // addr of dprintf routine
PVOID ILB_Wait_10th_Sec; // addr of wait routine

PVOID ILB_internal_request; // addr of request routine
PVOID ILB io_criteria_rtn; // addr of IOR criteria routine
PVOID ILB_int_io_criteria_rtn; // addr of IOP criteria routine
ULONG ILB_dvt; // addr of driver’s DVT

ULONG ILB_ios_mem virt; // addr of IOS memory pool
ULONG ILB_enqueue_iop; // addr of enqueue routine
ULONG ILB_dequeue_iop; // addr of dequeue routine
ULONG ILB_reserved_1; // reserved; must be zero

ULONG 1ILB_reserved_2; // reserved; must be zero
USHORT ILB_flags; // flags

CHAR ILB_driver_numb; // number of calls to AEP_INITIALIZE
CHAR ILB_reserved_3; // reserved; must be zero

} ILB, *PILB;

Mounting a VFAT Volume 187

The DRP structure resides in a VXD_INIT_DATA_SEG segment and thus is
discarded after initialization completes; however, the ILB is placed in a VxD_
LOCKED_DATA_SEG segment since it will be used for accessing IOS services.

Mounting a VFAT Volume

Example 9-7 shows the top level C pseudocode for the FS_MountVolume func-
tion. Of the six different mount types, only the IR_FSD_MOUNT case is shown;
this case corresponds to the standard, mount drive operation. This is truly
pseudocode because VFAT is not implemented using the C language. For
instance, internally the EBP register is used as a pointer to the ioreq structure,
whereas in a C implementation EBP would point to the base of the stack frame.

Example 9-7. VFAT's FS_MountVolume Function

int FS_MountVolume(pioreq pir) {
register PIOREQ ebp_pir = pir;
register short retc;

ebp_pir->ws.ior_error = 0;
ebp_pir->ws.b35 = 0;
ebp_pir->ws.hi_options = 0;
ebp_pir->ws.w38 = 0;

switch(ebp_pir->ir_ flags) {
case IR_FSD_MOUNT:
_Claim_Level2();
_asm bts dword ptr D1_9E66,00

retc = _MountVol();
ebp_pir->ir_vfunc = VolFunc;

_Release_Level2();
_asm btr dword ptr D1_9E66,00

if (!'retc) ebp_pir->ir_tuna = D1_A3AC & 1;
break;

/*** other cases not shown here ***/

default:
retc = ERROR_INVALID_FUNCTION;
break;
}
return (ebp_pir->ir_error = retc);

}

On entry to FS_MountVolume, the ioreq structure contains four members which
are of special significance to this function call: #r_volb (ir_auxl) contains a
pointer to a VRP (Volume Request Parameters), ir_rb contains the linear address

188 Chapter 9: VFAT: The Virtual FAT File System Driver

of the DOS DPB (Disk Parameter Block) chain, ir_mntdrv (ir_aux2), contains the
drive number of the volume to be mounted, and #»_fb contains the address of
IFSMgr’s as yet unfilled shell resource structure. On return, #_rh will contain
VFAT’s resource handle for the volume and #7_yfunc, will contain the address of
the table of volume-based entry points.

The first four lines in FS_MountVolume (see Example 9-7) initialize members of
the structure WS. Recall that the ir_fsd member of ioreq is a 64-byte “provider
work space” for use by FSDs. VFAT puts this entire area to use.

Most of the logic for mounting the volume is implemented in the routine
_MountVol. It reads the first logical sector of the volume, which should be a DOS
boot * sector. Using the BOOTSECTOR structure (see the Microsoft MS-DOS
Programmer’s Reference, Version 5 or newer, for a description of this structure) at
the beginning of this sector, VFAT creates a Resource Block structure for the
volume and adds it to a doubly-linked list of such structures. The C volume gets
special treatment; if it is being mounted, the DOS DPB structure is compared field-
by-field with corresponding members of the Resource Block structure. If there is a
mismatch, an error message is displayed via VMM’s Fatal_Error_Handler service.

Using 10§ to Read the Boot Sector

Reading a sector using IOS services takes several steps; it’s not as straightforward
as using the BIOS Int 13h interface. The first step is to ask IOS to allocate an IOP
(I/O Request Packet). An IOS service request is made by pushing the address of
an ISP (IOS Services Packet) on the stack and calling the address of the IOS
service routine in the ILB_service_rtn member of the ILB.

The form -and content of the ISP varies from service to service. Example 9-8
shows how the ISP is structured for an ISP_CREATE_IOP service.

Example 9-8. ISP Structure for Create IOP Service

typedef struct ISP_IOP_create {

USHORT ISP_func; // ISP_CREATE_IOP

USHORT ISP_result; // filled in on return

USHORT ISP_IOP_size; // size of IOP to allocate (in bytes)
ULONG ISP_delta_to_ior; // offset to IOR within IOP

ULONG ISP_IOP_ptr; © // on return: address of IOP

UCHAR ISP_I_c_flags; // various allocation flags

UCHAR ISP_pad2[1]; // pad to DWORD boundary

} ISP_IOP_alloc;

The first two members of this structure are common to all ISP structures, and the
remaining members are unique to the Create IOP call. The following members are
initialized prior to making the call: ISP_func is set to ISP_CREATE_IOP, ISP_IOP_
size is set to pVRP->VRP_max_req_size, ISP_delta_to_ior is set to pVRP->VRP_

Mounting a VFAT Volume 189

delta_to_ior, and ISP_I_c_flags is set to 0. If the service succeeds then on return,
ISP_IOP_ptr contains the address of the allocated IOP. Nested within an IOP is an
IOR (I/O Request Descriptor); in fact, the address of the IOR is given by the
expression ISP_IOP_ptr + ISP_delta_to_ior. It is the IOR that is needed for the
next step.

If you have followed along this far, you'll be relieved to know that we’re almost
ready to actually read something from the disk, but first we have to fill in the IOR
structure. The members of the IOR structure are detailed in Example 9-9.

Example 9-9. Contents of IOR Structure for Boot Sector Read

typedef struct _IOR {
ULONG IOR_next;

USHORT IOR_func; // IOR_READ: function to perform

USHORT IOR_status; // returned status

ULONG IOR_flags; // IORF_VERSION_002|IORF_HIGH_PRIORITY|
// IORF_BYPASS_VOLTRK

CMDCPLT 1IOR_callback; // completion callback routine

ULONG IOR_start_addr([2]; // vol relative starting addr

ULONG IOR_xfer_count; // sector count of 1

ULONG IOR_buffer_ptr; // 2048 byte buffer

ULONG IOR_private_client;

ULONG IOR_private_IOS;
ULONG IOR_private_port;

union urequestor_usage _ureq; // 5 dwords, “working area”
ULONG IOR_req_req handle;
ULONG IOR_req_vol_handle; // address of volume’s VRP

ULONG IOR_sgd_lin_phys;

UCHAR IOR_num_sgds;

UCHAR IOR_vol_designtr; // zero-based volume number
USHORT IOR_ios_private_1;

ULONG IOR_reserved_2[2];

} IOR, *PIOR;

I'll confine our discussion to just the elements of IOR that are initialized for the
boot sector read; for more details on the IOR structure see the Windows 95 DDK
documentation for layered block drivers.

The bits which are not set in the JOR_flags member are more revealing than those
which are. IORF_CHAR_COMMAND flag clear implies IOR_xfer_count refers to
sectors rather than bytes. IORF_SYNC_COMMAND flag clear implies that the
command is asynchronous and IOR_callback is called on completion. IORF_
LOGICAL_START_SECTOR flag clear implies that IOR_start_addr is a physical
address which is in the range pVRP->VRP_partition_offset to pVRP->VRP_
partition_offSet + total sectors in the volume.

The address of the IOR is placed in the ESI register and EDI is set to the address
of the DCB (Device Control Block) for the physical device which holds the
volume. Then the 10S. SendCommand service is invoked to perform the read. This

190 Chapter 9: VFAT: The Virtual FAT File System Driver

call sets the wheels in motion by passing the request down through the layers of
the IOS subsystem. Before the disk access is completed, I0S_SendCommand will
return, since VFAT made an asynchronous request.

Upon return from IOS_SendCommand, VFAT suspends the current thread until
IOR_callback is called. To coordinate the suspension and resumption of the
thread, the first two doubleword elements of IOR’s _ureq member are used; the
first doubleword is used as a simple flag and the address of the second double-
word serves as a blocking identifier.

Example 9-10 shows the code used to suspend the thread. Interrupts are disabled
to assure that the test and call to block are treated as an “atomic” operation. The
doublewords at EBX+2Ch and EBX+30h are elements in the _ureq member of
IOR. Bit 0 of the first element is set by the callback handler once the requested
service completes. So on the first execution of this loop, the bit test will return
with the carry flag clear, and the function Cli_Block_Thread will be called. This
function takes the address of a blocking identifier; it increments the contents of
that address and then calls IRSMgr_Block. IFSMgr_Block, in turn, is a wrapper for
the VMM service _BlockOnID, which is passed the same blocking identifier and
the flags BLOCK_ENABLE_INTS and BLOCK_SVC_INTS. These flags force inter-
rupts to be re-enabled.

Example 9-10. Suspending Thread

call Send_IOS_Cmd ; request boot sector read

pop ebx ; restore EBX, ptr to IOR
wait_for_IOR_callback:

cli

bt dword ptr [ebx+2c],00 ; has callback occurred?

je short continue

lea eax, [ebx+30] ; addr of _ureq dword as blocking ID

call Cli_Block_Thread ; wrapper to IFSMgr_Block
; thread resumes when signaled by IOR_callback handler
Jjmp short wait_for_IOR_callback

' continue:
sti

The function Cli_Block_Thread will not return until the blocking identifier is
signaled. This, of course, is done in the callback handler and the code fragment
which achieves this is shown in Example 9-11. The Wakeup_Thread function is a
wrapper to IFSMgr_Wakeup which in turn, is a call to _SignallD with the given
blocking ID.

Example 9-11. Resuming Thread

or dword ptr [ebx+2c]l,+01
lea eax, [ebx+30]
jmp Wakeup_Thread ; wrapper to IFSMgr_ Wakeup

Mounting a VFAT Volume : 191

When control does return from Cli_Block_Thread, the bit test will set the carry
flag, and execution will resume at the label continue. The IOR_status member
will then reveal whether the request was successful. If an error is reported by
IOS, _MountVol calls the IOS service IOSMapIORSToI21, to convert the error code
into an equivalent Int 21h error code before returning.

Creating a VEAT Resource Block Structure

Once VFAT has successfully read in the boot sector, it will proceed to examine
the contents of the BOOTSECTOR structure at the beginning of the buffer. Several
criteria that must be met before VFAT accepts a non-removable volume for
mounting:

e The sector size must be one of 200h, 400h, 800h, or 1000h bytes
e The number of sectors per cluster must be 2 or greater
e The number of FATs must be either 1 or 2

e The number of system sectors must be less than the total number of sectors
on the drive

Once a volume is found to be acceptable, a Resource Block (Example 9-12) is
constructed using the contents of the BOOTSECTOR structure. VFAT maintains a
linked list of mounted volumes. The list can be traversed from the front by
starting with a head pointer or from the backend by starting with the tail pointer.
A Resource Block for a new volume is added at the head of the linked list. Before
a new volume is added, the list is searched for a matching volume. A match is
based on the following Resource Block members: VolumelD, VolumeLabel, and
the range of members from sector_size to w32. If a match is found, the mount is
failed with the error code ERROR_IFSVOIL_EXISTS (0x11C).

Example 9-12. Resource Block Structure

typedef struct _resource_block {
0 struct _resource_block* pnext;
4 struct _resource_block* pprev;

8 DWORD total_sectors; // total sectors in the volume

C DWORD d0C; // number system sectors that are partial 4K
10 DWORD di10; // value of ebp_pir->ir_pos

14 VRP* pVRP;

18 WORD second_fat; // sector offset to 2nd FAT

1C BYTE di1C; // init'ed to 1

1D BYTE volnum; // zero-based volume number

1E BYTE mapvol; // mapped volume number

1F BYTE DblF;

20 WORD sector_size; // sector size in bytes

22 WORD sector_byte_mask; // sector_size - 1

192 ' Chapter 9: VFAT: The Virtual FAT File System Driver

Example 9-12. Resource Block Structure (continued)

24 BYTE cluster_mask; // (sectors per cluster) - 1
25 BYTE cluster_shift; // sectors per cluster, as power of 2
26 WORD reserved_sectors; // sectors used by boot record, etc.,
// before first FAT
28 WORD root_entries; // number of entries in root directory
2A WORD first_sector; // sector number of first sector
// in the first cluster
2C WORD max_cluster; // maximum number of clusters in volume
2E WORD FAT_size; // size of FAT in sectors
30 WORD dir_sector; // first sector containing the
// root directory
32 WORD w32; // init'ed to 2
34 WORD w34; // init'ed to Oxffff
36 BYTE FAT_ count; // number of FATs
37 BYTE cluster_byte_shift; // cluster size in bytes, power of 2
38 WORD cluster_byte_mask; // size of cluster in bytes, less one
3A BYTE sector_byte_shift; // sector size in bytes, power of 2
3B BYTE sectors_in_page; // number of sectors in 4K

3C BYTE sectors_in_page_mask; // sectors_in_page - 1

3D BYTE b3D;

3E WORD w3E;

40 WORD flags;

42 char VolumeLabel[1l];

4D BYTE b4D;

4E BYTE media; // F8h for fixed disk
4F BYTE Db4F;

50 DWORD VolumelID;

54 DWORD d54;

58 DWORD d58;

5C DWORD d5C;

60 DWORD dé60;

64 DWORD d64;

68 DWORD dé68;

6C DWORD buffer_idle_timeout;
70 DWORD buffer_age_timeout;
74 DWORD latest_system_time;
78 DWORD volume_idle_timeout;
7C DWORD d7C;

80 DWORD d80;

84 DWORD d84;

88 DWORD d88;

8C DWORD d8cC;

90 DWORD d90;

94 DWORD d94;

98 DWORD d98;

9C DWORD pNameCache;

A0 DWORD dao0;

A4 DWORD dA4;

} RESOURCE_BLK, *PRESOURCE_BLK;

Opening a VFAT File—Top Level 193

Opening a VFAT File—Top Level

Examples 9-13 and 9-14 show the top level C pseudocode for the FS_OpenFile
function. There are many parameters in the ioreq structure which affect this func-
tion, these are detailed in the IFS Specification. The ir_options parameter
determines the function to perform; it essentially boils down to opening an
existing file or creating a new file. If creating a file, i»_attr supplies the desired
attributes for the new file. The ir_flags parameter specifies the desired access and
share mode for the returned handle. The ir_rb member contains the resource
handle for the volume on which file is opened or created. It is the address of the
VFAT Resource Block structure which was returned when the volume was
mounted. If the call succeeds, ir_fb will return the FSD file handle; this is the
address of a VFAT File Instance Block structure.

To get a feel for how this function works, let’s trace through the open of an
existing file. To make it interesting, let’s select a long filename, say d:\windows\
desktop\old_forum_messages.txt.

Execution begins at lines 10 through 16, in Example 9-13, where several members
of the FSD’s working area structure, WS, are initialized. The first test occurs at line
18 where ir_options is examined to separate two distinct types of operations. In
our case, #r_options has the value ACTION_OPENEXISTING, so the first half of the
if clause is true and the function _Claim_Levell is called. Under certain conditions
this function will block the current thread; thus this function serves to mark the
beginning of a VFAT critical section. When _Claim_Levell returns, initialization of
the FSD’s working area structure continues, with values for new_file_attrib, access_
share_mode, and standard_options retrieved from ioreq members ir_attr, ir_flags,
and ir_options, respectively. At line 36, the standard_options are tested for
validity and, if they are found to be invalid, an error return is made.

At line 41, the function _AllocInstanceBlock allocates 44 bytes for a VFAT File
Instance Block. The address of this block is stored to the #7_fb member of the
ioreq structure, and thus is used to represent the FSD’s file handle. At line 42,
the pointer to the caller’s hndlfunc structure is retrieved from ir_hfunc in the
ioreq structure. At lines 43, 44, and 45, members of the caller’s hndlfunc struc-
ture are initialized with the addresses of VFAT handle-based function pointers.

With these preliminaries out of the way, standard_options is used once again at
line 48, to decide which action to take. If the open options are ACTION_OPENEX-
ISTING (0x01) or ACTION_OPENALWAYS (0x11), then the function _OpenExisting
will be called at line 49. If the open options are any of ACTION_CREATENEW
(0x10), ACTION_CREATEALWAYS (0x12), or ACTION_REPLACEEXISTING (0x02),
then the function _CreateNew_ReplaceExisting at line 63 is called, assuming that
the drive is not write protected (this is checked at line 57).

194 Chapter 9: VFAT: The Virtual FAT File System Driver

Example 9-13. FS_OpenFile Function, Part 1

1 int FS_OpenFile(pioreq pir) {
2 register pioreq ebp_pir = pir;
register BYTE opt;

register struct hndlfunc* phf;
int action, errcode=0;

DWORD entry_ir_fh;

struct instance_block* poi;
struct open_block* pob;

0 3 o Ul W

o

10 ebp_pir->ws.special_options = (ebp_pir->ir_options &

11 (OPEN_FLAGS_NO_CACHE |RO_SWAPPER_CALL | RO_MM_READ_WRITE)) >> 8;

12 ebp_pir->ws.w38 = 0x2000;

13 ebp_pir->ws.ior_error = 0;

14 ebp_pir->ws.b35 = 0;

15 ebp_pir->ws.d6C = ebp_pir->ws.vcache_handle = 0;

16 entry_ir_fh = ebp_pir->ir_fh;

17

18 if (lebp_pir->ir_options & (ACTION_CREATENEW|ACTION_REPLACEEXISTING))
19 Claim_Levell();

0 else { _Claim Level2();

21 ebp_pir->ws.w38 |= 0x0800;
22 if (!C_3EF4()) C_3FFD();
23 }

24 ebp_pir->ws.ir_fh = 0;

25 ebp_pir->ws.new_file_attrib = (BYTE)ebp_pir->ir_attr;
26 ebp_pir->ws.b45 = 0x16;

27 ebp_pir->ws.bd6 = 0;

28

29 if ((ebp_pir->ir_flags & 0x7f) == 0x7f) {
30 ebp_pir->ir_flags = ACCESS_READWRITE;
31 ebp_pir->ws.access_share_mode = 0x0082;
32 }

33 else ebp_pir->ws.access_share_mode = ebp_pir->ir_flags & 0x7f;
34 ’
35 opt = ebp_pir->ws.standard_options = (BYTE)ebp_pir->ir_options;

36 if (opt==0 || (opt&0xf)>2 || opt & Oxel) {
37 errcode = 1;

38 goto error_exit;

39 }

40

41 ebp_pir->ir_fh = __AllocInstanceBlock() ;

42 if (carry_flag) goto error_exit;

43 phf = ebp_pir->ir hfunc;

44 phf->hf_read = FS_ReadFile;

45 phf->hf_write = FS_WriteFile;

46 phf->hf_misc = HdlFunc;

47

48 (ebp_pir->ir_fh)->open_mode = ebp_pir->ws.access_share_mode;
49 if (ebp_pir->ws.standard_options & ACTION_OPENEXISTING) {
50 action = _OpenExisting();

51 if (carry_flag)

52 if ((action != 2) ||

Opening a VFAT File—Top Level 195

Example 9-13. FS_OpenFile Function, Part 1 (continued)

53
54
55
56
57
58
59
60
61
62
63
64

(! ebp_pir->ws.standard_options & ACTION_CREATENEW))
goto error_exit;
else goto store_results;
}
if ((ebp_pir->ir_rh)->pVRP->VRP_event_flags & VRP_ef_write_protected) {
errcode = 0x13;
goto error_exit;
}
if (ebp_pir->ws.new_file_attrib & 0x08)
ebp_pir->ws.b45 = 0x08;
action = _CreateNew_ReplaceExisting();
if (carry_flag) goto error_exit;

Since we are tracing the open of an existing file, the function _OpenExisting will
be called. If the function succeeds, the carry flag will be clear on return and the
action variable will be assigned the return value ACTION_OPENED, and execution
will continue at line 1 (with the label store_results) in Example 9-14. If the
carry flag is set on return, the open failed and execution continues at line 26
(with the label error_exit) in Example 9-14.

Example 9-14. FS_OpenFile Function, Part 2

1

N

B woJgou bk Ww

26
27
28
29

store_results:

poi = (struct instance_block*)ebp_pir->ir_ fh;
if (ebp_pir->ir_options & OPEN_FLAGS_COMMIT)
poi->w0E |= 0x0083;
pob = poi->pob;
if (ebp_pir->ws.special_options & RO_SWAPPER_CALL) {
D1_9E38 = ebp_pir->ir_fh;
_Init_PageFile();
(ebp_pir->ir_rh)->wd40 |= 0x4000;
if (ebp_pir->ir_rh->pVRP->VRP_demand_flags &
VRP_dmd_lock_unlock_media)
_Lock_Removab1é~Media();
}
if ((!ebp_pir->ir_options & OPEN_FLAGS_ALIAS_HINT) &&
ebp_pir->ir _pos != 0) {
pob->record_lock_list = ebp_pir->ir_pos;
IFSMgr_ReassignLockFileInst(ebp_pir->ir_pos,
entry_ir_fh, ebp_pir->ir_fh);
}

ebp_pir->ir_size = pob->file_size;
ebp_pir->ir dostime = pob->create_date_time;
ebp_pir->ir_attr = pob->fattrib;
pob->dl4--;

if (pob->dl4 < 0) C_540D();
ebp_pir->ir_options = action;

error_exit:

if (ebp_pir->ws.w38 & 0x2000) {
DWORD tmp, tmp2;
tmp = ebp_pir->ws.d6C;

196) Chapter 9: VFAT: The Virtual FAT File System Driver

Example 9-14. FS_OpenFile Function, Part 2 (continued)

30 ebp_pir->ws.d6C = 0;

31 if (tmp) { tmp2 = D1_A260;

32 D1_A260 = tmp;

33 if (tmp2) _HeapFree(tmp2,0);
34 }

35 }

36 ebp_pir->ir_error = errcode;
37 if (! ebp_pir->ws.special_options &

38 (OPEN_FLAGS_NO_CACHE | RO_SWAPPER_CALL)) {

39 if (ebp_pir->ws.w38 & 0x0004) {

40 BYTE old_ior_err = ebp_pir->ws.ior_error;
41 ebp_pir->ws.ior_error = 0; .

42 new_err = C_979C();

43 ebp_pir->ws.ior_error =

44 carry_set ? new_err:old_ior_err;

45 ebp_pir->ir_error = new_err;

46 } '

47 }

48 if (Level2_ClaimCnt) {

49 if ((ebp_pir->ws.special_options &

50 (RO_SWAPPER_CALL |RO_MM_READ_WRITE)) &&
51 (Levell_ClaimCnt & Oxffffff)) _Release_Levell();
52 else {

53 _Release_Level2 () ;

54 goto finish;

55 }

56 }

57 else _Release_Levell();

58 finish:

59 if (ebp_pir->ws.ior_error) ebp_pir->ir_error = IOSMapIORSToI21();
60 if (ebp_pir->ws.b35) {

61 (ebp_pir->ir_rh)->dlA &= (~(1 << ebp_pir->ws.b35));
62 if (D1_9DAC) Wakeup_Thread(&D1_9DAC);

63 }

64 } // end of FS_OpenFile

After a successful open of an existing file, return values are extracted from the
VFAT File Instance Block and File Open Block structures. These values are stored
to the ir_size, ir_dostime, and ir_attr members of the ioreq structure. The value
of the action variable, returned by _OpenExisting, is stored to ir_options.

The common cleanup code starts at line 27 where the first if clause checks if an
allocation needs to be freed or just placed on the free list. Then at line 36, the
current error code value (0 if no error) is stored to the ir_error member of the
ioreq structure. At line 37, a check is made to see if the file open was for a ring-
0 swapper file or memory-mapped file; if so special action is taken here.

Finally, at line 48, the Level2 ClaimCnt variable is checked to see if a Claim_
Level2 call has occurred in the interim. If not, the Release_Levell function is
called to “unclaim” the critical section.

Opening a VFAT File—Lower Level 197

This top level view of FS_OpenFile reveals some interesting aspects of VFAT’s
implementation, but we need to descend to lower levels to see how the file is
located on the disk and to learn more about the File Instance and Open Block
structures.

Opening a VFAT File—Lower Level

Let’s continue to “zoom-in” on FS_OpenFile, by examining one of its core func-
tions: _OpenExisting. The pseudocode for this function is shown in Example 9-15.

Example 9-15. Pseudocode for Function _OpenExisting

int _OpenExisting() {

register DWORD eax_reg, ebx_reg, edx_reg, esi_reg;
BYTE mode, share_mode;

PDIRENTRY pdir;

PINST_BLK poi;

1
2
3
4
5
6 eax_reg = 0xc000;

7 edx_reg = ebp_pir->ir_attr;

8 _Init_PathAttribs();

9

10 mode = ebp_pir->ws.access_share_mode & 0x77;

11 share_mode = mode & 0x70;

12 if ((share_mode > SHARE_DENYNONE) ||

13 (share_mode "~ mode > 4)) return_carry(0x0c); // invalid access
14

15 eax_reg = ebp_pir->ir_ppath;

16 if (eax_reg == NULL) {

17 esi_reg = ebp_pir->ir_uFName; // SFTOpenInfo

18 _SFT_Open() ;

19 if (carry_flag) return_carry(0x02); // file not found
20 } :

21 else {

22 _FindPath() ;

23 if (carry_flag) {

24 if (zero_flag) return_carry(0x02); // file not found
25 return_carry(0x03); // path not found

26 }

27 if (zero_flag) return_carry(0x05); // access denied
28 }

29 pdir = ebx_reg; // EBX points to directory entry
30 poi = ebp_pir->ir_fh;
31 if (pdir->deAttributes & ATTR_READONLY) ({

32 if (ebp_pir->ws.access_share_mode & 0x0080) {

33 poi->open_mode = SHARE_DENYNONE; //0x40;

34 ebp_pir->ws.access_share_mode = 0x00c0;

35 }

36 if (poi->open_mode & 0x03 != ACCESS_READONLY) // 0

37 . if (poi->open_mode & 0x03 != ACCESS_EXECUTE) // 3

38 if (ebp_pir->ir_options & OPEN_FLAGS_REOPEN == 0) // 0x800

39 return_carry(0x05); // access denied

198 Chapter 9: VFAT: The Virtual FAT File System Driver

Example 9-15. Pseudocode for Function _OpenExisting (continued)

40 }
41 if (ebp_pir->ws.vcache_handle)

42 VCache_Hold(ebp_pir->ws.vcache_handle);
43 _Add_Open_Instance() ; .

44 cf = carry_flag;

45 if (ebp_pir->ws.vcache_handle)

46 VCache_Unhold(ebp_pir->ws.vcache_handle);

47 if (cf) return;

48 if (ebp_pir->ir_options & OPEN_FLAGS_NO_COMPRESS) {

49 poi = ebp_pir->ir_fh;

50 poi->pob->b25 |= 0x10;

51 }

52 if (pdir->deStartCluster == 0) return 1;

53 if (ebp_pir->ws.special_options &

54 (OPEN_FLAGS_NO_CACHEIRO_SWAPPER_CALL)) return 1;

55 eax_reg = 0; // amount to read

56 edx_reg = 0; // starting read position
57 _Readahead() ;

58 return 1;

59 }

This function starts out by extracting the path-parsing flags which were passed
into FS_OpenfFile in the upper word of the #»_attr member of the ioreq structure.
This is accomplished by the call to _Init_PathAttribs on line 8. The path-parsing
flags as well as other path-related attributes are combined into ebp_pir->ws.path_
attribs, a word-sized member of the ioreq’s working area, WS structure.

Next, on lines 10 through 13, the validity of the access and sharing modes is veri-
fied. If invalid values are detected here, the error code ERROR_INVALID_ACCESS
(0x0c) is returned to the caller and the carry flag is set. These operations are
combined in the macro return_carry().

At line 15, the EAX register is initialized with the address of ir_ppath, the pointer
to the ParsedPath structure for the canonicalized input filename. A special case
is checked at line 16, where this address is NULL, signifying an open using an
SFTOpenInfo structure. In this situation, the address of this structure is contained
in the #r_uFName member of the ioreq structure. This is passed via the ESI
register to the function _SFT_Open, where the file is opened not by pathname,
but by logical cluster number, directory entry index, and an 8.3 FCB-style name.
The IFS specification states that, “This special kind of open is issued by the IFS
manager when it is taking over a file handle left open by a TSR before booting
into Windows.” We are more interested in the other half of the if clause which
starts at line 22.

The _FindPath function, which is called at line 22, attempts to walk the disk
through each of the path elements in the #7_ppath member of the ioreq struc-
ture. It follows a sequence like this: For each path component, starting from the

Locating a Directory Entry 199

root, locate the directory entry for the path component (using the function _Find-
DirEntry). A “located” path component has a pointer to a cache buffer containing
the corresponding directory. entry. The starting cluster of the directory entry is
then used to retrieve the next directory level, where an attempt is made to locate
the next path component. This process is repeated for all the components in the
path and ultimately, if a filename is specified, it is searched for in the last located
directory.

_FindPath also makes use of the Path Cache and the Name Cache. Before starting
to walk the disk for a pathname, it consults the Path Cache to see if it holds an
entry for the path portion of a filename. If it finds an entry, the starting cluster for
the specified directory is returned, thereby saving one or more directory entry
traversals. Similarly, the Name Cache is consulted to see if it has an entry for the
filename portion of the pathname. If it does, the starting cluster and directory
entry index for the file are used to vector more directly to the file’s contents.

Eventually, when _FindPath returns, the EBX register contains a pointer to the
directory entry structure for the file, if the search was successful. An error return is
indicated by setting either the carry flag, the zero flag, or both, and returning an
error code. On a successful return, the attribute byte in the directory entry is
checked for read-only attributes (see line 31). If this is true, then some special
actions are taken in lines 32 through 40.

The next significant event occurs at line 43. Here, the call to _Add_Open_Instance
uses the information in the file’s directory entry to fill in VFAT’s file structures.
The first of these structures is a File Instance Block; the address of this block
becomes VFAT’s file handle which is returned in the ir_fb member of ioreq. The
second structure is an Open File Block, which is added to VFAT’s table of open
files. Only one Open File Block is created for each unique file, whereas a sepa-
rate File Instance Block a created for each file open or create. Note that Vcache_
Hold and Vcache_Unhold calls are used to make sure that the cache block for the
directory entry is not discarded while it is in use during the _Add_Open_Instance
call.

Finally, before returning from _OpenExisting, some of the file is loaded into the
cache. This is accomplished by the call to _ReadAhead at line 57.

Locating a Directory Entry

In the previous section, the _FindPath function was described. It takes a sequence
of path components in a ParsedPath structure and attempts to walk the corre-
sponding directories on the disk. The VFAT function _FindDirEntry meets this
need. Let’s see how it is used to traverse the path:

d:\windows\desktop\old_forum_messages.txt

200 Chapter 9: VFAT: The Virtual FAT File System Driver

In this example _FindDirEntry uses three arguments: ECX, an option argument;
EBX, the starting sector of the directory of interest; and EAX, a pointer to the
current pp_elements path component to be found. There are also variables shared
via the #r_f5sd area of the ioreq structure: starting cluster, sectors per cluster, and
starting sector. These are also initialized prior to calling _FindDirEntry.

On entry, _FindDirEntry clears and initializes its workspace buffer, null terminates
the path element it receives, and then makes an initial read from the specified
start sector. The read may actually be avoided if the sector is found in the cache.
Following this initialization, the search loop begins. Here are the various steps

taken:

Next entry:

e If the first byte of the directory entry is 0, then the end of the used portion of
the directory has been reached. Go to Match failed.

e Examine the attribute byte of the directory entry in the cache buffer; if it is a
0Ofh attribute, go to Long entry. Otherwise, go to Short entry.

Short entry:

e Copy the 8.3 BCS (byte character set) filename and extension from the direc-
tory entry to the workspace buffer.

e Create a Unicode FCB style name using IFS manager’'s BCSToUni service to
convert the BCS filename and extension.

e Use the IFS manager service FcbToShort to convert the Unicode FCB style
name to a Unicode 8.3 name with a dot separating primary and extension
components.

e If a longname buffer exists which has been created from long directory
entries preceding the alias directory entry, go to Alias entry.

e Now use the IFS manager service, IFSMgr_MetaMatch, to compare the input
Unicode path component with the Unicode 8.3 name created from the direc-
tory entry. For this example, the UFLG_NT flag is passed to this service to
select NT matching semantics.

If a match is found go to Match attributes; otherwise, continue at the label
Increment entry.

Long entry:

e If this directory entry has the last-in-sequence indicator (it is encountered
first), the number of directory entries in this sequence is determined from the
first byte of the entry and stored as a counter. The checksum byte for the
shortname alias is also saved.

Locating a Directory Entry 201

For all long directory entries, append the Unicode characters in the fields of
the directory entry to a longname buffer and decrement the entry count. If
the directory entry does not have the last-in-sequence indicator, compare its
checksum against that which was initially saved. Go to Increment entry.

Alias entry:

A checksum is calculated on the 11-character name in the alias directory entry
and it compared against the value found in the preceding long directory
entries.

If the path component is a filename, and the path portion was added to the
Path Cache, then the filename portion is added to the Name Cache.

Now use the IFS manager service IFSMgr_MetaMatch to compare the input
Unicode path component with the long filename created from the one or
more long directory entries. For this example, the UFLG_NT flag is passed to
this service to select NT matching semantics. If this match succeeds, perform
an uppercase comparison with the alias name up until the first “~” character
is encountered. If this also succeeds, go to Match attributes.

If the previous compare fails, use IFSMgr_MetaMatch to compare the input
Unicode path component with the Unicode 8.3 name created from the alias
directory entry. For this example, the UFLG_NT flag is passed to this service to
select NT matching semantics. If this match succeeds, go to Match attributes,
otherwise go to Increment entry.

Match attributes:

If the directory attributes match the input criteria, then go to Match return;
otherwise go to Increment entry.

Increment entry:

The directory index is incremented and the cache buffer pointer is advanced
to the next directory entry. If the cache pointer exceeds the cache block

range, then the cache block for the next sector will have to be filled.

If the end of the directory is reached go to Match failed, otherwise go to Next
entry.

Matich return:

Replace the null termination of the path component with the original value.
Set EAX to 0.
The EBX register points to the short or alias directory entry for the match.

Maitch failed:

Replace the null termination of the path component with the original value.

Set carry flag to indicate failure.

202 Chapter 9: VFAT: The Virtual FAT File System Driver

VEAT's File Structures

In our earlier examination of the function _OpenExisting, we came across the
routine _Add_Open_Instance. This is where File Open Blocks and File Instance
Blocks are initialized. The declarations for these data structures are shown in
Examples 9-16 and 9-17. VFAT’s table of open files is rooted in a header block
containing four pointers (see Example 9-16). The first two pointers appear to be
reserved, but the third pointer addresses the head of the open file list and the
fourth pointer addresses the tail of the open file list. Each entry in this linked list
is an OPEN_BLK shown in Example 9-17. The links are followed forward with the
pnext member until it reaches the address of the header block. Links can also be
followed backwards with the pprev member.

Example 9-16. Header Block for Open Files

OpenFileTable

0 unused ?

4 unused °?

8 POPEN_BLK first_open_block
C

POPEN_BLK last_open_block

When a file is opened, an OPEN_BLK structure is created for it and the first INST_
BLK structure is created to reference it. As new file handles are requested on the
open file, additional INST_BLK structures are created to reference the single OPEN_
BLK structure. Initially, the pfirst_inst and plast_inst members of the OPEN_BLK
point to the single INST BLK structure. As new instances of the file are opened,
each new INST BLK is added to the head of the list at pfirst_inst. The INST BLK
structure contains pnext and pprev members for traversing forwards and back-
wards through the list of instances. The last pnext pointer and the first pprev
pointer point to the referenced OPEN_BLK structure. There is also a pob member
which points to the common OPEN_BLK structure.

Example 9-17. File Open Block (92 bytes)

typedef struct _open_block {

0 struct _instance_block* pfirst_inst;

4 struct _instance_block* plast_inst;

8 struct _open_block* pnext;

c struct _open_block* pprev;

10 DWORD record_lock_list;

14 DWORD dl4;

18 DWORD dl8;

1C DWORD dlcC;

20 DWORD d20;

24 BYTE fattrib; // attribute bytel
25 BYTE b25;

26 WORD start_clus; // starting cluster numberl

VFEAT's File Structures 203

Example 9-17. File Open Block (92 bytes) (continued)

28 DWORD rh; // volume's resource handle from ioreq
2C DWORD create_date_time; // creation date & timel

30 DWORD file_size; // file sizel

34 WORD access_date; // last access datel

36 DWORD d36;
3A BYTE b3Aa;
3B BYTE b3B;
3C DWORD d3C;
40 DWORD d40;

44 BYTE dir_entry; // directory entry index

45 char fcb_name[l1l]; // FCB format 8.3 namel

50 DWORD sector_pos; // sector offset to beginning of file
54 DWORD cluster_table; " // table of clusters in file

58 WORD table_size; // ‘'size of cluster table

5A WORD w5A;
} OPEN_BLK, *POPEN_BLK;

1 Value retrieved from directory entry.

Example 9-18. File Instance Block (44 bytes)

typedef struct _instance_block {

0 struct _instance_block* pnext;
4 struct _instance_block* pprev;
8 struct _open_block* pob;
C
E

WORD open_mode; // ir_flags & Ox7f
WORD wOE; // init'ed to 0x004c
10 DWORD user; // ir_user
14 DWORD pid; // ir_pid

18 DWORD dl18;

1C DWORD d1C; »

20 DWORD d20; // init'ed to 1
24 DWORD d24;

28 DWORD d28;

} INST_BLK, *PINST BLK;

Recall that the _AllbclnstanceBlock function call, in FS_OpenFile, returns an
address which is assigned to ir_fb. This allocation is an INST_BLK structure in
which a unique file is referenced via a pointer to an OPEN_BLK structure. In the
“subsequent call to _Add_Open_Instance, VFAT checks if other open instances of
this file already exist. This check is done by traversing the table of open files and
looking for a match on three keys: directory entry index, sector position, and
resource handle. If no match is found, an OPEN_BLK structure is allocated and its
contents initialized from the directory entry. On the hand, if a match is found,
then the new open will be granted only if the desired access and sharing mode
are permitted by I[FSMgr.

To determine if the open should succeed VFAT calls the service IFSMgr_CheckAc-
cessConflict. One of the arguments to this service is the address of an
enumeration function. This function is called by IFSMgr for each open instance of

204 Chapter 9: VFAT: The Virtual FAT File System Driver

the file. On each call to the enumeration function, VFAT returns information
about an instance of the open file. The enumeration function returns 1 for enumer-
ation to continue and 0 for enumeration to stop. When the enumeration is
complete, IFSMgr_CheckAccessConflict returns 0 if the desired access and sharing
mode can be granted, or an error code if not.

Virtual Memory,
the Paging File,
and Pagers

Virtual memory and paging have been the topics of numerous texts. If you would
like some background in these areas, I recommend Operating System Concepts, by
Abraham Silberschatz and Peter Galvin (Addison-Wesley, March 1994), especially
Chapter 8 on memory management and Chapter 9 on virtual memory. Paging in
Windows 95 is, of course, dependent on hardware support in the x86 family of
microprocessors. Many books have described the details of page directories, page
tables, and page faults of the Intel microprocessors—Programming the 80386 by
John Crawford and Patrick Gelsinger is one that I refer to frequently. This back-
ground is really essential to understanding this chapter, although T'll throw in a
brief refresher for some of the thornier topics.

Paging is not new to Windows 95. Earlier versions of Windows utilized the paging
capability of the 386 and 486. Andrew Schulman’s article, “Exploring Demand-
Paged Virtual Memory in Windows Enhanced Mode,” in Microsoft System Journal,
December 1992, examines paging in Windows 3.1. More recently, Matt Pietrek, in
Chapter 5 of his book, Windows 95 System Programming Secrets, looks at
memory paging as a prelude to his in-depth discussion of Win32 memory
management.

The Windows 95 Paging File

One of the new features touted in Windows 95 is the use of a dynamic paging
file. To quote from the Microsoft Windows 95 Resource Kit, p. 562, “It can shrink
or grow based on the operations performed on the system and based on available
disk space.”

This is in contrast to the Windows 3.x paging file which, for best performance,
had to be a fixed file contiguously allocated. The file 386part.par was created in

205

206 Chapter 10: Virtual Memory, the Paging File, and Pagers

the root directory with system attributes and accessed via either the Windows
block device driver or Int 13h. In the \windows directory another file was created
called spart.par, which gave the size and location of 38Gpart.par.

Windows 3.x also had the option to use a temporary swap file which it created
while Windows was running and deleted automatically on exit.-It also could grow
or shrink as necessary. This was a DOS file with normal attributes, called
win386.swp. Since access was via Int 21h in virtual-86 mode, performance
suffered compared to the fixed file option. Although the temporary swap file was
not a popular option with Windows 3.x users, it is the only option available in
Windows 95.

Paging or Swapping?

A leisurely scan of the Microsoft Windows 95 Resource Kit reveals several ref-
erences to the Windows 95 swap file. For instance, in Chapter 17 on Perfor-
mance Tuning, there is a section on “Optimizing the Swap File,” and in Chapter
31 on Windows 95 Architecture there is a section on “Windows 95 Swap File.”
The file that is being referred to is stored under the filename win386.swp. The
term swapping has traditionally referred to the process of moving entire pro-
cesses to and from the disk (see Operating System Concepts, pp. 303-304). This
is not the mechanism used by Windows 95. The technically correct term is pag-
ing. The distinction is that a pager moves page-sized chunks (4096 bytes) of
code or data to main memory from the disk but only when that page is needed.
On the other hand, a swapper brings in the code and data for the entire pro-
cess, while moving a process to disk to make room. You will see the terms
swapping and paging used interchangeably in Windows 95 documentation.

Exploring with MultiMon

To start our excursion into Windows 95 paging, I'm going to perform a simple
experiment using MultiMon. Here are the steps I used to set up MultiMon to
collect the results shown in Figure 10-1:

1. Launch MultiMon.

2. Select only the FSHook and BOOTMGR monitors in the Add/Remove Drivers
dialog that you get from the Options Menu, Add/Remove Drivers...
command. FSHook will allow us to capture file system events and, when
used in conjunction with BOOTMGR, we can capture events during system
startup.

3. Bring up the Filter Options dialog by clicking the Filters button on the
toolbar. Select “IFSMgr Filehook” and then check the boxes for the following

The Windows 95 Paging File 207

APIs: FS_GetDiskInfo and RingOSwapperIlO. Then press the dialog button
labeled Save As Default.

4. Restart the system. (It isn’t necessary to shut down.)

5. Launch MultiMon. You should be greeted with a message box that states
“BOOTMGR has captured a log file. Do you wish to display it now?” Press the
Yes button. You should now be viewing an output screen similar to that .

- shown in Figure 10-1.

=xx% SyeCritlInit

===x Devicelnit

FS_OpenFile d5 0200 oa spn C:\WIN386 . SWP
FS_VWUriteFile dé 0200 —sn O0OH®100000H
FS_GetDiskIn 36 033de000
{FS_GetDiskIn 36 033de000
|==== InitComplete
|FS_GetDiskIn 3
{F5_GetDiskIn
FS_GetDiskIn
F5_GetDiskIn
FS_GetDiskIn
F5_GetDiskIn
F5_GetDiskIn
F5_GetDiskIn
FS_GetDiskIn
FS_GetDiskIn
F5 _GetDiskIn
FS_ GetDiskIn 033de000
FS_GetDiskIn . 033de000

FS _WriteFile —=n 0H@180000H
FS_GetDiskIn 0335000

i il

033de000
033de000
033de000
033de000
033de000
033de0OD
033de000
033deD00D
033de000
033de000
033de000

OOOOOOOO00000 00

-

Figure 10-1. Paging file activity reported by MultiMon

In Figure 10-1, groups of lines are separated by tags that BOOTMGR inserts to
flag the stages of system initialization: “**** DeviceInit”, “**** InitCom-
plete”, etc. The third line in the listing shows an FS_OpenFile command being
sent to VFAT for the file named c:\win386.swp. The field d5150 indicates the
dispatched command and accompanying flags. Referring back to Chapter 6,
Dispatching File System Requests, we know that the command d5 corresponds to a
ring-0 open or create, the function I named dRO_OpenCreate (see Table 6-5). The
flags byte 50 signifies the LFN and IFSMgr_RingO_FilelO bits. These pieces of infor-
mation point to a IFSMgr_RingO_FileIO call and in this case the subfunction RO_
OPENCREATEFILE.

We can read more into this call from the flags which accompany the open. The
characters “oa” signify ACTION_OPENALWAYS, meaning open an existing file but

208 Chapter 10: Virtual Memory, the Paging File, and Pagers

if it doesn’t exist, create it. The special options “spn” are “s” for RO_SWAPPER_
CALL, “p” for OPEN_FLAGS_NO_COMPRESS, and “n” for OPEN_FLAGS_NO_
CACHE. Another thing to note is that the value 200h (ir_sfn) is the first value in
the range of extended file handles.

Scanning down the listing, you will also note a few FS_WriteFile calls on this
extended file handle using “-sn” attributes: RO_SWAPPER_CALL and RO_NO_
CACHE. 1t’s ‘interesting that the length of the writes is 0 but the position of the
write is not, e.g., OH@100000H. This initial write sets the size of win386.sup to 1
megabyte. If we were to extend our logging and launch some applications, we
would see FS_WriteFile and FS_ReadFile calls on the handle 200h with lengths
which are a multiple of 1000h, the size of a page.

To sum up, we have found that Windows 95, like Windows 3.x, uses a temporary
file called win386.swp for its paging file. While Windows 3.x used only virtual-86
DOS calls to access this file, Windows 95 uses IFSMgr’s ring-0 APIs (when the
underlying hardware supports it). As we have seen, these APIs are a thin veneer
to the underlying FSD, VFAT. VFAT in turn utilizes IOS services. These changes
have breathed new life into what was a sluggish Windows 3.x option.

Who Accesses win386.swp?

A natural question to ask is who is opening, reading from, and writing to
win386.swp? Perhaps the easiest way to answer this is to use a debugger and
place a breakpoint at a well-chosen location. One possibility is to set a breakpoint
at IFSMgr_RingO_FileIO and examine the calling parameters in each case. This
would be rather tedious. A better location for the breakpoint would be just before
we chain into the next file system hook (or call into the FSD) in FSHook. This is
after FSHook has decided to report the event but before it passes the request
down to the FSD.

FSHook has a registry option for just such a need. This is not a feature that most
users will want to experiment with, so it is left as a registry entry that is set manu-
ally using REGEDIT. In Figure 10-2, the registry values under the MultiMon_
fshook key are shown. The value name “Int30n” will not be defined unless you
have experimented with this feature already. To add this value, select the menu
Edit, submenu New, followed by DWORD Value. Type in Int30n for the value
name. The DWORD associated with this is 2 Boolean, 1 for “on” and 0 for “off.”

A breakpoint is inserted as an assembly language Int 3 instruction. In order for
your kernel debugger to respond to these breakpoints you may have to issue a
command. For instance, with Winlce the command I3Here On must be .executed.
Once you have made the necessary adjustments, repeat the experiment we
performed in the last section. Now, when the first FS_OpenFile call is encoun-
tered you will break into your debugger.

The Windows 95 Paging File : 209

SPOCOLER

inwin95fs
-iZA SYSLOG_fshook 0000 00 00 00 00 00 00 00 00 00 00 00 ﬁ

i

{3 VIEMMGR i 0x00000030 (48) I
“C:AIFSBOOKABINfshook. vxd" i
0x00000001 (1) 0

Figure 10-2. Setting FSHOOK's Int30n option using RegEdit

When the breakpoint occurs, execution stops on the instruction following the Int
3. The actual code, in both C and indented assembly, is shown in Example 10-1.
Here you see the call to the previous file system hook function, which looks a
little strange because of the double indirection involved, (*C*ppPrevHook)). Using
the debugger to step forward we can watch as each of the arguments are pushed
onto the stack in preparation for calling down into the FSD. Right now, I'm inter-
ested in seeing who is making this call, so I won’t step into the FSD code, but
rather step over it. By continuing to step through code we work our way up
through the series of nested functions which initiated the call into FS_OpenFile.

Example 10-1. FSHook Code in Vicinity of Breakpoint

if (bIssueInt3) _asm int 3

CMP DWORD PTR [_bIssueInt3],00
JZ C00B59AD
INT 3

retc = (*(*ppPrevHook)) (pfn, fn, drv, res, cp, pir);
MOV EAX, [EBP+1C] ;pir=C33E5C84 (ptr to ioreq)
PUSH EAX
MOV EAX, [EBP+18] ;cp=00000000 (ANSI codepage)
PUSH EAX
MOV EAX, [EBP+14] ;res=00000010 (local drive)
PUSH EAX
MOV EAX, [EBP+10] ;drv=00000003 (C drive)
PUSH EAX
MOV EAX, [EBP+0C] ;fn=00000024 (IFSFN_OPEN)
PUSH EAX
MOV EAX, [EBP+08] ;pfn=CO08FEE4 (FS_OpenFile)
PUSH EAX
MOV EAX, [_ppPrevHook] ; =C33F709C
CALL [EAX] ;=C0086D20
ADD ESP, 18

The nested hierarchy of functions is shown in Example 10-2. It shouldn’t come as
too big of a surprise that pageswap.vxd and dynapage.vxd are the virtual drivers
from which the paging file calls originated. Although the VxD file has the name

210 ' Chapter 10: Virtual Memory, the Paging File, and Pagers

DYNAPAGE, internally, in its Device Descriptor Block, this driver goes by the
name PAGEFILE. PAGEFILE and PAGESWAP are not new to Windows 95. They
are revamped versions of their Windows 3.x counterparts.

Example 10-2. Tracing the Initial Open of the Paging File

FS_OpenFile VFAT
FileHook FSHOOK

Call_FSD IFSMGR(1)+194a

Cl_3a14 IFSMGR (1) +3a90

dRing0_OpenCreate) IFSMGR(1)+3939

Dispatcherl IFSMGR(1)+07c4

IFSMgr_Ring0_FileIO IFSMGR (1) +38a3
PageFile_Init_File PAGEFILE (2)+01£f3
PageSwap_Init_File PAGESWAP (2)+000e

VMM (5) +622D VMM (5)+622d

The Roles of PAGESWAP and PAGEFILE (DYNAPAGE)

The DDK documentation is not particularly illuminating about the relative roles of
two virtual drivers, PAGESWAP and PAGEFILE. PAGESWAP exports the services
listed in the first column of Table 10-1. The PAGEFILE services shown in the
second column are called by the PAGESWAP services in the first column. As you
can see, there is almost a one-to-one correspondence. Contrary to the documenta-
tion, PAGESWAP is little more than a thin layer over the PAGEFILE services.

Table 10-1. Correspondence Between PAGESWAP and PAGEFILE Services

PAGESWAP Services PAGEFILE Services Used by PAGESWAP
PageSwap_Init_File PageFile_Get_Version, PageFile_Init_File
PageSwap_Get_Version
PageSwap_Test_IO_Valid PageFile_Test_IO_Valid

- PageSwap_Grow_File PageFile_Grow_File
PageSwap_Read_Or_Write PageFile_Read_Or_Write

Fortunately, we are given the entire source code for the PAGEFILE (DYNAPAGE)
driver; it can be found in the Windows 95 DDK directory ..\base\samples\
dynapage. Using this source as a guide, we can place the IFSMgr_Ring0_FileIO
call, which we traced above, into the context of PageFile_Init_File. Here is a
thumbnail sketch of what this function does:

e Gathers the values of the following system.ini profile strings:

— Paging. If this Boolean value is off, then paging is disabled and PageFile_
Init_File returns with EBX equal to 0, to indicate an error.

— MinPagingFileSize. This optional setting determines the minimum size of
the paging file in Kbytes. The default is 0.

The Windows 95 Paging File 211

— MinUserDiskSpace. This optional setting determines the amount of space
(in Kbytes) to reserve as free on the disk containing the paging file. The
default is 512 Kbytes.

— MaxPagingFileSize. This optional setting determines what the upper limit
is for growing the paging file. This value is also given in Kbytes. The
default is 2 gigabytes.

— PagingFile. This optional entry determines the path and filename for the
paging file. The path must include a drive letter, i.e., it overrides
PagingDrive. The default is win386.swp.

— - PagingDrive. This optional entry specifies the volume where the paging
file will be created. If this option is specified, the paging file is created in
the root directory of the specified volume; otherwise the Windows drive
and directory are used unless PagingFile is specified.

Uses IOS_Requestor_Service, subfunction IRS_IS_DRVCOMPRESSED, to see if
the drive containing the paging file is using a real-mode compression driver;
if so, moves the paging file to the host drive.

Checks IFSMgr_Ring0GetDrivelnfo to see if the paging drive is being handled
by IFS and whether it is using protect-mode or real-mode drivers. Some IFS
drives use real-mode drivers, i.e., real-mode mapper. If the drive doesn’t pass
this test, it has to use DOS for paging.

If the system has a protect-mode IFS driver, double checks the drive using
IOS_Requestor_Service, sub function IRS_GET_DRVINFO. This will tell us if it
has any DOS-like characteristics, e.g., the driver uses pageable code. If the
drive has any of these “undesireable” characteristics, it too uses DOS for pag-
ing.

At this point there are two possibilities: paging is provided through the virtual-86
DOS Int 21h interface, or paging is provided through IFSMgr’s ring-0 APIs. We'll
only show the ring-0 case for the remainder.

Uses IFSMgr_Ring0_FileIO subfunction RO_OPENCREATEFILE to create the
paging file with normal attributes. Perform the create using the special flags:
RO_SWAPPER_CALL, RO_NO_CACHE, and OPEN_FLAGS_NO_COMPRESS.

Uses IFSMgr_Ring0_FileIO subfunction RO_WRITEFILE to set the initial length
of the paging file to the value specified by MinPagingFileSize. If this fails
then tries again using a different value. If the system has less than 9 mega-
bytes of RAM under control of the memory manager (as reported by _GetDe-
mandPagelnfo), then sets the file size to 9216 Kbytes (amount of physical
RAM in Kbytes). Otherwise retries with a size of 0.

On success, returns the maximum paging file size in EAX (in pages) and the
current paging file size in EBX (in pages).

212 Chapter 10: Virtual Memory, the Paging File, and Pagers

The call trace shown in Figure 10-1 also reveals several calls to FS_GetDiskInfo.
Those which are marked by command and flag bytes of 36101 are the result of
Int 21h function 36h requests. Note that only the ANSI code page flag is set, so
these calls are not invoked using IFSMgr_RingO_FilelO. Instead, they originate as
Exec_VxD_Int calls in PageFile_Get_Size_Info. This latter function reports the
minimum, maximum, and current size of the paging file. The amount of free
space on the disk containing the paging file enters into the calculations of these
parameters. PageFile_Get_Size_Info, in turn, is called by two VMM services:
_GetDemandPagelnfo and _PageGetAllocInfo.

The last four lines shown in Figure 10-1 are two pairs of FS_GetDiskInfo and FS_
WriteFile calls. Both of these calls are made via IFSMgr_Ring0_FileIO. Each pair of
calls corresponds to a single call to PageFile_Grow_File requesting that the paging
file grow by 80h pages (512 Kbytes). Growing and shrinking the paging file is an
ongoing process. Any service that commits “swappable pages” (e.g., _Page-
Commit) adds that number of pages to a running total. The requests are not acted
on until the total outstanding exceeds the current paging file size by at least 80h
pages. Similarly, decommitting swappable pages reduces the size of the paging
file by a like amount, but the paging file is not shrunk until its new size would be
at least 80h pages less than its current size. While the growth of the paging file
occurs directly in response to committing new swappable pages, shrinking the
paging file goes on as a background process from a callback installed by the
VMM service Call_When_Idle. Pages which are allocated as fixed or which are
subsequently locked do not require space in the paging file, since they will never
be candidates for page-outs. Also, some pages use a different backing file, such as
those for memory-mapped files, and are not counted as swappable.

The key PAGEFILE service for moving pages to and from the paging file is
PageFile_Read_Or_Write. This service takes a single argument, a pointer to a
PageSwapBufferDesc structure (see Example 10-3). PAGEFILE converts the
parameters in this structure into an IFSMgr_RingO_FilelO call for either RO_READ-
FILE or RO_WRITEFILE, depending on the value of PS_BD_Cmd.

Example 10-3. Structure Passed into PageFile Read_Or_Write

typedef struct {

DWORD PS_BD_Next; // ignored

BYTE PS_BD_Cmd; // PF_Read_Data(0) or PF_Write_bData(l)
BYTE PS_BD_Priority; // ignored

BYTE PS_BD_Status; // return: PFS_Failure or PFS_Success
BYTE PS_BD_nPages; // number of pages to read or write
DWORD PS_BD_Buffer_Ptr; // linear address to transfer to or from
DWORD PS_BD_File_Page; // page offset within paging file

} PageSwapBufferDesc;

The transfer count is e'qual to PS_BD_nPages * 4096 bytes. The file position at
which the operation begins is determined by PS_BD_File Page * 4096. The paging

Pagers 213

file remains open, so the handle returned by the OpenCreateFile call in PageFile_
Init_File is still valid and used by PAGEFILE here. Note that although we can’t
explicitly specify the RO_NO_CACHE, RO_SWAPPER_CALL, and OPEN_FLAGS_NO._
COMPRESS options as we did on the OpenCreateFile call, these attributes are
stored with the fhandle structure. Before the call is passed down to the FSD,
IFSMgr propagates these attributes to the ir_options member of the ifsreq struc-
ture, so they will be seen by FS_WriteFile and FS_ReadFile.

To see how PageFile_Read_Or_Write is put to use, we need to get acquainted
with VMM'’s pagers.

Pagers

Pagers are a new addition to the VMM in Windows 95. A pager is simply code
called by the VMM to move pages in and out of memory. A pager does not have
to reside in a virtual device, and in fact several pager routines are located in
KERNEL32.

Pagers are used for loading and initializing both swappable and fixed pages.
Pagers are involved during the entire lifetime of a page, from the time it is
committed until it is freed. Not all pages fall under the control of a pager though;
the exceptions include hooked pages, instanced pages, and pages committed
using the service _PageCommitPhys.

A pager exposes one or more action functions through a Pager Descriptor (PD)
structure (see Example 10-4). Each pager action function (e.g., pd_virginin) has
the following prototype:

ULONG _cdecl FUNPAGE(PULONG ppagerdata,
PVOID ppage, ULONG faultpage);

If a function pointer member of the PD structure is zero, the pager will not be
notified when the corresponding action is taken. It is customary that a pager will
not implement all action functions.

Example 10-4. Pager Descriptor Structure

struct pd_s {

PFUNPAGE pd_virginin;
PFUNPAGE pd_taintedin;
PFUNPAGE pd_cleanout;
PFUNPAGE pd_dirtyout;
PFUNPAGE pd_virginfree;
PFUNPAGE pd_taintedfree;
PFUNPAGE pd_dirty;
ULONG pd_type;

}i

214 Chapter 10: Virtual Memory, the Paging File, and Pagers

A virtual device may register a pager with VMM using the _PagerRegister service.
This service takes a pointer to a PD structure as its only argument. It returns a
handle, actually a 1-based index, that represents the pager. This handle can be
passed to other services, such as _PagerQuery, to retrieve the pager’s PD struc-
ture, or _PagerDeregister, to remove the pager from VMM.

All system pages which are under control of a pager have such a handle associ-
ated with them. The association is made at the time pages are committed through
_PageCommit. Here are the parameters passed in to _PageCommit:
ULONG _PageCommit (ULONG page, ULONG pages,
ULONG hpd, ULONG pagerdata, ULONG flags);
e page is the linear page number, i.e., the linear address returned by _PageRe-
serve divided by 4096

e pages specifies the number of pages to commit but can be no larger than the
number of pages initially reserved by the call to _PageReserve

e hpd is the handle of the pager whose action functions will be called for these
pages. VMM supplies four internal pagers with handles 1 to 4, which are:

PD_ZEROINIT(1) for swappable zero-initialized pages
PD_NOINIT(2) for swappable uninitialized pages
PD_FIXEDZERO(3) for fixed zero-initialized pages
PD_FIXED(4) for fixed uninitialized pages
* pagerdata is a 32-bit value associated with this page or pages; if used in con-

junction with the PC_INCR flag, then pagerdata is incremented by one for
each page in the range

e flags specifies various options such as whether the pages are permanently
locked, are accessible by ring-3 applications, etc.

A typical Windows 95 configuration will have 12 different pagers. Of these, VMM
contributes its four internal pagers. But where do the other eight come from?
We'll see shortly that VWIN32 and KERNEL32 are responsible.

The System Pagers

On the book’s companion diskette, there is a utility called PAGERS which dumps
out all of the registered pagers in a system. Figures 10-3 and 10-4 show its output
for a standard system configuration. Imagine Figure 10-4 as a continuation of
Figure 10-3 to the right. Corresponding lines in'the two figures can be found by
matching up the pager handle (hPD) in the first column.

For each pager action function there is a corresponding column, VirginIn, Taint-
edln, etc. The addresses displayed in these columns are given as Device(oby) +

The System Pagers 215

1 Swappable Zero-Init VMM(E)+370 VMM(1)+5843 0
2 Swappable Un-Init 0 YMM(1)+5843 a
3 Fixed Zero-Init YMM(E]+370 0 0
4 Fixed Un-Init 0 0 0
15 Win32Sys DLL Data VWwIN32(1)+268 YMM(1)+5843 0
16 Win32 Sys DLL Code YWIN32(1]+268 WYWIN32(1)+268 0
7 Win32 Zero-lnit Sys DLL Data ~ WMMIE}+370 ViwIN32(1)+268 1]
| E Win32 EXE/DLL Data bff7b4bE VMM(1])+5843 0
L El Win32 EXE/DLL Code bff7b4bB 0 0
110 Win32 Safe Mapped File bff7eefa bff975d7 0
im ‘Win32 Unsafe Mapped File bfffeefa bff975d7 0
112 Win32 Copy-On-‘Wiite Mappe... bif7eefa VMM(1)+5843 0
. Test Pager _Virginln _Taintedin _CleanOut

WMM(1)+5670
YMM(1)+5670
0
i]
VMM(1)+5670
0

VMM(1)+5868 VMM(1)+50B6 SWAPPER E
VMM(1)+5868 YMM(1)+58B6 SWAPPER ||
0 0 PAGERONLY |
0 0 PAGERONLY |
VMM(1)+5868 VMM(1)+58B6 SWAPPER
0 0 PAGERONLY]
0 0 0 PAGERONL'
YMM(1)+5670 VMM(1)+5868 YMM(1)+58B6 SWAPPER
0 0 0
VWIN32(1)+FBB 0 0

VWIN32(1)+FBB 0 0 PAGERONLY ||
ViMM(1)+5670 VMM[1)+5868 VMM(1)+58B6 SWAPPER |
_DirtyOut _VirginFree _TaintedFree _Dirty SWAPPER

o s Y e Y o o e N e e B e R s e }

11
12
13
14
15
B
17
18
19
11
11
1

0
1
2
3

Figure 10-4. Second half of pagers output

ofs, where Device is the virtual device, obj is the object or segment number, and
ofs the offset from the beginning of the segment. A zero indicates that the action
function is not implemented for that pager. In a few cases, a linear address is
given, e.g., bff7b4b6. This is an address in KERNEL32.

If you compare the pager type with the number of functions it has implemented
you will note that SWAPPER type pagers provide the most functionality. This is
understandable, since these pagers support the movement of data to and from the
paging file. PAGERONLY type pagers do not use the system paging file, either
because the pages are fixed or because they use a different backing file.

Another item of interest is that a pager can “inherit” functions from another pager.
For instance, under the columns TaintedFree and Dirty, all pagers use the same
implementation provided by VMM. '

216 ' Chapter 10: Virtual Memory, the Paging File, and Pagers

Ignore the descriptions column for a moment and just look at the addresses of the
action functions. Handles 8 through 12 are unique in that the action functions are
in KERNEL32’s address range. Handles 5, 6, 7, 10, and 11 have action functions
that reside in VWIN32. If the description strings weren't available, this KERNEL32/
VWIN32 association would be enough to suspect that these pagers are used by
Win32.

The descriptions for the pagers with handles 5 through 12 were found by using
the .M debugging command which is built-in to VMM for both the retail and
debug versions. This command can be invoked in either Winlce or WDEB386; it
has many options and reveals a wealth of information about the internal workings
of the memory manager. The subcommand which displays the pager descriptors
is .MG.

The last pager displayed in the output, the one with handle 13, is registered by
gpagers.vxd, the helper VxD which PAGERS uses to collect the information it
displays. We will be using this pager to get a closer look at when and why the
pager action functions are called.

The Pager Action Functions

The pager action functions are given names like “virgin-in” and “tainted-free.” Are
these just cute phrases or do they have some significance? There is a special signfi-
cance attached to the words virgin, tainted, clean, and dirty as they apply to a
pager’s pages. A dirty page is one that has been modified by a write. It will revert
to a clean page when the page has been paged-out to the paging file. Thus, a
page may toggle back and forth between clean and dirty states during its lifetime.
Pages start out as clean and virgin. Once a page has entered the dirty state, it is
thereafter a tainted page—it can not reclaim its virginity, although it can re-enter
the clean state. Thus a virgin page must remain clean.

VMM will call the various pager functions in the PD structure, to control the life of
a page. The function pd_virginin is called to move a page into memory, if the
page is clean and has never been modified. This could involve reading a portion
from the original file on disk into the page or just initializing the page contents to
zero. The function pd_taintedin is also used to move a page into memory, but for
pages which have undergone some change. VMM also has two functions for
moving pages out of memory. The first is called pd_cleanout, which is used to
move out a page which has not been dirtied since the last time it was paged out.
The function pd_dirtyout does the same, but for pages which have not been
paged out since they were dirtied. The destination for a page out could be the
paging file or the backing file for a memory-mapped file.

The System Pagers 217

When a page is decommitted, either explicitly with _PageDecommit or implicitly
with _PageFree, the function pd_virginfree or pd_taintedfree is called. If the page
has never been modified, pd_virginfree is used, otherwise pd_taintedfree is
called. Finally, the pd_dirty function is called by VMM to inform the pager that a
page has been written to. This is not an immediate notification. If a page is dirtied
in more than one memory context, this function will be called once for each
context.

The Life of a Page

It is more interesting to see pager functions at work. You can trace through a
couple of test routines from PAGERS (see Figure 10-4) by selecting either Testl or
Test2 from the Test menu. These test routines do not send their output to the
Win32 application; rather, you need to run them in conjunction with a kernel
debugger like Winlce or WDEB386, since the output is sent to a debugger
console. The complete source code for pagers.exe and gpagers.vxd can be found
on the companion diskette.

The first test routine is shown in Example 10-5. The sequence that this routine
follows is very simple. It first reserves three pages of memory and then commits
the pages. It then reads a byte and writes a byte to each page. The pages are then
decommitted and then freed. Interspersed with these steps are printouts to the
debug console of several data structures. gpagers.vxd installs its own pager which
is a wrapper around calls to VMM’s Swappable Zero-Init pager. As the Testl
routine executes, the calls to the pager’s action functions are also logged to the
debug console. This output is shown in Example 10-6. \

Example 10-5. Test1 Function From gpagers.vxd

void Testl(void) {
PBYTE pBase, p;
DWORD linPageNum, i, cpg = 3;
BYTE abyte;
int line=1;

TestNum = 1;
CheckPageRange(0, 0);

pBase = _PageReserve(PR_PRIVATE, cpg, 0);
linPageNum = LinAddr_to_PageNum (pBase) ;

Debug_Printf("\nTEST1(%d):_PageReserve: reserve %d pages at
linear addr = %1x\n", line++, cpg, pBase);
for (i=0, p=pBase; i<cpg; i++, p+=0x1000)
Dump_PTE(LinAddr_to_PageNum(p), 3);

Debug_Printf("\nTEST1(%d): _PageCommit: linear addr = %1x,"
"page number = %1x\n", line++, pBase, linPageNum) ;

218 Chapter 10: Virtual Memory, the Paging File, and Pagers

Example 10-5. Test1 Function From qgpagers.vxd (continued)

_PageCommit (linPageNum, cpg, hMyPager, linPageNum,
PC_WRITEABLE|PC_USER|PC_INCR) ;

for (i=0, p=pBase; i<cpg; i++, p+=0x1000)
Dump_PTE(LinAddr_to_PageNum(p), 3);

for (i=0, p=pBase; i<cpg; i++, p+=0x1000) {
Debug_Printf("\nTEST1(%d): Read and write page at %1lx\n",
line++, p);

// This will call pd_virginin for pager,
// to load initial contents of page
abyte = *p;
Dump_PTE(LinAddr_to_PageNum(p), 3);
// This will call pd_dirty for pager,
// to flag that page has been modified
*p = 'a';
Dump_PTE(LinAddr_to_PageNum(p), 3);
}

Debug_Printf("\nTEST1(%d): _PageDecommit: linear addr = %$1lx\n",

line++, pBase);

_PageDecommit (linPageNum, cpg, 0);
for (i=0, p=pBase; i<cpg; i++, p+=0x1000)
Dump_PTE(LinAddr_to_PageNum(p), 3);

Debug_Printf("\nTEST1(%d): _PageFree: linear addr = %$lx\n",
line++, pBase);
_PageFree(pBase, 0);
for (i=0, p=pBase; i<cpg; i++, p+=0x1000)
Dump_PTE(LinAddr_to_PageNum(p), 3);

TestNum = 0;
}

Example 10-6. Pager Function Trace—Test1

TEST1 (1) : _PageReserve: reserve 3 pages at linear addr = 760000
pPTE=FF801D80 reserved PTE=00181000 iAR=0181
pPPTE=FF801D84 reserved PTE=00181000 iAR=0181
pPTE=FF801D88 reserved PTE=00181000 iAR=0181

TEST1(2): _PageCommit: linear addr = 760000, page number = 760
pPTE=FF801D80 iVP =0000064A PTE=0064A206:.. cun r/w usr com
pPTE=FF801D84 iVP =00001932 PTE=01932206:.. cun r/w usr com
pPTE=FF801D88 iVP =0000153F PTE=0153F206:.. cun r/w usr com

TEST1(3) : Read and write page at 760000
_VirginIn(C0411F06([760],C135F000,760)
pVP=C0411F00 cRef=0001 hPD=0D iAR=0181 data=760 B.
pPPTE=FF801D80 iVP =0000064A PTE=0064A206:.. cun r/w usr com
pPTE=FF801D80 Frame=000008D3 PTE=008D3227:.. cAP r/w usr com

The System Pagers 219

Example 10-6. Pager Function Trace—Test1 (continued)

pPTE=FF801D80 Frame=000008D3 PTE=008D3267:.. DAP r/w usr com

TEST1(4) : Read and write page at 761000
_VirginIn(C041DC16[761],C135F000,761)
pVP=C041DC10 cRef=0001 hPD=0D iAR=0181 data=761 B.
pPPTE=FF801D84 iVP =00001932 PTE=01932206:.. cun r/w usr com
pPTE=FF801D84 Frame=0000063F PTE=0063F227:.. cAP r/w usr com
pPTE=FF801D84 Frame=0000063F PTE=0063F267:.. DAP r/w usr com

TEST1(5): Read and write page at 762000
_VirginIn(C041B498[762],C135F000,762)
pPVP=C041B492 cRef=0001 hPD=0D iAR=0181 data=762 B.
pPTE=FF801D88 iVP =0000153F PTE=0153F206:.. cun r/w usr com
pPTE=FF801D88 Frame=00000244 PTE=00244227:.. cAP r/w usr com
PPTE=FF801D88 Frame=00000244 PTE=00244267:.. DAP r/w usr com

TEST1(6): _PageDecommit: linear addr = 760000
_Dirty(C04072BB[760],0,0)
DPPF=C04072B7 pVP=C0411F00 data=760 cLock=0000 cRef=0001 st=00
pVP=C0411F00 cRef=0000 hPD=0D iAR=0181 pPF=C04072B7 TD.P..B.
pPTE=FF801D80 Frame=000008D3 PTE=008D3267:.. DAP r/w usr com
_TaintedFree(C0411F06[760]1,0,0)
pVP=C0411F00 cRef=0000 hPD=0D iAR=0181 pPF=760 TD.P..B.
pPTE=FF801D80 reserved PTE=00181000 iAR=0181
_Dirty(Cc0405137([7611,0,0)
pPF=C0405133 pVP=C041DC10 data=761 cLock=0000 cRef=0001 st=00
‘pVP=C041DC10 cRef=0000 hPD=0D iAR=0181 pPF=C0405133 TD.P..B.
pPTE=FF801D84 Frame=0000063F PTE=0063F267:.. DAP r/w usr com
_TaintedFree(C041DC16[761]1,0,0)
pVP=C041DC10 cRef=0000 hPD=0D iAR=0181 pPF=761 TD.P..B.
pPTE=FF801D84 reserved PTE=00181000 iAR=0181
_Dirty(C0401D78[762]1,0,0)
pPF=C0401D74 pVP=C041B492 data=762 cLock=0000 cRef=0001 st=00
pVP=C041B492 cRef=0000 hPD=0D iAR=0181 pPF=C0401D74 TD.P..B.
pPTE=FF801D88 Frame=00000244 PTE=00244267:.. DAP r/w usr com
_TaintedFree(C041B498[762]1,0,0)
pVP=C041B492 cRef=0000 hPD=0D 1iAR=0181 pPF=762 TD.P..B.
pPTE=FF801D88 reserved PTE=00181000 iAR=0181
PPTE=FF801D80 reserved PTE=00181000 iAR=0181
pPPTE=FF801D84 reserved PTE=00181000 iAR=0181
PPTE=FF801D88 reserved PTE=00181000 iAR=0181

TEST1(7) : _PageFree: linear addr = 760000
pPTE=FF801D80 free
pPTE=FF801D84 free
pPTE=FF801D88 free

The first group of lines starts at TEST1 (1). These show the page table entries for
the three pages reserved in the private arena (PR_PRIVATE). The linear address
for the first page is at 760000h, the second is at 761000h, and the third is at

220 ‘ ' Chapter 10: Virtual Memory, the Paging File, and Pagers

762000h. The corresponding addresses of the page table entries (pPTE) are
. FF801D80h, FF801D84h, and FF801D88h. These are computed using the formula:

££800000h + 4 * [linear page number] = pPTE

At this stage, the page table entries (PTE) at these locations are non-zero but the
flags in the lower 12-bits are all cleared. The number which is stored in page
frame address is an index to an Arena Record (iAR).

After committing the pages, the PTE contents are displayed again at TEST1 (2).
The lower 12 bits of flags in the PTE now have the value 206h. This corresponds
to the attributes: committed, clean, unaccessed, user, read/write, and not present.
Bits 9, 10, and 11 are not predefined by the x86 chip, and are used by the
memory manager to indicate whether the page is committed (Bit 9) and whether
the page is physically mapped (Bit 11). The number which is now stored in the
page frame address is an index to a Virtual Page (iVP). At this point, we haven'’t
actually made the pages physically present. We could have done that by speci-
fying the PR_PRESENT flag in our _PageCommit call. What we have done is first,
~ reserve a swath of the linear address space which is private to our memory
context, and second, commit some pages of virtual memory.

At TEST1(3), TEST1(4), and TEST1(5), a byte of memory gets “touched” in
each of the committed pages. In response, VMM brings these pages into physical
memory, and calls the pager function pd_virginin (here called _Virginln). The
arguments to this function follow the FUNPAGE prototype given earlier. The first
argument is a pointer to pagerdata, one of the arguments passed to _Page-
Commit. If you refer back to the source, in Example 10-5, you'll see that we are
passing linPageNum as pagerdata and have specified PC_INCR in the flags argu-
ment. This means that the first argument to pd_virginin will be a pointer to the
linear page number of the page which needs to be loaded. The second argument
is the linear address of the page’s contents (only valid during the pager function
callback). In this particular pager implementation, the page’s contents, all 4096
bytes, are blasted with zeros.

Indented under _VirginIn.. is a line starting with pvP=... This shows the
contents of a Virtual Page structure. It includes such things as the handle to the
pager, the pagerdata passed in to pd_virginin, the index to the Arena Record,
and a flags byte describing the state of the page.

In the mid-section of the Testl routine in Example 10-5, you will notice a for loop
where the page “touching” and “dirtying” is done. A touch occurs when a
memory location in the page is read (abyte = *p), while we make the page
dirty by writing a byte to it (*p = 'a'). Examination of the PTEs immediately
following each of these program statements reveals the changes that the page is
undergoing. The dump of the PTE immediately following a touch shows that the

The System Pagers 221

lower 12 bits now have the value 227h, and indicate these attributes: commited,
clean, accessed, user, read/write, and present. After a page has been dirtied, the
lower 12 bits of the PTE have the value 267h, indicating that a single attribute has
changed: it has gone from clean to dirty. Also note that since the present bit is
set, the page frame address now refers to the physical address of a page of some
system memory (it is no longer an iAR or iVP).

Since we dirtied some pages, we would expect to see some pd_dirty pager func-
tion calls (here called _Dirty). VMM’s memory manager does not guarantee timely
delivery of these notifications, in fact, we don’t see them until we are decommit-
ting the pages under TEST1 (6). The pd_dirty function receives a pointer to the
DVP->pagerdata for the page, but the other arguments do not appear to be valid.
VMM’s PD_ZEROINIT p‘ager handles this call by freeing the corresponding swap
file page if one has been allocated in the paging file.

As we leave the Testl routine, we call _PageDecommit and _PageFree for the
pages which we have been using. As each page is decommitted, the pager func-
tion, pd_taintedfree (here named _TaintedFree), is called. This call informs the
pager that this is the last reference to the Virtual Page (pVP) before the page is
decommitted. The pd_taintedfree function receives a pointer to pVP->pagerdata
but the other arguments are not valid. VMM’s PD_ZEROINIT pager handles this
call by freeing the corresponding swap file page if one has been allocated in the
paging file.

After _PageDecommit returns, a dump of each page’s PTE shows that it has been
reverted to its reserved state. _PageFree goes a step further by setting the PTEs to
Zero.

The output from the Test2 routine is shown in Example 10-7; the source code for
this routine is similar to that for Testl so it isn’t shown here. Like Testl, Test2
reserves and commits two pages, reads from one page and writes to the other,
and then decommits and frees the pages. The additional twist added here is that
Test2 forces these two pages to get written out to the paging file.

Example 10-7. Pager Function Trace Showing Page-Outs & Page-Ins

TEST2 (1) : _PageReserve: reserve 2 pages at linear addr = 760000
TEST2 (2) :_PageCommit: linear addr = 760000, page number = 760
TEST2(3): Write page at 760000 -

TEST2 (4) : Read page at 761000

TEST2 (5) : Page table entries before _PageDiscardPages

pPPTE=FF801D80 Frame=000007EE PTE=007EE267:.. DAP r/w usr com
PPTE=FF801D84 Frame=00000830 PTE=00830227:.. cAP r/w usr com

222 Chapter 10: Virtual Memory, the Paging File, and Pagers

Example 10-7. Pager Function Trace Showing Page-Outs & Page-Ins (continued)

TEST2(6) : _PageDiscardPages: mark pages as page-out candidates

TEST2(7) : Page table entries after _PageDiscardPages
pPTE=FF801D80 Frame=000007EE PTE=007EE247:.. DuP r/w usr com
pPTE=FF801D84 Frame=00000830 PTE=00830207:.. cuP r/w usr com

TEST2 (8) : _GetFreePageCount: FreePages = 4F3

TEST2(9): commit a lot of pages until, we get a Dirty-Out
4F3 pages
_Dirty(C040671A[760],0,0)
pPF=C0406716 pVP=C04133FA data=760 cLock=0000 cRef=0001 st=00
pVP=C04133FA cRef=0001 hPD=0D iAR=01C8 pPF=C0406716 TD.P....
pPTE=FF801D80 Frame=000007EE PTE=007EE247:.. DuP r/w usr com
5F3 pages
_DirtyOut (C040671A[760],C135F000, FFFFFFFF)
pPF=C0406716 pVP=C04133FA data=760 cLock=0830 cRef=0010 st=00
pVP=C04133FA cRef=0001 hPD=0D iAR=01C8 pPF=C0406716 TD.PI.B.
pPTE=FF801D80 iVP =00000863 PTE=00863206:.. cun r/w usr com
_CleanOut (C0406A74[761],C135F000, FFFFFFFF)
pPF=C0406A70 pVP=C041EE8A data=761 cLock=0E4E cRef=0010 st=00
pVP=C041EE8A cRef=0001 hPD=0D iAR=01C8 pPF=C0406A70 ...PI.B.
pPTE=FF801D84 iVP =00001BOB PTE=01B0B206:.. cun r/w usr com

TEST2 (10) : Original pages are no-longer present
pPTE=FF801D80 iVP =00000863 PTE=00863206:.. cun r/w usr com
pPTE=FF801D84 iVvP =00001BOB PTE=01B0B206:.. cun r/w usr com

TEST2(11) : Read from each page to force Virgin-in and Tainted-In ..
_TaintedIn(C0413400[9F],C135F000,760)
pVP=C04133FA cRef=0001 hPD=0D iAR=01C8 SF=9F T.S...B.
pPTE=FF801D80 iVP =00000863 PTE=00863206:.. cun r/w usr com
_VirginIn(C041EE90([761],C135F000,761)
pVP=C041EE8A cRef=0001 hPD=0D iAR=01C8 data=761 B.
pPTE=FF801D84 iVP =00001BOB PTE=01B0B206:.. cun r/w usr com

TEST2(12): Original pages are now present
pPTE=FF801D80 Frame=00000337 PTE=00337227:.. CAP r/w usr com
pPTE=FF801D84 Frame=00000C29 PTE=00C29227:.. cAP r/w usr com

TEST2 (13) : _PageFree:. linear addr = 760000
_TaintedFree (C0413400([760],0,0)
pVP=C04133FA cRef=0000 hPD=0D iAR=01C8 pPF=760 T.SP..B.
pPTE=FF801D80 free
_VirginFree (C041EE90([761],0,0) .
PVP=C041EE8A cRef=0000 hPD=0D iAR=01C8 pPF=761 ...P..B.
pPTE=FF801D84 free

Test2 does a couple of things to nudge these pages out. First, it makes use of the
VMM service _PageDiscardPages to mark these pages as unaccessed. An unac-
cessed page will get paged out before an accessed one. You can see the

The System Pagers 223

difference in the PTEs before and after the call to _PageDiscardPages, at
TEST2 (5) and TEST2 (7). Also note that one page is dirty and the other is clean.

Next, Test2 needs to overcommit pages to force the memory manager to start
moving some pages from memory to the paging file. As a starting point for deter-
mining the minimum number of pages to commit, the VMM service
_GetFreePageCount is used to determine the number of free pages in the system.
These pages are then reserved, committed, and touched to force them to be
present. Once pd_dirtyout has been called, signaling that one of our pages has
been moved to the paging file, a flag is set. If Test2 sees that this flag has been
set, it assumes it has succeeded; if it is not set, this group of pages is freed, and
the process is repeated with the same amount plus 256. At TEST2(9) in Example
10-7, you see that 4f3h pages were committed and touched, but that amount was
not sufficient, so they were freed and then 5f3h pages were tried, this time with
success. The pager functions pd_dirtyout (here named _DirtyOut) and pd_
cleanout (here named _CleanOut) were called to page out the dirty page and
then the clean page. Only two arguments to these functions are used. The first is
a pointer to pagerdata and the second is the linear address of the page’s contents.
The third argument is always —1. This is the primary pager function where
PageFile_Read_Or_Write is called to write the contents of a dirtied page to the
paging file. While a swappable page is in memory, the Virtual Page structure
holds the address of the page’s Page Frame structure. When the page is swapped
to the paging file, the Virtual Page structure holds the Swap Frame for the page,
i.e., the offset into the paging file to find the page’s contents. You can see this
under TEST2 (11) at the line starting pVP=... Here, the SF=9F entry in the VP struc-
ture tells us that frame 9th in the paging file contains this page.

VMM'’s PD_ZEROINIT pager has no implementation for pd_cleanout. This is
because a clean zero-initialized page can also be created by pd_virginin.

At TEST2 (10), the contents of the page’s PTEs are shown after both of the pages
have been paged out. Both pages have the same attributes: committed, clean,
unaccessed, user, read/write, and not present. The page frame field of the PTE
holds the index to the page’s Virtual Page structure.

At TEST2 (11), the two pages are accessed by reading a byte from each of them.
For the page which had been earlier modified, the pager function pd_taintedin
(here named _TaintedIn) is called by the miemory manager, requesting that the
page’s contents be restored. The pager function receives a pointer to pagerdata,
which now contains the swap frame in the paging file; a pointer to a buffer where
the page can be written; and the original linear page number where this page was
committed. This pager function is the counterpart to pd_dirtyout, because this is
the primary pager function where PageFile_Read_Or_Write is used to read the
contents of a tainted page from the paging file. Since the other page was never

224 Chapter 10: Virtual Memory, the Paging File, and Pagers

Page Tables and Page Directories

At the very top of the linear address space, 4 megabytes are set aside for the
system page tables. Recall that to map all linear addresses to physical pages,
220 (232/4096) entries are needed. With each entry occupying a doubleword,
the total space needed works out to 222 bytes or 4 megabytes. Since the top of
the linear address space is at MAXSYSTEMLADDR (FFBFFFFFh), the base ad-
dress of the page table is FF800000h.

~ Within this linear address range, a single page is set aside for a page directory.
It starts at FFBFEQOOh. This page is always present and has a physical address
given by the contents of the CR3 register. Each entry in the page directory cor-
responds to a page in the page table, which may or may not be present. While
Windows 95’s layout for its page tables makes it possible to convert a linear
address directly to a page table entry, there is no guarantee that the page con-
taining that entry is present. So, the prudent thing to do is first check the page
directory to see if the page containing that entry is present, and only then do
a direct lookup of the page table entry.

Two portions of a linear address are used for referencing these tables. The
most significant 10 bits of a linear address (linaddr >> 22) form an index to the
page directory entries (PDEs). The linear page number consisting of the most
significant 20 bits of the linear address (/inaddr >> 12) provide an index to the
page table entries (PTEs).

modified, pd_virginin (here named _Virginln) only needs to create it from scratch
by zero-initializing the page’s contents.

At TEST2(12) the PTEs for these two pages are displayed. Both pages have the
same attributes: committed, clean, accessed, user, read/write, and present. The
fact that one of the pages is tainted is stored in the Virtual Page structure flags.

Finally, at TEST2 (13), we decommit and free the two pages. The page which
was tainted has the pd_taintedfree (here named _TaintedFree) function called for
it whereas the unmodified page has the pd_virginfree (here named _VirginFree)
function called for it. Both functions receive a pointer to the pVP->pagerdata
member of the Virtual Page structure; the other arguments are zero. As noted in
Testl, VMM’s PD_ZEROINIT pager handles the pd_taintedfree call by freeing the
corresponding swap file page if one has been allocated in the paging file. VMM’s
PS_ZEROINIT pager does not implement the pd_virginfree function.

Demand Page Loading 225

Demand Page Loading

For a process to execute, the kernel needs to load its program image from disk.
Rather than load the entire image all at once, it loads the image a page at a time—
as the pages are needed. Windows 95 has several pagers which load executables
or data on demand.

The Kernel32 Loader

Looking back at Figures 10-3 and 10-4, one might wonder how Windows 95
makes use of pagers. The first three pagers that we’ll look at are given the descrip-
tive names “Win32 Sys DLL Data” (5), “Win32 Sys DLL Code” (6), and “Win32
Zero-Init Sys DLL Data” (7). These pagers are registered by VWIN32 when it
receives the “Begin PM App” control message during system initialization. Recall
that this message arrives when KRNL386 gets loaded into the System VM. At this
point KERNEL32 has not yet been loaded into memory.

After VWIN32 has registered its three pagers, it proceeds to reserve and commit
' pages for KERNEL32. To reserve the linear address range needed by KERNEL32, it
issues the service call _PageReserve(0xbff70, 0x8f, PR_STATIC). This will reserve
the address range BFF70000h to BFFFEFFFh.

Next, VWIN32 commits the first page of the file image using the service call _Page-
Commit(0xbff70, 1, 6, 0, PC_INCR| PC_STATIC| PC_USER). This page contains the
file’s DOS header and PE (portable executeable) header. From these, the layout of
the remainder of the file can be determined. In fact, the rest of the file gets
loaded based upon the contents of the PE header’s section table.”

KERNEL32 contains six sections; their names, sizes, and characteristics are summa-
rized in Table 10-2. The VWIN32 loader looks at two characteristics of a PE
section to decide which pager to commit it with. If it is loading a read-only
section without initialized data, then pager 6 is used. If it is loading a read-only
section with initialized data, then pager 7 is used. If it is loading a writeable
section, then pager 5 is used. Here are the actual service calls which commit
KERNEL32’s sections:

_FREQASM (code)
_PageCommit (0xbf£71,6,6,40000000h, PC_INCR|PC_STATIC|PC_USER)
_PageCommit (0xb£ff77,1,6,40010006h, PC_INCR|PC_STATIC|PC_USER)

.text (code)
_PageCommit (b££78h,41h,6,20000007h, PC_INCR | PC_STATIC | PC_USER)
_PageCommit (b££b9h,1,6,20070048, PC_INCR|PC_STATIC|PC_USER)

* See Chapter 8 of Windows 95 System Programming Secrets, by Matt Pietrek, for details of the PE file
format.

226 Chapter 10: Virtual Memory, the Paging File, and Pagers

_INIT (code)
_PageCommit (bffbah, 1, 6,40000048h, PC_INCR |PC_STATIC|PC_USER)
_PageCommit (bffbbh,1,6,40040049h, PC_INCR | PC_STATIC|PC_USER)

.data (data initialized at compile time)
_PageCommit (bffbch,3,5,c0000049h, PC_INCR|PC_STATIC|PC_USER|PC_
WRITEABLE)

_PageCommit (bffbfh,1,5,c001004ch, PC_INCR|PC_STATIC|PC_ USER|PC
WRITEABLE)

.edata (exports)
_PageCommit (bffcOh,4,6,a000004dh, PC_INCR|PC_STATIC|PC_USER)
_PageCommit(bffc4h,l,6,a0040051h,PC_INCRIPC;STATIC|PC_USER)

.rsrc (resources)

_PageCommit (bffc5h,12h,6,20000052h, PC_INCR|PC_. STATICIPC USER)

_PageCommit (b££d7h,1,6,20060064, PC_INCR|PC_STATIC | PC_USER)
There are two _PageCommit calls for each section because VWIN32’s algorithm
commits- the ‘whole pages first and then, if it finds a remainder—a fraction of a
page—it commits one more page for it. The .data section, which is the only
section which is writeable, uses pager 5; all other sections use pager 6.

Table 10-2. PE Sections of KERNEL32

Name ' Type Linear Address | Size in Bytes | Characteristics
_FREQASM code BFF71000h 6D70h Executeable, Read-only
.text ' BFF78000h 41070h Executeable, Read-only
_INIT code BFFBAOOOh 176Bh Executeable, Read-only
.data data BFFBCO00h 3CCOh Read-write, shared
.edata data BFFC0000h 47E1h Read-only

.Isrc data BFFC5000h 123CCh Read-only

The pagerdata value supplied to these _PageCommit calls may look a little
strange. The doubleword has two fields. The most significant 10 bits hold an
index which is used to lookup a file handle. The lower 22 bits hold the file offset
to the raw data to be read into a page; this is the byte offset divided by 512. Now
take that value and rotate it to the right by 3 bits. This last twist has the magic
effect of aligning bit 0 on the page digit. Since the PC_INCR flag is set for these
pages, the pagerdata values will be incremented for each page in the set. This
rotation makes sure the increment actually increases the file offset by 1000h bytes.

Referring once again to Figures 10-3 and 10-4, you can see that pager 5 is the
same as VMM’s Swappable Zero-Init pager, except that pd_virginin has been
replaced with an action function in VWIN32. This same action function is used by
pager 6 for handling both pd_virginin and pd_taintedin. This action function
switches to KERNEL32’s PSP, extracts the file handle index and file offset from the

Demand Page Loading 227

pagerdata, and then proceeds to seek to that location and read the page. The
current PSP is restored and the function returns. The seek and read are executed
using _ExecVxDIntMustComplete.

It is interesting that pager 5 uses the system paging file for backing up changes to
KERNEL32’s .data section. Except for the fact the section’s initial contents are
loaded directly from the KERNEL32 image, the life of pages in this section will be
the same as those controlled by the PD_ZEROINIT pager.

The three pagers we just examined are only used with KERNEL32. It appears that
at one time, files other than KERNEL32 were demand-paged using this code, since
there is a file index built into the pagerdata value. Perhaps this pager is separate
because it can be put to use before the Win32 subsystem is up and running, and
thus serves as sort of a bootstrap pager.

The Win32 Loader

. The next two pagers that we'll look at are given the descriptive names “Win32
EXE/DLL Data” (8) and “Win32 EXE/DLL Code” (9). These pagers are registered
by KERNEL32 during its initialization. Unlike the pagers we have been looking at,
these ones are more a part of KERNEL32 than of VMM. Of course, VMM services
are used but via the Win32 VxDCall interface. Rather than drill down into
KERNEL32’s code, I'm going to spy on the VxDCalls for PageReserve and Page-
Commit. We can use MultiMon to do this by loading the WIN32CB and FSHook
drivers and enabling the filters for VMM Win32 Services (PageReserve and Page-
Commit) and IFSMgr Filehook (FS_OpenFile). To capture the trace that we’ll be
looking at, press the Start button, launch the Notepad application, terminate
Notepad, and then press the Stop button.

After you hit the Show button, scroll through the output until you find the point
where notepad.exe is being opened (FS_OpenFile); you should see something
similar to the output in Figure 10-5. What we see is a trace of the Win32 loader as
it assigns pages and pagers to the sections of Notepad.

Right after the FS_OpenFile line, a PageReserve call is made with these arguments:
linear page number = 400h, number of pages = Och, and flags = 10h (PR_STATIC).
This call is reserving 48Kbytes for the file image of Notepad starting at linear
address 400000h. We can use a tool like the Explorer's QuikView to determine
Notepad’s PE file sections. With this information we can interpret the sequence of
PageCommit calls as follows:

PE header
_PageCommit (0x400,1,9,00£20000h, PC_INCR|PC_STATIC|PC_USER)

.text (code, 3953h bytes, read-only)
_PageCommit (401h,3,9,40£00000h, PC_INCR|PC_STATIC |PC_] USER)

228 Chapter 10: Virtual Memory, the Paging File, and Pagers

vm ageConni 8153b 00

lvm32 PageDecommit 8153b 1 20000000 '
{fsh FS_OpenFile 6c|60 —1— VFAT 0209 oe C:\VINDOUS\HOTEPAD.
ivm32 PageReserve 00000400 0000000c 0O0O0OODO10

tvm32 PageCommnit 00000400 00000001 00£20000 60040000

lom32 PageConmit 00000401 00000003 40£00000 60040000
{vm32 PageCommit 00000404 00000001 40£50003 60040000
tvm32 PageCoamit 00000405 00000001 00£30000 60060000
vm32 PageComnit 00000406 00000001 e0f20003 60060000
vm32 PageCommit 00000407 00000001 20£70004 60040000
{vm32 PageComnit 00000408 00000DD2 00£00005 60040000
ivm32 PageComait 0000040a 00000001 00£60007 60040000
jvm32 PageComnit 0000040b 00000001 09 cO£50007 60040000
vm32 PageReserve 80000400 00000020 0O0O0O000CO

lvm32 PageComnit 00000410 00000010 01 00000000 00060000
van3l? PaqgeReserve 80000400 00000020 00000000

Figure 10-5. MultiMon output showing page commits when loading Notepad
_PageCommit (404h,1,9,40£50003h, PC_INCR|PC_STATIC|PC_USER)

.bss (data, 43ah bytes, uninitialized data, read-write)
_PageCommit (405h,1,1,00£30000h,
PC_INCR|PC_STATIC|PC_USER|PC_WRITEABLE)

.data (data initialized at compile time, 212h bytes, read-write)
_PageCommit (406h,1,8,e0£20003h,
PC_INCR | PC_STATIC | PC_USER|PC_WRITEABLE)

.idata (import table, c9ah bytes)
_PageCommit (407h,1,9,20£70004h, PC_INCR|PC_STATIC|PC_USER)

.rsrc (resources, 2b70h bytes)
PageCommit (408h,2h,9,00£00005h, PC_INCR | PC_STATIC | PC_USER)
PageCommit (40ah,1h,9,00£60007h, PC_INCR|PC_STATIC | PC_USER)

.reloc (relocation table, 91eh bytes)

_PageCommit (40bh,1,9,c0£50007h, PC_INCR|PC_STATIC|PC_USER) .
This output appears to be generated by the same algorithm that is used by the
KERNEL32 loader, only different pagers are used. Pager 9, which is used to load
read-only sections of code or data, only implements pd_virginin. Pager 8, which
is used to load read-write, initialized data sections, uses the same implementation
of pd_virginin, but in other respects is a clone of PD_ZEROINIT. For uninitialized
data sections, VMM’s PD_ZEROINIT pager is used. Pages which are under control
of pagers 1 or 8 are backed up by the system paging file. '

Demand Page Loading - ' : 229

Memory Mapped Files

Of the 12 system pagers we started out with, we are now down to the last three.
These three are responsible for implementing memory-mapped files. They were
given the descriptive names “Win32 Safe Mapped File” (10), “Win32 Unsafe
Mapped File” (11), and “Win32 Copy-On-Write Mapped File” (12). Pagers 10 and
11 are identical except that the pd_type of the “unsafe” pager has the PD_NEST-
EXEC bit set. The only information on this flag comes from a comment in vmm.b:
“PD_NESTEXEC—must be specified if either the pd_cleanout or pd_dirtyout func-
tions perform nested excecution or block using the BLOCK_SVC_INTS flag. To be
safe, this flag should always be specified if the pager does any sort of file I/O to
anything other than the default paging file.” Pagers 10 and 11 implement pd_
_virginin, pd_taintedin, and pd_dirtyout. They have a pd_type of PD_PAGERONLY,
so they do not swap to the system paging file. '

Standard Win32 code for creating and accessing a mapped file is shown in
Example 10-8. You can launch this test code from pagers.exe by selecting the Test
menu, sub-item MemMapped R/O. The output shown in Figure 10-6 was collected
by MultiMon while this code executed. MultiMon had WIN32CB and FSHook
drivers loaded and the filters for VMM Win32 Services (PageReserve, PageCommit,
and PageFree) and IFSMgr Filehook (FS_OpenFile, FS_ReadFile, FS_WriteFile, FS_
FileSeek, and FS_CloseFile).

Example 10-8. MemMapped R/O Test

hFile = CreateFile(szFileName,GENERIC_READ, FILE SHARE_READ,
NULL, OPEN_EXISTING, 0,NULL) ;
if (hFile != INVALID_HANDLE VALUE) {
hMapFile = CreateFileMapping (hFile,NULL, PAGE_READONLY, 0, 0,NULL) ;
if (hMapFile != NULL) {
pMapImage = MapViewOfFile(hMapFile, FILE MAP_READ,0,0,0);
if (pMapImage != NULL) {
for(i=0, p=pMapImage; i<16; i++, p+=0x1000) a[i] = *p;
UnmapViewOfFile (pMapImage) ;
)
CloseHandle(hMapFile);
}
CloseHandle(hFile);
}

The first line of output is from an attempt to create a new copy. of mapfile.tst, a
test file 64 Kbytes in length. In this case, the file had already been created, so the
create call fails, but the subsequent open of the existing file succeeds, and returns
a file handle of 264h. There are three intervening seeks, perhaps to determine the
file size, before the FS_ReadFile call. This read corresponds to the Win32 Create-
FileMapping call. It is a special case where ir_length is 0 and the RO_MM_READ._
WRITE flag is set in ir_options. This combination indicates that a memory-

230) Chapter 10: Virtual Memory, the Paging File, and Pagers

Figure 10-6. Accessing a read-only memory mapped file

mapping is being created to an existing open file. This special call originates from
IFSMgr_Win32DupHandle when it is called with the DUP_MEMORY_MAPPED flag.
This service duplicates the handle 264h to 26bh before making the FS_ReadFile
call on the duplicated handle:

When the Win32 API MapViewOfFile is called, virtual memory is reserved for the
file image. Since we specified that the entire file be mapped, an equivalent
number of pages are reserved. The _PageReserve request is for 10h pages in the
shared memory area at 80060000h with the PR STATIC flag. The subsequent
commit passes in 8286%h as the linear page number, so _PageReserve must have
returned 82869000h as the base linear address of the mapping. _PageCommit
commits all 10h pages using pager 10 with PC_INCR, PC_STATIC, and PC_USER
flags. Since we requested FILE_MAP_READ, we are not given the PC_WRITEABLE
attribute and the mapping is read-only.

Next, we proceed to read the first byte of each page of the mapping. Each read
forces a pd_virginin call for a page which results in the series of FS_ReadFile calls
on the duped handle 26bh. These reads also are marked with the RO_MM_READ_
WRITE flag. Note that if a page out occurs for one of mapped pages, it is essen-
tially a discard since the pages can not enter the dirty state. A subsequent access
would restore the page using pd_virginin. At the bottom of trace, we see the
pages being freed in response to the UnmapViewOfFile, and then the Close-
Handle calls for hMapFile and bFile. ‘

Demand Page Loading 231

Very similar Win32 code for creating and accessing a mapped file is shown in
Example 10-9. You can launch this test code from pagers.exe by selecting the Test
menu, sub-item MemMapped R/W. The output shown in Figure 10-7 was
collected by MultiMon while this code executed. The difference between this
example and the previous one is in granting the mapping read-write access and
writing to it.

Example 10-9. MemMapped R/'W Test

hFile = CreateFile(stileName,GENERIC_READ|GENERIC_WRITE,
FILE_SHARE_READ,NULL, OPEN_EXISTING, 0,NULL) ;
if (hFile != INVALID_HANDLE_VALUE) {
hMapFile=CreateFileMapping (hFile, NULL, PAGE_READWRITE, 0,0,NULL) ;
if (hMapFile != NULL) {
pMapImage = MapViewOfFile(hMapFile, FILE_MAP_WRITE,0,0,0);
if (pMapImage != NULL) {
for(i=0, p=pMapImage; i<16; i++, p+=0x1000) *p = 'A';
UnmapViewOfFile(pMapImage) ;
}
CloseHandle(hMapFile);
}
CloseHandle(hFile);
}

Zeroing in on just those areas which are different in Figure 10-7, we see that
_PageCommit uses the PC_WRITEABLE attribute since we passed FILE_MAP._
WRITE to MapViewOfFile. Although we are writing a byte to each page of the
mapping, each write forces a pd_virginin call for a page which results in the
series of FS_ReadFile calls on the duped handle. Eventually, when UnmapViewOf-
File is called, we see pd_dirtyout in action as each page which has been dirtied
written out to mapfile.st.

Example 10-10 again illustrates very similar Win32 code for creating and accessing
a mapped file. You can launch this test code from pagers.exe by selecting the Test
menu, sub-item MemMapped WriteCopy. The output shown in Figure 10-8 was
collected by MultiMon while this code executed. The difference between this
example and the previous one is that write access is granted only to a copy of the
mapping file. This difference in behavior is brought about by subtle changes in
the flags to CreateFileMapping, which uses PAGE_WRITECOPY, and MapViewOf-
File, which here uses FILE_MAP_COPY.

Underneath the Win32 code, we can see what is going on by looking at the
MultiMon trace in Figure 10-8. When MapViewOfFile commits memory to match
mapfile.tst’s file size, it uses pager 12, the one described as Win32 Copy-On-Write
Mapped File. We see this in the _PageCommit call:

_PageCommit(82869h, 10h, 12, 00700000h,
PC_INCR|PC_STATIC|PC_USER|PCWRITEABLE)

232 Chapter 10: Virtual Memory, the Paging File, and Pagers

Figure 10-7. Accessing a read-write memory mapped file

Example 10-10. MemMapped WriteCopy Test .

hFile = CreateFile(stileNa.me,GENERIC_READlGENERIC_WRITE,
FILE_SHARE_READ,NULL, OPEN_EXISTING, 0,NULL) ;
if (hFile != INVALID_HANDLE VALUE) {
hMapFile=CreateFileMapping (hFile, NULL, PAGE_WRITECOPY,0,0,NULL) ;.
if (hMapFile != NULL) {
pMapImage = MapViewOfFile(hMapFile, FILE_MAP_COPY,0,0,0);
if (pMapImage != NULL) {
for(i=0, p=pMapImage; i<16; i++, p+=0x1000) *p = 'A';
UnmapViewOfFile(pMapImage);
}
CloseHandle(hMapFile);
}
CloseHandle(hFile);
}

Demand Page Loading . : 233

The significance of this is that pager 12 has a pd_type of PD_SWAPPER, meaning
that it uses the system paging file as a backing file, not the mapped file. The
mapped file is accessed only on pd_virginin calls using FS_ReadFile, as we see in
Figure 10-8. Writes to the mapped file only go as far as the memory page. A dirty
page is paged out to the system paging file, not the mapped file.

Figure 10-8. Accessing a write-copy memory mapped file

Paging aims to minimize disk access and resource usage by bringing the disk
imae into memory only as needed. In the next chapter we’ll look at caching,
which reduces disk access by keeping frequently used portions of the disk image
in main memory.

11

VCACHE: Caches
Big and Small

The idea of a cache was motivated by the need to reduce costly I/O processing. It
is much faster to read a block of data from memory than it is to read the same
data from a physical disk. The cache keeps some subset of a larger collection of
data within local memory. Often, the items in the cache are determined by usage.
The most recently used items are kept in the cache, and once the cache is full,
the least recently used items are discarded to make room for new additions. This
algorithm is referred to as least recently used, or LRU.

Windows 95 supplies vcache.vxd to provide two kinds of LRU caches to VxD
writers. The first type of cache, the block cache, deals with 4096 byte memory
pages; the size of the allocation is fixed. A separate data structure, represented by
a cache block handle, is used to track each page. It contains information such as
ownership, lookup keys, lock counts, and usage counts. This is the cache used by
VFAT when accessing the system’s disk drives. The second type of cache, the
lookup cache, is suitable for small items; these items may be of variable and arbi-
trary size. This cache is the in-memory image of a section of the system registry. A
lookup cache is created as a key with some maximum number of elements. The
elements are just values under the key. The LRU algorithm kicks in when the
number of values'added under the key exceeds the maximum number of
elements. The registry file serves as persistent storage for a lookup cache.

234

Where Does Block Cache Memory Come From? 235

The official documentation for VCACHE’s services is in the DDK document file
stdvxd.doc. Unfortunately, the information presented there is incomplete. This
chapter will help fill in what's missing and supply additional background
information. '

Where Does Block Cache Memory
Come From?

Since the unit of allocation is a page, it should come as no surprise that the block
cache is created using the sparse memory allocator. As we saw in the last chapter,
using this allocator is a two-stage procedure where memory is first reserved and
then committed. The actual call used to reserve the range of memory used for the
block cache looks like this:

linBase =_PageReserve (PR_SYSTEM, maxCache, PR_FIXED)

where PR_SYSTEM requests that the pages be reserved anywhere in the system
arena (CO000000h-FFBFFFFFh) and PR_FIXED says do not move the pages on a
_PageReAllocate. The subsequent call, which commits some of this range to form
the initial cache, takes this form:

_PageCommit (linBase>>12, initCache, PD_FIXEDZERO, 0, PC_FIXED)

Note that these pages are PC_FIXED, meaning that the memory is permanently
locked. Not all of the pages initially reserved are committed. Instead the following
algorithm is used to determine the initial cache size:

minInitial = (minCache>=64) ? 64 : minCache;
initCache = maxCache - 1024;

if (initCache <= minInitial) initCache = minInitial;
if (initCache > maxCache) initCache = maxCache;
if (initCache > 2304) initCache = 2304;

Put simply, the initial cache size will be 1024 less than the number of reserved
pages but will not exceed 2304.

In somewhat the same way that DYNAPAGE and PAGESWAP use legacy entries
in the system.ini file to set various parameters controlling the paging file, VCache
uses entries in the [vcache] section of the system.ini file to set parameters
controlling the block cache. The keys which VCache retrieves during initialization
are minfilecache, maxfilecache, and CacheBufRRT. The minfilecache and maxfile-
cache entries are in units of kilobytes; if a value is not specified in the system.ini
file, a default of 0 is used.

The values of minfilecache and maxfilecache, in turn, determine the values of
minCache and maxCache, maxCache sets the number pages which are reserved
for the block cache; minCache and maxCache, together determine the value of

236 ‘ Chapter 11: VCACHE: Cacbhes Big and Small

initCache, the subset of reserved pages which are initially committed for use. To
get from minfilecache and maxfilecache to the final values of minCache and
maxCache, the following algorithm is used:

max = Get_Profile_Decimal_Int("vcache", "maxfilecache", 0); // kbytes
min = Get_Profile_Decimal_Int("vcache", "minfilecache", 0);
maxCache = (max + 3)/4; // round up to nearest page
minCache = (min + 3)/4; '
numFreeLockablePages = _GetFreePageCount (0); // returned in EDX
if (minCache == 0) // using defaults?

minCache = (numFreeLockablePages < 1280) ? numFreeLockablePages/40:
numFreeLockablePages/24;

avail = (numFreeLockablePages >= 392) ? numFreeLockablePages-384 : 8;
if (minCache > avail) minCache = avail;
if (minCache <= 8) minCache = 8;
if (maxCache > avail) maxCache = avail;
if (maxCache > 204800) maxCache = 204800;
if (maxCache < minCache) minCache = maxCache;

Summarizing, if your system is using defaults for its cache size, VCache will deter-
mine these values at Device Init time from the number of lockable free pages
returned by _GetFreePageCount. If this function reports 1280 pages or more, the
minimum cache size is the number of free lockable pages divided by 40; if more
than 1280 pages are free, this amount is divided by 24 to arrive at the minimum
size. In no case will the minimum be less than 8 pages. The default setting for the
maximum cache size is the number of free lockable pages minus 384. In no case
will the cache size exceed 204800 pages. Table 11-1 shows default initial cache
sizes for several PC configurations.

Table 11-1. Default Block Cacbhe Sizes for Some Typical Systems

Free Lockable | Minimum Maximum Initial Cache
System Description Pages Cache Pages Cache Pages Pages
486DX-66 Desktop, 2074 86 1690 666
12 MB
Pentium-60 Desktop, | 2962 123 2578 1554
16 MB
486DX-75 Notebook, 4199 174 3815 2304
20MB

What we have described so far is the initial configuration of the cache if you were
to take a snap shot after VCache has finished its initialization. Like the swap file,
cache size is dynamic. Let’s take a look at how the memory manager can make
the cache shrink or allow it to grow.

How Does the Memory Manager Control Block Cache Size? 237

How Does the Memory Manager
Control Block Cache Size?

VCache has two services which dre used to add or remove a page from those
committed to the cache. The service which is called by the memory manager to
reclaim a page is VCache_RelinquishPage, and to add a page, it calls
VCache_UseThisPage. ' ’

A call to VCache_RelinquishPage may be traced back to numerous locations in
VMM: the page fault handler; the various memory manager functions such as
_PageCommit, _LinPageLock, etc.; a callback installed by Call_ When_Idle; or the
ongoing one-second timeout procedure installed by Set_Async_Time_Out. The
memory manager actually calls VCache_RelinquishPage through a wrapper func-
tion that I've named Take_VCache_Page. VMM will call this function to attempt to
reclaim some of VCache’s memory only if there are no free pages available and
other appropriate conditions are met. Here is the pseudocode for Take_VCache_
Page:

DWORD Take_VCache_Page() {
DWORD linPage, numPage, iCachePage;

if (amtShrinkCache==0 || curCachePages<=minCachePages) return 0;

amtGrowCache = 0;

linPage = VCache_RelinquishPage() ; // request a page

‘if (linPage == 0) goto not_taken;

numPage = linPage>>12; // convert linear addr
! // to page number

if (numPage < pgnumCacheStart) goto not_taken; // less than

// cache?
iCachePage = numPage - pgnumCacheStart; // page index

if (iCachePage >= maxCachePages) goto not_taken; // greater than
// cache?
_FreeUsedPage (pBitMap. VCachePages, ++iCachePage); // mark page
// unused

amtShrinkCache--; // shrunk by one page
curCachePages--; // current cache size is one less
return linPage; // return linear address of page

not_taken: :

amtShrinkCache = 0; // shrink failed, turn off further attempts

return 0; // no linear address returned

}
On entry this function checks several global VMM variables before proceeding.
First, amtShrinkCache should be set to a non-zero value by the memory manager,
to indicate the number of pages to reclaim. Secondly, the current number of
pages in the cache should not drop below minCachePages; if it does then the
request is ignored. If these conditions are met, VCache_RelinquishPage is called to
get the linear address of a page within the cache. In response to this request,
VCache will first give up pages which are on its free list. Once those are

238) Chapter 11: VCACHE: Caches Big and Small

exhausted it will start searching for candidates on its LRU list. Only those which
are not held or dirty, and which have aged sufficiently, will be sacrificed.

If a linear page address is returned by VCache_RelinquishPage, then
Take_VCache_Page verifies that its page number lies in the range which has been
reserved for the cache. VMM maintains a bit array of used cache pages
(pBitMap_VCachePages). When a page is reclaimed from the cache, its corre-
sponding bit is cleared by the function _FreeUsedPage. VMM’s internal counters
(amiShrinkCache and curCachePages) are updated and the linear address of the
page is returned. The caller of Take_VCache_Page then uncommits the physical
page corresponding to the linear address. This makes the page free to be used for
other needs and at the same time changes the status of the linear address from
committed to reserved.

The opposite of shrinking the cache is growing the cache, and VMM has a global
variable, amtGrowCache, which indicates how many pages to give back to
VCache. This variable is updated at one-second intervals by a timeout procedure
installed by Set_Async_Time_Out. The decision to grow the cache is based on
two statistics returned by VCache_GetStats at these one-second intervals: the
number of cache blocks which have been discarded and the number of cache hits
to the last 26 LRU cache blocks. When conditions are appropriate for growing the
cache, VMM sets up an event callback that will invoke VCache_UseThisPage.
Rather than call this function directly, VMM schedules a wrapper function,
Give_VCache_Page (my name), as an event using .the Call_Restricted_Event
service. The pseudocode for Give_VCache_Page follows:

void Give_VCache_Page(void) {
DWORD iCachePage,numPage;

if (amtGrowCache == 0) return; // is VCache getting pages?
while (TRUE) {
iCachePage = _GetUnusedPage (pBitMap_VCachePages, maxCachePages) ;
if (iCachePage == 0) return;
numPage = pgnumVCacheStart + iCachePage - 1; // new page

if (_PageCommit (numPage,l,PD_FIXED, 0, PC_FIXED|PC_WRITEABLE)==0)
_FreeUsedPage (pBitMap_VCachePages, iCachePage) ;

return;
}
Flush_TLB();
DecCounter(); /* D1_FT7E4 */
VCache_UseThisPage (numPage<<12) ; " // give page to VCache
curCachePages++;
if (amtGrowCache == 0) break;
amtGrowCache--;

}
}

This routine first checks that amtGrowCache is non-zero, i.e., there is something
to do. If so, it enters a loop where it attempts to grow the cache a page at a time

Block Cache Data Structures 239

until the requested number of pages has been added. To add a page to the cache
it needs to know the linear address of a page in the cache’s address range which
is currently uncommitted. By scanning the bitmap of unused cache pages,
DBitMap_VCachePages, the index of an wunused page is returned by
_GetUnusedPage. This index is converted into a page number and passed to
_PageCommit to map a physical page to a linear address in the cache. That linear
address is then passed to VCache_UseThisPage, to inform VCache that it is
available.

To be complete, I should mention one other method by which the cache can be
made to grow. VMM’s Win32 service number 0x28 checks if the current cache size
is at least 128 pages. If it is not, amtGrowCache is set by the following expression:

if (128 <= maxCachePages) amtGrowCache = 128 - curCachePages;
else amtGrowCache = maxCachePages - curCachePages;

and then Give_VCache_Page is scheduled to run by Call_Restricted_Event.

Block Cache Data Structures

The pages which belong to the block cache are either in use or placed on a free
list. The pages on the free list form a one-way linked list. The head of the free list
is stored in a VCache global variable pFreePagelList, each page in the free list
contains a link at byte offset 0x100 from the beginning of the page. A page which
is in use can either contain cache data or cache blocks. The cache block data
structure is 64 bytes in length, so a page can store 64 cache blocks.

Pages which are used to store cache blocks are tracked by an array (pCBPag-
esLisp) of the page linear addresses. The size of this array is determined by the
maximum cache size; it is given by the formula: ((maxCachePages + 63)/64)*4
bytes. This array is allocated from the heap at Device Init time. Initially it is zero-
filled, but as each page is removed from the free list to create new cache blocks,
the page’s linear address is added to the first available slot in the array. Once a
page is allocated for creating cache blocks, it is never reclaimed to the free page
pool.

Pages which are used to contain data are referenced by the linear address stored
in the BufPtr member of the cache block data structure (shown below). These
pages come from the same pool of free pages. There is a one-to-one correspon-
dence between cache blocks and data pages.

This brings us to the cache block, the central data structure used by block cache
services. Here is the layout of this structure:

typedef struct {
struct cb* cb_next; /* 00 - head of free list/collision list */

240 Cbapter 11: VCACHE: Caches Big and Small

struct cb* cb_prev; /* 04 - tail of free list/collision list */
DWORD FSKeyl; /* 08 - hash key 1 */

DWORD FSKey?2; /* 0C - hash key 2 */

void* BufPtr; /* 10 - page containing cache data */
DWORD FSDDatal[7]; /* 14 - area reserved for FSD use */

WORD HoldCnt; /* 30 - lock to prevent discard/reclaim */
BYTE Dirty; /* 32 - cache data is modified */

BYTE FSD_ID; " /* 33 - ID of FSD which owns page */
DWORD AgeCnt; . /* 34 - relative age of block */

struct cb* 1lru_next; /* 38 - MRU end of list */

struct cb* 1lru_prev; /* 3C - LRU end of list */

} CB, *PCB;

Cache blocks which are not in use are placed on a free list whose head is given
by a VCache global variable (pCBFreeLisf). In these cache blocks, the members
cb_next and cb_prev provide linkage for members in the list.

Cache blocks which are in use are strung together on a different list, the LRU list.
The head of this list is a pseudo-cache block in VCache’s locked data area. Only
two members of this cache block are used, lru_next and lru_prev. These point to
the head and the tail of the list. The most recently used cache biock is at the head
of this list, while the least recently used cache block is at the tail of this list. The
Iru_next and Iru_prev members provide the linkage for this doubly-linked list.

Each cache block is uniquely identified by two keys, FSKeyI and FSKey2, and a
one-byte ownership ID, FSD_ID. The FSKeyl and FSKey2 values are allowed any
values other than 0. For example, VFAT uses FSKey1 as the logical sector number
and FSKey2 as the volume resource handle. These two keys are used in conjunc-
tion with a hash table. Each bucket or entry in the hash table consists of two
pointers. If the bucket is empty, the pointers reference the address of their
bucket. If the bucket contains one cache block, then both bucket pointers point
to the same cache block. Both of the cache block’s cb_next and cb_prev pointers
refer back to the hash table bucket. If the bucket contains more than one cache
block, the first bucket pointer refers to the first cache block and the second
bucket pointer refers to the last cache block. The intervening cache blocks that
belong to the bucket are linked by the cb_next and cb_prev members. The
cb_prev pointer of the first cache block and the cb_next pointer of the last cache
block refer back to the hash table bucket. The cache blocks in a bucket have
FSKeyl and FSKey2 values which hash to the same value. This hash value serves
as an index into the hash table.

To calculate a hash value VCache uses a simple hash function which is repre-
sented here as C pseudocode:

(FSKeyl & Oxffff0000)>>16;
= FSKeyl;
= FSKey2;
= LookupMask;

A

>

i
i
i
i

&

Block Cache Services 241

The value 7 which results from these statements is used to directly index the hash
table. The value 7 is constrained to the hash table range by the last step where it
is ANDed with the LookupMask. The LookupMask depends upon the hash table
size. If the hash table has 2047 (7ffh) buckets, then the mask will be (7ffh)<<3 or
3ff8h. Before a match is returned by a search, the cache blocks in the bucket are
compared with FSKey1, FSKey2, and FSD_ID, to verify it is exact.

VCACHE may have up to 10 clients. Each client registers with VCache at Device -
Init time and if successful receives a unique identifier. This is the value that will
be stored in the FSD_ID member of this client’s cache blocks. Internally, VCache
keeps track of its clients using a structure like this:
struct { DWORD BlksInUse;

DWORD BlksReserved;

void (*DiscardFunc) () ;

DWORD reserved;

} reg_data[10];
The index to reg datal[] is FSD_ID—0x64. The BlksReserved and DiscardFunc
members are supplied by the client when it registers. BlksReserved specifies the
minimum number of cache block pages which this client can not drop below (this
value can be 0). DiscardFunc is the address of a function which VCache will call
when it is about to discard a cache block and its data page. This allows an FSD to
update its data structures when a page is no longer in the cache.

An FSD should set the Dirty byte in the cache block structure, to a non-zero value
if the contents of a page have been modified. This flag is controlled by the FSD
and is used to prevent VCache from discarding a page. It is the responsibility of
the FSD to write a dirty page to disk and clear the flag. Another flag which the
FSD can use to prevent a page from being discarded is HoldCnt. This word value
is an unsigned count of locks which have been requested on the page. As long as
at least one lock is outstanding, the page will not be discarded. An FSD may use
the 28 bytes in FSDDatal[] for any information it may wish to store along with a
page. This area is free format, so it is up to the FSD to define how it will be used.

When a new cache block is created, its age, the member AgeCni, is initialized to
the current value of VCache’s global variable nAgeCount, and then nAgeCount is
incremented. This is equivalent to making the cache block most recently used.
This also implies that the block is placed at the head of the MRU list. '

Block Cache Services

Table 11-2 summarizes the services which VCache provides to use the block
cache. The first step to using the block cache services is to register with VCache
at Device Init time using VCache_Register. Registration can be undone at a later

242

Chapter 11: VCACHE: Caches Big and Small

time with the service VCache_Deregister. When registering you supply a buffer

discard callback function.

Table 11-2. VCache’s Block Cache Services

Service

Function

VCache_AdjustMinimum

VCache_CheckAvail
VCache_Deregister
VCache_Enum
VCache_FindBlock
VCache_FreeBlock
VCache_GetSize
VCache_GetStats
VCache_Get_Version
VCache_Hold
VCache_MakeMRU
VCache_RecalcSums
VCache_Register
VCache_SwapBuffers
VCache_TestHandle
VCache_TestHold

Adjusts the number of reserved blocks for a FSD
Verifies that enough cache blocks are available
Frees cache resources owned by a FSD

Calls enumeration function for all blocks owned by FSD
Finds or creates a cache block

Places a cache block and its data page on free lists
Returns number of blocks in cache

Returns statistics for use by memory manager

Gets Vcache’s version number

Increments cache block’s HoldCnt

Moves cache block to head of MRU list

Debugs only (not available in retail release)
Installs discard function and returns FSD ID

Swaps data pages between two cache blocks
Validates a cache block handle

Tests cache block’s HoldCnt

VCache_Unhold Decrements cache block’s HoldCnt

VCache_VerifySums

Debugs only (not available in retail release)

This buffer discard function will receive the address of the cache block which is
being ‘discarded, in the ESI register. Cache block discards may occur in response
to VCache_RelinquishPage and VCache_FindBlock (with the VFCB_Create flag)
calls. A cache block is a candidate for discarding if it has its Dirty flag clear, its
HoldCnt is zero, and its AgeCnt is such that: (nAgeCount — cb.AgeCnt) > AgeDelta.
At initialization time, the global variable AgeDelta is set to initCache / 8 (wWhere
initCache is the initial cache size) or 16, whichever is smaller. As the cache is
dynamically sized, AgeDelta is not adjusted unless the cache size drops below 128
pages, in which case it is recalculated as curTotalCachePages / 8.

The real workhorse of the cache block interface is VCache_FindBlock. It is really
several functions rolled into one. In addition to finding blocks, it can also create
new cache blocks and change the LRU order of blocks. It receives four argu-
ments: AH contains the FSD ID, AL contains option flags, EBX contains hash key1,
and EDI contains hash key2. If AL is zero, a search is performed for a cache block
matching the other three parameters. A successful search is indicated by a carry
clear return. In this case, ESI contains the cache block handle (the address of the

Monitoring VCache v 243

cache block) and EAX contains the address of the buffer (the BufPtr member). If
the AL has the VCFB_Create flag set, and a matching cache block is not found, a
new cache block will be created. In this case, the return values refer to the newly
created cache block and buffer. Other flags can be used in AL, such as
VCFB_Hold to increment the HoldCnt of a find, and VCFB_MakeMRU to move a
find to the head of the MRU list. The service VCache_MakeMRU provides a more
efficient way to move a cache block to the head of the MRU list. It takes a cache
block handle in ESI as its single argument.

Before allocating some cache blocks, you can verify that the number of cache
blocks you need are available using the service VCache_CheckAvail. Before
calling, the AH register is loaded with the FSD ID and ECX is loaded with the
desired number of blocks. The result of this call is given by the state of the carry
flag. If the carry flag is set, not enough buffers are available; otherwise the
request can be granted and the number of buffers available is returned in EAX.

The services VCache_Hold, VCache_Unhold, and VCache_TestHold all take a
cache block address in ESI as arguments. The only thing these functions do is
manipulate or test the HoldCnt member of the specified cache block.
VCache_Hold increments HoldCnt, VCache_Unhold decrements HoldCnt, and
VCache_TestHold returns HoldCnt in EAX and the zero flag is set if HoldCnt is 0.

VCache_FreeBlock removes a cache block specified by the ESI register and its
associated buffer from the MRU list. The cache block and the buffer page are
placed on their respective free lists.

Monmnitoring VCache

MultiMon includes a monitor for VCache services. Using it in conjunction with the
file system hook adds some additional detail to our understanding of VFAT’s FSD
functions. As an example, I'll execute the DISKDUMP program from Chapter 9
with three monitors: VCHook, FSHook, and TAGMON. Example 11-1 is a small
portion of the trace output.

Note that for vch lines, the dev column contains the FSD ID and the handle
column contains the cache block handle. If the handle is marked with an asterisk,
it represents a newly created cache block.

In this trace, DISKDUMP performs three FS_DirectDiskIO reads. The first read is of
the volume’s boot sector, the second is of the first sector of the first FAT, the third
is of the first sector of the second FAT, and at the end of the trace we see the
beginning of a read of the root directory sectors. The fsh entries in the trace are
highlighted; these lines of the trace are added on completion of the
FS_DirectDiskIO calls. The vch entries of the trace record VFAT’s calls into
VCache’s services. :

244 Chapter 11: VCACHE: Cacbes Big and Small

Example 11-1. Sample Output of Three Trace Monitors

Mon Function Flagsl Dev Handle Args

tag ==== diskdump (D) ====

tag == Lock Logical Vol

tag == Read Boot Sector (0)

vch VCache_FindBlock FSD(64h) Keyl: fffffffd
Key2: cl1636614

Ret Carry
vch VCache_FindBlock Creat MkKMRU FSD(64h) Keyl: fffffffd
: Key2: cl1636614
Ret Carry c3f60fc0* Buf: ¢3£fb4000
vch VCache_Hold i c3£60£fc0
vch VCache_Unhold c3£60£cO
vch VCache_Hold c3£f60£c0
vch VCache_Unhold c3£f60£fcO
fsh FS_DirectDiskIO (dd) R4 VFAT cnt=1H sec=0H
tag == Start Read First FAT (1H)
vch VCache_FindBlock FSD(64h) Keyl: fffffffd
Key2: cl1636614
Ret c3f60fc0 Buf: <c3fb4000
vch VCache_MakeMRU c3f60£fcO
vch VCache_Hold c3f60£fcO
vch VCache_Unhold c3£60£fc0
fsh FS_DirectDiskIO (dd) R4 VFAT cnt=1H sec=1H
tag == Start Read Second FAT (83H)
vch VCache_FindBlock FSD(64h) Keyl: 00000074
Key2: cl1636614
Ret Carry
vch VCache_FindBlock FSD(64h) Keyl: 00000074
Key2: cl636614
" Ret Carry
vch VCache_FindBlock FSD(64h) Keyl: 00000074
Key2: cl636614
Ret Carry
vch VCache_FindBlock Creat H1ld MkKMRU FSD(64h) Keyl: 00000074
' Key2: cl1636614
vch VCache_Hold . c3£f1£000
Ret Carry Locked c3f1£000* Buf: <¢3faf000
vch VCache_Unhold) c3f1£000
vch VCache_FindBlock Creat MKMRU FSD(64h) Keyl: 00000074
Key2: cl1636614
vch VCache MakeMRU v . c3£1£000
Ret Locked c3f1£f000 Buf: <c3faf000
vch VCache_Hold c3£1£000 '
vch VCache_Unhold c3f1£000
fsh FS_DirectDiskIO (dd) R4 VFAT cnt=1H sec=83H
tag == Start Read Root DIR (105H)
vch VCache_FindBlock FSD(64h) Keyl: 00000105

Key2: cl1636614
Ret c3fl1ffc0 Buf: <c3££0000

Monitoring VCache 245

For instance, the following sequence is associated with the read of boot sector 0:

VCache_FindBlock (find fails)
VCache_FindBlock (create and make MRU)
VCache_Hold (lock buffer for read)
VCache_Unhold (unlock)

VCache_Hold (lock buffer for transfer)
VCache_Unhold (unlock)

FS_DirectDiskIO (VFAT returns)

From this sequence we see that VFAT first searches for a cache block for the
needed sector and volume, and only if that fails does it create a new cache block.
We can also infer that VFAT doesn'’t just read in a single sector; rather, it reads an
entire page. This is revealed by the following sequence for the subsequent read
of the first sector of the first FAT (sector 1):

VCache_FindBlock (find succeeds)
VCache_MakeMRU (make MRU)
VCache_Hold (lock buffer for transfer)
VCache_Unhold (unlock)
FS_DirectDiskIO (VFAT returns)

In this case the search for the cache block succeeds because it is already in
memory, having been loaded along with the boot sector.

The keys which are passed to VCache_FindBlock require some explanation. The
second key is the simply the address of the volume’s resource block structure (see
Chapter 9, VFAT: The Virtual FAT File System Driver) which is owned by VFAT.
The first key represents the sector on the volume. But how does sector 0 become
Oxfffffffd? Why do both sector 0 and sector 1 use this same hash key?

To understand this, you need to look at the disk layout. The sectors in a volume
either lie in the system area (boot sector, FATSs, root directory entries) or in clus-
ters which are assigned to files and subdirectories through the FAT. The line
between these regions is drawn at the first sector of the first available cluster.
Cache blocks are also aligned at this boundary. In our DISKDUMP example,
volume D has the first sector of the first cluster at sector 125h. This value serves
as a key for sectors 125h, 126h, ... 12Ch, since the volume’s sector size allows 8
sectors to be stored in a cache page. Since this alignment boundary lies on a
sector which is not an even multiple of 8, the key for the first cache block will
start at (125h mod 8)-8 or —3 (Oxfffffffd), and this value will serve as the key for
sectors =3, -2, -1, 0, 1, 2, 3, and 4.

246 Chapter 11: VCACHE: Caches Big and Small

The Lookup Cache Data Structures

The lookup cache is an in-memory image of the keys and values under the
system registry section: HKLM\System\CurrentControlSet\Services\ VxD\VCache\
Lookup. Figure 11-1 shows this registry section for a typical system which is
attached to a LAN. On this system two caches have been created: ServerName-
Cache by IFSMgr and VREDIR_Names by VREDIR. The cache keys consist of the
registry values Key0000, Key0001, and Key0002; the corresponding cache data
items are the registry values Data0000, Data0001, and Data0002. As shown, Server-
NameCache contains 3 items and the NumElements value reflects this. The
MaxElements value, Oxle, indicates that the cache will hold 30 elements in
memory. If the number of elements exceeds this amount, the excess items which
are least recently used are retained in the system registry file. The Flags value
does not appear to be used. ‘

[R PAGESWAP
-{Z PARITY] (Default) [value not set)
- PERF A D ata0000 000002 00
-3 PPP D ata001 0000 02 00
-3 REBOOT D ata0002 00 00 02 00
- SHELL Flags 00000000,
:{% 3:&?;22 £ Key0000 5c 00 53 00 45 00 52 00 56 00 4
&G VCACHE f]Keyo001 5¢ 00 54 00 4f 00 50 00 44 00 4]
=] Key0002 5c 00 4b 00 55 00 4d 00 51 00 §
E-£3 Lookup ;
£ ServeiNameCache X M axE lements 1e 000000
VREDIR_Names 2| NumE lements 03000000
{23 VCDFSD
|3 veomM

Figure 11-1. Registry editor display of the lookup cache

Internally, VCache uses the IFSMgr_GetHeap service to allocate storage for data
structures and the memory-image of each lookup cache. IFSMgr’s heap allocator
disburses blocks from locked pages. Each cache is represented by a single
LOOKUP_KEY data structure and one or more LOOKUP_VAL structures, one for
each cache item. The LOOKUP_KEY structures are strung together in a linked list to
facilitate the wvalidation of lookup cache handles (HLOOKUP), to determine
whether a cache name is already in use. Here is the layout for a LOOKUP_KEY:

typedef struct {

void* next; /* head of list of LOOKUP_VAL structures (mru) */.
void* prev; /* tail of list of LOOKUP_VAL structures (lru) */
PLOOKUP_KEY next_cache; /* next lookup cache */

char* pszCacheName; /* name of the cache */

DWORD refcnt; /* number of cache users */

DWORD numElements; /* current number of elements */
DWORD maxElements; /* max number of elements retained in memory */
DWORD Flags; /* determines type of background processing */

Lookup Cache Services 247

HKEY hKey; /* registry key handle */
} LOOKUP_KEY, *PLOOKUP_KEY;

Each cache item is represented by a LOOKUP_VAL structure; it has this declaration:

typedef struct {

void* next; /* next LOOKUP_VAL structure */

void* prev; /* previous LOOKUP_VAL structure */
PLOOKUP_KEY cache; /* back pointer to lookup cache */

DWORD KeySum; /* checksum of the Key value */

DWORD dwKeyLen; /* length of the Key value */

DWORD dwDataLen; /* length of the Data value */

DWORD iElement; /* zero-based index of element */

DWORD Flags; /* determines type of background processing */
void* pKey; /* pointer to buffer containing Key */

void* pData; /* pointer to buffer containing Data */

} LOOKUP_VAL, *PLOOKUP_VAL;

These two types of structures are what the lookup cache is built from.

Whenever new items are added to a cache, or when the value of a cache item
changes, or when a lookup occurs which moves an item to the head of the MRU
list, this change needs to be written to the corresponding registry key. These
updates to the registry are deferred until an Appy Time callback is executed. This
callback is scheduled each time a cache change occurs, unless a callback is
already pending; a callback will occur after a 300 second time-out expires. Prior
to scheduling the callback, the Flags members of the affected LOOKUP_KEY and
LOOKUP_VAL structures are set to indicate the kind of processing which is
required. When it is called, the callback handler starts at the head of the
LOOKUP_KEY list and examines the Flags member of each structure. For those
structures needing attention, it first clears the Flags member and then completes
the registry update. While this background processing is taking place, calls to the
lookup services will return with an error code of 1.

Lookup Cache Services

Table 11-3 summarizes the services which VCache provides to use the lookup
cache.

Table 11-3. VCache's Lookup Cache Services

Service Description
_VCache_CloseLookupCache Closes registry key and releases storage
_VCache_CreateLookupCache Creates or opens a lookup cache
_VCache_DeleteLookupCache Not implemented, just returns 0
_VCache_Lookup Looks up a cache key and return its data
_Vcache_UpdateLookup Adds or updates elements in the cache

248 Chapter 11: VCACHE: Caches Big and Small

Unlike the block cache services which use processor registers for passing argu-
ments, the lookup cache services all use a C calling convention. Also, unlike a
block cache which must be registered at Device Init time, a lookup cache can be
created after initialization.

The service _VCache_CreateLookupCache is called to create a lookup cache. This
function’s prototype has this form:
int _VCache_CreateLookupCache (char* psz, DWORD max, DWORD flags,
HLOOKUP* ph)

It receives four arguments. The first is the name of the cache which will become
the name of the registry key which will hold the cache’s contents. Additional argu-
ments include the maximum number of elements the cache will hold in memory,
a DWORD of flags (initialized to 0), and the address of a doubleword in which a
handle to the lookup structure will be returned. VCache searches through the list
of LOOKUP_KEY structures to see if the named cache already exists. If the
LOOKUP_KEY does not exist, then an attempt is made to open the registry key. If
the registry key is found, then the values under the key are enumerated; a
LOOKUP_KEY and one or more LOOKUP_VAL structures are allocated from IFSMgr’s
heap and initialized with the results of this enumeration. The address of the
LOOKUP_KEY is then inserted at the head of list.

If this is a brand new cache without an entry in the registry, then only a
LOOKUP_KEY structure is allocated from IFSMgr’s heap, and its address is inserted
at the head of the LOOKUP_KEY list. The registry key is not created until an entry
is added to the cache using _VCache_UpdateLookup.

A bug is revealed if _VCache_CreateLookupCache is called with the name of a
key which is already opened. The function will fail in an unexpected way. An
error code is returned which is the content of an uninitialized stack variable. To
work around this, initialize the contents of the ph argument to zero before
invoking this function and check the contents of ph for a non-zero value to verify
that the function has succeeded.

Closing a lookup cache should be accomplished with _VCache_Close-
LookupCache. This service takes a single argument, the HLOOKUP handle. This
function validates the HLOOKUP handle, decrements the LOOKUP_KEY refcnt
member if it is non-zero, sets the close-bit in the Flags member, then schedules
an Appy Time callback in 300 seconds. What the Appy Time handler is supposed
to do, is remove the LOOKUP_KEY from the list, close the associated registry key,
and release the storage held by the LOOKUP_KEY and any LOOKUP_VALS.
However, yet another bug lurks in _VCache_CloseLookupCache. When the Appy
Time handler is walking the list of LOOKUP_VALs and reclaiming memory, it enters

An Example: IFSMgr’s ServerNameCache 249

an infinite loop! Perhaps this is why IFSMgr and VREDIR call this function only at
system shutdown, so the Appy Time callback never gets called.

_VCache_UpdateLookup is the service used for adding or updating key/data pairs
in a cache. This function’s prototype has this form:
int _VCache_UpdateLookup (HLOOKUP h, DWORD keylen, void* pKey,
DWORD datalen, void* pData)

It calculates a checksum value for the specified key’s value (pointed to by pKey)
and compares this checksum with the KeySum member of any LOOKUP_VALSs in
the cache. If a match is found, the contents of the existing LOOKUP_VAL structure
are modified to hold the new values. If no match is found, a new LOOKUP_VAL
structure is allocated and initialized with the pKey and pData values provided as
arguments. In either case, appropriate Flags bits are set and then an Appy Time
callback is scheduled in 300 seconds. The Appy Time handler will refresh or
create keys and values in the registry to reflect the current set of LOOKUP_VAL
structures. Note that if a new value is being added to the cache, its LOOKUP_VAL
moves to the head of the cache’s MRU list. Also, once the number of elements in
the cache exceeds maxElements, each addition of an element requires that the
LOOKUP_VAL at the LRU end of the list be removed.

_VCache_Lookup is the service used for retrieving data for a specified cache key.
This function’s prototype has this form: :
int _VCache_Lookup (HLOOKUP h, DWORD keylen, void* pKey,
DWORD* pdatalen, void* pData)

It calculates a checksum value for the specified key’s value (pointed to by pKey)
and compares this checksum with the KeySum member of any LOOKUP_VALS in
the cache. If a match is found, the data associated with the key is copied to the
buffer at pData. One side effect of this function is that it moves the accessed
cache element to the head of the MRU list.

An Example: IFSMgr’s ServerNameCache

IFSMgr uses the lookup cache to store server names. A connection is made to a
server by calling the FS_ConnectNetResource entry point of its network FSD. To
find the correct entry point, IFSMgr needs to know the provider ID for the
network. (For a review of provider IDs, see the section “FSD Registration” in
Chapter 8, Anatomy of a File System Driver.) Sometimes the provider ID is known
and the required function can. be found by a table lookup: Mount-
VolTable[provider ID]. In other cases, only the server name is known, so
each remote FSD is tried in turn until a connect succeeds.

250 Chapter 11: VCACHE: Caches Big and Small

To minimize these trial-and-error connections, IFSMgr maintains a lookup cache
which maps server names to network IDs. Network IDs are manifest constants
enumerated in the Win32 SDK file winnetwk.b. This file includes entries such as:

#define =~ WNNC_NET_MSNET 0x00010000
#define WNNC_NET_LANMAN 0x00020000
#define WNNC_NET_NETWARE 0x00030000

These network IDs are easily mapped to the provider IDs.

The primary service in which the ServerNameCache is put to use is
IFSMgr_SetupConnection. Each time this service successfully completes a connec-
tion it updates the cache by calling the following function:

int UpdateServerNameCache (ParsedPath* pp, BYTE proid) {
DWORD Data, datalen=sizeof (DWORD) ;
unsigned short* pUniPath;
DWORD keylen;

if (hServerNameCache == 0) return;

Data = NetIDs[proid];

pUniPath = pp->pp_elements[0]->pe_unichars;

keylen = pp->pp_elements[0]->pe_length - sizeof (short);

return _VCache_UpdateLookup (hServerNameCache, keylen,

pUniPath, datalen, &Data);

}
The ParsedPath argument to this function comes from the #7_ppath member of
the ioreq structure. This contains the canonicalized UNC path, starting with the
server name and share name. (For a review of the ParsedPath structure see
Chapter 6, Dispaiching File System Requests.) The first element of the ParsedPath
structure, the Unicode server name, is used as the key for the cache. The second
argument to this function is the provider ID for the FSD which performed the
connection. This value is converted to a NetID and it becomes the data associated
with the key.

When IFSMgr_SetupConnection gets a request without an explicit provider ID,
then another function is utilized to perform a cache lookup:

int ServerNameToNetID(ParsedPath* pp) {
DWORD Data, datalen=sizeof (DWORD) ;
unsigned short* pUniPath;
DWORD keylen, retc;

if (hServerNameCache == 0) return 0;
pUniPath = pp->pp_elements[0]->pe_unichars;
keylen = pp->pp_elements[0]->pe_length - sizeof (short);

retc = _VCache_Lookup(hServerNameCache, keylen,
pUniPath, &datalen, &Data);
if (retc != 0) return 0;

return Data;
}

An Example: IFSMgr’s ServerNameCache 251

This function takes a single ParsedPath argument which contains the server
name as its first PathElement. This is used to perform a cache lookup and if
successful, the variable Data will -contain the matching NetID. IFSMgr uses
another internal function to convert the NetID into a provider ID.

A Survey of IFSMgr
Services

I promised myself that if I ever wrote a book about VxDs, I wouldn’t fill it up
with warmed-over API descriptions. The DDK’s IFS document and online help file
should be your basic references for API descriptions. But in some cases, the infor-
mation these resources contain is inadequate to effectively use IFSMgr’s services.
In this chapter, I'll address some of these shortcomings. 'm going to single out
several categories of services and provide more complete documentation for
them. However, all IFSMgr services are summarized in a series of tables.

The summary tables use the following conventions. The Ordinal column contains
the service ordinal number starting with 0. In a few cases the value in this column
will have a subscript; this is the ordinal for the equivalent service in Windows
3.11. The column headings 16, 22, and 22+ refer to the three different versions of
IFSMgr: Windows 3.11, Windows 95 build 950, and build 950B (OEM 2). The
trend is toward providing more services, starting with 61 in Windows 3.11, to 117
in Windows 95 build 950, to 121 in build 950B. These counts include a number of
services which have no implementation, i.e., in the retail builds, at least, the
service returns 0 or perhaps sets the carry flag. In the table, these “unimple-
mented” services are marked with a u, debug services are marked with a d, and
services which are only available at initialization are indicated by an i An b

252

FSD Registration 253

indicates that a service is meant to be hooked, and not called directly. The
Segment column indicates whether the function resides in locked or pageable
code. Note that just because a service entry point is in locked code doesn’t
preclude it from taking a path through pageable code. The Ref column gives
chapter numbers where a service is used or described.

The descriptions presented here apply to the Windows 95 versions of IFSMgr.
However, the services provided by Windows 3.11 are also tabulated. The
companion disk contains the library ifswraps.clb, a C library of wrapper functions
for all of the IFSMgr services. For more information on the library, see Appendix
D, IFS Development Aids.

IFSMgr Versions

Your first line of attack to determine which version of IFSMgr a system is using
should be to call IFSMgr_Get_Version. For Windows 3.11 this will return 0x16,
and for Windows 95 it will return 0x22. Currently, two versions of Windows 95
exist; the retail build 950 and OEM service release 2, which is referred to as build
950B. The IFSMgr VxDs which accompany these two Windows 95 versions are
somewhat different. If you examine the file properties of these drivers using
Explorer, the file versions reported are 4.00.950 and 4.00.1111. One way to distin-
guish these drivers at runtime is to examine the Device Descriptor Block to see
how many services are in the service table. For file version 4.00.950 this value is
117 and version 4.00.1111 it is 121.

FSD Registration

Table 12-1 lists IFSMgr's registration ‘services. For a detailed discussion of these
functions see Chapter 8, Anatomy of a File System Driver.

Table 12-1. IFSMgr FSD Registration Services

Ord | Service Name 16 | 22 22+ | Segment Ref
IFSMgr_RegisterMount X X locked 8

2 IFSMgr_RegisterNet X b locked 8
IFSMgr_RegisterMailSlot X X locked 13

80 IFSMgr_FSDUnmountCFSD X X pageable

98 IFSMgr_RegisterCFSD X X locked

117 | IFSMgr_Service_117 (Deregister FSD) X locked

118 | IFSMgr_Service_118 (Register FSD) X locked

254 Chapter 12: A Survey of IFSMgr Services

Services 117 and 118 are new to build 950B. Although these services are not yet
documented, it is clear that they provide FSDs with the capability of registering
and deregistering with IFSMgr.

Heap Management

Given the extensive set of VMM services for memory allocation, you might
wonder why IFSMgr has to offer yet another set of services (see Table 12-2). It is
because FSDs and filehooks can’t touch pageable memory and can't invoke
memory allocation services which might cause paging when handling the swap
file and memory-mapped files. The reasons for these requirements are discussed
in Chapter 7, Monitoring File Activity. To work around these restrictions, IFSMgr
allocates some fixed system pages and then disburses blocks from these pages
using the service IFSMgr_GetHeap. The blocks are returned to the heap by the
service IFSMgr_RetHeap. Beyond these basic functions, there are additional
services for special needs, such as assuring memory is available under critical
conditions. To begin, let's look at how the heap gets initialized and how it is
organized.

Table 12-2. IFSMgr Heap Management Services

Ord Service Name 16 22 | 22+ Segment Ref
12 IFSMgr_RegisterHeap X X X locked 12
13 IFSMgr_GetHeap X X X locked 12
14 IFSMgr_RetHeap X x X locked 12
15 IFSMgr_CheckHeap d d d locked

16 IFSMgr_CheckHeapltem d d d locked

17 IFSMgr_FillHeapSpare X b X locked 12

Heap Initialization and Data Structures

IFSMgr's heap management services become available after it completes the
System Critical initialization phase. At the end of this initialization, one page of
fixed system memory is allocated to the main heap and another one to the spare
heap.

The main and spare heaps are separate one-way linked lists of heap blocks. A
heap block consists of one or more pages of fixed system memory. At the begin-
ning of each heap block, a 32-byte structure is used to manage the heap block’s
allocations. This structure has the following layout:

typedef struct tagMemHdr {
void* pBlk; /* address of this heap block */
DWORD signature; /* IFSMgr's signature, 'IFSH' */

Heap Management 255

struct tagMemHdr* next; /* address of next heap block */

DWORD blksize; - /* size of heap block */

void* pEnd; /* offset to last DWORD in block */
void* pAvail; /* available allocation area */
WORD amtFree;) /* max allocation size available */
WORD cnt; /* number of allocs in this block */
int alloc(0]; /* size of first allocation */

} MEMHDR, *PMEMHDR;

Allocations are made from the block’s memory range starting at alloc and
extending to pEnd. The first available (free) allocation address in the block is at
pAvail. The following diagram illustrates a heap block containing three alloca-
tions, A, B, and C.

20 . Aaa

-20 Bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
10 Cccccccccccceccce
00 << end of block

The four bytes preceding each allocation holds its length. For example, allocation
A is specified by the address of its first byte (represented by the uppercase A); the
length of this allocation is given by the doubleword at address A-4 and is 20 bytes
long. Allocation B has a negative length; this signifies that the 20 byte allocation is
free. It is followed by allocation C with a length of 10 bytes. The length of a heap
block’s first allocation is given by alloc[0]. Starting with this first allocation, all
-allocations in a heap block can be walked using these length fields. The very last
doubleword in the heap block contains a 0, and marks an allocation of length 0.

IFSMgr’s allocator uses a “first-fit” algorithm.' The amtFree member of the header
structure indicates the maximum block size that might be allocated from the heap
block. If the amiFree value is large enough to satisfy the requested allocation size,
the first available allocation in the heap block, given by the address pAvail, is
combined with any adjoining free allocations to create a single free allocation. If
this allocation is large enough to satisfy the request, it is used, possibly splitting
the allocation into a used portion and a new free allocation. If the size of the allo-
cation is insufficient, this process is repeated for the next free allocation in the
block. If the request is not satisifed in one block, the next block in the heap is
tried. For each successful allocation from a heap block, the cnt member is
incremented. '

IFSMgr_GetHeap

IFSMgr_GetHeap receives a single argumeht, the requested size of the allocation,
in bytes. If successful it returns the address of the allocation; if it fails it returns
NULL. The actual size of the allocation is adjusted by the formula (req_amt + 7) &

256 Chapter 12: A Survey of IFSMgr Services

Oxffffftfc. This rounds the allocation size up to the nearest multiple of 4 and adds
4 bytes for the doubleword which holds the size of the allocation.

Heap blocks are searched in order for one which will satisfy this allocation
request. When all of the main heap blocks have been searched and none can
satisfy the request, some other storage possibilities are tried. First, the registered
heap reclamation functions are called to see if any user can free an allocation of
at least the requested size. If that does not succeed, the blocks on the spare heap
are searched to see if they can satisfy the request. If a block on the spare list can
supply the required allocation, the block is moved from the spare list to the main
heap, and the allocation. succeeds. Finally, if the spare heap can not meet the
request, the allocation will fail if it is less than or equal to 4096 bytes but will
succeed if it is greater than this amount and the required pages can be allocated.

This distinction between “small” and “large” allocations is important. There are
situations in which you would rather fail an allocation than have the service
attempt to grow the heap by allocating more pages. As long as you stick to alloca-
tions of 4096 bytes or less, you will get this behavior. However, if you call IFSMgr_
GetHeap at a time when it is safe to perform page allocations, then you can make
multiple page allocations from this service. Then, instead of failing, a new heap
block containing the needed pages will be added to the main heap.

The DDK documentation states that the largest allocation that may be made by
this function is 32 Kbytes or 8 pages. It would seem that the upper limit on alloca-
tion size is determined by the amtFree member of the heap block. This member is
an unsigned short so 64 Kbytes or 16 pages appears to be the actual upper limit.
Note that this is a limit imposed by the maximum size of a heap block. |

IFSMgr_RegisterHeap

In the description of IFSMgr_GétHeap, I referred to a heap reclamation function.
This function is registered by IFSMgr_RegisterHeap. Registering a function simply
places it at the current front of a linked list. When reclamation functions are called
by IFSMgr_GetHeap, the function at the head of the list is called first, then the
next function, and so forth until the tail of the list is reached. The tail of the list
holds IFSMgr’s heap reclamation function; it returns without doing anything.

When a reclamation function is called it receives the requested size of the alloca-
tion on the stack in the doubleword at location EBP+0Ch. If the function returns
zero in EAX, then it is saying that it can not supply the needed memory.
However, if the function returns a non-zero value in EAX, then the doubleword
stored at location EBP+8 is interpreted as the address of a heap block. IFSMgr_
GetHeap will examine the available allocation given by the pAvail member of the

Time Management 257

heap block. If this allocation can not satisfy the request, then IFSMgr_GetHeap
will fail; otherwise it will be used to satisfy the request.

IFSMgr_FillHeapSpare

Each call to this service adds a one-page block of fixed memory from the system
arena to the spare heap list. As we have seen, IFSMgr_GetHeap uses. the blocks
on the spare list as a reserve when an allocation can not be met by the main
heap. Once a block on the spare list is used, it is removed from the spare list and
added to the main heap.

IFSMgr calls this service before dispatching protected mode and V86 mode Int
21h requests.

IFSMgr_RetHeap

This function receives the address of an allocation made via IFSMgr_GetHeap. In
response the function searches the main heap blocks to find one for which the
allocation’s address lies between alloc and pEnd. The allocation being freed is
combined with any free allocations which may follow it. This free allocation is
then marked with a negative value equal to its total size. The cnt member of the
heap block is then decremented and if the cnt has reached 0, this heap block is
moved to the spare heap list.

Reclaiming the Spare Heap

When the heap is initialized during System Critical initialization, a recurring 30-
second event is started which monitors the spare heap list. When this event func-

" tion is called, any blocks found on the spare heap list are freed back to the
system. This event is scheduled using the service IFSMgr_SchedEvent and the EVF_
NOTCRIT flag, so that it is safe to use VMM’s _PageFree service.

Time Management

The time management services deal with three different time representations:
DOS, Net, and Win32. A DOS time represents a local time; it is stored in a
dostime_t structure which consists of three components:

e Packed 16-bit word containing, year, month, and day: bits 0-4, day (1-31); bits
5-8, month (1-Jan, 2-Feb, etc.); bits 9-15, year offset from 1980.

e Packed 16-bit word containing hour, minute, and second: bits 0-4, seconds
divided by 2; bits 5-10, minute (0-59); and bits 11-15, hour (0-23).

258 Chapter 12: A Survey of IFSMgr Services

e A byte containing the number of 10 millisecond intervals in 2 seconds to add
to the time (0-199).

A Net time is a 32-bit unsigned value which is the number of seconds which have
elapsed since January 1, 1970. This time is in UTC (Coordinated Universal Time)
which used to be known as Greenwich Mean Time (GMT), i.e., the local time at
the Greenwich meridian. A remainder component preserves the number of milli-
seconds in a fractional 1 second interval.

A Win32time is a 64-bit value specifying the number of 100-nanosecond intervals
that have elapsed since 12:00 am, January 1, 1601. A Win32 time is stored in a
_FILETIME structure which stores the 64-bit value as high and low doublewords.
This time is is also in UTC.

Table 12-3 enumerates the time management services which IFSMgr provides. The
services IFSMgr_Get_NetTime and IFSMgr_Get_DOSTime retrieve the current date
and time as Net time or DOS time, respectively. The next six functions are pairs
of functions which convert a given time representation to one of the other
possible representations, e.g., IFSMgr_NetToDosTime converts a Net time to a
DOS time and IFSMgr_NetToWin32Time converts a Net time to a Win32 time.
Note that a Win32 time can not be retrieved directly—it must be derived from
either a Net time or DOS time.

Table 12-3. IFSMgr Time Management Services

Ord Service Name 16 22 22+ Segment Ref
6 IFSMgr_Get_NetTime X X locked 12
7 IFSMgr_Get_DOSTime X X pageable 12
55 IFSMgr_NetToDosTime X X pageable 12
56 IFSMgr_DosToNetTime X b pageable 12
57 IFSMgr_DosToWin32Time X X pageable 12
58 IFSMgr_Win32ToDosTime X X pageable 12
59 IFSMgr_NetToWin32Time X X pageable 12
60 IFSMgr_Win32ToNetTime X X pageable 12
96 IFSMgr_GetTimeZoneBias X X pageable 12
119 IFSMgr_Service_119 X pageable

The next-to-last function in this group, IFSMgr_GetTimeZoneBias, retrieves the
offset in minutes which is applied to the local time to convert it to UTC. This
value .is stored in the registry under the key HKLM\System\CurrentCon-
trolSet\ Control\-TimeZonelnformation in the variable ActiveTimeBias. The Time
Zone tab under the Control Panel’s Date/Time properties is used to change this

Network Management ' 259

value. IFSMgr is notified of any changes to the ActiveTimeBias by hooking
VWIN32’s service, VWIN32_ActiveTimeBiasSet.

Network Management

Table 12-4 lists IFSMgr’s network management services. Many of these services
are discussed in Chapters 8 and 13. The services in this group can be divided into
server and client categories. The server functions include IFSMgr_ServerDOSCall,
IFSMgr_SetLoopBack, and IFSMgr_ClearLoopBack. IFSMgr_ServerDOSCall is the
means that a server uses to execute a local file system request on the behalf of
some network client. How IFSMgr dispatches these requests is described in
Chapter 6, Dispatching File System Requests. A server will also use IFSMgr_
SetLoopBack and IFSMgr_ClearLoopBack to maintain loopback paths. A loopback
path refers to a shared network resource on the local machine. For instance, if a
system’s server name is TOPDOG and it is sharing a directory C:\BIN as DEV,
then one of the system’s loopback paths is the UNC path \\TOPDOG\DEYV. The
function IFSMgr_SetLoopBack receives pairs of UNC paths and local paths which
allow mapping of local UNC paths to a local drive and directory, e.g.,
\\TOPDOG\DEV maps to C:\BIN. IFSMgr_ParsePath checks the UNC paths it
receives against this loopback list and for matches, it substitutes the local path.

Table 12-4. IFSMgr Network Management Services

Ord Service Name 16 | 22 | 22+ | Segment Ref
8 IFSMgr_SetupConnection X X X pageable 8

9 IFSMgr_DerefConnection X X X locked 8
10 IFSMgr_ServerDOSCall X X X pageable 6,8
25 IFSMgr_MakeMailSlot ; X X X pageable 13
26 IFSMgr_DeleteMailSlot u X X pageable 13
27 IFSMgr_WriteMailSlot X X b:¢ pageable 13
30635 IFSMgr_NetFunction h h h pageable 7
3739 IFSMgr_DoDelAllUses b X X pageable

404 IFSMgr_SetReqHook i i i init 5
4143 IFSMgr_SetPathHook i i i init 7
4244 IFSMgr_UseAdd X X x pageable 8
4345 IFSMgr_UseDel X X X pageable 8
4445 | IFSMgr_InitUseAdd i i i init 8
4648 IFSMgr_DelAllUses X X X pageable

93 IFSMgr_FSDMapFHtolOREQ ‘ X X pageable

106 IFSMgr_CheckDelResource X X pageable

108 IFSMgr_SetupFailedConnection h h pageable 8

260) Chapter 12: A Survey of IFSMgr Services

Table 12-4. IFSMgr Network Management Services (continued)

Ord Service Name ‘ 16 | 22 | 22+ | Segment Ref

113 IFSMgr_SetLoopback X X pageable 12

114 IFSMgr_ClearLoopback be X pageable 12
Event Management

Table 12-5 lists [IFSMgr’s event management services.

Table 12-5. IFSMgr Event Mangement Services

Ord Service Name 16 22 22+ Segment Ref
18 IFSMgr_Block x X X locked

19 IFSMgr_Wakeup X X X locked

20 IFSMgr_Yield X X b pageable 12
21 IFSMgr_SchedEvent X X X locked 12
22 IFSMgr_QueueEvent b d X X locked 12
23 IFSMgr_KillEvent X X X locked 12
24 IFSMgr_FreelOReq X X X locked 12
54 IFSMgr_BlockNoEvents X X locked 12
105 IFSMgr_RunScheduledEvents X x locked 12

The event management services in several cases are simply wrappers for VMM
services. Important exceptions are IFSMgr_SchedEvent, IFSMgr_QueueEvent, and
IFSMgr_Freeloreq. These allow creation of a special kind of IFSMgr event that is
accompanied with an initialized ifsreq structure. Considerable detail is provided
for these functions, since the DDK documentation is incomplete.

IFSMgr_SchedEvent and IFSMgr_QueueEvent

The prototypes for these functions are given by:

void IFSMgr_SchedEvent (pevent pev, unsigned long time)
void IFSMgr_QueueEvent (pevent pev)

The only difference between these functions is that IFSMgr_SchedEvent specifies a
timeout which must elapse before the event is scheduled. An event is described
‘by the following data structure:

typedef struct tagEvent {
DWORD ev_reservl; ‘
DWORD ev_handle; /* handle returned by Set_Global_Time_Out,
Call_Priority_ VM _Event, or
Call_Restricted_Event */
DWORD ev_VMHand; /* VM Handle for EVF_VMEVENT */

Event Management 261

DWORD ev_func;
DWORD ev_func_data;

/* event callback function */
/* data ptr for use by event callback
function */

BYTE ev_flags; /* flags which define the event type (see
below) */

BYTE ev_reserv2[3];

} event, *pevent;

The type of event which is scheduled depends on the options which are set in
the ev_flags member. The following flags are defined: EVE_NOTNESTEDEXEC
(0x08), EVF_TASKTIME (0x10), EVF_VMEVENT (0x20), and EVF_NOTCRIT (0x40).
There are several combinations which are permitted; these are shown in Table
12-6. Most of these flags restrict when the event is scheduled. The one exception
is EVF_TASKTIME, which determines whether an ifsreq structure is initialized
and passed to the callback. ‘ ‘

Table 12-6. Permissible Event Types for IFSMgr._SchedEvent

ev_flags event type event restrictions boost
0 (default) global, Call_Priority_ PEF_Wait_For_STI, 0x400000
VM_Event PEF_Always_Sched,
PEF_Wait_Crit
EVF_NOTNESTEDEXEC VM (passed in EBX) PEF_Wait_For_STI, 0
EVF_VMEVENT: Call_Restricted_Event PEF_Always_Sched,
PEF_Wait_Not_Crit,
PEF_Wait_Not_Nested
EVF_NOTNESTEDEXEC | global, Call_Restricted_ | PEF_Wait_For_STI, 0
Event PEF_Always_Sched,
PEF_Wait_Not_Crit,
) PEF_Wait_Not_Nested
EVF_NOTCRIT global, Call_Prioirty_ PEF_Wait_For_STI, 0
VM_Event PEF_Always_Sched,
PEF_Wait_Not_Crit
EVF_VMEVENT VM (passed in PEF_Wait_For_STI, 0x1000
VMHand) Call_Priority_ | PEF_Always_Sched
VM_Event

Note that the callback routine is not the event procedure. A single event proce-
dure is used for all of the event types. The function ev_func is called from the
common event procedure. The callback function has the following prototype:

void EventCallback(pevent pev, pioreq pir)

The ev_func_data member may be used to pass a pointer to a data structure or a
doubleword data item to the callback. If the event which scheduled the callback
is not EVF_TASKTIME, then pir will be NULL. According to the DDK documenta-
tion, EVF_TASKTIME can be used in conjunction with EVE_NOTCRIT and EVE_
NOTNESTEDEXEC. ’

262 Chapter 12: A Survey of IFSMgr Services

This service may also be used to create initialized ifsreq blocks for calling into
an FSD or IFSMgr. The ifsreq blocks created in this way set the i7_pev member to
the address of the event structure associated with it; ir_user, ir_error, ifs_
VMHandle, and ifs_PV are the only other members which are initialized. Although
the documentation refers to the allocated structure as ioreq, a full ifsreq struc-
ture is actually allocated (including space for the client register structure). Once
the callback procedure has completed its event processing, it must return the
ifsreq block to IFSMgr using the service IFSMgr_Freeloreq.

IFSMgr_KillEvent

This service can be used to cancel an event which has been scheduled by either
IFSMgr_SchedEvent or IFSMgr_QueueEvent. It receives the address of the event
structure and, depending on the state of the event and type of event, it may issue
Cancel_Time_Out, Cancel_Priority_VM_Event, or Cancel_Restricted_Event.

Wrapped VMM Services

Several of the services in this group are essentially thin wrappers around VMM
synchronization services. IFSMgr_Block, IFSMgr_BlockNoEvents, and -IFSMgr_
Wakeup utilize the _BlockOnID and _SignallD services from VMM. The implemen-
tations are as follows:

void IFSMgr_Block(unsigned long BlockID) {
push BLOCK_ENABLE_INTS | BLOCK_SVC_INTS
push BlockID
VMMCall (_BlockOnID);
_asm cld

}

void IFSMgr_BlockNoEvents(unsigned long BlockID) {
push 0
push BlockID
VMMCall(_BlockOnID);
_asm cld

}

void IFSMgr_Wakeup (unsigned long BlockID) {
push BlockID
VMMCall(_SignalID);
}

The Windows 3.11 versions of these functions use Wait_Semaphore and Signal
Semaphore since the thread services are new to Windows 95.

Two other services are provided which allow events to run in a nested execution
block. The main difference between these is that IFSMgr_Yield enables interrupts
in the VM before running events. Here are the implementations of these functions:

Codepage and Unicode Conversion 263

void IFSMgr_Yield() {
VMMCall (Begin_Nest_Exec);
VMMCall(Enable_VM_Ints);
VMMCall (Resume_Exec);
VMMCall (End_Nest_Exec);
_asm cld
}

void IFSMgr_RunScheduledEvents () {
if (bPendingGlobalEvents) {
VMMCall (Begin_Nest_Exec);
VMMCall(Resume_Exec);
VMMCall (End_Nest_Exec);
_asm clc

}
}
The global variable bPendingGlobalEvents is set by a call to Schedule_Global
Events and cleared by a call to Resume_Exec. IFSMgr hooks these two functions
in order to maintain this flag.

Codepage and Unicode Conversion

Windows 95 is a mixed environment, using both BCS and Unicode character
encodings. BCS encodings (single-byte or double-byte character sets) are used
primarily by applications, although some subsystems, such as OLE, do use
Unicode. IFSMgr uses Unicode encodings for file, network, and device names.

BCS encodings are represented by codepages. Two codepages are available for
an application to use: an ANSI codepage and an OEM codepage. The OEM code-
page is associated with MS-DOS applications and includes the line-drawing
characters. Win32 console applications also use the OEM codepage by default.
The ANSI codepage is used by Windows 95 applications (Winl6 and Win32). The
specific codepages a Windows 95 system uses depends on the locale; for the
United States, the defaults are MS-DOS US codepage 437 for OEM, and US code-
page 1252 (Latin 1) for ANSL

While it is always possible to convert non-Unicode data to Unicode, the reverse is
not always possible. When it isn’t possible to convert a Unicode. character to a
character of the current codepage, a default character is used (the underscore
character, “_” (0x50)).

When IFSMgr initializes, it loads conversion tables that map between its local
codepages (OEM and ANSD and the corresponding subset of Unicode. Addresses
of these tables are returned by IFSMgr_GetConversionTablePtrs.

Each of the conversion services shown in Table 12-7 that contain BCS requires an
argument specifying one of the manifest constants BCS_OEM or BCS_WANSI to

264 ' Chapter 12: A Survey of IFSMgr Services

select a codepage for the conversion. The services BCSToBCS and BCSToBCS-
Upper require two such arguments, since these functions convert a string from
OEM to ANSI codepage or vice versa (the “Upper” version also uppercases the
destination string). The services UniToBCS and BCSToUni convert from Unicode
to BCS or vice versa. UniToBCSPath takes a ParsedPath structure representing a
canonicalized Unicode pathname and converts it to BCS. UniCharToOEM converts
~a Unicode character to a character of the OEM codepage. UmToUpper converts a
Unicode string to upper case.

Table 12-7. IFSMgr Codepage and Unicode Conversion Services

Ord | Service Name ’ | 16 | 22 | 22+ | Segment | Ref
291 | IFSMgrl6_Service_29 (get translation table) | x | locked
301 | IFSMgrl6_Service_30 (translate strmg) X locked

64 UniToBCS

65 UniToBCSPath

66 | BCSToUni

67 | UniToUpper

68 UniCharToOEM

81 IFSMgr_GetConversionTablePtrs
112 | BcsToBcs

116 | BesToBesUpper

pageable | 12
pageable | 12
pageable | 12
pageable | 12
pageable | 12
pageable | 12
pageable | 12

LT T R T B B B
MM MM M M MK M

pageable | 12

1 Services 29 and 30 are specific to Windows 3.11.

Filename Mamnipulation

There are three fundamental filename types which IFSMgr uses: Unicode FCB

Name, Unicode 8.3 Name, and Unicode Long Name. The FCB is an ancient MS-

DOS structure known as the file control block which contains a drive identifier, -
filename, extension, file size, record size, various file pointers, and date and time

stamps. The filename is limited to 8 characters and padded with spaces; similarly,

the extension is limited to 3 characters and also padded with spaces. The Unicode

‘version of this name format is the same except that each character occupies 16

bits. So instead of being an 11-byte name it becomes a 22-byte name.

A Unicode 8.3 Name is also limited to an 8-character filename and 3-character
extension. However, the name and extension are separated by a dot character
and the name and extension are not padded with spaces. If the filename does not
have an extension, then there is no trailing dot. This filename type is also referred
to as “short.”

Filename Matching 265

A Unicode Long Name is just a Unicode string. The dot character assumes no
special significance and is treated like any other character. A Unicode 8.3 Name is
a special case of a Unicode Long Name.

The services which IFSMgr supplies for manipulating these types of names are
shown in Table 12-8.

Table 12-8. IFSMgr Filename Mawipulation Services

Ord Service Name 16 22 22+ Segment Ref
69 CreateBasis X X pageable 12
71 AppendBasisTail X X pageable 12
72 FcbToShort X b: pageable 12
73 ShortToFcb X X pageable 12
110 ShortToLossyFcb X X pageable 12
120 IFSMgr_Service_120 X pageable

IFSMgr provides several services for converting one name type to another. Create-
Basis takes a Unicode Long Name and converts it into a Unicode FCB Name (the
“basis”) according to a set of truncation and translation rules. FCBToShort
converts a Unicode FCB Name to a Unicode 8.3 Name, whereas ShortToFCB does
just the opposite. The service ShortToLossyFCB also translates a Unicode 8.3
Name to a Unicode FCB Name but uses only Unicode characters which are also
available in the OEM codepage. The AppendBasisTail service adds a “numeric tail”
to the 8 character filename portion of a Unicode FCB Name created by Create-
Basis. This function assures that after appending the numeric tail, the filename will
not exceed 8 bytes if it is converted to BCS. This service is used to create short
name aliases for long filenames. One thing that the short to FCB conversion
services fail to do .is convert “*” into a sequence of “?” characters. You can detect
the presence of this wildcard character by examining the parsing flags; it will be
indicated with the FILE FLAG _HAS_STAR bit. This becomes an issue with the
meta-matching services when short name matching semantics are being used. In
this matching mode, only the “?” character is treated as a wildcard (“*” is a literal
character).

Filename Matching

Table 12-9 lists the filename matching services which IFSMgr provides.

When an FSD needs to search media for a matching filename or a set of filenames
that match a wildcard string, IFSMgr_MetaMatch is the service to use. This service
takes a pattern string, a filename to test, and flags which control the matching
semantics. If the pattern string and the filename to be tested are in Unicode FCB

266 Chapter 12: A Survey of IFSMgr Services

format, then DOS matching semantics are specified. If the pattern string and file-
name are Unicode Long or Unicode 8.3, then NT matching semantics are
specified. When matching a Unicode Long Name pattern against Unicode 8.3
Names, it may be necessary to append a trailing dot to the short name to get DOS
compatible match behavior.

Table 12-9. IFSMgr Filename Matching Services

Ord Service Name 16 22 22+ Segment Ref

61 IFSMgr_MetaMatch X X pageable 12
62 IFSMgr_TransMatch X X pageable 12
70 MatchBasisName X X pageable 12

MatchBasisName is a specialized match service which serves as an aid in gener-
ating unique numeric tails for long filename aliases. This service takes two
Unicode FCB Names. One is generated by CreateBasis from a Unicode Long
Name, and the other comes from a directory entry on the media and may contain
a numeric tail as part of its 8-character filename. The return value from MatchBasis-
Name will fall into one of three categories: no match (0), match on directory entry
without numeric tail (1), or match on directory entry with a numeric tail (value
of numeric tail). After testing the entries in a directory for matches with a basis
name, a list of numeric values already in use will be obtained. A new unique alias
can be generated by calling AppendBasisTail with a value which isn’t in use.

IFSMgr_TransMatch translates a DOS search structure (srch_entry) into a Win32
find structure (_WIN32_FIND_DATA). On entry, the ASCIIZ 8.3 filename returned
by the FSD search is in the se_name member of srch_entry. This name is
converted to Unicode by BCSToUni and deposited in the cFileName member of
_WIN32_FIND_DATA. If the 8.3 matching semantics bit in the if5_nflags member of
the ifsreq structure is set, then both cFileName and the Unicode search pattern
strings are converted to Unicode FCB Names. They are compared by IFSMgr_
MetaMatch using short name semantics (UFLG_DOS). If the above mentioned ifs_
nflags bit is not set, then Unicode pattern string is compared with cFileName
using longname matching semantics (UFLG_NT). If IFSMgr_MetaMatch reports a
match, file attributes, date/time, and file size are translated and copied from srch
entry to _WIN32_FIND_DATA.

Path Parsing

IFSMgr’s path parsing services are listed in Table 12-10. The primary path parsing
service is IFSMgr_ParsePath. IFSMgr_FSDParsePath is a wrapper around IFSMgr_

Path Parsing 267

ParsePath and is intended to be used by FSDs. These services take an ifsreq
structure as their only input.

Table 12-10. IFSMgr Path Parsing Services

Ord Service Name 16 22 22+ Segment Ref

74 IFSMgr_ParsePath X X pageable 7,8, 12
94 IFSMgr_FSDParsePath X X pageable 12

115 IFSMgr_ParseOneElement X X pageable 12

The ir_data member of ifsreq holds the input path string which is to be parsed.
This string can be encoded as either BCS or Unicode. The ifs_nflags member
contains two bits which indicate the string type. If bit 0 is set, it contains charac-
ters which are in the current OEM codepage, whereas if it is clear, characters
come from the current ANSI codepage. If bit 1 is clear, the string uses BCS
encoding, but if it is set, Unicode is used.

The parsing routines require some buffers for working space and to return the
ParsedPath data structure. If the i7_ppath member of ifsreq is initialized to
Oxfffffbbb, then IFSMgr will assign the caller a buffer from its pool of parse
buffers. These buffers are reclaimed by IFSMgr when it performs cleanup after a
command is dispatched. You shouldn’t use this facility if you are performing your
own cleanup since the internal functions which are needed are not available to
FSDs. The alternative is to pass in a pointer to your own buffer. You do this by
creating a 1820-byte allocation and assigning its address to both i7_ppath and ifs_

Dpbulfer.

The main result of a parsing operation is a canonicalized path stored in a Parsed-
Path structure at #7_ppath. For a review of the ParsedPath data structure see
Chapter 6. Other members which will be filled in include ir_uFName (case-
preserved base filename in Unicode), #_upath (unparsed pathname in Unicode),
and ifs_drv (the local volume referenced in the pathname or Oxff if the path is
remote). '

The return value of IFSMgr_ParsePath also contains information about the path;
the format of the doubleword which is returned is described by Table 12-11. The
DDK documentation only gives descriptions of the parsing flag values; it does not
mention the value returned in the low byte. This value classifies the path type.

Table 12-11. IFSMgr_ParsePath Return Value

Parsing Flag/Path Name Type ‘ High Byte ’ Mid Word l Low Byte
Parsing flags:
FILE_FLAG_WILDCARDS 80h

FILE_FLAG_HAS_STAR 40h

268 Chapter 12: A Survey of IFSMgr Services

Table 12-11. IFSMgr._ParsePath Return Value (continued)

Parsing Flag/Path Name Type High Byte Mid Word Low Byte
FILE_FLAG_LONG_PATH 20h X X
FILE_FLAG_KEEP_CASE 10h X X
FILE_FLAG_HAS_DOT 08h X X
FILE_FLAG_IS_LFN 04h X X
Path name types: '

Standard path X X 0
? X X 1
UNC Path X X 2
Invalid Pathnamel! X X 3
Path is Hooked X X 4
Network Printerl X X 5
Invalid Resourcel X X 6
Character FSD Device Name X X 7
DOS Device Name X X 8

1 Thanks to Geoff Chappell for supplying these entries.

IFSMgr. ParsePath also performs some substitutions for path componenets. It will
replace subst drives with their alias drives and directories. It will also detect UNC
paths which are in the loopback list and replace them with their local drive and
directory. A path check routine may also be installed and called by IFSMgr_Parse-
Path using the service IFSMgr_SetPathHook; see Chapter 7 for details.

IFSMgr calls IFSMgr_ParsePath to prepare an ifsreq packet before passing it to
an FSD. Chapter 8 describes how this function is indirectly responsible for
mounting drives and devices and establishing connections to network resources.

IFSMgr_ParseOneElement takes the PathElement member of a ParsedPath struc-
ture as argument. It simply returns the parsing flags for the single PathElement.
These are the same flag values returned by IFSMgr_ParsePath, but in that case
they refer to the entire path.

File Sharing
Table 12-12 lists IFSMgr’s file sharing services.

Table 12-12. IFSMgr File Sharing Services

Ord | Service Name | 16 |22 | 22+ | segment | Ref
82 | IFSMgr_CheckAccessConflict X X locked 8
83 IFSMgr_LockFile X b: locked 12

File Sharing 269

Table 12-12. IFSMgr File Sharing Services (continued)

Ord Service Name 16 22 22+ Segment Ref
84 IFSMgr_UnlockFile X X locked 12
85 IFSMgr_RemoveLocks X X locked 12
86 IFSMgr_CheckLocks X X locked 12
87 IFSMgr_CountLocks X X locked 12
88 IFSMgr_ReassignLockFileInst X X locked 12
89 IFSMgr_UnassignLockList X X locked 12

" These services fall into two categories. The first group is used by an FSD to main-
tain a lock list for a file handle. IFSMgr is the actual keeper of the active lock list
for a file. To add a lock to a file, IFSMgr_LockFile is called like this:

IFSMgr_LockFile(&pFSDLockList, pir->ir_pos, pir->ir_locklen,

pir->ir_pid, pir->ir_fh, pir->ir_options)
This call is shown as it might be made from an FSD’s FS_LockFile function, which
receives a pointer to the ioreq structure in pir. As you can see, in addition to the
lock’s starting position and length, the process, file open instance, and lock
options are recorded as well. The variable pFSDLockList holds the return value,
the head of the lock list for this file. Typically, this would be stored as part of a
data structure that is associated with the open file instance. IFSMgr_UnlockFile
removes a single lock; it must be called with the same parameters that were used
in the IFSMgr_LockFile call. There are occasions when all locks must be removed
from a single file open instance or all file open instances, such as closing a file or
deleting a file. To handle this situation, use IFSMgr_RemoveLocks. Before
touching a locked region of a file, an FSD should call IFSMgr_CheckLocks to see
if a read or write operation would violate any active locks. Finally, IFSMgr_Count-
Locks gives an FSD a means of counting the number of active locks on an open
file instance.

The services IFSMgr_UnassignLockList and IFSMgr_ReassignLockList are used for
saving and restoring locks for files which are temporarily closed during a level 3
volume lock. A level 3 lock prevents all processes except the lock owner from
reading or writing to the disk. In preparation for entering this mode, the files on
the volume are closed with a special ir_options flag (FILE_CLOSE_FOR_LEVEL3_
LOCK). On a normal close, the FSD would call IFSMgr_RemoveLocks, but when it
receives this flag it should save the lock list for each file by calling IFSMgr_Unas-
signLockList. Later, when the level 3 volume lock is relinquished, a special #r_
options flag (OPEN_FLAGS_REOPEN) is specified for each file as it is reopened. As
part of opening the file, the FSD needs to restore any locks that previously
existed; IFSMgr_ReassignLockList retrieves the necessary information.

See Chapter 8 for details on using IFSMgr_CheckAccessConflict.

270 . Chapter 12: A Survey of IFSMgr Services

Plug-and-Play
Table 12-13 lists IFSMgr’s plug-and-play services.

Table 12-13. IFSMgr Plug-and-Play Services

Ord Service Name 16 22 22+ Segment Ref
76 _VolFlush X X pageable 12
77 NotifyVolumeArrival X X pageable 12
78 NotifyVolumeRemoval X X pageable 12
79 QueryVolumeRemoval X X pageable 12
97 IFSMgr_PNPEvent X X pageable 8

Three of these functions are called by I0S (I/O Supervisor) to query or report a
change in state of a plug-and-play drive. NotifyVolumeArrival reports the appear-
ance of a new drive to IFSMgr, NotifyVolumeRemoval reports the removal of a
drive, and QueryVolumeRemoval checks the status of a drive prior to removing it.
_VolFlush is also included under plug-and-play services, since it is usually neces-
sary to flush dirty buffers to a volume before removing it from the system. This
service takes a volume number and an optional flag which forces any cached data
to be discarded. This service ultimately results in a FS_FlushVolume call to the
volume’s FSD.

IFSMgr_PNPEvent is a frontend to the Configuration Manager service CONFIGMG_
Broadcast_Device_Change_Message. IFSMgr_PNPEvent constructs and broadcasts
several types of messages which report the arrival and removal of network
resources, plug-and-play drives, and network transports. Drivers that register with
the Configuration Manager through CONFIGMG_Register_Device_Driver supply a
callback entry point that receives these PNP broadcasts. These broadcasts are also
sent to applications via the WM_DEVICECHANGE message.”

Win32 Support

Table 12-14 lists IFSMgr’s Win32 support services.

The Win32 Support services all carry the warning: “This service is intended solely
for the purpose of the Win32 subsystem. It should not be used by any other VxD
in the system.” OK, you’ve been warned.

* For an excellent discussion of plug-and-play and the configuration manager, see Chapters 11 and 12 of
Systems Programming for Windows 95 by Walter Oney. His book also includes a useful spy utility which
monitors - WM_DEVICECHANGE messages.

Ring-0 File I/O 271

Table 12-14. IFSMgr Win32 Support Services

Ord | Service Name 16 | 22 | 22+ | Segment Ref
49 IFSMgr_Win32DupHandle

51 IFSMgr_Win32_Get_Ring0_Handle

99 IFSMgr_Win32MapExtendedHandleToSFT
101 | IFSMgr_Win32MapSFTToExtendedHandle
107 | IFSMgr_Win32GetVMCurdir

pageable | 10
pageable | 6

pageable | 12
pageable | 12

LT T B
LT T T I

pageable | 12

We already encountered IFSMgr_Win32DupHandle when we examined the
creation of memory-mapped files in Chapter 10, Virtual Memory, the Paging File,
and Pagers. This function is called in response to the Win32 API CreateFileMap-
ping and the duplicated handle is used to refer to the memory-mapping. This
service is also used to create “normal” handle duplicates via the Win32 API,
DuplicateHandle.

IFSMgr_Win32_Get_Ring0_Handle was discussed in Chapter 6 when we looked at
how IFSMgr tracks open files. This function takes an extended file handle (or
system file number, 200h or greater) and converts it into the address of an fhandle
structure. The latter, of course, is the same as a ring-0 file handle as used by
IFSMgr_Ring0_FilelO.

IFSMgr_Win32MapSFIToExtendedHandle and its counterpart, IFSMgr_Win32Map-
ExtendedHandleToSFT, are used to map extended file handles to DOS handles,
and vice versa. These services must be called in the context of the DOS VM.

IFSMgr_Win32GetVMCurdir returns the current directory for the specified drive in
the context of the current VM. The current directory is stored for a drive as “per-
VM” data in the pv_curdir/] member of the VM’s pervm structure (see Appendix
C, IFSMgr Data Structures).

Ring-0 File I/O

The service IFSMgr_Ring0_FileIO (see Table 12-15) has become very popular
among VXD writers. Finally, there is an easy way to access the file system from
ring-0. This service supplies a subset of the Int 21h interface, including some
commonly used functions. The mechanism IFSMgr uses to dispatch ring-0 file
system requests was described in Chapter 6.

Table 12-15. IFSMgr ring-0 File I/O Services

Ord Service Name 16 22 22+ Segment Ref
50 . | IFSMgr_Ring0_FileIO X X locked

272 Chapter 12: A Survey of IFSMgr Services

IFSMgr_RingO_FilelO is essentially a ring-0 interrupt 21h interface. You load the
EAX, EBX, ECX, EDX, and ESI registers with parameters, invoke the function, and
get the results in the EAX and ECX registers and in buffers referred to by the
" input registers. As in the Int 21h interface, the AH portion of EAX input register
holds the function number. Only 15 major functions are supported, some of
which have subfunctions; these are listed in Table 12-16. See the DDK documenta-
tion for details on register usage for each function.

Table 12-16. IFSMgr_Ring0_FileIO Functions

Function Name Value Preamble Dispatch Segment
RO_OPENCREATFILE D500h | RO_MapPath dRO_OpenCreate | locked
RO_OPENCREATEFILE_IN_ D501h | RO_MapPath dRO_OpenCreate | locked
CONTEXT

RO_READFILE D600h | RO_Default dRO_ReadWrite locked
RO_WRITEFILE D601h | RO_Default dRO_ReadWrite locked
RO_READFILE_IN_CONTEXT D602h | RO_Default dRO_ReadWrite locked
RO_WRITEFILE_IN_CONTEXT | D603h | RO_Default dRO_ReadWrite locked
RO_CLOSEFILE D700h | RO_Default dRO_Close locked
RO_GETFILESIZE D800h | RO_Default dRO_FileSize locked
RO_FINDFIRSTFILE 4E00h RO_MapPath dFindFile pageable
RO_FINDNEXTFILE 4F00h | None dFindFile pageable
RO_FINDCLOSEFILE DCOOh | RO_Default dFindClose pageable
RO_FILEATTRIBUTES | 4300h | RO_MapPath | dAttribs pageable
GET_ATTRIBUTES ,
RO_FILEATTRIBUTES | 4301h | RO_MapPath dAttribs pageable
SET_ATTRIBUTES

RO_RENAMEFILE 5600h | RO_MapPath dRename pageable
RO_DELETEFILE 4100h | RO_MapPath dDelete pageable
RO_LOCKFILE 5C00h | RO_Default dLock pageable
RO_GETDISKFREESPACE 3600h | RO_DriveChkl | dDriveData pageable
RO_READABSOLUTEDISK DDOOh | RO_DriveChk2 | dAbsReadWrite pageable
RO_WRITEABSOLUTEDISK DEOOh | RO_DriveChk2 | dAbsReadWrite | pageable
Ring0 Ioctl DFxxh | RO_Default dRO_Ioctl locked

As with the protected-mode and virtual-86 mode Int 21h handler, a preamble is
called on each ring-0 Int 21h function. If the preamble returns with carry set, the
function is not dispatched. Note that the preamble functions for the ring-0 inter-
face can mot be modified using IFSMgr_SetReqHook. For many of the functions,
the RO_Default preamble is used, which simply clears the carry flag and returns,
allowing the function to be dispatched. Functions which receive a pathname as
an argument call RO_MapPath, which in turn calls an Int 21h preamble which uses

Miscellaneous ’ 273

Map_Flat to convert DS:DX into linear addresses and possibly run the path
through IFSMgr_ParsePath. When this preamble is called from the ring-0 interface,
however, it does nothing. The only preambles which actually test the input param-
eters are RO_DriveChk1 and RO_DriveChk2, and they only validate the zero-based
drive number. So you need to heed the DDK warning: “Users of this service
should be very careful to check that they are passing in valid parameters.”

Table 12-16 also enumerates the dispatch routines which are invoked for each
ring-0 function. For most of the functions, a common dispatch routine is shared
by the ring-0 interface and the PM/V86 mode Int 21h handler. The dispatch
routines which are unique to the ring-0 interface have names which begin with
dRO. These routines reside in locked code.

Miscellaneous
Table 12-17 lists IFSMgr’s services which don’t fall into one of the other categories.

Table 12-17. IFSMgr Miscellaneous Services

Ord Service Name 16 | 22 | 22+ | Segment Ref
IFSMgr_Get_Version b'q X b4 locked 12
IFSMgr_Attach u u u locked

5 IFSMgr_Detach u u u locked

11 IFSMgr_CompleteAsync X X X pageable

3840 - | IFSMgr_SetErrString b X X pageable

3941 IFSMgr_GetErrString X X X pageable

4547 | IFSMgr_ChangeDir x |x X pageable

47 IFSMgr_CDROM_Attach X X pageable

48 IFSMgr_CDROM_Detach X b:e pageable

5258 IFSMgr_Get_Drive_Info X u u locked

53 IFSMgr_Ring0GetDriveInfo X X locked

63 IFSMgr_CallProvider u u locked

75 Query_PhysLock X X locked

90 IFSMgr_MountChildVolume x X pageable

91 IFSMgr_UnmountChildVolume X X pageable

92 IFSMgr_SwapDrives X X pageable

95 IFSMgr_FSDAttachSFT u u pageable

102 IFSMgr_FSDGetCurrentDrive X X pageable

103 IFSMgr_InstallFileSystemApiHook X X locked 7

104 IFSMgr_RemoveFileSystemApiHook X X locked

274

Chapter 12: A Survey of IFSMgr Services

Table 12-17. IFSMgr Miscellaneous Services (continued)

Ord Service Name 16 | 22 | 22+ | Segment Ref
109 _GetMappedErr X X locked
111 IFSMgr_GetLockState X locked
Debugging
Table 12-18 lists IFSMgr’s debugging services.
Table 12-18. IFSMgr Debugging Services
Ord Service Name - 16 22 22+ Segment Ref
28 IFSMgr_PopUp u u u pageable
29 IFSMgr_printf d d locked -
30 IFSMgr_AssertFailed d d locked
31 IFSMgr_LogEntry d d d locked
32 IFSMgr_DebugMenu d d d locked
33 IFSMgr_DebugVars d d d locked
34 IFSMgr_GetDebugString d d d locked
35 IFSMgr_GetDebugHexNum d d d locked
100 IFSMgr_DbgSetFileHandleLimit d d locked

13

VREDIR:
The Microsoft
Networks Client

The client side of Microsoft Networks file and printer sharing services is brought
to you by VREDIR, the virtual redirector. It is an example of the network redi-
rector type of FSD. Microsoft Networks is based upon the Server Message Block
(SMB) file sharing protocol. This protocol was introduced with the original IBM
PC Network. Today it is the protocol that is used to network the PC world,
including MS-DOS, Windows for Workgroups, Windows NT, and OS/2 (not to
mention Windows 95). In August 1996, Microsoft launched an initiative to move
this protocol to the Internet under the name Common Internet File System, or
CIFS. '

To aid our exploration of VREDIR, two new monitors for MultiMon are intro-
duced. The first is a NetBIOS monitor that displays all calls through VNETBIOS;
the second is a monitor that displays the types of SMB packets passing through
NetBIOS. While they aren’t a substitute for a LAN protocol analyzer or “packet
sniffer,” they have the advantage of integrating well with our IFSMgr Filehook
monitor so we can relate file system requests to the resultant network activity.

VREDIR is just one stratum in a sequence of protocols. Let’s begin by looking at
VREDIR’s place amongst the network components.

VREDIR and Otber Network
Components

Figure 13-1 shows IFSMgr at the top of a protocol stack. IFSMgr passes ifsreq
packets to VREDIR for any file system requests that are resolved to a remote
Microsoft Networks server. VREDIR, in turn, generates one or more NetBIOS calls
which send requests to a remote computer using the Server Message Block (SMB)
file sharing protocol. The NetBIOS request may be sent using one of the three

275

276 Chapter 13: VREDIR: The Microsoft Networks Client

transport protocols: NetBEUI, TCP/IP, or IPX/SPX (or any transport that supports
NetBIOS). The last two require shims to convert the NetBIOS request into a form
amenable to TCP/IP or IPX/SPX. These protocols frame the SMB packet or trans-
ferred data with appropriate headers and trailers before passing it to the NDIS
driver. Incoming packets wend their way up to VNETBIOS which notifies clients
of completed requests and the receipt of data. Since VREDIR is the Microsoft
Networks client, it does not accept requests from other systems; VSERVER fulfills
that role.

ifsreq
VRedir FSD
Netbios Control Block (Neb)

Figure 13-1. VREDIR's protocol stack

The two interfaces in Figure 13-1 which we are most interested in are the IFSMgr/
VREDIR and VREDIR/VNETBIOS boundaries. IFSMgr and VREDIR use the stan-
dard FSD linkage which we explored in Chapter 8, Anatomy of a File System
Driver. For VREDIR to establish a connection to a remote “share,” there must be a
server on a remote computer which is sharing it. Although peer-to-peer Windows
95 networks would rely on VSERVER to provide these shares, many other SMB
server possibilities exist, including Windows for Workgroups, LAN Manager,
Windows NT, OS/2, and UNIX/Linux workstations running SAMBA. To represent
a connection, IFSMgr creates a shell resource on the client computer. For
instance, suppose a single server exposes two different directories as shares with
UNC names \\SERVER\DESKTOP (local directory: c:\windows\Desktop) and
\\SERVER\PGMS (local directory: c:\Program Files). If a file is opened in each
directory from a remote computer using full UNC paths, two shell resources will
be created, one for each shared resource connection. On the other hand, if we
were to open two files in the remote directory \\SERVER\DESKTOP only a single
shell resource would be required. In either case, two file handles are needed.

VREDIR Interfaces 277

This mapping of connections represented by \\server\share names to shell
resources distinguishes network FSDs from local FSDs which map shell resources
to logical volumes.

Our examination of FSDs has emphasized the IFSMgr-to-FSD interface, since this
is a consistent and common interface for all types of FSDs. It is the lower inter-
face of an FSD that is unique to each driver; for example with VFAT, the interface
is to I0S; with MONOCFSD the interface is to a monochrome display adapter;
with FSINFILE the interface is to a ring-O file. In the case of VREDIR, the lower
interface is with NetBIOS. NetBIOS is sometimes confused with NetBEUL
NetBIOS is a programming interface whereas NetBEUI is a transport protocol.

VREDIR Interfaces

The upper side of VREDIR communicates with IFSMgr via the function table inter-
face. Network FSDs populate their function tables with somewhat different
routines than a local FSD. Since shared resources may be of several different
types, open operations on these resources may return addresses to one of several
handle-based function tables. The lower side of VREDIR needs to communicate
with the local area network. There are two levels at which this is done. The first is
concerned with the mechanics of sending and receiving packets to specific
servers on the net—this is taken care of by the NetBIOS interface, which we
examine here. The second level concerns the content of these packets, i.e., format-
ting the packets according to the protocol expected by the server. This is taken
care of by the SMB file sharing protocol which we’ll examine in the next section.

The FSD Interface

As we saw in Chapter 8, a shell resource is matched with a volume-based func-
tion table in the FSD which owns it. In the case of a network FSD, the volume-
based table of functions might be thought of as the UNC path-based table of func-
tions. Each UNC path corresponds to a specific connection. VREDIR uses a single
volume-based function table which contains the 15 entries shown below:

FS_DeleteFile FS_Dir FS_FileAttributes FS_Search FS_GetDiskInfo
FS_OpenfFile FS_Rename FS_loctl16Drive FS_QueryIlnfo FS_Disconnect
FS_NamedPipe- FS_Flush FS_GetDiskParms FS_FindOpen FS_DASDIO
UNCRequest

The functions which are listed in bold characters are implemented by VREDIR.
Note that FS_loctll6Drive, FS_GetDiskParms, and FS_DASDIO are not imple-
mented in a network FSD but FS_NamedPipeUNCPipeRequest is. This is in

278 Chapter 13: VREDIR: The Microsoft Networks Client

contrast to-a local FSD. FS_NamedPipeUNCRequest is added to provide support
for named pipes.

VREDIR is more complex when it comes to supplying a handle-based function
table via FS_OpenFile. Shell resources for a network FSD can be of several types:
RESTYPE_DISK for a network drive-mapping, RESTYPE_SPOOL for a remote
spooled printer, RESTYPE_CHARDEYV for a remote character device, RESTYPE_IPC
for a named pipe to a remote system, and RESTYPE_WILD for a catch-all group.
(The manifest constants RESTYPE_DISK, etc., are defined in the DDK header file
ifs.b and are passed into several IFSMgr services as well as FS_ConnectNet-
Resource.)

Table 13-1 shows the handle-based functions (in bold) for each resource type.
The FS_ReadFile and FS_WriteFile functions at the top use different routines
depending on the open access mode. A “deny” entry means that the function
both sets ir_error to ERROR_ACCESS_DENIED and returns that error code. A
“zero” entry means that the function sets #r_length to zero and it returns success.

Table 13-1. VREDIR's Handle-Based Function Table

Function WILD DISK SPOOL CHARDEV | IPC
FS_ReadFile
ReadOnly deny readl Zero deny read2
WriteOnly deny deny deny deny deny
Read/Write deny readl Zero deny read2
Execute deny = | readl Zero deny deny
FS_WriteFile
ReadOnly deny deny deny deny deny
WriteOnly deny writel writel deny write2
Read/Write deny writel writel deny write2
Execute deny deny deny deny deny
FS_SeekFile deny seek1 seekl deny Z€ero
FS_CloseFile closel | closel closel closel closel
FS_CommitFile deny commitl commit1 deny zZero
FS_FileLocks deny lockl lock1 deny deny
FS_FileDateTime deny times1 times1 deny deny
FS_NamedPipeRequest deny deny deny deny pipel
FS_NamedPipeHandlelnfo deny deny .deny deny nethdll
FS_EnumerateHandle deny enuml | enuml deny deny

We can see ffom the table that all resource types use a common FS_CloseFile func-
tion, closel. For RESTYPE_WILD and RESTYPE_CHARDEYV resources, FS_CloseFile

VREDIR Interfaces ' 279

is the only function implemented. RESTYPE_DISK and RESTYPE_SPOOL resources
use the same set of functions, except that the spooler doesn’t return any data
when a read is attempted. RESTYPE_IPC uses a separate set of read and write
routines. It is the only resource type to implement FS_NamedPipeRequest and FS_
NamedPipeHandleInfo. In VREDIR’s implementation, the volume-based function
FS_NamedPipeUNCRequest and the handle-based function FS_Named-PipeRe-
quest use a common routine. One additional handle-based function table exists
for the function FS_FindFirstFile. It returns FS_FindNextFile as the read function
and FS_FindClose as its FS_CloseFile function. The remaining functions are all
assigned the deny routine.

The NetBIOS Interface

The NetBIOS interface is supplied by the VxD VNETBIOS. A NetBIOS command
is issued by filling a Network Control Block (NCB) structure with command
parameters and then passing it to the NetBIOS entry point. In MS-DOS and Win16
programs, this is accomplished by pointing ES:BX at the NCB and invoking soft-
ware Int 5Ch. Win32 programs may call the C library function Netbios with a
pointer to the NCB. The way that VxDs use NetBIOS is to load the linear address
of the NCB in EBX and call the service VNETBIOS_Submit.

The Network Control Block which is used to request NetBIOS services has the
following layout:

typedef struct _NCB {

UCHAR ncb_command; /* 00 command code */

UCHAR ncb_retcode; . /* 01 return code */

UCHAR ncb_1lsn; /* 02 local session number */

UCHAR ncb_num; /* 03 number of our network name */
PUCHAR ncb_buffer; /* 04 address of message buffer */
WORD ncb_length; /* 08 size of message buffer */
UCHAR ncb_callname[NCBNAMSZ]; /* OA blank-padded name of remote */
UCHAR ncb_name [NCBNAMSZ] ; /* 1A our blank-padded netname */
UCHAR ncb_rto; /* 2A rcv timeout/retry count */
UCHAR ncb_sto; /* 2B send timeout/sys timeout */
void (*ncb_post) (struct _NCB*); /* 2C POST routine address */
UCHAR ncb_lana_num; /* 30 lana (adapter) number */
UCHAR ncb_cmd_cplt; /* 31 0xff => commmand pending */
UCHAR ncb_reserve[l0]; /* 32 reserved, used by BIOS */
HANDLE ncb_event; /* 3C HANDLE to Win32 event which */

/* will be set to the signalled */
/* state when an ASYNCH command */
/* completes */
} NCB, *PNCB;
This definition comes from the Win32 SDK header file #b30.b; an equivalent
header is not provided in the DDK. Several fields in this structure are used in
every NetBIOS command; others are only needed for certain commands. The

280 Chapter 13: VREDIR: The Microsoft Networks Client

member ncb_command holds the command code. By default, a command does
not return until it completes. Most commands can be issued in asynchronous
fashion by setting the high bit in the command code. This means that the
command returns before completion and the initial return code in ncb_retcode
indicates that the command is pending. When the command does complete, the
routine specified by ncb_post is called with the address of the completing NCB.
The member nch_lana_num originally was used to specify the network adapter
number, with the first adapter having a value of zero, the second adapter a value
of one, and so forth. The use of nchb_lana_num has since been extended to also
enumerate available protocols. For instance, if a system has two network adapters
and both NetBEUI and IPX/SPX protocols installed, the system would have four
LANA numbers. Each number would correspond to one of the combinations of
adaptér and protocol. Windows 95 does not allow the user to control this
mapping except that a default protocol may be selected under the Network prop-
erties from Control Panel. The protocol which is selected as the default will have
a LANA number of 0.

NetBIOS commands are grouped into four broad categories: name support, data-
gram support, session support, and utility. The manifest constants which are used
here to refer to NetBIOS commands are defined in the header file #b30.h. The
name commands add and remove names from the local name table. The first
name in this table is the local node name or MAC address and cannot be deleted.
A name is added to the table with the command NCBADDNAME but only if it is
verified to be unique on the LAN. Each name is subsequently referred to by its
index in the local name table. A name is removed from the local name table with
NCBDELNAME. A non-unique group name may also be added to the local name
table using the command NCBADDGRNAME. In order for this command to
succeed, the group name must not have already been claimed as a unique name
on the LAN. Group names are intended to be registered by more than one
network node.

Datagrams are used for non-guaranteed connectionless message transfers. The
send (NCBDGSEND) and receive (NCBDGRECV) datagram commands are used to
send messages to a unique name or a group name on the LAN. To broadcast a
message to all stations on a LAN, the send broadcast datagram (NCBDGSENDBC)
and receive broadcast datagram (NCBDGRECVBC) commands are used.

A session establishes a connection between a server and client station. On the
server side a station will execute a NCBLISTEN command to await a client
request. A client connects to the server by issuing a. NCBCALL command. If the

* For more information see How to Use LANA Numbers in a 32-bit Environment, Microsoft Knowledge
Base article Q138037. See http://www.microsoft.com/kb/articles/q138/0/37.bim.

The SMB File Sharing Protocol 281

connection succeeds, NetBIOS assigns it an LSN (local session number). The
client and server exchange data over the connection using the NCBSEND and
NCBRECV commands. A session is closed by issuing the NCBHANGUP command
with the corresponding LSN.

The NetBIOS utility commands include NCBRESET, which resets the NetBIOS
name and session tables and aborts any existing sessions; NCBCANCEL, which
cancels a specified NetBIOS command; NCBASTAT, which requests status of a
local or remote adapter. NCBASTAT can be used to retrieve the MAC address of
an adapter.”

MultiMon’s NetBIOS monitor only sees commands which are issued through
VNETBIOS_Submit. The driver name for this monitor is nbbook.vxd. We will be
using this monitor in a following section to trace VREDIR’s operation.

This has been a condensed overview of NetBIOS. For more, see C Programmer’s
Guide to NetBIOS, by W. David Schwaderer (Howard Sams & Co., 1988).

The SMB File Sharing Protocol

SMB has been with us since the introduction of the IBM PC LAN. It has evolved
since then to become the native file-sharing protocol for LAN Manager, Windows
NT, OS/2, and Windows 95. UNIX and Linux platforms can also become SMB
servers and clients by installing the SAMBA suite. SAMBA is available via FTP
from samba.anu.edu.au and comes bundled with many Linux distributions.

Message Block Format

As I mentioned earlier, SMB stands for Server Message Block file-sharing protocol.
It provides a command structure for allowing remote computers to access a
server’s resources. The client computer issues commands to a server using a
message block and the server responds with a matching reply. Each message
block has a common header and an area which is specific to a command. Here is
the declaration of the SMB header structure:t

typedef struct ({

UCHAR Protocol(4]; // 00 Contains OxFF,'SMB'
UCHAR Command; // 04 Command code
union { :
struct {
UCHAR ErrorClass; // 05 Error class

* See Getting the MAC Addpress for an Ethernet Adapter, Microsoft Knowledge Base Article Q118623. See
bttp://www.microsoft.com/kb/articles/q118/6/23.btm.

t From the draft document Microsoft Networks SMB File Sharing Protocol, Document Version 6.0p, Jan. 1,
1996, Microsoft Corp.

282 Chapter 13: VREDIR: The Microsoft Networks Client

UCHAR Reserved; // 06 Reserved for future use
. USHORT Error; // 07 Error code
} DosError;
ULONG NtStatus; // 05 NT-style 32bit error code
} Status;
UCHAR Flags; // 09 Flags
USHORT Flags2; // OA More flags
union {
USHORT Padl[6]; // 0C Ensure this section
// is 12 bytes
struct {
USHORT PidHigh; // 0C High part of PID
// (NT Create And X)
struct {
ULONG HdrReserved; // OE Not used
USHORT Sid; // 12 Session ID
USHORT SequenceNumber; // 14 Sequence number
} Connectionless; // IPX
}
}i
USHORT Tid; // 18 Tree identifier
USHORT Pid; // 1A Caller's process id
USHORT Uid; // 1C Unauthenticated user id
USHORT Mid; // 1E multiplex id
UCHAR WordCount; // 20 Count of parameter words

// The remaining fields depend upon command type

USHORT ParameterWords|[WordCount 1; // The parameter words

USHORT ByteCount; // Count of bytes

UCHAR Buffer[ByteCount 1; // The bytes

} SMB_HEADER;
In this declaration; UCHAR is unsigned char, USHORT is unsigned short, and
ULONG is unsigned long. Note that the first 33 bytes of every message block have
a common definition. The member WordCount determines the length of the
following parameter section. The member ByteCount determines the length of the
following buffer. The interpretation of the parameter and buffer sections are
specific to each command.

The Command member specifies the operation which the message block refers
to. The same operation code is used whether it is in the message block sent by
the client or in the response message block returned by the server. The Status
member is filled by a server in a response message block; depending on the capa-
blilties of the client, it may return a 32-bit error code in NtStatus or fill in the
ErrorClass and Error members of DosError. The Flags and Flags2 members use
bits to indicate various client capablities, e.g., strings are represented in ASCII or
Unicode. The Connectionless structure is needed only if the underlying trans-
port is connectionless, such as UDP or IPX. The Tid, Pid, Uid, and Mid fields are
various IDs. A Tid refers to a resource on the server to which the client has
successfully connected. The client uses the Tid in subsequent requests on that
resource. A Pid is a unique identifier generated by the client to correspond to the

The SMB File Sharing Protocol 283

calling process. A client uses the Pid value in a response message block to sort
out which process the server is responding to. A Mid would be used by a multi-
threaded client to identify a thread within a process. It allows for multiplexing
multiple message blocks on the same connection. A Uid is returned in a server
response message block as an identifier representing a validated account name
and password. Uids are only returned by user level servers but not by share level
servers. A share level server simply makes a resource available on the network to
any client which knows its name; password protection is optional. The last fixed
member in the header is WordCount. 1t tells us the number of intervening words
between it and the member ByteCount. ByteCount tells us the number of bytes
until the end of the message block.

Commands and Dialects

Table 13-2 lists all of the SMB commands which are currently documented. SMB
clients support varying levels of functionality. When they establish a connection
with a server, the first command which is exchanged is SMB_COM_NEGOTIATE.
In this command the client tells the server which versions or dialects of the SMB
protocol it can understand. For instance, when VREDIR in Windows 95 sends this
message, it lists the following dialects that it can support:

PC NETWORK PROGRAM 1.0
MICROSOFT NETWORKS 3.0
DOS LM1.2X002

DOS LANMAN 2.1

Windows for Workgroups 3.1a
NT LM 0.12.

There are something like 10 different dialects of the SMB protocol. When a client
claims compatibility with a certain dialect, it is also claiming compatibility with
that dialect’s precursors. Table 13-2 indicates the major dialect in which a
command was introduced.

Table 13-2. SMB File Sharing Protocol Commands

Command Name Code Dialect

SMB_COM_CREATE_DIRECTORY : 0x00 PCNET PROGRAM 1.0
SMB_COM_DELETE_DIRECTORY 0x01 PCNET PROGRAM 1.0
SMB_COM_OPEN 0x02 PCNET PROGRAM 1.0
SMB_COM_CREATE 0x03 PCNET PROGRAM 1.0
SMB_COM_CLOSE 0x04 PCNET PROGRAM 1.0
SMB_COM_FLUSH : 0x05 PCNET PROGRAM 1.0
SMB_COM_DELETE 0x06 PCNET PROGRAM 1.0

284 Chapter 13: VREDIR: The Microsoft Networks Client

Table 13-2. SMB File Sharing Protocol Commands (continued)

Command Name Code Dialect
SMB_COM_RENAME 0x07 PCNET PROGRAM 1.0
SMB_COM_QUERY_INFORMATION 0x08 PCNET PROGRAM 1.0
SMB_COM_SET_INFORMATION 0x09 PCNET PROGRAM 1.0
SMB_COM_READ 0x0A PCNET PROGRAM 1.0
SMB_COM_WRITE 0x0B PCNET PROGRAM 1.0
SMB_COM_LOCK_BYTE_RANGE 0x0C PCNET PROGRAM 1.0
SMB_COM_UNLOCK_BYTE_RANGE 0x0D | PCNET PROGRAM 1.0
SMB_COM_CREATE_TEMPORARY 0x0E PCNET PROGRAM 1.0
SMB_COM_CREATE_NEW 0xOF PCNET PROGRAM 1.0
SMB_COM_CHECK_DIRECTORY 0x10 PCNET PROGRAM 1.0
SMB_COM_PROCESS_EXIT 0x11 PCNET PROGRAM 1.0
SMB_COM_SEEK _ 0x12 PCNET PROGRAM 1.0
SMB_COM_LOCK_AND_READ 0x13 LANMAN 1.0
SMB_COM_WRITE_AND_UNLOCK 0x14 LANMAN 1.0
SMB_COM_READ_RAW 0x1A LANMAN 1.0
SMB_COM_READ_MPX 0x1B LANMAN 1.0
SMB_COM_READ_MPX_SECONDARY 0x1C LANMAN 1.0
SMB_COM_WRITE_RAW 0x1D LANMAN 1.0
SMB_COM_WRITE_MPX 0x1E LANMAN 1.0
SMB_COM_WRITE_COMPLETE ‘ 0x20 LANMAN 1.0
SMB_COM_SET_INFORMATION2 0x22 LANMAN 1.0
SMB_COM_QUERY_INFORMATION2 0x23 LANMAN 1.0
SMB_COM_LOCKING_ANDX 0x24 LANMAN 1.0
SMB_COM_TRANSACTION 0x25 = | LANMAN 1.0
SMB_COM_TRANSACTION_SECONDARY 0x26 LANMAN 1.0
SMB_COM_IOCTL 0x27 LANMAN 1.0
SMB_COM_IOCTL_SECONDARY 0x28 LANMAN 1.0
SMB_COM_COPY 0x29 LANMAN 1.0
SMB_COM_MOVE 0x2A LANMAN 1.0
SMB_COM_ECHO 0x2B LANMAN 1.0
SMB_COM_WRITE_AND_CLOSE 0x2C LANMAN 1.0
SMB_COM_OPEN_ANDX 0x2D LANMAN 1.0
SMB_COM_READ_ANDX 0x2E LANMAN 1.0
SMB_COM_WRITE_ANDX 0x2F LANMAN 1.0
SMB_COM_CLOSE_AND_TREE_DISC 0x31 ?
SMB_COM_TRANSACTION2 0x32 LM1.2X002

The SMB File Sharing Protocol 285

Table 13-2. SMB File Sharing Protocol Commands (continued)

Command Name Code Dialect
SMB_COM_TRANSACTION2_SECONDARY 0x33 LM1.2X002
SMB_COM_FIND_CLOSE2 0x34 LM1.2X002
SMB_COM_FIND_NOTIFY_CLOSE 0x35 ?
SMB_COM_TREE_CONNECT 0x70 PCNET PROGRAM 1.0
SMB_COM_TREE_DISCONNECT 0x71 PCNET PROGRAM 1.0
SMB_COM_NEGOTIATE 0x72 PCNET PROGRAM 1.0
SMB_COM_SESSION_SETUP_ANDX 0x73 LANMAN 1.0
SMB_COM_LOGOFF_ANDX - 0x74 LM1.2X002
SMB_COM_TREE_CONNECT_ANDX 0x75 LANMAN 1.0
SMB_COM_QUERY_INFORMATION_DISK 0x80 PCNET PROGRAM 1.0
SMB_COM_SEARCH 0x81 PCNET PROGRAM 1.0
SMB_COM_FIND 0x82 LANMAN 1.0
SMB_COM_FIND_UNIQUE 0x83 LANMAN 1.0
SMB_COM_NT_TRANSACT 0xA0 NT LM 0.12
SMB_COM_NT_TRANSACT_SECONDARY OxAl NT LM 0.12
SMB_COM_NT_CREATE_ANDX 0xA2 NT LM 0.12
SMB_COM_NT_CANCEL 0xA4 NT LM 0.12
SMB_COM_OPEN_PRINT_FILE 0xCO PCNET PROGRAM 1.0
SMB_COM_WRITE_PRINT_FILE 0xC1 PCNET PROGRAM 1.0
SMB_COM_CLOSE_PRINT_FILE 0xC2 PCNET PROGRAM 1.0
SMB_COM_GET_PRINT_QUEUE 0xC3 PCNET PROGRAM 1.0

The most basic dialect is that named PCNET PROGRAM 1.0. This is also called the
“core protocol” because it is the minimum SMB implementation. The next signifi-
cant expansion of the protocol occurred with LANMAN 1.0. The other dialects
listed in Table 13-2 are LM1.2X002 for Lan Manager 2.0 and NT LM 0.12, Lan
Manager 2.0 for Windows NT. Windows 95 supports this “highest” dialect.

The names of the commands provide some hint as to what they do. For instance,
SMB_COM_OPEN opens a file on the server, SMB_COM_QUERY_INFORMATION,
gets file attributes for a file on a server, and SMB_COM_TREE_CONNECT estab-
lishes a connection to a shared directory (or “tree”) on the server. You'll notice
many commands have the suffix “ANDX”. These commands support a form of
command batching in which a single message block contains more than one
command. For instance, SMB_COM_OPEN_ANDX will open a file and possibly do
commands “X”, where additional commands are defined by fields in the param-
eter section of the message block.

286 Chapter 13: VREDIR: The Microsoft Networks Client

Message Flow

To get a feel for how the SMB protocol is used, let’s follow the steps taken in
response to a simple Win32 program that performs these statements:

hFile = CreateFile("\\\\WETSUIT\\DESKTOP\\Notes.doc",
GENERIC_READ, 0, NULL, OPEN_EXISTING, 0, NULL);

size = GetFileSize(hFile, NULL); .

ReadFile(hFile, pBuf, size, &actual, NULL);

CloseHandle(hFile);
Table 13-3 shows the exchange of messages between client and server when this
code executes. The first six lines in the table correspond to the single Win32
CreateFile call. If a connection does not already exist with the specified server
(WETSUIT) then a session is established using SMB_COM_NEGOTIATE and SMC_
COM_SESSION_SETUP_ANDX. If these commands succeed then a connection is
made to the share named DESKTOP by the command SMB_COM_TREE_
CONNECT_ANDX. Note that theser ANDX -commands are batched together into a
single message block. Once the connection is made, the file open executes and
finally CreateFile returns. We don’t see any evidence of the GetFileSize call being
sent to the server. The next SMB commands we see correspond to the file read
and file close. After the file close completes the connection remains set up. If the
shared resource is not accessed for some period of time, then a SMB_COM_TREE_
DISCONNECT command is sent to the server on the Tid which was returned by
SMB_COM_TREE_CONNECT_ANDX.

Table 13-3. Sample SMB Client/Server Exchange

Client Sends: v Server (WETSUIT) Replies:
SMB_COM_NEGOTIATE '

SMB_COM_NEGOTIATE—specify dialect to
use

SMB_COM_SESSION_SETUP_ANDX and
SMB_COM_TREE_CONNECT_ANDX
specify subdirectory to connect to
(\\WETSUIT\ DESKTOP)

SMB_COM_SESSION_SETUP_ANDX and
SMB_COM_TREE_CONNECT_ANDX—
returns Tid for connected resource, and
resource type

SMB_COM_OPEN_ANDX specify access
and open modes and filename relative to
“virtual root” (“\notes.doc”) given by Tid

SMB_COM_OPEN_ANDX returns Fid (file
1D), filesize, attributes, and granted access

SMB_COM_READ_RAW specify the Tid and
Fid that read is on as well as ByteCount

The SMB File Sharing Protocol 287

Table 13-3. Sample SMB Client/Server Exchange (continued)

Client Sends: Server (WETSUIT) Replies:

Raw data returned in one or more packets

SMB_COM_CLOSE close the specified Fid
(relative to the Tid)

SMB_COM_CLOSE server acknowledges
close

Timeout elapses on the shared resource
without any accesses occurring to it

SMB_COM_TREE_DISCONNECT tell server
that the resource referenced by the Tid is
no longer needed

SMB_COM_TREE_DISCONNECT server
acknowledges disconnect

CIFS: The Common Internet File System

In August 1996, Microsoft proposed a new file sharing protocol for the Internet
called CIFS: Common Internet File System Protocol. The two most common proto-
cols used on the Internet today are the Hypertext Transport Protocol (HTTP) and
the File Transfer Protocol (FTP). HTTP is a read-only protocol and FTP is for trans-
ferring complete files. CIFS would provide file sharing with read-write access and
thus support collaborative work on files across the Internet. The SMB protocol,
upon which CIFS is based, already implements a variety of locking and security
features which give clients more optimized access to server files than HTTP or
FTP. CIFS is also intended to given all applications access to files on the Internet,
not just web browsers.

The full specification for CIFS/1.0 has been submitted to the Internet Engineering
Task Force (IETF) as an Internet draft document and is available via FTP from fip.//
ietf.cnri.reston.va.us/internet-drafts/draft-beizer-cifs-vi-spec-00.txt. More recent
revisions can be found at links from Microsoft's CIFS home page at bt/
www.microsoft.com/intdev/cifs. For an interesting counterpoint, see David Farber’s
article “CIFS Considered Harmful,” at bttp.//avian.org/avian/papers/cifs.txt.

Although' the CIFS specification does not address the issue of how filenames are
mapped to servers and shares, its does give three examples of how this might be
done. Its first example is the URL, file.//fs.megacorp.com/users/fred/stuff.txt. In this
case, the server name is delimited by the leading double slashes and the next
slash, and everything after that is the relative name, i.e., fs.megacorp.com and
users/fred/stuff.txt, respectively. As we saw in Chapter 2, Where Do Filenames Go?
URLs do not make up a part of the operating system’s namespace (at least not at

288 Chapter 13: VREDIR: The Microsoft Networks Client

this time)—a web browser is required to interpret them. The second example the
specification gives is an UNC name, such as \\corpserver\public\policy.doc. Here
again, the server name is delimited by the leading double slashes and the next
slash, and everything after that is the relative name, ie., corpserver and
public\policy.doc, respectively. In the specification’s final example, a drive letter
is mapped to a server and relative name, through a lookup table. For instance, if
drive x: is mapped to the server, corpserver, and the relative name is public, then
the name x:\policy.doc is equivalent to our previous example.

Once a server name is extracted from a client URL or UNC name, it needs to be
converted to a server transport address. Again, this is not a part of the CIFS specifi-
cation. Traditionally, the SMB protocol is implemented using the NetBIOS API and
so a server name would be limited by NetBIOS naming conventions (i.e., up to 15
characters and uppercase). However, CIFS is really targeted at servers out on the
Internet and server names should be resolved using DNS (the Domain Name
System). The CIFS specification also notes that a server name may be given using
dotted decimal notation, as in 157.33.135.101. In this case, the server transport
address is simply its 32-bit IP address.

A connection is established with session service TCP port 139 of the server by
sending a session request packet. This packet contains a calling name and called
name. The calling name is used to distinguish clients using the same transport
address. The called name is the invalid NetBIOS name *SMBSERVER padded with
spaces to 15 characters. A CIFS server should accept a session request with this
called name. Note that CIFS is using NetBIOS on top of TCP as detailed in RFC
1001/1002.*

Once the connection is established with the server, the flow of SMB commands
would follow the same pattern as we saw in the previous section, “Message
Flow.”t

Tracing VREDIR Operations

Now that you have a grasp of the FSD interface, NetBIOS, and SMB, we can take
a look at how these are used together. We’'ll use the same example from the
previous section. This time we’ll execute it and collect a trace with MultiMon. The

* See Karl Auerbach, Protocol Standard for a Netbios Service on a Tcp/Udp Transport: Concepts and Meth-
ods, RFC 1001, March 1987; and Protocol Standard for a Netbios Service on a Tcp/Udp Transport: Detailed
Specifications, RFC 1002, March 1987.

t For a readable account of the CIFS/SMB protocol’s various types of locks (opportunistic locks, exclusive
locks, batch oplocks, and level II oplocks) see the article by Paul Leach and Dan Perry, CIFS: A Common
Internet File System, in Microsoft Interactive Developer, November, 1996 (this article can be viewed online
at bttp://www.microsoft.com/mind).

289

Tracing VREDIR Operations

monitors that were used to collect this trace were Int21 Win32 Service (w21),
IFSMgr Filehook (fsh), NetBIOS Calls (ncb), and SMB Packets (smb):

Monitor Function

w2l

ncb
ncb
ncb

smb
ncb
ncb

smb

ncb
ncb

smb
ncb
fsh

w2l
fsh
w2l
fsh
w2l
fsh

w2l

ncb

ncb

smb

ncb
ncb

fsh

CreateFile

Status

LFN(71)Extended Open (6c¢c)

Call
Call
Send

NEGOTIATE
Send
Send

SESSION_SETUP_ANDX
TREE_CONNECT_ANDX
Send
Send

OPEN_ANDX
Send
FS_OpenFile (6c¢)

GetFileSize
Seek (42)
FS_FileSeek (42)
Seek (42)
FS_FileSeek (42)
Seek (42)
FS_FileSeek (42)

ReadFile
Read (3f)

Receive

Send
READ_RAW

Send

Receive
FS_ReadFile (d6)

ptr=65d934H

w2l
ncb

smb
fsh
ncb

CloseHandle
Close (3e)
Send

CLOSE
FS_CloseFile (3e)
Send

async
post (00)
async

request

post (00)
async

request
post (00)
async

request
post (00)

async
async
request

post (00)
post (00)

async
request

post (00)

Device Handle Parameters

Lana=07

Lana=07

Lana=07

Lana=07

VREDIR

VREDIR

VREDIR

VREDIR

Lana=07

Lana=07

VREDIR

Lana=07

VREDIR

\\WETSUIT\DESKTOP\Notes.doc
cléb7640 Callname:WETSUIT
cléb7640 LSN:07*
cléb7640 LSN:07

Buffer:c3a743e4(009a)
cl6b7640
cléeb7640
cléb7640 LSN:07
Buffer:c3a743e4(008e)

cl6b7640 \\WETSUIT\DESKTOP

cl6b7640

cl6b7640 LSN:07
Buffer:c3a743e4 (004c)

cléb7640 Notes.doc

cl6b7640

2f2* \NOTES.DOC oe
2f2 (1) offs=0

2f2 ofs=0H b
2f2 (2) offs=0

2f2 ofs=0H e
2f2 (0) offs=0

2f2 ofs=0H b
2f2 cnt=4800

buf=13£:3934
cl6b7640 LSN:07
Buffer:c3ab7934(4800)
cl6b76e0 LSN:07
Buffer:c3a743e4(0033)
cl6b76e0
cléb76e0
cl16b7640
2f2 cnt=4800H ofs=0H

2f2

cl6b7640 LSN:07
Buffer:c3a743e4(0029)

cl6b7640

2f2 £

cléeb7640

290 Chapter 13: VREDIR: The Microsoft Networks Client

The output has been grouped into four sections, one section for each Win32 func-
tion call.

Beginning with the CreateFile call, we see that it gets passed to VWIN32 where it
becomes dispatched as a protected-mode Int 21h function 716ch. This function
will enter IFSMgr through the dispatch function which we named dOpenCreate
(see Chapter 6, Dispatching File System Requests). As dOpenCreate prepares an
ifsreq structure, it generates a canonicalized pathname by a call to IFSMgr_Parse-
Path. As we saw in Chapter 7, Monitoring File Activity, this service will establish a
connection to a server and share using IFSMgr_SetupConnection, if it is passed an
UNC path. VREDIR is called at this point through its FS_ConnectNetResource
entry point, but this doesn’t show up in our trace because the call is made directly
through the table of registered FSDs (ConnectNetTable) and not through the
system filehooks. ’

The first action that we see VREDIR take is to make a NetBIOS Call to the speci-
fied server, in this case WETSUIT. The line in the trace indicates that this function
call was made asynchronously to LANA 7 using an NCB at address c16b7640h.
The next line of the trace shows that this command has completed successfully
(post (0)) and a Local Session Number of 7 has been assigned to this connection
with WETSUIT.

Now that a session has been established, VREDIR does a NetBIOS Send, reusing
the same NCB at c16b7640h. This NCB contains a pointer to a buffer at c3a743e4h
which is 9ah bytes in size. This buffer contains the message block for the SMB_
COM_NEGOTIATE command which is sent to the session partner of LSN 7
(WETSUIT). Again this is an asynchronous command, and we see it complete two
lines down where its matching post (0) is recorded. At this stage, we have noti-
fied WETSUIT about the dialects of SMB which we support. The next NetBIOS
Send command transfers a message block containing a batched command
consisting of SMB_COM_SESSION_SETUP_ANDX and SMB_COM_TREE_
CONNECT_ANDX. The latter command creates a connection to the subdirectory
\\WETSUIT\DESKTOP and returns a Tid which is used in subsequent commands
which reference this server and share. When this command completes, we have
seen the last action taken on behalf of FS_ConnectNetResource. From this we see
that VREDIR needs to keep at least two pieces of information about this connec-
tion, its LSN and its Tid. The resource handle (i_rb) which VREDIR returns to
IFSMgr retains this and other state information. IFSMgr in turn builds its own shell
resource structure (shres) to represent the connection.

The last NetBIOS Send, under the CreateFile section, transfers a message block
containing a SMB_COM_OPEN_ANDX command. This requests that the server
WETSUIT open the file named Notes.doc on the Tid for this connection. This
action is taken in response to a call to VREDIR’s FS_OpenFile entry point. The

IPC for Network FSDs 291

trace output line for this call occurs after the NetBIOS activity, because the file-
hook reports function calls after they complete. Just as the resource handle retains
VREDIR’s information about a connection, VREDIR’s returned file handle (Gr_fb)
retains information about this open file. This would include things such as the Fid
(file identifier) returned by the SMB_COM_OPEN_ANDX command, its open
mode, and various file attributes. When VREDIR returns, IFSMgr builds its own
file handle structure (fhandle) and assigns it an extended handle of 2f2h.

GetFileSize is ixﬁplemented as three Int 21h function 42xxh calls via VWIN32. The
first seek moves the file pointer from its current position to offset 0. Then a seek
is performed to the end of the file to determine its maximum byte position; then
the file pointer is restored to the beginning of the file. Although VREDIR’s FS_File-
Seek entry point is called on each of these seeks, VREDIR refers to information
stored in its file handle structure to satisfy the requests.

ReadFile becomes an Int 21h function 3fh call passed to IFSMgr via VWIN32. This
call then gets passed to the FS_ReadFile entry point of VREDIR. The first action
we see taken is to initiate an asynchronous NetBIOS Receive command for 4800h
bytes on LSN 7. While this Receive is pending, a NetBIOS Send transfers a
message block containing a SMB_COM_READ_RAW command to the server. We
see the read command finish first, followed by the receive. The underlying
protocol handles the assembly of incoming data packets into the 4800h byte
buffer.

Finally, at the end, CloseHandle becomes an Int 21h function 3eh call passed to
IFSMgr via VWIN32. This call then gets passed to the FS_CloseFile entry point of
VREDIR. The NetBIOS Send transfers a message block containing a SMB_COM_
CLOSE command for the Fid returned by the earlier SMB_COM_OPEN_ANDX
command. ’

As noted in Table 13-3, a matching SMB_COM_TREE_DISCONNECT will not occur
for a few minutes, so the connection remains alive. This allows other files in this
subdirectory or its subdirectories to be opened using the same LSN and 7id.

IPC for Network FSDs

Some implementation details are unique to network file system drivers. One of
these involves handling inter-process communication (IPC). With Microsoft
Networks, two IPC mechanisms are provided, mailslots and named pipes. These
peer-to-peer communication services are implemented by using commands from
the SMB protocol. A ‘

292 Chapier 13: VREDIR: The Microsoft Networks Client

Mailslots

The simplest type of interprocess communication (IPC) which VREDIR and
IFSMgr support is the mailslot. A mailslot user plays one of two roles. The
mailslot server creates the mailslot and only reads from it. The mailslot client
opens the mailslot and only writes to it. A single process may be both a mailslot
client and server. Data is transferred as datagrams and thus its arrival is not
guaranteed.

Registering a mailslot '

In order for mailslot services to be made available to a system, an FSD registers
with IFSMgr using IFSMgr_RegisterMailSlot. Up to four FSDs may register as
mailslot providers. Each registrant passes in a FS_ConnectNetResource function.
The contents of the ifsreq structure on entry to FS_ConnectNetResource carry
unique interpretations for a mailslot:

ir_flags
0, create mailslot; 1, delete mailslot; 2, write mailslot
ir_options
1, first mailslot create; >1, subsequent create
ir_ppath
canonicalized UNC mailslot name without the leading \MAILSLOT\ component
ir_data
supplies address of function to be used for mailslot reads
ir_auxl
IFSMgr’s mailslot handle (address of mailslot block)
ir_pos
TRUE, call originated in an FSD; FALSE, call originated in User API
ir_hfunc
pointer to handle function table
ifs_psr

pointer to IFSMgt’s mailslot shell resource

ir_auxl v
on return, contains mailslot handle created by IFSMgr

ir_error) .
on return, contains error code (0 if successful)

In Chapter 8 we examined the mounting and connecting functions used by local,
network, and character FSDs. In these cases, the FS_MountVolume or FS_Connect-
NetResource functions always returned a volume-based function table. We don’t

IPC for Network FSDs 293

see that with mailslots; furthermore, the shell resource structure for mailslots sets
sr_func to NULL. Mailslots which are created using Win32 and MS-DOS APIs are
represented by an SFT-backed DOS file handle. The fhandle structure associated
with this file handle holds the handle-based function table in the member fb_hf.
The functions which a mailslot implements are FS_ReadFile, FS_WriteFile, FS_
CloseFile, FS_FileDateTime, and FS_NetHandleInfo. ‘

Server-side

The FS_ConnectNetResource function is not called until a mailslot is created.
There are three ways to do this: use the Win32 API CreateMailslot, use the MS-
DOS function 5f4dh (DosMakeMailslot), or use the IFSMgr service IFSMgr_Make-
Mailslot. The Win32 API encapsulates the mailslot in a KERNEL32 object. It utilizes
- MS-DOS function 5f4dh to create a DOS file handle to the mailslot. [IFSMgr_Make-
Mailslot works at a lower level. It returns a handle to a memory block which
contains a definition of the mailslot. For requests which originate at the user level,
the handle to this memory block is stored in a fhandle structure in the fb_fb
member.

When a mailslot is created, it is given a UNC name of the form
\\\MAILSLOT \testslot. The leading characters, “\\.\”, indicate that a mailslot can
only be created on a local machine. The actual name of the mailslot is the portion
that follows “\\.\MAILSLOT\”. Also note that mailslot names follow the 8.3
naming convention. ‘

To see if the mailslot contains something to be read, the Win32 API
GetMailslotInfo or the MS-DOS function 5f4fth (DosMailslotInfo) is called. One of
the pieces of information it returns is a pointer to a buffer containing the size of
the next waiting message. If no message is waiting, this buffer contains the value
MAILSLOT_NO_MESSAGE.

If a mailslot message is present to be read, the Win32 API ReadFile or one of the
MS-DOS functions 3fh (Read File) or 5f50h (DosReadMailslot) is called. Ultimately,
these functions utilize FS_ReadFile in the handle-based function table which was
setup when the mailslot provider registered itself. The fb_fb member of the file’s
fhandle structure tells us where the mailslot block is located. The read operation
is completed by transferring the requested amount of data from the mailslot’s
buffers into the caller’s buffer and adjusting pointers and counts.

The actual reception of datagrams for a mailslot is pretty involved. Briefly, a
mailslot server issues a NetBIOS Receive Datagram command on a specific local
name number. These commands will be pending until a datagram arrives for the

* This is documented in the Microsoft Knowledge Base article Q139716, BUG: Windows 95 Limits Mailsiot
Names to 8.3 Naming Convention. See btp.//www.microsoft.com/kb/articles/q139/7/16.btm.

294 ‘ Chapter 13: VREDIR: The Microsoft Networks Client

name. When a datagram does come in, a Receive Datagram completes and the
post routine is called. The post routine stores an appropriate handler address in
the NCB, and then calls Call_Priority_VM_Event with an event procedure and the
NCB as reference data. In the event handler, a Receive Datagram command is re-
issued for the same local name number-and the post handler function is called.
The handler processes the NCB and input buffer. It verifies that the buffer
contains a SMB message block with a SMB_COM_TRANSACTION command (sub-
command 1). If everything is in order, then a IFSMgr_WriteMailslot command is
issued using the contents of the NCB and associated buffer. This service gets an
asynchronous ifsreq packet from IFSMgr, fills it with the service’s arguments,
and then calls into the mailslot FS_WriteFile. When FS_WriteFile returns, the
ifsreq packet is released by calling IFSMgr_FreeIOReq.

Removing a mailslot requires calling the matching close function. For a handle
returned by CreateMailslot use CloseHandle; for a handle returned by MS-DOS
function 5f4dh (DosMakeMailslot), call either MS-DOS function 3eh (Close) or
function 5f4eh (DosDeleteMailslot); for a handle returned by IFSMgr_MakeMailslot
call IFSMgr_DeleteMailslot.”

Client-side

Writing to a mailslot first requires obtaining a mailslot handle. A write-only
mailslot handle is obtained via the Win32 API CreateFile. This only creates a
KERNEL32 mailslot object in which a pointer is stored to the mailslot name. For
the write to be a broadcast to all processes in the local workgroup, a name of the
form \\\MAILSLOT \testslot is used. To target a specific machine, use its comput-
ername, as in \\COMPUTERNAME\MAILSLOT \testslot. When the mailslot handle
is no longer needed, it is closed by a Win32 CloseHandle call.

A message is actually written to a mailslot when the Win32 WriteFile API is called.
This function, in turn, invokes the MS-DOS function 5f52h (DosWriteMailslot). If
the write originates in an MS-DOS application or a Winl6 program, then only MS-
DOS function 5f52h need be called, since the Win32 CreateFile and CloseHandle
calls are only for KERNEL32 object housekeeping. Ultimately the way the write
operation is completed depends on whether the write is to the local machine or a
remote machine. A write to a remote machine invokes FS_ConnectNetResource,
with #7_flags set to 2, whereas a write to a local machine invokes the mailslot FS_
WriteFile function. FS_WriteFile looks up the mailslot name which is passed in #_
ppath to see if it exists. If it does, the address of the mailslot memory block is
consulted to see if a read function was supplied when the mailslot was created. If

* Partial documentation for the MS-DOS variants of the mailslot functions can be found in Chapter 19
(LAN Manager) of Uninterrupted Interrupts by Ralf Brown and Jim Kyle (Addison-Wesley).

IPC for Network FSDs 295

so, then that function is called, otherwise IFSMgr’s implementation is called which
writes to the local mailslot buffer. On the other hand, if FS_ConnectNetResource
(ir_flag = 2) is called, it will generate a NetBIOS Send Datagram command. The
datagram is a message block containing a SMB_COM_TRANSACTION command,
subcommand type 1. This message block holds the mailslot name as well as the
data of the mailslot message.

Named Pipes

Unlike mailslots, named pipes fit nicely into the remote FSD model. Windows 95
only supports client-side named pipes. A client connects to a known named pipe
by calling the Win32 API CreateFile using a UNC name of the form
\\SERVER\PIPE\testpipe. As with other UNC names, a connection is first
attempted to the specified server using the service IFSMgr_SetupConnection. A
call to VREDIR's FS_ConnectNetResource entry point attempts to establish the
connection. If the connection succeeds, then a shell resource structure is
constructed for the connection, and, in this case, it is marked with s7_#ype of 4 for
IPC (interprocess communication). The shell resource structure also will receive
sr_func, the address of VREDIR’s UNC path-based function table. To finish the
CreateFile call, the FS_OpenFile entry point in this table is called to connect to the
server’s named pipe. A successful return results in a fhandle structure for the
extended file handle which is used to refer to this named pipe in subsequent API
calls. This fhandle structure will hold the FS_ReadFile, FS_WriteFile, and a
pointer to the miscellaneous handle-based functions in VREDIR.

VREDIR uses a common handler for both FS_NamedPipeUNCRequest (from the
UNC path-based function table) and FS_NamedPipeRequest (from the handle-
based function table). This works because both functions use the #_flags member
of ifsreq to specify a command code. The ir_flags value is used as a subcom-
mand to a SMB_COM_TRANSACTION command, i.e., each of the named pipe
functions is represented by a corresponding SMB message block. One exception
to this rule is FS_NetHandleInfo (FS_NamedPipeHandleInfo); it has its own handle-
based function for setting and returning a handle’s buffering characteristics.

Looking Abead

During the media blitz that accompanied the rollout of Windows 95 in the
summer of 1995, Microsoft kept asking us “Where do you want to go today?”
Now, Microsoft is at work on our destination for tomorrow. Although the Internet
phenomenon caught them off guard, Microsoft is positioning the Windows plat-
form as the platform of choice for Internet browsing and establishing personal
intranets. Even if the Internet dominates the future, it will require an infrastructure
to support it on both client and server. '

Since the release of Windows 95, we have seen some indications as to what direc-
tion these infrastructure changes will take. As of the close of 1996, Microsoft has
completed or announced two enhancements to Windows 95 that are relevant to
the file system. The first is the shipment of OEM Service Release 2, which
included support for FAT32. The second is the WDM (Win32 Driver Model) initia-
tive. We looked at FAT32 in Chapter 9, VFAT: The Virtual FAT File System Driver,
but we haven’t discussed WDM yet.

What is significant about WDM is that the Windows NT driver model is becoming
the model for future Windows 95 drivers. To better understand WDM, we need to
look at the Windows NT architecture, especially as it applies to the file system. It
is also important to contrast these systems so that you'll have some idea of how a
Windows 95 file system design would be ported to Windows NT.

IFSMgr vs. NT's Object Manager

Just as Windows 95 disﬁnguishes code executing at ring-3 and ring-0 privilege
levels, Windows NT distinguishes user-mode and kernel-mode execution. In user
mode several subsystems coexist which support the execution of Win32,
Windows 3.x/MS-DOS, 0S/2, and POSIX applications. Each of these subsystems is

296

IFSMgr vs. NT’s Object Manager 297 -

a separate process acting as a server of a particular API, and their clients are appli-
cations written to those APIs. In theory, when a client application calls an API the
application makes a request of the server through an inter-process communication
mechanism known as LPC (a local variant of RPC). To improve performance,
requests which don’t use or modify the subsystem’s global data are serviced
within client-side DLLs.

Ultimately, all subsystems are implemented using a common set of primitive
kernel-mode functions, supplied by the NT Executive. In Windows 95, these
kernel-mode functions would be comparable to the Win32 services supplied by
VMM, VWIN32, and a few other VxDs. The NT Executive is compartmentalized
into several system service groupings such as the object manager, the process
manager, the virtual memory manager, and the I/O manager. Of these, the object
manager and the I/O manager play significant roles in the implementation of
Windows NT file systems.

The object manager is the NT Executive’s means of managing system resources.
Each object type corresponds to a shareable system resource. Some of these
object types include process, thread, file, device, driver, object directory, and
symbolic link. As in the object-oriented use of the term, an NT object has
attributes and methods. The attributes describe the state of the object, such as
name or access mode, and the methods provide ways of performing operations
on the objects, such as open, close, or query. Except perhaps for KERNEL32
objects (see Chapter 4, File System API Mapping), there is nothing comparable in
Windows 95.

Objects need to be located, retrieved, and shared. This is made possible by giving
them unique names. These names are global to a single computer. An object of
type object directory may contain other objects and object directories. This allows
object names to be structured in a hierarchical fashion, much like pathnames. As
with pathnames, the component object names are separated by backslashes. For
example, \Device\HardDiskO\Partitionl refers to an object directory named
Device which contains a variety of device objects including FloppyO, SerialO,
Seriall, and ParallelO, to name a few. It also contains HardDiskO, which is an
object directory that, in turn, contains the device objects PartitionO and Partitionl.

To minimize name searching, objects are opened by name and returned a unique
handle. Thereafter, other object methods are invoked using the handle. When a
thread is done using the object, it closes the object’s handle and thereby relin-
quishes its use of the resource.

Symbolic link objects can be used to assign an alias to another object name.
When a lookup is performed for a name, if a symbolic link object is encountered,
the lookup continues with the name which the link references. A special type of

298 Chapter 14: Looking Abead

symbolic link is used to represent the system’s drive letters. For example, when
the object manager is asked to lookup \DosDevices\C:, it finds that DosDevices is
a symbolic link to the object directory named ??. The search is continued in the
object directory ?? for C:.. There, the object C: is located and is found to be a
symbolic link to \Device\ HardDiskO\Partition1. The object manager uses this
technique to associate a specific device with a drive letter or volume. Symbolic
links are also used to associate devices with other names, like LPT1, NUL, PRN,
COM]1, PIPE, etc.

We can now begin to see the mechanism that the object manager uses to asso-
ciate names in the Windows NT namespace with devices. But does the object
manager know about names that are used by a file system? For example, how is
the name c:/winni/notepad.exe treated by the object manager? We know from the
discussion above that c¢: is a symbolic link which after expansion will leave us
with the complete name, \Device\HardDiskO\Partition1\winnt\notepad.exe. As
the object manager performs a name search, for each object in a name, it looks to
see if the object has a parse method. This is a method that is unique to some
objects; it is registered with the object manager when these objects are created. If
a parse method is found, then the remainder of the name is passed to the parse
method to locate the object. Thus, a parse method allows an object to extend the
namespace beyond that which object manager is aware of. In the example above,
the device object Partition1 defines a parse method which is responsible for the
namespace on a partition of the hard disk. Depending on whether the partition is
FAT, HPFS, or NTFS, a different parse method will be used to locate members of
the namespace.

If we look at Windows 95 to find similar functionality to what we have described
in the object manager, we would have to select the IFSMgr service, IFSMgr_Parse-
Path. Recall that this service takes a name and converts it into canonicalized form
and also determines its associated shell resource. The shell resource provides the
link to the file system driver. The file system driver may also supply a path check
routine which is called by IFSMgr_ParsePath to customize parsing.

IFSMgr vs. NT’s I/O Manager

The object manager is able to use a drive letter to link a filename to a device
object, but how is I/O performed on that device and how is a particular file
system associated with a device? To answer these questions we need to turn our
attention to the I/O manager. ’

The /O manager is concerned with three types of NT Executive objects: file,
device, and driver. A file object is an in-memory representation of some physical
device. It could be a text file on a floppy disk, a tape drive, or a serial communica-

IFSMgr vs. NT's 1/0 Manager , 299

tions port, so don’t let the word “file” make you think it applies only to disk
subsystems. File objects are different than other objects that are handled by the
object manager. Most objects are manipulated directly because the object is a
memory resource. A file object, however, is an intermediary between some phys-
ical resource and the object manager. The object manager doesn’t know about the
peculiarities of the hardware to which the file object refers. Instead, the object
manager calls the I/O manager to assist with accesses to the device.

When a user-mode program opens a file handle, a new file object is created to
represent the underlying physical resource. More than one process may open a
file handle to a single physical resource and each is represented by a separate file
object. Since multiple processes are accessing a shared resource, they must
synchronize their access using locks or by opening the file object with exclusive
write access.

A file object exposes a number of services to user-mode applications. These
include create, open, read, write, query file information, set file' information, get
attributes, set attributes, lock byte range, unlock byte range, etc. These services
are provided with the assistance of the I/O manager. ‘

When an application opens a file, it supplies a filename. This name contains an
implicit reference to a device object where the file object resides. For example,
c:\autoexec.bat refers to the device \Device\HardDiskO\Partitionl. This device
object has a parse method and so the object manager gives the remainder of the
name to the device. The open then completes with the help of the I/O manager,
which creates a file object in which it stores a pointer to the device object. Ulti-
mately, the application is returned a file handle.

The device object refers to one of three types of NT device drivers. There is the
low-level driver, which corresponds to a device object; a file system driver, which
corresponds to a particular file system such as FAT, HPFS, or NTFS, and is repre-
sented by a driver object; and an intermediate driver, which situates itself
between the other two, e.g., a network transport driver would be above the MAC
layer NDIS driver but below the file system redirector driver. Although these
drivers provide drastically different functionality, they all use a common structure.
At a minimum, a device driver has routines which load and unload it from the
system plus a set of dispatch routines for each operation which it supports.

As 1 noted above, file objects carry around pointers to the device objects which
contain them. Device objects contain pointers which refer back to the driver
object which is layered above them. Driver objects contain the dispatch routines
which the I/O manager calls when it needs to satisfy an I/O request. The driver
object will need to call upon the dispatch routines in the device object to fulfill
these requests. This linkage up and down the driver chain is very flexible and

300 ‘ Chapter 14: Looking Abead

allows for the insertion of auxiliary drivers to achieve special needs, such as
providing filtering.

What we have been examining is the linkage used to tie filenames to specific file
system drivers. In Windows 95, linkage ties a filename or file handle to a shell
resource which contains a pointer to the dispatch routines of the responsible file
system driver. Although KERNEL32 creates file objects for Win32 applications, the
actual tracking of file handles occurs within TFSMgr, by its use of fhandle
structures.

One of the most dramatic differences between Windows 95 and Windows NT is
NT’s use of the file object to model all system I/O. In Windows 95, each class of
devices has its own peculiar interfaces and driver construction. By contrast, the
Windows Driver Model (or Windows NT uniform driver modeD) structures file
system drivers the same way as it structures a driver for a SCSI host adapter.

Just as IFSMgr creates ifsreq packets to route I/O requests to file system drivers,
the NT I/O manager creates IRPs (I/O request packets) in response to I/O
requests and routes them through the various driver layers. Unlike the packets
which IFSMgr uses, IRPs contain separate stack locations for each driver which it
will be sent to. For instance, when the I/O manager receives a disk file read
request, it would create an IRP and fill in the first stack location with parameters
describing the operation from the file system driver’s point of view. On receiving
the IRP, the file system driver would convert the request into a form that the disk
device driver will understand, and place those parameters in the second stack
location. On return, the I/O manager sends the same IRP to the disk device driver
which then uses the parameters in the second stack locations to perform the
operation. ' V

This has been a very brief look at the file system in Windows NT. Here are some
references for additional information: Helen Custer, 1993, Inside the Windows NT
File System (Microsoft Press, 1993); the online help documents which accompany
the NT Device Driver Kit; Mark Russinovich and Bryce Cogswell, “Examining the
Windows NT File System,” Dr. Dobb’s Journal (1997); Art Baker, The Windows NT
Device Driver Book: A Guide for Programmers (Prentice-Hall, 1997); Rajeev Nagar,
Windows NT File System Internals (O'Reilly & Associates, Inc., 1997).

NT Kernel Mode Drivers vs. VxDs

With this thumbnail sketch of the Windows NT file system architecture, it should
be apparent that Windows 95 and Windows NT are drastically different. Although
we have been comparing pieces of two operating systems that execute at ring-0
on x86 microprocessors, the manner in which these systems provide support for

WDM 301

privileged operations is also worlds apart. Windows 95 uses VxDs to provide ring-
0 support, whereas Windows NT uses kernel-mode drivers.

In terms of its file structure, a kernel-mode driver is like a Win32 dynamic-link
library, i.e. it is a Portable Executable or PE file. A VXD, on the other hand, is a
Linear Executable or LE file. Unlike PE files, LE files have an optional real-mode
initialization section, which is executed before the processor switches into
protected-mode. Windows 95 relies upon this capability when it starts up to learn
about the configuration of and to communicate with its DOS substrate.

The way that these two driver types expose their interfaces is also very different.
A VxD exports the address of its Device Descriptor Block, which contains the
address of its control procedure; optional service table, optional PM and V86
APIs, and optional Win32 service table. On the other hand, a kernel-mode driver
exports the names of its entry points, in the same way you would export func-
tions in a Win32 DLL. To call ring-0 operating system functions in the NT
Executive, you link a kernel-mode driver with the import library NTOSKRNL and
simply call the functions by name (or ordinal). Contrast this with the mechanism
used by a VXD to call a service in another VXD using Int 20h dynalinks.

As you know, writing a VXD requires selecting appropriate services from the
hundreds which are provided by VMM, IFSMgr, VWIN32, etc. Similarly, writing a
kernel-mode driver requires selecting appropriate functions from the hundreds
which are provided by NTOSKRNL. Add to this the fundamental architectural
differences which we examined in the last two sections, and you should have a
pretty clear picture of the chasm that separates these two worlds.

Despite the obvious difficulties, Microsoft is building a bridge from Windows 95
to Windows NT by providing support for kernel-mode drivers in Windows 95.
Note that this is a one-way bridge; there has been no announced support for
VxDs in Windows NT. The building of this bridge has been called the Win32
Driver Model (WDM) initiative. See the WDM homepage on Microsoft’s site at
bttp.//www.microsoft.com/bwdev/pcfuture/wdm.btm.

WDM

WDM was officially unveiled at the Windows Hardware Engineering Conference
(WinHEC) in April 1996. Although it impacts Windows 95 developers most by
making them prepare for a new driver infrastructure, it also impacts Windows NT
developers by introducing common drivers for plug-and-play, power manage-
ment, and the Universal Serial Bus (USB). The presentations emphasized that the
initial focus of WDM would be on device drivers and not file system drivers.
Furthermore, although Windows NT will not support VxDs, VxDs can peacefully

302 Chapter 14: Looking Abead

coexist with WDM on Windows platforms. WDM will also coexist with existing
class-specific driver models such as mass storage and networking.

Even though the stated focus of WDM will be on new buses and device types, the
changes should impact a lot of system components. This is because drivers
written to this standard require a new and extensive API. Most of this API is’
declared in the header file ntddk.b. Services from the I/O manager, the virtual
memory manager, the kernel, etc. are represented here.

At the time this book is being completed, WDM is still under development. At
WinHEC-97, in April 1997, a WDM beta was distributed as well as a Developer’s
Release of Memphis. In addition to FAT32, and WDM support for USB, 1394, Plug-
and-Play, and Power Management, the next release of Windows (code-named
Memphis) will incorporate WDM streaming-class drivers for audio and video. This
is inline with the Microsoft goal of making the PC the “Entertainment PC” in 1998.
To support this effort, Memphis will ship with DVD drivers, including a new file
system driver called udf.uxd for the Universal Disk Format used by the DVD-ROM.

Is WDM on Windows in your future? Probably not any time soon, if you are
working on file system drivers or file system hooks. When I put this question to
one of the Microsoft speakers at the WinHEC-96 conference, their response was
that the Windows platform would probably be phased out before they got around
to converting the mass storage, network, and file system drivers to WDM.

However, WDM is in your future if you plan to do any Windows NT file system
development. As Windows NT continues to build momentum, there may be more
pressure to extend WDM on Windows to a wider array of drivers.

MultiMon: Setup,
Usage, and
Extensions

MultiMon is used throughout this book as a multi-purpose spy program. By
installing this tool you can perform the experiments described in the text and do
exploration on your own. To help you get up to speed with MultiMon, this
appendix will describe what it is, how it works, and how to set it up and use it.
I've also included some background information on its design and implementa-
tion. For the more adventurous, I'll show how to extend its capabilities for your
OWN purposes.

What Is MultiMon?

Monitor or spy programs are very popular among PC programmers. They afford
the user an opportunity to examine the inner workings of living and breathing
systems and applications. This is a valuable capability because seeing code in
action speaks louder than words. Spy programs also have the annoying habit of
revealing undocumented or incompletely documented APIs and data structures.
You will encounter a fair share of undocumented features in this way.

The predecessor to MultiMon was called FileMon. It was the basis for my article
“Monitoring Windows 95 File Activity in Ring 0,” in Windows/DOS Developer’s
Journal, July 1995. FileMon is a monitoring tool which displays the calls made by
IFSMgr into the underlying file system drivers. It was used to demonstrate how to
write a Windows 95 file system hook using IFSMgr services. FileMon also illus-
trated a simple technique for exchanging information between a Win32
application and a VXD which allowed the VxD to display its output in a console
application window. MultiMon includes and extends the capabilities that FileMon
had.

303

304 Appendix A: MultiMon: Setup, Usage, and Extensions

MultiMon, which you get on the companion diskette, was designed as a general
purpose tool to use in exploring Windows 95 internals. MultiMon provides a
general framework for collecting and reporting on events of interest. An event
could be the occurrence of a software interrupt, a call to a hooked VxD service,
or even a direct application call. These events are reported by monitors. A
monitor detects a certain kind of event, encapsulates a description of it in a
generic data structure, and then sends that structure to an event manager. The
event manager acts as a funnel. It receives events from a variety of monitors and
serializes these events in a large queue. The event manager also supplies moni-
tors with chunks of memory in which events are recorded. The event manager is
also busy writing portions of the queue to a log file.

Two types of event managers are supplied: a session manager and a boot
manager. The boot manager allows monitoring of events during system startup,
and the session manager is a dynamic VXD loaded by the Win32 reporter applica-
tion. The reporter application formats and displays the events so they can be
scrolled or saved to a text file. The reporter is also responsible for displaying the
drivers which are available for installation, the APIs which will be monitored for
each driver, and whether the APIs are to be monitored during system startup.

Some benefits of the MultiMon design are:

e By placing the event manager in a VXD, we are able to report on events from
ring-0 as well as ring-3.

e By supporting multiple monitors we are able to add an additional dimension
to event traces; for example, we can view events in multiple operating system
modes: ring-0, virtual-86, and Win16/ring-3 (By hooking services which sup-
port these various modes).

e Supporting multiple monitors also allows us to monitor multiple API types at
the same time.

This approach is inherently extensible and configurable. Simply add and remove
monitors to get the mix that provides the picture you want.

Using MultiMon

We have included MultiMon on the companion disk. This section explains how to
install, configure, and use MultiMon.
Installation

The installation diskette contains a Setup program for installing MultiMon as well
as other utilities and source code. Simply launch setup.exe from the floppy

Using MultiMon ' 305

diskette using the standard Windows 95 installation procedure (from Control
Panel select Add/Remove Programs) and follow the steps of the installation
wizard. The installation program will prompt you for a destination directory. Use
any location that is convenient. All of the files transferred to your system end up
in this directory or its subdirectories.

New entries are also added to the system registry. For this reason, MultiMon and
other components are removed by running uninstal.exe using the standard
Windows 95 wuninstall procedure (from Control Panel select Add/Remove
Programs) and following the steps of the uninstall wizard.

Selecting Drivers and Monitors

A monitor is supplied in a monitor driver in the form of a VxD. Monitors could
also be implemented as DLLs, TSRs, or DOS device drivers, but we will -only use
VxDs here. MultiMon distinguishes two types of monitors based on how they are
loaded. A static monitor is already present in memory before the MultiMon appli-
cation is executed. A dynamic monitor is loaded by MultiMon before data
collection begins. A static monitor is a static VXD whereas a dynamic monitor is a
dynamic VxD. The advantage of using a static monitor is that it can report events
during system startup. In the current version, MultiMon only supports static
monitors. ‘

MultiMon maintains entries of known static and dynamic monitors in the system
registry. Candidates for inclusion in the registry are VxDs in the directory from
which MultiMon is launched. Only VxDs which have a Versionlnfo resource with
a File Description containing a “MultiMon” string are included. During initializa-
tion, MultiMon determines which of these monitors are present and displays them
in the Add/Remove Driver dialog box. Dynamic monitors are distinguished from
static monitors by having the string “Dynamic” somewhere in their File Descrip-
tion string.

MultiMon setup is the initial step where the user selects a set of drivers to be used
for event collection (using the Add/Remove Driver dialog). After a set of drivers
has been selected, it may be necessary to restart the system if the selection
includes static components which are not currently in memory. Figure A-1 shows
the Add/Remove Driver dialog which is reached via the Options menu. A driver is
added by selecting it in the uninstalled column and then clicking the Add button.
A driver is removed by selecting it in the installed column and then clicking the
Remove button. A driver with a “;s” suffix it is a static driver; if it has a “,d” suffix
it is a dynamic driver.

Once MultiMon detects installed drivers, the Filters dialog will display all available
monitors for those drivers. A driver may contain more than one monitor; each

Appendix A: MultiMon: Setup, Usage, and Extensions

fshiciak,
i21help2.vxud.s
i2fmon1.vxd,s
ifsdspat.vxd.s

netfunc.vxd,s
vchook.vxd,s

bootmar.vxd,s
i21helpl.vxd.s
win32ch.vxd,s

Figure A-1. MultiMon dialog for installing drivers

monitor is independently enabled and disabled. You enable those which are of
interest and disable the others. Table A-1 shows the list of drivers and supported
monitors which are included on the companion diskette. Fach of these monitors

is used in this book.

Table A-1. MultiMon Drivers and Monitors

Driver Monitor Description
fshook IFSMgr file system hook
netfunc IFSMgr_NetFunction hook
ifsdspat IFSMgr dispatcher
vchook VCACHE services
vectors Interrupts and Callbacks
nbhook 0 NetBIOS calls
" 1 SMB packets
win32cb 0 VWIN32 Int 21h Dispatch
" 1 VWIN32 Win32 Services
" 2 VWIN32 DeviceloControl
" 3 VMM Win32 Services
‘i21helpl 0 Protect-Mode Int 21h hook (pre IFSMgr)
" 1 Virtual-86 Mode Int 21h hook (pre IFSMgr)
i21help2 0 Protect-Mode Int 21h hook (post IFSMgr)
L 1 Virtual-86 Mode Int 21h hook (post IFSMgr)
i2fmon1 0 Protect-Mode Int 2fh hook (pre IFSMgr)
" 1 Virtual-86 Mode Int 2fh hook (pre IFSMgr)
bootmgr Event manager during system startup
sessmgr Event manager after startup

Using MultiMon ' ’ 307

Filtering Output

In addition to being able to turn monitors on and off, individual APIs may also be
selectable. For instance, you may enable notifications of Int 21h Function 4ch but
disable notifications of Int 21h Function 2ah. Not all monitors have API selections.
Figure A-2 shows the Filters dialog which is reached via the Filters toolbar button
or the Options menu. It shows two panes. On the left all available monitors are
displayed. If the checkbox in front of the monitor name is checked, that monitor
is enabled. The right pane displays a list of API functions for that monitor. If an
API is checked, it will generate notifications. Two buttons at the bottom of the
dialog provide shortcuts for either selecting all APIs or deselecting all APIs.

nl (pre-IFSM [+ V]

Int21 V86 [pre-IFS FuncO1 TermThd(b)

Int21 Win32 Servi lapsedTimeMS(2) FuncOC

YWIN32 Win32 S 03 Queuel serAPC(d)
VYWIN32 Devicelol FuncOE

YM Win32 Servi QueueKerneldPC(f)

Ine21(10]

IFS_DupHandie(11)

BKThdSetBit(12)
AdiThdE xecPri(13)

Figure A-2. MultiMon Filters dialog

Saving a Configuration

The registry is used to save one default configuration for each monitor. A configu-
ration is defined as the enabled/disabled state for a monitor and its map of
enabled/disabled APIs. The configuration for the currently selected monitor is
saved by pressing the Save As Default button. In addition to the convenience of
saving a commonly used configuration, the default configuration is the configura-
tion used by BOOTMGR.

Toolbar and Menu Commands

~MultiMon consists of a single window with a toolbar with buttons (see Figure A-3)
for convenient access to the common menu commands. Only a handful of
commands are used frequently: Start and Stop for starting and stopping data
collection, Show for displaying a captured log file, Clear for clearing the current
display buffer, Filters for setting up data collection monitors and API filters, and
SaveAs for writing the buffer to a text file. '

308 Appendix A: MultiMon: Setup, Usage, and Extensions

Figure A-3. MultiMon’s menubar and toolbar

The Options menu under the main menu provides access to the Filters and the
Add/Remove Drivers dialogs, as shown in Figure A-4.

Optior

Figure A-4. Accessing MultiMon’s configuration dialogs

A ‘Sample Session

Here are the steps to follow to get a quick sample of the output from the FSHook
monitor.

1.In the Add/Remove Drivers dialog: remove all drivers from the installed
column; add only FSHook. You may be prompted to restart your system to
load the static FSHook driver.

2. In the Filters dialog: under the monitor type column, check “IFSMgr File-
Hook”; in the window entitled “APIs for IFSMgr FileHook” check all boxes by
pressing the Select All APIs button.

3. Press the Start button to begin capturing events.

4. Perform some activity you wish to monitor, e.g., pop the Properties dialog for
the desktop window.

5. Press the Stop button to end capturing events.

6. Press the Show button to display the contents of the log file.

Two lines of output from the log file are shown in Figure A-5. This view of the
data is the same as the “Details” view used by the Windows 95 Explorer. A
column can be resized by dragging the right boundary of the column header. If
the current column size truncates data, the display shows an elipsis (...) to indi-
cate there is more to see.

All monitors use the same column headers for their output. The columns and their
contents are described in Table A-2. These are general guidelines about what to

Using MultiMon 309

Rundll32 fsh FS_ReadFile [d6]) e_cLnu_sLxRmwoa VFAT 02eb 1e8H@80H
Rundli32 fsh FS_Dir (60) e _clnu_slXmwoa VFAT 83
C:AWINDOWSH,..

" Figure A-5. -MultiMon Sample Output

expect in each column; for specifics about usage for a particular monitor, see
Appendix B, MultiMon: Monitor Reference.

Table A-2. MultiMon Output Format

Column Name Contents
Module Module owning the thread which generated the event
Type A code which identifies the monitor that reported the event
Function An API name or description
Flags1 Generic flags
Device Target device name for the call
Handle File or other handle value
Args Arguments passed in or return values from the API call
Flags2 Additional flags specific to the API

Using the Boot Monitor

Normally, MultiMon does not capture events until a session is initiated by the
user. However, sometimes it is desirable to monitor the events occurring during
system startup. This is made possible by using the saved configurations for active
monitors (the active/inactive state of a monitor is stored as part of its default
configuration). This configuration information is stored in the registry under keys
for each driver. When the driver loads, it consults its registry entries to determine
whether it should be active and which APIs to monitor.

At system startup, the file system is not ready to receive writes to a log file. To
circumvent this, an additional driver is used, called bootmgr.vxd. It allocates some
pages of memory in which to temporarily store captured events. Events are
captured until either the buffer fills up or the user launches MultiMon after system
initialization completes. When MultiMon starts, it writes BOOTMGR’s buffer to a
boot.log file and then frees the allocated pages. The size of the capture buffer
defaults to 10 pages but a user-defined value can be specified through the registry
value cpglnBuf (a DWORD type) under the key HKLM\System\CurrentCon-
trolSet\Services\ VxD\MultiMon_bootmgr.

When MultiMon is initially started "after collecting a trace using BOOTMGR, the
user receives a prompt advising him of the captured log and asks if he would like
to view it. '

310 Appendix A: MultiMon: Setup, Usage, and Extensions

MultiMon’s Use of the Registry

MultiMon uses two different areas of the registry. First, it uses a typical application
entry under HKEY_LOCAL_MACHINE given by Software\ OReilly\MultiMon. The
LogDir value found here gives the directory where session and boot log files are -
stored. If any dynamic monitors are installed, each driver would have a subkey
under this application key. The subkey would contain the same entries as for a
static monitor which we will describe below.

The second area of the registry which MultiMon utilizes is also under HKEY_
LOCAL_MACHINE, in the section which defines the system’s static VxDs:
System\ CurrentControlSet\Services\VxD. The Windows 95 loader enumerates the
subkeys in this section. The loader attempts to load each VxD driver name given
by the StaticVxD value in each subkey. The value of StaticVxD is a string which
may contain a fully-qualified path.

MultiMon creates a subkey for each static driver which is displayed in the Add/
Remove Dialog. To prevent name collisions, the key name is formed by
prepending MultiMon_ to the driver or device name. For example, the entry for
JSshook.vxd would be MultiMon_fshook. The StaticVxD value is defined to point to
the launch directory for MultiMon, where all monitor drivers are kept.

Underneath the MultiMon_ driver key, one key will be defined for each monitor
that the driver supports. Monitor keys start at 0 and increment by one for each
additional monitor. For example, if the driver has two monitors, then the keys 0
and 1 will be defined. Within each monitor key several values will be defined
which are used to record its default configuration. These include the values
Enabled, NumApi, Index, and ApiStates.

MultiMon’s Design and Implementation

When I started thinking about what MultiMon should be, I envisioned a frame-
work which could support many different kinds of “snooping tools.” I knew that
as work on this book continued the need would arise for several small applets
that would ‘demonstrate or prove assertions made here. These applets would
differ in how they insinuate themselves into the system and the kind of data they
would generate but from that point on they were the same: they needed a
conduit to deliver the data to a frontend where it could be formated and
displayed. So rather than write these as several separate utilities, they are imple-
mented as different monitor drivers for MultiMon.

MultiMon’s Design and Implementation ' 311

Win32 Frontend

The frontend or reporter portion of MultiMon is a respectable Win32 application
written in C. The user interface is based upon a dialog box which contains a list-
view control and status control, so no window creation code is needed for these
parts. A dialog procedure handles the requisite windows messages, like WM_INIT-
DIALOG, WM_SIZE, WM_COMMAND, etc.

As far as possible, the Windows 95 common controls were leveraged to increase
functionality without adding a lot of custom code. The listview control is used for
output display. It has several advantages: essentially unlimited buffer size, column
headers for labeling output, and easy column resizing. ’

At one point, I had output from the monitors being displayed directly to listview.
However, this had a major drawback. Since much of the window drawing code
relies heavily on 16-bit USER and GDI, it is acquiring the Winl6Mutex. This
created a severe bottleneck at times. To: alleviate this, output is written to a log
file by a separate thread, independently of the user interface thread. This creates
much smoother operation and significantly reduces the impact of monitoring on
system performance.

The main thread handles the message pump and responds to user input. A
secondary thread is dedicated to the interface with the event manager,
sessmgr.vxd. When events are being captured with bootmgr.uxd, the MultiMon
application is #not loaded.

VxD/Win32 Interface

When MultiMon initializes it looks to see if bootmgr.vxd is loaded. If it is found, a
DeviceloControl command is sent to it, requesting that it shut down any active
monitors and save its capture buffer to boot.log. Then sessmgr.vxd is loaded and a
secondary thread is created to interface with it.

SESSMGR also receives a list of drivers, their active monitors, and selected APIs
before event capture begins. SESSMGR uses this list to initialize the monitors.

MultiMon’s secondary thread also uses the DeviceloControl interface to communi-
cate with SESSMGR. As part of initialization a Win32 event object is passed to
SESSMGR for synchronization with MultiMon. The secondary thread calls into
SESSMGR using DeviceloControl and it blocks. After an event or group of events
are written to the log file, SESSMGR signals the blocked thread and it resumes .

execution by returning from DeviceloControl. MultiMon then checks the return
value from DeviceloControl. An error return indicates that data collection has
stopped, otherwise the DeviceloControl call is repeated and the thread blocks

312 . Appendix A: MultiMon: Setup, Usage, and Extensions

again. This loop exits with an error when MultiMon sends SESSMGR a Devicelo-
Control command to stop.

During this loop SESSMGR is writing the collected events to a binary log file
named session.log, using IFSMgr’s ring-0 file I/O functions. When event collection
is stopped, MultiMon reads, formats, and displays the contents of this file into the
listview control.

VxD Monitors

SESSMGR creates a pool of event blocks from an area of locked memory. Event
blocks hold an EBLOCK structure in which a monitor describes an event. Moni-
tors request an event block, record the event, and then send it back to the event
manager. The event manager then writes one or more event blocks to the log file
~ and then frees the event blocks for reuse.

Communication between the event manager and the monitors is by means of
private messages using VMM'’s Directed_Sys_Control API. The following messages
are used:

e REQUEST_EVENT_BIK is sent by monitors to SESSMGR or BOOTMGR to
request an event block.

e EVENT_NOTIFY is sent by monitors to SESSMGR or BOOTMGR to report an
event.

e PRIVATE_ARM_MONITOR is sent by SESSMGR to all known monitors, to
place the each monitor into an “armed” state; the monitor receives a list of
APIs which are to be watched.

e PRIVATE_INIT is sent by SESSMGR to all armed monitors, to start event cap-
ture. -

e PRIVATE_SHUTDOWN is sent by SESSMGR or BOOTMGR to all active moni-
tors, to stop event capture.

e REGISTER_MONITOR is sent by a static monitor to BOOTMGR to be placed
on a list to receive PRIVATE_SHUTDOWN messages.

A monitor is just a VxD which adds handlers for PRIVATE_ARM_MONITOR,
PRIVATE_INIT, and PRIVATE_SHUTDOWN, and which sends REQUEST_EVENT_
BLK, EVENT_NOTIFY, and perhaps REGISTER_MONITOR messages to SESSMGR
or BOOTMGR.

Extending MultiMon 313

Extending MultiMon

Extending MultiMon with a new monitor requires additions in two areas. First an
existing VXD needs to be modified or a new VxD must be written, to collect the
desired data. Secondly, the Win32 application has to add a new report routine for
the new type of data.

Writing a Monitor

Writing a monitor involves writing a VxD. VxDs can be written in assembly
language, but it is more common today to use either the C wrappers that accom-
pany the Windows 95 DDK or a third party package called VToolsD from Vireo
Software. The examples in the book use C and the DDK.

I won’t attempt to review the mechanics of VXD construction here. Appendix D,
IFS Development Aids, describes some extensions that I have added to the DDK to
make the process more palatable. Systems Programming for Windows 95 by
Walter Oney, 1996, Microsoft Press, is a good book to consult for further
information.

I'd like to give you a feel for how easy it is to write a monitor. To illustrate, I've
come up with an example that is both simple and useful. It is sometimes handy to
output strings to the trace log file to mark various execution points or perhaps
print out a function’s return values. This requires that you have the source to the
application you are monitoring so that DeviceloControl calls can be inserted.
We'll only consider Win32 applications, although the idea could be extended to
"Winl6 and DOS applications.

The implementation of the entire monitor VxD is in a single source file, tagmon.c,
which you can find on the companion diskette. It starts off with a Declare_DDB
macro which defines the Device Descriptor Block for the VxD. This specifies the
VxD’s name, initialization order, etc. so the loader will install it properly. The
DDB also gives the address of the VxD’s control procedure, CtriMsgDispatch,
which is the heart of our monitor (see Example A-1).

Example A-1. Tagmon’s Control Procedure

void __declspec(naked) CtrlMsgDispatch(void) {
BEGIN_DISPATCH_MAP)

ON_DEVICE_INIT(CtrlMsg_Device_Init)
ON_SYS_VM_TERMINATE (CtrlMsg_Sys_VM Terminate)
ON_W32_DEVICEIOCONTROL (CtrlMsg W32DeviceIoControl)
ON_DIRECTEDL (PRIVATE_ARM_MONITOR, CtrlMsg Arm_Monitor)
ON_DIRECTED1(PRIVATE_INIT, CtrlMsg_Private_Init)
ON_DIRECTEDO (PRIVATE_SHUTDOWN, CtrlMsg_Private_Shutdown)
‘ON_DEFAULT()

314 ‘ Appendix A: MultiMon: Setup, Usage, and Extensions

Example A-1. Tagmon’s Control Procedure (continued)

END_DISPATCH_MAP
}

The system sends messages to each VxD’s control procedure to notify it of system-
wide events which it may need to respond to. The control procedure only needs
to respond to messages in which it is interested.

Each line between the macros BEGIN_DISPATCH_MAP and END_DISPATCH_MAP is
like a “case” statement. For example, you might read the first line as “on receiving
a DEVICE_INIT message call the function CtrlMsg_Device_Init.” From this listing
you see that there are handlers for the three messages which are private to
SESSMGR and our monitor. These are PRIVATE_ARM_MONITOR, PRIVATE_INIT,
and PRIVATE_SHUTDOWN. The handlers for these are responsible for enabling
and disabling the monitor.

The event which our monitor is going to report is actually a DeviceloControl call
into the VXD. This is handled by the third line; which can be read “on receiving a
W32_DEVICEIOCONTROL message call the function CtrlMsg_W32Devicelo-
Control.” The code for this handler is shown in Example A-2.

Example A-2. Tagmon’s Handler for DeviceloControl

int SYSCTRL_CALLBACK CtrlMsg W32DeviceIoControl(int service,
PDIOCPARAMETERS pDIOCParams) {
switch(service) {
case DIOC_OPEN:
case DIOC_CLOSEHANDLE:
return 0;

case DIOC_TAG_STRING:
if (pDIOCParams->cbInBuffer == 0)
return ERROR_NOT_SUPPORTED;

MessageOut ((char*)pDIOCParams->lpvInBuffer);
return 0L;

default:
return ERROR_NOT_SUPPORTED;
}
}

The value of the input variable service can be a system-defined value such as
DIOC_OPEN or DIOC_CLOSEHANDLE, or it can be a programmer-defined value
like DIOC_TAG_STRING. When the DIOC_TAG_STRING service is requested, we
expect the input structure DIOCParams to contain specific values; the member
IpvInBuffer should point to a buffer containing a string and cbInBuffer should
contain a non-zero count of the length of the string. When set up in this way, the
Win32 application could insert a tag using a call like this:

Extending MultiMon 315

" char szTagStr[80]; // string to insert in Trace Log
DWORD cb; // count of bytes returned
wsprintf(szTagStr, "Calling from XXX - %d", somevar);
DeviceIoControl (hTagmon, DIOC_TAG_STRING, szTagStr,
lstrlen(szTagStr), NULL, 0, &cb, 0);
The function MessageOut is where the monitor’s unique functionality resides;
everything else is either part of a standard VxD framework or the handlers for

private messages between TAGMON and SESSMGR.

The implementation of MessageOut is shown in Example A-3. It uses two private
messages to communicate with SESSMGR’s control procedure: REQUEST_EVENT _
BLK to get an EBLOCK to report an event, and EVENT_NOTIFY to report the
event. REQUEST_EVENT_BLK returns TRUE and an EBLOCK’s address in pb if it
‘is successful; ‘it returns FALSE and a non-NULL value in pb if this is the last
EBLOCK; it returns FALSE and a NULL value in pb when the buffer is exhausted.
This arrangement gives the caller a chance to report an OVR_ERROR event when
the last EBLOCK is returned. k

Example A-3. Inserting a Tag into a Trace Log

void MessageOut(char* pstr) {

PEBLOCK pb;

if (Directed_Sys_Controll (pSessMgr, REQUEST EVENT BLK, &pb)) {
// We allocate the block zero initialized
pb->type = TAG_STRING;
memcpy (pb->szModName, TAGMON_DDB.DDB_Name, 8);
memcpy (pb->onestr, pstr, 31);
Directed_Sys_Controll(pSessMgr, EVENT_NOTIFY, pb);
}

else if (pb != NULL) {
pb->type = OVR_ERROR;
Directed_Sys_Controll(pSessMgr, EVENT_NOTIFY, pb);
}

Adding to the Reporter

Let’s continue this example by making the necessary additions to MultiMon to
support tag strings. The first place to start is with the header file monitor.h. You
need to make entries for a new monitor in three tables in this header file: Moni-
tors[], DisplayHandler[], and FilterFuncs[]. Monitors[] is an array of
MONDEF structures, one structure per monitor. A MONDEF has the definition given
in Example A-4. To add a new entry to Monitors[] you only need to worry
about a few of MONDEF’'s members. First you need to give it a name that will be
used in the Filter dialog, e.g., “Tag Strings”. Then you should determine a value
for numApis, i.e., how many different APIs you need to distinguish. For instance,
the API monitor for VCACHE has the value 25 which corresponds to the number

316 Appendix A: MultiMon: Setup, Usage, and Extensions

of services which VCACHE exports. Since TAGMON does not have any APIs, we
use 0. Next, insert the device name -of the driver which is to contain the monitor
in the member szDevName. The rest of the members are initialized to 0 or NULL,
as appropriate. If you have more than one monitor in your driver, you need to
bump iMon by 1 for each additional monitor.

Example A-4. MONDEF Structure

typedef struct {

UINT flags; // bitO:installed, bitl:enabled

BOOL bChecked; // monitor checked in Filters dialog

int iMon; // 0O-based index for monitor in this driver
char* name; // User-friendly monitor name

int numApis; // number of APIs monitored

UINT* pApiState; // array of enabled/disabled states

char szDevName[9];// device name for Monitor
} MONDEF, *PMONDEF;

To finish up our additions to monitor.h, add a display handler function to
DisplayHandler{] and a filter function tc FilterFuncs|[]. Precede these tables
with “extern” declarations for these new functions.

The common index to these three data structures is defined by a ungiue manifest
constant which is added to multimon.b. For TAGMON, we will use the constant
TAG_STRING. This index is used as the type in the EBLOCK structure.

With the data structures taken care of, we need to now write some code—the
display handler-and filter function. The display handler function is called to return
a string for each column of the listview display. The prototype for the function
has this form:

void Display Handler (int iSubItem, PEBLOCK pb,char* pszText)

where iSubltem is the zero-based index to the listview column, pb is a pointer to
a data structure describing the event, and pszText is a pointer to a buffer in which
to insert the string. The contents of an EBLOCK consists of some predefined
header information followed by an area that is free-format. A monitor will typi-
cally define a structure to fill this area. The display handler for our TAGMON
monitor is shown in Example A-5.

Example A-5. Display Handler for TAGMON

void Display_Handler_Tagmon(int iSubItem, PEBLOCK pb,
char* pszText) {

*pszText = '\0'; -

switch(iSubItem) {

case 0 : // Module - Module Name
strcepy (pszText, pb->szModName) ;
break;

case 1 : . // Type - Type of Monitor

Extending MultiMon

317

Example A-5. Display Handler for TAGMON

strcepy (pszText,
break;
case 2 :

//

"tag") ;

Function - Function Name

strcepy(pszText, pb->onestr);

break;

case 3 :

" case 4 :
case 5 :
case 6 :
case 7 :
default:

break;

}

//
//
/7
//
1/

Flagsl - flags common to all functions
Device - Device Name

Handle - System File Number (SFN)

Args - arguments specific to this function
Flags2 - flags specific to this function

The filter function is called to return a string which describes an API. This is used
to populate the listview control. in the Filter dialog. The prototype for the function

has this form:

char* Filter_ Func(int index)

It returns a pointer to a static string.

The display handler and filter function along with static string tables are placed in
a separate C file and added to the build. Some additional examples of extension
files can be found on the companion diskette: hookmon.c, vcmon.c, int2fmon.c,

etc.

MultiMon: Monitor
Reference

MultiMon comes with the monitors listed in Table A-1 of Appendix A, MultiMon:
Setup, Usage, and Extensions. The kind of output produced by each of these moni-
tors is quite varied and yet MultiMon presents this information ‘using the same
view. This appendix describes in detail the information displayed by each monitor
and thus serves as a reference.

Generally, a single line of output describes a single event. However, in some
instances, the information will not conveniently fit in a single line, and so a
second line of output is reported for the same event. You will see this approach
with the file system hook, FSHook. When displaying traces of services, it is some-
times useful to show the entry values on one line and then the return values on a
separate line. Another thing to keep in mind when examining traces is that some
monitors report an event when an API completes, and other monitors report an
event on entry into an APL

In the descriptions that follow, a C printf format is used to define output strings.
These format strings are enclosed in double quotes, while arguments are repre-
sented by suggestive variable names, e.g., "drive=%c", drive_letter.

Interrupt 21b

Driver Monitor Type
I21Helpl PM Int21 hook (pre IFSMgr) p21
121Help1 V86 Int21 hook (pre IFSMgr) v21
121Help2 PM Int21 hook (post IFSMgr) p21-
121Help2 V86 Int21 hook (post IFSMgr) v21-
Win32cb VWIN32 Int21 Dispatch w21

318

Interrupt 2Fb

319

ListView Column Usage

Module:
Module owning execution thread

Function: -
Int 21h function name

Flags1:
Not used

Device:
Not used

Handle:

DOS (SFT) or extended (SFN) file handle

Args by function:
39h, 3ah, 3bh, 3ch, 3dh, 41h, 43h, 4bh,

"0%s", szPathname

4eh, 5ah, 5bh, 6¢h, 7139h, 713ah, 713bh,

7141h, 7143h, 714eh, 7160h, 716ch

36h, 47h, 7147h, 4404h, 4405h, 4408h,
4409h, 440dh, 440eh, 440fh, 4411h

3fh, 40h

"drive=%c", drive_letter

"ent=%x buf=%x:%04x", byte_count,
buffer_segment, buffer_offset

42h "(%d) offs=%08lx", seek_mode,
seek_offset
50h "seg=%04x", PSP_segment
Flags2 by function:
7143h Gt(GET_ATTRIBUTES)
St(SET_ATTRIBUTES)
Gs(GET_ATTRIB_COMP_FILESIZE)
Sm(SET_ATTRIB_MODIFY_DATETIME)
Gm(GET_ATTRIB_MODIFY_DATETIME)
Sa(SET_ATTRIB_LAST_ACCESS_DATETIME)
Ga(GET_ATTRIB_LAST_ACCESS_DATETIME)
Sc(SET_ATTRIB_CREATION_DATE_TIME)
Gc(GET_ATTRIB_CREATION_DATE_TIME)
Gu(GET_ATTRIB_FIRST_CLUST)
Interrupt 2Fb
Driver Monitor Type
12fmonl1 PM Int2f hook (pre IFSMgr) | p2f
12fmon1 V86 Int2f hook (pre IFSMgr) | vaf

320 Appendix B: MultiMon: Monitor Reference

ListView Column Usage
Module:
Module owning execution thread

Function:
Int 2fh function name

Flags1:
Not used

Device:
For function 1684 only, "%s(%xh)", device_name, device_id

Handle:
Not used

Args:
Not used

Flags2:
Not used

IFSMgr Dispatcher

Driver Monitor Type
ifsdspat IFSMgr dispatcher dsp

ListView Column Usage
Module:
Module owning execution thread

Function:
"Func=%08lx", register_ECX

Flags1:
Not used

Device:
Not used

Handle:
Not used

Args: .
"EDX=%08lx ESI=%08Ix", register_EDX, provider

Flags2:
Not used

IFSMgr File System Hook 321

IFSMgr File System Hook

Driver Monitor Type
fshook IFSMgr file system hook fsh

ListView Column Usage

Module:
Module owning execution thread

Function:
FS_xxx function name

Flags1:
Flags common to all functions represented by string of characters: e_clnu,_
slxrmwoa

e command failure
¢ character resource
local resource

network resource

NN

UNC resource
IFSMgr_ServerDOSCall
LEN call

~

uses extended handles
IFSMgr_Ring0_FileIO

R

N

8.3 match semantics
Win32 caller
Unicode/BCS string
ANSI/OEM

© 8 3

Q

Device:

Name of FSD being called
Handle: ,

System File Number (SFN) asterisk indicates newly created or opened handle
Args (line 1):

Arguments specific to a function

IFSFN_READ, IFSFN_WRITE " cnt=%IxH ofs=%IxH ptr=%IxH, byte_

: : count, file_position, linear_buf_address
IFSFN_SEEK ' ofs=%lxH, file_position

322

Appendix B: MultiMon: Monitor Reference

IFSFN_GETDISKINFO

IFSFN_QUERY(level 2)
IFSFN_QUERY(level 1))
IFSFN_CONNECT(local disk volume)

IFSFN_IOCTL16DRIVE, IFSFN_GETDIS-
KPARMS, IFSFN_FLUSH

IFSFN_DASDIO (DIO_ABS_READ_
SECTORS)-(DIO_ABS_WRITE_SECTORS)

IFSFN_DASDIO (DIO_SET_LOCK_
CACHE_STATE) '

Args (line 2):
Pathname or filename argument

Flags2:
Flags specific to a function

IFSFN_READ, IFSFN_WRITE
IFSFN_SEEK

IFSFN_CLOSE, IFSFN_FINDCLOSE,
IFSFN_FCNCLOSE
IFSFN_COMMIT
IFSFN_FILELOCKS

IFSFN_FILETIMES

IFSFN_ENUMHANDLE

"drive: %c free: %08lx", drive_letter,
free_space

"Level2 drive: %c", drive_letter
"Levell drive: %c", drive_letter
"drive: %c", drive_letter
"drive: %c", drive_letter

"ent=%IxH sector=%IxH ptr=%IxH",
byte_count, absolute_sector,
linear_buf_address

"Level 0 taken" or "Level O released", or
"Level 3 taken" or "Level 3 released"

flags “msn”: m— memory-mapped
RO I/O; s—called by swapper; n—no
caching of read/write

" flag character: b—seek relative to

beginning of file; e—seek relative to
end of file

flag: f—CLOSE_FINAL, p—CLOSE_FOR_
PROCESS, h—CLOSE_HANDLE

flag: a—FILE_COMMIT_ASYNC,
n—FILE_NO_LAST_ACCESS_DATE

flag: L—LOCK_REGION, U—UNLOCK_
REGION -

Gm(GET_MODIFY_DATETIME)
Sm(SET_MODIFY_DATETIME)
Ga(GET_LAST_ACCESS_DATETIME)
Sa(SET_LAST_ACCESS_DATETIME)
Gc(GET_CREATION_DATE_TIME)
Sc(SET_CREATION_DATE_TIME)

fi ENUMH_GETFILEINFO
get file info by bandle
fn ENUMH_GETFILENAME
get filename associated with bandle
irENUMH_GETFINDINFO
get info for resuming
rf ENUMH_RESUMEFIND
resume find operation
rd ENUMH_RESYNCFILEDIR
resync dir entry info for file

IFSMgr File System Hook 323

IFSFN_CONNECT(Network) flags “x y”, where x is:
r(RESOPT_UNCREQUEST)
e(RESOPT_DEVATTACH)
c(RESOPT_UNCCONNECT)
d(RESOPT_DISCONNECTED)
n(RESOPT_NO_CREATE)
s(RESOPT_STATIC)
and where y is:
*(RESTYPE_WILD)
d(RESTYPE_DISK)
s(RESTYPE_SPOOL)
c(RESTYPE_CHARDEYV)
i(RESTYPE_IPC)

IFSFN_CONNECT(Local) flag character:
m(IR_FSD_MOUNT)
v(IR_FSD_VERIFY)
g(IR_FSD_UNLOAD)
c(IR_FSD_MOUNT_CHILD)
p(R_FSD_MAP_DRIVE)
u(JR_FSD_UNMAP_DRIVE)

IFSFN_DIR . option string: mk(CREATE_DIR),
rm(DELETE_DIR), ck(CHECK_DIR),
83(QUERY83_DIR), If(QUERYLONG_
DIR)

IFSFN_FILEATTRIB option string:
Gt(GET_ATTRIBUTES)
St(SET_ATTRIBUTES)
Gs(GET_ATTRIB_COMP_FILESIZE)
Sm(SET_ATTRIB_MODIFY_DATETIME)
Gm(GET_ATTRIB_MODIFY_DATETIME)
Sa(SET_ATTRIB_LAST_ACCESS_
DATETIME)
Ga(GET_ATTRIB_LAST_ACCESS_
DATETIME)
Sc(SET_ATTRIB_CREATION_DATE_
TIME)

IFSFN_FILEATTRIB (cont.) GCc(GET_ATTRIB_CREATION_DATE_
TIME), Gu(GET_ATTRIB_FIRST_CLUST)

IFSFN_FLUSH flag character:
d(VOL_DISCARD_CACHE)
r(VOL_REMOUNT)

IFSFN_SEARCH flag character:
f(SEARCH_FIRST)
n(SEARCH_NEXT)

IFSFN_DISCONNECT flag character:
n(DISCONNECT_NORMAL)
i(DISCONNECT_NO_IO)
s(DISCONNECT_SINGLE)

324 Appendix B: MultiMon: Monitor Reference

IFSFN_OPEN option string, "x y" where x is (open
action value):
cn(ACTION_CREATENEW (10h))
ca(ACTION_CREATEALWAYS (12h))
0e(ACTION_OPENEXISTING (01h))
0a(ACTION_OPENALWAYS (11h))
re(ACTION_REPLACEEXISTING (02h))
and vy, is (special option):
m(MM_READ_WRITE (8000h))
c(OPEN_FLAGS_COMMIT (4000h))
€¢(OPEN_FLAGS_NO_CRITERR (2000h))
s(RO_SWAPPER_CALL (1000h))
r(OPEN_FLAGS_REOPEN (0800h))
a(OPEN_FLAGS_ALIAS_HINT (0400h))
p(OPEN_FLAGS_NO_COMPRESS
(0200h))
n(OPEN_FLAGS_NO_CACHE (0100h))
i(OPEN_FLAGS_NOINHERIT (0080h))

IFSFN_DASDIO -DIO_ABS_READ_ option string "Read"

SECTORS

IFSFN_DASDIO -DIO_ABS_WRITE_ option string "Write"
SECTORS

IFSFN_DASDIO -DIO_SET_LOCK_ option string "Volume Lock"
CACHE_STATE

IFSMgr_NetFunction Hook

Driver Monitor Type

netfunc IFSMgr_NetFunction hook nfh

ListView Column Usage
Module:
Module owning execution thread

Function:
Func=%08lx, Client_AX, where Client_AX contains the following values for
IFS Manager broadcasts:

NF_PROCEXIT (111D_h) NF_PRINTERUSE (0004h)
NF_DRIVEUSE (0001h) NF_PRINTERUNUSE (0005h)
NF_DRIVEUNUSE (0002h) NF_NetSetUserName (1181h)

NF_GETPRINTJOBID (0003h)

or Client_AX contains the function number for Upper8E_Preambles installed
using IFSMgr_SetReqHook.

Interrupts and Callbacks

325

Flags1:
Not used

Device:
Not used

Handle:
Not used

Args:

"EDX=%08Lx ESI=%08lx", ifsreq.ifs_func, provider

Flags2:
Not used

Interrupts and Callbacks

Driver

Monitor

Type

vectors

Interrupts and Callbacks

vec

ListView Column Usage

Module:

Module owning execution thread

Function:

VMM Service Names, including:

Install_V86_Break_Point
Allocate_PM_Call_Back
Get_V86_Int_Vector
Get_PM_Int_Vector

Flags1:

Allocate_V86_Call_Back
Hook_V86_Int_Chain
Set_V86_Int_Vector

Set_PM_Int_Vector

"Entry" or "Return" depending on which side of the service the display line

was generated.

Device:
Not used

Handle:

On entry, interrupt number as a string “Int %x”

326 Appendix B: MuitiMon: Monitor Reference

Args by service:

On entry:

Install_V86_Break_Point "v86 BrkPt=%X:%04X Ring0 Func-
tion=%08lx (%s)", brk_segment,
brk_offset, func_addr, VxD_Name

Allocate_V86_Call_Back "Ring0 Function=%08lx (%s)", func_addr,
Vxd_Name

Allocate_PM_Call_Back "Ring0 Function=%08lx (%s)", func_addr,
Vxd_Name

Hook_V86_Int_Chain "Ring0 Hook=%081x (%s)", func_addr,
Vxd_Name

Get_V86_Int_Vector, Set_V86_Int_Vector "V86 Vector=%X:%04X", V86_segment,
V86_offset

Get_PM_Int_Vector, Set_PM_Int_Vector "PM Vector=%X:%IX", PM_selector,
PM_offset

On return:

Allocate_V86_Call_Back "V86 App Callback: %x:%04x",

V86_callback_segment,
V86_callback_offset

~ Allocate_PM_Call_Back "PM App Callback: %x:%04x",
PM_callback_selector,
PM_callback_offset

Flags2:
Not used

VCACHE Services

Driver) Monitor Type

vchook VCache services vch

ListView Column Usage

Module:
Module owning execution thread

Function:
Entry: VCACHE service name

Return: Return, except for VCache_FindBlock, which displays the string
“Return [Carry] [Locked]”

VCACHE Services 327

Flags1:
Options on entry to VCache_FindBlock:

Create Hold MakeMRU
LowPri MustCreate RemoveFromLRU

Device:
FSD cache ID

Handle:
Cache block handle

Args by function:
VCache_Get_Version(Return) Ver: %04x, version_number

VCache_Register(Return) "DiscardFunc: %08lx MinReserv: %lx",
buffer_discard_func,
min_reserved_blocks

VCache_GetSize(Return) For a specific FSD ID:
"MaxFSDBIks: %lx MaxCacheBlks: %lx",
max_blocks_for_fsd,
max_num_cache_blocks
For any FSD (id=0):
"CurCacheSize: %lx MaxCacheBlks: %lx",
num_blocks_in_cache,
max_num_cache_blocks

VCache_CheckAvail(Entry) "Needed: %Ix", num_blocks_needed

VCache_CheckAvail(Return) "Avail: %lx", num_avail_blocks

VCache_FindBlock(Entry) "Keyl: %08lx Key2: %08Lx", keyl_value,
key2_value

VCache_FindBlock(Return) "Buffer: %08Ix", addr_of_buffer (if non-
zero handle)

VCache_Enum "EnumFunc: %08Ix", enum_function_
addr

VCache_VerifySums "SectorSize: %Ix", sector_size_in_bytes

VCache_RecalcSums

VCache_TestHold(Return) "HoldCnt: %d", block_hold_count

VCache_GetStats "Misses: %d Hits: %d Discards: %d

VCache: %08Ix", misses_to_last26_
discards, hits_to_last26_lru,
num_discards_since_last_call,
linear_base_addr

VCache_AdjustMinimum "New Quota: %08Ix", new_quota_size

VCache_SwapBuffers "BlockHdI1: %08lx BlockHdI2: %08lx",
cache_block1, cache_block2

VCache_RelinquishPage ' "RelPage: %08Ix", linear_addr_of_page

VCache_UseThisPage "AddPage: %08Lx", linear_addr_of_page

328

Appendix B: MultiMon.: Monitor Reference

_VCache_CreateLookupCache

_VCache_DeleteLookupCache

_VCache_Lookup
_VCache_UpdateLookup

Flags2:
Not used

"CacheName: %s MaxElems: %d Flags:

%081x", lookup_name, max_elements,
ptr_cache_handle

"CacheName: %s", cache_name

"Key: \%s\ Data len: %d", lookup_name,

data_len

VWIN32 Win32 Services

Driver

Monitor

Type

win32cb

VWIN32 Win32 Services

vw32

ListView Column Usage

Module:

Module owning execution thread

Function:

VWin32 Win32 service name

Flags1:

Not used
Device:

Not used

Handle:
Not used

Args:
Not used

Flags2:
Not used

VWIN32 DeviceloControl
(IFSMgr, VWIN32, WSOCK)

Driver

Monitor

Type

win32cb

VWIN32 DeviceloControl

dev

VMM Win32 Services 329

ListView Column Usage
Module: ‘
Module owning execution thread

Function:
Func=%08lx, Client_AX

Function:
Open Device, Close Device, or dwloControlCode

Control codes for IFSMgr, VWIN32, and WSOCK are labeled

Flags1:
Not used

Device:
VxD device name

Handle:
For WSOCK calls, handle context address

Args:
For WSOCK calls, arguments to functions

Flags2:
Not used

VMM Win32 Services

Driver Monitor Type
win32cb VMM Win32 services vm32

ListView Column Usage
Module:
Module owning execution thread

Function:
VMM Win32 service name

Flags1:
Not used

Device:
Not used

Handle:
Not used

330 Appendix B: MultiMon: Monitor Reference

Args:
Arguments specific to a function as array of unlabeled doubleword values

Flags2:
Not used

NetBIOS Calls

Driver Monitor Type
nbhook NetBIOS calls ncb

ListView Column Usage

Module:
Module owning execution thread

Function:
NetBIOS service name

Flags1:
Entry: if call is asynchronous, "async" will appear here

Return: if call was asynchronous, "post(%02x)", ncb_returncode, will appear

here
Device:
Lana=%02x, lana_number
Handle:
Address of NCB (Network Control Block)
Args:
Entry arguments specific to a function
NCBCALL, NCBLISTEN, "Callname: %s", ncb_callname
NCBADDNAME, NCBDELNAME,
NCBADDGRNAME
NCBHANGUP, NCBRESET "LSN: %02x", ncb_lsn
NCBSEND, NCBRECV, NCBSENDNA "LSN: %02x Buffer: %081x(%04x)",

. ncb_lsn, ncb_buffer, ncb_length
NCBRECVANY, NCBDGRECYV, "Buffer: %081x(%04x)", ncb_buffer,
NCBDGSENDBC, NCBDGRECVBC, ncb_length
NCBSSTAT, NCBACTION, NCBENUM,

NCBFINDNAME
NCBCANCEL "Canceled NCB: %08Ix", addr_of_ncb
NCBDGSEND, NCBASTAT "Buffer: %081x(%04x) Callname: %s",

ncb_buffer, ncb_length, ncb_callname

SMB Packets

331

0x48 (Send-Receive)

NCBCHAINSEND, NCBCHAINSENDNA:

NCBTRACE, NCBLANSTALERT,
NCBUNLINK:

Default

Args:
Return values specific to a function
NCBCALL
0x48 (Send-Receive)

NCBRECVANY:

Flags2:
Flags specific to a function

NCBRECVANY, NCBDGSEND,
NCBDGRECV, NCBDGSENDBC,
NCBDGRECVBC, NCBRESET,
0x48(Send-Receive)

"LSN: %02x SendBuf: %081x(%04x)
RecvBuf: %081x(%04x)", ncb_lsn,
ncb_buffer, ncb_length, buffer_dword,
buffer_word

"LSN: %02x Bufferl: %08I1x(%04x)
Buffer2: %081x(%04x)", ncb_lsn,
ncb_buffer, ncb_length, buffer_dword,
buffer_word

Nothing' displayed

"Buffer: %081x(%04x) Callname: %s",
ncb_buffer, ncb_length, ncb_callname

"LSN: %02x*", ncb_Isn

"RecvBuf: %081x(%04x)", ncb_buffer,
ncb_length

"LSN: %02x Length: %04x", ncb_lsn,
ncb_length

"NAME#: %02x", ncb_num

SMB Packets
Driver) Monitor Type
nbhook SMB packets smb

ListView Column Usage

Module:
Module owning execution thread

Function:

SMB command name; up to three batched commands may be listed

Flags1:
Entry: request

Return: reply

332) Appendix B: MultiMon: Monitor Reference

Device:
Not used

Handle:
Address of NCB (Network Control Block) whose buffer references the SMB
command

Args: ,
Arguments specific to a function

SMB_COM_OPEN "%s", pathname_or_domain
SMB_COM_OPEN_ANDX

SMB_COM_TREE_CONNECT

SMB_COM_SESSION_SETUP_ANDX
SMB_COM_TREE_CONNECT_ANDX

SMB_COM_TRANSACTION "%s SubCommand:%02x",
, mailslot_or_namedpipe,
subcommand_code

SMB_COM_TRANSACTION2 Subcommands 0 through 0x0Oe: "%s",
trans2_subcommand_name

Flags2:
Not used

IFSMgr Data
Structures

Knowing the layout of IFSMgr’s key data structures is fundamental to reaching an
understanding of IFSMgr’s operation. In this appendix, various undocumented
data structures utilized by IFSMgr are defined. These structures are also available
in the header file ifsmgrex.h on the companion diskette. These data strucutes are
valid for IFSMgr version 22h. Your driver or file hook should verify this version
number before using these structures.

Several of the undocumented structures are displayed by a debug command in
the IFSMgr version which accompanies OSR2. This version of IFSMgr has a so-
called “dot” command which is invoked by typing .ifsmgr from the WDEB386 or
Winlce prompt. This command will display the contents (and member names) for
structures such as ifsreq, shres, and fhandle.

The ioreq Structure

This data structure is defined in ifs.h and described in detail in the DDK documen-
tation. Many IFSMgr APIs and interfaces are passed a pointer to an ioreqg
structure, which in reality is an ioreq structure embedded in an ifsreq struc-
ture. The reason the ioreq structure is emphasized by the DDK is that it is the
only portion of an ifsreq structure which an FSD should know or care about;
the other portions of the ifsreq structure are for IFSMgr’s eyes only. The ioreg
structure is discussed at length in Chapter 6, Dispatching File System Requests.

typedef struct {
DWORD ir_length; /* 00 - length of user buffer (eCX) */

BYTE ir_flags; /* 04 - misc. status flags (AL) */

BYTE ir_user; /* 05 - user ID for this request */

WORD ir_sfn; /* 06 - System File Number of file handle */
DWORD ir_pid; /* 08 - process ID of requesting task */

DWORD ir_ppath; /* 0C - pointer to unicode pathname */

333

334

Appendix C: IFSMgr Data Structures

DWORD
DWORD
WORD

WORD

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

DWORD
} ioreq;

ir_auxl;
ir_data;
ir_options;
ir_error;
ir_rh;
ir_fh;
ir_pos;
ir_aux2;
ir_aux3;
ir_pev;

ir_ fsd[16];

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*

10
14
18
1A
1c
20
24
28
2C
30

34

The ifsreq Structure

secondary user data buffer (CurDTA) */
ptr to user data buffer (DS:eDX) */
request handling options */

error code (0 if OK) */

resource handle OWNED by FSD */

file (or f£ind) handle OWNED by FSD */
file position for request */

misc. extra API parameters */

misc. extra API parameters */

ptr to IFSMgr event for async
requests */

Provider work space */

When an IFSMgr API calls for a pointer to an ioreq structure, it actually receives
an ifsreq structure. This works because the first member of ifsreq is a nested
ioreq structure. This structure is discussed at length in Chapter 6. Member names
are based on output from OSR2’s .ifsmgr command.

typedef struct {

0 embedded ioreq structure */

74 pointer to fhandle structure */
78 pointer to SFT */

7C pointer to shell resource */

80 1linear base of owner PSP */

84 provider id */

88 function of dispatched command */
89 drive from dispatched command */
8A flag */

8B flags, see Table C-1 */

8C pointer to parse buffer */

90 VM of request */

94 pointer to "per VM data" area */

ioreq ifs_ir; /*
/* These members are known only to IFSMgr */
fhandle* ifs_pfh; /*
DWORD ifs_psft; /*
shres* ifs_psr; /*
DWORD ifs_pdb; /*
DWORD ifs_proid; /*
BYTE ifs_func; /*
BYTE ifs_drv; /*
BYTE ifs_hflag; /*
BYTE ifs_nflags; /*
void* ifs_pbuffer; /*
HVM ifs_VMHandle; /*
void* ifs_PV; /*
union {

Client_Register
Ring0_Register

ServerDos_Register

}
} ifsreq;

/* 98 client registers for

ifs_crs;
dispatch */
ifs_ring0_frame; /* 98 client registers for

ring0 file i/o */

ifs_server_frame; /* 98 <client registers for

server DosCall */

Volume Information (volinfo)

The volinfo structures are referenced by pointers in the SysvVolTable array (see
Chapter 6, Figure 6-2). The volinfo structure is used to support subst drives (see

Shell Resource (shres) 335

Table C-1. Bit Usage for ifs_nflags

Bit Number Meaning
IFSMgr_ServerDosCall
LFN

Uses extended handles
IFSMgr_Ring0_FileIO
8.3 match semantics
Win32 API
Unicode/BCS
OEM/ANSI

O = N W AR N

Chapter 8, Figure 8-1); it also holds references to the CDS structure and the shell
resource structure.

typedef struct {

shres* vi_psr; /* 00 ptr shell resource for volume */
char* vi_pszRootDir; /* 04 path following drive & colon in CDS */
WORD vi_Client_CX; /* 08 */
BYTE vi_unkl; /* 0A */
BYTE vi_£flags; /* OB Volume is subst drive 0x10

? 0x08

? 0x04

Static connection 0x02

? 0x01 */
WORD vi_leng; /* 0C length of Unicode subst path */
BYTE vi_unk2; /* OE */
BYTE vi_drv; /* OF one-based volume */

string_t vi_subst_path; /* 10 Unicode Subst path */
void* vi_CDS_copy; /* 14 Copy of CDS */
} volinfo;

Shell Resource (shres)

The shell resource is the key data structure used by IFSMgr to represent volumes,
connections to network shares, and character devices. Chapter 6 and Chapter 8
give numerous examples of the creation and use of shell resources. Member
names are based on output from OSR2’s .ifsmgr command.

typedef struct {

WORD sr_sig; /* 00 signature 'Sr' */

BYTE sr_serial; /* 02 */

BYTE sr_idx; /* 03 offset of entry in psr list */

struct shres *sr_next; /* 04 next link in one-way linked
list */)

DWORD sr_rh; /* 08 FSD's volume handle */

struct volfunc *sr_func; /* 0C FSD's volume function table */

DWORD sr_inUse; /* 10 reference count */

WORD sr_uword; /* 14 zero-based volume number */

336 Appendix C: IFSMgr Data Structures

WORD sr_HndCnt; /* 16 count of open handles on
volume */

BYTE sr_UNCCnt; /* 18 */

BYTE sr_DrvCnt; /* 19 number of volinfo structures
referencing this sr*/

BYTE sr_rtype; /* 1A 0 - wild
1 - local disk
2 - spooled printer
3 - character device
4 - IPC (named pipe) */

BYTE sr_flags; /* 1B IFSFH_RES_CFSD - 0x80
IFSFH_RES_LOCAL - 0x10
IFSFH_RES_NETWORK, 0x08

IFSFH_RES_UNC, 0x01 */

DWORD sr_ProlID; /* 1C index to MountVolTable[] */

void* sr_Volinfo; /* 20 pointer to VRP (only local
drive) */

fhandle* sr_fhandleHead; /* 24 pointer to one-way linked list
of open files */

DWORD sr_LockPid; /* 28 pid of lock owner */

DWORD sr_LockSavFunc; /* 2C */

BYTE sr_LockType; /* 30 type of volume lock in place:

0 - no lock in effect

1 - level 0 lock in effect
2 - level 1 lock in effect
3 - level 2 lock in effect
4 - level 3 lock in effect */
BYTE sr_PhysUnit; /* 31 */
WORD sr_LockFlags; /* 32 flags related to volume lock
state */ .
DWORD sr_LockOwner; /* 34 ring 0 thread ID of lock
owner */
WORD sr_LockWaitCnt; /* 38 */
WORD sr_LockReadCnt; /* 3A */
WORD sr_LockWriteCnt; /* 3C */
BYTE sr_flags2; /* 3E */
BYTE sr_reserved; /* 3F */
void* sr_pnv; /* 40 */
} shres; !

The fhandle Structure

The fhandle is the key data structure used by IFSMgr to represent handles to
files and character devices. Chapter 6 gives examples of the use of file handles.
Member names are based on output from OSR2’s .ifsmgr command.

typedef struct {

struct hndlfunc fh_hf; /* 00 ptr to FSD's handle-based
function table */

fh_t fh_fh; /* 0C FSD's file handle */

shres* fh_psr; /* 10 ptr to shell resource which

contains object */
void* fh_pSFT; /* 14 ptr to DOS SFT structure */

The blockinfo Structure 337
DWORD fh_position; /* 18 */
WORD fh_devflags; /* 1C */
BYTE fh_hflag; /* 1E */
BYTE fh_type; /* 1F */
WORD fh_ref_count; /* 20 */
WORD fh_mode; /* 22 */
hlockinfo* fh_hlockinfo; /* 24 ptr to hlockinfo structure */
void* fh_prev; /* 28 ptr to previous fhandle in
linked-list */
void* fh_next; /* 2C ptr to next fhandle in
linked-1list */
WORD fh_sfn; /* 30 system file number for
handle */
WORD fh_mmsfn; /* 32 SFN for memory-mapped file
dup */
DWORD fh_pid; /* 34 */
DWORD fh_ntid; /* 38 */
WORD fh_fhFlags; /* 3C */
WORD fh_InCloseCnt; /* 3E */
} fhandle;
»
The blockinfo Structure
This structure is used to defined a file lock:
typedef struct {
struct hndlfunc hl; /* 00 */
DWORD hl_lock; /* 0C */
DWORD hl_flags; /* 10 */
DWORD hl_pathlen; /* 14 */
unsigned short hl_pathname[0]; /* 18 */

} hlockinfo;

The SFT Structure

The SFT (System File

Tables) is a legacy MS-DOS structure. The following layout

is for DOS 4.0 or newer and is based on Undocumented DOS, Second Edition, by
Andrew Schulman and others (see pages 709-710).

typedef struct {

WORD
WORD
BYTE
WORD
void*
WORD
WORD
WORD
DWORD
DWORD
WORD
DWORD

sft_numhandles;
sft_openmode;
sft_attrib;
sft_devinfo;
sft_devheader;
sft_start_cluster;
sft_file_time;
sft_file_date;
sft_file_size;
sft_cur_offset;
sft_rel cluster;’
sft_sector_direntry;

338 Appendix C: IFSMgr Data Structures

BYTE sft_num_direntry;
char sft_fcbname[1l1l];
void* sft_prev;

WORD sft_vmid;

WORD sft_psp_segment;
WORD sft_offset; '
WORD sft_abs_cluster;
DWORD sft_dos_driver;

} sft;

The CDS Structure

The CDS (Current Directory Structure) is a legacy MS-DOS structure. The
following layout is for DOS 4.0 or newer and is also based on Undocumented
DOS (see pages 710-711).
typedef struct {
char cds_root_pathname[67] ; /* 00 ASCIIZ root directory */
WORD cds_attrib; /* Drive attributes */
BYTE cds_physdrv;
BYTE cds_flag;
WORD cds_cluster_parent_dir;
WORD cds_entry_num;
WORD cds_cluster_current_dir;
WORD cds_media_change;
WORD cds_ofs_visible_dir;
} cds;

Per-VM Data

During Device Init, IFSMgr allocates per-VM data using the service Allocate_
Device_CB_Area. The size of this area is determined by the following formula:

cb_area_size = sizeof (pervm) + ((256 + NumDosFCBs) * sizeof (void*) * 2)

What is returned by this service is the offset to IFSMgr's per-VM data from the
‘address given by the VM handle. It is the sum of these two values which is stored
in ifsreq.ifs_PV.

The layout of IFSMgr’s per-VM data is divided into three areas. At the beginning
of the area is the pervm structure given below. It is followed by two additional
tables of equal size which will hold pointers for up to 256 SFT entries plus
pointers for FCB’s inherited from MSDOS before Windows 95 started. The second
of these two tables is pointed at by the pervm member pv_ppsft.

typedef struct {

void* pv_next; /* 00 */
void* pv_prev; /* 04 */
BYTE pv_£flags; /* 08 bit 0 */

/* bit 1 */

Per-Thread Data . 339

/* bit 2 */
/* bit 3 */
/* bit 4 Local Int21 hooker*/
/* bit 5 Control-C check */
/* bit 6 */
/* bit 7 */
BYTE pv_cnt; /* 09 */
BYTE pv_curdrv; /* 0A */
BYTE pv_unk2; /* 0B */
void* pv_dispfunc; /* 0C address of dispatch function */
ifsreg* pv_pifs; /* 10 active ifsreq */
pevent pv_pev_vm; /* 14 VM tasktime event */
DWORD pv_Client_DS; /* 18 DS:DX or DS:EDX */
DWORD pv_Client_EDX; /* 1C address of Disk Transfer Area */
HEVENT pv_hev; L /% 20 */
fhandle* pv_pfh([32]; /* 24 */
pevent pv_pev_vm2; /* 48 */
void* pv_ppsft; /* 4C pointer to second SFT table */
void* pv_curdir([32]; /* 50 current directory for this VM */
WORD pv_£flags2; /* DO */
WORD pv_unk2; /* D2 */

} pervm;

Per-Thread Data

IFSMgr piggybacks a doubleword onto every thread. It does this by allocating a
thread data slot (using VMM service _AllocateThreadDataSlot) at Device Init time.
Unlike some other devices which use this doubleword to store a pointer to a
more substantial data structure, IFSMgr is content with using just the data slot.
The data slot is located by an offset from the address of a thread’s control block—
which is the same as the ring-0 thread handle. The layout of IFSMgr’s thread
doubleword is as follows: '

Bit 31 30 29 28-16 15-0
Use Marked Blocked NoBlock Not used Count

If this doubleword is non-zero, then the coresponding thread is “in” IFSMgr.
When a thread enters IFSMgr its count is incremented; when leaving it is decre-
mented. The top three bits are used as flags for the state of threads which have
entered IFSMgr.

Geoff Chappell shared his insights regarding the use of these bit flags in a recent
email:

The bit flags are concerned with the status of one thread with respect to threads
that propose to work or have started to work on a volume lock.

Working on a volume lock—for instance, to apply a lock or release one—has a
potentially wide-ranging and even brutal effect on IFS operations that are already
under way (say, in other threads). If a thread wants to work on a volume lock,

340 Appendix C: IFSMgr Data Structures

then it will have to wait until nobody else is working on the same volume lock—
but even after then, it will have to wait until no thread is doing anything that
might be affected by the change in the volume’s lock state.

At the time that a thread is to start working on a volume lock, there is not much
status information to go on. IFSMgr assumes that just about any thread that is in
an IFS operation is liable to be affected. The general scheme is to set the Marked
flag in each of them.

Some threads will already have the NoBlock flag set because it was deduced at an
earlier stage that their IFS operation could not be affected by work on a volume
lock. For instance, these threads do not get “marked.”

Some threads will already have the Blocked flag set because they are blocked at
places in their IFS operations where it is known not to matter if a volume lock
gets worked on. For instance, if a thread has to wait for a parse buffer to become
available, then it is not very far into its IFS operation and certainly a long way
from being worried whether some volume is locked. Threads that have blocked at
safe places do not get “marked” either.

The thread that wants to work on the volume Iock blocks on a special key. As the
other threads. execute, some may finish their IFS operations. That’s good: it makes
one less thread to worry about. The general scheme when the IFSMgr decides a
thread can’t be affected by work on a volume lock is that if the thread has its
“Marked” flag set, then the flag is cleared and the thread is deemed to no longer
contribute to the count of threads that could be affected. When there are no
longer any threads that could be affected, all threads waiting to work on volume
locks are signalled.

Another good outcome, handled the same way, is that a “marked” thread blocks
at a place known to be safe.

Some threads that were blocked at safe places may wake up. These and other
threads (with or without the Marked flag) may eventually reach far enough into
their IFS operation that they want access to a volume whose lock is to be worked
on by some waiting thread. For some operations (such as on the paging file and
on memory-mapped files and on pages opened as immovable), this won’t matter,
but in general, a thread that wants to access the volume will have to block until
the work on that particular volume’s lock is done. Again, the IFSMgr knows that
the thread cannot now be affected by work on the volume’s lock and so again, it
may signal the threads that are waiting to work on volume locks.

In summary, Marked means that the thread is thought (possibly only cautiously)
to prevent proceeding immediately with proposed work on a volume lock,
Blocked means that the thread is blocked at a stage where it can’t be affected by
proposed work on a volume lock and NoBlock means that if work on a volume
lock is proposed, then this thread is not to be regarded as preventing the work.

IFS Development Aids

This appendix describes some aids that were used in developing the sample code
which accompanies the book. Since I have adopted the DDK’s approach to
writing VxDs in C (see What’s New in Windows 95 for VxD Writers? by Ruediger
Asche, April 24, 1994, MSDN CD), these aids fill in a few gaps where I felt there
were some deficiencies.

chentry.exe: No Assembly Required

Usually, a VxD’s device descriptor block (DDB) and control message dispatch
procedure are placed in a small assembly language module. This is linked with
the C object modules to build the final VXD. The reason this assembly language
module is needed is that the Microsoft compiler only generates decorated public
names. The least amount of decoration you can achieve is a leading underscore.
Why is this a problem?

A VXD has a single exported symbol which is its device name with the suffix
“_DDB” appended. This points to the device descriptor block and is used by the
loader to find the segments in a VxD when bringing the module into memory.
The C compiler only allows names like _FSHOOK_DDB, where FSHOOK_DDB is
what is really desired. Using the decorated name would require clients of the VxD
to use the name _FSHOOK when referring to it. Clearly this is not desirable.

The chentry.exe utility lets you go ahead and use decorated names by removing
the underscore from the exported name after the VxD is built. If the exported
DDB name does not have a leading underscore, CHENTRY does nothing. To use
CHENTRY, you simply add the command chentry VxdName following the link
step in your makefiles.

341

342 ’ Appendix D: IFS Development Aids

vxd.h: Some Basic Macros

If you use CHENTRY in your build process, then what you used to maintain in a
separate assembly language module can now be incorporated in your C source
file. This makes single source file VxDs easy to construct.

Every VxD requires two basic structures, a device descriptor block and a control
message dispatch procedure. The primary purpose of vxd.b is to provide macros
for setting up these two constructs.

Setting up a VxD’s device descriptor block requires two steps. First, before the
include statement for uxd.b, define the name for your device descriptor block. For
example, these statements set up a device descriptor block for the VECTORS VxD:

#define DDB VECTORS_DDB
#include "vxd.h"

Inside vxd.b the following macro is defined which will be used from our C source
file to initialize the contents of VECTORS_DDB:

// Declare Device Descriptor Block
#define Declare_DDB(name, major, minor, dispatch, devID, init,
v86proc, pmproc, refdata, svctbl, numsvecs)
struct VxD_Desc_Block
DDB = { 0, DDK_VERSION, devID, major, minor, 0, name, init,
(DWORD) dispatch, (DWORD)v86proc, (DWORD)v86proc,
0, 0, refdata, svctbl, numsvcs, 0, 'Prev’',
sizeof (struct VxD_Desc_Block), 'Rsvl', 'Rsv2',
'Rsv3' };

Then from the C source file, within a locked data segment a global instance of
the DDB is defined hke this:

Declare_DDB("VECTORS ",1,0,CtrlMsgDispatch,
UNDEFINED_DEVICE_ID, VMM_INIT_ORDER,
0, 0, 0, 0, 0);
The control message dispatch procedure is constructed from macros that make it
resemble a message map. Here is a typical dispatch procedure for a MultiMon
monitor:

void __declspec(naked) CtrlMsgDispatch(void) {
BEGIN_DISPATCH_MAP

ON_SYS_CRITICAL_INIT (CtrlMsg_Sys_Crit_Init)
ON_DEVICE_INIT (CtrlMsg_Device_Init)
ON_INIT_COMPLETE (CtrlMsg_Init_Complete)
ON_SYS_VM_TERMINATE (CtrlMsg_Sys_VM_Terminate)
ON_DIRECTED1 (PRIVATE_ARM_MONITOR, CtrlMsg_Arm Monitor)
ON_DIRECTED1 (PRIVATE_INIT, CtrlMsg_Private_Init)
ON_DIRECTEDO (PRIVATE_SHUTDOWN, CtrlMsg_Private_Shutdown)

ON_DEFAULT ()

vxd.h: Some Basic Macros 343

END_DISPATCH_MAP

}
Between the BEGIN _DISPATCH MAP and END_DISPATCH MAP macros, one line is
specified for each control message which is to have a handler: The macro ON_
DEFAULT must be the last message handler macro; it returns propetly for any
message which does not have a handler. Each message handler macro specifies a
function which is called for a particular control message. For instance, ON_
DEVICE_INIT specifies that CtrIMsg_Device_Init will be called on receipt of a
Device Init message. This function has a prototype defined in vxd.b as follows:

int SYSCTRL_CALLBACK CtrlMsg_Device_Init(HVM hSysVM, PCHAR pCmdTail);

These prototypes are required so that the proper arguments are pushed on the
stack prior to calling the handler. The header file vxd.h contains macros and
message handler prototypes for known control messages.

The dispatch macros also handle directed system control messages, those control
messages which are private to a set of cooperating VxDs. The macros ON_
DIRECTEDO and ON_DIRECTED1 take two arguments, the handler function and a
message number (e.g. PRIVATE_INIT). The message number is private to the coop-
erating VxDs but is required to be in the range 0x70000000 to Ox7FFFFFFF. The
reason that two ON_DIRECTED macros are used here is that ON_DIRECTEDO calls a
handler that takes no arguments whereas ON_DIRECTED1 calls a handler which
takes one argument which is passed in the EBX register.

One more fundamental macro that is included helps when creating a stack frame
for a “hooked procedure.” This is used when declaring a hook procedure for
VMM'’s Hook_Device_Service. New with Windows 95 is the ability to unhook
these services. To do so requires creating a proper function preamble and this is
done by declaring the function with the HOOK_PREAMBLE macro:

// These two jumps make up the hook preamble

// These are needed to support Unhook_Device_Service
// The real hook procedure begins after these at "real_entry"

#define HOOK_PREAMBLE (prev) \
_asm jmp short real_entry \
_asm jmp dword ptr prev \
_asm real_entry:

The prev argument to this macro is a doubleword storage location which holds
the original service’s address. This location is filled in automatically by the Hook_
Device_Service function. Here is an example of how this macro would be used:

// Win95 Hook_Device_Service fills this in!
PFN pPrev_Allocate_PM Call_Back;

void __declspec(naked) My_Allocate_PM Call_Back(void) {
HOOK_PREAMBLE (pPrev_Allocate_PM_Call_Back)
/* body of hook procedure */

344 Appendix D: IFS Development Aids

asm ret

}
// This call installs the hook procedure
Hook_Device_Service(GetVxDServiceOrdinal (Allocate_PM_Call_Back),
My Allocate_PM Call_Back);
// This call removes the hook procedure _
Unhook_Device_Service(GetVxDServiceOrdinal (Allocate_PM_Call_Back),
My_Allocate_PM_Call_Back);

vxd.b contains a variety of other simple macros which I leave to you to explore.

IFSWRAPS

IFSWRAPS is a static library, included on the .companion diskette, which provides
C callable functions for all IFSMgr services as well as a few VWIN32 and VMM
services. This library was constructed in the same way as VXDWRAPS which
accompanies the DDK. The header file ifswraps.h is included in source files
where you call the library functions. ‘

Most of the services supplied by IFSMgr use the C calling convention. This makes
it almost trivial to make wrappers for these functions since no coding is required.
For these functions, the calling parameters and return values are as described in
the DDK. There are a handful of functions which use registers to pass arguments
and receive return values; only these functions require some special treatment.
These exceptions are described below:

unsigned long IFSMgr_Win32_Get_Ring0_Handle(sfn_t fbext, DWORD* pFilePos)
On entry, fhext contains the extended file handle to be converted. If
successful, the return value is the ring-0 file handle and pFilePos will contain
the current file position for the handle passed in. If the conversion fails, the
function returns 0.

int IFSMgr._Ring0_FileIO(EREGS* pRegs)
The pRegs argument points to an EREGS structure containing the input values
of registers:
typedef struct eregs { DWORD r_eax;

DWORD r_ebx;

DWORD r_ecx;

DWORD r_edx;

DWORD r_esi;

_ DWORD r_edi; } EREGS;

If the return value is 0, the call was successful and the EREGS structure
contains the return values in registers; if the return value is non-zero, it is an
error code. See the DDK for register assignments for each call.

DEBIFS 345

int IFSMgr._Ring0GetDrivelnfo(DWORD uwnit)
The unit argument is zero-based drive number. Returns -1 if the drive is not

an IFS drive, otherwise returns flags describing the drive (see DDK for flag
bits).

int IFSMgr._ServerDOSCall(HVM buvm,unsigned int fcn, PDPL32 dpl, PCRS pCRegs)
The calling arguments include bvm, the handle of the current VM; fcn, the
requested function number; dpl, a pointer to the extended 32-bit DPL (see
DDK for definition); and pCRegs, a pointer to the client register structure.
Returns —1 if the request is not accepted, 0 if request is accepted.

int IFSMgr._Get_Version(VOID)
If 0 is returned, no IFSMgr is loaded; otherwise the return value is the version
number.

BOOL Query_PhysLock(DWORD unit)
The unit argument is the Int 13h unit number for the disk which is being
queried; if TRUE is returned, the current process owns the volume lock.

The following services are also wrapped by IFSWRAPS:

DWORD VWIN32_GetCurrentProcessHandle(VOID)

VOID Simulate_Far_Jmp(DWORD selector, DWORD offset)

BOOL Get_PM_Int_Vector(DWORD intnum, PWORD pSel, PDWORD pOfs)

BOOL Hook_PM_Interrupt(DWORD intnum, PWORD pSel, PDWORD pOfs,
PVOID handler, DWORD refdata)

BOOL Hook_V86_Int_Chain(DWORD intnum, PVOID handler)

BOOL Test_Sys_VM_Handle(HVM hvm)

PVOID Map_Flat(DWORD segofs, DWORD offof)

BOOL Directed_Sys_Control0(PVMMDDB pDDB, DWORD SysControl)

BOOL Directed_Sys_Control1(PVMMDDB pDDB, DWORD SysControl,
PVOID argl)

BOOL Directed_Sys_Control2(PVMMDDB pDDB, DWORD SysControl,
PVOID argl, PVOID arg2)

PVOID Hook_Device_Service(DWORD svcnum, PVOID handler)

BOOL Unhook_Device_Service(DWORD svcnum, PVOID handler)

DEBIFS

DEBIFS is the name of a VXD, included on the companion diskette, which
contains a dot command. By dot command I mean a command which you enter
in your debugger, like .vmm b. The commands which DEBIFS provides dump out
useful information about IFSMgr’s data structures. The available commands are:

346 Appendix D: IFS Development Aids

.debifs i address
Dumps an ifsreq structure at specified address

.debifs s address
Dumps a shres structure at specified address

.debifs f address
Dumps a fhandle structure at specified address

Here is a sample dump of an ifsreq structure:

:.debifs 1 esi
ifsreqg at C1581D38:
ir_length(0)=00710000 ir_flags(4)=C0 ir_user(5)=01 ir_sfn(6)=00FF
ir_pid(8)=00012437 ir_ppath(C)=FFFFFBBB ir_data(14)=81A30001
ir_auxl (10) =FFFFFFFF ir_aux2(28)=00000000 ir_aux3(2C)=00000000
ir_options(18)=0000 ir_rh(1C)=00000000 ir_£fh(20)=00000000
ir_pos(24)=00000000 ir_pev(30)=00000000 -ir_error(1A)=0000
ir_fsd[](34)=00000000, (38)=00000000, (3C)=00000000, (40)=00000000, ...
ifs_pfh(74)=00000000 ifs_psft(78)=00000000 ifs_psr(7C)=00000000
ifs_proid(84)=FFFFFFFF ifs_pdb(80)=00024360
ifs_func(88)=6C ifs_drv(89)=03 ifs_hflag(8a)=00
ifs_nflags(8B)=60 { LFN ExtH OEM }
ifs_pbuffer (8C)=FFFFFBBB ifs_VMHandle(90)=C3D20154 ifs_PV(94)=C3D203EC
Client registers:
EAX (B4)=00006CC0 EBX(A8)=000000C0 ECX(B0)=00710000 EDX(AC)=81A30001
EDI(98)=00000003 ESI(9C)=0071F68C DS(D4)=013F ES(D0)=013F

This dump was created from Softice for Windows 95. Note that a register name
may be passed as an address; in actuality, any valid debugger expression may be

used for an address. The hexadecimal value in parentheses following each
member name is the offset of the member from the beginning of the structure.

Bibliography

Arun, Russ. 1994. “Chicago File System Features—Tips & Issues,” Microsoft Corp.
White Paper, April 22, 1994.

Asche, Ruediger. 1994. “What's New in Windows 95 for VxD Writers?,” Microsoft
Developer’s Network CD-ROM, April 1994.

Auerbach, Karl. 1987. “Protocol Standard for a Netbios Service on a Tcp/Udp
Transport: Concepts and Methods,” RFC 1001.

Auerbach, Karl. 1987. “Protocol Standard for a Netbios Service on a Tcp/Udp
Transport: Detailed Specifications,” RFC 1002.

Baker, Art. 1997. The Windows NT Device Driver Book: A Guide for Programmers.
Prentice-Hall, Inc.

Brown, Ralf and Kyle, Jim. 1994. Uninterrupted Interrupts. (A Programmer’s CD-
ROM Reference to Network APIs and to BIOS, DOS, and Third-Party Calls).
Addison-Wesley Publishing Co.

Crawford, John and Gelsinger, Patrick. 1987. Programming the 80386. SYBEX, Inc.
Custer, Helen. 1993. Inside Windows NT. Microsoft Press.

Dilascia, Paul and Stone, Victor. 1996. “Sweeper,” Microsoft Interactive Developer,
vol.1, no.1 (Spring 1996), p.16

Microsoft Corp. 1993. Microsoft MS-DOS Programmer’s Reference (Version G).
Microsoft Press.

Microsoft Corp. 1995. Windows 95 Device Driver Kit. A component of the
Microsoft Developer’s Network (MSDN) subscription.

347

348 Bibliography

Microsoft Corp. 1995. Programmer’s Guide to Microsoft Windows 95. Microsoft
Press.

Microsoft Corp. 1995. Microsoft Windows 95 Resource Kit. Microsoft Press.

Microsoft Corp. 1996. “Microsoft Networks SMB File Sharing Protocol,” Document
Version 6.0p.

Mitchell, Stan. 1995. “Monitoring Windows 95 File Activity in Ring 0,” Windows/
DOS Developer’s Journal, vol.6, no.7 (July 1995), p.6

Oney, Walter. 1996. Systems Programming for Windows 95. Microsoft Press.

Perry, Dan. 1996. “CIFS: A Common Internet File System,” Microsoft Interactive
Developer, vol.1, no.5 (November 1996), p.56

Pietrek, Matt. 1996. Windows 95 System Programming Secrets. IDG Books
Worldwide.

Russinovich, Mark and Cogswell, Bryce. 1997. “Examining the Windows NT File
System,” Dr. Dobb’s journal, vol.21, no.2 (February 1997).

Schulman, Andrew. 1992. “Exploring Demand-Paged Virtual Memory in Windows
Enhanced Mode,” Microsoft Systems Journal, vol.7, no.8 (December 1992),
p.17.

Schulman, Andrew. 1994. Undocumented DOS, Second Edition. Addison-Wesley
Publishing Co.

Schulman, Andrew. 1994. Unauthorized Windows 95. IDG Books Worldwide.

Schwaderer, W. David. 1988. C Programmer’s Guide to NetBIOS. Howard Sams &
Co.

Silberschatz, Abraham and Galvin, Peter. 1994. Operating Systems Concepts.
Addison-Wesley Publishing Co., Fourth Edition.

Bibliograpby ' 349

Internet Resources

Windows 95 File System / VxDs

O'Reilly Windows Center bup://www.ora.com/centers/windows/
Author Page: “Inside Win95 File System” bttp://www.sourcequest.com/win95ifs/
Device Driver Development Home Page bup//www.albany.net/~danorton/ddk

Vireo Software Home Page bttp://www.vireo.com

UseNet Newsgroup , comp.os.ms-windows.programmer.vxd
CIFS/SMB

CIFS and SMB specifications S://ftp.microsoft.com/developr/drg/CIFS

CIFS Home Page bttp://www.microsoft.com/intdev/cifS/cifs.btm

SAMBA download JSip://samba.anu.edu.au/pub/samba

UseNet Newsgroup comp.protocols.smb

WDM/Kernel—Mode Drivers

‘WDM Home Page bttp.//www.microsoft.com/bwdev/pcfuture/wdm.btm
WDM for Windows & btp://www.microsoft.com/bwdeuv/pcfuture/
Windows NT wdmuview.btm

NT Internal Home Page bup://www.ntinternals.com

Microsoft Interactive Developer bttp://www.microsoft.com/mind

UseNet Newsgroup comp.os.ms-windows.programmer.nt.kernel-mode

Index

Symbols ' : 4 CreateFile interface, 22, 41

\ (backslash) in filenames, 20 file-change object services, 64

o : file object services, 62
. (dot) in filenames, 20) ’
+ (plus) in filenames, 20 IOCTL services, 70-72

L mailslot object services, 66
/ (stash) in. flenames, 20 memory-mapped file object services, 66

OpenfFile interface, 22

Numbers pipe object services, 65
' 0x544a signature, 60 UnmapViewOfFile, 68, 230
386part.par file, 205 Winl6 file services, 77
8.3 filename convention, 20 arenas, 10-11
A B
access backslash (\) in filenames, 20
to devices, 26-28 BCS encodings, 263
file system structures, 71-72 BDDs (block device drivers), 184-185
to local files, 21-24 Begin PM App stage, 30, 38
to remote files, 24 bitness, VM, 45
to win386.swp file, 208-210 " block cache, 234
ActualBPS key, 34 data structures, 239-241
aging memory source, 235-239
cache blocks, 241 services of, 241-243
connections, 165 i block device drivers, 184185
alias directory entries, 179, 201 blockinfo structure, 337
_Allocate_Device_CB_Area service, 83, 98, _BlockOnlID service, 152, 190 _
338 boot monitor (see BOOTMGR monitor)
Allocate_PM_Call_Back service, 36 boot records, 177
allocating memory (see memory) BOOTMGR monitor, 30, 206, 309
anonymous pipes, 64 BOOTSECTOR structure, 177
APIs (application programming interfaces) breakpoints, V86, 34

CloseHandle interface, 41

351

352

Index

C

cache
block cache (see block cache)
lookup (see lookup cache)
ServerNameCache, 249-251
(see also memory)
cache blocks, 239, 242
handle for, 234
Call_FSD function, 112, 117-119
file system hook, 124-137
callbacks, 34
MultiMon reference for, 325
protected-mode, 35, 45
Win32, 46-52
calldown chain, 185
canonicalized path, 106
CDFS driver, 146
CDROM FSDs, 157
CDS structure, 338
change notifications (see file change
notifications)
character devices, 8, 145
MONOCFSD, 165-172
mounting/unmounting, 156, 159
registering, 153
(see also FSDs)
CharSrTable table, 159
chentry.exe utility, 341
CIFS (Common Internet File System
Protocol), 287-288
clean pages, 216
Cli_Block_Thread function, 190
client interface, ISFMgr, 5
CloseHandle interface, 41
clusters, 176
code_seg keyword, 149
codepages, 263
commands, SMB, 283-285
Common Internet File System Protocol
(CIFS), 287-288
connecting FSDs, 160-163
ConnectNetTable array, 125, 153, 290
ConnectNetTable table, 120
CreateFile interface, 22, 41
CreateFileMapping service, 66
CreateMailSlot service, 66
CreatePipe service, 64
creating a new folder, 96
Critical Error Handler function (05h), 92

Current Directory Structure structure, 338
Custer, Helen, 56

D

data_seg keyword, 149
datagrams, 280
DDBs (device descriptor blocks), 147
DEBIFS driver, 345
debugging services, 274
default preamble functions, 84
demand page loading, 225-232
device descriptor blocks (DDBs), 147
Device Init stage, 30, 37
establishing provider ID, 120
device objects, 68-70, 299
DeviceloControl interface, 14, 28, 40, 45,
70-72
direct disk reads, 177
MultiMon and, 311, 328
devices, accessing, 26-28
(see also FSDs; VxDs) -
dGetVollnfo function, 111
dialects, SMB, 283-285
directories, page, 224
directory entries, 176, 179-185
locating, 199-201
Dirty flag, 241
dirty pages, 216
disconnecting FSDs, 163-165
aging connections, 165
DISKDUMP program, 177, 243
_Dismount_Local_Drives function, 158
dismounting FSDs, 157-160
dispatch functions, 100-113

IFSMgr common dispatch routine, 91-95

IFSMgr_NetFunction hooks and, 138
for ring 0 functions, 273

DLLs
loading, 9
Multiple Provider Router (MPR), 72
Network Provider, 72
segmentation and, 149

dNetFunc function, 138

DOS (see MS-DOS)

DOS mode (see V86 mode)

dot () in filenames, 20

dProcExit function, 138

drive-based (dis)connections, 160-164

Index

353

DRP (Driver Registration Packet)
structures, 185

dwloControlCode, 41

dynamic FSDs, 148

DYNAPAGE driver, 6, 210-213

E

encodings, character, 263
EnterMustComplete function, 55
event management services, 260-263
exception handlers, installing, 38
exclusive volume locks, 71
Exec_PM_Int service, 76

exporting Win32 services, 45

F

FAT file system, 175, 176-178
virtual (see VFAT driver)
fault handlers, installing, 38
FCB Name, 264
fclose function, 24
FH.EXE utility, 122
fhandle structure, 115, 121-123, 336
file allocation table (see FAT file system)
file change operation ‘
notification of, and FSD calls, 125
objects for, 64
file create operation, ifsreq packet and, 104
file handles
global, 55
IFSMgr’s management of, 6
standard, 60
file sharing
services for, 268
SMB protocol, 281-288, 331
file structure, VFAT, 202-204
file system
layered model of, 183
multithreading, 151
file system drivers (see FSDs)
file system hooks, 124-137
FSHAttr, 135
FSHEnum, 133-135
FSHook, 127-131
FSHQuery, 131-133
MultiMon reference for, 321-324
file sytem drivers, 299
File Transfer Protocol (FTP), 287

Filemon, 303
filenames, 1-3, 20

file objects and, 299

services for, 264—266

Universal Naming Convention

(UNC), 21

files

file objects, 61-63, 298

local, 21-24

remote, 24

SFNs, 115
FileSystemApiHookFunction interface, 125
filtering MultiMon output, 307
_FindDirEntry function, 199-201
FindFirstChangeNotification API, 64
_FindPath function, 198
first-fit algorithm, 255
fopen function, 22, 24
FS_CloseFile function

FSHEnum hook, 133-135

for MONOCEFSD, 170

for VREDIR, 278
FS_ConnectNetResource function, 144
FS_DeleteFile function

FSHAttr hook, 135

FSHQuery hook, 131-133
FS_EnumerateHandle function, 123, 135
FS_GetDiskInfo function, 212
FS_LockFile function, 269
FS_MountVolume function, 144

for VFAT driver, 187
FS_NamedPipeUNCPipeRequest

function, 277

FS_OpenFile function

for MONOCFSD, 169

for VFAT driver, 193-199

" FS_WriteFile function

for MONOCFSD, 171
paging drivers and, 212

FSDs (file system drivers)
calling into (see Call_FSD function)
character (see character devices)
connecting/disconnecting, 160-165
DDBs, 147
FSINFILE remote driver, 172
handle-based function table, 115
IFSMgr and, 6-8
linkage, 144, 152-165
local (see local FSDs)

354

Index

FSDs (file system drivers) (continued)
MONOCEFSD character driver, 165-172
mounting/unmouriting, 154-160
multithreading, 151
network, 291-295
as providers, 120
registering, 153, 253
remote (see remote FSDs)
requests from dispatcher

functions, 112-113
static versus dynamic, 148
volume-based function table, 113
VREDIR interface with, 277-279
(see also VxDs)

FSHALttr hook, 135

FSHEnum hook, 133-135

FSHook monitor, 127-131, 206

FSHQuery hook, 131-133

FSINFILE remote driver, 172

FSKey1, FSKey2 cache keys, 240

FTP (File Transfer Protocol), 287

functions
dispatch (see dispatch functions)
handle-based table, 115
preamble (see preamble functions)
volume-based table, 113

MONOCEFSD, 168
(see also under specific funciton
number)

G

gates, interrupt, privileges and, 35, 44
GetFileInformationByHandle, 53-56
_GetVxDName service, 36

global handles, 55

H

handle-based function table, VREDIR, 278
handlers, interrupt (see interrupts)
handles (see file handles)

heap allocator, 246

heap management services, 254-257
heap routines, 132

HoldCnt and cache locking, 241
Hook_V86_Int_Chain service, 36, 41
HookerFlags variable, 87, 90

hooks
file system hook, 124-137
IFSMgr_NetFunction hook, 324
IFSMgr_SetPathHook, 142-143
Int 21h, 86

HTTP (Hypertext Transport Protocol), 287

1

I/O manager, WinNT, 298-300
1/O Supervisor (see 10S)
IDT (interrupt descriptor table), 35
protected-mode, 35, 40
IFS development aids, 341-346
IFS_IOCTL_21 function, 41
IFSDSPAT monitor driver, 96-99
IFSHLP.SYS driver, 37, 88-92
IFSMgr and, 91
IFSMgr, 4-8
accessing, 41-47
client interface, 5
common dispatch routine, 91-95
dispatcher, MultiMon reference for, 320
file system hook, 321-324 '
FSD linkage and, 144
IFSHLP and, 91
interrupt handlers
~ Int 17h, 95
Int 21h, 79-92
Int 25h, 26h, 94
Int 2fh, 92-94
resource and file handle management, 6
ServerNameCache, 249-251
services for (see services)
system startup and, 37
V86 callback (see V86 callback)
versions of, 253
versus WinNT I/O Manager, 298-300
. versus WinNT Object Manager, 296-298
VREDIR and, 276-281
Windows for Workgroups 3.11 and, 3 °
IFSMgr_Block service, 190
IFSMgr_ClearLoopBack service, 259
IFSMgr_FillHeapSpare service, 257
IFSMgr_FSDParsePath service, 266
IFSMgr_Get_DOSTime service, 258
IFSMgr_Get_NetTime service, 258
IFSMgr_GetHeap service, 132, 246, 255

IFSMgr_GetTimeZoneBias service, 258

Index

355

IFSMgr_InstallFileSystemApiHook
service, 124, 130
IFSMgr_KillEvent service, 262
IFSMgr_LockFile service, 269
IFSMgr_MetaMatch service, 265
IFSMgr_NetFunction service, 124, 137-142
MultiMon reference for, 324
NetFunc hook, 139-142
IFSMgr_ParseOneElement service, 268
IFSMgr_ParsePath service, 142-143, 266
IFSMgr_PNPEvent services, 270
IFSMgr_QueueEvent service, 260-262
IFSMgr_ReassignLockList service, 269
IFSMgr_RegisterCFSD service, 145, 153
IFSMgr_RegisterHeap service, 256
IFSMgr_RegisterMount service, 120, 153
IFSMgr_RegisterNet service, 120, 147, 153
IFSMgr_RemoveFileSystemApiHook
service, 125
IFSMgr_RetHeap service, 257
IFSMgr_Ring0_FilelO service, 76, 101, 125,
135, 271
dispatch functions for, 109
IFSMgr_SchedEvent service, 260-262
IFSMgr_ServerDOSCall service, 101, 125,
259
IFSMgr_SetLoopBack service, 259
IFSMgr_SetPathHook hook, 142-143
IFSMgr_SetReqHook service, 80, 83
preamble for, 139, 141
IFSMgr_SetupConnection service, 147,
160-162, 250
IFSMgr_TransMatch service, 266
IFSMgr_UnassignLockList service, 269
IFSMgr_UnlockFile function, 269
IFSMgr_Wakeup service, 190
IFSMgr_Win32_Get_Ring0_Handle
service, 115, 271
IFSMgr_Win32DupHandle service, 271
IFSMgr_Win32GetVMCurdir service, 271
IFSMgr_Win32MapExtendedHandleToSFT
service, 271
IFSMgr_Win32MapSFTToExtendedHandle
service, 271
ifsreq structure, 7, 334
initializing packet, 101-104
IFSWRAPS library, 344
ILB structure, 186
import modules, loading, 9

Init Complete stage, 30, 37, 47
initializing

file system, 29-41

IFSMgr heap, 254

ifsreq packet, 101-104

VFAT driver, 185
installed preamble functions, 84
installing

exception handlers, 38

interrupt handlers, 38, 44

MultiMon, 304

Netscape Navigator, 8-14
instances of Kernel32 object types, 56
Int21Dispatch function, 54, 73-75
intermediate WinNT drivers, 299
inter-process communication

IpC), 291-295

interrupts

IDT, 35

Int 17h handler, 95

Int 21h, 6

25h function, preamble for, 85-88

716¢h function (see file objects)
71a0h function, 1
71a3h, 71a4h, 71a5h, 71a8h
functions, 83
71a6h function, 54
dispatch functions, 109
handlers, 79-92
MultiMon reference, 318
V86 handlers, 24
Int 25h, 26h handlers, 94
Int 2fh
05h function, 92
11h function, 92
168Ah and 168Dh functions, 39
dispatch functions, 109
handler, 92-94
MultiMon reference, 319
Int 30h handler, 48
IVT (interrupt vector table), 35
Int 21h function 25h and, 86

KRNL386 handlers, installing, 38, 44

MultiMon reference for, 325
protected-mode handlers for, 43
System Critical Init stage, 30
V86 handlers for, 41

IOCTL services, 70-72

IOR (I/O Request Descriptor), 189

356

Index .

ioreq structure, 333
ToreqDerefConnection function, 147, 163
10S (I/O Supervisor), 184

linkage block (see ILB structure)

reading boot sector, 188
10S_Register service, 185
1I0S_Requestor_Service service, 185
10S_SendCommand service, 185, 189
IOSMapIORSTol21 service, 191
IPC (inter-process

communication), 291-295

ir_hfunc member, 106
IRPs (I/0 request packets), 300
Is71_A3_A4_A5_A8 function, 83
ISP (JOS Services Packet), 188
ISP_CREATE_IOP service, 188
IVT (interrupt vector table), 35, 86

K
K32Init call, 39
K320B]J_ (see Kernel32 objects)
Kernel32
DLL, protected-mode callbacks, 45
Init stage, 30
Initialized message, 39
objects, 53-61
device objects, 68-70
file objects, 61-63
page loader, 225-227
kernel-mode drivers (WinNT), 300
KRNL386, installing interrupt handlers, 38,
44

L

layered file system model, 183
LeaveMustComplete function, 55
libraries (see DLLs)

linear executeable (LE) file format, 149
link objects, WinNT, 297

linkage, FSD, 144, 152-165

loading virtual devices, 69

local.
files, 21-24
FSDs, 7, 146

IFSMgr_RegisterMount and, 120
mounting/unmounting, 154-159
hookers, 86
long directory entries, 179, 200

long filenames, 1-3, 20
lookup cache, 234, 246-249
Lower72_Preambles table, 80

default preamble functions for, 84
low-level WinNT drivers, 299

M

mailslots, 66, 292-295
main IFSMgr heap, 254
MapViewOfFile API, 68, 230, 231
MatchBasisName service, 266
matching filenames, services for, 265
MaxBPS key, 34
MAXDOSFUNC constant, 80
memory

allocating for breakpoints and

callbacks, 34

block cache and, 235-239

context, 11

DLLs and, 10

heap management services, 254-257

private arena, 11

private VM, allocating, 83

shared arena, 10
memory-mapped files, 66, 229-232
menu commands, MultiMon, 307
message block format, 281-283
Microsoft Netware Networks, 147
Microsoft Networks, 147

VREDIR (see VREDIR)
miniport drivers, 184
monitor drivers, MultiMon, 305

writing, 313-315
MONOCFSD driver, 165-172
mounting

FSDs, 154-157

VFAT volumes, 187-192
_MountVol routine, 188
MountVolTable array, 120, 125, 129, 153
MPR (Multiple Provider Router) DLL, 72
MS-DOS

API functions, 80

DOS mode (see V86 mode)

SFT and CDS structures, 337-338

time representation, 257
MultiMon utility, 4, 8, 303-310

adding to Reporter, 315-317

design and implemenation, 310-312

filtering output of, 307

Index

357

FSHook monitor, 127-131
monitoring NetBIOS, 281
NetFunction hook, 139-142
paging and, 206-208
quick reference, 318-332
sampling startup timeline with, 30
tracing VREDIR operations, 288-291
VCache services and, 243-245
Multiple Provider Router (MPR) DLL, 72
multithreading, 151
per-thread data, 339
must-complete sections, 55

N

Name Cache, 199
named pipes, 64, 295
names
device, 26-28
file (see filenames)
NCB structure, 279
Net time specification, 258
NetBIOS
MultiMon reference for, 330
VREDIR interface with, 279-281
NetFunction hook, 137-142
MultiMon reference for, 324
NetIDs array, 120
Netscape Navigator, loading, 8-14
Network Control Block (NCB)
structure, 279
network FSDs, IPC for, 291-295
network FSDs (see remote FSDs)
Network Provider DLLs, 72
network redirectors
functions for (11xxh), Int 2fh, 92-94
IFSMgr_NetFunction hook, 137-142
networks
FSDs (see remote FSDs)
management services for, 259
VREDIR and, 275-277
new folder, creating, 96
NT Executive, 297
nt32 application, 22
NWREDIR driver, 147
NWSERVER driver, 147

o

object manager, WinNT, 296-298
object type instances, 56

OpenFile interface, 22, 24
opening files, VFAT driver and, 193-199
ORD_0001 (see VxDCall function)

" - output, MultiMon (see MultiMon utility)

p

_PageAttach service, 12
_PageCommit service, 214, 226
PAGEFILE driver, 210-213
PageReserve service, 227, 230
_PagerRegister service, 214
pagers, 213-224
PAGERS utility, 214
pages, memory (see memory)
PAGESWAP driver, 210-213
paging
demand page loading, 225-232
memory-mapped files and, 229-232
page tables and directories, 224
pager action functions, 216
Pager Descriptor (PD) structure, 213
Win95 paging file, 205-213
ParsedPath structure, 106, 267
Path Cache, 199
PathElement structure, 107
pathnames, 20, 106
paths
check routine, 142
hooking, 142-143
multithreading, 151
parsing services, 266-268
_PathToShRes function, 112, 156, 163
PD (Pager Descriptor) structure, 213
PDB (process database), 57
per-thread data, 339
per-VM data, 338
Pietrek, Matt, 57, 348
pipe objects, 64
pipes, named, 295
PIPESTDX driver, 135, 145
plug-and-play services, 270
plus (+) in filenames, 20
port drivers, 184
preamble functions, 80, 83-88
IFSMgr_SetReqHook, 139
for Int 21h function 25h, 85-88
private memory arena, 11
privileges, interrupt gates and, 35, 44
process database (PDB), 57

358

Index

protected mode, 6
accessing IFSMgr from, 43—46
callbacks, 35, 45
IDT for, 35, 40
interrupt handlers (see interrupts)
providers, FSDs and, 120

Q

QPAGERS driver, 217

R

real-mode drivers, 185
Register_Win32_Services service, 45
registering

block cache, 241-243

FSDs, 153, 253

mailslots, 292

pagers, 225

VFAT driver, 185
registry, MultiMon and, 310
remote

drives, IFSMgr_RegisterNet and, 120

files, 24

FSDs, 8, 146

FSINFILE driver, 172

ReplaceGlobalEnv call, 39
resource block structure, VFAT, 191-192
resources, IFSMgr’s management of, 6
ring 0

accessing IFSMgr from, 46

converting address, 36

dispatch point and, 101

file I/O services, 271-272

IFSMgr clients, 6

S

~Schulman, Andrew, 46, 348-
SCSI device architecture, 184
segmentation, VxD, 148-151
select calls, Winsock, 16
ServerNameCache, 249-251
service providers, 120
services

block cache, 241-243
debugging, 274

event management, 260-263
file-change object, 64

file object, 62

file sharing, 268
filename-related, 264-266
heap management, 254-257
IOCTL, 70-72
mailslot object, 66
memory-mapped file object, 66, 68
network management, 259
paging and, 210-213
path parsing, 266-268
pipe object, 65
plug and play, 270
for registering FSDs, 253
ring 0 file I/O, 271-272
time management, 257-259
Winl6 file services, 77
Win32 support, 270
Set_PM_Int_Vector service, 35, 40
Set_V86_Int_Vector service, 35
SFNs (system file numbers), 115
SFT (System File Tables) structure, 337
shared memory arena, 10
sharing files (see file sharing)
shell resources, 112, 113, 121-123, 335
short directory entries, 179, 200
shres structure, 335
_SignalID service, 152
slash (/) in filenames, 20
SMB file sharing protocol, 281-288
MultiMon reference for, 331
sockets, 14-18
space character in filenames, 20
spare heap, 257
spare IFSMgr heap, 254
sparse memory allocator; 235
SPIs (service provider interfaces), 120
SPOOLER driver, 145
SR.EXE utility, 121
SrTable table, 158
standard devices, 21, 26
standard handles, 60
startup, file system, 29-41
static FSDs, 148
static variables, 101
subst command, 3

surfing operation, Web (example), 14-18

swapping versus paging, 206, 215
(see also paging) '

symbolic link objects, WinNT, 297

synchronization services, VMM, 262

Index

359

Sys VM Init stage, 37

System_Control service, 39

System Critical Init stage, 30, 36
system file numbers (see SFNs)

System File Tables (SFT) structure, 337
system startup, 29-41

System VM Init stage, 30

system volume table, 113

SysVolTable array, 113-115, 154

T

Table_2f11 table, 94

tainted pages, 216

Take_VCache_Page (see VCache_
RelinquishPage)

time management services, 257-259

toolbar, MultiMon, 307

tracing VREDIR operators, 288-291

tracks, 176

TSDs (type-specific drivers), 184

type-specific drivers (TSDs), 184

U

UNC (Universal Naming Convention), 21
UNC-based (dis)connections, 162, 165

Unicode character encodings, 263

Unicode filenames, 264

uniform resource locators (URLs), 26

UniToBCSPath service, 133

Universal Naming Convention (UNC), 21

unloading virtual devices, 70

UnmapViewOfFile API, 68, 230

UpdateServerNameCache function, 250

Upper8E_Preambles table, 80

URLs (uniform resource locators), 26

use_info_1 structure, 161

_UseAdd function, 160-162

_UseDel function, 163

| 4

V86 callback, 90
V86 mode, 5
accessing IFSMgr from, 41
breakpoint storage, 34
IDT for, 35
Int 21h handlers, 24
interrupt handlers (see interrupts)
V86_Int_Chain function, 91

variables

IFSHLP.SYS, 90

static, 101
VCache driver

block cache and, 235

lookup cache (see lookup cache)

monitoring, 243-245
VCACHE, MultiMon reference for, 326
_VCache_CloseLookupCache service, 248
_VCache_CreateLookupCache service, 248
VCache_Deregister service, 242
VCache_FindBlock service, 242
_VCache_Lookup service, 249
VCache_Register service, 241
VCache_RelinquishPage service, 237-239
_VCache_UpdateLookup service, 249
VCache_UseThisPage service, 239
VCOND device

HM_ENUMHANDLE bug, 135
VCOND driver, 145
VDEF driver, 146
VDSs (vendor supplied drivers), 184
vendor supplied drivers (VDSs), 184
versions

IFSMgr, 253

VFAT driver, 175
versions, Windows95, xi
VFAT driver, 21, 146

creating resource block

structure, 191-192

file structure, 202-204

initializing/registering, 185

mounting, 187-192

opening VFAT files, 193199

versions of, 175
virgin pages, 216
virtual

console driver (see VCOND driver)

devices (see VxDs)

machine, bitness of, 45

pages, 220

redirector (see VREDIR)
Virtual-86 mode (see V86 mode)
VMM

MultiMon reference for, 329

pagers, 213-224

synchronization services, 262
VMM_Replace_Global_Environment

function, 39

360

Index

VMPOLL driver, 37
VNETBIOS driver, 279
volinfo structure, 334
VOLSR.VXD, 122
volume-based function table, 113
MONOCFSD, 168
volume locks, 71
FSD calls and, 125
volume tracking drivers (VIDs), 184
VREDIR driver, 147
IFSMgr interface, 276281
NetBIOS interface, 279-281
network components and, 275-277
tracing operations, 288-291
VSERVER driver, 6, 147
VTDs (volume tracking drivers), 184
VWIN32 driver, 6
DeviceloControl interface and, 40,
70-72.
MuitiMon reference for, 328
registering pagers, 225
Win32 callback and, 46
VWIN32_Int32Dispatch function, 73-75
vxd.h library, 342-344
VxDCall function, 46, 47
VXDLDR_LoadDevice service, 69
VxDs
DEBIFS driver, 345
device objects, 68-70
initialization order, 30
IOCTL services, 70-72
I0S (see 10S)
kernel-mode drivers versus, 300
loaing/unloading, 69
‘Multimon and, 305
segmentation, 148-151
Win32 services, 45
writing a monitor driver, 313-315
(see also FSDs)

W

W386_Get_Win32_API function, 45
Wakeup_Thread function, 190
WDM (Win32 Driver Model), 301
Web surfing operation (example), 14-18
Winl6

APL 6

file services, 77

' Win16/Protect mode (see protected mode)

Win32
APIs, 6, 53-61
callback, 46-52
Driver Model (WDM), 301
MultiMon and, 311
page loader, 227-228
services, 45

Win32 callback for, 47-52

support services for, 270
time specification, 258

Win32/Protect mode (see protected mode)

win386.swp file, 208-210
Windows 3.x, paging file for, 205
Windows 95
block device drivers, 184—185
directory entries, 179-185
Int 21h functions and, 86
kernel-mode drivers in, 301
pagers, 213-224
paging file, 205-213
WDM and, 301
Windows for Workgroups 3.11
IFSMgr and, 3
Int 21h functions and, 86
Windows NT
I/O Manager, 298-300
kernel-mode drivers, 300
NT Executive, 297
Object Manager, 296-298
object types, 56
protected-mode callbacks, 46
WDM and, 301
WNetCancelConnection2 API, 163
WNetConnectionDialogl API, 160
writing a monitor driver, 313-315
WSOCK, 14
WSOCK32, 14

X

x_ConvertHandleToK32Object
function, 56, 58

x_GetExtendedError function, 54

X_MaybeChangePSP function, 54

x_RefHandleToK32O0bject function, 58

x_RestorePSP function, 54
X_Win32HandleToK32Object
function, 58-60

About the Author

Stan Mitchell is a consulting software engineer in Silicon Valley. He specializes in
driver and system level programming on the Wintel platform. Stan earned a Bach-
elor of Science degree from Wayne State University in 1970 and a Master of
Science from University of Waterloo in 1976.

He entered the microcomputer field in 1979. His early projects emphasized logic
design of single-board microcomputers and micro-controllers. The most memo-
rable project during this period was the design of a full-SCSI host adapter with
8048 firmware at Adaptec, Inc.

After the introduction of the IBM-PC, Stan shifted his focus to MS-DOS system soft-
ware and then to MS-Windows. His recent projects have included developing a
NetBIOS layer over TCP/IP for NetManage and a Windows 95 file system monitor
for Xerox/XSoft.

Stan and his wife Maggie, make Milpitas, CA, their home. In his spare time, he
likes to romp with his dogs (Yanni and Munchkin), play a serious game of table
tennis, and browse the shelves of nearby bookstores.

Colophon

The animal featured on the cover of Inside the Windows 95 File System is a repre-
sentative of one of the more than 65,000 species of mollusks. There are six classes
of mollusk. The largest of these classes is the gastropod. The coiled shell on the
animal on the cover of this book is typical of many, but not all, gastropods. This
mollusk may be an Astraea Heliotropium, a native of the waters surrounding New
Zealand. The Astraea Heliotropium grows to a size of three to four inches, and
has a lovely iridescent purplish-pink shell.

No species shows as much diversity of shape and size as the mollusk. Despite this
diversity, most mollusks have the same basic body plan. The word mollusk means
“soft bodied.” The soft mollusk body is composed of a combined head-foot
containing the central nervous system and a layer of tissue called the mantle that
covers the internal organs. The mantle also secretes the shell that covers the
mollusk’s body. The shell is part of the animal and grows with it.

Edie Freedman designed the cover of this book, using a 19th-century engraving
from the Dover Pictorial Archive. The cover layout was produced with Quark
XPress 3.3 using the ITC Garamond font.

The inside layout was designed by Edie Freedman and Nancy Priest and imple-
mented in FrameMaker 5.0 by Mike Sierra. The text and heading fonts are ITC
Garamond Light and Garamond Book. The illustrations that appear in the book
were created in Macromedia Freehand 5.0 by Chris Reilley. This colophon was
written by Clairemarie Fisher O’Leary.

¥ More Titles from O’Reilly 4]

Windows

Inside the Windows 95 Registry

: 8| By Ron Petrusha

1st Ediition August1996
594 pages, includes diskette
ISBN 1-56592-170-4

This book covers remote registry access,
differences between the Win95 and NT
registries, and registry backup. You'll also
find a thorough examination of the role

“ | that the registry plays in OLE, coverage of
undocumented registry services, and more. Petrusha shows pro-
grammers how to access the Win95 registry from Win32, Win16,
and DOS programs, in C and Visual Basic. VxD sample code is
also included. The book includes a diskette with registry tools
such as REGSPY, a program that shows exactly how Windows
applications, libraries, and drivers use settings in the registry.

Windows NT in a Nutshell

By Eric Pearce

1st Edition June 1997 (est.)

342 pages, ISBN 1-56592-251-4

Anybody who installs Windows NT, creates a
user, or adds a printer is an NT system
administrator (whether they realize it or
not). This book organizes NT’s complex
4.0 GUI interface, dialog boxes, and multi-
tude of DOS-shell commands into an easy-
to-use quick reference for anybody who
uses or manages an NT system. It features a new tagged callout
approach to documenting the GUI as well as real-life examples of
command usage and strategies for problem solving, with an empha-
sis on networking. Windows NT in a Nutshell will be as useful to the
single-system home user as it will be to the administrator of a
1,000-node corporate network.

WINDOWS NT

IN A NUTSHELL

Inside the Windows 95 File System

By Stan Mitchell

1st Edition May 1997

400 pages, ISBN 1-56592-200-X

This book details the Windows 95 File
System, as well as the new opportunities
and challenges it brings developers. Over
the course of the book, the author pro-
gressively strips away the layers of the
Win95 File System, which reside in a
component named Installable File System
Manager or IFSMgr, providing the reader with information crucial
for effective File System development. Its “hands-on” approach
will help developers become better.equipped to make design
decisions using the new Win95 File System features.

Windows 95
File System

Windows Annoyances

By David A. Karp

1st Edition June 1997

300 pages (est,), ISBN 1-56592-266-2
Windows Annoyances, a comprehensive
resource for intermediate to advanced
users of Windows 95 and NT 4.0, details
step-by-step how to customize your
Win95/NT operating system through an
extensive collection of tips, tricks, and

“Gammisig Vi3 and WINT 10

Windows
Annoyances

workarounds.

You’ll learn how to customize every aspect of these systems, far
beyond the intentions of Microsoft. An entire chapter on the reg-
istry explains how to back up, repair, compress, and transfer por-
tions of the registry for personal customization. Win95 users will
discover how Plug and Play, the technology that makes Win95 so
hardware-compatible, can save time and improve the way you
interact with your computer. You'll also learn how to benefit from
the new 32-bit software and hardware drivers that support such
features as improved multitasking and long filenames.

O’REILLY"

70 ORDER: 800-998-9938 » order@ora.com e hiip://www.ora.com/
OUR PRODUCTS ARE AVAILABLE AT A BOOKSTORE OR SOFTWARE STORE NEAR YOU.
FOR INFORMATION: 800-998-9938 o 707-829-0515 e info@ora.com

C and C++

C++: The Core Language

z By Gregory Satir & Doug Brown
1st Ediition October 1995
230 pages, ISBN 1-56592-116-X
C++: The Core Language is a first book
for C programmers transitioning to C++,
an object-oriented enhancement of the
C programming language. Designed to
get readers up to speed quickly, this
book thoroughly explains the important
concepts and features and gives brief overviews of the rest of the
language. Covers features common to all C++ compilers, includ-
ing those on UNIX, Windows NT, Windows, DOS, and Macintosh.

o —

Ly ——

Practical C++ Programming

By Steve Oualline
—— 1st Edition September 1995
i 584 pages, ISBN 1-56592-139-9
grrgctlcal G+ Fast becoming the standard language

of commercial software development,
C++ is an update of the C programming
language, adding object-oriented features
that are very helpful for today’s larger
graphical applications.

-

Practical C++ Programming is a com-
plete introduction to the C++ language for the beginning pro-
grammer, and also for C programmers transitioning to C++.
Topics covered include good programming style, C++ syntax
(what to use and what not to use), C++ class design, debugging
and optimization, and common programming mistakes. At the
end of each chapter are a number of exercises you can use to
make sure you've grasped the concepts. Solutions to most are
provided.

Practical C Programming
oo By Steve Oualline
3rd Edition July 1997 (est,)
475 pages, ISBN 1-56592-306-5

There are lots of introductory C books,
but this new edition of Practical C
Programming is the one that has the no-
nonsense, practical approach that has
made Nutshell Handbooks® so popular. C
programming is more than just getting the
syntax right. Style and debugging also play a tremendous part in
creating programs that run well and are easy to maintain.

The third edition of Practical C Programming teaches how to
create programs that are easyto read, debug, and maintain. It
features more extensive examples, offers an introduction to
graphical development environments, describes Electronic
Archaeology (the art of going through someone else’s code), and
stresses practical rules. The book covers several Windows com-
pilers, in addition to UNIX compilers. Program examples conform
to ANSI C.

Checking C Programs with lint

By lan E Darwin
Ist Edition October 1988

i 82 pages, ISBN 0-937175-30-7
M The lint program checker has proven time
* and again to be one of the best tools for

llnt finding portability problems and certain
——=—==—— | types of coding errors in C programs. Lint
verifies a program or program segments
against standard libraries, checks the code
for common portability errors, and tests

the programming against some tried and true guidelines. Linting
your code is a necessary (though not sufficient) step in writing
clean, portable, effective programs. This book introduces you to
lint, guides you through running it on your programs, and helps
you interpret lint’s output.

Cregraming Uty

[R ——

O’REILLY"

70 ORDER: 800-998-9938 e order@ora.com e hitp://www.ora.com/
OUR PRODUCTS ARE AVAILABLE AT A BOOKSTORE OR SOFTWARE STORE NEAR YOU.
FOR INFORMATION: 800-998-9938 o 707-829-0515 e info@ora.com

Perl

Programming Perl, Second Edition

By Larry Wall, Tom Christiansen,
& Randal L. Schwartz

2nd Edition September 1996
676 pages, ISBN 1-56592-149-6

Programming Perl, Second Edition, is
coauthored by Larry Wall, the creator of
Perl. Perl is a language for easily manipu-
lating text, files, and processes. It provides
a more concise and readable way to do
many jobs that were formerly accom-
plished (with difficulty) by programming with C or one of the
shells. This heavily revised second edition contains a full expla-
nation of Perl version 5.003.

oy

rammi

|- i

CGI Programming on the World Wide Web

By Shishir Gundavaram
Ist Edition March 1996
450 pages, ISBN 1-56592-168-2

This book offers a comprehensive explana-
tion of CGI and related techniques for peo-
ple who hold on to the dream of providing
their own information servers on the Web.

on the Workd Wide Web

=) st

It starts at the beginning, explaining the

Learning Perl, Second Edition
= oy B Randal L. Schwartz
I Foreword by Larry Wall
2nd Edition July 1997
400 pages, ISBN 1-56592-284-0

Lear nmw
Perl

This second edition of Learning Perl,
with a foreword by Perl author Larry Wall,
fully covers Perl, Version 5. In this new
edition, program examples and exercise
answers have been radically updated to
reflect typical usage under Perl 5, and numerous details have
been added or modified. In addition, you’ll find new sections
introducing Perl references and CGI programming.

Learning Perl, Second Edition is ideal for system administra-
tors, programmers, and anyone else wanting a down-to-earth
introduction to this useful language. Written by a Perl trainer, its
aim is to make a competent, hands-on Perl programmer out of
the reader as quickly as possible. The book takes a tutorial
approach and includes hundreds of short code examples, along
with some lengthy ones. The relatively inexperienced program-
mer will find Zearning Per! easily accessible. For a comprehen-
sive and detailed guide to advanced programming with Perl, read
O'Reilly’s companion book, Programming Perl, Second Edition.

value of CGI and how it works, then moves swiftly into the subtle
details of programming.

Perl 5 Desktop Reference

By Johan Vromans

1st Edition February 1996

44 pages, ISBN 1-56592-187-9

This is the standard quick-reference guide for
the Perl programming language. It provides a

complete overview of the language, from vari-

ables to input and output, from flow control to
regular expressions, from functions to docu-

ment formats—all packed into a convenient,
carry-around booklet. Updated to cover Perl version 5.003.

Mastering Regular Expressions

By Jeffiey E. E. Fried)

Ist Edition January 1997

368 pages, ISBN 1-56592-257-3

Regular expressions, a powerful tool for
manipulating text and data, are found in
scripting languages, editors, programming
environments, and specialized tools. In
this book, author Jefirey Friedl leads you

e T o Pt O T

Re vul ur
F\pu ssions

~=«Z2Z | through the steps of crafting a regular

expression that gets the job done. He
examines a variety of tools and uses them in an extensive array
of examples, dedicating an entire chapter to Perl.

O’REILLY”

70 ORDER: 800-998-9938 e order@ora.com e hitp://www.ora.com/
OUR PRODUCTS ARE AVAILABLE AT A BOOKSTORE OR SOFTWARE STORE NEAR YOU.
FOR INFORMATION. 800-998-9938 o 707-829-0515 e info@ora.com

How to stay in touch with O’Reilly

1. Visit Our Award-Winning Web Site
http.//www.ora.com/

*“Top 100 Sites on the Web” — PC Magazine
“Top 5% Web sites” — Point Communications
Y “3-Star site” — The McKinley Group

Our web site contains a library of comprehensiveproduct
information (including book excerpts and tables of
contents), downloadable software, background articles,
interviews with technology leaders, links to relevant sites,
bo<t)]ll(cover art, and more. File us in your Bookmarks or
Hotlist!

2. Join Our Email Mailing Lists

New Product Releases

To receive automatic email with brief descriptions of all
new O'Reilly products as they are released, send email to:
listproc@online.ora.com

Put the following information in the first line of your
message (not in the Subject field):

subscribe ora-news “Your Name”of “Your
Organization” (for example: subscribe ora-news Kris
Webber of Fine Enterprises)

0’Reilly Events

If you'd also like us to send information about trade show
events, special promotions, and other O'Reilly events,
send email to: listproc@online.ora.com

Put the following information in the first line of your
message (ot in the Subject field):

subscribe ora-events “Your Name” of “Your
Organization”

Get Examples from Our Books
via FTP

There are two ways to access an archive of example files
from our books:

Regular FTP
o fipto:

ftp.ora.com

(login: anonymous

password: your email address)
* Point your web browser to:

ftp://ftp.ora.com/

FTPMAIL

¢ Send an email message to:
ftpmail@online.ora.com
(Write “help” in the message body)

®

4. Visit Our Gopher Site

e Connect your gopher to:
gopher.ora.com

 Point your web browser to:
gopher://gopher.ora.com/

e Telnet to:
gopher.ora.com
login: gopher

5. Contact Us via Email

order@ora.com
To place a book or software order online. Good for North
American and international customers.

subscriptions@ora.com
To place an order for any of our newsletters or
periodicals.

books@ora.com
General questions about any of our books.

software@ora.com
For general questions and product information about our
software. Check out O'Reilly Software Online at
http://software.ora.com/ for software and technical
support information. Registered O'Reilly software users
send your questions to: website-support@ora.com

cs@ora.com
For answers to problems regarding your order or our
products.

booktech@ora.com
For book content technical questions or corrections.

proposals@ora.com
To submit new book or software proposals to our
editors and product managers.

international @ora.com
For information about our international distributors
or translation queries. For a list of our distributors
outside of North America check out:
http://www.ora.com/www/order/country.html

O'Reilly & Associates, Inc.
101 Morris Street, Sebastopol, CA 95472 USA
TEL 707-829-0515 or 800-998-9938
(6am to 5pm PST)
FAX 707-829-0104

O’REILLY"

70 ORDER: 800-998-9938 o order@ora.com e htip://www.ora.com/
OUR PRODUCTS ARE AVAILABLE AT A BOOKSTORE OR SOFTWARE STORE NEAR YOU.
FOR INFORMATION: 800-998-9938 o 707-829-0515 ¢ info@ora.com

WesProGgrAMMING

‘Apache: The Definitive Guide

Building Your Own Web
Conferences

Building Your Own Website

Building Your Own Win-CGl
Programs

CGI Programming for the World
Wide Web

Designing for the Web

HTML: The Definitive Guide,
2nd Ed.

JavaScript: The Definitive Guide,
2nd Ed.

Learning Perl

Programming Perl, 2nd Ed.

Mastering Regular Expressions

WebMaster in a Nutshell

Web Security & Commerce

Web Client Programming with
Perl

World Wide Web Journal

UsinG THE INTERNET

Smileys

The Future Does Not Compute

The Whole Internet User’s Guide
& Catalog

The Whole Internet for Win 95

Using Email Effectively

Bandits on the Information
Superhighway !

JAva SERIES

Exploring Java

Java AWT Reference

Java Fundamental Classes
Reference

Java in a Nutshell

Java Language Reference

Java Network Programming

Java Threads

Java Virtual Machine

SOFTWARE
WebSite™ 1.1
WebSite Professional™
Building Your Own Web
Conferences
WebBoard™
PolyForm™
Statisphere™

SONGLINE GUIDES
NetActivism NetResearch
Net Law NetSuccess
NetLearning ~ NetTravel
Net Lessons

Titles from O’Reilly

Please note that upcoming titles are displayed in italic.

SYSTEM ADMINISTRATION

Building Internet Firewalls

Computer Crime: A
Crimefighter’s Handbook

Computer Security Basics

DNS and BIND, 2nd Ed.

. Essential System Administration,

2nd Ed.

Getting Connected: The Internet
at 56K and Up

Linux Network Administrator’s
Guide

Managing Internet Information
Services

Managing NFS and NIS

Networking Personal Computers
with TCP/IP

Practical UNIX & Internet
Security, 2nd Ed.

PGP: Pretty Good Privacy

sendmail, 2nd Ed.

sendmail Desktop Reference

System Performance Tuning

TCP/IP Network Administration

termcap & terminfo

Using & Managing UUCP

Volume 8: X Window System
Administrator’s Guide

Web Security & Commerce

UNIX

Exploring Expect

Learning VBScript

Learning GNU Emacs, 2nd Ed.

Learning the bash Shell

Learning the Korn Shell

Learning the UNIX Operating
System

Learning the vi Editor

Linux in a Nutshell

Making TeX Work

Linux Multimedia Guide

Running Linux, 2nd Ed.

SCO UNIX in a Nutshell -

sed & awk, 2nd Edition

Tcl/Tk Tools

UNIX in 2 Nutshell: System V
Edition

UNIX Power Tools

Using csh & tsch

When You Can’t Find Your UNIX
System Administrator

Writing GNU Emacs Extensions

Wes Review Stupio

SERIES

Gif Animation Studio

Shockwave Studio

Winpows

Dictionary of PC Hardware and
Data Communications Terms

Inside the Windows 95 Registry

Inside the Windows 95 File
System

Windows Annoyances

Windows NT File System
Internals

Windows NT in a Nutshell

PROGRAMMING

Advanced Oracle PL/SQL
Programming

Applying RCS and SCCS

C++: The Core Language

Checking C Programs with lint

DCE Security Programming

Distributing Applications Across

DCE & Windows NT

Encyclopedia of Graphics File
Formats, 2nd Ed.

Guide to Writing DCE
Applications

lex & yacc

Managing Projects with make

Mastering Oracle Power Objects

Oracle Design: The Definitive
Guide }

Oracle Performance Tuning, 2nd
Ed.

Oracle PL/SQL Programming

Porting UNIX Software

POSIX Programmer’s Guide

POSIX.4: Programming foi the
Real World

Power Programming with RPC

Practical C Programming

Practical C++ Programming

Programming Python

Programming with curses

Programming with GNU Software

Pthreads Programming

Software Portability with imake,
2nd Ed.

Understanding DCE

Understanding Japanese
Information Processing

UNIX Systems Programming for
SVR4

O’REILLY"

70 ORDER: 800-998-9938 © order@ora.com e hitp://www.ora.com/
OUR PRODUCTS ARE AVAILABLE AT A BOOKSTORE OR SOFTWARE STORE NEAR YOU.

FOR INFORMATION: 800-998-9938 o 707-829-0515 o info@ora.com

BERKELEY 4.4 SOFTWARE

DistriBuTiON ‘

4.4BSD System Manager’s
Manual

4.4BSD User’s Reference Manual

4.4BSD User’s Supplementary
Documents

4.4BSD Programmer’s Reference
Manual

4.4BSD Programmer’s
Supplementary Documents

X Programming

Vol. 0: X Protocol Reference
Manual

Vol. 1: Xlib Programming Manual

Vol. 2: Xlib Reference Manual

Vol. 3M: X Window System User’s
Guide, Motif Edition

Vol. 4M: X Toolkit Intrinsics
Programming Manual, Motif
Edition

Vol. 5: X Toolkit Intrinsics
Reference Manual

Vol. 6A: Motif Programming
Manual)

Vol. 6B: Motif Reference Manual

Vol. 6C: Motif Tools

Vol. 8 : X Window System
Administrator’s Guide

Programmer’s Supplement for
Release 6

X User Tools

The X Window System in a
Nutshell

CAREER & BUSINESS

Building a Successful Software
Business

The Computer User’s Survival
Guide

Love Your Job!

Electronic Publishing on CD-
ROM

TRAVEL
Travelers' Tales: Brazil
Travelers' Tales: Food
Travelers' Tales: France
Travelers' Tales: Gutsy Women
Travelers' Tales: India
Travelers' Tales: Mexico
Travelers’ Tales: Paris
Travelers' Tales: San Francisco
Travelers' Tales: Spain
Travelers’ Tales: Thailand
Travelers' Tales: A Woman’s
World

International Distributors

UK, Europe, Middle East
and Northern Africa (except
France, Germany, Switzerland, &
Ausria)

INQUIRIES
International Thomson Publishing
Europe
Berkshire House
168-173 High Holborn
London WC1V 7AA, United Kingdom
Telephone: 44-171-497-1422
Fax: 44-171-497-1426
Email: itpint@itps.co.uk
ORDERS
International Thomson Publishing
Services, Ltd.
Cheriton House, North Way
Andover, Hampshire SP10 5BE,
United Kingdom
Telephone: 44-264-342-832
(UK orders)
Telephone: 44-264-342-806
(outside UK)
Fax: 44-264-364418 (UK orders)
Fax: 44-264-342761 (outside UK)
UK & Eire orders: itpuk@itps.co.uk
International orders: itpint@itps.co.uk

France

Editions Eyrolles

61 bd Saint-Germain
75240 Paris Cedex 05
France

Fax: 33-01-44-41-11-44

FRENCH LANGUAGE BOOKS
All countries except Canada
Phone: 33-01-44-41-46-16
Email: geodif@eyrolles.com

ENGLISH LANGUAGE BOOKS
Phone: 33-01-44-41-11-87
Email: distribution@eyrolles.com

Australia

WoodsLane Pty. Ltd.

7/5 Vuko Place, Warriewood NSW 2102
PO. Box 935, Mona Vale NSW 2103
Australia

Telephone: 61-2-9970-5111

Fax: 61-2-9970-5002

Email: info@woodslane.com.au

Germany, Switzerlahd,
and Austria

INQUIRIES

O’Reilly Verlag

Balthasarstr. 81

D-50670 Koln

Germany

Telephone: 49-221-97-31-60-0
Fax: 49-221-97-31-60-8
Email: anfragen@oreilly.de
ORDERS

International Thomson Publishing
Konigswinterer Strafe 418
53227 Bonn, Germany
Telephone: 49-228-97024 0
Fax: 49-228-441342

Email: order@oreilly.de

Asia (except Japan & India)
INQUIRIES _

International Thomson Publishing Asia’
60 Albert Street #15-01

Albert Complex

Singapore 189969

Telephone: 65-336-6411

Fax: 65-336-7411

ORDERS

Telephone: 65-336-6411
Fax: 65-334-1617
thomson@signet.com.sg

O’REILLY"

New Zealand

WoodsLane New Zealand Ltd.
21 Cooks Street (P.O. Box 575)
Wanganui, New Zealand
Telephone: 64-6-347-6543

Fax: 64-6-345-4840

Email: info@woodslane.com.au

Japan

O’Reilly Japan, Inc.
Kiyoshige Building 2F
12-Banchi, Sanei-cho
Shinjuku-ku

Tokyo 160 Japan
Telephone: 81-3-3356-5227
Fax: 81-3-3356-5261
Email: kenji@ora.com

India

Computer Bookshop (India) PVT. LID.
190 Dr. D.N. Road, Fort

Bombay 400 001

India

Telephone: 91-22-207-0989

Fax: 91-22-262-3551

Email: chsbom@giasbm01.vsnl.net.in

The Americas

O’Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472 U.S.A.
Telephone: 707-829-0515
Telephone: 800-998-9938 (U.S. &
Canada)

Fax: 707-829-0104

Email: order@ora.com

Southern Africa
International Thomson Publishing
Southern Africa

Building 18, Constantia Park

240 Old Pretoria Road

PO. Box 2459

Halfway House, 1685 South Africa
Telephone: 27-11-805-4819

Fax: 27-11-805-3648

70 ORDER: 800-998-9938 order@ora.com e htip://www.ora.com/
OUR PRODUCTS ARE AVAILABLE AT A BOOKSTORE OR SOFTWARE STORE NEAR YOU.
FOR INFORMATION: 800-998-9938 o 707-829-0515 e info@ora.com

g
>0 g
X
_IE"?)O'\OO “EE
EosRle S oS¢
I‘Es'fz‘-\-r'c\ “’ég
20 S5¢
- S O EQO
wEgc\ S
LLI%o,c.\ o) ®
of 258 584
=2 8% Z3E
L) S —Q 5SS 1)
I~ & =]
- 6 -
© P

O'REILLY WOULD LIKE TO HEAR FROM YOU

Which book did this card come from? What is your job description?
[System Administrator [Programmer
(3 Network Administrator [Educator/Teacher
Where did you buy this book? [Web Developer
(J Bookstore [Computer Store Q Other
(Direct from O’Reilly [Class/seminar
(3 Bundled with hardware/software
Q Other - , -
What operating system do you use? ,,D P lease rsen,d me O—Rgﬂly’sicatalqg‘, containing
Q UNIX [Macintosh _a complete listing of O’Reilly books and
O Windows NT 1 PC(Windows/DOS) software. - .
Q Other -
Name Company/Organization
Address
City State Zip/Postal Code Country

Telephone Internet or other email address (specify network)

\ineteenth century wood engraving
of a bear from the 0’Reilly &
Associates Nutshell Handbook®
Using & Managing UUCP.

PLACE
STAMP
HERE

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 80 SEBASTOPOL, CA

Postage will be paid by addressee

O’Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472-9902

Windows

O’REILLY"
Inside the Windows 95 File System

] With so many types of files to support, Windows 95 has a big job to do. It
handles native Windows 95 files, supports the legacy file systems of earlier
Windows systems, and interacts smoothly with files managed by the Windows
NT operating system. It must also support third-party file systems, some of which
are not even designed yet. Windows 97 enhancements are on their way, too, with increased
support for Internet access. The system component that manages this complex set of
interactions is the Installable File System Manager, or [IFSMgr. Understanding IFSMgr and its
associated utilities and drivers is a daunting task for the Windows 95 programmer.

Although Microsoft has documented the Installable File System (IFS) in the Windows 95 device
driver kit, many developers have felt the need for more detailed and complete information.
Inside the Windows 95 File System picks up where that documentation leaves off. This book
takes a hands-on approach to the file system, providing example programs, background
information, and utilities that let you monitor file system activity. By reading this book, you
can see the file system the way a construction foreman sees a building, before the floors and
walls are erected, while the plumbing and electrical systems are still in clear view.

In addition to providing a detailed look at IFSMgr, Inside the Windows 95 File System
describes:

e The three Application Programming Interfaces (APIs) appropriate to the operating
environment: interrupt 21h, Win16, and Win32

* File system drivers (including VFAT, the Virtual FAT File System Driver), and how they
interact with IFSMgr

e VCache services and data structures
e System pagers and the paging file

e VREDIR, the virtual redirector, the Microsoft Networks Client, including discussion of
NetBIOS and SMB protocols

An enclosed disk contains source code for a number of file system drivers and useful utilities
including MultiMon, a Windows 95 internals snooping tool developed by the author.

This book is essential for engineers and their managers who want to take advantage of the
new capabilities of Windows 95.

US $32.95
ISBN 1-56592-200-X CAN $46.95

90000 RepKover.

==

| ED
9 1781565"922006 6 "36920"92200'" 4

Printed on Recycled Paper

